gnm/0000755000176200001440000000000014501312023011022 5ustar liggesusersgnm/NAMESPACE0000755000176200001440000000616014471724015012265 0ustar liggesusersuseDynLib(gnm, .registration = TRUE, .fixes = "C_") export(asGnm, checkEstimable, Const, Diag, Dref, DrefWeights, exitInfo, Exp, expandCategorical, getContrasts, getModelFrame, gnm, instances, Inv, #Log, Logit, meanResiduals, MPinv, Mult, MultHomog, ofInterest, "ofInterest<-", parameters, pickCoef, qrSolve, #Raise, residSVD, se, Symm, termPredictors, Topo, wedderburn) importFrom(grDevices, as.graphicsAnnot, dev.interactive, devAskNewPage, extendrange) # in plot.gnm importFrom(graphics, abline, axis, frame, legend, lines, mtext, panel.smooth, par, plot, points, strheight, text, title) # in plot.gnm; plot.profile.gnm importFrom(methods, as) # in hatvalues.gnm importFrom(nnet, class.ind) # in gnmTools, expandCategorical importFrom(qvcalc, qvcalc) # in getContrasts importFrom(relimp, pickFrom) # in getContrasts importFrom(MASS, addterm, boxcox, dropterm, logtrans) importFrom(Matrix, rankMatrix, rowSums) importFrom(stats, .getXlevels, add.scope, add1, alias, anova, approx, as.formula, C, coef, confint, cooks.distance, delete.response, deriv, deviance, df.residual, dfbeta, dfbetas, drop.scope, drop1, dummy.coef, effects, extractAIC, family, fitted.values, fitted, formula, gaussian, glm.control, glm.fit, hatvalues, influence, is.empty.model, lm.wfit, make.link, model.extract, model.frame, model.matrix, model.offset, model.response, model.weights, na.action, na.exclude, na.omit, na.pass, napredict, naresid, optim, pchisq, pf, pnorm, poisson, predict, printCoefmat, profile, proj, pt, qnorm, qqnorm, quantile, reformulate, residuals, rstandard, rstudent, runif, sd, spline, stat.anova, symnum, terms, terms.formula, update.formula, update, variable.names, vcov, weights) importFrom(utils, flush.console) # in prattle, confint.gnm export(se) S3method(add1, gnm) S3method(addterm, gnm) S3method(alias, gnm) S3method(anova, gnm) S3method(asGnm, glm) S3method(asGnm, lm) S3method(asGnm, default) S3method(boxcox, gnm) S3method(coef, gnm) S3method(confint, gnm) S3method(confint, profile.gnm) S3method(cooks.distance, gnm) S3method(dfbeta, gnm) S3method(dfbetas, gnm) S3method(drop1, gnm) S3method(dropterm, gnm) S3method(dummy.coef, gnm) S3method(effects, gnm) S3method(fitted, gnm) S3method(hatvalues, gnm) S3method(influence, gnm) S3method(kappa, gnm) S3method(labels, gnm) S3method(logtrans, gnm) S3method(model.frame, gnm) S3method(model.matrix, gnm) S3method(plot, gnm) S3method(plot, profile.gnm) S3method(predict, gnm) S3method(print, gnm) S3method(print, coef.gnm) S3method(print, profile.gnm) S3method(print, summary.gnm) S3method(print, vcov.gnm) S3method(print, meanResiduals) S3method(profile, gnm) S3method(proj, gnm) S3method(residuals, gnm) S3method(rstandard, gnm) S3method(rstudent, gnm) S3method(se, default) S3method(se, gnm) S3method(summary, gnm) S3method(summary, meanResiduals) S3method(termPredictors, default) S3method(termPredictors, gnm) S3method(update, gnm) S3method(variable.names, gnm) S3method(vcov, gnm) S3method(weights, gnm) gnm/demo/0000755000176200001440000000000014376140103011756 5ustar liggesusersgnm/demo/gnm.R0000644000176200001440000000421714376140103012666 0ustar liggesusersmessage("1. Set seed as gnm returns random parameterization") set.seed(1) { if (interactive()) { cat("\n3. Type to fit (linear) uniform association model, ", "\n using Diag() to fit diagonal effects: ") readline() } else message("2. Fit (linear) uniform association model, using Diag() to fit", " diagonal effects") } Rscore <- scale(as.numeric(row(occupationalStatus)), scale = FALSE) Cscore <- scale(as.numeric(col(occupationalStatus)), scale = FALSE) Uniform <- gnm(Freq ~ origin + destination + Diag(origin, destination) + Rscore:Cscore, family = poisson, data = occupationalStatus) summary(Uniform) { if (interactive()) { cat("\n3. Type to fit an association model using Mult() to fit", "\n separate row and column effects:") readline() } else message("3. Fit an association model using Mult() to fit separate row and ", "column effects") } RC <- gnm(Freq ~ origin + destination + Diag(origin, destination) + Mult(origin, destination), family = poisson, data = occupationalStatus) summary(RC) { if (interactive()) { cat("\n4. Type to fit an association model using MultHomog()", "\n to fit homogeneous row-column effects:") readline() } else message("4. Fit an association model using MultHomog()\n", "to fit homogeneous row-column effects") } RChomog <- gnm(Freq ~ origin + destination + Diag(origin, destination) + MultHomog(origin, destination), family = poisson, data = occupationalStatus) summary(RChomog) { if (interactive()) { cat("\n5. Type to compare models using anova:") readline() } else message("5. Compare models using anova") } anova(Uniform, RChomog, RC) message("6. Produce diagnostic plots for RChomog") plot(RChomog) message("7. Get simple constrasts of homogeneous row-column effects") getContrasts(RChomog, grep("MultHomog", names(coef(RChomog)))) message("End of demo. \n", "See vignette(\"gnmOverview\", package = \"gnm\") for full manual.") gnm/demo/00Index0000644000176200001440000000006314376140103013107 0ustar liggesusersgnm Fitting generalized nonlinear models with gnm gnm/README.md0000644000176200001440000000212514501276711012316 0ustar liggesusers # gnm [![CRAN_Status_Badge](http://www.r-pkg.org/badges/version/gnm)](https://cran.r-project.org/package=gnm) [![R-CMD-check](https://github.com/hturner/gnm/actions/workflows/R-CMD-check.yaml/badge.svg)](https://github.com/hturner/gnm/actions/workflows/R-CMD-check.yaml) Functions to specify and fit generalized nonlinear models, including models with multiplicative interaction terms such as the UNIDIFF model from sociology and the AMMI model from crop science, and many others. Over-parameterized representations of models are used throughout; functions are provided for inference on estimable parameter combinations, as well as standard methods for diagnostics etc. ## Installation You can install **gnm** from GitHub with: ``` r # install.packages("devtools") devtools::install_github("hturner/gnm") ``` ## Code of conduct Please note that this project is released with a [Contributor Code of Conduct](https://github.com/hturner/gnm/blob/master/CONDUCT.md). By participating in this project you agree to abide by its terms. gnm/data/0000755000176200001440000000000014376140103011743 5ustar liggesusersgnm/data/friend.R0000644000176200001440000001123714376140103013341 0ustar liggesusersfriend <- structure(c(37, 11, 14, 20, 9, 13, 8, 16, 22, 8, 14, 1, 17, 7, 11, 2, 6, 4, 4, 1, 1, 2, 4, 4, 2, 10, 3, 4, 1, 4, 1, 10, 63, 12, 13, 8, 13, 4, 10, 15, 14, 13, 5, 20, 9, 11, 5, 8, 10, 11, 9, 19, 7, 10, 8, 7, 10, 25, 20, 13, 16, 11, 9, 4, 21, 11, 14, 5, 8, 1, 6, 9, 6, 6, 6, 4, 5, 8, 9, 7, 5, 8, 5, 1, 0, 5, 1, 4, 7, 4, 9, 2, 2, 12, 13, 3, 14, 2, 12, 8, 13, 15, 13, 9, 8, 12, 7, 10, 1, 8, 5, 3, 5, 3, 4, 4, 4, 7, 6, 7, 4, 3, 7, 1, 16, 8, 7, 2, 36, 5, 10, 8, 9, 9, 9, 2, 3, 2, 3, 5, 1, 11, 12, 7, 5, 1, 0, 5, 2, 4, 5, 20, 8, 3, 14, 18, 10, 11, 12, 13, 146, 11, 31, 22, 25, 19, 16, 13, 11, 14, 3, 17, 4, 5, 11, 6, 6, 16, 6, 4, 7, 14, 4, 8, 7, 2, 8, 2, 6, 6, 4, 7, 23, 8, 13, 2, 9, 2, 2, 1, 3, 3, 2, 6, 7, 5, 0, 1, 0, 0, 0, 3, 4, 3, 4, 3, 2, 17, 11, 13, 14, 13, 31, 9, 67, 23, 15, 20, 2, 13, 6, 9, 0, 9, 5, 5, 4, 0, 4, 3, 5, 2, 5, 11, 7, 1, 8, 2, 20, 10, 5, 10, 6, 7, 20, 17, 42, 14, 9, 7, 15, 9, 8, 4, 8, 9, 9, 11, 3, 1, 3, 1, 3, 8, 12, 13, 8, 6, 3, 8, 19, 9, 11, 8, 26, 6, 29, 22, 128, 8, 17, 15, 13, 18, 5, 18, 3, 2, 10, 8, 26, 27, 6, 7, 5, 27, 14, 8, 35, 7, 18, 14, 7, 12, 7, 21, 5, 16, 20, 14, 44, 5, 14, 6, 4, 4, 8, 3, 1, 11, 4, 3, 4, 2, 6, 2, 9, 8, 7, 6, 0, 4, 9, 1, 6, 1, 12, 3, 0, 5, 10, 5, 17, 7, 2, 4, 2, 6, 4, 3, 2, 0, 3, 1, 1, 2, 3, 4, 4, 1, 5, 0, 10, 11, 6, 12, 6, 9, 4, 14, 9, 10, 10, 11, 43, 16, 20, 5, 9, 4, 7, 7, 6, 7, 16, 6, 8, 5, 26, 10, 7, 14, 3, 2, 5, 2, 4, 2, 12, 1, 2, 5, 3, 5, 1, 3, 12, 4, 5, 2, 4, 2, 1, 2, 1, 5, 0, 1, 1, 6, 6, 3, 3, 0, 9, 10, 4, 6, 6, 7, 6, 5, 15, 13, 4, 14, 18, 10, 40, 11, 18, 6, 4, 6, 3, 9, 9, 5, 8, 6, 31, 12, 4, 21, 2, 1, 6, 1, 1, 3, 2, 1, 1, 3, 1, 2, 2, 3, 3, 9, 20, 2, 3, 2, 1, 2, 4, 0, 1, 1, 1, 4, 7, 3, 6, 3, 6, 27, 8, 18, 7, 17, 5, 7, 10, 17, 13, 11, 25, 9, 27, 7, 53, 3, 3, 11, 6, 11, 17, 3, 6, 4, 39, 14, 5, 26, 8, 5, 14, 7, 5, 19, 5, 9, 8, 9, 4, 2, 5, 4, 1, 6, 11, 3, 71, 28, 26, 3, 3, 1, 3, 6, 10, 10, 34, 16, 18, 22, 5, 15, 8, 8, 12, 3, 5, 4, 15, 4, 2, 5, 8, 4, 7, 10, 4, 20, 79, 20, 1, 5, 2, 8, 4, 3, 13, 40, 17, 13, 12, 2, 13, 3, 3, 7, 9, 3, 4, 9, 12, 4, 1, 9, 2, 7, 8, 7, 24, 21, 58, 10, 13, 5, 6, 8, 7, 21, 39, 12, 22, 11, 0, 12, 1, 2, 1, 2, 1, 1, 1, 6, 1, 1, 8, 3, 4, 4, 10, 4, 5, 10, 31, 5, 6, 2, 11, 2, 18, 12, 6, 26, 6, 1, 5, 2, 3, 2, 3, 2, 2, 3, 22, 3, 3, 12, 3, 14, 4, 10, 5, 3, 10, 10, 44, 12, 2, 8, 1, 24, 20, 4, 31, 4, 3, 4, 5, 3, 0, 13, 1, 2, 4, 11, 2, 8, 10, 3, 8, 4, 11, 2, 0, 5, 3, 5, 39, 3, 6, 0, 20, 3, 4, 25, 0, 3, 11, 5, 7, 4, 2, 0, 3, 8, 5, 4, 5, 2, 3, 1, 5, 4, 7, 10, 4, 3, 5, 3, 38, 8, 1, 5, 14, 6, 8, 3, 7, 8, 1, 4, 3, 6, 0, 3, 3, 4, 0, 0, 8, 4, 5, 7, 12, 5, 5, 9, 9, 11, 3, 4, 30, 4, 20, 8, 7, 15, 3, 0, 9, 4, 3, 6, 1, 7, 12, 9, 6, 9, 2, 0, 1, 8, 5, 6, 7, 6, 4, 4, 1, 3, 2, 4, 13, 10, 9, 3, 2, 0, 3, 32, 6, 11, 4, 6, 6, 2, 11, 29, 5, 15, 24, 10, 27, 11, 25, 11, 14, 19, 21, 19, 15, 6, 14, 6, 118, 26, 12, 38, 5, 4, 10, 3, 2, 7, 7, 5, 6, 15, 6, 2, 3, 8, 3, 5, 8, 8, 20, 25, 25, 11, 7, 5, 10, 8, 2, 14, 106, 16, 14, 10, 1, 9, 7, 1, 9, 3, 3, 1, 2, 2, 2, 4, 4, 4, 3, 6, 3, 18, 14, 22, 3, 7, 2, 8, 4, 1, 9, 28, 79, 19, 15, 5, 20, 3, 3, 3, 8, 1, 7, 8, 11, 2, 7, 15, 6, 14, 6, 8, 13, 8, 20, 21, 20, 15, 5, 13, 2, 48, 37, 12, 135, 13, 1, 11, 1, 2, 21, 2, 2, 0, 5, 8, 2, 3, 2, 4, 7, 13, 5, 24, 19, 12, 9, 6, 5, 11, 9, 5, 11, 41, 14, 22, 38), .Dim = as.integer(c(31, 31)), .Dimnames = structure(list( r = c("SM", "MPS", "OMO", "GMA", "PDM", "TPE", "SET", "HP", "API", "APH", "APB", "AOA", "NCC", "FRC", "OCW", "SDC", "SEC", "SMC", "SMM", "SMO", "CW", "HW", "CCW", "PSP", "PSW", "BSR", "SW", "PMO", "TO", "RWS", "GL"), c = c("SM", "MPS", "OMO", "GMA", "PDM", "TPE", "SET", "HP", "API", "APH", "APB", "AOA", "NCC", "FRC", "OCW", "SDC", "SEC", "SMC", "SMM", "SMO", "CW", "HW", "CCW", "PSP", "PSW", "BSR", "SW", "PMO", "TO", "RWS", "GL")), .Names = c("r", "c")), class = "table") gnm/data/mentalHealth.R0000644000176200001440000000137414376140103014501 0ustar liggesusersmentalHealth <- structure(list(count = c(64L, 94L, 58L, 46L, 57L, 94L, 54L, 40L, 57L, 105L, 65L, 60L, 72L, 141L, 77L, 94L, 36L, 97L, 54L, 78L, 21L, 71L, 54L, 71L), SES = structure(c(1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 5L, 5L, 5L, 5L, 6L, 6L, 6L, 6L), .Label = c("A", "B", "C", "D", "E", "F"), class = c("ordered", "factor")), MHS = structure(c(1L, 2L, 3L, 4L, 1L, 2L, 3L, 4L, 1L, 2L, 3L, 4L, 1L, 2L, 3L, 4L, 1L, 2L, 3L, 4L, 1L, 2L, 3L, 4L ), .Label = c("well", "mild", "moderate", "impaired"), class = c("ordered", "factor"))), .Names = c("count", "SES", "MHS"), row.names = c("1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "13", "14", "15", "16", "17", "18", "19", "20", "21", "22", "23", "24" ), class = "data.frame") gnm/data/wheat.R0000644000176200001440000012706214376140103013206 0ustar liggesuserswheat <- structure(list(yield = c(8132L, 6691L, 7163L, 5632L, 5942L, 5164L, 4537L, 4085L, 9521L, 8189L, 8785L, 8353L, 7982L, 7211L, 8132L, 6150L, 9852L, 8639L, 9597L, 8536L, 8940L, 8203L, 8686L, 7384L, 7434L, 7140L, 7483L, 7146L, 5544L, 5650L, 3913L, 4657L, 7560L, 6922L, 7440L, 7526L, 7406L, 7158L, 7217L, 7117L, 6785L, 6782L, 6903L, 6173L, 7361L, 7275L, 7748L, 7667L, 5243L, 4861L, 4724L, 4181L, 4717L, 4437L, 4463L, 4554L, 8016L, 7337L, 8203L, 7718L, 7435L, 7217L, 7431L, 7067L, 8517L, 7690L, 8204L, 7478L, 7989L, 7314L, 7706L, 7289L, 7799L, 7448L, 7857L, 6787L, 6410L, 6015L, 5964L, 6320L, 9017L, 8320L, 8658L, 8082L, 7686L, 7878L, 7624L, 7551L, 8896L, 8337L, 8781L, 8787L, 8519L, 8294L, 8362L, 7937L, 6085L, 6767L, 5645L, 4559L, 5396L, 5693L, 4282L, 3149L, 6844L, 6930L, 7197L, 7006L, 7632L, 7664L, 7006L, 7331L, 6507L, 7433L, 6876L, 7094L, 7059L, 6730L, 7196L, 7610L, 7456L, 7197L, 6961L, 6021L, 5824L, 5759L, 4425L, 4129L, 8054L, 8116L, 7579L, 7561L, 7405L, 7217L, 6965L, 7407L, 7755L, 8179L, 8761L, 8340L, 7714L, 7406L, 7634L, 7945L, 8435L, 8750L, 7377L, 6830L, 5650L, 7200L, 5331L, 4760L, 9227L, 9608L, 8692L, 9931L, 8009L, 8345L, 8186L, 7852L, 9355L, 8679L, 9028L, 8426L, 8447L, 8354L, 7939L, 8424L, 5865L, 5543L, 5749L, 5194L, 4242L, 4186L, 4210L, 3507L, 5998L, 6165L, 4867L, 5600L, 6432L, 6093L, 5832L, 5999L, 4873L, 5211L, 4976L, 5222L, 6564L, 5923L, 5883L, 6250L, 7564L, 6639L, 7877L, 7477L, 6316L, 5740L, 6348L, 6049L, 7813L, 7410L, 7722L, 7406L, 7643L, 7006L, 7187L, 7474L, 7035L, 7101L, 7380L, 6910L, 7362L, 6880L, 7025L, 6940L, 7794L, 6992L, 6780L, 5145L, 4683L, 4364L, 3969L, 3304L, 9469L, 8503L, 9101L, 8490L, 8204L, 8131L, 8089L, 7448L, 8875L, 8666L, 9121L, 8535L, 8988L, 8586L, 9164L, 8424L ), year = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L), .Label = c("1988", "1989", "1990", "1991", "1992", "1993", "1994", "1995", "1996", "1997"), class = c("ordered", "factor")), tillage = structure(c(2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L), .Label = c("t", "T"), class = "factor"), summerCrop = structure(c(2L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 2L, 2L, 1L, 1L), .Label = c("s", "S"), class = "factor"), manure = structure(c(2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L), .Label = c("m", "M"), class = "factor"), N = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L), .Label = c("0", "n", "N"), class = c("ordered", "factor")), MTD = c(24.6, 24.6, 24.6, 24.6, 24.6, 24.6, 24.6, 24.6, 24.6, 24.6, 24.6, 24.6, 24.6, 24.6, 24.6, 24.6, 24.6, 24.6, 24.6, 24.6, 24.6, 24.6, 24.6, 24.6, 24.3, 24.3, 24.3, 24.3, 24.3, 24.3, 24.3, 24.3, 24.3, 24.3, 24.3, 24.3, 24.3, 24.3, 24.3, 24.3, 24.3, 24.3, 24.3, 24.3, 24.3, 24.3, 24.3, 24.3, 24.9, 24.9, 24.9, 24.9, 24.9, 24.9, 24.9, 24.9, 24.9, 24.9, 24.9, 24.9, 24.9, 24.9, 24.9, 24.9, 24.9, 24.9, 24.9, 24.9, 24.9, 24.9, 24.9, 24.9, 24.2, 24.2, 24.2, 24.2, 24.2, 24.2, 24.2, 24.2, 24.2, 24.2, 24.2, 24.2, 24.2, 24.2, 24.2, 24.2, 24.2, 24.2, 24.2, 24.2, 24.2, 24.2, 24.2, 24.2, 23.2, 23.2, 23.2, 23.2, 23.2, 23.2, 23.2, 23.2, 23.2, 23.2, 23.2, 23.2, 23.2, 23.2, 23.2, 23.2, 23.2, 23.2, 23.2, 23.2, 23.2, 23.2, 23.2, 23.2, 23.9, 23.9, 23.9, 23.9, 23.9, 23.9, 23.9, 23.9, 23.9, 23.9, 23.9, 23.9, 23.9, 23.9, 23.9, 23.9, 23.9, 23.9, 23.9, 23.9, 23.9, 23.9, 23.9, 23.9, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 22.9, 22.9, 22.9, 22.9, 22.9, 22.9, 22.9, 22.9, 22.9, 22.9, 22.9, 22.9, 22.9, 22.9, 22.9, 22.9, 22.9, 22.9, 22.9, 22.9, 22.9, 22.9, 22.9, 22.9, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26.3, 26.3, 26.3, 26.3, 26.3, 26.3, 26.3, 26.3, 26.3, 26.3, 26.3, 26.3, 26.3, 26.3, 26.3, 26.3, 26.3, 26.3, 26.3, 26.3, 26.3, 26.3, 26.3, 26.3), MTJ = c(25.2, 25.2, 25.2, 25.2, 25.2, 25.2, 25.2, 25.2, 25.2, 25.2, 25.2, 25.2, 25.2, 25.2, 25.2, 25.2, 25.2, 25.2, 25.2, 25.2, 25.2, 25.2, 25.2, 25.2, 21.4, 21.4, 21.4, 21.4, 21.4, 21.4, 21.4, 21.4, 21.4, 21.4, 21.4, 21.4, 21.4, 21.4, 21.4, 21.4, 21.4, 21.4, 21.4, 21.4, 21.4, 21.4, 21.4, 21.4, 24.2, 24.2, 24.2, 24.2, 24.2, 24.2, 24.2, 24.2, 24.2, 24.2, 24.2, 24.2, 24.2, 24.2, 24.2, 24.2, 24.2, 24.2, 24.2, 24.2, 24.2, 24.2, 24.2, 24.2, 24.1, 24.1, 24.1, 24.1, 24.1, 24.1, 24.1, 24.1, 24.1, 24.1, 24.1, 24.1, 24.1, 24.1, 24.1, 24.1, 24.1, 24.1, 24.1, 24.1, 24.1, 24.1, 24.1, 24.1, 22.2, 22.2, 22.2, 22.2, 22.2, 22.2, 22.2, 22.2, 22.2, 22.2, 22.2, 22.2, 22.2, 22.2, 22.2, 22.2, 22.2, 22.2, 22.2, 22.2, 22.2, 22.2, 22.2, 22.2, 24.3, 24.3, 24.3, 24.3, 24.3, 24.3, 24.3, 24.3, 24.3, 24.3, 24.3, 24.3, 24.3, 24.3, 24.3, 24.3, 24.3, 24.3, 24.3, 24.3, 24.3, 24.3, 24.3, 24.3, 25.9, 25.9, 25.9, 25.9, 25.9, 25.9, 25.9, 25.9, 25.9, 25.9, 25.9, 25.9, 25.9, 25.9, 25.9, 25.9, 25.9, 25.9, 25.9, 25.9, 25.9, 25.9, 25.9, 25.9, 24.5, 24.5, 24.5, 24.5, 24.5, 24.5, 24.5, 24.5, 24.5, 24.5, 24.5, 24.5, 24.5, 24.5, 24.5, 24.5, 24.5, 24.5, 24.5, 24.5, 24.5, 24.5, 24.5, 24.5, 27.2, 27.2, 27.2, 27.2, 27.2, 27.2, 27.2, 27.2, 27.2, 27.2, 27.2, 27.2, 27.2, 27.2, 27.2, 27.2, 27.2, 27.2, 27.2, 27.2, 27.2, 27.2, 27.2, 27.2, 24.3, 24.3, 24.3, 24.3, 24.3, 24.3, 24.3, 24.3, 24.3, 24.3, 24.3, 24.3, 24.3, 24.3, 24.3, 24.3, 24.3, 24.3, 24.3, 24.3, 24.3, 24.3, 24.3, 24.3), MTF = c(27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 25.2, 25.2, 25.2, 25.2, 25.2, 25.2, 25.2, 25.2, 25.2, 25.2, 25.2, 25.2, 25.2, 25.2, 25.2, 25.2, 25.2, 25.2, 25.2, 25.2, 25.2, 25.2, 25.2, 25.2, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 27.1, 27.1, 27.1, 27.1, 27.1, 27.1, 27.1, 27.1, 27.1, 27.1, 27.1, 27.1, 27.1, 27.1, 27.1, 27.1, 27.1, 27.1, 27.1, 27.1, 27.1, 27.1, 27.1, 27.1, 24.4, 24.4, 24.4, 24.4, 24.4, 24.4, 24.4, 24.4, 24.4, 24.4, 24.4, 24.4, 24.4, 24.4, 24.4, 24.4, 24.4, 24.4, 24.4, 24.4, 24.4, 24.4, 24.4, 24.4, 23.9, 23.9, 23.9, 23.9, 23.9, 23.9, 23.9, 23.9, 23.9, 23.9, 23.9, 23.9, 23.9, 23.9, 23.9, 23.9, 23.9, 23.9, 23.9, 23.9, 23.9, 23.9, 23.9, 23.9, 25.1, 25.1, 25.1, 25.1, 25.1, 25.1, 25.1, 25.1, 25.1, 25.1, 25.1, 25.1, 25.1, 25.1, 25.1, 25.1, 25.1, 25.1, 25.1, 25.1, 25.1, 25.1, 25.1, 25.1, 27.2, 27.2, 27.2, 27.2, 27.2, 27.2, 27.2, 27.2, 27.2, 27.2, 27.2, 27.2, 27.2, 27.2, 27.2, 27.2, 27.2, 27.2, 27.2, 27.2, 27.2, 27.2, 27.2, 27.2, 28.3, 28.3, 28.3, 28.3, 28.3, 28.3, 28.3, 28.3, 28.3, 28.3, 28.3, 28.3, 28.3, 28.3, 28.3, 28.3, 28.3, 28.3, 28.3, 28.3, 28.3, 28.3, 28.3, 28.3, 25.2, 25.2, 25.2, 25.2, 25.2, 25.2, 25.2, 25.2, 25.2, 25.2, 25.2, 25.2, 25.2, 25.2, 25.2, 25.2, 25.2, 25.2, 25.2, 25.2, 25.2, 25.2, 25.2, 25.2), MTM = c(28.5, 28.5, 28.5, 28.5, 28.5, 28.5, 28.5, 28.5, 28.5, 28.5, 28.5, 28.5, 28.5, 28.5, 28.5, 28.5, 28.5, 28.5, 28.5, 28.5, 28.5, 28.5, 28.5, 28.5, 27.6, 27.6, 27.6, 27.6, 27.6, 27.6, 27.6, 27.6, 27.6, 27.6, 27.6, 27.6, 27.6, 27.6, 27.6, 27.6, 27.6, 27.6, 27.6, 27.6, 27.6, 27.6, 27.6, 27.6, 27.5, 27.5, 27.5, 27.5, 27.5, 27.5, 27.5, 27.5, 27.5, 27.5, 27.5, 27.5, 27.5, 27.5, 27.5, 27.5, 27.5, 27.5, 27.5, 27.5, 27.5, 27.5, 27.5, 27.5, 26.1, 26.1, 26.1, 26.1, 26.1, 26.1, 26.1, 26.1, 26.1, 26.1, 26.1, 26.1, 26.1, 26.1, 26.1, 26.1, 26.1, 26.1, 26.1, 26.1, 26.1, 26.1, 26.1, 26.1, 26.3, 26.3, 26.3, 26.3, 26.3, 26.3, 26.3, 26.3, 26.3, 26.3, 26.3, 26.3, 26.3, 26.3, 26.3, 26.3, 26.3, 26.3, 26.3, 26.3, 26.3, 26.3, 26.3, 26.3, 28.9, 28.9, 28.9, 28.9, 28.9, 28.9, 28.9, 28.9, 28.9, 28.9, 28.9, 28.9, 28.9, 28.9, 28.9, 28.9, 28.9, 28.9, 28.9, 28.9, 28.9, 28.9, 28.9, 28.9, 27.8, 27.8, 27.8, 27.8, 27.8, 27.8, 27.8, 27.8, 27.8, 27.8, 27.8, 27.8, 27.8, 27.8, 27.8, 27.8, 27.8, 27.8, 27.8, 27.8, 27.8, 27.8, 27.8, 27.8, 29.3, 29.3, 29.3, 29.3, 29.3, 29.3, 29.3, 29.3, 29.3, 29.3, 29.3, 29.3, 29.3, 29.3, 29.3, 29.3, 29.3, 29.3, 29.3, 29.3, 29.3, 29.3, 29.3, 29.3, 29.2, 29.2, 29.2, 29.2, 29.2, 29.2, 29.2, 29.2, 29.2, 29.2, 29.2, 29.2, 29.2, 29.2, 29.2, 29.2, 29.2, 29.2, 29.2, 29.2, 29.2, 29.2, 29.2, 29.2, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30), MTA = c(31.1, 31.1, 31.1, 31.1, 31.1, 31.1, 31.1, 31.1, 31.1, 31.1, 31.1, 31.1, 31.1, 31.1, 31.1, 31.1, 31.1, 31.1, 31.1, 31.1, 31.1, 31.1, 31.1, 31.1, 31.8, 31.8, 31.8, 31.8, 31.8, 31.8, 31.8, 31.8, 31.8, 31.8, 31.8, 31.8, 31.8, 31.8, 31.8, 31.8, 31.8, 31.8, 31.8, 31.8, 31.8, 31.8, 31.8, 31.8, 32.1, 32.1, 32.1, 32.1, 32.1, 32.1, 32.1, 32.1, 32.1, 32.1, 32.1, 32.1, 32.1, 32.1, 32.1, 32.1, 32.1, 32.1, 32.1, 32.1, 32.1, 32.1, 32.1, 32.1, 31.5, 31.5, 31.5, 31.5, 31.5, 31.5, 31.5, 31.5, 31.5, 31.5, 31.5, 31.5, 31.5, 31.5, 31.5, 31.5, 31.5, 31.5, 31.5, 31.5, 31.5, 31.5, 31.5, 31.5, 32.2, 32.2, 32.2, 32.2, 32.2, 32.2, 32.2, 32.2, 32.2, 32.2, 32.2, 32.2, 32.2, 32.2, 32.2, 32.2, 32.2, 32.2, 32.2, 32.2, 32.2, 32.2, 32.2, 32.2, 32.9, 32.9, 32.9, 32.9, 32.9, 32.9, 32.9, 32.9, 32.9, 32.9, 32.9, 32.9, 32.9, 32.9, 32.9, 32.9, 32.9, 32.9, 32.9, 32.9, 32.9, 32.9, 32.9, 32.9, 32.3, 32.3, 32.3, 32.3, 32.3, 32.3, 32.3, 32.3, 32.3, 32.3, 32.3, 32.3, 32.3, 32.3, 32.3, 32.3, 32.3, 32.3, 32.3, 32.3, 32.3, 32.3, 32.3, 32.3, 31.7, 31.7, 31.7, 31.7, 31.7, 31.7, 31.7, 31.7, 31.7, 31.7, 31.7, 31.7, 31.7, 31.7, 31.7, 31.7, 31.7, 31.7, 31.7, 31.7, 31.7, 31.7, 31.7, 31.7, 33.1, 33.1, 33.1, 33.1, 33.1, 33.1, 33.1, 33.1, 33.1, 33.1, 33.1, 33.1, 33.1, 33.1, 33.1, 33.1, 33.1, 33.1, 33.1, 33.1, 33.1, 33.1, 33.1, 33.1, 30.3, 30.3, 30.3, 30.3, 30.3, 30.3, 30.3, 30.3, 30.3, 30.3, 30.3, 30.3, 30.3, 30.3, 30.3, 30.3, 30.3, 30.3, 30.3, 30.3, 30.3, 30.3, 30.3, 30.3), mTD = c(8.3, 8.3, 8.3, 8.3, 8.3, 8.3, 8.3, 8.3, 8.3, 8.3, 8.3, 8.3, 8.3, 8.3, 8.3, 8.3, 8.3, 8.3, 8.3, 8.3, 8.3, 8.3, 8.3, 8.3, 8.4, 8.4, 8.4, 8.4, 8.4, 8.4, 8.4, 8.4, 8.4, 8.4, 8.4, 8.4, 8.4, 8.4, 8.4, 8.4, 8.4, 8.4, 8.4, 8.4, 8.4, 8.4, 8.4, 8.4, 9.2, 9.2, 9.2, 9.2, 9.2, 9.2, 9.2, 9.2, 9.2, 9.2, 9.2, 9.2, 9.2, 9.2, 9.2, 9.2, 9.2, 9.2, 9.2, 9.2, 9.2, 9.2, 9.2, 9.2, 10.1, 10.1, 10.1, 10.1, 10.1, 10.1, 10.1, 10.1, 10.1, 10.1, 10.1, 10.1, 10.1, 10.1, 10.1, 10.1, 10.1, 10.1, 10.1, 10.1, 10.1, 10.1, 10.1, 10.1, 10.9, 10.9, 10.9, 10.9, 10.9, 10.9, 10.9, 10.9, 10.9, 10.9, 10.9, 10.9, 10.9, 10.9, 10.9, 10.9, 10.9, 10.9, 10.9, 10.9, 10.9, 10.9, 10.9, 10.9, 10.9, 10.9, 10.9, 10.9, 10.9, 10.9, 10.9, 10.9, 10.9, 10.9, 10.9, 10.9, 10.9, 10.9, 10.9, 10.9, 10.9, 10.9, 10.9, 10.9, 10.9, 10.9, 10.9, 10.9, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11.3, 11.3, 11.3, 11.3, 11.3, 11.3, 11.3, 11.3, 11.3, 11.3, 11.3, 11.3, 11.3, 11.3, 11.3, 11.3, 11.3, 11.3, 11.3, 11.3, 11.3, 11.3, 11.3, 11.3, 8.6, 8.6, 8.6, 8.6, 8.6, 8.6, 8.6, 8.6, 8.6, 8.6, 8.6, 8.6, 8.6, 8.6, 8.6, 8.6, 8.6, 8.6, 8.6, 8.6, 8.6, 8.6, 8.6, 8.6, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8), mTJ = c(7.5, 7.5, 7.5, 7.5, 7.5, 7.5, 7.5, 7.5, 7.5, 7.5, 7.5, 7.5, 7.5, 7.5, 7.5, 7.5, 7.5, 7.5, 7.5, 7.5, 7.5, 7.5, 7.5, 7.5, 6.2, 6.2, 6.2, 6.2, 6.2, 6.2, 6.2, 6.2, 6.2, 6.2, 6.2, 6.2, 6.2, 6.2, 6.2, 6.2, 6.2, 6.2, 6.2, 6.2, 6.2, 6.2, 6.2, 6.2, 7.5, 7.5, 7.5, 7.5, 7.5, 7.5, 7.5, 7.5, 7.5, 7.5, 7.5, 7.5, 7.5, 7.5, 7.5, 7.5, 7.5, 7.5, 7.5, 7.5, 7.5, 7.5, 7.5, 7.5, 8.9, 8.9, 8.9, 8.9, 8.9, 8.9, 8.9, 8.9, 8.9, 8.9, 8.9, 8.9, 8.9, 8.9, 8.9, 8.9, 8.9, 8.9, 8.9, 8.9, 8.9, 8.9, 8.9, 8.9, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 11.6, 11.6, 11.6, 11.6, 11.6, 11.6, 11.6, 11.6, 11.6, 11.6, 11.6, 11.6, 11.6, 11.6, 11.6, 11.6, 11.6, 11.6, 11.6, 11.6, 11.6, 11.6, 11.6, 11.6, 8.3, 8.3, 8.3, 8.3, 8.3, 8.3, 8.3, 8.3, 8.3, 8.3, 8.3, 8.3, 8.3, 8.3, 8.3, 8.3, 8.3, 8.3, 8.3, 8.3, 8.3, 8.3, 8.3, 8.3, 8.1, 8.1, 8.1, 8.1, 8.1, 8.1, 8.1, 8.1, 8.1, 8.1, 8.1, 8.1, 8.1, 8.1, 8.1, 8.1, 8.1, 8.1, 8.1, 8.1, 8.1, 8.1, 8.1, 8.1, 5.8, 5.8, 5.8, 5.8, 5.8, 5.8, 5.8, 5.8, 5.8, 5.8, 5.8, 5.8, 5.8, 5.8, 5.8, 5.8, 5.8, 5.8, 5.8, 5.8, 5.8, 5.8, 5.8, 5.8, 7.9, 7.9, 7.9, 7.9, 7.9, 7.9, 7.9, 7.9, 7.9, 7.9, 7.9, 7.9, 7.9, 7.9, 7.9, 7.9, 7.9, 7.9, 7.9, 7.9, 7.9, 7.9, 7.9, 7.9), mTF = c(9.8, 9.8, 9.8, 9.8, 9.8, 9.8, 9.8, 9.8, 9.8, 9.8, 9.8, 9.8, 9.8, 9.8, 9.8, 9.8, 9.8, 9.8, 9.8, 9.8, 9.8, 9.8, 9.8, 9.8, 9.6, 9.6, 9.6, 9.6, 9.6, 9.6, 9.6, 9.6, 9.6, 9.6, 9.6, 9.6, 9.6, 9.6, 9.6, 9.6, 9.6, 9.6, 9.6, 9.6, 9.6, 9.6, 9.6, 9.6, 6.8, 6.8, 6.8, 6.8, 6.8, 6.8, 6.8, 6.8, 6.8, 6.8, 6.8, 6.8, 6.8, 6.8, 6.8, 6.8, 6.8, 6.8, 6.8, 6.8, 6.8, 6.8, 6.8, 6.8, 10.9, 10.9, 10.9, 10.9, 10.9, 10.9, 10.9, 10.9, 10.9, 10.9, 10.9, 10.9, 10.9, 10.9, 10.9, 10.9, 10.9, 10.9, 10.9, 10.9, 10.9, 10.9, 10.9, 10.9, 10.7, 10.7, 10.7, 10.7, 10.7, 10.7, 10.7, 10.7, 10.7, 10.7, 10.7, 10.7, 10.7, 10.7, 10.7, 10.7, 10.7, 10.7, 10.7, 10.7, 10.7, 10.7, 10.7, 10.7, 10.4, 10.4, 10.4, 10.4, 10.4, 10.4, 10.4, 10.4, 10.4, 10.4, 10.4, 10.4, 10.4, 10.4, 10.4, 10.4, 10.4, 10.4, 10.4, 10.4, 10.4, 10.4, 10.4, 10.4, 8.1, 8.1, 8.1, 8.1, 8.1, 8.1, 8.1, 8.1, 8.1, 8.1, 8.1, 8.1, 8.1, 8.1, 8.1, 8.1, 8.1, 8.1, 8.1, 8.1, 8.1, 8.1, 8.1, 8.1, 11.9, 11.9, 11.9, 11.9, 11.9, 11.9, 11.9, 11.9, 11.9, 11.9, 11.9, 11.9, 11.9, 11.9, 11.9, 11.9, 11.9, 11.9, 11.9, 11.9, 11.9, 11.9, 11.9, 11.9, 10.3, 10.3, 10.3, 10.3, 10.3, 10.3, 10.3, 10.3, 10.3, 10.3, 10.3, 10.3, 10.3, 10.3, 10.3, 10.3, 10.3, 10.3, 10.3, 10.3, 10.3, 10.3, 10.3, 10.3, 7.6, 7.6, 7.6, 7.6, 7.6, 7.6, 7.6, 7.6, 7.6, 7.6, 7.6, 7.6, 7.6, 7.6, 7.6, 7.6, 7.6, 7.6, 7.6, 7.6, 7.6, 7.6, 7.6, 7.6), mTM = c(8.9, 8.9, 8.9, 8.9, 8.9, 8.9, 8.9, 8.9, 8.9, 8.9, 8.9, 8.9, 8.9, 8.9, 8.9, 8.9, 8.9, 8.9, 8.9, 8.9, 8.9, 8.9, 8.9, 8.9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.2, 10.2, 10.2, 10.2, 10.2, 10.2, 10.2, 10.2, 10.2, 10.2, 10.2, 10.2, 10.2, 10.2, 10.2, 10.2, 10.2, 10.2, 10.2, 10.2, 10.2, 10.2, 10.2, 10.2, 10.7, 10.7, 10.7, 10.7, 10.7, 10.7, 10.7, 10.7, 10.7, 10.7, 10.7, 10.7, 10.7, 10.7, 10.7, 10.7, 10.7, 10.7, 10.7, 10.7, 10.7, 10.7, 10.7, 10.7, 11.4, 11.4, 11.4, 11.4, 11.4, 11.4, 11.4, 11.4, 11.4, 11.4, 11.4, 11.4, 11.4, 11.4, 11.4, 11.4, 11.4, 11.4, 11.4, 11.4, 11.4, 11.4, 11.4, 11.4, 9.5, 9.5, 9.5, 9.5, 9.5, 9.5, 9.5, 9.5, 9.5, 9.5, 9.5, 9.5, 9.5, 9.5, 9.5, 9.5, 9.5, 9.5, 9.5, 9.5, 9.5, 9.5, 9.5, 9.5, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8), mTA = c(13.2, 13.2, 13.2, 13.2, 13.2, 13.2, 13.2, 13.2, 13.2, 13.2, 13.2, 13.2, 13.2, 13.2, 13.2, 13.2, 13.2, 13.2, 13.2, 13.2, 13.2, 13.2, 13.2, 13.2, 13.4, 13.4, 13.4, 13.4, 13.4, 13.4, 13.4, 13.4, 13.4, 13.4, 13.4, 13.4, 13.4, 13.4, 13.4, 13.4, 13.4, 13.4, 13.4, 13.4, 13.4, 13.4, 13.4, 13.4, 12.4, 12.4, 12.4, 12.4, 12.4, 12.4, 12.4, 12.4, 12.4, 12.4, 12.4, 12.4, 12.4, 12.4, 12.4, 12.4, 12.4, 12.4, 12.4, 12.4, 12.4, 12.4, 12.4, 12.4, 11.5, 11.5, 11.5, 11.5, 11.5, 11.5, 11.5, 11.5, 11.5, 11.5, 11.5, 11.5, 11.5, 11.5, 11.5, 11.5, 11.5, 11.5, 11.5, 11.5, 11.5, 11.5, 11.5, 11.5, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 12.6, 12.6, 12.6, 12.6, 12.6, 12.6, 12.6, 12.6, 12.6, 12.6, 12.6, 12.6, 12.6, 12.6, 12.6, 12.6, 12.6, 12.6, 12.6, 12.6, 12.6, 12.6, 12.6, 12.6, 12.2, 12.2, 12.2, 12.2, 12.2, 12.2, 12.2, 12.2, 12.2, 12.2, 12.2, 12.2, 12.2, 12.2, 12.2, 12.2, 12.2, 12.2, 12.2, 12.2, 12.2, 12.2, 12.2, 12.2, 9.9, 9.9, 9.9, 9.9, 9.9, 9.9, 9.9, 9.9, 9.9, 9.9, 9.9, 9.9, 9.9, 9.9, 9.9, 9.9, 9.9, 9.9, 9.9, 9.9, 9.9, 9.9, 9.9, 9.9, 12.6, 12.6, 12.6, 12.6, 12.6, 12.6, 12.6, 12.6, 12.6, 12.6, 12.6, 12.6, 12.6, 12.6, 12.6, 12.6, 12.6, 12.6, 12.6, 12.6, 12.6, 12.6, 12.6, 12.6, 12.2, 12.2, 12.2, 12.2, 12.2, 12.2, 12.2, 12.2, 12.2, 12.2, 12.2, 12.2, 12.2, 12.2, 12.2, 12.2, 12.2, 12.2, 12.2, 12.2, 12.2, 12.2, 12.2, 12.2), mTUD = c(4.5, 4.5, 4.5, 4.5, 4.5, 4.5, 4.5, 4.5, 4.5, 4.5, 4.5, 4.5, 4.5, 4.5, 4.5, 4.5, 4.5, 4.5, 4.5, 4.5, 4.5, 4.5, 4.5, 4.5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5.2, 5.2, 5.2, 5.2, 5.2, 5.2, 5.2, 5.2, 5.2, 5.2, 5.2, 5.2, 5.2, 5.2, 5.2, 5.2, 5.2, 5.2, 5.2, 5.2, 5.2, 5.2, 5.2, 5.2, 6.9, 6.9, 6.9, 6.9, 6.9, 6.9, 6.9, 6.9, 6.9, 6.9, 6.9, 6.9, 6.9, 6.9, 6.9, 6.9, 6.9, 6.9, 6.9, 6.9, 6.9, 6.9, 6.9, 6.9, 7.8, 7.8, 7.8, 7.8, 7.8, 7.8, 7.8, 7.8, 7.8, 7.8, 7.8, 7.8, 7.8, 7.8, 7.8, 7.8, 7.8, 7.8, 7.8, 7.8, 7.8, 7.8, 7.8, 7.8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9.3, 9.3, 9.3, 9.3, 9.3, 9.3, 9.3, 9.3, 9.3, 9.3, 9.3, 9.3, 9.3, 9.3, 9.3, 9.3, 9.3, 9.3, 9.3, 9.3, 9.3, 9.3, 9.3, 9.3, 9.1, 9.1, 9.1, 9.1, 9.1, 9.1, 9.1, 9.1, 9.1, 9.1, 9.1, 9.1, 9.1, 9.1, 9.1, 9.1, 9.1, 9.1, 9.1, 9.1, 9.1, 9.1, 9.1, 9.1, 3.7, 3.7, 3.7, 3.7, 3.7, 3.7, 3.7, 3.7, 3.7, 3.7, 3.7, 3.7, 3.7, 3.7, 3.7, 3.7, 3.7, 3.7, 3.7, 3.7, 3.7, 3.7, 3.7, 3.7, 3.7, 3.7, 3.7, 3.7, 3.7, 3.7, 3.7, 3.7, 3.7, 3.7, 3.7, 3.7, 3.7, 3.7, 3.7, 3.7, 3.7, 3.7, 3.7, 3.7, 3.7, 3.7, 3.7, 3.7), mTUJ = c(3.8, 3.8, 3.8, 3.8, 3.8, 3.8, 3.8, 3.8, 3.8, 3.8, 3.8, 3.8, 3.8, 3.8, 3.8, 3.8, 3.8, 3.8, 3.8, 3.8, 3.8, 3.8, 3.8, 3.8, 2.9, 2.9, 2.9, 2.9, 2.9, 2.9, 2.9, 2.9, 2.9, 2.9, 2.9, 2.9, 2.9, 2.9, 2.9, 2.9, 2.9, 2.9, 2.9, 2.9, 2.9, 2.9, 2.9, 2.9, 4.1, 4.1, 4.1, 4.1, 4.1, 4.1, 4.1, 4.1, 4.1, 4.1, 4.1, 4.1, 4.1, 4.1, 4.1, 4.1, 4.1, 4.1, 4.1, 4.1, 4.1, 4.1, 4.1, 4.1, 5.9, 5.9, 5.9, 5.9, 5.9, 5.9, 5.9, 5.9, 5.9, 5.9, 5.9, 5.9, 5.9, 5.9, 5.9, 5.9, 5.9, 5.9, 5.9, 5.9, 5.9, 5.9, 5.9, 5.9, 8.4, 8.4, 8.4, 8.4, 8.4, 8.4, 8.4, 8.4, 8.4, 8.4, 8.4, 8.4, 8.4, 8.4, 8.4, 8.4, 8.4, 8.4, 8.4, 8.4, 8.4, 8.4, 8.4, 8.4, 9.2, 9.2, 9.2, 9.2, 9.2, 9.2, 9.2, 9.2, 9.2, 9.2, 9.2, 9.2, 9.2, 9.2, 9.2, 9.2, 9.2, 9.2, 9.2, 9.2, 9.2, 9.2, 9.2, 9.2, 6.3, 6.3, 6.3, 6.3, 6.3, 6.3, 6.3, 6.3, 6.3, 6.3, 6.3, 6.3, 6.3, 6.3, 6.3, 6.3, 6.3, 6.3, 6.3, 6.3, 6.3, 6.3, 6.3, 6.3, 5.2, 5.2, 5.2, 5.2, 5.2, 5.2, 5.2, 5.2, 5.2, 5.2, 5.2, 5.2, 5.2, 5.2, 5.2, 5.2, 5.2, 5.2, 5.2, 5.2, 5.2, 5.2, 5.2, 5.2, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 3.6, 3.6, 3.6, 3.6, 3.6, 3.6, 3.6, 3.6, 3.6, 3.6, 3.6, 3.6, 3.6, 3.6, 3.6, 3.6, 3.6, 3.6, 3.6, 3.6, 3.6, 3.6, 3.6, 3.6), mTUF = c(6.9, 6.9, 6.9, 6.9, 6.9, 6.9, 6.9, 6.9, 6.9, 6.9, 6.9, 6.9, 6.9, 6.9, 6.9, 6.9, 6.9, 6.9, 6.9, 6.9, 6.9, 6.9, 6.9, 6.9, 8.3, 8.3, 8.3, 8.3, 8.3, 8.3, 8.3, 8.3, 8.3, 8.3, 8.3, 8.3, 8.3, 8.3, 8.3, 8.3, 8.3, 8.3, 8.3, 8.3, 8.3, 8.3, 8.3, 8.3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 7.7, 7.7, 7.7, 7.7, 7.7, 7.7, 7.7, 7.7, 7.7, 7.7, 7.7, 7.7, 7.7, 7.7, 7.7, 7.7, 7.7, 7.7, 7.7, 7.7, 7.7, 7.7, 7.7, 7.7, 8.3, 8.3, 8.3, 8.3, 8.3, 8.3, 8.3, 8.3, 8.3, 8.3, 8.3, 8.3, 8.3, 8.3, 8.3, 8.3, 8.3, 8.3, 8.3, 8.3, 8.3, 8.3, 8.3, 8.3, 8.1, 8.1, 8.1, 8.1, 8.1, 8.1, 8.1, 8.1, 8.1, 8.1, 8.1, 8.1, 8.1, 8.1, 8.1, 8.1, 8.1, 8.1, 8.1, 8.1, 8.1, 8.1, 8.1, 8.1, 5.9, 5.9, 5.9, 5.9, 5.9, 5.9, 5.9, 5.9, 5.9, 5.9, 5.9, 5.9, 5.9, 5.9, 5.9, 5.9, 5.9, 5.9, 5.9, 5.9, 5.9, 5.9, 5.9, 5.9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 3.8, 3.8, 3.8, 3.8, 3.8, 3.8, 3.8, 3.8, 3.8, 3.8, 3.8, 3.8, 3.8, 3.8, 3.8, 3.8, 3.8, 3.8, 3.8, 3.8, 3.8, 3.8, 3.8, 3.8), mTUM = c(5.8, 5.8, 5.8, 5.8, 5.8, 5.8, 5.8, 5.8, 5.8, 5.8, 5.8, 5.8, 5.8, 5.8, 5.8, 5.8, 5.8, 5.8, 5.8, 5.8, 5.8, 5.8, 5.8, 5.8, 9.4, 9.4, 9.4, 9.4, 9.4, 9.4, 9.4, 9.4, 9.4, 9.4, 9.4, 9.4, 9.4, 9.4, 9.4, 9.4, 9.4, 9.4, 9.4, 9.4, 9.4, 9.4, 9.4, 9.4, 5.4, 5.4, 5.4, 5.4, 5.4, 5.4, 5.4, 5.4, 5.4, 5.4, 5.4, 5.4, 5.4, 5.4, 5.4, 5.4, 5.4, 5.4, 5.4, 5.4, 5.4, 5.4, 5.4, 5.4, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 7.4, 7.4, 7.4, 7.4, 7.4, 7.4, 7.4, 7.4, 7.4, 7.4, 7.4, 7.4, 7.4, 7.4, 7.4, 7.4, 7.4, 7.4, 7.4, 7.4, 7.4, 7.4, 7.4, 7.4, 7.4, 7.4, 7.4, 7.4, 7.4, 7.4, 7.4, 7.4, 7.4, 7.4, 7.4, 7.4, 7.4, 7.4, 7.4, 7.4, 7.4, 7.4, 7.4, 7.4, 7.4, 7.4, 7.4, 7.4, 7.3, 7.3, 7.3, 7.3, 7.3, 7.3, 7.3, 7.3, 7.3, 7.3, 7.3, 7.3, 7.3, 7.3, 7.3, 7.3, 7.3, 7.3, 7.3, 7.3, 7.3, 7.3, 7.3, 7.3, 7.8, 7.8, 7.8, 7.8, 7.8, 7.8, 7.8, 7.8, 7.8, 7.8, 7.8, 7.8, 7.8, 7.8, 7.8, 7.8, 7.8, 7.8, 7.8, 7.8, 7.8, 7.8, 7.8, 7.8, 5.2, 5.2, 5.2, 5.2, 5.2, 5.2, 5.2, 5.2, 5.2, 5.2, 5.2, 5.2, 5.2, 5.2, 5.2, 5.2, 5.2, 5.2, 5.2, 5.2, 5.2, 5.2, 5.2, 5.2, 7.2, 7.2, 7.2, 7.2, 7.2, 7.2, 7.2, 7.2, 7.2, 7.2, 7.2, 7.2, 7.2, 7.2, 7.2, 7.2, 7.2, 7.2, 7.2, 7.2, 7.2, 7.2, 7.2, 7.2), mTUA = c(9.9, 9.9, 9.9, 9.9, 9.9, 9.9, 9.9, 9.9, 9.9, 9.9, 9.9, 9.9, 9.9, 9.9, 9.9, 9.9, 9.9, 9.9, 9.9, 9.9, 9.9, 9.9, 9.9, 9.9, 9.6, 9.6, 9.6, 9.6, 9.6, 9.6, 9.6, 9.6, 9.6, 9.6, 9.6, 9.6, 9.6, 9.6, 9.6, 9.6, 9.6, 9.6, 9.6, 9.6, 9.6, 9.6, 9.6, 9.6, 8.8, 8.8, 8.8, 8.8, 8.8, 8.8, 8.8, 8.8, 8.8, 8.8, 8.8, 8.8, 8.8, 8.8, 8.8, 8.8, 8.8, 8.8, 8.8, 8.8, 8.8, 8.8, 8.8, 8.8, 7.4, 7.4, 7.4, 7.4, 7.4, 7.4, 7.4, 7.4, 7.4, 7.4, 7.4, 7.4, 7.4, 7.4, 7.4, 7.4, 7.4, 7.4, 7.4, 7.4, 7.4, 7.4, 7.4, 7.4, 9.7, 9.7, 9.7, 9.7, 9.7, 9.7, 9.7, 9.7, 9.7, 9.7, 9.7, 9.7, 9.7, 9.7, 9.7, 9.7, 9.7, 9.7, 9.7, 9.7, 9.7, 9.7, 9.7, 9.7, 9.2, 9.2, 9.2, 9.2, 9.2, 9.2, 9.2, 9.2, 9.2, 9.2, 9.2, 9.2, 9.2, 9.2, 9.2, 9.2, 9.2, 9.2, 9.2, 9.2, 9.2, 9.2, 9.2, 9.2, 7.4, 7.4, 7.4, 7.4, 7.4, 7.4, 7.4, 7.4, 7.4, 7.4, 7.4, 7.4, 7.4, 7.4, 7.4, 7.4, 7.4, 7.4, 7.4, 7.4, 7.4, 7.4, 7.4, 7.4, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8.1, 8.1, 8.1, 8.1, 8.1, 8.1, 8.1, 8.1, 8.1, 8.1, 8.1, 8.1, 8.1, 8.1, 8.1, 8.1, 8.1, 8.1, 8.1, 8.1, 8.1, 8.1, 8.1, 8.1), PRD = c(1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 30.3, 30.3, 30.3, 30.3, 30.3, 30.3, 30.3, 30.3, 30.3, 30.3, 30.3, 30.3, 30.3, 30.3, 30.3, 30.3, 30.3, 30.3, 30.3, 30.3, 30.3, 30.3, 30.3, 30.3, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 94.4, 94.4, 94.4, 94.4, 94.4, 94.4, 94.4, 94.4, 94.4, 94.4, 94.4, 94.4, 94.4, 94.4, 94.4, 94.4, 94.4, 94.4, 94.4, 94.4, 94.4, 94.4, 94.4, 94.4, 87.7, 87.7, 87.7, 87.7, 87.7, 87.7, 87.7, 87.7, 87.7, 87.7, 87.7, 87.7, 87.7, 87.7, 87.7, 87.7, 87.7, 87.7, 87.7, 87.7, 87.7, 87.7, 87.7, 87.7, 20.3, 20.3, 20.3, 20.3, 20.3, 20.3, 20.3, 20.3, 20.3, 20.3, 20.3, 20.3, 20.3, 20.3, 20.3, 20.3, 20.3, 20.3, 20.3, 20.3, 20.3, 20.3, 20.3, 20.3, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 2.2, 85.1, 85.1, 85.1, 85.1, 85.1, 85.1, 85.1, 85.1, 85.1, 85.1, 85.1, 85.1, 85.1, 85.1, 85.1, 85.1, 85.1, 85.1, 85.1, 85.1, 85.1, 85.1, 85.1, 85.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), PRJ = c(2.4, 2.4, 2.4, 2.4, 2.4, 2.4, 2.4, 2.4, 2.4, 2.4, 2.4, 2.4, 2.4, 2.4, 2.4, 2.4, 2.4, 2.4, 2.4, 2.4, 2.4, 2.4, 2.4, 2.4, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 2.6, 2.6, 2.6, 2.6, 2.6, 2.6, 2.6, 2.6, 2.6, 2.6, 2.6, 2.6, 2.6, 2.6, 2.6, 2.6, 2.6, 2.6, 2.6, 2.6, 2.6, 2.6, 2.6, 2.6, 152.3, 152.3, 152.3, 152.3, 152.3, 152.3, 152.3, 152.3, 152.3, 152.3, 152.3, 152.3, 152.3, 152.3, 152.3, 152.3, 152.3, 152.3, 152.3, 152.3, 152.3, 152.3, 152.3, 152.3, 26.9, 26.9, 26.9, 26.9, 26.9, 26.9, 26.9, 26.9, 26.9, 26.9, 26.9, 26.9, 26.9, 26.9, 26.9, 26.9, 26.9, 26.9, 26.9, 26.9, 26.9, 26.9, 26.9, 26.9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.7, 0.7, 0.7, 0.7, 0.7, 0.7, 0.7, 0.7, 0.7, 0.7, 0.7, 0.7, 0.7, 0.7, 0.7, 0.7, 0.7, 0.7, 0.7, 0.7, 0.7, 0.7, 0.7, 0.7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 11.1, 11.1, 11.1, 11.1, 11.1, 11.1, 11.1, 11.1, 11.1, 11.1, 11.1, 11.1, 11.1, 11.1, 11.1, 11.1, 11.1, 11.1, 11.1, 11.1, 11.1, 11.1, 11.1, 11.1), PRF = c(0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 61.6, 61.6, 61.6, 61.6, 61.6, 61.6, 61.6, 61.6, 61.6, 61.6, 61.6, 61.6, 61.6, 61.6, 61.6, 61.6, 61.6, 61.6, 61.6, 61.6, 61.6, 61.6, 61.6, 61.6, 15.2, 15.2, 15.2, 15.2, 15.2, 15.2, 15.2, 15.2, 15.2, 15.2, 15.2, 15.2, 15.2, 15.2, 15.2, 15.2, 15.2, 15.2, 15.2, 15.2, 15.2, 15.2, 15.2, 15.2, 11.6, 11.6, 11.6, 11.6, 11.6, 11.6, 11.6, 11.6, 11.6, 11.6, 11.6, 11.6, 11.6, 11.6, 11.6, 11.6, 11.6, 11.6, 11.6, 11.6, 11.6, 11.6, 11.6, 11.6, 59.1, 59.1, 59.1, 59.1, 59.1, 59.1, 59.1, 59.1, 59.1, 59.1, 59.1, 59.1, 59.1, 59.1, 59.1, 59.1, 59.1, 59.1, 59.1, 59.1, 59.1, 59.1, 59.1, 59.1, 41.3, 41.3, 41.3, 41.3, 41.3, 41.3, 41.3, 41.3, 41.3, 41.3, 41.3, 41.3, 41.3, 41.3, 41.3, 41.3, 41.3, 41.3, 41.3, 41.3, 41.3, 41.3, 41.3, 41.3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4.3, 4.3, 4.3, 4.3, 4.3, 4.3, 4.3, 4.3, 4.3, 4.3, 4.3, 4.3, 4.3, 4.3, 4.3, 4.3, 4.3, 4.3, 4.3, 4.3, 4.3, 4.3, 4.3, 4.3), PRM = c(0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 20.4, 20.4, 20.4, 20.4, 20.4, 20.4, 20.4, 20.4, 20.4, 20.4, 20.4, 20.4, 20.4, 20.4, 20.4, 20.4, 20.4, 20.4, 20.4, 20.4, 20.4, 20.4, 20.4, 20.4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), SHD = c(8.1, 8.1, 8.1, 8.1, 8.1, 8.1, 8.1, 8.1, 8.1, 8.1, 8.1, 8.1, 8.1, 8.1, 8.1, 8.1, 8.1, 8.1, 8.1, 8.1, 8.1, 8.1, 8.1, 8.1, 8.1, 8.1, 8.1, 8.1, 8.1, 8.1, 8.1, 8.1, 8.1, 8.1, 8.1, 8.1, 8.1, 8.1, 8.1, 8.1, 8.1, 8.1, 8.1, 8.1, 8.1, 8.1, 8.1, 8.1, 7.3, 7.3, 7.3, 7.3, 7.3, 7.3, 7.3, 7.3, 7.3, 7.3, 7.3, 7.3, 7.3, 7.3, 7.3, 7.3, 7.3, 7.3, 7.3, 7.3, 7.3, 7.3, 7.3, 7.3, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 6.4, 6.4, 6.4, 6.4, 6.4, 6.4, 6.4, 6.4, 6.4, 6.4, 6.4, 6.4, 6.4, 6.4, 6.4, 6.4, 6.4, 6.4, 6.4, 6.4, 6.4, 6.4, 6.4, 6.4, 5.8, 5.8, 5.8, 5.8, 5.8, 5.8, 5.8, 5.8, 5.8, 5.8, 5.8, 5.8, 5.8, 5.8, 5.8, 5.8, 5.8, 5.8, 5.8, 5.8, 5.8, 5.8, 5.8, 5.8, 5.7, 5.7, 5.7, 5.7, 5.7, 5.7, 5.7, 5.7, 5.7, 5.7, 5.7, 5.7, 5.7, 5.7, 5.7, 5.7, 5.7, 5.7, 5.7, 5.7, 5.7, 5.7, 5.7, 5.7, 5.8, 5.8, 5.8, 5.8, 5.8, 5.8, 5.8, 5.8, 5.8, 5.8, 5.8, 5.8, 5.8, 5.8, 5.8, 5.8, 5.8, 5.8, 5.8, 5.8, 5.8, 5.8, 5.8, 5.8, 8.4, 8.4, 8.4, 8.4, 8.4, 8.4, 8.4, 8.4, 8.4, 8.4, 8.4, 8.4, 8.4, 8.4, 8.4, 8.4, 8.4, 8.4, 8.4, 8.4, 8.4, 8.4, 8.4, 8.4, 8.2, 8.2, 8.2, 8.2, 8.2, 8.2, 8.2, 8.2, 8.2, 8.2, 8.2, 8.2, 8.2, 8.2, 8.2, 8.2, 8.2, 8.2, 8.2, 8.2, 8.2, 8.2, 8.2, 8.2), SHJ = c(9.2, 9.2, 9.2, 9.2, 9.2, 9.2, 9.2, 9.2, 9.2, 9.2, 9.2, 9.2, 9.2, 9.2, 9.2, 9.2, 9.2, 9.2, 9.2, 9.2, 9.2, 9.2, 9.2, 9.2, 6.9, 6.9, 6.9, 6.9, 6.9, 6.9, 6.9, 6.9, 6.9, 6.9, 6.9, 6.9, 6.9, 6.9, 6.9, 6.9, 6.9, 6.9, 6.9, 6.9, 6.9, 6.9, 6.9, 6.9, 7.9, 7.9, 7.9, 7.9, 7.9, 7.9, 7.9, 7.9, 7.9, 7.9, 7.9, 7.9, 7.9, 7.9, 7.9, 7.9, 7.9, 7.9, 7.9, 7.9, 7.9, 7.9, 7.9, 7.9, 8.5, 8.5, 8.5, 8.5, 8.5, 8.5, 8.5, 8.5, 8.5, 8.5, 8.5, 8.5, 8.5, 8.5, 8.5, 8.5, 8.5, 8.5, 8.5, 8.5, 8.5, 8.5, 8.5, 8.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 5.5, 6.2, 6.2, 6.2, 6.2, 6.2, 6.2, 6.2, 6.2, 6.2, 6.2, 6.2, 6.2, 6.2, 6.2, 6.2, 6.2, 6.2, 6.2, 6.2, 6.2, 6.2, 6.2, 6.2, 6.2, 7.9, 7.9, 7.9, 7.9, 7.9, 7.9, 7.9, 7.9, 7.9, 7.9, 7.9, 7.9, 7.9, 7.9, 7.9, 7.9, 7.9, 7.9, 7.9, 7.9, 7.9, 7.9, 7.9, 7.9, 8.2, 8.2, 8.2, 8.2, 8.2, 8.2, 8.2, 8.2, 8.2, 8.2, 8.2, 8.2, 8.2, 8.2, 8.2, 8.2, 8.2, 8.2, 8.2, 8.2, 8.2, 8.2, 8.2, 8.2, 9.2, 9.2, 9.2, 9.2, 9.2, 9.2, 9.2, 9.2, 9.2, 9.2, 9.2, 9.2, 9.2, 9.2, 9.2, 9.2, 9.2, 9.2, 9.2, 9.2, 9.2, 9.2, 9.2, 9.2, 8.4, 8.4, 8.4, 8.4, 8.4, 8.4, 8.4, 8.4, 8.4, 8.4, 8.4, 8.4, 8.4, 8.4, 8.4, 8.4, 8.4, 8.4, 8.4, 8.4, 8.4, 8.4, 8.4, 8.4), SHF = c(7.2, 7.2, 7.2, 7.2, 7.2, 7.2, 7.2, 7.2, 7.2, 7.2, 7.2, 7.2, 7.2, 7.2, 7.2, 7.2, 7.2, 7.2, 7.2, 7.2, 7.2, 7.2, 7.2, 7.2, 8.4, 8.4, 8.4, 8.4, 8.4, 8.4, 8.4, 8.4, 8.4, 8.4, 8.4, 8.4, 8.4, 8.4, 8.4, 8.4, 8.4, 8.4, 8.4, 8.4, 8.4, 8.4, 8.4, 8.4, 8.8, 8.8, 8.8, 8.8, 8.8, 8.8, 8.8, 8.8, 8.8, 8.8, 8.8, 8.8, 8.8, 8.8, 8.8, 8.8, 8.8, 8.8, 8.8, 8.8, 8.8, 8.8, 8.8, 8.8, 7.8, 7.8, 7.8, 7.8, 7.8, 7.8, 7.8, 7.8, 7.8, 7.8, 7.8, 7.8, 7.8, 7.8, 7.8, 7.8, 7.8, 7.8, 7.8, 7.8, 7.8, 7.8, 7.8, 7.8, 8.3, 8.3, 8.3, 8.3, 8.3, 8.3, 8.3, 8.3, 8.3, 8.3, 8.3, 8.3, 8.3, 8.3, 8.3, 8.3, 8.3, 8.3, 8.3, 8.3, 8.3, 8.3, 8.3, 8.3, 6.2, 6.2, 6.2, 6.2, 6.2, 6.2, 6.2, 6.2, 6.2, 6.2, 6.2, 6.2, 6.2, 6.2, 6.2, 6.2, 6.2, 6.2, 6.2, 6.2, 6.2, 6.2, 6.2, 6.2, 7.6, 7.6, 7.6, 7.6, 7.6, 7.6, 7.6, 7.6, 7.6, 7.6, 7.6, 7.6, 7.6, 7.6, 7.6, 7.6, 7.6, 7.6, 7.6, 7.6, 7.6, 7.6, 7.6, 7.6, 7.3, 7.3, 7.3, 7.3, 7.3, 7.3, 7.3, 7.3, 7.3, 7.3, 7.3, 7.3, 7.3, 7.3, 7.3, 7.3, 7.3, 7.3, 7.3, 7.3, 7.3, 7.3, 7.3, 7.3, 8.9, 8.9, 8.9, 8.9, 8.9, 8.9, 8.9, 8.9, 8.9, 8.9, 8.9, 8.9, 8.9, 8.9, 8.9, 8.9, 8.9, 8.9, 8.9, 8.9, 8.9, 8.9, 8.9, 8.9, 8.8, 8.8, 8.8, 8.8, 8.8, 8.8, 8.8, 8.8, 8.8, 8.8, 8.8, 8.8, 8.8, 8.8, 8.8, 8.8, 8.8, 8.8, 8.8, 8.8, 8.8, 8.8, 8.8, 8.8), EVD = c(97.7, 97.7, 97.7, 97.7, 97.7, 97.7, 97.7, 97.7, 97.7, 97.7, 97.7, 97.7, 97.7, 97.7, 97.7, 97.7, 97.7, 97.7, 97.7, 97.7, 97.7, 97.7, 97.7, 97.7, 78.5, 78.5, 78.5, 78.5, 78.5, 78.5, 78.5, 78.5, 78.5, 78.5, 78.5, 78.5, 78.5, 78.5, 78.5, 78.5, 78.5, 78.5, 78.5, 78.5, 78.5, 78.5, 78.5, 78.5, 79.3, 79.3, 79.3, 79.3, 79.3, 79.3, 79.3, 79.3, 79.3, 79.3, 79.3, 79.3, 79.3, 79.3, 79.3, 79.3, 79.3, 79.3, 79.3, 79.3, 79.3, 79.3, 79.3, 79.3, 71.5, 71.5, 71.5, 71.5, 71.5, 71.5, 71.5, 71.5, 71.5, 71.5, 71.5, 71.5, 71.5, 71.5, 71.5, 71.5, 71.5, 71.5, 71.5, 71.5, 71.5, 71.5, 71.5, 71.5, 51.2, 51.2, 51.2, 51.2, 51.2, 51.2, 51.2, 51.2, 51.2, 51.2, 51.2, 51.2, 51.2, 51.2, 51.2, 51.2, 51.2, 51.2, 51.2, 51.2, 51.2, 51.2, 51.2, 51.2, 59.4, 59.4, 59.4, 59.4, 59.4, 59.4, 59.4, 59.4, 59.4, 59.4, 59.4, 59.4, 59.4, 59.4, 59.4, 59.4, 59.4, 59.4, 59.4, 59.4, 59.4, 59.4, 59.4, 59.4, 67.7, 67.7, 67.7, 67.7, 67.7, 67.7, 67.7, 67.7, 67.7, 67.7, 67.7, 67.7, 67.7, 67.7, 67.7, 67.7, 67.7, 67.7, 67.7, 67.7, 67.7, 67.7, 67.7, 67.7, 50.2, 50.2, 50.2, 50.2, 50.2, 50.2, 50.2, 50.2, 50.2, 50.2, 50.2, 50.2, 50.2, 50.2, 50.2, 50.2, 50.2, 50.2, 50.2, 50.2, 50.2, 50.2, 50.2, 50.2, 72.8, 72.8, 72.8, 72.8, 72.8, 72.8, 72.8, 72.8, 72.8, 72.8, 72.8, 72.8, 72.8, 72.8, 72.8, 72.8, 72.8, 72.8, 72.8, 72.8, 72.8, 72.8, 72.8, 72.8, 76.5, 76.5, 76.5, 76.5, 76.5, 76.5, 76.5, 76.5, 76.5, 76.5, 76.5, 76.5, 76.5, 76.5, 76.5, 76.5, 76.5, 76.5, 76.5, 76.5, 76.5, 76.5, 76.5, 76.5), EVJ = c(104.5, 104.5, 104.5, 104.5, 104.5, 104.5, 104.5, 104.5, 104.5, 104.5, 104.5, 104.5, 104.5, 104.5, 104.5, 104.5, 104.5, 104.5, 104.5, 104.5, 104.5, 104.5, 104.5, 104.5, 73.9, 73.9, 73.9, 73.9, 73.9, 73.9, 73.9, 73.9, 73.9, 73.9, 73.9, 73.9, 73.9, 73.9, 73.9, 73.9, 73.9, 73.9, 73.9, 73.9, 73.9, 73.9, 73.9, 73.9, 84.6, 84.6, 84.6, 84.6, 84.6, 84.6, 84.6, 84.6, 84.6, 84.6, 84.6, 84.6, 84.6, 84.6, 84.6, 84.6, 84.6, 84.6, 84.6, 84.6, 84.6, 84.6, 84.6, 84.6, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 42.8, 42.8, 42.8, 42.8, 42.8, 42.8, 42.8, 42.8, 42.8, 42.8, 42.8, 42.8, 42.8, 42.8, 42.8, 42.8, 42.8, 42.8, 42.8, 42.8, 42.8, 42.8, 42.8, 42.8, 59.9, 59.9, 59.9, 59.9, 59.9, 59.9, 59.9, 59.9, 59.9, 59.9, 59.9, 59.9, 59.9, 59.9, 59.9, 59.9, 59.9, 59.9, 59.9, 59.9, 59.9, 59.9, 59.9, 59.9, 84.7, 84.7, 84.7, 84.7, 84.7, 84.7, 84.7, 84.7, 84.7, 84.7, 84.7, 84.7, 84.7, 84.7, 84.7, 84.7, 84.7, 84.7, 84.7, 84.7, 84.7, 84.7, 84.7, 84.7, 71.4, 71.4, 71.4, 71.4, 71.4, 71.4, 71.4, 71.4, 71.4, 71.4, 71.4, 71.4, 71.4, 71.4, 71.4, 71.4, 71.4, 71.4, 71.4, 71.4, 71.4, 71.4, 71.4, 71.4, 84.2, 84.2, 84.2, 84.2, 84.2, 84.2, 84.2, 84.2, 84.2, 84.2, 84.2, 84.2, 84.2, 84.2, 84.2, 84.2, 84.2, 84.2, 84.2, 84.2, 84.2, 84.2, 84.2, 84.2, 78.2, 78.2, 78.2, 78.2, 78.2, 78.2, 78.2, 78.2, 78.2, 78.2, 78.2, 78.2, 78.2, 78.2, 78.2, 78.2, 78.2, 78.2, 78.2, 78.2, 78.2, 78.2, 78.2, 78.2), EVF = c(107.6, 107.6, 107.6, 107.6, 107.6, 107.6, 107.6, 107.6, 107.6, 107.6, 107.6, 107.6, 107.6, 107.6, 107.6, 107.6, 107.6, 107.6, 107.6, 107.6, 107.6, 107.6, 107.6, 107.6, 85.7, 85.7, 85.7, 85.7, 85.7, 85.7, 85.7, 85.7, 85.7, 85.7, 85.7, 85.7, 85.7, 85.7, 85.7, 85.7, 85.7, 85.7, 85.7, 85.7, 85.7, 85.7, 85.7, 85.7, 86.3, 86.3, 86.3, 86.3, 86.3, 86.3, 86.3, 86.3, 86.3, 86.3, 86.3, 86.3, 86.3, 86.3, 86.3, 86.3, 86.3, 86.3, 86.3, 86.3, 86.3, 86.3, 86.3, 86.3, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 69.8, 69.8, 69.8, 69.8, 69.8, 69.8, 69.8, 69.8, 69.8, 69.8, 69.8, 69.8, 69.8, 69.8, 69.8, 69.8, 69.8, 69.8, 69.8, 69.8, 69.8, 69.8, 69.8, 69.8, 62.3, 62.3, 62.3, 62.3, 62.3, 62.3, 62.3, 62.3, 62.3, 62.3, 62.3, 62.3, 62.3, 62.3, 62.3, 62.3, 62.3, 62.3, 62.3, 62.3, 62.3, 62.3, 62.3, 62.3, 84.3, 84.3, 84.3, 84.3, 84.3, 84.3, 84.3, 84.3, 84.3, 84.3, 84.3, 84.3, 84.3, 84.3, 84.3, 84.3, 84.3, 84.3, 84.3, 84.3, 84.3, 84.3, 84.3, 84.3, 75.1, 75.1, 75.1, 75.1, 75.1, 75.1, 75.1, 75.1, 75.1, 75.1, 75.1, 75.1, 75.1, 75.1, 75.1, 75.1, 75.1, 75.1, 75.1, 75.1, 75.1, 75.1, 75.1, 75.1, 98.1, 98.1, 98.1, 98.1, 98.1, 98.1, 98.1, 98.1, 98.1, 98.1, 98.1, 98.1, 98.1, 98.1, 98.1, 98.1, 98.1, 98.1, 98.1, 98.1, 98.1, 98.1, 98.1, 98.1, 98.2, 98.2, 98.2, 98.2, 98.2, 98.2, 98.2, 98.2, 98.2, 98.2, 98.2, 98.2, 98.2, 98.2, 98.2, 98.2, 98.2, 98.2, 98.2, 98.2, 98.2, 98.2, 98.2, 98.2 ), EVM = c(172.7, 172.7, 172.7, 172.7, 172.7, 172.7, 172.7, 172.7, 172.7, 172.7, 172.7, 172.7, 172.7, 172.7, 172.7, 172.7, 172.7, 172.7, 172.7, 172.7, 172.7, 172.7, 172.7, 172.7, 134.6, 134.6, 134.6, 134.6, 134.6, 134.6, 134.6, 134.6, 134.6, 134.6, 134.6, 134.6, 134.6, 134.6, 134.6, 134.6, 134.6, 134.6, 134.6, 134.6, 134.6, 134.6, 134.6, 134.6, 140.5, 140.5, 140.5, 140.5, 140.5, 140.5, 140.5, 140.5, 140.5, 140.5, 140.5, 140.5, 140.5, 140.5, 140.5, 140.5, 140.5, 140.5, 140.5, 140.5, 140.5, 140.5, 140.5, 140.5, 134, 134, 134, 134, 134, 134, 134, 134, 134, 134, 134, 134, 134, 134, 134, 134, 134, 134, 134, 134, 134, 134, 134, 134, 102.3, 102.3, 102.3, 102.3, 102.3, 102.3, 102.3, 102.3, 102.3, 102.3, 102.3, 102.3, 102.3, 102.3, 102.3, 102.3, 102.3, 102.3, 102.3, 102.3, 102.3, 102.3, 102.3, 102.3, 153.2, 153.2, 153.2, 153.2, 153.2, 153.2, 153.2, 153.2, 153.2, 153.2, 153.2, 153.2, 153.2, 153.2, 153.2, 153.2, 153.2, 153.2, 153.2, 153.2, 153.2, 153.2, 153.2, 153.2, 131.6, 131.6, 131.6, 131.6, 131.6, 131.6, 131.6, 131.6, 131.6, 131.6, 131.6, 131.6, 131.6, 131.6, 131.6, 131.6, 131.6, 131.6, 131.6, 131.6, 131.6, 131.6, 131.6, 131.6, 146.1, 146.1, 146.1, 146.1, 146.1, 146.1, 146.1, 146.1, 146.1, 146.1, 146.1, 146.1, 146.1, 146.1, 146.1, 146.1, 146.1, 146.1, 146.1, 146.1, 146.1, 146.1, 146.1, 146.1, 165, 165, 165, 165, 165, 165, 165, 165, 165, 165, 165, 165, 165, 165, 165, 165, 165, 165, 165, 165, 165, 165, 165, 165, 156.2, 156.2, 156.2, 156.2, 156.2, 156.2, 156.2, 156.2, 156.2, 156.2, 156.2, 156.2, 156.2, 156.2, 156.2, 156.2, 156.2, 156.2, 156.2, 156.2, 156.2, 156.2, 156.2, 156.2), EVA = c(209.4, 209.4, 209.4, 209.4, 209.4, 209.4, 209.4, 209.4, 209.4, 209.4, 209.4, 209.4, 209.4, 209.4, 209.4, 209.4, 209.4, 209.4, 209.4, 209.4, 209.4, 209.4, 209.4, 209.4, 202.6, 202.6, 202.6, 202.6, 202.6, 202.6, 202.6, 202.6, 202.6, 202.6, 202.6, 202.6, 202.6, 202.6, 202.6, 202.6, 202.6, 202.6, 202.6, 202.6, 202.6, 202.6, 202.6, 202.6, 210.2, 210.2, 210.2, 210.2, 210.2, 210.2, 210.2, 210.2, 210.2, 210.2, 210.2, 210.2, 210.2, 210.2, 210.2, 210.2, 210.2, 210.2, 210.2, 210.2, 210.2, 210.2, 210.2, 210.2, 204.6, 204.6, 204.6, 204.6, 204.6, 204.6, 204.6, 204.6, 204.6, 204.6, 204.6, 204.6, 204.6, 204.6, 204.6, 204.6, 204.6, 204.6, 204.6, 204.6, 204.6, 204.6, 204.6, 204.6, 188.1, 188.1, 188.1, 188.1, 188.1, 188.1, 188.1, 188.1, 188.1, 188.1, 188.1, 188.1, 188.1, 188.1, 188.1, 188.1, 188.1, 188.1, 188.1, 188.1, 188.1, 188.1, 188.1, 188.1, 211.2, 211.2, 211.2, 211.2, 211.2, 211.2, 211.2, 211.2, 211.2, 211.2, 211.2, 211.2, 211.2, 211.2, 211.2, 211.2, 211.2, 211.2, 211.2, 211.2, 211.2, 211.2, 211.2, 211.2, 194.1, 194.1, 194.1, 194.1, 194.1, 194.1, 194.1, 194.1, 194.1, 194.1, 194.1, 194.1, 194.1, 194.1, 194.1, 194.1, 194.1, 194.1, 194.1, 194.1, 194.1, 194.1, 194.1, 194.1, 195.7, 195.7, 195.7, 195.7, 195.7, 195.7, 195.7, 195.7, 195.7, 195.7, 195.7, 195.7, 195.7, 195.7, 195.7, 195.7, 195.7, 195.7, 195.7, 195.7, 195.7, 195.7, 195.7, 195.7, 218.6, 218.6, 218.6, 218.6, 218.6, 218.6, 218.6, 218.6, 218.6, 218.6, 218.6, 218.6, 218.6, 218.6, 218.6, 218.6, 218.6, 218.6, 218.6, 218.6, 218.6, 218.6, 218.6, 218.6, 195.5, 195.5, 195.5, 195.5, 195.5, 195.5, 195.5, 195.5, 195.5, 195.5, 195.5, 195.5, 195.5, 195.5, 195.5, 195.5, 195.5, 195.5, 195.5, 195.5, 195.5, 195.5, 195.5, 195.5)), .Names = c("yield", "year", "tillage", "summerCrop", "manure", "N", "MTD", "MTJ", "MTF", "MTM", "MTA", "mTD", "mTJ", "mTF", "mTM", "mTA", "mTUD", "mTUJ", "mTUF", "mTUM", "mTUA", "PRD", "PRJ", "PRF", "PRM", "SHD", "SHJ", "SHF", "EVD", "EVJ", "EVF", "EVM", "EVA"), row.names = c("1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "13", "14", "15", "16", "17", "18", "19", "20", "21", "22", "23", "24", "25", "26", "27", "28", "29", "30", "31", "32", "33", "34", "35", "36", "37", "38", "39", "40", "41", "42", "43", "44", "45", "46", "47", "48", "49", "50", "51", "52", "53", "54", "55", "56", "57", "58", "59", "60", "61", "62", "63", "64", "65", "66", "67", "68", "69", "70", "71", "72", "73", "74", "75", "76", "77", "78", "79", "80", "81", "82", "83", "84", "85", "86", "87", "88", "89", "90", "91", "92", "93", "94", "95", "96", "97", "98", "99", "100", "101", "102", "103", "104", "105", "106", "107", "108", "109", "110", "111", "112", "113", "114", "115", "116", "117", "118", "119", "120", "121", "122", "123", "124", "125", "126", "127", "128", "129", "130", "131", "132", "133", "134", "135", "136", "137", "138", "139", "140", "141", "142", "143", "144", "145", "146", "147", "148", "149", "150", "151", "152", "153", "154", "155", "156", "157", "158", "159", "160", "161", "162", "163", "164", "165", "166", "167", "168", "169", "170", "171", "172", "173", "174", "175", "176", "177", "178", "179", "180", "181", "182", "183", "184", "185", "186", "187", "188", "189", "190", "191", "192", "193", "194", "195", "196", "197", "198", "199", "200", "201", "202", "203", "204", "205", "206", "207", "208", "209", "210", "211", "212", "213", "214", "215", "216", "217", "218", "219", "220", "221", "222", "223", "224", "225", "226", "227", "228", "229", "230", "231", "232", "233", "234", "235", "236", "237", "238", "239", "240"), class = "data.frame") gnm/data/erikson.R0000644000176200001440000000315214376140103013541 0ustar liggesuserserikson <- structure(c(311, 161, 128, 88, 36, 43, 356, 150, 12, 130, 128, 109, 83, 45, 23, 375, 180, 14, 79, 66, 89, 43, 38, 25, 325, 187, 18, 24, 22, 26, 72, 27, 16, 108, 48, 5, 22, 11, 25, 41, 47, 14, 140, 74, 18, 7, 6, 3, 5, 3, 99, 5, 9, 10, 70, 112, 197, 112, 110, 86, 1506, 802, 96, 44, 47, 113, 64, 80, 81, 839, 685, 114, 1, 1, 4, 4, 4, 40, 22, 15, 56, 105, 59, 40, 38, 40, 27, 36, 22, 4, 72, 113, 86, 37, 68, 74, 138, 88, 18, 19, 37, 64, 17, 55, 77, 93, 79, 26, 9, 9, 10, 38, 38, 27, 22, 18, 9, 8, 14, 20, 23, 95, 52, 38, 24, 14, 3, 0, 4, 2, 10, 461, 5, 8, 19, 26, 54, 103, 36, 92, 156, 339, 235, 68, 11, 34, 61, 22, 74, 286, 189, 209, 107, 1, 2, 4, 1, 7, 73, 9, 11, 47, 52, 30, 10, 26, 8, 24, 33, 32, 5, 15, 27, 19, 24, 13, 47, 89, 49, 10, 13, 14, 10, 5, 6, 44, 40, 28, 3, 3, 3, 2, 20, 3, 17, 13, 14, 0, 2, 4, 4, 8, 9, 22, 18, 17, 6, 0, 0, 0, 1, 4, 92, 5, 5, 3, 11, 27, 16, 33, 31, 132, 188, 159, 33, 7, 12, 11, 22, 20, 144, 104, 109, 42, 0, 2, 1, 0, 1, 21, 5, 4, 8), .Dim = as.integer(c(9, 9, 3)), .Dimnames = structure(list( origin = c("I", "II", "III", "IVa", "IVb", "IVc", "V/VI", "VIIa", "VIIb"), destination = c("I", "II", "III", "IVa", "IVb", "IVc", "V/VI", "VIIa", "VIIb"), country = c("EW", "F", "S")), .Names = c("origin", "destination", "country")), class = "table") gnm/data/yaish.R0000644000176200001440000000214514376140103013205 0ustar liggesusers"yaish" <- structure(c(7, 3, 16, 14, 135, 5, 9, 5, 9, 54, 13, 13, 18, 30, 139, 2, 2, 4, 26, 48, 1, 3, 9, 17, 64, 9, 5, 10, 20, 82, 2, 0, 1, 6, 1, 3, 1, 14, 6, 19, 4, 7, 6, 4, 8, 43, 26, 44, 10, 4, 5, 6, 9, 3, 2, 8, 14, 15, 10, 5, 26, 26, 22, 13, 12, 9, 2, 3, 2, 0, 8, 9, 16, 6, 5, 4, 1, 14, 2, 8, 139, 43, 50, 18, 20, 46, 10, 10, 3, 5, 25, 21, 12, 14, 6, 46, 28, 23, 6, 1, 4, 1, 4, 3, 0, 4, 2, 2, 1, 0, 0, 1, 0, 0, 0, 7, 2, 6, 1, 0, 18, 13, 8, 2, 2, 0, 2, 5, 0, 0, 4, 2, 0, 0, 1, 1, 0, 0, 0, 0, 11, 14, 13, 12, 18, 12, 20, 13, 17, 2, 117, 51, 57, 47, 11, 38, 16, 7, 11, 0, 83, 51, 35, 42, 13, 110, 56, 25, 39, 10, 17, 5, 1, 1, 1, 11, 5, 16, 1, 2, 11, 4, 4, 2, 1, 110, 20, 18, 3, 2, 69, 6, 12, 0, 1, 39, 17, 18, 2, 2, 85, 28, 24, 2, 1, 11, 1, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0 ), .Dim = as.integer(c(5, 7, 7)), .Dimnames = structure(list( educ = c("1", "2", "3", "4", "5"), orig = c("1", "2", "3", "4", "5", "6", "7"), dest = c("1", "2", "3", "4", "5", "6", "7")), .Names = c("educ", "orig", "dest")), class = "table") gnm/data/barleyHeights.R0000644000176200001440000000437714376140103014673 0ustar liggesusersbarleyHeights <- structure(list(height = c(81, 72.3, 79.3, 88.5, 78.5, 89.3, 94.3, 88.8, 91.3, 91.8, 86, 91, 75.5, 96.8, 97, 67.3, 60.3, 67.8, 70.8, 67.5, 74.5, 73, 63.8, 67, 65.5, 69.8, 71.8, 56.5, 81.5, 83.3, 71.5, 60.8, 64.8, 76.3, 72.5, 80.5, 80.3, 66.8, 73.8, 77, 73.8, 81, 67, 86.3, 86.8, 64.3, 55.3, 57.5, 69.5, 61, 67.8, 68.5, 78.5, 75.8, 80, 77.3, 65.5, 64.3, 73.3, 72, 55.8, 48.8, 46.8, 64, 50.3, 60.8, 63.8, 70.3, 71.5, 73.5, 75.5, 54.5, 58.8, 59.3, 49.3, 84.9, 78.1, 80.2, 90.8, 78.7, 86.3, 96, 86.1, 90.5, 88, 88.8, 87.9, 86.7, 97, 91.3, 86.2, 80.4, 81.8, 97.3, 82.7, 90.2, 100.7, 104.3, 100.6, 104.7, 106.4, 84.8, 85.2, 96.1, 94.6, 88, 85.3, 87.8, 97.8, 87.3, 100, 106.5, 102, 102.8, 102, 103.8, 91.8, 91.8, 95.8, 95.5, 72, 69.8, 71.8, 86, 66, 81.3, 85.3, 82.5, 86.3, 87.3, 86.8, 77.8, 76, 90.3, 80.8), year = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L), .Label = c("1974", "1975", "1976", "1977", "1978", "1979", "1980", "1981", "1982"), class = "factor"), genotype = structure(c(1L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 2L, 3L, 4L, 5L, 6L, 7L, 1L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 2L, 3L, 4L, 5L, 6L, 7L, 1L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 2L, 3L, 4L, 5L, 6L, 7L, 1L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 2L, 3L, 4L, 5L, 6L, 7L, 1L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 2L, 3L, 4L, 5L, 6L, 7L, 1L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 2L, 3L, 4L, 5L, 6L, 7L, 1L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 2L, 3L, 4L, 5L, 6L, 7L, 1L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 2L, 3L, 4L, 5L, 6L, 7L, 1L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 2L, 3L, 4L, 5L, 6L, 7L), .Label = c("1", "10", "11", "12", "13", "14", "15", "2", "3", "4", "5", "6", "7", "8", "9" ), class = "factor")), .Names = c("height", "year", "genotype" ), class = "data.frame", row.names = c(NA, -135L)) gnm/data/voting.R0000644000176200001440000000153614376140103013401 0ustar liggesusersvoting <- structure(list(percentage = c(11, 22, 17, 13, 21, 13, 23, 0, 33, 27, 11, 19, 11, 19, 34, 14, 35, 12, 48, 49, 24, 35, 27, 39, 51), total = c(303, 74, 47, 16, 86, 79, 30, 12, 12, 30, 122, 47, 75, 31, 111, 96, 34, 34, 31, 111, 283, 156, 114, 122, 696 ), origin = structure(c(1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 5L, 5L, 5L, 5L, 5L), .Label = c("1", "2", "3", "4", "5"), class = "factor"), destination = structure(c(1L, 2L, 3L, 4L, 5L, 1L, 2L, 3L, 4L, 5L, 1L, 2L, 3L, 4L, 5L, 1L, 2L, 3L, 4L, 5L, 1L, 2L, 3L, 4L, 5L), .Label = c("1", "2", "3", "4", "5"), class = "factor")), .Names = c("percentage", "total", "origin", "destination"), class = "data.frame", row.names = c("1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "13", "14", "15", "16", "17", "18", "19", "20", "21", "22", "23", "24", "25" )) gnm/data/barley.R0000644000176200001440000000412014376140103013341 0ustar liggesusersbarley <- structure(list(y = c(5e-04, 0, 0, 0.001, 0.0025, 5e-04, 0.005, 0.013, 0.015, 0.015, 0, 5e-04, 5e-04, 0.003, 0.0075, 0.003, 0.03, 0.075, 0.01, 0.127, 0.0125, 0.0125, 0.025, 0.166, 0.025, 0.025, 0, 0.2, 0.375, 0.2625, 0.025, 0.005, 1e-04, 0.03, 0.025, 1e-04, 0.25, 0.55, 0.05, 0.4, 0.055, 0.01, 0.06, 0.011, 0.025, 0.08, 0.165, 0.295, 0.2, 0.435, 0.01, 0.05, 0.05, 0.05, 0.05, 0.05, 0.1, 0.05, 0.5, 0.75, 0.05, 0.001, 0.05, 0.05, 0.5, 0.1, 0.5, 0.25, 0.5, 0.75, 0.05, 0.1, 0.05, 0.05, 0.25, 0.75, 0.5, 0.75, 0.75, 0.75, 0.175, 0.25, 0.425, 0.5, 0.375, 0.95, 0.625, 0.95, 0.95, 0.95), site = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L), .Label = c("A", "B", "C", "D", "E", "F", "G", "H", "I" ), class = "factor"), variety = structure(c(1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L), .Label = c("1", "2", "3", "4", "5", "6", "7", "8", "9", "X"), class = "factor")), .Names = c("y", "site", "variety"), class = "data.frame", row.names = c("1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "13", "14", "15", "16", "17", "18", "19", "20", "21", "22", "23", "24", "25", "26", "27", "28", "29", "30", "31", "32", "33", "34", "35", "36", "37", "38", "39", "40", "41", "42", "43", "44", "45", "46", "47", "48", "49", "50", "51", "52", "53", "54", "55", "56", "57", "58", "59", "60", "61", "62", "63", "64", "65", "66", "67", "68", "69", "70", "71", "72", "73", "74", "75", "76", "77", "78", "79", "80", "81", "82", "83", "84", "85", "86", "87", "88", "89", "90" )) gnm/data/House2001.R0000644000176200001440000012410414376140103013456 0ustar liggesusersHouse2001 <- structure(list(party = structure(c(1L, 1L, 4L, 4L, 1L, 1L, 4L, 1L, 4L, 1L, 4L, 1L, 1L, 4L, 1L, 4L, 1L, 4L, 4L, 4L, 1L, 1L, 4L, 1L, 1L, 1L, 4L, 4L, 1L, 1L, 1L, 4L, 4L, 4L, 4L, 1L, 4L, 4L, 1L, 1L, 1L, 1L, 1L, 4L, 1L, 1L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 1L, 1L, 1L, 1L, 1L, 4L, 4L, 4L, 1L, 1L, 1L, 1L, 4L, 4L, 4L, 1L, 1L, 4L, 1L, 4L, 1L, 1L, 4L, 4L, 1L, 4L, 4L, 1L, 4L, 1L, 1L, 1L, 4L, 4L, 4L, 1L, 1L, 1L, 1L, 4L, 4L, 1L, 4L, 1L, 1L, 1L, 1L, 4L, 1L, 4L, 4L, 4L, 1L, 4L, 4L, 4L, 1L, 4L, 1L, 1L, 1L, 4L, 1L, 1L, 4L, 1L, 4L, 4L, 4L, 4L, 1L, 4L, 1L, 4L, 1L, 4L, 4L, 4L, 1L, 4L, 4L, 4L, 4L, 1L, 2L, 4L, 1L, 4L, 4L, 4L, 4L, 1L, 4L, 4L, 4L, 1L, 4L, 1L, 1L, 4L, 1L, 4L, 4L, 1L, 4L, 4L, 4L, 4L, 4L, 1L, 4L, 1L, 1L, 1L, 4L, 1L, 4L, 1L, 1L, 1L, 1L, 4L, 4L, 4L, 1L, 4L, 4L, 4L, 4L, 1L, 4L, 1L, 4L, 4L, 1L, 1L, 1L, 4L, 1L, 1L, 4L, 4L, 4L, 1L, 4L, 1L, 1L, 4L, 4L, 1L, 4L, 4L, 1L, 1L, 1L, 4L, 4L, 4L, 1L, 4L, 4L, 1L, 1L, 4L, 1L, 1L, 1L, 4L, 4L, 1L, 4L, 4L, 4L, 1L, 1L, 1L, 4L, 4L, 4L, 1L, 4L, 1L, 1L, 1L, 4L, 1L, 3L, 1L, 1L, 4L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 4L, 1L, 1L, 4L, 4L, 1L, 4L, 1L, 1L, 1L, 1L, 1L, 1L, 4L, 1L, 1L, 4L, 4L, 4L, 1L, 1L, 1L, 1L, 1L, 4L, 4L, 1L, 4L, 1L, 1L, 1L, 4L, 4L, 4L, 4L, 4L, 1L, 1L, 1L, 1L, 4L, 4L, 4L, 1L, 4L, 1L, 1L, 1L, 4L, 1L, 1L, 4L, 1L, 4L, 4L, 1L, 4L, 4L, 4L, 4L, 1L, 4L, 1L, 4L, 4L, 4L, 4L, 1L, 4L, 1L, 4L, 4L, 1L, 4L, 4L, 1L, 1L, 1L, 4L, 4L, 4L, 4L, 1L, 1L, 4L, 1L, 4L, 1L, 4L, 4L, 1L, 1L, 2L, 1L, 1L, 4L, 4L, 4L, 1L, 1L, 4L, 1L, 4L, 1L, 4L, 4L, 4L, 4L, 1L, 4L, 4L, 1L, 4L, 4L, 4L, 1L, 4L, 1L, 1L, 1L, 4L, 4L, 4L, 1L, 1L, 4L, 4L, 1L, 1L, 4L, 1L, 1L, 4L, 1L, 4L, 4L, 4L, 1L, 1L, 4L, 1L, 4L, 4L, 4L, 1L, 1L, 4L, 4L, 1L, 4L, 4L, 1L, 4L, 1L, 1L, 1L, 1L, 1L, 4L, 1L, 1L, 4L, 4L, 4L, 4L, 1L, 4L, 1L, 1L, 4L, 1L, 1L, 4L, 4L, 4L, 1L, 4L, 4L, 4L, 4L, 1L, 1L, 1L, 4L, 4L ), .Label = c("D", "I", "N", "R"), class = "factor"), HR333.BankruptcyOverhaul.Yes = c(1L, NA, 0L, 0L, 1L, 1L, 0L, 1L, 0L, NA, 0L, 1L, 1L, 0L, 1L, 0L, 1L, 0L, 0L, 0L, 1L, 0L, 0L, 1L, 1L, 0L, 0L, 0L, 1L, 1L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, NA, 1L, 0L, 0L, 0L, 1L, 0L, 1L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, NA, 0L, 0L, 1L, 1L, 1L, 1L, 0L, 0L, 0L, 0L, 1L, 1L, 0L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, 1L, 0L, 1L, NA, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 1L, 1L, 0L, 0L, 0L, NA, 1L, 1L, 1L, 1L, 0L, 0L, 1L, 0L, 1L, 1L, 1L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 1L, 1L, 1L, 0L, 1L, 1L, 0L, 1L, 0L, 0L, 0L, NA, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 1L, 0L, 1L, 0L, 0L, 1L, 0L, NA, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 1L, 1L, 0L, 1L, 0L, 1L, 0L, 1L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, NA, 0L, 1L, 0L, 0L, 1L, 1L, 1L, 0L, 0L, 1L, 0L, 0L, 0L, 1L, 0L, 1L, 1L, 0L, 0L, 0L, 0L, 0L, 1L, 1L, 1L, 0L, NA, 0L, 1L, 0L, 0L, 1L, 1L, 0L, 1L, 1L, 1L, 0L, 0L, 1L, 0L, 0L, 0L, 1L, 1L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 1L, NA, 1L, 0L, 0L, 1L, 1L, 0L, 1L, 1L, 1L, 1L, 0L, 1L, 1L, 0L, 0L, 1L, 0L, 1L, 1L, 1L, 1L, 1L, 1L, 0L, 1L, 1L, 0L, 0L, NA, 1L, 1L, 0L, 1L, 0L, 0L, 0L, 1L, 0L, 1L, 1L, 1L, 0L, 0L, 0L, NA, 0L, 1L, 1L, 1L, 1L, 0L, 0L, 0L, 1L, 0L, 1L, 1L, 1L, 0L, 1L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 1L, 0L, 0L, 0L, 0L, 1L, 1L, 1L, 0L, 0L, 1L, 0L, 0L, 1L, 1L, 0L, 0L, 0L, 0L, NA, 0L, NA, 0L, 1L, 0L, 1L, 0L, 0L, 1L, 0L, 1L, 0L, 1L, 0L, 0L, 0L, 1L, 1L, 0L, 1L, 0L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, NA, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, NA, 1L, 0L, 0L, 1L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 1L, 0L, 0L, 1L, 0L, 0L, 1L, 0L, 1L, 0L, 0L, 1L, 1L, 0L, 1L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, NA, 1L, 0L, 1L, 1L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 1L, 1L, 1L, 0L, 0L), SJRes6.ErgonomicsRuleDisapproval.No = c(1L, 1L, 0L, 0L, 1L, 1L, 0L, 1L, 0L, 1L, 0L, 1L, 1L, 0L, 1L, 0L, 1L, 0L, 0L, 0L, 1L, 1L, 0L, 1L, 1L, 1L, 0L, 0L, 1L, 1L, 1L, 0L, 1L, 0L, 0L, 1L, 0L, NA, 1L, 1L, 1L, 0L, 1L, 0L, 1L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 1L, 1L, 1L, 0L, 0L, 0L, 0L, 1L, 1L, 0L, 0L, 0L, 0L, 0L, 1L, 1L, 0L, 1L, 0L, 1L, 0L, 0L, 0L, 1L, 0L, 0L, 1L, 0L, 1L, 1L, 1L, 0L, 0L, 0L, 1L, 1L, 1L, 1L, 0L, 0L, 1L, 0L, 1L, 1L, 1L, 0L, 0L, 1L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 1L, 0L, 1L, 1L, 1L, 0L, 1L, 1L, 1L, 1L, 0L, 0L, 0L, NA, 1L, 0L, 1L, 0L, 1L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 1L, 1L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 1L, 1L, 0L, 1L, 0L, 0L, 1L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 1L, 1L, 1L, 0L, 1L, 0L, 1L, 1L, 1L, 1L, 1L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, 1L, 0L, 0L, 1L, 1L, 1L, 0L, 0L, 1L, 0L, 0L, 0L, 1L, 0L, 1L, 1L, 0L, 0L, 1L, 0L, 0L, 1L, 1L, 1L, 1L, 0L, 0L, 1L, 0L, 0L, 1L, 1L, 0L, 1L, 1L, 1L, 0L, 1L, 1L, 0L, 0L, 0L, 1L, 1L, 1L, 0L, 0L, 0L, 1L, 1L, 1L, 1L, 1L, 0L, 1L, NA, 1L, 1L, 0L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 0L, 1L, 1L, 1L, 0L, 0L, 0L, 1L, 1L, 1L, 1L, 1L, 1L, 0L, 1L, 1L, 0L, 0L, NA, 1L, 1L, 1L, 1L, 1L, 0L, 0L, 1L, 0L, 1L, 1L, 1L, 0L, 0L, 0L, 0L, 0L, 1L, 1L, 1L, 1L, 0L, 0L, 0L, 1L, 0L, 1L, 1L, 1L, 0L, 1L, 1L, 0L, 1L, 0L, 1L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, 1L, 0L, 0L, 1L, 0L, 1L, 0L, 1L, 0L, 0L, 1L, 0L, 0L, 1L, 1L, 1L, 0L, 0L, 0L, 0L, 1L, 1L, 0L, 1L, 0L, 1L, 0L, 0L, 1L, 1L, 1L, 1L, 1L, 1L, 0L, 0L, 1L, 1L, 0L, 1L, 0L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, NA, 0L, 0L, 0L, 0L, 0L, 1L, 1L, 1L, 0L, 0L, 1L, 1L, 0L, 0L, 0L, 1L, 0L, 0L, 1L, 0L, NA, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 1L, 1L, 0L, 0L, 1L, 0L, 0L, 1L, 0L, 1L, 1L, 0L, 1L, 1L, 0L, 1L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, NA, 1L, 0L, 1L, 1L, 1L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 1L, 1L, 1L, 0L, 0L), HR3.IncomeTaxReduction.No = c(1L, NA, 0L, 0L, 1L, 1L, 0L, 1L, 0L, 1L, 0L, 1L, 1L, 0L, 1L, 0L, 1L, 0L, 0L, 0L, 1L, 1L, 0L, 1L, 1L, 1L, 0L, 0L, 0L, 1L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, NA, 1L, 1L, 1L, 1L, 1L, 0L, 1L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 1L, 1L, 1L, 1L, 0L, 0L, 0L, 1L, 1L, 0L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, 1L, 0L, 1L, 0L, 0L, 0L, 1L, 0L, 0L, 1L, 0L, 1L, 1L, 1L, 0L, 0L, 0L, 1L, 1L, 1L, 1L, 0L, 0L, 1L, 0L, 1L, 1L, 1L, 1L, 0L, 1L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 1L, 0L, 1L, 1L, 1L, 0L, 1L, 1L, 0L, 1L, 0L, 0L, 0L, NA, 1L, 0L, 1L, 0L, 1L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 1L, 0L, 1L, 0L, 0L, 1L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 1L, 1L, 1L, 0L, 1L, 0L, 1L, 1L, 1L, 1L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, 1L, 0L, 0L, 1L, 1L, 1L, 0L, 1L, 1L, 0L, 0L, 0L, 1L, 0L, 1L, 1L, 0L, 0L, 1L, 0L, 0L, 1L, 1L, 1L, 0L, 0L, 0L, 1L, 0L, 0L, 1L, 1L, 0L, 1L, 1L, 1L, 0L, 1L, 1L, 0L, 0L, 0L, 1L, 1L, 1L, 0L, 0L, 0L, 1L, 0L, 1L, 1L, 0L, 0L, 1L, NA, 1L, 1L, 0L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 0L, 1L, 1L, 0L, 0L, 0L, 0L, 1L, 1L, 1L, 1L, 1L, 1L, 0L, 1L, 1L, 0L, 0L, NA, 1L, 1L, 1L, 1L, 1L, 0L, 0L, 1L, 0L, 1L, 1L, 1L, 0L, 0L, 0L, 0L, 0L, 1L, 1L, 1L, 1L, 0L, 0L, 0L, 1L, 0L, 1L, 1L, 1L, 0L, 1L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, 1L, 0L, 0L, 1L, 0L, 0L, 1L, 1L, 1L, 0L, 0L, 0L, 0L, 1L, 1L, 0L, 1L, 0L, 1L, 0L, 0L, 1L, 1L, 1L, 1L, 1L, 0L, 0L, 0L, 1L, 1L, 0L, 1L, 0L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, NA, 0L, 0L, 1L, 0L, NA, 1L, 1L, 0L, 0L, 0L, 1L, 1L, 0L, 0L, 1L, 1L, 0L, 1L, 1L, 0L, NA, 0L, 0L, 0L, 1L, 1L, 0L, 1L, 0L, 0L, 0L, 1L, 1L, 0L, 0L, 1L, 0L, 0L, 1L, 0L, 1L, 0L, 1L, 1L, 1L, 0L, 1L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, NA, 1L, 0L, 1L, 1L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 1L, 1L, 1L, 0L, 0L), HR6.MarriageTaxReduction.Yes = c(1L, 1L, 0L, 0L, 1L, 1L, 0L, 1L, 0L, 1L, 0L, 1L, 1L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 1L, 1L, 0L, 1L, 1L, 0L, 0L, 0L, 1L, 1L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, NA, 1L, 1L, 1L, 1L, 1L, 0L, 1L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 1L, 1L, 1L, 0L, 0L, 0L, 1L, 1L, 1L, 1L, 0L, 0L, 0L, 1L, 1L, 0L, 1L, 0L, 1L, 1L, 0L, 0L, 1L, 0L, 0L, 1L, 0L, 1L, 1L, 1L, 0L, 0L, 0L, 1L, 1L, 1L, 1L, 0L, 0L, 1L, 0L, 1L, 1L, 0L, 1L, 0L, 1L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 1L, 0L, 1L, 1L, 1L, 0L, 1L, 1L, 0L, 1L, 0L, 0L, 0L, NA, 1L, 0L, 1L, 0L, 1L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 1L, 0L, 1L, 1L, 0L, 1L, 0L, NA, 1L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 1L, 1L, 1L, 0L, 1L, 0L, 1L, 1L, 1L, 1L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, 1L, 0L, 0L, 1L, 1L, 1L, 0L, 1L, 1L, 0L, 0L, 0L, 1L, 0L, 0L, 1L, 0L, 0L, 1L, 0L, 0L, 1L, 1L, 1L, 0L, 0L, 0L, 1L, 0L, 0L, 1L, 1L, 0L, NA, 1L, 1L, 0L, 1L, 1L, 0L, 0L, 0L, 1L, 1L, 1L, 0L, 0L, 0L, 0L, 0L, 1L, 1L, 0L, 0L, 1L, NA, 1L, 1L, 0L, 1L, 1L, 0L, 1L, 1L, 1L, 1L, 0L, 1L, 1L, 0L, 0L, 1L, 0L, 1L, 1L, 1L, 1L, 1L, 1L, 0L, 1L, 1L, 0L, 0L, NA, 1L, 1L, 1L, 1L, 1L, 0L, 0L, 0L, 0L, 1L, 1L, 1L, 0L, 0L, 0L, 0L, 0L, 1L, 1L, 1L, 1L, 0L, 0L, 0L, 1L, 0L, 1L, 1L, 1L, 0L, 1L, 1L, 0L, 1L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, 1L, 0L, 0L, 1L, 0L, 0L, 1L, 1L, 1L, 0L, 0L, 0L, NA, 1L, NA, 0L, 1L, 0L, 1L, 0L, 0L, 1L, 1L, 1L, 1L, 1L, 0L, 0L, 0L, 1L, 1L, 0L, 1L, 0L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 1L, NA, 0L, 0L, NA, 0L, 1L, 1L, 1L, 0L, 0L, 0L, 1L, 1L, 0L, 0L, 1L, 1L, 0L, 1L, 1L, 0L, 1L, 0L, 0L, 0L, 1L, 1L, 0L, 0L, 0L, 0L, 0L, 1L, 1L, 0L, 0L, 1L, 0L, 0L, 1L, 0L, 1L, 0L, 1L, 1L, 1L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, NA, 1L, 0L, 1L, 1L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 1L, 1L, 1L, 0L, 0L), HR8.EstateTaxRelief.Yes = c(0L, 1L, 0L, 0L, 1L, 1L, 0L, 1L, 0L, 1L, 0L, 1L, 1L, 0L, 1L, 0L, 1L, 0L, 0L, 0L, 1L, 1L, 1L, 1L, 1L, 1L, 0L, 0L, 1L, 1L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, NA, 1L, 1L, 1L, 1L, 1L, 0L, 1L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 1L, 1L, 1L, 1L, 1L, 0L, 0L, 1L, 1L, 1L, 0L, 0L, 0L, 0L, 1L, 1L, 0L, 1L, 0L, 1L, 1L, 0L, 0L, 1L, 0L, 0L, 1L, 0L, 1L, 1L, 1L, 0L, 0L, 0L, 1L, 1L, 1L, 1L, 0L, 0L, 1L, 0L, 1L, 1L, 1L, 1L, 0L, 1L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 1L, 0L, 1L, 1L, 1L, 0L, 1L, 1L, 0L, 1L, 0L, 0L, 0L, NA, 1L, 0L, 1L, 0L, 1L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 1L, 0L, 1L, 1L, 0L, 1L, 0L, NA, 1L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 1L, 1L, 0L, 1L, 0L, 1L, 1L, 1L, 1L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, 1L, 0L, 0L, 0L, 1L, 1L, 0L, 1L, 1L, 0L, 0L, 0L, 1L, 0L, 0L, 1L, 0L, 0L, 1L, 0L, 0L, 1L, 1L, 1L, 0L, 0L, 0L, 1L, 0L, 0L, 1L, 1L, 0L, 1L, 1L, 1L, 0L, 1L, 1L, NA, 0L, 0L, 0L, 1L, 1L, 0L, 0L, 0L, 1L, 0L, 1L, 1L, 1L, 0L, 1L, NA, 1L, 1L, 0L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 0L, 1L, 1L, 0L, 0L, 1L, 0L, 1L, 1L, 1L, 1L, 1L, 1L, 0L, 1L, 1L, 0L, 0L, NA, 1L, 1L, 1L, 1L, 1L, 0L, 1L, 0L, 0L, 1L, 1L, 1L, 0L, 0L, 0L, 0L, 0L, 1L, 1L, 1L, 1L, 0L, 0L, 0L, 1L, 0L, 1L, 1L, 1L, 0L, 1L, 1L, 0L, 1L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, 1L, 0L, 0L, 1L, 0L, 0L, 1L, 1L, 1L, 0L, 0L, 0L, 0L, 1L, 1L, 0L, 1L, 0L, 1L, 0L, 0L, 1L, 1L, 1L, 1L, 1L, 0L, 0L, 0L, 1L, 1L, 0L, 1L, 0L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 1L, NA, 0L, 0L, NA, 0L, 1L, 1L, 1L, 0L, 0L, 0L, 1L, 1L, 0L, 0L, 1L, 1L, 0L, 1L, 1L, 0L, 1L, 0L, 0L, 0L, 1L, 1L, 0L, 1L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 1L, 0L, 0L, 1L, 0L, 0L, 0L, 1L, 1L, 1L, 0L, 1L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, NA, 1L, 0L, 1L, 1L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 1L, 1L, 1L, 0L, 0L), HR503.FetalProtection.No = c(1L, 1L, 0L, 0L, 1L, 1L, 0L, 1L, 0L, 1L, 0L, 1L, 1L, 0L, 0L, 0L, 1L, 0L, 0L, 1L, 1L, 1L, 0L, 1L, 1L, 0L, 1L, 0L, 0L, 1L, 1L, 0L, 1L, 0L, 0L, 0L, 1L, NA, 0L, 1L, 1L, 1L, 1L, 0L, 1L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 1L, 1L, 1L, 1L, 0L, 0L, 0L, 1L, 1L, 0L, 0L, 0L, 0L, 0L, 1L, 1L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 1L, 1L, 1L, 0L, 0L, 0L, 1L, 1L, 1L, 1L, 0L, 0L, 1L, 0L, 1L, 0L, 1L, 1L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 1L, 0L, 1L, 1L, 1L, 0L, 1L, 1L, 0L, 1L, 0L, 0L, 1L, NA, 1L, 0L, 1L, 1L, 1L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 1L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 1L, 0L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 1L, 1L, 0L, 1L, 0L, 0L, 1L, 1L, 1L, 1L, 0L, 1L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, 1L, 0L, 0L, 1L, 1L, 1L, 0L, 0L, 1L, 1L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 1L, 1L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 1L, 1L, 0L, 1L, 0L, 0L, 0L, 1L, 0L, 1L, 0L, 1L, 1L, 0L, 0L, NA, 1L, 1L, 1L, 0L, 0L, 0L, 0L, 0L, 1L, 1L, 0L, 0L, 1L, NA, 1L, 1L, 0L, 1L, 0L, 0L, 1L, 1L, 1L, 1L, 0L, 1L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, 1L, NA, 1L, 1L, 0L, 1L, 1L, 0L, 0L, NA, 1L, NA, 0L, 1L, 1L, 0L, 1L, 0L, 0L, 1L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 1L, 0L, 1L, 0L, 1L, 1L, 1L, 1L, 1L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 1L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 1L, 1L, 0L, NA, 0L, 0L, 1L, 1L, 1L, 1L, 1L, 0L, 0L, 0L, 1L, 1L, 0L, 1L, 0L, 1L, 0L, 0L, 0L, 1L, 1L, 0L, 0L, 0L, NA, 1L, 0L, NA, 0L, 0L, 1L, 1L, 0L, 0L, 0L, 1L, 1L, 0L, 0L, 0L, 1L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 1L, 1L, 1L, 0L, 0L, 1L, 0L, 0L, 1L, 0L, 1L, 0L, 0L, 1L, 1L, 0L, 1L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, NA, 1L, 0L, 1L, 1L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 1L, 1L, 1L, 0L, 0L), HR1.SchoolVouchers.No = c(1L, 1L, 0L, 0L, 1L, 1L, 0L, 1L, 0L, 1L, 0L, 1L, 1L, 0L, 1L, 0L, 1L, 0L, 0L, 0L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 0L, 0L, 1L, 0L, NA, 1L, 1L, 1L, 1L, 1L, 0L, 1L, 1L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 0L, 0L, 1L, 1L, 1L, 1L, 0L, 0L, 0L, 1L, 1L, 0L, 1L, 0L, 1L, 1L, 0L, 0L, 1L, NA, 0L, 1L, 0L, 1L, 1L, 1L, 1L, 0L, 0L, 1L, 1L, 1L, 1L, 0L, 0L, 1L, 0L, 1L, 1L, 1L, 1L, 0L, 1L, 0L, 0L, 0L, 1L, 0L, 0L, 1L, 1L, 1L, 1L, 1L, 1L, 0L, 1L, 1L, 1L, 1L, 0L, 0L, 0L, NA, 1L, 0L, 1L, 0L, 1L, 0L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 0L, 0L, 1L, 0L, 0L, 0L, 1L, 1L, 0L, 0L, 1L, 1L, 0L, 1L, 0L, 0L, 1L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 1L, 1L, 1L, 1L, 1L, 0L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 0L, 1L, 0L, 1L, 0L, 1L, 1L, 0L, 1L, 1L, 1L, 0L, NA, 1L, 1L, 1L, 0L, 1L, 0L, 1L, 1L, 0L, 1L, 1L, 1L, 0L, 1L, 1L, 1L, 0L, 0L, 1L, 1L, 0L, 0L, 1L, 1L, 1L, 1L, 1L, 1L, 0L, 1L, 1L, 0L, 1L, 1L, 1L, 1L, 1L, 0L, 0L, 0L, 0L, 1L, 1L, 1L, 1L, 1L, 1L, NA, 1L, 1L, 0L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 0L, 1L, 1L, 1L, 0L, 1L, 0L, 1L, 1L, 1L, 1L, 1L, 1L, 0L, 1L, 1L, 0L, 0L, NA, 1L, NA, 1L, 1L, 1L, 1L, 1L, 1L, 0L, 1L, 1L, 1L, 0L, 1L, 0L, 0L, 0L, 1L, 1L, 1L, 1L, 1L, 1L, 0L, 1L, 0L, 1L, 1L, 1L, 1L, 1L, 1L, 0L, 1L, 0L, 0L, 1L, 0L, 0L, 1L, 1L, 1L, 0L, 1L, 1L, 0L, 1L, 0L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 0L, 1L, 1L, 1L, 1L, 0L, 0L, 0L, 1L, 1L, 1L, 1L, 0L, 1L, 0L, 0L, 1L, 1L, 1L, 1L, 1L, 1L, 0L, 0L, 1L, 1L, 0L, 1L, 0L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, 1L, 1L, 1L, 1L, 1L, NA, 0L, 1L, 1L, 1L, 1L, 0L, 0L, 1L, 1L, 0L, 0L, 1L, 1L, 0L, 1L, 1L, 0L, 1L, 0L, 1L, 0L, NA, 1L, 0L, 1L, 0L, 0L, 0L, 1L, 1L, 0L, 1L, 1L, 0L, 0L, 1L, 0L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, NA, 0L, 1L, 0L, 1L, 1L, 0L, NA, 1L, 0L, 1L, 1L, 1L, 0L, 0L, 1L, 0L, 0L, 1L, 0L, 1L, 1L, 1L, 1L, 0L), HR1836.TaxCutReconciliationBill.No = c(0L, NA, 0L, 0L, 1L, 1L, 0L, NA, 0L, 1L, 0L, 1L, 1L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 1L, NA, 0L, 0L, 1L, 1L, 0L, 0L, NA, 1L, NA, 0L, 0L, 0L, 0L, 1L, 0L, NA, 1L, 1L, 1L, NA, 1L, 0L, 1L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 1L, 1L, 0L, 0L, 0L, 0L, 1L, 1L, 0L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, 1L, 0L, NA, 0L, 0L, 0L, 1L, NA, 0L, 1L, 0L, 1L, 1L, 1L, 0L, 0L, 0L, 1L, 1L, 1L, 1L, 0L, 0L, 1L, 0L, 1L, 1L, NA, 0L, 0L, 1L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 1L, 0L, 1L, 1L, 1L, 0L, 1L, 1L, 0L, 1L, 0L, 0L, 0L, NA, 1L, 0L, 1L, 0L, 1L, 0L, 0L, 0L, 1L, 0L, 0L, NA, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 1L, 0L, NA, 0L, 0L, 1L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 1L, 1L, 1L, 0L, 1L, 0L, 1L, 1L, 1L, 0L, 0L, 0L, NA, 1L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 1L, 1L, 1L, 0L, 0L, 1L, 0L, 0L, 0L, 1L, NA, 1L, NA, 0L, 0L, 1L, 0L, 0L, 1L, 1L, 1L, NA, 0L, 0L, 1L, 0L, 0L, 1L, 1L, 0L, 1L, 1L, 1L, 0L, 0L, 1L, 0L, 0L, 0L, 1L, 1L, 1L, 0L, 0L, 0L, NA, 0L, 1L, 1L, 0L, 0L, 1L, NA, 1L, 1L, 0L, 1L, 1L, 0L, 1L, 1L, 0L, 1L, 0L, 1L, 1L, 0L, 0L, NA, 0L, 1L, 1L, 1L, NA, 1L, 1L, 0L, NA, 1L, 0L, 0L, NA, 1L, NA, 1L, 0L, 1L, 0L, 0L, 1L, 0L, 1L, 1L, 1L, 0L, 0L, 0L, 0L, 0L, NA, 1L, 1L, 1L, 0L, 0L, 0L, 1L, 0L, 1L, 1L, 1L, 0L, 1L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, 1L, 0L, 0L, NA, 0L, NA, 0L, 1L, 0L, 0L, 1L, 0L, 0L, 1L, NA, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 1L, 0L, NA, 0L, 0L, 1L, 1L, 1L, 0L, 1L, 0L, NA, 0L, 1L, 0L, 0L, 1L, 0L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, NA, 0L, 1L, 1L, 1L, 0L, 0L, 0L, 1L, 1L, 0L, 0L, 1L, 1L, 0L, 1L, 1L, 0L, 1L, 0L, 0L, 0L, 1L, 0L, 0L, 1L, 0L, 0L, 0L, 1L, 1L, 0L, 0L, 1L, 0L, 0L, 1L, 0L, NA, 0L, 0L, 1L, 1L, 0L, 1L, 1L, 0L, 0L, NA, 0L, NA, 0L, NA, 1L, 0L, NA, 1L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 1L, 1L, NA, 0L, 0L), HR2356.CampaignFinanceReform.No = c(1L, 1L, 0L, 0L, 1L, 1L, 0L, 1L, 0L, 1L, 0L, 1L, 1L, 0L, 1L, 0L, 1L, 0L, 0L, 1L, 1L, 1L, 0L, 1L, 1L, 1L, 0L, 0L, 1L, 1L, 1L, 0L, 1L, 0L, 0L, 1L, 0L, NA, 1L, 1L, 1L, 1L, 1L, 0L, 1L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 1L, 1L, 1L, 1L, 1L, 0L, 0L, 1L, 1L, 1L, 1L, 0L, 0L, 0L, 1L, 1L, 0L, 1L, 0L, 1L, 1L, 0L, 0L, 1L, 0L, 0L, 1L, 0L, 1L, 1L, 1L, 0L, 0L, 0L, 1L, 1L, 1L, 1L, 0L, 0L, 1L, 0L, 1L, 1L, 1L, 1L, 0L, 1L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 1L, 0L, 1L, 1L, 1L, 0L, 1L, 1L, 0L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, 1L, 0L, 1L, 0L, 1L, 0L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 1L, 0L, 1L, 0L, 0L, 1L, 0L, 0L, 0L, 1L, 0L, 1L, 1L, 0L, 1L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 1L, 1L, 1L, 0L, 1L, 0L, 1L, 1L, 1L, 1L, 0L, 0L, 1L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, 1L, 0L, 0L, 1L, 1L, 1L, 0L, 1L, 1L, 1L, 0L, 0L, 1L, 0L, 1L, 1L, 0L, 0L, 1L, 0L, 0L, 1L, 1L, 1L, 0L, 0L, 0L, 1L, 0L, 0L, 1L, 1L, 0L, 1L, 1L, 1L, 0L, 1L, 1L, 0L, 0L, 1L, 1L, 1L, 1L, 0L, 0L, 0L, 1L, 1L, 1L, 1L, 1L, 0L, 1L, NA, 1L, 1L, 0L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 0L, 1L, 1L, 0L, 0L, 1L, 0L, 1L, 1L, 1L, 1L, 1L, 1L, 0L, 1L, 1L, 0L, 0L, NA, 1L, NA, 1L, 1L, 1L, 0L, 1L, 1L, 0L, 1L, 1L, 1L, 0L, 0L, 0L, 0L, 0L, 1L, 1L, 1L, 1L, 0L, 0L, 0L, 1L, 0L, 1L, 1L, 1L, NA, 1L, 1L, 0L, 1L, 0L, 1L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, 1L, 0L, 0L, 1L, 0L, 0L, 1L, 1L, 1L, 0L, 0L, 0L, 0L, 1L, 1L, 1L, 1L, 0L, 1L, 0L, 0L, 1L, 1L, 1L, 1L, 1L, 0L, 1L, 0L, 1L, 1L, 0L, 1L, 0L, 1L, 0L, 0L, 0L, 1L, 1L, 0L, 0L, 1L, 0L, 1L, 0L, NA, 0L, 1L, 1L, 1L, 0L, 0L, 0L, 1L, 1L, 1L, 0L, 1L, 1L, 0L, 1L, 1L, 0L, 1L, 0L, 0L, 0L, 1L, 1L, 0L, 1L, 0L, 0L, 0L, 1L, 1L, 0L, 0L, 1L, 0L, 0L, 1L, 0L, 1L, 0L, 1L, 1L, 1L, 1L, 1L, 1L, 0L, 0L, 0L, 1L, 1L, 0L, 1L, 1L, 0L, 1L, 1L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 1L, 1L, 1L, 1L, 0L, 0L), HJRes36.FlagDesecration.No = c(1L, 1L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, NA, 0L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, NA, 1L, 0L, 1L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 1L, 1L, 0L, 0L, 0L, 0L, 1L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 1L, 0L, 0L, 0L, 0L, 1L, 1L, NA, 1L, 0L, 0L, 0L, 0L, 1L, 1L, 1L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 1L, 0L, 0L, 1L, 0L, 1L, 0L, 1L, 0L, 1L, 1L, 0L, 1L, 1L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, NA, 0L, 1L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, NA, 1L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 1L, 0L, 0L, 1L, 1L, 0L, 1L, 1L, 1L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, 1L, 0L, 0L, 1L, 1L, NA, 0L, 0L, 1L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 1L, 1L, 0L, 0L, 0L, 1L, 0L, 1L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 1L, 1L, 1L, 1L, 0L, 0L, 0L, 0L, 0L, 1L, 1L, 0L, 0L, 0L, NA, 1L, 0L, 0L, 1L, 0L, 1L, 1L, 1L, 0L, 1L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 1L, 1L, 1L, 0L, 0L, 0L, 1L, 0L, 0L, NA, 1L, NA, 0L, 1L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 1L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 1L, 1L, 1L, 1L, 0L, 1L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, NA, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, 1L, 0L, 1L, 0L, 0L, 0L, 1L, NA, 0L, 1L, 0L, 1L, 0L, 1L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, NA, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 1L, 1L, 0L, NA, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 1L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 1L, 1L, 0L, 1L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, 1L, 1L, 0L, 1L, 1L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 1L, 1L, 0L, 0L, 0L), HR7.FaithBasedInitiative.Yes = c(1L, 1L, 0L, 0L, 1L, 1L, 0L, 1L, 0L, 1L, 0L, 1L, 1L, 0L, 1L, 0L, 1L, 0L, 0L, 0L, 1L, 1L, 0L, 1L, 1L, 1L, 0L, 0L, 1L, 1L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, NA, 1L, 1L, 1L, 1L, 1L, 0L, 1L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 1L, 1L, 1L, 1L, 0L, 0L, 0L, 1L, 1L, 1L, 1L, 0L, 0L, 0L, 1L, 1L, 0L, 1L, 0L, 1L, 0L, 0L, 0L, 1L, 0L, 0L, 1L, 0L, 1L, 1L, 1L, 0L, 0L, 0L, 1L, 1L, 1L, 1L, 0L, 0L, 1L, 0L, 1L, 1L, 1L, 1L, 0L, 1L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, NA, 0L, 1L, 1L, 1L, 0L, 1L, 1L, 0L, 1L, 0L, 0L, 1L, 0L, 1L, 0L, 1L, 0L, 1L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, NA, 1L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 1L, 1L, 1L, 0L, 1L, 0L, 1L, 1L, 1L, 1L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, 1L, 0L, 0L, 1L, 1L, 1L, 0L, 0L, 1L, 0L, 0L, 0L, 1L, 0L, 1L, 1L, 0L, 0L, 1L, 0L, 0L, 1L, 1L, 1L, 0L, 0L, 0L, 1L, 0L, 0L, 1L, 1L, 0L, 1L, 1L, 1L, 0L, 1L, 1L, 0L, 0L, 1L, 1L, 1L, 1L, 0L, 0L, 0L, 0L, 0L, 1L, 1L, 0L, 0L, 1L, NA, 1L, 1L, 0L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 0L, 1L, 1L, 0L, 0L, 0L, 0L, NA, 1L, NA, 1L, 1L, 1L, 0L, 1L, 1L, 0L, 0L, NA, 1L, NA, 0L, 1L, 1L, 0L, 1L, 1L, 0L, 1L, 1L, 1L, 0L, 0L, 0L, 0L, 0L, 1L, 1L, 1L, 1L, 0L, 0L, 0L, 1L, 0L, 1L, 1L, 1L, 0L, 1L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, 1L, 0L, 0L, 1L, 0L, 0L, 1L, 1L, 1L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 1L, 0L, 1L, 0L, 0L, 1L, 1L, 1L, 1L, 1L, 0L, 0L, 0L, 1L, 1L, 0L, 1L, 0L, 1L, 0L, 0L, 0L, 1L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, NA, 0L, 0L, 1L, 1L, 0L, 0L, 0L, 1L, 1L, 0L, NA, 1L, 1L, 0L, 0L, 1L, 0L, 1L, 0L, 0L, 0L, 1L, 1L, 0L, 0L, 0L, 0L, 0L, 1L, 1L, 0L, 0L, 1L, 0L, 0L, 1L, 0L, 1L, 0L, 0L, 1L, 1L, 0L, 1L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, 1L, 1L, 0L, 1L, 1L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 1L, 1L, 1L, 0L, 0L), HJRes50.ChinaNormalizedTradeRelations.Yes = c(1L, 0L, 1L, 1L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 1L, 1L, 0L, 1L, 1L, 0L, 1L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 1L, 0L, 0L, NA, 0L, 0L, 0L, 0L, 1L, 0L, NA, 1L, 0L, 0L, 0L, 1L, 0L, 1L, 1L, 0L, 0L, 1L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 1L, 1L, 1L, 0L, 0L, 0L, 0L, 1L, 1L, 0L, 0L, 1L, 1L, 0L, 1L, 0L, 0L, 1L, 1L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, 1L, 0L, 1L, 0L, 0L, 0L, 1L, 1L, 1L, 0L, 1L, 0L, NA, 0L, 0L, 1L, 0L, 1L, 0L, 0L, 0L, 1L, 0L, 1L, 0L, 0L, 0L, 1L, 0L, NA, 0L, 0L, 0L, 1L, 1L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 1L, 1L, 0L, 1L, 0L, 0L, 0L, 1L, 0L, 0L, 1L, 0L, 0L, 0L, 1L, 0L, 1L, 0L, 1L, 0L, 1L, 0L, 1L, 0L, 1L, 1L, 1L, 0L, 0L, 1L, 1L, 1L, 0L, 1L, 1L, 0L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, 1L, 0L, 1L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 1L, 1L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 1L, 1L, 0L, 1L, 0L, 0L, 1L, 0L, 0L, 1L, 1L, 0L, 1L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 1L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, 1L, 0L, 1L, 0L, 0L, 0L, 1L, 1L, 0L, 0L, 0L, 0L, 0L, NA, 0L, 0L, 0L, 1L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, NA, 0L, 0L, 0L, 0L, 1L, 0L, 1L, 1L, 0L, 0L, NA, 1L, NA, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 1L, 0L, 1L, 0L, 0L, 1L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, 1L, 1L, 1L, 0L, 1L, 1L, 0L, 1L, 0L, 0L, 1L, 1L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 1L, 1L, 1L, 0L, 0L, 1L, 0L, 1L, 0L, 1L, 1L, 0L, 0L, 0L, 1L, 1L, 1L, 1L, 1L, 0L, 1L, 1L, 1L, 0L, 0L, 1L, 1L, 1L, 1L, 1L, NA, 1L, 1L, 1L, 0L, 0L, 1L, 1L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, NA, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 1L, 1L, NA, 1L, 1L, 1L, 0L, 1L, 0L, 1L, 0L, 0L, 1L, 0L, 0L, 0L, 1L, 1L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 1L, 1L, 0L, 1L, 1L, 0L, 1L, 1L, 0L, 0L, 0L, 1L, 1L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 1L, 0L, 0L, 0L, 1L, 1L, 1L, 1L, 0L, 1L), HR4.ANWRDrillingBan.Yes = c(1L, 1L, 0L, 0L, 1L, 1L, 0L, 0L, 0L, 1L, 0L, 1L, 1L, 0L, 1L, 0L, 1L, 1L, 0L, 1L, 1L, 1L, 0L, 1L, 1L, 0L, 0L, 0L, 0L, 1L, 1L, 0L, 1L, 0L, 0L, 1L, 0L, NA, 1L, 1L, 1L, 0L, 0L, 0L, 1L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 1L, 1L, 1L, 0L, 1L, 0L, 0L, 1L, 1L, 1L, 0L, 0L, 0L, 0L, 1L, 1L, 0L, 1L, 0L, 1L, 0L, 0L, 0L, 1L, 0L, 0L, 1L, 0L, 1L, 1L, 1L, 1L, 0L, 0L, 1L, 1L, 1L, 1L, 0L, 0L, 1L, 0L, 1L, 1L, 1L, 0L, 0L, 1L, 0L, 0L, 1L, 0L, 1L, 0L, 0L, 1L, 0L, 1L, 1L, 1L, 0L, 1L, 1L, 1L, 1L, 0L, 0L, 1L, 0L, 1L, 0L, 1L, 1L, 1L, 0L, 0L, 0L, 1L, 0L, 1L, 0L, 1L, 1L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 1L, 0L, 1L, 0L, 0L, 1L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 1L, 1L, 0L, 1L, 0L, 1L, 1L, 1L, 1L, 1L, 0L, 1L, 1L, 0L, 0L, NA, 0L, 1L, 0L, 1L, 0L, 0L, 1L, 1L, 0L, 0L, 0L, 1L, 1L, 1L, 0L, 1L, 0L, 0L, 1L, 0L, 1L, 1L, 1L, 0L, 1L, 1L, 1L, 0L, 0L, 1L, 1L, 0L, 0L, 1L, 1L, 1L, 1L, 1L, 1L, 0L, 1L, 1L, 0L, 0L, 1L, 1L, 1L, 1L, 0L, 0L, 0L, NA, 1L, 1L, 1L, 0L, 0L, 1L, NA, 1L, 1L, 0L, 1L, 0L, 1L, 1L, 1L, 1L, 1L, 0L, 1L, 1L, 0L, 0L, 1L, 0L, 1L, 1L, 1L, 1L, 1L, 1L, 0L, 1L, 1L, 0L, 0L, NA, 1L, NA, 0L, 1L, 1L, 0L, 1L, 0L, 0L, 1L, 1L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, 1L, 1L, 1L, 0L, 1L, 1L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 1L, 0L, 0L, 0L, 0L, 1L, 1L, 1L, 0L, 0L, 0L, 0L, 0L, 1L, 1L, 1L, 0L, 0L, 0L, 0L, 0L, 1L, 1L, 1L, 0L, 1L, 0L, 0L, 1L, 1L, 1L, 0L, 1L, 1L, 0L, 0L, 1L, 1L, 0L, 1L, 1L, 1L, 0L, 0L, 0L, 1L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, NA, 0L, 0L, 1L, 1L, 1L, 0L, 0L, 1L, 1L, 0L, NA, 1L, NA, 0L, 0L, 1L, 0L, 1L, 0L, 1L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 1L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 1L, 1L, 0L, 1L, 1L, 0L, 0L, 1L, 0L, 1L, 0L, 1L, 1L, 0L, 1L, 1L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 1L, 1L, 1L, 0L, 0L), HR2563.PatientsRightsHMOLiability.No = c(1L, 1L, 0L, 0L, 1L, 1L, 0L, 1L, 0L, 1L, 0L, 1L, 1L, 0L, 1L, 0L, 1L, 0L, 0L, 0L, 1L, 1L, 0L, 1L, 1L, 1L, 0L, 0L, 1L, 1L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, NA, 1L, 1L, 1L, 1L, 1L, 0L, 1L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 1L, 1L, 1L, 1L, 0L, 0L, 0L, 1L, 1L, 1L, 1L, 0L, 0L, 0L, 1L, 1L, 0L, 1L, 0L, 1L, 1L, 0L, 0L, 1L, 0L, 0L, 1L, 0L, 1L, 1L, 1L, 0L, 0L, 0L, 1L, 1L, 1L, 1L, 0L, 0L, 1L, 0L, 1L, 1L, 1L, 1L, 0L, 1L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 1L, 0L, 1L, 1L, 1L, 0L, 1L, 1L, 0L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, 1L, 0L, 1L, 0L, 1L, 0L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 1L, 0L, 1L, 1L, 0L, 1L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 1L, 1L, 1L, 0L, 1L, 0L, 1L, 1L, 1L, 1L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, 1L, 0L, 0L, 1L, 1L, 1L, 0L, 1L, 1L, 0L, 1L, 0L, 1L, 0L, 1L, 1L, 0L, 0L, 1L, 0L, 0L, 1L, 1L, 1L, 0L, 0L, 0L, 1L, 0L, 0L, 1L, 1L, 0L, 1L, 1L, 1L, 0L, 1L, 1L, 0L, 0L, 1L, 1L, 1L, 1L, 0L, 0L, 0L, NA, 0L, 1L, 1L, 0L, 0L, 1L, NA, 1L, 1L, 0L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 0L, 1L, 1L, 0L, 0L, 1L, 0L, 1L, 1L, 1L, 1L, 1L, 1L, 0L, 1L, 1L, 0L, 0L, NA, 1L, NA, 1L, 1L, 1L, 0L, 1L, 1L, 0L, 1L, 1L, 1L, 0L, 0L, 0L, 0L, 0L, 1L, 1L, 1L, 1L, 0L, 0L, 0L, 1L, 0L, 1L, 1L, 1L, NA, 1L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, 1L, 0L, 0L, 1L, 0L, 0L, 1L, 1L, 1L, 0L, 0L, 0L, 0L, 1L, 1L, 1L, 1L, 0L, 1L, 0L, 0L, 1L, 1L, 1L, 1L, 1L, 0L, 0L, 0L, 1L, 1L, 0L, 1L, 0L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 1L, 0L, 0L, 0L, NA, 0L, 1L, 1L, 1L, 1L, 0L, 0L, 1L, 1L, 0L, NA, 1L, 1L, 0L, 1L, 1L, 0L, 1L, 0L, 0L, 0L, 1L, 1L, 0L, 1L, 0L, 0L, 0L, 1L, 1L, 0L, 0L, 1L, 0L, 0L, 1L, 0L, 1L, 0L, 1L, 1L, 1L, 0L, 1L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, 1L, 1L, 0L, 1L, 1L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 1L, 1L, 1L, 0L, 0L), HR2563.PatientsBillOfRights.No = c(1L, 1L, 0L, 0L, 1L, 1L, 0L, 1L, 0L, 1L, 0L, 1L, 1L, 0L, 1L, 0L, 1L, 0L, 0L, 0L, 1L, 1L, 0L, 1L, 1L, 1L, 0L, 0L, 1L, 1L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, NA, 1L, 1L, 1L, 1L, 1L, 0L, 1L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 1L, 1L, 1L, 1L, 0L, 0L, 0L, 1L, 1L, 1L, 1L, 0L, 0L, 0L, 1L, 1L, 0L, 1L, 0L, 1L, 0L, 0L, 0L, 1L, 0L, 0L, 1L, 0L, 1L, 1L, 1L, 0L, 0L, 0L, 1L, 1L, 1L, 1L, 0L, 0L, 1L, 0L, 1L, 1L, 1L, 1L, 0L, 1L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 1L, 0L, 1L, 1L, 1L, 0L, 1L, 1L, 0L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, 1L, 0L, 1L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 1L, 0L, 1L, 1L, 0L, 1L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 1L, 1L, 1L, 0L, 1L, 0L, 1L, 1L, 1L, 1L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, 1L, 0L, 0L, 1L, 1L, 1L, 0L, 1L, 1L, 0L, 0L, 0L, 1L, 0L, 1L, 1L, 0L, 0L, 1L, 0L, 0L, 1L, 1L, 1L, 0L, 0L, 0L, 1L, 0L, 0L, 1L, 1L, 0L, 1L, 1L, 1L, 0L, 1L, 1L, 0L, 0L, 0L, 1L, 1L, 1L, 0L, 0L, 0L, NA, 0L, 1L, 1L, 0L, 0L, 1L, NA, 1L, 1L, 0L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 0L, 1L, 1L, 0L, 0L, 1L, 0L, 1L, 1L, 1L, 1L, 1L, 1L, 0L, 1L, 1L, 0L, 0L, NA, 1L, NA, 1L, 1L, 1L, 0L, 0L, 1L, 0L, 1L, 1L, 1L, 0L, 0L, 0L, 0L, 0L, 1L, 1L, 1L, 1L, 0L, 0L, 0L, 1L, 0L, 1L, 1L, 1L, NA, 1L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, 1L, 0L, 0L, 1L, 0L, 0L, 1L, 1L, 1L, 0L, 0L, 0L, 0L, 1L, 1L, 0L, 1L, 0L, 1L, 0L, 0L, 1L, 1L, 1L, 1L, 1L, 0L, 0L, 0L, 1L, 1L, 0L, 1L, 0L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 1L, 0L, 0L, 0L, NA, 0L, 1L, 1L, 0L, 0L, 0L, 0L, 1L, 1L, 0L, NA, 1L, 1L, 0L, 1L, 1L, 0L, 1L, 0L, 0L, 0L, 1L, 1L, 0L, 1L, 0L, 0L, 0L, 1L, 1L, 0L, 0L, 1L, 0L, 0L, 1L, 0L, 1L, 0L, 1L, 1L, 1L, 0L, 1L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, 1L, 1L, 0L, 1L, 1L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 1L, 1L, 1L, 0L, 0L), HR2944.DomesticPartnerBenefits.No = c(1L, 1L, 0L, 0L, 1L, 1L, 0L, 1L, 0L, 1L, 0L, 1L, 1L, 0L, 1L, 0L, 1L, 0L, 0L, 1L, 1L, 1L, 0L, 1L, 1L, 0L, 1L, 0L, 1L, 1L, 1L, 0L, 1L, 0L, 0L, 1L, 1L, NA, 1L, 1L, 1L, 1L, 1L, 0L, 1L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 1L, 1L, 1L, 1L, 1L, 0L, 0L, 1L, 1L, 0L, 1L, 0L, 0L, 0L, 1L, 1L, NA, 0L, 0L, 1L, 0L, 0L, 0L, 1L, 0L, 0L, 1L, 0L, 1L, 1L, 1L, 1L, 0L, 0L, 1L, 1L, 1L, 1L, 0L, 0L, 1L, 0L, 1L, 1L, 1L, 1L, 0L, 1L, 1L, 0L, 0L, 1L, 0L, 1L, 0L, 1L, 1L, 1L, 1L, 1L, 0L, 1L, 1L, 1L, 1L, 0L, 0L, 1L, 0L, 1L, 0L, 1L, 1L, 1L, 0L, 1L, 0L, 1L, 0L, 1L, 1L, 1L, 1L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, 1L, 0L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, NA, 1L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 1L, 1L, 1L, 1L, 1L, 0L, 0L, 1L, 1L, 1L, 1L, 0L, 1L, 1L, 0L, 0L, NA, 0L, 1L, 0L, 1L, 1L, 0L, 1L, 1L, 1L, 0L, 0L, 1L, 1L, 0L, 0L, 1L, 0L, 1L, 1L, 0L, 1L, 1L, 0L, 0L, 1L, 1L, 1L, 0L, 0L, 1L, 1L, 0L, 1L, 1L, 1L, 0L, 1L, 1L, 1L, 0L, 1L, 1L, 0L, 1L, 1L, 1L, 1L, 1L, 1L, 0L, 0L, 0L, 0L, 1L, 1L, 0L, 0L, 1L, NA, 1L, 1L, 0L, 1L, 0L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 0L, 0L, 0L, 0L, 1L, 1L, 1L, 1L, NA, 1L, 0L, 1L, 1L, 1L, 0L, NA, 1L, NA, 1L, 1L, 1L, 0L, 1L, 1L, 0L, 1L, 1L, 1L, 0L, 0L, 0L, 0L, 0L, 1L, 1L, 1L, 1L, 0L, 1L, 0L, NA, 0L, 1L, 1L, 1L, 0L, 1L, 1L, 0L, NA, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 1L, 1L, 0L, 0L, 0L, 1L, 0L, 1L, 1L, 0L, 1L, 0L, 0L, 1L, 1L, 1L, 0L, 0L, 1L, 1L, 1L, 1L, 0L, 1L, 0L, NA, 0L, 0L, 1L, 1L, 1L, 1L, 1L, 0L, NA, 0L, 1L, 1L, 0L, 1L, 0L, NA, 0L, 0L, 1L, 1L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, NA, 0L, 1L, 1L, 1L, 0L, 0L, 0L, 1L, 1L, 0L, NA, 1L, 1L, 0L, 0L, 1L, 0L, 1L, 0L, 1L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 1L, 1L, 1L, 0L, 0L, 1L, 0L, 0L, 1L, 0L, NA, 0L, 1L, 1L, 1L, 0L, NA, 1L, 0L, 0L, 0L, 0L, 1L, 0L, NA, 1L, 0L, 1L, 1L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 1L, 1L, 1L, 0L, 0L), HR2586.USMilitaryPersonnelOverseasAbortions.Yes = c(1L, 1L, 0L, 0L, 1L, 1L, 0L, 1L, 0L, 1L, 0L, 1L, 1L, 0L, 0L, 0L, 1L, 0L, 0L, 1L, 1L, 1L, 0L, 1L, 1L, 0L, 1L, 0L, 1L, 1L, 1L, 0L, 1L, 0L, 0L, 1L, 1L, NA, 0L, 1L, 1L, 1L, 1L, 0L, 1L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 0L, 0L, 1L, 1L, 1L, 1L, 0L, 0L, 0L, 1L, NA, 0L, 0L, 0L, 1L, 1L, 0L, 0L, 1L, 0L, 0L, 1L, 0L, 1L, 1L, 1L, 0L, 0L, 0L, 1L, 1L, 1L, 1L, 0L, 0L, 1L, 0L, 1L, 1L, 1L, 1L, 0L, 0L, 0L, 0L, 1L, 1L, 0L, 1L, 0L, NA, 0L, 1L, 1L, 1L, 0L, 1L, 1L, 0L, 1L, 0L, 0L, 1L, 0L, 1L, 0L, 1L, 1L, 1L, 0L, 0L, 0L, 1L, 0L, 1L, 0L, 1L, 1L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, 1L, 0L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, NA, 1L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 1L, 1L, 1L, 0L, 1L, 0L, 0L, 1L, 1L, 1L, 1L, 0L, 1L, 1L, 0L, 0L, NA, 0L, 1L, 1L, 1L, 0L, 0L, 1L, 1L, 1L, 0L, 0L, 1L, 1L, 0L, 0L, 1L, 0L, 0L, 1L, 0L, 1L, 1L, 0L, 0L, 0L, 1L, 1L, 0L, 0L, 1L, 1L, 0L, 1L, 0L, 0L, 0L, 1L, 0L, 1L, 0L, 1L, 1L, 0L, 0L, 1L, 1L, 1L, 1L, 0L, 0L, 0L, 0L, 0L, 1L, 1L, 0L, 0L, 1L, NA, 1L, 1L, 0L, 1L, 0L, 1L, 1L, 1L, 1L, 1L, 0L, 1L, 1L, 0L, NA, 0L, 0L, 1L, 0L, 1L, 1L, NA, 1L, 0L, 1L, 1L, 1L, 0L, NA, 1L, NA, NA, 1L, 1L, 0L, 1L, 0L, 0L, NA, 1L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 1L, 0L, 0L, 1L, 0L, 1L, 0L, 1L, 1L, 1L, 0L, 1L, 1L, 0L, NA, NA, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 1L, 1L, 0L, 0L, 0L, 0L, 1L, 1L, 0L, 0L, 1L, 0L, 0L, 1L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 1L, 1L, 0L, NA, 0L, 0L, 1L, 1L, 1L, 1L, 1L, 0L, NA, 0L, 1L, 1L, 0L, 1L, 0L, NA, 0L, 0L, 1L, 1L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, NA, 0L, 0L, 1L, 1L, 0L, 0L, 0L, 1L, 1L, 0L, NA, 1L, 1L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 1L, 1L, 0L, 0L, 0L, 0L, 1L, 1L, 1L, 0L, 0L, 1L, 0L, 0L, 1L, 0L, NA, 0L, 1L, 1L, 1L, 0L, NA, NA, 0L, 1L, 0L, 0L, 1L, 0L, NA, 1L, 0L, 1L, 1L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 1L, 1L, 1L, 0L, 0L), HR2975.AntiTerrorismAuthority.No = c(1L, 1L, NA, 0L, 1L, 1L, 0L, 1L, 0L, 1L, 0L, 1L, 1L, 0L, 1L, 0L, 1L, 0L, NA, 0L, 1L, 1L, 0L, 1L, 1L, 1L, 0L, 0L, 1L, 1L, 1L, NA, 0L, 0L, 0L, 1L, 0L, NA, 1L, 1L, 1L, 1L, 1L, 0L, 1L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 1L, 1L, 1L, 1L, 0L, 1L, 0L, 1L, 1L, 1L, 1L, 0L, 0L, 0L, 1L, 1L, 0L, 1L, 0L, 1L, 1L, 0L, 0L, 1L, 0L, 0L, 1L, 1L, 1L, 1L, 1L, 0L, 0L, 0L, 1L, 1L, 1L, 1L, 0L, 0L, 1L, 0L, 1L, 1L, 1L, 1L, 0L, 1L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 1L, 0L, 1L, 1L, 1L, 0L, 1L, 1L, 0L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, 1L, 0L, 1L, 0L, 0L, 0L, 1L, 0L, 0L, NA, 0L, 1L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 1L, 0L, 1L, 0L, 0L, 1L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 1L, 1L, 1L, 0L, 1L, 0L, 1L, 1L, 1L, 1L, 0L, 0L, 0L, 1L, 0L, 0L, NA, 0L, 1L, 0L, 1L, 0L, 0L, 1L, 1L, 1L, 0L, 1L, 1L, 0L, 0L, 0L, 1L, 0L, 1L, 1L, 0L, 0L, 1L, 0L, 0L, 1L, 1L, 1L, 0L, 0L, 0L, 1L, 0L, 0L, 1L, 1L, 0L, 1L, 1L, 1L, 0L, 1L, 1L, 0L, 0L, 0L, 1L, 1L, 1L, 0L, 0L, 0L, 1L, 0L, 1L, 1L, 1L, 0L, 1L, NA, 1L, 1L, 0L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 0L, 1L, 1L, NA, 0L, 1L, 0L, 1L, 1L, 1L, 1L, 1L, 1L, 0L, 1L, 1L, NA, 0L, NA, 1L, NA, NA, 1L, 1L, 0L, 0L, 1L, 0L, 1L, 1L, 1L, 0L, 0L, 0L, 0L, 0L, 1L, 1L, 1L, 1L, 0L, 0L, 0L, 1L, 0L, 1L, 1L, 1L, 0L, 1L, 1L, 0L, 1L, 0L, 1L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, 1L, 0L, 0L, 1L, 0L, 0L, 1L, 1L, 1L, 0L, 0L, 0L, 0L, 1L, 1L, 0L, 1L, 0L, 1L, 0L, 0L, 1L, 1L, 1L, 1L, 1L, 0L, NA, 0L, 1L, 1L, 0L, 1L, 0L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, NA, 0L, 1L, 1L, 1L, 0L, 0L, 0L, 1L, 1L, 0L, NA, 1L, 1L, 0L, 1L, 1L, 0L, 1L, 0L, 0L, 0L, 1L, 1L, 0L, 1L, 0L, 0L, 0L, 1L, 1L, 0L, 0L, 1L, 0L, 0L, 1L, 0L, NA, 0L, 1L, 1L, 1L, 0L, 1L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, 1L, 1L, 0L, 1L, 1L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 1L, 1L, 1L, 0L, 0L), HR3090.EconomicStimulus.No = c(1L, 1L, 0L, 0L, 1L, 1L, 0L, 1L, 0L, 1L, 0L, 1L, 1L, 0L, 1L, 0L, 1L, 0L, 0L, 0L, 1L, 1L, 0L, 1L, 1L, 1L, 0L, 0L, 1L, 1L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, NA, 1L, 1L, 1L, 1L, 1L, 0L, 1L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 1L, 1L, 1L, 1L, 0L, 0L, 0L, 1L, 1L, 1L, 1L, 0L, 0L, 0L, 1L, 1L, 0L, 1L, 0L, 1L, 1L, 0L, 0L, 1L, NA, 0L, 1L, 0L, 1L, 1L, 1L, 0L, 0L, 0L, 1L, 1L, 1L, 1L, 0L, 0L, 1L, 0L, 1L, 1L, 1L, 1L, 0L, 1L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 1L, 0L, 1L, 1L, 1L, 0L, 1L, 1L, 0L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, 1L, 0L, 1L, 0L, 1L, 0L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 1L, 0L, 1L, 0L, 0L, 1L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, NA, 0L, 1L, 1L, 1L, 0L, 1L, 0L, 1L, 1L, 1L, 1L, 0L, 0L, 0L, 1L, 0L, 0L, NA, 0L, 1L, 0L, 1L, 0L, 0L, 1L, 1L, 1L, 0L, 1L, 1L, 0L, 0L, 0L, 1L, 0L, 1L, 1L, 0L, 0L, 1L, 0L, 0L, 1L, 1L, 1L, 0L, 0L, 0L, 1L, 0L, 0L, 1L, 1L, 1L, 1L, 1L, 1L, 0L, 1L, 1L, 0L, 0L, 1L, 1L, 1L, 1L, 0L, 0L, 0L, 1L, 0L, 1L, 1L, 0L, 0L, 1L, 1L, 1L, 1L, 0L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 0L, 1L, 1L, 0L, 0L, 1L, 0L, 1L, 1L, 1L, 1L, 1L, 1L, 0L, 1L, 1L, 0L, 0L, 0L, 1L, NA, 1L, 1L, 1L, 0L, 1L, 1L, 0L, 1L, 1L, 1L, 0L, 0L, 0L, 0L, 0L, 1L, 1L, 1L, 1L, 0L, 0L, 0L, 1L, 0L, 1L, 1L, 1L, 0L, 1L, 1L, 0L, 1L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, 1L, 0L, 0L, 1L, 0L, 1L, 0L, 1L, 0L, 0L, 1L, 0L, 0L, 1L, 1L, 1L, 0L, 0L, 0L, 0L, 1L, 1L, 0L, 1L, 0L, 1L, 0L, 0L, 1L, 1L, 1L, 1L, 1L, 0L, NA, 0L, 1L, 1L, 0L, 1L, 0L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 1L, 0L, 0L, 0L, NA, 0L, 1L, 1L, 1L, 0L, 1L, 0L, 1L, 1L, 0L, NA, 1L, 1L, 0L, 1L, 1L, 0L, 1L, 0L, 0L, 0L, 1L, 1L, 0L, 1L, 0L, 0L, 0L, 1L, 1L, 0L, 1L, 1L, 0L, 0L, 1L, 0L, 1L, 0L, 1L, 1L, 1L, 0L, 1L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, 1L, 1L, 0L, 1L, 1L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 1L, 1L, 1L, 0L, 0L), HR3000.TradePromotionAuthorityFastTrack.No = c(1L, 1L, 1L, 0L, 1L, 1L, 0L, 1L, 0L, 1L, 0L, 1L, 1L, 0L, 1L, 0L, 1L, 1L, 0L, 0L, 1L, 0L, 0L, 1L, 1L, 1L, 0L, 0L, 1L, 1L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 1L, 1L, 1L, 1L, 1L, 0L, 1L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 1L, 1L, 1L, 1L, 0L, 0L, 0L, 0L, 1L, 1L, 1L, 1L, 1L, 0L, 0L, 1L, 1L, 0L, 1L, 0L, 1L, 1L, 0L, 0L, 1L, 0L, 0L, 1L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 1L, 1L, 1L, 1L, 0L, 0L, 1L, 0L, 0L, 1L, 1L, 0L, 0L, 1L, 0L, 1L, 0L, 1L, 0L, 0L, 0L, 1L, 0L, 1L, 0L, 1L, 0L, 1L, 1L, 0L, 1L, 0L, 0L, 1L, 0L, 1L, 0L, 1L, 0L, 1L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 1L, 1L, 1L, 0L, 1L, 0L, 1L, 0L, 0L, 1L, 0L, 0L, 0L, 1L, 0L, 1L, 0L, 0L, 1L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 1L, 0L, 0L, 1L, 1L, 1L, 1L, 1L, 1L, 0L, 1L, 0L, 1L, 0L, 0L, NA, 0L, 1L, 0L, 1L, 0L, 0L, 1L, 1L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 1L, 1L, 1L, 1L, 0L, 0L, 1L, 0L, 0L, 1L, 1L, 1L, 0L, 0L, 0L, 1L, 0L, 0L, 1L, 1L, 0L, 1L, 1L, 1L, 0L, 1L, 1L, 0L, 1L, 0L, 1L, 1L, 1L, 0L, 0L, 0L, 1L, 1L, 1L, 1L, 0L, 0L, 1L, 1L, 1L, 1L, 0L, 1L, 1L, 0L, 1L, 1L, 1L, 1L, 0L, 1L, 1L, 1L, 0L, 1L, 0L, 1L, 1L, 1L, NA, 1L, 1L, 0L, 1L, 1L, 0L, 0L, 0L, 1L, NA, 1L, 0L, 0L, 0L, 0L, 1L, 0L, 1L, 1L, 1L, 0L, 0L, 0L, 1L, 0L, 1L, 1L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, 1L, 1L, 1L, 1L, 1L, 1L, 0L, 1L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, 1L, 0L, 1L, NA, 0L, 1L, 0L, 1L, 1L, 0L, 1L, 0L, 0L, 1L, 1L, 1L, 0L, 1L, 0L, 0L, 1L, 1L, NA, 1L, 0L, 1L, 0L, 0L, 1L, 1L, 1L, 1L, 1L, 0L, NA, 0L, 1L, 1L, 0L, 1L, 0L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 1L, 0L, 1L, 0L, NA, 0L, 0L, 1L, 1L, 1L, 0L, 0L, 0L, 1L, 0L, NA, 1L, 1L, 0L, 0L, 1L, 0L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, 1L, 1L, 0L, 0L, 1L, 1L, 0L, 0L, 1L, 0L, 0L, 1L, 0L, 1L, 1L, 1L, 1L, 1L, 0L, 1L, 1L, 0L, 0L, 1L, 0L, 1L, 0L, 1L, 1L, 0L, 1L, 1L, 1L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 1L, 1L, 1L, 0L, NA)), .Names = c("party", "HR333.BankruptcyOverhaul.Yes", "SJRes6.ErgonomicsRuleDisapproval.No", "HR3.IncomeTaxReduction.No", "HR6.MarriageTaxReduction.Yes", "HR8.EstateTaxRelief.Yes", "HR503.FetalProtection.No", "HR1.SchoolVouchers.No", "HR1836.TaxCutReconciliationBill.No", "HR2356.CampaignFinanceReform.No", "HJRes36.FlagDesecration.No", "HR7.FaithBasedInitiative.Yes", "HJRes50.ChinaNormalizedTradeRelations.Yes", "HR4.ANWRDrillingBan.Yes", "HR2563.PatientsRightsHMOLiability.No", "HR2563.PatientsBillOfRights.No", "HR2944.DomesticPartnerBenefits.No", "HR2586.USMilitaryPersonnelOverseasAbortions.Yes", "HR2975.AntiTerrorismAuthority.No", "HR3090.EconomicStimulus.No", "HR3000.TradePromotionAuthorityFastTrack.No" ), class = "data.frame", row.names = c("Abercrombie", "Ackerman", "Aderholt", "Akin", "Allen", "Andrews", "Armey", "Baca", "Bachus", "Baird", "Baker", "Baldacci", "Baldwin", "Ballenger", "Barcia", "Barr", "Barrett", "Bartlett", "Barton", "Bass", "Becerra", "Bentsen", "Bereuter", "Berkley", "Berman", "Berry", "Biggert", "Bilirakis", "Bishop", "Blagojevich", "Blumenauer", "Blunt", "Boehlert", "Boehner", "Bonilla", "Bonior", "Bono", "Boozman", "Borski", "Boswell", "Boucher", "Boyd", "Brady", "Brady1", "Brown", "Brown1", "Brown2", "Bryant", "Burr", "Burton", "Buyer", "Callahan", "Calvert", "Camp", "Cannon", "Cantor", "Capito", "Capps", "Capuano", "Cardin", "Carson", "Carson1", "Castle", "Chabot", "Chambliss", "Clay", "Clayton", "Clement", "Clyburn", "Coble", "Collins", "Combest", "Condit", "Conyers", "Cooksey", "Costello", "Cox", "Coyne", "Cramer", "Crane", "Crenshaw", "Crowley", "Cubin", "Culberson", "Cummings", "Cunningham", "Davis", "Davis1", "Davis2", "Davis3", "Davis4", "Deal", "DeFazio", "DeGette", "Delahunt", "DeLauro", "DeLay", "DeMint", "Deutsch", "Diaz-Balart", "Dicks", "Dingell", "Doggett", "Dooley", "Doolittle", "Doyle", "Dreier", "Duncan", "Dunn", "Edwards", "Ehlers", "Ehrlich", "Emerson", "Engel", "English", "Eshoo", "Etheridge", "Evans", "Everett", "Farr", "Fattah", "Ferguson", "Filner", "Flake", "Fletcher", "Foley", "Forbes", "Ford", "Fossella", "Frank", "Frelinghuysen", "Frost", "Gallegly", "Ganske", "Gekas", "Gephardt", "Gibbons", "Gilchrest", "Gillmor", "Gilman", "Gonzalez", "Goode", "Goodlatte", "Gordon", "Goss", "Graham", "Granger", "Graves", "Green", "Green1", "Greenwood", "Grucci", "Gutierrez", "Gutknecht", "Hall", "Hall1", "Hansen", "Harman", "Hart", "Hastert", "Hastings", "Hastings1", "Hayes", "Hayworth", "Hefley", "Herger", "Hill", "Hilleary", "Hilliard", "Hinchey", "Hinojosa", "Hobson", "Hoeffel", "Hoekstra", "Holden", "Holt", "Honda", "Hooley", "Horn", "Hostettler", "Houghton", "Hoyer", "Hulshof", "Hunter", "Hutchinson", "Hyde", "Inslee", "Isakson", "Israel", "Issa", "Istook", "Jackson", "Jackson-Lee", "Jefferson", "Jenkins", "John", "Johnson", "Johnson1", "Johnson2", "Johnson3", "Jones", "Jones1", "Kanjorski", "Kaptur", "Keller", "Kelly", "Kennedy", "Kennedy2", "Kerns", "Kildee", "Kilpatrick", "Kind", "King", "Kingston", "Kirk", "Kleczka", "Knollenberg", "Kolbe", "Kucinich", "LaFalce", "LaHood", "Lampson", "Langevin", "Lantos", "Largent", "Larsen", "Larson", "Latham", "LaTourette", "Leach", "Lee", "Levin", "Lewis", "Lewis1", "Lewis2", "Linder", "Lipinski", "LoBiondo", "Lofgren", "Lowey", "Lucas", "Lucas1", "Luther", "Lynch", "Maloney", "Maloney1", "Manzullo", "Markey", "Mascara", "Matheson", "Matsui", "McCarthy", "McCarthy1", "McCollum", "McCrery", "McDermott", "McGovern", "McHugh", "McInnis", "McIntyre", "McKeon", "McKinney", "McNulty", "Meehan", "Meek", "Meeks", "Menendez", "Mica", "Millender-McDonald", "Miller", "Miller1", "Miller2", "Miller3", "Mink", "Moakley", "Mollohan", "Moore", "Moran", "Moran1", "Morella", "Murtha", "Myrick", "Nadler", "Napolitano", "Neal", "Nethercutt", "Ney", "Northup", "Norwood", "Nussle", "Oberstar", "Obey", "Olver", "Ortiz", "Osborne", "Ose", "Otter", "Owens", "Oxley", "Pallone", "Pascrell", "Pastor", "Paul", "Payne", "Pelosi", "Pence", "Peterson", "Peterson1", "Petri", "Phelps", "Pickering", "Pitts", "Platts", "Pombo", "Pomeroy", "Portman", "Price", "Pryce", "Putnam", "Quinn", "Radanovich", "Rahall", "Ramstad", "Rangel", "Regula", "Rehberg", "Reyes", "Reynolds", "Riley", "Rivers", "Rodriguez", "Roemer", "Rogers", "Rogers1", "Rohrabacher", "Ros-Lehtinen", "Ross", "Rothman", "Roukema", "Roybal-Allard", "Royce", "Rush", "Ryan", "Ryun", "Sabo", "Sanchez", "Sanders", "Sandlin", "Sawyer", "Saxton", "Scarborough", "Schaffer", "Schakowsky", "Schiff", "Schrock", "Scott", "Sensenbrenner", "Serrano", "Sessions", "Shadegg", "Shaw", "Shays", "Sherman", "Sherwood", "Shimkus", "Shows", "Shuster", "Simmons", "Simpson", "Sisisky", "Skeen", "Skelton", "Slaughter", "Smith", "Smith1", "Smith2", "Smith3", "Snyder", "Solis", "Souder", "Spence", "Spratt", "Stark", "Stearns", "Stenholm", "Strickland", "Stump", "Stupak", "Sununu", "Sweeney", "Tancredo", "Tanner", "Tauscher", "Tauzin", "Taylor", "Taylor1", "Terry", "Thomas", "Thompson", "Thompson1", "Thornberry", "Thune", "Thurman", "Tiahrt", "Tiberi", "Tierney", "Toomey", "Towns", "Traficant", "Turner", "Udall", "Udall1", "Upton", "Velazquez", "Visclosky", "Vitter", "Walden", "Walsh", "Wamp", "Waters", "Watkins", "Watson", "Watt", "Watts", "Waxman", "Weiner", "Weldon", "Weldon1", "Weller", "Wexler", "Whitfield", "Wicker", "Wilson", "Wolf", "Woolsey", "Wu", "Wynn", "Young", "Young1")) gnm/data/cautres.R0000644000176200001440000000206014376140103013532 0ustar liggesusers"cautres" <- structure(as.integer(c(37, 5, 19, 4, 30, 4, 22, 8, 38, 9, 38, 6, 20, 11, 20, 3, 8, 1, 8, 6, 33, 16, 33, 37, 10, 15, 22, 18, 7, 9, 24, 30, 43, 55, 40, 104, 0, 4, 2, 3, 2, 3, 1, 4, 3, 6, 5, 28, 86, 4, 52, 0, 47, 2, 80, 20, 113, 31, 55, 18, 57, 13, 35, 5, 19, 9, 45, 24, 90, 53, 53, 54, 69, 29, 106, 45, 67, 29, 118, 118, 212, 258, 144, 333, 3, 8, 9, 9, 17, 31, 16, 78, 23, 72, 15, 102, 61, 11, 22, 11, 32, 7, 59, 21, 79, 55, 31, 37, 34, 13, 27, 16, 20, 10, 42, 37, 79, 85, 40, 69, 49, 34, 60, 59, 51, 61, 98, 159, 145, 317, 88, 318, 2, 6, 7, 10, 3, 37, 8, 70, 12, 81, 10, 84, 50, 4, 30, 5, 33, 12, 63, 17, 73, 18, 31, 17, 35, 11, 37, 5, 32, 13, 58, 24, 89, 52, 43, 40, 28, 18, 98, 27, 52, 58, 114, 122, 186, 196, 116, 196, 5, 3, 16, 14, 10, 56, 20, 91, 44, 59, 26, 95)), .Dim = as.integer(c(2, 6, 4, 4)), .Dimnames = structure(list( vote = c("1", "2"), class = c("1", "2", "3", "4", "5", "6" ), religion = c("1", "2", "3", "4"), election = c("1", "2", "3", "4")), .Names = c("vote", "class", "religion", "election" )), class = "table") gnm/data/backPain.R0000644000176200001440000000472014376140103013601 0ustar liggesusersbackPain <- structure(list(x1 = c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L), x2 = c(1L, 1L, 1L, 2L, 2L, 2L, 2L, 1L, 1L, 3L, 3L, 2L, 2L, 2L, 1L, 1L, 1L, 3L, 3L, 3L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 3L, 3L, 3L, 3L, 3L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 3L, 3L, 2L, 1L, 1L, 1L, 3L, 3L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L), x3 = c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 1L, 2L, 1L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L), pain = structure(c(2L, 5L, 6L, 2L, 3L, 5L, 6L, 4L, 5L, 5L, 6L, 2L, 4L, 6L, 3L, 5L, 6L, 3L, 4L, 5L, 2L, 3L, 4L, 5L, 6L, 2L, 5L, 1L, 2L, 3L, 4L, 5L, 1L, 2L, 3L, 4L, 6L, 1L, 3L, 4L, 5L, 6L, 6L, 6L, 2L, 3L, 3L, 5L, 5L, 5L, 5L, 5L, 6L, 6L, 6L, 5L, 5L, 5L, 6L, 4L, 3L, 3L, 6L, 5L, 5L, 2L, 2L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 5L, 5L, 5L, 5L, 5L, 6L, 5L, 5L, 1L, 2L, 4L, 4L, 4L, 4L, 5L, 2L, 2L, 2L, 3L, 3L, 3L, 4L, 4L, 1L, 3L, 4L, 4L), .Label = c("worse", "same", "slight.improvement", "moderate.improvement", "marked.improvement", "complete.relief" ), class = c("ordered", "factor"))), .Names = c("x1", "x2", "x3", "pain"), row.names = c("1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "13", "14", "15", "16", "17", "18", "19", "20", "21", "22", "23", "24", "25", "26", "27", "28", "29", "30", "31", "32", "33", "34", "35", "36", "37", "38", "39", "40", "41", "42", "43", "44", "45", "46", "47", "48", "49", "50", "51", "52", "53", "54", "55", "56", "57", "58", "59", "60", "61", "62", "63", "64", "65", "66", "67", "68", "69", "70", "71", "72", "73", "74", "75", "76", "77", "78", "79", "80", "81", "82", "83", "84", "85", "86", "87", "88", "89", "90", "91", "92", "93", "94", "95", "96", "97", "98", "99", "100", "101"), class = "data.frame") gnm/man/0000755000176200001440000000000014376171037011617 5ustar liggesusersgnm/man/summary.gnm.Rd0000755000176200001440000001261314376140103014357 0ustar liggesusers\name{summary.gnm} \alias{summary.gnm} \alias{print.summary.gnm} \title{ Summarize Generalized Nonlinear Model Fits } \description{ \code{summary} method for objects of class \code{"gnm"} } \usage{ \method{summary}{gnm}(object, dispersion = NULL, correlation = FALSE, symbolic.cor = FALSE, with.eliminate = FALSE, ...) \method{print}{summary.gnm}(x, digits = max(3, getOption("digits") - 3), signif.stars = getOption("show.signif.stars"), symbolic.cor = x$symbolic.cor, ...) } \arguments{ \item{object}{ an object of class \code{"gnm"}. } \item{x}{ an object of class \code{"summary.gnm"}. } \item{dispersion}{ the dispersion parameter for the fitting family. By default it is obtained from \code{object}. } \item{correlation}{ logical: if \code{TRUE}, the correlation matrix of the estimated parameters is returned. } \item{digits}{ the number of significant digits to use when printing. } \item{symbolic.cor}{ logical: if \code{TRUE}, the correlations are printed in a symbolic form rather than numbers (see \code{symnum}). } \item{signif.stars}{ logical. If \code{TRUE}, "significance stars" are printed for each coefficient. } \item{with.eliminate}{ Logical. If \code{TRUE}, any eliminated coefficients are included in the summary. } \item{\dots}{ further arguments passed to or from other methods. } } \details{ \code{print.summary.gnm} prints the original call to \code{gnm}; a summary of the deviance residuals from the model fit; the coefficients of the model; the residual deviance; the Akaike's Information Criterion value, and the number of main iterations performed. Standard errors, z-values and p-values are printed alongside the coefficients, with "significance stars" if \code{signif.stars} is \code{TRUE}. When the \code{"summary.gnm"} object has a \code{"correlation"} component, the lower triangle of this matrix is also printed, to two decimal places (or symbolically); to see the full matrix of correlations print \code{summary(object, correlation = TRUE)$correlation} directly. The standard errors returned by \code{summary.gnm} are scaled by \code{sqrt(dispersion)}. If the dispersion is not specified, it is taken as \code{1} for the \code{binomial} and \code{Poisson} families, and otherwise estimated by the residual Chi-squared statistic divided by the residual degrees of freedom. For coefficients that have been constrained or are not estimable, the standard error is returned as \code{NA}. } \value{ \code{summary.gnm} returns an object of class \code{"summary.gnm"}, which is a list with components \item{call }{ the \code{"call"} component from object. } \item{ofInterest }{ the \code{"ofInterest"} component from object. } \item{family }{ the \code{"family"} component from object. } \item{deviance }{ the \code{"deviance"} component from object. } \item{aic }{ the \code{"aic"} component from object. } \item{df.residual }{ the \code{"df.residual"} component from object. } \item{iter }{ the \code{"iter"} component from object. } \item{deviance.resid }{ the deviance residuals, see \code{\link{residuals.glm}}. } \item{coefficients }{ the matrix of coefficients, standard errors, z-values and p-values. } \item{elim.coefs }{ if \code{with.eliminate = TRUE} a matrix of eliminated coefficients, standard errors, z-values and p-values. } \item{dispersion }{ either the supplied argument or the estimated dispersion if the latter is \code{NULL}. } \item{df}{ a 3-vector of the rank of the model; the number of residual degrees of freedom, and number of unconstrained coefficients. } \item{cov.scaled }{ the estimated covariance matrix scaled by \code{dispersion} (see \code{\link{vcov.gnm}} for more details). } \item{correlation }{ (only if \code{correlation} is \code{TRUE}) the estimated correlations of the estimated coefficients. } \item{symbolic.cor }{ (only if \code{correlation} is \code{TRUE}) the value of the argument \code{symbolic.cor}. } } \note{ The \code{gnm} class includes generalized linear models, and it should be noted that \code{summary.gnm} differs from \code{\link{summary.glm}} in that it does not omit coefficients which are \code{NA} from the objects it returns. (Such coefficients are \code{NA} since they have been fixed at \code{0} either by use of the \code{constrain} argument to \code{gnm} or by a convention to handle linear aliasing). } \author{ Modification of \code{\link{summary.glm}} by the R Core Team. Adapted for \code{"gnm"} objects by Heather Turner. } \seealso{ \code{\link{gnm}}, \code{\link{summary}}} \examples{ ### First example from ?Dref set.seed(1) ## reconstruct counts voting Labour/non-Labour count <- with(voting, percentage/100 * total) yvar <- cbind(count, voting$total - count) ## fit diagonal reference model with constant weights classMobility <- gnm(yvar ~ -1 + Dref(origin, destination), family = binomial, data = voting) ## summarize results - note diagonal weights are over-parameterised summary(classMobility) ## refit setting first weight to zero (as DrefWeights() does) classMobility <- gnm(yvar ~ -1 + Dref(origin, destination), family = binomial, data = voting, constrain = "delta1") summary(classMobility) } \keyword{ models } \keyword{ regression } \keyword{ nonlinear } gnm/man/cautres.Rd0000644000176200001440000000567514376140103013557 0ustar liggesusers\name{cautres} \alias{cautres} \docType{data} \title{ Data on Class, Religion and Vote in France} \description{ A 4-way contingency table of vote by class by religion in four French elections } \usage{cautres} \format{ A table of counts, with classifying factors \code{vote} (levels \code{1:2}), \code{class} (levels \code{1:6}) and \code{religion} (levels \code{1:4}) and \code{election} (levels \code{1:4}). } \source{ Bruno Cautres } \references{ Cautres, B, Heath, A F and Firth, D (1998). Class, religion and vote in Britain and France. \emph{La Lettre de la Maison Francaise} \bold{8}. } \examples{ set.seed(1) ## Fit a "double UNIDIFF" model with the religion-vote and class-vote ## interactions both modulated by nonnegative election-specific multipliers doubleUnidiff <- gnm(Freq ~ election*vote + election*class*religion + Mult(Exp(election), religion:vote) + Mult(Exp(election), class:vote), family = poisson, data = cautres) ## Deviance should be 133.04 ## Examine the multipliers of the class-vote log odds ratios ofInterest(doubleUnidiff) <- pickCoef(doubleUnidiff, "class:vote[).]") coef(doubleUnidiff) ## Coefficients of interest: ## Mult(Exp(.), class:vote).election1 ## -0.38357138 ## Mult(Exp(.), class:vote).election2 ## 0.29816599 ## Mult(Exp(.), class:vote).election3 ## 0.06580307 ## Mult(Exp(.), class:vote).election4 ## -0.02174104 ## Re-parameterize by setting Mult2.Factor1.election1 to zero getContrasts(doubleUnidiff, ofInterest(doubleUnidiff)) ## estimate SE ## Mult(Exp(.), class:vote).election1 0.0000000 0.0000000 ## Mult(Exp(.), class:vote).election2 0.6817374 0.2401644 ## Mult(Exp(.), class:vote).election3 0.4493745 0.2473521 ## Mult(Exp(.), class:vote).election4 0.3618301 0.2534754 ## quasiSE quasiVar ## Mult(Exp(.), class:vote).election1 0.22854401 0.052232363 ## Mult(Exp(.), class:vote).election2 0.07395886 0.005469913 ## Mult(Exp(.), class:vote).election3 0.09475938 0.008979340 ## Mult(Exp(.), class:vote).election4 0.10934798 0.011956981 ## Same thing but with election 4 as reference category: getContrasts(doubleUnidiff, rev(ofInterest(doubleUnidiff))) ## estimate SE ## Mult(Exp(.), class:vote).election4 0.00000000 0.0000000 ## Mult(Exp(.), class:vote).election3 0.08754436 0.1446833 ## Mult(Exp(.), class:vote).election2 0.31990727 0.1320022 ## Mult(Exp(.), class:vote).election1 -0.36183013 0.2534754 ## quasiSE quasiVar ## Mult(Exp(.), class:vote).election4 0.10934798 0.011956981 ## Mult(Exp(.), class:vote).election3 0.09475938 0.008979340 ## Mult(Exp(.), class:vote).election2 0.07395886 0.005469913 ## Mult(Exp(.), class:vote).election1 0.22854401 0.052232363 } \keyword{datasets} gnm/man/mentalHealth.Rd0000644000176200001440000000416214376140103014505 0ustar liggesusers\name{mentalHealth} \alias{mentalHealth} \docType{data} \title{ Data on Mental Health and Socioeconomic Status} \description{ A 2-way contingency table from a sample of residents of Manhattan. Classifying variables are child's mental impairment (\code{MHS}) and parents' socioeconomic status (\code{SES}). } \usage{mentalHealth} \format{ A data frame with 24 observations on the following 3 variables. \describe{ \item{\code{count}}{a numeric vector} \item{\code{SES}}{an ordered factor with levels \code{A} < \code{B} < \code{C} < \code{D} < \code{E} < \code{F}} \item{\code{MHS}}{an ordered factor with levels \code{well} < \code{mild} < \code{moderate} < \code{impaired}} } } \source{ From Agresti (2002, p381); originally in Srole et al. (1978, p289). } \references{ Agresti, A. (2002). \emph{Categorical Data Analysis} (2nd edn). New York: Wiley. Srole, L, Langner, T. S., Michael, S. T., Opler, M. K. and Rennie, T. A. C. (1978), \emph{Mental Health in the Metropolis: The Midtown Manhattan Study}. New York: NYU Press. } \examples{ set.seed(1) ## Goodman Row-Column association model fits well (deviance 3.57, df 8) mentalHealth$MHS <- C(mentalHealth$MHS, treatment) mentalHealth$SES <- C(mentalHealth$SES, treatment) RC1model <- gnm(count ~ SES + MHS + Mult(SES, MHS), family = poisson, data = mentalHealth) ## Row scores and column scores are both unnormalized in this ## parameterization of the model ## The scores can be normalized as in Agresti's eqn (9.15): rowProbs <- with(mentalHealth, tapply(count, SES, sum) / sum(count)) colProbs <- with(mentalHealth, tapply(count, MHS, sum) / sum(count)) mu <- getContrasts(RC1model, pickCoef(RC1model, "[.]SES"), ref = rowProbs, scaleRef = rowProbs, scaleWeights = rowProbs) nu <- getContrasts(RC1model, pickCoef(RC1model, "[.]MHS"), ref = colProbs, scaleRef = colProbs, scaleWeights = colProbs) all.equal(sum(mu$qv[,1] * rowProbs), 0) all.equal(sum(nu$qv[,1] * colProbs), 0) all.equal(sum(mu$qv[,1]^2 * rowProbs), 1) all.equal(sum(nu$qv[,1]^2 * colProbs), 1) } \keyword{datasets} gnm/man/residSVD.Rd0000644000176200001440000000421714376171066013577 0ustar liggesusers\name{residSVD} \alias{residSVD} \title{ Multiplicative Approximation of Model Residuals } \description{ This function uses the first \code{d} components of the singular value decomposition in order to approximate a vector of model residuals by a sum of \code{d} multiplicative terms, with the multiplicative structure determined by two specified factors. } \usage{ residSVD(model, fac1, fac2, d = 1) } \arguments{ \item{model}{ a model object with \code{\link{na.action}}, \code{\link{residuals}}, and \code{\link{weights}} methods, e.g. objects inheriting from class \code{"lm"} } \item{fac1}{ a factor } \item{fac2}{ a factor } \item{d}{ integer, the number of multiplicative terms to use in the approximation } } \details{ This function operates on the matrix of mean residuals, with rows indexed by \code{fac1} and columns indexed by \code{fac2}. For \code{glm} and \code{glm} models, the matrix entries are weighted working residuals. The primary use of \code{residSVD} is to generate good starting values for the parameters in \code{\link{Mult}} terms in models to be fitted using \code{\link{gnm}}. } \value{ If \code{d = 1}, a numeric vector; otherwise a numeric matrix with \code{d} columns. } \author{ David Firth and Heather Turner } \seealso{ \code{\link{gnm}}, \code{\link{Mult}}} \examples{ set.seed(1) ## Goodman RC1 association model fits well (deviance 3.57, df 8) mentalHealth$MHS <- C(mentalHealth$MHS, treatment) mentalHealth$SES <- C(mentalHealth$SES, treatment) ## independence model indep <- gnm(count ~ SES + MHS, family = poisson, data = mentalHealth) mult1 <- residSVD(indep, SES, MHS) ## Now use mult1 as starting values for the RC1 association parameters RC1model <- update(indep, . ~ . + Mult(SES, MHS), start = c(coef(indep), mult1), trace = TRUE) ## Similarly for the RC2 model: mult2 <- residSVD(indep, SES, MHS, d = 2) RC2model <- update(indep, . ~ . + instances(Mult(SES, MHS), 2), start = c(coef(indep), mult2), trace = TRUE) ## ## See also example(House2001), where good starting values matter much more! ## } \keyword{ models } \keyword{ regression } \keyword{ nonlinear } gnm/man/checkEstimable.Rd0000644000176200001440000000412614376140103015002 0ustar liggesusers\name{checkEstimable} \alias{checkEstimable} \title{ Check Whether One or More Parameter Combinations in a gnm Model are Identified } \description{ For each of a specified set of linear combinations of parameters from a \code{\link{gnm}} model, checks numerically whether the combination's estimate is invariant to re-parameterization of the model. } \usage{ checkEstimable(model, combMatrix = diag(length(coef(model))), tolerance = NULL) } \arguments{ \item{model}{ a model object of class \code{"gnm"} } \item{combMatrix}{ numeric: either a vector of length the same as \code{length(coef(model))}, or a matrix with that number of rows. Coefficients of one or more linear combinations of the model's parameters.} \item{tolerance}{ numeric: a threshold value for detection of non-estimability. If \code{NULL}, the default value of the \code{tol} argument to \code{\link[Matrix]{rankMatrix}} is used. } } \value{A logical vector of length equal to the number of parameter combinations tested; \code{NA} where a parameter combination is identically zero.} \author{ David Firth and Heather Turner } \seealso{ \code{\link{gnm}}, \code{\link{se.gnm}}, \code{\link{getContrasts}} } \references{ Catchpole, E.A. and Morgan, B.J.T. (1997). Detecting parameter redundancy. \emph{Biometrika}, \bold{84}, 187--196. } \examples{ set.seed(1) ## Fit the "UNIDIFF" mobility model across education levels unidiff <- gnm(Freq ~ educ*orig + educ*dest + Mult(Exp(educ), orig:dest), family = poisson, data = yaish, subset = (dest != 7)) ## Check whether multiplier contrast educ4 - educ5 is estimable ofInterest(unidiff) <- pickCoef(unidiff, "[.]educ") mycontrast <- numeric(length(coef(unidiff))) mycontrast[ofInterest(unidiff)[4:5]] <- c(1, -1) checkEstimable(unidiff, mycontrast) ## should be TRUE ## Check whether multiplier educ4 itself is estimable mycontrast[ofInterest(unidiff)[5]] <- 0 checkEstimable(unidiff, mycontrast) ## should be FALSE -- only *differences* are identified here } \keyword{ models } \keyword{ regression } \keyword{nonlinear} gnm/man/meanResiduals.Rd0000644000176200001440000000604514376140103014675 0ustar liggesusers\name{meanResiduals} \alias{meanResiduals} \title{Average Residuals within Factor Levels} \description{ Computes the mean working residuals from a model fitted using Iterative Weighted Least Squares for each level of a factor or interaction of factors. } \usage{meanResiduals(object, by, standardized=TRUE, as.table=TRUE, ...)} \arguments{ \item{object}{model object for which \code{object$residuals} gives the working residuals and \code{object$weights} gives the working weights.} \item{by}{either a formula specifying a factor or interaction of factors (recommended), or a list of factors (the elements of which must correspond exactly to observations in the model frame). When a list of factors is specified, their interaction is used to specify the grouping factor.} \item{standardized}{logical: if \code{TRUE}, the mean residuals are standardized to be approximately standard normal.} \item{as.table}{logical: logical: if \code{TRUE} and \code{by} specifies an interaction of factors, the result is returned as a table cross-classified by these factors.} \item{...}{currently ignored} } \details{ For level \eqn{i} of the grouping factor \eqn{A} the mean working residual is defined as \deqn{\frac{r_{ij} * w_{ij}}{\sum_{j = 1}^{n_i} w_{ij}}}{ (r_ij * w_ij)/(sum_(j = 1)^(n_i) w_ij)} where \eqn{r_{ij}}{r_ij} is the \eqn{j}'th residual for level \eqn{i}, \eqn{w_{ij}}{w_ij} is the corresponding working weight and \eqn{n_i} is the number of observations for level \eqn{i}. The denominator gives the weight corresponding to mean residual. For non-aggregated residuals, i.e. when the factor has one level per observation, the residuals are the same as Pearson residuals. } \author{Heather Turner} \value{An object of class \code{"meanResiduals"}, for which \code{print} and \code{summary} methods are provided. A \code{"meanResiduals"} object is a list containing the following elements: \item{ call }{ the call used to create the model object from which the mean residuals are derived. } \item{ by }{ a label for the grouping factor. } \item{ residuals }{ the mean residuals. } \item{ df }{ the degrees of freedom associated with the mean residuals. } \item{ standardized }{ the \code{standardized} argument. } \item{ weights }{ the weights corresponding to the mean residuals. } } \examples{ ## Fit a conditional independence model, leaving out ## the uninformative subtable for dest == 7: CImodel <- gnm(Freq ~ educ*orig + educ*dest, family = poisson, data = yaish, subset = (dest != 7)) ## compute mean residuals over origin and destination meanRes <- meanResiduals(CImodel, ~ orig:dest) meanRes summary(meanRes) \dontrun{ ## requires vcdExtra package ## display mean residuals for origin and destination library(vcdExtra) mosaic(CImodel, ~orig+dest) } ## non-aggregated residuals res1 <- meanResiduals(CImodel, ~ educ:orig:dest) res2 <- residuals(CImodel, type = "pearson") all.equal(as.numeric(res1), as.numeric(res2)) } \keyword{ models } \keyword{ regression } \keyword{ nonlinear } gnm/man/gnm-package.Rd0000644000176200001440000000316714376140103014255 0ustar liggesusers\name{gnm-package} \alias{gnm-package} \docType{package} \title{ Generalized Nonlinear Models } \description{ Functions to specify, fit and evaluate generalized nonlinear models. } \details{ \code{gnm} provides functions to fit generalized nonlinear models by maximum likelihood. Such models extend the class of generalized linear models by allowing nonlinear terms in the predictor. Some special cases are models with multiplicative interaction terms, such as the UNIDIFF and row-column association models from sociology and the AMMI and GAMMI models from crop science; stereotype models for ordered categorical response, and diagonal reference models for dependence on a square two-way classification. \code{gnm} is a major re-working of an earlier Xlisp-Stat package, "Llama". Over-parameterized representations of models are used throughout; functions are provided for inference on estimable parameter combinations, as well as standard methods for diagnostics etc. The following documentation provides further information on the \code{gnm} package: \describe{ \item{gnmOverview}{\code{vignette("gnmOverview", package = "gnm")}} \item{NEWS}{\code{file.show(system.file("NEWS", package = "gnm"))}} } } \author{ Heather Turner and David Firth Maintainer: Heather Turner } \references{ http://www.warwick.ac.uk/go/gnm } \keyword{ package } \keyword{ models } \keyword{ regression } \keyword{ nonlinear } \seealso{ \code{\link{gnm}} for the model fitting function, with links to associated functions. } \examples{ demo(gnm) } gnm/man/getContrasts.Rd0000644000176200001440000001370314376140103014560 0ustar liggesusers\name{getContrasts} \alias{getContrasts} \title{ Estimated Contrasts and Standard Errors for Parameters in a gnm Model } \description{ Computes contrasts or scaled contrasts for a set of (non-eliminated) parameters from a \code{\link{gnm}} model, and computes standard errors for the estimated contrasts. Where possible, quasi standard errors are also computed. } \usage{ getContrasts(model, set = NULL, ref = "first", scaleRef = "mean", scaleWeights = NULL, dispersion = NULL, check = TRUE, ...) } \arguments{ \item{model}{ a model object of class \code{"gnm"}.} \item{set}{ a vector of indices (numeric) or coefficient names (character). If \code{NULL}, a dialog will open for parameter selection. } \item{ref}{either a single numeric index, or a vector of real numbers which sum to 1, or one of the character strings \code{"first"}, \code{"last"} or \code{"mean"}.} \item{scaleRef}{as for \code{ref}} \item{scaleWeights}{either \code{NULL}, a vector of real numbers, \code{"unit"} or \code{"setLength"}.} \item{dispersion}{either \code{NULL}, or a positive number by which the model's variance-covariance matrix should be scaled.} \item{check}{\code{TRUE} or \code{FALSE} or a numeric vector -- for which of the specified parameter combinations should estimability be checked? If \code{TRUE}, all are checked; if \code{FALSE}, none is checked.} \item{\dots}{ arguments to pass to other functions. } } \details{ The indices in \code{set} must all be in \code{1:length(coef(object))}. If \code{set = NULL}, a dialog is presented for the selection of indices (model coefficients). For the set of coefficients selected, contrasts and their standard errors are computed. A check is performed first on the estimability of all such contrasts (if \code{check = TRUE}) or on a specified subset (if \code{check} is a numeric index vector). The specific contrasts to be computed are controlled by the choice of \code{ref}: this may be \code{"first"} (the default), for contrasts with the first of the selected coefficients, or \code{"last"} for contrasts with the last, or \code{"mean"} for contrasts with the arithmetic mean of the coefficients in the selected set; or it may be an arbitrary vector of weights (summing to 1, not necessarily all non-negative) which specify a weighted mean against which contrasts are taken; or it may be a single index specifying one of the coefficients with which all contrasts should be taken. Thus, for example, \code{ref = 1} is equivalent to \code{ref = "first"}, and \code{ref = c(1/3, 1/3, 1/3)} is equivalent to \code{ref = "mean"} when there are three coefficients in the selected \code{set}. The contrasts may be scaled by \deqn{\frac{1}{\sqrt{\sum_r v_r * d_r^2}}}{1/sqrt(sum(v * d))} where \eqn{d_r} is a contrast of the r'th coefficient in \code{set} with the reference level specified by \code{scaleRef} and \eqn{v} is a vector of weights (of the same length as \code{set}) specified by \code{scaleWeights}. If \code{scaleWeights} is \code{NULL} (the default), \code{scaleRef} is ignored and no scaling is performed. Other options for \code{scaleWeights} are \code{"unit"} for weights equal to one and \code{"setLength"} for weights equal to the reciprocal of \code{length(set)}. If \code{scaleRef} is the same as \code{ref}, these options constrain the sum of squared contrasts to 1 and \code{length(set)} respectively. Quasi-variances (and corresponding quasi standard errors) are reported for \bold{unscaled} contrasts where possible. These statistics are invariant to the choice of \code{ref}, see Firth (2003) or Firth and Menezes (2004) for more details. } \value{ An object of class \code{qv} --- see \code{\link[qvcalc]{qvcalc}}. } \author{ David Firth and Heather Turner } \seealso{ \code{\link{gnm}}, \code{\link{se.gnm}}, \code{\link{checkEstimable}}, \code{\link[qvcalc]{qvcalc}}, \code{\link{ofInterest}}} \references{ Firth, D (2003). Overcoming the reference category problem in the presentation of statistical models. \emph{Sociological Methodology} \bold{33}, 1--18. Firth, D and Menezes, R X de (2004). Quasi-variances. \emph{Biometrika} \bold{91}, 65--80. } \examples{ ### Unscaled contrasts ### set.seed(1) ## Fit the "UNIDIFF" mobility model across education levels -- see ?yaish unidiff <- gnm(Freq ~ educ*orig + educ*dest + Mult(Exp(educ), orig:dest), ofInterest = "[.]educ", family = poisson, data = yaish, subset = (dest != 7)) ## Examine the education multipliers (differences on the log scale): unidiffContrasts <- getContrasts(unidiff, ofInterest(unidiff)) plot(unidiffContrasts, main = "Unidiff multipliers (log scale): intervals based on quasi standard errors", xlab = "Education level", levelNames = 1:5) ### Scaled contrasts (elliptical contrasts) ### set.seed(1) ## Goodman Row-Column association model fits well (deviance 3.57, df 8) mentalHealth$MHS <- C(mentalHealth$MHS, treatment) mentalHealth$SES <- C(mentalHealth$SES, treatment) RC1model <- gnm(count ~ SES + MHS + Mult(SES, MHS), family = poisson, data = mentalHealth) ## Row scores and column scores are both unnormalized in this ## parameterization of the model ## The scores can be normalized as in Agresti's eqn (9.15): rowProbs <- with(mentalHealth, tapply(count, SES, sum) / sum(count)) colProbs <- with(mentalHealth, tapply(count, MHS, sum) / sum(count)) mu <- getContrasts(RC1model, pickCoef(RC1model, "[.]SES"), ref = rowProbs, scaleRef = rowProbs, scaleWeights = rowProbs) nu <- getContrasts(RC1model, pickCoef(RC1model, "[.]MHS"), ref = colProbs, scaleRef = colProbs, scaleWeights = colProbs) all.equal(sum(mu$qv[,1] * rowProbs), 0) all.equal(sum(nu$qv[,1] * colProbs), 0) all.equal(sum(mu$qv[,1]^2 * rowProbs), 1) all.equal(sum(nu$qv[,1]^2 * colProbs), 1) } \keyword{ models } \keyword{ regression } \keyword{ nonlinear } gnm/man/Const.Rd0000644000176200001440000000206614376140103013166 0ustar liggesusers\name{Const} \alias{Const} \title{ Specify a Constant in a "nonlin" Function Predictor } \description{ A symbolic wrapper to specify a constant in the predictor of a \code{"nonlin"} function. } \usage{ Const(const) } \arguments{ \item{const}{ a numeric value. } } \value{ A call to \code{rep} used to create a variable representing the constant in the model frame. } \note{ \code{Const} may only be used in the predictor of a \code{"nonlin"} function. Use \code{offset} to specify a constant in the model formula. } \author{ Heather Turner } \seealso{\code{\link{gnm}}, \code{\link{formula}}, \code{\link{offset}}} \examples{ ## One way to fit the logistic function without conditional ## linearity as in ?nls library(gnm) set.seed(1) DNase1 <- subset(DNase, Run == 1) test <- gnm(density ~ -1 + Mult(1, Inv(Const(1) + Exp(Mult(1 + offset(-log(conc)), Inv(1))))), start = c(NA, 0, 1), data = DNase1, trace = TRUE) coef(test) } \keyword{ models } \keyword{ regression } \keyword{ nonlinear } gnm/man/anova.gnm.Rd0000644000176200001440000000655614376140103013774 0ustar liggesusers\name{anova.gnm} \alias{anova.gnm} \title{ Analysis of Deviance for Generalized Nonlinear Models } \description{ Compute an analysis of deviance table for one or more generalized nonlinear models } \usage{ \method{anova}{gnm}(object, ..., dispersion = NULL, test = NULL) } \arguments{ \item{object}{ an object of class \code{gnm} } \item{\dots}{ additional objects of class \code{gnm} or \code{glm}} \item{dispersion}{ the dispersion parameter for the fitting family. By default it is derived from \code{object} } \item{test}{ (optional) a character string, (partially) matching one of \code{"Chisq"}, \code{"F"}, or \code{"Cp"}. See \code{\link{stat.anova}}. } } \details{ Specifying a single object gives a sequential analysis of deviance table for that fit. The rows of the table show the reduction in the residual deviance and the current residual deviance as each term in the formula is added in turn. If more than one object is specified, the rows of the table show the residual deviance of the current model and the change in the residual deviance from the previous model. (This only makes statistical sense if the models are nested.) It is conventional to list the models from smallest to largest, but this is up to the user. If \code{test} is specified, the table will include test statistics and/or p values for the reduction in deviance. For models with known dispersion (e.g., binomial and Poisson fits) the chi-squared test is most appropriate, and for those with dispersion estimated by moments (e.g., 'gaussian', 'quasibinomial' and 'quasipoisson' fits) the F test is most appropriate. Mallows' Cp statistic is the residual deviance plus twice the estimate of \eqn{\sigma^2}{sigma^2} times the residual degrees of freedom, which is closely related to AIC (and a multiple of it if the dispersion is known). } \value{ An object of class \code{"anova"} inheriting from class \code{"data.frame"}. } \author{ Modification of \code{\link{anova.glm}} by the R Core Team. Adapted for \code{"gnm"} objects by Heather Turner. } \section{Warning }{ The comparison between two or more models will only be valid if they are fitted to the same dataset. This may be a problem if there are missing values and R's default of \code{na.action = na.omit} is used; an error will be given in this case. } \seealso{ \code{\link{gnm}}, \code{\link{anova}}} \examples{ set.seed(1) ## Fit a uniform association model separating diagonal effects Rscore <- scale(as.numeric(row(occupationalStatus)), scale = FALSE) Cscore <- scale(as.numeric(col(occupationalStatus)), scale = FALSE) Uniform <- glm(Freq ~ origin + destination + Diag(origin, destination) + Rscore:Cscore, family = poisson, data = occupationalStatus) ## Fit an association model with homogeneous row-column effects RChomog <- gnm(Freq ~ origin + destination + Diag(origin, destination) + MultHomog(origin, destination), family = poisson, data = occupationalStatus) ## Fit an association model with separate row and column effects RC <- gnm(Freq ~ origin + destination + Diag(origin, destination) + Mult(origin, destination), family = poisson, data = occupationalStatus) anova(RC, test = "Chisq") anova(Uniform, RChomog, RC, test = "Chisq") } \keyword{ models } gnm/man/se.Rd0000644000176200001440000000057614376140103012513 0ustar liggesusers\name{se} \alias{se} \title{Extract Standard Errors} \description{ Generic function for extracting standard errors from fitted models. } \usage{ se(object, ...) } \arguments{ \item{object}{ A fitted model object.} \item{\dots}{ Arguments to methods.} } \value{Standard errors of model parameters.} \author{ Heather Turner } \keyword{ internal } \seealso{ \code{\link{se.gnm}}}gnm/man/plot.gnm.Rd0000644000176200001440000001132414376140103013633 0ustar liggesusers\name{plot.gnm} \alias{plot.gnm} \title{ Plot Diagnostics for a gnm Object } \description{ Five plots are available: a plot of residuals against fitted values, a Scale-Location plot of \eqn{\sqrt{| residuals |}}{sqrt{| residuals |}} against fitted values, a Normal Q-Q plot, a plot of Cook's distances versus row labels, and a plot of residuals against leverages. By default, all except the fourth are produced. } \usage{ \method{plot}{gnm}(x, which = c(1:3, 5), caption = c("Residuals vs Fitted", "Normal Q-Q", "Scale-Location", "Cook's distance", "Residuals vs Leverage"), panel = if (add.smooth) panel.smooth else points, sub.caption = NULL, main = "", ask = prod(par("mfcol")) < length(which) && dev.interactive(), ..., id.n = 3, labels.id = names(residuals(x)), cex.id = 0.75, qqline = TRUE, cook.levels = c(0.5, 1), add.smooth = getOption("add.smooth"), label.pos = c(4, 2), cex.caption = 1) } \arguments{ \item{x}{ a \code{"gnm"} object. } \item{which}{ a subset of the numbers 1:5 specifying which plots to produce (out of those listed in Description section). } \item{caption}{ captions to appear above the plots. } \item{panel}{ panel function. The useful alternative to \code{points}, \code{panel.smooth} can be chosen by \code{add.smooth = TRUE}. } \item{sub.caption}{ common title - above figures if there are multiple; used as \code{sub} (s.\code{title}) otherwise. If \code{NULL}, as by default, a possible shortened version of \code{deparse(x$call)} is used. } \item{main}{ title to each plot - in addition to the above \code{caption}. } \item{ask}{ logical; if \code{TRUE}, the user is asked before each plot, see \code{par(ask = .)}.} \item{\dots}{ other parameters to be passed through to plotting functions. } \item{id.n}{ number of points to be labelled in each plot starting with the most extreme. } \item{labels.id}{ vector of labels, from which the labels for extreme points will be chosen. \code{NULL} uses observation numbers. } \item{cex.id}{ magnification of point labels. } \item{qqline}{ logical indicating if a \code{qqline()} should be added to the normal Q-Q plot.} \item{cook.levels}{ levels of Cook's distance at which to draw contours. } \item{add.smooth}{ logical indicating if a smoother should be added to most plots; see also \code{panel} above.} \item{label.pos}{ positioning of labels, for the left half and right half of the graph respectively, for plots 1-3. } \item{cex.caption}{ controls the size of 'caption'. } } \details{ \code{sub.caption} - by default the function call - is shown as a subtitle (under the x-axis title) on each plot when plots are on separate pages, or as a subtitle in the outer margin (if any) when there are multiple plots per page. The "Scale-Location" plot, also called "Spread-Location" or "S-L" plot, takes the square root of the absolute residuals in order to diminish skewness (\eqn{\sqrt{| E |}}{sqrt{| E |}} is much less skewed than \eqn{| E |} for Gaussian zero-mean \eqn{E}). The S-L, the Q-Q, and the Residual-Leverage plot, use \emph{standardized} residuals which have identical variance (under the hypothesis). They are given as \eqn{R[i] / (s*\sqrt(1 - h_{ii}))}{R[i] / (s*sqrt(1 - h.ii))} where \eqn{h_{ii}}{h.ii} are the diagonal entries of the hat matrix, \code{influence()$hat}, see also \code{\link{hat}}. The Residual-Leverage plot shows contours of equal Cook's distance, for values of \code{cook.levels} (by default 0.5 and 1) and omits cases with leverage one. If the leverages are constant, as typically in a balanced \code{aov} situation, the plot uses factor level combinations instead of the leverages for the x-axis. } \author{ Modification of \code{\link{plot.lm}} by the R Core Team. Adapted for \code{"gnm"} objects by Heather Turner. } \seealso{ \code{\link{gnm}}, \code{\link{plot.lm}} } \examples{ set.seed(1) ## Fit an association model with homogeneous row-column effects RChomog <- gnm(Freq ~ origin + destination + Diag(origin, destination) + MultHomog(origin, destination), family = poisson, data = occupationalStatus) ## Plot model diagnostics plot(RChomog) ## Put 4 plots on 1 page; allow room for printing model formula in outer margin: par(mfrow = c(2, 2), oma = c(0, 0, 3, 0)) title <- paste(deparse(RChomog$formula, width.cutoff = 50), collapse = "\n") plot(RChomog, sub.caption = title) ## Fit smoother curves plot(RChomog, sub.caption = title, panel = panel.smooth) plot(RChomog, sub.caption = title, panel = function(x,y) panel.smooth(x, y, span = 1)) } \keyword{ models } \keyword{ regression } \keyword{ nonlinear } \keyword{ hplot } gnm/man/Inv.Rd0000644000176200001440000000322214376140103012627 0ustar liggesusers\name{Inv} \alias{Inv} \title{ Specify the Reciprocal of a Predictor in a gnm Model Formula} \description{ A function of class \code{"nonlin"} to specify the reciprocal of a predictor in the formula argument to \code{\link{gnm}}. } \usage{ Inv(expression, inst = NULL) } \arguments{ \item{expression}{ a symbolic expression representing the (possibly nonlinear) predictor. } \item{inst}{ (optional) an integer specifying the instance number of the term. } } \details{ The \code{expression} argument is interpreted as the right hand side of a formula in an object of class \code{"formula"}, except that an intercept term is not added by default. Any function of class \code{"nonlin"} may be used in addition to the usual operators and functions. } \value{ A list with the components required of a \code{"nonlin"} function: \item{ predictors }{the \code{expression} argument passed to \code{Inv}} \item{ term }{a function to create a deparsed mathematical expression of the term, given a label for the predictor.} \item{ call }{the call to use as a prefix for parameter labels. } } \author{ Heather Turner } \seealso{ \code{\link{gnm}}, \code{\link{formula}}, \code{\link{nonlin.function}}} \examples{ ## One way to fit the logistic function without conditional ## linearity as in ?nls library(gnm) set.seed(1) DNase1 <- subset(DNase, Run == 1) test <- gnm(density ~ -1 + Mult(1, Inv(Const(1) + Exp(Mult(1 + offset(-log(conc)), Inv(1))))), start = c(NA, 0, 1), data = DNase1, trace = TRUE) coef(test) } \keyword{ models } \keyword{ regression } \keyword{ nonlinear } gnm/man/gnm-defunct.Rd0000644000176200001440000000145114376140103014304 0ustar liggesusers\name{gnm-defunct} \alias{gnm-defunct} \alias{Nonlin} \alias{getModelFrame} \alias{qrSolve} \title{Defunct Functions in gnm Package} \description{ The functions listed here are no longer part of gnm as they are not needed any more. } \usage{ Nonlin(functionCall) getModelFrame() qrSolve(A, b, rank = NULL, ...) } \details{ \code{Nonlin} is not needed any more as the plug-in architecture has been replaced by functions of class \code{"nonlin"}, see \code{\link{nonlin.function}}. \code{getModelFrame} was designed to work from within a plug-in function so is no longer needed. \code{qrSolve} was a function to solve the linear system Ax = b by two applications of QR decomposition. Alternative methods were found to be more robust. } \seealso{\code{\link{.Defunct}}} \keyword{internal} gnm/man/Diag.Rd0000644000176200001440000000240714376140103012743 0ustar liggesusers\name{Diag} \alias{Diag} \title{Equality of Two or More Factors} \description{ Converts two or more factors into a new factor whose value is 0 where the original factors are not all equal, and nonzero otherwise. } \usage{ Diag(..., binary = FALSE) } \arguments{ \item{\dots}{ One or more factors} \item{binary}{ Logical } } \value{ Either a factor (if \code{binary = FALSE}) or a 0-1 numeric vector (if \code{binary = TRUE}). } \details{ Used mainly in regression models for data classified by two or more factors with the same levels. By default, operates on k-level factors to produce a new factor having k+1 levels; if \code{binary = TRUE} is specified, the result is a coarser binary variable equal to 1 where all of the input factors are equal and 0 otherwise. If the original levels are identical the levels of the factor created in the \code{binary = FALSE} case will be in the same order, with \code{"."} added as the first level. Otherwise the levels of the new factor will be \code{"."} followed by the sorted combined levels. } \author{ David Firth and Heather Turner} \seealso{\code{\link{Symm}}} \examples{ rowfac <- gl(4, 4, 16) colfac <- gl(4, 1, 16) diag4by4 <- Diag(rowfac, colfac) matrix(Diag(rowfac, colfac, binary = TRUE), 4, 4) } \keyword{ models } gnm/man/vcov.gnm.Rd0000644000176200001440000000747614376140103013647 0ustar liggesusers\name{vcov.gnm} \alias{vcov.gnm} \title{ Variance-covariance Matrix for Parameters in a Generalized Nonlinear Model } \description{ This method extracts or computes a variance-covariance matrix for use in approximate inference on estimable parameter combinations in a generalized nonlinear model. } \usage{ \method{vcov}{gnm}(object, dispersion = NULL, with.eliminate = FALSE, ...) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{object}{ a model object of class \code{gnm}. } \item{dispersion}{the dispersion parameter for the fitting family. By default it is obtained from \code{object}. } \item{with.eliminate}{logical; should parts of the variance-covariance matrix corresponding to eliminated coefficients be computed?} \item{\dots}{ as for \code{\link{vcov}}. } } \details{ The resultant matrix does not itself necessarily contain variances and covariances, since \code{gnm} typically works with over-parameterized model representations in which parameters are not all identified. Rather, the resultant matrix is to be used as the kernel of quadratic forms which are the variances or covariances for estimable parameter combinations. The matrix values are scaled by \code{dispersion}. If the dispersion is not specified, it is taken as \code{1} for the \code{binomial} and \code{Poisson} families, and otherwise estimated by the residual Chi-squared statistic divided by the residual degrees of freedom. The dispersion used is returned as an attribute of the matrix. The dimensions of the matrix correspond to the non-eliminated coefficients of the \code{"gnm"} object. If \code{use.eliminate = TRUE} then setting can sometimes give appreciable speed gains; see \code{\link{gnm}} for details of the \code{eliminate} mechanism. The \code{use.eliminate} argument is currently ignored if the model has full rank. } \value{ A matrix with number of rows/columns equal to \code{length(coef(object))}. If there are eliminated coefficients and \code{use.eliminate = TRUE}, the matrix will have the following attributes: \item{covElim }{ a matrix of covariances between the eliminated and non-eliminated parameters. } \item{varElim }{ a vector of variances corresponding to the eliminated parameters.} } \references{ Turner, H and Firth, D (2005). Generalized nonlinear models in R: An overview of the gnm package. At \url{https://cran.r-project.org}} \author{ David Firth } \note{ The \code{gnm} class includes generalized linear models, and it should be noted that the behaviour of \code{vcov.gnm} differs from that of \code{\link{vcov.glm}} whenever \code{any(is.na(coef(object)))} is \code{TRUE}. Whereas \code{vcov.glm} drops all rows and columns which correspond to \code{NA} values in \code{coef(object)}, \code{vcov.gnm} keeps those columns (which are full of zeros, since the \code{NA} represents a parameter which is fixed either by use of the \code{constrain} argument to \code{gnm} or by a convention to handle linear aliasing). } \seealso{ \code{\link{getContrasts}}, \code{\link{se.gnm}} } \examples{ set.seed(1) ## Fit the "UNIDIFF" mobility model across education levels unidiff <- gnm(Freq ~ educ*orig + educ*dest + Mult(Exp(educ), orig:dest), family = poisson, data = yaish, subset = (dest != 7)) ## Examine the education multipliers (differences on the log scale): ind <- pickCoef(unidiff, "[.]educ") educMultipliers <- getContrasts(unidiff, rev(ind)) ## Now get the same standard errors using a suitable set of ## quadratic forms, by calling vcov() directly: cmat <- contr.sum(ind) sterrs <- sqrt(diag(t(cmat) \%*\% vcov(unidiff)[ind, ind] \%*\% cmat)) all(sterrs == (educMultipliers$SE)[-1]) ## TRUE } \keyword{ models } \keyword{ regression } \keyword{ nonlinear } gnm/man/instances.Rd0000644000176200001440000000263614376140103014072 0ustar liggesusers\name{instances} \alias{instances} \title{ Specify Multiple Instances of a Nonlinear Term in a gnm Model Formula } \description{ A symbolic wrapper, for use in the formula argument to \code{\link{gnm}}, to specify multiple instances of a term specified by a function with an \code{inst} argument. } \usage{ instances(term, instances = 1) } \arguments{ \item{term}{ a call to a function with an inst argument, which specifies some term. } \item{instances}{ the desired number of instances of the term. } } \value{ A deparsed expression representing the summation of \code{term} specified with \code{inst = 1}, \code{inst = 2}, ..., \code{inst = instances}, which is used to create an expanded formula. } \author{ Heather Turner} \seealso{\code{\link{gnm}}, \code{\link{formula}}, \code{\link{nonlin.function}}, \code{\link{Mult}}, \code{\link{MultHomog}} } \examples{ \dontrun{ ## (this example can take quite a while to run) ## ## Fitting two instances of a multiplicative interaction (i.e. a ## two-component interaction) yield.scaled <- wheat$yield * sqrt(3/1000) treatment <- factor(paste(wheat$tillage, wheat$summerCrop, wheat$manure, wheat$N, sep = "")) bilinear2 <- gnm(yield.scaled ~ year + treatment + instances(Mult(year, treatment), 2), family = gaussian, data = wheat) } } \keyword{ models } \keyword{ regression } \keyword{ nonlinear } gnm/man/gnm.Rd0000755000176200001440000004403514376140103012666 0ustar liggesusers\name{gnm} \alias{gnm} \title{ Fitting Generalized Nonlinear Models } \description{ \code{gnm} fits generalised nonlinear models using an over-parameterized representation. Nonlinear terms are specified by calls to functions of class \code{"nonlin"}. } \usage{ gnm(formula, eliminate = NULL, ofInterest = NULL, constrain = numeric(0), constrainTo = numeric(length(constrain)), family = gaussian, data = NULL, subset, weights, na.action, method = "gnmFit", checkLinear = TRUE, offset, start = NULL, etastart = NULL, mustart = NULL, tolerance = 1e-06, iterStart = 2, iterMax = 500, trace = FALSE, verbose = TRUE, model = TRUE, x = TRUE, termPredictors = FALSE, ridge = 1e-08, ...) } \arguments{ \item{formula}{ a symbolic description of the nonlinear predictor. } \item{eliminate}{ a factor to be included as the first term in the model. \code{gnm} will exploit the structure of this factor to improve computational efficiency. See details. } \item{ofInterest}{ optional coefficients of interest, specified by a regular expression, a numeric vector of indices, a character vector of names, or "[?]" to select from a Tk dialog. If \code{NULL}, it is assumed that all non-\code{eliminate}d coefficients are of interest. } \item{constrain}{ (non-eliminated) coefficients to constrain, specified by a regular expression, a numeric vector of indices, a logical vector, a character vector of names, or "[?]" to select from a Tk dialog. } \item{constrainTo}{ a numeric vector of the same length as \code{constrain} specifying the values to constrain to. By default constrained parameters will be set to zero. } \item{family}{ a specification of the error distribution and link function to be used in the model. This can be a character string naming a family function; a family function, or the result of a call to a family function. See \code{\link{family}} and \code{\link{wedderburn}} for possibilities. } \item{data}{ an optional data frame containing the variables in the model. If not found in \code{data}, the variables are taken from \code{environment(formula)}, typically the environment from which \code{gnm} is called.} \item{subset}{ an optional vector specifying a subset of observations to be used in the fitting process.} \item{weights}{ an optional vector of weights to be used in the fitting process.} \item{na.action}{ a function which indicates what should happen when the data contain \code{NA}s. If \code{data} is a contingency table, the default is \code{"exclude"}. Otherwise the default is first, any \code{na.action} attribute of \code{data}; second, any \code{na.action} setting of \code{options}, and third, \code{na.fail}.} \item{method}{ the method to be used: either \code{"gnmFit"} to fit the model using the default maximum likelihood algorithm, \code{"coefNames"} to return a character vector of names for the coefficients in the model, \code{"model.matrix"} to return the model matrix, \code{"model.frame"} to return the model frame, or the name of a function providing an alternative fitting algorithm. } \item{checkLinear}{ logical: if \code{TRUE} \code{glm.fit} is used when the predictor is found to be linear } \item{offset}{ this can be used to specify an a priori known component to be added to the predictor during fitting. \code{offset} terms can be included in the formula instead or as well, and if both are specified their sum is used.} \item{start}{ a vector of starting values for the parameters in the model; if a starting value is \code{NA}, the default starting value will be used. Starting values need not be specified for eliminated parameters. } \item{etastart}{ starting values for the linear predictor. } \item{mustart}{ starting values for the vector of means. } \item{tolerance}{ a positive numeric value specifying the tolerance level for convergence. } \item{iterStart}{ a positive integer specifying the number of start-up iterations to perform. } \item{iterMax}{ a positive integer specifying the maximum number of main iterations to perform. } \item{trace}{ a logical value indicating whether the deviance should be printed after each iteration. } \item{verbose}{ logical: if \code{TRUE} and model includes nonlinear terms, progress indicators are printed as the model is fitted, including a diagnostic error message if the algorithm fails. } \item{model}{ logical: if \code{TRUE} the model frame is returned. } \item{x}{ logical: if \code{TRUE} the local design matrix from the last iteration is included as a component of returned model object. } \item{termPredictors}{ logical: if \code{TRUE}, a matrix is returned with a column for each term in the model, containing the additive contribution of that term to the predictor. } \item{ridge}{numeric, a positive value for the ridge constant to be used in the fitting algorithm} \item{\dots}{ further arguments passed to fitting function. } } \details{ Models for \code{gnm} are specified by giving a symbolic description of the nonlinear predictor, of the form \code{response ~ terms}. The \code{response} is typically a numeric vector, see later in this section for alternatives. The usual symbolic language may be used to specify any linear terms, see \code{\link{formula}} for details. Nonlinear terms may be specified by calls to functions of class "nonlin". There are several "nonlin" functions in the \code{gnm} package. Some of these specify simple mathematical functions of predictors: \code{Exp}, \code{Mult}, and \code{Inv}. Others specify more specialised nonlinear terms, in particular \code{MultHomog} specifies homogeneous multiplicative interactions and \code{Dref} specifies diagonal reference terms. Users may also define their own "nonlin" functions, see \code{\link{nonlin.function}} for details. The \code{eliminate} argument may be used to specify a factor that is to be included as the first term in the model (since an intercept is then redundant, none is fitted). The structure of the factor is exploited to improve computational efficiency --- substantially so if the \code{eliminate}d factor has a large number of levels. Use of \code{eliminate} is designed for factors that are required in the model but are not of direct interest (e.g., terms needed to fit multinomial-response models as conditional Poisson models). See \code{\link{backPain}} for an example. The \code{ofInterest} argument may be used to specify coefficients of interest, the indices of which are returned in the \code{ofInterest} component of the model object. \code{print()} displays of the model object or its components obtained using accessor functions such as \code{coef()} etc, will only show these coefficients. In addition methods for \code{"gnm"} objects which may be applied to a subset of the parameters are by default applied to the coefficients of interest. See \code{\link{ofInterest}} for accessor and replacement functions. For contingency tables, the data may be provided as an object of class \code{"table"} from which the frequencies will be extracted to use as the response. In this case, the response should be specified as \code{Freq} in the model formula. The \code{"predictors"}, \code{"fitted.values"}, \code{"residuals"}, \code{"prior.weights"}, \code{"weights"}, \code{"y"} and \code{"offset"} components of the returned \code{gnm} fit will be tables with the same format as the data, completed with \code{NA}s where necessary. For binomial models, the \code{response} may be specified as a factor in which the first level denotes failure and all other levels denote success, as a two-column matrix with the columns giving the numbers of successes and failures, or as a vector of the proportions of successes. The \code{gnm} fitting algorithm consists of two stages. In the start-up iterations, any nonlinear parameters that are not specified by either the \code{start} argument of \code{gnm} or a plug-in function are updated one parameter at a time, then the linear parameters are jointly updated before the next iteration. In the main iterations, all the parameters are jointly updated, until convergence is reached or the number or iterations reaches \code{iterMax}. To solve the (typically rank-deficient) least squares problem at the heart of the \code{gnm} fitting algorithm, the design matrix is standardized and regularized (in the Levenberg-Marquardt sense) prior to solving; the \code{ridge} argument provides a degree of control over the regularization performed (smaller values may sometimes give faster convergence but can lead to numerical instability). Convergence is judged by comparing the squared components of the score vector with corresponding elements of the diagonal of the Fisher information matrix. If, for all components of the score vector, the ratio is less than \code{tolerance^2}, or the corresponding diagonal element of the Fisher information matrix is less than 1e-20, iterations cease. If the algorithm has not converged by \code{iterMax} iterations, \code{\link{exitInfo}} can be used to print information on the parameters which failed the convergence criteria at the last iteration. By default, \code{gnm} uses an over-parameterized representation of the model that is being fitted. Only minimal identifiability constraints are imposed, so that in general a random parameterization is obtained. The parameter estimates are ordered so that those for any linear terms appear first. \code{\link{getContrasts}} may be used to obtain estimates of specified scaled contrasts, if these contrasts are identifiable. For example, \code{getContrasts} may be used to estimate the contrasts between the first level of a factor and the rest, and obtain standard errors. If appropriate constraints are known in advance, or have been determined from a \code{gnm} fit, the model may be (re-)fitted using the \code{constrain} argument to specify coefficients which should be set to values specified by \code{constrainTo}. Constraints should only be specified for non-eliminated parameters. \code{\link{update}} provides a convenient way of re-fitting a \code{gnm} model with new constraints. } \value{ If \code{method = "gnmFit"}, \code{gnm} returns \code{NULL} if the algorithm has failed and an object of class \code{"gnm"} otherwise. A \code{"gnm"} object inherits first from \code{"glm"} then \code{"lm"} and is a list containing the following components: \item{ call }{ the matched call. } \item{ formula }{ the formula supplied. } \item{ constrain }{ a numeric vector specifying any coefficients that were constrained in the fitting process. } \item{ constrainTo }{ a numeric vector of the same length as \code{constrain} specifying the values which constrained parameters were set to. } \item{ family }{ the \code{family} object used. } \item{ prior.weights }{ the case weights initially supplied. } \item{ terms }{ the \code{terms} object used. } \item{ data }{ the \code{data} argument. } \item{ na.action }{ the \code{na.action} attribute of the model frame } \item{ xlevels }{ a record of the levels of the factors used in fitting. } \item{ y }{ the response used. } \item{ offset }{ the offset vector used. } \item{ coefficients }{ a named vector of non-eliminated coefficients, with an attribute \code{"eliminated"} specifying the eliminated coefficients if \code{eliminate} is non-\code{NULL}. } \item{ eliminate }{ the \code{eliminate} argument. } \item{ ofInterest }{ a named numeric vector of indices corresponding to non-eliminated coefficients, or \code{NULL}. } \item{ predictors }{ the fitted values on the link scale. } \item{ fitted.values }{ the fitted mean values, obtained by transforming the predictors by the inverse of the link function. } \item{ deviance }{ up to a constant, minus twice the maximised log-likelihood. Where sensible, the constant is chosen so that a saturated model has deviance zero. } \item{ aic }{ Akaike's \emph{An Information Criterion}, minus twice the maximized log-likelihood plus twice the number of parameters (so assuming that the dispersion is known).} \item{ iter }{ the number of main iterations.} \item{ conv }{ logical indicating whether the main iterations converged, with an attribute for use by \code{\link{exitInfo}} if \code{FALSE}. } \item{ weights }{ the \emph{working} weights, that is, the weights used in the last iteration.} \item{ residuals }{ the \emph{working} residuals, that is, the residuals from the last iteration. } \item{ df.residual }{ the residual degrees of freedom. } \item{ rank }{ the numeric rank of the fitted model. } The list may also contain the components \code{model}, \code{x}, or \code{termPredictors} if requested in the arguments to \code{gnm}. If a table was passed to \code{data} and the default for \code{na.action} was not overridden, the list will also contain a \code{table.attr} component, for use by the extractor functions. If a binomial \code{gnm} model is specified by giving a two-column response, the weights returned by \code{prior.weights} are the total numbers of cases (factored by the supplied case weights) and the component \code{y} of the result is the proportion of successes. The function \code{\link{summary.gnm}} may be used to obtain and print a summary of the results, whilst \code{\link{plot.gnm}} may be used for model diagnostics. The generic functions \code{\link{formula}}, \code{\link{family}}, \code{\link{terms}}, \code{\link{coefficients}}, \code{\link{fitted.values}}, \code{\link{deviance}}, \code{\link{extractAIC}}, \code{\link{weights}}, \code{\link{residuals}}, \code{\link{df.residual}}, \code{\link{model.frame}}, \code{\link{model.matrix}}, \code{\link{vcov}} and \code{\link{termPredictors}} maybe used to extract components from the object returned by \code{\link{gnm}} or to construct the relevant objects where necessary. Note that the generic functions \code{\link{weights}} and \code{\link{residuals}} do not act as straight-forward accessor functions for \code{gnm} objects, but return the prior weights and deviance residuals respectively, as for \code{glm} objects. } \references{ Cautres, B, Heath, A F and Firth, D (1998). Class, religion and vote in Britain and France. \emph{La Lettre de la Maison Francaise} \bold{8}. } \author{ Heather Turner and David Firth } \note{ Regular expression matching is performed using \code{grep} with default settings. } \seealso{ \code{\link{formula}} for the symbolic language used to specify formulae. \code{\link{Diag}} and \code{\link{Symm}} for specifying special types of interaction. \code{Exp}, \code{Mult}, \code{Inv}, \code{\link{MultHomog}}, \code{\link{Dref}} and \code{\link{nonlin.function}} for incorporating nonlinear terms in the \code{formula} argument to \code{gnm}. \code{\link{residuals.glm}} and the generic functions \code{\link{coef}}, \code{\link{fitted}}, etc. for extracting components from \code{gnm} objects. \code{\link{exitInfo}} to print more information on last iteration when \code{gnm} has not converged. \code{\link{getContrasts}} to estimate (identifiable) scaled contrasts from a \code{gnm} model. } \examples{ ### Analysis of a 4-way contingency table set.seed(1) print(cautres) ## Fit a "double UNIDIFF" model with the religion-vote and class-vote ## interactions both modulated by nonnegative election-specific ## multipliers. doubleUnidiff <- gnm(Freq ~ election:vote + election:class:religion + Mult(Exp(election), religion:vote) + Mult(Exp(election), class:vote), family = poisson, data = cautres) ## Examine the multipliers of the class-vote log odds ratios ofInterest(doubleUnidiff) <- pickCoef(doubleUnidiff, "class:vote[).]") coef(doubleUnidiff) ## Coefficients of interest: ## Mult(Exp(.), class:vote).election1 ## -0.38357138 ## Mult(Exp(.), class:vote).election2 ## 0.29816599 ## Mult(Exp(.), class:vote).election3 ## 0.06580307 ## Mult(Exp(.), class:vote).election4 ## -0.02174104 ## Re-parameterize by setting first multiplier to zero getContrasts(doubleUnidiff, ofInterest(doubleUnidiff)) ## estimate SE ## Mult(Exp(.), class:vote).election1 0.0000000 0.0000000 ## Mult(Exp(.), class:vote).election2 0.6817374 0.2401644 ## Mult(Exp(.), class:vote).election3 0.4493745 0.2473521 ## Mult(Exp(.), class:vote).election4 0.3618301 0.2534754 ## quasiSE quasiVar ## Mult(Exp(.), class:vote).election1 0.22854401 0.052232363 ## Mult(Exp(.), class:vote).election2 0.07395886 0.005469913 ## Mult(Exp(.), class:vote).election3 0.09475938 0.008979340 ## Mult(Exp(.), class:vote).election4 0.10934798 0.011956981 ## Same thing but with last multiplier as reference category: getContrasts(doubleUnidiff, rev(ofInterest(doubleUnidiff))) ## estimate SE ## Mult(Exp(.), class:vote).election4 0.00000000 0.0000000 ## Mult(Exp(.), class:vote).election3 0.08754436 0.1446833 ## Mult(Exp(.), class:vote).election2 0.31990727 0.1320022 ## Mult(Exp(.), class:vote).election1 -0.36183013 0.2534754 ## quasiSE quasiVar ## Mult(Exp(.), class:vote).election4 0.10934798 0.011956981 ## Mult(Exp(.), class:vote).election3 0.09475938 0.008979340 ## Mult(Exp(.), class:vote).election2 0.07395886 0.005469913 ## Mult(Exp(.), class:vote).election1 0.22854401 0.052232363 ## Re-fit model with first multiplier set to zero doubleUnidiffConstrained <- update(doubleUnidiff, constrain = ofInterest(doubleUnidiff)[1]) ## Examine the multipliers of the class-vote log odds ratios coef(doubleUnidiffConstrained)[ofInterest(doubleUnidiff)] ## ...as using 'getContrasts' (to 4 d.p.). } \keyword{ models } \keyword{ regression } \keyword{ nonlinear } gnm/man/Topo.Rd0000644000176200001440000000527214376140103013023 0ustar liggesusers\name{Topo} \alias{Topo} \title{ Topological Interaction of Factors } \description{ Given two or more factors \code{Topo} creates an interaction factor as specified by an array of levels, which may be arbitrarily structured. } \usage{ Topo(..., spec = NULL) } \arguments{ \item{\dots}{ two or more factors } \item{spec}{ an array of levels, with dimensions corresponding to the number of levels of each factor in the interaction } } \value{ A factor of levels extracted from the levels array given in \code{spec}, using the given factors as index variables. } \references{ Erikson, R., Goldthorpe, J. H. and Portocarero, L. (1982) Social Fluidity in Industrial Nations: England, France and Sweden. \emph{Brit. J. Sociol.} \bold{33(1)}, 1-34. Xie, Y. (1992) The Log-multiplicative Layer Effect Model for Comparing Mobility Tables. \emph{Am. Sociol. Rev.} \bold{57(3)}, 380-395. } \author{ David Firth } \seealso{ \code{\link{Symm}} and \code{\link{Diag}} for special cases } \examples{ set.seed(1) ### Collapse to 7 by 7 table as in Erikson (1982) erikson <- as.data.frame(erikson) lvl <- levels(erikson$origin) levels(erikson$origin) <- levels(erikson$destination) <- c(rep(paste(lvl[1:2], collapse = " + "), 2), lvl[3], rep(paste(lvl[4:5], collapse = " + "), 2), lvl[6:9]) erikson <- xtabs(Freq ~ origin + destination + country, data = erikson) ### Create array of interaction levels as in Table 2 of Xie (1992) levelMatrix <- matrix(c(2, 3, 4, 6, 5, 6, 6, 3, 3, 4, 6, 4, 5, 6, 4, 4, 2, 5, 5, 5, 5, 6, 6, 5, 1, 6, 5, 2, 4, 4, 5, 6, 3, 4, 5, 5, 4, 5, 5, 3, 3, 5, 6, 6, 5, 3, 5, 4, 1), 7, 7, byrow = TRUE) ### Fit the levels models given in Table 3 of Xie (1992) ## Null association between origin and destination nullModel <- gnm(Freq ~ country:origin + country:destination, family = poisson, data = erikson) ## Interaction specified by levelMatrix, common to all countries commonTopo <- update(nullModel, ~ . + Topo(origin, destination, spec = levelMatrix)) ## Interaction specified by levelMatrix, different multiplier for ## each country multTopo <- update(nullModel, ~ . + Mult(Exp(country), Topo(origin, destination, spec = levelMatrix))) ## Interaction specified by levelMatrix, different effects for ## each country separateTopo <- update(nullModel, ~ . + country:Topo(origin, destination, spec = levelMatrix)) } \keyword{ models } gnm/man/Exp.Rd0000644000176200001440000000317014376140103012631 0ustar liggesusers\name{Exp} \alias{Exp} \title{ Specify the Exponential of a Predictor in a gnm Model Formula } \description{ A function of class \code{"nonlin"} to specify the exponential of a predictor in the formula argument to \code{\link{gnm}}. } \usage{ Exp(expression, inst = NULL) } \arguments{ \item{expression}{ a symbolic expression representing the (possibly nonlinear) predictor. } \item{inst}{ (optional) an integer specifying the instance number of the term. } } \details{ The \code{expression} argument is interpreted as the right hand side of a formula in an object of class \code{"formula"}, except that an intercept term is not added by default. Any function of class \code{"nonlin"} may be used in addition to the usual operators and functions. } \value{ A list with the components required of a \code{"nonlin"} function: \item{ predictors }{the \code{expression} argument passed to \code{Exp}} \item{ term }{a function to create a deparsed mathematical expression of the term, given a label for the predictor.} \item{ call }{the call to use as a prefix for parameter labels. } } \author{ Heather Turner and David Firth } \seealso{ \code{\link{gnm}}, \code{\link{formula}}, \code{\link{nonlin.function}}} \examples{ set.seed(1) ## Using 'Mult' with 'Exp' to constrain the first constituent multiplier ## to be non-negative ## Fit the "UNIDIFF" mobility model across education levels unidiff <- gnm(Freq ~ educ*orig + educ*dest + Mult(Exp(educ), orig:dest), family = poisson, data = yaish, subset = (dest != 7)) } \keyword{ models } \keyword{ regression } \keyword{ nonlinear } gnm/man/expandCategorical.Rd0000644000176200001440000000740514376140103015517 0ustar liggesusers\name{expandCategorical} \alias{expandCategorical} \title{ Expand Data Frame by Re-expressing Categorical Data as Counts } \description{ Expands the rows of a data frame by re-expressing observations of a categorical variable specified by \code{catvar}, such that the column(s) corresponding to \code{catvar} are replaced by a factor specifying the possible categories for each observation and a vector of 0/1 counts over these categories. %Expands the rows of a data frame containing a categorical variable %\code{catvar} with \eqn{c} possible categories, such that each %observation of \code{catvar} is represented by \eqn{c} 0/1 counts and %all other variables are replicated appropriately. } \usage{ expandCategorical(data, catvar, sep = ".", countvar = "count", idvar = "id", as.ordered = FALSE, group = TRUE) } \arguments{ \item{data}{ a data frame. } \item{catvar}{ a character vector specifying factors in \code{data} whose interaction will form the basis of the expansion. } \item{sep}{ a character string used to separate the concatenated values of \code{catvar} in the name of the new interaction factor. } \item{countvar}{ (optional) a character string to be used for the name of the new count variable. } \item{idvar}{ (optional) a character string to be used for the name of the new factor identifying the original rows (cases). } \item{as.ordered}{ logical - whether the new interaction factor should be of class \code{"ordered"}.} \item{group}{logical: whether or not to group individuals with common values over all covariates. } } \details{ Each row of the data frame is replicated \eqn{c} times, where \eqn{c} is the number of levels of the interaction of the factors specified by \code{catvar}. In the expanded data frame, the columns specified by \code{catvar} are replaced by a factor specifying the \eqn{r} possible categories for each case, named by the concatenated values of \code{catvar} separated by \code{sep}. The ordering of factor levels will be preserved in the creation of the new factor, but this factor will not be of class \code{"ordered"} unless the argument \code{as.ordered = TRUE}. A variable with name \code{countvar} is added to the data frame which is equal to 1 for the observed category in each case and 0 elsewhere. Finally a factor with name \code{idvar} is added to index the cases. } \value{ The expanded data frame as described in Details. } \author{ Heather Turner } \note{ Re-expressing categorical data in this way allows a multinomial response to be modelled as a poisson response, see examples. } \seealso{ \code{\link{gnm}}, \code{\link[nnet]{multinom}}, \code{\link{reshape}} } \references{ Anderson, J. A. (1984) Regression and Ordered Categorical Variables. \emph{J. R. Statist. Soc. B}, \bold{46(1)}, 1-30. } \examples{ ### Example from help(multinom, package = "nnet") library(MASS) example(birthwt) library(nnet) bwt.mu <- multinom(low ~ ., data = bwt) ## Equivalent using gnm - include unestimable main effects in model so ## that interactions with low0 automatically set to zero, else could use ## 'constrain' argument. bwtLong <- expandCategorical(bwt, "low", group = FALSE) bwt.po <- gnm(count ~ low*(. - id), eliminate = id, data = bwtLong, family = "poisson") summary(bwt.po) # same deviance; df reflect extra id parameters ### Example from ?backPain set.seed(1) summary(backPain) backPainLong <- expandCategorical(backPain, "pain") ## Fit models described in Table 5 of Anderson (1984) noRelationship <- gnm(count ~ pain, eliminate = id, family = "poisson", data = backPainLong) oneDimensional <- update(noRelationship, ~ . + Mult(pain, x1 + x2 + x3)) } \keyword{ manip } \keyword{ models } gnm/man/backPain.Rd0000644000176200001440000000617614471715751013633 0ustar liggesusers\name{backPain} \alias{backPain} \docType{data} \title{ Data on Back Pain Prognosis, from Anderson (1984) } \description{ Data from a study of patients suffering from back pain. Prognostic variables were recorded at presentation and progress was categorised three weeks after treatment. } \usage{backPain} \format{ A data frame with 101 observations on the following 4 variables. \describe{ \item{x1}{length of previous attack.} \item{x2}{pain change.} \item{x3}{lordosis.} \item{pain}{an ordered factor describing the progress of each patient with levels \code{worse} < \code{same} < \code{slight.improvement} < \code{moderate.improvement} < \code{marked.improvement} < \code{complete.relief}. } } } \source{ \url{https://ideas.repec.org/c/boc/bocode/s419001.html} } \references{ Anderson, J. A. (1984) Regression and Ordered Categorical Variables. \emph{J. R. Statist. Soc. B}, \bold{46(1)}, 1-30. } \examples{ set.seed(1) summary(backPain) ### Re-express as count data backPainLong <- expandCategorical(backPain, "pain") ### Fit models described in Table 5 of Anderson (1984) ### Logistic family models noRelationship <- gnm(count ~ pain, eliminate = id, family = "poisson", data = backPainLong) ## stereotype model oneDimensional <- update(noRelationship, ~ . + Mult(pain, x1 + x2 + x3)) ## multinomial logistic threeDimensional <- update(noRelationship, ~ . + pain:(x1 + x2 + x3)) ### Models to determine distinguishability in stereotype model ## constrain scale of category-specific multipliers oneDimensional <- update(noRelationship, ~ . + Mult(pain, offset(x1) + x2 + x3)) ## obtain identifiable contrasts; id possibly indistinguishable slopes getContrasts(oneDimensional, pickCoef(oneDimensional, "[.]pain")) \dontrun{ ## (this part not needed for package testing) ## fit simpler models and compare .pain <- backPainLong$pain levels(.pain)[2:3] <- paste(levels(.pain)[2:3], collapse = " | ") fiveGroups <- update(noRelationship, ~ . + Mult(.pain, x1 + x2 + x3)) levels(.pain)[4:5] <- paste(levels(.pain)[4:5], collapse = " | ") fourGroups <- update(fiveGroups) levels(.pain)[2:3] <- paste(levels(.pain)[2:3], collapse = " | ") threeGroups <- update(fourGroups) ### Grouped continuous model, aka proportional odds model library(MASS) sixCategories <- polr(pain ~ x1 + x2 + x3, data = backPain) ### Obtain number of parameters and log-likelihoods for equivalent ### multinomial models as presented in Anderson (1984) logLikMultinom <- function(model, size){ object <- get(model) if (inherits(object, "gnm")) { l <- sum(object$y * log(object$fitted/size)) c(nParameters = object$rank - nlevels(object$eliminate), logLikelihood = l) } else c(nParameters = object$edf, logLikelihood = -deviance(object)/2) } size <- tapply(backPainLong$count, backPainLong$id, sum)[backPainLong$id] models <- c("threeDimensional", "oneDimensional", "noRelationship", "fiveGroups", "fourGroups", "threeGroups", "sixCategories") t(sapply(models, logLikMultinom, size)) } } \keyword{datasets} gnm/man/wedderburn.Rd0000644000176200001440000000503114376140103014234 0ustar liggesusers\name{wedderburn} \alias{wedderburn} \title{ Wedderburn Quasi-likelihood Family } \description{ Creates a \code{\link{family}} object for use with \code{\link{glm}}, \code{\link{gnm}}, etc., for the variance function \eqn{[\mu(1-\mu)]^2} introduced by Wedderburn (1974) for response values in [0,1]. } \usage{ wedderburn(link = "logit") } \arguments{ \item{link}{ The name of a link function. Allowed are "logit", "probit" and "cloglog". } } \value{ An object of class \code{\link{family}}. } \references{ Gabriel, K R (1998). Generalised bilinear regression. \emph{Biometrika} \bold{85}, 689--700. McCullagh, P and Nelder, J A (1989). \emph{Generalized Linear Models} (2nd ed). Chapman and Hall. Wedderburn, R W M (1974). Quasilikelihood functions, generalized linear models and the Gauss-Newton method. \emph{Biometrika} \bold{61}, 439--47. } \author{ Modification of \code{\link{binomial}} by the R Core Team. Adapted for the Wedderburn quasi-likelihood family by David Firth. } \note{ The reported deviance involves an arbitrary constant (see McCullagh and Nelder, 1989, p330); for estimating dispersion, use the Pearson chi-squared statistic instead. } \seealso{ \code{\link{glm}}, \code{\link{gnm}}, \code{\link{family}} } \examples{ set.seed(1) ### Use data from Wedderburn (1974), see ?barley ### Fit Wedderburn's logit model with variance proportional to the ### square of mu(1-mu) logitModel <- glm(y ~ site + variety, family = wedderburn, data = barley) fit <- fitted(logitModel) print(sum((barley$y - fit)^2 / (fit * (1-fit))^2)) ## Agrees with the chi-squared value reported in McCullagh and Nelder ## (1989, p331), which differs slightly from Wedderburn's reported value. ### Fit the biplot model as in Gabriel (1998, p694) biplotModel <- gnm(y ~ -1 + instances(Mult(site, variety), 2), family = wedderburn, data = barley) barleySVD <- svd(matrix(biplotModel$predictors, 10, 9)) A <- sweep(barleySVD$v, 2, sqrt(barleySVD$d), "*")[, 1:2] B <- sweep(barleySVD$u, 2, sqrt(barleySVD$d), "*")[, 1:2] ## These are essentially A and B as in Gabriel (1998, p694), from which ## the biplot is made by plot(rbind(A, B), pch = c(LETTERS[1:9], as.character(1:9), "X")) ### Fit the double-additive model as in Gabriel (1998, p697) variety.binary <- factor(match(barley$variety, c(2,3,6), nomatch = 0) > 0, labels = c("Rest", "2,3,6")) doubleAdditive <- gnm(y ~ variety + Mult(site, variety.binary), family = wedderburn, data = barley) } \keyword{ models } gnm/man/exitInfo.Rd0000644000176200001440000000315614376140103013666 0ustar liggesusers\name{exitInfo} \alias{exitInfo} \title{ Print Exit Information for gnm Fit } \description{ A utility function to print information on final iteration in \code{gnm} fit, intended for use when \code{gnm} has not converged. } \usage{ exitInfo(object) } \arguments{ \item{object}{ a \code{gnm} object. } } \details{ If \code{gnm} has not converged within the pre-specified maximum number of iterations, it may be because the algorithm has converged to a non-solution of the likelihood equations. In order to determine appropriate action, it is necessary to differentiate this case from one of near-convergence to the solution. \code{exitInfo} prints the absolute score and the corresponding convergence criterion for all parameters which failed to meet the convergence criterion at the last iteration. Clearly a small number of parameters with scores close to the criterion suggests near-convergence. } \references{ Vargas, M, Crossa, J, van Eeuwijk, F, Sayre, K D and Reynolds, M P (2001). Interpreting treatment by environment interaction in agronomy trials. \emph{Agronomy Journal} \bold{93}, 949--960. } \author{ Heather Turner } \seealso{ \code{\link{gnm}}} \examples{ ## Fit a "double UNIDIFF" model with low iterMax for illustration! set.seed(1) doubleUnidiff <- gnm(Freq ~ election*vote + election*class*religion + Mult(Exp(election), religion:vote) + Mult(Exp(election), class:vote), family = poisson, data = cautres, iterMax = 10) exitInfo(doubleUnidiff) } \keyword{ models } \keyword{ regression } \keyword{ nonlinear } gnm/man/termPredictors.Rd0000644000176200001440000000314614376140103015106 0ustar liggesusers\name{termPredictors} \alias{termPredictors} \title{ Extract Term Contributions to Predictor } \description{ \code{termPredictors} is a generic function which extracts the contribution of each term to the predictor from a fitted model object. } \usage{ termPredictors(object, ...) } \arguments{ \item{object}{ a fitted model object. } \item{\dots}{ additional arguments for method functions. } } \details{ The default method assumes that the predictor is linear and calculates the contribution of each term from the model matrix and fitted coefficients. A method is also available for \code{\link{gnm}} objects. } \value{ A matrix with the additive components of the predictor in labelled columns. } \author{ Heather Turner } \seealso{ \code{\link{gnm}} } \examples{ ## Linear model G <- gl(4, 6) x <- 1:24 y <- rnorm(24, 0, 1) lmGx <- lm(y ~ G + x) contrib <- termPredictors(lmGx) contrib all.equal(as.numeric(rowSums(contrib)), as.numeric(lmGx$fitted)) #TRUE ## Generalized linear model y <- cbind(rbinom(24, 10, 0.5), rep(10, 24)) glmGx <- glm(y ~ G + x, family = binomial) contrib <- termPredictors(glmGx) contrib all.equal(as.numeric(rowSums(contrib)), as.numeric(glmGx$linear.predictors)) #TRUE ## Generalized nonlinear model A <- gl(4, 6) B <- gl(6, 1, 24) y <- cbind(rbinom(24, 10, 0.5), rep(10, 24)) set.seed(1) gnmAB <- gnm(y ~ A + B + Mult(A, B), family = binomial) contrib <- termPredictors(gnmAB) contrib all.equal(as.numeric(rowSums(contrib)), as.numeric(gnmAB$predictors)) #TRUE } \keyword{ models } \keyword{ regression } gnm/man/voting.Rd0000644000176200001440000000412214376140103013401 0ustar liggesusers\name{voting} \alias{voting} \docType{data} \title{Data on Social Mobility and the Labour Vote} \description{ Voting data from the 1987 British general election, cross-classified by the class of the head of household and the class of their father. } \usage{voting} \format{ A data frame with 25 observations on the following 4 variables. \describe{ \item{\code{percentage}}{the percentage of the cell voting Labour.} \item{\code{total}}{the cell count.} \item{\code{origin}}{a factor describing the father's class with levels \code{1:5}.} \item{\code{destination}}{a factor describing the head of household's class with levels \code{1:5}.} } } \source{ Clifford, P. and Heath, A. F. (1993) The Political Consequences of Social Mobility. \emph{J. Roy. Stat. Soc. A}, \bold{156(1)}, 51-61. } \examples{ ### Examples from Clifford and Heath paper ### (Results differ slightly - possible transcription error in ### published data?) set.seed(1) ## reconstruct counts voting Labour/non-Labour count <- with(voting, percentage/100 * total) yvar <- cbind(count, voting$total - count) ## fit diagonal reference model with constant weights classMobility <- gnm(yvar ~ -1 + Dref(origin, destination), family = binomial, data = voting) DrefWeights(classMobility) ## create factors indicating movement in and out of salariat (class 1) upward <- with(voting, origin != 1 & destination == 1) downward <- with(voting, origin == 1 & destination != 1) ## fit separate weights for the "socially mobile" groups socialMobility <- gnm(yvar ~ -1 + Dref(origin, destination, delta = ~ 1 + downward + upward), family = binomial, data = voting) DrefWeights(socialMobility) ## fit separate weights for downwardly mobile groups only downwardMobility <- gnm(yvar ~ -1 + Dref(origin, destination, delta = ~ 1 + downward), family = binomial, data = voting) DrefWeights(downwardMobility) } \keyword{datasets} gnm/man/MultHomog.Rd0000644000176200001440000000570014376140103014011 0ustar liggesusers\name{MultHomog} \alias{MultHomog} \title{Specify a Multiplicative Interaction with Homogeneous Effects in a gnm Model Formula} \description{ A function of class \code{"nonlin"} to specify a multiplicative interaction with homogeneous effects in the formula argument to \code{\link{gnm}}. } \usage{ MultHomog(..., inst = NULL) } \arguments{ \item{\dots}{ a comma-separated list of two or more factors. } \item{inst}{ (optional) an integer specifying the instance number of the term. } } \details{ \code{MultHomog} specifies instances of a multiplicative interaction in which the constituent multipliers are the effects of two or more factors and the effects of these factors are constrained to be equal when the factor levels are equal. Thus the interaction effect would be \deqn{\gamma_i\gamma_j...}{gamma_i gamma_j ...} for an observation with level \eqn{i} of the first factor, level \eqn{j} of the second factor and so on, where \eqn{\gamma_l}{gamma_l} is the effect for level \eqn{l} of the homogeneous multiplicative factor. If the factors passed to \code{MultHomog} do not have exactly the same levels, the set of levels is taken to be the union of the factor levels, sorted into increasing order. } \value{ A list with the anticipated components of a \code{"nonlin"} function: \item{ predictors }{ the factors passed to \code{MultHomog}} \item{ common }{ an index to specify that common effects are to be estimated across the factors } \item{ term }{ a function to create a deparsed mathematical expression of the term, given labels for the predictors.} \item{ call }{ the call to use as a prefix for parameter labels. } } \references{ Goodman, L. A. (1979) Simple Models for the Analysis of Association in Cross-Classifications having Ordered Categories. \emph{J. Am. Stat. Assoc.}, \bold{74(367)}, 537-552. } \note{Currently, \code{MultHomog} can only be used to specify a one-dimensional interaction. See examples for a workaround to specify interactions with more than one dimension. } \author{ Heather Turner } \seealso{\code{\link{gnm}}, \code{\link{formula}}, \code{\link{instances}}, \code{\link{nonlin.function}}, \code{\link{Mult}}} \examples{ set.seed(1) ### Fit an association model with homogeneous row-column effects rc1 <- gnm(Freq ~ r + c + Diag(r,c) + MultHomog(r, c), family = poisson, data = friend) rc1 \dontrun{ ### Extend to two-component interaction rc2 <- update(rc1, . ~ . + MultHomog(r, c, inst = 2), etastart = rc1$predictors) rc2 } ### For factors with a large number of levels, save time by ### setting diagonal elements to NA rather than fitting exactly; ### skipping start-up iterations may also save time dat <- as.data.frame(friend) id <- with(dat, r == c) dat[id,] <- NA rc2 <- gnm(Freq ~ r + c + instances(MultHomog(r, c), 2), family = poisson, data = dat, iterStart = 0) } \keyword{ models } \keyword{ regression } \keyword{ nonlinear } gnm/man/barleyHeights.Rd0000644000176200001440000000321414471715753014705 0ustar liggesusers\name{barleyHeights} \alias{barleyHeights} \docType{data} \title{ Heights of Barley Plants } \description{ Average heights for 15 genotypes of barley recorded over 9 years. } \usage{barleyHeights} \format{ A data frame with 135 observations on the following 3 variables. \describe{ \item{\code{height}}{average height over 4 replicates (cm)} \item{\code{year}}{a factor with 9 levels \code{1974} to \code{1982}} \item{\code{genotype}}{a factor with 15 levels \code{1:15}} } } \source{ Aastveit, A. H. and Martens, H. (1986). ANOVA interactions interpreted by partial least squares regression. \emph{Biometrics}, \bold{42}, 829--844. } \references{ Chadoeuf, J and Denis, J B (1991). Asymptotic variances for the multiplicative interaction model. \emph{J. App. Stat.} \bold{18(3)}, 331--353. } \examples{ set.seed(1) ## Fit AMMI-1 model barleyModel <- gnm(height ~ year + genotype + Mult(year, genotype), data = barleyHeights) ## Get row and column scores with se's gamma <- getContrasts(barleyModel, pickCoef(barleyModel, "[.]y"), ref = "mean", scaleWeights = "unit") delta <- getContrasts(barleyModel, pickCoef(barleyModel, "[.]g"), ref = "mean", scaleWeights = "unit") ## Corresponding CI's similar to Chadoeuf and Denis (1991) Table 8 ## (allowing for change in sign) gamma[[2]][,1] + (gamma[[2]][,2]) \%o\% c(-1.96, 1.96) delta[[2]][,1] + (delta[[2]][,2]) \%o\% c(-1.96, 1.96) ## Multiplier of row and column scores height <- matrix(scale(barleyHeights$height, scale = FALSE), 15, 9) R <- height - outer(rowMeans(height), colMeans(height), "+") svd(R)$d[1] } \keyword{datasets} gnm/man/confint.gnm.Rd0000644000176200001440000001073214376140103014317 0ustar liggesusers\name{confint.gnm} \alias{confint.gnm} \alias{confint.profile.gnm} \title{ Compute Confidence Intervals of Parameters in a Generalized Nonlinear Model } \description{ Computes confidence intervals for one or more parameters in a generalized nonlinear model, based on the profiled deviance. } \usage{ \method{confint}{gnm}(object, parm = ofInterest(object), level = 0.95, trace = FALSE, ...) \method{confint}{profile.gnm}(object, parm = names(object), level = 0.95, ...) } \arguments{ \item{object}{ an object of class \code{"gnm"} or \code{"profile.gnm"}} \item{parm}{ (optional) either a numeric vector of indices or a character vector of names, specifying the parameters for which confidence intervals are to be estimated. If \code{parm} is \code{NULL}, confidence intervals are found for all parameters.} \item{level}{ the confidence level required. } \item{trace}{ a logical value indicating whether profiling should be traced. } \item{\dots}{ arguments passed to or from other methods } } \details{ These are methods for the generic function \code{confint} in the \code{base} package. For \code{"gnm"} objects, \code{profile.gnm} is first called to profile the deviance over each parameter specified by \code{parm}, or over all parameters in the model if \code{parm} is \code{NULL}. The method for \code{"profile.gnm"} objects is then called, which interpolates the deviance profiles to estimate the limits of the confidence interval for each parameter, see \code{\link{profile.gnm}} for more details. If a \code{"profile.gnm"} object is passed directly to \code{confint}, parameters specified by \code{parm} must be a subset of the profiled parameters. For unidentified parameters a confidence interval cannot be calculated and the limits will be returned as \code{NA}. If the deviance curve has an asymptote and a limit of the confidence interval cannot be reached, the limit will be returned as \code{-Inf} or \code{Inf} appropriately. If the range of the profile does not extend far enough to estimate a limit of the confidence interval, the limit will be returned as \code{NA}. In such cases, it may be desirable create a profile object directly, see \code{\link{profile.gnm}} for more details. } \value{ A matrix (or vector) with columns giving lower and upper confidence limits for each parameter. These will be labelled as (1-level)/2 and 1 - (1-level)/2 in \% (by default 2.5\% and 97.5\%). } \author{ Modification of \code{MASS:::confint.glm} by W. N. Venables and B. D. Ripley. Adapted for \code{"gnm"} objects by Heather Turner. } \seealso{ \code{\link{profile.gnm}}, \code{\link{gnm}}, \code{\link{confint.glm}}, \code{\link{profile.glm}}} \examples{ ### Example in which profiling doesn't take too long count <- with(voting, percentage/100 * total) yvar <- cbind(count, voting$total - count) classMobility <- gnm(yvar ~ -1 + Dref(origin, destination), constrain = "delta1", family = binomial, data = voting) ## profile diagonal effects confint(classMobility, parm = 3:7, trace = TRUE) \dontrun{ ### Profiling takes much longer here, but example more interesting! unidiff <- gnm(Freq ~ educ*orig + educ*dest + Mult(Exp(educ), orig:dest), ofInterest = "[.]educ", constrain = "[.]educ1", family = poisson, data = yaish, subset = (dest != 7)) ## Letting 'confint' compute profile confint(unidiff, trace = TRUE) ## 2.5 \% 97.5 \% ## Mult(Exp(.), orig:dest).educ1 NA NA ## Mult(Exp(.), orig:dest).educ2 -0.5978901 0.1022447 ## Mult(Exp(.), orig:dest).educ3 -1.4836854 -0.2362378 ## Mult(Exp(.), orig:dest).educ4 -2.5792398 -0.2953420 ## Mult(Exp(.), orig:dest).educ5 -Inf -0.7007616 ## Creating profile object first with user-specified stepsize prof <- profile(unidiff, trace = TRUE, stepsize = 0.1) confint(prof, ofInterest(unidiff)[2:5]) ## 2.5 \% 97.5 \% ## Mult(Exp(.), orig:dest).educ2 -0.5978324 0.1022441 ## Mult(Exp(.), orig:dest).educ3 -1.4834753 -0.2362138 ## Mult(Exp(.), orig:dest).educ4 NA -0.2950790 ## Mult(Exp(.), orig:dest).educ5 NA NA ## For 95\% confidence interval, need to estimate parameters for which ## z = +/- 1.96. Profile has not gone far enough for last two parameters range(prof[[4]]$z) ## -1.566601 2.408650 range(prof[[5]]$z) ## -0.5751376 1.1989487 } } \keyword{ models } \keyword{ nonlinear } gnm/man/Dref.Rd0000644000176200001440000002221614376140103012757 0ustar liggesusers\name{Dref} \alias{Dref} \alias{DrefWeights} \title{Specify a Diagonal Reference Term in a gnm Model Formula} \description{ Dref is a function of class \code{"nonlin"} to specify a diagonal reference term in the formula argument to \code{\link{gnm}}. } \usage{ Dref(..., delta = ~ 1) } \arguments{ \item{\dots}{a comma-separated list of two or more factors.} \item{delta}{a formula with no left-hand-side specifying the model for each factor weight.} } \details{ \code{Dref} specifies diagonal reference terms as introduced by Sobel (1981, 1985). Such terms comprise an additive component for each factor of the form \deqn{w_f\gamma_l}{w_f gamma_l} where \eqn{w_f} is the weight for factor \eqn{f}, \eqn{\gamma_l}{gamma_l} is the diagonal effect for level \eqn{l} and \eqn{l} is the level of factor \eqn{f} for the given data point. The weights are constrained to be nonnegative and to sum to one as follows \deqn{w_f = \frac{e^{\delta_f}}{\sum_i e^{\delta_i}}}{ w_f = exp(delta_f)/sum_i(exp(delta_i))} and the \eqn{\delta_f}{delta_f} are modelled as specified by the \code{delta} argument (constant weights by default). The returned parameters are those in the model for \eqn{\delta_f}{delta_f}, rather than the implied weights \eqn{w_f}. The \code{DrefWeights} function will take a fitted gnm model and return the weights \eqn{w_f}, along with their standard errors. If the factors passed to \code{Dref} do not have exactly the same levels, the set of levels in the diagonal reference term is taken to be the union of the factor levels, sorted into increasing order. } \value{ A list with the anticipated components of a "nonlin" function: \item{ predictors }{ the factors passed to \code{Dref} and the formulae for the weights. } \item{ common }{ an index to specify that common effects are to be estimated across the factors. } \item{ term }{ a function to create a deparsed mathematical expression of the term, given labels for the predictors.} \item{ start }{ a function to generate starting values for the parameters.} \item{ call }{ the call to use as a prefix for parameter labels. } } \references{Sobel, M. E. (1981), Diagonal mobility models: A substantively motivated class of designs for the analysis of mobility effects. \emph{American Sociological Review} \bold{46}, 893--906. Sobel, M. E. (1985), Social mobility and fertility revisited: Some new models for the analysis of the mobility effects hypothesis. \emph{American Sociological Review} \bold{50}, 699--712. Clifford, P. and Heath, A. F. (1993) The Political Consequences of Social Mobility. \emph{J. Roy. Stat. Soc. A}, \bold{156(1)}, 51-61. Van der Slik, F. W. P., De Graaf, N. D and Gerris, J. R. M. (2002) Conformity to Parental Rules: Asymmetric Influences of Father's and Mother's Levels of Education. \emph{European Sociological Review} \bold{18(4)}, 489 -- 502. } \author{ Heather Turner } \seealso{\code{\link{gnm}}, \code{\link{formula}}, \code{\link{nonlin.function}}} \examples{ ### Examples from Clifford and Heath paper ### (Results differ slightly - possible transcription error in ### published data?) set.seed(1) ## reconstruct counts voting Labour/non-Labour count <- with(voting, percentage/100 * total) yvar <- cbind(count, voting$total - count) ## fit diagonal reference model with constant weights classMobility <- gnm(yvar ~ -1 + Dref(origin, destination), family = binomial, data = voting) DrefWeights(classMobility) ## create factors indicating movement in and out of salariat (class 1) upward <- with(voting, origin != 1 & destination == 1) downward <- with(voting, origin == 1 & destination != 1) ## fit separate weights for the "socially mobile" groups socialMobility <- gnm(yvar ~ -1 + Dref(origin, destination, delta = ~ 1 + downward + upward), family = binomial, data = voting) DrefWeights(socialMobility) ## fit separate weights for downwardly mobile groups only downwardMobility <- gnm(yvar ~ -1 + Dref(origin, destination, delta = ~ 1 + downward), family = binomial, data = voting) DrefWeights(downwardMobility) \dontrun{ ### Examples from Van der Slik paper ### For illustration only - data not publically available ### Using data in data.frame named 'conformity', with variables ### MCFM - mother's conformity score ### FCFF - father's conformity score ### MOPLM - a factor describing the mother's education with 7 levels ### FOPLF - a factor describing the father's education with 7 levels ### AGEM - mother's birth cohort ### MRMM - mother's traditional role model ### FRMF - father's traditional role model ### MWORK - mother's employment ### MFCM - mother's family conflict score ### FFCF - father's family conflict score set.seed(1) ## Models for mothers' conformity score as specified in Figure 1 A <- gnm(MCFM ~ -1 + AGEM + MRMM + FRMF + MWORK + MFCM + Dref(MOPLM, FOPLF), family = gaussian, data = conformity, verbose = FALSE) A ## Call: ## gnm(formula = MCFM ~ -1 + AGEM + MRMM + FRMF + MWORK + MFCM + ## Dref(MOPLM, FOPLF), family = gaussian, data = conformity, ## verbose = FALSE) ## ## Coefficients: ## AGEM MRMM ## 0.06363 -0.32425 ## FRMF MWORK ## -0.25324 -0.06430 ## MFCM Dref(MOPLM, FOPLF)delta1 ## -0.06043 -0.33731 ## Dref(MOPLM, FOPLF)delta2 Dref(., .).MOPLM|FOPLF1 ## -0.02505 4.95121 ## Dref(., .).MOPLM|FOPLF2 Dref(., .).MOPLM|FOPLF3 ## 4.86329 4.86458 ## Dref(., .).MOPLM|FOPLF4 Dref(., .).MOPLM|FOPLF5 ## 4.72343 4.43516 ## Dref(., .).MOPLM|FOPLF6 Dref(., .).MOPLM|FOPLF7 ## 4.18873 4.43378 ## ## Deviance: 425.3389 ## Pearson chi-squared: 425.3389 ## Residual df: 576 ## Weights as in Table 4 DrefWeights(A) ## Refitting with parameters of first Dref weight constrained to zero ## $MOPLM ## weight se ## 0.4225636 0.1439829 ## ## $FOPLF ## weight se ## 0.5774364 0.1439829 F <- gnm(MCFM ~ -1 + AGEM + MRMM + FRMF + MWORK + MFCM + Dref(MOPLM, FOPLF, delta = ~1 + MFCM), family = gaussian, data = conformity, verbose = FALSE) F ## Call: ## gnm(formula = MCFM ~ -1 + AGEM + MRMM + FRMF + MWORK + MFCM + ## Dref(MOPLM, FOPLF, delta = ~1 + MFCM), family = gaussian, ## data = conformity, verbose = FALSE) ## ## ## Coefficients: ## AGEM ## 0.05818 ## MRMM ## -0.32701 ## FRMF ## -0.25772 ## MWORK ## -0.07847 ## MFCM ## -0.01694 ## Dref(MOPLM, FOPLF, delta = ~ . + MFCM).delta1(Intercept) ## 1.03515 ## Dref(MOPLM, FOPLF, delta = ~ 1 + .).delta1MFCM ## -1.77756 ## Dref(MOPLM, FOPLF, delta = ~ . + MFCM).delta2(Intercept) ## -0.03515 ## Dref(MOPLM, FOPLF, delta = ~ 1 + .).delta2MFCM ## 2.77756 ## Dref(., ., delta = ~ 1 + MFCM).MOPLM|FOPLF1 ## 4.82476 ## Dref(., ., delta = ~ 1 + MFCM).MOPLM|FOPLF2 ## 4.88066 ## Dref(., ., delta = ~ 1 + MFCM).MOPLM|FOPLF3 ## 4.83969 ## Dref(., ., delta = ~ 1 + MFCM).MOPLM|FOPLF4 ## 4.74850 ## Dref(., ., delta = ~ 1 + MFCM).MOPLM|FOPLF5 ## 4.42020 ## Dref(., ., delta = ~ 1 + MFCM).MOPLM|FOPLF6 ## 4.17957 ## Dref(., ., delta = ~ 1 + MFCM).MOPLM|FOPLF7 ## 4.40819 ## ## Deviance: 420.9022 ## Pearson chi-squared: 420.9022 ## Residual df: 575 ## ## ## Standard error for MFCM == 1 lower than reported by Van der Slik et al DrefWeights(F) ## Refitting with parameters of first Dref weight constrained to zero ## $MOPLM ## MFCM weight se ## 1 1 0.02974675 0.2277711 ## 2 0 0.74465224 0.2006916 ## ## $FOPLF ## MFCM weight se ## 1 1 0.9702532 0.2277711 ## 2 0 0.2553478 0.2006916 } } \keyword{ models } \keyword{ regression } \keyword{ nonlinear } gnm/man/profile.gnm.Rd0000644000176200001440000001735214376140103014324 0ustar liggesusers\name{profile.gnm} \alias{profile.gnm} \alias{plot.profile.gnm} \title{ Profile Deviance for Parameters in a Generalized Nonlinear Model } \description{ For one or more parameters in a generalized nonlinear model, profile the deviance over a range of values about the fitted estimate. } \usage{ \method{profile}{gnm}(fitted, which = ofInterest(fitted), alpha = 0.05, maxsteps = 10, stepsize = NULL, trace = FALSE, ...) } \arguments{ \item{fitted}{ an object of class \code{"gnm"}. } \item{which}{ (optional) either a numeric vector of indices or a character vector of names, specifying the parameters over which the deviance is to be profiled. If \code{NULL}, the deviance is profiled over all parameters. } \item{alpha}{ the significance level of the z statistic, indicating the range that the profile must cover (see details). } \item{maxsteps}{ the maximum number of steps to take either side of the fitted parameter. } \item{stepsize}{ (optional) a numeric vector of length two, specifying the size of steps to take when profiling down and up respectively, or a single number specifying the step size in both directions. If \code{NULL}, the step sizes will be determined automatically. } \item{trace}{ logical, indicating whether profiling should be traced. } \item{\dots}{ further arguments. } } \details{ This is a method for the generic function \code{profile} in the \code{base} package. For a given parameter, the deviance is profiled by constraining that parameter to certain values either side of its estimate in the fitted model and refitting the model. For each updated model, the following "z statistic" is computed \deqn{z(\theta) = (\theta - \hat{\theta}) * \sqrt{\frac{D_{theta} - D_{\hat{theta}}}{\delta}}}{ z(theta) = (theta - theta.hat) * sqrt((D_theta - D_theta.hat)/delta)} where \eqn{\theta}{theta} is the constrained value of the parameter; \eqn{\hat{\theta}}{theta.hat} is the original fitted value; \eqn{D_{\theta}}{D_theta} is the deviance when the parameter is equal to \eqn{\theta}{theta}, and \eqn{\delta}{delta} is the dispersion parameter. When the deviance is quadratic in \eqn{\theta}{theta}, z will be linear in \eqn{\theta}{theta}. Therefore departures from quadratic behaviour can easily be identified by plotting z against \eqn{\theta}{theta} using \code{plot.profile.gnm}. \code{confint.profile.gnm} estimates confidence intervals for the parameters by interpolating the deviance profiles and identifying the parameter values at which z is equal to the relevant percentage points of the normal distribution. The \code{alpha} argument to \code{profile.gnm} specifies the significance level of z which must be covered by the profile. In particular, the profiling in a given direction will stop when \code{maxsteps} is reached or two steps have been taken in which \deqn{z(\theta) > (\theta - \hat{\theta}) * z_{(1 - \alpha)/2}}{ z(theta) > (theta - theta.hat) * z_{(1 - alpha)/2}} By default, the stepsize is \deqn{z_{(1 - \alpha)/2} * s_{\hat{\theta}}}{ z_{(1 - alpha)/2} * s_theta.hat} where \eqn{s_{\hat{\theta}}}{s_theta.hat} is the standard error of \eqn{\hat{\theta}}{theta.hat}. Strong asymmetry is detected and the stepsize is adjusted accordingly, to try to ensure that the range determined by \code{alpha} is adequately covered. \code{profile.gnm} will also attempt to detect if the deviance is asymptotic such that the desired significance level cannot be reached. Each profile has an attribute \code{"asymptote"}, a two-length logical vector specifying whether an asymptote has been detected in either direction. For unidentified parameters the profile will be \code{NA}, as such parameters cannot be profiled. } \value{ A list of profiles, with one named component for each parameter profiled. Each profile is a data.frame: the first column, "z", contains the z statistics and the second column "par.vals" contains a matrix of parameter values, with one column for each parameter in the model. The list has two attributes: "original.fit" containing \code{fitted} and "summary" containing \code{summary(fitted)}. } \references{ Chambers, J. M. and Hastie, T. J. (1992) \emph{Statistical Models in S} } \author{ Modification of \code{\link[MASS]{profile.glm}} from the MASS package. Originally D. M. Bates and W. N. Venables, ported to R by B. D. Ripley, adapted for \code{"gnm"} objects by Heather Turner. } \seealso{ \code{\link{confint.gnm}}, \code{\link{gnm}}, \code{\link[MASS]{profile.glm}}, \code{\link{ofInterest}} } \examples{ set.seed(1) ### Example in which deviance is near quadratic count <- with(voting, percentage/100 * total) yvar <- cbind(count, voting$total - count) classMobility <- gnm(yvar ~ -1 + Dref(origin, destination), constrain = "delta1", family = binomial, data = voting) prof <- profile(classMobility, trace = TRUE) plot(prof) ## confint similar to MLE +/- 1.96*s.e. confint(prof, trace = TRUE) coefData <- se(classMobility) cbind(coefData[1] - 1.96 * coefData[2], coefData[1] + 1.96 * coefData[2]) \dontrun{ ### These examples take longer to run ### Another near quadratic example RChomog <- gnm(Freq ~ origin + destination + Diag(origin, destination) + MultHomog(origin, destination), ofInterest = "MultHomog", constrain = "MultHomog.*1", family = poisson, data = occupationalStatus) prof <- profile(RChomog, trace = TRUE) plot(prof) ## confint similar to MLE +/- 1.96*s.e. confint(prof) coefData <- se(RChomog) cbind(coefData[1] - 1.96 * coefData[2], coefData[1] + 1.96 * coefData[2]) ## Another near quadratic example, with more complex constraints count <- with(voting, percentage/100 * total) yvar <- cbind(count, voting$total - count) classMobility <- gnm(yvar ~ -1 + Dref(origin, destination), family = binomial, data = voting) wts <- prop.table(exp(coef(classMobility))[1:2]) classMobility <- update(classMobility, constrain = "delta1", constrainTo = log(wts[1])) sum(exp(parameters(classMobility))[1:2]) #=1 prof <- profile(classMobility, trace = TRUE) plot(prof) ## confint similar to MLE +/- 1.96*s.e. confint(prof, trace = TRUE) coefData <- se(classMobility) cbind(coefData[1] - 1.96 * coefData[2], coefData[1] + 1.96 * coefData[2]) ### An example showing asymptotic deviance unidiff <- gnm(Freq ~ educ*orig + educ*dest + Mult(Exp(educ), orig:dest), ofInterest = "[.]educ", constrain = "[.]educ1", family = poisson, data = yaish, subset = (dest != 7)) prof <- profile(unidiff, trace = TRUE) plot(prof) ## clearly not quadratic for Mult1.Factor1.educ4 or Mult1.Factor1.educ5! confint(prof) ## 2.5 \% 97.5 \% ## Mult(Exp(.), orig:dest).educ1 NA NA ## Mult(Exp(.), orig:dest).educ2 -0.5978901 0.1022447 ## Mult(Exp(.), orig:dest).educ3 -1.4836854 -0.2362378 ## Mult(Exp(.), orig:dest).educ4 -2.5792398 -0.2953420 ## Mult(Exp(.), orig:dest).educ5 -Inf -0.7006889 coefData <- se(unidiff) cbind(coefData[1] - 1.96 * coefData[2], coefData[1] + 1.96 * coefData[2]) ### A far from quadratic example, also with eliminated parameters backPainLong <- expandCategorical(backPain, "pain") oneDimensional <- gnm(count ~ pain + Mult(pain, x1 + x2 + x3), eliminate = id, family = "poisson", constrain = "[.](painworse|x1)", constrainTo = c(0, 1), data = backPainLong) prof <- profile(oneDimensional, trace = TRUE) plot(prof) ## not quadratic for any non-eliminated parameter confint(prof) coefData <- se(oneDimensional) cbind(coefData[1] - 1.96 * coefData[2], coefData[1] + 1.96 * coefData[2]) } } \keyword{ models } \keyword{ nonlinear } gnm/man/Symm.Rd0000644000176200001440000000162014376140177013033 0ustar liggesusers\name{Symm} \alias{Symm} \title{ Symmetric Interaction of Factors } \description{ \code{Symm} codes the symmetric interaction of factors having the same set of levels, for use in regression models of symmetry or quasi-symmetry. } \usage{ Symm(..., separator = ":") } \arguments{ \item{\dots}{ one or more factors. } \item{separator}{ a character string of length 1 or more, to be used in naming the levels of the resulting interaction factor. } } \value{ A factor whose levels index the symmetric interaction of all factors supplied as input. } \author{ David Firth and Heather Turner } \seealso{ \code{\link{Diag}}} \examples{ # square table rowfac <- gl(4, 4, 16) colfac <- gl(4, 1, 16) symm4by4 <- Symm(rowfac, colfac) matrix(symm4by4, 4, 4) # 3 x 3 x 3 table ind <- expand.grid(A = 1:3, B = 1:3, C = 1:3) symm3cubed <- with(ind, Symm(A, B, C)) array(symm3cubed, c(3, 3, 3)) } \keyword{ models } gnm/man/barley.Rd0000644000176200001440000000464314376140103013361 0ustar liggesusers\name{barley} \alias{barley} \docType{data} \title{ Jenkyn's Data on Leaf-blotch on Barley } \description{ Incidence of \emph{R. secalis} on the leaves of ten varieties of barley grown at nine sites. } \usage{barley} \format{ A data frame with 90 observations on the following 3 variables. \describe{ \item{y}{the proportion of leaf affected (values in [0,1])} \item{site}{a factor with 9 levels \code{A} to \code{I}} \item{variety}{a factor with 10 levels \code{c(1:9, "X")}} } } \note{ This dataset was used in Wedderburn's original paper (1974) on quasi-likelihood. } \source{ Originally in an unpublished Aberystwyth PhD thesis by J F Jenkyn. } \references{ Gabriel, K R (1998). Generalised bilinear regression. \emph{Biometrika} \bold{85}, 689--700. McCullagh, P and Nelder, J A (1989) \emph{Generalized Linear Models} (2nd ed). Chapman and Hall. Wedderburn, R W M (1974). Quasilikelihood functions, generalized linear models and the Gauss-Newton method. \emph{Biometrika} \bold{61}, 439--47. } \examples{ set.seed(1) ### Fit Wedderburn's logit model with variance proportional to [mu(1-mu)]^2 logitModel <- glm(y ~ site + variety, family = wedderburn, data = barley) fit <- fitted(logitModel) print(sum((barley$y - fit)^2 / (fit * (1-fit))^2)) ## Agrees with the chi-squared value reported in McCullagh and Nelder ## (1989, p331), which differs slightly from Wedderburn's reported value. ### Fit the biplot model as in Gabriel (1998, p694) biplotModel <- gnm(y ~ -1 + instances(Mult(site, variety), 2), family = wedderburn, data = barley) barleySVD <- svd(matrix(biplotModel$predictors, 10, 9)) A <- sweep(barleySVD$v, 2, sqrt(barleySVD$d), "*")[, 1:2] B <- sweep(barleySVD$u, 2, sqrt(barleySVD$d), "*")[, 1:2] ## These are essentially A and B as in Gabriel (1998, p694), from which ## the biplot is made by plot(rbind(A, B), pch = c(levels(barley$site), levels(barley$variety))) ## Fit the double-additive model as in Gabriel (1998, p697) variety.binary <- factor(match(barley$variety, c(2,3,6), nomatch = 0) > 0, labels = c("rest", "2,3,6")) doubleAdditive <- gnm(y ~ variety + Mult(site, variety.binary), family = wedderburn, data = barley) ## It is unclear why Gabriel's chi-squared statistics differ slightly ## from the ones produced in these fits. Possibly Gabriel adjusted the ## data somehow prior to fitting? } \keyword{datasets} gnm/man/parameters.Rd0000644000176200001440000000172014376140103014237 0ustar liggesusers\name{parameters} \alias{parameters} \title{ Extract Constrained and Estimated Parameters from a gnm Object} \description{ A function to extract non-eliminated parameters from a \code{"gnm"} object, including parameters that were constrained. } \usage{ parameters(object) } \arguments{ \item{object}{ an object of class \code{"gnm"}. } } \details{ \code{parameters} acts like \code{coefficients} except that for constrained parameters, the value at which the parameter was constrained is returned instead of \code{NA}. } \value{ A vector of parameters. } \author{ Heather Turner } \seealso{ \code{\link{coefficients}}, \code{\link{gnm}} } \examples{ RChomog <- gnm(Freq ~ origin + destination + Diag(origin, destination) + MultHomog(origin, destination), family = poisson, data = occupationalStatus, ofInterest = "MultHomog", constrain = "MultHomog.*1") coefficients(RChomog) parameters(RChomog) } \keyword{ models } gnm/man/model.matrix.gnm.Rd0000644000176200001440000000201314376140103015253 0ustar liggesusers\name{model.matrix.gnm} \alias{model.matrix.gnm} \title{ Local Design Matrix for a Generalized Nonlinear Model } \description{ This method extracts or evaluates a local design matrix for a generalized nonlinear model } \usage{ \method{model.matrix}{gnm}(object, coef = NULL, ...) } \arguments{ \item{object}{ an object of class \code{gnm}. } \item{coef}{ if specified, the vector of (non-eliminated) coefficients at which the local design matrix is evaluated. } \item{...}{ further arguments. } } \value{ If \code{coef = NULL}, the local design matrix with columns corresponding to the non-eliminated parameters evaluated at \code{coef(object)} (extracted from \code{object} if possible). Otherwise, the local design matrix evaluated at \code{coef}. } \author{ Heather Turner } \seealso{ \code{\link{gnm}}, \code{\link{model.matrix}} } \examples{ example(mentalHealth) model.matrix(RC1model) model.matrix(RC1model, coef = seq(coef(RC1model))) } \keyword{ models } \keyword{ regression } \keyword{ nonlinear } gnm/man/House2001.Rd0000644000176200001440000001351114376140103013463 0ustar liggesusers\name{House2001} \alias{House2001} \docType{data} \title{ Data on twenty roll calls in the US House of Representatives, 2001 } \description{ The voting record of every representative in the 2001 House, on 20 roll calls selected by \emph{Americans for Democratic Action}. Each row is the record of one representative; the first column records the representative's registered party allegiance. } \usage{House2001} \format{ A data frame with 439 observations on the following 21 variables. \describe{ \item{\code{party}}{a factor with levels \code{D} \code{I} \code{N} \code{R}} \item{\code{HR333.BankruptcyOverhaul.Yes}}{a numeric vector} \item{\code{SJRes6.ErgonomicsRuleDisapproval.No}}{a numeric vector} \item{\code{HR3.IncomeTaxReduction.No}}{a numeric vector} \item{\code{HR6.MarriageTaxReduction.Yes}}{a numeric vector} \item{\code{HR8.EstateTaxRelief.Yes}}{a numeric vector} \item{\code{HR503.FetalProtection.No}}{a numeric vector} \item{\code{HR1.SchoolVouchers.No}}{a numeric vector} \item{\code{HR1836.TaxCutReconciliationBill.No}}{a numeric vector} \item{\code{HR2356.CampaignFinanceReform.No}}{a numeric vector} \item{\code{HJRes36.FlagDesecration.No}}{a numeric vector} \item{\code{HR7.FaithBasedInitiative.Yes}}{a numeric vector} \item{\code{HJRes50.ChinaNormalizedTradeRelations.Yes}}{a numeric vector} \item{\code{HR4.ANWRDrillingBan.Yes}}{a numeric vector} \item{\code{HR2563.PatientsRightsHMOLiability.No}}{a numeric vector} \item{\code{HR2563.PatientsBillOfRights.No}}{a numeric vector} \item{\code{HR2944.DomesticPartnerBenefits.No}}{a numeric vector} \item{\code{HR2586.USMilitaryPersonnelOverseasAbortions.Yes}}{a numeric vector} \item{\code{HR2975.AntiTerrorismAuthority.No}}{a numeric vector} \item{\code{HR3090.EconomicStimulus.No}}{a numeric vector} \item{\code{HR3000.TradePromotionAuthorityFastTrack.No}}{a numeric vector} } } \details{ Coding of the votes is as described in ADA (2002). } \source{ Originally printed in ADA (2002). Kindly supplied in electronic format by Jan deLeeuw, who used the data to illustrate methods developed in deLeeuw (2006). } \references{ Americans for Democratic Action, ADA (2002). 2001 voting record: Shattered promise of liberal progress. \emph{ADA Today} \bold{57}(1), 1--17. deLeeuw, J (2006). Principal component analysis of binary data by iterated singular value decomposition. \emph{Computational Statistics and Data Analysis} \bold{50}, 21--39. } \examples{ \dontrun{ ## This example takes some time to run! summary(House2001) ## Put the votes in a matrix, and discard members with too many NAs etc: House2001m <- as.matrix(House2001[-1]) informative <- apply(House2001m, 1, function(row){ valid <- !is.na(row) validSum <- if (any(valid)) sum(row[valid]) else 0 nValid <- sum(valid) uninformative <- (validSum == nValid) || (validSum == 0) || (nValid < 10) !uninformative}) House2001m <- House2001m[informative, ] ## Make a vector of colours, blue for Republican and red for Democrat: parties <- House2001$party[informative] partyColors <- rep("black", length(parties)) partyColors <- ifelse(parties == "D", "red", partyColors) partyColors <- ifelse(parties == "R", "blue", partyColors) ## Expand the data for statistical modelling: House2001v <- as.vector(House2001m) House2001f <- data.frame(member = rownames(House2001m), party = parties, rollCall = factor(rep((1:20), rep(nrow(House2001m), 20))), vote = House2001v) ## Now fit an "empty" model, in which all members vote identically: baseModel <- glm(vote ~ -1 + rollCall, family = binomial, data = House2001f) ## From this, get starting values for a one-dimensional multiplicative term: Start <- residSVD(baseModel, rollCall, member) ## ## Now fit the logistic model with one multiplicative term. ## For the response variable, instead of vote=0,1 we use 0.03 and 0.97, ## corresponding approximately to a bias-reducing adjustment of p/(2n), ## where p is the number of parameters and n the number of observations. ## voteAdj <- 0.5 + 0.94*(House2001f$vote - 0.5) House2001model1 <- gnm(voteAdj ~ Mult(rollCall, member), eliminate = rollCall, family = binomial, data = House2001f, na.action = na.exclude, trace = TRUE, tolerance = 1e-03, start = -Start) ## Deviance is 2234.847, df = 5574 ## ## Plot the members' positions as estimated in the model: ## memberParameters <- pickCoef(House2001model1, "member") plot(coef(House2001model1)[memberParameters], col = partyColors, xlab = "Alphabetical index (Abercrombie 1 to Young 301)", ylab = "Member's relative position, one-dimensional model") ## Can do the same thing with two dimensions, but gnm takes around 40 ## slow iterations to converge (there are more than 600 parameters): Start2 <- residSVD(baseModel, rollCall, member, d = 2) House2001model2 <- gnm( voteAdj ~ instances(Mult(rollCall - 1, member - 1), 2), eliminate = rollCall, family = binomial, data = House2001f, na.action = na.exclude, trace = TRUE, tolerance = 1e-03, start = Start2, lsMethod = "qr") ## Deviance is 1545.166, df = 5257 ## memberParameters1 <- pickCoef(House2001model2, "1).member") memberParameters2 <- pickCoef(House2001model2, "2).member") plot(coef(House2001model2)[memberParameters1], coef(House2001model2)[memberParameters2], col = partyColors, xlab = "Dimension 1", ylab = "Dimension 2", main = "House2001 data: Member positions, 2-dimensional model") ## ## The second dimension is mainly due to rollCall 12, which does not ## correlate well with the rest -- look at the coefficients of ## House2001model1, or at the 12th row of cormat <- cor(na.omit(House2001m)) } } \keyword{datasets} gnm/man/predict.gnm.Rd0000644000176200001440000000712114376140103014307 0ustar liggesusers\name{predict.gnm} \alias{predict.gnm} \title{ Predict Method for Generalized Nonlinear Models } \description{ Obtains predictions and optionally estimates standard errors of those predictions from a fitted generalized nonlinear model object. } \usage{ \method{predict}{gnm}(object, newdata = NULL, type = c("link", "response", "terms"), se.fit = FALSE, dispersion = NULL, terms = NULL, na.action = na.exclude, ...) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{object}{ a fitted object of class inheriting from \code{"gnm"}. } \item{newdata}{ optionally, a data frame in which to look for variables with which to predict. If omitted, the fitted predictors are used. } \item{type}{ the type of prediction required. The default is on the scale of the predictors; the alternative \code{"response"} is on the scale of the response variable. Thus for a default binomial model the default predictions are of log-odds (probabilities on logit scale) and \code{type = "response"} gives the predicted probabilities. The \code{"terms"} option returns a matrix giving the fitted values of each term in the model formula on the predictor scale. The value of this argument can be abbreviated. } \item{se.fit}{ logical switch indicating if standard errors are required. } \item{dispersion}{ the dispersion of the fit to be assumed in computing the standard errors. If omitted, that returned by \code{summary} applied to the object is used. } \item{terms}{ with \code{type="terms"} by default all terms are returned. A character vector specifies which terms are to be returned } \item{na.action}{ function determining what should be done with missing values in \code{newdata}. The default is to predict \code{NA}. } \item{\dots}{ further arguments passed to or from other methods. } } \details{ If \code{newdata} is omitted the predictions are based on the data used for the fit. In that case how cases with missing values in the original fit is determined by the \code{na.action} argument of that fit. If \code{na.action = na.omit} omitted cases will not appear in the residuals, whereas if \code{na.action = na.exclude} they will appear (in predictions and standard errors), with residual value \code{NA}. See also \code{\link{napredict}}. } \value{ If \code{se = FALSE}, a vector or matrix of predictions. If \code{se = TRUE}, a list with components \item{ fit }{ predictions.} \item{ se.fit }{ estimated standard errors.} \item{ residual.scale }{ a scalar giving the square root of the dispersion used in computing the standard errors.} } \references{ Chambers, J. M. and Hastie, T. J. (1992) \emph{Statistical Models in S }} \author{ Heather Turner } \note{Variables are first looked for in 'newdata' and then searched for in the usual way (which will include the environment of the formula used in the fit). A warning will be given if the variables found are not of the same length as those in 'newdata' if it was supplied.} \seealso{ \code{\link{gnm}} } \examples{ set.seed(1) ## Fit an association model with homogeneous row-column effects RChomog <- gnm(Freq ~ origin + destination + Diag(origin, destination) + MultHomog(origin, destination), family = poisson, data = occupationalStatus) ## Fitted values (expected counts) predict(RChomog, type = "response", se.fit = TRUE) ## Fitted values on log scale predict(RChomog, type = "link", se.fit = TRUE) } \keyword{ models } \keyword{ nonlinear } gnm/man/asGnm.Rd0000644000176200001440000000311114376140103013135 0ustar liggesusers\name{asGnm} \alias{asGnm} \title{ Coerce Linear Model to gnm Object } \description{ \code{asGnm} is a generic function which coerces objects of class "glm" or "lm" to an object of class "gnm". } \usage{ asGnm(object, ...) } \arguments{ \item{object}{ an object of class "glm" or "lm". } \item{\dots}{ additional arguments for method functions. } } \details{ Components are added to or removed from \code{object} to produce an object of class "gnm". This can be useful in model building, see examples. } \value{ An object of class "gnm" - see \code{\link{gnm}} for full description. } \references{ Vargas, M, Crossa, J, van Eeuwijk, F, Sayre, K D and Reynolds, M P (2001). Interpreting treatment by environment interaction in agronomy trials. \emph{Agronomy Journal} \bold{93}, 949--960. } \author{ Heather Turner } \seealso{ \code{\link{gnm}}, \code{\link{glm}}, \code{\link{lm}} } \examples{ set.seed(1) ## Scale yields to reproduce analyses reported in Vargas et al (2001) yield.scaled <- wheat$yield * sqrt(3/1000) treatment <- interaction(wheat$tillage, wheat$summerCrop, wheat$manure, wheat$N, sep = "") ## Fit linear model mainEffects <- lm(yield.scaled ~ year + treatment, data = wheat) ## Convert to gnm object to allow addition of Mult() term svdStart <- residSVD(mainEffects, year, treatment, 3) bilinear1 <- update(asGnm(mainEffects), . ~ . + Mult(year, treatment), start = c(coef(mainEffects), svdStart[,1])) } \keyword{ models } \keyword{ regression } gnm/man/yaish.Rd0000644000176200001440000000471314376140103013216 0ustar liggesusers\name{yaish} \alias{yaish} \docType{data} \title{ Class Mobility by Level of Education in Israel} \description{ A 3-way contingency table of father/son pairs, classified by father's social class (\code{orig}), son's social class (\code{dest}) and son's education level (\code{educ}). } \usage{yaish} \format{ A table of counts, with classifying factors \code{educ} (levels \code{1:5}), \code{orig} (levels \code{1:7}) and \code{dest} (levels \code{1:7}). } \source{Originally in Yaish (1998), see also Yaish (2004, p316).} \references{ Yaish, M (1998). Opportunities, Little Change. Class Mobility in Israeli Society: 1974-1991. D.Phil. Thesis, Nuffield College, University of Oxford. Yaish, M (2004). \emph{Class Mobility Trends in Israeli Society, 1974-1991.} Lewiston: Edwin Mellen Press. } \examples{ set.seed(1) ## Fit the "UNIDIFF" mobility model across education levels, leaving out ## the uninformative subtable for dest == 7: ## unidiff <- gnm(Freq ~ educ*orig + educ*dest + Mult(Exp(educ), orig:dest), family = poisson, data = yaish, subset = (dest != 7)) ## Deviance should be 200.3, 116 d.f. ## ## Look at the multipliers of the orig:dest association: ofInterest(unidiff) <- pickCoef(unidiff, "[.]educ") coef(unidiff) ## ## Coefficients of interest: ## Mult(Exp(.), orig:dest).educ1 Mult(Exp(.), orig:dest).educ2 ## -0.5513258 -0.7766976 ## Mult(Exp(.), orig:dest).educ3 Mult(Exp(.), orig:dest).educ4 ## -1.2947494 -1.5902644 ## Mult(Exp(.), orig:dest).educ5 ## -2.8008285 ## ## Get standard errors for the contrasts with educ1: ## getContrasts(unidiff, ofInterest(unidiff)) ## estimate SE quasiSE ## Mult(Exp(.), orig:dest).educ1 0.0000000 0.0000000 0.09757438 ## Mult(Exp(.), orig:dest).educ2 -0.2253718 0.1611874 0.12885847 ## Mult(Exp(.), orig:dest).educ3 -0.7434236 0.2335083 0.21182123 ## Mult(Exp(.), orig:dest).educ4 -1.0389386 0.3434256 0.32609380 ## Mult(Exp(.), orig:dest).educ5 -2.2495026 0.9453764 0.93560643 ## quasiVar ## Mult(Exp(.), orig:dest).educ1 0.00952076 ## Mult(Exp(.), orig:dest).educ2 0.01660450 ## Mult(Exp(.), orig:dest).educ3 0.04486823 ## Mult(Exp(.), orig:dest).educ4 0.10633716 ## Mult(Exp(.), orig:dest).educ5 0.87535940 ## ## Table of model residuals: ## residuals(unidiff) } \author{David Firth} \keyword{ datasets } gnm/man/Mult.Rd0000644000176200001440000000700614376140103013020 0ustar liggesusers\name{Multiplicative interaction} \alias{Mult} \title{Specify a Product of Predictors in a gnm Model Formula} \description{ A function of class \code{"nonlin"} to specify a multiplicative interaction in the formula argument to \code{\link{gnm}}. } \usage{ Mult(..., inst = NULL) } \arguments{ \item{\dots}{a comma-separated list of two or more symbolic expressions representing the constituent multipliers in the interaction.} \item{inst}{a positive integer specifying the instance number of the term.} } \details{ \code{Mult} specifies instances of a multiplicative interaction, i.e. a product of the form \deqn{m_1 m_2 ... m_n,} where the constituent multipliers \eqn{m_1, m_2, ..., m_n} are linear or nonlinear predictors. Models for the constituent multipliers are specified symbolically as unspecified arguments to \code{Mult}. These symbolic expressions are interpreted in the same way as the right hand side of a formula in an object of class \code{"formula"}, except that an intercept term is not added by default. Offsets can be added to constituent multipliers, using \code{offset}. The family of multiplicative interaction models include row-column association models for contingency tables (e.g., Agresti, 2002, Sec 9.6), log-multiplicative or UNIDIFF models (Erikson and Goldthorpe, 1992; Xie, 1992), and GAMMI models (van Eeuwijk, 1995). } \value{ A list with the required components of a \code{"nonlin"} function: \item{ predictors }{ the expressions passed to \code{Mult}} \item{ term }{ a function to create a deparsed mathematical expression of the term, given labels for the predictors.} \item{ call }{ the call to use as a prefix for parameter labels. } } \references{ Agresti, A (2002). \emph{Categorical Data Analysis} (2nd ed.) New York: Wiley. Erikson, R and Goldthorpe, J H (1992). \emph{The Constant Flux}. Oxford: Clarendon Press. van Eeuwijk, F A (1995). Multiplicative interaction in generalized linear models. \emph{Biometrics} \bold{51}, 1017-1032. Vargas, M, Crossa, J, van Eeuwijk, F, Sayre, K D and Reynolds, M P (2001). Interpreting treatment by environment interaction in agronomy trials. \emph{Agronomy Journal} \bold{93}, 949--960. Xie, Y (1992). The log-multiplicative layer effect model for comparing mobility tables. \emph{American Sociological Review} \bold{57}, 380-395. } \author{Heather Turner} \seealso{\code{\link{gnm}}, \code{\link{formula}}, \code{\link{instances}}, \code{\link{nonlin.function}}, \code{\link{MultHomog}} } \examples{ set.seed(1) ## Using 'Mult' with 'Exp' to constrain the first constituent multiplier ## to be non-negative ## Fit the "UNIDIFF" mobility model across education levels unidiff <- gnm(Freq ~ educ*orig + educ*dest + Mult(Exp(educ), orig:dest), family = poisson, data = yaish, subset = (dest != 7)) \dontrun{ ## (this example can take quite a while to run) ## ## Fitting two instances of a multiplicative interaction (i.e. a ## two-component interaction)) yield.scaled <- wheat$yield * sqrt(3/1000) treatment <- factor(paste(wheat$tillage, wheat$summerCrop, wheat$manure, wheat$N, sep = "")) bilinear2 <- gnm(yield.scaled ~ year + treatment + instances(Mult(year, treatment), 2), family = gaussian, data = wheat) formula(bilinear2) ## yield.scaled ~ year + treatment + Mult(year, treatment, inst = 1) + ## Mult(year, treatment, inst = 2) } } \keyword{ models } \keyword{ regression } \keyword{ nonlinear } gnm/man/nonlin.function.Rd0000644000176200001440000001564714376140103015232 0ustar liggesusers\name{nonlin.function} \alias{nonlin.function} \title{ Functions to Specify Nonlinear Terms in gnm Models } \description{ Nonlinear terms maybe be specified in the formula argument to gnm by a call to a function of class \code{"nonlin"}. A \code{"nonlin"} function takes a list of arguments and returns a list of arguments for the internal \code{nonlinTerms} function. } \arguments{ \item{...}{ arguments required to define the term, e.g. symbolic representations of predictors in the term. } \item{inst}{(optional) an integer specifying the instance number of the term - for compatibility with \code{\link{instances}}. } } \value{ The function should return a list with the following components: \item{predictors}{ a list of symbolic expressions or formulae with no left hand side which represent (possibly nonlinear) predictors that form part of the term. Intercepts will be added by default to predictors specified by formulae. If predictors are named, these names will be used as a prefix for parameter labels or the parameter label itself in the single parameter case (in either case, prefixed by the call if supplied.) Predictors that may include an intercept should always be named or matched to a call. } \item{variables}{ an optional list of expressions representing variables in the term. } \item{term}{ a function which takes the arguments \code{predLabels} and \code{varLabels}, which are vectors of labels defined by \code{gnm} that correspond to the specified predictors and variables, and returns a deparsed mathematical expression of the full term. Only functions recognised by \code{deriv} should be used in the expression, e.g. \code{+} rather than \code{sum}.} \item{common}{ an optional numeric index of \code{predictors} with duplicated indices identifying single factor predictors for which homologous effects are to be estimated. } \item{call}{ an optional call to be used as a prefix for parameter labels, specified as an R expression. } \item{match}{ (if \code{call} is non-\code{NULL}) a numeric index of \code{predictors} specifying which arguments of \code{call} the predictors match to - zero indicating no match. If \code{NULL}, predictors will not be matched. It is recommended that matches are specified wherever possible, to ensure parameter labels are well-defined. Parameters in matched predictors are labelled using "dot-style" labelling, see examples.} \item{start}{ an optional function which takes a named vector of parameters corresponding to the predictors and returns a vector of starting values for those parameters. This function is ignored if the term is nested within another nonlinear term.} } \author{ Heather Turner } \seealso{ \code{\link{Const}} to specify a constant, \code{\link{Dref}} to specify a diagonal reference term, \code{\link{Exp}} to specify the exponential of a predictor, \code{\link{Inv}} to specify the reciprocal of a predictor, % \code{\link{Log}} to specify the natural logarithm of a predictor, % \code{\link{Logit}} to specify the logit of a predictor, \code{\link{Mult}} to specify a multiplicative interaction, \code{\link{MultHomog}} to specify a homogeneous multiplicative interaction, % \code{\link{Raise}} to raise a predictor to a constant power. } \examples{ ### Equivalent of weighted.MM function in ?nls weighted.MM <- function(resp, conc){ list(predictors = list(Vm = substitute(conc), K = 1), variables = list(substitute(resp), substitute(conc)), term = function(predictors, variables) { pred <- paste("(", predictors[1], "/(", predictors[2], " + ", variables[2], "))", sep = "") pred <- paste("(", variables[1], " - ", pred, ")/sqrt(", pred, ")", sep = "") }) } class(weighted.MM) <- "nonlin" ## use to fitted weighted Michaelis-Menten model Treated <- Puromycin[Puromycin$state == "treated", ] Pur.wt.2 <- gnm( ~ -1 + weighted.MM(rate, conc), data = Treated, start = c(Vm = 200, K = 0.1), verbose = FALSE) Pur.wt.2 ## ## Call: ## gnm(formula = ~-1 + weighted.MM(rate, conc), data = Treated, ## start = c(Vm = 200, K = 0.1), verbose = FALSE) ## ## Coefficients: ## Vm K ## 206.83477 0.05461 ## ## Deviance: 14.59690 ## Pearson chi-squared: 14.59690 ## Residual df: 10 ### The definition of MultHomog MultHomog <- function(..., inst = NULL){ dots <- match.call(expand.dots = FALSE)[["..."]] list(predictors = dots, common = rep(1, length(dots)), term = function(predictors, ...) { paste("(", paste(predictors, collapse = ")*("), ")", sep = "") }, call = as.expression(match.call())) } class(MultHomog) <- "nonlin" ## use to fit homogeneous multiplicative interaction set.seed(1) RChomog <- gnm(Freq ~ origin + destination + Diag(origin, destination) + MultHomog(origin, destination), ofInterest = "MultHomog", family = poisson, data = occupationalStatus, verbose = FALSE) RChomog ## ## Call: ## ## gnm(formula = Freq ~ origin + destination + Diag(origin, destination) + ## MultHomog(origin, destination), ofInterest = "MultHomog", family = poisson, ## data = occupationalStatus, verbose = FALSE) ## ## Coefficients of interest: ## MultHomog(origin, destination)1 ## -1.50089 ## MultHomog(origin, destination)2 ## -1.28260 ## MultHomog(origin, destination)3 ## -0.68443 ## MultHomog(origin, destination)4 ## -0.10055 ## MultHomog(origin, destination)5 ## -0.08338 ## MultHomog(origin, destination)6 ## 0.42838 ## MultHomog(origin, destination)7 ## 0.84452 ## MultHomog(., .).`origin|destination`8 ## 1.08809 ## ## Deviance: 32.56098 ## Pearson chi-squared: 31.20716 ## Residual df: 34 ## ## the definition of Exp Exp <- function(expression, inst = NULL){ list(predictors = list(substitute(expression)), term = function(predictors, ...) { paste("exp(", predictors, ")", sep = "") }, call = as.expression(match.call()), match = 1) } class(Exp) <- "nonlin" ## use to fit exponentional model x <- 1:100 y <- exp(- x / 10) set.seed(4) exp1 <- gnm(y ~ Exp(1 + x), verbose = FALSE) exp1 ## ## Call: ## gnm(formula = y ~ Exp(1 + x), verbose = FALSE) ## ## Coefficients: ## (Intercept) Exp(. + x).(Intercept) ## 1.549e-11 -7.934e-11 ## Exp(1 + .).x ## -1.000e-01 ## ## Deviance: 9.342418e-20 ## Pearson chi-squared: 9.342418e-20 ## Residual df: 97 } \keyword{ models } \keyword{ regression } \keyword{ nonlinear } gnm/man/ofInterest.Rd0000644000176200001440000000432414376140103014221 0ustar liggesusers\name{ofInterest} \alias{ofInterest} \alias{ofInterest<-} \title{ Coefficients of Interest in a Generalized Nonlinear Model } \description{ Retrieve or set the \code{"ofInterest"} component of a \code{"gnm"} (generalized nonlinear model) object. } \usage{ ofInterest(object) ofInterest(object) <- value } \arguments{ \item{object}{ an object of class \code{"gnm"}. } \item{value}{ a numeric vector of indices specifying the subset of (non-eliminated) coefficients of interest, or \code{NULL} to specify that all non-eliminated coefficients are of interest. } } \details{ The \code{"ofInterest"} component of a \code{"gnm"} object is a named numeric vector of indices specifying a subset of the non-eliminated coefficients which are of specific interest. If the \code{"ofInterest"} component is non-NULL, printed summaries of the model only show the coefficients of interest. In addition methods for \code{"gnm"} objects which may be applied to a subset of the parameters are by default applied to the coefficients of interest. These functions provide a way of extracting and replacing the \code{"ofInterest"} component. The replacement function prints the replacement value to show which parameters have been specified by \code{value}. } \value{ A named vector of indices, or \code{NULL}. } \author{ Heather Turner } \note{ Regular expression matching is performed using \code{grep} with default settings. } \seealso{ \code{\link{grep}}, \code{\link{gnm}}, \code{\link{se.gnm}}, \code{\link{getContrasts}},\code{\link{profile.gnm}}, \code{\link{confint.gnm}}} \examples{ set.seed(1) ## Fit the "UNIDIFF" mobility model across education levels unidiff <- gnm(Freq ~ educ*orig + educ*dest + Mult(Exp(educ), orig:dest), ofInterest = "[.]educ", family = poisson, data = yaish, subset = (dest != 7)) ofInterest(unidiff) ## Get all of the contrasts with educ1 in the UNIDIFF multipliers getContrasts(unidiff, ofInterest(unidiff)) ## Get estimate and se for the contrast between educ4 and educ5 in the ## UNIDIFF multiplier mycontrast <- numeric(length(coef(unidiff))) mycontrast[ofInterest(unidiff)[4:5]] <- c(1, -1) se(unidiff, mycontrast) } \keyword{ models } gnm/man/pickCoef.Rd0000644000176200001440000000556314376140103013630 0ustar liggesusers\name{pickCoef} \alias{pickCoef} \title{ Get Indices or Values of Selected Model Coefficients } \description{ Get the indices or values of a subset of non-eliminated coefficients selected via a Tk dialog or by pattern matching. } \usage{ pickCoef(object, pattern = NULL, value = FALSE, ...) } \arguments{ \item{object}{ a model object. } \item{pattern}{ character string containing a regular expression or (with \code{fixed = TRUE}) a pattern to be matched exactly. If \code{NULL}, a Tk dialog will open for coefficient selection. } \item{value}{ if \code{FALSE}, a named vector of indices, otherwise the value of the selected coefficients. } \item{\dots}{ arguments to pass on to \link[relimp]{pickFrom} if \code{pattern} is missing, otherwise \code{grep}. In particular, \code{fixed = TRUE} specifies that \code{pattern} is a string to be matched as is.} } \value{ If \code{value = FALSE} (the default), a named vector of indices, otherwise the values of the selected coefficients. If no coefficients are selected the returned value will be \code{NULL}. } \author{ Heather Turner } \seealso{ \code{\link{regexp}}, \code{\link{grep}}, \code{\link[relimp]{pickFrom}}, \code{\link{ofInterest}}} \examples{ set.seed(1) ### Extract indices for use with ofInterest ## fit the "UNIDIFF" mobility model across education levels unidiff <- gnm(Freq ~ educ*orig + educ*dest + Mult(Exp(educ), orig:dest), family = poisson, data = yaish, subset = (dest != 7)) ## set coefficients in first constituent multiplier as 'ofInterest' ## using regular expression ofInterest(unidiff) <- pickCoef(unidiff, "[.]educ") ## summarise model, only showing coefficients of interest summary(unidiff) ## get contrasts of these coefficients getContrasts(unidiff, ofInterest(unidiff)) ### Extract coefficients to use as starting values ## fit diagonal reference model with constant weights set.seed(1) ## reconstruct counts voting Labour/non-Labour count <- with(voting, percentage/100 * total) yvar <- cbind(count, voting$total - count) classMobility <- gnm(yvar ~ -1 + Dref(origin, destination), family = binomial, data = voting) ## create factors indicating movement in and out of salariat (class 1) upward <- with(voting, origin != 1 & destination == 1) downward <- with(voting, origin == 1 & destination != 1) ## extract diagonal effects from first model to use as starting values diagCoef <- pickCoef(classMobility, "Dref(., .)", fixed = TRUE, value = TRUE) ## fit separate weights for the "socially mobile" groups ## -- there are now 3 parameters for each weight socialMobility <- gnm(yvar ~ -1 + Dref(origin, destination, delta = ~ 1 + downward + upward), family = binomial, data = voting, start = c(rep(NA, 6), diagCoef)) } \keyword{ models } gnm/man/MPinv.Rd0000644000176200001440000000337214376140103013132 0ustar liggesusers\name{MPinv} \alias{MPinv} \title{ Moore-Penrose Pseudoinverse of a Real-valued Matrix } \description{ Computes the Moore-Penrose generalized inverse. } \usage{ MPinv(mat, tolerance = 100*.Machine$double.eps, rank = NULL, method = "svd") } \arguments{ \item{mat}{ a real matrix.} \item{tolerance}{ A positive scalar which determines the tolerance for detecting zeroes among the singular values. } \item{rank}{Either \code{NULL}, in which case the rank of \code{mat} is determined numerically; or an integer specifying the rank of \code{mat} if it is known. No check is made on the validity of any non-\code{NULL} value.} \item{method}{Character, one of \code{"svd", "chol"}. The specification \code{method = "chol"} is valid only for symmetric matrices. } } \details{ Real-valuedness is not checked, neither is symmetry when \code{method = "chol"}. } \value{ A matrix, with an additional attribute named \code{"rank"} containing the numerically determined rank of the matrix. } \references{ Harville, D. A. (1997). \emph{Matrix Algebra from a Statistician's Perspective}. New York: Springer. Courrieu, P. (2005). Fast computation of Moore-Penrose inverse matrices. \emph{Neural Information Processing} \bold{8}, 25--29 } \author{ David Firth and Heather Turner } \seealso{\code{\link[MASS]{ginv}}} \examples{ A <- matrix(c(1, 1, 0, 1, 1, 0, 2, 3, 4), 3, 3) B <- MPinv(A) A \%*\% B \%*\% A - A # essentially zero B \%*\% A \%*\% B - B # essentially zero attr(B, "rank") # here 2 ## demonstration that "svd" and "chol" deliver essentially the same ## results for symmetric matrices: A <- crossprod(A) MPinv(A) - MPinv(A, method = "chol") ## (essentially zero) } \keyword{ array } gnm/man/wheat.Rd0000644000176200001440000001063514376140103013211 0ustar liggesusers\name{wheat} \alias{wheat} \docType{data} \title{ Wheat Yields from Mexican Field Trials } \description{ Data from a 10-year experiment at the CIMMYT experimental station located in the Yaqui Valley near Ciudad Obregon, Sonora, Mexico --- factorial design using 24 treatments in all. In each of the 10 years the experiment was arranged in a randomized complete block design with three replicates. } \usage{wheat} \format{ A data frame with 240 observations on the following 33 variables. \describe{ \item{yield}{numeric, mean yield in kg/ha for 3 replicates} \item{year}{a factor with levels \code{1988:1997}} \item{tillage}{a factor with levels \code{T} \code{t}} \item{summerCrop}{a factor with levels \code{S} \code{s}} \item{manure}{a factor with levels \code{M} \code{m}} \item{N}{a factor with levels \code{0} \code{N} \code{n}} \item{MTD}{numeric, mean max temp sheltered (deg C) in December} \item{MTJ}{same for January} \item{MTF}{same for February} \item{MTM}{same for March} \item{MTA}{same for April} \item{mTD}{numeric, mean min temp sheltered (deg C) in December} \item{mTJ}{same for January} \item{mTF}{same for February} \item{mTM}{same for March} \item{mTA}{same for April} \item{mTUD}{numeric, mean min temp unsheltered (deg C)in December} \item{mTUJ}{same for January} \item{mTUF}{same for February} \item{mTUM}{same for March} \item{mTUA}{same for April} \item{PRD}{numeric, total precipitation (mm) in December} \item{PRJ}{same for January} \item{PRF}{same for February} \item{PRM}{same for March} \item{SHD}{numeric, mean sun hours in December} \item{SHJ}{same for January} \item{SHF}{same for February} \item{EVD}{numeric, total evaporation (mm) in December} \item{EVJ}{same for January} \item{EVF}{same for February} \item{EVM}{same for March} \item{EVA}{same for April} } } \source{ Tables A1 and A3 of Vargas, M, Crossa, J, van Eeuwijk, F, Sayre, K D and Reynolds, M P (2001). Interpreting treatment by environment interaction in agronomy trials. \emph{Agronomy Journal} \bold{93}, 949--960. } \examples{ set.seed(1) ## Scale yields to reproduce analyses reported in Vargas et al (2001) yield.scaled <- wheat$yield * sqrt(3/1000) ## Reproduce (up to error caused by rounding) Table 1 of Vargas et al (2001) aov(yield.scaled ~ year*tillage*summerCrop*manure*N, data = wheat) treatment <- interaction(wheat$tillage, wheat$summerCrop, wheat$manure, wheat$N, sep = "") mainEffects <- lm(yield.scaled ~ year + treatment, data = wheat) svdStart <- residSVD(mainEffects, year, treatment, 3) bilinear1 <- update(asGnm(mainEffects), . ~ . + Mult(year, treatment), start = c(coef(mainEffects), svdStart[,1])) bilinear2 <- update(bilinear1, . ~ . + Mult(year, treatment, inst = 2), start = c(coef(bilinear1), svdStart[,2])) bilinear3 <- update(bilinear2, . ~ . + Mult(year, treatment, inst = 3), start = c(coef(bilinear2), svdStart[,3])) anova(mainEffects, bilinear1, bilinear2, bilinear3) ## Examine the extent to which, say, mTF explains the first bilinear term bilinear1mTF <- gnm(yield.scaled ~ year + treatment + Mult(1 + mTF, treatment), family = gaussian, data = wheat) anova(mainEffects, bilinear1mTF, bilinear1) ## How to get the standard SVD representation of an AMMI-n model ## ## We'll work with the AMMI-2 model, which here is called "bilinear2" ## ## First, extract the contributions of the 5 terms in the model: ## wheat.terms <- termPredictors(bilinear2) ## ## That's a matrix, whose 4th and 5th columns are the interaction terms ## ## Combine those two interaction terms, to get the total estimated ## interaction effect: ## wheat.interaction <- wheat.terms[, 4] + wheat.terms[, 5] ## ## That's a vector, so we need to re-shape it as a 24 by 10 matrix ## ready for calculating the SVD: ## wheat.interaction <- matrix(wheat.interaction, 24, 10) ## ## Now we can compute the SVD: ## wheat.interaction.SVD <- svd(wheat.interaction) ## ## Only the first two singular values are nonzero, as expected ## (since this is an AMMI-2 model, the interaction has rank 2) ## ## So the result object can be simplified by re-calculating the SVD with ## just two dimensions: ## wheat.interaction.SVD <- svd(wheat.interaction, nu = 2, nv = 2) } \keyword{datasets} gnm/man/erikson.Rd0000644000176200001440000000616414376140103013555 0ustar liggesusers\name{erikson} \alias{erikson} \docType{data} \title{Intergenerational Class Mobility in England/Wales, France and Sweden} \description{ Intergenerational class mobility among the male populations of England and Wales; France, and Sweden. } \usage{erikson} \format{ A table of counts, with classifying factors \code{origin} (father's class; levels \code{I}, \code{II}, \code{III}, \code{IVa}, \code{IVb}, \code{IVc}, \code{V/VI}, \code{VIIa}, \code{VIIb}) \code{destination} (son's class; levels as before), and \code{country} (son's country of residence; levels \code{EW}, \code{F}, \code{S}). } \source{ Hauser, R. M. (1984) Vertical Class Mobility in England, France and Sweden. \emph{Acta Sociol.}, \bold{27(2)}, 87-110. } \references{ Erikson, R., Goldthorpe, J. H. and Portocarero, L. (1982) Social Fluidity in Industrial Nations: England, France and Sweden. \emph{Brit. J. Sociol.} \bold{33(1)}, 1-34. Xie, Y. (1992) The Log-multiplicative Layer Effect Model for Comparing Mobility Tables. \emph{Am. Sociol. Rev.} \bold{57(3)}, 380-395. } \examples{ set.seed(1) ### Collapse to 7 by 7 table as in Erikson (1982) erikson <- as.data.frame(erikson) lvl <- levels(erikson$origin) levels(erikson$origin) <- levels(erikson$destination) <- c(rep(paste(lvl[1:2], collapse = " + "), 2), lvl[3], rep(paste(lvl[4:5], collapse = " + "), 2), lvl[6:9]) erikson <- xtabs(Freq ~ origin + destination + country, data = erikson) ### Fit the models given in first half of Table 3 of Xie (1992) ## Null association between origin and destination nullModel <- gnm(Freq ~ country*origin + country*destination, family = poisson, data = erikson) ## Full interaction, common to all countries commonInteraction <- update(nullModel, ~ . + origin:destination) ## Full Interaction, different multiplier for each country multInteraction <- update(nullModel, ~ . + Mult(Exp(country), origin:destination)) ### Create array of interaction levels as in Table 2 of Xie (1992) levelMatrix <- matrix(c(2, 3, 4, 6, 5, 6, 6, 3, 3, 4, 6, 4, 5, 6, 4, 4, 2, 5, 5, 5, 5, 6, 6, 5, 1, 6, 5, 2, 4, 4, 5, 6, 3, 4, 5, 5, 4, 5, 5, 3, 3, 5, 6, 6, 5, 3, 5, 4, 1), 7, 7, byrow = TRUE) ### Fit models in second half of Table 3 in Xie (1992) ## Interaction specified by levelMatrix, common to all countries commonTopo <- update(nullModel, ~ . + Topo(origin, destination, spec = levelMatrix)) ## Interaction specified by levelMatrix, different multiplier for ## each country multTopo <- update(nullModel, ~ . + Mult(Exp(country), Topo(origin, destination, spec = levelMatrix))) ## Interaction specified by levelMatrix, different effects for ## each country separateTopo <- update(nullModel, ~ . + country:Topo(origin, destination, spec = levelMatrix)) } \keyword{datasets} gnm/man/se.gnm.Rd0000644000176200001440000000547014376140103013271 0ustar liggesusers\name{se.gnm} \alias{se.gnm} \title{ Standard Errors of Linear Parameter Combinations in gnm Models } \description{ Computes approximate standard errors for (a selection of) individual parameters or one or more linear combinations of the parameters in a \code{\link{gnm}} (generalized nonlinear model) object. By default, a check is made first on the estimability of each specified combination. } \usage{ \method{se}{gnm}(object, estimate = NULL, checkEstimability = TRUE, Vcov = NULL, dispersion = NULL, ...) } \arguments{ \item{object}{ a model object of class \code{"gnm"}.} \item{estimate}{ (optional) specifies parameters or linear combinations of parameters for which to find standard errors. In the first case either a character vector of names, a numeric vector of indices or \code{"[?]"} to select from a Tk dialog. In the second case coefficients given as a vector or the rows of a matrix, such that \code{NROW(estimate)} is equal to \code{length(coef(object))}. If \code{NULL}, standard errors are returned for all (non-eliminated) parameters in the model.} \item{checkEstimability}{ logical: should the estimability of all specified combinations be checked?} \item{Vcov}{ either NULL, or a matrix } \item{dispersion}{ either NULL, or a positive number } \item{\dots}{ possible further arguments for \code{\link{checkEstimable}}. } } \note{ In the case where \code{estimate} is a numeric vector, \code{se} will assume that indices have been specified if all the values of \code{estimate} are in \code{seq(length(coef(object))}. Where both \code{Vcov} and \code{dispersion} are supplied, the variance-covariance matrix of estimated model coefficients is taken to be \code{Vcov * dispersion}. } \value{ A data frame with two columns: \item{Estimate }{The estimated parameter combinations} \item{Std. Error }{Their estimated standard errors} If available, the column names of \code{coefMatrix} will be used to name the rows. } \author{ David Firth and Heather Turner } \seealso{ \code{\link{gnm}}, \code{\link{getContrasts}}, \code{\link{checkEstimable}}, \code{\link{ofInterest}}} \examples{ set.seed(1) ## Fit the "UNIDIFF" mobility model across education levels unidiff <- gnm(Freq ~ educ*orig + educ*dest + Mult(Exp(educ), orig:dest), ofInterest = "[.]educ", family = poisson, data = yaish, subset = (dest != 7)) ## Deviance is 200.3 ## Get estimate and se for the contrast between educ4 and educ5 in the ## UNIDIFF multiplier mycontrast <- numeric(length(coef(unidiff))) mycontrast[ofInterest(unidiff)[4:5]] <- c(1, -1) se(unidiff, mycontrast) ## Get all of the contrasts with educ5 in the UNIDIFF multipliers getContrasts(unidiff, rev(ofInterest(unidiff))) } \keyword{ models } \keyword{ regression } \keyword{ nonlinear } gnm/man/friend.Rd0000644000176200001440000000211114376140103013336 0ustar liggesusers\name{friend} \alias{friend} \docType{data} \title{ Occupation of Respondents and Their Closest Friend } \description{ Cross-classification of the occupation of respondent and that of their closest friend. Data taken from wave 10 (year 2000) of the British Household Panel Survey. } \usage{friend} \format{ A table of counts, with classifying factors \code{r} (respondent's occupational category; levels \code{1:31}) and \code{c} (friend's occupational category; levels \code{1:31}). } \source{ Chan, T.W. and Goldthorpe, J.H. (2004) Is there a status order in contemporary British society: Evidence from the occupational structure of friendship, \emph{European Sociological Review}, \bold{20}, 383--401. } \examples{ set.seed(1) ### Fit an association model with homogeneous row-column effects rc1 <- gnm(Freq ~ r + c + Diag(r,c) + MultHomog(r, c), family = poisson, data = friend) rc1 \dontrun{ ### Extend to two-component interaction rc2 <- update(rc1, . ~ . + MultHomog(r, c, inst = 2), etastart = rc1$predictors) rc2 } } \keyword{datasets} gnm/DESCRIPTION0000644000176200001440000000342614501312022012534 0ustar liggesusersPackage: gnm Title: Generalized Nonlinear Models Version: 1.1-5 Authors@R: c( person("Heather", "Turner", , "ht@heatherturner.net", role = c("aut", "cre"), comment = c(ORCID = "0000-0002-1256-3375")), person("David", "Firth", role = "aut", comment = c(ORCID = "0000-0003-0302-2312")), person("Brian", "Ripley", role = "ctb"), person("Bill", "Venables", role = "ctb"), person(c("Douglas", "M."), "Bates", role = "ctb"), person("Martin", "Maechler", role = "ctb", comment = c(ORCID = "0000-0002-8685-9910")) ) Description: Functions to specify and fit generalized nonlinear models, including models with multiplicative interaction terms such as the UNIDIFF model from sociology and the AMMI model from crop science, and many others. Over-parameterized representations of models are used throughout; functions are provided for inference on estimable parameter combinations, as well as standard methods for diagnostics etc. License: GPL-2 | GPL-3 URL: https://github.com/hturner/gnm BugReports: https://github.com/hturner/gnm/issues Depends: R (>= 3.0.0) Imports: graphics, grDevices, MASS, Matrix, methods, nnet, qvcalc (>= 0.8-3), relimp, stats, utils Suggests: logmult, testthat (>= 3.0.0), vcdExtra Encoding: UTF-8 Language: en-GB LazyData: yes Config/testthat/edition: 3 NeedsCompilation: yes Packaged: 2023-09-16 11:07:03 UTC; stspao Author: Heather Turner [aut, cre] (), David Firth [aut] (), Brian Ripley [ctb], Bill Venables [ctb], Douglas M. Bates [ctb], Martin Maechler [ctb] () Maintainer: Heather Turner Repository: CRAN Date/Publication: 2023-09-16 11:40:02 UTC gnm/build/0000755000176200001440000000000014501306127012131 5ustar liggesusersgnm/build/vignette.rds0000644000176200001440000000040514501306127014467 0ustar liggesusers}QMk@|VA*xa~A~@oCNlC=˵Ml9o޼ !BG#FS<&<!;?$KސI,M(V)A0#- /&BnWK{rX8@2cxcWA^M-o>.=W?uo3h1B촭uu;D:|=tckd?HJ&F/gnm/tests/0000755000176200001440000000000014501306127012174 5ustar liggesusersgnm/tests/testthat/0000755000176200001440000000000014501312022014023 5ustar liggesusersgnm/tests/testthat/test-doubleUnidiff.R0000644000176200001440000000151314472416204017720 0ustar liggesusers# set seed to compare to saved values (not all identifiable) suppressWarnings(RNGversion("3.0.0")) set.seed(1) test_that("double unidiff model as expected for cautres data", { doubleUnidiff <- gnm(Freq ~ election*vote + election*class*religion + Mult(Exp(election), religion:vote) + Mult(Exp(election), class:vote), family = poisson, data = cautres, verbose = FALSE) doubleUnidiff$family$dispersion <- 1 expect_equal(round(deviance(doubleUnidiff), 2), 133.04) expect_snapshot_value(doubleUnidiff, style = "serialize", ignore_formula_env = TRUE) contr <- getContrasts(doubleUnidiff, rev(pickCoef(doubleUnidiff, ", class:vote"))) expect_snapshot_value(contr, style = "serialize") }) gnm/tests/testthat/test-RChomog.R0000644000176200001440000000247314472413431016504 0ustar liggesusers# Goodman, L. A. (1979) J. Am. Stat. Assoc., 74 (367), 537–552. RChomog <- gnm(Freq ~ origin + destination + Diag(origin, destination) + MultHomog(origin, destination), family = poisson, data = occupationalStatus, verbose = FALSE) test_that("RChomog model as expected for occupationalStatus data", { # Model (8) Table 7A pearson_chi_sq <- sum(na.omit(c(residuals(RChomog, type = "pearson")))^2) expect_equal(round(deviance(RChomog), 2), 32.56) expect_equal(round(pearson_chi_sq, 2), 31.21) expect_equal(df.residual(RChomog), 34) }) # Chan, T.W. and Goldthorpe, J.H. (2004) # European Sociological Review, 20, 383–401. ### Fit an association model with homogeneous row-column effects ### Set diagonal elements to NA (rather than fitting exactly) dat <- as.data.frame(friend) id <- with(dat, r == c) dat[id,] <- NA rc2 <- gnm(Freq ~ r + c + instances(MultHomog(r, c), 2), family = poisson, data = dat, iterStart = 0, verbose = FALSE) test_that("RChomog2 model as expected for friend data", { # association models not reported in original paper pearson_chi_sq <- sum(na.omit(c(residuals(rc2, type = "pearson")))^2) expect_equal(round(deviance(rc2), 2), 1006.91) expect_equal(round(pearson_chi_sq, 2), 967.21) expect_equal(df.residual(rc2), 810) }) gnm/tests/testthat/test-logistic.R0000644000176200001440000000265114472414367016772 0ustar liggesuserstol <- 1e-5 DNase1 <- subset(DNase, Run == 1) ## fit logistic model using nls mod_nls <- nls(density ~ SSlogis( log(conc), Asym, xmid, scal ), data = DNase, subset = Run == 1) ## fit using basic nonlin terms mod_basic <- gnm(density ~ -1 + Mult(1, Inv(Const(1) + Exp(Mult(1 + offset(-log(conc)), Inv(1))))), start = c(NA, 0, 1), data = DNase1, verbose = FALSE) ## fit using Logistic() Logistic <- function(x, inst = NULL){ list(predictors = list(Asym = 1, xmid = 1, scal = 1), variables = list(substitute(x)), term = function(predLabels, varLabels) { paste(predLabels[1], "/(1 + exp((", predLabels[2], "-", varLabels[1], ")/", predLabels[3], "))") }, start = function(theta){ theta[3] <- 1 theta } ) } class(Logistic) <- "nonlin" mod_logistic <- gnm(density ~ -1 + Logistic(log(conc)), data = DNase1, verbose = FALSE) test_that("logistic with gnm equivalent to nls", { expect_equal(unclass(coef(mod_basic)), coef(mod_nls), tolerance = tol, ignore_attr = TRUE) expect_equal(unclass(coef(mod_logistic)), coef(mod_nls), tolerance = tol, ignore_attr = TRUE) expect_equal(coef(mod_basic), coef(mod_logistic), tolerance = tol, ignore_attr = TRUE) }) gnm/tests/testthat/test-hskewL.R0000644000176200001440000000733514472413323016405 0ustar liggesusers# some tests from tests/hskewL.R in logmult package test_that("gnmFit handles extra linear constraints with eliminate", { if (requireNamespace("logmult")){ data(ocg1973, package = "logmult") tab <- array(ocg1973, dim=c(nrow(ocg1973), ncol(ocg1973), 2)) # model contains extra linear constraints model <- logmult::hmskewL(tab[5:1, 5:1,], weighting="uniform", start=NA) ass <- model$assoc # First score for Farmers is slightly different from original article expect_equal(round(ass$row[,,1] * sqrt(ass$phi[1,1]), d=2)[5:1,], matrix(c(-0.08, -0.2, -0.23, -0.11, 0.61, 0.34, 0.3, -0.13, -0.51, 0), 5, 2), ignore_attr = TRUE) expect_equal(round(ass$row[,,1] * sqrt(ass$phi[2,1]), d=2)[5:1,], matrix(c(-0.08, -0.2, -0.23, -0.11, 0.61, 0.34, 0.3, -0.13, -0.51, 0), 5, 2), ignore_attr = TRUE) } }) test_that("gnmFit handles computationally singular initial linear fit ", { if (requireNamespace("logmult")){ # EGP class of cohabiting spouses where one is 30-60 # (last occupation for inactive persons) # French Labour Force Surveys, 1969 and 2011 tab2 <- structure( c(261L, 43L, 21L, 5L, 7L, 26L, 5L, 16L, 17L, 7L, 1L, 483L, 394L, 215L, 53L, 58L, 117L, 37L, 185L, 232L, 104L, 11L, 565L, 457L, 528L, 139L, 116L, 201L, 19L, 469L, 788L, 368L, 14L, 148L, 195L, 399L, 306L, 96L, 213L, 50L, 321L, 1327L, 1344L, 123L, 17L, 9L, 11L, 3L, 33L, 37L, 4L, 12L, 13L, 11L, 1L, 165L, 70L, 105L, 77L, 573L, 878L, 55L, 78L, 188L, 181L, 11L, 9L, 3L, 34L, 7L, 23L, 36L, 1918L, 13L, 88L, 228L, 87L, 26L, 10L, 16L, 3L, 0L, 1L, 2L, 27L, 31L, 24L, 1L, 88L, 115L, 191L, 57L, 50L, 98L, 32L, 201L, 552L, 493L, 19L, 49L, 115L, 317L, 122L, 58L, 110L, 38L, 316L, 1301L, 1622L, 66L, 0L, 3L, 9L, 6L, 4L, 13L, 15L, 7L, 56L, 135L, 143L, 919L, 189L, 54L, 32L, 74L, 64L, 19L, 113L, 86L, 40L, 3L, 875L, 519L, 183L, 97L, 129L, 129L, 62L, 329L, 343L, 195L, 12L, 513L, 330L, 271L, 126L, 188L, 145L, 70L, 382L, 578L, 388L, 15L, 250L, 236L, 180L, 217L, 126L, 155L, 52L, 356L, 965L, 634L, 42L, 28L, 8L, 10L, 5L, 59L, 14L, 2L, 20L, 30L, 6L, 1L, 61L, 30L, 20L, 7L, 52L, 106L, 4L, 23L, 38L, 17L, 2L, 4L, 1L, 2L, 4L, 6L, 3L, 135L, 4L, 7L, 8L, 2L, 53L, 19L, 7L, 3L, 8L, 6L, 3L, 39L, 31L, 22L, 2L, 28L, 44L, 34L, 20L, 19L, 16L, 11L, 64L, 165L, 105L, 9L, 41L, 35L, 42L, 52L, 20L, 38L, 10L, 111L, 299L, 309L, 12L, 1L, 3L, 2L, 2L, 0L, 4L, 25L, 4L, 32L, 19L, 16L), .Dim = c(11L, 11L, 2L), class="table", .Dimnames = structure( list(H = c("I", "II", "IIIa", "IIIb", "IVa", "IVb", "IVc", "V", "VI", "VIIa", "VIIb"), F = c("I", "II", "IIIa", "IIIb", "IVa", "IVb", "IVc", "V", "VI", "VIIa", "VIIb"), T = c("1969", "2011")), .Names = c("M", "W", "T"))) # requires use of ridge in glm.fit.e model2 <- logmult::hmskewL(tab2, start=NA) expect_equal(round(c(model2$assoc$phi), 2), c(0.18, 0.04, 0.18, 0.04)) expect_equal(round(c(model2$assoc$row), 2), c(1.97, 1.38, 0.05, -0.24, -1.02, 0.57, -0.79, -0.16, -0.14, -1.32, -1.56, 0, -0.03, -0.94, 0.98, -0.10, 0.71, 2.65, -0.86, -0.66, -0.77, 0.79)) } })gnm/tests/testthat/test-Symm.R0000644000176200001440000000403514472413507016073 0ustar liggesuserstol <- 1e-4 test_that("Symm works with >2 factors", { # Table 8.5, Analysis of Ordinal Categorical Data, Agresti 2010 p242 df8_5 <- data.frame( A = rep(1:3, each = 9), B = rep(rep(1:3, each = 3), times = 3), C = rep(1:3, times = 9), Freq = c(6, 4, 5, 3, 13, 10, 1, 8, 14, 2, 3, 2, 1, 3, 1, 2, 1, 2, 1, 0, 2, 0, 0, 0, 1, 1, 0) ) ind <- expand.grid(1:3, 1:3, 1:3) ord_ind <- t(apply(ind, 1, sort)) ref <- do.call("paste", c(as.data.frame(ord_ind), sep = ":")) expect_equal(with(df8_5, Symm(A, B, C)), as.factor(ref)) # with named levels not in alphabetical order lev <- c("Red", "Blue", "Green") df8_5_nm <- data.frame( A = factor(rep(lev, each = 9), lev = lev), B = factor(rep(rep(lev, each = 3), times = 3), lev = lev), C = factor(rep(lev, times = 9), lev = lev), Freq = c(6, 4, 5, 3, 13, 10, 1, 8, 14, 2, 3, 2, 1, 3, 1, 2, 1, 2, 1, 0, 2, 0, 0, 0, 1, 1, 0) ) res <- with(df8_5_nm, Symm(A, B, C)) ord_lev <- apply(ord_ind, 2, function(x) lev[x]) ref <- do.call("paste", c(as.data.frame(ord_lev), sep = ":")) ref <- factor(ref, unique(ref)) expect_equal(with(df8_5_nm, Symm(A, B, C)), ref) # still works if factor elements are not in order scramble <- c(5, 12, 10, 23, 11, 15, 22, 6, 7, 21, 8, 19, 20, 25, 17, 16, 1, 18, 2, 14, 24, 26, 3, 13, 27, 4, 9) expect_equal(with(df8_5_nm[scramble,], Symm(A, B, C)), ref[scramble]) # works for partial data - 3 x 3 x 2 array ref2 <- ref[df8_5_nm$C != "Green"] expect_equal(with(subset(df8_5_nm, C != "Green"), Symm(A, B, C)), droplevels(factor(ref2, levels(ref)))) # works for partial data - 2 x 2 x 3 array ref3 <- ref[df8_5_nm$A != "Green" & df8_5_nm$B != "Green"] expect_equal(with(subset(df8_5_nm, A != "Green" & B != "Green"), Symm(A, B, C)), droplevels(factor(ref3, levels(ref)))) }) gnm/tests/testthat/test-bwt.R0000644000176200001440000000206314472413647015746 0ustar liggesuserstol <- 1e-4 library(MASS) example(birthwt, echo = FALSE) library(nnet) bwt.mu <- multinom(low ~ ., data = bwt, trace = FALSE) ## Equivalent using gnm - include unestimable main effects in model so ## that interactions with low0 automatically set to zero, else could use ## 'constrain' argument. bwtLong <- expandCategorical(bwt, "low", group = FALSE) bwt.po <- gnm(count ~ low*(. - id), eliminate = id, family = "poisson", data = bwtLong, verbose = FALSE) ## Equivalent using glm bwt.po2 <- glm(formula = count ~ -1 + id + low * (. -id), family = "poisson", data = bwtLong) test_that("gnm agrees with multinom", { cf0 <- coef(bwt.mu) cf1 <- na.omit(coef(bwt.po)) expect_equal(cf0, cf1, tolerance = tol, ignore_attr = TRUE) expect_equal(deviance(bwt.mu), deviance(bwt.po), tolerance = tol, ignore_attr = TRUE) }) test_that("gnm agrees with glm", { cf1 <- coef(bwt.po) all_coef1 <- c(attr(cf1, "eliminated"), cf1) expect_equal(all_coef1, coef(bwt.po2), tolerance = tol, ignore_attr = TRUE) }) gnm/tests/testthat/test-diagonalRef.R0000644000176200001440000000236514472413012017354 0ustar liggesuserscount <- with(voting, percentage/100 * total) yvar <- cbind(count, voting$total - count) # standard Dref model classMobility <- gnm(yvar ~ Dref(origin, destination), constrain = "delta1", family = binomial, data = voting, verbose = FALSE) # separate weights for in and out of class 1 upward <- with(voting, origin != 1 & destination == 1) downward <- with(voting, origin == 1 & destination != 1) socialMobility <- gnm(yvar ~ Dref(origin, destination, delta = ~ 1 + downward + upward), constrain = "delta1", family = binomial, data = voting, verbose = FALSE) test_that("standard Dref model as expected for voting data", { expect_equal(round(deviance(classMobility), 2), 21.22) expect_equal(df.residual(classMobility), 19) p <- DrefWeights(classMobility)$origin["weight"] expect_equal(round(p, 2), 0.44, ignore_attr = TRUE) }) test_that("modified Dref model as expected for voting data", { expect_equal(round(deviance(socialMobility), 2), 18.97) expect_equal(df.residual(socialMobility), 17) p <- DrefWeights(socialMobility)$origin[, "weight"] expect_equal(round(p, 2), c(0.40, 0.60, 0.39), ignore_attr = TRUE) }) gnm/tests/testthat/test-gammi.R0000644000176200001440000000300214472413163016227 0ustar liggesuserstol <- 1e-4 # Vargas, M et al (2001). Interpreting treatment by environment interaction in # agronomy trials. Agronomy Journal 93, 949–960. yield.scaled <- wheat$yield * sqrt(3/1000) treatment <- interaction(wheat$tillage, wheat$summerCrop, wheat$manure, wheat$N, sep = "") mainEffects <- gnm(yield.scaled ~ year + treatment, data = wheat, verbose = FALSE) svdStart <- residSVD(mainEffects, year, treatment, 3) bilinear1 <- update(asGnm(mainEffects), . ~ . + Mult(year, treatment), start = c(coef(mainEffects), svdStart[,1])) bilinear2 <- update(bilinear1, . ~ . + Mult(year, treatment, inst = 2), start = c(coef(bilinear1), svdStart[,2])) bilinear3 <- update(bilinear2, . ~ . + Mult(year, treatment, inst = 3), start = c(coef(bilinear2), svdStart[,3])) test_that("bilinear model as expected for wheat data", { # check vs AMMI analysis of the T × E, end of Table 1 txe <- anova(mainEffects, bilinear1, bilinear2, bilinear3) # year x treatment expect_equal(deviance(mainEffects), 279520, tolerance = tol) expect_equal(df.residual(mainEffects), 207) # diff for bilinear models expect_equal(txe$Deviance, c(NA, 151130, 39112, 36781), tolerance = tol) expect_equal(txe$Df, c(NA, 31, 29, 27)) # "Deviations" expect_equal(deviance(bilinear3), 52497, tolerance = tol) expect_equal(df.residual(bilinear3), 120) }) gnm/tests/testthat/test-glm.R0000644000176200001440000000313414472413234015721 0ustar liggesusers# From issue #21 test_that("gnmFit handles linear fit provided optimal starting values", { Mean <- c(1237.1, 5605.55, 801.45, 2713.55, 570.4, 193.1, 97.2, 11.05, 202.5, 7031.75, 2679.6, 1252.55, 735.6, 4088.05, 9818.7, 4486.45, 3104.85, 1189.3, 217.6, 603.2, 28.45) VC <- c(33696.08, 296681.045, 24842.205, 31777.205, 1705.28, 950.48, 2693.78, 244.205, 3026.42, 17578.125, 3.92, 8281.845, 1280.18, 76479.605, 4665.78, 130101.005, 0.125, 9800, 18355.28, 1152, 1618.805) dat <- data.frame(Mean=Mean,VC=VC) coeffs <- c(beta1 = 4792.94726157285, beta2 = 0.00366035757993686) # gnm with linear terms (calls glm.fit) fitglm <- gnm(VC ~ I(Mean^2) , family = Gamma(link = "identity"), data = data.frame(dat), start=coeffs, trace=TRUE) # gnm with equivalent "nonlin" term powfun <- function(x) { list( predictors=list(beta1 = 1, beta2 = 1), variables=list(substitute(x)), term=function(predictors,variables){ paste( predictors[1],"+",predictors[2],"*",variables[1],"^2") } ) } class(powfun) <- "nonlin" form <- VC ~ powfun(Mean)-1 fitgnm <- gnm(formula = form, family = Gamma(link = "identity"), data = data.frame(dat), start=coeffs, trace=TRUE) expect_equal(coeffs, fitgnm$coefficients, ignore_attr = TRUE) # glm always does an extra iteration, even from previously converged fit expect_equal(coef(fitglm), coef(fitgnm), tolerance = 1e-6, ignore_attr = TRUE) })gnm/tests/testthat/test-RC.R0000644000176200001440000000337114472413420015446 0ustar liggesusers# set seed to fix sign of coef suppressWarnings(RNGversion("3.0.0")) set.seed(1) # Agresti A (2002).Categorical Data Analysis. 2nd edition mentalHealth$MHS <- C(mentalHealth$MHS, treatment) mentalHealth$SES <- C(mentalHealth$SES, treatment) RC1model <- gnm(count ~ SES + MHS + Mult(-1 + SES, -1 + MHS), family = poisson, data = mentalHealth, verbose = FALSE) test_that("RC model as expected for mentalHealth data", { # compare vs results in sec 9.6.2 pearson_chi_sq <- sum(na.omit(c(residuals(RC1model, type = "pearson")))^2) expect_equal(round(pearson_chi_sq, 1), 3.6) expect_equal(df.residual(RC1model), 8) # normalize as in Agresti's eqn 9.15 rowProbs <- with(mentalHealth, tapply(count, SES, sum) / sum(count)) colProbs <- with(mentalHealth, tapply(count, MHS, sum) / sum(count)) mu <- getContrasts(RC1model, pickCoef(RC1model, "[.]SES"), ref = rowProbs, scaleRef = rowProbs, scaleWeights = rowProbs) nu <- getContrasts(RC1model, pickCoef(RC1model, "[.]MHS"), ref = colProbs, scaleRef = colProbs, scaleWeights = colProbs) # change of scale expect_equal(round(-mu$qvframe$Estimate, 2), c(-1.11, -1.12, -0.37, 0.03, 1.01, 1.82)) expect_equal(round(-nu$qvframe$Estimate, 2), c(-1.68, -0.14, 0.14, 1.41)) # association parameter rowScores <- coef(RC1model)[10:15] colScores <- coef(RC1model)[16:19] rowScores <- rowScores - sum(rowScores * rowProbs) colScores <- colScores - sum(colScores * colProbs) beta1 <- sqrt(sum(rowScores^2 * rowProbs)) beta2 <- sqrt(sum(colScores^2 * colProbs)) expect_equal(round(beta1 * beta2, 2), 0.17) }) gnm/tests/testthat/_snaps/0000755000176200001440000000000014472415652015332 5ustar liggesusersgnm/tests/testthat/_snaps/biplot.md0000644000176200001440000064566614472416222017166 0ustar liggesusers# biplot model as expected for barley data WAoAAAACAAQCAQACAwAAAAMTAAAAHgAAAAYAAAABAAQACQAAAANnbm0AAAQCAAAAAQAEAAkA AAAHZm9ybXVsYQAAAAYAAAABAAQACQAAAAF+AAAAAgAAAAEABAAJAAAAAXkAAAACAAAABgAA AAEABAAJAAAAASsAAAACAAAABgAAAAEABAAJAAAAAS0AAAACAAAADgAAAAE/8AAAAAAAAAAA AP4AAAACAAAABgAAAAEABAAJAAAACWluc3RhbmNlcwAAAAIAAAAGAAAAAQAEAAkAAAAETXVs dAAAAAIAAAABAAQACQAAAARzaXRlAAAAAgAAAAEABAAJAAAAB3ZhcmlldHkAAAD+AAAAAgAA AA4AAAABQAAAAAAAAAAAAAD+AAAA/gAAAP4AAAQCAAAAAQAEAAkAAAAGZmFtaWx5AAAAAQAE AAkAAAAKd2VkZGVyYnVybgAABAIAAAABAAQACQAAAARkYXRhAAAAAQAEAAkAAAAGYmFybGV5 AAAEAgAAAAEABAAJAAAAB3ZlcmJvc2UAAAAKAAAAAQAAAAAAAAD+AAADBgAABAIAAAABAAQA CQAAAAVjbGFzcwAAABAAAAABAAQACQAAAAdmb3JtdWxhAAAEAgAAAAEABAAJAAAADC5FbnZp cm9ubWVudAAAAAQAAAAAAAAABAAAAAAAAAAEAAAAAAAAAPkAAAAAAAAAAgAEAAkAAAADZ25t AAQACQAAAAUxLjEuNAAAAP4AAAATAAAAHQAAAP4AAAD+AAAA/gAAAP4AAAD+AAAA/gAAAP4A AAD+AAAA/gAAAP4AAAD+AAAA/gAAAP4AAAD+AAAA/gAAAP4AAAD+AAAA/gAAAP4AAAD+AAAA /gAAAP4AAAD+AAAA/gAAAP4AAAD+AAAA/gAAAP4AAAD+AAAA/gAAAP4AAAATAAAAHQAAAP4A AAD+AAAA/gAAAP4AAAD+AAAA/gAAAP4AAAD+AAAA/gAAAP4AAAD+AAAA/gAAAP4AAAD+AAAA /gAAAP4AAAD+AAAA/gAAAP4AAAD+AAAA/gAAAP4AAAD+AAAA/gAAAP4AAAD+AAAA/gAAAP4A AAD+AAAA/gAAAP4AAAATAAAAHQAAAP4AAAD+AAAA/gAAAP4AAAD+AAAA/gAAAP4AAAD+AAAA /gAABAIAAAABAAQACQAAAAtiaXBsb3RNb2RlbAAAAxMAAAAeAAAABgAAAf8AAAQCAAAC/wAA AAYAAAP/AAAAAgAABP8AAAACAAAABgAABf8AAAACAAAABgAABv8AAAACAAAADgAAAAE/8AAA AAAAAAAAAP4AAAACAAAABgAAB/8AAAACAAAABgAACP8AAAACAAAJ/wAAAAIAAAr/AAAA/gAA AAIAAAAOAAAAAUAAAAAAAAAAAAAA/gAAAP4AAAD+AAAEAgAAC/8AAAz/AAAEAgAADf8AAA7/ AAAEAgAAD/8AAAAKAAAAAQAAAAAAAAD+AAADBgAABAIAABD/AAAAEAAAAAEABAAJAAAAB2Zv cm11bGEAAAQCAAAR/wAAEv8AAAD+AAAD/wAAAAIAAAT/AAAAAgAAAAYAAAX/AAAAAgAAAAYA AAb/AAAAAgAAAA4AAAABP/AAAAAAAAAAAAD+AAAAAgAAAAYAAAf/AAAAAgAAAAYAAAj/AAAA AgAACf8AAAACAAAK/wAAAP4AAAACAAAADgAAAAFAAAAAAAAAAAAAAP4AAAD+AAAA/gAAAwYA AAQCAAAAAQAEAAkAAAAJdmFyaWFibGVzAAAABgAAAAEABAAJAAAABGxpc3QAAAACAAAE/wAA AAIAAAn/AAAAAgAACv8AAAD+AAAEAgAAAAEABAAJAAAAB2ZhY3RvcnMAAAINAAAABgAAAAAA AAABAAAAAAAAAAAAAAAAAAAAAQAABAIAAAABAAQACQAAAANkaW0AAAANAAAAAgAAAAMAAAAC AAAEAgAAAAEABAAJAAAACGRpbW5hbWVzAAAAEwAAAAIAAAAQAAAAAwAEAAkAAAABeQAEAAkA AAAdTXVsdChzaXRlLCB2YXJpZXR5LCBpbnN0ID0gMSkABAAJAAAAHU11bHQoc2l0ZSwgdmFy aWV0eSwgaW5zdCA9IDIpAAAAEAAAAAIABAAJAAAAHU11bHQoc2l0ZSwgdmFyaWV0eSwgaW5z dCA9IDEpAAQACQAAAB1NdWx0KHNpdGUsIHZhcmlldHksIGluc3QgPSAyKQAAAP4AAAQCAAAA AQAEAAkAAAALdGVybS5sYWJlbHMAAAAQAAAAAgAEAAkAAAAdTXVsdChzaXRlLCB2YXJpZXR5 LCBpbnN0ID0gMSkABAAJAAAAHU11bHQoc2l0ZSwgdmFyaWV0eSwgaW5zdCA9IDIpAAAEAgAA AAEABAAJAAAABW9yZGVyAAAADQAAAAIAAAABAAAAAQAABAIAAAABAAQACQAAAAlpbnRlcmNl cHQAAAANAAAAAQAAAAAAAAQCAAAAAQAEAAkAAAAIcmVzcG9uc2UAAAANAAAAAQAAAAEAAAQC AAAQ/wAAABAAAAADAAQACQAAAAhnbm1UZXJtcwAEAAkAAAAFdGVybXMABAAJAAAAB2Zvcm11 bGEAAAQCAAAR/wAAEv8AAAQCAAAAAQAEAAkAAAAJZWxpbWluYXRlAAAACgAAAAEAAAAAAAAE AgAAAAEABAAJAAAABm9mZnNldAAAAA0AAAAAAAAEAgAAAAEABAAJAAAACHByZWR2YXJzAAAA BgAAGP8AAAACAAAE/wAAAAIAAAn/AAAAAgAACv8AAAD+AAAEAgAAAAEABAAJAAAACnVuaXRM YWJlbHMAAAAQAAAABAAEAAkAAAAEc2l0ZQAEAAkAAAAHdmFyaWV0eQAEAAkAAAAEc2l0ZQAE AAkAAAAHdmFyaWV0eQAABAIAAAABAAQACQAAAAZjb21tb24AAAAKAAAABAAAAAAAAAAAAAAA AAAAAAAAAAQCAAAAAQAEAAkAAAAFYmxvY2sAAAAOAAAABD/wAAAAAAAAQAAAAAAAAABACAAA AAAAAEAQAAAAAAAAAAAEAgAAAAEABAAJAAAABW1hdGNoAAAACgAAAAQAAAABAAAAAQAAAAEA AAABAAAEAgAAAAEABAAJAAAABmFzc2lnbgAAAA0AAAAEAAAAAQAAAAEAAAACAAAAAgAABAIA AAABAAQACQAAAAR0eXBlAAAAEAAAAAQABAAJAAAAB1NwZWNpYWwABAAJAAAAB1NwZWNpYWwA BAAJAAAAB1NwZWNpYWwABAAJAAAAB1NwZWNpYWwAAAQCAAAAAQAEAAkAAAAMcHJlZml4TGFi ZWxzAAAAEAAAAAQABAAJAAAAG011bHQoLiwgdmFyaWV0eSwgaW5zdCA9IDEpLgAEAAkAAAAY TXVsdChzaXRlLCAuLCBpbnN0ID0gMSkuAAQACQAAABtNdWx0KC4sIHZhcmlldHksIGluc3Qg PSAyKS4ABAAJAAAAGE11bHQoc2l0ZSwgLiwgaW5zdCA9IDIpLgAABAIAAAABAAQACQAAAAl2 YXJMYWJlbHMAAAAQAAAABAAEAAkAAAAGMTBzaXRlAAQACQAAAAkxMXZhcmlldHkABAAJAAAA BjIwc2l0ZQAEAAkAAAAJMjF2YXJpZXR5AAAEAgAAAAEABAAJAAAABXN0YXJ0AAAAEwAAAAIA AAD+AAAA/gAABAIAAAABAAQACQAAAAlwcmVkaWN0b3IAAAITAAAAAgAAAAYAAAABAAQACQAA AAEqAAAAAgAAAAYAAAABAAQACQAAAAEoAAAAAgAAAAEABAAJAAAABjEwc2l0ZQAAAP4AAAAC AAAABgAALv8AAAACAAAAAQAEAAkAAAAJMTF2YXJpZXR5AAAA/gAAAP4AAAAGAAAt/wAAAAIA AAAGAAAu/wAAAAIAAAABAAQACQAAAAYyMHNpdGUAAAD+AAAAAgAAAAYAAC7/AAAAAgAAAAEA BAAJAAAACTIxdmFyaWV0eQAAAP4AAAD+AAAEAgAAAAEABAAJAAAABW5hbWVzAAAAEAAAAAIA BAAJAAAAHU11bHQoc2l0ZSwgdmFyaWV0eSwgaW5zdCA9IDEpAAQACQAAAB1NdWx0KHNpdGUs IHZhcmlldHksIGluc3QgPSAyKQAAAP4AAAD+AAAD/wAAAAIAAAT/AAAAAgAAAAYAAAb/AAAA AgAAAAYAAAX/AAAAAgAAAAYAAAj/AAAAAgAACf8AAAACAAAK/wAABAIAAAABAAQACQAAAARp bnN0AAAADgAAAAE/8AAAAAAAAAAAAP4AAAACAAAABgAACP8AAAACAAAJ/wAAAAIAAAr/AAAE AgAANP8AAAAOAAAAAUAAAAAAAAAAAAAA/gAAAP4AAAACAAAADgAAAAE/8AAAAAAAAAAAAP4A AAD+AAADEwAAAAMAAAAOAAAAWj9AYk3S8an8AAAAAAAAAAAAAAAAAAAAAD9QYk3S8an8P2R6 4UeuFHs/QGJN0vGp/D90euFHrhR7P4qfvnbItDk/jrhR64UeuD+OuFHrhR64AAAAAAAAAAA/ QGJN0vGp/D9AYk3S8an8P2iTdLxqfvo/frhR64UeuD9ok3S8an76P564UeuFHrg/szMzMzMz Mz+EeuFHrhR7P8BBiTdLxqg/iZmZmZmZmj+JmZmZmZmaP5mZmZmZmZo/xT987ZFocz+ZmZmZ mZmaP5mZmZmZmZoAAAAAAAAAAD/JmZmZmZmaP9gAAAAAAAA/0MzMzMzMzT+ZmZmZmZmaP3R6 4UeuFHs/Gjbi6xxDLT+euFHrhR64P5mZmZmZmZo/Gjbi6xxDLT/QAAAAAAAAP+GZmZmZmZo/ qZmZmZmZmj/ZmZmZmZmaP6wo9cKPXCk/hHrhR64Uez+uuFHrhR64P4aHKwIMSbo/mZmZmZmZ mj+0euFHrhR7P8UeuFHrhR8/0uFHrhR64T/JmZmZmZmaP9vXCj1wo9c/hHrhR64Uez+pmZmZ mZmaP6mZmZmZmZo/qZmZmZmZmj+pmZmZmZmaP6mZmZmZmZo/uZmZmZmZmj+pmZmZmZmaP+AA AAAAAAA/6AAAAAAAAD+pmZmZmZmaP1BiTdLxqfw/qZmZmZmZmj+pmZmZmZmaP+AAAAAAAAA/ uZmZmZmZmj/gAAAAAAAAP9AAAAAAAAA/4AAAAAAAAD/oAAAAAAAAP6mZmZmZmZo/uZmZmZmZ mj+pmZmZmZmaP6mZmZmZmZo/0AAAAAAAAD/oAAAAAAAAP+AAAAAAAAA/6AAAAAAAAD/oAAAA AAAAP+gAAAAAAAA/xmZmZmZmZj/QAAAAAAAAP9szMzMzMzM/4AAAAAAAAD/YAAAAAAAAP+5m ZmZmZmY/5AAAAAAAAD/uZmZmZmZmP+5mZmZmZmY/7mZmZmZmZgAAAw0AAABaAAAAAQAAAAEA AAABAAAAAQAAAAEAAAABAAAAAQAAAAEAAAABAAAAAQAAAAIAAAACAAAAAgAAAAIAAAACAAAA AgAAAAIAAAACAAAAAgAAAAIAAAADAAAAAwAAAAMAAAADAAAAAwAAAAMAAAADAAAAAwAAAAMA AAADAAAABAAAAAQAAAAEAAAABAAAAAQAAAAEAAAABAAAAAQAAAAEAAAABAAAAAUAAAAFAAAA BQAAAAUAAAAFAAAABQAAAAUAAAAFAAAABQAAAAUAAAAGAAAABgAAAAYAAAAGAAAABgAAAAYA AAAGAAAABgAAAAYAAAAGAAAABwAAAAcAAAAHAAAABwAAAAcAAAAHAAAABwAAAAcAAAAHAAAA BwAAAAgAAAAIAAAACAAAAAgAAAAIAAAACAAAAAgAAAAIAAAACAAAAAgAAAAJAAAACQAAAAkA AAAJAAAACQAAAAkAAAAJAAAACQAAAAkAAAAJAAAEAgAAAAEABAAJAAAABmxldmVscwAAABAA AAAJAAQACQAAAAFBAAQACQAAAAFCAAQACQAAAAFDAAQACQAAAAFEAAQACQAAAAFFAAQACQAA AAFGAAQACQAAAAFHAAQACQAAAAFIAAQACQAAAAFJAAAEAgAAEP8AAAAQAAAAAQAEAAkAAAAG ZmFjdG9yAAAA/gAAAw0AAABaAAAAAQAAAAIAAAADAAAABAAAAAUAAAAGAAAABwAAAAgAAAAJ AAAACgAAAAEAAAACAAAAAwAAAAQAAAAFAAAABgAAAAcAAAAIAAAACQAAAAoAAAABAAAAAgAA AAMAAAAEAAAABQAAAAYAAAAHAAAACAAAAAkAAAAKAAAAAQAAAAIAAAADAAAABAAAAAUAAAAG AAAABwAAAAgAAAAJAAAACgAAAAEAAAACAAAAAwAAAAQAAAAFAAAABgAAAAcAAAAIAAAACQAA AAoAAAABAAAAAgAAAAMAAAAEAAAABQAAAAYAAAAHAAAACAAAAAkAAAAKAAAAAQAAAAIAAAAD AAAABAAAAAUAAAAGAAAABwAAAAgAAAAJAAAACgAAAAEAAAACAAAAAwAAAAQAAAAFAAAABgAA AAcAAAAIAAAACQAAAAoAAAABAAAAAgAAAAMAAAAEAAAABQAAAAYAAAAHAAAACAAAAAkAAAAK AAAEAgAANf8AAAAQAAAACgAEAAkAAAABMQAEAAkAAAABMgAEAAkAAAABMwAEAAkAAAABNAAE AAkAAAABNQAEAAkAAAABNgAEAAkAAAABNwAEAAkAAAABOAAEAAkAAAABOQAEAAkAAAABWAAA BAIAABD/AAAAEAAAAAEABAAJAAAABmZhY3RvcgAAAP4AAAQCAAAz/wAAABAAAAADAAQACQAA AAF5AAQACQAAAARzaXRlAAQACQAAAAd2YXJpZXR5AAAEAgAAEP8AAAAQAAAAAQAEAAkAAAAK ZGF0YS5mcmFtZQAABAIAAAABAAQACQAAAAlyb3cubmFtZXMAAAAQAAAAWgAEAAkAAAABMQAE AAkAAAABMgAEAAkAAAABMwAEAAkAAAABNAAEAAkAAAABNQAEAAkAAAABNgAEAAkAAAABNwAE AAkAAAABOAAEAAkAAAABOQAEAAkAAAACMTAABAAJAAAAAjExAAQACQAAAAIxMgAEAAkAAAAC MTMABAAJAAAAAjE0AAQACQAAAAIxNQAEAAkAAAACMTYABAAJAAAAAjE3AAQACQAAAAIxOAAE AAkAAAACMTkABAAJAAAAAjIwAAQACQAAAAIyMQAEAAkAAAACMjIABAAJAAAAAjIzAAQACQAA AAIyNAAEAAkAAAACMjUABAAJAAAAAjI2AAQACQAAAAIyNwAEAAkAAAACMjgABAAJAAAAAjI5 AAQACQAAAAIzMAAEAAkAAAACMzEABAAJAAAAAjMyAAQACQAAAAIzMwAEAAkAAAACMzQABAAJ AAAAAjM1AAQACQAAAAIzNgAEAAkAAAACMzcABAAJAAAAAjM4AAQACQAAAAIzOQAEAAkAAAAC NDAABAAJAAAAAjQxAAQACQAAAAI0MgAEAAkAAAACNDMABAAJAAAAAjQ0AAQACQAAAAI0NQAE AAkAAAACNDYABAAJAAAAAjQ3AAQACQAAAAI0OAAEAAkAAAACNDkABAAJAAAAAjUwAAQACQAA AAI1MQAEAAkAAAACNTIABAAJAAAAAjUzAAQACQAAAAI1NAAEAAkAAAACNTUABAAJAAAAAjU2 AAQACQAAAAI1NwAEAAkAAAACNTgABAAJAAAAAjU5AAQACQAAAAI2MAAEAAkAAAACNjEABAAJ AAAAAjYyAAQACQAAAAI2MwAEAAkAAAACNjQABAAJAAAAAjY1AAQACQAAAAI2NgAEAAkAAAAC NjcABAAJAAAAAjY4AAQACQAAAAI2OQAEAAkAAAACNzAABAAJAAAAAjcxAAQACQAAAAI3MgAE AAkAAAACNzMABAAJAAAAAjc0AAQACQAAAAI3NQAEAAkAAAACNzYABAAJAAAAAjc3AAQACQAA AAI3OAAEAAkAAAACNzkABAAJAAAAAjgwAAQACQAAAAI4MQAEAAkAAAACODIABAAJAAAAAjgz AAQACQAAAAI4NAAEAAkAAAACODUABAAJAAAAAjg2AAQACQAAAAI4NwAEAAkAAAACODgABAAJ AAAAAjg5AAQACQAAAAI5MAAAAP4AAAD+AAAA/gAAAP4AAAITAAAAAgAAABAAAAAJAAQACQAA AAFBAAQACQAAAAFCAAQACQAAAAFDAAQACQAAAAFEAAQACQAAAAFFAAQACQAAAAFGAAQACQAA AAFHAAQACQAAAAFIAAQACQAAAAFJAAAAEAAAAAoABAAJAAAAATEABAAJAAAAATIABAAJAAAA ATMABAAJAAAAATQABAAJAAAAATUABAAJAAAAATYABAAJAAAAATcABAAJAAAAATgABAAJAAAA ATkABAAJAAAAAVgAAAQCAAAz/wAAABAAAAACAAQACQAAAARzaXRlAAQACQAAAAd2YXJpZXR5 AAAA/gAAAg4AAABaAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAgAAM/8AAAAQAAAAWgAEAAkAAAAB MQAEAAkAAAABMgAEAAkAAAABMwAEAAkAAAABNAAEAAkAAAABNQAEAAkAAAABNgAEAAkAAAAB NwAEAAkAAAABOAAEAAkAAAABOQAEAAkAAAACMTAABAAJAAAAAjExAAQACQAAAAIxMgAEAAkA AAACMTMABAAJAAAAAjE0AAQACQAAAAIxNQAEAAkAAAACMTYABAAJAAAAAjE3AAQACQAAAAIx OAAEAAkAAAACMTkABAAJAAAAAjIwAAQACQAAAAIyMQAEAAkAAAACMjIABAAJAAAAAjIzAAQA CQAAAAIyNAAEAAkAAAACMjUABAAJAAAAAjI2AAQACQAAAAIyNwAEAAkAAAACMjgABAAJAAAA AjI5AAQACQAAAAIzMAAEAAkAAAACMzEABAAJAAAAAjMyAAQACQAAAAIzMwAEAAkAAAACMzQA BAAJAAAAAjM1AAQACQAAAAIzNgAEAAkAAAACMzcABAAJAAAAAjM4AAQACQAAAAIzOQAEAAkA AAACNDAABAAJAAAAAjQxAAQACQAAAAI0MgAEAAkAAAACNDMABAAJAAAAAjQ0AAQACQAAAAI0 NQAEAAkAAAACNDYABAAJAAAAAjQ3AAQACQAAAAI0OAAEAAkAAAACNDkABAAJAAAAAjUwAAQA CQAAAAI1MQAEAAkAAAACNTIABAAJAAAAAjUzAAQACQAAAAI1NAAEAAkAAAACNTUABAAJAAAA AjU2AAQACQAAAAI1NwAEAAkAAAACNTgABAAJAAAAAjU5AAQACQAAAAI2MAAEAAkAAAACNjEA BAAJAAAAAjYyAAQACQAAAAI2MwAEAAkAAAACNjQABAAJAAAAAjY1AAQACQAAAAI2NgAEAAkA AAACNjcABAAJAAAAAjY4AAQACQAAAAI2OQAEAAkAAAACNzAABAAJAAAAAjcxAAQACQAAAAI3 MgAEAAkAAAACNzMABAAJAAAAAjc0AAQACQAAAAI3NQAEAAkAAAACNzYABAAJAAAAAjc3AAQA CQAAAAI3OAAEAAkAAAACNzkABAAJAAAAAjgwAAQACQAAAAI4MQAEAAkAAAACODIABAAJAAAA AjgzAAQACQAAAAI4NAAEAAkAAAACODUABAAJAAAAAjg2AAQACQAAAAI4NwAEAAkAAAACODgA BAAJAAAAAjg5AAQACQAAAAI5MAAAAP4AAAAOAAAAAT6wxvegte2NAAAADgAAAAFAAAAAAAAA AAAAAA4AAAABQH9AAAAAAAAAAAIOAAAAJkApPARKXgEFQCFVqval8XpAD0g2eYSkCUAK16Cj 8V/1QAT2/UNhhD4/9FA+nBLJB7/gXpcCtJuGwBKs41mpfEnAI0lCUQYSJb/hmiXHEktEv+u0 5zXiPLa/6xRaA4XNUb/gBrNylKCDv9zTpA2jkNO/458F8TPnQ7/XevZVxZwwv9PtHW5rGoa/ 1p36Nyy2x7/QOSSprrZPv/X9eRJoK36/5BObenC5Yr/obO9lMmAcwAKzcVkWgbG/9c1BUCa6 o8AA9QIMY6UewAkvy4oRgEvAFa+C+8mb18Ac0YEy+a7wP+9vlsZFD+0/8/FU95oo9j/yujRF vDK4P+j7Qov6cUQ/4xLeOhuOpz/dgUo0DYL1P9YuFSN+NsM/rrhy2S+jOj+0ICE071gkv7Yc /sg1NbsAAAQCAAAz/wAAABAAAAAmAAQACQAAACBNdWx0KC4sIHZhcmlldHksIGluc3QgPSAx KS5zaXRlQQAEAAkAAAAgTXVsdCguLCB2YXJpZXR5LCBpbnN0ID0gMSkuc2l0ZUIABAAJAAAA IE11bHQoLiwgdmFyaWV0eSwgaW5zdCA9IDEpLnNpdGVDAAQACQAAACBNdWx0KC4sIHZhcmll dHksIGluc3QgPSAxKS5zaXRlRAAEAAkAAAAgTXVsdCguLCB2YXJpZXR5LCBpbnN0ID0gMSku c2l0ZUUABAAJAAAAIE11bHQoLiwgdmFyaWV0eSwgaW5zdCA9IDEpLnNpdGVGAAQACQAAACBN dWx0KC4sIHZhcmlldHksIGluc3QgPSAxKS5zaXRlRwAEAAkAAAAgTXVsdCguLCB2YXJpZXR5 LCBpbnN0ID0gMSkuc2l0ZUgABAAJAAAAIE11bHQoLiwgdmFyaWV0eSwgaW5zdCA9IDEpLnNp dGVJAAQACQAAACBNdWx0KHNpdGUsIC4sIGluc3QgPSAxKS52YXJpZXR5MQAEAAkAAAAgTXVs dChzaXRlLCAuLCBpbnN0ID0gMSkudmFyaWV0eTIABAAJAAAAIE11bHQoc2l0ZSwgLiwgaW5z dCA9IDEpLnZhcmlldHkzAAQACQAAACBNdWx0KHNpdGUsIC4sIGluc3QgPSAxKS52YXJpZXR5 NAAEAAkAAAAgTXVsdChzaXRlLCAuLCBpbnN0ID0gMSkudmFyaWV0eTUABAAJAAAAIE11bHQo c2l0ZSwgLiwgaW5zdCA9IDEpLnZhcmlldHk2AAQACQAAACBNdWx0KHNpdGUsIC4sIGluc3Qg PSAxKS52YXJpZXR5NwAEAAkAAAAgTXVsdChzaXRlLCAuLCBpbnN0ID0gMSkudmFyaWV0eTgA BAAJAAAAIE11bHQoc2l0ZSwgLiwgaW5zdCA9IDEpLnZhcmlldHk5AAQACQAAACBNdWx0KHNp dGUsIC4sIGluc3QgPSAxKS52YXJpZXR5WAAEAAkAAAAgTXVsdCguLCB2YXJpZXR5LCBpbnN0 ID0gMikuc2l0ZUEABAAJAAAAIE11bHQoLiwgdmFyaWV0eSwgaW5zdCA9IDIpLnNpdGVCAAQA CQAAACBNdWx0KC4sIHZhcmlldHksIGluc3QgPSAyKS5zaXRlQwAEAAkAAAAgTXVsdCguLCB2 YXJpZXR5LCBpbnN0ID0gMikuc2l0ZUQABAAJAAAAIE11bHQoLiwgdmFyaWV0eSwgaW5zdCA9 IDIpLnNpdGVFAAQACQAAACBNdWx0KC4sIHZhcmlldHksIGluc3QgPSAyKS5zaXRlRgAEAAkA AAAgTXVsdCguLCB2YXJpZXR5LCBpbnN0ID0gMikuc2l0ZUcABAAJAAAAIE11bHQoLiwgdmFy aWV0eSwgaW5zdCA9IDIpLnNpdGVIAAQACQAAACBNdWx0KC4sIHZhcmlldHksIGluc3QgPSAy KS5zaXRlSQAEAAkAAAAgTXVsdChzaXRlLCAuLCBpbnN0ID0gMikudmFyaWV0eTEABAAJAAAA IE11bHQoc2l0ZSwgLiwgaW5zdCA9IDIpLnZhcmlldHkyAAQACQAAACBNdWx0KHNpdGUsIC4s IGluc3QgPSAyKS52YXJpZXR5MwAEAAkAAAAgTXVsdChzaXRlLCAuLCBpbnN0ID0gMikudmFy aWV0eTQABAAJAAAAIE11bHQoc2l0ZSwgLiwgaW5zdCA9IDIpLnZhcmlldHk1AAQACQAAACBN dWx0KHNpdGUsIC4sIGluc3QgPSAyKS52YXJpZXR5NgAEAAkAAAAgTXVsdChzaXRlLCAuLCBp bnN0ID0gMikudmFyaWV0eTcABAAJAAAAIE11bHQoc2l0ZSwgLiwgaW5zdCA9IDIpLnZhcmll dHk4AAQACQAAACBNdWx0KHNpdGUsIC4sIGluc3QgPSAyKS52YXJpZXR5OQAEAAkAAAAgTXVs dChzaXRlLCAuLCBpbnN0ID0gMikudmFyaWV0eVgAAAQCAAAAAQAEAAkAAAAKZWxpbWluYXRl ZAAAAA4AAAABAAAAAAAAAAAAAAD+AAAADgAAAAAAAAAOAAAAAAAAAg4AAABaP+/Lld07RRm/ 8AADZ+MDe7/wAATXV4YVP+P41yKQLyY/5XEc/9qnED/yia9wqZlfv8X1dgnOaxG/0Y++weg7 lz/dqHkpTdp7v+YMqVdORby/8BLMqE4ClT/vigXS6G4jP+Me21hXI3S/5AkzuDn6Hr/dUcY+ P2yIv8d48nS3CQW/s3JIfhzDBj/PorUZGcqrv+mUHco+gbc/zfc3oL7wnb/pqY+wnGCYv6BX 2HrhIws/5pxfet6fTj/2bwogWYC8v+p2oejXuYu/4+MxPG60mr/y7Ozli0hav75qTDAWJCc/ 8wGqfUJO/b+67gRDn+ubP+Ny/my34ag/5hMbSqex/b/vRT5xFgBsP55RFMtOpvu/4YCIoHax 3b/wp+tKZ6A+P/U8/+jhf2E//C2cLeiY2r/uPDh3oLoCP9AYOwkNIpu/r70ZhyY087/eGO0s a9/gP/0Kq3q+Dse/7nKDzIHfOb/syWDpKMvEv8hoQnsvGya/xqoSTYCaAD+bPMcmvzbMv9Sm j3UtxRI/0tXofYUkN7/sKa7kcrkpP/L1VcTrQ+s/6lRkVKKyiL/gEVz3v7Mwv+efyXHrpvC/ 6MseQqyu87/npI+3jiCbv/YQxslIqZE/5PSn68y8LT/yTc+c3WZ+v8ANYfT/qqa/7+EwXGmy wT/WwFXRdAUXv+GzDloghjtAA/oisnecFr/o2RCNsW59P/CAtkYI3WO/7w7/AF94RD+xGIQQ d1bVP+QbinbrdzO/xgg10oj3KT/k0rYh/7+0v9wPsbVDv0C/5r1IzsZ7yD+e2uzv47SYP+Uu g8z2Klc/xVbka1iJQr+erCVt4TWCv8CO0Brp9+e/5SEwHdx7mD/OzmWPvOK5v9t8ozGGII+/ no2zC56AHz/sNJJqhkWBv+GUy12+pSM/03FXpI/TL7/i7Eq+feUoP9RwjYb+kjk/uTNeNV9h Er/Ajj6xaJ56AAAEAgAAM/8AAAAQAAAAWgAEAAkAAAABMQAEAAkAAAABMgAEAAkAAAABMwAE AAkAAAABNAAEAAkAAAABNQAEAAkAAAABNgAEAAkAAAABNwAEAAkAAAABOAAEAAkAAAABOQAE AAkAAAACMTAABAAJAAAAAjExAAQACQAAAAIxMgAEAAkAAAACMTMABAAJAAAAAjE0AAQACQAA AAIxNQAEAAkAAAACMTYABAAJAAAAAjE3AAQACQAAAAIxOAAEAAkAAAACMTkABAAJAAAAAjIw AAQACQAAAAIyMQAEAAkAAAACMjIABAAJAAAAAjIzAAQACQAAAAIyNAAEAAkAAAACMjUABAAJ AAAAAjI2AAQACQAAAAIyNwAEAAkAAAACMjgABAAJAAAAAjI5AAQACQAAAAIzMAAEAAkAAAAC MzEABAAJAAAAAjMyAAQACQAAAAIzMwAEAAkAAAACMzQABAAJAAAAAjM1AAQACQAAAAIzNgAE AAkAAAACMzcABAAJAAAAAjM4AAQACQAAAAIzOQAEAAkAAAACNDAABAAJAAAAAjQxAAQACQAA AAI0MgAEAAkAAAACNDMABAAJAAAAAjQ0AAQACQAAAAI0NQAEAAkAAAACNDYABAAJAAAAAjQ3 AAQACQAAAAI0OAAEAAkAAAACNDkABAAJAAAAAjUwAAQACQAAAAI1MQAEAAkAAAACNTIABAAJ AAAAAjUzAAQACQAAAAI1NAAEAAkAAAACNTUABAAJAAAAAjU2AAQACQAAAAI1NwAEAAkAAAAC NTgABAAJAAAAAjU5AAQACQAAAAI2MAAEAAkAAAACNjEABAAJAAAAAjYyAAQACQAAAAI2MwAE AAkAAAACNjQABAAJAAAAAjY1AAQACQAAAAI2NgAEAAkAAAACNjcABAAJAAAAAjY4AAQACQAA AAI2OQAEAAkAAAACNzAABAAJAAAAAjcxAAQACQAAAAI3MgAEAAkAAAACNzMABAAJAAAAAjc0 AAQACQAAAAI3NQAEAAkAAAACNzYABAAJAAAAAjc3AAQACQAAAAI3OAAEAAkAAAACNzkABAAJ AAAAAjgwAAQACQAAAAI4MQAEAAkAAAACODIABAAJAAAAAjgzAAQACQAAAAI4NAAEAAkAAAAC ODUABAAJAAAAAjg2AAQACQAAAAI4NwAEAAkAAAACODgABAAJAAAAAjg5AAQACQAAAAI5MAAA AP4AAAIOAAAAWj8wcEqSbGoFPss/Ek8YSI8+011YPF7pFT9ELjiLpIYyP1iKdN/WPOU/Ll0u ZdYSZz94sK1lTWnvP5I5ODfalcs/hQ+IwrNoXj+mgYdYOWj9P3K2q29CWpU/MIFA4JhqOD80 g6UQY/wHP4A32DnWM68/jAV8IsKK3D9uEeebrVegP6CUHWCG8GA/ryqExB+TLz+l0BoDzY60 P7rhRM7/fks/qq8JRhqhsz+Kbs9oAZbNP44vgkQ3PyA/sngGdGEIpz+5Km7WJBEZP67HQ4A8 c70/w8lBgY6MSD/MNpGyD7Z2P8h7HTLkz8k/0istzMD6vj+QBGgknpeiP2hEuHtczGM/bu27 t0Z5vT+d3JfLkC8TP6qV91CXpn0/pVfYLzaDvT+9bYyTh07dP835Pv20s9g/yfIR9gXlwT/V +LUytJLYP63n0j+wVmc/kwRh61M1eD+WIjLIIAfZP7XC9JGoCq8/vrd4NgsGoT+4veoN/+eH P8ikteZFwqY/0oeirUOPnT/QzCUDtLaHP9d3TIb+2Os/reP+DLdVlz+Xu1x7UFMRP5xx/5sI Lr8/t4c2GVaJ3D/BnUw7hOvrP8Lb5727EAQ/zZ7OFSrYwj/X01/tgii1P9Z0WVMUYGw/3cip 0D/9VD+tCOLEzlC5P56RPo0bpqw/oxKPK/ljNT+5f7CWucwuP8SwNvO6sEA/zxHBWfVeWD/S dEwFTavkP9+GoBaQL8I/3u7FpISIiT/jK6UnKVXFP66LMYNSbgY/r8uKeMd0lj+1ZdnkYEVs P8C9WT92xPQ/z0mll5FB5j/i4CkNN8oZP91Z0YY+uAI/6C1Shy3eYj/ouhwnTxQRP+raLdsc BLs/wpPoOKhaNT/WOzkYyxAVP9urLMvRn7A/0+kH6JPMJz/gZIVbP9NrP+3FCLyrt/U/56ZB 96Gw7T/tuaGRk2IgP+48ZQsk0S4/7pNz4jkKQAAABAIAADP/AAAAEAAAAFoABAAJAAAAATEA BAAJAAAAATIABAAJAAAAATMABAAJAAAAATQABAAJAAAAATUABAAJAAAAATYABAAJAAAAATcA BAAJAAAAATgABAAJAAAAATkABAAJAAAAAjEwAAQACQAAAAIxMQAEAAkAAAACMTIABAAJAAAA AjEzAAQACQAAAAIxNAAEAAkAAAACMTUABAAJAAAAAjE2AAQACQAAAAIxNwAEAAkAAAACMTgA BAAJAAAAAjE5AAQACQAAAAIyMAAEAAkAAAACMjEABAAJAAAAAjIyAAQACQAAAAIyMwAEAAkA AAACMjQABAAJAAAAAjI1AAQACQAAAAIyNgAEAAkAAAACMjcABAAJAAAAAjI4AAQACQAAAAIy OQAEAAkAAAACMzAABAAJAAAAAjMxAAQACQAAAAIzMgAEAAkAAAACMzMABAAJAAAAAjM0AAQA CQAAAAIzNQAEAAkAAAACMzYABAAJAAAAAjM3AAQACQAAAAIzOAAEAAkAAAACMzkABAAJAAAA AjQwAAQACQAAAAI0MQAEAAkAAAACNDIABAAJAAAAAjQzAAQACQAAAAI0NAAEAAkAAAACNDUA BAAJAAAAAjQ2AAQACQAAAAI0NwAEAAkAAAACNDgABAAJAAAAAjQ5AAQACQAAAAI1MAAEAAkA AAACNTEABAAJAAAAAjUyAAQACQAAAAI1MwAEAAkAAAACNTQABAAJAAAAAjU1AAQACQAAAAI1 NgAEAAkAAAACNTcABAAJAAAAAjU4AAQACQAAAAI1OQAEAAkAAAACNjAABAAJAAAAAjYxAAQA CQAAAAI2MgAEAAkAAAACNjMABAAJAAAAAjY0AAQACQAAAAI2NQAEAAkAAAACNjYABAAJAAAA AjY3AAQACQAAAAI2OAAEAAkAAAACNjkABAAJAAAAAjcwAAQACQAAAAI3MQAEAAkAAAACNzIA BAAJAAAAAjczAAQACQAAAAI3NAAEAAkAAAACNzUABAAJAAAAAjc2AAQACQAAAAI3NwAEAAkA AAACNzgABAAJAAAAAjc5AAQACQAAAAI4MAAEAAkAAAACODEABAAJAAAAAjgyAAQACQAAAAI4 MwAEAAkAAAACODQABAAJAAAAAjg1AAQACQAAAAI4NgAEAAkAAAACODcABAAJAAAAAjg4AAQA CQAAAAI4OQAEAAkAAAACOTAAAAD+AAACDQAAAAEAAAAiAAAEAgAAAAEABAAJAAAABm1ldGhv ZAAAABAAAAABAAQACQAAAAh0b2xOb3JtMgAABAIAAAABAAQACQAAAAd1c2VHcmFkAAAACgAA AAEAAAAAAAAEAgAAAAEABAAJAAAAA3RvbAAAAA4AAAABPRaAAAAAAAAAAAD+AAADEwAAAAsA AAAQAAAAAQAEAAkAAAAKd2VkZGVyYnVybgAAABAAAAABAAQACQAAAAVsb2dpdAAABAMAAAD5 AAAAAAAAAAIABAAJAAAABXN0YXRzAAQACQAAAAU0LjIuMQAABAIAAAABAAQACQAAAAJtdQAA APsAAAD+AAAABgAAAAEABAAJAAAABS5DYWxsAAAAAgAAAAEABAAJAAAADENfbG9naXRfbGlu awAAAAIAADz/AAAA/gACBAMAADv/AAAEAgAAAAEABAAJAAAAA2V0YQAAAPsAAAD+AAAABgAA Pf8AAAACAAAAAQAEAAkAAAAPQ19sb2dpdF9saW5raW52AAAAAgAAP/8AAAD+AAIGAwAABAIA AAABAAQACQAAAAZzcmNyZWYAAAMNAAAACAAAACIAAAARAAAAIgAAAC0AAAARAAAALQAAACIA AAAiAAAEAgAAAAEABAAJAAAAB3NyY2ZpbGUAAAAEAAAAAAAAAPIAAAD+AAAAEwAAAB0AAAD+ AAAA/gAAAP4AAAQCAAAAAQAEAAkAAAACd2QAAAAQAAAAAQAEAAkAAAAhL1VzZXJzL3N0c3Bh by9Eb2N1bWVudHMvUmVwb3MvZ25tAAAA/gAAAP4AAAQCAAAAAQAEAAkAAAAFbGluZXMAAAAQ AAAAPQAEAAkAAAA5IyAgTW9kaWZpY2F0aW9uIG9mIGJpbm9taWFsIGZyb20gdGhlIHN0YXRz IHBhY2thZ2UgZm9yIFIuAAQACQAAAAEjAAQACQAAACojICBDb3B5cmlnaHQgKEMpIDE5OTUt MjAwNSBUaGUgUiBDb3JlIFRlYW0ABAAJAAAAISMgIENvcHlyaWdodCAoQykgMjAwNSBEYXZp ZCBGaXJ0aAAEAAkAAAABIwAEAAkAAABHIyAgVGhpcyBwcm9ncmFtIGlzIGZyZWUgc29mdHdh cmU7IHlvdSBjYW4gcmVkaXN0cmlidXRlIGl0IGFuZC9vciBtb2RpZnkABAAJAAAARyMgIGl0 IHVuZGVyIHRoZSB0ZXJtcyBvZiB0aGUgR05VIEdlbmVyYWwgUHVibGljIExpY2Vuc2UgYXMg cHVibGlzaGVkIGJ5AAQACQAAAEUjICB0aGUgRnJlZSBTb2Z0d2FyZSBGb3VuZGF0aW9uOyBl aXRoZXIgdmVyc2lvbiAyIG9yIDMgb2YgdGhlIExpY2Vuc2UABAAJAAAAFCMgIChhdCB5b3Vy IG9wdGlvbikuAAQACQAAAAEjAAQACQAAAEIjICBUaGlzIHByb2dyYW0gaXMgZGlzdHJpYnV0 ZWQgaW4gdGhlIGhvcGUgdGhhdCBpdCB3aWxsIGJlIHVzZWZ1bCwABAAJAAAAQSMgIGJ1dCBX SVRIT1VUIEFOWSBXQVJSQU5UWTsgd2l0aG91dCBldmVuIHRoZSBpbXBsaWVkIHdhcnJhbnR5 IG9mAAQACQAAAEAjICBNRVJDSEFOVEFCSUxJVFkgb3IgRklUTkVTUyBGT1IgQSBQQVJUSUNV TEFSIFBVUlBPU0UuICBTZWUgdGhlAAQACQAAAC8jICBHTlUgR2VuZXJhbCBQdWJsaWMgTGlj ZW5zZSBmb3IgbW9yZSBkZXRhaWxzLgAEAAkAAAABIwAEAAkAAAA7IyAgQSBjb3B5IG9mIHRo ZSBHTlUgR2VuZXJhbCBQdWJsaWMgTGljZW5zZSBpcyBhdmFpbGFibGUgYXQABAAJAAAAJSMg IGh0dHA6Ly93d3cuci1wcm9qZWN0Lm9yZy9MaWNlbnNlcy8ABAAJAAAAAAAEAAkAAAAPIndl ZGRlcmJ1cm4iIDwtAAQACQAAAB0gICAgZnVuY3Rpb24gKGxpbmsgPSAibG9naXQiKQAEAAkA AAABewAEAAkAAAAgICAgIGxpbmt0ZW1wIDwtIHN1YnN0aXR1dGUobGluaykABAAJAAAAIiAg ICBpZiAoIWlzLmNoYXJhY3RlcihsaW5rdGVtcCkpIHsABAAJAAAAJSAgICAgICAgbGlua3Rl bXAgPC0gZGVwYXJzZShsaW5rdGVtcCkABAAJAAAAHyAgICAgICAgaWYgKGxpbmt0ZW1wID09 ICJsaW5rIikABAAJAAAAIiAgICAgICAgICAgIGxpbmt0ZW1wIDwtIGV2YWwobGluaykABAAJ AAAABSAgICB9AAQACQAAADkgICAgaWYgKGFueShsaW5rdGVtcCA9PSBjKCJsb2dpdCIsICJw cm9iaXQiLCAiY2xvZ2xvZyIpKSkABAAJAAAAJCAgICAgICAgc3RhdHMgPC0gbWFrZS5saW5r KGxpbmt0ZW1wKQAEAAkAAAAdICAgIGVsc2Ugc3RvcChwYXN0ZShsaW5rdGVtcCwABAAJAAAA RiAgICAgICAgICAgICAgICAgICAgImxpbmsgbm90IGF2YWlsYWJsZSBmb3Igd2VkZGVyYnVy biBxdWFzaS1mYW1pbHk7IiwABAAJAAAAKiAgICAgICAgICAgICAgICAgICAgImF2YWlsYWJs ZSBsaW5rcyBhcmUiLAAEAAkAAAA9ICAgICAgICAgICAgICAgICAgICAiXCJsb2dpdFwiLCBc InByb2JpdFwiIGFuZCBcImNsb2dsb2dcIiIpKQAEAAkAAAAtICAgIHZhcmlhbmNlIDwtIGZ1 bmN0aW9uKG11KSAgbXVeMiAqICgxLW11KV4yAAQACQAAAB0gICAgdmFsaWRtdSA8LSBmdW5j dGlvbihtdSkgewAEAAkAAAAjICAgICAgICBhbGwobXUgPiAwKSAmJiBhbGwobXUgPCAxKX0A BAAJAAAAJiAgICBkZXYucmVzaWRzIDwtIGZ1bmN0aW9uKHksIG11LCB3dCl7AAQACQAAABYg ICAgICAgIGVwcyA8LSAgMC4wMDA1AAQACQAAAC8gICAgICAgIDIgKiB3dCAqICh5L211ICsg KDEgLSB5KS8oMSAtIG11KSAtIDIgKwAEAAkAAABMICAgICAgICAgICAgICAgICAgKDIgKiB5 IC0gMSkgKiBsb2coKHkgKyBlcHMpKigxIC0gbXUpLygoMS0geSArIGVwcykgKiBtdSkpKQAE AAkAAAAFICAgIH0ABAAJAAAAKSAgICBhaWMgPC0gZnVuY3Rpb24oeSwgbiwgbXUsIHd0LCBk ZXYpIE5BAAQACQAAAB4gICAgaW5pdGlhbGl6ZSA8LSBleHByZXNzaW9uKHsABAAJAAAAKyAg ICAgICAgaWYgKGFueSh5IDwgMCB8IHkgPiAxKSkgc3RvcChwYXN0ZSgABAAJAAAASCAgICAg ICAgICAgICAgICAgICAiVmFsdWVzIGZvciB0aGUgd2VkZGVyYnVybiBmYW1pbHkgbXVzdCBi ZSBpbiBbMCwxXSIpKQAEAAkAAAAdICAgICAgICBuIDwtIHJlcC5pbnQoMSwgbm9icykABAAJ AAAAICAgICAgICAgbXVzdGFydCA8LSAoeSArIDAuMSkvMS4yAAQACQAAAAYgICAgfSkABAAJ AAAAKSAgICBzdHJ1Y3R1cmUobGlzdChmYW1pbHkgPSAid2VkZGVyYnVybiIsAAQACQAAACMg ICAgICAgICAgICAgICAgICAgbGluayA9IGxpbmt0ZW1wLAAEAAkAAAArICAgICAgICAgICAg ICAgICAgIGxpbmtmdW4gPSBzdGF0cyRsaW5rZnVuLAAEAAkAAAArICAgICAgICAgICAgICAg ICAgIGxpbmtpbnYgPSBzdGF0cyRsaW5raW52LAAEAAkAAAAnICAgICAgICAgICAgICAgICAg IHZhcmlhbmNlID0gdmFyaWFuY2UsAAQACQAAACsgICAgICAgICAgICAgICAgICAgZGV2LnJl c2lkcyA9IGRldi5yZXNpZHMsAAQACQAAAB0gICAgICAgICAgICAgICAgICAgYWljID0gYWlj LAAEAAkAAAApICAgICAgICAgICAgICAgICAgIG11LmV0YSA9IHN0YXRzJG11LmV0YSwABAAJ AAAAKyAgICAgICAgICAgICAgICAgICBpbml0aWFsaXplID0gaW5pdGlhbGl6ZSwABAAJAAAA JSAgICAgICAgICAgICAgICAgICB2YWxpZG11ID0gdmFsaWRtdSwABAAJAAAALiAgICAgICAg ICAgICAgICAgICB2YWxpZGV0YSA9IHN0YXRzJHZhbGlkZXRhKSwABAAJAAAAHyAgICAgICAg ICAgICAgY2xhc3MgPSAiZmFtaWx5IikABAAJAAAAAX0AAAD+AAAEAgAAAAEABAAJAAAAA0Vu YwAAABAAAAABAAQACQAAAAd1bmtub3duAAAA/gAAAP4AAAQCAAAAAQAEAAkAAAAGaXNGaWxl AAAACgAAAAEAAAABAAAA/gAABAIAAAABAAQACQAAAAl0aW1lc3RhbXAAAAMOAAAAAUHY/jAQ 9vWIAAAEAgAAEP8AAAAQAAAAAgAEAAkAAAAHUE9TSVhjdAAEAAkAAAAGUE9TSVh0AAAA/gAA AP4AAAD+AAAA/gAAAP4AAAQCAAAAAQAEAAkAAAAIZmlsZW5hbWUAAAAQAAAAAQAEAAkAAAAw L1VzZXJzL3N0c3Bhby9Eb2N1bWVudHMvUmVwb3MvZ25tL1Ivd2VkZGVyYnVybi5SAAAA/gAA AP4AAAD+AAAA/gAAAP4AAAD+AAAA/gAAAP4AAAD+AAAA/gAAAP4AAAD+AAAA/gAAAP4AAAQC AAAAAQAEAAkAAAANZml4ZWROZXdsaW5lcwAAAAoAAAABAAAAAQAAAP4AAAQCAAAAAQAEAAkA AAAJcGFyc2VEYXRhAAADDQAAEFgAAAABAAAAAQAAAAEAAAA5AAAAAQAAASIAAAAB///86wAA AAIAAAABAAAAAgAAAAEAAAABAAABIgAAAAT///zrAAAAAwAAAAEAAAADAAAAKgAAAAEAAAEi AAAAB////OsAAAAEAAAAAQAAAAQAAAAhAAAAAQAAASIAAAAK///86wAAAAUAAAABAAAABQAA AAEAAAABAAABIgAAAA3///zrAAAABgAAAAEAAAAGAAAARwAAAAEAAAEiAAAAEP///OsAAAAH AAAAAQAAAAcAAABHAAAAAQAAASIAAAAT///86wAAAAgAAAABAAAACAAAAEUAAAABAAABIgAA ABb///zrAAAACQAAAAEAAAAJAAAAFAAAAAEAAAEiAAAAGf///OsAAAAKAAAAAQAAAAoAAAAB AAAAAQAAASIAAAAc///86wAAAAsAAAABAAAACwAAAEIAAAABAAABIgAAAB////zrAAAADAAA AAEAAAAMAAAAQQAAAAEAAAEiAAAAIv///OsAAAANAAAAAQAAAA0AAABAAAAAAQAAASIAAAAl ///86wAAAA4AAAABAAAADgAAAC8AAAABAAABIgAAACj///zrAAAADwAAAAEAAAAPAAAAAQAA AAEAAAEiAAAAK////OsAAAAQAAAAAQAAABAAAAA7AAAAAQAAASIAAAAu///86wAAABEAAAAB AAAAEQAAACUAAAABAAABIgAAADH///zrAAAAEwAAAAEAAAATAAAADAAAAAEAAAEEAAAANgAA ADgAAAATAAAADgAAABMAAAAPAAAAAQAAAQoAAAA3AAADFQAAABMAAAABAAAAEwAAAAwAAAAA AAAATwAAADgAAAMVAAAAFAAAAAUAAAAUAAAADAAAAAEAAAEIAAAAOgAAAxQAAAAUAAAADgAA ABQAAAAOAAAAAQAAACgAAAA7AAADFAAAABQAAAAPAAAAFAAAABIAAAABAAABJAAAADwAAAMU AAAAFAAAABQAAAAUAAAAFAAAAAEAAAElAAAAPQAAAxQAAAAUAAAAFgAAABQAAAAcAAAAAQAA AQQAAAA+AAAAQAAAABQAAAAdAAAAFAAAAB0AAAABAAAAKQAAAD8AAAMUAAAAFAAAABYAAAAU AAAAHAAAAAAAAABPAAAAQAAAAxQAAAAVAAAAAQAAABUAAAABAAAAAQAAAHsAAABEAAADEQAA ABYAAAAFAAAAFgAAAAwAAAABAAABBwAAAEYAAABIAAAAFgAAAA4AAAAWAAAADwAAAAEAAAEK AAAARwAAAFQAAAAWAAAABQAAABYAAAAMAAAAAAAAAE8AAABIAAAAVAAAABYAAAARAAAAFgAA ABoAAAABAAABKAAAAEkAAABLAAAAFgAAABsAAAAWAAAAGwAAAAEAAAAoAAAASgAAAFIAAAAW AAAAEQAAABYAAAAaAAAAAAAAAE8AAABLAAAAUgAAABYAAAAcAAAAFgAAAB8AAAABAAABBwAA AEwAAABOAAAAFgAAACAAAAAWAAAAIAAAAAEAAAApAAAATQAAAFIAAAAWAAAAHAAAABYAAAAf AAAAAAAAAE8AAABOAAAAUgAAABYAAAARAAAAFgAAACAAAAAAAAAATwAAAFIAAABUAAAAFgAA AAUAAAAWAAAAIAAAAAAAAABPAAAAVAAAAxEAAAAXAAAABQAAABcAAAAGAAAAAQAAARAAAABX AAAAnwAAABcAAAAIAAAAFwAAAAgAAAABAAAAKAAAAFgAAACfAAAAFwAAAAkAAAAXAAAACQAA AAEAAAAhAAAAWQAAAGUAAAAXAAAACgAAABcAAAAVAAAAAQAAASgAAABaAAAAXAAAABcAAAAW AAAAFwAAABYAAAABAAAAKAAAAFsAAABjAAAAFwAAAAoAAAAXAAAAFQAAAAAAAABPAAAAXAAA AGMAAAAXAAAAFwAAABcAAAAeAAAAAQAAAQcAAABdAAAAXwAAABcAAAAfAAAAFwAAAB8AAAAB AAAAKQAAAF4AAABjAAAAFwAAABcAAAAXAAAAHgAAAAAAAABPAAAAXwAAAGMAAAAXAAAACgAA ABcAAAAfAAAAAAAAAE8AAABjAAAAZQAAABcAAAAgAAAAFwAAACAAAAABAAAAKQAAAGQAAACf AAAAFwAAAAkAAAAXAAAAHwAAAAAAAABPAAAAZQAAAJ8AAAAXAAAAIgAAABcAAAAiAAAAAQAA AHsAAABoAAAAmwAAABgAAAAJAAAAGAAAABAAAAABAAABBwAAAGoAAABsAAAAGAAAABIAAAAY AAAAEwAAAAEAAAEKAAAAawAAAHgAAAAYAAAACQAAABgAAAAQAAAAAAAAAE8AAABsAAAAeAAA ABgAAAAVAAAAGAAAABsAAAABAAABKAAAAG0AAABvAAAAGAAAABwAAAAYAAAAHAAAAAEAAAAo AAAAbgAAAHYAAAAYAAAAFQAAABgAAAAbAAAAAAAAAE8AAABvAAAAdgAAABgAAAAdAAAAGAAA ACQAAAABAAABBwAAAHAAAAByAAAAGAAAACUAAAAYAAAAJQAAAAEAAAApAAAAcQAAAHYAAAAY AAAAHQAAABgAAAAkAAAAAAAAAE8AAAByAAAAdgAAABgAAAAVAAAAGAAAACUAAAAAAAAATwAA AHYAAAB4AAAAGAAAAAkAAAAYAAAAJQAAAAAAAABPAAAAeAAAAJsAAAAZAAAACQAAABkAAAAK AAAAAQAAARAAAAB7AAAAmAAAABkAAAAMAAAAGQAAAAwAAAABAAAAKAAAAHwAAACYAAAAGQAA AA0AAAAZAAAAFAAAAAEAAAEHAAAAfQAAAH8AAAAZAAAAFgAAABkAAAAXAAAAAQAAARoAAAB+ AAAAgwAAABkAAAANAAAAGQAAABQAAAAAAAAATwAAAH8AAACDAAAAGQAAABkAAAAZAAAAHgAA AAEAAAEEAAAAgAAAAIIAAAAZAAAAHwAAABkAAAAfAAAAAQAAACkAAACBAAAAmAAAABkAAAAZ AAAAGQAAAB4AAAAAAAAATwAAAIIAAACDAAAAGQAAAA0AAAAZAAAAHgAAAAAAAABPAAAAgwAA AJgAAAAaAAAADQAAABoAAAAUAAAAAQAAAQcAAACHAAAAiQAAABoAAAAWAAAAGgAAABcAAAAB AAABCgAAAIgAAACWAAAAGgAAAA0AAAAaAAAAFAAAAAAAAABPAAAAiQAAAJYAAAAaAAAAGQAA ABoAAAAcAAAAAQAAASgAAACKAAAAjAAAABoAAAAdAAAAGgAAAB0AAAABAAAAKAAAAIsAAACT AAAAGgAAABkAAAAaAAAAHAAAAAAAAABPAAAAjAAAAJMAAAAaAAAAHgAAABoAAAAhAAAAAQAA AQcAAACNAAAAjwAAABoAAAAiAAAAGgAAACIAAAABAAAAKQAAAI4AAACTAAAAGgAAAB4AAAAa AAAAIQAAAAAAAABPAAAAjwAAAJMAAAAaAAAAGQAAABoAAAAiAAAAAAAAAE8AAACTAAAAlgAA ABsAAAAFAAAAGwAAAAUAAAABAAAAfQAAAJUAAACbAAAAGgAAAA0AAAAaAAAAIgAAAAAAAABP AAAAlgAAAJgAAAAZAAAACQAAABoAAAAiAAAAAAAAAE8AAACYAAAAmwAAABcAAAAiAAAAGwAA AAUAAAAAAAAATwAAAJsAAACfAAAAFwAAAAUAAAAbAAAABQAAAAAAAABPAAAAnwAAAxEAAAAc AAAABQAAABwAAAAGAAAAAQAAARAAAACiAAABBAAAABwAAAAIAAAAHAAAAAgAAAABAAAAKAAA AKMAAAEEAAAAHAAAAAkAAAAcAAAACwAAAAEAAAEoAAAApAAAAKYAAAAcAAAADAAAABwAAAAM AAAAAQAAACgAAAClAAAAxQAAABwAAAAJAAAAHAAAAAsAAAAAAAAATwAAAKYAAADFAAAAHAAA AA0AAAAcAAAAFAAAAAEAAAEHAAAApwAAAKkAAAAcAAAAFgAAABwAAAAXAAAAAQAAARoAAACo AAAAwQAAABwAAAANAAAAHAAAABQAAAAAAAAATwAAAKkAAADBAAAAHAAAABkAAAAcAAAAGQAA AAEAAAEoAAAAqgAAAKwAAAAcAAAAGgAAABwAAAAaAAAAAQAAACgAAACrAAAAvwAAABwAAAAZ AAAAHAAAABkAAAAAAAAATwAAAKwAAAC/AAAAHAAAABsAAAAcAAAAIQAAAAEAAAEEAAAArQAA AK8AAAAcAAAAIgAAABwAAAAiAAAAAQAAACwAAACuAAAAvwAAABwAAAAbAAAAHAAAACEAAAAA AAAATwAAAK8AAAC/AAAAHAAAACQAAAAcAAAAKwAAAAEAAAEEAAAAswAAALUAAAAcAAAALAAA ABwAAAAsAAAAAQAAACwAAAC0AAAAvwAAABwAAAAkAAAAHAAAACsAAAAAAAAATwAAALUAAAC/ AAAAHAAAAC4AAAAcAAAANgAAAAEAAAEEAAAAuQAAALsAAAAcAAAANwAAABwAAAA3AAAAAQAA ACkAAAC6AAAAvwAAABwAAAAuAAAAHAAAADYAAAAAAAAATwAAALsAAAC/AAAAHAAAABkAAAAc AAAANwAAAAAAAABPAAAAvwAAAMEAAAAcAAAAOAAAABwAAAA4AAAAAQAAACkAAADAAAAAxQAA ABwAAAANAAAAHAAAADcAAAAAAAAATwAAAMEAAADFAAAAHAAAAAkAAAAcAAAAOAAAAAAAAABP AAAAxQAAAQQAAAAcAAAAOQAAABwAAAA5AAAAAQAAACkAAADGAAABBAAAAB0AAAAJAAAAHQAA AA0AAAABAAABBwAAAMoAAADMAAAAHQAAAA8AAAAdAAAAEAAAAAEAAAEKAAAAywAAANkAAAAd AAAACQAAAB0AAAANAAAAAAAAAE8AAADMAAAA2QAAAB0AAAASAAAAHQAAABoAAAABAAABKAAA AM0AAADPAAAAHQAAABsAAAAdAAAAGwAAAAEAAAAoAAAAzgAAANYAAAAdAAAAEgAAAB0AAAAa AAAAAAAAAE8AAADPAAAA1gAAAB0AAAAcAAAAHQAAACMAAAABAAABBwAAANAAAADSAAAAHQAA ACQAAAAdAAAAJAAAAAEAAAApAAAA0QAAANYAAAAdAAAAHAAAAB0AAAAjAAAAAAAAAE8AAADS AAAA1gAAAB0AAAASAAAAHQAAACQAAAAAAAAATwAAANYAAADZAAAAHgAAAAUAAAAeAAAACAAA AAEAAAERAAAA2AAAAQQAAAAdAAAACQAAAB0AAAAkAAAAAAAAAE8AAADZAAABBAAAAB4AAAAK AAAAHgAAAA0AAAABAAABKAAAANsAAADdAAAAHgAAAA4AAAAeAAAADgAAAAEAAAAoAAAA3AAA AQEAAAAeAAAACgAAAB4AAAANAAAAAAAAAE8AAADdAAABAQAAAB4AAAAPAAAAHgAAABMAAAAB AAABKAAAAN4AAADgAAAAHgAAABQAAAAeAAAAFAAAAAEAAAAoAAAA3wAAAPwAAAAeAAAADwAA AB4AAAATAAAAAAAAAE8AAADgAAAA/AAAAB4AAAAVAAAAHgAAABwAAAABAAABBwAAAOEAAADj AAAAHgAAAB0AAAAeAAAAHQAAAAEAAAAsAAAA4gAAAPwAAAAeAAAAFQAAAB4AAAAcAAAAAAAA AE8AAADjAAAA/AAAAB8AAAAVAAAAHwAAAEUAAAABAAABBAAAAOgAAADqAAAAHwAAAEYAAAAf AAAARgAAAAEAAAAsAAAA6QAAAPwAAAAfAAAAFQAAAB8AAABFAAAAAAAAAE8AAADqAAAA/AAA ACAAAAAVAAAAIAAAACkAAAABAAABBAAAAO8AAADxAAAAIAAAACoAAAAgAAAAKgAAAAEAAAAs AAAA8AAAAPwAAAAgAAAAFQAAACAAAAApAAAAAAAAAE8AAADxAAAA/AAAACEAAAAVAAAAIQAA ADsAAAABAAABBAAAAPYAAAD4AAAAIQAAADwAAAAhAAAAPAAAAAEAAAApAAAA9wAAAPwAAAAh AAAAFQAAACEAAAA7AAAAAAAAAE8AAAD4AAAA/AAAAB4AAAAPAAAAIQAAADwAAAAAAAAATwAA APwAAAEBAAAAIQAAAD0AAAAhAAAAPQAAAAEAAAApAAAA/QAAAQEAAAAeAAAACgAAACEAAAA9 AAAAAAAAAE8AAAEBAAABBAAAABwAAAAFAAAAIQAAAD0AAAAAAAAATwAAAQQAAAMRAAAAIgAA AAUAAAAiAAAADAAAAAEAAAEHAAABBwAAAQkAAAAiAAAADgAAACIAAAAPAAAAAQAAAQoAAAEI AAABKAAAACIAAAAFAAAAIgAAAAwAAAAAAAAATwAAAQkAAAEoAAAAIgAAABEAAAAiAAAAGAAA AAEAAAEIAAABCgAAAScAAAAiAAAAGQAAACIAAAAZAAAAAQAAACgAAAELAAABJwAAACIAAAAa AAAAIgAAABsAAAABAAABJAAAAQwAAAEnAAAAIgAAABwAAAAiAAAAHAAAAAEAAAApAAABDQAA AScAAAAiAAAAHwAAACIAAAAgAAAAAQAAAQcAAAEPAAABEQAAACIAAAAhAAAAIgAAACEAAAAB AAAAXgAAARAAAAEVAAAAIgAAAB8AAAAiAAAAIAAAAAAAAABPAAABEQAAARUAAAAiAAAAIgAA ACIAAAAiAAAAAQAAAQUAAAESAAABEwAAACIAAAAiAAAAIgAAACIAAAAAAAAATwAAARMAAAEV AAAAIgAAACQAAAAiAAAAJAAAAAEAAAAqAAABFAAAASUAAAAiAAAAHwAAACIAAAAiAAAAAAAA AE8AAAEVAAABJQAAACIAAAAmAAAAIgAAACYAAAABAAAAKAAAARYAAAEfAAAAIgAAACcAAAAi AAAAJwAAAAEAAAEFAAABFwAAARgAAAAiAAAAJwAAACIAAAAnAAAAAAAAAE8AAAEYAAABHQAA ACIAAAAoAAAAIgAAACgAAAABAAAALQAAARkAAAEdAAAAIgAAACkAAAAiAAAAKgAAAAEAAAEH AAABGgAAARwAAAAiAAAAKwAAACIAAAArAAAAAQAAACkAAAEbAAABHwAAACIAAAApAAAAIgAA ACoAAAAAAAAATwAAARwAAAEdAAAAIgAAACcAAAAiAAAAKgAAAAAAAABPAAABHQAAAR8AAAAi AAAAJgAAACIAAAArAAAAAAAAAE8AAAEfAAABJAAAACIAAAAsAAAAIgAAACwAAAABAAAAXgAA ASAAAAEkAAAAIgAAAC0AAAAiAAAALQAAAAEAAAEFAAABIQAAASIAAAAiAAAALQAAACIAAAAt AAAAAAAAAE8AAAEiAAABJAAAACIAAAAmAAAAIgAAAC0AAAAAAAAATwAAASQAAAElAAAAIgAA AB8AAAAiAAAALQAAAAAAAABPAAABJQAAAScAAAAiAAAAEQAAACIAAAAtAAAAAAAAAE8AAAEn AAABKAAAACIAAAAFAAAAIgAAAC0AAAAAAAAATwAAASgAAAMRAAAAIwAAAAUAAAAjAAAACwAA AAEAAAEHAAABKwAAAS0AAAAjAAAADQAAACMAAAAOAAAAAQAAAQoAAAEsAAABWgAAACMAAAAF AAAAIwAAAAsAAAAAAAAATwAAAS0AAAFaAAAAIwAAABAAAAAjAAAAFwAAAAEAAAEIAAABLgAA AVkAAAAjAAAAGAAAACMAAAAYAAAAAQAAACgAAAEvAAABWQAAACMAAAAZAAAAIwAAABoAAAAB AAABJAAAATAAAAFZAAAAIwAAABsAAAAjAAAAGwAAAAEAAAApAAABMQAAAVkAAAAjAAAAHQAA ACMAAAAdAAAAAQAAAHsAAAEzAAABVgAAACQAAAAJAAAAJAAAAAsAAAABAAABKAAAATUAAAE3 AAAAJAAAAAwAAAAkAAAADAAAAAEAAAAoAAABNgAAAUIAAAAkAAAACQAAACQAAAALAAAAAAAA AE8AAAE3AAABQgAAACQAAAANAAAAJAAAAA4AAAABAAABBwAAATgAAAE6AAAAJAAAABAAAAAk AAAAEAAAAAEAAAEWAAABOQAAAT4AAAAkAAAADQAAACQAAAAOAAAAAAAAAE8AAAE6AAABPgAA ACQAAAASAAAAJAAAABIAAAABAAABBQAAATsAAAE8AAAAJAAAABIAAAAkAAAAEgAAAAAAAABP AAABPAAAAT4AAAAkAAAAEwAAACQAAAATAAAAAQAAACkAAAE9AAABQgAAACQAAAANAAAAJAAA ABIAAAAAAAAATwAAAT4AAAFCAAAAJAAAAAkAAAAkAAAAEwAAAAAAAABPAAABQgAAAVMAAAAk AAAAFQAAACQAAAAWAAAAAQAAAR4AAAFDAAABUwAAACQAAAAYAAAAJAAAABoAAAABAAABKAAA AUQAAAFGAAAAJAAAABsAAAAkAAAAGwAAAAEAAAAoAAABRQAAAVEAAAAkAAAAGAAAACQAAAAa AAAAAAAAAE8AAAFGAAABUQAAACQAAAAcAAAAJAAAAB0AAAABAAABBwAAAUcAAAFJAAAAJAAA AB8AAAAkAAAAHwAAAAEAAAEYAAABSAAAAU0AAAAkAAAAHAAAACQAAAAdAAAAAAAAAE8AAAFJ AAABTQAAACQAAAAhAAAAJAAAACEAAAABAAABBQAAAUoAAAFLAAAAJAAAACEAAAAkAAAAIQAA AAAAAABPAAABSwAAAU0AAAAkAAAAIgAAACQAAAAiAAAAAQAAACkAAAFMAAABUQAAACQAAAAc AAAAJAAAACEAAAAAAAAATwAAAU0AAAFRAAAAJAAAABgAAAAkAAAAIgAAAAAAAABPAAABUQAA AVMAAAAkAAAAIwAAACQAAAAjAAAAAQAAAH0AAAFSAAABVgAAACQAAAAJAAAAJAAAACIAAAAA AAAATwAAAVMAAAFWAAAAIwAAAB0AAAAkAAAAIwAAAAAAAABPAAABVgAAAVkAAAAjAAAAEAAA ACQAAAAjAAAAAAAAAE8AAAFZAAABWgAAACMAAAAFAAAAJAAAACMAAAAAAAAATwAAAVoAAAMR AAAAJQAAAAUAAAAlAAAADgAAAAEAAAEHAAABXQAAAV8AAAAlAAAAEAAAACUAAAARAAAAAQAA AQoAAAFeAAAB9gAAACUAAAAFAAAAJQAAAA4AAAAAAAAATwAAAV8AAAH2AAAAJQAAABMAAAAl AAAAGgAAAAEAAAEIAAABYAAAAfUAAAAlAAAAGwAAACUAAAAbAAAAAQAAACgAAAFhAAAB9QAA ACUAAAAcAAAAJQAAABwAAAABAAABJAAAAWIAAAH1AAAAJQAAAB0AAAAlAAAAHQAAAAEAAAAs AAABYwAAAfUAAAAlAAAAHwAAACUAAAAgAAAAAQAAASQAAAFlAAAB9QAAACUAAAAhAAAAJQAA ACEAAAABAAAALAAAAWYAAAH1AAAAJQAAACMAAAAlAAAAJAAAAAEAAAEkAAABaAAAAfUAAAAl AAAAJQAAACUAAAAlAAAAAQAAACkAAAFpAAAB9QAAACUAAAAmAAAAJQAAACYAAAABAAAAewAA AWsAAAHyAAAAJgAAAAkAAAAmAAAACwAAAAEAAAEHAAABbQAAAW8AAAAmAAAADQAAACYAAAAO AAAAAQAAAQoAAAFuAAABcwAAACYAAAAJAAAAJgAAAAsAAAAAAAAATwAAAW8AAAFzAAAAJgAA ABEAAAAmAAAAFgAAAAEAAAEFAAABcAAAAXEAAAAmAAAAEQAAACYAAAAWAAAAAAAAAE8AAAFx AAABcwAAACYAAAAJAAAAJgAAABYAAAAAAAAATwAAAXMAAAHyAAAAJwAAAAkAAAAnAAAACQAA AAEAAAEFAAABdgAAAXcAAAAnAAAACQAAACcAAAAJAAAAAAAAAE8AAAF3AAABfAAAACcAAAAL AAAAJwAAAAsAAAABAAAAKgAAAXgAAAF8AAAAJwAAAA0AAAAnAAAADgAAAAEAAAEHAAABeQAA AXsAAAAnAAAAEAAAACcAAAAQAAAAAQAAACoAAAF6AAAB7QAAACcAAAANAAAAJwAAAA4AAAAA AAAATwAAAXsAAAF8AAAAJwAAAAkAAAAnAAAADgAAAAAAAABPAAABfAAAAe0AAAAnAAAAEgAA ACcAAAASAAAAAQAAACgAAAF9AAAB6wAAACcAAAATAAAAJwAAABMAAAABAAABBwAAAX4AAAGA AAAAJwAAABQAAAAnAAAAFAAAAAEAAAAvAAABfwAAAYQAAAAnAAAAEwAAACcAAAATAAAAAAAA AE8AAAGAAAABhAAAACcAAAAVAAAAJwAAABYAAAABAAABBwAAAYEAAAGDAAAAJwAAABgAAAAn AAAAGAAAAAEAAAArAAABggAAAZwAAAAnAAAAFQAAACcAAAAWAAAAAAAAAE8AAAGDAAABhAAA ACcAAAATAAAAJwAAABYAAAAAAAAATwAAAYQAAAGcAAAAJwAAABoAAAAnAAAAGgAAAAEAAAAo AAABhQAAAY4AAAAnAAAAGwAAACcAAAAbAAAAAQAAAQUAAAGGAAABhwAAACcAAAAbAAAAJwAA ABsAAAAAAAAATwAAAYcAAAGMAAAAJwAAAB0AAAAnAAAAHQAAAAEAAAAtAAABiAAAAYwAAAAn AAAAHwAAACcAAAAfAAAAAQAAAQcAAAGJAAABiwAAACcAAAAgAAAAJwAAACAAAAABAAAAKQAA AYoAAAGOAAAAJwAAAB8AAAAnAAAAHwAAAAAAAABPAAABiwAAAYwAAAAnAAAAGwAAACcAAAAf AAAAAAAAAE8AAAGMAAABjgAAACcAAAAaAAAAJwAAACAAAAAAAAAATwAAAY4AAAGbAAAAJwAA ACEAAAAnAAAAIQAAAAEAAAAvAAABjwAAAZsAAAAnAAAAIgAAACcAAAAiAAAAAQAAACgAAAGQ AAABmQAAACcAAAAjAAAAJwAAACMAAAABAAABBQAAAZEAAAGSAAAAJwAAACMAAAAnAAAAIwAA AAAAAABPAAABkgAAAZcAAAAnAAAAJQAAACcAAAAlAAAAAQAAAC0AAAGTAAABlwAAACcAAAAn AAAAJwAAACgAAAABAAABBwAAAZQAAAGWAAAAJwAAACkAAAAnAAAAKQAAAAEAAAApAAABlQAA AZkAAAAnAAAAJwAAACcAAAAoAAAAAAAAAE8AAAGWAAABlwAAACcAAAAjAAAAJwAAACgAAAAA AAAATwAAAZcAAAGZAAAAJwAAACIAAAAnAAAAKQAAAAAAAABPAAABmQAAAZsAAAAnAAAAKwAA ACcAAAArAAAAAQAAAC0AAAGaAAABoAAAACcAAAAaAAAAJwAAACkAAAAAAAAATwAAAZsAAAGc AAAAJwAAABMAAAAnAAAAKQAAAAAAAABPAAABnAAAAaAAAAAnAAAALQAAACcAAAAtAAAAAQAA AQUAAAGdAAABngAAACcAAAAtAAAAJwAAAC0AAAAAAAAATwAAAZ4AAAGgAAAAJwAAAC8AAAAn AAAALwAAAAEAAAArAAABnwAAAekAAAAnAAAAEwAAACcAAAAtAAAAAAAAAE8AAAGgAAAB6QAA ACgAAAATAAAAKAAAABMAAAABAAAAKAAAAaIAAAGvAAAAKAAAABQAAAAoAAAAFAAAAAEAAAEF AAABowAAAaQAAAAoAAAAFAAAACgAAAAUAAAAAAAAAE8AAAGkAAABqQAAACgAAAAWAAAAKAAA ABYAAAABAAAAKgAAAaUAAAGpAAAAKAAAABgAAAAoAAAAGAAAAAEAAAEHAAABpgAAAagAAAAo AAAAGgAAACgAAAAaAAAAAQAAAC0AAAGnAAABrQAAACgAAAAYAAAAKAAAABgAAAAAAAAATwAA AagAAAGpAAAAKAAAABQAAAAoAAAAGAAAAAAAAABPAAABqQAAAa0AAAAoAAAAHAAAACgAAAAc AAAAAQAAAQUAAAGqAAABqwAAACgAAAAcAAAAKAAAABwAAAAAAAAATwAAAasAAAGtAAAAKAAA AB0AAAAoAAAAHQAAAAEAAAApAAABrAAAAa8AAAAoAAAAFAAAACgAAAAcAAAAAAAAAE8AAAGt AAABrwAAACgAAAATAAAAKAAAAB0AAAAAAAAATwAAAa8AAAHoAAAAKAAAAB8AAAAoAAAAHwAA AAEAAAAqAAABsAAAAegAAAAoAAAAIQAAACgAAAAjAAAAAQAAASgAAAGxAAABswAAACgAAAAk AAAAKAAAACQAAAABAAAAKAAAAbIAAAHmAAAAKAAAACEAAAAoAAAAIwAAAAAAAABPAAABswAA AeYAAAAoAAAAJQAAACgAAAAlAAAAAQAAACgAAAG0AAABvQAAACgAAAAmAAAAKAAAACYAAAAB AAABBwAAAbUAAAG3AAAAKAAAACgAAAAoAAAAKAAAAAEAAAArAAABtgAAAbsAAAAoAAAAJgAA ACgAAAAmAAAAAAAAAE8AAAG3AAABuwAAACgAAAAqAAAAKAAAACwAAAABAAABBwAAAbgAAAG6 AAAAKAAAAC0AAAAoAAAALQAAAAEAAAApAAABuQAAAb0AAAAoAAAAKgAAACgAAAAsAAAAAAAA AE8AAAG6AAABuwAAACgAAAAmAAAAKAAAACwAAAAAAAAATwAAAbsAAAG9AAAAKAAAACUAAAAo AAAALQAAAAAAAABPAAABvQAAAcoAAAAoAAAALgAAACgAAAAuAAAAAQAAACoAAAG+AAABygAA ACgAAAAvAAAAKAAAAC8AAAABAAAAKAAAAb8AAAHIAAAAKAAAADAAAAAoAAAAMAAAAAEAAAEF AAABwAAAAcEAAAAoAAAAMAAAACgAAAAwAAAAAAAAAE8AAAHBAAABxgAAACgAAAAyAAAAKAAA ADIAAAABAAAALQAAAcIAAAHGAAAAKAAAADQAAAAoAAAANQAAAAEAAAEHAAABwwAAAcUAAAAo AAAANgAAACgAAAA2AAAAAQAAACkAAAHEAAAByAAAACgAAAA0AAAAKAAAADUAAAAAAAAATwAA AcUAAAHGAAAAKAAAADAAAAAoAAAANQAAAAAAAABPAAABxgAAAcgAAAAoAAAALwAAACgAAAA2 AAAAAAAAAE8AAAHIAAABygAAACgAAAA3AAAAKAAAADcAAAABAAAALwAAAckAAAHiAAAAKAAA ACUAAAAoAAAANgAAAAAAAABPAAABygAAAeIAAAAoAAAAOAAAACgAAAA4AAAAAQAAACgAAAHL AAAB4AAAACgAAAA5AAAAKAAAADkAAAABAAAAKAAAAcwAAAHZAAAAKAAAADoAAAAoAAAAOgAA AAEAAAEFAAABzQAAAc4AAAAoAAAAOgAAACgAAAA6AAAAAAAAAE8AAAHOAAAB0wAAACgAAAA7 AAAAKAAAADsAAAABAAAALQAAAc8AAAHTAAAAKAAAAD0AAAAoAAAAPQAAAAEAAAEHAAAB0AAA AdIAAAAoAAAAPwAAACgAAAA/AAAAAQAAACsAAAHRAAAB1wAAACgAAAA9AAAAKAAAAD0AAAAA AAAATwAAAdIAAAHTAAAAKAAAADoAAAAoAAAAPQAAAAAAAABPAAAB0wAAAdcAAAAoAAAAQQAA ACgAAABDAAAAAQAAAQcAAAHUAAAB1gAAACgAAABEAAAAKAAAAEQAAAABAAAAKQAAAdUAAAHZ AAAAKAAAAEEAAAAoAAAAQwAAAAAAAABPAAAB1gAAAdcAAAAoAAAAOgAAACgAAABDAAAAAAAA AE8AAAHXAAAB2QAAACgAAAA5AAAAKAAAAEQAAAAAAAAATwAAAdkAAAHeAAAAKAAAAEYAAAAo AAAARgAAAAEAAAAqAAAB2gAAAd4AAAAoAAAASAAAACgAAABJAAAAAQAAAQcAAAHbAAAB3QAA ACgAAABKAAAAKAAAAEoAAAABAAAAKQAAAdwAAAHgAAAAKAAAAEgAAAAoAAAASQAAAAAAAABP AAAB3QAAAd4AAAAoAAAAOQAAACgAAABJAAAAAAAAAE8AAAHeAAAB4AAAACgAAAA4AAAAKAAA AEoAAAAAAAAATwAAAeAAAAHiAAAAKAAAAEsAAAAoAAAASwAAAAEAAAApAAAB4QAAAeYAAAAo AAAAJQAAACgAAABKAAAAAAAAAE8AAAHiAAAB5gAAACgAAAAhAAAAKAAAAEsAAAAAAAAATwAA AeYAAAHoAAAAKAAAAEwAAAAoAAAATAAAAAEAAAApAAAB5wAAAesAAAAoAAAAEwAAACgAAABL AAAAAAAAAE8AAAHoAAAB6QAAACcAAAATAAAAKAAAAEsAAAAAAAAATwAAAekAAAHrAAAAJwAA ABIAAAAoAAAATAAAAAAAAABPAAAB6wAAAe0AAAAnAAAACQAAACgAAABMAAAAAAAAAE8AAAHt AAAB8gAAACkAAAAFAAAAKQAAAAUAAAABAAAAfQAAAfAAAAHyAAAAJQAAACYAAAApAAAABQAA AAAAAABPAAAB8gAAAfUAAAAlAAAAEwAAACkAAAAFAAAAAAAAAE8AAAH1AAAB9gAAACUAAAAF AAAAKQAAAAUAAAAAAAAATwAAAfYAAAMRAAAAKgAAAAUAAAAqAAAABwAAAAEAAAEHAAAB+QAA AfsAAAAqAAAACQAAACoAAAAKAAAAAQAAAQoAAAH6AAACEgAAACoAAAAFAAAAKgAAAAcAAAAA AAAATwAAAfsAAAISAAAAKgAAAAwAAAAqAAAAEwAAAAEAAAEIAAAB/AAAAhEAAAAqAAAAFAAA ACoAAAAUAAAAAQAAACgAAAH9AAACEQAAACoAAAAVAAAAKgAAABUAAAABAAABJAAAAf4AAAIR AAAAKgAAABYAAAAqAAAAFgAAAAEAAAAsAAAB/wAAAhEAAAAqAAAAGAAAACoAAAAYAAAAAQAA ASQAAAIBAAACEQAAACoAAAAZAAAAKgAAABkAAAABAAAALAAAAgIAAAIRAAAAKgAAABsAAAAq AAAAHAAAAAEAAAEkAAACBAAAAhEAAAAqAAAAHQAAACoAAAAdAAAAAQAAACwAAAIFAAACEQAA ACoAAAAfAAAAKgAAACAAAAABAAABJAAAAgcAAAIRAAAAKgAAACEAAAAqAAAAIQAAAAEAAAAs AAACCAAAAhEAAAAqAAAAIwAAACoAAAAlAAAAAQAAASQAAAIKAAACEQAAACoAAAAmAAAAKgAA ACYAAAABAAAAKQAAAgsAAAIRAAAAKgAAACgAAAAqAAAAKQAAAAEAAAEFAAACDQAAAg4AAAAq AAAAKAAAACoAAAApAAAAAAAAAE8AAAIOAAACEQAAACoAAAAMAAAAKgAAACkAAAAAAAAATwAA AhEAAAISAAAAKgAAAAUAAAAqAAAAKQAAAAAAAABPAAACEgAAAxEAAAArAAAABQAAACsAAAAO AAAAAQAAAQcAAAIVAAACFwAAACsAAAAQAAAAKwAAABEAAAABAAABCgAAAhYAAAKGAAAAKwAA AAUAAAArAAAADgAAAAAAAABPAAACFwAAAoYAAAArAAAAEwAAACsAAAAcAAAAAQAAASgAAAIY AAACGgAAACsAAAAdAAAAKwAAAB0AAAABAAAAKAAAAhkAAAKEAAAAKwAAABMAAAArAAAAHAAA AAAAAABPAAACGgAAAoQAAAArAAAAHgAAACsAAAAeAAAAAQAAAHsAAAIbAAACfwAAACwAAAAJ AAAALAAAAAoAAAABAAABEAAAAh0AAAJOAAAALAAAAAwAAAAsAAAADAAAAAEAAAAoAAACHgAA Ak4AAAAsAAAADQAAACwAAAAPAAAAAQAAASgAAAIfAAACIQAAACwAAAAQAAAALAAAABAAAAAB AAAAKAAAAiAAAAI0AAAALAAAAA0AAAAsAAAADwAAAAAAAABPAAACIQAAAjQAAAAsAAAAEQAA ACwAAAARAAAAAQAAAQcAAAIiAAACJAAAACwAAAATAAAALAAAABMAAAABAAABGAAAAiMAAAIo AAAALAAAABEAAAAsAAAAEQAAAAAAAABPAAACJAAAAigAAAAsAAAAFQAAACwAAAAVAAAAAQAA AQUAAAIlAAACJgAAACwAAAAVAAAALAAAABUAAAAAAAAATwAAAiYAAAIoAAAALAAAABcAAAAs AAAAFwAAAAEAAAEdAAACJwAAAjAAAAAsAAAAEQAAACwAAAAVAAAAAAAAAE8AAAIoAAACMAAA ACwAAAAZAAAALAAAABkAAAABAAABBwAAAikAAAIrAAAALAAAABsAAAAsAAAAGwAAAAEAAAEW AAACKgAAAi8AAAAsAAAAGQAAACwAAAAZAAAAAAAAAE8AAAIrAAACLwAAACwAAAAdAAAALAAA AB0AAAABAAABBQAAAiwAAAItAAAALAAAAB0AAAAsAAAAHQAAAAAAAABPAAACLQAAAi8AAAAs AAAAHgAAACwAAAAeAAAAAQAAACkAAAIuAAACNAAAACwAAAAZAAAALAAAAB0AAAAAAAAATwAA Ai8AAAIwAAAALAAAABEAAAAsAAAAHQAAAAAAAABPAAACMAAAAjQAAAAsAAAADQAAACwAAAAe AAAAAAAAAE8AAAI0AAACTgAAACwAAAAfAAAALAAAAB8AAAABAAAAKQAAAjUAAAJOAAAALAAA ACEAAAAsAAAAJAAAAAEAAAEoAAACOAAAAjoAAAAsAAAAJQAAACwAAAAlAAAAAQAAACgAAAI5 AAACSgAAACwAAAAhAAAALAAAACQAAAAAAAAATwAAAjoAAAJKAAAALAAAACYAAAAsAAAAKgAA AAEAAAEoAAACOwAAAj0AAAAsAAAAKwAAACwAAAArAAAAAQAAACgAAAI8AAACRQAAACwAAAAm AAAALAAAACoAAAAAAAAATwAAAj0AAAJFAAAALQAAABQAAAAtAAAARgAAAAEAAAEEAAACPwAA AkEAAAAtAAAARwAAAC0AAABHAAAAAQAAACkAAAJAAAACRQAAAC0AAAAUAAAALQAAAEYAAAAA AAAATwAAAkEAAAJFAAAALAAAACYAAAAtAAAARwAAAAAAAABPAAACRQAAAkoAAAAtAAAASAAA AC0AAABIAAAAAQAAACkAAAJGAAACSgAAACwAAAAhAAAALQAAAEgAAAAAAAAATwAAAkoAAAJO AAAALAAAAAkAAAAtAAAASAAAAAAAAABPAAACTgAAAn8AAAAuAAAACQAAAC4AAAAJAAAAAQAA AQcAAAJRAAACUwAAAC4AAAALAAAALgAAAAwAAAABAAABCgAAAlIAAAJlAAAALgAAAAkAAAAu AAAACQAAAAAAAABPAAACUwAAAmUAAAAuAAAADgAAAC4AAAAUAAAAAQAAASgAAAJUAAACVgAA AC4AAAAVAAAALgAAABUAAAABAAAAKAAAAlUAAAJjAAAALgAAAA4AAAAuAAAAFAAAAAAAAABP AAACVgAAAmMAAAAuAAAAFgAAAC4AAAAWAAAAAQAAAQUAAAJXAAACWAAAAC4AAAAWAAAALgAA ABYAAAAAAAAATwAAAlgAAAJjAAAALgAAABcAAAAuAAAAFwAAAAEAAAAsAAACWQAAAmMAAAAu AAAAGQAAAC4AAAAcAAAAAQAAAQcAAAJdAAACXwAAAC4AAAAdAAAALgAAAB0AAAABAAAAKQAA Al4AAAJjAAAALgAAABkAAAAuAAAAHAAAAAAAAABPAAACXwAAAmMAAAAuAAAADgAAAC4AAAAd AAAAAAAAAE8AAAJjAAACZQAAAC4AAAAJAAAALgAAAB0AAAAAAAAATwAAAmUAAAJ/AAAALwAA AAkAAAAvAAAADwAAAAEAAAEHAAACaAAAAmoAAAAvAAAAEQAAAC8AAAASAAAAAQAAAQoAAAJp AAACegAAAC8AAAAJAAAALwAAAA8AAAAAAAAATwAAAmoAAAJ6AAAALwAAABQAAAAvAAAAFAAA AAEAAAAoAAACawAAAnQAAAAvAAAAFQAAAC8AAAAVAAAAAQAAAQcAAAJsAAACbgAAAC8AAAAX AAAALwAAABcAAAABAAAAKwAAAm0AAAJyAAAALwAAABUAAAAvAAAAFQAAAAAAAABPAAACbgAA AnIAAAAvAAAAGQAAAC8AAAAbAAAAAQAAAQUAAAJvAAACcAAAAC8AAAAZAAAALwAAABsAAAAA AAAATwAAAnAAAAJyAAAALwAAABwAAAAvAAAAHAAAAAEAAAApAAACcQAAAnQAAAAvAAAAFQAA AC8AAAAbAAAAAAAAAE8AAAJyAAACdAAAAC8AAAAUAAAALwAAABwAAAAAAAAATwAAAnQAAAJ5 AAAALwAAAB0AAAAvAAAAHQAAAAEAAAAvAAACdQAAAnkAAAAvAAAAHgAAAC8AAAAgAAAAAQAA AQUAAAJ2AAACdwAAAC8AAAAeAAAALwAAACAAAAAAAAAATwAAAncAAAJ5AAAALwAAABQAAAAv AAAAIAAAAAAAAABPAAACeQAAAnoAAAAvAAAACQAAAC8AAAAgAAAAAAAAAE8AAAJ6AAACfwAA ADAAAAAFAAAAMAAAAAUAAAABAAAAfQAAAn0AAAJ/AAAAKwAAAB4AAAAwAAAABQAAAAAAAABP AAACfwAAAoQAAAAwAAAABgAAADAAAAAGAAAAAQAAACkAAAKAAAAChAAAACsAAAATAAAAMAAA AAYAAAAAAAAATwAAAoQAAAKGAAAAKwAAAAUAAAAwAAAABgAAAAAAAABPAAAChgAAAxEAAAAx AAAABQAAADEAAAANAAAAAQAAASgAAAKJAAACiwAAADEAAAAOAAAAMQAAAA4AAAABAAAAKAAA AooAAAMLAAAAMQAAAAUAAAAxAAAADQAAAAAAAABPAAACiwAAAwsAAAAxAAAADwAAADEAAAAS AAAAAQAAASgAAAKMAAACjgAAADEAAAATAAAAMQAAABMAAAABAAAAKAAAAo0AAAL9AAAAMQAA AA8AAAAxAAAAEgAAAAAAAABPAAACjgAAAv0AAAAxAAAAFAAAADEAAAAZAAAAAQAAAScAAAKP AAAC/QAAADEAAAAbAAAAMQAAABsAAAABAAABJgAAApAAAAL9AAAAMQAAAB0AAAAxAAAAKAAA AAEAAAEEAAACkQAAApMAAAAxAAAAKQAAADEAAAApAAAAAQAAACwAAAKSAAAC/QAAADEAAAAd AAAAMQAAACgAAAAAAAAATwAAApMAAAL9AAAAMgAAABQAAAAyAAAAFwAAAAEAAAEnAAACmAAA Av0AAAAyAAAAGQAAADIAAAAZAAAAAQAAASYAAAKZAAAC/QAAADIAAAAbAAAAMgAAACIAAAAB AAABBwAAApoAAAKcAAAAMgAAACMAAAAyAAAAIwAAAAEAAAAsAAACmwAAAv0AAAAyAAAAGwAA ADIAAAAiAAAAAAAAAE8AAAKcAAAC/QAAADMAAAAUAAAAMwAAABoAAAABAAABJwAAAqEAAAL9 AAAAMwAAABwAAAAzAAAAHAAAAAEAAAEmAAACogAAAv0AAAAzAAAAHgAAADMAAAAiAAAAAQAA AQcAAAKjAAACpQAAADMAAAAjAAAAMwAAACMAAAABAAAAJAAAAqQAAAKnAAAAMwAAAB4AAAAz AAAAIgAAAAAAAABPAAACpQAAAqcAAAAzAAAAJAAAADMAAAAqAAAAAQAAAQcAAAKmAAACpwAA ADMAAAAeAAAAMwAAACoAAAAAAAAATwAAAqcAAAL9AAAAMwAAACsAAAAzAAAAKwAAAAEAAAAs AAACqAAAAv0AAAA0AAAAFAAAADQAAAAaAAAAAQAAAScAAAKtAAAC/QAAADQAAAAcAAAANAAA ABwAAAABAAABJgAAAq4AAAL9AAAANAAAAB4AAAA0AAAAIgAAAAEAAAEHAAACrwAAArEAAAA0 AAAAIwAAADQAAAAjAAAAAQAAACQAAAKwAAACswAAADQAAAAeAAAANAAAACIAAAAAAAAATwAA ArEAAAKzAAAANAAAACQAAAA0AAAAKgAAAAEAAAEHAAACsgAAArMAAAA0AAAAHgAAADQAAAAq AAAAAAAAAE8AAAKzAAAC/QAAADQAAAArAAAANAAAACsAAAABAAAALAAAArQAAAL9AAAANQAA ABQAAAA1AAAAGwAAAAEAAAEnAAACuQAAAv0AAAA1AAAAHQAAADUAAAAdAAAAAQAAASYAAAK6 AAAC/QAAADUAAAAfAAAANQAAACYAAAABAAABBwAAArsAAAK9AAAANQAAACcAAAA1AAAAJwAA AAEAAAAsAAACvAAAAv0AAAA1AAAAHwAAADUAAAAmAAAAAAAAAE8AAAK9AAAC/QAAADYAAAAU AAAANgAAAB0AAAABAAABJwAAAsIAAAL9AAAANgAAAB8AAAA2AAAAHwAAAAEAAAEmAAACwwAA Av0AAAA2AAAAIQAAADYAAAAqAAAAAQAAAQcAAALEAAACxgAAADYAAAArAAAANgAAACsAAAAB AAAALAAAAsUAAAL9AAAANgAAACEAAAA2AAAAKgAAAAAAAABPAAACxgAAAv0AAAA3AAAAFAAA ADcAAAAWAAAAAQAAAScAAALLAAAC/QAAADcAAAAYAAAANwAAABgAAAABAAABJgAAAswAAAL9 AAAANwAAABoAAAA3AAAAHAAAAAEAAAEHAAACzQAAAs8AAAA3AAAAHQAAADcAAAAdAAAAAQAA ACwAAALOAAAC/QAAADcAAAAaAAAANwAAABwAAAAAAAAATwAAAs8AAAL9AAAAOAAAABQAAAA4 AAAAGQAAAAEAAAEnAAAC1AAAAv0AAAA4AAAAGwAAADgAAAAbAAAAAQAAASYAAALVAAAC/QAA ADgAAAAdAAAAOAAAACEAAAABAAABBwAAAtYAAALYAAAAOAAAACIAAAA4AAAAIgAAAAEAAAAk AAAC1wAAAtoAAAA4AAAAHQAAADgAAAAhAAAAAAAAAE8AAALYAAAC2gAAADgAAAAjAAAAOAAA ACgAAAABAAABBwAAAtkAAALaAAAAOAAAAB0AAAA4AAAAKAAAAAAAAABPAAAC2gAAAv0AAAA4 AAAAKQAAADgAAAApAAAAAQAAACwAAALbAAAC/QAAADkAAAAUAAAAOQAAAB0AAAABAAABJwAA AuAAAAL9AAAAOQAAAB8AAAA5AAAAHwAAAAEAAAEmAAAC4QAAAv0AAAA5AAAAIQAAADkAAAAq AAAAAQAAAQcAAALiAAAC5AAAADkAAAArAAAAOQAAACsAAAABAAAALAAAAuMAAAL9AAAAOQAA ACEAAAA5AAAAKgAAAAAAAABPAAAC5AAAAv0AAAA6AAAAFAAAADoAAAAaAAAAAQAAAScAAALp AAAC/QAAADoAAAAcAAAAOgAAABwAAAABAAABJgAAAuoAAAL9AAAAOgAAAB4AAAA6AAAAJAAA AAEAAAEHAAAC6wAAAu0AAAA6AAAAJQAAADoAAAAlAAAAAQAAACwAAALsAAAC/QAAADoAAAAe AAAAOgAAACQAAAAAAAAATwAAAu0AAAL9AAAAOwAAABQAAAA7AAAAGwAAAAEAAAEnAAAC8gAA Av0AAAA7AAAAHQAAADsAAAAdAAAAAQAAASYAAALzAAAC/QAAADsAAAAfAAAAOwAAACMAAAAB AAABBwAAAvQAAAL2AAAAOwAAACQAAAA7AAAAJAAAAAEAAAAkAAAC9QAAAvgAAAA7AAAAHwAA ADsAAAAjAAAAAAAAAE8AAAL2AAAC+AAAADsAAAAlAAAAOwAAACwAAAABAAABBwAAAvcAAAL4 AAAAOwAAAB8AAAA7AAAALAAAAAAAAABPAAAC+AAAAv0AAAA7AAAALQAAADsAAAAtAAAAAQAA ACkAAAL5AAAC/QAAADEAAAAPAAAAOwAAAC0AAAAAAAAATwAAAv0AAAMLAAAAOwAAAC4AAAA7 AAAALgAAAAEAAAAsAAAC/gAAAwsAAAA8AAAADwAAADwAAAATAAAAAQAAAScAAAMDAAADCwAA ADwAAAAVAAAAPAAAABUAAAABAAABJgAAAwQAAAMLAAAAPAAAABcAAAA8AAAAHgAAAAEAAAEE AAADBQAAAwcAAAA8AAAAHwAAADwAAAAfAAAAAQAAACkAAAMGAAADCwAAADwAAAAXAAAAPAAA AB4AAAAAAAAATwAAAwcAAAMLAAAAMQAAAAUAAAA8AAAAHwAAAAAAAABPAAADCwAAAxEAAAA9 AAAAAQAAAD0AAAABAAAAAQAAAH0AAAMPAAADEQAAABUAAAABAAAAPQAAAAEAAAAAAAAATwAA AxEAAAMUAAAAFAAAAAUAAAA9AAAAAQAAAAAAAABPAAADFAAAAxUAAAATAAAAAQAAAD0AAAAB AAAAAAAAAE8AAAMVAAAAAAAABAIAABr/AAAADQAAAAIAAAAIAAACCwAABAIAAAABAAQACQAA AAZ0b2tlbnMAAAAQAAACCwAEAAkAAAAHQ09NTUVOVAAEAAkAAAAHQ09NTUVOVAAEAAkAAAAH Q09NTUVOVAAEAAkAAAAHQ09NTUVOVAAEAAkAAAAHQ09NTUVOVAAEAAkAAAAHQ09NTUVOVAAE AAkAAAAHQ09NTUVOVAAEAAkAAAAHQ09NTUVOVAAEAAkAAAAHQ09NTUVOVAAEAAkAAAAHQ09N TUVOVAAEAAkAAAAHQ09NTUVOVAAEAAkAAAAHQ09NTUVOVAAEAAkAAAAHQ09NTUVOVAAEAAkA AAAHQ09NTUVOVAAEAAkAAAAHQ09NTUVOVAAEAAkAAAAHQ09NTUVOVAAEAAkAAAAHQ09NTUVO VAAEAAkAAAAJU1RSX0NPTlNUAAQACQAAAAtMRUZUX0FTU0lHTgAEAAkAAAAEZXhwcgAEAAkA AAAIRlVOQ1RJT04ABAAJAAAAAycoJwAEAAkAAAAOU1lNQk9MX0ZPUk1BTFMABAAJAAAACkVR X0ZPUk1BTFMABAAJAAAACVNUUl9DT05TVAAEAAkAAAADJyknAAQACQAAAARleHByAAQACQAA AAMneycABAAJAAAABlNZTUJPTAAEAAkAAAALTEVGVF9BU1NJR04ABAAJAAAABGV4cHIABAAJ AAAAFFNZTUJPTF9GVU5DVElPTl9DQUxMAAQACQAAAAMnKCcABAAJAAAABGV4cHIABAAJAAAA BlNZTUJPTAAEAAkAAAADJyknAAQACQAAAARleHByAAQACQAAAARleHByAAQACQAAAARleHBy AAQACQAAAAJJRgAEAAkAAAADJygnAAQACQAAAAMnIScABAAJAAAAFFNZTUJPTF9GVU5DVElP Tl9DQUxMAAQACQAAAAMnKCcABAAJAAAABGV4cHIABAAJAAAABlNZTUJPTAAEAAkAAAADJykn AAQACQAAAARleHByAAQACQAAAARleHByAAQACQAAAAMnKScABAAJAAAABGV4cHIABAAJAAAA Ayd7JwAEAAkAAAAGU1lNQk9MAAQACQAAAAtMRUZUX0FTU0lHTgAEAAkAAAAEZXhwcgAEAAkA AAAUU1lNQk9MX0ZVTkNUSU9OX0NBTEwABAAJAAAAAycoJwAEAAkAAAAEZXhwcgAEAAkAAAAG U1lNQk9MAAQACQAAAAMnKScABAAJAAAABGV4cHIABAAJAAAABGV4cHIABAAJAAAABGV4cHIA BAAJAAAAAklGAAQACQAAAAMnKCcABAAJAAAABlNZTUJPTAAEAAkAAAACRVEABAAJAAAABGV4 cHIABAAJAAAACVNUUl9DT05TVAAEAAkAAAADJyknAAQACQAAAARleHByAAQACQAAAARleHBy AAQACQAAAAZTWU1CT0wABAAJAAAAC0xFRlRfQVNTSUdOAAQACQAAAARleHByAAQACQAAABRT WU1CT0xfRlVOQ1RJT05fQ0FMTAAEAAkAAAADJygnAAQACQAAAARleHByAAQACQAAAAZTWU1C T0wABAAJAAAAAycpJwAEAAkAAAAEZXhwcgAEAAkAAAAEZXhwcgAEAAkAAAADJ30nAAQACQAA AARleHByAAQACQAAAARleHByAAQACQAAAARleHByAAQACQAAAARleHByAAQACQAAAAJJRgAE AAkAAAADJygnAAQACQAAABRTWU1CT0xfRlVOQ1RJT05fQ0FMTAAEAAkAAAADJygnAAQACQAA AARleHByAAQACQAAAAZTWU1CT0wABAAJAAAAAkVRAAQACQAAAARleHByAAQACQAAABRTWU1C T0xfRlVOQ1RJT05fQ0FMTAAEAAkAAAADJygnAAQACQAAAARleHByAAQACQAAAAlTVFJfQ09O U1QABAAJAAAAAycsJwAEAAkAAAAEZXhwcgAEAAkAAAAJU1RSX0NPTlNUAAQACQAAAAMnLCcA BAAJAAAABGV4cHIABAAJAAAACVNUUl9DT05TVAAEAAkAAAADJyknAAQACQAAAARleHByAAQA CQAAAARleHByAAQACQAAAAMnKScABAAJAAAABGV4cHIABAAJAAAABGV4cHIABAAJAAAAAycp JwAEAAkAAAAGU1lNQk9MAAQACQAAAAtMRUZUX0FTU0lHTgAEAAkAAAAEZXhwcgAEAAkAAAAU U1lNQk9MX0ZVTkNUSU9OX0NBTEwABAAJAAAAAycoJwAEAAkAAAAEZXhwcgAEAAkAAAAGU1lN Qk9MAAQACQAAAAMnKScABAAJAAAABGV4cHIABAAJAAAABGV4cHIABAAJAAAABEVMU0UABAAJ AAAABGV4cHIABAAJAAAAFFNZTUJPTF9GVU5DVElPTl9DQUxMAAQACQAAAAMnKCcABAAJAAAA BGV4cHIABAAJAAAAFFNZTUJPTF9GVU5DVElPTl9DQUxMAAQACQAAAAMnKCcABAAJAAAABGV4 cHIABAAJAAAABlNZTUJPTAAEAAkAAAADJywnAAQACQAAAARleHByAAQACQAAAAlTVFJfQ09O U1QABAAJAAAAAycsJwAEAAkAAAAEZXhwcgAEAAkAAAAJU1RSX0NPTlNUAAQACQAAAAMnLCcA BAAJAAAABGV4cHIABAAJAAAACVNUUl9DT05TVAAEAAkAAAADJyknAAQACQAAAARleHByAAQA CQAAAARleHByAAQACQAAAAMnKScABAAJAAAABGV4cHIABAAJAAAABGV4cHIABAAJAAAABlNZ TUJPTAAEAAkAAAALTEVGVF9BU1NJR04ABAAJAAAABGV4cHIABAAJAAAACEZVTkNUSU9OAAQA CQAAAAMnKCcABAAJAAAADlNZTUJPTF9GT1JNQUxTAAQACQAAAAMnKScABAAJAAAABlNZTUJP TAAEAAkAAAADJ14nAAQACQAAAARleHByAAQACQAAAAlOVU1fQ09OU1QABAAJAAAABGV4cHIA BAAJAAAAAycqJwAEAAkAAAAEZXhwcgAEAAkAAAADJygnAAQACQAAAAlOVU1fQ09OU1QABAAJ AAAABGV4cHIABAAJAAAAAyctJwAEAAkAAAAGU1lNQk9MAAQACQAAAAMnKScABAAJAAAABGV4 cHIABAAJAAAABGV4cHIABAAJAAAABGV4cHIABAAJAAAAAydeJwAEAAkAAAAJTlVNX0NPTlNU AAQACQAAAARleHByAAQACQAAAARleHByAAQACQAAAARleHByAAQACQAAAARleHByAAQACQAA AARleHByAAQACQAAAAZTWU1CT0wABAAJAAAAC0xFRlRfQVNTSUdOAAQACQAAAARleHByAAQA CQAAAAhGVU5DVElPTgAEAAkAAAADJygnAAQACQAAAA5TWU1CT0xfRk9STUFMUwAEAAkAAAAD JyknAAQACQAAAAMneycABAAJAAAAFFNZTUJPTF9GVU5DVElPTl9DQUxMAAQACQAAAAMnKCcA BAAJAAAABGV4cHIABAAJAAAABlNZTUJPTAAEAAkAAAACR1QABAAJAAAABGV4cHIABAAJAAAA CU5VTV9DT05TVAAEAAkAAAAEZXhwcgAEAAkAAAADJyknAAQACQAAAARleHByAAQACQAAAARl eHByAAQACQAAAARBTkQyAAQACQAAABRTWU1CT0xfRlVOQ1RJT05fQ0FMTAAEAAkAAAADJygn AAQACQAAAARleHByAAQACQAAAAZTWU1CT0wABAAJAAAAAkxUAAQACQAAAARleHByAAQACQAA AAlOVU1fQ09OU1QABAAJAAAABGV4cHIABAAJAAAAAycpJwAEAAkAAAAEZXhwcgAEAAkAAAAE ZXhwcgAEAAkAAAADJ30nAAQACQAAAARleHByAAQACQAAAARleHByAAQACQAAAARleHByAAQA CQAAAARleHByAAQACQAAAAZTWU1CT0wABAAJAAAAC0xFRlRfQVNTSUdOAAQACQAAAARleHBy AAQACQAAAAhGVU5DVElPTgAEAAkAAAADJygnAAQACQAAAA5TWU1CT0xfRk9STUFMUwAEAAkA AAADJywnAAQACQAAAA5TWU1CT0xfRk9STUFMUwAEAAkAAAADJywnAAQACQAAAA5TWU1CT0xf Rk9STUFMUwAEAAkAAAADJyknAAQACQAAAAMneycABAAJAAAABlNZTUJPTAAEAAkAAAALTEVG VF9BU1NJR04ABAAJAAAABGV4cHIABAAJAAAACU5VTV9DT05TVAAEAAkAAAAEZXhwcgAEAAkA AAAEZXhwcgAEAAkAAAAJTlVNX0NPTlNUAAQACQAAAARleHByAAQACQAAAAMnKicABAAJAAAA BlNZTUJPTAAEAAkAAAADJyonAAQACQAAAARleHByAAQACQAAAARleHByAAQACQAAAAMnKCcA BAAJAAAABlNZTUJPTAAEAAkAAAADJy8nAAQACQAAAARleHByAAQACQAAAAZTWU1CT0wABAAJ AAAAAycrJwAEAAkAAAAEZXhwcgAEAAkAAAAEZXhwcgAEAAkAAAADJygnAAQACQAAAAlOVU1f Q09OU1QABAAJAAAABGV4cHIABAAJAAAAAyctJwAEAAkAAAAGU1lNQk9MAAQACQAAAAMnKScA BAAJAAAABGV4cHIABAAJAAAABGV4cHIABAAJAAAABGV4cHIABAAJAAAAAycvJwAEAAkAAAAD JygnAAQACQAAAAlOVU1fQ09OU1QABAAJAAAABGV4cHIABAAJAAAAAyctJwAEAAkAAAAGU1lN Qk9MAAQACQAAAAMnKScABAAJAAAABGV4cHIABAAJAAAABGV4cHIABAAJAAAABGV4cHIABAAJ AAAAAyctJwAEAAkAAAAEZXhwcgAEAAkAAAAEZXhwcgAEAAkAAAAJTlVNX0NPTlNUAAQACQAA AARleHByAAQACQAAAAMnKycABAAJAAAABGV4cHIABAAJAAAAAycoJwAEAAkAAAAJTlVNX0NP TlNUAAQACQAAAARleHByAAQACQAAAAMnKicABAAJAAAABlNZTUJPTAAEAAkAAAADJy0nAAQA CQAAAARleHByAAQACQAAAARleHByAAQACQAAAAlOVU1fQ09OU1QABAAJAAAABGV4cHIABAAJ AAAAAycpJwAEAAkAAAAEZXhwcgAEAAkAAAAEZXhwcgAEAAkAAAADJyonAAQACQAAABRTWU1C T0xfRlVOQ1RJT05fQ0FMTAAEAAkAAAADJygnAAQACQAAAARleHByAAQACQAAAAMnKCcABAAJ AAAABlNZTUJPTAAEAAkAAAADJysnAAQACQAAAARleHByAAQACQAAAAZTWU1CT0wABAAJAAAA AycpJwAEAAkAAAAEZXhwcgAEAAkAAAAEZXhwcgAEAAkAAAAEZXhwcgAEAAkAAAADJyonAAQA CQAAAAMnKCcABAAJAAAACU5VTV9DT05TVAAEAAkAAAAEZXhwcgAEAAkAAAADJy0nAAQACQAA AAZTWU1CT0wABAAJAAAAAycpJwAEAAkAAAAEZXhwcgAEAAkAAAAEZXhwcgAEAAkAAAAEZXhw cgAEAAkAAAADJy8nAAQACQAAAARleHByAAQACQAAAAMnKCcABAAJAAAAAycoJwAEAAkAAAAJ TlVNX0NPTlNUAAQACQAAAARleHByAAQACQAAAAMnLScABAAJAAAABlNZTUJPTAAEAAkAAAAD JysnAAQACQAAAARleHByAAQACQAAAARleHByAAQACQAAAAZTWU1CT0wABAAJAAAAAycpJwAE AAkAAAAEZXhwcgAEAAkAAAAEZXhwcgAEAAkAAAAEZXhwcgAEAAkAAAADJyonAAQACQAAAAZT WU1CT0wABAAJAAAAAycpJwAEAAkAAAAEZXhwcgAEAAkAAAAEZXhwcgAEAAkAAAAEZXhwcgAE AAkAAAADJyknAAQACQAAAARleHByAAQACQAAAARleHByAAQACQAAAAMnKScABAAJAAAABGV4 cHIABAAJAAAABGV4cHIABAAJAAAABGV4cHIABAAJAAAABGV4cHIABAAJAAAAAyd9JwAEAAkA AAAEZXhwcgAEAAkAAAAEZXhwcgAEAAkAAAAEZXhwcgAEAAkAAAAGU1lNQk9MAAQACQAAAAtM RUZUX0FTU0lHTgAEAAkAAAAEZXhwcgAEAAkAAAAIRlVOQ1RJT04ABAAJAAAAAycoJwAEAAkA AAAOU1lNQk9MX0ZPUk1BTFMABAAJAAAAAycsJwAEAAkAAAAOU1lNQk9MX0ZPUk1BTFMABAAJ AAAAAycsJwAEAAkAAAAOU1lNQk9MX0ZPUk1BTFMABAAJAAAAAycsJwAEAAkAAAAOU1lNQk9M X0ZPUk1BTFMABAAJAAAAAycsJwAEAAkAAAAOU1lNQk9MX0ZPUk1BTFMABAAJAAAAAycpJwAE AAkAAAAJTlVNX0NPTlNUAAQACQAAAARleHByAAQACQAAAARleHByAAQACQAAAARleHByAAQA CQAAAAZTWU1CT0wABAAJAAAAC0xFRlRfQVNTSUdOAAQACQAAAARleHByAAQACQAAABRTWU1C T0xfRlVOQ1RJT05fQ0FMTAAEAAkAAAADJygnAAQACQAAAARleHByAAQACQAAAAMneycABAAJ AAAAAklGAAQACQAAAAMnKCcABAAJAAAAFFNZTUJPTF9GVU5DVElPTl9DQUxMAAQACQAAAAMn KCcABAAJAAAABGV4cHIABAAJAAAABlNZTUJPTAAEAAkAAAACTFQABAAJAAAABGV4cHIABAAJ AAAACU5VTV9DT05TVAAEAAkAAAAEZXhwcgAEAAkAAAACT1IABAAJAAAABGV4cHIABAAJAAAA BlNZTUJPTAAEAAkAAAACR1QABAAJAAAABGV4cHIABAAJAAAACU5VTV9DT05TVAAEAAkAAAAE ZXhwcgAEAAkAAAADJyknAAQACQAAAARleHByAAQACQAAAARleHByAAQACQAAAARleHByAAQA CQAAAAMnKScABAAJAAAAFFNZTUJPTF9GVU5DVElPTl9DQUxMAAQACQAAAAMnKCcABAAJAAAA BGV4cHIABAAJAAAAFFNZTUJPTF9GVU5DVElPTl9DQUxMAAQACQAAAAMnKCcABAAJAAAABGV4 cHIABAAJAAAACVNUUl9DT05TVAAEAAkAAAADJyknAAQACQAAAARleHByAAQACQAAAARleHBy AAQACQAAAAMnKScABAAJAAAABGV4cHIABAAJAAAABGV4cHIABAAJAAAABlNZTUJPTAAEAAkA AAALTEVGVF9BU1NJR04ABAAJAAAABGV4cHIABAAJAAAAFFNZTUJPTF9GVU5DVElPTl9DQUxM AAQACQAAAAMnKCcABAAJAAAABGV4cHIABAAJAAAACU5VTV9DT05TVAAEAAkAAAAEZXhwcgAE AAkAAAADJywnAAQACQAAAAZTWU1CT0wABAAJAAAAAycpJwAEAAkAAAAEZXhwcgAEAAkAAAAE ZXhwcgAEAAkAAAAEZXhwcgAEAAkAAAAGU1lNQk9MAAQACQAAAAtMRUZUX0FTU0lHTgAEAAkA AAAEZXhwcgAEAAkAAAADJygnAAQACQAAAAZTWU1CT0wABAAJAAAAAycrJwAEAAkAAAAEZXhw cgAEAAkAAAAJTlVNX0NPTlNUAAQACQAAAARleHByAAQACQAAAAMnKScABAAJAAAABGV4cHIA BAAJAAAABGV4cHIABAAJAAAAAycvJwAEAAkAAAAJTlVNX0NPTlNUAAQACQAAAARleHByAAQA CQAAAARleHByAAQACQAAAARleHByAAQACQAAAAMnfScABAAJAAAABGV4cHIABAAJAAAAAycp JwAEAAkAAAAEZXhwcgAEAAkAAAAEZXhwcgAEAAkAAAAUU1lNQk9MX0ZVTkNUSU9OX0NBTEwA BAAJAAAAAycoJwAEAAkAAAAEZXhwcgAEAAkAAAAUU1lNQk9MX0ZVTkNUSU9OX0NBTEwABAAJ AAAAAycoJwAEAAkAAAAEZXhwcgAEAAkAAAAKU1lNQk9MX1NVQgAEAAkAAAAGRVFfU1VCAAQA CQAAAAlTVFJfQ09OU1QABAAJAAAAAycsJwAEAAkAAAAEZXhwcgAEAAkAAAAKU1lNQk9MX1NV QgAEAAkAAAAGRVFfU1VCAAQACQAAAAZTWU1CT0wABAAJAAAAAycsJwAEAAkAAAAEZXhwcgAE AAkAAAAKU1lNQk9MX1NVQgAEAAkAAAAGRVFfU1VCAAQACQAAAAZTWU1CT0wABAAJAAAAAyck JwAEAAkAAAAEZXhwcgAEAAkAAAAGU1lNQk9MAAQACQAAAARleHByAAQACQAAAAMnLCcABAAJ AAAAClNZTUJPTF9TVUIABAAJAAAABkVRX1NVQgAEAAkAAAAGU1lNQk9MAAQACQAAAAMnJCcA BAAJAAAABGV4cHIABAAJAAAABlNZTUJPTAAEAAkAAAAEZXhwcgAEAAkAAAADJywnAAQACQAA AApTWU1CT0xfU1VCAAQACQAAAAZFUV9TVUIABAAJAAAABlNZTUJPTAAEAAkAAAADJywnAAQA CQAAAARleHByAAQACQAAAApTWU1CT0xfU1VCAAQACQAAAAZFUV9TVUIABAAJAAAABlNZTUJP TAAEAAkAAAADJywnAAQACQAAAARleHByAAQACQAAAApTWU1CT0xfU1VCAAQACQAAAAZFUV9T VUIABAAJAAAABlNZTUJPTAAEAAkAAAADJywnAAQACQAAAARleHByAAQACQAAAApTWU1CT0xf U1VCAAQACQAAAAZFUV9TVUIABAAJAAAABlNZTUJPTAAEAAkAAAADJyQnAAQACQAAAARleHBy AAQACQAAAAZTWU1CT0wABAAJAAAABGV4cHIABAAJAAAAAycsJwAEAAkAAAAKU1lNQk9MX1NV QgAEAAkAAAAGRVFfU1VCAAQACQAAAAZTWU1CT0wABAAJAAAAAycsJwAEAAkAAAAEZXhwcgAE AAkAAAAKU1lNQk9MX1NVQgAEAAkAAAAGRVFfU1VCAAQACQAAAAZTWU1CT0wABAAJAAAAAycs JwAEAAkAAAAEZXhwcgAEAAkAAAAKU1lNQk9MX1NVQgAEAAkAAAAGRVFfU1VCAAQACQAAAAZT WU1CT0wABAAJAAAAAyckJwAEAAkAAAAEZXhwcgAEAAkAAAAGU1lNQk9MAAQACQAAAARleHBy AAQACQAAAAMnKScABAAJAAAABGV4cHIABAAJAAAAAycsJwAEAAkAAAAKU1lNQk9MX1NVQgAE AAkAAAAGRVFfU1VCAAQACQAAAAlTVFJfQ09OU1QABAAJAAAAAycpJwAEAAkAAAAEZXhwcgAE AAkAAAAEZXhwcgAEAAkAAAADJ30nAAQACQAAAARleHByAAQACQAAAARleHByAAQACQAAAARl eHByAAAEAgAAAAEABAAJAAAABHRleHQAAAAQAAACCwAEAAkAAAA5IyAgTW9kaWZpY2F0aW9u IG9mIGJpbm9taWFsIGZyb20gdGhlIHN0YXRzIHBhY2thZ2UgZm9yIFIuAAQACQAAAAEjAAQA CQAAACojICBDb3B5cmlnaHQgKEMpIDE5OTUtMjAwNSBUaGUgUiBDb3JlIFRlYW0ABAAJAAAA ISMgIENvcHlyaWdodCAoQykgMjAwNSBEYXZpZCBGaXJ0aAAEAAkAAAABIwAEAAkAAABHIyAg VGhpcyBwcm9ncmFtIGlzIGZyZWUgc29mdHdhcmU7IHlvdSBjYW4gcmVkaXN0cmlidXRlIGl0 IGFuZC9vciBtb2RpZnkABAAJAAAARyMgIGl0IHVuZGVyIHRoZSB0ZXJtcyBvZiB0aGUgR05V IEdlbmVyYWwgUHVibGljIExpY2Vuc2UgYXMgcHVibGlzaGVkIGJ5AAQACQAAAEUjICB0aGUg RnJlZSBTb2Z0d2FyZSBGb3VuZGF0aW9uOyBlaXRoZXIgdmVyc2lvbiAyIG9yIDMgb2YgdGhl IExpY2Vuc2UABAAJAAAAFCMgIChhdCB5b3VyIG9wdGlvbikuAAQACQAAAAEjAAQACQAAAEIj ICBUaGlzIHByb2dyYW0gaXMgZGlzdHJpYnV0ZWQgaW4gdGhlIGhvcGUgdGhhdCBpdCB3aWxs IGJlIHVzZWZ1bCwABAAJAAAAQSMgIGJ1dCBXSVRIT1VUIEFOWSBXQVJSQU5UWTsgd2l0aG91 dCBldmVuIHRoZSBpbXBsaWVkIHdhcnJhbnR5IG9mAAQACQAAAEAjICBNRVJDSEFOVEFCSUxJ VFkgb3IgRklUTkVTUyBGT1IgQSBQQVJUSUNVTEFSIFBVUlBPU0UuICBTZWUgdGhlAAQACQAA AC8jICBHTlUgR2VuZXJhbCBQdWJsaWMgTGljZW5zZSBmb3IgbW9yZSBkZXRhaWxzLgAEAAkA AAABIwAEAAkAAAA7IyAgQSBjb3B5IG9mIHRoZSBHTlUgR2VuZXJhbCBQdWJsaWMgTGljZW5z ZSBpcyBhdmFpbGFibGUgYXQABAAJAAAAJSMgIGh0dHA6Ly93d3cuci1wcm9qZWN0Lm9yZy9M aWNlbnNlcy8ABAAJAAAADCJ3ZWRkZXJidXJuIgAEAAkAAAACPC0ABAAJAAAAAAAEAAkAAAAI ZnVuY3Rpb24ABAAJAAAAASgABAAJAAAABGxpbmsABAAJAAAAAT0ABAAJAAAAByJsb2dpdCIA BAAJAAAAASkABAAJAAAAAAAEAAkAAAABewAEAAkAAAAIbGlua3RlbXAABAAJAAAAAjwtAAQA CQAAAAAABAAJAAAACnN1YnN0aXR1dGUABAAJAAAAASgABAAJAAAAAAAEAAkAAAAEbGluawAE AAkAAAABKQAEAAkAAAAAAAQACQAAAAAABAAJAAAAAAAEAAkAAAACaWYABAAJAAAAASgABAAJ AAAAASEABAAJAAAADGlzLmNoYXJhY3RlcgAEAAkAAAABKAAEAAkAAAAAAAQACQAAAAhsaW5r dGVtcAAEAAkAAAABKQAEAAkAAAAAAAQACQAAAAAABAAJAAAAASkABAAJAAAAAAAEAAkAAAAB ewAEAAkAAAAIbGlua3RlbXAABAAJAAAAAjwtAAQACQAAAAAABAAJAAAAB2RlcGFyc2UABAAJ AAAAASgABAAJAAAAAAAEAAkAAAAIbGlua3RlbXAABAAJAAAAASkABAAJAAAAAAAEAAkAAAAA AAQACQAAAAAABAAJAAAAAmlmAAQACQAAAAEoAAQACQAAAAhsaW5rdGVtcAAEAAkAAAACPT0A BAAJAAAAAAAEAAkAAAAGImxpbmsiAAQACQAAAAEpAAQACQAAAAAABAAJAAAAAAAEAAkAAAAI bGlua3RlbXAABAAJAAAAAjwtAAQACQAAAAAABAAJAAAABGV2YWwABAAJAAAAASgABAAJAAAA AAAEAAkAAAAEbGluawAEAAkAAAABKQAEAAkAAAAAAAQACQAAAAAABAAJAAAAAX0ABAAJAAAA AAAEAAkAAAAAAAQACQAAAAAABAAJAAAAAAAEAAkAAAACaWYABAAJAAAAASgABAAJAAAAA2Fu eQAEAAkAAAABKAAEAAkAAAAAAAQACQAAAAhsaW5rdGVtcAAEAAkAAAACPT0ABAAJAAAAAAAE AAkAAAABYwAEAAkAAAABKAAEAAkAAAAAAAQACQAAAAcibG9naXQiAAQACQAAAAEsAAQACQAA AAAABAAJAAAACCJwcm9iaXQiAAQACQAAAAEsAAQACQAAAAAABAAJAAAACSJjbG9nbG9nIgAE AAkAAAABKQAEAAkAAAAAAAQACQAAAAAABAAJAAAAASkABAAJAAAAAAAEAAkAAAAAAAQACQAA AAEpAAQACQAAAAVzdGF0cwAEAAkAAAACPC0ABAAJAAAAAAAEAAkAAAAJbWFrZS5saW5rAAQA CQAAAAEoAAQACQAAAAAABAAJAAAACGxpbmt0ZW1wAAQACQAAAAEpAAQACQAAAAAABAAJAAAA AAAEAAkAAAAEZWxzZQAEAAkAAAAAAAQACQAAAARzdG9wAAQACQAAAAEoAAQACQAAAAAABAAJ AAAABXBhc3RlAAQACQAAAAEoAAQACQAAAAAABAAJAAAACGxpbmt0ZW1wAAQACQAAAAEsAAQA CQAAAAAABAAJAAAAMSJsaW5rIG5vdCBhdmFpbGFibGUgZm9yIHdlZGRlcmJ1cm4gcXVhc2kt ZmFtaWx5OyIABAAJAAAAASwABAAJAAAAAAAEAAkAAAAVImF2YWlsYWJsZSBsaW5rcyBhcmUi AAQACQAAAAEsAAQACQAAAAAABAAJAAAAJyJcImxvZ2l0XCIsIFwicHJvYml0XCIgYW5kIFwi Y2xvZ2xvZ1wiIgAEAAkAAAABKQAEAAkAAAAAAAQACQAAAAAABAAJAAAAASkABAAJAAAAAAAE AAkAAAAAAAQACQAAAAh2YXJpYW5jZQAEAAkAAAACPC0ABAAJAAAAAAAEAAkAAAAIZnVuY3Rp b24ABAAJAAAAASgABAAJAAAAAm11AAQACQAAAAEpAAQACQAAAAJtdQAEAAkAAAABXgAEAAkA AAAAAAQACQAAAAEyAAQACQAAAAAABAAJAAAAASoABAAJAAAAAAAEAAkAAAABKAAEAAkAAAAB MQAEAAkAAAAAAAQACQAAAAEtAAQACQAAAAJtdQAEAAkAAAABKQAEAAkAAAAAAAQACQAAAAAA BAAJAAAAAAAEAAkAAAABXgAEAAkAAAABMgAEAAkAAAAAAAQACQAAAAAABAAJAAAAAAAEAAkA AAAAAAQACQAAAAAABAAJAAAAB3ZhbGlkbXUABAAJAAAAAjwtAAQACQAAAAAABAAJAAAACGZ1 bmN0aW9uAAQACQAAAAEoAAQACQAAAAJtdQAEAAkAAAABKQAEAAkAAAABewAEAAkAAAADYWxs AAQACQAAAAEoAAQACQAAAAAABAAJAAAAAm11AAQACQAAAAE+AAQACQAAAAAABAAJAAAAATAA BAAJAAAAAAAEAAkAAAABKQAEAAkAAAAAAAQACQAAAAAABAAJAAAAAiYmAAQACQAAAANhbGwA BAAJAAAAASgABAAJAAAAAAAEAAkAAAACbXUABAAJAAAAATwABAAJAAAAAAAEAAkAAAABMQAE AAkAAAAAAAQACQAAAAEpAAQACQAAAAAABAAJAAAAAAAEAAkAAAABfQAEAAkAAAAAAAQACQAA AAAABAAJAAAAAAAEAAkAAAAAAAQACQAAAApkZXYucmVzaWRzAAQACQAAAAI8LQAEAAkAAAAA AAQACQAAAAhmdW5jdGlvbgAEAAkAAAABKAAEAAkAAAABeQAEAAkAAAABLAAEAAkAAAACbXUA BAAJAAAAASwABAAJAAAAAnd0AAQACQAAAAEpAAQACQAAAAF7AAQACQAAAANlcHMABAAJAAAA AjwtAAQACQAAAAAABAAJAAAABjAuMDAwNQAEAAkAAAAAAAQACQAAAAAABAAJAAAAATIABAAJ AAAAAAAEAAkAAAABKgAEAAkAAAACd3QABAAJAAAAASoABAAJAAAAAAAEAAkAAAAAAAQACQAA AAEoAAQACQAAAAF5AAQACQAAAAEvAAQACQAAAAAABAAJAAAAAm11AAQACQAAAAErAAQACQAA AAAABAAJAAAAAAAEAAkAAAABKAAEAAkAAAABMQAEAAkAAAAAAAQACQAAAAEtAAQACQAAAAF5 AAQACQAAAAEpAAQACQAAAAAABAAJAAAAAAAEAAkAAAAAAAQACQAAAAEvAAQACQAAAAEoAAQA CQAAAAExAAQACQAAAAAABAAJAAAAAS0ABAAJAAAAAm11AAQACQAAAAEpAAQACQAAAAAABAAJ AAAAAAAEAAkAAAAAAAQACQAAAAEtAAQACQAAAAAABAAJAAAAAAAEAAkAAAABMgAEAAkAAAAA AAQACQAAAAErAAQACQAAAAAABAAJAAAAASgABAAJAAAAATIABAAJAAAAAAAEAAkAAAABKgAE AAkAAAABeQAEAAkAAAABLQAEAAkAAAAAAAQACQAAAAAABAAJAAAAATEABAAJAAAAAAAEAAkA AAABKQAEAAkAAAAAAAQACQAAAAAABAAJAAAAASoABAAJAAAAA2xvZwAEAAkAAAABKAAEAAkA AAAAAAQACQAAAAEoAAQACQAAAAF5AAQACQAAAAErAAQACQAAAAAABAAJAAAAA2VwcwAEAAkA AAABKQAEAAkAAAAAAAQACQAAAAAABAAJAAAAAAAEAAkAAAABKgAEAAkAAAABKAAEAAkAAAAB MQAEAAkAAAAAAAQACQAAAAEtAAQACQAAAAJtdQAEAAkAAAABKQAEAAkAAAAAAAQACQAAAAAA BAAJAAAAAAAEAAkAAAABLwAEAAkAAAAAAAQACQAAAAEoAAQACQAAAAEoAAQACQAAAAExAAQA CQAAAAAABAAJAAAAAS0ABAAJAAAAAXkABAAJAAAAASsABAAJAAAAAAAEAAkAAAAAAAQACQAA AANlcHMABAAJAAAAASkABAAJAAAAAAAEAAkAAAAAAAQACQAAAAAABAAJAAAAASoABAAJAAAA Am11AAQACQAAAAEpAAQACQAAAAAABAAJAAAAAAAEAAkAAAAAAAQACQAAAAEpAAQACQAAAAAA BAAJAAAAAAAEAAkAAAABKQAEAAkAAAAAAAQACQAAAAAABAAJAAAAAAAEAAkAAAAAAAQACQAA AAF9AAQACQAAAAAABAAJAAAAAAAEAAkAAAAAAAQACQAAAANhaWMABAAJAAAAAjwtAAQACQAA AAAABAAJAAAACGZ1bmN0aW9uAAQACQAAAAEoAAQACQAAAAF5AAQACQAAAAEsAAQACQAAAAFu AAQACQAAAAEsAAQACQAAAAJtdQAEAAkAAAABLAAEAAkAAAACd3QABAAJAAAAASwABAAJAAAA A2RldgAEAAkAAAABKQAEAAkAAAACTkEABAAJAAAAAAAEAAkAAAAAAAQACQAAAAAABAAJAAAA CmluaXRpYWxpemUABAAJAAAAAjwtAAQACQAAAAAABAAJAAAACmV4cHJlc3Npb24ABAAJAAAA ASgABAAJAAAAAAAEAAkAAAABewAEAAkAAAACaWYABAAJAAAAASgABAAJAAAAA2FueQAEAAkA AAABKAAEAAkAAAAAAAQACQAAAAF5AAQACQAAAAE8AAQACQAAAAAABAAJAAAAATAABAAJAAAA AAAEAAkAAAABfAAEAAkAAAAAAAQACQAAAAF5AAQACQAAAAE+AAQACQAAAAAABAAJAAAAATEA BAAJAAAAAAAEAAkAAAABKQAEAAkAAAAAAAQACQAAAAAABAAJAAAAAAAEAAkAAAABKQAEAAkA AAAEc3RvcAAEAAkAAAABKAAEAAkAAAAAAAQACQAAAAVwYXN0ZQAEAAkAAAABKAAEAAkAAAAA AAQACQAAADMiVmFsdWVzIGZvciB0aGUgd2VkZGVyYnVybiBmYW1pbHkgbXVzdCBiZSBpbiBb MCwxXSIABAAJAAAAASkABAAJAAAAAAAEAAkAAAAAAAQACQAAAAEpAAQACQAAAAAABAAJAAAA AAAEAAkAAAABbgAEAAkAAAACPC0ABAAJAAAAAAAEAAkAAAAHcmVwLmludAAEAAkAAAABKAAE AAkAAAAAAAQACQAAAAExAAQACQAAAAAABAAJAAAAASwABAAJAAAABG5vYnMABAAJAAAAASkA BAAJAAAAAAAEAAkAAAAAAAQACQAAAAAABAAJAAAAB211c3RhcnQABAAJAAAAAjwtAAQACQAA AAAABAAJAAAAASgABAAJAAAAAXkABAAJAAAAASsABAAJAAAAAAAEAAkAAAADMC4xAAQACQAA AAAABAAJAAAAASkABAAJAAAAAAAEAAkAAAAAAAQACQAAAAEvAAQACQAAAAMxLjIABAAJAAAA AAAEAAkAAAAAAAQACQAAAAAABAAJAAAAAX0ABAAJAAAAAAAEAAkAAAABKQAEAAkAAAAAAAQA CQAAAAAABAAJAAAACXN0cnVjdHVyZQAEAAkAAAABKAAEAAkAAAAAAAQACQAAAARsaXN0AAQA CQAAAAEoAAQACQAAAAAABAAJAAAABmZhbWlseQAEAAkAAAABPQAEAAkAAAAMIndlZGRlcmJ1 cm4iAAQACQAAAAEsAAQACQAAAAAABAAJAAAABGxpbmsABAAJAAAAAT0ABAAJAAAACGxpbmt0 ZW1wAAQACQAAAAEsAAQACQAAAAAABAAJAAAAB2xpbmtmdW4ABAAJAAAAAT0ABAAJAAAABXN0 YXRzAAQACQAAAAEkAAQACQAAAAAABAAJAAAAB2xpbmtmdW4ABAAJAAAAAAAEAAkAAAABLAAE AAkAAAAHbGlua2ludgAEAAkAAAABPQAEAAkAAAAFc3RhdHMABAAJAAAAASQABAAJAAAAAAAE AAkAAAAHbGlua2ludgAEAAkAAAAAAAQACQAAAAEsAAQACQAAAAh2YXJpYW5jZQAEAAkAAAAB PQAEAAkAAAAIdmFyaWFuY2UABAAJAAAAASwABAAJAAAAAAAEAAkAAAAKZGV2LnJlc2lkcwAE AAkAAAABPQAEAAkAAAAKZGV2LnJlc2lkcwAEAAkAAAABLAAEAAkAAAAAAAQACQAAAANhaWMA BAAJAAAAAT0ABAAJAAAAA2FpYwAEAAkAAAABLAAEAAkAAAAAAAQACQAAAAZtdS5ldGEABAAJ AAAAAT0ABAAJAAAABXN0YXRzAAQACQAAAAEkAAQACQAAAAAABAAJAAAABm11LmV0YQAEAAkA AAAAAAQACQAAAAEsAAQACQAAAAppbml0aWFsaXplAAQACQAAAAE9AAQACQAAAAppbml0aWFs aXplAAQACQAAAAEsAAQACQAAAAAABAAJAAAAB3ZhbGlkbXUABAAJAAAAAT0ABAAJAAAAB3Zh bGlkbXUABAAJAAAAASwABAAJAAAAAAAEAAkAAAAIdmFsaWRldGEABAAJAAAAAT0ABAAJAAAA BXN0YXRzAAQACQAAAAEkAAQACQAAAAAABAAJAAAACHZhbGlkZXRhAAQACQAAAAAABAAJAAAA ASkABAAJAAAAAAAEAAkAAAABLAAEAAkAAAAFY2xhc3MABAAJAAAAAT0ABAAJAAAACCJmYW1p bHkiAAQACQAAAAEpAAQACQAAAAAABAAJAAAAAAAEAAkAAAABfQAEAAkAAAAAAAQACQAAAAAA BAAJAAAAAAAABAIAABD/AAAAEAAAAAEABAAJAAAACXBhcnNlRGF0YQAAAP4AAAD+AAAEAgAA EP8AAAAQAAAAAgAEAAkAAAALc3JjZmlsZWNvcHkABAAJAAAAB3NyY2ZpbGUAAAD+AAAEAgAA EP8AAAAQAAAAAQAEAAkAAAAGc3JjcmVmAAAA/gAAAP4AAAAEAAAAAAAAAPkAAAAAAAAAAgAE AAkAAAADZ25tAAQACQAAAAUxLjEuNAAABAIAAAABAAQACQAAAAppbml0aWFsaXplAAAAFAAA AAEAAAIGAAAEAgAAQf8AAAATAAAABAAAAw0AAAAIAAAAKwAAAB4AAAArAAAAHgAAAB4AAAAe AAAAKwAAACsAAAQCAABC/wAAQ/8AAAQCAAAQ/wAAABAAAAABAAQACQAAAAZzcmNyZWYAAAD+ AAADDQAAAAgAAAAsAAAACQAAAC0AAABIAAAACQAAAEgAAAAsAAAALQAABAIAAEL/AABD/wAA BAIAABD/AAAAEAAAAAEABAAJAAAABnNyY3JlZgAAAP4AAAMNAAAACAAAAC4AAAAJAAAALgAA AB0AAAAJAAAAHQAAAC4AAAAuAAAEAgAAQv8AAEP/AAAEAgAAEP8AAAAQAAAAAQAEAAkAAAAG c3JjcmVmAAAA/gAAAw0AAAAIAAAALwAAAAkAAAAvAAAAIAAAAAkAAAAgAAAALwAAAC8AAAQC AABC/wAAQ/8AAAQCAAAQ/wAAABAAAAABAAQACQAAAAZzcmNyZWYAAAD+AAAEAgAAQv8AAEP/ AAAEAgAAAAEABAAJAAAAC3dob2xlU3JjcmVmAAADDQAAAAgAAAABAAAAAAAAADAAAAAFAAAA AAAAAAUAAAABAAAAMAAABAIAAEL/AABD/wAABAIAABD/AAAAEAAAAAEABAAJAAAABnNyY3Jl ZgAAAP4AAAD+AAAAAQAEAAkAAAABewAAAAIAAAAGAAAAAQAEAAkAAAACaWYAAAACAAAABgAA AAEABAAJAAAAA2FueQAAAAIAAAAGAAAAAQAEAAkAAAABfAAAAAIAAAAGAAAAAQAEAAkAAAAB PAAAAAIAAAT/AAAAAgAAAA4AAAABAAAAAAAAAAAAAAD+AAAAAgAAAAYAAAABAAQACQAAAAE+ AAAAAgAABP8AAAACAAAADgAAAAE/8AAAAAAAAAAAAP4AAAD+AAAA/gAAAAIAAAAGAAAAAQAE AAkAAAAEc3RvcAAAAAIAAAAGAAAAAQAEAAkAAAAFcGFzdGUAAAACAAAAEAAAAAEABAAJAAAA MVZhbHVlcyBmb3IgdGhlIHdlZGRlcmJ1cm4gZmFtaWx5IG11c3QgYmUgaW4gWzAsMV0AAAD+ AAAA/gAAAP4AAAACAAAABgAAAAEABAAJAAAAAjwtAAAAAgAAAAEABAAJAAAAAW4AAAACAAAA BgAAAAEABAAJAAAAB3JlcC5pbnQAAAACAAAADgAAAAE/8AAAAAAAAAAAAAIAAAABAAQACQAA AARub2JzAAAA/gAAAP4AAAACAAAABgAAWv8AAAACAAAAAQAEAAkAAAAHbXVzdGFydAAAAAIA AAAGAAAAAQAEAAkAAAABLwAAAAIAAAAGAAAu/wAAAAIAAAAGAAAF/wAAAAIAAAT/AAAAAgAA AA4AAAABP7mZmZmZmZoAAAD+AAAA/gAAAAIAAAAOAAAAAT/zMzMzMzMzAAAA/gAAAP4AAAD+ AAAEAgAAAAEABAAJAAAAA2FpYwACBgMAAAQCAABB/wAAAw0AAAAIAAAAKgAAAAwAAAAqAAAA KQAAAAwAAAApAAAAKgAAACoAAAQCAABC/wAAQ/8AAAQCAAAQ/wAAABAAAAABAAQACQAAAAZz cmNyZWYAAAD+AAAA/gAATv8AAAQCAAAE/wAAAPsAAAQCAABb/wAAAPsAAAQCAAA8/wAAAPsA AAQCAAAAAQAEAAkAAAACd3QAAAD7AAAEAgAAAAEABAAJAAAAA2RldgAAAPsAAAD+AAAACgAA AAGAAAAAAAAEAgAAAAEABAAJAAAACmRldi5yZXNpZHMAAgYDAAAEAgAAQf8AAAMNAAAACAAA ACUAAAATAAAAKQAAAAUAAAATAAAABQAAACUAAAApAAAEAgAAQv8AAEP/AAAEAgAAEP8AAAAQ AAAAAQAEAAkAAAAGc3JjcmVmAAAA/gAAAP4AAE7/AAAEAgAABP8AAAD7AAAEAgAAPP8AAAD7 AAAEAgAAYf8AAAD7AAAA/gAAAgYAAAQCAABB/wAAABMAAAADAAADDQAAAAgAAAAlAAAAJgAA ACUAAAAmAAAAJgAAACYAAAAlAAAAJQAABAIAAEL/AABD/wAABAIAABD/AAAAEAAAAAEABAAJ AAAABnNyY3JlZgAAAP4AAAMNAAAACAAAACYAAAAJAAAAJgAAABYAAAAJAAAAFgAAACYAAAAm AAAEAgAAQv8AAEP/AAAEAgAAEP8AAAAQAAAAAQAEAAkAAAAGc3JjcmVmAAAA/gAAAw0AAAAI AAAAJwAAAAkAAAAoAAAATAAAAAkAAABMAAAAJwAAACgAAAQCAABC/wAAQ/8AAAQCAAAQ/wAA ABAAAAABAAQACQAAAAZzcmNyZWYAAAD+AAAEAgAAQv8AAEP/AAAEAgAAUf8AAAMNAAAACAAA AAEAAAAAAAAAKQAAAAUAAAAAAAAABQAAAAEAAAApAAAEAgAAQv8AAEP/AAAEAgAAEP8AAAAQ AAAAAQAEAAkAAAAGc3JjcmVmAAAA/gAAAP4AAFL/AAAAAgAAAAYAAFr/AAAAAgAAAAEABAAJ AAAAA2VwcwAAAAIAAAAOAAAAAT9AYk3S8an8AAAA/gAAAAIAAAAGAAAt/wAAAAIAAAAGAAAt /wAAAAIAAAAOAAAAAUAAAAAAAAAAAAAAAgAAYf8AAAD+AAAAAgAAAAYAAC7/AAAAAgAAAAYA AAX/AAAAAgAAAAYAAAb/AAAAAgAAAAYAAAX/AAAAAgAAAAYAAF//AAAAAgAABP8AAAACAAA8 /wAAAP4AAAACAAAABgAAX/8AAAACAAAABgAALv8AAAACAAAABgAABv8AAAACAAAADgAAAAE/ 8AAAAAAAAAAAAAIAAAT/AAAA/gAAAP4AAAACAAAABgAALv8AAAACAAAABgAABv8AAAACAAAA DgAAAAE/8AAAAAAAAAAAAAIAADz/AAAA/gAAAP4AAAD+AAAA/gAAAAIAAAAOAAAAAUAAAAAA AAAAAAAA/gAAAAIAAAAGAAAt/wAAAAIAAAAGAAAu/wAAAAIAAAAGAAAG/wAAAAIAAAAGAAAt /wAAAAIAAAAOAAAAAUAAAAAAAAAAAAAAAgAABP8AAAD+AAAAAgAAAA4AAAABP/AAAAAAAAAA AAD+AAAA/gAAAAIAAAAGAAAAAQAEAAkAAAADbG9nAAAAAgAAAAYAAF//AAAAAgAAAAYAAC3/ AAAAAgAAAAYAAC7/AAAAAgAAAAYAAAX/AAAAAgAABP8AAAACAABk/wAAAP4AAAD+AAAAAgAA AAYAAC7/AAAAAgAAAAYAAAb/AAAAAgAAAA4AAAABP/AAAAAAAAAAAAACAAA8/wAAAP4AAAD+ AAAA/gAAAAIAAAAGAAAu/wAAAAIAAAAGAAAt/wAAAAIAAAAGAAAu/wAAAAIAAAAGAAAF/wAA AAIAAAAGAAAG/wAAAAIAAAAOAAAAAT/wAAAAAAAAAAAAAgAABP8AAAD+AAAAAgAAZP8AAAD+ AAAA/gAAAAIAADz/AAAA/gAAAP4AAAD+AAAA/gAAAP4AAAD+AAAA/gAAAP4AAAD+AAAEAgAA AAEABAAJAAAAB3ZhbGlkbXUAAAYDAAAEAgAAQf8AAAMNAAAACAAAACMAAAAQAAAAJAAAACMA AAAQAAAAIwAAACMAAAAkAAAEAgAAQv8AAEP/AAAEAgAAEP8AAAAQAAAAAQAEAAkAAAAGc3Jj cmVmAAAA/gAAAP4AAE7/AAAEAgAAPP8AAAD7AAAA/gAAAgYAAAQCAABB/wAAABMAAAACAAAD DQAAAAgAAAAjAAAAHQAAACMAAAAdAAAAHQAAAB0AAAAjAAAAIwAABAIAAEL/AABD/wAABAIA ABD/AAAAEAAAAAEABAAJAAAABnNyY3JlZgAAAP4AAAMNAAAACAAAACQAAAAJAAAAJAAAACIA AAAJAAAAIgAAACQAAAAkAAAEAgAAQv8AAEP/AAAEAgAAEP8AAAAQAAAAAQAEAAkAAAAGc3Jj cmVmAAAA/gAABAIAAEL/AABD/wAABAIAAFH/AAADDQAAAAgAAAABAAAAAAAAACQAAAAjAAAA AAAAACMAAAABAAAAJAAABAIAAEL/AABD/wAABAIAABD/AAAAEAAAAAEABAAJAAAABnNyY3Jl ZgAAAP4AAAD+AABS/wAAAAIAAAAGAAAAAQAEAAkAAAACJiYAAAACAAAABgAAAAEABAAJAAAA A2FsbAAAAAIAAAAGAABX/wAAAAIAADz/AAAAAgAAAA4AAAABAAAAAAAAAAAAAAD+AAAA/gAA AAIAAAAGAABo/wAAAAIAAAAGAABW/wAAAAIAADz/AAAAAgAAAA4AAAABP/AAAAAAAAAAAAD+ AAAA/gAAAP4AAAD+AAAEAgAAAAEABAAJAAAACHZhcmlhbmNlAAIGAwAABAIAAEH/AAADDQAA AAgAAAAiAAAAEQAAACIAAAAtAAAAEQAAAC0AAAAiAAAAIgAABAIAAEL/AABD/wAABAIAABD/ AAAAEAAAAAEABAAJAAAABnNyY3JlZgAAAP4AAAD+AABO/wAABAIAADz/AAAA+wAAAP4AAAAG AAAt/wAAAAIAAAAGAAAAAQAEAAkAAAABXgAAAAIAADz/AAAAAgAAAA4AAAABQAAAAAAAAAAA AAD+AAAAAgAAAAYAAGr/AAAAAgAAAAYAAC7/AAAAAgAAAAYAAAb/AAAAAgAAAA4AAAABP/AA AAAAAAAAAAACAAA8/wAAAP4AAAD+AAAAAgAAAA4AAAABQAAAAAAAAAAAAAD+AAAA/gAABAIA AAABAAQACQAAAAVzdGF0cwAAAxMAAAAFAAAEAwAAO/8AAAQCAAA8/wAAAPsAAAD+AAAABgAA Pf8AAAACAAA+/wAAAAIAADz/AAAA/gACBAMAADv/AAAEAgAAP/8AAAD7AAAA/gAAAAYAAD3/ AAAAAgAAQP8AAAACAAA//wAAAP4AAgQDAAA7/wAABAIAAD//AAAA+wAAAP4AAAAGAAA9/wAA AAIAAAABAAQACQAAAA5DX2xvZ2l0X211X2V0YQAAAAIAAD//AAAA/gAABAMAADv/AAAEAgAA P/8AAAD7AAAA/gAAAAoAAAABAAAAAQAAABAAAAABAAQACQAAAAVsb2dpdAAABAIAADP/AAAA EAAAAAUABAAJAAAAB2xpbmtmdW4ABAAJAAAAB2xpbmtpbnYABAAJAAAABm11LmV0YQAEAAkA AAAIdmFsaWRldGEABAAJAAAABG5hbWUAAAQCAAAQ/wAAABAAAAABAAQACQAAAAhsaW5rLWds bQAAAP4AAAQCAAAAAQAEAAkAAAAIbGlua3RlbXAAAAAQAAAAAQAEAAkAAAAFbG9naXQAACQC AAAAAQAEAAkAAAAEbGluawAABAUAAE7/AAAA/AAAABAAAAABAAQACQAAAAVsb2dpdAAAAP4A AAD+AAAA/gAABAIAADz/AAAA+wAAAP4AAAAGAAAt/wAAAAIAAAAGAABq/wAAAAIAADz/AAAA AgAAAA4AAAABQAAAAAAAAAAAAAD+AAAAAgAAAAYAAGr/AAAAAgAAAAYAAC7/AAAAAgAAAAYA AAb/AAAAAgAAAA4AAAABP/AAAAAAAAAAAAACAAA8/wAAAP4AAAD+AAAAAgAAAA4AAAABQAAA AAAAAAAAAAD+AAAA/gACBgMAAAQCAABB/wAAAw0AAAAIAAAAJQAAABMAAAApAAAABQAAABMA AAAFAAAAJQAAACkAAAQCAABC/wAAQ/8AAAQCAAAQ/wAAABAAAAABAAQACQAAAAZzcmNyZWYA AAD+AAAA/gAATv8AAAQCAAAE/wAAAPsAAAQCAAA8/wAAAPsAAAQCAABh/wAAAPsAAAD+AAAC BgAABAIAAEH/AAAAEwAAAAMAAAMNAAAACAAAACUAAAAmAAAAJQAAACYAAAAmAAAAJgAAACUA AAAlAAAEAgAAQv8AAEP/AAAEAgAAEP8AAAAQAAAAAQAEAAkAAAAGc3JjcmVmAAAA/gAAAw0A AAAIAAAAJgAAAAkAAAAmAAAAFgAAAAkAAAAWAAAAJgAAACYAAAQCAABC/wAAQ/8AAAQCAAAQ /wAAABAAAAABAAQACQAAAAZzcmNyZWYAAAD+AAADDQAAAAgAAAAnAAAACQAAACgAAABMAAAA CQAAAEwAAAAnAAAAKAAABAIAAEL/AABD/wAABAIAABD/AAAAEAAAAAEABAAJAAAABnNyY3Jl ZgAAAP4AAAQCAABC/wAAQ/8AAAQCAABR/wAAAw0AAAAIAAAAAQAAAAAAAAApAAAABQAAAAAA AAAFAAAAAQAAACkAAAQCAABC/wAAQ/8AAAQCAAAQ/wAAABAAAAABAAQACQAAAAZzcmNyZWYA AAD+AAAA/gAAUv8AAAACAAAABgAAWv8AAAACAABk/wAAAAIAAAAOAAAAAT9AYk3S8an8AAAA /gAAAAIAAAAGAAAt/wAAAAIAAAAGAAAt/wAAAAIAAAAOAAAAAUAAAAAAAAAAAAAAAgAAYf8A AAD+AAAAAgAAAAYAAC7/AAAAAgAAAAYAAAX/AAAAAgAAAAYAAAb/AAAAAgAAAAYAAAX/AAAA AgAAAAYAAF//AAAAAgAABP8AAAACAAA8/wAAAP4AAAACAAAABgAAX/8AAAACAAAABgAALv8A AAACAAAABgAABv8AAAACAAAADgAAAAE/8AAAAAAAAAAAAAIAAAT/AAAA/gAAAP4AAAACAAAA BgAALv8AAAACAAAABgAABv8AAAACAAAADgAAAAE/8AAAAAAAAAAAAAIAADz/AAAA/gAAAP4A AAD+AAAA/gAAAAIAAAAOAAAAAUAAAAAAAAAAAAAA/gAAAAIAAAAGAAAt/wAAAAIAAAAGAAAu /wAAAAIAAAAGAAAG/wAAAAIAAAAGAAAt/wAAAAIAAAAOAAAAAUAAAAAAAAAAAAAAAgAABP8A AAD+AAAAAgAAAA4AAAABP/AAAAAAAAAAAAD+AAAA/gAAAAIAAAAGAABl/wAAAAIAAAAGAABf /wAAAAIAAAAGAAAt/wAAAAIAAAAGAAAu/wAAAAIAAAAGAAAF/wAAAAIAAAT/AAAAAgAAZP8A AAD+AAAA/gAAAAIAAAAGAAAu/wAAAAIAAAAGAAAG/wAAAAIAAAAOAAAAAT/wAAAAAAAAAAAA AgAAPP8AAAD+AAAA/gAAAP4AAAACAAAABgAALv8AAAACAAAABgAALf8AAAACAAAABgAALv8A AAACAAAABgAABf8AAAACAAAABgAABv8AAAACAAAADgAAAAE/8AAAAAAAAAAAAAIAAAT/AAAA /gAAAAIAAGT/AAAA/gAAAP4AAAACAAA8/wAAAP4AAAD+AAAA/gAAAP4AAAD+AAAA/gAAAP4A AAD+AAAA/gACBgMAAAQCAABB/wAAAw0AAAAIAAAAKgAAAAwAAAAqAAAAKQAAAAwAAAApAAAA KgAAACoAAAQCAABC/wAAQ/8AAAQCAAAQ/wAAABAAAAABAAQACQAAAAZzcmNyZWYAAAD+AAAA /gAATv8AAAQCAAAE/wAAAPsAAAQCAABb/wAAAPsAAAQCAAA8/wAAAPsAAAQCAABh/wAAAPsA AAQCAABi/wAAAPsAAAD+AAAACgAAAAGAAAAAAAIEAwAAO/8AAAQCAAA//wAAAPsAAAD+AAAA BgAAPf8AAAACAABs/wAAAAIAAD//AAAA/gAAABQAAAABAAACBgAABAIAAEH/AAAAEwAAAAQA AAMNAAAACAAAACsAAAAeAAAAKwAAAB4AAAAeAAAAHgAAACsAAAArAAAEAgAAQv8AAEP/AAAE AgAAEP8AAAAQAAAAAQAEAAkAAAAGc3JjcmVmAAAA/gAAAw0AAAAIAAAALAAAAAkAAAAtAAAA SAAAAAkAAABIAAAALAAAAC0AAAQCAABC/wAAQ/8AAAQCAAAQ/wAAABAAAAABAAQACQAAAAZz cmNyZWYAAAD+AAADDQAAAAgAAAAuAAAACQAAAC4AAAAdAAAACQAAAB0AAAAuAAAALgAABAIA AEL/AABD/wAABAIAABD/AAAAEAAAAAEABAAJAAAABnNyY3JlZgAAAP4AAAMNAAAACAAAAC8A AAAJAAAALwAAACAAAAAJAAAAIAAAAC8AAAAvAAAEAgAAQv8AAEP/AAAEAgAAEP8AAAAQAAAA AQAEAAkAAAAGc3JjcmVmAAAA/gAABAIAAEL/AABD/wAABAIAAFH/AAADDQAAAAgAAAABAAAA AAAAADAAAAAFAAAAAAAAAAUAAAABAAAAMAAABAIAAEL/AABD/wAABAIAABD/AAAAEAAAAAEA BAAJAAAABnNyY3JlZgAAAP4AAAD+AABS/wAAAAIAAAAGAABT/wAAAAIAAAAGAABU/wAAAAIA AAAGAABV/wAAAAIAAAAGAABW/wAAAAIAAAT/AAAAAgAAAA4AAAABAAAAAAAAAAAAAAD+AAAA AgAAAAYAAFf/AAAAAgAABP8AAAACAAAADgAAAAE/8AAAAAAAAAAAAP4AAAD+AAAA/gAAAAIA AAAGAABY/wAAAAIAAAAGAABZ/wAAAAIAAAAQAAAAAQAEAAkAAAAxVmFsdWVzIGZvciB0aGUg d2VkZGVyYnVybiBmYW1pbHkgbXVzdCBiZSBpbiBbMCwxXQAAAP4AAAD+AAAA/gAAAAIAAAAG AABa/wAAAAIAAFv/AAAAAgAAAAYAAFz/AAAAAgAAAA4AAAABP/AAAAAAAAAAAAACAABd/wAA AP4AAAD+AAAAAgAAAAYAAFr/AAAAAgAAXv8AAAACAAAABgAAX/8AAAACAAAABgAALv8AAAAC AAAABgAABf8AAAACAAAE/wAAAAIAAAAOAAAAAT+5mZmZmZmaAAAA/gAAAP4AAAACAAAADgAA AAE/8zMzMzMzMwAAAP4AAAD+AAAA/gAABgMAAAQCAABB/wAAAw0AAAAIAAAAIwAAABAAAAAk AAAAIwAAABAAAAAjAAAAIwAAACQAAAQCAABC/wAAQ/8AAAQCAAAQ/wAAABAAAAABAAQACQAA AAZzcmNyZWYAAAD+AAAA/gAATv8AAAQCAAA8/wAAAPsAAAD+AAACBgAABAIAAEH/AAAAEwAA AAIAAAMNAAAACAAAACMAAAAdAAAAIwAAAB0AAAAdAAAAHQAAACMAAAAjAAAEAgAAQv8AAEP/ AAAEAgAAEP8AAAAQAAAAAQAEAAkAAAAGc3JjcmVmAAAA/gAAAw0AAAAIAAAAJAAAAAkAAAAk AAAAIgAAAAkAAAAiAAAAJAAAACQAAAQCAABC/wAAQ/8AAAQCAAAQ/wAAABAAAAABAAQACQAA AAZzcmNyZWYAAAD+AAAEAgAAQv8AAEP/AAAEAgAAUf8AAAMNAAAACAAAAAEAAAAAAAAAJAAA ACMAAAAAAAAAIwAAAAEAAAAkAAAEAgAAQv8AAEP/AAAEAgAAEP8AAAAQAAAAAQAEAAkAAAAG c3JjcmVmAAAA/gAAAP4AAFL/AAAAAgAAAAYAAGf/AAAAAgAAAAYAAGj/AAAAAgAAAAYAAFf/ AAAAAgAAPP8AAAACAAAADgAAAAEAAAAAAAAAAAAAAP4AAAD+AAAAAgAAAAYAAGj/AAAAAgAA AAYAAFb/AAAAAgAAPP8AAAACAAAADgAAAAE/8AAAAAAAAAAAAP4AAAD+AAAA/gAAAP4AAAQD AAA7/wAABAIAAD//AAAA+wAAAP4AAAAKAAAAAQAAAAEAAAQCAAAz/wAAABAAAAALAAQACQAA AAZmYW1pbHkABAAJAAAABGxpbmsABAAJAAAAB2xpbmtmdW4ABAAJAAAAB2xpbmtpbnYABAAJ AAAACHZhcmlhbmNlAAQACQAAAApkZXYucmVzaWRzAAQACQAAAANhaWMABAAJAAAABm11LmV0 YQAEAAkAAAAKaW5pdGlhbGl6ZQAEAAkAAAAHdmFsaWRtdQAEAAkAAAAIdmFsaWRldGEAAAQC AAAQ/wAAABAAAAABAAQACQAAAAZmYW1pbHkAAAD+AAACDgAAAFrAIJS4as72RMApRmFaL5ee wCiSUnJ6jcLAHZFG/bxBDMAaAkanD5diwCC9cll5yd7AFGvX6wEC2MAQCw/I++o7wBJEerhE MtXACKMA6ow4u8AViSdIpmRIwCCSqQqwptHAICNJ1NYHjsATUniGQnxxwBEciq4fii3AFmoy 7+vhrMALLapnEwZWwAXjuEZtAqnACOX2E/odkMABJJaBH70xwAc0upxrZpPAEVkb8fN5AsAQ z0N7OVkRwARvB2Y3yOvAAbrPWy5lxMAF/wINcvgMv/svn5oUkBO/9DZDRMcUzL/3Ed4XXwDL v+2bzp2/WD7AEJFzjHwEOMAXRmuUITHIwBZNQjlcxQPADArariocfMAHPKwXGVBXwAkUgn8R D1bAAFQ2M0X0mr/y9W20zOOuv/Xpfav6ScO/5MFWZyypyMAGPaLrVj7kwA+9NPquQtjADoAM beAccsADAnKnZq3Ov//hf0+LFVDAAeFbyolpdr/28FY+2xErv+y5wM4Plai/8IgTbQqYk7/h faWuOZVwwAY+uXZVvw3ADe38ZvCCtsAMcUn7Tc7YwAJTFraNppi//V05mr15BL/8FySHD/+M v/M0unYovI+/4LgGEAROVr/jsIeFqvdyv8HB+HPj7N3ABn3a8wfEv8AL2ZDt7wB/wAoEVL10 lLHAAZztqnd+2r/6VrNbGuFCv/I0UjAV1Re/7OjQ90S1hr+eWIvkRwewv7EVRPtJL44/2bQ1 CYb4osAGD64LAnPMwAW4Hi32OCjAAygkOaV9Dr/+TjS+sd8av/IOZxGOjNQ/10Hzv8hhyL/F PeXkYJeYP/INrsftmgs/85RhL1OOMD/6bb4y6E4Vv/xfOjGX0+y/5C462F9lML/RbrAdREZg v+lwkFGtQhA/qSKhkP6WAEAEuw9fWxzFP/Cn+6tSAPxABI9+udPyIUAGuy+bHz/YQAiIrOR6 GYwAAAQCAAAz/wAAABAAAABaAAQACQAAAAExAAQACQAAAAEyAAQACQAAAAEzAAQACQAAAAE0 AAQACQAAAAE1AAQACQAAAAE2AAQACQAAAAE3AAQACQAAAAE4AAQACQAAAAE5AAQACQAAAAIx MAAEAAkAAAACMTEABAAJAAAAAjEyAAQACQAAAAIxMwAEAAkAAAACMTQABAAJAAAAAjE1AAQA CQAAAAIxNgAEAAkAAAACMTcABAAJAAAAAjE4AAQACQAAAAIxOQAEAAkAAAACMjAABAAJAAAA AjIxAAQACQAAAAIyMgAEAAkAAAACMjMABAAJAAAAAjI0AAQACQAAAAIyNQAEAAkAAAACMjYA BAAJAAAAAjI3AAQACQAAAAIyOAAEAAkAAAACMjkABAAJAAAAAjMwAAQACQAAAAIzMQAEAAkA AAACMzIABAAJAAAAAjMzAAQACQAAAAIzNAAEAAkAAAACMzUABAAJAAAAAjM2AAQACQAAAAIz NwAEAAkAAAACMzgABAAJAAAAAjM5AAQACQAAAAI0MAAEAAkAAAACNDEABAAJAAAAAjQyAAQA CQAAAAI0MwAEAAkAAAACNDQABAAJAAAAAjQ1AAQACQAAAAI0NgAEAAkAAAACNDcABAAJAAAA AjQ4AAQACQAAAAI0OQAEAAkAAAACNTAABAAJAAAAAjUxAAQACQAAAAI1MgAEAAkAAAACNTMA BAAJAAAAAjU0AAQACQAAAAI1NQAEAAkAAAACNTYABAAJAAAAAjU3AAQACQAAAAI1OAAEAAkA AAACNTkABAAJAAAAAjYwAAQACQAAAAI2MQAEAAkAAAACNjIABAAJAAAAAjYzAAQACQAAAAI2 NAAEAAkAAAACNjUABAAJAAAAAjY2AAQACQAAAAI2NwAEAAkAAAACNjgABAAJAAAAAjY5AAQA CQAAAAI3MAAEAAkAAAACNzEABAAJAAAAAjcyAAQACQAAAAI3MwAEAAkAAAACNzQABAAJAAAA Ajc1AAQACQAAAAI3NgAEAAkAAAACNzcABAAJAAAAAjc4AAQACQAAAAI3OQAEAAkAAAACODAA BAAJAAAAAjgxAAQACQAAAAI4MgAEAAkAAAACODMABAAJAAAAAjg0AAQACQAAAAI4NQAEAAkA AAACODYABAAJAAAAAjg3AAQACQAAAAI4OAAEAAkAAAACODkABAAJAAAAAjkwAAAA/gAAAA4A AAABQESDGiKLhrIAAAIOAAAAAX/4AAAAAAeiAAAEAgAAOP8AAAAQAAAAAQAEAAkAAAAIdG9s Tm9ybTIAAAQCAAA5/wAAAAoAAAABAAAAAAAABAIAADr/AAAADgAAAAE9FoAAAAAAAAAAAP4A AAANAAAAAQAAAIUAAAIOAAAAWj/wAAAAAAAAP+////////w/8AAAAAAAAD/v///////+P+// //////4/8AAAAAAAAD/wAAAAAAAAP+////////4/7////////j/v///////+P/AAAAAAAAA/ 7////////j/wAAAAAAAAP/AAAAAAAAA/7////////j/wAAAAAAAAP+////////4/7/////// /j/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/v///////+P+////////4/8AAAAAAAAD/wAAAA AAAAP/AAAAAAAAA/8AAAAAAAAD/v///////+P+////////w/8AAAAAAAAD/wAAAAAAAAP/AA AAAAAAI/8AAAAAAAAj/wAAAAAAAAP+////////4/8AAAAAAAAD/v///////6P+////////4/ 8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP+////////w/7/////// /D/v///////+P/AAAAAAAAI/8AAAAAAAAD/v///////+P/AAAAAAAAA/8AAAAAAAAD/wAAAA AAAAP/AAAAAAAAA/7////////D/wAAAAAAACP/AAAAAAAAA/7////////D/v///////8P/AA AAAAAAA/8AAAAAAAAD/wAAAAAAAAP+////////4/7///////+j/wAAAAAAACP+////////4/ 8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAI/7////////j/v///////+P+////////4/8AAAAAAA AD/wAAAAAAAAP+////////w/8AAAAAAAAj/v///////+P/AAAAAAAAA/7///////9j/wAAAA AAAGP+////////w/7////////j/v///////+P+////////w/8AAAAAAAAD/wAAAAAAAAP/AA AAAAAAI/8AAAAAAAAD/v///////6P+////////o/8AAAAAAACAAABAIAADP/AAAAEAAAAFoA BAAJAAAAATEABAAJAAAAATIABAAJAAAAATMABAAJAAAAATQABAAJAAAAATUABAAJAAAAATYA BAAJAAAAATcABAAJAAAAATgABAAJAAAAATkABAAJAAAAAjEwAAQACQAAAAIxMQAEAAkAAAAC MTIABAAJAAAAAjEzAAQACQAAAAIxNAAEAAkAAAACMTUABAAJAAAAAjE2AAQACQAAAAIxNwAE AAkAAAACMTgABAAJAAAAAjE5AAQACQAAAAIyMAAEAAkAAAACMjEABAAJAAAAAjIyAAQACQAA AAIyMwAEAAkAAAACMjQABAAJAAAAAjI1AAQACQAAAAIyNgAEAAkAAAACMjcABAAJAAAAAjI4 AAQACQAAAAIyOQAEAAkAAAACMzAABAAJAAAAAjMxAAQACQAAAAIzMgAEAAkAAAACMzMABAAJ AAAAAjM0AAQACQAAAAIzNQAEAAkAAAACMzYABAAJAAAAAjM3AAQACQAAAAIzOAAEAAkAAAAC MzkABAAJAAAAAjQwAAQACQAAAAI0MQAEAAkAAAACNDIABAAJAAAAAjQzAAQACQAAAAI0NAAE AAkAAAACNDUABAAJAAAAAjQ2AAQACQAAAAI0NwAEAAkAAAACNDgABAAJAAAAAjQ5AAQACQAA AAI1MAAEAAkAAAACNTEABAAJAAAAAjUyAAQACQAAAAI1MwAEAAkAAAACNTQABAAJAAAAAjU1 AAQACQAAAAI1NgAEAAkAAAACNTcABAAJAAAAAjU4AAQACQAAAAI1OQAEAAkAAAACNjAABAAJ AAAAAjYxAAQACQAAAAI2MgAEAAkAAAACNjMABAAJAAAAAjY0AAQACQAAAAI2NQAEAAkAAAAC NjYABAAJAAAAAjY3AAQACQAAAAI2OAAEAAkAAAACNjkABAAJAAAAAjcwAAQACQAAAAI3MQAE AAkAAAACNzIABAAJAAAAAjczAAQACQAAAAI3NAAEAAkAAAACNzUABAAJAAAAAjc2AAQACQAA AAI3NwAEAAkAAAACNzgABAAJAAAAAjc5AAQACQAAAAI4MAAEAAkAAAACODEABAAJAAAAAjgy AAQACQAAAAI4MwAEAAkAAAACODQABAAJAAAAAjg1AAQACQAAAAI4NgAEAAkAAAACODcABAAJ AAAAAjg4AAQACQAAAAI4OQAEAAkAAAACOTAAAAD+AAACDgAAAFo/8AAAAAAAAD/wAAAAAAAA P/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAA AAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAA AAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/w AAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAA P/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAA AAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAA AAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/w AAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAA P/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAA AAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAA AAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/w AAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAA P/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAA AAAAAAQCAAAz/wAAABAAAABaAAQACQAAAAExAAQACQAAAAEyAAQACQAAAAEzAAQACQAAAAE0 AAQACQAAAAE1AAQACQAAAAE2AAQACQAAAAE3AAQACQAAAAE4AAQACQAAAAE5AAQACQAAAAIx MAAEAAkAAAACMTEABAAJAAAAAjEyAAQACQAAAAIxMwAEAAkAAAACMTQABAAJAAAAAjE1AAQA CQAAAAIxNgAEAAkAAAACMTcABAAJAAAAAjE4AAQACQAAAAIxOQAEAAkAAAACMjAABAAJAAAA AjIxAAQACQAAAAIyMgAEAAkAAAACMjMABAAJAAAAAjI0AAQACQAAAAIyNQAEAAkAAAACMjYA BAAJAAAAAjI3AAQACQAAAAIyOAAEAAkAAAACMjkABAAJAAAAAjMwAAQACQAAAAIzMQAEAAkA AAACMzIABAAJAAAAAjMzAAQACQAAAAIzNAAEAAkAAAACMzUABAAJAAAAAjM2AAQACQAAAAIz NwAEAAkAAAACMzgABAAJAAAAAjM5AAQACQAAAAI0MAAEAAkAAAACNDEABAAJAAAAAjQyAAQA CQAAAAI0MwAEAAkAAAACNDQABAAJAAAAAjQ1AAQACQAAAAI0NgAEAAkAAAACNDcABAAJAAAA AjQ4AAQACQAAAAI0OQAEAAkAAAACNTAABAAJAAAAAjUxAAQACQAAAAI1MgAEAAkAAAACNTMA BAAJAAAAAjU0AAQACQAAAAI1NQAEAAkAAAACNTYABAAJAAAAAjU3AAQACQAAAAI1OAAEAAkA AAACNTkABAAJAAAAAjYwAAQACQAAAAI2MQAEAAkAAAACNjIABAAJAAAAAjYzAAQACQAAAAI2 NAAEAAkAAAACNjUABAAJAAAAAjY2AAQACQAAAAI2NwAEAAkAAAACNjgABAAJAAAAAjY5AAQA CQAAAAI3MAAEAAkAAAACNzEABAAJAAAAAjcyAAQACQAAAAI3MwAEAAkAAAACNzQABAAJAAAA Ajc1AAQACQAAAAI3NgAEAAkAAAACNzcABAAJAAAAAjc4AAQACQAAAAI3OQAEAAkAAAACODAA BAAJAAAAAjgxAAQACQAAAAI4MgAEAAkAAAACODMABAAJAAAAAjg0AAQACQAAAAI4NQAEAAkA AAACODYABAAJAAAAAjg3AAQACQAAAAI4OAAEAAkAAAACODkABAAJAAAAAjkwAAAA/gAAAA0A AAABAAAAOAAAAg4AAABaP0BiTdLxqfwAAAAAAAAAAAAAAAAAAAAAP1BiTdLxqfw/ZHrhR64U ez9AYk3S8an8P3R64UeuFHs/ip++dsi0OT+OuFHrhR64P464UeuFHrgAAAAAAAAAAD9AYk3S 8an8P0BiTdLxqfw/aJN0vGp++j9+uFHrhR64P2iTdLxqfvo/nrhR64UeuD+zMzMzMzMzP4R6 4UeuFHs/wEGJN0vGqD+JmZmZmZmaP4mZmZmZmZo/mZmZmZmZmj/FP3ztkWhzP5mZmZmZmZo/ mZmZmZmZmgAAAAAAAAAAP8mZmZmZmZo/2AAAAAAAAD/QzMzMzMzNP5mZmZmZmZo/dHrhR64U ez8aNuLrHEMtP564UeuFHrg/mZmZmZmZmj8aNuLrHEMtP9AAAAAAAAA/4ZmZmZmZmj+pmZmZ mZmaP9mZmZmZmZo/rCj1wo9cKT+EeuFHrhR7P664UeuFHrg/hocrAgxJuj+ZmZmZmZmaP7R6 4UeuFHs/xR64UeuFHz/S4UeuFHrhP8mZmZmZmZo/29cKPXCj1z+EeuFHrhR7P6mZmZmZmZo/ qZmZmZmZmj+pmZmZmZmaP6mZmZmZmZo/qZmZmZmZmj+5mZmZmZmaP6mZmZmZmZo/4AAAAAAA AD/oAAAAAAAAP6mZmZmZmZo/UGJN0vGp/D+pmZmZmZmaP6mZmZmZmZo/4AAAAAAAAD+5mZmZ mZmaP+AAAAAAAAA/0AAAAAAAAD/gAAAAAAAAP+gAAAAAAAA/qZmZmZmZmj+5mZmZmZmaP6mZ mZmZmZo/qZmZmZmZmj/QAAAAAAAAP+gAAAAAAAA/4AAAAAAAAD/oAAAAAAAAP+gAAAAAAAA/ 6AAAAAAAAD/GZmZmZmZmP9AAAAAAAAA/2zMzMzMzMz/gAAAAAAAAP9gAAAAAAAA/7mZmZmZm Zj/kAAAAAAAAP+5mZmZmZmY/7mZmZmZmZj/uZmZmZmZmAAAEAgAAM/8AAAAQAAAAWgAEAAkA AAABMQAEAAkAAAABMgAEAAkAAAABMwAEAAkAAAABNAAEAAkAAAABNQAEAAkAAAABNgAEAAkA AAABNwAEAAkAAAABOAAEAAkAAAABOQAEAAkAAAACMTAABAAJAAAAAjExAAQACQAAAAIxMgAE AAkAAAACMTMABAAJAAAAAjE0AAQACQAAAAIxNQAEAAkAAAACMTYABAAJAAAAAjE3AAQACQAA AAIxOAAEAAkAAAACMTkABAAJAAAAAjIwAAQACQAAAAIyMQAEAAkAAAACMjIABAAJAAAAAjIz AAQACQAAAAIyNAAEAAkAAAACMjUABAAJAAAAAjI2AAQACQAAAAIyNwAEAAkAAAACMjgABAAJ AAAAAjI5AAQACQAAAAIzMAAEAAkAAAACMzEABAAJAAAAAjMyAAQACQAAAAIzMwAEAAkAAAAC MzQABAAJAAAAAjM1AAQACQAAAAIzNgAEAAkAAAACMzcABAAJAAAAAjM4AAQACQAAAAIzOQAE AAkAAAACNDAABAAJAAAAAjQxAAQACQAAAAI0MgAEAAkAAAACNDMABAAJAAAAAjQ0AAQACQAA AAI0NQAEAAkAAAACNDYABAAJAAAAAjQ3AAQACQAAAAI0OAAEAAkAAAACNDkABAAJAAAAAjUw AAQACQAAAAI1MQAEAAkAAAACNTIABAAJAAAAAjUzAAQACQAAAAI1NAAEAAkAAAACNTUABAAJ AAAAAjU2AAQACQAAAAI1NwAEAAkAAAACNTgABAAJAAAAAjU5AAQACQAAAAI2MAAEAAkAAAAC NjEABAAJAAAAAjYyAAQACQAAAAI2MwAEAAkAAAACNjQABAAJAAAAAjY1AAQACQAAAAI2NgAE AAkAAAACNjcABAAJAAAAAjY4AAQACQAAAAI2OQAEAAkAAAACNzAABAAJAAAAAjcxAAQACQAA AAI3MgAEAAkAAAACNzMABAAJAAAAAjc0AAQACQAAAAI3NQAEAAkAAAACNzYABAAJAAAAAjc3 AAQACQAAAAI3OAAEAAkAAAACNzkABAAJAAAAAjgwAAQACQAAAAI4MQAEAAkAAAACODIABAAJ AAAAAjgzAAQACQAAAAI4NAAEAAkAAAACODUABAAJAAAAAjg2AAQACQAAAAI4NwAEAAkAAAAC ODgABAAJAAAAAjg5AAQACQAAAAI5MAAAAP4AAAAKAAAAAQAAAAEAAAIOAAANXL/hmiXHEktE v+u05zXiPLa/6xRaA4XNUb/gBrNylKCDv9zTpA2jkNO/458F8TPnQ7/XevZVxZwwv9PtHW5r Goa/1p36Nyy2x7/QOSSprrZPgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAA AAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAA AAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAA gAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAA AACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAA AAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAA AAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAA gAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAA AACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAA AAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAA AAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAA gAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAA AACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAA AAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAv+GaJccSS0S/67TnNeI8tr/r FFoDhc1Rv+AGs3KUoIO/3NOkDaOQ07/jnwXxM+dDv9d69lXFnDC/0+0dbmsahr/Wnfo3LLbH v9A5JKmutk+AAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAA AACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAA AAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAA AAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAA gAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAA AACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAA AAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAA AAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAA gAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAA AACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAA AAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAA AAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAA gAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAA AACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAAC/4ZolxxJLRL/rtOc14jy2v+sUWgOFzVG/4Aaz cpSgg7/c06QNo5DTv+OfBfEz50O/13r2VcWcML/T7R1uaxqGv9ad+jcstse/0Dkkqa62T4AA AAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAA gAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAA AACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAA AAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAA AAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAA gAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAA AACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAA AAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAA AAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAA gAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAA AACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAA AAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAA AAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAA gAAAAAAAAACAAAAAAAAAAL/hmiXHEktEv+u05zXiPLa/6xRaA4XNUb/gBrNylKCDv9zTpA2j kNO/458F8TPnQ7/XevZVxZwwv9PtHW5rGoa/1p36Nyy2x7/QOSSprrZPgAAAAAAAAACAAAAA AAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAA AAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAA gAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAA AACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAA AAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAA AAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAA gAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAA AACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAA AAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAA AAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAA gAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAA AACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAA AAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAA AAAAAAAAv+GaJccSS0S/67TnNeI8tr/rFFoDhc1Rv+AGs3KUoIO/3NOkDaOQ07/jnwXxM+dD v9d69lXFnDC/0+0dbmsahr/Wnfo3LLbHv9A5JKmutk+AAAAAAAAAAIAAAAAAAAAAgAAAAAAA AACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAA AAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAA AAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAA gAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAA AACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAA AAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAA AAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAA gAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAA AACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAA AAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAA AAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAA gAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAA AACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAAC/4Zol xxJLRL/rtOc14jy2v+sUWgOFzVG/4AazcpSgg7/c06QNo5DTv+OfBfEz50O/13r2VcWcML/T 7R1uaxqGv9ad+jcstse/0Dkkqa62T4AAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAA gAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAA AACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAA AAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAA AAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAA gAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAA AACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAA AAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAA AAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAA gAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAA AACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAA AAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAA AAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAA gAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAL/hmiXHEktEv+u05zXi PLa/6xRaA4XNUb/gBrNylKCDv9zTpA2jkNO/458F8TPnQ7/XevZVxZwwv9PtHW5rGoa/1p36 Nyy2x7/QOSSprrZPgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAA AAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAA gAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAA AACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAA AAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAA AAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAA gAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAA AACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAA AAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAA AAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAA gAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAA AACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAA AAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAA AAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAv+GaJccSS0S/67TnNeI8tr/rFFoDhc1R v+AGs3KUoIO/3NOkDaOQ07/jnwXxM+dDv9d69lXFnDC/0+0dbmsahr/Wnfo3LLbHv9A5JKmu tk+AAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAA AAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAA AAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAA gAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAA AACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAA AAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAA AAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAA gAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAA AACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAA AAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAA AAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAA gAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAA AACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAA AAAAAIAAAAAAAAAAgAAAAAAAAAC/4ZolxxJLRL/rtOc14jy2v+sUWgOFzVG/4AazcpSgg7/c 06QNo5DTv+OfBfEz50O/13r2VcWcML/T7R1uaxqGv9ad+jcstse/0Dkkqa62T0ApPARKXgEF AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAQCFVqval8XoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAD0g2eYSkCQAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAEAK16Cj8V/1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQAT2/UNhhD4AAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAA/9FA+nBLJBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAL/gXpcCtJuGgAAAAAAA AACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAA AAAAAIAAAAAAAAAAwBKs41mpfEmAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAA AAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAADAI0lCUQYSJYAAAAAAAAAA gAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAA AACAAAAAAAAAAAAAAAAAAAAAQCk8BEpeAQUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAIVWq9qXxegAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAEAPSDZ5hKQJAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQArXoKPxX/UAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAABABPb9Q2GEPgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/0UD6cEskHAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAIAAAAAAAAAAv+BelwK0m4aAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAA AAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAADAEqzjWal8SYAAAAAAAAAA gAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAA AACAAAAAAAAAAMAjSUJRBhIlgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAA AAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAKTwESl4BBQAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAEAhVar2pfF6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQA9INnmEpAkAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAABACtego/Ff9QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAE9v1DYYQ+AAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAP/RQPpwSyQcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAAC/4F6XArSbhoAAAAAAAAAA gAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAA AACAAAAAAAAAAMASrONZqXxJgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAA AAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAwCNJQlEGEiWAAAAAAAAAAIAA AAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAEApPARKXgEFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQCFVqval8XoAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAABAD0g2eYSkCQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAK16Cj8V/1AAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAQAT2/UNhhD4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/9FA+nBLJBwAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAgAAAAAAA AACAAAAAAAAAAL/gXpcCtJuGgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAA AAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAwBKs41mpfEmAAAAAAAAAAIAA AAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAA gAAAAAAAAADAI0lCUQYSJYAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAA AACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQCk8BEpeAQUAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAABAIVWq9qXxegAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAPSDZ5hKQJAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAQArXoKPxX/UAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABABPb9Q2GEPgAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAD/0UD6cEskHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAv+BelwK0m4aAAAAAAAAAAIAA AAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAA gAAAAAAAAADAEqzjWal8SYAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAA AACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAMAjSUJRBhIlgAAAAAAAAACAAAAA AAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAABAKTwESl4BBQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAhVar2pfF6AAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAQA9INnmEpAkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABACtego/Ff9QAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAEAE9v1DYYQ+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP/RQPpwSyQcAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAA gAAAAAAAAAC/4F6XArSbhoAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAA AACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAMASrONZqXxJgAAAAAAAAACAAAAA AAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAA AAAAAAAAwCNJQlEGEiWAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEApPARKXgEFAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAQCFVqval8XoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAD0g2eYSkCQAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAEAK16Cj8V/1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQAT2/UNhhD4AAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAA/9FA+nBLJBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAgAAAAAAA AACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAL/gXpcCtJuGgAAAAAAAAACAAAAA AAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAA AAAAAAAAwBKs41mpfEmAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAA gAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAADAI0lCUQYSJYAAAAAAAAAAgAAAAAAA AACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAQCk8BEpeAQUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAIVWq9qXxegAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAEAPSDZ5hKQJAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQArXoKPxX/UAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAABABPb9Q2GEPgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/0UD6cEskHAAAAAAAAAAAAAAAA AAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAA AAAAAAAAv+BelwK0m4aAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAA gAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAADAEqzjWal8SYAAAAAAAAAAgAAAAAAA AACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAA AAAAAMAjSUJRBhIlgAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAKTwESl4BBQAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAEAhVar2pfF6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQA9INnmEpAkAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAABACtego/Ff9QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAE9v1DYYQ+AAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAP/RQPpwSyQcAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAA gAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAAC/4F6XArSbhoAAAAAAAAAAgAAAAAAA AACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAA AAAAAMASrONZqXxJgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAA AAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAwCNJQlEGEiWAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAEApPARKXgEFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQCFVqval8XoAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAABAD0g2eYSkCQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAK16Cj8V/1AAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAQAT2/UNhhD4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/9FA+nBLJB4AAAAAAAAAAgAAAAAAA AACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAA AAAAAL/gXpcCtJuGgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAA AAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAwBKs41mpfEmAAAAAAAAAAIAAAAAAAAAA gAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAA AADAI0lCUQYSJT/vb5bGRQ/tP/PxVPeaKPY/8ro0RbwyuD/o+0KL+nFEP+MS3jobjqc/3YFK NA2C9T/WLhUjfjbDP664ctkvozo/tCAhNO9YJL+2HP7INTW7AAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAA P+9vlsZFD+0/8/FU95oo9j/yujRFvDK4P+j7Qov6cUQ/4xLeOhuOpz/dgUo0DYL1P9YuFSN+ NsM/rrhy2S+jOj+0ICE071gkv7Yc/sg1NbsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAA/72+WxkUP7T/z 8VT3mij2P/K6NEW8Mrg/6PtCi/pxRD/jEt46G46nP92BSjQNgvU/1i4VI342wz+uuHLZL6M6 P7QgITTvWCS/thz+yDU1uwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAD/vb5bGRQ/tP/PxVPeaKPY/8ro0 RbwyuD/o+0KL+nFEP+MS3jobjqc/3YFKNA2C9T/WLhUjfjbDP664ctkvozo/tCAhNO9YJL+2 HP7INTW7AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAP+9vlsZFD+0/8/FU95oo9j/yujRFvDK4P+j7Qov6 cUQ/4xLeOhuOpz/dgUo0DYL1P9YuFSN+NsM/rrhy2S+jOj+0ICE071gkv7Yc/sg1NbsAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAgAAAAAAAAAA/72+WxkUP7T/z8VT3mij2P/K6NEW8Mrg/6PtCi/pxRD/jEt46G46n P92BSjQNgvU/1i4VI342wz+uuHLZL6M6P7QgITTvWCS/thz+yDU1uwAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAAAAA AAAAAD/vb5bGRQ/tP/PxVPeaKPY/8ro0RbwyuD/o+0KL+nFEP+MS3jobjqc/3YFKNA2C9T/W LhUjfjbDP664ctkvozo/tCAhNO9YJL+2HP7INTW7AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAP+9vlsZF D+0/8/FU95oo9j/yujRFvDK4P+j7Qov6cUQ/4xLeOhuOpz/dgUo0DYL1P9YuFSN+NsM/rrhy 2S+jOj+0ICE071gkv7Yc/sg1NbsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAA/72+WxkUP7T/z8VT3mij2 P/K6NEW8Mrg/6PtCi/pxRD/jEt46G46nP92BSjQNgvU/1i4VI342wz+uuHLZL6M6P7QgITTv WCS/thz+yDU1u7/1/XkSaCt+gAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAA AAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAv+QTm3pwuWKAAAAAAAAAAIAA AAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAA gAAAAAAAAAC/6GzvZTJgHIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAA AACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAMACs3FZFoGxgAAAAAAAAACAAAAA AAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAA AAAAAAAAv/XNQVAmuqOAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAA gAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAADAAPUCDGOlHoAAAAAAAAAAgAAAAAAA AACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAA AAAAAMAJL8uKEYBLgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAA AAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAwBWvgvvJm9eAAAAAAAAAAIAAAAAAAAAA gAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAA AADAHNGBMvmu8IAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAA AAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAv/X9eRJoK36AAAAAAAAAAIAA AAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAA gAAAAAAAAAC/5BObenC5YoAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAA AACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAL/obO9lMmAcgAAAAAAAAACAAAAA AAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAA AAAAAAAAwAKzcVkWgbGAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAA gAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAAC/9c1BUCa6o4AAAAAAAAAAgAAAAAAA AACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAA AAAAAMAA9QIMY6UegAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAA AAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAwAkvy4oRgEuAAAAAAAAAAIAAAAAAAAAA gAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAA AADAFa+C+8mb14AAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAA AAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAMAc0YEy+a7wgAAAAAAAAACAAAAAAAAAAIAA AAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAA gAAAAAAAAAC/9f15EmgrfoAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAA AACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAL/kE5t6cLligAAAAAAAAACAAAAA AAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAA AAAAAAAAv+hs72UyYByAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAA gAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAADAArNxWRaBsYAAAAAAAAAAgAAAAAAA AACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAA AAAAAL/1zUFQJrqjgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAA AAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAwAD1AgxjpR6AAAAAAAAAAIAAAAAAAAAA gAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAA AADACS/LihGAS4AAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAA AAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAMAVr4L7yZvXgAAAAAAAAACAAAAAAAAAAIAA AAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAA wBzRgTL5rvCAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAA AACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAL/1/XkSaCt+gAAAAAAAAACAAAAA AAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAA AAAAAAAAv+QTm3pwuWKAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAA gAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAAC/6GzvZTJgHIAAAAAAAAAAgAAAAAAA AACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAA AAAAAMACs3FZFoGxgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAA AAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAv/XNQVAmuqOAAAAAAAAAAIAAAAAAAAAA gAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAA AADAAPUCDGOlHoAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAA AAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAMAJL8uKEYBLgAAAAAAAAACAAAAAAAAAAIAA AAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAA wBWvgvvJm9eAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAA AACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAADAHNGBMvmu8IAAAAAAAAAAgAAAAAAAAACAAAAA AAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAA AAAAAAAAv/X9eRJoK36AAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAA gAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAAC/5BObenC5YoAAAAAAAAAAgAAAAAAA AACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAA AAAAAL/obO9lMmAcgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAA AAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAwAKzcVkWgbGAAAAAAAAAAIAAAAAAAAAA gAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAA AAC/9c1BUCa6o4AAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAA AAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAMAA9QIMY6UegAAAAAAAAACAAAAAAAAAAIAA AAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAA wAkvy4oRgEuAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAA AACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAADAFa+C+8mb14AAAAAAAAAAgAAAAAAAAACAAAAA AAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAMAc 0YEy+a7wgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAA gAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAAC/9f15EmgrfoAAAAAAAAAAgAAAAAAA AACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAA AAAAAL/kE5t6cLligAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAA AAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAv+hs72UyYByAAAAAAAAAAIAAAAAAAAAA gAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAA AADAArNxWRaBsYAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAA AAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAL/1zUFQJrqjgAAAAAAAAACAAAAAAAAAAIAA AAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAA wAD1AgxjpR6AAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAA AACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAADACS/LihGAS4AAAAAAAAAAgAAAAAAAAACAAAAA AAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAMAV r4L7yZvXgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAA gAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAwBzRgTL5rvCAAAAAAAAAAIAAAAAAAAAAgAAAAAAA AACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAA AAAAAL/1/XkSaCt+gAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAA AAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAv+QTm3pwuWKAAAAAAAAAAIAAAAAAAAAA gAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAA AAC/6GzvZTJgHIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAA AAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAMACs3FZFoGxgAAAAAAAAACAAAAAAAAAAIAA AAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAA v/XNQVAmuqOAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAA AACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAADAAPUCDGOlHoAAAAAAAAAAgAAAAAAAAACAAAAA AAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAMAJ L8uKEYBLgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAA gAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAwBWvgvvJm9eAAAAAAAAAAIAAAAAAAAAAgAAAAAAA AACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAADAHNGB Mvmu8IAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAA AAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAv/X9eRJoK36AAAAAAAAAAIAAAAAAAAAA gAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAA AAC/5BObenC5YoAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAA AAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAL/obO9lMmAcgAAAAAAAAACAAAAAAAAAAIAA AAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAA wAKzcVkWgbGAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAA AACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAAC/9c1BUCa6o4AAAAAAAAAAgAAAAAAAAACAAAAA AAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAMAA 9QIMY6UegAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAA gAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAwAkvy4oRgEuAAAAAAAAAAIAAAAAAAAAAgAAAAAAA AACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAADAFa+C +8mb14AAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAA AAAAAAAAgAAAAAAAAACAAAAAAAAAAMAc0YEy+a7wgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAA gAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAA AAC/9f15EmgrfoAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAA AAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAL/kE5t6cLligAAAAAAAAACAAAAAAAAAAIAA AAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAA v+hs72UyYByAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAA AACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAADAArNxWRaBsYAAAAAAAAAAgAAAAAAAAACAAAAA AAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAL/1 zUFQJrqjgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAA gAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAwAD1AgxjpR6AAAAAAAAAAIAAAAAAAAAAgAAAAAAA AACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAADACS/L ihGAS4AAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAA AAAAAAAAgAAAAAAAAACAAAAAAAAAAMAVr4L7yZvXgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAA gAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAwBzRgTL5 rvCAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAA AAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAL/1/XkSaCt+gAAAAAAAAACAAAAAAAAAAIAA AAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAA v+QTm3pwuWKAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAA AACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAAC/6GzvZTJgHIAAAAAAAAAAgAAAAAAAAACAAAAA AAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAMAC s3FZFoGxgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAA gAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAv/XNQVAmuqOAAAAAAAAAAIAAAAAAAAAAgAAAAAAA AACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAADAAPUC DGOlHoAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAA AAAAAAAAgAAAAAAAAACAAAAAAAAAAMAJL8uKEYBLgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAA gAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAwBWvgvvJ m9eAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAA AAAAAIAAAAAAAAAAgAAAAAAAAADAHNGBMvmu8AAABAIAABr/AAAADQAAAAIAAABaAAAAJgAA BAIAABv/AAAAEwAAAAIAAAD+AAAAEAAAACYABAAJAAAAIE11bHQoLiwgdmFyaWV0eSwgaW5z dCA9IDEpLnNpdGVBAAQACQAAACBNdWx0KC4sIHZhcmlldHksIGluc3QgPSAxKS5zaXRlQgAE AAkAAAAgTXVsdCguLCB2YXJpZXR5LCBpbnN0ID0gMSkuc2l0ZUMABAAJAAAAIE11bHQoLiwg dmFyaWV0eSwgaW5zdCA9IDEpLnNpdGVEAAQACQAAACBNdWx0KC4sIHZhcmlldHksIGluc3Qg PSAxKS5zaXRlRQAEAAkAAAAgTXVsdCguLCB2YXJpZXR5LCBpbnN0ID0gMSkuc2l0ZUYABAAJ AAAAIE11bHQoLiwgdmFyaWV0eSwgaW5zdCA9IDEpLnNpdGVHAAQACQAAACBNdWx0KC4sIHZh cmlldHksIGluc3QgPSAxKS5zaXRlSAAEAAkAAAAgTXVsdCguLCB2YXJpZXR5LCBpbnN0ID0g MSkuc2l0ZUkABAAJAAAAIE11bHQoc2l0ZSwgLiwgaW5zdCA9IDEpLnZhcmlldHkxAAQACQAA ACBNdWx0KHNpdGUsIC4sIGluc3QgPSAxKS52YXJpZXR5MgAEAAkAAAAgTXVsdChzaXRlLCAu LCBpbnN0ID0gMSkudmFyaWV0eTMABAAJAAAAIE11bHQoc2l0ZSwgLiwgaW5zdCA9IDEpLnZh cmlldHk0AAQACQAAACBNdWx0KHNpdGUsIC4sIGluc3QgPSAxKS52YXJpZXR5NQAEAAkAAAAg TXVsdChzaXRlLCAuLCBpbnN0ID0gMSkudmFyaWV0eTYABAAJAAAAIE11bHQoc2l0ZSwgLiwg aW5zdCA9IDEpLnZhcmlldHk3AAQACQAAACBNdWx0KHNpdGUsIC4sIGluc3QgPSAxKS52YXJp ZXR5OAAEAAkAAAAgTXVsdChzaXRlLCAuLCBpbnN0ID0gMSkudmFyaWV0eTkABAAJAAAAIE11 bHQoc2l0ZSwgLiwgaW5zdCA9IDEpLnZhcmlldHlYAAQACQAAACBNdWx0KC4sIHZhcmlldHks IGluc3QgPSAyKS5zaXRlQQAEAAkAAAAgTXVsdCguLCB2YXJpZXR5LCBpbnN0ID0gMikuc2l0 ZUIABAAJAAAAIE11bHQoLiwgdmFyaWV0eSwgaW5zdCA9IDIpLnNpdGVDAAQACQAAACBNdWx0 KC4sIHZhcmlldHksIGluc3QgPSAyKS5zaXRlRAAEAAkAAAAgTXVsdCguLCB2YXJpZXR5LCBp bnN0ID0gMikuc2l0ZUUABAAJAAAAIE11bHQoLiwgdmFyaWV0eSwgaW5zdCA9IDIpLnNpdGVG AAQACQAAACBNdWx0KC4sIHZhcmlldHksIGluc3QgPSAyKS5zaXRlRwAEAAkAAAAgTXVsdCgu LCB2YXJpZXR5LCBpbnN0ID0gMikuc2l0ZUgABAAJAAAAIE11bHQoLiwgdmFyaWV0eSwgaW5z dCA9IDIpLnNpdGVJAAQACQAAACBNdWx0KHNpdGUsIC4sIGluc3QgPSAyKS52YXJpZXR5MQAE AAkAAAAgTXVsdChzaXRlLCAuLCBpbnN0ID0gMikudmFyaWV0eTIABAAJAAAAIE11bHQoc2l0 ZSwgLiwgaW5zdCA9IDIpLnZhcmlldHkzAAQACQAAACBNdWx0KHNpdGUsIC4sIGluc3QgPSAy KS52YXJpZXR5NAAEAAkAAAAgTXVsdChzaXRlLCAuLCBpbnN0ID0gMikudmFyaWV0eTUABAAJ AAAAIE11bHQoc2l0ZSwgLiwgaW5zdCA9IDIpLnZhcmlldHk2AAQACQAAACBNdWx0KHNpdGUs IC4sIGluc3QgPSAyKS52YXJpZXR5NwAEAAkAAAAgTXVsdChzaXRlLCAuLCBpbnN0ID0gMiku dmFyaWV0eTgABAAJAAAAIE11bHQoc2l0ZSwgLiwgaW5zdCA9IDIpLnZhcmlldHk5AAQACQAA ACBNdWx0KHNpdGUsIC4sIGluc3QgPSAyKS52YXJpZXR5WAAABAIAACf/AAAADQAAACYAAAAB AAAAAQAAAAEAAAABAAAAAQAAAAEAAAABAAAAAQAAAAEAAAABAAAAAQAAAAEAAAABAAAAAQAA AAEAAAABAAAAAQAAAAEAAAABAAAAAgAAAAIAAAACAAAAAgAAAAIAAAACAAAAAgAAAAIAAAAC AAAAAgAAAAIAAAACAAAAAgAAAAIAAAACAAAAAgAAAAIAAAACAAAAAgAAAP4AAAMTAAAAAwAA AA4AAABaP0BiTdLxqfwAAAAAAAAAAAAAAAAAAAAAP1BiTdLxqfw/ZHrhR64Uez9AYk3S8an8 P3R64UeuFHs/ip++dsi0OT+OuFHrhR64P464UeuFHrgAAAAAAAAAAD9AYk3S8an8P0BiTdLx qfw/aJN0vGp++j9+uFHrhR64P2iTdLxqfvo/nrhR64UeuD+zMzMzMzMzP4R64UeuFHs/wEGJ N0vGqD+JmZmZmZmaP4mZmZmZmZo/mZmZmZmZmj/FP3ztkWhzP5mZmZmZmZo/mZmZmZmZmgAA AAAAAAAAP8mZmZmZmZo/2AAAAAAAAD/QzMzMzMzNP5mZmZmZmZo/dHrhR64Uez8aNuLrHEMt P564UeuFHrg/mZmZmZmZmj8aNuLrHEMtP9AAAAAAAAA/4ZmZmZmZmj+pmZmZmZmaP9mZmZmZ mZo/rCj1wo9cKT+EeuFHrhR7P664UeuFHrg/hocrAgxJuj+ZmZmZmZmaP7R64UeuFHs/xR64 UeuFHz/S4UeuFHrhP8mZmZmZmZo/29cKPXCj1z+EeuFHrhR7P6mZmZmZmZo/qZmZmZmZmj+p mZmZmZmaP6mZmZmZmZo/qZmZmZmZmj+5mZmZmZmaP6mZmZmZmZo/4AAAAAAAAD/oAAAAAAAA P6mZmZmZmZo/UGJN0vGp/D+pmZmZmZmaP6mZmZmZmZo/4AAAAAAAAD+5mZmZmZmaP+AAAAAA AAA/0AAAAAAAAD/gAAAAAAAAP+gAAAAAAAA/qZmZmZmZmj+5mZmZmZmaP6mZmZmZmZo/qZmZ mZmZmj/QAAAAAAAAP+gAAAAAAAA/4AAAAAAAAD/oAAAAAAAAP+gAAAAAAAA/6AAAAAAAAD/G ZmZmZmZmP9AAAAAAAAA/2zMzMzMzMz/gAAAAAAAAP9gAAAAAAAA/7mZmZmZmZj/kAAAAAAAA P+5mZmZmZmY/7mZmZmZmZj/uZmZmZmZmAAADDQAAAFoAAAABAAAAAQAAAAEAAAABAAAAAQAA AAEAAAABAAAAAQAAAAEAAAABAAAAAgAAAAIAAAACAAAAAgAAAAIAAAACAAAAAgAAAAIAAAAC AAAAAgAAAAMAAAADAAAAAwAAAAMAAAADAAAAAwAAAAMAAAADAAAAAwAAAAMAAAAEAAAABAAA AAQAAAAEAAAABAAAAAQAAAAEAAAABAAAAAQAAAAEAAAABQAAAAUAAAAFAAAABQAAAAUAAAAF AAAABQAAAAUAAAAFAAAABQAAAAYAAAAGAAAABgAAAAYAAAAGAAAABgAAAAYAAAAGAAAABgAA AAYAAAAHAAAABwAAAAcAAAAHAAAABwAAAAcAAAAHAAAABwAAAAcAAAAHAAAACAAAAAgAAAAI AAAACAAAAAgAAAAIAAAACAAAAAgAAAAIAAAACAAAAAkAAAAJAAAACQAAAAkAAAAJAAAACQAA AAkAAAAJAAAACQAAAAkAAAQCAAA1/wAAABAAAAAJAAQACQAAAAFBAAQACQAAAAFCAAQACQAA AAFDAAQACQAAAAFEAAQACQAAAAFFAAQACQAAAAFGAAQACQAAAAFHAAQACQAAAAFIAAQACQAA AAFJAAAEAgAAEP8AAAAQAAAAAQAEAAkAAAAGZmFjdG9yAAAA/gAAAw0AAABaAAAAAQAAAAIA AAADAAAABAAAAAUAAAAGAAAABwAAAAgAAAAJAAAACgAAAAEAAAACAAAAAwAAAAQAAAAFAAAA BgAAAAcAAAAIAAAACQAAAAoAAAABAAAAAgAAAAMAAAAEAAAABQAAAAYAAAAHAAAACAAAAAkA AAAKAAAAAQAAAAIAAAADAAAABAAAAAUAAAAGAAAABwAAAAgAAAAJAAAACgAAAAEAAAACAAAA AwAAAAQAAAAFAAAABgAAAAcAAAAIAAAACQAAAAoAAAABAAAAAgAAAAMAAAAEAAAABQAAAAYA AAAHAAAACAAAAAkAAAAKAAAAAQAAAAIAAAADAAAABAAAAAUAAAAGAAAABwAAAAgAAAAJAAAA CgAAAAEAAAACAAAAAwAAAAQAAAAFAAAABgAAAAcAAAAIAAAACQAAAAoAAAABAAAAAgAAAAMA AAAEAAAABQAAAAYAAAAHAAAACAAAAAkAAAAKAAAEAgAANf8AAAAQAAAACgAEAAkAAAABMQAE AAkAAAABMgAEAAkAAAABMwAEAAkAAAABNAAEAAkAAAABNQAEAAkAAAABNgAEAAkAAAABNwAE AAkAAAABOAAEAAkAAAABOQAEAAkAAAABWAAABAIAABD/AAAAEAAAAAEABAAJAAAABmZhY3Rv cgAAAP4AAAQCAAAz/wAAABAAAAADAAQACQAAAAF5AAQACQAAAARzaXRlAAQACQAAAAd2YXJp ZXR5AAAEAgAAAAEABAAJAAAABXRlcm1zAAADBgAABAIAABf/AAAABgAAGP8AAAACAAAE/wAA AAIAAAn/AAAAAgAACv8AAAD+AAAEAgAAGf8AAAINAAAABgAAAAAAAAABAAAAAAAAAAAAAAAA AAAAAQAABAIAABr/AAAADQAAAAIAAAADAAAAAgAABAIAABv/AAAAEwAAAAIAAAAQAAAAAwAE AAkAAAABeQAEAAkAAAAdTXVsdChzaXRlLCB2YXJpZXR5LCBpbnN0ID0gMSkABAAJAAAAHU11 bHQoc2l0ZSwgdmFyaWV0eSwgaW5zdCA9IDIpAAAAEAAAAAIABAAJAAAAHU11bHQoc2l0ZSwg dmFyaWV0eSwgaW5zdCA9IDEpAAQACQAAAB1NdWx0KHNpdGUsIHZhcmlldHksIGluc3QgPSAy KQAAAP4AAAQCAAAc/wAAABAAAAACAAQACQAAAB1NdWx0KHNpdGUsIHZhcmlldHksIGluc3Qg PSAxKQAEAAkAAAAdTXVsdChzaXRlLCB2YXJpZXR5LCBpbnN0ID0gMikAAAQCAAAd/wAAAA0A AAACAAAAAQAAAAEAAAQCAAAe/wAAAA0AAAABAAAAAAAABAIAAB//AAAADQAAAAEAAAABAAAE AgAAEP8AAAAQAAAAAwAEAAkAAAAIZ25tVGVybXMABAAJAAAABXRlcm1zAAQACQAAAAdmb3Jt dWxhAAAEAgAAEf8AABL/AAAEAgAAIP8AAAAKAAAAAQAAAAAAAAQCAAAh/wAAAA0AAAAAAAAE AgAAIv8AAAAGAAAY/wAAAAIAAAT/AAAAAgAACf8AAAACAAAK/wAAAP4AAAQCAAAj/wAAABAA AAAEAAQACQAAAARzaXRlAAQACQAAAAd2YXJpZXR5AAQACQAAAARzaXRlAAQACQAAAAd2YXJp ZXR5AAAEAgAAJP8AAAAKAAAABAAAAAAAAAAAAAAAAAAAAAAAAAQCAAAl/wAAAA4AAAAEP/AA AAAAAABAAAAAAAAAAEAIAAAAAAAAQBAAAAAAAAAAAAQCAAAm/wAAAAoAAAAEAAAAAQAAAAEA AAABAAAAAQAABAIAACf/AAAADQAAAAQAAAABAAAAAQAAAAIAAAACAAAEAgAAKP8AAAAQAAAA BAAEAAkAAAAHU3BlY2lhbAAEAAkAAAAHU3BlY2lhbAAEAAkAAAAHU3BlY2lhbAAEAAkAAAAH U3BlY2lhbAAABAIAACn/AAAAEAAAAAQABAAJAAAAG011bHQoLiwgdmFyaWV0eSwgaW5zdCA9 IDEpLgAEAAkAAAAYTXVsdChzaXRlLCAuLCBpbnN0ID0gMSkuAAQACQAAABtNdWx0KC4sIHZh cmlldHksIGluc3QgPSAyKS4ABAAJAAAAGE11bHQoc2l0ZSwgLiwgaW5zdCA9IDIpLgAABAIA ACr/AAAAEAAAAAQABAAJAAAABjEwc2l0ZQAEAAkAAAAJMTF2YXJpZXR5AAQACQAAAAYyMHNp dGUABAAJAAAACTIxdmFyaWV0eQAABAIAACv/AAAAEwAAAAIAAAD+AAAA/gAABAIAACz/AAAC EwAAAAIAAAAGAAAt/wAAAAIAAAAGAAAu/wAAAAIAAC//AAAA/gAAAAIAAAAGAAAu/wAAAAIA ADD/AAAA/gAAAP4AAAAGAAAt/wAAAAIAAAAGAAAu/wAAAAIAADH/AAAA/gAAAAIAAAAGAAAu /wAAAAIAADL/AAAA/gAAAP4AAAQCAAAz/wAAABAAAAACAAQACQAAAB1NdWx0KHNpdGUsIHZh cmlldHksIGluc3QgPSAxKQAEAAkAAAAdTXVsdChzaXRlLCB2YXJpZXR5LCBpbnN0ID0gMikA AAD+AAAEAgAAAAEABAAJAAAAC2RhdGFDbGFzc2VzAAACEAAAAAMABAAJAAAAB251bWVyaWMA BAAJAAAABmZhY3RvcgAEAAkAAAAGZmFjdG9yAAAEAgAAM/8AAAAQAAAAAwAEAAkAAAABeQAE AAkAAAAEc2l0ZQAEAAkAAAAHdmFyaWV0eQAAAP4AAAD+AAAD/wAAAAIAAAT/AAAAAgAAAAYA AAb/AAAAAgAAAAYAAAX/AAAAAgAAAAYAAAj/AAAAAgAACf8AAAACAAAK/wAABAIAADT/AAAA DgAAAAE/8AAAAAAAAAAAAP4AAAACAAAABgAACP8AAAACAAAJ/wAAAAIAAAr/AAAEAgAANP8A AAAOAAAAAUAAAAAAAAAAAAAA/gAAAP4AAAACAAAADgAAAAE/8AAAAAAAAAAAAP4AAAD+AAAE AgAANv8AAAAQAAAAWgAEAAkAAAABMQAEAAkAAAABMgAEAAkAAAABMwAEAAkAAAABNAAEAAkA AAABNQAEAAkAAAABNgAEAAkAAAABNwAEAAkAAAABOAAEAAkAAAABOQAEAAkAAAACMTAABAAJ AAAAAjExAAQACQAAAAIxMgAEAAkAAAACMTMABAAJAAAAAjE0AAQACQAAAAIxNQAEAAkAAAAC MTYABAAJAAAAAjE3AAQACQAAAAIxOAAEAAkAAAACMTkABAAJAAAAAjIwAAQACQAAAAIyMQAE AAkAAAACMjIABAAJAAAAAjIzAAQACQAAAAIyNAAEAAkAAAACMjUABAAJAAAAAjI2AAQACQAA AAIyNwAEAAkAAAACMjgABAAJAAAAAjI5AAQACQAAAAIzMAAEAAkAAAACMzEABAAJAAAAAjMy AAQACQAAAAIzMwAEAAkAAAACMzQABAAJAAAAAjM1AAQACQAAAAIzNgAEAAkAAAACMzcABAAJ AAAAAjM4AAQACQAAAAIzOQAEAAkAAAACNDAABAAJAAAAAjQxAAQACQAAAAI0MgAEAAkAAAAC NDMABAAJAAAAAjQ0AAQACQAAAAI0NQAEAAkAAAACNDYABAAJAAAAAjQ3AAQACQAAAAI0OAAE AAkAAAACNDkABAAJAAAAAjUwAAQACQAAAAI1MQAEAAkAAAACNTIABAAJAAAAAjUzAAQACQAA AAI1NAAEAAkAAAACNTUABAAJAAAAAjU2AAQACQAAAAI1NwAEAAkAAAACNTgABAAJAAAAAjU5 AAQACQAAAAI2MAAEAAkAAAACNjEABAAJAAAAAjYyAAQACQAAAAI2MwAEAAkAAAACNjQABAAJ AAAAAjY1AAQACQAAAAI2NgAEAAkAAAACNjcABAAJAAAAAjY4AAQACQAAAAI2OQAEAAkAAAAC NzAABAAJAAAAAjcxAAQACQAAAAI3MgAEAAkAAAACNzMABAAJAAAAAjc0AAQACQAAAAI3NQAE AAkAAAACNzYABAAJAAAAAjc3AAQACQAAAAI3OAAEAAkAAAACNzkABAAJAAAAAjgwAAQACQAA AAI4MQAEAAkAAAACODIABAAJAAAAAjgzAAQACQAAAAI4NAAEAAkAAAACODUABAAJAAAAAjg2 AAQACQAAAAI4NwAEAAkAAAACODgABAAJAAAAAjg5AAQACQAAAAI5MAAABAIAABD/AAAAEAAA AAEABAAJAAAACmRhdGEuZnJhbWUAAAD+AAAEAgAAM/8AAAAQAAAAHgAEAAkAAAAEY2FsbAAE AAkAAAAHZm9ybXVsYQAEAAkAAAAFdGVybXMABAAJAAAABGRhdGEABAAJAAAACWVsaW1pbmF0 ZQAEAAkAAAAKb2ZJbnRlcmVzdAAEAAkAAAAJbmEuYWN0aW9uAAQACQAAAAd4bGV2ZWxzAAQA CQAAAAZvZmZzZXQABAAJAAAACXRvbGVyYW5jZQAEAAkAAAAJaXRlclN0YXJ0AAQACQAAAAdp dGVyTWF4AAQACQAAAAxjb2VmZmljaWVudHMABAAJAAAACWNvbnN0cmFpbgAEAAkAAAALY29u c3RyYWluVG8ABAAJAAAACXJlc2lkdWFscwAEAAkAAAANZml0dGVkLnZhbHVlcwAEAAkAAAAE cmFuawAEAAkAAAAGZmFtaWx5AAQACQAAAApwcmVkaWN0b3JzAAQACQAAAAhkZXZpYW5jZQAE AAkAAAADYWljAAQACQAAAARpdGVyAAQACQAAAAd3ZWlnaHRzAAQACQAAAA1wcmlvci53ZWln aHRzAAQACQAAAAtkZi5yZXNpZHVhbAAEAAkAAAABeQAEAAkAAAAJY29udmVyZ2VkAAQACQAA AAF4AAQACQAAAAVtb2RlbAAABAIAABD/AAAAEAAAAAMABAAJAAAAA2dubQAEAAkAAAADZ2xt AAQACQAAAAJsbQAABAIAABH/AABP/wAAAP4AAAD+AAAA/gAAAP4AAAD+AAAA/gAAAP4AAAD+ AAAA/gAAAP4AAAD+AAAA/gAAAP4AAAD+AAAA/gAAAP4AAAD+AAAA/gAAAP4AAAD+AAAA/gAA AP4AAAD+AAAD/wAAAAIAAAT/AAAAAgAAAAYAAAX/AAAAAgAAAAYAAAb/AAAAAgAAAA4AAAAB P/AAAAAAAAAAAAD+AAAAAgAAAAYAAAf/AAAAAgAAAAYAAAj/AAAAAgAACf8AAAACAAAK/wAA AP4AAAACAAAADgAAAAFAAAAAAAAAAAAAAP4AAAD+AAAA/gAAAwYAAAQCAAAX/wAAAAYAABj/ AAAAAgAABP8AAAACAAAJ/wAAAAIAAAr/AAAA/gAABAIAABn/AAACDQAAAAYAAAAAAAAAAQAA AAAAAAAAAAAAAAAAAAEAAAQCAAAa/wAAAA0AAAACAAAAAwAAAAIAAAQCAAAb/wAAABMAAAAC AAAAEAAAAAMABAAJAAAAAXkABAAJAAAAHU11bHQoc2l0ZSwgdmFyaWV0eSwgaW5zdCA9IDEp AAQACQAAAB1NdWx0KHNpdGUsIHZhcmlldHksIGluc3QgPSAyKQAAABAAAAACAAQACQAAAB1N dWx0KHNpdGUsIHZhcmlldHksIGluc3QgPSAxKQAEAAkAAAAdTXVsdChzaXRlLCB2YXJpZXR5 LCBpbnN0ID0gMikAAAD+AAAEAgAAHP8AAAAQAAAAAgAEAAkAAAAdTXVsdChzaXRlLCB2YXJp ZXR5LCBpbnN0ID0gMSkABAAJAAAAHU11bHQoc2l0ZSwgdmFyaWV0eSwgaW5zdCA9IDIpAAAE AgAAHf8AAAANAAAAAgAAAAEAAAABAAAEAgAAHv8AAAANAAAAAQAAAAAAAAQCAAAf/wAAAA0A AAABAAAAAQAABAIAABD/AAAAEAAAAAMABAAJAAAACGdubVRlcm1zAAQACQAAAAV0ZXJtcwAE AAkAAAAHZm9ybXVsYQAABAIAABH/AAAS/wAABAIAACD/AAAACgAAAAEAAAAAAAAEAgAAIf8A AAANAAAAAAAABAIAACL/AAAABgAAGP8AAAACAAAE/wAAAAIAAAn/AAAAAgAACv8AAAD+AAAE AgAAI/8AAAAQAAAABAAEAAkAAAAEc2l0ZQAEAAkAAAAHdmFyaWV0eQAEAAkAAAAEc2l0ZQAE AAkAAAAHdmFyaWV0eQAABAIAACT/AAAACgAAAAQAAAAAAAAAAAAAAAAAAAAAAAAEAgAAJf8A AAAOAAAABD/wAAAAAAAAQAAAAAAAAABACAAAAAAAAEAQAAAAAAAAAAAEAgAAJv8AAAAKAAAA BAAAAAEAAAABAAAAAQAAAAEAAAQCAAAn/wAAAA0AAAAEAAAAAQAAAAEAAAACAAAAAgAABAIA ACj/AAAAEAAAAAQABAAJAAAAB1NwZWNpYWwABAAJAAAAB1NwZWNpYWwABAAJAAAAB1NwZWNp YWwABAAJAAAAB1NwZWNpYWwAAAQCAAAp/wAAABAAAAAEAAQACQAAABtNdWx0KC4sIHZhcmll dHksIGluc3QgPSAxKS4ABAAJAAAAGE11bHQoc2l0ZSwgLiwgaW5zdCA9IDEpLgAEAAkAAAAb TXVsdCguLCB2YXJpZXR5LCBpbnN0ID0gMikuAAQACQAAABhNdWx0KHNpdGUsIC4sIGluc3Qg PSAyKS4AAAQCAAAq/wAAABAAAAAEAAQACQAAAAYxMHNpdGUABAAJAAAACTExdmFyaWV0eQAE AAkAAAAGMjBzaXRlAAQACQAAAAkyMXZhcmlldHkAAAQCAAAr/wAAABMAAAACAAAA/gAAAP4A AAQCAAAs/wAAAhMAAAACAAAABgAALf8AAAACAAAABgAALv8AAAACAAAv/wAAAP4AAAACAAAA BgAALv8AAAACAAAw/wAAAP4AAAD+AAAABgAALf8AAAACAAAABgAALv8AAAACAAAx/wAAAP4A AAACAAAABgAALv8AAAACAAAy/wAAAP4AAAD+AAAEAgAAM/8AAAAQAAAAAgAEAAkAAAAdTXVs dChzaXRlLCB2YXJpZXR5LCBpbnN0ID0gMSkABAAJAAAAHU11bHQoc2l0ZSwgdmFyaWV0eSwg aW5zdCA9IDIpAAAA/gAAAP4AAAP/AAAAAgAABP8AAAACAAAABgAABv8AAAACAAAABgAABf8A AAACAAAABgAACP8AAAACAAAJ/wAAAAIAAAr/AAAEAgAANP8AAAAOAAAAAT/wAAAAAAAAAAAA /gAAAAIAAAAGAAAI/wAAAAIAAAn/AAAAAgAACv8AAAQCAAA0/wAAAA4AAAABQAAAAAAAAAAA AAD+AAAA/gAAAAIAAAAOAAAAAT/wAAAAAAAAAAAA/gAAAP4AAAMTAAAAAwAAAA4AAABaP0Bi TdLxqfwAAAAAAAAAAAAAAAAAAAAAP1BiTdLxqfw/ZHrhR64Uez9AYk3S8an8P3R64UeuFHs/ ip++dsi0OT+OuFHrhR64P464UeuFHrgAAAAAAAAAAD9AYk3S8an8P0BiTdLxqfw/aJN0vGp+ +j9+uFHrhR64P2iTdLxqfvo/nrhR64UeuD+zMzMzMzMzP4R64UeuFHs/wEGJN0vGqD+JmZmZ mZmaP4mZmZmZmZo/mZmZmZmZmj/FP3ztkWhzP5mZmZmZmZo/mZmZmZmZmgAAAAAAAAAAP8mZ mZmZmZo/2AAAAAAAAD/QzMzMzMzNP5mZmZmZmZo/dHrhR64Uez8aNuLrHEMtP564UeuFHrg/ mZmZmZmZmj8aNuLrHEMtP9AAAAAAAAA/4ZmZmZmZmj+pmZmZmZmaP9mZmZmZmZo/rCj1wo9c KT+EeuFHrhR7P664UeuFHrg/hocrAgxJuj+ZmZmZmZmaP7R64UeuFHs/xR64UeuFHz/S4Ueu FHrhP8mZmZmZmZo/29cKPXCj1z+EeuFHrhR7P6mZmZmZmZo/qZmZmZmZmj+pmZmZmZmaP6mZ mZmZmZo/qZmZmZmZmj+5mZmZmZmaP6mZmZmZmZo/4AAAAAAAAD/oAAAAAAAAP6mZmZmZmZo/ UGJN0vGp/D+pmZmZmZmaP6mZmZmZmZo/4AAAAAAAAD+5mZmZmZmaP+AAAAAAAAA/0AAAAAAA AD/gAAAAAAAAP+gAAAAAAAA/qZmZmZmZmj+5mZmZmZmaP6mZmZmZmZo/qZmZmZmZmj/QAAAA AAAAP+gAAAAAAAA/4AAAAAAAAD/oAAAAAAAAP+gAAAAAAAA/6AAAAAAAAD/GZmZmZmZmP9AA AAAAAAA/2zMzMzMzMz/gAAAAAAAAP9gAAAAAAAA/7mZmZmZmZj/kAAAAAAAAP+5mZmZmZmY/ 7mZmZmZmZj/uZmZmZmZmAAADDQAAAFoAAAABAAAAAQAAAAEAAAABAAAAAQAAAAEAAAABAAAA AQAAAAEAAAABAAAAAgAAAAIAAAACAAAAAgAAAAIAAAACAAAAAgAAAAIAAAACAAAAAgAAAAMA AAADAAAAAwAAAAMAAAADAAAAAwAAAAMAAAADAAAAAwAAAAMAAAAEAAAABAAAAAQAAAAEAAAA BAAAAAQAAAAEAAAABAAAAAQAAAAEAAAABQAAAAUAAAAFAAAABQAAAAUAAAAFAAAABQAAAAUA AAAFAAAABQAAAAYAAAAGAAAABgAAAAYAAAAGAAAABgAAAAYAAAAGAAAABgAAAAYAAAAHAAAA BwAAAAcAAAAHAAAABwAAAAcAAAAHAAAABwAAAAcAAAAHAAAACAAAAAgAAAAIAAAACAAAAAgA AAAIAAAACAAAAAgAAAAIAAAACAAAAAkAAAAJAAAACQAAAAkAAAAJAAAACQAAAAkAAAAJAAAA CQAAAAkAAAQCAAA1/wAAABAAAAAJAAQACQAAAAFBAAQACQAAAAFCAAQACQAAAAFDAAQACQAA AAFEAAQACQAAAAFFAAQACQAAAAFGAAQACQAAAAFHAAQACQAAAAFIAAQACQAAAAFJAAAEAgAA EP8AAAAQAAAAAQAEAAkAAAAGZmFjdG9yAAAA/gAAAw0AAABaAAAAAQAAAAIAAAADAAAABAAA AAUAAAAGAAAABwAAAAgAAAAJAAAACgAAAAEAAAACAAAAAwAAAAQAAAAFAAAABgAAAAcAAAAI AAAACQAAAAoAAAABAAAAAgAAAAMAAAAEAAAABQAAAAYAAAAHAAAACAAAAAkAAAAKAAAAAQAA AAIAAAADAAAABAAAAAUAAAAGAAAABwAAAAgAAAAJAAAACgAAAAEAAAACAAAAAwAAAAQAAAAF AAAABgAAAAcAAAAIAAAACQAAAAoAAAABAAAAAgAAAAMAAAAEAAAABQAAAAYAAAAHAAAACAAA AAkAAAAKAAAAAQAAAAIAAAADAAAABAAAAAUAAAAGAAAABwAAAAgAAAAJAAAACgAAAAEAAAAC AAAAAwAAAAQAAAAFAAAABgAAAAcAAAAIAAAACQAAAAoAAAABAAAAAgAAAAMAAAAEAAAABQAA AAYAAAAHAAAACAAAAAkAAAAKAAAEAgAANf8AAAAQAAAACgAEAAkAAAABMQAEAAkAAAABMgAE AAkAAAABMwAEAAkAAAABNAAEAAkAAAABNQAEAAkAAAABNgAEAAkAAAABNwAEAAkAAAABOAAE AAkAAAABOQAEAAkAAAABWAAABAIAABD/AAAAEAAAAAEABAAJAAAABmZhY3RvcgAAAP4AAAQC AAAz/wAAABAAAAADAAQACQAAAAF5AAQACQAAAARzaXRlAAQACQAAAAd2YXJpZXR5AAAEAgAA EP8AAAAQAAAAAQAEAAkAAAAKZGF0YS5mcmFtZQAABAIAADb/AAAAEAAAAFoABAAJAAAAATEA BAAJAAAAATIABAAJAAAAATMABAAJAAAAATQABAAJAAAAATUABAAJAAAAATYABAAJAAAAATcA BAAJAAAAATgABAAJAAAAATkABAAJAAAAAjEwAAQACQAAAAIxMQAEAAkAAAACMTIABAAJAAAA AjEzAAQACQAAAAIxNAAEAAkAAAACMTUABAAJAAAAAjE2AAQACQAAAAIxNwAEAAkAAAACMTgA BAAJAAAAAjE5AAQACQAAAAIyMAAEAAkAAAACMjEABAAJAAAAAjIyAAQACQAAAAIyMwAEAAkA AAACMjQABAAJAAAAAjI1AAQACQAAAAIyNgAEAAkAAAACMjcABAAJAAAAAjI4AAQACQAAAAIy OQAEAAkAAAACMzAABAAJAAAAAjMxAAQACQAAAAIzMgAEAAkAAAACMzMABAAJAAAAAjM0AAQA CQAAAAIzNQAEAAkAAAACMzYABAAJAAAAAjM3AAQACQAAAAIzOAAEAAkAAAACMzkABAAJAAAA AjQwAAQACQAAAAI0MQAEAAkAAAACNDIABAAJAAAAAjQzAAQACQAAAAI0NAAEAAkAAAACNDUA BAAJAAAAAjQ2AAQACQAAAAI0NwAEAAkAAAACNDgABAAJAAAAAjQ5AAQACQAAAAI1MAAEAAkA AAACNTEABAAJAAAAAjUyAAQACQAAAAI1MwAEAAkAAAACNTQABAAJAAAAAjU1AAQACQAAAAI1 NgAEAAkAAAACNTcABAAJAAAAAjU4AAQACQAAAAI1OQAEAAkAAAACNjAABAAJAAAAAjYxAAQA CQAAAAI2MgAEAAkAAAACNjMABAAJAAAAAjY0AAQACQAAAAI2NQAEAAkAAAACNjYABAAJAAAA AjY3AAQACQAAAAI2OAAEAAkAAAACNjkABAAJAAAAAjcwAAQACQAAAAI3MQAEAAkAAAACNzIA BAAJAAAAAjczAAQACQAAAAI3NAAEAAkAAAACNzUABAAJAAAAAjc2AAQACQAAAAI3NwAEAAkA AAACNzgABAAJAAAAAjc5AAQACQAAAAI4MAAEAAkAAAACODEABAAJAAAAAjgyAAQACQAAAAI4 MwAEAAkAAAACODQABAAJAAAAAjg1AAQACQAAAAI4NgAEAAkAAAACODcABAAJAAAAAjg4AAQA CQAAAAI4OQAEAAkAAAACOTAAAAD+AAAA/gAAAP4AAAD+AAACEwAAAAIAAAAQAAAACQAEAAkA AAABQQAEAAkAAAABQgAEAAkAAAABQwAEAAkAAAABRAAEAAkAAAABRQAEAAkAAAABRgAEAAkA AAABRwAEAAkAAAABSAAEAAkAAAABSQAAABAAAAAKAAQACQAAAAExAAQACQAAAAEyAAQACQAA AAEzAAQACQAAAAE0AAQACQAAAAE1AAQACQAAAAE2AAQACQAAAAE3AAQACQAAAAE4AAQACQAA AAE5AAQACQAAAAFYAAAEAgAAM/8AAAAQAAAAAgAEAAkAAAAEc2l0ZQAEAAkAAAAHdmFyaWV0 eQAAAP4AAAIOAAAAWgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAIAADP/AAAAEAAAAFoABAAJAAAA ATEABAAJAAAAATIABAAJAAAAATMABAAJAAAAATQABAAJAAAAATUABAAJAAAAATYABAAJAAAA ATcABAAJAAAAATgABAAJAAAAATkABAAJAAAAAjEwAAQACQAAAAIxMQAEAAkAAAACMTIABAAJ AAAAAjEzAAQACQAAAAIxNAAEAAkAAAACMTUABAAJAAAAAjE2AAQACQAAAAIxNwAEAAkAAAAC MTgABAAJAAAAAjE5AAQACQAAAAIyMAAEAAkAAAACMjEABAAJAAAAAjIyAAQACQAAAAIyMwAE AAkAAAACMjQABAAJAAAAAjI1AAQACQAAAAIyNgAEAAkAAAACMjcABAAJAAAAAjI4AAQACQAA AAIyOQAEAAkAAAACMzAABAAJAAAAAjMxAAQACQAAAAIzMgAEAAkAAAACMzMABAAJAAAAAjM0 AAQACQAAAAIzNQAEAAkAAAACMzYABAAJAAAAAjM3AAQACQAAAAIzOAAEAAkAAAACMzkABAAJ AAAAAjQwAAQACQAAAAI0MQAEAAkAAAACNDIABAAJAAAAAjQzAAQACQAAAAI0NAAEAAkAAAAC NDUABAAJAAAAAjQ2AAQACQAAAAI0NwAEAAkAAAACNDgABAAJAAAAAjQ5AAQACQAAAAI1MAAE AAkAAAACNTEABAAJAAAAAjUyAAQACQAAAAI1MwAEAAkAAAACNTQABAAJAAAAAjU1AAQACQAA AAI1NgAEAAkAAAACNTcABAAJAAAAAjU4AAQACQAAAAI1OQAEAAkAAAACNjAABAAJAAAAAjYx AAQACQAAAAI2MgAEAAkAAAACNjMABAAJAAAAAjY0AAQACQAAAAI2NQAEAAkAAAACNjYABAAJ AAAAAjY3AAQACQAAAAI2OAAEAAkAAAACNjkABAAJAAAAAjcwAAQACQAAAAI3MQAEAAkAAAAC NzIABAAJAAAAAjczAAQACQAAAAI3NAAEAAkAAAACNzUABAAJAAAAAjc2AAQACQAAAAI3NwAE AAkAAAACNzgABAAJAAAAAjc5AAQACQAAAAI4MAAEAAkAAAACODEABAAJAAAAAjgyAAQACQAA AAI4MwAEAAkAAAACODQABAAJAAAAAjg1AAQACQAAAAI4NgAEAAkAAAACODcABAAJAAAAAjg4 AAQACQAAAAI4OQAEAAkAAAACOTAAAAD+AAAADgAAAAE+sMb3oLXtjQAAAA4AAAABQAAAAAAA AAAAAAAOAAAAAUB/QAAAAAAAAAACDgAAACZAKTwESl4BBUAhVar2pfF6QA9INnmEpAlACteg o/Ff9UAE9v1DYYQ+P/RQPpwSyQe/4F6XArSbhsASrONZqXxJwCNJQlEGEiW/4ZolxxJLRL/r tOc14jy2v+sUWgOFzVG/4AazcpSgg7/c06QNo5DTv+OfBfEz50O/13r2VcWcML/T7R1uaxqG v9ad+jcstse/0Dkkqa62T7/1/XkSaCt+v+QTm3pwuWK/6GzvZTJgHMACs3FZFoGxv/XNQVAm uqPAAPUCDGOlHsAJL8uKEYBLwBWvgvvJm9fAHNGBMvmu8D/vb5bGRQ/tP/PxVPeaKPY/8ro0 RbwyuD/o+0KL+nFEP+MS3jobjqc/3YFKNA2C9T/WLhUjfjbDP664ctkvozo/tCAhNO9YJL+2 HP7INTW7AAAEAgAAM/8AAAAQAAAAJgAEAAkAAAAgTXVsdCguLCB2YXJpZXR5LCBpbnN0ID0g MSkuc2l0ZUEABAAJAAAAIE11bHQoLiwgdmFyaWV0eSwgaW5zdCA9IDEpLnNpdGVCAAQACQAA ACBNdWx0KC4sIHZhcmlldHksIGluc3QgPSAxKS5zaXRlQwAEAAkAAAAgTXVsdCguLCB2YXJp ZXR5LCBpbnN0ID0gMSkuc2l0ZUQABAAJAAAAIE11bHQoLiwgdmFyaWV0eSwgaW5zdCA9IDEp LnNpdGVFAAQACQAAACBNdWx0KC4sIHZhcmlldHksIGluc3QgPSAxKS5zaXRlRgAEAAkAAAAg TXVsdCguLCB2YXJpZXR5LCBpbnN0ID0gMSkuc2l0ZUcABAAJAAAAIE11bHQoLiwgdmFyaWV0 eSwgaW5zdCA9IDEpLnNpdGVIAAQACQAAACBNdWx0KC4sIHZhcmlldHksIGluc3QgPSAxKS5z aXRlSQAEAAkAAAAgTXVsdChzaXRlLCAuLCBpbnN0ID0gMSkudmFyaWV0eTEABAAJAAAAIE11 bHQoc2l0ZSwgLiwgaW5zdCA9IDEpLnZhcmlldHkyAAQACQAAACBNdWx0KHNpdGUsIC4sIGlu c3QgPSAxKS52YXJpZXR5MwAEAAkAAAAgTXVsdChzaXRlLCAuLCBpbnN0ID0gMSkudmFyaWV0 eTQABAAJAAAAIE11bHQoc2l0ZSwgLiwgaW5zdCA9IDEpLnZhcmlldHk1AAQACQAAACBNdWx0 KHNpdGUsIC4sIGluc3QgPSAxKS52YXJpZXR5NgAEAAkAAAAgTXVsdChzaXRlLCAuLCBpbnN0 ID0gMSkudmFyaWV0eTcABAAJAAAAIE11bHQoc2l0ZSwgLiwgaW5zdCA9IDEpLnZhcmlldHk4 AAQACQAAACBNdWx0KHNpdGUsIC4sIGluc3QgPSAxKS52YXJpZXR5OQAEAAkAAAAgTXVsdChz aXRlLCAuLCBpbnN0ID0gMSkudmFyaWV0eVgABAAJAAAAIE11bHQoLiwgdmFyaWV0eSwgaW5z dCA9IDIpLnNpdGVBAAQACQAAACBNdWx0KC4sIHZhcmlldHksIGluc3QgPSAyKS5zaXRlQgAE AAkAAAAgTXVsdCguLCB2YXJpZXR5LCBpbnN0ID0gMikuc2l0ZUMABAAJAAAAIE11bHQoLiwg dmFyaWV0eSwgaW5zdCA9IDIpLnNpdGVEAAQACQAAACBNdWx0KC4sIHZhcmlldHksIGluc3Qg PSAyKS5zaXRlRQAEAAkAAAAgTXVsdCguLCB2YXJpZXR5LCBpbnN0ID0gMikuc2l0ZUYABAAJ AAAAIE11bHQoLiwgdmFyaWV0eSwgaW5zdCA9IDIpLnNpdGVHAAQACQAAACBNdWx0KC4sIHZh cmlldHksIGluc3QgPSAyKS5zaXRlSAAEAAkAAAAgTXVsdCguLCB2YXJpZXR5LCBpbnN0ID0g Mikuc2l0ZUkABAAJAAAAIE11bHQoc2l0ZSwgLiwgaW5zdCA9IDIpLnZhcmlldHkxAAQACQAA ACBNdWx0KHNpdGUsIC4sIGluc3QgPSAyKS52YXJpZXR5MgAEAAkAAAAgTXVsdChzaXRlLCAu LCBpbnN0ID0gMikudmFyaWV0eTMABAAJAAAAIE11bHQoc2l0ZSwgLiwgaW5zdCA9IDIpLnZh cmlldHk0AAQACQAAACBNdWx0KHNpdGUsIC4sIGluc3QgPSAyKS52YXJpZXR5NQAEAAkAAAAg TXVsdChzaXRlLCAuLCBpbnN0ID0gMikudmFyaWV0eTYABAAJAAAAIE11bHQoc2l0ZSwgLiwg aW5zdCA9IDIpLnZhcmlldHk3AAQACQAAACBNdWx0KHNpdGUsIC4sIGluc3QgPSAyKS52YXJp ZXR5OAAEAAkAAAAgTXVsdChzaXRlLCAuLCBpbnN0ID0gMikudmFyaWV0eTkABAAJAAAAIE11 bHQoc2l0ZSwgLiwgaW5zdCA9IDIpLnZhcmlldHlYAAAEAgAAN/8AAAAOAAAAAQAAAAAAAAAA AAAA/gAAAA4AAAAAAAAADgAAAAAAAAIOAAAAWj/vy5XdO0UZv/AAA2fjA3u/8AAE11eGFT/j +NcikC8mP+VxHP/apxA/8omvcKmZX7/F9XYJzmsRv9GPvsHoO5c/3ah5KU3ae7/mDKlXTkW8 v/ASzKhOApU/74oF0uhuIz/jHttYVyN0v+QJM7g5+h6/3VHGPj9siL/HePJ0twkFv7NySH4c wwY/z6K1GRnKq7/plB3KPoG3P833N6C+8J2/6amPsJxgmL+gV9h64SMLP+acX3ren04/9m8K IFmAvL/qdqHo17mLv+PjMTxutJq/8uzs5YtIWr++akwwFiQnP/MBqn1CTv2/uu4EQ5/rmz/j cv5st+GoP+YTG0qnsf2/70U+cRYAbD+eURTLTqb7v+GAiKB2sd2/8KfrSmegPj/1PP/o4X9h P/wtnC3omNq/7jw4d6C6Aj/QGDsJDSKbv6+9GYcmNPO/3hjtLGvf4D/9Cqt6vg7Hv+5yg8yB 3zm/7Mlg6SjLxL/IaEJ7Lxsmv8aqEk2AmgA/mzzHJr82zL/Upo91LcUSP9LV6H2FJDe/7Cmu 5HK5KT/y9VXE60PrP+pUZFSisoi/4BFc97+zML/nn8lx66bwv+jLHkKsrvO/56SPt44gm7/2 EMbJSKmRP+T0p+vMvC0/8k3PnN1mfr/ADWH0/6qmv+/hMFxpssE/1sBV0XQFF7/hsw5aIIY7 QAP6IrJ3nBa/6NkQjbFufT/wgLZGCN1jv+8O/wBfeEQ/sRiEEHdW1T/kG4p263czv8YINdKI 9yk/5NK2If+/tL/cD7G1Q79Av+a9SM7Ge8g/ntrs7+O0mD/lLoPM9ipXP8VW5GtYiUK/nqwl beE1gr/AjtAa6ffnv+UhMB3ce5g/zs5lj7ziub/bfKMxhiCPv56NswuegB8/7DSSaoZFgb/h lMtdvqUjP9NxV6SP0y+/4uxKvn3lKD/UcI2G/pI5P7kzXjVfYRK/wI4+sWieegAABAIAADP/ AAAAEAAAAFoABAAJAAAAATEABAAJAAAAATIABAAJAAAAATMABAAJAAAAATQABAAJAAAAATUA BAAJAAAAATYABAAJAAAAATcABAAJAAAAATgABAAJAAAAATkABAAJAAAAAjEwAAQACQAAAAIx MQAEAAkAAAACMTIABAAJAAAAAjEzAAQACQAAAAIxNAAEAAkAAAACMTUABAAJAAAAAjE2AAQA CQAAAAIxNwAEAAkAAAACMTgABAAJAAAAAjE5AAQACQAAAAIyMAAEAAkAAAACMjEABAAJAAAA AjIyAAQACQAAAAIyMwAEAAkAAAACMjQABAAJAAAAAjI1AAQACQAAAAIyNgAEAAkAAAACMjcA BAAJAAAAAjI4AAQACQAAAAIyOQAEAAkAAAACMzAABAAJAAAAAjMxAAQACQAAAAIzMgAEAAkA AAACMzMABAAJAAAAAjM0AAQACQAAAAIzNQAEAAkAAAACMzYABAAJAAAAAjM3AAQACQAAAAIz OAAEAAkAAAACMzkABAAJAAAAAjQwAAQACQAAAAI0MQAEAAkAAAACNDIABAAJAAAAAjQzAAQA CQAAAAI0NAAEAAkAAAACNDUABAAJAAAAAjQ2AAQACQAAAAI0NwAEAAkAAAACNDgABAAJAAAA AjQ5AAQACQAAAAI1MAAEAAkAAAACNTEABAAJAAAAAjUyAAQACQAAAAI1MwAEAAkAAAACNTQA BAAJAAAAAjU1AAQACQAAAAI1NgAEAAkAAAACNTcABAAJAAAAAjU4AAQACQAAAAI1OQAEAAkA AAACNjAABAAJAAAAAjYxAAQACQAAAAI2MgAEAAkAAAACNjMABAAJAAAAAjY0AAQACQAAAAI2 NQAEAAkAAAACNjYABAAJAAAAAjY3AAQACQAAAAI2OAAEAAkAAAACNjkABAAJAAAAAjcwAAQA CQAAAAI3MQAEAAkAAAACNzIABAAJAAAAAjczAAQACQAAAAI3NAAEAAkAAAACNzUABAAJAAAA Ajc2AAQACQAAAAI3NwAEAAkAAAACNzgABAAJAAAAAjc5AAQACQAAAAI4MAAEAAkAAAACODEA BAAJAAAAAjgyAAQACQAAAAI4MwAEAAkAAAACODQABAAJAAAAAjg1AAQACQAAAAI4NgAEAAkA AAACODcABAAJAAAAAjg4AAQACQAAAAI4OQAEAAkAAAACOTAAAAD+AAACDgAAAFo/MHBKkmxq BT7LPxJPGEiPPtNdWDxe6RU/RC44i6SGMj9YinTf1jzlPy5dLmXWEmc/eLCtZU1p7z+SOTg3 2pXLP4UPiMKzaF4/poGHWDlo/T9ytqtvQlqVPzCBQOCYajg/NIOlEGP8Bz+AN9g51jOvP4wF fCLCitw/bhHnm61XoD+glB1ghvBgP68qhMQfky8/pdAaA82OtD+64UTO/35LP6qvCUYaobM/ im7PaAGWzT+OL4JENz8gP7J4BnRhCKc/uSpu1iQRGT+ux0OAPHO9P8PJQYGOjEg/zDaRsg+2 dj/Iex0y5M/JP9IrLczA+r4/kARoJJ6Xoj9oRLh7XMxjP27tu7dGeb0/ndyXy5AvEz+qlfdQ l6Z9P6VX2C82g70/vW2Mk4dO3T/N+T79tLPYP8nyEfYF5cE/1fi1MrSS2D+t59I/sFZnP5ME YetTNXg/liIyyCAH2T+1wvSRqAqvP763eDYLBqE/uL3qDf/nhz/IpLXmRcKmP9KHoq1Dj50/ 0MwlA7S2hz/Xd0yG/tjrP63j/gy3VZc/l7tce1BTET+ccf+bCC6/P7eHNhlWidw/wZ1MO4Tr 6z/C2+e9uxAEP82ezhUq2MI/19Nf7YIotT/WdFlTFGBsP93IqdA//VQ/rQjixM5QuT+ekT6N G6asP6MSjyv5YzU/uX+wlrnMLj/EsDbzurBAP88RwVn1Xlg/0nRMBU2r5D/fhqAWkC/CP97u xaSEiIk/4yulJylVxT+uizGDUm4GP6/LinjHdJY/tWXZ5GBFbD/AvVk/dsT0P89JpZeRQeY/ 4uApDTfKGT/dWdGGPrgCP+gtUoct3mI/6LocJ08UET/q2i3bHAS7P8KT6DioWjU/1js5GMsQ FT/bqyzL0Z+wP9PpB+iTzCc/4GSFWz/Taz/txQi8q7f1P+emQfehsO0/7bmhkZNiID/uPGUL JNEuP+6Tc+I5CkAAAAQCAAAz/wAAABAAAABaAAQACQAAAAExAAQACQAAAAEyAAQACQAAAAEz AAQACQAAAAE0AAQACQAAAAE1AAQACQAAAAE2AAQACQAAAAE3AAQACQAAAAE4AAQACQAAAAE5 AAQACQAAAAIxMAAEAAkAAAACMTEABAAJAAAAAjEyAAQACQAAAAIxMwAEAAkAAAACMTQABAAJ AAAAAjE1AAQACQAAAAIxNgAEAAkAAAACMTcABAAJAAAAAjE4AAQACQAAAAIxOQAEAAkAAAAC MjAABAAJAAAAAjIxAAQACQAAAAIyMgAEAAkAAAACMjMABAAJAAAAAjI0AAQACQAAAAIyNQAE AAkAAAACMjYABAAJAAAAAjI3AAQACQAAAAIyOAAEAAkAAAACMjkABAAJAAAAAjMwAAQACQAA AAIzMQAEAAkAAAACMzIABAAJAAAAAjMzAAQACQAAAAIzNAAEAAkAAAACMzUABAAJAAAAAjM2 AAQACQAAAAIzNwAEAAkAAAACMzgABAAJAAAAAjM5AAQACQAAAAI0MAAEAAkAAAACNDEABAAJ AAAAAjQyAAQACQAAAAI0MwAEAAkAAAACNDQABAAJAAAAAjQ1AAQACQAAAAI0NgAEAAkAAAAC NDcABAAJAAAAAjQ4AAQACQAAAAI0OQAEAAkAAAACNTAABAAJAAAAAjUxAAQACQAAAAI1MgAE AAkAAAACNTMABAAJAAAAAjU0AAQACQAAAAI1NQAEAAkAAAACNTYABAAJAAAAAjU3AAQACQAA AAI1OAAEAAkAAAACNTkABAAJAAAAAjYwAAQACQAAAAI2MQAEAAkAAAACNjIABAAJAAAAAjYz AAQACQAAAAI2NAAEAAkAAAACNjUABAAJAAAAAjY2AAQACQAAAAI2NwAEAAkAAAACNjgABAAJ AAAAAjY5AAQACQAAAAI3MAAEAAkAAAACNzEABAAJAAAAAjcyAAQACQAAAAI3MwAEAAkAAAAC NzQABAAJAAAAAjc1AAQACQAAAAI3NgAEAAkAAAACNzcABAAJAAAAAjc4AAQACQAAAAI3OQAE AAkAAAACODAABAAJAAAAAjgxAAQACQAAAAI4MgAEAAkAAAACODMABAAJAAAAAjg0AAQACQAA AAI4NQAEAAkAAAACODYABAAJAAAAAjg3AAQACQAAAAI4OAAEAAkAAAACODkABAAJAAAAAjkw AAAA/gAAAg0AAAABAAAAIgAABAIAADj/AAAAEAAAAAEABAAJAAAACHRvbE5vcm0yAAAEAgAA Of8AAAAKAAAAAQAAAAAAAAQCAAA6/wAAAA4AAAABPRaAAAAAAAAAAAD+AAADEwAAAAsAAAAQ AAAAAQAEAAkAAAAKd2VkZGVyYnVybgAAABAAAAABAAQACQAAAAVsb2dpdAAABAMAADv/AAAE AgAAPP8AAAD7AAAA/gAAAAYAAD3/AAAAAgAAPv8AAAACAAA8/wAAAP4AAgQDAAA7/wAABAIA AD//AAAA+wAAAP4AAAAGAAA9/wAAAAIAAED/AAAAAgAAP/8AAAD+AAIGAwAABAIAAEH/AAAD DQAAAAgAAAAiAAAAEQAAACIAAAAtAAAAEQAAAC0AAAAiAAAAIgAABAIAAEL/AABD/wAABAIA ABD/AAAAEAAAAAEABAAJAAAABnNyY3JlZgAAAP4AAAD+AABO/wAABAIAADz/AAAA+wAAAP4A AAAGAAAt/wAAAAIAAAAGAABq/wAAAAIAADz/AAAAAgAAAA4AAAABQAAAAAAAAAAAAAD+AAAA AgAAAAYAAGr/AAAAAgAAAAYAAC7/AAAAAgAAAAYAAAb/AAAAAgAAAA4AAAABP/AAAAAAAAAA AAACAAA8/wAAAP4AAAD+AAAAAgAAAA4AAAABQAAAAAAAAAAAAAD+AAAA/gACBgMAAAQCAABB /wAAAw0AAAAIAAAAJQAAABMAAAApAAAABQAAABMAAAAFAAAAJQAAACkAAAQCAABC/wAAQ/8A AAQCAAAQ/wAAABAAAAABAAQACQAAAAZzcmNyZWYAAAD+AAAA/gAATv8AAAQCAAAE/wAAAPsA AAQCAAA8/wAAAPsAAAQCAABh/wAAAPsAAAD+AAACBgAABAIAAEH/AAAAEwAAAAMAAAMNAAAA CAAAACUAAAAmAAAAJQAAACYAAAAmAAAAJgAAACUAAAAlAAAEAgAAQv8AAEP/AAAEAgAAEP8A AAAQAAAAAQAEAAkAAAAGc3JjcmVmAAAA/gAAAw0AAAAIAAAAJgAAAAkAAAAmAAAAFgAAAAkA AAAWAAAAJgAAACYAAAQCAABC/wAAQ/8AAAQCAAAQ/wAAABAAAAABAAQACQAAAAZzcmNyZWYA AAD+AAADDQAAAAgAAAAnAAAACQAAACgAAABMAAAACQAAAEwAAAAnAAAAKAAABAIAAEL/AABD /wAABAIAABD/AAAAEAAAAAEABAAJAAAABnNyY3JlZgAAAP4AAAQCAABC/wAAQ/8AAAQCAABR /wAAAw0AAAAIAAAAAQAAAAAAAAApAAAABQAAAAAAAAAFAAAAAQAAACkAAAQCAABC/wAAQ/8A AAQCAAAQ/wAAABAAAAABAAQACQAAAAZzcmNyZWYAAAD+AAAA/gAAUv8AAAACAAAABgAAWv8A AAACAABk/wAAAAIAAAAOAAAAAT9AYk3S8an8AAAA/gAAAAIAAAAGAAAt/wAAAAIAAAAGAAAt /wAAAAIAAAAOAAAAAUAAAAAAAAAAAAAAAgAAYf8AAAD+AAAAAgAAAAYAAC7/AAAAAgAAAAYA AAX/AAAAAgAAAAYAAAb/AAAAAgAAAAYAAAX/AAAAAgAAAAYAAF//AAAAAgAABP8AAAACAAA8 /wAAAP4AAAACAAAABgAAX/8AAAACAAAABgAALv8AAAACAAAABgAABv8AAAACAAAADgAAAAE/ 8AAAAAAAAAAAAAIAAAT/AAAA/gAAAP4AAAACAAAABgAALv8AAAACAAAABgAABv8AAAACAAAA DgAAAAE/8AAAAAAAAAAAAAIAADz/AAAA/gAAAP4AAAD+AAAA/gAAAAIAAAAOAAAAAUAAAAAA AAAAAAAA/gAAAAIAAAAGAAAt/wAAAAIAAAAGAAAu/wAAAAIAAAAGAAAG/wAAAAIAAAAGAAAt /wAAAAIAAAAOAAAAAUAAAAAAAAAAAAAAAgAABP8AAAD+AAAAAgAAAA4AAAABP/AAAAAAAAAA AAD+AAAA/gAAAAIAAAAGAABl/wAAAAIAAAAGAABf/wAAAAIAAAAGAAAt/wAAAAIAAAAGAAAu /wAAAAIAAAAGAAAF/wAAAAIAAAT/AAAAAgAAZP8AAAD+AAAA/gAAAAIAAAAGAAAu/wAAAAIA AAAGAAAG/wAAAAIAAAAOAAAAAT/wAAAAAAAAAAAAAgAAPP8AAAD+AAAA/gAAAP4AAAACAAAA BgAALv8AAAACAAAABgAALf8AAAACAAAABgAALv8AAAACAAAABgAABf8AAAACAAAABgAABv8A AAACAAAADgAAAAE/8AAAAAAAAAAAAAIAAAT/AAAA/gAAAAIAAGT/AAAA/gAAAP4AAAACAAA8 /wAAAP4AAAD+AAAA/gAAAP4AAAD+AAAA/gAAAP4AAAD+AAAA/gACBgMAAAQCAABB/wAAAw0A AAAIAAAAKgAAAAwAAAAqAAAAKQAAAAwAAAApAAAAKgAAACoAAAQCAABC/wAAQ/8AAAQCAAAQ /wAAABAAAAABAAQACQAAAAZzcmNyZWYAAAD+AAAA/gAATv8AAAQCAAAE/wAAAPsAAAQCAABb /wAAAPsAAAQCAAA8/wAAAPsAAAQCAABh/wAAAPsAAAQCAABi/wAAAPsAAAD+AAAACgAAAAGA AAAAAAIEAwAAO/8AAAQCAAA//wAAAPsAAAD+AAAABgAAPf8AAAACAABs/wAAAAIAAD//AAAA /gAAABQAAAABAAACBgAABAIAAEH/AAAAEwAAAAQAAAMNAAAACAAAACsAAAAeAAAAKwAAAB4A AAAeAAAAHgAAACsAAAArAAAEAgAAQv8AAEP/AAAEAgAAEP8AAAAQAAAAAQAEAAkAAAAGc3Jj cmVmAAAA/gAAAw0AAAAIAAAALAAAAAkAAAAtAAAASAAAAAkAAABIAAAALAAAAC0AAAQCAABC /wAAQ/8AAAQCAAAQ/wAAABAAAAABAAQACQAAAAZzcmNyZWYAAAD+AAADDQAAAAgAAAAuAAAA CQAAAC4AAAAdAAAACQAAAB0AAAAuAAAALgAABAIAAEL/AABD/wAABAIAABD/AAAAEAAAAAEA BAAJAAAABnNyY3JlZgAAAP4AAAMNAAAACAAAAC8AAAAJAAAALwAAACAAAAAJAAAAIAAAAC8A AAAvAAAEAgAAQv8AAEP/AAAEAgAAEP8AAAAQAAAAAQAEAAkAAAAGc3JjcmVmAAAA/gAABAIA AEL/AABD/wAABAIAAFH/AAADDQAAAAgAAAABAAAAAAAAADAAAAAFAAAAAAAAAAUAAAABAAAA MAAABAIAAEL/AABD/wAABAIAABD/AAAAEAAAAAEABAAJAAAABnNyY3JlZgAAAP4AAAD+AABS /wAAAAIAAAAGAABT/wAAAAIAAAAGAABU/wAAAAIAAAAGAABV/wAAAAIAAAAGAABW/wAAAAIA AAT/AAAAAgAAAA4AAAABAAAAAAAAAAAAAAD+AAAAAgAAAAYAAFf/AAAAAgAABP8AAAACAAAA DgAAAAE/8AAAAAAAAAAAAP4AAAD+AAAA/gAAAAIAAAAGAABY/wAAAAIAAAAGAABZ/wAAAAIA AAAQAAAAAQAEAAkAAAAxVmFsdWVzIGZvciB0aGUgd2VkZGVyYnVybiBmYW1pbHkgbXVzdCBi ZSBpbiBbMCwxXQAAAP4AAAD+AAAA/gAAAAIAAAAGAABa/wAAAAIAAFv/AAAAAgAAAAYAAFz/ AAAAAgAAAA4AAAABP/AAAAAAAAAAAAACAABd/wAAAP4AAAD+AAAAAgAAAAYAAFr/AAAAAgAA Xv8AAAACAAAABgAAX/8AAAACAAAABgAALv8AAAACAAAABgAABf8AAAACAAAE/wAAAAIAAAAO AAAAAT+5mZmZmZmaAAAA/gAAAP4AAAACAAAADgAAAAE/8zMzMzMzMwAAAP4AAAD+AAAA/gAA BgMAAAQCAABB/wAAAw0AAAAIAAAAIwAAABAAAAAkAAAAIwAAABAAAAAjAAAAIwAAACQAAAQC AABC/wAAQ/8AAAQCAAAQ/wAAABAAAAABAAQACQAAAAZzcmNyZWYAAAD+AAAA/gAATv8AAAQC AAA8/wAAAPsAAAD+AAACBgAABAIAAEH/AAAAEwAAAAIAAAMNAAAACAAAACMAAAAdAAAAIwAA AB0AAAAdAAAAHQAAACMAAAAjAAAEAgAAQv8AAEP/AAAEAgAAEP8AAAAQAAAAAQAEAAkAAAAG c3JjcmVmAAAA/gAAAw0AAAAIAAAAJAAAAAkAAAAkAAAAIgAAAAkAAAAiAAAAJAAAACQAAAQC AABC/wAAQ/8AAAQCAAAQ/wAAABAAAAABAAQACQAAAAZzcmNyZWYAAAD+AAAEAgAAQv8AAEP/ AAAEAgAAUf8AAAMNAAAACAAAAAEAAAAAAAAAJAAAACMAAAAAAAAAIwAAAAEAAAAkAAAEAgAA Qv8AAEP/AAAEAgAAEP8AAAAQAAAAAQAEAAkAAAAGc3JjcmVmAAAA/gAAAP4AAFL/AAAAAgAA AAYAAGf/AAAAAgAAAAYAAGj/AAAAAgAAAAYAAFf/AAAAAgAAPP8AAAACAAAADgAAAAEAAAAA AAAAAAAAAP4AAAD+AAAAAgAAAAYAAGj/AAAAAgAAAAYAAFb/AAAAAgAAPP8AAAACAAAADgAA AAE/8AAAAAAAAAAAAP4AAAD+AAAA/gAAAP4AAAQDAAA7/wAABAIAAD//AAAA+wAAAP4AAAAK AAAAAQAAAAEAAAQCAAAz/wAAABAAAAALAAQACQAAAAZmYW1pbHkABAAJAAAABGxpbmsABAAJ AAAAB2xpbmtmdW4ABAAJAAAAB2xpbmtpbnYABAAJAAAACHZhcmlhbmNlAAQACQAAAApkZXYu cmVzaWRzAAQACQAAAANhaWMABAAJAAAABm11LmV0YQAEAAkAAAAKaW5pdGlhbGl6ZQAEAAkA AAAHdmFsaWRtdQAEAAkAAAAIdmFsaWRldGEAAAQCAAAQ/wAAABAAAAABAAQACQAAAAZmYW1p bHkAAAD+AAACDgAAAFrAIJS4as72RMApRmFaL5eewCiSUnJ6jcLAHZFG/bxBDMAaAkanD5di wCC9cll5yd7AFGvX6wEC2MAQCw/I++o7wBJEerhEMtXACKMA6ow4u8AViSdIpmRIwCCSqQqw ptHAICNJ1NYHjsATUniGQnxxwBEciq4fii3AFmoy7+vhrMALLapnEwZWwAXjuEZtAqnACOX2 E/odkMABJJaBH70xwAc0upxrZpPAEVkb8fN5AsAQz0N7OVkRwARvB2Y3yOvAAbrPWy5lxMAF /wINcvgMv/svn5oUkBO/9DZDRMcUzL/3Ed4XXwDLv+2bzp2/WD7AEJFzjHwEOMAXRmuUITHI wBZNQjlcxQPADArariocfMAHPKwXGVBXwAkUgn8RD1bAAFQ2M0X0mr/y9W20zOOuv/Xpfav6 ScO/5MFWZyypyMAGPaLrVj7kwA+9NPquQtjADoAMbeAccsADAnKnZq3Ov//hf0+LFVDAAeFb yolpdr/28FY+2xErv+y5wM4Plai/8IgTbQqYk7/hfaWuOZVwwAY+uXZVvw3ADe38ZvCCtsAM cUn7Tc7YwAJTFraNppi//V05mr15BL/8FySHD/+Mv/M0unYovI+/4LgGEAROVr/jsIeFqvdy v8HB+HPj7N3ABn3a8wfEv8AL2ZDt7wB/wAoEVL10lLHAAZztqnd+2r/6VrNbGuFCv/I0UjAV 1Re/7OjQ90S1hr+eWIvkRwewv7EVRPtJL44/2bQ1CYb4osAGD64LAnPMwAW4Hi32OCjAAygk OaV9Dr/+TjS+sd8av/IOZxGOjNQ/10Hzv8hhyL/FPeXkYJeYP/INrsftmgs/85RhL1OOMD/6 bb4y6E4Vv/xfOjGX0+y/5C462F9lML/RbrAdREZgv+lwkFGtQhA/qSKhkP6WAEAEuw9fWxzF P/Cn+6tSAPxABI9+udPyIUAGuy+bHz/YQAiIrOR6GYwAAAQCAAAz/wAAABAAAABaAAQACQAA AAExAAQACQAAAAEyAAQACQAAAAEzAAQACQAAAAE0AAQACQAAAAE1AAQACQAAAAE2AAQACQAA AAE3AAQACQAAAAE4AAQACQAAAAE5AAQACQAAAAIxMAAEAAkAAAACMTEABAAJAAAAAjEyAAQA CQAAAAIxMwAEAAkAAAACMTQABAAJAAAAAjE1AAQACQAAAAIxNgAEAAkAAAACMTcABAAJAAAA AjE4AAQACQAAAAIxOQAEAAkAAAACMjAABAAJAAAAAjIxAAQACQAAAAIyMgAEAAkAAAACMjMA BAAJAAAAAjI0AAQACQAAAAIyNQAEAAkAAAACMjYABAAJAAAAAjI3AAQACQAAAAIyOAAEAAkA AAACMjkABAAJAAAAAjMwAAQACQAAAAIzMQAEAAkAAAACMzIABAAJAAAAAjMzAAQACQAAAAIz NAAEAAkAAAACMzUABAAJAAAAAjM2AAQACQAAAAIzNwAEAAkAAAACMzgABAAJAAAAAjM5AAQA CQAAAAI0MAAEAAkAAAACNDEABAAJAAAAAjQyAAQACQAAAAI0MwAEAAkAAAACNDQABAAJAAAA AjQ1AAQACQAAAAI0NgAEAAkAAAACNDcABAAJAAAAAjQ4AAQACQAAAAI0OQAEAAkAAAACNTAA BAAJAAAAAjUxAAQACQAAAAI1MgAEAAkAAAACNTMABAAJAAAAAjU0AAQACQAAAAI1NQAEAAkA AAACNTYABAAJAAAAAjU3AAQACQAAAAI1OAAEAAkAAAACNTkABAAJAAAAAjYwAAQACQAAAAI2 MQAEAAkAAAACNjIABAAJAAAAAjYzAAQACQAAAAI2NAAEAAkAAAACNjUABAAJAAAAAjY2AAQA CQAAAAI2NwAEAAkAAAACNjgABAAJAAAAAjY5AAQACQAAAAI3MAAEAAkAAAACNzEABAAJAAAA AjcyAAQACQAAAAI3MwAEAAkAAAACNzQABAAJAAAAAjc1AAQACQAAAAI3NgAEAAkAAAACNzcA BAAJAAAAAjc4AAQACQAAAAI3OQAEAAkAAAACODAABAAJAAAAAjgxAAQACQAAAAI4MgAEAAkA AAACODMABAAJAAAAAjg0AAQACQAAAAI4NQAEAAkAAAACODYABAAJAAAAAjg3AAQACQAAAAI4 OAAEAAkAAAACODkABAAJAAAAAjkwAAAA/gAAAA4AAAABQESDGiKLhrIAAAIOAAAAAX/4AAAA AAeiAAAEAgAAOP8AAAAQAAAAAQAEAAkAAAAIdG9sTm9ybTIAAAQCAAA5/wAAAAoAAAABAAAA AAAABAIAADr/AAAADgAAAAE9FoAAAAAAAAAAAP4AAAANAAAAAQAAAIUAAAIOAAAAWj/wAAAA AAAAP+////////w/8AAAAAAAAD/v///////+P+////////4/8AAAAAAAAD/wAAAAAAAAP+// //////4/7////////j/v///////+P/AAAAAAAAA/7////////j/wAAAAAAAAP/AAAAAAAAA/ 7////////j/wAAAAAAAAP+////////4/7////////j/wAAAAAAAAP/AAAAAAAAA/8AAAAAAA AD/v///////+P+////////4/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/v//// ///+P+////////w/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAI/8AAAAAAAAj/wAAAAAAAAP+// //////4/8AAAAAAAAD/v///////6P+////////4/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/ 8AAAAAAAAD/wAAAAAAAAP+////////w/7////////D/v///////+P/AAAAAAAAI/8AAAAAAA AD/v///////+P/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/7////////D/wAAAA AAACP/AAAAAAAAA/7////////D/v///////8P/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP+// //////4/7///////+j/wAAAAAAACP+////////4/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAI/ 7////////j/v///////+P+////////4/8AAAAAAAAD/wAAAAAAAAP+////////w/8AAAAAAA Aj/v///////+P/AAAAAAAAA/7///////9j/wAAAAAAAGP+////////w/7////////j/v//// ///+P+////////w/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAI/8AAAAAAAAD/v///////6P+// //////o/8AAAAAAACAAABAIAADP/AAAAEAAAAFoABAAJAAAAATEABAAJAAAAATIABAAJAAAA ATMABAAJAAAAATQABAAJAAAAATUABAAJAAAAATYABAAJAAAAATcABAAJAAAAATgABAAJAAAA ATkABAAJAAAAAjEwAAQACQAAAAIxMQAEAAkAAAACMTIABAAJAAAAAjEzAAQACQAAAAIxNAAE AAkAAAACMTUABAAJAAAAAjE2AAQACQAAAAIxNwAEAAkAAAACMTgABAAJAAAAAjE5AAQACQAA AAIyMAAEAAkAAAACMjEABAAJAAAAAjIyAAQACQAAAAIyMwAEAAkAAAACMjQABAAJAAAAAjI1 AAQACQAAAAIyNgAEAAkAAAACMjcABAAJAAAAAjI4AAQACQAAAAIyOQAEAAkAAAACMzAABAAJ AAAAAjMxAAQACQAAAAIzMgAEAAkAAAACMzMABAAJAAAAAjM0AAQACQAAAAIzNQAEAAkAAAAC MzYABAAJAAAAAjM3AAQACQAAAAIzOAAEAAkAAAACMzkABAAJAAAAAjQwAAQACQAAAAI0MQAE AAkAAAACNDIABAAJAAAAAjQzAAQACQAAAAI0NAAEAAkAAAACNDUABAAJAAAAAjQ2AAQACQAA AAI0NwAEAAkAAAACNDgABAAJAAAAAjQ5AAQACQAAAAI1MAAEAAkAAAACNTEABAAJAAAAAjUy AAQACQAAAAI1MwAEAAkAAAACNTQABAAJAAAAAjU1AAQACQAAAAI1NgAEAAkAAAACNTcABAAJ AAAAAjU4AAQACQAAAAI1OQAEAAkAAAACNjAABAAJAAAAAjYxAAQACQAAAAI2MgAEAAkAAAAC NjMABAAJAAAAAjY0AAQACQAAAAI2NQAEAAkAAAACNjYABAAJAAAAAjY3AAQACQAAAAI2OAAE AAkAAAACNjkABAAJAAAAAjcwAAQACQAAAAI3MQAEAAkAAAACNzIABAAJAAAAAjczAAQACQAA AAI3NAAEAAkAAAACNzUABAAJAAAAAjc2AAQACQAAAAI3NwAEAAkAAAACNzgABAAJAAAAAjc5 AAQACQAAAAI4MAAEAAkAAAACODEABAAJAAAAAjgyAAQACQAAAAI4MwAEAAkAAAACODQABAAJ AAAAAjg1AAQACQAAAAI4NgAEAAkAAAACODcABAAJAAAAAjg4AAQACQAAAAI4OQAEAAkAAAAC OTAAAAD+AAACDgAAAFo/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAA P/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAA AAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAA AAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/w AAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAA P/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAA AAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAA AAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/w AAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAA P/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAA AAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAA AAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/w AAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAA P/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAAAAAQCAAAz/wAAABAAAABaAAQACQAA AAExAAQACQAAAAEyAAQACQAAAAEzAAQACQAAAAE0AAQACQAAAAE1AAQACQAAAAE2AAQACQAA AAE3AAQACQAAAAE4AAQACQAAAAE5AAQACQAAAAIxMAAEAAkAAAACMTEABAAJAAAAAjEyAAQA CQAAAAIxMwAEAAkAAAACMTQABAAJAAAAAjE1AAQACQAAAAIxNgAEAAkAAAACMTcABAAJAAAA AjE4AAQACQAAAAIxOQAEAAkAAAACMjAABAAJAAAAAjIxAAQACQAAAAIyMgAEAAkAAAACMjMA BAAJAAAAAjI0AAQACQAAAAIyNQAEAAkAAAACMjYABAAJAAAAAjI3AAQACQAAAAIyOAAEAAkA AAACMjkABAAJAAAAAjMwAAQACQAAAAIzMQAEAAkAAAACMzIABAAJAAAAAjMzAAQACQAAAAIz NAAEAAkAAAACMzUABAAJAAAAAjM2AAQACQAAAAIzNwAEAAkAAAACMzgABAAJAAAAAjM5AAQA CQAAAAI0MAAEAAkAAAACNDEABAAJAAAAAjQyAAQACQAAAAI0MwAEAAkAAAACNDQABAAJAAAA AjQ1AAQACQAAAAI0NgAEAAkAAAACNDcABAAJAAAAAjQ4AAQACQAAAAI0OQAEAAkAAAACNTAA BAAJAAAAAjUxAAQACQAAAAI1MgAEAAkAAAACNTMABAAJAAAAAjU0AAQACQAAAAI1NQAEAAkA AAACNTYABAAJAAAAAjU3AAQACQAAAAI1OAAEAAkAAAACNTkABAAJAAAAAjYwAAQACQAAAAI2 MQAEAAkAAAACNjIABAAJAAAAAjYzAAQACQAAAAI2NAAEAAkAAAACNjUABAAJAAAAAjY2AAQA CQAAAAI2NwAEAAkAAAACNjgABAAJAAAAAjY5AAQACQAAAAI3MAAEAAkAAAACNzEABAAJAAAA AjcyAAQACQAAAAI3MwAEAAkAAAACNzQABAAJAAAAAjc1AAQACQAAAAI3NgAEAAkAAAACNzcA BAAJAAAAAjc4AAQACQAAAAI3OQAEAAkAAAACODAABAAJAAAAAjgxAAQACQAAAAI4MgAEAAkA AAACODMABAAJAAAAAjg0AAQACQAAAAI4NQAEAAkAAAACODYABAAJAAAAAjg3AAQACQAAAAI4 OAAEAAkAAAACODkABAAJAAAAAjkwAAAA/gAAAA0AAAABAAAAOAAAAg4AAABaP0BiTdLxqfwA AAAAAAAAAAAAAAAAAAAAP1BiTdLxqfw/ZHrhR64Uez9AYk3S8an8P3R64UeuFHs/ip++dsi0 OT+OuFHrhR64P464UeuFHrgAAAAAAAAAAD9AYk3S8an8P0BiTdLxqfw/aJN0vGp++j9+uFHr hR64P2iTdLxqfvo/nrhR64UeuD+zMzMzMzMzP4R64UeuFHs/wEGJN0vGqD+JmZmZmZmaP4mZ mZmZmZo/mZmZmZmZmj/FP3ztkWhzP5mZmZmZmZo/mZmZmZmZmgAAAAAAAAAAP8mZmZmZmZo/ 2AAAAAAAAD/QzMzMzMzNP5mZmZmZmZo/dHrhR64Uez8aNuLrHEMtP564UeuFHrg/mZmZmZmZ mj8aNuLrHEMtP9AAAAAAAAA/4ZmZmZmZmj+pmZmZmZmaP9mZmZmZmZo/rCj1wo9cKT+EeuFH rhR7P664UeuFHrg/hocrAgxJuj+ZmZmZmZmaP7R64UeuFHs/xR64UeuFHz/S4UeuFHrhP8mZ mZmZmZo/29cKPXCj1z+EeuFHrhR7P6mZmZmZmZo/qZmZmZmZmj+pmZmZmZmaP6mZmZmZmZo/ qZmZmZmZmj+5mZmZmZmaP6mZmZmZmZo/4AAAAAAAAD/oAAAAAAAAP6mZmZmZmZo/UGJN0vGp /D+pmZmZmZmaP6mZmZmZmZo/4AAAAAAAAD+5mZmZmZmaP+AAAAAAAAA/0AAAAAAAAD/gAAAA AAAAP+gAAAAAAAA/qZmZmZmZmj+5mZmZmZmaP6mZmZmZmZo/qZmZmZmZmj/QAAAAAAAAP+gA AAAAAAA/4AAAAAAAAD/oAAAAAAAAP+gAAAAAAAA/6AAAAAAAAD/GZmZmZmZmP9AAAAAAAAA/ 2zMzMzMzMz/gAAAAAAAAP9gAAAAAAAA/7mZmZmZmZj/kAAAAAAAAP+5mZmZmZmY/7mZmZmZm Zj/uZmZmZmZmAAAEAgAAM/8AAAAQAAAAWgAEAAkAAAABMQAEAAkAAAABMgAEAAkAAAABMwAE AAkAAAABNAAEAAkAAAABNQAEAAkAAAABNgAEAAkAAAABNwAEAAkAAAABOAAEAAkAAAABOQAE AAkAAAACMTAABAAJAAAAAjExAAQACQAAAAIxMgAEAAkAAAACMTMABAAJAAAAAjE0AAQACQAA AAIxNQAEAAkAAAACMTYABAAJAAAAAjE3AAQACQAAAAIxOAAEAAkAAAACMTkABAAJAAAAAjIw AAQACQAAAAIyMQAEAAkAAAACMjIABAAJAAAAAjIzAAQACQAAAAIyNAAEAAkAAAACMjUABAAJ AAAAAjI2AAQACQAAAAIyNwAEAAkAAAACMjgABAAJAAAAAjI5AAQACQAAAAIzMAAEAAkAAAAC MzEABAAJAAAAAjMyAAQACQAAAAIzMwAEAAkAAAACMzQABAAJAAAAAjM1AAQACQAAAAIzNgAE AAkAAAACMzcABAAJAAAAAjM4AAQACQAAAAIzOQAEAAkAAAACNDAABAAJAAAAAjQxAAQACQAA AAI0MgAEAAkAAAACNDMABAAJAAAAAjQ0AAQACQAAAAI0NQAEAAkAAAACNDYABAAJAAAAAjQ3 AAQACQAAAAI0OAAEAAkAAAACNDkABAAJAAAAAjUwAAQACQAAAAI1MQAEAAkAAAACNTIABAAJ AAAAAjUzAAQACQAAAAI1NAAEAAkAAAACNTUABAAJAAAAAjU2AAQACQAAAAI1NwAEAAkAAAAC NTgABAAJAAAAAjU5AAQACQAAAAI2MAAEAAkAAAACNjEABAAJAAAAAjYyAAQACQAAAAI2MwAE AAkAAAACNjQABAAJAAAAAjY1AAQACQAAAAI2NgAEAAkAAAACNjcABAAJAAAAAjY4AAQACQAA AAI2OQAEAAkAAAACNzAABAAJAAAAAjcxAAQACQAAAAI3MgAEAAkAAAACNzMABAAJAAAAAjc0 AAQACQAAAAI3NQAEAAkAAAACNzYABAAJAAAAAjc3AAQACQAAAAI3OAAEAAkAAAACNzkABAAJ AAAAAjgwAAQACQAAAAI4MQAEAAkAAAACODIABAAJAAAAAjgzAAQACQAAAAI4NAAEAAkAAAAC ODUABAAJAAAAAjg2AAQACQAAAAI4NwAEAAkAAAACODgABAAJAAAAAjg5AAQACQAAAAI5MAAA AP4AAAAKAAAAAQAAAAEAAAIOAAANXL/hmiXHEktEv+u05zXiPLa/6xRaA4XNUb/gBrNylKCD v9zTpA2jkNO/458F8TPnQ7/XevZVxZwwv9PtHW5rGoa/1p36Nyy2x7/QOSSprrZPgAAAAAAA AACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAA AAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAA AAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAA gAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAA AACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAA AAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAA AAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAA gAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAA AACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAA AAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAA AAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAA gAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAA AACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAA AAAAAIAAAAAAAAAAv+GaJccSS0S/67TnNeI8tr/rFFoDhc1Rv+AGs3KUoIO/3NOkDaOQ07/j nwXxM+dDv9d69lXFnDC/0+0dbmsahr/Wnfo3LLbHv9A5JKmutk+AAAAAAAAAAIAAAAAAAAAA gAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAA AACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAA AAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAA AAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAA gAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAA AACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAA AAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAA AAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAA gAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAA AACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAA AAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAA AAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAA gAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAA AAC/4ZolxxJLRL/rtOc14jy2v+sUWgOFzVG/4AazcpSgg7/c06QNo5DTv+OfBfEz50O/13r2 VcWcML/T7R1uaxqGv9ad+jcstse/0Dkkqa62T4AAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAA AAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAA gAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAA AACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAA AAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAA AAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAA gAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAA AACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAA AAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAA AAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAA gAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAA AACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAA AAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAA AAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAL/hmiXHEktE v+u05zXiPLa/6xRaA4XNUb/gBrNylKCDv9zTpA2jkNO/458F8TPnQ7/XevZVxZwwv9PtHW5r Goa/1p36Nyy2x7/QOSSprrZPgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAA AAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAA AAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAA gAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAA AACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAA AAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAA AAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAA gAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAA AACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAA AAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAA AAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAA gAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAA AACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAA AAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAv+GaJccSS0S/67TnNeI8tr/r FFoDhc1Rv+AGs3KUoIO/3NOkDaOQ07/jnwXxM+dDv9d69lXFnDC/0+0dbmsahr/Wnfo3LLbH v9A5JKmutk+AAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAA AACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAA AAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAA AAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAA gAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAA AACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAA AAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAA AAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAA gAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAA AACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAA AAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAA AAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAA gAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAA AACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAAC/4ZolxxJLRL/rtOc14jy2v+sUWgOFzVG/4Aaz cpSgg7/c06QNo5DTv+OfBfEz50O/13r2VcWcML/T7R1uaxqGv9ad+jcstse/0Dkkqa62T4AA AAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAA gAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAA AACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAA AAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAA AAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAA gAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAA AACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAA AAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAA AAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAA gAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAA AACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAA AAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAA AAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAA gAAAAAAAAACAAAAAAAAAAL/hmiXHEktEv+u05zXiPLa/6xRaA4XNUb/gBrNylKCDv9zTpA2j kNO/458F8TPnQ7/XevZVxZwwv9PtHW5rGoa/1p36Nyy2x7/QOSSprrZPgAAAAAAAAACAAAAA AAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAA AAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAA gAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAA AACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAA AAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAA AAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAA gAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAA AACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAA AAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAA AAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAA gAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAA AACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAA AAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAA AAAAAAAAv+GaJccSS0S/67TnNeI8tr/rFFoDhc1Rv+AGs3KUoIO/3NOkDaOQ07/jnwXxM+dD v9d69lXFnDC/0+0dbmsahr/Wnfo3LLbHv9A5JKmutk+AAAAAAAAAAIAAAAAAAAAAgAAAAAAA AACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAA AAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAA AAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAA gAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAA AACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAA AAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAA AAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAA gAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAA AACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAA AAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAA AAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAA gAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAA AACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAAC/4Zol xxJLRL/rtOc14jy2v+sUWgOFzVG/4AazcpSgg7/c06QNo5DTv+OfBfEz50O/13r2VcWcML/T 7R1uaxqGv9ad+jcstse/0Dkkqa62T0ApPARKXgEFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQCFVqval 8XoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAABAD0g2eYSkCQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAK16Cj8V/1 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAQAT2/UNhhD4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/9FA+nBLJBwAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAL/gXpcCtJuGgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAA AACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAwBKs41mpfEmAAAAA AAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAA AAAAAAAAgAAAAAAAAADAI0lCUQYSJYAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAA gAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAQCk8BEpe AQUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAABAIVWq9qXxegAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAPSDZ5hKQJ AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAQArXoKPxX/UAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABABPb9Q2GEPgAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAD/0UD6cEskHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAv+BelwK0m4aAAAAA AAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAA AAAAAAAAgAAAAAAAAADAEqzjWal8SYAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAA gAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAMAjSUJRBhIlgAAAAAAA AACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAABAKTwESl4BBQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAhVar2pfF6 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAQA9INnmEpAkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABACtego/Ff9QAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAEAE9v1DYYQ+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP/RQPpwSyQcAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAA AAAAAAAAgAAAAAAAAAC/4F6XArSbhoAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAA gAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAMASrONZqXxJgAAAAAAA AACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAA AAAAAIAAAAAAAAAAwCNJQlEGEiWAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAA AAAAAAAAgAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEApPARKXgEF AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAQCFVqval8XoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAD0g2eYSkCQAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAEAK16Cj8V/1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQAT2/UNhhD4AAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAA/9FA+nBLJBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAL/gXpcCtJuGgAAAAAAA AACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAA AAAAAIAAAAAAAAAAwBKs41mpfEmAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAA AAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAADAI0lCUQYSJYAAAAAAAAAA gAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAQCk8BEpeAQUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAIVWq9qXxegAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAEAPSDZ5hKQJAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQArXoKPxX/UAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAABABPb9Q2GEPgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/0UD6cEskHAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAA AAAAAIAAAAAAAAAAv+BelwK0m4aAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAA AAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAADAEqzjWal8SYAAAAAAAAAA gAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAA AACAAAAAAAAAAMAjSUJRBhIlgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAKTwESl4BBQAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAEAhVar2pfF6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQA9INnmEpAkAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAABACtego/Ff9QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAE9v1DYYQ+AAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAP/RQPpwSyQcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAA AAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAAC/4F6XArSbhoAAAAAAAAAA gAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAA AACAAAAAAAAAAMASrONZqXxJgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAA AAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAwCNJQlEGEiWAAAAAAAAAAIAA AAAAAAAAgAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAEApPARKXgEFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQCFVqval8XoAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAABAD0g2eYSkCQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAK16Cj8V/1AAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAQAT2/UNhhD4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/9FA+nBLJBwAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAA AACAAAAAAAAAAL/gXpcCtJuGgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAA AAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAwBKs41mpfEmAAAAAAAAAAIAA AAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAA gAAAAAAAAADAI0lCUQYSJYAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQCk8BEpeAQUAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAABAIVWq9qXxegAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAPSDZ5hKQJAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAQArXoKPxX/UAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABABPb9Q2GEPgAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAD/0UD6cEskHAAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAA AAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAv+BelwK0m4aAAAAAAAAAAIAA AAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAA gAAAAAAAAADAEqzjWal8SYAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAA AACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAMAjSUJRBhIlgAAAAAAAAACAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAABAKTwESl4BBQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAhVar2pfF6AAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAQA9INnmEpAkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABACtego/Ff9QAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAEAE9v1DYYQ+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP/RQPpwSyQcAAAAAAAAAAIAA AAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAA gAAAAAAAAAC/4F6XArSbhoAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAA AACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAMASrONZqXxJgAAAAAAAAACAAAAA AAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAA AAAAAAAAwCNJQlEGEiWAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEApPARKXgEFAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAQCFVqval8XoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAD0g2eYSkCQAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAEAK16Cj8V/1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQAT2/UNhhD4AAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAA/9FA+nBLJB4AAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAA AACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAL/gXpcCtJuGgAAAAAAAAACAAAAA AAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAA AAAAAAAAwBKs41mpfEmAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAA gAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAADAI0lCUQYSJT/vb5bGRQ/tP/PxVPea KPY/8ro0RbwyuD/o+0KL+nFEP+MS3jobjqc/3YFKNA2C9T/WLhUjfjbDP664ctkvozo/tCAh NO9YJL+2HP7INTW7AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAP+9vlsZFD+0/8/FU95oo9j/yujRFvDK4 P+j7Qov6cUQ/4xLeOhuOpz/dgUo0DYL1P9YuFSN+NsM/rrhy2S+jOj+0ICE071gkv7Yc/sg1 NbsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAgAAAAAAAAAA/72+WxkUP7T/z8VT3mij2P/K6NEW8Mrg/6PtCi/pxRD/j Et46G46nP92BSjQNgvU/1i4VI342wz+uuHLZL6M6P7QgITTvWCS/thz+yDU1uwAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AACAAAAAAAAAAD/vb5bGRQ/tP/PxVPeaKPY/8ro0RbwyuD/o+0KL+nFEP+MS3jobjqc/3YFK NA2C9T/WLhUjfjbDP664ctkvozo/tCAhNO9YJL+2HP7INTW7AAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAA P+9vlsZFD+0/8/FU95oo9j/yujRFvDK4P+j7Qov6cUQ/4xLeOhuOpz/dgUo0DYL1P9YuFSN+ NsM/rrhy2S+jOj+0ICE071gkv7Yc/sg1NbsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAA/72+WxkUP7T/z 8VT3mij2P/K6NEW8Mrg/6PtCi/pxRD/jEt46G46nP92BSjQNgvU/1i4VI342wz+uuHLZL6M6 P7QgITTvWCS/thz+yDU1uwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAD/vb5bGRQ/tP/PxVPeaKPY/8ro0 RbwyuD/o+0KL+nFEP+MS3jobjqc/3YFKNA2C9T/WLhUjfjbDP664ctkvozo/tCAhNO9YJL+2 HP7INTW7AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAP+9vlsZFD+0/8/FU95oo9j/yujRFvDK4P+j7Qov6 cUQ/4xLeOhuOpz/dgUo0DYL1P9YuFSN+NsM/rrhy2S+jOj+0ICE071gkv7Yc/sg1NbsAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAgAAAAAAAAAA/72+WxkUP7T/z8VT3mij2P/K6NEW8Mrg/6PtCi/pxRD/jEt46G46n P92BSjQNgvU/1i4VI342wz+uuHLZL6M6P7QgITTvWCS/thz+yDU1u7/1/XkSaCt+gAAAAAAA AACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAA AAAAAIAAAAAAAAAAv+QTm3pwuWKAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAA AAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAAC/6GzvZTJgHIAAAAAAAAAA gAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAA AACAAAAAAAAAAMACs3FZFoGxgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAA AAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAv/XNQVAmuqOAAAAAAAAAAIAA AAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAA gAAAAAAAAADAAPUCDGOlHoAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAA AACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAMAJL8uKEYBLgAAAAAAAAACAAAAA AAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAA AAAAAAAAwBWvgvvJm9eAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAA gAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAADAHNGBMvmu8IAAAAAAAAAAgAAAAAAA AACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAA AAAAAIAAAAAAAAAAv/X9eRJoK36AAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAA AAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAAC/5BObenC5YoAAAAAAAAAA gAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAA AACAAAAAAAAAAL/obO9lMmAcgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAA AAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAwAKzcVkWgbGAAAAAAAAAAIAA AAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAA gAAAAAAAAAC/9c1BUCa6o4AAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAA AACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAMAA9QIMY6UegAAAAAAAAACAAAAA AAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAA AAAAAAAAwAkvy4oRgEuAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAA gAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAADAFa+C+8mb14AAAAAAAAAAgAAAAAAA AACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAA AAAAAMAc0YEy+a7wgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAA AAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAAC/9f15EmgrfoAAAAAAAAAA gAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAA AACAAAAAAAAAAL/kE5t6cLligAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAA AAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAv+hs72UyYByAAAAAAAAAAIAA AAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAA gAAAAAAAAADAArNxWRaBsYAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAA AACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAL/1zUFQJrqjgAAAAAAAAACAAAAA AAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAA AAAAAAAAwAD1AgxjpR6AAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAA gAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAADACS/LihGAS4AAAAAAAAAAgAAAAAAA AACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAA AAAAAMAVr4L7yZvXgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAA AAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAwBzRgTL5rvCAAAAAAAAAAIAAAAAAAAAA gAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAA AACAAAAAAAAAAL/1/XkSaCt+gAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAA AAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAv+QTm3pwuWKAAAAAAAAAAIAA AAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAA gAAAAAAAAAC/6GzvZTJgHIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAA AACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAMACs3FZFoGxgAAAAAAAAACAAAAA AAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAA AAAAAAAAv/XNQVAmuqOAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAA gAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAADAAPUCDGOlHoAAAAAAAAAAgAAAAAAA AACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAA AAAAAMAJL8uKEYBLgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAA AAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAwBWvgvvJm9eAAAAAAAAAAIAAAAAAAAAA gAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAA AADAHNGBMvmu8IAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAA AAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAv/X9eRJoK36AAAAAAAAAAIAA AAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAA gAAAAAAAAAC/5BObenC5YoAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAA AACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAL/obO9lMmAcgAAAAAAAAACAAAAA AAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAA AAAAAAAAwAKzcVkWgbGAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAA gAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAAC/9c1BUCa6o4AAAAAAAAAAgAAAAAAA AACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAA AAAAAMAA9QIMY6UegAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAA AAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAwAkvy4oRgEuAAAAAAAAAAIAAAAAAAAAA gAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAA AADAFa+C+8mb14AAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAA AAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAMAc0YEy+a7wgAAAAAAAAACAAAAAAAAAAIAA AAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAA gAAAAAAAAAC/9f15EmgrfoAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAA AACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAL/kE5t6cLligAAAAAAAAACAAAAA AAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAA AAAAAAAAv+hs72UyYByAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAA gAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAADAArNxWRaBsYAAAAAAAAAAgAAAAAAA AACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAA AAAAAL/1zUFQJrqjgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAA AAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAwAD1AgxjpR6AAAAAAAAAAIAAAAAAAAAA gAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAA AADACS/LihGAS4AAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAA AAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAMAVr4L7yZvXgAAAAAAAAACAAAAAAAAAAIAA AAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAA wBzRgTL5rvCAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAA AACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAL/1/XkSaCt+gAAAAAAAAACAAAAA AAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAA AAAAAAAAv+QTm3pwuWKAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAA gAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAAC/6GzvZTJgHIAAAAAAAAAAgAAAAAAA AACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAA AAAAAMACs3FZFoGxgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAA AAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAv/XNQVAmuqOAAAAAAAAAAIAAAAAAAAAA gAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAA AADAAPUCDGOlHoAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAA AAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAMAJL8uKEYBLgAAAAAAAAACAAAAAAAAAAIAA AAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAA wBWvgvvJm9eAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAA AACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAADAHNGBMvmu8IAAAAAAAAAAgAAAAAAAAACAAAAA AAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAA AAAAAAAAv/X9eRJoK36AAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAA gAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAAC/5BObenC5YoAAAAAAAAAAgAAAAAAA AACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAA AAAAAL/obO9lMmAcgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAA AAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAwAKzcVkWgbGAAAAAAAAAAIAAAAAAAAAA gAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAA AAC/9c1BUCa6o4AAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAA AAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAMAA9QIMY6UegAAAAAAAAACAAAAAAAAAAIAA AAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAA wAkvy4oRgEuAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAA AACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAADAFa+C+8mb14AAAAAAAAAAgAAAAAAAAACAAAAA AAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAMAc 0YEy+a7wgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAA gAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAAC/9f15EmgrfoAAAAAAAAAAgAAAAAAA AACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAA AAAAAL/kE5t6cLligAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAA AAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAv+hs72UyYByAAAAAAAAAAIAAAAAAAAAA gAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAA AADAArNxWRaBsYAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAA AAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAL/1zUFQJrqjgAAAAAAAAACAAAAAAAAAAIAA AAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAA wAD1AgxjpR6AAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAA AACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAADACS/LihGAS4AAAAAAAAAAgAAAAAAAAACAAAAA AAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAMAV r4L7yZvXgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAA gAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAwBzRgTL5rvCAAAAAAAAAAIAAAAAAAAAAgAAAAAAA AACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAA AAAAAL/1/XkSaCt+gAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAA AAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAv+QTm3pwuWKAAAAAAAAAAIAAAAAAAAAA gAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAA AAC/6GzvZTJgHIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAA AAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAMACs3FZFoGxgAAAAAAAAACAAAAAAAAAAIAA AAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAA v/XNQVAmuqOAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAA AACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAADAAPUCDGOlHoAAAAAAAAAAgAAAAAAAAACAAAAA AAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAMAJ L8uKEYBLgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAA gAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAwBWvgvvJm9eAAAAAAAAAAIAAAAAAAAAAgAAAAAAA AACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAADAHNGB Mvmu8AAABAIAABr/AAAADQAAAAIAAABaAAAAJgAABAIAABv/AAAAEwAAAAIAAAD+AAAAEAAA ACYABAAJAAAAIE11bHQoLiwgdmFyaWV0eSwgaW5zdCA9IDEpLnNpdGVBAAQACQAAACBNdWx0 KC4sIHZhcmlldHksIGluc3QgPSAxKS5zaXRlQgAEAAkAAAAgTXVsdCguLCB2YXJpZXR5LCBp bnN0ID0gMSkuc2l0ZUMABAAJAAAAIE11bHQoLiwgdmFyaWV0eSwgaW5zdCA9IDEpLnNpdGVE AAQACQAAACBNdWx0KC4sIHZhcmlldHksIGluc3QgPSAxKS5zaXRlRQAEAAkAAAAgTXVsdCgu LCB2YXJpZXR5LCBpbnN0ID0gMSkuc2l0ZUYABAAJAAAAIE11bHQoLiwgdmFyaWV0eSwgaW5z dCA9IDEpLnNpdGVHAAQACQAAACBNdWx0KC4sIHZhcmlldHksIGluc3QgPSAxKS5zaXRlSAAE AAkAAAAgTXVsdCguLCB2YXJpZXR5LCBpbnN0ID0gMSkuc2l0ZUkABAAJAAAAIE11bHQoc2l0 ZSwgLiwgaW5zdCA9IDEpLnZhcmlldHkxAAQACQAAACBNdWx0KHNpdGUsIC4sIGluc3QgPSAx KS52YXJpZXR5MgAEAAkAAAAgTXVsdChzaXRlLCAuLCBpbnN0ID0gMSkudmFyaWV0eTMABAAJ AAAAIE11bHQoc2l0ZSwgLiwgaW5zdCA9IDEpLnZhcmlldHk0AAQACQAAACBNdWx0KHNpdGUs IC4sIGluc3QgPSAxKS52YXJpZXR5NQAEAAkAAAAgTXVsdChzaXRlLCAuLCBpbnN0ID0gMSku dmFyaWV0eTYABAAJAAAAIE11bHQoc2l0ZSwgLiwgaW5zdCA9IDEpLnZhcmlldHk3AAQACQAA ACBNdWx0KHNpdGUsIC4sIGluc3QgPSAxKS52YXJpZXR5OAAEAAkAAAAgTXVsdChzaXRlLCAu LCBpbnN0ID0gMSkudmFyaWV0eTkABAAJAAAAIE11bHQoc2l0ZSwgLiwgaW5zdCA9IDEpLnZh cmlldHlYAAQACQAAACBNdWx0KC4sIHZhcmlldHksIGluc3QgPSAyKS5zaXRlQQAEAAkAAAAg TXVsdCguLCB2YXJpZXR5LCBpbnN0ID0gMikuc2l0ZUIABAAJAAAAIE11bHQoLiwgdmFyaWV0 eSwgaW5zdCA9IDIpLnNpdGVDAAQACQAAACBNdWx0KC4sIHZhcmlldHksIGluc3QgPSAyKS5z aXRlRAAEAAkAAAAgTXVsdCguLCB2YXJpZXR5LCBpbnN0ID0gMikuc2l0ZUUABAAJAAAAIE11 bHQoLiwgdmFyaWV0eSwgaW5zdCA9IDIpLnNpdGVGAAQACQAAACBNdWx0KC4sIHZhcmlldHks IGluc3QgPSAyKS5zaXRlRwAEAAkAAAAgTXVsdCguLCB2YXJpZXR5LCBpbnN0ID0gMikuc2l0 ZUgABAAJAAAAIE11bHQoLiwgdmFyaWV0eSwgaW5zdCA9IDIpLnNpdGVJAAQACQAAACBNdWx0 KHNpdGUsIC4sIGluc3QgPSAyKS52YXJpZXR5MQAEAAkAAAAgTXVsdChzaXRlLCAuLCBpbnN0 ID0gMikudmFyaWV0eTIABAAJAAAAIE11bHQoc2l0ZSwgLiwgaW5zdCA9IDIpLnZhcmlldHkz AAQACQAAACBNdWx0KHNpdGUsIC4sIGluc3QgPSAyKS52YXJpZXR5NAAEAAkAAAAgTXVsdChz aXRlLCAuLCBpbnN0ID0gMikudmFyaWV0eTUABAAJAAAAIE11bHQoc2l0ZSwgLiwgaW5zdCA9 IDIpLnZhcmlldHk2AAQACQAAACBNdWx0KHNpdGUsIC4sIGluc3QgPSAyKS52YXJpZXR5NwAE AAkAAAAgTXVsdChzaXRlLCAuLCBpbnN0ID0gMikudmFyaWV0eTgABAAJAAAAIE11bHQoc2l0 ZSwgLiwgaW5zdCA9IDIpLnZhcmlldHk5AAQACQAAACBNdWx0KHNpdGUsIC4sIGluc3QgPSAy KS52YXJpZXR5WAAABAIAACf/AAAADQAAACYAAAABAAAAAQAAAAEAAAABAAAAAQAAAAEAAAAB AAAAAQAAAAEAAAABAAAAAQAAAAEAAAABAAAAAQAAAAEAAAABAAAAAQAAAAEAAAABAAAAAgAA AAIAAAACAAAAAgAAAAIAAAACAAAAAgAAAAIAAAACAAAAAgAAAAIAAAACAAAAAgAAAAIAAAAC AAAAAgAAAAIAAAACAAAAAgAAAP4AAAMTAAAAAwAAAA4AAABaP0BiTdLxqfwAAAAAAAAAAAAA AAAAAAAAP1BiTdLxqfw/ZHrhR64Uez9AYk3S8an8P3R64UeuFHs/ip++dsi0OT+OuFHrhR64 P464UeuFHrgAAAAAAAAAAD9AYk3S8an8P0BiTdLxqfw/aJN0vGp++j9+uFHrhR64P2iTdLxq fvo/nrhR64UeuD+zMzMzMzMzP4R64UeuFHs/wEGJN0vGqD+JmZmZmZmaP4mZmZmZmZo/mZmZ mZmZmj/FP3ztkWhzP5mZmZmZmZo/mZmZmZmZmgAAAAAAAAAAP8mZmZmZmZo/2AAAAAAAAD/Q zMzMzMzNP5mZmZmZmZo/dHrhR64Uez8aNuLrHEMtP564UeuFHrg/mZmZmZmZmj8aNuLrHEMt P9AAAAAAAAA/4ZmZmZmZmj+pmZmZmZmaP9mZmZmZmZo/rCj1wo9cKT+EeuFHrhR7P664UeuF Hrg/hocrAgxJuj+ZmZmZmZmaP7R64UeuFHs/xR64UeuFHz/S4UeuFHrhP8mZmZmZmZo/29cK PXCj1z+EeuFHrhR7P6mZmZmZmZo/qZmZmZmZmj+pmZmZmZmaP6mZmZmZmZo/qZmZmZmZmj+5 mZmZmZmaP6mZmZmZmZo/4AAAAAAAAD/oAAAAAAAAP6mZmZmZmZo/UGJN0vGp/D+pmZmZmZma P6mZmZmZmZo/4AAAAAAAAD+5mZmZmZmaP+AAAAAAAAA/0AAAAAAAAD/gAAAAAAAAP+gAAAAA AAA/qZmZmZmZmj+5mZmZmZmaP6mZmZmZmZo/qZmZmZmZmj/QAAAAAAAAP+gAAAAAAAA/4AAA AAAAAD/oAAAAAAAAP+gAAAAAAAA/6AAAAAAAAD/GZmZmZmZmP9AAAAAAAAA/2zMzMzMzMz/g AAAAAAAAP9gAAAAAAAA/7mZmZmZmZj/kAAAAAAAAP+5mZmZmZmY/7mZmZmZmZj/uZmZmZmZm AAADDQAAAFoAAAABAAAAAQAAAAEAAAABAAAAAQAAAAEAAAABAAAAAQAAAAEAAAABAAAAAgAA AAIAAAACAAAAAgAAAAIAAAACAAAAAgAAAAIAAAACAAAAAgAAAAMAAAADAAAAAwAAAAMAAAAD AAAAAwAAAAMAAAADAAAAAwAAAAMAAAAEAAAABAAAAAQAAAAEAAAABAAAAAQAAAAEAAAABAAA AAQAAAAEAAAABQAAAAUAAAAFAAAABQAAAAUAAAAFAAAABQAAAAUAAAAFAAAABQAAAAYAAAAG AAAABgAAAAYAAAAGAAAABgAAAAYAAAAGAAAABgAAAAYAAAAHAAAABwAAAAcAAAAHAAAABwAA AAcAAAAHAAAABwAAAAcAAAAHAAAACAAAAAgAAAAIAAAACAAAAAgAAAAIAAAACAAAAAgAAAAI AAAACAAAAAkAAAAJAAAACQAAAAkAAAAJAAAACQAAAAkAAAAJAAAACQAAAAkAAAQCAAA1/wAA ABAAAAAJAAQACQAAAAFBAAQACQAAAAFCAAQACQAAAAFDAAQACQAAAAFEAAQACQAAAAFFAAQA CQAAAAFGAAQACQAAAAFHAAQACQAAAAFIAAQACQAAAAFJAAAEAgAAEP8AAAAQAAAAAQAEAAkA AAAGZmFjdG9yAAAA/gAAAw0AAABaAAAAAQAAAAIAAAADAAAABAAAAAUAAAAGAAAABwAAAAgA AAAJAAAACgAAAAEAAAACAAAAAwAAAAQAAAAFAAAABgAAAAcAAAAIAAAACQAAAAoAAAABAAAA AgAAAAMAAAAEAAAABQAAAAYAAAAHAAAACAAAAAkAAAAKAAAAAQAAAAIAAAADAAAABAAAAAUA AAAGAAAABwAAAAgAAAAJAAAACgAAAAEAAAACAAAAAwAAAAQAAAAFAAAABgAAAAcAAAAIAAAA CQAAAAoAAAABAAAAAgAAAAMAAAAEAAAABQAAAAYAAAAHAAAACAAAAAkAAAAKAAAAAQAAAAIA AAADAAAABAAAAAUAAAAGAAAABwAAAAgAAAAJAAAACgAAAAEAAAACAAAAAwAAAAQAAAAFAAAA BgAAAAcAAAAIAAAACQAAAAoAAAABAAAAAgAAAAMAAAAEAAAABQAAAAYAAAAHAAAACAAAAAkA AAAKAAAEAgAANf8AAAAQAAAACgAEAAkAAAABMQAEAAkAAAABMgAEAAkAAAABMwAEAAkAAAAB NAAEAAkAAAABNQAEAAkAAAABNgAEAAkAAAABNwAEAAkAAAABOAAEAAkAAAABOQAEAAkAAAAB WAAABAIAABD/AAAAEAAAAAEABAAJAAAABmZhY3RvcgAAAP4AAAQCAAAz/wAAABAAAAADAAQA CQAAAAF5AAQACQAAAARzaXRlAAQACQAAAAd2YXJpZXR5AAAEAgAAb/8AAAMGAAAEAgAAF/8A AAAGAAAY/wAAAAIAAAT/AAAAAgAACf8AAAACAAAK/wAAAP4AAAQCAAAZ/wAAAg0AAAAGAAAA AAAAAAEAAAAAAAAAAAAAAAAAAAABAAAEAgAAGv8AAAANAAAAAgAAAAMAAAACAAAEAgAAG/8A AAATAAAAAgAAABAAAAADAAQACQAAAAF5AAQACQAAAB1NdWx0KHNpdGUsIHZhcmlldHksIGlu c3QgPSAxKQAEAAkAAAAdTXVsdChzaXRlLCB2YXJpZXR5LCBpbnN0ID0gMikAAAAQAAAAAgAE AAkAAAAdTXVsdChzaXRlLCB2YXJpZXR5LCBpbnN0ID0gMSkABAAJAAAAHU11bHQoc2l0ZSwg dmFyaWV0eSwgaW5zdCA9IDIpAAAA/gAABAIAABz/AAAAEAAAAAIABAAJAAAAHU11bHQoc2l0 ZSwgdmFyaWV0eSwgaW5zdCA9IDEpAAQACQAAAB1NdWx0KHNpdGUsIHZhcmlldHksIGluc3Qg PSAyKQAABAIAAB3/AAAADQAAAAIAAAABAAAAAQAABAIAAB7/AAAADQAAAAEAAAAAAAAEAgAA H/8AAAANAAAAAQAAAAEAAAQCAAAQ/wAAABAAAAADAAQACQAAAAhnbm1UZXJtcwAEAAkAAAAF dGVybXMABAAJAAAAB2Zvcm11bGEAAAQCAAAR/wAAEv8AAAQCAAAg/wAAAAoAAAABAAAAAAAA BAIAACH/AAAADQAAAAAAAAQCAAAi/wAAAAYAABj/AAAAAgAABP8AAAACAAAJ/wAAAAIAAAr/ AAAA/gAABAIAACP/AAAAEAAAAAQABAAJAAAABHNpdGUABAAJAAAAB3ZhcmlldHkABAAJAAAA BHNpdGUABAAJAAAAB3ZhcmlldHkAAAQCAAAk/wAAAAoAAAAEAAAAAAAAAAAAAAAAAAAAAAAA BAIAACX/AAAADgAAAAQ/8AAAAAAAAEAAAAAAAAAAQAgAAAAAAABAEAAAAAAAAAAABAIAACb/ AAAACgAAAAQAAAABAAAAAQAAAAEAAAABAAAEAgAAJ/8AAAANAAAABAAAAAEAAAABAAAAAgAA AAIAAAQCAAAo/wAAABAAAAAEAAQACQAAAAdTcGVjaWFsAAQACQAAAAdTcGVjaWFsAAQACQAA AAdTcGVjaWFsAAQACQAAAAdTcGVjaWFsAAAEAgAAKf8AAAAQAAAABAAEAAkAAAAbTXVsdCgu LCB2YXJpZXR5LCBpbnN0ID0gMSkuAAQACQAAABhNdWx0KHNpdGUsIC4sIGluc3QgPSAxKS4A BAAJAAAAG011bHQoLiwgdmFyaWV0eSwgaW5zdCA9IDIpLgAEAAkAAAAYTXVsdChzaXRlLCAu LCBpbnN0ID0gMikuAAAEAgAAKv8AAAAQAAAABAAEAAkAAAAGMTBzaXRlAAQACQAAAAkxMXZh cmlldHkABAAJAAAABjIwc2l0ZQAEAAkAAAAJMjF2YXJpZXR5AAAEAgAAK/8AAAATAAAAAgAA AP4AAAD+AAAEAgAALP8AAAITAAAAAgAAAAYAAC3/AAAAAgAAAAYAAC7/AAAAAgAAL/8AAAD+ AAAAAgAAAAYAAC7/AAAAAgAAMP8AAAD+AAAA/gAAAAYAAC3/AAAAAgAAAAYAAC7/AAAAAgAA Mf8AAAD+AAAAAgAAAAYAAC7/AAAAAgAAMv8AAAD+AAAA/gAABAIAADP/AAAAEAAAAAIABAAJ AAAAHU11bHQoc2l0ZSwgdmFyaWV0eSwgaW5zdCA9IDEpAAQACQAAAB1NdWx0KHNpdGUsIHZh cmlldHksIGluc3QgPSAyKQAAAP4AAAQCAABw/wAAAhAAAAADAAQACQAAAAdudW1lcmljAAQA CQAAAAZmYWN0b3IABAAJAAAABmZhY3RvcgAABAIAADP/AAAAEAAAAAMABAAJAAAAAXkABAAJ AAAABHNpdGUABAAJAAAAB3ZhcmlldHkAAAD+AAAA/gAAA/8AAAACAAAE/wAAAAIAAAAGAAAG /wAAAAIAAAAGAAAF/wAAAAIAAAAGAAAI/wAAAAIAAAn/AAAAAgAACv8AAAQCAAA0/wAAAA4A AAABP/AAAAAAAAAAAAD+AAAAAgAAAAYAAAj/AAAAAgAACf8AAAACAAAK/wAABAIAADT/AAAA DgAAAAFAAAAAAAAAAAAAAP4AAAD+AAAAAgAAAA4AAAABP/AAAAAAAAAAAAD+AAAA/gAABAIA ADb/AAAAEAAAAFoABAAJAAAAATEABAAJAAAAATIABAAJAAAAATMABAAJAAAAATQABAAJAAAA ATUABAAJAAAAATYABAAJAAAAATcABAAJAAAAATgABAAJAAAAATkABAAJAAAAAjEwAAQACQAA AAIxMQAEAAkAAAACMTIABAAJAAAAAjEzAAQACQAAAAIxNAAEAAkAAAACMTUABAAJAAAAAjE2 AAQACQAAAAIxNwAEAAkAAAACMTgABAAJAAAAAjE5AAQACQAAAAIyMAAEAAkAAAACMjEABAAJ AAAAAjIyAAQACQAAAAIyMwAEAAkAAAACMjQABAAJAAAAAjI1AAQACQAAAAIyNgAEAAkAAAAC MjcABAAJAAAAAjI4AAQACQAAAAIyOQAEAAkAAAACMzAABAAJAAAAAjMxAAQACQAAAAIzMgAE AAkAAAACMzMABAAJAAAAAjM0AAQACQAAAAIzNQAEAAkAAAACMzYABAAJAAAAAjM3AAQACQAA AAIzOAAEAAkAAAACMzkABAAJAAAAAjQwAAQACQAAAAI0MQAEAAkAAAACNDIABAAJAAAAAjQz AAQACQAAAAI0NAAEAAkAAAACNDUABAAJAAAAAjQ2AAQACQAAAAI0NwAEAAkAAAACNDgABAAJ AAAAAjQ5AAQACQAAAAI1MAAEAAkAAAACNTEABAAJAAAAAjUyAAQACQAAAAI1MwAEAAkAAAAC NTQABAAJAAAAAjU1AAQACQAAAAI1NgAEAAkAAAACNTcABAAJAAAAAjU4AAQACQAAAAI1OQAE AAkAAAACNjAABAAJAAAAAjYxAAQACQAAAAI2MgAEAAkAAAACNjMABAAJAAAAAjY0AAQACQAA AAI2NQAEAAkAAAACNjYABAAJAAAAAjY3AAQACQAAAAI2OAAEAAkAAAACNjkABAAJAAAAAjcw AAQACQAAAAI3MQAEAAkAAAACNzIABAAJAAAAAjczAAQACQAAAAI3NAAEAAkAAAACNzUABAAJ AAAAAjc2AAQACQAAAAI3NwAEAAkAAAACNzgABAAJAAAAAjc5AAQACQAAAAI4MAAEAAkAAAAC ODEABAAJAAAAAjgyAAQACQAAAAI4MwAEAAkAAAACODQABAAJAAAAAjg1AAQACQAAAAI4NgAE AAkAAAACODcABAAJAAAAAjg4AAQACQAAAAI4OQAEAAkAAAACOTAAAAQCAAAQ/wAAABAAAAAB AAQACQAAAApkYXRhLmZyYW1lAAAA/gAABAIAADP/AAAAEAAAAB4ABAAJAAAABGNhbGwABAAJ AAAAB2Zvcm11bGEABAAJAAAABXRlcm1zAAQACQAAAARkYXRhAAQACQAAAAllbGltaW5hdGUA BAAJAAAACm9mSW50ZXJlc3QABAAJAAAACW5hLmFjdGlvbgAEAAkAAAAHeGxldmVscwAEAAkA AAAGb2Zmc2V0AAQACQAAAAl0b2xlcmFuY2UABAAJAAAACWl0ZXJTdGFydAAEAAkAAAAHaXRl ck1heAAEAAkAAAAMY29lZmZpY2llbnRzAAQACQAAAAljb25zdHJhaW4ABAAJAAAAC2NvbnN0 cmFpblRvAAQACQAAAAlyZXNpZHVhbHMABAAJAAAADWZpdHRlZC52YWx1ZXMABAAJAAAABHJh bmsABAAJAAAABmZhbWlseQAEAAkAAAAKcHJlZGljdG9ycwAEAAkAAAAIZGV2aWFuY2UABAAJ AAAAA2FpYwAEAAkAAAAEaXRlcgAEAAkAAAAHd2VpZ2h0cwAEAAkAAAANcHJpb3Iud2VpZ2h0 cwAEAAkAAAALZGYucmVzaWR1YWwABAAJAAAAAXkABAAJAAAACWNvbnZlcmdlZAAEAAkAAAAB eAAEAAkAAAAFbW9kZWwAAAQCAAAQ/wAAABAAAAADAAQACQAAAANnbm0ABAAJAAAAA2dsbQAE AAkAAAACbG0AAAQCAAAR/wAAT/8AAAD+ gnm/tests/testthat/_snaps/doubleUnidiff.md0000644000176200001440000264333614472416222020446 0ustar liggesusers# double unidiff model as expected for cautres data WAoAAAACAAQCAQACAwAAAAMTAAAAHwAAAAYAAAABAAQACQAAAANnbm0AAAQCAAAAAQAEAAkA AAAHZm9ybXVsYQAAAAYAAAABAAQACQAAAAF+AAAAAgAAAAEABAAJAAAABEZyZXEAAAACAAAA BgAAAAEABAAJAAAAASsAAAACAAAABgAABf8AAAACAAAABgAABf8AAAACAAAABgAAAAEABAAJ AAAAASoAAAACAAAAAQAEAAkAAAAIZWxlY3Rpb24AAAACAAAAAQAEAAkAAAAEdm90ZQAAAP4A AAACAAAABgAABv8AAAACAAAABgAABv8AAAACAAAH/wAAAAIAAAABAAQACQAAAAVjbGFzcwAA AP4AAAACAAAAAQAEAAkAAAAIcmVsaWdpb24AAAD+AAAA/gAAAAIAAAAGAAAAAQAEAAkAAAAE TXVsdAAAAAIAAAAGAAAAAQAEAAkAAAADRXhwAAAAAgAAB/8AAAD+AAAAAgAAAAYAAAABAAQA CQAAAAE6AAAAAgAACv8AAAACAAAI/wAAAP4AAAD+AAAA/gAAAAIAAAAGAAAL/wAAAAIAAAAG AAAM/wAAAAIAAAf/AAAA/gAAAAIAAAAGAAAN/wAAAAIAAAn/AAAAAgAACP8AAAD+AAAA/gAA AP4AAAD+AAAEAgAAAAEABAAJAAAABmZhbWlseQAAAAEABAAJAAAAB3BvaXNzb24AAAQCAAAA AQAEAAkAAAAEZGF0YQAAAAEABAAJAAAAB2NhdXRyZXMAAAQCAAAAAQAEAAkAAAAHdmVyYm9z ZQAAAAoAAAABAAAAAAAAAP4AAAMGAAAEAgAACf8AAAAQAAAAAQAEAAkAAAAHZm9ybXVsYQAA BAIAAAABAAQACQAAAAwuRW52aXJvbm1lbnQAAAAEAAAAAAAAAAQAAAAAAAAABAAAAAAAAAD5 AAAAAAAAAAIABAAJAAAAA2dubQAEAAkAAAAFMS4xLjQAAAD+AAAAEwAAAB0AAAD+AAAA/gAA AP4AAAD+AAAA/gAAAP4AAAD+AAAA/gAAAP4AAAD+AAAA/gAAAP4AAAD+AAAA/gAAAP4AAAD+ AAAA/gAAAP4AAAD+AAAA/gAAAP4AAAD+AAAA/gAAAP4AAAD+AAAA/gAAAP4AAAD+AAAA/gAA AP4AAAD+AAAAEwAAAB0AAAD+AAAA/gAAAP4AAAD+AAAA/gAAAP4AAAD+AAAA/gAAAP4AAAD+ AAAA/gAAAP4AAAD+AAAA/gAAAP4AAAD+AAAA/gAAAP4AAAD+AAAA/gAAAP4AAAD+AAAA/gAA AP4AAAD+AAAA/gAAAP4AAAD+AAAA/gAAAP4AAAD+AAAAEwAAAB0AAAD+AAAA/gAAAP4AAAD+ AAAA/gAAAP4AAAD+AAAA/gAAAP4AAAD+AAAA/gAAAP4AAAQCAAAAAQAEAAkAAAANZG91Ymxl VW5pZGlmZgAAAxMAAAAfAAAABgAAAf8AAAQCAAAC/wAAAAYAAAP/AAAAAgAABP8AAAACAAAA BgAABf8AAAACAAAABgAABf8AAAACAAAABgAABf8AAAACAAAABgAABv8AAAACAAAH/wAAAAIA AAj/AAAA/gAAAAIAAAAGAAAG/wAAAAIAAAAGAAAG/wAAAAIAAAf/AAAAAgAACf8AAAD+AAAA AgAACv8AAAD+AAAA/gAAAAIAAAAGAAAL/wAAAAIAAAAGAAAM/wAAAAIAAAf/AAAA/gAAAAIA AAAGAAAN/wAAAAIAAAr/AAAAAgAACP8AAAD+AAAA/gAAAP4AAAACAAAABgAAC/8AAAACAAAA BgAADP8AAAACAAAH/wAAAP4AAAACAAAABgAADf8AAAACAAAJ/wAAAAIAAAj/AAAA/gAAAP4A AAD+AAAA/gAABAIAAA7/AAAP/wAABAIAABD/AAAR/wAABAIAABL/AAAACgAAAAEAAAAAAAAA /gAAAwYAAAQCAAAJ/wAAABAAAAABAAQACQAAAAdmb3JtdWxhAAAEAgAAE/8AABT/AAAA/gAA A/8AAAACAAAE/wAAAAIAAAAGAAAF/wAAAAIAAAAGAAAF/wAAAAIAAAAGAAAF/wAAAAIAAAAG AAAG/wAAAAIAAAf/AAAAAgAACP8AAAD+AAAAAgAAAAYAAAb/AAAAAgAAAAYAAAb/AAAAAgAA B/8AAAACAAAJ/wAAAP4AAAACAAAK/wAAAP4AAAD+AAAAAgAAAAYAAAv/AAAAAgAAAAYAAAz/ AAAAAgAAB/8AAAD+AAAAAgAAAAYAAA3/AAAAAgAACv8AAAACAAAI/wAAAP4AAAD+AAAA/gAA AAIAAAAGAAAL/wAAAAIAAAAGAAAM/wAAAAIAAAf/AAAA/gAAAAIAAAAGAAAN/wAAAAIAAAn/ AAAAAgAACP8AAAD+AAAA/gAAAP4AAAD+AAADBgAABAIAAAABAAQACQAAAAl2YXJpYWJsZXMA AAAGAAAAAQAEAAkAAAAEbGlzdAAAAAIAAAT/AAAAAgAAB/8AAAACAAAI/wAAAAIAAAn/AAAA AgAACv8AAAD+AAAEAgAAAAEABAAJAAAAB2ZhY3RvcnMAAAINAAAATQAAAAAAAAABAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAAAAB AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAAAAAAQAA AAAAAAABAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAAAAAAAAAAAAAAAAAAAAB AAAAAAAAAAAAAAABAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAAAAAQAAAAAAAAAAAAAAAAAA AAEAAAAAAAAAAQAAAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAAAEAgAAAAEABAAJAAAAA2RpbQAAAA0AAAACAAAA BwAAAAsAAAQCAAAAAQAEAAkAAAAIZGltbmFtZXMAAAATAAAAAgAAABAAAAAHAAQACQAAAARG cmVxAAQACQAAAAhlbGVjdGlvbgAEAAkAAAAEdm90ZQAEAAkAAAAFY2xhc3MABAAJAAAACHJl bGlnaW9uAAQACQAAACJNdWx0KEV4cChlbGVjdGlvbiksIHJlbGlnaW9uOnZvdGUpAAQACQAA AB9NdWx0KEV4cChlbGVjdGlvbiksIGNsYXNzOnZvdGUpAAAAEAAAAAsABAAJAAAACGVsZWN0 aW9uAAQACQAAAAR2b3RlAAQACQAAAA1lbGVjdGlvbjp2b3RlAAQACQAAAAVjbGFzcwAEAAkA AAAOZWxlY3Rpb246Y2xhc3MABAAJAAAACHJlbGlnaW9uAAQACQAAABFlbGVjdGlvbjpyZWxp Z2lvbgAEAAkAAAAOY2xhc3M6cmVsaWdpb24ABAAJAAAAF2VsZWN0aW9uOmNsYXNzOnJlbGln aW9uAAQACQAAACJNdWx0KEV4cChlbGVjdGlvbiksIHJlbGlnaW9uOnZvdGUpAAQACQAAAB9N dWx0KEV4cChlbGVjdGlvbiksIGNsYXNzOnZvdGUpAAAA/gAABAIAAAABAAQACQAAAAt0ZXJt LmxhYmVscwAAABAAAAALAAQACQAAAAhlbGVjdGlvbgAEAAkAAAAEdm90ZQAEAAkAAAANZWxl Y3Rpb246dm90ZQAEAAkAAAAFY2xhc3MABAAJAAAADmVsZWN0aW9uOmNsYXNzAAQACQAAAAhy ZWxpZ2lvbgAEAAkAAAARZWxlY3Rpb246cmVsaWdpb24ABAAJAAAADmNsYXNzOnJlbGlnaW9u AAQACQAAABdlbGVjdGlvbjpjbGFzczpyZWxpZ2lvbgAEAAkAAAAiTXVsdChFeHAoZWxlY3Rp b24pLCByZWxpZ2lvbjp2b3RlKQAEAAkAAAAfTXVsdChFeHAoZWxlY3Rpb24pLCBjbGFzczp2 b3RlKQAABAIAAAABAAQACQAAAAhzcGVjaWFscwAABAIAAAABAAQACQAAAAlpbnN0YW5jZXMA AAD+AAAA/gAABAIAAAABAAQACQAAAAVvcmRlcgAAAA0AAAALAAAAAQAAAAEAAAACAAAAAQAA AAIAAAABAAAAAgAAAAIAAAADAAAAAQAAAAEAAAQCAAAAAQAEAAkAAAAJaW50ZXJjZXB0AAAA DQAAAAEAAAABAAAEAgAAAAEABAAJAAAACHJlc3BvbnNlAAAADQAAAAEAAAABAAAEAgAACf8A AAAQAAAAAwAEAAkAAAAIZ25tVGVybXMABAAJAAAABXRlcm1zAAQACQAAAAdmb3JtdWxhAAAE AgAAE/8AABT/AAAEAgAAAAEABAAJAAAACWVsaW1pbmF0ZQAAAAoAAAABAAAAAAAABAIAAAAB AAQACQAAAAZvZmZzZXQAAAANAAAAAAAABAIAAAABAAQACQAAAAhwcmVkdmFycwAAAAYAABr/ AAAAAgAABP8AAAACAAAH/wAAAAIAAAj/AAAAAgAACf8AAAACAAAK/wAAAP4AAAQCAAAAAQAE AAkAAAAKdW5pdExhYmVscwAAABAAAAAOAAQACQAAAAExAAQACQAAAAhlbGVjdGlvbgAEAAkA AAAEdm90ZQAEAAkAAAANZWxlY3Rpb246dm90ZQAEAAkAAAAFY2xhc3MABAAJAAAADmVsZWN0 aW9uOmNsYXNzAAQACQAAAAhyZWxpZ2lvbgAEAAkAAAARZWxlY3Rpb246cmVsaWdpb24ABAAJ AAAADmNsYXNzOnJlbGlnaW9uAAQACQAAABdlbGVjdGlvbjpjbGFzczpyZWxpZ2lvbgAEAAkA AAAIZWxlY3Rpb24ABAAJAAAADXJlbGlnaW9uOnZvdGUABAAJAAAACGVsZWN0aW9uAAQACQAA AApjbGFzczp2b3RlAAAEAgAAAAEABAAJAAAABmNvbW1vbgAAAAoAAAAOAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQCAAAAAQAE AAkAAAAFYmxvY2sAAAAOAAAADgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP/AAAAAAAABA AAAAAAAAAEAIAAAAAAAAQBAAAAAAAAAAAAQCAAAAAQAEAAkAAAAFbWF0Y2gAAAAKAAAADgAA AAEAAAABAAAAAQAAAAEAAAABAAAAAQAAAAEAAAABAAAAAQAAAAEAAAABAAAAAQAAAAEAAAAB AAAEAgAAAAEABAAJAAAABmFzc2lnbgAAAA0AAAAOAAAAAQAAAAIAAAADAAAABAAAAAUAAAAG AAAABwAAAAgAAAAJAAAACgAAAAsAAAALAAAADAAAAAwAAAQCAAAAAQAEAAkAAAAEdHlwZQAA ABAAAAAOAAQACQAAAAZMaW5lYXIABAAJAAAABkxpbmVhcgAEAAkAAAAGTGluZWFyAAQACQAA AAZMaW5lYXIABAAJAAAABkxpbmVhcgAEAAkAAAAGTGluZWFyAAQACQAAAAZMaW5lYXIABAAJ AAAABkxpbmVhcgAEAAkAAAAGTGluZWFyAAQACQAAAAZMaW5lYXIABAAJAAAAB1NwZWNpYWwA BAAJAAAAB1NwZWNpYWwABAAJAAAAB1NwZWNpYWwABAAJAAAAB1NwZWNpYWwAAAQCAAAAAQAE AAkAAAAMcHJlZml4TGFiZWxzAAAAEAAAAA4ABAAJAAAAAAAEAAkAAAAAAAQACQAAAAAABAAJ AAAAAAAEAAkAAAAAAAQACQAAAAAABAAJAAAAAAAEAAkAAAAAAAQACQAAAAAABAAJAAAAAAAE AAkAAAAcTXVsdChFeHAoLiksIHJlbGlnaW9uOnZvdGUpLgAEAAkAAAAXTXVsdChFeHAoZWxl Y3Rpb24pLCAuKS4ABAAJAAAAGU11bHQoRXhwKC4pLCBjbGFzczp2b3RlKS4ABAAJAAAAF011 bHQoRXhwKGVsZWN0aW9uKSwgLikuAAAEAgAAAAEABAAJAAAACXZhckxhYmVscwAAABAAAAAO AAQACQAAAAExAAQACQAAAAhlbGVjdGlvbgAEAAkAAAAEdm90ZQAEAAkAAAANZWxlY3Rpb246 dm90ZQAEAAkAAAAFY2xhc3MABAAJAAAADmVsZWN0aW9uOmNsYXNzAAQACQAAAAhyZWxpZ2lv bgAEAAkAAAARZWxlY3Rpb246cmVsaWdpb24ABAAJAAAADmNsYXNzOnJlbGlnaW9uAAQACQAA ABdlbGVjdGlvbjpjbGFzczpyZWxpZ2lvbgAEAAkAAAAMMTEwMGVsZWN0aW9uAAQACQAAABAx MTFyZWxpZ2lvbjp2b3RlAAQACQAAAAwxMjAwZWxlY3Rpb24ABAAJAAAADTEyMWNsYXNzOnZv dGUAAAQCAAAAAQAEAAkAAAAFc3RhcnQAAAATAAAADAAAAP4AAAD+AAAA/gAAAP4AAAD+AAAA /gAAAP4AAAD+AAAA/gAAAP4AAAD+AAAA/gAABAIAAAABAAQACQAAAAlwcmVkaWN0b3IAAAIT AAAADAAAAAEABAAJAAAAATEAAAf/AAAI/wAAAAEABAAJAAAADWVsZWN0aW9uOnZvdGUAAAn/ AAAAAQAEAAkAAAAOZWxlY3Rpb246Y2xhc3MAAAr/AAAAAQAEAAkAAAARZWxlY3Rpb246cmVs aWdpb24AAAABAAQACQAAAA5jbGFzczpyZWxpZ2lvbgAAAAEABAAJAAAAF2VsZWN0aW9uOmNs YXNzOnJlbGlnaW9uAAAABgAABv8AAAACAAAABgAAAAEABAAJAAAAASgAAAACAAAABgAAAAEA BAAJAAAAA2V4cAAAAAIAAAABAAQACQAAAAwxMTAwZWxlY3Rpb24AAAD+AAAA/gAAAAIAAAAG AAA3/wAAAAIAAAABAAQACQAAABAxMTFyZWxpZ2lvbjp2b3RlAAAA/gAAAP4AAAAGAAAG/wAA AAIAAAAGAAA3/wAAAAIAAAAGAAA4/wAAAAIAAAABAAQACQAAAAwxMjAwZWxlY3Rpb24AAAD+ AAAA/gAAAAIAAAAGAAA3/wAAAAIAAAABAAQACQAAAA0xMjFjbGFzczp2b3RlAAAA/gAAAP4A AAQCAAAAAQAEAAkAAAAFbmFtZXMAAAAQAAAADAAEAAkAAAABMQAEAAkAAAAIZWxlY3Rpb24A BAAJAAAABHZvdGUABAAJAAAADWVsZWN0aW9uOnZvdGUABAAJAAAABWNsYXNzAAQACQAAAA5l bGVjdGlvbjpjbGFzcwAEAAkAAAAIcmVsaWdpb24ABAAJAAAAEWVsZWN0aW9uOnJlbGlnaW9u AAQACQAAAA5jbGFzczpyZWxpZ2lvbgAEAAkAAAAXZWxlY3Rpb246Y2xhc3M6cmVsaWdpb24A BAAJAAAAIk11bHQoRXhwKGVsZWN0aW9uKSwgcmVsaWdpb246dm90ZSkABAAJAAAAH011bHQo RXhwKGVsZWN0aW9uKSwgY2xhc3M6dm90ZSkAAAD+AAAA/gAAA/8AAAACAAAE/wAAAAIAAAAG AAAF/wAAAAIAAAAGAAAF/wAAAAIAAAAGAAAF/wAAAAIAAAAGAAAF/wAAAAIAAAAGAAAF/wAA AAIAAAAGAAAF/wAAAAIAAAAGAAAF/wAAAAIAAAAGAAAF/wAAAAIAAAAGAAAF/wAAAAIAAAAG AAAF/wAAAAIAAAf/AAAAAgAACP8AAAD+AAAAAgAAAAYAAA3/AAAAAgAAB/8AAAACAAAI/wAA AP4AAAD+AAAAAgAACf8AAAD+AAAAAgAAAAYAAA3/AAAAAgAAB/8AAAACAAAJ/wAAAP4AAAD+ AAAAAgAACv8AAAD+AAAAAgAAAAYAAA3/AAAAAgAAB/8AAAACAAAK/wAAAP4AAAD+AAAAAgAA AAYAAA3/AAAAAgAACf8AAAACAAAK/wAAAP4AAAD+AAAAAgAAAAYAAA3/AAAAAgAAAAYAAA3/ AAAAAgAAB/8AAAACAAAJ/wAAAP4AAAACAAAK/wAAAP4AAAD+AAAAAgAAAAYAAAv/AAAAAgAA AAYAAAz/AAAAAgAAB/8AAAD+AAAAAgAAAAYAAA3/AAAAAgAACv8AAAACAAAI/wAAAP4AAAD+ AAAA/gAAAAIAAAAGAAAL/wAAAAIAAAAGAAAM/wAAAAIAAAf/AAAA/gAAAAIAAAAGAAAN/wAA AAIAAAn/AAAAAgAACP8AAAD+AAAA/gAAAP4AAAD+AAADDQAAAMAAAAAlAAAABQAAABMAAAAE AAAAHgAAAAQAAAAWAAAACAAAACYAAAAJAAAAJgAAAAYAAAAUAAAACwAAABQAAAADAAAACAAA AAEAAAAIAAAABgAAACEAAAAQAAAAIQAAACUAAAAKAAAADwAAABYAAAASAAAABwAAAAkAAAAY AAAAHgAAACsAAAA3AAAAKAAAAGgAAAAAAAAABAAAAAIAAAADAAAAAgAAAAMAAAABAAAABAAA AAMAAAAGAAAABQAAABwAAABWAAAABAAAADQAAAAAAAAALwAAAAIAAABQAAAAFAAAAHEAAAAf AAAANwAAABIAAAA5AAAADQAAACMAAAAFAAAAEwAAAAkAAAAtAAAAGAAAAFoAAAA1AAAANQAA ADYAAABFAAAAHQAAAGoAAAAtAAAAQwAAAB0AAAB2AAAAdgAAANQAAAECAAAAkAAAAU0AAAAD AAAACAAAAAkAAAAJAAAAEQAAAB8AAAAQAAAATgAAABcAAABIAAAADwAAAGYAAAA9AAAACwAA ABYAAAALAAAAIAAAAAcAAAA7AAAAFQAAAE8AAAA3AAAAHwAAACUAAAAiAAAADQAAABsAAAAQ AAAAFAAAAAoAAAAqAAAAJQAAAE8AAABVAAAAKAAAAEUAAAAxAAAAIgAAADwAAAA7AAAAMwAA AD0AAABiAAAAnwAAAJEAAAE9AAAAWAAAAT4AAAACAAAABgAAAAcAAAAKAAAAAwAAACUAAAAI AAAARgAAAAwAAABRAAAACgAAAFQAAAAyAAAABAAAAB4AAAAFAAAAIQAAAAwAAAA/AAAAEQAA AEkAAAASAAAAHwAAABEAAAAjAAAACwAAACUAAAAFAAAAIAAAAA0AAAA6AAAAGAAAAFkAAAA0 AAAAKwAAACgAAAAcAAAAEgAAAGIAAAAbAAAANAAAADoAAAByAAAAegAAALoAAADEAAAAdAAA AMQAAAAFAAAAAwAAABAAAAAOAAAACgAAADgAAAAUAAAAWwAAACwAAAA7AAAAGgAAAF8AAAQC AAAc/wAAAA0AAAAEAAAAAgAAAAYAAAAEAAAABAAABAIAAB3/AAACEwAAAAQAAAAQAAAAAgAE AAkAAAABMQAEAAkAAAABMgAAABAAAAAGAAQACQAAAAExAAQACQAAAAEyAAQACQAAAAEzAAQA CQAAAAE0AAQACQAAAAE1AAQACQAAAAE2AAAAEAAAAAQABAAJAAAAATEABAAJAAAAATIABAAJ AAAAATMABAAJAAAAATQAAAAQAAAABAAEAAkAAAABMQAEAAkAAAABMgAEAAkAAAABMwAEAAkA AAABNAAABAIAAD3/AAAAEAAAAAQABAAJAAAABHZvdGUABAAJAAAABWNsYXNzAAQACQAAAAhy ZWxpZ2lvbgAEAAkAAAAIZWxlY3Rpb24AAAD+AAAEAgAACf8AAAAQAAAAAQAEAAkAAAAFdGFi bGUAAAD+AAAA/gAAAP4AAAD+AAACEwAAAAQAAAAQAAAABAAEAAkAAAABMQAEAAkAAAABMgAE AAkAAAABMwAEAAkAAAABNAAAABAAAAACAAQACQAAAAExAAQACQAAAAEyAAAAEAAAAAYABAAJ AAAAATEABAAJAAAAATIABAAJAAAAATMABAAJAAAAATQABAAJAAAAATUABAAJAAAAATYAAAAQ AAAABAAEAAkAAAABMQAEAAkAAAABMgAEAAkAAAABMwAEAAkAAAABNAAABAIAAD3/AAAAEAAA AAQABAAJAAAACGVsZWN0aW9uAAQACQAAAAR2b3RlAAQACQAAAAVjbGFzcwAEAAkAAAAIcmVs aWdpb24AAAD+AAACDgAAAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQCAAA9/wAAABAA AADAAAQACQAAAAExAAQACQAAAAEyAAQACQAAAAEzAAQACQAAAAE0AAQACQAAAAE1AAQACQAA AAE2AAQACQAAAAE3AAQACQAAAAE4AAQACQAAAAE5AAQACQAAAAIxMAAEAAkAAAACMTEABAAJ AAAAAjEyAAQACQAAAAIxMwAEAAkAAAACMTQABAAJAAAAAjE1AAQACQAAAAIxNgAEAAkAAAAC MTcABAAJAAAAAjE4AAQACQAAAAIxOQAEAAkAAAACMjAABAAJAAAAAjIxAAQACQAAAAIyMgAE AAkAAAACMjMABAAJAAAAAjI0AAQACQAAAAIyNQAEAAkAAAACMjYABAAJAAAAAjI3AAQACQAA AAIyOAAEAAkAAAACMjkABAAJAAAAAjMwAAQACQAAAAIzMQAEAAkAAAACMzIABAAJAAAAAjMz AAQACQAAAAIzNAAEAAkAAAACMzUABAAJAAAAAjM2AAQACQAAAAIzNwAEAAkAAAACMzgABAAJ AAAAAjM5AAQACQAAAAI0MAAEAAkAAAACNDEABAAJAAAAAjQyAAQACQAAAAI0MwAEAAkAAAAC NDQABAAJAAAAAjQ1AAQACQAAAAI0NgAEAAkAAAACNDcABAAJAAAAAjQ4AAQACQAAAAI0OQAE AAkAAAACNTAABAAJAAAAAjUxAAQACQAAAAI1MgAEAAkAAAACNTMABAAJAAAAAjU0AAQACQAA AAI1NQAEAAkAAAACNTYABAAJAAAAAjU3AAQACQAAAAI1OAAEAAkAAAACNTkABAAJAAAAAjYw AAQACQAAAAI2MQAEAAkAAAACNjIABAAJAAAAAjYzAAQACQAAAAI2NAAEAAkAAAACNjUABAAJ AAAAAjY2AAQACQAAAAI2NwAEAAkAAAACNjgABAAJAAAAAjY5AAQACQAAAAI3MAAEAAkAAAAC NzEABAAJAAAAAjcyAAQACQAAAAI3MwAEAAkAAAACNzQABAAJAAAAAjc1AAQACQAAAAI3NgAE AAkAAAACNzcABAAJAAAAAjc4AAQACQAAAAI3OQAEAAkAAAACODAABAAJAAAAAjgxAAQACQAA AAI4MgAEAAkAAAACODMABAAJAAAAAjg0AAQACQAAAAI4NQAEAAkAAAACODYABAAJAAAAAjg3 AAQACQAAAAI4OAAEAAkAAAACODkABAAJAAAAAjkwAAQACQAAAAI5MQAEAAkAAAACOTIABAAJ AAAAAjkzAAQACQAAAAI5NAAEAAkAAAACOTUABAAJAAAAAjk2AAQACQAAAAI5NwAEAAkAAAAC OTgABAAJAAAAAjk5AAQACQAAAAMxMDAABAAJAAAAAzEwMQAEAAkAAAADMTAyAAQACQAAAAMx MDMABAAJAAAAAzEwNAAEAAkAAAADMTA1AAQACQAAAAMxMDYABAAJAAAAAzEwNwAEAAkAAAAD MTA4AAQACQAAAAMxMDkABAAJAAAAAzExMAAEAAkAAAADMTExAAQACQAAAAMxMTIABAAJAAAA AzExMwAEAAkAAAADMTE0AAQACQAAAAMxMTUABAAJAAAAAzExNgAEAAkAAAADMTE3AAQACQAA AAMxMTgABAAJAAAAAzExOQAEAAkAAAADMTIwAAQACQAAAAMxMjEABAAJAAAAAzEyMgAEAAkA AAADMTIzAAQACQAAAAMxMjQABAAJAAAAAzEyNQAEAAkAAAADMTI2AAQACQAAAAMxMjcABAAJ AAAAAzEyOAAEAAkAAAADMTI5AAQACQAAAAMxMzAABAAJAAAAAzEzMQAEAAkAAAADMTMyAAQA CQAAAAMxMzMABAAJAAAAAzEzNAAEAAkAAAADMTM1AAQACQAAAAMxMzYABAAJAAAAAzEzNwAE AAkAAAADMTM4AAQACQAAAAMxMzkABAAJAAAAAzE0MAAEAAkAAAADMTQxAAQACQAAAAMxNDIA BAAJAAAAAzE0MwAEAAkAAAADMTQ0AAQACQAAAAMxNDUABAAJAAAAAzE0NgAEAAkAAAADMTQ3 AAQACQAAAAMxNDgABAAJAAAAAzE0OQAEAAkAAAADMTUwAAQACQAAAAMxNTEABAAJAAAAAzE1 MgAEAAkAAAADMTUzAAQACQAAAAMxNTQABAAJAAAAAzE1NQAEAAkAAAADMTU2AAQACQAAAAMx NTcABAAJAAAAAzE1OAAEAAkAAAADMTU5AAQACQAAAAMxNjAABAAJAAAAAzE2MQAEAAkAAAAD MTYyAAQACQAAAAMxNjMABAAJAAAAAzE2NAAEAAkAAAADMTY1AAQACQAAAAMxNjYABAAJAAAA AzE2NwAEAAkAAAADMTY4AAQACQAAAAMxNjkABAAJAAAAAzE3MAAEAAkAAAADMTcxAAQACQAA AAMxNzIABAAJAAAAAzE3MwAEAAkAAAADMTc0AAQACQAAAAMxNzUABAAJAAAAAzE3NgAEAAkA AAADMTc3AAQACQAAAAMxNzgABAAJAAAAAzE3OQAEAAkAAAADMTgwAAQACQAAAAMxODEABAAJ AAAAAzE4MgAEAAkAAAADMTgzAAQACQAAAAMxODQABAAJAAAAAzE4NQAEAAkAAAADMTg2AAQA CQAAAAMxODcABAAJAAAAAzE4OAAEAAkAAAADMTg5AAQACQAAAAMxOTAABAAJAAAAAzE5MQAE AAkAAAADMTkyAAAA/gAAAA4AAAABPrDG96C17Y0AAAAOAAAAAUAAAAAAAAAAAAAADgAAAAFA f0AAAAAAAAAAAg4AAACAQAP6VyAPBEg/5PhbMImUiT/g+Ajoxb/kP9k7cyaCz8k/4W+dnfgH Sb/I1cVYJg8oP9cgfdpwSTa/1TCYPI8DP7/ixDVIYw6vv6Welou3Jty/yN9bcepCoz/SGlmG /iWiP9wEq6U+iz4/r8S/OdO9h7/E59oPIFRwP8Zdk8m0dMG/yix4Hl32B7/V5SRCoOKPP7oj xWlG2tM/49iy7pqTBj/cgomBcS/7P+kh+U+EkNE/4hLjtV8cDz/glACeup+vP95yVjRrgpw/ xA+cLWxQ9r+wZmYzSnp7v5kZmHaGTIO/u26mho1axb/Qwcz/p5q/v/9tNTp2pjg/ut703BSj 8b/K5xkuxew6P7t7Y2V2D+M/6IRT96K0PT/hMjeiLRlXP9dIYDVAZJg/5GcRDrag2z+X46kC cE+JP+KPr0I4Pp8/1AX4u3U79r/xH5eMreySv+FP90i8A7w/0EfS/qoIEz/jidSRvCLgP/GB sSCd1ji/1ad90BR4vT/tc02gWK8ZP/DKTyryBNg/9dLXfkPWPT/rwXdR2GXsP8+cZBaLhf4/ zbFy6uLiSD/V2kGnaipEP/fmxa00Ed2/1BQwkW5iED/ZExQZ+6ETP6OB4/yKD78/5oMPvfMt OD/yrU3XS49AP/MAHlaRWms/02m31rbTqz/qmhhtEgatP+ScgF4jNL2/wjaTF5CYcT/Oey7C qcnaP9AxaXsMNyW/zZMVpHy/UD+uSISmSUt5v7C5jT/08d+/tincN3yanj+zZnH6m9ICP9bz FLyq9jg/6Phv6vxRBz/xxIGPHqHIP/S4YshV/Ky/23AdjyECjr/C3l0EgRAbP8H5Xgtx4Uy/ 0POxJccGo7/NXKSeypvCP9Ybmkcbro2/wRBsqLN5Ib/E7vcr2nodP9Sy/qkGh2w/zmSUy+iP Hj/nE4rZq1UOP+27xJodDAg/+Fl32MDSqj/7tiLB4/OSP/2fB2RE5i4/89qPhjlnzD/4TZsS 6N9jP/qCzcSKrZA/5yCgXI+cdT/wiMp7epQsP/T5ujiy7ck/sBccUIGQ3z/Ur6FiO4DoP+b/ 5BuwmAC/6YKPrKUZGb/sUfeV9gq4v/Dwd3euTV+/8gIvc8aGcD/+wvUiff+KP/GGs9GPuYs/ 0aaaxmlyR7/9Mf5QpvRKwAKlmNG7/we/8QOloAGOQD+fKBMq7heeP+uCQC5idim/2Ixu+TKm ND/TFSbSLL+rP7DYeDmAcA2/lkNIqCRvkz/W1p87xOFSP9YaIFLwRQw/qUTZL7lKqz+hsyVe ccMCv5P63WSLp8y/3OnZ5ZH7pL/ghaIFcGk9v+P+ykUD2LO/2X6Q+GsLs7+5KUfSJGtxv7YW jSi/m4S/oREVa4QsdQAABAIAAD3/AAAAEAAAAIAABAAJAAAACyhJbnRlcmNlcHQpAAQACQAA AAllbGVjdGlvbjIABAAJAAAACWVsZWN0aW9uMwAEAAkAAAAJZWxlY3Rpb240AAQACQAAAAV2 b3RlMgAEAAkAAAAPZWxlY3Rpb24yOnZvdGUyAAQACQAAAA9lbGVjdGlvbjM6dm90ZTIABAAJ AAAAD2VsZWN0aW9uNDp2b3RlMgAEAAkAAAAGY2xhc3MyAAQACQAAAAZjbGFzczMABAAJAAAA BmNsYXNzNAAEAAkAAAAGY2xhc3M1AAQACQAAAAZjbGFzczYABAAJAAAAEGVsZWN0aW9uMjpj bGFzczIABAAJAAAAEGVsZWN0aW9uMzpjbGFzczIABAAJAAAAEGVsZWN0aW9uNDpjbGFzczIA BAAJAAAAEGVsZWN0aW9uMjpjbGFzczMABAAJAAAAEGVsZWN0aW9uMzpjbGFzczMABAAJAAAA EGVsZWN0aW9uNDpjbGFzczMABAAJAAAAEGVsZWN0aW9uMjpjbGFzczQABAAJAAAAEGVsZWN0 aW9uMzpjbGFzczQABAAJAAAAEGVsZWN0aW9uNDpjbGFzczQABAAJAAAAEGVsZWN0aW9uMjpj bGFzczUABAAJAAAAEGVsZWN0aW9uMzpjbGFzczUABAAJAAAAEGVsZWN0aW9uNDpjbGFzczUA BAAJAAAAEGVsZWN0aW9uMjpjbGFzczYABAAJAAAAEGVsZWN0aW9uMzpjbGFzczYABAAJAAAA EGVsZWN0aW9uNDpjbGFzczYABAAJAAAACXJlbGlnaW9uMgAEAAkAAAAJcmVsaWdpb24zAAQA CQAAAAlyZWxpZ2lvbjQABAAJAAAAE2VsZWN0aW9uMjpyZWxpZ2lvbjIABAAJAAAAE2VsZWN0 aW9uMzpyZWxpZ2lvbjIABAAJAAAAE2VsZWN0aW9uNDpyZWxpZ2lvbjIABAAJAAAAE2VsZWN0 aW9uMjpyZWxpZ2lvbjMABAAJAAAAE2VsZWN0aW9uMzpyZWxpZ2lvbjMABAAJAAAAE2VsZWN0 aW9uNDpyZWxpZ2lvbjMABAAJAAAAE2VsZWN0aW9uMjpyZWxpZ2lvbjQABAAJAAAAE2VsZWN0 aW9uMzpyZWxpZ2lvbjQABAAJAAAAE2VsZWN0aW9uNDpyZWxpZ2lvbjQABAAJAAAAEGNsYXNz MjpyZWxpZ2lvbjIABAAJAAAAEGNsYXNzMzpyZWxpZ2lvbjIABAAJAAAAEGNsYXNzNDpyZWxp Z2lvbjIABAAJAAAAEGNsYXNzNTpyZWxpZ2lvbjIABAAJAAAAEGNsYXNzNjpyZWxpZ2lvbjIA BAAJAAAAEGNsYXNzMjpyZWxpZ2lvbjMABAAJAAAAEGNsYXNzMzpyZWxpZ2lvbjMABAAJAAAA EGNsYXNzNDpyZWxpZ2lvbjMABAAJAAAAEGNsYXNzNTpyZWxpZ2lvbjMABAAJAAAAEGNsYXNz NjpyZWxpZ2lvbjMABAAJAAAAEGNsYXNzMjpyZWxpZ2lvbjQABAAJAAAAEGNsYXNzMzpyZWxp Z2lvbjQABAAJAAAAEGNsYXNzNDpyZWxpZ2lvbjQABAAJAAAAEGNsYXNzNTpyZWxpZ2lvbjQA BAAJAAAAEGNsYXNzNjpyZWxpZ2lvbjQABAAJAAAAGmVsZWN0aW9uMjpjbGFzczI6cmVsaWdp b24yAAQACQAAABplbGVjdGlvbjM6Y2xhc3MyOnJlbGlnaW9uMgAEAAkAAAAaZWxlY3Rpb240 OmNsYXNzMjpyZWxpZ2lvbjIABAAJAAAAGmVsZWN0aW9uMjpjbGFzczM6cmVsaWdpb24yAAQA CQAAABplbGVjdGlvbjM6Y2xhc3MzOnJlbGlnaW9uMgAEAAkAAAAaZWxlY3Rpb240OmNsYXNz MzpyZWxpZ2lvbjIABAAJAAAAGmVsZWN0aW9uMjpjbGFzczQ6cmVsaWdpb24yAAQACQAAABpl bGVjdGlvbjM6Y2xhc3M0OnJlbGlnaW9uMgAEAAkAAAAaZWxlY3Rpb240OmNsYXNzNDpyZWxp Z2lvbjIABAAJAAAAGmVsZWN0aW9uMjpjbGFzczU6cmVsaWdpb24yAAQACQAAABplbGVjdGlv bjM6Y2xhc3M1OnJlbGlnaW9uMgAEAAkAAAAaZWxlY3Rpb240OmNsYXNzNTpyZWxpZ2lvbjIA BAAJAAAAGmVsZWN0aW9uMjpjbGFzczY6cmVsaWdpb24yAAQACQAAABplbGVjdGlvbjM6Y2xh c3M2OnJlbGlnaW9uMgAEAAkAAAAaZWxlY3Rpb240OmNsYXNzNjpyZWxpZ2lvbjIABAAJAAAA GmVsZWN0aW9uMjpjbGFzczI6cmVsaWdpb24zAAQACQAAABplbGVjdGlvbjM6Y2xhc3MyOnJl bGlnaW9uMwAEAAkAAAAaZWxlY3Rpb240OmNsYXNzMjpyZWxpZ2lvbjMABAAJAAAAGmVsZWN0 aW9uMjpjbGFzczM6cmVsaWdpb24zAAQACQAAABplbGVjdGlvbjM6Y2xhc3MzOnJlbGlnaW9u MwAEAAkAAAAaZWxlY3Rpb240OmNsYXNzMzpyZWxpZ2lvbjMABAAJAAAAGmVsZWN0aW9uMjpj bGFzczQ6cmVsaWdpb24zAAQACQAAABplbGVjdGlvbjM6Y2xhc3M0OnJlbGlnaW9uMwAEAAkA AAAaZWxlY3Rpb240OmNsYXNzNDpyZWxpZ2lvbjMABAAJAAAAGmVsZWN0aW9uMjpjbGFzczU6 cmVsaWdpb24zAAQACQAAABplbGVjdGlvbjM6Y2xhc3M1OnJlbGlnaW9uMwAEAAkAAAAaZWxl Y3Rpb240OmNsYXNzNTpyZWxpZ2lvbjMABAAJAAAAGmVsZWN0aW9uMjpjbGFzczY6cmVsaWdp b24zAAQACQAAABplbGVjdGlvbjM6Y2xhc3M2OnJlbGlnaW9uMwAEAAkAAAAaZWxlY3Rpb240 OmNsYXNzNjpyZWxpZ2lvbjMABAAJAAAAGmVsZWN0aW9uMjpjbGFzczI6cmVsaWdpb240AAQA CQAAABplbGVjdGlvbjM6Y2xhc3MyOnJlbGlnaW9uNAAEAAkAAAAaZWxlY3Rpb240OmNsYXNz MjpyZWxpZ2lvbjQABAAJAAAAGmVsZWN0aW9uMjpjbGFzczM6cmVsaWdpb240AAQACQAAABpl bGVjdGlvbjM6Y2xhc3MzOnJlbGlnaW9uNAAEAAkAAAAaZWxlY3Rpb240OmNsYXNzMzpyZWxp Z2lvbjQABAAJAAAAGmVsZWN0aW9uMjpjbGFzczQ6cmVsaWdpb240AAQACQAAABplbGVjdGlv bjM6Y2xhc3M0OnJlbGlnaW9uNAAEAAkAAAAaZWxlY3Rpb240OmNsYXNzNDpyZWxpZ2lvbjQA BAAJAAAAGmVsZWN0aW9uMjpjbGFzczU6cmVsaWdpb240AAQACQAAABplbGVjdGlvbjM6Y2xh c3M1OnJlbGlnaW9uNAAEAAkAAAAaZWxlY3Rpb240OmNsYXNzNTpyZWxpZ2lvbjQABAAJAAAA GmVsZWN0aW9uMjpjbGFzczY6cmVsaWdpb240AAQACQAAABplbGVjdGlvbjM6Y2xhc3M2OnJl bGlnaW9uNAAEAAkAAAAaZWxlY3Rpb240OmNsYXNzNjpyZWxpZ2lvbjQABAAJAAAAJU11bHQo RXhwKC4pLCByZWxpZ2lvbjp2b3RlKS5lbGVjdGlvbjEABAAJAAAAJU11bHQoRXhwKC4pLCBy ZWxpZ2lvbjp2b3RlKS5lbGVjdGlvbjIABAAJAAAAJU11bHQoRXhwKC4pLCByZWxpZ2lvbjp2 b3RlKS5lbGVjdGlvbjMABAAJAAAAJU11bHQoRXhwKC4pLCByZWxpZ2lvbjp2b3RlKS5lbGVj dGlvbjQABAAJAAAAJk11bHQoRXhwKGVsZWN0aW9uKSwgLikucmVsaWdpb24xOnZvdGUxAAQA CQAAACZNdWx0KEV4cChlbGVjdGlvbiksIC4pLnJlbGlnaW9uMjp2b3RlMQAEAAkAAAAmTXVs dChFeHAoZWxlY3Rpb24pLCAuKS5yZWxpZ2lvbjM6dm90ZTEABAAJAAAAJk11bHQoRXhwKGVs ZWN0aW9uKSwgLikucmVsaWdpb240OnZvdGUxAAQACQAAACZNdWx0KEV4cChlbGVjdGlvbiks IC4pLnJlbGlnaW9uMTp2b3RlMgAEAAkAAAAmTXVsdChFeHAoZWxlY3Rpb24pLCAuKS5yZWxp Z2lvbjI6dm90ZTIABAAJAAAAJk11bHQoRXhwKGVsZWN0aW9uKSwgLikucmVsaWdpb24zOnZv dGUyAAQACQAAACZNdWx0KEV4cChlbGVjdGlvbiksIC4pLnJlbGlnaW9uNDp2b3RlMgAEAAkA AAAiTXVsdChFeHAoLiksIGNsYXNzOnZvdGUpLmVsZWN0aW9uMQAEAAkAAAAiTXVsdChFeHAo LiksIGNsYXNzOnZvdGUpLmVsZWN0aW9uMgAEAAkAAAAiTXVsdChFeHAoLiksIGNsYXNzOnZv dGUpLmVsZWN0aW9uMwAEAAkAAAAiTXVsdChFeHAoLiksIGNsYXNzOnZvdGUpLmVsZWN0aW9u NAAEAAkAAAAjTXVsdChFeHAoZWxlY3Rpb24pLCAuKS5jbGFzczE6dm90ZTEABAAJAAAAI011 bHQoRXhwKGVsZWN0aW9uKSwgLikuY2xhc3MyOnZvdGUxAAQACQAAACNNdWx0KEV4cChlbGVj dGlvbiksIC4pLmNsYXNzMzp2b3RlMQAEAAkAAAAjTXVsdChFeHAoZWxlY3Rpb24pLCAuKS5j bGFzczQ6dm90ZTEABAAJAAAAI011bHQoRXhwKGVsZWN0aW9uKSwgLikuY2xhc3M1OnZvdGUx AAQACQAAACNNdWx0KEV4cChlbGVjdGlvbiksIC4pLmNsYXNzNjp2b3RlMQAEAAkAAAAjTXVs dChFeHAoZWxlY3Rpb24pLCAuKS5jbGFzczE6dm90ZTIABAAJAAAAI011bHQoRXhwKGVsZWN0 aW9uKSwgLikuY2xhc3MyOnZvdGUyAAQACQAAACNNdWx0KEV4cChlbGVjdGlvbiksIC4pLmNs YXNzMzp2b3RlMgAEAAkAAAAjTXVsdChFeHAoZWxlY3Rpb24pLCAuKS5jbGFzczQ6dm90ZTIA BAAJAAAAI011bHQoRXhwKGVsZWN0aW9uKSwgLikuY2xhc3M1OnZvdGUyAAQACQAAACNNdWx0 KEV4cChlbGVjdGlvbiksIC4pLmNsYXNzNjp2b3RlMgAABAIAAAABAAQACQAAAAplbGltaW5h dGVkAAAADgAAAAEAAAAAAAAAAAAAAP4AAAAOAAAAAAAAAA4AAAAAAAACDgAAAMA/cUHVcXT1 KL+e1aGvDSYBv7DTT0piy2w/4A8eKv/8PD+oO66jnDiBv9Azah0VqWC/uMQEvB8pyD/auEQX iLL8P3Jfi2xCm9S/kvM2dBF4sD/D1xl9mUpov91nes2Kawm/v3OxsBT7MD/V3ip6ap6RP8TD 4ihRdAa/3tlUdcllcz/UOU6VR/Wdv+ULcdh2XIu/tpqs1FmAHz/C+tb7y9p3P7fNdukRvHm/ wxskkhNver++rjSA40gOP8Gxj6OGJKi/0JmVQypp9D/TflIneGyPv4fFGW9FJbU/jdI/CTpE cb+wjGDO2UZRP60Vjv2M32g/sjxCMs33rb+p3F3WR0KBP7YIwb66IeK/rd9IIaVfkr/DcC7B /Ep1P7LvAl55sIm/8AAAAAAAAD/UEwxvweHtP+L/RJTNW+2/yXbLc0LZ9D/xqpT36qEPv9CW MSjwDfE/0GHWnoHXl7+o0ni4MhN7P/LKJjnAx9G/yzdezoKKgj/UPXnm2PLBv6UQRTq61DU/ nI1tjd/gNr/Xk4UjC9dfP7EAlnfA9+G/8AAAAAAAAD+2hgm+3bMYv+T3jiB0MKy/olYiTTXu yT/GVgwxlCK6v6QVuzilqwo/xmGu1gec9T+0E7aZXZR3v8dFfz/mAAq/pCzeaOJcrD/MEkXU Vy/ZP4qFq81lLpm/tQc/DAg6kr+66c5Fk/SxP9UbrGK6B/y/ntGLKvb0Az+voQ7wILY/v6In BR3cah4/sQrvpCfBXj9kv3qFf0Fmv2RDFh33McC/kawXWnFnLD+mU28mL/q7v6vEUnKPNKc/ w/0+UVFPLj/IDnalF6zwv9EhltdBFBI/orh0Yj/rJb+hceDMCNVrv5RIwnMj/gg/kUqog7kH Xb+RnIiAutX4P387hXLaf2e/12Y1yuqoUT/RpTeYK/4wP7Tvo71Ipoi/sf461a+v1j/H+x2U scYDv7RjLon8hru/y9/z+XkSvj+vApAFwR6xP8jKr5uoUGy/qTsCDyyQmT+42vyeqz9zv4pP toQCmwo/omMSp/BlC7/Eo7fNxWYgv8mIVHwz/VQ/78o+aal5rD+7vjVS85giv9PFCx0TR5w/ uYLc62bg4r/J+dQUVx6Xv7mKwEmmpL8/yDwkVbVoa7/CBFwKYARFP8Rc8x1am4I/rPwQzq+1 Yb+/dqECTe49v7yBKmsvVrc/0SkW1KBfCz/DP3enOg69v8qHPxu7+sI/slJu73odf7+yCoKm C3KDP3tp2Dd+4I2/eSdQ7jJpvD+jtEm2yN35v5WJRVihe7o/vlPoaJLHBb/A85KMxUhLv7bT t6UEY38/vE3smgYpjD+41WfSDtzuv7Gfo9S1Fs4/wRP7fonQI7+xUUo5jVsRv5ZgUKJqsYA/ hSTLzc1oJr+KkOBPl7S/P23myXfDiha/wOgQfUEXAj+rXEU0zBIhP9UTkTUc5Ty/wuqp6jwo 0r/kQXlTkOZGP8TPZ0o4msy/1anrl5aoPz+vzU3Pz+c9v73Jz4fZe9o/lF/Ucje7XD/DU4JI UJSzv499twq7NWc/qOo7CMOrVL/XfrO1Dfvav6Q9SnLYD7E/1PyiQhCBFL++iD8+Q3Z0P+L8 1+976ZE/Z77m+gx0N7+FtCJ3wWv/P6KShQEokqm/v9MOIlwXWb+qN3omwj86P7vxhsdlZjW/ pIno5FomfD/DoXXieRJQP7crX/HvcR+/2FnPDuqwVL98CniZJ+KlP5Gsvtjq2+M/ts2ZOA/H 5b/FH+zPz1Pqv3XyiPndDQI/gw8Oyw941r9jbY6r5oxdP2T9A8wlslO/uFdzt0Ce6T/JAm9Z k4PuP8DDsw4QS7u/0vCltkrkOL/G1ujwee81P87zZ1gTwjy/oFKjiOMG0D+gQUGYFgarP4Fx 9UvJvr2/gEjkfsv6qz+Iyax30c7pv3zJOavzB6k/2l10UXNsxr/U8G0mPlwFP8Jv51saycS/ wBnqnV7ECL/h5PcPA7IsP9K+oNdiQoy/1oH6JOOtzz/BU26I0TixP+OPHL66Mzu/zDoAtw2f Wz/GD7hVQll3v6PN0FMuVHEAAAQCAAA9/wAAABAAAADAAAQACQAAAAExAAQACQAAAAEyAAQA CQAAAAEzAAQACQAAAAE0AAQACQAAAAE1AAQACQAAAAE2AAQACQAAAAE3AAQACQAAAAE4AAQA CQAAAAE5AAQACQAAAAIxMAAEAAkAAAACMTEABAAJAAAAAjEyAAQACQAAAAIxMwAEAAkAAAAC MTQABAAJAAAAAjE1AAQACQAAAAIxNgAEAAkAAAACMTcABAAJAAAAAjE4AAQACQAAAAIxOQAE AAkAAAACMjAABAAJAAAAAjIxAAQACQAAAAIyMgAEAAkAAAACMjMABAAJAAAAAjI0AAQACQAA AAIyNQAEAAkAAAACMjYABAAJAAAAAjI3AAQACQAAAAIyOAAEAAkAAAACMjkABAAJAAAAAjMw AAQACQAAAAIzMQAEAAkAAAACMzIABAAJAAAAAjMzAAQACQAAAAIzNAAEAAkAAAACMzUABAAJ AAAAAjM2AAQACQAAAAIzNwAEAAkAAAACMzgABAAJAAAAAjM5AAQACQAAAAI0MAAEAAkAAAAC NDEABAAJAAAAAjQyAAQACQAAAAI0MwAEAAkAAAACNDQABAAJAAAAAjQ1AAQACQAAAAI0NgAE AAkAAAACNDcABAAJAAAAAjQ4AAQACQAAAAI0OQAEAAkAAAACNTAABAAJAAAAAjUxAAQACQAA AAI1MgAEAAkAAAACNTMABAAJAAAAAjU0AAQACQAAAAI1NQAEAAkAAAACNTYABAAJAAAAAjU3 AAQACQAAAAI1OAAEAAkAAAACNTkABAAJAAAAAjYwAAQACQAAAAI2MQAEAAkAAAACNjIABAAJ AAAAAjYzAAQACQAAAAI2NAAEAAkAAAACNjUABAAJAAAAAjY2AAQACQAAAAI2NwAEAAkAAAAC NjgABAAJAAAAAjY5AAQACQAAAAI3MAAEAAkAAAACNzEABAAJAAAAAjcyAAQACQAAAAI3MwAE AAkAAAACNzQABAAJAAAAAjc1AAQACQAAAAI3NgAEAAkAAAACNzcABAAJAAAAAjc4AAQACQAA AAI3OQAEAAkAAAACODAABAAJAAAAAjgxAAQACQAAAAI4MgAEAAkAAAACODMABAAJAAAAAjg0 AAQACQAAAAI4NQAEAAkAAAACODYABAAJAAAAAjg3AAQACQAAAAI4OAAEAAkAAAACODkABAAJ AAAAAjkwAAQACQAAAAI5MQAEAAkAAAACOTIABAAJAAAAAjkzAAQACQAAAAI5NAAEAAkAAAAC OTUABAAJAAAAAjk2AAQACQAAAAI5NwAEAAkAAAACOTgABAAJAAAAAjk5AAQACQAAAAMxMDAA BAAJAAAAAzEwMQAEAAkAAAADMTAyAAQACQAAAAMxMDMABAAJAAAAAzEwNAAEAAkAAAADMTA1 AAQACQAAAAMxMDYABAAJAAAAAzEwNwAEAAkAAAADMTA4AAQACQAAAAMxMDkABAAJAAAAAzEx MAAEAAkAAAADMTExAAQACQAAAAMxMTIABAAJAAAAAzExMwAEAAkAAAADMTE0AAQACQAAAAMx MTUABAAJAAAAAzExNgAEAAkAAAADMTE3AAQACQAAAAMxMTgABAAJAAAAAzExOQAEAAkAAAAD MTIwAAQACQAAAAMxMjEABAAJAAAAAzEyMgAEAAkAAAADMTIzAAQACQAAAAMxMjQABAAJAAAA AzEyNQAEAAkAAAADMTI2AAQACQAAAAMxMjcABAAJAAAAAzEyOAAEAAkAAAADMTI5AAQACQAA AAMxMzAABAAJAAAAAzEzMQAEAAkAAAADMTMyAAQACQAAAAMxMzMABAAJAAAAAzEzNAAEAAkA AAADMTM1AAQACQAAAAMxMzYABAAJAAAAAzEzNwAEAAkAAAADMTM4AAQACQAAAAMxMzkABAAJ AAAAAzE0MAAEAAkAAAADMTQxAAQACQAAAAMxNDIABAAJAAAAAzE0MwAEAAkAAAADMTQ0AAQA CQAAAAMxNDUABAAJAAAAAzE0NgAEAAkAAAADMTQ3AAQACQAAAAMxNDgABAAJAAAAAzE0OQAE AAkAAAADMTUwAAQACQAAAAMxNTEABAAJAAAAAzE1MgAEAAkAAAADMTUzAAQACQAAAAMxNTQA BAAJAAAAAzE1NQAEAAkAAAADMTU2AAQACQAAAAMxNTcABAAJAAAAAzE1OAAEAAkAAAADMTU5 AAQACQAAAAMxNjAABAAJAAAAAzE2MQAEAAkAAAADMTYyAAQACQAAAAMxNjMABAAJAAAAAzE2 NAAEAAkAAAADMTY1AAQACQAAAAMxNjYABAAJAAAAAzE2NwAEAAkAAAADMTY4AAQACQAAAAMx NjkABAAJAAAAAzE3MAAEAAkAAAADMTcxAAQACQAAAAMxNzIABAAJAAAAAzE3MwAEAAkAAAAD MTc0AAQACQAAAAMxNzUABAAJAAAAAzE3NgAEAAkAAAADMTc3AAQACQAAAAMxNzgABAAJAAAA AzE3OQAEAAkAAAADMTgwAAQACQAAAAMxODEABAAJAAAAAzE4MgAEAAkAAAADMTgzAAQACQAA AAMxODQABAAJAAAAAzE4NQAEAAkAAAADMTg2AAQACQAAAAMxODcABAAJAAAAAzE4OAAEAAkA AAADMTg5AAQACQAAAAMxOTAABAAJAAAAAzE5MQAEAAkAAAADMTkyAAAA/gAAAg4AAADAQEJs IU+SA9JAFJ71g2/mb0A0ViwUFk9xQAVOn19NhHJAPKTuEJXo90AVbEe9qFwFQDhbMw/ovKRA FpMzwF0MfUBC6kd7uRgGQCJW4hEbnzhAQHM/sDckF0AmMwE/I26YQDbNJYaww2RAIGW08p55 RkAxNVUOj5YoQBcqq8XBp2FAGFDvSMj5/UAHXiFubgwDQCGMscLB50dAFOacenwxc0A+MVXD hso1QDLOqjx5NctAQr8ohXKVjkBAQNd6jWp2QCsBEg1RLH1AJv7t8q7T80A2QiKGmW2EQDG9 3XlmkntAHe9gPn4u9EAhCE/gwOhqQDZnc9EKMv5AP5iMLvXNAkBDy87e+QOTQE00MSEG/GxA R5S/I78Yc0BYNaBuIHPBP+6QACPjkmNACFv/9wcYij/0FF3eS47dQA310RDaOIo/7mqIMoRG F0AQMq75r3cnP+l6cMoIjSNAENCx5r7uhz/2E1YuSXLWQB57KnRto4BADmOp//HgwkA9M4rA AcQEQFTqsZcJZypAGVTmj2mZxEBIYXioTmijQAnodXsZdhlARZl/2ARsR0AXNAE/3J4+QFS+ LOmClMlAMQdMWfWsj0BdZ0hQEbJ1QDpi3r+5NaJASYAIol+B3kA1/+67QPtgQE2rSoTyGptA JVLV7DeVjUBBRrl6Y17tQBXKNCzlCMhANTttS8L/PkAbEkrQ9ANPQEcyu8IebGdANpqIe8Mn MkBXU7iZpA7IQEjYjsy34mtASm7ciz+qXEBLESN0wFWnQFGNjMNd69dAO8nM8ohQCkBcBQIJ V/7bQEN1++1QAm1ATDM2HQ053UBDzMni8sYhQFx1nMDIGutAXopjPzflCUBrCRlEYDINQG+2 5rufzfZAYlCjcIeFdkB0p65HvD1EQBLqeR3vfIxAGRWG4hCCKEAgo6PJ00B3QCNcXDYsv41A LKKauTY7CkBA11lRsnEtQDR0UzI+PZ5AUmLrM3Bwl0AzRJ9itcrtQFLu2CdSjUVAK1hT7kqn kkBZ1PWCNqsXQE1xUaVDCGBAKjq5avPlpUA7e114d09uQBYSih4iwp5APN8Gv0nskEAkQfKB bCbMQErTnt8DzoZAOljCQfhitUBV8F0ldDjVQEcfRbUXjgZAQgoGJjxtWUA/6/OzhyRzQEAW 1JujIA1ALaStkXN/pUA+Yg35GAtcQCk75A3P6W1AMWK5mx+ywUApOozJwJp5QEOY76smXp9A Q+cQVNmhW0BTnmLwgpWVQFVhnQ99amRAQ0JCd2FVPUBRnt7ET1VYQEXnq9yJBD9AQ5hUI3b7 R0BQd+0HVn+MQEqQJfFTAPJARz69mJ/rcUBQYKEzsAozQFWdruULFGxAZVEojXp1x0Bih6hK 7KX8QHOcK9qJrQBAVkoEMuc66UBzzX7zRjFBQAJvVw+4jPVAFshUeCO3/EAVEDvGxbnoQCd3 4hydIwJAIFkzH4dPOUA/02ZwPFghQCgv85WyRhpAUHoBjUm3P0ArKRAUknngQFPa3f1tsM1A IWBcJs2Wq0BVU/R7Jk0tQEfXA83sZYtAGUfhkJy2o0A/PBYP8RBiQA4fT4B3hE9AQrwAkkRR 5kAeH/tt3XF6QE9osWAvyYVAMS6dP6Bt2EBRnHWsNUDOQDSOKU8q/fhAQFYlCCfQM0Aup2vf YMFxQEI7OWGijypAIxMaeXXF7kBA9vCNPEIKQCAkPcsO+b5AQBw78/5ti0ApjxAwBkk5QEqg y8mOuJhAPL5obOKOrkBWXq9dyaxxQEnCoURspuJARY0VjXM7D0BD8upyjMRLQD7xLkote/9A Lh2ja6UM20BVqau+2K5nQEMsqIJOpENAT6WYsV4bh0BHWmdOoeQOQF1wQnVsN8ZAXY+9ipPI EEBnDbpvC9K+QGiyRZD0LQxAXKc4BNmeC0BorGP9kzCIQAxUXGQdTE5AEdXRzfFe5UAr+Jau SfGmQDADtKjbBzVANq+e0JLzlkBFqDCXtoXlQD7ZX5GQW5pAVAmoG5vo+kA7TvoQuN8tQFLs QXvRx/pANi12Yv0KqUBYtKJnQL0DAAAEAgAAPf8AAAAQAAAAwAAEAAkAAAABMQAEAAkAAAAB MgAEAAkAAAABMwAEAAkAAAABNAAEAAkAAAABNQAEAAkAAAABNgAEAAkAAAABNwAEAAkAAAAB OAAEAAkAAAABOQAEAAkAAAACMTAABAAJAAAAAjExAAQACQAAAAIxMgAEAAkAAAACMTMABAAJ AAAAAjE0AAQACQAAAAIxNQAEAAkAAAACMTYABAAJAAAAAjE3AAQACQAAAAIxOAAEAAkAAAAC MTkABAAJAAAAAjIwAAQACQAAAAIyMQAEAAkAAAACMjIABAAJAAAAAjIzAAQACQAAAAIyNAAE AAkAAAACMjUABAAJAAAAAjI2AAQACQAAAAIyNwAEAAkAAAACMjgABAAJAAAAAjI5AAQACQAA AAIzMAAEAAkAAAACMzEABAAJAAAAAjMyAAQACQAAAAIzMwAEAAkAAAACMzQABAAJAAAAAjM1 AAQACQAAAAIzNgAEAAkAAAACMzcABAAJAAAAAjM4AAQACQAAAAIzOQAEAAkAAAACNDAABAAJ AAAAAjQxAAQACQAAAAI0MgAEAAkAAAACNDMABAAJAAAAAjQ0AAQACQAAAAI0NQAEAAkAAAAC NDYABAAJAAAAAjQ3AAQACQAAAAI0OAAEAAkAAAACNDkABAAJAAAAAjUwAAQACQAAAAI1MQAE AAkAAAACNTIABAAJAAAAAjUzAAQACQAAAAI1NAAEAAkAAAACNTUABAAJAAAAAjU2AAQACQAA AAI1NwAEAAkAAAACNTgABAAJAAAAAjU5AAQACQAAAAI2MAAEAAkAAAACNjEABAAJAAAAAjYy AAQACQAAAAI2MwAEAAkAAAACNjQABAAJAAAAAjY1AAQACQAAAAI2NgAEAAkAAAACNjcABAAJ AAAAAjY4AAQACQAAAAI2OQAEAAkAAAACNzAABAAJAAAAAjcxAAQACQAAAAI3MgAEAAkAAAAC NzMABAAJAAAAAjc0AAQACQAAAAI3NQAEAAkAAAACNzYABAAJAAAAAjc3AAQACQAAAAI3OAAE AAkAAAACNzkABAAJAAAAAjgwAAQACQAAAAI4MQAEAAkAAAACODIABAAJAAAAAjgzAAQACQAA AAI4NAAEAAkAAAACODUABAAJAAAAAjg2AAQACQAAAAI4NwAEAAkAAAACODgABAAJAAAAAjg5 AAQACQAAAAI5MAAEAAkAAAACOTEABAAJAAAAAjkyAAQACQAAAAI5MwAEAAkAAAACOTQABAAJ AAAAAjk1AAQACQAAAAI5NgAEAAkAAAACOTcABAAJAAAAAjk4AAQACQAAAAI5OQAEAAkAAAAD MTAwAAQACQAAAAMxMDEABAAJAAAAAzEwMgAEAAkAAAADMTAzAAQACQAAAAMxMDQABAAJAAAA AzEwNQAEAAkAAAADMTA2AAQACQAAAAMxMDcABAAJAAAAAzEwOAAEAAkAAAADMTA5AAQACQAA AAMxMTAABAAJAAAAAzExMQAEAAkAAAADMTEyAAQACQAAAAMxMTMABAAJAAAAAzExNAAEAAkA AAADMTE1AAQACQAAAAMxMTYABAAJAAAAAzExNwAEAAkAAAADMTE4AAQACQAAAAMxMTkABAAJ AAAAAzEyMAAEAAkAAAADMTIxAAQACQAAAAMxMjIABAAJAAAAAzEyMwAEAAkAAAADMTI0AAQA CQAAAAMxMjUABAAJAAAAAzEyNgAEAAkAAAADMTI3AAQACQAAAAMxMjgABAAJAAAAAzEyOQAE AAkAAAADMTMwAAQACQAAAAMxMzEABAAJAAAAAzEzMgAEAAkAAAADMTMzAAQACQAAAAMxMzQA BAAJAAAAAzEzNQAEAAkAAAADMTM2AAQACQAAAAMxMzcABAAJAAAAAzEzOAAEAAkAAAADMTM5 AAQACQAAAAMxNDAABAAJAAAAAzE0MQAEAAkAAAADMTQyAAQACQAAAAMxNDMABAAJAAAAAzE0 NAAEAAkAAAADMTQ1AAQACQAAAAMxNDYABAAJAAAAAzE0NwAEAAkAAAADMTQ4AAQACQAAAAMx NDkABAAJAAAAAzE1MAAEAAkAAAADMTUxAAQACQAAAAMxNTIABAAJAAAAAzE1MwAEAAkAAAAD MTU0AAQACQAAAAMxNTUABAAJAAAAAzE1NgAEAAkAAAADMTU3AAQACQAAAAMxNTgABAAJAAAA AzE1OQAEAAkAAAADMTYwAAQACQAAAAMxNjEABAAJAAAAAzE2MgAEAAkAAAADMTYzAAQACQAA AAMxNjQABAAJAAAAAzE2NQAEAAkAAAADMTY2AAQACQAAAAMxNjcABAAJAAAAAzE2OAAEAAkA AAADMTY5AAQACQAAAAMxNzAABAAJAAAAAzE3MQAEAAkAAAADMTcyAAQACQAAAAMxNzMABAAJ AAAAAzE3NAAEAAkAAAADMTc1AAQACQAAAAMxNzYABAAJAAAAAzE3NwAEAAkAAAADMTc4AAQA CQAAAAMxNzkABAAJAAAAAzE4MAAEAAkAAAADMTgxAAQACQAAAAMxODIABAAJAAAAAzE4MwAE AAkAAAADMTg0AAQACQAAAAMxODUABAAJAAAAAzE4NgAEAAkAAAADMTg3AAQACQAAAAMxODgA BAAJAAAAAzE4OQAEAAkAAAADMTkwAAQACQAAAAMxOTEABAAJAAAAAzE5MgAAAP4AAAINAAAA AQAAAHIAAAQCAAAAAQAEAAkAAAAGbWV0aG9kAAAAEAAAAAEABAAJAAAACHRvbE5vcm0yAAAE AgAAAAEABAAJAAAAB3VzZUdyYWQAAAAKAAAAAQAAAAAAAAQCAAAAAQAEAAkAAAADdG9sAAAA DgAAAAE9KAAAAAAAAAAAAP4AAAMTAAAADQAAABAAAAABAAQACQAAAAdwb2lzc29uAAAAEAAA AAEABAAJAAAAA2xvZwACBAMAAAD5AAAAAAAAAAIABAAJAAAABXN0YXRzAAQACQAAAAU0LjIu MQAABAIAAAABAAQACQAAAAJtdQAAAPsAAAD+AAAABgAAAAEABAAJAAAAA2xvZwAAAAIAAEP/ AAAA/gACBAMAAEL/AAAEAgAAAAEABAAJAAAAA2V0YQAAAPsAAAD+AAAABgAAAAEABAAJAAAA BHBtYXgAAAACAAAABgAAOP8AAAACAABF/wAAAP4AAAACAAAABgAAAAEABAAJAAAAASQAAAAC AAAAAQAEAAkAAAAILk1hY2hpbmUAAAACAAAAAQAEAAkAAAAKZG91YmxlLmVwcwAAAP4AAAD+ AAAEAwAAAAQAAAAAAABC/wAABAIAAAABAAQACQAAAAZzaW1mdW4AAAQDAABK/wAABAIAAAAB AAQACQAAAAZvYmplY3QAAAD7AAAEAgAAAAEABAAJAAAABG5zaW0AAAD7AAAA/gAAABUAAAAM AAAADQAAADMAAAAMAAAAFAAAAAEAAABJAAAAAgAAAAMAAAAWAAAABAAAAAQAAAAaAAAABgAA ABQAAAAEAAAAEAAAAAgAAAA0AAAACQAAACEAAAAnAAAABwAAAAMAAAAKAAAAHwAAABcAAAAL AAAAIgAAAA0AAAAmAAAADAAAAAIAAAAgAAAAEQAAAAQAAAAXAAAADgAAAB0AAAAQAAAAJgAA AA8AAAAWAAAAEQAAAAQAAAAXAAAAEwAAAB0AAAAVAAAAHQAAABYAAAAmAAAAFAAAAAEAAAAY AAAABgAAAP4AAAAAAAAAAQAEAAkAAAABewAAAAIAAAD+AAAA9AAAAAAAAAAGAAAA/gAAAAAA AAABAAQACQAAAAI8LQAAAAIAAAD+AAAAAAAAAAEABAAJAAAAA3d0cwAAAAIAAAD+AAAA9AAA AAEAAAAGAAAA/gAAAAAAAEf/AAAAAgAAAP4AAAAAAABM/wAAAAIAAAD+AAAAAAAAAAEABAAJ AAAADXByaW9yLndlaWdodHMAAAAAAAAA/gAAAAAAAAD+AAAAAgAAAP4AAAD0AAAAAgAAAAYA AAD+AAAAAAAAAAEABAAJAAAAAmlmAAAAAgAAAP4AAAD0AAAAAwAAAAYAAAD+AAAAAAAAAAEA BAAJAAAAA2FueQAAAAIAAAD+AAAA9AAAAAQAAAAGAAAA/gAAAAAAAAABAAQACQAAAAIhPQAA AAIAAAD+AAAAAAAAUP8AAAACAAAA/gAAAAAAAAAOAAAAAT/wAAAAAAAAAAAAAAAAAP4AAAAA AAAA/gAAAAIAAAD+AAAA9AAAAAUAAAAGAAAA/gAAAAAAAAABAAQACQAAAAd3YXJuaW5nAAAA AgAAAP4AAAAAAAAAEAAAAAEABAAJAAAAFmlnbm9yaW5nIHByaW9yIHdlaWdodHMAAAAAAAAA /gAAAAAAAAD+AAAAAgAAAP4AAAD0AAAABgAAAAYAAAD+AAAAAAAAT/8AAAACAAAA/gAAAAAA AAABAAQACQAAAANmdGQAAAACAAAA/gAAAPQAAAAHAAAABgAAAP4AAAAAAAAAAQAEAAkAAAAG Zml0dGVkAAAAAgAAAP4AAAAAAABM/wAAAAAAAAD+AAAAAAAAAP4AAAACAAAA/gAAAPQAAAAI AAAABgAAAP4AAAAAAAAAAQAEAAkAAAAFcnBvaXMAAAACAAAA/gAAAPQAAAAJAAAABgAAAP4A AAAAAAAG/wAAAAIAAAD+AAAAAAAATf8AAAACAAAA/gAAAPQAAAAKAAAABgAAAP4AAAAAAAAA AQAEAAkAAAAGbGVuZ3RoAAAAAgAAAP4AAAAAAABW/wAAAAAAAAD+AAAAAAAAAP4AAAACAAAA /gAAAAAAAFb/AAAAAAAAAP4AAAAAAAAA/gAAAAEAAEz/AAAA8wAAAAEAAAABAABR/wAAAAEA AFD/AAAA8wAAAAAAAAABAABT/wAAAPMAAAADAAAADgAAAA4AAAABP/AAAAAAAAAAAADzAAAA BAAAAPMAAAACAAAAAQAAVf8AAADzAAAABQAAABAAAAAQAAAAAQAEAAkAAAAWaWdub3Jpbmcg cHJpb3Igd2VpZ2h0cwAAAAEAAFf/AAAA8wAAAAcAAAAVAAAADQAAAAQAAAAMAAAAFAAAAAAA AAABAAAAAwAAAAEAAEz/AAAA8wAAAAcAAAANAAADDQAAAASAAAAAAAAAAQAAAAEAAAABAAAE AgAACf8AAAAQAAAAAQAEAAkAAAAQZXhwcmVzc2lvbnNJbmRleAAAAP4AAAABAABW/wAAAPMA AAAGAAAAAQAAWP8AAADzAAAACAAAABUAAAANAAAADQAAAAwAAAAUAAAAAQAAABoAAAACAAAA FAAAAAQAAAAhAAAAJwAAAAMAAAAuAAAAAAAAAAEAAAAGAAAA8wAAAAkAAAABAABN/wAAAAEA AFn/AAAA8wAAAAoAAAABAABW/wAAAA0AAAMNAAAADYAAAAAAAAABAAAAAQAAAAMAAAADAAAA AwAAAAMAAAADAAAAAwAAAAMAAAAAAAAAAAAAAAAAAAQCAAAJ/wAAABAAAAABAAQACQAAABBl eHByZXNzaW9uc0luZGV4AAAA/gAAABUAAAANAAAABAAAAAwAAAAUAAAAAAAAAAEAAAADAAAA AQAAVv8AAADzAAAACAAAAA0AAAMNAAAABIAAAAAAAAABAAAAAQAAAAEAAAQCAAAJ/wAAABAA AAABAAQACQAAABBleHByZXNzaW9uc0luZGV4AAAA/gAAAA0AAAMNAAAAM4AAAAAAAAABAAAA AQAAAAIAAAACAAAAAgAAAAUAAAAFAAAABQAAAAcAAAAHAAAABAAAAAQAAAAIAAAACAAAAAkA AAAJAAAABwAAAAcAAAAHAAAACgAAAAoAAAAKAAAADAAAAAwAAAAMAAAADAAAAAwAAAAMAAAA CgAAAAoAAAAKAAAACgAAAA8AAAAPAAAADwAAAA8AAAAPAAAADwAAABIAAAASAAAAEgAAABQA AAAUAAAAFAAAABQAAAAUAAAAFAAAABQAAAAUAAAAFAAABAIAAAn/AAAAEAAAAAEABAAJAAAA EGV4cHJlc3Npb25zSW5kZXgAAAD+AAAEAgAAAAEABAAJAAAACmluaXRpYWxpemUAAAAUAAAA AQAAAAYAAE7/AAAAAgAAAAYAAFL/AAAAAgAAAAYAAFP/AAAAAgAAAAYAAAABAAQACQAAAAE8 AAAAAgAAAAEABAAJAAAAAXkAAAACAAAADgAAAAEAAAAAAAAAAAAAAP4AAAD+AAAAAgAAAAYA AAABAAQACQAAAARzdG9wAAAAAgAAABAAAAABAAQACQAAADRuZWdhdGl2ZSB2YWx1ZXMgbm90 IGFsbG93ZWQgZm9yIHRoZSAnUG9pc3NvbicgZmFtaWx5AAAA/gAAAP4AAAACAAAABgAAT/8A AAACAAAAAQAEAAkAAAABbgAAAAIAAAAGAAAAAQAEAAkAAAAHcmVwLmludAAAAAIAAAAOAAAA AT/wAAAAAAAAAAAAAgAAAAEABAAJAAAABG5vYnMAAAD+AAAA/gAAAAIAAAAGAABP/wAAAAIA AAABAAQACQAAAAdtdXN0YXJ0AAAAAgAAAAYAAAX/AAAAAgAAXP8AAAACAAAADgAAAAE/uZmZ mZmZmgAAAP4AAAD+AAAA/gAABAIAAAABAAQACQAAAANhaWMAAAQDAABK/wAABAIAAFz/AAAA +wAABAIAAF7/AAAA+wAABAIAAEP/AAAA+wAABAIAAAABAAQACQAAAAJ3dAAAAPsAAAQCAAAA AQAEAAkAAAADZGV2AAAA+wAAAP4AAAAVAAAABQAAAA0AAAAaAAAADAAAABAAAAABAAAAGgAA AAMAAAAXAAAABQAAAB0AAAAHAAAAHQAAAAgAAAAkAAAAHwAAAAkAAAAmAAAABgAAABQAAAAK AAAALgAAAAsAAAAhAAAAJwAAAAQAAAAuAAAAAAAAAAEAAAANAAAABgAAAP4AAAAAAAAG/wAA AAIAAAD+AAAA9AAAAAAAAAAGAAAA/gAAAAAAAAABAAQACQAAAAEtAAAAAgAAAP4AAAAAAAAA DgAAAAFAAAAAAAAAAAAAAAAAAAD+AAAAAgAAAP4AAAD0AAAAAQAAAAYAAAD+AAAAAAAAAAEA BAAJAAAAA3N1bQAAAAIAAAD+AAAA9AAAAAIAAAAGAAAA/gAAAAAAAAb/AAAAAgAAAP4AAAD0 AAAAAwAAAAYAAAD+AAAAAAAAAAEABAAJAAAABWRwb2lzAAAAAgAAAP4AAAAAAABc/wAAAAIA AAD+AAAAAAAAQ/8AAAACAABE/wAAAAAAAAAKAAAAAQAAAAEAAAAAAAAA/gAAAAIAAAD+AAAA AAAAY/8AAAAAAAAA/gAAAAAAAAD+AAAAAAAAAP4AAAAOAAAADgAAAAHAAAAAAAAAAAAAAPMA AAAAAAAAAQAAZv8AAADzAAAAAQAAAAEAAGf/AAAA8wAAAAMAAAAVAAAADQAAAAQAAAAMAAAA FAAAAAAAAAABAAAAAwAAAAEAAFz/AAAA8wAAAAMAAAANAAADDQAAAASAAAAAAAAAAQAAAAEA AAABAAAEAgAACf8AAAAQAAAAAQAEAAkAAAAQZXhwcmVzc2lvbnNJbmRleAAAAP4AAAAVAAAA DQAAAAQAAAAMAAAAFAAAAAAAAAABAAAAAwAAAAEAAEP/AAAA8wAAAAMAAAANAAADDQAAAASA AAAAAAAAAQAAAAEAAAABAAAEAgAACf8AAAAQAAAAAQAEAAkAAAAQZXhwcmVzc2lvbnNJbmRl eAAAAP4AAAABAABE/wAAAAEAAGP/AAAA8wAAAAIAAAANAAADDQAAABqAAAAAAAAAAgAAAAIA AAAEAAAABAAAAAYAAAAGAAAABgAAAAYAAAAGAAAABgAAAAYAAAAGAAAABgAAAAYAAAAGAAAA CgAAAAoAAAALAAAACwAAAAQAAAAEAAAABAAAAAAAAAAAAAAAAAAABAIAAAn/AAAAEAAAAAEA BAAJAAAAEGV4cHJlc3Npb25zSW5kZXgAAAD+AAAEAgAAAAEABAAJAAAACmRldi5yZXNpZHMA AAQDAABK/wAABAIAAFz/AAAA+wAABAIAAEP/AAAA+wAABAIAAGP/AAAA+wAAAP4AAAAVAAAA DwAAAA0AAABFAAAADAAAABQAAAABAAAAFAAAAAIAAAAuAAAAAwAAABYAAAAEAAAABAAAABcA AAAGAAAAHQAAAAgAAAAmAAAABwAAABYAAAAJAAAABAAAABQAAAACAAAAFAAAAAwAAAAUAAAA DAAAABQAAAABAAAALwAAAA4AAAB0AAAADQAAAC4AAAAPAAAAFAAAAAwAAAAUAAAAAQAAAC0A AAAQAAAALQAAABEAAAAuAAAAEgAAAGgAAAALAAAAMgAAAFwAAAAJAAAAVAAAAAsAAAA9AAAA BAAAAGkAAAAUAAAAOwAAAFwAAAAJAAAAVgAAABQAAAA+AAAABAAAAAQAAAAQAAAAFgAAABQA AAAEAAAALgAAABcAAAABAAAAGQAAAAYAAAD+AAAAAAAATv8AAAACAAAA/gAAAPQAAAAAAAAA BgAAAP4AAAAAAABP/wAAAAIAAAD+AAAAAAAAAAEABAAJAAAAAXIAAAACAAAA/gAAAPQAAAAB AAAABgAAAP4AAAAAAAAG/wAAAAIAAAD+AAAAAAAAQ/8AAAACAAAA/gAAAAAAAGP/AAAAAAAA AP4AAAAAAAAA/gAAAAIAAAD+AAAA9AAAAAIAAAAGAAAA/gAAAAAAAE//AAAAAgAAAP4AAAAA AAAAAQAEAAkAAAABcAAAAAIAAAD+AAAA9AAAAAMAAAAGAAAA/gAAAAAAAAABAAQACQAAAAV3 aGljaAAAAAIAAAD+AAAA9AAAAAQAAAAGAAAA/gAAAAAAAAABAAQACQAAAAE+AAAAAgAAAP4A AAAAAABc/wAAAAIAAAD+AAAAAAAAAA4AAAABAAAAAAAAAAAAAAAAAAAA/gAAAAAAAAD+AAAA AAAAAP4AAAACAAAA/gAAAPQAAAAFAAAABgAAAP4AAAAAAABP/wAAAAIAAAD+AAAABgAAAP4A AAAAAAAAAQAEAAkAAAABWwAAAAIAAAD+AAAAAAAAaf8AAAACAAAA/gAAAAAAAGr/AAAAAAAA AP4AAAACAAAA/gAAAPQAAAAGAAAABgAAAP4AAAAAAABt/wAAAAIAAAD+AAAABgAAAP4AAAAA AAA3/wAAAAIAAAD+AAAA9AAAAAcAAAAGAAAA/gAAAAAAAAb/AAAAAgAAAP4AAAAAAABj/wAA AAIAAAD+AAAABgAAAP4AAAAAAAA3/wAAAAIAAAD+AAAA9AAAAAgAAAAGAAAA/gAAAAAAAGX/ AAAAAgAAAP4AAAD0AAAACQAAAAYAAAD+AAAAAAAABv8AAAACAAAA/gAAAAAAAFz/AAAAAgAA AP4AAAD0AAAACgAAAAYAAAD+AAAAAAAARP8AAAACAAAA/gAAAPQAAAALAAAABgAAAP4AAAAA AAAAAQAEAAkAAAABLwAAAAIAAAD+AAAAAAAAXP8AAAACAAAA/gAAAAAAAEP/AAAAAAAAAP4A AAAAAAAA/gAAAAAAAAD+AAAAAgAAAP4AAAAGAAAA/gAAAAAAADf/AAAAAgAAAP4AAAD0AAAA DAAAAAYAAAD+AAAAAAAAZf8AAAACAAAA/gAAAAAAAFz/AAAAAgAAAP4AAAAAAABD/wAAAAAA AAD+AAAAAAAAAP4AAAAAAAAA/gAAAAAAAAD+AAAAAAAAAP4AAAAAAAAA/gAAAAIAAAD+AAAA AAAAav8AAAAAAAAA/gAAAAAAAAD+AAAAAgAAAP4AAAD0AAAADQAAAAYAAAD+AAAAAAAABv8A AAACAAAA/gAAAAAAAAAOAAAAAUAAAAAAAAAAAAAAAgAAAP4AAAAAAABp/wAAAAAAAAD+AAAA AAAAAP4AAAABAABD/wAAAAEAAGP/AAAA8wAAAAEAAAABAABp/wAAAPMAAAAAAAAAAQAAa/8A AADzAAAAAwAAABUAAAANAAAACAAAAAwAAAAUAAAAAQAAABAAAAACAAAAOAAAAAAAAAABAAAA BAAAAPMAAAAEAAAAAQAAXP8AAAAOAAAADgAAAAEAAAAAAAAAAAAAAA0AAAMNAAAACIAAAAAA AAABAAAAAQAAAAIAAAACAAAAAAAAAAAAAAAAAAAEAgAACf8AAAAQAAAAAQAEAAkAAAAQZXhw cmVzc2lvbnNJbmRleAAAAP4AAAABAABq/wAAAPMAAAACAAAA8wAAAAYAAAABAABc/wAAAPMA AAAKAAAA8wAAAAsAAADzAAAACQAAAPMAAAAMAAAA8wAAAAgAAADzAAAABwAAAPMAAAAFAAAA BgAAAP4AAAAAAAAAAQAEAAkAAAADWzwtAAAAAgAAAP4AAAAAAAAAAQAEAAkAAAAFKnRtcCoA AAACAAAA/gAAAAAAAGr/AAAAAgAAAAEABAAJAAAABXZhbHVlAAAA8wAAAAYAAAAAAAAA/gAA AAYAAAD+AAAAAAAAb/8AAAACAAAA/gAAAAAAAGn/AAAAAgAAAP4AAAAAAABq/wAAAAIAAHH/ AAAA8wAAAAYAAAAAAAAA/gAAAA4AAAAOAAAAAUAAAAAAAAAAAAAA8wAAAA0AAAANAAADDQAA AEWAAAAAAAAAAQAAAAEAAAACAAAAAgAAAAMAAAADAAAABQAAAAUAAAAFAAAABwAAAAcAAAAH AAAABwAAAAcAAAAHAAAACgAAAAoAAAAKAAAAAgAAAAIAAAAMAAAADAAAAAwAAAAMAAAAAQAA AAEAAAAOAAAADgAAAA0AAAANAAAADwAAAA8AAAAMAAAADAAAAAEAAAABAAAAEAAAABAAAAAR AAAAEQAAABIAAAASAAAACwAAAAsAAAALAAAACQAAAAkAAAALAAAACwAAABMAAAATAAAAFQAA ABUAAAAVAAAACQAAAAkAAAAVAAAAFQAAABMAAAATAAAAEwAAABYAAAAWAAAABAAAAAQAAAAX AAAAFwAAABcAAAQCAAAJ/wAAABAAAAABAAQACQAAABBleHByZXNzaW9uc0luZGV4AAAA/gAA BAIAAAABAAQACQAAAAd2YWxpZG11AAAEAwAASv8AAAQCAABD/wAAAPsAAAD+AAAAFQAAAAUA AAANAAAAHgAAAAwAAAAaAAAAAQAAABoAAAADAAAAFAAAAAUAAAAhAAAAJwAAAAQAAAAhAAAA JwAAAAIAAABYAAAAAAAAAB0AAAAaAAAAAQAAABQAAAAFAAAAEAAAAAcAAAA4AAAACAAAACEA AAAnAAAABgAAAFkAAAAAAAAAAQAAAAoAAAAGAAAA/gAAAAAAAAABAAQACQAAAAImJgAAAAIA AAD+AAAA9AAAAAAAAAAGAAAA/gAAAAAAAAABAAQACQAAAANhbGwAAAACAAAA/gAAAPQAAAAB AAAABgAAAP4AAAAAAAAAAQAEAAkAAAAJaXMuZmluaXRlAAAAAgAAAP4AAAAAAABD/wAAAAAA AAD+AAAAAAAAAP4AAAACAAAA/gAAAPQAAAACAAAABgAAAP4AAAAAAAB0/wAAAAIAAAD+AAAA 9AAAAAMAAAAGAAAA/gAAAAAAAGz/AAAAAgAAAP4AAAAAAABD/wAAAAIAAAD+AAAAAAAAAA4A AAABAAAAAAAAAAAAAAAAAAAA/gAAAAAAAAD+AAAAAAAAAP4AAAABAAB0/wAAAPMAAAAAAAAA AQAAdf8AAADzAAAAAQAAAAEAAEP/AAAA8wAAAAIAAAAOAAAADgAAAAEAAAAAAAAAAAAAAPMA AAADAAAADQAAAw0AAAAegAAAAAAAAAIAAAACAAAABAAAAAQAAAAEAAAABAAAAAQAAAAEAAAA BAAAAAIAAAACAAAAAgAAAAAAAAAAAAAAAAAAAAYAAAAGAAAABQAAAAUAAAAHAAAABwAAAAgA AAAIAAAABgAAAAYAAAAGAAAAAAAAAAAAAAAAAAAEAgAACf8AAAAQAAAAAQAEAAkAAAAQZXhw cmVzc2lvbnNJbmRleAAAAP4AAAQCAAAAAQAEAAkAAAAIdmFyaWFuY2UAAAQDAABK/wAABAIA AEP/AAAA+wAAAP4AAAAVAAAAAQAAAA0AAAAEAAAADAAAABQAAAAAAAAAAQAAAAMAAAABAABD /wAAAAYAAAD+AAAAAAAAAAEABAAJAAAACGZ1bmN0aW9uAAAAAgAAAP4AAAACAABD/wAAAAAA AAD7AAAAAAAAAP4AAAACAAAA/gAAAAAAAEP/AAAAAgAAAP4AAAAAAAAA/gAAAAAAAAD+AAAA DQAAAw0AAAAEgAAAAAAAAAEAAAABAAAAAQAABAIAAAn/AAAAEAAAAAEABAAJAAAAEGV4cHJl c3Npb25zSW5kZXgAAAD+AAAEAgAAAAEABAAJAAAABXN0YXRzAAADEwAAAAUAAgQDAABC/wAA BAIAAEP/AAAA+wAAAP4AAAAGAABE/wAAAAIAAEP/AAAA/gACBAMAAEL/AAAEAgAARf8AAAD7 AAAA/gAAAAYAAEb/AAAAAgAAAAYAADj/AAAAAgAARf8AAAD+AAAAAgAAAAYAAEf/AAAAAgAA SP8AAAACAABJ/wAAAP4AAAD+AAIEAwAAQv8AAAQCAABF/wAAAPsAAAD+AAAABgAARv8AAAAC AAAABgAAOP8AAAACAABF/wAAAP4AAAACAAAABgAAR/8AAAACAABI/wAAAAIAAEn/AAAA/gAA AP4AAgQDAABC/wAABAIAAEX/AAAA+wAAAP4AAAAKAAAAAQAAAAEAAAAQAAAAAQAEAAkAAAAD bG9nAAAEAgAAPf8AAAAQAAAABQAEAAkAAAAHbGlua2Z1bgAEAAkAAAAHbGlua2ludgAEAAkA AAAGbXUuZXRhAAQACQAAAAh2YWxpZGV0YQAEAAkAAAAEbmFtZQAABAIAAAn/AAAAEAAAAAEA BAAJAAAACGxpbmstZ2xtAAAA/gAABAIAAA7/AAAAEAAAAAEABAAJAAAAB3BvaXNzb24AAAQC AAAAAQAEAAkAAAAHb2tMaW5rcwAAABAAAAADAAQACQAAAANsb2cABAAJAAAACGlkZW50aXR5 AAQACQAAAARzcXJ0AAAEAgAAAAEABAAJAAAACGxpbmt0ZW1wAAAAEAAAAAEABAAJAAAAA2xv ZwAAJAIAAAABAAQACQAAAARsaW5rAAAEBQAASv8AAAD8AAAAEAAAAAEABAAJAAAAA2xvZwAA AP4AAAD+AAAA/gAABAIAAEP/AAAA+wAAAP4AAAAVAAAAAQAAAA0AAAAEAAAADAAAABQAAAAA AAAAAQAAAAMAAAABAABD/wAAAAYAAAD+AAAAAAAAd/8AAAACAAAA/gAAAAIAAEP/AAAAAAAA APsAAAAAAAAA/gAAAAIAAAD+AAAAAAAAQ/8AAAACAAAA/gAAAAAAAAD+AAAAAAAAAP4AAAAN AAADDQAAAASAAAAAAAAAAQAAAAEAAAABAAAEAgAACf8AAAAQAAAAAQAEAAkAAAAQZXhwcmVz c2lvbnNJbmRleAAAAP4AAAQDAABK/wAABAIAAFz/AAAA+wAABAIAAEP/AAAA+wAABAIAAGP/ AAAA+wAAAP4AAAAVAAAADwAAAA0AAABFAAAADAAAABQAAAABAAAAFAAAAAIAAAAuAAAAAwAA ABYAAAAEAAAABAAAABcAAAAGAAAAHQAAAAgAAAAmAAAABwAAABYAAAAJAAAABAAAABQAAAAC AAAAFAAAAAwAAAAUAAAADAAAABQAAAABAAAALwAAAA4AAAB0AAAADQAAAC4AAAAPAAAAFAAA AAwAAAAUAAAAAQAAAC0AAAAQAAAALQAAABEAAAAuAAAAEgAAAGgAAAALAAAAMgAAAFwAAAAJ AAAAVAAAAAsAAAA9AAAABAAAAGkAAAAUAAAAOwAAAFwAAAAJAAAAVgAAABQAAAA+AAAABAAA AAQAAAAQAAAAFgAAABQAAAAEAAAALgAAABcAAAABAAAAGQAAAAYAAAD+AAAAAAAATv8AAAAC AAAA/gAAAPQAAAAAAAAABgAAAP4AAAAAAABP/wAAAAIAAAD+AAAAAAAAaf8AAAACAAAA/gAA APQAAAABAAAABgAAAP4AAAAAAAAG/wAAAAIAAAD+AAAAAAAAQ/8AAAACAAAA/gAAAAAAAGP/ AAAAAAAAAP4AAAAAAAAA/gAAAAIAAAD+AAAA9AAAAAIAAAAGAAAA/gAAAAAAAE//AAAAAgAA AP4AAAAAAABq/wAAAAIAAAD+AAAA9AAAAAMAAAAGAAAA/gAAAAAAAGv/AAAAAgAAAP4AAAD0 AAAABAAAAAYAAAD+AAAAAAAAbP8AAAACAAAA/gAAAAAAAFz/AAAAAgAAAP4AAAAAAAAADgAA AAEAAAAAAAAAAAAAAAAAAAD+AAAAAAAAAP4AAAAAAAAA/gAAAAIAAAD+AAAA9AAAAAUAAAAG AAAA/gAAAAAAAE//AAAAAgAAAP4AAAAGAAAA/gAAAAAAAG3/AAAAAgAAAP4AAAAAAABp/wAA AAIAAAD+AAAAAAAAav8AAAAAAAAA/gAAAAIAAAD+AAAA9AAAAAYAAAAGAAAA/gAAAAAAAG3/ AAAAAgAAAP4AAAAGAAAA/gAAAAAAADf/AAAAAgAAAP4AAAD0AAAABwAAAAYAAAD+AAAAAAAA Bv8AAAACAAAA/gAAAAAAAGP/AAAAAgAAAP4AAAAGAAAA/gAAAAAAADf/AAAAAgAAAP4AAAD0 AAAACAAAAAYAAAD+AAAAAAAAZf8AAAACAAAA/gAAAPQAAAAJAAAABgAAAP4AAAAAAAAG/wAA AAIAAAD+AAAAAAAAXP8AAAACAAAA/gAAAPQAAAAKAAAABgAAAP4AAAAAAABE/wAAAAIAAAD+ AAAA9AAAAAsAAAAGAAAA/gAAAAAAAG7/AAAAAgAAAP4AAAAAAABc/wAAAAIAAAD+AAAAAAAA Q/8AAAAAAAAA/gAAAAAAAAD+AAAAAAAAAP4AAAACAAAA/gAAAAYAAAD+AAAAAAAAN/8AAAAC AAAA/gAAAPQAAAAMAAAABgAAAP4AAAAAAABl/wAAAAIAAAD+AAAAAAAAXP8AAAACAAAA/gAA AAAAAEP/AAAAAAAAAP4AAAAAAAAA/gAAAAAAAAD+AAAAAAAAAP4AAAAAAAAA/gAAAAAAAAD+ AAAAAgAAAP4AAAAAAABq/wAAAAAAAAD+AAAAAAAAAP4AAAACAAAA/gAAAPQAAAANAAAABgAA AP4AAAAAAAAG/wAAAAIAAAD+AAAAAAAAAA4AAAABQAAAAAAAAAAAAAACAAAA/gAAAAAAAGn/ AAAAAAAAAP4AAAAAAAAA/gAAAAEAAEP/AAAAAQAAY/8AAADzAAAAAQAAAAEAAGn/AAAA8wAA AAAAAAABAABr/wAAAPMAAAADAAAAFQAAAA0AAAAIAAAADAAAABQAAAABAAAAEAAAAAIAAAA4 AAAAAAAAAAEAAAAEAAAA8wAAAAQAAAABAABc/wAAAA4AAAAOAAAAAQAAAAAAAAAAAAAADQAA Aw0AAAAIgAAAAAAAAAEAAAABAAAAAgAAAAIAAAAAAAAAAAAAAAAAAAQCAAAJ/wAAABAAAAAB AAQACQAAABBleHByZXNzaW9uc0luZGV4AAAA/gAAAAEAAGr/AAAA8wAAAAIAAADzAAAABgAA AAEAAFz/AAAA8wAAAAoAAADzAAAACwAAAPMAAAAJAAAA8wAAAAwAAADzAAAACAAAAPMAAAAH AAAA8wAAAAUAAAAGAAAA/gAAAAAAAG//AAAAAgAAAP4AAAAAAABw/wAAAAIAAAD+AAAAAAAA av8AAAACAABx/wAAAPMAAAAGAAAAAAAAAP4AAAAGAAAA/gAAAAAAAG//AAAAAgAAAP4AAAAA AABp/wAAAAIAAAD+AAAAAAAAav8AAAACAABx/wAAAPMAAAAGAAAAAAAAAP4AAAAOAAAADgAA AAFAAAAAAAAAAAAAAPMAAAANAAAADQAAAw0AAABFgAAAAAAAAAEAAAABAAAAAgAAAAIAAAAD AAAAAwAAAAUAAAAFAAAABQAAAAcAAAAHAAAABwAAAAcAAAAHAAAABwAAAAoAAAAKAAAACgAA AAIAAAACAAAADAAAAAwAAAAMAAAADAAAAAEAAAABAAAADgAAAA4AAAANAAAADQAAAA8AAAAP AAAADAAAAAwAAAABAAAAAQAAABAAAAAQAAAAEQAAABEAAAASAAAAEgAAAAsAAAALAAAACwAA AAkAAAAJAAAACwAAAAsAAAATAAAAEwAAABUAAAAVAAAAFQAAAAkAAAAJAAAAFQAAABUAAAAT AAAAEwAAABMAAAAWAAAAFgAAAAQAAAAEAAAAFwAAABcAAAAXAAAEAgAACf8AAAAQAAAAAQAE AAkAAAAQZXhwcmVzc2lvbnNJbmRleAAAAP4AAAQDAABK/wAABAIAAFz/AAAA+wAABAIAAF7/ AAAA+wAABAIAAEP/AAAA+wAABAIAAGP/AAAA+wAABAIAAGT/AAAA+wAAAP4AAAAVAAAABQAA AA0AAAAaAAAADAAAABAAAAABAAAAGgAAAAMAAAAXAAAABQAAAB0AAAAHAAAAHQAAAAgAAAAk AAAAHwAAAAkAAAAmAAAABgAAABQAAAAKAAAALgAAAAsAAAAhAAAAJwAAAAQAAAAuAAAAAAAA AAEAAAANAAAABgAAAP4AAAAAAAAG/wAAAAIAAAD+AAAA9AAAAAAAAAAGAAAA/gAAAAAAAGX/ AAAAAgAAAP4AAAAAAAAADgAAAAFAAAAAAAAAAAAAAAAAAAD+AAAAAgAAAP4AAAD0AAAAAQAA AAYAAAD+AAAAAAAAZv8AAAACAAAA/gAAAPQAAAACAAAABgAAAP4AAAAAAAAG/wAAAAIAAAD+ AAAA9AAAAAMAAAAGAAAA/gAAAAAAAGf/AAAAAgAAAP4AAAAAAABc/wAAAAIAAAD+AAAAAAAA Q/8AAAACAABE/wAAAAAAAAAKAAAAAQAAAAEAAAAAAAAA/gAAAAIAAAD+AAAAAAAAY/8AAAAA AAAA/gAAAAAAAAD+AAAAAAAAAP4AAAAOAAAADgAAAAHAAAAAAAAAAAAAAPMAAAAAAAAAAQAA Zv8AAADzAAAAAQAAAAEAAGf/AAAA8wAAAAMAAAAVAAAADQAAAAQAAAAMAAAAFAAAAAAAAAAB AAAAAwAAAAEAAFz/AAAA8wAAAAMAAAANAAADDQAAAASAAAAAAAAAAQAAAAEAAAABAAAEAgAA Cf8AAAAQAAAAAQAEAAkAAAAQZXhwcmVzc2lvbnNJbmRleAAAAP4AAAAVAAAADQAAAAQAAAAM AAAAFAAAAAAAAAABAAAAAwAAAAEAAEP/AAAA8wAAAAMAAAANAAADDQAAAASAAAAAAAAAAQAA AAEAAAABAAAEAgAACf8AAAAQAAAAAQAEAAkAAAAQZXhwcmVzc2lvbnNJbmRleAAAAP4AAAAB AABE/wAAAAEAAGP/AAAA8wAAAAIAAAANAAADDQAAABqAAAAAAAAAAgAAAAIAAAAEAAAABAAA AAYAAAAGAAAABgAAAAYAAAAGAAAABgAAAAYAAAAGAAAABgAAAAYAAAAGAAAACgAAAAoAAAAL AAAACwAAAAQAAAAEAAAABAAAAAAAAAAAAAAAAAAABAIAAAn/AAAAEAAAAAEABAAJAAAAEGV4 cHJlc3Npb25zSW5kZXgAAAD+AAIEAwAAQv8AAAQCAABF/wAAAPsAAAD+AAAABgAARv8AAAAC AAAABgAAOP8AAAACAABF/wAAAP4AAAACAAAABgAAR/8AAAACAABI/wAAAAIAAEn/AAAA/gAA AP4AAAAUAAAAAQAAAAYAAE7/AAAAAgAAAAYAAFL/AAAAAgAAAAYAAFP/AAAAAgAAAAYAAFv/ AAAAAgAAXP8AAAACAAAADgAAAAEAAAAAAAAAAAAAAP4AAAD+AAAAAgAAAAYAAF3/AAAAAgAA ABAAAAABAAQACQAAADRuZWdhdGl2ZSB2YWx1ZXMgbm90IGFsbG93ZWQgZm9yIHRoZSAnUG9p c3NvbicgZmFtaWx5AAAA/gAAAP4AAAACAAAABgAAT/8AAAACAABe/wAAAAIAAAAGAABf/wAA AAIAAAAOAAAAAT/wAAAAAAAAAAAAAgAAYP8AAAD+AAAA/gAAAAIAAAAGAABP/wAAAAIAAGH/ AAAAAgAAAAYAAAX/AAAAAgAAXP8AAAACAAAADgAAAAE/uZmZmZmZmgAAAP4AAAD+AAAA/gAA BAMAAEr/AAAEAgAAQ/8AAAD7AAAA/gAAABUAAAAFAAAADQAAAB4AAAAMAAAAGgAAAAEAAAAa AAAAAwAAABQAAAAFAAAAIQAAACcAAAAEAAAAIQAAACcAAAACAAAAWAAAAAAAAAAdAAAAGgAA AAEAAAAUAAAABQAAABAAAAAHAAAAOAAAAAgAAAAhAAAAJwAAAAYAAABZAAAAAAAAAAEAAAAK AAAABgAAAP4AAAAAAABz/wAAAAIAAAD+AAAA9AAAAAAAAAAGAAAA/gAAAAAAAHT/AAAAAgAA AP4AAAD0AAAAAQAAAAYAAAD+AAAAAAAAdf8AAAACAAAA/gAAAAAAAEP/AAAAAAAAAP4AAAAA AAAA/gAAAAIAAAD+AAAA9AAAAAIAAAAGAAAA/gAAAAAAAHT/AAAAAgAAAP4AAAD0AAAAAwAA AAYAAAD+AAAAAAAAbP8AAAACAAAA/gAAAAAAAEP/AAAAAgAAAP4AAAAAAAAADgAAAAEAAAAA AAAAAAAAAAAAAAD+AAAAAAAAAP4AAAAAAAAA/gAAAAEAAHT/AAAA8wAAAAAAAAABAAB1/wAA APMAAAABAAAAAQAAQ/8AAADzAAAAAgAAAA4AAAAOAAAAAQAAAAAAAAAAAAAA8wAAAAMAAAAN AAADDQAAAB6AAAAAAAAAAgAAAAIAAAAEAAAABAAAAAQAAAAEAAAABAAAAAQAAAAEAAAAAgAA AAIAAAACAAAAAAAAAAAAAAAAAAAABgAAAAYAAAAFAAAABQAAAAcAAAAHAAAACAAAAAgAAAAG AAAABgAAAAYAAAAAAAAAAAAAAAAAAAQCAAAJ/wAAABAAAAABAAQACQAAABBleHByZXNzaW9u c0luZGV4AAAA/gACBAMAAEL/AAAEAgAARf8AAAD7AAAA/gAAAAoAAAABAAAAAQAABAMAAEr/ AAAEAgAATP8AAAD7AAAEAgAATf8AAAD7AAAA/gAAABUAAAAMAAAADQAAADMAAAAMAAAAFAAA AAEAAABJAAAAAgAAAAMAAAAWAAAABAAAAAQAAAAaAAAABgAAABQAAAAEAAAAEAAAAAgAAAA0 AAAACQAAACEAAAAnAAAABwAAAAMAAAAKAAAAHwAAABcAAAALAAAAIgAAAA0AAAAmAAAADAAA AAIAAAAgAAAAEQAAAAQAAAAXAAAADgAAAB0AAAAQAAAAJgAAAA8AAAAWAAAAEQAAAAQAAAAX AAAAEwAAAB0AAAAVAAAAHQAAABYAAAAmAAAAFAAAAAEAAAAYAAAABgAAAP4AAAAAAABO/wAA AAIAAAD+AAAA9AAAAAAAAAAGAAAA/gAAAAAAAE//AAAAAgAAAP4AAAAAAABQ/wAAAAIAAAD+ AAAA9AAAAAEAAAAGAAAA/gAAAAAAAEf/AAAAAgAAAP4AAAAAAABM/wAAAAIAAAD+AAAAAAAA Uf8AAAAAAAAA/gAAAAAAAAD+AAAAAgAAAP4AAAD0AAAAAgAAAAYAAAD+AAAAAAAAUv8AAAAC AAAA/gAAAPQAAAADAAAABgAAAP4AAAAAAABT/wAAAAIAAAD+AAAA9AAAAAQAAAAGAAAA/gAA AAAAAFT/AAAAAgAAAP4AAAAAAABQ/wAAAAIAAAD+AAAAAAAAAA4AAAABP/AAAAAAAAAAAAAA AAAA/gAAAAAAAAD+AAAAAgAAAP4AAAD0AAAABQAAAAYAAAD+AAAAAAAAVf8AAAACAAAA/gAA AAAAAAAQAAAAAQAEAAkAAAAWaWdub3JpbmcgcHJpb3Igd2VpZ2h0cwAAAAAAAAD+AAAAAAAA AP4AAAACAAAA/gAAAPQAAAAGAAAABgAAAP4AAAAAAABP/wAAAAIAAAD+AAAAAAAAVv8AAAAC AAAA/gAAAPQAAAAHAAAABgAAAP4AAAAAAABX/wAAAAIAAAD+AAAAAAAATP8AAAAAAAAA/gAA AAAAAAD+AAAAAgAAAP4AAAD0AAAACAAAAAYAAAD+AAAAAAAAWP8AAAACAAAA/gAAAPQAAAAJ AAAABgAAAP4AAAAAAAAG/wAAAAIAAAD+AAAAAAAATf8AAAACAAAA/gAAAPQAAAAKAAAABgAA AP4AAAAAAABZ/wAAAAIAAAD+AAAAAAAAVv8AAAAAAAAA/gAAAAAAAAD+AAAAAgAAAP4AAAAA AABW/wAAAAAAAAD+AAAAAAAAAP4AAAABAABM/wAAAPMAAAABAAAAAQAAUf8AAAABAABQ/wAA APMAAAAAAAAAAQAAU/8AAADzAAAAAwAAAA4AAAAOAAAAAT/wAAAAAAAAAAAA8wAAAAQAAADz AAAAAgAAAAEAAFX/AAAA8wAAAAUAAAAQAAAAEAAAAAEABAAJAAAAFmlnbm9yaW5nIHByaW9y IHdlaWdodHMAAAABAABX/wAAAPMAAAAHAAAAFQAAAA0AAAAEAAAADAAAABQAAAAAAAAAAQAA AAMAAAABAABM/wAAAPMAAAAHAAAADQAAAw0AAAAEgAAAAAAAAAEAAAABAAAAAQAABAIAAAn/ AAAAEAAAAAEABAAJAAAAEGV4cHJlc3Npb25zSW5kZXgAAAD+AAAAAQAAVv8AAADzAAAABgAA AAEAAFj/AAAA8wAAAAgAAAAVAAAADQAAAA0AAAAMAAAAFAAAAAEAAAAaAAAAAgAAABQAAAAE AAAAIQAAACcAAAADAAAALgAAAAAAAAABAAAABgAAAPMAAAAJAAAAAQAATf8AAAABAABZ/wAA APMAAAAKAAAAAQAAVv8AAAANAAADDQAAAA2AAAAAAAAAAQAAAAEAAAADAAAAAwAAAAMAAAAD AAAAAwAAAAMAAAADAAAAAAAAAAAAAAAAAAAEAgAACf8AAAAQAAAAAQAEAAkAAAAQZXhwcmVz c2lvbnNJbmRleAAAAP4AAAAVAAAADQAAAAQAAAAMAAAAFAAAAAAAAAABAAAAAwAAAAEAAFb/ AAAA8wAAAAgAAAANAAADDQAAAASAAAAAAAAAAQAAAAEAAAABAAAEAgAACf8AAAAQAAAAAQAE AAkAAAAQZXhwcmVzc2lvbnNJbmRleAAAAP4AAAANAAADDQAAADOAAAAAAAAAAQAAAAEAAAAC AAAAAgAAAAIAAAAFAAAABQAAAAUAAAAHAAAABwAAAAQAAAAEAAAACAAAAAgAAAAJAAAACQAA AAcAAAAHAAAABwAAAAoAAAAKAAAACgAAAAwAAAAMAAAADAAAAAwAAAAMAAAADAAAAAoAAAAK AAAACgAAAAoAAAAPAAAADwAAAA8AAAAPAAAADwAAAA8AAAASAAAAEgAAABIAAAAUAAAAFAAA ABQAAAAUAAAAFAAAABQAAAAUAAAAFAAAABQAAAQCAAAJ/wAAABAAAAABAAQACQAAABBleHBy ZXNzaW9uc0luZGV4AAAA/gAAAA4AAAABP/AAAAAAAAAAAAQCAAA9/wAAABAAAAANAAQACQAA AAZmYW1pbHkABAAJAAAABGxpbmsABAAJAAAAB2xpbmtmdW4ABAAJAAAAB2xpbmtpbnYABAAJ AAAACHZhcmlhbmNlAAQACQAAAApkZXYucmVzaWRzAAQACQAAAANhaWMABAAJAAAABm11LmV0 YQAEAAkAAAAKaW5pdGlhbGl6ZQAEAAkAAAAHdmFsaWRtdQAEAAkAAAAIdmFsaWRldGEABAAJ AAAACHNpbXVsYXRlAAQACQAAAApkaXNwZXJzaW9uAAAEAgAACf8AAAAQAAAAAQAEAAkAAAAG ZmFtaWx5AAAA/gAAAg4AAADAQAzajKdpTX8/+j19pFFlGEAIGXEUeYecP+9Y4YDkCudACtbx l87Juz/62cgWne6tQAmK1KWI7PU/+7BUQ7a8vEANEJxCU+4TQAG6K83NG4dAC/Kn3boJdkAD QVpveDd3QAkDuiivqg9AANTtt97i+kAGw12tLourP/waTLq7tU4//OCmpXxgAj/xJo5VXGL4 QAFgBFSgSJY/+nS2asUbu0ALQsQjb4ulQAd5VRNYjPhADP5Kg29uvkAL2f55nXCeQATSoCoD VF9AA4mN6U+kMEAI0l0nYnmYQAcB4Aeu33pAABoVYGZBgkABIsNoc1njQAjfu5A5H5tAC5/M oRh7yUANbddaZvdfQBBFET02h8xADtQnH3X7dEASSsqi4Iodv6eIVwD6KNg/8dDLZPq/LT/N Eg5YJq9NP/UgeioHkn6/qf2KjW0CBD/2YKJaGLmCv80sIvNhsIM/9vnQYbxzGj/UmbOen+nK QAA/GuMPDds/9Vq5Yc24hEAK/mQmZu1wQBG1FwoZnqw//Yg7mn9hd0APGHSAOmVpP/LNQiPx AWxADiBncTFmQj/8IL23mqKzQBGsin7sMUZABq3aPtpMqEATEdLzmEcfQAoux5ChFlRAD3Rj tMPXekAIum4vsAdeQBBVQGZE1SNAAu7uq+ynEkAMVwA90a2VP/sfVevMpJRACHGyUq2oNj/+ mE/HQDlrQA6yoN7WqQNACPHkRi8chUASJMTm8ZlUQA8/KZ2qRCVAD736N0GBLkAP7oLYhDp5 QBEBjTNFqP1ACpjPeU8Y6EAS4HVAksAqQA1K3Gya7ytAECFAAiMAB0ANbjzImT6wQBLwaIMx QVJAEzit0I3gJEAVgaHVJGI9QBYlFVa4UAxAE/LafdlP1EAXM8JoKxGMP/jb/gHwZ0A//WAB /N1UBUAA8uyOM/4fQAIpK2RcHGlABUq6i79+QEAMIsQ6xWxWQAglRNxoOuJAETEOMOoT/EAH qucgBrDuQBFPDYbwngBABOxQWqbjOEASjTaM/osNQBBNZ99RJkFABJcBjKUj60AKghqqiIde P/tUG/0fVUpACuca/O6HgUACheedaUtgQA/cP1qqg5hACiu2LQII70AR5fItm4RnQA6r5/c2 55tADK9/P9OMSUALtM8ZBdl7QAvFNe9UIyJABZGWnQ7akkALT6J16HmeQARHxKmnfO1ABthc Uu8vd0AER1fTIdNeQA1ZLdRx2vJADXjThoFAUkARc3vr9F6GQBHLlSnQPfFADTV8p42Qz0AR BX2wO98EQA49J4gKBZ5ADVjuVgKhSkAQwD9KCgUTQA/IBugQ8a9ADrbD0+MCaEAQupK6KcVG QBHWwl3wK7xAFI5IRxbQiUAT/sy4FY1NQBb+mQYQXtVAEfYpqs/EcUAXCJwXY80rP+q2uYqR 3m4/+9XPtodTzD/6lHOy10JrQAOzNNgPH15AAM7RQ0tkw0ALrqWOYoOEQAPxArbPTIdAEMDA meGWYEAE3nBx48NHQBF/vdw//npAAUu05rcwbkARyQY1QuxAQA7qgx6qAeg//YAATBqvtEAL iEDlWE3CP/U2k7ICwGdADPzxnT6pVUAAJwhBfbb/QBCPmyVmma5ABsA9iuVTukARBPGQ77Od QAgvWV9FfIhAC+Rz6O21IUAF1kC6KGJvQAzFM28X7KhAAgqsY3dmEkAMMbfdJwhAQAC0vL3M PipAC8flUp5LAUAEYffj2XwjQA/NCOCU6ltACt4MDakuMkAR+d2AwgzwQA+JLSvmUqhADhvM 88sBCUANfZWyAdHSQAt0+lijjZ9ABbH5pE9n4UAR2PmjmxGvQA0sfn8nuhxAEJdVQLBSJUAO wENp6DZEQBMTC2bKBHZAExdQKPpWzkAU3nqdGrWYQBUk9t3yAmZAEvdbW5T+ckAVJALmVpdB P/Q7PewQxzc/9+sI3SIMrkAFGqu3tAvzQAYwHRyCay5ACPlXaCg2gEAOJdZ9jJDyQAtu0DMf GfxAEYkf8i5DkkAKdSRKhIUZQBFOgXyH85hACMrrndJFw0ASX5BwGR/sAAAEAgAAPf8AAAAQ AAAAwAAEAAkAAAABMQAEAAkAAAABMgAEAAkAAAABMwAEAAkAAAABNAAEAAkAAAABNQAEAAkA AAABNgAEAAkAAAABNwAEAAkAAAABOAAEAAkAAAABOQAEAAkAAAACMTAABAAJAAAAAjExAAQA CQAAAAIxMgAEAAkAAAACMTMABAAJAAAAAjE0AAQACQAAAAIxNQAEAAkAAAACMTYABAAJAAAA AjE3AAQACQAAAAIxOAAEAAkAAAACMTkABAAJAAAAAjIwAAQACQAAAAIyMQAEAAkAAAACMjIA BAAJAAAAAjIzAAQACQAAAAIyNAAEAAkAAAACMjUABAAJAAAAAjI2AAQACQAAAAIyNwAEAAkA AAACMjgABAAJAAAAAjI5AAQACQAAAAIzMAAEAAkAAAACMzEABAAJAAAAAjMyAAQACQAAAAIz MwAEAAkAAAACMzQABAAJAAAAAjM1AAQACQAAAAIzNgAEAAkAAAACMzcABAAJAAAAAjM4AAQA CQAAAAIzOQAEAAkAAAACNDAABAAJAAAAAjQxAAQACQAAAAI0MgAEAAkAAAACNDMABAAJAAAA AjQ0AAQACQAAAAI0NQAEAAkAAAACNDYABAAJAAAAAjQ3AAQACQAAAAI0OAAEAAkAAAACNDkA BAAJAAAAAjUwAAQACQAAAAI1MQAEAAkAAAACNTIABAAJAAAAAjUzAAQACQAAAAI1NAAEAAkA AAACNTUABAAJAAAAAjU2AAQACQAAAAI1NwAEAAkAAAACNTgABAAJAAAAAjU5AAQACQAAAAI2 MAAEAAkAAAACNjEABAAJAAAAAjYyAAQACQAAAAI2MwAEAAkAAAACNjQABAAJAAAAAjY1AAQA CQAAAAI2NgAEAAkAAAACNjcABAAJAAAAAjY4AAQACQAAAAI2OQAEAAkAAAACNzAABAAJAAAA AjcxAAQACQAAAAI3MgAEAAkAAAACNzMABAAJAAAAAjc0AAQACQAAAAI3NQAEAAkAAAACNzYA BAAJAAAAAjc3AAQACQAAAAI3OAAEAAkAAAACNzkABAAJAAAAAjgwAAQACQAAAAI4MQAEAAkA AAACODIABAAJAAAAAjgzAAQACQAAAAI4NAAEAAkAAAACODUABAAJAAAAAjg2AAQACQAAAAI4 NwAEAAkAAAACODgABAAJAAAAAjg5AAQACQAAAAI5MAAEAAkAAAACOTEABAAJAAAAAjkyAAQA CQAAAAI5MwAEAAkAAAACOTQABAAJAAAAAjk1AAQACQAAAAI5NgAEAAkAAAACOTcABAAJAAAA Ajk4AAQACQAAAAI5OQAEAAkAAAADMTAwAAQACQAAAAMxMDEABAAJAAAAAzEwMgAEAAkAAAAD MTAzAAQACQAAAAMxMDQABAAJAAAAAzEwNQAEAAkAAAADMTA2AAQACQAAAAMxMDcABAAJAAAA AzEwOAAEAAkAAAADMTA5AAQACQAAAAMxMTAABAAJAAAAAzExMQAEAAkAAAADMTEyAAQACQAA AAMxMTMABAAJAAAAAzExNAAEAAkAAAADMTE1AAQACQAAAAMxMTYABAAJAAAAAzExNwAEAAkA AAADMTE4AAQACQAAAAMxMTkABAAJAAAAAzEyMAAEAAkAAAADMTIxAAQACQAAAAMxMjIABAAJ AAAAAzEyMwAEAAkAAAADMTI0AAQACQAAAAMxMjUABAAJAAAAAzEyNgAEAAkAAAADMTI3AAQA CQAAAAMxMjgABAAJAAAAAzEyOQAEAAkAAAADMTMwAAQACQAAAAMxMzEABAAJAAAAAzEzMgAE AAkAAAADMTMzAAQACQAAAAMxMzQABAAJAAAAAzEzNQAEAAkAAAADMTM2AAQACQAAAAMxMzcA BAAJAAAAAzEzOAAEAAkAAAADMTM5AAQACQAAAAMxNDAABAAJAAAAAzE0MQAEAAkAAAADMTQy AAQACQAAAAMxNDMABAAJAAAAAzE0NAAEAAkAAAADMTQ1AAQACQAAAAMxNDYABAAJAAAAAzE0 NwAEAAkAAAADMTQ4AAQACQAAAAMxNDkABAAJAAAAAzE1MAAEAAkAAAADMTUxAAQACQAAAAMx NTIABAAJAAAAAzE1MwAEAAkAAAADMTU0AAQACQAAAAMxNTUABAAJAAAAAzE1NgAEAAkAAAAD MTU3AAQACQAAAAMxNTgABAAJAAAAAzE1OQAEAAkAAAADMTYwAAQACQAAAAMxNjEABAAJAAAA AzE2MgAEAAkAAAADMTYzAAQACQAAAAMxNjQABAAJAAAAAzE2NQAEAAkAAAADMTY2AAQACQAA AAMxNjcABAAJAAAAAzE2OAAEAAkAAAADMTY5AAQACQAAAAMxNzAABAAJAAAAAzE3MQAEAAkA AAADMTcyAAQACQAAAAMxNzMABAAJAAAAAzE3NAAEAAkAAAADMTc1AAQACQAAAAMxNzYABAAJ AAAAAzE3NwAEAAkAAAADMTc4AAQACQAAAAMxNzkABAAJAAAAAzE4MAAEAAkAAAADMTgxAAQA CQAAAAMxODIABAAJAAAAAzE4MwAEAAkAAAADMTg0AAQACQAAAAMxODUABAAJAAAAAzE4NgAE AAkAAAADMTg3AAQACQAAAAMxODgABAAJAAAAAzE4OQAEAAkAAAADMTkwAAQACQAAAAMxOTEA BAAJAAAAAzE5MgAAAP4AAAAOAAAAAUBgoWAXTbw4AAACDgAAAAFAlLjOW5umRgAABAIAAD// AAAAEAAAAAEABAAJAAAACHRvbE5vcm0yAAAEAgAAQP8AAAAKAAAAAQAAAAAAAAQCAABB/wAA AA4AAAABPSgAAAAAAAAAAAD+AAAADQAAAAEAAAALAAACDgAAAMBAQmwhT5ID0kAUnvWDb+Zv QDRWLBQWT3JABU6fX02EckA8pO4Qlej3QBVsR72oXARAOFszD+i8o0AWkzPAXQx9QELqR3u5 GAVAIlbiERufOEBAcz+wNyQWQCYzAT8jbphANs0lhrDDZUAgZbTynnlGQDE1VQ6PlihAFyqr xcGnY0AYUO9IyPn9QAdeIW5uDANAIYyxwsHnR0AU5px6fDFzQD4xVcOGyjVAMs6qPHk1y0BC vyiFcpWOQEBA13qNanZAKwESDVEsfUAm/u3yrtP0QDZCIoaZbYNAMb3deWaSe0Ad72A+fi71 QCEIT+DA6GlANmdz0Qoy/kA/mIwu9c0CQEPLzt75A5NATTQxIQb8bUBHlL8jvxh0QFg1oG4g c8A/7pAAI+OSY0AIW//3BxiLP/QUXd5LjtxADfXRENo4ij/uaogyhEYXQBAyrvmvdyc/6Xpw ygiNI0AQ0LHmvu6IP/YTVi5JctZAHnsqdG2jgUAOY6n/8eDDQD0zisABxAVAVOqxlwlnKkAZ VOaPaZnEQEhheKhOaKNACeh1exl2GUBFmX/YBGxGQBc0AT/cnj1AVL4s6YKUyUAxB0xZ9ayP QF1nSFARsnZAOmLev7k1o0BJgAiiX4HcQDX/7rtA+2FATatKhPIamkAlUtXsN5WNQEFGuXpj Xu5AFco0LOUIx0A1O21Lwv8/QBsSStD0A05ARzK7wh5sZ0A2moh7wycyQFdTuJmkDshASNiO zLfia0BKbtyLP6pdQEsRI3TAValAUY2Mw13r10A7yczyiFAMQFwFAglX/txAQ3X77VACbUBM MzYdDTncQEPMyeLyxiFAXHWcwMga60BeimM/N+UJQGsJGURgMgtAb7bmu5/N9kBiUKNwh4V2 QHSnrke8PURAEup5He98i0AZFYbiEIInQCCjo8nTQHZAI1xcNiy/jUAsopq5NjsJQEDXWVGy cS1ANHRTMj49nkBSYuszcHCXQDNEn2K1yu5AUu7YJ1KNRUArWFPuSqeSQFnU9YI2qxhATXFR pUMIYUAqOrlq8+WlQDt7XXh3T29AFhKKHiLCnUA83wa/SeyQQCRB8oFsJstAStOe3wPOhkA6 WMJB+GK0QFXwXSV0ONVARx9FtReOBkBCCgYmPG1ZQD/r87OHJHNAQBbUm6MgDUAtpK2Rc3+l QD5iDfkYC1xAKTvkDc/pbUAxYrmbH7LCQCk6jMnAmnhAQ5jvqyZen0BD5xBU2aFbQFOeYvCC lZRAVWGdD31qZEBDQkJ3YVU9QFGe3sRPVVhAReer3IkEP0BDmFQjdvtHQFB37QdWf41ASpAl 8VMA8UBHPr2Yn+txQFBgoTOwCjRAVZ2u5QsUa0BlUSiNenXHQGKHqErspfxAc5wr2omtAEBW SgQy5zrqQHPNfvNGMUFAAm9XD7iM9UAWyFR4I7f9QBUQO8bFuehAJ3fiHJ0jAkAgWTMfh086 QD/TZnA8WCFAKC/zlbJGGUBQegGNSbdAQCspEBSSeeFAU9rd/W2wzkAhYFwmzZarQFVT9Hsm TS1AR9cDzexlikAZR+GQnLahQD88Fg/xEGNADh9PgHeET0BCvACSRFHmQB4f+23dcXtAT2ix YC/JhEAxLp0/oG3YQFGcdaw1QM9ANI4pTyr9+EBAViUIJ9AzQC6na99gwXFAQjs5YaKPKkAj Exp5dcXuQED28I08QgpAICQ9yw75v0BAHDvz/m2KQCmPEDAGSTlASqDLyY64mEA8vmhs4o6v QFZer13JrHFAScKhRGym4kBFjRWNczsPQEPy6nKMxEtAPvEuSi18AEAuHaNrpQzbQFWpq77Y rmZAQyyogk6kQ0BPpZixXhuHQEdaZ06h5A1AXXBCdWw3xUBdj72Kk8gQQGcNum8L0r9AaLJF kPQtDEBcpzgE2Z4MQGisY/2TMIlADFRcZB1MT0AR1dHN8V7mQCv4lq5J8aZAMAO0qNsHNUA2 r57QkvOWQEWoMJe2heZAPtlfkZBbmkBUCagbm+j6QDtO+hC43yxAUuxBe9HH+UA2LXZi/Qqo QFi0omdAvQUAAAQCAAA9/wAAABAAAADAAAQACQAAAAExAAQACQAAAAEyAAQACQAAAAEzAAQA CQAAAAE0AAQACQAAAAE1AAQACQAAAAE2AAQACQAAAAE3AAQACQAAAAE4AAQACQAAAAE5AAQA CQAAAAIxMAAEAAkAAAACMTEABAAJAAAAAjEyAAQACQAAAAIxMwAEAAkAAAACMTQABAAJAAAA AjE1AAQACQAAAAIxNgAEAAkAAAACMTcABAAJAAAAAjE4AAQACQAAAAIxOQAEAAkAAAACMjAA BAAJAAAAAjIxAAQACQAAAAIyMgAEAAkAAAACMjMABAAJAAAAAjI0AAQACQAAAAIyNQAEAAkA AAACMjYABAAJAAAAAjI3AAQACQAAAAIyOAAEAAkAAAACMjkABAAJAAAAAjMwAAQACQAAAAIz MQAEAAkAAAACMzIABAAJAAAAAjMzAAQACQAAAAIzNAAEAAkAAAACMzUABAAJAAAAAjM2AAQA CQAAAAIzNwAEAAkAAAACMzgABAAJAAAAAjM5AAQACQAAAAI0MAAEAAkAAAACNDEABAAJAAAA AjQyAAQACQAAAAI0MwAEAAkAAAACNDQABAAJAAAAAjQ1AAQACQAAAAI0NgAEAAkAAAACNDcA BAAJAAAAAjQ4AAQACQAAAAI0OQAEAAkAAAACNTAABAAJAAAAAjUxAAQACQAAAAI1MgAEAAkA AAACNTMABAAJAAAAAjU0AAQACQAAAAI1NQAEAAkAAAACNTYABAAJAAAAAjU3AAQACQAAAAI1 OAAEAAkAAAACNTkABAAJAAAAAjYwAAQACQAAAAI2MQAEAAkAAAACNjIABAAJAAAAAjYzAAQA CQAAAAI2NAAEAAkAAAACNjUABAAJAAAAAjY2AAQACQAAAAI2NwAEAAkAAAACNjgABAAJAAAA AjY5AAQACQAAAAI3MAAEAAkAAAACNzEABAAJAAAAAjcyAAQACQAAAAI3MwAEAAkAAAACNzQA BAAJAAAAAjc1AAQACQAAAAI3NgAEAAkAAAACNzcABAAJAAAAAjc4AAQACQAAAAI3OQAEAAkA AAACODAABAAJAAAAAjgxAAQACQAAAAI4MgAEAAkAAAACODMABAAJAAAAAjg0AAQACQAAAAI4 NQAEAAkAAAACODYABAAJAAAAAjg3AAQACQAAAAI4OAAEAAkAAAACODkABAAJAAAAAjkwAAQA CQAAAAI5MQAEAAkAAAACOTIABAAJAAAAAjkzAAQACQAAAAI5NAAEAAkAAAACOTUABAAJAAAA Ajk2AAQACQAAAAI5NwAEAAkAAAACOTgABAAJAAAAAjk5AAQACQAAAAMxMDAABAAJAAAAAzEw MQAEAAkAAAADMTAyAAQACQAAAAMxMDMABAAJAAAAAzEwNAAEAAkAAAADMTA1AAQACQAAAAMx MDYABAAJAAAAAzEwNwAEAAkAAAADMTA4AAQACQAAAAMxMDkABAAJAAAAAzExMAAEAAkAAAAD MTExAAQACQAAAAMxMTIABAAJAAAAAzExMwAEAAkAAAADMTE0AAQACQAAAAMxMTUABAAJAAAA AzExNgAEAAkAAAADMTE3AAQACQAAAAMxMTgABAAJAAAAAzExOQAEAAkAAAADMTIwAAQACQAA AAMxMjEABAAJAAAAAzEyMgAEAAkAAAADMTIzAAQACQAAAAMxMjQABAAJAAAAAzEyNQAEAAkA AAADMTI2AAQACQAAAAMxMjcABAAJAAAAAzEyOAAEAAkAAAADMTI5AAQACQAAAAMxMzAABAAJ AAAAAzEzMQAEAAkAAAADMTMyAAQACQAAAAMxMzMABAAJAAAAAzEzNAAEAAkAAAADMTM1AAQA CQAAAAMxMzYABAAJAAAAAzEzNwAEAAkAAAADMTM4AAQACQAAAAMxMzkABAAJAAAAAzE0MAAE AAkAAAADMTQxAAQACQAAAAMxNDIABAAJAAAAAzE0MwAEAAkAAAADMTQ0AAQACQAAAAMxNDUA BAAJAAAAAzE0NgAEAAkAAAADMTQ3AAQACQAAAAMxNDgABAAJAAAAAzE0OQAEAAkAAAADMTUw AAQACQAAAAMxNTEABAAJAAAAAzE1MgAEAAkAAAADMTUzAAQACQAAAAMxNTQABAAJAAAAAzE1 NQAEAAkAAAADMTU2AAQACQAAAAMxNTcABAAJAAAAAzE1OAAEAAkAAAADMTU5AAQACQAAAAMx NjAABAAJAAAAAzE2MQAEAAkAAAADMTYyAAQACQAAAAMxNjMABAAJAAAAAzE2NAAEAAkAAAAD MTY1AAQACQAAAAMxNjYABAAJAAAAAzE2NwAEAAkAAAADMTY4AAQACQAAAAMxNjkABAAJAAAA AzE3MAAEAAkAAAADMTcxAAQACQAAAAMxNzIABAAJAAAAAzE3MwAEAAkAAAADMTc0AAQACQAA AAMxNzUABAAJAAAAAzE3NgAEAAkAAAADMTc3AAQACQAAAAMxNzgABAAJAAAAAzE3OQAEAAkA AAADMTgwAAQACQAAAAMxODEABAAJAAAAAzE4MgAEAAkAAAADMTgzAAQACQAAAAMxODQABAAJ AAAAAzE4NQAEAAkAAAADMTg2AAQACQAAAAMxODcABAAJAAAAAzE4OAAEAAkAAAADMTg5AAQA CQAAAAMxOTAABAAJAAAAAzE5MQAEAAkAAAADMTkyAAAA/gAAAg4AAADAP/AAAAAAAAA/8AAA AAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/w AAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAA P/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAA AAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAA AAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/w AAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAA P/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAA AAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAA AAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/w AAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAA P/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAA AAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAA AAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/w AAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAA P/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAA AAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAA AAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/w AAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAA P/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAA AAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAA AAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/w AAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAA P/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAA AAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAA AAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/w AAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAA P/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAA AAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAA AAAAAD/wAAAAAAAAAAAEAgAAPf8AAAAQAAAAwAAEAAkAAAABMQAEAAkAAAABMgAEAAkAAAAB MwAEAAkAAAABNAAEAAkAAAABNQAEAAkAAAABNgAEAAkAAAABNwAEAAkAAAABOAAEAAkAAAAB OQAEAAkAAAACMTAABAAJAAAAAjExAAQACQAAAAIxMgAEAAkAAAACMTMABAAJAAAAAjE0AAQA CQAAAAIxNQAEAAkAAAACMTYABAAJAAAAAjE3AAQACQAAAAIxOAAEAAkAAAACMTkABAAJAAAA AjIwAAQACQAAAAIyMQAEAAkAAAACMjIABAAJAAAAAjIzAAQACQAAAAIyNAAEAAkAAAACMjUA BAAJAAAAAjI2AAQACQAAAAIyNwAEAAkAAAACMjgABAAJAAAAAjI5AAQACQAAAAIzMAAEAAkA AAACMzEABAAJAAAAAjMyAAQACQAAAAIzMwAEAAkAAAACMzQABAAJAAAAAjM1AAQACQAAAAIz NgAEAAkAAAACMzcABAAJAAAAAjM4AAQACQAAAAIzOQAEAAkAAAACNDAABAAJAAAAAjQxAAQA CQAAAAI0MgAEAAkAAAACNDMABAAJAAAAAjQ0AAQACQAAAAI0NQAEAAkAAAACNDYABAAJAAAA AjQ3AAQACQAAAAI0OAAEAAkAAAACNDkABAAJAAAAAjUwAAQACQAAAAI1MQAEAAkAAAACNTIA BAAJAAAAAjUzAAQACQAAAAI1NAAEAAkAAAACNTUABAAJAAAAAjU2AAQACQAAAAI1NwAEAAkA AAACNTgABAAJAAAAAjU5AAQACQAAAAI2MAAEAAkAAAACNjEABAAJAAAAAjYyAAQACQAAAAI2 MwAEAAkAAAACNjQABAAJAAAAAjY1AAQACQAAAAI2NgAEAAkAAAACNjcABAAJAAAAAjY4AAQA CQAAAAI2OQAEAAkAAAACNzAABAAJAAAAAjcxAAQACQAAAAI3MgAEAAkAAAACNzMABAAJAAAA Ajc0AAQACQAAAAI3NQAEAAkAAAACNzYABAAJAAAAAjc3AAQACQAAAAI3OAAEAAkAAAACNzkA BAAJAAAAAjgwAAQACQAAAAI4MQAEAAkAAAACODIABAAJAAAAAjgzAAQACQAAAAI4NAAEAAkA AAACODUABAAJAAAAAjg2AAQACQAAAAI4NwAEAAkAAAACODgABAAJAAAAAjg5AAQACQAAAAI5 MAAEAAkAAAACOTEABAAJAAAAAjkyAAQACQAAAAI5MwAEAAkAAAACOTQABAAJAAAAAjk1AAQA CQAAAAI5NgAEAAkAAAACOTcABAAJAAAAAjk4AAQACQAAAAI5OQAEAAkAAAADMTAwAAQACQAA AAMxMDEABAAJAAAAAzEwMgAEAAkAAAADMTAzAAQACQAAAAMxMDQABAAJAAAAAzEwNQAEAAkA AAADMTA2AAQACQAAAAMxMDcABAAJAAAAAzEwOAAEAAkAAAADMTA5AAQACQAAAAMxMTAABAAJ AAAAAzExMQAEAAkAAAADMTEyAAQACQAAAAMxMTMABAAJAAAAAzExNAAEAAkAAAADMTE1AAQA CQAAAAMxMTYABAAJAAAAAzExNwAEAAkAAAADMTE4AAQACQAAAAMxMTkABAAJAAAAAzEyMAAE AAkAAAADMTIxAAQACQAAAAMxMjIABAAJAAAAAzEyMwAEAAkAAAADMTI0AAQACQAAAAMxMjUA BAAJAAAAAzEyNgAEAAkAAAADMTI3AAQACQAAAAMxMjgABAAJAAAAAzEyOQAEAAkAAAADMTMw AAQACQAAAAMxMzEABAAJAAAAAzEzMgAEAAkAAAADMTMzAAQACQAAAAMxMzQABAAJAAAAAzEz NQAEAAkAAAADMTM2AAQACQAAAAMxMzcABAAJAAAAAzEzOAAEAAkAAAADMTM5AAQACQAAAAMx NDAABAAJAAAAAzE0MQAEAAkAAAADMTQyAAQACQAAAAMxNDMABAAJAAAAAzE0NAAEAAkAAAAD MTQ1AAQACQAAAAMxNDYABAAJAAAAAzE0NwAEAAkAAAADMTQ4AAQACQAAAAMxNDkABAAJAAAA AzE1MAAEAAkAAAADMTUxAAQACQAAAAMxNTIABAAJAAAAAzE1MwAEAAkAAAADMTU0AAQACQAA AAMxNTUABAAJAAAAAzE1NgAEAAkAAAADMTU3AAQACQAAAAMxNTgABAAJAAAAAzE1OQAEAAkA AAADMTYwAAQACQAAAAMxNjEABAAJAAAAAzE2MgAEAAkAAAADMTYzAAQACQAAAAMxNjQABAAJ AAAAAzE2NQAEAAkAAAADMTY2AAQACQAAAAMxNjcABAAJAAAAAzE2OAAEAAkAAAADMTY5AAQA CQAAAAMxNzAABAAJAAAAAzE3MQAEAAkAAAADMTcyAAQACQAAAAMxNzMABAAJAAAAAzE3NAAE AAkAAAADMTc1AAQACQAAAAMxNzYABAAJAAAAAzE3NwAEAAkAAAADMTc4AAQACQAAAAMxNzkA BAAJAAAAAzE4MAAEAAkAAAADMTgxAAQACQAAAAMxODIABAAJAAAAAzE4MwAEAAkAAAADMTg0 AAQACQAAAAMxODUABAAJAAAAAzE4NgAEAAkAAAADMTg3AAQACQAAAAMxODgABAAJAAAAAzE4 OQAEAAkAAAADMTkwAAQACQAAAAMxOTEABAAJAAAAAzE5MgAAAP4AAAANAAAAAQAAAE4AAAIN AAAAwAAAACUAAAAFAAAAEwAAAAQAAAAeAAAABAAAABYAAAAIAAAAJgAAAAkAAAAmAAAABgAA ABQAAAALAAAAFAAAAAMAAAAIAAAAAQAAAAgAAAAGAAAAIQAAABAAAAAhAAAAJQAAAAoAAAAP AAAAFgAAABIAAAAHAAAACQAAABgAAAAeAAAAKwAAADcAAAAoAAAAaAAAAAAAAAAEAAAAAgAA AAMAAAACAAAAAwAAAAEAAAAEAAAAAwAAAAYAAAAFAAAAHAAAAFYAAAAEAAAANAAAAAAAAAAv AAAAAgAAAFAAAAAUAAAAcQAAAB8AAAA3AAAAEgAAADkAAAANAAAAIwAAAAUAAAATAAAACQAA AC0AAAAYAAAAWgAAADUAAAA1AAAANgAAAEUAAAAdAAAAagAAAC0AAABDAAAAHQAAAHYAAAB2 AAAA1AAAAQIAAACQAAABTQAAAAMAAAAIAAAACQAAAAkAAAARAAAAHwAAABAAAABOAAAAFwAA AEgAAAAPAAAAZgAAAD0AAAALAAAAFgAAAAsAAAAgAAAABwAAADsAAAAVAAAATwAAADcAAAAf AAAAJQAAACIAAAANAAAAGwAAABAAAAAUAAAACgAAACoAAAAlAAAATwAAAFUAAAAoAAAARQAA ADEAAAAiAAAAPAAAADsAAAAzAAAAPQAAAGIAAACfAAAAkQAAAT0AAABYAAABPgAAAAIAAAAG AAAABwAAAAoAAAADAAAAJQAAAAgAAABGAAAADAAAAFEAAAAKAAAAVAAAADIAAAAEAAAAHgAA AAUAAAAhAAAADAAAAD8AAAARAAAASQAAABIAAAAfAAAAEQAAACMAAAALAAAAJQAAAAUAAAAg AAAADQAAADoAAAAYAAAAWQAAADQAAAArAAAAKAAAABwAAAASAAAAYgAAABsAAAA0AAAAOgAA AHIAAAB6AAAAugAAAMQAAAB0AAAAxAAAAAUAAAADAAAAEAAAAA4AAAAKAAAAOAAAABQAAABb AAAALAAAADsAAAAaAAAAXwAABAIAAD3/AAAAEAAAAMAABAAJAAAAATEABAAJAAAAATIABAAJ AAAAATMABAAJAAAAATQABAAJAAAAATUABAAJAAAAATYABAAJAAAAATcABAAJAAAAATgABAAJ AAAAATkABAAJAAAAAjEwAAQACQAAAAIxMQAEAAkAAAACMTIABAAJAAAAAjEzAAQACQAAAAIx NAAEAAkAAAACMTUABAAJAAAAAjE2AAQACQAAAAIxNwAEAAkAAAACMTgABAAJAAAAAjE5AAQA CQAAAAIyMAAEAAkAAAACMjEABAAJAAAAAjIyAAQACQAAAAIyMwAEAAkAAAACMjQABAAJAAAA AjI1AAQACQAAAAIyNgAEAAkAAAACMjcABAAJAAAAAjI4AAQACQAAAAIyOQAEAAkAAAACMzAA BAAJAAAAAjMxAAQACQAAAAIzMgAEAAkAAAACMzMABAAJAAAAAjM0AAQACQAAAAIzNQAEAAkA AAACMzYABAAJAAAAAjM3AAQACQAAAAIzOAAEAAkAAAACMzkABAAJAAAAAjQwAAQACQAAAAI0 MQAEAAkAAAACNDIABAAJAAAAAjQzAAQACQAAAAI0NAAEAAkAAAACNDUABAAJAAAAAjQ2AAQA CQAAAAI0NwAEAAkAAAACNDgABAAJAAAAAjQ5AAQACQAAAAI1MAAEAAkAAAACNTEABAAJAAAA AjUyAAQACQAAAAI1MwAEAAkAAAACNTQABAAJAAAAAjU1AAQACQAAAAI1NgAEAAkAAAACNTcA BAAJAAAAAjU4AAQACQAAAAI1OQAEAAkAAAACNjAABAAJAAAAAjYxAAQACQAAAAI2MgAEAAkA AAACNjMABAAJAAAAAjY0AAQACQAAAAI2NQAEAAkAAAACNjYABAAJAAAAAjY3AAQACQAAAAI2 OAAEAAkAAAACNjkABAAJAAAAAjcwAAQACQAAAAI3MQAEAAkAAAACNzIABAAJAAAAAjczAAQA CQAAAAI3NAAEAAkAAAACNzUABAAJAAAAAjc2AAQACQAAAAI3NwAEAAkAAAACNzgABAAJAAAA Ajc5AAQACQAAAAI4MAAEAAkAAAACODEABAAJAAAAAjgyAAQACQAAAAI4MwAEAAkAAAACODQA BAAJAAAAAjg1AAQACQAAAAI4NgAEAAkAAAACODcABAAJAAAAAjg4AAQACQAAAAI4OQAEAAkA AAACOTAABAAJAAAAAjkxAAQACQAAAAI5MgAEAAkAAAACOTMABAAJAAAAAjk0AAQACQAAAAI5 NQAEAAkAAAACOTYABAAJAAAAAjk3AAQACQAAAAI5OAAEAAkAAAACOTkABAAJAAAAAzEwMAAE AAkAAAADMTAxAAQACQAAAAMxMDIABAAJAAAAAzEwMwAEAAkAAAADMTA0AAQACQAAAAMxMDUA BAAJAAAAAzEwNgAEAAkAAAADMTA3AAQACQAAAAMxMDgABAAJAAAAAzEwOQAEAAkAAAADMTEw AAQACQAAAAMxMTEABAAJAAAAAzExMgAEAAkAAAADMTEzAAQACQAAAAMxMTQABAAJAAAAAzEx NQAEAAkAAAADMTE2AAQACQAAAAMxMTcABAAJAAAAAzExOAAEAAkAAAADMTE5AAQACQAAAAMx MjAABAAJAAAAAzEyMQAEAAkAAAADMTIyAAQACQAAAAMxMjMABAAJAAAAAzEyNAAEAAkAAAAD MTI1AAQACQAAAAMxMjYABAAJAAAAAzEyNwAEAAkAAAADMTI4AAQACQAAAAMxMjkABAAJAAAA AzEzMAAEAAkAAAADMTMxAAQACQAAAAMxMzIABAAJAAAAAzEzMwAEAAkAAAADMTM0AAQACQAA AAMxMzUABAAJAAAAAzEzNgAEAAkAAAADMTM3AAQACQAAAAMxMzgABAAJAAAAAzEzOQAEAAkA AAADMTQwAAQACQAAAAMxNDEABAAJAAAAAzE0MgAEAAkAAAADMTQzAAQACQAAAAMxNDQABAAJ AAAAAzE0NQAEAAkAAAADMTQ2AAQACQAAAAMxNDcABAAJAAAAAzE0OAAEAAkAAAADMTQ5AAQA CQAAAAMxNTAABAAJAAAAAzE1MQAEAAkAAAADMTUyAAQACQAAAAMxNTMABAAJAAAAAzE1NAAE AAkAAAADMTU1AAQACQAAAAMxNTYABAAJAAAAAzE1NwAEAAkAAAADMTU4AAQACQAAAAMxNTkA BAAJAAAAAzE2MAAEAAkAAAADMTYxAAQACQAAAAMxNjIABAAJAAAAAzE2MwAEAAkAAAADMTY0 AAQACQAAAAMxNjUABAAJAAAAAzE2NgAEAAkAAAADMTY3AAQACQAAAAMxNjgABAAJAAAAAzE2 OQAEAAkAAAADMTcwAAQACQAAAAMxNzEABAAJAAAAAzE3MgAEAAkAAAADMTczAAQACQAAAAMx NzQABAAJAAAAAzE3NQAEAAkAAAADMTc2AAQACQAAAAMxNzcABAAJAAAAAzE3OAAEAAkAAAAD MTc5AAQACQAAAAMxODAABAAJAAAAAzE4MQAEAAkAAAADMTgyAAQACQAAAAMxODMABAAJAAAA AzE4NAAEAAkAAAADMTg1AAQACQAAAAMxODYABAAJAAAAAzE4NwAEAAkAAAADMTg4AAQACQAA AAMxODkABAAJAAAAAzE5MAAEAAkAAAADMTkxAAQACQAAAAMxOTIAAAD+AAAACgAAAAEAAAAB AAACDgAAYAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAA AAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAA AAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/w AAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAA P/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAA AAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAA AAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/w AAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAA P/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAA AAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAA AAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/w AAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAA P/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAA AAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAA AAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/w AAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAA P/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAA AAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAA AAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/w AAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAA P/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAA AAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAA AAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/w AAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAA P/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAA AAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAA AAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/w AAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAA P/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/8AAAAAAAAD/wAAAAAAAA P/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAA AAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAA AAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/w AAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAA P/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAA AAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAA AAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAA P/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAA AAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAA AAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/w AAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAA P/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAA AAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAA AAAAAD/wAAAAAAAAP/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/8AAAAAAAAD/w AAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAA P/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAA AAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAA AAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/w AAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAA P/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAA AAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAAAAAAA AAAAAD/wAAAAAAAAAAAAAAAAAAA/8AAAAAAAAAAAAAAAAAAAP/AAAAAAAAAAAAAAAAAAAD/w AAAAAAAAAAAAAAAAAAA/8AAAAAAAAAAAAAAAAAAAP/AAAAAAAAAAAAAAAAAAAD/wAAAAAAAA AAAAAAAAAAA/8AAAAAAAAAAAAAAAAAAAP/AAAAAAAAAAAAAAAAAAAD/wAAAAAAAAAAAAAAAA AAA/8AAAAAAAAAAAAAAAAAAAP/AAAAAAAAAAAAAAAAAAAD/wAAAAAAAAAAAAAAAAAAA/8AAA AAAAAAAAAAAAAAAAP/AAAAAAAAAAAAAAAAAAAD/wAAAAAAAAAAAAAAAAAAA/8AAAAAAAAAAA AAAAAAAAP/AAAAAAAAAAAAAAAAAAAD/wAAAAAAAAAAAAAAAAAAA/8AAAAAAAAAAAAAAAAAAA P/AAAAAAAAAAAAAAAAAAAD/wAAAAAAAAAAAAAAAAAAA/8AAAAAAAAAAAAAAAAAAAP/AAAAAA AAAAAAAAAAAAAD/wAAAAAAAAAAAAAAAAAAA/8AAAAAAAAAAAAAAAAAAAP/AAAAAAAAAAAAAA AAAAAD/wAAAAAAAAAAAAAAAAAAA/8AAAAAAAAAAAAAAAAAAAP/AAAAAAAAAAAAAAAAAAAD/w AAAAAAAAAAAAAAAAAAA/8AAAAAAAAAAAAAAAAAAAP/AAAAAAAAAAAAAAAAAAAD/wAAAAAAAA AAAAAAAAAAA/8AAAAAAAAAAAAAAAAAAAP/AAAAAAAAAAAAAAAAAAAD/wAAAAAAAAAAAAAAAA AAA/8AAAAAAAAAAAAAAAAAAAP/AAAAAAAAAAAAAAAAAAAD/wAAAAAAAAAAAAAAAAAAA/8AAA AAAAAAAAAAAAAAAAP/AAAAAAAAAAAAAAAAAAAD/wAAAAAAAAAAAAAAAAAAA/8AAAAAAAAAAA AAAAAAAAP/AAAAAAAAAAAAAAAAAAAD/wAAAAAAAAAAAAAAAAAAA/8AAAAAAAAAAAAAAAAAAA P/AAAAAAAAAAAAAAAAAAAD/wAAAAAAAAAAAAAAAAAAA/8AAAAAAAAAAAAAAAAAAAP/AAAAAA AAAAAAAAAAAAAD/wAAAAAAAAAAAAAAAAAAA/8AAAAAAAAAAAAAAAAAAAP/AAAAAAAAAAAAAA AAAAAD/wAAAAAAAAAAAAAAAAAAA/8AAAAAAAAAAAAAAAAAAAP/AAAAAAAAAAAAAAAAAAAD/w AAAAAAAAAAAAAAAAAAA/8AAAAAAAAAAAAAAAAAAAP/AAAAAAAAAAAAAAAAAAAD/wAAAAAAAA AAAAAAAAAAA/8AAAAAAAAAAAAAAAAAAAP/AAAAAAAAAAAAAAAAAAAD/wAAAAAAAAAAAAAAAA AAA/8AAAAAAAAAAAAAAAAAAAP/AAAAAAAAAAAAAAAAAAAD/wAAAAAAAAAAAAAAAAAAA/8AAA AAAAAAAAAAAAAAAAP/AAAAAAAAAAAAAAAAAAAD/wAAAAAAAAAAAAAAAAAAA/8AAAAAAAAAAA AAAAAAAAP/AAAAAAAAAAAAAAAAAAAD/wAAAAAAAAAAAAAAAAAAA/8AAAAAAAAAAAAAAAAAAA P/AAAAAAAAAAAAAAAAAAAD/wAAAAAAAAAAAAAAAAAAA/8AAAAAAAAAAAAAAAAAAAP/AAAAAA AAAAAAAAAAAAAD/wAAAAAAAAAAAAAAAAAAA/8AAAAAAAAAAAAAAAAAAAP/AAAAAAAAAAAAAA AAAAAD/wAAAAAAAAAAAAAAAAAAA/8AAAAAAAAAAAAAAAAAAAP/AAAAAAAAAAAAAAAAAAAD/w AAAAAAAAAAAAAAAAAAA/8AAAAAAAAAAAAAAAAAAAP/AAAAAAAAAAAAAAAAAAAD/wAAAAAAAA AAAAAAAAAAA/8AAAAAAAAAAAAAAAAAAAP/AAAAAAAAAAAAAAAAAAAD/wAAAAAAAAAAAAAAAA AAA/8AAAAAAAAAAAAAAAAAAAP/AAAAAAAAAAAAAAAAAAAD/wAAAAAAAAAAAAAAAAAAA/8AAA AAAAAAAAAAAAAAAAP/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/wAAAAAAAAAAAAAAAAAAA/8AAA AAAAAAAAAAAAAAAAP/AAAAAAAAAAAAAAAAAAAD/wAAAAAAAAAAAAAAAAAAA/8AAAAAAAAAAA AAAAAAAAP/AAAAAAAAAAAAAAAAAAAD/wAAAAAAAAAAAAAAAAAAA/8AAAAAAAAAAAAAAAAAAA P/AAAAAAAAAAAAAAAAAAAD/wAAAAAAAAAAAAAAAAAAA/8AAAAAAAAAAAAAAAAAAAP/AAAAAA AAAAAAAAAAAAAD/wAAAAAAAAAAAAAAAAAAA/8AAAAAAAAAAAAAAAAAAAP/AAAAAAAAAAAAAA AAAAAD/wAAAAAAAAAAAAAAAAAAA/8AAAAAAAAAAAAAAAAAAAP/AAAAAAAAAAAAAAAAAAAD/w AAAAAAAAAAAAAAAAAAA/8AAAAAAAAAAAAAAAAAAAP/AAAAAAAAAAAAAAAAAAAD/wAAAAAAAA AAAAAAAAAAA/8AAAAAAAAAAAAAAAAAAAP/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAD/wAAAAAAAAAAAAAAAAAAA/8AAAAAAAAAAAAAAAAAAAP/AAAAAAAAAAAAAA AAAAAD/wAAAAAAAAAAAAAAAAAAA/8AAAAAAAAAAAAAAAAAAAP/AAAAAAAAAAAAAAAAAAAD/w AAAAAAAAAAAAAAAAAAA/8AAAAAAAAAAAAAAAAAAAP/AAAAAAAAAAAAAAAAAAAD/wAAAAAAAA AAAAAAAAAAA/8AAAAAAAAAAAAAAAAAAAP/AAAAAAAAAAAAAAAAAAAD/wAAAAAAAAAAAAAAAA AAA/8AAAAAAAAAAAAAAAAAAAP/AAAAAAAAAAAAAAAAAAAD/wAAAAAAAAAAAAAAAAAAA/8AAA AAAAAAAAAAAAAAAAP/AAAAAAAAAAAAAAAAAAAD/wAAAAAAAAAAAAAAAAAAA/8AAAAAAAAAAA AAAAAAAAP/AAAAAAAAAAAAAAAAAAAD/wAAAAAAAAAAAAAAAAAAA/8AAAAAAAAAAAAAAAAAAA P/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/wAAAAAAAAAAAAAAAA AAA/8AAAAAAAAAAAAAAAAAAAP/AAAAAAAAAAAAAAAAAAAD/wAAAAAAAAAAAAAAAAAAA/8AAA AAAAAAAAAAAAAAAAP/AAAAAAAAAAAAAAAAAAAD/wAAAAAAAAAAAAAAAAAAA/8AAAAAAAAAAA AAAAAAAAP/AAAAAAAAAAAAAAAAAAAD/wAAAAAAAAAAAAAAAAAAA/8AAAAAAAAAAAAAAAAAAA P/AAAAAAAAAAAAAAAAAAAD/wAAAAAAAAAAAAAAAAAAA/8AAAAAAAAAAAAAAAAAAAP/AAAAAA AAAAAAAAAAAAAD/wAAAAAAAAAAAAAAAAAAA/8AAAAAAAAAAAAAAAAAAAP/AAAAAAAAAAAAAA AAAAAD/wAAAAAAAAAAAAAAAAAAA/8AAAAAAAAAAAAAAAAAAAP/AAAAAAAAAAAAAAAAAAAD/w AAAAAAAAAAAAAAAAAAA/8AAAAAAAAAAAAAAAAAAAP/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA P/AAAAAAAAA/8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP/AAAAAAAAA/8AAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP/AAAAAAAAA/8AAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAP/AAAAAAAAA/8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAP/AAAAAAAAA/8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP/AAAAAA AAA/8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP/AAAAAAAAA/8AAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP/AAAAAAAAA/8AAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAP/AAAAAAAAA/8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA P/AAAAAAAAA/8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP/AAAAAAAAA/8AAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP/AAAAAAAAA/8AAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAP/AAAAAAAAA/8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAP/AAAAAAAAA/8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP/AAAAAA AAA/8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP/AAAAAAAAA/8AAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/wAAAAAAAAP/AAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/wAAAAAAAAP/AAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAD/wAAAAAAAAP/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAD/wAAAAAAAAP/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/wAAAAAAAA P/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/wAAAAAAAAP/AAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/wAAAAAAAAP/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAD/wAAAAAAAAP/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/w AAAAAAAAP/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/wAAAAAAAAP/AAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/wAAAAAAAAP/AAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAD/wAAAAAAAAP/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAD/wAAAAAAAAP/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/wAAAAAAAA P/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/wAAAAAAAAP/AAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/wAAAAAAAAP/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/8AAAAAAAAD/wAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAA/8AAAAAAAAD/wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAA/8AAAAAAAAD/wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/8AAAAAAAAD/w AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/8AAAAAAAAD/wAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAA/8AAAAAAAAD/wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAA/8AAAAAAAAD/wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/8AAA AAAAAD/wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/8AAAAAAAAD/wAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/8AAAAAAAAD/wAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAA/8AAAAAAAAD/wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAA/8AAAAAAAAD/wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/8AAAAAAAAD/w AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/8AAAAAAAAD/wAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAA/8AAAAAAAAD/wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAA/8AAAAAAAAD/wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAP/AAAAAAAAA/8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA P/AAAAAAAAA/8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP/AAAAAAAAA/8AAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP/AAAAAAAAA/8AAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAP/AAAAAAAAA/8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAP/AAAAAAAAA/8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP/AAAAAA AAA/8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP/AAAAAAAAA/8AAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP/AAAAAAAAA/8AAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAP/AAAAAAAAA/8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA P/AAAAAAAAA/8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP/AAAAAAAAA/8AAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP/AAAAAAAAA/8AAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAP/AAAAAAAAA/8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAP/AAAAAAAAA/8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP/AAAAAA AAA/8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/w AAAAAAAAP/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/wAAAAAAAAP/AAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/wAAAAAAAAP/AAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAD/wAAAAAAAAP/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAD/wAAAAAAAAP/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/wAAAAAAAA P/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/wAAAAAAAAP/AAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/wAAAAAAAAP/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAD/wAAAAAAAAP/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/w AAAAAAAAP/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/wAAAAAAAAP/AAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/wAAAAAAAAP/AAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAD/wAAAAAAAAP/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAD/wAAAAAAAAP/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/wAAAAAAAA P/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/wAAAAAAAAP/AAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAP/AAAAAAAAA/8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAP/AAAAAAAAA/8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP/AAAAAA AAA/8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP/AAAAAAAAA/8AAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP/AAAAAA AAA/8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP/AAAAAAAAA/8AAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP/AAAAAAAAA/8AAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAP/AAAAAAAAA/8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP/AAAAAAAAA/8AAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAP/AAAAAAAAA/8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA P/AAAAAAAAA/8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP/AAAAAAAAA/8AAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/w AAAAAAAAP/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/wAAAAAAAAP/AAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/wAAAAAAAAP/AAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAD/wAAAAAAAAP/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/wAAAAAAAAP/AAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAD/wAAAAAAAAP/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAD/wAAAAAAAAP/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/wAAAAAAAA P/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAD/wAAAAAAAAP/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/wAAAAAAAA P/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/wAAAAAAAAP/AAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/wAAAAAAAAP/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/8AAAAAAAAD/wAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAA/8AAAAAAAAD/wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAA/8AAAAAAAAD/wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/8AAA AAAAAD/wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAA/8AAAAAAAAD/wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/8AAA AAAAAD/wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/8AAAAAAAAD/wAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/8AAAAAAAAD/wAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/8AAAAAAAAD/wAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/8AAAAAAAAD/wAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAA/8AAAAAAAAD/wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAA/8AAAAAAAAD/wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAP/AAAAAAAAA/8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA P/AAAAAAAAA/8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP/AAAAAAAAA/8AAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP/AAAAAAAAA/8AAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP/AAAAAAAAA/8AAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP/AAAAAAAAA/8AAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAP/AAAAAAAAA/8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAP/AAAAAAAAA/8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAP/AAAAAAAAA/8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAP/AAAAAAAAA/8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP/AAAAAA AAA/8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP/AAAAAAAAA/8AAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/wAAAAAAAA P/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/wAAAAAAAAP/AAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/wAAAAAAAAP/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAD/wAAAAAAAAP/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/wAAAAAAAAP/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAD/wAAAAAAAAP/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/w AAAAAAAAP/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/wAAAAAAAAP/AAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/w AAAAAAAAP/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/wAAAAAAAAP/AAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/wAAAAAAAAP/AAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAD/wAAAAAAAAP/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/w AAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAA P/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAA AAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/w AAAAAAAAP/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAA AAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAA AAAAAD/wAAAAAAAAP/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/8AAAAAAAAD/wAAAAAAAA P/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAA AAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAA AAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAA AAAAAD/wAAAAAAAAP/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/8AAAAAAAAD/wAAAAAAAA P/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAA AAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/8AAAAAAAAD/w AAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAA P/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/8AAA AAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/w AAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/8AAAAAAAAD/w AAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAA P/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/8AAA AAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/w AAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAA AAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAA AAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/8AAAAAAAAD/w AAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAA P/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/w AAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAA P/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/8AAA AAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/w AAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/8AAA AAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/w AAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAA AAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/w AAAAAAAAP/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAA AAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAA AAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAA AAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAA AAAAAD/wAAAAAAAAP/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAA AAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA P/AAAAAAAAA/8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAP/AAAAAAAAA/8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAP/AAAAAAAAA/8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAP/AAAAAAAAA/8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/wAAAAAAAAP/AAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/wAAAAAAAA P/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/w AAAAAAAAP/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAD/wAAAAAAAAP/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/8AAAAAAAAD/wAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/8AAAAAAAAD/wAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/8AAAAAAAAD/wAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/8AAAAAAAAD/w AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAP/AAAAAAAAA/8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAP/AAAAAAAAA/8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP/AAAAAAAAA/8AAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP/AAAAAAAAA/8AAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/w AAAAAAAAP/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAD/wAAAAAAAAP/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAD/wAAAAAAAAP/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAD/wAAAAAAAAP/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA P/AAAAAAAAA/8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAP/AAAAAAAAA/8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAP/AAAAAAAAA/8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAP/AAAAAAAAA/8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/wAAAAAAAAP/AAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/wAAAAAAAA P/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/w AAAAAAAAP/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAD/wAAAAAAAAP/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/8AAAAAAAAD/wAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/8AAAAAAAAD/wAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/8AAAAAAAAD/wAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/8AAAAAAAAD/w AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAP/AAAAAAAAA/8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAP/AAAAAAAAA/8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP/AAAAAAAAA/8AAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP/AAAAAAAAA/8AAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/w AAAAAAAAP/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAD/wAAAAAAAAP/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAD/wAAAAAAAAP/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAD/wAAAAAAAAP/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA P/AAAAAAAAA/8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAP/AAAAAAAAA/8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAP/AAAAAAAAA/8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAP/AAAAAAAAA/8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/wAAAAAAAAP/AAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/wAAAAAAAA P/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/w AAAAAAAAP/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAD/wAAAAAAAAP/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/8AAAAAAAAD/wAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/8AAAAAAAAD/wAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/8AAAAAAAAD/wAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/8AAAAAAAAD/w AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAP/AAAAAAAAA/8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAP/AAAAAAAAA/8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP/AAAAAAAAA/8AAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP/AAAAAAAAA/8AAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/w AAAAAAAAP/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAD/wAAAAAAAAP/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAD/wAAAAAAAAP/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAD/wAAAAAAAAP/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP/AAAAAAAAA/8AAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAP/AAAAAAAAA/8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP/AAAAAA AAA/8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/wAAAAAAAAP/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/w AAAAAAAAP/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/wAAAAAAAAP/AAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAA/8AAAAAAAAD/wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/8AAAAAAAAD/wAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAA/8AAAAAAAAD/wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP/AAAAAAAAA/8AAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAP/AAAAAAAAA/8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP/AAAAAAAAA/8AAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAD/wAAAAAAAAP/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/wAAAAAAAA P/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/wAAAAAAAAP/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAP/AAAAAAAAA/8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP/AAAAAAAAA/8AAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAP/AAAAAAAAA/8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/wAAAAAAAA P/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/wAAAAAAAAP/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/w AAAAAAAAP/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/8AAAAAAAAD/wAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAA/8AAAAAAAAD/wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/8AAAAAAAAD/wAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAP/AAAAAAAAA/8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP/AAAAAAAAA/8AAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAP/AAAAAAAAA/8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/wAAAAAAAAP/AAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAD/wAAAAAAAAP/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/wAAAAAAAA P/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP/AAAAAAAAA/8AAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAP/AAAAAAAAA/8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP/AAAAAAAAA/8AAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAD/wAAAAAAAAP/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/wAAAAAAAA P/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/wAAAAAAAAP/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/8AAA AAAAAD/wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/8AAAAAAAAD/wAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAA/8AAAAAAAAD/wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP/AAAAAAAAA/8AAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAP/AAAAAAAAA/8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP/AAAAAAAAA/8AAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAD/wAAAAAAAAP/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/wAAAAAAAAP/AAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/67jS4cIlqr/wzemIC//nP+u40uHC Jaq/8M3piAv/5z/ruNLhwiWqv/DN6YgL/+c/67jS4cIlqr/wzemIC//nP+u40uHCJaq/8M3p iAv/5z/ruNLhwiWqv/DN6YgL/+c/35a7b1qGf7/eqoVQ2yV4P9+Wu29ahn+/3qqFUNsleD/f lrtvWoZ/v96qhVDbJXg/35a7b1qGf7/eqoVQ2yV4P9+Wu29ahn+/3qqFUNsleD/flrtvWoZ/ v96qhVDbJXg/v9A7X/B0OT+ME/MV5QkRP7/QO1/wdDk/jBPzFeUJET+/0Dtf8HQ5P4wT8xXl CRE/v9A7X/B0OT+ME/MV5QkRP7/QO1/wdDk/jBPzFeUJET+/0Dtf8HQ5P4wT8xXlCRG/6k96 twVmcD/YymXMUAGZv+pPercFZnA/2MplzFABmb/qT3q3BWZwP9jKZcxQAZm/6k96twVmcD/Y ymXMUAGZv+pPercFZnA/2MplzFABmb/qT3q3BWZwP9jKZcxQAZkAAAAAAAAAAIAAAAAAAAAA AAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAA AACAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAACAAAAA AAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAA AAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AACAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAACAAAAA AAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAA AAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAA AAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAA AACAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAACAAAAA AAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAA AACAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAIAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAA AAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAA AAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAA AACAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAA AAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAA AAAAAIAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAA AAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAA AAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAA AAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAA AAAAAAAAAAA/6WQtARLmA7/uyHqopVwLP+lkLQES5gO/7sh6qKVcCz/pZC0BEuYDv+7Ieqil XAs/6WQtARLmA7/uyHqopVwLP+lkLQES5gO/7sh6qKVcCz/pZC0BEuYDv+7IeqilXAs/3O7c L3dhMr/cFoHxRNeuP9zu3C93YTK/3BaB8UTXrj/c7twvd2Eyv9wWgfFE164/3O7cL3dhMr/c FoHxRNeuP9zu3C93YTK/3BaB8UTXrj/c7twvd2Eyv9wWgfFE164/vSOGlSKNlD+Jt6PyV3Kh P70jhpUijZQ/ibej8ldyoT+9I4aVIo2UP4m3o/JXcqE/vSOGlSKNlD+Jt6PyV3KhP70jhpUi jZQ/ibej8ldyoT+9I4aVIo2UP4m3o/JXcqG/6Bk15aKVQz/WtNcEmmlEv+gZNeWilUM/1rTX BJppRL/oGTXlopVDP9a01wSaaUS/6Bk15aKVQz/WtNcEmmlEv+gZNeWilUM/1rTXBJppRL/o GTXlopVDP9a01wSaaUQAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAA gAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAgAAAAAAA AAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAA AAAAAIAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAgAAAAAAA AAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAA AAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAA AAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAA gAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAgAAAAAAA AAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAA gAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAgAAAAAAA AAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAACAAAAA AAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAA AAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAA gAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAgAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAA AAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAA gAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAA AACAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAACAAAAA AAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAA AAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAA gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAAAAA AAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAA AAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAAA/5Ve0tL2q3r/p3+qQk3LD P+VXtLS9qt6/6d/qkJNywz/lV7S0varev+nf6pCTcsM/5Ve0tL2q3r/p3+qQk3LDP+VXtLS9 qt6/6d/qkJNywz/lV7S0varev+nf6pCTcsM/2FHRKBBXhL/Xm/Zk0uOCP9hR0SgQV4S/15v2 ZNLjgj/YUdEoEFeEv9eb9mTS44I/2FHRKBBXhL/Xm/Zk0uOCP9hR0SgQV4S/15v2ZNLjgj/Y UdEoEFeEv9eb9mTS44I/uH4VwBoaoT+FndyiTbDkP7h+FcAaGqE/hZ3cok2w5D+4fhXAGhqh P4Wd3KJNsOQ/uH4VwBoaoT+FndyiTbDkP7h+FcAaGqE/hZ3cok2w5D+4fhXAGhqhP4Wd3KJN sOS/5EGDjl/eyT/TFfetgN41v+RBg45f3sk/0xX3rYDeNb/kQYOOX97JP9MV962A3jW/5EGD jl/eyT/TFfetgN41v+RBg45f3sk/0xX3rYDeNb/kQYOOX97JP9MV962A3jUAAAAAAAAAAIAA AAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAA AAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAA AACAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAACAAAAA AAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAA AACAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAIAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAA AAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAA AAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAA AACAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAA AAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAA AAAAAIAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAA AAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAA AAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAA AAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAgAAAAAAA AAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAA AAAAAIAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAA AAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAA AAAAAIAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAA AAAAAAAAAAAAAAAAAAA/4/aFfJGaEb/oM7vMbr2/P+P2hXyRmhG/6DO7zG69vz/j9oV8kZoR v+gzu8xuvb8/4/aFfJGaEb/oM7vMbr2/P+P2hXyRmhG/6DO7zG69vz/j9oV8kZoRv+gzu8xu vb8/1r9eRNhc17/WFUTlRzcHP9a/XkTYXNe/1hVE5Uc3Bz/Wv15E2FzXv9YVROVHNwc/1r9e RNhc17/WFUTlRzcHP9a/XkTYXNe/1hVE5Uc3Bz/Wv15E2FzXv9YVROVHNwc/tujGTVsf8j+E OCRzR1utP7boxk1bH/I/hDgkc0dbrT+26MZNWx/yP4Q4JHNHW60/tujGTVsf8j+EOCRzR1ut P7boxk1bH/I/hDgkc0dbrT+26MZNWx/yP4Q4JHNHW62/4vJP8z/RUT/R2iEQqhQFv+LyT/M/ 0VE/0dohEKoUBb/i8k/zP9FRP9HaIRCqFAW/4vJP8z/RUT/R2iEQqhQFv+LyT/M/0VE/0doh EKoUBb/i8k/zP9FRP9HaIRCqFAU/3NaJ8vsZwAAAAAAAAAAAP9zWifL7GcAAAAAAAAAAAD/c 1ony+xnAAAAAAAAAAAA/3NaJ8vsZwAAAAAAAAAAAP9zWifL7GcAAAAAAAAAAAD/c1ony+xnA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/2mnev5j+UAAAAAAAAAAAP9pp3r+Y/lAAAAAA AAAAAD/aad6/mP5QAAAAAAAAAAA/2mnev5j+UAAAAAAAAAAAP9pp3r+Y/lAAAAAAAAAAAD/a ad6/mP5QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/1jOsH6xGVAAAAAAAAAAAP9YzrB+s RlQAAAAAAAAAAD/WM6wfrEZUAAAAAAAAAAA/1jOsH6xGVAAAAAAAAAAAP9YzrB+sRlQAAAAA AAAAAD/WM6wfrEZUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/1MRE03W7ZwAAAAAAAAAA P9TERNN1u2cAAAAAAAAAAD/UxETTdbtnAAAAAAAAAAA/1MRE03W7ZwAAAAAAAAAAP9TERNN1 u2cAAAAAAAAAAD/UxETTdbtnAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/3NaJ8vsZwAAAAAAAAAAAP9zWifL7 GcAAAAAAAAAAAD/c1ony+xnAAAAAAAAAAAA/3NaJ8vsZwAAAAAAAAAAAP9zWifL7GcAAAAAA AAAAAD/c1ony+xnAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/2mnev5j+UAAAAAAAAAAA P9pp3r+Y/lAAAAAAAAAAAD/aad6/mP5QAAAAAAAAAAA/2mnev5j+UAAAAAAAAAAAP9pp3r+Y /lAAAAAAAAAAAD/aad6/mP5QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/1jOsH6xGVAAA AAAAAAAAP9YzrB+sRlQAAAAAAAAAAD/WM6wfrEZUAAAAAAAAAAA/1jOsH6xGVAAAAAAAAAAA P9YzrB+sRlQAAAAAAAAAAD/WM6wfrEZUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/1MRE 03W7ZwAAAAAAAAAAP9TERNN1u2cAAAAAAAAAAD/UxETTdbtnAAAAAAAAAAA/1MRE03W7ZwAA AAAAAAAAP9TERNN1u2cAAAAAAAAAAD/UxETTdbtnAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/3NaJ8vsZwAAA AAAAAAAAP9zWifL7GcAAAAAAAAAAAD/c1ony+xnAAAAAAAAAAAA/3NaJ8vsZwAAAAAAAAAAA P9zWifL7GcAAAAAAAAAAAD/c1ony+xnAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/2mne v5j+UAAAAAAAAAAAP9pp3r+Y/lAAAAAAAAAAAD/aad6/mP5QAAAAAAAAAAA/2mnev5j+UAAA AAAAAAAAP9pp3r+Y/lAAAAAAAAAAAD/aad6/mP5QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAA/1jOsH6xGVAAAAAAAAAAAP9YzrB+sRlQAAAAAAAAAAD/WM6wfrEZUAAAAAAAAAAA/1jOs H6xGVAAAAAAAAAAAP9YzrB+sRlQAAAAAAAAAAD/WM6wfrEZUAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAA/1MRE03W7ZwAAAAAAAAAAP9TERNN1u2cAAAAAAAAAAD/UxETTdbtnAAAAAAAA AAA/1MRE03W7ZwAAAAAAAAAAP9TERNN1u2cAAAAAAAAAAD/UxETTdbtnAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAA/3NaJ8vsZwAAAAAAAAAAAP9zWifL7GcAAAAAAAAAAAD/c1ony+xnAAAAAAAAAAAA/3NaJ 8vsZwAAAAAAAAAAAP9zWifL7GcAAAAAAAAAAAD/c1ony+xnAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAA/2mnev5j+UAAAAAAAAAAAP9pp3r+Y/lAAAAAAAAAAAD/aad6/mP5QAAAAAAAA AAA/2mnev5j+UAAAAAAAAAAAP9pp3r+Y/lAAAAAAAAAAAD/aad6/mP5QAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAA/1jOsH6xGVAAAAAAAAAAAP9YzrB+sRlQAAAAAAAAAAD/WM6wfrEZU AAAAAAAAAAA/1jOsH6xGVAAAAAAAAAAAP9YzrB+sRlQAAAAAAAAAAD/WM6wfrEZUAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAA/1MRE03W7ZwAAAAAAAAAAP9TERNN1u2cAAAAAAAAAAD/U xETTdbtnAAAAAAAAAAA/1MRE03W7ZwAAAAAAAAAAP9TERNN1u2cAAAAAAAAAAD/UxETTdbtn AAAAAAAAAAAAAAAAAAAAAD/c1ony+xnAAAAAAAAAAAA/3NaJ8vsZwAAAAAAAAAAAP9zWifL7 GcAAAAAAAAAAAD/c1ony+xnAAAAAAAAAAAA/3NaJ8vsZwAAAAAAAAAAAP9zWifL7GcAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/aad6/mP5QAAAAAAAAAAA/2mnev5j+UAAAAAAAAAAA P9pp3r+Y/lAAAAAAAAAAAD/aad6/mP5QAAAAAAAAAAA/2mnev5j+UAAAAAAAAAAAP9pp3r+Y /lAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/WM6wfrEZUAAAAAAAAAAA/1jOsH6xGVAAA AAAAAAAAP9YzrB+sRlQAAAAAAAAAAD/WM6wfrEZUAAAAAAAAAAA/1jOsH6xGVAAAAAAAAAAA P9YzrB+sRlQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/UxETTdbtnAAAAAAAAAAA/1MRE 03W7ZwAAAAAAAAAAP9TERNN1u2cAAAAAAAAAAD/UxETTdbtnAAAAAAAAAAA/1MRE03W7ZwAA AAAAAAAAP9TERNN1u2cAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/c1ony+xnAAAAAAAAAAAA/3NaJ8vsZwAAA AAAAAAAAP9zWifL7GcAAAAAAAAAAAD/c1ony+xnAAAAAAAAAAAA/3NaJ8vsZwAAAAAAAAAAA P9zWifL7GcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/aad6/mP5QAAAAAAAAAAA/2mne v5j+UAAAAAAAAAAAP9pp3r+Y/lAAAAAAAAAAAD/aad6/mP5QAAAAAAAAAAA/2mnev5j+UAAA AAAAAAAAP9pp3r+Y/lAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/WM6wfrEZUAAAAAAAA AAA/1jOsH6xGVAAAAAAAAAAAP9YzrB+sRlQAAAAAAAAAAD/WM6wfrEZUAAAAAAAAAAA/1jOs H6xGVAAAAAAAAAAAP9YzrB+sRlQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/UxETTdbtn AAAAAAAAAAA/1MRE03W7ZwAAAAAAAAAAP9TERNN1u2cAAAAAAAAAAD/UxETTdbtnAAAAAAAA AAA/1MRE03W7ZwAAAAAAAAAAP9TERNN1u2cAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/c1ony+xnAAAAAAAAA AAA/3NaJ8vsZwAAAAAAAAAAAP9zWifL7GcAAAAAAAAAAAD/c1ony+xnAAAAAAAAAAAA/3NaJ 8vsZwAAAAAAAAAAAP9zWifL7GcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/aad6/mP5Q AAAAAAAAAAA/2mnev5j+UAAAAAAAAAAAP9pp3r+Y/lAAAAAAAAAAAD/aad6/mP5QAAAAAAAA AAA/2mnev5j+UAAAAAAAAAAAP9pp3r+Y/lAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/W M6wfrEZUAAAAAAAAAAA/1jOsH6xGVAAAAAAAAAAAP9YzrB+sRlQAAAAAAAAAAD/WM6wfrEZU AAAAAAAAAAA/1jOsH6xGVAAAAAAAAAAAP9YzrB+sRlQAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAD/UxETTdbtnAAAAAAAAAAA/1MRE03W7ZwAAAAAAAAAAP9TERNN1u2cAAAAAAAAAAD/U xETTdbtnAAAAAAAAAAA/1MRE03W7ZwAAAAAAAAAAP9TERNN1u2cAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/c 1ony+xnAAAAAAAAAAAA/3NaJ8vsZwAAAAAAAAAAAP9zWifL7GcAAAAAAAAAAAD/c1ony+xnA AAAAAAAAAAA/3NaJ8vsZwAAAAAAAAAAAP9zWifL7GcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAD/aad6/mP5QAAAAAAAAAAA/2mnev5j+UAAAAAAAAAAAP9pp3r+Y/lAAAAAAAAAAAD/a ad6/mP5QAAAAAAAAAAA/2mnev5j+UAAAAAAAAAAAP9pp3r+Y/lAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAD/WM6wfrEZUAAAAAAAAAAA/1jOsH6xGVAAAAAAAAAAAP9YzrB+sRlQAAAAA AAAAAD/WM6wfrEZUAAAAAAAAAAA/1jOsH6xGVAAAAAAAAAAAP9YzrB+sRlQAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAD/UxETTdbtnAAAAAAAAAAA/1MRE03W7ZwAAAAAAAAAAP9TERNN1 u2cAAAAAAAAAAD/UxETTdbtnAAAAAAAAAAA/1MRE03W7ZwAAAAAAAAAAP9TERNN1u2c/zyAM 7pv8yr/WhFeK8pzUP84fKOEr2V2/20Agian+Bj+hOAZfhii8v9FfWvBJkag/mB9CFAG2qb+x JT1RoHPNv4s6xwtkUzy/rhpJpmvU3b/Ts8t7aq0gv5dCZFtQC5g/zyAM7pv8yr/WhFeK8pzU P84fKOEr2V2/20Agian+Bj+hOAZfhii8v9FfWvBJkag/mB9CFAG2qb+xJT1RoHPNv4s6xwtk Uzy/rhpJpmvU3b/Ts8t7aq0gv5dCZFtQC5g/zyAM7pv8yr/WhFeK8pzUP84fKOEr2V2/20Ag ian+Bj+hOAZfhii8v9FfWvBJkag/mB9CFAG2qb+xJT1RoHPNv4s6xwtkUzy/rhpJpmvU3b/T s8t7aq0gv5dCZFtQC5g/zyAM7pv8yr/WhFeK8pzUP84fKOEr2V2/20Agian+Bj+hOAZfhii8 v9FfWvBJkag/mB9CFAG2qb+xJT1RoHPNv4s6xwtkUzy/rhpJpmvU3b/Ts8t7aq0gv5dCZFtQ C5gAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAA AAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAA AAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAA gAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAA AACAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAA AAAAAIAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAA AAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAA gAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAgAAAAAAA AAAAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAAAAAAAA AAAAAIAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAA AAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAA AAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAgAAAAAAA AACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAACAAAAA AAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAA AAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAA gAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAA AAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAA AAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAA AAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAA gAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAA AACAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAA AAAAAIAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAA AAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAA gAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAgAAAAAAA AAAAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAAAAAAAA AAAAAIAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAA AAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAA AAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAgAAAAAAA AACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAAA/3sWnPejTYL/mQvIbEAouP93HrUetuaK/6vD7 s2b3bD+xBgQZ/+o4v+Es5nCGl8o/p9kzNo/Cor/A83GbFnNwv5rrsb6QMiy/vcLcM0UVZb/j epK8w4ehv6b+1vSQmCg/3sWnPejTYL/mQvIbEAouP93HrUetuaK/6vD7s2b3bD+xBgQZ/+o4 v+Es5nCGl8o/p9kzNo/Cor/A83GbFnNwv5rrsb6QMiy/vcLcM0UVZb/jepK8w4ehv6b+1vSQ mCg/3sWnPejTYL/mQvIbEAouP93HrUetuaK/6vD7s2b3bD+xBgQZ/+o4v+Es5nCGl8o/p9kz No/Cor/A83GbFnNwv5rrsb6QMiy/vcLcM0UVZb/jepK8w4ehv6b+1vSQmCg/3sWnPejTYL/m QvIbEAouP93HrUetuaK/6vD7s2b3bD+xBgQZ/+o4v+Es5nCGl8o/p9kzNo/Cor/A83GbFnNw v5rrsb6QMiy/vcLcM0UVZb/jepK8w4ehv6b+1vSQmCgAAAAAAAAAAIAAAAAAAAAAAAAAAAAA AACAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAA AAAAAIAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAA AAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAA gAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAgAAAAAAA AAAAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAAAAAAAA AAAAAIAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAA AAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAA AAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAgAAAAAAA AACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAACAAAAA AAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAA AAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAA gAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAA AAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAA AAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAA AAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAA gAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAA AACAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAA AAAAAIAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAA AAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAA gAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAgAAAAAAA AAAAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAAAAAAAA AAAAAIAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAA AAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAA AAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAgAAAAAAA AACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAACAAAAA AAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAA AAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAA gAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAA AAA/2GRJuZNsT7/hpVExCfp4P9ea+LEbisS/5VrznTS7xT+q/NYAaF1Lv9s6esfa8eM/oudW isiyjL+632Seo233v5VWwmOhZKO/t5cnR+Txsr/e4UxVToIbv6I6QLvRqJw/2GRJuZNsT7/h pVExCfp4P9ea+LEbisS/5VrznTS7xT+q/NYAaF1Lv9s6esfa8eM/oudWisiyjL+632Seo233 v5VWwmOhZKO/t5cnR+Txsr/e4UxVToIbv6I6QLvRqJw/2GRJuZNsT7/hpVExCfp4P9ea+LEb isS/5VrznTS7xT+q/NYAaF1Lv9s6esfa8eM/oudWisiyjL+632Seo233v5VWwmOhZKO/t5cn R+Txsr/e4UxVToIbv6I6QLvRqJw/2GRJuZNsT7/hpVExCfp4P9ea+LEbisS/5VrznTS7xT+q /NYAaF1Lv9s6esfa8eM/oudWisiyjL+632Seo233v5VWwmOhZKO/t5cnR+Txsr/e4UxVToIb v6I6QLvRqJwAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAgAAAAAAA AAAAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAAAAAAAA AAAAAIAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAA AAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAA AAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAgAAAAAAA AACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAACAAAAA AAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAA AAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAA gAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAA AAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAA AAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAA AAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAA gAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAA AACAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAA AAAAAIAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAA AAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAA gAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAgAAAAAAA AAAAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAAAAAAAA AAAAAIAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAA AAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAA AAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAgAAAAAAA AACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAACAAAAA AAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAA AAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAA gAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAA AAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAA AAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAA AAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAA gAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAAA/1ljh1THpF7/gKqsuieGDP9WgcLaQ Kuu/45C0DMPOnj+ouboH4pUJv9jyNAprm74/oVGygbui/7+4nsBxn5FYv5OM3MjJSVa/tZzx OvEXPr/cSqn2hqOYv6CzHtCMptw/1ljh1THpF7/gKqsuieGDP9WgcLaQKuu/45C0DMPOnj+o uboH4pUJv9jyNAprm74/oVGygbui/7+4nsBxn5FYv5OM3MjJSVa/tZzxOvEXPr/cSqn2hqOY v6CzHtCMptw/1ljh1THpF7/gKqsuieGDP9WgcLaQKuu/45C0DMPOnj+ouboH4pUJv9jyNApr m74/oVGygbui/7+4nsBxn5FYv5OM3MjJSVa/tZzxOvEXPr/cSqn2hqOYv6CzHtCMptw/1ljh 1THpF7/gKqsuieGDP9WgcLaQKuu/45C0DMPOnj+ouboH4pUJv9jyNAprm74/oVGygbui/7+4 nsBxn5FYv5OM3MjJSVa/tZzxOvEXPr/cSqn2hqOYv6CzHtCMptw/5c44hbU75QAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/5c44hbU75QAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAA/5c44hbU75QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAA/5c44hbU75QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/9Y7kBYkwdAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/9Y7kBYkwdAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAA/9Y7kBYkwdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAA/9Y7kBYkwdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/8RaY VDhyXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/8RaYVDhyXAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/8RaYVDhyXAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAA/8RaYVDhyXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAA/70/RymByAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/70/RymByAwAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/70/RymByAwAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAA/70/RymByAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP+XOOIW1O+UAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAP+XOOIW1O+UAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA P+XOOIW1O+UAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP+XOOIW1O+UAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP/WO5AWJMHQAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAP/WO5AWJMHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAP/WO5AWJMHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP/WO5AWJ MHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP/EWmFQ4clwAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP/EWmFQ4clwAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAP/EWmFQ4clwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA P/EWmFQ4clwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP+9P0cpgcgMAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP+9P0cpgcgMAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAP+9P0cpgcgMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAP+9P0cpgcgMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAD/lzjiFtTvlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/l zjiFtTvlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/lzjiFtTvlAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/lzjiFtTvlAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAD/1juQFiTB0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAD/1juQFiTB0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/1juQFiTB0 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/1juQFiTB0AAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/xFphUOHJcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAD/xFphUOHJcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/x FphUOHJcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/xFphUOHJcAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/vT9HKYHIDAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAD/vT9HKYHIDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAD/vT9HKYHIDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/vT9HKYHID AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/5c44 hbU75QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/5c44hbU75QAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/5c44hbU75QAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAA/5c44hbU75QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAA/9Y7kBYkwdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/9Y7kBYkwdAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/9Y7kBYkwdAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAA/9Y7kBYkwdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAA/8RaYVDhyXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/8RaY VDhyXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/8RaYVDhyXAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/8RaYVDhyXAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAA/70/RymByAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAA/70/RymByAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/70/RymByAwAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/70/RymByAwAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP+XOOIW1O+UAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP+XOOIW1O+UAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAP+XOOIW1O+UAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA P+XOOIW1O+UAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP/WO5AWJMHQAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP/WO5AWJMHQAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAP/WO5AWJMHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAP/WO5AWJMHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP/EWmFQ4 clwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP/EWmFQ4clwAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP/EWmFQ4clwAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAP/EWmFQ4clwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA P+9P0cpgcgMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP+9P0cpgcgMAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP+9P0cpgcgMAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAP+9P0cpgcgMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/lzjiFtTvlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAD/lzjiFtTvlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/l zjiFtTvlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/lzjiFtTvlAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/1juQFiTB0AAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAD/1juQFiTB0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAD/1juQFiTB0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/1juQFiTB0 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/xFphUOHJcAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/xFphUOHJcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAD/xFphUOHJcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/x FphUOHJcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/vT9HKYHIDAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/vT9HKYHIDAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAD/vT9HKYHIDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAD/vT9HKYHIDAAAAAAAAAAAAAAAAAAAAAD/lzjiFtTvlAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAD/lzjiFtTvlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAD/lzjiFtTvlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/lzjiFtTvl AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/1juQFiTB0AAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/1juQFiTB0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAD/1juQFiTB0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/1 juQFiTB0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/xFphUOHJcAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/xFphUOHJcAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAD/xFphUOHJcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAD/xFphUOHJcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/vT9HKYHID AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/vT9HKYHIDAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/vT9HKYHIDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAD/vT9HKYHIDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAA/5c44hbU75QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAA/5c44hbU75QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/5c44hbU75QAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/5c44hbU75QAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAA/9Y7kBYkwdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAA/9Y7kBYkwdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/9Y7k BYkwdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/9Y7kBYkwdAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/8RaYVDhyXAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAA/8RaYVDhyXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAA/8RaYVDhyXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/8RaYVDhyXAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/70/RymByAwAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAA/70/RymByAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAA/70/RymByAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/70/R ymByAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA P+XOOIW1O+UAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP+XOOIW1O+UAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP+XOOIW1O+UAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAP+XOOIW1O+UAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAP/WO5AWJMHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP/WO5AWJ MHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP/WO5AWJMHQAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP/WO5AWJMHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAP/EWmFQ4clwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA P/EWmFQ4clwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP/EWmFQ4clwAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP/EWmFQ4clwAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAP+9P0cpgcgMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAP+9P0cpgcgMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP+9P0cpg cgMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP+9P0cpgcgMAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/lzjiFtTvlAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/lzjiFtTvlAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAD/lzjiFtTvlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAD/lzjiFtTvlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/1juQFiTB0 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/1juQFiTB0AAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/1juQFiTB0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAD/1juQFiTB0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/x FphUOHJcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/xFphUOHJcAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/xFphUOHJcAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAD/xFphUOHJcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAD/vT9HKYHIDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/vT9HKYHID AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/vT9HKYHIDAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/vT9HKYHIDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/5c44hbU75QAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAA/5c44hbU75QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAA/5c44hbU75QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/5c44hbU75QAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/9Y7kBYkwdAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAA/9Y7kBYkwdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAA/9Y7kBYkwdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/9Y7k BYkwdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/8RaYVDhyXAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/8RaYVDhyXAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAA/8RaYVDhyXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAA/8RaYVDhyXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/70/RymByAwAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/70/RymByAwAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAA/70/RymByAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAA/70/RymByAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAP+XOOIW1O+UAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA P+XOOIW1O+UAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP+XOOIW1O+UAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP+XOOIW1O+UAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAP/WO5AWJMHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAP/WO5AWJMHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP/WO5AWJ MHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP/WO5AWJMHQAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP/EWmFQ4clwAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAP/EWmFQ4clwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA P/EWmFQ4clwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP/EWmFQ4clwAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP+9P0cpgcgMAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAP+9P0cpgcgMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAP+9P0cpgcgMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP+9P0cpg cgMAAAQCAAAc/wAAAA0AAAACAAAAwAAAAIAAAAQCAAAd/wAAABMAAAACAAAA/gAAABAAAACA AAQACQAAAAsoSW50ZXJjZXB0KQAEAAkAAAAJZWxlY3Rpb24yAAQACQAAAAllbGVjdGlvbjMA BAAJAAAACWVsZWN0aW9uNAAEAAkAAAAFdm90ZTIABAAJAAAAD2VsZWN0aW9uMjp2b3RlMgAE AAkAAAAPZWxlY3Rpb24zOnZvdGUyAAQACQAAAA9lbGVjdGlvbjQ6dm90ZTIABAAJAAAABmNs YXNzMgAEAAkAAAAGY2xhc3MzAAQACQAAAAZjbGFzczQABAAJAAAABmNsYXNzNQAEAAkAAAAG Y2xhc3M2AAQACQAAABBlbGVjdGlvbjI6Y2xhc3MyAAQACQAAABBlbGVjdGlvbjM6Y2xhc3My AAQACQAAABBlbGVjdGlvbjQ6Y2xhc3MyAAQACQAAABBlbGVjdGlvbjI6Y2xhc3MzAAQACQAA ABBlbGVjdGlvbjM6Y2xhc3MzAAQACQAAABBlbGVjdGlvbjQ6Y2xhc3MzAAQACQAAABBlbGVj dGlvbjI6Y2xhc3M0AAQACQAAABBlbGVjdGlvbjM6Y2xhc3M0AAQACQAAABBlbGVjdGlvbjQ6 Y2xhc3M0AAQACQAAABBlbGVjdGlvbjI6Y2xhc3M1AAQACQAAABBlbGVjdGlvbjM6Y2xhc3M1 AAQACQAAABBlbGVjdGlvbjQ6Y2xhc3M1AAQACQAAABBlbGVjdGlvbjI6Y2xhc3M2AAQACQAA ABBlbGVjdGlvbjM6Y2xhc3M2AAQACQAAABBlbGVjdGlvbjQ6Y2xhc3M2AAQACQAAAAlyZWxp Z2lvbjIABAAJAAAACXJlbGlnaW9uMwAEAAkAAAAJcmVsaWdpb240AAQACQAAABNlbGVjdGlv bjI6cmVsaWdpb24yAAQACQAAABNlbGVjdGlvbjM6cmVsaWdpb24yAAQACQAAABNlbGVjdGlv bjQ6cmVsaWdpb24yAAQACQAAABNlbGVjdGlvbjI6cmVsaWdpb24zAAQACQAAABNlbGVjdGlv bjM6cmVsaWdpb24zAAQACQAAABNlbGVjdGlvbjQ6cmVsaWdpb24zAAQACQAAABNlbGVjdGlv bjI6cmVsaWdpb240AAQACQAAABNlbGVjdGlvbjM6cmVsaWdpb240AAQACQAAABNlbGVjdGlv bjQ6cmVsaWdpb240AAQACQAAABBjbGFzczI6cmVsaWdpb24yAAQACQAAABBjbGFzczM6cmVs aWdpb24yAAQACQAAABBjbGFzczQ6cmVsaWdpb24yAAQACQAAABBjbGFzczU6cmVsaWdpb24y AAQACQAAABBjbGFzczY6cmVsaWdpb24yAAQACQAAABBjbGFzczI6cmVsaWdpb24zAAQACQAA ABBjbGFzczM6cmVsaWdpb24zAAQACQAAABBjbGFzczQ6cmVsaWdpb24zAAQACQAAABBjbGFz czU6cmVsaWdpb24zAAQACQAAABBjbGFzczY6cmVsaWdpb24zAAQACQAAABBjbGFzczI6cmVs aWdpb240AAQACQAAABBjbGFzczM6cmVsaWdpb240AAQACQAAABBjbGFzczQ6cmVsaWdpb240 AAQACQAAABBjbGFzczU6cmVsaWdpb240AAQACQAAABBjbGFzczY6cmVsaWdpb240AAQACQAA ABplbGVjdGlvbjI6Y2xhc3MyOnJlbGlnaW9uMgAEAAkAAAAaZWxlY3Rpb24zOmNsYXNzMjpy ZWxpZ2lvbjIABAAJAAAAGmVsZWN0aW9uNDpjbGFzczI6cmVsaWdpb24yAAQACQAAABplbGVj dGlvbjI6Y2xhc3MzOnJlbGlnaW9uMgAEAAkAAAAaZWxlY3Rpb24zOmNsYXNzMzpyZWxpZ2lv bjIABAAJAAAAGmVsZWN0aW9uNDpjbGFzczM6cmVsaWdpb24yAAQACQAAABplbGVjdGlvbjI6 Y2xhc3M0OnJlbGlnaW9uMgAEAAkAAAAaZWxlY3Rpb24zOmNsYXNzNDpyZWxpZ2lvbjIABAAJ AAAAGmVsZWN0aW9uNDpjbGFzczQ6cmVsaWdpb24yAAQACQAAABplbGVjdGlvbjI6Y2xhc3M1 OnJlbGlnaW9uMgAEAAkAAAAaZWxlY3Rpb24zOmNsYXNzNTpyZWxpZ2lvbjIABAAJAAAAGmVs ZWN0aW9uNDpjbGFzczU6cmVsaWdpb24yAAQACQAAABplbGVjdGlvbjI6Y2xhc3M2OnJlbGln aW9uMgAEAAkAAAAaZWxlY3Rpb24zOmNsYXNzNjpyZWxpZ2lvbjIABAAJAAAAGmVsZWN0aW9u NDpjbGFzczY6cmVsaWdpb24yAAQACQAAABplbGVjdGlvbjI6Y2xhc3MyOnJlbGlnaW9uMwAE AAkAAAAaZWxlY3Rpb24zOmNsYXNzMjpyZWxpZ2lvbjMABAAJAAAAGmVsZWN0aW9uNDpjbGFz czI6cmVsaWdpb24zAAQACQAAABplbGVjdGlvbjI6Y2xhc3MzOnJlbGlnaW9uMwAEAAkAAAAa ZWxlY3Rpb24zOmNsYXNzMzpyZWxpZ2lvbjMABAAJAAAAGmVsZWN0aW9uNDpjbGFzczM6cmVs aWdpb24zAAQACQAAABplbGVjdGlvbjI6Y2xhc3M0OnJlbGlnaW9uMwAEAAkAAAAaZWxlY3Rp b24zOmNsYXNzNDpyZWxpZ2lvbjMABAAJAAAAGmVsZWN0aW9uNDpjbGFzczQ6cmVsaWdpb24z AAQACQAAABplbGVjdGlvbjI6Y2xhc3M1OnJlbGlnaW9uMwAEAAkAAAAaZWxlY3Rpb24zOmNs YXNzNTpyZWxpZ2lvbjMABAAJAAAAGmVsZWN0aW9uNDpjbGFzczU6cmVsaWdpb24zAAQACQAA ABplbGVjdGlvbjI6Y2xhc3M2OnJlbGlnaW9uMwAEAAkAAAAaZWxlY3Rpb24zOmNsYXNzNjpy ZWxpZ2lvbjMABAAJAAAAGmVsZWN0aW9uNDpjbGFzczY6cmVsaWdpb24zAAQACQAAABplbGVj dGlvbjI6Y2xhc3MyOnJlbGlnaW9uNAAEAAkAAAAaZWxlY3Rpb24zOmNsYXNzMjpyZWxpZ2lv bjQABAAJAAAAGmVsZWN0aW9uNDpjbGFzczI6cmVsaWdpb240AAQACQAAABplbGVjdGlvbjI6 Y2xhc3MzOnJlbGlnaW9uNAAEAAkAAAAaZWxlY3Rpb24zOmNsYXNzMzpyZWxpZ2lvbjQABAAJ AAAAGmVsZWN0aW9uNDpjbGFzczM6cmVsaWdpb240AAQACQAAABplbGVjdGlvbjI6Y2xhc3M0 OnJlbGlnaW9uNAAEAAkAAAAaZWxlY3Rpb24zOmNsYXNzNDpyZWxpZ2lvbjQABAAJAAAAGmVs ZWN0aW9uNDpjbGFzczQ6cmVsaWdpb240AAQACQAAABplbGVjdGlvbjI6Y2xhc3M1OnJlbGln aW9uNAAEAAkAAAAaZWxlY3Rpb24zOmNsYXNzNTpyZWxpZ2lvbjQABAAJAAAAGmVsZWN0aW9u NDpjbGFzczU6cmVsaWdpb240AAQACQAAABplbGVjdGlvbjI6Y2xhc3M2OnJlbGlnaW9uNAAE AAkAAAAaZWxlY3Rpb24zOmNsYXNzNjpyZWxpZ2lvbjQABAAJAAAAGmVsZWN0aW9uNDpjbGFz czY6cmVsaWdpb240AAQACQAAACVNdWx0KEV4cCguKSwgcmVsaWdpb246dm90ZSkuZWxlY3Rp b24xAAQACQAAACVNdWx0KEV4cCguKSwgcmVsaWdpb246dm90ZSkuZWxlY3Rpb24yAAQACQAA ACVNdWx0KEV4cCguKSwgcmVsaWdpb246dm90ZSkuZWxlY3Rpb24zAAQACQAAACVNdWx0KEV4 cCguKSwgcmVsaWdpb246dm90ZSkuZWxlY3Rpb240AAQACQAAACZNdWx0KEV4cChlbGVjdGlv biksIC4pLnJlbGlnaW9uMTp2b3RlMQAEAAkAAAAmTXVsdChFeHAoZWxlY3Rpb24pLCAuKS5y ZWxpZ2lvbjI6dm90ZTEABAAJAAAAJk11bHQoRXhwKGVsZWN0aW9uKSwgLikucmVsaWdpb24z OnZvdGUxAAQACQAAACZNdWx0KEV4cChlbGVjdGlvbiksIC4pLnJlbGlnaW9uNDp2b3RlMQAE AAkAAAAmTXVsdChFeHAoZWxlY3Rpb24pLCAuKS5yZWxpZ2lvbjE6dm90ZTIABAAJAAAAJk11 bHQoRXhwKGVsZWN0aW9uKSwgLikucmVsaWdpb24yOnZvdGUyAAQACQAAACZNdWx0KEV4cChl bGVjdGlvbiksIC4pLnJlbGlnaW9uMzp2b3RlMgAEAAkAAAAmTXVsdChFeHAoZWxlY3Rpb24p LCAuKS5yZWxpZ2lvbjQ6dm90ZTIABAAJAAAAIk11bHQoRXhwKC4pLCBjbGFzczp2b3RlKS5l bGVjdGlvbjEABAAJAAAAIk11bHQoRXhwKC4pLCBjbGFzczp2b3RlKS5lbGVjdGlvbjIABAAJ AAAAIk11bHQoRXhwKC4pLCBjbGFzczp2b3RlKS5lbGVjdGlvbjMABAAJAAAAIk11bHQoRXhw KC4pLCBjbGFzczp2b3RlKS5lbGVjdGlvbjQABAAJAAAAI011bHQoRXhwKGVsZWN0aW9uKSwg LikuY2xhc3MxOnZvdGUxAAQACQAAACNNdWx0KEV4cChlbGVjdGlvbiksIC4pLmNsYXNzMjp2 b3RlMQAEAAkAAAAjTXVsdChFeHAoZWxlY3Rpb24pLCAuKS5jbGFzczM6dm90ZTEABAAJAAAA I011bHQoRXhwKGVsZWN0aW9uKSwgLikuY2xhc3M0OnZvdGUxAAQACQAAACNNdWx0KEV4cChl bGVjdGlvbiksIC4pLmNsYXNzNTp2b3RlMQAEAAkAAAAjTXVsdChFeHAoZWxlY3Rpb24pLCAu KS5jbGFzczY6dm90ZTEABAAJAAAAI011bHQoRXhwKGVsZWN0aW9uKSwgLikuY2xhc3MxOnZv dGUyAAQACQAAACNNdWx0KEV4cChlbGVjdGlvbiksIC4pLmNsYXNzMjp2b3RlMgAEAAkAAAAj TXVsdChFeHAoZWxlY3Rpb24pLCAuKS5jbGFzczM6dm90ZTIABAAJAAAAI011bHQoRXhwKGVs ZWN0aW9uKSwgLikuY2xhc3M0OnZvdGUyAAQACQAAACNNdWx0KEV4cChlbGVjdGlvbiksIC4p LmNsYXNzNTp2b3RlMgAEAAkAAAAjTXVsdChFeHAoZWxlY3Rpb24pLCAuKS5jbGFzczY6dm90 ZTIAAAQCAAAr/wAAAA4AAACAAAAAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAABAAAAA AAAAAEAIAAAAAAAAQAgAAAAAAABACAAAAAAAAEAQAAAAAAAAQBAAAAAAAABAEAAAAAAAAEAQ AAAAAAAAQBAAAAAAAABAFAAAAAAAAEAUAAAAAAAAQBQAAAAAAABAFAAAAAAAAEAUAAAAAAAA QBQAAAAAAABAFAAAAAAAAEAUAAAAAAAAQBQAAAAAAABAFAAAAAAAAEAUAAAAAAAAQBQAAAAA AABAFAAAAAAAAEAUAAAAAAAAQBQAAAAAAABAGAAAAAAAAEAYAAAAAAAAQBgAAAAAAABAHAAA AAAAAEAcAAAAAAAAQBwAAAAAAABAHAAAAAAAAEAcAAAAAAAAQBwAAAAAAABAHAAAAAAAAEAc AAAAAAAAQBwAAAAAAABAIAAAAAAAAEAgAAAAAAAAQCAAAAAAAABAIAAAAAAAAEAgAAAAAAAA QCAAAAAAAABAIAAAAAAAAEAgAAAAAAAAQCAAAAAAAABAIAAAAAAAAEAgAAAAAAAAQCAAAAAA AABAIAAAAAAAAEAgAAAAAAAAQCAAAAAAAABAIgAAAAAAAEAiAAAAAAAAQCIAAAAAAABAIgAA AAAAAEAiAAAAAAAAQCIAAAAAAABAIgAAAAAAAEAiAAAAAAAAQCIAAAAAAABAIgAAAAAAAEAi AAAAAAAAQCIAAAAAAABAIgAAAAAAAEAiAAAAAAAAQCIAAAAAAABAIgAAAAAAAEAiAAAAAAAA QCIAAAAAAABAIgAAAAAAAEAiAAAAAAAAQCIAAAAAAABAIgAAAAAAAEAiAAAAAAAAQCIAAAAA AABAIgAAAAAAAEAiAAAAAAAAQCIAAAAAAABAIgAAAAAAAEAiAAAAAAAAQCIAAAAAAABAIgAA AAAAAEAiAAAAAAAAQCIAAAAAAABAIgAAAAAAAEAiAAAAAAAAQCIAAAAAAABAIgAAAAAAAEAi AAAAAAAAQCIAAAAAAABAIgAAAAAAAEAiAAAAAAAAQCIAAAAAAABAIgAAAAAAAEAiAAAAAAAA QCIAAAAAAABAJAAAAAAAAEAkAAAAAAAAQCQAAAAAAABAJAAAAAAAAEAkAAAAAAAAQCQAAAAA AABAJAAAAAAAAEAkAAAAAAAAQCQAAAAAAABAJAAAAAAAAEAkAAAAAAAAQCQAAAAAAABAJgAA AAAAAEAmAAAAAAAAQCYAAAAAAABAJgAAAAAAAEAmAAAAAAAAQCYAAAAAAABAJgAAAAAAAEAm AAAAAAAAQCYAAAAAAABAJgAAAAAAAEAmAAAAAAAAQCYAAAAAAABAJgAAAAAAAEAmAAAAAAAA QCYAAAAAAABAJgAAAAAAAAAAAP4AAAITAAAAAwAAAA0AAAAEAAAAAgAAAAYAAAAEAAAABAAA AhMAAAAEAAAAEAAAAAIABAAJAAAAATEABAAJAAAAATIAAAAQAAAABgAEAAkAAAABMQAEAAkA AAABMgAEAAkAAAABMwAEAAkAAAABNAAEAAkAAAABNQAEAAkAAAABNgAAABAAAAAEAAQACQAA AAExAAQACQAAAAEyAAQACQAAAAEzAAQACQAAAAE0AAAAEAAAAAQABAAJAAAAATEABAAJAAAA ATIABAAJAAAAATMABAAJAAAAATQAAAQCAAA9/wAAABAAAAAEAAQACQAAAAR2b3RlAAQACQAA AAVjbGFzcwAEAAkAAAAIcmVsaWdpb24ABAAJAAAACGVsZWN0aW9uAAAA/gAAABAAAAABAAQA CQAAAAV0YWJsZQAABAIAAD3/AAAAEAAAAAMABAAJAAAAA2RpbQAEAAkAAAAIZGltbmFtZXMA BAAJAAAABWNsYXNzAAAA/gAAAxMAAAAFAAAADQAAAMAAAAAlAAAABQAAABMAAAAEAAAAHgAA AAQAAAAWAAAACAAAACYAAAAJAAAAJgAAAAYAAAAUAAAACwAAABQAAAADAAAACAAAAAEAAAAI AAAABgAAACEAAAAQAAAAIQAAACUAAAAKAAAADwAAABYAAAASAAAABwAAAAkAAAAYAAAAHgAA ACsAAAA3AAAAKAAAAGgAAAAAAAAABAAAAAIAAAADAAAAAgAAAAMAAAABAAAABAAAAAMAAAAG AAAABQAAABwAAABWAAAABAAAADQAAAAAAAAALwAAAAIAAABQAAAAFAAAAHEAAAAfAAAANwAA ABIAAAA5AAAADQAAACMAAAAFAAAAEwAAAAkAAAAtAAAAGAAAAFoAAAA1AAAANQAAADYAAABF AAAAHQAAAGoAAAAtAAAAQwAAAB0AAAB2AAAAdgAAANQAAAECAAAAkAAAAU0AAAADAAAACAAA AAkAAAAJAAAAEQAAAB8AAAAQAAAATgAAABcAAABIAAAADwAAAGYAAAA9AAAACwAAABYAAAAL AAAAIAAAAAcAAAA7AAAAFQAAAE8AAAA3AAAAHwAAACUAAAAiAAAADQAAABsAAAAQAAAAFAAA AAoAAAAqAAAAJQAAAE8AAABVAAAAKAAAAEUAAAAxAAAAIgAAADwAAAA7AAAAMwAAAD0AAABi AAAAnwAAAJEAAAE9AAAAWAAAAT4AAAACAAAABgAAAAcAAAAKAAAAAwAAACUAAAAIAAAARgAA AAwAAABRAAAACgAAAFQAAAAyAAAABAAAAB4AAAAFAAAAIQAAAAwAAAA/AAAAEQAAAEkAAAAS AAAAHwAAABEAAAAjAAAACwAAACUAAAAFAAAAIAAAAA0AAAA6AAAAGAAAAFkAAAA0AAAAKwAA ACgAAAAcAAAAEgAAAGIAAAAbAAAANAAAADoAAAByAAAAegAAALoAAADEAAAAdAAAAMQAAAAF AAAAAwAAABAAAAAOAAAACgAAADgAAAAUAAAAWwAAACwAAAA7AAAAGgAAAF8AAAMNAAAAwAAA AAEAAAABAAAAAQAAAAEAAAABAAAAAQAAAAEAAAABAAAAAQAAAAEAAAABAAAAAQAAAAEAAAAB AAAAAQAAAAEAAAABAAAAAQAAAAEAAAABAAAAAQAAAAEAAAABAAAAAQAAAAEAAAABAAAAAQAA AAEAAAABAAAAAQAAAAEAAAABAAAAAQAAAAEAAAABAAAAAQAAAAEAAAABAAAAAQAAAAEAAAAB AAAAAQAAAAEAAAABAAAAAQAAAAEAAAABAAAAAQAAAAIAAAACAAAAAgAAAAIAAAACAAAAAgAA AAIAAAACAAAAAgAAAAIAAAACAAAAAgAAAAIAAAACAAAAAgAAAAIAAAACAAAAAgAAAAIAAAAC AAAAAgAAAAIAAAACAAAAAgAAAAIAAAACAAAAAgAAAAIAAAACAAAAAgAAAAIAAAACAAAAAgAA AAIAAAACAAAAAgAAAAIAAAACAAAAAgAAAAIAAAACAAAAAgAAAAIAAAACAAAAAgAAAAIAAAAC AAAAAgAAAAMAAAADAAAAAwAAAAMAAAADAAAAAwAAAAMAAAADAAAAAwAAAAMAAAADAAAAAwAA AAMAAAADAAAAAwAAAAMAAAADAAAAAwAAAAMAAAADAAAAAwAAAAMAAAADAAAAAwAAAAMAAAAD AAAAAwAAAAMAAAADAAAAAwAAAAMAAAADAAAAAwAAAAMAAAADAAAAAwAAAAMAAAADAAAAAwAA AAMAAAADAAAAAwAAAAMAAAADAAAAAwAAAAMAAAADAAAAAwAAAAQAAAAEAAAABAAAAAQAAAAE AAAABAAAAAQAAAAEAAAABAAAAAQAAAAEAAAABAAAAAQAAAAEAAAABAAAAAQAAAAEAAAABAAA AAQAAAAEAAAABAAAAAQAAAAEAAAABAAAAAQAAAAEAAAABAAAAAQAAAAEAAAABAAAAAQAAAAE AAAABAAAAAQAAAAEAAAABAAAAAQAAAAEAAAABAAAAAQAAAAEAAAABAAAAAQAAAAEAAAABAAA AAQAAAAEAAAABAAABAIAAAABAAQACQAAAAZsZXZlbHMAAAAQAAAABAAEAAkAAAABMQAEAAkA AAABMgAEAAkAAAABMwAEAAkAAAABNAAABAIAAAn/AAAAEAAAAAEABAAJAAAABmZhY3RvcgAA AP4AAAMNAAAAwAAAAAEAAAACAAAAAQAAAAIAAAABAAAAAgAAAAEAAAACAAAAAQAAAAIAAAAB AAAAAgAAAAEAAAACAAAAAQAAAAIAAAABAAAAAgAAAAEAAAACAAAAAQAAAAIAAAABAAAAAgAA AAEAAAACAAAAAQAAAAIAAAABAAAAAgAAAAEAAAACAAAAAQAAAAIAAAABAAAAAgAAAAEAAAAC AAAAAQAAAAIAAAABAAAAAgAAAAEAAAACAAAAAQAAAAIAAAABAAAAAgAAAAEAAAACAAAAAQAA AAIAAAABAAAAAgAAAAEAAAACAAAAAQAAAAIAAAABAAAAAgAAAAEAAAACAAAAAQAAAAIAAAAB AAAAAgAAAAEAAAACAAAAAQAAAAIAAAABAAAAAgAAAAEAAAACAAAAAQAAAAIAAAABAAAAAgAA AAEAAAACAAAAAQAAAAIAAAABAAAAAgAAAAEAAAACAAAAAQAAAAIAAAABAAAAAgAAAAEAAAAC AAAAAQAAAAIAAAABAAAAAgAAAAEAAAACAAAAAQAAAAIAAAABAAAAAgAAAAEAAAACAAAAAQAA AAIAAAABAAAAAgAAAAEAAAACAAAAAQAAAAIAAAABAAAAAgAAAAEAAAACAAAAAQAAAAIAAAAB AAAAAgAAAAEAAAACAAAAAQAAAAIAAAABAAAAAgAAAAEAAAACAAAAAQAAAAIAAAABAAAAAgAA AAEAAAACAAAAAQAAAAIAAAABAAAAAgAAAAEAAAACAAAAAQAAAAIAAAABAAAAAgAAAAEAAAAC AAAAAQAAAAIAAAABAAAAAgAAAAEAAAACAAAAAQAAAAIAAAABAAAAAgAAAAEAAAACAAAAAQAA AAIAAAABAAAAAgAAAAEAAAACAAAAAQAAAAIAAAABAAAAAgAAAAEAAAACAAAAAQAAAAIAAAAB AAAAAgAAAAEAAAACAAAAAQAAAAIAAAABAAAAAgAAAAEAAAACAAAAAQAAAAIAAAABAAAAAgAA AAEAAAACAAAAAQAAAAIAAAABAAAAAgAABAIAAHz/AAAAEAAAAAIABAAJAAAAATEABAAJAAAA ATIAAAQCAAAJ/wAAABAAAAABAAQACQAAAAZmYWN0b3IAAAD+AAADDQAAAMAAAAABAAAAAQAA AAIAAAACAAAAAwAAAAMAAAAEAAAABAAAAAUAAAAFAAAABgAAAAYAAAABAAAAAQAAAAIAAAAC AAAAAwAAAAMAAAAEAAAABAAAAAUAAAAFAAAABgAAAAYAAAABAAAAAQAAAAIAAAACAAAAAwAA AAMAAAAEAAAABAAAAAUAAAAFAAAABgAAAAYAAAABAAAAAQAAAAIAAAACAAAAAwAAAAMAAAAE AAAABAAAAAUAAAAFAAAABgAAAAYAAAABAAAAAQAAAAIAAAACAAAAAwAAAAMAAAAEAAAABAAA AAUAAAAFAAAABgAAAAYAAAABAAAAAQAAAAIAAAACAAAAAwAAAAMAAAAEAAAABAAAAAUAAAAF AAAABgAAAAYAAAABAAAAAQAAAAIAAAACAAAAAwAAAAMAAAAEAAAABAAAAAUAAAAFAAAABgAA AAYAAAABAAAAAQAAAAIAAAACAAAAAwAAAAMAAAAEAAAABAAAAAUAAAAFAAAABgAAAAYAAAAB AAAAAQAAAAIAAAACAAAAAwAAAAMAAAAEAAAABAAAAAUAAAAFAAAABgAAAAYAAAABAAAAAQAA AAIAAAACAAAAAwAAAAMAAAAEAAAABAAAAAUAAAAFAAAABgAAAAYAAAABAAAAAQAAAAIAAAAC AAAAAwAAAAMAAAAEAAAABAAAAAUAAAAFAAAABgAAAAYAAAABAAAAAQAAAAIAAAACAAAAAwAA AAMAAAAEAAAABAAAAAUAAAAFAAAABgAAAAYAAAABAAAAAQAAAAIAAAACAAAAAwAAAAMAAAAE AAAABAAAAAUAAAAFAAAABgAAAAYAAAABAAAAAQAAAAIAAAACAAAAAwAAAAMAAAAEAAAABAAA AAUAAAAFAAAABgAAAAYAAAABAAAAAQAAAAIAAAACAAAAAwAAAAMAAAAEAAAABAAAAAUAAAAF AAAABgAAAAYAAAABAAAAAQAAAAIAAAACAAAAAwAAAAMAAAAEAAAABAAAAAUAAAAFAAAABgAA AAYAAAQCAAB8/wAAABAAAAAGAAQACQAAAAExAAQACQAAAAEyAAQACQAAAAEzAAQACQAAAAE0 AAQACQAAAAE1AAQACQAAAAE2AAAEAgAACf8AAAAQAAAAAQAEAAkAAAAGZmFjdG9yAAAA/gAA Aw0AAADAAAAAAQAAAAEAAAABAAAAAQAAAAEAAAABAAAAAQAAAAEAAAABAAAAAQAAAAEAAAAB AAAAAgAAAAIAAAACAAAAAgAAAAIAAAACAAAAAgAAAAIAAAACAAAAAgAAAAIAAAACAAAAAwAA AAMAAAADAAAAAwAAAAMAAAADAAAAAwAAAAMAAAADAAAAAwAAAAMAAAADAAAABAAAAAQAAAAE AAAABAAAAAQAAAAEAAAABAAAAAQAAAAEAAAABAAAAAQAAAAEAAAAAQAAAAEAAAABAAAAAQAA AAEAAAABAAAAAQAAAAEAAAABAAAAAQAAAAEAAAABAAAAAgAAAAIAAAACAAAAAgAAAAIAAAAC AAAAAgAAAAIAAAACAAAAAgAAAAIAAAACAAAAAwAAAAMAAAADAAAAAwAAAAMAAAADAAAAAwAA AAMAAAADAAAAAwAAAAMAAAADAAAABAAAAAQAAAAEAAAABAAAAAQAAAAEAAAABAAAAAQAAAAE AAAABAAAAAQAAAAEAAAAAQAAAAEAAAABAAAAAQAAAAEAAAABAAAAAQAAAAEAAAABAAAAAQAA AAEAAAABAAAAAgAAAAIAAAACAAAAAgAAAAIAAAACAAAAAgAAAAIAAAACAAAAAgAAAAIAAAAC AAAAAwAAAAMAAAADAAAAAwAAAAMAAAADAAAAAwAAAAMAAAADAAAAAwAAAAMAAAADAAAABAAA AAQAAAAEAAAABAAAAAQAAAAEAAAABAAAAAQAAAAEAAAABAAAAAQAAAAEAAAAAQAAAAEAAAAB AAAAAQAAAAEAAAABAAAAAQAAAAEAAAABAAAAAQAAAAEAAAABAAAAAgAAAAIAAAACAAAAAgAA AAIAAAACAAAAAgAAAAIAAAACAAAAAgAAAAIAAAACAAAAAwAAAAMAAAADAAAAAwAAAAMAAAAD AAAAAwAAAAMAAAADAAAAAwAAAAMAAAADAAAABAAAAAQAAAAEAAAABAAAAAQAAAAEAAAABAAA AAQAAAAEAAAABAAAAAQAAAAEAAAEAgAAfP8AAAAQAAAABAAEAAkAAAABMQAEAAkAAAABMgAE AAkAAAABMwAEAAkAAAABNAAABAIAAAn/AAAAEAAAAAEABAAJAAAABmZhY3RvcgAAAP4AAAQC AAA9/wAAABAAAAAFAAQACQAAAARGcmVxAAQACQAAAAhlbGVjdGlvbgAEAAkAAAAEdm90ZQAE AAkAAAAFY2xhc3MABAAJAAAACHJlbGlnaW9uAAAEAgAAAAEABAAJAAAABXRlcm1zAAADBgAA BAIAABn/AAAABgAAGv8AAAACAAAE/wAAAAIAAAf/AAAAAgAACP8AAAACAAAJ/wAAAAIAAAr/ AAAA/gAABAIAABv/AAACDQAAAE0AAAAAAAAAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAABAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAAAAAQAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAABAAAAAAAAAAAAAAAAAAAAAAAAAAEAAAAAAAAAAQAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAABAAAAAAAAAAAAAAAAAAAAAQAAAAAAAAAAAAAAAQAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAQAAAAEAAAAAAAAAAAAAAAAAAAABAAAAAAAAAAEAAAABAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAQAABAIAABz/AAAADQAAAAIAAAAHAAAACwAABAIAAB3/AAAAEwAAAAIAAAAQAAAABwAE AAkAAAAERnJlcQAEAAkAAAAIZWxlY3Rpb24ABAAJAAAABHZvdGUABAAJAAAABWNsYXNzAAQA CQAAAAhyZWxpZ2lvbgAEAAkAAAAiTXVsdChFeHAoZWxlY3Rpb24pLCByZWxpZ2lvbjp2b3Rl KQAEAAkAAAAfTXVsdChFeHAoZWxlY3Rpb24pLCBjbGFzczp2b3RlKQAAABAAAAALAAQACQAA AAhlbGVjdGlvbgAEAAkAAAAEdm90ZQAEAAkAAAANZWxlY3Rpb246dm90ZQAEAAkAAAAFY2xh c3MABAAJAAAADmVsZWN0aW9uOmNsYXNzAAQACQAAAAhyZWxpZ2lvbgAEAAkAAAARZWxlY3Rp b246cmVsaWdpb24ABAAJAAAADmNsYXNzOnJlbGlnaW9uAAQACQAAABdlbGVjdGlvbjpjbGFz czpyZWxpZ2lvbgAEAAkAAAAiTXVsdChFeHAoZWxlY3Rpb24pLCByZWxpZ2lvbjp2b3RlKQAE AAkAAAAfTXVsdChFeHAoZWxlY3Rpb24pLCBjbGFzczp2b3RlKQAAAP4AAAQCAAAe/wAAABAA AAALAAQACQAAAAhlbGVjdGlvbgAEAAkAAAAEdm90ZQAEAAkAAAANZWxlY3Rpb246dm90ZQAE AAkAAAAFY2xhc3MABAAJAAAADmVsZWN0aW9uOmNsYXNzAAQACQAAAAhyZWxpZ2lvbgAEAAkA AAARZWxlY3Rpb246cmVsaWdpb24ABAAJAAAADmNsYXNzOnJlbGlnaW9uAAQACQAAABdlbGVj dGlvbjpjbGFzczpyZWxpZ2lvbgAEAAkAAAAiTXVsdChFeHAoZWxlY3Rpb24pLCByZWxpZ2lv bjp2b3RlKQAEAAkAAAAfTXVsdChFeHAoZWxlY3Rpb24pLCBjbGFzczp2b3RlKQAABAIAAB// AAAEAgAAIP8AAAD+AAAA/gAABAIAACH/AAAADQAAAAsAAAABAAAAAQAAAAIAAAABAAAAAgAA AAEAAAACAAAAAgAAAAMAAAABAAAAAQAABAIAACL/AAAADQAAAAEAAAABAAAEAgAAI/8AAAAN AAAAAQAAAAEAAAQCAAAJ/wAAABAAAAADAAQACQAAAAhnbm1UZXJtcwAEAAkAAAAFdGVybXMA BAAJAAAAB2Zvcm11bGEAAAQCAAAT/wAAFP8AAAQCAAAk/wAAAAoAAAABAAAAAAAABAIAACX/ AAAADQAAAAAAAAQCAAAm/wAAAAYAABr/AAAAAgAABP8AAAACAAAH/wAAAAIAAAj/AAAAAgAA Cf8AAAACAAAK/wAAAP4AAAQCAAAn/wAAABAAAAAOAAQACQAAAAExAAQACQAAAAhlbGVjdGlv bgAEAAkAAAAEdm90ZQAEAAkAAAANZWxlY3Rpb246dm90ZQAEAAkAAAAFY2xhc3MABAAJAAAA DmVsZWN0aW9uOmNsYXNzAAQACQAAAAhyZWxpZ2lvbgAEAAkAAAARZWxlY3Rpb246cmVsaWdp b24ABAAJAAAADmNsYXNzOnJlbGlnaW9uAAQACQAAABdlbGVjdGlvbjpjbGFzczpyZWxpZ2lv bgAEAAkAAAAIZWxlY3Rpb24ABAAJAAAADXJlbGlnaW9uOnZvdGUABAAJAAAACGVsZWN0aW9u AAQACQAAAApjbGFzczp2b3RlAAAEAgAAKP8AAAAKAAAADgAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAgAAKf8AAAAOAAAADgAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP/AAAAAAAABAAAAAAAAAAEAIAAAAAAAAQBAAAAAA AAAAAAQCAAAq/wAAAAoAAAAOAAAAAQAAAAEAAAABAAAAAQAAAAEAAAABAAAAAQAAAAEAAAAB AAAAAQAAAAEAAAABAAAAAQAAAAEAAAQCAAAr/wAAAA0AAAAOAAAAAQAAAAIAAAADAAAABAAA AAUAAAAGAAAABwAAAAgAAAAJAAAACgAAAAsAAAALAAAADAAAAAwAAAQCAAAs/wAAABAAAAAO AAQACQAAAAZMaW5lYXIABAAJAAAABkxpbmVhcgAEAAkAAAAGTGluZWFyAAQACQAAAAZMaW5l YXIABAAJAAAABkxpbmVhcgAEAAkAAAAGTGluZWFyAAQACQAAAAZMaW5lYXIABAAJAAAABkxp bmVhcgAEAAkAAAAGTGluZWFyAAQACQAAAAZMaW5lYXIABAAJAAAAB1NwZWNpYWwABAAJAAAA B1NwZWNpYWwABAAJAAAAB1NwZWNpYWwABAAJAAAAB1NwZWNpYWwAAAQCAAAt/wAAABAAAAAO AAQACQAAAAAABAAJAAAAAAAEAAkAAAAAAAQACQAAAAAABAAJAAAAAAAEAAkAAAAAAAQACQAA AAAABAAJAAAAAAAEAAkAAAAAAAQACQAAAAAABAAJAAAAHE11bHQoRXhwKC4pLCByZWxpZ2lv bjp2b3RlKS4ABAAJAAAAF011bHQoRXhwKGVsZWN0aW9uKSwgLikuAAQACQAAABlNdWx0KEV4 cCguKSwgY2xhc3M6dm90ZSkuAAQACQAAABdNdWx0KEV4cChlbGVjdGlvbiksIC4pLgAABAIA AC7/AAAAEAAAAA4ABAAJAAAAATEABAAJAAAACGVsZWN0aW9uAAQACQAAAAR2b3RlAAQACQAA AA1lbGVjdGlvbjp2b3RlAAQACQAAAAVjbGFzcwAEAAkAAAAOZWxlY3Rpb246Y2xhc3MABAAJ AAAACHJlbGlnaW9uAAQACQAAABFlbGVjdGlvbjpyZWxpZ2lvbgAEAAkAAAAOY2xhc3M6cmVs aWdpb24ABAAJAAAAF2VsZWN0aW9uOmNsYXNzOnJlbGlnaW9uAAQACQAAAAwxMTAwZWxlY3Rp b24ABAAJAAAAEDExMXJlbGlnaW9uOnZvdGUABAAJAAAADDEyMDBlbGVjdGlvbgAEAAkAAAAN MTIxY2xhc3M6dm90ZQAABAIAAC//AAAAEwAAAAwAAAD+AAAA/gAAAP4AAAD+AAAA/gAAAP4A AAD+AAAA/gAAAP4AAAD+AAAA/gAAAP4AAAQCAAAw/wAAAhMAAAAMAAAx/wAAB/8AAAj/AAAy /wAACf8AADP/AAAK/wAANP8AADX/AAA2/wAAAAYAAAb/AAAAAgAAAAYAADf/AAAAAgAAAAYA ADj/AAAAAgAAOf8AAAD+AAAA/gAAAAIAAAAGAAA3/wAAAAIAADr/AAAA/gAAAP4AAAAGAAAG /wAAAAIAAAAGAAA3/wAAAAIAAAAGAAA4/wAAAAIAADv/AAAA/gAAAP4AAAACAAAABgAAN/8A AAACAAA8/wAAAP4AAAD+AAAEAgAAPf8AAAAQAAAADAAEAAkAAAABMQAEAAkAAAAIZWxlY3Rp b24ABAAJAAAABHZvdGUABAAJAAAADWVsZWN0aW9uOnZvdGUABAAJAAAABWNsYXNzAAQACQAA AA5lbGVjdGlvbjpjbGFzcwAEAAkAAAAIcmVsaWdpb24ABAAJAAAAEWVsZWN0aW9uOnJlbGln aW9uAAQACQAAAA5jbGFzczpyZWxpZ2lvbgAEAAkAAAAXZWxlY3Rpb246Y2xhc3M6cmVsaWdp b24ABAAJAAAAIk11bHQoRXhwKGVsZWN0aW9uKSwgcmVsaWdpb246dm90ZSkABAAJAAAAH011 bHQoRXhwKGVsZWN0aW9uKSwgY2xhc3M6dm90ZSkAAAD+AAAEAgAAAAEABAAJAAAAC2RhdGFD bGFzc2VzAAACEAAAAAUABAAJAAAAB251bWVyaWMABAAJAAAABmZhY3RvcgAEAAkAAAAGZmFj dG9yAAQACQAAAAZmYWN0b3IABAAJAAAABmZhY3RvcgAABAIAAD3/AAAAEAAAAAUABAAJAAAA BEZyZXEABAAJAAAACGVsZWN0aW9uAAQACQAAAAR2b3RlAAQACQAAAAVjbGFzcwAEAAkAAAAI cmVsaWdpb24AAAD+AAAA/gAAA/8AAAACAAAE/wAAAAIAAAAGAAAF/wAAAAIAAAAGAAAF/wAA AAIAAAAGAAAF/wAAAAIAAAAGAAAF/wAAAAIAAAAGAAAF/wAAAAIAAAAGAAAF/wAAAAIAAAAG AAAF/wAAAAIAAAAGAAAF/wAAAAIAAAAGAAAF/wAAAAIAAAAGAAAF/wAAAAIAAAf/AAAAAgAA CP8AAAD+AAAAAgAAAAYAAA3/AAAAAgAAB/8AAAACAAAI/wAAAP4AAAD+AAAAAgAACf8AAAD+ AAAAAgAAAAYAAA3/AAAAAgAAB/8AAAACAAAJ/wAAAP4AAAD+AAAAAgAACv8AAAD+AAAAAgAA AAYAAA3/AAAAAgAAB/8AAAACAAAK/wAAAP4AAAD+AAAAAgAAAAYAAA3/AAAAAgAACf8AAAAC AAAK/wAAAP4AAAD+AAAAAgAAAAYAAA3/AAAAAgAAAAYAAA3/AAAAAgAAB/8AAAACAAAJ/wAA AP4AAAACAAAK/wAAAP4AAAD+AAAAAgAAAAYAAAv/AAAAAgAAAAYAAAz/AAAAAgAAB/8AAAD+ AAAAAgAAAAYAAA3/AAAAAgAACv8AAAACAAAI/wAAAP4AAAD+AAAA/gAAAAIAAAAGAAAL/wAA AAIAAAAGAAAM/wAAAAIAAAf/AAAA/gAAAAIAAAAGAAAN/wAAAAIAAAn/AAAAAgAACP8AAAD+ AAAA/gAAAP4AAAD+AAAEAgAAAAEABAAJAAAACXJvdy5uYW1lcwAAAA0AAAACgAAAAAAAAMAA AAQCAAAJ/wAAABAAAAABAAQACQAAAApkYXRhLmZyYW1lAAAA/gAABAIAAD3/AAAAEAAAAB8A BAAJAAAABGNhbGwABAAJAAAAB2Zvcm11bGEABAAJAAAABXRlcm1zAAQACQAAAARkYXRhAAQA CQAAAAllbGltaW5hdGUABAAJAAAACm9mSW50ZXJlc3QABAAJAAAACW5hLmFjdGlvbgAEAAkA AAAHeGxldmVscwAEAAkAAAAGb2Zmc2V0AAQACQAAAAl0b2xlcmFuY2UABAAJAAAACWl0ZXJT dGFydAAEAAkAAAAHaXRlck1heAAEAAkAAAAMY29lZmZpY2llbnRzAAQACQAAAAljb25zdHJh aW4ABAAJAAAAC2NvbnN0cmFpblRvAAQACQAAAAlyZXNpZHVhbHMABAAJAAAADWZpdHRlZC52 YWx1ZXMABAAJAAAABHJhbmsABAAJAAAABmZhbWlseQAEAAkAAAAKcHJlZGljdG9ycwAEAAkA AAAIZGV2aWFuY2UABAAJAAAAA2FpYwAEAAkAAAAEaXRlcgAEAAkAAAAHd2VpZ2h0cwAEAAkA AAANcHJpb3Iud2VpZ2h0cwAEAAkAAAALZGYucmVzaWR1YWwABAAJAAAAAXkABAAJAAAACWNv bnZlcmdlZAAEAAkAAAABeAAEAAkAAAAKdGFibGUuYXR0cgAEAAkAAAAFbW9kZWwAAAQCAAAJ /wAAABAAAAADAAQACQAAAANnbm0ABAAJAAAAA2dsbQAEAAkAAAACbG0AAAQCAAAT/wAAAPkA AAAAAAAAAgAEAAkAAAADZ25tAAQACQAAAAUxLjEuNAAAAP4AAAD+AAAA/gAAAP4AAAD+AAAA /gAAAP4AAAD+AAAA/gAAAP4AAAD+AAAA/gAAAP4AAAD+AAAA/gAAAP4AAAD+AAAA/gAAAP4A AAD+AAAD/wAAAAIAAAT/AAAAAgAAAAYAAAX/AAAAAgAAAAYAAAX/AAAAAgAAAAYAAAX/AAAA AgAAAAYAAAb/AAAAAgAAB/8AAAACAAAI/wAAAP4AAAACAAAABgAABv8AAAACAAAABgAABv8A AAACAAAH/wAAAAIAAAn/AAAA/gAAAAIAAAr/AAAA/gAAAP4AAAACAAAABgAAC/8AAAACAAAA BgAADP8AAAACAAAH/wAAAP4AAAACAAAABgAADf8AAAACAAAK/wAAAAIAAAj/AAAA/gAAAP4A AAD+AAAAAgAAAAYAAAv/AAAAAgAAAAYAAAz/AAAAAgAAB/8AAAD+AAAAAgAAAAYAAA3/AAAA AgAACf8AAAACAAAI/wAAAP4AAAD+AAAA/gAAAP4AAAMGAAAEAgAAGf8AAAAGAAAa/wAAAAIA AAT/AAAAAgAAB/8AAAACAAAI/wAAAAIAAAn/AAAAAgAACv8AAAD+AAAEAgAAG/8AAAINAAAA TQAAAAAAAAABAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAEAAAABAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAAAAAAAAA AAAAAAAAAAAAAAAAAQAAAAAAAAABAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEA AAAAAAAAAAAAAAAAAAABAAAAAAAAAAAAAAABAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAAAA AQAAAAAAAAAAAAAAAAAAAAEAAAAAAAAAAQAAAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAAAEAgAAHP8AAAANAAAA AgAAAAcAAAALAAAEAgAAHf8AAAATAAAAAgAAABAAAAAHAAQACQAAAARGcmVxAAQACQAAAAhl bGVjdGlvbgAEAAkAAAAEdm90ZQAEAAkAAAAFY2xhc3MABAAJAAAACHJlbGlnaW9uAAQACQAA ACJNdWx0KEV4cChlbGVjdGlvbiksIHJlbGlnaW9uOnZvdGUpAAQACQAAAB9NdWx0KEV4cChl bGVjdGlvbiksIGNsYXNzOnZvdGUpAAAAEAAAAAsABAAJAAAACGVsZWN0aW9uAAQACQAAAAR2 b3RlAAQACQAAAA1lbGVjdGlvbjp2b3RlAAQACQAAAAVjbGFzcwAEAAkAAAAOZWxlY3Rpb246 Y2xhc3MABAAJAAAACHJlbGlnaW9uAAQACQAAABFlbGVjdGlvbjpyZWxpZ2lvbgAEAAkAAAAO Y2xhc3M6cmVsaWdpb24ABAAJAAAAF2VsZWN0aW9uOmNsYXNzOnJlbGlnaW9uAAQACQAAACJN dWx0KEV4cChlbGVjdGlvbiksIHJlbGlnaW9uOnZvdGUpAAQACQAAAB9NdWx0KEV4cChlbGVj dGlvbiksIGNsYXNzOnZvdGUpAAAA/gAABAIAAB7/AAAAEAAAAAsABAAJAAAACGVsZWN0aW9u AAQACQAAAAR2b3RlAAQACQAAAA1lbGVjdGlvbjp2b3RlAAQACQAAAAVjbGFzcwAEAAkAAAAO ZWxlY3Rpb246Y2xhc3MABAAJAAAACHJlbGlnaW9uAAQACQAAABFlbGVjdGlvbjpyZWxpZ2lv bgAEAAkAAAAOY2xhc3M6cmVsaWdpb24ABAAJAAAAF2VsZWN0aW9uOmNsYXNzOnJlbGlnaW9u AAQACQAAACJNdWx0KEV4cChlbGVjdGlvbiksIHJlbGlnaW9uOnZvdGUpAAQACQAAAB9NdWx0 KEV4cChlbGVjdGlvbiksIGNsYXNzOnZvdGUpAAAEAgAAH/8AAAQCAAAg/wAAAP4AAAD+AAAE AgAAIf8AAAANAAAACwAAAAEAAAABAAAAAgAAAAEAAAACAAAAAQAAAAIAAAACAAAAAwAAAAEA AAABAAAEAgAAIv8AAAANAAAAAQAAAAEAAAQCAAAj/wAAAA0AAAABAAAAAQAABAIAAAn/AAAA EAAAAAMABAAJAAAACGdubVRlcm1zAAQACQAAAAV0ZXJtcwAEAAkAAAAHZm9ybXVsYQAABAIA ABP/AAAU/wAABAIAACT/AAAACgAAAAEAAAAAAAAEAgAAJf8AAAANAAAAAAAABAIAACb/AAAA BgAAGv8AAAACAAAE/wAAAAIAAAf/AAAAAgAACP8AAAACAAAJ/wAAAAIAAAr/AAAA/gAABAIA ACf/AAAAEAAAAA4ABAAJAAAAATEABAAJAAAACGVsZWN0aW9uAAQACQAAAAR2b3RlAAQACQAA AA1lbGVjdGlvbjp2b3RlAAQACQAAAAVjbGFzcwAEAAkAAAAOZWxlY3Rpb246Y2xhc3MABAAJ AAAACHJlbGlnaW9uAAQACQAAABFlbGVjdGlvbjpyZWxpZ2lvbgAEAAkAAAAOY2xhc3M6cmVs aWdpb24ABAAJAAAAF2VsZWN0aW9uOmNsYXNzOnJlbGlnaW9uAAQACQAAAAhlbGVjdGlvbgAE AAkAAAANcmVsaWdpb246dm90ZQAEAAkAAAAIZWxlY3Rpb24ABAAJAAAACmNsYXNzOnZvdGUA AAQCAAAo/wAAAAoAAAAOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAQCAAAp/wAAAA4AAAAOAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAA/8AAAAAAAAEAAAAAAAAAAQAgAAAAAAABAEAAAAAAAAAAABAIAACr/AAAACgAAAA4A AAABAAAAAQAAAAEAAAABAAAAAQAAAAEAAAABAAAAAQAAAAEAAAABAAAAAQAAAAEAAAABAAAA AQAABAIAACv/AAAADQAAAA4AAAABAAAAAgAAAAMAAAAEAAAABQAAAAYAAAAHAAAACAAAAAkA AAAKAAAACwAAAAsAAAAMAAAADAAABAIAACz/AAAAEAAAAA4ABAAJAAAABkxpbmVhcgAEAAkA AAAGTGluZWFyAAQACQAAAAZMaW5lYXIABAAJAAAABkxpbmVhcgAEAAkAAAAGTGluZWFyAAQA CQAAAAZMaW5lYXIABAAJAAAABkxpbmVhcgAEAAkAAAAGTGluZWFyAAQACQAAAAZMaW5lYXIA BAAJAAAABkxpbmVhcgAEAAkAAAAHU3BlY2lhbAAEAAkAAAAHU3BlY2lhbAAEAAkAAAAHU3Bl Y2lhbAAEAAkAAAAHU3BlY2lhbAAABAIAAC3/AAAAEAAAAA4ABAAJAAAAAAAEAAkAAAAAAAQA CQAAAAAABAAJAAAAAAAEAAkAAAAAAAQACQAAAAAABAAJAAAAAAAEAAkAAAAAAAQACQAAAAAA BAAJAAAAAAAEAAkAAAAcTXVsdChFeHAoLiksIHJlbGlnaW9uOnZvdGUpLgAEAAkAAAAXTXVs dChFeHAoZWxlY3Rpb24pLCAuKS4ABAAJAAAAGU11bHQoRXhwKC4pLCBjbGFzczp2b3RlKS4A BAAJAAAAF011bHQoRXhwKGVsZWN0aW9uKSwgLikuAAAEAgAALv8AAAAQAAAADgAEAAkAAAAB MQAEAAkAAAAIZWxlY3Rpb24ABAAJAAAABHZvdGUABAAJAAAADWVsZWN0aW9uOnZvdGUABAAJ AAAABWNsYXNzAAQACQAAAA5lbGVjdGlvbjpjbGFzcwAEAAkAAAAIcmVsaWdpb24ABAAJAAAA EWVsZWN0aW9uOnJlbGlnaW9uAAQACQAAAA5jbGFzczpyZWxpZ2lvbgAEAAkAAAAXZWxlY3Rp b246Y2xhc3M6cmVsaWdpb24ABAAJAAAADDExMDBlbGVjdGlvbgAEAAkAAAAQMTExcmVsaWdp b246dm90ZQAEAAkAAAAMMTIwMGVsZWN0aW9uAAQACQAAAA0xMjFjbGFzczp2b3RlAAAEAgAA L/8AAAATAAAADAAAAP4AAAD+AAAA/gAAAP4AAAD+AAAA/gAAAP4AAAD+AAAA/gAAAP4AAAD+ AAAA/gAABAIAADD/AAACEwAAAAwAADH/AAAH/wAACP8AADL/AAAJ/wAAM/8AAAr/AAA0/wAA Nf8AADb/AAAABgAABv8AAAACAAAABgAAN/8AAAACAAAABgAAOP8AAAACAAA5/wAAAP4AAAD+ AAAAAgAAAAYAADf/AAAAAgAAOv8AAAD+AAAA/gAAAAYAAAb/AAAAAgAAAAYAADf/AAAAAgAA AAYAADj/AAAAAgAAO/8AAAD+AAAA/gAAAAIAAAAGAAA3/wAAAAIAADz/AAAA/gAAAP4AAAQC AAA9/wAAABAAAAAMAAQACQAAAAExAAQACQAAAAhlbGVjdGlvbgAEAAkAAAAEdm90ZQAEAAkA AAANZWxlY3Rpb246dm90ZQAEAAkAAAAFY2xhc3MABAAJAAAADmVsZWN0aW9uOmNsYXNzAAQA CQAAAAhyZWxpZ2lvbgAEAAkAAAARZWxlY3Rpb246cmVsaWdpb24ABAAJAAAADmNsYXNzOnJl bGlnaW9uAAQACQAAABdlbGVjdGlvbjpjbGFzczpyZWxpZ2lvbgAEAAkAAAAiTXVsdChFeHAo ZWxlY3Rpb24pLCByZWxpZ2lvbjp2b3RlKQAEAAkAAAAfTXVsdChFeHAoZWxlY3Rpb24pLCBj bGFzczp2b3RlKQAAAP4AAAD+AAAD/wAAAAIAAAT/AAAAAgAAAAYAAAX/AAAAAgAAAAYAAAX/ AAAAAgAAAAYAAAX/AAAAAgAAAAYAAAX/AAAAAgAAAAYAAAX/AAAAAgAAAAYAAAX/AAAAAgAA AAYAAAX/AAAAAgAAAAYAAAX/AAAAAgAAAAYAAAX/AAAAAgAAAAYAAAX/AAAAAgAAB/8AAAAC AAAI/wAAAP4AAAACAAAABgAADf8AAAACAAAH/wAAAAIAAAj/AAAA/gAAAP4AAAACAAAJ/wAA AP4AAAACAAAABgAADf8AAAACAAAH/wAAAAIAAAn/AAAA/gAAAP4AAAACAAAK/wAAAP4AAAAC AAAABgAADf8AAAACAAAH/wAAAAIAAAr/AAAA/gAAAP4AAAACAAAABgAADf8AAAACAAAJ/wAA AAIAAAr/AAAA/gAAAP4AAAACAAAABgAADf8AAAACAAAABgAADf8AAAACAAAH/wAAAAIAAAn/ AAAA/gAAAAIAAAr/AAAA/gAAAP4AAAACAAAABgAAC/8AAAACAAAABgAADP8AAAACAAAH/wAA AP4AAAACAAAABgAADf8AAAACAAAK/wAAAAIAAAj/AAAA/gAAAP4AAAD+AAAAAgAAAAYAAAv/ AAAAAgAAAAYAAAz/AAAAAgAAB/8AAAD+AAAAAgAAAAYAAA3/AAAAAgAACf8AAAACAAAI/wAA AP4AAAD+AAAA/gAAAP4AAAMNAAAAwAAAACUAAAAFAAAAEwAAAAQAAAAeAAAABAAAABYAAAAI AAAAJgAAAAkAAAAmAAAABgAAABQAAAALAAAAFAAAAAMAAAAIAAAAAQAAAAgAAAAGAAAAIQAA ABAAAAAhAAAAJQAAAAoAAAAPAAAAFgAAABIAAAAHAAAACQAAABgAAAAeAAAAKwAAADcAAAAo AAAAaAAAAAAAAAAEAAAAAgAAAAMAAAACAAAAAwAAAAEAAAAEAAAAAwAAAAYAAAAFAAAAHAAA AFYAAAAEAAAANAAAAAAAAAAvAAAAAgAAAFAAAAAUAAAAcQAAAB8AAAA3AAAAEgAAADkAAAAN AAAAIwAAAAUAAAATAAAACQAAAC0AAAAYAAAAWgAAADUAAAA1AAAANgAAAEUAAAAdAAAAagAA AC0AAABDAAAAHQAAAHYAAAB2AAAA1AAAAQIAAACQAAABTQAAAAMAAAAIAAAACQAAAAkAAAAR AAAAHwAAABAAAABOAAAAFwAAAEgAAAAPAAAAZgAAAD0AAAALAAAAFgAAAAsAAAAgAAAABwAA ADsAAAAVAAAATwAAADcAAAAfAAAAJQAAACIAAAANAAAAGwAAABAAAAAUAAAACgAAACoAAAAl AAAATwAAAFUAAAAoAAAARQAAADEAAAAiAAAAPAAAADsAAAAzAAAAPQAAAGIAAACfAAAAkQAA AT0AAABYAAABPgAAAAIAAAAGAAAABwAAAAoAAAADAAAAJQAAAAgAAABGAAAADAAAAFEAAAAK AAAAVAAAADIAAAAEAAAAHgAAAAUAAAAhAAAADAAAAD8AAAARAAAASQAAABIAAAAfAAAAEQAA ACMAAAALAAAAJQAAAAUAAAAgAAAADQAAADoAAAAYAAAAWQAAADQAAAArAAAAKAAAABwAAAAS AAAAYgAAABsAAAA0AAAAOgAAAHIAAAB6AAAAugAAAMQAAAB0AAAAxAAAAAUAAAADAAAAEAAA AA4AAAAKAAAAOAAAABQAAABbAAAALAAAADsAAAAaAAAAXwAABAIAABz/AAAADQAAAAQAAAAC AAAABgAAAAQAAAAEAAAEAgAAHf8AAAITAAAABAAAABAAAAACAAQACQAAAAExAAQACQAAAAEy AAAAEAAAAAYABAAJAAAAATEABAAJAAAAATIABAAJAAAAATMABAAJAAAAATQABAAJAAAAATUA BAAJAAAAATYAAAAQAAAABAAEAAkAAAABMQAEAAkAAAABMgAEAAkAAAABMwAEAAkAAAABNAAA ABAAAAAEAAQACQAAAAExAAQACQAAAAEyAAQACQAAAAEzAAQACQAAAAE0AAAEAgAAPf8AAAAQ AAAABAAEAAkAAAAEdm90ZQAEAAkAAAAFY2xhc3MABAAJAAAACHJlbGlnaW9uAAQACQAAAAhl bGVjdGlvbgAAAP4AAAQCAAAJ/wAAABAAAAABAAQACQAAAAV0YWJsZQAAAP4AAAD+AAAA/gAA AP4AAAITAAAABAAAABAAAAAEAAQACQAAAAExAAQACQAAAAEyAAQACQAAAAEzAAQACQAAAAE0 AAAAEAAAAAIABAAJAAAAATEABAAJAAAAATIAAAAQAAAABgAEAAkAAAABMQAEAAkAAAABMgAE AAkAAAABMwAEAAkAAAABNAAEAAkAAAABNQAEAAkAAAABNgAAABAAAAAEAAQACQAAAAExAAQA CQAAAAEyAAQACQAAAAEzAAQACQAAAAE0AAAEAgAAPf8AAAAQAAAABAAEAAkAAAAIZWxlY3Rp b24ABAAJAAAABHZvdGUABAAJAAAABWNsYXNzAAQACQAAAAhyZWxpZ2lvbgAAAP4AAAIOAAAA wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAIAAD3/AAAAEAAAAMAABAAJAAAAATEABAAJ AAAAATIABAAJAAAAATMABAAJAAAAATQABAAJAAAAATUABAAJAAAAATYABAAJAAAAATcABAAJ AAAAATgABAAJAAAAATkABAAJAAAAAjEwAAQACQAAAAIxMQAEAAkAAAACMTIABAAJAAAAAjEz AAQACQAAAAIxNAAEAAkAAAACMTUABAAJAAAAAjE2AAQACQAAAAIxNwAEAAkAAAACMTgABAAJ AAAAAjE5AAQACQAAAAIyMAAEAAkAAAACMjEABAAJAAAAAjIyAAQACQAAAAIyMwAEAAkAAAAC MjQABAAJAAAAAjI1AAQACQAAAAIyNgAEAAkAAAACMjcABAAJAAAAAjI4AAQACQAAAAIyOQAE AAkAAAACMzAABAAJAAAAAjMxAAQACQAAAAIzMgAEAAkAAAACMzMABAAJAAAAAjM0AAQACQAA AAIzNQAEAAkAAAACMzYABAAJAAAAAjM3AAQACQAAAAIzOAAEAAkAAAACMzkABAAJAAAAAjQw AAQACQAAAAI0MQAEAAkAAAACNDIABAAJAAAAAjQzAAQACQAAAAI0NAAEAAkAAAACNDUABAAJ AAAAAjQ2AAQACQAAAAI0NwAEAAkAAAACNDgABAAJAAAAAjQ5AAQACQAAAAI1MAAEAAkAAAAC NTEABAAJAAAAAjUyAAQACQAAAAI1MwAEAAkAAAACNTQABAAJAAAAAjU1AAQACQAAAAI1NgAE AAkAAAACNTcABAAJAAAAAjU4AAQACQAAAAI1OQAEAAkAAAACNjAABAAJAAAAAjYxAAQACQAA AAI2MgAEAAkAAAACNjMABAAJAAAAAjY0AAQACQAAAAI2NQAEAAkAAAACNjYABAAJAAAAAjY3 AAQACQAAAAI2OAAEAAkAAAACNjkABAAJAAAAAjcwAAQACQAAAAI3MQAEAAkAAAACNzIABAAJ AAAAAjczAAQACQAAAAI3NAAEAAkAAAACNzUABAAJAAAAAjc2AAQACQAAAAI3NwAEAAkAAAAC NzgABAAJAAAAAjc5AAQACQAAAAI4MAAEAAkAAAACODEABAAJAAAAAjgyAAQACQAAAAI4MwAE AAkAAAACODQABAAJAAAAAjg1AAQACQAAAAI4NgAEAAkAAAACODcABAAJAAAAAjg4AAQACQAA AAI4OQAEAAkAAAACOTAABAAJAAAAAjkxAAQACQAAAAI5MgAEAAkAAAACOTMABAAJAAAAAjk0 AAQACQAAAAI5NQAEAAkAAAACOTYABAAJAAAAAjk3AAQACQAAAAI5OAAEAAkAAAACOTkABAAJ AAAAAzEwMAAEAAkAAAADMTAxAAQACQAAAAMxMDIABAAJAAAAAzEwMwAEAAkAAAADMTA0AAQA CQAAAAMxMDUABAAJAAAAAzEwNgAEAAkAAAADMTA3AAQACQAAAAMxMDgABAAJAAAAAzEwOQAE AAkAAAADMTEwAAQACQAAAAMxMTEABAAJAAAAAzExMgAEAAkAAAADMTEzAAQACQAAAAMxMTQA BAAJAAAAAzExNQAEAAkAAAADMTE2AAQACQAAAAMxMTcABAAJAAAAAzExOAAEAAkAAAADMTE5 AAQACQAAAAMxMjAABAAJAAAAAzEyMQAEAAkAAAADMTIyAAQACQAAAAMxMjMABAAJAAAAAzEy NAAEAAkAAAADMTI1AAQACQAAAAMxMjYABAAJAAAAAzEyNwAEAAkAAAADMTI4AAQACQAAAAMx MjkABAAJAAAAAzEzMAAEAAkAAAADMTMxAAQACQAAAAMxMzIABAAJAAAAAzEzMwAEAAkAAAAD MTM0AAQACQAAAAMxMzUABAAJAAAAAzEzNgAEAAkAAAADMTM3AAQACQAAAAMxMzgABAAJAAAA AzEzOQAEAAkAAAADMTQwAAQACQAAAAMxNDEABAAJAAAAAzE0MgAEAAkAAAADMTQzAAQACQAA AAMxNDQABAAJAAAAAzE0NQAEAAkAAAADMTQ2AAQACQAAAAMxNDcABAAJAAAAAzE0OAAEAAkA AAADMTQ5AAQACQAAAAMxNTAABAAJAAAAAzE1MQAEAAkAAAADMTUyAAQACQAAAAMxNTMABAAJ AAAAAzE1NAAEAAkAAAADMTU1AAQACQAAAAMxNTYABAAJAAAAAzE1NwAEAAkAAAADMTU4AAQA CQAAAAMxNTkABAAJAAAAAzE2MAAEAAkAAAADMTYxAAQACQAAAAMxNjIABAAJAAAAAzE2MwAE AAkAAAADMTY0AAQACQAAAAMxNjUABAAJAAAAAzE2NgAEAAkAAAADMTY3AAQACQAAAAMxNjgA BAAJAAAAAzE2OQAEAAkAAAADMTcwAAQACQAAAAMxNzEABAAJAAAAAzE3MgAEAAkAAAADMTcz AAQACQAAAAMxNzQABAAJAAAAAzE3NQAEAAkAAAADMTc2AAQACQAAAAMxNzcABAAJAAAAAzE3 OAAEAAkAAAADMTc5AAQACQAAAAMxODAABAAJAAAAAzE4MQAEAAkAAAADMTgyAAQACQAAAAMx ODMABAAJAAAAAzE4NAAEAAkAAAADMTg1AAQACQAAAAMxODYABAAJAAAAAzE4NwAEAAkAAAAD MTg4AAQACQAAAAMxODkABAAJAAAAAzE5MAAEAAkAAAADMTkxAAQACQAAAAMxOTIAAAD+AAAA DgAAAAE+sMb3oLXtjQAAAA4AAAABQAAAAAAAAAAAAAAOAAAAAUB/QAAAAAAAAAACDgAAAIBA A/pXIA8ESD/k+FswiZSJP+D4COjFv+Q/2TtzJoLPyT/hb52d+AdJv8jVxVgmDyg/1yB92nBJ Nr/VMJg8jwM/v+LENUhjDq+/pZ6Wi7cm3L/I31tx6kKjP9IaWYb+JaI/3ASrpT6LPj+vxL85 072Hv8Tn2g8gVHA/xl2TybR0wb/KLHgeXfYHv9XlJEKg4o8/uiPFaUba0z/j2LLumpMGP9yC iYFxL/s/6SH5T4SQ0T/iEuO1XxwPP+CUAJ66n68/3nJWNGuCnD/ED5wtbFD2v7BmZjNKenu/ mRmYdoZMg7+7bqaGjVrFv9DBzP+nmr+//201OnamOD+63vTcFKPxv8rnGS7F7Do/u3tjZXYP 4z/ohFP3orQ9P+EyN6ItGVc/10hgNUBkmD/kZxEOtqDbP5fjqQJwT4k/4o+vQjg+nz/UBfi7 dTv2v/Efl4yt7JK/4U/3SLwDvD/QR9L+qggTP+OJ1JG8IuA/8YGxIJ3WOL/Vp33QFHi9P+1z TaBYrxk/8MpPKvIE2D/10td+Q9Y9P+vBd1HYZew/z5xkFouF/j/NsXLq4uJIP9XaQadqKkQ/ 9+bFrTQR3b/UFDCRbmIQP9kTFBn7oRM/o4Hj/IoPvz/mgw+98y04P/KtTddLj0A/8wAeVpFa az/TabfWttOrP+qaGG0SBq0/5JyAXiM0vb/CNpMXkJhxP857LsKpydo/0DFpeww3Jb/NkxWk fL9QP65IhKZJS3m/sLmNP/Tx37+2Kdw3fJqeP7Nmcfqb0gI/1vMUvKr2OD/o+G/q/FEHP/HE gY8eocg/9LhiyFX8rL/bcB2PIQKOv8LeXQSBEBs/wfleC3HhTL/Q87Elxwajv81cpJ7Km8I/ 1huaRxuujb/BEGyos3khv8Tu9yvaeh0/1LL+qQaHbD/OZJTL6I8eP+cTitmrVQ4/7bvEmh0M CD/4WXfYwNKqP/u2IsHj85I//Z8HZETmLj/z2o+GOWfMP/hNmxLo32M/+oLNxIqtkD/nIKBc j5x1P/CIynt6lCw/9Pm6OLLtyT+wFxxQgZDfP9SvoWI7gOg/5v/kG7CYAL/pgo+spRkZv+xR 95X2Cri/8PB3d65NX7/yAi9zxoZwP/7C9SJ9/4o/8Yaz0Y+5iz/RpprGaXJHv/0x/lCm9ErA AqWY0bv/B7/xA6WgAY5AP58oEyruF54/64JALmJ2Kb/YjG75MqY0P9MVJtIsv6s/sNh4OYBw Db+WQ0ioJG+TP9bWnzvE4VI/1hogUvBFDD+pRNkvuUqrP6GzJV5xwwK/k/rdZIunzL/c6dnl kfukv+CFogVwaT2/4/7KRQPYs7/ZfpD4awuzv7kpR9Ika3G/thaNKL+bhL+hERVrhCx1AAAE AgAAPf8AAAAQAAAAgAAEAAkAAAALKEludGVyY2VwdCkABAAJAAAACWVsZWN0aW9uMgAEAAkA AAAJZWxlY3Rpb24zAAQACQAAAAllbGVjdGlvbjQABAAJAAAABXZvdGUyAAQACQAAAA9lbGVj dGlvbjI6dm90ZTIABAAJAAAAD2VsZWN0aW9uMzp2b3RlMgAEAAkAAAAPZWxlY3Rpb240OnZv dGUyAAQACQAAAAZjbGFzczIABAAJAAAABmNsYXNzMwAEAAkAAAAGY2xhc3M0AAQACQAAAAZj bGFzczUABAAJAAAABmNsYXNzNgAEAAkAAAAQZWxlY3Rpb24yOmNsYXNzMgAEAAkAAAAQZWxl Y3Rpb24zOmNsYXNzMgAEAAkAAAAQZWxlY3Rpb240OmNsYXNzMgAEAAkAAAAQZWxlY3Rpb24y OmNsYXNzMwAEAAkAAAAQZWxlY3Rpb24zOmNsYXNzMwAEAAkAAAAQZWxlY3Rpb240OmNsYXNz MwAEAAkAAAAQZWxlY3Rpb24yOmNsYXNzNAAEAAkAAAAQZWxlY3Rpb24zOmNsYXNzNAAEAAkA AAAQZWxlY3Rpb240OmNsYXNzNAAEAAkAAAAQZWxlY3Rpb24yOmNsYXNzNQAEAAkAAAAQZWxl Y3Rpb24zOmNsYXNzNQAEAAkAAAAQZWxlY3Rpb240OmNsYXNzNQAEAAkAAAAQZWxlY3Rpb24y OmNsYXNzNgAEAAkAAAAQZWxlY3Rpb24zOmNsYXNzNgAEAAkAAAAQZWxlY3Rpb240OmNsYXNz NgAEAAkAAAAJcmVsaWdpb24yAAQACQAAAAlyZWxpZ2lvbjMABAAJAAAACXJlbGlnaW9uNAAE AAkAAAATZWxlY3Rpb24yOnJlbGlnaW9uMgAEAAkAAAATZWxlY3Rpb24zOnJlbGlnaW9uMgAE AAkAAAATZWxlY3Rpb240OnJlbGlnaW9uMgAEAAkAAAATZWxlY3Rpb24yOnJlbGlnaW9uMwAE AAkAAAATZWxlY3Rpb24zOnJlbGlnaW9uMwAEAAkAAAATZWxlY3Rpb240OnJlbGlnaW9uMwAE AAkAAAATZWxlY3Rpb24yOnJlbGlnaW9uNAAEAAkAAAATZWxlY3Rpb24zOnJlbGlnaW9uNAAE AAkAAAATZWxlY3Rpb240OnJlbGlnaW9uNAAEAAkAAAAQY2xhc3MyOnJlbGlnaW9uMgAEAAkA AAAQY2xhc3MzOnJlbGlnaW9uMgAEAAkAAAAQY2xhc3M0OnJlbGlnaW9uMgAEAAkAAAAQY2xh c3M1OnJlbGlnaW9uMgAEAAkAAAAQY2xhc3M2OnJlbGlnaW9uMgAEAAkAAAAQY2xhc3MyOnJl bGlnaW9uMwAEAAkAAAAQY2xhc3MzOnJlbGlnaW9uMwAEAAkAAAAQY2xhc3M0OnJlbGlnaW9u MwAEAAkAAAAQY2xhc3M1OnJlbGlnaW9uMwAEAAkAAAAQY2xhc3M2OnJlbGlnaW9uMwAEAAkA AAAQY2xhc3MyOnJlbGlnaW9uNAAEAAkAAAAQY2xhc3MzOnJlbGlnaW9uNAAEAAkAAAAQY2xh c3M0OnJlbGlnaW9uNAAEAAkAAAAQY2xhc3M1OnJlbGlnaW9uNAAEAAkAAAAQY2xhc3M2OnJl bGlnaW9uNAAEAAkAAAAaZWxlY3Rpb24yOmNsYXNzMjpyZWxpZ2lvbjIABAAJAAAAGmVsZWN0 aW9uMzpjbGFzczI6cmVsaWdpb24yAAQACQAAABplbGVjdGlvbjQ6Y2xhc3MyOnJlbGlnaW9u MgAEAAkAAAAaZWxlY3Rpb24yOmNsYXNzMzpyZWxpZ2lvbjIABAAJAAAAGmVsZWN0aW9uMzpj bGFzczM6cmVsaWdpb24yAAQACQAAABplbGVjdGlvbjQ6Y2xhc3MzOnJlbGlnaW9uMgAEAAkA AAAaZWxlY3Rpb24yOmNsYXNzNDpyZWxpZ2lvbjIABAAJAAAAGmVsZWN0aW9uMzpjbGFzczQ6 cmVsaWdpb24yAAQACQAAABplbGVjdGlvbjQ6Y2xhc3M0OnJlbGlnaW9uMgAEAAkAAAAaZWxl Y3Rpb24yOmNsYXNzNTpyZWxpZ2lvbjIABAAJAAAAGmVsZWN0aW9uMzpjbGFzczU6cmVsaWdp b24yAAQACQAAABplbGVjdGlvbjQ6Y2xhc3M1OnJlbGlnaW9uMgAEAAkAAAAaZWxlY3Rpb24y OmNsYXNzNjpyZWxpZ2lvbjIABAAJAAAAGmVsZWN0aW9uMzpjbGFzczY6cmVsaWdpb24yAAQA CQAAABplbGVjdGlvbjQ6Y2xhc3M2OnJlbGlnaW9uMgAEAAkAAAAaZWxlY3Rpb24yOmNsYXNz MjpyZWxpZ2lvbjMABAAJAAAAGmVsZWN0aW9uMzpjbGFzczI6cmVsaWdpb24zAAQACQAAABpl bGVjdGlvbjQ6Y2xhc3MyOnJlbGlnaW9uMwAEAAkAAAAaZWxlY3Rpb24yOmNsYXNzMzpyZWxp Z2lvbjMABAAJAAAAGmVsZWN0aW9uMzpjbGFzczM6cmVsaWdpb24zAAQACQAAABplbGVjdGlv bjQ6Y2xhc3MzOnJlbGlnaW9uMwAEAAkAAAAaZWxlY3Rpb24yOmNsYXNzNDpyZWxpZ2lvbjMA BAAJAAAAGmVsZWN0aW9uMzpjbGFzczQ6cmVsaWdpb24zAAQACQAAABplbGVjdGlvbjQ6Y2xh c3M0OnJlbGlnaW9uMwAEAAkAAAAaZWxlY3Rpb24yOmNsYXNzNTpyZWxpZ2lvbjMABAAJAAAA GmVsZWN0aW9uMzpjbGFzczU6cmVsaWdpb24zAAQACQAAABplbGVjdGlvbjQ6Y2xhc3M1OnJl bGlnaW9uMwAEAAkAAAAaZWxlY3Rpb24yOmNsYXNzNjpyZWxpZ2lvbjMABAAJAAAAGmVsZWN0 aW9uMzpjbGFzczY6cmVsaWdpb24zAAQACQAAABplbGVjdGlvbjQ6Y2xhc3M2OnJlbGlnaW9u MwAEAAkAAAAaZWxlY3Rpb24yOmNsYXNzMjpyZWxpZ2lvbjQABAAJAAAAGmVsZWN0aW9uMzpj bGFzczI6cmVsaWdpb240AAQACQAAABplbGVjdGlvbjQ6Y2xhc3MyOnJlbGlnaW9uNAAEAAkA AAAaZWxlY3Rpb24yOmNsYXNzMzpyZWxpZ2lvbjQABAAJAAAAGmVsZWN0aW9uMzpjbGFzczM6 cmVsaWdpb240AAQACQAAABplbGVjdGlvbjQ6Y2xhc3MzOnJlbGlnaW9uNAAEAAkAAAAaZWxl Y3Rpb24yOmNsYXNzNDpyZWxpZ2lvbjQABAAJAAAAGmVsZWN0aW9uMzpjbGFzczQ6cmVsaWdp b240AAQACQAAABplbGVjdGlvbjQ6Y2xhc3M0OnJlbGlnaW9uNAAEAAkAAAAaZWxlY3Rpb24y OmNsYXNzNTpyZWxpZ2lvbjQABAAJAAAAGmVsZWN0aW9uMzpjbGFzczU6cmVsaWdpb240AAQA CQAAABplbGVjdGlvbjQ6Y2xhc3M1OnJlbGlnaW9uNAAEAAkAAAAaZWxlY3Rpb24yOmNsYXNz NjpyZWxpZ2lvbjQABAAJAAAAGmVsZWN0aW9uMzpjbGFzczY6cmVsaWdpb240AAQACQAAABpl bGVjdGlvbjQ6Y2xhc3M2OnJlbGlnaW9uNAAEAAkAAAAlTXVsdChFeHAoLiksIHJlbGlnaW9u OnZvdGUpLmVsZWN0aW9uMQAEAAkAAAAlTXVsdChFeHAoLiksIHJlbGlnaW9uOnZvdGUpLmVs ZWN0aW9uMgAEAAkAAAAlTXVsdChFeHAoLiksIHJlbGlnaW9uOnZvdGUpLmVsZWN0aW9uMwAE AAkAAAAlTXVsdChFeHAoLiksIHJlbGlnaW9uOnZvdGUpLmVsZWN0aW9uNAAEAAkAAAAmTXVs dChFeHAoZWxlY3Rpb24pLCAuKS5yZWxpZ2lvbjE6dm90ZTEABAAJAAAAJk11bHQoRXhwKGVs ZWN0aW9uKSwgLikucmVsaWdpb24yOnZvdGUxAAQACQAAACZNdWx0KEV4cChlbGVjdGlvbiks IC4pLnJlbGlnaW9uMzp2b3RlMQAEAAkAAAAmTXVsdChFeHAoZWxlY3Rpb24pLCAuKS5yZWxp Z2lvbjQ6dm90ZTEABAAJAAAAJk11bHQoRXhwKGVsZWN0aW9uKSwgLikucmVsaWdpb24xOnZv dGUyAAQACQAAACZNdWx0KEV4cChlbGVjdGlvbiksIC4pLnJlbGlnaW9uMjp2b3RlMgAEAAkA AAAmTXVsdChFeHAoZWxlY3Rpb24pLCAuKS5yZWxpZ2lvbjM6dm90ZTIABAAJAAAAJk11bHQo RXhwKGVsZWN0aW9uKSwgLikucmVsaWdpb240OnZvdGUyAAQACQAAACJNdWx0KEV4cCguKSwg Y2xhc3M6dm90ZSkuZWxlY3Rpb24xAAQACQAAACJNdWx0KEV4cCguKSwgY2xhc3M6dm90ZSku ZWxlY3Rpb24yAAQACQAAACJNdWx0KEV4cCguKSwgY2xhc3M6dm90ZSkuZWxlY3Rpb24zAAQA CQAAACJNdWx0KEV4cCguKSwgY2xhc3M6dm90ZSkuZWxlY3Rpb240AAQACQAAACNNdWx0KEV4 cChlbGVjdGlvbiksIC4pLmNsYXNzMTp2b3RlMQAEAAkAAAAjTXVsdChFeHAoZWxlY3Rpb24p LCAuKS5jbGFzczI6dm90ZTEABAAJAAAAI011bHQoRXhwKGVsZWN0aW9uKSwgLikuY2xhc3Mz OnZvdGUxAAQACQAAACNNdWx0KEV4cChlbGVjdGlvbiksIC4pLmNsYXNzNDp2b3RlMQAEAAkA AAAjTXVsdChFeHAoZWxlY3Rpb24pLCAuKS5jbGFzczU6dm90ZTEABAAJAAAAI011bHQoRXhw KGVsZWN0aW9uKSwgLikuY2xhc3M2OnZvdGUxAAQACQAAACNNdWx0KEV4cChlbGVjdGlvbiks IC4pLmNsYXNzMTp2b3RlMgAEAAkAAAAjTXVsdChFeHAoZWxlY3Rpb24pLCAuKS5jbGFzczI6 dm90ZTIABAAJAAAAI011bHQoRXhwKGVsZWN0aW9uKSwgLikuY2xhc3MzOnZvdGUyAAQACQAA ACNNdWx0KEV4cChlbGVjdGlvbiksIC4pLmNsYXNzNDp2b3RlMgAEAAkAAAAjTXVsdChFeHAo ZWxlY3Rpb24pLCAuKS5jbGFzczU6dm90ZTIABAAJAAAAI011bHQoRXhwKGVsZWN0aW9uKSwg LikuY2xhc3M2OnZvdGUyAAAEAgAAPv8AAAAOAAAAAQAAAAAAAAAAAAAA/gAAAA4AAAAAAAAA DgAAAAAAAAIOAAAAwD9xQdVxdPUov57Voa8NJgG/sNNPSmLLbD/gDx4q//w8P6g7rqOcOIG/ 0DNqHRWpYL+4xAS8HynIP9q4RBeIsvw/cl+LbEKb1L+S8zZ0EXiwP8PXGX2ZSmi/3Wd6zYpr Cb+/c7GwFPswP9XeKnpqnpE/xMPiKFF0Br/e2VR1yWVzP9Q5TpVH9Z2/5Qtx2HZci7+2mqzU WYAfP8L61vvL2nc/t8126RG8eb/DGySSE296v76uNIDjSA4/wbGPo4YkqL/QmZVDKmn0P9N+ Uid4bI+/h8UZb0UltT+N0j8JOkRxv7CMYM7ZRlE/rRWO/YzfaD+yPEIyzfetv6ncXdZHQoE/ tgjBvroh4r+t30ghpV+Sv8NwLsH8SnU/su8CXnmwib/wAAAAAAAAP9QTDG/B4e0/4v9ElM1b 7b/JdstzQtn0P/GqlPfqoQ+/0JYxKPAN8T/QYdaegdeXv6jSeLgyE3s/8somOcDH0b/LN17O goqCP9Q9eebY8sG/pRBFOrrUNT+cjW2N3+A2v9eThSML118/sQCWd8D34b/wAAAAAAAAP7aG Cb7dsxi/5PeOIHQwrL+iViJNNe7JP8ZWDDGUIrq/pBW7OKWrCj/GYa7WB5z1P7QTtpldlHe/ x0V/P+YACr+kLN5o4lysP8wSRdRXL9k/ioWrzWUumb+1Bz8MCDqSv7rpzkWT9LE/1RusYroH /L+e0Ysq9vQDP6+hDvAgtj+/oicFHdxqHj+xCu+kJ8FeP2S/eoV/QWa/ZEMWHfcxwL+RrBda cWcsP6ZTbyYv+ru/q8RSco80pz/D/T5RUU8uP8gOdqUXrPC/0SGW10EUEj+iuHRiP+slv6Fx 4MwI1Wu/lEjCcyP+CD+RSqiDuQddv5GciIC61fg/fzuFctp/Z7/XZjXK6qhRP9GlN5gr/jA/ tO+jvUimiL+x/jrVr6/WP8f7HZSxxgO/tGMuifyGu7/L3/P5eRK+P68CkAXBHrE/yMqvm6hQ bL+pOwIPLJCZP7ja/J6rP3O/ik+2hAKbCj+iYxKn8GULv8Sjt83FZiC/yYhUfDP9VD/vyj5p qXmsP7u+NVLzmCK/08ULHRNHnD+5gtzrZuDiv8n51BRXHpe/uYrASaakvz/IPCRVtWhrv8IE XApgBEU/xFzzHVqbgj+s/BDOr7Vhv792oQJN7j2/vIEqay9Wtz/RKRbUoF8LP8M/d6c6Dr2/ yoc/G7v6wj+yUm7veh1/v7IKgqYLcoM/e2nYN37gjb95J1DuMmm8P6O0SbbI3fm/lYlFWKF7 uj++U+hokscFv8DzkozFSEu/ttO3pQRjfz+8TeyaBimMP7jVZ9IO3O6/sZ+j1LUWzj/BE/t+ idAjv7FRSjmNWxG/lmBQomqxgD+FJMvNzWgmv4qQ4E+XtL8/bebJd8OKFr/A6BB9QRcCP6tc RTTMEiE/1RORNRzlPL/C6qnqPCjSv+RBeVOQ5kY/xM9nSjiazL/VqeuXlqg/P6/NTc/P5z2/ vcnPh9l72j+UX9RyN7tcP8NTgkhQlLO/j323Crs1Zz+o6jsIw6tUv9d+s7UN+9q/pD1KctgP sT/U/KJCEIEUv76IPz5DdnQ/4vzX73vpkT9nvub6DHQ3v4W0InfBa/8/opKFASiSqb+/0w4i XBdZv6o3eibCPzo/u/GGx2VmNb+kiejkWiZ8P8OhdeJ5ElA/tytf8e9xH7/YWc8O6rBUv3wK eJkn4qU/kay+2Orb4z+2zZk4D8flv8Uf7M/PU+q/dfKI+d0NAj+DDw7LD3jWv2NtjqvmjF0/ ZP0DzCWyU7+4V3O3QJ7pP8kCb1mTg+4/wMOzDhBLu7/S8KW2SuQ4v8bW6PB57zU/zvNnWBPC PL+gUqOI4wbQP6BBQZgWBqs/gXH1S8m+vb+ASOR+y/qrP4jJrHfRzum/fMk5q/MHqT/aXXRR c2zGv9TwbSY+XAU/wm/nWxrJxL/AGeqdXsQIv+Hk9w8Dsiw/0r6g12JCjL/Wgfok463PP8FT bojROLE/448cvrozO7/MOgC3DZ9bP8YPuFVCWXe/o83QUy5UcQAABAIAAD3/AAAAEAAAAMAA BAAJAAAAATEABAAJAAAAATIABAAJAAAAATMABAAJAAAAATQABAAJAAAAATUABAAJAAAAATYA BAAJAAAAATcABAAJAAAAATgABAAJAAAAATkABAAJAAAAAjEwAAQACQAAAAIxMQAEAAkAAAAC MTIABAAJAAAAAjEzAAQACQAAAAIxNAAEAAkAAAACMTUABAAJAAAAAjE2AAQACQAAAAIxNwAE AAkAAAACMTgABAAJAAAAAjE5AAQACQAAAAIyMAAEAAkAAAACMjEABAAJAAAAAjIyAAQACQAA AAIyMwAEAAkAAAACMjQABAAJAAAAAjI1AAQACQAAAAIyNgAEAAkAAAACMjcABAAJAAAAAjI4 AAQACQAAAAIyOQAEAAkAAAACMzAABAAJAAAAAjMxAAQACQAAAAIzMgAEAAkAAAACMzMABAAJ AAAAAjM0AAQACQAAAAIzNQAEAAkAAAACMzYABAAJAAAAAjM3AAQACQAAAAIzOAAEAAkAAAAC MzkABAAJAAAAAjQwAAQACQAAAAI0MQAEAAkAAAACNDIABAAJAAAAAjQzAAQACQAAAAI0NAAE AAkAAAACNDUABAAJAAAAAjQ2AAQACQAAAAI0NwAEAAkAAAACNDgABAAJAAAAAjQ5AAQACQAA AAI1MAAEAAkAAAACNTEABAAJAAAAAjUyAAQACQAAAAI1MwAEAAkAAAACNTQABAAJAAAAAjU1 AAQACQAAAAI1NgAEAAkAAAACNTcABAAJAAAAAjU4AAQACQAAAAI1OQAEAAkAAAACNjAABAAJ AAAAAjYxAAQACQAAAAI2MgAEAAkAAAACNjMABAAJAAAAAjY0AAQACQAAAAI2NQAEAAkAAAAC NjYABAAJAAAAAjY3AAQACQAAAAI2OAAEAAkAAAACNjkABAAJAAAAAjcwAAQACQAAAAI3MQAE AAkAAAACNzIABAAJAAAAAjczAAQACQAAAAI3NAAEAAkAAAACNzUABAAJAAAAAjc2AAQACQAA AAI3NwAEAAkAAAACNzgABAAJAAAAAjc5AAQACQAAAAI4MAAEAAkAAAACODEABAAJAAAAAjgy AAQACQAAAAI4MwAEAAkAAAACODQABAAJAAAAAjg1AAQACQAAAAI4NgAEAAkAAAACODcABAAJ AAAAAjg4AAQACQAAAAI4OQAEAAkAAAACOTAABAAJAAAAAjkxAAQACQAAAAI5MgAEAAkAAAAC OTMABAAJAAAAAjk0AAQACQAAAAI5NQAEAAkAAAACOTYABAAJAAAAAjk3AAQACQAAAAI5OAAE AAkAAAACOTkABAAJAAAAAzEwMAAEAAkAAAADMTAxAAQACQAAAAMxMDIABAAJAAAAAzEwMwAE AAkAAAADMTA0AAQACQAAAAMxMDUABAAJAAAAAzEwNgAEAAkAAAADMTA3AAQACQAAAAMxMDgA BAAJAAAAAzEwOQAEAAkAAAADMTEwAAQACQAAAAMxMTEABAAJAAAAAzExMgAEAAkAAAADMTEz AAQACQAAAAMxMTQABAAJAAAAAzExNQAEAAkAAAADMTE2AAQACQAAAAMxMTcABAAJAAAAAzEx OAAEAAkAAAADMTE5AAQACQAAAAMxMjAABAAJAAAAAzEyMQAEAAkAAAADMTIyAAQACQAAAAMx MjMABAAJAAAAAzEyNAAEAAkAAAADMTI1AAQACQAAAAMxMjYABAAJAAAAAzEyNwAEAAkAAAAD MTI4AAQACQAAAAMxMjkABAAJAAAAAzEzMAAEAAkAAAADMTMxAAQACQAAAAMxMzIABAAJAAAA AzEzMwAEAAkAAAADMTM0AAQACQAAAAMxMzUABAAJAAAAAzEzNgAEAAkAAAADMTM3AAQACQAA AAMxMzgABAAJAAAAAzEzOQAEAAkAAAADMTQwAAQACQAAAAMxNDEABAAJAAAAAzE0MgAEAAkA AAADMTQzAAQACQAAAAMxNDQABAAJAAAAAzE0NQAEAAkAAAADMTQ2AAQACQAAAAMxNDcABAAJ AAAAAzE0OAAEAAkAAAADMTQ5AAQACQAAAAMxNTAABAAJAAAAAzE1MQAEAAkAAAADMTUyAAQA CQAAAAMxNTMABAAJAAAAAzE1NAAEAAkAAAADMTU1AAQACQAAAAMxNTYABAAJAAAAAzE1NwAE AAkAAAADMTU4AAQACQAAAAMxNTkABAAJAAAAAzE2MAAEAAkAAAADMTYxAAQACQAAAAMxNjIA BAAJAAAAAzE2MwAEAAkAAAADMTY0AAQACQAAAAMxNjUABAAJAAAAAzE2NgAEAAkAAAADMTY3 AAQACQAAAAMxNjgABAAJAAAAAzE2OQAEAAkAAAADMTcwAAQACQAAAAMxNzEABAAJAAAAAzE3 MgAEAAkAAAADMTczAAQACQAAAAMxNzQABAAJAAAAAzE3NQAEAAkAAAADMTc2AAQACQAAAAMx NzcABAAJAAAAAzE3OAAEAAkAAAADMTc5AAQACQAAAAMxODAABAAJAAAAAzE4MQAEAAkAAAAD MTgyAAQACQAAAAMxODMABAAJAAAAAzE4NAAEAAkAAAADMTg1AAQACQAAAAMxODYABAAJAAAA AzE4NwAEAAkAAAADMTg4AAQACQAAAAMxODkABAAJAAAAAzE5MAAEAAkAAAADMTkxAAQACQAA AAMxOTIAAAD+AAACDgAAAMBAQmwhT5ID0kAUnvWDb+ZvQDRWLBQWT3FABU6fX02EckA8pO4Q lej3QBVsR72oXAVAOFszD+i8pEAWkzPAXQx9QELqR3u5GAZAIlbiERufOEBAcz+wNyQXQCYz AT8jbphANs0lhrDDZEAgZbTynnlGQDE1VQ6PlihAFyqrxcGnYUAYUO9IyPn9QAdeIW5uDANA IYyxwsHnR0AU5px6fDFzQD4xVcOGyjVAMs6qPHk1y0BCvyiFcpWOQEBA13qNanZAKwESDVEs fUAm/u3yrtPzQDZCIoaZbYRAMb3deWaSe0Ad72A+fi70QCEIT+DA6GpANmdz0Qoy/kA/mIwu 9c0CQEPLzt75A5NATTQxIQb8bEBHlL8jvxhzQFg1oG4gc8E/7pAAI+OSY0AIW//3BxiKP/QU Xd5Ljt1ADfXRENo4ij/uaogyhEYXQBAyrvmvdyc/6XpwygiNI0AQ0LHmvu6HP/YTVi5JctZA HnsqdG2jgEAOY6n/8eDCQD0zisABxARAVOqxlwlnKkAZVOaPaZnEQEhheKhOaKNACeh1exl2 GUBFmX/YBGxHQBc0AT/cnj5AVL4s6YKUyUAxB0xZ9ayPQF1nSFARsnVAOmLev7k1okBJgAii X4HeQDX/7rtA+2BATatKhPIam0AlUtXsN5WNQEFGuXpjXu1AFco0LOUIyEA1O21Lwv8+QBsS StD0A09ARzK7wh5sZ0A2moh7wycyQFdTuJmkDshASNiOzLfia0BKbtyLP6pcQEsRI3TAVadA UY2Mw13r10A7yczyiFAKQFwFAglX/ttAQ3X77VACbUBMMzYdDTndQEPMyeLyxiFAXHWcwMga 60BeimM/N+UJQGsJGURgMg1Ab7bmu5/N9kBiUKNwh4V2QHSnrke8PURAEup5He98jEAZFYbi EIIoQCCjo8nTQHdAI1xcNiy/jUAsopq5NjsKQEDXWVGycS1ANHRTMj49nkBSYuszcHCXQDNE n2K1yu1AUu7YJ1KNRUArWFPuSqeSQFnU9YI2qxdATXFRpUMIYEAqOrlq8+WlQDt7XXh3T25A FhKKHiLCnkA83wa/SeyQQCRB8oFsJsxAStOe3wPOhkA6WMJB+GK1QFXwXSV0ONVARx9FtReO BkBCCgYmPG1ZQD/r87OHJHNAQBbUm6MgDUAtpK2Rc3+lQD5iDfkYC1xAKTvkDc/pbUAxYrmb H7LBQCk6jMnAmnlAQ5jvqyZen0BD5xBU2aFbQFOeYvCClZVAVWGdD31qZEBDQkJ3YVU9QFGe 3sRPVVhAReer3IkEP0BDmFQjdvtHQFB37QdWf4xASpAl8VMA8kBHPr2Yn+txQFBgoTOwCjNA VZ2u5QsUbEBlUSiNenXHQGKHqErspfxAc5wr2omtAEBWSgQy5zrpQHPNfvNGMUFAAm9XD7iM 9UAWyFR4I7f8QBUQO8bFuehAJ3fiHJ0jAkAgWTMfh085QD/TZnA8WCFAKC/zlbJGGkBQegGN Sbc/QCspEBSSeeBAU9rd/W2wzUAhYFwmzZarQFVT9HsmTS1AR9cDzexli0AZR+GQnLajQD88 Fg/xEGJADh9PgHeET0BCvACSRFHmQB4f+23dcXpAT2ixYC/JhUAxLp0/oG3YQFGcdaw1QM5A NI4pTyr9+EBAViUIJ9AzQC6na99gwXFAQjs5YaKPKkAjExp5dcXuQED28I08QgpAICQ9yw75 vkBAHDvz/m2LQCmPEDAGSTlASqDLyY64mEA8vmhs4o6uQFZer13JrHFAScKhRGym4kBFjRWN czsPQEPy6nKMxEtAPvEuSi17/0AuHaNrpQzbQFWpq77YrmdAQyyogk6kQ0BPpZixXhuHQEda Z06h5A5AXXBCdWw3xkBdj72Kk8gQQGcNum8L0r5AaLJFkPQtDEBcpzgE2Z4LQGisY/2TMIhA DFRcZB1MTkAR1dHN8V7lQCv4lq5J8aZAMAO0qNsHNUA2r57QkvOWQEWoMJe2heVAPtlfkZBb mkBUCagbm+j6QDtO+hC43y1AUuxBe9HH+kA2LXZi/QqpQFi0omdAvQMAAAQCAAA9/wAAABAA AADAAAQACQAAAAExAAQACQAAAAEyAAQACQAAAAEzAAQACQAAAAE0AAQACQAAAAE1AAQACQAA AAE2AAQACQAAAAE3AAQACQAAAAE4AAQACQAAAAE5AAQACQAAAAIxMAAEAAkAAAACMTEABAAJ AAAAAjEyAAQACQAAAAIxMwAEAAkAAAACMTQABAAJAAAAAjE1AAQACQAAAAIxNgAEAAkAAAAC MTcABAAJAAAAAjE4AAQACQAAAAIxOQAEAAkAAAACMjAABAAJAAAAAjIxAAQACQAAAAIyMgAE AAkAAAACMjMABAAJAAAAAjI0AAQACQAAAAIyNQAEAAkAAAACMjYABAAJAAAAAjI3AAQACQAA AAIyOAAEAAkAAAACMjkABAAJAAAAAjMwAAQACQAAAAIzMQAEAAkAAAACMzIABAAJAAAAAjMz AAQACQAAAAIzNAAEAAkAAAACMzUABAAJAAAAAjM2AAQACQAAAAIzNwAEAAkAAAACMzgABAAJ AAAAAjM5AAQACQAAAAI0MAAEAAkAAAACNDEABAAJAAAAAjQyAAQACQAAAAI0MwAEAAkAAAAC NDQABAAJAAAAAjQ1AAQACQAAAAI0NgAEAAkAAAACNDcABAAJAAAAAjQ4AAQACQAAAAI0OQAE AAkAAAACNTAABAAJAAAAAjUxAAQACQAAAAI1MgAEAAkAAAACNTMABAAJAAAAAjU0AAQACQAA AAI1NQAEAAkAAAACNTYABAAJAAAAAjU3AAQACQAAAAI1OAAEAAkAAAACNTkABAAJAAAAAjYw AAQACQAAAAI2MQAEAAkAAAACNjIABAAJAAAAAjYzAAQACQAAAAI2NAAEAAkAAAACNjUABAAJ AAAAAjY2AAQACQAAAAI2NwAEAAkAAAACNjgABAAJAAAAAjY5AAQACQAAAAI3MAAEAAkAAAAC NzEABAAJAAAAAjcyAAQACQAAAAI3MwAEAAkAAAACNzQABAAJAAAAAjc1AAQACQAAAAI3NgAE AAkAAAACNzcABAAJAAAAAjc4AAQACQAAAAI3OQAEAAkAAAACODAABAAJAAAAAjgxAAQACQAA AAI4MgAEAAkAAAACODMABAAJAAAAAjg0AAQACQAAAAI4NQAEAAkAAAACODYABAAJAAAAAjg3 AAQACQAAAAI4OAAEAAkAAAACODkABAAJAAAAAjkwAAQACQAAAAI5MQAEAAkAAAACOTIABAAJ AAAAAjkzAAQACQAAAAI5NAAEAAkAAAACOTUABAAJAAAAAjk2AAQACQAAAAI5NwAEAAkAAAAC OTgABAAJAAAAAjk5AAQACQAAAAMxMDAABAAJAAAAAzEwMQAEAAkAAAADMTAyAAQACQAAAAMx MDMABAAJAAAAAzEwNAAEAAkAAAADMTA1AAQACQAAAAMxMDYABAAJAAAAAzEwNwAEAAkAAAAD MTA4AAQACQAAAAMxMDkABAAJAAAAAzExMAAEAAkAAAADMTExAAQACQAAAAMxMTIABAAJAAAA AzExMwAEAAkAAAADMTE0AAQACQAAAAMxMTUABAAJAAAAAzExNgAEAAkAAAADMTE3AAQACQAA AAMxMTgABAAJAAAAAzExOQAEAAkAAAADMTIwAAQACQAAAAMxMjEABAAJAAAAAzEyMgAEAAkA AAADMTIzAAQACQAAAAMxMjQABAAJAAAAAzEyNQAEAAkAAAADMTI2AAQACQAAAAMxMjcABAAJ AAAAAzEyOAAEAAkAAAADMTI5AAQACQAAAAMxMzAABAAJAAAAAzEzMQAEAAkAAAADMTMyAAQA CQAAAAMxMzMABAAJAAAAAzEzNAAEAAkAAAADMTM1AAQACQAAAAMxMzYABAAJAAAAAzEzNwAE AAkAAAADMTM4AAQACQAAAAMxMzkABAAJAAAAAzE0MAAEAAkAAAADMTQxAAQACQAAAAMxNDIA BAAJAAAAAzE0MwAEAAkAAAADMTQ0AAQACQAAAAMxNDUABAAJAAAAAzE0NgAEAAkAAAADMTQ3 AAQACQAAAAMxNDgABAAJAAAAAzE0OQAEAAkAAAADMTUwAAQACQAAAAMxNTEABAAJAAAAAzE1 MgAEAAkAAAADMTUzAAQACQAAAAMxNTQABAAJAAAAAzE1NQAEAAkAAAADMTU2AAQACQAAAAMx NTcABAAJAAAAAzE1OAAEAAkAAAADMTU5AAQACQAAAAMxNjAABAAJAAAAAzE2MQAEAAkAAAAD MTYyAAQACQAAAAMxNjMABAAJAAAAAzE2NAAEAAkAAAADMTY1AAQACQAAAAMxNjYABAAJAAAA AzE2NwAEAAkAAAADMTY4AAQACQAAAAMxNjkABAAJAAAAAzE3MAAEAAkAAAADMTcxAAQACQAA AAMxNzIABAAJAAAAAzE3MwAEAAkAAAADMTc0AAQACQAAAAMxNzUABAAJAAAAAzE3NgAEAAkA AAADMTc3AAQACQAAAAMxNzgABAAJAAAAAzE3OQAEAAkAAAADMTgwAAQACQAAAAMxODEABAAJ AAAAAzE4MgAEAAkAAAADMTgzAAQACQAAAAMxODQABAAJAAAAAzE4NQAEAAkAAAADMTg2AAQA CQAAAAMxODcABAAJAAAAAzE4OAAEAAkAAAADMTg5AAQACQAAAAMxOTAABAAJAAAAAzE5MQAE AAkAAAADMTkyAAAA/gAAAg0AAAABAAAAcgAABAIAAD//AAAAEAAAAAEABAAJAAAACHRvbE5v cm0yAAAEAgAAQP8AAAAKAAAAAQAAAAAAAAQCAABB/wAAAA4AAAABPSgAAAAAAAAAAAD+AAAD EwAAAA0AAAAQAAAAAQAEAAkAAAAHcG9pc3NvbgAAABAAAAABAAQACQAAAANsb2cAAgQDAABC /wAABAIAAEP/AAAA+wAAAP4AAAAGAABE/wAAAAIAAEP/AAAA/gACBAMAAEL/AAAEAgAARf8A AAD7AAAA/gAAAAYAAEb/AAAAAgAAAAYAADj/AAAAAgAARf8AAAD+AAAAAgAAAAYAAEf/AAAA AgAASP8AAAACAABJ/wAAAP4AAAD+AAAEAwAASv8AAAQCAABD/wAAAPsAAAD+AAAAFQAAAAEA AAANAAAABAAAAAwAAAAUAAAAAAAAAAEAAAADAAAAAQAAQ/8AAAAGAAAA/gAAAAAAAHf/AAAA AgAAAP4AAAACAABD/wAAAAAAAAD7AAAAAAAAAP4AAAACAAAA/gAAAAAAAEP/AAAAAgAAAP4A AAAAAAAA/gAAAAAAAAD+AAAADQAAAw0AAAAEgAAAAAAAAAEAAAABAAAAAQAABAIAAAn/AAAA EAAAAAEABAAJAAAAEGV4cHJlc3Npb25zSW5kZXgAAAD+AAAEAwAASv8AAAQCAABc/wAAAPsA AAQCAABD/wAAAPsAAAQCAABj/wAAAPsAAAD+AAAAFQAAAA8AAAANAAAARQAAAAwAAAAUAAAA AQAAABQAAAACAAAALgAAAAMAAAAWAAAABAAAAAQAAAAXAAAABgAAAB0AAAAIAAAAJgAAAAcA AAAWAAAACQAAAAQAAAAUAAAAAgAAABQAAAAMAAAAFAAAAAwAAAAUAAAAAQAAAC8AAAAOAAAA dAAAAA0AAAAuAAAADwAAABQAAAAMAAAAFAAAAAEAAAAtAAAAEAAAAC0AAAARAAAALgAAABIA AABoAAAACwAAADIAAABcAAAACQAAAFQAAAALAAAAPQAAAAQAAABpAAAAFAAAADsAAABcAAAA CQAAAFYAAAAUAAAAPgAAAAQAAAAEAAAAEAAAABYAAAAUAAAABAAAAC4AAAAXAAAAAQAAABkA AAAGAAAA/gAAAAAAAE7/AAAAAgAAAP4AAAD0AAAAAAAAAAYAAAD+AAAAAAAAT/8AAAACAAAA /gAAAAAAAGn/AAAAAgAAAP4AAAD0AAAAAQAAAAYAAAD+AAAAAAAABv8AAAACAAAA/gAAAAAA AEP/AAAAAgAAAP4AAAAAAABj/wAAAAAAAAD+AAAAAAAAAP4AAAACAAAA/gAAAPQAAAACAAAA BgAAAP4AAAAAAABP/wAAAAIAAAD+AAAAAAAAav8AAAACAAAA/gAAAPQAAAADAAAABgAAAP4A AAAAAABr/wAAAAIAAAD+AAAA9AAAAAQAAAAGAAAA/gAAAAAAAGz/AAAAAgAAAP4AAAAAAABc /wAAAAIAAAD+AAAAAAAAAA4AAAABAAAAAAAAAAAAAAAAAAAA/gAAAAAAAAD+AAAAAAAAAP4A AAACAAAA/gAAAPQAAAAFAAAABgAAAP4AAAAAAABP/wAAAAIAAAD+AAAABgAAAP4AAAAAAABt /wAAAAIAAAD+AAAAAAAAaf8AAAACAAAA/gAAAAAAAGr/AAAAAAAAAP4AAAACAAAA/gAAAPQA AAAGAAAABgAAAP4AAAAAAABt/wAAAAIAAAD+AAAABgAAAP4AAAAAAAA3/wAAAAIAAAD+AAAA 9AAAAAcAAAAGAAAA/gAAAAAAAAb/AAAAAgAAAP4AAAAAAABj/wAAAAIAAAD+AAAABgAAAP4A AAAAAAA3/wAAAAIAAAD+AAAA9AAAAAgAAAAGAAAA/gAAAAAAAGX/AAAAAgAAAP4AAAD0AAAA CQAAAAYAAAD+AAAAAAAABv8AAAACAAAA/gAAAAAAAFz/AAAAAgAAAP4AAAD0AAAACgAAAAYA AAD+AAAAAAAARP8AAAACAAAA/gAAAPQAAAALAAAABgAAAP4AAAAAAABu/wAAAAIAAAD+AAAA AAAAXP8AAAACAAAA/gAAAAAAAEP/AAAAAAAAAP4AAAAAAAAA/gAAAAAAAAD+AAAAAgAAAP4A AAAGAAAA/gAAAAAAADf/AAAAAgAAAP4AAAD0AAAADAAAAAYAAAD+AAAAAAAAZf8AAAACAAAA /gAAAAAAAFz/AAAAAgAAAP4AAAAAAABD/wAAAAAAAAD+AAAAAAAAAP4AAAAAAAAA/gAAAAAA AAD+AAAAAAAAAP4AAAAAAAAA/gAAAAIAAAD+AAAAAAAAav8AAAAAAAAA/gAAAAAAAAD+AAAA AgAAAP4AAAD0AAAADQAAAAYAAAD+AAAAAAAABv8AAAACAAAA/gAAAAAAAAAOAAAAAUAAAAAA AAAAAAAAAgAAAP4AAAAAAABp/wAAAAAAAAD+AAAAAAAAAP4AAAABAABD/wAAAAEAAGP/AAAA 8wAAAAEAAAABAABp/wAAAPMAAAAAAAAAAQAAa/8AAADzAAAAAwAAABUAAAANAAAACAAAAAwA AAAUAAAAAQAAABAAAAACAAAAOAAAAAAAAAABAAAABAAAAPMAAAAEAAAAAQAAXP8AAAAOAAAA DgAAAAEAAAAAAAAAAAAAAA0AAAMNAAAACIAAAAAAAAABAAAAAQAAAAIAAAACAAAAAAAAAAAA AAAAAAAEAgAACf8AAAAQAAAAAQAEAAkAAAAQZXhwcmVzc2lvbnNJbmRleAAAAP4AAAABAABq /wAAAPMAAAACAAAA8wAAAAYAAAABAABc/wAAAPMAAAAKAAAA8wAAAAsAAADzAAAACQAAAPMA AAAMAAAA8wAAAAgAAADzAAAABwAAAPMAAAAFAAAABgAAAP4AAAAAAABv/wAAAAIAAAD+AAAA AAAAcP8AAAACAAAA/gAAAAAAAGr/AAAAAgAAcf8AAADzAAAABgAAAAAAAAD+AAAABgAAAP4A AAAAAABv/wAAAAIAAAD+AAAAAAAAaf8AAAACAAAA/gAAAAAAAGr/AAAAAgAAcf8AAADzAAAA BgAAAAAAAAD+AAAADgAAAA4AAAABQAAAAAAAAAAAAADzAAAADQAAAA0AAAMNAAAARYAAAAAA AAABAAAAAQAAAAIAAAACAAAAAwAAAAMAAAAFAAAABQAAAAUAAAAHAAAABwAAAAcAAAAHAAAA BwAAAAcAAAAKAAAACgAAAAoAAAACAAAAAgAAAAwAAAAMAAAADAAAAAwAAAABAAAAAQAAAA4A AAAOAAAADQAAAA0AAAAPAAAADwAAAAwAAAAMAAAAAQAAAAEAAAAQAAAAEAAAABEAAAARAAAA EgAAABIAAAALAAAACwAAAAsAAAAJAAAACQAAAAsAAAALAAAAEwAAABMAAAAVAAAAFQAAABUA AAAJAAAACQAAABUAAAAVAAAAEwAAABMAAAATAAAAFgAAABYAAAAEAAAABAAAABcAAAAXAAAA FwAABAIAAAn/AAAAEAAAAAEABAAJAAAAEGV4cHJlc3Npb25zSW5kZXgAAAD+AAAEAwAASv8A AAQCAABc/wAAAPsAAAQCAABe/wAAAPsAAAQCAABD/wAAAPsAAAQCAABj/wAAAPsAAAQCAABk /wAAAPsAAAD+AAAAFQAAAAUAAAANAAAAGgAAAAwAAAAQAAAAAQAAABoAAAADAAAAFwAAAAUA AAAdAAAABwAAAB0AAAAIAAAAJAAAAB8AAAAJAAAAJgAAAAYAAAAUAAAACgAAAC4AAAALAAAA IQAAACcAAAAEAAAALgAAAAAAAAABAAAADQAAAAYAAAD+AAAAAAAABv8AAAACAAAA/gAAAPQA AAAAAAAABgAAAP4AAAAAAABl/wAAAAIAAAD+AAAAAAAAAA4AAAABQAAAAAAAAAAAAAAAAAAA /gAAAAIAAAD+AAAA9AAAAAEAAAAGAAAA/gAAAAAAAGb/AAAAAgAAAP4AAAD0AAAAAgAAAAYA AAD+AAAAAAAABv8AAAACAAAA/gAAAPQAAAADAAAABgAAAP4AAAAAAABn/wAAAAIAAAD+AAAA AAAAXP8AAAACAAAA/gAAAAAAAEP/AAAAAgAARP8AAAAAAAAACgAAAAEAAAABAAAAAAAAAP4A AAACAAAA/gAAAAAAAGP/AAAAAAAAAP4AAAAAAAAA/gAAAAAAAAD+AAAADgAAAA4AAAABwAAA AAAAAAAAAADzAAAAAAAAAAEAAGb/AAAA8wAAAAEAAAABAABn/wAAAPMAAAADAAAAFQAAAA0A AAAEAAAADAAAABQAAAAAAAAAAQAAAAMAAAABAABc/wAAAPMAAAADAAAADQAAAw0AAAAEgAAA AAAAAAEAAAABAAAAAQAABAIAAAn/AAAAEAAAAAEABAAJAAAAEGV4cHJlc3Npb25zSW5kZXgA AAD+AAAAFQAAAA0AAAAEAAAADAAAABQAAAAAAAAAAQAAAAMAAAABAABD/wAAAPMAAAADAAAA DQAAAw0AAAAEgAAAAAAAAAEAAAABAAAAAQAABAIAAAn/AAAAEAAAAAEABAAJAAAAEGV4cHJl c3Npb25zSW5kZXgAAAD+AAAAAQAARP8AAAABAABj/wAAAPMAAAACAAAADQAAAw0AAAAagAAA AAAAAAIAAAACAAAABAAAAAQAAAAGAAAABgAAAAYAAAAGAAAABgAAAAYAAAAGAAAABgAAAAYA AAAGAAAABgAAAAoAAAAKAAAACwAAAAsAAAAEAAAABAAAAAQAAAAAAAAAAAAAAAAAAAQCAAAJ /wAAABAAAAABAAQACQAAABBleHByZXNzaW9uc0luZGV4AAAA/gACBAMAAEL/AAAEAgAARf8A AAD7AAAA/gAAAAYAAEb/AAAAAgAAAAYAADj/AAAAAgAARf8AAAD+AAAAAgAAAAYAAEf/AAAA AgAASP8AAAACAABJ/wAAAP4AAAD+AAAAFAAAAAEAAAAGAABO/wAAAAIAAAAGAABS/wAAAAIA AAAGAABT/wAAAAIAAAAGAABb/wAAAAIAAFz/AAAAAgAAAA4AAAABAAAAAAAAAAAAAAD+AAAA /gAAAAIAAAAGAABd/wAAAAIAAAAQAAAAAQAEAAkAAAA0bmVnYXRpdmUgdmFsdWVzIG5vdCBh bGxvd2VkIGZvciB0aGUgJ1BvaXNzb24nIGZhbWlseQAAAP4AAAD+AAAAAgAAAAYAAE//AAAA AgAAXv8AAAACAAAABgAAX/8AAAACAAAADgAAAAE/8AAAAAAAAAAAAAIAAGD/AAAA/gAAAP4A AAACAAAABgAAT/8AAAACAABh/wAAAAIAAAAGAAAF/wAAAAIAAFz/AAAAAgAAAA4AAAABP7mZ mZmZmZoAAAD+AAAA/gAAAP4AAAQDAABK/wAABAIAAEP/AAAA+wAAAP4AAAAVAAAABQAAAA0A AAAeAAAADAAAABoAAAABAAAAGgAAAAMAAAAUAAAABQAAACEAAAAnAAAABAAAACEAAAAnAAAA AgAAAFgAAAAAAAAAHQAAABoAAAABAAAAFAAAAAUAAAAQAAAABwAAADgAAAAIAAAAIQAAACcA AAAGAAAAWQAAAAAAAAABAAAACgAAAAYAAAD+AAAAAAAAc/8AAAACAAAA/gAAAPQAAAAAAAAA BgAAAP4AAAAAAAB0/wAAAAIAAAD+AAAA9AAAAAEAAAAGAAAA/gAAAAAAAHX/AAAAAgAAAP4A AAAAAABD/wAAAAAAAAD+AAAAAAAAAP4AAAACAAAA/gAAAPQAAAACAAAABgAAAP4AAAAAAAB0 /wAAAAIAAAD+AAAA9AAAAAMAAAAGAAAA/gAAAAAAAGz/AAAAAgAAAP4AAAAAAABD/wAAAAIA AAD+AAAAAAAAAA4AAAABAAAAAAAAAAAAAAAAAAAA/gAAAAAAAAD+AAAAAAAAAP4AAAABAAB0 /wAAAPMAAAAAAAAAAQAAdf8AAADzAAAAAQAAAAEAAEP/AAAA8wAAAAIAAAAOAAAADgAAAAEA AAAAAAAAAAAAAPMAAAADAAAADQAAAw0AAAAegAAAAAAAAAIAAAACAAAABAAAAAQAAAAEAAAA BAAAAAQAAAAEAAAABAAAAAIAAAACAAAAAgAAAAAAAAAAAAAAAAAAAAYAAAAGAAAABQAAAAUA AAAHAAAABwAAAAgAAAAIAAAABgAAAAYAAAAGAAAAAAAAAAAAAAAAAAAEAgAACf8AAAAQAAAA AQAEAAkAAAAQZXhwcmVzc2lvbnNJbmRleAAAAP4AAgQDAABC/wAABAIAAEX/AAAA+wAAAP4A AAAKAAAAAQAAAAEAAAQDAABK/wAABAIAAEz/AAAA+wAABAIAAE3/AAAA+wAAAP4AAAAVAAAA DAAAAA0AAAAzAAAADAAAABQAAAABAAAASQAAAAIAAAADAAAAFgAAAAQAAAAEAAAAGgAAAAYA AAAUAAAABAAAABAAAAAIAAAANAAAAAkAAAAhAAAAJwAAAAcAAAADAAAACgAAAB8AAAAXAAAA CwAAACIAAAANAAAAJgAAAAwAAAACAAAAIAAAABEAAAAEAAAAFwAAAA4AAAAdAAAAEAAAACYA AAAPAAAAFgAAABEAAAAEAAAAFwAAABMAAAAdAAAAFQAAAB0AAAAWAAAAJgAAABQAAAABAAAA GAAAAAYAAAD+AAAAAAAATv8AAAACAAAA/gAAAPQAAAAAAAAABgAAAP4AAAAAAABP/wAAAAIA AAD+AAAAAAAAUP8AAAACAAAA/gAAAPQAAAABAAAABgAAAP4AAAAAAABH/wAAAAIAAAD+AAAA AAAATP8AAAACAAAA/gAAAAAAAFH/AAAAAAAAAP4AAAAAAAAA/gAAAAIAAAD+AAAA9AAAAAIA AAAGAAAA/gAAAAAAAFL/AAAAAgAAAP4AAAD0AAAAAwAAAAYAAAD+AAAAAAAAU/8AAAACAAAA /gAAAPQAAAAEAAAABgAAAP4AAAAAAABU/wAAAAIAAAD+AAAAAAAAUP8AAAACAAAA/gAAAAAA AAAOAAAAAT/wAAAAAAAAAAAAAAAAAP4AAAAAAAAA/gAAAAIAAAD+AAAA9AAAAAUAAAAGAAAA /gAAAAAAAFX/AAAAAgAAAP4AAAAAAAAAEAAAAAEABAAJAAAAFmlnbm9yaW5nIHByaW9yIHdl aWdodHMAAAAAAAAA/gAAAAAAAAD+AAAAAgAAAP4AAAD0AAAABgAAAAYAAAD+AAAAAAAAT/8A AAACAAAA/gAAAAAAAFb/AAAAAgAAAP4AAAD0AAAABwAAAAYAAAD+AAAAAAAAV/8AAAACAAAA /gAAAAAAAEz/AAAAAAAAAP4AAAAAAAAA/gAAAAIAAAD+AAAA9AAAAAgAAAAGAAAA/gAAAAAA AFj/AAAAAgAAAP4AAAD0AAAACQAAAAYAAAD+AAAAAAAABv8AAAACAAAA/gAAAAAAAE3/AAAA AgAAAP4AAAD0AAAACgAAAAYAAAD+AAAAAAAAWf8AAAACAAAA/gAAAAAAAFb/AAAAAAAAAP4A AAAAAAAA/gAAAAIAAAD+AAAAAAAAVv8AAAAAAAAA/gAAAAAAAAD+AAAAAQAATP8AAADzAAAA AQAAAAEAAFH/AAAAAQAAUP8AAADzAAAAAAAAAAEAAFP/AAAA8wAAAAMAAAAOAAAADgAAAAE/ 8AAAAAAAAAAAAPMAAAAEAAAA8wAAAAIAAAABAABV/wAAAPMAAAAFAAAAEAAAABAAAAABAAQA CQAAABZpZ25vcmluZyBwcmlvciB3ZWlnaHRzAAAAAQAAV/8AAADzAAAABwAAABUAAAANAAAA BAAAAAwAAAAUAAAAAAAAAAEAAAADAAAAAQAATP8AAADzAAAABwAAAA0AAAMNAAAABIAAAAAA AAABAAAAAQAAAAEAAAQCAAAJ/wAAABAAAAABAAQACQAAABBleHByZXNzaW9uc0luZGV4AAAA /gAAAAEAAFb/AAAA8wAAAAYAAAABAABY/wAAAPMAAAAIAAAAFQAAAA0AAAANAAAADAAAABQA AAABAAAAGgAAAAIAAAAUAAAABAAAACEAAAAnAAAAAwAAAC4AAAAAAAAAAQAAAAYAAADzAAAA CQAAAAEAAE3/AAAAAQAAWf8AAADzAAAACgAAAAEAAFb/AAAADQAAAw0AAAANgAAAAAAAAAEA AAABAAAAAwAAAAMAAAADAAAAAwAAAAMAAAADAAAAAwAAAAAAAAAAAAAAAAAABAIAAAn/AAAA EAAAAAEABAAJAAAAEGV4cHJlc3Npb25zSW5kZXgAAAD+AAAAFQAAAA0AAAAEAAAADAAAABQA AAAAAAAAAQAAAAMAAAABAABW/wAAAPMAAAAIAAAADQAAAw0AAAAEgAAAAAAAAAEAAAABAAAA AQAABAIAAAn/AAAAEAAAAAEABAAJAAAAEGV4cHJlc3Npb25zSW5kZXgAAAD+AAAADQAAAw0A AAAzgAAAAAAAAAEAAAABAAAAAgAAAAIAAAACAAAABQAAAAUAAAAFAAAABwAAAAcAAAAEAAAA BAAAAAgAAAAIAAAACQAAAAkAAAAHAAAABwAAAAcAAAAKAAAACgAAAAoAAAAMAAAADAAAAAwA AAAMAAAADAAAAAwAAAAKAAAACgAAAAoAAAAKAAAADwAAAA8AAAAPAAAADwAAAA8AAAAPAAAA EgAAABIAAAASAAAAFAAAABQAAAAUAAAAFAAAABQAAAAUAAAAFAAAABQAAAAUAAAEAgAACf8A AAAQAAAAAQAEAAkAAAAQZXhwcmVzc2lvbnNJbmRleAAAAP4AAAAOAAAAAT/wAAAAAAAAAAAE AgAAPf8AAAAQAAAADQAEAAkAAAAGZmFtaWx5AAQACQAAAARsaW5rAAQACQAAAAdsaW5rZnVu AAQACQAAAAdsaW5raW52AAQACQAAAAh2YXJpYW5jZQAEAAkAAAAKZGV2LnJlc2lkcwAEAAkA AAADYWljAAQACQAAAAZtdS5ldGEABAAJAAAACmluaXRpYWxpemUABAAJAAAAB3ZhbGlkbXUA BAAJAAAACHZhbGlkZXRhAAQACQAAAAhzaW11bGF0ZQAEAAkAAAAKZGlzcGVyc2lvbgAABAIA AAn/AAAAEAAAAAEABAAJAAAABmZhbWlseQAAAP4AAAIOAAAAwEAM2oynaU1/P/o9faRRZRhA CBlxFHmHnD/vWOGA5ArnQArW8ZfOybs/+tnIFp3urUAJitSliOz1P/uwVEO2vLxADRCcQlPu E0ABuivNzRuHQAvyp926CXZAA0Fab3g3d0AJA7oor6oPQADU7bfe4vpABsNdrS6Lqz/8Gky6 u7VOP/zgpqV8YAI/8SaOVVxi+EABYARUoEiWP/p0tmrFG7tAC0LEI2+LpUAHeVUTWIz4QAz+ SoNvbr5AC9n+eZ1wnkAE0qAqA1RfQAOJjelPpDBACNJdJ2J5mEAHAeAHrt96QAAaFWBmQYJA ASLDaHNZ40AI37uQOR+bQAufzKEYe8lADW3XWmb3X0AQRRE9NofMQA7UJx91+3RAEkrKouCK Hb+niFcA+ijYP/HQy2T6vy0/zRIOWCavTT/1IHoqB5J+v6n9io1tAgQ/9mCiWhi5gr/NLCLz YbCDP/b50GG8cxo/1Jmznp/pykAAPxrjDw3bP/VauWHNuIRACv5kJmbtcEARtRcKGZ6sP/2I O5p/YXdADxh0gDplaT/yzUIj8QFsQA4gZ3ExZkI//CC9t5qis0ARrIp+7DFGQAat2j7aTKhA ExHS85hHH0AKLseQoRZUQA90Y7TD13pACLpuL7AHXkAQVUBmRNUjQALu7qvspxJADFcAPdGt lT/7H1XrzKSUQAhxslKtqDY//phPx0A5a0AOsqDe1qkDQAjx5EYvHIVAEiTE5vGZVEAPPymd qkQlQA+9+jdBgS5AD+6C2IQ6eUARAY0zRaj9QAqYz3lPGOhAEuB1QJLAKkANStxsmu8rQBAh QAIjAAdADW48yJk+sEAS8GiDMUFSQBM4rdCN4CRAFYGh1SRiPUAWJRVWuFAMQBPy2n3ZT9RA FzPCaCsRjD/42/4B8GdAP/1gAfzdVAVAAPLsjjP+H0ACKStkXBxpQAVKuou/fkBADCLEOsVs VkAIJUTcaDriQBExDjDqE/xAB6rnIAaw7kARTw2G8J4AQATsUFqm4zhAEo02jP6LDUAQTWff USZBQASXAYylI+tACoIaqoiHXj/7VBv9H1VKQArnGvzuh4FAAoXnnWlLYEAP3D9aqoOYQAor ti0CCO9AEeXyLZuEZ0AOq+f3NuebQAyvfz/TjElAC7TPGQXZe0ALxTXvVCMiQAWRlp0O2pJA C0+ideh5nkAER8Spp3ztQAbYXFLvL3dABEdX0yHTXkANWS3UcdryQA1404aBQFJAEXN76/Re hkARy5Up0D3xQA01fKeNkM9AEQV9sDvfBEAOPSeICgWeQA1Y7lYCoUpAEMA/SgoFE0APyAbo EPGvQA62w9PjAmhAELqSuinFRkAR1sJd8Cu8QBSOSEcW0IlAE/7MuBWNTUAW/pkGEF7VQBH2 KarPxHFAFwicF2PNKz/qtrmKkd5uP/vVz7aHU8w/+pRzstdCa0ADszTYDx9eQADO0UNLZMNA C66ljmKDhEAD8QK2z0yHQBDAwJnhlmBABN5wcePDR0ARf73cP/56QAFLtOa3MG5AEckGNULs QEAO6oMeqgHoP/2AAEwar7RAC4hA5VhNwj/1NpOyAsBnQAz88Z0+qVVAACcIQX22/0AQj5sl ZpmuQAbAPYrlU7pAEQTxkO+znUAIL1lfRXyIQAvkc+jttSFABdZAuihib0AMxTNvF+yoQAIK rGN3ZhJADDG33ScIQEAAtLy9zD4qQAvH5VKeSwFABGH349l8I0APzQjglOpbQAreDA2pLjJA EfndgMIM8EAPiS0r5lKoQA4bzPPLAQlADX2VsgHR0kALdPpYo42fQAWx+aRPZ+FAEdj5o5sR r0ANLH5/J7ocQBCXVUCwUiVADsBDaeg2REATEwtmygR2QBMXUCj6Vs5AFN56nRq1mEAVJPbd 8gJmQBL3W1uU/nJAFSQC5laXQT/0Oz3sEMc3P/frCN0iDK5ABRqrt7QL80AGMB0cgmsuQAj5 V2goNoBADiXWfYyQ8kALbtAzHxn8QBGJH/IuQ5JACnUkSoSFGUARToF8h/OYQAjK653SRcNA El+QcBkf7AAABAIAAD3/AAAAEAAAAMAABAAJAAAAATEABAAJAAAAATIABAAJAAAAATMABAAJ AAAAATQABAAJAAAAATUABAAJAAAAATYABAAJAAAAATcABAAJAAAAATgABAAJAAAAATkABAAJ AAAAAjEwAAQACQAAAAIxMQAEAAkAAAACMTIABAAJAAAAAjEzAAQACQAAAAIxNAAEAAkAAAAC MTUABAAJAAAAAjE2AAQACQAAAAIxNwAEAAkAAAACMTgABAAJAAAAAjE5AAQACQAAAAIyMAAE AAkAAAACMjEABAAJAAAAAjIyAAQACQAAAAIyMwAEAAkAAAACMjQABAAJAAAAAjI1AAQACQAA AAIyNgAEAAkAAAACMjcABAAJAAAAAjI4AAQACQAAAAIyOQAEAAkAAAACMzAABAAJAAAAAjMx AAQACQAAAAIzMgAEAAkAAAACMzMABAAJAAAAAjM0AAQACQAAAAIzNQAEAAkAAAACMzYABAAJ AAAAAjM3AAQACQAAAAIzOAAEAAkAAAACMzkABAAJAAAAAjQwAAQACQAAAAI0MQAEAAkAAAAC NDIABAAJAAAAAjQzAAQACQAAAAI0NAAEAAkAAAACNDUABAAJAAAAAjQ2AAQACQAAAAI0NwAE AAkAAAACNDgABAAJAAAAAjQ5AAQACQAAAAI1MAAEAAkAAAACNTEABAAJAAAAAjUyAAQACQAA AAI1MwAEAAkAAAACNTQABAAJAAAAAjU1AAQACQAAAAI1NgAEAAkAAAACNTcABAAJAAAAAjU4 AAQACQAAAAI1OQAEAAkAAAACNjAABAAJAAAAAjYxAAQACQAAAAI2MgAEAAkAAAACNjMABAAJ AAAAAjY0AAQACQAAAAI2NQAEAAkAAAACNjYABAAJAAAAAjY3AAQACQAAAAI2OAAEAAkAAAAC NjkABAAJAAAAAjcwAAQACQAAAAI3MQAEAAkAAAACNzIABAAJAAAAAjczAAQACQAAAAI3NAAE AAkAAAACNzUABAAJAAAAAjc2AAQACQAAAAI3NwAEAAkAAAACNzgABAAJAAAAAjc5AAQACQAA AAI4MAAEAAkAAAACODEABAAJAAAAAjgyAAQACQAAAAI4MwAEAAkAAAACODQABAAJAAAAAjg1 AAQACQAAAAI4NgAEAAkAAAACODcABAAJAAAAAjg4AAQACQAAAAI4OQAEAAkAAAACOTAABAAJ AAAAAjkxAAQACQAAAAI5MgAEAAkAAAACOTMABAAJAAAAAjk0AAQACQAAAAI5NQAEAAkAAAAC OTYABAAJAAAAAjk3AAQACQAAAAI5OAAEAAkAAAACOTkABAAJAAAAAzEwMAAEAAkAAAADMTAx AAQACQAAAAMxMDIABAAJAAAAAzEwMwAEAAkAAAADMTA0AAQACQAAAAMxMDUABAAJAAAAAzEw NgAEAAkAAAADMTA3AAQACQAAAAMxMDgABAAJAAAAAzEwOQAEAAkAAAADMTEwAAQACQAAAAMx MTEABAAJAAAAAzExMgAEAAkAAAADMTEzAAQACQAAAAMxMTQABAAJAAAAAzExNQAEAAkAAAAD MTE2AAQACQAAAAMxMTcABAAJAAAAAzExOAAEAAkAAAADMTE5AAQACQAAAAMxMjAABAAJAAAA AzEyMQAEAAkAAAADMTIyAAQACQAAAAMxMjMABAAJAAAAAzEyNAAEAAkAAAADMTI1AAQACQAA AAMxMjYABAAJAAAAAzEyNwAEAAkAAAADMTI4AAQACQAAAAMxMjkABAAJAAAAAzEzMAAEAAkA AAADMTMxAAQACQAAAAMxMzIABAAJAAAAAzEzMwAEAAkAAAADMTM0AAQACQAAAAMxMzUABAAJ AAAAAzEzNgAEAAkAAAADMTM3AAQACQAAAAMxMzgABAAJAAAAAzEzOQAEAAkAAAADMTQwAAQA CQAAAAMxNDEABAAJAAAAAzE0MgAEAAkAAAADMTQzAAQACQAAAAMxNDQABAAJAAAAAzE0NQAE AAkAAAADMTQ2AAQACQAAAAMxNDcABAAJAAAAAzE0OAAEAAkAAAADMTQ5AAQACQAAAAMxNTAA BAAJAAAAAzE1MQAEAAkAAAADMTUyAAQACQAAAAMxNTMABAAJAAAAAzE1NAAEAAkAAAADMTU1 AAQACQAAAAMxNTYABAAJAAAAAzE1NwAEAAkAAAADMTU4AAQACQAAAAMxNTkABAAJAAAAAzE2 MAAEAAkAAAADMTYxAAQACQAAAAMxNjIABAAJAAAAAzE2MwAEAAkAAAADMTY0AAQACQAAAAMx NjUABAAJAAAAAzE2NgAEAAkAAAADMTY3AAQACQAAAAMxNjgABAAJAAAAAzE2OQAEAAkAAAAD MTcwAAQACQAAAAMxNzEABAAJAAAAAzE3MgAEAAkAAAADMTczAAQACQAAAAMxNzQABAAJAAAA AzE3NQAEAAkAAAADMTc2AAQACQAAAAMxNzcABAAJAAAAAzE3OAAEAAkAAAADMTc5AAQACQAA AAMxODAABAAJAAAAAzE4MQAEAAkAAAADMTgyAAQACQAAAAMxODMABAAJAAAAAzE4NAAEAAkA AAADMTg1AAQACQAAAAMxODYABAAJAAAAAzE4NwAEAAkAAAADMTg4AAQACQAAAAMxODkABAAJ AAAAAzE5MAAEAAkAAAADMTkxAAQACQAAAAMxOTIAAAD+AAAADgAAAAFAYKFgF028OAAAAg4A AAABQJS4zlubpkYAAAQCAAA//wAAABAAAAABAAQACQAAAAh0b2xOb3JtMgAABAIAAED/AAAA CgAAAAEAAAAAAAAEAgAAQf8AAAAOAAAAAT0oAAAAAAAAAAAA/gAAAA0AAAABAAAACwAAAg4A AADAQEJsIU+SA9JAFJ71g2/mb0A0ViwUFk9yQAVOn19NhHJAPKTuEJXo90AVbEe9qFwEQDhb Mw/ovKNAFpMzwF0MfUBC6kd7uRgFQCJW4hEbnzhAQHM/sDckFkAmMwE/I26YQDbNJYaww2VA IGW08p55RkAxNVUOj5YoQBcqq8XBp2NAGFDvSMj5/UAHXiFubgwDQCGMscLB50dAFOacenwx c0A+MVXDhso1QDLOqjx5NctAQr8ohXKVjkBAQNd6jWp2QCsBEg1RLH1AJv7t8q7T9EA2QiKG mW2DQDG93XlmkntAHe9gPn4u9UAhCE/gwOhpQDZnc9EKMv5AP5iMLvXNAkBDy87e+QOTQE00 MSEG/G1AR5S/I78YdEBYNaBuIHPAP+6QACPjkmNACFv/9wcYiz/0FF3eS47cQA310RDaOIo/ 7mqIMoRGF0AQMq75r3cnP+l6cMoIjSNAENCx5r7uiD/2E1YuSXLWQB57KnRto4FADmOp//Hg w0A9M4rAAcQFQFTqsZcJZypAGVTmj2mZxEBIYXioTmijQAnodXsZdhlARZl/2ARsRkAXNAE/ 3J49QFS+LOmClMlAMQdMWfWsj0BdZ0hQEbJ2QDpi3r+5NaNASYAIol+B3EA1/+67QPthQE2r SoTyGppAJVLV7DeVjUBBRrl6Y17uQBXKNCzlCMdANTttS8L/P0AbEkrQ9ANOQEcyu8IebGdA NpqIe8MnMkBXU7iZpA7IQEjYjsy34mtASm7ciz+qXUBLESN0wFWpQFGNjMNd69dAO8nM8ohQ DEBcBQIJV/7cQEN1++1QAm1ATDM2HQ053EBDzMni8sYhQFx1nMDIGutAXopjPzflCUBrCRlE YDILQG+25rufzfZAYlCjcIeFdkB0p65HvD1EQBLqeR3vfItAGRWG4hCCJ0Ago6PJ00B2QCNc XDYsv41ALKKauTY7CUBA11lRsnEtQDR0UzI+PZ5AUmLrM3Bwl0AzRJ9itcruQFLu2CdSjUVA K1hT7kqnkkBZ1PWCNqsYQE1xUaVDCGFAKjq5avPlpUA7e114d09vQBYSih4iwp1APN8Gv0ns kEAkQfKBbCbLQErTnt8DzoZAOljCQfhitEBV8F0ldDjVQEcfRbUXjgZAQgoGJjxtWUA/6/Oz hyRzQEAW1JujIA1ALaStkXN/pUA+Yg35GAtcQCk75A3P6W1AMWK5mx+ywkApOozJwJp4QEOY 76smXp9AQ+cQVNmhW0BTnmLwgpWUQFVhnQ99amRAQ0JCd2FVPUBRnt7ET1VYQEXnq9yJBD9A Q5hUI3b7R0BQd+0HVn+NQEqQJfFTAPFARz69mJ/rcUBQYKEzsAo0QFWdruULFGtAZVEojXp1 x0Bih6hK7KX8QHOcK9qJrQBAVkoEMuc66kBzzX7zRjFBQAJvVw+4jPVAFshUeCO3/UAVEDvG xbnoQCd34hydIwJAIFkzH4dPOkA/02ZwPFghQCgv85WyRhlAUHoBjUm3QEArKRAUknnhQFPa 3f1tsM5AIWBcJs2Wq0BVU/R7Jk0tQEfXA83sZYpAGUfhkJy2oUA/PBYP8RBjQA4fT4B3hE9A QrwAkkRR5kAeH/tt3XF7QE9osWAvyYRAMS6dP6Bt2EBRnHWsNUDPQDSOKU8q/fhAQFYlCCfQ M0Aup2vfYMFxQEI7OWGijypAIxMaeXXF7kBA9vCNPEIKQCAkPcsO+b9AQBw78/5tikApjxAw Bkk5QEqgy8mOuJhAPL5obOKOr0BWXq9dyaxxQEnCoURspuJARY0VjXM7D0BD8upyjMRLQD7x LkotfABALh2ja6UM20BVqau+2K5mQEMsqIJOpENAT6WYsV4bh0BHWmdOoeQNQF1wQnVsN8VA XY+9ipPIEEBnDbpvC9K/QGiyRZD0LQxAXKc4BNmeDEBorGP9kzCJQAxUXGQdTE9AEdXRzfFe 5kAr+JauSfGmQDADtKjbBzVANq+e0JLzlkBFqDCXtoXmQD7ZX5GQW5pAVAmoG5vo+kA7TvoQ uN8sQFLsQXvRx/lANi12Yv0KqEBYtKJnQL0FAAAEAgAAPf8AAAAQAAAAwAAEAAkAAAABMQAE AAkAAAABMgAEAAkAAAABMwAEAAkAAAABNAAEAAkAAAABNQAEAAkAAAABNgAEAAkAAAABNwAE AAkAAAABOAAEAAkAAAABOQAEAAkAAAACMTAABAAJAAAAAjExAAQACQAAAAIxMgAEAAkAAAAC MTMABAAJAAAAAjE0AAQACQAAAAIxNQAEAAkAAAACMTYABAAJAAAAAjE3AAQACQAAAAIxOAAE AAkAAAACMTkABAAJAAAAAjIwAAQACQAAAAIyMQAEAAkAAAACMjIABAAJAAAAAjIzAAQACQAA AAIyNAAEAAkAAAACMjUABAAJAAAAAjI2AAQACQAAAAIyNwAEAAkAAAACMjgABAAJAAAAAjI5 AAQACQAAAAIzMAAEAAkAAAACMzEABAAJAAAAAjMyAAQACQAAAAIzMwAEAAkAAAACMzQABAAJ AAAAAjM1AAQACQAAAAIzNgAEAAkAAAACMzcABAAJAAAAAjM4AAQACQAAAAIzOQAEAAkAAAAC NDAABAAJAAAAAjQxAAQACQAAAAI0MgAEAAkAAAACNDMABAAJAAAAAjQ0AAQACQAAAAI0NQAE AAkAAAACNDYABAAJAAAAAjQ3AAQACQAAAAI0OAAEAAkAAAACNDkABAAJAAAAAjUwAAQACQAA AAI1MQAEAAkAAAACNTIABAAJAAAAAjUzAAQACQAAAAI1NAAEAAkAAAACNTUABAAJAAAAAjU2 AAQACQAAAAI1NwAEAAkAAAACNTgABAAJAAAAAjU5AAQACQAAAAI2MAAEAAkAAAACNjEABAAJ AAAAAjYyAAQACQAAAAI2MwAEAAkAAAACNjQABAAJAAAAAjY1AAQACQAAAAI2NgAEAAkAAAAC NjcABAAJAAAAAjY4AAQACQAAAAI2OQAEAAkAAAACNzAABAAJAAAAAjcxAAQACQAAAAI3MgAE AAkAAAACNzMABAAJAAAAAjc0AAQACQAAAAI3NQAEAAkAAAACNzYABAAJAAAAAjc3AAQACQAA AAI3OAAEAAkAAAACNzkABAAJAAAAAjgwAAQACQAAAAI4MQAEAAkAAAACODIABAAJAAAAAjgz AAQACQAAAAI4NAAEAAkAAAACODUABAAJAAAAAjg2AAQACQAAAAI4NwAEAAkAAAACODgABAAJ AAAAAjg5AAQACQAAAAI5MAAEAAkAAAACOTEABAAJAAAAAjkyAAQACQAAAAI5MwAEAAkAAAAC OTQABAAJAAAAAjk1AAQACQAAAAI5NgAEAAkAAAACOTcABAAJAAAAAjk4AAQACQAAAAI5OQAE AAkAAAADMTAwAAQACQAAAAMxMDEABAAJAAAAAzEwMgAEAAkAAAADMTAzAAQACQAAAAMxMDQA BAAJAAAAAzEwNQAEAAkAAAADMTA2AAQACQAAAAMxMDcABAAJAAAAAzEwOAAEAAkAAAADMTA5 AAQACQAAAAMxMTAABAAJAAAAAzExMQAEAAkAAAADMTEyAAQACQAAAAMxMTMABAAJAAAAAzEx NAAEAAkAAAADMTE1AAQACQAAAAMxMTYABAAJAAAAAzExNwAEAAkAAAADMTE4AAQACQAAAAMx MTkABAAJAAAAAzEyMAAEAAkAAAADMTIxAAQACQAAAAMxMjIABAAJAAAAAzEyMwAEAAkAAAAD MTI0AAQACQAAAAMxMjUABAAJAAAAAzEyNgAEAAkAAAADMTI3AAQACQAAAAMxMjgABAAJAAAA AzEyOQAEAAkAAAADMTMwAAQACQAAAAMxMzEABAAJAAAAAzEzMgAEAAkAAAADMTMzAAQACQAA AAMxMzQABAAJAAAAAzEzNQAEAAkAAAADMTM2AAQACQAAAAMxMzcABAAJAAAAAzEzOAAEAAkA AAADMTM5AAQACQAAAAMxNDAABAAJAAAAAzE0MQAEAAkAAAADMTQyAAQACQAAAAMxNDMABAAJ AAAAAzE0NAAEAAkAAAADMTQ1AAQACQAAAAMxNDYABAAJAAAAAzE0NwAEAAkAAAADMTQ4AAQA CQAAAAMxNDkABAAJAAAAAzE1MAAEAAkAAAADMTUxAAQACQAAAAMxNTIABAAJAAAAAzE1MwAE AAkAAAADMTU0AAQACQAAAAMxNTUABAAJAAAAAzE1NgAEAAkAAAADMTU3AAQACQAAAAMxNTgA BAAJAAAAAzE1OQAEAAkAAAADMTYwAAQACQAAAAMxNjEABAAJAAAAAzE2MgAEAAkAAAADMTYz AAQACQAAAAMxNjQABAAJAAAAAzE2NQAEAAkAAAADMTY2AAQACQAAAAMxNjcABAAJAAAAAzE2 OAAEAAkAAAADMTY5AAQACQAAAAMxNzAABAAJAAAAAzE3MQAEAAkAAAADMTcyAAQACQAAAAMx NzMABAAJAAAAAzE3NAAEAAkAAAADMTc1AAQACQAAAAMxNzYABAAJAAAAAzE3NwAEAAkAAAAD MTc4AAQACQAAAAMxNzkABAAJAAAAAzE4MAAEAAkAAAADMTgxAAQACQAAAAMxODIABAAJAAAA AzE4MwAEAAkAAAADMTg0AAQACQAAAAMxODUABAAJAAAAAzE4NgAEAAkAAAADMTg3AAQACQAA AAMxODgABAAJAAAAAzE4OQAEAAkAAAADMTkwAAQACQAAAAMxOTEABAAJAAAAAzE5MgAAAP4A AAIOAAAAwD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAA AD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAA AAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AA AAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/ 8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAA AD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAA AAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AA AAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/ 8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAA AD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAA AAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AA AAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/ 8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAA AD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAA AAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AA AAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/ 8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAA AD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAA AAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AA AAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/ 8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAA AD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAA AAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AA AAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/ 8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAA AD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAA AAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AA AAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/ 8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAAAABAIAAD3/AAAAEAAAAMAABAAJAAAA ATEABAAJAAAAATIABAAJAAAAATMABAAJAAAAATQABAAJAAAAATUABAAJAAAAATYABAAJAAAA ATcABAAJAAAAATgABAAJAAAAATkABAAJAAAAAjEwAAQACQAAAAIxMQAEAAkAAAACMTIABAAJ AAAAAjEzAAQACQAAAAIxNAAEAAkAAAACMTUABAAJAAAAAjE2AAQACQAAAAIxNwAEAAkAAAAC MTgABAAJAAAAAjE5AAQACQAAAAIyMAAEAAkAAAACMjEABAAJAAAAAjIyAAQACQAAAAIyMwAE AAkAAAACMjQABAAJAAAAAjI1AAQACQAAAAIyNgAEAAkAAAACMjcABAAJAAAAAjI4AAQACQAA AAIyOQAEAAkAAAACMzAABAAJAAAAAjMxAAQACQAAAAIzMgAEAAkAAAACMzMABAAJAAAAAjM0 AAQACQAAAAIzNQAEAAkAAAACMzYABAAJAAAAAjM3AAQACQAAAAIzOAAEAAkAAAACMzkABAAJ AAAAAjQwAAQACQAAAAI0MQAEAAkAAAACNDIABAAJAAAAAjQzAAQACQAAAAI0NAAEAAkAAAAC NDUABAAJAAAAAjQ2AAQACQAAAAI0NwAEAAkAAAACNDgABAAJAAAAAjQ5AAQACQAAAAI1MAAE AAkAAAACNTEABAAJAAAAAjUyAAQACQAAAAI1MwAEAAkAAAACNTQABAAJAAAAAjU1AAQACQAA AAI1NgAEAAkAAAACNTcABAAJAAAAAjU4AAQACQAAAAI1OQAEAAkAAAACNjAABAAJAAAAAjYx AAQACQAAAAI2MgAEAAkAAAACNjMABAAJAAAAAjY0AAQACQAAAAI2NQAEAAkAAAACNjYABAAJ AAAAAjY3AAQACQAAAAI2OAAEAAkAAAACNjkABAAJAAAAAjcwAAQACQAAAAI3MQAEAAkAAAAC NzIABAAJAAAAAjczAAQACQAAAAI3NAAEAAkAAAACNzUABAAJAAAAAjc2AAQACQAAAAI3NwAE AAkAAAACNzgABAAJAAAAAjc5AAQACQAAAAI4MAAEAAkAAAACODEABAAJAAAAAjgyAAQACQAA AAI4MwAEAAkAAAACODQABAAJAAAAAjg1AAQACQAAAAI4NgAEAAkAAAACODcABAAJAAAAAjg4 AAQACQAAAAI4OQAEAAkAAAACOTAABAAJAAAAAjkxAAQACQAAAAI5MgAEAAkAAAACOTMABAAJ AAAAAjk0AAQACQAAAAI5NQAEAAkAAAACOTYABAAJAAAAAjk3AAQACQAAAAI5OAAEAAkAAAAC OTkABAAJAAAAAzEwMAAEAAkAAAADMTAxAAQACQAAAAMxMDIABAAJAAAAAzEwMwAEAAkAAAAD MTA0AAQACQAAAAMxMDUABAAJAAAAAzEwNgAEAAkAAAADMTA3AAQACQAAAAMxMDgABAAJAAAA AzEwOQAEAAkAAAADMTEwAAQACQAAAAMxMTEABAAJAAAAAzExMgAEAAkAAAADMTEzAAQACQAA AAMxMTQABAAJAAAAAzExNQAEAAkAAAADMTE2AAQACQAAAAMxMTcABAAJAAAAAzExOAAEAAkA AAADMTE5AAQACQAAAAMxMjAABAAJAAAAAzEyMQAEAAkAAAADMTIyAAQACQAAAAMxMjMABAAJ AAAAAzEyNAAEAAkAAAADMTI1AAQACQAAAAMxMjYABAAJAAAAAzEyNwAEAAkAAAADMTI4AAQA CQAAAAMxMjkABAAJAAAAAzEzMAAEAAkAAAADMTMxAAQACQAAAAMxMzIABAAJAAAAAzEzMwAE AAkAAAADMTM0AAQACQAAAAMxMzUABAAJAAAAAzEzNgAEAAkAAAADMTM3AAQACQAAAAMxMzgA BAAJAAAAAzEzOQAEAAkAAAADMTQwAAQACQAAAAMxNDEABAAJAAAAAzE0MgAEAAkAAAADMTQz AAQACQAAAAMxNDQABAAJAAAAAzE0NQAEAAkAAAADMTQ2AAQACQAAAAMxNDcABAAJAAAAAzE0 OAAEAAkAAAADMTQ5AAQACQAAAAMxNTAABAAJAAAAAzE1MQAEAAkAAAADMTUyAAQACQAAAAMx NTMABAAJAAAAAzE1NAAEAAkAAAADMTU1AAQACQAAAAMxNTYABAAJAAAAAzE1NwAEAAkAAAAD MTU4AAQACQAAAAMxNTkABAAJAAAAAzE2MAAEAAkAAAADMTYxAAQACQAAAAMxNjIABAAJAAAA AzE2MwAEAAkAAAADMTY0AAQACQAAAAMxNjUABAAJAAAAAzE2NgAEAAkAAAADMTY3AAQACQAA AAMxNjgABAAJAAAAAzE2OQAEAAkAAAADMTcwAAQACQAAAAMxNzEABAAJAAAAAzE3MgAEAAkA AAADMTczAAQACQAAAAMxNzQABAAJAAAAAzE3NQAEAAkAAAADMTc2AAQACQAAAAMxNzcABAAJ AAAAAzE3OAAEAAkAAAADMTc5AAQACQAAAAMxODAABAAJAAAAAzE4MQAEAAkAAAADMTgyAAQA CQAAAAMxODMABAAJAAAAAzE4NAAEAAkAAAADMTg1AAQACQAAAAMxODYABAAJAAAAAzE4NwAE AAkAAAADMTg4AAQACQAAAAMxODkABAAJAAAAAzE5MAAEAAkAAAADMTkxAAQACQAAAAMxOTIA AAD+AAAADQAAAAEAAABOAAACDQAAAMAAAAAlAAAABQAAABMAAAAEAAAAHgAAAAQAAAAWAAAA CAAAACYAAAAJAAAAJgAAAAYAAAAUAAAACwAAABQAAAADAAAACAAAAAEAAAAIAAAABgAAACEA AAAQAAAAIQAAACUAAAAKAAAADwAAABYAAAASAAAABwAAAAkAAAAYAAAAHgAAACsAAAA3AAAA KAAAAGgAAAAAAAAABAAAAAIAAAADAAAAAgAAAAMAAAABAAAABAAAAAMAAAAGAAAABQAAABwA AABWAAAABAAAADQAAAAAAAAALwAAAAIAAABQAAAAFAAAAHEAAAAfAAAANwAAABIAAAA5AAAA DQAAACMAAAAFAAAAEwAAAAkAAAAtAAAAGAAAAFoAAAA1AAAANQAAADYAAABFAAAAHQAAAGoA AAAtAAAAQwAAAB0AAAB2AAAAdgAAANQAAAECAAAAkAAAAU0AAAADAAAACAAAAAkAAAAJAAAA EQAAAB8AAAAQAAAATgAAABcAAABIAAAADwAAAGYAAAA9AAAACwAAABYAAAALAAAAIAAAAAcA AAA7AAAAFQAAAE8AAAA3AAAAHwAAACUAAAAiAAAADQAAABsAAAAQAAAAFAAAAAoAAAAqAAAA JQAAAE8AAABVAAAAKAAAAEUAAAAxAAAAIgAAADwAAAA7AAAAMwAAAD0AAABiAAAAnwAAAJEA AAE9AAAAWAAAAT4AAAACAAAABgAAAAcAAAAKAAAAAwAAACUAAAAIAAAARgAAAAwAAABRAAAA CgAAAFQAAAAyAAAABAAAAB4AAAAFAAAAIQAAAAwAAAA/AAAAEQAAAEkAAAASAAAAHwAAABEA AAAjAAAACwAAACUAAAAFAAAAIAAAAA0AAAA6AAAAGAAAAFkAAAA0AAAAKwAAACgAAAAcAAAA EgAAAGIAAAAbAAAANAAAADoAAAByAAAAegAAALoAAADEAAAAdAAAAMQAAAAFAAAAAwAAABAA AAAOAAAACgAAADgAAAAUAAAAWwAAACwAAAA7AAAAGgAAAF8AAAQCAAA9/wAAABAAAADAAAQA CQAAAAExAAQACQAAAAEyAAQACQAAAAEzAAQACQAAAAE0AAQACQAAAAE1AAQACQAAAAE2AAQA CQAAAAE3AAQACQAAAAE4AAQACQAAAAE5AAQACQAAAAIxMAAEAAkAAAACMTEABAAJAAAAAjEy AAQACQAAAAIxMwAEAAkAAAACMTQABAAJAAAAAjE1AAQACQAAAAIxNgAEAAkAAAACMTcABAAJ AAAAAjE4AAQACQAAAAIxOQAEAAkAAAACMjAABAAJAAAAAjIxAAQACQAAAAIyMgAEAAkAAAAC MjMABAAJAAAAAjI0AAQACQAAAAIyNQAEAAkAAAACMjYABAAJAAAAAjI3AAQACQAAAAIyOAAE AAkAAAACMjkABAAJAAAAAjMwAAQACQAAAAIzMQAEAAkAAAACMzIABAAJAAAAAjMzAAQACQAA AAIzNAAEAAkAAAACMzUABAAJAAAAAjM2AAQACQAAAAIzNwAEAAkAAAACMzgABAAJAAAAAjM5 AAQACQAAAAI0MAAEAAkAAAACNDEABAAJAAAAAjQyAAQACQAAAAI0MwAEAAkAAAACNDQABAAJ AAAAAjQ1AAQACQAAAAI0NgAEAAkAAAACNDcABAAJAAAAAjQ4AAQACQAAAAI0OQAEAAkAAAAC NTAABAAJAAAAAjUxAAQACQAAAAI1MgAEAAkAAAACNTMABAAJAAAAAjU0AAQACQAAAAI1NQAE AAkAAAACNTYABAAJAAAAAjU3AAQACQAAAAI1OAAEAAkAAAACNTkABAAJAAAAAjYwAAQACQAA AAI2MQAEAAkAAAACNjIABAAJAAAAAjYzAAQACQAAAAI2NAAEAAkAAAACNjUABAAJAAAAAjY2 AAQACQAAAAI2NwAEAAkAAAACNjgABAAJAAAAAjY5AAQACQAAAAI3MAAEAAkAAAACNzEABAAJ AAAAAjcyAAQACQAAAAI3MwAEAAkAAAACNzQABAAJAAAAAjc1AAQACQAAAAI3NgAEAAkAAAAC NzcABAAJAAAAAjc4AAQACQAAAAI3OQAEAAkAAAACODAABAAJAAAAAjgxAAQACQAAAAI4MgAE AAkAAAACODMABAAJAAAAAjg0AAQACQAAAAI4NQAEAAkAAAACODYABAAJAAAAAjg3AAQACQAA AAI4OAAEAAkAAAACODkABAAJAAAAAjkwAAQACQAAAAI5MQAEAAkAAAACOTIABAAJAAAAAjkz AAQACQAAAAI5NAAEAAkAAAACOTUABAAJAAAAAjk2AAQACQAAAAI5NwAEAAkAAAACOTgABAAJ AAAAAjk5AAQACQAAAAMxMDAABAAJAAAAAzEwMQAEAAkAAAADMTAyAAQACQAAAAMxMDMABAAJ AAAAAzEwNAAEAAkAAAADMTA1AAQACQAAAAMxMDYABAAJAAAAAzEwNwAEAAkAAAADMTA4AAQA CQAAAAMxMDkABAAJAAAAAzExMAAEAAkAAAADMTExAAQACQAAAAMxMTIABAAJAAAAAzExMwAE AAkAAAADMTE0AAQACQAAAAMxMTUABAAJAAAAAzExNgAEAAkAAAADMTE3AAQACQAAAAMxMTgA BAAJAAAAAzExOQAEAAkAAAADMTIwAAQACQAAAAMxMjEABAAJAAAAAzEyMgAEAAkAAAADMTIz AAQACQAAAAMxMjQABAAJAAAAAzEyNQAEAAkAAAADMTI2AAQACQAAAAMxMjcABAAJAAAAAzEy OAAEAAkAAAADMTI5AAQACQAAAAMxMzAABAAJAAAAAzEzMQAEAAkAAAADMTMyAAQACQAAAAMx MzMABAAJAAAAAzEzNAAEAAkAAAADMTM1AAQACQAAAAMxMzYABAAJAAAAAzEzNwAEAAkAAAAD MTM4AAQACQAAAAMxMzkABAAJAAAAAzE0MAAEAAkAAAADMTQxAAQACQAAAAMxNDIABAAJAAAA AzE0MwAEAAkAAAADMTQ0AAQACQAAAAMxNDUABAAJAAAAAzE0NgAEAAkAAAADMTQ3AAQACQAA AAMxNDgABAAJAAAAAzE0OQAEAAkAAAADMTUwAAQACQAAAAMxNTEABAAJAAAAAzE1MgAEAAkA AAADMTUzAAQACQAAAAMxNTQABAAJAAAAAzE1NQAEAAkAAAADMTU2AAQACQAAAAMxNTcABAAJ AAAAAzE1OAAEAAkAAAADMTU5AAQACQAAAAMxNjAABAAJAAAAAzE2MQAEAAkAAAADMTYyAAQA CQAAAAMxNjMABAAJAAAAAzE2NAAEAAkAAAADMTY1AAQACQAAAAMxNjYABAAJAAAAAzE2NwAE AAkAAAADMTY4AAQACQAAAAMxNjkABAAJAAAAAzE3MAAEAAkAAAADMTcxAAQACQAAAAMxNzIA BAAJAAAAAzE3MwAEAAkAAAADMTc0AAQACQAAAAMxNzUABAAJAAAAAzE3NgAEAAkAAAADMTc3 AAQACQAAAAMxNzgABAAJAAAAAzE3OQAEAAkAAAADMTgwAAQACQAAAAMxODEABAAJAAAAAzE4 MgAEAAkAAAADMTgzAAQACQAAAAMxODQABAAJAAAAAzE4NQAEAAkAAAADMTg2AAQACQAAAAMx ODcABAAJAAAAAzE4OAAEAAkAAAADMTg5AAQACQAAAAMxOTAABAAJAAAAAzE5MQAEAAkAAAAD MTkyAAAA/gAAAAoAAAABAAAAAQAAAg4AAGAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AA AAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/ 8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAA AD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAA AAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AA AAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/ 8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAA AD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAA AAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AA AAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/ 8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAA AD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAA AAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AA AAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/ 8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAA AD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAA AAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AA AAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/ 8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAA AD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAA AAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AA AAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/ 8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAA AD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAA AAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AA AAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/ 8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAA AD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAA AAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AA AAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/ 8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAA AD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAA AAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AA AAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/ 8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAA AD/wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAA AAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AA AAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/ 8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAA AD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAA AAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AA AAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/ 8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAA AAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AA AAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/ 8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAA AD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAA AAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AA AAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/ 8AAAAAAAAD/wAAAAAAAAAAAAAAAAAAA/8AAAAAAAAAAAAAAAAAAAP/AAAAAAAAAAAAAAAAAA AD/wAAAAAAAAAAAAAAAAAAA/8AAAAAAAAAAAAAAAAAAAP/AAAAAAAAAAAAAAAAAAAD/wAAAA AAAAAAAAAAAAAAA/8AAAAAAAAAAAAAAAAAAAP/AAAAAAAAAAAAAAAAAAAD/wAAAAAAAAAAAA AAAAAAA/8AAAAAAAAAAAAAAAAAAAP/AAAAAAAAAAAAAAAAAAAD/wAAAAAAAAAAAAAAAAAAA/ 8AAAAAAAAAAAAAAAAAAAP/AAAAAAAAAAAAAAAAAAAD/wAAAAAAAAAAAAAAAAAAA/8AAAAAAA AAAAAAAAAAAAP/AAAAAAAAAAAAAAAAAAAD/wAAAAAAAAAAAAAAAAAAA/8AAAAAAAAAAAAAAA AAAAP/AAAAAAAAAAAAAAAAAAAD/wAAAAAAAAAAAAAAAAAAA/8AAAAAAAAAAAAAAAAAAAP/AA AAAAAAAAAAAAAAAAAD/wAAAAAAAAAAAAAAAAAAA/8AAAAAAAAAAAAAAAAAAAP/AAAAAAAAAA AAAAAAAAAD/wAAAAAAAAAAAAAAAAAAA/8AAAAAAAAAAAAAAAAAAAP/AAAAAAAAAAAAAAAAAA AD/wAAAAAAAAAAAAAAAAAAA/8AAAAAAAAAAAAAAAAAAAP/AAAAAAAAAAAAAAAAAAAD/wAAAA AAAAAAAAAAAAAAA/8AAAAAAAAAAAAAAAAAAAP/AAAAAAAAAAAAAAAAAAAD/wAAAAAAAAAAAA AAAAAAA/8AAAAAAAAAAAAAAAAAAAP/AAAAAAAAAAAAAAAAAAAD/wAAAAAAAAAAAAAAAAAAA/ 8AAAAAAAAAAAAAAAAAAAP/AAAAAAAAAAAAAAAAAAAD/wAAAAAAAAAAAAAAAAAAA/8AAAAAAA AAAAAAAAAAAAP/AAAAAAAAAAAAAAAAAAAD/wAAAAAAAAAAAAAAAAAAA/8AAAAAAAAAAAAAAA AAAAP/AAAAAAAAAAAAAAAAAAAD/wAAAAAAAAAAAAAAAAAAA/8AAAAAAAAAAAAAAAAAAAP/AA AAAAAAAAAAAAAAAAAD/wAAAAAAAAAAAAAAAAAAA/8AAAAAAAAAAAAAAAAAAAP/AAAAAAAAAA AAAAAAAAAD/wAAAAAAAAAAAAAAAAAAA/8AAAAAAAAAAAAAAAAAAAP/AAAAAAAAAAAAAAAAAA AD/wAAAAAAAAAAAAAAAAAAA/8AAAAAAAAAAAAAAAAAAAP/AAAAAAAAAAAAAAAAAAAD/wAAAA AAAAAAAAAAAAAAA/8AAAAAAAAAAAAAAAAAAAP/AAAAAAAAAAAAAAAAAAAD/wAAAAAAAAAAAA AAAAAAA/8AAAAAAAAAAAAAAAAAAAP/AAAAAAAAAAAAAAAAAAAD/wAAAAAAAAAAAAAAAAAAA/ 8AAAAAAAAAAAAAAAAAAAP/AAAAAAAAAAAAAAAAAAAD/wAAAAAAAAAAAAAAAAAAA/8AAAAAAA AAAAAAAAAAAAP/AAAAAAAAAAAAAAAAAAAD/wAAAAAAAAAAAAAAAAAAA/8AAAAAAAAAAAAAAA AAAAP/AAAAAAAAAAAAAAAAAAAD/wAAAAAAAAAAAAAAAAAAA/8AAAAAAAAAAAAAAAAAAAP/AA AAAAAAAAAAAAAAAAAD/wAAAAAAAAAAAAAAAAAAA/8AAAAAAAAAAAAAAAAAAAP/AAAAAAAAAA AAAAAAAAAD/wAAAAAAAAAAAAAAAAAAA/8AAAAAAAAAAAAAAAAAAAP/AAAAAAAAAAAAAAAAAA AD/wAAAAAAAAAAAAAAAAAAA/8AAAAAAAAAAAAAAAAAAAP/AAAAAAAAAAAAAAAAAAAD/wAAAA AAAAAAAAAAAAAAA/8AAAAAAAAAAAAAAAAAAAP/AAAAAAAAAAAAAAAAAAAD/wAAAAAAAAAAAA AAAAAAA/8AAAAAAAAAAAAAAAAAAAP/AAAAAAAAAAAAAAAAAAAD/wAAAAAAAAAAAAAAAAAAA/ 8AAAAAAAAAAAAAAAAAAAP/AAAAAAAAAAAAAAAAAAAD/wAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/ 8AAAAAAAAAAAAAAAAAAAP/AAAAAAAAAAAAAAAAAAAD/wAAAAAAAAAAAAAAAAAAA/8AAAAAAA AAAAAAAAAAAAP/AAAAAAAAAAAAAAAAAAAD/wAAAAAAAAAAAAAAAAAAA/8AAAAAAAAAAAAAAA AAAAP/AAAAAAAAAAAAAAAAAAAD/wAAAAAAAAAAAAAAAAAAA/8AAAAAAAAAAAAAAAAAAAP/AA AAAAAAAAAAAAAAAAAD/wAAAAAAAAAAAAAAAAAAA/8AAAAAAAAAAAAAAAAAAAP/AAAAAAAAAA AAAAAAAAAD/wAAAAAAAAAAAAAAAAAAA/8AAAAAAAAAAAAAAAAAAAP/AAAAAAAAAAAAAAAAAA AD/wAAAAAAAAAAAAAAAAAAA/8AAAAAAAAAAAAAAAAAAAP/AAAAAAAAAAAAAAAAAAAD/wAAAA AAAAAAAAAAAAAAA/8AAAAAAAAAAAAAAAAAAAP/AAAAAAAAAAAAAAAAAAAD/wAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/8AAAAAAAAAAAAAAAAAAAP/AAAAAAAAAA AAAAAAAAAD/wAAAAAAAAAAAAAAAAAAA/8AAAAAAAAAAAAAAAAAAAP/AAAAAAAAAAAAAAAAAA AD/wAAAAAAAAAAAAAAAAAAA/8AAAAAAAAAAAAAAAAAAAP/AAAAAAAAAAAAAAAAAAAD/wAAAA AAAAAAAAAAAAAAA/8AAAAAAAAAAAAAAAAAAAP/AAAAAAAAAAAAAAAAAAAD/wAAAAAAAAAAAA AAAAAAA/8AAAAAAAAAAAAAAAAAAAP/AAAAAAAAAAAAAAAAAAAD/wAAAAAAAAAAAAAAAAAAA/ 8AAAAAAAAAAAAAAAAAAAP/AAAAAAAAAAAAAAAAAAAD/wAAAAAAAAAAAAAAAAAAA/8AAAAAAA AAAAAAAAAAAAP/AAAAAAAAAAAAAAAAAAAD/wAAAAAAAAAAAAAAAAAAA/8AAAAAAAAAAAAAAA AAAAP/AAAAAAAAAAAAAAAAAAAD/wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAA/8AAAAAAAAAAAAAAAAAAAP/AAAAAAAAAAAAAAAAAAAD/wAAAAAAAAAAAAAAAAAAA/ 8AAAAAAAAAAAAAAAAAAAP/AAAAAAAAAAAAAAAAAAAD/wAAAAAAAAAAAAAAAAAAA/8AAAAAAA AAAAAAAAAAAAP/AAAAAAAAAAAAAAAAAAAD/wAAAAAAAAAAAAAAAAAAA/8AAAAAAAAAAAAAAA AAAAP/AAAAAAAAAAAAAAAAAAAD/wAAAAAAAAAAAAAAAAAAA/8AAAAAAAAAAAAAAAAAAAP/AA AAAAAAAAAAAAAAAAAD/wAAAAAAAAAAAAAAAAAAA/8AAAAAAAAAAAAAAAAAAAP/AAAAAAAAAA AAAAAAAAAD/wAAAAAAAAAAAAAAAAAAA/8AAAAAAAAAAAAAAAAAAAP/AAAAAAAAAAAAAAAAAA AD/wAAAAAAAAAAAAAAAAAAA/8AAAAAAAAAAAAAAAAAAAP/AAAAAAAAAAAAAAAAAAAD/wAAAA AAAAAAAAAAAAAAAAAAAAAAAAAD/wAAAAAAAAP/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAD/wAAAAAAAAP/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/wAAAA AAAAP/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/wAAAAAAAAP/AAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/wAAAAAAAAP/AAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAD/wAAAAAAAAP/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AD/wAAAAAAAAP/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/wAAAAAAAAP/AA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/wAAAAAAAAP/AAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAD/wAAAAAAAAP/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAD/wAAAAAAAAP/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/wAAAA AAAAP/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/wAAAAAAAAP/AAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/wAAAAAAAAP/AAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAD/wAAAAAAAAP/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AD/wAAAAAAAAP/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAA/8AAAAAAAAD/wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/8AAAAAAA AD/wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/8AAAAAAAAD/wAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/8AAAAAAAAD/wAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAA/8AAAAAAAAD/wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/ 8AAAAAAAAD/wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/8AAAAAAAAD/wAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/8AAAAAAAAD/wAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAA/8AAAAAAAAD/wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAA/8AAAAAAAAD/wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/8AAAAAAA AD/wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/8AAAAAAAAD/wAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/8AAAAAAAAD/wAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAA/8AAAAAAAAD/wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/ 8AAAAAAAAD/wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/8AAAAAAAAD/wAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP/AAAAAAAAA/ 8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP/AAAAAAAAA/8AAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAP/AAAAAAAAA/8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAP/AAAAAAAAA/8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP/AA AAAAAAA/8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP/AAAAAAAAA/8AAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP/AAAAAAAAA/8AAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAP/AAAAAAAAA/8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAP/AAAAAAAAA/8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP/AAAAAAAAA/ 8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP/AAAAAAAAA/8AAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAP/AAAAAAAAA/8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAP/AAAAAAAAA/8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP/AA AAAAAAA/8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP/AAAAAAAAA/8AAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP/AAAAAAAAA/8AAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/wAAAAAAAAP/AAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAD/wAAAAAAAAP/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAD/wAAAAAAAAP/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/wAAAA AAAAP/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/wAAAAAAAAP/AAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/wAAAAAAAAP/AAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAD/wAAAAAAAAP/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AD/wAAAAAAAAP/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/wAAAAAAAAP/AA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/wAAAAAAAAP/AAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAD/wAAAAAAAAP/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAD/wAAAAAAAAP/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/wAAAA AAAAP/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/wAAAAAAAAP/AAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/wAAAAAAAAP/AAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAD/wAAAAAAAAP/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAA/8AAAAAAAAD/wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAA/8AAAAAAAAD/wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/8AAAAAAA AD/wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/8AAAAAAAAD/wAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/8AAAAAAAAD/wAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAA/8AAAAAAAAD/wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/ 8AAAAAAAAD/wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/8AAAAAAAAD/wAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/8AAAAAAAAD/wAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAA/8AAAAAAAAD/wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAA/8AAAAAAAAD/wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/8AAAAAAA AD/wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/8AAAAAAAAD/wAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/8AAAAAAAAD/wAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAA/8AAAAAAAAD/wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/ 8AAAAAAAAD/wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/wAAAAAAAAP/AAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/wAAAAAAAAP/AAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAD/wAAAAAAAAP/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AD/wAAAAAAAAP/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAD/wAAAAAAAAP/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AD/wAAAAAAAAP/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/wAAAAAAAAP/AA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/wAAAAAAAAP/AAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/wAAAAAAAAP/AA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/wAAAAAAAAP/AAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAD/wAAAAAAAAP/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAD/wAAAAAAAAP/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAA/8AAAAAAAAD/wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAA/8AAAAAAAAD/wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/8AAAAAAA AD/wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/8AAAAAAAAD/wAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/8AAAAAAA AD/wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/8AAAAAAAAD/wAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/8AAAAAAAAD/wAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAA/8AAAAAAAAD/wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/8AAAAAAAAD/wAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAA/8AAAAAAAAD/wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/ 8AAAAAAAAD/wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/8AAAAAAAAD/wAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP/AA AAAAAAA/8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP/AAAAAAAAA/8AAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP/AAAAAAAAA/8AAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAP/AAAAAAAAA/8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP/AAAAAAAAA/8AAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAP/AAAAAAAAA/8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAP/AAAAAAAAA/8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP/AAAAAAAAA/ 8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAP/AAAAAAAAA/8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP/AAAAAAAAA/ 8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP/AAAAAAAAA/8AAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAP/AAAAAAAAA/8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/wAAAAAAAAP/AAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAD/wAAAAAAAAP/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAD/wAAAAAAAAP/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/wAAAA AAAAP/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAD/wAAAAAAAAP/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/wAAAA AAAAP/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/wAAAAAAAAP/AAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/wAAAAAAAAP/AAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/wAAAAAAAAP/AAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/wAAAAAAAAP/AAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAD/wAAAAAAAAP/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AD/wAAAAAAAAP/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAA/8AAAAAAAAD/wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/ 8AAAAAAAAD/wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/8AAAAAAAAD/wAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/8AAAAAAAAD/wAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/8AAAAAAAAD/wAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/8AAAAAAAAD/wAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAA/8AAAAAAAAD/wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAA/8AAAAAAAAD/wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAA/8AAAAAAAAD/wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAA/8AAAAAAAAD/wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/8AAAAAAA AD/wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/8AAAAAAAAD/wAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP/AAAAAAAAA/8AAAAAAA AD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAA AAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP/AAAAAAAAA/ 8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAA AD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP/AA AAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/ 8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AA AAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP/AA AAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/ 8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AA AAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAA AAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAA AD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAA AAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAA AD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/ 8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAA AD/wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AA AAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/ 8AAAAAAAAD/wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAA AAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP/AAAAAAAAA/8AAAAAAA AD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAA AAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAA AD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAA AD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP/AAAAAAAAA/ 8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAA AD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/ 8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAA AD/wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/ 8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAA AD/wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP/AA AAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/ 8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AA AAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP/AAAAAAAAA/ 8AAAAAAAAD/wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAD/wAAAAAAAAP/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/wAAAAAAAAP/AAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/wAAAAAAAAP/AAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/wAAAAAAAAP/AAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAA/8AAAAAAAAD/wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAA/8AAAAAAAAD/wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAA/8AAAAAAAAD/wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/8AAAAAAAAD/wAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP/AAAAAAAAA/ 8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP/AA AAAAAAA/8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAP/AAAAAAAAA/8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAP/AAAAAAAAA/8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/wAAAAAAAAP/AAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/wAAAAAAAAP/AAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/wAAAAAAAAP/AA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/wAAAA AAAAP/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAA/8AAAAAAAAD/wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/8AAAAAAAAD/wAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/8AAAAAAAAD/wAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/8AAAAAAAAD/wAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAD/wAAAAAAAAP/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/wAAAAAAAAP/AAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/wAAAAAAAAP/AAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/wAAAAAAAAP/AAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAA/8AAAAAAAAD/wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAA/8AAAAAAAAD/wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAA/8AAAAAAAAD/wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/8AAAAAAAAD/wAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP/AAAAAAAAA/ 8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP/AA AAAAAAA/8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAP/AAAAAAAAA/8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAP/AAAAAAAAA/8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/wAAAAAAAAP/AAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/wAAAAAAAAP/AAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/wAAAAAAAAP/AA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/wAAAA AAAAP/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAA/8AAAAAAAAD/wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/8AAAAAAAAD/wAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/8AAAAAAAAD/wAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/8AAAAAAAAD/wAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAD/wAAAAAAAAP/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/wAAAAAAAAP/AAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/wAAAAAAAAP/AAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/wAAAAAAAAP/AAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAA/8AAAAAAAAD/wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAA/8AAAAAAAAD/wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAA/8AAAAAAAAD/wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/8AAAAAAAAD/wAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP/AAAAAAAAA/ 8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP/AA AAAAAAA/8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAP/AAAAAAAAA/8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAP/AAAAAAAAA/8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/wAAAAAAAAP/AAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/wAAAAAAAAP/AAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/wAAAAAAAAP/AA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/wAAAA AAAAP/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAA/8AAAAAAAAD/wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/8AAAAAAAAD/wAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/8AAAAAAAAD/wAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/8AAAAAAAAD/wAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAD/wAAAAAAAAP/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/wAAAAAAAAP/AAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAD/wAAAAAAAAP/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/8AAAAAAAAD/wAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAA/8AAAAAAAAD/wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/8AAAAAAA AD/wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAP/AAAAAAAAA/8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP/AA AAAAAAA/8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP/AAAAAAAAA/8AAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AD/wAAAAAAAAP/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/wAAAAAAAAP/AAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAD/wAAAAAAAAP/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/8AAAAAAAAD/wAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAA/8AAAAAAAAD/wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/8AAAAAAAAD/wAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/wAAAAAAAAP/AAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAD/wAAAAAAAAP/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/wAAAAAAAAP/AAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAA/8AAAAAAAAD/wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/8AAAAAAAAD/wAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAA/8AAAAAAAAD/wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP/AAAAAAAAA/ 8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAP/AAAAAAAAA/8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP/AA AAAAAAA/8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/wAAAAAAAAP/AAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AD/wAAAAAAAAP/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/wAAAAAAAAP/AAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAA/8AAAAAAAAD/wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/8AAAAAAAAD/wAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAA/8AAAAAAAAD/wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AD/wAAAAAAAAP/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/wAAAAAAAAP/AAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAD/wAAAAAAAAP/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/8AAAAAAAAD/wAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAA/8AAAAAAAAD/wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/8AAAAAAAAD/wAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAP/AAAAAAAAA/8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP/AAAAAAAAA/ 8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAP/AAAAAAAAA/8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/wAAAA AAAAP/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/wAAAAAAAAP/AAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AD/wAAAAAAAAP/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/8AAAAAAAAD/wAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAA/8AAAAAAAAD/wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/8AAAAAAAAD/wAAAAAAAAP+u4 0uHCJaq/8M3piAv/5z/ruNLhwiWqv/DN6YgL/+c/67jS4cIlqr/wzemIC//nP+u40uHCJaq/ 8M3piAv/5z/ruNLhwiWqv/DN6YgL/+c/67jS4cIlqr/wzemIC//nP9+Wu29ahn+/3qqFUNsl eD/flrtvWoZ/v96qhVDbJXg/35a7b1qGf7/eqoVQ2yV4P9+Wu29ahn+/3qqFUNsleD/flrtv WoZ/v96qhVDbJXg/35a7b1qGf7/eqoVQ2yV4P7/QO1/wdDk/jBPzFeUJET+/0Dtf8HQ5P4wT 8xXlCRE/v9A7X/B0OT+ME/MV5QkRP7/QO1/wdDk/jBPzFeUJET+/0Dtf8HQ5P4wT8xXlCRE/ v9A7X/B0OT+ME/MV5QkRv+pPercFZnA/2MplzFABmb/qT3q3BWZwP9jKZcxQAZm/6k96twVm cD/YymXMUAGZv+pPercFZnA/2MplzFABmb/qT3q3BWZwP9jKZcxQAZm/6k96twVmcD/YymXM UAGZAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAA AAAAAACAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAACA AAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAACAAAAAAAAA AAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAACA AAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAACAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAA AAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAA AAAAAACAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAACA AAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAA AAAAAACAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAACA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAA AIAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAA AAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAA AAAAAACAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAA AAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAA AAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAA AAAAAAAAAIAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAA AIAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAA AAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAA AIAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAA AAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAP+lkLQES5gO/7sh6qKVcCz/pZC0BEuYDv+7I eqilXAs/6WQtARLmA7/uyHqopVwLP+lkLQES5gO/7sh6qKVcCz/pZC0BEuYDv+7IeqilXAs/ 6WQtARLmA7/uyHqopVwLP9zu3C93YTK/3BaB8UTXrj/c7twvd2Eyv9wWgfFE164/3O7cL3dh Mr/cFoHxRNeuP9zu3C93YTK/3BaB8UTXrj/c7twvd2Eyv9wWgfFE164/3O7cL3dhMr/cFoHx RNeuP70jhpUijZQ/ibej8ldyoT+9I4aVIo2UP4m3o/JXcqE/vSOGlSKNlD+Jt6PyV3KhP70j hpUijZQ/ibej8ldyoT+9I4aVIo2UP4m3o/JXcqE/vSOGlSKNlD+Jt6PyV3Khv+gZNeWilUM/ 1rTXBJppRL/oGTXlopVDP9a01wSaaUS/6Bk15aKVQz/WtNcEmmlEv+gZNeWilUM/1rTXBJpp RL/oGTXlopVDP9a01wSaaUS/6Bk15aKVQz/WtNcEmmlEAAAAAAAAAACAAAAAAAAAAAAAAAAA AAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAgAAA AAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAA AAAAAAAAAIAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAA AIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgAAA AAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAA AAAAAAAAAIAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAAAAAAAAA AAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAA AAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAgAAA AAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAA AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAgAAA AAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA AAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAACAAAAAAAAA AAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAA AAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAgAAA AAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAA AAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAACAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAACA AAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAACAAAAAAAAA AAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAA AAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAACAAAAAAAAA AAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAA AAAAP+VXtLS9qt6/6d/qkJNywz/lV7S0varev+nf6pCTcsM/5Ve0tL2q3r/p3+qQk3LDP+VX tLS9qt6/6d/qkJNywz/lV7S0varev+nf6pCTcsM/5Ve0tL2q3r/p3+qQk3LDP9hR0SgQV4S/ 15v2ZNLjgj/YUdEoEFeEv9eb9mTS44I/2FHRKBBXhL/Xm/Zk0uOCP9hR0SgQV4S/15v2ZNLj gj/YUdEoEFeEv9eb9mTS44I/2FHRKBBXhL/Xm/Zk0uOCP7h+FcAaGqE/hZ3cok2w5D+4fhXA GhqhP4Wd3KJNsOQ/uH4VwBoaoT+FndyiTbDkP7h+FcAaGqE/hZ3cok2w5D+4fhXAGhqhP4Wd 3KJNsOQ/uH4VwBoaoT+FndyiTbDkv+RBg45f3sk/0xX3rYDeNb/kQYOOX97JP9MV962A3jW/ 5EGDjl/eyT/TFfetgN41v+RBg45f3sk/0xX3rYDeNb/kQYOOX97JP9MV962A3jW/5EGDjl/e yT/TFfetgN41AAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAA AAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAA AAAAAACAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAACA AAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAA AAAAAACAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAACA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAA AIAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAA AAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAA AAAAAACAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAA AAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAA AAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAA AAAAAAAAAIAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAA AIAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAA AAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAA AIAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAA AAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAgAAA AAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAA AAAAAAAAAIAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAA AIAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAA AAAAAAAAAIAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAA AIAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAP+P2hXyRmhG/6DO7zG69vz/j9oV8 kZoRv+gzu8xuvb8/4/aFfJGaEb/oM7vMbr2/P+P2hXyRmhG/6DO7zG69vz/j9oV8kZoRv+gz u8xuvb8/4/aFfJGaEb/oM7vMbr2/P9a/XkTYXNe/1hVE5Uc3Bz/Wv15E2FzXv9YVROVHNwc/ 1r9eRNhc17/WFUTlRzcHP9a/XkTYXNe/1hVE5Uc3Bz/Wv15E2FzXv9YVROVHNwc/1r9eRNhc 17/WFUTlRzcHP7boxk1bH/I/hDgkc0dbrT+26MZNWx/yP4Q4JHNHW60/tujGTVsf8j+EOCRz R1utP7boxk1bH/I/hDgkc0dbrT+26MZNWx/yP4Q4JHNHW60/tujGTVsf8j+EOCRzR1utv+Ly T/M/0VE/0dohEKoUBb/i8k/zP9FRP9HaIRCqFAW/4vJP8z/RUT/R2iEQqhQFv+LyT/M/0VE/ 0dohEKoUBb/i8k/zP9FRP9HaIRCqFAW/4vJP8z/RUT/R2iEQqhQFP9zWifL7GcAAAAAAAAAA AD/c1ony+xnAAAAAAAAAAAA/3NaJ8vsZwAAAAAAAAAAAP9zWifL7GcAAAAAAAAAAAD/c1ony +xnAAAAAAAAAAAA/3NaJ8vsZwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP9pp3r+Y/lAA AAAAAAAAAD/aad6/mP5QAAAAAAAAAAA/2mnev5j+UAAAAAAAAAAAP9pp3r+Y/lAAAAAAAAAA AD/aad6/mP5QAAAAAAAAAAA/2mnev5j+UAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP9Yz rB+sRlQAAAAAAAAAAD/WM6wfrEZUAAAAAAAAAAA/1jOsH6xGVAAAAAAAAAAAP9YzrB+sRlQA AAAAAAAAAD/WM6wfrEZUAAAAAAAAAAA/1jOsH6xGVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAP9TERNN1u2cAAAAAAAAAAD/UxETTdbtnAAAAAAAAAAA/1MRE03W7ZwAAAAAAAAAAP9TE RNN1u2cAAAAAAAAAAD/UxETTdbtnAAAAAAAAAAA/1MRE03W7ZwAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP9zW ifL7GcAAAAAAAAAAAD/c1ony+xnAAAAAAAAAAAA/3NaJ8vsZwAAAAAAAAAAAP9zWifL7GcAA AAAAAAAAAD/c1ony+xnAAAAAAAAAAAA/3NaJ8vsZwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAP9pp3r+Y/lAAAAAAAAAAAD/aad6/mP5QAAAAAAAAAAA/2mnev5j+UAAAAAAAAAAAP9pp 3r+Y/lAAAAAAAAAAAD/aad6/mP5QAAAAAAAAAAA/2mnev5j+UAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAP9YzrB+sRlQAAAAAAAAAAD/WM6wfrEZUAAAAAAAAAAA/1jOsH6xGVAAAAAAA AAAAP9YzrB+sRlQAAAAAAAAAAD/WM6wfrEZUAAAAAAAAAAA/1jOsH6xGVAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAP9TERNN1u2cAAAAAAAAAAD/UxETTdbtnAAAAAAAAAAA/1MRE03W7 ZwAAAAAAAAAAP9TERNN1u2cAAAAAAAAAAD/UxETTdbtnAAAAAAAAAAA/1MRE03W7ZwAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAP9zWifL7GcAAAAAAAAAAAD/c1ony+xnAAAAAAAAAAAA/3NaJ8vsZwAAAAAAA AAAAP9zWifL7GcAAAAAAAAAAAD/c1ony+xnAAAAAAAAAAAA/3NaJ8vsZwAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAP9pp3r+Y/lAAAAAAAAAAAD/aad6/mP5QAAAAAAAAAAA/2mnev5j+ UAAAAAAAAAAAP9pp3r+Y/lAAAAAAAAAAAD/aad6/mP5QAAAAAAAAAAA/2mnev5j+UAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAP9YzrB+sRlQAAAAAAAAAAD/WM6wfrEZUAAAAAAAAAAA/ 1jOsH6xGVAAAAAAAAAAAP9YzrB+sRlQAAAAAAAAAAD/WM6wfrEZUAAAAAAAAAAA/1jOsH6xG VAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP9TERNN1u2cAAAAAAAAAAD/UxETTdbtnAAAA AAAAAAA/1MRE03W7ZwAAAAAAAAAAP9TERNN1u2cAAAAAAAAAAD/UxETTdbtnAAAAAAAAAAA/ 1MRE03W7ZwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAP9zWifL7GcAAAAAAAAAAAD/c1ony+xnAAAAAAAAAAAA/ 3NaJ8vsZwAAAAAAAAAAAP9zWifL7GcAAAAAAAAAAAD/c1ony+xnAAAAAAAAAAAA/3NaJ8vsZ wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP9pp3r+Y/lAAAAAAAAAAAD/aad6/mP5QAAAA AAAAAAA/2mnev5j+UAAAAAAAAAAAP9pp3r+Y/lAAAAAAAAAAAD/aad6/mP5QAAAAAAAAAAA/ 2mnev5j+UAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP9YzrB+sRlQAAAAAAAAAAD/WM6wf rEZUAAAAAAAAAAA/1jOsH6xGVAAAAAAAAAAAP9YzrB+sRlQAAAAAAAAAAD/WM6wfrEZUAAAA AAAAAAA/1jOsH6xGVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP9TERNN1u2cAAAAAAAAA AD/UxETTdbtnAAAAAAAAAAA/1MRE03W7ZwAAAAAAAAAAP9TERNN1u2cAAAAAAAAAAD/UxETT dbtnAAAAAAAAAAA/1MRE03W7ZwAAAAAAAAAAAAAAAAAAAAA/3NaJ8vsZwAAAAAAAAAAAP9zW ifL7GcAAAAAAAAAAAD/c1ony+xnAAAAAAAAAAAA/3NaJ8vsZwAAAAAAAAAAAP9zWifL7GcAA AAAAAAAAAD/c1ony+xnAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/2mnev5j+UAAAAAAA AAAAP9pp3r+Y/lAAAAAAAAAAAD/aad6/mP5QAAAAAAAAAAA/2mnev5j+UAAAAAAAAAAAP9pp 3r+Y/lAAAAAAAAAAAD/aad6/mP5QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/1jOsH6xG VAAAAAAAAAAAP9YzrB+sRlQAAAAAAAAAAD/WM6wfrEZUAAAAAAAAAAA/1jOsH6xGVAAAAAAA AAAAP9YzrB+sRlQAAAAAAAAAAD/WM6wfrEZUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/ 1MRE03W7ZwAAAAAAAAAAP9TERNN1u2cAAAAAAAAAAD/UxETTdbtnAAAAAAAAAAA/1MRE03W7 ZwAAAAAAAAAAP9TERNN1u2cAAAAAAAAAAD/UxETTdbtnAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/3NaJ8vsZ wAAAAAAAAAAAP9zWifL7GcAAAAAAAAAAAD/c1ony+xnAAAAAAAAAAAA/3NaJ8vsZwAAAAAAA AAAAP9zWifL7GcAAAAAAAAAAAD/c1ony+xnAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/ 2mnev5j+UAAAAAAAAAAAP9pp3r+Y/lAAAAAAAAAAAD/aad6/mP5QAAAAAAAAAAA/2mnev5j+ UAAAAAAAAAAAP9pp3r+Y/lAAAAAAAAAAAD/aad6/mP5QAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAA/1jOsH6xGVAAAAAAAAAAAP9YzrB+sRlQAAAAAAAAAAD/WM6wfrEZUAAAAAAAAAAA/ 1jOsH6xGVAAAAAAAAAAAP9YzrB+sRlQAAAAAAAAAAD/WM6wfrEZUAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAA/1MRE03W7ZwAAAAAAAAAAP9TERNN1u2cAAAAAAAAAAD/UxETTdbtnAAAA AAAAAAA/1MRE03W7ZwAAAAAAAAAAP9TERNN1u2cAAAAAAAAAAD/UxETTdbtnAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAA/3NaJ8vsZwAAAAAAAAAAAP9zWifL7GcAAAAAAAAAAAD/c1ony+xnAAAAAAAAAAAA/ 3NaJ8vsZwAAAAAAAAAAAP9zWifL7GcAAAAAAAAAAAD/c1ony+xnAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAA/2mnev5j+UAAAAAAAAAAAP9pp3r+Y/lAAAAAAAAAAAD/aad6/mP5QAAAA AAAAAAA/2mnev5j+UAAAAAAAAAAAP9pp3r+Y/lAAAAAAAAAAAD/aad6/mP5QAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAA/1jOsH6xGVAAAAAAAAAAAP9YzrB+sRlQAAAAAAAAAAD/WM6wf rEZUAAAAAAAAAAA/1jOsH6xGVAAAAAAAAAAAP9YzrB+sRlQAAAAAAAAAAD/WM6wfrEZUAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/1MRE03W7ZwAAAAAAAAAAP9TERNN1u2cAAAAAAAAA AD/UxETTdbtnAAAAAAAAAAA/1MRE03W7ZwAAAAAAAAAAP9TERNN1u2cAAAAAAAAAAD/UxETT dbtnAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAA/3NaJ8vsZwAAAAAAAAAAAP9zWifL7GcAAAAAAAAAAAD/c1ony +xnAAAAAAAAAAAA/3NaJ8vsZwAAAAAAAAAAAP9zWifL7GcAAAAAAAAAAAD/c1ony+xnAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/2mnev5j+UAAAAAAAAAAAP9pp3r+Y/lAAAAAAAAAA AD/aad6/mP5QAAAAAAAAAAA/2mnev5j+UAAAAAAAAAAAP9pp3r+Y/lAAAAAAAAAAAD/aad6/ mP5QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/1jOsH6xGVAAAAAAAAAAAP9YzrB+sRlQA AAAAAAAAAD/WM6wfrEZUAAAAAAAAAAA/1jOsH6xGVAAAAAAAAAAAP9YzrB+sRlQAAAAAAAAA AD/WM6wfrEZUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/1MRE03W7ZwAAAAAAAAAAP9TE RNN1u2cAAAAAAAAAAD/UxETTdbtnAAAAAAAAAAA/1MRE03W7ZwAAAAAAAAAAP9TERNN1u2cA AAAAAAAAAD/UxETTdbtnP88gDO6b/Mq/1oRXivKc1D/OHyjhK9ldv9tAIImp/gY/oTgGX4Yo vL/RX1rwSZGoP5gfQhQBtqm/sSU9UaBzzb+LOscLZFM8v64aSaZr1N2/07PLe2qtIL+XQmRb UAuYP88gDO6b/Mq/1oRXivKc1D/OHyjhK9ldv9tAIImp/gY/oTgGX4YovL/RX1rwSZGoP5gf QhQBtqm/sSU9UaBzzb+LOscLZFM8v64aSaZr1N2/07PLe2qtIL+XQmRbUAuYP88gDO6b/Mq/ 1oRXivKc1D/OHyjhK9ldv9tAIImp/gY/oTgGX4YovL/RX1rwSZGoP5gfQhQBtqm/sSU9UaBz zb+LOscLZFM8v64aSaZr1N2/07PLe2qtIL+XQmRbUAuYP88gDO6b/Mq/1oRXivKc1D/OHyjh K9ldv9tAIImp/gY/oTgGX4YovL/RX1rwSZGoP5gfQhQBtqm/sSU9UaBzzb+LOscLZFM8v64a SaZr1N2/07PLe2qtIL+XQmRbUAuYAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAA AAAAAAAAAIAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAA AIAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAA AAAAAAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAAAAA AAAAAACAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAACA AAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAACAAAAAAAAA AAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAIAAAAAA AAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAgAAA AAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACA AAAAAAAAAIAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAA AIAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAA AAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAA AAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAACA AAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAACAAAAAAAAA AIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAA AAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAA AAAAAACAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAA AAAAAAAAAIAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAA AIAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAA AAAAAAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAAAAA AAAAAACAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAACA AAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAACAAAAAAAAA AAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAIAAAAAA AAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAgAAA AAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACA AAAAAAAAAIAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAA AIAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAA AAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAA AAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAP97Fpz3o02C/ 5kLyGxAKLj/dx61Hrbmiv+rw+7Nm92w/sQYEGf/qOL/hLOZwhpfKP6fZMzaPwqK/wPNxmxZz cL+a67G+kDIsv73C3DNFFWW/43qSvMOHob+m/tb0kJgoP97Fpz3o02C/5kLyGxAKLj/dx61H rbmiv+rw+7Nm92w/sQYEGf/qOL/hLOZwhpfKP6fZMzaPwqK/wPNxmxZzcL+a67G+kDIsv73C 3DNFFWW/43qSvMOHob+m/tb0kJgoP97Fpz3o02C/5kLyGxAKLj/dx61Hrbmiv+rw+7Nm92w/ sQYEGf/qOL/hLOZwhpfKP6fZMzaPwqK/wPNxmxZzcL+a67G+kDIsv73C3DNFFWW/43qSvMOH ob+m/tb0kJgoP97Fpz3o02C/5kLyGxAKLj/dx61Hrbmiv+rw+7Nm92w/sQYEGf/qOL/hLOZw hpfKP6fZMzaPwqK/wPNxmxZzcL+a67G+kDIsv73C3DNFFWW/43qSvMOHob+m/tb0kJgoAAAA AAAAAACAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAACA AAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAACAAAAAAAAA AAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAIAAAAAA AAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAgAAA AAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACA AAAAAAAAAIAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAA AIAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAA AAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAA AAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAACA AAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAACAAAAAAAAA AIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAA AAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAA AAAAAACAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAA AAAAAAAAAIAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAA AIAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAA AAAAAAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAAAAA AAAAAACAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAACA AAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAACAAAAAAAAA AAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAIAAAAAA AAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAgAAA AAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACA AAAAAAAAAIAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAA AIAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAA AAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAA AAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAACA AAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAACAAAAAAAAA AIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAA AAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAA AAAAAACAAAAAAAAAAIAAAAAAAAAAP9hkSbmTbE+/4aVRMQn6eD/XmvixG4rEv+Va8500u8U/ qvzWAGhdS7/bOnrH2vHjP6LnVorIsoy/ut9knqNt97+VVsJjoWSjv7eXJ0fk8bK/3uFMVU6C G7+iOkC70aicP9hkSbmTbE+/4aVRMQn6eD/XmvixG4rEv+Va8500u8U/qvzWAGhdS7/bOnrH 2vHjP6LnVorIsoy/ut9knqNt97+VVsJjoWSjv7eXJ0fk8bK/3uFMVU6CG7+iOkC70aicP9hk SbmTbE+/4aVRMQn6eD/XmvixG4rEv+Va8500u8U/qvzWAGhdS7/bOnrH2vHjP6LnVorIsoy/ ut9knqNt97+VVsJjoWSjv7eXJ0fk8bK/3uFMVU6CG7+iOkC70aicP9hkSbmTbE+/4aVRMQn6 eD/XmvixG4rEv+Va8500u8U/qvzWAGhdS7/bOnrH2vHjP6LnVorIsoy/ut9knqNt97+VVsJj oWSjv7eXJ0fk8bK/3uFMVU6CG7+iOkC70aicAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAgAAA AAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACA AAAAAAAAAIAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAA AIAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAA AAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAA AAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAACA AAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAACAAAAAAAAA AIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAA AAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAA AAAAAACAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAA AAAAAAAAAIAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAA AIAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAA AAAAAAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAAAAA AAAAAACAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAACA AAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAACAAAAAAAAA AAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAIAAAAAA AAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAgAAA AAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACA AAAAAAAAAIAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAA AIAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAA AAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAA AAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAACA AAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAACAAAAAAAAA AIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAA AAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAA AAAAAACAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAA AAAAAAAAAIAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAA AIAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAIAAAAAA AAAAAAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAAAAAAAAACAAAAAAAAAAIAAAAAAAAAAP9ZY 4dUx6Re/4CqrLonhgz/VoHC2kCrrv+OQtAzDzp4/qLm6B+KVCb/Y8jQKa5u+P6FRsoG7ov+/ uJ7AcZ+RWL+TjNzIyUlWv7Wc8TrxFz6/3Eqp9oajmL+gsx7QjKbcP9ZY4dUx6Re/4CqrLonh gz/VoHC2kCrrv+OQtAzDzp4/qLm6B+KVCb/Y8jQKa5u+P6FRsoG7ov+/uJ7AcZ+RWL+TjNzI yUlWv7Wc8TrxFz6/3Eqp9oajmL+gsx7QjKbcP9ZY4dUx6Re/4CqrLonhgz/VoHC2kCrrv+OQ tAzDzp4/qLm6B+KVCb/Y8jQKa5u+P6FRsoG7ov+/uJ7AcZ+RWL+TjNzIyUlWv7Wc8TrxFz6/ 3Eqp9oajmL+gsx7QjKbcP9ZY4dUx6Re/4CqrLonhgz/VoHC2kCrrv+OQtAzDzp4/qLm6B+KV Cb/Y8jQKa5u+P6FRsoG7ov+/uJ7AcZ+RWL+TjNzIyUlWv7Wc8TrxFz6/3Eqp9oajmL+gsx7Q jKbcP+XOOIW1O+UAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP+XOOIW1O+UA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP+XOOIW1O+UAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAP+XOOIW1O+UAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAP/WO5AWJMHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP/WO 5AWJMHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP/WO5AWJMHQAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP/WO5AWJMHQAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAP/EWmFQ4clwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAP/EWmFQ4clwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP/EWmFQ4clwA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP/EWmFQ4clwAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAP+9P0cpgcgMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAP+9P0cpgcgMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP+9P 0cpgcgMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP+9P0cpgcgMAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/lzjiFtTvlAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/lzjiFtTvlAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAD/lzjiFtTvlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAD/lzjiFtTvlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/1juQF iTB0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/1juQFiTB0AAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/1juQFiTB0AAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAD/1juQFiTB0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AD/xFphUOHJcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/xFphUOHJcAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/xFphUOHJcAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAD/xFphUOHJcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAD/vT9HKYHIDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/vT9HK YHIDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/vT9HKYHIDAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/vT9HKYHIDAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/5c44hbU75QAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAA/5c44hbU75QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAA/5c44hbU75QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/5c44hbU7 5QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/9Y7kBYkwdAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/9Y7kBYkwdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAA/9Y7kBYkwdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/ 9Y7kBYkwdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/8RaYVDhyXAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/8RaYVDhyXAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAA/8RaYVDhyXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAA/8RaYVDhyXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/70/RymBy AwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/70/RymByAwAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/70/RymByAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAA/70/RymByAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAP+XOOIW1O+UAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAP+XOOIW1O+UAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP+XOOIW1O+UA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP+XOOIW1O+UAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAP/WO5AWJMHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAP/WO5AWJMHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP/WO 5AWJMHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP/WO5AWJMHQAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP/EWmFQ4clwAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAP/EWmFQ4clwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAP/EWmFQ4clwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP/EWmFQ4clwA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP+9P0cpgcgMAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAP+9P0cpgcgMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAP+9P0cpgcgMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP+9P 0cpgcgMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AD/lzjiFtTvlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/lzjiFtTvlAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/lzjiFtTvlAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAD/lzjiFtTvlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAD/1juQFiTB0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/1juQF iTB0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/1juQFiTB0AAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/1juQFiTB0AAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAD/xFphUOHJcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AD/xFphUOHJcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/xFphUOHJcAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/xFphUOHJcAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAD/vT9HKYHIDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAD/vT9HKYHIDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/vT9HK YHIDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/vT9HKYHIDAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/5c44hbU75QAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/5c44hbU75QAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAA/5c44hbU75QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAA/5c44hbU75QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/9Y7kBYkw dAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/9Y7kBYkwdAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/9Y7kBYkwdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAA/9Y7kBYkwdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/ 8RaYVDhyXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/8RaYVDhyXAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/8RaYVDhyXAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAA/8RaYVDhyXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAA/70/RymByAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/70/RymBy AwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/70/RymByAwAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/70/RymByAwAAAAAAAAAAAAAAAAAAAAA/5c44hbU7 5QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/5c44hbU75QAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/5c44hbU75QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAA/5c44hbU75QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/ 9Y7kBYkwdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/9Y7kBYkwdAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/9Y7kBYkwdAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAA/9Y7kBYkwdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAA/8RaYVDhyXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/8RaYVDhy XAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/8RaYVDhyXAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/8RaYVDhyXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAA/70/RymByAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/ 70/RymByAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/70/RymByAwAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/70/RymByAwAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP+XOOIW1O+UAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAP+XOOIW1O+UAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAP+XOOIW1O+UAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP+XO OIW1O+UAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP/WO5AWJMHQAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP/WO5AWJMHQAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAP/WO5AWJMHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAP/WO5AWJMHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP/EWmFQ4clwA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP/EWmFQ4clwAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAP/EWmFQ4clwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAP/EWmFQ4clwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP+9P 0cpgcgMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP+9P0cpgcgMAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP+9P0cpgcgMAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAP+9P0cpgcgMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAD/lzjiFtTvlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAD/lzjiFtTvlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/lzjiF tTvlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/lzjiFtTvlAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/1juQFiTB0AAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAD/1juQFiTB0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AD/1juQFiTB0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/1juQFiTB0AAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/xFphUOHJcAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAD/xFphUOHJcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAD/xFphUOHJcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/xFphU OHJcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/vT9HKYHIDAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/vT9HKYHIDAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAD/vT9HKYHIDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AD/vT9HKYHIDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAA/5c44hbU75QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/5c44hbU7 5QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/5c44hbU75QAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/5c44hbU75QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAA/9Y7kBYkwdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/ 9Y7kBYkwdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/9Y7kBYkwdAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/9Y7kBYkwdAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAA/8RaYVDhyXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAA/8RaYVDhyXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/8RaYVDhy XAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/8RaYVDhyXAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/70/RymByAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAA/70/RymByAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/ 70/RymByAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/70/RymByAwAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP+XOOIW1O+UA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP+XOOIW1O+UAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAP+XOOIW1O+UAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAP+XOOIW1O+UAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP/WO 5AWJMHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP/WO5AWJMHQAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP/WO5AWJMHQAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAP/WO5AWJMHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAP/EWmFQ4clwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP/EWmFQ4clwA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP/EWmFQ4clwAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAP/EWmFQ4clwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAP+9P0cpgcgMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP+9P 0cpgcgMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP+9P0cpgcgMAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP+9P0cpgcgMAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/lzjiFtTvlAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAD/lzjiFtTvlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAD/lzjiFtTvlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/lzjiF tTvlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/1juQFiTB0AAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/1juQFiTB0AAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAD/1juQFiTB0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AD/1juQFiTB0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/xFphUOHJcAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/xFphUOHJcAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAD/xFphUOHJcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAD/xFphUOHJcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/vT9HK YHIDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/vT9HKYHIDAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/vT9HKYHIDAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAD/vT9HKYHIDAAAEAgAAHP8AAAANAAAAAgAAAMAAAACAAAAEAgAAHf8A AAATAAAAAgAAAP4AAAAQAAAAgAAEAAkAAAALKEludGVyY2VwdCkABAAJAAAACWVsZWN0aW9u MgAEAAkAAAAJZWxlY3Rpb24zAAQACQAAAAllbGVjdGlvbjQABAAJAAAABXZvdGUyAAQACQAA AA9lbGVjdGlvbjI6dm90ZTIABAAJAAAAD2VsZWN0aW9uMzp2b3RlMgAEAAkAAAAPZWxlY3Rp b240OnZvdGUyAAQACQAAAAZjbGFzczIABAAJAAAABmNsYXNzMwAEAAkAAAAGY2xhc3M0AAQA CQAAAAZjbGFzczUABAAJAAAABmNsYXNzNgAEAAkAAAAQZWxlY3Rpb24yOmNsYXNzMgAEAAkA AAAQZWxlY3Rpb24zOmNsYXNzMgAEAAkAAAAQZWxlY3Rpb240OmNsYXNzMgAEAAkAAAAQZWxl Y3Rpb24yOmNsYXNzMwAEAAkAAAAQZWxlY3Rpb24zOmNsYXNzMwAEAAkAAAAQZWxlY3Rpb240 OmNsYXNzMwAEAAkAAAAQZWxlY3Rpb24yOmNsYXNzNAAEAAkAAAAQZWxlY3Rpb24zOmNsYXNz NAAEAAkAAAAQZWxlY3Rpb240OmNsYXNzNAAEAAkAAAAQZWxlY3Rpb24yOmNsYXNzNQAEAAkA AAAQZWxlY3Rpb24zOmNsYXNzNQAEAAkAAAAQZWxlY3Rpb240OmNsYXNzNQAEAAkAAAAQZWxl Y3Rpb24yOmNsYXNzNgAEAAkAAAAQZWxlY3Rpb24zOmNsYXNzNgAEAAkAAAAQZWxlY3Rpb240 OmNsYXNzNgAEAAkAAAAJcmVsaWdpb24yAAQACQAAAAlyZWxpZ2lvbjMABAAJAAAACXJlbGln aW9uNAAEAAkAAAATZWxlY3Rpb24yOnJlbGlnaW9uMgAEAAkAAAATZWxlY3Rpb24zOnJlbGln aW9uMgAEAAkAAAATZWxlY3Rpb240OnJlbGlnaW9uMgAEAAkAAAATZWxlY3Rpb24yOnJlbGln aW9uMwAEAAkAAAATZWxlY3Rpb24zOnJlbGlnaW9uMwAEAAkAAAATZWxlY3Rpb240OnJlbGln aW9uMwAEAAkAAAATZWxlY3Rpb24yOnJlbGlnaW9uNAAEAAkAAAATZWxlY3Rpb24zOnJlbGln aW9uNAAEAAkAAAATZWxlY3Rpb240OnJlbGlnaW9uNAAEAAkAAAAQY2xhc3MyOnJlbGlnaW9u MgAEAAkAAAAQY2xhc3MzOnJlbGlnaW9uMgAEAAkAAAAQY2xhc3M0OnJlbGlnaW9uMgAEAAkA AAAQY2xhc3M1OnJlbGlnaW9uMgAEAAkAAAAQY2xhc3M2OnJlbGlnaW9uMgAEAAkAAAAQY2xh c3MyOnJlbGlnaW9uMwAEAAkAAAAQY2xhc3MzOnJlbGlnaW9uMwAEAAkAAAAQY2xhc3M0OnJl bGlnaW9uMwAEAAkAAAAQY2xhc3M1OnJlbGlnaW9uMwAEAAkAAAAQY2xhc3M2OnJlbGlnaW9u MwAEAAkAAAAQY2xhc3MyOnJlbGlnaW9uNAAEAAkAAAAQY2xhc3MzOnJlbGlnaW9uNAAEAAkA AAAQY2xhc3M0OnJlbGlnaW9uNAAEAAkAAAAQY2xhc3M1OnJlbGlnaW9uNAAEAAkAAAAQY2xh c3M2OnJlbGlnaW9uNAAEAAkAAAAaZWxlY3Rpb24yOmNsYXNzMjpyZWxpZ2lvbjIABAAJAAAA GmVsZWN0aW9uMzpjbGFzczI6cmVsaWdpb24yAAQACQAAABplbGVjdGlvbjQ6Y2xhc3MyOnJl bGlnaW9uMgAEAAkAAAAaZWxlY3Rpb24yOmNsYXNzMzpyZWxpZ2lvbjIABAAJAAAAGmVsZWN0 aW9uMzpjbGFzczM6cmVsaWdpb24yAAQACQAAABplbGVjdGlvbjQ6Y2xhc3MzOnJlbGlnaW9u MgAEAAkAAAAaZWxlY3Rpb24yOmNsYXNzNDpyZWxpZ2lvbjIABAAJAAAAGmVsZWN0aW9uMzpj bGFzczQ6cmVsaWdpb24yAAQACQAAABplbGVjdGlvbjQ6Y2xhc3M0OnJlbGlnaW9uMgAEAAkA AAAaZWxlY3Rpb24yOmNsYXNzNTpyZWxpZ2lvbjIABAAJAAAAGmVsZWN0aW9uMzpjbGFzczU6 cmVsaWdpb24yAAQACQAAABplbGVjdGlvbjQ6Y2xhc3M1OnJlbGlnaW9uMgAEAAkAAAAaZWxl Y3Rpb24yOmNsYXNzNjpyZWxpZ2lvbjIABAAJAAAAGmVsZWN0aW9uMzpjbGFzczY6cmVsaWdp b24yAAQACQAAABplbGVjdGlvbjQ6Y2xhc3M2OnJlbGlnaW9uMgAEAAkAAAAaZWxlY3Rpb24y OmNsYXNzMjpyZWxpZ2lvbjMABAAJAAAAGmVsZWN0aW9uMzpjbGFzczI6cmVsaWdpb24zAAQA CQAAABplbGVjdGlvbjQ6Y2xhc3MyOnJlbGlnaW9uMwAEAAkAAAAaZWxlY3Rpb24yOmNsYXNz MzpyZWxpZ2lvbjMABAAJAAAAGmVsZWN0aW9uMzpjbGFzczM6cmVsaWdpb24zAAQACQAAABpl bGVjdGlvbjQ6Y2xhc3MzOnJlbGlnaW9uMwAEAAkAAAAaZWxlY3Rpb24yOmNsYXNzNDpyZWxp Z2lvbjMABAAJAAAAGmVsZWN0aW9uMzpjbGFzczQ6cmVsaWdpb24zAAQACQAAABplbGVjdGlv bjQ6Y2xhc3M0OnJlbGlnaW9uMwAEAAkAAAAaZWxlY3Rpb24yOmNsYXNzNTpyZWxpZ2lvbjMA BAAJAAAAGmVsZWN0aW9uMzpjbGFzczU6cmVsaWdpb24zAAQACQAAABplbGVjdGlvbjQ6Y2xh c3M1OnJlbGlnaW9uMwAEAAkAAAAaZWxlY3Rpb24yOmNsYXNzNjpyZWxpZ2lvbjMABAAJAAAA GmVsZWN0aW9uMzpjbGFzczY6cmVsaWdpb24zAAQACQAAABplbGVjdGlvbjQ6Y2xhc3M2OnJl bGlnaW9uMwAEAAkAAAAaZWxlY3Rpb24yOmNsYXNzMjpyZWxpZ2lvbjQABAAJAAAAGmVsZWN0 aW9uMzpjbGFzczI6cmVsaWdpb240AAQACQAAABplbGVjdGlvbjQ6Y2xhc3MyOnJlbGlnaW9u NAAEAAkAAAAaZWxlY3Rpb24yOmNsYXNzMzpyZWxpZ2lvbjQABAAJAAAAGmVsZWN0aW9uMzpj bGFzczM6cmVsaWdpb240AAQACQAAABplbGVjdGlvbjQ6Y2xhc3MzOnJlbGlnaW9uNAAEAAkA AAAaZWxlY3Rpb24yOmNsYXNzNDpyZWxpZ2lvbjQABAAJAAAAGmVsZWN0aW9uMzpjbGFzczQ6 cmVsaWdpb240AAQACQAAABplbGVjdGlvbjQ6Y2xhc3M0OnJlbGlnaW9uNAAEAAkAAAAaZWxl Y3Rpb24yOmNsYXNzNTpyZWxpZ2lvbjQABAAJAAAAGmVsZWN0aW9uMzpjbGFzczU6cmVsaWdp b240AAQACQAAABplbGVjdGlvbjQ6Y2xhc3M1OnJlbGlnaW9uNAAEAAkAAAAaZWxlY3Rpb24y OmNsYXNzNjpyZWxpZ2lvbjQABAAJAAAAGmVsZWN0aW9uMzpjbGFzczY6cmVsaWdpb240AAQA CQAAABplbGVjdGlvbjQ6Y2xhc3M2OnJlbGlnaW9uNAAEAAkAAAAlTXVsdChFeHAoLiksIHJl bGlnaW9uOnZvdGUpLmVsZWN0aW9uMQAEAAkAAAAlTXVsdChFeHAoLiksIHJlbGlnaW9uOnZv dGUpLmVsZWN0aW9uMgAEAAkAAAAlTXVsdChFeHAoLiksIHJlbGlnaW9uOnZvdGUpLmVsZWN0 aW9uMwAEAAkAAAAlTXVsdChFeHAoLiksIHJlbGlnaW9uOnZvdGUpLmVsZWN0aW9uNAAEAAkA AAAmTXVsdChFeHAoZWxlY3Rpb24pLCAuKS5yZWxpZ2lvbjE6dm90ZTEABAAJAAAAJk11bHQo RXhwKGVsZWN0aW9uKSwgLikucmVsaWdpb24yOnZvdGUxAAQACQAAACZNdWx0KEV4cChlbGVj dGlvbiksIC4pLnJlbGlnaW9uMzp2b3RlMQAEAAkAAAAmTXVsdChFeHAoZWxlY3Rpb24pLCAu KS5yZWxpZ2lvbjQ6dm90ZTEABAAJAAAAJk11bHQoRXhwKGVsZWN0aW9uKSwgLikucmVsaWdp b24xOnZvdGUyAAQACQAAACZNdWx0KEV4cChlbGVjdGlvbiksIC4pLnJlbGlnaW9uMjp2b3Rl MgAEAAkAAAAmTXVsdChFeHAoZWxlY3Rpb24pLCAuKS5yZWxpZ2lvbjM6dm90ZTIABAAJAAAA Jk11bHQoRXhwKGVsZWN0aW9uKSwgLikucmVsaWdpb240OnZvdGUyAAQACQAAACJNdWx0KEV4 cCguKSwgY2xhc3M6dm90ZSkuZWxlY3Rpb24xAAQACQAAACJNdWx0KEV4cCguKSwgY2xhc3M6 dm90ZSkuZWxlY3Rpb24yAAQACQAAACJNdWx0KEV4cCguKSwgY2xhc3M6dm90ZSkuZWxlY3Rp b24zAAQACQAAACJNdWx0KEV4cCguKSwgY2xhc3M6dm90ZSkuZWxlY3Rpb240AAQACQAAACNN dWx0KEV4cChlbGVjdGlvbiksIC4pLmNsYXNzMTp2b3RlMQAEAAkAAAAjTXVsdChFeHAoZWxl Y3Rpb24pLCAuKS5jbGFzczI6dm90ZTEABAAJAAAAI011bHQoRXhwKGVsZWN0aW9uKSwgLiku Y2xhc3MzOnZvdGUxAAQACQAAACNNdWx0KEV4cChlbGVjdGlvbiksIC4pLmNsYXNzNDp2b3Rl MQAEAAkAAAAjTXVsdChFeHAoZWxlY3Rpb24pLCAuKS5jbGFzczU6dm90ZTEABAAJAAAAI011 bHQoRXhwKGVsZWN0aW9uKSwgLikuY2xhc3M2OnZvdGUxAAQACQAAACNNdWx0KEV4cChlbGVj dGlvbiksIC4pLmNsYXNzMTp2b3RlMgAEAAkAAAAjTXVsdChFeHAoZWxlY3Rpb24pLCAuKS5j bGFzczI6dm90ZTIABAAJAAAAI011bHQoRXhwKGVsZWN0aW9uKSwgLikuY2xhc3MzOnZvdGUy AAQACQAAACNNdWx0KEV4cChlbGVjdGlvbiksIC4pLmNsYXNzNDp2b3RlMgAEAAkAAAAjTXVs dChFeHAoZWxlY3Rpb24pLCAuKS5jbGFzczU6dm90ZTIABAAJAAAAI011bHQoRXhwKGVsZWN0 aW9uKSwgLikuY2xhc3M2OnZvdGUyAAAEAgAAK/8AAAAOAAAAgAAAAAAAAAAAP/AAAAAAAAA/ 8AAAAAAAAD/wAAAAAAAAQAAAAAAAAABACAAAAAAAAEAIAAAAAAAAQAgAAAAAAABAEAAAAAAA AEAQAAAAAAAAQBAAAAAAAABAEAAAAAAAAEAQAAAAAAAAQBQAAAAAAABAFAAAAAAAAEAUAAAA AAAAQBQAAAAAAABAFAAAAAAAAEAUAAAAAAAAQBQAAAAAAABAFAAAAAAAAEAUAAAAAAAAQBQA AAAAAABAFAAAAAAAAEAUAAAAAAAAQBQAAAAAAABAFAAAAAAAAEAUAAAAAAAAQBgAAAAAAABA GAAAAAAAAEAYAAAAAAAAQBwAAAAAAABAHAAAAAAAAEAcAAAAAAAAQBwAAAAAAABAHAAAAAAA AEAcAAAAAAAAQBwAAAAAAABAHAAAAAAAAEAcAAAAAAAAQCAAAAAAAABAIAAAAAAAAEAgAAAA AAAAQCAAAAAAAABAIAAAAAAAAEAgAAAAAAAAQCAAAAAAAABAIAAAAAAAAEAgAAAAAAAAQCAA AAAAAABAIAAAAAAAAEAgAAAAAAAAQCAAAAAAAABAIAAAAAAAAEAgAAAAAAAAQCIAAAAAAABA IgAAAAAAAEAiAAAAAAAAQCIAAAAAAABAIgAAAAAAAEAiAAAAAAAAQCIAAAAAAABAIgAAAAAA AEAiAAAAAAAAQCIAAAAAAABAIgAAAAAAAEAiAAAAAAAAQCIAAAAAAABAIgAAAAAAAEAiAAAA AAAAQCIAAAAAAABAIgAAAAAAAEAiAAAAAAAAQCIAAAAAAABAIgAAAAAAAEAiAAAAAAAAQCIA AAAAAABAIgAAAAAAAEAiAAAAAAAAQCIAAAAAAABAIgAAAAAAAEAiAAAAAAAAQCIAAAAAAABA IgAAAAAAAEAiAAAAAAAAQCIAAAAAAABAIgAAAAAAAEAiAAAAAAAAQCIAAAAAAABAIgAAAAAA AEAiAAAAAAAAQCIAAAAAAABAIgAAAAAAAEAiAAAAAAAAQCIAAAAAAABAIgAAAAAAAEAiAAAA AAAAQCIAAAAAAABAIgAAAAAAAEAiAAAAAAAAQCQAAAAAAABAJAAAAAAAAEAkAAAAAAAAQCQA AAAAAABAJAAAAAAAAEAkAAAAAAAAQCQAAAAAAABAJAAAAAAAAEAkAAAAAAAAQCQAAAAAAABA JAAAAAAAAEAkAAAAAAAAQCYAAAAAAABAJgAAAAAAAEAmAAAAAAAAQCYAAAAAAABAJgAAAAAA AEAmAAAAAAAAQCYAAAAAAABAJgAAAAAAAEAmAAAAAAAAQCYAAAAAAABAJgAAAAAAAEAmAAAA AAAAQCYAAAAAAABAJgAAAAAAAEAmAAAAAAAAQCYAAAAAAAAAAAD+AAACEwAAAAMAAAANAAAA BAAAAAIAAAAGAAAABAAAAAQAAAITAAAABAAAABAAAAACAAQACQAAAAExAAQACQAAAAEyAAAA EAAAAAYABAAJAAAAATEABAAJAAAAATIABAAJAAAAATMABAAJAAAAATQABAAJAAAAATUABAAJ AAAAATYAAAAQAAAABAAEAAkAAAABMQAEAAkAAAABMgAEAAkAAAABMwAEAAkAAAABNAAAABAA AAAEAAQACQAAAAExAAQACQAAAAEyAAQACQAAAAEzAAQACQAAAAE0AAAEAgAAPf8AAAAQAAAA BAAEAAkAAAAEdm90ZQAEAAkAAAAFY2xhc3MABAAJAAAACHJlbGlnaW9uAAQACQAAAAhlbGVj dGlvbgAAAP4AAAAQAAAAAQAEAAkAAAAFdGFibGUAAAQCAAA9/wAAABAAAAADAAQACQAAAANk aW0ABAAJAAAACGRpbW5hbWVzAAQACQAAAAVjbGFzcwAAAP4AAAMTAAAABQAAAA0AAADAAAAA JQAAAAUAAAATAAAABAAAAB4AAAAEAAAAFgAAAAgAAAAmAAAACQAAACYAAAAGAAAAFAAAAAsA AAAUAAAAAwAAAAgAAAABAAAACAAAAAYAAAAhAAAAEAAAACEAAAAlAAAACgAAAA8AAAAWAAAA EgAAAAcAAAAJAAAAGAAAAB4AAAArAAAANwAAACgAAABoAAAAAAAAAAQAAAACAAAAAwAAAAIA AAADAAAAAQAAAAQAAAADAAAABgAAAAUAAAAcAAAAVgAAAAQAAAA0AAAAAAAAAC8AAAACAAAA UAAAABQAAABxAAAAHwAAADcAAAASAAAAOQAAAA0AAAAjAAAABQAAABMAAAAJAAAALQAAABgA AABaAAAANQAAADUAAAA2AAAARQAAAB0AAABqAAAALQAAAEMAAAAdAAAAdgAAAHYAAADUAAAB AgAAAJAAAAFNAAAAAwAAAAgAAAAJAAAACQAAABEAAAAfAAAAEAAAAE4AAAAXAAAASAAAAA8A AABmAAAAPQAAAAsAAAAWAAAACwAAACAAAAAHAAAAOwAAABUAAABPAAAANwAAAB8AAAAlAAAA IgAAAA0AAAAbAAAAEAAAABQAAAAKAAAAKgAAACUAAABPAAAAVQAAACgAAABFAAAAMQAAACIA AAA8AAAAOwAAADMAAAA9AAAAYgAAAJ8AAACRAAABPQAAAFgAAAE+AAAAAgAAAAYAAAAHAAAA CgAAAAMAAAAlAAAACAAAAEYAAAAMAAAAUQAAAAoAAABUAAAAMgAAAAQAAAAeAAAABQAAACEA AAAMAAAAPwAAABEAAABJAAAAEgAAAB8AAAARAAAAIwAAAAsAAAAlAAAABQAAACAAAAANAAAA OgAAABgAAABZAAAANAAAACsAAAAoAAAAHAAAABIAAABiAAAAGwAAADQAAAA6AAAAcgAAAHoA AAC6AAAAxAAAAHQAAADEAAAABQAAAAMAAAAQAAAADgAAAAoAAAA4AAAAFAAAAFsAAAAsAAAA OwAAABoAAABfAAADDQAAAMAAAAABAAAAAQAAAAEAAAABAAAAAQAAAAEAAAABAAAAAQAAAAEA AAABAAAAAQAAAAEAAAABAAAAAQAAAAEAAAABAAAAAQAAAAEAAAABAAAAAQAAAAEAAAABAAAA AQAAAAEAAAABAAAAAQAAAAEAAAABAAAAAQAAAAEAAAABAAAAAQAAAAEAAAABAAAAAQAAAAEA AAABAAAAAQAAAAEAAAABAAAAAQAAAAEAAAABAAAAAQAAAAEAAAABAAAAAQAAAAEAAAACAAAA AgAAAAIAAAACAAAAAgAAAAIAAAACAAAAAgAAAAIAAAACAAAAAgAAAAIAAAACAAAAAgAAAAIA AAACAAAAAgAAAAIAAAACAAAAAgAAAAIAAAACAAAAAgAAAAIAAAACAAAAAgAAAAIAAAACAAAA AgAAAAIAAAACAAAAAgAAAAIAAAACAAAAAgAAAAIAAAACAAAAAgAAAAIAAAACAAAAAgAAAAIA AAACAAAAAgAAAAIAAAACAAAAAgAAAAIAAAADAAAAAwAAAAMAAAADAAAAAwAAAAMAAAADAAAA AwAAAAMAAAADAAAAAwAAAAMAAAADAAAAAwAAAAMAAAADAAAAAwAAAAMAAAADAAAAAwAAAAMA AAADAAAAAwAAAAMAAAADAAAAAwAAAAMAAAADAAAAAwAAAAMAAAADAAAAAwAAAAMAAAADAAAA AwAAAAMAAAADAAAAAwAAAAMAAAADAAAAAwAAAAMAAAADAAAAAwAAAAMAAAADAAAAAwAAAAMA AAAEAAAABAAAAAQAAAAEAAAABAAAAAQAAAAEAAAABAAAAAQAAAAEAAAABAAAAAQAAAAEAAAA BAAAAAQAAAAEAAAABAAAAAQAAAAEAAAABAAAAAQAAAAEAAAABAAAAAQAAAAEAAAABAAAAAQA AAAEAAAABAAAAAQAAAAEAAAABAAAAAQAAAAEAAAABAAAAAQAAAAEAAAABAAAAAQAAAAEAAAA BAAAAAQAAAAEAAAABAAAAAQAAAAEAAAABAAAAAQAAAQCAAB8/wAAABAAAAAEAAQACQAAAAEx AAQACQAAAAEyAAQACQAAAAEzAAQACQAAAAE0AAAEAgAACf8AAAAQAAAAAQAEAAkAAAAGZmFj dG9yAAAA/gAAAw0AAADAAAAAAQAAAAIAAAABAAAAAgAAAAEAAAACAAAAAQAAAAIAAAABAAAA AgAAAAEAAAACAAAAAQAAAAIAAAABAAAAAgAAAAEAAAACAAAAAQAAAAIAAAABAAAAAgAAAAEA AAACAAAAAQAAAAIAAAABAAAAAgAAAAEAAAACAAAAAQAAAAIAAAABAAAAAgAAAAEAAAACAAAA AQAAAAIAAAABAAAAAgAAAAEAAAACAAAAAQAAAAIAAAABAAAAAgAAAAEAAAACAAAAAQAAAAIA AAABAAAAAgAAAAEAAAACAAAAAQAAAAIAAAABAAAAAgAAAAEAAAACAAAAAQAAAAIAAAABAAAA AgAAAAEAAAACAAAAAQAAAAIAAAABAAAAAgAAAAEAAAACAAAAAQAAAAIAAAABAAAAAgAAAAEA AAACAAAAAQAAAAIAAAABAAAAAgAAAAEAAAACAAAAAQAAAAIAAAABAAAAAgAAAAEAAAACAAAA AQAAAAIAAAABAAAAAgAAAAEAAAACAAAAAQAAAAIAAAABAAAAAgAAAAEAAAACAAAAAQAAAAIA AAABAAAAAgAAAAEAAAACAAAAAQAAAAIAAAABAAAAAgAAAAEAAAACAAAAAQAAAAIAAAABAAAA AgAAAAEAAAACAAAAAQAAAAIAAAABAAAAAgAAAAEAAAACAAAAAQAAAAIAAAABAAAAAgAAAAEA AAACAAAAAQAAAAIAAAABAAAAAgAAAAEAAAACAAAAAQAAAAIAAAABAAAAAgAAAAEAAAACAAAA AQAAAAIAAAABAAAAAgAAAAEAAAACAAAAAQAAAAIAAAABAAAAAgAAAAEAAAACAAAAAQAAAAIA AAABAAAAAgAAAAEAAAACAAAAAQAAAAIAAAABAAAAAgAAAAEAAAACAAAAAQAAAAIAAAABAAAA AgAAAAEAAAACAAAAAQAAAAIAAAABAAAAAgAAAAEAAAACAAAAAQAAAAIAAAABAAAAAgAAAAEA AAACAAAAAQAAAAIAAAABAAAAAgAAAAEAAAACAAAEAgAAfP8AAAAQAAAAAgAEAAkAAAABMQAE AAkAAAABMgAABAIAAAn/AAAAEAAAAAEABAAJAAAABmZhY3RvcgAAAP4AAAMNAAAAwAAAAAEA AAABAAAAAgAAAAIAAAADAAAAAwAAAAQAAAAEAAAABQAAAAUAAAAGAAAABgAAAAEAAAABAAAA AgAAAAIAAAADAAAAAwAAAAQAAAAEAAAABQAAAAUAAAAGAAAABgAAAAEAAAABAAAAAgAAAAIA AAADAAAAAwAAAAQAAAAEAAAABQAAAAUAAAAGAAAABgAAAAEAAAABAAAAAgAAAAIAAAADAAAA AwAAAAQAAAAEAAAABQAAAAUAAAAGAAAABgAAAAEAAAABAAAAAgAAAAIAAAADAAAAAwAAAAQA AAAEAAAABQAAAAUAAAAGAAAABgAAAAEAAAABAAAAAgAAAAIAAAADAAAAAwAAAAQAAAAEAAAA BQAAAAUAAAAGAAAABgAAAAEAAAABAAAAAgAAAAIAAAADAAAAAwAAAAQAAAAEAAAABQAAAAUA AAAGAAAABgAAAAEAAAABAAAAAgAAAAIAAAADAAAAAwAAAAQAAAAEAAAABQAAAAUAAAAGAAAA BgAAAAEAAAABAAAAAgAAAAIAAAADAAAAAwAAAAQAAAAEAAAABQAAAAUAAAAGAAAABgAAAAEA AAABAAAAAgAAAAIAAAADAAAAAwAAAAQAAAAEAAAABQAAAAUAAAAGAAAABgAAAAEAAAABAAAA AgAAAAIAAAADAAAAAwAAAAQAAAAEAAAABQAAAAUAAAAGAAAABgAAAAEAAAABAAAAAgAAAAIA AAADAAAAAwAAAAQAAAAEAAAABQAAAAUAAAAGAAAABgAAAAEAAAABAAAAAgAAAAIAAAADAAAA AwAAAAQAAAAEAAAABQAAAAUAAAAGAAAABgAAAAEAAAABAAAAAgAAAAIAAAADAAAAAwAAAAQA AAAEAAAABQAAAAUAAAAGAAAABgAAAAEAAAABAAAAAgAAAAIAAAADAAAAAwAAAAQAAAAEAAAA BQAAAAUAAAAGAAAABgAAAAEAAAABAAAAAgAAAAIAAAADAAAAAwAAAAQAAAAEAAAABQAAAAUA AAAGAAAABgAABAIAAHz/AAAAEAAAAAYABAAJAAAAATEABAAJAAAAATIABAAJAAAAATMABAAJ AAAAATQABAAJAAAAATUABAAJAAAAATYAAAQCAAAJ/wAAABAAAAABAAQACQAAAAZmYWN0b3IA AAD+AAADDQAAAMAAAAABAAAAAQAAAAEAAAABAAAAAQAAAAEAAAABAAAAAQAAAAEAAAABAAAA AQAAAAEAAAACAAAAAgAAAAIAAAACAAAAAgAAAAIAAAACAAAAAgAAAAIAAAACAAAAAgAAAAIA AAADAAAAAwAAAAMAAAADAAAAAwAAAAMAAAADAAAAAwAAAAMAAAADAAAAAwAAAAMAAAAEAAAA BAAAAAQAAAAEAAAABAAAAAQAAAAEAAAABAAAAAQAAAAEAAAABAAAAAQAAAABAAAAAQAAAAEA AAABAAAAAQAAAAEAAAABAAAAAQAAAAEAAAABAAAAAQAAAAEAAAACAAAAAgAAAAIAAAACAAAA AgAAAAIAAAACAAAAAgAAAAIAAAACAAAAAgAAAAIAAAADAAAAAwAAAAMAAAADAAAAAwAAAAMA AAADAAAAAwAAAAMAAAADAAAAAwAAAAMAAAAEAAAABAAAAAQAAAAEAAAABAAAAAQAAAAEAAAA BAAAAAQAAAAEAAAABAAAAAQAAAABAAAAAQAAAAEAAAABAAAAAQAAAAEAAAABAAAAAQAAAAEA AAABAAAAAQAAAAEAAAACAAAAAgAAAAIAAAACAAAAAgAAAAIAAAACAAAAAgAAAAIAAAACAAAA AgAAAAIAAAADAAAAAwAAAAMAAAADAAAAAwAAAAMAAAADAAAAAwAAAAMAAAADAAAAAwAAAAMA AAAEAAAABAAAAAQAAAAEAAAABAAAAAQAAAAEAAAABAAAAAQAAAAEAAAABAAAAAQAAAABAAAA AQAAAAEAAAABAAAAAQAAAAEAAAABAAAAAQAAAAEAAAABAAAAAQAAAAEAAAACAAAAAgAAAAIA AAACAAAAAgAAAAIAAAACAAAAAgAAAAIAAAACAAAAAgAAAAIAAAADAAAAAwAAAAMAAAADAAAA AwAAAAMAAAADAAAAAwAAAAMAAAADAAAAAwAAAAMAAAAEAAAABAAAAAQAAAAEAAAABAAAAAQA AAAEAAAABAAAAAQAAAAEAAAABAAAAAQAAAQCAAB8/wAAABAAAAAEAAQACQAAAAExAAQACQAA AAEyAAQACQAAAAEzAAQACQAAAAE0AAAEAgAACf8AAAAQAAAAAQAEAAkAAAAGZmFjdG9yAAAA /gAABAIAAD3/AAAAEAAAAAUABAAJAAAABEZyZXEABAAJAAAACGVsZWN0aW9uAAQACQAAAAR2 b3RlAAQACQAAAAVjbGFzcwAEAAkAAAAIcmVsaWdpb24AAAQCAAB9/wAAAwYAAAQCAAAZ/wAA AAYAABr/AAAAAgAABP8AAAACAAAH/wAAAAIAAAj/AAAAAgAACf8AAAACAAAK/wAAAP4AAAQC AAAb/wAAAg0AAABNAAAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAQAAAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAQAAAAAAAAAAAAAAAAAAAAAAAAABAAAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAQAAAAAAAAAAAAAAAAAAAAEAAAAAAAAAAAAAAAEAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAEAAAABAAAAAAAAAAAAAAAAAAAAAQAAAAAAAAABAAAAAQAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAABAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAAAQC AAAc/wAAAA0AAAACAAAABwAAAAsAAAQCAAAd/wAAABMAAAACAAAAEAAAAAcABAAJAAAABEZy ZXEABAAJAAAACGVsZWN0aW9uAAQACQAAAAR2b3RlAAQACQAAAAVjbGFzcwAEAAkAAAAIcmVs aWdpb24ABAAJAAAAIk11bHQoRXhwKGVsZWN0aW9uKSwgcmVsaWdpb246dm90ZSkABAAJAAAA H011bHQoRXhwKGVsZWN0aW9uKSwgY2xhc3M6dm90ZSkAAAAQAAAACwAEAAkAAAAIZWxlY3Rp b24ABAAJAAAABHZvdGUABAAJAAAADWVsZWN0aW9uOnZvdGUABAAJAAAABWNsYXNzAAQACQAA AA5lbGVjdGlvbjpjbGFzcwAEAAkAAAAIcmVsaWdpb24ABAAJAAAAEWVsZWN0aW9uOnJlbGln aW9uAAQACQAAAA5jbGFzczpyZWxpZ2lvbgAEAAkAAAAXZWxlY3Rpb246Y2xhc3M6cmVsaWdp b24ABAAJAAAAIk11bHQoRXhwKGVsZWN0aW9uKSwgcmVsaWdpb246dm90ZSkABAAJAAAAH011 bHQoRXhwKGVsZWN0aW9uKSwgY2xhc3M6dm90ZSkAAAD+AAAEAgAAHv8AAAAQAAAACwAEAAkA AAAIZWxlY3Rpb24ABAAJAAAABHZvdGUABAAJAAAADWVsZWN0aW9uOnZvdGUABAAJAAAABWNs YXNzAAQACQAAAA5lbGVjdGlvbjpjbGFzcwAEAAkAAAAIcmVsaWdpb24ABAAJAAAAEWVsZWN0 aW9uOnJlbGlnaW9uAAQACQAAAA5jbGFzczpyZWxpZ2lvbgAEAAkAAAAXZWxlY3Rpb246Y2xh c3M6cmVsaWdpb24ABAAJAAAAIk11bHQoRXhwKGVsZWN0aW9uKSwgcmVsaWdpb246dm90ZSkA BAAJAAAAH011bHQoRXhwKGVsZWN0aW9uKSwgY2xhc3M6dm90ZSkAAAQCAAAf/wAABAIAACD/ AAAA/gAAAP4AAAQCAAAh/wAAAA0AAAALAAAAAQAAAAEAAAACAAAAAQAAAAIAAAABAAAAAgAA AAIAAAADAAAAAQAAAAEAAAQCAAAi/wAAAA0AAAABAAAAAQAABAIAACP/AAAADQAAAAEAAAAB AAAEAgAACf8AAAAQAAAAAwAEAAkAAAAIZ25tVGVybXMABAAJAAAABXRlcm1zAAQACQAAAAdm b3JtdWxhAAAEAgAAE/8AABT/AAAEAgAAJP8AAAAKAAAAAQAAAAAAAAQCAAAl/wAAAA0AAAAA AAAEAgAAJv8AAAAGAAAa/wAAAAIAAAT/AAAAAgAAB/8AAAACAAAI/wAAAAIAAAn/AAAAAgAA Cv8AAAD+AAAEAgAAJ/8AAAAQAAAADgAEAAkAAAABMQAEAAkAAAAIZWxlY3Rpb24ABAAJAAAA BHZvdGUABAAJAAAADWVsZWN0aW9uOnZvdGUABAAJAAAABWNsYXNzAAQACQAAAA5lbGVjdGlv bjpjbGFzcwAEAAkAAAAIcmVsaWdpb24ABAAJAAAAEWVsZWN0aW9uOnJlbGlnaW9uAAQACQAA AA5jbGFzczpyZWxpZ2lvbgAEAAkAAAAXZWxlY3Rpb246Y2xhc3M6cmVsaWdpb24ABAAJAAAA CGVsZWN0aW9uAAQACQAAAA1yZWxpZ2lvbjp2b3RlAAQACQAAAAhlbGVjdGlvbgAEAAkAAAAK Y2xhc3M6dm90ZQAABAIAACj/AAAACgAAAA4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAIAACn/AAAADgAAAA4AAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAD/wAAAAAAAAQAAAAAAAAABACAAAAAAAAEAQAAAAAAAAAAAEAgAA Kv8AAAAKAAAADgAAAAEAAAABAAAAAQAAAAEAAAABAAAAAQAAAAEAAAABAAAAAQAAAAEAAAAB AAAAAQAAAAEAAAABAAAEAgAAK/8AAAANAAAADgAAAAEAAAACAAAAAwAAAAQAAAAFAAAABgAA AAcAAAAIAAAACQAAAAoAAAALAAAACwAAAAwAAAAMAAAEAgAALP8AAAAQAAAADgAEAAkAAAAG TGluZWFyAAQACQAAAAZMaW5lYXIABAAJAAAABkxpbmVhcgAEAAkAAAAGTGluZWFyAAQACQAA AAZMaW5lYXIABAAJAAAABkxpbmVhcgAEAAkAAAAGTGluZWFyAAQACQAAAAZMaW5lYXIABAAJ AAAABkxpbmVhcgAEAAkAAAAGTGluZWFyAAQACQAAAAdTcGVjaWFsAAQACQAAAAdTcGVjaWFs AAQACQAAAAdTcGVjaWFsAAQACQAAAAdTcGVjaWFsAAAEAgAALf8AAAAQAAAADgAEAAkAAAAA AAQACQAAAAAABAAJAAAAAAAEAAkAAAAAAAQACQAAAAAABAAJAAAAAAAEAAkAAAAAAAQACQAA AAAABAAJAAAAAAAEAAkAAAAAAAQACQAAABxNdWx0KEV4cCguKSwgcmVsaWdpb246dm90ZSku AAQACQAAABdNdWx0KEV4cChlbGVjdGlvbiksIC4pLgAEAAkAAAAZTXVsdChFeHAoLiksIGNs YXNzOnZvdGUpLgAEAAkAAAAXTXVsdChFeHAoZWxlY3Rpb24pLCAuKS4AAAQCAAAu/wAAABAA AAAOAAQACQAAAAExAAQACQAAAAhlbGVjdGlvbgAEAAkAAAAEdm90ZQAEAAkAAAANZWxlY3Rp b246dm90ZQAEAAkAAAAFY2xhc3MABAAJAAAADmVsZWN0aW9uOmNsYXNzAAQACQAAAAhyZWxp Z2lvbgAEAAkAAAARZWxlY3Rpb246cmVsaWdpb24ABAAJAAAADmNsYXNzOnJlbGlnaW9uAAQA CQAAABdlbGVjdGlvbjpjbGFzczpyZWxpZ2lvbgAEAAkAAAAMMTEwMGVsZWN0aW9uAAQACQAA ABAxMTFyZWxpZ2lvbjp2b3RlAAQACQAAAAwxMjAwZWxlY3Rpb24ABAAJAAAADTEyMWNsYXNz OnZvdGUAAAQCAAAv/wAAABMAAAAMAAAA/gAAAP4AAAD+AAAA/gAAAP4AAAD+AAAA/gAAAP4A AAD+AAAA/gAAAP4AAAD+AAAEAgAAMP8AAAITAAAADAAAMf8AAAf/AAAI/wAAMv8AAAn/AAAz /wAACv8AADT/AAA1/wAANv8AAAAGAAAG/wAAAAIAAAAGAAA3/wAAAAIAAAAGAAA4/wAAAAIA ADn/AAAA/gAAAP4AAAACAAAABgAAN/8AAAACAAA6/wAAAP4AAAD+AAAABgAABv8AAAACAAAA BgAAN/8AAAACAAAABgAAOP8AAAACAAA7/wAAAP4AAAD+AAAAAgAAAAYAADf/AAAAAgAAPP8A AAD+AAAA/gAABAIAAD3/AAAAEAAAAAwABAAJAAAAATEABAAJAAAACGVsZWN0aW9uAAQACQAA AAR2b3RlAAQACQAAAA1lbGVjdGlvbjp2b3RlAAQACQAAAAVjbGFzcwAEAAkAAAAOZWxlY3Rp b246Y2xhc3MABAAJAAAACHJlbGlnaW9uAAQACQAAABFlbGVjdGlvbjpyZWxpZ2lvbgAEAAkA AAAOY2xhc3M6cmVsaWdpb24ABAAJAAAAF2VsZWN0aW9uOmNsYXNzOnJlbGlnaW9uAAQACQAA ACJNdWx0KEV4cChlbGVjdGlvbiksIHJlbGlnaW9uOnZvdGUpAAQACQAAAB9NdWx0KEV4cChl bGVjdGlvbiksIGNsYXNzOnZvdGUpAAAA/gAABAIAAH7/AAACEAAAAAUABAAJAAAAB251bWVy aWMABAAJAAAABmZhY3RvcgAEAAkAAAAGZmFjdG9yAAQACQAAAAZmYWN0b3IABAAJAAAABmZh Y3RvcgAABAIAAD3/AAAAEAAAAAUABAAJAAAABEZyZXEABAAJAAAACGVsZWN0aW9uAAQACQAA AAR2b3RlAAQACQAAAAVjbGFzcwAEAAkAAAAIcmVsaWdpb24AAAD+AAAA/gAAA/8AAAACAAAE /wAAAAIAAAAGAAAF/wAAAAIAAAAGAAAF/wAAAAIAAAAGAAAF/wAAAAIAAAAGAAAF/wAAAAIA AAAGAAAF/wAAAAIAAAAGAAAF/wAAAAIAAAAGAAAF/wAAAAIAAAAGAAAF/wAAAAIAAAAGAAAF /wAAAAIAAAAGAAAF/wAAAAIAAAf/AAAAAgAACP8AAAD+AAAAAgAAAAYAAA3/AAAAAgAAB/8A AAACAAAI/wAAAP4AAAD+AAAAAgAACf8AAAD+AAAAAgAAAAYAAA3/AAAAAgAAB/8AAAACAAAJ /wAAAP4AAAD+AAAAAgAACv8AAAD+AAAAAgAAAAYAAA3/AAAAAgAAB/8AAAACAAAK/wAAAP4A AAD+AAAAAgAAAAYAAA3/AAAAAgAACf8AAAACAAAK/wAAAP4AAAD+AAAAAgAAAAYAAA3/AAAA AgAAAAYAAA3/AAAAAgAAB/8AAAACAAAJ/wAAAP4AAAACAAAK/wAAAP4AAAD+AAAAAgAAAAYA AAv/AAAAAgAAAAYAAAz/AAAAAgAAB/8AAAD+AAAAAgAAAAYAAA3/AAAAAgAACv8AAAACAAAI /wAAAP4AAAD+AAAA/gAAAAIAAAAGAAAL/wAAAAIAAAAGAAAM/wAAAAIAAAf/AAAA/gAAAAIA AAAGAAAN/wAAAAIAAAn/AAAAAgAACP8AAAD+AAAA/gAAAP4AAAD+AAAEAgAAf/8AAAANAAAA AoAAAAAAAADAAAAEAgAACf8AAAAQAAAAAQAEAAkAAAAKZGF0YS5mcmFtZQAAAP4AAAQCAAA9 /wAAABAAAAAfAAQACQAAAARjYWxsAAQACQAAAAdmb3JtdWxhAAQACQAAAAV0ZXJtcwAEAAkA AAAEZGF0YQAEAAkAAAAJZWxpbWluYXRlAAQACQAAAApvZkludGVyZXN0AAQACQAAAAluYS5h Y3Rpb24ABAAJAAAAB3hsZXZlbHMABAAJAAAABm9mZnNldAAEAAkAAAAJdG9sZXJhbmNlAAQA CQAAAAlpdGVyU3RhcnQABAAJAAAAB2l0ZXJNYXgABAAJAAAADGNvZWZmaWNpZW50cwAEAAkA AAAJY29uc3RyYWluAAQACQAAAAtjb25zdHJhaW5UbwAEAAkAAAAJcmVzaWR1YWxzAAQACQAA AA1maXR0ZWQudmFsdWVzAAQACQAAAARyYW5rAAQACQAAAAZmYW1pbHkABAAJAAAACnByZWRp Y3RvcnMABAAJAAAACGRldmlhbmNlAAQACQAAAANhaWMABAAJAAAABGl0ZXIABAAJAAAAB3dl aWdodHMABAAJAAAADXByaW9yLndlaWdodHMABAAJAAAAC2RmLnJlc2lkdWFsAAQACQAAAAF5 AAQACQAAAAljb252ZXJnZWQABAAJAAAAAXgABAAJAAAACnRhYmxlLmF0dHIABAAJAAAABW1v ZGVsAAAEAgAACf8AAAAQAAAAAwAEAAkAAAADZ25tAAQACQAAAANnbG0ABAAJAAAAAmxtAAAE AgAAE/8AAID/AAAA/g== --- WAoAAAACAAQCAQACAwAAAAMTAAAABAAAAg4AAAAQP4URSADGUTe/UaG/0sOFN782Nt4dUZY6 v4Pk613Luni/UaG/0sOFQT+BZVSgK1C1PzBu/RsH41W/gpb6qWHb1r82Nt4dUZZiPzBu/RsH 5NA/enWQPSoawb+BFar4xiXSv4Pk613Luna/gpb6qWHcFL+BFar4xiXVP6GukHz47N8AAAQC AAAAAQAEAAkAAAADZGltAAAADQAAAAIAAAAEAAAABAAABAIAAAABAAQACQAAAAhkaW1uYW1l cwAAABMAAAACAAAAEAAAAAQABAAJAAAAIk11bHQoRXhwKC4pLCBjbGFzczp2b3RlKS5lbGVj dGlvbjQABAAJAAAAIk11bHQoRXhwKC4pLCBjbGFzczp2b3RlKS5lbGVjdGlvbjMABAAJAAAA Ik11bHQoRXhwKC4pLCBjbGFzczp2b3RlKS5lbGVjdGlvbjIABAAJAAAAIk11bHQoRXhwKC4p LCBjbGFzczp2b3RlKS5lbGVjdGlvbjEAAAAQAAAABAAEAAkAAAAiTXVsdChFeHAoLiksIGNs YXNzOnZvdGUpLmVsZWN0aW9uNAAEAAkAAAAiTXVsdChFeHAoLiksIGNsYXNzOnZvdGUpLmVs ZWN0aW9uMwAEAAkAAAAiTXVsdChFeHAoLiksIGNsYXNzOnZvdGUpLmVsZWN0aW9uMgAEAAkA AAAiTXVsdChFeHAoLiksIGNsYXNzOnZvdGUpLmVsZWN0aW9uMQAAAP4AAAMTAAAABAAAAA4A AAAEAAAAAAAAAAA/tmlKY4mL8j/UeVtcrwakv9coOm6wXzsAAAAOAAAABAAAAAAAAAAAP8KE +yGqsgg/wOVyUndkxj/QOPC5aElLAAAADgAAAAQ/u/46X0rdRz+4QiawoFcnP7Lu99ilVmQ/ zUDuGN/RaAAAAA4AAAAEP4h85j/hlGw/gmPCyLffbj92Z57D4HWRP6q+M0xkvOYAAAQCAAAA AQAEAAkAAAAFbmFtZXMAAAAQAAAABAAEAAkAAAAIZXN0aW1hdGUABAAJAAAAAlNFAAQACQAA AAdxdWFzaVNFAAQACQAAAAhxdWFzaVZhcgAABAIAAAABAAQACQAAAAlyb3cubmFtZXMAAAAQ AAAABAAEAAkAAAAiTXVsdChFeHAoLiksIGNsYXNzOnZvdGUpLmVsZWN0aW9uNAAEAAkAAAAi TXVsdChFeHAoLiksIGNsYXNzOnZvdGUpLmVsZWN0aW9uMwAEAAkAAAAiTXVsdChFeHAoLiks IGNsYXNzOnZvdGUpLmVsZWN0aW9uMgAEAAkAAAAiTXVsdChFeHAoLiksIGNsYXNzOnZvdGUp LmVsZWN0aW9uMQAABAIAAAABAAQACQAAAAVjbGFzcwAAABAAAAABAAQACQAAAApkYXRhLmZy YW1lAAAA/gAAAg4AAAAGPxM9ld13QAA/EXbxqlUAAL8+0kGBs1gAvxvBzTh1wAA/Lqy3iRzg AD8qhBngE0AAAAAEAgAAA/8AAAAQAAAABgAEAAkAAABFTXVsdChFeHAoLiksIGNsYXNzOnZv dGUpLmVsZWN0aW9uNCxNdWx0KEV4cCguKSwgY2xhc3M6dm90ZSkuZWxlY3Rpb24zAAQACQAA AEVNdWx0KEV4cCguKSwgY2xhc3M6dm90ZSkuZWxlY3Rpb240LE11bHQoRXhwKC4pLCBjbGFz czp2b3RlKS5lbGVjdGlvbjIABAAJAAAARU11bHQoRXhwKC4pLCBjbGFzczp2b3RlKS5lbGVj dGlvbjQsTXVsdChFeHAoLiksIGNsYXNzOnZvdGUpLmVsZWN0aW9uMQAEAAkAAABFTXVsdChF eHAoLiksIGNsYXNzOnZvdGUpLmVsZWN0aW9uMyxNdWx0KEV4cCguKSwgY2xhc3M6dm90ZSku ZWxlY3Rpb24yAAQACQAAAEVNdWx0KEV4cCguKSwgY2xhc3M6dm90ZSkuZWxlY3Rpb24zLE11 bHQoRXhwKC4pLCBjbGFzczp2b3RlKS5lbGVjdGlvbjEABAAJAAAARU11bHQoRXhwKC4pLCBj bGFzczp2b3RlKS5lbGVjdGlvbjIsTXVsdChFeHAoLiksIGNsYXNzOnZvdGUpLmVsZWN0aW9u MQAAAP4AAAAGAAAAAQAEAAkAAAADZ25tAAAEAgAAAAEABAAJAAAAB2Zvcm11bGEAAAAGAAAA AQAEAAkAAAABfgAAAAIAAAABAAQACQAAAARGcmVxAAAAAgAAAAYAAAABAAQACQAAAAErAAAA AgAAAAYAAAr/AAAAAgAAAAYAAAr/AAAAAgAAAAYAAAABAAQACQAAAAEqAAAAAgAAAAEABAAJ AAAACGVsZWN0aW9uAAAAAgAAAAEABAAJAAAABHZvdGUAAAD+AAAAAgAAAAYAAAv/AAAAAgAA AAYAAAv/AAAAAgAADP8AAAACAAAF/wAAAP4AAAACAAAAAQAEAAkAAAAIcmVsaWdpb24AAAD+ AAAA/gAAAAIAAAAGAAAAAQAEAAkAAAAETXVsdAAAAAIAAAAGAAAAAQAEAAkAAAADRXhwAAAA AgAADP8AAAD+AAAAAgAAAAYAAAABAAQACQAAAAE6AAAAAgAADv8AAAACAAAN/wAAAP4AAAD+ AAAA/gAAAAIAAAAGAAAP/wAAAAIAAAAGAAAQ/wAAAAIAAAz/AAAA/gAAAAIAAAAGAAAR/wAA AAIAAAX/AAAAAgAADf8AAAD+AAAA/gAAAP4AAAD+AAAEAgAAAAEABAAJAAAABmZhbWlseQAA AAEABAAJAAAAB3BvaXNzb24AAAQCAAAAAQAEAAkAAAAEZGF0YQAAAAEABAAJAAAAB2NhdXRy ZXMAAAQCAAAAAQAEAAkAAAAHdmVyYm9zZQAAAAoAAAABAAAAAAAAAP4AAAQCAAAD/wAAABAA AAAEAAQACQAAAAZjb3ZtYXQABAAJAAAAB3F2ZnJhbWUABAAJAAAAB3JlbGVycnMABAAJAAAA CW1vZGVsY2FsbAAABAIAAAX/AAAAEAAAAAEABAAJAAAAAnF2AAAA/g== gnm/tests/testthat/_snaps/confint.gnm.md0000644000176200001440000000125314472416222020067 0ustar liggesusers# confint works within function call { "type": "double", "attributes": { "dim": { "type": "integer", "attributes": {}, "value": [2, 2] }, "dimnames": { "type": "list", "attributes": {}, "value": [ { "type": "character", "attributes": {}, "value": ["(Intercept)", "vote2"] }, { "type": "character", "attributes": {}, "value": ["2.5 %", "97.5 %"] } ] } }, "value": [3.78231676, -0.00752684, 3.84179311, 0.07587694] } gnm/tests/testthat/test-confint.gnm.R0000644000176200001440000000044514472414363017370 0ustar liggesuserstol <- 1e-4 test_that("confint works within function call", { # https://github.com/hturner/gnm/issues/11 f <- function(d) { fit <- gnm(Freq ~ vote, family = poisson, data = d) confint(fit) } expect_snapshot_value(f(as.data.frame(cautres)), style = "json2") }) gnm/tests/testthat/test-biplot.R0000644000176200001440000000377014472415610016441 0ustar liggesusers# set seed to fix sign in gnm suppressWarnings(RNGversion("3.0.0")) set.seed(1) # Gabriel, K R (1998). Generalised bilinear regression. Biometrika 85, 689–700. test_that("biplot model as expected for barley data", { biplotModel <- gnm(y ~ -1 + instances(Mult(site, variety), 2), family = wedderburn, data = barley, verbose = FALSE) expect_snapshot_value(biplotModel, style = "serialize", ignore_formula_env = TRUE) # rotate and scale fitted predictors barleyMatrix <- xtabs(biplotModel$predictors ~ site + variety, data = barley) barleySVD <- svd(barleyMatrix) A <- sweep(barleySVD$u, 2, sqrt(barleySVD$d), "*")[, 1:2] B <- sweep(barleySVD$v, 2, sqrt(barleySVD$d), "*")[, 1:2] rownames(A) <- levels(barley$site) rownames(B) <- levels(barley$variety) colnames(A) <- colnames(B) <- paste("Component", 1:2) # compare vs matrices in Gabriel (1998): # allow for sign change in gnm and in SVD on different systems # 3rd element in fit is 1.425 vs 1.42 in paper expect_equal(round(abs(A), 2), matrix(abs(c(-4.19, -2.76, -1.43, -1.85, -1.27, -1.16, -1.02, -0.65, 0.15, -0.39, -0.34, -0.05, 0.33, 0.16, 0.4, 0.73, 1.46, 2.13)), nrow = 9), ignore_attr = TRUE) expect_equal(round(abs(B), 2), matrix(abs(c(2.07, 3.06, 2.96, 1.81, 1.56, 1.89, 1.18, 0.85, 0.97, 0.60, -0.97, -0.51, -0.33, -0.50, -0.08, 1.08, 0.41, 1.15, 1.27, 1.40)), nrow = 10), ignore_attr = TRUE) expect_equal(sign(tcrossprod(A, B)), sign(unclass(barleyMatrix)), ignore_attr = TRUE) # chi-square statistic approx equal to that reported expect_equal(round(sum(residuals(biplotModel, type = "pearson")^2)), 54) expect_equal(df.residual(biplotModel), 56) }) gnm/tests/testthat/test-stereotype.R0000644000176200001440000000145214472413472017352 0ustar liggesuserstol <- 1e-4 backPainLong <- expandCategorical(backPain, "pain") ## stereotype model stereotype <- gnm(count ~ pain + Mult(pain, x1 + x2 + x3), eliminate = id, family = "poisson", data = backPainLong, verbose = FALSE) test_that("sterotype model as expected for backPain data", { # Obtain number of parameters and log-likelihoods for equivalent # "Six groups: one-dimensional" multinomial model presented in Table 5 # maximised log-likelihood size <- tapply(backPainLong$count, backPainLong$id, sum)[backPainLong$id] expect_equal(round(sum(stereotype$y * log(stereotype$fitted/size)), 2), -151.55) # number of parameters expect_equal(stereotype$rank - nlevels(stereotype$eliminate), 12, ignore_attr = TRUE) }) gnm/tests/testthat.R0000644000176200001440000000060214472412067014165 0ustar liggesusers# This file is part of the standard setup for testthat. # It is recommended that you do not modify it. # # Where should you do additional test configuration? # Learn more about the roles of various files in: # * https://r-pkgs.org/testing-design.html#sec-tests-files-overview # * https://testthat.r-lib.org/articles/special-files.html library(testthat) library(gnm) test_check("gnm") gnm/src/0000755000176200001440000000000014501306127011621 5ustar liggesusersgnm/src/Makevars0000644000176200001440000000004114376140103013310 0ustar liggesusersPKG_LIBS = $(BLAS_LIBS) $(FLIBS) gnm/src/gnm.c0000644000176200001440000001220014501276152012545 0ustar liggesusers/* Copyright (C) 2005, 2006, 2008-2010, 2017 Heather Turner */ /* */ /* This program is free software; you can redistribute it and/or modify */ /* it under the terms of the GNU General Public License as published by */ /* the Free Software Foundation; either version 2 or 3 of the License */ /* (at your option). */ /* */ /* This program is distributed in the hope that it will be useful, */ /* but WITHOUT ANY WARRANTY; without even the implied warranty of */ /* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the */ /* GNU General Public License for more details. */ /* */ /* A copy of the GNU General Public License is available at */ /* http://www.r-project.org/Licenses/ */ /* vector * matrix */ #ifndef USE_FC_LEN_T # define USE_FC_LEN_T #endif # include /* for length */ # include /* for dgemm */ # include /* for registering routines */ #ifndef FCONE # define FCONE #endif /* copied from src/main/array.c */ static void matprod(double *x, int nrx, int ncx, double *y, int nry, int ncy, double *z) { char *transa = "N", *transb = "N"; int i, j, k; double one = 1.0, zero = 0.0, sum; Rboolean have_na = FALSE; if (nrx > 0 && ncx > 0 && nry > 0 && ncy > 0) { /* Don't trust the BLAS to handle NA/NaNs correctly: PR#4582 * The test is only O(n) here */ for (i = 0; i < nrx*ncx; i++) if (ISNAN(x[i])) {have_na = TRUE; break;} if (!have_na) for (i = 0; i < nry*ncy; i++) if (ISNAN(y[i])) {have_na = TRUE; break;} if (have_na) { for (i = 0; i < nrx; i++) for (k = 0; k < ncy; k++) { sum = 0.0; for (j = 0; j < ncx; j++) sum += x[i + j * nrx] * y[j + k * nry]; z[i + k * nrx] = sum; } } else F77_CALL(dgemm)(transa, transb, &nrx, &ncy, &ncx, &one, x, &nrx, y, &nry, &zero, z, &nrx FCONE FCONE); } else /* zero-extent operations should return zeroes */ for(i = 0; i < nrx*ncy; i++) z[i] = 0; } /* computes matrix product between submatrix of M and vector v */ SEXP submatprod(SEXP M, SEXP v, SEXP am, SEXP nr, SEXP nc) { R_len_t a = INTEGER(am)[0], nrm = INTEGER(nr)[0], ncm = INTEGER(nc)[0]; SEXP ans; PROTECT(ans = allocVector(REALSXP, nrm)); matprod(REAL(M) + a, nrm, ncm, REAL(v), ncm, 1, REAL(ans)); UNPROTECT(1); return(ans); } /* computes elementwise product between submatrix of M and vector v then puts result in submatrix of X */ SEXP subprod(SEXP X, SEXP M, SEXP v, SEXP a, SEXP z, SEXP nv) { R_len_t i = INTEGER(a)[0], j = 0, last = INTEGER(z)[0], len_v = INTEGER(nv)[0]; double *dX, *dM, *dv; dX = REAL(X); dM = REAL(M); dv = REAL(v); for ( ; i <= last; j = (++j == len_v) ? 0 : j) { dX[i] = dM[i] * dv[j]; i++; } return(X); } /* Computes elementwise products between submatrices of base matrix M and columns of gradient matrix V, summing 'common' results an putting result in submatrix of X. This version has start point in M, V and X for each "term" */ SEXP newsubprod(SEXP M, SEXP V, SEXP X, SEXP a, SEXP b, SEXP c, SEXP nt, SEXP lt, SEXP ls, SEXP nr, SEXP nc, SEXP max) { /* currently set up for single term so nt = 1 and all integers here */ int i, j, k, l, *start, *end, *common, nrow = INTEGER(nr)[0], n = INTEGER(max)[0], final = INTEGER(nt)[0], *jump, *ia, *ib; double *p[n], *q[n], *dM, *dV, *dX; dM = REAL(M); dV = REAL(V); dX = REAL(X); start = INTEGER(c); end = INTEGER(ls); common = INTEGER(nc); jump = INTEGER(lt); ia = INTEGER(a); ib = INTEGER(b); for (i = 0; i < final; i++){ p[0] = &dM[ia[i]]; q[0] = &dV[ib[i]]; for (l = 1; l < common[i]; l++) { p[l] = p[l - 1] + jump[i]; q[l] = q[l - 1] + nrow; } k = 0; for (j = start[i]; j < end[i]; j++, k = (++k == nrow) ? 0 : k) { dX[j] = *(p[0])++ * q[0][k]; for (l = 1; l < common[i]; l++){ dX[j] += *(p[l])++ * q[l][k]; } } } return(X); } /* computes single column of design matrix */ SEXP onecol(SEXP M, SEXP V, SEXP a, SEXP lt, SEXP nr, SEXP nc) { int j, k, l, nrow = INTEGER(nr)[0], common = INTEGER(nc)[0], jump; double *p[common], *q[common], *dcol; SEXP col; jump = INTEGER(lt)[0]; p[0] = &REAL(M)[INTEGER(a)[0]]; q[0] = &REAL(V)[0]; for (l = 1; l < common; l++) { p[l] = p[l - 1] + jump; q[l] = q[l - 1] + nrow; } k = 0; PROTECT(col = allocVector(REALSXP, nrow)); dcol = REAL(col); for (j = 0; j < nrow; j++, k = (++k == nrow) ? 0 : k) { dcol[j] = *(p[0])++ * q[0][k]; for (l = 1; l < common; l++){ dcol[j] += *(p[l])++ * q[l][k]; } } UNPROTECT(1); return(col); } /* register routines */ static const R_CallMethodDef callMethods[] = { {"submatprod", (DL_FUNC) &submatprod, 5}, {"subprod", (DL_FUNC) &subprod, 6}, {"newsubprod", (DL_FUNC) &newsubprod, 12}, {"onecol", (DL_FUNC) &onecol, 6}, {NULL} }; void R_init_gnm(DllInfo *info) { /* Register the C and .Call routines. No .C(), .Fortran() or .External() routines, so pass those arrays as NULL. */ R_registerRoutines(info, NULL, callMethods, NULL, NULL); R_useDynamicSymbols(info, FALSE); R_forceSymbols(info, TRUE); } gnm/vignettes/0000755000176200001440000000000014501306127013042 5ustar liggesusersgnm/vignettes/fig-LCover45.pdf0000644000176200001440000012257414376140103015656 0ustar liggesusers%PDF-1.1 % 1 0 obj << /Pages 3 0 R /Type /Catalog >> endobj 2 0 obj << /CreationDate (D:20061218162601) /Creator (R) /ModDate (D:20061218162601) /Producer (R 2.4.1) /Title (R Graphics Output) >> endobj 3 0 obj << /Count 1 /Kids [ 4 0 R ] /MediaBox [ 0 0 720 720 ] /Type /Pages >> endobj 4 0 obj << /Contents 5 0 R /Parent 3 0 R /Resources 6 0 R /Type /Page >> endobj 5 0 obj << /Length 40898 /Filter /FlateDecode >> stream xA%9vZEHh1hBJBP A94Ǖ{$Z]TE~vkv##s ڿ_9)z#O_o~']̏?~ 㿼]ɏ)[GɊϤ?Rnnӕ6Vڑs"jاULl3OO,☰L````````````````````|1ctX;ٙg:vV9f8ꊟYyWXX9r:ع#ŏs9'eS,ī*',/_.WX銵˵FIc~}d?,$/|sYXBrkA#o^N_yʟvٻimc9Di=IH=_Q71B0&qLX^&00000000000000000000!]6/2!]5G9OU:P::Gy}^yv1,Wd׏T6#K ~fv2v9>EO1'qLX^&00000000000000000000]6Qkk쑭=yοsctUg9e9]bxm9M.A]ՅL(vE*',/_.WX銵˵Fֿ<߿/Zusatݖ>p#ts Fd'4|dO]T;֜~zNe"egdoE Qe8&,/_ΐ.W.#[z@]]Sh]c>-0rϫU}cK9vkHGL4wU.b<>c2Ō8\?Xˑ=yοscgƞe?mYyW^gmGξǑ}N"[NKU~fE /fh tZ#{d_{o&{I`ng3xcOy=S1ݎ]n>'6{Wܤ^ 'mY?1c2 r}} r==Y(H]F%frϫDC0^fլGj>HIbOѷUL.'qLX^&00000000000000000000]6R5kk쑭=yο_5Kw'g7Vt|W^e r;H5٦Yۑes"yyjOH~8c" 3V:jr==t~ ';j]Xx~GݜG%y`\i3˕?Ɇ$ky9?W#w,isQ7i18ͬ? cbDŽej"Z#{d_{訫l(R|v_5趢(k x^53LevmLΉ\a_qS! 3Vfr==7OKѭ2ƶ"mЖ wŵH.YJhrۑіS OqVqw%]&\sMn/H9Y9}y|"<>cwAc```````````````````|MctJW<<9ۮ&kW#rYYWTh'yGx*9 ?'rkY?1qej2\kdl1sGsouAr,g+\{۵G6zc"mkW,RUL.U8&,/_ΐ.WX銵˵Fֿ<}ϩ=JnK>/< /˳ rϫld_ Y9rMK#mrD ؂۶V͛w>YOa-,>0R| YW]wT}fuq9=6ti79 Ƒm bysmw*E /gH tr==oog. q9ȍ̖ wM"YysYvޜߖۮ 8,OQ C 3evc{W]oRYiW;);{쮌;5gqzrX&r[W{c"mfE /fh tZ#{1s/|<-,X$*oZWťHc9H#-ɻi$Wո if" Ɨ3Vfr==oonK.G6ىA . wM"U^RjY둖].DNnnq!.b.噧"ej2\kdl1s۽+wy^Y ,<#KyllnGJY&dnw\KU* /fh tZ#{d_{oax9IRz ErtԖW%XWn9V/U,ufE /fh tZ#{d_{ty}^{e9]qqH%=ٗPqH y:!Ok<_fVqL\>ayrtJW]5G9MW\y+s޵2󮸹";lDZ}K]"pN?﫾wU SU /gH LHk쑭=yw5=r .$-VCy}bDŽej+]vc7]q孺P.י w22,gW<~d/D_gWUlqfE /fhF+]v9r9MW\q_qye9+n.jzG9$i;Қ 2jmf)ej"Z#{d_{^_Ux]|'5wz?~o\ΏE۸䢟Y.iܢ순 '*+G!d[5ۑƥ2V5cX4" 3rY\kdl1sY(aoUJtȱ6 v-˕?廓 a~L϶٫2ݲ*.iSn(*C Ɨ3E&˵Fֿc"3Vbr==]qul(Z3x7U:mz#PF#HIY̩>e/ϥe)ej"Z#{d_{!OVj [,;E.6<9g+Q(6ld¢w+#ȥ)W'qLX^&00000000000000000000]6Qkk쑭=yοQJ?=H~՜j9%ҿ[ x^5#]CueK#%ˮ֜/{y䫸UOX^&000000000000000000001Y\kdl1sUsN8T1R-oc},׉B['4]eT{uqмN.meb/D׉}ܜNh^&_~ D5~׉SLd[^'~׉]Lh^&JWO:_X&4Lh^&v/9=',fLh^'vk˄ezubse-ŵSLuny[>'b׉ζNh^':Q΄eB:>'4/AqLX^'Oә׉vteuu9?9]|zzErŻr+Zײօ+ua-/eaJ[|&/m}6[.X>Ad]'cNNօcNNsm]'/>ٞq+GjOy}h,%Ͻ o3#.?uܿFoxz6:^x^+x^y-xG%h\||֥YC]b]?wA̲S~tlˊ ,^D+ǿ)??=?;6￲:1-?ꃞӿ_˿>?f6Eg-Oӟ_?X>ޗ__\ c_SxL&z4,Bڿ0zFkwD*3/g7J8~S "O4g[P˄Z/~kY1qeKk2{ikl]1sdAAb߃HqבcqI/1˽i[4g_fp|/)kmܳwyS"faeKk,.ٺcy_#0Il-<&+EV,7g/veU^RjOzE?cbDŽeKk,.ٺc[b?,c-).lNYU^#э}l" ^}Y1qeK&ˑK>yοٻfks,gNm;|diޥLvbRUlef4E OlH/m쥭]>u=K_]O>]zXLȕ'ʟ'Wd5g~A\&r=꾊i\f" '66Yv]>u=\꧔k=e٩fܖ>nOkufyB?輮YMzYoW\?N-4?.☰L`````````````````````|ZC{im6^#[|=KG#Y>޻o+5o ڤ?'cVbS Okh/m쥭]>r.9wW涟{b.LQo3]ʘe3$że}{*#0:>3;R79s"y|q38&.bL`````````````````````|ZC{imo^#[|o |zIL߮ s\Q e nml.#{^e-Gs)(ΉCsKsve-̬☸}2i M^{ikK>yο&Wt2Pr{& PGo ]H\,D?%/y.:~.ϬS '6BmLH/mK>yοKp13\3u=.sŶD߽r{w򹋋iq1!O9{m*}fE Okh/m쥭]>u=7w_#67rO{Kqy쐢98w;RlA~N6f{p^ŚgVqL\>ay&KﭽG.9N.lya lpbYy]]\أEsɵyz`ׯ9jXO38&qLX^&000000000000000000000>!{k/mK>yοwc2i M~}G.9/_Gx|G_YN?{z]﯏?z}WnkگEF,<͓7km^i3Y'&jV1fbX1ay&KmG.9v<ȼAs),g.mYi#{v-=*V?c" Ƨ56Yzo]>u=o B|o,dwoPo:/|d-,Ӣ.CvWu)_&O}VsU?oUOX^&000000000000000000000>!ɯ/v%<ܠ6i=Ӳqf9NUlEic><1^v&GțKb*f*E OlH/mK[|d뒏{o{"{ af9vs] HI.e"}bu>" Ƨ56Yzo]>u=ws%?r]'f_3<뽳Ňҷk/mK>yο߷1Ev9'RvjO}\bY1q:ayƖg"K[|d뒏{wٷ]ͷ _]lI6,6ߢ :yXMf%9.)Ky)E Okh/mK[|d뒏{nշ޻uf9wq^ITY9';w=҂ aW{Y[pKY1qeKk,.ٺc{wM]{.3<{ 3R5琤s#{qaoŞ"mfEƧ56e.ٺcۤAo9/%ׅ%xi~aǓMݘ% ȝ{\)3GOTh{~HS eY1c2 饵M^{ikl]1s )͏]uT\3<ウ48VC{)y\Llsiiaf" '66Yzo]>u=oPOlek3υw䁟O3˕?P7Y 9 ]+˄|MO1Ul.* Ƨ56e.ٺc(1nK5>vɛrOk\rG7>.ݎmqHAYS*FS8&,/^Zd͵v%Yv?L8zۓ*ufE Okh/mK[|d뒏{}A']t|F.G-<ͫ۶R+G{ۑ}w9,W{|"}fE OlH/mK[|d뒏{͋컞T~6u]XBv)^3cW^~f}{ }* ʑoG&HIjOѻZW1PfVqL,☰L`````````````````````|bCzim__dBzikl]1s}{`r+|`w~-IvO.ZY.ymfTvʑe`;ؑ]DjrjW1-<>c2i M\{ikl]1sۭΥyӇ3h.3u=7N.D?/y.u[*w[VqL,☰L`````````````````````|bCzim^#[|{7Gŵ s7G?]؈Z};Ҽ=Ur}>bpaɯ/2Ѷ]>u=I٫'^jz]9z<~Ӳ\ #IGVjnǑܪ|oJOǰI-OO,☰L`````````````````````|Zc&Km>z.<9y y I6pZXon/(_r4>ay&K߮G.9f{7-BrO{]j 4dqvMs"%Y\*2~c" Ƨ56e.ٺc޻EU*i9$X3x{o.]ל~)-2>e38&qLX^&000000000000000000000>!{k/mK>yοJ n[7gW l[SnaaE>߰ eBI6x:$=@qfwG_zzeb]\ھif" '66Y5G.9o $CⳫ?;n(lct|dYfY>E}s<0MBaHw DŽ`YY]|t!Rs d)_#8&r)ni7WS8&,/{^z3.y1NEs3]3<k #%>Vjm\oGzػ{gX*',/{^z3.y17݀|4f3x{7m=r>l㋝)Mز>eU OlH/mLH/mK>yο![?){,lr{\ ȫ cC򰹺,Ӣ>DCimܲKӡGrڏ՞bp-BY1c2񉍸6YKvy%{>ܠKeܐ qf9wLrk.٦2zD^XN=S^~S8&,/{^z3.y1]ɏmaf9wuM+1[qڹ#r{D}bsyy}bDŽe6z.<9j[6)kvKNurOkqق]Vjn\ݻ oz2c" Ƨ5F/mm棗̳K|̿]R9˖R;'9rN$bR*',/ؐ^Zd齵v%<޻ܙ6ag0Nβ޻J9FmGξ=ԎL {y.bb,8&qLX^&000000000000000000000>!{k/mK>yο7/̱QZYiW#,ʑ/qvVeB)mq)E Okh/mLH/mK>yο7W#h޷"[3x{'W#5]9S)Ds{\L]3O1U Okh/mK[|d뒏{o{4޻)i7\)E6-?'sq38&.g^&000000000000000000000>QF/mK[|c_9nsDZw@KrO{ay&KﭽG.9nddrO{jǝLN;{r]<=bp~Y?1c2g"K[|d뒏{ozy.n ef9r}ʑN⶿iE79'Ru)\\ZZ$[VqL,☰L`````````````````````|bc M[{ikl]1sm]jncR3<kG5mGξ{أЭWVö\)E Okh/mK[|d뒏{o{s04޻)o.q#˝[j[&rzw}{y)nqu2i M~}G.9]ƙ {H{sA}d|ގ rOG6c"meKk,.ٺc~}d)?Ȃ 7'l~}?[gΗGm.f x^^+mbGZmb,.Ջ=v[Y1q[yĆ&KmG.9vac JvsY)&;w=Ғ׉M~KY&4EZ&4/%|3|SoмNpмNuB2EW:Qd7eB:.ͼLxnu"_~yn_?1Dk9ay&um,/%~b׉N쮭Z^&Z^'gjy]Z?S˄~׉M2y//ͼNlf^'w׉vnsBCޖOlu{ D_]^>׉,O3_&4յmмL(7M׉,{-׉_'4/[pe*:\]?SDu~L-/)-"u"]~y/ͼLdnu"]~y]\?1D_ue~b׉Y^'aeb мN<'4/zϯωۯ%{/0_$alZ K>l.K.ncKeivIץKO|-?_Ruir;ei^KwSiUyC̲,_Uo&6:{u"gr׉L ˄e"1ayi06G׉U˄euB8?_/_j? ꝅ?-L?%fa?A:O9}ß{3]|?uE}-ߒ_~c+:~=t_w.AW(!w͟_w~췝{jtAWf鳏`e{U&/ TO753w3Ze`/ 5vSth5 ]/zrPqg¢6BM~pǁ5W4/_îZɢ~Y,Z:Yzֳg=Yzֳg=Yz_o-֟/֢Z:sw汉no~o@(Y~Y4(' u;GV|]oZ]6Բ|6^xzֳg=Yzֳg=Yzֳ.EݼջڢjeF+?-7J;Æ_o]/Z~4!di:IW$}-YmѪ#Cx:Yzֳg=Yzֳg=Yzm֟hQ 9|sMAd?P6}e }vF .1xFx]`h!X3dV5^xjVլf5YjVլf5YjV?j'X|}zzV÷8g_\>-[-[?m>֠/):7Q.|nTK&Xef5YjVլf5YjVլf5ízR'gj9|sM]-Ey6o*}(o6/j a3b :6r]YÊ<-uҰƫ_xjVլf5YjVլf5YjV?j'X|}zzV÷84y{%i>kp(oL RFa]Đ\iɦ+{D[V,V:YjVլf5YjVլf5YbIgZq75!UyS6ss9ޯ r.w>nO3?텛l(5nMI1}4j<59g88| VWKJ#[I;oqN>mOB+mZYY|'ٚWVje؎ec"ڏdy݇U\l3OO,☰L`````````````````````|ZC{im^g<{x\}w!,gήJgc9繏#1U}RޜhIvXS~Iԙ'qLX^&000000000000000000000>{k/mK>yοwCW3m~f9wE.ژ[.;w=vW27y՞bu[eYEXEмN`````````````````````|VC{im__f/mK>yοOT=?ᶼ}MVG6rOk)!fGo9pJ;[ĶLȃ%*u=76V.Rg3x{gd? )jsGr<뽓MοȈe9y">}ԜF+#,Kq_S*feuB:Y M\{ikl]1sl{\R\(,+x{gzK.sK>[}=w^ʫ9wcb1sbmUKkfjϼs1绤յ$ٿ%|M-ϚGR,7مT1)r9tp;mGWmbrދ✸Kk,ҫ]>ly|A&/\YV.&0QNs&OO߉=[VqN܉cbm 饵M[{.[.9.6+pjYV>S?ҼRs&0z$._}ZڱdY?9sbm 饵M~ W|%?Gt|R,+x{'E@׻\;/z$$e9}*~/].E&M+o/kh/mKvٲu6!vqh.d˲|sf(EJu]XkG<߾MD_]y]]8,.Ή 56YzoWlٺd\XU8'V&000000000000000000000^ؐ^Zd齵^em1{q }>>K- ݕt}XvkvٞGbk{}'{zıX,8'.Q'V&000000000000000000000^H{H{WWlٺd޻y_fݲi]@.q+=WI6k#1.k".&&M+o/kh/]g,Қl]?sc]g<6.+.6˲wq>BN5-#R1TySnxTŒ-8'16W,쥭]l]?sc]%Iﲂ]e{V^t[Wu瑘\vr/dY9q'dyxY^Z7Wlٺd?|-ܾEp? b >|p!L>[2mey.[H^>+5._w޺p\1ﶉA&/-8'6qNM`````````````````````!Rk/e%c>?<.޲?3tXoŵòy}C.WM}/DcX\ U8'V&000000000000000000000^ؐ^Zd齵^em1?.ޒ;-E~x\̫˲6}>[;޷7@Eg6om"$n_b/&sbmeK6m.[.9Ȧy||n>c}|dYnimރp_/g#W5S}jq>])l96&Kmj-[l=˸׷4W0/\YV>\ȷP@Wjٵ>&ok;ߋYVqN܉cbme M[{.[.9Η1J,+O{RIu/WjnمW9VkC]ewbUw☈WK/&K={ik-[le(`gWd{k޲Y}p\J-בXZΉMlY(96F&Dglٺdwr9bȲp[<ウ<!yfݏ\>ģCDLKyo9..M8'V&000000000000000000000^֘j˖K|{)ȣ ղy=F^Yjx5!۝%Ʋٲcb^m޳vٲu6ozﱘ07X)yѥbYVy%[rUڹĔe D lj&zy(NɲsN6ꥵM~^z˖K|{i}Ϗq7"do巷x}|ن5eyv#GWՕ˺ Cc-%ߋ=ZVqN܉=Z&000000000000000000000^ؐ^Zd͵^e0u1Eޗ)7ٲy]]ЂzU>͜焬Eͅ`Y9sbmㅍہW?{oWlٺd珋c/^ŻK&/ Un {Kѻ"{D+!Fևn޾Dw1-.Ή W5^mLt˖K>{|6oËs\im;d$ $Zx^'׎[x-5}8HL~mr(tq>]fѕM8'V&000000000000000000000^^Zd͵^em11[}^l~R,76|(ť=nuGbW X\bUwb 5f/dg/mem1_͏)k溼3 ì,76O^Pf^!C&dMZtwb+ÜwXyxYC{imҫ]l]?s;=St!ߢRA +ݲy\p,+xS<jvg_kme&Ή 6B6YzK[lٺdRw׹K5˲wqE+o. VVյe~N?K~].f*ΉM+o/lH/mKvٲu6ϷIIk6)C.d>[ܓ܏<"(OwC]NM+o/k^zovٲu6ol]26)9X, 9n4tWqq=m=rʏ_bʻ•M8'V&000000000000000000000^֘j˖K|{g-ˇeY޻Po!ʕ{qz#e'܃M<ܑ,8'16W,w^e%c>}轛;I]Q J,+x{wyg(0׮eWzDn*oKk1Zjı%WVqN\NM`````````````````````!o2!j-[l{zp|-\KeO{#V(r|]+fO?c-=bWVqNlXyxa#!M{.[.9k1/Oq…1%y_(__y;);1Gu>Zl~?-% _{{kB6}%ťfwqNM`````````````````````1{&KQ?{ikΞZ䷳ǾWYLhu=^`,+x{7ٻ%>\ΝbtMׄtcq~,z;e&Ή 56z.[.9׷<`\eO{e\kCr=Ӹ(_1tKfM .{*Ή;Kk,ҫ]l]?sۇ{,&B ғ ;eYpIS)iɕ>dokW~XKUwb?,o/lH/mKv̫K>{WR%  ղyo!ЛZ\ݝfk-bw![VqNlXyxaCzim^z˖K|{콫7tJ]5;@WdD׾<~Nڽ}b?YDDмO`````````````````````zim߬^W|?foSbL'RW(W~oo6NЙU.G!<;Q+/3Ѷ\-wI~[p'òsN,meK6YjKk|%=>.>ﺹI޻, E?fq^Y zy$(u5Q6܋-[VqN܉-[&000000000000000000000^^Zd齵^W|?f.|w֓T˲gw7oy71|v]`R] BN\Nh'000000000000000000000^א^Z7^zg^]9mC|tIv')YAvX<s<bV]H;\HDw1- 56YzoW|%?އ(.aYV.v0w9ZiŵMToO?En{,beeuB>&Kﭽjϼs1޻\̖e{. !е둞 DMn_b+޲2qkB>&Y/3.67yWN + 61(U\\wGb5Mﶉ^ݲsN+o/kh/mKv̫K>͚^dՕ`YV..y7Esܽ{)_q|lj,8'16†/&K={ik-[l{7ɡ7w[<サ;Ҽ>wqY[Vx&b罛<~c-ZVqN\NM`````````````````````!o2!j-[loSy)XR |໴ޗ>\ηЫyy W;ڷjoj Nk_q=KYϰ`/ѷ]L.&M+o/kh/mKvٲu6e#ؓ MihvuvlѕZq?3i;?v>Dl!;]g7]u~^܊u;?~P3nѸ>hg/;kgG~rq;xy^~>_gK>?$wϸ/:?~~|W>?]>?"oϸ-߈VѸѸߢG~}>w\ϊjϸ>Ŷq?_]Ϧ[q?\;3?yv~|i~ߟVӊyMhuu~|3nѸ?M}ϸ/Q~׸?\>?ӸӸϮm|s~4nOIq4i|ݿ?~~>ߟVWyu~|㇐,cHϸ?.g3n|qy^~~nwq??C㏦?:~ލ㟃㯦z CAJ .:_2#~+%]Yve+_?ݕWkWciܯ__Ʒ12"ȿi {4:?~zzu^u>ChWΗcy^u~ݎnw9~d6ٴS>ߕ?l1~^_qYHsk?EzW\ǷCܯjOOo_bmseÏ?_oeis ,?_ov+׾aw6-G_ېϿǸ__O?&7q珥Xe/цͿo}\ z|m꧷r[tYsK< 0ӼRsKoHM#<'9~<`e&Ή 66YK[lٺd r,.1lMe{Gf+5b,}}~]l*%D[ 7b6YzoW|%?<X].բ)M4 <<#ny+( Gb:d sBޕWZ!bV6qLlXyxUz&˖K|x\|\_䊾 aTaeY{EM^.U-[#1W| %+8&6qNM`````````````````````1{&K={ik-x9)|Cq4_cqAoˁWx^W ˁg#e~FD6ȫ`Z-8'16&Kmjϼs1Ż|< ,+x{gR1 WjHKۄtQk-ߋc+1'16†?M~[˖K|Ⱥ[y{ήv˲w2RWjn݅ؒ圐N>tVw1Kysb 1[,쥭]l]?sc},{XAuY<k@v9#R콋eKٲ2q:yxUcҳM{.yucϷY6/#n>3F#P- ywB?yt+m<S5}%cyxxw$&Kԉ 5f/K[v%=}>PW*Mv.rOkcWfپ\ܢk녢z$|&駵-8'16W,쥭]l]?s.+.ieeY޻X7i֮G׎}C.+J{NLh'000000000000000000000^^Zd齵^W|?f{7C*鱂e[e{rޤX,M:|#>7q%x*ΉKԉMx}c^&3+lorT|npIʅe/RZ4rO]9ng6sۄu$xA}$vX1sbme M]{.yuceu^gw65B,76?\˷e]Y#|jD ɵG/1],.7&FsbmeK6YjK[lٺdj$ǣ1U T,76z 8o}zz$.m"^7X꽨( W5^ƛ8l_͋l%]Byi Cϋq]A#nY>E}#qn*(V^ב\f;+C~&w{Uԉ] ƫKk,Eҫ]>lun|PzqjҜ?.>|؋ yVddeyv]/h]>u=Ri(A޼ۗ.&%}U M\{.yucy\6L֥_YVnRZnЬGbkB~mPmbuG✸M`````````````````````1{&K={ik-[l{w/oE_y}|dYV%y}scq#c ξRػeubeB>&Y/3.6N.$^v[E˲/Ki!O{#~s&RGwZK8nYVQ'.Q'4kH/mKv̫K>=xP<=.Gw~x/.[. XYy^]M ;yg"F?3==ȇۗ.6M8'V&000000000000000000000^Xlo_g^]9m }!{R\_ͻ+-懏rj{-[-q^\H<ٚSu!ٗ.w&M+o/j^zovٲugY&, eY;nqr.uwH<dImbrދ*Ή;qLM`````````````````````1{&K={ik-[l{eB7w4˲wuOʙ]R&!ok-܋=[VqN܉=[&000000000000000000000^ؐ^Zd齵^W|?ft)Xt-~MịK>ղ\6gЛm^9s ]QI;&Rvۤu ɲ~sb Kk&Kv̫K>x\\A}W<kk w+g>ZmG&r'wc`ĘvqNM`````````````````````{k/3.6nS ;)W'bnZ^ỉ;z^mꥭ]l]?sC=pEV- ;bWj=sz$^l[-8'-o/kh/mKvٲu6BɞUj,+x{y<+=W.]ékGdϕT ;;ZKXU8'V&000000000000000000000^ؐ^Zd齵^em1{y;2]e{Jz'5c}wӮc-XVqN\NM`````````````````````kd]l]?sC;ݛEޖdeY;E-v͵U#xMDQۗ.&&M+o/kh/myҫ]l]?scKEX]le{|\+ɕkrm=ͮGd-NNwfwfxcwbɖUwbɖ 56YzoWlٺd޻.LRdr,+x{w;h.M@׵#1>/+ϟn(⸉UwbK 56z.[.9yeV{ 'WeY;Gٌ%UmW\^P]CZK=v1ɦ+8'6qNM`````````````````````!{k/e%c>翽4ܾEp?"=[8,7o_P://}+oz=sq,wo?!o.觪DSH/\s41w, 56YvW|%?>g^]]Q+]VpxeY޻*O7Y2k#PZeݾw-( W5V/=v̫K>9"ωAO_6ѥYdYnim~&Y\+5vz$";\=vKLa;e&Ή 56YjsW|%PwǒRu>}6OJ|9hYnym~Ct״p#zD 61ߋYVqN܉Y&000000000000000000000^^Zd͵^W|?f6$yî?a/=+ڼ6-zepHmd70wbUԉ] ^eKv̫K>6/.%/'}{.%ʝ(,wo/([ȕ+wz$Ƽ>5/vD/obtXVqNlXyxaCzimdBz.yuc/-4(}9\e{4ѥ+ۮH5QKξD_wplL\Nh'000000000000000000000^^:ǵy^Z/g^]9mKte,'y~]s5T, 58߇e7RsX#YO]>Ś,( 5V/mҫ]>꒯!޻:[6׭Sòy]lcr׻;s#%*ֲׄZJ{NLh'000000000000000000000^טl^g^]9mKjg{t}H-.[H%m͛ٲyk^]QTr 2WDʲnX\K\UԉK Kk,ҫ]>lRp۷z,+z])+rе#)mM%nDDмO`````````````````````zimdBz.yucwirمep!Z<skǼ敚SqysA:kfe/1].7&%}U M[{.yucjў[Wdq+ m}NXKNLh'000000000000000000000^^Zd齵^W|?f{7e\AeO{e#.WjNQ@k_GZ&wGm-^lŲ~:2yxUC{im߬^W|?f{<sٕnYVNuJe<~K뽖T&dss2R.f*%}u 饵M[{.yuc![woZ,+x{RsP]Ck}].f*%}u 饵M[{.yucoo?[}Ϗq7"EQnoo巷gx}|wEvr)>c+~'1MRH?5= Xw ]N+7ΟXy@@@@@@@@@@@@@@@@@@@@;Vt̫=R(G/_^o X, <룋 ;!ϡ˅vlDIvh^ʻ7V&N-|>Z ۞ycOh{ű>z|yetUaYny]\: )([=$5\R=]kaE;o M ՚VY֢u6mqǗޕc]*~{FۺH m⨮͌/p՛/OV&n)|} )|Wo{Ҟ?!X+HKʲr8n=r!dHkvsr5^`rDK\ݻӍAZJaY9q' 6Ɵ6YjsW|%?>]]kZ- M^3᪮]sj'HuMC k-bw![VqNlXyxaCzim^zg^]9mCavR)/,eO{\U܂\9ue]h&J'wQY_DXyxYC{imdBz.yucwrENtE6KYYVή/Avv+5](lDՕNccbKk,ҫ]l]?sc]\7^1]cw)[<{#JYJ͵f{^\ۄ6-(&Kﭽjϼ8ZqOz_0&piuwyfri;e}{.Φ~8l;Z#зgJ[✸ƫ6z.[.99\gp5Z<ウ}GJͭ#Q6&oz$'6q|fY9sbm 饵M[{.[.9..[,|n˲wu%7w&Ε{tm퉮GbHs"r/q|MM8'V&000000000000000000000^Xl^˖K|J>!D)?&%wwcsc#- <եYk[Qo}^X&ru%b1sbmU gv.yuck维벂C+_YVEz{Rsy$sWs"hwrދ尬✸^m޳vٲu6leeLV9e{ꢿdgr܂]/qm"v;u;ʽزeĝ8&V&000000000000000000000^^Zd齵^W|?f{wdw\eO{]Ku/W}]LH:\mD n_ky,1'6qNM`````````````````````!o2!jϼs1޻7pX]HsٵbYVNh|Vrwzo=z-f;?c-=bv1ZVQ'.Q'4kH/mKv̫K>ZYPIZ/\kv}>ro1,|iΟEC+5>3=" Jđ$%`DDмO`````````````````````ҷk/3.69>ݻeY޻^tyzF~e~N{_bXǟx&) ƫKkfjϼs1{\M޷\Av9Zt=SG5J <mE;7߭ Rkz[c>?>$Vw[݂ymme>.ݲ?k[t5g Żn\8_*}m`rho7V&N-|:Z Z9n;m_po\( }8r=]ju;?v>58~q?_VyY_g7{^gwu~o|qq|4e;?vDWO~pm4q;_s׸u~|3nu4ǟn|sa|4n{pi|4;G~}> ";~>/3K~;?v~?j>I6ϸ/u~|s5:?~7JϸOQv:kygu~|߿?q~ؿ?on\>{|4 uq;/*>hW׷4nkp~4:?~}~8t׸Om|u~4n߿?Oe~ߟVO~jMu~| 3nCt?\q;cV' uMh&6~B?'V't]ĵ O6) ~?0⯺pf #NvD:N)e<6Z??ay@~Mi|?ooǿֿ[c?ӏ}d#Ǹ__?/7V]?b1 Ccooq[Jendstream endobj 6 0 obj << /ExtGState << >> /Font << /F1 7 0 R /F2 8 0 R /F3 9 0 R >> /ProcSet [ /PDF /Text ] >> endobj 7 0 obj << /BaseFont /ZapfDingbats /Name /F1 /Subtype /Type1 /Type /Font >> endobj 8 0 obj << /BaseFont /Helvetica /Encoding 10 0 R /Name /F2 /Subtype /Type1 /Type /Font >> endobj 9 0 obj << /BaseFont /Helvetica-Bold /Encoding 10 0 R /Name /F3 /Subtype /Type1 /Type /Font >> endobj 10 0 obj << /BaseEncoding /WinAnsiEncoding /Differences [ 45 /minus 96 /quoteleft 144 /dotlessi /grave /acute /circumflex /tilde /macron /breve /dotaccent /dieresis /.notdef /ring /cedilla /.notdef /hungarumlaut /ogonek /caron /space ] /Type /Encoding >> endobj xref 0 11 0000000000 65535 f 0000000015 00000 n 0000000064 00000 n 0000000206 00000 n 0000000291 00000 n 0000000371 00000 n 0000041342 00000 n 0000041446 00000 n 0000041529 00000 n 0000041626 00000 n 0000041728 00000 n trailer << /Info 2 0 R /Root 1 0 R /Size 11 /ID [<9ee5058f8357da803511a0a31cecbea3><9ee5058f8357da803511a0a31cecbea3>] >> startxref 41990 %%EOF gnm/vignettes/fig-deaths1921-1940.pdf0000644000176200001440000001701314376140103016462 0ustar liggesusers%PDF-1.1 %ρ\r 1 0 obj << /CreationDate (D:20061218211720) /ModDate (D:20061218211720) /Title (R Graphics Output) /Producer (R 2.4.1) /Creator (R) >> endobj 2 0 obj << /Type /Catalog /Pages 3 0 R >> endobj 5 0 obj << /Type /Font /Subtype /Type1 /Name /F1 /BaseFont /ZapfDingbats >> endobj 6 0 obj << /Type /Page /Parent 3 0 R /Contents 7 0 R /Resources 4 0 R >> endobj 7 0 obj << /Length 8 0 R >> stream q Q q 59.04 73.44 378.72 335.52 re W n 0.000 0.000 0.000 RG 0.75 w [] 0 d 1 J 1 j 10.00 M BT /F1 1 Tf 1 Tr 7.48 0 0 7.48 70.10 164.14 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 74.54 166.20 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 78.98 164.41 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 83.42 165.75 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 87.86 161.13 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 92.30 160.36 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 96.74 160.11 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 101.18 160.08 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 105.62 163.97 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 110.05 157.73 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 114.49 161.26 Tm (l) Tj 0 Tr 1.000 0.000 0.000 rg 1.000 0.000 0.000 RG /F1 1 Tf 2 Tr 7.48 0 0 7.48 118.93 150.88 Tm (l) Tj 0 Tr 0.000 0.000 0.000 RG /F1 1 Tf 1 Tr 7.48 0 0 7.48 123.37 162.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 127.81 159.00 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 132.25 158.34 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 136.69 173.81 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 141.13 168.11 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 145.56 168.35 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 150.00 181.93 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 154.44 175.15 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 158.88 194.09 Tm (l) Tj 0 Tr 1.000 0.000 0.000 RG /F1 1 Tf 2 Tr 7.48 0 0 7.48 163.32 171.99 Tm (l) Tj 0 Tr 0.000 0.000 0.000 RG /F1 1 Tf 1 Tr 7.48 0 0 7.48 167.76 201.84 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 172.20 191.00 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 176.64 190.95 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 181.08 214.42 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 185.51 201.68 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 189.95 209.12 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 194.39 223.31 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 198.83 224.41 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 203.27 248.61 Tm (l) Tj 0 Tr 1.000 0.000 0.000 RG /F1 1 Tf 2 Tr 7.48 0 0 7.48 207.71 221.00 Tm (l) Tj 0 Tr 0.000 0.000 0.000 RG /F1 1 Tf 1 Tr 7.48 0 0 7.48 212.15 255.09 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 216.59 248.91 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 221.02 254.08 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 225.46 265.68 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 229.90 268.95 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 234.34 265.89 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 238.78 287.94 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 243.22 283.84 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 247.66 311.59 Tm (l) Tj 0 Tr 1.000 0.000 0.000 RG /F1 1 Tf 2 Tr 7.48 0 0 7.48 252.10 277.42 Tm (l) Tj 0 Tr 0.000 0.000 0.000 RG /F1 1 Tf 1 Tr 7.48 0 0 7.48 256.54 316.29 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 260.97 326.30 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 265.41 329.90 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 269.85 356.85 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 274.29 326.34 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 278.73 342.85 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 283.17 372.90 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 287.61 363.43 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 292.05 386.06 Tm (l) Tj 0 Tr 1.000 0.000 0.000 RG /F1 1 Tf 2 Tr 7.48 0 0 7.48 296.48 343.44 Tm (l) Tj 0 Tr 0.000 0.000 0.000 RG /F1 1 Tf 1 Tr 7.48 0 0 7.48 300.92 393.94 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 305.36 387.99 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 309.80 386.23 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 314.24 385.71 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 318.68 382.43 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 323.12 355.25 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 327.56 366.53 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 332.00 339.33 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 336.43 335.97 Tm (l) Tj 0 Tr 1.000 0.000 0.000 RG /F1 1 Tf 2 Tr 7.48 0 0 7.48 340.87 288.44 Tm (l) Tj 0 Tr 0.000 0.000 0.000 RG /F1 1 Tf 1 Tr 7.48 0 0 7.48 345.31 299.00 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 349.75 279.67 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 354.19 265.61 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 358.63 240.83 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 363.07 220.97 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 367.51 198.96 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 371.94 175.64 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 376.38 157.71 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 380.82 144.98 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 385.26 123.93 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 389.70 118.38 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 394.14 108.48 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 398.58 101.92 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 403.02 96.13 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 407.46 91.49 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 411.89 89.19 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 416.33 86.12 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 420.77 83.27 Tm (l) Tj 0 Tr ET Q q 0.000 0.000 0.000 RG 0.75 w [] 0 d 1 J 1 j 10.00 M 73.07 73.44 m 428.17 73.44 l S 73.07 73.44 m 73.07 66.24 l S 161.84 73.44 m 161.84 66.24 l S 250.62 73.44 m 250.62 66.24 l S 339.40 73.44 m 339.40 66.24 l S 428.17 73.44 m 428.17 66.24 l S BT 0.000 0.000 0.000 rg /F2 1 Tf 12.00 0.00 -0.00 12.00 66.39 47.52 Tm (20) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 155.17 47.52 Tm (40) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 243.95 47.52 Tm (60) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 332.72 47.52 Tm (80) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 418.16 47.52 Tm (100) Tj ET 59.04 82.29 m 59.04 388.86 l S 59.04 82.29 m 51.84 82.29 l S 59.04 158.93 m 51.84 158.93 l S 59.04 235.58 m 51.84 235.58 l S 59.04 312.22 m 51.84 312.22 l S 59.04 388.86 m 51.84 388.86 l S BT /F2 1 Tf 0.00 12.00 -12.00 0.00 41.76 78.95 Tm (0) Tj /F2 1 Tf 0.00 12.00 -12.00 0.00 41.76 145.59 Tm (5000) Tj /F2 1 Tf 0.00 12.00 -12.00 0.00 41.76 218.90 Tm (10000) Tj /F2 1 Tf 0.00 12.00 -12.00 0.00 41.76 295.54 Tm (15000) Tj /F2 1 Tf 0.00 12.00 -12.00 0.00 41.76 372.18 Tm (20000) Tj ET 59.04 73.44 m 437.76 73.44 l 437.76 408.96 l 59.04 408.96 l 59.04 73.44 l S Q q BT 0.000 0.000 0.000 rg /F3 1 Tf 14.00 0.00 -0.00 14.00 93.98 433.45 Tm (Canada, males: Total deaths 1921-1940 by age) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 237.73 18.72 Tm (Age) Tj /F2 1 Tf 0.00 12.00 -12.00 0.00 12.96 208.90 Tm (Total deaths) Tj ET Q endstream endobj 8 0 obj 6282 endobj 3 0 obj << /Type /Pages /Kids [ 6 0 R ] /Count 1 /MediaBox [0 0 468 468] >> endobj 4 0 obj << /ProcSet [/PDF /Text] /Font << /F1 5 0 R /F2 10 0 R /F3 11 0 R >> /ExtGState << >> >> endobj 9 0 obj << /Type /Encoding /BaseEncoding /WinAnsiEncoding /Differences [ 45/minus 96/quoteleft 144/dotlessi /grave /acute /circumflex /tilde /macron /breve /dotaccent /dieresis /.notdef /ring /cedilla /.notdef /hungarumlaut /ogonek /caron /space] >> endobj 10 0 obj << /Type /Font /Subtype /Type1 /Name /F2 /BaseFont /Helvetica /Encoding 9 0 R >> endobj 11 0 obj << /Type /Font /Subtype /Type1 /Name /F3 /BaseFont /Helvetica-Bold /Encoding 9 0 R >> endobj xref 0 12 0000000000 65535 f 0000000021 00000 n 0000000163 00000 n 0000006730 00000 n 0000006813 00000 n 0000000212 00000 n 0000000295 00000 n 0000000375 00000 n 0000006710 00000 n 0000006917 00000 n 0000007174 00000 n 0000007271 00000 n trailer << /Size 12 /Info 1 0 R /Root 2 0 R >> startxref 7373 %%EOF gnm/vignettes/fig-LCall.pdf0000644000176200001440000012720414376140103015275 0ustar liggesusers%PDF-1.1 % 1 0 obj << /Pages 3 0 R /Type /Catalog >> endobj 2 0 obj << /CreationDate (D:20061121121611) /Creator (R) /ModDate (D:20061121121611) /Producer (R 2.4.0) /Title (R Graphics Output) >> endobj 3 0 obj << /Count 1 /Kids [ 4 0 R ] /MediaBox [ 0 0 720 720 ] /Type /Pages >> endobj 4 0 obj << /Contents 5 0 R /Parent 3 0 R /Resources 6 0 R /Type /Page >> endobj 5 0 obj << /Length 43210 /Filter /FlateDecode >> stream xM$ɕ}~ _1  @*@"":G׎3w $q$y<EtuUS^=b3[k2>Yc럎r[=?=;C_ޜ~ǷLGtٛTe>S: K5Ⱥ1&[Muz!dR^/NJlך[_:Yzֳg=Yzֳg=Yϸ~Zrk v+)TcGLk/&#|Ȳn;S[\k6-8xzֳg=Yzֳg=YzֳR-l8+TpfbAnj_|LoiG- 6zv&ԼݴjRX6^:Yzֳg=Yzֳg=YO^[Hf 95po {g˯G2..Gvv|?~o~#뼕/W}5=v.o#6ne=7ɮQ>Wulqƕ# _cr=u^!ԟ;5k{j\_:Yzֳg=Yzֳg=Yϸ~Zrk o*zDZ:G/ hb=bz5[rRl~ti.%6^Yzֳg=Yzֳg=YzBj}Vm+|W&#"uh8F/ bJ;dr< %F˃{j.lZjwS_x}g=Yzֳg=Yzֳg=?zm!>|-l8+Tp6Sesuֳg=Yzֳg=Yzֳql!>|-l8+|/8k0VFL k/=ƘlxKBNIT|Qs}u6^Yzֳg=Yzֳg=YzBj}Vmgy·q ,g A޿t5ʗ~YpSe1&m 9a{j6oZ5qjKzg=Yzֳg=Yzֳg\-ևom+|Wlcӣ7!Q9cx˺1&N/QފөYʃ6^ߵYzֳg=Yzֳg=YzmM\,W6lAn[6uֳg=Yzֳg=YzֳtZ5m!gYm\ᧂsWLYvv{še/boMuGysQP{+ضD_2<ؗ.:˚8s_˘]6o˝9ƙUwLkq~4a:'#nq%;g|%ʗ%R׬H<=1- rXȞ_}^8gdz8Wo,;xcIƍuNmWr[5Q}]ƶ588s_ΐ.WX銵˝9H1},;xJ?'84gB9׬H<=1- rZȞ_}^t=UG=L[M#v3/N4f^ɚ$'d9ZV9xzWM3?<聾]t9?đrtIBȞ_}^դ`VR-ߧd_Us0#1'ϳ>6NɁ&}Ү_bӵDwq$%00000000000000000000]6R5k;s뙿+t.t__bY%Wi,;x>srUǕ}%rw{YZ58bOyK````````````````````|1C\m`+.w6<3W+nƵqs~dgj\eWz,&,t'lqK7Yk/53Y?đrtIBȞ_}^alٛUsg erz%%J?<-.F9cKM9o /fh TFgz?ݖW}^ے8$ϲrW,;xgS4fkj+,_)qEN_g!؏g!_XLk^bOlHyK````````````````````|1C\m`+.w6<3WSW\Mg}ƺfˮYK6IW9`JAn5#֬H<=1- r}[]ldyg>{Wq,;7+vєf8ؿWl_D Rojw1׬HlHyK````````````````````|9C\m`+.w6<3WSWLLG WmkܺSYM1pc^,kػ}b11y=#1- rXȞ_}^oO]qV'v Lk슽5wLc嘓k3(JvIJ%77X'%00000000000000000000] rugzw ) Mqkؗ]q0wMЖyIot{+ٷq~ƙ}+{)ai*&ĜƗ3Vbrg#{γ=y=uɄrhMvcXf8bX rIJ뉺%j`_ XLk^bOlHyK````````````````````|1C\m`+.w6<3W￿p?_~=6aGǭߏ_>|G%mIG=gy/`:r!|0g3mi}fB|sY~# - r}[]ldyg>m}}kGawqͲ]q<67o9yoܬJԶ%`/ћV׬H<=1- rXȞ_}^oO]q2j7<\Ŵf8XrGf=4Y%\~E\##1- rXȞ_}^aIη#,>0~EruJVx%O{)9{*&ĜƗ3Vbrg#{γ=y=uդ8N=&'GGYv+n&+cNbR+}nb&5/'.Qs_.WFgzw}}ծ؏3S4Yv+NrvHѕc]z%["u+N$(ְfGA9o /fh tFgzdf)|24h(5x]5g倎q߳s ΄y(Ҽ){ 9wUM9o /gH TFeV˚+*ޓAvre&e^oJM&-V˃}ob&5/MĜ3mu=뙿+EfdA4ѯYv+8y_9`}^|Wﭵ{(fGA,y[j+]v=ٿ??¢/}%GX|ha oYO_Ќ6嗋܃=g^YX 壉+˱ Wo0?KLM,Ɩ588s_ΐ.WX)˝9@dXܴ󪹚 K^⌍k7jnu1'J+-jUs36mb&5/'.Qs_.WFgz;0MHkKGq :'_vyeӯDRhw158bk_.WX銵˝9mJ;|m%FxfylHҿ\+,Iy܈^6G!DҧA fGA9o /gXX˝9t[r5A׿芫;,;x7ic[[<:Ǖnʖɸ1H}}/YőDMyK````````````````````|9C\m`$Ȟ_}^o:IzŴqct,;xW/wu>PgJd%r3} }őbvJW]ldyg>8fRq$s-&5^wYK6َcN~wO;j)K>Q>P5G9$EB ,ou՜sðꇣ^WZYΩ\%&)R֬&vQ: eh TFgzVAawF;g뮸Vnxޟ]*HIn^>ž[׬&Nq&t_͐.W7IH;s뙿+ے RWW1~fLt gy/;jM St|?Ysrb)=8ۗh.ښ(KԄ{kj+v=ٿ?精5Y獷)8$+=gy,G'[dRѶf"F)sUs.f5yO````````````````````|-C\m`j.w6<3W WծWفrƜe& L6u8Wj49mMx졯䶉}/֭YEML'00000000000000000000!]6o.w6<3W%d U ޖ Hiu^VޛqeԹo4֕L["SO׸D3%qyO````````````````````|-C\m`j.w6<3W>j/orn=[vR3GoMXYvz Ex=u^7k_x^Ƨv>hb^q{ȣ u^N>_zDu^/r總M:nuםl5h|:"?L[xǼ=倗-:oR>5=(&=yOD9teK'j%tnĜDwx')-H֤SyO9"}K%tĜD0u'q D+1='-(D&D0y'U%t>=SgJWX&=[B-]wۧ=L{B=噵[B-!ݺ}kA~#sK':o0~SJyO=-&D?_%tS&D{s[=~\hyK_B׼'o Do\[nO}{"<[B=L?9o~5]yO_M׼%t{"?j=a[B+lWO}{"cA{b|zqbcu%kI~u%z_X?0$q[(0}qm۾c懯?C/؇wvWma؇þ~鿮 ? B{cX~5p1[rːA9^Opm0~LNVvwm_,?cw}Vg$o/ǿ;? !yti:??_˿ؿG;]oП+_{y<`ʯ?~/>o揧[_֜/xGqD_5_c?~~o{z?IsGBg;gꞻ?|4VܿzGݼ7m]s'oMC׬H<=1-Y g6{.yug}X9$/mβ׽wSc7ʨFi}wJN^n!5Uaܿuiӡ##1- 饵M[{.}^;}H?%,;x{R?<)+ǜl2~q%bl;?UxU988sؐ^Zd齵9. ||Z ~ǧxEZ|1'мw8JT✓ynő쥵M~[lyvg>Sr0+&;H9^A8Q]V9"oAݸQaK#҃}$K&5/'6q$%000000000000000000000>{k/=s]+{'yDk#/;&5޻ ~srM"%J2=Kr̃(ώYőxKY&Kﭽlyvg>s݌MS7.㹖1,;x{swsN6 0WrȳW<~]YőđĆ&Kﭽlyvg>sL GJNZmA1Yv<1'׿r{W-Qzw;w׼Ğđ&Kﭽlyvg>s]偗)yOzrƕ5^vȣ9vcī{Wrv-Q݋sN}oIaKKĜƧ56mҳ]>%Ow__<4Q;&5^ީ_t,w{yJg[\MbkVq$Ğ&Kﭽlyvg>s)ceŤf;_XTre9[>-Q^b29<ͭYőx{b[Kk,ҳ]>%~wt;Y1iG%/=[g#y-VT׵y31e}8cN>lӺ]^}^b5obߋkVq$.Qsؐ^Z7IH/=s%͋rz316NOюV`_y&/W㙡:'Wo aK/X׭q8s^Zd͵9.ymܨͽ@mMG2@1έY<XI9('[Ww&-qDow1X׼Ğđ&Kml9k|6rym͋T)zŚ`,oumތ |qso=gz3WJ~Մ(fGA9o Okh/mg|Y3W陞}}6w/Ķf޻x=lu>'%?]cS; ?Px7+gŤ_,eޜ z[>Tgiױz%*7_r>ַ>lvqu*&Ĝ'66Yzog|γK>y{lb,;/{bE0sMn7׽Wsrn_mXM(k^$.Q: jh/mKvg||Lң??&Yjs9;5xU'kMcA c}]1qD_wyDM'000000000000000000000>zimdҳ]>%e}oV?vLhkq/7Ys똔uDJrJn/1XU.JB=Y M[{.}^.. lLyZG &m ܛ;c~*'Y> 1{S8zfٮWZXw뜣?z쥿58bkذ~k/=s]+|g{3^>#9gJYe՚0~BgyԨl6ƕɴ=TR.:m918sؐ^Z7IH/=s]+{]4-Yv&#X9lh]侅DβݾDw1׼Ğđ&Kﭽlyvg>Otq%_Iry37З5x]gS䘺~S`U+%7VKaInKM9o Okh/mKvg|?.^M}s;iK1vsYB{+&9J̇Ͻw3?ŮY?x{b[Kkz.}^.^kgM*8i}}M!v(Eۗ}{,]tw]+)z%R}q&G58bmkp6Yvg|γK>y޷k=kv](|4Sܚ坿۳o̓u/_c@J=|^b2b1YőđĆ&K߮lyvg>(uͫ r3uf,oumwb*&[ü}^ɗQim^|^#qFHM~Dg|γK>y城C$}Gׄ(gYv^Xݬua%Ͻw1͏c&5^8=:T9"ս}\[">XMʏb kVq$ּ%000000000000000000000>mug|x-$ONi-`r^y&#f?9+69BJ~Vq&yUM9o OlH/mKvg|?. qz̦5^$R1'zwJUv%r-w1֬HlHyK`````````````````````|bCzim^z<3W.ri4,;x{VƜ\>d[-[(?<.6횗.ĜƧ56mҳ]>]+cRb6o)ϏI_>S4좿̇5xY'gZ:bIy:'V)>dֶD[/1]&5/'6q$%000000000000000000000>Rk/=s]+ڼRv?0X}{0'wMkwo_.1K@s+[-xebkVq$Ğ&K߮lyvg>,9ŏS3٭Yv&#o6cNǕ|+I^r{[Y# - 饵M[{.}^g}K1 qy(6MKvvg>9ǐq,y_ښe{qpz,8m,_ΣeJIJ%/і]L&5/і]9o Okh/mKvg|?Y qqeͲ׽wc1's"-/[/]&5/]9o Okh/mKvg|?T9ś,;x{glmܫsr^ɶC`f"GyDkbzKX# Ĝg5f/mg|γK>y~s&Ǘ~xxKbkVq$ĞĆ&Kmlyvg>}3InP޻,;x{9E~`1'LXn\!g"'S~X̾v֬HlHyK`````````````````````|bCzim^z<3Wn<3޻ͅ5^՚K&wW-ۗh.:ۚh.Ĝg5f/m$9.꽫7)d_u䕘qsr^f}wJļ%r5=ؗ.F8s^Zd齵9.) 9^X9ť+ǜuJل%r2ǽw\֬H<=1-i M[{.}^޻fR̦3ɮYvnxTLw\_tJ~9`4ڣX'%000000000000000000000>o9.꽛7.ɚ-,;x{ry%h|ʡ}]Ʀ588sؐ^Zd齵9.Z.ϱ;[,;x{ge嘥awWrx˕qrsieq*&Ĝ'66Yzog|γK>y忽w|#{X?R|Pdߏ_u*?u<9x]7S!pƜl'{[W Lqmތ˗51y=q31-i M~[lyvg>vqY_ܑB4ɍDezliP1'[MIuK.豘z䴘9/'6q$%000000000000000000000>{k/=s]+{G|ߓ;(&5^8>+ǜ]Ǥ+eʖx`/1֬H<=1-i M[{.}^޻q~s҃9Yvn&UNv9hJ{W–H͸`_{%XfG51- 饵M~ҳ]>%Osy^)ye/{oM|c^ݖ}~4AĜUM9o OlH/maҳ]>%Ͻw41X拱~Ͳ׽Ĝ1uN}Cqvz%&ĕ+⏞k);ل%&ĜƧ56Yzog|Y3W.&#*owkܔ.LNNqWZTM%M{{bGb[Kkz.}^oo?,HƥVTS/=[gX qK&5xY{o<ə߲r̲8ouWZ6o1)ޙX)Yőx{b[Kk,ҳ]>%Ohluf;hsS[+_D*/n{QԜU'%000000000000000000000>óM[{i9%Ͻw1^L)kIrL[w9Iޝ^i^V^7{lzqq*&Ĝ'66Yzog|γK>yz`FiYvvfוcN>y{=R&=d9$|β׽w4UNqI1'o5ו+ýSDw1ּĞđ&Kﭽlyvg>sMi<09 MϜe{*GMucD29T/_"7?ŮYőx{b[Kk,ҳ]>%Ͻw3McY,ћ,;x{GϹ:&+--^5?MYőxk[쥵M~[lyvg>SqHo֏$Se{(˩-MW9jlJvUnI9;olbju*&Ĝ'66Yzog|γK>y{lB>u젚,;x{C7^)+ǜ|ZtJx%5j|Y{bGb[Kk,ҳ]>%~wt;Y둤c#EzjGvIN`~_Z9o[}cK 5z7ήY>E}qLɠsrٸC=l\Lq%NG:%&Ĝg5f/mg|γK>ynPsL N&TMkU[1'$2NY/[C>8XU'%000000000000000000000>{k/=s]+{7U}IA>g;[Z7ms9pWDn`{dD'7Y?đĆ&IBz.}^;{ܑ䀕qwpβ׽w0룳Y1JYNYŚqxfGbGb[Kk,ҳ]>%Ͻw'vԿ8;W,;x{gS3M1'Ms{k/=s]+{WR3>Yvn#2vv9&GǕYW-7]{51-i M~[lyvg>S]Q)yOz&5^eK|~]dM [D/ԃXښU5o Okh/mKvvg>sr9;Zb[uMtFƽ:˝qMWcg4S}G58bOyK`````````````````````|bCzim^z<3W2qq^vͲ׽wr>x|^DRv6ŕ589o OlH/m$9.꽫31)yI 5^՛"49EV9Z9M[y9|/] s^bOlHyK`````````````````````|ZC{im^z<3W>kVB?Mi:jZ:o IWb{"{d["8r'g:=Q垁-3?ӭyOּ%}n{">L=Q?9oܿ3?9yOOl{B~%tE7s&'`+?x%t^_w׿w|P^r/qk/?|n.-gcKM.mil ǥKBo.)Z]ol*${@sO:):o$RĜTUlM lzMmK0*5k<.7~_t_gn,o?`+o??~~_N&I#~Z#(VKS??CMU?t͟r̯~Yc?n54DM]{l6w L%Y~}Н0y,ؿW^YSϮ_vR7M^q{g=Yzֳg=Yzֳg=_?[T?f:5so ?1`eI3|Q}'O(7eBs&0A~Ғ:Yzֳg=Yzֳg=YzX/-֟oY[نq+|Wף:yQ?^u Vز^hYh>jw]iU:Yzֳg=Yzֳg=YzX/-֟rhhQgY~m\ᧂMǖ}ZJH  f3\]XPw8QY!eΪ+H6rGrnje,x/}F9z9 eXl;1Uwb.+o/k^zo^ʫK^|?}#rsĶ\y] N|'k='|ΙTŚVVqL܉5M`````````````````````1z&K=z.5c ~{gr{dw;5ݍW+}^K)+8&6qL̼M`````````````````````jjW^]c.rkI +h d{s_r;5vWo㉜kdҗ[.6fVqLl☘yxaCzim^z+.y_1{{k޵F\rO{oLi7SsQ:sVӾxw_wi~%cbme Mx[lwĭ>cbme M[{.5cMm}'kfb\Yy]sbVs=g×X"jWVQ'vQ&4jh/mKvȳK>yz_>ߒrnoV"y7?//o.Ro.5FmW>yp&ȗrSslrxTog%VVqL܉}bm 饵Mx[lIQ/YwjXN_u̩ʓyvMdaҷk/#.5xy39\*ƍk}ݮ,W4?M'̜ƍ+D.rRnL+/Q&NQ'4/j^zoG/g|_̫Z6n_*<јLh+x^G9\OvYv(0_)}mU^,ieubeB>&KmloEZ( W5f/=dg/Vyv5޻"w;'yleL+m̓`ɺlѹfV 9M~;w^m+oߩRGk;{#ϖ5pvN EN)+( xs68A9Ҩ+oD &QN],ƖUԉS Kk,ҳ]>쒏k^w5!hދ;g+x{7͙ǥl]/]_o&m";N_37OOf&[A _i?dB y5B8bwr\A4,WP.T'DQ:xci~K] y2q:yxUC{im^zG]1k|0Eb|]YyLy7^wjvޔy'|%v2n!=$ʽ*.ʄ}U M޻^zG]1k.ɓ jM,+<{qZ}N 9]_֤M`\X6;Uԉ] ƫe&^zG]1ko?nK7{qoϗ՝qrw֯rO[/J6e[=H\WٰO<3o߭ܬiulmW\횾5p vrI/V/LN&[kk =y|e M#RZlQyc`mF;zZg᫽gK{_, :W+x^(W9TG.R9 jBNs T}ִom}^erߞ먯/߂aeOLKUq<χj|&|l=}= & TW{ZgK{_,r4 ~er2.Jdh۠,+\ hKQ~畺6 ZjO+=lik^r1Vr\A3٭,WP&[ی}{ . 8oƖ;VfToy}`ml5ɣ튫]׼Ưex9-zS埕:Z)eظ^mS&˥Ժ^iTooy@@@@@@@@@@@@@@@@@@@@n)|x )|go{׼?=0hZ( w476l56KWB Lr?dBqy}}w*h=Zȳ=yz(rcq6+hƕ 4{T5 {8WƓo}r1>o^CA4.3oߩ0^iNulmW\횾5Lnq7r}&?-3Zevw1_ s[yN/КfToy}`mf=*|go{׼?ӯo[2.OdM~Ǐobۢ/K_ezڹlBo06 RjO+==lik^_ﱝ:'C7 TSr+|?\Rt'/o|Ws377o ̼M |k6zԽ]quk!Po9G]<;pfOxwEklA}(u1 7gIdN捁 SоWkڏ7ha+h/yˁ=q"ORs,_yLM֌/cru.+ D %'Fnw*h=Zȳ=y ҷ!_&˭MomrδFet16J֘׾|!5)wyyY{jToyM |*Z^mmW\횾5jV/L&;nQk4J=D'K)uiF捁 ViNG-1kC.h缩zԺ\B9lo52NYk켫z"CmU}^J_8"gSkTooy@@@@@@@@@@@@@@@@@@@@n)|BY y5n䝏l5aI=_IV8';w_餫ۄ\Χ.KS ƫKk,ҳ]>쒏k^zh1"WPLL+<ウq;SةVﭯTo>ߴ wI^neubeB>&Kﭽl&Ʉҳ]>쒏k^_?w;;ë3}䌗SV㜖L +?m͓7)?3g||_D˗.99|fuuB>G,쥵]>쒏k^w())W+x{'S9D6( JRI'f4.oy@@@@@@@@@@@@@@@@@@@@N-|BY y5Or1Y/IT~V+x^(WM6IY3,Y]_ɣ5?'=6ͤeuB>&^zG]1kǏljҌ_?GM"gy&̾۬+qHw^,yeubeB>&Kml';*,wCgVQ'NQ'4k^zR^Z#.5z6yr +n}~śW+x{,'TSG?sǃ:oDs)ڴ& 56M&g|_{l;I)YnYyMם.;5(뵏W r9QLr+/Ol☘yxYC{im^zG]1kCM{Ww&?Yy]-C4[X>^JK,&{ؕUwbyxYC{imnʫK^|zAޮ5T/3<3^h^k3q^C3ٟ޵'ŬVVVqL܉}bmUKkz.5k]qrvIYyMD;G=γ+Z kwy-bjue& 6\Ym޳vȳK>yz_U>ߒboV"Ez7{_~|y|6AnΦi_Ms+x^Vw?9k&͛+əw)ZUvy2q:yxUC{im6^zG]1k}!|vew8\<"'m"uf^b116쥵Mx[l/{䲲\;XknnJlr9ѯwذ~cb ί6M&g|_t齃&$ք4 W+x{ͥ1\IyLxMR-.F*M3o/ldG/W콓[*3<ウ< GΑurt^a.焫&ݟr.b~%cbme M[{.yv5Oo?ko[2.OH/3?n?ҙ>|[7t3x^7ӤϦGͣo]_ 4Mx/nbv%:16&^zG]1kvMu ,WvAjvW>PsL׮Xc Mn/ћVVqL܉M`````````````````````1z&K=z.5c/Fv`new6!vPΑ}sy~N$;vbVWVqL܉}bm 饵M[{.yv5޻J qPڕ $9O</vNxKy-mbWVVqLN̼M`````````````````````j?dڣ]^yuk;'rO{o9JwM'kR?48G֝7fד<\q_r~>n-7ZyGփ3a|4Ѹyf>kףcx2dc]4s}}=˩Gz_q_fz_mfi֋?n;5Ӹ_fKьz5e|4n͙}>dh׫ \q_rչ>^Lۺsƞߌz4n#E|{+{k׃i[q_/m}m=ק4㾞_fӌzc]㾞ϵ&#n˷Ǻ}=}>jZGֳ7n4ɄӸWO^|[rkףq_򟡝#n}~4^_f֛}q_O3xۿ پҸoC>⾞.x>Xu8\q_E߹>ⶾx|yoM?_|nt$w׼uc_ɾ1|F/M;coawo`sۙmGwF'woٿP;۷ R_/}D~aV}\ߨ.a|;;ҹ*cUӹׇ-zE͟PtϸeOmDσs}ٵOn_C+od7f'w}wb<ʪS;3>m͍"G)27Ⱥb~?>O(e+𗐾WMs]ҿ_7ݲU)'SQ7+ʹVn05;zV=Ff&Oa~wG-1k~iU-؛՟ȆWCQϗrZ측j<-$5}eC-rg3J)}Dra; 75`??ӨX߼106 RjO+}=lik^VƷL1qf[]6qz%GϽ mav^J X?ҨX߼106 RjO+=lik^rCm6.1qA7)^ SogK{_(\nN2`T 1T[dyvzEnD,rAN8({c`m;՞V e-|go{׼ d3BO,WP.ruOs#:z䤋s" r;Xʌ;̼M |Jm<[cc܌M4ver&[ ƍ&Z8CyiH}ȋ݁-ϨXw+H=*|go{׼ س_ԺMK.y-b4.NNh'000000000000000000000^א^Zd齵g|_콓(xr{l.}DysmHhO6o`1!θ~iIaӁ TW{ڏUQ[cCW;5P& ʩ0Xtg؍Ju&m")wzx?zc3oߩR(k;{#ϖ5~u7w{M~|KrʆYlm5?n?RF>|wQV+bRZY>:_n%S13:z8޺Rq~ɑ)VVQ'vQ&4jh/mKvȳK>yCmlWjj+lM+x^7j8d+J&L%M*! Kk&Kv},q&:ki2_ i~ew&KmcMG+Zc6Q4}b0>cbme M[{.yv5;$Otr\Ag+x{'Sc7d;vj+V__.w%Hۧ.y}bKk,ҳ]>쒏k^w٥$/+(VSYy݌ *WnR뵏Wm| ^eeĝ'f&000000000000000000000^^Z䏷KvȳK>y?}R.{9'%V+x{/GHƵ+͍(qr齋3ދ5NLh'000000000000000000000^^Zd齵g|_콣qrR uew2QOqч~)xL+ۄ~>]ƕU8&f&000000000000000000000^pa{k/=#5޻ϱzw3,Wr\ 4ݩ99y^x`j&J0>絴cb m޳vȳK>y?ʁ&Nn Xyewuqgxw{ҒIDrnKM+/Q&NQ'4jh/mg|%׼?ӯo[K7?"ěsոx{ǏKgEn.&kmedfyimv9켍jfJ-rG9rmM"f^LNh'000000000000000000000^^Zd͵g|_zm^iZ11}CmM{ċI$L+x^Wmb9+6/0;{{ڕUwbyxYC{im6^zG]1kᔕfhFi1,Wn΄4w7K>:__B*:s޻VVQ'vQ&4kH/mg|%׼vfB_v[0^7ord_Yހ}ZGyr9+ZS6ߑKwiv,3cb 6Yjsg|%׼oRRf[Yy]L?WsY>^﷉% ޻v]3/Ol☘yxYC{im^zG]1kn&%9<پnW+x{'kM79%Ss9*^SuQ>& 5V/mg|%׼~LJKcRW916&KmlW^]czxsߙT)g+x{8nd\|}#XVvYO WVqL܉}bm W,W5w3^Y錕+pΔ\Y*N5yʵ+>&9!ӝ}^KM +1&6qL̼M`````````````````````!o2!lW^]cAD1|fw0hq7C3Џ \nM+/Ol☘yxYcҳM{ҫ]^yuk;$d9e\W+x{g!]m&Α儕f+ɽ&;}b[y>☘yxYcңM{.yv5>S/)eٿ|cV xp'3xZ{+x?vjne=Ps3՝>ܝjf]Y?1q' 5F/=䏷Kvy%k>n]>W+O{ kT9Ƶ+d'!g{ݽX*;O̼M`````````````````````1z&K=~W콓<,s_Lq+<ウqndoϣ+u< M>],ƖU8&f&000000000000000000000^ؐ^Zd齵g|_콫 &t0SYyLC`ܲ.>8eޫ>_Iy<3Tkimcubm 饵Mx g|%׼zLŭDy"rO{M;lg7Stui%M3o/k^z{^zoGO]ccN wb|]Yyu7W޺bkDHrI$܉9☸Kk,ҳ]>r.5{ƣ5,Wnrr'ykN_~;IK&{Uԉ] ƫKkz.yv5Oo?o[2.OdCoN$yǏKg{8ɻy09,oim d̝MiD^KU8&f&000000000000000000000^h6G]1kvM`YljZYyLifxfi䌍ۄo}r&f*M3o/lH/mKvȳK>yv8鋗+.}t<쒏k^޼j+H\;9R7M#{ۿv}Eލy>'_}~slf^b116&KﭽlK>y?r.dr{$G94e2_dMkZK]Y1q' 56Yzog|%׼{blyFsf[Yy]M7WTsdoIWZ4n_Rk^leeĝ'f&000000000000000000000^ؐ^Zd齵g|_轳5^ΦyK,W$9Ś쒏k^w6߼/&56r{b年F6wQzJK'ωhSyܤ>& 56Yzog|%׼{&7v{WP yewq).qfo+!D;{t/cN,amUKkz.yv5Oo?o[ެD6~iqoϗG] $QHw՛1o,pN#;˝ ܉ͯ☸ Kk,ҳ]>쒏k^,~^)qew1t9#^fvބJrB9!}^K Xs+ 5\[mKvȳK>yvy⥘vfB|3yRlYڼZ '&>_ M9'G)Z'm%M3oj^Z7^zG]1kj:#ޤo8e1GOHrT9%NͭG+>zyLxLOѻ]&֕'6qL̼M`````````````````````1z&Km>z.5kiMjd<3I-o{Yڼ=qmf)pJr〙c"۝lsYY1q'6&Kmly?'ᴦ(r{`99EOzo}%69qMt~-b46116†&Kﭽl쒏k^_?Ei}fxVM8(d-+x^7S͵ /o}+o>EO1[kbXy.✘yxYC{im?V/=#.5]\9-Frzlij59#{[ӝr;͡e=] &'6qL̼M`````````````````````{k/=#.5{Gw]E)e\A11,WƕI.Yv;v}%;!Ή;VVqL܉}bme M[{.yv5޻1*nΚW+x{79yUg[+ry焜?Mb*Sԉ 6l[mǛLx+.y_1{;g|yMs aewIicbme M^{.yv5ԋr{new5-\ &jc+>9;.SmIe%M3o/k^zoG/ʫK^|?}˼rO{ocghoGnGﭯ茋EK%:X*;䕷 5F/=dG/W콣Z0M TW+x{'::k kxLm焷A6r/cNlim 饵M[{.5$a`qǃbcQx͔y;]pN٩VWtb o_|gwɟ̬116†&KmlW^]cv`Mt:ni޴\;8ͥj|;5bܼ^_#W;'Si ~%M3o/kh/mǛLH/=W콃N'wdi|fwj09s&^_#7O]L&. 56Yzog5w6Ex0Y>쒏k^w KW:3IWr{hb-3fg?_i}ZӾxv:q:yx]Õ&Kﭽl1ueykb9׌]s(rܹu}%G9?(%fX*.ʄ}U M\{.yv5o_%&^"GTƃC3,oim r+5u|83$o}RxD6o7O̬NNh'000000000000000000000^א^Z7^zG]1kpMy?D9%ʽrش\;Rnz٩;ֵ+ﶉ;vȓAg^LNh'000000000000000000000^^Zd齵g|_콫ukW+x{7r7/r(LrDj빛޻7XKC W56mҳ]>쒏k^w_q\A4ѯ,WR%Nͱhc^iZ6Q);Uԉ] ƫKk,ҳ]>쒏k^w_{ V+x{g$O٩9:ֵW&m6)wbVWVqL܉}bm 饵M[{.yv5޻J;5ծ,WnM쒏k^~~WwsϷ$؛՟H%lb~}ll~82i`Z[YӺzEkl;5dBЏL_>G5BRu[w1W^b116&Kݮl@G׋<1\q[7kzR\q_o':z ౮q_`s}}?zh׫qq[o΄ѸGG^L>z}|fףqn[q_/ s}mg}=/ zuo忓95A,\q_ >Lzn}=QXz}q[~i}=>͸WSG!oq_8G׫qgghף)q_/mi֋3v4wӸss}m]~>?z0u4Eq74_fӌz}\O?5Y\q_o-ɹ>I3㾞Lz5-l#nw~~3IrW~\q[ z4u4ӸGgiӌz}q[Ovi}=>͸?\q[+a|4An9G7$q_9Gxͱq_g#mQ|Nh&n.oD˞ }o^ǿ`s}+[OMbQ:N6?+7~Sdߟz2;9xBF?̅c1^0[?}?m }twP}][So}?/>BKoZX18'Ck^~/|endstream endobj 6 0 obj << /ExtGState << >> /Font << /F1 7 0 R /F2 8 0 R /F3 9 0 R >> /ProcSet [ /PDF /Text ] >> endobj 7 0 obj << /BaseFont /ZapfDingbats /Name /F1 /Subtype /Type1 /Type /Font >> endobj 8 0 obj << /BaseFont /Helvetica /Encoding 10 0 R /Name /F2 /Subtype /Type1 /Type /Font >> endobj 9 0 obj << /BaseFont /Helvetica-Bold /Encoding 10 0 R /Name /F3 /Subtype /Type1 /Type /Font >> endobj 10 0 obj << /BaseEncoding /WinAnsiEncoding /Differences [ 45 /minus 96 /quoteleft 144 /dotlessi /grave /acute /circumflex /tilde /macron /breve /dotaccent /dieresis /.notdef /ring /cedilla /.notdef /hungarumlaut /ogonek /caron /space ] /Type /Encoding >> endobj xref 0 11 0000000000 65535 f 0000000015 00000 n 0000000064 00000 n 0000000206 00000 n 0000000291 00000 n 0000000371 00000 n 0000043654 00000 n 0000043758 00000 n 0000043841 00000 n 0000043938 00000 n 0000044040 00000 n trailer << /Info 2 0 R /Root 1 0 R /Size 11 /ID [<65afc89bde22018dca44f46b641d2111><65afc89bde22018dca44f46b641d2111>] >> startxref 44302 %%EOF gnm/vignettes/gnmOverview.Rnw0000644000176200001440000037044614376140103016060 0ustar liggesusers%\VignetteIndexEntry{Generalized nonlinear models in R: An overview of the gnm package} %\VignetteKeywords{Generalized Nonlinear Models} %\VignettePackage{gnm} \documentclass[a4paper]{article} \usepackage[english]{babel} % to avoid et~al with texi2pdf \usepackage{Sweave} %\usepackage{alltt} % now replaced by environments Sinput, Soutput, Scode \usepackage{amsmath} %\usepackage{times} %\usepackage[scaled]{couriers} \usepackage{txfonts} % Times, with Belleek math font and txtt for monospaced \usepackage[scaled=0.92]{helvet} %\usepackage[T1]{fontenc} %\usepackage[expert,altbullet,lucidasmallerscale]{lucidabr} \usepackage{booktabs} \usepackage[round,authoryear]{natbib} \usepackage[left=2cm,top=2.5cm,nohead]{geometry} \usepackage{hyperref} \usepackage{array} % for paragraph columns in tables %\usepackage{moreverb} \setkeys{Gin}{width=0.6\textwidth} %% The next few definitions from "Writing Vignettes for Bioconductor Packages" %% by R Gentleman \newcommand{\Robject}[1]{{\emph{\texttt{#1}}}} \newcommand{\Rfunction}[1]{{\emph{\texttt{#1}}}} \newcommand{\Rcode}[1]{{\emph{\texttt{#1}}}} \newcommand{\Rpackage}[1]{{\textsf{#1}}} \newcommand{\Rclass}[1]{{\emph{#1}}} \newcommand{\Rmethod}[1]{{\emph{\texttt{#1}}}} \newcommand{\Rfunarg}[1]{{\emph{\texttt{#1}}}} \newcommand{\R}{\textsf{R}} \newcommand\twiddle{{\char'176}} %\setlength{\oddsidemargin}{0.5in} %\setlength{\evensidemargin}{0.5in} %\setlength{\textwidth}{5.5in} \setlength{\itemindent}{1cm} \title{Generalized nonlinear models in \R: An overview of the \Rpackage{gnm} package} \author{Heather Turner and David Firth\footnote{ This work was supported by the Economic and Social Research Council (UK) through Professorial Fellowship RES-051-27-0055.}\\ \emph{University of Warwick, UK} } \date{For \Rpackage{gnm} version \Sexpr{packageDescription("gnm")[["Version"]]} , \Sexpr{Sys.Date()}} \begin{document} \maketitle {\small \tableofcontents } <>= options(SweaveHooks = list(eval = function() options(show.signif.stars = FALSE))) @ \section{Introduction} The \Rpackage{gnm} package provides facilities for fitting \emph{generalized nonlinear models}, i.e., regression models in which the link-transformed mean is described as a sum of predictor terms, some of which may be non-linear in the unknown parameters. Linear and generalized linear models, as handled by the \Rfunction{lm} and \Rfunction{glm} functions in \R, are included in the class of generalized nonlinear models, as the special case in which there is no nonlinear term. This document gives an extended overview of the \Rpackage{gnm} package, with some examples of applications. The primary package documentation in the form of standard help pages, as viewed in \R\ by, for example, \Rcode{?gnm} or \Rcode{help(gnm)}, is supplemented rather than replaced by the present document. We begin below with a preliminary note (Section \ref{sec:glms}) on some ways in which the \Rpackage{gnm} package extends \R's facilities for specifying, fitting and working with generalized \emph{linear} models. Then (Section \ref{sec:nonlinear} onwards) the facilities for nonlinear terms are introduced, explained and exemplified. The \Rpackage{gnm} package is installed in the standard way for CRAN packages, for example by using \Rfunction{install.packages}. Once installed, the package is loaded into an \R\ session by <>= library(gnm) @ \section{Generalized linear models} \label{sec:glms} \subsection{Preamble} Central to the facilities provided by the \Rpackage{gnm} package is the model-fitting function \Rfunction{gnm}, which interprets a model formula and returns a model object. The user interface of \Rfunction{gnm} is patterned after \Rfunction{glm} (which is included in \R's standard \Rpackage{stats} package), and indeed \Rfunction{gnm} can be viewed as a replacement for \Rfunction{glm} for specifying and fitting generalized linear models. In general there is no reason to prefer \Rfunction{gnm} to \Rfunction{glm} for fitting generalized linear models, except perhaps when the model involves a large number of incidental parameters which are treatable by \Rfunction{gnm}'s \emph{eliminate} mechanism (see Section \ref{sec:eliminate}). While the main purpose of the \Rpackage{gnm} package is to extend the class of models to include nonlinear terms, some of the new functions and methods can be used also with the familiar \Rfunction{lm} and \Rfunction{glm} model-fitting functions. These are: three new data-manipulation functions \Rfunction{Diag}, \Rfunction{Symm} and \Rfunction{Topo}, for setting up structured interactions between factors; a new \Rclass{family} function, \Rfunction{wedderburn}, for modelling a continuous response variable in $[0,1]$ with the variance function $V(\mu) = \mu^2(1-\mu)^2$ as in \citet{Wedd74}; and a new generic function \Rfunction{termPredictors} which extracts the contribution of each term to the predictor from a fitted model object. These functions are briefly introduced here, before we move on to the main purpose of the package, nonlinear models, in Section \ref{sec:nonlinear}. \subsection{\Rfunction{Diag} and \Rfunction{Symm}} When dealing with \emph{homologous} factors, that is, categorical variables whose levels are the same, statistical models often involve structured interaction terms which exploit the inherent symmetry. The functions \Rfunction{Diag} and \Rfunction{Symm} facilitate the specification of such structured interactions. As a simple example of their use, consider the log-linear models of \emph{quasi-independence}, \emph{quasi-symmetry} and \emph{symmetry} for a square contingency table. \citet{Agre02}, Section 10.4, gives data on migration between regions of the USA between 1980 and 1985: <>= count <- c(11607, 100, 366, 124, 87, 13677, 515, 302, 172, 225, 17819, 270, 63, 176, 286, 10192 ) region <- c("NE", "MW", "S", "W") row <- gl(4, 4, labels = region) col <- gl(4, 1, length = 16, labels = region) @ The comparison of models reported by Agresti can be achieved as follows: <>= independence <- glm(count ~ row + col, family = poisson) quasi.indep <- glm(count ~ row + col + Diag(row, col), family = poisson) symmetry <- glm(count ~ Symm(row, col), family = poisson) quasi.symm <- glm(count ~ row + col + Symm(row, col), family = poisson) comparison1 <- anova(independence, quasi.indep, quasi.symm) print(comparison1, digits = 7) comparison2 <- anova(symmetry, quasi.symm) print(comparison2) @ The \Rfunction{Diag} and \Rfunction{Symm} functions also generalize the notions of diagonal and symmetric interaction to cover situations involving more than two homologous factors. \subsection{\Rfunction{Topo}} More general structured interactions than those provided by \Rfunction{Diag} and \Rfunction{Symm} can be specified using the function \Rfunction{Topo}. (The name of this function is short for `topological interaction', which is the nomenclature often used in sociology for factor interactions with structure derived from subject-matter theory.) The \Rfunction{Topo} function operates on any number ($k$, say) of input factors, and requires an argument named \Rfunarg{spec} which must be an array of dimension $L_1 \times \ldots \times L_k$, where $L_i$ is the number of levels for the $i$th factor. The \Rfunarg{spec} argument specifies the interaction level corresponding to every possible combination of the input factors, and the result is a new factor representing the specified interaction. As an example, consider fitting the `log-multiplicative layer effects' models described in \citet{Xie92}. The data are 7 by 7 versions of social mobility tables from \citet{Erik82}: <>= ### Collapse to 7 by 7 table as in Erikson et al. (1982) erikson <- as.data.frame(erikson) lvl <- levels(erikson$origin) levels(erikson$origin) <- levels(erikson$destination) <- c(rep(paste(lvl[1:2], collapse = " + "), 2), lvl[3], rep(paste(lvl[4:5], collapse = " + "), 2), lvl[6:9]) erikson <- xtabs(Freq ~ origin + destination + country, data = erikson) @ From sociological theory --- for which see \citet{Erik82} or \citet{Xie92} --- the log-linear interaction between origin and destination is assumed to have a particular structure: \begin{Sinput} > levelMatrix <- matrix(c(2, 3, 4, 6, 5, 6, 6, + 3, 3, 4, 6, 4, 5, 6, + 4, 4, 2, 5, 5, 5, 5, + 6, 6, 5, 1, 6, 5, 2, + 4, 4, 5, 6, 3, 4, 5, + 5, 4, 5, 5, 3, 3, 5, + 6, 6, 5, 3, 5, 4, 1), 7, 7, byrow = TRUE) \end{Sinput} The models of table 3 of \citet{Xie92} can now be fitted as follows: \begin{Sinput} > ## Null association between origin and destination > nullModel <- gnm(Freq ~ country:origin + country:destination, + family = poisson, data = erikson, verbose = FALSE) > > ## Interaction specified by levelMatrix, common to all countries > commonTopo <- update(nullModel, ~ . + + Topo(origin, destination, spec = levelMatrix), + verbose = FALSE) > > ## Interaction specified by levelMatrix, different multiplier for each country > multTopo <- update(nullModel, ~ . + + Mult(Exp(country), Topo(origin, destination, spec = levelMatrix)), + verbose = FALSE) > > ## Interaction specified by levelMatrix, different effects for each country > separateTopo <- update(nullModel, ~ . + + country:Topo(origin, destination, spec = levelMatrix), + verbose = FALSE) > > anova(nullModel, commonTopo, multTopo, separateTopo) \end{Sinput} \begin{Soutput} Analysis of Deviance Table Model 1: Freq ~ country:origin + country:destination Model 2: Freq ~ Topo(origin, destination, spec = levelMatrix) + country:origin + country:destination Model 3: Freq ~ Mult(country, Topo(origin, destination, spec = levelMatrix)) + country:origin + country:destination Model 4: Freq ~ country:origin + country:destination + country:Topo(origin, destination, spec = levelMatrix) Resid. Df Resid. Dev Df Deviance 1 108 4860.0 2 103 244.3 5 4615.7 3 101 216.4 2 28.0 4 93 208.5 8 7.9 \end{Soutput} Here we have used \Rfunction{gnm} to fit all of these log-link models; the first, second and fourth are log-linear and could equally well have been fitted using \Rfunction{glm}. \subsection{The \Rfunction{wedderburn} family} In \citet{Wedd74} it was suggested to represent the mean of a continuous response variable in $[0,1]$ using a quasi-likelihood model with logit link and the variance function $\mu^2(1-\mu)^2$. This is not one of the variance functions made available as standard in \R's \Rfunction{quasi} family. The \Rfunction{wedderburn} family provides it. As an example, Wedderburn's analysis of data on leaf blotch on barley can be reproduced as follows: <>= ## data from Wedderburn (1974), see ?barley logitModel <- glm(y ~ site + variety, family = wedderburn, data = barley) fit <- fitted(logitModel) print(sum((barley$y - fit)^2 / (fit * (1-fit))^2)) @ This agrees with the chi-squared value reported on page 331 of \citet{McCu89}, which differs slightly from Wedderburn's own reported value. \subsection{\Rfunction{termPredictors}} \label{sec:termPredictors} The generic function \Rfunction{termPredictors} extracts a term-by-term decomposition of the predictor function in a linear, generalized linear or generalized nonlinear model. As an illustrative example, we can decompose the linear predictor in the above quasi-symmetry model as follows: <>= print(temp <- termPredictors(quasi.symm)) rowSums(temp) - quasi.symm$linear.predictors @ Such a decomposition might be useful, for example, in assessing the relative contributions of different terms or groups of terms. \section{Nonlinear terms} \label{sec:nonlinear} The main purpose of the \Rpackage{gnm} package is to provide a flexible framework for the specification and estimation of generalized models with nonlinear terms. The facility provided with \Rfunction{gnm} for the specification of nonlinear terms is designed to be compatible with the symbolic language used in \Rclass{formula} objects. Primarily, nonlinear terms are specified in the model formula as calls to functions of the class \Rclass{nonlin}. There are a number of \Rclass{nonlin} functions included in the \Rpackage{gnm} package. Some of these specify simple mathematical functions of predictors: \Rfunction{Exp}, \Rfunction{Mult}, and \Rfunction{Inv}. %\Rfunction{Log}, \Rfunction{Raise} (to raise to a constant power), and \Rfunction{Logit}. Others specify more specialized nonlinear terms, in particular \Rfunction{MultHomog} specifies homogeneous multiplicative interactions and \Rfunction{Dref} specifies diagonal reference terms. Users may also define their own \Rclass{nonlin} functions. \subsection{Basic mathematical functions of predictors} \label{sec:Basic} Most of the \Rclass{nonlin} functions included in \Rpackage{gnm} are basic mathematical functions of predictors: \begin{description} \setlength{\itemindent}{-0.5cm} \item[\Rfunction{Exp}:] the exponential of a predictor \item[\Rfunction{Inv}:] the reciprocal of a predictor %\item[\Rfunction{Log}:] the natural logarithm of a predictor %\item[\Rfunction{Logit}:] the logit of a predictor \item[\Rfunction{Mult}:] the product of predictors %\item[\Rfunction{Raise}:] a predictor raised to a constant power \end{description} Predictors are specified by symbolic expressions that are interpreted as the right-hand side of a \Rclass{formula} object, except that an intercept is \textbf{not} added by default. The predictors may contain nonlinear terms, allowing more complex functions to be built up. For example, suppose we wanted to specify a logistic predictor with the same form as that used by \Rfunction{SSlogis} (a selfStart model for use with \Rfunction{nls} --- see section~\ref{sec:gnmVnls} for more on \Rfunction{gnm} vs.\ \Rfunction{nls}): \[\frac{\text{Asym}}{1 + \exp((\text{xmid} - x)/\text{scal})}.\] This expression could be simplified by re-parameterizing in terms of xmid/scal and 1/scal, however we shall continue with this form for illustration. We could express this predictor symbolically as follows \begin{Scode} ~ -1 + Mult(1, Inv(Const(1) + Exp(Mult(1 + offset(-x), Inv(1))))) \end{Scode} where \Rfunction{Const} is a convenience function to specify a constant in a \Rclass{nonlin} term, equivalent to \Rcode{offset(rep(1, nObs))} where \Robject{nObs} is the number of observations. However, this is rather convoluted and it may be preferable to define a specialized \Rclass{nonlin} function in such a case. Section \ref{sec:nonlin.functions} explains how users can define custom \Rclass{nonlin} functions, with a function to specify logistic terms as an example. One family of models usefully specified with the basic functions is the family of models with multiplicative interactions. For example, the row-column association model \[ \log \mu_{rc} = \alpha_r + \beta_c + \gamma_r\delta_c, \] also known as the Goodman RC model \citep{Good79}, would be specified as a log-link model (for response variable \Robject{resp}, say), with formula \begin{Scode} resp ~ R + C + Mult(R, C) \end{Scode} where \Robject{R} and \Robject{C} are row and column factors respectively. In some contexts, it may be desirable to constrain one or more of the constituent multipliers\footnote{ A note on terminology: the rather cumbersome phrase `constituent multiplier', or sometimes the abbreviation `multiplier', will be used throughout this document in preference to the more elegant and standard mathematical term `factor'. This will avoid possible confusion with the completely different meaning of the word `factor' --- that is, a categorical variable --- in \R. } in a multiplicative interaction to be nonnegative . This may be achieved by specifying the multiplier as an exponential, as in the following `uniform difference' model \citep{Xie92, Erik92} \[ \log \mu_{rct} = \alpha_{rt} + \beta_{ct} + e^{\gamma_t}\delta_{rc}, \] which would be represented by a formula of the form \begin{Scode} resp ~ R:T + C:T + Mult(Exp(T), R:C) \end{Scode} \subsection{\Rfunction{MultHomog}} \Rfunction{MultHomog} is a \Rclass{nonlin} function to specify multiplicative interaction terms in which the constituent multipliers are the effects of two or more factors and the effects of these factors are constrained to be equal when the factor levels are equal. The arguments of \Rfunction{MultHomog} are the factors in the interaction, which are assumed to be objects of class \Rclass{factor}. As an example, consider the following association model with homogeneous row-column effects: \[\log \mu_{rc} = \alpha_r + \beta_c + \theta_{r}I(r=c) + \gamma_r\gamma_c.\] To fit this model, with response variable named \Robject{resp}, say, the formula argument to \Rfunction{gnm} would be \begin{Scode} resp ~ R + C + Diag(R, C) + MultHomog(R, C) \end{Scode} If the factors passed to \Rfunction{MultHomog} do not have exactly the same levels, a common set of levels is obtained by taking the union of the levels of each factor, sorted into increasing order. \subsection{\Rfunction{Dref}} \label{sec:Dref function} \Rfunction{Dref} is a \Rclass{nonlin} function to fit diagonal reference terms \citep{Sobe81, Sobe85} involving two or more factors with a common set of levels. A diagonal reference term comprises an additive component for each factor. The component for factor $f$ is given by \[ w_f\gamma_l \] for an observation with level $l$ of factor $f$, where $w_f$ is the weight for factor $f$ and $\gamma_l$ is the ``diagonal effect'' for level $l$. The weights are constrained to be nonnegative and to sum to one so that a ``diagonal effect'', say $\gamma_l$, is the value of the diagonal reference term for data points with level $l$ across the factors. \Rfunction{Dref} specifies the constraints on the weights by defining them as \[ w_f = \frac{e^{\delta_f}}{\sum_i e^{\delta_i}} \] where the $\delta_f$ are the parameters to be estimated. Factors defining the diagonal reference term are passed as unspecified arguments to \Rfunction{Dref}. For example, the following diagonal reference model for a contingency table classified by the row factor \Robject{R} and the column factor \Robject{C}, \[ \mu_{rc} =\frac{e^{\delta_1}}{e^{\delta_1} + e^{\delta_2}}\gamma_r + \frac{e^{\delta_2}}{e^{\delta_1} + e^{\delta_2}}\gamma_c, \] would be specified by a formula of the form \begin{Scode} resp ~ -1 + Dref(R, C) \end{Scode} The \Rfunction{Dref} function has one specified argument, \Rfunarg{delta}, which is a formula with no left-hand side, specifying the dependence (if any) of $\delta_f$ on covariates. For example, the formula \begin{Scode} resp ~ -1 + x + Dref(R, C, delta = ~ 1 + x) \end{Scode} specifies the generalized diagonal reference model \[ \mu_{rci} = \beta x_i + \frac{e^{\xi_{01} + \xi_{11}x_i}}{e^{\xi_{01} + \xi_{11}x_i} + e^{\xi_{02} + \xi_{12}x_i}}\gamma_r + \frac{e^{\xi_{02} + \xi_{12}x_i}}{e^{\xi_{01} + \xi_{11}x_i} + e^{\xi_{02} + \xi_{12}x_i}}\gamma_c. \] The default value of \Rfunarg{delta} is \Robject{\twiddle 1}, so that constant weights are estimated. The coefficients returned by \Rfunction{gnm} are those that are directly estimated, i.e. the $\delta_f$ or the $\xi_{.f}$, rather than the implied weights $w_f$. However, these weights may be obtained from a fitted model using the \Rfunction{DrefWeights} function, which computes the corresponding standard errors using the delta method. \subsection{\Rfunction{instances}} \label{sec:instances} Multiple instances of a linear term will be aliased with each other, but this is not necessarily the case for nonlinear terms. Indeed, there are certain types of model where adding further instances of a nonlinear term is a natural way to extend the model. For example, Goodman's RC model, introduced in section \ref{sec:Basic} \[ \log \mu_{rc} = \alpha_r + \beta_c + \gamma_r\delta_c, \] is naturally extended to the RC(2) model, with a two-component interaction \[ \log \mu_{rc} = \alpha_r + \beta_c + \gamma_r\delta_c + \theta_r\phi_c. \] Currently all of the \Rclass{nonlin} functions in \Rpackage{gnm} except \Rpackage{Dref} have an \Rfunarg{inst} argument to allow the specification of multiple instances. So the RC(2) model could be specified as follows \begin{Scode} resp ~ R + C + Mult(R, C, inst = 1) + Mult(R, C, inst = 2) \end{Scode} The convenience function \Rfunction{instances} allows multiple instances of a term to be specified at once \begin{Scode} resp ~ R + C + instances(Mult(R, C), 2) \end{Scode} The formula is expanded by \Rfunction{gnm}, so that the instances are treated as separate terms. The \Rfunction{instances} function may be used with any function with an \Rfunarg{inst} argument. \subsection{Custom \Rclass{nonlin} functions} \label{sec:nonlin.functions} \subsubsection{General description} Users may write their own \Rclass{nonlin} functions to specify nonlinear terms which can not (easily) be specified using the \Rclass{nonlin} functions in the \Rpackage{gnm} package. A function of class \Rclass{nonlin} should return a list of arguments for the internal function \Rfunction{nonlinTerms}. The following arguments must be specified in all cases: \begin{description} \setlength{\itemindent}{-0.5cm} \item[\Robject{predictors}:] a list of symbolic expressions or formulae with no left hand side which represent (possibly nonlinear) predictors that form part of the term. \item[\Robject{term}:] a function that takes the arguments \Rfunarg{predLabels} and \Rfunarg{varLabels}, which are labels generated by \Rfunction{gnm} for the specified predictors and variables (see below), and returns a deparsed mathematical expression of the nonlinear term. Only functions recognised by \Rfunction{deriv} should be used in the expression, e.g. \Rfunction{+} rather than \Rfunction{sum}. \end{description} If predictors are named, these names are used as a prefix for parameter labels or as the parameter label itself in the single-parameter case. The following arguments of \Rfunction{nonlinTerms} must be specified whenever applicable to the nonlinear term: \begin{description} \setlength{\itemindent}{-0.5cm} \item[\Robject{variables}:] a list of expressions representing variables in the term (variables with a coefficient of 1). \item[\Robject{common}:] a numeric index of \Rfunarg{predictors} with duplicated indices identifying single factor predictors for which homologous effects are to be estimated. \end{description} The arguments below are optional: \begin{description} \setlength{\itemindent}{-0.5cm} \item[\Robject{call}:] a call to be used as a prefix for parameter labels. \item[\Robject{match}:] (if \Robject{call} is non-\Rcode{NULL}) a numeric index of \Robject{predictors} specifying which arguments of \Robject{call} the predictors match to --- zero indicating no match. If \Rcode{NULL}, predictors will not be matched to the arguments of \Robject{call}. \item[\Robject{start}:] a function which takes a named vector of parameters corresponding to the predictors and returns a vector of starting values for those parameters. This function is ignored if the term is nested within another nonlinear term. \end{description} Predictors which are matched to a specified argument of \Robject{call} should be given the same name as the argument. Matched predictors are labelled using ``dot-style'' labelling, e.g. the label for the intercept in the first constituent multiplier of the term \Rcode{Mult(A, B)} would be \Rcode{"Mult(.\ + A, 1 + B).(Intercept)"}. It is recommended that matches are specified wherever possible, to ensure parameter labels are well-defined. The arguments of \Rclass{nonlin} functions are as suited to the particular term, but will usually include symbolic representations of predictors in the term and/or the names of variables in the term. The function may also have an \Rfunarg{inst} argument to allow specification of multiple instances (see \ref{sec:instances}). \subsubsection{Example: a logistic function} As an example, consider writing a \Rclass{nonlin} function for the logistic term discussed in \ref{sec:Basic}: \[\frac{\text{Asym}}{1 + \exp((\text{xmid} - x)/\text{scal})}.\] We can consider \emph{Asym}, \emph{xmid} and \emph{scal} as the parameters of three separate predictors, each with a single intercept term. Thus we specify the \Rfunarg{predictors} argument to \Rfunction{nonlinTerms} as \begin{Scode} predictors = list(Asym = 1, xmid = 1, scal = 1) \end{Scode} The term also depends on the variable $x$, which would need to be specified by the user. Suppose this is specified to our \Rclass{nonlin} function through an argument named \Rfunarg{x}. Then our \Rclass{nonlin} function would specify the following \Rfunarg{variables} argument \begin{Scode} variables = list(substitute(x)) \end{Scode} We need to use \Rfunction{substitute} here to list the variable specified by the user rather than the variable named \Rcode{``x''} (if it exists). Our \Rclass{nonlin} function must also specify the \Rfunarg{term} argument to \Rfunction{nonlinTerms}. This is a function that will paste together an expression for the term, given labels for the predictors and the variables: \begin{Scode} term = function(predLabels, varLabels) { paste(predLabels[1], "/(1 + exp((", predLabels[2], "-", varLabels[1], ")/", predLabels[3], "))") } \end{Scode} We now have all the necessary ingredients of a \Rclass{nonlin} function to specify the logistic term. Since the parameterization does not depend on user-specified values, it does not make sense to use call-matched labelling in this case. The labels for our parameters will be taken from the labels of the \Rfunarg{predictors} argument. Since we do not anticipate fitting models with multiple logistic terms, our \Rclass{nonlin} function will not specify a \Rfunarg{call} argument with which to prefix the parameter labels. We do however, have some idea of useful starting values, so we will specify the \Rfunarg{start} argument as \begin{Scode} start = function(theta){ theta[3] <- 1 theta } \end{Scode} which sets the initial scale parameter to one. Putting all these ingredients together we have \begin{Scode} Logistic <- function(x){ list(predictors = list(Asym = 1, xmid = 1, scal = 1), variables = list(substitute(x)), term = function(predLabels, varLabels) { paste(predLabels[1], "/(1 + exp((", predLabels[2], "-", varLabels[1], ")/", predLabels[3], "))") }, start = function(theta){ theta[3] <- 1 theta }) } class(Logistic) <- "nonlin" \end{Scode} \subsubsection{Example: \Rfunction{MultHomog}} The \Rfunction{MultHomog} function included in the \Rpackage{gnm} package provides a further example of a \Rclass{nonlin} function, showing how to specify a term with quite different features from the preceding example. The definition is \begin{Scode} MultHomog <- function(..., inst = NULL){ dots <- match.call(expand.dots = FALSE)[["..."]] list(predictors = dots, common = rep(1, length(dots)), term = function(predLabels, ...) { paste("(", paste(predLabels, collapse = ")*("), ")", sep = "")}, call = as.expression(match.call())) } class(MultHomog) <- "nonlin" \end{Scode} Firstly, the interaction may be based on any number of factors, hence the use of the special ``\Rfunarg{...}'' argument. The use of \Rfunction{match.call} is analogous to the use of \Rfunction{substitute} in the \Rfunction{Logistic} function: to obtain expressions for the factors as specified by the user. The returned \Rfunarg{common} argument specifies that homogeneous effects are to be estimated across all the specified factors. The term only depends on these factors, but the \Rfunarg{term} function allows for the empty \Robject{varLabels} vector that will be passed to it, by having a ``\Rfunarg{...}'' argument. Since the user may wish to specify multiple instances, the \Rfunarg{call} argument to \Rfunction{nonlinTerms} is specified, so that parameters in different instances of the term will have unique labels (due to the \Rfunarg{inst} argument in the call). However as the expressions passed to ``\Rfunarg{...}'' may only represent single factors, rather than general predictors, it is not necessary to use call-matched labelling, so the \Rfunarg{match} argument is not specified here. % Dref starting values as example of ensuring the arbitrariness of the final % parameterization is emphasised (see old plug-in section)? \section{Controlling the fitting procedure} The \Rfunction{gnm} function has a number of arguments which affect the way a model will be fitted. Basic control parameters can be set using the arguments %\Rfunarg{checkLinear}, \Rfunarg{lsMethod}, \Rfunarg{ridge}, \Rfunarg{tolerance}, \Rfunarg{iterStart} and \Rfunarg{iterMax}. Starting values for the parameter estimates can be set by \Rfunarg{start} or they can be generated from starting values for the predictors on the link or response scale via \Rfunarg{etastart} or \Rfunarg{mustart} respectively. Parameters can be constrained via \Rfunarg{constrain} and \Rfunarg{constrainTo} arguments, while parameters of a stratification factor can be handled more efficiently by specifying the factor in an \Rfunarg{eliminate} argument. These options are described in more detail below. \subsection{Basic control parameters} %By default, \Rfunction{gnm} will use \Rfunction{glm.fit} to fit models where the %predictor is linear and \Rfunarg{eliminate} is \Rcode{NULL}. This behaviour can %be overridden by setting \Rfunarg{checkLinear} to \Rcode{FALSE}. %%% At present there is no advantage to doing this! Parameterization would be %%% the same. The arguments \Rfunarg{iterStart} and \Rfunarg{iterMax} control respectively the number of starting iterations (where applicable) and the number of main iterations used by the fitting algorithm. The progress of these iterations can be followed by setting either \Rfunarg{verbose} or \Rfunarg{trace} to \Robject{TRUE}. If \Rfunarg{verbose} is \Robject{TRUE} and \Rfunarg{trace} is \Robject{FALSE}, which is the default setting, progress is indicated by printing the character ``.'' at the beginning of each iteration. If \Rfunarg{trace} is \Robject{TRUE}, the deviance is printed at the beginning of each iteration (over-riding the printing of ``.'' if necessary). Whenever \Rfunarg{verbose} is \Robject{TRUE}, additional messages indicate each stage of the fitting process and diagnose any errors that cause that cause the algorithm to restart. Prior to solving the (typically rank-deficient) least squares problem at the heart of the \Rfunction{gnm} fitting algorithm, the design matrix is standardized and regularized (in the Levenberg-Marquardt sense); the \Rfunarg{ridge} argument provides a degree of control over the regularization performed (smaller values may sometimes give faster convergence but can lead to numerical instability). The fitting algorithm will terminate before the number of main iterations has reached \Rfunarg{iterMax} if the convergence criteria have been met, with tolerance specified by \Rfunarg{tolerance}. Convergence is judged by comparing the squared components of the score vector with corresponding elements of the diagonal of the Fisher information matrix. If, for all components of the score vector, the ratio is less than \Robject{tolerance\^{}2}, or the corresponding diagonal element of the Fisher information matrix is less than 1e-20, the algorithm is deemed to have converged. \subsection{Specifying starting values} \label{sec:start} \subsubsection{Using \Rfunarg{start}} In some contexts, the default starting values may not be appropriate and the fitting algorithm will fail to converge, or perhaps only converge after a large number of iterations. Alternative starting values may be passed on to \Rfunction{gnm} by specifying a \Rfunarg{start} argument. This should be a numeric vector of length equal to the number of parameters (or possibly the non-eliminated parameters, see Section \ref{sec:eliminate}), however missing starting values (\Robject{NA}s) are allowed. If there is no user-specified starting value for a parameter, the default value is used. This feature is particularly useful when adding terms to a model, since the estimates from the original model can be used as starting values, as in this example: \begin{Scode} model1 <- gnm(mu ~ R + C + Mult(R, C)) model2 <- gnm(mu ~ R + C + instances(Mult(R, C), 2), start = c(coef(model1), rep(NA, 10))) \end{Scode} The \Rfunction{gnm} call can be made with \Rcode{method = "coefNames"} to identify the parameters of a model prior to estimation, to assist with the specification of arguments such as \Rfunarg{start}. For example, to get the number \Rcode{10} for the value of \Rfunarg{start} above, we could have done \begin{Scode} gnm(mu ~ R + C + instances(Mult(R, C), 2), method = "coefNames") \end{Scode} from whose output it would be seen that there are 10 new coefficients in \Robject{model2}. When called with \Rcode{method = "coefNames"}, \Rfunction{gnm} makes no attempt to fit the specified model; instead it returns just the names that the coefficients in the fitted model object would have. The starting procedure used by \Rfunction{gnm} is as follows: \begin{enumerate} \item Begin with all parameters set to \Rcode{NA}. \item \label{i:nonlin} Replace \Rcode{NA} values with any starting values set by \Rclass{nonlin} functions. \item \label{i:start} Replace current values with any (non-\Rcode{NA}) starting values specified by the \Rfunarg{start} argument of \Rfunction{gnm}. \item \label{i:constrain} Set any values specified by the \Rfunarg{constrain} argument to the values specified by the \Rfunarg{constrainTo} argument (see Section \ref{sec:constrain}). \item \label{i:gnmStart} Categorise remaining \Rcode{NA} parameters as linear or nonlinear, treating non-\Rcode{NA} parameters as fixed. Initialise the nonlinear parameters by generating values $\theta_i$ from the Uniform($-0.1$, $0.1$) distribution and shifting these values away from zero as follows \begin{equation*} \theta_i = \begin{cases} \theta_i - 0.1 & \text{if } \theta_i < 1 \\ \theta_i + 0.1 & \text{otherwise} \end{cases} \end{equation*} \item Compute the \Rfunction{glm} estimate of the linear parameters, offsetting the contribution to the predictor of any terms fully determined by steps \ref{i:nonlin} to \ref{i:gnmStart}. \item \label{i:iter} Run starting iterations: update nonlinear parameters one at a time, jointly re-estimating linear parameters after each round of updates. \end{enumerate} Note that no starting iterations (step \ref{i:iter}) will be run if all parameters are linear, or if all nonlinear parameters are specified by \Rfunarg{start}, \Rfunarg{constrain} or a \Rclass{nonlin} function. \subsubsection{Using \Rfunarg{etastart} or \Rfunarg{mustart}} An alternative way to set starting values for the parameters is to specify starting values for the predictors. If there are linear parameters in the model, the predictor starting values are first used to fit a model with only the linear terms (offsetting any terms fully specified by starting values given by \Rfunarg{start}, \Rfunarg{constrain} or a \Rclass{nonlin} function). In this case the parameters corresponding to the predictor starting values can be computed analytically. If the fitted model reproduces the predictor starting values, then these values contain no further information and they are replaced using the \Rfunction{initialize} function of the specified \Rfunarg{family}. The predictor starting values or their replacement are then used as the response variable in a nonlinear least squares model with only the unspecified nonlinear terms, offsetting the contribution of any other terms. Since the model is over-parameterized, the model is approximated using \Rfunarg{iterStart} iterations of the ``L-BFGS-B'' algorithm of \Rfunction{optim}, assuming parameters lie in the range (-10, 10). Starting values for the predictors can be specified explicitly via \Rfunarg{etastart} or implicitly by passing starting values for the fitted means to \Rfunarg{mustart}. For example, when extending a model, the fitted predictors from the first model can be used to find starting values for the parameters of the second model: \begin{Scode} model1 <- gnm(mu ~ R + C + Mult(R, C)) model2 <- gnm(mu ~ R + C + instances(Mult(R, C), 2), etastart = model1$predictors) \end{Scode} %$ Using \Rfunction{etastart} avoids the one-parameter-at-a-time starting iterations, so is quicker than using \Rfunction{start} to pass on information from a nested model. However \Rfunction{start} will generally produce better starting values so should be used when feasible. For multiplicative terms, the \Rfunction{residSVD} functions provides a better way to avoid starting iterations. \subsection{Using \Rfunarg{constrain}} \label{sec:constrain} By default, \Rfunction{gnm} only imposes identifiability constraints according to the general conventions used by \Robject{R} to handle linear aliasing. Therefore models that have any nonlinear terms will be typically be over-parameterized, and \Rfunction{gnm} will return a random parameterization for unidentified coefficients (determined by the randomly chosen starting values for the iterative algorithm, step 5 above). To illustrate this point, consider the following application of \Rfunction{gnm}, discussed later in Section \ref{sec:RCmodels}: <>= set.seed(1) RChomog1 <- gnm(Freq ~ origin + destination + Diag(origin, destination) + MultHomog(origin, destination), family = poisson, data = occupationalStatus, verbose = FALSE) @ Running the analysis again from a different seed <>= set.seed(2) RChomog2 <- update(RChomog1) @ gives a different representation of the same model: <>= compareCoef <- cbind(coef(RChomog1), coef(RChomog2)) colnames(compareCoef) <- c("RChomog1", "RChomog2") round(compareCoef, 4) @ Even though the linear terms are constrained, the parameter estimates for the main effects of \Robject{origin} and \Robject{destination} still change, because these terms are aliased with the higher order multiplicative interaction, which is unconstrained. Standard errors are only meaningful for identified parameters and hence the output of \Rmethod{summary.gnm} will show clearly which coefficients are estimable: <>= summary(RChomog2) @ Additional constraints may be specified through the \Rfunarg{constrain} and \Rfunarg{constrainTo} arguments of \Rfunction{gnm}. These arguments specify respectively parameters that are to be constrained in the fitting process and the values to which they should be constrained. Parameters may be specified by a regular expression to match against the parameter names, a numeric vector of indices, a character vector of names, or, if \Rcode{constrain = "[?]"} they can be selected through a \emph{Tk} dialog. The values to constrain to should be specified by a numeric vector; if \Rfunarg{constrainTo} is missing, constrained parameters will be set to zero. In the case above, constraining one level of the homogeneous multiplicative factor is sufficient to make the parameters of the nonlinear term identifiable, and hence all parameters in the model identifiable. Figure~\ref{fig:Tk} illustrates how the coefficient to be constrained may be specified via a \emph{Tk} dialog, an approach which can be helpful in interactive R sessions. % here illustrate TclTk dialog, but explain other methods better for reproducibility \begin{figure}[tp] \centering \begin{tabular}[!h]{m{0.6\linewidth}m{0.4\linewidth}} \scalebox{0.9}{\includegraphics{screenshot1.png}} & When \Rfunction{gnm} is called with \Rcode{constrain = "[?]"}, a \emph{Tk} dialog is shown listing the coefficients in the model.\\ \scalebox{0.9}{\includegraphics{screenshot2.png}} & Scroll through the coefficients and click to select a single coefficient to constrain. To select multiple coefficients, hold down the \texttt{Ctrl} key whilst clicking. The \texttt{Add} button will become active when coefficient(s) have been selected.\\ \scalebox{0.9}{\includegraphics{screenshot3.png}} & Click the \texttt{Add} button to add the selected coefficients to the list of coefficients to be constrained. To remove coefficients from the list, select the coefficients in the right pane and click \texttt{Remove}. Click \texttt{OK} when you have finalised the list.\\ \end{tabular} \caption{Selecting coefficients to constrain with the \emph{Tk} dialog.} \label{fig:Tk} \end{figure} However for reproducible code, it is best to specify the constrained coefficients directly. For example, the following code specifies that the last level of the homogeneous multiplicative factor should be constrained to zero, <>= set.seed(1) RChomogConstrained1 <- update(RChomog1, constrain = length(coef(RChomog1))) @ Since all the parameters are now constrained, re-fitting the model will give the same results, regardless of the random seed set beforehand: <>= set.seed(2) RChomogConstrained2 <- update(RChomogConstrained1) identical(coef(RChomogConstrained1), coef(RChomogConstrained2)) @ It is not usually so straightforward to constrain all the parameters in a generalized nonlinear model. However use of \Rfunarg{constrain} in conjunction with \Rfunarg{constrainTo} is usually sufficient to make coefficients of interest identifiable . The functions \Rfunction{checkEstimable} or \Rfunction{getContrasts}, described in Section \ref{sec:Methods}, may be used to check whether particular combinations of parameters are estimable. \subsection{Using \Rfunarg{eliminate}} \label{sec:eliminate} When a model contains the additive effect of a factor which has a large number of levels, the iterative algorithm by which maximum likelihood estimates are computed can usually be accelerated by use of the \Rfunarg{eliminate} argument to \Rfunction{gnm}. A factor passed to \Rfunarg{eliminate} specifies the first term in the model, replacing any intercept term. So, for example \begin{Scode} gnm(mu ~ A + B + Mult(A, B), eliminate = strata1:strata2) \end{Scode} is equivalent, in terms of the structure of the model, to \begin{Scode} gnm(mu ~ -1 + strata1:strata2 + A + B + Mult(A, B)) \end{Scode} However, specifying a factor through \Rfunarg{eliminate} has two advantages over the standard specification. First, the structure of the eliminated factor is exploited so that computational speed is improved --- substantially so if the number of eliminated parameters is large. Second, eliminated parameters are returned separately from non-eliminated parameters (as an attribute of the \Robject{coefficients} component of the returned object). Thus eliminated parameters are excluded from printed model summaries by default and disregarded by \Rclass{gnm} methods that would not be relevant to such parameters (see Section \ref{sec:Methods}). The \Rfunarg{eliminate} feature is useful, for example, when multinomial-response models are fitted by using the well known equivalence between multinomial and (conditional) Poisson likelihoods. In such situations the sufficient statistic involves a potentially large number of fixed multinomial row totals, and the corresponding parameters are of no substantive interest. For an application see Section \ref{sec:Stereotype} below. Here we give an artificial illustration: 1000 randomly-generated trinomial responses, and a single predictor variable (whose effect on the data generation is null): <>= set.seed(1) n <- 1000 x <- rep(rnorm(n), rep(3, n)) counts <- as.vector(rmultinom(n, 10, c(0.7, 0.1, 0.2))) rowID <- gl(n, 3, 3 * n) resp <- gl(3, 1, 3 * n) @ The logistic model for dependence on \Robject{x} can be fitted as a Poisson log-linear model\footnote{For this particular example, of course, it would be more economical to fit the model directly using \Rfunction{multinom} (from the recommended package \Rpackage{nnet}). But fitting as here via the `Poisson trick' allows the model to be elaborated within the \Rpackage{gnm} framework using \Rfunction{Mult} or other \Rclass{nonlin} terms.}, using either \Rfunction{glm} or \Rfunction{gnm}: \begin{Sinput} > ## Timings on a Xeon 2.33GHz, under Linux > system.time(temp.glm <- glm(counts ~ rowID + resp + resp:x, family = poisson))[1] \end{Sinput} \begin{Soutput} user.self 37.126 \end{Soutput} \begin{Sinput} > system.time(temp.gnm <- gnm(counts ~ resp + resp:x, eliminate = rowID, family = poisson, verbose = FALSE))[1] \end{Sinput} \begin{Soutput} user.self 0.04 \end{Soutput} \begin{Sinput} > c(deviance(temp.glm), deviance(temp.gnm)) \end{Sinput} \begin{Soutput} [1] 2462.556 2462.556 \end{Soutput} Here the use of \Rfunarg{eliminate} causes the \Rfunction{gnm} calculations to run much more quickly than \Rfunction{glm}. The speed advantage increases with the number of eliminated parameters (here 1000). By default,the eliminated parameters do not appear in printed model summaries as here: \begin{Sinput} > summary(temp.gnm) \end{Sinput} \begin{Soutput} Call: gnm(formula = counts ~ resp + resp:x, eliminate = rowID, family = poisson, verbose = FALSE) Deviance Residuals: Min 1Q Median 3Q Max -2.852038 -0.786172 -0.004534 0.645278 2.755013 Coefficients of interest: Estimate Std. Error z value Pr(>|z|) resp2 -1.961448 0.034007 -57.678 <2e-16 resp3 -1.255846 0.025359 -49.523 <2e-16 resp1:x -0.007726 0.024517 -0.315 0.753 resp2:x -0.023340 0.037611 -0.621 0.535 resp3:x 0.000000 NA NA NA (Dispersion parameter for poisson family taken to be 1) Std. Error is NA where coefficient has been constrained or is unidentified Residual deviance: 2462.6 on 1996 degrees of freedom AIC: 12028 Number of iterations: 4 \end{Soutput} although the \Rmethod{summary} method has a logical \Rfunarg{with.eliminate} that can toggled so that the eliminated parameters are included if desired. The \Rfunarg{eliminate} feature as implemented in \Rpackage{gnm} extends the earlier work of \cite{Hatz04} to a broader class of models and to over-parameterized model representations. \section{Methods and accessor functions} \label{sec:Methods} \subsection{Methods} \label{sec:specificMethods} The \Rfunction{gnm} function returns an object of class \Robject{c("gnm", "glm", "lm")}. There are several methods that have been written for objects of class \Rclass{glm} or \Rclass{lm} to facilitate inspection of fitted models. Out of the generic functions in the \Rpackage{base}, \Rpackage{stats} and \Rpackage{graphics} packages for which methods have been written for \Rclass{glm} or \Rclass{lm} objects, Figure \ref{fig:glm.lm} shows those that can be used to analyse \Rclass{gnm} objects, whilst Figure \ref{fig:!glm.lm} shows those that are not implemented for \Rclass{gnm} objects. \begin{figure}[!tbph] \centering \begin{fbox} { \begin{tabular*}{7.5cm}{@{\extracolsep{\fill}}lll@{\extracolsep{\fill}}} add1$^*$ & family & print \\ anova & formula & profile \\ case.names & hatvalues & residuals \\ coef & labels & rstandard \\ cooks.distance & logLik & summary \\ confint & model.frame & variable.names \\ deviance & model.matrix & vcov \\ drop1$^*$ & plot & weights \\ extractAIC & predict & \\ \end{tabular*} } \end{fbox} \caption{Generic functions in the \Rpackage{base}, \Rpackage{stats} and \Rpackage{graphics} packages that can be used to analyse \Rclass{gnm} objects. Starred functions are implemented for models with linear terms only.} \label{fig:glm.lm} \end{figure} \begin{figure}[!tbph] \centering \begin{fbox} { \begin{tabular*}{4.5cm}{@{\extracolsep{\fill}}ll@{\extracolsep{\fill}}} alias & effects \\ dfbeta & influence \\ dfbetas & kappa \\ dummy.coef & proj \\ \end{tabular*} } \end{fbox} \caption{Generic functions in the \Rpackage{base}, \Rpackage{stats} and \Rpackage{graphics} packages for which methods have been written for \Rclass{glm} or \Rclass{lm} objects, but which are \emph{not} implemented for \Rclass{gnm} objects.} \label{fig:!glm.lm} \end{figure} In addition to the accessor functions shown in Figure \ref{fig:glm.lm}, the \Rpackage{gnm} package provides a new generic function called \Rfunction{termPredictors} that has methods for objects of class \Rclass{gnm}, \Rclass{glm} and \Rclass{lm}. This function returns the additive contribution of each term to the predictor. See Section \ref{sec:termPredictors} for an example of its use. Most of the functions listed in Figure \ref{fig:glm.lm} can be used as they would be for \Rclass{glm} or \Rclass{lm} objects, however care must be taken with \Rmethod{vcov.gnm}, as the variance-covariance matrix will depend on the parameterization of the model. In particular, standard errors calculated using the variance-covariance matrix will only be valid for parameters or contrasts that are estimable! Similarly, \Rmethod{profile.gnm} and \Rmethod{confint.gnm} are only applicable to estimable parameters. The deviance function of a generalized nonlinear model can sometimes be far from quadratic and \Rmethod{profile.gnm} attempts to detect asymmetry or asymptotic behaviour in order to return a sufficient profile for a given parameter. As an example, consider the following model, described later in Section \ref{sec:Unidiff}: \begin{Scode} unidiff <- gnm(Freq ~ educ*orig + educ*dest + Mult(Exp(educ), orig:dest), constrain = "[.]educ1", family = poisson, data = yaish, subset = (dest != 7)) prof <- profile(unidiff, which = 61:65, trace = TRUE) \end{Scode} If the deviance is quadratic in a given parameter, the profile trace will be linear. We can plot the profile traces as follows: \begin{figure}[!tbph] \begin{center} \scalebox{1.1}{\includegraphics{fig-profilePlot.pdf}} \end{center} \caption{Profile traces for the multipliers of the orig:dest association} \label{fig:profilePlot} \end{figure} From these plots we can see that the deviance is approximately quadratic in \Robject{Mult(Exp(.), orig:dest).educ2}, asymmetric in \Robject{Mult(Exp(.), orig:dest).educ3} and \Robject{Mult(Exp(.), orig:dest).educ4} and asymptotic in \Robject{Mult(Exp(.), orig:dest).educ5}. When the deviance is approximately quadratic in a given parameter, \Rmethod{profile.gnm} uses the same stepsize for profiling above and below the original estimate: \begin{Sinput} > diff(prof[[2]]$par.vals[, "Mult(Exp(.), orig:dest).educ2"]) \end{Sinput} \begin{Soutput} [1] 0.1053072 0.1053072 0.1053072 0.1053072 0.1053072 0.1053072 0.1053072 [8] 0.1053072 0.1053072 0.1053072 \end{Soutput} When the deviance is asymmetric, \Rmethod{profile.gnm} uses different step sizes to accommodate the skew: \begin{Sinput} > diff(prof[[4]]$par.vals[, "Mult(Exp(.), orig:dest).educ4"]) \end{Sinput} \begin{Soutput} [1] 0.2018393 0.2018393 0.2018393 0.2018393 0.2018393 0.2018393 0.2018393 [8] 0.2018393 0.2018393 0.2243673 0.2243673 0.2243673 0.2243673 0.2243673 \end{Soutput} Finally, the presence of an asymptote is recorded in the \Robject{"asymptote"} attribute of the returned profile: \begin{Sinput} > attr(prof[[5]], "asymptote") \end{Sinput} \begin{Soutput} [1] TRUE FALSE \end{Soutput} This information is used by \Rmethod{confint.gnm} to return infinite limits for confidence intervals, as appropriate: \begin{Sinput} > confint(prof, level = 0.95) \end{Sinput} \begin{Soutput} 2.5 % 97.5 % Mult(Exp(.), orig:dest).educ1 NA NA Mult(Exp(.), orig:dest).educ2 -0.5978901 0.1022447 Mult(Exp(.), orig:dest).educ3 -1.4836854 -0.2362378 Mult(Exp(.), orig:dest).educ4 -2.5792398 -0.2953420 Mult(Exp(.), orig:dest).educ5 -Inf -0.7006889 \end{Soutput} \subsection{\Rfunction{ofInterest} and \Rfunction{pickCoef}} \label{sec:ofInterest} It is quite common for a statistical model to have a large number of parameters, but for only a subset of these parameters be of interest when it comes to interpreting the model. The \Rfunarg{ofInterest} argument to \Rfunction{gnm} allows the user to specify a subset of the parameters which are of interest, so that \Rclass{gnm} methods will focus on these parameters. In particular, printed model summaries will only show the parameters of interest, whilst methods for which a subset of parameters may be selected will by default select the parameters of interest, or where this may not be appropriate, provide a \emph{Tk} dialog for selection from the parameters of interest. Parameters may be specified to the \Rfunarg{ofInterest} argument by a regular expression to match against parameter names, by a numeric vector of indices, by a character vector of names, or, if \Rcode{ofInterest = "[?]"} they can be selected through a \emph{Tk} dialog. The information regarding the parameters of interest is held in the \Robject{ofInterest} component of \Rclass{gnm} objects, which is a named vector of numeric indices, or \Robject{NULL} if all parameters are of interest. This component may be accessed or replaced using \Rfunction{ofInterest} or \Rfunction{ofInterest<-} respectively. The \Rfunction{pickCoef} function provides a simple way to obtain the indices of coefficients from any model object. It takes the model object as its first argument and has an optional \Rfunarg{regexp} argument. If a regular expression is passed to \Rfunarg{regexp}, the coefficients are selected by matching this regular expression against the coefficient names. Otherwise, coefficients may be selected via a \emph{Tk} dialog. So, returning to the example from the last section, if we had set \Robject{ofInterest} to index the education multipliers as follows \begin{Scode} ofInterest(unidiff) <- pickCoef(unidiff, "[.]educ") \end{Scode} then it would not have been necessary to specify the \Rfunarg{which} argument of \Rfunction{profile} as these parameters would have been selected by default. \subsection{\Rfunction{checkEstimable}} \label{sec:checkEstimable} The \Rfunction{checkEstimable} function can be used to check the estimability of a linear combination of parameters. For non-linear combinations the same function can be used to check estimability based on the (local) vector of partial derivatives. The \Rfunction{checkEstimable} function provides a numerical version of the sort of algebraic test described in \citet{CatcMorg97}. Consider the following model, which is described later in Section \ref{sec:Unidiff}: <>= doubleUnidiff <- gnm(Freq ~ election:vote + election:class:religion + Mult(Exp(election), religion:vote) + Mult(Exp(election), class:vote), family = poisson, data = cautres) @ The effects of the first constituent multiplier in the first multiplicative interaction are identified when the parameter for one of the levels --- say for the first level --- is constrained to zero. The parameters to be estimated are then the differences between each other level and the first. These differences can be represented by a contrast matrix as follows: <>= coefs <- names(coef(doubleUnidiff)) contrCoefs <- coefs[grep(", religion:vote", coefs)] nContr <- length(contrCoefs) contrMatrix <- matrix(0, length(coefs), nContr, dimnames = list(coefs, contrCoefs)) contr <- contr.sum(contrCoefs) # switch round to contrast with first level contr <- rbind(contr[nContr, ], contr[-nContr, ]) contrMatrix[contrCoefs, 2:nContr] <- contr contrMatrix[contrCoefs, 2:nContr] @ Then their estimability can be checked using \Rfunction{checkEstimable} <>= checkEstimable(doubleUnidiff, contrMatrix) @ which confirms that the effects for the other three levels are estimable when the parameter for the first level is set to zero. However, applying the equivalent constraint to the second constituent multiplier in the interaction is not sufficient to make the parameters in that multiplier estimable: <>= coefs <- names(coef(doubleUnidiff)) contrCoefs <- coefs[grep("[.]religion", coefs)] nContr <- length(contrCoefs) contrMatrix <- matrix(0, length(coefs), length(contrCoefs), dimnames = list(coefs, contrCoefs)) contr <- contr.sum(contrCoefs) contrMatrix[contrCoefs, 2:nContr] <- rbind(contr[nContr, ], contr[-nContr, ]) checkEstimable(doubleUnidiff, contrMatrix) @ \subsection{\Rfunction{getContrasts}, \Rfunction{se}} \label{sec:getContrasts} To investigate simple ``sum to zero'' contrasts such as those above, it is easiest to use the \Rfunction{getContrasts} function, which checks the estimability of possibly scaled contrasts and returns the parameter estimates with their standard errors. Returning to the example of the first constituent multiplier in the first multiplicative interaction term, the differences between each election and the first can be obtained as follows: <>= myContrasts <- getContrasts(doubleUnidiff, pickCoef(doubleUnidiff, ", religion:vote")) myContrasts @ %def Visualization of estimated contrasts using `quasi standard errors' \citep{Firt03,FirtMene04} is achieved by plotting the resulting object: <>= plot(myContrasts, main = "Relative strength of religion-vote association, log scale", xlab = "Election", levelNames = 1:4) @ \begin{figure}[!tbph] \begin{center} \includegraphics{gnmOverview-qvplot.pdf} \end{center} \caption{Relative strength of religion-vote association, log scale} \label{fig:qvplot} \end{figure} %Attempting to obtain the equivalent contrasts for the second %(religion-vote association) multiplier produces the %following result: %<>= %coefs.of.interest <- grep("[.]religion", names(coef(doubleUnidiff))) %getContrasts(doubleUnidiff, coefs.of.interest) %@ %def By default, \Rfunction{getContrasts} uses the first parameter of the specified set as the reference level; alternatives may be set via the \Rfunarg{ref} argument. In the above example, the simple contrasts are estimable without scaling. In certain other applications, for example row-column association models (see Section~\ref{sec:RCmodels}), the contrasts are identified only after fixing their scale. A more general family of \emph{scaled} contrasts for a set of parameters $\gamma_r, r = 1, \ldots, R$ is given by \begin{equation*} \gamma^*_r = \frac{\gamma_r - \overline{\gamma}_w}{ \sqrt{\sum_r v_r (\gamma_r - \overline{\gamma}_u)^2}} \end{equation*} where $\overline{\gamma}_w = \sum w_r \gamma_r$ is the reference level against which the contrasts are taken, $\overline{\gamma}_u = \sum u_r \gamma_r$ is a possibly different weighted mean of the parameters to be used as reference level for a set of ``scaling contrasts'', and $v_r$ is a further set of weights. Thus, for example, the choice \[ w_r= \begin{cases} 1&(r=1)\\ 0&\hbox{(otherwise)} \end{cases}, \qquad u_r=v_r=1/R \] specifies contrasts with the first level, with the coefficients scaled to have variance 1\null. This general type of scaling can be obtained by specifying the form of $\overline{\gamma}_u$ and $v_r$ via the \Rfunarg{scaleRef} and \Rfunarg{scaleWeights} arguments of \Rfunction{getContrasts}. As an example, consider the following model, described in Section~\ref{sec:RCmodels}: @ <>= mentalHealth$MHS <- C(mentalHealth$MHS, treatment) mentalHealth$SES <- C(mentalHealth$SES, treatment) RC1model <- gnm(count ~ SES + MHS + Mult(SES, MHS), family = poisson, data = mentalHealth) @ %def The effects of the constituent multipliers of the multiplicative interaction are identified when both their scale and location are constrained. A simple way to achieve this is to set the first parameter to zero and the last parameter to one: @ <>= RC1model2 <- gnm(count ~ SES + MHS + Mult(1, SES, MHS), constrain = "[.]SES[AF]", constrainTo = c(0, 1), ofInterest = "[.]SES", family = poisson, data = mentalHealth) summary(RC1model2) @ %def Note that a constant multiplier must be incorporated into the interaction term, i.e., the multiplicative term \Rcode{Mult(SES, MHS)} becomes \Rcode{Mult(1, SES, MHS)}, in order to maintain equivalence with the original model specification. The constraints specified for \Robject{RC1model2} result in the estimation of scaled contrasts with level \Rcode{A} of \Rcode{SES}, in which the scaling fixes the magnitude of the contrast between level \Rcode{F} and level \Rcode{A} to be equal to 1\null. The equivalent use of \Rfunction{getContrasts}, together with the \emph{unconstrained} fit (\Robject{RC1model}), in this case is as follows: @ <>= getContrasts(RC1model, pickCoef(RC1model, "[.]SES"), ref = "first", scaleRef = "first", scaleWeights = c(rep(0, 5), 1)) @ %def Quasi-variances and standard errors are not returned here as they can not (currently) be computed for scaled contrasts. When the scaling uses the same reference level as the contrasts, equal scale weights produce ``spherical'' contrasts, whilst unequal weights produce ``elliptical'' contrasts. Further examples are given in Sections~\ref{sec:RCmodels} and \ref{sec:GAMMI}. For more general linear combinations of parameters than contrasts, the lower-level \Rfunction{se} function (which is called internally by \Rfunction{getContrasts} and by the \Rmethod{summary} method) can be used directly. See \Rcode{help(se)} for details. \subsection{\Rfunction{residSVD}} \label{sec:residSVD} Sometimes it is useful to operate on the residuals of a model in order to create informative summaries of residual variation, or to obtain good starting values for additional parameters in a more elaborate model. The relevant arithmetical operations are weighted means of the so-called \emph{working residuals}. The \Rfunction{residSVD} function facilitates one particular residual analysis that is often useful when considering multiplicative interaction between factors as a model elaboration: in effect, \Rfunction{residSVD} provides a direct estimate of the parameters of such an interaction, by performing an appropriately weighted singular value decomposition on the working residuals. As an illustration, consider the barley data from \citet{Wedd74}. These data have the following two-way structure: <>= xtabs(y ~ site + variety, barley) @ In Section~\ref{sec:biplot} a biplot model is proposed for these data, which comprises a two-component interaction between the cross-classifying factors. In order to fit this model, we can proceed by fitting a smaller model, then use \Rfunction{residSVD} to obtain starting values for the parameters in the bilinear term: @ <>= emptyModel <- gnm(y ~ -1, family = wedderburn, data = barley) biplotStart <- residSVD(emptyModel, barley$site, barley$variety, d = 2) biplotModel <- gnm(y ~ -1 + instances(Mult(site, variety), 2), family = wedderburn, data = barley, start = biplotStart) @ %def In this instance, the use of purposive (as opposed to the default, random) starting values had little effect: the fairly large number of iterations needed in this example is caused by a rather flat (quasi-)likelihood surface near the maximum, not by poor starting values. In other situations, the use of \Rfunction{residSVD} may speed the calculations dramatically (see for example Section \ref{sec:GAMMI}), or it may be crucial to success in locating the MLE (for example see \Rcode{help(House2001)}, where the number of multiplicative parameters is in the hundreds). The \Rfunction{residSVD} result in this instance provides a crude approximation to the MLE of the enlarged model, as can be seen in Figure \ref{fig:residSVDplot}: @ <>= plot(coef(biplotModel), biplotStart, main = "Comparison of residSVD and MLE for a 2-dimensional biplot model", ylim = c(-2, 2), xlim = c(-4, 4)) abline(a = 0, b = 1, lty = 2) @ %def \begin{figure}[!tbph] \begin{center} \includegraphics{gnmOverview-residSVDplot} \end{center} \caption{Comparison of residSVD and the MLE for a 2-dimensional biplot model} \label{fig:residSVDplot} \end{figure} \section{\Rfunction{gnm} or \Rfunction{(g)nls}?} \label{sec:gnmVnls} The \Rfunction{nls} function in the \Rpackage{stats} package may be used to fit a nonlinear model via least-squares estimation. Statistically speaking, \Rfunction{gnm} is to \Rfunction{nls} as \Rfunction{glm} is to \Rfunction{lm}, in that a nonlinear least-squares model is equivalent to a generalized nonlinear model with \Rcode{family = gaussian}. A \Rfunction{nls} model assumes that the responses are distributed either with constant variance or with fixed relative variances (specified via the \Rfunarg{weights} argument). The \Rfunction{gnls} function in the \Rpackage{nlme} package extends \Rfunction{nls} to allow correlated responses. On the other hand, \Rfunction{gnm} allows for responses distributed with variances that are a specified (via the \Rfunarg{family} argument) function of the mean; as with \Rfunction{nls}, no correlation is allowed. The \Rfunction{gnm} function also differs from \Rfunction{nls}/\Rfunction{gnls} in terms of the interface. Models are specified to \Rfunction{nls} and \Rfunction{gnls} in terms of a mathematical formula or a \Rclass{selfStart} function based on such a formula, which is convenient for models that have a small number of parameters. For models that have a large number of parameters, or can not easily be represented by a mathematical formula, the symbolic model specification used by \Rfunction{gnm} may be more convenient. This would usually be the case for models involving factors, which would need to be represented by dummy variables in a \Rfunction{nls} formula. When working with artificial data, \Rfunction{gnm} has the minor advantage that it does not fail when a model is an exact fit to the data (see \Rcode{help(nls)})\null. Therefore it is not necessary with \Rfunction{gnm} to add noise to artificial data, which can be useful when testing methods. \section{Examples} \label{sec:Examples} \subsection{Row-column association models} \label{sec:RCmodels} There are several models that have been proposed for modelling the relationship between the cell means of a contingency table and the cross-classifying factors. The following examples consider the row-column association models proposed by \citet{Good79}. The examples shown use data from two-way contingency tables, but the \Rpackage{gnm} package can also be used to fit the equivalent models for higher order tables. \subsubsection{RC(1) model} The RC(1) model is a row and column association model with the interaction between row and column factors represented by one component of the multiplicative interaction. If the rows are indexed by $r$ and the columns by $c$, then the log-multiplicative form of the RC(1) model for the cell means $\mu_{rc}$ is given by \[\log \mu_{rc} = \alpha_r + \beta_c + \gamma_r\delta_c. \] We shall fit this model to the \Robject{mentalHealth} data set from \citet[][page 381]{Agre02}, which is a two-way contingency table classified by the child's mental impairment (MHS) and the parents' socioeconomic status (SES). Although both of these factors are ordered, we do not wish to use polynomial contrasts in the model, so we begin by setting the contrasts attribute of these factors to \Rcode{treatment}: <>= set.seed(1) mentalHealth$MHS <- C(mentalHealth$MHS, treatment) mentalHealth$SES <- C(mentalHealth$SES, treatment) @ The \Rclass{gnm} model is then specified as follows, using the poisson family with a log link function: <>= RC1model <- gnm(count ~ SES + MHS + Mult(SES, MHS), family = poisson, data = mentalHealth) RC1model @ %def The row scores (parameters 10 to 15) and the column scores (parameters 16 to 19) of the multiplicative interaction can be normalized as in Agresti's eqn (9.15): <>= rowProbs <- with(mentalHealth, tapply(count, SES, sum) / sum(count)) colProbs <- with(mentalHealth, tapply(count, MHS, sum) / sum(count)) rowScores <- coef(RC1model)[10:15] colScores <- coef(RC1model)[16:19] rowScores <- rowScores - sum(rowScores * rowProbs) colScores <- colScores - sum(colScores * colProbs) beta1 <- sqrt(sum(rowScores^2 * rowProbs)) beta2 <- sqrt(sum(colScores^2 * colProbs)) assoc <- list(beta = beta1 * beta2, mu = rowScores / beta1, nu = colScores / beta2) assoc @ %def Alternatively, the elliptical contrasts \Robject{mu} and \Robject{nu} can be obtained using \Rfunction{getContrasts}, with the advantage that the standard errors for the contrasts will also be computed: @ <>= mu <- getContrasts(RC1model, pickCoef(RC1model, "[.]SES"), ref = rowProbs, scaleWeights = rowProbs) nu <- getContrasts(RC1model, pickCoef(RC1model, "[.]MHS"), ref = colProbs, scaleWeights = colProbs) mu nu @ %def Since the value of \Robject{beta} is dependent upon the particular scaling used for the contrasts, it is typically not of interest to conduct inference on this parameter directly. The standard error for \Robject{beta} could be obtained, if desired, via the delta method. \subsubsection{RC(2) model} The RC(1) model can be extended to an RC($m$) model with $m$ components of the multiplicative interaction. For example, the RC(2) model is given by \[ \log \mu_{rc} = \alpha_r + \beta_c + \gamma_r\delta_c + \theta_r\phi_c. \] Extra instances of the multiplicative interaction can be specified by the \Rfunarg{multiplicity} argument of \Rfunction{Mult}, so the RC(2) model can be fitted to the \Robject{mentalHealth} data as follows <>= RC2model <- gnm(count ~ SES + MHS + instances(Mult(SES, MHS), 2), family = poisson, data = mentalHealth) RC2model @ \subsubsection{Homogeneous effects} If the row and column factors have the same levels, or perhaps some levels in common, then the row-column interaction could be modelled by a multiplicative interaction with homogeneous effects, that is \[\log \mu_{rc} = \alpha_r + \beta_c + \gamma_r\gamma_c.\] For example, the \Robject{occupationalStatus} data set from \citet{Good79} is a contingency table classified by the occupational status of fathers (origin) and their sons (destination). \citet{Good79} fits a row-column association model with homogeneous effects to these data after deleting the cells on the main diagonal. Equivalently we can account for the diagonal effects by a separate \Rfunction{Diag} term: @ <>= RChomog <- gnm(Freq ~ origin + destination + Diag(origin, destination) + MultHomog(origin, destination), family = poisson, data = occupationalStatus) RChomog @ %def To determine whether it would be better to allow for heterogeneous effects on the association of the fathers' occupational status and the sons' occupational status, we can compare this model to the RC(1) model for these data: <>= RCheterog <- gnm(Freq ~ origin + destination + Diag(origin, destination) + Mult(origin, destination), family = poisson, data = occupationalStatus) anova(RChomog, RCheterog) @ In this case there is little gain in allowing heterogeneous effects. \subsection{Diagonal reference models} \label{sec:Dref} Diagonal reference models, proposed by \citet{Sobe81, Sobe85}, are designed for contingency tables classified by factors with the same levels. The cell means are modelled as a function of the diagonal effects, i.e., the mean responses of the `diagonal' cells in which the levels of the row and column factors are the same. \subsubsection*{\Rfunction{Dref} example 1: Political consequences of social mobility} To illustrate the use of diagonal reference models we shall use the \Robject{voting} data from \citet{Clif93}. The data come from the 1987 British general election and are the percentage voting Labour in groups cross-classified by the class of the head of household (\Robject{destination}) and the class of their father (\Robject{origin}). In order to weight these percentages by the group size, we first back-transform them to the counts of those voting Labour and those not voting Labour: @ <>= set.seed(1) count <- with(voting, percentage/100 * total) yvar <- cbind(count, voting$total - count) @ %def The grouped percentages may be modelled by a basic diagonal reference model, that is, a weighted sum of the diagonal effects for the corresponding origin and destination classes. This model may be expressed as \[ \mu_{od} = \frac{e^{\delta_1}}{e^{\delta_1} + e^{\delta_2}}\gamma_o + \frac{e^{\delta_2}}{e^{\delta_1} + e^{\delta_2}}\gamma_d . \] See Section \ref{sec:Dref function} for more detail on the parameterization. The basic diagonal reference model may be fitted using \Rfunction{gnm} as follows @ <>= classMobility <- gnm(yvar ~ Dref(origin, destination), family = binomial, data = voting) classMobility @ %def and the origin and destination weights can be evaluated as below @ <>= DrefWeights(classMobility) @ %def These results are slightly different from those reported by \citet{Clif93}. The reason for this is unclear: we are confident that the above results are correct for the data as given in \citet{Clif93}, but have not been able to confirm that the data as printed in the journal were exactly as used in Clifford and Heath's analysis. \citet{Clif93} suggest that movements in and out of the salariat (class 1) should be treated differently from movements between the lower classes (classes 2 - 5), since the former has a greater effect on social status. Thus they propose the following model \begin{equation*} \mu_{od} = \begin{cases} \dfrac{e^{\delta_1}}{e^{\delta_1} + e^{\delta_2}}\gamma_o + \dfrac{e^{\delta_2}}{e^{\delta_1} + e^{\delta_2}}\gamma_d & \text{if } o = 1\\ \\ \dfrac{e^{\delta_3}}{e^{\delta_3} + e^{\delta_4}}\gamma_o + \dfrac{e^{\delta_4}}{e^{\delta_3} + e^{\delta_4}}\gamma_d & \text{if } d = 1\\ \\ \dfrac{e^{\delta_5}}{e^{\delta_5} + e^{\delta_6}}\gamma_o + \dfrac{e^{\delta_6}}{e^{\delta_5} + e^{\delta_6}}\gamma_d & \text{if } o \ne 1 \text{ and } d \ne 1 \end{cases} \end{equation*} To fit this model we define factors indicating movement in (upward) and out (downward) of the salariat @ <>= upward <- with(voting, origin != 1 & destination == 1) downward <- with(voting, origin == 1 & destination != 1) @ %def Then the diagonal reference model with separate weights for socially mobile groups can be estimated as follows @ <>= socialMobility <- gnm(yvar ~ Dref(origin, destination, delta = ~ 1 + downward + upward), family = binomial, data = voting) socialMobility @ %def The weights for those moving into the salariat, those moving out of the salariat and those in any other group, can be evaluated as below @ <>= DrefWeights(socialMobility) @ %def Again, the results differ slightly from those reported by \citet{Clif93}, but the essence of the results is the same: the origin weight is much larger for the downwardly mobile group than for the other groups. The weights for the upwardly mobile group are very similar to the base level weights, so the model may be simplified by only fitting separate weights for the downwardly mobile group: @ <>= downwardMobility <- gnm(yvar ~ Dref(origin, destination, delta = ~ 1 + downward), family = binomial, data = voting) downwardMobility DrefWeights(downwardMobility) @ %def \subsubsection*{\Rfunction{Dref} example 2: conformity to parental rules} %\SweaveInput{vanDerSlikEg.Rnw} Another application of diagonal reference models is given by \citet{Vand02}. The data from this paper are not publicly available\footnote{ We thank Frans van der Slik for his kindness in sending us the data.}, but we shall show how the models presented in the paper may be estimated using \Rfunction{gnm}. The data relate to the value parents place on their children conforming to their rules. There are two response variables: the mother's conformity score (MCFM) and the father's conformity score (FCFF). The data are cross-classified by two factors describing the education level of the mother (MOPLM) and the father (FOPLF), and there are six further covariates (AGEM, MRMM, FRMF, MWORK, MFCM and FFCF). In their baseline model for the mother's conformity score, \citet{Vand02} include five of the six covariates (leaving out the father's family conflict score, FCFF) and a diagonal reference term with constant weights based on the two education factors. This model may be expressed as \[ \mu_{rci} = \beta_1x_{1i} + \beta_2x_{2i} + \beta_3x_{3i} +\beta_4x_{4i} +\beta_5x_{5i} + \frac{e^{\delta_1}}{e^{\delta_1} + e^{\delta_2}}\gamma_r + \frac{e^{\delta_2}}{e^{\delta_1} + e^{\delta_2}}\gamma_c . \] The baseline model can be fitted as follows: \begin{Sinput} > set.seed(1) > A <- gnm(MCFM ~ -1 + AGEM + MRMM + FRMF + MWORK + MFCM + + Dref(MOPLM, FOPLF), family = gaussian, data = conformity, + verbose = FALSE) > A \end{Sinput} \begin{Soutput} Call: gnm(formula = MCFM ~ -1 + AGEM + MRMM + FRMF + MWORK + MFCM + Dref(MOPLM, FOPLF), family = gaussian, data = conformity, verbose = FALSE) Coefficients: AGEM MRMM FRMF 0.06363 -0.32425 -0.25324 MWORK MFCM Dref(MOPLM, FOPLF)delta1 -0.06430 -0.06043 -0.33731 Dref(MOPLM, FOPLF)delta2 Dref(., .).MOPLM|FOPLF1 Dref(., .).MOPLM|FOPLF2 -0.02505 4.95121 4.86329 Dref(., .).MOPLM|FOPLF3 Dref(., .).MOPLM|FOPLF4 Dref(., .).MOPLM|FOPLF5 4.86458 4.72343 4.43516 Dref(., .).MOPLM|FOPLF6 Dref(., .).MOPLM|FOPLF7 4.18873 4.43378 Deviance: 425.3389 Pearson chi-squared: 425.3389 Residual df: 576 \end{Soutput} The coefficients of the covariates are not aliased with the parameters of the diagonal reference term and thus the basic identifiability constraints that have been imposed are sufficient for these parameters to be identified. The diagonal effects do not need to be constrained as they represent contrasts with the off-diagonal cells. Therefore the only unidentified parameters in this model are the weight parameters. This is confirmed in the summary of the model: \begin{Sinput} > summary(A) \end{Sinput} \begin{Soutput} Call: gnm(formula = MCFM ~ -1 + AGEM + MRMM + FRMF + MWORK + MFCM + Dref(MOPLM, FOPLF), family = gaussian, data = conformity, verbose = FALSE) Deviance Residuals: Min 1Q Median 3Q Max -3.63688 -0.50383 0.01714 0.56753 2.25139 Coefficients: Estimate Std. Error t value Pr(>|t|) AGEM 0.06363 0.07375 0.863 0.38859 MRMM -0.32425 0.07766 -4.175 3.44e-05 FRMF -0.25324 0.07681 -3.297 0.00104 MWORK -0.06430 0.07431 -0.865 0.38727 MFCM -0.06043 0.07123 -0.848 0.39663 Dref(MOPLM, FOPLF)delta1 -0.33731 NA NA NA Dref(MOPLM, FOPLF)delta2 -0.02505 NA NA NA Dref(., .).MOPLM|FOPLF1 4.95121 0.16639 29.757 < 2e-16 Dref(., .).MOPLM|FOPLF2 4.86329 0.10436 46.602 < 2e-16 Dref(., .).MOPLM|FOPLF3 4.86458 0.12855 37.842 < 2e-16 Dref(., .).MOPLM|FOPLF4 4.72343 0.13523 34.929 < 2e-16 Dref(., .).MOPLM|FOPLF5 4.43516 0.19314 22.963 < 2e-16 Dref(., .).MOPLM|FOPLF6 4.18873 0.17142 24.435 < 2e-16 Dref(., .).MOPLM|FOPLF7 4.43378 0.16903 26.231 < 2e-16 --- (Dispersion parameter for gaussian family taken to be 0.7384355) Std. Error is NA where coefficient has been constrained or is unidentified Residual deviance: 425.34 on 576 degrees of freedom AIC: 1507.8 Number of iterations: 15 \end{Soutput} The weights have been constrained to sum to one as described in Section \ref{sec:Dref function}, so the weights themselves may be estimated as follows: \begin{Sinput} > prop.table(exp(coef(A)[6:7])) \end{Sinput} \begin{Soutput} Dref(MOPLM, FOPLF)delta1 Dref(MOPLM, FOPLF)delta2 0.4225638 0.5774362 \end{Soutput} However, in order to estimate corresponding standard errors, the parameters of one of the weights must be constrained. If no such constraints were applied when the model was fitted, \Rfunction{DrefWeights} will refit the model constraining the parameters of the first weight to zero: \begin{Sinput} > DrefWeights(A) \end{Sinput} \begin{Soutput} Refitting with parameters of first Dref weight constrained to zero $MOPLM weight se 0.4225636 0.1439829 $FOPLF weight se 0.5774364 0.1439829 \end{Soutput} giving the values reported by \citet{Vand02}. All the other coefficients of model A are the same as those reported by \citet{Vand02} except the coefficients of the mother's gender role (MRMM) and the father's gender role (FRMF). \citet{Vand02} reversed the signs of the coefficients of these factors since they were coded in the direction of liberal values, unlike the other covariates. However, simply reversing the signs of these coefficients does not give the same model, since the estimates of the diagonal effects depend on the estimates of these coefficients. For consistent interpretation of the covariate coefficients, it is better to recode the gender role factors as follows: \begin{Sinput} > MRMM2 <- as.numeric(!conformity$MRMM) > FRMF2 <- as.numeric(!conformity$FRMF) > A <- gnm(MCFM ~ -1 + AGEM + MRMM2 + FRMF2 + MWORK + MFCM + + Dref(MOPLM, FOPLF), family = gaussian, data = conformity, + verbose = FALSE) > A \end{Sinput} \begin{Soutput} Call: gnm(formula = MCFM ~ -1 + AGEM + MRMM2 + FRMF2 + MWORK + MFCM + Dref(MOPLM, FOPLF), family = gaussian, data = conformity, verbose = FALSE) Coefficients: AGEM MRMM2 FRMF2 0.06363 0.32425 0.25324 MWORK MFCM Dref(MOPLM, FOPLF)delta1 -0.06430 -0.06043 0.08440 Dref(MOPLM, FOPLF)delta2 Dref(., .).MOPLM|FOPLF1 Dref(., .).MOPLM|FOPLF2 0.39666 4.37371 4.28579 Dref(., .).MOPLM|FOPLF3 Dref(., .).MOPLM|FOPLF4 Dref(., .).MOPLM|FOPLF5 4.28708 4.14593 3.85767 Dref(., .).MOPLM|FOPLF6 Dref(., .).MOPLM|FOPLF7 3.61123 3.85629 Deviance: 425.3389 Pearson chi-squared: 425.3389 Residual df: 576 \end{Soutput} The coefficients of the covariates are now as reported by \citet{Vand02}, but the diagonal effects have been adjusted appropriately. \citet{Vand02} compare the baseline model for the mother's conformity score to several other models in which the weights in the diagonal reference term are dependent on one of the covariates. One particular model they consider incorporates an interaction of the weights with the mother's conflict score as follows: \[ \mu_{rci} = \beta_1x_{1i} + \beta_2x_{2i} + \beta_3x_{3i} +\beta_4x_{4i} +\beta_5x_{5i} + \frac{e^{\xi_{01} + \xi_{11}x_{5i}}}{e^{\xi_{01} + \xi_{11}x_{5i}} + e^{\xi_{02} + \xi_{12}x_{5i}}}\gamma_r + \frac{e^{\xi_{02} + \xi_{12}x_{5i}}}{e^{\xi_{01} + \xi_{11}x_{5i}} + e^{\xi_{02} + \xi_{12}x_{5i}}}\gamma_c. \] This model can be fitted as below, using the original coding for the gender role factors for ease of comparison to the results reported by \citet{Vand02}, \begin{Sinput} > F <- gnm(MCFM ~ -1 + AGEM + MRMM + FRMF + MWORK + MFCM + + Dref(MOPLM, FOPLF, delta = ~ 1 + MFCM), family = gaussian, + data = conformity, verbose = FALSE) > F \end{Sinput} \begin{Soutput} Call: gnm(formula = MCFM ~ -1 + AGEM + MRMM + FRMF + MWORK + MFCM + Dref(MOPLM, FOPLF, delta = ~1 + MFCM), family = gaussian, data = conformity, verbose = FALSE) Coefficients: AGEM 0.05818 MRMM -0.32701 FRMF -0.25772 MWORK -0.07847 MFCM -0.01694 Dref(MOPLM, FOPLF, delta = ~ . + MFCM).delta1(Intercept) 1.03515 Dref(MOPLM, FOPLF, delta = ~ 1 + .).delta1MFCM -1.77756 Dref(MOPLM, FOPLF, delta = ~ . + MFCM).delta2(Intercept) -0.03515 Dref(MOPLM, FOPLF, delta = ~ 1 + .).delta2MFCM 2.77756 Dref(., ., delta = ~ 1 + MFCM).MOPLM|FOPLF1 4.82476 Dref(., ., delta = ~ 1 + MFCM).MOPLM|FOPLF2 4.88066 Dref(., ., delta = ~ 1 + MFCM).MOPLM|FOPLF3 4.83969 Dref(., ., delta = ~ 1 + MFCM).MOPLM|FOPLF4 4.74850 Dref(., ., delta = ~ 1 + MFCM).MOPLM|FOPLF5 4.42020 Dref(., ., delta = ~ 1 + MFCM).MOPLM|FOPLF6 4.17957 Dref(., ., delta = ~ 1 + MFCM).MOPLM|FOPLF7 4.40819 Deviance: 420.9022 Pearson chi-squared: 420.9022 Residual df: 575 \end{Soutput} In this case there are two sets of weights, one for when the mother's conflict score is less than average (coded as zero) and one for when the score is greater than average (coded as one). These can be evaluated as follows: \begin{Sinput} > DrefWeights(F) \end{Sinput} \begin{Soutput} Refitting with parameters of first Dref weight constrained to zero $MOPLM MFCM weight se 1 1 0.02974675 0.2277711 2 0 0.74465224 0.2006916 $FOPLF MFCM weight se 1 1 0.9702532 0.2277711 2 0 0.2553478 0.2006916 \end{Soutput} giving the same weights as in Table 4 of \citet{Vand02}, though we obtain a lower standard error in the case where MFCM is equal to one. \subsection{Uniform difference (UNIDIFF) models} \label{sec:Unidiff} Uniform difference models \citep{Xie92, Erik92} use a simplified three-way interaction to provide an interpretable model of contingency tables classified by three or more variables. For example, the uniform difference model for a three-way contingency table, also known as the UNIDIFF model, is given by \[ \mu_{ijk} = \alpha_{ik} + \beta_{jk} + \exp(\delta_k)\gamma_{ij}. \] The $\gamma_{ij}$ represent a pattern of association that varies in strength over the dimension indexed by $k$, and $\exp(\delta_k)$ represents the relative strength of that association at level $k$. This model can be applied to the \Robject{yaish} data set \citep{Yais98,Yais04}, which is a contingency table cross-classified by father's social class (\Robject{orig}), son's social class (\Robject{dest}) and son's education level (\Robject{educ}). In this case, we can consider the importance of the association between the social class of father and son across the education levels. We omit the sub-table which corresponds to level 7 of \Robject{dest}, because its information content is negligible: @ <>= set.seed(1) unidiff <- gnm(Freq ~ educ*orig + educ*dest + Mult(Exp(educ), orig:dest), ofInterest = "[.]educ", family = poisson, data = yaish, subset = (dest != 7)) coef(unidiff) @ %def The \Robject{ofInterest} component has been set to index the multipliers of the association between the social class of father and son. We can contrast each multiplier to that of the lowest education level and obtain the standard errors for these parameters as follows: @ <>= getContrasts(unidiff, ofInterest(unidiff)) @ %def Four-way contingency tables may sometimes be described by a ``double UNIDIFF'' model \[ \mu_{ijkl} = \alpha_{il} + \beta_{jkl} + \exp(\delta_l)\gamma_{ij} + \exp(\phi_l)\theta_{ik}, \] where the strengths of two, two-way associations with a common variable are estimated across the levels of the fourth variable. The \Robject{cautres} data set, from \citet{Caut98}, can be used to illustrate the application of the double UNIDIFF model. This data set is classified by the variables vote, class, religion and election. Using a double UNIDIFF model, we can see how the association between class and vote, and the association between religion and vote, differ between the most recent election and the other elections: @ <>= set.seed(1) doubleUnidiff <- gnm(Freq ~ election*vote + election*class*religion + Mult(Exp(election), religion:vote) + Mult(Exp(election), class:vote), family = poisson, data = cautres) getContrasts(doubleUnidiff, rev(pickCoef(doubleUnidiff, ", class:vote"))) getContrasts(doubleUnidiff, rev(pickCoef(doubleUnidiff, ", religion:vote"))) @ %def \subsection{Generalized additive main effects and multiplicative interaction (GAMMI) models} \label{sec:GAMMI} Generalized additive main effects and multiplicative interaction models, or GAMMI models, were motivated by two-way contingency tables and comprise the row and column main effects plus one or more components of the multiplicative interaction. The singular value corresponding to each multiplicative component is often factored out, as a measure of the strength of association between the row and column scores, indicating the importance of the component, or axis. For cell means $\mu_{rc}$ a GAMMI-K model has the form \begin{equation} \label{eq:GAMMI} g(\mu_{rc}) = \alpha_r + \beta_c + \sum_{k=1}^K \sigma_k\gamma_{kr}\delta_{kc}, \end{equation} in which $g$ is a link function, $\alpha_r$ and $\beta_c$ are the row and column main effects, $\gamma_{kr}$ and $\delta_{kc}$ are the row and column scores for multiplicative component $k$ and $\sigma_k$ is the singular value for component $k$. The number of multiplicative components, $K$, is less than or equal to the rank of the matrix of residuals from the main effects. The row-column association models discussed in Section \ref{sec:RCmodels} are examples of GAMMI models, with a log link and poisson variance. Here we illustrate the use of an AMMI model, which is a GAMMI model with an identity link and a constant variance. We shall use the \Robject{wheat} data set taken from \citet{Varg01}, which gives wheat yields measured over ten years. First we scale these yields and create a new treatment factor, so that we can reproduce the analysis of \citet{Varg01}: @ <>= set.seed(1) yield.scaled <- wheat$yield * sqrt(3/1000) treatment <- interaction(wheat$tillage, wheat$summerCrop, wheat$manure, wheat$N, sep = "") @ %def Now we can fit the AMMI-1 model, to the scaled yields using the combined treatment factor and the year factor from the \Robject{wheat} dataset. We will proceed by first fitting the main effects model, then using \Rfunction{residSVD} (see Section \ref{sec:residSVD}) for the parameters of the multiplicative term: @ <>= mainEffects <- gnm(yield.scaled ~ year + treatment, family = gaussian, data = wheat) svdStart <- residSVD(mainEffects, year, treatment, 3) bilinear1 <- update(mainEffects, . ~ . + Mult(year, treatment), start = c(coef(mainEffects), svdStart[,1])) @ %def We can compare the AMMI-1 model to the main effects model, @ <>= anova(mainEffects, bilinear1, test = "F") @ %def giving the same results as in Table 1 of \citet{Varg01} (up to error caused by rounding). Thus the significance of the multiplicative interaction can be tested without applying constraints to this term. If the multiplicative interaction is significant, we may wish to apply constraints to obtain estimates of the row and column scores. We illustrate this using the \Robject{barleyHeights} data, which records the average height for 15 genotypes of barley over 9 years. For this small dataset the AMMI-1 model is easily estimated with the default settings: @ <>= set.seed(1) barleyModel <- gnm(height ~ year + genotype + Mult(year, genotype), data = barleyHeights) @ %def To obtain the parameterization of Equation \ref{eq:GAMMI} in which $\sigma_k$ is the singular value for component $k$, the row and column scores must be constrained so that the scores sum to zero and the squared scores sum to one. These contrasts can be obtained using \Robject{getContrasts}: @ <>= gamma <- getContrasts(barleyModel, pickCoef(barleyModel, "[.]y"), ref = "mean", scaleWeights = "unit") delta <- getContrasts(barleyModel, pickCoef(barleyModel, "[.]g"), ref = "mean", scaleWeights = "unit") gamma delta @ %def Confidence intervals based on the assumption of asymptotic normality can be computed as follows: @ <>= gamma[[2]][,1] + (gamma[[2]][,2]) %o% c(-1.96, 1.96) delta[[2]][,1] + (delta[[2]][,2]) %o% c(-1.96, 1.96) @ %def which broadly agree with Table 8 of Chadoeuf and Denis (1991), allowing for the change in sign. On the basis of such confidence intervals we can investigate simplifications of the model such as combining levels of the factors or fitting an additive model to a subset of the data. The singular value $\sigma_k$ may be obtained as follows @ <>= svd(termPredictors(barleyModel)[, "Mult(year, genotype)"])$d @ %def This parameter is of little interest in itself, given that the significance of the term as a whole can be tested using ANOVA. The SVD representation can also be obtained quite easily for AMMI and GAMMI models with interaction rank greater than 1\null. See \Rcode{example(wheat)} for an example of this in an AMMI model with rank 2\null. (The calculation of \emph{standard errors} and \emph{confidence regions} for the SVD representation with rank greater than 1 is not yet implemented, though.) \subsection{Biplot models} \label{sec:biplot} Biplots are graphical displays of two-dimensional arrays, which represent the objects that index both dimensions of the array on the same plot. Here we consider the case of a two-way table, where a biplot may be used to represent both the row and column categories simultaneously. A two-dimensional biplot is constructed from a rank-2 representation of the data. For two-way tables, the generalized bilinear model defines one such representation: \begin{equation*} g(\mu_{ij}) = \eta_{ij} = \alpha_{1i}\beta_{1j} + \alpha_{2i}\beta_{2j} \end{equation*} since we can alternatively write \begin{align*} \boldsymbol{\eta} &= \begin{pmatrix} \alpha_{11} & \alpha_{21} \\ \vdots & \vdots \\ \alpha_{1n} & \alpha_{2n} \\ \end{pmatrix} \begin{pmatrix} \beta_{11} & \dots & \beta_{1p} \\ \beta_{21} & \dots & \beta_{2p} \\ \end{pmatrix} \\ &= \boldsymbol{AB}^T \end{align*} where the columns of $A$ and $B$ are linearly independent by definition. To demonstrate how the biplot is obtained from this model, we shall use the \Robject{barley} data set which gives the percentage of leaf area affected by leaf blotch for ten varieties of barley grown at nine sites \citep{Wedd74,Gabr98}. As suggested by \citet{Wedd74} we model these data using a logit link and a variance proportional to the square of that of the binomial, implemented as the \Rfunction{wedderburn} family in \Rpackage{gnm} (see also Section \ref{sec:glms}): @ <>= set.seed(83) biplotModel <- gnm(y ~ -1 + instances(Mult(site, variety), 2), family = wedderburn, data = barley) @ %def The effect of site $i$ can be represented by the point \[ (\alpha_{1i}, \alpha_{2i}) \] in the space spanned by the linearly independent basis vectors \begin{align*} a_1 = (\alpha_{11}, \alpha_{12}, \ldots \alpha_{19})^T\\ a_2 = (\alpha_{21}, \alpha_{22}, \ldots \alpha_{29})^T\\ \end{align*} and the variety effects can be similarly represented. Thus we can represent the sites and varieties separately as follows \begin{Sinput} sites <- pickCoef(biplotModel, "[.]site") coefs <- coef(biplotModel) A <- matrix(coefs[sites], nc = 2) B <- matrix(coefs[-sites], nc = 2) par(mfrow = c(1, 2)) plot(A, pch = levels(barley$site), xlim = c(-5, 5), ylim = c(-5, 5), main = "Site Effects", xlab = "Component 1", ylab = "Component 2") plot(B, pch = levels(barley$variety), xlim = c(-5, 5), ylim = c(-5, 5), main = "Variety Effects", xlab = "Component 1", ylab = "Component 2") \end{Sinput} \begin{figure}[!tbph] \begin{center} \includegraphics[width = 6in]{fig-Effect_plots.pdf} \end{center} \caption{Plots of site and variety effects from the generalized bilinear model of the barley data.} \label{fig:Effect_plots} \end{figure} Of course the parameterization of the bilinear model is not unique and therefore the scale and rotation of the points in these plots will depend on the random seed. By rotation and reciprocal scaling of the matrices $A$ and $B$, we can obtain basis vectors with desirable properties without changing the fitted model. In particular, if we rotate the matrices $A$ and $B$ so that their columns are orthogonal, then the corresponding plots will display the euclidean distances between sites and varieties respectively. If we also scale the matrices $A$ and $B$ so that the corresponding plots have the same units, then we can combine the two plots to give a conventional biplot display. The required rotation and scaling can be performed via singular value decomposition of the fitted predictors: @ <>= barleyMatrix <- xtabs(biplotModel$predictors ~ site + variety, data = barley) barleySVD <- svd(barleyMatrix) A <- sweep(barleySVD$u, 2, sqrt(barleySVD$d), "*")[, 1:2] B <- sweep(barleySVD$v, 2, sqrt(barleySVD$d), "*")[, 1:2] rownames(A) <- levels(barley$site) rownames(B) <- levels(barley$variety) colnames(A) <- colnames(B) <- paste("Component", 1:2) A B @ %def These matrices are essentially the same as in \citet{Gabr98}. From these the biplot can be produced, for sites $A \ldots I$ and varieties $1 \dots 9, X$: @ <>= barleyCol <- c("red", "blue") plot(rbind(A, B), pch = c(levels(barley$site), levels(barley$variety)), col = rep(barleyCol, c(nlevels(barley$site), nlevels(barley$variety))), xlim = c(-4, 4), ylim = c(-4, 4), main = "Biplot for barley data", xlab = "Component 1", ylab = "Component 2") text(c(-3.5, -3.5), c(3.9, 3.6), c("sites: A-I","varieties: 1-9, X"), col = barleyCol, adj = 0) @ %def \begin{figure}[!tbph] \begin{center} \includegraphics{gnmOverview-Biplot1.pdf} \end{center} \caption{Biplot for barley data} \label{fig:Biplot1} \end{figure} The biplot gives an idea of how the sites and varieties are related to one another. It also allows us to consider whether the data can be represented by a simpler model than the generalized bilinear model. We see that the points in the biplot approximately align with the rotated axes shown in Figure \ref{fig:Biplot2}, such that the sites fall about a line parallel to the ``h-axis'' and the varieties group about two lines roughly parallel to the ``v-axis''. @ <>= plot(rbind(A, B), pch = c(levels(barley$site), levels(barley$variety)), col = rep(barleyCol, c(nlevels(barley$site), nlevels(barley$variety))), xlim = c(-4, 4), ylim = c(-4, 4), main = "Biplot for barley data", xlab = "Component 1", ylab = "Component 2") text(c(-3.5, -3.5), c(3.9, 3.6), c("sites: A-I","varieties: 1-9, X"), col = barleyCol, adj = 0) abline(a = 0, b = tan(pi/3)) abline(a = 0, b = -tan(pi/6)) abline(a = 2.6, b = tan(pi/3), lty = 2) abline(a = 4.5, b = tan(pi/3), lty = 2) abline(a = 1.3, b = -tan(pi/6), lty = 2) text(2.8, 3.9, "v-axis", font = 3) text(3.8, -2.7, "h-axis", font = 3) @ %def %abline(a = 0, b = tan(3*pi/10), lty = 4) %abline(a = 0, b = -tan(pi/5), lty = 4) \begin{figure}[!tbph] \begin{center} \includegraphics{gnmOverview-Biplot2.pdf} \end{center} \caption{Biplot for barley data, showing approximate alignment with rotated axes.} \label{fig:Biplot2} \end{figure} This suggests that the sites could be represented by points along a line, with co-ordinates \begin{equation*} (\gamma_i, \delta_0). \end{equation*} and the varieties by points on two lines perpendicular to the site line: \begin{equation*} (\nu_0 + \nu_1I(i \in \{2, 3, 6\}), \omega_j) \end{equation*} This corresponds to the following simplification of the bilinear model: \begin{align*} &\alpha_{1i}\beta_{1j} + \alpha_{2i}\beta_{2j} \\ \approx &\gamma_i(\nu_0 + \nu_1I(i \in \{2, 3, 6\})) + \delta_0\omega_j \end{align*} or equivalently \begin{equation*} \gamma_i(\nu_0 + \nu_1I(i \in \{2, 3, 6\})) + \omega_j, \end{equation*} the double additive model proposed by \citet{Gabr98}. We can fit this model as follows: @ <>= variety.binary <- factor(match(barley$variety, c(2,3,6), nomatch = 0) > 0, labels = c("rest", "2,3,6")) doubleAdditive <- gnm(y ~ variety + Mult(site, variety.binary), family = wedderburn, data = barley) @ %def Comparing the chi-squared statistics, we see that the double additive model is an adequate model for the leaf blotch incidence: @ <>= biplotModChiSq <- sum(residuals(biplotModel, type = "pearson")^2) doubleAddChiSq <- sum(residuals(doubleAdditive, type = "pearson")^2) c(doubleAddChiSq - biplotModChiSq, doubleAdditive$df.residual - biplotModel$df.residual) @ %def \subsection{Stereotype model for multinomial response} \label{sec:Stereotype} The stereotype model was proposed by \citet{Ande84} for ordered categorical data. It is a special case of the multinomial logistic model, in which the covariate coefficients are common to all categories but the scale of association is allowed to vary between categories such that \[ p_{ic} = \frac{\exp(\beta_{0c} + \gamma_c \boldsymbol{\beta}^T\boldsymbol{x}_{i})}{\sum_{k = 1}^K \exp(\beta_{0k} + \gamma_k \boldsymbol{\beta}^T\boldsymbol{x}_{i})} \] where $p_{ic}$ is the probability that the response for individual $i$ is category $c$ and $K$ is the number of categories. Like the multinomial logistic model, the stereotype model specifies a simple form for the log odds of one category against another, e.g. \begin{equation*} \log\left(\frac{p_{ic}}{p_{ik}}\right) = (\beta_{0c} - \beta_{0k}) + (\gamma_c - \gamma_k)\boldsymbol{\beta}^T\boldsymbol{x}_{i} \end{equation*} In order to model a multinomial response in the generalized nonlinear model framework, we must re-express the data as category counts $Y_i = (Y_{i1}, \ldots, Y_{iK})$ for each individual (or group). Then assuming a Poisson distribution for the counts $Y_{ic}$, the joint distribution of $Y_i$ is Multinomial$(N_i, p_{i1}, \ldots, p_{iK})$ conditional on the total count for each individual $N_i$. The expected counts are then $\mu_{ic} = N_ip_{ic}$ and the parameters of the stereotype model can be estimated through fitting the following model \begin{align*} \log \mu_{ic} &= \log(N_i) + \log(p_{ic}) \\ &= \alpha_i + \beta_{0c} + \gamma_c\sum_r \boldsymbol{\beta}_{r}\boldsymbol{x}_{ir} \\ \end{align*} where the ``nuisance'' parameters $\alpha_i$ ensure that the multinomial denominators are reproduced exactly, as required. The \Rpackage{gnm} package includes the utility function \Rfunction{expandCategorical} to re-express the categorical response as category counts. By default, individuals with common values across all covariates are grouped together, to avoid redundancy. For example, the \Robject{backPain} data set from \citet{Ande84} describes the progress of patients with back pain. The data set consists of an ordered factor quantifying the progress of each patient, and three prognostic variables. We re-express the data as follows: @ <>= set.seed(1) subset(backPain, x1 == 1 & x2 == 1 & x3 == 1) backPainLong <- expandCategorical(backPain, "pain") head(backPainLong) @ %def We can now fit the stereotype model to these data: @ <>= oneDimensional <- gnm(count ~ pain + Mult(pain, x1 + x2 + x3), eliminate = id, family = "poisson", data = backPainLong) oneDimensional @ %def specifying the \Robject{id} factor through \Rfunarg{eliminate} so that the 12 \Robject{id} effects are estimated more efficiently and are excluded from printed model summaries by default. This model is one dimensional since it involves only one function of $\mathbf{x} = (x1, x2, x3)$. We can compare this model to one with category-specific coefficients of the $x$ variables, as may be used for a qualitative categorical response: @ <>= threeDimensional <- gnm(count ~ pain + pain:(x1 + x2 + x3), eliminate = id, family = "poisson", data = backPainLong) threeDimensional @ %def This model has the maximum dimensionality of three (as determined by the number of covariates). The ungrouped multinomial log-likelihoods reported in \citet{Ande84} are given by \begin{equation*} \sum_{i,c} y_{ic}\log(p_{ic}) = \sum_{i,c} y_{ic}\log(\mu_{ic}/n_{ic}) \end{equation*} We write a simple function to compute this and the corresponding degrees of freedom, then compare the log-likelihoods of the one dimensional model and the three dimensional model: @ <>= logLikMultinom <- function(model, size){ object <- get(model) l <- sum(object$y * log(object$fitted/size)) c(nParameters = object$rank - nlevels(object$eliminate), logLikelihood = l) } size <- tapply(backPainLong$count, backPainLong$id, sum)[backPainLong$id] t(sapply(c("oneDimensional", "threeDimensional"), logLikMultinom, size)) @ %def showing that the \Robject{oneDimensional} model is adequate. To obtain estimates of the category-specific multipliers in the stereotype model, we need to constrain both the location and the scale of these parameters. The latter constraint can be imposed by fixing the slope of one of the covariates in the second multiplier to \Robject{1}, which may be achieved by specifying the covariate as an offset: @ <>= ## before constraint summary(oneDimensional) oneDimensional <- gnm(count ~ pain + Mult(pain, offset(x1) + x2 + x3), eliminate = id, family = "poisson", data = backPainLong) ## after constraint summary(oneDimensional) @ %def The location of the category-specific multipliers can constrained by setting one of the parameters to zero, either through the \Rfunarg{constrain} argument of \Rfunction{gnm} or with \Rfunction{getContrasts}: @ <>= getContrasts(oneDimensional, pickCoef(oneDimensional, "[.]pain")) @ %def giving the required estimates. \subsection{Lee-Carter model for trends in age-specific mortality} In the study and projection of population mortality rates, the model proposed by \cite{LeeCart92} forms the basis of many if not most current analyses. Here we consider the quasi-Poisson version of the model \citep{Wilm93, Alho00, BrouDenuVerm02, RensHabe03}, in which the death count $D_{ay}$ for individuals of age $a$ in year $y$ has mean $\mu_{ay}$ and variance $\phi\mu_{ay}$ (where $\phi$ is 1 for Poisson-distributed counts, and is respectively greater than or less than 1 in cases of over-dispersion or under-dispersion). In the Lee-Carter model, the expected counts follow the log-bilinear form \[ \log(\mu_{ay}/e_{ay}) = \alpha_a + \beta_a \gamma_y, \] where $e_{ay}$ is the `exposure' (number of lives at risk). This is a generalized nonlinear model with a single multiplicative term. The use of \Rpackage{gnm} to fit this model is straightforward. We will illustrate by using data downloaded on 2006-11-14 from the Human Mortality Database\footnote{Thanks to Iain Currie for helpful advice relating to this section} (HMD, made available by the University of California, Berkeley, and Max Planck Institute for Demographic Research, at \texttt{http://www.mortality.org}) on male deaths in Canada between 1921 and 2003. The data are not made available as part of \Rpackage{gnm} because of license restrictions; but they are readily available via the web simply by registering with the HMD. We assume that the data for Canadian males (both deaths and exposure-to-risk) have been downloaded from the HMD and organised into a data frame named \Robject{Canada} in \R, with columns \Robject{Year} (a factor, with levels \Rcode{1921} to \Rcode{2003}), \Robject{Age} (a factor, with levels \Rcode{20} to \Rcode{99}), \Robject{mDeaths} and \Robject{mExposure} (both quantitative). The Lee-Carter model may then be specified as \begin{Sinput} LCmodel.male <- gnm(mDeaths ~ Age + Mult(Exp(Age), Year), offset = log(mExposure), family = "quasipoisson", data = Canada) \end{Sinput} Here we have acknowledged the fact that the model only really makes sense if all of the $\beta_a$ parameters, which represent the `sensitivity' of age group $a$ to a change in the level of general mortality \citep[e.g.,][]{BrouDenuVerm02}, have the same sign. Without loss of generality we assume $\beta_a>0$ for all $a$, and we impose this constraint by using \Rcode{Exp(Age)} instead of just \Rcode{Age} in the multiplicative term. Convergence is to a fitted model with residual deviance 32419.83 on 6399 degrees of freedom --- representing clear evidence of substantial overdispersion relative to the Poisson distribution. In order to explore the lack of fit a little further, we plot the distribution of Pearson residuals in Figure \ref{fig:LCresplot}: \begin{Sinput} par(mfrow = c(2,2)) age <- as.numeric(as.character(Canada$Age)) with(Canada,{ res <- residuals(LCmodel.male, type = "pearson") plot(Age, res, xlab="Age", ylab="Pearson residual", main = "(a) Residuals by age") plot(Year, res, xlab="Year", ylab="Pearson residual", main = "(b) Residuals by year") plot(Year[(age>24) & (age<36)], res[(age>24) & (age<36)], xlab = "Year", ylab = "Pearson residual", main = "(c) Age group 25-35") plot(Year[(age>49) & (age<66)], res[(age>49) & (age<66)], xlab = "Year", ylab = "Pearson residual", main = "(d) Age group 50-65") }) \end{Sinput} %$ \begin{figure}[!tbph] \begin{center} \includegraphics[width=6in]{fig-LCall.pdf} \end{center} \caption{Canada, males: plots of residuals from the Lee-Carter model of mortality} \label{fig:LCresplot} \end{figure} Panel (a) of Figure \ref{fig:LCresplot} indicates that the overdispersion is not evenly spread through the data, but is largely concentrated in two age groups, roughly ages 25--35 and 50--65\null. Panels (c) and (d) focus on the residuals in each of these two age groups: there is a clear (and roughly cancelling) dependence on \Robject{Year}, indicating that the assumed bilinear interaction between \Robject{Age} and \Robject{Year} does not hold for the full range of ages and years considered here. A somewhat more satisfactory Lee-Carter model fit is obtained if only a subset of the data is used, namely only those males aged 45 or over: \begin{Sinput} LCmodel.maleOver45 <- gnm(mDeaths ~ Age + Mult(Exp(Age), Year), offset = log(mExposure), family = "quasipoisson", data = Canada[age>44,]) \end{Sinput} The residual deviance now is 12595.44 on 4375 degrees of freedom: still substantially overdispersed, but less severely so than before. Again we plot the distributions of Pearson residuals (Figure \ref{fig:LCresplot2}). \begin{figure}[!tbph] \begin{center} \includegraphics[width=6in]{fig-LCover45.pdf} \end{center} \caption{Canada, males over 45: plots of residuals from the Lee-Carter model of mortality} \label{fig:LCresplot2} \end{figure} Still clear departures from the assumed bilinear structure are evident, especially for age group 81--89; but they are less pronounced than in the previous model fit. The main purpose here is only to illustrate how straightforward it is to work with the Lee-Carter model using \Rfunction{gnm}, but we will take this example a little further by examining the estimated $\beta_a$ parameters from the last fitted model. We can use \Rfunction{getContrasts} to compute quasi standard errors for the logarithms of $\hat\beta_a$ --- the logarithms being the result of having used \Rcode{Exp(Age)} in the model specification --- and use these in a plot of the coefficients: \begin{Sinput} AgeContrasts <- getContrasts(LCmodel.maleOver45, 56:100) ## ages 45 to 89 only \end{Sinput} \begin{figure}[!tbph] \begin{center} \includegraphics{fig-LCqvplot.pdf} \end{center} \caption{Canada, males over 45, Lee-Carter model: relative sensitivity of different ages to change in total mortality.} \label{fig:LCqvplot} \end{figure} The plot shows that sensitivity to the general level of mortality is highest at younger ages, as expected. An \emph{unexpected} feature is the clear outlying positions occupied by the estimates for ages 51, 61, 71 and 81: for each of those ages, the estimated $\beta_a$ coefficient is substantially less than it is for the neighbouring age groups (and the error bars indicate clearly that the deviations are larger than could plausibly be due to chance variation). This is a curious finding. An explanation comes from a look back at the raw death-count data. In the years between 1921 and 1940, the death counts for ages 31, 41, 51, 61, 71 and 81 all stand out as being very substantially lower than those of neighbouring ages (Figure \ref{fig:deaths2140}: the ages concerned are highlighted in solid red). The same does \emph{not} hold for later years: after about 1940, the `1' ages fall in with the general pattern. This apparent `age heaping\footnote{Age heaping is common in mortality data: see \url{http://www.mortality.org/Public/Overview.php}}' explains our finding above regarding the $\beta_a$ coefficients: whilst all age groups have benefited from the general trend of reduced mortality, the `1' age groups appear to have benefited least because their starting point (in the 1920s and 1930s) was lower than would have been indicated by the general pattern --- hence $\hat\beta_a$ is smaller for ages $a=31$, $a=41$,\ldots, $a=81$. \begin{figure}[!tbph] \begin{center} \includegraphics{fig-deaths1921-1940.pdf} \end{center} \caption{Canada, males: Deaths 1921 to 1940 by age} \label{fig:deaths2140} \end{figure} \subsection{Exponential and sum-of-exponentials models for decay curves} A class of nonlinear functions which arise in various application contexts --- a notable one being pharmacokinetic studies -- involves one or more \emph{exponential decay} terms. For example, a simple decay model with additive error is \begin{equation} \label{eq:singleExp} y = \alpha + \exp(\beta + \gamma x) + e \end{equation} (with $\gamma<0$), while a more complex (`sum of exponentials') model might involve two decay terms: \begin{equation} \label{eq:twoExp} y = \alpha + \exp(\beta_1 + \gamma_1 x) + \exp(\beta_2+ \gamma_2 x) + e. \end{equation} Estimation and inference with such models are typically not straightforward, partly on account of multiple local maxima in the likelihood \citep[e.g.,][Ch.3]{Sebe89}. We illustrate the difficulties here, with a couple of artificial examples. These examples will make clear the value of making repeated calls to \Rfunction{gnm}, in order to use different, randomly-generated parameterizations and starting values and thus improve the chances of locating both the global maximum and all local maxima of the likelihood. \subsubsection{Example: single exponential decay term} Let us first construct some data from model (\ref{eq:singleExp}). For our illustrative purposes here, we will use \emph{noise-free} data, i.e., we fix the variance of $e$ to be zero; for the other parameters we will use $\alpha=0$, $\beta = 0$, $\gamma = -0.1$. @ <>= x <- 1:100 y <- exp(- x / 10) set.seed(1) saved.fits <- list() for (i in 1:100) saved.fits[[i]] <- gnm(y ~ Exp(1 + x), verbose = FALSE) table(zapsmall(sapply(saved.fits, deviance))) @ %def The \Robject{saved.fits} object thus contains the results of 100 calls to \Rfunction{gnm}, each using a different, randomly-generated starting value for the vector of parameters $(\alpha, \beta, \gamma)$. Out of 100 fits, 52 reproduce the data exactly, to machine accuracy. The remaining 48 fits are all identical to one another, but they are far from globally optimal, with residual sum of squares 3.61: they result from divergence of $\hat\gamma$ to $+\infty$, and correspondingly of $\hat\beta$ to $-\infty$, such that the fitted `curve' is in fact just a constant, with level equal to $\bar{y}=0.09508$. For example, the second of the 100 fits is of this kind: @ <>= saved.fits[[2]] @ %def The use of repeated calls to \Rfunction{gnm}, as here, allows the local and global maxima to be easily distinguished. \subsubsection{Example: sum of two exponentials} We can conduct a similar exercise based on the more complex model (\ref{eq:twoExp}): @ <>= x <- 1:100 y <- exp(- x / 10) + 2 * exp(- x / 50) set.seed(1) saved.fits <- list() for (i in 1:100) { saved.fits[[i]] <- suppressWarnings(gnm(y ~ Exp(1 + x, inst = 1) + Exp(1 + x, inst = 2), verbose = FALSE)) } table(round(unlist(sapply(saved.fits, deviance)), 4)) @ %def In this instance, only 27 of the 100 calls to \Rfunction{gnm} have successfully located a local maximum of the likelihood: in the remaining 73 cases the starting values generated were such that numerical problems resulted, and the fitting algorithm was abandoned (giving a \Robject{NULL} result). Among the 27 `successful' fits, it is evident that there are three distinct solutions (with respective residual sums of squares equal to 0.1589, 41.64, and essentially zero --- the last of these, the exact fit to the data, having been found 20 times out of the above 27). The two non-optimal local maxima here correspond to the best fit with a single exponential (which has residual sum of squares 0.1589) and to the fit with no dependence at all on $x$ (residual sum of squares 41.64), as we can see by comparing with: @ <>= singleExp <- gnm(y ~ Exp(1 + x), start = c(NA, NA, -0.1), verbose = FALSE) singleExp meanOnly <- gnm(y ~ 1, verbose = FALSE) meanOnly plot(x, y, main = "Two sub-optimal fits to a sum-of-exponentials curve") lines(x, fitted(singleExp)) lines(x, fitted(meanOnly), lty = "dashed") @ %def \begin{figure}[!tbph] \centering \includegraphics{gnmOverview-doubleExp2.pdf} \caption{Two sub-optimal fits to a sum-of-exponentials curve} \label{fig:doubleExp} \end{figure} In this example, it is clear that even a small amount of noise in the data would make it practically impossible to distinguish between competing models containing one and two exponential-decay terms. In summary: the default \Rfunction{gnm} setting of randomly-chosen starting values is useful for identifying multiple local maxima in the likelihood; and reasonably good starting values are needed if the global maximum is to be found. In the present example, knowing that $\gamma_1$ and $\gamma_2$ should both be small and negative, we might perhaps have tried @ <>= gnm(y ~ instances(Exp(1 + x), 2), start = c(NA, NA, -0.1, NA, -0.1), verbose = FALSE) @ %def which reliably yields the (globally optimal) perfect fit to the data. \newpage \appendix \section{User-level functions} We list here, for easy reference, all of the user-level functions in the \Rpackage{gnm} package. For full documentation see the package help pages. \begin{table}[!h] \begin{tabular*}{\textwidth}{@{}p{0.2in}p{1.3in}p{4.5in}@{}} \toprule \multicolumn{3}{l}{\textbf{Model Fitting}} \\ \midrule & \Rfunction{gnm} & fit generalized nonlinear models \\ \midrule \multicolumn{3}{l}{\textbf{Model Specification}} \\ \midrule & \Rfunction{Diag} & create factor differentiating diagonal elements \\ & \Rfunction{Symm} & create symmetric interaction of factors \\ & \Rfunction{Topo} & create `topological' interaction factors \\ & \Rfunction{Const} & specify a constant in a \Rclass{nonlin} function predictor \\ & \Rfunction{Dref} & specify a diagonal reference term in a \Rfunction{gnm} model formula \\ & \Rfunction{Mult} & specify a product of predictors in a \Rfunction{gnm} formula \\ & \Rfunction{MultHomog} & specify a multiplicative interaction with homogeneous effects in a \Rfunction{gnm} formula \\ & \Rfunction{Exp} & specify the exponential of a predictor in a \Rfunction{gnm} formula \\ % & \Rfunction{Log} & specify the natural logarithm of a predictor in a % \Rfunction{gnm} formula \\ % & \Rfunction{Logit} & specify the logit of a predictor in a % \Rfunction{gnm} formula \\ & \Rfunction{Inv} & specify the reciprocal of a predictor in a \Rfunction{gnm} formula \\ % & \Rfunction{Raise} & specify a predictor raised to a constant % power in a \Rfunction{gnm} formula \\ & \Rfunction{wedderburn} & specify the Wedderburn quasi-likelihood family \\ \midrule \multicolumn{3}{l}{\textbf{Methods and Accessor Functions}} \\ \midrule & \Rmethod{confint.gnm} & compute confidence intervals of \Rclass{gnm} parameters based on the profiled deviance \\ & \Rmethod{confint.profile.gnm} & compute confidence intervals of parameters from a \Rclass{profile.gnm} object \\ & \Rmethod{predict.gnm} & predict from a \Rclass{gnm} model \\ & \Rmethod{profile.gnm} & profile deviance for parameters in a \Rclass{gnm} model \\ & \Rmethod{plot.profile.gnm} & plot profile traces from a \Rclass{profile.gnm} object \\ & \Rmethod{summary.gnm} & summarize \Rclass{gnm} fits \\ & \Rfunction{residSVD} & multiplicative approximation of model residuals \\ & \Rfunction{exitInfo} & print numerical details of last iteration when \Rfunction{gnm} has not converged \\ & \Rfunction{ofInterest} & extract the \Robject{ofInterest} component of a \Rclass{gnm} object \\ & \Rfunction{ofInterest<-} & replace the \Robject{ofInterest} component of a \Rclass{gnm} object \\ & \Rfunction{parameters} & get model parameters from a \Rclass{gnm} object, including parameters that were constrained \\ & \Rfunction{pickCoef} & get indices of model parameters \\ & \Rfunction{getContrasts} & estimate contrasts and their standard errors for parameters in a \Rclass{gnm} model \\ & \Rfunction{checkEstimable} & check whether one or more parameter combinations in a \Rclass{gnm} model is identified \\ & \Rfunction{se} & get standard errors of linear parameter combinations in \Rclass{gnm} models \\ & \Rfunction{Dref} & estimate weights and corresponding standard errors for a diagonal reference term in a \Rclass{gnm} model \\ & \Rfunction{termPredictors} & (\emph{generic}) extract term contributions to predictor \\ \midrule \multicolumn{3}{l}{\textbf{Auxiliary Functions}} \\ \midrule & \Rfunction{asGnm} & coerce an object of class \Rclass{lm} or \Rclass{glm} to class \Rclass{gnm} \\ & \Rfunction{expandCategorical} & expand a data frame by re-expressing categorical data as counts \\ & \Rfunction{getModelFrame} & get the model frame in use by \Rfunction{gnm} \\ & \Rfunction{MPinv} & Moore-Penrose pseudoinverse of a real-valued matrix \\ & \Rfunction{qrSolve} & Minimum-length solution of a linear system\\ \end{tabular*} \end{table} \newpage \bibliography{gnm} \bibliographystyle{jss} \end{document} gnm/vignettes/fig-LCqvplot.pdf0000644000176200001440000001625514376140103016055 0ustar liggesusers%PDF-1.1 %ρ\r 1 0 obj << /CreationDate (D:20061218174133) /ModDate (D:20061218174133) /Title (R Graphics Output) /Producer (R 2.4.1) /Creator (R) >> endobj 2 0 obj << /Type /Catalog /Pages 3 0 R >> endobj 5 0 obj << /Type /Font /Subtype /Type1 /Name /F1 /BaseFont /ZapfDingbats >> endobj 6 0 obj << /Type /Page /Parent 3 0 R /Contents 7 0 R /Resources 4 0 R >> endobj 7 0 obj << /Length 8 0 R >> stream q Q q 59.04 73.44 378.72 335.52 re W n 0.000 0.000 0.000 RG 0.75 w [] 0 d 1 J 1 j 10.00 M BT /F1 1 Tf 1 Tr 7.48 0 0 7.48 70.10 359.09 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 78.07 339.04 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 86.04 340.06 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 94.01 340.98 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 101.98 336.39 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 109.95 346.70 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 117.92 313.89 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 125.89 337.12 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 133.86 326.43 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 141.83 318.49 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 149.80 317.46 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 157.77 310.69 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 165.74 302.80 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 173.71 314.78 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 181.68 303.23 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 189.65 307.08 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 197.62 268.32 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 205.59 294.42 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 213.56 293.54 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 221.53 285.33 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 229.50 292.74 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 237.47 251.85 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 245.44 259.33 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 253.41 271.84 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 261.38 261.43 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 269.35 256.54 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 277.32 221.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 285.29 259.30 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 293.26 252.63 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 301.23 242.81 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 309.20 241.76 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 317.17 237.95 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 325.14 223.36 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 333.10 236.22 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 341.07 220.15 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 349.04 200.67 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 357.01 156.14 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 364.98 191.07 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 372.95 188.09 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 380.92 192.73 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 388.89 165.53 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 396.86 171.70 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 404.83 162.30 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 412.80 134.21 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 420.77 131.07 Tm (l) Tj 0 Tr ET Q q 0.000 0.000 0.000 RG 0.75 w [] 0 d 1 J 1 j 10.00 M 112.92 73.44 m 431.70 73.44 l S 112.92 73.44 m 112.92 66.24 l S 192.61 73.44 m 192.61 66.24 l S 272.31 73.44 m 272.31 66.24 l S 352.01 73.44 m 352.01 66.24 l S 431.70 73.44 m 431.70 66.24 l S BT 0.000 0.000 0.000 rg /F2 1 Tf 12.00 0.00 -0.00 12.00 106.24 47.52 Tm (50) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 185.94 47.52 Tm (60) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 265.64 47.52 Tm (70) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 345.33 47.52 Tm (80) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 425.03 47.52 Tm (90) Tj ET 59.04 98.78 m 59.04 361.69 l S 59.04 98.78 m 51.84 98.78 l S 59.04 186.42 m 51.84 186.42 l S 59.04 274.05 m 51.84 274.05 l S 59.04 361.69 m 51.84 361.69 l S BT /F2 1 Tf 0.00 12.00 -12.00 0.00 41.76 86.94 Tm (-1.5) Tj /F2 1 Tf 0.00 12.00 -12.00 0.00 41.76 174.57 Tm (-1.0) Tj /F2 1 Tf 0.00 12.00 -12.00 0.00 41.76 262.21 Tm (-0.5) Tj /F2 1 Tf 0.00 12.00 -12.00 0.00 41.76 353.35 Tm (0.0) Tj ET 59.04 73.44 m 437.76 73.44 l 437.76 408.96 l 59.04 408.96 l 59.04 73.44 l S Q q BT 0.000 0.000 0.000 rg /F3 1 Tf 14.00 0.00 -0.00 14.00 44.73 442.09 Tm (Canada, males over 45, Lee-Carter model: relative sensitivity) Tj /F3 1 Tf 14.00 0.00 -0.00 14.00 102.47 424.81 Tm (of different ages to change in total mortality) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 237.73 18.72 Tm (Age) Tj /F2 1 Tf 0.00 12.00 -12.00 0.00 12.96 217.52 Tm (log\(beta\)) Tj ET Q q 59.04 73.44 378.72 335.52 re W n 0.000 0.000 0.000 RG 0.75 w [] 0 d 1 J 1 j 10.00 M 73.07 352.73 m 73.07 370.64 l S 81.04 331.98 m 81.04 351.29 l S 89.01 333.36 m 89.01 351.94 l S 96.98 334.69 m 96.98 352.45 l S 104.95 330.15 m 104.95 347.82 l S 112.92 341.22 m 112.92 357.37 l S 120.88 307.06 m 120.88 325.91 l S 128.85 331.73 m 128.85 347.69 l S 136.82 320.80 m 136.82 337.27 l S 144.79 312.80 m 144.79 329.37 l S 152.76 311.90 m 152.76 328.21 l S 160.73 305.08 m 160.73 321.49 l S 168.70 297.04 m 168.70 313.75 l S 176.67 309.76 m 176.67 324.99 l S 184.64 297.95 m 184.64 313.70 l S 192.61 302.22 m 192.61 317.14 l S 200.58 261.85 m 200.58 279.97 l S 208.55 289.47 m 208.55 304.56 l S 216.52 288.73 m 216.52 303.53 l S 224.49 280.41 m 224.49 295.45 l S 232.46 288.37 m 232.46 302.29 l S 240.43 245.83 m 240.43 263.07 l S 248.40 253.92 m 248.40 269.92 l S 256.37 267.16 m 256.37 281.72 l S 264.34 256.50 m 264.34 271.56 l S 272.31 251.58 m 272.31 266.68 l S 280.28 214.69 m 280.28 233.05 l S 288.25 254.70 m 288.25 269.09 l S 296.22 247.83 m 296.22 262.62 l S 304.19 237.67 m 304.19 253.14 l S 312.16 236.61 m 312.16 252.10 l S 320.13 232.67 m 320.13 248.43 l S 328.10 217.35 m 328.10 234.56 l S 336.07 230.82 m 336.07 246.81 l S 344.04 213.92 m 344.04 231.58 l S 352.01 193.33 m 352.01 213.20 l S 359.98 145.60 m 359.98 171.87 l S 367.95 182.70 m 367.95 204.63 l S 375.92 179.22 m 375.92 202.15 l S 383.88 183.77 m 383.88 206.88 l S 391.85 154.03 m 391.85 182.23 l S 399.82 160.09 m 399.82 188.51 l S 407.79 149.06 m 407.79 180.73 l S 415.76 116.95 m 415.76 156.66 l S 423.73 111.76 m 423.73 155.58 l S BT 0.000 0.000 0.000 rg /F2 1 Tf 12.00 0.00 -0.00 12.00 340.96 130.85 Tm (Age 81) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 261.26 200.96 Tm (Age 71) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 181.57 248.28 Tm (Age 61) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 101.87 292.10 Tm (Age 51) Tj ET Q endstream endobj 8 0 obj 5932 endobj 3 0 obj << /Type /Pages /Kids [ 6 0 R ] /Count 1 /MediaBox [0 0 468 468] >> endobj 4 0 obj << /ProcSet [/PDF /Text] /Font << /F1 5 0 R /F2 10 0 R /F3 11 0 R >> /ExtGState << >> >> endobj 9 0 obj << /Type /Encoding /BaseEncoding /WinAnsiEncoding /Differences [ 45/minus 96/quoteleft 144/dotlessi /grave /acute /circumflex /tilde /macron /breve /dotaccent /dieresis /.notdef /ring /cedilla /.notdef /hungarumlaut /ogonek /caron /space] >> endobj 10 0 obj << /Type /Font /Subtype /Type1 /Name /F2 /BaseFont /Helvetica /Encoding 9 0 R >> endobj 11 0 obj << /Type /Font /Subtype /Type1 /Name /F3 /BaseFont /Helvetica-Bold /Encoding 9 0 R >> endobj xref 0 12 0000000000 65535 f 0000000021 00000 n 0000000163 00000 n 0000006380 00000 n 0000006463 00000 n 0000000212 00000 n 0000000295 00000 n 0000000375 00000 n 0000006360 00000 n 0000006567 00000 n 0000006824 00000 n 0000006921 00000 n trailer << /Size 12 /Info 1 0 R /Root 2 0 R >> startxref 7023 %%EOF gnm/vignettes/fig-profilePlot.pdf0000644000176200001440000002411514376140103016602 0ustar liggesusers%PDF-1.4 %ρ\r 1 0 obj << /CreationDate (D:20060922120623) /ModDate (D:20060922120623) /Title (R Graphics Output) /Producer (R 2.3.1) /Creator (R) >> endobj 2 0 obj << /Type /Catalog /Pages 3 0 R >> endobj 5 0 obj << /Type /Font /Subtype /Type1 /Name /F1 /BaseFont /ZapfDingbats >> endobj 6 0 obj << /Type /Page /Parent 3 0 R /Contents 7 0 R /Resources 4 0 R >> endobj 7 0 obj << /Length 8 0 R >> stream q Q q 49.00 258.21 123.52 87.29 re W n Q q 0.00 0.00 395.25 394.50 re W n /GS1 gs 0.000 0.000 0.000 RG 0.75 w [] 0 d 1 J 1 j 10.00 M 70.08 258.21 m 156.96 258.21 l S 70.08 258.21 m 70.08 252.23 l S 91.80 258.21 m 91.80 252.23 l S 113.52 258.21 m 113.52 252.23 l S 135.24 258.21 m 135.24 252.23 l S 156.96 258.21 m 156.96 252.23 l S BT /GS257 gs 0.000 0.000 0.000 rg /F2 1 Tf 10.00 0.00 0.00 10.00 60.21 236.69 Tm (-0.6) Tj /F2 1 Tf 10.00 0.00 0.00 10.00 103.65 236.69 Tm (-0.2) Tj /F2 1 Tf 10.00 0.00 0.00 10.00 150.01 236.69 Tm (0.2) Tj ET 49.00 270.41 m 49.00 339.93 l S 49.00 270.41 m 43.03 270.41 l S 49.00 284.31 m 43.03 284.31 l S 49.00 298.22 m 43.03 298.22 l S 49.00 312.12 m 43.03 312.12 l S 49.00 326.03 m 43.03 326.03 l S 49.00 339.93 m 43.03 339.93 l S BT /F2 1 Tf 0.00 10.00 -10.00 0.00 34.66 264.71 Tm (-2) Tj /F2 1 Tf 0.00 10.00 -10.00 0.00 34.66 295.44 Tm (0) Tj /F2 1 Tf 0.00 10.00 -10.00 0.00 34.66 309.34 Tm (1) Tj /F2 1 Tf 0.00 10.00 -10.00 0.00 34.66 323.25 Tm (2) Tj /F2 1 Tf 0.00 10.00 -10.00 0.00 34.66 337.15 Tm (3) Tj ET 49.00 258.21 m 172.53 258.21 l 172.53 345.50 l 49.00 345.50 l 49.00 258.21 l S Q q 0.00 197.25 197.62 197.25 re W n BT /GS257 gs 0.000 0.000 0.000 rg /F2 1 Tf 10.00 0.00 0.00 10.00 47.61 212.79 Tm (Mult\(Exp\(.\), orig:dest\).educ2) Tj /F2 1 Tf 0.00 10.00 -10.00 0.00 10.76 299.35 Tm (z) Tj ET Q q 49.00 258.21 123.52 87.29 re W n /GS1 gs 0.000 0.000 0.000 RG 0.75 w [] 0 d 1 J 1 j 10.00 M 107.60 298.22 m 113.93 298.22 l S 110.76 295.05 m 110.76 301.39 l S 53.58 261.44 m 57.15 263.38 l 60.73 265.37 l 64.30 267.41 l 67.87 269.51 l 71.45 271.65 l 75.02 273.84 l 78.60 276.08 l 82.17 278.37 l 85.75 280.70 l 89.32 283.08 l 92.89 285.51 l 96.47 287.97 l 100.04 290.48 l 103.62 293.02 l 107.19 295.60 l 110.76 298.22 l 114.34 300.86 l 117.91 303.54 l 121.49 306.23 l 125.06 308.96 l 128.64 311.70 l 132.21 314.46 l 135.78 317.23 l 139.36 320.01 l 142.93 322.80 l 146.51 325.60 l 150.08 328.39 l 153.65 331.18 l 157.23 333.97 l 160.80 336.75 l 164.38 339.51 l 167.95 342.26 l S Q q 246.63 258.21 123.52 87.29 re W n Q q 0.00 0.00 395.25 394.50 re W n /GS1 gs 0.000 0.000 0.000 RG 0.75 w [] 0 d 1 J 1 j 10.00 M 260.61 258.21 m 364.24 258.21 l S 260.61 258.21 m 260.61 252.23 l S 295.15 258.21 m 295.15 252.23 l S 329.69 258.21 m 329.69 252.23 l S 364.24 258.21 m 364.24 252.23 l S BT /GS257 gs 0.000 0.000 0.000 rg /F2 1 Tf 10.00 0.00 0.00 10.00 250.74 236.69 Tm (-1.5) Tj /F2 1 Tf 10.00 0.00 0.00 10.00 285.28 236.69 Tm (-1.0) Tj /F2 1 Tf 10.00 0.00 0.00 10.00 319.82 236.69 Tm (-0.5) Tj /F2 1 Tf 10.00 0.00 0.00 10.00 357.29 236.69 Tm (0.0) Tj ET 246.63 265.03 m 246.63 341.28 l S 246.63 265.03 m 240.65 265.03 l S 246.63 280.28 m 240.65 280.28 l S 246.63 295.53 m 240.65 295.53 l S 246.63 310.78 m 240.65 310.78 l S 246.63 326.03 m 240.65 326.03 l S 246.63 341.28 m 240.65 341.28 l S BT /F2 1 Tf 0.00 10.00 -10.00 0.00 232.29 259.33 Tm (-2) Tj /F2 1 Tf 0.00 10.00 -10.00 0.00 232.29 292.75 Tm (0) Tj /F2 1 Tf 0.00 10.00 -10.00 0.00 232.29 308.00 Tm (1) Tj /F2 1 Tf 0.00 10.00 -10.00 0.00 232.29 323.25 Tm (2) Tj /F2 1 Tf 0.00 10.00 -10.00 0.00 232.29 338.50 Tm (3) Tj ET 246.63 258.21 m 370.15 258.21 l 370.15 345.50 l 246.63 345.50 l 246.63 258.21 l S Q q 197.62 197.25 197.62 197.25 re W n BT /GS257 gs 0.000 0.000 0.000 rg /F2 1 Tf 10.00 0.00 0.00 10.00 245.24 212.79 Tm (Mult\(Exp\(.\), orig:dest\).educ3) Tj /F2 1 Tf 0.00 10.00 -10.00 0.00 208.38 299.35 Tm (z) Tj ET Q q 246.63 258.21 123.52 87.29 re W n /GS1 gs 0.000 0.000 0.000 RG 0.75 w [] 0 d 1 J 1 j 10.00 M 309.71 295.53 m 316.05 295.53 l S 312.88 292.36 m 312.88 298.70 l S 251.20 261.44 m 254.21 262.58 l 257.22 263.77 l 260.23 265.00 l 263.24 266.29 l 266.25 267.62 l 269.26 269.01 l 272.27 270.45 l 275.28 271.94 l 278.29 273.49 l 281.30 275.10 l 284.31 276.76 l 287.32 278.48 l 290.33 280.26 l 293.34 282.10 l 296.35 284.00 l 299.36 285.97 l 302.37 287.99 l 305.38 290.08 l 308.39 292.22 l 311.40 294.43 l 314.41 296.69 l 317.42 299.01 l 320.43 301.40 l 323.44 303.83 l 326.45 306.32 l 329.46 308.86 l 332.47 311.45 l 335.48 314.09 l 338.49 316.77 l 341.50 319.49 l 344.51 322.25 l 347.52 325.04 l 350.53 327.86 l 353.54 330.71 l 356.55 333.58 l 359.56 336.46 l 362.57 339.36 l 365.58 342.26 l S Q q 49.00 60.96 123.52 87.29 re W n Q q 0.00 0.00 395.25 394.50 re W n /GS1 gs 0.000 0.000 0.000 RG 0.75 w [] 0 d 1 J 1 j 10.00 M 67.42 60.96 m 164.72 60.96 l S 67.42 60.96 m 67.42 54.98 l S 86.88 60.96 m 86.88 54.98 l S 106.34 60.96 m 106.34 54.98 l S 125.80 60.96 m 125.80 54.98 l S 145.26 60.96 m 145.26 54.98 l S 164.72 60.96 m 164.72 54.98 l S BT /GS257 gs 0.000 0.000 0.000 rg /F2 1 Tf 10.00 0.00 0.00 10.00 57.55 39.44 Tm (-2.5) Tj /F2 1 Tf 10.00 0.00 0.00 10.00 96.47 39.44 Tm (-1.5) Tj /F2 1 Tf 10.00 0.00 0.00 10.00 135.39 39.44 Tm (-0.5) Tj ET 49.00 65.60 m 49.00 144.92 l S 49.00 65.60 m 43.03 65.60 l S 49.00 81.47 m 43.03 81.47 l S 49.00 97.33 m 43.03 97.33 l S 49.00 113.19 m 43.03 113.19 l S 49.00 129.06 m 43.03 129.06 l S 49.00 144.92 m 43.03 144.92 l S BT /F2 1 Tf 0.00 10.00 -10.00 0.00 34.66 59.90 Tm (-2) Tj /F2 1 Tf 0.00 10.00 -10.00 0.00 34.66 94.55 Tm (0) Tj /F2 1 Tf 0.00 10.00 -10.00 0.00 34.66 110.41 Tm (1) Tj /F2 1 Tf 0.00 10.00 -10.00 0.00 34.66 126.28 Tm (2) Tj /F2 1 Tf 0.00 10.00 -10.00 0.00 34.66 142.14 Tm (3) Tj ET 49.00 60.96 m 172.53 60.96 l 172.53 148.25 l 49.00 148.25 l 49.00 60.96 l S Q q 0.00 0.00 197.62 197.25 re W n BT /GS257 gs 0.000 0.000 0.000 rg /F2 1 Tf 10.00 0.00 0.00 10.00 47.61 15.54 Tm (Mult\(Exp\(.\), orig:dest\).educ4) Tj /F2 1 Tf 0.00 10.00 -10.00 0.00 10.76 102.10 Tm (z) Tj ET Q q 49.00 60.96 123.52 87.29 re W n /GS1 gs 0.000 0.000 0.000 RG 0.75 w [] 0 d 1 J 1 j 10.00 M 121.12 97.33 m 127.45 97.33 l S 124.28 94.16 m 124.28 100.50 l S 53.58 64.19 m 56.18 64.63 l 58.78 65.10 l 61.38 65.61 l 63.98 66.16 l 66.58 66.75 l 69.17 67.38 l 71.77 68.05 l 74.37 68.78 l 76.97 69.56 l 79.57 70.39 l 82.17 71.29 l 84.77 72.25 l 87.37 73.28 l 89.97 74.38 l 92.57 75.56 l 95.17 76.82 l 97.77 78.17 l 100.37 79.60 l 102.97 81.12 l 105.57 82.74 l 108.17 84.46 l 110.76 86.27 l 113.36 88.19 l 115.96 90.21 l 118.56 92.32 l 121.16 94.54 l 123.76 96.85 l 126.36 99.26 l 128.96 101.76 l 131.56 104.35 l 134.16 107.02 l 136.76 109.76 l 139.36 112.57 l 141.96 115.44 l 144.56 118.37 l 147.16 121.34 l 149.76 124.35 l 152.35 127.39 l 154.95 130.45 l 157.55 133.49 l 160.15 136.50 l 162.75 139.43 l 165.35 142.28 l 167.95 145.01 l S Q q 246.63 60.96 123.52 87.29 re W n Q q 0.00 0.00 395.25 394.50 re W n /GS1 gs 0.000 0.000 0.000 RG 0.75 w [] 0 d 1 J 1 j 10.00 M 256.84 60.96 m 362.65 60.96 l S 256.84 60.96 m 256.84 54.98 l S 283.29 60.96 m 283.29 54.98 l S 309.74 60.96 m 309.74 54.98 l S 336.20 60.96 m 336.20 54.98 l S 362.65 60.96 m 362.65 54.98 l S BT /GS257 gs 0.000 0.000 0.000 rg /F2 1 Tf 10.00 0.00 0.00 10.00 251.14 39.44 Tm (-8) Tj /F2 1 Tf 10.00 0.00 0.00 10.00 277.59 39.44 Tm (-6) Tj /F2 1 Tf 10.00 0.00 0.00 10.00 304.04 39.44 Tm (-4) Tj /F2 1 Tf 10.00 0.00 0.00 10.00 330.50 39.44 Tm (-2) Tj /F2 1 Tf 10.00 0.00 0.00 10.00 359.87 39.44 Tm (0) Tj ET 246.63 62.64 m 246.63 128.34 l S 246.63 62.64 m 240.65 62.64 l S 246.63 84.54 m 240.65 84.54 l S 246.63 106.44 m 240.65 106.44 l S 246.63 128.34 m 240.65 128.34 l S BT /F2 1 Tf 0.00 10.00 -10.00 0.00 232.29 56.94 Tm (-1) Tj /F2 1 Tf 0.00 10.00 -10.00 0.00 232.29 81.76 Tm (0) Tj /F2 1 Tf 0.00 10.00 -10.00 0.00 232.29 103.66 Tm (1) Tj /F2 1 Tf 0.00 10.00 -10.00 0.00 232.29 125.56 Tm (2) Tj ET 246.63 60.96 m 370.15 60.96 l 370.15 148.25 l 246.63 148.25 l 246.63 60.96 l S Q q 197.62 0.00 197.62 197.25 re W n BT /GS257 gs 0.000 0.000 0.000 rg /F2 1 Tf 10.00 0.00 0.00 10.00 245.24 15.54 Tm (Mult\(Exp\(.\), orig:dest\).educ5) Tj /F2 1 Tf 0.00 10.00 -10.00 0.00 208.38 102.10 Tm (z) Tj ET Q q 246.63 60.96 123.52 87.29 re W n /GS1 gs 0.000 0.000 0.000 RG 0.75 w [] 0 d 1 J 1 j 10.00 M 329.73 84.54 m 336.07 84.54 l S 332.90 81.37 m 332.90 87.71 l S 251.20 64.19 m 253.80 64.20 l 256.40 64.21 l 259.00 64.22 l 261.60 64.24 l 264.20 64.26 l 266.80 64.29 l 269.40 64.32 l 272.00 64.36 l 274.60 64.41 l 277.20 64.46 l 279.80 64.53 l 282.40 64.62 l 285.00 64.72 l 287.59 64.84 l 290.19 64.99 l 292.79 65.18 l 295.39 65.40 l 297.99 65.68 l 300.59 66.01 l 303.19 66.41 l 305.79 66.90 l 308.39 67.50 l 310.99 68.22 l 313.59 69.10 l 316.19 70.16 l 318.79 71.45 l 321.39 73.00 l 323.99 74.88 l 326.59 77.13 l 329.18 79.82 l 331.78 83.00 l 334.38 86.76 l 336.98 91.11 l 339.58 96.06 l 342.18 101.63 l 344.78 107.67 l 347.38 113.90 l 349.98 120.03 l 352.58 125.82 l 355.18 131.14 l 357.78 135.86 l 360.38 139.85 l 362.98 142.95 l 365.58 145.01 l S Q q 0.00 0.00 395.25 394.50 re W n BT /GS257 gs 0.000 0.000 0.000 rg /F3 1 Tf 11.00 0.00 0.00 11.00 56.26 361.03 Tm (Profile traces for the multipliers of the orig:dest association) Tj ET Q endstream endobj 8 0 obj 8744 endobj 3 0 obj << /Type /Pages /Kids [ 6 0 R ] /Count 1 /MediaBox [0 0 395 394] >> endobj 4 0 obj << /ProcSet [/PDF /Text] /Font << /F1 5 0 R /F2 10 0 R /F3 11 0 R >> /ExtGState << /GS1 12 0 R /GS257 13 0 R >> >> endobj 9 0 obj << /Type /Encoding /BaseEncoding /WinAnsiEncoding /Differences [ 45/minus 96/quoteleft 144/dotlessi /grave /acute /circumflex /tilde /macron /breve /dotaccent /dieresis /.notdef /ring /cedilla /.notdef /hungarumlaut /ogonek /caron /space] >> endobj 10 0 obj << /Type /Font /Subtype /Type1 /Name /F2 /BaseFont /Helvetica /Encoding 9 0 R >> endobj 11 0 obj << /Type /Font /Subtype /Type1 /Name /F3 /BaseFont /Helvetica-Bold /Encoding 9 0 R >> endobj 12 0 obj << /Type /ExtGState /CA 1.000 >> endobj 13 0 obj << /Type /ExtGState /ca 1.000 >> endobj xref 0 14 0000000000 65535 f 0000000021 00000 n 0000000163 00000 n 0000009192 00000 n 0000009275 00000 n 0000000212 00000 n 0000000295 00000 n 0000000375 00000 n 0000009172 00000 n 0000009405 00000 n 0000009662 00000 n 0000009759 00000 n 0000009861 00000 n 0000009910 00000 n trailer << /Size 14 /Info 1 0 R /Root 2 0 R >> startxref 9959 %%EOF gnm/vignettes/screenshot3.png0000644000176200001440000020165714376140103016023 0ustar liggesusersPNG  IHDR2pTsRGB pHYs  tIME 3c IDATxw|UǙ9vuTAH $!QEl 8q vvױ7mwdc;=&v8qQ A4K4!!DPnǽP rι<3gt~̙!R&( U($IA  ch"0 C0 GBR?DFw3=&_~tq7\~= e}.^˫{{.b ^|T@Soד/>]$|_>=wsqK+?CּOP U\E}.︄һskJ}1:~߃&S3 (E>00vA-nB8EQz]@?KAAngE@AA,˜1*T PR WRJ(!0,˸ PJ !x3Ad`M}xYEQeYnfY±,q]gQJ @""ˊ(20 ð,s ˲ CAGAk(/SQgv\䔨C^Sg7nqZVq R*劉  0۷Uϲ,G H2%,ރ_dn6N`qX;JPnZLrem.0_T7kz\RSDY3 >d^Q\.q:mL^E* a`°2/yRJ]|FzzPP%XaYc(XߕRis؝$S R>ѨlAh|V*Ezw?hUed^ S>tjȦ K tZ_W/:mөrO*0 wBQT[I*ׄ ?g×e8B@Q@e?BRmEB De|{̮!S.1f Zw6- <(uJ?y}"|'-jwRER OĨU':/Zgs@vmn+c "29'M4k8wQQ @ן~V`A} TItdZgmr:_dmڟ&GDz"\i(6zAڐ$3:t=bC,I ~)=[B7sZ.Qa`XFtvRdJJѫOP*;%°!lI[sSX8Kw"Zf9ZFͩԦ,[:5ٻ{%IUi2n2;~.v  4*"9DLFmאJ7;o 2Zcа"pX(S ,vP ;hT[VU*⟙Kl*afӑt]SwXj]G == ܥ4*P^bzJAąPjjI:e&g#*n,4Xe)**RVlvwO(J!(i4ȨȆzAVWק@]?Qx$$d^M%Y[&gĦ_|*N:AsyU@lybȫԌ1?Z9!\ wY[wW!x3̚4*fWņ3i1ZQ_zj߷j" RV\{CvoQf[YBdEHX³ SO?dJwd'kjbwyksFPgjIGݹ=kg.M7%}6f==/ydRW}%ÿJd 8\9ܹ 䰒u.:z +mv P*PW D>'O?[23'a7.oTs?U՟J.gq8U9FugUPdPÀgz|%9}F*HbCmaEK[]p)OI֌!Q)YR""#v(((I$I~nGFFH܋,: %n^xCŁF g42xmy"#"UDq9bӿ%Z5O j(Tv{GG477km .2}đCt,N 4Ls$ڐ@inM. wkЃivdM⼨,0)_8JPq)cEE1 ɑZYP%x'V⼫%UYqڹO=12m3J*)PQ{O;QhSVϟO=D(.Kb{ʑ2m1ZdjnivGkɮtjJwk]ZGT`!T1Qj ,SjcC~4]EHb6CuE !T:弣{vD&ȲjL,ᱡE&^# 8PDaֺ9A?wy- G [b޷ $w~\M._g†azT]{uݧmz[fxOǁ-2Qkl}毼ߠ z?{zd1[[[}^'KӾ6/BoV\ʒIEU[c,]n~i G;~k4m(Sxk*r>+3pT?[g>r>8|&\x]?KKWn9@4 ULaXl$QΏ7¨0NKvÌ;B:64ץnWVߥU1{ jlP )(MRkS[=P $IBȉ=cT*5]齚Ōǥ=U~\}}T=69SSJ`D.XR"-[o=sxS";WM AӮog:N :!'M+ L56 _9Ftʠz׈Nw0֊Z<Tz%WL02Pei>>GɁ"Z͂oE*pGաL! ۏ *9G=k^eN12S .Nރ|O:xCGZՍʝC RY)!NPv,Uiiw$ڞ B62dd#{Jn+T!v=* <&`V^2Edg::'(q/שa];AB5SQ|ٲcc,yy?~JBɝQP\.fW֡M.;.{~^tsM{<<=x:˺;\me}Omՙ6 z郏>걣ޖlT >:UPxt^rԣӜROav.OJԣwoT``5UD/!Ƞϓ ^5;((,*XlߙpYP\bOQ\8aLfYVc6nvbYeY%Ie{satX>-KuaM #޾t c?43TY\/^XA*?^k |ڤe4"RX[R./*T[G;w #kayFR ֝?ڼq܃-K]ݧZ{a}FZq P RmgaP[2mbjqI'#Yҝ^tg]$->lkV]UQ}?y?}νWc$j/M# _0MUJ6V8( N#2! (݃RڸpW__ϳAtۦl(.jYvQr'l0_~۞fL,=տ#ShB@q:M'}$t#SLnZ B7Lm W 1ItdU޽a9'?C?(*<ϸ_^˭8#M9 3r _l=dGܳWW>1~NNz񗟬eg]z9rqvNo:V>‰U]*'ÞZ)AL˜=Iieo9R 'ت:*KrsH󭡂Be0LLMQQ]].j"DQ6M&}C\׾e5wbo,/gJx?}s W+@DzLj=Ny$^o[20(N(JL=q˱j]^7U-6TZ%V@v:-NXOǂ,첬a8רRa]{MN9蔈*\vQϨ4r* /x_h@wSrh(ύd{_ecJ=wΧ.YvWi8Riq:(ZNE&# j{jo` *WuA1.Hf͜^A*c_$&{:-tms J>(tʒj2ݒojjjYxAd\04lץ jN pkD OFGej˲TYJb0%cmj M!,&B"l6h4 yIG 62Ǐ ө9p|Rp8 SE!fN8֗9cνȊB0 <ږZDYdEjϰ,O"2 Ot;$QV/X, w$}Oߩ%",h!y!0*FE=qS @J)ExU&#]ks` wŁ>  SzZA1=  fGGA{,A|7 d! `AAPAAGA+?͜"G/EZu'>~_>Ћ w[;ͤ ˖l)t[.x(/jg_/-RS\*-iǁ:}OIbϿнۋ/DV4)go&ƽ|b #o'?ye_߼VUu2gOOE>/<ᮋ?=tJiQ/#~JAA\ߗ1V?aúQ]r+m\s~OOqy䕧Q~8 ~ix.ޔIPDwF/|֜!=zM=7ݦ};?C5+裳]5S&^)\0"0z8n\z}GG,d^n ;3^ ^a QD'TBb'[6!mD9=-*J$ծtRs5`Rl9Ot~nӔj!u*@=;g._k d0QVVvWJlC_ ?=s~r Fj٢WEhmbsEC瓼a{7!.0TrNz6MGvgAg&/~iGޜ<A_rrrh>=;$W,R5ge;^"0Qp|U\&[:ZeW@7>8feGJ8^n{s}undC*;{4K3 KCA6>C4C'xO^=o}ߞ4}?gs7tź.Wͬ_.O0fZ{Ռ{~1%GNYڽ-{}qnb|!?gNH^S-/oc'._|?E3A 5s*Z _e}}{ /wEAA*= # J  ȣF'$$` c믿e f!Jd,yٵk$''{cz>()}nr'NT]BpR쉡% G4wtH3E!+MzZ`S7tx8]n .+!YDJ.Fc٠KV<ưq<0kv$tu{'ef8bdM]F@("/=VT>yܐ)O@Fn8`E[@a= (=O\8lg 5ĥ-NO4;tC& qYYt2Z;?SuwW{g?X:fB׎mWEW,e65w.}ƾr& eeFt͞rWa3VѼ*m M^>iւ&@=kWkeU`.Y:1h j=rGCRGt|-?/6qG))ÛM ^l*:*%z~ *ZBnjs7Z?0\1nq./N MS:4iڌqZFDbkSltly<7luj̥Ϯ; [Mr9SO5(@o[SAҳ)62Y]Pk{!5,g`&S /k9F\'EXU flރڤ0J^uAvV/9"]A{RzȎJ*ŞjߥD IDATr+zn"tZsB͵ '%f?ZfkeޓfTڴuypm}d ,?U-RP=ǦZ%Rk1fDkOE1WtvԒƇ.vV;'! AŤ/X3W$I/&sEjFY&gf?PDQ[ h1QYfY :X}G8|*.xX_g<&,J&Iy@#2vac',Ȉe&,0J\rhޢJ8FԕT{~my)sצ1"5q(@_^خegd(-%w5>A~Cf8dAe222233_>{ߵ6''gÆ 8EAwEyeY,A,J  Z9TzAp# YÂ@A1=  Ad 2czTzAAw_?&>7N#^Z?-v֬}fͺuRTX A]-Ź۝ꁱIȞ#6fewpXv@*+dϧ >\~,޲#Z/r]#g͏(ڶwA+3999Wr㸾za,:]SuC9J8* _iح1ĥ/JlYql"huSdt1w_Qs.]T`u'{oM\rv}7X۵#ct?)3stq '+.LLK +wG}zBdЊq貝9[$8=?vo$eeg-liUL)w_(^6|c ];]]\|û'?ؒg'.]jOwRrhGw HY]_|،i4oJcSOڻI+F:={f^qK9_} }V^ߧ熤$ۏ.mqZ~-56%qxċME))!m J1c"C,8*t@};+b\^j uhRg֮]O-H O*s?܊o^*0ix}4`Β~ VBA>ӳ.#b-K M]fjQ{ƛ l :%:@K9@ӎp*J?O.01LH֕ټ;esIa;>f k`+?qjxfGAcL߫Fv|PR.|PtP ٛ*j*j?˭A`QKk͵ 5.FtjՇkX㑭ƶ|S@,[JXmQ:?"iՊF}e1GA3,׳K 4sF;YI/MO8͛"maz|iFeMn? Q 7Guo! :.JS-RPޝ)FjitR{Keǫ,e<=#\=~gRŲCx.xdk-# S>ާW{w1 LI {\ڻQrVəQm*ZLtTֺ~D):8V;+~nd*6z~ FuRp>-eG9oؘ 2bɵ; 5(hk//2u2՞=Fv@b[^ʜi H Ew\4ЗWlԔOr<'|QJ ȃDVV(-q=Nl5`Nׁ(ۅ{6vK{َ-VJg3m7otavzŹ{. ݶXp^yZ75gvn>5AJmX\`YܵAdAF"Y·x}zAqzGѥllxT5ܪmq f(x&)tlJ# Iy[c$Z}V 7~\|*zb# ܟAd Yq*076;)boj-Kgo{ר {{Ayl-6ȏ%@T@̪yƌ<{: 6pAdUʭ*Sj2:"Q\{^A@z8 ϷAG*6ox0GWͲz=""ZzVtFqJ)BbJ<AA bK WAfP U\.-ZexleYo p `&w>ѡ'.`;wyW_gwy g$N~8Gf㿝2=ئ}_Lm[/L:WX ypǎcY_C*)Rݩ]뚄9bh⨿Ya6Ǯ|g k=rJ4<?~|ڴij^G{hoN#d?8J缶ŒWKXy$1bD^^̙3j?PS8޲ヒ&qtNu:+'ΞQpQYp(Js|1E!+MzZ`S7tx8]n .+jnr=ʩ4Oo~٠KV<ưq<0kv$tu{'ef8bd{~`4əi R cENWX#\9-bDDѣG9r$##CR[Nբ?1}o1ąvlXC\(tYqKcJo>dE.TTTrzU)KǬ^ڱjϮr|û'?ؒg'.]jr-%vxudRVfD)w.6cE۹Ҧn-h}ʻX -g]XyD$e &۷o޼y*jժU:_{ eznHJw.&g.lJb'ǮJ H1c\MVG*ug#W܊:16M%Фi3EjE].~"o]%Ԩ=[* [n [s뎾n?Ōp^)ƹx<1,M2e݋/VT˖-j(*=ko-b-˳ bt/1d|p7l?uJt4=e@ ،*J?O.01LH֕ټesIa;>n1h+{Xyczk0k֬m۶XBReeei4A"T=,z*BSEMEg=h7 :jivڅN`}&l-5u廜eQ 1-JG:{OOaCINNcr|ϝ;wƍ~̊C"`lՏul6~3wLw_x{キ~TJb?(k]L5yEdž}Ak2Wd.hUy;irf3,E%0neʰΪ3;wΊçⲟ[.%zfh¢kb:zD;"s1|k6&p‚X&krD%-Z,c ˟L]LgOQ]kؖ2'{mC)!RC2WF(eEf\dAG=zp+կO.cٖ؉8dɒI&a!#KFFFff믿K,)++lNNΆ zJaْ+++Um2{첆QLzS6\AX .(Rݩ]Ӛ9blc8oVXāC?d@G"*rʅcM/#999@,-;©UlmY`W2._nt7ׄ8v <JJɢeo(:UYRgO (a8,8c6(}^9da 3[WlpʢMd}EzvSiե-4qف6.cm׎䞮nYq@.LLK +ۧWK7N޲)߈˗D CUzFpqtΜ-kK[şn;7nivL͇LA㲲e6 SP*3C6|c ];]]\|û'?ؒg'.]jp-%vxu`RVfD)w.6cE۹Ҧn-h}Ji-Ŭ^zi[k6\{AyJ IIVey¦8o*6yx@~쪔 2dh 36U^djuTbvV>r,Ź:16M%Фi3EjE].~".>5xϖJ<:rxnԘK]wO:緮e.0i9#>;pÎb <=ftQ0v1ٺNesIa;>kf$SɱKt7,( CSzȎJ*Şjߥr+zn"tZsB͵ '%f?Z~f L5Zjlw9%: ocj[t#@dCIf,@GA'ν i2pXIvk:1mބPU azOQkӆOt5M9|[ :.JWGwOgik;-qvxE3cdo:|j'JoHzif|Ay1=(ҽk&$b=dV](9vgY(Jbkya~[6-&:*kl?"˔aUgvOe?o]2Kk=?̀фEi:)8ouvD#c`7lLqLڝFK[YB Lj?rjϞB ~-/eN4RB;.e+_*9g-jAG':O*#BE <2JbSP.ܳ_vlu |GW=}8/ ;߽+zn.pi`Ƃ{ ˍ8A{膏 d͊*m҈\GA @U]CbKͭۍf!Æ8ju p54XDFJʫl g (ƪZMV=,Xr8"'Xn].'ÓIW؛X` <>PE6NV{U34q VD@q5r'E7Zѣ'SKj!f̄ cboܶ( hqOVlV2=@PAxkť/\,Va#I ¨kUXjBB,0Z AL#!>4ҟTVV 0=@A䱀膏ֆ Ge([*.3RԒBY ,ރ<P0RKap*VȔZc`o43# `XGGA3>4:vC>B<3:ӫŠŇdFqJ2ó Q4 anM xA3:D4!LVB* : '- V@6Դ_ _^[]k{5`L ܫs`I 9"L^6b#++o\Dr/8F8CEYޣ AY5IZo/b_DcF}gGo և Oi'&ч8ʲ *}|dK޿G#>(~@=zfύ=(+.t{,]5?TWeRKYޡs;&c(I[y @|8wS\=0i爹n8p~])Aj6lW(4 |^6ݗ7?R`4C/_9 6"Ge?|}NRB~] O:sڢZ#(}^u*l섢O-}7&X]{w1럔9:@8Nz*ḻA$+J땓7GPٳ۳!2eBs?LLK +oj`S74y;aP[*}ܻW dn ñkGrOW;>79EPtY!8)uP#ʂCW;ʐ1ĥ/JlYqlb{A Md}EO~{.PˍI­r>AqCb }7>j]\rhGG5{65{[ KǬ{nڪZ/qQћ}yo}yl3J@u}e;sH!.mqz߸172I΢[ve:;I{KǬ^ڱj-/}•K@3XtmQ&M1.R(rC 9:i\ˑ7ܫ'+['_LNt!5wPGtQ{TzdaSc.}vuTP4[|) _ g#W̲[KysCRGeI6_ϋMk.lJbGĦRB7%t8Wy}Q=巗|}nrj AT˫\'E\HE IDATXUO +T5T$CeJBhoٺ2ڤ0GŦZ-W=B;,REuXC|Kon].(`h5ӽĐUTe_xtl)a\z5?=׻߯qaq>Dm3 Pjx|u|6p0r͙yDP6#]|wp̑:,AP G AA1"@ATzAAPAAGAAA"@[= 8DȬ7S >c]Gnd?|̼3U}@,>|D擉Ww~E.hܹ9e\_Ȼ^')<Ԙ~)=tR]e"K-ey:Eq߬+'ly @|8wS\=0i爹n8p~])Ayxa97m p/e|Zħ 5)lKsؼ1Pq!r:ifV( ÷wԺ((Ӷ\λ1C/DžV3Ho\ 42}gUQunZ=IL]nhGXwp{ߡzm{/КZ$ғ>Nꉁzn";yRzJF(^|&\YQAĎ8QOyvE gS֥?<_?g@Ev\?"{TZ ]uSKѩ"sOWcIEͅc!I9t;'He(m橬QT^* }#Sej#'Q^Цd4D$z7,WRR}Ϟ,$0,)5>-ՎKQº'z`lL@Fs65drV $r,ҟ?W4lp姁oVtuz-34sYsT:[oG7 3#O稽R杗owW&;Swk 6OoƸaQiZCW a/۶g޽{v4ߕgƂ0aj$YQ_'1 ꬧[՘Si+yhGFYʠ^ ]59"Vî.3pc~ ]IqjDHuKyYG}U8q,Z&eCA9*bt2ՂP?O7g63^w;?Hݠƛ|cčnʻ 9sK[:gvǎo|yO ^фۉ(E ]oz#0|ڦ.n?+V<;YSo]X4 .qBvk޹K G 7O8/ߕ=~ol)=6/ hͶ#&\Ċ˧d@̱Y2>Ę-dLղݸ(uIrr56{:G'fzxrM3)v[Ao̍9*Pʔ#JYL~>O6v#L> ](7(uWtW=m;>sck{-R;מtXyn=w<_x};ioO> Y?Z5ڂ]S<{cׯb;6撗 {``g?/#Q̀=3G5Pu ִ jɀW/.WQ}=ʚzuo:BX ֟g{wH|t0zm3\ח~cz'Go_?CჇ_/go҇۳öU6񽌷[*hIgp^tֵyq'>%8e\f5Qd\~w?OC'7&&15%ǞH{MΙ6A  ?Ob\1Ƥm=^@7x瓛uq%ϟ}~mֹ1 ui(WyƎXҫB5H/0s-.,9woT?HEATa{ۺ~c$/ nϻ#QߏGQ,^QWۚ}w>9Ty\1Lſ>1Cz_^4*:hA*mI ߺ/.__~ #,wFq7S,kϣ;~0iM`Yj=iMe%=^EaUߤxmw6-pX MݣYbz&Pc} ~s~mhegEu7K^+jz!:#JO*j}\ce#;'-1h?>H6XhL6_uUʳ&o,} (݃Ǫ&:Xl*[eimk[eqYhb8ėf?ߛM'qf`9''nNzT-8|w}5e{kvx/ix\w.OY{q<1)]ym?^),Ǹ%yS$*m5V.J}Vq&X`L" .wn|)Ph7ÃU߷N4s^ S:{5 jz T`_ۇWPwWgfۤ54|:Cm>3R=ޟ 4IzBv+ƛ_$y2lqگ^Z^dB3{KPR5#ME(h_ o۟c:gƽz$qwF~2|h꩹p,+xpj˦(Fp>x-s{k^LXezxt} `oUf͎Q׶K#KbW.c*{wI/Hz?w[}lƆm]|6eYfǤUhmc[])0dc6cslؙww>$"H^dn]F(s [yCz0Z^RȢhajY*q /|OW͹cw{?,xeYo& J|(GNg5913VMZ~RUmF6>K/ >/Ֆ_ ׎c2oXv>Y?c!7v{e?朌I(/zwl-ACf{t˘H mgUȜR[_/V7~w׻ w]QUo?(! 8:? iҽb?jݷ(lr0~9q#6OZ0Y6y:w ]ddtfF?gZۯ[vn}e*[e)EѯsۼOh^*6O_3?L9^~˨α[į-f:?wYտׯ^ixy`NќO~b1y82Ҙtl8^#?a&% 7:͏VYvѷkPؿ2 sy *_G˥gʪiCն죃P7}Z2o? b )~?iM2WC'AgΪ銀s ;_ڧC@ G&*7@ *=@ WqϤ_]2{|av׌nqYoMy!I{^}@S;W흕zq.dN^HK%|@ _x}J@KM@S$ݒƽ4b%L)-SXWvǩ16/X"Y*`2 &Q/ϯifw{x$T$E ݭhOcWdW?rt;3_[W>TB(@h vIiC%ՀFln(8n1c]94DMimlń[vĻ^j]i[.螙 +`7\}*58:>|FP**pQ_XՓ~PU.6vпq;׶iUK"=$/Ydy@RF|Qc`1kCD77k2/*'1Ϯ(?49a Ѻ4_U'{=CeR`a> 2Lut05,ȯNHnC:C^9:Rv%}wV=e'd:@{:^& +|WMU{p VzfՈ,2qPY"͢eR6#@ T BB}!,lF#)@  &^*o.cydcŜ!;=y@o%[9gJF>'$V/R':F&iEs1++Z@~&L^@fUbu~'MQ3b|7Mk4);Fy\;:-cbl|0PV:P$XJG616Po) (B1usBia7C HyDk3$V\>ݬ$s IDATfM ,̕y"`yBPEX`EjŠ9{mՓƣkIy ~en̦QDž"WܼQzdyIaf@A*!fsXC>c<7W=Oʠg f: \qLr`g]*W…/n'i@Vq =̜O ڕ]<ި}D^ΌE_u>IwrSW?BA7g^ /Gul|7!眯 eiMsMZ?SVMP(Ϯ2?#ME(hn)r>%{*s'ArgΪiB V~9ps [yvJt4SgGM yv@ P!@@ @ Tz@ P!̺Ie ¨}s#6z{m I¸Oƹjԋ{HvI8l-v?yi)OItwIh$TҲ[rø3_(}_L3k'{b. y7fGlNj;kp6C" L]oʻjx흫zM} #Q'*/E][lsy'5q)Pm;tRY?{ꕠ̾DgOfQs޹j^5\t|?k֔ޞXVu=OpqZc,+g,,0 Wȴc;=<^*D Vű+s9ᯭ+wP.\!  4 Rqϒj\#6o v7~eOX1mٶU6b-;]j/. -nKqap d0?>Wkpt| DYUT~X|ͱ-ՎKQº'z`lL@Fs65d:L$ :*냓&R9Тn@WcΩNs~Դ]s{}mDO"Pƞΰת0Ȋ/U#b<1?b$Y5"KL`k}Ah $2ՂP?c{rpH/?,c6vxJ/A'q X^@ ϵң832VoO9S0`ыOHv+f_Bե4&AʺbR {AkRmߪIj)jFvta|7Mk4);Fq+xGe,p0FRʪSǝW撂=?צ {?EhA.q6^:"/:qE[Jx0y@fb.Ab K2h h\w,Ƙ-d<1PELjŠ9mՓƣkIy ~en̦QDž"WܼQzdyIaf@A*!fsXC>c<7WeٟvTyg:Q8&9ƎXҫB6R'IO pBFz~\̒먓oT?'R6Zge'=,9J䄚c%}]i;v[p|bc_\ӲG~`dU9%>LO*k$,_t.hYbKqSxG/r\h^Vt-ϋsw>ATP!1׈bd׾H@(՝̚G;qrܽDb \,@ 6ݏ5۷GɩVR7fRFaѠW)-'ԹF4%HPmI~5,b}o?W -VG&o\"l~dcMVYidk_m1U,OI+YU*b:;s/+q H@]%a$-]5@ʲ=0P&aj.ifO$bsV; ~uMMrN'׶@1&_maM˼}< 5 $@ _kGBWo``-["##!]MXTE^wVMhܯ~Y9Jx9Df7`]\\D"y:4OpCIIᘁ@Yzzzjoڪg eiMsMZ?SVMP(Ϯ2?#ME(h!s4a(/ ~S|JT N"`ϜUӄs8r/@iZigcz2p9d&{Hiw^޷ z-0;$vP|%eyRz@۷I a/^Rh 2Lut05,ȯNHnC:C^9:Rv%}wV=e'd:@{:^& +|WMU{p VzfՈ,2qPY"͢eR6#@ T BB}!,lF#)@  ڞvBN/,{:C IQ 9z{"VΙR㇦'^xB[i5.5$=Vjm ݃lwz_?_R&MocVM =V#MQ3 㻑nZKI١0c\;:-cbl|0PV:P$XJG616Po) (BSbRXAT|)=6/ hͶ#\Ċ˧-?sFA3&gʼe0uo JB7䟫W#7.ux[v?ۦSXe,X5~/ضޘUܪE]'Ѥ*s1 ye˝S͹Č8Ei.0Cͮ ]eY Iy(0 W[۴I3H'wFHF1CWRhYuW:HҦr9p{kx΁}.kvH TMٍj NkyHhq ܲeKdd3+xQ*|?OnaqGU(`8w^ /Gul|5<..N"{Jvĉ'p@ ,===j7vm3݈BL9i.I\gʪir Pv C gúQ^@ -DKW9 5Xp5Do^ *ӁH OIy6@  #X@@ @ Tz@ P!@@ 2J{&[4 Kf9< 6/$iϫo>窽R/!%}]5c}ңXp@ _ox}J@KM@S$ݒƝBdY;s Oϻ18b,w HUcY6|'0u)b)w55NyR`0~y~L;6%B )jnEZ2'ۙںq@B!KJ,yc,Cxº|6wtn5ͶQoR{uQPmwc^ c7pg&Qp2]0he ΪnZ=IL]nhGXwp{ߡzm{/КZ$ғ3=#eeP!R%2b#PiI)6LtsSѹ&qC\kmKOUx~x}q]Qi1tYN-Gn=]5%55;&}#Fw̳-FYRY{4/OIRc<t;~FyAEҬ*߰\uKIm>{h°$TT;g,F W1=\8{\ W$wr;Tm\f OE 8Vu~}Xnnzf!s(| rΔ*4?4=y"JٗPu)rIAz++Z@~&L^8fUBHSԌDߍ|pZ"MѼ} ik c q"qU"w>򰹤fad}zOA`z-gpr@~zƪP!ؼ5ێ0s +.nVXFA3&gʼe0ܪm}Տ>1^ /Gul|c8D{:tH*Nvۉ'솒1%}c ݥ&)PIˊn |}m2iL\nh<R՘w)zT IDAT=3 L]oʻjx흫zM} #Q@ "TOS#ɂउ&\Тn@WcΩNs~Դ]s{}mDO"Pƞΰת0Ȋ/eҴ7ag̏X+lVn)/%*B_|q,Z&eCA8=~y? ĠL $ާflj ;ޟ n ⡠wnSzgC{dޞȿsTaɣ1VZ;Kih3M ce]^R=vc5)er=oդc5Eτ0঵D y8 2Z!8#)eթ EիD|asI͞k=ޟ "4ik#N"?nNSzl^@њmGO7+,\c sec9ǐCZC3QP\TƦBv[({ gR^{ߪlsTqȕ)7/F|lF|.iiPnP讯 {fum;>sck{mg{ p~@ 2$vRz!\FJ1)Nh_SϏY2rugDJF줇WC6GPs̻$v+mzG;nOlbyCbZVUH/0瀸чIe5 Xe-Xl1oEK4y.eY yqݶwr|6iCac1Ȯ}/P;E5ؙwH{92\XҡV74$l޻jוoޱS n7ASZOshJgjfYԽ1(M#ߐ^AZL޸Emn6Oab%`zcVquY'FVʳ;#T04uN/wN 7^Dc3VAK IZ*+7j0te+${aL&4^]no& ퟴ/!I ]JvdR_94:#IO^m:.c4f؍p j NyHhq ܲeKdd3+x) ٙ⋼ΧzrSW?B2w^ /Gul|<..N"{Jvĉ'p@ ,===j7vm3{KP2紦&-rş) ](PgWCۑ&"n4k`@oFy"3@P2lp$k/]}欚&`嗟7{a7@ OJ#-<%}zٴ @ '`a@ @ Tz@ P!@@ @ Ȭ+=k\foр/.78b&ؼ=y jJd{v0l{i߶('@ _x}J@KM@S$ݒƝAdl'ݘ y;1i{f>ޔw;W$&G[`5_)8qxBA oғKe8yT({k OV?r:ΟcJPsx`f_"ͳާ `9h\ HE]5ZQ`w. ,. 拮!#' 7Ut] gG5:⸲~V>NyR`0~y~L;6%B )jnEZ2'ۙںq@B!KJ,5b0owCYulܦ!jJm[e,& ߲#ޥR0 Lr9 4nX MseGLJ/`@UEw!#zjݦю7?X{'C=^5jI'}o7Vth)y m$ sR%2b#PiI)6LtsSѹ&qC\kmKOUx~x}q]Qi1tYN-Gn=]5%55;&}#Fwk [6OeRi >_*Sx)vX*P^Цd4D$z7,WRR}Ϟ,$0,)5>-ՎKQº'z`lL@Fs65d:L$ :*냓&R9Тn@WcΩNs~Դ]s{}mDO"Pƞΰת0Ȋ/U#b<1?b$Y5"KL`k}Ah $2ՂP?c{rpH/?,c6vxJ/A'TX%5p ސ~V{\)==[n'o)Ui0~hzE'$V/RY| M ce]^R=vc5)ei[5)X4E͈D`|7Mk4);Fq+xGeCp0FRʪSǝW撂=?צ {?EhA[~EMҚ-~ܶ z)=6/ hͶ#L\Ċ˧d@̱Y2tY1[xcȡ^-ۍ ФFA{pQ=\ {IQ5AΤmaU27fSB+Sn^(e=2<$ڍ0\Z3RRw ܠ]]_9l{!̀1[۫~l'1u 1fʄ@ !y^c;Pz!\FJ1)Nh_SϏY2rugDJF줇WC6G;c%}]i;v[p|bc_\ӲG~`dU9%>LO*k$,_t.hYbKqSxG/r\hqVt-ϋC䶽H3}僴SzrM {jkDbx1k $ NQf#v8@9^N W.tM GhuۣwleT+@ ){0h+vD\m#$z$Y>uo JB7䟫W#7.ux[v?ۦSXe,X5~/ضޘUܪE]'Ѥ*s1 ye˝S͹Č8Ei.0Cͮ ]eY Iy(0 W[۴I3H'wFHF1CWRhYuW:HҦr9p{kx΁}H͋U6D6C ;gM}H ¬T (ᖷ{^^^uuVݶVQA y  ! DL$g߽~ /GŽߐcǎƮ!3ĝMҁ?׼Uk#;ACA0) vpBT*oVRBuu eddDE?om$}BØW>gt]卌LTV\]/n؞&&w`y#[Ya85n "HM{Z#?Bhȱ'UcP үNUq]jdsZ*Pz@Pz#$e:N⪎ISa{}nzubKXZW2BnտA$=g>+y[Oo_ Ur_96n+W~[8OϽ,rZn$d_6$,"?eDKDH3Cwl([TJQ3J{SuO8LG鍪~7>my7*_xordYg껫n}> 7쉦6YB"oᢐXAgk񺂻4ZKy]a*i IԱSInzvDx"J;*dWhe6'{,G+>)jpfh_mģABRohô3rlOpĖ]JN1bq8u}Yz!Cn}{Zj^> K#dhl1UHsQ5t[S'8`޾—kWǁꀞF3O-h;Lo c'/$/1Ԭ$e+-BH[o\Η}7S[ms՚XM?zWm"r_%&L8WB[VNU~Mއ|?֬bT뽚S|.^Rfd'x]*v CTE3$B(0!=ћkDF_׍kI[\/VY2\a%O3 pv0fopLv1>n}Z06Ŭq%(M[/vWhIr\+[0ApwGIÀ%;+U}w!R79b̈xllմm3U=s4B em3˕KuYe9R{e„ZkU+ԕUZjAnNF=_]5 KU}m?['PY1m-T{y='fqc&9#A]s}*/۶Kq"'///ЭR3B?5?m aw=뿦Gѽl;?ji['L5 wYB)1/}Jiy|aB 5t938eZnC1a1k<_d~Vn924픹!r:SťC$bKĐ'B .W]{bcb )پP3=}Kxb}3_)wxY}vЈ'!C+ߣgC3ϝgHQӪAF4u2|oY Pݝ~gTW> nD1Q!0xR/)i}>7}2U; ژ̼a0h/٦\)b5p۝.DĖWLB}(#A55eu7?Zm>Ʀ&n~gcmxR:l*n@9nm#zXƮځ鹮w86MyY=I2+{i41̜-h45[یY7Mr( 5Kv7*/,oO9wc0n}V_w2qnIhGkifu/%ݳy |iv_ {!!!ǎO~Le b°ӹ;U:`DV_z< &7wQ(JoU*J_/TWW_pZ6-###Z/ykp c^-u722){SYfpvd~c{ě|\ޥx|!}'Bé'wkWAjރMg\}!ǞTA5J>:UuXBVPJ(=J)=.H=?~uНU{JoޜJWN8Ėe`ݪIe{*(}V Ò;{1iJu_77FHʏ~w =ʕk/fy૘oϿ?-!!8?o]MSq[TJQ3J{SuO8LG鍪~7>my7*_xord0.ܙ~ģN˗~Z1~Ћ #cK'jf a\MK#Bb=TKE1ퟌG߾e@M.4zf78I^"KM=-.ۀƧ-F(ͳf~Qyފޅ@tþQCf#nf#;IB>T7Bt#{ﯼ4"mwZj/TG^!1GGZW+Z"ayuMAK@rvNz#qMKh?(,}mz-<hz7(K{RRNvWLYǪE0V򹿈'휥b4._C3VHKHJrk׳#“pUUI%E{(4?\9]IQX 0@7o&M zE'f{#%R*w9, P[ߞV`t=Ze=''ۖVXi_8O24}gd*ptY8 IDATdjwЩV0Oo_ f˵@VS[tu@O#D'b4MQi˷1‹YjVDp!S7.>ۭjM,뫶dk~/K&+r-C6S_S!,5Xe#-5z&߆k… ^ʇ^#2UQ~ ! LHOf?~ui!ĖDe1׋U W~X}? !=7)/5yfpq)lh[߾V0Mr1o|eKs$Mݍ)Hk{d+4y$^tWbvxW 8޻a֕xѾs̈~1fDR<6jZֶ؈ڞ9!ʋ jVYF^+j0!hVgmՊs5ueUZ9^DWWv,}U_Ofy1TuL[D<^^YܘINgzdP\4wbm'rrΜ>*:cj+PFp_$!K=v~N]#^6jurН4⭓e]?S/)4σ6մJᥛș)rp CYU)&K[r ͑i;5Ըlט,.B g_"='ZpqL5]]&޻G!tU78KV*/}TQKɿk4&!B jUZpWQies!P]ѝvmvvxJ=< vt3jiRZ ! k3cf֭l]WsWO C'ME=z-2U(ǭmB\pUZ;69=uǦI2O>+'Ufer7M"&Zm6پz1릙IE18a|rfNCe)Ga ͣNƟ:-)|m=pאݬwq}G,On5WKQq7$$رc=Iܹ̹ALv:wGÿJLȪÑKР;Z BT~w~JZk .@eddDE?om{m9gt]卌LTV\]/n؞&&w-<b*x_IGbpjDn`YF'Fhȱ'UcP үNUq]V,TJ(=aJ ss_t'~qU~۩7簽>7|:%,-?}!Xߠ~|ٞ3J.;>K:wى"lߺ/'/=;}ٸˍ@= Ov6=5b{]c~HfNχa.3qܡGއy_߫g6GnQ)!|(mUqFNirݨ|C1Qxu ݺ48O#~ԑ(M7pNP6YB"oᢐXAgkndӬyl\/Z. K_hi[i-p=hz7(K{RRNvWLYǪE0V򹿈'휥b4._C3VHKHJrk׳#“pUUI%E{(4?\9]IQX 0@7o&M zE'f{#%R*w9, v UْpB'Di )=BƁƾlcY4nYL_:uc +]a_1,|va{J`ji<>D݂)J3 T{0B2Qx#K͊NR"pQxz9|Y~36^T#cUK|}٧g^0\ mYA:U5o:VFZj^M) j) C3.;,0HLU_1C"DُFdduݸvD%iib-ÕVr>B|gc GKt޿ii7\sJ!)39ַ jS\[>-!>>]OCix;B\N5psd{.n}% `甮TdzݝcFHH1#B~ⱱUӲFT!D7,W^\7N/]ԭfkH B6jykU+ԕUZjAnNF=_]5 KU}m?['PY1m-T{y='fqc&9#A]s֩ʋR9s"tTv@O•~Tˍ_O]\aO\#^6jurН4⭓e]?S闾N<>ڰKVi Z"8\P cB2OG6Yߪ[m M;eFܩƥfTdq'>+w1$xI>ЂcU2y=2q褾RyY{OZJ]11tdhW c e#-Nٮ>SzLCuEwڵF>8-ɔNC{x @f"By1h0 gr̎yΰjcף|}h~&΁EgKdRΨe22Q*UG$`t#z3?UnrMUA7I}mw~LVڨG|.cb֏ }0j:-GlLI_Ê^V&̩Îe@QuGӒOD!B߁ ,lRO#Vn>objHᬎ\U-|eN\p VZ4KܶH,ю1e%?roҋ 3dB="\(Ov6OZo_wz<܃`sh!ySH۵F> @oWE_=czy2_ۭoO+ 5d7xx1ոg%l6ܬ` `£oHHȱcbccӫz&sus0t6Uk#;ACa`{?0_ء[BT*oVRBuu u`222jm6^[0]Wy##7UklkꋛA7I]:O1@}#[Ya85n "HM{Z#?Bo4ؓ1@Z_ @Pz@0Iٹgǯco?pRԛs^iji՟[oPy?IlO*vpNpoݗ_1RjA|zue+J_.w?$W1ϟ.#ZB Bql^[TJQ )ujFUIwVy}79Fbk>=>~Ak`O4մ¸QF :[{ Ëb,w?}o}}}ˀj]htI77 ҽ~$Mu1A-Dg;'K#"vFBuzBsp5{pE𽢕 !baFiW״$g4'8b״4񋖋ZVZ#*I.Igzܾ'%nx{ZZdc?Q)xBx]Y-FJ򥼮?Կ?i$ة${=;"<gWUti>[+P2M޽ϕ#`8 3 4ݯ~qQ` !7PaZϙRP9lo8R^b.rb8LA`ϡ|m=zZX/N2Rs\ӳK /Mpȅ i e~0Y*i{5_6\^. NT>I+fHQ`Bz7S׈LO!$"-3^eJg@!`޾Hy7;-톋cN)d#%}&GaTmY}D៻wTw߶ʋR9s"tTv@O~0snt'[#^6jurН*L5 wYB)1/(4σ62NK%Vi Z `8!Ĭ*zt~m%ZдSjȝj\h6OkL!}r/,Ǟ-8_u.#aoGN;+d5! NwJv*a8Pv`4C,>΅jy3wZ 0NTzLCuEwڵF>)3ہͨLKi5Db*`->28z{V^>v=J>|!jX{D&Z&#SR ڍqDF7;ȫg.<?S){*Tti|d8'&pǴI]g|:2Zs/`"uZt 쿆?7.L#z 1S = s-ˀģ~/z %' B!pIA=z<9(IKȉm !%@/:_P3)ꂪADl KYyŴ!Dk;؇2hzQS^VZ;Pq󣷫+O&w}[ml[e+-<N$*{[d"P[!2v`msz<157M$e|VrO-n$EL23g !l&ͳ}V6cM3Aig\1bp8f͒h+ h;SG՗?u[Rb9Zn}{Z!Y+϶Iԑ>^tZ`'Xarرᇞ$\] & ;_MdȎǃh@) viߝBP*}ݷ~RVZ~~}… :ij[[0]Wy##7UklkꋛA7I]O2@}#[Ya85n "HM{Z#?Bo4ؓ1@Z_ @Pz@0Iٹgǯco?pRԛs^iji՟[oPy?IlOJv_|%s8w8 5dlݗ쏞]>ˍl\F'V BϽ,xއ|l.eo<9Lwa^ƦWQq[TJDc3J{:uj儓b7>my7*_xPjzGG3=6NV6YB"oᢐXAgkmy7*_Di5S{?-7!uSzbL|{g8IH#fcZvdOUFDNK~q+4_k`BV&1Ay^]>ndӬyl\/Z. K_hi[i-p=hz7(K{RRNvWLY{,[OX"cT"3^WpsFҸ|) lZe#-!:v*ɭ^ώO6YUUc']ϖJ<FDwsHw'Emc1 M߼C\x41HH msTزK)X,Ӿ/kP/s(_ۭoO+0V2֋߷Գ9y6 > IDATAǩ{3]8K24}gd*pt˚djwЩV0Oo_ f˵@VS[tu@O#D'b4MQi˷1‹YjVDp!S7.>ۭjM,ZR_>=҄ \h ֩ʯӱU6RSj¿NmxVK!\u|aGe!B~l5"#ӯƵ$B-HLc,nB{8;o8R^jNKS HI|m}`UbVkͣܙ"|2z{k{d+4y$^tWbvxŭo 8޻a֕xѾs̈~1fDR<6jZֶ؈ڞ9!ʋ լ~V2aBF={jŹ[K-U_ל Y[c+fdҾ'q\<*:-ej/,n$3]y2~.rt*/۶Kq"'///ЭR3v5?m E92UyQz{v6]8oM{٨Cw~҈Nknw:"RbL_:O28a*6kǮG>qB]և5VM9bϖȤQddJ=U^A1HfG^=y!g!?e!B嚪.Knd$Fɷ y1[U[w&I;~oxQi>G"g[dJV 01X-fNU7v.58x&R$ ]$f9ed;zZ6v[}SF gu䚬jn+w抄k"uazja_J6u"o1~Pf^oCX(*0CJ/#…`l(zg>PzcyGws,ߒwyCǮ)r7շkq}2>=z<9Yd'ڊ}á2y0cge}'O疔XV|d[ߞV@knVG-{~!Ί- Cv_ {!!!ǎO~Le b°ӹ;U:`DV_z< ,7whBP*}ݷ~RVZ~~}… :ij[`c-[hj献Iٛʪ5 5 $.,C T' N:S#ON tΪ5BO?#4FC=j~}u* ` Pz@ Sz\{;:'N9q-ai9_UTQC={6;ޛyrѳg+?SqjQוP2C2ͥwz> s'眉ut^=9*pJ (}lvCixZg^Ct0pRLƧ-FkoJM$;p<dwʘa )DSM,! iipQHjip \G!FGw֏42|n6&lGP_yiDԨ^WBHcv{/|heBcQ5Fa.; 5-o".>% i-p=hz7(K{RRNvWLYǪE0V򹿈'휥b4._C3VHKHJrk׳#“pUUI%E{(4?\9]IQX 0@7o&M zE'f{#%R*w9, v U} u}-<F24}gd*pt˚djwЩV0Oo_ f˵@VS[tu@O#D'b4MQi˷1‹YjVDp!S7.>ۭjM,ZR_>=҄ \hMTT˿X*i{5_6\^. NT>I+fHQ`Bz7S׈LO!$"-3^eJg@!`޾Hy7;-톋cN)d#%}&GaTmY}G=F iu|?^#mm؝^q.['a8^ٹV=axKsJ[WYG1#BnrŘ!J?KتiYb#fj{hf+/.p.V5rZQ˄ !D۪jʪn- V}]sR7'l#dmY%J-rc,똶y1Vl rwȠ.|Ymmۥ8s EVhU[6݅"16mz\.qpW841_?tG-xdiv~a.!B(%TLJ;< 88m%jxj3Sv93FSMj|#CN"wjq<կ1Y\:@"ݿD{O j~uLwC.o1:T^ޓhL B(<;)C-ӁuQ#BHQԩ`׎7iJiN߈6ihO>:Ch=݌yVCDH9/#L.1=]Njcף|}h~&΁EgKdRΨe22Q*UG$`t#z3?UnrMUA7I}mw~LVZ?jHf kz֏ }0j:-GlLI_Ê^V&̩Îe@QuGӒOD!B߁ ,lRO#Vn>objHᬎ\U-|eN\p VZ4KƵNYc5K-~( xXfHzDPmt޾X_ \]?F!4 nD1Q!0xR_Ʀ&n~gcmxR:l*n@9nm#zXƮځ鹮w86MyY=I2+{i41̜-h45[یY7Mr( 5Kv7*/,oO9wc0n}V_w2qnIhGkifu/;ۢg>ړz E4Tk(0RxT{ 9vXllzCdw.sn&jpdǿ?4xl l ;tkY+ Rw}*j/\Vk ^rx1?|Z3`XS_ 2=MM>.ҁKO1@}#[Ya85n "HM{Z#?Bo4ؓ1@Z_ @Pz@ɧd&K|8ba.3qܡGއy_߫g6GnQ)!|(mUqFNirݨ|C1QByQwy%KgP-\is~oƅ۴4B($VC4O8^c/}o}}}ˀj]htI7mG7=~ jiqt7>my7*_Di5S{?-YO4/J=4/H G!FGw֏42|n6&lGP_yiDԨ^WBHcv{/|heBcQ5Fa.; 5-o".>􅖶#*I.Igzܾ'%nx{ZZdc?Q)xBx]Y-FJ򥼮i$ة${=;"<gWUti>[+P2M޽ϕ#`8 3 4ݯ~qQ` !7PaZϙRP9lo8R^b.rb8LA`ϡ|m=zZX/NIĖfp#dhl1UHsQ5t[S'8`޾x8]By|ػMSuuyg@ad!F!Q=lEi=s4ϳf*vW,ܛd`jI~/K&+r-+HZ*ZMjVHKMޫ :ŷZ-pahFvץaI+fHQ`Bz7S׈LO!$"-3^eJg@!`޾Hy7;-톋cN)d#%}&GaTmY}+/qWk6^N8筓z99^ٹV=axKsJ[WYG1#BnrŘ!J?KتiYb#fj{hf+/.p.V5rZQ˄ !D۪jʪ7kN|1Օ]3 Di_EY{b e2O{b KrrZ=-,<ݕG rlU^mDN^^^Ι'[BglJWmj~w6gW~؋1_?tG-xdiv~a.!B(%TS)4σ6vZB(938e.W%FSMj|#CN"wjq<կ1Y\:@"ݿD {O j~uLwC.otT^ޓhL B(<;)C,;NWzLCuEwڵF6ihO>:Ch=݌yVCDH9/:H8א[5Ivt,=["rF-)zVz8"ylճfb4#B嚪.Օo2 g<]<`eF-o>â8T)bgAn[DŞI(.Dc/1b`QPJo˲]"av{g;;3vjiAJ8/g'? ma־3~IAa)LIG#TGe@o5f첃O"ֵ.N4XDDLvREgd&˞iKVZ'^gOg+UK_To.+}ߨf/.붔#159 hd7Qݨ lIy"_Q oNݪNOH; thdDG['Cwr')ǣ%W*s30R3N(#+/G?K:L $2QZܵ)C렾2OH:2\?a3ډ)1ⷱ.!bupqj呫)ұtw|qr무,4s~GfWt(s1͚E5>0if\riw nkUUYZ{A};nE/WԱt؎YGDD*,LGg"kw\t8s=G*KDi:;uQibaRqHm"X,7|c2)JڹC R9u֊nս_^ ߒdWuZIbsGZXWX󽽽zFSp CZ{&ժ&f7et<va^m"ŋ-,,pʕ)Swׯ_V~WuCǬ_7#34ZSek'?잦k$ Ӿ^vD J$3FWZf޷So_NE3"}Ð%\=Od&@Ѱ+!"ooo"_DxbLX~ömdЈ%''W>vc 46/_]vMY=e0h 5ĬzҀhsz45u ͺK_rk:ῇ/U> kIC;q꥟L|օz, v3NiCqڭ=s]?4:@G{y+GxXpE "7YWtnRrk>U}&>$"Qҩ|78n;{WR'NL IDATs<ٽvuQRM/뇹GDDl#Y3#O"e2In6qbjLf6Bպm\!N+p>c}gra;xW'nj{a֤Ve>rS;竟kۼvタun""i͟LjI#kUEYѫk B E=9^SR0)b϶OX*jjmPīv)d]Oۧ廪I޳~ϭtiL54xJM|^qꕝ;BA!u>J~XV5ޮ6 f#jDo\{! <_|Kb?bg:dp,y ~XWVsh厗6,^J  7o6Hqwߊeg.l6i˝jWˢ~]pzsfO'ՆSUY"]Z%q+tX$͉=8:q8WcHԡOGu eՖwv:,""VW鞗CM2Wv٫UDWiܒ)VL"b֠!j\+eԭ|G-V6N^R#p  =>fBt )rV\yS17}L~}F.^jP_jZzsgWv>>K=dī)~n{-SLTdAFg=zvZe666=DLݞCYfIIy T3U K5\-9y@$LU'{Q ^ieғ8|2r[v6W^ f$Қ Ⱥf6qb0D2I$#cp+zyH*ƖyŧtY)/3͔&986YoG4Y+I|:unJ?őocLv)xml&_]/Ȥ]yߐ\=}}q[9Mt}Y6e'Z眞yܼ]Չ*\s_{ާ8KǘISQQJ&e[%:w. E)qIA;EsVUqw>wpN'n5KEi/L(XM'}cdYӼSzEeA;jʭ]KyWLXh,oIa >>Y3^jwh^OP0X\X(*;}xxahUKߦɚ߬Ҩm0H&xvѹ5'mǯ%CJE3C{EiwlkF]rtO߹vHێLLv ;[Fll~jU=rczZjw)E殟dQF^5o9󬠸Ge£[L{cټ}q%/ed1xecMNy;$Eof>>Y3bd6v-*{s ~=@FDҼG 3+O,N`N_՜FO{M;:CVծ[qF lT5=o\ӪaCwӚCҌ?;LHҜqٱ՘ c&XjGt5#n1PKWa "fݵrǝ{9~A G3P?VI*~w{%LLm>{wc4ή-gR oJ䳛Y-ԙĩ무,Su Uab.O]i„fWG0*m*,JF?KyCL]0bV&|o (9;|S|gxx8&PY7kK3nnxPƐI٦Cg7TFC]jjM|hþh_2 gjjZvj_H=SWzV)|F^9=H׳Uh&7 ׯ_Rb="= "= GA"Wאh Dz9I-3{|s['6Ζ4 r[F^3g7-eH/,`֋cmuEoa$ \W~!eC-Rb:iUmfd6sm&ow18P|H5u9 ~é9v钼k˯AQ2'J ;o 4˭O dJAqk=~`]W3.CB~)+ 6uSVv8+0.ǎ.nJ$t:Rj7k|qoܗq0nOo,\Ȅ :o]iĽwk XJarDƲ'G >q`xKsz;;ٵ/D$?zmtl]IG oʠv "FUe0ſ15M,a2Msjx̘bthL^un>ӘKb"%"=( ʼV;u#~cBLv♿~;ml4 4čsa޻YIֽkϳ\xFsIy/>?wNbXY 5Q>gn$DpRL*bN]{yQ.ݺZ{ҜaHmsۜwν5 ضFŸm;dS|aeOKs~h.ff>_`Yڵ!a`[s~>sFgI*ATz8v d%$$)>o(>ehDzd>aᄕQbS][=)&صX#ThHH|.( RzDF)SXb3,@1!&a`0H(xFUpXi}w\eHK%:27~v_d8l照ŜhgVz!Ҩ6e8 ?ϧelY5JNszC= a9iтbit@DDL Xڶ8?o┸bcaqEIrc_z 3Uݚd<:vY>ǯ&ݼW3UK*Yy2@ed2l^&eBW\GF,#dHϊeD KJs\bt)aʈXLk<["Oۭ\Jܛ"p͇L뿓ϣ궫xUS68'@>G +^N 3""BWzE̳e{^ )9#|K@諱{>\ iB""*JOUozʤe;/?֎پN*D궫dUT6.[ZAJCD7yRJU13/7=}Lyٲx sΖy0GjXE_nDso5Ue8&ۭIv]U. Iu#_ZQBBB{%(<[>+9[S<}{^JZ;΢Ŀl֒GSZ8vIih5ɮаq|!-]|"@-!k-' Yk>qHSdgQƭنk_;Q=C|闲ef@NTݶ[odHPr/Oٗ$bNV>YvC4lq؈ŇO_t`xbhԊqmL̟lVG|sW;Z"!"SdVrkDzK&"חG}1HAWښYzzvRigKgv2}ymx|ttHiY%HR8 KZ^rIvľS]GM޿ ))W^ss1ϊIf+H2d9 ҃r SR$eIAeq$$|,|Y"*%dٷ^)󝛍Ua[_H_qI$DIflSmm2ߩbv_y>e2%iTp3\Vr… .\ٛdJ*K> MdDClߺCw/qn𱻛J&e.\U2mYb5KjסZ"S{m]|蟹+m?ovg4.Yk?m?1׸@ k-'S?< 9=`N)%$$w!닾C|?\]C%0"w㗰!PdO-a#DeJJ]G̔I^ r 8$B5\;-|>uR͚bέrNml4 @P??E1fs~{'|YmF'+A#g_[ۊYuz y;DObm/|VjGw >o:nեT/L߹Ib"&Y|+/Co 4f][͢-z-МUzli\ _{4X w2( C #>}ҁቡ'G?EwvY0hBWWXz|<-ZX,NPW=LU}3:,ćp7ͩ g1cѽ1yhZ"I==2$'@JDҔۙ 7Q:q'ysTLt_}UD!j8 ꮣbts$LI^P&.HofgZnYQ ""(a#6.hX-Ԅ/3 eVQ$٩L-=5&qm؅qhN4h(:j)+eJ 2"IVDi DzP\-:_B_{vg-r/kd?M-NeN0pn Pj7[#obguMF>1o,nXvh~v*sD? |¡Oi`()*d9BUƚ,8x澃,(Ji$3~v+I)Ii .U""F3GfwN[sqFaQnsfǨ40u۷iG_kfu㔐wrW1f(Hqu3|:= UKgXQCdDEy;>.O{A^M' _m}o~uz> |1njG Xr΋la1AH{<ЋI |$The+װK雡));@oڄ ˞l1*ǁ-Y򔋮Oo,\Ȅ :Z9X}QǪB'uT1oڹDr aS%$ˎ:tMmpyo&}t}_WMyf:(]o0o`0*Lb\^{8ݻKk \,=cXB0_o݀nΓY.i3L۵pmɈ+)Lj6Eva4 QnKX\%o?򹻩KBŬ] +S}p2g"q[-Tɲvl)v3רTe;ʅ1ZU::5yF^+]S*2"\Wܮ~|MJ+7@@&DbaSs9M6%ܻ~M3IЄ`ׅ!8IDAToil'] @{4!i{v>S6"}S59!_ n%;}>d0mzO]?pjqݺ9O>"!*J>j5Ϸr2FH5߱+;YC_Hzq*^ΖIR.,s4u&V$=bD|>uܪKe 0bӈ{sNYm/QѫWtv1>6}w}.BQXEkUW*@ fDU%,U=/V] *()[+hpci4W}WENؚ\'|~ԝ\e 0qkmLqJo3:,Y³kC.=}Ϊѕ߿ڣϗujsBs0TQ\BM|HHHHUcу(4' CIENDB`gnm/vignettes/screenshot2.png0000644000176200001440000020065114376140103016013 0ustar liggesusersPNG  IHDR1MIzTXtRaw profile type exifxU 0 "%>rBH L -}6`YR Xcל<[Tf[_z+,›~HTVYhX1K F2>zH,Hz+ iTXtXML:com.adobe.xmp L)sBITO IDATxy\םY~Ȫ,(*hԘ *Ĩi34iIiLӚMMNI%H܂+_.p,ǽlrp!{s9(ɲ^ }&'KoN1לӾz0ZaXe `;AAt:K)ŪAA.AdD"Ie(O)Le@ @SRJ(!0,BBJ  wMe*SIA$InyfY±,qwOJRY$YdY)eaaYeJ  KTÙ6#?ʠ֩,V-;֪TJt &S|vmUURϲ,G *%,އ_hn5dNgk9lc_&lXQ 74uYfK cm&U>א4`AFdaV/.0J&ubNIe d2a`°.59%^R 'cYeGR(X^)6) *JF13*;,|@?g1ohƬZ~?z*T/KV~ƚKTI3aW5e@[5f?.Oڴ* CTFda6[,b};=AM|w`b$rG2T(ϟrbPTvr Z:k}DAAz5J.k̜% gO7J6\;-{ ~HngŤ|r<4=|,H>qcx'T{2$"/X 9FǶK~s_ъh.Li3x=] f 0 # n QpdV gmq:'*O_:Dz,\iOS*m"@W̞=^ʂ$WF#1O*EesXHVV<㢒ldR ,TuJJNtI0,ճ@anT%KeawDkPQ<x^U8T?P={S`}x|DR°J=fK|%ndIpZID(VVh:g*[° R,BwB;V HZ%}^>$ O }_o^$)v7rVVm>-vzj{Q>/qK|J|AFS (, Q 6W]HкTl: )%9DgX;`t,'HbxxJ|Y)u?{B j&,<Nr_N oyITTVb⯯͚>֗Z}Y8tgˋ&* rخ (jT)s~&cJ dg͓n3NwWME翖5m|(- `uv_S4 o;J:n vkF-tOarγH6".&GO6n8ޤTq^ee~ɖ:# ۝JfP\}֨Iap4]W-[o KYlv_yn^8P[QE2jnB.rXIxgNb_FT]>\ 2U[^~}gYo%#cs#oOU#eG9Arz+ں5#o,2a(> R(hmEA5dQ(onM>%ZGQ$Q (((Jbq*JR?nx>O}&I U?cWJ\6[jX_(_ϖ;-N>6WIdC?:퟾R ׾pJJjk3 Z̭-f̂>9wQZj]$M4YPŧ qr*LyAvY` ?#uݩ6Miq^enwJbC%NnP1 lܤ0$/SyCvS2+,;\?gg`7$zQT>N*w+*?KF)A$벹D9sJ;֚-m-VWg;pZ[Zr~tn˄>9Fw5`h?yl?A>yD1*"[mT`R{K~QUm/JI$,֪eI"PYi.ZJ )}>{߹"UpM"6B%QLjӢ]?N:"$YwCSrD/=0R[@nm +g$ 'O[NQɂL)E!ǎ;ٳg+Ug@ .C($y'[>\W:>Ĝ+L0Oe)N-o=Uk{f]UzRRpiWMZofN) 4-˔2r^I;S8N{Rp:f=aե0=:KZT`W7_MN/}RJłwU*zpWӡEM";:ʢDt}/FnY8ZσL?N롫ԍO02π>!N$Sm,YIyۚ'',)踭2BBJ@~$S v]2!Ry5eI{n%3$Q1UKyfٯ͘}lB))s/" L~t惗yi^D3&ޟE/:nr:>ΎUO:,`{P(ȲwUJt[wCYL)QH=ٳ>)fǏ3wG pWV[SH4gM!a+fYY*[u2X/?lS,NeaUdxfvp٬$J(Irkkò0 gp`W^{95JπKfM"#ܾxT?apЧ2c@(~JXU_-u2kZ Y%tYV*K'° #5^iU™h}> X@XTٳF9,6qR%>'YHoks=-݀e*Az~O3eYG։"hԚOp5 Mqz f)oP*5 ^q\ssV$ad"Rҷ,sȳެKʖW3_Ag^n;qa9ݦofYwy' lZ@!hж77۸k-rFbi6Qa/|# MWoX TշJmSGЗYtU߻aŹDzޘK|(23Snkx9#N6g>vvkIondXS 3C3eAbxݗQ"9ݗr)~{ۮ)hzp­5c^S;%hzDyB*a )V+4PIZǙoVT Ü#x qjeYrKp:.A(-Vyf 2<׸gohe=+ۛN)Kgk,20 Uom*z,4V 1@/%vwEְvcFA*7zm.,:.&Dl-tASnE)JٿWJgdKÍz(yoS4^'^L OvkgkE >|2^?o鹛0TEǷzR<2\.IǍrGt0D]r2ky,; DD,Ǫq.( n)QhTj$━UhY]d # JTr^xhxzd⾟J.]$$a9WtOi~y+ga*ngKT: og*SN"%\8ƸwjJBwg9tIV1}.,QaB+XA{@%@ZpH,˩j!1<J%)2 <$ 摻[;X- 4RYv PGmxAdduAAFp4  #VQAddB***Ad_*  #yAAGAeAA/s?͘RG,# 꼱S'O}jkl]?AyeU̸XN_]zd~o.}綾T'zV 9ۧRs <Ѽvt˧n@IC# 0ZMz~gg,[D`;AAF̫bWdѼW.g'2OmlVB\\̥tJ@6_x[MO:"uomo)sj\\ܔ̯QӤf߯_Dw?%e^>a=W~}%㿋/]*K߼/,Ro幏J.lAt'v4?^(;A;M lݝ>y_vv6g{Oɾ|72N_姳r-{~O? _><G]7GŊM?^6|; < +-}iKi]ڥE)/W `׾?oo+{yXgA7_州Ĺ;Z~P%@W_y7g9˜^TrH5Oַ=Kk`"~3]+C=s&V_N2n"77+AFVZ=٠jo᯻6'=A"0~^k}2=h"}ݏESY) @3m˽ȼzjy7[0u<%?`~@5 b|? |؏<[+AFWOX_.ӗ[>lyw;{/yQ*s-Ϊy_ԘE}KNCA6,CԣL>[M}ߜ7ExBmo-dڟ]43~Iۧ+4yBY9>SrvS'LH^Mڻ-}u^TD-{%{zB\ҚZ|y돗Ϝ?5gF! ܈AԸpAF_4nD  #yAAGAeAAG^ޛzAǂ{X|ejgٳg8eNM ,nCϞ= H'lAFVBGeAFI< (2|= n8o-<ŭ;ah ]ؕߘin(^9W,bC< q "RۥNRUd ehQm^]'[.X(9dC΀)| yXS):-g쯴#.&mQxhsHdSOm+؀EGGUkgHBҮM_]l'U7w b߹}$p9뛐18N kWdA`aIqB)xF'+FXv `FܕPzAyFpqDm"I]Ο8듸$'|ǖ&xĬ,uO=,<**rX~g'ZڹJ粥`K%sGjwdk",_25lcAG4;m=E\!=>RkډfGhXǸEQWpxf|EFt;g! ȃAͤ-X=EQ_#u|/40A,2  ( GAA2Nzo}PaYWK]]\ <87gt GT=&iɎ>Krwl9hOɢ[Tʓީr"篌l.||⪅ۯ:x.[* T>wy]}G&6/[0%+S6zF٥;f͚{vizP< ؔKyk# YnͯMRydNv=I> 2lJpu;"4Z嫟즄oV񖒭}B"cgΈ֓_9sSY8sټO]OZxhzD}]2ךTjC+갩GYtlUNL]sAayNTt*=-uW!DRK{uWF\ʭ a-_|жrc)RP,Yrpo?i{%Բfa?Dk  -}Kt:#s`}b$t4/;5oJt1<I<5h۔6Ѕuj!"&\;xٓmE\!=>RkډfGhXǸEQWpxt2Q<0i6 Ay)x|n&m,|>o9ʽ{JE筢]4)#y_,^ucX v$ʰ[vi Յ'br^z[. ez5>|D369`ikWu7eAzL45~WQ沂yּ@(|e)+Q6 Bۋ3s֤2"6y(@^k3,[xN"Q ȃ~`ѿ3LTyuyy@nYXޭ`}:o[Sέ>*+ >{{Az- Mw{~WhRǗ/ݎTr^y6uvm9Aڰ!-s?Qeq#ZA`mbOlnb #BzH 溿`ի܉:4hAdD Vl8qrƴ 7Hs˔Jd q## oAd`ۼǞlToQ|Sy`oqD=Í櫣=s:`4 a\8!څ]7$6@h|/ui2yASe? 2d{++C5B} jF ȣlsH|W|ew?PF%iV |UǑ'F 7;3Aϡ3M~g^eGk'L qd u =LskJy(0_rv$82¢ye8oxw?(>o,n ӃL5`;|¿n6 <2/],.q9BhQmǮzO{2B<o%AGF©R˙=G]l9`㕣 2pP'M $7hqV2gjG GM.b1iDC&~j[a$/8:2Z;CLvU7w{Y+w}Lb( ڮ?Y   bVx{ۼA`aIqB)xF'ʫ+q*N A3#*whX}LpdY%9Q;4'fdѭ{*m3'7SPE_.I2lSU ];tڳW>wy]}G&6/[0%+S6zdSj+;z4$H˫r .<{y*-ڵ&蔜n+i{#-g\A~^F%'o/osjqQt5h۔6EW Ø.(;D{$0s*ۥʣ6~zM`E][GRlx2\j<򽻙(JB}3()ivѤ}Y B{am*XLt|9>D(:oy+wVyn$*4{~DvRp>M،g挋]mߔ1L]%F J-ZcxFw(.o/JYPJTyխBR3 <HEEⲳM ,ׯOJJ?evvveee_gsss׭[OA#xwCA < # 2  <  ( # 2  ( ,`~ fQQJzxjy #Xb|2/],U ]u\Nz?;ʎahOdO~,(Þ^piDžvzAB 77w&֠=TJvE˙=+-H /7KW>AFBܤ`N.{S鉆2gjG GM֮}Lڢ:dɦVX+ɋ' ΐ$Ӆ}zST_m[j9~]ñOvFoBF8?]Fg )l;WڋI׏ߴɬؤl} ÓyFpqDm"I]Ο8듸$'|ǖ&xĬ,uOͽ2z~w+c'Z6lSU ];_u\Tl>|ȻBsLzm^%`tKVm,VvpggCwƐ"=.5X|婴h SrNۻE+Ҿϟ~o3v>jMA'ܨ$m]2_-.j.xFp%'|ZJ W&^+nDSu[I1SzGC洳PYr+sUuJTA f'iY\.~IM 3qN8*%{+fK s CyV(> -7.0:e')!,{@dfؙ3"pu!rv $p3-ПEX `*{L̵&U  S;%MeGfhoZPA#󒹙(Tz?"@Q.TU_݇p^K-uW]= m|s)64_|жrc)RP,Yrpo?i{3U "I].c < 2=^l:}V9 > rcּ)AJaЏgMhUIAK]ݦI6.̏"bµ/;D{*=N]$VCz}ڥʣ͎0qi`*?;)X@TgR\fA̓l-߻I[z:/$4:cyrfyhMyޗ% (W.֦DgC$2֩GByguቘ^KBsYq秞<0pMh'tьxfθ(XUxMYdMUbtޢ5/J8F?_jYʊgyy P̜5 Mw^0J0W ]^P `R UA UF  X17;eggO6 kAY322֯_~l]n.2$KMR{JK?Vvoh#F<dJpA$,*~ʆfH#@.QG srMep55YFDnDF=6DͷjM6X!,bLU_q?-7/WȄ1:r GxkA,X[LNV lZݮ?y0TuU Z۹ɓXSՕm S&MdKZ>j)}߶J?lqmv0kL (  s/\cGE Q0Q+-Ve Pb+Km-7,X|iN ]hf jO#<mF6U]ojj|8*9R}C(@%ʔ;a˳ % C)*dF{ deD7@Qol f3cb=< 2Z𺠈MAP%_Ԅo/Q0S%OƶYX5 jyK 8I?Gln0DǴݮow,:ۭ^=8g4*H֦6 P3 Pk-s&AyNVַ>A"oݮ(uJU:W.<:: X!ll{U1457-P?g>M ( w®M]aV Z1qBww\o0@@΀>02.8 3уM 8h wX,Ae,/!eC | ;1bAY|X|hsˈQ?=s隯מ `ր ȠA{6 yqY$U<[chQmM΋k?90wK;N)|}Xv 'tE`UY>mI42/+Knt0O.]1M=Z?|1]pfihr>oy0S)Pއe$W ?s>DK!wEW['+WΉ+䒅tT?~)f}22&)|xj[׭]U?efwn1<0kz(dsh: is9IpM'zU$̙QpQSr}Lڢ:dɦVX+tVTd]v .+m,`7WZ3gL Sܬr_? (=CJ.m-[* -7.dqVo|ݔUj=RuOHDtzZ~:5Tmxs 0J2Lb% ̳=^_|жrc)REם&(.P/wl*P@{]YP-S&wCF`o^{uzY>Rc^5e5JG(==Onky.ֆu:^5USYYj*mt⸚ QhCܫ'N]$Vӹt>=u<=gd 1FIj :_Zs̚7%HQ~5&u֠n'0?O`  *;WцGm(|ɣy6 yAjX'$"]>Lt<0pMh'tPsYAEk^ pPxղ(NE͗.Y3]NG#GnܹK̒xn9 o/JYPJT'FwL1_as8 IDAT،g挋]mߔ1L]%]:)sېl-߻I[z:/$4:cyrfyhMyޗ% (W.֦DgC$2֩GM=sVyn$*4˃.W M.ehFϨµQk"vgx@qTTTq(...;;{ڴi us9͗lw1?ȯy?սx?1|x:6w%p>===##cIIIήlnnuI cϕ< ws~_2/hDHyu0xiœ ȗ 39 #՝[dC%ӹ}?r^#ԇNjj@e [*l} MA>WAAGAeAAyAAPA8AX 򈓞>2χe}cqNi>dv݇n C | ;q~Pj} Vy.,Cz_R4wnǰ/ F䑥l6߿̳KVΏ#%zȎaMהrH a.Hmw85KUC:.'S} ,N 0 _ؑ{&7y[ x+A䱦OgOV:'u`!rfBgN35yx!J)?>, ϟd=7 w]DӥcUN ko#22e~D~9q\rEKLP~R&ddL0(8S(Zն[2x꜌I(r{㗧+N9c+vEXx;eaIqB)xƎA6 y:况zNxt޲vy@߲SW;P]=r&stٛJO\U2gjG GMc͌>&mQxhsHdSOm+:+*c+;6?(_}o\?gΘYu΋ͥW!/|idJ.m-[*$!^sf1>stu4BQjȨk߈n|¬.^㬾N.xI/SAG#BH"3U Z`|y#;W29>OdVqT$ts^J?f1bg&ުLsm C|_F0"TOës>!Z9rkx~/| .'gt]RnO9aL<&NM1}NL B2ʶNj"& r8eYXgqKxu}WpݜRl%elx|AOkGkg T.qJCD_lgufqWvCvod@CW ;|jjBtRll;U*bW^zoS`#)x~/Z7BWD$۽KQYyʪe JuMӤr3W(,HfBN7ܫ_D6U˄om÷ ̯QUq]њccZB< 2<+)KZ5"`EqUSMhZ^]rI?)EbYtpm_d9wܷOggdž 4B,CSzU̓˼d.yWm}WLzh-WK@;JoZ)U姅1֞K'+nv);%\buejISDIqfмT^_CIq{عqֺyoq"9\,h틪"wptoE/"H{̒6;ɳ4&dWm~$9a:J9ˡmhkzJJa1umC\r4%TD4c7qnTf*ȑo^2?^}[:+^`=-E?ϙ~]6!\d!DU*NfhE!ƨ*Bdn|p.$dl>⨬tL2Ⱦ Wv<$='}ٚ+&!B$O=F2,m2'^pfRV9yֵܯ>=5ᢈdˇ \q$K*Z"!Y)SU`k))dLmƓV>3Ba35w~UF~szՂw껸*׹]Y&%Sc|ƫ>G͌k0] 8C٬Vr!8[oL2em28=57ÄaI%+_F \{bB`t%\j1,ʇ]zZ1^$r[9b iM u5tVs|ř+t˦k/BWDFXFtfueugu}wpKz"D8Yx.{~ﭥ~{#tL|d'Ҟ$%Uk,B8*?k6`I!ݜꬼY 0g*\h8W6~jө5S \jQYYHoG_ko'RI`R^9JH1↮ϭ2y}2_1NYUlزBg:[K;_۪{>'6Q=. {W\RXõZ(;;2khoAzq6Jc DVoM|!fC*ڨe|F̎~^픻QV}l$*ܛIkZR[5Fv(=)ys5N=.U/"W,dݭݭ.=4S0}ʹ xMo Knd,&$a0DiP>Pet!JezJUDL?)'y̌hs85yu#81-ϲ |o/+&c$;<(j{V}$&Բjz.P)af^u- {GmwvG Bs$g. %B:GhYE:YHŝ{ߝrW0  }_Fکi~Fw\F|;v4Ba晷I | r8eYXgqKxu}WpݜYުF:~VJ4V <-\׫R.8\".y¿_>δ? hX5y\Hڸj: ҧ+Z;6r}w޴x_!q}׫\H899J~*lX5$}ʌB GKA뚋V/ۿ5_[3bݱyu`>YWֶ6h._8G^ۣ€OYKY#/N >)U姅1֞K'+nv);%\buejISDIqfмT^_CIq{عqֺyoq"9\,h틪"wptoE/"H{̒6;ɳ4&dWm~$9a:J9ˡmhkzJJa1umC\r4%TD4c7qnTf*ȑo^2?^}[:+^`=-E?olK70d!DU*NfhE!ƨ*Bdn|p.$dl>⨬tL2Ⱦ Wv<$='}ٚ+&!B$O=F2,m2'^pfRV9yֵܯ>=5ᢈdˇ^uEGdz !B@>u\ V޼`BLz4fdܖyةB~ZhCw]<"ݮ}q+vŲq>Fi-Q!־Y]vYb]Y}x\^-F}(ྺ"H_+8Gw '2K~ZYqT~EB$ts^J?f1bg&ުLsm C|_|[mU9}ĸP>Pet!JezJUDL?)'y`3ahs85yu#81-ϲ |o/+&c$;<(j{V}$&Բjz.P)af^u- {ob3ɁBΑ.d{9D tsS xa}zp>hHoNF!ѿ|P<6}?4po@naMݪ~3B=sqpDc&-CGqy(L"AY-f$rAks"$Mssi=,Qeڴ;$mvjV9{خ8#?h-1^{2RCx^MQ=rE8ei̙I彻xJF^(6Zr_Z+n,5El"&CF&ڬ8ΆfMh `í9[,'!@N4k0nw |νQZV%W}W\OqJXoLs^ |8;>'p864hbҫjk |RO oc:ܱ _~'Ħ] N pu]Y4;|cQRf74/PR^*v\n^x ceFk_TU8︣}-+Ĥ]qGjo`ٹUN%1'ӼZl#!LKЁtWʡX_mXVs6 IDATF۟\+{WRZKp%t\ Ro_~ms5\szE1ѕpժŰ+viSNxml*T56t#Zg1nW,NnF!j\bэOe+u׉/zj"hm3R_ֽ<$߹œDyoZ+!ϚHnIuV_,cB[i ah+_g?ԚrݪEagKdfE6rbͳhkP* L+80G >9& ^5^U&ۿO+)ʟ [V,V_w5\^0c;1m6tkZ(;;2khoAzq6Jc oM|!&fFeڨe|F̎~^픻9]c#QAބOZrݪ1bs`FI̛DtavzƸb!knn}paD*SνVȇozkXrS'o6hC6.G+P>PFYOI'E0l&Lmn&{'Yv!eeDsd'UCGe=ݑr4Umݖp٪DфZUM;%13,5cK9!}q9m;ZL{&9?sQ(9G"/1'BǯνN+}\?y3Gwp$֖~`Dw\F|;v4Ba晷I | r8eYXgqKxu}WpݜZWK71wVw!}vV"Nwt>Ou{΋[|cߟ} d@CW ;*K.]xQR-vիW? .@ `p~Ҹq""_2gg̛PV-\U+n_ߞ& + |U0. K; jQ@z g2a~z-4 kcTU\WmؘVG2< 2J<Vo@nM<XqܱybSd|>ZV%W}W\OqJ<!>p邳gx0DiLРFehJy\c̅1I-}c*w h}GMq| ]I鮔CfN?yV-9yA]׻6!)GSBEL3qwFm%CwqUsbPs>y\4RB^l&;Vbk*D Z:KNʆKC+.JnK$p`}_nM3N"Sy71/)2`b"Dn4N/;*#ϞOzEIϣV'`C3ɳ~uA?^1E'\>3.8%S]S䬔gtNnBFgf׋U6+xO{!Að՚;*#9bUj;]nyQ[Ndp@c 'I>2se?!~^["Df.")=3RAu=,b8!>MU@ySNZ^ UΖ2̊ā؇~l>tZ}8!J +O 7tׯxnwʪgÖ<שj W0 XzN̚M͓hXBObNyv43ybSXSBJxEȵo(5\b#tgS;oM|!f#*ڨe|F̎~^픻V}l$*ܛIkZR[5Fv(=)ys5N=.U/"W,dݭݭ.=4S0}ʹ xMo ndLo<,b 8WO1\(O 22f=%*"ɓs<0yMc:gمdm1TEMyhwGWfw[e>APJFW{DFjYV5=(LϰԌ]3/Ӻ=[x刷h1Ah@EDZm2Hǜ@" /lνN+}\ںMef!8Q{E; ︌dv/h3oCx Yޭ7#:ӏ9iZN$<+)iR1tr$bֽO"<'B4=gQaM38b5^vMK;:K6n6/ag1ci;֢'#5Dg5#w_cQ ,oɜT޻d%mc%\޽12XS*rOo"0lmαڌlh4OY 6ܪ̢| qJ: v}Ǘx9# N}۽'2N|!9*- C6XWW׼ó Aĩ\Ӈ".V뚷V-}zPu H6qjaӏSSS ťK.^RիwCUUՅ exx`08Ehi{xED dX7Z6pD[W=M@=-Wa%g[qQXڑ0nW3-m8 3?7ۆo_j5ƴ >2|&y@dyVRI?~zrk Eͫ^_"3Oµ*q*~S+_ǟ By0BLРFehJy\c̅1ղI-}c*w h}GMq| gM;]Om0@ZF$3L__ֶ+sV#tO 0aXR@Gm-&)9Q5Xc1]i WZ ascr2ƋDn{*6RX}z߭pKxpubCBwݛLMaaTO *!>:pΎZ"ڛrС^MR؇_CO5}8i=3;yYSw٪D{"΁'2o>ѩ՚ۥE㊅qbu1…^խeνVȇozl=? {Un. Y5]FTƬ[E"yr~N6&6SwL_=B,m9Fڡȣ2H9nKlG"JHjhH-˪kyZ؜g Ѹq-&=ȟ(YMfHd!BTw}w]€ WO;Qpzu4Oxe$˷c~A#_>(lyξD7CV nU!Yޞ~98MZWw"1^IIBZtE pUқ:AxA[wʵȊ^#aN";X~ !W'Dl}i_\w2U6\bZqqTVw_z& d_+rmrqyʓylMѕ!'wqz6Uy|B/J <c`8y)`_$<6jb,+-UaQW>2Jէ"2;UUOkm讫G۵/\ycܮX6]{ytZ}8!J QBO 7tׯxnwʪgÖ<שj W0 XNoڹyr@#aotEMaaTO *!>:pΎZ"ڛrС^MR؇_CO5}8LٱˢrwGV}l$*ܛIkZR[5Fv(=)ys5N=.U/"W,dݭݭ.=4S0}ʹ xMo l.FӳP4!"N1>A\~5ʓj\nnO9aL<&NM1}NL B2ʶNL_ IDATj"&/5)G_m HA))_MeY\8S2=#u΃E2׮SQxxxvvv||Y!8Kܽa>QY://nʎ}_ 2 ġO_SSS ťK.^RիwCUUՅ exx`08Ehiyr""_2gg̛PV-\U+n_ߞ& + |U0. K; jQ@z g2a~z-4 kcTU\WmؘVG2< 2W0+HqᎴ߿ʇݵ5"`E!3]Ϻ)2w>-\_J"p>8sރ_z~GoN8?eϦbɏ?Oovm{fu_Vrb3y;+%!9o?' >Bc[/e#jm͟uZQzay,7VUmM8"NJz޺b#XTGۂ'pqA ;[zM18|k꭫QBw -Y^ӆJߋ/ɵlp,7VU.M?`Ѵ7iXba`~Nz+ᓸwr1yTXҞRtg1i()N 3Uk()nz/Az7ۆ8$hJ2i:k^0k$7BJf"ZƏEV\I~3{0aXR@GI=:m-U%C}W[ Bql[ BiؒrGL2!Lח/.XƧsKY帍V|Ԋb, jUNԕ R)'V` gs\TUR?IZg,+M^^ىI["B}<2.Yw;/߲+3gΜ>Ԉޢ=5n`/=k#_=3A52:T}<`c!BMU 6 }kXu,!CswWQAuY,b8!.*NZLul,ìDo]_Vb!J QBO 7tׯxnwʪgÖ;՗DyoZ+!Z]^0cid i=3;yYS-}9P/Φ@)wlxkq4U>6M5-_h)׭#vp;fʼLDVknn+ƉFJbxU׫  ֱoP,w>|[ #++I74E @G=/#֧MfcJd!BWla'UCGe=ܑr4Umg6qjBGpbZ(e^Vm;V9e>APJFW{DFjYV5=(L ϰԌ]3/Ӻ=[xY GmwvG Bs$g. %BJ7f=%:ݎɓsGs=g( z Y4=5}kiWUwj-sRC=xcbmo5EF~WSԨI |IH.S)+:4 BarűX~~Sѣ DualG5qs$,ah{٭6-#5}vW75ڝp"ӧm^Yb e䡜3eu/Eω4= N:K6nm*gbvE=&kOFjw!x~Q2EYZ3%sfRy.Qd(ܗ(ry(`M=cQ:Dz6k3g<1fq2pzֳE[e GϜX4ue}'N㕔_r{/ 3|7xw(}[H\%@|&XݩRa5ygggm#8Kܽ+(m,n WvC H6qjaq9IMMU(.]xJZ춫W~ UUU.\exx`08EhisxED dX7Z6pD[W=M@=-Wa1@'|#9a8=pf|[?pV-fm÷ ̯QUq]V@dy@X Dž; +wn=w ^Z?>Ħ|p͚*~SEpQ Μ=wp  SvlS؟tzffu_Vrbӽ̧y;+%!9o?0FxŤVKHZg[g݇w|o^:խzkit0Nd:u꯿|JXDW$ [΢=Xܓ5xw(!;,[m(Fߋ/lp,7VU.MHފ?x㾯cCol=G!&=QSqM\;o]__Y;3#f??.R;z8:0ȑm^6V p Ʋ/G,,.8V.# K_g:+|cQRf74/wqQeg/lŮR "₶;ɴdNfό3$u2] *"( **Uz*s`չ9Ky{;y\qS5T*s]dgsa[<qE֕If?y?|~`*i vxg%t >a]pg#M=.:>l5p魹^ib]~"Rh͸U<7oXR^vL֎b8L񨲰{Z@-t ^!tt=hSjsJ2zm$ZQ~=7i;crA]~xa;oÔUH7JVzTZ⓬+?}iw<>u$qh9JJ 88%ѱ)pdk~?^jznTϭgC&l,76وaEځ} s2Zvgթ pQ`jzgE(pg= Ƥĺo? IMjp8 ld|^! ÕqoA#3oXR^jCv$]:K5浂f[-cu=?Rri@,b^Pyk]Gɥs\c3G̼ĄnU)egEA8Է kH`a-xllՑ!%S4*lЉWk5r\N݈hBiښmռ65T]SVxZ.-n$J񰲼 Zr).l7(~1Xd#@]iբЦʋV{833{W9͌_($H%pj\٧E7(T+ܷ?c %2K7Pvlf:c9aKJ10s4 3M%DUDߘnY `80J?=^L|o924m!vgǗc=r!Cܣgl='c5جH7n8'EՃ֒rڸ/I\2 )VЬ_0 ׏KIvi\p e@_ۤxSJ9"ć&解V-LK)D#~QX9399 qx\^Gm oޓ[5Jw(=A2Dƺ.t#G,d6\v(k9}T^*7FuZ,w|V8oHMxxxL^bH8|ML^O4"WcI|݄LW "'v׃Niɑ f.d$XezIIBEJrQVe k u3橱MY K>Xc|ẇB;!, bfIcSݣ}3yb]Ξ=r_(--=~8jb288P(Lנ3s1d([#{EYhp;ye^-inV%z@ ^\pjΕyzcYH;>FܐwJQ5 $KlvY@ /@ $@ #@2@ <@ $@ BqO|zFƑ~mNk쓹Yxk7d/uZ!l7BKVTW/EvH>-:㵔_ѣGK9X _pf74~/pW!qt푅զg=s|HKvx&&>o5s}*fea0Rp[o͇ҚǝJjVJ7^my+_OgݑjM7\OMpl93Lu :1@X*#5e^(*@Өpq@ =T1GV ] R+F.=#W iWW[(yC-ulݼH er-h;':@ dQ2ѡN-I14X]S10} >Եw?~}rR+Twj+ULj];B=׵=wa|pYL0Q{eM `몟xK\ TZ\xYNR4=V?u'?9~J%cU쬽~6,q'<Ⱥ2Ig\#GOLZe"-@}6,Bඕg;̢ZzֳǵrELJf145+۞HUi 506Kmȉ1w* 0fVǺԋ)o-4G2Q#NT~G3s{ͳGtpc5 g1zPk3_yYN%R&188=* Czu kگ =+rr=Z6aKm/.B|h~:ʺkj´BN8rՋe1*IV-`V'whC ߼''ͷjXiQzđ3duv]*G1X('6 >l 00Pt'Ws@$Un$Y>4O5Xpy U @9?Z550E*|wu IDAT#guhb"|}J#N&4fb h7>Ttj,MKm\%ޏ0s|g'#`*ӘmKM*T/KXk7=K$lloj6%#c}~i1vBFGY7Ś at=.Ƥ ƟxAn;q#ۏ#˽yPa\8_7w︮*F681o=-9j(FN%; $R-Ч.lRhK =>^Xz*f߼ԍO^*T3]3 #M&K s֓U6> lm7-h+doOB:f~YYO4{NoSjgs6d12eZ{;wBgq+VJ e{}`o.Cۇ&Jqcp]%,mkAyBT\<6)#M$mȿ!۟ƽW3JjspYa[Z']ư6W3~Gm0bpBwb٬g (Zwe* E7lx|M9MzVs==f(@Yu<XX[[s{ȿJ#ṟEsAnYx8=o|ݏ-,lc[f7+'..N&0y8&sFZTH+ʪE +j/oOsp#o*vU 1 >U, \)G7VUsc 9|dU@2kۑU @2@ <@ $@ #@2@ b)dħgdD|ꍽf>Ua&MR6([y#DdտL}%]dd ܢ=~i-2jo?~{KO=፫mOO=*s':݋{T1tW~=@zol Vν\}XbȽ!Jkwv& `uMdk;7PIaPީT!#vq4^܅mfD Ი;aJ˚k> )k#;U? xsX,')lWU?UC1ǪEv^{?G[qWd]ia3.ߑz&2p} ޾jG pzXRpJnwfQzN=tZ9V gaޚmO!.'"U֌8;Yzs%%ldk8,* ͳ(_ӭoN+0ʎz,ҕ5γVEl Xª2zm$ZQ~=7i;crA]~xa;oÔUH7JVzTZ⓬+?}iw<>u$qh9JJ 88%ѱ)pdk~?^jznTϭgC&l,76وwEځ} s2Zvgթ pQ`jzgEGqQI{k$!Iuc6~jzq!ivC@+!. sG?fn߰D-v"ItkkP.Zjz2Z.xS;jZ@x&76"׺F ՏK7ƦgIvY ݚz SΊnh/qokZJ5I؂iY#C&J;hZSU81Wyq_;-dk`Z 5۪y'j%m jZZn*"\]Z:1Iaey!BS\Vos z @峭?aBH fzb`i M%DUDߘnY `80J?=^L|o924m!vgǗc=r!CܣglV='c5جH7n8'EՃZ+rڸ/I\2 )VЬ_0 vqj1IsZ2mRh^X )vvCQ^+Wr"đsϨ^,[wV8P*/j#:-pO>MS +^Po]wG2?_E@ 9 wiP CTա ދ)Fj\b;[][$WzPѩ4-9rQ#"pזx?%󝝌cvLcU/ 36)v[hRI.ʪ:,a,KZ7iٔk#5Kˌq|(2:@/Lkp4&=='?C'9@,7*>rynוuCo=ƐQ%G Id6|g7$Ce@_[cŷ|Ӿ|Vum0T' KOM؆ڵIF'/t.HHˌȑ‹r %z۹n*~}btwVIA6ϛV4fn!HV3v'=7㩁vU&L8FXkon\2nue*Si1lOMwpФ8_)nl#Km-(]\Ȝj&eDi W2dӸWjFIm_y.K;lK`@~fq/H FQ Nh\,l޾aQyEKQṢpPCea׾{/7 Xj{=#W6' Wo5[ܬz<5omǗ:Aɇ!%e*+ɗ";$sw_?i(' @,yUg&xCr gq{NgYzQq#`m9}AnNjǹaiCQ[3gjkΟީbVFa#|(y٭/yZˡ& .h{tM}Ֆw?nOJpwo\ȀԔ5zMqO–vC1;ឌ|Ucu}Ŋx(uψ.C}ՖwJPKv7G42(jP$smڻ?a>9)*;*cĮ!ڞmapk,&c(ҲZ0OBzZ}ǎuO¥b.Fv}m*sX,')lWU?UCs'쬽~6,q'<Ⱥ2Ig\#GOLZe"-@}6,Bඕg;̢ZzֳǵrELJf145+۞tpo\*G5 Dsi`eܯ|&t  \J<|Pxs܏4,@峭?aBH fBHUi 506Kmȉ1w* 0fVǺԋ)o-4G2Q#NT~G3s{ͳGtpc5 g1zPk3_yYN%R&188=* C-|-Q0.@ '&EqRK)崳.Z0-!}Fbٺ;pFx䰊$aU lU/ݣ6PC7I%;qZzg q f"c݃C n#2 n. L;ɵAU>P*/j5ئtZ,w|V,<ʃ5RK @9~za" t:41{>҈\Kc'uc 3^1kDJ]^*:5%G6b|D.cdxZbi̶%{&n M*EYU[Ǘ%%6qIf6Sc75CWs@c}~i1vBFGY7Ś at=.Ƥ ƟxA~3ww%-h{%J;?(\ާǤxue]P1iG1$`x{mQC95rҸ. 8M ɐjW>mw-ߴ/gjG[*hL S3nxRIЍ򈄴a0i*(0O\b붞! 'Fwga8mihEs^!{{ji5czs\}3hW;k');۹r?t]TZL-{t9*>4)W,ai[ {2ZIQl$)hCU 4QRWÄz=쪭4rK>oQھ;f-=oXT^FRԔ+(`,\?PYص/n~a#Kkimֳ8R=Zo{M1P4FO\kVhB f=_wk~4"[1Q ?VU#7Jxlfb<..N&0y8&sFZTH+ʪE +j/oOsp#o*@ ^\pjΕyzcYH;>FܐwJQ5 $KlvY@ /@ $@ #@2@ <@ $@ BqO|zFƑ~mNk쓹Yxk7d/uZ!l7BKVTW/EvHnByOF#Gңݸ@ f2Ug&xCr gq{NgYzQq#`m9}AnNjǹaiCQ[3gjkΟީbVFa#|(y٭/yZˡ& .h{tM}Ֆw?nOJpt qْԒχ ud~kE{4.wPu#_xܹdT˭+V]6FO|Q5v7pҮ8˕/PZfy="v4e_hD"+<heCZ*chb2`ε|k~@ 0WxWv{k{¶Ი;aJ˚k> )k#;U?  z͓9,^쀓MOUuvϫ}*vkRɘc";k K-8+L0sk=QVHK8>o_#ą 8P=,)mb;(ViquaY 0Moʶ'O* EkU9}Òdv`GUY7eGBzA9ݕH+ymoukJwȸ?Kܑ7,)/5rbpq.n}ZA3ԭڱuh7mykEI #550Jp~\a$=ef&vkί5\^N);+ xơeX @*Gk($cc e ()huOUa\ŅN|z;UƯrFt@k5۪y'j%m jZZn*"\]Z:1Iaey!BS\Vos xKdnVuư!r$U#b`ikNKYjCNZP cHcC̷͔j|#CVb'zv|Y?#9=zYbEأ|`:1Vs{ZZT=Rߙ,u)Bb jZpF_5u!-n ;o\ud@_ۤ1[j{)vvCQ^+Wr"đsϨ^,[wV8<}]jU lU/ݣ6PC7I%;qZzg q f"c݃C n#2 n. L;ɵA IDATU>P*/j#:-pO>MS +^\B 9&țG fc΀A^H8|ML^O4"WcI|݄LW "'v׃Niɑ f.d$XezIIBEJrQVe kg\ҺMXMͦ\,%Xm1_Zf;oCQzftX3]1lg(tĺ:'꺱ik*618Jr޼w\b}Z{Ljw\WQvCFۖ5S#'ـ mEniavMqZQ~rRٞx/,=?o^F'/t.HHˌȑ‹r %z۹n*~}btwVIA6ϛV4fn!HV3v'=7㩁v9|2cq!3˸MוiL޲=>^7ASܡC|.wq!szJ.ŦIҏ6_uȐO^ɫ%}9L,-דɮJcX+#6E18slҳyEe-EM2b C ]6Rd[ߜV&`=9S-zʭ I^,r:TN @ ޽;22n҈3slDA3<\Ы[AV-do8x*-ؖxqqq2ɓ'NhookgϞ}/?~bT(k[yAù73֢jF^QV-\N^W4~y{yU"U 1 >U, \)G7VUsc 9|dU@2kۑU @2@ <@ $@ #@2@ blC.۹+p}Q-vXUkR|qzIZasK ijiJe>X7Ǒ<̯IχeL@ M3{]1+v:B7Sm~9>% r;^04(n3\5\T1+Āzk>9)*;*cĮ!ڞmapk,&c(ҲZ0OBzZ}ǎuO¥b.Fv}m*sX,')lWU?UC1ǪEv^{?G[qWd]ia3.ߑz&2p} ޾jG pzXRpJnwfQzN=tZ9V gaޚmO!.'"U֌8;Yzs%%ldk8,* ͳ(_ӭoN+0ʎz,ҕe.$} [J2zm$ZQ~=7i;crA]~wl-c3*IF^ɪTJZ|u/ `'٧N3!7G)Si$:_81EΗlM5QKϽnfIݨ[HUi 506Kmȉ1w* 0fVǺԋ)o-4G2Q#NTlR?#9=zYJHأ|`:1Vs{ZZTm5,u)Bb jZpLu`L ڮј@ +&ExaYj{)vvCQ^+Wr"đsf[݁3:c&U<'!5ZfszYO)ІyONo(މ;l#g0T=pcQN>l|ppa`ڡO ҥe}T^*7FuZ,w|6=(R! @,sǡUC]S/ YRww>rV&&x/קT1rq$nBsla+vmp_AEҴFq\^[x 3wv2VK2V$|ؤmI%(jvӳD?.ipoj6%g,oc2cy3 턌o,Ћ5Úz\$IO`'?C'9AP) YJ޼w\b}Z{Ljw\WQvCFۖ5S#'ـ mEniavMqZQ~rRٞx/,=?o^F'/t.HHˌȑ‹r %z۹n*~}btwVIA6ϛV4fn!HV3v'=7㩁v9|2cq!3˸MוiL޲=>^7ASܡC|.wq!szJ.ŦIҏ6_uȐO^ɫ%}9L,-דɮJcX+#6E18slҳyEe-EM2b C ]6Rd[ߜV&`=9; ޤш@  ޽;22n҈3slDA3<\Ы[AV-do8x*9:re`%2p6Yd'Oټrss҈.))Af,P4X'0܄jX<a[.O;?6g=/\i~oX8r i-.?kO*+W?2Յ?~L8țG V%xOUC;8 6oǮ&Xq翩Vz{kU^}ޛ;w{w'V)a@k{yqwd[괖r?zo.W\ibPsh+_ٯ_ӿ6B#o@?B_ß.VУ7rvEwWM)96KG|?Z/‰rab6iڳ.Ao<{-}?|cҮ4LWZힴg~7䅉b~oTҫݱ$I@ 脯{|쓂nQ)[Sp&Sio]ڟY`p^s.rE ~6 on_c|-\1D80,/yzw~S R *Ǯ}.uy*;'o8zUG{f bն7O~8k.W&ͱjV[ ᏄsfD)HUcU/^EiL_Ow`緢km7pFm_{#k!g>NzFyj%閜c+bbW;w 7,)/9\ejVրkGpѢ|M9Gt(:$\= ˿u(ĖЏ6%p+@ ,O 𗦩o_h ٷ_x3wHOloӟ<'X3~쇿ȱ~9od;|#?oڟ}O~x,ۜ6߼ۻ~iO=;'׼w?+bK7ȵ_>-?QS L0S /7s%e9Ǿ8|⨡ܓ7'oi϶>嵧~K~g;VDaSwU<鷏$=mFz?`<͟={eey푴CMw&ӓ4fiZFy78nN+045Tv8Oqysύ_~8ۛ>@ ^ƛ;X"xnۧ^&9aNd*sUvc LcU/*ZrΕ?f<1*G<^SppV`<5'`oc +'~5պ\:W>]/`jI}K_T:!3z>^XI5=3}7?c'N@#W n›_X qX5ܫ`ԝWVa mcmZ?ts6[Xϛ&.G"De{&?ӝ1?US&kud4FY*ӘmKδ?}V0ʑ(V|An#UW;e{SehQF?z0PcT˔C?K^o, bgv߃zjjy%}*oT)۪>өi7=og#W0fn;סfV6gSlpŸ7?#țכ_#r_j?>+ h~oe*ET@%, .J#j,1Ć&*b|X{0QSPbCb!P|M,b# ˖"Rv!9̰>3;;&T~_%a2d2na 3I.ǷYM6!q-WL5'q᙭kVz,S3bn b._M-,rOlo!ui'WKK}g[<|"7g~4˯eJ2v9KK~Zv\'/ƿUyT]oѺ!sHΤ%W\J/߈y_[9Ƙj>y1#eeORbT8*CLM_=q8$U\6 2u=f()C* cɞ-"˸]]UIJn?112ɓ?zhuuLS-QA7p[b|gJJ Мrli/_nn!M'( ܐvwU! D"H$l6رcÇr|>Ѥ{""nq|4SyxYwuu턑3h֊A*x|xAAs{={̟??::ޞ}ÙlL{3M&@I`2wܑ$-[ K~NNAo޿, 1c͛'Nb8NϞ=g|IOߘGz> (++>}+lUUU p8(@x燄o޼>?~JJڛG) kkK/X`Æ 7n;L ٹtLҸzqU%p o ~aо}.pӓtj - 8v yhٷkCqy] -j1dU7^HX$Li\t 3b\=#7M=w-!0<45r/UܺrevWRX K9qo0'wQIDATt<֪+«[O;kHWFwU9T4-_8w)<pIߔk&d(A(ej l3rBHQaYhN!oLh985D$=tJh6[aj0os=t<&v1X*gn+ej[Y걅Gv{ϝau(UG)=GoT#.+EhKyh v׮={bTizk Kƫh / Pot3䂆#Ҋo875r(;>"|GK1vf#veJP([q-@xtX<Prr2*a:XT@:&|6vhaŒWu5o"lio蚲<|r l oOE(((HQˊU.=|{O+LfxW>3 FuLLL,,ҖiV9/r6K#$"%LvV')|u٘-{J^Z,w>0Ӻ2,T:aGUҊgx%Z7=SO}glXu5I۝EDcUf~ys?[~PBTF|9?FpO5 |Ag)sr2}q8:LHI3}7^,oHug팵k~_DDϮ<o*(RFu s?>vb4c {3g@ݩBXe7ˈ$%J3"}] ""Ymä\(!Vs.T|kdDD.]Upu{jT-ȳhZ@-3wOWWqQ0aJkG7;Zp&/xIW:OY2نPWpɕJ**]'kjnD""=Pz]5r1dBߜI_u^%EQÄlUD"-}R)5VG 3&à?u)O&_a;Hkx}4X$yzq_C*/$R*gِ:lT?,n/lMgԨܖ% sy=O%D?Lڲ? ۝&[^PLqWF3|'.:d|CK?mo1`I <-K-owEmI\M֏"bp Vbam,o, CQ;bc^qΡGK^# 9S&{% *”$,*'.[(OO5O,kC'~m5Y٥}gEzZ[[C_%KD 6}sDL/;e.$(HJ3wnHWi֓]3cݱsSSSSSO&ɏsdJ*' UxBܔCttqԻWpoF+d0%o*i'~H 컢kh_}պM3m.4yqXĮ:zf  @Do aFR/\dIm"HD Б!tX0hБa=TߖC!wPrrrPPmZaa;,+<=V&pkEnm<3}c_ &})@`>!%o@ː%2""_g|=~̯E]8n֨@`B?|õ]k'Xw UF3clӈ]NY5􋰉eU#~t"6xa}kFqPgm4ןxK)\R1:; bBW(-a@ |?L5S ##狉D¼l>wKon(_.i<ӍcwDcLp }c6nm'8wlG-L\?) 3b\=#7M=w-a݃no鳼{tt%R.dPptܙ m}wwٹW1UcU$M`՜['UIͬҕU`a~  e@5M[P|#<?}foĸ["|{'fcmin7vp=u_aX5J3janY݋dL̵Y$M>Rx[{ ìCٕZ"Iœ*]]>6V7 IyQ/\*7N14[GoT#.+ED%6vca*ښ, ;W^\^Q-),gUϺw5*B\r4#ו "V0Lʅ} :=jjևIYaSSWID\Q2!ڴijڪ*eJ2"IioR}yW0z]]jn}pҮ{5Y57VM{Bb^vm0boJ{>^_/;o//U^|ɇ5ψֆ &'ڬiګD|wLq{[Ҩ[PHkx}4X$yzq_C͂Fk[xP*yz+3TB|+ $>K?ɪDD.sL,[բEV ]oXZ΋w' ?1}͚%*G3]/ fl Jy\֧ no1hh?Ni;ȷo[5fH33nVʈ;\V3+Q@7l[rUΧ!-Oh~@F4Gލ9M_n=iۡΏv`c3x"  (qKlt-g@011C= AAAh;]\@oB@y@\hS8!\nV,bccѿ;ihWSa7 U㽨6нo*fټn "QK%_3rv@G|r|*q{$G:+/tti_y|ˬ;F1RƆ+֟TRi'^WVb^!X$sqd|SHVe):N -8#/'؝%Ϣ] OƇ-\7%]ddTwS}/WDKߩ_kЍEY_xoPm|N t%Z<):8kg'Oޛ1լCRvEWO;CgvЖ0QZy n9 z’' 8`XH䳅eHWh87`:ϚPܠt+|dg@o>z)J0"ن̻oye+vsFMgLx& B+o[P5HO≡jЫ.\vEWXYxg@~<ߪ)xJJhG 5]t%x-%ەj*X/=-i\=T8DT[RjL튮PqYF=GT?MVQEc뢛3;n5SW-5h:fONa~[i,uOS ;.>d+*Л v׏-w$0c7B8&j;NB 1DDB7ԍ?M{`O?XB$*8e#>HX$!fĸYmd7 !{2B6\*I u2[;AR0B XypPXWCkIM:k#"<"紷mVvdθ/{5';kHWFwU9N<&vlrUG*,m_ĻoȤs%UX 4< ɞDŒWԲy}R[tuE ϮwTm\ 4*h0h^Ի*W$kKf=y e UV o3v[\ $| .yؙ ؕYڢyҊo875r(;3|'.:d&Wfh߰=@DŽ5:2yy@y@yh}=;!?sFP/IENDB`gnm/vignettes/screenshot1.png0000644000176200001440000014216414376140103016016 0ustar liggesusersPNG  IHDR3YGzTXtRaw profile type exifxU "%E^ψD(sW+w_ EG\xz^ĘEYƮ9yI%]5΀ӿ4C]OӚ +oSc߾.|H,LR?k iTXtXML:com.adobe.xmp EsBITO IDATxy\T0seA\P!EcLmb.I{nMoto6Is6i5& 5`1.ʦ 0s lQ~'0 YyHpXBۺ>ʃX#l[U^H^y8' jΏ'XZ,YYؐ5`Yת?Ħ\!lZ,ݫ06opki}̆Ο 8q&02dk"Bx`d22p!B#CXXhG@A!F$UU !l Y2 X0IB &c B\`c!BCCfsa80RYUUUiY aHnufRNg 1Ȋ'$$XKj\VW]]h@#<&QEeUNLafgڽQ)*s 0 !iwdprݔ糜Ȝͦ!"=~WVzSGOuz~2zIe$<_ EB"=A}^@&0s(z99OIz 7oJ(y?^+S2BA%O B ]adXWgF^HK8uz'+;N|n, 0O<sP},vެPvZ57m{; kg<וn0{?2!?s9M!z-߄hCEEG3 MWb5VpxL"cҪ^g)lY*1:)nC4~Ȳbbcq+&3h?+u(Q rF1LX Kg d>vUK|jبP-UMG%EOdMZk?ycMvݍ<ެ Aene<ɶzN @Rg`J\t9uDk܌15޻KQ䆗*tzmp·sC 11ѕ6TSݢO|WyzAKb'bN'Q^o4ᱞq1`u(nLѧ٦6e--m">^VT@UhtLeYYEQEUW>z11ъRUiO@??/+ r}Z2YB9` '?~&Rr)~2s\tP8_xn}gٴ(ToZGv -ʃE<0-iYR@ϵ+j-nto(s(ZfݛFٍT^~{?~lXuKOsZDܭnAGBꧡ)dž8*|d1UEN_on!L%0k/c'm6E8QLVT%F+&{h˯dN*bXWHp39[-u-nw^jҕRԁNO`y8Շ??wO@PU#a@ﯚ<禒vtjQOU¨j2~麞@7~'*!DU(z*gUG4:D }9x ?E-K_0f}.Ty_o2ΘO.\"FqPj ZݟʉRg&?*dN1P1 I֩S-۫VO嵬kʗ]f~iږ|g:zgL=qLv_̼k "OXʿޘ?k.#_=I38/l^k5|熬3%˜'?_>/_Z1.-15hOUF15=/+o7>Ѕ ;\?>wB8^#tlo?~ᄇNK4uӊלq}&BIX؃Cg?Tv'>I+:{83096O2fXMvyi@tTܘEQǟ;#Z?TGDn^*BBJ<U"w&)uI5QVq3-&~ٹDuf`jϫ hեl77w/5[һhJ>SUJbSb׾صVXEPiGxkFC3!fIÓ֋HC B!1![]{RF # =;FOP9ʉ\w#z]ȇ~5!!~ǿY Sf|ṉ?&[Gu8BcoĀ}O{xZ/HqeQࣞ{c3vcg5>ic%p0 LXG9 6sd{0F;&|F [4`I!;dy_Wu'>'0NmMĀO!4q_qELU g/}Z;.FwJFU;ZG?_|MfJ<6 'vnwmKɼn, >8NmeD0bt 2ɐ{O+@QRWApTeJJ A׻'0eJ:Ȕ O)Ոb=u0E&ٖdޒMUL-F4p l4UU%r La LK)I f%_w>G' Ⴇ;~W/})o a3q%So~dy?eloi@msw2>QLQ4J&u\rA)/4G?VDE&Wp֏~/ÔOzJ(rΟ.39e\4Ox!:sю˟n_́ku#>~rwgҟeן[~8#=`{6 dq>'+c{3KFgp;_+!S:S-I8 eB8ŎxA hvʲ~~/_eƘpԨBNr7TԻ}R]t[xQ-_<}EM{aU^k_lȹ6y0h?Ыѷ{/e zm}7>pR7?jSM1Gs>\i7RyV:~CE 0784IPufDz>O_5JO_*2 hykUDylN"^3p'ƾJҵ \qt}O`"{p2HO~@0Hw"Ӳv"EQJ&%%Z]stϮqTe/_@$ɲBU:^eTDF.IaDcP%%Q5!FTUU4^q>Wӕ(@LߪUvܡxA5=,ﻃ[yҙJ8N2۷c)}^xΤ!V#3L0ˆ&v$ζ\€;$ NY%NQ0n-}7Q%nGN5KqޞWui:BhU!sf?σ5Y~!Z xmu_$i_o4zVu_R&I11Qgf {<Q**(zt3_|Ds{hnޯ8s!"U[$iZhgyzo 9eE<՟MN+D1je5d2u:!cnۥxop{Ua4HKmٺ"cF!sf? |0 qB`;JUJEQE>{ΉY|yQ1*cgiY9 O4QnAaPe\W_!DyAs!=qNiYDŽ݌0c쇎g 6P3H^ AulS݂B`!-{!Bxm!~p,Bh`BaG!{Bݛ[Ӭ_\~gYY/nnRՖMNN{w~ eݚ Bw|iIVs<'M4ظ-y/s(P~U}{i.dE~!/B-{c*?5{m _0_XIY?b !^7ѥlﮋ/#-zl>왧lypʤISX ]4m䴬 _M4iڂc:`ҕ|eI&M^U*Om^Xvg?vun~-ܬ_W,[0z\~mu|y{zW6Ն'%O6{K^惗R!Zq~ k' E}7عs^YpSs_b;g }]y`Xw/_AWr~p-}k?8/\8ǓdKtc}wswg4ezJui?߶üw]O4`|!2ɷ >DK^y؟~x/|U!# &aЯl+m^g\Fl h^yп_?\,]?mH5`ofFkW,ve'_~~wX=D$ό{soM\_=- F,8 ϙΩkuQ9^˹.Lg/@xg:zd֭a֯_?`BFoo.Y2^ ?H o<ECmpQck-|~\ `Ll~zaes7Z3Z ^"j8է}.ۿ/j2G twxp' 4TTT 7>?:6?# !1j&ojGjC v@EX:ao? ]!,v)Kou+ﱴz@.4_/d[ɦ=xY<ՀKmݺ{pf?6nEdwSU??uUU[O|)١kQ9o~+?ژ˿ꥠz[*g#s/RKyхVus{,NiYsFO8&!'!9Mh}ϱl~#cʔ͍k~3Oy^zd~v!%G)~ws*~fIS\*j S({qe3?/w/NGɼL4u}`jrr?fqB;3|-B@v#4"E_^!0#BB!!Bw,wBw 翻n:-{Bw?0}>}OV\`߿tAݱϟÕ+W>}wB'gH~z! L+W7Bc!tc^x$+VĽ6BVw|ظG]gE&4aYENkhjt#5OZ@޿nz uJ-Y1#vO-y6 G݃:]^~`&zG]c[a8".cCY)RP=~<جjw513&x>AV>m)έ-'KR'ƍb7RTGXN-0 wcJgށҡrEǙu&MS}X O)QguF>nV͙XqmMpp\w\ؙh>f=6BBXbZ{l^{4Ec=ߩgJ^.3f:@`sO8juBٮm:S^ʶ@˦nxuݻscӚ 49eǔl?ܮ )2TΪTNSZ*2i#+ٻuҡP㟛&T7)xvϳY{а=gKü-.wU]NP']Y3|y[9:l/=x,q݌ǚ{Ԁ(>2ՑxTtkRoG;7rf}G. j{yf.;dVIl O.t7v5`S`ʟu( 2-o zv^'y^4xdɇDuD;,k=/G-W< S)Y6ڽ{7#nBW=#!)@}*L לo(g1|lXlh x IDATщm w}^mbcL7q3X:'@c߃֒kf tl؂IBgΣR|quJTLp>0lʂlfe:wOcXR]Ն^!-1*93佞@q{hﶢ~lE9*Jr ?g&z@3>ڂ!t*;)tv*,s<BwLO|TGqG#wO_쁄X {[F<Ba-{AFTOBhx>jx !m  Bhd{Al#B#eBJ`B={Bhd{{1f+Z7qAo[Z!Ż6U)p&~{ȴ8hs{{SΔj]fƃ [ v!`ߐĹwUUf]Քm9@%g0؅m+zk(icèTwܩ VKߗaS,(U 7B{;d<=UgCz&klXp@ij+ֽ6mӧ\_KnG!tcf/4ث.6rtErx?kT6>֪C5fm&r%g˽Ў!`zn {(<#9iUZ|s{ W=+~gphܮ%qYg'%JgdDn̆Bڱ}#!CgO7:{u_-! ɱ.]Oy/5 y >XZj^w-gr^?ߗEݣISCq2tcK#KTvG#gVOͩ0O cL֟ܗt!YbnU-JhHښ6?hLVA>G#-`Uqh;+B7[kˆ/6]W٠:J\.V,,>{YҪCNk -^{;FGxBsTT}Fd~GB5TwKj %L#F*;14ڎ>G#- }!nGw֞/9lhNQ@/ |F^^;Bw>7;!dl@^UdFG@u3*hr@PF\TsB&zͅՉyKj;:>6atmmzQuFXns4wOM4-lKqnh8\:'I&xBݳ-#3f-W<7%]&}ߎB N}lꆧ\Xٽ;769@;:;]'.\;59e"kMn >~ my_2j/=ܢޞT3%Z`]·Ox݂Ǒƒ/@!tO{'΍=O |5&zo9*9.NOm;_[{@IpTwܩ V񥿟 Z<5D!t4&+9Mu9t^d{MwxMg{\(mWafzO~~߬(5B{Ԡ.6r m;JG[$lW6>ժpsԜi%H%5Bvغu+tW{([<ǵ -OYUOWg&wKΐ=Aǚo&icgʹoQpr8!tUTT_= V?1F\z[xޚbdKX\[a :J疶wGOH vus@\ ^K>Gkvue=ks*=eڒ3r m X4vΚ "S){0#`?V{saT[QTwsq_)`i2o˫yݵpyLNn֋1\B`zÒ<]QyBҖ0M^>J Zr_CB`O]W1@!nmwB!!BB!tG1#B#a!wB!4GĘϮh i8䇟X=?/P#n'Na0-Bo}`qӂnlFJӾ5 3B#n֭[`O9pjb)~1oU =9)0D=rIh+EJ^ˑg֙4M;o:ު+汖&FegsJi{ kkOSdSMˇ|4R[9&5ZN=¨=]j!i!6l)q5vUveS7<ݹiqubµc\CSV,Tg[Ж%!Ӫܣ)-{N8Su1usa)#:QF!tOSU:h71N{n+@V]Uk&MBR-t 0:=p~Po%mù..w2"vU4qvBr#B螗A[7VxzMYE˾Oe{MwxxSZgqU]ɂu(QhM [~2oeK7>mW!o UFF6-YͪƧZ5;qᚖU=oVsBݫ4͠]QP7uyF!oNUbd8CBFgBLQ! ̟`c(ͥ+u4ykœ-aqQlY*(ٟ[X1^NkzG wo.oj+\4`xn.KJ Zr_{BhPnCPOåЄD ]\] @BR}z^U^}0yFjxjeRPW]e7| Fp7VVV^&YjP -‚.;m>`O]$!lq G nWBDh8mhTdcMCy BhT'Zuꌣ-:ilS4 4:&捍jmJXH6'6N_%r7;w|B@cNdwsues;"0UUWͅs`LB;1!E`cr&yN-O]*#P֮y[\8<6*B.hZvy)ZˋhIo5u0ER9'bH\%J~@wµ]khS*v̌%!<5U\!V=@P,F@wɯ`!h/|E]4RIe3YbA5L1WTWׇŌ qFp֥hIu SL`Bw~xGO3Vc:քD )~ФЮ.]"㧅_דзtWaBQ}ַŘϮh ]i=&3xhoa!=`O}MU5f?~w[  B;~jρ!-B! >fzV0v&[g,_)z-GJ[4{Yg4wB׻zlӛZ W)*ǫ&>wOM4-lKqnh8\: f=a8tR!k3Y~Ζ+ ^oG]Pm>\6uS{ޝl7;]'.\g'gNYZkSnmB[+Lڋs[f?P=vatzjJ7Jچs];\TenE^H= @gviQ"kByz7VxzWu]T4x77uWJU_;,XwAW}Nf3b֭'w.6r m;JG[$~ƒUOj.\w6C5-d+EB֫X~=tuSgy.T>kJ̤!!#{ݜ' V>M`s_?:!g 1@Onhg#Di.=^#p'[ TQ?5c<>2x@VHܞUOd_/=Z;`ia\I f?'Y-?>[:!Цx._̠RBsIP#7>{V{saT[QTwsq_)`i2o˫yݵpyLNK{yx|B!v[,S٥^#BDϱl41{Y(pj}B`O]W1@!nmwB!4IB!l#B=B!0#B!.@ȑ#͟?bgWn|㄃ִfe=h˵G>(S 4L< XNTU;ojZMtƺQbxB `O9pӊ1sGUڎ/A!~8}Ia1 쑣Mme:cԸHk9Rڢ:`Ǿ][ue[f?P=vatzjJ7JچN5p]P]ZZޜ>';ٸuOY؂)!!B! MVӳ7\u9t^d{Mwx g{\(mWafL|(ܢT|BM!~.6rtErx?picMиp 9D=.xLU!3 xsҼ  |XTy~f tfVWK*"fO%֔˗pB{䆏vXL1B:̼5}ɖ(~,@u-m ,O/5?(1>R<瀸p| G>XZbpvRYɫpiKOl))}[ɾ< R#65B! k7Hl.0a`u'M|Y\c{CBHqBo k 7+zE Ʉǒ8]B! j?L41a>>v@CB8}Ia1 쑣MR kxS"CHif3LηSzwVoՕmzXukmdZvVJ8v=E6eд|xG-ŹcREsOXMk+D#B}Ȍ,?gMsWI߷ЮSl.=~v΍~Nk6ЎcœbxצJ7N?{ڄW/qVMynoowWˌxoH̉c]exBݻOƞ{'UWUstWSncFίtS=~ RMx.s[-b[gJ'<B|cHxYЅ{%5 ^6bySZgqU]^QoRb_aF!~F#\(m^U6>֪ אq؉eBl<+ .ψ7VI'\,}bS%I&3$ddO1vsM;I\fxBӆ'7|3ƂOdr4x14X<oE%ҵGj}@z"W~ڹ]KK NJ5 9y2mҙ 9 hZQxBa^+ܽE(gsр o*޻/}u}SռZ8~&ރxBKTv#Be+/4L֟ܗImB쩫 <!Эm].@!0#B=B!0#B=B!0#BhnwbgWn|㄃޶yœ%1F}؁55!^ IDAT[jyMK[_:@3e)]%Bݛn}7j?@޾Qc…5pfUCB[] cgeN #Qmg-mXgzũqҡrEǙu&MS})tN6ypiY)ᜢR^~j{ٔAi+ͶVIxϥ?X_;\8=x!/P#`/12cm&rCxSk(˦nxuݻscӚ %:1vڱ}!)+YwmtS׭Mh{iU{qє=| )yպ̘:":m?ќbuyc%!=kn|b87W:5&zo9*9.NOm;_[{@IpTwܩ VؽMGoQ5B! MV@vYЅ{%5 5ySZgqU]^Q#):y=Qpɩ8!}=B! P]6mzEh~֑Z5=q᚛ !"!3 xsҼ  |XTy~f tXWeU#5D B{䆏vXL1B:'[ TQ?5c<>2x@VHܞUOd_/=Z;`ia\I f?'Y-?>[:!Цjtw_xb6!0z\oVh7\>y >XZj^\WvexxB;fn|<]~T!Be+/4L֟ܗP B#)SWšx B[ۺ]BaG!{BaG!{BaG!0 ;>teU-c>u'w[SpaEx_VO@BwV^m;Zy_ '^9N;*TUMwoie廷n޴-ZW̉C!t:-?Ԟ.:tBա*P>:=B`n|1|ʼ#UjSfRᱞ}Ӝy&O>G=#N3/N^]ꭺMok1.lKqnh8\:)YY4 h4y؁5 1ӳ2'ƀG6I,Z)-%=w\8/B}3%/[_Pٻӯ}os$ ( (-h"b);Nyx>Ͻũ9ǩ}wVM MAA $1$4/K (+`%s53s!, #,M,VF/k4Q!RX,`Wkl~|w绯!ď_yZΆ??~Yyx#DkI8CNr!!rĄ1a=5ݽJgD>ľxf>6sX'ā{Se|jpr=K!''B.rc2y̞4TP77ӭTısYHA͏-'!N(-Z Q\cN[FM|bgl> DS}txžL;óyOJd\gʨiko+I]&…c#]ӭ gp0ӧtP,w%>iכw\iZqogeHzkh|j@}I@d gyӾ7oWroٙULA<3?P'd󾥦mvQ?9se' .n$"p{\$,-^ ,Ҵ|pOǶm%t8R' ֹe)+xV~n(5US')S(yW'(HkPD`q(PjuYMlt_Ypܭlk;M;EN[4U=o'.9]i~jGVšmpiώU6twTCG2tero\lMUg,axw}CZVA0()?uу1x {{w~zs sZSy^Rpo%1 7mMginkWռ{潣OVܙmCw}pXl|= a{ƛ<w =wZڑT61R.%Uaò8nިk{b q[aO{j/9|Whveʀ9oؠZU^r91[gFG$.q] qE6ޯ R/αx ';II\־d)v9ݷa1هU}/qQYY"fƝ{iԅR?1<"=~2F! xoT%$Iw lI !!lkζԉMq ?.r1U-{*eB 4YcYцG-cvIoKnu`(i*)qTfQVygfob2R}\Be{ZccB;}=dG!~O?pV^|`z#DkIiכwfD=!gM¾)33$I{kG25@$ |cㄳgiߛ+h68-;S<)Vgg sހ7fsc\?YTpڌLIEp<83ۖNiF e>c[VaAR K0AwIScWM7nhhhfY&+9z/M2E&j$e%juib 1.Ptt..84-cszvwi봓f]*筞1$0Y"dz+O٪8-uV5 p]Qr`@ކO0.}~HCrB.)Le1ﮯ|hB !sXGOJHf ުl_=BhxxYP|h eV;?I=j`YG͹9kݦ=}4˲iӦ삂#Gq8a`C6f֛mt}:ەW>65$U?"=ajz׺eٳ}}&ԩSvq\m۶@ `C6uy\iz"7tnq ~D"D?Yx<&l`~gOJ%K9 I 퍪spqTVaVinq^hu!DO fLB6=~1;V3OWjbԸ$κ-!$9zQ 6);,OTU.BdEv?eF5t9% !ٜ~D1p䭱cǎP?_|?t$ID6qQ"⚙BGeewf&+#՗5()I,P56w'߯!;B#xZNO?pV^|XdsdؾWݝu- E|F(43Lèߝ66Vzθ_lfȹr"%lka!g(^nP+%|s4Bu NJJJA;w>}T&q8h60)MjN[UO)sRHRM=&OSenPi)3}IkO Ȯ?lwhYhw>f?(.>>9@7`˜[^D[j1 |95aXvvvZZZpp?177ѣGw˞9e|jpr=KW >9! rwϟ cɤb셺αB5wO40sp?d" E+R ! klÚR,R+Dl8ýaeal~ؕFUF޽{1 s+aؖ-[:400ﰧ-@nlޓYWi:r5qB:wD0Vy,ck:jUOr jLAܕdj`!B\of?a^Jcݩ_=u0ݲe B8fBk5ޥ=>+S`2U{e˜}lPku*WC+ w5Wi8\ {R/Yʡ]x/-e$qX `FUߋi\U-lvlF])#'hMk_'૿F51or8BthglKPr8.pObsi))2v7@vʤ5'D d֟nxR6]|RO0~P\'}|8;vsh%1a=5ݽjc2"Kbl!Y$xW0 G m@=缿O NgPQR<$䄀@Enl?7X&ٓ&{: ՜2/=Gj~l18YqBiъHi˨/O"zm><*Wװ-@nlޓYWi:r5qB:wD0Vy,ckU݌_P|N;]OF"ff.C鷹?y g6-E?%' ?cM޼]AKStؖUmоzD,/2|:9X޿fWYeIhDWMLQ]n#UlByb!\Cne5's|1fq1rel-6ݎR9mvҬkW3&D@#+;Xxva>[rEùΪ+?;JW(НWX bܥR8zWSaQ.Bȥq5%WY,Q 4BhZ!d{\W}#s  {{w~zs sZSy^Rpo%1 7mMginkWռ{潣OVܙmC[ !ǾV81!@+0暂68{`#㿶Bв=6D N|ŧµZ*K#?8TV~Ҍ0VݛLN{j/9|Whveʀ9oؠZU^rBܐ҂ޚx` 8|"3\D~?I$.k_C_ne$qX `FUߋypqTVaVinq^hu!DO fLB6=~1;g9 ` I9u[CHs[;-ubSBÏp\DUK랊oY".MVdnXaQsKh74%\jN=.=P$TU\3S̢0RbeҹF IDAT"%|+xwzȎB1i~P?଼xtsdؾWݝu- E|F(43Lèߝ66Vzq2]͐s"DJK2֪6!B$PNzH/V0Hp0J zAlNInnRݍuүj}JHRM=&OSenPi)IkO Ȯ?lwhYhw>e?(.>>9@V`˜[^D[j1Պ;w.>SQ= 7CX=!sz %~%eCON]g}e=i2{nnsPٹF10sp?d" E+R ! kl{i˨/O"BC@نnN:cӖ bg wx6I,4܍ZVVƸb!kwn"\<15+D / 3}NrWiqazIq؞O8f4в 5@$ |cfo7{v+)[ED+3 ~B9omBg1,*LcfJ,r䙥1>KStؖUmоQ5&o&B[ z۲G̔<+l7P誩)JcMV(Ol"0ĸ\krC5ͺ&6d/F,N8FV5ڦQߝ"NuMzēH|derڮ4?#gPζHt8Y4`wgGvZz ?X]#Gjj: 2E7.*3q0jF-V+4?z;-qɡtj 4`eTTTFvLBW|嗩xgeggVTT$''{5 477:u 3,NgXG?l7/ = a{@xܯĦ鱼{ԚԎ -gim! c|r_)~xc;0elWj x;>6Vvק\mu= 8 8|" gx~cK=蘷%QR6 @@ؓ}Rr8ǻo?i)7 .#')b87^%.*̊Q6;M6 M.i4BѦu/fxoT$κ-!$9zٖ:)Np8\.fyuOŷrB&+2a,0𨹥{.Vab4UB8*(+37XtD!HIb=_!x ޝ#?bigbyp8+/.5c4 2l_I+κ"n}{B#\[\zaT/hLW3\nL찍A3S^h7K*GXpXu^Þ9%ynӖ~U<6ϓiZlӔwTҔ'q!(3&Ct7cRO%h&V1~PP\N'YвdԜv :V+=ⵚ C-ʽ=!ݛ.SY*g}0/ >9! rwϟ cɤb셺n2e~d_8{bpҢ)5_ӖQ_*ؙEj5GE]e{R" ?SFN\}M|c\Nt]7.UnUr jLAܕdj`!B\of?a~a1~¡hCuE?%' ?cM޼]Ak06]8e_~ejj*l#Y١_yAF_}ի/hnn>ulgY:bx~ׯgag! = a{)w =wZڑT6eW\BQ-|Um jKןWhvXx^ce6B'W}O?7" UE㆔eKrh9=} a1هU}/xQYY"fƝ{iԅR?1<"=~2F! xoT%$Iw lI !!lk:f_)Np8\.fy0_V! B0Emx=`T+#˾d6ݚ,3 UvEdkf !BYFޙYXT_:hB$@Y<~w_B43Q!D(И4i֮֟Xڦ}ڝC$*ۛ3$7rr.HLSs~3JgD>ľxpQl^-4?n_~ ӐV>OI,J3J>ȍ1{dR1BpOXʳs12/=Gj~l18YqBiъH皗ӖQ_*ؙEjM;v1/[hems0J8ms=m vr{gzϔQ/j_W,d.]M c2FVsXaOXJ|2m50!73s0L/e Fp1Kv !a`5|u4>5@$ |cㄳgiߛ+4[vly>S, . Yo. 'g dQa͔$Xn䙥1>KStؖUmоKzP,"߳ g`}3z/M2E&j$e%juib 1.Ptt..84-cszvwi봓f]*筞1$0Y"dz+O٪8-uV5 p]Qr`@ކO0.}~HCrB.)Le1ﮯ|hB !D]ipO|X!֫fzM"vLBW}嗩xgeggVTT$''{5VTT|WԩSxgt:?Qg< {@= #@ؿ -g{WHQ+˨󪯯WĦ}ipJ\]r1EkfFw.? 0=H).ݿ M5_LVתR;+ZrS{s2'خu^pWgE)ӷW~b9Iӆu$}ƎB G^;wkYjik߅ٍW62Q]5qWQfh^bJd]]Dg槤 ('!''Bc2y̞4TP779VyzK 1faSjz U?Vn~Amu:(;w~6ܟGf2)\xc6~Gfj`!B\of a^{ɵzV |X_ZyZz&ټ'%s=b˵7 Y뤮KuX屌V_>ZO73YbefJ,r߬䙥1>lyCqv6r'2='ϲ +"WOvJ6_.=-mYK[Ddg}K4iިV~ 37&;?n&{yӾ7oWofr[vlbheyf8vO:mBə+?YTpw{)w>. h#LVBc?7^?{ߝg4p4GV&wJS;B;8Kߥ:q@!S]O+.O'(ni`uű~vo\lMUg,axw}C=SԢ;g{4kb>[rEùΪ+?;JW{Zǡm~NtfJ} _d(vMtI%J 1Z&+'6b\.59ԡf]V]p2i'#w+[ LshnG)wN;i5ѫ3^Eۗ}/e/ wNNOpQtnaZ „LS vLBW|嗩kWA1%ql*?.rkk渲C*2@rayMciZQQh4[ZQQW_SN1;KY,я:?ޑ'scoJg{,|jpaAUIG$Ӡ<{u[DzqQL΁0ݽjzMҦκ\c[oןf@دƪv^mwV۷ca=  =}oaOw@QCuSU__M'>DZ^*!cÑ$+++?'lIg_ťc#!)aؠZZIykh˩*"hsO%a|`2U{e^ƺHNϛka.Qt@RŠAEEY5L~]k4I_>#.ѽix~w!{v'V)˩8|^"AO9 ^kt!Dzn}D>l5=rVS,xoTdbSBÏp\DUKk;I9 N 3wk0$7t㥩޹)Ѷ./fɊ~"6)ڗ,.sz|e$qX `FUߋm EN3v;}BӨkvCEL {YzK uӢH >ESoV3êk#8K~J?yӰI>XJ&'pϑ|[ N!BPZ4w6IQ0e1:y | Kas kl@[FM|b˨OorKks% î^"ā{Se|jpzB_xFI!wGY``#?0M11@p0ӫtP,wl ?dgS;Гm@!&gOHC%@0skRA#ZM;óyOJd\zĨiko+I]&…c#]QydyG+ Q ܲP=WVYYM̸PY}Ϻ+c7S`~HYZ6?ggns/}"s,P-yd4m2ݖUmо܍Z%ADV~GDVj@Ώɞ6v޴ěٸ)[g ZYΟ]%y IDAT(y1GPrO&\r] "A/t8R' ,r}~|+v?!1/ޟ3fD@#+;Xxv!НWX bܥR8zWSac驮'a74\0:{XyE7.*3q0j򡁞uj~3_΋{1C9"\gUӀ ߕ% v=x^HP׶Y':3z/M2E&j$e%juib 1.Ptt..84-9M;EN[4Ue"{}'yI]FI' ͮkQpa+$$~u_~vSW^(-^;\Z9Jo7 0{ayMcgggVTT$''{5VTT|WԩSptwxY+ ߩZ1\gPUw@ү& 4<:cٸ(&@fBN^m5&iSgݍwVo1op7a3 c\;y׶ȻY+۱ F6$=Ťn62ab"=o_'C ~^ջn ӏ(V:˩󪯯WĦ}ipJ\]r1E}CщO>oKb.l۱ ДY@0}lPkuV- wVyw0e>N]몽2X]r]cR$͵0|fdA~@=ڕ. ZIy!pAvKS׾ ٳ?=O]NWw}uX*цݯ~\ 0s1ǹ PMLܮՔl=˭g~2 /Pr8.^d9r^̐q$*M45^ĭ7}6>#Aq{C}pr9fCBN&_b]Oo?+X(脁G&9?%m.?{k=רfBb]B\^=iYhw^ IlNIn6ZyHRMg{LrTҔ'q!(3&ڕZ^r,a/iC+W ٕgڽi$ٗ4bHA͏-'!N(-k<$q 2>Y 0ع5u-&T?e߬YZ;W"0+*$ā{Se|jpzB_xFI!wGY`u3t:by(?6_t֪nwVo T{I¨; j+Wu,HAiݫ mꬻ 1 F={9lak5y7k};6a{@X'C ~^ջn ӏ(V:˩󪯯WĦ}ipJ\]r1E"sO3`CXťc#!)wqQ\.&( JTf.EEXbSLn/&jɽܘjLL)&ڢ EF^n H٥D_/g9g8ϜJ ϩ}li@i QK=z1ocd{( E၊cd|O긊!3";cTVYu9B+w1Ųbo9^8@yLv%tX4>ժ~ٖ6u `vP!l=y*Bh};ٞG''f?wg^7*st tU 핹R-SvA.lߗX]ݞ;La+>P$63ךwSCó=Y$L]BC}qzu\sBÂ#쩦?wg&?s[MIwW{w~ZAZ#3fIs1vlpYBJ!%^7)ӄI.VR!\"'KT) ';j tzBIgmqd_^,S{1H7ݕ6[MYd%d5ΖJYΩӷjuΪs3n{ wə*udbj$%95Dl8= qKQda~7!eeNh쒊jiΉ9=vw~wt;lFR):sHI}Ot)`{O@;r 1z䏳r9bFӇ)SPѬVVWu4eXCQ5T ,GK9E=aRi>:"R^9J(-7w_t&0)ck]*UUƌ6 qj=Sv^:!hNcr zU. 6.OKAWR|=csyBqG+A2_}T]7\pObT U8aH,Ǣ  {UW&<Is{:)c?vFC.zu'u帼! my&מ[Hm,/s.:x7̈`U_ªe8"Y0*iZ*"m$*=vGН2?SqLwgv'*ޓ>*J0yQs>;E?^e5@ LyQ<>B8BMH{E"5 ERw[fS{ tTO|q S~-ynuj\`v%ɿxL J#C=iO#4d5U@\.ϧj&Sױt w6(օd_>";cTVC-GdL,gΦ4N8fӃ]l,e ?M~@/9hf2_vM7ept.ЋyNS-B&_lWw8\J|2Gu1;w^ʨ| M51=`{竽u[3KfkA,0W'+K J,e !DU++&Sp,BJ=3E ,&Lr娔 7:9!p-<]NWRO^8q)TS3H(={o#f YFzq讴jĽ's$,!D%LetTrNUèUvV t;syKdU#Ss')!!bs-yHOɨl[$I !(+s,F;gTTVKsN鱫ma+0JACJ\M7;Wh,sx"}ؙ\sB l%6p!oT4CUr aP!mbq}205K!REENkYuTZȪT=m`<3h(4Ek(::` ʰg3Cx3?LRIiv>3u!siu?9'`>k;TY9:'rF#|}RMa!SW*TB@Gcmh#{"tB  uxƄ>3cS/շ25ێXq{9zèUm]Woki=3F['^#j !P'cR~w4pֺd,=8{&WJ[4}Kq9kI'xϛsHJj2N\i [#OqMFw4(͊ښT7ظ<).^iKY kcXm Io0s^>X%2is"U{ҔŗOӳo>@Ƿ@IM=`'J雥^=d(R=M?!'@_zMKJ ~~~#{`W_ ^@D;L<"## =6z.cIDATFUaa!*-??o:ko.EM C0~X6Q$9zΦ_\^\jCe]*OxJxrNʹ Re͙&^{:F}(i Vz|sFBa;gH4~7XB$tFU\`scriq+PWӘɑ%yAD"ј/gjֵ܃M4NKyvNb-  ]}÷&>քO?Kb#ϝ˿qCBdo>󑝀IÐUF ZVr '?-`U#^Z{ۣ?M6.>ᅷ-hQFV(v;w {L90s(#Om^e .~+#Hnyi)k eL)!k2u,;EniN]^͜JŜ+}}B˭Ƥṽ^ c;er%@C>Ã^bw,X֞%QVڙvF*!64x-pW‰%QV?LX{Z`+/'0R%W"騯c9nыܴB9ZVg7eCxBSf9Fn~Ηl{gc"sjI.o7rmGS޿\q;NzU__#rtaŊGа@﫚<;g|Kgr !#Gu^ݗq|o~A\1CHCZ^Ls;V* E ?֮?UBA Rn\uz׿IIH>˿">gp *BK{ q5쪖% x?IH<8UW`g/++jymuq) ?Է_gy 6Sg8A-m66|q0t%vzP*F?wl\Ϡ- G% U$$򎎫yWĤy*^euADst5lԼsN'#22rÆ [yiKSۼ匭,9񉧖4[]mw8ҲϦTy[&#D"/ϫbD?ʟ;Gϥ,x}o%^4}!eWy*^j%!|s'}X,n5oij[F{M jZ_i!߉7oӸS~5yC֫{UHϥ-|"G_;xN3x)}w}~Ӝs|xyRÌ~;C[~ )n{{@{7eEZ{kdCg|#H%q+q==#ѷM.:_Bu Cϫ9W|d$E3 k/;mCZ߮qW;mif{[dg?>|,~К!lGOe}\qP̵ }͠z#]nK,=3lE"Bjdն\:F4ݖGfڳJ !<ClNbNroƮ!! uO7e{*]O668k<%!Z3jYq` ҆uk ڵH)[X pLtKFxNDkd3f}wruFg4dղ]Wuhf$SVfYi !-Sv[uyjnj3vޏ9?bnKe%!#-!yږ%9̥b%!#%U?lݹ-[+aoNus;7֟B=iWb?}mx·<7| u{MwZ,rRZدX8xCn0"Ui0%޾Yt[˔'n\L X*2 m'7s}zD纅kS72q lB#oofI4u}u]i~Kp.9<>MU'NH ilX!-:JffJ? XT%K$߾ڃi7oݴA"DKk9}pzfڟk,1|@!һ )2ySMߨa !ʂCkF G@5Mej4w}YAGOe}&]b &yj1.NsӦOh!B5뵙7eK%7=ÄɄ&*|}g- ^jLZ-^LH5[FY0*BJi.=NM<1DGP!~]}㌸\Aqj:T*=--v):ԛOB% 1Bm`+˭D)0U5C3]!3z+wtT4Z>BGaJaD@Շ"27inw͖KdH2>R !\cR2l?x Q-Fz44B}֦:[kT!2X꒕- ^k:'n>jB(6jՄ24SF% FЄ);+"tet-$*V͇ :. ;wg%*HI@+!PޫpHMnUH5yY%[7w7={51rY5͔5+G_ 1IoV-i.kRյB#o2JGt/N1}Zʭ?(=!|նj/բc\=nozMv~,{i^6i޻^ &Xi(%6^HDrv^,HڮKn%3U{~3CdFIzӥ]ޥcR'DEE5-ٰa!>X ГGG,`O"}?Z$ ~G[yRNi\*RyA7| _19xEGwo|2o3[b"5mGSD׎n 3B꯼|MeZ+9U F}:&뿽z|jHC4FZ%dFk]*m Qv`z  1VgOOlxFnkɬRKۧnKB /ʝ:oް ;t\K\snc E ьҵ%wL~Qzዥ+Bղ\S yeb1BA/z}m3ʬ&xoɖTe$V{uѠ$i%vf Z4R}!lU$-h̜u*h;hk+.T-+FLSF6_/ε OEjlK?W7rbM% #[XZs܂zQհj-5R`DFFnذA]z@OKZza9HTKllp-c-G_H2v;ל9pn}Q!DVeKH;5P|E{CHTA/^hHO1@8K=tk2dBJ]:M̹~lŽ2yT\c ZVʭ9|6V`>r5·aCph7LQ~)CE~?>:Lյ+N 1bbj5J%z]7'x SsGI=iYVނ2νz췙n%t%:I{e>fht*}3c־3ňB} ,~`әj#{@^Гyizڛ+CxDr5ʧY*=9 !Dyu+|{XW1 7&|9C$yw{|񼏳H5#Ot/|JE!LQ§K|\DNc&GnJr'n\:ץKuo81lm܌l]Cr;%ն.JC 5%%Цo>nN/zЙ6%)yRB(ZSu3R1uu1r)mg4&0&60 !yF y*%D6On&#  Mif5ekzEX4$w۳ocEW/{gӛYKc[ n5/}hAvv8Y#Wj,ܐϥ)/՘Vö-K sk}qt#t^ug=E'ږS«jn6tPjBWN XNx+۶* C[~ )n{{xjQB#{(Eq !7ҒQtdPWWWWWW__/J$9&@i;Ɂ?+{[t+Kdpe)`J/os \l/|Py\o ˲JRTdw>"#\-4!+KفRBɤFNMY Z|a+U6B;E5Kq("?pCa7KIENDB`gnm/vignettes/gnm.bib0000644000176200001440000001612114376140103014302 0ustar liggesusers%% This BibTeX bibliography file was created using BibDesk. %% http://www.cs.ucsd.edu/~mmccrack/bibdesk.html %% Created for David at 2005-07-14 15:46:53 +0100 @book{Agre02, author={A Agresti}, title={Categorical Data Analysis}, publisher={New York: Wiley}, year={2002}, edition={2nd} } @article{Alho00, author={Alho, J. M.}, title={Discussion of {Lee} (2000)}, journal={North American Actuarial Journal}, volume={4}, year={2000}, pages={91--93} } @article{Ande84, author={J. A. Anderson}, title={Regression and Ordered Categorical Variables}, journal={J. R. Statist. Soc. B}, volume={46}, year={1984}, pages={1-30}, number={1} } @article{BrouDenuVerm02, author={Brouhns, N. and Denuit, M. and Vermunt, J. K.}, title={A Poisson log-bilinear regression approach to the construction of projected lifetables}, journal={Insurance Mathematics and Economics}, volume= 31, year= 2002, pages={373-393} } @article{CatcMorg97, author={Catchpole, E.A. and Morgan, B.J.T.}, title={Detecting parameter redundancy}, journal={Biometrika}, volume={84}, year={1997}, pages={187--196} } @article{Caut98, author={B Cautres and A F Heath and D Firth}, title={Class, religion and vote in {B}ritain and {F}rance}, journal={La Lettre de la Maison Fran{\c{c}}aise}, volume={8}, year={1998} } @article{Clif93, author={P Clifford and A F Heath}, title={The Political Consequences of Social Mobility}, journal={J. Roy. Stat. Soc. A}, volume={156}, year={1993}, pages={51-61}, number={1} } @article{deLe06, author={J de Leeuw}, title={Principal component analysis of binary data by iterated singular value decomposition}, journal={Comp. Stat. Data Anal.}, volume={50}, year={2006}, pages={21-39}, number={1} } @article{Erik82, author={Erikson, R and Goldthorpe, J H and Portocarero, L}, title={Social fluidity in Industrial nations: {E}ngland, {F}rance and {S}weden}, journal={British Journal of Sociology}, volume={33}, year={1982}, pages={1--34} } @book{Erik92, author={R Erikson and J H Goldthorpe}, title={The Constant Flux}, publisher={Oxford: Clarendon Press}, year={1992} } @article{Firt03, author={D. Firth}, title={Overcoming the reference category problem in the presentation of statistical models}, journal={Sociological Methodology}, volume={33}, year={2003}, pages={1--18} } @inproceedings{Firt98, author={Firth, David}, title={LLAMA: An object-oriented system for log multiplicative models}, booktitle={COMPSTAT 1998, Proceedings in Computational Statistics}, year={1998}, publisher={Heidelberg: Physica-Verlag}, editor={Payne, Roger and Green, Peter}, pages={305--310} } @article{FirtMene04, author={D. Firth and R. X. {de Menezes}}, title={Quasi-variances}, journal={Biometrika}, volume={91}, year={2004}, pages={65--80} } @Book{Franc93, ALTauthor = {}, editor = {Francis, B J and Green, M and Payne, C D}, title = {The GLIM System, Release 4 Manual}, publisher = {Oxford: Clarendon Press}, year = {1993}, OPTkey = {}, OPTvolume = {}, OPTnumber = {}, OPTseries = {}, OPTaddress = {}, OPTedition = {}, OPTmonth = {}, OPTnote = {}, OPTannote = {} } @article{Gabr98, author={K. R. Gabriel}, title={Generalised bilinear regression}, journal={Biometrika}, volume={85}, year={1998}, pages={689-700} } @article{Good79, author={L A Goodman}, title={Simple models for the analysis of association in cross-classifications having ordered categories}, journal={J. Amer. Statist. Assoc.}, volume={74}, year={1979}, pages={537-552} } @article{Good85, author={L A Goodman}, title={The analysis of cross-classified data having ordered and/or unordered categories: Association models, correlation models, and asymmetry models for contingency tables with or without missing entries.}, journal={Ann Statist}, volume={13}, year={1985}, pages={10-69} } @techreport{Hatz04, author={Hatzinger, R and Francis, B J}, title={Fitting Paired Comparison Models in {R}}, institution={Department of Statistics and Mathematics, Wirtschaftsuniversit{\"a}t Wien}, year={2004}, number={3} } @article{LeeCart92, author={Lee, R. D. and Carter, L.}, title={Modelling and forecasting the time series of {US} mortality}, journal={Journal of the American Statistical Association}, volume={87}, year={1992}, pages={659-671} } @book{McCu89, author={McCullagh, P. and Nelder, J. A.}, title={Generalized Linear Models ({S}econd Edition)}, publisher={Chapman \& Hall Ltd}, year={1989}, pages={500} } @article{RensHabe03, author={Renshaw, A. and Haberman, S.}, title={Lee-Carter mortality forecasting: a parallel generalized linear modelling approach for {England} and {Wales} mortality projections}, journal={Applied Statistics}, volume={52}, year={2003}, pages={119--137} } @book{Sebe89, author={Seber, G. A. F. and Wild, C. J.}, title={Nonlinear Regression}, publisher={Wiley}, year={1989} } @article{Sobe81, author={M. E. Sobel}, title={Diagonal mobility models: A substantively motivated class of designs for the analysis of mobility effects}, journal={Amer. Soc. Rev.}, volume={46}, year={1981}, pages={893-906} } @article{Sobe85, author={M. E. Sobel}, title={Social mobility and fertility revisited: Some new models for the analysis of the mobility effects hypothesis}, journal={Amer. Soc. Rev.}, volume={50}, year={1985}, pages={699-712} } @article{Vand02, author={F. W. P. {van der Slik} and N. D. {de Graaf} and J. R. M. Gerris}, title={Conformity to Parental Rules: Asymmetric Influences of Father's and Mother's Levels of Education}, journal={Europ. Soc. Rev.}, volume={18}, year={2002}, pages={489-502}, month={4} } @article{vanE, author={F A {van Eeuwijk}}, title={Multiplicative interaction in generalized linear models}, journal={Biometrics}, volume={51}, year={1995}, pages={1017-1032} } @article{Varg01, author={M Vargas and J Crossa and F {van Eeuwijk} and K D Sayre and M P Reynolds}, title={Interpreting treatment by environment interaction in agronomy trials}, journal={Agronomy Journal}, volume={93}, year={2001}, pages={949-960} } @article{Wedd74, author={Wedderburn, R. W. M.}, title={Quasi-likelihood Functions, Generalized Linear Models, and the {G}auss-{N}ewton Method}, journal={Biometrika}, volume={61}, year={1974}, pages={439--447}, keywords={Estimation; Exponential family; Maximum likelihood} } @techreport{Wilm93, author={Wilmoth, J. R.}, title={Computational methods for fitting and extrapolating the {Lee-Carter} model of mortality change}, institution={Department of Demography, University of California, Berkeley}, year={1993} } @article{Xie92, author={Y Xie}, title={The log-multiplicative layer effect model for comparing mobility tables}, journal={American Sociological Review}, volume={57}, year={1992}, pages={380-395} } @book{Yais04, author={Yaish, Meir}, title={Class Mobility Trends in Israeli Society, 1974-1991}, publisher={Edwin Mellen Press}, year={2004}, address={Lewiston} } @phdthesis{Yais98, author={M Yaish}, title={Opportunities, Little Change. Class Mobility in {I}sraeli Society, 1974--1991}, school={Nuffield College, University of Oxford}, year={1998} } gnm/vignettes/fig-Effect_plots.pdf0000644000176200001440000001241514376140103016720 0ustar liggesusers%PDF-1.4 %ρ\r 1 0 obj << /CreationDate (D:20100416145338) /ModDate (D:20100416145338) /Title (R Graphics Output) /Producer (R 2.10.1) /Creator (R) >> endobj 2 0 obj << /Type /Catalog /Pages 3 0 R >> endobj 5 0 obj << /Type /Page /Parent 3 0 R /Contents 6 0 R /Resources 4 0 R >> endobj 6 0 obj << /Length 7 0 R >> stream q Q q 28.34 31.10 180.06 156.56 re W n BT 0.000 0.000 0.000 rg /F2 1 Tf 7.00 0.00 -0.00 7.00 44.97 51.31 Tm (A) Tj ET BT /F2 1 Tf 7.00 0.00 -0.00 7.00 67.68 72.28 Tm (B) Tj ET BT /F2 1 Tf 7.00 0.00 -0.00 7.00 93.33 85.85 Tm (C) Tj ET BT /F2 1 Tf 7.00 0.00 -0.00 7.00 94.07 69.87 Tm (D) Tj ET BT /F2 1 Tf 7.00 0.00 -0.00 7.00 99.71 83.19 Tm (E) Tj ET BT /F2 1 Tf 7.00 0.00 -0.00 7.00 106.20 78.95 Tm (F) Tj ET BT /F2 1 Tf 7.00 0.00 -0.00 7.00 113.86 73.01 Tm (G) Tj ET BT /F2 1 Tf 7.00 0.00 -0.00 7.00 133.51 60.60 Tm (H) Tj ET BT /F2 1 Tf 7.00 0.00 -0.00 7.00 159.70 56.30 Tm (I) Tj ET Q q 0.000 0.000 0.000 RG 0.75 w [] 0 d 1 J 1 j 10.00 M 51.68 31.10 m 185.06 31.10 l S 51.68 31.10 m 51.68 27.65 l S 85.02 31.10 m 85.02 27.65 l S 118.37 31.10 m 118.37 27.65 l S 151.71 31.10 m 151.71 27.65 l S 185.06 31.10 m 185.06 27.65 l S BT 0.000 0.000 0.000 rg /F2 1 Tf 7.00 0.00 -0.00 7.00 47.69 18.66 Tm (-4) Tj ET BT /F2 1 Tf 7.00 0.00 -0.00 7.00 81.03 18.66 Tm (-2) Tj ET BT /F2 1 Tf 7.00 0.00 -0.00 7.00 116.42 18.66 Tm (0) Tj ET BT /F2 1 Tf 7.00 0.00 -0.00 7.00 149.77 18.66 Tm (2) Tj ET BT /F2 1 Tf 7.00 0.00 -0.00 7.00 183.11 18.66 Tm (4) Tj ET 28.34 51.40 m 28.34 167.37 l S 28.34 51.40 m 24.88 51.40 l S 28.34 80.39 m 24.88 80.39 l S 28.34 109.38 m 24.88 109.38 l S 28.34 138.37 m 24.88 138.37 l S 28.34 167.37 m 24.88 167.37 l S BT /F2 1 Tf 0.00 7.00 -7.00 0.00 20.04 47.41 Tm (-4) Tj ET BT /F2 1 Tf 0.00 7.00 -7.00 0.00 20.04 76.40 Tm (-2) Tj ET BT /F2 1 Tf 0.00 7.00 -7.00 0.00 20.04 107.44 Tm (0) Tj ET BT /F2 1 Tf 0.00 7.00 -7.00 0.00 20.04 136.43 Tm (2) Tj ET BT /F2 1 Tf 0.00 7.00 -7.00 0.00 20.04 165.42 Tm (4) Tj ET 28.34 31.10 m 208.40 31.10 l 208.40 187.66 l 28.34 187.66 l 28.34 31.10 l S Q q 0.00 0.00 216.00 216.00 re W n BT 0.000 0.000 0.000 rg /F3 1 Tf 9.00 0.00 -0.00 9.00 93.91 198.60 Tm [(Site Eff) 10 (ects)] TJ ET BT /F2 1 Tf 7.00 0.00 -0.00 7.00 97.36 4.84 Tm (Component 1) Tj ET BT /F2 1 Tf 0.00 7.00 -7.00 0.00 6.22 88.37 Tm (Component 2) Tj ET Q q 244.34 31.10 180.06 156.56 re W n Q q 244.34 31.10 180.06 156.56 re W n BT 0.000 0.000 0.000 rg /F2 1 Tf 7.00 0.00 -0.00 7.00 347.42 123.78 Tm (1) Tj ET BT /F2 1 Tf 7.00 0.00 -0.00 7.00 360.67 127.41 Tm (2) Tj ET BT /F2 1 Tf 7.00 0.00 -0.00 7.00 360.77 126.05 Tm (3) Tj ET BT /F2 1 Tf 7.00 0.00 -0.00 7.00 347.84 119.97 Tm (4) Tj ET BT /F2 1 Tf 7.00 0.00 -0.00 7.00 347.93 116.64 Tm (5) Tj ET BT /F2 1 Tf 7.00 0.00 -0.00 7.00 358.95 113.00 Tm (6) Tj ET BT /F2 1 Tf 7.00 0.00 -0.00 7.00 347.20 111.99 Tm (7) Tj ET BT /F2 1 Tf 7.00 0.00 -0.00 7.00 348.58 106.53 Tm (8) Tj ET BT /F2 1 Tf 7.00 0.00 -0.00 7.00 350.60 106.68 Tm (9) Tj ET BT /F2 1 Tf 7.00 0.00 -0.00 7.00 347.28 103.77 Tm (X) Tj ET Q q 0.000 0.000 0.000 RG 0.75 w [] 0 d 1 J 1 j 10.00 M 267.68 31.10 m 401.06 31.10 l S 267.68 31.10 m 267.68 27.65 l S 301.02 31.10 m 301.02 27.65 l S 334.37 31.10 m 334.37 27.65 l S 367.71 31.10 m 367.71 27.65 l S 401.06 31.10 m 401.06 27.65 l S BT 0.000 0.000 0.000 rg /F2 1 Tf 7.00 0.00 -0.00 7.00 263.69 18.66 Tm (-4) Tj ET BT /F2 1 Tf 7.00 0.00 -0.00 7.00 297.03 18.66 Tm (-2) Tj ET BT /F2 1 Tf 7.00 0.00 -0.00 7.00 332.42 18.66 Tm (0) Tj ET BT /F2 1 Tf 7.00 0.00 -0.00 7.00 365.77 18.66 Tm (2) Tj ET BT /F2 1 Tf 7.00 0.00 -0.00 7.00 399.11 18.66 Tm (4) Tj ET 244.34 51.40 m 244.34 167.37 l S 244.34 51.40 m 240.88 51.40 l S 244.34 80.39 m 240.88 80.39 l S 244.34 109.38 m 240.88 109.38 l S 244.34 138.37 m 240.88 138.37 l S 244.34 167.37 m 240.88 167.37 l S BT /F2 1 Tf 0.00 7.00 -7.00 0.00 236.04 47.41 Tm (-4) Tj ET BT /F2 1 Tf 0.00 7.00 -7.00 0.00 236.04 76.40 Tm (-2) Tj ET BT /F2 1 Tf 0.00 7.00 -7.00 0.00 236.04 107.44 Tm (0) Tj ET BT /F2 1 Tf 0.00 7.00 -7.00 0.00 236.04 136.43 Tm (2) Tj ET BT /F2 1 Tf 0.00 7.00 -7.00 0.00 236.04 165.42 Tm (4) Tj ET 244.34 31.10 m 424.40 31.10 l 424.40 187.66 l 244.34 187.66 l 244.34 31.10 l S Q q 216.00 0.00 216.00 216.00 re W n BT 0.000 0.000 0.000 rg /F3 1 Tf 9.00 0.00 -0.00 9.00 303.42 198.60 Tm [(V) 60 (ariety Eff) 10 (ects)] TJ ET BT /F2 1 Tf 7.00 0.00 -0.00 7.00 313.36 4.84 Tm (Component 1) Tj ET BT /F2 1 Tf 0.00 7.00 -7.00 0.00 222.22 88.37 Tm (Component 2) Tj ET Q endstream endobj 7 0 obj 4095 endobj 3 0 obj << /Type /Pages /Kids [ 5 0 R ] /Count 1 /MediaBox [0 0 432 216] >> endobj 4 0 obj << /ProcSet [/PDF /Text] /Font <> /ExtGState << >> >> endobj 8 0 obj << /Type /Encoding /BaseEncoding /WinAnsiEncoding /Differences [ 45/minus 96/quoteleft 144/dotlessi /grave /acute /circumflex /tilde /macron /breve /dotaccent /dieresis /.notdef /ring /cedilla /.notdef /hungarumlaut /ogonek /caron /space] >> endobj 9 0 obj << /Type /Font /Subtype /Type1 /Name /F2 /BaseFont /Helvetica /Encoding 8 0 R >> endobj 10 0 obj << /Type /Font /Subtype /Type1 /Name /F3 /BaseFont /Helvetica-Bold /Encoding 8 0 R >> endobj xref 0 11 0000000000 65535 f 0000000021 00000 n 0000000164 00000 n 0000004461 00000 n 0000004544 00000 n 0000000213 00000 n 0000000293 00000 n 0000004441 00000 n 0000004636 00000 n 0000004893 00000 n 0000004989 00000 n trailer << /Size 11 /Info 1 0 R /Root 2 0 R >> startxref 5091 %%EOF gnm/R/0000755000176200001440000000000014376170644011250 5ustar liggesusersgnm/R/confint.profile.gnm.R0000644000176200001440000000325014376140103015235 0ustar liggesusers# Modification of confint.profile.glm from the MASS package for R. # # Copyright (C) 1994-2006 W. N. Venables and B. D. Ripley # Copyright (C) 2006 Heather Turner # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 or 3 of the License # (at your option). # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # http://www.r-project.org/Licenses/ confint.profile.gnm <- function (object, parm = names(object), level = 0.95, ...) { of <- attr(object, "original.fit") pnames <- names(coef(of)) if (is.numeric(parm)) parm <- pnames[parm] a <- (1 - level)/2 a <- c(a, 1 - a) pct <- paste(round(100 * a, 1), "%") ci <- array(NA, dim = c(length(parm), 2), dimnames = list(parm, pct)) cutoff <- qnorm(a) std.err <- attr(object, "summary")$coefficients[parm, "Std. Error"] parm <- parm[!is.na(std.err)] for (pm in parm) { pro <- object[[pm]] if (is.matrix(pro[, "par.vals"])) sp <- spline(x = pro[, "par.vals"][, pm], y = pro[, 1]) else sp <- spline(x = pro[, "par.vals"], y = pro[, 1]) est <- approx(sp$y, sp$x, xout = cutoff)$y ci[pm, ] <- ifelse(is.na(est) & attr(pro, "asymptote"), c(-Inf, Inf), est) } drop(ci) } gnm/R/labels.gnm.R0000755000176200001440000000157314376140103013411 0ustar liggesusers# Copyright (C) 2005, 2006 Heather Turner # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 or 3 of the License # (at your option). # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # http://www.r-project.org/Licenses/ labels.gnm <- function(object, ...) { labels <- attr(terms(object), "term.labels") termAssign <- attr(model.matrix(object), "assign") if (length(object$constrain)) termAssign <- termAssign[-object$constrain] unique(labels[termAssign]) } gnm/R/dummy.coef.gnm.R0000644000176200001440000000144214376140103014205 0ustar liggesusers# Copyright (C) 2005 Heather Turner # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 or 3 of the License # (at your option). # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # http://www.r-project.org/Licenses/ dummy.coef.gnm <- function (object, ...) { if (inherits(object, "gnm", TRUE) == 1) stop("dummy.coef is not implemented for gnm objects") else NextMethod } gnm/R/pprod.R0000755000176200001440000000212614376140103012506 0ustar liggesusers# Copyright (C) 2005 Heather Turner # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 or 3 of the License # (at your option). # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # http://www.r-project.org/Licenses/ pprod <- function(...) { factorList <- list(...) nFactors <- length(factorList) if (nFactors == 0) return(1) else if (nFactors == 1) return(factorList[[1]]) else { tryProduct <- try(factorList[[1]] * do.call("Recall", factorList[-1]), silent = TRUE) if (inherits(tryProduct, "try-error")) stop("multiplication not implemented for types of ", "argument supplied") else tryProduct } } gnm/R/variable.names.gnm.R0000755000176200001440000000152514376140103015033 0ustar liggesusers# Copyright (C) 2005, 2006 Heather Turner # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 or 3 of the License # (at your option). # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # http://www.r-project.org/Licenses/ variable.names.gnm <- function(object, full = FALSE, ...) { if (full) names(coef(object)) else { setToZero <- object$constrain[object$constrainTo == 0] names(coef(object)[-setToZero]) } } gnm/R/alias.gnm.R0000644000176200001440000000142714376140103013233 0ustar liggesusers# Copyright (C) 2005 Heather Turner # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 or 3 of the License # (at your option). # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # http://www.r-project.org/Licenses/ alias.gnm <- function (object, ...){ if (inherits(object, "gnm", TRUE) == 1) stop("alias is not implemented for gnm objects") else NextMethod } gnm/R/asGnm.glm.R0000644000176200001440000000306714376140103013207 0ustar liggesusers# Copyright (C) 2006, 2008, 2010 Heather Turner # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 or 3 of the License # (at your option). # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # http://www.r-project.org/Licenses/ asGnm.glm <- function(object, ...) { glmExtra <- match(c("effects", "R", "qr", "null.deviance", "df.null", "boundary", "control", "contrasts"), names(object)) modelData <- model.frame(object) object[glmExtra] <- NULL object$call[[1]] <- as.name("gnm") constrain <- which(is.na(coef(object))) object$terms <- gnmTerms(object$formula, data = modelData) object <- c(list(eliminate = NULL, ofInterest = NULL, na.action = na.action(modelData), constrain = constrain, constrainTo = numeric(length(constrain))), object) names(object)[match("linear.predictors", names(object))] <- "predictors" if (is.null(object$offset)) object$offset <- rep.int(0, length(coef(object))) object$tolerance <- object$iterStart <- object$iterMax <- "Not available - model fitted by glm()" class(object) <- c("gnm", "glm", "lm") object } gnm/R/coef.gnm.R0000644000176200001440000000143214376140103013052 0ustar liggesusers# Copyright (C) 2005, 2006, 2010, 2012 Heather Turner # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 or 3 of the License # (at your option). # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # http://www.r-project.org/Licenses/ coef.gnm <- function(object, ...) { structure(object$coefficients, ofInterest = object$ofInterest, class = c("coef.gnm", "numeric")) } gnm/R/proj.gnm.R0000644000176200001440000000142614376140103013113 0ustar liggesusers# Copyright (C) 2005 Heather Turner # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 or 3 of the License # (at your option). # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # http://www.r-project.org/Licenses/ proj.gnm <- function (object, ...) { if (inherits(object, "gnm", TRUE) == 1) stop("proj is not implemented for gnm objects") else NextMethod } gnm/R/DrefWeights.R0000644000176200001440000000424114376140103013572 0ustar liggesusers# Copyright (C) 2007 Heather Turner # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 or 3 of the License # (at your option). # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # http://www.r-project.org/Licenses/ DrefWeights <- function(model) { ind <- pickCoef(model, "delta[1-9]") if (any(!checkEstimable(model, diag(seq(along = coef(model)))[,ind]), na.rm = TRUE)){ message("Refitting with parameters of first Dref weight constrained ", "to zero") constrain <- pickCoef(model, "delta1") model <- update(model, constrain = constrain, start = coef(model), trace = FALSE, verbose = FALSE) } t <- terms(formula(model), specials = "Dref") DrefCall <- attr(t, "variables")[[attr(t, "specials")$Dref + 1]] preds <- match.call(Dref, DrefCall, expand.dots = FALSE)[["..."]] formula <- as.formula(DrefCall$delta) if (length(formula)) { dat <- model.frame(formula, data = model.frame(model)) X <- unique(model.matrix(formula, data = dat)) dat <- dat[rownames(X), , drop = FALSE] rownames(dat) <- rownames(X) <- NULL } else { dat <- numeric(0) X <- matrix(1) } nw <- length(preds) nmod <- nrow(X) delta <- matrix(parameters(model)[ind], nmod) ind <- c(t(matrix(ind, nmod, nw))) vcovDelta <- vcov(model)[ind, ind, drop = FALSE] wc <- 1/rowSums(exp(X %*% delta)) wu <- exp(X %*% delta)*wc XX <- matrix(apply(X, 2, rep, nw), nrow(X)) out <- list() for (i in 1:nw) { d <- -wu[,i] * wu d <- c(wu[,i] * (col(wu) == i) + d) * XX se <- sqrt(rowSums(d %*% vcovDelta * d)) out[[i]] <- drop(cbind(dat, weight = wu[,i], se = se)) } names(out) <- as.character(preds) out } gnm/R/residuals.gnm.R0000755000176200001440000000163414376140103014140 0ustar liggesusers# Copyright (C) 2005, 2008, 2013 Heather Turner # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 or 3 of the License # (at your option). # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # http://www.r-project.org/Licenses/ residuals.gnm <- function(object, type = "deviance", ...) { if (type == "partial") stop("type = \"partial\" not implemented for gnm objects.") else res <- NextMethod("residuals") if (!is.null(object$table.attr)) attributes(res) <- object$table.attr res } gnm/R/Symm.R0000644000176200001440000000274114376140177012322 0ustar liggesusers# Copyright (C) 2005, 2006, 2008 David Firth and Heather Turner # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 or 3 of the License # (at your option). # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # http://www.r-project.org/Licenses/ Symm <- function(..., separator = ":"){ if (!(is.character(separator) && nchar(separator) > 0)) stop( "separator must be a non-empty character string") dots <- list(...) if (any(diff(vapply(dots, length, 1)) != 0)) stop( "arguments to Symm() must all have same length") dots <- lapply(dots, as.factor) Levels <- levels(dots[[1]]) check <- vapply(dots[-1], function(x) identical(levels(x), Levels), TRUE) if (!all(check)) stop("factors must have the same levels") facMatrix <- vapply(dots, unclass, numeric(length(dots[[1]]))) f <- function(dat){ do.call("paste", c(lapply(dat, function(x) Levels[x]), sep = separator)) } val <- as.data.frame(t(apply(facMatrix, 1, sort))) ind <- unique(val) ind <- ind[do.call(order, ind),] factor(f(val), f(ind)) } gnm/R/MPinv.R0000644000176200001440000000521214376140103012407 0ustar liggesusers# Copyright (C) 2005, 2006, 2010 David Firth and Heather Turner # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 or 3 of the License # (at your option). # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # http://www.r-project.org/Licenses/ MPinv <- function (mat, tolerance = 100 * .Machine$double.eps, rank = NULL, method = "svd") { theRank <- rank if (!is.matrix(mat)) stop("mat must be a matrix") m <- nrow(mat) n <- ncol(mat) Rownames <- rownames(mat) Colnames <- colnames(mat) if (method == "svd") { Svd <- svd(mat) Positive <- rep(FALSE, length(Svd$d)) if (is.null(theRank)) { Positive <- Svd$d > max(tolerance * Svd$d[1], 0) } else Positive[1:theRank] <- TRUE result <- { if (all(Positive)) Svd$v %*% (1/Svd$d * t(Svd$u)) else if (!any(Positive)) array(0, dim(mat)[2:1]) else Svd$v[, Positive, drop = FALSE] %*% ((1/Svd$d[Positive]) * t(Svd$u[, Positive, drop = FALSE])) } attr(result, "rank") <- sum(Positive) } if (method == "chol") { ## Generalized inverse of a symmetric matrix using a ## streamlined version of the "fast" method of ## Courrieu, P. (2005). Fast computation of Moore-Penrose ## inverse matrices. Neural Information Processing 8, 25-29. ## ## No test for symmetry performed here! if (!(m == n)) stop("the matrix is not symmetric") S <- suppressWarnings(chol(mat, pivot = TRUE)) ## (non-full-rank case) if (is.null(theRank)) { theRank <- qr(S)$rank ## fails only on the bwt.po example ## theRank <- attr(S, "rank") ## seems less reliable in general } pivot <- attr(S, "pivot") oPivot <- order(pivot) Lt <- S[oPivot[oPivot %in% 1:theRank], oPivot, drop = FALSE] LLinv <- chol2inv(chol(tcrossprod(Lt))) result <- crossprod(Lt, crossprod(LLinv)) %*% Lt attr(result, "rank") <- theRank } if (!is.null(Rownames)) colnames(result) <- Rownames if (!is.null(Colnames)) rownames(result) <- Colnames return(result) } gnm/R/exitInfo.R0000644000176200001440000000214314376140103013143 0ustar liggesusers# Copyright (C) 2006 Heather Turner # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 or 3 of the License # (at your option). # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # http://www.r-project.org/Licenses/ exitInfo <- function(object){ conv <- object$converged if (conv) cat("Algorithm converged\n") else { cat("\nTolerance: ", object$tolerance, "\n") cat("\nAbsolute scores >= ", "tolerance * sqrt(tolerance + diag(information matrix)):\n\n") score <- abs(attr(conv, "score")) fail <- score >= attr(conv, "criterion") print(data.frame(abs.score = score, criterion = attr(conv, "criterion"))[fail,]) } } gnm/R/zzz.R0000644000176200001440000000031014376140103012205 0ustar liggesusers.onUnload <- function(libpath) { library.dynam.unload("gnm", libpath) } messageVector <- function(x){ message(paste(strwrap(paste(x, collapse = ", ")), collapse = "\n")) } gnm/R/se.R0000644000176200001440000000674014376140103011774 0ustar liggesusers# Copyright (C) 2005, 2006, 2010 David Firth and Heather Turner # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 or 3 of the License # (at your option). # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # http://www.r-project.org/Licenses/ ## now only computes se for non-eliminated parameters se <- function(object, ...) { UseMethod("se", object) } se.default <- function(object, ...){ stop("No se method defined for this class of object") } se.gnm <- function(object, estimate = NULL, checkEstimability = TRUE, Vcov = NULL, dispersion = NULL, ...){ if (!is.null(Vcov) && !is.null(dispersion)){ Vcov <- Vcov * dispersion } else { Vcov <- vcov(object, dispersion = dispersion, use.eliminate = FALSE) } if (!length(Vcov)) return("Model has no non-eliminated parameters") coefs <- coef(object) coefNames <- names(coefs) eliminate <- object$eliminate nelim <- nlevels(eliminate) l <- length(coefs) if (identical(estimate, "[?]")) estimate <- pickCoef(object, title = paste("Estimate standard errors", "for one or more gnm coefficients")) if (is.null(estimate)){ if (!is.null(object$ofInterest)) estimate <- ofInterest(object) else estimate <- seq(object$coefficients) } if (is.character(estimate)) estimate <- match(estimate, coefNames, 0) if (is.vector(estimate) && all(estimate %in% seq(coefs))) { if (!length(estimate)) stop("no non-eliminated coefficients specified by 'estimate'", "argument") comb <- naToZero(coefs[estimate]) var <- Vcov[estimate, estimate] coefMatrix <- matrix(0, l, length(comb)) coefMatrix[cbind(estimate, seq(length(comb)))] <- 1 colnames(coefMatrix) <- names(comb) } else { coefMatrix <- as.matrix(estimate) if (!is.numeric(coefMatrix)) stop("'estimate' should specify parameters using ", "\"pick\" or a vector of \n names/indices; ", "or specify linear combinations using ", "a numeric vector/matrix.") if (nrow(coefMatrix) != l) stop("NROW(estimate) should equal ", "length(coef(model)) - nlevels(model$eliminate)") comb <- drop(crossprod(coefMatrix, naToZero(coefs))) var <- crossprod(coefMatrix, crossprod(Vcov, coefMatrix)) } estimable <- rep(TRUE, ncol(coefMatrix)) if (checkEstimability) { estimable <- checkEstimable(object, coefMatrix, ...) if (any(!na.omit(estimable))) message("Std. Error is NA where estimate is fixed or ", "unidentified") } if (is.matrix(var)) sterr <- sqrt(diag(var)) else sterr <- sqrt(var) is.na(sterr[estimable %in% c(FALSE, NA)]) <- TRUE result <- data.frame(comb, sterr) rowNames <- colnames(coefMatrix) if (is.null(rowNames)) rowNames <- paste("Combination", ncol(coefMatrix)) dimnames(result) <- list(rowNames, c("Estimate", "Std. Error")) result } gnm/R/plot.profile.gnm.R0000644000176200001440000000271414376140103014557 0ustar liggesusers# Modification of plot.profile from the stats package for R. # # File MASS/profiles.q copyright (C) 1996 D. M. Bates and W. N. Venables. # port to R by B. D. Ripley copyright (C) 1998 # corrections copyright (C) 2000,3,6 B. D. Ripley # Copyright (C) 2006 Heather Turner # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 or 3 of the License # (at your option). # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # http://www.r-project.org/Licenses/ plot.profile.gnm <- function (x, nseg, ...) { nulls <- vapply(x, is.null, TRUE) if (all(nulls)) return(NULL) x <- x[!nulls] pnames <- names(x) pnames <- pnames[!is.na(x[pnames])] nr <- ceiling(sqrt(length(pnames))) oldpar <- par(mfrow = c(nr, nr)) on.exit(par(oldpar)) for (nm in pnames) { z <- x[[nm]][[1]] parval <- x[[nm]][[2]][, nm] plot(parval, z, xlab = nm, ylab = "z", type = "n") if (sum(z == 0) == 1) points(parval[z == 0], 0, pch = 3) splineVals <- spline(parval, z) lines(splineVals$x, splineVals$y) } } gnm/R/asGnm.R0000644000176200001440000000132614376140103012425 0ustar liggesusers# Copyright (C) 2006 Heather Turner # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 or 3 of the License # (at your option). # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # http://www.r-project.org/Licenses/ asGnm <- function(object, ...){ if (is.null(object)) return(NULL) UseMethod("asGnm") } gnm/R/Topo.R0000644000176200001440000000235614376140103012305 0ustar liggesusers# Copyright (C) 2005 David Firth # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 or 3 of the License # (at your option). # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # http://www.r-project.org/Licenses/ "Topo" <- function (..., spec = NULL) { if (is.null(spec)) stop("No spec given") dots <- list(...) factorLengths <- vapply(dots, length, 1) lengthsEqual <- {if (length(factorLengths) == 1) TRUE else sd(factorLengths) == 0} if (!lengthsEqual) stop("Factors have different lengths") specDim <- if (is.vector(spec)) length(spec) else dim(spec) dots <- lapply(dots, as.factor) facMat <- cbind(...) spec.ok <- identical(vapply(dots, nlevels, 1L), specDim) if (!spec.ok) stop( "Dimensions of spec do not match the factor arguments") return(as.factor(spec[facMat])) } gnm/R/effects.gnm.R0000644000176200001440000000143414376140103013557 0ustar liggesusers# Copyright (C) 2005 Heather Turner # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 or 3 of the License # (at your option). # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # http://www.r-project.org/Licenses/ effects.gnm <- function (object, ...) { if (inherits(object, "gnm", TRUE) == 1) stop("effects is not implemented for gnm objects") else NextMethod } gnm/R/naToZero.R0000755000176200001440000000126314376140103013124 0ustar liggesusers# Copyright (C) 2005 Heather Turner # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 or 3 of the License # (at your option). # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # http://www.r-project.org/Licenses/ naToZero <- function(vec){ vec[is.na(vec)] <- 0 return(vec) } gnm/R/gnm-defunct.R0000644000176200001440000000225314376140103013567 0ustar liggesusers# Copyright (C) 2012 Heather Turner # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 or 3 of the License # (at your option). # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # http://www.r-project.org/Licenses/ Nonlin <- function(functionCall){ .Defunct(msg = paste("'Nonlin' is defunct.", "\nUse functions of class \"nonlin\" instead.", "\nSee ?nonlin.function for more details.")) } class(Nonlin) <- "nonlin" getModelFrame <- function() { .Defunct(msg = paste("'getModelFrame' is deprecated as it was designed to ", "work with the old plug-in architecture for nonlinear terms.")) } qrSolve <- function(A, b, rank = NULL, ...) { .Defunct(msg = paste("'qrSolve' is deprecated as it is no longer used ", "by gnm.")) } gnm/R/termPredictors.gnm.R0000644000176200001440000000267614376140103015157 0ustar liggesusers# Copyright (C) 2005, 2008, 2010, 2012 Heather Turner # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 or 3 of the License # (at your option). # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # http://www.r-project.org/Licenses/ termPredictors.gnm <- function(object, ...) { if (is.null(object$termPredictors)){ modelData <- model.frame(object) modelTerms <- terms(object) if (!is.empty.model(modelTerms)) { modelTools <- gnmTools(modelTerms, modelData) theta <- parameters(object) varPredictors <- modelTools$varPredictors(theta) termPredictors <- modelTools$predictor(varPredictors, term = TRUE) rownames(termPredictors) <- rownames(modelData) } else termPredictors <- modelData[,0] if (!is.null(object$eliminate)) termPredictors <- cbind("(eliminate)" = as.vector(attr(coef(object), "eliminated")[object$eliminate]), termPredictors) termPredictors } else object$termPredictors } gnm/R/Logit.R0000644000176200001440000000167214376140103012442 0ustar liggesusers# Copyright (C) 2006, 2008 Heather Turner # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 or 3 of the License # (at your option). # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # http://www.r-project.org/Licenses/ Logit <- function(expression, inst = NULL){ list(predictors = list(substitute(expression)), term = function(predLabels, ...) { paste("log((", predLabels, ")/(1 - (", predLabels, ")))", sep = "") }, call = as.expression(match.call()), match = 1) } class(Logit) <- "nonlin" gnm/R/print.vcov.gnm.R0000644000176200001440000000147314376140103014253 0ustar liggesusers# Copyright (C) 2005, 2006, 2010 Heather Turner # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 or 3 of the License # (at your option). # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # http://www.r-project.org/Licenses/ print.vcov.gnm <- function(x, ...) { if (!is.null(attr(x, "ofInterest"))){ print.default(x[attr(x, "ofInterest"), attr(x, "ofInterest")]) } else print.default(x) } gnm/R/print.coef.gnm.R0000644000176200001440000000205314376140103014205 0ustar liggesusers# Copyright (C) 2005, 2006, 2010 Heather Turner # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 or 3 of the License # (at your option). # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # http://www.r-project.org/Licenses/ print.coef.gnm <- function(x, ...) { if (!is.null(attr(x, "ofInterest"))) { if (length(attr(x, "ofInterest"))){ cat("Coefficients of interest:\n", sep = "") print.default(format(x[attr(x, "ofInterest")]), quote = FALSE) } else cat("No coefficients of interest\n") } else { cat("Coefficients:\n") print.default(format(x), quote = FALSE) } } gnm/R/model.frame.gnm.R0000755000176200001440000000233314376140103014333 0ustar liggesusers# Modification of model.frame.glm from the stats package for R. # # Copyright (C) 1995-2005 The R Core Team # Copyright (C) 2005, 2006 Heather Turner # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 or 3 of the License # (at your option). # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # http://www.r-project.org/Licenses/ model.frame.gnm <- function (formula, ...) { dots <- list(...) nargs <- dots[match(c("data", "na.action", "subset"), names(dots), 0)] if (length(nargs) || is.null(formula$model)) { fcall <- formula$call fcall$method <- "model.frame" fcall[[1]] <- as.name("gnm") fcall[names(nargs)] <- nargs env <- environment(formula$terms) if (is.null(env)) env <- parent.frame() eval(fcall, env) } else formula$model } gnm/R/rstudent.gnm.R0000644000176200001440000000143414376140103014010 0ustar liggesusers# Copyright (C) 2005 Heather Turner # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 or 3 of the License # (at your option). # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # http://www.r-project.org/Licenses/ rstudent.gnm <- function (model, ...) { if (inherits(model, "gnm", TRUE) == 1) stop("rstudent is not implemented for gnm objects") else NextMethod } gnm/R/nonlinTerms.R0000644000176200001440000002363714471700006013701 0ustar liggesusers# Copyright (C) 2006-2010, 2012 Heather Turner # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 or 3 of the License # (at your option). # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # http://www.r-project.org/Licenses/ nonlinTerms <- function(predictors, variables = NULL, term = NULL, common = seq(predictors), call = NULL, match = numeric(length(predictors)), start = NULL, nonlin.function = NULL, data = NULL, envir = NULL) { shadow <- predictor <- predvars <- vars <- unitLabels <- hashLabels <- offsetLabels <- varLabels <- blockList <- matchID <- suffix <-list() if (length(names(predictors))) { suffix <- as.list(names(predictors)) ID <- match(suffix, unique(suffix)) for (i in unique(ID[duplicated(suffix) & suffix != ""])) { dup <- ID == i suffix[dup] <- paste(suffix[dup], seq(sum(dup)), sep = "") } } else suffix <- as.list(rep("", length(predictors))) common <- as.list(common) adj <- 0 hash <- 0 dup <- duplicated(match) for (i in order(match)) { if (inherits(predictors[[i]], "formula")){ nonlinTerms <- terms(predictors[[i]], specials = "Const", keep.order = TRUE, data = data) twiddle <- "~ " } else { nonlinTerms <- terms(eval(substitute(~ -1 + p, list(p = predictors[[i]]))), specials = "Const", keep.order = TRUE, data = data) twiddle <- "" } if (attr(nonlinTerms, "intercept") & !match[i] & !nchar(suffix[[i]])) stop("\"nonlin\" function ", nonlin.function, " must either name ", "predictors that may include an intercept \n or match them ", "to a call") if (is.empty.model(nonlinTerms)) { predvars[[i]] <- vars[[i]] <- as.list(attr(nonlinTerms, "variables"))[-1] offsetLabels[[i]] <- vars[[i]][attr(nonlinTerms, "offset")] varLabels[[i]] <- predictor[[i]] <- unitLabels[[i]] <- NULL blockList[[i]] <- numeric(0) suffix[[i]] <- character(0) } else { unitLabels[[i]] <- as.list(c("1"[attr(nonlinTerms, "intercept")], attr(nonlinTerms, "term.labels"))) vars[[i]] <- predvars[[i]] <- as.list(attr(nonlinTerms, "variables"))[-1] specials <- vapply(vars[[i]], isSpecial, envir = envir, TRUE) const <- attr(nonlinTerms, "specials")$Const if (length(const)) { unitLabels[[i]] <- unitLabels[[i]][!unitLabels[[i]] %in% vars[[i]][const]] predvars[[i]][const] <- lapply(vars[[i]][const], eval) } offsetLabels[[i]] <- vars[[i]][c(attr(nonlinTerms, "offset"), const)] varLabels[[i]] <- as.list(paste("#", adj, gsub("`", ".", unitLabels[[i]]), sep = "")) predictor[[i]] <- paste("`", varLabels[[i]], "`", sep = "") n <- length(unitLabels[[i]]) shadow[[i]] <- rep("#", n) hashLabels[[i]] <- unitLabels[[i]] matchID[[i]] <- as.list(numeric(n)) suffix[[i]] <- as.list(rep(suffix[[i]], n)) if (length(specials)) { nonlinear <- unitLabels[[i]] %in% vars[[i]][specials] vars[[i]] <- vars[[i]][!specials] predvars[[i]] <- predvars[[i]][!specials] } else nonlinear <- rep(FALSE, n) blockList[[i]] <- as.list(nonlinear - min(nonlinear)) if (dup[i]) hash <- last.hash else last.hash <- hash for (j in seq(n)) { if (nonlinear[j]) { tmp <- do.call("Recall", c(eval(parse(text = unitLabels[[i]][[j]]), envir = envir), envir = envir)) if (match[i]) { if (any(tmp$matchID > 0)) { shadow[[i]][[j]] <- tmp$prefix matchID[[i]][[j]] <- tmp$matchID matchID[[i]][[j]][tmp$matchID != 0] <- hash + matchID[[i]][[j]][tmp$matchID != 0] hashLabels[[i]][[j]] <- tmp$unitLabels } else { lbl <- ifelse(length(tmp$prefix), tmp$prefix, hashLabels[[i]][[j]]) nlbl <- length(tmp$matchID) tmp$suffix <- paste(lbl, tmp$suffix, sep = "") hashLabels[[i]][[j]] <- rep(lbl, nlbl) matchID[[i]][[j]] <- rep(hash + 1, nlbl) } } else { ## could paste call to suffix - but potentially v. long ## and would get cut off anyway: better to rely on ## make.unique for awkward cases ##if (any(tmp$matchID) | !length(tmp$prefix)) ## lbl <- hashLabels[[i]][[j]] ## else ## lbl <- tmp$prefix ## tmp$suffix <- paste(lbl, tmp$suffix, sep = "") if (any(tmp$matchID)) warning("Function using argument-matched ", "labelling (", parse(text = unitLabels[[i]][[j]])[[1]][1], ") used in unmatched predictor\n (see ", "?nonlin) - labels may be ill-defined.\n", call. = FALSE) nlbl <- length(tmp$matchID) hashLabels[[i]][[j]] <- rep(hashLabels[[i]][[j]], nlbl) matchID[[i]][[j]] <- rep(0, nlbl) } varLabels[[i]][[j]] <- gsub("#", paste("#", adj, sep = ""), tmp$varLabels) unitLabels[[i]][[j]] <- tmp$unitLabels blockList[[i]][[j]] <- blockList[[i]][[j]] + tmp$block suffix[[i]][[j]] <- paste(suffix[[i]][[j]], tmp$suffix, sep = "")[!is.null(tmp$suffix)] predictor[[i]][[j]] <- gsub("#", paste("#", adj, sep = ""), tmp$predictor) vars[[i]] <- c(vars[[i]], tmp$variables) predvars[[i]] <- c(predvars[[i]], tmp$predvars) common[[i]] <- common[[i]] * 10 + tmp$common } else { if (match[i]) matchID[[i]][[j]] <- hash + 1 common[[i]] <- common[[i]]*10 + seq(varLabels[[i]]) } hash <- max(c(hash, matchID[[i]][[j]])) } } blockList[[i]] <- unlist(blockList[[i]]) + adj adj <- max(c(-1, blockList[[i]])) + 1 shadow[[i]] <- paste(twiddle, paste(c(unlist(shadow[i]), offsetLabels[[i]]), collapse = " + "), sep = "") if (length(offsetLabels[[i]])) predictor[i] <- paste(c(unlist(predictor[i]), paste("`", offsetLabels[[i]], "`", sep = "")), collapse = " + ") else predictor[i] <- paste(unlist(predictor[i]), collapse = " + ") } common <- unlist(common) if (any(duplicated(common))) { common <- match(common, common) #common <- unlist(varLabels[common]) #common <- match(common, unique(common)) blockList <- unlist(blockList)[common] } else common <- seq(unlist(varLabels)) if (!is.null(call) && sum(match)) { fn <- call[[1]][[1]] call <- as.list(call[[1]][-1]) call[match] <- shadow[match > 0] if (is.null(names(predictors))) names(call)[match] <- "" else names(call)[match] <- names(predictors)[match > 0] sep <- character(length(call)) sep[names(call) != ""] <- " = " call <- paste(names(call), sep, call, sep = "") prefix <- paste(deparse(fn), "(", paste(call, collapse = ", "), ")", sep = "") } else prefix <- paste(c(call[[1]])) predictor <- term(unlist(predictor), vapply(variables, function(x) { paste("`", deparse(x), "`", sep = "")}, character(1))) list(prefix = prefix, matchID = unlist(matchID), variables = c(unlist(vars), variables), predvars = c(unlist(predvars), variables), varLabels = unlist(varLabels), unitLabels = unlist(unitLabels), hashLabels = unlist(hashLabels), block = unlist(blockList), common = common, type = rep.int("Special", length(common)), predictor = predictor, suffix = unlist(suffix), start = start) } gnm/R/Inv.R0000644000176200001440000000163314376140103012115 0ustar liggesusers# Copyright (C) 2006, 2008 Heather Turner # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 or 3 of the License # (at your option). # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # http://www.r-project.org/Licenses/ Inv <- function(expression, inst = NULL){ list(predictors = list(substitute(expression)), term = function(predLabels, ...) { paste("(", predLabels, ")^-1", sep = "") }, call = as.expression(match.call()), match = 1) } class(Inv) <- "nonlin" gnm/R/predict.gnm.R0000644000176200001440000001745714376140103013606 0ustar liggesusers# Copyright (C) 2005, 2008, 2010, 2012, 2014, 2015 Heather Turner # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 or 3 of the License # (at your option). # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # http://www.r-project.org/Licenses/ predict.gnm <- function (object, newdata = NULL, type = c("link", "response", "terms"), se.fit = FALSE, dispersion = NULL, terms = NULL, na.action = na.exclude, ...) { type <- match.arg(type) if (type == "terms") { hasintercept <- attr(object$terms, "intercept") > 0L ## do not include eliminate term - cannot check estimability without ## creating full matrix, defeating point of eliminate if (is.null(terms)) { terms <- attr(object$terms, "term.labels") } else { terms <- setdiff(terms, "(eliminate)") } } if (is.null(newdata)) { pred <- switch(type, link = object$predictors, response = object$fitted.values, terms = {pred <- termPredictors(object) ## see 6.3.6 white book & predict.lm if (hasintercept) { predc <- sweep(pred, 2, colMeans(pred)) const <- sum(pred[1,]) - sum(predc[1,]) structure(predc[, terms, drop = FALSE], constant = const) } else structure(pred[, terms, drop = FALSE], constant = 0)}) if (!is.null(na.act <- object$na.action)){ pred <- napredict(na.act, pred) } if (!inherits(pred, "matrix") && !is.null(object$table.attr)) attributes(pred) <- object$table.attr } else { modelTerms <- delete.response(terms(object)) if (is.null(object$eliminate)){ modelData <- model.frame(modelTerms, newdata, na.action = na.action, xlev = object$xlevels) } else { ## eliminate is evaluated in data/environment of formula ## => need to substitute here modelData <- eval(substitute( model.frame(modelTerms, newdata, eliminate = eliminate, na.action = na.action, xlev = object$xlevels), list(eliminate = object$call$eliminate))) } ## use same contrasts as in original model contr <- lapply(model.frame(object)[names(modelData)], attr, "contrasts") for (i in which(!vapply(contr, is.null, TRUE))){ modelData[[i]] <- C(modelData[[i]], contr[[i]]) } if (length(offID <- attr(modelTerms, "offset"))){ offset <- eval(attr(modelTerms, "variables")[[offID + 1]], newdata) } else offset <- eval(object$call$offset, newdata) modelTools <- gnmTools(modelTerms, modelData) varPredictors <- modelTools$varPredictors(parameters(object)) pred <- modelTools$predictor(varPredictors, term = type == "terms") if (type == "terms") { rownames(pred) <- rownames(modelData) } else names(pred) <- rownames(modelData) if (!is.null(offset)) pred <- offset + pred if (!is.null(object$eliminate)) { prede <- attr(coef(object), "eliminate") if (type != "terms") pred <- prede[modelData$`(eliminate)`] + pred } switch(type, response = {pred <- family(object)$linkinv(pred)}, terms = {if (hasintercept) { predc <- sweep(pred, 2, colMeans(termPredictors(object))) const <- sum(pred[1,]) - sum(predc[1,]) pred <- structure(predc[, terms, drop = FALSE], constant = const) } else structure(pred[, terms, drop = FALSE], constant = 0)}, link = ) if (!is.null(na.act <- attr(modelData, "na.action"))) pred <- napredict(na.act, pred) } if (se.fit) { V <- vcov(object, dispersion = dispersion, with.eliminate = TRUE) residual.scale <- as.vector(sqrt(attr(V, "dispersion"))) if (is.null(newdata)) { X <- model.matrix(object) elim <- object$eliminate } else { X <- modelTools$localDesignFunction(parameters(object), varPredictors) elim <- modelData$`(eliminate)` } covElim <- attr(V, "covElim")[elim, , drop = FALSE] varElim <- attr(V, "varElim")[elim] switch(type, link = { if (is.null(elim)) se.fit <- sqrt(diag(X %*% tcrossprod(V, X))) else se.fit <- sqrt(diag(X %*% tcrossprod(V, X)) + 2 * rowSums(X * covElim) + varElim)}, response = { eta <- na.omit(c(family(object)$linkfun(pred))) d <- family(object)$mu.eta(eta) if (is.null(object$eliminate)) se.fit <- sqrt(diag(X %*% tcrossprod(V, X))) else se.fit <- sqrt(diag(X %*% tcrossprod(V, X)) + 2*rowSums(X * covElim) + varElim) se.fit <- d * se.fit}, terms = { if (is.null(newdata)) { assign <- split(seq(ncol(X)), attr(X, "assign")) } else { M <- model.matrix(object) assign <- split(seq(ncol(X)), attr(M, "assign")) } if (hasintercept) { if (is.null(newdata)) { X <- sweep(X, 2, colMeans(X)) } else X <- sweep(X, 2, colMeans(M)) } se.fit <- matrix(, nrow = nrow(X), ncol = length(terms)) s <- 0 adj <- hasintercept for (i in match(terms, colnames(pred))) { s <- s + 1 t <- assign[[i + adj]] se.fit[, s] <- sqrt(diag(X[, t] %*% tcrossprod(V[t, t], X[, t]))) ## check estimability of term Xt <- X Xt[, -t] <- 0 estimable <- checkEstimable(object, t(Xt)) is.na(se.fit)[estimable %in% c(FALSE, NA), s] <- TRUE } }) ## check estimability of predictions if (!is.null(newdata) && type != "terms"){ estimable <- checkEstimable(object, t(X)) is.na(se.fit)[estimable %in% c(FALSE, NA)] <- TRUE } if (!is.null(na.act)) { se.fit <- napredict(na.act, se.fit) } if (inherits(pred, "table")) attributes(se.fit) <- object$table.attr else attributes(se.fit) <- attributes(pred) pred <- list(fit = pred, se.fit = se.fit, residual.scale = residual.scale) } pred } gnm/R/update.gnm.R0000644000176200001440000000422614471713444013436 0ustar liggesusers# Modification of update.default from the stats package for R. # # Copyright (C) 1995-2010 The R Core Team # Copyright (C) 2010, 2012 Heather Turner # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 or 3 of the License # (at your option). # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # http://www.r-project.org/Licenses/ update.gnm <- function (object, formula., ..., evaluate = TRUE) { call <- object$call if (is.null(call)) stop("need an object with call component") extras <- match.call(expand.dots = FALSE)$... if (!missing(formula.)) { ## update.formula reorders nonlin terms as lin (main effects) ## therefore use substitute to keep order formula. <- as.formula(formula.) rhs <- formula.[[length(formula.)]] rhs <- do.call(substitute, list(rhs, env = list("." = object$formula[[3]]))) if (length(formula.) == 3) { lhs <- formula.[[2]] lhs <- do.call(substitute, list(lhs, env = list("." = object$formula[[2]]))) call$formula <- call("~", lhs, rhs) } else call$formula <- call("~", object$formula[[2]], rhs) f <- formula(terms.formula(call$formula, simplify = TRUE, keep.order = TRUE)) environment(f) <- environment(formula.) call$formula <- f } if (length(extras)) { existing <- !is.na(match(names(extras), names(call))) for (a in names(extras)[existing]) call[[a]] <- extras[[a]] if (any(!existing)) { call <- c(as.list(call), extras[!existing]) call <- as.call(call) } } if (evaluate) eval(call, as.list(parent.frame()), environment(formula(object))) else call } gnm/R/Exp.R0000755000176200001440000000165314376140103012122 0ustar liggesusers# Copyright (C) 2005, 2006 Heather Turner and David Firth # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 or 3 of the License # (at your option). # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # http://www.r-project.org/Licenses/ Exp <- function(expression, inst = NULL){ list(predictors = list(substitute(expression)), term = function(predLabels, ...) { paste("exp(", predLabels, ")", sep = "") }, call = as.expression(match.call()), match = 1) } class(Exp) <- "nonlin" gnm/R/weighted.MM.R0000644000176200001440000000214614376140103013471 0ustar liggesusers# Copyright (C) 2006 Heather Turner # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 or 3 of the License # (at your option). # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # http://www.r-project.org/Licenses/ weighted.MM <- function(resp, conc){ list(predictors = list(Vm = substitute(conc), K = 1), variables = list(substitute(resp), substitute(conc)), term = function(predLabels, varLabels) { pred <- paste("(", predLabels[1], "/(", predLabels[2], " + ", varLabels[2], "))", sep = "") pred <- paste("(", varLabels[1], " - ", pred, ")/sqrt(", pred, ")", sep = "") }) } class(weighted.MM) <- "nonlin" gnm/R/rstandard.gnm.R0000755000176200001440000000173414376140103014130 0ustar liggesusers# Copyright (C) 2005, 2006, 2008 Heather Turner # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 or 3 of the License # (at your option). # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # http://www.r-project.org/Licenses/ rstandard.gnm <- function(model, ...) { so <- summary(model) res <- na.omit(so$deviance.resid[model$prior.weights != 0]) res <- naresid(model$na.action, res) res <- res/sqrt(so$dispersion * (1 - hatvalues(model))) res[is.infinite(res)] <- NaN if (!is.null(model$table.attr)) attributes(res) <- model$table.attr res } gnm/R/checkEstimable.R0000644000176200001440000000404014376140103014257 0ustar liggesusers# Copyright (C) 2005, 2006, 2008, 2010, 2015 David Firth and Heather Turner # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 or 3 of the License # (at your option). # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # http://www.r-project.org/Licenses/ checkEstimable <- function(model, combMatrix = diag(length(coef(model))), tolerance = NULL) { if (!inherits(model, "gnm")) stop("model not of class gnm") coefs <- coef(model) l <- length(coefs) combMatrix <- as.matrix(combMatrix) if (nrow(combMatrix) != l) stop( "dimensions of combMatrix do not match coef(model)") ## remove constrained coefficients X <- model.matrix(model)[, !is.na(coefs), drop = FALSE] combMatrix <- scale(combMatrix[!is.na(coefs), , drop = FALSE], center = FALSE) resultNA <- apply(combMatrix, 2, function(col) any(is.na(col))) result <- logical(ncol(combMatrix)) is.na(result) <- resultNA eliminate <- model$eliminate if (!is.null(eliminate)) { ## sweeps needed to get the rank right subtracted <- rowsum(X, eliminate)/tabulate(eliminate) if (attr(terms(model), "intercept") == 1) subtracted[,1] <- 0 X <- X - subtracted[eliminate, , drop = FALSE] } rankX <- model$rank - nlevels(eliminate) check.1 <- function(comb){ Xc <- rbind(X, comb) rankXc <- quickRank(Xc, tol = tolerance) return(rankXc == rankX) } result[!resultNA] <- apply(combMatrix[, !resultNA, drop = FALSE], 2, check.1) names(result) <- colnames(combMatrix) return(result) } gnm/R/Dref.R0000755000176200001440000000366114376140103012247 0ustar liggesusers# Copyright (C) 2005-2007, 2012 Heather Turner # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 or 3 of the License # (at your option). # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # http://www.r-project.org/Licenses/ Dref <- function(..., delta = ~ 1){ preds <- match.call(expand.dots = FALSE)[["..."]] n <- length(preds) preds <- c(delta = rep(list(delta), n), preds) common <- c(1:n, rep(n + 1, n)) extra <- setdiff(names(match.call()[-1]), c("", "delta")) if (length(extra)) stop(paste(c("invalid argument passed to Dref:", extra), collapse = " ")) nf <- match(c("delta"), names(match.call()[-1]), 0) if ("formula" %in% names(match.call()[-1])) stop("formula argument of old plug-in has been renamed ", "\"delta\" in this function.") match <- c(rep(nf, n), 1:n) names(preds) <- c(rep("delta", n), rep("", n)) list(predictors = preds, common = common, match = match, term = function(predLabels, ...){ delta <- predLabels[1:n] gamma <- predLabels[-c(1:n)] paste("(((exp(", delta, "))/(", paste("exp(", delta, ")", collapse = " + "), "))*", gamma, ")", sep = "", collapse = " + ")}, start = function(theta) { ifelse(attr(theta, "assign") == n + 1, 0.5, runif(length(theta)) - 0.5) }, call = as.expression(match.call())) } class(Dref) <- "nonlin" gnm/R/Diag.R0000644000176200001440000000275714376140103012235 0ustar liggesusers# Copyright (C) 2005, 2008 David Firth and Heather Turner # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 or 3 of the License # (at your option). # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # http://www.r-project.org/Licenses/ Diag <- function(..., binary = FALSE){ dots <- list(...) dots <- lapply(dots, as.factor) Levels <- levels(dots[[1]]) check <- vapply(dots[-1], function(x) identical(levels(x), Levels), TRUE) if (!all(check)){ message("Levels are not identical, new factor will be based ", "on sorted combined levels.") Levels <- sort(unique(unlist(lapply(dots, levels)))) } facMatrix <- vapply(dots, as.character, character(length(dots[[1]]))) f <- function(row){ if (all(is.na(row))) return(NA) if (all(!is.na(row)) && all(row == row[1])) return(row[1]) row <- na.omit(row) if (!all(row == row[1])) return(".") return(NA) } result <- factor(apply(facMatrix, 1, f), levels = c(".", Levels)) if (binary) result <- ifelse(result == ".", 0, 1) result } gnm/R/hatvalues.gnm.R0000755000176200001440000000263314376140103014141 0ustar liggesusers# Copyright (C) 2005, 2006, 2008, 2010, 2012 Heather Turner # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 or 3 of the License # (at your option). # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # http://www.r-project.org/Licenses/ hatvalues.gnm <- function(model, ...) { X <- as(model.matrix(model), "sparseMatrix") var <- unclass(vcov(model, with.eliminate = TRUE)) eliminate <- model$eliminate scale <- model$weights/attr(var, "dispersion") hat <- rowSums((X %*% var) * X) * scale if (!is.null(eliminate)) { ## no covElim! if (length(model$constrain)) X <- X[, -model$constrain, drop = FALSE] hat <- hat + (2 * rowSums(X * attr(var, "covElim")[eliminate, , drop = FALSE]) + attr(var, "varElim")[eliminate]) * scale } hat <- naresid(model$na.action, hat) hat[is.na(hat)] <- 0 hat[hat > 1 - 100 * .Machine$double.eps] <- 1 if (!is.null(model$table.attr)) attributes(hat) <- model$table.attr hat } gnm/R/sumExpression.R0000644000176200001440000000142214376140103014241 0ustar liggesusers# Copyright (C) 2006 Heather Turner # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 or 3 of the License # (at your option). # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # http://www.r-project.org/Licenses/ sumExpression <- function(exprList) { expr <- exprList[[1]] for (i in seq(exprList)[-1]) { expr <- call("+", expr, exprList[[i]]) } expr } gnm/R/pickCoef.R0000644000176200001440000000323014376140103013077 0ustar liggesusers# Copyright (C) 2006, 2010, 2012, 2013 Heather Turner # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 or 3 of the License # (at your option). # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # http://www.r-project.org/Licenses/ pickCoef <- function(object, pattern = NULL, value = FALSE, ...){ coefs <- names(coef(object)) if (is.null(coefs)) stop("Coefficient names cannot be extracted from 'object'") if (is.null(pattern)) { default <- list(setlabels = "Selected coefficients", title = "Select coefficients of interest", items.label = "Model coefficients:", return.indices = TRUE, edit.setlabels = FALSE, warningText = "No subset of coefficients selected") dots <- list(...) dotArgs <- match(names(default), names(dots)) allArgs <- c(list(coefs), dots, default[is.na(dotArgs)]) selection <- unname(unlist(do.call(pickFrom, allArgs))) } else { selection <- grep(pattern, coefs, value = FALSE, ...) } if (!length(selection)) selection <- NULL else if (!value) names(selection) <- coefs[selection] else selection <- parameters(object)[selection] selection } gnm/R/kappa.gnm.R0000644000176200001440000000141614376140103013234 0ustar liggesusers# Copyright (C) 2005 Heather Turner # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 or 3 of the License # (at your option). # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # http://www.r-project.org/Licenses/ kappa.gnm <- function (z, ...) { if (inherits(z, "gnm", TRUE) == 1) stop("kappa is not implemented for gnm objects") else NextMethod } gnm/R/Raise.R0000644000176200001440000000165714376140103012432 0ustar liggesusers# Copyright (C) 2006, 2008 Heather Turner # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 or 3 of the License # (at your option). # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # http://www.r-project.org/Licenses/ Raise <- function(expression, power = 1, inst = NULL){ list(predictors = list(substitute(expression)), term = function(predLabels, ...) { paste("(", predLabels, ")^", power, sep = "") }, call = as.expression(match.call()), match = 1) } class(Raise) <- "nonlin" gnm/R/Log.R0000644000176200001440000000163314376140103012102 0ustar liggesusers# Copyright (C) 2006, 2008 Heather Turner # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 or 3 of the License # (at your option). # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # http://www.r-project.org/Licenses/ Log <- function(expression, inst = NULL){ list(predictors = list(substitute(expression)), term = function(predLabels, ...) { paste("log(", predLabels, ")", sep = "") }, call = as.expression(match.call()), match = 1) } class(Log) <- "nonlin" gnm/R/confint.gnm.R0000644000176200001440000000231714376140103013601 0ustar liggesusers# Modification of confint.glm from the MASS package for R. # # Copyright (C) 1994-2006 W. N. Venables and B. D. Ripley # Copyright (C) 2006 Heather Turner # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 or 3 of the License # (at your option). # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # http://www.r-project.org/Licenses/ confint.gnm <- function (object, parm = ofInterest(object), level = 0.95, trace = FALSE, ...) { pnames <- names(coef(object)) if (is.null(parm)) parm <- seq(along = pnames) else if (is.character(parm)) parm <- match(parm, pnames, nomatch = 0) message("Waiting for profiling to be done...") flush.console() object <- profile(object, which = parm, alpha = 1 - level, trace = trace) confint(object, level = level, ...) } gnm/R/fitted.gnm.R0000644000176200001440000000143414376140103013417 0ustar liggesusers# Copyright (C) 2008 Heather Turner # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 or 3 of the License # (at your option). # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # http://www.r-project.org/Licenses/ fitted.gnm <- function(object, ...) { fitted <- NextMethod("fitted") if (!is.null(object$table.attr)) attributes(fitted) <- object$table.attr fitted } gnm/R/influence.gnm.R0000644000176200001440000000145614376140103014114 0ustar liggesusers# Copyright (C) 2005 Heather Turner # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 or 3 of the License # (at your option). # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # http://www.r-project.org/Licenses/ influence.gnm <- function (model, do.coef = TRUE, ...) { if (inherits(model, "gnm", TRUE) == 1) stop("influence is not implemented for gnm objects") else NextMethod } gnm/R/checkCall.R0000644000176200001440000000160314376140103013227 0ustar liggesusers# Copyright (C) 2006 Heather Turner # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 or 3 of the License # (at your option). # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # http://www.r-project.org/Licenses/ checkCall <- function(){ badCall <- lapply(sys.calls(), "[[", 1) %in% c("model.frame.default", "model.matrix.default") if (any(badCall)) stop(paste(sys.call(-1)[[1]], "terms are only valid in gnm models.")) } gnm/R/Logistic.R0000644000176200001440000000206114376140103013132 0ustar liggesusers# Copyright (C) 2007 Heather Turner # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 or 3 of the License # (at your option). # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # http://www.r-project.org/Licenses/ Logistic <- function(x, inst = NULL){ list(predictors = list(Asym = 1, xmid = 1, scal = 1), variables = list(substitute(x)), term = function(predLabels, varLabels) { paste(predLabels[1], "/(1 + exp((", predLabels[2], "-", varLabels[1], ")/", predLabels[3], "))") }, start = function(theta){ c(NA, mean(x), sd(x)) } ) } class(Logistic) <- "nonlin" gnm/R/asGnm.default.R0000644000176200001440000000137314376140103014052 0ustar liggesusers# Copyright (C) 2006 Heather Turner # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 or 3 of the License # (at your option). # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # http://www.r-project.org/Licenses/ asGnm.default <- function (object, ...) { stop("\nCannot coerce objects of class \"", class(object), "\" to class \"gnm\".") } gnm/R/instances.R0000644000176200001440000000200214471677263013361 0ustar liggesusers# Copyright (C) 2006 Heather Turner # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 or 3 of the License # (at your option). # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # http://www.r-project.org/Licenses/ instances <- function(term, instances = 1){ term <- match.call()$term if (!"inst" %in% names(formals(match.fun(eval(term[[1]]))))) stop(deparse(term[[1]]), " has no inst argument") termList <- vector(mode = "list", length = instances) for (i in seq(instances)) { termList[[i]] <- term termList[[i]]$inst <- i } paste(unlist(termList), collapse = " + ") } gnm/R/ofInterest.R0000644000176200001440000000125014376140103013476 0ustar liggesusers# Copyright (C) 2006 Heather Turner # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 or 3 of the License # (at your option). # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # http://www.r-project.org/Licenses/ ofInterest <- function(object) { object$ofInterest } gnm/R/dropterm.gnm.R0000644000176200001440000000143614376140103013776 0ustar liggesusers# Copyright (C) 2005 Heather Turner # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 or 3 of the License # (at your option). # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # http://www.r-project.org/Licenses/ dropterm.gnm <- function (object, ...) { if (inherits(object, "gnm", TRUE) == 1) stop("dropterm is not implemented for gnm objects") else NextMethod } gnm/R/quick.glm.fit.R0000644000176200001440000000645214376140103014040 0ustar liggesusers# Copyright (C) 2006 David Firth # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 or 3 of the License # (at your option). # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # http://www.r-project.org/Licenses/ "quick.glm.fit" <- ## A wrapper for glm.fit, which is much faster when a large number ## of parameters can be eliminated, but which typically (if nIter is small) ## stops before convergence. Useful for getting gnm starting values. ## ## The eliminate argument is assumed numeric (no. of columns in X). No ## check is done here on "eliminability" of the specified columns. ## ## The non-eliminated columns are assumed not to include the intercept (ie ## no column of ones). ## ## When eliminate is used, only the "coefficients" component is returned. ## (for reasons of speed/laziness). This is fine for gnm purposes, but if ## quick.glm.fit is made into a `method' for glm() fits then the result ## needs to have various other components added. ## ## No account is taken of NAs -- will that be a problem, or have they gone by ## the time glm.fit gets called? ## function (x, y, weights = rep(1, length(y)), offset = rep(0, length(y)), family = gaussian(), eliminate = 0, nIter = 2, verbose = FALSE) { if (eliminate == 0) return(suppressWarnings(glm.fit(x, y, weights = weights, offset = offset, family = family)$coef)) ## The rest handles the case of eliminated columns in X xElim <- x[ , seq(eliminate), drop = FALSE] if (eliminate < ncol(x)) xNotElim <- cbind(1, x[ , (eliminate + 1):ncol(x), drop = FALSE]) else xNotElim <- matrix(1, nrow(x), 1) os.by.level <- numeric(eliminate) model <- suppressWarnings(glm.fit(xNotElim, y, weights = weights, offset = offset, family = family, control = glm.control(maxit = 1))) for (i in 1:nIter) { if (verbose) cat("quick.glm.fit iteration", i, "deviance =", deviance(model), "\n") w <- xElim * model$weights wz <- w * model$residuals os.by.level <- os.by.level + colSums(wz)/colSums(w) + coef(model)[1] os.vec <- offset + colSums(os.by.level * t(xElim)) model <- suppressWarnings(glm.fit(xNotElim, y, weights = weights, offset = os.vec, etastart = model$linear.predictors, family = family, control = glm.control(maxit = 2))) } structure(c(os.by.level + coef(model)[1], coef(model)[-1]), names = colnames(x)) } gnm/R/summary.gnm.R0000755000176200001440000001013414376140103013635 0ustar liggesusers# Modification of summary.glm from the stats package for R. # # Copyright (C) 1995-2005 The R Core Team # Copyright (C) 2005, 2006, 2010, 2015 Heather Turner # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 or 3 of the License # (at your option). # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # http://www.r-project.org/Licenses/ summary.gnm <- function (object, dispersion = NULL, correlation = FALSE, symbolic.cor = FALSE, with.eliminate = FALSE, ...) { est.disp <- (!object$family$family %in% c("poisson", "binomial") && is.null(dispersion) && object$df.residual > 0) coefs <- parameters(object) if (with.eliminate) coefs <- c(attr(coef(object), "eliminated"), coefs) if (object$rank > 0) { cov.scaled <- vcov(object, dispersion = dispersion, with.eliminate = with.eliminate) ## non-eliminated par only if (nrow(cov.scaled)) { estimable <- checkEstimable(object, ...) estimable[is.na(estimable)] <- FALSE } if (is.matrix(cov.scaled)) sterr <- sqrt(diag(cov.scaled)) else sterr <- diag(cov.scaled) if (length(sterr)) is.na(sterr[!estimable]) <- TRUE if (with.eliminate){ ## check estimability of eliminated coefficients X <- cbind(1, model.matrix(object)[,!is.na(coef(object))]) estimable2 <- vapply(split(seq_len(nrow(X)), object$eliminate), function(i) { quickRank(X[i, , drop = FALSE]) == quickRank(X[i, -1, drop = FALSE]) + 1}, TRUE) sterr <- c(ifelse(estimable2, sqrt(attr(cov.scaled, "varElim")), NA), sterr) } tvalue <- coefs/sterr dn <- c("Estimate", "Std. Error") if (!est.disp) { pvalue <- 2 * pnorm(-abs(tvalue)) coef.table <- cbind(coefs, sterr, tvalue, pvalue) dimnames(coef.table) <- list(names(coefs), c(dn, "z value", "Pr(>|z|)")) } else if (object$df.residual > 0) { pvalue <- 2 * pt(-abs(tvalue), object$df.residual) coef.table <- cbind(coefs, sterr, tvalue, pvalue) dimnames(coef.table) <- list(names(coefs), c(dn, "t value", "Pr(>|t|)")) } else { coef.table <- cbind(coefs, Inf) dimnames(coef.table) <- list(names(coefs), dn) } } else { coef.table <- matrix(, 0, 4) dimnames(coef.table) <- list(NULL, c("Estimate", "Std. Error", "t value", "Pr(>|t|)")) cov.scaled <- matrix(, 0, 0) } df.f <- nrow(coef.table) non.elim <- seq_along(object$coef) + nlevels(object$eliminate) * with.eliminate elim <- seq(length.out = nlevels(object$eliminate) * with.eliminate) ans <- c(object[c("call", "ofInterest", "family", "deviance", "aic", "df.residual", "iter")], list(deviance.resid = residuals(object, type = "deviance"), coefficients = coef.table[non.elim, , drop = FALSE], eliminated = coef.table[elim, , drop = FALSE], dispersion = attr(cov.scaled, "dispersion"), df = c(object$rank, object$df.residual, df.f), cov.scaled = as.matrix(cov.scaled))) if (correlation & object$rank > 0) { dd <- sqrt(diag(cov.scaled)) ans$correlation <- cov.scaled/outer(dd, dd) ans$symbolic.cor <- symbolic.cor } class(ans) <- "summary.gnm" ans } gnm/R/boxcox.gnm.R0000644000176200001440000000143214376140103013440 0ustar liggesusers# Copyright (C) 2005 Heather Turner # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 or 3 of the License # (at your option). # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # http://www.r-project.org/Licenses/ boxcox.gnm <- function (object, ...) { if (inherits(object, "gnm", TRUE) == 1) stop("boxcox is not implemented for gnm objects") else NextMethod } gnm/R/prattle.R0000644000176200001440000000125014376140103013027 0ustar liggesusers# Copyright (C) 2005 David Firth # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 or 3 of the License # (at your option). # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # http://www.r-project.org/Licenses/ prattle <- function(...) { cat(...) flush.console() } gnm/R/wedderburn.R0000644000176200001440000000437514376140103013530 0ustar liggesusers# Modification of binomial from the stats package for R. # # Copyright (C) 1995-2005 The R Core Team # Copyright (C) 2005 David Firth # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 or 3 of the License # (at your option). # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # http://www.r-project.org/Licenses/ "wedderburn" <- function (link = "logit") { linktemp <- substitute(link) if (!is.character(linktemp)) { linktemp <- deparse(linktemp) if (linktemp == "link") linktemp <- eval(link) } if (any(linktemp == c("logit", "probit", "cloglog"))) stats <- make.link(linktemp) else stop(paste(linktemp, "link not available for wedderburn quasi-family;", "available links are", "\"logit\", \"probit\" and \"cloglog\"")) variance <- function(mu) mu^2 * (1-mu)^2 validmu <- function(mu) { all(mu > 0) && all(mu < 1)} dev.resids <- function(y, mu, wt){ eps <- 0.0005 2 * wt * (y/mu + (1 - y)/(1 - mu) - 2 + (2 * y - 1) * log((y + eps)*(1 - mu)/((1- y + eps) * mu))) } aic <- function(y, n, mu, wt, dev) NA initialize <- expression({ if (any(y < 0 | y > 1)) stop(paste( "Values for the wedderburn family must be in [0,1]")) n <- rep.int(1, nobs) mustart <- (y + 0.1)/1.2 }) structure(list(family = "wedderburn", link = linktemp, linkfun = stats$linkfun, linkinv = stats$linkinv, variance = variance, dev.resids = dev.resids, aic = aic, mu.eta = stats$mu.eta, initialize = initialize, validmu = validmu, valideta = stats$valideta), class = "family") } gnm/R/expandCategorical.R0000644000176200001440000000376714376140103015010 0ustar liggesusers# Copyright (C) 2006, 2009, 2013, 2014 Heather Turner # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 or 3 of the License # (at your option). # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # http://www.r-project.org/Licenses/ expandCategorical <- function(data, catvar, sep = ".", countvar = "count", idvar = "id", as.ordered = FALSE, group = TRUE) { cat <- interaction(data[catvar], sep = sep) ncat <- nlevels(cat) covar <- data[, -match(catvar, names(data)), drop = FALSE] catvar <- paste(catvar, collapse = sep) if (group == TRUE) { if (length(covar)) { ord <- do.call("order", covar) vars <- covar[ord, , drop = FALSE] dupvars <- duplicated(vars) d <- diff(c(which(!dupvars), length(dupvars) + 1)) n <- sum(!dupvars) id <- factor(rep(seq(n), d)) counts <- as.data.frame(table(list(cat = cat[ord], id = id))) newData <- vars[which(!dupvars)[counts$id], , drop = FALSE] rownames(newData) <- NULL newData[c(catvar, idvar, countvar)] <- counts } else { newData <- data.frame(table(cat)) colnames(newData) <- c(catvar, countvar) newData[[idvar]] <- factor(1) } } else { n <- nrow(covar) id <- gl(n, ncat) newData <- covar[id, , drop = FALSE] newData[[catvar]] <- gl(ncat, 1, n * ncat, labels = levels(cat), ordered = as.ordered) newData[[countvar]] <- as.vector(t(class.ind(cat))) newData[[idvar]] <- id } newData } gnm/R/weights.gnm.R0000644000176200001440000000147714376140103013621 0ustar liggesusers# Copyright (C) 2008 Heather Turner # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 or 3 of the License # (at your option). # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # http://www.r-project.org/Licenses/ weights.gnm <- function(object, type = c("prior", "working"), ...) { weights <- NextMethod("weights") if (!is.null(object$table.attr)) attributes(weights) <- object$table.attr weights } gnm/R/quickRank.R0000644000176200001440000000174614376140103013316 0ustar liggesusers# as tolNorm2 method in rankMatrix from the Matrix package, but avoids validity # checks - much faster if need to do repeated rank calculations # # Copyright (C) 2007 Martin Maechler # Copyright (C) 2010 Heather Turner # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 or 3 of the License # (at your option). # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # http://www.r-project.org/Licenses/ quickRank <- function(X, tol = NULL) { sval <- svd(X, 0, 0)$d if (is.null(tol)) sum(sval >= max(dim(X)) * .Machine$double.eps * sval[1]) else sum(sval >= tol) } gnm/R/anova.gnm.R0000644000176200001440000001000714376140103013240 0ustar liggesusers# Modification of anova.glm from the stats package for R. # # Copyright (C) 1995-2005 The R Core Team # Copyright (C) 2005, 2006, 2008, 2012 Heather Turner # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 or 3 of the License # (at your option). # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # http://www.r-project.org/Licenses/ anova.gnm <- function (object, ..., dispersion = NULL, test = NULL) { dotargs <- list(...) named <- if (is.null(names(dotargs))) rep(FALSE, length(dotargs)) else (names(dotargs) != "") if (any(named)) warning("the following arguments to 'anova.gnm' ", "are invalid and dropped: ", paste(deparse(dotargs[named]), collapse = ", ")) dotargs <- dotargs[!named] is.gnm <- unlist(lapply(dotargs, function(x) inherits(x, c("gnm", "glm")))) dotargs <- dotargs[is.gnm] if (length(dotargs) > 0) return(anova(structure(c(list(object), dotargs), class="glmlist"), dispersion = dispersion, test = test)) x <- model.matrix(object) varlist <- attr(terms(object), "term.labels") varseq <- attr(x, "assign") pars <- setdiff(unique(varseq), c(0, varseq[object$constrain])) nvars <- length(varlist) nonlinear <- match(TRUE, attr(terms(object), "type") != "Linear") if (is.na(nonlinear)) nonlinear <- nvars + 1 resdev <- resdf <- fit <- NULL origConstrain <- object$constrain origConstrainTo <- object$constrainTo if (nvars > 0) { for (i in pars) { if (i < nonlinear && is.null(object$eliminate)){ fit <- glm.fit(x = x[, varseq < i, drop = FALSE], y = c(object$y), offset = c(object$offset), start = object$start, weights = c(object$prior.weights), family = object$family) } else { f <- update.formula(formula(object), paste(". ~ . -", paste(varlist[i:nvars], collapse = " - "))) f <- update.formula(formula(object), f) fit <- update(object, formula = f, verbose = FALSE) } resdev <- c(resdev, fit$deviance) resdf <- c(resdf, fit$df.residual) } resdf <- c(resdf, object$df.residual) resdev <- c(resdev, object$deviance) table <- data.frame(c(NA, -diff(resdf)), c(NA, pmax(0, -diff(resdev))), resdf, resdev) } else table <- data.frame(NA, NA, object$df.residual, object$deviance) dimnames(table) <- list(c("NULL", labels(object)), c("Df", "Deviance", "Resid. Df", "Resid. Dev")) title <- paste("Analysis of Deviance Table", "\n\nModel: ", object$family$family, ", link: ", object$family$link, "\n\nResponse: ", as.character(formula(object)[[2]]), "\n\nTerms added sequentially (first to last)\n\n", sep = "") df.dispersion <- Inf if (is.null(dispersion)) { dispersion <- attr(vcov(object), "dispersion") df.dispersion <- if (dispersion == 1) Inf else object$df.residual } if (!is.null(test)) table <- stat.anova(table = table, test = test, scale = dispersion, df.scale = df.dispersion, n = NROW(x)) structure(table, heading = title, class = c("anova", "data.frame")) } gnm/R/plot.gnm.R0000755000176200001440000002537514376140103013133 0ustar liggesusers# Modification of plot.lm from the stats package for R. # # Copyright (C) 1995-2005 The R Core Team # Copyright (C) 2005, 2006, 2008 Heather Turner # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 or 3 of the License # (at your option). # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # http://www.r-project.org/Licenses/ plot.gnm <- function (x, which = c(1:3, 5), caption = c("Residuals vs Fitted", "Normal Q-Q", "Scale-Location", "Cook's distance", "Residuals vs Leverage"), panel = if (add.smooth) panel.smooth else points, sub.caption = NULL, main = "", ask = prod(par("mfcol")) < length(which) && dev.interactive(), ..., id.n = 3, labels.id = names(residuals(x)), cex.id = 0.75, qqline = TRUE, cook.levels = c(0.5, 1.0), add.smooth = getOption("add.smooth"), label.pos = c(4, 2), cex.caption = 1) { if (!is.numeric(which) || any(which < 1) || any(which > 5)) stop("'which' must be in 1:5") show <- rep(FALSE, 5) show[which] <- TRUE r <- residuals(x) yh <- predict(x) # != fitted() for glm w <- weights(x) if (!is.null(w)) { # drop obs with zero wt: PR#6640 wind <- w != 0 r <- r[wind] yh <- yh[wind] w <- w[wind] labels.id <- labels.id[wind] } n <- length(r) if (any(show[2:5])) { s <- sqrt(deviance(x)/df.residual(x)) hii <- c(hatvalues(x)) if (any(show[4:5])) { cook <- c(cooks.distance(x)) } } if (any(show[2:3])) { ylab23 <- "Std. deviance resid." r.w <- if (is.null(w)) r else sqrt(w) * r } if (show[5]) { ylab5 <- "Std. Pearson resid." r.w <- residuals(x, "pearson") if(!is.null(w)) r.w <- r.w[wind] # drop 0-weight cases r.hat <- range(hii, na.rm = TRUE) # though should never have NA isConst.hat <- all(r.hat == 0) || diff(r.hat) < 1e-10 * mean(hii) } dropInf <- function(x) { if(any(isInf <- is.infinite(x))) { warning("Not plotting observations with leverage one:\n ", paste(which(isInf), collapse=", ")) x[isInf] <- NaN } x } if (any(show[c(2:3,5)])) rs <- dropInf( r.w/(s * sqrt(1 - hii)) ) if (any(show[c(1, 3)])) l.fit <- "Predicted values" if (is.null(id.n)) id.n <- 0 else { id.n <- as.integer(id.n) if (id.n < 0 || id.n > n) stop(gettextf("'id.n' must be in {1,..,%d}", n), domain = NA) } if (id.n > 0) { ## label the largest residuals if (is.null(labels.id)) labels.id <- paste(1:n) iid <- 1:id.n show.r <- sort.list(abs(r), decreasing = TRUE)[iid] if (any(show[2:3])) show.rs <- sort.list(abs(rs), decreasing = TRUE)[iid] text.id <- function(x, y, ind, adj.x = TRUE) { labpos <- if (adj.x) label.pos[1 + as.numeric(x > mean(range(x)))] else 3 text(x, y, labels.id[ind], cex = cex.id, xpd = TRUE, pos = labpos, offset = 0.25) } } getCaption <- function(k) # allow caption = "" , plotmath etc as.graphicsAnnot(unlist(caption[k])) if (is.null(sub.caption)) { ## construct a default: cal <- x$call if (!is.na(m.f <- match("formula", names(cal)))) { cal <- cal[c(1, m.f)] names(cal)[2] <- "" # drop " formula = " } cc <- deparse(cal, 80) # (80, 75) are ``parameters'' nc <- nchar(cc[1], "c") abbr <- length(cc) > 1 || nc > 75 sub.caption <- if (abbr) paste(substr(cc[1], 1, min(75, nc)), "...") else cc[1] } one.fig <- prod(par("mfcol")) == 1 if (ask) { oask <- devAskNewPage(TRUE) on.exit(devAskNewPage(oask)) } ##---------- Do the individual plots : ---------- if (show[1]) { ylim <- range(r, na.rm = TRUE) if (id.n > 0) ylim <- extendrange(r = ylim, f = 0.08) plot(yh, r, xlab = l.fit, ylab = "Residuals", main = main, ylim = ylim, type = "n", ...) panel(yh, r, ...) if (one.fig) title(sub = sub.caption, ...) mtext(getCaption(1), 3, 0.25, cex = cex.caption) if (id.n > 0) { y.id <- r[show.r] y.id[y.id < 0] <- y.id[y.id < 0] - strheight(" ")/3 text.id(yh[show.r], y.id, show.r) } abline(h = 0, lty = 3, col = "gray") } if (show[2]) { ## Normal ylim <- range(rs, na.rm = TRUE) ylim[2] <- ylim[2] + diff(ylim) * 0.075 qq <- qqnorm(rs, main = main, ylab = ylab23, ylim = ylim, ...) if (qqline) qqline(rs, lty = 3, col = "gray50") if (one.fig) title(sub = sub.caption, ...) mtext(getCaption(2), 3, 0.25, cex = cex.caption) if (id.n > 0) text.id(qq$x[show.rs], qq$y[show.rs], show.rs) } if (show[3]) { sqrtabsr <- sqrt(abs(rs)) ylim <- c(0, max(sqrtabsr, na.rm = TRUE)) yl <- as.expression(substitute(sqrt(abs(YL)), list(YL = as.name(ylab23)))) yhn0 <- if (is.null(w)) yh else yh[w != 0] plot(yhn0, sqrtabsr, xlab = l.fit, ylab = yl, main = main, ylim = ylim, type = "n", ...) panel(yhn0, sqrtabsr, ...) if (one.fig) title(sub = sub.caption, ...) mtext(getCaption(3), 3, 0.25, cex = cex.caption) if (id.n > 0) text.id(yhn0[show.rs], sqrtabsr[show.rs], show.rs) } if (show[4]) { if (id.n > 0) { show.r <- order(-cook)[iid]# index of largest 'id.n' ones ymx <- cook[show.r[1]] * 1.075 } else ymx <- max(cook, na.rm = TRUE) plot(cook, type = "h", ylim = c(0, ymx), main = main, xlab = "Obs. number", ylab = "Cook's distance", ...) if (one.fig) title(sub = sub.caption, ...) mtext(getCaption(4), 3, 0.25, cex = cex.caption) if (id.n > 0) text.id(show.r, cook[show.r], show.r, adj.x = FALSE) } if (show[5]) { ylim <- range(rs, na.rm = TRUE) if (id.n > 0) { ylim <- extendrange(r = ylim, f = 0.08) show.r <- order(-cook)[iid] } do.plot <- TRUE if (isConst.hat) {## leverages are all the same caption[5] <- "Constant Leverage:\n Residuals vs Factor Levels" ## plot against factor-level combinations instead aterms <- attributes(terms(x)) ## classes w/o response dcl <- aterms$dataClasses[-aterms$response] facvars <- names(dcl)[dcl %in% c("factor", "ordered")] mf <- model.frame(x)[facvars]# better than x$model if(ncol(mf) > 0) { ## now re-order the factor levels *along* factor-effects ## using a "robust" method {not requiring dummy.coef}: effM <- mf for(j in seq_len(ncol(mf))) effM[, j] <- vapply(split(yh, mf[, j]), mean, 1)[mf[, j]] ord <- do.call(order, effM) dm <- data.matrix(mf)[ord, , drop = FALSE] ## #{levels} for each of the factors: nf <- length(nlev <- unlist(unname(lapply(x$xlevels, length)))) ff <- if(nf == 1) 1 else rev(cumprod(c(1, nlev[nf:2]))) facval <- ((dm-1) %*% ff) ## now reorder to the same order as the residuals facval[ord] <- facval xx <- facval # for use in do.plot section. plot(facval, rs, xlim = c(-1/2, sum((nlev-1) * ff) + 1/2), ylim = ylim, xaxt = "n", main = main, xlab = "Factor Level Combinations", ylab = ylab5, type = "n", ...) axis(1, at = ff[1]*(1:nlev[1] - 1/2) - 1/2, labels= x$xlevels[[1]][order(vapply(split(yh,mf[,1]), mean, 1))]) mtext(paste(facvars[1],":"), side = 1, line = 0.25, adj=-.05) abline(v = ff[1]*(0:nlev[1]) - 1/2, col="gray", lty="F4") panel(facval, rs, ...) abline(h = 0, lty = 3, col = "gray") } else { # no factors message("hat values (leverages) are all = ", format(mean(r.hat)), "\n and there are no factor predictors; no plot no. 5") frame() do.plot <- FALSE } } else { ## Residual vs Leverage xx <- hii ## omit hatvalues of 1. xx[xx >= 1] <- NA plot(xx, rs, xlim = c(0, max(xx, na.rm = TRUE)), ylim = ylim, main = main, xlab = "Leverage", ylab = ylab5, type = "n", ...) panel(xx, rs, ...) abline(h = 0, v = 0, lty = 3, col = "gray") if (one.fig) title(sub = sub.caption, ...) if (length(cook.levels)) { p <- length(coef(x)) usr <- par("usr") hh <- seq.int(min(r.hat[1], r.hat[2]/100), usr[2], length.out = 101) for (crit in cook.levels) { cl.h <- sqrt(crit * p * (1 - hh)/hh) lines(hh, cl.h, lty = 2, col = 2) lines(hh, -cl.h, lty = 2, col = 2) } legend("bottomleft", legend = "Cook's distance", lty = 2, col = 2, bty = "n") xmax <- min(0.99, usr[2]) ymult <- sqrt(p * (1 - xmax)/xmax) aty <- c(-sqrt(rev(cook.levels)) * ymult, sqrt(cook.levels) * ymult) axis(4, at = aty, labels = paste(c(rev(cook.levels), cook.levels)), mgp = c(.25, .25, 0), las = 2, tck = 0, cex.axis = cex.id, col.axis = 2) } } # if(const h_ii) .. else .. if (do.plot) { mtext(getCaption(5), 3, 0.25, cex = cex.caption) if (id.n > 0) { y.id <- rs[show.r] y.id[y.id < 0] <- y.id[y.id < 0] - strheight(" ")/3 text.id(xx[show.r], y.id, show.r) } } } if (!one.fig && par("oma")[3] >= 1) mtext(sub.caption, outer = TRUE, cex = 1.25) invisible() } gnm/R/addterm.gnm.R0000644000176200001440000000143414376140103013560 0ustar liggesusers# Copyright (C) 2005 Heather Turner # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 or 3 of the License # (at your option). # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # http://www.r-project.org/Licenses/ addterm.gnm <- function (object, ...) { if (inherits(object, "gnm", TRUE) == 1) stop("addterm is not implemented for gnm objects") else NextMethod } gnm/R/print.summary.gnm.R0000755000176200001440000000720014376140103014770 0ustar liggesusers# Modification of print.summary.glm from the stats package for R. # # Copyright (C) 1995-2006 The R Core Team # Copyright (C) 2006, 2008, 2009, 2015 Heather Turner # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 or 3 of the License # (at your option). # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # http://www.r-project.org/Licenses/ print.summary.gnm <- function (x, digits = max(3, getOption("digits") - 3), signif.stars = getOption("show.signif.stars"), symbolic.cor = x$symbolic.cor, ...) { cat("\nCall:\n", deparse(x$call), "\n", sep = "", fill = TRUE) cat("Deviance Residuals: \n") if (length(x$deviance.resid) > 5) { x$deviance.resid <- quantile(x$deviance.resid, na.rm = TRUE) names(x$deviance.resid) <- c("Min", "1Q", "Median", "3Q", "Max") } print.default(x$deviance.resid, digits = digits, na.print = "", print.gap = 2) tidy.zeros <- function(vec) ifelse(abs(vec) < 100 * .Machine$double.eps, 0, vec) coefs <- tidy.zeros(coef(x)) if (length(ofInterest(x)) > 0) coefs <- coefs[ofInterest(x), , drop = FALSE] non.elim <- length(coefs) elim <- length(x$eliminated) if (non.elim | elim) { cat("\nCoefficients", " of interest"[!is.null(ofInterest(x))], ":\n", sep = "") printCoefmat(coefs, digits = digits, signif.stars = signif.stars, signif.legend = !elim, na.print = "NA", ...) if (elim){ cat("\nEliminated coefficients:\n", sep = "") printCoefmat(x$eliminated, digits = digits, signif.stars = signif.stars, na.print = "NA", ...) } coefs <- c(coefs[,2], x$eliminated[,2]) if (any(!is.na(coefs))) cat("\n(Dispersion parameter for ", x$family$family, " family taken to be ", format(x$dispersion), ")\n", sep = "") if (any(is.na(coefs))) cat("\nStd. Error is NA where coefficient has been constrained or", "is unidentified\n") } else cat("\nNo coefficients", " of interest"[!is.null(ofInterest(x))], ". \n\n", sep = "") cat("\nResidual deviance: ", format(x$deviance, digits = max(5, digits + 1)), " on ", format(x$df.residual, digits = max(5, digits + 1)), " degrees of freedom\n", "AIC: ", format(x$aic, digits = max(4, digits + 1)), "\n\n", "Number of iterations: ", x$iter, "\n", sep = "") correl <- x$correlation if (!is.null(correl)) { if (attr(x$cov.scaled, "eliminate")) { eliminate <- seq(attr(x$cov.scaled, "eliminate")) correl <- correl[-eliminate, -eliminate] } p <- NCOL(correl) if (p > 1) { cat("\nCorrelation of Coefficients:\n") if (is.logical(symbolic.cor) && symbolic.cor) { print(symnum(correl, abbr.colnames = NULL)) } else { correl <- format(round(correl, 2), nsmall = 2, digits = digits) correl[!lower.tri(correl)] <- "" print(correl[-1, -p, drop = FALSE], quote = FALSE) } } } cat("\n") invisible(x) } gnm/R/getData.R0000644000176200001440000000144114376140103012727 0ustar liggesusers# Copyright (C) 2006 Heather Turner # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 or 3 of the License # (at your option). # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # http://www.r-project.org/Licenses/ getData <- function() { nFrame <- match(TRUE, vapply(sys.calls(), function(x) { identical(x[[1]], as.name("gnmTerms"))}, TRUE)) get("data", sys.frame(nFrame)) } gnm/R/glm.fit.e.R0000644000176200001440000001441114376140103013142 0ustar liggesusers# This fits a glm with eliminated factor, and should be much quicker # than glm.fit when the number of levels of the eliminated factor is large. # # Copyright (C) 2009, 2010, 2012 David Firth and Heather Turner # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 or 3 of the License # (at your option). # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # http://www.r-project.org/Licenses/ glm.fit.e <- function( x, y, weights = rep(1, NROW(y)), start = NULL, etastart = NULL, mustart = NULL, offset = rep(0, NROW(y)), family = gaussian(), control = glm.control(), ## only for compatibility with glm.fit intercept = TRUE, ## only for compatibility with glm.fit eliminate = NULL, ## alternatively a factor ridge = 1e-8, coefonly = FALSE) { if (is.null(eliminate)) { ## just revert to glm.fit ## can make a difference in timing! tmp <- glm.fit(x, y, weights = weights, start = start, etastart = etastart, mustart = mustart, offset = offset, family = family, control = control, intercept = intercept) if (coefonly) return(tmp$coef) else return(tmp) } ## The rest handles the case of an eliminated factor names(y) <- rownames(x) <- NULL nobs <- NROW(y) non.elim <- ncol(x) if (is.null(weights)) weights <- rep.int(1, nobs) if (is.null(offset)) offset <- rep.int(0, nobs) link <- family$linkfun linkinv <- family$linkinv linkder <- family$mu.eta variance <- family$variance dev.resids <- family$dev.resids aic <- family$aic ## sort data to help compute group means quickly ord <- order(xtfrm(eliminate)) if (ordTRUE <- !identical(ord, seq(eliminate))) { y <- as.numeric(y[ord]) weights <- weights[ord] offset <- offset[ord] if (non.elim) x <- x[ord, , drop = FALSE] eliminate <- eliminate[ord] } size <- tabulate(eliminate) end <- cumsum(size) nelim <- rank <- nlevels(eliminate) elim <- seq.int(nelim) if (is.null(start)) { # use either y or etastart or mustart if (!is.null(etastart)) mustart <- linkinv(etastart) if (!is.null(mustart)) z <- mustart else z <- y elim.means <- grp.sum(z, end)/size os.by.level <- link(0.999 * elim.means + 0.001 * mean(z)) - grp.sum(offset, end)/size } else os.by.level <- start[elim] os.vec <- os.by.level[eliminate] eta.stored <- eta <- offset + os.vec mu <- linkinv(eta) mu.eta <- linkder(eta) z <- eta - offset + (y - mu) / mu.eta w <- weights * (mu.eta)^2/variance(mu) counter <- 0 devold <- 0 if (intercept) x <- x[, -1, drop = FALSE] #non-null eliminate if (non.elim) { ## sweeps needed to get the rank right subtracted <- rowsum.default(x, eliminate, reorder = FALSE)/size x <- x - subtracted[eliminate, , drop = FALSE] ## initial fit to drop aliased columns model <- lm.wfit(x, z, w, offset = os.vec) full.theta <- model$coefficients eta <- model$fitted + offset rank <- model$rank + nelim rm(model) mu <- linkinv(eta) mu.eta <- linkder(eta) z <- eta - offset + (y - mu) / mu.eta w <- weights * (mu.eta)^2/variance(mu) est <- !is.na(full.theta) x <- x[, est, drop = FALSE] theta <- full.theta[est] } Z <- cbind(z, x) I1 <- numeric(ncol(Z)) I1[1] <- 1 for (i in 1:control$maxit) { ## try without scaling etc - already of full rank Tvec <- sqrt(grp.sum(w, end)) Umat <- rowsum.default(w * Z, eliminate, reorder = FALSE) Umat <- Umat/Tvec Wmat <- crossprod(sqrt(w) * Z) diag(Wmat) <- diag(Wmat) + ridge Qi <- solve(Wmat - crossprod(Umat), I1) theta <- -Qi[-1]/Qi[1] os.by.level <- ((Umat %*% Qi)/Qi[1])/Tvec if (non.elim) eta <- drop(x %*% theta + offset + os.by.level[eliminate]) else eta <- offset + os.by.level[eliminate] mu <- linkinv(eta) dev <- sum(dev.resids(y, mu, weights)) if (control$trace) cat("Deviance =", dev, "Iterations -", i, "\n") if (abs(dev - devold)/(0.1 + abs(dev)) < control$epsilon) { conv <- TRUE break } devold <- dev mu.eta <- linkder(eta) Z[,1] <- eta - offset + (y - mu) / mu.eta w <- weights * (mu.eta)^2/variance(mu) } converged <- !(i == control$maxit) if (!converged) warning(paste("The convergence criterion was not met after", control$maxit, "iterations.")) names(os.by.level) <- paste("(eliminate)", elim, sep = "") if (non.elim) { full.theta[est] <- theta os.by.level <- os.by.level - subtracted %*% naToZero(full.theta) } else full.theta <- numeric(0) if (ordTRUE) { reorder <- order(ord) y <- y[reorder] mu <- mu[reorder] eta <- eta[reorder] weights <- weights[reorder] } mu.eta <- linkder(eta) w <- weights * (mu.eta)^2/variance(mu) if (coefonly) return(structure(full.theta, eliminated = c(os.by.level))) aic.model <- aic(y, sum(weights > 0), mu, weights, dev) + 2 * rank eliminated <- structure(c(os.by.level), names = levels(eliminate)) list(coefficients = structure(full.theta, eliminated = eliminated), residuals = (y - mu) / linkder(eta), fitted.values = mu, rank = rank, family = family, linear.predictors = eta, deviance = dev, aic = aic.model, iter = i, weights = w, prior.weights = weights, df.residual = nobs - sum(weights == 0) - rank, y = y, converged = converged) ## NB: some components of the result of glm.fit are missing from this list } gnm/R/print.profile.gnm.R0000644000176200001440000000214414376140103014732 0ustar liggesusers# Copyright (C) 2006, 2008, 2009 Heather Turner # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 or 3 of the License # (at your option). # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # http://www.r-project.org/Licenses/ print.profile.gnm <- function (x, digits = max(3, getOption("digits") - 3), ...) { #if (attr(x, "eliminate")) # coefs <- coefs[-seq(attr(x$cov.scaled, "eliminate")), ] if (length(x)) { if (any(vapply(x, function(x) isTRUE(is.na(x)), TRUE))) cat("\nProfile is NA where coefficient has been constrained or", "is unidentified\n\n") print.default(x) } else cat("\nNo coefficients profiled.\n\n", sep = "") invisible(x) } gnm/R/dfbeta.gnm.R0000644000176200001440000000143014376140103013361 0ustar liggesusers# Copyright (C) 2005 Heather Turner # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 or 3 of the License # (at your option). # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # http://www.r-project.org/Licenses/ dfbeta.gnm <- function (model, ...) { if (inherits(model, "gnm", TRUE) == 1) stop("dfbeta is not implemented for gnm objects") else NextMethod } gnm/R/meanResiduals.R0000644000176200001440000000660414376140103014160 0ustar liggesusers# Copyright (C) 2010, 2012, 2013 Heather Turner # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 or 3 of the License # (at your option). # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # http://www.r-project.org/Licenses/ meanResiduals <- function(object, by = NULL, standardized = TRUE, as.table = TRUE, ...){ if (is.null(by)) stop("`by' must be specified in order to compute grouped residuals") if (inherits(by, "formula")){ ## check single factor only if (ncol(attr(terms(by), "factors")) != 1) stop("`by' should only specify a single term") ## find factors as in mosaic.glm (own code) by <- do.call("model.frame", list(formula = by, data = object$data, subset = object$call$subset, na.action = na.pass, drop.unused.levels = TRUE)) ## following loop needed due to bug in model.frame.default ## (fixed for R 2.12) for(nm in names(by)) { f <- by[[nm]] if(is.factor(f) && length(unique(f[!is.na(f)])) < length(levels(f))) by[[nm]] <- by[[nm]][, drop = TRUE] } if (!is.null(object$na.action)) by <- by[-object$na.action,] } if (!all(vapply(by, is.factor, TRUE))) warning("Coercing variables specified by `by' to factors") fac <- factor(interaction(by)) # drop unused levels if (length(fac) != length(object$y)) stop("Grouping factor of length", length(fac), "but model frame of length", length(object$y)) r <- object$residuals ## recompute weights for better accuracy w <- as.numeric(object$prior.weights * object$family$mu.eta(predict(object, type = "link"))^2/ object$family$variance(object$fitted)) #unlike rowsum, following keeps all levels of interaction agg.wts <- tapply(w, by, sum) res <- tapply(r * w, by, sum)/agg.wts if (standardized) res <- res * sqrt(agg.wts) ## now compute degrees of freedom Xreduced <- rowsum(model.matrix(object), fac, na.rm = TRUE) ## suppressWarnings in rankMatrix re coercion to dense matrix if (as.table){ res <- structure(as.table(res), call = object$call, by = paste(names(by), collapse = ":"), df = nlevels(fac) - suppressWarnings(rankMatrix(Xreduced)), standardized = standardized, weights = as.table(agg.wts)) class(res) <- c("meanResiduals", "table") } else { res <- structure(c(res), call = object$call, by = paste(names(by), collapse = ":"), df = nlevels(fac) - suppressWarnings(rankMatrix(Xreduced)), standardized = standardized, weights = c(agg.wts)) class(res) <- c("meanResiduals", "numeric") } return(res) } gnm/R/dfbetas.gnm.R0000644000176200001440000000143214376140103013546 0ustar liggesusers# Copyright (C) 2005 Heather Turner # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 or 3 of the License # (at your option). # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # http://www.r-project.org/Licenses/ dfbetas.gnm <- function (model, ...) { if (inherits(model, "gnm", TRUE) == 1) stop("dfbetas is not implemented for gnm objects") else NextMethod } gnm/R/print.meanResiduals.R0000644000176200001440000000207514376140103015311 0ustar liggesusers# Copyright (C) 2010-2012 Heather Turner # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 or 3 of the License # (at your option). # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # http://www.r-project.org/Licenses/ print.meanResiduals <- function (x, digits = max(3, getOption("digits") - 3), ...) { cat("\nModel call:\n", deparse(attr(x, "call"), width.cutoff = options()$width), "\n", sep = "", fill = TRUE) cat("Mean residuals by ", attr(x, "by"), ":\n\n", sep = "") if (!inherits(x, "table")) x <- as.numeric(x) NextMethod(object = x, digits = digits, print.gap = 2, ...) } gnm/R/profile.gnm.R0000644000176200001440000001704514376140103013605 0ustar liggesusers# Modification of profile.glm from the MASS package for R. # # File MASS/profiles.q copyright (C) 1996 D. M. Bates and W. N. Venables. # # port to R by B. D. Ripley copyright (C) 1998 # # corrections copyright (C) 2000,3,6,7 B. D. Ripley # Copyright (C) 2005, 2006, 2008, 2012 Heather Turner # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 or 3 of the License # (at your option). # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # http://www.r-project.org/Licenses/ profile.gnm <- function (fitted, which = ofInterest(fitted), alpha = 0.05, maxsteps = 10, stepsize = NULL, trace = FALSE, ...) { fittedCoef <- parameters(fitted) coefNames <- names(fittedCoef) p <- length(coefNames) if (is.null(which)) which <- 1:p else if (is.numeric(which)) which <- which else if (is.character(which)) which <- match(which, coefNames) summ <- summary(fitted) sterr <- summ$coefficients[, "Std. Error"] fittedDev <- deviance(fitted) disp <- summ$dispersion ## use z cutoffs as in confint.profile.gnm zmax <- abs(qnorm(alpha/2)) fittedConstrain <- fitted$constrain fittedConstrainTo <- fitted$constrainTo auto <- is.null(stepsize) if (!auto) stepsize[1:2] <- stepsize prof <- as.list(rep(NA, length(which))) names(prof) <- coefNames[which] which <- which[!is.na(sterr)[which]] for (i in which) { par <- coefNames[i] prof[[par]] <- numeric(2 * maxsteps + 1) par.vals <- matrix(nrow = 2 * maxsteps + 1, ncol = p, dimnames = list(NULL, coefNames)) par.vals[maxsteps + 1,] <- fittedCoef asymptote <- c(FALSE, FALSE) if (auto) { ## set defaults sub <- 3 # no. of steps from MLE to zmax*se stepsize <- c(zmax/sub * sterr[i], zmax/sub * sterr[i]) ## estimate quadratic in the region MLE +/- zmax*se margin <- zmax * sterr[i] updatedDev <- numeric(2) for (sgn in c(-1, 1)) { val <- fittedCoef[i] + sgn * margin updated <- suppressWarnings(update(fitted, constrain = c(fittedConstrain, i), constrainTo = c(fittedConstrainTo, val), trace = FALSE, verbose = FALSE, start = fittedCoef)) if (is.null(updated)) break updatedDev[(sgn + 1)/2 + 1] <- deviance(updated) prof[[par]][maxsteps + 1 + sgn * sub] <- sgn * sqrt((deviance(updated) - fittedDev)/disp) par.vals[maxsteps + + 1 + sgn * sub,] <- parameters(updated) } if (all(updatedDev != 0)) { quad <- (sum(updatedDev) - 2 * fittedDev)/(2 * margin^2) lin <- (fittedDev - updatedDev[1])/margin + quad * (margin - 2 * fittedCoef[i]) int <- fittedDev - lin * fittedCoef[i] - quad * fittedCoef[i]^2 ## adjust so roots approx where deviance gives z = zmax int.adj <- int - zmax^2 * disp - fittedDev for (sgn in c(-1, 1)) { dir <- (sgn + 1)/2 + 1 root <- (-lin + sgn * sqrt(lin^2 - 4 * int.adj * quad))/ (2 * quad) firstApprox <- par.vals[maxsteps + 1 + sgn * sub, i] ## if likelihood approx quadratic use default stepsize, else if (sgn * (root - firstApprox) > 0) { ## not gone out far enough, check for asymptote val <- fittedCoef[i] + sgn * 10 * sterr[i] updated <- suppressWarnings(update(fitted, constrain = c(fittedConstrain, i), constrainTo = c(fittedConstrainTo, val), trace = FALSE, verbose = FALSE, start = fittedCoef)) if (!is.null(updated) && sqrt((deviance(updated) - fittedDev)/disp) < zmax) asymptote[dir] <- TRUE } ## if root more than one step away from firstApprox, i.e. ## less than two steps away from fittedCoef, halve stepsize if (abs(sgn * (firstApprox - root)) > stepsize[dir] && !asymptote[dir]) { prof[[par]][maxsteps + 1 + sgn * sub] <- 0 par.vals[maxsteps + 1 + sgn * sub, ] <- NA stepsize[dir] <- abs(root - fittedCoef[i])/(maxsteps/2) } } } } for (sgn in c(-1, 1)) { if (trace) prattle("\nParameter:", par, c("down", "up")[(sgn + 1)/2 + 1], "\n") step <- 0 init <- parameters(fitted) while ((step <- step + 1) <= maxsteps) { if (step > 2 && abs(prof[[par]][maxsteps + 1 + sgn * (step - 2)]) > zmax) break if (prof[[par]][maxsteps + 1 + sgn * step] != 0) next val <- fittedCoef[i] + sgn * step * stepsize[(sgn + 1)/2 + 1] updated <- suppressWarnings(update(fitted, constrain = c(fittedConstrain, i), constrainTo = c(fittedConstrainTo, val), trace = FALSE, verbose = FALSE, start = init)) if (is.null(updated)) { message("Could not complete profile for", par, "\n") break } init <- parameters(updated) zz <- (deviance(updated) - fittedDev)/disp if (zz > -0.001) zz <- max(zz, 0) else stop("profiling has found a better solution, ", "so original fit had not converged") prof[[par]][maxsteps + 1 + sgn * step] <- sgn * sqrt(zz) par.vals[maxsteps + 1 + sgn * step,] <- init #print(data.frame(step = step, val = bi, deviance = fm$deviance, #zstat = z)) } } prof[[par]] <- structure(data.frame(prof[[par]][!is.na(par.vals[,1])]), names = "z") prof[[par]]$par.vals <- par.vals[!is.na(par.vals[,1]), , drop = FALSE] attr(prof[[par]], "asymptote") <- asymptote } val <- structure(prof, original.fit = fitted, summary = summ) class(val) <- c("profile.gnm", "profile.glm", "profile") val } gnm/R/model.matrix.gnm.R0000755000176200001440000000226414376140103014550 0ustar liggesusers# Copyright (C) 2005, 2006 Heather Turner # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 or 3 of the License # (at your option). # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # http://www.r-project.org/Licenses/ model.matrix.gnm <- function(object, coef = NULL, ...) { if (!"x" %in% names(object) || !is.null(coef)) { xcall <- object$call xcall$method <- "model.matrix" xcall$constrain <- object$constrain xcall$constrainTo <- object$constrainTo xcall$data <- model.frame(object) xcall[c("weights", "offset")] <- NULL xcall$verbose <- FALSE if (!is.null(coef)) xcall$start <- coef else xcall$start <- coef(object) eval(xcall) } else object[[match("x", names(object))]] } gnm/R/cooks.distance.gnm.R0000755000176200001440000000220114376140103015043 0ustar liggesusers# Modification of cooks.distance.glm from the stats package for R. # # Copyright (C) 1995-2005 The R Core Team # Copyright (C) 2005, 2006 Heather Turner # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 or 3 of the License # (at your option). # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # http://www.r-project.org/Licenses/ cooks.distance.gnm <- function(model, hat = hatvalues(model), dispersion = attr(vcov(model), "dispersion"), ...){ p <- model$rank res <- na.omit(residuals(model, type = "pearson"))[model$prior.weights != 0] res <- naresid(model$na.action, res) res <- (res/(1 - hat))^2 * hat/(dispersion * p) res[is.infinite(res)] <- NaN res } gnm/R/asGnm.lm.R0000644000176200001440000000361314376140103013035 0ustar liggesusers# Copyright (C) 2006, 2008, 2010 Heather Turner # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 or 3 of the License # (at your option). # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # http://www.r-project.org/Licenses/ asGnm.lm <- function(object, ...) { lmExtra <- match(c("effects", "assign", "qr", "contrasts"), names(object)) modelData <- model.frame(object) object[lmExtra] <- NULL object$call[[1]] <- as.name("gnm") constrain <- which(is.na(coef(object))) object <- c(list(formula = formula(object), eliminate = NULL, ofInterest = NULL, na.action = na.action(modelData), constrain = constrain, constrainTo = numeric(length(constrain)), family = gaussian(), predictors = fitted.values(object), deviance = deviance(object), y = model.response(modelData)), object) object$terms <- gnmTerms(object$formula, data = modelData) object$weights <- object$prior.weights <- rep.int(1, length(object$y)) object$aic <- 2 * object$rank + object$family$aic(object$y, object$weights, object$fitted.values, object$weights, object$deviance) if (is.null(object$offset)) object$offset <- rep.int(0, length(coef(object))) object$tolerance <- object$iterStart <- object$iterMax <- object$iter <- object$converged <- "Not available - model fitted by lm()" class(object) <- c("gnm", "glm", "lm") object } gnm/R/hashSplit.R0000644000176200001440000000226514376140103013322 0ustar liggesusers# Copyright (C) 2006 Heather Turner # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 or 3 of the License # (at your option). # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # http://www.r-project.org/Licenses/ hashSplit <- function(string){ ## An adaptation of some Python code by 'tim' ## http://forum.textdrive.com/viewtopic.php?id=3095 if (!length(string) || !nchar(string)) return(string) s <- strsplit(string, "")[[1]] a <- 0 ans <- vector("list", length(s)) iq <- FALSE for (z in seq(s)) { if (s[z] == "#" & !iq) { ans[z] <- paste(s[a:(z - 1)], collapse = "") a <- z + 1 } else if (s[z] == "\""){ iq <- !iq } } ans[z] <- paste(s[a:z], collapse = "") unlist(ans) } gnm/R/unlistOneLevel.R0000755000176200001440000000232114376140103014327 0ustar liggesusers# Copyright (C) 2005 David Firth and Heather Turner # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 or 3 of the License # (at your option). # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # http://www.r-project.org/Licenses/ unlistOneLevel <- function(theList){ result <- vector(length = sum(vapply(theList, function(x) if(is.list(x)) length(x) else 1, 1)), mode = "list") count <- 0 for (i in seq(theList)){ theItem <- theList[[i]] if (is.list(theItem)){ for (j in seq(theItem)){ count <- count + 1 result[[count]] <- theItem[[j]] } } else { count <- count + 1 result[[count]] <- theItem } } return(result[1:count]) } gnm/R/MultHomog.R0000755000176200001440000000175514376140103013304 0ustar liggesusers# Copyright (C) 2005, 2006, 2008 Heather Turner # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 or 3 of the License # (at your option). # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # http://www.r-project.org/Licenses/ MultHomog <- function(..., inst = NULL){ dots <- match.call(expand.dots = FALSE)[["..."]] list(predictors = dots, common = rep(1, length(dots)), term = function(predLabels, ...) { paste("(", paste(predLabels, collapse = ")*("), ")", sep = "") }, call = as.expression(match.call())) } class(MultHomog) <- "nonlin" gnm/R/updateLinear.R0000644000176200001440000000250714376140103013777 0ustar liggesusers# Copyright (C) 2005, 2006, 2010 Heather Turner # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 or 3 of the License # (at your option). # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # http://www.r-project.org/Licenses/ updateLinear <- function(which, theta, y, mu, eta, offset, weights, family, modelTools, X, eliminate) { dmu <- family$mu.eta(eta) vmu <- family$variance(mu) w <- weights * dmu * dmu / vmu theta[which] <- 0 offsetVarPredictors <- modelTools$varPredictors(theta) offset <- offset + modelTools$predictor(offsetVarPredictors) z <- eta - offset + (y - mu)/dmu if (is.null(eliminate)) naToZero(lm.wfit(X[,which, drop = FALSE], z, w)$coef) else suppressWarnings(glm.fit.e(X[,which, drop = FALSE], z, weights = w, intercept = FALSE, eliminate = eliminate, coefonly = TRUE)) } gnm/R/Mult.R0000755000176200001440000000216214376140103012303 0ustar liggesusers# Copyright (C) 2005, 2006, 2008 Heather Turner # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 or 3 of the License # (at your option). # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # http://www.r-project.org/Licenses/ Mult <- function(..., inst = NULL){ if ("multiplicity" %in% names(match.call()[-1])) stop("multiplicity argument of Mult has been replaced by", "\"inst\" argument.") dots <- match.call(expand.dots = FALSE)[["..."]] list(predictors = dots, term = function(predLabels, ...) { paste("(", paste(predLabels, collapse = ")*("), ")", sep = "") }, call = as.expression(match.call()), match = seq(dots)) } class(Mult) <- "nonlin" gnm/R/gnm.R0000755000176200001440000003505614376140103012153 0ustar liggesusers# Designed to take similar arguments to glm from the stats package from R; # some of the code to handle the arguments is copied/modified from glm. # # Copyright (C) 1995-2005 The R Core Team # Copyright (C) 2005-2010, 2012, 2013 Heather Turner and David Firth # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 or 3 of the License # (at your option). # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # http://www.r-project.org/Licenses/ gnm <- function(formula, eliminate = NULL, ofInterest = NULL, constrain = numeric(0), #index of non-eliminated parameters constrainTo = numeric(length(constrain)), family = gaussian, data = NULL, subset, weights, na.action, method = "gnmFit", checkLinear = TRUE, offset, start = NULL, etastart = NULL, mustart = NULL, tolerance = 1e-6, iterStart = 2, iterMax = 500, trace = FALSE, verbose = TRUE, model = TRUE, x = TRUE, termPredictors = FALSE, ridge = 1e-8, ...) { call <- match.call() modelTerms <- gnmTerms(formula, substitute(eliminate), data) modelData <- as.list(match.call(expand.dots = FALSE)) if (inherits(data, "table") && missing(na.action)) modelData$na.action <- "na.exclude" argPos <- match(c("eliminate", "data", "subset", "weights", "na.action", "offset", "etastart", "mustart"), names(modelData), 0) modelData <- as.call(c(as.name("model.frame"), formula = modelTerms, modelData[argPos], drop.unused.levels = TRUE)) modelData <- eval(modelData, parent.frame()) eliminate <- modelData$`(eliminate)` if (!is.null(eliminate)) { if (!is.factor(eliminate)) stop("'eliminate' must be a factor") xtf <- xtfrm(modelData$`(eliminate)`) ord <- order(xtf) if (ordTRUE <- !identical(ord, xtf)) { modelData <- modelData[ord, , drop = FALSE] eliminate <- modelData$`(eliminate)` } nElim <- nlevels(eliminate) } else nElim <- 0 if (method == "model.frame") return(modelData) else if (!method %in% c("gnmFit", "coefNames", "model.matrix") && !is.function(get(method))) { warning("function ", method, " can not be found. Using \"gnmFit\".\n", call. = FALSE) method <- "gnmFit" } nobs <- nrow(modelData) y <- model.response(modelData, "any") if (length(dim(y)) == 1L) { nm <- rownames(y) dim(y) <- NULL if (!is.null(nm)) names(y) <- nm } if (is.null(y)) y <- rep(0, nobs) weights <- as.vector(model.weights(modelData)) if (!is.null(weights) && any(weights < 0)) stop("negative weights are not allowed") if (is.null(weights)) weights <- rep.int(1, nobs) offset <- as.vector(model.offset(modelData)) if (is.null(offset)) offset <- rep.int(0, nobs) mustart <- model.extract(modelData, "mustart") etastart <- model.extract(modelData, "etastart") if (is.character(family)) family <- get(family, mode = "function", envir = parent.frame()) if (is.function(family)) family <- family() if (is.null(family$family)) { stop("`family' not recognized") } if (family$family %in% c("binomial", "quasibinomial")) { if (is.factor(y) && NCOL(y) == 1) y <- y != levels(y)[1] else if (NCOL(y) == 2) { n <- y[, 1] + y[, 2] y <- ifelse(n == 0, 0, y[, 1]/n) weights <- weights * n } } if (is.empty.model(modelTerms) && is.null(eliminate)) { if (method == "coefNames") return(numeric(0)) else if (method == "model.matrix") return(model.matrix(modelTerms, data = modelData)) if (!family$valideta(offset)) stop("invalid predictor values in empty model") mu <- family$linkinv(offset) if (!family$validmu(mu)) stop("invalid fitted values in empty model") dmu <- family$mu.eta(offset) dev <- sum(family$dev.resids(y, mu, weights)) modelAIC <- suppressWarnings(family$aic(y, rep.int(1, nobs), mu, weights, dev)) fit <- list(coefficients = numeric(0), constrain = numeric(0), constrainTo = numeric(0), eliminate = NULL, predictors = offset, fitted.values = mu, deviance = dev, aic = modelAIC, iter = 0, weights = weights*dmu^2/family$variance(mu), residuals = (y - mu)/dmu, df.residual = nobs, rank = 0, family = family, prior.weights = weights, y = y, converged = NA) if (x) fit <- c(fit, x = model.matrix(modelTerms, data = modelData)) if (termPredictors) fit <- c(fit, termPredictors = matrix(, nrow(modelData), 0)) } else { onlyLin <- checkLinear && all(attr(modelTerms, "type") == "Linear") if (onlyLin) { if (nElim) { X <- model.matrix(update(modelTerms, . ~ . + 1), modelData) asgn <- attr(X, "assign") X <- X[,-1, drop = FALSE] attr(X, "assign") <- asgn[-1] } else X <- model.matrix(modelTerms, modelData) coefNames <- colnames(X) } else { modelTools <- gnmTools(modelTerms, modelData, method == "model.matrix" | x) coefNames <- names(modelTools$start) } if (method == "coefNames") return(coefNames) nParam <- length(coefNames) if (identical(constrain, "[?]")) call$constrain <- constrain <- unlist(pickFrom(coefNames, edit.setlabels = FALSE, title = "Constrain one or more gnm coefficients", items.label = "Model coefficients:", warningText = "No parameters were specified to constrain", return.indices = TRUE)) if (is.character(constrain)) { res <- match(constrain, coefNames, 0) if (res == 0 && length(constrain) == 1){ constrain <- match(grep(constrain, coefNames), seq_len(nParam), 0) } else constrain <- res } ## dropped logical option if (!all(constrain %in% seq_len(nParam))) stop(" cannot match 'constrain' to non-eliminated parameters. ") if (is.null(start)) start <- rep.int(NA, nElim + nParam) else if (length(start) != nElim + nParam) { if (!is.null(eliminate) && length(start) == nParam) start <- c(rep.int(NA, nElim), start) else stop("length(start) must either equal the no. of parameters\n", "or the no. of non-eliminated parameters.") } if (onlyLin) { if (length(constrain)) { offset <- drop(offset + X[, constrain, drop = FALSE] %*% constrainTo) X[, constrain] <- 0 } if (method == "model.matrix") return(X) } else if (method == "model.matrix"){ theta <- modelTools$start theta[!is.na(start)] <- start[!is.na(start)] theta[constrain] <- constrainTo theta[is.na(theta)] <- seq(start)[is.na(theta)] varPredictors <- modelTools$varPredictors(theta) X <- modelTools$localDesignFunction(theta, varPredictors) attr(X, "assign") <- modelTools$termAssign return(X) } if (!is.numeric(tolerance) || tolerance <= 0) stop("value of 'tolerance' must be > 0") if (!is.numeric(iterMax) || iterMax < 0) stop("maximum number of iterations must be >= 0") if (onlyLin) { if (any(is.na(start))) start <- NULL fit <- glm.fit.e(X, y, weights = weights, start = start, etastart = etastart, mustart = mustart, offset = offset, family = family, control = glm.control(tolerance, iterMax, trace), intercept = attr(modelTerms, "intercept"), eliminate = eliminate) if (sum(is.na(coef(fit))) > length(constrain)) { extra <- setdiff(which(is.na(coef(fit))), constrain) ind <- order(c(constrain, extra)) constrain <- c(constrain, extra)[ind] constrainTo <- c(constrainTo, numeric(length(extra)))[ind] } if (!is.null(fit$null.deviance)) { extra <- match(c("effects", "R", "qr", "null.deviance", "df.null", "boundary"), names(fit)) fit <- fit[-extra] } names(fit)[match("linear.predictors", names(fit))] <- "predictors" fit$constrain <- constrain fit$constrainTo <- constrainTo if (x) { fit$x <- X } if (termPredictors) { modelTools <- gnmTools(modelTerms, modelData) varPredictors <- modelTools$varPredictors(naToZero(coef(fit))) fit$termPredictors <- modelTools$predictor(varPredictors, term = TRUE) } } else if (method != "gnmFit") fit <- do.call(method, list(modelTools = modelTools, y = y, constrain = constrain, constrainTo = constrainTo, eliminate = eliminate, family = family, weights = weights, offset = offset, nobs = nobs, start = start, etastart = etastart, mustart = mustart, tolerance = tolerance, iterStart = iterStart, iterMax = iterMax, trace = trace, verbose = verbose, x = x, termPredictors = termPredictors, ridge = ridge, ...)) else fit <- gnmFit(modelTools = modelTools, y = y, constrain = constrain, constrainTo = constrainTo, eliminate = eliminate, family = family, weights = weights, offset = offset, nobs = nobs, start = start, etastart = etastart, mustart = mustart, tolerance = tolerance, iterStart = iterStart, iterMax = iterMax, trace = trace, verbose = verbose, x = x, termPredictors = termPredictors, ridge = ridge) } if (is.null(fit)) { warning("Algorithm failed - no model could be estimated", call. = FALSE) return() } if (is.null(ofInterest) && !is.null(eliminate)) ofInterest <- seq_len(nParam) if (identical(ofInterest, "[?]")) call$ofInterest <- ofInterest <- pickCoef(fit, warningText = paste("No subset of coefficients selected", "- assuming all are of interest.")) if (is.character(ofInterest)) { if (length(ofInterest) == 1) ofInterest <- match(grep(ofInterest, coefNames), seq_len(nParam), 0) else ofInterest <- match(ofInterest, coefNames, 0) if (!sum(ofInterest)) ofInterest <- seq_len(nParam) } if (!is.null(ofInterest)) { if (!all(ofInterest %in% seq_len(nParam))) stop("'ofInterest' does not specify a subset of the ", "non.eliminated coefficients.") names(ofInterest) <- coefNames[ofInterest] } if (is.null(data)) data <- environment(formula) fit <- c(list(call = call, formula = formula, terms = modelTerms, data = data, eliminate = eliminate, ofInterest = ofInterest, na.action = attr(modelData, "na.action"), xlevels = .getXlevels(modelTerms, modelData), offset = offset, tolerance = tolerance, iterStart = iterStart, iterMax = iterMax), fit) if (!is.null(eliminate) && ordTRUE) { reorder <- order(ord) fit <- within(fit, { y <- y[reorder] fitted.values <- fitted.values[reorder] predictors <- predictors[reorder] residuals <- residuals[reorder] weights <- weights[reorder] prior.weights <- prior.weights[reorder] eliminate <- eliminate[reorder] offset <- offset[reorder] }) modelData <- modelData[reorder, , drop = FALSE] y <- y[reorder] if (x) { asgn <- attr(fit$x, "assign") fit$x <- fit$x[reorder, , drop = FALSE] attr(fit$x, "assign") <- asgn } } asY <- c("predictors", "fitted.values", "residuals", "prior.weights", "weights", "y", "offset") if (inherits(data, "table") && (is.null(fit$na.action) | inherits(fit$na.action, "exclude"))) { attr <- attributes(data) if (!missing(subset)) { ind <- as.numeric(names(y)) lev <- do.call("expand.grid", attr$dimnames)[ind,, drop = FALSE] attr$dimnames <- apply(lev, 2, unique) attr$dim <- unname(vapply(attr$dimnames, length, 1)) } fit$table.attr <- attr } fit[asY] <- lapply(fit[asY], structure, dim = NULL, names = names(y)) if (termPredictors) rownames(fit$termPredictors) <- names(y) if (model) fit$model <- modelData class(fit) <- c("gnm", "glm", "lm") attr(fit, ".Environment") <- environment(gnm) fit } gnm/R/vcov.gnm.R0000755000176200001440000000642414376140103013124 0ustar liggesusers# Code to estimate dispersion from summary.glm from the stats package for R. # # Copyright (C) 1995-2005 The R Core Team # Copyright (C) 2005, 2006, 2010 Heather Turner # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 or 3 of the License # (at your option). # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # http://www.r-project.org/Licenses/ ## returns vcov for the non-eliminated parameters vcov.gnm <- function(object, dispersion = NULL, with.eliminate = FALSE, ...){ if (is.null(dispersion)) { if (any(object$family$family == c("poisson", "binomial"))) dispersion <- 1 else if (object$df.residual > 0) { if (any(object$weights == 0)) warning("observations with zero weight ", "not used for calculating dispersion") dispersion <- sum(object$weights * object$residuals^2)/ object$df.residual } else dispersion <- Inf } constrain <- object$constrain eliminate <- object$eliminate nelim <- nlevels(eliminate) w <- as.vector(object$weights) X <- model.matrix(object) ind <- !(seq_len(ncol(X)) %in% constrain) cov.unscaled <- array(0, dim = rep(ncol(X), 2), dimnames = list(colnames(X), colnames(X))) if (!length(ind)) { if (nelim && with.eliminate) { Ti <- 1/vapply(split(w, eliminate), sum, 1) attr(cov.unscaled, "varElim") <- dispersion * Ti } return(structure(cov.unscaled, dispersion = dispersion, ofInterest = NULL, class = "vcov.gnm")) } if (length(constrain)) X <- X[, -constrain, drop = FALSE] W.X <- sqrt(w) * X if (object$rank == ncol(W.X)) { cov.unscaled[ind, ind] <- chol2inv(chol(crossprod(W.X))) } else { if (is.null(eliminate)) { cov.unscaled[ind, ind] <- MPinv(crossprod(W.X), method = "chol", rank = object$rank) } else { ## try without ridge and generalized inverse of Q Ti <- 1/vapply(split(w, eliminate), sum, 1) U <- rowsum(sqrt(w) * W.X, eliminate) W <- crossprod(W.X) Ti.U <- Ti * U UTU <- crossprod(U, Ti.U) cov.unscaled[ind, ind] <- MPinv(W - UTU, method = "chol", rank = object$rank - nelim) if (with.eliminate) { rownames(Ti.U) <- names(attr(coef(object), "eliminated")) attr(cov.unscaled, "covElim") <- dispersion * -Ti.U %*% cov.unscaled[ind, ind] attr(cov.unscaled, "varElim") <- dispersion * -rowSums(attr(cov.unscaled, "covElim") * Ti.U) + Ti } } } structure(dispersion * cov.unscaled, dispersion = dispersion, ofInterest = ofInterest(object), class = "vcov.gnm") } gnm/R/psum.R0000755000176200001440000000206114376140103012344 0ustar liggesusers# Copyright (C) 2005 Heather Turner # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 or 3 of the License # (at your option). # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # http://www.r-project.org/Licenses/ psum <- function(...) { summandList <- list(...) nSummands <- length(summandList) if (nSummands == 0) return(0) else if (nSummands == 1) return(summandList[[1]]) else { trySum <- try(summandList[[1]] + do.call("Recall", summandList[-1]), silent = TRUE) if (inherits(trySum, "try-error")) stop("addition not implemented for types of argument supplied") else trySum } } gnm/R/gnmStart.R0000644000176200001440000000134214376140103013155 0ustar liggesusers# Copyright (C) 2006 Heather Turner # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 or 3 of the License # (at your option). # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # http://www.r-project.org/Licenses/ gnmStart <- function(n, scale = 0.1) { theta <- runif(n, -1, 1) * scale theta + (-1)^(theta < 0) * scale } gnm/R/logtrans.gnm.R0000644000176200001440000000143614376140103013773 0ustar liggesusers# Copyright (C) 2005 Heather Turner # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 or 3 of the License # (at your option). # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # http://www.r-project.org/Licenses/ logtrans.gnm <- function (object, ...) { if (inherits(object, "gnm", TRUE) == 1) stop("logtrans is not implemented for gnm objects") else NextMethod } gnm/R/termPredictors.default.R0000644000176200001440000000210514376140103016005 0ustar liggesusers# Copyright (C) 2005 Heather Turner # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 or 3 of the License # (at your option). # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # http://www.r-project.org/Licenses/ termPredictors.default <- function(object, ...) { if (is.null(object$termPredictors)){ X <- model.matrix(object) termPredictors <- t(rowsum(t(X %*% diag(naToZero(coef(object)))), attr(X, "assign"))) colnames(termPredictors) <- c("(Intercept)"[0 %in% attr(X, "assign")], attr(object$terms, "term.labels")) termPredictors } else object$termPredictors } gnm/R/getContrasts.R0000644000176200001440000001267214376140103014046 0ustar liggesusers# Copyright (C) 2005-2017 David Firth and Heather Turner # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 or 3 of the License # (at your option). # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # http://www.r-project.org/Licenses/ getContrasts <- function(model, set = NULL, ref = "first", scaleRef = "mean", scaleWeights = NULL, dispersion = NULL, check = TRUE, ...){ coefs <- parameters(model) l <- length(coefs) if (!l) stop("Model has no non-eliminated parameters") of.interest <- ofInterest(model) if (!length(of.interest)) of.interest <- seq(l) coefNames <- names(coefs) if (is.null(set)) set <- unlist(pickFrom(coefNames[of.interest], 1, ...)) setLength <- length(set) if (setLength == 0) stop( "No non-empty parameter set specified") if (setLength < 1.5) stop( "For contrasts, at least 2 parameters are needed in a set") if (is.numeric(set)) set <- coefNames[set] for (refName in c("ref", "scaleRef"[!is.null(scaleWeights)])) { refSpec <- c(get(refName)) if (is.numeric(refSpec)){ assign(refName, refSpec) if (length(refSpec) == 1){ if (refSpec %in% seq(setLength)) { temp <- rep(0, setLength) temp[refSpec] <- 1 assign(refName, temp) } else stop("The specified ", refName, " is out of range") } if (length(refSpec) != setLength) stop("The specified ", refName, " has the wrong length") if ((sum(refSpec) - 1) ^ 2 > 1e-10) stop("The ", refName, " weights do not sum to 1") } else assign(refName, switch(refSpec, "first" = c(1, rep.int(0, setLength - 1)), "last" = c(rep.int(0, setLength - 1), 1), "mean"= rep.int(1/setLength, setLength), stop("Specified ", refName, " is not an opton."))) } setCoefs <- coefs[set] contr <- setCoefs - as.vector(ref %*% setCoefs) grad <- diag(rep(1, setLength)) grad <- grad - ref rownames(grad) <- set if (!is.null(scaleWeights)) { if (is.numeric(scaleWeights)) { scaleWeights <- c(scaleWeights) if (length(scaleWeights) != setLength) stop("The specified scaleWeights has the wrong length") } else scaleWeights <- switch(scaleWeights, unit = rep.int(1, setLength), setLength = rep.int(1/setLength, setLength), stop("Specified scaleWeights is not an opton.")) d <- setCoefs - as.vector(scaleRef %*% setCoefs) vd <- scaleWeights * d vdd <- sqrt(drop(vd %*% d)) contr <- contr/vdd grad <- ((scaleRef * sum(vd) - vd) %o% contr/vdd + grad)/vdd } combMatrix <- matrix(0, l, setLength) combMatrix[match(set, coefNames), ] <- grad colnames(combMatrix) <- set Vcov <- vcov(model, dispersion = dispersion) if (!is.logical(check) && !(all(check %in% seq(setLength)))) { stop("check must be TRUE or FALSE or a suitable numeric index vector") } iden <- rep(TRUE, ncol(combMatrix)) ## all unchecked as yet names(iden) <- colnames(combMatrix) if (is.logical(check)) { if (check) iden <- checkEstimable(model, combMatrix) } else iden[check] <- checkEstimable(model, combMatrix[, check]) if (any(!na.omit(iden))) { if (all(!na.omit(iden))) { warning("None of the specified contrasts is estimable", call. = FALSE) return(NULL) } message("Note: the following contrasts are unestimable:") messageVector(names(iden)[iden %in% FALSE]) } not.unestimable <- iden | is.na(iden) combMatrix <- combMatrix[, not.unestimable, drop = FALSE] V <- crossprod(combMatrix, crossprod(Vcov, combMatrix)) result <- data.frame(contr[not.unestimable], sqrt(diag(V))) dimnames(result) <- list(set[not.unestimable], c("Estimate", "Std. Error")) relerrs <- NULL if (sum(not.unestimable) > 2 && is.null(scaleWeights)) { estimable.names <- names(not.unestimable)[not.unestimable] Vcov <- Vcov[estimable.names, estimable.names, drop = FALSE] QVs <- try(qvcalc(Vcov), silent = TRUE) if (inherits(QVs, "try-error")) message("Quasi-variances could not be computed") else { quasiSE <- sqrt(QVs$qvframe$quasiVar) result <- cbind(result, quasiSE) names(result)[1:2] <- c("estimate", "SE") result$quasiVar <- QVs$qvframe$quasiVar relerrs <- QVs$relerrs } } return(structure(list(covmat = Vcov, qvframe = result, relerrs = relerrs, modelcall = model$call), class = "qv") ) } gnm/R/summary.meanResiduals.R0000644000176200001440000000341314376140103015647 0ustar liggesusers# Copyright (C) 2010, 2012 Heather Turner # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 or 3 of the License # (at your option). # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # http://www.r-project.org/Licenses/ # this should always be a summary based on single grouping factor summary.meanResiduals <- function (object, digits = max(3, getOption("digits") - 3), ...) { cat("\nModel call:\n", deparse(attr(object, "call"), width.cutoff = options()$width), "\n", sep = "", fill = TRUE) cat("Mean residuals by ", attr(object, "by"), ":\n\n", sep = "") q <- quantile(object, na.rm = TRUE) names(q) <- c("Min", "1Q", "Median", "3Q", "Max") print.default(q, digits = digits, na.print = "", print.gap = 2) if (attr(object, "standardized")) { cat("\nTest of Normality:\n") df <- attr(object, "df") if (df > 0) { chi.sq <- sum(as.vector(object)^2) p.value <- pchisq(chi.sq, df, lower.tail = FALSE) test <- c(chi.sq, df, p.value) cat("\nChi^2 =", format(chi.sq, digits = digits), "on", df, "df, p-value =", format(p.value, digits = digits), "\n") } else cat("\n(zero degrees of freedom)\n") } else cat("\nResiduals are not standardized\n") } gnm/R/gnmTools.R0000755000176200001440000002342614471646323013205 0ustar liggesusers# Copyright (C) 2005-2017 Heather Turner and David Firth # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 or 3 of the License # (at your option). # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # http://www.r-project.org/Licenses/ "gnmTools" <- function(modelTerms, gnmData = NULL, x = TRUE) { eliminate <- attr(modelTerms, "eliminate") unitLabels <- attr(modelTerms, "unitLabels") common <- attr(modelTerms, "common") prefixLabels <- attr(modelTerms, "prefixLabels") match <- attr(modelTerms, "match") varLabels <- attr(modelTerms, "varLabels") block <- attr(modelTerms, "block") type <- attr(modelTerms, "type") nFactor <- length(varLabels) seqFactor <- seq(nFactor) termTools <- factorAssign <- thetaID <- vector(mode = "list", length = nFactor) blockID <- unique(block) adj <- 1 for (i in blockID) { b <- block == i if (all(common[b])) { ## get full set of levels facs <- vapply(unitLabels[b], function(x) { is.factor(eval(parse(text = x), gnmData))}, TRUE) if (!all(facs)) stop(paste(c("The following should be factors:", unitLabels[b][!facs]), collapse = "\n")) allLevels <- lapply(unitLabels[b], function(x) levels(eval(parse(text = x), gnmData))) labels <- unique(unlist(allLevels)) if (!all(mapply(identical, allLevels, list(labels)))) { labels <- sort(labels) } nLevels <- length(labels) ## create design matrices termTools[b] <- lapply(unitLabels[b], function(x) { class.ind(factor(eval(parse(text = x), gnmData), levels = labels)) }) ## create labels i <- which(b) nm <- paste(prefixLabels[i], labels, sep = "") factorAssign[b] <- lapply(i, function(x, nLevels, nm) structure(rep(x, nLevels), names = nm), nLevels, nm) adj <- adj + nLevels } else { intercept <- as.numeric(i == 0 && eliminate) tmp <- model.matrix(terms(reformulate(c(intercept, unitLabels[b])), keep.order = TRUE), data = gnmData) tmpAssign <- attr(tmp, "assign") if (intercept) { tmp <- tmp[,-1, drop = FALSE] tmpAssign <- tmpAssign[-1] } tmpAssign <- which(b)[tmpAssign + !tmpAssign[1]] ## don't paste "(Intercept)" if non-empty prefix and only parameter prefixOnly <- {identical(colnames(tmp), "(Intercept)") && prefixLabels[tmpAssign] != ""} nm <- paste(prefixLabels[tmpAssign], colnames(tmp)[!prefixOnly], sep = "") names(tmpAssign) <- nm termTools[b] <- lapply(split(seq_len(ncol(tmp)), tmpAssign), function(i, M) M[, i , drop = FALSE], tmp) factorAssign[b] <- split(tmpAssign, tmpAssign) adj <- adj + length(tmpAssign) } } factorAssign <- unlist(factorAssign) uniq <- !(duplicated(block) & common)[factorAssign] parLabels <- names(factorAssign) nTheta <- length(factorAssign) thetaID <- numeric(nTheta) thetaID[uniq] <- seq(sum(uniq)) thetaID[!uniq] <- thetaID[common[factorAssign] & uniq] nr <- dim(gnmData)[1] tmp <- seq(factorAssign) * nr first <- c(0, tmp[-nTheta]) firstX <- first[thetaID] last <- tmp - 1 lastX <- last[thetaID] + 1 nc <- tabulate(factorAssign) tmp <- cumsum(nc) a <- c(1, tmp[-nFactor] + 1) z <- tmp lt <- last[z] - first[a] + 1 storage.mode(firstX) <- storage.mode(first) <- storage.mode(lastX) <- storage.mode(last) <- storage.mode(a) <- storage.mode(z) <- storage.mode(lt) <- "integer" baseMatrix <- matrix(1, nrow = nr, ncol = nTheta) for (i in seq(termTools)) if (is.matrix(termTools[[i]])) baseMatrix[, factorAssign == i] <- termTools[[i]] X <- baseMatrix colID <- match(thetaID, thetaID) thetaID <- split(thetaID, factorAssign) names(thetaID) <- varLabels if (any(duplicated(parLabels[uniq]))){ parLabels[uniq] <- make.unique(parLabels[uniq]) warning("Using make.unique() to make default parameter labels unique", call. = FALSE) } colnames(X) <- parLabels X <- X[, uniq, drop = FALSE] theta <- rep(NA, nTheta) for (i in blockID) { b <- block == i if (sum(b) == 1 && is.list(termTools[[which(b)]]) && !is.null(termTools[[which(b)]]$start)){ theta[unlist(thetaID[b])] <- termTools[[which(b)]]$start } } names(theta) <- parLabels termAssign <- attr(modelTerms, "assign")[factorAssign] block <- block[factorAssign] for (i in seq(attr(modelTerms, "predictor"))) { if (!is.null(attr(modelTerms, "start")[[i]])) { termID <- termAssign == i & uniq split <- block[termID] split <- match(split, unique(split)) theta[termID] <- attr(modelTerms, "start")[[i]](structure(theta[termID], assign = split)) } } theta <- theta[uniq] if (attr(modelTerms, "intercept")) termAssign <- termAssign - 1 prodList <- vector(mode = "list", length = nFactor) names(prodList) <- varLabels type <- type == "Special" varPredictors <- function(theta) { for (i in seqFactor) { prodList[[i]] <- .Call(C_submatprod, baseMatrix, theta[thetaID[[i]]], first[a[i]], nr, nc[i]) } prodList } predictor <- function(varPredictors, term = FALSE) { if (term) { es <- lapply(attr(modelTerms, "predictor"), function(x) { do.call("bquote", list(x, gnmData))}) tp <- vapply(es, eval, double(nr), c(varPredictors, gnmData)) colnames(tp) <- c("(Intercept)"[attr(modelTerms, "intercept")], attr(modelTerms, "term.labels")) tp } else eval(e, c(varPredictors, gnmData)) } gnmData <- lapply(gnmData[, !names(gnmData) %in% varLabels, drop = FALSE], drop) e <- sumExpression(attr(modelTerms, "predictor")) varDerivs <- lapply(varLabels, deriv, expr = e) commonAssign <- factorAssign[colID] nCommon <- table(commonAssign[!duplicated(factorAssign)]) tmpID <- unique(commonAssign) tmpID <- tmpID[type[tmpID]] nCommon <- as.integer(nCommon[as.character(tmpID)]) if (any(type)) specialVarDerivs <- deriv(e, varLabels[type]) convID <- colID[uniq] vID <- cumsum(c(1, nCommon))[seq(nCommon)] localDesignFunction <- function(theta, varPredictors, ind = NULL) { if (!any(common)) { if (!is.null(ind)){ i1 <- convID[ind] tmpID <- commonAssign[i1] } for (i in tmpID) { fi <- unique(factorAssign[commonAssign == i]) if (is.null(ind)){ i1 <- a[fi][1] i2 <- z[fi][1] } else { i2 <- i1 a <- ind if (factorAssign[ind] > 1) ind <- ind - z[factorAssign[ind] - 1] } if (type[fi]) { v <- attr(eval(varDerivs[[fi]], c(varPredictors, gnmData)), "gradient") .Call(C_subprod, X, baseMatrix, as.double(v), first[i1], last[i2], nr) } } if(!is.null(ind)) X[, a, drop = FALSE] else X } else { if (is.null(ind)){ v <- attr(eval(specialVarDerivs, c(varPredictors, gnmData)), "gradient") .Call(C_newsubprod, baseMatrix, as.double(v), X, first[a[tmpID]], first[vID], firstX[a[tmpID]], as.integer(length(nCommon)), lt[tmpID], lastX[z[tmpID]], nr, nCommon, max(nCommon)) } else { i1 <- convID[ind] fi <- unique(factorAssign[commonAssign == commonAssign[i1]]) v <- list() for(j in fi) v[[j]] <- attr(eval(varDerivs[[j]], c(varPredictors, gnmData)), "gradient") .Call(C_onecol, baseMatrix, as.double(unlist(v[fi])), first[i1], lt[fi[1]], nr, as.integer(length(fi))) } } } toolList <- list(start = theta, varPredictors = varPredictors, predictor = predictor, localDesignFunction = localDesignFunction) toolList$termAssign <- termAssign[uniq] toolList } gnm/R/parameters.R0000644000176200001440000000131614376140103013522 0ustar liggesusers# Copyright (C) 2006 Heather Turner # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 or 3 of the License # (at your option). # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # http://www.r-project.org/Licenses/ parameters <- function(object) replace(coef(object), object$constrain, object$constrainTo) gnm/R/grp.sum.R0000644000176200001440000000131214376140103012746 0ustar liggesusers# Copyright (C) 2010 Heather Turner # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 or 3 of the License # (at your option). # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # http://www.r-project.org/Licenses/ grp.sum <- function(x, grp.end){ x <- cumsum(x)[grp.end] x - c(0, x[-length(x)]) } gnm/R/gnmFit.R0000755000176200001440000004376714471646277012651 0ustar liggesusers# Copyright (C) 2005-2023 Heather Turner and David Firth # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 or 3 of the License # (at your option). # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # http://www.r-project.org/Licenses/ gnmFit <- function (modelTools, y, constrain = numeric(0), # index of non-eliminated parameters constrainTo = numeric(length(constrain)), eliminate = NULL, # now a factor family = poisson(), weights = rep.int(1, length(y)), offset = rep.int(0, length(y)), nobs = length(y), start = rep.int(NA, length(modelTools$start) + nlevels(eliminate)), etastart = NULL, mustart = NULL, tolerance = 1e-6, iterStart = 2, iterMax = 500, trace = FALSE, verbose = FALSE, x = FALSE, termPredictors = FALSE, ridge = 1e-8) { names(y) <- NULL eps <- 100*.Machine$double.eps ridge <- 1 + ridge if (verbose) width <- as.numeric(options("width")) nTheta <- length(modelTools$start) nelim <- nlevels(eliminate) non.elim <- seq.int(nelim + 1, length(start)) ## add constraints for inestimable linear parameters tmpTheta <- rep.int(NA_real_, nTheta) tmpTheta[constrain] <- constrainTo varPredictors <- modelTools$varPredictors(tmpTheta) X <- modelTools$localDesignFunction(tmpTheta, varPredictors) isLinear <- unname(!is.na(colSums(X))) unspecifiedLin <- isLinear & unname(is.na(tmpTheta)) Xlinear <- X[, unspecifiedLin, drop = FALSE] if (nelim){ ## sweeps needed to get the rank right size <- tabulate(eliminate) subtracted <- rowsum.default(Xlinear, eliminate, reorder = FALSE)/size Xlinear <- Xlinear - subtracted[eliminate, , drop = FALSE] } QR <- qr(Xlinear) if (QR$rank < sum(unspecifiedLin)) { extraLin <- which(unspecifiedLin)[QR$pivot[-seq_len(QR$rank)]] } else extraLin <- numeric() extra <- setdiff(extraLin, constrain) ind <- order(c(constrain, extra)) constrain <- c(constrain, extra)[ind] constrainTo <- c(constrainTo, numeric(length(extra)))[ind] notConstrained <- !seq.int(nTheta) %in% constrain status <- "not.converged" unspecifiedNonlin <- FALSE dev <- numeric(2) if (nelim) { elim <- seq.int(nelim) alpha <- start[elim] } else { eliminate <- 1 alpha <- 0 } if (any(is.na(start))) { if (verbose == TRUE) prattle("Initialising", "\n", sep = "") ## only use start for elim par if all specified initElim <- any(is.na(alpha)) if (initElim) alpha[] <- numeric(nelim) theta <- start[non.elim] theta[is.na(theta)] <- modelTools$start[is.na(theta)] names(theta) <- names(modelTools$start) theta[constrain] <- constrainTo ## update any unspecified linear parameters unspecified <- unname(is.na(theta)) unspecifiedLin <- unspecified & isLinear unspecifiedNonlin <- unspecified & !isLinear if (!is.null(mustart)) etastart <- family$linkfun(mustart) if (any(unspecifiedNonlin) && is.null(etastart)){ theta[unspecifiedNonlin] <- gnmStart(sum(unspecifiedNonlin)) } if (any(unspecifiedLin) || initElim) { ## offset nonLin terms (currently NA if using etastart) ## plus offset contribution of any specified lin par if (!is.null(etastart)) z <- family$linkinv(etastart) else z <- y varPredictors <- modelTools$varPredictors(theta) tmpOffset <- modelTools$predictor(varPredictors, term = TRUE) tmpOffset <- rowSums(naToZero(tmpOffset)) tmpOffset <- offset + alpha[eliminate] + tmpOffset ## starting values for elim ignored here tmpTheta <- suppressWarnings({ glm.fit.e(X[, unspecifiedLin, drop = FALSE], z, weights = weights, etastart = etastart, offset = tmpOffset, family = family, intercept = FALSE, eliminate = if (nelim) eliminate else NULL, coefonly = TRUE, ridge = ridge - 1)}) ## if no starting values for elim, use result of above if (initElim) alpha <- unname(attr(tmpTheta, "eliminated")) theta[unspecifiedLin] <- naToZero(tmpTheta) } if (any(unspecifiedNonlin) && !is.null(etastart)){ ## offset linear terms ## plus contribution of specified nonlin terms varPredictors <- modelTools$varPredictors(theta) tmpOffset <- modelTools$predictor(varPredictors, term = TRUE) tmpOffset <- rowSums(naToZero(tmpOffset)) tmpOffset <- offset + alpha[eliminate] + tmpOffset if (any(isLinear) && isTRUE(all.equal(unname(etastart), tmpOffset))) { etastart <- mustart <- NULL eval(family$initialize) etastart <- family$linkfun(mustart) } tmpOffset <- offset + alpha[eliminate] rss <- function(par) { theta[unspecifiedNonlin] <<- par varPredictors <<- modelTools$varPredictors(theta) eta <<- tmpOffset + modelTools$predictor(varPredictors) sum((etastart - eta)^2) } gr.rss <- function(par) { X <- modelTools$localDesignFunction(theta, varPredictors) -2 * t(X[, unspecifiedNonlin]) %*% ((etastart - eta)) } theta[unspecifiedNonlin] <- optim(gnmStart(sum(unspecifiedNonlin)), rss, gr.rss, method = c("L-BFGS-B"), control = list(maxit = iterStart), lower = -10, upper = 10)$par } varPredictors <- modelTools$varPredictors(theta) tmpOffset <- offset + alpha[eliminate] eta <- tmpOffset + modelTools$predictor(varPredictors) mu <- family$linkinv(eta) dev[1] <- sum(family$dev.resids(y, mu, weights)) if (trace) prattle("Initial Deviance = ", format(dev[1], nsmall = 6), "\n", sep = "") niter <- iterStart * (any(unspecifiedNonlin) && is.null(etastart)) for (iter in seq_len(niter)) { if (verbose) { if (iter == 1) prattle("Running start-up iterations", "\n"[trace], sep = "") if ((iter + 25)%%width == (width - 1)) cat("\n") } round <- 1 pmsh <- FALSE do <- seq_len(nTheta)[unspecifiedNonlin] maxDo <- max(do) for (i in rep.int(do, 2)) { dmu <- family$mu.eta(eta) vmu <- family$variance(mu) Xi <- modelTools$localDesignFunction(theta, varPredictors, i) wXi <- weights * (abs(dmu) >= eps) * dmu * dmu/vmu * Xi step <- sum((abs(y - mu) >= eps) * (y - mu)/dmu * wXi)/sum(wXi * Xi) otheta <- theta[i] theta[i] <- as.vector(otheta + step) if (!is.finite(theta[i])) { status <- "bad.param" break } varPredictors <- modelTools$varPredictors(theta) eta <- tmpOffset + modelTools$predictor(varPredictors) mu <- family$linkinv(eta) if (iter == 1 && (round == 1 || pmsh)) { dev[2] <- dev[1] dev[1] <- sum(family$dev.resids(y, mu, weights)) if (!is.finite(dev[1])) { status <- "bad.param" break } ## poor man's step-halving if (dev[1] > dev[2]) { pmsh <- TRUE theta[i] <- otheta + step/4 varPredictors <- modelTools$varPredictors(theta) eta <- tmpOffset + modelTools$predictor(varPredictors) mu <- family$linkinv(eta) dev[1] <- sum(family$dev.resids(y, mu, weights)) } } if (iter == 1 && i == maxDo) round <- 2 } if (status == "not.converged" && any(isLinear)) { if (iter == 1) { which <- which(isLinear & notConstrained) if(!exists("X")) X <- modelTools$localDesignFunction(theta, varPredictors) } tmpTheta <- updateLinear(which, theta, y, mu, eta, offset, weights, family, modelTools, X, if(nelim) eliminate else NULL) if (nelim){ alpha <- unname(attr(tmpTheta, "eliminated")) tmpOffset <- offset + alpha[eliminate] } theta[which] <- tmpTheta varPredictors <- modelTools$varPredictors(theta) eta <- tmpOffset + modelTools$predictor(varPredictors) mu <- family$linkinv(eta) } dev[1] <- sum(family$dev.resids(y, mu, weights)) if (!is.finite(dev[1])) { status <- "bad.param" break } if (trace) prattle("Start-up iteration ", iter, ". Deviance = ", format(dev[1], nsmall = 6), "\n", sep = "") else if (verbose) prattle(".") cat("\n"[iter == iterStart & verbose & !trace]) } } else { theta <- structure(replace(start[non.elim], constrain, constrainTo), names = names(modelTools$start)) varPredictors <- modelTools$varPredictors(theta) eta <- offset + alpha[eliminate] + modelTools$predictor(varPredictors) if (any(!is.finite(eta))) { stop("Values of 'start' and 'constrain' produce non-finite ", "predictor values") } mu <- family$linkinv(eta) dev[1] <- sum(family$dev.resids(y, mu, weights)) if (trace) prattle("Initial Deviance = ", format(dev[1], nsmall = 6), "\n", sep = "") } if (status == "not.converged") { X <- modelTools$localDesignFunction(theta, varPredictors) X <- X[, notConstrained, drop = FALSE] np <- ncol(X) + 1 ZWZ <- array(dim = c(np, np)) I1 <- numeric(np) I1[1] <- 1 if (nelim) Umat <- array(dim = c(nelim, np)) if (nelim){ grp.size <- tabulate(eliminate) grp.end <- cumsum(grp.size) } tmpAlpha <- 0 for (iter in seq_len(iterMax + 1)) { if (verbose) { if (iter == 1) prattle("Running main iterations", "\n"[trace], sep = "") if ((iter + 21)%%width == (width - 1)) cat("\n") } dmu <- family$mu.eta(eta) vmu <- family$variance(mu) w <- sqrt(weights * (abs(dmu) >= eps) * dmu * dmu/vmu) X <- w * X z <- w * (abs(dmu) >= eps) * (y - mu)/dmu ZWZ[-1,-1] <- crossprod(X) score <- ZWZ[1,-1] <- ZWZ[-1,1] <- crossprod(z, X) ZWZ[1,1] <- sum(z * z) diagInfo <- diag(ZWZ) ## only check for non-eliminated coefficients if (any(!is.finite(diagInfo))) { status <- "fail" break } if (all(diagInfo < 1e-20) || all(abs(score) < tolerance * sqrt(tolerance + diagInfo[-1]))) { status <- "converged" break } Zscales <- sqrt(diagInfo) Zscales[Zscales < 1e-3] <- 1e-3 ## to allow for zeros if (iter > iterMax) break if (nelim){ elimXscales <- grp.sum(w * w, grp.end) elimXscales <- sqrt(elimXscales * ridge) Umat[,1] <- rowsum.default(w * z, eliminate, reorder = FALSE) Umat[,-1] <- rowsum.default(w * X, eliminate, reorder = FALSE) Umat <- Umat/(elimXscales %o% Zscales) ZWZ <- ZWZ/(Zscales %o% Zscales) diag(ZWZ) <- ridge z <- solve(ZWZ - crossprod(Umat), I1, tol = .Machine$double.eps) thetaChange <- -z[-1]/z[1] * Zscales[1]/Zscales[-1] alphaChange <- c(Umat %*% (z * sqrt(ridge)))/z[1] * Zscales[1]/elimXscales } else { ZWZ <- ZWZ/(Zscales %o% Zscales) diag(ZWZ) <- ridge z <- solve(ZWZ, I1, tol = .Machine$double.eps)/Zscales thetaChange <- -z[-1]/z[1] } dev[2] <- dev[1] j <- scale <- 1 while (!is.nan(dev[1]) && dev[1] >= dev[2] && j < 11) { if (nelim) tmpAlpha <- alpha + alphaChange/scale tmpTheta <- replace(theta, notConstrained, theta[notConstrained] + thetaChange/scale) varPredictors <- modelTools$varPredictors(tmpTheta) eta <- offset + tmpAlpha[eliminate] + modelTools$predictor(varPredictors) mu <- family$linkinv(eta) dev[1] <- sum(family$dev.resids(y, mu, weights)) scale <- scale*2 j <- j + 1 } if (!is.finite(dev[1])) { status <- "no.deviance" break } if (trace){ prattle("Iteration ", iter, ". Deviance = ", format(dev[1], nsmall = 6), "\n", sep = "") } else if (verbose) prattle(".") if (nelim) alpha <- tmpAlpha theta <- tmpTheta X <- modelTools$localDesignFunction(theta, varPredictors) X <- X[, notConstrained, drop = FALSE] } } if (status %in% c("converged", "not.converged")) { if (verbose) prattle("\n"[!trace], "Done\n", sep = "") } else { if (any(!is.finite(eta))) status <- "eta.not.finite" if (exists("w") && any(!is.finite(w))) status <- "w.not.finite" if (any(is.infinite(X))) status <- "X.not.finite" if (verbose) message("\n"[!trace], switch(status, bad.param = "Bad parameterisation", eta.not.finite = "Predictors are not all finite", w.not.finite = "Iterative weights are not all finite", X.not.finite = "Local design matrix has infinite elements", no.deviance = "Deviance is not finite")) return() } theta[constrain] <- NA X <- modelTools$localDesignFunction(theta, varPredictors) X <- X[, notConstrained, drop = FALSE] ## suppress warnings in rankMatrix re coercion to dense matrix if (nelim) { ## sweeps needed to get the rank right subtracted <- rowsum.default(X, eliminate, reorder = FALSE)/grp.size if (modelTools$termAssign[1] == 0) subtracted[,1] <- 0 theRank <- suppressWarnings( rankMatrix(X - subtracted[eliminate, , drop = FALSE])) + nelim names(alpha) <- paste("(eliminate)", elim, sep = "") } else theRank <- suppressWarnings(rankMatrix(X)) modelAIC <- suppressWarnings(family$aic(y, rep.int(1, nobs), mu, weights, dev[1]) + 2 * theRank) fit <- list(coefficients = structure(theta, eliminated = alpha), constrain = constrain, constrainTo = constrainTo, residuals = z/w, fitted.values = mu, rank = theRank, family = family, predictors = eta, deviance = dev[1], aic = modelAIC, iter = iter - (iter != iterMax), weights = w * w, prior.weights = weights, df.residual = c(nobs - theRank), y = y) if (status == "not.converged") { warning("Fitting algorithm has either not converged or converged\n", "to a non-solution of the likelihood equations.\n", "Use exitInfo() for numerical details of last iteration.\n") fit$converged <- structure(FALSE, score = score, criterion = tolerance * sqrt(tolerance + diagInfo[-1])) } else fit$converged <- TRUE if (x) { X <- modelTools$localDesignFunction(theta, varPredictors) fit$x <- structure(X, assign = modelTools$termAssign) } if (termPredictors) { theta[is.na(theta)] <- 0 varPredictors <- modelTools$varPredictors(theta) fit$termPredictors <- modelTools$predictor(varPredictors, term = TRUE) } fit } gnm/R/add1.gnm.R0000644000176200001440000001320014376164144012756 0ustar liggesusers# Modification of add1.glm from the stats package for R. # # Copyright (C) 1994-8 W. N. Venables and B. D. Ripley # Copyright (C) 1998-2005 The R Core Team # Copyright (C) 2005, 2010, 2023 Heather Turner # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 or 3 of the License # (at your option). # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # http://www.r-project.org/Licenses/ add1.gnm <- function (object, scope, scale = 0, test = c("none", "Chisq", "F"), x = NULL, k = 2, ...) { if (any(attr(terms(object), "type") != "Linear")) stop("add1 is not implemented for gnm objects with nonlinear terms.") Fstat <- function(table, rdf) { dev <- table$Deviance df <- table$Df diff <- pmax(0, (dev[1L] - dev)/df) Fs <- (diff/df)/(dev/(rdf - df)) Fs[df < .Machine$double.eps] <- NA P <- Fs nnas <- !is.na(Fs) P[nnas] <- pf(Fs[nnas], df[nnas], rdf - df[nnas], lower.tail = FALSE) list(Fs = Fs, P = P) } if (!is.character(scope)) scope <- add.scope(object, update.formula(object, scope)) if (!length(scope)) stop("no terms in scope for adding to object") oTerms <- attr(object$terms, "term.labels") int <- attr(object$terms, "intercept") ns <- length(scope) dfs <- dev <- numeric(ns + 1) names(dfs) <- names(dev) <- c("", scope) add.rhs <- paste(scope, collapse = "+") add.rhs <- eval(parse(text = paste("~ . +", add.rhs))) new.form <- update.formula(object, add.rhs) Terms <- terms(new.form) y <- object$y if (is.null(x)) { fc <- object$call fc$formula <- Terms fob <- list(call = fc, terms = Terms) class(fob) <- oldClass(object) m <- model.frame(fob, xlev = object$xlevels) offset <- model.offset(m) wt <- model.weights(m) x <- model.matrix(Terms, m, contrasts.arg = object$contrasts) oldn <- length(y) y <- model.response(m) if (!is.factor(y)) storage.mode(y) <- "double" if (NCOL(y) == 2) { n <- y[, 1] + y[, 2] y <- ifelse(n == 0, 0, y[, 1]/n) if (is.null(wt)) wt <- rep.int(1, length(y)) wt <- wt * n } newn <- length(y) if (newn < oldn) warning(gettextf("using the %d/%d rows from a combined fit", newn, oldn), domain = NA) } else { wt <- object$prior.weights offset <- object$offset } n <- nrow(x) if (is.null(wt)) wt <- rep.int(1, n) Terms <- attr(Terms, "term.labels") asgn <- attr(x, "assign") ousex <- match(asgn, match(oTerms, Terms), 0L) > 0L if (int) ousex[1L] <- TRUE X <- x[, ousex, drop = FALSE] z <- glm.fit.e(X, y, wt, offset = offset, family = object$family, control = glm.control(object$tolerance, object$iterMax, object$trace), eliminate = object$eliminate) dfs[1L] <- z$rank dev[1L] <- z$deviance sTerms <- vapply(strsplit(Terms, ":", fixed = TRUE), function(x) paste(sort(x), collapse = ":"), character(1)) for (tt in scope) { stt <- paste(sort(strsplit(tt, ":")[[1L]]), collapse = ":") usex <- match(asgn, match(stt, sTerms), 0L) > 0L X <- x[, usex | ousex, drop = FALSE] z <- glm.fit.e(X, y, wt, offset = offset, family = object$family, control = glm.control(object$tolerance, object$iterMax, object$trace), eliminate = object$eliminate) dfs[tt] <- z$rank dev[tt] <- z$deviance } if (scale == 0) dispersion <- summary(object, dispersion = NULL)$dispersion else dispersion <- scale fam <- object$family$family if (fam == "gaussian") { if (scale > 0) loglik <- dev/scale - n else loglik <- n * log(dev/n) } else loglik <- dev/dispersion aic <- loglik + k * dfs aic <- aic + (extractAIC(object, k = k)[2L] - aic[1L]) dfs <- dfs - dfs[1L] dfs[1L] <- NA aod <- data.frame(Df = dfs, Deviance = dev, AIC = aic, row.names = names(dfs), check.names = FALSE) if (all(is.na(aic))) aod <- aod[, -3] test <- match.arg(test) if (test == "Chisq") { dev <- pmax(0, loglik[1L] - loglik) dev[1L] <- NA LRT <- if (dispersion == 1) "LRT" else "scaled dev." aod[, LRT] <- dev nas <- !is.na(dev) dev[nas] <- pchisq(dev[nas], aod$Df[nas], lower.tail = FALSE) aod[, "Pr(Chi)"] <- dev } else if (test == "F") { if (fam == "binomial" || fam == "poisson") warning(gettextf("F test assumes quasi%s family", fam), domain = NA) rdf <- object$df.residual aod[, c("F value", "Pr(F)")] <- Fstat(aod, rdf) } head <- c("Single term additions", "\nModel:", deparse(as.vector(formula(object))), if (scale > 0) paste("\nscale: ", format(scale), "\n")) class(aod) <- c("anova", "data.frame") attr(aod, "heading") <- head aod } gnm/R/residSVD.R0000644000176200001440000000377614376164144013071 0ustar liggesusers# Copyright (C) 2005, 2012, 2023 David Firth and Heather Turner # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 or 3 of the License # (at your option). # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # http://www.r-project.org/Licenses/ residSVD <- function(model, fac1, fac2, d = 1) { if (!is.null(model$call$data)) { Data <- as.data.frame(eval(model$call$data, parent.frame())) fac1 <- eval(match.call()$fac1, Data, parent.frame()) fac2 <- eval(match.call()$fac2, Data, parent.frame()) } if (!inherits(model, "lm")) stop("model not of a class that inherits from class \"lm\"") if (!is.factor(fac1)) stop("fac1 must be a factor") if (!is.factor(fac2)) stop("fac2 must be a factor") Data <- data.frame(fac1, fac2) if (!is.null(na.action(model))) Data <- Data[-na.action(model), ] weights <- if (!is.null(weights(model))) as.vector(weights(model)) else 1 X <- data.frame(rw = as.vector(residuals(model)) * weights, w = weights) X <- lapply(X, tapply, Data, sum, simplify = TRUE) X <- X$rw/X$w X <- svd(naToZero(X), d, d) uPart <- sqrt(X$d[seq(d)]) * t(X$u) vPart <- sqrt(X$d[seq(d)]) * t(X$v) # uPartNegative <- apply(uPart, 1, function(row) all(row < 0)) # vPartNegative <- apply(vPart, 1, function(row) all(row < 0)) # multiplier <- ifelse(uPartNegative + vPartNegative == 1, -1, 1) multiplier <- 1 result <- t(cbind(uPart, vPart) * multiplier) rownames(result) <- c(paste("fac1", levels(fac1), sep = "."), paste("fac2", levels(fac2), sep = ".")) colnames(result) <- 1:d drop(result) } gnm/R/termPredictors.R0000644000176200001440000000127314376140103014367 0ustar liggesusers# Copyright (C) 2005 Heather Turner # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 or 3 of the License # (at your option). # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # http://www.r-project.org/Licenses/ termPredictors <- function(object, ...) { UseMethod("termPredictors") } gnm/R/ofInterestReplacement.R0000644000176200001440000000171114376140103015660 0ustar liggesusers# Copyright (C) 2006 Heather Turner # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 or 3 of the License # (at your option). # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # http://www.r-project.org/Licenses/ "ofInterest<-" <- function(object, value = NULL) { coefNames <- names(coef(object)) if (!is.null(value)) { if (!all(value %in% seq(coefNames))) stop("One or more replacement values is invalid.") names(value) <- coefNames[value] } object$ofInterest <- value messageVector(names(value)) object } gnm/R/gnmTerms.R0000755000176200001440000002015514471706640013172 0ustar liggesusers# Copyright (C) 2005-2010, 2012 Heather Turner # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 or 3 of the License # (at your option). # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # http://www.r-project.org/Licenses/ gnmTerms <- function(formula, eliminate = NULL, data = NULL) { env <- environment(formula) if (!is.null(eliminate)){ formula <- as.formula(substitute(a ~ b - e - 1, list(a = formula[[2]], b = formula[[3]], e = eliminate))) environment(formula) <- env } fullTerms <- terms(formula, specials = "instances", simplify = TRUE, keep.order = TRUE, data = data) if (is.empty.model(fullTerms)) return(fullTerms) inst <- attr(fullTerms, "specials")$instances if (length(inst)) { termLabels <- c("0"[!attr(fullTerms, "intercept")], attr(fullTerms, "term.labels")) instLabels <- as.list(attr(fullTerms, "variables"))[inst + 1] termLabels[termLabels %in% instLabels] <- vapply(instLabels, eval, envir = env, character(1)) variables <- as.character(attr(fullTerms, "variables"))[-1] offsetLabels <- variables[attr(fullTerms, "offset")] response <- variables[attr(fullTerms, "response")][1][[1]] new <- reformulate(c(termLabels, offsetLabels), ".") fullTerms <- terms(update.formula(formula, new), keep.order = TRUE, data = data) environment(fullTerms) <- env } termLabels <- c("1"[attr(fullTerms, "intercept")], attr(fullTerms, "term.labels")) variables <- predvars <- as.list(attr(fullTerms, "variables"))[-1] specials <- which(vapply(variables, isSpecial, envir = env, TRUE)) if (!length(specials)) { n <- length(termLabels) attributes(fullTerms) <- c(attributes(fullTerms), list(eliminate = !is.null(eliminate), unitLabels = termLabels, common = logical(n), block = numeric(n), match = !logical(n), assign = seq(length = n), type = rep.int("Linear", n), prefixLabels = character(n), varLabels = termLabels, predictor = lapply(termLabels, as.name), class = c("gnmTerms", "terms", "formula"))) return(fullTerms) } specialTerms <- rownames(attr(fullTerms, "factors"))[specials] specialTerms <- strsplit(specialTerms, ", inst = |,? ?\\)$", perl = TRUE) term <- vapply(specialTerms, "[", character(1), 1) inst <- as.numeric(vapply(specialTerms, "[", character(1), 2)) patch <- term %in% term[inst > 1] & is.na(inst) termLabels[termLabels %in% specials[patch]] <- paste(term[patch], ", inst = 1)") inst[patch] <- 1 nonsense <- tapply(inst, term, FUN = function(x) {!all(is.na(x)) && !identical(as.integer(x), seq(x))}) if (any(nonsense)) stop("Specified instances of ", paste(names(nonsense)[nonsense], ")"), " are not in sequence") offsetVars <- variables[attr(fullTerms, "offset")] nonlinear <- termLabels %in% variables[specials] variables <- variables[-specials] predvars <- predvars[-specials] unitLabels <- varLabels <- as.list(termLabels) predictor <- lapply(termLabels, as.name) names(predictor) <- unitLabels n <- length(unitLabels) blockList <- as.list(numeric(n)) match <- as.list(!logical(n)) common <- as.list(logical(n)) class <- as.list(rep.int("Linear", n)) prefixLabels <- as.list(character(n)) start <- vector("list", n) adj <- 1 for (j in which(nonlinear)) { nonlinCall <- parse(text = unitLabels[[j]])[[1]] args <- eval(nonlinCall, c(data, as.list(getNamespace("gnm"))), environment(formula)) args <- c(args, nonlin.function = deparse(nonlinCall[[1]]), list(data = data, envir = environment(formula))) tmp <- do.call("nonlinTerms", args) unitLabels[[j]] <- tmp$unitLabels if (!identical(tmp$prefix, "#")) { bits <- hashSplit(tmp$prefix) if (length(bits) > 1) { n <- length(tmp$hashLabels) matched <- tmp$matchID > 0 & !duplicated(tmp$matchID) dot <- (tmp$hashLabels[matched])[order(tmp$matchID[matched])] prefix <- matrix(dot, max(tmp$matchID), n) prefix[cbind(tmp$matchID, seq(n))] <- "." prefix <- rbind(character(n), prefix) sep <- rep(".", n) sep[!tmp$matchID] <- "" prefixLabels[[j]] <- paste(apply(prefix, 2, paste, bits, sep = "", collapse = ""), sep, tmp$suffix, sep = "") for (i in unique(tmp$common[duplicated(tmp$common)])) { dotCommon <- dot commonID <- tmp$common == i dotCommon[tmp$matchID[commonID]] <- "." prefixLabels[[j]][commonID] <- paste(paste(c("", dotCommon), bits, sep = "", collapse = ""), tmp$suffix[commonID], sep[commonID], paste(tmp$unitLabels[commonID], collapse = "|"), sep = "") } } else prefixLabels[[j]] <- paste(tmp$prefix, tmp$suffix, sep = "") } else prefixLabels[[j]] <- tmp$varLabels varLabels[[j]] <- gsub("#", j, tmp$varLabels) predictor[[j]] <- parse(text = gsub("#", j, tmp$predictor))[[1]] blockList[[j]] <- tmp$block + adj match[[j]] <- as.logical(tmp$matchID) common[[j]] <- tmp$common %in% tmp$common[duplicated(tmp$common)] class[[j]] <- tmp$type start[j] <- list(tmp$start) adj <- max(c(0, blockList[[j]])) + 1 variables <- c(variables, tmp$variables) predvars <- c(predvars, tmp$predvars) } if (length(predvars) > 1) nObs <- call("length", predvars[[1]]) else if (!is.null(data)) nObs <- call("length", as.name(names(data)[1])) else nObs <- 1 attributes(fullTerms) <- c(attributes(fullTerms), list(eliminate = !is.null(eliminate), offset = which(unique(variables) %in% offsetVars), variables = as.call(c(quote(list), unique(variables))), predvars = {do.call("substitute", list(as.call(c(quote(list), unique(predvars))), list(nObs = nObs)))}, unitLabels = unlist(unitLabels), common = unlist(common), block = unlist(blockList), match = unlist(match), assign = rep(seq(class), vapply(class, length, 1)), type = unlist(class), prefixLabels = unlist(prefixLabels), varLabels = unlist(varLabels), start = start, predictor = predictor, class = c("gnmTerms", "terms", "formula"))) fullTerms } isSpecial <- function(x, envir){ if (length(x) == 1) return(FALSE) # look for function in gnm first, then in environment of formula fn <- try(match.fun(eval(x[[1]])), silent = TRUE) if (inherits(fn, "try-error")){ # will error here if can't find function fn <- match.fun(eval(x[[1]], envir = envir)) } inherits(fn, "nonlin") } gnm/R/print.gnm.R0000755000176200001440000000313014376140103013272 0ustar liggesusers# Copyright (C) 2005-2008, 2010 Heather Turner and David Firth # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 or 3 of the License # (at your option). # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # http://www.r-project.org/Licenses/ print.gnm <- function (x, digits = max(3, getOption("digits") - 3), ...) { cat("\nCall:\n", deparse(x$call), "\n", sep = "", fill = TRUE) if (length(coef(x)) && (is.null(ofInterest(x)) || length(ofInterest(x)))) { cat("Coefficients", " of interest"[!is.null(ofInterest(x))], ":\n", sep = "") if (!is.null(ofInterest(x))) print.default(format(coef(x)[ofInterest(x)], digits = digits), print.gap = 2, quote = FALSE) else print.default(format(coef(x), digits = digits), print.gap = 2, quote = FALSE) } else cat("No coefficients", " of interest"[!is.null(ofInterest(x))], ". \n\n", sep = "") cat("\nDeviance: ", format(x$deviance, digits), "\nPearson chi-squared:", format(sum(na.omit(c(residuals(x, type = "pearson")))^2), digits), "\nResidual df: ", x$df.residual, "\n") invisible(x) } gnm/R/Const.R0000644000176200001440000000160014376140103012441 0ustar liggesusers# Copyright (C) 2006, 2008 Heather Turner # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 or 3 of the License # (at your option). # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # http://www.r-project.org/Licenses/ Const <- function(const) { badCall <- !"nonlinTerms" %in% lapply(sys.calls(), "[[", 1) if (any(badCall)) stop("Const terms are only valid in the predictors of \"nonlin\" ", "functions.") call("rep", substitute(const), quote(nObs)) } gnm/R/drop1.gnm.R0000644000176200001440000001017614376164144013203 0ustar liggesusers# Modification of drop1.glm from the stats package for R. # # Copyright (C) 1994-8 W. N. Venables and B. D. Ripley # Copyright (C) 1998-2005 The R Core Team # Copyright (C) 2005, 2010, 2013, 2023 Heather Turner # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 or 3 of the License # (at your option). # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # http://www.r-project.org/Licenses/ drop1.gnm <- function (object, scope, scale = 0, test = c("none", "Chisq", "F"), k = 2, ...) { if (any(attr(terms(object), "type") != "Linear")) stop("add1 is not implemented for gnm objects with nonlinear terms.") x <- model.matrix(object) n <- nrow(x) asgn <- attr(x, "assign") tl <- attr(object$terms, "term.labels") if (missing(scope)) scope <- drop.scope(object) else { if (!is.character(scope)) scope <- attr(terms(update.formula(object, scope)), "term.labels") if (!all(match(scope, tl, 0L) > 0L)) stop("scope is not a subset of term labels") } ndrop <- match(scope, tl) ns <- length(scope) rdf <- object$df.residual chisq <- object$deviance dfs <- numeric(ns) dev <- numeric(ns) y <- object$y if (is.null(y)) { y <- model.response(model.frame(object)) if (!is.factor(y)) storage.mode(y) <- "double" } wt <- object$prior.weights if (is.null(wt)) wt <- rep.int(1, n) for (i in 1L:ns) { ii <- seq_along(asgn)[asgn == ndrop[i]] jj <- setdiff(seq(ncol(x)), ii) z <- glm.fit.e(x[, jj, drop = FALSE], y, wt, offset = object$offset, family = object$family, control = glm.control(object$tolerance, object$iterMax, object$trace), eliminate = object$eliminate) dfs[i] <- z$rank dev[i] <- z$deviance } scope <- c("", scope) dfs <- c(object$rank, dfs) dev <- c(chisq, dev) dispersion <- if (is.null(scale) || scale == 0) summary(object, dispersion = NULL)$dispersion else scale fam <- object$family$family loglik <- if (fam == "gaussian") { if (scale > 0) dev/scale - n else n * log(dev/n) } else dev/dispersion aic <- loglik + k * dfs dfs <- dfs[1L] - dfs dfs[1L] <- NA aic <- aic + (extractAIC(object, k = k)[2L] - aic[1L]) aod <- data.frame(Df = dfs, Deviance = dev, AIC = aic, row.names = scope, check.names = FALSE) if (all(is.na(aic))) aod <- aod[, -3] test <- match.arg(test) if (test == "Chisq") { dev <- pmax(0, loglik - loglik[1L]) dev[1L] <- NA nas <- !is.na(dev) LRT <- if (dispersion == 1) "LRT" else "scaled dev." aod[, LRT] <- dev dev[nas] <- pchisq(dev[nas], aod$Df[nas], lower.tail = FALSE) aod[, "Pr(Chi)"] <- dev } else if (test == "F") { if (fam == "binomial" || fam == "poisson") warning(gettextf("F test assumes 'quasi%s' family", fam), domain = NA) dev <- aod$Deviance rms <- dev[1L]/rdf dev <- pmax(0, dev - dev[1L]) dfs <- aod$Df rdf <- object$df.residual Fs <- (dev/dfs)/rms Fs[dfs < 1e-04] <- NA P <- Fs nas <- !is.na(Fs) P[nas] <- pf(Fs[nas], dfs[nas], rdf, lower.tail = FALSE) aod[, c("F value", "Pr(F)")] <- list(Fs, P) } head <- c("Single term deletions", "\nModel:", deparse(as.vector(formula(object))), if (!is.null(scale) && scale > 0) paste("\nscale: ", format(scale), "\n")) class(aod) <- c("anova", "data.frame") attr(aod, "heading") <- head aod } gnm/R/cholInv.R0000644000176200001440000000603414376140103012763 0ustar liggesusers# Copyright (C) 2006, 2010 David Firth and Heather Turner # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 or 3 of the License # (at your option). # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # http://www.r-project.org/Licenses/ cholInv <- function (mat, eliminate = numeric(0), onlyFirstCol = FALSE, onlyNonElim = FALSE) { .Deprecated(msg = paste("'cholInv' is deprecated as it is no longer used ", "by gnm.")) m <- nrow(mat) n <- ncol(mat) if (length(eliminate) == 0) { ## the basic routine, no eliminated submatrix if (!is.matrix(mat)) stop("mat is not a matrix") Rownames <- rownames(mat) Colnames <- colnames(mat) result <- chol2inv(chol(mat)) if (!is.null(Rownames)) colnames(result) <- Rownames if (!is.null(Colnames)) rownames(result) <- Colnames if (onlyFirstCol) result <- result[, 1, drop = FALSE] return(result) } ## Now allow for the possibility of an eliminated submatrix if (m != n) stop("mat must be a symmetric matrix") n <- nrow(mat) elim <- 1:n %in% eliminate diag.indices <- (n * (0:(n - 1)) + 1:n) Tmat <- mat[diag.indices[eliminate]] if (any(Tmat == 0)) stop("an eliminated submatrix must have all diagonal entries non-zero.") W <- mat[!elim, !elim, drop = FALSE] U <- mat[elim, !elim, drop = FALSE] Ti <- 1/Tmat k <- length(Tmat) Ti.U <- Ti * U V.Ti <- t(Ti.U) Qmat <- W - crossprod(Ti.U, U) Qi <- cholInv(Qmat) result <- matrix(NA, if (onlyNonElim) n - k else n, if (onlyFirstCol) 1 else if (onlyNonElim) n - k else n) cols.notElim <- if (onlyFirstCol) 1 else if (onlyNonElim) 1:(n - k) else !elim rows.notElim <- if (onlyNonElim) 1:(n - k) else !elim if (onlyFirstCol) Qi <- Qi[, 1, drop = FALSE] result[rows.notElim, cols.notElim] <- Qi if (!onlyNonElim) { temp <- -crossprod(Qi, V.Ti) result[elim, cols.notElim] <- t(temp) } if (!onlyFirstCol && !onlyNonElim) { result[!elim, elim] <- temp temp <- crossprod(V.Ti, Qi) %*% V.Ti diag.indices <- k * (0:(k - 1)) + 1:k temp[diag.indices] <- Ti + temp[diag.indices] result[elim, elim] <- temp } theNames <- colnames(mat) rownames(result) <- if (onlyNonElim) theNames[!elim] else theNames colnames(result) <- if (onlyFirstCol) theNames[!elim][1] else if (onlyNonElim) theNames[!elim] else theNames result } gnm/NEWS.md0000644000176200001440000007023614501276660012150 0ustar liggesusersChanges in gnm 1.1-5 ==================== * Correct path to BLAS header file. Changes in gnm 1.1-4 ==================== * Minor fix to test to accommodate old R release. Changes in gnm 1.1-3 ==================== * Use QR decomposition vs initial GLM iteration to identify inestimable linear parameters, fixes #21. * Remove class check in `residSVD()`, so it can be applied to model objects that do not inherit from class `"lm"`. * Improved handling of `"nonlin"` functions in formula: prioritise functions in gnm over other packages; handle namespacing with `::`. * Enable `update.gnm` to be called within a function, fixes #11. Changes in gnm 1.1-2 ==================== Bug fixes --------- * `Symm()` now works for > 2 factors, fixes #16. * Character strings passed from C to Fortran now handled correctly, fixes #17. Changes in gnm 1.1-1 ==================== Bug fixes --------- * `confint.profile.gnm()` now works for a single parameter ![(#10)](https://github.com/hturner/gnm/issues/10) * `gnm()` now works when `eliminate` is specified as `NULL` ![(#14)](https://github.com/hturner/gnm/issues/14) * allow `set` argument of `getContrasts()` to be numeric, as documented * convert old tests to unit tests. Changes in gnm 1.1-0 ==================== Changes in behaviour -------------------- * generalize `Diag` and `Symm` to work with factors with levels that are not in alphabetical order. Factor levels are now only sorted by `Diag` if the input factors have different sets of levels. * make `se()` generic to allow methods to be added (e.g. as in **logmult** package). Improvements ------------ * C routines now registered to avoid accidental clashes with other packages. - use of `R_forceSymbols` routine requires R >= 3.0.0. * use jss.bst vs chicago.bst in vignette. * update imports to include recommended packages. * avoid warnings regarding recycling a length 1 array. * avoid using `print` or `cat` outside print methods, so print output always optional (e.g. by setting `verbose` argument or using `suppressMessages`). Bug fixes --------- * environment of formula preserved when using `gnm()` with `eliminate` argument. * allow factor response in binomial gnms. * allow matrix response in quasibinomial gnms. * make `x = FALSE` also work when using `gnm()` with `eliminate` argument. * allow response in formula to be specified as an expression (e.g. `D/E`) when formula uses `instances`. Changes in gnm 1.0-8 ==================== Improvements ------------- * now use lazy data loading. * improvements to vignette (with thanks to Michael Friendly). * copyright notices added to source files to clarify authorship, with appropriate credit given to contributors in Rd and DESCRIPTION files. Changes in behaviour -------------------- * predict.gnm now includes eliminate term in predictions on new data. Bug fixes --------- * `expandCategorical` now works when there are no covariates in the data. * better handling of single-column model matrices. * `predict.gnm` now works with `se.fit = TRUE` for models with eliminated terms; correctly handles new data without all levels of homogeneous factors present, and respects contrasts settings. * environment of formula preserved when using instances. Changes in gnm 1.0-7 ==================== Bug fixes --------- * corrected use of `anova.glmlist` in `anova.gnm`. Changes in gnm 1.0-6 ==================== Bug fixes --------- * added catch for when deviance becomes `NaN`. Changes in gnm 1.0-5 ==================== Improvements ------------ * eliminated coefficients now returned as named vector. * step-quartering introduced to start-up iterations to avoid increasing deviance. Changes in behaviour -------------------- * `gnm` no longer restarts if algorithm fails - better to provide improved starting values in this case. Bug fixes --------- * fixed bug in the way `etastart` is used to initialise the linear parameters when `eliminate` is used as well. Changes in gnm 1.0-4 ==================== Bug fixes --------- * restarting mechanism now reinitialises correctly. * removed call to external C function that is no longer available. * `gnm` now works with `eliminate` argument when remaining linear part of predictor only involves one parameter. Changes in gnm 1.0-3 ==================== Improvements ------------ * `pickCoef` extended to allow fixed pattern matching and to optionally return actual coefficients rather than their indices. * `gnm` now looks for exact match in coefficient names when a single character string is passed to the `constrain` argument before treating as regular expression. * `hatvalues.gnm` has been reimplemented to work more efficiently for large model matrices. * `"nonlin"` terms defined for homogeneous factors will now accept factors specified as an interaction (using `:`). Bug fixes --------- * results now returned in original order for models fitted with `eliminate` argument. * bug introduced into `residSVD` reverted so that now correctly aggregates working residuals. * `anova.gnm` now works when model is a single `"nonlin"` term. Changes in gnm 1.0-2 ==================== Improvements ------------ * factors specified as homogenous in nonlin functions can now be specified as interactions of factors. Bug fixes --------- * fixed bug so that variables handled correctly in nonlinTerms. * corrected rank calculation for constrained models. * removed calls to Internal Changes in gnm 1.0-1 ==================== New Features ------------ * added `meanResiduals` function * `check` argument added to getContrasts. Improvements ------------ * added example SVD calculation to `?wheat`; also in vignette. Bug fixes --------- * added `update.gnm` so that nonlinear terms were no ordered as linear, first order terms. Changes in gnm 1.0-0 ==================== Improvements ------------ * eliminated coefficients now treated entirely separately, in particular the design matrix no longer has columns for these coefficients, making the algorithm far more efficient for models with many eliminated coefficients. * more reliable calculation of rank Changes in Behaviour -------------------- * `ofInterest` and `constrain` now index non-eliminated coefficients only. * eliminated coefficients now returned as attribute of returned coefficient vector. * `"lsMethod"` argument to `gnm` removed as now the LAPACK routines are always used to determine the least squares solution at the heart of the fitting algorithm. Hence `qrSolve` and `cholInv` deprecated. * the `"eliminate"`, `"onlyFirstCol"` and `"onlyNonElim"` arguments to `MPinv` have been removed as no longer used. Bug fixes --------- * `etastart` now works for models with no linear parameters. * `anova` now ignores terms that are completely constrained. Changes in gnm 0.10-0 ===================== Improvements ------------ * `mustart`/`etastart` now used to obtain starting values for linear and nonlinear parameters separately, improving performance. Changes in Behaviour -------------------- * `expandCategorical` now groups together individuals with common covariate values, by default. New `group` argument added to switch this behaviour. Bug fixes --------- * `print.profile.gnm` now prints full result. * data now read in correctly for Lee-Carter example in vignette. Changes in gnm 0.9-9 ==================== New Features ------------ * `etastart` and `mustart` arguments added to `gnm`. Changes in gnm 0.9-8 ==================== Improvements ------------ * `gnm` now returns `data` argument as `glm` does. Changes in gnm 0.9-7 ==================== Bug fixes --------- * more minor corrections in documentation. Changes in gnm 0.9-6 ==================== Bug fixes --------- * minor corrections in documentation. Changes in gnm 0.9-5 ==================== Improvements ------------ * `getContrasts` can now estimate _scaled_ contrasts with more flexibility in how the reference level is defined. * changed tolerance level in checkEstimable to `1e6 * .Machine$double.eps` as previous tolerance too strict for some examples. Changes in Behaviour -------------------- * `getContrasts` now only handles one set of parameters at a time. * use of `Const` is now restricted to the symbolic predictors of `"nonlin"` functions. * `Nonlin` - the wrapper function for plug-in functions - is now defunct. Use `"nonlin"` functions to specify custom nonlinear terms. Bug fixes --------- * `plot.gnm` now uses standardised Pearson residuals for plot `which = 5` so that the Cook's distance contours are correct Changes in gnm 0.9-4 ==================== New Features ------------ * `predict` now implemented for `"gnm"` objects Improvements ------------ * results formatted as contingency tables where appropriate by extractor functions (`fitted`, etc), rather than `gnm` Changes in Behaviour -------------------- * default for `match` argument of `nonlinTerms` now zero vector (i.e. no matching to arguments of `call` by default) Bug fixes --------- * `termPredictors` now works on `"gnm"` objects fitted with `glm.fit` * intercept removed when `eliminate` argument of `gnm` is non-`NULL` * models with all parameters eliminated now summarised sensibly * `Diag` and `Symm` now work for factors of length 1 * as`gnm` now returns object with `"gnm"`-type terms component * print method for `"profile.gnm"` objects now exported Changes in gnm 0.9-3 ==================== New Features ------------ * added `DrefWeights` for computing the weights in a diagonal reference term and the corresponding standard errors. Improvements ------------ * `"assign"` attribute now attached to the parameter vector when passed to start functions defined by `"nonlin"` functions, specifying the correspondence between parameters and predictors in the nonlinear term. Bug fixes --------- * start function in `Dref` now identifies weight parameters correctly. * can now evaluate term predictors for `"nonlin"` terms that depend on covariates. Changes in gnm 0.9-2 ==================== Improvements ------------ * Calls to `"nonlin"` functions now evaluated in the same environment and enclosure as call to create model frame, so `"nonlin"` functions should be able to find variables in gnm calls - potentially useful for setting starting values. Bug fixes --------- * `gnm` algorithm now reinitiates correctly when restarting after non-convergence. * `gnm` now works correctly when a model is specified with nonlinear terms in between linear terms. Changes in gnm 0.9-1 ==================== New Features ------------ * introduction of functions of class `"nonlin"` for the unified specification of nonlinear terms. `Mult`, `Exp`, `Dref` and `MultHomog` have all been converted to functions of this class. * added `Inv` to specify the reciprocal of a predictor. * added `Const` to specify a constant in a predictor. * added `instances` to specify multiple instances of a nonlinear term. Improvements ------------ * nonlinear terms can now be nested. * `Exp` can now be used outside of `Mult` or to exponentiate part of a constituent multiplier. Changes in Behaviour -------------------- * to accommodate the increased functionality introduced by `"nonlin"` functions, new labelling conventions have been introduced. In particular, most `"nonlin"` functions use argument-matched parameter labels. * in the new implementation of `Dref` the `formula` argument has been re-named `delta` to provide more informative parameter labels under the new conventions. Bug fixes --------- * specifying `ofInterest = "[?]"` in `gnm` now works as documented. Changes in gnm 0.8-5 ==================== New Features ------------ none in this release Improvements ------------ * added a new `ridge` argument to gnm, to allow some control over the Levenberg-Marquardt regularization of the internal least squares calculation * changed the default ridge constant to 1e-8 (from 1e-5), to increase speed of convergence (especially in cases where there are infinite parameter estimates) * modified the `"qr"` method so that it no longer checks for rank deficiency (it was both unreliable, and not necessary since the matrix is regularized prior to solving) * substantial speed improvements in model fitting when there are large numbers of eliminated parameters, achieved mainly via a new internal function `cholInv1`. Corresponding example timings changed in the Overview document (vignette). * speed improvements in `vcov.gnm` when there are eliminated parameters; new logical argument `use.eliminate` gives control over this * in `getContrasts`, added new arguments `dispersion` and `use.eliminate`, both of which are passed on to `vcov` * implemented faster alternatives to `ifelse` in `gnmFit` * speed gains from use of `tcrossprod`. Because of this the gnm package now requires R 2.3.0 or later. Changes in Behaviour -------------------- * in `gnm`, changed the default value of argument x to `TRUE` (it was previously `FALSE`) * in `checkEstimable`, changed the name of the first argument from `coefMatrix` to `combMatrix` (to reflect better that it is a matrix of coefficient *combinations*); and changed the default tolerance value to one which should give more reliable results. Also, more fundamentally, changed the check to be whether combinations are in the column span of `crossprod(X)` instead of the row span of `X`; the results should be the same, but the new version is much faster for large n. * `model.matrix.gnm` no longer passes extra arguments to gnm as it's unlikely to be useful/sensible. For the same reasons it will not pass extra arguments to `model.frame`, unlike `model.matrix.lm` * `getContrasts` now results in a list only when the `sets` argument itself is a list; otherwise (i.e., normally) the result is a single object (rather than a list of objects) of class `qv` Bug fixes --------- * fixed a bug in internal function `quick.glm.fit`, which greatly improves its performance. Also changed the default value of the `nIter` argument from 3 to 2. * fixed a small bug in `demo(gnm)` * fixed a bug in `vcov.gnm`, which previously gave an error when data were of class `"table"`) * fixed `summary.gnm` so that it now takes proper account of the dispersion argument * in `se`, added new arguments `Vcov` and `dispersion`; the latter fixes a bug, while the former minimizes wasted computation in `summary.gnm` * fixed bug in `model.matrix.gnm` so that it can compute the model matrix even when original data is not available - unless model frame has not been saved. Original data still needed to update model frame - this is the same as for glms, etc. * fixed bug in `gnm` so that reconstructing `"table"`-class data works for models with weights/offsets Changes in gnm 0.8-4 ==================== New Features ------------ * added `"gnm"` methods for `profile` and `confint`. Use of `alpha` argument differs slightly from `"glm"` methods: see help files. * `constrain` argument to `gnm` now supplemented by `constrainTo` argument, allowing specification of values to which parameters should be constrained. * `gnm` now has `ofInterest` argument to specify a subset of coefficients which are of interest - returned in `ofInterest` component of `"gnm"` object as named numeric vector. `print` summaries of model object/its components extracted by accessor functions only print coefficients of interest and (where appropriate) methods for `"gnm"` objects select coefficients of interest by default. * added `ofInterest` and `ofInterest<-` to extract/replace `ofInterest` component of `"gnm"` object. * added `parameters` which returns coefficient vector with constrained parameters replaced by their constrained value. * added `pickCoef` function to aid selection of coefficients - returns numeric indices of coefficients selected by Tk dialog or regular expression matching. Improvements ------------ * `constrain` argument to `gnm` now accepts a regular expression to match against coefficient names. Changes in Behaviour -------------------- * `constrain` component of `"gnm"` objects is now a numeric, rather than logical, vector of indices. * all `"gnm"` methods for which a subset of the coefficients may be specified by numeric indices now interpret those indices as referencing the full coefficient vector (not just non-eliminated parameters). * `gnm` now preserves order of terms rather than moving all linear terms to the start (this fixes bug in `anova.gnm`). * the `"pick"` option for the `constrain` argument to `gnm` and the `estimate` argument to `se` has been replaced by `"[?]"` to avoid possible conflict with coefficient names/regular expressions. Bug Fixes --------- * fixed bug in `se` so will now work for single parameter. * fixed bug in `summary.gnm` so will now work for models with one parameter. * fixed bug in `anova` so that rows of returned table are correct for models with eliminated terms. * fixed bug in `eliminate` so that it now accepts interactions. * fixed bug in `MPinv` so that it works for models in which all parameters are eliminated. Changes in gnm 0.8-3 ==================== Improvements ------------ * improved use of functions from other packages Bug Fixes --------- * fixed bug in `asGnm.lm` where object not fully identified * corrected maintainer address in DESCRIPTION! Changes in gnm 0.8-2 ==================== New Features ------------ * added demonstration script to run using `demo` * added package help file, opened by package?gnm Improvements ------------ * improved existing documentation Changes in gnm 0.8-1 ==================== New Features ------------ * added the `method` argument to `MPinv`, to allow the method of calculation to be specified. Permitted values are `"svd"` to compute the pseudo-inverse by singular value decomposition, and `"chol"` to use the Cholesky decomposition instead. The latter is valid only for symmetric matrices, but is usually faster and more accurate. * added the `lsMethod` argument to `gnm`, to allow specification of the numerical method used for least-squares calculations in the core of the iterative algorithm. Permitted options are `"chol"` and `"qr"`. * added new function `qrSolve`, which behaves like `base::qr.coef` but in the non-full-rank case gives the minimum-length solution rather than an arbitrary solution determined by pivoting. * added `.onUnload` so that compiled code is unloaded when namespace of package is unloaded using `unloadNamespace`. * added `coef` argument to `model.matrix.gnm` so that the model matrix can be evaluated at any specified value of the parameter vector. * added as`gnm` generic to coerce linear model objects to gnm objects. * added `exitInfo` for printing numerical details of last iteration on non-convergence of `gnm`. * added new dataset, friend, to illustrate a workaround to fit a homogeneous RC(2) using `gnm` - documented in help file for `MultHomog`. Improvements ------------ * `gnm` now takes less time per (main) iteration, due to improvements made internally in the iterative algorithm. These include pre-scaling of the local design matrix, and Levenberg-Marquardt adjustment of the least-squares solvers so that rank determination is no longer necessary. * the default convergence tolerance has been tightened (from 1e-4 to 1e-6) * modified `model.matrix.gnm` so it can be used when only the namespace of gnm is loaded. Bug Fixes --------- * fixed bug in `gnm` so that `subset` now works with table data. * fixed bug in `model.matrix.gnm` so can construct model matrix from `"gnm"` object even when original call not made in `.GlobalEnv`. * fixed bug in the examples on help page for `House2001` data. * fixed bug so that `formula` in `gnm` now accepts `.` in formulae even when `eliminate = NULL`. * fixed bug in `getContrasts`, so that the first two columns of the qvframe component of each element of the result list are correctly named as "estimate" and "SE", as required for objects of class "qv". Changes in gnm 0.8-0 ======================= New Features ------------ * added `"model.matrix"` option for `method` argument of `gnm` so that model matrix can be obtained much faster. The new method is used in `model.matrix.gnm` and `vcov.gnm`. * added new utility function `residSVD`, to facilitate the calculation of good starting values for parameters in certain `Mult` terms. * added new dataset `House2001`, to illustrate the use of `gnm` in Rasch-type scaling of legislator votes. * added new utility function `expandCategorical` for expanding data frame on the basis of a categorical variable. * added `formula.gnm` method - returns formula from `"gnm"` object excluding the `eliminate`d factor where necessary. Improvements ------------ * `gnm` now takes less time to run due to improvements made in internal functions. * the fitting algorithm used by `gnm` now copes better with zero-valued residuals. * output given by `gnm` when `trace = TRUE` or `verbose = TRUE` is now displayed as it is generated on console-based versions of R. * `plot.gnm` now includes option `which = 5` as in `plot.lm` in R >= 2.2.0. Now has separate help page. * the `constrain` argument to `gnm` now accepts the names of parameters. * the `formula` argument to `gnm` now accepts `.` as described in `?terms.formula`, ignoring eliminated factor if in `data`. * interface for `se` extended - can now use to find standard errors for all parameters or (a selection of) individual parameters in a gnm model. * made it possible to use `gnm` with alternative fitting function. * `".Environment"` attribute now attached to `"gnm"` objects so that gnm package loaded when workspace containing `"gnm"` objects is loaded. Changes in Behaviour -------------------- * start-up iterations now only update column of design matrix required in next iteration. Therefore plug-in functions using the default start-up procedure for nonlinear parameters need a `localDesignFunction` with the argument `ind` specifying the column that should be returned. * modified output given by `gnm` when `trace = TRUE`: now prints initial deviance and the deviance at the end of each iteration. * modified updates of linear parameters in starting procedure: now offset contribution of fully specified terms only. * results of `summary.gnm`, `vcov.gnm` and `coef.gnm` now include any eliminated parameters. Print methods have been added for `"vcov.gnm"` and `"coef.gnm"` objects so that any eliminated parameters are not shown. * `Mult` terms are no longer split into components by `anova.gnm`, `termPredictors.gnm`, `labels.gnm` or the `"assign"` attribute of the model matrix - consistent with `terms` output. * the `eliminate` argument to `gnm` must now be an expression that evaluates to a factor - this reverts the extension of 0.7-2. * when using `gnm` with `constrain = "pick"`, the name(s) of the chosen parameter(s) will replace `"pick"` in the returned model call. * `getContrasts` now uses first level of a factor as the reference level (by default). * `gnmControl` replaced by arguments to `gnm`. * `gnm` now uses `glm.fit` for linear models (with control parameters at the `gnm` defaults) unless `eliminate` is non-`NULL`. * `vcov.gnm` and `summary.gnm` now return variance-covariance matrices including any aliased parameters. * `summary.gnm` now returns standard errors with test statistics etc, where estimated parameters are identified. Bug Fixes --------- * fixed bug in `summary.gnm`, `anova.gnm`, `termPredictors.gnm` and `model.matrix.gnm` where search for model variables was incorrect. * fixed bug preventing estimation of weight parameters in `Dref` terms and changed default starting values so that these parameters no longer sum to one or appear to be estimable. * corrected options for `method` argument in `gnm` help file: replaced `method = "coef"` with `method = "coefNames"`. * fixed bug in `gnm` so that it can handle tables with missing values when formatting components of fit. * `hatvalues.gnm` now works for objects produced from table data. * `residuals.gnm` now returns table not matrix when `type = "deviance"` for `"gnm"` objects produced from table data. * `hatvalues.gnm`, `cooks.distance.gnm` and `plot.gnm` now handle cases which are fitted exactly (giving a hat value of 1). * example fitting proportional odds model in `backPain` help file now works. * fixed bug in `Mult` terms so that an offset can be added to a constituent multiplier without an unspecified intercept being added also. * `gnm` argument `constrain = "pick"` now allows selection of more than one constraint and is compatible with use of `eliminate`. * `gnm` can now fit models which only have the term specified by `eliminate`. Changes in gnm 0.7-2 ======================= Improvements ------------ * Extended use of the `eliminate` argument of `gnm` to allow crossed factors - this also fixes bug which occurred when interactions were eliminated in the presence of lower order terms involving other factors Changes in Behaviour -------------------- * `vcov` returned by `gnm` now has no rank attribute (as before, the rank is returned as the separate component `rank`). Bug Fixes --------- * Changed the calculation of `df.residual` returned by `gnm` to correctly take account of zero-weighted observations (as in `glm`). * When `gnm` is called with arguments `x = TRUE` or `VCOV = TRUE`, the returned matrices now include columns of zeros for constrained parameters. * Corrected evaluation of model frame in `gnm` so that if data is missing, variables are taken from `environment(formula)`, as documented. Modified evaluation of plug-in functions to be consistent with this, i.e. objects are taken from `environment(formula)` if not in model frame. * `MPinv` now checks that the diagonal elements of an `eliminate`d submatrix are all non-zero and reports an error otherwise. Changes in gnm 0.7-1 ======================= New Features ------------ * `Topo` introduced for creating topological interaction factors. * `anova` implemented for objects of class `c("gnm", "glm")`. Improvements ------------ * Diagnostic messages given by `gnm` have been improved. * Step-halving introduced in main iterations of `gnm` to ensure deviance is reduced at every iteration. * `getContrasts` now (additionally) reports quasi standard errors, when available. * Calls to `gnm` plug-in functions are now evaluated in the environment of the model frame and the enclosing environment of the parent frame of the call to `gnm`. This means that variables can be found in a more standard fashion. Changes in Behaviour -------------------- * The `data` argument of `Nonlin` is defunct: `Nonlin` now identifies variables to be added to the model frame as those passed to unspecified arguments of the plug-in function or those identified by a companion function to the plug-in, which is of a specified format. * The (optional) `start` object returned by a plug-in function can no longer be a function, only a vector. However it may now include `NA` values, to indicate parameters which may be treated as linear for the purpose of finding starting values, given the non-`NA` values. Bug Fixes --------- * The `eliminate` argument of `gnm` now handles functions of variables in the given formula e.g. `~ strata(A, B), ~ as.factor(A):as.factor(B)`, etc. * `gnm` was giving an error for models with either no linear parameters, or none specified by the `start` argument, this is now fixed. * Long calls to plug-in functions caused problems in parsing the model formula: now fixed. * `gnm` now only restarts after failing if there are unspecified nonlinear parameters. * `gnm` now returns `NULL` if model fails. * Bug fixed in calculation of starting values for `gnm` that occurred when some parameters were constrained. gnm/MD50000644000176200001440000002420614501312023011336 0ustar liggesusersc5133d4057c775a2f1800d0742132a33 *DESCRIPTION 77894165a290799e7e3381c75e05712b *NAMESPACE 36a0b22784abdde14a5d6d145f90dc09 *NEWS.md 854496a25c0c74492a5047b936d55ab5 *R/Const.R 0143c717a0afb6bf5fd52f59948419a8 *R/Diag.R 5fee39db2b681eff9a6b1b0cd336eb94 *R/Dref.R e20fafcb9c40fa3fb4ad864ce638fd28 *R/DrefWeights.R 7a7e2f355094ea09b3727919a2a810f7 *R/Exp.R 1163bbf6c25fb51810d0219643d31fb4 *R/Inv.R 1be94a5f1cbc953c9547efcd219250f9 *R/Log.R 948e44dbfd7e9b44638fa6e804f5623f *R/Logistic.R 32ce6aac8288253199fd161a3750edc6 *R/Logit.R 3820f8ae17dd6e16bd3f7b3ff78c0c8a *R/MPinv.R ce0a897eb161f67a8b3e1a9758dd6e7b *R/Mult.R 56b99626a0fabc857f5b5740a7b16719 *R/MultHomog.R cd7fd3c31dd817fcdd8fd533926279a7 *R/Raise.R 8c18809c2d5e14d88b4f4a749076a047 *R/Symm.R e8537384bccb772cbe68ebf5a36c6b9b *R/Topo.R 84c63f53dcecd6ffced0714d47ceea12 *R/add1.gnm.R 3fa8820d54cbd3ccc84bf37f583d1104 *R/addterm.gnm.R c11c021ce659dcaa94158059983e0498 *R/alias.gnm.R 58a75c37b673d302e7bab8ae4cf68a84 *R/anova.gnm.R ce592c42122cc711bda928ee403e4105 *R/asGnm.R 3133d8a14d3f6df07bdc093409b8d664 *R/asGnm.default.R 3f343550a46023f76d92fb43dfe18e81 *R/asGnm.glm.R fbe0395a6fe899b3412606d88153ad12 *R/asGnm.lm.R 954badc596f77b0aac6615e41c214717 *R/boxcox.gnm.R 75b9c6027d9e86f0a44bb0c16458e873 *R/checkCall.R c6fbfbd53511fea8b3706e37c1db6ac6 *R/checkEstimable.R 9e5c2fef238485fb30f77f8fb7212180 *R/cholInv.R f8239fe470d0d8e3a74c1c5e32c2b070 *R/coef.gnm.R 2afbb38f3e9a5dbf84c81a3e8e251c3d *R/confint.gnm.R 646fad2b6036d10664226129c2133415 *R/confint.profile.gnm.R c41c1536e1866d8037032da16de62f47 *R/cooks.distance.gnm.R aae1beb67cc6062c2f0d1fb4f28c2238 *R/dfbeta.gnm.R 31254d1c7c6eed6abe766b71208b8722 *R/dfbetas.gnm.R d11770cb65e97c653972d743397a5051 *R/drop1.gnm.R 597fb498683d628c7d52f2e288289ab1 *R/dropterm.gnm.R 7b226f6597ab38664e89de3b319c11ca *R/dummy.coef.gnm.R 35aa210357604f393bc2994a25821b94 *R/effects.gnm.R 654710a33bb547685fdea664e3c03e9e *R/exitInfo.R 64bc4cfd43ac4b8089f877316a8f2382 *R/expandCategorical.R 5e4aaa614ef38eafe07f57eba879d957 *R/fitted.gnm.R c8567b8b56af214c93676de7ab7b21bc *R/getContrasts.R 48274f14367aa4e5341ce79646f226fa *R/getData.R 8467f3c8cf017738180c198ab1f5e69e *R/glm.fit.e.R 512c1d6b73395b508ad1095c9783453d *R/gnm-defunct.R bf663ae5c2dd88a4f327d94f87f9061e *R/gnm.R 4761dd7df50615d20ceaf341405fdc27 *R/gnmFit.R 4d9338e33215facd25e8b7cf4ea90987 *R/gnmStart.R f13873f1d5a786e582271ab37a6406ac *R/gnmTerms.R 1712b2a4714d810c648eb37a5d820263 *R/gnmTools.R b6be5ae7a90f3cdc0e9d054505d1dfdb *R/grp.sum.R 68992380696b028e9c7a6cd24b52b2bc *R/hashSplit.R 0211542e7701cda87f26f69d4ed516c1 *R/hatvalues.gnm.R 6a8b167dd634bd1533f51ff2cf781e84 *R/influence.gnm.R 724791630fa99d4991634e52f33351dd *R/instances.R fd6cbaee5c3d909a31889dba229741e4 *R/kappa.gnm.R 0120485b96379a3d741ef386f1dedebb *R/labels.gnm.R 876d01bb73a00985db1c3bb8ab8a3206 *R/logtrans.gnm.R 45f8cdf7ee340391665255f83cbb508e *R/meanResiduals.R af43d37bfd33c2c1325eaa7fef761c78 *R/model.frame.gnm.R 838e4f634c956834ff3209838b95f074 *R/model.matrix.gnm.R a0f246dfc591ea337f018f72100c9ded *R/naToZero.R 8f015b8920451256cbed92ba13f47805 *R/nonlinTerms.R 7f89fd4a6221fa64df48b8f86ca80ec3 *R/ofInterest.R 04d7ebbbf1dea78e7c56d6790b929a1c *R/ofInterestReplacement.R 2b3a80421fb27a5f9f1a1536f6d0bcdb *R/parameters.R b1efbfb8af7d24545d30984bcd60cba1 *R/pickCoef.R d00dfac4c4f12bf20fedb3fbef0b4b80 *R/plot.gnm.R 1ad2c4342e2b0930e2c5c2f4d3eeb046 *R/plot.profile.gnm.R 7df9a208deb720df8f7ae5a4f3dbc7ba *R/pprod.R 50c8ed0dc792d486adf8defb3311e48f *R/prattle.R 06da18aad2eb637edd3a66dca30bfe81 *R/predict.gnm.R 3b21b08dbeb848c8c5fc202f68d32818 *R/print.coef.gnm.R 385e40991edec5085c915233e68e21bd *R/print.gnm.R 8c190f4745bbcb163a41688ed47e8ca2 *R/print.meanResiduals.R b3a977bb4b603a68fedb337a309b3b9d *R/print.profile.gnm.R 9689be0a5036c00d99b0287a5a2ff422 *R/print.summary.gnm.R 0db04b53db8222364c02cfada6a4ee98 *R/print.vcov.gnm.R 2e07923ea518e4d62738e7c88fb49dac *R/profile.gnm.R 07123ec72cd3e255f1556af97c10f8cc *R/proj.gnm.R 6397c01c19d1dc9e2e53ba447c3afa8f *R/psum.R 0c101c57f953af46125d1dd658294483 *R/quick.glm.fit.R c7ef02916b6b62a2e5b5a8a5a9b55fce *R/quickRank.R b10b3b7d973f9836e581fd365efa2227 *R/residSVD.R 87a178b9b723b19f6d6ce19d0e2a1b8c *R/residuals.gnm.R 279be6c011ff254bcd7bd7428d3c90b9 *R/rstandard.gnm.R 99830d4e74dfa4f0a1c539135e2e7370 *R/rstudent.gnm.R ad28386ddd368e9970b51391b7c038ac *R/se.R 150226136bf1ca5996f68cd68866fc05 *R/sumExpression.R 436580e83d8a7941f3ecfca134b38183 *R/summary.gnm.R 7d4fdd2e4ba38f4cb124b2c0e7efdd7f *R/summary.meanResiduals.R 6b5ac9ba80f30a49a5b7901b3f4dce0e *R/termPredictors.R 2bdbd1e59eaf31da95f953b9f6bd44d1 *R/termPredictors.default.R 0fcea4dfca5685734a3c594d853b905d *R/termPredictors.gnm.R 998ab5d01f53f6ddb84ac132c948dfc9 *R/unlistOneLevel.R e29abf0914aa9848377e4ea9c71a23c0 *R/update.gnm.R 939d8938906a946a477745a3adc6c5c3 *R/updateLinear.R 192d90bae21e8ed3bd4c37997ee522fc *R/variable.names.gnm.R 58c79af8a5862f5a61bb6711c1a3b0a0 *R/vcov.gnm.R 0ba281b4a6492dc7e28cafb62b442056 *R/wedderburn.R af58d5d6c6349e1353f1c8811f5abaec *R/weighted.MM.R 051baec2bdd0bce8410af20d4448deac *R/weights.gnm.R 95a035e41db52c7af2c7f6fdfac7f168 *R/zzz.R 0668e824a073fc622611fa1882996537 *README.md 8ed6f0dabb222e481fdbbb88716423a4 *build/vignette.rds beabaf282b127f38a392e195ef06c96a *data/House2001.R 7c31ff41d8d6540c2854e63510ecc1d3 *data/backPain.R c95b0a2e689d10acda9a2e6abae074f3 *data/barley.R 8745ad5205c2fac4852069847bad524a *data/barleyHeights.R f3cc5e608189dfafd71627c9b974a3cb *data/cautres.R 3506e55f9e7b939da1b17c6a9153e1c2 *data/erikson.R 1118864ec76263dd7a78af81d8370892 *data/friend.R 89c9be7c211d320185802fcda9e4f2ef *data/mentalHealth.R 003bde9fb206a870fab3d10b4540fd60 *data/voting.R bc9cf3388eabf6c0c5373d4d2838ca84 *data/wheat.R a75373c0905a41344418987e8c822e16 *data/yaish.R c8c477e8cc92a00190fc07f155cc1df8 *demo/00Index c9d7e30a137b9f9fb6311ecf82d81842 *demo/gnm.R 1c469e764020d31aa9088782d47b4bfb *inst/WORDLIST 7ca3b3eb71c300a9339a3535f3524bb9 *inst/doc/gnmOverview.R fb8a72ebe4b3ab53e355f23b3c8c8d1c *inst/doc/gnmOverview.Rnw 6eda4c0c04400ec98e1592e370a65e36 *inst/doc/gnmOverview.pdf 85e992e91d7cba65da2a6d599bd31413 *man/Const.Rd 53c39d9d86881cbfe64616586902a165 *man/Diag.Rd 0358eb8f515685aa7cc613e41ed1b887 *man/Dref.Rd d474d3d982cec7798cee2d76e547bfb6 *man/Exp.Rd f01b62d1ceb9a304e5874125cba7cac4 *man/House2001.Rd 264892ca68e2b7c62ed161035af01d9e *man/Inv.Rd bfb3220d153ffb0a9ca78878149ff28a *man/MPinv.Rd b56090e88095215fdbe1c862b98117f5 *man/Mult.Rd 858863f066143f20bc98e248e4e06823 *man/MultHomog.Rd 39e393e4c33b3383d8f9e38f31dc89d8 *man/Symm.Rd f017554959aab092565af8492f60da73 *man/Topo.Rd 5ca24d22d50cb807d73839ffef9fa2c0 *man/anova.gnm.Rd 3709acc93ded6573df4aff6e7ac299b1 *man/asGnm.Rd 17b3225ef2055a0e4d4209d5d637d910 *man/backPain.Rd 854f6de396cf1435127151a005fd4d7b *man/barley.Rd 657b72e8bb667198a0413958811ee671 *man/barleyHeights.Rd f1a7a3da20cfc54cba892c3efc96f530 *man/cautres.Rd 16e6947146b6d8aaf523d6e893ec390d *man/checkEstimable.Rd 8afc75479d7d6110071e64ea54ced037 *man/confint.gnm.Rd a33abb43f7ca09dd3f79d6f95dcc08e7 *man/erikson.Rd 5efe06dbc64e8e8eeab5ae5260a6c7fa *man/exitInfo.Rd 6c1e38abb276544593eaa923d88eecb8 *man/expandCategorical.Rd 761ca574a0deec5c8d07683806029efa *man/friend.Rd 31f817d71bb3bdcf2fd1c8e361a027d4 *man/getContrasts.Rd 5db92406797fbf7005362f638dd72983 *man/gnm-defunct.Rd 208e6ad06c53ef31dc053af2dcb55031 *man/gnm-package.Rd 26488938eae8248198e9b56fad2e02b1 *man/gnm.Rd ed561d469b59eb78fee8cfc94423c5b4 *man/instances.Rd 5875a3c18e4d92e9499a72c4b7443c18 *man/meanResiduals.Rd 7f020321e45f8862fbff8f8db391d263 *man/mentalHealth.Rd fae4fd1c5b87ac311be846bd0818c1e1 *man/model.matrix.gnm.Rd ad5b6dd7b9d4dd661661923a2f417f11 *man/nonlin.function.Rd c74a9e1b52fbd2ffd6e376beadb10264 *man/ofInterest.Rd 16e981f6532b4ef22679cd20b6c83b58 *man/parameters.Rd 23319a78ceaf845c4eb50d02192d08d4 *man/pickCoef.Rd dfcffdf6846ac9ca365a9e35dd676cb2 *man/plot.gnm.Rd 9e07000e50faedda6d0828cb889a35f2 *man/predict.gnm.Rd 846ef920aee4a61c0024b9405c239462 *man/profile.gnm.Rd 0736893b958b8547fda010819f134396 *man/residSVD.Rd 1f43b8bc38f1703bf389ef9c56af779f *man/se.Rd 2d0e3ecdb6d44468695138e619447e15 *man/se.gnm.Rd 13a1830f752a83907beaa1c8964da91d *man/summary.gnm.Rd badbc1338de4cc070474541ba8db74cb *man/termPredictors.Rd 719c890181753748f2dae4042f69f881 *man/vcov.gnm.Rd e2b7330e553d7fa198f4ee866547e047 *man/voting.Rd 86e2c54eede728c71f53fffe588b4747 *man/wedderburn.Rd 45f6173b89f29140a32b451db068a05f *man/wheat.Rd 382958f7c88a849929c32db5d54cfc92 *man/yaish.Rd 2fa4c7011c2bc0f7449ae151d5cc44ae *src/Makevars 118276ffad3a253189e54cf6ad542ce3 *src/gnm.c 62be8459d7a170fed70d4c266e90f28b *tests/testthat.R 8ade8729d3356fade8c6717a9bba9f6d *tests/testthat/_snaps/biplot.md 83763234044829d1f7f3ad8d353d031e *tests/testthat/_snaps/confint.gnm.md 8ac6edb7758f96460981501edc3d9fa8 *tests/testthat/_snaps/doubleUnidiff.md f80f55437253d8cc82219f8ce528a1eb *tests/testthat/test-RC.R 53af301a9181c7659959698609b7319d *tests/testthat/test-RChomog.R 3eb54d0d97624c9c760db1eebfb71c1c *tests/testthat/test-Symm.R 5ec3cff50a73b8e34795246d1d895f14 *tests/testthat/test-biplot.R 6a3d713940ce82aab9c1a37ce04e89b0 *tests/testthat/test-bwt.R 7cd19cbbfd579595bb7f8f77fff5dce8 *tests/testthat/test-confint.gnm.R 19cb61eb95ca616af7ad792ebec7aa0e *tests/testthat/test-diagonalRef.R eb71270f63c37066804e52f97ee0aba7 *tests/testthat/test-doubleUnidiff.R 6507ab4ae1454333257d5e99bb0be460 *tests/testthat/test-gammi.R 98f5701790e9adbb915daf2bfab88c1d *tests/testthat/test-glm.R 37643cffd67ab73173a558e24760c021 *tests/testthat/test-hskewL.R 12422560923660554269b9ddf92d0884 *tests/testthat/test-logistic.R e834dc7d40c098b0e3f8a32707346fbe *tests/testthat/test-stereotype.R 8501b0386c1efafa0a4f934f6388da37 *vignettes/fig-Effect_plots.pdf fd726d14883e8a94f45664a8ce062803 *vignettes/fig-LCall.pdf 596d106d3518e1cb77dbe23745d2f32a *vignettes/fig-LCover45.pdf e77867e5284795f1ed6d089899067d9c *vignettes/fig-LCqvplot.pdf ed765957742f3d6e102227a3ae699b04 *vignettes/fig-deaths1921-1940.pdf 39c2eaa3b5904faca6c419c0cab7b70e *vignettes/fig-profilePlot.pdf d39bcd84e80e26b411e58a29a7ebf113 *vignettes/gnm.bib fb8a72ebe4b3ab53e355f23b3c8c8d1c *vignettes/gnmOverview.Rnw f7bb932423c663aba2113c8ebb840cdc *vignettes/screenshot1.png 49e2d977c91fc67eceac382b56480625 *vignettes/screenshot2.png 91bb1eb0a9bef5dae03f658159ad9ac1 *vignettes/screenshot3.png gnm/inst/0000755000176200001440000000000014501306127012007 5ustar liggesusersgnm/inst/doc/0000755000176200001440000000000014501306127012554 5ustar liggesusersgnm/inst/doc/gnmOverview.Rnw0000644000176200001440000037044614376140103015572 0ustar liggesusers%\VignetteIndexEntry{Generalized nonlinear models in R: An overview of the gnm package} %\VignetteKeywords{Generalized Nonlinear Models} %\VignettePackage{gnm} \documentclass[a4paper]{article} \usepackage[english]{babel} % to avoid et~al with texi2pdf \usepackage{Sweave} %\usepackage{alltt} % now replaced by environments Sinput, Soutput, Scode \usepackage{amsmath} %\usepackage{times} %\usepackage[scaled]{couriers} \usepackage{txfonts} % Times, with Belleek math font and txtt for monospaced \usepackage[scaled=0.92]{helvet} %\usepackage[T1]{fontenc} %\usepackage[expert,altbullet,lucidasmallerscale]{lucidabr} \usepackage{booktabs} \usepackage[round,authoryear]{natbib} \usepackage[left=2cm,top=2.5cm,nohead]{geometry} \usepackage{hyperref} \usepackage{array} % for paragraph columns in tables %\usepackage{moreverb} \setkeys{Gin}{width=0.6\textwidth} %% The next few definitions from "Writing Vignettes for Bioconductor Packages" %% by R Gentleman \newcommand{\Robject}[1]{{\emph{\texttt{#1}}}} \newcommand{\Rfunction}[1]{{\emph{\texttt{#1}}}} \newcommand{\Rcode}[1]{{\emph{\texttt{#1}}}} \newcommand{\Rpackage}[1]{{\textsf{#1}}} \newcommand{\Rclass}[1]{{\emph{#1}}} \newcommand{\Rmethod}[1]{{\emph{\texttt{#1}}}} \newcommand{\Rfunarg}[1]{{\emph{\texttt{#1}}}} \newcommand{\R}{\textsf{R}} \newcommand\twiddle{{\char'176}} %\setlength{\oddsidemargin}{0.5in} %\setlength{\evensidemargin}{0.5in} %\setlength{\textwidth}{5.5in} \setlength{\itemindent}{1cm} \title{Generalized nonlinear models in \R: An overview of the \Rpackage{gnm} package} \author{Heather Turner and David Firth\footnote{ This work was supported by the Economic and Social Research Council (UK) through Professorial Fellowship RES-051-27-0055.}\\ \emph{University of Warwick, UK} } \date{For \Rpackage{gnm} version \Sexpr{packageDescription("gnm")[["Version"]]} , \Sexpr{Sys.Date()}} \begin{document} \maketitle {\small \tableofcontents } <>= options(SweaveHooks = list(eval = function() options(show.signif.stars = FALSE))) @ \section{Introduction} The \Rpackage{gnm} package provides facilities for fitting \emph{generalized nonlinear models}, i.e., regression models in which the link-transformed mean is described as a sum of predictor terms, some of which may be non-linear in the unknown parameters. Linear and generalized linear models, as handled by the \Rfunction{lm} and \Rfunction{glm} functions in \R, are included in the class of generalized nonlinear models, as the special case in which there is no nonlinear term. This document gives an extended overview of the \Rpackage{gnm} package, with some examples of applications. The primary package documentation in the form of standard help pages, as viewed in \R\ by, for example, \Rcode{?gnm} or \Rcode{help(gnm)}, is supplemented rather than replaced by the present document. We begin below with a preliminary note (Section \ref{sec:glms}) on some ways in which the \Rpackage{gnm} package extends \R's facilities for specifying, fitting and working with generalized \emph{linear} models. Then (Section \ref{sec:nonlinear} onwards) the facilities for nonlinear terms are introduced, explained and exemplified. The \Rpackage{gnm} package is installed in the standard way for CRAN packages, for example by using \Rfunction{install.packages}. Once installed, the package is loaded into an \R\ session by <>= library(gnm) @ \section{Generalized linear models} \label{sec:glms} \subsection{Preamble} Central to the facilities provided by the \Rpackage{gnm} package is the model-fitting function \Rfunction{gnm}, which interprets a model formula and returns a model object. The user interface of \Rfunction{gnm} is patterned after \Rfunction{glm} (which is included in \R's standard \Rpackage{stats} package), and indeed \Rfunction{gnm} can be viewed as a replacement for \Rfunction{glm} for specifying and fitting generalized linear models. In general there is no reason to prefer \Rfunction{gnm} to \Rfunction{glm} for fitting generalized linear models, except perhaps when the model involves a large number of incidental parameters which are treatable by \Rfunction{gnm}'s \emph{eliminate} mechanism (see Section \ref{sec:eliminate}). While the main purpose of the \Rpackage{gnm} package is to extend the class of models to include nonlinear terms, some of the new functions and methods can be used also with the familiar \Rfunction{lm} and \Rfunction{glm} model-fitting functions. These are: three new data-manipulation functions \Rfunction{Diag}, \Rfunction{Symm} and \Rfunction{Topo}, for setting up structured interactions between factors; a new \Rclass{family} function, \Rfunction{wedderburn}, for modelling a continuous response variable in $[0,1]$ with the variance function $V(\mu) = \mu^2(1-\mu)^2$ as in \citet{Wedd74}; and a new generic function \Rfunction{termPredictors} which extracts the contribution of each term to the predictor from a fitted model object. These functions are briefly introduced here, before we move on to the main purpose of the package, nonlinear models, in Section \ref{sec:nonlinear}. \subsection{\Rfunction{Diag} and \Rfunction{Symm}} When dealing with \emph{homologous} factors, that is, categorical variables whose levels are the same, statistical models often involve structured interaction terms which exploit the inherent symmetry. The functions \Rfunction{Diag} and \Rfunction{Symm} facilitate the specification of such structured interactions. As a simple example of their use, consider the log-linear models of \emph{quasi-independence}, \emph{quasi-symmetry} and \emph{symmetry} for a square contingency table. \citet{Agre02}, Section 10.4, gives data on migration between regions of the USA between 1980 and 1985: <>= count <- c(11607, 100, 366, 124, 87, 13677, 515, 302, 172, 225, 17819, 270, 63, 176, 286, 10192 ) region <- c("NE", "MW", "S", "W") row <- gl(4, 4, labels = region) col <- gl(4, 1, length = 16, labels = region) @ The comparison of models reported by Agresti can be achieved as follows: <>= independence <- glm(count ~ row + col, family = poisson) quasi.indep <- glm(count ~ row + col + Diag(row, col), family = poisson) symmetry <- glm(count ~ Symm(row, col), family = poisson) quasi.symm <- glm(count ~ row + col + Symm(row, col), family = poisson) comparison1 <- anova(independence, quasi.indep, quasi.symm) print(comparison1, digits = 7) comparison2 <- anova(symmetry, quasi.symm) print(comparison2) @ The \Rfunction{Diag} and \Rfunction{Symm} functions also generalize the notions of diagonal and symmetric interaction to cover situations involving more than two homologous factors. \subsection{\Rfunction{Topo}} More general structured interactions than those provided by \Rfunction{Diag} and \Rfunction{Symm} can be specified using the function \Rfunction{Topo}. (The name of this function is short for `topological interaction', which is the nomenclature often used in sociology for factor interactions with structure derived from subject-matter theory.) The \Rfunction{Topo} function operates on any number ($k$, say) of input factors, and requires an argument named \Rfunarg{spec} which must be an array of dimension $L_1 \times \ldots \times L_k$, where $L_i$ is the number of levels for the $i$th factor. The \Rfunarg{spec} argument specifies the interaction level corresponding to every possible combination of the input factors, and the result is a new factor representing the specified interaction. As an example, consider fitting the `log-multiplicative layer effects' models described in \citet{Xie92}. The data are 7 by 7 versions of social mobility tables from \citet{Erik82}: <>= ### Collapse to 7 by 7 table as in Erikson et al. (1982) erikson <- as.data.frame(erikson) lvl <- levels(erikson$origin) levels(erikson$origin) <- levels(erikson$destination) <- c(rep(paste(lvl[1:2], collapse = " + "), 2), lvl[3], rep(paste(lvl[4:5], collapse = " + "), 2), lvl[6:9]) erikson <- xtabs(Freq ~ origin + destination + country, data = erikson) @ From sociological theory --- for which see \citet{Erik82} or \citet{Xie92} --- the log-linear interaction between origin and destination is assumed to have a particular structure: \begin{Sinput} > levelMatrix <- matrix(c(2, 3, 4, 6, 5, 6, 6, + 3, 3, 4, 6, 4, 5, 6, + 4, 4, 2, 5, 5, 5, 5, + 6, 6, 5, 1, 6, 5, 2, + 4, 4, 5, 6, 3, 4, 5, + 5, 4, 5, 5, 3, 3, 5, + 6, 6, 5, 3, 5, 4, 1), 7, 7, byrow = TRUE) \end{Sinput} The models of table 3 of \citet{Xie92} can now be fitted as follows: \begin{Sinput} > ## Null association between origin and destination > nullModel <- gnm(Freq ~ country:origin + country:destination, + family = poisson, data = erikson, verbose = FALSE) > > ## Interaction specified by levelMatrix, common to all countries > commonTopo <- update(nullModel, ~ . + + Topo(origin, destination, spec = levelMatrix), + verbose = FALSE) > > ## Interaction specified by levelMatrix, different multiplier for each country > multTopo <- update(nullModel, ~ . + + Mult(Exp(country), Topo(origin, destination, spec = levelMatrix)), + verbose = FALSE) > > ## Interaction specified by levelMatrix, different effects for each country > separateTopo <- update(nullModel, ~ . + + country:Topo(origin, destination, spec = levelMatrix), + verbose = FALSE) > > anova(nullModel, commonTopo, multTopo, separateTopo) \end{Sinput} \begin{Soutput} Analysis of Deviance Table Model 1: Freq ~ country:origin + country:destination Model 2: Freq ~ Topo(origin, destination, spec = levelMatrix) + country:origin + country:destination Model 3: Freq ~ Mult(country, Topo(origin, destination, spec = levelMatrix)) + country:origin + country:destination Model 4: Freq ~ country:origin + country:destination + country:Topo(origin, destination, spec = levelMatrix) Resid. Df Resid. Dev Df Deviance 1 108 4860.0 2 103 244.3 5 4615.7 3 101 216.4 2 28.0 4 93 208.5 8 7.9 \end{Soutput} Here we have used \Rfunction{gnm} to fit all of these log-link models; the first, second and fourth are log-linear and could equally well have been fitted using \Rfunction{glm}. \subsection{The \Rfunction{wedderburn} family} In \citet{Wedd74} it was suggested to represent the mean of a continuous response variable in $[0,1]$ using a quasi-likelihood model with logit link and the variance function $\mu^2(1-\mu)^2$. This is not one of the variance functions made available as standard in \R's \Rfunction{quasi} family. The \Rfunction{wedderburn} family provides it. As an example, Wedderburn's analysis of data on leaf blotch on barley can be reproduced as follows: <>= ## data from Wedderburn (1974), see ?barley logitModel <- glm(y ~ site + variety, family = wedderburn, data = barley) fit <- fitted(logitModel) print(sum((barley$y - fit)^2 / (fit * (1-fit))^2)) @ This agrees with the chi-squared value reported on page 331 of \citet{McCu89}, which differs slightly from Wedderburn's own reported value. \subsection{\Rfunction{termPredictors}} \label{sec:termPredictors} The generic function \Rfunction{termPredictors} extracts a term-by-term decomposition of the predictor function in a linear, generalized linear or generalized nonlinear model. As an illustrative example, we can decompose the linear predictor in the above quasi-symmetry model as follows: <>= print(temp <- termPredictors(quasi.symm)) rowSums(temp) - quasi.symm$linear.predictors @ Such a decomposition might be useful, for example, in assessing the relative contributions of different terms or groups of terms. \section{Nonlinear terms} \label{sec:nonlinear} The main purpose of the \Rpackage{gnm} package is to provide a flexible framework for the specification and estimation of generalized models with nonlinear terms. The facility provided with \Rfunction{gnm} for the specification of nonlinear terms is designed to be compatible with the symbolic language used in \Rclass{formula} objects. Primarily, nonlinear terms are specified in the model formula as calls to functions of the class \Rclass{nonlin}. There are a number of \Rclass{nonlin} functions included in the \Rpackage{gnm} package. Some of these specify simple mathematical functions of predictors: \Rfunction{Exp}, \Rfunction{Mult}, and \Rfunction{Inv}. %\Rfunction{Log}, \Rfunction{Raise} (to raise to a constant power), and \Rfunction{Logit}. Others specify more specialized nonlinear terms, in particular \Rfunction{MultHomog} specifies homogeneous multiplicative interactions and \Rfunction{Dref} specifies diagonal reference terms. Users may also define their own \Rclass{nonlin} functions. \subsection{Basic mathematical functions of predictors} \label{sec:Basic} Most of the \Rclass{nonlin} functions included in \Rpackage{gnm} are basic mathematical functions of predictors: \begin{description} \setlength{\itemindent}{-0.5cm} \item[\Rfunction{Exp}:] the exponential of a predictor \item[\Rfunction{Inv}:] the reciprocal of a predictor %\item[\Rfunction{Log}:] the natural logarithm of a predictor %\item[\Rfunction{Logit}:] the logit of a predictor \item[\Rfunction{Mult}:] the product of predictors %\item[\Rfunction{Raise}:] a predictor raised to a constant power \end{description} Predictors are specified by symbolic expressions that are interpreted as the right-hand side of a \Rclass{formula} object, except that an intercept is \textbf{not} added by default. The predictors may contain nonlinear terms, allowing more complex functions to be built up. For example, suppose we wanted to specify a logistic predictor with the same form as that used by \Rfunction{SSlogis} (a selfStart model for use with \Rfunction{nls} --- see section~\ref{sec:gnmVnls} for more on \Rfunction{gnm} vs.\ \Rfunction{nls}): \[\frac{\text{Asym}}{1 + \exp((\text{xmid} - x)/\text{scal})}.\] This expression could be simplified by re-parameterizing in terms of xmid/scal and 1/scal, however we shall continue with this form for illustration. We could express this predictor symbolically as follows \begin{Scode} ~ -1 + Mult(1, Inv(Const(1) + Exp(Mult(1 + offset(-x), Inv(1))))) \end{Scode} where \Rfunction{Const} is a convenience function to specify a constant in a \Rclass{nonlin} term, equivalent to \Rcode{offset(rep(1, nObs))} where \Robject{nObs} is the number of observations. However, this is rather convoluted and it may be preferable to define a specialized \Rclass{nonlin} function in such a case. Section \ref{sec:nonlin.functions} explains how users can define custom \Rclass{nonlin} functions, with a function to specify logistic terms as an example. One family of models usefully specified with the basic functions is the family of models with multiplicative interactions. For example, the row-column association model \[ \log \mu_{rc} = \alpha_r + \beta_c + \gamma_r\delta_c, \] also known as the Goodman RC model \citep{Good79}, would be specified as a log-link model (for response variable \Robject{resp}, say), with formula \begin{Scode} resp ~ R + C + Mult(R, C) \end{Scode} where \Robject{R} and \Robject{C} are row and column factors respectively. In some contexts, it may be desirable to constrain one or more of the constituent multipliers\footnote{ A note on terminology: the rather cumbersome phrase `constituent multiplier', or sometimes the abbreviation `multiplier', will be used throughout this document in preference to the more elegant and standard mathematical term `factor'. This will avoid possible confusion with the completely different meaning of the word `factor' --- that is, a categorical variable --- in \R. } in a multiplicative interaction to be nonnegative . This may be achieved by specifying the multiplier as an exponential, as in the following `uniform difference' model \citep{Xie92, Erik92} \[ \log \mu_{rct} = \alpha_{rt} + \beta_{ct} + e^{\gamma_t}\delta_{rc}, \] which would be represented by a formula of the form \begin{Scode} resp ~ R:T + C:T + Mult(Exp(T), R:C) \end{Scode} \subsection{\Rfunction{MultHomog}} \Rfunction{MultHomog} is a \Rclass{nonlin} function to specify multiplicative interaction terms in which the constituent multipliers are the effects of two or more factors and the effects of these factors are constrained to be equal when the factor levels are equal. The arguments of \Rfunction{MultHomog} are the factors in the interaction, which are assumed to be objects of class \Rclass{factor}. As an example, consider the following association model with homogeneous row-column effects: \[\log \mu_{rc} = \alpha_r + \beta_c + \theta_{r}I(r=c) + \gamma_r\gamma_c.\] To fit this model, with response variable named \Robject{resp}, say, the formula argument to \Rfunction{gnm} would be \begin{Scode} resp ~ R + C + Diag(R, C) + MultHomog(R, C) \end{Scode} If the factors passed to \Rfunction{MultHomog} do not have exactly the same levels, a common set of levels is obtained by taking the union of the levels of each factor, sorted into increasing order. \subsection{\Rfunction{Dref}} \label{sec:Dref function} \Rfunction{Dref} is a \Rclass{nonlin} function to fit diagonal reference terms \citep{Sobe81, Sobe85} involving two or more factors with a common set of levels. A diagonal reference term comprises an additive component for each factor. The component for factor $f$ is given by \[ w_f\gamma_l \] for an observation with level $l$ of factor $f$, where $w_f$ is the weight for factor $f$ and $\gamma_l$ is the ``diagonal effect'' for level $l$. The weights are constrained to be nonnegative and to sum to one so that a ``diagonal effect'', say $\gamma_l$, is the value of the diagonal reference term for data points with level $l$ across the factors. \Rfunction{Dref} specifies the constraints on the weights by defining them as \[ w_f = \frac{e^{\delta_f}}{\sum_i e^{\delta_i}} \] where the $\delta_f$ are the parameters to be estimated. Factors defining the diagonal reference term are passed as unspecified arguments to \Rfunction{Dref}. For example, the following diagonal reference model for a contingency table classified by the row factor \Robject{R} and the column factor \Robject{C}, \[ \mu_{rc} =\frac{e^{\delta_1}}{e^{\delta_1} + e^{\delta_2}}\gamma_r + \frac{e^{\delta_2}}{e^{\delta_1} + e^{\delta_2}}\gamma_c, \] would be specified by a formula of the form \begin{Scode} resp ~ -1 + Dref(R, C) \end{Scode} The \Rfunction{Dref} function has one specified argument, \Rfunarg{delta}, which is a formula with no left-hand side, specifying the dependence (if any) of $\delta_f$ on covariates. For example, the formula \begin{Scode} resp ~ -1 + x + Dref(R, C, delta = ~ 1 + x) \end{Scode} specifies the generalized diagonal reference model \[ \mu_{rci} = \beta x_i + \frac{e^{\xi_{01} + \xi_{11}x_i}}{e^{\xi_{01} + \xi_{11}x_i} + e^{\xi_{02} + \xi_{12}x_i}}\gamma_r + \frac{e^{\xi_{02} + \xi_{12}x_i}}{e^{\xi_{01} + \xi_{11}x_i} + e^{\xi_{02} + \xi_{12}x_i}}\gamma_c. \] The default value of \Rfunarg{delta} is \Robject{\twiddle 1}, so that constant weights are estimated. The coefficients returned by \Rfunction{gnm} are those that are directly estimated, i.e. the $\delta_f$ or the $\xi_{.f}$, rather than the implied weights $w_f$. However, these weights may be obtained from a fitted model using the \Rfunction{DrefWeights} function, which computes the corresponding standard errors using the delta method. \subsection{\Rfunction{instances}} \label{sec:instances} Multiple instances of a linear term will be aliased with each other, but this is not necessarily the case for nonlinear terms. Indeed, there are certain types of model where adding further instances of a nonlinear term is a natural way to extend the model. For example, Goodman's RC model, introduced in section \ref{sec:Basic} \[ \log \mu_{rc} = \alpha_r + \beta_c + \gamma_r\delta_c, \] is naturally extended to the RC(2) model, with a two-component interaction \[ \log \mu_{rc} = \alpha_r + \beta_c + \gamma_r\delta_c + \theta_r\phi_c. \] Currently all of the \Rclass{nonlin} functions in \Rpackage{gnm} except \Rpackage{Dref} have an \Rfunarg{inst} argument to allow the specification of multiple instances. So the RC(2) model could be specified as follows \begin{Scode} resp ~ R + C + Mult(R, C, inst = 1) + Mult(R, C, inst = 2) \end{Scode} The convenience function \Rfunction{instances} allows multiple instances of a term to be specified at once \begin{Scode} resp ~ R + C + instances(Mult(R, C), 2) \end{Scode} The formula is expanded by \Rfunction{gnm}, so that the instances are treated as separate terms. The \Rfunction{instances} function may be used with any function with an \Rfunarg{inst} argument. \subsection{Custom \Rclass{nonlin} functions} \label{sec:nonlin.functions} \subsubsection{General description} Users may write their own \Rclass{nonlin} functions to specify nonlinear terms which can not (easily) be specified using the \Rclass{nonlin} functions in the \Rpackage{gnm} package. A function of class \Rclass{nonlin} should return a list of arguments for the internal function \Rfunction{nonlinTerms}. The following arguments must be specified in all cases: \begin{description} \setlength{\itemindent}{-0.5cm} \item[\Robject{predictors}:] a list of symbolic expressions or formulae with no left hand side which represent (possibly nonlinear) predictors that form part of the term. \item[\Robject{term}:] a function that takes the arguments \Rfunarg{predLabels} and \Rfunarg{varLabels}, which are labels generated by \Rfunction{gnm} for the specified predictors and variables (see below), and returns a deparsed mathematical expression of the nonlinear term. Only functions recognised by \Rfunction{deriv} should be used in the expression, e.g. \Rfunction{+} rather than \Rfunction{sum}. \end{description} If predictors are named, these names are used as a prefix for parameter labels or as the parameter label itself in the single-parameter case. The following arguments of \Rfunction{nonlinTerms} must be specified whenever applicable to the nonlinear term: \begin{description} \setlength{\itemindent}{-0.5cm} \item[\Robject{variables}:] a list of expressions representing variables in the term (variables with a coefficient of 1). \item[\Robject{common}:] a numeric index of \Rfunarg{predictors} with duplicated indices identifying single factor predictors for which homologous effects are to be estimated. \end{description} The arguments below are optional: \begin{description} \setlength{\itemindent}{-0.5cm} \item[\Robject{call}:] a call to be used as a prefix for parameter labels. \item[\Robject{match}:] (if \Robject{call} is non-\Rcode{NULL}) a numeric index of \Robject{predictors} specifying which arguments of \Robject{call} the predictors match to --- zero indicating no match. If \Rcode{NULL}, predictors will not be matched to the arguments of \Robject{call}. \item[\Robject{start}:] a function which takes a named vector of parameters corresponding to the predictors and returns a vector of starting values for those parameters. This function is ignored if the term is nested within another nonlinear term. \end{description} Predictors which are matched to a specified argument of \Robject{call} should be given the same name as the argument. Matched predictors are labelled using ``dot-style'' labelling, e.g. the label for the intercept in the first constituent multiplier of the term \Rcode{Mult(A, B)} would be \Rcode{"Mult(.\ + A, 1 + B).(Intercept)"}. It is recommended that matches are specified wherever possible, to ensure parameter labels are well-defined. The arguments of \Rclass{nonlin} functions are as suited to the particular term, but will usually include symbolic representations of predictors in the term and/or the names of variables in the term. The function may also have an \Rfunarg{inst} argument to allow specification of multiple instances (see \ref{sec:instances}). \subsubsection{Example: a logistic function} As an example, consider writing a \Rclass{nonlin} function for the logistic term discussed in \ref{sec:Basic}: \[\frac{\text{Asym}}{1 + \exp((\text{xmid} - x)/\text{scal})}.\] We can consider \emph{Asym}, \emph{xmid} and \emph{scal} as the parameters of three separate predictors, each with a single intercept term. Thus we specify the \Rfunarg{predictors} argument to \Rfunction{nonlinTerms} as \begin{Scode} predictors = list(Asym = 1, xmid = 1, scal = 1) \end{Scode} The term also depends on the variable $x$, which would need to be specified by the user. Suppose this is specified to our \Rclass{nonlin} function through an argument named \Rfunarg{x}. Then our \Rclass{nonlin} function would specify the following \Rfunarg{variables} argument \begin{Scode} variables = list(substitute(x)) \end{Scode} We need to use \Rfunction{substitute} here to list the variable specified by the user rather than the variable named \Rcode{``x''} (if it exists). Our \Rclass{nonlin} function must also specify the \Rfunarg{term} argument to \Rfunction{nonlinTerms}. This is a function that will paste together an expression for the term, given labels for the predictors and the variables: \begin{Scode} term = function(predLabels, varLabels) { paste(predLabels[1], "/(1 + exp((", predLabels[2], "-", varLabels[1], ")/", predLabels[3], "))") } \end{Scode} We now have all the necessary ingredients of a \Rclass{nonlin} function to specify the logistic term. Since the parameterization does not depend on user-specified values, it does not make sense to use call-matched labelling in this case. The labels for our parameters will be taken from the labels of the \Rfunarg{predictors} argument. Since we do not anticipate fitting models with multiple logistic terms, our \Rclass{nonlin} function will not specify a \Rfunarg{call} argument with which to prefix the parameter labels. We do however, have some idea of useful starting values, so we will specify the \Rfunarg{start} argument as \begin{Scode} start = function(theta){ theta[3] <- 1 theta } \end{Scode} which sets the initial scale parameter to one. Putting all these ingredients together we have \begin{Scode} Logistic <- function(x){ list(predictors = list(Asym = 1, xmid = 1, scal = 1), variables = list(substitute(x)), term = function(predLabels, varLabels) { paste(predLabels[1], "/(1 + exp((", predLabels[2], "-", varLabels[1], ")/", predLabels[3], "))") }, start = function(theta){ theta[3] <- 1 theta }) } class(Logistic) <- "nonlin" \end{Scode} \subsubsection{Example: \Rfunction{MultHomog}} The \Rfunction{MultHomog} function included in the \Rpackage{gnm} package provides a further example of a \Rclass{nonlin} function, showing how to specify a term with quite different features from the preceding example. The definition is \begin{Scode} MultHomog <- function(..., inst = NULL){ dots <- match.call(expand.dots = FALSE)[["..."]] list(predictors = dots, common = rep(1, length(dots)), term = function(predLabels, ...) { paste("(", paste(predLabels, collapse = ")*("), ")", sep = "")}, call = as.expression(match.call())) } class(MultHomog) <- "nonlin" \end{Scode} Firstly, the interaction may be based on any number of factors, hence the use of the special ``\Rfunarg{...}'' argument. The use of \Rfunction{match.call} is analogous to the use of \Rfunction{substitute} in the \Rfunction{Logistic} function: to obtain expressions for the factors as specified by the user. The returned \Rfunarg{common} argument specifies that homogeneous effects are to be estimated across all the specified factors. The term only depends on these factors, but the \Rfunarg{term} function allows for the empty \Robject{varLabels} vector that will be passed to it, by having a ``\Rfunarg{...}'' argument. Since the user may wish to specify multiple instances, the \Rfunarg{call} argument to \Rfunction{nonlinTerms} is specified, so that parameters in different instances of the term will have unique labels (due to the \Rfunarg{inst} argument in the call). However as the expressions passed to ``\Rfunarg{...}'' may only represent single factors, rather than general predictors, it is not necessary to use call-matched labelling, so the \Rfunarg{match} argument is not specified here. % Dref starting values as example of ensuring the arbitrariness of the final % parameterization is emphasised (see old plug-in section)? \section{Controlling the fitting procedure} The \Rfunction{gnm} function has a number of arguments which affect the way a model will be fitted. Basic control parameters can be set using the arguments %\Rfunarg{checkLinear}, \Rfunarg{lsMethod}, \Rfunarg{ridge}, \Rfunarg{tolerance}, \Rfunarg{iterStart} and \Rfunarg{iterMax}. Starting values for the parameter estimates can be set by \Rfunarg{start} or they can be generated from starting values for the predictors on the link or response scale via \Rfunarg{etastart} or \Rfunarg{mustart} respectively. Parameters can be constrained via \Rfunarg{constrain} and \Rfunarg{constrainTo} arguments, while parameters of a stratification factor can be handled more efficiently by specifying the factor in an \Rfunarg{eliminate} argument. These options are described in more detail below. \subsection{Basic control parameters} %By default, \Rfunction{gnm} will use \Rfunction{glm.fit} to fit models where the %predictor is linear and \Rfunarg{eliminate} is \Rcode{NULL}. This behaviour can %be overridden by setting \Rfunarg{checkLinear} to \Rcode{FALSE}. %%% At present there is no advantage to doing this! Parameterization would be %%% the same. The arguments \Rfunarg{iterStart} and \Rfunarg{iterMax} control respectively the number of starting iterations (where applicable) and the number of main iterations used by the fitting algorithm. The progress of these iterations can be followed by setting either \Rfunarg{verbose} or \Rfunarg{trace} to \Robject{TRUE}. If \Rfunarg{verbose} is \Robject{TRUE} and \Rfunarg{trace} is \Robject{FALSE}, which is the default setting, progress is indicated by printing the character ``.'' at the beginning of each iteration. If \Rfunarg{trace} is \Robject{TRUE}, the deviance is printed at the beginning of each iteration (over-riding the printing of ``.'' if necessary). Whenever \Rfunarg{verbose} is \Robject{TRUE}, additional messages indicate each stage of the fitting process and diagnose any errors that cause that cause the algorithm to restart. Prior to solving the (typically rank-deficient) least squares problem at the heart of the \Rfunction{gnm} fitting algorithm, the design matrix is standardized and regularized (in the Levenberg-Marquardt sense); the \Rfunarg{ridge} argument provides a degree of control over the regularization performed (smaller values may sometimes give faster convergence but can lead to numerical instability). The fitting algorithm will terminate before the number of main iterations has reached \Rfunarg{iterMax} if the convergence criteria have been met, with tolerance specified by \Rfunarg{tolerance}. Convergence is judged by comparing the squared components of the score vector with corresponding elements of the diagonal of the Fisher information matrix. If, for all components of the score vector, the ratio is less than \Robject{tolerance\^{}2}, or the corresponding diagonal element of the Fisher information matrix is less than 1e-20, the algorithm is deemed to have converged. \subsection{Specifying starting values} \label{sec:start} \subsubsection{Using \Rfunarg{start}} In some contexts, the default starting values may not be appropriate and the fitting algorithm will fail to converge, or perhaps only converge after a large number of iterations. Alternative starting values may be passed on to \Rfunction{gnm} by specifying a \Rfunarg{start} argument. This should be a numeric vector of length equal to the number of parameters (or possibly the non-eliminated parameters, see Section \ref{sec:eliminate}), however missing starting values (\Robject{NA}s) are allowed. If there is no user-specified starting value for a parameter, the default value is used. This feature is particularly useful when adding terms to a model, since the estimates from the original model can be used as starting values, as in this example: \begin{Scode} model1 <- gnm(mu ~ R + C + Mult(R, C)) model2 <- gnm(mu ~ R + C + instances(Mult(R, C), 2), start = c(coef(model1), rep(NA, 10))) \end{Scode} The \Rfunction{gnm} call can be made with \Rcode{method = "coefNames"} to identify the parameters of a model prior to estimation, to assist with the specification of arguments such as \Rfunarg{start}. For example, to get the number \Rcode{10} for the value of \Rfunarg{start} above, we could have done \begin{Scode} gnm(mu ~ R + C + instances(Mult(R, C), 2), method = "coefNames") \end{Scode} from whose output it would be seen that there are 10 new coefficients in \Robject{model2}. When called with \Rcode{method = "coefNames"}, \Rfunction{gnm} makes no attempt to fit the specified model; instead it returns just the names that the coefficients in the fitted model object would have. The starting procedure used by \Rfunction{gnm} is as follows: \begin{enumerate} \item Begin with all parameters set to \Rcode{NA}. \item \label{i:nonlin} Replace \Rcode{NA} values with any starting values set by \Rclass{nonlin} functions. \item \label{i:start} Replace current values with any (non-\Rcode{NA}) starting values specified by the \Rfunarg{start} argument of \Rfunction{gnm}. \item \label{i:constrain} Set any values specified by the \Rfunarg{constrain} argument to the values specified by the \Rfunarg{constrainTo} argument (see Section \ref{sec:constrain}). \item \label{i:gnmStart} Categorise remaining \Rcode{NA} parameters as linear or nonlinear, treating non-\Rcode{NA} parameters as fixed. Initialise the nonlinear parameters by generating values $\theta_i$ from the Uniform($-0.1$, $0.1$) distribution and shifting these values away from zero as follows \begin{equation*} \theta_i = \begin{cases} \theta_i - 0.1 & \text{if } \theta_i < 1 \\ \theta_i + 0.1 & \text{otherwise} \end{cases} \end{equation*} \item Compute the \Rfunction{glm} estimate of the linear parameters, offsetting the contribution to the predictor of any terms fully determined by steps \ref{i:nonlin} to \ref{i:gnmStart}. \item \label{i:iter} Run starting iterations: update nonlinear parameters one at a time, jointly re-estimating linear parameters after each round of updates. \end{enumerate} Note that no starting iterations (step \ref{i:iter}) will be run if all parameters are linear, or if all nonlinear parameters are specified by \Rfunarg{start}, \Rfunarg{constrain} or a \Rclass{nonlin} function. \subsubsection{Using \Rfunarg{etastart} or \Rfunarg{mustart}} An alternative way to set starting values for the parameters is to specify starting values for the predictors. If there are linear parameters in the model, the predictor starting values are first used to fit a model with only the linear terms (offsetting any terms fully specified by starting values given by \Rfunarg{start}, \Rfunarg{constrain} or a \Rclass{nonlin} function). In this case the parameters corresponding to the predictor starting values can be computed analytically. If the fitted model reproduces the predictor starting values, then these values contain no further information and they are replaced using the \Rfunction{initialize} function of the specified \Rfunarg{family}. The predictor starting values or their replacement are then used as the response variable in a nonlinear least squares model with only the unspecified nonlinear terms, offsetting the contribution of any other terms. Since the model is over-parameterized, the model is approximated using \Rfunarg{iterStart} iterations of the ``L-BFGS-B'' algorithm of \Rfunction{optim}, assuming parameters lie in the range (-10, 10). Starting values for the predictors can be specified explicitly via \Rfunarg{etastart} or implicitly by passing starting values for the fitted means to \Rfunarg{mustart}. For example, when extending a model, the fitted predictors from the first model can be used to find starting values for the parameters of the second model: \begin{Scode} model1 <- gnm(mu ~ R + C + Mult(R, C)) model2 <- gnm(mu ~ R + C + instances(Mult(R, C), 2), etastart = model1$predictors) \end{Scode} %$ Using \Rfunction{etastart} avoids the one-parameter-at-a-time starting iterations, so is quicker than using \Rfunction{start} to pass on information from a nested model. However \Rfunction{start} will generally produce better starting values so should be used when feasible. For multiplicative terms, the \Rfunction{residSVD} functions provides a better way to avoid starting iterations. \subsection{Using \Rfunarg{constrain}} \label{sec:constrain} By default, \Rfunction{gnm} only imposes identifiability constraints according to the general conventions used by \Robject{R} to handle linear aliasing. Therefore models that have any nonlinear terms will be typically be over-parameterized, and \Rfunction{gnm} will return a random parameterization for unidentified coefficients (determined by the randomly chosen starting values for the iterative algorithm, step 5 above). To illustrate this point, consider the following application of \Rfunction{gnm}, discussed later in Section \ref{sec:RCmodels}: <>= set.seed(1) RChomog1 <- gnm(Freq ~ origin + destination + Diag(origin, destination) + MultHomog(origin, destination), family = poisson, data = occupationalStatus, verbose = FALSE) @ Running the analysis again from a different seed <>= set.seed(2) RChomog2 <- update(RChomog1) @ gives a different representation of the same model: <>= compareCoef <- cbind(coef(RChomog1), coef(RChomog2)) colnames(compareCoef) <- c("RChomog1", "RChomog2") round(compareCoef, 4) @ Even though the linear terms are constrained, the parameter estimates for the main effects of \Robject{origin} and \Robject{destination} still change, because these terms are aliased with the higher order multiplicative interaction, which is unconstrained. Standard errors are only meaningful for identified parameters and hence the output of \Rmethod{summary.gnm} will show clearly which coefficients are estimable: <>= summary(RChomog2) @ Additional constraints may be specified through the \Rfunarg{constrain} and \Rfunarg{constrainTo} arguments of \Rfunction{gnm}. These arguments specify respectively parameters that are to be constrained in the fitting process and the values to which they should be constrained. Parameters may be specified by a regular expression to match against the parameter names, a numeric vector of indices, a character vector of names, or, if \Rcode{constrain = "[?]"} they can be selected through a \emph{Tk} dialog. The values to constrain to should be specified by a numeric vector; if \Rfunarg{constrainTo} is missing, constrained parameters will be set to zero. In the case above, constraining one level of the homogeneous multiplicative factor is sufficient to make the parameters of the nonlinear term identifiable, and hence all parameters in the model identifiable. Figure~\ref{fig:Tk} illustrates how the coefficient to be constrained may be specified via a \emph{Tk} dialog, an approach which can be helpful in interactive R sessions. % here illustrate TclTk dialog, but explain other methods better for reproducibility \begin{figure}[tp] \centering \begin{tabular}[!h]{m{0.6\linewidth}m{0.4\linewidth}} \scalebox{0.9}{\includegraphics{screenshot1.png}} & When \Rfunction{gnm} is called with \Rcode{constrain = "[?]"}, a \emph{Tk} dialog is shown listing the coefficients in the model.\\ \scalebox{0.9}{\includegraphics{screenshot2.png}} & Scroll through the coefficients and click to select a single coefficient to constrain. To select multiple coefficients, hold down the \texttt{Ctrl} key whilst clicking. The \texttt{Add} button will become active when coefficient(s) have been selected.\\ \scalebox{0.9}{\includegraphics{screenshot3.png}} & Click the \texttt{Add} button to add the selected coefficients to the list of coefficients to be constrained. To remove coefficients from the list, select the coefficients in the right pane and click \texttt{Remove}. Click \texttt{OK} when you have finalised the list.\\ \end{tabular} \caption{Selecting coefficients to constrain with the \emph{Tk} dialog.} \label{fig:Tk} \end{figure} However for reproducible code, it is best to specify the constrained coefficients directly. For example, the following code specifies that the last level of the homogeneous multiplicative factor should be constrained to zero, <>= set.seed(1) RChomogConstrained1 <- update(RChomog1, constrain = length(coef(RChomog1))) @ Since all the parameters are now constrained, re-fitting the model will give the same results, regardless of the random seed set beforehand: <>= set.seed(2) RChomogConstrained2 <- update(RChomogConstrained1) identical(coef(RChomogConstrained1), coef(RChomogConstrained2)) @ It is not usually so straightforward to constrain all the parameters in a generalized nonlinear model. However use of \Rfunarg{constrain} in conjunction with \Rfunarg{constrainTo} is usually sufficient to make coefficients of interest identifiable . The functions \Rfunction{checkEstimable} or \Rfunction{getContrasts}, described in Section \ref{sec:Methods}, may be used to check whether particular combinations of parameters are estimable. \subsection{Using \Rfunarg{eliminate}} \label{sec:eliminate} When a model contains the additive effect of a factor which has a large number of levels, the iterative algorithm by which maximum likelihood estimates are computed can usually be accelerated by use of the \Rfunarg{eliminate} argument to \Rfunction{gnm}. A factor passed to \Rfunarg{eliminate} specifies the first term in the model, replacing any intercept term. So, for example \begin{Scode} gnm(mu ~ A + B + Mult(A, B), eliminate = strata1:strata2) \end{Scode} is equivalent, in terms of the structure of the model, to \begin{Scode} gnm(mu ~ -1 + strata1:strata2 + A + B + Mult(A, B)) \end{Scode} However, specifying a factor through \Rfunarg{eliminate} has two advantages over the standard specification. First, the structure of the eliminated factor is exploited so that computational speed is improved --- substantially so if the number of eliminated parameters is large. Second, eliminated parameters are returned separately from non-eliminated parameters (as an attribute of the \Robject{coefficients} component of the returned object). Thus eliminated parameters are excluded from printed model summaries by default and disregarded by \Rclass{gnm} methods that would not be relevant to such parameters (see Section \ref{sec:Methods}). The \Rfunarg{eliminate} feature is useful, for example, when multinomial-response models are fitted by using the well known equivalence between multinomial and (conditional) Poisson likelihoods. In such situations the sufficient statistic involves a potentially large number of fixed multinomial row totals, and the corresponding parameters are of no substantive interest. For an application see Section \ref{sec:Stereotype} below. Here we give an artificial illustration: 1000 randomly-generated trinomial responses, and a single predictor variable (whose effect on the data generation is null): <>= set.seed(1) n <- 1000 x <- rep(rnorm(n), rep(3, n)) counts <- as.vector(rmultinom(n, 10, c(0.7, 0.1, 0.2))) rowID <- gl(n, 3, 3 * n) resp <- gl(3, 1, 3 * n) @ The logistic model for dependence on \Robject{x} can be fitted as a Poisson log-linear model\footnote{For this particular example, of course, it would be more economical to fit the model directly using \Rfunction{multinom} (from the recommended package \Rpackage{nnet}). But fitting as here via the `Poisson trick' allows the model to be elaborated within the \Rpackage{gnm} framework using \Rfunction{Mult} or other \Rclass{nonlin} terms.}, using either \Rfunction{glm} or \Rfunction{gnm}: \begin{Sinput} > ## Timings on a Xeon 2.33GHz, under Linux > system.time(temp.glm <- glm(counts ~ rowID + resp + resp:x, family = poisson))[1] \end{Sinput} \begin{Soutput} user.self 37.126 \end{Soutput} \begin{Sinput} > system.time(temp.gnm <- gnm(counts ~ resp + resp:x, eliminate = rowID, family = poisson, verbose = FALSE))[1] \end{Sinput} \begin{Soutput} user.self 0.04 \end{Soutput} \begin{Sinput} > c(deviance(temp.glm), deviance(temp.gnm)) \end{Sinput} \begin{Soutput} [1] 2462.556 2462.556 \end{Soutput} Here the use of \Rfunarg{eliminate} causes the \Rfunction{gnm} calculations to run much more quickly than \Rfunction{glm}. The speed advantage increases with the number of eliminated parameters (here 1000). By default,the eliminated parameters do not appear in printed model summaries as here: \begin{Sinput} > summary(temp.gnm) \end{Sinput} \begin{Soutput} Call: gnm(formula = counts ~ resp + resp:x, eliminate = rowID, family = poisson, verbose = FALSE) Deviance Residuals: Min 1Q Median 3Q Max -2.852038 -0.786172 -0.004534 0.645278 2.755013 Coefficients of interest: Estimate Std. Error z value Pr(>|z|) resp2 -1.961448 0.034007 -57.678 <2e-16 resp3 -1.255846 0.025359 -49.523 <2e-16 resp1:x -0.007726 0.024517 -0.315 0.753 resp2:x -0.023340 0.037611 -0.621 0.535 resp3:x 0.000000 NA NA NA (Dispersion parameter for poisson family taken to be 1) Std. Error is NA where coefficient has been constrained or is unidentified Residual deviance: 2462.6 on 1996 degrees of freedom AIC: 12028 Number of iterations: 4 \end{Soutput} although the \Rmethod{summary} method has a logical \Rfunarg{with.eliminate} that can toggled so that the eliminated parameters are included if desired. The \Rfunarg{eliminate} feature as implemented in \Rpackage{gnm} extends the earlier work of \cite{Hatz04} to a broader class of models and to over-parameterized model representations. \section{Methods and accessor functions} \label{sec:Methods} \subsection{Methods} \label{sec:specificMethods} The \Rfunction{gnm} function returns an object of class \Robject{c("gnm", "glm", "lm")}. There are several methods that have been written for objects of class \Rclass{glm} or \Rclass{lm} to facilitate inspection of fitted models. Out of the generic functions in the \Rpackage{base}, \Rpackage{stats} and \Rpackage{graphics} packages for which methods have been written for \Rclass{glm} or \Rclass{lm} objects, Figure \ref{fig:glm.lm} shows those that can be used to analyse \Rclass{gnm} objects, whilst Figure \ref{fig:!glm.lm} shows those that are not implemented for \Rclass{gnm} objects. \begin{figure}[!tbph] \centering \begin{fbox} { \begin{tabular*}{7.5cm}{@{\extracolsep{\fill}}lll@{\extracolsep{\fill}}} add1$^*$ & family & print \\ anova & formula & profile \\ case.names & hatvalues & residuals \\ coef & labels & rstandard \\ cooks.distance & logLik & summary \\ confint & model.frame & variable.names \\ deviance & model.matrix & vcov \\ drop1$^*$ & plot & weights \\ extractAIC & predict & \\ \end{tabular*} } \end{fbox} \caption{Generic functions in the \Rpackage{base}, \Rpackage{stats} and \Rpackage{graphics} packages that can be used to analyse \Rclass{gnm} objects. Starred functions are implemented for models with linear terms only.} \label{fig:glm.lm} \end{figure} \begin{figure}[!tbph] \centering \begin{fbox} { \begin{tabular*}{4.5cm}{@{\extracolsep{\fill}}ll@{\extracolsep{\fill}}} alias & effects \\ dfbeta & influence \\ dfbetas & kappa \\ dummy.coef & proj \\ \end{tabular*} } \end{fbox} \caption{Generic functions in the \Rpackage{base}, \Rpackage{stats} and \Rpackage{graphics} packages for which methods have been written for \Rclass{glm} or \Rclass{lm} objects, but which are \emph{not} implemented for \Rclass{gnm} objects.} \label{fig:!glm.lm} \end{figure} In addition to the accessor functions shown in Figure \ref{fig:glm.lm}, the \Rpackage{gnm} package provides a new generic function called \Rfunction{termPredictors} that has methods for objects of class \Rclass{gnm}, \Rclass{glm} and \Rclass{lm}. This function returns the additive contribution of each term to the predictor. See Section \ref{sec:termPredictors} for an example of its use. Most of the functions listed in Figure \ref{fig:glm.lm} can be used as they would be for \Rclass{glm} or \Rclass{lm} objects, however care must be taken with \Rmethod{vcov.gnm}, as the variance-covariance matrix will depend on the parameterization of the model. In particular, standard errors calculated using the variance-covariance matrix will only be valid for parameters or contrasts that are estimable! Similarly, \Rmethod{profile.gnm} and \Rmethod{confint.gnm} are only applicable to estimable parameters. The deviance function of a generalized nonlinear model can sometimes be far from quadratic and \Rmethod{profile.gnm} attempts to detect asymmetry or asymptotic behaviour in order to return a sufficient profile for a given parameter. As an example, consider the following model, described later in Section \ref{sec:Unidiff}: \begin{Scode} unidiff <- gnm(Freq ~ educ*orig + educ*dest + Mult(Exp(educ), orig:dest), constrain = "[.]educ1", family = poisson, data = yaish, subset = (dest != 7)) prof <- profile(unidiff, which = 61:65, trace = TRUE) \end{Scode} If the deviance is quadratic in a given parameter, the profile trace will be linear. We can plot the profile traces as follows: \begin{figure}[!tbph] \begin{center} \scalebox{1.1}{\includegraphics{fig-profilePlot.pdf}} \end{center} \caption{Profile traces for the multipliers of the orig:dest association} \label{fig:profilePlot} \end{figure} From these plots we can see that the deviance is approximately quadratic in \Robject{Mult(Exp(.), orig:dest).educ2}, asymmetric in \Robject{Mult(Exp(.), orig:dest).educ3} and \Robject{Mult(Exp(.), orig:dest).educ4} and asymptotic in \Robject{Mult(Exp(.), orig:dest).educ5}. When the deviance is approximately quadratic in a given parameter, \Rmethod{profile.gnm} uses the same stepsize for profiling above and below the original estimate: \begin{Sinput} > diff(prof[[2]]$par.vals[, "Mult(Exp(.), orig:dest).educ2"]) \end{Sinput} \begin{Soutput} [1] 0.1053072 0.1053072 0.1053072 0.1053072 0.1053072 0.1053072 0.1053072 [8] 0.1053072 0.1053072 0.1053072 \end{Soutput} When the deviance is asymmetric, \Rmethod{profile.gnm} uses different step sizes to accommodate the skew: \begin{Sinput} > diff(prof[[4]]$par.vals[, "Mult(Exp(.), orig:dest).educ4"]) \end{Sinput} \begin{Soutput} [1] 0.2018393 0.2018393 0.2018393 0.2018393 0.2018393 0.2018393 0.2018393 [8] 0.2018393 0.2018393 0.2243673 0.2243673 0.2243673 0.2243673 0.2243673 \end{Soutput} Finally, the presence of an asymptote is recorded in the \Robject{"asymptote"} attribute of the returned profile: \begin{Sinput} > attr(prof[[5]], "asymptote") \end{Sinput} \begin{Soutput} [1] TRUE FALSE \end{Soutput} This information is used by \Rmethod{confint.gnm} to return infinite limits for confidence intervals, as appropriate: \begin{Sinput} > confint(prof, level = 0.95) \end{Sinput} \begin{Soutput} 2.5 % 97.5 % Mult(Exp(.), orig:dest).educ1 NA NA Mult(Exp(.), orig:dest).educ2 -0.5978901 0.1022447 Mult(Exp(.), orig:dest).educ3 -1.4836854 -0.2362378 Mult(Exp(.), orig:dest).educ4 -2.5792398 -0.2953420 Mult(Exp(.), orig:dest).educ5 -Inf -0.7006889 \end{Soutput} \subsection{\Rfunction{ofInterest} and \Rfunction{pickCoef}} \label{sec:ofInterest} It is quite common for a statistical model to have a large number of parameters, but for only a subset of these parameters be of interest when it comes to interpreting the model. The \Rfunarg{ofInterest} argument to \Rfunction{gnm} allows the user to specify a subset of the parameters which are of interest, so that \Rclass{gnm} methods will focus on these parameters. In particular, printed model summaries will only show the parameters of interest, whilst methods for which a subset of parameters may be selected will by default select the parameters of interest, or where this may not be appropriate, provide a \emph{Tk} dialog for selection from the parameters of interest. Parameters may be specified to the \Rfunarg{ofInterest} argument by a regular expression to match against parameter names, by a numeric vector of indices, by a character vector of names, or, if \Rcode{ofInterest = "[?]"} they can be selected through a \emph{Tk} dialog. The information regarding the parameters of interest is held in the \Robject{ofInterest} component of \Rclass{gnm} objects, which is a named vector of numeric indices, or \Robject{NULL} if all parameters are of interest. This component may be accessed or replaced using \Rfunction{ofInterest} or \Rfunction{ofInterest<-} respectively. The \Rfunction{pickCoef} function provides a simple way to obtain the indices of coefficients from any model object. It takes the model object as its first argument and has an optional \Rfunarg{regexp} argument. If a regular expression is passed to \Rfunarg{regexp}, the coefficients are selected by matching this regular expression against the coefficient names. Otherwise, coefficients may be selected via a \emph{Tk} dialog. So, returning to the example from the last section, if we had set \Robject{ofInterest} to index the education multipliers as follows \begin{Scode} ofInterest(unidiff) <- pickCoef(unidiff, "[.]educ") \end{Scode} then it would not have been necessary to specify the \Rfunarg{which} argument of \Rfunction{profile} as these parameters would have been selected by default. \subsection{\Rfunction{checkEstimable}} \label{sec:checkEstimable} The \Rfunction{checkEstimable} function can be used to check the estimability of a linear combination of parameters. For non-linear combinations the same function can be used to check estimability based on the (local) vector of partial derivatives. The \Rfunction{checkEstimable} function provides a numerical version of the sort of algebraic test described in \citet{CatcMorg97}. Consider the following model, which is described later in Section \ref{sec:Unidiff}: <>= doubleUnidiff <- gnm(Freq ~ election:vote + election:class:religion + Mult(Exp(election), religion:vote) + Mult(Exp(election), class:vote), family = poisson, data = cautres) @ The effects of the first constituent multiplier in the first multiplicative interaction are identified when the parameter for one of the levels --- say for the first level --- is constrained to zero. The parameters to be estimated are then the differences between each other level and the first. These differences can be represented by a contrast matrix as follows: <>= coefs <- names(coef(doubleUnidiff)) contrCoefs <- coefs[grep(", religion:vote", coefs)] nContr <- length(contrCoefs) contrMatrix <- matrix(0, length(coefs), nContr, dimnames = list(coefs, contrCoefs)) contr <- contr.sum(contrCoefs) # switch round to contrast with first level contr <- rbind(contr[nContr, ], contr[-nContr, ]) contrMatrix[contrCoefs, 2:nContr] <- contr contrMatrix[contrCoefs, 2:nContr] @ Then their estimability can be checked using \Rfunction{checkEstimable} <>= checkEstimable(doubleUnidiff, contrMatrix) @ which confirms that the effects for the other three levels are estimable when the parameter for the first level is set to zero. However, applying the equivalent constraint to the second constituent multiplier in the interaction is not sufficient to make the parameters in that multiplier estimable: <>= coefs <- names(coef(doubleUnidiff)) contrCoefs <- coefs[grep("[.]religion", coefs)] nContr <- length(contrCoefs) contrMatrix <- matrix(0, length(coefs), length(contrCoefs), dimnames = list(coefs, contrCoefs)) contr <- contr.sum(contrCoefs) contrMatrix[contrCoefs, 2:nContr] <- rbind(contr[nContr, ], contr[-nContr, ]) checkEstimable(doubleUnidiff, contrMatrix) @ \subsection{\Rfunction{getContrasts}, \Rfunction{se}} \label{sec:getContrasts} To investigate simple ``sum to zero'' contrasts such as those above, it is easiest to use the \Rfunction{getContrasts} function, which checks the estimability of possibly scaled contrasts and returns the parameter estimates with their standard errors. Returning to the example of the first constituent multiplier in the first multiplicative interaction term, the differences between each election and the first can be obtained as follows: <>= myContrasts <- getContrasts(doubleUnidiff, pickCoef(doubleUnidiff, ", religion:vote")) myContrasts @ %def Visualization of estimated contrasts using `quasi standard errors' \citep{Firt03,FirtMene04} is achieved by plotting the resulting object: <>= plot(myContrasts, main = "Relative strength of religion-vote association, log scale", xlab = "Election", levelNames = 1:4) @ \begin{figure}[!tbph] \begin{center} \includegraphics{gnmOverview-qvplot.pdf} \end{center} \caption{Relative strength of religion-vote association, log scale} \label{fig:qvplot} \end{figure} %Attempting to obtain the equivalent contrasts for the second %(religion-vote association) multiplier produces the %following result: %<>= %coefs.of.interest <- grep("[.]religion", names(coef(doubleUnidiff))) %getContrasts(doubleUnidiff, coefs.of.interest) %@ %def By default, \Rfunction{getContrasts} uses the first parameter of the specified set as the reference level; alternatives may be set via the \Rfunarg{ref} argument. In the above example, the simple contrasts are estimable without scaling. In certain other applications, for example row-column association models (see Section~\ref{sec:RCmodels}), the contrasts are identified only after fixing their scale. A more general family of \emph{scaled} contrasts for a set of parameters $\gamma_r, r = 1, \ldots, R$ is given by \begin{equation*} \gamma^*_r = \frac{\gamma_r - \overline{\gamma}_w}{ \sqrt{\sum_r v_r (\gamma_r - \overline{\gamma}_u)^2}} \end{equation*} where $\overline{\gamma}_w = \sum w_r \gamma_r$ is the reference level against which the contrasts are taken, $\overline{\gamma}_u = \sum u_r \gamma_r$ is a possibly different weighted mean of the parameters to be used as reference level for a set of ``scaling contrasts'', and $v_r$ is a further set of weights. Thus, for example, the choice \[ w_r= \begin{cases} 1&(r=1)\\ 0&\hbox{(otherwise)} \end{cases}, \qquad u_r=v_r=1/R \] specifies contrasts with the first level, with the coefficients scaled to have variance 1\null. This general type of scaling can be obtained by specifying the form of $\overline{\gamma}_u$ and $v_r$ via the \Rfunarg{scaleRef} and \Rfunarg{scaleWeights} arguments of \Rfunction{getContrasts}. As an example, consider the following model, described in Section~\ref{sec:RCmodels}: @ <>= mentalHealth$MHS <- C(mentalHealth$MHS, treatment) mentalHealth$SES <- C(mentalHealth$SES, treatment) RC1model <- gnm(count ~ SES + MHS + Mult(SES, MHS), family = poisson, data = mentalHealth) @ %def The effects of the constituent multipliers of the multiplicative interaction are identified when both their scale and location are constrained. A simple way to achieve this is to set the first parameter to zero and the last parameter to one: @ <>= RC1model2 <- gnm(count ~ SES + MHS + Mult(1, SES, MHS), constrain = "[.]SES[AF]", constrainTo = c(0, 1), ofInterest = "[.]SES", family = poisson, data = mentalHealth) summary(RC1model2) @ %def Note that a constant multiplier must be incorporated into the interaction term, i.e., the multiplicative term \Rcode{Mult(SES, MHS)} becomes \Rcode{Mult(1, SES, MHS)}, in order to maintain equivalence with the original model specification. The constraints specified for \Robject{RC1model2} result in the estimation of scaled contrasts with level \Rcode{A} of \Rcode{SES}, in which the scaling fixes the magnitude of the contrast between level \Rcode{F} and level \Rcode{A} to be equal to 1\null. The equivalent use of \Rfunction{getContrasts}, together with the \emph{unconstrained} fit (\Robject{RC1model}), in this case is as follows: @ <>= getContrasts(RC1model, pickCoef(RC1model, "[.]SES"), ref = "first", scaleRef = "first", scaleWeights = c(rep(0, 5), 1)) @ %def Quasi-variances and standard errors are not returned here as they can not (currently) be computed for scaled contrasts. When the scaling uses the same reference level as the contrasts, equal scale weights produce ``spherical'' contrasts, whilst unequal weights produce ``elliptical'' contrasts. Further examples are given in Sections~\ref{sec:RCmodels} and \ref{sec:GAMMI}. For more general linear combinations of parameters than contrasts, the lower-level \Rfunction{se} function (which is called internally by \Rfunction{getContrasts} and by the \Rmethod{summary} method) can be used directly. See \Rcode{help(se)} for details. \subsection{\Rfunction{residSVD}} \label{sec:residSVD} Sometimes it is useful to operate on the residuals of a model in order to create informative summaries of residual variation, or to obtain good starting values for additional parameters in a more elaborate model. The relevant arithmetical operations are weighted means of the so-called \emph{working residuals}. The \Rfunction{residSVD} function facilitates one particular residual analysis that is often useful when considering multiplicative interaction between factors as a model elaboration: in effect, \Rfunction{residSVD} provides a direct estimate of the parameters of such an interaction, by performing an appropriately weighted singular value decomposition on the working residuals. As an illustration, consider the barley data from \citet{Wedd74}. These data have the following two-way structure: <>= xtabs(y ~ site + variety, barley) @ In Section~\ref{sec:biplot} a biplot model is proposed for these data, which comprises a two-component interaction between the cross-classifying factors. In order to fit this model, we can proceed by fitting a smaller model, then use \Rfunction{residSVD} to obtain starting values for the parameters in the bilinear term: @ <>= emptyModel <- gnm(y ~ -1, family = wedderburn, data = barley) biplotStart <- residSVD(emptyModel, barley$site, barley$variety, d = 2) biplotModel <- gnm(y ~ -1 + instances(Mult(site, variety), 2), family = wedderburn, data = barley, start = biplotStart) @ %def In this instance, the use of purposive (as opposed to the default, random) starting values had little effect: the fairly large number of iterations needed in this example is caused by a rather flat (quasi-)likelihood surface near the maximum, not by poor starting values. In other situations, the use of \Rfunction{residSVD} may speed the calculations dramatically (see for example Section \ref{sec:GAMMI}), or it may be crucial to success in locating the MLE (for example see \Rcode{help(House2001)}, where the number of multiplicative parameters is in the hundreds). The \Rfunction{residSVD} result in this instance provides a crude approximation to the MLE of the enlarged model, as can be seen in Figure \ref{fig:residSVDplot}: @ <>= plot(coef(biplotModel), biplotStart, main = "Comparison of residSVD and MLE for a 2-dimensional biplot model", ylim = c(-2, 2), xlim = c(-4, 4)) abline(a = 0, b = 1, lty = 2) @ %def \begin{figure}[!tbph] \begin{center} \includegraphics{gnmOverview-residSVDplot} \end{center} \caption{Comparison of residSVD and the MLE for a 2-dimensional biplot model} \label{fig:residSVDplot} \end{figure} \section{\Rfunction{gnm} or \Rfunction{(g)nls}?} \label{sec:gnmVnls} The \Rfunction{nls} function in the \Rpackage{stats} package may be used to fit a nonlinear model via least-squares estimation. Statistically speaking, \Rfunction{gnm} is to \Rfunction{nls} as \Rfunction{glm} is to \Rfunction{lm}, in that a nonlinear least-squares model is equivalent to a generalized nonlinear model with \Rcode{family = gaussian}. A \Rfunction{nls} model assumes that the responses are distributed either with constant variance or with fixed relative variances (specified via the \Rfunarg{weights} argument). The \Rfunction{gnls} function in the \Rpackage{nlme} package extends \Rfunction{nls} to allow correlated responses. On the other hand, \Rfunction{gnm} allows for responses distributed with variances that are a specified (via the \Rfunarg{family} argument) function of the mean; as with \Rfunction{nls}, no correlation is allowed. The \Rfunction{gnm} function also differs from \Rfunction{nls}/\Rfunction{gnls} in terms of the interface. Models are specified to \Rfunction{nls} and \Rfunction{gnls} in terms of a mathematical formula or a \Rclass{selfStart} function based on such a formula, which is convenient for models that have a small number of parameters. For models that have a large number of parameters, or can not easily be represented by a mathematical formula, the symbolic model specification used by \Rfunction{gnm} may be more convenient. This would usually be the case for models involving factors, which would need to be represented by dummy variables in a \Rfunction{nls} formula. When working with artificial data, \Rfunction{gnm} has the minor advantage that it does not fail when a model is an exact fit to the data (see \Rcode{help(nls)})\null. Therefore it is not necessary with \Rfunction{gnm} to add noise to artificial data, which can be useful when testing methods. \section{Examples} \label{sec:Examples} \subsection{Row-column association models} \label{sec:RCmodels} There are several models that have been proposed for modelling the relationship between the cell means of a contingency table and the cross-classifying factors. The following examples consider the row-column association models proposed by \citet{Good79}. The examples shown use data from two-way contingency tables, but the \Rpackage{gnm} package can also be used to fit the equivalent models for higher order tables. \subsubsection{RC(1) model} The RC(1) model is a row and column association model with the interaction between row and column factors represented by one component of the multiplicative interaction. If the rows are indexed by $r$ and the columns by $c$, then the log-multiplicative form of the RC(1) model for the cell means $\mu_{rc}$ is given by \[\log \mu_{rc} = \alpha_r + \beta_c + \gamma_r\delta_c. \] We shall fit this model to the \Robject{mentalHealth} data set from \citet[][page 381]{Agre02}, which is a two-way contingency table classified by the child's mental impairment (MHS) and the parents' socioeconomic status (SES). Although both of these factors are ordered, we do not wish to use polynomial contrasts in the model, so we begin by setting the contrasts attribute of these factors to \Rcode{treatment}: <>= set.seed(1) mentalHealth$MHS <- C(mentalHealth$MHS, treatment) mentalHealth$SES <- C(mentalHealth$SES, treatment) @ The \Rclass{gnm} model is then specified as follows, using the poisson family with a log link function: <>= RC1model <- gnm(count ~ SES + MHS + Mult(SES, MHS), family = poisson, data = mentalHealth) RC1model @ %def The row scores (parameters 10 to 15) and the column scores (parameters 16 to 19) of the multiplicative interaction can be normalized as in Agresti's eqn (9.15): <>= rowProbs <- with(mentalHealth, tapply(count, SES, sum) / sum(count)) colProbs <- with(mentalHealth, tapply(count, MHS, sum) / sum(count)) rowScores <- coef(RC1model)[10:15] colScores <- coef(RC1model)[16:19] rowScores <- rowScores - sum(rowScores * rowProbs) colScores <- colScores - sum(colScores * colProbs) beta1 <- sqrt(sum(rowScores^2 * rowProbs)) beta2 <- sqrt(sum(colScores^2 * colProbs)) assoc <- list(beta = beta1 * beta2, mu = rowScores / beta1, nu = colScores / beta2) assoc @ %def Alternatively, the elliptical contrasts \Robject{mu} and \Robject{nu} can be obtained using \Rfunction{getContrasts}, with the advantage that the standard errors for the contrasts will also be computed: @ <>= mu <- getContrasts(RC1model, pickCoef(RC1model, "[.]SES"), ref = rowProbs, scaleWeights = rowProbs) nu <- getContrasts(RC1model, pickCoef(RC1model, "[.]MHS"), ref = colProbs, scaleWeights = colProbs) mu nu @ %def Since the value of \Robject{beta} is dependent upon the particular scaling used for the contrasts, it is typically not of interest to conduct inference on this parameter directly. The standard error for \Robject{beta} could be obtained, if desired, via the delta method. \subsubsection{RC(2) model} The RC(1) model can be extended to an RC($m$) model with $m$ components of the multiplicative interaction. For example, the RC(2) model is given by \[ \log \mu_{rc} = \alpha_r + \beta_c + \gamma_r\delta_c + \theta_r\phi_c. \] Extra instances of the multiplicative interaction can be specified by the \Rfunarg{multiplicity} argument of \Rfunction{Mult}, so the RC(2) model can be fitted to the \Robject{mentalHealth} data as follows <>= RC2model <- gnm(count ~ SES + MHS + instances(Mult(SES, MHS), 2), family = poisson, data = mentalHealth) RC2model @ \subsubsection{Homogeneous effects} If the row and column factors have the same levels, or perhaps some levels in common, then the row-column interaction could be modelled by a multiplicative interaction with homogeneous effects, that is \[\log \mu_{rc} = \alpha_r + \beta_c + \gamma_r\gamma_c.\] For example, the \Robject{occupationalStatus} data set from \citet{Good79} is a contingency table classified by the occupational status of fathers (origin) and their sons (destination). \citet{Good79} fits a row-column association model with homogeneous effects to these data after deleting the cells on the main diagonal. Equivalently we can account for the diagonal effects by a separate \Rfunction{Diag} term: @ <>= RChomog <- gnm(Freq ~ origin + destination + Diag(origin, destination) + MultHomog(origin, destination), family = poisson, data = occupationalStatus) RChomog @ %def To determine whether it would be better to allow for heterogeneous effects on the association of the fathers' occupational status and the sons' occupational status, we can compare this model to the RC(1) model for these data: <>= RCheterog <- gnm(Freq ~ origin + destination + Diag(origin, destination) + Mult(origin, destination), family = poisson, data = occupationalStatus) anova(RChomog, RCheterog) @ In this case there is little gain in allowing heterogeneous effects. \subsection{Diagonal reference models} \label{sec:Dref} Diagonal reference models, proposed by \citet{Sobe81, Sobe85}, are designed for contingency tables classified by factors with the same levels. The cell means are modelled as a function of the diagonal effects, i.e., the mean responses of the `diagonal' cells in which the levels of the row and column factors are the same. \subsubsection*{\Rfunction{Dref} example 1: Political consequences of social mobility} To illustrate the use of diagonal reference models we shall use the \Robject{voting} data from \citet{Clif93}. The data come from the 1987 British general election and are the percentage voting Labour in groups cross-classified by the class of the head of household (\Robject{destination}) and the class of their father (\Robject{origin}). In order to weight these percentages by the group size, we first back-transform them to the counts of those voting Labour and those not voting Labour: @ <>= set.seed(1) count <- with(voting, percentage/100 * total) yvar <- cbind(count, voting$total - count) @ %def The grouped percentages may be modelled by a basic diagonal reference model, that is, a weighted sum of the diagonal effects for the corresponding origin and destination classes. This model may be expressed as \[ \mu_{od} = \frac{e^{\delta_1}}{e^{\delta_1} + e^{\delta_2}}\gamma_o + \frac{e^{\delta_2}}{e^{\delta_1} + e^{\delta_2}}\gamma_d . \] See Section \ref{sec:Dref function} for more detail on the parameterization. The basic diagonal reference model may be fitted using \Rfunction{gnm} as follows @ <>= classMobility <- gnm(yvar ~ Dref(origin, destination), family = binomial, data = voting) classMobility @ %def and the origin and destination weights can be evaluated as below @ <>= DrefWeights(classMobility) @ %def These results are slightly different from those reported by \citet{Clif93}. The reason for this is unclear: we are confident that the above results are correct for the data as given in \citet{Clif93}, but have not been able to confirm that the data as printed in the journal were exactly as used in Clifford and Heath's analysis. \citet{Clif93} suggest that movements in and out of the salariat (class 1) should be treated differently from movements between the lower classes (classes 2 - 5), since the former has a greater effect on social status. Thus they propose the following model \begin{equation*} \mu_{od} = \begin{cases} \dfrac{e^{\delta_1}}{e^{\delta_1} + e^{\delta_2}}\gamma_o + \dfrac{e^{\delta_2}}{e^{\delta_1} + e^{\delta_2}}\gamma_d & \text{if } o = 1\\ \\ \dfrac{e^{\delta_3}}{e^{\delta_3} + e^{\delta_4}}\gamma_o + \dfrac{e^{\delta_4}}{e^{\delta_3} + e^{\delta_4}}\gamma_d & \text{if } d = 1\\ \\ \dfrac{e^{\delta_5}}{e^{\delta_5} + e^{\delta_6}}\gamma_o + \dfrac{e^{\delta_6}}{e^{\delta_5} + e^{\delta_6}}\gamma_d & \text{if } o \ne 1 \text{ and } d \ne 1 \end{cases} \end{equation*} To fit this model we define factors indicating movement in (upward) and out (downward) of the salariat @ <>= upward <- with(voting, origin != 1 & destination == 1) downward <- with(voting, origin == 1 & destination != 1) @ %def Then the diagonal reference model with separate weights for socially mobile groups can be estimated as follows @ <>= socialMobility <- gnm(yvar ~ Dref(origin, destination, delta = ~ 1 + downward + upward), family = binomial, data = voting) socialMobility @ %def The weights for those moving into the salariat, those moving out of the salariat and those in any other group, can be evaluated as below @ <>= DrefWeights(socialMobility) @ %def Again, the results differ slightly from those reported by \citet{Clif93}, but the essence of the results is the same: the origin weight is much larger for the downwardly mobile group than for the other groups. The weights for the upwardly mobile group are very similar to the base level weights, so the model may be simplified by only fitting separate weights for the downwardly mobile group: @ <>= downwardMobility <- gnm(yvar ~ Dref(origin, destination, delta = ~ 1 + downward), family = binomial, data = voting) downwardMobility DrefWeights(downwardMobility) @ %def \subsubsection*{\Rfunction{Dref} example 2: conformity to parental rules} %\SweaveInput{vanDerSlikEg.Rnw} Another application of diagonal reference models is given by \citet{Vand02}. The data from this paper are not publicly available\footnote{ We thank Frans van der Slik for his kindness in sending us the data.}, but we shall show how the models presented in the paper may be estimated using \Rfunction{gnm}. The data relate to the value parents place on their children conforming to their rules. There are two response variables: the mother's conformity score (MCFM) and the father's conformity score (FCFF). The data are cross-classified by two factors describing the education level of the mother (MOPLM) and the father (FOPLF), and there are six further covariates (AGEM, MRMM, FRMF, MWORK, MFCM and FFCF). In their baseline model for the mother's conformity score, \citet{Vand02} include five of the six covariates (leaving out the father's family conflict score, FCFF) and a diagonal reference term with constant weights based on the two education factors. This model may be expressed as \[ \mu_{rci} = \beta_1x_{1i} + \beta_2x_{2i} + \beta_3x_{3i} +\beta_4x_{4i} +\beta_5x_{5i} + \frac{e^{\delta_1}}{e^{\delta_1} + e^{\delta_2}}\gamma_r + \frac{e^{\delta_2}}{e^{\delta_1} + e^{\delta_2}}\gamma_c . \] The baseline model can be fitted as follows: \begin{Sinput} > set.seed(1) > A <- gnm(MCFM ~ -1 + AGEM + MRMM + FRMF + MWORK + MFCM + + Dref(MOPLM, FOPLF), family = gaussian, data = conformity, + verbose = FALSE) > A \end{Sinput} \begin{Soutput} Call: gnm(formula = MCFM ~ -1 + AGEM + MRMM + FRMF + MWORK + MFCM + Dref(MOPLM, FOPLF), family = gaussian, data = conformity, verbose = FALSE) Coefficients: AGEM MRMM FRMF 0.06363 -0.32425 -0.25324 MWORK MFCM Dref(MOPLM, FOPLF)delta1 -0.06430 -0.06043 -0.33731 Dref(MOPLM, FOPLF)delta2 Dref(., .).MOPLM|FOPLF1 Dref(., .).MOPLM|FOPLF2 -0.02505 4.95121 4.86329 Dref(., .).MOPLM|FOPLF3 Dref(., .).MOPLM|FOPLF4 Dref(., .).MOPLM|FOPLF5 4.86458 4.72343 4.43516 Dref(., .).MOPLM|FOPLF6 Dref(., .).MOPLM|FOPLF7 4.18873 4.43378 Deviance: 425.3389 Pearson chi-squared: 425.3389 Residual df: 576 \end{Soutput} The coefficients of the covariates are not aliased with the parameters of the diagonal reference term and thus the basic identifiability constraints that have been imposed are sufficient for these parameters to be identified. The diagonal effects do not need to be constrained as they represent contrasts with the off-diagonal cells. Therefore the only unidentified parameters in this model are the weight parameters. This is confirmed in the summary of the model: \begin{Sinput} > summary(A) \end{Sinput} \begin{Soutput} Call: gnm(formula = MCFM ~ -1 + AGEM + MRMM + FRMF + MWORK + MFCM + Dref(MOPLM, FOPLF), family = gaussian, data = conformity, verbose = FALSE) Deviance Residuals: Min 1Q Median 3Q Max -3.63688 -0.50383 0.01714 0.56753 2.25139 Coefficients: Estimate Std. Error t value Pr(>|t|) AGEM 0.06363 0.07375 0.863 0.38859 MRMM -0.32425 0.07766 -4.175 3.44e-05 FRMF -0.25324 0.07681 -3.297 0.00104 MWORK -0.06430 0.07431 -0.865 0.38727 MFCM -0.06043 0.07123 -0.848 0.39663 Dref(MOPLM, FOPLF)delta1 -0.33731 NA NA NA Dref(MOPLM, FOPLF)delta2 -0.02505 NA NA NA Dref(., .).MOPLM|FOPLF1 4.95121 0.16639 29.757 < 2e-16 Dref(., .).MOPLM|FOPLF2 4.86329 0.10436 46.602 < 2e-16 Dref(., .).MOPLM|FOPLF3 4.86458 0.12855 37.842 < 2e-16 Dref(., .).MOPLM|FOPLF4 4.72343 0.13523 34.929 < 2e-16 Dref(., .).MOPLM|FOPLF5 4.43516 0.19314 22.963 < 2e-16 Dref(., .).MOPLM|FOPLF6 4.18873 0.17142 24.435 < 2e-16 Dref(., .).MOPLM|FOPLF7 4.43378 0.16903 26.231 < 2e-16 --- (Dispersion parameter for gaussian family taken to be 0.7384355) Std. Error is NA where coefficient has been constrained or is unidentified Residual deviance: 425.34 on 576 degrees of freedom AIC: 1507.8 Number of iterations: 15 \end{Soutput} The weights have been constrained to sum to one as described in Section \ref{sec:Dref function}, so the weights themselves may be estimated as follows: \begin{Sinput} > prop.table(exp(coef(A)[6:7])) \end{Sinput} \begin{Soutput} Dref(MOPLM, FOPLF)delta1 Dref(MOPLM, FOPLF)delta2 0.4225638 0.5774362 \end{Soutput} However, in order to estimate corresponding standard errors, the parameters of one of the weights must be constrained. If no such constraints were applied when the model was fitted, \Rfunction{DrefWeights} will refit the model constraining the parameters of the first weight to zero: \begin{Sinput} > DrefWeights(A) \end{Sinput} \begin{Soutput} Refitting with parameters of first Dref weight constrained to zero $MOPLM weight se 0.4225636 0.1439829 $FOPLF weight se 0.5774364 0.1439829 \end{Soutput} giving the values reported by \citet{Vand02}. All the other coefficients of model A are the same as those reported by \citet{Vand02} except the coefficients of the mother's gender role (MRMM) and the father's gender role (FRMF). \citet{Vand02} reversed the signs of the coefficients of these factors since they were coded in the direction of liberal values, unlike the other covariates. However, simply reversing the signs of these coefficients does not give the same model, since the estimates of the diagonal effects depend on the estimates of these coefficients. For consistent interpretation of the covariate coefficients, it is better to recode the gender role factors as follows: \begin{Sinput} > MRMM2 <- as.numeric(!conformity$MRMM) > FRMF2 <- as.numeric(!conformity$FRMF) > A <- gnm(MCFM ~ -1 + AGEM + MRMM2 + FRMF2 + MWORK + MFCM + + Dref(MOPLM, FOPLF), family = gaussian, data = conformity, + verbose = FALSE) > A \end{Sinput} \begin{Soutput} Call: gnm(formula = MCFM ~ -1 + AGEM + MRMM2 + FRMF2 + MWORK + MFCM + Dref(MOPLM, FOPLF), family = gaussian, data = conformity, verbose = FALSE) Coefficients: AGEM MRMM2 FRMF2 0.06363 0.32425 0.25324 MWORK MFCM Dref(MOPLM, FOPLF)delta1 -0.06430 -0.06043 0.08440 Dref(MOPLM, FOPLF)delta2 Dref(., .).MOPLM|FOPLF1 Dref(., .).MOPLM|FOPLF2 0.39666 4.37371 4.28579 Dref(., .).MOPLM|FOPLF3 Dref(., .).MOPLM|FOPLF4 Dref(., .).MOPLM|FOPLF5 4.28708 4.14593 3.85767 Dref(., .).MOPLM|FOPLF6 Dref(., .).MOPLM|FOPLF7 3.61123 3.85629 Deviance: 425.3389 Pearson chi-squared: 425.3389 Residual df: 576 \end{Soutput} The coefficients of the covariates are now as reported by \citet{Vand02}, but the diagonal effects have been adjusted appropriately. \citet{Vand02} compare the baseline model for the mother's conformity score to several other models in which the weights in the diagonal reference term are dependent on one of the covariates. One particular model they consider incorporates an interaction of the weights with the mother's conflict score as follows: \[ \mu_{rci} = \beta_1x_{1i} + \beta_2x_{2i} + \beta_3x_{3i} +\beta_4x_{4i} +\beta_5x_{5i} + \frac{e^{\xi_{01} + \xi_{11}x_{5i}}}{e^{\xi_{01} + \xi_{11}x_{5i}} + e^{\xi_{02} + \xi_{12}x_{5i}}}\gamma_r + \frac{e^{\xi_{02} + \xi_{12}x_{5i}}}{e^{\xi_{01} + \xi_{11}x_{5i}} + e^{\xi_{02} + \xi_{12}x_{5i}}}\gamma_c. \] This model can be fitted as below, using the original coding for the gender role factors for ease of comparison to the results reported by \citet{Vand02}, \begin{Sinput} > F <- gnm(MCFM ~ -1 + AGEM + MRMM + FRMF + MWORK + MFCM + + Dref(MOPLM, FOPLF, delta = ~ 1 + MFCM), family = gaussian, + data = conformity, verbose = FALSE) > F \end{Sinput} \begin{Soutput} Call: gnm(formula = MCFM ~ -1 + AGEM + MRMM + FRMF + MWORK + MFCM + Dref(MOPLM, FOPLF, delta = ~1 + MFCM), family = gaussian, data = conformity, verbose = FALSE) Coefficients: AGEM 0.05818 MRMM -0.32701 FRMF -0.25772 MWORK -0.07847 MFCM -0.01694 Dref(MOPLM, FOPLF, delta = ~ . + MFCM).delta1(Intercept) 1.03515 Dref(MOPLM, FOPLF, delta = ~ 1 + .).delta1MFCM -1.77756 Dref(MOPLM, FOPLF, delta = ~ . + MFCM).delta2(Intercept) -0.03515 Dref(MOPLM, FOPLF, delta = ~ 1 + .).delta2MFCM 2.77756 Dref(., ., delta = ~ 1 + MFCM).MOPLM|FOPLF1 4.82476 Dref(., ., delta = ~ 1 + MFCM).MOPLM|FOPLF2 4.88066 Dref(., ., delta = ~ 1 + MFCM).MOPLM|FOPLF3 4.83969 Dref(., ., delta = ~ 1 + MFCM).MOPLM|FOPLF4 4.74850 Dref(., ., delta = ~ 1 + MFCM).MOPLM|FOPLF5 4.42020 Dref(., ., delta = ~ 1 + MFCM).MOPLM|FOPLF6 4.17957 Dref(., ., delta = ~ 1 + MFCM).MOPLM|FOPLF7 4.40819 Deviance: 420.9022 Pearson chi-squared: 420.9022 Residual df: 575 \end{Soutput} In this case there are two sets of weights, one for when the mother's conflict score is less than average (coded as zero) and one for when the score is greater than average (coded as one). These can be evaluated as follows: \begin{Sinput} > DrefWeights(F) \end{Sinput} \begin{Soutput} Refitting with parameters of first Dref weight constrained to zero $MOPLM MFCM weight se 1 1 0.02974675 0.2277711 2 0 0.74465224 0.2006916 $FOPLF MFCM weight se 1 1 0.9702532 0.2277711 2 0 0.2553478 0.2006916 \end{Soutput} giving the same weights as in Table 4 of \citet{Vand02}, though we obtain a lower standard error in the case where MFCM is equal to one. \subsection{Uniform difference (UNIDIFF) models} \label{sec:Unidiff} Uniform difference models \citep{Xie92, Erik92} use a simplified three-way interaction to provide an interpretable model of contingency tables classified by three or more variables. For example, the uniform difference model for a three-way contingency table, also known as the UNIDIFF model, is given by \[ \mu_{ijk} = \alpha_{ik} + \beta_{jk} + \exp(\delta_k)\gamma_{ij}. \] The $\gamma_{ij}$ represent a pattern of association that varies in strength over the dimension indexed by $k$, and $\exp(\delta_k)$ represents the relative strength of that association at level $k$. This model can be applied to the \Robject{yaish} data set \citep{Yais98,Yais04}, which is a contingency table cross-classified by father's social class (\Robject{orig}), son's social class (\Robject{dest}) and son's education level (\Robject{educ}). In this case, we can consider the importance of the association between the social class of father and son across the education levels. We omit the sub-table which corresponds to level 7 of \Robject{dest}, because its information content is negligible: @ <>= set.seed(1) unidiff <- gnm(Freq ~ educ*orig + educ*dest + Mult(Exp(educ), orig:dest), ofInterest = "[.]educ", family = poisson, data = yaish, subset = (dest != 7)) coef(unidiff) @ %def The \Robject{ofInterest} component has been set to index the multipliers of the association between the social class of father and son. We can contrast each multiplier to that of the lowest education level and obtain the standard errors for these parameters as follows: @ <>= getContrasts(unidiff, ofInterest(unidiff)) @ %def Four-way contingency tables may sometimes be described by a ``double UNIDIFF'' model \[ \mu_{ijkl} = \alpha_{il} + \beta_{jkl} + \exp(\delta_l)\gamma_{ij} + \exp(\phi_l)\theta_{ik}, \] where the strengths of two, two-way associations with a common variable are estimated across the levels of the fourth variable. The \Robject{cautres} data set, from \citet{Caut98}, can be used to illustrate the application of the double UNIDIFF model. This data set is classified by the variables vote, class, religion and election. Using a double UNIDIFF model, we can see how the association between class and vote, and the association between religion and vote, differ between the most recent election and the other elections: @ <>= set.seed(1) doubleUnidiff <- gnm(Freq ~ election*vote + election*class*religion + Mult(Exp(election), religion:vote) + Mult(Exp(election), class:vote), family = poisson, data = cautres) getContrasts(doubleUnidiff, rev(pickCoef(doubleUnidiff, ", class:vote"))) getContrasts(doubleUnidiff, rev(pickCoef(doubleUnidiff, ", religion:vote"))) @ %def \subsection{Generalized additive main effects and multiplicative interaction (GAMMI) models} \label{sec:GAMMI} Generalized additive main effects and multiplicative interaction models, or GAMMI models, were motivated by two-way contingency tables and comprise the row and column main effects plus one or more components of the multiplicative interaction. The singular value corresponding to each multiplicative component is often factored out, as a measure of the strength of association between the row and column scores, indicating the importance of the component, or axis. For cell means $\mu_{rc}$ a GAMMI-K model has the form \begin{equation} \label{eq:GAMMI} g(\mu_{rc}) = \alpha_r + \beta_c + \sum_{k=1}^K \sigma_k\gamma_{kr}\delta_{kc}, \end{equation} in which $g$ is a link function, $\alpha_r$ and $\beta_c$ are the row and column main effects, $\gamma_{kr}$ and $\delta_{kc}$ are the row and column scores for multiplicative component $k$ and $\sigma_k$ is the singular value for component $k$. The number of multiplicative components, $K$, is less than or equal to the rank of the matrix of residuals from the main effects. The row-column association models discussed in Section \ref{sec:RCmodels} are examples of GAMMI models, with a log link and poisson variance. Here we illustrate the use of an AMMI model, which is a GAMMI model with an identity link and a constant variance. We shall use the \Robject{wheat} data set taken from \citet{Varg01}, which gives wheat yields measured over ten years. First we scale these yields and create a new treatment factor, so that we can reproduce the analysis of \citet{Varg01}: @ <>= set.seed(1) yield.scaled <- wheat$yield * sqrt(3/1000) treatment <- interaction(wheat$tillage, wheat$summerCrop, wheat$manure, wheat$N, sep = "") @ %def Now we can fit the AMMI-1 model, to the scaled yields using the combined treatment factor and the year factor from the \Robject{wheat} dataset. We will proceed by first fitting the main effects model, then using \Rfunction{residSVD} (see Section \ref{sec:residSVD}) for the parameters of the multiplicative term: @ <>= mainEffects <- gnm(yield.scaled ~ year + treatment, family = gaussian, data = wheat) svdStart <- residSVD(mainEffects, year, treatment, 3) bilinear1 <- update(mainEffects, . ~ . + Mult(year, treatment), start = c(coef(mainEffects), svdStart[,1])) @ %def We can compare the AMMI-1 model to the main effects model, @ <>= anova(mainEffects, bilinear1, test = "F") @ %def giving the same results as in Table 1 of \citet{Varg01} (up to error caused by rounding). Thus the significance of the multiplicative interaction can be tested without applying constraints to this term. If the multiplicative interaction is significant, we may wish to apply constraints to obtain estimates of the row and column scores. We illustrate this using the \Robject{barleyHeights} data, which records the average height for 15 genotypes of barley over 9 years. For this small dataset the AMMI-1 model is easily estimated with the default settings: @ <>= set.seed(1) barleyModel <- gnm(height ~ year + genotype + Mult(year, genotype), data = barleyHeights) @ %def To obtain the parameterization of Equation \ref{eq:GAMMI} in which $\sigma_k$ is the singular value for component $k$, the row and column scores must be constrained so that the scores sum to zero and the squared scores sum to one. These contrasts can be obtained using \Robject{getContrasts}: @ <>= gamma <- getContrasts(barleyModel, pickCoef(barleyModel, "[.]y"), ref = "mean", scaleWeights = "unit") delta <- getContrasts(barleyModel, pickCoef(barleyModel, "[.]g"), ref = "mean", scaleWeights = "unit") gamma delta @ %def Confidence intervals based on the assumption of asymptotic normality can be computed as follows: @ <>= gamma[[2]][,1] + (gamma[[2]][,2]) %o% c(-1.96, 1.96) delta[[2]][,1] + (delta[[2]][,2]) %o% c(-1.96, 1.96) @ %def which broadly agree with Table 8 of Chadoeuf and Denis (1991), allowing for the change in sign. On the basis of such confidence intervals we can investigate simplifications of the model such as combining levels of the factors or fitting an additive model to a subset of the data. The singular value $\sigma_k$ may be obtained as follows @ <>= svd(termPredictors(barleyModel)[, "Mult(year, genotype)"])$d @ %def This parameter is of little interest in itself, given that the significance of the term as a whole can be tested using ANOVA. The SVD representation can also be obtained quite easily for AMMI and GAMMI models with interaction rank greater than 1\null. See \Rcode{example(wheat)} for an example of this in an AMMI model with rank 2\null. (The calculation of \emph{standard errors} and \emph{confidence regions} for the SVD representation with rank greater than 1 is not yet implemented, though.) \subsection{Biplot models} \label{sec:biplot} Biplots are graphical displays of two-dimensional arrays, which represent the objects that index both dimensions of the array on the same plot. Here we consider the case of a two-way table, where a biplot may be used to represent both the row and column categories simultaneously. A two-dimensional biplot is constructed from a rank-2 representation of the data. For two-way tables, the generalized bilinear model defines one such representation: \begin{equation*} g(\mu_{ij}) = \eta_{ij} = \alpha_{1i}\beta_{1j} + \alpha_{2i}\beta_{2j} \end{equation*} since we can alternatively write \begin{align*} \boldsymbol{\eta} &= \begin{pmatrix} \alpha_{11} & \alpha_{21} \\ \vdots & \vdots \\ \alpha_{1n} & \alpha_{2n} \\ \end{pmatrix} \begin{pmatrix} \beta_{11} & \dots & \beta_{1p} \\ \beta_{21} & \dots & \beta_{2p} \\ \end{pmatrix} \\ &= \boldsymbol{AB}^T \end{align*} where the columns of $A$ and $B$ are linearly independent by definition. To demonstrate how the biplot is obtained from this model, we shall use the \Robject{barley} data set which gives the percentage of leaf area affected by leaf blotch for ten varieties of barley grown at nine sites \citep{Wedd74,Gabr98}. As suggested by \citet{Wedd74} we model these data using a logit link and a variance proportional to the square of that of the binomial, implemented as the \Rfunction{wedderburn} family in \Rpackage{gnm} (see also Section \ref{sec:glms}): @ <>= set.seed(83) biplotModel <- gnm(y ~ -1 + instances(Mult(site, variety), 2), family = wedderburn, data = barley) @ %def The effect of site $i$ can be represented by the point \[ (\alpha_{1i}, \alpha_{2i}) \] in the space spanned by the linearly independent basis vectors \begin{align*} a_1 = (\alpha_{11}, \alpha_{12}, \ldots \alpha_{19})^T\\ a_2 = (\alpha_{21}, \alpha_{22}, \ldots \alpha_{29})^T\\ \end{align*} and the variety effects can be similarly represented. Thus we can represent the sites and varieties separately as follows \begin{Sinput} sites <- pickCoef(biplotModel, "[.]site") coefs <- coef(biplotModel) A <- matrix(coefs[sites], nc = 2) B <- matrix(coefs[-sites], nc = 2) par(mfrow = c(1, 2)) plot(A, pch = levels(barley$site), xlim = c(-5, 5), ylim = c(-5, 5), main = "Site Effects", xlab = "Component 1", ylab = "Component 2") plot(B, pch = levels(barley$variety), xlim = c(-5, 5), ylim = c(-5, 5), main = "Variety Effects", xlab = "Component 1", ylab = "Component 2") \end{Sinput} \begin{figure}[!tbph] \begin{center} \includegraphics[width = 6in]{fig-Effect_plots.pdf} \end{center} \caption{Plots of site and variety effects from the generalized bilinear model of the barley data.} \label{fig:Effect_plots} \end{figure} Of course the parameterization of the bilinear model is not unique and therefore the scale and rotation of the points in these plots will depend on the random seed. By rotation and reciprocal scaling of the matrices $A$ and $B$, we can obtain basis vectors with desirable properties without changing the fitted model. In particular, if we rotate the matrices $A$ and $B$ so that their columns are orthogonal, then the corresponding plots will display the euclidean distances between sites and varieties respectively. If we also scale the matrices $A$ and $B$ so that the corresponding plots have the same units, then we can combine the two plots to give a conventional biplot display. The required rotation and scaling can be performed via singular value decomposition of the fitted predictors: @ <>= barleyMatrix <- xtabs(biplotModel$predictors ~ site + variety, data = barley) barleySVD <- svd(barleyMatrix) A <- sweep(barleySVD$u, 2, sqrt(barleySVD$d), "*")[, 1:2] B <- sweep(barleySVD$v, 2, sqrt(barleySVD$d), "*")[, 1:2] rownames(A) <- levels(barley$site) rownames(B) <- levels(barley$variety) colnames(A) <- colnames(B) <- paste("Component", 1:2) A B @ %def These matrices are essentially the same as in \citet{Gabr98}. From these the biplot can be produced, for sites $A \ldots I$ and varieties $1 \dots 9, X$: @ <>= barleyCol <- c("red", "blue") plot(rbind(A, B), pch = c(levels(barley$site), levels(barley$variety)), col = rep(barleyCol, c(nlevels(barley$site), nlevels(barley$variety))), xlim = c(-4, 4), ylim = c(-4, 4), main = "Biplot for barley data", xlab = "Component 1", ylab = "Component 2") text(c(-3.5, -3.5), c(3.9, 3.6), c("sites: A-I","varieties: 1-9, X"), col = barleyCol, adj = 0) @ %def \begin{figure}[!tbph] \begin{center} \includegraphics{gnmOverview-Biplot1.pdf} \end{center} \caption{Biplot for barley data} \label{fig:Biplot1} \end{figure} The biplot gives an idea of how the sites and varieties are related to one another. It also allows us to consider whether the data can be represented by a simpler model than the generalized bilinear model. We see that the points in the biplot approximately align with the rotated axes shown in Figure \ref{fig:Biplot2}, such that the sites fall about a line parallel to the ``h-axis'' and the varieties group about two lines roughly parallel to the ``v-axis''. @ <>= plot(rbind(A, B), pch = c(levels(barley$site), levels(barley$variety)), col = rep(barleyCol, c(nlevels(barley$site), nlevels(barley$variety))), xlim = c(-4, 4), ylim = c(-4, 4), main = "Biplot for barley data", xlab = "Component 1", ylab = "Component 2") text(c(-3.5, -3.5), c(3.9, 3.6), c("sites: A-I","varieties: 1-9, X"), col = barleyCol, adj = 0) abline(a = 0, b = tan(pi/3)) abline(a = 0, b = -tan(pi/6)) abline(a = 2.6, b = tan(pi/3), lty = 2) abline(a = 4.5, b = tan(pi/3), lty = 2) abline(a = 1.3, b = -tan(pi/6), lty = 2) text(2.8, 3.9, "v-axis", font = 3) text(3.8, -2.7, "h-axis", font = 3) @ %def %abline(a = 0, b = tan(3*pi/10), lty = 4) %abline(a = 0, b = -tan(pi/5), lty = 4) \begin{figure}[!tbph] \begin{center} \includegraphics{gnmOverview-Biplot2.pdf} \end{center} \caption{Biplot for barley data, showing approximate alignment with rotated axes.} \label{fig:Biplot2} \end{figure} This suggests that the sites could be represented by points along a line, with co-ordinates \begin{equation*} (\gamma_i, \delta_0). \end{equation*} and the varieties by points on two lines perpendicular to the site line: \begin{equation*} (\nu_0 + \nu_1I(i \in \{2, 3, 6\}), \omega_j) \end{equation*} This corresponds to the following simplification of the bilinear model: \begin{align*} &\alpha_{1i}\beta_{1j} + \alpha_{2i}\beta_{2j} \\ \approx &\gamma_i(\nu_0 + \nu_1I(i \in \{2, 3, 6\})) + \delta_0\omega_j \end{align*} or equivalently \begin{equation*} \gamma_i(\nu_0 + \nu_1I(i \in \{2, 3, 6\})) + \omega_j, \end{equation*} the double additive model proposed by \citet{Gabr98}. We can fit this model as follows: @ <>= variety.binary <- factor(match(barley$variety, c(2,3,6), nomatch = 0) > 0, labels = c("rest", "2,3,6")) doubleAdditive <- gnm(y ~ variety + Mult(site, variety.binary), family = wedderburn, data = barley) @ %def Comparing the chi-squared statistics, we see that the double additive model is an adequate model for the leaf blotch incidence: @ <>= biplotModChiSq <- sum(residuals(biplotModel, type = "pearson")^2) doubleAddChiSq <- sum(residuals(doubleAdditive, type = "pearson")^2) c(doubleAddChiSq - biplotModChiSq, doubleAdditive$df.residual - biplotModel$df.residual) @ %def \subsection{Stereotype model for multinomial response} \label{sec:Stereotype} The stereotype model was proposed by \citet{Ande84} for ordered categorical data. It is a special case of the multinomial logistic model, in which the covariate coefficients are common to all categories but the scale of association is allowed to vary between categories such that \[ p_{ic} = \frac{\exp(\beta_{0c} + \gamma_c \boldsymbol{\beta}^T\boldsymbol{x}_{i})}{\sum_{k = 1}^K \exp(\beta_{0k} + \gamma_k \boldsymbol{\beta}^T\boldsymbol{x}_{i})} \] where $p_{ic}$ is the probability that the response for individual $i$ is category $c$ and $K$ is the number of categories. Like the multinomial logistic model, the stereotype model specifies a simple form for the log odds of one category against another, e.g. \begin{equation*} \log\left(\frac{p_{ic}}{p_{ik}}\right) = (\beta_{0c} - \beta_{0k}) + (\gamma_c - \gamma_k)\boldsymbol{\beta}^T\boldsymbol{x}_{i} \end{equation*} In order to model a multinomial response in the generalized nonlinear model framework, we must re-express the data as category counts $Y_i = (Y_{i1}, \ldots, Y_{iK})$ for each individual (or group). Then assuming a Poisson distribution for the counts $Y_{ic}$, the joint distribution of $Y_i$ is Multinomial$(N_i, p_{i1}, \ldots, p_{iK})$ conditional on the total count for each individual $N_i$. The expected counts are then $\mu_{ic} = N_ip_{ic}$ and the parameters of the stereotype model can be estimated through fitting the following model \begin{align*} \log \mu_{ic} &= \log(N_i) + \log(p_{ic}) \\ &= \alpha_i + \beta_{0c} + \gamma_c\sum_r \boldsymbol{\beta}_{r}\boldsymbol{x}_{ir} \\ \end{align*} where the ``nuisance'' parameters $\alpha_i$ ensure that the multinomial denominators are reproduced exactly, as required. The \Rpackage{gnm} package includes the utility function \Rfunction{expandCategorical} to re-express the categorical response as category counts. By default, individuals with common values across all covariates are grouped together, to avoid redundancy. For example, the \Robject{backPain} data set from \citet{Ande84} describes the progress of patients with back pain. The data set consists of an ordered factor quantifying the progress of each patient, and three prognostic variables. We re-express the data as follows: @ <>= set.seed(1) subset(backPain, x1 == 1 & x2 == 1 & x3 == 1) backPainLong <- expandCategorical(backPain, "pain") head(backPainLong) @ %def We can now fit the stereotype model to these data: @ <>= oneDimensional <- gnm(count ~ pain + Mult(pain, x1 + x2 + x3), eliminate = id, family = "poisson", data = backPainLong) oneDimensional @ %def specifying the \Robject{id} factor through \Rfunarg{eliminate} so that the 12 \Robject{id} effects are estimated more efficiently and are excluded from printed model summaries by default. This model is one dimensional since it involves only one function of $\mathbf{x} = (x1, x2, x3)$. We can compare this model to one with category-specific coefficients of the $x$ variables, as may be used for a qualitative categorical response: @ <>= threeDimensional <- gnm(count ~ pain + pain:(x1 + x2 + x3), eliminate = id, family = "poisson", data = backPainLong) threeDimensional @ %def This model has the maximum dimensionality of three (as determined by the number of covariates). The ungrouped multinomial log-likelihoods reported in \citet{Ande84} are given by \begin{equation*} \sum_{i,c} y_{ic}\log(p_{ic}) = \sum_{i,c} y_{ic}\log(\mu_{ic}/n_{ic}) \end{equation*} We write a simple function to compute this and the corresponding degrees of freedom, then compare the log-likelihoods of the one dimensional model and the three dimensional model: @ <>= logLikMultinom <- function(model, size){ object <- get(model) l <- sum(object$y * log(object$fitted/size)) c(nParameters = object$rank - nlevels(object$eliminate), logLikelihood = l) } size <- tapply(backPainLong$count, backPainLong$id, sum)[backPainLong$id] t(sapply(c("oneDimensional", "threeDimensional"), logLikMultinom, size)) @ %def showing that the \Robject{oneDimensional} model is adequate. To obtain estimates of the category-specific multipliers in the stereotype model, we need to constrain both the location and the scale of these parameters. The latter constraint can be imposed by fixing the slope of one of the covariates in the second multiplier to \Robject{1}, which may be achieved by specifying the covariate as an offset: @ <>= ## before constraint summary(oneDimensional) oneDimensional <- gnm(count ~ pain + Mult(pain, offset(x1) + x2 + x3), eliminate = id, family = "poisson", data = backPainLong) ## after constraint summary(oneDimensional) @ %def The location of the category-specific multipliers can constrained by setting one of the parameters to zero, either through the \Rfunarg{constrain} argument of \Rfunction{gnm} or with \Rfunction{getContrasts}: @ <>= getContrasts(oneDimensional, pickCoef(oneDimensional, "[.]pain")) @ %def giving the required estimates. \subsection{Lee-Carter model for trends in age-specific mortality} In the study and projection of population mortality rates, the model proposed by \cite{LeeCart92} forms the basis of many if not most current analyses. Here we consider the quasi-Poisson version of the model \citep{Wilm93, Alho00, BrouDenuVerm02, RensHabe03}, in which the death count $D_{ay}$ for individuals of age $a$ in year $y$ has mean $\mu_{ay}$ and variance $\phi\mu_{ay}$ (where $\phi$ is 1 for Poisson-distributed counts, and is respectively greater than or less than 1 in cases of over-dispersion or under-dispersion). In the Lee-Carter model, the expected counts follow the log-bilinear form \[ \log(\mu_{ay}/e_{ay}) = \alpha_a + \beta_a \gamma_y, \] where $e_{ay}$ is the `exposure' (number of lives at risk). This is a generalized nonlinear model with a single multiplicative term. The use of \Rpackage{gnm} to fit this model is straightforward. We will illustrate by using data downloaded on 2006-11-14 from the Human Mortality Database\footnote{Thanks to Iain Currie for helpful advice relating to this section} (HMD, made available by the University of California, Berkeley, and Max Planck Institute for Demographic Research, at \texttt{http://www.mortality.org}) on male deaths in Canada between 1921 and 2003. The data are not made available as part of \Rpackage{gnm} because of license restrictions; but they are readily available via the web simply by registering with the HMD. We assume that the data for Canadian males (both deaths and exposure-to-risk) have been downloaded from the HMD and organised into a data frame named \Robject{Canada} in \R, with columns \Robject{Year} (a factor, with levels \Rcode{1921} to \Rcode{2003}), \Robject{Age} (a factor, with levels \Rcode{20} to \Rcode{99}), \Robject{mDeaths} and \Robject{mExposure} (both quantitative). The Lee-Carter model may then be specified as \begin{Sinput} LCmodel.male <- gnm(mDeaths ~ Age + Mult(Exp(Age), Year), offset = log(mExposure), family = "quasipoisson", data = Canada) \end{Sinput} Here we have acknowledged the fact that the model only really makes sense if all of the $\beta_a$ parameters, which represent the `sensitivity' of age group $a$ to a change in the level of general mortality \citep[e.g.,][]{BrouDenuVerm02}, have the same sign. Without loss of generality we assume $\beta_a>0$ for all $a$, and we impose this constraint by using \Rcode{Exp(Age)} instead of just \Rcode{Age} in the multiplicative term. Convergence is to a fitted model with residual deviance 32419.83 on 6399 degrees of freedom --- representing clear evidence of substantial overdispersion relative to the Poisson distribution. In order to explore the lack of fit a little further, we plot the distribution of Pearson residuals in Figure \ref{fig:LCresplot}: \begin{Sinput} par(mfrow = c(2,2)) age <- as.numeric(as.character(Canada$Age)) with(Canada,{ res <- residuals(LCmodel.male, type = "pearson") plot(Age, res, xlab="Age", ylab="Pearson residual", main = "(a) Residuals by age") plot(Year, res, xlab="Year", ylab="Pearson residual", main = "(b) Residuals by year") plot(Year[(age>24) & (age<36)], res[(age>24) & (age<36)], xlab = "Year", ylab = "Pearson residual", main = "(c) Age group 25-35") plot(Year[(age>49) & (age<66)], res[(age>49) & (age<66)], xlab = "Year", ylab = "Pearson residual", main = "(d) Age group 50-65") }) \end{Sinput} %$ \begin{figure}[!tbph] \begin{center} \includegraphics[width=6in]{fig-LCall.pdf} \end{center} \caption{Canada, males: plots of residuals from the Lee-Carter model of mortality} \label{fig:LCresplot} \end{figure} Panel (a) of Figure \ref{fig:LCresplot} indicates that the overdispersion is not evenly spread through the data, but is largely concentrated in two age groups, roughly ages 25--35 and 50--65\null. Panels (c) and (d) focus on the residuals in each of these two age groups: there is a clear (and roughly cancelling) dependence on \Robject{Year}, indicating that the assumed bilinear interaction between \Robject{Age} and \Robject{Year} does not hold for the full range of ages and years considered here. A somewhat more satisfactory Lee-Carter model fit is obtained if only a subset of the data is used, namely only those males aged 45 or over: \begin{Sinput} LCmodel.maleOver45 <- gnm(mDeaths ~ Age + Mult(Exp(Age), Year), offset = log(mExposure), family = "quasipoisson", data = Canada[age>44,]) \end{Sinput} The residual deviance now is 12595.44 on 4375 degrees of freedom: still substantially overdispersed, but less severely so than before. Again we plot the distributions of Pearson residuals (Figure \ref{fig:LCresplot2}). \begin{figure}[!tbph] \begin{center} \includegraphics[width=6in]{fig-LCover45.pdf} \end{center} \caption{Canada, males over 45: plots of residuals from the Lee-Carter model of mortality} \label{fig:LCresplot2} \end{figure} Still clear departures from the assumed bilinear structure are evident, especially for age group 81--89; but they are less pronounced than in the previous model fit. The main purpose here is only to illustrate how straightforward it is to work with the Lee-Carter model using \Rfunction{gnm}, but we will take this example a little further by examining the estimated $\beta_a$ parameters from the last fitted model. We can use \Rfunction{getContrasts} to compute quasi standard errors for the logarithms of $\hat\beta_a$ --- the logarithms being the result of having used \Rcode{Exp(Age)} in the model specification --- and use these in a plot of the coefficients: \begin{Sinput} AgeContrasts <- getContrasts(LCmodel.maleOver45, 56:100) ## ages 45 to 89 only \end{Sinput} \begin{figure}[!tbph] \begin{center} \includegraphics{fig-LCqvplot.pdf} \end{center} \caption{Canada, males over 45, Lee-Carter model: relative sensitivity of different ages to change in total mortality.} \label{fig:LCqvplot} \end{figure} The plot shows that sensitivity to the general level of mortality is highest at younger ages, as expected. An \emph{unexpected} feature is the clear outlying positions occupied by the estimates for ages 51, 61, 71 and 81: for each of those ages, the estimated $\beta_a$ coefficient is substantially less than it is for the neighbouring age groups (and the error bars indicate clearly that the deviations are larger than could plausibly be due to chance variation). This is a curious finding. An explanation comes from a look back at the raw death-count data. In the years between 1921 and 1940, the death counts for ages 31, 41, 51, 61, 71 and 81 all stand out as being very substantially lower than those of neighbouring ages (Figure \ref{fig:deaths2140}: the ages concerned are highlighted in solid red). The same does \emph{not} hold for later years: after about 1940, the `1' ages fall in with the general pattern. This apparent `age heaping\footnote{Age heaping is common in mortality data: see \url{http://www.mortality.org/Public/Overview.php}}' explains our finding above regarding the $\beta_a$ coefficients: whilst all age groups have benefited from the general trend of reduced mortality, the `1' age groups appear to have benefited least because their starting point (in the 1920s and 1930s) was lower than would have been indicated by the general pattern --- hence $\hat\beta_a$ is smaller for ages $a=31$, $a=41$,\ldots, $a=81$. \begin{figure}[!tbph] \begin{center} \includegraphics{fig-deaths1921-1940.pdf} \end{center} \caption{Canada, males: Deaths 1921 to 1940 by age} \label{fig:deaths2140} \end{figure} \subsection{Exponential and sum-of-exponentials models for decay curves} A class of nonlinear functions which arise in various application contexts --- a notable one being pharmacokinetic studies -- involves one or more \emph{exponential decay} terms. For example, a simple decay model with additive error is \begin{equation} \label{eq:singleExp} y = \alpha + \exp(\beta + \gamma x) + e \end{equation} (with $\gamma<0$), while a more complex (`sum of exponentials') model might involve two decay terms: \begin{equation} \label{eq:twoExp} y = \alpha + \exp(\beta_1 + \gamma_1 x) + \exp(\beta_2+ \gamma_2 x) + e. \end{equation} Estimation and inference with such models are typically not straightforward, partly on account of multiple local maxima in the likelihood \citep[e.g.,][Ch.3]{Sebe89}. We illustrate the difficulties here, with a couple of artificial examples. These examples will make clear the value of making repeated calls to \Rfunction{gnm}, in order to use different, randomly-generated parameterizations and starting values and thus improve the chances of locating both the global maximum and all local maxima of the likelihood. \subsubsection{Example: single exponential decay term} Let us first construct some data from model (\ref{eq:singleExp}). For our illustrative purposes here, we will use \emph{noise-free} data, i.e., we fix the variance of $e$ to be zero; for the other parameters we will use $\alpha=0$, $\beta = 0$, $\gamma = -0.1$. @ <>= x <- 1:100 y <- exp(- x / 10) set.seed(1) saved.fits <- list() for (i in 1:100) saved.fits[[i]] <- gnm(y ~ Exp(1 + x), verbose = FALSE) table(zapsmall(sapply(saved.fits, deviance))) @ %def The \Robject{saved.fits} object thus contains the results of 100 calls to \Rfunction{gnm}, each using a different, randomly-generated starting value for the vector of parameters $(\alpha, \beta, \gamma)$. Out of 100 fits, 52 reproduce the data exactly, to machine accuracy. The remaining 48 fits are all identical to one another, but they are far from globally optimal, with residual sum of squares 3.61: they result from divergence of $\hat\gamma$ to $+\infty$, and correspondingly of $\hat\beta$ to $-\infty$, such that the fitted `curve' is in fact just a constant, with level equal to $\bar{y}=0.09508$. For example, the second of the 100 fits is of this kind: @ <>= saved.fits[[2]] @ %def The use of repeated calls to \Rfunction{gnm}, as here, allows the local and global maxima to be easily distinguished. \subsubsection{Example: sum of two exponentials} We can conduct a similar exercise based on the more complex model (\ref{eq:twoExp}): @ <>= x <- 1:100 y <- exp(- x / 10) + 2 * exp(- x / 50) set.seed(1) saved.fits <- list() for (i in 1:100) { saved.fits[[i]] <- suppressWarnings(gnm(y ~ Exp(1 + x, inst = 1) + Exp(1 + x, inst = 2), verbose = FALSE)) } table(round(unlist(sapply(saved.fits, deviance)), 4)) @ %def In this instance, only 27 of the 100 calls to \Rfunction{gnm} have successfully located a local maximum of the likelihood: in the remaining 73 cases the starting values generated were such that numerical problems resulted, and the fitting algorithm was abandoned (giving a \Robject{NULL} result). Among the 27 `successful' fits, it is evident that there are three distinct solutions (with respective residual sums of squares equal to 0.1589, 41.64, and essentially zero --- the last of these, the exact fit to the data, having been found 20 times out of the above 27). The two non-optimal local maxima here correspond to the best fit with a single exponential (which has residual sum of squares 0.1589) and to the fit with no dependence at all on $x$ (residual sum of squares 41.64), as we can see by comparing with: @ <>= singleExp <- gnm(y ~ Exp(1 + x), start = c(NA, NA, -0.1), verbose = FALSE) singleExp meanOnly <- gnm(y ~ 1, verbose = FALSE) meanOnly plot(x, y, main = "Two sub-optimal fits to a sum-of-exponentials curve") lines(x, fitted(singleExp)) lines(x, fitted(meanOnly), lty = "dashed") @ %def \begin{figure}[!tbph] \centering \includegraphics{gnmOverview-doubleExp2.pdf} \caption{Two sub-optimal fits to a sum-of-exponentials curve} \label{fig:doubleExp} \end{figure} In this example, it is clear that even a small amount of noise in the data would make it practically impossible to distinguish between competing models containing one and two exponential-decay terms. In summary: the default \Rfunction{gnm} setting of randomly-chosen starting values is useful for identifying multiple local maxima in the likelihood; and reasonably good starting values are needed if the global maximum is to be found. In the present example, knowing that $\gamma_1$ and $\gamma_2$ should both be small and negative, we might perhaps have tried @ <>= gnm(y ~ instances(Exp(1 + x), 2), start = c(NA, NA, -0.1, NA, -0.1), verbose = FALSE) @ %def which reliably yields the (globally optimal) perfect fit to the data. \newpage \appendix \section{User-level functions} We list here, for easy reference, all of the user-level functions in the \Rpackage{gnm} package. For full documentation see the package help pages. \begin{table}[!h] \begin{tabular*}{\textwidth}{@{}p{0.2in}p{1.3in}p{4.5in}@{}} \toprule \multicolumn{3}{l}{\textbf{Model Fitting}} \\ \midrule & \Rfunction{gnm} & fit generalized nonlinear models \\ \midrule \multicolumn{3}{l}{\textbf{Model Specification}} \\ \midrule & \Rfunction{Diag} & create factor differentiating diagonal elements \\ & \Rfunction{Symm} & create symmetric interaction of factors \\ & \Rfunction{Topo} & create `topological' interaction factors \\ & \Rfunction{Const} & specify a constant in a \Rclass{nonlin} function predictor \\ & \Rfunction{Dref} & specify a diagonal reference term in a \Rfunction{gnm} model formula \\ & \Rfunction{Mult} & specify a product of predictors in a \Rfunction{gnm} formula \\ & \Rfunction{MultHomog} & specify a multiplicative interaction with homogeneous effects in a \Rfunction{gnm} formula \\ & \Rfunction{Exp} & specify the exponential of a predictor in a \Rfunction{gnm} formula \\ % & \Rfunction{Log} & specify the natural logarithm of a predictor in a % \Rfunction{gnm} formula \\ % & \Rfunction{Logit} & specify the logit of a predictor in a % \Rfunction{gnm} formula \\ & \Rfunction{Inv} & specify the reciprocal of a predictor in a \Rfunction{gnm} formula \\ % & \Rfunction{Raise} & specify a predictor raised to a constant % power in a \Rfunction{gnm} formula \\ & \Rfunction{wedderburn} & specify the Wedderburn quasi-likelihood family \\ \midrule \multicolumn{3}{l}{\textbf{Methods and Accessor Functions}} \\ \midrule & \Rmethod{confint.gnm} & compute confidence intervals of \Rclass{gnm} parameters based on the profiled deviance \\ & \Rmethod{confint.profile.gnm} & compute confidence intervals of parameters from a \Rclass{profile.gnm} object \\ & \Rmethod{predict.gnm} & predict from a \Rclass{gnm} model \\ & \Rmethod{profile.gnm} & profile deviance for parameters in a \Rclass{gnm} model \\ & \Rmethod{plot.profile.gnm} & plot profile traces from a \Rclass{profile.gnm} object \\ & \Rmethod{summary.gnm} & summarize \Rclass{gnm} fits \\ & \Rfunction{residSVD} & multiplicative approximation of model residuals \\ & \Rfunction{exitInfo} & print numerical details of last iteration when \Rfunction{gnm} has not converged \\ & \Rfunction{ofInterest} & extract the \Robject{ofInterest} component of a \Rclass{gnm} object \\ & \Rfunction{ofInterest<-} & replace the \Robject{ofInterest} component of a \Rclass{gnm} object \\ & \Rfunction{parameters} & get model parameters from a \Rclass{gnm} object, including parameters that were constrained \\ & \Rfunction{pickCoef} & get indices of model parameters \\ & \Rfunction{getContrasts} & estimate contrasts and their standard errors for parameters in a \Rclass{gnm} model \\ & \Rfunction{checkEstimable} & check whether one or more parameter combinations in a \Rclass{gnm} model is identified \\ & \Rfunction{se} & get standard errors of linear parameter combinations in \Rclass{gnm} models \\ & \Rfunction{Dref} & estimate weights and corresponding standard errors for a diagonal reference term in a \Rclass{gnm} model \\ & \Rfunction{termPredictors} & (\emph{generic}) extract term contributions to predictor \\ \midrule \multicolumn{3}{l}{\textbf{Auxiliary Functions}} \\ \midrule & \Rfunction{asGnm} & coerce an object of class \Rclass{lm} or \Rclass{glm} to class \Rclass{gnm} \\ & \Rfunction{expandCategorical} & expand a data frame by re-expressing categorical data as counts \\ & \Rfunction{getModelFrame} & get the model frame in use by \Rfunction{gnm} \\ & \Rfunction{MPinv} & Moore-Penrose pseudoinverse of a real-valued matrix \\ & \Rfunction{qrSolve} & Minimum-length solution of a linear system\\ \end{tabular*} \end{table} \newpage \bibliography{gnm} \bibliographystyle{jss} \end{document} gnm/inst/doc/gnmOverview.pdf0000644000176200001440000205626714501306126015600 0ustar liggesusers%PDF-1.5 % 222 0 obj << /Length 1665 /Filter /FlateDecode >> stream x[Ks6W(uBOȥѤtXnI I󡒔]wAEQqfʋ~oЋяg 'D2Hᖚ_Lj 1GYG 2&.(}j H1EXJ 5v&Zi}fDLɯ"3bz,c6}ni#w&{ k'7Ax̭7`K9R/4 if>b:HOӫ]EyHKL "@u?4XLjQ'>"Rm/ &xZDͮi: (C|V߽x=,|82PY41Zj:R,HC29AŔyXG:y;-($OH,-MZ+ ( jJfO_%MM6,x ),5ͳZΞ !ѵzĄ ,܈) &H>fiʦh x6r3rhj} Lt>mgI #5ؗodP@Ո7" 7ء<6ف٠}5b\HhG;4"XwsD"9gڝ1c/ulN?Q6eK7<)vNf/$T5_т;亏ݴ$7AZ m#Wf9J2HCS]>c…mQfIW.w T$ ` {Uv,LѦyLQ_yst~wlbtls:W'VQQ6131*wOY_H{1GaT1< tITh]Vfu=(VwӲloꖡYl3z5aEpG}d.Cʜ_yH!.I/;;d+h18ߘ0Z޴p7;2`o,zQ_#}8ZpQXQAs`9vч>zv́> LD<+%gmwi$jg$x:&$>C>}4󍇰j (`8@!xd<A{pi(Ҡ4#O'Jp)٢m E(?-mb)kU )> lFȱekb@߽MxyZQM\29=/V 0$n+φ>ݦbp*k#u~9@>bJ[B]G?N,|tO.oүl31qD"FYrO俸|ƃ;27ogOe&Zy_Go> stream xڭZr6}Wౝ%\ Iq63M}qȴˉ-j$9=KӠ!z0@ٳ,H ƙa .gB 1iq128a Ǵ͙IɌLfe2gLzf&N@bNc?-g b%LCT6 !bP( CJ5V* @r 23y6zs{OCb+L^~l?yKÊ *.haΖ^%74\\EpM wnXo?)V [eOAj1"5A`G-1E0/2fD*hYG#tоκ=)&Xpei8gvڛ.6pɶ?lfLaJ WA6(ʀEغlD{gonEnY?Hһ:=HmKՈhՓ- )cvq~/1~DB0R8}"J*>i= g6G5hfHdRz=EþWqRd{}x(,{- C1Om>AZ13#`7U) endstream endobj 252 0 obj << /Length 3523 /Filter /FlateDecode >> stream x[ݓ۶_qo͜P A08u'I3y@I;!);׿)r2mfZˉ'sqYTzu{w) y+ůnwW?5Od/TϷJӄI^%vp%u*yvX$q%ݵVۮ9뵀rm]uGnW5ZɊ]'e W"aJ kP??<:Ϟ7Frj1x9;H_}w_Uw*B3h˹G 1˘nNA's:ic5&Py4E]wmX]WZ bF;Km}{]\_1/jOl`f,qkO2`R2׀q}vDvzʅNYA.I$ůBbKKXz[nnGv _?PwQpA6Risxn0SODA^u^[Uxft l}=еܢXITyكz+vh . p$[wo?FfvM5i_v.As8ݺB& j}WmG{=daN.=Ԧ7}Sl6Sۉ}Τh:;ڗ muww0E?d청eʒ\ VjDeW? 2_η_֐h .+xdѴ,ދv쯹^u[ΔP(C&>8V05to1Q쒤3pAlzvWվ*Qz#m_o*i6\܄+ jWoGDF Ln_Iv2{Ņ DµMe@sk:OKHȱ}n!&xCٗ  RV8ayFgJ`U/^s06ݾy"t+Vh$Ma!T9SA9Aw)6QTfIULqz%jms9e54`C9(ِ#40!~Y4QiǍS^p sv[՜:VnӀy4Cm2Our=L3A0M\#S|F{Z#ӕ;;aP$|Bw`!9m^m0u"Rr-"e!<S{~9v|l~QoRDWRYX«NFV|DR |Q qY D6O\9gԇ6H>ckQ,M kZi@xpVh u}Bl]qzhʭy\D`0]/# [|?^5a66HTMGa`x yTS 1h佪vNq~PI"6d Du4UjDQpg:&fim Z,29B́ws 1m7 B%&mLu ZH.65 Hӵ֮n  TϢLyem$#c?5{fV4%ܸ[{ ӎv180p n ~6Skŋ=1 ƒ/}gh 3|qbn3daɦ􀅧I`^%T͂겓N) M:q`%*y\)ri3EL[&z J;O 3 ʷHki?u s`SF)qijc=-X\"j\LvVL(o* 2 4cBYԱ)!r$XEja'*n.,3Gl#2MeG=)=_V}0jXPO;Fxt/TD0NHaPE}y\/-=F䃾RfQ%ǰG^ʩ\YCQHYG1lk Ė({F"k/[A,42|E;IJnT',vIzl1o`XhB5y `j1pՋvm쉫 *HF;/bL(jsq&3L$$3dhxY?SK"FöAХ 05Al?NhJ[LT$ [H PZ̩v`#.c#l,1]h D?)#LJ9T`T֌Ѵ)!&6P~{(ˬJY\ΔЋJ6O 2J<Qr&Z`^ؐIEQzgϧ*i;jM;OnOod~}BTAkI_I8Cg^B‰AO!Ki^ =2*\=П2z,Sžȋ}E@yM6@.\ݟ,橩oIH OשV}eI8cqރPN,!5A~u/6[cmLW7v-ݙ M%iQz*R3>@c4M5LJGǮ>ex%\pfW!̧alSԌKm)vU Vh4\6~XSzmׂTZ[|ҲmSB; =,<}h olř TقojU.АsRoɨҐK׉PQ3)A|j+\MLRPʊ<T 9dP\ˊ Ei{s*9ET$`E0۾Ul=kz(5\7Y&c*cᔨ@ub* }0b޽ˋV#OeԂ8| 3t\k`q94"^4]e0RMlWqUJ(aFL_^+njD>.[trg9'N'+YݨIOfE,V7ߜ9y3(.6nx/4)l;lKwCZ|L6%, SK zBn5{LON1GSv mˍbTrp⃵,\m}/ ad>A=k_jwFh0j.{a.KY@p> stream xYͯ_a%2̊HI+R)YH#9oS-m[ p7Oo~UJNici9F)ǫ_{|D7$֘%䈆:iZ܉>F7Dj'툀߿j,'R^FR'OJˍv(৫EX4;ZxÚ%*/sۊ?/1 "Wn&4VQɘ#5K>lQJYGXpmP =XjЂ&Ѓtߧ,%iJ=4(Ae~|/ׄ%φnvW ^@}_˷bxvX[\aR#ܡfJ@5k"u-09ݕSeLl9jue`NH44)qd'Dכ¬7 1y0Rr5'I %fy8wE4 GI58y5boys{w1{{zn^|1LyT[T^.n?f1Խ/4͋P\XR.F0F^U?}Gw5l.8G}bKT(3y\o93i'˅) |Zٜg <*ֳYY>_Yϲڛ@)|΁ȿK*3|!$E:\- |B_np:{;sb/g@]՜G[gYEy4oPX~kwW7,r‹*^KH?{Ǜ;RA. QD^^٘x'mďưO`Òү`'R.ixbbH8A\0$`zR0d~9&8G,)pːߊ_Gm*VgyiB2Kz FC:7KI $F55*!}Y,KL YG2UM4T44FߋeЩTVՏF,\ѩH-2VY=G֮ <}idjeR/z༼éۛLv,uJ"@!^\Zű:$́` ۙ, PyKDjpT:% l< ƋbV7PП۬&'ԎŸ憃 {P 8=/c qW^h} I;}f,uA MKD1l~9 $-]QIWe &(Q}h04Y[т_A^>y Q BTAV}kܱ>jiD8z|`EξLN`zUOzش0Lޤ%h>FN1@#o4C$嗑((O7G'a xӝڭ ^0hM3΄XI00qldyr_OoҿT/~:In%v~!Vkõӌ- <&Ie' ήiߝt %2h789- CYPVfvd4B&T&~xBl#!DZr cL(:;Iq^#c2b:=y/^KSF `)v&t!/ \d+NA;#o3fō@$<_IJ癌) ժ=njg7tTZm#v+jfE , -uj}BtV;GX*':ܳ? $saB_5%aWG gar=9ʦ:8eo)`W}|4!B׽Z=G'򲴥sJ'ST~ Q|QzIlblڿ5?M( C0ej5G/߹sPIcSo>< endstream endobj 280 0 obj << /Length 1370 /Filter /FlateDecode >> stream xɎ6>_atz] -:=.P -c"hǗ~{HCʒg&qǷ/$_Aj(A`x0_> M|ͳ4Q&I"NQw4[*X(z4%k:"p7YM--*)*ꤪ 6U&bˑfҪvmXI&'jihA_adydϑZHx}GrArgLsr~e3P6]Qo!%諱Ը'-/ tr$DƏZ5UzWĿK|bEzSߦj.o2(\$>(@Ht6И=ˣƨrYGJIߎdbT勼hT2q'Oa~묓.,;ڥcyۙ0>5ѡIv1r]W|PrHh߲YF%. YxufP r!wgKۮSf҅l"w\^๧.%]mQ!U;2߳/u-z3Zc;ȔǼz$ D#ŋ9]qł<$®z &^>He%u(I/jYZ/a`˨N*Jb۶gk!A=o UXӨ.yvaN9(|4}mn ϛAbEQԄعͯ@֞ endstream endobj 286 0 obj << /Length 2212 /Filter /FlateDecode >> stream xڽXY ~_Q.W2ZI.af]jg\vLzCv %"?R$ܼZn;m)2w7D0Oye͝|r*X.CppԷDf"sGbWRAn3#>"K~Y?d:UrER8yϳcN'7cnp--A9wG,ڱnn"ҵ-:)m Clg n Ÿ摂즡nOz*M-RD鼴'ÓN5]p\"\w8t 6uC̚éVcݵ[z +ճ|ȄjXae|I.] R٦ &JDi4_2 vr>չV."i@dC5<_C40H^2mݠzL_$q327Q6Rڟk Hqai )D-^`q <=ҘkZ-2h&KN>74c&?<)ϗƽʘ0rmPJ۲jNC94b۸nnֳeq*G0U>Jmic4o7p@V+T@W>bcߝoqhp; rZF[=F3SsķoǍ-6WO!FDƸGW$$/Ux\a ?n5|YS7Wg1~>%z\{t0D6L rɳkak@gdRzO)zܠSqi0P5̓c$Ky")9M46\V>c^;2]]ђC K|%JjHN$J2cٜԧӊxPD:kmiL9SR*Po~°Z΍?Ͳ,`b''׺c]BbLoj-׌Axjp(O}#WuKQd-z'B__uwPj֧*+W{%o2" hQ۵KPbM}fچۺi0k4¼7x! <Df[f_Tl9 t24Ϙ{2ink2]Cj&S"/ǔmSOd}^ 2]A"_*ϴO5Sm BժzǑ=p|E!`YDT T`T`~4} VhFP =QU8~G ㄗ#ҷ]n0ܔiB_!@ҹF0ۅ)7y5_n`(:{,1)6DB^!WB }}nO8ʋ,UU6̀M?|,.(]Yʤj 2n31 NUv:,Jqﶽ[Bx |fH!B֩83 y,n$ endstream endobj 300 0 obj << /Length 3199 /Filter /FlateDecode >> stream xڵZK6ϯ[4ȴ—tCu^@]{@nʹjaVHҰc f$QTX,~U^}gbcts{I8r}u:׶5fBܕj?]Se{OcLnbJqrki-a3sYu]pX VDm/([MuS`֊)Qh;.EG-]4[=Sq ZUB9ܓ .6dbVq7eMcӢ\֛Zf3]Ek`V zW4~t ˖ Μ\ of :PY?vmvŰq8JL68qԷ$]uGRR:oq>yr.Bf|2]OneU—!/σ0CAH Åh+ԩ8L`fsbR$NZ*}K\,>Dnžm]h%<3q߹,:5ņ"ڮt2 aB+cwZhꁚ3,;I^p|ne;w5iWef¥n~0p O%Ap"Vv_qwKػatP)q!W,aV뾬^@җ hҝ[03{Xb!j1NݘէԆLM%$3ؼ?:N$DK뙘#`/s*vWb=M"u79˟6Iyg6S˫\=};Mx+Ir#12fbq=ޟ*PT>=l B W]97j;% $$曰'1=K1l0rV =J #+ĩL۱>Э/p恮] %6WVS5A J,i 8uH"EL $$H_u& !F*3.A#MՌ>@ZFVhQ]x sY)vu<:“,Ťr}Pؒz@-tA.[3O||ڍ_<}9}xi߾/Rߥtǣy m/Cy5'6y9!u3G!K|u;R@0&c%dlu Nrw6E]aAYLʳ]t/_ˮ5B*d?Y">C4 VZ \Y7x{uח[eC`bF sw0ᴢ'W#HO?w+[09cp#$*hݔu3WAγ;5} `^9EY HqStAb".uYZM ,}@|Mh\4qV?n`DHЈ>[Ux@<܇YWLՀ&  tRD+_4d7/֘si\1ƒv?m{8,Ϩ4a@}nL[$tNi%#_o{mG6շo̱ޟa+Ҏe˽JQ\|ZgiĢPХ<hH7.X#!X(^PS3!XgArg/4x/©\< ː/KJ;,&Mh1L( &Ew=C&!8\4DFexiJ&Q ƕD:)\Πp9EV#FC^S3 ]FOy,2,l йDus1xE4K[z4Ǝ׆t fVƺbp-M>0`Ј M*X?\ҜKb)7E!XwU%E\HM!?~00dk)]P6fON;t;R)i\`iq}rgm-+x2ĕkXveg3tq0ͳqBX81gLmM)M Ҥ~U<R*)F+1xlmM02$Tb(HL^ u,CcI [< Pkc;>9EthaN1 ׳k Ro[r:@HbdEgdvu0l&w]*T}E:"܍M%tv^HVt8GّJn =\=EC']J[7gV)n帜@ihnĂD !`%:aӪaήafx endstream endobj 312 0 obj << /Length 3288 /Filter /FlateDecode >> stream xruR\xL'W?ou׷\-ejYzWmwK9|yOa/[7C@CBe$ʑ#[97/U8!3 $?P&%1âjw~!xetلr <,iw~s nL=U]b$q[j,~@C/O~g+\M9F"r@@Q?Fwn[7{ևTǚDA Є^$eK=|fP4'+9~秂dܰ:{m}le "L|6iDKU3H%<: %#FQϻp}2}{V. $jbv k_cأu]zUǁ]GվjtYai`^sYpx^<Q#74/ H!t/Z$k?-ۥ)؂ DE@$2\ ph<, @4O5'hPNERYnVVHpWllXt TelƲ6۰ i+^( [)~8uws{V3`~F[Ruy # r}pd-)zW~jr  @(] V&L)j \'\)/|_N~}U0߾ Nd/BBʀР 4'gp+ΣvԘKaQ7u婼4F8~فXᛜE8(=jvUӄ3F0Vgsq9Ӡ/]p>z!sGpEU94It'iMmVehZQDA z6芜髶z2]TY:p)Y}"S+R%X&S}]`u 1_eVuև}wͽ3vʫ!y@ώn!3g&+# 3VP,(CN'"v_V>os[wUוTԳ2,n>70u0OLgMv fH22b 3+pRyM }$B"8K^r]LC9Ky7.Vj"E>O=c|Ja@ﻪ~907LOD'Kf1c~%"}l.OXٜ$|Zyp[H$գ~fb$(s ^TSN/"B Z(X%FL{}yk 4A\KqMbh6# Cl!/Δ0rNgtH!#,4//z jq|ڻi۴g| *;`ÌjOهc' Ǽ'vAvΊaP\#^YHAׁ}+i6m{@Y!1*LJÉs÷n`}ٗ~蹩}KLG+[K)t$xnK֓ZD\H;d%evj1BX.r#,EQ=tMi, SYjQJG rj?g%y*M2Wh d8^5yZ\`cT'E(H,$ΫPinrw ] WBB?&!" Ë[[pF]|wϛ/\Mf 9]YuA$U2=], i"AD1vwQ2GzΉ ɪ2^;jXCkʘu}+!' N#3kcL5%uSWZ,\-1CA9QۇYE|&/{>VOzlr=gUlۢ%`%;boc(ba C秌=6?ׇr~B)ƾJ(yT7%i@ FuS`~ JhFQrM7HAN>WTϙ`tθ\6 yV ~,l` g&x^bo5ő$yCBD%?m >@#}@I_S"N*1/LXEz( Tun^MoҋF묳dS!IڶtNf(u =;-WM  !' endstream endobj 233 0 obj << /Type /ObjStm /N 100 /First 899 /Length 2572 /Filter /FlateDecode >> stream xZ[o[7~ׯsA4ٴ l yHb0ZX_Dҩ}6xxDRs$$u)ZILV1{zN̥@آ0 a op<[Y kYI/#UJ:V&,UbFjEb*FZ;c52b 96cO*TOZvBt #xd|O|zv\,_p9}zbdu[[B[,_>^9Y #"bIZNoi< L=] ͇qZl,(FRGR!E٠ZBY +$P ~pV a(2OK ͥdǝP̩Wx 篹!BDISvT$rĺW'? dq;7|OةҙL\ v*Ga(<9#zdnu# _;G>';$95#MG0ڸ7!Nr}m5AKz\`G0#(,{#SZFG@Rr=H0NCPO53 jA˜RT qIj\pTy:ooL9N[9O/Wɉ 5lA%A8vxQr$ Jq88mIUCmfqXxjmXSmѵ;4/<ҷM$]/NtF @ #U㑪ؗ#uSzc4XS3.QNvWhȏ(p 9)+e2TMYB̐^8tsk=#rqSӯB`FHt7g+ s? [c7>JŪݞ"~ruS}Ŷ=-7y_W>}>r&M6Liy`q C!TEEx [m'_i 8fv$! _8qD:E=7k`zA2o v̧u._vQv.sP2֦muѹG 395yJְKqBK/ m `qH@#AyF0,}>gf^@‚LO?XNj)c ̛N%O[öQDe{zy3Cӎ>R&=量量]qyrӟԋ@P@5njvhA\^6Xa(r3X ,|nV`1qB6p{c?'6#/ ]:#[fQ2n)Oחjw]kKj5#R^5 C;p"9ND~NWW҆p>E<_zׁDsyƎp|؈^q&,wL˻/ s'on4KQɭNxml…!vĿ> Eće^Xk/:G endstream endobj 323 0 obj << /Length 3388 /Filter /FlateDecode >> stream xڵZKWLMyŗS>؛ص.;ImƧla"U$!=h)hG\DЍF?n/Ay#+DoRx*nv7(o}"+S YM7NeWգ+o V2ũ[;w+r_Nv+ ]4\ңm=Á&=5mKcvmʱQ穙ib]V4Op dW~lFˍ}vD+t56C>d;, ϖFFGvMDyz(D)Qlzʦ&]Sݮ? ffz yog3q9NC6t+D%|3oaOuFt03\o~IF C6I6# b54SU\c]MMo; ûR&v1d U\Nˋʍ0`5 Mq;!vW,TM0݂ gB<[эPLX!ůbsg9qBU`LŊ[J1 =(IUxsܷe%Z,Jjm}^Pg$(޿.Gui*ߌ۪?&oPUO%iF,]Wt/ ^E]nLeHS.?K'2YPMgEtg8o.X0M5`M36܉g/R7oY&t%rOp.r: tn[YL%9C |,u^Uj=;΍{1"+DK)yf a_py|ƾO#q69Go[GtM "rj`"*oЅNmfϘz@IYCq/ =Hxߊ$⩜›8%4 :۵ ǒPs`'DI&wDizD!q9Km`PsvK2;pcuwV0p17J,TfP)KHX*U."[V:15> !Hљa@&F/wlSJ&Ѫ-11)Yv6#<=Ԑ͕hr hb?ȤX`Y[1Y42Uj;C1,ngXb C'-7@t^B @97s}0|T4_FPjꇨH$f`s'x282>g / ʸ 5VO4Xb ,jzk-)H]4cgeRgr G3 vN9LK,?D<ˑ˄ U'! FB9αU  W=R #AR+=?uY\RXp=n%L3ld!/-x7n5P ,Fq B#zrhPIڮ 'ab3yE$=vFC ৩йјMUqYmr3t"UC%,K|\C1 PaAd''K((Q~ 6)^_-,e(M!< L$b-8,XU+P=#*x T~I3dӕ) \{ij4UпSU-z YDCfvO "D҄Am ײ$zW~)gJrS!_̟Y!gm#N*! $z@Dpx]G(, V1D8xJ-t嫾Xo ^ؠ_w[3xWb_CŤ$~5Xuz; NHԍqBr1Q4ޝVj6`:;<9W I"Aꇞ˼S)ѴOӱ!^c]Ks#5znzft WrCPorVD*DqT'-W[-= !QR}B/L*,%>HQ?л:$%6;&B1N f~cۛ:`ØP{. &PL ȴIJ1 ̽QR5n#(|>t@BXa3~ *allW!ćhnopl~nbv8'H~I)3zLutwĉPg[t;LJobۏZ⥐ɥ>*MiS~ڎs[CG0͇Y蔲ܭl"PT06F=Xr0&Wާf:ф.y]Le ^}-IO|{C c7T o]җ[:k[px1dXὛ3c7}}dTX|knDQ㩡[͜l56թ5խP!*SXi> stream xYK0dc 9d b avl%%{6"(5A9*zRId;$9_ %QBWbqILfK(Z"ϗJl9reqcv}ʦ|#|Ҍ$K+djC52xž}Seu]Y"G?SRcM]AAXJ8vqםThUo[Ugi pBk+(Dٰ/g=-j+#"XJaS*`UD8[* 4Շ78ݜ#$Rz3SBA ߅QMx>_8ҿsY%\xK&ݢ_6Mz D|$8t 0dڽHDQJHƭއmY*KXYLrp/Lx˒l7 8hWGII| ㌆yg2uDU"Aŭ@"F@nnU)ғ:ઊr5V}JO8t+;ےv%pYtԶ4Dd 41m#6UjwꭻYn/j_n6O4%?E )&kYfcVugY4qDhƦkR9$WkzAJ+1N_NM?@ߠ)4`1$!LD%V..Z0s+>oRAER oJW~xv-b);ݖoxgҴmt>=fg34< aУ0&}zסOS#m ?"Y`E\[XVeAogOf$޶ܤ;e6;qY|XF Njy!av`{lԸ55p45ӂr¶(&% \cb]BxiJTІGs]P@TS1ASM:քR%@K,˜Bze44 PcOZ/+WJ 8P,֠TiN`3sekjž^}Q:4XPX2'mj c׍L99[Ne$TBXڡN^Ԡpk,YzqDF@2Tc$NY,[:aDt؅Uw嘩(}0pї$kgFY])+;uy#0Mw[Uv`BC]uCx{iNyyP\?^ԇ%l1IB-6)dzn<\Q~WWG9Չa=&̜"jFP a֜c0s7]C]D gĐT}EJ:ѯT;{6P_ b]7yt)3HI8Ww2, eAI4 + o+B ҍ4tcOC LZeܓZJ{S<|:ꃒ]UƄyVb@yx=pJG@W-ӗ>{7oɖ^ endstream endobj 333 0 obj << /Length 3626 /Filter /FlateDecode >> stream xڝZKWlI <[Nj7ʎ+SLRӍnf>̈x7UUW\~UR$|uݥN.Swpiwcݵ,BRo#=~۷0ER|u'qX>qw;4Hz6^LӘ޾Ik~rK$KM=H}~Ir!3/;vBoHNy# % v2 5 nf`p"DԒ E?~9>!Ɯ+gOq+n7:]lg(+f y)f;wjG5-DR%b5f@'AU'yzvmS/DʹAK067yӫ܌GKu R4Njq2[3==9ن絗<~nd1N9ymwvep4C.,[J8;"hW2W~PJotRmL#r( {;)R UO{Sӽ:LjR -z 5Mw.;x~}@4Dv2+:̭[^hcsvp>.F5ME^cyOg.qhu(YĻt8Y2/0C(б}*0ud*4]r E*d~/!6\ũ_m=t` =g;f8Fv(-A"uB,R+ 9H$ U\(0uT3GfFȂ݉4̖|ysa^vN(@RC"x?g=c!2!JZDc)Iv4Wil:NȒQNt%dnO=*ǰ>}]sl;(t0Cz?,@@2ܔߺb(UV=o)w)$U]}uXXt_VߝФZRh%xEXgt!tg8BM[ 0d8VAԹTiz|Lة``w5ơ%(+eh sŋe -'_mD [M}[XquyԝGpϽ{;z1MMMΊI'hLB L mdp(" uKcvhK!,hDUN+Tsd p#?UNLV}0pi% m̓>!dM3NUi :rYPc+zZxT;q5O/ׅxr1'44͡xB! |I@5W}KS2;nMg%V6lr*8vC|>HQN:.Tn~S÷QBrÂN& tJ5+MDcJ  Kwwv-3|t[f$ 뙫d3F@a-v* nYGaoo&\q@ )c3L~ XPm sq]xD%*]QHXN拺4E A(Εֆtے7A3!3)!@?ḳ$NL!Pfn"%UA&7#@yU)KWKԡJgSBnAkd%g9A&A۩܅'jK/P,uH,ut;xksh_.,q$ - Hp*ɢ5O\V_B [V18G8~׈dE=T\c둺 no.F(J78X,8j\ NA?a#wZXhGd=YFIhAbH6p U$)gir^uH>8*׿34jJ7/U:=14OolE}Wq"kLI)Z9sǹ) PB`;= 7ι_WKVk!?cp)@j > )No$l?^S ù h d|z|W/^x(q2(s[$| s<|No3̡,]Ws R7΀wL=KD*W ֆZ{-R xG}S%M^a> stream xڽZKWL)h6vlʮdq́:)SC~{ @3k' @|sٗoE*Lbr_쯲<ɍ*r]sy^KΧz_5&x?<U?Ь6$ZenZ_ru;vHZ]s]wxl[xo˵Vvz@CG] mŻ0.VCݟщZd1!RoNlDCu}hM[ qWqy{`ZzЉ Ϲex捏 llWB_pru3=#SE˻obG|+UFhѪgÁi%$3U }BEd߄=so;LWkzTZH = hT|Q|00u,s4-ZSNܩqI Iێ- ؇#*cWwuKj# x2+8mͳQzv;.ft}s Dys&&}zeM\53{jT_P(#cR1YA25߶GH vw8e|WaoYWҲ~@71GP@E@t FaUL@jWS}Px2O^LD9(%id' wkvp6{ezFoSKbg B 6ݚlzteR 1?Lkϥ87ږw"+m:swy-. TiSzjlaǑzX05D*KkHG`?#5 FkUV"cLW%W>=ݖCtյuD8zv]35/?=Ӗs HLDipwݹf4 w~$ ANK=]S9Ϊy==L(#U^M>"qR&R{ۖL},we4\@JeHFmD AOWh76sֆq=uTn<.3|YEdXrh/Ѕ#($,\|da:VӚ!ӓ l)noh]$E?5NnZ fN my.`' x]SWU(&XgUOq({8ULr6oZWEhAk[4!twj +I O\!+6Χ;]{C7|A(٪W6WM!3EKrNb A@'(D O*D#d4f*}{4aisafYB@4t`6Ֆ$Lw`䷅~)6媘aM%DZylZk| FQasp1^'2J[LS ?YP3\f_(=?\b26 Wmux[y3.c-+aQ̠@wqkwi.gL)f_>3%9 8jxEΡGH9R9X7=Ukw"CZ tpY: \zy,54ձ9<\^3,1[ױ{h+83tg0J6dq(,Mj0kSs ;8~}Smc_°VwaM<5x%KJiq%t Ƃ]qVuOs RJ 4;14RQLbrmHˈR$qv7]1 J^;PjSxMWXV[9z2Ҽ=YT[y7\>3 xXOL@-}؝ _̔Grյx ١/܎U{[OWCy{oJ̡mLGT3tl 6B-al9mcHOUfME@|^zTq8f@4*;=|)Qm8|Mmt]<5~ N69DӇBC!oP_vGd-Ӿ;{h +S&_kVG7.\{3βd ?;u)Lkži^_n>/u6 endstream endobj 353 0 obj << /Length 1798 /Filter /FlateDecode >> stream xڥXKo6W,-h 4Ih/KӃV cChsHC{R~{ulH*7wH&lI$|WP5*6T߇PW`ύ[PeEn)D}oBBP"$ZEiN˭wk:[>ǦS"뛶sM0Ouq-L%JnM(1FtKqpkۆ?*ASizj04JYNcD;dҾh"g]OC%8m@Lk{4ALݳQ)>]grJԁBZӘ@YM[ƾm*JO^vmJ!,l~ Ad_A 9 sQAՐײ|m!Sة^Ƭbh^i~P棴M$Ko1CfJW`Үؕ q\눛rUũ,2{>VRt DxU] 's?ԙv\u2i `6`|FmA$,MGWB71$mH0F&ED@uߦE$Fҙxqy rp.a`I䙚ttYb1MwEY;wv#Ͳ-@yf s/؁ve6/X .߬EI KP$X,jNڪHu jLeO|\oWG/FK -!;`. '2;64BzX] ,$ȯ4c5@0q /҃aE`6~9@KJK> ٳuM}<ӅPe(O>WZf|o?_z: u摘nnzBxp7a pM捀CF|ݻ~7"pke8Ap8|'a6`g$E(&UMc_΅e r+sYv-g(r "Qx,rڤ.T]‹#WWqg5{S[zh8n08|Vl/g񙹜TOs_j:6.Bq$((aE6XwfR z^R4vR@D/\ORqP/(:oKLJ饀`;/%G)"B+_Fyh8‡R${)̒Fh* LOyș(E V(J"3\U!c9U肨E„j~A49LTM,#qA4 ]s.v %X9*S{*x-!| *OϚ/T)ʈ«4 $JxU^Fq UƳ\7ĊgXjSrNW)b%)e$|0Z#(~{?E endstream endobj 357 0 obj << /Length 1359 /Filter /FlateDecode >> stream xڵXo6~_G5 timX۲EmrEJSeI'GI?ݼ#=3 g7뙐4l$Mաh~vR&/,|eM^M^Œ$kwB9ހo~ْq"0Dr ,`1*zL{,O=\Eꁵ&:Y:ӄ;.J!00<Â-KVͶ7im{3jU復S5:Y\oe]OvZc0EbT?fM~1CHH0d/& j Y8&gs1`IfxSbY2l&fao5t9qmNZӽ]Ǽ7[gW3wXu}g)}qgyDibhmm]ΝSX2V*iSԈ?~ݠi>c綮z6*&0{elZf}(}[FWl[B:2PlmYo ZNsus)wɏ.\Da5r?zղ7 xx5- K3]! IYRAoϻ¾+nJh$!m|W Bnb8:t(ގ5maj,SO|?_¦mɣyݦ-p^6is]r}U,m#p¤3vL[Rk]/0e/_n/SfDаATA֐ɯ-d "x.&Bqf&y#JN Gp$ ')@T #aNΠcE_*"gDctrqzΩD=m"Υ S)~"T:tH فatnjꞎjT:rtuG51/&##TBǴ>P> stream xڝɲ۸x5'leOST~l(0H  ?4޻_)d^x^7Iyʇմm}5oM˟F&v:[}y47< wo:2۾e: <ޟM+yw#^4u׷M kCmK@` ;1-b|y]gh/A@O1B9 `l.R^ELkB/۸OZIރ:9AgRFa|/NxpbTBy#hDaFV"Dntlt(k?%Dt$udrD5[cS$:՗M^@Φ#CI $#9޵?{{ bt>3h}r?=[#K /{<'-$'^A u.5+fy5nN3yK$_ Usfί\LݿSDTQ-T 螆 xN+} {_[垓?Sf [S 5] T?|fѣM4^m]b}8<34X4vKuz=Ɵx_>$pg"5_ IAy ])x %s n>nZ`œ(m^5'РXh|qƀOBh㳻8 nm"Бc}‘ؽp^.Q "e!}og$;; LxD9>FpRC`~=c:yjjq\M3tp^+[s{[r6r*  b{_[H=Lb#?"Y3]m xFU9än dG M{'+B,WBd 9a 5- sZ4v"+{ZUWUC CP0줘\.lI!Q^#DJ*J\ Õ.Bu xg'T{i5+JN2H_!o&GNW:]lqx3& 947ΰ)u_忱fvHˡ]m=~w=qʘuJyaS7tA9oWOi[pːM&kQ^+8;/ʽh2_%MU1ؙqgzXoq3N־6M}/|_gǚp~ /~[:z[K42vA:u Zst:c.*Svd{R|/N9 i)T;A* ZЍ$(-+TIoH\p˜ 9гZs reE^mhө W*^=ۗ-_5PFnM]##tA>d-Nj ~r20Yz7B++^$$IzJ6έH3`u]{ðn.z.y$e-}%@R`vf^i׀{J,!2,S}Wi-J%(z%RF`I 0>( ⪻_vCN-j^(O v})']R4]b05N#zH)Xn9NG5?g'A\`తgA%`k Ii.LtD߰T v|+G$5?eR#Me/xM B;Pz{&"MWaddzA3%֪9OpeE]h%i]]Yhx:L6燠ˀ|H'-ʞdV rz#P\|)FPQ o }zQ=JBV5W+'7!M0=ǬicǜW*kL1--yd\F5.YZk )uQ\%P.9=+1 +wP)޵"cOr[k%\VzpJBذcE;hݘ fׂ<<ܔSR?{lIU%eIk\gJ7PJuFL|D,7V)\!ZݓӸ endstream endobj 374 0 obj << /Length 1050 /Filter /FlateDecode >> stream xڵVn6}WD@Qi}(5Ї>(b -ETH&EaF9ÙC҄&a)fZ$a[.ĭ:SJiM~6HiJ'X?6bJvO 3(&+Ϫlw[;%Xr;CdTYӔ+tj!2ỼkO1m*D:$a-L(Rwn1ӽ٦r Sh*Py)X+6ut{_"Wn ^`nS_`ͻ4,E$q%2D-#0`c|} T-eg0v]]=$$An ɡ+v#WUPX +5+idVuVN^`PHkXqe(^0_T`i ˢhS= ,$f~,6RPƒ~91sUQ$!ӱ;+Ͱa9yy nW%@ěsQ>X)k#;|J`CqΎ*\JSx\A4n-*v|,J:n,ҝd.K@D`" vGjlE_1oNkcpaom⣏`ÙĂf^#\b΄BރA4 endstream endobj 361 0 obj << /Type /XObject /Subtype /Image /Width 676 /Height 563 /BitsPerComponent 8 /ColorSpace /DeviceRGB /Length 39276 /Filter /FlateDecode >> stream x\[ﶿ7iڦI&M4 I 1Ξ;q@a `l a6!tսbƘ$]Z^-@6~}_]H\~9ο;|m C tx˟o#1;;;_n[-<}n1qc=cx9ψ#͌xM<13zxc<ǓxڛxQK^'pOm/y/xē+$^rW-xzvfWg%^&}oZ7__x̻{SV1\ge0_u"sGT1vy*?{;?,ngZg],/'7+͛ˠez!pq5yvϾԻ7Y%2qj(.{|fUAn֝=)"[tm#;?3YxU@ GXu۟Oo#]@ b9E;nG bY[@^;˸իCWEFFDDp`aaAaagxxPDxлVY}@xz'AjUHdxpH00O(5YDV͈ DAߝ'yM;@ -yG>oOo$#aA mi'yMd-"ȈUhU@;#δK+V?ߕw#ȉ$- sJ8E=F w'ADL-=8*{_L'9WO,!Za$BARɆ-RS6%'&Ē5YBXJzF  }W|'W deuaFi^7L}ŒE"Qċ!-Y26Pɚ6e ^N`Xn ?gHq8`}d䯞}QgYN>` oMJ+$qq(Kd YNֆ-|obUx0w6t'wǿr80"2˃SNUQq 0,da ɺu{#۪Ub;B1fӛQJ^ڨQ1C?;將y],\,O`Xw~^ |>/==䗏= އ >_m$^!mIJDI^%1/ _~D${U@a˻{t˩#$ EšR_QP:In(|m-wD_ˊ>~qx ҏ_' [F"?Aa!"_8?`hPȓ_$lC‰9gPy^ڕ> ?7弗hڕ+K 540h߻:G7+v j:Xol_O ֐F]f_ X?E u^jEeV!(=(r9p:C"p%D .Ȼ~Ud o0<'l{Dgd؇Â<|I᣾4O_||'yMd- Q [f7|ՏΧ/WE Ÿj"۰|-G[/hnAP76u '\92o[AAghs:]ݙT( Qux,=xDx Yw ~@SgnB5~ .~"u zYԯc:Jb x]a|K]Ԣ&xsx{)t e<|b}iW-=qD!O0O`aS]ſXA,ב;Gwzo~u~ko呿_eنlI  ~ _~LNOw?Kdeنl)] >DU6]-_'CAbqd8DܶVō^7>$[/7@-zr cWo^bhf; մ{JY-8©-^ٝ#Tn{ Q}<MlkgVyqp0Ͱr_n8|p-;:fab,/J U/oLNZPgei~M/ y% |bSuKܓ'DbOyr=jwp'YnVEnK8Ź9gBS?$-_-|d9a/XU_l@VbU\*x#I;jZ/z4ip}q߰/ 95eQC|AV[cÃ}||Uk\zd*Z*/_иI|g>_ޔmG׷Mr0;r^sT >!A3ǧrωCE~o7xL( MkQr@Ķ@KAΗJRKD7\4wkDmgYy_rYn腁'C|pr ׷+ss{~B[5^ &6^?<ϫ:ϙl_H3^UG@P&{=a8?Aή]zx]xY T @,鰻><,S Oqdmh{C|M['c >*}Mo K=Yywyl?G5"V˻I"/f;8_.8C,=kSsCʣ"߰/'0+._3͘ڬ>,33O~S"{imP@Nޔ:៚3 Njx`_glxdz"g{^.>|} Р9>1 g!ᡁ' rq\z/sO`rpwP4X OaoXw?-kn_軫z`MW7;* 2 ^$}oo[/k$\(,'k6dKќհ9ݒ&Ke} [؋u_H`kUgiw-/t!BqhHdʕwo~ >=C|*QhJDJ7fWܹRT\/ TOvsn7?dqɛrCE޹oxS0@pot9-yH.pww| =Q桕T'(T$=Bn\]z\vzWܬa TC K5 ȷ %io"M=y=7yv˪#o,Whpp7^W{ bw~($%/+B$ |(դ9`?nd]ս@aέ.9ANǪwwwV}GkFiզɏ\LA|as)mU{]P[ .A9ݶA;<@ \?9\/Z3Y{ʾh8M* .8<:nt[a~ޑH3t7"9>0^s}N߫fO` ԋ=DX>^ ?=IC}z#?3%/,q^gţ6ri%* |y扗_zz饧-O,!u 9ሐ@њ;K-tzK|D(ܿ#^V䴛Wj%O bU~'5]L:H0H,VsWpCғAݣ.(H(^cRI{.Ow-ZւϠH(\rΦ>T>+ GOͫĢ@I*>"aeP6XoK!A~~>Ǒ b.!b!w <'iʝ>~~3\ׁ|3>׊̏a87 >=b!"0gDFV,;~vl/O,!ZrY:l5?#^( H=z'yM AXX88`j ."?ksRz`D|˰^,7VE](}7OnЭ5=I^%dy-H^$g?uzGO, V? 7@\2!|Hcyz@v3a!X@8^M?4$00_$!'?kta}dDhD<@'0_/̌Cļ^q)@cJ_a>XX]Orj/x9Zeڬyr`5~x9D!Acy]:@ A@ /\@ b|Y@ ]]@ bF,Gz\C%SZO\{*-UW˾nAc^s85.vW+V^u?%<[/ŵ 5k+OEi*~j!Xv5wo鵗Vvzh,/W|kϿj[ e+VMyt)9o~@7k6=5똆԰o?zOeߩ&YU׮}}7+z^}%je_~5A6jʫT:Dn_9NgQrz \DO-~߬+2jUO_w[-<~ec0ˮz,Oͨae~﮸zm+7/hQC)M[poXa]UmݖLoʝ?Mίe=}z<7ƶQz5|(:P.b0w͏]ͯw~ \L8ٟ`^g#G참~tneSM?}y^˘$[\?TUWܕm"rі>w*zʟpzs>׻=cz{, s`YG/FfxwqyH[}ޣW]v;E[<5{_{mx[q~~|닙C(_MOg4 ѴwS^:czzpp8`Sen ߴgWޟ?y,;awT|u~+?ܳ\m_aW.|+-]X_ysЋi6&?{WX~r= 8|we;漮w{|F}|?Ί?Sڢ.}]x7WwRzz\p=z\-ZEƕKV9\(ELKKlדq`yB`y `Y_c2 n51Z ;bA Y:p=pԚHK$ eMON;ȑW-;㼽P) 59uq cRX\SRRv}̎)Syb|v{oB tK9:/=8߮;p=pWݩhYBtVh&N*4E j2mU 0SӧdĦ Yk)L9۲ :_Wð$BE:ء-L6gP,U%:lT wzK˶L}ݺU qܩoz "XgfW9$Twp@"t` >5fLQMYybBgXu$Y#QdNLudȼ9rjC:GI {FDmG<}P,=%Opۂ?TkV{zٶѾ].r՜X;7ѱS1F,:6%35֫#ǫF\nHb KOs؃ {]C?\h%Ez|y&#7>i,**E?]F|p\\륩&&;/zvll[;o\z9[ҽe_O6a(>8mszЮoI;wkFgX}-TV^UV QMã݅d#oQuMb#ǫL'F:mޱG\u^}Lt׃Q9\\4:!6Q=&M)WO֤=(I,7i[qb{uocg(n:+jUiZᜆ-ZMs< ͻ#o );a9Rmvi"du#-zE{AB\4Ld-hzmޙ?f{!2A pQX>:::4$KyEwöS_}VU2\X\O,+VDvFZ=}P}x-K_mpת0WHSRR  t=eT[c_ijfXYKSͰ.3jOp=\|9\ 9_ [XUJvdTnsi<1aFvv{IJ˵X&(L'Nmanߨ7RmAf}3,JK7C zRt=ݷ^a"ɹ\VoƹةxArkYF ܰ.Ko]TkVOV1]y1,zD]O,#k?xM7S-cP#㕔.ٝyZ-fJ" <_Gt,B(NB=zt]O,̕M.y}jq05?3;b&{tƎ\dzv=|K>}'hl[}bnGզ?GIC\Gn=~W33y|q; TsW!&r+bz/A?Gs78e9.w/MV3#,[lu$=?lcV2&PNUfew\FG9.ҔrIme\!c]p#Sg1:p=\o4Қ把%zb_7|6"u_Ý%%}\˿VYe):}M gRU7SRR䲨 zIBA1?5'p٩~R{BGo=C vT(Uu-{mN_V''(^m?r^(kؼR7j;)1 4W*K-N_^''Oq\ՍeD+:tyayYjqÁ=*=-뗙Sx+zz\!멁}JWj#տGUٮclM{Z/3oNIq\J* Jb'MũzG^v9\\O,O\9r[Uz꒲f Mtuqw_^''ߞ ] w*y;-֩(t,k__~9\\O,O\r/yCCX ڶv>Erg&q##s1z$]O,O\k^ZU 9*WPXa{p=\ X(on×$b!p=\鹞X^Y3%^h4?U4]4j:A+jZ˹ z\zzq?z{$&ۉޗ~_Sqz,륩U}] oT.,9p" ¢چ_ߺ=vƌxp=\_jsYKGʜ湋U 0S'|E|^ rJ$6tlu&gK%O8@siCoeVISmn}cf-MQ4òʶw(f~ \p%ucY!6}I1=;e2j*sK 13:_r9%&ӉSce_ϝ}IBf3өTIr`p=\}gs>zrHr.5q.&:v*=^Z´owҳ,mrtS ǯzp+%-zp=\麞,f%C}ut9.H|-dm2S;\wpe,pGNTb=p=\i'S\:`k^g:vĞM^sm \p%?r<MӘmOmڴg(IrMjf&p=\έoog8eY˝KӪ 7:5}C&۽lIϏ?9} v%ح1~SY4D]?׾9mt{N<4\=qzzR[ MgFȖGІz~ j(kfzp\Ph9+ [^\e):}M oz~[~*hӚ3{FRWnH+;Z+KJJk{j_j[ՔAj4/TV7tFFVUZ׫'G)kRnz$tͣ卬5?q=Cm҆~`kfh]ocEi=KKT{:4Cwו*˫ٸZUeGVa Uy uT9`q9n(+o뗘o2z~]td|;Q<3ޢ+>vthVl zRuuzijU_WA<+Pe pzχ/p=zwDYi(iZ3:uWg0,7>y$ɚ[g3>68{^(yzc4Mz+ ǧLjdus+MLU6kie]]3qidx4-Zp=\p{Ǥ7tCm-,U:czvdTn-OLaV׫\{F~"tXs-\/g ΟEr7^?O^*7u<׼ \/Kt=kw`b\n381_Qi3QDב`qL97y}|~lFBqwIJ@ ݹ78e9.w/MV3#,[lu$=?lcV2&PNUfew\FG9.ҔrImM!&Yk5L#f[~zK7\|^Qdc|/gR*ut% z#덬5?,ۼz\XWp=p=z\H\ X\D}|%MܵWiec;/ X\/M*H}c3+x>ze؆6+MvwDYKGʜ湋U 0S'|E|^ rJlVg:|lqQ4i6VfO4WZ89Vl7k2]cw>&l'na׳S&Өr ?cD3#v?J˵lX'L'Ny?=wB% ELGZ}Wv2 wa¥)\VoƹةlSwe0۝n dm p*V8~-;χ+Hu5xIVݺ^LdfjG+)]\Z58ڢot!/rpu%IUGuk!{z=U%O3gzY~cG]O4ܸ~K\׻hl[}bnGզ?GIC\Gn=~W33y|䀛jdiU4)z85 DZ,qTw8|iZFOaydS#'d; 18u2(7:>>:=}nω'u'NOOjkҜ{ m8C{aLzB^Qd]rs\XFT5)H=c~HkhO˸ z\zzzz\p=`ٻ>&ۉy7xbc&O0s>?U}] lkeuFmmL댉yzeӆ/t툁\{.6͏5t9s%M`FN'$Yplu&gK%O8@siCoeVISmn}cf-MQ4òLOmҴLXhp=pY!6}I1=;e2j*Ff$WiDvĩ2N}[hy$H3֙6u$9p=\\TE%O7jr\\MtTD{ ,igYz\_ Õ$U zz7S-3fjG+)ݜZ5+f)]7| a]F8p=p^OUnrS댃yy^{6yWjepzzMӘmOmڴg(IrMjf&>.OMUm@ 8e9.w/MV3#,[lu$=?lcV2&PNUfew\FG9.ҔrImMkol[Se2Tz~~|,R*u).ezIBAz#khO˸ z\zzzz\p=`ٻ>&ۉWkbǃr\/륩U}] 4Wo1"l4ʒ`{˧ _QD1*%){ݱzzOeVFQ2yH]5N{5 ˍO+%LM4Ξ6J^qX#Mӆʬb):YJS+4'jZhe5uΓJDҤxLbz,ݐe>aw KդΘ2F5[Y"OL~zk(Od7N+~z7'K4c.z>u4p=pTK_4ިɍsq=7ѱS9qvkYF ӾIϲ^O+%w+Gp=pқ %6U<2>^Is\Z58ڢot!/rpuҩ:A(ԗ&@zrK^ZgsLǎس=^h3 U0p=p&i̶'qTmڌ3p}$Q9u&Xzw53GM^%M {wq;rp=pqk4,QNij>}t{K^sHz~,c-CneL&C̢!iNOsҔrImMQvNgb5Yxz zEy|,+R*u|9\/I(3Dp=zz륛=ĉُ_,b2{O9]re0ӷ&*.Ƽ^TBM|MU}] ֹ\IBmmy4,LödV,k;A"qaʕm.-KwL+@wn\\Za`Y#mi>6]o4?Zf4LKZCGr,g 2mTVV58M7c(Lw&gi+MLU6kie]J:u6FyΪ\jEfu/m4k*s7of4.䫙T< zIBSbp)Q7}o&%IcRKF ssu=l\2Yoks-''w>TKTm\g@q\X y4гӳ4cb7 wl-[NM糔{yק⢼s}l#=S"ȁb;iRA8_/B;Ƨʪrl_UWrGڳl+csc[֌ψ$gm>:TOפH#v7'5ןy1MӘmOm47 q; Ts"~ʭ=Qqı MwQ'LMI۫{ |=Cu]YAA}[ 7:BFFmE.Cޣ$ܑ#&#MQt :rA9ܒmht|N}tz(ݞÏ'NOOjkd#_it.ߩbHi+~k_qT>gZr<6α63zEz\p=z\zzp=D\/ݤ'N8d|;Qr'Yr%Y}qD́zŘܸ^QϙԪs+ T,b嘱CU2lzv7s.\$? ]p]sg`Y#mi>6]ocM0eVIb^+uȡQ区A-24j>}t:[2 u9c3斕Vh&N*4E j2.} %aEM#`N{gUy"61[+GCW\`KԦMbC3\/I*PXZ:0,0yngmBظ]\N}[(H3֙AS]uIϼܘFn+MR5Rke%:!p=»^tfź Z뜲͓m"͸\5׸EjZa&/ssR=^O+ieCq[-$6vIʍި*إiFMnWriVgW& zyPpl^g8>ib1r=N7ѱIuҜ&?w/s "Qv63΢hkcωɝՒI}ןVYi?8|eKS =;=K3:61!Ʃ1}cx6"^Y=^OUnrS댃yqQgzIr 3φ D"g}tןEwҤp|^/wO%fUؾ䎴gVnƚ:\/߭ݟc1H۾Qr֮N,5)RHg^nLF4fs86MMkC|UzehyzͰu;TWXrʏ>h?)c(N/NL45e֞սú,wEm!{s##"!QNȑq(J^>hx~ =qW_/'xF.vכLBO>Y6qozpi(+zzo\?%$'_駟.޸ ׃K$'oo~UV-޸>zp)%'tttݯYfp=\_?}ݷu{d)\.;v9'֒\q}JJ \.'OtN JGϗzzo\Ԟxݺu_|Œ=\\oZ\.>|o}뭷^f;~~Æ p=\sognR'_tb2{O9S.f#8h<~llS4__\s]w<_~ǎ;qɯ$z.aKԦMbC3\/I*PXZ:0_moM)-ng׹=faSZf%Ԍuf8osrwWlԹ(7&lJvTMZI+pywOG~M7MR{;-\\\/Kof:b]uNɶurf\k"5Iq3kKz=UpZmU HA&U9(7zrHrė5q*:o"Yb?O],oذH?app0IW^ \Үi % Wy&#7>ޓts-|_ ͙msz'Wuݪ(-6szrCd\߳Ps**vg19qGNTJaŇȝ/֭[GN7xc /zvzftlbBScƢmEvtK#ӵéUgM.y}jq0/΋;9l8/!~̗_~yp=x"ȁb;iRA8_/B;Ƨʪrl_UWrGڳl+csc[֌ψ$gm(9kG'uf]3/7&cmmU&\XçL&ehz8:1el8[^k[J?βzW 772o+r%I,7i[mMxrlsG~4\=qzzR[f%IV"M#twNCjN][p 9Pό- V ]R\\]s,g,c'ozXή' XƮz`>gzoz,zށt8xD}|_C\y#FTwazEܸ^Qϙ{9ijU_WA¹u*Wa(.{3bpʅ\8]sg`Y#mi>6]7KYk)Lvi$RXΨd2-SJӪѩGGX to$xLM4Θ[VZ89VlE3,˔5t m4 ;SUՊ^hn7[+zݷML##i1"huXnL6KJu)VǤ3WyngmBظ]\N}[(H3֙bNG,I:Ƥ7tm^iIzY+I]kp]/Kof:b]uNɶurf\k"5Iq3kKz=UpZmU HA&U9(7zrHrė5q^j搀tOdzu@UlTQ<9|z><zvzUtlbBScƢmEvtK#ӵ)_ܳT&>8u:6mW\P~V(&t-Tc|,1*Ux%w=+ζ2vk=7ּznۍArvv}tbIZGnfOk%?rc281_QiRoZec=M:Up=>228"ĔIc{D3~X7Ue(Է r#dondDV2=JX92n2EiKښ'-fFG98@iJz&zK1EFG*X]&;rm﷦Gu;sI6kMc&iUl\(\p=p!\,gKzІp=\_z\륛= ̞o'Sc\i⮽jH3,;ܴp<-:7Wjs斝4 :BKݶ8HQ\ fnB6+Mv\\36[ ]\VҮ7ܱ&VR,sIZCGr,g 2mdiU#e{~~Pi9={%L/YFz}a%y].[8:dzzKeGj)]0 9r~R7_ [Tj/_u Ddm]ʤemL>zAz+quG"=ӒJL UVJ\zH2R^]ѷFy"vid g P49 EzEPw;|>zl/r-[jX:3<ܣ 82UtFaL¹^-'[I RhVVxɈ Z׻|Hmw^ɲ(kgY4RנJIsKzY&[j4~K4Z+vPv8V.@8Is&HQTPc7H*byB8׋Uf{9IR;uXe8ҁ8eO>3R K7fj?BNZUD:BNFTԂuCjӉ'F_~^^3WX-q0KN{\O$䅖&O$LǩMÝEv=zy66'qUY^ZjUx0Kz\~}Z?x̛qG$/~^%iYnU]QX 3ڑ+PĜjM^\`:{ 'JRv=OVi7ӮyaN\?vE_/+jgF3+KTz.Q$w=,8ivK㬡!l4IbϝLzmFfhе538hkWsRcR3:::($i)o6; ZGyԹ+WQ<@B^ʘA$I8MCTwu^걾^!_m_ث;kzX#`u<bK\\9|\p=z\zz@$jzKaVχ#M%_Qvq%d'{]i<r\XqXe&+RCazsDr]_WIJq%M>SsGT%jGR[v1Xvj" Ev^ΝtPvy8zp׹sN4Sԍ/SgF 1Na3YBo[7@_ܠ[)8Ǟ02,\c|QjHNÑ,1^CybtjwҬ^caWMSHP[U(bzb' _>^g{ԉb.uSg>b}'TZNh^ +KYFz}a%y].[8:dzzKeGj)]0 ~lhW⤚}U{lH&"k^==e, 8Ikq_n s/#MIiI%&C`_*+%ABm.=mdmE/IhAmf<;G8c'MC$^Gv&Pvú^2˥\˖i*1 (.xLU1bX1SpWKIrҪ&թ"w2+RI#R$}z×7'FZbUC,exq=|ޓZ<,^06 wf Dj ݕ0uUzYȉ듏8*IW 1DJ3/qUD|߯SOy3O׋sd??M ˭+=aF;r%ҚSi~׋ C'2 $*;?od6ANx Z?soWq[vlT6P"]Vp=`]/'FO,)Y&/^{&mV>w2=Knd][3v5'=/+1ì"IQ&= ·|i_V9Q^la;uʕsTG;WG>2fnPx/I4=w ]WAzW׮oir8N!93j k0Дt\XǰF.p=\*v=p=z\p=zzRFf|8$_0㘩-[9>/HP#U EiWfo!_Zat0ҚJp=k8vseea%JnYS|bXKK j]pPSr_'qFe}yNblv;^ZFJ|_Ҝfq4U]N8[-Cq}$~j7&_ɜSBC YO E.{HʳDbybt5')([[f8y?z4r8hw={WUZt/QXQdN'#s^ٖH1\>ըi5S$INHւ]mհ[ũ׋6p8YE[9|<3zfq2Knə"y~# )_A]O% &CTwP l+_Vaf: =Rqҧ440I5Z'8YvPn/ #s zKeGWj)]B$>J%{]|\Oʁ#/.PS"线!G^0zn|/\N{% x4芿\ltg+b}g -AzP׋ pfyq+Y8G@(" G%Hg7+DګeR6J; 8Ikq_n s/#MIHn5R$紿aF>8B\e[ RhVVxp&bpB |g8vHm7()O3$X#UK\l!^K-}X:3<x?'JTU)3 Pv(Ol·zHׇ9'-tWN@UA 3ɧPq=|lîL7.èjIs:;Z+Io ׻vޓzOy"Y0`2=Nm 8?ϸ>GzAFf yAɲJ 'w Z?Gv|t{c=2.$NV08C(}wleE ٨ bH{5WǪ˽g;tIS,]M!E;v콫V>w2]ZbAP ՜wMfI4BL?vÏ~$O:<< Ǐ/h=񕋧Yl< \Xq!UCd5\rLCjO>rTqċaM_ _Uk-6ߜLᒟJj۲D"H?VJzz~|I͓9V xe pz\p=p=\\p=p=\\+rXŮw= zaVχ#M[LqԖķϋa!5=ȥ /_]vm%+z^$}u鋹u}]%(!od|bXKK j7Hi>54~|Q% W,!\Xu9ʹh;œqZƋHj.ծB%sO$TV_'R)])L_Hƞ02)XiX$`XN&N9I1NEQ2qP?(OPp|iV}/pL,ek sC(KT4Vy@;} HWa%k #O5jZIRi8`.s׹s5@kqj)"Ey1/hL=e6!8,}FzT@%CNIyoџWG?Q`/gL -'zv} ?(r QC7Lϯ|Y(,KK Ҵۦ 8f_V"@$ԯw쐡6$_,F{;j)݂L>Jb]|\Oʁ#/.PpbHoџW3~@oK ;?%PԙqL \]OA^ $M5/W8j3 _yXAT }l(Egj838I# MCf3OʛG"UH2Rۂ:NI_anܗ'(IRg Dr}A !6> 3iwяd*/ CDRŭ·p=p}D%-4ѬNhIM*=9EAREqN. nP&R$3gTI>Gګ0SB.ݽ*r[*%V/t fx'~4O>3R K7f7ϧG?QWj_18O%\z_L]912W''BD2F&r"#J3OGګ'ilhP&1|\u{O^=d€8i3x.Ï<ǚd.J?lqt,qm^j߾rrvw]~,f %ዟhj~@[UW{T-VÌvJ|?51ZnU C'2 $*{f3ڝagv=?YrZdrΏ06MV; _)M͖vK_r4Uoz8XɰCTwu^}iEi5424i3*&204虩|ivC?͸d;t1^O3iޜ$WS\9Guy~+c /.~Tytᓮ^9ivIױ44|Gwj1vN&KKv#34A[)1ì"IQ&ZinяdbIGA.)ea./R=D&/^c-4tfH#GW}Ռ0[wƦ篆}* owM{yMws/jW/?<8ܖ%mAᶊUrׯ|K:mqX2N+W~z\ozV뿹Xͮ[zzUzp=IOzzU$b\/pIx+ 3ڲt-y7,D4tA9˴Ү0ޖjE#~lncŲ ZOp=w\.x=|M{2s'JmQB/ЇΣϋ VɊq_(^]vcSCS+x(jNH=-2$>\]/s'iGS0gbb>ڲr뮯PɜSμX1?w>μ{+g/LyJ$w-V;I9A9/#kNRAQ6~q5O-.4T54_UK9KڻzhU,U5Nfxt_y?>UmSV3Etd-u\ ;(Գ>?^m8Z$GuXKԙX wUP90(qe'7.FI|= 9jwя`sm!+ɵO\ᕊzY#w냼^D:B$5yMI->>[9Gj3AHyl ؞Q%i¸O?Xb w\mXe8ҁ8*'}ؕ)Fv66%qUy>^g']re,KWcihHF}={bϝLzmFfh=v5'u}ScFGYE2M;ϱ(ãڠyc>TNij.11p=`KTmƋGzr% ݫ#R?QǪG;cWþWZ7;9ssj۲D"H?VJzz~|I͓9ҕ+zU?p=p=p=\\p=p= \/pIx+ 3ڲt-y7,D4tA9˴Ү0ޖ3ÊF2G-zze/N$u,ڪc_Gy#@2 ziP\)ͧW")-Ё7ֹ4ӎ%= szj/,#-,W >e^u֖-R/L_Hƞ02)XiX$`XN&N9I1NEQ2qP?(OPp|iV}/pL,ek sC(KT4Vy@;} HWa%k #O5jZIRi8`.s׹s5@kqj)"Ey1/hK8ǐ/SgF 1Na3YPɐSpznяl* 6Y j~B-9P04;oTg_ 3Q)YΗ*>=U5=TiϷM)@*LoqR;D|I6$O_g!CmIX/*d=wzK=+ՆSH2p}Q'zźMPi9= |WC%G^\d$>D_uCڝa#"x[cm`>+!]iFW Gmf<[++ qzL g5 sa(pTŒtIyH >Y&[j[zVZ)+ҍrC}iJ?Hn5R$紿aF>8B\e[h쾺Xğq}xRhVVxp&bpBZ |g8vHm7()O3$X#UA\l!^K-}X:3<x?'JTU)3 Pv(Ol>/;}=gj ׇ9'-tWN@UA 3ɧPq=|lîL7.èjIs:;Z+Io ׻vޓzOy"Y0`2=Nm 8?ϸ>GzAFfEx#X1ce6ANx8:/>2,Uo.{d\I>aqnQʊQAjU;{sY?x̛qG$/~^%iYnU]QX 3ڑ+PĜj U-.0 . 8wџW3̮'֟;k-`m|liw+N3ZJH8XɰCTwu^}iEi5424i3*&204虩C 4naz=ysgs^ۖ[NrQ΋#Ϯ1S~НOz)Y&]А"^{kU;.-1ۍР{(mjNʻTnj$IsGeh!wџcG?Q'զQ=\O>gX>`KTmƋGzrEq2 ݫ#R?-50[wƦYΕzu@^k|YLᒟJj۲D"H?VJzz~|I͓9V xe pz\p=p=\\p=p=\\p= z>i/JdŒc]Kg>}^ F. ]Pxq2+lZH\hpn-uG}Uzze/N$u,ڪc_Gy#@2 ziP\)ͧBȪ9+Ws\ϭs'iGS6ղ{>ڲr뮯PɜSz>ފd #-kFNRvil΋htPe-_g SK M;Ycba sC(KT4Vy@;} HWa%k #O5jZIRi8`.s׹s5@kqj)"Ey1/hK8ǐ/SgF 1Na3YPɐSpznяl* |QP[><2,ð !\X{'ԒSN!꛻c(Iu^/03|8{SUCUAv|۔'JhdCq2ԦeaBsg>Գ>?^m8ZW>Jb]|\Oʁ#/.PS"线!G^0zn-XU[~lf~FX00L!\XsJH$iQ8V 2tGrcCA\/*^>SÙidMBhr$0#yRެ<iBFIߖ qJ tG"=o }  19oџO3~$W9|V8cABq\ HiYZ!y <ۋUf{ sM]#ܠL9qY% \90d" *H?Aw>*'}ؕ)Fv66%qUy>^2,Uo.{d\I>aqnQʊQAjU;{ ]~,f %ዟhj~@[UW{T-VÌvJ|?51ZnU C'2 $*;?a ??Κ~[J~;XKsu>>_t2t}75[ڝ/}ʅӌVw%4=q2 ]WA_gD{QZM/Ͳ ML, < M;zf|ivC?͸d;t1^O3iޜ$WS\9Guy~+c /.~Trᓮ^9ivIױ4Vzq^{kU;.-1ۍР{(mjNʻTnj$IsGeh!wџcG?Q'զ V3{jeA!*_*WR=D&/^c-4tfH#GD XFٺ36M<5Ouo owM{yMw2<W/?<8ܖ%mAᶊUr5=?hP]/',%6OV,['+"q}xz֚z;uX5 z5z\\"\tXMw1%XlBkO< \9q.n׏V6p=`>hz\p=ä={~VaƑp= dw;=m]TTԺvOoH[>RIcH\AP݊' DU:_XI;Įp=`Ż^_+ K/lx wOhc_q}Tmȫ5.5`מGݹomQ.6GGGoi?`kYi7UirfզȾͮM6ǷIY'*7?эz{طcDc(zJpO<ׯ4辬E$9'~eJ~{{}mK7Dm~z#&*w[e.TTv7r9m"?wۓ: A m.V߽{vzLۛrӵ{}?MhZÛn|ѿlM7Pd=~蝜#'m?ٵퟕzoد~, ӷ ;z~Kwp=`y]F~EKҡz-oy~d;JwOˌwP}}ۢ>9@#룮ݶs7naq Ӷ ]ߨt;p=`9]/{p g 7n^׿P8=K3秚pu??rTvzij&2p=rr~ak[~mx;nxڠѮ%޲wyK6}[$ӴD3w|d[jAQCr?!Vp=\\/'+ +u5|7xm{P/}u7_<;lݶŵo wS[^->fC6'nۺ.*M;ȇOSׯPG.o|߿l|\lЊ\):M$o<}֧ROҞO['IO½mcxm.\?uiC V66;w|u={ͷ=j7?H\7TgC29>cޥmuG_œ;&|8\p=z\p= U+ KۆS;H<_hl}`T39>' p6l-\p=Xp2z_Z=Ә/ub!hnyCou \9Zoz{طc+zkoBtxW U6p=`nwv\wm.G!tlewz}jyBɲV3Wvb;Mo>1Q^z0ޢ2Ƣn S]]f!oKw SƏ6>ҁÔ :r W6*ߋ0<m ܧn8^{']uݟttrsr=ݛ樨7ٸ[~QmY6z!A ͂7G2mQ_'I{6+G;S]oo?t# Y99lܷa+jcrC Y qP]9|\zp=z,i|c7p=`}07az c|cz/z|cz\z\ _4g*PD;`*'~#z/0Qwm/$pɉѤ.6/Ѧ7鮛u=˻ʎ:k+uI@sXw}p=_ܼL6Y[}rwQ\ooSڷCv;%-&S_k7ϼ [z_Xao~py7/x7y _޺KZ'MVmzqӾ|;pD؛~{cN?nt+w\GN?yW};_McVĵ_ɮ 5yߵW/STuHR(xƭOh|}l(sW]I{2\[z=BZn{2QޭC7^`B7Zɡ7~[kqɇvlߔ=+Of->LWm[M\$D~J\|/\"]u͆M6\u݇Z/>͕e&7<ɔd׶V'ZRpx\pq9xo}K_њ&E;FzE`C3 ߩ;<|wO|3Sp}S~Eگ;\3 IWo߾[Em^q M^q>m;wyy#p/xLoQqѴtvzL71Zj'~ k1I\"]?y~ i߯wKRo{ot».bwW\Ī_ڵ%/p}towܯ׫~گw$y2_'GWLJڹ_h\<:/gqJ\q\..כ~r~Hveu/|7ZqEYKk{9'U}7ZM4u5(3{gv4cۿJ]cY[p_ؼW~Dyo}A\8% ? )\ua&|pwz=ݿܖڳ)**K7xAI:i3|ⶭ뢢ٴod!7>(}ugS=zٙzhv>'ӮGd7w͍=U:{S_(G~J\wzZtUynk c|cz/z"%jr!SLMj9g!p=_ "%2>\zcK5_p=1vp*}H݇8 #)/[q]aQUW1}?2\?D?~c񡝻^*^*|ySԺ{t׃V ff]OA4+h>wnF9 [tpW#yӳyz\O$=ӞiBWs} :kt׃ fpZv}* 2fWl?_=zSQ}o򵤃[}JeTnw mh:z5UըmwWߖxOx?S]Gq[;~8umr?4yjR{τC _ U֨%n<^m } ѽiOm<M\TnvJ'ׇx=XC\EPjԺqunyեtS룶|'1_ݱcD6ʥv|>ʱ>xmԮ Mz=xC\}4Qk*ᶨp?nzè:tc5y2T._ǧn۵ﮃ>/1= fp=XXm;p=XUlVcp=XmP] lvv sd! ֬RIcHw ݋oٺ~iz_>\_ȷK(o~B^'HX;{/ڨڜʽGEm7G?{5Q׬ߴ㛿4w}вS +p=c=%Z1mQ=nY,||w=/hГwn;Glͷ]h첇rAE\p=Xׇi[򃛶d,}R{Y]lwm}}M Z6ȶSzsvv\m[-BKMo=?z}TT->f.~+p=z}v*vp=] z`~p=]ƛ] _u=z$;'qm_)?Q2I"y_ODyR_^9eoIhp+~7_6u/oصnWDM{?[A endstream endobj 362 0 obj << /Type /XObject /Subtype /Image /Width 674 /Height 561 /BitsPerComponent 8 /ColorSpace /DeviceRGB /Length 50600 /Filter /FlateDecode >> stream xtו$ݵ]'ulǛ]' X%r{ŎKb콉`N) , !D`%e[ϖgߠ&J{x g7s!{|ڃav=Zb>^j>R{le٣,{ܯc{"{==Ყx0({=P {g|>iƞ]3<=ܳ>9dc/"{`/9r{i/'=ꢽ沧_{ez0-z cATQYX9KWlGy5zpØ+Sy~c~JΟ_'8 'jg 6]nvIof˻zDpb9Da؄ϲ~@铪 m}Q@Oߠس l{ /a```````ɜʃmK? [wݕ_EEQ ݻbogo+"]11Ȉ0.'hIb\Z⢐#FDEr"a3Z000000UY0gㄤ>~WO޸>>%\NZ_DyE񣸜?wHbE/h-Ą]]Ȱ[n CGα+vBX[Љ s/IeN.?M=sm##0`Dm~4iK_gy! i|>%h9Z@6;?>Yt\lTd$'66 ~&Ag-ul}{?&2<hK}P'Dr^Қwsy P^TD(*Is9;C8N=N2YK@[&ŝpcby~بV}E/58-fΐG(ڵvΰ(96ڵsc3w!\nf:lgX(r=:mt-ń/s#8>>̜һ8xwV&y,&:I%GŰΟqؕ^v$@)+1Ɵ%&ybνY<lPg>f({Ba{>H__>|EE{Wt$'no(dv<;ߕɉF\71V~P 7"!sP621UˏJLGErJ[۸7İpW'鶾o DEy7v,YED=6atl66ڙ޽QQȧ Danxٵ[Q[e+ɉs}=:*auf|1l2i:\)l8ےTy8A)>>9$0ˢyG`qjGDi}-=;qCCUh%>.6 {㍗>=ud~{o: }FK6hK748=-Ëc#x~ /~WfwoEqynun͹J[t$/nzȈ]Wtd"Aؠ$t_:bs.ϱ\Ξ8Url-ҏ, aNȿp\=<얿w*wy h~<~"c|V΄oyaѱW2= 80x!:Ë|3:}o'ʻD9T(N@%bbMCGF>WK9TDXK[3(?g"CcfQYWw|x4:c)8w-,nqu8գ#W݁]ֆ(v%* ~:_=?|~շ| ox;ih z}7\ ~G/ѭa(ꉊ"##ckc{f. od⢹>̫׺{ƽ~Iލ8@qQ6U&x3+Q~IŭՍy9Y.='*"v;Gb%- hzC9*̵)^X?0Ȼa3 b1_#Kΐ壘DE(8v,dqY~:չz```9(7{{'2?{_[^gϯ;WmЖk/so[obvg\rmtmh߷ ;oDvqQQq{|ϯ6Go;GY[-&4o$FyKoo )wSVbcx>< xwwܲxyU-V-8{6QѽQ!;cvzw*:౼(p9)vDMǍbxa=GĽ#i1yR휝 wby\5 3]&)ɢ<'Wٛ8,?|\^D?=00b#Y"3-?Pޟ#/{6 }}zgwisܣ0(_}幗^|嗞A|Ew}FK_x }~/y_Rl\|4)tOdrɼ?y&+=cLvݑAGdx3.:;ʼng"PVsnx@yN*f o+Ɩ64Skr#5Ãr#sߨ;=mzqa~j=摬T6|dP\ߥG{"<▞O`ߧ:'""6ej !ڽ=y/ӓDv?|7̇~qoQ,.<#/O8qϠ3Z? ᱘pJ+T#kCGy蚅zб>0Ņ0#a vLBt"n}qKtܓX6hd$0:af3[Q]4'ƻjkpq^H8Ϳ+󡣥NO/?Swn.Hݽ]rc9z][]__EɆ 6}ϕ(sk﫟t4>wؔ7*7Kp^.#a hi5@Ï#?u.O_}]yyo|uQwn"A"wv~tS?}PmyMwgY@y^c{6X땟]{{amXoWKpr7 h{iUCcZQ4nrF^w^W4KbhG,,}/߿Z~ 7>X:2 pkH,(ږ(o#';&߽0㣍o|?ړqy_~ӯ+$lpgyQ}DI0 wԷ2}EgP֧߳~(oz9o:U{xJ#ڻk'a(.{i6R;~ꎏ[t9׿}:9uыQ?o񭫮9?.{;v|9WY"}k/?Pf9,֎߽STpo;}f߁ ҥ<ʃ@ <ʃ@ <ʃ@ <ʃ@ <ʃ@)]&Z티 Pu{@ %/';Z$0ā ЕI$t KV/EjkܪrM@;ʃ@@y?4 Yva5'jY6 ZAhYAha?1wbS6Ә(;c rzWN,iuT,}lo$nϞ?֥38Nv@ugi`2[qFO =)|]:VJ:F cfn. QI)US;P0AGk2n 3Tl9hUZcV&K4īCi\G}h}:sLO,jVJ6\qa)s]4`iUj;ޙ0(s](8 y<AyQa)iܳDCc,\&|l1NuK2oy jmb4Nʔ (W07n&9(=Hh |A KFkz+颼Tn=;O޲Q33r$XrHc (*n=c&|n4J%Nl5.bϋŻsy\J(@6. P~ձ#}l)8A SA J(.PCmKDA < ж|B<(o%o7@ے{nKʃ@@yAmI (o%<ږ`@y(}#-)A < жc<,L=yK\t;}+HA '(6O>jby܈+7zxu`a9cuiKۭ*IR|6k-+A@o@?Agzl(LV$.62 ()alṧRIgmdͯgQ^4h19ݤywBty?~b4el19PLO :5ewUֹ'.gR gJ; MCي6znXLre%1i7{Ub|J](6@yPQOyaZ6dR"h'>ݔfL'.psTu)Ӭҝ5b._t 1M{ψ02Z)IڈrŅvǝ[KR,8]ʃztADZmE0nA@Mk>RS&a :kܳDCc,\&|l1NuK2oy jmb4Nʔ (W0㭬w,ۦI+0M”~;ރ@yP~)/Tn6|.Kֳ4-53-,H2-4bQ!3Yք/TMҚ\5ĉ Ilw,m7s1 (7'Orαiaj,l-<'}Vf-falqB`0PSԔe5=I^fhqPU6ptg溟p8|4T.\8E V33W捝,IOO#-Jy\w};IYAQ gE\/ޯcSu>/&oB1@˞)ˇdGݱ"# # >(oh߹k1B6HPC߸-(o(XyMW ]'&ߋ{_}虷SwrT7n[UO}ΖWnz7w WMV͡'~4((*ŀ Pm@yRH],?d&] UN[fHA <=k^aݙ*n_m¿ݸ{C7:ho9P~Q>;C7^'' b_ޱKW]U<}\MΘ6^$ Xr6|^vPCxSn i#Cq;ε |[?5vяC^q椟@mF¼,<yfwIX,U?{XH8A%R֝!~솞4y*ױZV1Jؘ6p'^{@@y<(WW0AGk2])]n 3Tl9b_cVӶ&W S}~S_~2Z9ܠ?)a-(W\k'zܹu*S'1Q 7A@y<(ٔonKyQa)iܳDCc,V%|l1NuK2oy jZiZ Rf5CȊɻm䠼|FuN VR^*7Z4J.Kֳ4-53-,H2-4bQ!3Yք/TMҚ\5ĉ sALS"OaVeR {D;.V9X^/=(巀>RS&aMK,g߉*YLQbxi딗e$ck9Ky ([o!)'(qh=#(W0㭬{XnM_Wcq n2A@y<(eʍ&VEyzv&eff^IF@P49U,87${& ԚEIZӐ+ 8!G♁&J/knv?˒+%ԱU#Eb%AV|_pݔ,Dg6%곟z˯\qa-wߗO\,fta_(qS(Z z@)(@@yL(?إlgj|3TsRĂz[`:4f7;F13V\nPuXͭ.A P()MCI&mi썉) cy]n*1 (HAИ$ 6U9 qJG`?ܢdq=38Ыs Óme,(@@yP nUt xm*3[=zt\s [A"}ʃ@ ۛXnaW׹ۙiERẴ͢Enp7AH*7ʍ^?^-ݪrǦs|N"UGSifʾ(寀X^ֈ[Zv0_tq#Rݒ7 mUII4uz\ Q1P_w՝IF+}lXfӐdℍz*YؤG n#:Vh=@R9%}6ݜBYI(l':\5ĀO ZYJA=if描5e9WgR 'H]d(dD8W_Ϣ$i Yc(L'NLSvf3%b8Zc*V믫\+*3XJyhO cyTuM4yj̐nu[?ʋOb@y<cZO-c7NWYlug~O4'LWLRC5iλ)})_?9?5oO\t"{wfk(+KZ/jOi7ߜ-_ݬ♁&J/knv?˒+%Ա>[*" \/U*w_̎㟌`P)~^ndҙ\fuŲZM)zziPhgui-eI$E/܉7 e:I)/%a:͚ ]AJq…S`53 n~uaۥ5毿hJ[S{ye' iɢHʃ@_<~ Ymd+Q^^r3{024',4v P]&e,7[Gz *%?5_"nDYJ (.e ,Yvkm^^@@yt؃@ <ʃ@ <ʃ@@y<ʃ@@y@@y@@y@$K@ %Ayq{d }+z|}xswS[KQj̫(2P%) 5??ʳco# h{tKرM{g(Elt BRWn ejůV^)aZ>X n%b<ڮOZNVC_G\][I͠|0`7C[U.AE+΋TͅX~'ʃ@+I˻'.Le6 Lf+N)"I [Fuzvw,M.}6ݼ4PV1JlZr%a9VR~POکcM`|Ub9Ǻ}F n(019P6j2N׳(/m&fa?1wbS6Әpuo*7p Jdd:w@۔IŒ6|jI'87yntv<ּ<<N/I*.=XZڎw,/o_i}[>SP& ozi c EچLWJWmg "[PMLץ,yiiV[naS~[]Awj (HJ  %~) H.P (B!h$"59 QKO 3ޚ=.v5,PC2W~ge-VTGjXw%;QX% F5:3NuK2Z=Bj漥0e)ay꥞(.u!W"pJXrի+vvΤiO:uD=\]$G.+Bėzz %5Ayƫ&z-zv&effby!hrXqW߀rWl ZArs!{Qn~12HF{_>@oå^q1G!XΡOEh΂e6<9i֫R^ +SfcXUݪ_S$=M5t093u<7[|=0.)o \Q{t\w翞Dst$5T{RGΟxX0E̦ PxW.^Z)`o9?Z̺9uXFf奥j|3M^^~-EA %WJ c}^U#Eb%AV|2ĭ+]W0'#%wJ{x_}qQG[()9Q,X: }™Ѭ.OhNSHK<@<%$MS$n(K&q/zN,,')HGvHk 7k >*w)ĩ N7,E7Յyc'n֘k)mO2sq䕝$Pca3O>Vfym6;' 5=4Ԕe5]kF8nTH6+ B0k̜wfEM-|NJ hOj4uV[&يnԿW\̽ ngiNXiP<L(/n3Y#og_דjf/gTʬmr2iuCp6z/M@ <GA PA PA K*'??jpu;Żgc_>U5xքodnryzwH2-4bQ_}z]hAZύ+qgJ@ytޗcpWɆ@ry&r씯GEß~I\t"{wfk(+KZ/jOi7ߜ-_ݬ♁&J/knv?˒+%Ա>[*" \/U*w_̎㟌,Ғߣ,LvX -4`=ڮg?/oSxGq`Lhf. gSGbY ==ET(s 3^R:J4EIaQz盅}$IQ㒰IyMfM^^ z8u)bef0o|M4~63G^I056X;D1jefalqB`0PSLSLMYXѕMmAUd#R믱L+}̜;QVqfOTcII@y}c'Y\5A:-ےʿW\̽%ާ9aQ C] P2(dq.9:S|gAjf/gTʬmr2iuCp4 2@@y@@y@y(@y( ( ( 蒥DlwML\th߆g=>oz} Ths>_9)劋+Hhҍ@y})~$E/ardž6흡Xv=ɗA;]ϛ\ $qP^V^nUIX^ϱyJ*kzg)Lo+夓ړK tK &fhe"c~yIK>ɒv<q<_!+{}l̤XfӐdℍz*RXa(AmAXGgh} gKӸ e%xu+']>AN/#je)?>֔! ^.Ӫ=Kg$p v l#&D_m~=ܦAN^nRg0]ޏ;1M)i@WAVu믫\+*31/6T˖eʃ@+IŒ6|jI'87yntv<ּ<<N/I*.=XZڎw,/o_i}[>SP& ozi cLv ĉh7* E}=KY<Ӭ݆Ô{C01ZU D+`y}}f7 @yJ%~) H.P (B!h$"59 QKO 3ޚ=.v5,PC2W~ge-VTGjXw%;QX% 5:3NuK2Z=Bj漥Z|,aК%\P(A,n4JTTnzuN1m\R9vV؁(={E9XPϋ ZgjKݒʭgi[6jfF}Y (&ǻGy )wi-?7.T?fwEjfm9P]X~/9\!Px~_,tXĎ,x[&+9`3ȓI`Z+Ү>ej&0Qխ 5H^C 3C^ss(n (/*<=ߓA+Ԫ~~h{qBtfc;U}_x9abIs=M#Nz\T=IS4ESS\1P]IOfUK:H?ǙŬv˨g+`3PV~>ᩨ@pIPqaqgWҪv3gI~yMO"4q>|ԗ;|/LkӔl%Юt!ӕA80Ce:>Tu)G^ZcV0bxOq&^k}]h,Bܳ”ʢTuSb1P]A/ \( ӴҝUT&a#*AyIVx Ua[3n&jvB&XA/,xoeC֊ H +D}'*d2FGy1`9֩NyI^F257@믧[?VHU͜T=Hh@yr IZӐ+BP%N,R;;gǴqI'Y:.bbxl!` @֚@oå^qG!XΡOEh΂e6<9i֫R^ +SfcXUݪ_S$=M5t093u<7[|=+>!g<ќ0]1I դ9Tg|=.*,ּ=qwid^gEyy:R4ᜓ/QF$)9RhF:Q"EIUcb``s4+ Ʒ0M)c2ve=lfWjyתZ4sofc[B[ZkyAæCSŘ:mŸ\/ta{s4~hvqۀӧ!5Gq>t^I,>lhEnoo_HoZ=28ۭ>^&#-`y~L SM-eX뛋#:ceFX t ߙvWLD4 ,qwlXŃ^FqfD3G"i9Z 4/[]΢Vg77gw4Bٯ7riޮ cV>ckE8M0Y3[اLZcvD$Dt*Tcl&i!q âu+RzX͜ye ä2?[JLgOfCF(͡Ͽd_w-3':Gh X {a~g4 TmRgy|X%[Mp*׿e W,X`y˃,<`yZ^a |Ȯ41E{4RGo(h=g~L}r{Pl"T?:D8AQIjy9$'}'{vf(jXa2|Miu~J@ebX^3U=}{{0]̄{U/{<I ='sfN+s1xryfwfeO:6+9,`/_Ɯ\d7g&Eۧ}X<$"Zx204To~~9u [%<;wW=V掑a,u{<m dja\4U"|{=t+-yzhS $Bg}ك "VU4_'MZ+u~A]E}.c!ǀv.'SVSwo弮~#}):Nޟ̣M, FZzO8Sb+hTgT1jZ#,i2UKeM^Ig2{g:4CgjFʭzA;d-fζTu܁}//2= o^,@Tm.v>l˅.u"#VuKZz-/ }^!o~lӓ-):ovX^ˋr]hg,-+GW`y0,Z4~?ƾhIf⤮eJ9Do?}cS툓]*mo?YΧ}[4i<4҅4jyZ߯EfNcж sijЅ͕"QnNz5{%oWui5zrk~m#KGwLi!zɻjpq®C~,+ܰKp+_w6O> TmRgy|X%[Mp*׿e W,X`y˃,<`yZ^a |Ȯ41E{4RGo(h=g~L}r{D *G1+b\{>CG;350R&ݴ:?r{%F1Gs, Un ڽq.ϋP@n\X+}{w,; n랧sfN/kR2>Un>/ n\aqK=,m{Ø̤h/{1)*1LToq"qOLxњ_ v)uȵh|8{}bwFq 25btl$E=+ L^&;[qh2!<&A 5P/ZH ͣ]N;|-߂-`Jtab"XY#J{G )yr8ZaB:.Kݤ .*(l,To~~9u [%<;wEפe|TMU F+ι)h"!1.Exzr WZzY=ͷ!yS $Bg}ك "VU4_'MZ+u~A]E}c!ǀv.'SVSwo弮~#}):NӑbaW{`.8u`8FS2eƕ#N:k=U4V5%RRk%b=[acX3,մ7$W-5yc>$eʶ~ܺ? үj嫵W)fKnSTl^scӭ-`yEhl c}C܇~p6WdĪniRkUett=$Q|.6=RRS[my>{xK.х&f_~'XMoij~}X? hͲI]˔fs~@t'LU.~!SmĦ{3JҨ֪^km5s(vSM3KU.lo&.rдv;4чN+i%~m);ցVʭ-/1|R[Cb;ly~y~<: }}sqDv$CS4N;s 04%xЋ:=.ߌh:_$Mc;<ǵ]K!p kYVbʴ #P\(&].Uco߿Ӻ1[+o׆2-R0_gkE5ө|WR M~ӧ1 zgfVYxKc5so-t|Ƀ,9VcKVUl`Y4UQCɾB[gD1?Nuȏ<%b nyFӟO"^VSI }V佫nGM ,`lyD7K©{\2ޗY++^,X<`y˃,0ޛ(I5F>To~~9u [%<;wW=1˝/<XͶ|S2s.v FwjExzr WZzY= ޗ]kdxL- kd2ZU^Ҕ~L4%kIw&9}'wGTRڹL.[Mmj+[BL:1}jZo! |{Tsy`._5ۺԁwMLTW|:Y 0Wp"4V5%RRk%b=[acX3,մFXdʚ1d2e[uni[W5+[%L7w)z1`oKZ3Id`yPˋh&=ț %3Uˣrl.- fsȈUҠ֪^4+nzH\mz20\2^-2>|ˋ~syޗ`yy]n ~k<GZ-nZc_q4$eZ\ 8o^~@t'LU.~!j}[4i<4҅4jyZ߯EfNcж sijЅ͕"QnNz5{%oWui5zrk~m#KGwLi]jaIa'?)&ղH|,12s#,a ML: ;s&T W8;LA/r|3X#P4ǎK!p kYVbʴ #P\(&].Uco߿uc1VqT cex[=`2V:l/ W=N"Jxlpvͤ>=0$aX;cT6zr{_J/ SW;ѭhTkCp*c-Y%VM'gٷ\VGi}%m( rB,_H5l+|A ۤ>+UK<% QT=Cˬ,X<X,`y@ 2E#c8AP?޶sE{g(L56n٫tC?S{\E;rb_Fȓ,?t^.#=Z\'-hż-2w_D[΅}ˑϢ}9Y@Q isqw{W9QWlUn>[ n,r,@-m YߒОMrw|h|>}( avO]v`ykq्+KWƴI l1+L;K]|$x:}x_rlŘapJԸSU[HǓ9^*O}Lϖ'sWFk~&(:;ڝn+V9vCV"ע1 '(*43x2wL ,&ۓ*@ZV=(-$:G4-:.K^*zg9ä =Qu JbfNGtԌ`V!&`k/&ed8#m3}A}OM޸bmq2[%<;w`yr/ Ki,O}"Vjcm`m` c;Q(MnJ8{o!_' uqme#,įwk2 kd2ZU^Ҕ~L4%I&9}~J:W=KB;eMַr^W{ejag$LD#;ơmB5{_J/dJ<OlyjC;n'|չ<'(o۸gqˋ_FP Bظrɢ`PTTzVRk%b=ޓGuONk%M&jC!L&,S[f~U,_5ۺÛb/dO<OoD7b]2g<;oJ` yS+2b6 g6G;s1wnRkUettɛ6g WoL)xK筶<g䭊{ {_}w.,[7x-0.jJi;]ZUpM;ցVD{-4s@c[ˋY^Do?}cS툓]*mo?YlsZz-Q:h~XTkPT1mg.?˫]\)M]6iwHQi\Og3 |ـ ,N[F0_Hx*ˏRW7t9*8}tys`*bT_\>˅9a1"9|}sqDj&i!q âcaj(ZJ~w=X=]#@ d,@3,߳_/OKUeղh&{3ȴײs,ZًqUn>/ n\a:/-{go<-y+ $wLJgYODaPD x:%),ڵOhmyDcZ $y{kr{#Óc+ƤOSzƵz4E8 . M%/ϙRyupcz<؝M5Z0AљtMn31'nJZs>>\;8E_f|N:`OƢI]y{&/C\7F;>=NMv#gӾH,pIQ4y +z\(ܤ,`&WuAZ oF^~2VȚ(syE&opyLQEa˝\~y_.̏уk@ϻs5U#J{G )yr8{z*7߹҄ޙk2u0BO~0GTzB³X/-|75#U ڋ)]YiHLhnsf{7.X60uzxC̩moұ Z5z_B/γsQtL޵ŹD`y7r/ Ki,O}"Vjcm`m` w' ɍ[ g"DD5s^l佞\啖`^wMaAZK`Sүd: ?ZABt)\Nv65Zy]합vWqx2 }):NṾ]bڊ@=Mչʵw™ CX0o~\Y  p|V"V}ga.zsG8iwc1VqT :gri,zXd{i.]3Ix<:bS&ghh=@d)|gnA5PWxKc5s{w):u,`y8SRl*j2= )_VKu ( CX,Ha!Vxᅵ7l+^XΰʸMJ~zWݎw)X`{O7K©{\B X`y˃,d S_8h=g~L}r{DvhegS1= Y/r'\e ]%Gzjj4ъRdZk9_|850R&ݴsqw{BgӸݹ+|\5NUxƜ\T|!Z+kpp~ej9؂I<;{&WvM{홼 sMv!4Mdl7Bpk6i/>I 'KP/ZH ͣmjo|˫׉E-SI7#/||+d~w7<⢰N./qPE5]]˪Ƽ\}9?=]eiBE5:gtx'?#*N!YIU|>L*lŔ gym&vo7ȹ3;9?*cl``68HS^oZ Z5z_B/γsQ^M_~:WBM\G s=;Sr4䮸-V{oCkkdxL];Q(MnJ8{o!_' uqme#,įwk2 kd2ZU^Ҕ~L4%kIw&9}~J:W=Kq hr2l5uVjLm"쌛ēh|8M(fK֙ubTt2hv={yg6sv~2W˳~\})[{*k4 *+G>, u;KHg%V"=}TKFXdʚ1d2e[uni[W5+^#K)+.@80)zA;QJ~+,,˷ ھ=OH0 M`d;*qf;w$4/[]YJZvIƣP]߾çuZQ}S6 /w˹LZcvD$DtN g/Ia8BQ_/jU1N13GEƨ;14dX5Ξ/VGi}% ~Ng,o$ܰKp+_w6/VgXMe&%xy?inGǃ,`y% QT=GV ,`y<X,`y,X<`y˃,XGZJ~w=Xl"D791Sj<Ͱ|~O{<*K/W=UV V̐"Z|G_αrhe/aɔ7馝:䩯m*ks4?*8LEl'և7`y70!8(mvٗ1 3szY 1xryfwyM=|go\Yh&;>T<ϲF" "jSg)IgѮ},E[m#R'#_۳t0Nd[1&uxr#5T;)dpah*yy΄S+Cӳi\l>њ_ vn56srQhDE;3cNPTic &d,X^5Mg2T5!xƎO4Ee0hh/'1dRTdc.M^C^hu0#5/YjX UDТF$_Lf?\^ѻI\STgqQr'_ޗ8cz"P\ ĮeBJqDcbޟʍw4wL3L:Г^$֪jud{Dg M&`obbJWVG<6;ڷD鍋j, pަ)sz[t,&_nޗ h]),1ٛ}I閗th|a`._g'OcyS&8V{oCkkdxL];Q(MnJ8{o!_' uqme#,įwk2 kd2ZU^Ҕ~L4%kIw&9}~J:W=Kq hr2l5uVjLm"쌛ēh|8M(fK֙ubTy-߶@*|Xg6sv~2W˳~\})[{*k4 *+G>, u;KHg%V"=}TKFXdʚ1d2e[uni[W5+^#K)+.@80)zA;d=:O>5^(.,˷ ھ=Ot>i+$eZ+8o\rk~m#KGwL5ihG}c:TGng>JF Tht0I1L*EM.PrœI8?]f5^~4Ð8aQ05i-lpAoJ?:@լ7O>չʵw™ CX0o~\Y  p|V"V}ga.zsG8iwc1VqT :gri,zXd{i.]3Ix<:bS&ghh=@d)|gnA5PWxKc5s26)>.X;pۄSRl*j2= )_VKu ( CX,Ha!Vxϭ ;V32n=NMv#gӾH,pIQ4y +z\(+Z>ᄡ~|;ӥ4UDТF$_Lf?\^ѻI\STgqQr'_ޗ8cz"P\ ĮeBJqDcbޟʍw4wL3L:Г^$֪jud{Dg M&`obbJWVG<6;ڷD鍋j, pަ)sz[t,&_nޗ h]),kE_SaUL|,/\Fɥ+X^i_ |d:dj6):hJZy *Ls.tz,DdjwjnS^hwE7'qhPnޗ 3hhk<0,˳V9pv;l?Y`>Gi~=[^Z5 Ņjƕ#NJҳZ+d>%|rZ#,i2UKeM^Ig2{g:4Cgjw֥ } }NVXYnY~-ΛB`XŮ}C܇mA Zkyfp:]٦'[*Su y =DZ<%y"Fsyޗ`yy]n [jˈhy sᢦƹߥ[^e )alhEۢM3T?桱.ůmA7+=Վ8epyv*;7`yZ߯EfNcж sijЅ͕"QnNz5~6nL? h1⤮es˭-/1#SxK |#n.sPUq*-RT&c&OraNXH$_\.oI?}zaHðwXdZ?)/5{,+mD3G43ǏzAak,7N?a5k͓wurp8;LA/os~GAB5HĮiGomJ~w=(~6y"Ha?t.#=Yl5h )2w/G>VbVL)_znڹ=C栲F1Gs,_}r[ty^u2\XtxЇg)l OCr6;˘Ι9x K}( avO]$eE ^m-hLKA$o|Mns]|$x:}x_rlŘapJԸSU[HǓ9^*O}LϖqsWFk~&(:;ڝFb3 Z\v·ׇ+vgǰboic &d,X^5Mg2T5!xƎO4Ee0hh/'1dRTdc.M^C^hu0#4Kz^ǰQսN-jj$Hy[!k1Eu-wr}3?G. Lyj v-GR#spTnts 3daᅞ`:g%VU_' '#:[ojF0{SƏ?2呶Ѿ &Jo\Tcl``68HS7/c1xrk^@g gJb1:~]">XM\G s=;Sr4ؼ`Z#c݉BirVy;B_' uqme#,įwk2 kd2ZU^Ҕ~L4%kIw&9}~J:W=Kq hr2l5uVjLm"쌛ēh|8M(fK֙ubd5n";qS=XͰ?*kIl^~&/b\I][k[i_:zcM iK޵W wXˏRW7t9*8}tys`*bT_\>˅9a1"9|}sqDj&i!q âcaj(Z<>/i~6N!9JyeL̜^T\=NMv#gӾH,Ƥ]}i`.FjhzM^Yި^'L5$ߌe5QM :–;\ƙCգY׀*wmj v-GR#sp„u]&T\sIz4ZUͷNy,|lCBL^LJ?pGfbGv>0ޛ(qQŲ۴ eN]o{K߼DP˭zvdH2_z|,/\˅9a1"9|}sqDj&i!q âcaj(ZW7?{msU_??'Oֻ>/?9h|.w4o|<+ou5chߪ~]U/Z_ l<Ung?魴4JF=Wuh\~ӿ~c;&0(DqT@ Ea%rv[v~ʌpW#}:cK|N”g%Wv/ ZqVȧD3\n*#e%MwD`(8( `[etS*ԦApnˆ32:T@ A?`V8uh洙>|KoVxl)-!Lt˿c,_ug 8^mk\&%iPqW ]oAW 7׍_}ZgWw9xyϊݷf~'K}w>gJreT L*\vo[uF#3KgGi}p3JӶ gN,_[t4l'ViE,O}R6}e2Q7SI{v\m+c_W')5 7$*ҳ5ގ?_BQ`y`yXDo$Wݺ' 8SA:dW|ѡ"8&o`YZ[i.9/VhJ}=OJnoOW}g+.wy~%rƌR bVZo^φ(1Agխ }j,_gE]=j]?fnsIݐJ˲Ol_,B.L;`^'qc8JMz9^J^ZL᩵XX.Wݬ7eEzoKcE۲ {T^Y-Vٸ南-K]8Գ>t+//x~otK6U"Tԭ!,2K&|d5,I}nJ,o${pub}/],oV [7F_=X> ԋkfwVV>~R)yɋ6OƐ$'N'RBZ>eH~WTTǁ3))z,/=iKr bDҾ=~oʫ~[nWx$jKK}vܮ5Wn(5]HG<5nye륏7=Q%cS|}uz7Ͻ/M];XԭJc !J"|3ᾫOhv(%ʋk|]!zIGŴhqogiF!_?xɥX~,կgO?M`JKKgсݪznohomzkaj 'oSX$EO~9E7]@| `𔖖gyI޽kkk\^^.Hq]t-x~Ԅf̘1N5õ"p ,?XLkk+)ߟ< ŭ[_xqGIIIIKKKOO/..noo  e~iĉ,Ow;;斖6|puvv7oѣGpرc~~~GMF6<9… ^jkk/&zXLF"<_|Evvׯ[ZZARR466*JXAw.(( mP(r;wLfhh}bb7o`y,u2~'#׮]ۼyɓ'KKK;::Frtq:wh4;ړQ<Lj ay`y=n*hÞMm&w,5#̚3m^|S߼弛vyCs r,)(^kv5J]M:o]ly`y0ڋs^jIҊvan;}ot.ݵ?ŕhg[59b9r-qc1ٱ2rZGM+,bņK*wIcތl[ނħ2%\_2sY;zezW]]}=.EIՆ`F"q'H.͕ ]mqVSwܬm*/F؊ο.mVع2$aay,{^Vg dTm1RDvo;oʿ vw[{]Nch.fNnK2[~M'+(<y_8,r=Utu7%:KLb3T?)n݊7wc!X_ݬ7愅;#/f3:J'\yXjc.nc^js7>4we!xۈyW iS<*);OgH::1,f1ۜY{=^ ՚(ʍ)<пO~{ U]Je"{\Q$gj[.k1Sp `yX˃"o39F#Kq6mшi6af3-HQ;Ye木ѿ.+U˴wq\ӌ X=BbS BU <X~6`X0Q,>#Qo/wcx6L ]9~׿b}Ư#Ɵ|\w)le#EUeCqB8;17k}@*8q\ky8 1VK9qrkR\ESP7GשWo{S,X<,XP `^cҔ/|=wxyaO`(hy%ojβn‹/<`iĜXiF3Q=z`1Mrv04V5<>*h+ۖ7_@xS]<:x7tbi˃Z^Te'oW'NO ;WA:$a紴oxycAzzQS4+zndNe%q3JԅM\2X͒40w#&IÎ}i/q"d5wq~^(T>8Pe$Q,t< KK?1MKYcՒWg*0(z:XPr+@E,Y7is7cI;$+20gb6D4򀚮NJHwT2L2\x?~C!5`J_h-Hf^J(6,Xض)oOז63xSe>ӒړcZAheŝD d` :X`yX,X<@ݡ`y_:_,#R;aVwJ1NP EBfݯayX~wjCB:Lfe~ /=})hJ[(,Uj912]څX՝j,<֝W(Oݵ("NPs7Ϛt<E8oJ8ъj?Sn:j2v\DKncX^,63S{ eݵlY$r XWd9)Jb75U#8+5JO4ݕm[TT˃y[X _z-^& cf3 w,'m\!S(+Vzl+sfm\Vy1Vt<`yGYTOi7. <͜D|6cW#,OU5j{+mVع% Ә>՗73m,3(D6DUS߱픔M$"#N+o7E k^ǘY\%S(ܨU(v3zL-5)~ <5Yޖ>:nzY=y]}b ouQ7-*9I&k*{u.l3u`yˣ`=1 :Sqrհͽ UCXKM6}s5Z)$zf=ܴ)3ʥ'g1?9@Egͅ.;qENx%osXP_CJS"k'm,O3j fˏ[.,9s4)sE9 sj>V6e.`fRh['UB[eKjCxFj-G,GSo!`QzcR$+ʖ`,լI1;^ݭ9voM_>P'U4ust9+p6=t-,̀T u`y0JP6lr_|`y0zP4  ץg7,XpyrΞmp~}g<L6d.f$ rV5 E^W:.lXs Q gWr-qc1ٱ2jS&[b`u2+iy[/!┐935- Vvo'H.͕ ]t|,byp[&콕$vU8gKfl\y2כɫh.fNK>KQX 3϶zO2~a.6ӚZx7z9ꨒRby'ƇX2|YpH06B]eY[C|GWnLy]vʼ&Xܪ.Cr~={Ejug)*<;Y!9'jy]M0>2'jbP܍4w쩒RU`y<`y0~?g$ endstream endobj 363 0 obj << /Type /XObject /Subtype /Image /Width 675 /Height 562 /BitsPerComponent 8 /ColorSpace /DeviceRGB /Length 53139 /Filter /FlateDecode >> stream xXW}{o&fl6n%m" q-v;vNs@nM0`$:;@efۀq)N\3*HIBu_\ôssF73sf }yO1\^ϿFdG|3_xo]rU[mݖ^eزz[jnkؚ%;v3r+H[?VX: {٦l^q^^WW ٫m4{׬Z+McK&{͎ںֽ͛l3؛^7[z{c2ۛvaۢ [m|g ;ܑBem ]V|˺Y3JwRuu9~)떺z/B͟f8!c7 &dqni͛MCCjl-[Mu"`1"v2KBfٚC PZ*E[kl=П?}߈_|?,\63gE $ӳЃH@qaiȼX^^Lۛ?9nc;B9\_zЦBbt9._xy2m6.s}<==4ЗW'_iNh{|Q b49k׬܄-5h=ڊvCY?cLٳ\P)e2Spq3 ]؞,q9slzLYGclwJf7+ۆ" r9--5h=ڪ6B< 'ɤyzwEDG hA=uxX=s m3r c'F{,X|{gugz}Lr\&-c1;,sZ\z`lNDkglq>g|&zI]```3Gcl:_y[?6}nhjo77y//www"~h "B  mD{O1?o7:k)e-]$;yB\fz:x1@绥˃Ә^;ܛN_k n~~S؝m^nW^tc<]vWidZEo6wI^```3=B0o\uㅶl'NN{/&!>o%'_y_sw| >Ld5%t7z'M`It7l=ٙg1ai s\hlo7{ev҅ZA{ Wм|=<Φ4uBO/B]vGQ[8V2e~.i9s\\,M1ve&x~|fLٙn8qaKF\ qaSU6e1k貑rvTPhp1M$zwO=G~rq=|YÖxx/9L^I%Wie`9;E[b1 ,_/?򋏾#-5h=ڊYb;f tDm:~R?6mf4IhMKx||?K9mJRl&ׇrvHA]+uZu|_WC;iXJhlVbUXwwvvkm)tɤ17hMtW7[I[n"ΣYLfaJ:Jݜ2w&ѓGgI2r_Iͫokut+Rvw4SUlb {~YL6)0[ƒƴY ;la K_>ܨ#knn6v{S]6ݗ7ߔ~㾥Zn\FwcYMi~ [UlLr<=遁ݭ=j`혛k[νyMck]UtW3;H<9v^ҭ*$[Q;g4KZ1/lE.u~#>szRQ_ގ黻flצC}LӍ2Þj !i YLw#m̙Իdui+ Z5 zE=Z#LLu\գ/`:ڥ1O 5#ٶǃNs:3lrFvvo͇<>.zm+Ͼ߄9|:A\O?yo>];|هh;nF]ʩ"l)bt]w"uTelp1#/m˼R͝r:7WWƪv]<?ӕ0tEi ouz{XNNt_R/wqQIө 'ރ5b+sS:)72\=.[P;ů91C$ڪEo̗PsUe,˼D r3kW(Agnٕ'0P|szˤ&鼳3sS5b=%7Wq\)3̲׺͵\]F7tG5!ݝsnpsa16@?6rؼQtvՋm'G ӋfzWwtŲA<:uo/y.Lnd9X\L~w```wAn|Pdt {VoՋG\# 9^gQ7-deѼm߶o y]~Vk*b'˃`2- 3݂4sj045l20Eb8{{TN.A-6ˋz[Ђztww/+t5ڍ(I #j4c~DƬyMy'gUwFG,O2eQ#@.fP4w{;;3Űbtl&[yg6ɲSb43#oO ,Q, ;N2w09rpɭ]t6k]kFгl9kZϞZ/dUɇ^x}w.߄A{"3^];ou{Q䮏Q<;Z}О n {BP4uXLׂ՛?ywflnͣZH<ggM":gl'ƊZ!QؖG=ՕlpB\ fR\?Jc?s/g*zp<qŅZCۢP&z=ᓣLY'1л4G|bhtgt7S)fpT(!€:XʜF<t9r+)YŴ=Zn9KnT9YV/u:kjz{y2m/5ԍE\d-+x{A&ܻqNM+o[>==Q,[l~͍oZ@Xޛ/ZFk7؀av6OwW2|TOb(s-8ɰqJ&^NNh&ZF5cuIVC`XDaSJg1oCBHi>v׽E95;}λh[S Pg憘5Yaiqߍn>ZGV4XGtuaG,{l>л^.6rĠ,sEqQ`0At>ln=uw\: ulRy:KMzfۆzO7WϞZԉ=ӧ^}-+/Z ꩢϢv'Nsz՗x͛^~Wk/ZFkzutߞm y0]7 Sre:ݟpGw.t7Sku8h46ۢIt@ %aq;r(x/bsߊ-=PEgY>e2-^X+cޛj I<̳>ilFPJED_zq9S2?(=u~}FPp8#sWfwquaAgV#գ> WmTfwayz1AOcXM}<%7`[ݭ]R3͎xc' b=jYL /q#5: ӾNg:>'N}BɅmb3ϥ82CtݗOt;݉5n,o8l!l8#O;,vrqqGk5* :m'uV[+ -7=>{3| / >,AwYb񫯬}5/_7֠(uw˝6`?'c0\|?/Q 7t\,=۝1zhNs~|'CG2Z{cyQXuoҥ׮]K+_isP*;`??_!"tU/000qtGۛB{O&͕AwBF2ZӳNjPFw棧Qѻ觼A7l4}949Nt7(000(v'7{{ҟp```````2=YL3#]fAO͂6Lz000000lj@3Qz   f;>s:mnŝS{-kcϗE(yIhYw}k0&9_Ӂ·?,%-@ t5ڃN+?nw=kTwB~vLU3a=;ۯڴZuG-;1X; 3jeDK}VXGEiY=V~f,C*.ѣzt߀sЂ,mbP͗A c@\3Z^`ch^=;2]i~tn+=;yaUcn?jzα@oX3; X%;/?z󶽇\ZH\44Nз#GF?>@z)o{Uah?_?!=uHyO;jZΉz7j園=@(ăd@[wt}uߓ[a@ hfiWcuNK]<_:2_#k-GY+zh!&PLm%Vs:я>V~#clA  ]z(hF<`n ^3Uܶ k9{"]KW<Gw8YwĽOoNXGCqr|vg7eP譤EX=CGߴժ6@({v6Gˏڜhc0"fy+Ώj֬Yo\uo--kVo՚6@VV׿5׳U-%5fx =A @ @ @ @ h3Yz@tKbK^czg tj4@ zh|2 =Ѓ@3?v=;EMx[ՐFqnu:- SNw pI. 417yPGNL<5Δ .lmZޮtR,7,>ЏA }v M#GA==?:NѨqL bkToZȫ2#-z9ɾݤT[eDM"_1COwi[r"懆eԣd.󥽃KD8F#=(xĐ]'+Tvide)!|R6'j]ZՐ+ t+zSZRKڮ.usN HJA ms²$ڦz|sFs"r'EQsڻ2BcVai_ῠ~|5Ovt4p2ζdslΒO)nD*[ "]~\/K27pWih^qBŇr "b)YM mA=[=/OXR0%u fP,rU]鉻"B z%v0o(+[28d )ܘR4-!F97%ASz߿Ѓ@zw-" .k sɞd;@ADBzzNjԁ>+)~@ #g b У*r +1ηht! 4e@'sRl*P7CKM3蹻ˉf(N"Wb;-"jYzP@/׬@zt;чfIq#2{.~gz^ k3 H'J }IAƍRxe c|]AdrPΤAċu+5Wz,"ˏ d3+:rMݒK`_9*NGcZ-!p\Qw0. 4? SԢ: LgȔ552 Mvu)k,p3ɾ06'y`N~pU:েN㵩?nTPgq~$RԤvwy)by,)M.]c~@X&gL̬j]IqBiЃ@;n @V#{z0 GhFQǛ <@3s GhFQ~<_=G_hCH#/[@yf$WX<@3kW/Ѓ@zhA zD/Ѓ@zhA zDW_^(;EMx%ӷ]ĦsQӘ.7| FQfA tQ~ӆ靘xj@)mKO:ntakCFv$H8 3 M$tQn.v:t 'ts"`:~F axB#ʿ&fSi4j\%l<;ZNȫ2#y'<;wԐjyIˍ)l'.腷XLmgGN{Bob%Nè>pD#:\pK#+KPoR6'j*DŽZՐkwL)m]Uq<@oms²$ڦ_Fs"r'EQvsڻ2Biަ}9^R=E6'8ےճ9Kz>okYl'tq8/7l+:'Dِʦx 4Qw߶ z^\%Q$}0%u fP,rU]鉻"B z%v0o(+[28d )|wnLZWr\AH(sBUkЃ zD&靪`Kf骋Z\j) Pw^Z$A8u 2 8 džUJhbn1O mVo.HnJyEnH;dH =@~m=7)61a|>Ь4hk֏?XN>ZQiV(c/FЃz~A(<͒t54 Fd\po֖g O-L5""jJƻ=I>0 {L%5+ea]z`sN{S*䲆!2eMBG]]ʚ,zG1 ͉5vƾS. EEU!5顡xm*5'TЃ@zhgqYeExA[I*r%u2 T<=m,#G z\R8""NNVI W5nk=~Q>*"@yA8֓Pcmr,"Ot[3 ǻXq6X/Z?ցSa~^Ԁp[]aG <'wqisRBVW[)1]}+Cf譮'q(zD=q1z@ zBX"nJrX[֎HA^~aqcQ֣{7xC*"gc ǻԨ]Wk֬innO'%8 zNQ{i?\oi-e P_'Mi/cM\2 ]W׭[rX&#ʧ;^މҶTF6dM-oO؂xӤzzĜ @^>6mjkk5OSn.v:tҵ~d @'ƍ=[nmooOEvAO^hԸJ^y`w1ٵJjZȫ2#-bTNxz5vd7!VQg7|Kޒc1a9 #FK{*;q Fz8Qh!N&WPi4 &nspbQ~X*V5䚦+,!ZR@*@~By?CD2ݬOs3l%6e4<5#?.2ݖ8{x Ji YۜlKf8W,D8ЄBe>ATˏ+eƉxa4Xq4aL>߱BA=NKK}#O;wi==*$(`<^B]w> \I XZ+";.tWbMf*qQA*#J)SъC PˏXDjiZC^q>"_Ց w,{}PTWWX(Jzaz*HA*zab0iJ63D$ᤖh+IN賂LȱavABSztۃU?'HnJye~&VȳCS =7|sʕF{AAAh4@'Fê C:zx zranx;^초eA}pf27<0Lsr}W躺pyPTRRfŊh3Is@OY|0ĎQs;{½UX[i@/<)0VZM 2nĖ+cMv3q(LNʙ4sxq0nfJED?t$Ql|FVCb%1܀q>(]@zџ9sfpp>>PJzՠ_hQjjjssD"hL&s---0@T(`wb~2z zzzw/[[[zݥBdGQ<뇟򄄄W^y>|XP@)A t E1;ZFpG>z@w%;EMx%ӷ]ĦsQӓ.71I}?WM 3N7A\?wFD/LSLi[Yх aSK۔.7PO#L,Ws# =„0@tӡ۔npFfD" U =͠fSi4j\%l<;Z%5RCjUSqӫ}'I ʈD!-l'.腷XLmgGN{Bob%NpBNZoBe>ATˏ+eƉxa4Xq4a~;1Z@ ==UIQjx} J廹An8=qWDwb]6ATbEU2P\씩hM]H70T-scJҴ Boju&!5"z@N ;UT UdOOSٝA "!=h 'D[Ip@d8p@ #g b У*D +1ηU'kN1MpL sRl3P7CKM3蹻ˉf=於\D vZDчղ n?psxNvA>4K|0ĎQs;{½UX[i@/<)0VZM 2nĖ+cMv "r& %^5t ^鱈'.?$ʓjH$H?W.T =ЏǴZRCย`\vi@+-ޥ6'xOQ'0B.k(JNuN.t4եɲ Ϭ'zjjڄڜXlwjЅ$JA40$?=4tMq$;c #&5 oKcIQ or[FP߼ѐ$h+S+:Z4 >Qm8pUЃ @@/*iVQAH$.mQAz@Y+ί􄲵pXW[5.)/:')lU(Z*sJ%+h(׭5vj0pҸ%B[M@@z"QNYFXV] .jS.o))EQ?BtNP#pEQ^aYc'v+opIeZ"XWu9 %eyRzz=}Fh,9C.o,9܊!IɫZJU(fvҎ2(Pced$zOGDO%ܲ6*S]yzs5*1Iy^XᜢzCCbc翚/ЯW44*#YOA @?]uE*.+;c"u{ ZJsP>~I@D@zt^MZmU Xζ6XGlRO0)EP.ʦqޡBq1޷@i=5d*_TT@UU䈨1yUmxCYQa}ZYX+$zЃzT ЃzQĦsQ2vTO)'׮;EMx%ӌӮەiIP+@qL}Bon.xsc eCOwQ|P0Z ㅣgVF6dMQ%ڞ)nw'4 ;1Ԁ>8Sږ*]R.z9 s SAz#>)3sp#y64 ۧL;]gZ%AzŒ5=u|dܝu2BjmFVb9_0.'5jU-IURIHw熍<'8z瓚8OՐk)l'.CH 5;s,7:_;xDTىcNh4ÉS2jAW;+δ &VIZȫ2#-ʐ^;MjHUF$ jF[r,&L~mҵ_BX{c@A(h#mOEO# -ƕ.$kSs+~8;:HV ??\y`Ŗ!"̀V--M%Al7(lKf8WϪ,ĩXN%6e4‹<5#?.o rڻ2BK^&mgà|#Dk'@-pwUyQygA`PH E*;e3Zq)"jyËz~|Pˏ0ƔiA!{RG >%v0oL5UIQjx} J&NqU]鉻"BP~dМAe@yJ m}V 1|wZc}LXH.ͩBv X19bgG,Sa ȱ=UveJ*[t~-a.5d :Pw^Z$A8u_?tǬ}j!0,7=4Qs'> sw {͢cK#_rskHYtJ`EL}X-K $j [R]W[)xF=ʺ)vNa|>Ь:ۯIFkkpz@?b}jRst{ rx/2 ^1tpQYep^BS"-+H<67D& L:c=ggщ<~|^!cуCNԢ*r#EMj-!]xc^4 b[$0eG81 ^lUɑ=s$$Ibf IlPŐ1|땽cCRkCCTj 7*O{y Wn^ 5C^iWPYJwQԢ: (ix{pLYS##RdY pG77d__VcY+UL~;R C=}Uֆq֞f -ZRVA ЌoT6TMIђj$K{$.g{O*Ea={@ϋ*+]G7%oy;j߫qu:QGΐ-=A ˨SljkT Ѓ@A A A =A =Ѓ@ =Ѓ@ =K@x"FM߷G;Ls&׮;EMxn Mt ժ꽶'7O(&3MtֽU-jF6dLGEQ%ڞcd2>Os~0O 3m[ەnwWs' ;(ʕjz4A0re[6 h@zGݮtr3Vzޮ8z2~@~>5a1 壧1̮* Wk4Lߌ5㪖Ziȩ)ݹ#'|'jK\1D%@pH)!{OfGpپWvFK{*;q Fz8q@F^V*yg{ݙd*պj5=ΜjdnRC2 l~B&_۵?t׾c*^7$@f.8Xmʩt`dԸrŝdm~ rNprsGت3#Ǖk2TܰU8z|[ZJ# ;ೃ^ٜlK,)EhvEOAωȑhE9m!%/L63aPJi:YO46kRQwWX=SNr0 @?];{ՋΣ?L\q厰w0lOn׏'_goS~%˒0gܹs_ 9wmZAoeMŊd(BS>g|Ww[`bdE}`HGpcJҴ u)よ^;l7S9%S*zYzx}< J1 bUWkqz⮈ ĺ'_;?tǬ}Gj!4gPj;FZ;}.[zU'~Yp3xl+7bۗ[ŢoU|kmw{H&޼Jw^yb}YA޿\%|\}gWD+AhÃ6xK^Yм9ߴ7AzvKܞ}/]t\޽cݲgvdraYtlɁcDKN"zns <˘N초eA^M{Kj+1h?GYW5i ^[~XCS|߻.Xd)˟xDk7=~z& epnk 1_t{;ֵ%,;sαW_s;V_dٲ% >8E7.97ok׿;*4/VGE1ܗz,ү< l1xBنW,[<{ޫ!59|Mگ#;P-8W]?f>u\-rG]&sBWG[msxqyfJ)ㄋ:Ⱥ0Ԑ}D.kΞ:i+H<6hbǍȨ=z*-4 [j|+-DD&7 bKfƻ=(7QJwE'6&F?j[* byeBŷxآ\:_Vl8k$#˝6*-') I{795}8 :7e⌎. | Q` x K=1sx-7.+Q[tȺ6PR'9c`'pȎ|TZ7DC7 {YrnۣkU75}ry|{pt|w9QUgG^TƳ˃\l~7A{uYGѐD[QBPȱ 'HjQQdz٤֒R݅7楈KZiX 6jISvԋ:0߀V9 $Ik4\7HBf-t]Z:צRQyCŦ]* 6WQJCย`\RZg,iVe EIC܃3dʚEUEW&b;ɬ'zjðڜXTwڟ`kߑZD髲L =(k@Lrhꔖ5]U"ˋ~ }EƄ^C5_;_CB/uE+>?JG͇ u~WO}lrڋG K.-ZDt~"-xa7e4MXv‘6ԥ7&ԅ>^F! ܰdKZ}MHwwn`iU-K(CIyG0u R&R6% nGKj۫K,ZLOI(3r A=v #+r([ m,]"7f/uo5 ;VVze|%i&@ys2 =o/.4&k3ߟ}aϢ7ޘ*3kc ZqYࡵKGЄ"1j_C4_C{mKvwQԏרtAo옃w|jӵA7S߇<o+7zr:.Z^s}Q~tx+3z{kٯm?zZtſy[oI>/S=$@W~5k֟ީv\q3S%{7m\f8 ƕIs\ߜ1n^7^K(ic@?tǨAd"?Y{.f]r[/5M=u<Зo~'kMwxkOgW<)~Ǜyq}~0ejc-[XwԺW9,K-[ !W~xw/,kZZH}AdG??qqE8~;j/ݸJ<5쳍c N> zӬeZMHee; u/1=VYޱW|I(]J_0֑9eub_Fo_?oђ%k>˓,볾.&n]hZՏrxê/zʯ z,iژd~~Jkɇi=&*&wnt|7svx覤B`܍Q 9 gу.X":g-ҽ> Z~wWN;5?BeN)}eq~@YޕJcWծJ/a^S?uf}=jH]z@.پj… -b+*=Ѓ@z=Ѓ@z@?SFM߷G;Ls&׮;EMxn Mt ժ꽶>[ I*iŵZ$9z4Ao{5Z ㅣ?΍.lmȘrJ=է褓y뀄靘xj@)mKޮtʎw; ^LG Ua$@ftDo9{]2B}dϋi@;2]tvK͝CiM[Ĝb}@~>5a1 壧1̮* Wk4Hߌ5㪖Ziȩ)ݹ#'|'jK\1D%@pH)!{OfGpپWvFK{*;q Fz8q@F^V*yg{ݙd*պj5H2䄧Wc'NvR-o5|2bIvO*]X-:"87@-#$@~VD`G6+'Pbj\9N6U?9'8B{㹣T^ls5xq*Vn* V=b>z̀V--M%AlNp%Su|NXx}T ,@hvEOAωȑhE9|{0(7Hd=ڬI;F;P ]m4ύ.Փ wDz@? &bEU2y@T)Sъ3⫈Zsj^_1x2ߢ>0T#{1jiZG޺qAQlO 6)nyqD,`<^B]w> bIHӘnt8=qWDwb]ʯڟLc־#3LKqNpBAMA D6@UJhb@TM0Seg@roNZ|XUe8&HnJgk>;e Kx@M)-ST.k sɞ&gЁ2m% ©ڭɤ;f;P ay';uUЃ@3z; 2ww9Ѱ׬@1%'[=7heL vZtчղIQ& %ugѣRl4P7C3+ڟdDo=/LY̘qp"Qwz4A _MjuoAQQ\S+=. ORCUKh8{KN (O6> O!ndAW}H槛7[7HY|0ĎQs;{½UX[i@/<)0VZM 2nĖ+O Kw{B9?tǨAYtlc-Ce q muf0-ߣhH(!(phjtЅ$J66HQZKjHmwޘ"&. h%aB% LQ/N~[wr{Ϝ=mI%IX1E4m1{ zei6Ǎʓ^,6E4ŕWFc+ ㊺qY*Ki.4ZTT=Z!5% qΐ)kjddwU]]ʚ,&Ѫq :ksbS߱jگ}GjzE8چkҐpn@)8KecZ`H۔t["+^_dwz?qfB^ =/@4v~PXpEjDNjoxqő3f @ps2qU; Ѓ@A A A =A =Ѓ@ =Ѓ@ =Ѓ@ ĦsQ1~ю=S<ޙ O]PEEEQTܗZ JQYDEZs[{νO D<ߟӛL;yNWd<,|oαEa:vi-?Z)KKv(jZe-iu~@ֈ^7=Ӽ|{_6g8S;A־q޶  z^$TCKvިhCr>Un!w,iVsR~HY޼8@muїgWiLΙ@,pbtlsD/i> MK6\]=LaOvP!!&tz(I3L"ҵ^nW]8Iw֖+"D3;%n>㫲KQ3UD'oOD vW_u*:yFt'IDnj/OJ$ŭCEYzU%dGEԎGrLڽW֞-zCfʭrz}6{S?^wA3z ({I64'z# FJV $W};[pox:}Wu=Rrk%!>4 /jF'.i 㫥q`yB1lH ZpocÒ։V{%{r^POݫGOSdEQ=o2ڻE fb} MNfhFRxu_u@6ΦZlз?9bt1qCK~Cն+v?uT ew|Ռ5+zjTz'_nöqr?NBЎ`>z͐?/)sKc49kT[֙c|Wo]6`;t{~SG:O>YlA/x=M3VQ]:a LzmvB I{#n撍Ֆ0ɲ nz=?WHP${͵E!u,Y+kP|$._)5ɟ~3o,D\h >'=Jah:.?&cI"N8ET9?ϲx?kQzr{_N/!]ksEhs[2=9k ˅կ1֮Q"/M_j0xrqG zW)~ ˴9zqTVO1>T(|?e D 7.z0Hi7a|۬D@ zуD= z@[7=Yc#`Ki^INWd<,|oֱEE*%#"! zLыϺH /kԎv/N>ۡi͖M+#[#zT`L}rОz쳚(>@.=^N7IR{_v ]fD/']sZr'2mj=@muїgWiLΙ@,pbtlsD/i> MK6\]=y4":rX)lwN 5/bB4͟t r,]+khx8N4}gm 븂)K=S"ѫ3uh/K'S]g>4 ؏;VA 5ڽTҽ/Ѩ_Xe6>ΚU zeoC:C{Y#_yaTk).gcζ|?{Ԏ2AauM[e㹸UKTFқ;xT z]_j@1nMDSu_^/o'"z=y{ ZWBpu5Sq#L.0Sgai&x+D_ՌN\WK,)bِB1%V4}J~3}0̟| 7z"w!>&Z3z{#ew@)ӥNќshۚZ5*znh{3J蹦c-U` y ^K +84m _#zcQUdlX1v}3[!F7G=d:]mkr`Z(Oտ͐[6+q|Wh[[FEw6l{$s$qbvLk|9 Mi[w]̹Xڲ{5hC+9ۑ[*N=ҹ|yeK?q@z&F D+z>zfȃ26}{wuAr(6&G%)ի- aeOV^ {~Z LHkCuBYVR*c;+¡H]>RkƓ?$fؾUǹZ$A$}N{Q8i,¢=Wd"<⮛vvbL&]t:s/7SA'Z=ĴjP[-=߸d U1߄moV^D= zуD=@DK*kKn|g7|-=0:?{{%A;]!"wz^PoZP8*]'YU }U}k>w=b q40m @KD z=A= z@{^e }ɭ1UƑo4Sgo$h+Dn2U ~J}rU>7T"$ugi 9^|=EXx_v{iwEMl_E7m^hq릢cokۆlg*s'QZʁׯGtC$e>P蒝7*ڀtk[ȝ0|ڷ=XiNjQ>R1*8)9%L`lmE3MG) 4v}F+SG"_3s u9LPI {]j^:$37ĄNo{%i&?ٟ@YVע 'p i:2qSz&zDWg)^NxD1:|i*#w*'%k{r{_^/٫:GNM}E߆t,F|aR*\\;NJ)m~<^eZ)ۢM>+j{i|"=}ɲboHDc4dYfjggOOG qڊ !wrvr&N葎ɡˤ_ f3'OB|jGv0A̺ʭ2z\\,+SH q8io}RS q3/n"ǨO~o};Lѫ½ݕ:kkEarI[KӺ_R-IqAQ^5x)QӀv`C6P{%zr^hަƤfHv4{HfEY'٠ӬV&nx586Y%\=zlI4sý1RjG|U]#,Vsf"BZ͈jiu%PL6~V;ꀦu^oܺ/oq{L̴a 7z2= 79՚ѣ/J./vt礼C֤֪Q+tC6?%QzF5 nBm4kΣl@xu_u@6ΦZlз?9bt1qCK~Cն+v?uT ew|Ռ5+zjTz'_nö}I.ء_}!/~0_HS]izs3i=)SlvʭEt.|޳Jli|iуx=M3VQ]:a Lzm vB I{#n撍Ֆ0ɲ nz=?WHP${͵E!u,Y+kP|$._)5ɟ~3 Q8W+$d`ωs2ңr+,sN&b!Xjg'd҅HS;NQ;r3dϳ,E8Zԭhoo\ޗ mHZ+>Xz:Wj) .,~NktԶ_˽7m+ \Oh @蕦D_}޴9GH tgUj_eߚlDE&b8&oc}== z@D z=AD= z@^WYC_r;kLտql9+ V{>Kyljd tlcDE/>" ,ԯy|P;ڽ;lU6[ίޢ6Qgn 48nuSу1˷mC{633+ƺE%:=^N7IR{/:BO^N-Ne>۪MuNdX4v5/cϮr[Ә3X"ŦfBo#AXxqxd˕#ʄoκ&(ZlwN-bB4͟S3:KJZ{!=^uy$MGY[&B:`CDHj?E T"F?=?04C%cU%|PDMv7Utv7{u4ZH Ỳv8v{DJP?W^=/ZJ˃+btX19m7ߏOR'_ENQUMlXQK+KD{ E"A%2kU3?;sxx:>bpFVp!gg)+m+ˋMLJ`0s0Yf< }ep93F[*Nsq髞˿îtD z?"Ph-.oyqTVg4 /jF'.i 㫥q`yB1lH ZpocÒ։V{%{r^PO#UH?&cYDĀnCٱ}ȀpS=ڽ;RbhN9mM^nB7 =nSg\ӱH*FJ<yD/M{_OM3Z% Z3vH,u" z5G>xu_u@6ΦZZ{۟YADu /QNW|%mU ew|Ռ5+zjTz'_nöqr?NBЎ`>z͐?/)sKc49kT[֙c|Wo]6`;t{~SG:O>Ylw֧.~zPN^,z>zfȃ26}{wuAr(6&G%)ի- aeOV^ {~Z sMhE!u,Y+kP|$._)5ɟ~3 ,qV4ItetG?0VXjLvB ;;1&.tE:qܹ s~e)֢nE{~J^hCֲx\c9 KGׇHѿ:'V#tMapag]E_Gr)#zi1z6T/>J tgUj_eߚlDE&b8&oc}== z@D z=AD= zC$z}|'IVϟ]տql1>*kKn݄̓vBD&Syg)W5|C5SB+uv zZ(u5\z_M7=EN~]2hڽx\}? o'e(jZe[}Aw';k[ݭ}-$;TftkP~prGDrX\ ɝY%zs9t3xrBvP .yU[^N-dte>$NHVxÎ}/wڟE_\~#"j')`5/s)YEݟTΕ)W2Jd2gevMHky[-|$" /Ocחlt2z$53WNΥ&:}ldTR6gZI\v/Dsǫ.Oq;kDVȩLX"~^mY:=Cf~ܱd6i/9%NPlmc3:qIS_-γfCo uǀc~##.;$Xy0K +fD^0~ EY>Jm?OF5hClvD7mܲC; jK^6:bT_m W~>[s[FEw6l{Z'Ht) f* yr@8<4JӻsGe9~i۫0ΦZ1{۟Yьr~}#'JE?H]2Iϐ4x{M:0VB;gleip}jgB Sck 6dϳ,E8ZD޾C\U'vmD7r@22 7/qEjxϿ0-'uqs$2$: #0V{saE!uDUowדD z}#3LR8qMQFD z=A= z@D@ zѿ$Iҧ_s[=oUƑo樬/u6 LR{\Հ N\a#&3ե"}} +Gx+?Y6XD* =p'^f4VlEoڽ;i@^֠qqwkD_}rОLea:J<J\HDߊuD8@$a 1%`xJBV}%;oT!z9b*;ao2W;ڻIK I zѷ$M#uU ݢ'Kij ؘodq\DMsD6-+M-j^:$*=. ?۝fJFL,{Ns-oCSA`i.WjWDf*IݹbB4͟t >7{vU3d$EU'N8Ate"+d ,?LND6S, V/~z~ahJH>qF3E;gD Mӱ͑zM+z^:D laV S,|eYf-䓞W||SFcGW9mk u-gwS#:6{x$Ui^~U3de3xhg%V53?#g8hmE`wrvr&N葎ɡˤ_ f3O/D.4wvd ̬mo ZJEjm:/ť"X4/ >k4@Rapœ>7 oHhw%DBNEǵERҔ픧~)}X:{I7ʾ|h^MfrI[KӺ_R-IqAQ^5xq[QQj#L9^+kOml *7ͻ)Kc'֭oAu{_N/foSchku#u@Eωmxb9{#z --zk58& G-u;Hg%V<}ylF'.i 㫥q`yB1lH ZpocÒ։V{=$tՊ2'Z"/oZkJB8!*D ZD?ҢfO)|S4{~GfR} MNfhFˮ($Q͈^nB7 =ne3zXhvKjA%XCowe<~`mhbF/2DoޫT`2D ։^0~ EY>Jm?OF5hClH&!lPoR 1%U?!j[ÕֺD䝛Z5*z_aӂ89GK!vhd0{Wyfȋ̗Ҕṥ1~WŜ?-̱GKm4^q6ERC̊f[\>g}maGտXzT z7)@I?!O9IƊqUhL8Ml:MO-̰\R:a LzmZyYKqw}?Ďn0޼0=Fξ>ԹƵY,ːx(:gn~ZY΅= $#t}VVi>qGŰ_?ӷ qV4Itd+=Ji,¢=Wd"<⮛vvbL&]ͤө(o]U(ͤ78"TXҽ/ڐ칷J(vUyV=Pqb5B Vf:5Q OS=rb"/>PoZPZ=ui-Yՠ]OR=A0Hi7aDVD z=AD z@D= zуDҢGw$I~myUGMK_7T"D?O,0tø}} +Gx+?Y6XD* =p'^f4Vl9znڽ;i@^֠qqwkD_}rОLeJ‡!]Du-)D߂uD8@$JS8$arg) M[mLBQ<夋}^BYӾYH qXZ}K;>R[Y-jbyHmZVZԼtH RU$s/zDg]u&,;'^wYpٽ`gZ[H04E^Ʈ/revHkf2ԝKM!&tz(I3LGZhU^nW]8Iw֖+"D3;%'ţh +\OiˈgH6nSB"Z!Xڢ}biJvw>Usk_eN>SEj{tAp/}&3N$ȭUMi]SUyȠ(K׭sӀv`C6P{Z1ַܺ/g1)=Xܧ\D_sF)'>jG|>ZZjqL0AV $W};[wjJn$'x،N\WK,)bِB1%V4}*{I64e7NDu{_F/( 'j9Xr@-}ޯ?K=NsțK] 79՚ѣ/D;7#zjT Ъ/ʖ蹦c-U` y 풻CGt)iZ!j=`^e |2p|k̇~?w툼o e㿇w|mu /QNW|%c%y&D/V^m =NΑR1^UG4qxniߕw1a-j:s$ WaM+&c`з?}G:O>Yli6}${Z"@Iz4ۓdNnҁb\9Ng,NSS||83,(oN^V( s~e)RzqqWGرn0޼0=Fξ>ԹƵY,ːx(:gn~ZY΅= $#t}VVi>qGŰ_?ӷ qV4Itd+=Ji,¢=Wd"<⮛vvbL&]ͤө(o]U(ͤ78"TXҽ/yZ[5O5q@GE3`<Z4tNFra۪Q"/ތBg&icx@7YnZLM {7Vn3>T5] =&b8&( xD=@ zуD= z@D z=_ZHN$ӯ?o㷪7sTЗܺ yktMy_Rj[c_ւh{׉>#sM땟VRT`j"8Qq]x3GMl_E7^ߝ4 /}mk8⸻5xVmhq2w}71< D߂uD8@$a 1%`xJBV}%;oT!z9b*;ao9W[?|j/@oIaGj>ڻEO 1⸈mZVZԼtH RU$s/zDg]u&,;'^wYpٽ`gi#RZV}  ‹%]Lծ|U&|s7ĄNo{%i&?ٟ@ehU^nW]8Iw֖+"D3;%} QU;)dh#H]gcζ|?{YX/#z[!y o$ЁV֩踶(z_XҲ/EO\~/FٷTڞ=]-KL.0SYlh電S&ҔoO9IƊqUhL8Ml:MO-̰\R:a LzmZyYKqw}?ĎWHpSQ7?\7Du5}pBdYSGAyW=p}w.Q AP(Ե GM܏>*%IUusIH%]QOc9Z'wd,c2ij&N8E5MrBl&M͏Iʕ}9ІteϽ27T"X"Ma=}:q{w3JjUM'?*κ~oFi͖K䥯m GwF* UE} 358$arg) M[mLBQ<夋}^BYӾM Eo;>R[Y-jbFE4O/nӲԢCRʭ"[}#:rW3)lwN+%2{;ώFεڷ`h ,8<]_ṬWΥ&:}ldTRn4gZI\v/Dsǫ.Oq;kDV^LX"~^mC{Y:=Cf~m4^s&K$14yHTҽ/Ѩ_XeBȏfVޢ vB3Y+[%U}[4'=E v/t0jǎrAM!C@Z>8+ GtmI)*yg%f *JfjggOOG qڊV6,M~ey#CIɿf&˟^4\h`.;șY7ҵ xuz_F/=K_D~`-K D ֈ^0da ֿoya7$UB"Z!Xڢ}biJvw>Usk_eN>SEj{tAp/}&3N$ȭUMi]SUyȠ(K׭sӀv`C6P{Z1ַܺ/gQ{"4Bsb;rq?rk9~GmGBK^Z# Fb5*ѣogKq]r=RYɭOz5AщKjiu%PL6~V;ꀦu^e:f Ɖna[|~v7wh@TmzvH/-zn;EwT!oF/um2 TkFvoB܌֪Q+tC6+[6皎FjT6T5vQ6 x#zK F=&fҽ/C~>GzۂhP*[僨Ԗd^cf>lG}f-=8f襯mC#&0n(~IՏzup糵.+;7!zjTz'_nöqr?NBЎ`>z͐?/)sKc49kT[֙c&h lX1/N=ҹ|yeK?q@zԥn w)D &E?H]2Iϐ4x{M:0VB;gl-DO-̰\R:a LzmZyYKq0S;]>ybFt+$S){¨WJ r:P>8g!L,C⩣<«Sig;( []YIJZ~I^ƣHC?$f O*XǹZ$A$}N撍ǹpOc9Z'wd,c2ij&N8E5MrBl&M͏Iʕ}9ІteϽe<剳YxxAm0\hXjtԶ_˽7ٯj0xr==AMF)~z꩛LkϪվ/ozrDoD}@'Nc # ( zуD=@ zD= z@D =>$Ikn8 5%nB^A;]!"wz^Q^=[\)YbK03𔄦NS6CKvިhCr>Un!w,iߦIv t3v|j[p)Mm!s,inH_ܦeEK [E2Gt0AQgbsuW_(e 6}|v6"umշ`h ,8<]_T\e7;|CLQf~.FcϮ~搬ĵhB4w{ /FY[&B:`CDHj?E T"F?=?04C%c$o3X"ŦCBʕ}yfF^=r)=$zg ۵ hf䣯o,2Wm&5ؽ4䳞0;y 3ն=Ե}q?VLAlǓT{WST|KD{ 91T2Z|*㠵ܭ"lYy8G:f'.%=L?h(ڑ]&( w3n/k)r^@{<*jjj5>ʽ1b? }kDT\|M_FM=ң-"qDF G>_E6w~~1לs≏_GjUգGΖDzڳ[+ d>j<648W;uvqDU_~Xb'l/LQ95vTF%q9`ĕg5Q+ VR*Ue=${{~dY 7[UA{BԪ6Z|)凎;{#'i/jukKSeծ!M\6at{g'4ΧT ūxɯJMZܠR֫3^>zRAyS!, )pf$5ϳ)W}WoLÿqn "R-7@@ Gfpz{?ͨʿ3ZߗBv>*j_vni~w)DDD}g˹qm҄`Z)==DDC@==@ zD==DDEt*}る/ߋ>y+C:aOT?ze\J5/I ~6m3YR^i4E_26+l)S+wtF&fc]i"cS~=sh;Uz!2.;47C#zcnZ̝ ;"3;z2[P*ˈ A:~M9v|UPQ#`_OBӡNS;<:҃=πg!zu> ^zŹ^\ݩv!z !IS{5P ^ M*KS+ï۵T+M-+,^ʭG2E] %s*o+fGA#ï{TZw_${QVnKmB>ϫɼ잩}c~|xg7U56~B@`LnojoȚ%ˍO9TJEYօǿ}R'^ԐLNb!\_~SIaʸBɤm-%7+CR'>lok6 >6sʛZZy::ۚc j{_^Jsӳr5xFJG]\V#/B!}d~&ϥ6~<)6y>򧏊ħQ8OK3U-PUVd8i rŽ_ 䇿)f&13\| >ƾRU&5~]5 DU5tT'yr{|S-$HXFklPNd=:ŭQRG EPf;g =ЈlJskV=|QX|D$Hg Wo\:Sm0_OmT?$ϳڬ޽֖[ xF^;%-zQ%2)EO ՋUT,(W|ɉ*g]{J!km@ESZ^V=dhyձ[|GzPQ|6Hw "zս#4?ꝀfmH=Љ^(z *߈Xސ+A^=,lȟ`9agDN{'׊O${5r?{^+5BjLj?&Drn|,b Ixߣ.!һy_'+-0IU}#]p<6i\PlH)zEu.TEo .& z A>?~(Ov.jm?~,bUSXffۯOH#Ce(v?[KbvɓGB>Aei3:=ޣ)}]x+ʝ:Av*]q/V,jwDɓD_ݏ]m(圌AGGr*R80ʿ޳(u+ s_hq==LǿGaq?[gx=!jUo-ODCG㝋]ߴ2j&.STNRNyl r{YSUv]vb4-Y&g=0f7swT>վ+8ŖnkgG[Ax=`"IZ.uqr/9q$A}q^DV#Bȹmθ-8wl?gۅ30kz3C C{R,.;4,cz詏g/jʼn?N*!͏ {,aSlD!bw36nsr9!=3N0sc)OB.l.40w%(wQOf3c+ne {~9Z Cf qs8tCCFbJD_|5ƎR4\SַEQZGit-m0Τ/zotwptd8:,z*.-pndj'kyVs3SUt0D|ў>wƜ>|;ΎcխRQ8ճ :̉tr[!^V}c벵E_Vp{hW HUjZifn왳mKׯd.Tyo_겘ɰد|6֫ꅲlυ+{t<..  YD<x!]}ue #<"e蒬 {Gk(6cyeWsEtB͏eWUvGhľ컗.4?Tv/13m8mRY|֫L(YUXRU97>bc@FU˔: }t!'/M?:VJQZuAݏ^B\gm(]Yn;Ja"nokǕ~v1|(G ,{TY7|st cdY*UD7Ye._^9"_Doo<(n) eeg\_+F%Iٯɕ~ԋ.9 9o'~Dfeuܡ8.Kk_p1ҍ{57ً>k[=v$n(ŷd8;rr~"«M>-}QvaJsϭP|lc! t }@΍c]dot^~*Sz}5z鹆Ρ$T~(g ckUD[޴xc}X0*(L2ZU ^nf8-ˍP:Y]+u[E->=IGx ߫U"{-v aZv_q;w3hvAzl NuGcʆJ[#=|Iϕdx2C">{_^`gc[17w-.riS#ňO z z^;;ʢ_48 @l/E_Vد NDlq>ƶ(5"$[$y0WU=^vYψ])/PK>an .*`+ 8#Y]0f̕ cy4ƀyzӱ[Rf]8`o8vbD?}}S޽ZDz'NO$oٳ_>zv3z7UɸIm]\ΕuILlJGva3t08;+P"JĽwd=N|-}^ȯuj4]KˉH{ (=C#)kURF3hj@PR4FgU\4_;6VUCU_ُ[_hSRM=D a׵r c,5ϳXI7o1Қs$ j2$}F(֜0Uߒw|Ba=O h->\`}sTQETމUM(@R =De5֓uFGkLt~?Tz^Иqz43מJoW[zV}vNNɎT-!(v9 r]'8?Hke j>2ە*Ֆ,.7m7oM^u6o6Ԟ,U:f,=y\ LDd6-{̍$`ɓR59m٤wEզ?%N>fδfұ]3t蚠NWd*)=E\T a)znݫ~F=Ill*=y ʩx@j SLK!ziYZ2Zڞ̨#$wvM^_Q'GrJ:s=3.:8*TcHXiDO9w)=ϙj*1iY녭&F .DG=Cqۺ#LwHѓ-'ؾcMm,Hk4o26\^)*ؚwj(=i=@5ݫrY dIfleh`1ynWDod6Z#iZSHo'Ɂ+_H-uN_|y 90 FݓTDD2PA:p%c7޿Sl`sA$DI+M5V0@S /ZܣcV!zRQg"$4MƓ%K朙b՛S'Y0+Kq4s=m}k׵lX1-ldSPeXD zqV(.[7:ì4-k`QH9GgX{'jRZرQyvhsr<,>],)DUj9i zZW^eiv 1n0--T$)a1 +)-^⪫"D/p֢hc4Ō)=͔Ye)%o..5ߛE%z=kOx@57=fi0;+h/>{BJiљ[(Rfj%q432i!¨{av'J6tOjRTyw7Pe6 i@=C z@@(  c' CA@ߡ zdY z, DD z, zDD_98)nOEj8C軿ީJf6љ #h `1N=c2wݗp$DEIks;KfL%-){V/LW]FuD?_ {!ZW{?jyan暓>qNO5Y,=uJ=14a՜n'.DCp9i,4n+3 3MӞ/1U@ۄQ C& i}G0Z3vT̫ z@~K0X*R{љ:־+O=xaF=F;-9m٤w9W+_魌i}IJtk{D/6D9z/:S‘|G4:$VU=YB~&Gg0D0яS^YYDN4]G#.:ttuGtV5GkY|EWwM5i4k-HrK"-3Fi`h^!ocj2|{Uߣnf./ҿ: ޷rk&Lo9_#=Q^S"D/`f<D! @@AY@Ҏ9r(rnHkVwy*=w_^*t@As?ɀD zDZԉ{X]T o2i8$odv\?ԵLLSѦoIejrGS-'MKaʊ }ѿ$'MHc'o/_Zoryc؆(7s룗\mj^ĥ 5o~oqU"o7ߒ.9DS,'k!Շ@/ EOvV)#GN!9MJ腂UhSnZ'Y[AC&c5Z8f$q4rR}D^/$nԣi-Z/OhD/6ŻM/cSgXqشi5b9i )? C/]-;=xyo7_U+T+CiW7DD3V!** qng D=Լ1+ h"tuuMg!I+]lvƣh4mEkhzևk%]6cFFhh;!=iڞeIZ {ΤI`Eף]x4לm\`}lujIh LBn)#h44 y8Xjh4 ɎTPܺ'TKVg@ zs=~?yY'; endstream endobj 379 0 obj << /Length 2182 /Filter /FlateDecode >> stream xڭn]_1B%v7p x]ہ7z^ 3"cC#-|{nj db]G-gbzsji6Fi7[{_M$7|ƖEUi!OFI(3l .qn(`!XkZ*xHCij(n"-MyUMGB2&H4o=і%Jp%+x ]t7"C*HÜmY6mLO5,;t*l$ Ȋ5da3Lmw]\E(־(Ꙙdopxxt6n7(T XKۜo;nPlhiSQxn 0?3gܧ_ƫ+W`pO8٥UNÁ\hG`/7sILKr_RG{oo?XX!BSXȢ5+ju1=E 1k運Lة/  I$"TJ?GeN[Zh/6kz 9la_('\$fVA_; [zxwF9cJő1 %U1BVB!oKfE6gFɵI($HhgZ #Yyğw~5컉6n\؆o Dn8Dmr8jLAV p5/LJBl eCyV2'8Ʃ@l~H4v>F`J'o'zn,zKd)]ڞ+ 0͋:Y1!Q?2F䅔d0v 9)@*rN πx>ٝOH$"R DDFfzԫkۯ¡s̋_( O(QLgri1( @תI[Lez%ǪeSUQxZM-d k^Ѝڻ͍7i~3}^%U`h9fb9[#oF{ qbB|Յ/h_c  endstream endobj 392 0 obj << /Length 2806 /Filter /FlateDecode >> stream xڭYIϯP~o`'؉bg>IJ"eק pQS`P/k!M2+q1Lm+bXn U׻yiOPu4ݷapn]MO4UXZ_7|ed㫮 \O}AǪ t]fcGNw6宩JZ{i\ ¡S5..oO4JfQd]U>>Y 2c9tEC]NO "ApQ}xYp\+p|I t,NyiʘYFrlKCji^W*_J5VEn8v'C31,I?8yDj*}F9>?#v{$h!r@i5E})8 &U`HAhi|qU"eD^pƕ[U>\d5t?.4J-Ki̤2TMx2aP]>q 8xYo|5)o\ $9'ECQx6\kIQ}O6\˩-:_ 6M(G ow!_z4sW^<&$޷T>R1Npηz>H^ i87HXj0,f:U LPIh1plZMd<,O?U@k.`gʀF0)A޾#l{{1 c$yqHT@XYR{? Ճoa+5`i^z Yf*< .sÀH&bLdPHOb8(RX XN5J7@<#x/煫݀p dg<;28_%z˰CnUVnkh~:E"|1 ?Iɴ kf7J&GWRU 3ٞC~ B[~ rőFCycʃ;#BƕO,)  We ob4-Mrs('AӆExͷ4,1 }dKm1|l{㛟ߠFlM rfɦ8G)!dLeo=@<4hS/LQ@LýBD"_: K26,cp%˲\0n 4$V<\&ZBNm%(:GCf=wo \ \2$*P$8]jii4h3j&(Xڇ8@_ aj~TI;+t[O>22\YCdN1 B>,r$-b< T}g髾T 9U0:>8mN#}?sB%vMS~>}GjoS\l.jbjSQdS7.-T[ѹB}^scyKWHR<<>G_ !߁goޛOL"vҗ 1*++q,鏾~)Sz#sCU_rڭfB ݷ'],,&k ʕ7nQ!KjrՅW ~K)Q>Aוa)4 Gv'K|5yӱ$nW̺]t(]]jY+`#]}c޴ȞJpbs7޺xͷ>4[*N07\sG}qXØDGrrkO b g ޹d+M (%O?@?TӼ[1$nY'{YfWHAk$2Rϵ+PFzQGiۤQ|7.[4k+e6j9>et5SM_߲s0[81edGwF?_?廒Xj_Y6m!->p 9hF`yGJJIJ# endstream endobj 400 0 obj << /Length 1297 /Filter /FlateDecode >> stream xڵWKo6WFrs]tl}؃-1QYr$9;P(n 9 |]\1ʽ$!Γ! E!#4d*־T%#cS6&EVՂSΔ'bLW8mJܪtsܶBQ}ZlV?CD,Eą$ b0הNmxLH:AǪ}j,LEsTBRd 8ݙ<16oAd%c$QK7{]{oL8tVf3\,6tKHB!&ʩ0K ~[xSWE?8~SV\3rkV Fvȥe6UQLHгD5_}|M6;k;u0@X. F ]֧m|_9idCxуC eJLEyޤא]BR=], I{0b 47H5nۓ* -@pWFЯA_h?NMIrSh՗aSmrsNI'5Kz\pu[*w@PyLB#O q䥇VH|-'xx?ڿns<-{>g`fyE$Rͩr\B’ w8(Rs̍@\TPTQ- #Xf)WUyX,YҚ5N8wFֺWK qj%ƙQGsoE=趚DB"y&xDR2,7، :BNx'(h<`HW'㓄3l)*䓇6K" c#֟ (uoM 0?- !v2A @3j:c wZw>?gC=u6@Ph#sU}z-mjǢa nMTStZ c{o6_Cȝ뵻|{8yrYưfC ̿rYǛO1FCB" 0\֨ȳiMᓉ.Dff&{|aLC?oDQ+l ޕ@k6Z0tX@ObxB.?X$ .?WC_XAor{ BS56' :#s~692zj޶g/fS_>S0"xVYu endstream endobj 397 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/private/var/folders/ky/t49b807571q6cqs36mq80s3r0000gq/T/RtmpNVuSlM/Rbuild64da5ea5c82b/gnm/vignettes/fig-profilePlot.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 403 0 R /BBox [0 0 395 394] /Resources << /ProcSet [ /PDF /Text ] /Font << /F1 404 0 R/F2 405 0 R/F3 406 0 R>> /ExtGState << /GS1 407 0 R /GS257 408 0 R >>>> /Length 8744 >> stream q Q q 49.00 258.21 123.52 87.29 re W n Q q 0.00 0.00 395.25 394.50 re W n /GS1 gs 0.000 0.000 0.000 RG 0.75 w [] 0 d 1 J 1 j 10.00 M 70.08 258.21 m 156.96 258.21 l S 70.08 258.21 m 70.08 252.23 l S 91.80 258.21 m 91.80 252.23 l S 113.52 258.21 m 113.52 252.23 l S 135.24 258.21 m 135.24 252.23 l S 156.96 258.21 m 156.96 252.23 l S BT /GS257 gs 0.000 0.000 0.000 rg /F2 1 Tf 10.00 0.00 0.00 10.00 60.21 236.69 Tm (-0.6) Tj /F2 1 Tf 10.00 0.00 0.00 10.00 103.65 236.69 Tm (-0.2) Tj /F2 1 Tf 10.00 0.00 0.00 10.00 150.01 236.69 Tm (0.2) Tj ET 49.00 270.41 m 49.00 339.93 l S 49.00 270.41 m 43.03 270.41 l S 49.00 284.31 m 43.03 284.31 l S 49.00 298.22 m 43.03 298.22 l S 49.00 312.12 m 43.03 312.12 l S 49.00 326.03 m 43.03 326.03 l S 49.00 339.93 m 43.03 339.93 l S BT /F2 1 Tf 0.00 10.00 -10.00 0.00 34.66 264.71 Tm (-2) Tj /F2 1 Tf 0.00 10.00 -10.00 0.00 34.66 295.44 Tm (0) Tj /F2 1 Tf 0.00 10.00 -10.00 0.00 34.66 309.34 Tm (1) Tj /F2 1 Tf 0.00 10.00 -10.00 0.00 34.66 323.25 Tm (2) Tj /F2 1 Tf 0.00 10.00 -10.00 0.00 34.66 337.15 Tm (3) Tj ET 49.00 258.21 m 172.53 258.21 l 172.53 345.50 l 49.00 345.50 l 49.00 258.21 l S Q q 0.00 197.25 197.62 197.25 re W n BT /GS257 gs 0.000 0.000 0.000 rg /F2 1 Tf 10.00 0.00 0.00 10.00 47.61 212.79 Tm (Mult\(Exp\(.\), orig:dest\).educ2) Tj /F2 1 Tf 0.00 10.00 -10.00 0.00 10.76 299.35 Tm (z) Tj ET Q q 49.00 258.21 123.52 87.29 re W n /GS1 gs 0.000 0.000 0.000 RG 0.75 w [] 0 d 1 J 1 j 10.00 M 107.60 298.22 m 113.93 298.22 l S 110.76 295.05 m 110.76 301.39 l S 53.58 261.44 m 57.15 263.38 l 60.73 265.37 l 64.30 267.41 l 67.87 269.51 l 71.45 271.65 l 75.02 273.84 l 78.60 276.08 l 82.17 278.37 l 85.75 280.70 l 89.32 283.08 l 92.89 285.51 l 96.47 287.97 l 100.04 290.48 l 103.62 293.02 l 107.19 295.60 l 110.76 298.22 l 114.34 300.86 l 117.91 303.54 l 121.49 306.23 l 125.06 308.96 l 128.64 311.70 l 132.21 314.46 l 135.78 317.23 l 139.36 320.01 l 142.93 322.80 l 146.51 325.60 l 150.08 328.39 l 153.65 331.18 l 157.23 333.97 l 160.80 336.75 l 164.38 339.51 l 167.95 342.26 l S Q q 246.63 258.21 123.52 87.29 re W n Q q 0.00 0.00 395.25 394.50 re W n /GS1 gs 0.000 0.000 0.000 RG 0.75 w [] 0 d 1 J 1 j 10.00 M 260.61 258.21 m 364.24 258.21 l S 260.61 258.21 m 260.61 252.23 l S 295.15 258.21 m 295.15 252.23 l S 329.69 258.21 m 329.69 252.23 l S 364.24 258.21 m 364.24 252.23 l S BT /GS257 gs 0.000 0.000 0.000 rg /F2 1 Tf 10.00 0.00 0.00 10.00 250.74 236.69 Tm (-1.5) Tj /F2 1 Tf 10.00 0.00 0.00 10.00 285.28 236.69 Tm (-1.0) Tj /F2 1 Tf 10.00 0.00 0.00 10.00 319.82 236.69 Tm (-0.5) Tj /F2 1 Tf 10.00 0.00 0.00 10.00 357.29 236.69 Tm (0.0) Tj ET 246.63 265.03 m 246.63 341.28 l S 246.63 265.03 m 240.65 265.03 l S 246.63 280.28 m 240.65 280.28 l S 246.63 295.53 m 240.65 295.53 l S 246.63 310.78 m 240.65 310.78 l S 246.63 326.03 m 240.65 326.03 l S 246.63 341.28 m 240.65 341.28 l S BT /F2 1 Tf 0.00 10.00 -10.00 0.00 232.29 259.33 Tm (-2) Tj /F2 1 Tf 0.00 10.00 -10.00 0.00 232.29 292.75 Tm (0) Tj /F2 1 Tf 0.00 10.00 -10.00 0.00 232.29 308.00 Tm (1) Tj /F2 1 Tf 0.00 10.00 -10.00 0.00 232.29 323.25 Tm (2) Tj /F2 1 Tf 0.00 10.00 -10.00 0.00 232.29 338.50 Tm (3) Tj ET 246.63 258.21 m 370.15 258.21 l 370.15 345.50 l 246.63 345.50 l 246.63 258.21 l S Q q 197.62 197.25 197.62 197.25 re W n BT /GS257 gs 0.000 0.000 0.000 rg /F2 1 Tf 10.00 0.00 0.00 10.00 245.24 212.79 Tm (Mult\(Exp\(.\), orig:dest\).educ3) Tj /F2 1 Tf 0.00 10.00 -10.00 0.00 208.38 299.35 Tm (z) Tj ET Q q 246.63 258.21 123.52 87.29 re W n /GS1 gs 0.000 0.000 0.000 RG 0.75 w [] 0 d 1 J 1 j 10.00 M 309.71 295.53 m 316.05 295.53 l S 312.88 292.36 m 312.88 298.70 l S 251.20 261.44 m 254.21 262.58 l 257.22 263.77 l 260.23 265.00 l 263.24 266.29 l 266.25 267.62 l 269.26 269.01 l 272.27 270.45 l 275.28 271.94 l 278.29 273.49 l 281.30 275.10 l 284.31 276.76 l 287.32 278.48 l 290.33 280.26 l 293.34 282.10 l 296.35 284.00 l 299.36 285.97 l 302.37 287.99 l 305.38 290.08 l 308.39 292.22 l 311.40 294.43 l 314.41 296.69 l 317.42 299.01 l 320.43 301.40 l 323.44 303.83 l 326.45 306.32 l 329.46 308.86 l 332.47 311.45 l 335.48 314.09 l 338.49 316.77 l 341.50 319.49 l 344.51 322.25 l 347.52 325.04 l 350.53 327.86 l 353.54 330.71 l 356.55 333.58 l 359.56 336.46 l 362.57 339.36 l 365.58 342.26 l S Q q 49.00 60.96 123.52 87.29 re W n Q q 0.00 0.00 395.25 394.50 re W n /GS1 gs 0.000 0.000 0.000 RG 0.75 w [] 0 d 1 J 1 j 10.00 M 67.42 60.96 m 164.72 60.96 l S 67.42 60.96 m 67.42 54.98 l S 86.88 60.96 m 86.88 54.98 l S 106.34 60.96 m 106.34 54.98 l S 125.80 60.96 m 125.80 54.98 l S 145.26 60.96 m 145.26 54.98 l S 164.72 60.96 m 164.72 54.98 l S BT /GS257 gs 0.000 0.000 0.000 rg /F2 1 Tf 10.00 0.00 0.00 10.00 57.55 39.44 Tm (-2.5) Tj /F2 1 Tf 10.00 0.00 0.00 10.00 96.47 39.44 Tm (-1.5) Tj /F2 1 Tf 10.00 0.00 0.00 10.00 135.39 39.44 Tm (-0.5) Tj ET 49.00 65.60 m 49.00 144.92 l S 49.00 65.60 m 43.03 65.60 l S 49.00 81.47 m 43.03 81.47 l S 49.00 97.33 m 43.03 97.33 l S 49.00 113.19 m 43.03 113.19 l S 49.00 129.06 m 43.03 129.06 l S 49.00 144.92 m 43.03 144.92 l S BT /F2 1 Tf 0.00 10.00 -10.00 0.00 34.66 59.90 Tm (-2) Tj /F2 1 Tf 0.00 10.00 -10.00 0.00 34.66 94.55 Tm (0) Tj /F2 1 Tf 0.00 10.00 -10.00 0.00 34.66 110.41 Tm (1) Tj /F2 1 Tf 0.00 10.00 -10.00 0.00 34.66 126.28 Tm (2) Tj /F2 1 Tf 0.00 10.00 -10.00 0.00 34.66 142.14 Tm (3) Tj ET 49.00 60.96 m 172.53 60.96 l 172.53 148.25 l 49.00 148.25 l 49.00 60.96 l S Q q 0.00 0.00 197.62 197.25 re W n BT /GS257 gs 0.000 0.000 0.000 rg /F2 1 Tf 10.00 0.00 0.00 10.00 47.61 15.54 Tm (Mult\(Exp\(.\), orig:dest\).educ4) Tj /F2 1 Tf 0.00 10.00 -10.00 0.00 10.76 102.10 Tm (z) Tj ET Q q 49.00 60.96 123.52 87.29 re W n /GS1 gs 0.000 0.000 0.000 RG 0.75 w [] 0 d 1 J 1 j 10.00 M 121.12 97.33 m 127.45 97.33 l S 124.28 94.16 m 124.28 100.50 l S 53.58 64.19 m 56.18 64.63 l 58.78 65.10 l 61.38 65.61 l 63.98 66.16 l 66.58 66.75 l 69.17 67.38 l 71.77 68.05 l 74.37 68.78 l 76.97 69.56 l 79.57 70.39 l 82.17 71.29 l 84.77 72.25 l 87.37 73.28 l 89.97 74.38 l 92.57 75.56 l 95.17 76.82 l 97.77 78.17 l 100.37 79.60 l 102.97 81.12 l 105.57 82.74 l 108.17 84.46 l 110.76 86.27 l 113.36 88.19 l 115.96 90.21 l 118.56 92.32 l 121.16 94.54 l 123.76 96.85 l 126.36 99.26 l 128.96 101.76 l 131.56 104.35 l 134.16 107.02 l 136.76 109.76 l 139.36 112.57 l 141.96 115.44 l 144.56 118.37 l 147.16 121.34 l 149.76 124.35 l 152.35 127.39 l 154.95 130.45 l 157.55 133.49 l 160.15 136.50 l 162.75 139.43 l 165.35 142.28 l 167.95 145.01 l S Q q 246.63 60.96 123.52 87.29 re W n Q q 0.00 0.00 395.25 394.50 re W n /GS1 gs 0.000 0.000 0.000 RG 0.75 w [] 0 d 1 J 1 j 10.00 M 256.84 60.96 m 362.65 60.96 l S 256.84 60.96 m 256.84 54.98 l S 283.29 60.96 m 283.29 54.98 l S 309.74 60.96 m 309.74 54.98 l S 336.20 60.96 m 336.20 54.98 l S 362.65 60.96 m 362.65 54.98 l S BT /GS257 gs 0.000 0.000 0.000 rg /F2 1 Tf 10.00 0.00 0.00 10.00 251.14 39.44 Tm (-8) Tj /F2 1 Tf 10.00 0.00 0.00 10.00 277.59 39.44 Tm (-6) Tj /F2 1 Tf 10.00 0.00 0.00 10.00 304.04 39.44 Tm (-4) Tj /F2 1 Tf 10.00 0.00 0.00 10.00 330.50 39.44 Tm (-2) Tj /F2 1 Tf 10.00 0.00 0.00 10.00 359.87 39.44 Tm (0) Tj ET 246.63 62.64 m 246.63 128.34 l S 246.63 62.64 m 240.65 62.64 l S 246.63 84.54 m 240.65 84.54 l S 246.63 106.44 m 240.65 106.44 l S 246.63 128.34 m 240.65 128.34 l S BT /F2 1 Tf 0.00 10.00 -10.00 0.00 232.29 56.94 Tm (-1) Tj /F2 1 Tf 0.00 10.00 -10.00 0.00 232.29 81.76 Tm (0) Tj /F2 1 Tf 0.00 10.00 -10.00 0.00 232.29 103.66 Tm (1) Tj /F2 1 Tf 0.00 10.00 -10.00 0.00 232.29 125.56 Tm (2) Tj ET 246.63 60.96 m 370.15 60.96 l 370.15 148.25 l 246.63 148.25 l 246.63 60.96 l S Q q 197.62 0.00 197.62 197.25 re W n BT /GS257 gs 0.000 0.000 0.000 rg /F2 1 Tf 10.00 0.00 0.00 10.00 245.24 15.54 Tm (Mult\(Exp\(.\), orig:dest\).educ5) Tj /F2 1 Tf 0.00 10.00 -10.00 0.00 208.38 102.10 Tm (z) Tj ET Q q 246.63 60.96 123.52 87.29 re W n /GS1 gs 0.000 0.000 0.000 RG 0.75 w [] 0 d 1 J 1 j 10.00 M 329.73 84.54 m 336.07 84.54 l S 332.90 81.37 m 332.90 87.71 l S 251.20 64.19 m 253.80 64.20 l 256.40 64.21 l 259.00 64.22 l 261.60 64.24 l 264.20 64.26 l 266.80 64.29 l 269.40 64.32 l 272.00 64.36 l 274.60 64.41 l 277.20 64.46 l 279.80 64.53 l 282.40 64.62 l 285.00 64.72 l 287.59 64.84 l 290.19 64.99 l 292.79 65.18 l 295.39 65.40 l 297.99 65.68 l 300.59 66.01 l 303.19 66.41 l 305.79 66.90 l 308.39 67.50 l 310.99 68.22 l 313.59 69.10 l 316.19 70.16 l 318.79 71.45 l 321.39 73.00 l 323.99 74.88 l 326.59 77.13 l 329.18 79.82 l 331.78 83.00 l 334.38 86.76 l 336.98 91.11 l 339.58 96.06 l 342.18 101.63 l 344.78 107.67 l 347.38 113.90 l 349.98 120.03 l 352.58 125.82 l 355.18 131.14 l 357.78 135.86 l 360.38 139.85 l 362.98 142.95 l 365.58 145.01 l S Q q 0.00 0.00 395.25 394.50 re W n BT /GS257 gs 0.000 0.000 0.000 rg /F3 1 Tf 11.00 0.00 0.00 11.00 56.26 361.03 Tm (Profile traces for the multipliers of the orig:dest association) Tj ET Q endstream endobj 415 0 obj << /Length 2674 /Filter /FlateDecode >> stream xڥ]o8"(p/^ t;lӧ$ǼʒW~pp4p8ŏoB'arqhu&R..nV\a2}~ 6ۛ+47}>?Vلjp2#7Zo?d9.!iMpʂV";SP0Mu/n I Tz!m[j)%Wvo{XEY֗%^n]6s>2KEcX0gbyXQUyWV=s:PEL;L&"o-f~9V7_x&3մUQv]8rןfHցu@4FQ'(>A(SIGÉJBf}:Hut6cOTI $ہxIi6^L:bzS0K;4{8xfH2P2_^7vw6b-S$$ #,TV"(o{%v Ch]mn*%F|e.e*ii/es~Sl v0ٗp7 @ :'4u0#7]XV+rC8-/;nH8>| 2s+3Es2o ,/kd71`/:}t#H4p{v2z1U w# 9W lm9svvz2%pl*~Eo)횢#hm#]v2% b1|/:KD e+= q7uFDʎt3p@i?a[ ' *r(GBҰh8db>lx*shW@PP @n^Χ.1ϩ.<,{*`E¢n0cLGV`GYi0/  ~_XS5Dr%mZB i݉ SE ^gnνsjZz}3 94ώfqf` :GrBqgdg51w%B%I橂ИB/] 8օgj)ap֔hS;=nn^mJo~Z痋?T20,:qhx~-$2[@9w *[9C$[G]YS&Z$5eCSln0΄J3X%4:N@!w%T$,h97u6SDS] %{~|~Qas4՞a=z2M4"L\C(DZ!G09H54پmCer=vhd "l _uC2X;`F EE AאγǙh6O$mC=֜TLs$T8vJZ߻ͦ78Əl{%`ޔJgq2@&KgL- TX9B"طHEt;Xct\[&1_PDǸT,,<-X-Zs\`rn;uD.h;1;TtwKQ,LF-.HE"K~ݖ,#4;ѸQ&$On(-,~Rрw5"}lQ)qIeĹjJTcyGOySzReϐ%BD]m[c%z7ۮzXtLUB\=[YT5"A*~F9.#)$>?4(piSj\jPCNeP`ژ zx;Sx~ɛ FlCl%O(9\*;#J@N3f1|;rcm ݺq+l!D$?~&Ɂ= dJ xT]!-'S0lJ.p00jO4AWEa}Cx?w4 5ctl@qRKJ ;b)ޢ XCd'n@Z%SAEXt@WTbbxaDX K A p&ƁMEA~[QO7rtT@C5kpR?aRgʨ`gم Ypcz|%nۡ횶2mi M5shᬼEB C疝5/T O\PLQQ+Rsv^LmO 1m xW+_!> +'RD=9B- y|dA)34(۶kp%{ՖE vHϼ0OiGOR6Ybd-N'Cc ӛٮ{H=Ϊv0C]n>͂ePbFf[=6 4RsEBBo_ endstream endobj 317 0 obj << /Type /ObjStm /N 100 /First 872 /Length 2374 /Filter /FlateDecode >> stream xڽZn}W!=}K`,`K+@6kXY#je"rp95RĀtMuuթ[7(o>*orϸM(2Ay3LV! IVHG5*2,xap(k|n9/f@9@bܐϭJƩ0O b+bRٰ8ht* ,Z~rT|ϗJfy=*.WWuQz ~.3ոVK]`qb%Z,t˗Tśǹ*I]U #@&`GAbΤ A7 0 JjN? -Mi ڋn佰0.=Z&@B\|xBdrBHf// *U U|sJjTAjV/8*>[,ŸZ6ysu=)_ϿzY;4)*X@'oE$r|,ND5dūY7$-4 Vx'O3Iݐ S4~IhAۡ'hXKE"TK|]>pZD4m̰07ڈM} I3Kda6xih v a$6"i߰t,`v|G5?@"EckcEo/ZF`.;?ݺAm{]`^c{MCڡBI3RJ @r,4F ,cB@PeʒQBz'EyWWw 'DL~Il<^sT$M/ZU>dq3+:ei˹Cl?Z;Ѳ\B/Z@'/:vmc?ٻc'PvcFI=A'UuhّOxr|p#Zp`)> yv ȲQj.Vpܶ,dYΛu,n%V|%c֒CտCݝSqݝkN,:zWۡ&jڮ$AtXMA s 4 ºo]ou@(Þ|^c4x;ie;-uYs`}kǺuv[PD{kR mӉ Ɓd="pt4Cq}`kh oSL٬&D`ўˡl!x. | cQI |-:U9$='À1A#m:;MlI.9FdBc)iXӐx_tE6luu\HG[!Gky,RE˦)EkK%$3 Y'Nocңې##:ө}lQu_`αz͢dT/EոZȨk+ڹEwb5K;*^^˪][|2*<:ϪQl<$?/}|ZT䕲;`~YLffɷM h>)n2[-UſW(M,Qq=Iq(rb}5-i|V r\ V"6bRMMP5Z8q%W7^Nac[!2dF_HB~2`]`bՕZgm${]6JC`mQDMNlf(mgrRS pÖr'Ҷՙkϫp endstream endobj 422 0 obj << /Length 1269 /Filter /FlateDecode >> stream xXKs6Wh 5Q_3iƙNUNYRJRV_HqlY4bcwQLz$Q0B6F3gcS|f53hDQ2juqI6JrY[&n)EYagge̬`O+K,ǦˤRc;c;Y"YV*IQ@rFv.)֑C:]}\:$3ik"J9cT~J鿡7)5k&(-d`{^畬FU?b'{ um26Ⱦf,ƢSt }G=~ʃ2z>lVuZ{}b\,Tjjoy+3;Ύ5brL<#xڂ,H ǀ"D^'-H+:[CˉL8 `Y 4)u\6gT#tWCҋA.\}Xؽˇb$> .#6< R#W aP<(n"Foj (ag]BNHCGkn3F:nؚ3L*"D%0sj`Θ(+#+T0 &Mזmcj*?*JWL0RV6)h[/)LAKX߰ i)Ƃ:\xNۥzB&(mXVg(zPJPY v~SBlaYn!PV]ƭ""k\t:Uz]*Fmg^sbbSC_5Gjb:k>|@ /3⛭ ?gw2db:9UիUx_禮Vh]F e8xWQ~z@󹦽GYpxx@r<7nW:* endstream endobj 433 0 obj << /Length 2885 /Filter /FlateDecode >> stream xڭkoܸ"(]TrW \hr@]Wv哴v$jM;cDj83ΛOo ճfFih!fJ%g߾ۇ7%QZ03Hb /Bxw~>LmV}᝜.95uu7zb[v܏u8:3G퉍["@<@cBStQ̰0f߷ewYJ ,J #Hg" MjIF ޗD#=ByXRJ~jAt}u7[W.Rv~Ї_MnGl6WV[V~t]yX,pSv4%ym0u/1DbL[wh0 L+<M $GUW %  "iUx*ZJT@!% 鉵4Lk+'op禿6fta߂#""Gdٜe7aQHmn_*)1U?{2q韩Xn׾ZWDUQPXzY>n&̡~:zb; ,C$H KN1[M ~'Cϸ1܅xs n V"'G!o DH&5a0դȉQ@J8qhp| ,5`t@Q͸(wԴ0%q~tN~)۠ 9*C2Z׆cBbu2\hk?LB:cC(\ݼ~{Ǡu9n6WӍsfr$!2c >^Mxt6 ٜXOzrخ)C2~.PIK~fU>r3usp؄mlXuy>MPJjseCMsCJNɒpe_s YAȧrVH"9l%@Cy"!cII( r]UeWgok6>uf ;e )`ٕ_ h}\5agBRFvԝhͼ3a!/ m`b"o|s>5{WrwL!7ʙK8 h[!uAuR"!9z%#\Y§1hBVEZ* DR,W %ӾX CBEnqmH+!~ɤ@ Arj"}HPbϱ[U8+퇸alǶC$dm7D VpDD@r9%a%8{%3x!hF  *MCZp -f G[UɛOFQ@гl  ksRz'\ho-A&8t3 -f.ddʛXT22CQ .RL0 28dz#")U$gcbNC[ qXO lŭ8T|J48uY`nJFN *$Ո ,G{*i7`(|$ H@9 u1pGi;,G E'\0b14fGY*uɫK$S,iCfYMxo2p )4d@89 Ud#;,cRf7䔤􏤕|_Y@T>e6P ABQwT[ i*d*$<ߡF H*= ^YYYuwC%?1"eQA"]G'эlo+׼14;]msYmje% + g*-<c;̓@KBHǚ  QD5}qmx޾y Šʒ@7S!)R (!#Vrg1 C:$$VqCR(T&۽{xInд f\2 B:k1{i +j҂{-Xҫ ~6Y5&' )Y$!@KcU! p7\[Zs[.(/B˕el;o!8 ƆE2:-T(XO=s/*ҎlS>7_²{aM|*鈆0wP} O[BoNӄ2'`nAI}kc1l}ۿ} *g:?f頦~;7mVlC.".^ix>\kX6ݪ]NH"KykcU?xMkwsE֔t7ߤ 5q:~gq! <+a?L52GlB;9"l.e_N>*$Z$ l endstream endobj 439 0 obj << /Length 843 /Filter /FlateDecode >> stream xڵVMo8W9hĒHIA[m4 Է$VmJt߾C2D[d̼i$ad11LPQ,~,fh;Hp 5GSB&G1?o/QJNyZGQD2^:Vut_;˄2eH-ZR?, 4Rk'ڨ$K ZJA֜zn7!N%\ޯhqT_R2"1_ߥQV ze6 J7{c)aPnoEgKnGhg\s75&=)>׮/Aeoֵh~Z˄bbnBBۭ+mn|=y_cp7^0giD@l,`uvUx;H/b i^oD04(a*FUC9oi+w܌bkN6WA60įv&JQӔ,-pb"+F^u Ѳ(Ts/D Ð |,JtežgO endstream endobj 428 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/private/var/folders/ky/t49b807571q6cqs36mq80s3r0000gq/T/RtmpNVuSlM/Rbuild64da5ea5c82b/gnm/vignettes/gnmOverview-qvplot.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 442 0 R /BBox [0 0 432 432] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 443 0 R/F3 444 0 R>> /ExtGState << >>/ColorSpace << /sRGB 445 0 R >>>> /Length 875 /Filter /FlateDecode >> stream xVMo7 ϯjE"5&Hh `lHvR5AjIE2p  IY dQyQ'Ûoa{ G<*jƒ2T wI!h@h"*+5@ LЊ" mT_l)63z.&.x~Wb3* {w gy|  q0eǞw$68<%tNa%D@P`GH~!+K LUrm)蠴Smpa.a8d >Ӵr-"8MK/גumՖ#d˔FNqy,zJZ\`G@.R 58>~ݪZq\YVg >[?ݜ_ѡ]D/|K ؎P/1}:ܟx漻W?.4\ܞN펹o0<]~ +WT}& :-p!!=^Ս`j3 #RNU69!yLVmvq|uAa]PfoD{;$~{ZF1EBS[/Bl(.2BChɫl[%.Ѯ.kA»S6Ft]KPިql\9M[Q]ećE빣7eyKZRZHHIEX^2\`%4v1PVm[6]2yhWqՔN ~?yzpv{8z1(ݠ˛a4{uvi5iv% endstream endobj 447 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xwTSϽ7PkhRH H.*1 J"6DTpDQ2(C"QDqpId߼y͛~kg}ֺLX Xňg` lpBF|،l *?Y"1P\8=W%Oɘ4M0J"Y2Vs,[|e92<se'9`2&ctI@o|N6(.sSdl-c(2-yH_/XZ.$&\SM07#1ؙYrfYym";8980m-m(]v^DW~ emi]P`/u}q|^R,g+\Kk)/C_|Rax8t1C^7nfzDp 柇u$/ED˦L L[B@ٹЖX!@~(* {d+} G͋љς}WL$cGD2QZ4 E@@A(q`1D `'u46ptc48.`R0) @Rt CXCP%CBH@Rf[(t CQhz#0 Zl`O828.p|O×X ?:0FBx$ !i@ڐH[EE1PL ⢖V6QP>U(j MFkt,:.FW8c1L&ӎ9ƌaX: rbl1 {{{;}#tp8_\8"Ey.,X%%Gщ1-9ҀKl.oo/O$&'=JvMޞxǥ{=Vs\x ‰N柜>ucKz=s/ol|ϝ?y ^d]ps~:;/;]7|WpQoH!ɻVsnYs}ҽ~4] =>=:`;cܱ'?e~!ańD#G&}'/?^xI֓?+\wx20;5\ӯ_etWf^Qs-mw3+?~O~ endstream endobj 454 0 obj << /Length 2527 /Filter /FlateDecode >> stream xڝYKo8W91iH3؉a2vQKz`}bzĉ&U$.Oq-dzyY,E{q\$a FЪm$MQ׽jU׿ !"ϏӋ^E|1KgWm۴+=9ib[1]Bw<+N5 o!w/WE!-F D )Gsm6tJ{/[ *hiu_f?\n̛s͗N黃=춂jՉnfiH]Ks;|Ba*%Kz f#Fn77bMjkA,_ayյDl:RH6E,pRChdz6h 4_Kc"xAO["c㖙wMS yU B&LԄ|/BCȥxl@Uaҧ_o DJi0qefdL@UvpK컞o6*>G7Έ8^fL @,kʵw{ݮxY>)(#BW:6ɉ_ Un,9ٗY͡NCHF3idFWK L=imYIbZV_8C^0a؛dL7RGY"ݥMXq*?(Φ6Nm$4:v/ֵѓyA> stream xڭYKsϯ! WfgIe*UWLYCˇ=!=heNV n|o}x~UDpedU&YKvu[^ksJՖQՖHS0T fGnGaĎ3;v,OÍ,Θ}wMy8Sơ4ma›9J[a$ .0Yx]xt2_el-I9_2)j{s %C8 z؛'(d@wJc {&4DAaH~zgiX3 oM2q_V{~9>9iv'HՓ fK]|[HOanhrPMUwA`ԷvjN~,KVQQkQE0Ytȉ?EDynhc{=S=gCn^3!,]bJz v5=Pv7Kn%1J,onFIN4ӾR5- 0%\w{e Ba_-3A/,OHe y,PU `~}(̷3 A(y\@S[0GRD);kCfy$:Y. ::4#`ݬS9"ݦ*MKMSup $9v&F@vF^S@z;X+X])$& 0^}u79ʷK"HnG(Z"* VfuC$3(^f )q&hwh$z9>\31ś#. ^I- lJ Ku!x#|2O%ԙ|i ru|V&faBQӍ36sMSEC۵K2L+Edjq;@hp=i! 7ʍ,n,~tL"Nπf7EK {0犖-s )ꂆxpq>[W !:P'sqWr] ">rA2M~LoKnL)dqvI6T짮.E&d!.%䐚-5 [*ՆQZFCOӈǯ"sJD  &ia815 r {^…57hn"Օ͓`t=~y;SϬ}X1ўDƬbiI h\p_lu&(^]à% fڐ*mG`7~ue+0(Yރ]n( k݊Fۺ a&X@_ڜkm ~^d/{ dV;Ywh|L+zcUc$yckK=aK^m\V(_y6YP L bYnX'*{'LmEj|\W $<=Ý&r%% c3ij>Ƹb.! @+DKܝwXq ̓3p6%eѐ>YO %/x #Ξ^K! `=`cj pE*Obk;6zrE/Qb쑱Q:ЙM3F6̩*xZK1=@{&qD(1U^",&`C WϮ3l98*=6e7 QB nS(^AjҥIy"0)utv *Kܟ´`X}6ʶfQع:vEJI@s p0;*9`Ê@ӹ.,Tؚ=J^~?E~fV{߆zL?KME^ p3jDhX{&n캺[ip7g?cJ$ (e"^ nFGѻv"Eix杹F$59dlQTAum%L4`Ҵ. 7tvjT&_yi|WԲZX[6V=; Bg EZg%i~bDeYoAϤ۴~$~ߞ(LzKsTêϭ $-#ef+C*;+@%ʊ0RUg7vm GW(.sB8sMԧj Hs(uG0饶cEqLPyePl{0WU#ͅ)vQpPeIۮ|v 4o>#]k5S=^]3^cW=$lJ"| endstream endobj 471 0 obj << /Length 1656 /Filter /FlateDecode >> stream xڥM6C0BQS)M6M=4=0ӽfMU+-/?⑄i 8Uh`#bYijw^˫_eճ7$^2nBƘc߈qϞoD+AGsࣨo{oe_#{/7`iAZtQ[qhB5o7   QrY1 $EM@(o.CMijnF^@{܀(+Q*,69gN$Yl/oh!m> jJئȒ"fyTAkNZ/{qlpB|u8Np@T~DC[m4D;++JzN_m9 AcPZ7/+%1yQ]7vmvRG梌lBQBڀ砂eP&14E4g?IYweȏW$yB.Ԅc Ǒ#.Un ̣:\SjR$VQP&kJX:%"[Ki1ɁS]BQµGG+{1h Q`9:+nш}-,ځhv8z`u(4@N>W+8˅3;gbg+B.% rg.jRNtj&rWQ-m~!1d6Y˞#A/&hC4FݱUEUV#Ƈ tn'sVf(ެ Y?b \f#^4}6~IHg$`x5YI ꡿Vêt>/==faNe&KC-X1 AӮ{!/ނVj/,>A8 B5DӚzI(1Yr,BK_Ʌ -vKuE]]iΖIj7 LF QuB*nj]DZɒ܃y"#fsiVxZr}9醇v˾@( tj>䪲}Z`5nFPrڂyNAkܴO ԈAF+r0F#ig_YHUOi鶬1[G8FM {FP<m! M{F|>F||ozJjNTJug~7Ly܃hBTm Pip<`^$O{aIG p|vPJXzVh9[3*bu5C|(pXkR%0}F7ҠQFٴWʄ}mff04#}M -z?lXey=ŕ[e~i|zIrg"k1 k+y?kIYXd|d>,ּ?1=o,WSײ[5x fAq%3MJ\zi?;lYg! ; ćWڵ CG݀4|Lz)9;j\O귝5K/aM^C$ X\Z&c@uXI H͠> /ExtGState << >>/ColorSpace << /sRGB 477 0 R >>>> /Length 2955 /Filter /FlateDecode >> stream xZMݿ_1KXٚ8Pl@OUS}@NUϪyi{!m/֭ -o^m}~{.Dw?]ڞȿwIl?m[9Ke+G خ 6A{bP/\"֔pB_lBkq}{Kׁ){ GA_\RB]8{ M~rvdV96ZSCiϐm kM߮g\čdXNʡ֗!!vA-T5Bp&Gk} }m$xn>1m5|qy9p^\"s),o&.vC[Df!)8,<Bkv=r7e?ls ztS`lF̱c&בپpUNM2=6o7q{_j8wiu:ٻ?ޮ?D/?d1O#PC=7a}v뗾]ϸ]Т{ȕ}CS6מ!ʲsttau\/g%2hMIupXlBkq;CܻuN$)d~)<#s}eO#֔-6nېv{\;dBdi'CC(C$H̟$^:2h I<$u}M="&n%ծS!!WIꡊ$!?U6^wR׆P&בFkNՄ9,XS8vDMFD3x]E~ !3)/$#/LmBd_).Iɓ4>]h[ce2n) SGuH˪Dw0h }dO|P'%Vz]")h׼U(ۭDG []:2hMIJ˹2y’o3.pof_duI*{HJrH1JX@oez9&:2h $ΕdO@9|q{ϋlKq $zp͋c0S[I7@}᜛d+=O@((SH]f_D2RJ)Ԭ]Q&2Rv>VsvOCҵZw6Z÷kK]WIb clȾ!2g4;&Df)I6=΍6=nZ75nT'&JԂ aEYruYdrei{ Hzs`E8Jumj hVqdWs<~ hMɡǹz3]H]f_dZD_\"hdfU-Zud.]udњF>mC(iz ܛg_ΫtQ4G.MN9.iZve&n/w-N^-o]x叒,:mkΕm]XC>ܛyzB XBjO wˣ8͢h4ݳ]CdruL@֡Ho-Rf*+C~/UCgr-wJprN@ȧMMqGq#izm+_C"i}!q}3DxpI+s -|Sϸ]5fO*C4g"sWdz|jpY%r[쳉.㳊v=r%]ήDDxCw{q.L\)Ӵ tSQϸ]־<~߾/뇏¯׭ȝ[* w3=j}F4УNNo@4(kL#ĥ90/ \w{:=xTnLE 9=YtNrz~6o_5a1+H"-kc=CO4l@6ЧpiϏ`#d-㥆1vf^sSeaYHHhvr3az ;׆Ck6aᚬI fwC<ÛۇW߼|ӟ_n?Cɹۃۋ-?z7_{/:G]>ХAwWпrZAڹܿzQm*1l0`٧nd?4#-YrRt?$ɝqqlm=ٖ endstream endobj 479 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xwTSϽ7PkhRH H.*1 J"6DTpDQ2(C"QDqpId߼y͛~kg}ֺLX Xňg` lpBF|،l *?Y"1P\8=W%Oɘ4M0J"Y2Vs,[|e92<se'9`2&ctI@o|N6(.sSdl-c(2-yH_/XZ.$&\SM07#1ؙYrfYym";8980m-m(]v^DW~ emi]P`/u}q|^R,g+\Kk)/C_|Rax8t1C^7nfzDp 柇u$/ED˦L L[B@ٹЖX!@~(* {d+} G͋љς}WL$cGD2QZ4 E@@A(q`1D `'u46ptc48.`R0) @Rt CXCP%CBH@Rf[(t CQhz#0 Zl`O828.p|O×X ?:0FBx$ !i@ڐH[EE1PL ⢖V6QP>U(j MFkt,:.FW8c1L&ӎ9ƌaX: rbl1 {{{;}#tp8_\8"Ey.,X%%Gщ1-9ҀKl.oo/O$&'=JvMޞxǥ{=Vs\x ‰N柜>ucKz=s/ol|ϝ?y ^d]ps~:;/;]7|WpQoH!ɻVsnYs}ҽ~4] =>=:`;cܱ'?e~!ańD#G&}'/?^xI֓?+\wx20;5\ӯ_etWf^Qs-mw3+?~O~ endstream endobj 482 0 obj << /Length 1143 /Filter /FlateDecode >> stream xڭWYo6~ϯw#HQFn`d:!ѱC%U~$g|:%Tb *f͌ $b6AXj=MmTj*?-V, ŜoMۣS>jUAuujSB2?ܯ',ukqGdZNNB:+1kw(&U$E/ܹnnڢ66*3鏞ma[(F1%}תVgbN2p'ЛI Ty8}/9d'ۺcα}uD$![q2X d9FK[a¡€|ru|`bKː)X/HFmvlA]Îɶʔz=&QD{s6s}u~m "N\N qR;QinY\(%!9dVMV (7p!Q4] .W,Op1,;25xb 9!Œ{t}%wD/`mWJxlQ~v@TH c-ʬ:fB'%l^ yuDy+GmU2 #حuapN{piO#r|@.6`-٦&h= |oJlk[AP'ڭ9*굣UV>=ݵis-Ϭ#1rAXY>[_rρ[_Mpvm=wOU5 %.{N[ w9?l+_l8@0qŢ$ᴃoK;b`;y=8|߯[W88|OG]+WV9zԣ7('}(z1QE Vߛ;^x>?dMbI :T~<8$5e6푘HƧ&)*E!1,9tJr 8߀""8F & '(a3` 210 f֜5I" Ƌuwy36PhCKTdv>Y U: endstream endobj 486 0 obj << /Length 1750 /Filter /FlateDecode >> stream xڽXIoFW9Q5}1 - @M"qǗYHXh|y/ 3rv)$3% ’n٧㾶חg"C% * MU)(w-_n ! H*%gfPZl4J"g' MbWq>YMmu&YyՀ}W5 A E䶴SӦ"%CjE/W._KQ{pİ޼?J: wEؕ]zb=\W>a]Vˁt۲8O*)ypyEq9Q@V/rx҅1u8:?w:򯲺s&'蜄11&AR&L?0iO2ICM$i~j*?xm V.BhƷ%U}Q+}G,h|JGN~CJ  /V1CC^?9 cdŨ /#CJ 0H*eN0|?0DJ0Pc#N׀q&]@/y~pcOlxw3A*4!`N5=Gg3R|1QS HvUr`Gʼn&:դjVI,BwqۮDĊnY<% ԡ#V]`X۲)Ɔ~6Gl}^::t|ۆyCsȬ2zap mZ;ѕ8L*; kAR_H@=9{<흓V`P)Op{+e1ѽx8QÈeW!91 mY7':o<2p2P?PRA3Qd4S2?t-805-iVhrvm50قaؙʼ>s$/!E޷|u7zC;.FMf,p.='x55NqGOM:(0wmumY_^]ُsls<(\CN?[6LPʎ M)&?yѮ @)eBG_pHT߬:9t.# ^\޼k endstream endobj 494 0 obj << /Length 1591 /Filter /FlateDecode >> stream xڭXKs6W(M"dgR!˂򯮪N g gfZ:#tq#>2 -xp/+Daԕ+W{[!j}hMa)F ,Qh߻fܸ5nPE(3R`@:נ'.,iF&W]dc&0ˡ;%4Q߯ Y@0_6 ES5 F蛶C.8Y09w(wx׋LU-!7-^\&-9 \ 2+[9﹙f?f5Lnr]vih꾬zr]W~q8$XY13㰀&e͛5p6^x)10q/lI\AkqYHljlD SX$MO꺦(8 8fG ͂_~]MzٺH <ء'tLN(hk- {mX~+RɾkJc;w$t:XOt:e_ڪ|˧}]4x+0~M.dGE#b/%|ԩ>;)R-=|/ x&ՋNu endstream endobj 499 0 obj << /Length 1030 /Filter /FlateDecode >> stream xڽWK66h{n@b[c6[XRg(RȎE9o503*&D*,h*,V?nuB'sbLbt]ߥտS&im|Uա&M,>!3"*Fe0[)gnv Lx.CU\=\.VQZ\мC%1Je/~J*z<}Su4;-fCFJFuHi–$`1̘Hkv@5L9()Q(Q2q^4c@qs,y^0d: gTx<kESE0ʲ" eW)R#YEP;4׹͕^Kg)S]%\5 R4Q"mP(e hX0bH6L]L݀L_@\hqD&V|D:\tcL ,{&aL̙=Q"SRh쳨q[q 8&45_#ky?խ8u9ĘhkDݜW!}Y`Xȓգ\N9#qw05WC5^O kd:u# ej0Ibf͙aNq˧/[_o!:}_fno3[_ipYK0hQM/* t.ӆh+> stream xYߏ6~߿B}Y()pIhk8Ym$q#ɛnQo %GM}}M3oϷ7_|%d,RGChsZ0EG?}_M"=4k[jqmģT,s_ٽIDfa}qߢzWG9thZc^vtbTD2aoPK',O dʡgA(L R9Yf,K8AD2 "[KSn(23R{Q%W0Uq͞v4?q*L<% h&E?RjulIO:؎mr-=Xlz/P}_\NlXa-`/vnb 9!*/C]}k\m\iZ)ڞxOR OM@_ܖ8{G g˨RZ4*tU1\SU3eJ%KE>]g[cD ITi@wGSl}n:\)} I 4j_ro1gz OEsJj ZPL2`1{{Ƽe`nܮ3P2_Uu} &q}í w~SQWP2ϧP$Db.yb&1b(H ^~ d=$@kS`c*R 1{!NEw{[V#EiPRzs) 26!aYRvkҴCqw`.wΞ;cgϷ=f+LsWKCtdt([4'[n ND5n -mfƤ8?qST6)/qm Ò$gSbhCbXc?`&Yu< v?&Sۙ$ n~6OќFqS6PNӆ@Oh+ͥ=COTPӦC|UzW1Wýg {ZscOAij7ٻ9^yDͿo苇>N*%_gCQ?]W)wU,tUhɿ8Գָ }(.shSScgHbBL׏4+ #*N)ŀ-7a<,ןZ!x6'~FfyP,CY H/gќp1Mc"" ؎YScg?y~qv RL}sE< ? J\# \UXlX{A_ ?mr &ˢ1(#ŴHǍЗ-΄rIW (vp퍀T$ɢGausMs^{Ș;0L|PdY Ly^d)3"K.) )A_$9!>lvM̀CEE/%*;%#Y^h^Չ4U(Z.bw'&6(|cÝpouٶWmMq0]t9Tӫ+tlfMXچ!~?Y6|*ϻ/h}H*\Rg4L@s?я=g>]"TOd{j_(mԹ+dՄF͞!ϊ 6s:"Z&V^BZO`ZTr8,\S7W? endstream endobj 521 0 obj << /Length 1964 /Filter /FlateDecode >> stream xZo6_f1oIŲu.=msT wIYri ڇJNǻHٗD)J%:E1\$e>7X`t>_*f~TVfc3]7P) >_#B1i-L-X A! w B^ $بUB2g JqʺWXZUuY8V[߶ 7BeLZ&kU$5cNjLL``GJ*;VrlM~]zzUZT>v#޹W6|)mWʥMsc#=g1 7d cWk)A8))waYJyΐφ=BX0,#֗[ ,Ng܆MgunopfNtQ LNLqt)]W5۲V:K?|Ƒ (+#Aff"iʺ`겲3#W*(MqbCVC:BB}T 4qE,f_#w+ TPHq)jQH#351I~.ƁʸDT1[eEz@b:+Jv̠tZڍ5`W;?젆"ٷk7rU•.4Łe[k]am-K,jk*v8EqB?g;[3(pb.x4LԦFn(|,q,)" *Sf3Xyj̩iVr} UeB{HdVo6²@99R#Oʒx_-.N%/D2NB ,R7]&0:_pu~v>kFBp:OPF6qO.ޭ*l:C= ELf+ؕf@.: bnTϡcm|7UU^ukh?.s)6νb8(H ƂKTH#,q.1V"z#l2` .":$lG$I!9XĐ$/ r_@`IK K7̽dp3[~pD`o;w[G(g`4";]¶ѯg}}UXEI~ yl0)/EGvѩȑLX1H+>)7^pHMz Q1 s844Uh4ʦ6 @̬9N⋩ǠfY|CLq(Sv#}҇ < g,>< > վɏaňCS 29(9jg$KS;p5pWi@mO-X;j]u(۲x/p/M6#b(3a;я Yؔz6+c{J#7h=U@0W9VS,mg1^@ endstream endobj 529 0 obj << /Length 1225 /Filter /FlateDecode >> stream xWMo6WY~b6Yt(R=4=жl%WmXwȡQ 6CDR3Oo3㋯?0 1)O@2MT tM`<ˆ_#R51FRhq];hU+/#U2˛֕uJZ~AU4vֳ/G 0c4_~=iJ%,*h)A: U4n{o g!% ν#ָqL.Ozy_'JK '4Q"ӴK>7Q3E9s&X?gɑW y$0JH n81=PXLtl-7b#@Z~QҊ'MR}Ҿ[ZS'[z,lZ1_[gi~5҄ehIuXn Mnu>Єj/Tۼq-"upF2.wed^~vY5`U J\ܕmhlakgngT_TG0ΖXħ-=>@伨:Pz$(Cibc|˶$/*rBs#*鳴TWvua a̷;aL^ 01WH> >!؃(MzL倕UG=P)@m2.4A3ZJw+  )ً~[)R^CJ)W2pIXɈ~19\xrHd"{# ;Dɬ3 ǣl^W+uAK j> stream xXKHϯi-iaHDCV8lgH+~V'xNGUWJ/MfԣziZ0h 'Uy(i n~磩I&R0#L1ᅀ(bG|]V}6h>WՍ-ƖǓ9}鳠ﯧ-%93R"[[ߝEigrnKr϶NR% /lKMMF2Ϥϋ&ٮ^8r"$REF|5ky0Z%KxF3P"Y`O}z(=?Wdx oPmMU ROҚqΓh™X;!2}#۝ <6EܯR((/45`Kce7[8`.yPQұr֦2{͝>k` cI g]ɱͦє〯X1=G} Yώ qh:uFveOo~qE)X#7-VEVu9W`H'Kp)0 5Kq)o9D endstream endobj 419 0 obj << /Type /ObjStm /N 100 /First 894 /Length 2448 /Filter /FlateDecode >> stream xZn#}Wq!l%,0cdzd/d71 Kmzb9Ee],,i yZ&ONU&*%*בrq5\VpeV%Q;m%t@FYyeux%a1))zxeXOfWbs'I}Pil#ş'=3P6IMҘU"kQX+;E| E>@K4IQҗi>]A(ڈ^.#e#nBWQ~V>,sbSI11^A([qpP$!8Yq'*>^11%nom3TU `AhrAcdN|A46on?]Qozi㩡WӀ`EH #Ft2YBQ|_jOAGG(t " #|tK0lX& 4#="@aI%DGmPlp:xB,B3sƔi+%RNR^&UZa5fy<$7i.+Sqٝ?;$$&` ^צݧt7ԻqD8~M_^=^GVY2>yh;y`I]^On˨{%ID{tIvͰ| E7Kc=~1u}`f4<՘6DPkLa}7E~N&~ٴzqop7T_W޸UmIW &Kjc8.:wdzaw6fTVsWYzK.E%!D%/MX-I/?SXHzy uR:ʷ#S?$%PiaQ"%R$2rdr35$ A$0hEOi̯#9av! bpȨrxB tzፖZaL{J۶/@kEˎHz&lf85۸, k:K欥 6Dub>jxO/3F m+xF`\.%dd }e~6uXwG@`&UGj23D23sWDE^i+Bmw5_Hccǧ~ǘ"E]鳬 ')7Ť)BEq X'qHv'g)v^VIDہƝraG?r4sr[ 7()--6:>*7m.^m˲ uE-"l,$_L>*d +KK/_=^kN2l 敶I RU#ϬUdLͳ;2 Im՜ڪ9II\hw * NS IɨPH1~ g>"u6(Zʮ}I,3X#T \RiuB~N`[rȊr^ݶ!R7ˮA>jdq"M=]YCۀ(E;;?L endstream endobj 546 0 obj << /Length 1745 /Filter /FlateDecode >> stream xX[oH~c"g\-H+P*&bɉvZ*{[v/|:̋N QIetD2aaIEqre/TEZ?+&WS~ayZg ~JuQVh3X.&: fJT-ߴ~> Փ\sbP2$(QL;-cQLO',MY &}`BQ沗=N؋#1JG $냏q" ѕ#]G!ḷ^WŢƟ"J~®}y]Co~=\t,bژĤm9QhDٝ8Rҩ q`.]hF18D2N*f\!SDJM+h<ۘ < OӺv],R1o㘀- M| 8QU,>a 8_Cbh!ZZ'Glt7CLGplv:q{fDBK,ݛӀSZX/u_I,EZb,uV_?)/ prðr3TPwy~8;8͇R?c c& e|q#,e( 0e6̦)"rdفp-YaHɎ!0TLip1bVnIl˝rI"V&p'Ed*cNALѻ(P!Kܹ+K@iњ4${PҮd4(أ^a\VvEs_q&|+{ʻ n@5Ĕ"iO2ܫp^Kss8%xΤeeC5_eqmfqwn;zflM3p+ %*030 4 eIC-~;.VBPO6Ev,<%*W;H_2]ڔX-Kf+p) 8#PrmgtnmA8rsOh%rH~tUi`7UZ)Š>olk g;c^=MGM|ns*M 'g'b'lp h 00.]& J IC mL7 4QDޮ"@X[zoF-~TuZ5P Nk?\6+Gt}ym;+J1%ZⴇWk1M4=ܶ- tC &b x Pj2Ic2*aSd̷ZΊQDϢ1h e=@;DN!'I!Xln7_3t[ endstream endobj 557 0 obj << /Length 1893 /Filter /FlateDecode >> stream xX[o6~ȀsXR Ⱥz}X#L Iewy(KAysz$RDHhŚ\'og?6vGW8;+f /r[vy aӹ`*mϫ_O9cQ}U?"?f K888Y1E 쌧QO=#nL=yh=b,& {G1@*#D)&JC=B=P\DP9OPGL|]|)D#$1;+;qQukqq{|>hiGYʤHhnW.9܆T sDG"I]df,R3ڲU.Iq^^\!WS>}$\zH*A rA$M#F:b96wFm$Fҷid(-]ǩuXpHI0aZ]vuA`{ćm"Pax#d &yфf.Da,mm}:E/ 4HgGLC(6tH-]V Yf[ FiЦz`3Fd{ecV3q@A_[Uu'TKCvs\.P p'"[ힺOYĆDLLEIZ[rW{p{K%NHұ$7@=nQE۹W3CjmcchBI/q[|:cFncb+n6Eq_H&"a7P3W ~c^j*ڳŅ'KC:apon yuۘxֳ22۳5}73vYuv;\>iptqOXgYY>Av@vX6zu%\'$R ӣW? endstream endobj 567 0 obj << /Length 1827 /Filter /FlateDecode >> stream xYo6_ThzV]`mdNV*i w-96 }Hw#y|zvØP(TFgH)$ $Kͣ7gYO^z1~8T ?Nڋdf'LU'UE^,ỳ_#A^)yiZSO^~n #QL |IP$7E:Kͪ*Iܟ|2 \' ɘzD < 0Ɇ8VZr*6-*".wNxy#L'Vu?sU Whd5 x&[!e{-2XՔ(P!Kܼ r(WkpZe2(SLMjMUJ(%Xm q`x~Šڊ1I& `\vC ̋=z.+ߘҿjㆎ!FKS겈Rc[`1 ٛj<)ir3lQZ4 e] +QvVzXWD')ڋbj[2s]zl/HX>rl&5FAW@lw[Nd*t/sH~DH  5z,/*_8I#t wDu %"NE:]~]>_T;a4W tC2xb|XzsiVs2ߟ|w \5ߌ:ANzYOtΒcdL,Ou[+dzJW*DjkV̪4Nlo4~1Kgo:dg'` QFhȈ)HvKC}@2 +Zd '(5wɏ!hɕo)cі@Y%c3ٖ̦(U+i!i{eFB|}>чg}٧WOxLI{Ixf9C%o o/n%Rʈ@ȴ+=RM^joLmnLf2}Sp{/ pR֣lC`]s?/yy>ߐzLVm"ty8,*/JOhےPjkQV͠0:k "!BcSrxh %DNdw ёM#8b.E QOy~g=@'}?a_mZM[=wtT-jo\w+'U 2&;ƝWZ*<<2ɤ|Ûf:M;}T^n}@hkYu.!_r-_lyf.鶎~۵F5JT6kĎ@$>:qy 71:֙ endstream endobj 580 0 obj << /Length 2171 /Filter /FlateDecode >> stream xڽXKsﯘ\XIJCkSl!f/EjIjRFO1Zk 0`я^n2%2\7,&Dl.ۯwono^" Wv9M4|{񧷻.\,՛,3Jf5I ؋4e2Ss^%U`Sm‘#iJm_XIy'QY>)Y%/O>fƾ>)i?$L)Lzr|^n(η`NqI)+Rpq9<[./YE[ `,qwƬҴ Ȕv׾!o]8Iw|[ӟuqS}uמl[Wqױnk7nj~Qs]s{񽒥k۞O8&|'NkS܀p Wsk&kj<ͫ&>LH}DaFäWA9O;yX?X4 :nܗ׮U\p;;`t˲Ư9C-!IJd?Pa"}OD.m(fwKߺ:_˽iv7ǣon1Wx,\jck<.%-gP!&b . 4,82:/Ě:2=:1Ra/I&~o@Q%\%?$mr ɇ a"bfEOGrBx_VFʄ! aҿUqtN.,AdҦ=1fZbr iĢtݟ!*v>WqifzbUR35SE1:&އ @?)$,S;'w?usC, $ٔAJh)VPU{7;n뛯\\|PYkg%if D ;٦ K2錹LIGEIId9xwF_Du߅TuY@4tRkP ƹ}- @6?ty߂W< Lf m:J2 bЌP@.vTVz*T(~}{j~ΌȻ #{ GgZC c  =?\QD V8˖v*x Tw!"4X=c>G!g)տ)rFUds_7Db|Cq =ptЀQ>dw蝑O Ft3cc~wY Ppb]ܒ!@ۺ*Z" w:yl\q5\5 pו`C(e [1C)p TíK2N)&:W`Z,iPc|YSu~MHpX =ߕ2yMe".`r{hmE?`j![@'Ydxo|0#={$wɦwW'(QW-b8.b#cIcX֢Tx7xՓ endstream endobj 589 0 obj << /Length 1814 /Filter /FlateDecode >> stream xXKs6Whr6=ԉgܙ:(D:$e'.Ij83.c]pzfT.3!4l$AXjGv^]o˶^8ó!WZ*˛n++EGwyY?߄Ua_3(A2urUS?| ,|uС%;I~Yao??d d*V%:CTj*z3|avj1̝Z=J:>b+c`B!:`Rsaae4xQqIш hy[!vYn nOe-^WZs"aRlˢ 8+2&o;\ˍ MhrG m=nZUԄj7ijk¯kQXlE[M仢y6lO; fjGil)X#R!4SrwS_^-n[8eޟBfPaL ̥næI*"Qhj-4Ws㔉^eL`PBi'*ڴ˴a:,!Jls%'C.LʆG$S&$-Z NX4&3{}38[ܹt_JR)% ]~-­m Wᶃ>˦*Va9PR| y`_ #y5Aqu63b=+1p{^ZU  11yaټ.1aiHQcߤDj4H)`M%iBRr'c^d]'xl[8NPnS)#QH=* 2 )(@(d/4 ;\?. BiLaާ $$XMևP Cz%+T_Oi$6_e:jȌ~6JM@2*Ỳۄ=ΗsHyS>nރU8l=9)]CFP Th_{O0Ryw%1X l;v:e3gdgi{ ߢdāO"I`Jx¬HWZ6}kjGJwRvNw[߄A~5m_څ:d7oْM6;3QL淴/K*10vb`xk̺+\ču:t&Kæw>/ +:8WCz0^nj{35zX<˄j#R XTFֶO=61IGD0jo5a;a3C}'<']|kn0EhAs{ w聭4P?քÛʸ2r #[#8؀Z;IR36| Jf(F5q0xG`,4-$~`hYAA S\8 h8)Ӛ )흀6MkiKųGW endstream endobj 600 0 obj << /Length 2593 /Filter /FlateDecode >> stream xڵrܸPrh0vL&2sUNshnR&ٖC= Rh;:A+׋GO_0\]θVY]l~]ٮqz|GU?63uaJU!7 v_]UMǦOޖ=H@ '3s^PňYb(.sQ(o\Rų,(3eV*UNjZzG@(mXHge(|ҳ,B 2eBN|!;t#Xb!;;A=xVM로2om;H  Tg~ߢ1wp"㫲u\\- <ܴUguX p0P͠uX%sJi=[hPavZDMk'u=jv>HHl3#uxՁ:{Hh /˦mmloE |t˝3oكTk=\ʕ?kS<83w}kzt]SVfe찌$!''u]`.'.p:)kퟝg`TuĝVH9?=v)ɚzH*v`(3 ^+rB"@ U<ς WQk(i]p*%dR4% SpBǂHJ( TRVR341[OR.L<&X H!r1Ϡb;WLbJ4,d;'9xDPVOMpfT=Xq&,2$M4ɴ)}3`j8L ub4KҤKPH`-X!"?)hE >Yn+($؇Cᚌz@+Gڂ1|~cw][8,<9E>^ڑ ʠ%T+O΃oAQWAp^AS=Czc=nW`OpM& 6#r3"?ʟtʏqWLcS.9m#zV?! o0d.؅Ǵ׿0#Z}m22᭶UzB}oa0 M|jy.lЫK'0:?}Q J2:kkKL&б_潻/=-9c ?g940nM(lG.fO@!2n8XM|S緼nyW,Yz4xnR>7 0Yv莹^ڮ+- y0zUֻ-W4:Mw璺Uk3cDJnMlU Y]\FdI0)'IHMco{t"4A<~ 3;РӀq+ BR_ F7̯Dgt5h78wH1R.Av2 ):"WPϙ<*"YN9І}1Gc=H,P/&jЇ5~7ةL{.j`?o)(SVgf `~fpUDMvC76`75 ֝NdC*,"7nU}@gWO",d tj { HCa9'} Muoz.`@$t=N3/' 87MS#3Ow)|KpBaxE> 4V"+'Aao%g|?u"xpPw)N7tqyE 9ܥ=1C/F2RߓZTi4#Rdęh.2z_hagcb~nB:Mƃi YU@UP) endstream endobj 609 0 obj << /Length 1744 /Filter /FlateDecode >> stream xڽXKoFW>Ih#H"5C-$"T ҎAy|3 _qpi׻D;0z*>[WK"#N{_[nمhFZ jK4mgl=e-m ljFSL57hAGYftd cŘ*_F kAjО%D{t_| âJqU p$><.lSnTPDʶVo2t6.ZmR'qH7`6ɊӘ2GadE5cd>/[_۸q~)pHUQEyWFeTsL,,1%~z} cx'UEڲrlw+$ڎ}]C"xU YG*H8geC#:<﷩zllХS>UWOC7c! .O4Ҧ&?y' fuRkg" T|ik }S _H/YMJ`1DC]x^u⠗n]|Pf4`i0\aQLBkFA$kǰ@a S儿"1&)fŦ8h55F\tD:B22pBǬtwTe\kGUvq4ⳛ(R>$uZOxba8Ar\v֢ @|J<u*{=5שm ,{_N$F 49J(DO䌶~Y6|y]GQen7"O򋨤pHtJg DT*j|9weG~\6E70N21r" SfI Н:S )UY1uUOͺ,uxqi Gk@WKeh(+v`}@g:4#}6\:>gK;e[ϠSF깚YFlAYwq> c|W6F3٤ >4i{o!ijkD$|>>$DŽ4de]G Z;nfz,zV0@jg:µ򫒜y{v p^1gژyUj(w9!44˴3Z3ͬh^7D ٓCg9z-@rX2%fս^Z g5}`Xf<l0T+i+œ<5sWALH?c;b d(.-_ endstream endobj 613 0 obj << /Length 2057 /Filter /FlateDecode >> stream xXKX6/sh=mԎ'>/9v6>E6UQ߾FdK->l()pV⇮l{ᨨio[e׆xf.DZNC?Cxolz|Cw~I-O7|NFhêT|q=ݑ|h_QMޗݗaqp\; Zn-= d5* ‰mvR#xb7A]JcJ@" II2( ODUIIR8MN5KHbLFl" @xi<)j&:Ef-+JN"XUIdTI>*$ ȁu[3I %|Ĉ$򎗄.(&seɜo_$sP٭9j2P*A.B%ד9I*PtJJȏɜ!ϡZP`j2EC.B*Kj2C6\ AzpdNq$9C徚 T1dN9!L@&83K02'dڕDI`8E!((cpDt)"&"V+ZsdvLcAPXl.'f3@T,E;G:}:ՇS}g&vZsmO9n vMPTNƦmؗ`Ȗ:uS_ iӜC}lKJ??;.EY4o.8Pi^N3c}ЃqC ,Z;@L0xu~Ųg,lHcW 侇-?ƮO} "89>V걞d;1`++3qMlXqiL4,zbcs%؟cJsT;M4 U( blfM~b\":g+W`}`eo>w~vr;/#hn|~ ߿RuT,F F0v}@ܞBlnDI G *~ @UD6R6*YdƴAԕyX‰ɹ2LɄөk"O,W' eHUg-D-xJS̊_~-xGpmG>rܦ-Trs9/7,d߾S<"iR|H5W7M B Lȸ|+y4#Sm? KRtqqPx**Ā?`}8)l{| j, pZ@m -)`v.$#k3;c&oDeI҅FeQ[ 0{gr ,ϲ9-^u=;Кap'ry'9l&)J6)pMY1B=W@xܬLYK/jϠV7tM! Y~/Ǧ>6\>ktpO ۰8&&ӄתXl~0u"PW>⳴C!2$&&GR>BL:Lxc9#O,\ (}h/C\mi>v}m4+vYzsx Ƭfۘ.k_"t~(Gx軳[q ۑ~Y4$Wc0૯x=k#LYՖOu,rXYPmraצ@fBkk *2 }fLD͒4 WɘsU~fl%x8&%nTXܺQ|+U`T5mdT.=ٺFYdX)85~f*9ߝ@ğsl',u'_e)ȼCZo endstream endobj 625 0 obj << /Length 2496 /Filter /FlateDecode >> stream xڽ]s۸=BA qdN:4{fctTAi_9d#<π%hhlz C 1FlwP?!ATwUWA ߽r)] ϼmmݘ만ɴ3,eΝ~km0imu+s]xLf[pG] b9IǓԣbpW3 Fc~iv$U1"D/Om>ĩ)>ƌߌޘKCfO&#s~A1D#?|DCC4_vegw5~ш #|gr7o7#>``g;l'0EN]~o*#kWUXmv֝Le,rqq#_g@9kʡNUE1 lM}ebm 8=B?1;b@\W}5TFAp*"Mxxl_1nd)Pu"Zw^G6 [/!.ծ:gM;^$r15gl%8$)3z;)ŗ&}ۜm gJr=+,+rߺ;x<ڤ Y.' R[{0ɨPC\\_+̨]caN:(Vl鐽Ofթv[(.}=ܹQ]7{-VONj16)7iF/" 0$6~XV0Oek5mt@,VXHzs:PjpVT}vje.U/Q՛-T;Eɮ%@}7OUqנ8xnh)evI]p9z&_`\c=o~Pewfۅ4Ūn'.T$rٴǻiL`åp؏e)A%5v܇l1m@3i4kߛ1ӛGy/"!,ʱ0sc Z+ypX_0x0oNdp8$FlٳIݭՍkmAw.y.֪s R=w}hsW7Ըx;H3Oͤ8fS\&ukd&B=m" ,G[m4<'nP}X h aG58* /d~RYq|>KݖqEz$`}K6 Hhu;bjwW `} ;{xBX5n9ee VZ䜆V=9Z 6*`c WLuW2P紙9L`΁?~ D9rf A{*7FoD|L!=Ys]yy0k;@H{ 2Ӹʗ՝ &A!_ &UzN1K1'ЀEAs<}o_E endstream endobj 633 0 obj << /Length 866 /Filter /FlateDecode >> stream xڵVێ6}W}ۈ}n6@5IkmjYq>;D\@3̅0~0F(3cvagd6#0.<}uM5~+N-H6[>d‘ʌTΖvc].ri`-r0yS5T=nQ[q!ͼe%,w˟݄5 2;*H3aߗ.6?˨nYʢojUnNлޔ 4(xU4j&br ,WR6Apĝ/^+aw`n n\ro Cg;6 ǐ'C(Df6A tS1̉)܉_9{8:xȞ8zSYGLpIؒq<|S7ۛ仯q}?է]-^uy:Q)0]>S2kB }qtjv容t*lml>0-exsx$Ie=ik\d1TEuʶ'ǒNV\ 0D3`p)وN 8F.o49Kfjj56YG;a#EDf(?,RMF:C)6?v@r`Cm$F)V0id 8$? &VKr7kPX endstream endobj 622 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/private/var/folders/ky/t49b807571q6cqs36mq80s3r0000gq/T/RtmpNVuSlM/Rbuild64da5ea5c82b/gnm/vignettes/fig-Effect_plots.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 637 0 R /BBox [0 0 432 216] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 638 0 R/F3 639 0 R>> /ExtGState << >>>> /Length 4095 >> stream q Q q 28.34 31.10 180.06 156.56 re W n BT 0.000 0.000 0.000 rg /F2 1 Tf 7.00 0.00 -0.00 7.00 44.97 51.31 Tm (A) Tj ET BT /F2 1 Tf 7.00 0.00 -0.00 7.00 67.68 72.28 Tm (B) Tj ET BT /F2 1 Tf 7.00 0.00 -0.00 7.00 93.33 85.85 Tm (C) Tj ET BT /F2 1 Tf 7.00 0.00 -0.00 7.00 94.07 69.87 Tm (D) Tj ET BT /F2 1 Tf 7.00 0.00 -0.00 7.00 99.71 83.19 Tm (E) Tj ET BT /F2 1 Tf 7.00 0.00 -0.00 7.00 106.20 78.95 Tm (F) Tj ET BT /F2 1 Tf 7.00 0.00 -0.00 7.00 113.86 73.01 Tm (G) Tj ET BT /F2 1 Tf 7.00 0.00 -0.00 7.00 133.51 60.60 Tm (H) Tj ET BT /F2 1 Tf 7.00 0.00 -0.00 7.00 159.70 56.30 Tm (I) Tj ET Q q 0.000 0.000 0.000 RG 0.75 w [] 0 d 1 J 1 j 10.00 M 51.68 31.10 m 185.06 31.10 l S 51.68 31.10 m 51.68 27.65 l S 85.02 31.10 m 85.02 27.65 l S 118.37 31.10 m 118.37 27.65 l S 151.71 31.10 m 151.71 27.65 l S 185.06 31.10 m 185.06 27.65 l S BT 0.000 0.000 0.000 rg /F2 1 Tf 7.00 0.00 -0.00 7.00 47.69 18.66 Tm (-4) Tj ET BT /F2 1 Tf 7.00 0.00 -0.00 7.00 81.03 18.66 Tm (-2) Tj ET BT /F2 1 Tf 7.00 0.00 -0.00 7.00 116.42 18.66 Tm (0) Tj ET BT /F2 1 Tf 7.00 0.00 -0.00 7.00 149.77 18.66 Tm (2) Tj ET BT /F2 1 Tf 7.00 0.00 -0.00 7.00 183.11 18.66 Tm (4) Tj ET 28.34 51.40 m 28.34 167.37 l S 28.34 51.40 m 24.88 51.40 l S 28.34 80.39 m 24.88 80.39 l S 28.34 109.38 m 24.88 109.38 l S 28.34 138.37 m 24.88 138.37 l S 28.34 167.37 m 24.88 167.37 l S BT /F2 1 Tf 0.00 7.00 -7.00 0.00 20.04 47.41 Tm (-4) Tj ET BT /F2 1 Tf 0.00 7.00 -7.00 0.00 20.04 76.40 Tm (-2) Tj ET BT /F2 1 Tf 0.00 7.00 -7.00 0.00 20.04 107.44 Tm (0) Tj ET BT /F2 1 Tf 0.00 7.00 -7.00 0.00 20.04 136.43 Tm (2) Tj ET BT /F2 1 Tf 0.00 7.00 -7.00 0.00 20.04 165.42 Tm (4) Tj ET 28.34 31.10 m 208.40 31.10 l 208.40 187.66 l 28.34 187.66 l 28.34 31.10 l S Q q 0.00 0.00 216.00 216.00 re W n BT 0.000 0.000 0.000 rg /F3 1 Tf 9.00 0.00 -0.00 9.00 93.91 198.60 Tm [(Site Eff) 10 (ects)] TJ ET BT /F2 1 Tf 7.00 0.00 -0.00 7.00 97.36 4.84 Tm (Component 1) Tj ET BT /F2 1 Tf 0.00 7.00 -7.00 0.00 6.22 88.37 Tm (Component 2) Tj ET Q q 244.34 31.10 180.06 156.56 re W n Q q 244.34 31.10 180.06 156.56 re W n BT 0.000 0.000 0.000 rg /F2 1 Tf 7.00 0.00 -0.00 7.00 347.42 123.78 Tm (1) Tj ET BT /F2 1 Tf 7.00 0.00 -0.00 7.00 360.67 127.41 Tm (2) Tj ET BT /F2 1 Tf 7.00 0.00 -0.00 7.00 360.77 126.05 Tm (3) Tj ET BT /F2 1 Tf 7.00 0.00 -0.00 7.00 347.84 119.97 Tm (4) Tj ET BT /F2 1 Tf 7.00 0.00 -0.00 7.00 347.93 116.64 Tm (5) Tj ET BT /F2 1 Tf 7.00 0.00 -0.00 7.00 358.95 113.00 Tm (6) Tj ET BT /F2 1 Tf 7.00 0.00 -0.00 7.00 347.20 111.99 Tm (7) Tj ET BT /F2 1 Tf 7.00 0.00 -0.00 7.00 348.58 106.53 Tm (8) Tj ET BT /F2 1 Tf 7.00 0.00 -0.00 7.00 350.60 106.68 Tm (9) Tj ET BT /F2 1 Tf 7.00 0.00 -0.00 7.00 347.28 103.77 Tm (X) Tj ET Q q 0.000 0.000 0.000 RG 0.75 w [] 0 d 1 J 1 j 10.00 M 267.68 31.10 m 401.06 31.10 l S 267.68 31.10 m 267.68 27.65 l S 301.02 31.10 m 301.02 27.65 l S 334.37 31.10 m 334.37 27.65 l S 367.71 31.10 m 367.71 27.65 l S 401.06 31.10 m 401.06 27.65 l S BT 0.000 0.000 0.000 rg /F2 1 Tf 7.00 0.00 -0.00 7.00 263.69 18.66 Tm (-4) Tj ET BT /F2 1 Tf 7.00 0.00 -0.00 7.00 297.03 18.66 Tm (-2) Tj ET BT /F2 1 Tf 7.00 0.00 -0.00 7.00 332.42 18.66 Tm (0) Tj ET BT /F2 1 Tf 7.00 0.00 -0.00 7.00 365.77 18.66 Tm (2) Tj ET BT /F2 1 Tf 7.00 0.00 -0.00 7.00 399.11 18.66 Tm (4) Tj ET 244.34 51.40 m 244.34 167.37 l S 244.34 51.40 m 240.88 51.40 l S 244.34 80.39 m 240.88 80.39 l S 244.34 109.38 m 240.88 109.38 l S 244.34 138.37 m 240.88 138.37 l S 244.34 167.37 m 240.88 167.37 l S BT /F2 1 Tf 0.00 7.00 -7.00 0.00 236.04 47.41 Tm (-4) Tj ET BT /F2 1 Tf 0.00 7.00 -7.00 0.00 236.04 76.40 Tm (-2) Tj ET BT /F2 1 Tf 0.00 7.00 -7.00 0.00 236.04 107.44 Tm (0) Tj ET BT /F2 1 Tf 0.00 7.00 -7.00 0.00 236.04 136.43 Tm (2) Tj ET BT /F2 1 Tf 0.00 7.00 -7.00 0.00 236.04 165.42 Tm (4) Tj ET 244.34 31.10 m 424.40 31.10 l 424.40 187.66 l 244.34 187.66 l 244.34 31.10 l S Q q 216.00 0.00 216.00 216.00 re W n BT 0.000 0.000 0.000 rg /F3 1 Tf 9.00 0.00 -0.00 9.00 303.42 198.60 Tm [(V) 60 (ariety Eff) 10 (ects)] TJ ET BT /F2 1 Tf 7.00 0.00 -0.00 7.00 313.36 4.84 Tm (Component 1) Tj ET BT /F2 1 Tf 0.00 7.00 -7.00 0.00 222.22 88.37 Tm (Component 2) Tj ET Q endstream endobj 646 0 obj << /Length 1153 /Filter /FlateDecode >> stream xWKo6WB21)b6ۦHo tnX,dId'__͡gypC/gq=[>y)EoAc[o'\V$eU/yYN_؝o-ŭ'j( cF<2Eh$ zk+ٔuok^Yj:߭E~ :${˟!r6W6įU!0.:kI~3rIuɕr{0[>mBw \S+uu^sZxcB$(@1$sg8G߻8t\>G.ُv^>M=B)z;s(NTH,qy?Գ_m1> /ExtGState << >>/ColorSpace << /sRGB 652 0 R >>>> /Length 755 /Filter /FlateDecode >> stream xV]O[1 }8eIJCBCpԜBS5(-I!7Qs|:UC(Q|W7D; Bd[5T z}7ǣ_ʢ0 hmK/R>3  J% ļ>Kd"}RL mfl(L֣aK 1PKо!XdҖ<1d2XրCd"N$Je[%6)gԜL4'49l["+~@Wfjt=`.TNpc1 ]ut 78B8Y|Zlc:6fơ5 :,#fPƴ p(QV] Ap !ld[q&\8K(:[zZ*ɨ[pR,x'f9!/<(,c Ρ ;LLP;2-)|7+@sT-2;t,-Mh"T&&u <\uUo8}|Xz%|/&}~x=_lQ`z)-fdG+,R7y䷶ES@q(HVd*if\Nw>^ c:YOa4orpS endstream endobj 654 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xwTSϽ7PkhRH H.*1 J"6DTpDQ2(C"QDqpId߼y͛~kg}ֺLX Xňg` lpBF|،l *?Y"1P\8=W%Oɘ4M0J"Y2Vs,[|e92<se'9`2&ctI@o|N6(.sSdl-c(2-yH_/XZ.$&\SM07#1ؙYrfYym";8980m-m(]v^DW~ emi]P`/u}q|^R,g+\Kk)/C_|Rax8t1C^7nfzDp 柇u$/ED˦L L[B@ٹЖX!@~(* {d+} G͋љς}WL$cGD2QZ4 E@@A(q`1D `'u46ptc48.`R0) @Rt CXCP%CBH@Rf[(t CQhz#0 Zl`O828.p|O×X ?:0FBx$ !i@ڐH[EE1PL ⢖V6QP>U(j MFkt,:.FW8c1L&ӎ9ƌaX: rbl1 {{{;}#tp8_\8"Ey.,X%%Gщ1-9ҀKl.oo/O$&'=JvMޞxǥ{=Vs\x ‰N柜>ucKz=s/ol|ϝ?y ^d]ps~:;/;]7|WpQoH!ɻVsnYs}ҽ~4] =>=:`;cܱ'?e~!ańD#G&}'/?^xI֓?+\wx20;5\ӯ_etWf^Qs-mw3+?~O~ endstream endobj 660 0 obj << /Length 1322 /Filter /FlateDecode >> stream xXKo6WA6bq))i t"zhan$\Ȣ#ɛC%n@E) 9"@ = q 0oa;E26ީɯMVߓv1y`(TxGGqyͼE1}/*i|7ӷrWƼ[ IU3§%M27zfOd6/ݮR6i䤐rVl6fT@E}\ ĈF`lwU_O&iY&VVkQ|i)YvRBM2?,U2 )QǞO Idsg!,<셅!܁ {" 3 K^u?TI= ` ` L!ϚrS1&)} T2odDWTi= o)Fv~Wd/Ǎriak HC#t5@P.f+$: eA_;" ? D '?!8술0\A,'$%.!"tvM/ClXGE#ciKE-4CRŔ+k*(;UfʬTQZnw1MFvTKIqqsEp 0Wñ#~'CAtW'?j  kiQ" ph  X7 N+sD Ęr5y"bh#قGUxr TU+hOɏ 9 endstream endobj 543 0 obj << /Type /ObjStm /N 100 /First 903 /Length 2579 /Filter /FlateDecode >> stream x[n9}WqlV,`Ğ$IhcK]ٿSȒ<,`}!هu9U8z6D 2Ne4y11~.2IdQ&S\L hŐӎB6A/ Q5:CW$CȆRA. 0k1B{1EÑOaA(% 77GxUEFϩu )lrHs"6OM`|ʐT$,&"LɄ3PctBTE_ϸ XǞUʊYŬ0cN:$\SNM.7T7h)00lbFIR{%^`HvZ'"jlc+$&QR`I L)aBh9h!H S 0k+1C_nrСP6YX[4,\6'.,P'FS/#Mu|6E=C4%eI-9*W"hJH'E:T*5Ut+@B+#ҷP=ױ'ǼWj<}کsmghک>N :Ѹ_?8*]T3ܐqMݛ>eKXu sT{f>5[SLkK@`6$vEB6@\Йur4sY9 RVnjW|ɷ\,Hf#yC;T7x >hl8x4u9: ^7Uv!5W p+nށsawXUUݩN'MBsd4j}Y/QX2L3@ctW_GNkB`x(U.wq_qĴ!9NJcn|\øB(ޔѵ%%o.C)0XPfP/F:Mm$JjHL"Y8XJ',5b #dBJ|B dZb4F1DA)P"6Yv(ĵ̐ A˂ɂr( Ɩe?iOZ@[b]ͬ M֕ܰ_'&/ ; 5HrVt ]lW##J q`k,IP;QZMe5Uc'$h$88o|uJLOv':H>eԲOj'B[ƶLGe%L)4 )M󚓹xB+09-O:˓ XfœS+!%l~Pc<8!'t 뭮} Ocw8\,c Q:IVdK;|Dt O> .Hąh #+u # 1? -Nو:9urE5z䒀볷%ͷ^Ϻq(Qe͔YQxm,ДIiSҦ&5tEjL^wOͺ+⿶^,s[6fu;J 8-?_9:jx ҸE9E% $0V!Igq F <" ((>5H[2en\"p]CHm-x G+ātCu^7}ݢ8{l(tޤKRE}{k5Ϻnu5yu#~_s bzWc韐߰^}wI;jvQwݎ{f6&?+rT HԺ?I[m9|tLQgz ۬k4["{V)= ~őʹo8  }:ݏc>-zNe77EN DÈn/N8^3,)x +t $g=&4 f"+[_%`uN@[i<Z[z37CT(/ˡl\71;gG+'uݻoޘ?u6<>i֟걾e8OڏٓQLIR{V՝ԍW_tvQ0j- i.]~o=֭~ '"W} gSs6T.U8 qfӺ ƽuuuGF4zfp~}YK>c6g7ٴ]&z%K뒇}!vg;AyIwiHKH+I;=jl:hDYww;:fkw~~>;&}͢Ȏ8n놙z8۔9OBh,xU( oS ̶T5 Ml\۲kznq.G]3 諼%ċZp/$.F` endstream endobj 643 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/private/var/folders/ky/t49b807571q6cqs36mq80s3r0000gq/T/RtmpNVuSlM/Rbuild64da5ea5c82b/gnm/vignettes/gnmOverview-Biplot2.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 662 0 R /BBox [0 0 432 432] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 663 0 R/F3 664 0 R/F4 665 0 R>> /ExtGState << >>/ColorSpace << /sRGB 666 0 R >>>> /Length 859 /Filter /FlateDecode >> stream xV[oS1 ~?DMyc: J M<(.V\=IiV͋1÷ xƀ6cDppκ7#TJWg,>1ɶk֌&O`v={*+`DfzQXXKyԺ?i{ןWO[.ErN @Ql?o[J4 9 `fb +2BDAߒχ?EA6T `kQstLYd߳ImKdhipPYNG /UczphzAwAwJ˻, 4[ ӣ_Q֏=(yG:Ou鎗4K_ ӭlIrYN1.CҗQC1+-:3fP4X9O (Bg0D0>̈́E *pC 2Tj%&7؆:D;8`j:[Z֋Y90kd5:vZE(fPrWgVTLB;n|')bp_nT|'XېKuFevrL-#;: EOMh"EfK&ODZR>:pz '>o.O|foZ !=H)x WM?:#2Y-׋#x\nrN!Ii/v8~ endstream endobj 669 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xwTSϽ7PkhRH H.*1 J"6DTpDQ2(C"QDqpId߼y͛~kg}ֺLX Xňg` lpBF|،l *?Y"1P\8=W%Oɘ4M0J"Y2Vs,[|e92<se'9`2&ctI@o|N6(.sSdl-c(2-yH_/XZ.$&\SM07#1ؙYrfYym";8980m-m(]v^DW~ emi]P`/u}q|^R,g+\Kk)/C_|Rax8t1C^7nfzDp 柇u$/ED˦L L[B@ٹЖX!@~(* {d+} G͋љς}WL$cGD2QZ4 E@@A(q`1D `'u46ptc48.`R0) @Rt CXCP%CBH@Rf[(t CQhz#0 Zl`O828.p|O×X ?:0FBx$ !i@ڐH[EE1PL ⢖V6QP>U(j MFkt,:.FW8c1L&ӎ9ƌaX: rbl1 {{{;}#tp8_\8"Ey.,X%%Gщ1-9ҀKl.oo/O$&'=JvMޞxǥ{=Vs\x ‰N柜>ucKz=s/ol|ϝ?y ^d]ps~:;/;]7|WpQoH!ɻVsnYs}ҽ~4] =>=:`;cܱ'?e~!ańD#G&}'/?^xI֓?+\wx20;5\ӯ_etWf^Qs-mw3+?~O~ endstream endobj 676 0 obj << /Length 2898 /Filter /FlateDecode >> stream xڽko{~( Q] \b-:QcK^IN6æd:q1Efyo./y瓜jJ"s>$%raڎ^۟[]]Sxg.6I&sJIfXsW}uq<&WLbz94 cc"8Fa<߼L%,9I)2nҔ$lbw<ErgD"$u;j+G7ȚfinWu jMiG6aC֩"RY׀gtMO=h2-:mm~_>\ #=3BvqдhߦeMWM[- G,2c{;U9څcu_Y4 2GRbnnYˁ^m!]ޣY6-AV7M@، &2|L"Lxe뾳Xv~iW}kQ73Lw{3߁Ik#C]׀_q0N i;ݻG\3EEEH*%Z\mpW'HP܁FNBI:v`{&$ _> ҌWxL7<:Il+|AW&RS x XJcRB#GQ`$*92ؗGԑgEsY_$:aB$)(rsS2)aJM f3`=y7)?m ,z`n?YsK` ynnDr hL> mbT\]rβ .Y+sFyHwSf6O+*3(Q.PwEcneKsRFԅ0Xj]~풃֧"^e!֦b p~'U\Óq^^,E]aArj^vnЭXk71H@$ynJ90GbU_3btj3$qٸ FqL9^+"ϞTӯ 3i>U\B^gK]*# `!u^lC骫PKtffXga&tb]nٴnuU=j6EƝ1~VAI[_4. PrLVͥqv ܿYY6;c!7AAL!ȐX"B:DĚ\ < 55(nw 2Mi2]4=LH's q yddM: qjU%m'`as6U}e :sBrm[Xm`;B[6QaKT`pZRU|DOc&&.TuoG1gslPg1EH 5gH9e11.Z~T E5YuȮOf4;k͎]sss.*njS#eޯC4 [a$PI9ֆJ($6~&<\_ Mkheo,٬)ux0l V^vV(;`V+Z I\)JQBsF( *M[\о7"wk)%Kݷp |.]0uʱRIXsz̠gSa~!_euFGxB)Ljg*D-8ʕ4:-&pY %);a;g⬍pb['J8@VًA_" >2]RXƼ>y|FHiن kK(5>EO}hݶM[MŲ_djZtTjW[yW$.;gj:PL LrUo.!ɡ@˛ eX{,׻|'W@vK_;nlPnc_ X?]<$}>-7<Cn>7=<fyB$%C i,m>dΦom%_lj|uݻ/??ìһiU,l'iCvHS^D\AS7w%-k2viW`[Ho!"!RF~x ЩwEUGLC^Rto> K +K؄k鍰t3[ҀHU7:0Ncy?tǺM;#x#Ju#&q2|ITIb rLAH M4BTxy+e^IO9QITH-S endstream endobj 681 0 obj << /Length 1112 /Filter /FlateDecode >> stream xڵWM60rјH6-Т@DW7EJkyxl|!E{?oPRH *Vj2Ad-WqBRQy%g 6 Ź!<;4FÉUAA?۬fM}Yq*#0v6:1:1L"#Bޭ%N Y[?i?mi;<÷Zd,ۇ2kE%"T?V16?NX؃[}nZ?~,$8y-H!ƴ^G?2Tycޫ5}oWAĹb!!/>v-.I~o`ŒCۺ~?ݰ9%78Gj3X3Ȿ|_򺾎̨lꥋe%ۗʔ9uʐ"*S(2}s8w!Qe<]Rs.+6D)l<Z|Lp$dI EX(LC_f)gB2(b' 7F(GyTD#va1Fi %,P#UrivCgD42tghM( qoǙl,C K1sҕzJ!eq GU=Ľ/HtIQ/bP0O<&` S2&tWވJ;^o8)I{Z꼃)ҹd{kzwmkgIy C]=3]8[Sqֳ:xE? I)ÿu{_L endstream endobj 687 0 obj << /Length 1610 /Filter /FlateDecode >> stream xXK6Wv!)6HXeWWw-ޡHʢ]'AzD͋ߌ8'Ͼ'$js% NdvW*t]-,zx葱^$ [{/"F"#q/‰ AxceHCGE1I" ϧDGaszKBٔdMVqݵnNyYpbtwtjAnvv2cyj*T@:]$aVUbUS1-(B %c+z)G$ODD >Z/q00|!!LxROI{8S:#>8z1D{A1~{2IӇ!&1B>bz 1)|*Nb=f f' fU1QFc!“x$bίԭN %g&@1Nnj!B\9JA>[Q"ޓlw?z?d0gScCΨt A'y1M0l$?GB fڭY`lN#ć<5HD6Qs!GxD)rø07uӼɁ{W( mx`ۿh7Fw6V`GMp5cC7Ul,uKp:=W幙1Qc搛: '>\{~r7ڶ5w?iE_m{GHXMn63&O{Z~~r ==x~Ʂ`ܴ3(_O?aF$8_(07 f%FwOE endstream endobj 691 0 obj << /Length 1403 /Filter /FlateDecode >> stream xڽXK6WEF,"%-ml5=m+$ﮃ CqdKm9qDsy#ϾtLq5&,Dl(Fby>+*JoMcz:\F[צ_'4%Sc$2Ҽ[S֕Δ4b|: @fL2"%e-6 .8=*4Q^`qFDz㦠rk5hJM'e=}F%E1b/QߺaԹgCBr|r"h-lnA#$r0o%6e2Z0wfiQʗh쮰mDITCQk;kr\iLjҕuS}\f0ZL8ִp,$їPẼ|^6[ScL4wzn`:Ghnvj0݅8T=>p,wDyjV T.\Fmml!%aNڠ; \v>Iu=ƊQ0\"%{.1u[c?t}zcv&wa0u+Sxq)P֖mzfm~:)8z[[˟kW>G\70zy{u-Hs'镹\;{]ԗgݹ*} 'W&0+4ݕ8BHLF3X2FpJ~00&q`YҚCl`Dpmy lrU Í.ȯC$1+vRR ; u۔|RgZ}ځ F[zwX.2N}$ GF{|5cB#8KH7rlaiܚ;SDZ8A.-r!@ <*,IξP6ڪL`Y8͟l}:k 7 ñ:E<Lo1l}yʺۿ{W~U>cs]O=C N;,vëo7;^Fם_9ؕ5Oݻ;f 4E\4ue̽' r{r*iǙ_ٿs endstream endobj 696 0 obj << /Length 1061 /Filter /FlateDecode >> stream xڽW[o6~ϯ0Y)[.IKK޶=%Mb}"eK9@%;ύ_zKh4Q,]fB"aIfWwg AŜ"r3<[P}}1_ThkSy wqO!Hp^ܜu^M^6OIk}8ȭ*NO'va& +17lkE~ [OlmźUU/’Dz^~uK5Mդ.թl~=FSS_պzKhp_7?xK?U%2]~sϞ&۪(&z!H1)n@ {9nΗA'S٤iu:IنIGåI#2eDj,(Œ Ľ71B"D JWYaV+& C [jH梪m1:A,2aDEC3b<'^%K$cʥF6[ŝ0$*d{(T)H\96q!3B2IF@(SlEN )! Xļ=nΝ݆"c]$!kQV;K/oQV)60ZGrD0m"D+c,Ӳ`o gxm=1vM úLjB*ugh>mB=NPu??zU_R>,ΠE#LXG܈-%W1EZ­$Xm0hO9oƐv 1̷8-!؇gMvh`SrwFxе]ց ЅRb_OTT)l[#pY?QQs\mK SF.NVkSRw)!M6/ysxx un8MMm}o7~jmt?qNS{sO4In %Ĵw%гJg NPęg*S?f endstream endobj 714 0 obj << /Length 3403 /Filter /FlateDecode >> stream xZ~/塧 I2ivsmP$BI+1 I|п3;Kԭozzw_Hˌ0Bf2H gዻ1/Zhc^Uk)*Zk;?6Mub9˴~q N0GHqߏʶsEoۼ/˹¥pXLΆ8no"Q٬jzCiXE0hvMv]bMcmGY;}PꁞjŶ2:m^~$7Ͷ 43f!I90MǎGMRU ݂ېt̄Լi;Vi1}XaͮBybP??i  (cejhۦ 6H0qArS"_MY'@O&n: 9$i E&w߸[^stY`~7rl8 bi;/`R ?Z24#mށ%qHDM)7/ݾgEuh{KzuXqfd`%x"'dj6\H)9b Hx1}m7!(f8gSǺ%8CZ*%GL&/-)3)1(O?njb_*9w*5 v9GdMg&+ r(h,mVZt{ʣ .agAnz?t>-Dx=txK0m- !hq›1zi+h#Gc|4_+`~u NO˽i P3 JrhbGyBJ$74_ЎCs 3ko% 4:^ $byn$pa470<0Dc8'a%|24hd1uXRUR4۽4A0J fQy 18(!$`)_ғle Θ2zx;T7<Ҡ^Ü"qRl9tEu? mwp+b5ͻXa*ѵ 3t9((鸄wXxWtƼjOԨg8BziZr:4H`˃>r`8!t/l5"*Clj>ikn˗п |KθlKZ(⤓0Θs^4L'<گ{ۺ)P5qiC0~&IR Vq} bĩbrb/h9 m&̘n9^> E'Hph;S $=#b"N)hC| J w$32:gLQz>z^^ai2Ω"r5!whaL,}9vW%!/C+gou{0Xҭ+< @_zM+C=ă6DK _1'sDv%=|{Guh ^nw7KvGt9f)Y'ybHU8~>s=R)>dIR_'jʽGlJQisk:gzؿ!# \}sw/3?-Qz~)^l` Y8Ղ'8jSWOoA*t7!L~C L9Tark_p\ԋ|HǶ-Xcޖѻ|s_O9u ^;6244 ?Wn endstream endobj 733 0 obj << /Length 3439 /Filter /FlateDecode >> stream xZm_!$EC}4/nRuE VaTHʗCے̻8M ٝݙgFWO}*"n8-*KUjjzmUV; ~m`(;{a1H7ZgLoئeM]f㙝?Ye-?m*wh`*GLLZ;WZ%[9V{`]It@n|skQn;nTEdNuy8x;cʛ$J0¿;w0I( }`FyʣoN`j{.~ILD_U3imnGU4zCٕ"/˦ܖz ģزdW-ӿ~ylep:~rb^Pl鸆~'B'xf iiYBXVt#mvi/wMn{r#ŃFHLq˹6[fqK 5m0\f ͞,vBi*olM9p(f@ãF-ӚvdS߳t Cr("=k*D/kBoe\N8lw7* HtyL'?̣8ڈ` 9uSc&<`.ͮvw,3ȒN;64Yp܀ u. {&J#F*+FD t11r7@! >J0x]b{O p 7,D{cj nVYPK: X٫g_=@¦ѺMЫ@_ڸrIl {oƦ m )Lei" ;ơE]+0CʹՕ^tO7ZHG4/ n܍xM^ZNLƅ/)|; cK o{~˲ 34e%]tC JY O vdH=~~$QS]ғB`;^0.`-/~g# 9Pf#A?r8U |)I`$_xKGk\ Ty#c]iq\fv屪/粯N-R>ݯ)ۧo ga1SVÒ1U_]bkGX(fWe_W,eYIԘWR)ºpS~r;Ob dÔO֦9\[ aB̜"žIS1 ^Xo(@Cy3fR arBD\*f3=y3pT04` GՉNhj\!ȋbLGp/trD:umӞmÄy,}f=Nmgq/IahA:, p \"'%s{Tv#Qv[5\ t 2C5.4v& {I"ta`oJpB^,ԔS-C% C 1O4$U&xGB{͡AQ.Saoe* T nUllhW3.xDWohͯr# ^790/C2pydI{?lCngD{<z>x˷zZR6u 8t\cc(+':АU-³STE޹Uv| R+mF*:B sBXi j }3_ӵJ TTa|mNMiMZ^r]&h*:w3cpJ輡G&lQIϗ `W 6 ViLP[ Jĩ斬d>e /Pw3p;n`B$B@c"/6X*\U녤e@x/ ^~El\>WT|'?A'T0eTb9>y6Yma El|uGǕʊ8Shz퓿>}C3t~pNSAAȀ1Q laG> stream xUj0w=ō6DN'cZ"[T2Wh?>~9i(p si;cD qr?eJ[5ʀQfAVQ`{xN%VV(w5(t[-4' B*ӂӰ짱@x).W r񙄩$\\˵~O0]GiBvNM. endstream endobj 722 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/private/var/folders/ky/t49b807571q6cqs36mq80s3r0000gq/T/RtmpNVuSlM/Rbuild64da5ea5c82b/gnm/vignettes/fig-LCall.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 743 0 R /BBox [0 0 720 720] /Resources << /ExtGState << >>/Font << /F1 744 0 R/F2 745 0 R/F3 746 0 R>> /ProcSet [ /PDF /Text ] >> /Length 43210 /Filter /FlateDecode >> stream xM$ɕ}~ _1  @*@"":G׎3w $q$y<EtuUS^=b3[k2>Yc럎r[=?=;C_ޜ~ǷLGtٛTe>S: K5Ⱥ1&[Muz!dR^/NJlך[_:Yzֳg=Yzֳg=Yϸ~Zrk v+)TcGLk/&#|Ȳn;S[\k6-8xzֳg=Yzֳg=YzֳR-l8+TpfbAnj_|LoiG- 6zv&ԼݴjRX6^:Yzֳg=Yzֳg=YO^[Hf 95po {g˯G2..Gvv|?~o~#뼕/W}5=v.o#6ne=7ɮQ>Wulqƕ# _cr=u^!ԟ;5k{j\_:Yzֳg=Yzֳg=Yϸ~Zrk o*zDZ:G/ hb=bz5[rRl~ti.%6^Yzֳg=Yzֳg=YzBj}Vm+|W&#"uh8F/ bJ;dr< %F˃{j.lZjwS_x}g=Yzֳg=Yzֳg=?zm!>|-l8+Tp6Sesuֳg=Yzֳg=Yzֳql!>|-l8+|/8k0VFL k/=ƘlxKBNIT|Qs}u6^Yzֳg=Yzֳg=YzBj}Vmgy·q ,g A޿t5ʗ~YpSe1&m 9a{j6oZ5qjKzg=Yzֳg=Yzֳg\-ևom+|Wlcӣ7!Q9cx˺1&N/QފөYʃ6^ߵYzֳg=Yzֳg=YzmM\,W6lAn[6uֳg=Yzֳg=YzֳtZ5m!gYm\ᧂsWLYvv{še/boMuGysQP{+ضD_2<ؗ.:˚8s_˘]6o˝9ƙUwLkq~4a:'#nq%;g|%ʗ%R׬H<=1- rXȞ_}^8gdz8Wo,;xcIƍuNmWr[5Q}]ƶ588s_ΐ.WX銵˝9H1},;xJ?'84gB9׬H<=1- rZȞ_}^t=UG=L[M#v3/N4f^ɚ$'d9ZV9xzWM3?<聾]t9?đrtIBȞ_}^դ`VR-ߧd_Us0#1'ϳ>6NɁ&}Ү_bӵDwq$%00000000000000000000]6R5k;s뙿+t.t__bY%Wi,;x>srUǕ}%rw{YZ58bOyK````````````````````|1C\m`+.w6<3W+nƵqs~dgj\eWz,&,t'lqK7Yk/53Y?đrtIBȞ_}^alٛUsg erz%%J?<-.F9cKM9o /fh TFgz?ݖW}^ے8$ϲrW,;xgS4fkj+,_)qEN_g!؏g!_XLk^bOlHyK````````````````````|1C\m`+.w6<3WSW\Mg}ƺfˮYK6IW9`JAn5#֬H<=1- r}[]ldyg>{Wq,;7+vєf8ؿWl_D Rojw1׬HlHyK````````````````````|9C\m`+.w6<3WSWLLG WmkܺSYM1pc^,kػ}b11y=#1- rXȞ_}^oO]qV'v Lk슽5wLc嘓k3(JvIJ%77X'%00000000000000000000] rugzw ) Mqkؗ]q0wMЖyIot{+ٷq~ƙ}+{)ai*&ĜƗ3Vbrg#{γ=y=uɄrhMvcXf8bX rIJ뉺%j`_ XLk^bOlHyK````````````````````|1C\m`+.w6<3W￿p?_~=6aGǭߏ_>|G%mIG=gy/`:r!|0g3mi}fB|sY~# - r}[]ldyg>m}}kGawqͲ]q<67o9yoܬJԶ%`/ћV׬H<=1- rXȞ_}^oO]q2j7<\Ŵf8XrGf=4Y%\~E\##1- rXȞ_}^aIη#,>0~EruJVx%O{)9{*&ĜƗ3Vbrg#{γ=y=uդ8N=&'GGYv+n&+cNbR+}nb&5/'.Qs_.WFgzw}}ծ؏3S4Yv+NrvHѕc]z%["u+N$(ְfGA9o /fh tFgzdf)|24h(5x]5g倎q߳s ΄y(Ҽ){ 9wUM9o /gH TFeV˚+*ޓAvre&e^oJM&-V˃}ob&5/MĜ3mu=뙿+EfdA4ѯYv+8y_9`}^|Wﭵ{(fGA,y[j+]v=ٿ??¢/}%GX|ha oYO_Ќ6嗋܃=g^YX 壉+˱ Wo0?KLM,Ɩ588s_ΐ.WX)˝9@dXܴ󪹚 K^⌍k7jnu1'J+-jUs36mb&5/'.Qs_.WFgz;0MHkKGq :'_vyeӯDRhw158bk_.WX銵˝9mJ;|m%FxfylHҿ\+,Iy܈^6G!DҧA fGA9o /gXX˝9t[r5A׿芫;,;x7ic[[<:Ǖnʖɸ1H}}/YőDMyK````````````````````|9C\m`$Ȟ_}^o:IzŴqct,;xW/wu>PgJd%r3} }őbvJW]ldyg>8fRq$s-&5^wYK6َcN~wO;j)K>Q>P5G9$EB ,ou՜sðꇣ^WZYΩ\%&)R֬&vQ: eh TFgzVAawF;g뮸Vnxޟ]*HIn^>ž[׬&Nq&t_͐.W7IH;s뙿+ے RWW1~fLt gy/;jM St|?Ysrb)=8ۗh.ښ(KԄ{kj+v=ٿ?精5Y獷)8$+=gy,G'[dRѶf"F)sUs.f5yO````````````````````|-C\m`j.w6<3W WծWفrƜe& L6u8Wj49mMx졯䶉}/֭YEML'00000000000000000000!]6o.w6<3W%d U ޖ Hiu^VޛqeԹo4֕L["SO׸D3%qyO````````````````````|-C\m`j.w6<3W>j/orn=[vR3GoMXYvz Ex=u^7k_x^Ƨv>hb^q{ȣ u^N>_zDu^/r總M:nuםl5h|:"?L[xǼ=倗-:oR>5=(&=yOD9teK'j%tnĜDwx')-H֤SyO9"}K%tĜD0u'q D+1='-(D&D0y'U%t>=SgJWX&=[B-]wۧ=L{B=噵[B-!ݺ}kA~#sK':o0~SJyO=-&D?_%tS&D{s[=~\hyK_B׼'o Do\[nO}{"<[B=L?9o~5]yO_M׼%t{"?j=a[B+lWO}{"cA{b|zqbcu%kI~u%z_X?0$q[(0}qm۾c懯?C/؇wvWma؇þ~鿮 ? B{cX~5p1[rːA9^Opm0~LNVvwm_,?cw}Vg$o/ǿ;? !yti:??_˿ؿG;]oП+_{y<`ʯ?~/>o揧[_֜/xGqD_5_c?~~o{z?IsGBg;gꞻ?|4VܿzGݼ7m]s'oMC׬H<=1-Y g6{.yug}X9$/mβ׽wSc7ʨFi}wJN^n!5Uaܿuiӡ##1- 饵M[{.}^;}H?%,;x{R?<)+ǜl2~q%bl;?UxU988sؐ^Zd齵9. ||Z ~ǧxEZ|1'мw8JT✓ynő쥵M~[lyvg>Sr0+&;H9^A8Q]V9"oAݸQaK#҃}$K&5/'6q$%000000000000000000000>{k/=s]+{'yDk#/;&5޻ ~srM"%J2=Kr̃(ώYőxKY&Kﭽlyvg>s݌MS7.㹖1,;x{swsN6 0WrȳW<~]YőđĆ&Kﭽlyvg>sL GJNZmA1Yv<1'׿r{W-Qzw;w׼Ğđ&Kﭽlyvg>s]偗)yOzrƕ5^vȣ9vcī{Wrv-Q݋sN}oIaKKĜƧ56mҳ]>%Ow__<4Q;&5^ީ_t,w{yJg[\MbkVq$Ğ&Kﭽlyvg>s)ceŤf;_XTre9[>-Q^b29<ͭYőx{b[Kk,ҳ]>%~wt;Y1iG%/=[g#y-VT׵y31e}8cN>lӺ]^}^b5obߋkVq$.Qsؐ^Z7IH/=s%͋rz316NOюV`_y&/W㙡:'Wo aK/X׭q8s^Zd͵9.ymܨͽ@mMG2@1έY<XI9('[Ww&-qDow1X׼Ğđ&Kml9k|6rym͋T)zŚ`,oumތ |qso=gz3WJ~Մ(fGA9o Okh/mg|Y3W陞}}6w/Ķf޻x=lu>'%?]cS; ?Px7+gŤ_,eޜ z[>Tgiױz%*7_r>ַ>lvqu*&Ĝ'66Yzog|γK>y{lb,;/{bE0sMn7׽Wsrn_mXM(k^$.Q: jh/mKvg||Lң??&Yjs9;5xU'kMcA c}]1qD_wyDM'000000000000000000000>zimdҳ]>%e}oV?vLhkq/7Ys똔uDJrJn/1XU.JB=Y M[{.}^.. lLyZG &m ܛ;c~*'Y> 1{S8zfٮWZXw뜣?z쥿58bkذ~k/=s]+|g{3^>#9gJYe՚0~BgyԨl6ƕɴ=TR.:m918sؐ^Z7IH/=s]+{]4-Yv&#X9lh]侅DβݾDw1׼Ğđ&Kﭽlyvg>Otq%_Iry37З5x]gS䘺~S`U+%7VKaInKM9o Okh/mKvg|?.^M}s;iK1vsYB{+&9J̇Ͻw3?ŮY?x{b[Kkz.}^.^kgM*8i}}M!v(Eۗ}{,]tw]+)z%R}q&G58bmkp6Yvg|γK>y޷k=kv](|4Sܚ坿۳o̓u/_c@J=|^b2b1YőđĆ&K߮lyvg>(uͫ r3uf,oumwb*&[ü}^ɗQim^|^#qFHM~Dg|γK>y城C$}Gׄ(gYv^Xݬua%Ͻw1͏c&5^8=:T9"ս}\[">XMʏb kVq$ּ%000000000000000000000>mug|x-$ONi-`r^y&#f?9+69BJ~Vq&yUM9o OlH/mKvg|?. qz̦5^$R1'zwJUv%r-w1֬HlHyK`````````````````````|bCzim^z<3W.ri4,;x{VƜ\>d[-[(?<.6횗.ĜƧ56mҳ]>]+cRb6o)ϏI_>S4좿̇5xY'gZ:bIy:'V)>dֶD[/1]&5/'6q$%000000000000000000000>Rk/=s]+ڼRv?0X}{0'wMkwo_.1K@s+[-xebkVq$Ğ&K߮lyvg>,9ŏS3٭Yv&#o6cNǕ|+I^r{[Y# - 饵M[{.}^g}K1 qy(6MKvvg>9ǐq,y_ښe{qpz,8m,_ΣeJIJ%/і]L&5/і]9o Okh/mKvg|?Y qqeͲ׽wc1's"-/[/]&5/]9o Okh/mKvg|?T9ś,;x{glmܫsr^ɶC`f"GyDkbzKX# Ĝg5f/mg|γK>y~s&Ǘ~xxKbkVq$ĞĆ&Kmlyvg>}3InP޻,;x{9E~`1'LXn\!g"'S~X̾v֬HlHyK`````````````````````|bCzim^z<3Wn<3޻ͅ5^՚K&wW-ۗh.:ۚh.Ĝg5f/m$9.꽫7)d_u䕘qsr^f}wJļ%r5=ؗ.F8s^Zd齵9.) 9^X9ť+ǜuJل%r2ǽw\֬H<=1-i M[{.}^޻fR̦3ɮYvnxTLw\_tJ~9`4ڣX'%000000000000000000000>o9.꽛7.ɚ-,;x{ry%h|ʡ}]Ʀ588sؐ^Zd齵9.Z.ϱ;[,;x{ge嘥awWrx˕qrsieq*&Ĝ'66Yzog|γK>y忽w|#{X?R|Pdߏ_u*?u<9x]7S!pƜl'{[W Lqmތ˗51y=q31-i M~[lyvg>vqY_ܑB4ɍDezliP1'[MIuK.豘z䴘9/'6q$%000000000000000000000>{k/=s]+{G|ߓ;(&5^8>+ǜ]Ǥ+eʖx`/1֬H<=1-i M[{.}^޻q~s҃9Yvn&UNv9hJ{W–H͸`_{%XfG51- 饵M~ҳ]>%Osy^)ye/{oM|c^ݖ}~4AĜUM9o OlH/maҳ]>%Ͻw41X拱~Ͳ׽Ĝ1uN}Cqvz%&ĕ+⏞k);ل%&ĜƧ56Yzog|Y3W.&#*owkܔ.LNNqWZTM%M{{bGb[Kkz.}^oo?,HƥVTS/=[gX qK&5xY{o<ə߲r̲8ouWZ6o1)ޙX)Yőx{b[Kk,ҳ]>%Ohluf;hsS[+_D*/n{QԜU'%000000000000000000000>óM[{i9%Ͻw1^L)kIrL[w9Iޝ^i^V^7{lzqq*&Ĝ'66Yzog|γK>yz`FiYvvfוcN>y{=R&=d9$|β׽w4UNqI1'o5ו+ýSDw1ּĞđ&Kﭽlyvg>sMi<09 MϜe{*GMucD29T/_"7?ŮYőx{b[Kk,ҳ]>%Ͻw3McY,ћ,;x{GϹ:&+--^5?MYőxk[쥵M~[lyvg>SqHo֏$Se{(˩-MW9jlJvUnI9;olbju*&Ĝ'66Yzog|γK>y{lB>u젚,;x{C7^)+ǜ|ZtJx%5j|Y{bGb[Kk,ҳ]>%~wt;Y둤c#EzjGvIN`~_Z9o[}cK 5z7ήY>E}qLɠsrٸC=l\Lq%NG:%&Ĝg5f/mg|γK>ynPsL N&TMkU[1'$2NY/[C>8XU'%000000000000000000000>{k/=s]+{7U}IA>g;[Z7ms9pWDn`{dD'7Y?đĆ&IBz.}^;{ܑ䀕qwpβ׽w0룳Y1JYNYŚqxfGbGb[Kk,ҳ]>%Ͻw'vԿ8;W,;x{gS3M1'Ms{k/=s]+{WR3>Yvn#2vv9&GǕYW-7]{51-i M~[lyvg>S]Q)yOz&5^eK|~]dM [D/ԃXښU5o Okh/mKvvg>sr9;Zb[uMtFƽ:˝qMWcg4S}G58bOyK`````````````````````|bCzim^z<3W2qq^vͲ׽wr>x|^DRv6ŕ589o OlH/m$9.꽫31)yI 5^՛"49EV9Z9M[y9|/] s^bOlHyK`````````````````````|ZC{im^z<3W>kVB?Mi:jZ:o IWb{"{d["8r'g:=Q垁-3?ӭyOּ%}n{">L=Q?9oܿ3?9yOOl{B~%tE7s&'`+?x%t^_w׿w|P^r/qk/?|n.-gcKM.mil ǥKBo.)Z]ol*${@sO:):o$RĜTUlM lzMmK0*5k<.7~_t_gn,o?`+o??~~_N&I#~Z#(VKS??CMU?t͟r̯~Yc?n54DM]{l6w L%Y~}Н0y,ؿW^YSϮ_vR7M^q{g=Yzֳg=Yzֳg=_?[T?f:5so ?1`eI3|Q}'O(7eBs&0A~Ғ:Yzֳg=Yzֳg=YzX/-֟oY[نq+|Wף:yQ?^u Vز^hYh>jw]iU:Yzֳg=Yzֳg=YzX/-֟rhhQgY~m\ᧂMǖ}ZJH  f3\]XPw8QY!eΪ+H6rGrnje,x/}F9z9 eXl;1Uwb.+o/k^zo^ʫK^|?}#rsĶ\y] N|'k='|ΙTŚVVqL܉5M`````````````````````1z&K=z.5c ~{gr{dw;5ݍW+}^K)+8&6qL̼M`````````````````````jjW^]c.rkI +h d{s_r;5vWo㉜kdҗ[.6fVqLl☘yxaCzim^z+.y_1{{k޵F\rO{oLi7SsQ:sVӾxw_wi~%cbme Mx[lwĭ>cbme M[{.5cMm}'kfb\Yy]sbVs=g×X"jWVQ'vQ&4jh/mKvȳK>yz_>ߒrnoV"y7?//o.Ro.5FmW>yp&ȗrSslrxTog%VVqL܉}bm 饵Mx[lIQ/YwjXN_u̩ʓyvMdaҷk/#.5xy39\*ƍk}ݮ,W4?M'̜ƍ+D.rRnL+/Q&NQ'4/j^zoG/g|_̫Z6n_*<јLh+x^G9\OvYv(0_)}mU^,ieubeB>&KmloEZ( W5f/=dg/Vyv5޻"w;'yleL+m̓`ɺlѹfV 9M~;w^m+oߩRGk;{#ϖ5pvN EN)+( xs68A9Ҩ+oD &QN],ƖUԉS Kk,ҳ]>쒏k^w5!hދ;g+x{7͙ǥl]/]_o&m";N_37OOf&[A _i?dB y5B8bwr\A4,WP.T'DQ:xci~K] y2q:yxUC{im^zG]1k|0Eb|]YyLy7^wjvޔy'|%v2n!=$ʽ*.ʄ}U M޻^zG]1k.ɓ jM,+<{qZ}N 9]_֤M`\X6;Uԉ] ƫe&^zG]1ko?nK7{qoϗ՝qrw֯rO[/J6e[=H\WٰO<3o߭ܬiulmW\횾5p vrI/V/LN&[kk =y|e M#RZlQyc`mF;zZg᫽gK{_, :W+x^(W9TG.R9 jBNs T}ִom}^erߞ먯/߂aeOLKUq<χj|&|l=}= & TW{ZgK{_,r4 ~er2.Jdh۠,+\ hKQ~畺6 ZjO+=lik^r1Vr\A3٭,WP&[ی}{ . 8oƖ;VfToy}`ml5ɣ튫]׼Ưex9-zS埕:Z)eظ^mS&˥Ժ^iTooy@@@@@@@@@@@@@@@@@@@@n)|x )|go{׼?=0hZ( w476l56KWB Lr?dBqy}}w*h=Zȳ=yz(rcq6+hƕ 4{T5 {8WƓo}r1>o^CA4.3oߩ0^iNulmW\횾5Lnq7r}&?-3Zevw1_ s[yN/КfToy}`mf=*|go{׼?ӯo[2.OdM~Ǐobۢ/K_ezڹlBo06 RjO+==lik^_ﱝ:'C7 TSr+|?\Rt'/o|Ws377o ̼M |k6zԽ]quk!Po9G]<;pfOxwEklA}(u1 7gIdN捁 SоWkڏ7ha+h/yˁ=q"ORs,_yLM֌/cru.+ D %'Fnw*h=Zȳ=y ҷ!_&˭MomrδFet16J֘׾|!5)wyyY{jToyM |*Z^mmW\횾5jV/L&;nQk4J=D'K)uiF捁 ViNG-1kC.h缩zԺ\B9lo52NYk켫z"CmU}^J_8"gSkTooy@@@@@@@@@@@@@@@@@@@@n)|BY y5n䝏l5aI=_IV8';w_餫ۄ\Χ.KS ƫKk,ҳ]>쒏k^zh1"WPLL+<ウq;SةVﭯTo>ߴ wI^neubeB>&Kﭽl&Ʉҳ]>쒏k^_?w;;ë3}䌗SV㜖L +?m͓7)?3g||_D˗.99|fuuB>G,쥵]>쒏k^w())W+x{'S9D6( JRI'f4.oy@@@@@@@@@@@@@@@@@@@@N-|BY y5Or1Y/IT~V+x^(WM6IY3,Y]_ɣ5?'=6ͤeuB>&^zG]1kǏljҌ_?GM"gy&̾۬+qHw^,yeubeB>&Kml';*,wCgVQ'NQ'4k^zR^Z#.5z6yr +n}~śW+x{,'TSG?sǃ:oDs)ڴ& 56M&g|_{l;I)YnYyMם.;5(뵏W r9QLr+/Ol☘yxYC{im^zG]1kCM{Ww&?Yy]-C4[X>^JK,&{ؕUwbyxYC{imnʫK^|zAޮ5T/3<3^h^k3q^C3ٟ޵'ŬVVVqL܉}bmUKkz.5k]qrvIYyMD;G=γ+Z kwy-bjue& 6\Ym޳vȳK>yz_U>ߒboV"Ez7{_~|y|6AnΦi_Ms+x^Vw?9k&͛+əw)ZUvy2q:yxUC{im6^zG]1k}!|vew8\<"'m"uf^b116쥵Mx[l/{䲲\;XknnJlr9ѯwذ~cb ί6M&g|_t齃&$ք4 W+x{ͥ1\IyLxMR-.F*M3o/ldG/W콓[*3<ウ< GΑurt^a.焫&ݟr.b~%cbme M[{.yv5Oo?ko[2.OH/3?n?ҙ>|[7t3x^7ӤϦGͣo]_ 4Mx/nbv%:16&^zG]1kvMu ,WvAjvW>PsL׮Xc Mn/ћVVqL܉M`````````````````````1z&K=z.5c/Fv`new6!vPΑ}sy~N$;vbVWVqL܉}bm 饵M[{.yv5޻J qPڕ $9O</vNxKy-mbWVVqLN̼M`````````````````````j?dڣ]^yuk;'rO{o9JwM'kR?48G֝7fד<\q_r~>n-7ZyGփ3a|4Ѹyf>kףcx2dc]4s}}=˩Gz_q_fz_mfi֋?n;5Ӹ_fKьz5e|4n͙}>dh׫ \q_rչ>^Lۺsƞߌz4n#E|{+{k׃i[q_/m}m=ק4㾞_fӌzc]㾞ϵ&#n˷Ǻ}=}>jZGֳ7n4ɄӸWO^|[rkףq_򟡝#n}~4^_f֛}q_O3xۿ پҸoC>⾞.x>Xu8\q_E߹>ⶾx|yoM?_|nt$w׼uc_ɾ1|F/M;coawo`sۙmGwF'woٿP;۷ R_/}D~aV}\ߨ.a|;;ҹ*cUӹׇ-zE͟PtϸeOmDσs}ٵOn_C+od7f'w}wb<ʪS;3>m͍"G)27Ⱥb~?>O(e+𗐾WMs]ҿ_7ݲU)'SQ7+ʹVn05;zV=Ff&Oa~wG-1k~iU-؛՟ȆWCQϗrZ측j<-$5}eC-rg3J)}Dra; 75`??ӨX߼106 RjO+}=lik^VƷL1qf[]6qz%GϽ mav^J X?ҨX߼106 RjO+=lik^rCm6.1qA7)^ SogK{_(\nN2`T 1T[dyvzEnD,rAN8({c`m;՞V e-|go{׼ d3BO,WP.ruOs#:z䤋s" r;Xʌ;̼M |Jm<[cc܌M4ver&[ ƍ&Z8CyiH}ȋ݁-ϨXw+H=*|go{׼ س_ԺMK.y-b4.NNh'000000000000000000000^א^Zd齵g|_콓(xr{l.}DysmHhO6o`1!θ~iIaӁ TW{ڏUQ[cCW;5P& ʩ0Xtg؍Ju&m")wzx?zc3oߩR(k;{#ϖ5~u7w{M~|KrʆYlm5?n?RF>|wQV+bRZY>:_n%S13:z8޺Rq~ɑ)VVQ'vQ&4jh/mKvȳK>yCmlWjj+lM+x^7j8d+J&L%M*! Kk&Kv},q&:ki2_ i~ew&KmcMG+Zc6Q4}b0>cbme M[{.yv5;$Otr\Ag+x{'Sc7d;vj+V__.w%Hۧ.y}bKk,ҳ]>쒏k^w٥$/+(VSYy݌ *WnR뵏Wm| ^eeĝ'f&000000000000000000000^^Z䏷KvȳK>y?}R.{9'%V+x{/GHƵ+͍(qr齋3ދ5NLh'000000000000000000000^^Zd齵g|_콣qrR uew2QOqч~)xL+ۄ~>]ƕU8&f&000000000000000000000^pa{k/=#5޻ϱzw3,Wr\ 4ݩ99y^x`j&J0>絴cb m޳vȳK>y?ʁ&Nn Xyewuqgxw{ҒIDrnKM+/Q&NQ'4jh/mg|%׼?ӯo[K7?"ěsոx{ǏKgEn.&kmedfyimv9켍jfJ-rG9rmM"f^LNh'000000000000000000000^^Zd͵g|_zm^iZ11}CmM{ċI$L+x^Wmb9+6/0;{{ڕUwbyxYC{im6^zG]1kᔕfhFi1,Wn΄4w7K>:__B*:s޻VVQ'vQ&4kH/mg|%׼vfB_v[0^7ord_Yހ}ZGyr9+ZS6ߑKwiv,3cb 6Yjsg|%׼oRRf[Yy]L?WsY>^﷉% ޻v]3/Ol☘yxYC{im^zG]1kn&%9<پnW+x{'kM79%Ss9*^SuQ>& 5V/mg|%׼~LJKcRW916&KmlW^]czxsߙT)g+x{8nd\|}#XVvYO WVqL܉}bm W,W5w3^Y錕+pΔ\Y*N5yʵ+>&9!ӝ}^KM +1&6qL̼M`````````````````````!o2!lW^]cAD1|fw0hq7C3Џ \nM+/Ol☘yxYcҳM{ҫ]^yuk;$d9e\W+x{g!]m&Α儕f+ɽ&;}b[y>☘yxYcңM{.yv5>S/)eٿ|cV xp'3xZ{+x?vjne=Ps3՝>ܝjf]Y?1q' 5F/=䏷Kvy%k>n]>W+O{ kT9Ƶ+d'!g{ݽX*;O̼M`````````````````````1z&K=~W콓<,s_Lq+<ウqndoϣ+u< M>],ƖU8&f&000000000000000000000^ؐ^Zd齵g|_콫 &t0SYyLC`ܲ.>8eޫ>_Iy<3Tkimcubm 饵Mx g|%׼zLŭDy"rO{M;lg7Stui%M3o/k^z{^zoGO]ccN wb|]Yyu7W޺bkDHrI$܉9☸Kk,ҳ]>r.5{ƣ5,Wnrr'ykN_~;IK&{Uԉ] ƫKkz.yv5Oo?o[2.OdCoN$yǏKg{8ɻy09,oim d̝MiD^KU8&f&000000000000000000000^h6G]1kvM`YljZYyLifxfi䌍ۄo}r&f*M3o/lH/mKvȳK>yv8鋗+.}t<쒏k^޼j+H\;9R7M#{ۿv}Eލy>'_}~slf^b116&KﭽlK>y?r.dr{$G94e2_dMkZK]Y1q' 56Yzog|%׼{blyFsf[Yy]M7WTsdoIWZ4n_Rk^leeĝ'f&000000000000000000000^ؐ^Zd齵g|_轳5^ΦyK,W$9Ś쒏k^w6߼/&56r{b年F6wQzJK'ωhSyܤ>& 56Yzog|%׼{&7v{WP yewq).qfo+!D;{t/cN,amUKkz.yv5Oo?o[ެD6~iqoϗG] $QHw՛1o,pN#;˝ ܉ͯ☸ Kk,ҳ]>쒏k^,~^)qew1t9#^fvބJrB9!}^K Xs+ 5\[mKvȳK>yvy⥘vfB|3yRlYڼZ '&>_ M9'G)Z'm%M3oj^Z7^zG]1kj:#ޤo8e1GOHrT9%NͭG+>zyLxLOѻ]&֕'6qL̼M`````````````````````1z&Km>z.5kiMjd<3I-o{Yڼ=qmf)pJr〙c"۝lsYY1q'6&Kmly?'ᴦ(r{`99EOzo}%69qMt~-b46116†&Kﭽl쒏k^_?Ei}fxVM8(d-+x^7S͵ /o}+o>EO1[kbXy.✘yxYC{im?V/=#.5]\9-Frzlij59#{[ӝr;͡e=] &'6qL̼M`````````````````````{k/=#.5{Gw]E)e\A11,WƕI.Yv;v}%;!Ή;VVqL܉}bme M[{.yv5޻1*nΚW+x{79yUg[+ry焜?Mb*Sԉ 6l[mǛLx+.y_1{;g|yMs aewIicbme M^{.yv5ԋr{new5-\ &jc+>9;.SmIe%M3o/k^zoG/ʫK^|?}˼rO{ocghoGnGﭯ茋EK%:X*;䕷 5F/=dG/W콣Z0M TW+x{'::k kxLm焷A6r/cNlim 饵M[{.5$a`qǃbcQx͔y;]pN٩VWtb o_|gwɟ̬116†&KmlW^]cv`Mt:ni޴\;8ͥj|;5bܼ^_#W;'Si ~%M3o/kh/mǛLH/=W콃N'wdi|fwj09s&^_#7O]L&. 56Yzog5w6Ex0Y>쒏k^w KW:3IWr{hb-3fg?_i}ZӾxv:q:yx]Õ&Kﭽl1ueykb9׌]s(rܹu}%G9?(%fX*.ʄ}U M\{.yv5o_%&^"GTƃC3,oim r+5u|83$o}RxD6o7O̬NNh'000000000000000000000^א^Z7^zG]1kpMy?D9%ʽrش\;Rnz٩;ֵ+ﶉ;vȓAg^LNh'000000000000000000000^^Zd齵g|_콫ukW+x{7r7/r(LrDj빛޻7XKC W56mҳ]>쒏k^w_q\A4ѯ,WR%Nͱhc^iZ6Q);Uԉ] ƫKk,ҳ]>쒏k^w_{ V+x{g$O٩9:ֵW&m6)wbVWVqL܉}bm 饵M[{.yv5޻J;5ծ,WnM쒏k^~~WwsϷ$؛՟H%lb~}ll~82i`Z[YӺzEkl;5dBЏL_>G5BRu[w1W^b116&Kݮl@G׋<1\q[7kzR\q_o':z ౮q_`s}}?zh׫qq[o΄ѸGG^L>z}|fףqn[q_/ s}mg}=/ zuo忓95A,\q_ >Lzn}=QXz}q[~i}=>͸WSG!oq_8G׫qgghף)q_/mi֋3v4wӸss}m]~>?z0u4Eq74_fӌz}\O?5Y\q_o-ɹ>I3㾞Lz5-l#nw~~3IrW~\q[ z4u4ӸGgiӌz}q[Ovi}=>͸?\q[+a|4An9G7$q_9Gxͱq_g#mQ|Nh&n.oD˞ }o^ǿ`s}+[OMbQ:N6?+7~Sdߟz2;9xBF?̅c1^0[?}?m }twP}][So}?/>BKoZX18'Ck^~/| endstream endobj 750 0 obj << /Length 222 /Filter /FlateDecode >> stream xUN0 y [dqҴdG@\rC5eY-d[obRނ㝄C _W+:^1 }$/K^ٝ!=r^`&z^Z*o-ț)4XN-\*SuǼNM&wdzO)c=ٔWGsiW(ʎqQPE$R endstream endobj 725 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/private/var/folders/ky/t49b807571q6cqs36mq80s3r0000gq/T/RtmpNVuSlM/Rbuild64da5ea5c82b/gnm/vignettes/fig-LCover45.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 752 0 R /BBox [0 0 720 720] /Resources << /ExtGState << >>/Font << /F1 753 0 R/F2 754 0 R/F3 755 0 R>> /ProcSet [ /PDF /Text ] >> /Length 40898 /Filter /FlateDecode >> stream xA%9vZEHh1hBJBP A94Ǖ{$Z]TE~vkv##s ڿ_9)z#O_o~']̏?~ 㿼]ɏ)[GɊϤ?Rnnӕ6Vڑs"jاULl3OO,☰L````````````````````|1ctX;ٙg:vV9f8ꊟYyWXX9r:ع#ŏs9'eS,ī*',/_.WX銵˵FIc~}d?,$/|sYXBrkA#o^N_yʟvٻimc9Di=IH=_Q71B0&qLX^&00000000000000000000!]6/2!]5G9OU:P::Gy}^yv1,Wd׏T6#K ~fv2v9>EO1'qLX^&00000000000000000000]6Qkk쑭=yοsctUg9e9]bxm9M.A]ՅL(vE*',/_.WX銵˵Fֿ<߿/Zusatݖ>p#ts Fd'4|dO]T;֜~zNe"egdoE Qe8&,/_ΐ.W.#[z@]]Sh]c>-0rϫU}cK9vkHGL4wU.b<>c2Ō8\?Xˑ=yοscgƞe?mYyW^gmGξǑ}N"[NKU~fE /fh tZ#{d_{o&{I`ng3xcOy=S1ݎ]n>'6{Wܤ^ 'mY?1c2 r}} r==Y(H]F%frϫDC0^fլGj>HIbOѷUL.'qLX^&00000000000000000000]6R5kk쑭=yο_5Kw'g7Vt|W^e r;H5٦Yۑes"yyjOH~8c" 3V:jr==t~ ';j]Xx~GݜG%y`\i3˕?Ɇ$ky9?W#w,isQ7i18ͬ? cbDŽej"Z#{d_{訫l(R|v_5趢(k x^53LevmLΉ\a_qS! 3Vfr==7OKѭ2ƶ"mЖ wŵH.YJhrۑіS OqVqw%]&\sMn/H9Y9}y|"<>cwAc```````````````````|MctJW<<9ۮ&kW#rYYWTh'yGx*9 ?'rkY?1qej2\kdl1sGsouAr,g+\{۵G6zc"mkW,RUL.U8&,/_ΐ.WX銵˵Fֿ<}ϩ=JnK>/< /˳ rϫld_ Y9rMK#mrD ؂۶V͛w>YOa-,>0R| YW]wT}fuq9=6ti79 Ƒm bysmw*E /gH tr==oog. q9ȍ̖ wM"YysYvޜߖۮ 8,OQ C 3evc{W]oRYiW;);{쮌;5gqzrX&r[W{c"mfE /fh tZ#{1s/|<-,X$*oZWťHc9H#-ɻi$Wո if" Ɨ3Vfr==oonK.G6ىA . wM"U^RjY둖].DNnnq!.b.噧"ej2\kdl1s۽+wy^Y ,<#KyllnGJY&dnw\KU* /fh tZ#{d_{oax9IRz ErtԖW%XWn9V/U,ufE /fh tZ#{d_{ty}^{e9]qqH%=ٗPqH y:!Ok<_fVqL\>ayrtJW]5G9MW\y+s޵2󮸹";lDZ}K]"pN?﫾wU SU /gH LHk쑭=yw5=r .$-VCy}bDŽej+]vc7]q孺P.י w22,gW<~d/D_gWUlqfE /fhF+]v9r9MW\q_qye9+n.jzG9$i;Қ 2jmf)ej"Z#{d_{^_Ux]|'5wz?~o\ΏE۸䢟Y.iܢ순 '*+G!d[5ۑƥ2V5cX4" 3rY\kdl1sY(aoUJtȱ6 v-˕?廓 a~L϶٫2ݲ*.iSn(*C Ɨ3E&˵Fֿc"3Vbr==]qul(Z3x7U:mz#PF#HIY̩>e/ϥe)ej"Z#{d_{!OVj [,;E.6<9g+Q(6ld¢w+#ȥ)W'qLX^&00000000000000000000]6Qkk쑭=yοQJ?=H~՜j9%ҿ[ x^5#]CueK#%ˮ֜/{y䫸UOX^&000000000000000000001Y\kdl1sUsN8T1R-oc},׉B['4]eT{uqмN.meb/D׉}ܜNh^&_~ D5~׉SLd[^'~׉]Lh^&JWO:_X&4Lh^&v/9=',fLh^'vk˄ezubse-ŵSLuny[>'b׉ζNh^':Q΄eB:>'4/AqLX^'Oә׉vteuu9?9]|zzErŻr+Zײօ+ua-/eaJ[|&/m}6[.X>Ad]'cNNօcNNsm]'/>ٞq+GjOy}h,%Ͻ o3#.?uܿFoxz6:^x^+x^y-xG%h\||֥YC]b]?wA̲S~tlˊ ,^D+ǿ)??=?;6￲:1-?ꃞӿ_˿>?f6Eg-Oӟ_?X>ޗ__\ c_SxL&z4,Bڿ0zFkwD*3/g7J8~S "O4g[P˄Z/~kY1qeKk2{ikl]1sdAAb߃HqבcqI/1˽i[4g_fp|/)kmܳwyS"faeKk,.ٺcy_#0Il-<&+EV,7g/veU^RjOzE?cbDŽeKk,.ٺc[b?,c-).lNYU^#э}l" ^}Y1qeK&ˑK>yοٻfks,gNm;|diޥLvbRUlef4E OlH/m쥭]>u=K_]O>]zXLȕ'ʟ'Wd5g~A\&r=꾊i\f" '66Yv]>u=\꧔k=e٩fܖ>nOkufyB?輮YMzYoW\?N-4?.☰L`````````````````````|ZC{im6^#[|=KG#Y>޻o+5o ڤ?'cVbS Okh/m쥭]>r.9wW涟{b.LQo3]ʘe3$że}{*#0:>3;R79s"y|q38&.bL`````````````````````|ZC{imo^#[|o |zIL߮ s\Q e nml.#{^e-Gs)(ΉCsKsve-̬☸}2i M^{ikK>yο&Wt2Pr{& PGo ]H\,D?%/y.:~.ϬS '6BmLH/mK>yοKp13\3u=.sŶD߽r{w򹋋iq1!O9{m*}fE Okh/m쥭]>u=7w_#67rO{Kqy쐢98w;RlA~N6f{p^ŚgVqL\>ay&KﭽG.9N.lya lpbYy]]\أEsɵyz`ׯ9jXO38&qLX^&000000000000000000000>!{k/mK>yοwc2i M~}G.9/_Gx|G_YN?{z]﯏?z}WnkگEF,<͓7km^i3Y'&jV1fbX1ay&KmG.9v<ȼAs),g.mYi#{v-=*V?c" Ƨ56Yzo]>u=o B|o,dwoPo:/|d-,Ӣ.CvWu)_&O}VsU?oUOX^&000000000000000000000>!ɯ/v%<ܠ6i=Ӳqf9NUlEic><1^v&GțKb*f*E OlH/mK[|d뒏{o{"{ af9vs] HI.e"}bu>" Ƨ56Yzo]>u=ws%?r]'f_3<뽳Ňҷk/mK>yο߷1Ev9'RvjO}\bY1q:ayƖg"K[|d뒏{wٷ]ͷ _]lI6,6ߢ :yXMf%9.)Ky)E Okh/mK[|d뒏{nշ޻uf9wq^ITY9';w=҂ aW{Y[pKY1qeKk,.ٺc{wM]{.3<{ 3R5琤s#{qaoŞ"mfEƧ56e.ٺcۤAo9/%ׅ%xi~aǓMݘ% ȝ{\)3GOTh{~HS eY1c2 饵M^{ikl]1s )͏]uT\3<ウ48VC{)y\Llsiiaf" '66Yzo]>u=oPOlek3υw䁟O3˕?P7Y 9 ]+˄|MO1Ul.* Ƨ56e.ٺc(1nK5>vɛrOk\rG7>.ݎmqHAYS*FS8&,/^Zd͵v%Yv?L8zۓ*ufE Okh/mK[|d뒏{}A']t|F.G-<ͫ۶R+G{ۑ}w9,W{|"}fE OlH/mK[|d뒏{͋컞T~6u]XBv)^3cW^~f}{ }* ʑoG&HIjOѻZW1PfVqL,☰L`````````````````````|bCzim__dBzikl]1s}{`r+|`w~-IvO.ZY.ymfTvʑe`;ؑ]DjrjW1-<>c2i M\{ikl]1sۭΥyӇ3h.3u=7N.D?/y.u[*w[VqL,☰L`````````````````````|bCzim^#[|{7Gŵ s7G?]؈Z};Ҽ=Ur}>bpaɯ/2Ѷ]>u=I٫'^jz]9z<~Ӳ\ #IGVjnǑܪ|oJOǰI-OO,☰L`````````````````````|Zc&Km>z.<9y y I6pZXon/(_r4>ay&K߮G.9f{7-BrO{]j 4dqvMs"%Y\*2~c" Ƨ56e.ٺc޻EU*i9$X3x{o.]ל~)-2>e38&qLX^&000000000000000000000>!{k/mK>yοJ n[7gW l[SnaaE>߰ eBI6x:$=@qfwG_zzeb]\ھif" '66Y5G.9o $CⳫ?;n(lct|dYfY>E}s<0MBaHw DŽ`YY]|t!Rs d)_#8&r)ni7WS8&,/{^z3.y1NEs3]3<k #%>Vjm\oGzػ{gX*',/{^z3.y17݀|4f3x{7m=r>l㋝)Mز>eU OlH/mLH/mK>yο![?){,lr{\ ȫ cC򰹺,Ӣ>DCimܲKӡGrڏ՞bp-BY1c2񉍸6YKvy%{>ܠKeܐ qf9wLrk.٦2zD^XN=S^~S8&,/{^z3.y1]ɏmaf9wuM+1[qڹ#r{D}bsyy}bDŽe6z.<9j[6)kvKNurOkqق]Vjn\ݻ oz2c" Ƨ5F/mm棗̳K|̿]R9˖R;'9rN$bR*',/ؐ^Zd齵v%<޻ܙ6ag0Nβ޻J9FmGξ=ԎL {y.bb,8&qLX^&000000000000000000000>!{k/mK>yο7/̱QZYiW#,ʑ/qvVeB)mq)E Okh/mLH/mK>yο7W#h޷"[3x{'W#5]9S)Ds{\L]3O1U Okh/mK[|d뒏{o{4޻)i7\)E6-?'sq38&.g^&000000000000000000000>QF/mK[|c_9nsDZw@KrO{ay&KﭽG.9nddrO{jǝLN;{r]<=bp~Y?1c2g"K[|d뒏{ozy.n ef9r}ʑN⶿iE79'Ru)\\ZZ$[VqL,☰L`````````````````````|bc M[{ikl]1sm]jncR3<kG5mGξ{أЭWVö\)E Okh/mK[|d뒏{o{s04޻)o.q#˝[j[&rzw}{y)nqu2i M~}G.9]ƙ {H{sA}d|ގ rOG6c"meKk,.ٺc~}d)?Ȃ 7'l~}?[gΗGm.f x^^+mbGZmb,.Ջ=v[Y1q[yĆ&KmG.9vac JvsY)&;w=Ғ׉M~KY&4EZ&4/%|3|SoмNpмNuB2EW:Qd7eB:.ͼLxnu"_~yn_?1Dk9ay&um,/%~b׉N쮭Z^&Z^'gjy]Z?S˄~׉M2y//ͼNlf^'w׉vnsBCޖOlu{ D_]^>׉,O3_&4յmмL(7M׉,{-׉_'4/[pe*:\]?SDu~L-/)-"u"]~y/ͼLdnu"]~y]\?1D_ue~b׉Y^'aeb мN<'4/zϯωۯ%{/0_$alZ K>l.K.ncKeivIץKO|-?_Ruir;ei^KwSiUyC̲,_Uo&6:{u"gr׉L ˄e"1ayi06G׉U˄euB8?_/_j? ꝅ?-L?%fa?A:O9}ß{3]|?uE}-ߒ_~c+:~=t_w.AW(!w͟_w~췝{jtAWf鳏`e{U&/ TO753w3Ze`/ 5vSth5 ]/zrPqg¢6BM~pǁ5W4/_îZɢ~Y,Z:Yzֳg=Yzֳg=Yz_o-֟/֢Z:sw汉no~o@(Y~Y4(' u;GV|]oZ]6Բ|6^xzֳg=Yzֳg=Yzֳ.EݼջڢjeF+?-7J;Æ_o]/Z~4!di:IW$}-YmѪ#Cx:Yzֳg=Yzֳg=Yzm֟hQ 9|sMAd?P6}e }vF .1xFx]`h!X3dV5^xjVլf5YjVլf5YjV?j'X|}zzV÷8g_\>-[-[?m>֠/):7Q.|nTK&Xef5YjVլf5YjVլf5ízR'gj9|sM]-Ey6o*}(o6/j a3b :6r]YÊ<-uҰƫ_xjVլf5YjVլf5YjV?j'X|}zzV÷84y{%i>kp(oL RFa]Đ\iɦ+{D[V,V:YjVլf5YjVլf5YbIgZq75!UyS6ss9ޯ r.w>nO3?텛l(5nMI1}4j<59g88| VWKJ#[I;oqN>mOB+mZYY|'ٚWVje؎ec"ڏdy݇U\l3OO,☰L`````````````````````|ZC{im^g<{x\}w!,gήJgc9繏#1U}RޜhIvXS~Iԙ'qLX^&000000000000000000000>{k/mK>yοwCW3m~f9wE.ژ[.;w=vW27y՞bu[eYEXEмN`````````````````````|VC{im__f/mK>yοOT=?ᶼ}MVG6rOk)!fGo9pJ;[ĶLȃ%*u=76V.Rg3x{gd? )jsGr<뽓MοȈe9y">}ԜF+#,Kq_S*feuB:Y M\{ikl]1sl{\R\(,+x{gzK.sK>[}=w^ʫ9wcb1sbmUKkfjϼs1绤յ$ٿ%|M-ϚGR,7مT1)r9tp;mGWmbrދ✸Kk,ҫ]>ly|A&/\YV.&0QNs&OO߉=[VqN܉cbm 饵M[{.[.9.6+pjYV>S?ҼRs&0z$._}ZڱdY?9sbm 饵M~ W|%?Gt|R,+x{'E@׻\;/z$$e9}*~/].E&M+o/kh/mKvٲu6!vqh.d˲|sf(EJu]XkG<߾MD_]y]]8,.Ή 56YzoWlٺd\XU8'V&000000000000000000000^ؐ^Zd齵^em1{q }>>K- ݕt}XvkvٞGbk{}'{zıX,8'.Q'V&000000000000000000000^H{H{WWlٺd޻y_fݲi]@.q+=WI6k#1.k".&&M+o/kh/]g,Қl]?sc]g<6.+.6˲wq>BN5-#R1TySnxTŒ-8'16W,쥭]l]?sc]%Iﲂ]e{V^t[Wu瑘\vr/dY9q'dyxY^Z7Wlٺd?|-ܾEp? b >|p!L>[2mey.[H^>+5._w޺p\1ﶉA&/-8'6qNM`````````````````````!Rk/e%c>?<.޲?3tXoŵòy}C.WM}/DcX\ U8'V&000000000000000000000^ؐ^Zd齵^em1?.ޒ;-E~x\̫˲6}>[;޷7@Eg6om"$n_b/&sbmeK6m.[.9Ȧy||n>c}|dYnimރp_/g#W5S}jq>])l96&Kmj-[l=˸׷4W0/\YV>\ȷP@Wjٵ>&ok;ߋYVqN܉cbme M[{.[.9Η1J,+O{RIu/WjnمW9VkC]ewbUw☈WK/&K={ik-[le(`gWd{k޲Y}p\J-בXZΉMlY(96F&Dglٺdwr9bȲp[<ウ<!yfݏ\>ģCDLKyo9..M8'V&000000000000000000000^֘j˖K|{)ȣ ղy=F^Yjx5!۝%Ʋٲcb^m޳vٲu6ozﱘ07X)yѥbYVy%[rUڹĔe D lj&zy(NɲsN6ꥵM~^z˖K|{i}Ϗq7"do巷x}|ن5eyv#GWՕ˺ Cc-%ߋ=ZVqN܉=Z&000000000000000000000^ؐ^Zd͵^e0u1Eޗ)7ٲy]]ЂzU>͜焬Eͅ`Y9sbmㅍہW?{oWlٺd珋c/^ŻK&/ Un {Kѻ"{D+!Fևn޾Dw1-.Ή W5^mLt˖K>{|6oËs\im;d$ $Zx^'׎[x-5}8HL~mr(tq>]fѕM8'V&000000000000000000000^^Zd͵^em11[}^l~R,76|(ť=nuGbW X\bUwb 5f/dg/mem1_͏)k溼3 ì,76O^Pf^!C&dMZtwb+ÜwXyxYC{imҫ]l]?s;=St!ߢRA +ݲy\p,+xS<jvg_kme&Ή 6B6YzK[lٺdRw׹K5˲wqE+o. VVյe~N?K~].f*ΉM+o/lH/mKvٲu6ϷIIk6)C.d>[ܓ܏<"(OwC]NM+o/k^zovٲu6ol]26)9X, 9n4tWqq=m=rʏ_bʻ•M8'V&000000000000000000000^֘j˖K|{g-ˇeY޻Po!ʕ{qz#e'܃M<ܑ,8'16W,w^e%c>}轛;I]Q J,+x{wyg(0׮eWzDn*oKk1Zjı%WVqN\NM`````````````````````!o2!j-[l{zp|-\KeO{#V(r|]+fO?c-=bWVqNlXyxa#!M{.[.9k1/Oq…1%y_(__y;);1Gu>Zl~?-% _{{kB6}%ťfwqNM`````````````````````1{&KQ?{ikΞZ䷳ǾWYLhu=^`,+x{7ٻ%>\ΝbtMׄtcq~,z;e&Ή 56z.[.9׷<`\eO{e\kCr=Ӹ(_1tKfM .{*Ή;Kk,ҫ]l]?sۇ{,&B ғ ;eYpIS)iɕ>dokW~XKUwb?,o/lH/mKv̫K>{WR%  ղyo!ЛZ\ݝfk-bw![VqNlXyxaCzim^z˖K|{콫7tJ]5;@WdD׾<~Nڽ}b?YDDмO`````````````````````zim߬^W|?foSbL'RW(W~oo6NЙU.G!<;Q+/3Ѷ\-wI~[p'òsN,meK6YjKk|%=>.>ﺹI޻, E?fq^Y zy$(u5Q6܋-[VqN܉-[&000000000000000000000^^Zd齵^W|?f.|w֓T˲gw7oy71|v]`R] BN\Nh'000000000000000000000^א^Z7^zg^]9mC|tIv')YAvX<s<bV]H;\HDw1- 56YzoW|%?އ(.aYV.v0w9ZiŵMToO?En{,beeuB>&Kﭽjϼs1޻\̖e{. !е둞 DMn_b+޲2qkB>&Y/3.67yWN + 61(U\\wGb5Mﶉ^ݲsN+o/kh/mKv̫K>͚^dՕ`YV..y7Esܽ{)_q|lj,8'16†/&K={ik-[l{7ɡ7w[<サ;Ҽ>wqY[Vx&b罛<~c-ZVqN\NM`````````````````````!o2!j-[loSy)XR |໴ޗ>\ηЫyy W;ڷjoj Nk_q=KYϰ`/ѷ]L.&M+o/kh/mKvٲu6e#ؓ MihvuvlѕZq?3i;?v>Dl!;]g7]u~^܊u;?~P3nѸ>hg/;kgG~rq;xy^~>_gK>?$wϸ/:?~~|W>?]>?"oϸ-߈VѸѸߢG~}>w\ϊjϸ>Ŷq?_]Ϧ[q?\;3?yv~|i~ߟVӊyMhuu~|3nѸ?M}ϸ/Q~׸?\>?ӸӸϮm|s~4nOIq4i|ݿ?~~>ߟVWyu~|㇐,cHϸ?.g3n|qy^~~nwq??C㏦?:~ލ㟃㯦z CAJ .:_2#~+%]Yve+_?ݕWkWciܯ__Ʒ12"ȿi {4:?~zzu^u>ChWΗcy^u~ݎnw9~d6ٴS>ߕ?l1~^_qYHsk?EzW\ǷCܯjOOo_bmseÏ?_oeis ,?_ov+׾aw6-G_ېϿǸ__O?&7q珥Xe/цͿo}\ z|m꧷r[tYsK< 0ӼRsKoHM#<'9~<`e&Ή 66YK[lٺd r,.1lMe{Gf+5b,}}~]l*%D[ 7b6YzoW|%?<X].բ)M4 <<#ny+( Gb:d sBޕWZ!bV6qLlXyxUz&˖K|x\|\_䊾 aTaeY{EM^.U-[#1W| %+8&6qNM`````````````````````1{&K={ik-x9)|Cq4_cqAoˁWx^W ˁg#e~FD6ȫ`Z-8'16&Kmjϼs1Ż|< ,+x{gR1 WjHKۄtQk-ߋc+1'16†?M~[˖K|Ⱥ[y{ήv˲w2RWjn݅ؒ圐N>tVw1Kysb 1[,쥭]l]?sc},{XAuY<k@v9#R콋eKٲ2q:yxUcҳM{.yucϷY6/#n>3F#P- ywB?yt+m<S5}%cyxxw$&Kԉ 5f/K[v%=}>PW*Mv.rOkcWfپ\ܢk녢z$|&駵-8'16W,쥭]l]?s.+.ieeY޻X7i֮G׎}C.+J{NLh'000000000000000000000^^Zd齵^W|?f{7C*鱂e[e{rޤX,M:|#>7q%x*ΉKԉMx}c^&3+lorT|npIʅe/RZ4rO]9ng6sۄu$xA}$vX1sbme M]{.yuceu^gw65B,76?\˷e]Y#|jD ɵG/1],.7&FsbmeK6YjK[lٺdj$ǣ1U T,76z 8o}zz$.m"^7X꽨( W5^ƛ8l_͋l%]Byi Cϋq]A#nY>E}#qn*(V^ב\f;+C~&w{Uԉ] ƫKk,Eҫ]>lun|PzqjҜ?.>|؋ yVddeyv]/h]>u=Ri(A޼ۗ.&%}U M\{.yucy\6L֥_YVnRZnЬGbkB~mPmbuG✸M`````````````````````1{&K={ik-[l{w/oE_y}|dYV%y}scq#c ξRػeubeB>&Y/3.6N.$^v[E˲/Ki!O{#~s&RGwZK8nYVQ'.Q'4kH/mKv̫K>=xP<=.Gw~x/.[. XYy^]M ;yg"F?3==ȇۗ.6M8'V&000000000000000000000^Xlo_g^]9m }!{R\_ͻ+-懏rj{-[-q^\H<ٚSu!ٗ.w&M+o/j^zovٲugY&, eY;nqr.uwH<dImbrދ*Ή;qLM`````````````````````1{&K={ik-[l{eB7w4˲wuOʙ]R&!ok-܋=[VqN܉=[&000000000000000000000^ؐ^Zd齵^W|?ft)Xt-~MịK>ղ\6gЛm^9s ]QI;&Rvۤu ɲ~sb Kk&Kv̫K>x\\A}W<kk w+g>ZmG&r'wc`ĘvqNM`````````````````````{k/3.6nS ;)W'bnZ^ỉ;z^mꥭ]l]?sC=pEV- ;bWj=sz$^l[-8'-o/kh/mKvٲu6BɞUj,+x{y<+=W.]ékGdϕT ;;ZKXU8'V&000000000000000000000^ؐ^Zd齵^em1{y;2]e{Jz'5c}wӮc-XVqN\NM`````````````````````kd]l]?sC;ݛEޖdeY;E-v͵U#xMDQۗ.&&M+o/kh/myҫ]l]?scKEX]le{|\+ɕkrm=ͮGd-NNwfwfxcwbɖUwbɖ 56YzoWlٺd޻.LRdr,+x{w;h.M@׵#1>/+ϟn(⸉UwbK 56z.[.9yeV{ 'WeY;Gٌ%UmW\^P]CZK=v1ɦ+8'6qNM`````````````````````!{k/e%c>翽4ܾEp?"=[8,7o_P://}+oz=sq,wo?!o.觪DSH/\s41w, 56YvW|%?>g^]]Q+]VpxeY޻*O7Y2k#PZeݾw-( W5V/=v̫K>9"ωAO_6ѥYdYnim~&Y\+5vz$";\=vKLa;e&Ή 56YjsW|%PwǒRu>}6OJ|9hYnym~Ct״p#zD 61ߋYVqN܉Y&000000000000000000000^^Zd͵^W|?f6$yî?a/=+ڼ6-zepHmd70wbUԉ] ^eKv̫K>6/.%/'}{.%ʝ(,wo/([ȕ+wz$Ƽ>5/vD/obtXVqNlXyxaCzimdBz.yuc/-4(}9\e{4ѥ+ۮH5QKξD_wplL\Nh'000000000000000000000^^:ǵy^Z/g^]9mKte,'y~]s5T, 58߇e7RsX#YO]>Ś,( 5V/mҫ]>꒯!޻:[6׭Sòy]lcr׻;s#%*ֲׄZJ{NLh'000000000000000000000^טl^g^]9mKjg{t}H-.[H%m͛ٲyk^]QTr 2WDʲnX\K\UԉK Kk,ҫ]>lRp۷z,+z])+rе#)mM%nDDмO`````````````````````zimdBz.yucwirمep!Z<skǼ敚SqysA:kfe/1].7&%}U M[{.yucjў[Wdq+ m}NXKNLh'000000000000000000000^^Zd齵^W|?f{7e\AeO{e#.WjNQ@k_GZ&wGm-^lŲ~:2yxUC{im߬^W|?f{<sٕnYVNuJe<~K뽖T&dss2R.f*%}u 饵M[{.yuc![woZ,+x{RsP]Ck}].f*%}u 饵M[{.yucoo?[}Ϗq7"EQnoo巷gx}|wEvr)>c+~'1MRH?5= Xw ]N+7ΟXy@@@@@@@@@@@@@@@@@@@@;Vt̫=R(G/_^o X, <룋 ;!ϡ˅vlDIvh^ʻ7V&N-|>Z ۞ycOh{ű>z|yetUaYny]\: )([=$5\R=]kaE;o M ՚VY֢u6mqǗޕc]*~{FۺH m⨮͌/p՛/OV&n)|} )|Wo{Ҟ?!X+HKʲr8n=r!dHkvsr5^`rDK\ݻӍAZJaY9q' 6Ɵ6YjsW|%?>]]kZ- M^3᪮]sj'HuMC k-bw![VqNlXyxaCzim^zg^]9mCavR)/,eO{\U܂\9ue]h&J'wQY_DXyxYC{imdBz.yucwrENtE6KYYVή/Avv+5](lDՕNccbKk,ҫ]l]?sc]\7^1]cw)[<{#JYJ͵f{^\ۄ6-(&Kﭽjϼ8ZqOz_0&piuwyfri;e}{.Φ~8l;Z#зgJ[✸ƫ6z.[.99\gp5Z<ウ}GJͭ#Q6&oz$'6q|fY9sbm 饵M[{.[.9..[,|n˲wu%7w&Ε{tm퉮GbHs"r/q|MM8'V&000000000000000000000^Xl^˖K|J>!D)?&%wwcsc#- <եYk[Qo}^X&ru%b1sbmU gv.yuck维벂C+_YVEz{Rsy$sWs"hwrދ尬✸^m޳vٲu6leeLV9e{ꢿdgr܂]/qm"v;u;ʽزeĝ8&V&000000000000000000000^^Zd齵^W|?f{wdw\eO{]Ku/W}]LH:\mD n_ky,1'6qNM`````````````````````!o2!jϼs1޻7pX]HsٵbYVNh|Vrwzo=z-f;?c-=bv1ZVQ'.Q'4kH/mKv̫K>ZYPIZ/\kv}>ro1,|iΟEC+5>3=" Jđ$%`DDмO`````````````````````ҷk/3.69>ݻeY޻^tyzF~e~N{_bXǟx&) ƫKkfjϼs1{\M޷\Av9Zt=SG5J <mE;7߭ Rkz[c>?>$Vw[݂ymme>.ݲ?k[t5g Żn\8_*}m`rho7V&N-|:Z Z9n;m_po\( }8r=]ju;?v>58~q?_VyY_g7{^gwu~o|qq|4e;?vDWO~pm4q;_s׸u~|3nu4ǟn|sa|4n{pi|4;G~}> ";~>/3K~;?v~?j>I6ϸ/u~|s5:?~7JϸOQv:kygu~|߿?q~ؿ?on\>{|4 uq;/*>hW׷4nkp~4:?~}~8t׸Om|u~4n߿?Oe~ߟVO~jMu~| 3nCt?\q;cV' uMh&6~B?'V't]ĵ O6) ~?0⯺pf #NvD:N)e<6Z??ay@~Mi|?ooǿֿ[c?ӏ}d#Ǹ__?/7V]?b1 Ccooq[J endstream endobj 759 0 obj << /Length 360 /Filter /FlateDecode >> stream xڝQN0+|L$f6GZ* L㶑I@6 .ROvg&0K*СM̥(BXK ³lZ h'^4Ml4ւTXhWXqT)קf9:r圩tk:S+j'c#փ Sl}e 7LuF[m7KUn(X)v^f.=*`ɋS\d}8橻؛L3ˢRJEG'<31-IXKLw%K 3(VL"P|;Kf: j#'(.,MGk>ñj endstream endobj 726 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/private/var/folders/ky/t49b807571q6cqs36mq80s3r0000gq/T/RtmpNVuSlM/Rbuild64da5ea5c82b/gnm/vignettes/fig-LCqvplot.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 763 0 R /BBox [0 0 468 468] /Resources << /ProcSet [ /PDF /Text ] /Font << /F1 764 0 R/F2 765 0 R/F3 766 0 R>> /ExtGState << >>>> /Length 5932 >> stream q Q q 59.04 73.44 378.72 335.52 re W n 0.000 0.000 0.000 RG 0.75 w [] 0 d 1 J 1 j 10.00 M BT /F1 1 Tf 1 Tr 7.48 0 0 7.48 70.10 359.09 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 78.07 339.04 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 86.04 340.06 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 94.01 340.98 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 101.98 336.39 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 109.95 346.70 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 117.92 313.89 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 125.89 337.12 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 133.86 326.43 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 141.83 318.49 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 149.80 317.46 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 157.77 310.69 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 165.74 302.80 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 173.71 314.78 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 181.68 303.23 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 189.65 307.08 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 197.62 268.32 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 205.59 294.42 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 213.56 293.54 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 221.53 285.33 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 229.50 292.74 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 237.47 251.85 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 245.44 259.33 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 253.41 271.84 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 261.38 261.43 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 269.35 256.54 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 277.32 221.27 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 285.29 259.30 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 293.26 252.63 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 301.23 242.81 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 309.20 241.76 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 317.17 237.95 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 325.14 223.36 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 333.10 236.22 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 341.07 220.15 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 349.04 200.67 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 357.01 156.14 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 364.98 191.07 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 372.95 188.09 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 380.92 192.73 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 388.89 165.53 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 396.86 171.70 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 404.83 162.30 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 412.80 134.21 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 420.77 131.07 Tm (l) Tj 0 Tr ET Q q 0.000 0.000 0.000 RG 0.75 w [] 0 d 1 J 1 j 10.00 M 112.92 73.44 m 431.70 73.44 l S 112.92 73.44 m 112.92 66.24 l S 192.61 73.44 m 192.61 66.24 l S 272.31 73.44 m 272.31 66.24 l S 352.01 73.44 m 352.01 66.24 l S 431.70 73.44 m 431.70 66.24 l S BT 0.000 0.000 0.000 rg /F2 1 Tf 12.00 0.00 -0.00 12.00 106.24 47.52 Tm (50) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 185.94 47.52 Tm (60) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 265.64 47.52 Tm (70) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 345.33 47.52 Tm (80) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 425.03 47.52 Tm (90) Tj ET 59.04 98.78 m 59.04 361.69 l S 59.04 98.78 m 51.84 98.78 l S 59.04 186.42 m 51.84 186.42 l S 59.04 274.05 m 51.84 274.05 l S 59.04 361.69 m 51.84 361.69 l S BT /F2 1 Tf 0.00 12.00 -12.00 0.00 41.76 86.94 Tm (-1.5) Tj /F2 1 Tf 0.00 12.00 -12.00 0.00 41.76 174.57 Tm (-1.0) Tj /F2 1 Tf 0.00 12.00 -12.00 0.00 41.76 262.21 Tm (-0.5) Tj /F2 1 Tf 0.00 12.00 -12.00 0.00 41.76 353.35 Tm (0.0) Tj ET 59.04 73.44 m 437.76 73.44 l 437.76 408.96 l 59.04 408.96 l 59.04 73.44 l S Q q BT 0.000 0.000 0.000 rg /F3 1 Tf 14.00 0.00 -0.00 14.00 44.73 442.09 Tm (Canada, males over 45, Lee-Carter model: relative sensitivity) Tj /F3 1 Tf 14.00 0.00 -0.00 14.00 102.47 424.81 Tm (of different ages to change in total mortality) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 237.73 18.72 Tm (Age) Tj /F2 1 Tf 0.00 12.00 -12.00 0.00 12.96 217.52 Tm (log\(beta\)) Tj ET Q q 59.04 73.44 378.72 335.52 re W n 0.000 0.000 0.000 RG 0.75 w [] 0 d 1 J 1 j 10.00 M 73.07 352.73 m 73.07 370.64 l S 81.04 331.98 m 81.04 351.29 l S 89.01 333.36 m 89.01 351.94 l S 96.98 334.69 m 96.98 352.45 l S 104.95 330.15 m 104.95 347.82 l S 112.92 341.22 m 112.92 357.37 l S 120.88 307.06 m 120.88 325.91 l S 128.85 331.73 m 128.85 347.69 l S 136.82 320.80 m 136.82 337.27 l S 144.79 312.80 m 144.79 329.37 l S 152.76 311.90 m 152.76 328.21 l S 160.73 305.08 m 160.73 321.49 l S 168.70 297.04 m 168.70 313.75 l S 176.67 309.76 m 176.67 324.99 l S 184.64 297.95 m 184.64 313.70 l S 192.61 302.22 m 192.61 317.14 l S 200.58 261.85 m 200.58 279.97 l S 208.55 289.47 m 208.55 304.56 l S 216.52 288.73 m 216.52 303.53 l S 224.49 280.41 m 224.49 295.45 l S 232.46 288.37 m 232.46 302.29 l S 240.43 245.83 m 240.43 263.07 l S 248.40 253.92 m 248.40 269.92 l S 256.37 267.16 m 256.37 281.72 l S 264.34 256.50 m 264.34 271.56 l S 272.31 251.58 m 272.31 266.68 l S 280.28 214.69 m 280.28 233.05 l S 288.25 254.70 m 288.25 269.09 l S 296.22 247.83 m 296.22 262.62 l S 304.19 237.67 m 304.19 253.14 l S 312.16 236.61 m 312.16 252.10 l S 320.13 232.67 m 320.13 248.43 l S 328.10 217.35 m 328.10 234.56 l S 336.07 230.82 m 336.07 246.81 l S 344.04 213.92 m 344.04 231.58 l S 352.01 193.33 m 352.01 213.20 l S 359.98 145.60 m 359.98 171.87 l S 367.95 182.70 m 367.95 204.63 l S 375.92 179.22 m 375.92 202.15 l S 383.88 183.77 m 383.88 206.88 l S 391.85 154.03 m 391.85 182.23 l S 399.82 160.09 m 399.82 188.51 l S 407.79 149.06 m 407.79 180.73 l S 415.76 116.95 m 415.76 156.66 l S 423.73 111.76 m 423.73 155.58 l S BT 0.000 0.000 0.000 rg /F2 1 Tf 12.00 0.00 -0.00 12.00 340.96 130.85 Tm (Age 81) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 261.26 200.96 Tm (Age 71) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 181.57 248.28 Tm (Age 61) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 101.87 292.10 Tm (Age 51) Tj ET Q endstream endobj 730 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/private/var/folders/ky/t49b807571q6cqs36mq80s3r0000gq/T/RtmpNVuSlM/Rbuild64da5ea5c82b/gnm/vignettes/fig-deaths1921-1940.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 768 0 R /BBox [0 0 468 468] /Resources << /ProcSet [ /PDF /Text ] /Font << /F1 769 0 R/F2 770 0 R/F3 771 0 R>> /ExtGState << >>>> /Length 6282 >> stream q Q q 59.04 73.44 378.72 335.52 re W n 0.000 0.000 0.000 RG 0.75 w [] 0 d 1 J 1 j 10.00 M BT /F1 1 Tf 1 Tr 7.48 0 0 7.48 70.10 164.14 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 74.54 166.20 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 78.98 164.41 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 83.42 165.75 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 87.86 161.13 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 92.30 160.36 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 96.74 160.11 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 101.18 160.08 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 105.62 163.97 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 110.05 157.73 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 114.49 161.26 Tm (l) Tj 0 Tr 1.000 0.000 0.000 rg 1.000 0.000 0.000 RG /F1 1 Tf 2 Tr 7.48 0 0 7.48 118.93 150.88 Tm (l) Tj 0 Tr 0.000 0.000 0.000 RG /F1 1 Tf 1 Tr 7.48 0 0 7.48 123.37 162.44 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 127.81 159.00 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 132.25 158.34 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 136.69 173.81 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 141.13 168.11 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 145.56 168.35 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 150.00 181.93 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 154.44 175.15 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 158.88 194.09 Tm (l) Tj 0 Tr 1.000 0.000 0.000 RG /F1 1 Tf 2 Tr 7.48 0 0 7.48 163.32 171.99 Tm (l) Tj 0 Tr 0.000 0.000 0.000 RG /F1 1 Tf 1 Tr 7.48 0 0 7.48 167.76 201.84 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 172.20 191.00 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 176.64 190.95 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 181.08 214.42 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 185.51 201.68 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 189.95 209.12 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 194.39 223.31 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 198.83 224.41 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 203.27 248.61 Tm (l) Tj 0 Tr 1.000 0.000 0.000 RG /F1 1 Tf 2 Tr 7.48 0 0 7.48 207.71 221.00 Tm (l) Tj 0 Tr 0.000 0.000 0.000 RG /F1 1 Tf 1 Tr 7.48 0 0 7.48 212.15 255.09 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 216.59 248.91 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 221.02 254.08 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 225.46 265.68 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 229.90 268.95 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 234.34 265.89 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 238.78 287.94 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 243.22 283.84 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 247.66 311.59 Tm (l) Tj 0 Tr 1.000 0.000 0.000 RG /F1 1 Tf 2 Tr 7.48 0 0 7.48 252.10 277.42 Tm (l) Tj 0 Tr 0.000 0.000 0.000 RG /F1 1 Tf 1 Tr 7.48 0 0 7.48 256.54 316.29 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 260.97 326.30 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 265.41 329.90 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 269.85 356.85 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 274.29 326.34 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 278.73 342.85 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 283.17 372.90 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 287.61 363.43 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 292.05 386.06 Tm (l) Tj 0 Tr 1.000 0.000 0.000 RG /F1 1 Tf 2 Tr 7.48 0 0 7.48 296.48 343.44 Tm (l) Tj 0 Tr 0.000 0.000 0.000 RG /F1 1 Tf 1 Tr 7.48 0 0 7.48 300.92 393.94 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 305.36 387.99 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 309.80 386.23 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 314.24 385.71 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 318.68 382.43 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 323.12 355.25 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 327.56 366.53 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 332.00 339.33 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 336.43 335.97 Tm (l) Tj 0 Tr 1.000 0.000 0.000 RG /F1 1 Tf 2 Tr 7.48 0 0 7.48 340.87 288.44 Tm (l) Tj 0 Tr 0.000 0.000 0.000 RG /F1 1 Tf 1 Tr 7.48 0 0 7.48 345.31 299.00 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 349.75 279.67 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 354.19 265.61 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 358.63 240.83 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 363.07 220.97 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 367.51 198.96 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 371.94 175.64 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 376.38 157.71 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 380.82 144.98 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 385.26 123.93 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 389.70 118.38 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 394.14 108.48 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 398.58 101.92 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 403.02 96.13 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 407.46 91.49 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 411.89 89.19 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 416.33 86.12 Tm (l) Tj 0 Tr /F1 1 Tf 1 Tr 7.48 0 0 7.48 420.77 83.27 Tm (l) Tj 0 Tr ET Q q 0.000 0.000 0.000 RG 0.75 w [] 0 d 1 J 1 j 10.00 M 73.07 73.44 m 428.17 73.44 l S 73.07 73.44 m 73.07 66.24 l S 161.84 73.44 m 161.84 66.24 l S 250.62 73.44 m 250.62 66.24 l S 339.40 73.44 m 339.40 66.24 l S 428.17 73.44 m 428.17 66.24 l S BT 0.000 0.000 0.000 rg /F2 1 Tf 12.00 0.00 -0.00 12.00 66.39 47.52 Tm (20) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 155.17 47.52 Tm (40) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 243.95 47.52 Tm (60) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 332.72 47.52 Tm (80) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 418.16 47.52 Tm (100) Tj ET 59.04 82.29 m 59.04 388.86 l S 59.04 82.29 m 51.84 82.29 l S 59.04 158.93 m 51.84 158.93 l S 59.04 235.58 m 51.84 235.58 l S 59.04 312.22 m 51.84 312.22 l S 59.04 388.86 m 51.84 388.86 l S BT /F2 1 Tf 0.00 12.00 -12.00 0.00 41.76 78.95 Tm (0) Tj /F2 1 Tf 0.00 12.00 -12.00 0.00 41.76 145.59 Tm (5000) Tj /F2 1 Tf 0.00 12.00 -12.00 0.00 41.76 218.90 Tm (10000) Tj /F2 1 Tf 0.00 12.00 -12.00 0.00 41.76 295.54 Tm (15000) Tj /F2 1 Tf 0.00 12.00 -12.00 0.00 41.76 372.18 Tm (20000) Tj ET 59.04 73.44 m 437.76 73.44 l 437.76 408.96 l 59.04 408.96 l 59.04 73.44 l S Q q BT 0.000 0.000 0.000 rg /F3 1 Tf 14.00 0.00 -0.00 14.00 93.98 433.45 Tm (Canada, males: Total deaths 1921-1940 by age) Tj /F2 1 Tf 12.00 0.00 -0.00 12.00 237.73 18.72 Tm (Age) Tj /F2 1 Tf 0.00 12.00 -12.00 0.00 12.96 208.90 Tm (Total deaths) Tj ET Q endstream endobj 779 0 obj << /Length 2704 /Filter /FlateDecode >> stream xZK6W-=4ÇDI٬d``FbO+VK=bQjQArكKd +~Bȍ,cobt6k.7o K/vs}pj U^_d̷ySя]ߙ3COǶ44EHd1vo/_rLKjNLw𚌶E2.m1yG)m*4wUoC`{s:UN` BۇN1@MVWqcN;E- a,+G (3B'Im;T[NlF!%u ky[} A1ӻ=)?2lrP~<G50W8FO!DeY Յ4-uV ,P!v"f',a"-:xɑ1*LʄyZ`[gkNxCEBd\&ZdD2qU1Ky3BG,yXYd: Gh^HrE*a ya X/Ll ʆsg_q{I9 r=Lֹ'7P_ ғMF Y"N=IAxz(,KTJG+N(3xB5n\_3D=Cܤj)>'XF_UW85,wzOYa GrEqUj깬ϛ~HWI yao:]-f{cO_x׆.Ǭo;XĬ)bYhf5lnXsx[AM&0 PJ-R*Cu":mI'n%lnLG38LU]^8Dw`IH`L1 (QJ't8&] =Vq˚@sN=*PϵQ\\x{}0y:K#`7QǜT-FFrz٬h+ҝ9p  豢9ڛ_Ma/«Ƽjiܥ2(aCN/ oH O) Ln; ƞ 91X'E hcW7R2T.8NHF4a./?ICIrKUpenE?ǁ m"VkBGfwm9$g[4r@ },w ׅ@ U=448 %k!dI[m'j fJsS~ elC ìo4aX@x (¹nO^׸l "*GB`XFĬrNP";up\B[ӻUDgZe*`ë^72/?$S!qu`=QlZphv<9{wލf-=h.&hXe 3OK{r)I_ h˿!UOٵ~a$%hzD`OSM¬ ,$ȡd9}'xkQxU)~U)97#mh>M$:Jҝ, 3UF>TMy(~FI"A~r뺋 wEbWA+>ɍS>&] A `7J;+H왻XK2|B}W‹J29> 6X gþ:Vu-? (i;o~öYy_ q{?t endstream endobj 667 0 obj << /Type /ObjStm /N 100 /First 897 /Length 2494 /Filter /FlateDecode >> stream xZ[o7~ׯc_ co.@IvۭD;5h~3˺X,)n,`3!9k&)Z;SDꙉ idV"uyBbIs,9.P'8 2TrgPT\CT%qfZ;R-zM.(1#!AaD =䤄I350*y0ڠ2c;Af,Lџ!ʙ- R2<=(fނj&Hì eɈǬw(=!QN`6bT9 JG^CSsC24s:b.9͂$lZ!МQfЌjjnheZ^0Lt"},B$,r T@S,,ri((Аir/"!-f"9רp=,U.EOñ_(4|DrIb@0K|ˆV_C'_@nf  GS$4) Br?uwb*x^ZFuM.iR5y/"A10eq).sEd/b*u5uF4)I,#)V#dwmȋ .v[ r.REz1(LSեKM.u]4tiN!ݪ$A=+)pW3EtA+b[iNmRy]MNh\_=:J7 i蛎.*úB ͣ<=l5)qKT[SCKNcX;TEU5,=~VE#æ6b)3Z$O=@X;SIvuѦ;źuKuZR &nq>]w5cVb"v]t.E4, hHv1 rRgЮLl?17{H˦RL6-bgo OI>Uy.#Da.&ZXLc8]0VΘ8حcǩUQG tXbn,Paۃ8=x'5}l ͟/|XśϹ\/"!9!׽!9LYn "m~$t YJdlW/Qҥśw뺿8)GE3ݎ{;w]mokۻD._-5NnoeP $(WĊw˜+qÚAW\Ƙ`o%-n#06 W@m7W9R1FÊiXݔmQ (EE?l/Ň-w4YOxwӬ;򧠿?%{'a7JZ{pu >-TԦ7wkKtOjv1 Y13E(taW 9ᤎi C8xkI˭> stream xX[o ~ϯ0R*_ "8-Z}HtVHEK9Zɑ8}jDrHI}_P_fQvq}H3?+< /.wizfGkx?]04]n- UHhh) ?noQC oj4keF樃@^E:-5|Y}L}?Hc!Nu7ϺZ\8=Em7,3[oyg/V7O*^ޣcsebH4uSgE͉(kvJttv0*e~\D`l%Y\B~%+ ,Kk.xT2q^k‡0PഏNGe«@?(=5'z>8I%*4edªKyC۳!0uLGqeLTULJq5밌2&" DyLk%4Dάa9o/RE3[N$F"4kkIfj@^yِ/A͍֒xXw9-=e6;>qKn!֝'?}ں(t\V޻VC#lpXQzjM~HZ Rr2diTW8nQ#IOU/U=D8Tŝ&0UʟfN1R@wZt(d U lK,%q(hفāMj!X7%:t/0h5ř`qnAj/eG/"b+_DkIIzn{8c>6`t"ޮ7j2S ?pʑMN X@4 *&QU,v "@P Bs }dQ|ނp p:e/;sB;WBp2LaggӀ1; sl;KIٟn{1po#6.L!$ZB{|Hk$dv*\BI.Ej+UԈ OG1^!*Ugȥ48YGF9T,hc7o7D8=-((\QCNи!βP$K飕~V/]##+BRf[7)yjG@)G?!׹P-@>LU 8 [)?[l<J/;ӦC NH4d`Oz$K3r G3 mG37JxEh;FkoyrE8v;y3_5 3ըNmpH9f߫5iv-Q֯3zJuc* 0p;f1jx8щXU ZLKO P PF@H!4ɱ8.ѴAkc M ]6I;{9Y gZ6ƽy6# W9ޮ`ߚe*NW8! kyCSU* ? ȑONmsUGhf֠ ,7i HۈKҹtT}>.8ǏAg'GΗo)= ʝ;a`ξi0z)@NMoutxZaG`ݜF|JH3sV@qaaOJ( .695<wj$82#vRlo.ᒗЪ#GQ\Ya%iʊJ?rBK-zq endstream endobj 792 0 obj << /Length 643 /Filter /FlateDecode >> stream xڽTK0W䘈ql'¶"xrHG7I ;vf)]<2&0'Yzi5`AÉ894;ڐˉN]N ԓX *e"Hb[f7Qw 6 P_1-5VEVqG;+)9Vɑ mS/vo *|?]Hy8PH1aߛqu]N=:U1[s5ADqmoHMkgpNgs@XrWB;Uj:5un"m@u@lKrvc"ojW&,)]&lHfefҨ{"تHV壽=̎t땓u٬pnnډ6js'xreI`^Ab10C "xlrB endstream endobj 785 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/private/var/folders/ky/t49b807571q6cqs36mq80s3r0000gq/T/RtmpNVuSlM/Rbuild64da5ea5c82b/gnm/vignettes/gnmOverview-doubleExp2.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 795 0 R /BBox [0 0 432 432] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 796 0 R/F3 797 0 R>> /ExtGState << >>/ColorSpace << /sRGB 798 0 R >>>> /Length 7474 /Filter /FlateDecode >> stream x\ˮ-qCi棻SI (ظG,9v>6JUM6,wo~|دg{h>O_?/W_mm__yo?o%<8hGyڳs{}Yg3j&jMmN^TنfJz%@RƤl`/"q}( K#Ql8ÈjԷ25gdD9@o"䂡)0KXPf.l,1lG`-v^FjZ?VZߤ BBlK+oGE>2bhl[!fjI:6o bK/^]y;/g4گB/9^v;_",s@U7#ěl+DL-ɈbێoD.-2=!kԦd~ >oFd.?Pm+MIE/ٮfHgTEق7(F7PoQ cx !웈zy9Y[*iQ"^k+k9̉)}5٥dv{-mS &r9Elŋ/ޠVtcdVv 1VȮZcc[!fjIУr9!%ەҢrz.l{|hp -$]h[X]E/ٮ#WudP^$efg'?ym%9rv6Mr֋m_x;/WLlJMdKzK6;uOhi+L-IN;mNo Vl͋/L縦NpbIxz эD~%["fjINm nD.mv1silJxWvۍ/>-ĚmeIC^m:ҋm_x;/WT1Kjv"$9y(5O;jmJ()s8^-so!S|'/۾V^:a箶oӱ392;~1ށzkxVZ#:Iٖ9p[dxv`p7-ѓ' x"B!޾E~mkskIE۶'o E/ھv^Ux̒crWsLK l[ 7SS2bm;/پV^CӘߒ/ӌZ3ixGԟodGo"SĶ^dv^pE=/8b(W4%]iuu/?FG%ix2cK/^]y;/#:H_4t2'uѽ\)sbn[\Ĕ̶'MGlK/!3}U۷B326|r&pDxk'_l%9ܣo"flK+oev6౥%Ƈ3^/<ˈ.O 5\F{~4fb!}[:%ە2b6/tt3Qa%BdWl%)$BXK}"ETpcئo%}L<'j$يh֟VI$7i[O^]y;/=fs[20ܘekA>I!bssљْmgC9oD֋lWˈ\4cƫljڇ~zk֨,Ԓʴ17L5gMy2?j<bkFFd}ZVx,vv3Mr֋lW vSo%4;n4#_XЖdIsv7)b[O^]y;/g h"bɅ#vsҚŎA 5\Fg,9-vR}0޼h[yO,9#1L%Y70|3$eP#Xϱ7As?4d~ƋYڧkl%Fnc=ǖ^dv^[Gx_% ]Ҩ[, 呶W9S{vlwϝdǶ^›y atlɎ!mċqa*uOwp7SK2Wv Sٮ!m?} %"^ wtr(#;YoXBG)A'hێnϾ\N%ەrZL9տĎ-Ep#+ܞTp_Rұoۊ-._2EKQ9$Ք` *bCar9O#d'߶BԒT.ʶWo bK/^]y;/ (y&%G~4\b0M,֏PI &mw6mxv}_% m`q g` #ī$\ bKbJ}c&r9ElK/N9:W_B,oeDv[cd[Q|Jٶх7)bKo^}᭼L)͚ڱ?;]_Fw}Z?Pm+t$ٱl[wRƖ^dv^GN V#^r\fx ҷlSҰl[|w>rƖ^hybm}tԓƍȆsAmFd>j^L vԛm_x+/ ;EJZ "^ ' y!ҟ:VZ %-~&r9aCLzyc )ԿX/=7gCň.Ompm 7RKRq/ʭz&r9i+pߒmW v#a,ʁNvb^HDvVzJ["fjINX웈[z3 os;cX2XReT#`5ܶBH@ll=ǖ^dv^v"ھ%8b4͉p4#ƻPoC5ڽÑ ^Ҷa-+-xv WZ/G]K Ȏ7LekԳ7bkҶ}}z oez8bI埈{68$ԍng,mr#%_=b!}JGƖ^dv^G-Y:'1I}mJ-0np7}3%ە208J{6\b^HDvSRm>gI!~&r9ElK/;ex%q#c1ǎ{1/$";n(X 7SKS!o}"b*ە1)ܿXrbϦr#қjm_,9GvNS7)b[/^]y;/A逾c8܃0/$BZ߰D.[#fjIoۆ-ݼ7/ھV^N`cgگLɁs'Xq).[=W:,{P}\pl+s~- nUydGoDUpy! [/VZ#-8 f3%ە hjt)8G #ċMW5> ?OB|(cSo^}᭼ % m,.&l`7qAa iW]0pJݜK_2cZK6[>GvѧU>gN&0_)#Hl^ Q8lKԂ]+,1#\Xb=x-R[!  &n`_^G(d#88<Rpaf}a*@NLZbCO *y%p̘֒cqUM8819( Ehqvʤ+#e|y%`RĴdp5}88@Ah2{bW #oΉn+ %hlhrs)+| aA?'rZڎ /Y0ț{i-njdG~y$Bmf`NlG0ЉF&-6lGpd+u|[g+WLiFv W?b3EZ4kX'^Gήyou#iG/\.|^[)dCc+m"!;VQ$8 rhd{َ`ދxtv.l.+VO@kpo ) CN=BXI]uk] %bJK6[>6F>pdA3' 튯lnmtXi'Yl'58rLiɆv+נwzRuBoDn@ x$?. K$E5J:$WH}7o({?b^!OOMqXl1pJ6?8nqm| X k1>{eKk>cgVuXppM0GKn@pMkpI VN\`gKy\YSTcE,?i7戎??z2ZxfkPc}ch>0xOnoj(7څI7|1;O,'>?~唾><>o~|?}:`ן󿳑V _F1KAbm'Ih5ٰMUV~ M)g@O=o~<'y؜PǷ|2_zm+0_#_;]KWq/%3zi(^-jg֫BE0fW{zN||b;e endstream endobj 800 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xwTSϽ7PkhRH H.*1 J"6DTpDQ2(C"QDqpId߼y͛~kg}ֺLX Xňg` lpBF|،l *?Y"1P\8=W%Oɘ4M0J"Y2Vs,[|e92<se'9`2&ctI@o|N6(.sSdl-c(2-yH_/XZ.$&\SM07#1ؙYrfYym";8980m-m(]v^DW~ emi]P`/u}q|^R,g+\Kk)/C_|Rax8t1C^7nfzDp 柇u$/ED˦L L[B@ٹЖX!@~(* {d+} G͋љς}WL$cGD2QZ4 E@@A(q`1D `'u46ptc48.`R0) @Rt CXCP%CBH@Rf[(t CQhz#0 Zl`O828.p|O×X ?:0FBx$ !i@ڐH[EE1PL ⢖V6QP>U(j MFkt,:.FW8c1L&ӎ9ƌaX: rbl1 {{{;}#tp8_\8"Ey.,X%%Gщ1-9ҀKl.oo/O$&'=JvMޞxǥ{=Vs\x ‰N柜>ucKz=s/ol|ϝ?y ^d]ps~:;/;]7|WpQoH!ɻVsnYs}ҽ~4] =>=:`;cܱ'?e~!ańD#G&}'/?^xI֓?+\wx20;5\ӯ_etWf^Qs-mw3+?~O~ endstream endobj 803 0 obj << /Length 2128 /Filter /FlateDecode >> stream xYK-6I@.3,0,=.Dc;>EQ% ɲGUꫯ??xO}q19O QrMք ^t^m9`" U>U~0|-JN>j ij?[[Ucq+Jɬ0(eWǹ&b!#P{gsA;֛ս)mI7kid*FF>!ކ$-omW>]̼w_=ҟ&Q /~{ |(y #zw\'bR+Χ"qpZ结2pS @(@F߈DgO`cXد;R?*/"OudifFa]Ǭ-9(2q7Aڈ[9) Di ¦0Nk[`ԸT|qk@uY1$,X`nD2Q_kVLRe"fDBE=dمU0Eե_@q𢅠 vX W sbcH׈p^ Kesb7'6se^;qn2Kb6fq5lE9TnmF9ߧc J'"*=0ѣҧ0Ke"7(;ìI嬲a0@HOMzA"izؽRh9Ω QEV6!]D$}KfKHEәAA8D` VRqCv E q><.]5χ"o:{~#ÛXۏ-%J| E boFh4JU>5e~–vmjmd7b/d2$0,(d&d SU *wǪܡKy ge8B8+d- Z]";4.TC cj1V3$^ S~,gJ G9 {p0n@b/-s(bBBi`ND]4Vp[cB`W GcQ=)LWIA69lCrdbZTZi>;Q%O:MaNi82"G>uAp GY`RRרD? XF`)(oe@ ".l0tj>j 5z`KG;+}WT'Kw+ | Wp)#1]OFVXK9r_bYs=b6FCW5.!9no##r!@;bdh`$"D؎F4ꂊqT.'<<-a6P ,>[Kn4@1SFGn,C}ds"mL{OGaݺESn~aYҮ6"E| VYma3@H- ̽ϥ{iyֻ͉uBDh^cF BdZ;]aK 'Vw"kS̮/JM7 bLm>Yqќ;AKV RC߲ޱqTGf*&Cȴz5Opz#Y/j6* Oo>,J5I4i:Jո.$R?m.~-k~ҹΚl|H"m^u^ZYvmgbe8^ g endstream endobj 807 0 obj << /Length 3137 /Filter /FlateDecode >> stream xڽZKw۸ϯΉX;iO-'^\"FtE/:{/W'ÓNd f'y K<],u= L 8qVp2C?cptdy(A“n [Cr2K[ULsZ"mRhu6?[ɟͣ8bES*k뽞>9c,_a}d1=bᙍYC盒9#]|"m]hXD[I3O%犻/fc(7 ˦M̉\pR~cNW|jkV NeEY! +bIf쇩0A{ 4uPj~±};hy(\>}Kv6% )|!R~S[*##w8q/FPgUn=޿.tf 6ma{n~gυffXfQ*1˳BuW#ttMIFSò,jM7O2_ {BXWlٓn^6(;I'wEV" sfe=K\)i=9W$#ν8$F)fWv]izGtF;%AL7 ԬXӨ]Z[h-V ^gJ8sDmBc2YASrk7H1pe!'.8=7As *.aLhu0e^@IKu<Ċ!YqWU2T PB`菔J."DQb+K]-4| C ^P/ 0nkEN!FzSV:J Zb;Y0w #xdou4Xbx ?Lg,:pZeXjI+t-1(5ڴ_n~8V𧓏b'(ĕ ɡ*V?/!6DV9 0b qRAPDde"nIⱭ8!i> ( fĈn I˪Ae>\RMH 6f5[&OG^^0d8WG4Y)1I5N.."]Q6L] )e55s D@:['gDJ(D}[(2B3g sd@ARL6uצ7whɀ)c^GA]h\*&&@~w e\*e+{ժ^nҧn MŦ:klM(d= k'„XBVQ! 9gQvNʉ]+eZ7]S|ɶ݁ZMN/ԷYG+!V tĞ- czABo5@v/cVy8 "-N8ӕu1gx>5k.&t,[ endstream endobj 812 0 obj << /Length 579 /Filter /FlateDecode >> stream xuSM0WH#:BY$Ж]AXQm-I[cNEixޛDA Om8&c8N* ~fkVaQ.Zcmvd{sfS&% UTXHP_#Lc[P 9M:Jۀm"ʦ9Ի?4ƚ5\LS#BFݺG1mReod4rdCXx]{^s3 sAGw:Ӓ*y\tmh"@%rq TxDOn JS` 8L^h?M۟jyx{CtV8`Xڲ"aҵք /vUϪ($<2%xODם);-'W]&CPuM[s" f<.AV'_"lC|66z&UDP~D uɣCA)@U0uo<> stream xuR{8TiUӍZtLƜf4KTj\Rf(c s8sQ%X-K=EV[Ze++J'\ {}z9|߱4xR,vPư'!XZ.a1`r1sIg8Й1A".yxe^*8tb:ӞAaB@H"(><a㥪q-ƕd`M6dK)cTr#>S Dz #,ETOU>!#*4F!JwD K! 2\ P)`Jd$@c@'_"@a>Hk0?LHh <?u++%0JX J? w4j2E+VLb1c)`0BZWXMKC1"UD;Qnғ_ ޾gJ'zVԴx&/LB ^eyϛ,}JSk+BN7P~}\Sb'{Rz׀@]_ᢽ*?FdGs-߰kOc`*1u5>p;+3z.ckѓ#{.n)Dn77ժ`pAxQv00s.eu/GKUP*^ݱ.AlphֈjEssu[.z3sw]mLvM^>zu_;gmB4=ʃ" vU[i- 6aw;5w~{nƪ݌[ˏ q9Pfֻy=)ݷXKmu/ g61uf/&=#{)V^9G9Cóʲ +v/}4xpK ʶN qL a蘽02õg$Y^r]SB7 B #j\6=3LY$nA+#NiIϺ󦢔j/+ovV̵8^=*Pwmk3P]4paƖHǢ"cap\'*~vkY145@S-'Qb {Ndǩ0k1SgZ-'e>+o>\t*^pܴr~IyfRMYS)3v.+SйKݜݢccS}Wޚ&K=ܤ>B8m:{`^YueuKK\v{$r[wU\pTZyi26vzOΫ~ b,)$fF6.FLL9t,| endstream endobj 833 0 obj << /Length1 766 /Length2 1059 /Length3 0 /Length 1602 /Filter /FlateDecode >> stream x}R}TLi8} }CT&I1UMR66s̝ܹ>E%,6*)lI{sy~{~ۉ!D.Q$Ģ3 5 8Y _ ( f2&)ħ"!U&Ut^X\.Ř&!A8*pcpGPBH†SH a8ROIbʝÔԐ hNP{J$b!G> } ¥>|X{ ( 6kE!f2AǕ$uDX$bF8J 6D0ȿF?I(ףABY"Iӄ0L&os JM4fsE* JF5#0j(A%m-J['^yn:vԤqy7 e'꼛6c.gZlׄOh߻[K@^xU+Eg!Jikv_4 2wPV_~xtpFյ sdG~Mvs;K;?%Br> Cc\ X>jMvg7-اetgw8ESzg֔8S6w DۺԜøǕeu!ؖ *dyV e;^d>UE\~QTm\uI8sqnO%sWnjZV$$f3Sk['89"yDAJii >W[a)bcQ]ȭ_[7͈v 'tW9"lSݔҊN!gZXŚk:}䚓EK+<OGWnά+slr;xO𺉻hFwLz՛6yi:4>VeQxqQʌQNQ;{2cv߹<R&4]gPƔ~2eG &O;6 U3>]ᛡ-4ԮY`˻mtoVC[. M}ȝuwiy0u?0`< GBMAqg]'A =7󞫣Z}3M]sW;[-4e59n?|S,cQk xܳr> stream x}Sy̭W||>>lrzBg?+^d?~@~_ 6d뷮7Fl].\ePX`乧`V@ʴ>wgaբ\r絵gDќg]G-N\#5/юכvV' .cutb>O1G#;u;fywimK6\sj/m4~.lsz5FN2f)wuz|h/nUgk^~PvB; 3Ō C [zhpp${Ӑ"Gm/xYQ^}, [K%>bWN4=Lvp``[Ob[fgfçXZ0iؾu' ja D\XFfEhK`4XFO駄KdTi^Gc^@#eBq>-FBzr hM4jMN6VKuKzՁxgXun+u*VGOeˣ32n'`LX t¨I"Ly )}o',[6U'Z&dowR^ s O٢-5Q5]6Cy%H VJuk肬-+76x6lSvdiCY?7sjc hG&rlOn7t9Txûsp~PE{sQisٔ~˒> Ǒ#?>O}sWoh 5SA1j5pٙP-"WXo}hCo998i'9DG}3D߈cFSo{諏I~Byq-7;T?qeQȌu(.fJ9.G\,Ԝ=|{([%[NJR<.?d]Z!grt/L3]`zt%#8!rqsw)wǐBwi;ߓ[6j=\=,|c}aٻA[u:Ub?|fgƩyϞ\|GF13:y (?#mBƬJAH$HVGq}c܍FO>Mr8%ZHYtJqnuZF8mXTS)wK-@4-w>i˦mjT#…ciSo6TRoh`የV,OxjY!5<.AjB{~:;gƇkc~o쮏,kڵCZNr^i4:bo+Ŝ@l{wIxZfUJ{(ֿKBZx!#b؆A}ohë:NXnWڏhMeov qYN&,/xIgd|i4E6HmME߹Q#Ԓ.c6ӏn`EJ8ٍRn9SZJF1L&=$j%fiA.sR)O0::yR iy'Y:TE{y$_nգ"@>.tK1>>V-:~e ONOE endstream endobj 837 0 obj << /Length1 808 /Length2 1347 /Length3 0 /Length 1915 /Filter /FlateDecode >> stream xuR{<ePQr\ 8 ә,f̼3̅w%r)ɥh&Gǒ[2i9n-Ev϶yyy~yuhn[ta BX"LxA!Ȁ!)#pD<0`Q E rHB)M, ~ q;`ʳākZ0(!MCd \)91{e[Q<+qa 1sfp!-* ȢA0`3"p?gB.i!i3D'&D4i;yHtk1DLkOg}J8GW/cVpE3,fC(dHx 3 @u JaqXFb8` 2'80H.+ a? iBc) Ed'2D+̟}v +` XPX'锁 .N9w܆uOMkK\0" \m^LSN4l}G$7n(VL jWy-/iASژ/ͼ}[JXC0ziRTzYK w.G<7?cq Ɗd00ѽ DX{\넍 T0x}HIg< eu޳TE9"~{1F87l-108A^ѷb\-s23ҭ@'W4s jOj-*.7Ǣw4LT\F1F]_`ӲI endstream endobj 839 0 obj << /Length1 1283 /Length2 4498 /Length3 0 /Length 5271 /Filter /FlateDecode >> stream x}gXI׀)RD)#!EBI i47.EtQD"E/+Jssfj`,:"5DTLC|x@\TW X:  P0D `x`bP *-++Ch8pD*1NX"+;y %X@:y݂#_b s$g074\rC"2bh/M/aÝ<+lA qnh @Bhÿs&h+HţEJ5@@u= @b BBPEWKD`=DJWE1(*)p8!$ЄmH_¾,0NXc#LVE2X7`H o&qC2b7*6MR%MDpC? 8<U3H0@A3Hp= 3Hp 4gJj=`8$ y%H A v} >g|73 _?7@b xiFϖ8PĀb?/?﹪*_*@!D?h 8B~povB^;鋄SMca.aMe*lE?|l`%w֥Tu@=2xW1<&~0kӖ2FHs^uS$p ^F I??OhqԚ?|Gt/Od@KWcUhJmy#R=:Dt$LXq%e&BJ6 +0K]7ťmvz &m01pjfRو+ptB`MPS঱|Rz1}D m-[9|80DSz`%$:nv2'`oN€<ܷ?_SJ!X/n$4Hj_5KFn'DbwIV=kwDل,_Ef?Tb߹'}`Z0fz\Eӏ2.2WM' {xW쑄!^t"}+3^R4`bl^+7nn@,W*/x7}_+A/hP)+nr]t`D j#2h@KБTR{"N8{k,u h3V6Y\u(&X?Tt+ P`0Ƴ҂Go3.!)*60fKH&q[=ŻZjHb35_'YtnUo Ug8{ d }]SjS>@rB#ظy_g?$uap,Dϳ$;O%Ƒ+ݬ. ̧T[f.A~8+,(%8;8GtΧ;?_,I^H$/djɳӣ(\!)mVZvD^ewֲ0':cm^ޘe[#V >jon+WX?ђ8{} 0%&G>I+=S`3&YQ^m8~{˒,G}S^M8>9ǭג0ej7T<)D?79{`RCL;ESŽ*Uzގ!τV;E;KB0ˢE}Uo0m'8)!@DlhAŖ$6<|gܢOtc;KS1,疶#Ul`@% ;Ц/A6JbwbP_UV[C%^@ܽFMBn) AvX9b^[tfJ0(qr.Y/nYC @*_eC( ωj]]\ɰm^+zTqLah|功\yV޹m vŌv Y; dˀZ PĊ,ymsmY/Y{=ijZ*}bT:s>xb6~^$3MؘOL 0ݦ/Ah(#N>10ĔGYxOۘ_e[f.y_Iy&=Qi3E9ʭ,=0w1l<8T:[N3;d h$WfJm>$LwHcb\׻v92sgw̺yf50W!w1<}22xy0YyE}l>em'L類3l0A^ kgW)Z Us, XHkcd 9 |n]+S4?aL5W?Ѵf ww 3 CeTu-jFI!YNHn![6h{MĮ{7k#R9$9-dLmHS[J CWA;LyTܱ*r3{\<7x6+`|g?ؔ̊"cύ'K5ZjP={{h \wa}XںWc7Whu>ӣGzJ-*]O XNWpp4\]Zr5/EU<\Xv^U54VzY"*u@4"6a }`ﱬjUE(:R< GTUe~.s&'1_y1%:qՇJ2\TA|daW7?dE #]YE?Nk\uG#2{iR21~#B/II:S]R_d%x.k@>=T7TGe~_Vt}I2~͹`5Hۄvc{=!1N>P dg4$95,3N.Rwe1zQXgxlgԏul]w>_9ۋy٧iekA\a-TMۯ,篛l%c'XWj9Ed7)| 姷E3|Z^7Hdv{wO.Z8 u9*(x gT udz$jܴH|Sk^L뾫>UE9cw^.-|ůǘpqC+dśqu˶qacZeZR~rru·}"sB;õ>Iy",җPÖ1~g~fJJqnwѾ㥜10lTG}Ko•LPGۿ_~q ?>bBS+b f/ϠO뒶5"6nYϪQB}E:ZrN'zw{ Ea`ZϞ*tn ~^}n.~H誏#=e>Z@ />ϣKs%|20բ9#AE;)b(|{"Tcs+;/> stream x}uX[) IinFr!RnFS:Eixssy~^kg2ipJ[A-! Pg'P|\LLn,AD<<ܼ@ !HGK ?0%!Pv+|7wD+(Q X#y8:j ֿt7`X!VvNU6o7J<  nv-8yځ!40;0B 8!zO>; V 1@ n m%}yMO s @nn @/yv7b\Pb ==#Ao$'!= I-/  V'^= Q] Q]5 Q]_FT׺'Dg}O:ֽ'{Bhѿ'{Bh1D>пËX9ZAk,Bݻ-@`b kw@t/ em/!tZAD8Oܐ**rc Kr< ">#on{\l}\l!D lv b v}i9#">"3Gz/_n\݈d. 7?" o_6;-sqc<}D\=0AXh*e~ ";mHv/T'a#DDt+X".w~+@v0]_ߏ_7ܠ;+! 6r?@_r >G'_q`7ļa} /?lmA Ù)(X,ؾ&Jҋsm}q="ި7\jP$]bPL/.9*mnxLm1  ޠ:n JQy,Ԋ.R;ET_HZ+ZL$M!ow)C+r{ (n 6A. 60~Һf]w /oHg)w~gQiwjroG!3dc ]5OYqQQʒsqR0sW˶b"8 L~qS gC1Ȧ?TH> /61.uN>k{ەSs#*+VnfTd$e~\ j 7mY0.N듏ȗIL@ n[VC_g9#yŀ FO0qvcwsRbk-%75U%B0!xLq̧8AJZ3P`a] )c@$[ʛfJkc 'saީq@ Y7`WKf&Sw$Zf3JV7~dPn,*MHQnxkҗ5*E x0PHяzLHAzceHr(nsXl[jSYS][n_I6%axT99K:KDpĴ6J8qף;]3P\|;,7E%>{(wAߩQ±[F+n:cfՎ*es4̦Xi=`Y-=^To19zRǠxsm'?7mHpr/6ttrbuktrJE{0Oǫ~ ;XhT_5 ܊w= 5۬Qb\aյ%=ڠSRpŸDTr _a{~ǡŰ\k8PY`D2WʥwT#:ҍ%̣"`Vw'1uҘ\MW *=jZ&ǿ(\!t9(CqWXYn13ÒJ\粲 -y'->[ѿIM[m|P!N%KhL`ɇ%MpG5ߡ$y/"U5'xƺÃ?u: `9VVAS=X%KQP|Kmk[+6e`F87jgz7EK*"tbwvx?G*?"sFJ EcUW!MB["#މft+Ny_ۡՖu_PhA0LOèq%?ԃ$MeAхW둅ަ!-Pou>Z[sKR;TVZot˫h_.aDd<DI3:jEK3Ϊ=cKlj,ܱ%tAikj{'o h $b^,> ސ&\aIih_yqSK{sMzC>=M/Z4Ɯ`U>qI'>)j8)Fg29#T`7W톣g@i + FB jXi2X$s>T6#u;А/g+Gheqja)utM#*@i9XWCf9r2$X|8wѾ Eon_ [1.>xϥzvf^G{L]Gf=F+b[ U|NWY `F.DE'x@};`dR&nviWZuh[ڍڸh},uC2nag5 J%ժTtS~y'0œ&nY ln"lMq}ygyVT#D,ue_g4D4\bxk6inhBśCz<9L-ASUD̐n{/ D{4 ؚ}ʔw@%'ɪԹE/k6ݓ2}2@}ry` _Fp:$r0Q~plkt پyk1ΏۯԲ( ;wyOQH%E$gVTRXf-aD6c7~8>]ޥZ}#ٙEp\lWA06f8~ `)Aw=N8 6Nu{Tl9Cƨ^q(bୱJlkgM Rs^ 8\m?ާ7!șFb?(xR4 [bڧT􇄨H~$uYn h.+c}c{ϟ/b<=Es" |(b6*RެXIB?Y5D tf%r};d2E~LDnw~D;W(-LL@.j <?/Co9g՜k'a<'5Pg;$831%=HW `9up]_^G_M!rt{L 7%q8M2i+ly/^Ug-K$MȰ01&Cwc2Ur&|ˁ8,=p2vpc4_۹7H"BxF3Dq(xr>ǥ 5[DZWp#8>M;m:tH훹,M'}?Dzs>S :p\qGtG~3$1,E2w^.HB:.y72\{,*"a?I$z8 mӒRhKW:_LƁ#zƏVXkS=)DY\|{;SH'MeU5DYպJb7ٞ;z($f#7s&s5|MUo@m$3A>!LA.R{{bWTy#{`Jmw^jYoU`Mao`F]4zH;Vq_5j X2[qyytU/E o _ ٩9Rγ{_Zø=,hcH؜Oj/tQ_/ߚb|R>/im 0enߒȔm<9|<C/T xssjiO4+-‡/ki+`3oU)%Ҳ(kl k(s׳_sǚIY; R ~]K5;ԑl ^">'ZuC|;K'N3YTD:c/-~TN mN ˄IST ztcͺ(^K]n2t<;`tܺ{]#`,!&,OЭ+gFM$ X$Jtd6y/hO{yܻF_P$ޱA=iJ 42A?w&0܄ JTCx4u]Xm^WE-~]D܊n [zIкg<ܤ_UhףZde榤j(2/7u 9XLN&@Vnuuu˅~h27t\+8KuKlQ)}2V( -bZxKl.f Uҏ C5DRQ.XDKKdOGTu4a\{)?'\H,s>=0bl)%VRNME嗥\VNuc 7N5nCq&{%8=<:BXG//]8k!=yxZY"tJW{\õ'M_( ׳IJ!e̊d4 qNgg0%ToMYYYxA{dZ%"xa)Ѕ}S+]QâXx(5o#(tR@ ឧ{\#ly H`벹Nz11ֲW ߑ¾ƊdT\*8'|.ZC15\Qa9YhbT ~`gśAݦceI7Ð6(5iZ)X1~Ϻir`eOxKδ=; UBzkVo)! #I{E==ț 4=.RzfBP {m#4>i&[d6Zb:qݵwU+6.H75dB@N_f%ߵJ|QN_>YRN tcfSq*A `V0wMХz1Rvbz릤z3*3މ՝\yw g# ]4Ƨ($;k~c+d I@`sUQ1"e!gӟjZ؏MeP;`arn@VJ|XNE/P:1c͠g"z s y./X?}y9:X "oR;Ԛpߏ\nDRaRyh갚r'(äp|ˌ:2oۮ'f؊D˕;Tʐ0 F~4p}pY{PYic1B\aQ~;+')1Yڊsq`CzQ۪MU5?Bo>HGv5/+˿G,,4oڒt U4-ոYL _ I*1cC f㻖u^]g_O?=?ûbi kIL\4 L.(mdQz*."}A*rTܪe2GzQà"cq;fĽrփڎ_XiPZ]qUٮk\P͕!X4V4#0950yˎ?{0KJ 42@Z0wE&o-w= yԇ8[0RUbϋ蘆,N:xG1^>)z-ļ ujŅۏ$tN6UOXF#H|y_EtgUY CS Eͩz|H!Kol8XࢤM̤[XŰ2<#nfL~i`Ka?RnP ɆU6WuX  8q<&늄(Ks&UXU<"OV;o]~I.]P׳@A3P%/aqjϖƗ%t1gr0|ol#I;c迲fź'cY)lLc8yD rNu|#eŪ8UwUr*v6xjBjIWXS V c} Xd+?;.^Etn=uf,Y, 3JFI"/NgAc 2uʏH yEO26o .kL,H-تʋ0iT`{w.7_b}=T(.U h+0zox[V#~gL?ʳdj{}"@"F)f[fCh%۫7YCbt"@_o!ž#S+K{gO7 G%FP Y'S/^wT--rW/%J,=hp>Πo68}Fb7 vh)TwuGG\z-pIj_SziRֹYې"/tZ" t%c"Oe6n#%FlY#qo0'{}Lci"2(s0JK1[!yHAXFYV-$~`&RKՃrǴ(i} Tm>,=6wfT? ÌBT O}Kd7#]ڜM-_0xNS]PI#e$Rr ?H2#&y $u^1!^oĒB$ !;䰧IlIл6)CC}{^2HOB;dFzY8=4dVH<+:;ucu.?gUL<9i<ف&ԲirW Q: endstream endobj 843 0 obj << /Length1 2222 /Length2 9694 /Length3 0 /Length 10907 /Filter /FlateDecode >> stream x}vuX[6-1t3tR-CC ]%-H "x<{]_3^ZkRYUb ~ r nP(V ZB$AP  dgg0$sTpv`pqsrL-Mc*w|Y;3o6Le$M!v6Sl" `+cZڸPP *.鵥Tjb::5L6v`eX9`MMI4eBau7-r2AŦ `;m(-+%WGXl@vPC^L vN^!'V+f–읡3#=~S#^P|D?|8`)?"NPq.``ꊏ⇩+?"#="nP5L]ԵL#k`dk lC?)7 ;Z:Y?6c)2cG lIg1ߴ5/Y+l`_ vI7ckؐ .Xk1TxA6Q`YÆG+a9=FyY,Qf7}?tcX`?<`6@X5h8`R`o%m&_g!&BV5mWb$[c+k1}!WtԳAj2&q -/zʨ$P#ǮR=*wU=H ίkƖW];t_u`Lr4OQmd[ ;?LHFK/Nd x@dY4ְ W kc$LڟlBP.<_ Vq+ddj>o|3#iX]M_c߅^.^@n_b^{_vR kEU0Fo7ٝv Uko ^}}饶vKs;s˜2#냻V UET8q4Sٹ(wzM1qi-'Q;Ge7JS.qFjPp҂*PhtE\AݥDrHfdfβMt-9X!~#YC8N|+:ex%,X%X D(eI _~ّH 3ygzXdDikɷ|\4O.ֆƑ5jun-7H[BFR-p!Ӳɮ朜tݍUڬȉ2\n\"f E"/.Ǵy`qo/ e909A?0fn0ZB %Yz2qyi!x{U Bpn+$iKp-Ռ0kB3S6fؓ6:.To#o^of27(4}j\~ >O]j60DFHo? Ix_z!ٍ9gR,k5bf\7tmbPd':X6:96+l0n x\)9gc2ANQN c ov";#0K&3|S)Zy:N>ڄ[[XT5Ӿ/APKbnQDwe1ÏӡE} >VIL@~w }i⪗K"!pǾȰ0."eM?n)o&t*ƉרBW #S#&·M+_`Fljk9]W k6zYwR[U͟sJZPXY]JRhV\PTWT t XɽRzM!5cU  rٵP6O!2\W-3?vZ]܅%nc&5I %,_`8c1-iγuQ:'zr-qN JDơx6z^#ݯ wqh"~S,||FyNX lUz|A;ȎXOVmW)'of8JgE7֡Cp; A)&fyK}L~w_00Ѹ ݺ]Gr;Nc_XeoHF8Oo8B^ŵ[5\i?9@H@4(pZOio2[' Ix"G[#ƵMK-9+9/Ǿ˧|Ga? zA(2j',| ;CFس`6o'㣔'^r3J|dn2O8q!@@vkd /3W'-/հOb59M =gV~Punl"'9|2o>^@V4Zj,-yv*V;l@߇?37ju`/ŠR:`%ʴ䅌hd[{-z)]%>VZ98`2PBo}W ϒ P#JզW6;q b/F/:$ag%3'zrT14ë1M4etC&Df;?/,BxHdWHJ{K.M8AA̒}f2_|m3FH. jhRMzmI.e]N_3*2yHWfե'. JTxeBb"&hQ6>z|ds}?=X3qMxa`~3AjWtRaGtƀ4h jbo=pE|蒭;'Z={u]@i8뮘/&-bQIvĭo7*2?x@НzVW qk,xd_>k鈏G'ˎuʏt:Xc iTI7[c<~E ~ƴk ٰ殯'HK7GlK;Կg#.t{KѭS[f*/)^)?L%!=J)HcoAfbIZˈB;- C/]q|!ttsEh=_V@.7+o.:x('[4y*=gmGʤc jMcWUB ^)77aX/%KJI*VWO*a=1M joӢdMKUi#{fI໧Gn D%//!g\/[έ~&)szO\0zl݌[Wp}BM))'H9%mZ%6T&(yfP?__SZJv~YSv+iǶ˳Iq8zl2cpL@Yl vǫ ;xqVhayq$A4U4ΐ8(2)/"'qD;-NۄPk5#*=өz^g;m[Yʖ hZ_rswѩIm5vNYk}HPyhbFW+WXla&ivoЅ,,&_) [NS<5 U!ge/U}t&N}+moRD3m(N!LUQ/踟qkG^M{ͽQ\uJsD \o]sФ8?M}56D>I@nlu4k99LϮE*MF|ô+hؤoEy!r"Gt }{/ރl[᜚DI$6e&lXZo~!nt9++}RS6iilG+Ԯԯ]qSQsJ΂)g_#obԟU|7a[~JK>d(kP&9uɁ+E w۟WEV5@{Q# v8}`5t}%Oi`1t ﴈ1i~5 ZS,+'.A]COOC=fԈFxL2@W'5$~+fLgìCaaA2[ e3jH#=W5]-:܃X imST-)#w KU~Y3^п5A>kd߱0W3+C\;G)3 pPGq&{nH '\M zvZ&qu" :"n~%KR1=˱ w07]VHc7SA jdeGSl!e'kISjSPbWYCmEvL=IѲF{n_mԹoYb‹ڑG/ڂB{RAY6fT5$2ueZy @uso˅-b#Fț}=+~{T۔botOYF&]FX"K݊aWacT(b!^2a˾+bHҘ + 7jveߪtvV'3[wn@s~.s~ HMEڑΓ.,fyøIZF?Ș13FE~ZLЗBpf0/d0@܉v7…4YH;8@_C!bq{~k9-ߤ4r%zyHPqF> ,ZN=_:I9vdp֔]Flٷu6n*X1_m旺.nZj0)_8 d\/bcQ)|}^EƿvW8G k`X淟d8,d N,;UcWҫ_9+^b2MW&w5!w݅@[u_񚃴%&_pr7w>Lh@l;m)틑!:*<>EyХ|AnZ SېN9"jfl1x&dhU,~N;sLUD}P*$kE:6@<DesEQܒPU2F:Py,~Br*gJH$:ELJWkCBPS'f2 +A>)Jg|qU;bc)^?Psi oO g99.}o>! ڏe޼-!V;BP- s(t7Ttt5E([s4j"р4q" ߋd>tbluvgZ^{|;F(穈J̛ I! ^ٝC[%*/"v4".Eh,_q5б !~⊿Ea cݑȫkT+:{5ѷl=rho;j,[;֨7.fy,픷aAH^?$p=L^Un]ZCRw\M弗Cj}El1;C2[8*?<.B.~|$g1ԒJr ͦ2 k >FQ+9T=oݑ;ImZ+O^ڏn/J旵; ){n/PX?nv7= )0Oi/bI` |9UNjN"Ca%A]y12 VoS :W{?e"! ާ]v^@ 7TSSBho5=Ǧ/O[ u:A ƜَErB!zW9+Z^l|ry,B7ы&Ugұ$bH;eV'(cE?◢u 8И.\ޟ=,\*T}լ"SEbQ8lE `6 w+ZpދJw+z"~'MWgU"P%)$7N}fq9l҄ū,qPUZav uMaxXc uFc;,׊Vn"2a^;,b0pj(l?s~LΡ[%=Í'JaPx'vlدMj^wPcHVie,2*}Ww PPby_D0ۃ5kNd,x-=-Feыa'(}E.PZH7pSĔ߮dc G p<5Pw+J b1̭Y\V rK⨛TfJ[fN1پc2, .yƓr< VBl9_g0H^{xY姴VP볲%?#9ɾBڳ[-f:bMiJ78_72+^ k ]' } ïcKinb:vཕkVL!J$֙Kuk?X0D+D4OFGgZ=\Jh;--`?\OyцOL|+懦㺂iK(ߙ!ag_W-&"f8IU߰x,GҐ^k(0ag3*~Q*|>g~k&&Ey5f Ph=bNq2#2u04gOWb~=W. ٵD`5>,V:y$r(aϬQnVٿ|9%3VDH:7oSӧP|xUnPoܱVYC!r6Z8 Frmks%-[=&,dNxqDo΋|_M#PsWYU >f{/ZыoD&yە(fi(Yti->W I ,RUZWjA1>Qg(f_-en"\y2? Tn*vw.*OXPrMT*yt<4K}hӋ(l:rCY(S8"#Wݔ;OPkacd-ņu z W՝wMDO(]Q]".*.$zPZS,%ciCN#y{Q.;p98-rDBW3KF=wQOsN%:F* cE?yԵ!VOBU -E3×*mM8]%$n8Shl0`;ְi%P#5&aɀZȜLam_{Aڟi?n%I/65T}77=`ˏ#誜vdS~q: <RRh\vh_5 xyܒd a3 xw8J<2iqWl:9mέy;D;{̲+Jƃ&NΌIs sqGC2F3ka`8 dJঃy>+6*B"<Ӭ̓;e'X-`j_qH3> stream xuSy_o^##*Pjh<{dqjCρW$#zd /T.J:PUS87̻|\)⏮ Urڤ/d6QMkYY( j;ZذܕR]Dݟ._eV^;iO%axIvaJS2C쇧N G2 { rbC4 DelT=yNSS*}F.WWǥֈav+XVB2F}WgBRwVqyd;Sv] 8P洵G?m~ߦkţ΂ղ م)cFE ԖR!z8aUx-nfv15y53m{FY>(=)1\c֘[_ZL]MvV"y3FX}ۤMfBԅ텮WKT^N~nsmH,vڬ| .0a`ӛcیޮЉj l)x,`MDyC'{[q%&#) d>7/j8*1O왝 7K%luQ$͊;{eWpkMۮ4vV<\REZr(p";)gGNsÐj-o"^r]c\dh1c(ֻd>1s U3}Jᦋ'6DذYSy+bT֤\z@ ,JU舵lh8eg&䩅]'I "gKVnv$}ГG;nV2WTەێo 9(ry{bnjXB7y14޾Dw̿^%KB"ϘX;'/fn}`5V<=WҬ$7C$R rNIpMDJPToI/~iBR1dbvݗ+iG_JrW*64wET|4_ڸQi ^XQ33A"q8t^;u _6to2}f  I71 ou!{E'Xoid8lFs /h2ɳȚ7ZE40~C_qsa`(>AĚW÷[ qʡTA4^h-鎆rzN=ܢگ~1@) >|ɛg0(|gR(l]O'xt LJUX[m8l5G]PԔZ 鿬iy"8IJ>9OlL=Պ4?pk>h"ÐgLmڕWq]ȯ{Ρ'eۆ J&0&5( fb)Ui2rl" d1Se> stream xuy( 8iSGLja$ha,Y 2X6VW`2F`ɴ Np QH`!ao&ƩU-dKUR5ʄAFqt<eG%3 z]@ 0~V24:`! d:Ɲa*ȢC0H`eGM,F(0fz%<(hmw6#\ @[=̦0T} LتpE)L*>@fABFz@0mV[ f", mseq렘, #>?8#,2?wZ*G}F32]#@!B~@4^ȏ-߆~u١-vBXL_#Ş@F VW븅30D4tugW"bͭxtn7>9 )BmLɩEJ ei5+;V('‹ s-Tf\S{Ӑ5VSӕ4PFk6rn`dvQ/ZJKi*ႷeCFȚqY6O-Cy.#"]yO\Ihv?ojto5#2YS<ùYDD +cuJVV Jhy`}H_pd:Vl}y&wɹݫY2X)]pKoYUrR9SVw -]eqN'2iIOd]/lNphLTS)w˫I^~lS`Gt+̀He]Ss|ea_ aJO+ƴw"4k1Nq~+0TޗD4rnúG%p$[fVB7$>sӦ G#k\Ԡ$1x9֍6ڽx\ W^z9N u|ђ۞}s\i]=AKS4d6RISlZ1*[gVS.>sx;OӜyEk[ܺX\$ѿ?z2@܉33i N&V5]xpqC.W@`#M0H%$Źf[ʞ{1(X ~4k8u`$?\!]vS\*CD7xs%Eݿ-\x}Kv'xe#'x8zMy:|;oCRk XAvc*r%&"dS;[۹K%*Q œSlQk ޺/%GU]](ֽW.M$|.,B؅FĹ>P3{w{=1jrPp/Sc)V$:,/˿jQ[0AFo׃H*x86+j zGȳ!Z KZW%{MsI ^(oUJnt ao,%1,r)wIn^q(ugdM(bD9S46 7zΧLEI~=mqEQ^ɂr%aStJȯ@PPNw{2gN V ¬_ԚW4xtŷKyhQiW/p庖)\09\.rERܴD#ׄ9U7/*fE78}:tpZyϾʗPb`K,)W E5++Ox!;aBMNJrLq)gj endstream endobj 849 0 obj << /Length1 749 /Length2 780 /Length3 0 /Length 1311 /Filter /FlateDecode >> stream x}RkPWU8ƎⓂ7$ټ@##2@ʣ&,ݘlB2A/RQ+PkGP Q)ņ2,.1fj$!HLN8#5X% M}QKG1#csNu-k@0\ xBOk4.P5-$uuV 4% [tjW c8nTߐaH 2%0 2 A\ӆ% & ,>{O*:hߢ Z-P9Jȗg&YZEaّݰ]H~G)>dUw!'R,m;ܚ!{EKq |_~uI:#eWG3zq'(s&6Jme@"03!˳ :135}𠈦 ^.AO6dynHE Gs_o+ߵ[HBDXN0Bwץti kl}WǩOa<gՅfU߭՘Fhis >zzNB1/'8^@DO ,WQrcQP-\⟺Uᢺו'ӟ35M5#]]c%jpvFp4r.O%v'OIq>prҬk5Oj_ -޸Ot?/5X.'yI_kj#+eWbJȸUӒLO u2nWT\vx2L`^}{=ZW /MI}5wNvJ+ vL/9zc)}ֽ4O]|ɻR;q۪kj^`tIϽJ';hO;]{8n[5̙U}NҷYx.=Ep<;ً)\8ZKgnǴ %-cw46G5ULʔ3 '9-`圄sgO܃s+":,) kv89dv`;<}b|G].%sn endstream endobj 851 0 obj << /Length1 1144 /Length2 4030 /Length3 0 /Length 4781 /Filter /FlateDecode >> stream xuSy<&kdD;K{YJ 30fcɕȖ!k5K4Y\DBi!C {>|yyyi{y}nA 0 ACіvp@U,H< /JbP<6⩼7bJ " *R ?1X0Älx8DS)#'QH8pEY"d.9=wNoDQSSAqH E]Qp4K-# j C ^P8⼀h8^,Pc4CcfFH,ܓQ׹1A^H4gK0E42``*7 %&H =~t ?`(xAQ8x8 N⠁pK_;EE xk[ ýCx,2p_+W0hp+`dp20P%UJTP5UU"[^S'gp,BOÞS Gz2 HD?Z&g24vX~bC?|\CQHO}4ט8d0f{za?h?,@^QU鋆pTh/)ўba?hOK s=Y&1Z7|o zܭvq r E;ءͻBܽ Ï}l)"NEZiMx2 ecx#v_  +'X2~mP㵁pMҳ}i܏Èk@îvWDil#0u0 a:神*>%+Ȉb y"sC+WׯJ1Tm9VXNB7޷Dƽ}b /I%>By V4#뷣Xۗ˥`+/ٕߐd6=jEqdDaqJΏQv'c"> $ұI[єԦ֜PCU9Ib{X~YK}kUnRc5`EwIS턆7>GdL"ޕj(]m~~FCwxR9zB͉ILD'ko 5{RRJ;?G;94Oxb 6@׎qˑyo`cr$Tsy=#4h.]A=z3̻ٔ9wˡ:V"}+3,}KC$]dFO;Sﱱ]rٚ3.K83m:]ɀցeQ7^mpKz;X=a+엾f[q;*qvVAK+ɕQY#d&7D:mPfEny+ۀ/66quy]4IľGLC 4|^dzG$"e(;':ėO^KBs{gCaէmc(GoH?.3 ֽTOa|\äTz/dDsHD ~"TV ;\~ހ櫭7Xf2%3jQ%H(~s)-AhlaLzM|[&_iS 'HN =C6Ij磥kM ls~-$([m7`s r;-\Qt P?ʸ>O+{zS/ᤋ\XFާ&/'.rvA?vZRf8uRŋgRa4\i`,ѽc(yS\UvN*T-۲63庽9)%tSZij4~}UO}? ,ya)w(q=s/& Day4ǣ-x2.%#u_?^ݪ[{q v-'mͲ0 f/jXt49z4L;ry=A6u}wL9==4| \6?;P7Xzy=d k 2g8c&E f\Sb9' Usŭz"+xϊp| 5)$Ed]I:SDIKW9%ٖpgg+Й7E~tkPp~uupLSMNxǑXCM厬JA)dlV# ObVjLH/D(߿$7酸|u7g<;SZqCҊ2OECJ½˳]>ܿڔΠh8$F 9mwl=f{é0v a Ӑwp|7J& K!)d+OظPb5ˆng־x'z/|QyO~{un=-yۺ%S/I &'D\YUʹ]Պ2~[ SZҽO;IS 'Pdzɩ}^&Q55;}Ad,ؔS)&En=VE'NONs[=nJ˨8wX>g)kcj0 \yr:4⑟*/HT3gVMm.3E,*gBGrfzlqH+/OO|݊:&] (,< Gl9q=*>{cq%xgŶpΜ yvy%"$Tr=Wr֙Wѻ2.yiONOZ|A|9[p(ZptF"P4{3VC^J{0ž|2˄jZuRɶ>yu//OCI*CC 9=GPƣ1!0:%-i%Û maݜAF0\})3ݢaf1LJTW?eHj;Nv`DgRIkN<q:-jgg_Qb<>ץ[0qDžҶ簭=_e,+I6Cj]3=Aq;#B@a 4%/[zr.xfnqEAz?ZeC|ߺٴhXܖzl'|Mn<[1VV)Drc)kHFtHQQ ]`=1Gj#P_O@6 -.c 'V\N|--^NT|/qL{tF R2Ѡ҆LމFnyUVIc?? endstream endobj 853 0 obj << /Length1 1626 /Length2 14669 /Length3 0 /Length 15501 /Filter /FlateDecode >> stream xڭctfm.bm۶k8E7qʀ<oa T(;ޤd-|kX/8 4;*O~gPi9s $QO`{Wq~Joʎc4].NPSͽXyVECDŽs  4lV j^Anٝ]ʜf6arl:x~r5UYutD3kMOc& ͨXI'fN}NKyԅ&Z>H1Ԑ64қqROzy Ye*vMu9i7G+)ߞHIyKaƉFix4uΏ+dBETW]E Y@Ta`As*tYu_aw`n%Nk3[L;W@/^yBvG,+7zJNZXbZ6%BB.\wXML?Pl\dUP>9HTiW!Q~ ׁ>ïeƝOTO݄8euunr@qbGa!que6uQfA)D󓌭f mJDba4__}4xsr4i؛yde#*tler q,݄{ޱvJސ k*>ģϷᜠ UJɬk}וգjHp=hNI?S<(|Y< ߁NJ ٽN !A1w;}Z'/+8U&hsN)!!OO]ݗgzy١p$#g~F ^M6զSr Uv2W1o"gⱠjQT˃1F:f6[~DZt%l/Ig@A1E&sLr@S+('WgR,&ǣ"oT akvlZيGu{I[k]嚉?[6m;J(]EIMd׳(q{Ic5ꯥk@`5'6]1C :Y"$'h\8'Ad ^Y4+=4a:FtQL+簂Ԭ}&Ohɫ|tƄrru..+4q3@304bRh O-4@M2,f ? C +&&g9z["M<!bfwO)]ςaz] \La T1G͓Ɓ(#t6˘s,ELɠPj $pcBfc#Ѝ͢\ǿP(em">˹oFU ~3IbnzoP}&-`C!Ewwkr*~뎑IݟtAc ktB/V"^qUjk**§xش=OH,k78A@a mׁoykѠA)K窌,yI=ӥ7jӽDvV:ϳ# ıԎ^JC],Yl csJd+UDK:P' })4=z&MٟyDגWxlѮl(b0^9改kx| &E[E )}\#(_4fQ柧.rX,ln[ڿ8[13yf֧W`@wd0NxjۨQpj{e+!{d_fڠW}o2+6F:TckdtL y`ĵV@#h Cwf4Ah~ cWv@(W .  hXN>M'cfw 7"YL{7[2"v7x3n~/ 7>Zp<& 8\P>RCݼI-얁9Q8Q؊ (oA1p.觑0O$ EOf\8 jzW &,; P*"9f3 e^*DXSODR͆GgYE!rmO܏]qӗdeƜts06G TTm ށo;{ď485{j?a#h4Fmv;\FÔ&$'oRi[GqVwJ Z-xY[^4ϓ jS iTIDhu3ۀkSن:1˴Pñ%RWÂ{)Oۛk"_zI11'<$$>vqʱ_5|CЈI4zGjLX`[ Z@M]1OMd}Q6cۉN[g% *UB f$Y wAJc%Ɩ:-kYA%y0|2 {Yq@!dS 눛@dVI*aFg%>"ېNC}‡RڣXs-lƫ_򬲑@V-PظCTBx?XI(*K'?~\D͏@ ]iId==zIL:|Ȓ/ /a=V傼`.ϬA7AW9^ߣ`y͑':5@pҰ?mn琡r1 9gʛ_`l i!U\Zz)i}US]"AlfYo g㕘0\kˁoe5-.EwďP1#Mxr4[JB6|yn+ߤu8M.Ns!#<|v&ʵR8m~ ӏi%~+7Y}|nQ;Iv^N;yxl׽,e8hK} x۵|01PŇ)t* 63ΨyaCˑLETQf<6/l.y?2 NVHV!+Ϙ; E xh;rsi )?]97(MɈRvе;Z ~`:Sޭ@?tɜjSr_F0Ggj;)GR1JUh܄UCDtoq@RE/zjX,MwV+\TSПyߦP1LV:k5g.B80eFsgP3Ss00?B zBߠZ(h0e%_Y).uVӍX$dp{U76W6ZP (ayȂiy?[fJ 9* 7l5w,ҪDsvKQBGHQb35֌GlU1j|0NtoyK=N;b+(ۨˮ` |(L~E5x-n hA\ڝ1&y%o3^0?ל9~E WC(JgIf4sqpRHmb :`6o}gWϔ[R:l2Qa!Jb ?q0L\E[xcE-5dIZ׊4^o\+P&tnL(߃{ ryėKp?>)K: m oNzw۪`( ?_\kd(p,WL_!j$kށBm,7Caװj׭1n+NΌ7[UA~h-6A6|-e*hKjo@WLI1`Y[t, [6;VCX[r[D.m 5y n6:̓mA瓅ʵZrS{lum >ġ loay.F[zs$ E!MG#:hA0U)B]%ΩSTƝ:=7-g:Wwk8lzUBb5.[Pbg*2biMPFY9|Maw0n% }Յl6z;O]&,A鰯'U'Gy4 SXҕ8@Q?F<7J}NlP[*ade'OvbT7.N@=cF콃؊}42sOs ɇS]1b(3TƤKGD:ݎ-C厴V6:AK6Ş83TUfn663뮜-ԧQ 2M~ª\Lt2Km13:0%/A3Zq[-l!(U~%z ALzd[B ٷ7u۞+舃Ô(MKa3x7&ve+o3-,0Y/c#Y̹A&VϦ7͠SFr '`6M1,8ԓ|b7e3q^n^*jBf~[Jw7 YƦuK6Y,6eg4Tq%p?_[qH1ЫBRT@m N(Ꮴe1X.-=4@$7HH'[RvM~Ʉn,EɞpoA-VT¡z-IzSVSq^^%i ?k'sIJ)RWDѬ6"|T*llPy%< s|yHqn WYfOHlO䛣bK`^dC ." rLW+&, 8*&0v-)` PE5.?(pf~[m.6M4wGX0G |`fCx0&ӞqXqĻw%oaIœ_rz[J!Edpa&#6\r!m[]BG\:{I 瀥v euBYrv8Ju\B!;1l2mS=FzCڐNCP-W$no4Nqqf vP&2*Z>UEh>d\y]Ƒ6 Pt`$yGެop+-hP ?poj'yw{ 6m ƀ~N ֘ϬkQy`Rox}Oa.(&a`PKdry\*;wZ r48Gs-b$i_U&.tfdh2.0僜 Ay@ |^"kaAlS}j^ҞؽCUDi $N0 z#l\h R@<Ya'}i, o'OytՏԉ^ܥ0uAG..o8A܃1*ߤȰ^l>Ci@ v8ͪjnC/7m1A+KlP$PRoT ON6N63ryLH {S[j)ЊK *O09"02=7щbcotQ;. HvtsfM%1F6H>4#5cuKJ>9wlB.OPCU2#MU*>o310 94czלKDY}XXwmj\v|+?7ڻ&Ռ.zL>j[j-xF_"CJ*WLe`6rP4~0Hu+QMtgRDžޒ \_b5rHE]1LS[ޫ:=ZD9 jM󡆚R/u1T& \AfˎvTvOB.B=Xx_~WY?sR9ڴl|{rOA޲)jhcxtt} SCc9{!&i{iQ #ꆁilŷ6u|_&(YI`vC>Ab"oۮڒ˹K>M-|!>{SVE^v\,I\ww>iBGw0.Zn "ȫs=ROqPoxr>p2ZeoZaIߖga4 ܺ>xKFw A?OAk TyYV=NXI7lF/5Hn6KF9O[t"-KurSA&ns$ &o941FI(sוoFNONx#_w:=&8͵H/+Dji-f褟zULađq9o~/ N^f_Bt!J-I6:l9x9ײ XʞLzx¡:h1]2,]6t|StXz fyܼ}̓~ SsHkl0{`#T9]e :mAmPJN uT=BLa:Wub,P q$"tU| y[( FȐ5};&سS W} ᄡwmexG$s."ھ&6gE)- ZƸpkǜ" ыu\,l9 Ju+I>ɮj:[q́ =_D&z7;?ڏ‚/֭]S>OGww%iĎKoa6>7(/$oE|oҗ|\Dxg4'T8>v7V -_ &oi O< `CċƋX9W!)0ʈ{W$c]~@ow䲪fRGKF..lYш>*jg\h+FeÝ:(zJ"gkf$|8 ABN@ %hFϛ×,n(~d=ɓ9? ea'5xѷb@}8׊M)=',t ƴU/&ѹsAlE4jc2ҁ|k=C'fO[Q6Z)X&}o6yohc^*0&' q\V9Oj$(ʦT{t?d aL7hq +}OJWGex,=+iG -!R۸o1vU4zv-[wLsDoaUM6ARJEU+$N~4{ DأY*OEUpiC9<Ƽ !b"/FTƤdvnx5VAW߅kd po&'ҟ \U >fOm(X R30J0-Ȏ&łx0&ؑ'܅JˍvGm~Ϛ󦠡rHST"ٙ ͘0+y.Eqp٩X3/ `\a+Mx֭B/q5 a-Aֱzڈٗ/ @9+$'+{RZQ~諝M%j,&`E|im0s i3%u"᜶㗠$X$j F)<|Vx{RGؠ)Ae6^aUϨ\ӇZ[k4 ս"IXCf4XAg QQ#_ƱȐvհ'mEk@>r_6S.u5m2y ׌"D\[::fG@T'=-ݻ%@?LsT˷]z '=5ZBh4^%fOgcS7^bvbj =x?hPiqjBJ6[VVeюBw܎&QPVM_ВAP g8"v yOߋ㠸+F\~4cw|m$DZ`?R4Ip<$fx4_eR@L8AoFxY+Κ> 'Cm~HP"LKUDgt !IZJ KnSSPFTO( <D`x _GpՂ %YΆp\W4 V~iwMdw.,MD7}40.rycTҊ >"mȭP󆢝uXH?~+kvn)S9 ` X+Ž&0 tm_Pݐ'Yd;0 'hIS=ziBX6AIS̢_k0nsvv U<=Ng endstream endobj 855 0 obj << /Length1 1642 /Length2 5195 /Length3 0 /Length 6023 /Filter /FlateDecode >> stream xڭTgXS PEWE:4Х RI#w)"]~ϳ=9?z7;3;kx )Bv054 /$&,z Gڹ H] ă@& Ux8nMaP xh e!D( ‡+ a(<4xG5uՁ|&@u %4bCp X FAZ q@0A0; 10,p F wG( M@0>Ap HȪGxG0WnO(p岃p &ae(*ba`,4_W <~G{8C  9!xBn8 k^4Qhv O}A|fPF!'T%g*5GUլz!ₙ ù3mCA?('eܺ]:ˌYMJ~,i%*û2j|{rb+N"sG+tZwUS>b.~_[Rt zF5/eVɪ\#gdDz\)2y BZp5d.JU *yCjdu|[/^RN5urV%u+Kz#@;$ '$,K m5ur]w`V]GέH/yGl~끹^ eom=OQ$覹 s~' +lXt)Dtsc%[uÒnȸ=fՊ*"n> tC$raSl3k--mN-鼵BA+*]ⲵƛ%ݗʌ7-'-fun5φ_S.~Y ͨ,jM.%mpsf1oQܒ̢М a؝Vg/ò~@aˎWu ȩ\:zdXS+W}Aw |<,~- eT\+h .`C|hXp RnR ;f\wGc%!OSiUw2lu7?r-YqS"Nךf ah#Q/S<K#ڷToE(!0rJEg Fvٝ30]Ѵ~_ل|jj/UDQ s*bt~EJ%(4>`b3-)Ql-,h&tv(2gv ɑ"JM^LúhIbڥ6%֙P2pk$ReDya-Yiem 3Hcu~ގ76p!8>ul*[1Ǐ8178{%#?{K=V ?]",56H +ٕ5D-XPQ ~\+Vy2tZWS7/hR\B΅~_uE՞kL_blEBr7ހ6Elj܃֥K6DGgog|udܽW"8eDۏ򀙻+^ 19g?-] |ON aS;ԻT`n{7,nL[1 VfGy{lN3|iCQ-(|)T$qi|R $E>ҀlΈP#"aw6K~u`l鑶1$D2r`H=S,.HQ٦A5$GMHwB ˢ<~+zt{JUS=+\tpQpiqh, .ңeǾ|鱃݀~ܗIgu˻{K"$}WtrWϗ22bYf,I+JwW8?YNz4j=5V9 ipDV.>Rlű@FV7h!DgV)n|U{ÞgəwVڂ˶uc3{!﶑T8I|gahͶ=kl}ͪU9 YG2L/`fjd7X@U!W>M{4!Ĵ> Qp_/Փ3 (@RW^y8a" U͏]Nsbё5$@R(]0uv7+d$鎮mnK`;Wo qKW cZQ7NrPelYsvq!\Տ2:qx5}ۗdVXOQ5*9 *=N-)Тw$q ~Bk[~%#o\ fT6@VI ۦb5I Z =,k ^ED~v#;[BL=e^5X gjMU %YX$gjeR ;ASRoe֔-K ͶtNs|^.UAYt#ZIZ}c: M}ۡSMPRkg'MXĽTQs)ݥRijzYU-=]pV 1#:9;xY c96uy!Eȵu: }M=Lq{w"uvB Ǫj0&yrft> #˟h6qiqJ彳p6S{C(oT]o;b<ǙY#{,f5w:{P^l!F'զVzi:U?g4b/S?f1S_ 4KI\*/5Z*odmͱ"oP(@SۈhbAM=--"'{J!$g^kqg<(G[ @|}hQʨ|z|"˞,+ۅ/B'ff^!ՓcڠnpSl1-RPT [n{؝R!=v9p@ M(KMbļt܋\ѵg!d'V9;ne{=)Y}~Ky)?5$FƐ_r.[~ե+=گhR+1-AYEo2=J2 ~I cͲJ3gCbY=ne7~$3 _ϲaM`tC="yFjyo~S[1sׁL$Rurj&g6;ƣYV|!#M{{6J&~2 ǪX^zVjB&Rx+,? J* endstream endobj 857 0 obj << /Length1 1630 /Length2 18833 /Length3 0 /Length 19673 /Filter /FlateDecode >> stream xڬctem&vvTlUlƎUm۶Tl۪~o>=c{⚸cS( x.Nܲ@s_9;#ND&3777@@ACKKLdin w9vT@  %%/WH퀎F6EcK H0w034'XBN#ttr t;9큳=_ ۿ`NN&΀QE?,f-MM\)_0FvNg?SK'#98Z+ 'K;̀47r4:9OwNRǿe?stvژ11i7?"egf`f?t@5h(o7$e>(o!7r+GK>Whqy#ۿd @Ϣ1rZxE/5L LZ:[M-M,fF6{/)@_t&voV('-")DY2T;Ϊsٛ?0/zf.= oB,l>bϳ;@oL_`LMg#;ӿ?M\8k@w oUzVs=vȔ@3HCYjq}_z.w{]C gǡ>,TUM!e''Q ~bƹF6ޔ~;L'#3?k?IZcfJ3Z}9e'ё[C|8X ^#lߔ3dgCLJ&OWWNIjno+.䏱D_BL+q2nWa,ʼnt" ]+RkD0|= 5 9#|1n?3 jY~;~~U`Ռ%\9mU0 -ۍZ&su@*eL-Gq}W']=qQpdYtƣiDK\?V>ߗ-EiɸnN'n~vpjVo$~2/a kU@ u1=i1vMzрќTV۩cR)f g'> -\嶙EIpꚵWIvM5_Д9 +5ޢz̤P#]u[E=]zI6[i(K+M[#aJV9'X"#ZnbZnऎX*h~DE,x!Ed5U1W3͗h|JTϯ#zxfd`nŶ-q˜ߊBko@̎t\^/T6DH8n"o-T{IFi1/]_ZnԔ|Sovqz[j hK^l2d/G]=6'GQ# lH7֛Ԩ鑋A DdL6~Q> MNq=tUR 3'ofLJkܫyV 4( ~+&3FLp+9\(ֹzvZvtu#N,AHqA 9 I~l쟾KKoEj(xwljN\v)%*ƪ'aY[X#~} =YRKH~}#Y(l'%1hlV\|@*tM&1ҭ; e_Ϋ#gj'?S;qDq_sVnt'&[ces|Aq Kk*=ao^Mޚ7}|0N|(mlϳ1@K 3\,+lBdN-Tȫƞ38+5J&PCxij`Pz?+//N'#/p;+AWLP]w4kQbeC-ko hhvf9!T\tј0mI{e3N~^#ި+mEnMF$oXޙۭPg ;@PJfղ :?4gοKYۄ,:윌 #쯪4`JV&'ȻuyIn?呋 knΪK2[p)qUzQK$]\.I8C-VAJza3~I$?0KCw%v ֿ[1}WicO}Y9^S}Po Є ,!{ԅKBFQzr(^->"Gp+Ւof{sjvkBRwR"E>N Rq7vp3=~hk vB4&)!p{`;%XJiќ! 5jhwg#-BԨO# < uu6ԤreHT*L Uy0y,)` KrKLe `L=nDcC~݈c٣6?߁ϰi^0,3LK:.@qK[Qje$%[ZѰ:1@> Lkkz<8c\VD Wą؋5\A hS(e5{ܠ 2OZ}*,7Ϡ :~5/L?=އ 0Q/k.d)5Ar"86C%^Vk-Ӗ8qKaww M4-YlyɈn0љ?nA-7YvT^s_#^D78Q 48t7='qRs\~J!hiH4>fل$:p]ݜXSV4-NTE˖Vۇ 1w>9`>:񰟧fm/2!=w;gY3(<3Y(K"x׻|Ry`[^%qQܣɧwOt[>9Q.}_I1[!-~/$ijآ/*E $̵ +4 SvN좡DA4Zkt'8fxW;n#IɋI\u\Vkʘȧrפ4bg>aVf2!(3G/ZAeq ,{c}sV<{ƵV/iߖOC5y?p\Zf,!̧.ijxT b;Ho( XxMa] R&q+D x' s2ЊZʬxT vPB[/K$F<@(1 q)l0qRg^,MxY{gxOqf3ѐd_k<ذD@H ~!h[r>9Z #΋!ij [{VcxtADL=ʝ  KvaBz,"*1Ni dKTsN5GȼCӴ]`ǿUyCҏ]{fpTc>zH4ح:m*Mt!=bn?z4\Pᡖ..2R T!UyNÎI2xwޢ&LaHYZBFge&tګRg>/6t6E,jd kOQe+#&&B$@d@Q$Xb'Ir#pnΥZ7|MW**Ue-ε= bר< 7]ןW WZb]1o<Wn3s`Y7n:[ݞ⿬/d!0Z8Po*u`(l5HHT} $ $&~\/ $jUn*?`Qކ͐BBNOzToz{ :dXh>OVY!( 8r(!*@J(e@2qN?q&aN2xlU'lewZ nr8Q@N Vwq 6rJ0i`a+Ʈ}qK*? 1N6̡~{AձMO Z%8WnJVs@G:bzgAG+bO5k0 lq]Tmq_m }eT ڲĠ2/}TSXwDXPPܻy:"Mp¥R&|^rNbIgĄ42L|H=@&X감z&kGB{O2N= p#AJ"̷P}Y kfmSz8[&@-Im>Ʋ O/锕b~yF3REϫ+U2'T}gգ 3bTQT?p3ϖx̍ "$_}dΧE323A:([(W]t0& ( *AzқϞuʲ™6o3GRb)j-D4,XC[s0xH` >2n /w+8 ikPȦ}G¼bex #TސܒR_T1]7H'`MbƐKel*S}FX˵Uceu|]'.LCX?c@iyBLy#4WLFHa[g( ʳ?eJ9 zn6Pݶ 4#;o )rֶOsCJ l˒4`L*RS^ \R'N}okxR3 :E.Of kc hE(AxP-R +j \rV.u5OЪi-#O9+Hg:8Nqak9Ck"M9VzLYqV%0TN~_if= zZF;[+Q%kYȽ ΂~X&IuGfaV1vNh3]Y'IcR'H)Sb%??.c[| 2e\h@h2SepW i}<5Er%G!|6B'q9"+Q\x};`2[bejPU sZT8Y@fdeG+$7!g4lZ[G.]hƗ) Qs\7kz'Zb@2,ggMyUZ=!~J,^ךJ|Ee*ڏ`gY(טRBBrG P'`KCrޗK9O8-$9^Ȥϼ@pIdn璴-L|c&~one\t{NGP3#{?*UR8G%K;v/Oead`nXO' 5Z֊Ԝvq@)cd$Y8Ki}rq <%-݁UY&M)jOcX 1 P#+"e|PN_]=\E~E~WbҺֲؗN@}.u y֢Q.]}%g˰[`y?cRL![(.y,]Ҏg"6Ta)4 s6?"TW52kǸ F1AgW.# l[f?VV1'xHW9¿oA.t≎>Of=k.;K˼9E+UlAilPec'2J43!sPLa ah8k6Sa8Kd95d7Ĥ _v\@س:}uDwvOL›a5tNL-y! _\iۨho,,`f{]8)3Cv4G҈V=mèǸd%:>|AĦ"֠o/^;F!5#Dk^gKgcDže~>X$RRw\ $!1Y˓`x[Kg iS=@fT`FJh'tBS`?PVR]7lf t Ĭe,P ^reɡ˚E}`\z{R{3bؾyxYJ~4+]r0>LFFG˅ޒx$IL `q/s|ȶw* ȿ_smDVþ1cP?ڐ8ՖޕH"a`C}ԇX.5|(/ n qV倽Y1fP1%y'}?R0SAq3{Y%{F쳄U\n.:tI1F=#HSÅ^׭aXAMbM$&V?q;B[W jK[Fc}zJ^6JLmj?$=\kDl)~PY7HO[$f8һKDv))ե.\WR:>:Xɝk( 67\q;KnW1~Eecgi [6qs֢oQmq0&4zM;m|D u"e𶕊~I#[Pk ZO#b6/=VT(JJdr0<);O\QWkDAgᠶ9e==s,wi5D){#wO5: _⠾":ABDl6`:pfԺ'ݿ$8X)(z`8TTzY`3jKSiT!Aϛkc>da@g vN5 X _sƅ](8IȦdktt^:;19 wζ⊑U ;q „sf(yH^z^/LO>b~xa *V -`K161" BBQ\o*M7/>#[˗J}SmVq*T:Z(Hʊ,w15?T>Λn^Af)D'h$`ʹL;YJYD pa>sg]Q JlFST!yNT&}DgCuTjRvvYf|-K(lm[طx$=׎ˣW=4<ߞ &RCW,][5[0=ظS m$"/{:q֣e,"E.HߟDGOul> :v@R27$ l},ן=O9Ij) c)8pO5~#9CDI&0^dL(3Z(Koy3o`MPHjJoGwCҘbC|K3CAً㚾j4t2f NC!j-@'|R2: 6SX``ъ޲[bi-^H^&.Oh@D$QfX&VH6U$>tڝls]qAN˜#^Ǝ ^8콈{޼DAߒMBbK nH w{ٖJg]O+U@,?K6]{ŏ %֩$b _ g׏Y| iQ#1GSsҌ9sܧQb+(Sj-yZ2*nFё3f9J-Yv,UC0.r 硆9)$1f`BoM5'Z&?eqhTU挖+kѵ8)1q|FD&r gX:h|zi27<$_)zEqJfOѭ¿_8cFV˰7`];>9rhnmZ]~&NyYqWaAX#̡FAd/iEO!N+|sSiwr@3e,{UnBL 1zG(E핒a48CWBƃs %Djrb &%? MΗVm@?z4 o(*I%D0ZщQb'|Icjm]KOzOD8ԔLf3LAwj }å I)ڣ6e8Jxk+TVƖoȡ UddpƸͷ ]N,NRdeNKW$®2?FyTo4sq#uum~ i, &NSoЌU$@|p]5\\폻CȸSH<>,KMy$M(W(T|?RcYنpł]fM: {nDg<[z1B3Μ2RB!,= ˵f? LΛZWKDr 9u;G`Ik}6 * Sӟ"!TqP ?Ϩ\T%RLX0*_ s 0 1 LR|\ ˛FU}#'3c]KPn:mC3Qm2ezq-7řng/Һ?0O>JEQ "$ >t1y"Z"EoGRW^ BI5idwԅ Hf4[> ;):,vBYf;n ͊NȝSCgǭ|pncfFBR? CnnA.O\-ey:&Nk񒝶(LF?JZOs7t١ z'EO'yo*1zWzuVgs6y7RvgUlU& \޵r Ac6@W3-NFAP-XW;/2N 2 9B c! I, q6i%V%E b/ץY1 I8E$۰֕Y[Ny IׂGնcifԌV50{^tӜhePѠJ7}!?3刭Ȥox2a`饽%~w!)ħ>s=kt-w*5\_jѫSx@Ȁ^ыhU`fⰐMt y\-ۆrł[lQ(륽H"%t K\,bhfCu*ѨfO+*e2'T@*U7 * ^kKE6c5^5Ozд ׿q!"7y{36{ XT-b9ՕKO&,!bjD/Aϖ"ZW/FH%lKHn6ː6p-ocѹؾΕr)GcV5SŸ_N$xĒ ^G] f‡yz=a ,Q@PA6zێkcS-rC ȒH41,D{G";"q*;v-3Kָ`r6Lsذ: &6ƘmLCKu 41 "Ӿ!8O#h%S_C]Ӎhx~Vh ʝq!{'9X,b! {4z[2V`bp5,ˏ3 0 띚Vc%^TT-"?VdȈy_FX{M3ܵ:ѿ i'<Ǽ &5gr5L1qفfuO=)O_1A>JSC@k,w 5Y}O7ӡ+Mh竩BM3CP\(2b?iت* F@@c01APs] *Nr}YsvKF nO\ҦPZAJã]K4"_D"9GN6(Y|S?CꅬR;i%= *oU)c,D|Ds>q՗fvETx]%%K(#qxLRDJ5;.zyBc+zCp_mZteC|ٌFہ, nkgopF8`C21kv#q7 "IYEf! bZ}u=dz5Vt`QSbb]ePwW_u`sh `)')}BMHw&W$@h~%ڑDy|e+,(l"njq~&dTk~RGRbctZJ%Tτ~HOE{cv>~3;T!uunCJN8^NVw(lO\=R)v]~ "&|)MaJsrJi-nq: SXMٗݪ'mъb52KDX wcbec]wOE4uw:_\%%ɠ-&Kj \tT$CP>c&Kl*ʲ7 r C .82L'r,ɋ~:.^ ϕQq;ytBNz7]w/"Bd Pա}'QdT1ejGh۫*L8ZUg鑗ǂ]E""=B#}\.ۯxw\9k ;ܒq+ !UtF3K19ƖysOH48L؍X@,psx|߼-Ӳ?vש,VLŖnm hg T7STŹ`3n3}~{І~1AWĆp8SBr>eN<*9Fcs5o iuIN#T x+%!}"$ɤ8pi VQWdi8Ѥ4B8INV4&[bijm=APw-22oQMȎFPYý%RL)?ixp|A+I AO_i${ԀrX$N&YcPS5F{e2U< sέHzMf *&YTƐ>J7c|PT20\cgP^}:I+6SpCP5V# {>0 E:6,wkrc>Ft V *S:&Tv1d$ޠ}yNW'=GM.>wFpb1^iJ}p36ҵ/H\pSG|FMg 2 -9 _ E2\:q9#Q>t+3[h )yòP )R{DG o"ChE0usE ͔te>>P^Y~5i&dM_Z$Vsɫ:bDJ. N,+ÉKR7ljS.|!I!!Icݖ6;^[wRK42Y}V6sڦFϟʲ= Q paV![Cm hx!FEF~pW k3^(E=Lǂpg'!:gOg$o7Cʈ~TRJ7/|ץ9N%׬F^{)2(DYEѾWZFһU2[2W}\qFq\xDJO}jgdzIwy9ЍlbH*nsm҄E{&2VGn^_ \WdGJN5؃1@8K.Mч |/z5J ^0N%\N)a^$:+30;љ}9 26W*l$׻PaO J>[)Jw/mt?*E4\%D='GZ~ι<@m5 ?{"ɧ˦nH¯ujgF>CӐ y*^]/={ig~i({qRSeL]B8;֑!\L^eZ[Hܗ6lN HWѭTYT5mдh4!rh],՟@GnVU+=ާ/j~ =ӚRuZĶ'ccN좣r=G((; cB:4@.*fԭI#nƘ<]Gs!r&9E/ݩ<F ~6t"H5YΓ+Y Ȋk]P96d7ޥ/~5v3yu5tcZp3Q}W۫ܽZŮ.3#eU k6!i ѿպ|© h.*sPVyrq 5V7RR}Z,5WpXppxL5,Ơflx|Ym6e)qwb4` ×K9.bn'Ξw)%y#/תTawz S1P&Hoܷ~xJAag@Nf5g7\<#i|zyGkӐض(a$&W.wSS^1uIu8-jTM)8PDѴTD3`c:Ә gȼ\wHaGX-=Zo{++S|nhlצ-(BVCg=E$J)& c̄#lo 02 0(ZRHէop  ^T{{m,K--/c=Oie_IFWvi&CedK쇔+D bzSk)N'V-c 5odxa];dly䕘5 5 z@A KF{kZ߱XF`*"D׸γ-r"o&wa;nq!GUl- %wӿ"3}z&f{U8f;ЩKbBq5p{dx;ڸ>,Ɣ dvSg~Am:%x^ :R ԪY ZF7Nu)ڍ G5D4BtcnYV\֝qT+膭 emW O=?moyn+zpV{4g*cSΧ>dF۠M|Zbt}ͬD|A( cNRc7)ӳp\ m'_i^-,eI_lRG Ps Q{M8&7Y 6 ˵5?Q t$Bi8& zp)p@v$O9nS(DE=- B$* ^wf/.n\Bx|Kl죈Ƅ̬t3Q ZltF^Y^J2Nbg^0-# ~Δ!U$G)G=Ľc)Ns=Sđ n˷Qjz|oӸF[ endstream endobj 859 0 obj << /Length1 1647 /Length2 14742 /Length3 0 /Length 15595 /Filter /FlateDecode >> stream xڭce]%vemW6OڶUJ۶Jάmy߾}{?9c+fD+dD tB&vFvtL9 #'%;9;.:%5/GF&4t5trԁ&Q1Gp03wP*S-#@z:Y>m)@9`ja +hJʉ(T@["\-2@[' `Ҝr 9 N@cn@wc?-hc`0s4u{v [ckk7WBvw)99;;Z;FU< dؙibgOIE -l@wb&Nֆc%wW.Nf-hfhb trK:[׮ڔoLc翱,lI[S;&.u@ $ Ml=&@S89;!w* -_5.}?\ m6 15?0XX{nu࿳w![ 1ѳlh`ll05{xښ-lEubd/?jښ 4eԤi_v=?#ڙ?Tv/:&v.3:r1e -ڌLϕ53 mM28:U_o%݁pKv<iε9C}=LC!% *v~\5!SܟmR#=<<| @oigQ^W 2[Zj;JzPS,0WOT$h)1H (g OC741d\HlSD<^);JtSV=EHax!?jI~^#<|gKڤRMrhXI%\0WPռJ5 xGac?e牡hšzކ"[1x- cboaId`2ϸsGajeSӺ| ը[zs )%ߨys>z7 O-LFwG"]XegB.yߒN E_W"-tjge1OEZ*01TBadLeSc*~5ih[#)A,nBg݂Yǭ65B; U^w5B]]N|ŠDw'ILˮ!~=rHt뾗4B$rfXt~q7.r)i&wMx2`E~G}Tgdo5b.Ei!́MUcH;a:,i\w }SNg0w>l ōU0ܡJjJͣ @FOuc{I_ `,Iyܐ2Q; mhrgS#F+.@0Sʼn@xrfo8dQMОT4NEOBTSi‹{i ;`yHKgS(~h$\;t*'ġPMBr*+~GYI| tD2bJ%sߜBN#R˚6KrhN FHBPn*`á "~i&aL:Lw)Uϗ1SeY޼PE1"Ient_,P8.t@mw?d]ν;yζ'N?SjLܕZGsy hԀئGhX_l(lz~!V3쳜E hSU}O!+4M7liǡ\0*7^zBKtfx`^o\z FfS?J7C8 Ka$€HkF" ę"hV^v4UD 3E7yX' f{}Uw+ 4y81țl綣|, uCTT q!ҝ*#j>Uދ4FVUݿQ|-SOj RyV0Eo 6Aud4< ew<(:Z$naȠ!Utt(ʩܦ@V<9ƀK2xFa~ʈS о OPAj 1Z @{ {\T@b7ϫ}eF( K7EerT <#oPжh1S(GM=m㷐5QU<JDrH+mFU  J8TCrϔ[14))|O}>4R1?tյ!(z3ՙ +L=5L-ڴPqlꙖ*zVeߩCAgb [ Oպ/ZSl}h,!+3`+6EDp`S,eb!MzЗeCIޓ"J(RZ9a] ԉy!0$ZZد0jQJ`ا%"uK"mO)tM[8z)֗\sumz{3_ rPzOB'TLM0G ڟj%_#c~4_M_[N٬h! ON]LӘDj 챽)gG)$mJ 2dᰏ՟lӃDL_\XUhBLPj9ٕ)B,[o s4V=I+:=!iHW^ęb~.+ҷLE$Ka[|c5Txˏ&VڹZj{fV=Cr}H' XٖtoǞ5l"8?#D-X]Cђ{fy 0grݕ)1;'kh`!X|=1a#pƼ؝&66&aU)J1)uPϵa8h:"JOtSa)UA5>1Vu ۧ[Bc@:Ldj&)7x$ĄӒ:No .Q|a+fA%-X[%niFl,O՘!-%bkVm%q&Q5C|]@_ qG ԋp_J7cȄ\Ny}TmqGѯkbI~ܙ[ՠU}Si0G8bz#- f,ّ&g AdFtpG\0]7_t N^l<1)g\gTt[Utِ>0gڄ׬$,F:gL].UAŮ.o,K}{㤰S,K*F$KBlsfDݭQ^JO]jQXID@•HkSO2{uXs TaܾcQM0G'XeQ.a)}R9ۤ-V'9ABP,-j^{D_ fm"v V+q#$38}hpViTN@^robOl cOϩ?!"1ȁ"pJ;W 5JCm]D[JAi=U4QF=Y%/×{ZOJZ6Xԃwc3(u{̍: <#ݬB;B+q5tӣa.A̧HnϷB_ů.\b_flaaO`֤"rlDI+W1]`C蔮O#I3ZVa7` :܌ "z)t5$Sa"}rxN 8Ow@H\E8gj(DC}>V #Ne s[=W.#{z`ȁ޺jI$+F&H\uί1֒d^3]O8݉Ibsy|rdPafX7DgAEU߿ζYWّM+K{te7鎞XΫP#+~ǞKF"dm ֵPb٢8(t/( !Lqԙb`k7@Q,+h'Lu4`t!y8#>T3 ~ξ"Cx32&K\WCbQ\dؤpN۶EFp>xF68"i`ĘgFK *bBffu qAt]aN[X8ftSۑ1,]l(Lth!g xيX-QDNMƭ(ʫ%,:UY%4>o)iŒ0#{R1Dgm0G^-?2:@&6q l|7 #Rkl[ IZjj{kMfc]󓧊&GMޢdmZOOQ } +y!v5^\s |CW\ >| RnynYͬ麯8]-4 ୱHdڙ'ꆻ% uo-]<2׼7p3_|!VRݜ,#B ?ƭHcLCa7hbH}+2#>?s`3 5ܳ΄cNuT#!ܙs.ޅxǻIhXxW0%V{P(ùLhbduqSF Cei.iY$9՞|bbRAʃx[ +p[t fw: 1KBM;p>ޮFCX5Hbz"AI9 2<}\^W/m&*ƊRB~ *"i`GY)4AIO @]8!e2 O'qb*@Vq`hU=2^V;k's[*C Ktߑ ђP&]~?{@( -sؠs CkT$א)FVz:Y'!˹{*l{fE3d(12K[ sMRZk:%D 6>'[h BplE撁*S:vUkAbTXtOctșL^f?ȆuڙqrKK5cxiCȕJyNun#H&;Gp: |n^siٲ<9L2HI;<0rŸф(K~mYވdV;L}st`BƤþIpGq~Ew4F~yU1Us+*vm5: rאT$; v:Q دd昊sަ`rru.yO!3KtS$9u|Fo 8>hOUUw@sX13} GBhԕ =+SNYgѪY[ p詑ҧnW{7n535&xT5^9+6  *TP܌_cK?G\ͥU9АPMP 1I~v (ߩ:uXmYH-Q%{Jyl|N{AäwvGg=Wܤ jwQc 5uf M[kť[?ttÝ{ ʼn}-o e-,(RvM`i]}KT% ]o"F/b=PjgBeO!_%y9SȢڹo<օ3z9T?<<"('Ln >vn[RN/*.Z<.u:_qr} SVJn\ Pݜ_-՜3P"S~_PNmCf=Y:j4zմCz#(dSj\Q Q; ܂o)Uu3o?>JG7o.5k;:I͑{ eY])ηK${ZQvzcaXZx(A/!G yZLā4"ԟ\rH{FMc?% HQï8')jrR.=WbnzDNmI[ F!$M@wZ_fbݨYJA9݇A%R@Ԛ0EڮRak(W5T&5`F 1#K*I_x˫!.Ӯ2"9w WίNs򪖳x[g@{޵wȨ}"DVŇ#6D>Rd@WPXt&_q4H;-ɓ'&+vm>#'RbƏ^c7R5n {=gԞDoZGY&f8ZZ'^eA9= })GfH:ъ^!De}SSI:@YTCSu~7ֵ_ɐ\s+W3C˯G!5Qyj4g+X*@ct 2AN4co^w@P H6K[j| l(6_g΅]Dv3֠Ӕ Z$l~>ƴA흋;27U>qSLצ NUÐ.?J1U锡QGp\њ #|q x?W 6v :m;- iPc]v-#_RٯetvqSTaXKul᫇vQ }MaNFqF^r1px26o*ǃH8F&P278>j>WJ:=M~6O#@,=t|8J:M$/ 7[-w=N$\Kq7w|_nɅ>[vBWgᑉ(hJ9 ^!SIFV̞;Crzdqg+ghs5VEHdĝa[i74^&StM3.ؤ4 7g]@2?,9PT3N}73CST:^ o\q*|:ҡҰ ˽эׯa$!K(H]*1^;0#$sk/ @~I] ggF(Q  [M|x $W|X'{ytcQG6)3!]sC뮡B84mqـZ}[Q(?\ol:P;ެ5P45UyezS ֥^0dTNa۴rf)+ƒG }Ss$t4E}̔mp,.KsG"i#w?ICG9f80r`d&)JSQۅ1|]d^^mKc_C*dEXQ|rcC^0$1$|-#h>cRHήݘLbY XO WqUt QG:N(p|iPYءHʶ:ZZ8Kv5.T.hGFW;YiJq!C|8Lx<,Ɯ.ܼj=Oӆգ3"253iA6 *ќa~w׌w\o~I6&;OyVOk3@'Iӑ D>^Cy#%s+Ͱ{Kɞ5Yr^B6d4'g\Lf[lIAz/T-X6qE`iuUi;ϔ՜%sp]٢ ݀[&P5lAv{@*3m_fFkB߯@ E8V:U.+VBz}g 6GሞqZC CI2ǦwrţR.sXf^|C9)iOnMɵpM?44F΃n6?0"81할a!žk#Rڂ&7$Ot<B3BŁ)&f?!LN|&D`q]*ϧt^RÙCh?):(6,-5(1@`0чAI<»} ~Z8k_$`6ޤa*N7vq1U7*v6X JY+Dr_JyLLg>w Gn+,Jxq4:,NNf+kM5B^b(Eb!QsJ Bca#2u5'寴Y 2w.qƛ7q۸lIl#u%(?hHhG[LLM6]6N:-Y9-:#=/Jx=a?6/)P\ڡ$$OiŧNQ֍A^(jP4\k"h <ICbr!X[gX= B5W'|`a~Kai|#,f\^!T~1]`XkD+70N%p-[5~e"4~S:f2_OM[+o>K ݲ"P|&6uY[bNxGӱQ5>l)!<^Ň>*E!CqJ ʖzG-ڔű_~gѡ!F#|Rؾ㟑N1 !Neml:μ"Yj'0,^iu*|3ڝ{'oÂd2djQ5,WިtIp-ry9P01iYԂ\{9v?6as0o4vbNal%SFh/f<(#[U=Ǣ-BcmElY+=/^A? Y ۊFdw[*EK.CzO5bx/ACw@4}D >6M? y9mg g~xeS'37u-@k!TL >ٞ{+ypnDl 3JѬK<Џs"ڕO]vWVTV]?!j z`qb^p0QL'U~mf *9wZџ4CÌ, BW\j wL4NYTsfeXEB7H!J"4u2-57ߒ컳\'T7e n򇖏U֌s6n) ܆oaLbw`y ǹLyΉe5kPs+DZ;?ywn t>Kv¨0y5p:%ouY@8>bB6aF[R8$/'j]]oSL˄~lɚ (z(l|(YU=~P}c,kv:e.+" dFҭ;@V4XLds *W*3^:F3ή̣Du3Bmx758]DJdM~M Vۓu rص?'cGQ@q=GX zWPjb,[;#x&Rpr܅״æ8[LP q0}ktzk>\*\;h.=CY򞑚$y4baHfjۋrb ,)o_2eBudH8#F_/uuL{^U)RB-ߎq"=OMx%qC0uI?%z t( rzȲךrl1y .ȪMek(JXӝW5àÉ؜1 iĪBp I\}(pn-^CBj*#:ʒ|";fo@33@/ɝ g{<]d Rz,G ќk ƕ9NV6,h!l ߇Tj73-.zK7+xV@R,y`?PiHcXu n/} ۅqwfN: 5[tکVWxLB 6U2‘Awlpq`AN1ϊQSio.bW<>){7'WuM׭Qeqޟr#κ$3[|_(4n?+v 0OUXvD!nῄѝmfVTr ۳~L^r_<^938qثyoC&*G5YQc ɥ23P9ߊP>ϲM?g;T޻hdhi'[O4#^¡=8 TwlFT ,h(m!6PD52=D׷9 5iNbޯzT]29,\/Q֑x.WH6T)ƒ&JyvE2 L pD+TZ/ب0G!5 oӇ ?PA^}|vU!o*W[ GSkF7ӟ*wzkOêmޜ$|a&h)hegZX`ToʋOF(,|5*a Sx [2@&DD`&M1MY\ RD@Gp88 |#6dHG9Z3 utm yb $MY*Rst݆,=p 2|w =kݮ O6 -g]yp0(h$ҷ{C)}fNG?gP ݂'qy%ÖTGՄj'•^z*fB?X.Z9qa͹ǫ> %DÖW{wZnP)[Ñ&eA2bHQ6@_ŷxR PBU1`dڼ$êܫ g-O`QO^p9J40m٩G#ᕚJp1ﰃ{} }rk(Qww {vpգ{eGZ«Pw&s_q(sn=6f3K`znZf"̚rgˍL5j&4Ǹ8bɔ^NY:L9gJױVIť96'|o Y#8,"s\dm.oҮVWI7xMV5қfGv<*>4yD1Y\HoI=lЙ $!O$hyL@{6B)|F]Ol"ա8eHݗV.QDy% ÅĚSm^ٝ"{ErĞnčd^_ٯلL !PlvkIbAmlS 8,)vvS-/m{ŬɚA|iSR5v:67Z1MOp#. ?-4̓Ȓ`q E%R.5B?`.&#>G7V/:gdhJ<|`2$4}xNvWGjl0|>x%nCU^hd# ヲ}ܝ9'()` H7C *ND-"_Yyh}Ԏ endstream endobj 861 0 obj << /Length 700 /Filter /FlateDecode >> stream xmTn0CƆ@LE"jD;oƤjgy_xN{qV'wC&]\]]u>t\qxں7ŦmN7isƬ'k~G]?ߓ` 4;RV_n86]{̭֚u[sfߴ L:?v>4|`0nhWu}QE KU=5Yw߇l?N6jwwv Z/բ,ko{&PaffIq XMJ0LfhrdĥP> stream xmSM0WH1\!$B)6Q+ؓR0ȀzlH*73o<dd.!_ ^4d2֢@wXm觩::ۃV݋%Fs.J:=tˠյS:`H=j)OԦc`ZU72lbe^W JK38%"RnWT$xk;\$-9/$0:}4f Ǿi&(#iJ%{Q 8ő$j mS0IKiߧ}GyKKe+<%I[0,F̣Y*0ضb1 ;s?!^xt 5#47b Clss}/%b+qL洹{ Cyu/Yfq6pRdSثv!ޞphM`[> endstream endobj 863 0 obj << /Length 604 /Filter /FlateDecode >> stream xmTn@+fH@G!BHMV{{`-زNuc8`jj4Ѳvdmuir;J~`0Hr{E۾7d]=yKa{cQlnQݟRҍ$۲;y{I6mYWX"h 7+bܛ;hn~EQD͵yU0lJ{SئtG1n_m.u}!dX|FlawZ[W^wmvh 1ϲE`]ߝ6Z9,Å'bB621!q bbID"A J0 2b"F' c"(AYDIdRs}fw5H3CiZK8)a0^sKA)ό1ŒY)gF|)˘00\xuSVsy4͈纉9uiaK &fG8e>^1Ozʣ)YnHFa4J79{c|D> stream xmTn@+fH@Gl!aK6Z쁵c6;ՍeSxLe(ŇK[IsQVu-Eul׮8]J;{ܗuxkO﹚/թDB;8A!lU{QJ鉕+`z!CfFa-PZUY0v=ݡs1]^C0}kKV(ߜͥiN.  QڃO{ݝkS6VhzW쪨K5¶;w\ʅ"wC!àV>a DyB! @ DqHXJȡ2& c=g&)aP@!0DRE(G_znL4YٵH3 ZK"5qx̭/AF)ό1Œ{)gN|a*˄04\xu3Zs y4͉纩9uHia ːMS6)ϓp|bGS'ɳBݐjÜ14J6"AxɃ683)Mm܍Ҷ~mh%i[ C>-vKa endstream endobj 865 0 obj << /Length 701 /Filter /FlateDecode >> stream xmTn@Cx ^"#$W)R cΛY'ih̼7e=n'Y$ɝPI}WWEW]}=ݩǡnTشxCɛz={iڏgs2a܌eO>?pjN[5λ#WӋCփנPPM5#yitM{BMh4o&> E]"x{W J˥݁ѼS/s?N6jwwv Z/բ,kL,%%7\=̒5⒁yA^a>:M1ȈK,x΍t,@F*&" C,zdWXPv-hakH/]d"btq"g_|2JB5kdwt,uVT Jb9;kBX!00a0bw34D 7sᄋ&X3Jp]t(:ʹV7;'Zbg%ΠJ&OsZfdޒt n|0SessOpnB|W\q9WVo|FCӇ}P ߴUvDz(?u endstream endobj 866 0 obj << /Length 702 /Filter /FlateDecode >> stream xmTn@Cx ^"#$W)R cΛY'nhfޛe=m&Y$PI}WWEW]}zSOCWmܨm"߷۩vgI+ڴs2k&vh0__?*B ǦkZn;1zjzoz6Fwu1 y~wb8&>U]_"|s7J˥ݞQۃSӯ}^{B^qTu;  jQ?L,)W23$`d`^`,&W&3B9OSLq)% 1ϹNPԂmJJQ090Ra 5kd^1`M@ٵ0 Ȯ -ְ^]K1F1tDϓ~muXI($:\üFf%JBJ!^I :ɚ֌jXDhݰ~1~`=X{&Gbf.8֬51X뷕c~%FV !aC`{2)S~f*{-'Zz-۴A+e8g27>2CӇDžP ߴY wIz,?-w endstream endobj 867 0 obj << /Length 701 /Filter /FlateDecode >> stream xmTn@Cx ^"#$W)R cΛYih̼7e=n'YݽItՓ;vr:\;;W{SCWmݨMi7mv9I+ڴgs20L0H|n7JP@q7SVkM`,hߴ5( LՁ<@8æwbOywvL M/ޞArjn4\S!詺]]ꂅK(e=KPeffIq XMJ0LfhrdĥP_E OB%e ZKx88CuΚVksH5o"n?ĝ`=L7&/\88̿9Earc͡+Y3h{Æ?,dRhP@`N+^i4،kY]  '\xB~Tj\'\z.۴2WsQqTa 7G?|/Q/v; endstream endobj 868 0 obj << /Length 702 /Filter /FlateDecode >> stream xmTn@Cx ^"#$W)R cΛY'nhfޛe=n'YݽItՓ;vr:\;;WxںQ]b6 7mvݙʽ6': ~<  s3GE@t2Zkmw?S@MϞM[ކznѯ]h H޾Gwش.X,>ӇvCӾ _oO}A`TS9~wpj{Tk#v~Wa׾`R-r盉%e&s, X#.KIɌCF\ ` H s.`[F3LT&" C,jdWXP@v-}5`+(&RQ'd_})fJ+ =>0cɃgWôy&Ĩ597Z7F_h'X.ޟ$&h25gME'b VG9m9|~hџ8kfyP8L  xie9|u6\cWÃab 4b]K[r> stream xmSMo0WxHqH!a۪`q"';aيÛ7o?zό~@SuF@.j2+ѕW r6/Tb-NɒwZ\: 1igQp+0;uiRXʃ*)zL*BgƘMl̫7А7AIiiz'HĩT#= l_ʝ>U$IhaMk ߌ¾ HR 'gZ@1(wq=JBSL@Rl)-Ը8R?q6MIL0Qb hh߅ǰx6Y9!>@{B}{;Snjr˽πۖq." endstream endobj 870 0 obj << /Length 859 /Filter /FlateDecode >> stream xuUMO@WlHpٵ/EZ۱ġU&B-%v8R73Cof<ۻfn]kilܬ9Мk]{=ިqhܤ.+OݩugI{ gs6i:fS~A}P>>%pe>rcc0Aj~(k&Y 8m2˥?4Ϋ`~?nWuY|:;!Jj݋}읚1;THkښuæquRZ*p}iD}9sמk(_KdR$| 4hd52HHNsL F.8XV`TR!4`(ZsJ5RH+wk3E^ kCXcp pD zA6:x0)ljsn l9u}Srk4"nXCA$a]~VkzgNo ~M4c̐_2x;=6o2,bق540F,eL燆LY` YecOAV3Μ蛳{zr֟P.O0{S3ux9(uF: }L,V|ƌV|gegV|F_+>O+>G|V|~+>C1 V|B|FB|/g)g1{!>_|&~Ƨa90K!cB{XTK5;)NŽbPq> stream xmUn0+CW`$ ȡMEDbɐervNS`cݝIշmEZ=p7+oU54ε=84nR}uwӍ'۩ugפ½v}5̟imO3 K7yWԧncv+>7+>S} ~!>_Sϔ+>cB|&LOr`B,&+jwRP{xH^U˩Dg\%9辡|׻˕tȢe: ݫ endstream endobj 872 0 obj << /Length 858 /Filter /FlateDecode >> stream xmUn0+CW`$ MEDlɐervI`cݝIշm7nzt<6nV~jhO?k]{=ݩqhܤMƓ7}?T׮~vf3MiiY_OQEi?xN[E_EzIV%H~z;MwC\Iǚn WD3 %#cf!ch"ƨ-_Cg cRx~h K^| МQV14d5cY9Y?79돡'g ?%>O:ShYg皳ΈrYgD>[bghX|&^V|ƻhg33qgng3tZ[Yog,g-g B|B|\3gg|?f)O5[TT+?GGZN%:p<:y?8[:qw{Yrbu_! endstream endobj 873 0 obj << /Length 428 /Filter /FlateDecode >> stream xmn0~ Di"A -UA^=PKĎG*o;ՊC3={E NCT[24P @+}7iYmNQ UEK8I#st˳*b(K{vYBw`:+Mc.V 6Бx0AQ*a'HR!V7 ,]: F5sdg'0R1m{4A) *s} FwWM: е5SUUP cX:5ſjCd^rkY gc`_s/%" y؟UNWWrB5<dzs&;ǡ^oƸo^*>VX?ƧmE[ endstream endobj 784 0 obj << /Type /ObjStm /N 100 /First 906 /Length 4261 /Filter /FlateDecode >> stream x[Ysܶ~_JATVR%țk$&+wA"yIg!őu[k]Do6CATyL ֡@͇ t:e,vWX"`AP|VD?3-)Xx֭jyRuBא$60d6nٛ|6+{szw]50dv$Yz"[Qwyt~}5)c)>t.T^xUҕpŶp7juN=b@NYZiZdѿN V {Vˋ F.gtqV/b.yQQ5CkN]DgM:Ҙ*gϳ׬G4Ɵ`E=;|t>^3{qrBSp_|1=i~}A $ϑl+8Tz^d su2t.26ʗzݱ"36MG]-3`J:AlcUbټgl1Mzv.I.f>`[-Q%8{H'Pw{N^/Wgrދ)ldE3L(R˫6SVɶ҃YgYu֙s$V!VCͽ@eHO3\m*OpjV h?ox?X0d̥o~>VG#ܧ>yS[.+17` ]zɐ^-|M3 tZ೑r_U.N'W~(z 'l\=epm+\gӯC>/Cumy~EETc)& %n .aT.II EX.N"7/NS J!qwopqW2Jr v չYkZCYcJQ(/^_P1_tX%I87>O?,Rn/?)KH}őz'֗CpJ/M(_(7EnS ǵ}KJ͑+"4 ;[\P, % Lէ&ÁSB,\pB.Һ.BPAA<@)XG6˸H:vX |p(c|ٲ SdޚܔJ ' F^ >`a&Z !!0@>@9ӟCS侼+]M,ҫF-8ُ}HZt*艷`lТkٙwoZ割M G^8 *:7qYQXۈqr~6UH|(mLN:6:%%Nv6iz*dXӘW e mű8=g7-T]UǛ9cMLy\a41Vx,jDC/}S_SE;|(ixQ[Hv-_>WsFyٺᨿv}cFVHPB;o$]RV~-Z@5R3u48aCV=qqƿS/a&Z@%ڦv'K#ؐqB6Jy՛׫)kcx} KBx꯯lˋ]3TƋ6\3'Z5L°Km #*ugDRKv9j7K4s*v: ΢IЭ*g"Vʢ6Y*eM_4ΡҜռ{U::E{ g#))B:KFݡ G. gHVC^_.HD]w:rR [q w2ƚ]AyzF|Q̗ef|z'*RS|mXFJ͘'+zv.gͭoU"'IFͷE6@_ e 'rb׏MrLq~U篞8$LDp1%0B4=X!B:"e(mj1ԼywD^bpL'ƈ^=8ZBI'۴$i4NS6&%y& })-g5|ݤl--nso[Vܻ} w񂸳`'-8dL:@g?gzU&C_P𻫢xvΊƉDDRS.$^H㤡5褥'Ğ{޲wR]vr)9[$ڒVeKb[?}k*9U/bUQX{bN {5-pw=N{3;^__م{#(BUdWtGVxvUa#d>- 3U]_!z Axn-nY%:!Y> 9R/W/㫉*W]mӰe?x_l9oIYӟR$=pDt6.E_~AhBV䐂l>5+hNWw(l=a㵍"?nlu쨓O(%PV^;VI/A *6i>4OMԱTSgxoU(zo`2tr߰EB$-.|BX}s X&]MGF Vм]bߕR&m蘒|M|1iqpק)=1 9RסA(BG i}=OG#{6$Hͅ u٤뽷C<6XɖR't4ΆQWo>~!bƕ$q~s-Ntu#@ht޵)=ʭzyⲫOZDHm-s_QaD h: #MT)d^xTO}yY #i^bǹg~ޡ9mʮXJw(u{Og[s#d_^%؍ E-$RH=ى\m#aE|EcuO)Rg~{Jc5ƏGFoQC 2//v$~o_oX!]$o}2u/- Z8=˗ ":O簡]_ z-+=n~i3Ҟ w0[rp f|-D $m Gϡ_[jJ>ꥏG?nexEX]|!ãlЕqtLc,x۹M6"IGg q?6>NRЖPxmp`vQmpv~]t> stream xmUMo0Wx B Hv[jWHL7$( o&V^gތݷ$-G)^}\O.kK_ݓxib{qfۺx[kGעoפ&kuz"!}S|*%>S6mW5PR@lrݜQ@Mb::VuN"EYE9twm}lBL_b׷7MҷU.? r0!d\CPً}(n/4}+T4.·G )bkj[Q; Z?ZϓeP:`eY1 4A VE@<DN)"k57 (exdLeP0#X G1,ao1,6>,,؄A Oqa!ZRnZ=voZ!Tdt_Rs0w|JH/يBK$Xf0G&svGgbh"6k9kP|X1Fcf1܌sƤO>7|V { S0t8{%W4<ɊF#aLqWƐkfFIz[7> stream xmQo0+LA33dSIx1^&ВRvnws/LNdr[)-odQ"C6NJ 5L.\ Zu G>W.~{L/鯶^Jsp] f쁳jX̃ 0{=r?&+`jF!0NPf֜:$QوVK8#Q1T\\a'Qi*) q KsoȥoBW/~RQɰmr*W$Q%ILP(] NO1j\C-D˕{\G`nmN)ӡKn3s7./3:&ԍ endstream endobj 917 0 obj << /Producer (pdfTeX-1.40.25) /Author()/Title()/Subject()/Creator(LaTeX with hyperref)/Keywords() /CreationDate (D:20230916120701+01'00') /ModDate (D:20230916120701+01'00') /Trapped /False /PTEX.Fullbanner (This is pdfTeX, Version 3.141592653-2.6-1.40.25 (TeX Live 2023) kpathsea version 6.3.5) >> endobj 875 0 obj << /Type /ObjStm /N 98 /First 851 /Length 2966 /Filter /FlateDecode >> stream xڥZmsܶ~v,e38rkwb;it,M;8@ AQ?$.vAꔱhҍ(]i4_ 6@W1|ut5 WOWmm,AgU#%x d޹FjO 6Ҁ$ n&5YK?8VyMYV4JPI.(nd+O&MH XhzC膇)e,+%)4{HkPJ KE0ifP5Zl<AD|FKZ-) Ǵ3!-dH|S ܐO 6(yDDQ+Ň)s9Tuec`iW5<0Fi#}LARb/ҍoBC^#yByOJ-KtRP̝2dw xm CIjVn<Aj] 4d 08A79L)JQy7l@tA)8GVHNnM"g+(oQ7l.~m.zwBn{jyxóz}&?oOW]w8?1"x.?o\ڦ{x>OQ S>--op.?S<# ~H;cx~޴ឬ =[J>5]Ϗ IL#\)+󯏱eԭ#tu3x56B%ǫ隞1a?tPׄt&ڄld#tce .a 2Kc )O6"T㳕;6l&$.={bҁQ1.v)wm89q)WkY/T>\\[s/VF&mH47pM<Lep7 LkOL|8Snɢݞׅrjm8%+wmK2>S"w_-wWWCZZvZE}kw֖-dhI;OԈU#"OtTBWx3o`U*t1 F"(A(tFa{U0rk^m ƶ֢+"Q#jdLz]$=%ᩞWj&IEa&7t29-Cj\+CXljMcd~q/k9'HXP1T®*VE%ƀm1)0+!*K*GBL 2Ek/@+]1Vxd.ꤩ6}䱣Nj =3>D6_W'85߱NZo E9,,p" cC&-m1*a;+v[cڢuYuxwf,UNm>/0N;6I-ťd;i f;E6zZ'O/[ũǖ 7I$ Tʩ]ŀ*AUrDŊkG*~ws>Z ݝ,a" ){~sw*M9}<-3ɧ1F'Ko>zd+el)F6ybX[ るPxMD\^F>RpfljK-)lui7'P[fmoJ\@tk 0m.r̔\DϽI!}OjmϪ`u; z%efJ&_(SK#qqVRw%id giVM'~Ecì`LF#r+M>E n^Ǩzdì:.QcK[c җ_~\VY xw5D-2I7w=0 SD0bW B`QUaV9  Wzg:s WFVqq,>H<;',KO-Ƨo >s<NAb:c:ubzTyPacE*a3dIc<_LaS ^명 <541B9ACDAF0F07855FB20D0729AFA790>] /Length 2221 /Filter /FlateDecode >> stream x%KlWg<׎c{8رGvL;~$vBwA THEـX !),"$$@ ] tTVm~|̌3sEQ\"KDT.29a 1HF)@J6J6FdSV}dd(+~dg)@5 퐝u^F)AYB6By4#l*NQdɆ(#dd-l(h#k$<ɚNRvd(;A!^R% N#edȺ(ÇȖ'dɎSJ=i>"Ug!"k@#k%ӣj:(%2n\K+%0AvL]< . ɦ4<3`L4S΁\i`pL}u*X$L&-R7Ƽr\'"R+`Tf5N&' pLNQn[d dRyw τЬeUfh e^KfcldAf^c7fY,~ix@"0F j`CE5Ut]@.4, `2W3=:@pO& M@/AšEz193}>k@H=&'kyc:LkN9U 7tYlqT-d2T mEjRZO Ot1Eh)Z@O-}Ϣ~oȢ'Oup4j"rSiW΃޸ֳŭPc_a.{5L `*́y6XӖ{"X/.`rPyh:n p l Jm -Z,~|޷U 8WX|iP@%e>S٬0 XoϫңoxJ xQ pwPn?VY*P j@jAhEՃFC-ſ86p pt.pV<tC< 4 z^N.k#`uYpk8 ":Xl ̂9O`ђ>GK|^f@ql`ْuput5K:_y;L?ذ*w=p lزw)sߒѷZt&PfŸta9 sx*-Y)O9d7V94sh05ZԊuaKRs\%/I 9a:us}9p8P/Xò@ÈߒXB硞;ceoGVϔa;[هQznĒG*ԍsK^λ aX7 +|.PwxSܲ( RUɑ>ޱa[nuzTYܶ72X 3}(Zw"KG^7~jiT[ҡ74c3V+t;,zkk`OA;/ݔ}Ob hO2`ee]`L{te3`>,}-Wu`wttүTGW-}7:Z:f -Y>G-[[W,LG!њ_h] +IdUB%ԾQBL Mk%4b mVJ~ n00ݠvՀ*2ZETtSn*j)Ts`,+*XڤkWh#۹P2dEQE6Eߢv1} *nWV|9 endstream endobj startxref 545546 %%EOF gnm/inst/doc/gnmOverview.R0000644000176200001440000006073714501306126015223 0ustar liggesusers### R code from vignette source 'gnmOverview.Rnw' ################################################### ### code chunk number 1: gnmOverview.Rnw:65-66 ################################################### getOption("SweaveHooks")[["eval"]]() options(SweaveHooks = list(eval = function() options(show.signif.stars = FALSE))) ################################################### ### code chunk number 2: Load_gnm ################################################### getOption("SweaveHooks")[["eval"]]() library(gnm) ################################################### ### code chunk number 3: migrationData ################################################### getOption("SweaveHooks")[["eval"]]() count <- c(11607, 100, 366, 124, 87, 13677, 515, 302, 172, 225, 17819, 270, 63, 176, 286, 10192 ) region <- c("NE", "MW", "S", "W") row <- gl(4, 4, labels = region) col <- gl(4, 1, length = 16, labels = region) ################################################### ### code chunk number 4: squareTableModels ################################################### getOption("SweaveHooks")[["eval"]]() independence <- glm(count ~ row + col, family = poisson) quasi.indep <- glm(count ~ row + col + Diag(row, col), family = poisson) symmetry <- glm(count ~ Symm(row, col), family = poisson) quasi.symm <- glm(count ~ row + col + Symm(row, col), family = poisson) comparison1 <- anova(independence, quasi.indep, quasi.symm) print(comparison1, digits = 7) comparison2 <- anova(symmetry, quasi.symm) print(comparison2) ################################################### ### code chunk number 5: EriksonData ################################################### getOption("SweaveHooks")[["eval"]]() ### Collapse to 7 by 7 table as in Erikson et al. (1982) erikson <- as.data.frame(erikson) lvl <- levels(erikson$origin) levels(erikson$origin) <- levels(erikson$destination) <- c(rep(paste(lvl[1:2], collapse = " + "), 2), lvl[3], rep(paste(lvl[4:5], collapse = " + "), 2), lvl[6:9]) erikson <- xtabs(Freq ~ origin + destination + country, data = erikson) ################################################### ### code chunk number 6: wedderburn ################################################### getOption("SweaveHooks")[["eval"]]() ## data from Wedderburn (1974), see ?barley logitModel <- glm(y ~ site + variety, family = wedderburn, data = barley) fit <- fitted(logitModel) print(sum((barley$y - fit)^2 / (fit * (1-fit))^2)) ################################################### ### code chunk number 7: termPredictors ################################################### getOption("SweaveHooks")[["eval"]]() print(temp <- termPredictors(quasi.symm)) rowSums(temp) - quasi.symm$linear.predictors ################################################### ### code chunk number 8: RC_homogeneous_model_1 ################################################### getOption("SweaveHooks")[["eval"]]() set.seed(1) RChomog1 <- gnm(Freq ~ origin + destination + Diag(origin, destination) + MultHomog(origin, destination), family = poisson, data = occupationalStatus, verbose = FALSE) ################################################### ### code chunk number 9: RC_homogeneous_model_2 ################################################### getOption("SweaveHooks")[["eval"]]() set.seed(2) RChomog2 <- update(RChomog1) ################################################### ### code chunk number 10: Compare_coefficients ################################################### getOption("SweaveHooks")[["eval"]]() compareCoef <- cbind(coef(RChomog1), coef(RChomog2)) colnames(compareCoef) <- c("RChomog1", "RChomog2") round(compareCoef, 4) ################################################### ### code chunk number 11: Summarize_model ################################################### getOption("SweaveHooks")[["eval"]]() summary(RChomog2) ################################################### ### code chunk number 12: RC_homogeneous_constrained_model1 ################################################### getOption("SweaveHooks")[["eval"]]() set.seed(1) RChomogConstrained1 <- update(RChomog1, constrain = length(coef(RChomog1))) ################################################### ### code chunk number 13: RC_homogeneous_constrained_model2 ################################################### getOption("SweaveHooks")[["eval"]]() set.seed(2) RChomogConstrained2 <- update(RChomogConstrained1) identical(coef(RChomogConstrained1), coef(RChomogConstrained2)) ################################################### ### code chunk number 14: Eliminate_Eg ################################################### getOption("SweaveHooks")[["eval"]]() set.seed(1) n <- 1000 x <- rep(rnorm(n), rep(3, n)) counts <- as.vector(rmultinom(n, 10, c(0.7, 0.1, 0.2))) rowID <- gl(n, 3, 3 * n) resp <- gl(3, 1, 3 * n) ################################################### ### code chunk number 15: Double_UNIDIFF_model ################################################### getOption("SweaveHooks")[["eval"]]() doubleUnidiff <- gnm(Freq ~ election:vote + election:class:religion + Mult(Exp(election), religion:vote) + Mult(Exp(election), class:vote), family = poisson, data = cautres) ################################################### ### code chunk number 16: Contrast_matrix ################################################### getOption("SweaveHooks")[["eval"]]() coefs <- names(coef(doubleUnidiff)) contrCoefs <- coefs[grep(", religion:vote", coefs)] nContr <- length(contrCoefs) contrMatrix <- matrix(0, length(coefs), nContr, dimnames = list(coefs, contrCoefs)) contr <- contr.sum(contrCoefs) # switch round to contrast with first level contr <- rbind(contr[nContr, ], contr[-nContr, ]) contrMatrix[contrCoefs, 2:nContr] <- contr contrMatrix[contrCoefs, 2:nContr] ################################################### ### code chunk number 17: Check_estimability_1 ################################################### getOption("SweaveHooks")[["eval"]]() checkEstimable(doubleUnidiff, contrMatrix) ################################################### ### code chunk number 18: Check_estimability_2 ################################################### getOption("SweaveHooks")[["eval"]]() coefs <- names(coef(doubleUnidiff)) contrCoefs <- coefs[grep("[.]religion", coefs)] nContr <- length(contrCoefs) contrMatrix <- matrix(0, length(coefs), length(contrCoefs), dimnames = list(coefs, contrCoefs)) contr <- contr.sum(contrCoefs) contrMatrix[contrCoefs, 2:nContr] <- rbind(contr[nContr, ], contr[-nContr, ]) checkEstimable(doubleUnidiff, contrMatrix) ################################################### ### code chunk number 19: Get_contrasts_1 ################################################### getOption("SweaveHooks")[["eval"]]() myContrasts <- getContrasts(doubleUnidiff, pickCoef(doubleUnidiff, ", religion:vote")) myContrasts ################################################### ### code chunk number 20: qvplot ################################################### getOption("SweaveHooks")[["eval"]]() plot(myContrasts, main = "Relative strength of religion-vote association, log scale", xlab = "Election", levelNames = 1:4) ################################################### ### code chunk number 21: RCmodel ################################################### getOption("SweaveHooks")[["eval"]]() mentalHealth$MHS <- C(mentalHealth$MHS, treatment) mentalHealth$SES <- C(mentalHealth$SES, treatment) RC1model <- gnm(count ~ SES + MHS + Mult(SES, MHS), family = poisson, data = mentalHealth) ################################################### ### code chunk number 22: RCmodel_constrained ################################################### getOption("SweaveHooks")[["eval"]]() RC1model2 <- gnm(count ~ SES + MHS + Mult(1, SES, MHS), constrain = "[.]SES[AF]", constrainTo = c(0, 1), ofInterest = "[.]SES", family = poisson, data = mentalHealth) summary(RC1model2) ################################################### ### code chunk number 23: getContrasts_simple ################################################### getOption("SweaveHooks")[["eval"]]() getContrasts(RC1model, pickCoef(RC1model, "[.]SES"), ref = "first", scaleRef = "first", scaleWeights = c(rep(0, 5), 1)) ################################################### ### code chunk number 24: two-way ################################################### getOption("SweaveHooks")[["eval"]]() xtabs(y ~ site + variety, barley) ################################################### ### code chunk number 25: residSVD ################################################### getOption("SweaveHooks")[["eval"]]() emptyModel <- gnm(y ~ -1, family = wedderburn, data = barley) biplotStart <- residSVD(emptyModel, barley$site, barley$variety, d = 2) biplotModel <- gnm(y ~ -1 + instances(Mult(site, variety), 2), family = wedderburn, data = barley, start = biplotStart) ################################################### ### code chunk number 26: residSVDplot ################################################### getOption("SweaveHooks")[["eval"]]() plot(coef(biplotModel), biplotStart, main = "Comparison of residSVD and MLE for a 2-dimensional biplot model", ylim = c(-2, 2), xlim = c(-4, 4)) abline(a = 0, b = 1, lty = 2) ################################################### ### code chunk number 27: Set_contrasts_attribute ################################################### getOption("SweaveHooks")[["eval"]]() set.seed(1) mentalHealth$MHS <- C(mentalHealth$MHS, treatment) mentalHealth$SES <- C(mentalHealth$SES, treatment) ################################################### ### code chunk number 28: RC1_model ################################################### getOption("SweaveHooks")[["eval"]]() RC1model <- gnm(count ~ SES + MHS + Mult(SES, MHS), family = poisson, data = mentalHealth) RC1model ################################################### ### code chunk number 29: Normalize_scores ################################################### getOption("SweaveHooks")[["eval"]]() rowProbs <- with(mentalHealth, tapply(count, SES, sum) / sum(count)) colProbs <- with(mentalHealth, tapply(count, MHS, sum) / sum(count)) rowScores <- coef(RC1model)[10:15] colScores <- coef(RC1model)[16:19] rowScores <- rowScores - sum(rowScores * rowProbs) colScores <- colScores - sum(colScores * colProbs) beta1 <- sqrt(sum(rowScores^2 * rowProbs)) beta2 <- sqrt(sum(colScores^2 * colProbs)) assoc <- list(beta = beta1 * beta2, mu = rowScores / beta1, nu = colScores / beta2) assoc ################################################### ### code chunk number 30: Elliptical_contrasts ################################################### getOption("SweaveHooks")[["eval"]]() mu <- getContrasts(RC1model, pickCoef(RC1model, "[.]SES"), ref = rowProbs, scaleWeights = rowProbs) nu <- getContrasts(RC1model, pickCoef(RC1model, "[.]MHS"), ref = colProbs, scaleWeights = colProbs) mu nu ################################################### ### code chunk number 31: RC2_model ################################################### getOption("SweaveHooks")[["eval"]]() RC2model <- gnm(count ~ SES + MHS + instances(Mult(SES, MHS), 2), family = poisson, data = mentalHealth) RC2model ################################################### ### code chunk number 32: Homogeneous_effects ################################################### getOption("SweaveHooks")[["eval"]]() RChomog <- gnm(Freq ~ origin + destination + Diag(origin, destination) + MultHomog(origin, destination), family = poisson, data = occupationalStatus) RChomog ################################################### ### code chunk number 33: Heterogeneous_effects ################################################### getOption("SweaveHooks")[["eval"]]() RCheterog <- gnm(Freq ~ origin + destination + Diag(origin, destination) + Mult(origin, destination), family = poisson, data = occupationalStatus) anova(RChomog, RCheterog) ################################################### ### code chunk number 34: Transform_to_counts ################################################### getOption("SweaveHooks")[["eval"]]() set.seed(1) count <- with(voting, percentage/100 * total) yvar <- cbind(count, voting$total - count) ################################################### ### code chunk number 35: Class_mobility ################################################### getOption("SweaveHooks")[["eval"]]() classMobility <- gnm(yvar ~ Dref(origin, destination), family = binomial, data = voting) classMobility ################################################### ### code chunk number 36: Class_mobility_weights ################################################### getOption("SweaveHooks")[["eval"]]() DrefWeights(classMobility) ################################################### ### code chunk number 37: Salariat_factors ################################################### getOption("SweaveHooks")[["eval"]]() upward <- with(voting, origin != 1 & destination == 1) downward <- with(voting, origin == 1 & destination != 1) ################################################### ### code chunk number 38: Social_mobility ################################################### getOption("SweaveHooks")[["eval"]]() socialMobility <- gnm(yvar ~ Dref(origin, destination, delta = ~ 1 + downward + upward), family = binomial, data = voting) socialMobility ################################################### ### code chunk number 39: social_mobility_weights ################################################### getOption("SweaveHooks")[["eval"]]() DrefWeights(socialMobility) ################################################### ### code chunk number 40: Downward_mobility ################################################### getOption("SweaveHooks")[["eval"]]() downwardMobility <- gnm(yvar ~ Dref(origin, destination, delta = ~ 1 + downward), family = binomial, data = voting) downwardMobility DrefWeights(downwardMobility) ################################################### ### code chunk number 41: UNIDIFF_model ################################################### getOption("SweaveHooks")[["eval"]]() set.seed(1) unidiff <- gnm(Freq ~ educ*orig + educ*dest + Mult(Exp(educ), orig:dest), ofInterest = "[.]educ", family = poisson, data = yaish, subset = (dest != 7)) coef(unidiff) ################################################### ### code chunk number 42: Unidiff_contrasts ################################################### getOption("SweaveHooks")[["eval"]]() getContrasts(unidiff, ofInterest(unidiff)) ################################################### ### code chunk number 43: double_UNIDIFF_model ################################################### getOption("SweaveHooks")[["eval"]]() set.seed(1) doubleUnidiff <- gnm(Freq ~ election*vote + election*class*religion + Mult(Exp(election), religion:vote) + Mult(Exp(election), class:vote), family = poisson, data = cautres) getContrasts(doubleUnidiff, rev(pickCoef(doubleUnidiff, ", class:vote"))) getContrasts(doubleUnidiff, rev(pickCoef(doubleUnidiff, ", religion:vote"))) ################################################### ### code chunk number 44: Scale_yields ################################################### getOption("SweaveHooks")[["eval"]]() set.seed(1) yield.scaled <- wheat$yield * sqrt(3/1000) treatment <- interaction(wheat$tillage, wheat$summerCrop, wheat$manure, wheat$N, sep = "") ################################################### ### code chunk number 45: AMMI_model ################################################### getOption("SweaveHooks")[["eval"]]() mainEffects <- gnm(yield.scaled ~ year + treatment, family = gaussian, data = wheat) svdStart <- residSVD(mainEffects, year, treatment, 3) bilinear1 <- update(mainEffects, . ~ . + Mult(year, treatment), start = c(coef(mainEffects), svdStart[,1])) ################################################### ### code chunk number 46: AOD ################################################### getOption("SweaveHooks")[["eval"]]() anova(mainEffects, bilinear1, test = "F") ################################################### ### code chunk number 47: AMMI_model2 ################################################### getOption("SweaveHooks")[["eval"]]() set.seed(1) barleyModel <- gnm(height ~ year + genotype + Mult(year, genotype), data = barleyHeights) ################################################### ### code chunk number 48: Spherical_contrasts ################################################### getOption("SweaveHooks")[["eval"]]() gamma <- getContrasts(barleyModel, pickCoef(barleyModel, "[.]y"), ref = "mean", scaleWeights = "unit") delta <- getContrasts(barleyModel, pickCoef(barleyModel, "[.]g"), ref = "mean", scaleWeights = "unit") gamma delta ################################################### ### code chunk number 49: CI ################################################### getOption("SweaveHooks")[["eval"]]() gamma[[2]][,1] + (gamma[[2]][,2]) %o% c(-1.96, 1.96) delta[[2]][,1] + (delta[[2]][,2]) %o% c(-1.96, 1.96) ################################################### ### code chunk number 50: SVD ################################################### getOption("SweaveHooks")[["eval"]]() svd(termPredictors(barleyModel)[, "Mult(year, genotype)"])$d ################################################### ### code chunk number 51: Biplot_model ################################################### getOption("SweaveHooks")[["eval"]]() set.seed(83) biplotModel <- gnm(y ~ -1 + instances(Mult(site, variety), 2), family = wedderburn, data = barley) ################################################### ### code chunk number 52: Row_and_column_scores ################################################### getOption("SweaveHooks")[["eval"]]() barleyMatrix <- xtabs(biplotModel$predictors ~ site + variety, data = barley) barleySVD <- svd(barleyMatrix) A <- sweep(barleySVD$u, 2, sqrt(barleySVD$d), "*")[, 1:2] B <- sweep(barleySVD$v, 2, sqrt(barleySVD$d), "*")[, 1:2] rownames(A) <- levels(barley$site) rownames(B) <- levels(barley$variety) colnames(A) <- colnames(B) <- paste("Component", 1:2) A B ################################################### ### code chunk number 53: Biplot1 ################################################### getOption("SweaveHooks")[["eval"]]() barleyCol <- c("red", "blue") plot(rbind(A, B), pch = c(levels(barley$site), levels(barley$variety)), col = rep(barleyCol, c(nlevels(barley$site), nlevels(barley$variety))), xlim = c(-4, 4), ylim = c(-4, 4), main = "Biplot for barley data", xlab = "Component 1", ylab = "Component 2") text(c(-3.5, -3.5), c(3.9, 3.6), c("sites: A-I","varieties: 1-9, X"), col = barleyCol, adj = 0) ################################################### ### code chunk number 54: Biplot2 ################################################### getOption("SweaveHooks")[["eval"]]() plot(rbind(A, B), pch = c(levels(barley$site), levels(barley$variety)), col = rep(barleyCol, c(nlevels(barley$site), nlevels(barley$variety))), xlim = c(-4, 4), ylim = c(-4, 4), main = "Biplot for barley data", xlab = "Component 1", ylab = "Component 2") text(c(-3.5, -3.5), c(3.9, 3.6), c("sites: A-I","varieties: 1-9, X"), col = barleyCol, adj = 0) abline(a = 0, b = tan(pi/3)) abline(a = 0, b = -tan(pi/6)) abline(a = 2.6, b = tan(pi/3), lty = 2) abline(a = 4.5, b = tan(pi/3), lty = 2) abline(a = 1.3, b = -tan(pi/6), lty = 2) text(2.8, 3.9, "v-axis", font = 3) text(3.8, -2.7, "h-axis", font = 3) ################################################### ### code chunk number 55: Double_additive ################################################### getOption("SweaveHooks")[["eval"]]() variety.binary <- factor(match(barley$variety, c(2,3,6), nomatch = 0) > 0, labels = c("rest", "2,3,6")) doubleAdditive <- gnm(y ~ variety + Mult(site, variety.binary), family = wedderburn, data = barley) ################################################### ### code chunk number 56: Compare_chi-squared ################################################### getOption("SweaveHooks")[["eval"]]() biplotModChiSq <- sum(residuals(biplotModel, type = "pearson")^2) doubleAddChiSq <- sum(residuals(doubleAdditive, type = "pearson")^2) c(doubleAddChiSq - biplotModChiSq, doubleAdditive$df.residual - biplotModel$df.residual) ################################################### ### code chunk number 57: Re-express_data ################################################### getOption("SweaveHooks")[["eval"]]() set.seed(1) subset(backPain, x1 == 1 & x2 == 1 & x3 == 1) backPainLong <- expandCategorical(backPain, "pain") head(backPainLong) ################################################### ### code chunk number 58: Stereotype_model ################################################### getOption("SweaveHooks")[["eval"]]() oneDimensional <- gnm(count ~ pain + Mult(pain, x1 + x2 + x3), eliminate = id, family = "poisson", data = backPainLong) oneDimensional ################################################### ### code chunk number 59: Qualitative_model ################################################### getOption("SweaveHooks")[["eval"]]() threeDimensional <- gnm(count ~ pain + pain:(x1 + x2 + x3), eliminate = id, family = "poisson", data = backPainLong) threeDimensional ################################################### ### code chunk number 60: Calculate_log-likelihood ################################################### getOption("SweaveHooks")[["eval"]]() logLikMultinom <- function(model, size){ object <- get(model) l <- sum(object$y * log(object$fitted/size)) c(nParameters = object$rank - nlevels(object$eliminate), logLikelihood = l) } size <- tapply(backPainLong$count, backPainLong$id, sum)[backPainLong$id] t(sapply(c("oneDimensional", "threeDimensional"), logLikMultinom, size)) ################################################### ### code chunk number 61: Constrain_slopes ################################################### getOption("SweaveHooks")[["eval"]]() ## before constraint summary(oneDimensional) oneDimensional <- gnm(count ~ pain + Mult(pain, offset(x1) + x2 + x3), eliminate = id, family = "poisson", data = backPainLong) ## after constraint summary(oneDimensional) ################################################### ### code chunk number 62: Get_slopes ################################################### getOption("SweaveHooks")[["eval"]]() getContrasts(oneDimensional, pickCoef(oneDimensional, "[.]pain")) ################################################### ### code chunk number 63: singleExp ################################################### getOption("SweaveHooks")[["eval"]]() x <- 1:100 y <- exp(- x / 10) set.seed(1) saved.fits <- list() for (i in 1:100) saved.fits[[i]] <- gnm(y ~ Exp(1 + x), verbose = FALSE) table(zapsmall(sapply(saved.fits, deviance))) ################################################### ### code chunk number 64: singleExp2 ################################################### getOption("SweaveHooks")[["eval"]]() saved.fits[[2]] ################################################### ### code chunk number 65: doubleExp ################################################### getOption("SweaveHooks")[["eval"]]() x <- 1:100 y <- exp(- x / 10) + 2 * exp(- x / 50) set.seed(1) saved.fits <- list() for (i in 1:100) { saved.fits[[i]] <- suppressWarnings(gnm(y ~ Exp(1 + x, inst = 1) + Exp(1 + x, inst = 2), verbose = FALSE)) } table(round(unlist(sapply(saved.fits, deviance)), 4)) ################################################### ### code chunk number 66: doubleExp2 ################################################### getOption("SweaveHooks")[["eval"]]() singleExp <- gnm(y ~ Exp(1 + x), start = c(NA, NA, -0.1), verbose = FALSE) singleExp meanOnly <- gnm(y ~ 1, verbose = FALSE) meanOnly plot(x, y, main = "Two sub-optimal fits to a sum-of-exponentials curve") lines(x, fitted(singleExp)) lines(x, fitted(meanOnly), lty = "dashed") ################################################### ### code chunk number 67: doubleExp3 ################################################### getOption("SweaveHooks")[["eval"]]() gnm(y ~ instances(Exp(1 + x), 2), start = c(NA, NA, -0.1, NA, -0.1), verbose = FALSE) gnm/inst/WORDLIST0000644000176200001440000000315114376172334013214 0ustar liggesusersAGEM AMMI Aastveit AgeContrasts Agresti Agresti's Assoc Asym Ax Biometrika CIMMYT CMD Catchpole Cautres Chadoeuf Ciudad Const Courrieu Crossa Df Diag Dref DrefWeights Eeuwijk Erikson FCFF FFCF FOPLF FRMF Francaise Frans GAMMI Gerris Goldthorpe Graaf HMD Harville Hastie Inf Inv LCmodel Langner Lettre Levenberg MCFM MFCM MHS MOPLM MPinv MRMM MWORK Maison Marquardt Mellen Menezes Midtown Mult MultHomog NYU Nelder Nonlinear Obregon Opler Poisson Portocarero Pseudoinverse Quasilikelihood R's RC Rasch Resid SES SSlogis Slik Sobel Soc Socioeconomic Sociol Srole Stat Std Symm Topo UNIDIFF Wedderburn Wedderburn's Xie Xlisp Yaish Yaqui ac anova asGnm attr backPain barleyHeights biplotModel bst byrow cautres checkEstimable chicago cloglog coef coefNames coefs commonTopo confint constrainTo deLeeuw deriv dest df dfbeta dfbetas dialog ed edn eqn erikson estimability etastart etc exitInfo expandCategorical extractAIC getContrasts getModelFrame glm glms gnls gnms hatvalues heatherturner ht ic ij ik il ir iterMax iterStart jkl jss levelMatrix lll lm logLik logmult lsMethod mDeaths mExposure maleOver mentalHealth mfrow multTopo multinom mustart nObs nc nd newdata nlme nls nnet nonlin nonlinTerms nonlinear nonzero nullModel occupationalStatus ofInterest oneDimensional org parameterizing pch pickCoef poisson predLabels proj pseudoinverse qrSolve quasibinomial quasipoisson qv qvframe r'th regexp residSVD resp rowID rstandard salariat scal scaleRef scaleWeights se secalis selfStart sep separateTopo socioeconomic tbph termPredictors th tp u uk unidiff vals valuedness varLabels vcov warwick wedderburn www xlab xlim xmid yaish ylab ylim