graphlayouts/0000755000176200001440000000000014552465513013006 5ustar liggesusersgraphlayouts/NAMESPACE0000644000176200001440000000221414551566505014226 0ustar liggesusers# Generated by roxygen2: do not edit by hand export(annotate_circle) export(draw_circle) export(layout_as_backbone) export(layout_as_dynamic) export(layout_as_metromap) export(layout_as_multilevel) export(layout_igraph_backbone) export(layout_igraph_centrality) export(layout_igraph_centrality_group) export(layout_igraph_constrained_stress) export(layout_igraph_eigen) export(layout_igraph_fixed_coords) export(layout_igraph_focus) export(layout_igraph_focus_group) export(layout_igraph_multilevel) export(layout_igraph_pmds) export(layout_igraph_sparse_stress) export(layout_igraph_stress) export(layout_igraph_umap) export(layout_mirror) export(layout_rotate) export(layout_with_centrality) export(layout_with_centrality_group) export(layout_with_constrained_stress) export(layout_with_constrained_stress3D) export(layout_with_eigen) export(layout_with_fixed_coords) export(layout_with_focus) export(layout_with_focus_group) export(layout_with_pmds) export(layout_with_sparse_stress) export(layout_with_stress) export(layout_with_stress3D) export(layout_with_umap) export(reorder_edges) importFrom(Rcpp,sourceCpp) useDynLib(graphlayouts, .registration = TRUE) graphlayouts/LICENSE0000644000176200001440000000005213447644144014011 0ustar liggesusersYEAR: 2019 COPYRIGHT HOLDER: David Schoch graphlayouts/README.md0000644000176200001440000002653714551450323014272 0ustar liggesusers # graphlayouts [![R-CMD-check](https://github.com/schochastics/graphlayouts/workflows/R-CMD-check/badge.svg)](https://github.com/schochastics/graphlayouts/actions) [![CRAN status](https://www.r-pkg.org/badges/version/graphlayouts)](https://cran.r-project.org/package=graphlayouts) [![Downloads](https://cranlogs.r-pkg.org/badges/graphlayouts)](https://CRAN.R-project.org/package=graphlayouts) [![Total Downloads](https://cranlogs.r-pkg.org/badges/grand-total/graphlayouts)](https://CRAN.R-project.org/package=graphlayouts) [![Codecov test coverage](https://codecov.io/gh/schochastics/graphlayouts/branch/main/graph/badge.svg)](https://app.codecov.io/gh/schochastics/graphlayouts?branch=main) [![Zenodo](https://zenodo.org/badge/DOI/10.5281/zenodo.7870213.svg)](https://doi.org/10.5281/zenodo.7870213) [![JOSS](https://joss.theoj.org/papers/10.21105/joss.05238/status.svg)](https://doi.org/10.21105/joss.05238) This package implements some graph layout algorithms that are not available in `igraph`. **A detailed introductory tutorial for graphlayouts and ggraph can be found [here](https://www.mr.schochastics.net/material/netVizR/).** The package implements the following algorithms: - Stress majorization ([Paper](https://graphviz.gitlab.io/_pages/Documentation/GKN04.pdf)) - Quadrilateral backbone layout ([Paper](https://jgaa.info/accepted/2015/NocajOrtmannBrandes2015.19.2.pdf)) - flexible radial layouts ([Paper](https://jgaa.info/accepted/2011/BrandesPich2011.15.1.pdf)) - sparse stress ([Paper](https://arxiv.org/abs/1608.08909)) - pivot MDS ([Paper](https://kops.uni-konstanz.de/bitstream/handle/123456789/5741/bp_empmdsld_06.pdf?sequence=1&isAllowed=y)) - dynamic layout for longitudinal data ([Paper](https://kops.uni-konstanz.de/bitstream/handle/123456789/20924/Brandes_209246.pdf?sequence=2)) - spectral layouts (adjacency/Laplacian) - a simple multilevel layout - a layout algorithm using UMAP - group based centrality and focus layouts which keeps groups of nodes close in the same range on the concentric circle ## Install ``` r # dev version remotes::install_github("schochastics/graphlayouts") # CRAN install.packages("graphlayouts") ``` ## Stress Majorization: Connected Network *This example is a bit of a special case since it exploits some weird issues in igraph.* ``` r library(igraph) library(ggraph) library(graphlayouts) set.seed(666) pa <- sample_pa(1000, 1, 1, directed = F) ggraph(pa, layout = "nicely") + geom_edge_link0(width = 0.2, colour = "grey") + geom_node_point(col = "black", size = 0.3) + theme_graph() ``` ``` r ggraph(pa, layout = "stress") + geom_edge_link0(width = 0.2, colour = "grey") + geom_node_point(col = "black", size = 0.3) + theme_graph() ``` ## Stress Majorization: Unconnected Network Stress majorization also works for networks with several components. It relies on a bin packing algorithm to efficiently put the components in a rectangle, rather than a circle. ``` r set.seed(666) g <- disjoint_union( sample_pa(10, directed = FALSE), sample_pa(20, directed = FALSE), sample_pa(30, directed = FALSE), sample_pa(40, directed = FALSE), sample_pa(50, directed = FALSE), sample_pa(60, directed = FALSE), sample_pa(80, directed = FALSE) ) ggraph(g, layout = "nicely") + geom_edge_link0() + geom_node_point() + theme_graph() ``` ``` r ggraph(g, layout = "stress", bbox = 40) + geom_edge_link0() + geom_node_point() + theme_graph() ``` ## Backbone Layout Backbone layouts are helpful for drawing hairballs. ``` r set.seed(665) # create network with a group structure g <- sample_islands(9, 40, 0.4, 15) g <- simplify(g) V(g)$grp <- as.character(rep(1:9, each = 40)) ggraph(g, layout = "stress") + geom_edge_link0(colour = rgb(0, 0, 0, 0.5), width = 0.1) + geom_node_point(aes(col = grp)) + scale_color_brewer(palette = "Set1") + theme_graph() + theme(legend.position = "none") ``` The backbone layout helps to uncover potential group structures based on edge embeddedness and puts more emphasis on this structure in the layout. To use the function, you need to install the package `oaqc` ``` r install.packages("oaqc") ``` ``` r bb <- layout_as_backbone(g, keep = 0.4) E(g)$col <- F E(g)$col[bb$backbone] <- T ggraph(g, layout = "manual", x = bb$xy[, 1], y = bb$xy[, 2]) + geom_edge_link0(aes(col = col), width = 0.1) + geom_node_point(aes(col = grp)) + scale_color_brewer(palette = "Set1") + scale_edge_color_manual(values = c(rgb(0, 0, 0, 0.3), rgb(0, 0, 0, 1))) + theme_graph() + theme(legend.position = "none") ``` ## Radial Layout with Focal Node The function `layout_with_focus()` creates a radial layout around a focal node. All nodes with the same distance from the focal node are on the same circle. ``` r library(igraphdata) library(patchwork) data("karate") p1 <- ggraph(karate, layout = "focus", focus = 1) + draw_circle(use = "focus", max.circle = 3) + geom_edge_link0(edge_color = "black", edge_width = 0.3) + geom_node_point(aes(fill = as.factor(Faction)), size = 2, shape = 21) + scale_fill_manual(values = c("#8B2323", "#EEAD0E")) + theme_graph() + theme(legend.position = "none") + coord_fixed() + labs(title = "Focus on Mr. Hi") p2 <- ggraph(karate, layout = "focus", focus = 34) + draw_circle(use = "focus", max.circle = 4) + geom_edge_link0(edge_color = "black", edge_width = 0.3) + geom_node_point(aes(fill = as.factor(Faction)), size = 2, shape = 21) + scale_fill_manual(values = c("#8B2323", "#EEAD0E")) + theme_graph() + theme(legend.position = "none") + coord_fixed() + labs(title = "Focus on John A.") p1 + p2 ``` ## Radial Centrality Layout The function `layout_with_centrality` creates a radial layout around the node with the highest centrality value. The further outside a node is, the more peripheral it is. ``` r library(igraphdata) library(patchwork) data("karate") bc <- betweenness(karate) p1 <- ggraph(karate, layout = "centrality", centrality = bc, tseq = seq(0, 1, 0.15)) + draw_circle(use = "cent") + annotate_circle(bc, format = "", pos = "bottom") + geom_edge_link0(edge_color = "black", edge_width = 0.3) + geom_node_point(aes(fill = as.factor(Faction)), size = 2, shape = 21) + scale_fill_manual(values = c("#8B2323", "#EEAD0E")) + theme_graph() + theme(legend.position = "none") + coord_fixed() + labs(title = "betweenness centrality") cc <- closeness(karate) p2 <- ggraph(karate, layout = "centrality", centrality = cc, tseq = seq(0, 1, 0.2)) + draw_circle(use = "cent") + annotate_circle(cc, format = "scientific", pos = "bottom") + geom_edge_link0(edge_color = "black", edge_width = 0.3) + geom_node_point(aes(fill = as.factor(Faction)), size = 2, shape = 21) + scale_fill_manual(values = c("#8B2323", "#EEAD0E")) + theme_graph() + theme(legend.position = "none") + coord_fixed() + labs(title = "closeness centrality") p1 + p2 ``` ## Large graphs `graphlayouts` implements two algorithms for visualizing large networks (\<100k nodes). `layout_with_pmds()` is similar to `layout_with_mds()` but performs the multidimensional scaling only with a small number of pivot nodes. Usually, 50-100 are enough to obtain similar results to the full MDS. `layout_with_sparse_stress()` performs stress majorization only with a small number of pivots (\~50-100). The runtime performance is inferior to pivotMDS but the quality is far superior. A comparison of runtimes and layout quality can be found in the [wiki](https://github.com/schochastics/graphlayouts/wiki/) **tl;dr**: both layout algorithms appear to be faster than the fastest igraph algorithm `layout_with_drl()`. Below are two examples of layouts generated for large graphs using `layout_with_sparse_stress()` A retweet network with 18k nodes and 61k edges A network of football players with 165K nodes and 6M edges. ## dynamic layouts `layout_as_dynamic()` allows you to visualize snapshots of longitudinal network data. Nodes are anchored with a reference layout and only moved slightly in each wave depending on deleted/added edges. In this way, it is easy to track down specific nodes throughout time. Use `patchwork` to put the individual plots next to each other. ``` r # remotes::install_github("schochastics/networkdata") library(networkdata) # longitudinal dataset of friendships in a school class data("s50") xy <- layout_as_dynamic(s50, alpha = 0.2) pList <- vector("list", length(s50)) for (i in seq_along(s50)) { pList[[i]] <- ggraph(s50[[i]], layout = "manual", x = xy[[i]][, 1], y = xy[[i]][, 2]) + geom_edge_link0(edge_width = 0.6, edge_colour = "grey66") + geom_node_point(shape = 21, aes(fill = as.factor(smoke)), size = 3) + geom_node_text(aes(label = 1:50), repel = T) + scale_fill_manual( values = c("forestgreen", "grey25", "firebrick"), labels = c("no", "occasional", "regular"), name = "smoking", guide = ifelse(i != 2, "none", "legend") ) + theme_graph() + theme(legend.position = "bottom") + labs(title = paste0("Wave ", i)) } wrap_plots(pList) ``` ## Layout manipulation The functions `layout_mirror()` and `layout_rotate()` can be used to manipulate an existing layout # How to reach out? ### Where do I report bugs? Simply [open an issue](https://github.com/schochastics/graphlayouts/issues/new) on GitHub. ### How do I contribute to the package? If you have an idea (but no code yet), [open an issue](https://github.com/schochastics/graphlayouts/issues/new) on GitHub. If you want to contribute with a specific feature and have the code ready, fork the repository, add your code, and create a pull request. ### Do you need support? The easiest way is to [open an issue](https://github.com/schochastics/graphlayouts/issues/new) - this way, your question is also visible to others who may face similar problems. ### Code of Conduct Please note that the graphlayouts project is released with a [Contributor Code of Conduct](https://contributor-covenant.org/version/2/1/CODE_OF_CONDUCT.html). By contributing to this project, you agree to abide by its terms. graphlayouts/data/0000755000176200001440000000000014551473025013713 5ustar liggesusersgraphlayouts/data/metro_berlin.rda0000644000176200001440000002616614551473025017077 0ustar liggesusersBZh91AY&SY%n: 0L&`L0& L !hMMF&`iM0L414LL&!L h&C@BF<@:kO~*j(",ZêiyBaEQ+RJ,Q!TʖQJQbEXDDUT,H)J%* H*Q J%*RPDJ%ERPVBEUADBR XJI%+ Q$ BRJRRDDF%^XTD * U*$T(BTQ$IEJ(QDj%)%%J(K"ZUbĭQbUQ%W$arҥX+ JKJXQE )PajʮZŪ(VJ,PsqUjIrԨ.(Pb嫋*$+ET\Q(UVŪ(*Qj QDTZ\ZRZiajTQ$Ur-PX,%E+R^QbIj,"T^"KJ刴D^/.XEʮ,XHƢrJXE"URTE(JiUBJ*P% ,Q%W"Qi+PDr "Ҋ\.EWXZXrPXER (r-XZJ`(媨 X"E X}W*TaP|P,/WUr%V.JR%By-*d.(^_XUr„*){L IV3)}rEI)2 d*}U(TĤ_QB!BK RbJWؑs!/1.d,dUUE%yUUQU k C!jŬ+ (cJ 1%J˕`0(ZXI|2V-05c%+ƍQXYϨ6k9(–5Ri@ѴGJѴl^K &BW^a124̶a;u$EK5$/}DZI!m1RD)A)B%( J)%$JI)%$%0uN9[{d?;ӬnNN1S wg4^yuKQ>#mm/ҺһϨ"LMq`ՙy*.u.>~xO~]ػ#ٝWNzwjK}[g%  #=3cxK\?3ez&CϜmnsqow+Cܽ1Q$?vF]A\u/xtuKQ_ "o pٽ8tn/0`3od۔JFl<> 9'Fƈ|l"q8Qw㼳~}S?vh7|zAQ5|gtƈ{fxy'&5.kzCo_ԟpt۝3_~|dPNck[ScG`o. $s(Zn}BI%/U(sЎ8e˄(::uJQWEż%\Būy!j<$J(ŬōR*X%jԔa^Ub\ՋR+s )HQE TUbŋ*Tr5\U*1$D0Ƽ\B*U,X *QDQ,ibIȾ~td "R0B3VJPHH(5)DI$HHUHm((%rԡ*ĥ%W T@ڒ8tJZp CdU=ٵ7UOcּ.o8;'~Ťv\9yWW29G*ݛD9xu@FDB9fA؟\5_g؏gZw$7WBUv'"#x ۼGD(Jmӷ?{l9.=^y.!ey=smqOX(aJY ^X3?nkr5g?nyUۛKG*X.\Ijl'5:D3Z%JaRey'ZB2iHiPDҎ񈆤4$D$"PH@a" h́1w?bKұF$l!C}"6!`HEB(HI(%F4,$$ArHII$I D Gr~h[hZ"X^eʻ7fnC=VhJ,T/nϊ^h&q%ER5 >JhRk*,Q٥'ZGDg#% zdDFXXkZ%)Ak"΍s.bU6 (x_,JRIr IRJIA/P"ԣq.ٿKʺ^y8_ļWWzPݾˤs[ٽkO]#xOd]޿ҾնFA6?9g~/v(6Wk^Y;gxonjSj^~_4ֺ76ewo"gFϖ۳i|'n-}ؼas-8ztN#{tN_iW-uKۿs k~g[sJ"R)%$%$)%"Q$ JRJBRI)"I%(I)JI(wTI)JPJR%)DII$J%)$RJR'BDGT(%J %$I)D%"RKp>D?krnEֹunqƷ6_W{FK'۞ʼgr4_mq6G,#%3] 6Tݞ>Ͽ;޹'l/?klg18n󾃹zFĽSB?{:g7m/x/.6|;纆>Cnip/kxָW(\+k X^un_aQW㟉/0DX*a+ҊI/(%)P쿋BiC ncPxe 5{5b匥䯯$9( fA?iZlnX$d56GZB̕5FZM9lj6W~M#!PZХ\(XFZiFc)9D2ڡ UFif1,CQjŔ! $\J H%nmmmXVm-Ա.kZ~Tk*EDxF[}Xɴ(ٙDTDBĬ4QUM0[}tDA$tAG|DzuZFGPkZ[xT" JXU%Ze[+1K \$xBIJMZHyqs,(DrAđQ*03XZQyڑyxXƣru<0+aT ݼQ6|,M^YQ*%Id05 CJ Xeeeٳ2[֌c5+TQ^PQfT֑^^cbcUmUh 6R&_KHZJƥy bQ}Eʭ^i*ԭhFޱ]1BIo(K}UCV9X"YN `F!bJRD$9k*^`5-jZ[ZƺZFT?P~򈍁2ֵ5OUAyyrPN lFyyE^(hxi:7E@R*=pȞLI"$ rX&y.l-7!jtT%,*ecJXҹTQFXz%Y}SrX([\f,U}o-}c{iZfCF}}Y*%Bbń7VbZe즥k%05ŋzZ02Y  3B_Xд* Dt C%%(wLeDҨ A+>ڤEYEf(^jaaX$J1mʮJKXƓ*Dk0HGI$lLű8JPRJRJRJDLb!mc!yj򈡉+ fDDB-֬Z%*XѨT_g2>aiRaQe -DbR* 'r#l2i2k.31rTyN_d;Hx-9Gud7Ҫ%RDCVШ9cۭ&cђ%#E6iyؼ$Kzנl7o +0<̲ZHf4p 32s d3[HZwޔhsTGHP [k,g)KQXQ#J (Q âI76-Qb%4mJ hmmūXؘTF05*$"QM#x揪Ex D1*#NZGJ jHM/DTLK J%kWђMZ qQc!DUgƔYoj(U(yh3բ-"Ԙ-9D0,I'@ѳ7eWs TubQnі`Q\˨FcN2PĖX/(Y+%*T5 ѥQ0}}ZńZB5W(*Qj_Kkmk qVzXXkT__XЪ VƄ_h"J D`bad& #,ҧ(HR#LJN#I!$w]2FH{XޓHmIJ?yE\GIIȓ9!W]GZqD\I!׸lĤ.6wcBݝܿRu]N( qnbq½c|y״C'nYcmlx.ۏ(4X7񜓝>b2^6>k*Xe(;gZu(螥G6FW؜1 !GW0^.ջm/k{\cgYѦ\7_+>ajR{y7qOToNey⾳tH<*jAG:-Ź%Nq_7W8^پsxg|gzb%վk׼VBJ~rjK<\eJLC(ĕJ)//>kD\,fK bJK E IU$bJqHR2ʥwHItnQhW\ 9w|8R]R,D"^$J*n13Ny.Yr {r:clp ,a}ʻpN |FOuu˟yfmfڏiFoo[y?#ӎYbUkϻO?RK]hD;Bfl`*>|7rK2˟˿zt\{‡v,wkΥz_5J=#Ҿdp+Krn5 #Z ἴo8aWu.¸p f=k<9N\7Q卲{siK4\ox ظ}'¼l/= O\˨lN\mqιc=k>rk[ wLNY-K>C>6Wy+k>b(꥜$ú}NkN(ߡH7uOTy9PYߝ2O/y~Pܩиw<&[u'} _:䟅k᷇d?qgn\VX-NM&tnIWJ \샦JYȃ<|R#$h6 PP^A U۬ZXE*[lmj);3q`ֲߘ'}ǙZ^@3_̡㰻Ҿcu|wGyXt:}G|n p=K.e<'yg:{4ohzQ^gJ_iƶwD;{r}Gsxnɰ97&*cddjmn]f,[[[2fɹlܲ WhYĹfmn ZW`vM͍/³S͛四[fg rZ678\lp.]+ɡ[+- .űvl[Zbŵ+h]KkCckC4?E[Wlmq8[Rfnoh`ҳE l Vjdűٸ[ mNƷ6-K?F--'G58˵#jdɥg6['\ ̚[ -LZ;lq78-HɥֳMmm-nkZVY9p=g[_=ԎC[qpg{s봵8v5^S4Y\YkKv42xKp^ /b:]M;Gkozdwiv ]왬xN؋].Z+Ώ7[{6M3]jt7FN{`񺝭憧;Fsr[NsS՛]Nkp;]k ڻqmN7;vngjnmr0q;[6{';4Wv.ضa`hv7\n-.G3v#s[mfnsSyN{{[ m.Fk[StwvܮFN6e]sYҎk;Z]Ncwsnxٶ63w#Fm#kkCww9'w{p5:mGfMn.kʳ#wwnr9jGSXvѡw3t&ow;Kv:n{{nx;ow󵷴ѱffs3txN3YfpwYwnC%:6.vk8;y6K&+Cqp.1:[lM'Sug#ʍ7sW^GfnF%-f$܉W;sNw],WK*VTY|uUv)`MB!B4!a\ B!55v5Ԧ5)>TԷvNWc{op^'s㭓hw:ζM[{ou7mK{{u:sizO3;-n[g{ގKrܭG{v9]G{w]Wc{F :T,&XBJBHI !$$I4 MBjPjcUHI dVZPB$$Pd+(UMU5TUokokv][odjojojp57777779[صZN֧kK[^k= R]wێfeu*% TTT#}Kȥĥu]T^c^s/1_j./`AJrڬJզV4YXb PfṼ؃;3bB ݨ4ZPAAAANTGIEgEhwgAtgA:t49hA+: 4 C: 3΃2;v s Eؕu,V"*VEZ*cEYQereAPeA*ĬX+AZ V 0PaA$bAXPaA$bNʙ[ER*^AR*"+U"HER*RT,*QRTRdTT(EJ*QRкEB*ECi:)NdSQP*, PEB*PT (AB PAB T Nt 'o 'E;ҙS1EtSv Ld 2&yRo4A)t)Z)RS$))S4miLҙҕ[JV4q3JWkKw c6,r]cEY)u5ٿA4t>&KYifɩb,- ,/d.ͭf ɛdͪ1| 3YbbZե`h]4# (ŵY=M MSʫ֋&.ٲ]˵1X2`ͭdb+Ε,47Y" .mG!e?uu8FHɃ`j`T#?5JFu߬.ֻB2njb<K,H#k5~]RYmYg 'A\bK N'"y,ƅ\n]Oc5]'J{h]~ŕrCʰ¼oVdimUWF(W+b[ 炘!Ҋ\V,xYd2G?lA6΁Q\YɵX Ҍ`YPah.ir?nhf dҪ",+kCP5 mOYЯ+N1Գ>+n2Y#FO]YYg'o_yZJ^ܱW?+#-WkMZoȦtD"TyB""QV~ʲF*1*"""LHED`!b])rB!dDTDSTB*C%D!HTd",eTTAlCG~O=V`h+Ys:?AUJUU!((+z-UT+8@ #kUPp!jjUURQDT@D*"DTDAe"*?b[ !ETB"UUQt(""""*ECyUt(DD)DB ,Q.DUDUR"EudU"  )ATTE, @R"UU TT"  2 AA1$H"B""""""""""""""$ @DDDDB  DDDD DDD"""AFA""""@""""$8H2dɓ&L""""A(Ԯ)JSIT)EJWőJPUbW{O}<2dΪT*JUS`ߐ}c>DGjd!t'Ir= P ^Y&a`ɓ:kWz[M/zf2bc31}̵f3cez#}d(ŃCa[ Y~EavKWav ;t*:Zs,A`]#5?pWºa[a[RaڬFx¨<[-q**LQQS>'fs.WUU|m]u0|31ml]umlmmlmikkY YBEdY{,,,evE 1mmfϳv֋yGT2hq8K'kikkDDDDDZ"""49myX29T(UV+r\W+K[Z#ȏȈnUP&]v斶j0bɵu]1)QJڻ]v֦֖eWUOd*q$TkiREENwumQxhs < <n׃xu*ڍ[X0`kkkkkkSC׊G:#5(}*t!U>󟔺M3}Smb'GTһPMʪE֊JYAtdحH##S&Ub`*3.ɡKH7GEkYQCtUDfڳP"*B1k]T1` YUu0DG S[f785,z~?#>d~yu2#?M^c+ڳ|ϙ_2Gp2zzw!}zQW5=G>h<}9ΧsU W"H\UYD !K" !QSLB~rUBAUVB)ED* Q"*"DBB"* "D(UDU !QHB"*"")QBT!!*"TBD"""!DUED!dYPDEBE"DR"*DED*")DTEBTDBQ**(*U!QQ"E"PDBEED!H"*"B"""B"UTE TEBHR"B)!UQE"*!(RB!QDB" E*UUDTTDE"!HB"ETBB"DJ"DDUDRJEDTB!"REUR"R(A!TDUTDR*TAQ*TEPE"!Q RUD@D""DRHD*)D("*DD"Q!Q EDQU")TE"*Q AQ D* "(" AUTEU")HE" @D)EDUTEB"BUT*!TEUDU4HYHE*UUUQ""UQ UHRD E(* DDDPD)HUDU TB *UTBHU"*H"R""!UH"UDRTB"UeQUqs2b7sCȯ!GY^: ^G+»Ťi4d#5B D).R=J#Qbŭ充ElKi#kTRRxܪ]E%%%%%)))))5ox- U!HR!H"R!H.QYjYp&L¨mYFv!O}tU|%bYqEDR˪*2}F].D>Ӊ|/34=CЎWG_ <Δvd+g*l=˪G0NwxU̙#1VW"8;:QpEUSIıiK_b[ˋ|h3xv:A*w+ -&ln7f|"Ez_y0(Uj٫jhnKqXq7 d ,M I[ZefYxYY=l˼nFW)^T?$} MR,e 43lQ`Ƀ5UyS߅QVQUd3x4Ex]5x:ηJ:β6QT>JŒ6Ѭ]&eR~}FOyo2J#dES6+iUSoYWEf¸w5?K!OUEG*)WYd:wn)ͯ WXY]OUYrde_W+K: Vp#cL%0j~')YV .`2AUD5 ghd,sWCQOt0x߈F#KkY(8ڗ`+՚fLT4,_a [Ȋ]n4#M(Y6X#Kkh}G#{ؿUYf~#]}9ܧ?9{'P=&Gz^Gw'zU|zG}|i{x#}Gq4.dx#w7qwzz΅t73:AUBC4h,őToi"=ih{&]d{*޻uz]112Ǎ12X)#er9R1j5-LVYEU44t˹[uss9s9s9sʼn0F/ą?% =.YLPGdw³|(z]],6e`R[ebHʶ[HeeHcc2̯FU"E  M.73o 85fu;Na`v;خð;Ø9cm~W]1beIa_I=I_IC>sGGWrUyO)D<<obuFYbJN::QuG3W1nY3333/;_ #yQFƂ# bVB˶X5Y%S2E41l]"jv +/hYJ?-CkuCRyT6Tj}u>E0Eh\.6r#~R.|o+FȻgv<n'+= ,4K#5>#+W_}w܎͆aYegY֭GYDu:S:s1r22dk[k5'r8 E '-'NLؾ{#x|x<8^C<NCIi11Gt, WC:t1sƧ#̲#35ffb_]Ef/yr,uХW0.{m}Yg],}tU=ǺOt# EfDi ,Ca2ū ef縲ڍFX]:]'KnVIt*:N9NW3q]JL1Yг7dy^UGd<5<*