Guerry/0000755000176200001440000000000014125066266011537 5ustar liggesusersGuerry/NAMESPACE0000644000176200001440000000013014053175241012742 0ustar liggesusers# all the rest is data # v 1.6: removed thinnedSpatialPoly #export(thinnedSpatialPoly)Guerry/.Rinstignore0000644000176200001440000000006214053175241014033 0ustar liggesusersdoc/figs/.*[.]pdf$ doc/figs doc/figs/.*[.]png$ Guerry/data/0000755000176200001440000000000014121664616012447 5ustar liggesusersGuerry/data/gfrance85.RData0000644000176200001440000055624414121664616015166 0ustar liggesusers7zXZi"6!X])TW"nRʟF\ Xv +.DJwFkZ/oah.,d<ю2D%Мq+t)~ߖxl)8!|,a|clv :[Z;hvω7}\U5Gċ&6l@2mR,D`/!(Z1 ijbNNyM=!pR=GL`цt.XBLtz׈5A-@`gĥ,s/޿)ѹ"28huqu4+#հ>.Il:vǪK(ϝH]I5Vw7]%w]<3]$6'iWO[{ Bӱ+HқQ{&JFWzg}ʠW_6D;6s/#@xMn Idڹ6Q#~ pR2q?S(2R8ÉX'6jk'5ciWRv! ӑ#sMuy #VR$T 6g+?|藒s$\!Q)b^Y@~nȑhtKx2_/kI!HN齱b<^R Z }[YM*u t&?h9$b(6=V;nl:z(nԡy6GuFȔ?&Hh)}N6bM;7OhNgHh!iz^*IPl~VSMj t@75z?/h,wئMETI*Xߠ[F3h'-HFtEq|c.C4Tw IhqPI i3W;y& rط~'}N1 VSq4+?18ozfOihy+C (9648 vhP)лwOlHT]wR쑆#eTbGgO,>X&[u5T%sr&֕LOxW^[^lɍ݁0>{P1@fd;Glط+,8u_1}-rʎ (NԚJ*ڦ5rVjaJȵfc@0:ȉ#9E4c 1뙨!Nehf 9 Y@E:޵a7pwҍmyCr);Gl(?qd%mP/ 5Do_K1іmslN^ }B ;Y8S#S_`nO Fi/3@bs_s/L7Sn}Iyx.W(:yeTbe tX`e{*K߀Ghxݣr<ٷr@R̗RjmǬёN.62m{$Q~!F{S;Tǐ wn2 2RadU?$k,DǏ j>LF ޟ}A.kWן>ry%{/j'h.o,cIK[{PI&1J5DkJZ(#\h-A#Gt3xZӌw/4ܓʂۇjQ^2ezX2yN#BKJip[q3sct*YR}o8UMtW?8g?Vkˮu@Le\x69c;(O<1o!PXywfkmNi}6 WD;An7ݐH7+\x:7^lx+%5o* cQ3`NuHa1UY UNr E#M-XgINۂVD 'YЫ`Q#Tɪej4:G-gW|s E:wÊyo1_QjxXa>-3MUQQyli2?tQthAs%"_ Uh$-#K  Z1TP XŻ7'#Š~A,YvMp8a_ _OJg"i޼9∙-֪Zǔz~#{.N`3eyv --u'r f.+VfASchdPpVQGp 񒂔;v-ËEBgztaO|ck:^Ll DEՏʁGG pV9H=raA/ I)eI>o?ʏ ǤV\f3-9Z'.4Yy1 uE)³=.miH#~F5xh3ٳ$ K}2ڀݼe+(Mfk[ $-7{%S\*59b9W +\\dōXʓ $ؾ]^Tyz%oJ%"vhlCVyjU? 0;ٍG6'TC (xBo/ twmhqq=N | G~_w%.d%-/]{^ ?"M'"f(9˯'"/5l~{~SR!U1Д]` c@AB:)l]G$lv%#p랼*.PPv4Ϳ.CjH W~f1HҶ*D/G FֵsRmhJ 7%p*lR|84iԠTʠeGܶ j (Are;V+ܦ>Em}fƛmK7Z:(vq9KB<$A"i)ϬINa5W&0:i]2^Et`d*MU-ApJ|X.oirݲ* _~G$c[iBwD1\ f;P&eVӬ'>#@#% e0?>r {q1%Gʦws"o!נ:ݗ5fJ> <πDl?=9`DB1*_']UCG [R X>mSLe(6ӝhԓx7cp H:(Co#EUû1jXE$MDqp4(gŅq2 i>{e# u|,2髀2xu!39f'*re-¬F Fi0n9C6]#O& QUo "SMU6'`3#P!)n])l s5W\ӹX*xF1d6 ͘N۹c.',L٣)ǒOĶ `L]r ?ɓTmq}q̪Qkѹ\[u>>dGK; |'3A l+H?439t7٨W_N_?fccȁz&9]%I_XAN̳Ac5<R3.jꆪQR,{@Swߺ ~scyf}|z0b}E"f0*PD}hFrB1Vs;r?oWĎEcCAAxݟvӽ3KA>a"rrCB'r9GsI KD-AWl;( >>iZK uɎg7-$+}ZwSNqx<&]{GE}an.W^N)-q4ayr*G=pi|@fŖ:l.P^7V|ylj-bVOHG ⓁG9/.Y}%L}΁Soѡe<~Ak=ad1RbZ4 ph5u?(`'*!pg,[=W2.oXʲc 5ȖH"X-L:(zEk⿢kg$FDIf\͉Dq*gX1߳muGBGFx Խ  M ;|pU3QlɈvќՠqsʻjAwXO5y"hz%]ocB8=܊҅OR@a& +"meɗСh|Y#8=ЙHOT\1 <=`_ݓ "jS!QWGGKz#Y&CS ZU r{]}.ƾѵc;,HN;UȠ>F[kzfMKSw#l!-mht%l5#qi*֍8Y I4hvx3~hL_q<Z,Ơ:m9JS~_ZyЧ,MsQz!6 ~/YE-{v7t7[p[9hn'H#m,1/%-@%iqEXfk9<&Ulԏ V-A&%r p+2Y'd6t ȇI-RϢJ$XyEfK5pn< 9A%t_`:toNq˄DXYd.7q?Z&3́J$3G/T2L$Bwew\;ۆ]WQrH0mPVM4HlCB!T}Ga*TwFA-{/uU+Bl'L$/&_>)/wܷp:| *\r3cU׃ԧqה5u3,nwr)(: MnA2ّ:uy"ŕG{b0˚~i-`t(Ab 'NZ|&51.bTǵ)=^S}bnő0z(]䂝қHJ3Lz{TMojvy%B42WϬ#]S ^TW]|s]H3Pu.4gEk١J6ڮ6U x[qiJW\Fop^c|̶Yk_ȬD;Ϳ뀀;Cm*n\)֛1ٛ8E,HeԀzP1`y0e92b$^pH`ycKoE1`: ]!0Dt,鱋A*JG2 `$޸c5pB*@,\3!p;kZ1ȃ֞-'%]*bNw?jc!G,~)Qwf$N ö10/zEz2S ȁ*esG&d9AhqP! }g!eX^޻ |Ю}7dMEIimM7ҁwZ;0^,QDuya0|p}tɗ8Y3U폎AQ'_El+)<3#75OOPua > u"=k1hY% B]rYuBŷ=xo }A)4`F.sC ! n:`e]_?:QHbG>d_/Hu2=L>sѶ+5w{K=iɻڣ ~s- 11I@cɛJȏ||.D>ac1*hed3͆X" J>}=\X7eI`~UyKllrs$V |5ce hOwM7z̑ϮʺO|~@[=l.,PQa[q:fs-A%|8 M*9Z(E ?zA]auz{x~Nw[+.؎QVg=UlCb"*xO'kۊ hBp<˘lgWo%R\С1=N!}ܿ! !`zKdϩZ!h*$;ޙ;IAnh΅ ΞJŰd5neCzyv! nԪȇj\t1"eR[LɊИڅ(i%ӵx;͇[ʁ)n?=5| 8{qW|ʷ.jWw!B&i%!Rĭo23_ϩaV{ ':^%;yp(5 ?O@)f樣/_M '}ʼn]Mq=2OSsz9btp v Oi GU~oӯ#pq뒁@%YSܡ$FNo7NPaCPi&WO|!j|,58}eF,^ {@!)'oݑdCȆ̱|Cb)5fYKQvX>[ҿNc`E4 =aS:>^ a"x1cJIV%u, =3`zwZY'5B?|F.z. _=?!ΆOl!QWnG(%r;ST醚= re5~2{,AK^fJ)ȍ-c[,sRn^ ¼jn G:4EgLwɎ}'Fdk=T'EeOCO̐1!G&(Nl j:W t[a<|Է*  j7rsͮ%/E&ֲb1 *XiloY;b~\܅)qК-o6(\sP.S'`?UwWq>M/ z֬ 9\`t@G /x|V%%Oq>)4bSl-gUf>&7[5tP%#"xe:.td)VLN=#P,Cyf mȾt8J@1,m~D79O*}-N:>{ة:Ȃo#n[IEq=u>(Cի|Hu{wO0q117*Ma6l R]8)jv%SSKn&sJ! I lxf2J*.EDzuH\sR3@?8"_YDaM:juFRLo[wL d.T|{VHvT H.L NS]V%{y Zh*1D!¯vF;f?Ze/Jp9aS,0mfY}3S8wwLeg6 GٝhܢADXm< |o˻v*%7 qZ˥ϸ/+us;WVRُ#0@@\߷[rϥ~߫y,?8ڿROcaLx9S[5&SCFv,!\/ bi'iq9oR-ԓ+p( /z9rRq3wlX֐jw(W߻`EޢkShYHJQqU1m-K@&}bffO|GO~Dapؑp12D+c>-#͉`Vj,Ѝ}x%+^X *K͹Jey\.|G9*=u~ט%$($^PX;W%4IstgaE9,)A*Ui!ʣmB.zs#F`F15Dh(/f%j`eo|1A8V̑(%"`1 UIxL3֞tD'L_C*Q%6]"nK4B' pe:B' $p--+#=Qd躿Hƞ sZӟ־g>qZOsdmDXF˹o *Q$٩[b@y4!|6ƷPY =MU$]ޞ`-HTtYw4 jIOt܈$> w#r`CT#Z-(mQ}b(MxP/0~);a%G| l(e=8ޯn&-e$^tG m_K_Y8NMAFVm+LHC Vs%"P9VJѝ|:@ TY8I-zcC[Aw U) >r0v\. xsKz6rF}# B+zԏոuX~\ 8Lw* sJ bOݩ7QMUHXj;#M@r*Mr]i WM+SLU..sj1[}U4PdRVϹܣJ`sϬ6%iObQ^ aσct8BQ )9h|q\iPG(-ͼ,1Afc글>cT`48 E3Gw-GP^'H@\,@͕=x5͢f(ԭV<暵 ;S& W'D6:ѥ@1LQ^axFm,qF No45ֿ(q8fb Flla4HF1FmD@G^=aMPեy0C>E- wu\g`)GCcpR e=Ƭ5KͲ|L+!qԈJz0P%F&j %65i@`]LBp jE2o!9y jǍL,qK :9]S7bzE0'ZQMNDwEB^e)TiWP: OҥJ-^uin=I. /! 0:NUhVI׮C w\yG@ ikPEKM@ u{"0mj Eg0XX?Z,bT³0n}_2 _,.8ⅲ0~!*1u;ې?DjRiRW'Ċ0=yhq vQ1Fz^hGw.mn A eʘNGnhgCB~t{B:K%3d9v,Vg XdB6}8?A͠Ј1fߪS u2@)Nh]K+T/(G"(57T>zulE@Bi)JQ2Uq,Rh2 ;X,|Q)X=sNh!4kv1@Q0b0R],YZ +N ]VbCXZ+}B``2>wHҽ ]@xQKcΕI|m[p݁LdFI̝]9rbsPBF/k-ӺN(wJ-Ucͬ8a,q.I 9.4o(gC.,6m>o{/Jo2y+$|3=KrsߺC}& ;VMd||(mD:hn HL~̬>)9=dhG'3P'ʜE:xΑ Ԋe]Ud0o%I&5s1j۟bGan|؁`-?67>r؃u,%ǧ:KJ2(!UFd~ ZffO'E D}CMumE!9EY3&Rz3D])thu.1CKtY^K>yML+_^;ͅw\穜t?lsD/!a\[M DoTS|Ptܽdzo5L/ַл ?aW^ |*ܮ35ʬR˵Ӂ`wk&, RQky:E ᐋ69x&Z"D&T~OrǤ&dd˜cn]xW7-9T,f&> ` uٮ՟fo#/5hk@*r#_::W@i'w'ol䭗Ja~h]-JkuM/#LStuQP$l- sr|#b k?1hi,6VP|G%b@D`}e"b^o->TJad.UF}?TqeVOPWz$ot+L "Vzs1R{ʋΔ܁f i?葇W7R1,H) UPPB&WP`zu%DzceɑШykty5QAzy}GzYFHŤmm@pXD[g3X7:Ї33\˔n\B<|juvS#x_N1=܂bp04gu^~,Q!< K^av$Do~pMClؗ@ח3Z @F0ZQBFO'AI)ggVh- .]-Xhpg>ց%Xꡝ[^cZFA=;Z=aipɡP|biwMXXqIp@'BZzIcd::5YT1Y:{'fcg/4q`hp$f|H]Նi/C28jU9&JELS%G90;C cm.~X :AN䜴ea/D{7񗱲7t926mhsjKFV<8C)K2^|YR]Q?V`.h25kJ( 155PlG2sa@ʬlE>xH5M,0<fٵ3˩T_̀۵ ƨHjPdE.Bjdt6!ҥ=d}8E6Eo6a_YYl?bS#D|Z!nOs~u꯭;{bo*z֊(,ǹ9vA^gB7S`tg42u[WY{ј.mQgAIԚVl09Ix9ǩFM.y2-9N&G >K:u6UjG!,@BwD=8=/ s?-kHVӿv ٸ.R _+޶$ n icOڶ56C /ect3m#eΥݡ6"r69Y|Yt@V-ټϵ| 7$Pd1vN2SlldQo% זqˊ'td5v$xCReuxXЄB3vѾu|҅ͺ{Tޕ^2+Bg*'NfbrNtm"m Hsw궊L^H;j>G3k~_Yv$`|L_h'Gfr\>&);;%G*36O=!CoҴXxAu%s$2 !\E 2xTJ<d{K -V`괉ɉ/SeJ.X^ٯfTK QYc u X `4&͓UD%X/<M6JV~Ȧ?m+977$~y(Ieõn0:IGD9#GJy/\q~GUTzLɩ|n܏Ĭu͞CXZSaQht Qkt3w!i`6h5ߤ]j/E ?>5ihIiՑλ0MAnl|($\gSSs1~ 1;±Ь.``OHS .>#K{q3dn4ߎ&az̃`NCFhh?K7 Q ھ^ߦ5#;\gi*ntg,p3"_}d#ډE]pU3V=R"glF/GR?3s-M F5߻ѕ؀qi@]T%WjVZ>rDI=KlLfC3?oX8@'@[> g'=mv3WcHxW?i9n~/Uwg驰_ G5ڍci{Vou1Ku[;Ҽ' ,kLx\t(`)(ymʡ͂>X#Śax@p" {ڗRl E_h]:L(cy 6ZSH-aF4|4u)'뢯&S:#"hD(1]֝A5ư ,/vA`z_T5,-:8W1{ 맞[o$?=KMg!O!F$Ϊ$ vKːB,">i!)nӢ V/}=ڇ&zѕh )Dv`3$?F>Ŷe|Hp?GRRȺc5ĈЏb1 XN)e[ w#N*01%1'Z4%9B͟FWQϠ2\lg,T (Шjrbi*g0L _Vװ.I *piK%y `H~Z͇:V'6˟V=5' QnH#E& ٓ<>uUOVv,ڎ W!yVEx#Q_Ū墢.^@م->$j5", )˜]c"W,͑{xI n'VȝxK®f "Xkz٩]"Xy.$:F5+lLi830&0Mho킗  uӔd/#j$)H hܠkdI\+ \BA3u9 M)75 Hn>IYIA/wT uw蝙.(;}t*/Mc$9pvQ ",۶%^LxJi߸G 'Yv8PK׍&[VڰгuI:x]OhQ3`bu 屺&3+TJQd5-ݕ71aEtbܤժX~`X~"ҶzJ46{6G92oy7Wν PK*$;q..T}R|դ>wx|hF!QȬBdoI ܀rmR2=i1ŻYi nP8uU3G8:\#Y\mb&S3<\ڧۏ;rElu*R/bkG]N׸T+Kb&:M;F~q87w[]OHr@]N&s!=^v A4U2 ΢LMp (]&C +(kv»=pbns0&{+g^ѳUX5/) TG~hqDP0C:O5b&/0E\stubgt,Ӈ..qP&AQoF0xg%3ϑ[}; Wf\f.:Tއ#Zdn"-v dqG~W@GlVa[@RG!/r[¨#U8js=D nu bWIo;fh'.+6yh-^μ' 6G Y)1:-.#S0yjdƳLяDVˢzcZMK`/LEC[{d޼IҀP1͡2QR;Ip%EilV. raid^|H|qW' R=kn?q4@'eѰwi̴~6:j>VbH?QS5Wsz L6F}+g#Y Fypxz]0Iև_Ugakj԰{|n%5iEnt[ A+- ܚe:x{;?bOeUAX0#Gp-@0 jخF6W5az&]A!ĒH²0ƪ 3%Ȳ3Xfp(E3~N%]V6#x+t* x4U)Nqq\>GSlfoEӷpƾ?ٵvl-D9|zjT؆̊_֥)do3.)ڕpl :+:&|GYZ.'HF[ہRt}?3̣A9Ёұ57k 2Yps2I_l.\1Xm2sApI1yR"S] #ZBODiT~\C[K»V;pҽޚ^:Jx%h!@.pqEp&ȈmC'Vx+vp%dUyY%f1nI Pp?SNàav藲nf>wkE~AA/UU"KHW*5c&ZG~U;~o[z% 4U.&JjimtI]T6^KYy"NMX5']еϳS0g64{J(A63T7up9P95en^6o[.oBVzh #v,SЕ'L^׭+XĄ[?HFTbE&D},͵+LMjnl0F`#>Z_2ICwݢ"6{ bUݎ_}7zo K/쾛~&rCa)XD6ՠc :TU@â]B$|#7; ^}4T0]0%a2IuL׵CWh+* ?h= iU:Dk%"3r8_gqrI9 oL1S k瞾sɄN$g4"i6ÝE9fevE|(@LdKꕈ1bJ&.lхQ1rɀD@;IZW\4-{H.sݎݠMv*W],Ly7C95 2d`Oώ:i<8TAzK2F\NjQf&SY-$g@L:mI)0] &WX3eKF]SY~  9Ϝ@灺DDZS{S?u!DdFpLcnQ Hxf9o y'Q)kd,gF/}ֺ¸(%,ZC+iZ_HԾW}W]1/Fn*jLv,5E6KW~~[vlXH)lM۵כZWyHFͼ/ k1(+Cn NO#HB)d:g$#%U]p`U:[#7_cBZ,j}`Lff:_R0oA互ZV (+w<I!?;BwGHnƆ/<9q[?]mIߏӽ>}]oJ/<z) ^cfX9J*h_}'Qܲ39S^c}DES ޚ7e`C87]BOY/#_ރPg ~&VXMXai#9)X=N:s/v=+jmgkF{~fg@ta BCVWc2?5WA ̠P a,ơ߷)F9AmlY+Dn.]DyCP.iDYLek0u'yiZRS_B2 6+yitͩx|af+q0૓F;SQGN:bu.=̕KRbs"S1O0%' &ґ 7$?9LJ ȡ39wP Edv,"Wj>~fҔ'gAZ@dt @aUhvcvpSnj KgN෈-P䦒<hl^ٚ#C'N+9P\9NxL ؉h7/ oSVc1o":}GM(8\%e9)ZA͘YjW)ǝ\&C4.7w5GŒ%啫S®uۂfEOױY5Uo4(`Gj<*r+4@S{ê9i1#XW|١WI :j?bPAYIPuejoX~Ĺ޽]`/JVԅZ@v׊Ň&vēAl {f /_Pزu_ZZcg` د {/OWh gKXc :މ^&+kzӨ;'SS/@'/?ǑU2|& -9"?i@lL@NT n ]؇pJ(W_v/Iym*h>Jͦ\c7e _C(&\AE)A}Uˑu$F'$a`[p^Yt1WfVM͓^nҊlS[vuF\tՋlcÈBUN$PةgI'ݧtUѷh序-Yӱ8&kc2(ك'5X'R0 qog TT%I[(c1W.ME#4$]}晄 ħ26)8P{t>#1s$_ ηoN Z)ޑߑV)Ȑ[TFP̏7S Q2|n*4aHt ׊sx,^=ߥ.--Q2G羗%}N4=6R*dw0Ѡ%q.ĢxA'zOoWNud1Js@ڤ5S갩Eޚ?ّ\m%, ugΗ㍹Oe"BRKVb, GlߟþVa=kb  J7$m3bd?t ˴=rl&H-Y)|uݻKZQ]9J@<^MWqMaV^Z~`cu~З=U^ݸgIIV\Bt}nХDT^H}80Ñʽގ pyN"7ֹl'=O_j+Kgo{ǔdc}UXZ&FGC2Bx]~_JxZ1Љ-Lleav˯*'K%Ä ъRm~@zó$F@rFS݁9>&= ^֙"r{rc5qƂi4fS34_3 t5hu6O@DZV~ w?V8ה!J=ū];p֕a̅W+qjd-T8+}:S_rE>mIHֵ@:9M$ ao2 G2d.`Ro&x?XTv1ZAݻO7ch QlWY6 ?O%9R8O.SFa/nhyQV` NOMG.zJIF}H솳XeAb`ddEby7'E&rEjFgUPM0&'h%&9XX~+oGտ3Ź`\d5p0?xFg[7Լ1B$ˋ)4n0-IB$>w-E3G[:I}̜0 p|IrW wDgrDE>^^?/*#~h>%&=Htf#W%L3y*o|.0rAc5Rq?]Ù%oQ&h8j 4zM52arTa-HEaNȢʏ63W:` Ty64,bǻz=Eŋ/"PFl0\ˆYy9H} |ss܎#yŞ"DI[Wnrq[E%izRZTŔIY-ˎQ(-;7UiT9hJX.qQъWtBEm0w]˛#b*39%lwޮ'kX33° o3ùrSN Fs%QHvDT<9$f5IV 97(Z2G,0`p/CǨJ׶ i,;У: AqSw݁/H>E6#}zOCzm}\խ!Vԓ5s&5K~ գoJ |.rrRPb^+;SCtlM+_rIYql-g5^s"H2YϔTj/HbV&y҈· ᠻ<]>PR!ø1n6u` DFΈa }{ko 1E}V0O\-̈/=-<Ծ=_2Ts=SϟXKU*zÇ7Kq mkxwzP ?|h8mFT}aچ=Zx5W! Fd"xZ23O7ctPR b C#>ݳnp9,F\* pUM`EËɧA3>,g3]{amVٴCi\a@IB-ʧ18c/q$OЯ.Ĩs_c)Z =@/ p iUcus~(/a]iL`<" b[e/=^1}lA9\1 g.z@6jC.66:oL& QgկHU*%92g^$]TAbRӾޘ9F5 P0B,R$kgo3~TIZa}"8o-Őp ϹO[, ^Q$p|<\A (Cs( F9_K8iR=S5dCYU1qx~,q{邻u}naG^!ϡo.}:CgN_AH2+35fھd_QUӆ䯨F?pBNDbDI"a6Q zqArCy_v= :\-z [M"U@0}R,pUxU!Pe] 鋒 K'oZldUjy^w*>_/a egҼ B^eXzXHbڰBK>^9)"2][L㯸BQ4A6$jff)YŒӨtߕ\Pi, ?>3GT<~u]u@i7c{8h3!" _*_Ol-# 5wא$ gc:gB,PI}F3 (rLEߧ=r *^QK`g8x0'$>ב׿c02'E13D>[)ץԠPM"Pzǽ\1jI 74:`c O,Gj d3QOӫ)OY=" c*ïT\.y~,lb_ODyB.RB~Ɠ );E^S2l]"s5)k4w XƊG ί嚮@NQ~^lQvf۰wWSxlEB:wqB4}~wkÔ&Cû ɞ8k+xgI %d\ yJb61CAْ᱾z'Q  T15]BECEpkPƧϘF O-4bCg0Z:jA>ҙ{+ ~ľ~*RL/w43Omg^7QØRX8; }Kǧ5`I57'߱ܣfcHQ@2|D_4{M:o(n\t']e"YTʁbdn<G$Z3e6 ,ɳŏj~Ϭ0<cf( T ?1)o(XR=UиEu#G7@dSd[T\w{M*V. bq:b=උ8/Z|sŗD9?) DF{{6AX2v)%DK-55a>,o%A0 !CD.JG鈍Z)nB{c=xcca.`u[zT[EY { 2by䧥b^I F;1<gҮE2oSNm3WQ"ks/N3+'YH;g)f p9*v@a!x9SBxK6tK 󟑄T4F~ EeЩ%N"$uМ ~X `Y관Ÿ@b n` R*s[;Ŀ^jYm=BpcjK)2em`~:`479N4 _P7>UaHK (0>"4{+GP3_MΫ/o0Q즏=6\Nc&qEt5P ,;SCe2INRMs&ϱ^s_I7hס]w6 5"#5#Q⟑`AݳzJz (i1&Gg?UY끎?oH:KC^dd_pL@@<#hwĕd?@Fׯ/:RR-fpwD6R>ҹ~;?- N֗ agN!\=9D-1%YlVaVT!,T"&0 /%J?JNy$mRz* ^c+}]Vn{^:b-b)E5-9M_nhɵD$躋AU<8^a҆dvZLOETH"= X!RӾrB)\]vP(!U(Ttm&Dr{&N$u 2j+tkxNvߧɆ;Qo H~&L87R~Wj4UICCtk%Ei4Lb@k5w(n2WSU_R%\%/@5xj5Kd jfG"r [+ o3avrs@ Ty%nJ,[R sS> d;uJ1A+ZCV|kӛrB+%ܟ.-y;RMPl6c'П"H9vP= K u(^[x<~-(rf! uny}@B#IiǗ,o- vp4h ̃eZDm?LuKxA z l0,ˆHM{v;p5|2aiR.i=9L Ak[MD۽> HFh,RvZe5qRk3 YW`{ZPo̡C9^CPm?ZlW.2կN֦Mr!S:b;,sTqpLr,5YмߊV4h#x՚Ó~*F]ר_Vژ\BhS=.YSk= >-G%mYvnjD+\O/"WTj'[_ɬx(U>Mvŗdd#bGS<(uV<-o3RA2y#R`emLRW @墢-Mrctd?Oٸ(iܺ4@RC>Ddis UG }YgqrK֒Hm_%C`|OC`,YL~tP"_f^cdouDڞ"k1#iJQz|݄Zmq>Z9quYK&4~<`kX!ۯ/&=ʧGgx[WZ~GiVy]9fh<"d$K( Ok'M ]F?щ+9 s3b_)OB>(V|BǓ6ۮp ah "[}o-WuBti1g[y$mpC$u:$pjKLb"`\ɯN :h}6o1iDH,@~Hu:Z5NU1 0lPEN (_`uv6 cU/Y(cīH\ i0o|[=ċQ/=]ЬN&y+VKf9PڼDR%6CC 5_J6[~q3ޕn5 _eiVd^FP].]D gip"Gu#KMKLqYy A-  b'hPM±O":%dLw*>HpeCW9_ n4ZH#t2ܶ`K=PoSCA^*і {f̾/H |ea=[RSԀiu?9r#PCpzi:X LVI#_ jLԊ5.XZD Y#7sRF!BNM(xC4CN/}=a [Md+^})g@ U:F^̟[\I_Ra%㘝$HeU h 뾤hfh _.=ҬByG䘕WT6[Ni.Diԍb_x!3z89@j yb"|sKFjȰ/z;eSmVF 3kRB @⸮}}fSBpY*I2`OL5~ {B7䀾g j1e]G7jJLN[ᖛK|׾FỪLT5zx͂P[̊K%UAr^ImF<'NP\=3 %IeJ}pj=K(}pD,UdBoBY|ɆF/FX^☧A1FPiŔ\79fYtз9gE#^}6lor]uKz߈$2iaԚ@8CYD.G ZZP~p]SćJ/ Dj)C#tLU|^l-BO\ay:f{ Š'6E$s@ty/!Ob6n~ȟu?eИ^"lX]駁Zg ,v=w|:}>)Šj~:f١086*rmGҝVEf)0nT֦dVW[QJF<@8J~BXXpeϦHY?ȨxN(lxzkhÂ{]UWBӢ5( !n ZHQ gC8fs4d5Q;}:S5XCD/TOC:(Tܺ!_V}"R/ИX>LOo|JVhN^T7dpaV% eNEHda!(8B2o{2ȁ;-HOs6qY ~N%飪C\MoDȆux`7IYw'Lic"l6\rUzejsn>TfQ¥"wr*\=DRn+Uo'> csrSMNIԈvj6xlGb<!y)ذQ74> HBbJVvS G?0hLeZ Yak+9_"5z(l7BI8E 1306 ]>>W]#0%ƛOf>@S`^r;$KX\)q ! J(F&׿t;89SsK(3[t@݋7 ՙ1\0=ƗĬDf䘵>mv CR/&~i,*a!d{!qoᅪqp+;IU]u2Iq5Kל²SvrC~cit,#D8tJk'O E qduO'my#<Z,NPNb;asyrАGaQ:VͰ> L [ÙS{R "H;ݓx8QY7* l@*IA~PR5NYu*- ?v e#nRjK~-afEFYl3٬>vS(j ]+zͳVAzM'Qvj];_wg%>&;gri@kT|C7Iu0؍1\p/x&-]%iWww61$3`_xJ[&q/Ų[RT+ށq+neɅKpW0)sUk9؄JtΆ*V3ȿZ{Dc/MY)j-cms('7A {{< d?fdSX׃S" bZG֒DduriX_,J=1{LZUnuЕZ~FѠ=;#BþKB2-tMRXlm;MWHzӘ Ν)l Z' y!ט 5`?q)CmA}[JzZ Iwb[RxA־w֑22-#{*~EX*io^} 5h_Gq}l '=5֑+v SE-L=>w*;4>},"6AW3Iշep,9q8Af 5(1dj0J3ݴjp_VQ bS2e20[H{|*URw!m5 "^STNjܦ͌05K9@ gO(,P()S(a#o*jo |辌A}A7_%[O|+4)^$F69SL2˞^6$8ߢ5 ֚e aKiQ֣o$ʣ"KƹHfwIQ53>Isid?<8/˸k$ے=@M i-2weq{88#"+iww˺u O2zyT_wd# .HWdRVvl#o\c@#8j7km[eTXW'Au:֣F9n`$hmyiiK糵] jq)1Y u r"RٌLLť茁פ4ˆ1rե[SNosXpU/PP,CiS_kO}f9 )TJV57L,\RU_+\vx(_,f:OQ&1/mYRn }zVZT DR$7:Bmj%fqI-R>;/Rz)dҕ`ѶwODR$bsn |A<*`Au= W>^LW({F j/rcgbm /1Dm9 㭿9\_o:Xe9.)y%6ݽC|XE ¯vsBs!Eÿg~7Tmy(rm!Q+ce֐η5]304NnU4ЦPQf=ۈ/VO9oGV`XצrNF\wqZP@G0R]|j$n!Wq!sH"vj]|W&vCĕC 8 (g67qǷSzsBL@BJgFƔ)O~\Q}l,y7'Gmn"}^/5ךS٦W 3p?ȑڪ!ꠕ WIt:{JAFԗuMduښ袩uCEg< Dz,؆ץ|іIy6P \ɗF#Bd{ŐbqPܢJxXK%r]Ոb%c/E~1K*^OOs,S 0L'7+f를a-y%qoKY5Yݙ퓈^xy-1CEe2|ڦtn=Pw ([w,gSmLN[@4wdx xE]衊-R׸F2lV^E%f\][:}Q}$8I`8am?6uʣ *K,oa4]6\<ƅO+ !c`}ՊKa6x Sn"Pe´B5ru<'Cjԏx_K:osJD?,cT[֑jx..L-g+ml2]GN9²?[7t=XӶıǟ-}~<8D.J@O t l}7#I9=Qn 7𴜟i IzEƜa7hJHݳysT.> ]M./\ګ39ϳܹjۅcxZ2Op/r jңca,r aն*Ʃts:z`gK M,/$ўbq0{Dk˛'GGJLCe*𜔓wA݈K_aLGQ `T 2NFT\H6#Wt^yxEFTуenИA$5dd۶B7C̳zYS/V@_Y8Crl&Bg6TUB8 VKل5V|AdfZW6U@KWE2↲t%^ ؛)HHb?L)~b|[Y6+TRQm u}5_1LN2d%MvOM͸ Bbw1 iVJYc6Z(^}'TF\yb˿R6)lZ֋Lafh~^[ (͆F\5D>mЄl@F$ HpFC. GfWDh{gf#3hqd}!<)9?pJ$R>z47Pn<@y&i :w۠[bCbI; 2g97u\ugԮS_hhw[ OnnvVu\MχM;?HX{iϠ]'N9 Xr9 `ė+\CE[1\:RϝV.!˼!rXETZbll_ G!C2| 5v4񯂢Ʋ#DWh+QU)hg t*dguX WeW$qD` L}S\\7p*,5 $?] IV'd1 aؔ8nfPpIjʵӪFWL _*?;E&[U 1N6pn|ҨW=ۛ>_fK" " RcM,"ꓷgU ҩ6 իHy`"6نҷkB Rp<[d1A ZvR_OoG .ـ\4TcbyQ\og?ҋ :qM PP⑫LS*y{"d^HȍQGq^壅eܯX mO]7Hk9ڭt/rEM(2,Ҍfx7,Z豦QR(rTYR*T"+_ ֽg=JZJ4f!(LdPȍH%n?(J&-pkL(iAwc׹[P-E22nd¯e_>Ѹ%mgOz4vb?H֢ys~0nDOϧ,`mS4"k9j\g)]P8l. )@EV2%(F&W,̜튠REtZ#L@la]}m<Vxxu`Oru@Wv6"* -pPkd՞CI?; +uVQ+B;t WX{6g{:@곸<840G?QlȮ(|GF6LPmj1GȆe/'-]GnoWq;Yve2Z*?A-iZĠhoaHOf,2n3U܅3UTc5J櫵efCOp̃a-EӉm6;i uS7(QJC2YtgK3yv /,-6RQ-LL_ݟ}) `JmkQF^P{}RcQGNCN-Ibݲ/5dKv&eG%wAUr;)ǸgU.ލ^OoAL*-'#[bGW5i RS.o`0aZ2 V,Qu=yv oDU݂Pk.A V)(k"_{,}sd,!f:2ɴΜ=4a g1Ii lg9-M9gVpB kD B/<e}.71، "s3) 8>ӂ{fFckO!8ǙNO+gVXAxUs݇4IaKFe Rq>j)AA;\LƒݔHڳ,Ey k1=3 IT y{5w<q}gI5^wԪL7hFK?)J6{1Tݸwbцe Pp,@a}\l #ru2FyV[.ȶXbLDPǡUf]2V+E$sb͎tvj$Mbil4;6i9_]g40a. ! 8RUMp^Ғ{ aăjԤ6JY,sJƓls4֮swGM /x:;iʖs;!Ah.+KⳡhȱJ^ ؖˬpTHA`4wAoFvM߂$nQ2dZMb"\tW2^f$Wi83lB"Ӹ]0rʼJ!B8Mj+C賒Ryh/ 47ni}ʙgi%5;aj݊wG*@eţGWwV+Pn4twLWe5/^#˲VCz-xr寨,ҿۉRoM{C͚_*X LvqXd,X]m[C{[h@^Q `/7,O$dyo ЄY:I7;_yS .ja߽fVC?3DSN`cCGwQK{a1Hƽ8ƒ/8G->wdh(xGXKfcֽv} V~IÔՉwi1%ymK$7.cAe9wdp+4E|;%Ƥ.iV!gE4WC4mXgGR- ZKf f)fh^@=n}nڼO۰ Ob4H {q;5 墟ޞQ(\З)Gz*vphm|Kc|8PANT T¡p]nV*,pvecחktV$m5,1E`S~_To7yඔNX`FtuN{MYS/3_%QZ (s6avPCIq"oT]dY[~:cԇemmc~Cvi$u9 )O3z#.Vm97 F,=&xީ"y?PEA.Ww_?/gȋYo@|zcn/+3(\-OF%Vz#;\9 N6 2=^-Vl6==1a 07\RSt >vA=DI7O(o${ ? 0D̽0ڂbi68{_G!4 Pⵉ^Kd9 35̭\'A 7'%&l.jCF|UG(}PT N  ˛O5QQwTD(̰cS~P詮wLb=#adi>k8f&Axˁw"qC,e? v@-/e=0}ШYjYiPCZZThQUϰѝ DZ`{6_AݐǚSiAK&9WN}Pı=LZ)+¼W `{,DZaW;yQٛ$"Jc-r Fvu&;Uo 7>@ īJpJ Zw9ȁ5{1yI Q1ݽ[KF͠@}Bchm "JpOg !.L fplܞw1Oۣ-0[yaW%q 1m+.NDs+NHаA,+C;^7"n)ғ= īS''u.πvrkoy1YJ{(TsN(I}<ܓ`4,be}Ŏ zZBqe8UXyV?Fԙp.?yϝ6G2/@M1Q]9ʋO[j~^ ˋ7F ۡgcb:"% Y)@zqL xsNdxDcP=X%Vf LDrvoj𭞙6xlk?8]y"&N]4n3q<~j00FΚ>l|-U=tN !-\jhMc%/,H-wm-«5 ~?;b, dTS)ې,[=KXR#|7)2F0ShX~hȝBbxS]ܫC^6a;!݉a!:@ mAlʩzn_5jq؈V%py X?^EЫ gU}[Ay.Á7@$WȄ:{#6lvp2?|q4unN Z;p-!܅Q[l 4rhpš'r-k'|~er<']& *^NmvˤM҃6EwǛftS'K4/bה;B=q WT: > =Vc/C;:PUogKAѳQޓ/Eވy&4cú|cX9"hbLlՒ6w9hÔa'"5V1Dwc-qDVz 8AS~kKrlH"Oڍo#!7V/.:y 2ux)bJ)_ ir:aAqj0nc/2`: I(AjT߉6e#( ++3XCA_%!A5+1Ve:pcw>}1 ʢɽMDUN j"Xr'AmӨD|mR z0at}N Z[T9qޞ'H<^X!(;oɥ` \J`1#'!< WgRӥ:X)4hvV3L/m Д}|ŏ DeLإz"?1*y'z:PG_E]tB}N% L<78N F˯NFGj}Oǁ ` q,1RDZve.XmjKJO(B!,]_Zb6߫I\Zp'KH YoD߽A/%0u| 8іE.EvHg]BOt@4zPw(9tp\?b*r\D3McI.o&{!?v~ϲQ͕$a_wYl8xr| Jy?q/NNh-ũ13\,AŢ p"ė]/EA}^q8o> %K=:x4V޽ 桵_(p'a3^֚aAPKݣnWm5 Y(WXtE$k ?(6ׇNgb[g ngg4ڏ2]46?[~q@B|j9Ti(cfJj5N<ۜ\\h]*Thiˌ/ SDJTl4ŖTp8G >aoTN  40ZR4W%}J8E _*gmT[C ƿa$,&PQv=s/lY/p8YkspJ b'PZEf;wW0tp]|wm.V2^_z @;{XcgvX,kDՏHkG3\˾=4Ϥm*YE!;~N@n+Q7Vz 'OH58xRD%j6`ZEg'+y{Fط%Wⰲ!I"Yۏ0iULwpǾi(AWߠCsD 0L8]Vg-a"G&~= ( Vx05/:Špy4%a^A;:xo^;w~llYZpqV=`vbDjp3 ꝓ^ix2 s O<=gZ"?FEeT= c<GWS7EzILT N(lU4Xa3A;K,^נ5j̲5!_F>lҊ ?+_`hQP`޹+}$.jfvp#y7eK\ӏRunC@R 4I?=sB'#UqLZ0Q3fd"1o3VcpbgJvszVkG.NX'Oa$`ԟt@|ષI"K+Ƀ@к*.Tw z '6f,zELIuϾop{GocO0fWx&aRȴzKV/X_z\@TG >b}+w):zOWu0 3'XeQ۔'b8A"ndnbv m֘l9Y&:я*+h'tAv:oQG60wӡyJ49_Egd|1L~y>͑u7maC}ʞűeybjOZ'93vy10߹6z?>`D} 2/Rls|P= ovK6P>@I_ #;6A伅#f{BUƦ&x|`;79g8ne(8NOiqo <:xYFu!o%#yHeUw k+> -+V6^}[oIS2{w;}3^kyPɾ /B `߸{y%jo t88ѻPc.b[uN>OROV3 kw9G?2K||]Z.ia~9}ߢ'56L!{@KmFD!PX8mD5ẇ0+Rp` ;5|hV?b^+ L9e9rYE=8n%1|~~I}"y?#D4"J-0w\t=fPVnj ɞ׊"r v=csPrzbiY!2@" }:h'gy#Q7i3]{D*XЯ[\3{;^WZmʁw$LVDRм!({Qzumx³1-d_iWBT'S՞bH;}> ~/ϋE4%L}aP GTlP}}/ti"miB\ c^`,͐=}`Tio&!l2|TavG=J:yU!!zQRjRS+(%X,PVudv~V#Ҫ? tE-p0z޶XdEPg-?8>`1;`.G GPt5=ZȾtjY&ckf' ΂n!(q֫?UT퇗NWwZGU8.&V +n|T1ᮃi_`wN:D.D!kWyE/FKv*,Jm#=f4Sev!tTqM;).{i5|l& B; u3}*.߶ǐ@c y/ 3ji#G.CnV22$/aR>{L!a-9ASˈ;kq-NU$1KSo%}=xWxH6O@2i H#~ |HGdl_UJ<tplg1;1md?р$I\ WXBi\ȴҪPBiӒnd*,KuIBh7J7`.Lm\J d`FgƄ!+q}|PJ9{Ņr~iuTeST*z d9«3_roTg18?&fV"n+*uS>sxv*y`Gg(M8҄@96r+E"Rע!Vv! a,) ɇlxqE!@v&Srjڟ` $Vh{? ThBSiQqe7sB]$zxHbן @|>!7Z A:|XrBh! vI$tvvnv1+OtD^=}v}g*SLO&~vy/"vH'S,Z]C^6>Њ!#J# 醯+gtFuO Ӄui{^FWen<4{oLp9a'fp8EfvOPdx"Apd*nh|5R2SU"^+fg M˛Ɵuլ%GQm@q~Y"9yz_{(M56(YA@ s谼\>c?0&|/SO@0W߰u ŗmb.V3W@TDW%M^GKmk񱺴/0 -57ëC;:8O+໡a;V9>z_!~tI()y^i+4dSާBH 4m+t ^r%51g8M3-6Fjcsist_eA2L4UJ..oy&@Y$&<#A6ⅳ' H" 1Ha+a}K_{3c9ePԠ ?Q^r2K 'L<_Oy@@j`/Y-Zgk <w 1ZL[~"AkڅI[?n!O "G&SXkrZrdt%Q~zJ~z1;pzJȻ]f+veَSC?M9Teg]U}xBsLv'̑2p3wrJnL'(ϔ強{AT&m!75\ϖo+PJ,S`dBM2b p,[][#xuG(ޠ(AAw*92leiٸ_W֋$ez%{dUߣujc![$CcBO;@y"etM+ky"imD=d/枠k%sN" 7`I7Ҡ 욓׫1{}[1@kV%k6K$FE@XqaaahRlwZQ6|;FѸk=3 ̗S]t|^ޕA):`F>iY >:@(n\ T)WG-^D TE5qnlbĩF5n7+w9 i RJhVE~i{Tr[8wWql%*>-|Y+p`*T* .JgY#|4/Er<gHA?UM~dV:,mGXBX2 (DCE̡^`ʲ`_:8VA^l3 ˜Mo&Q=ԇޫ 鷝Vn;̰/Z._4b߶W!):ZO|W -E\ak5z6(Ggn CF;a ϝD4ԃncd{2$17ja(eg0'f1pwcGPQ)bfhL{)iqln)Z-iU6tW :_G0T8ݫAUwSV9⫙)#_j/er*V_0 H0z 7;}Cҵs_"ORԗOal˛T]Ùz5$i_C޻)޾D5, @*ABRoMN!e&Ej+[b.ZNa_.sME:V>,@b2 23*:HVE[dyEv&d 72RߣVamIRж 8ٖ@iߋ73)d[){qf|XbO@3+},hw01E >*&"L|V-xOR@EGRJE x'J/9OKnؖ}y.\0L̠onkă8,"D.=P$6`{Bj!>_%a)b#5HX~oR[ M٧ qYo˪sQ4rrHDTLI߁%~{-0t%J혃!$0X-@;j2du0oGd_VB ؑN;  ;y 9. :Ģ^1bꈴseM!ReumO+A:8z$Бe,wLrj&b8Ȼ&bHP5>b'N2Iͺ!FB_rTi":Rm#GZnp&\RY%B!Ӹhg8a!ы[&Aj{ڙg\\e%Rc2DJiϪ,5#!L*t3Su+ ( K7!>W5 NZNcnmL EhҗX7 f^S}D ?Lxu\" E ~ꈛz1]alʧw1=]"j±%K?yI4Q x|qdfW!!V#8opU$e rb!$Ojx@8v9wdGϼ8>.Hgc=5K[ݫ[Lm V1[`_5IApI<4. tq0}:n(_pP[8$3ٌl0A#@^W/٘H/(&z .v iZ ܠs@_@¹I ANfbQWgƿuF2Om&7Ԫ;%(׳ =Hu[N\.M^WfY2v|2%.K:&aR^W,?JA]IvԓppuUrP< $e6}W&DzsUƷEx>?؟~Di[-h2 01 Tb'9x@[YNS,AZ3GMgD-+_*g`$XvzZ1s6O,B>07z<ѡ@zkCi lb܃HBLGa ib 4Ȼ=)rlÖ)t,{r3TuUak^.S~},?e+(;DZɷ|QHL fRE}l^Zũ;e oc,8B;E%zBD'7F1rNV:ucًn+w]!f?5/ tcz)S̻ LoČx/_Iu>)G7~)yiSFY>G焒] X4ʼ =׋r$ ~5Flǂ_P|l[I`s@pHQZ>ݳLT=S;FDBa}bq/Nnj*(#{>Iyb"Ł/@69, [ GPSEWthbKǁE>&mcR@̑ e JϔClDZH|ck$^0[̫\^ & .2p٫6p~\ s//|b *?V\2hWYU ce?¨6Pv[1]%fq/Z +c܍ibȴ h@%[u|xM}Z}/䷍hT'd5.(hBUo#\<hU[޳ `_M1[ɰ_.zS=_ӗŜo.}mإ!9H`0Bb1nfش(ЭnFzY+2QZ=-QuUD~x7zѷIcBO\"AЀ~o R5n ?OX|eA22S\b$8paẢy`#-d;txtN-a>ț e / &B(.*;R &3*buة+*%B Ѹe*W3E.,""I5lvv]7ko`6oL`!1a$kGÃX9cupWwXU 郆p%ݬKUsWSe=mAQEpkY]~hp"∤KNjZ>&Om !EAsjQ3& ɂ"'h sêgf󐡏[XS(? G97.63ݴ.^䷴lDܾǁQ7XN$9   F=Ϣz =7MRU͕&Coԋ¡ljȼx|.~0W`'|Y^ _^痎kez{L-?2K~t3v tMfE0|(Wǡڎu^&fq_K)neR.mLD2pџ40V_~N!|[|)Dz~++qxEEuwR5YEo)VcUYYJ,9M@71,3($K??GTHh!x*m4N;%G  K,B6HgVG"N,/cUe+dj} >0‹[ ?!\2?QǾu>L0C ؎2VElq+u;${P+ SZ}JmpbW9˓"uֳ+uL5mN<#$}pDe[i[&FrQiɻ—!hRE hh;BYE6i}bgvqh~&)*]m9SF7UQ7tsOJ.{Έ/ͤ42}$/âVy0n߼l@5x0slD%lʆg.гޠiC)"AKP|;}f4)F*BBM!AzFxf89wI3WbT>1iR {l8_d?hf,r JA`l>^'q+;'xcDR BMBd:F&von9-i oA`9* _Lj*e%&IDe3lN&;R2=魫Ɔ5z)iƫ*{.Ф`{lPy!SV,?NsU4: >FM2B_PkcuJjfU:IGl*uJ_N2qkO/BVJ;'ס>ݷۀ{Ӝ.c/ir^;UK$h 1~'ŸKlux' Onj)*x,{woZBIs {mvZ**mWR1wv _j[o QEdzc4霮gB}?LX8TAIm>BN߲qr]MUu+IKi3O/%+$$X25HD O( a@hhqqpD=VeK#-M^3I͗^z]pt6*; L "ylڵĨ-9M1?֠ CÖ]R;36Ȭ`@"s8Pp,}a$lB·-W( ;`p K/]x?mv:%a̢vTBf/ABx%8D(,vu\F"SoEy\0rqNت/ *R$]p'p- v_bG`@05Gxs{,ޭWOc=kj>wXDlM~=KLՈKU4>40t]"N?xL2hDΗc<În̋W_̔zɖWAҟ+Q ltX=hv?51:yT伜$4 }zDQŀc8ck-@N&sܼKwb oaa>naBޮC]"l-,!E/PkH-# _rsF~IrYX!^rB,I: ŢTCbxy8+dg#Ǥw a ˇ%`؜a .$GH :s̕x$ cIgm@v؏j!uIm>-?>Q'VWڹB 6TEPy4Ŋ5:vY ՠY@.z_8 3J о<A~c;^=l9|b ds_:,9\?me0'|0BRC ^+qT#P/ [G(hR%yɿn7 ՂioSB\-Ψ!7*ٹiMoT\@1K(u#h.hx-I<-+yȀ_\Q+*k#_ "9w8 G.кa %a(|":d,Fہ<ݽJi*Wsb{Y# 2IpU#B;9n:Ɔ5Y)(Ej}|`gne|Az븼IgXr f(6+/޺]rzNHgÔ:x t"yk@ YJankPVc5Cc7RA1엟Z8ȲN8&m#f|^'ͭ9[D_$ta7ߎ00M˘-}uJDM#{zǺ~of&0s ~5N '.bu 1Td2z1vu%*O?6|b5:~u=WSm8Z1pu9HKPuDBۈ؞콽kqvhK .?`xb.;\xsgZ u9]iV6]@KK#G$0'N۲c$JtaaYpl ?qkI2G"U\'DDfn5޿6jmpPtBx|PS^uGofU!W9MEP9((٪┐w29ΤM*8 $*Ω1J;;cefc;Lr@mC.|;d0Rq45"o=^69#SɞULʊLA)fU#!CFz氃k` Kb8v3 q(b$laf)rr F#3Wᅣn:V?91RBqS5NԗB{ߪ+ x; ۩;Wx$86ٽK+۶욊Vrqw*mo# i/[@)R)la ->o,Lsz!ܬ\!d&ΛːQF5TB0+$[砽}-3FVh@GYͼL</oH3ڙlj E^̽e#J̒m ;tp.Y!E.Kd|c9%4@&J%Nlݞ=5-A Aa{_U73v %I-9%6np3D8%bwjtrS8BL.K^cw[4.1A^kj|˚c&6)x5ڗU\km\wnG@a-#~L; 0= G$;721]Rq]zR sbKZ#lahڸwz1^B2M=noE4tI,z9[z›fo-?Jh5?ctgX)RaR'UI{F)-i0*dׅSu]-]gxӳNVQY+Y89w( KiS,IjݼfL1K[xs8_'\eW@Pq FRhc~{-gϊd9{%z~r qWeJ}jB_lI>PE gb?ҩ#LnE7kCRF Չc—'*[>&D4B^kY6$.X|!Z:VCe7hfȠxnĘc%0/~\l[ҔO.OsQyaEKj=oQc]aʘ+i4qګg2Ȱ`%0-[eTO;Vr+z(6@E5]X D+o1Hjm=jNdb,bO0 Ż^#X&6*O a~8suyv -R>$/uC;zh/agN,yܪ[^Q{vJ 4&?@Lskd6iWV Fm]37{6~(8;ٹx"QnH?YPls`.qx: -RdG#DX^n/]r r [<(7Ԝa^mXf/Eob ԣ[AZɿ57lBE ºq719- 6}1N)cQ;reGWh&΀2 ԚL*=nwͽ TZPF1 7,9|ɀ8i&͖ے* 2Mߕ?6=NdWZ.ba |}N1v+9w эQo Rv UƒQYOiit+Ue؟75Ccw`W#;:'p 2 |[ [Պꠣͥ+5`RuReeŭ9,ۣ %M\zֲνNmZ)@)*ʧƠzha~k&fc}HV*o"#'7t>jO̍+ =|Ρmؚuަ1bW&XV !()4[-klI3L0eZc!ߢE I:*F&z  KUoܐv[M5cFf~"=*GlUC2Ųq![vH`f ]btTXAV~:{Nȍﱛ.*Obd%5YLTMQ?` ],quLXn&Ec# ݗ|ͦH5q;-I\W"ŒeT0l`HZ!41:!z{3cLi,i`wUc8"$e-`N0jKfs67ԐK^0U"/D *bqYh#٩S~zK&Fp 8Dsfki} ]\֕#J?wep/^nDX;Rg J8\pp+ k?~va pݼDmsIs5{v?37aE,md]\BSa7!q7~OF.Ѥz?1`Wߠ X=ZN`d/zEB:ۖ+SnS=/9ښčvĘ}+{s,㣯cDGuq4k2#([V"1HKŅ`D/OM29{<<o"iBJ_3tH,?;w|F6@36 %2!ܘVV>ƑI5ic;aNz1#v$=ؙ.& =z`$]˜z>4JŗJXԼ&x=uj 1-hFhfa) V 駦<5<8NG4ntv<: DSL &Ր礯z+!Y'S7sᑴhW$| lo '6,c~t`wNL}6$##NT$EDSh?|E"ɯvݼLaTLܔ**j5{R%>Ts6٥f~P/?+KJv4ppVNnOL! ({jV Y^[hFAkJ5SRM-\1>.G4w~-bB꠱a0e6`j{AUQBxG_h@erںYQ1?ۦev;c{Cǧ xA^ḷː˹iS!;S 7 $ѷ`a"u.Q.O`s aHq0&.$.j=pmq1J9yVx0vQY'xz)ety%Au}p vI: LFtdrR{.`hHC@ICʺox9@Y'mL&]k惞\ LJ c*l3\֞3Ձ!;reWn~=, odW;=G;Ivd(!5ȉ:96 (#Hyn(OLoIu쳨2$/p0?"H a}U)VxXI?Ơ:pu@  L2 $ZfX.3~>7u>T R YT"9Q:è6v(m?wh\>ݒ܂K} Zyzؑ/l>i-"%8J?Y?P am:r+iO.l\U$v"nХ$4AhVEqB7%ADU~-P]Y93W>CI3~ UjX/q *$ .qa3m,l$=)Z̎Nbq=||҄VN'Yxlm̜0׽y {@捨3,G6BlK;^j; ~>  w6\b GD33|[/Cv*ޛƥm߿4\n4o1 oN8ݘFH{x:bӼM u?<1tGQP '9+Iyp( ωPEEǂ!̆YR[$8@Dv쿂.} |f̒;ECXcyOOUb"EǢ " QvbLVq қ㱳Zx1tƬ`ˎZe'uvf3Uk'{;I>JË aGB)Q6]tů0lXU}489JFQf7 /} o7 YBH7ԭݪcU;ARly.7Fu8BY.{iG,' Yv;!@y8fpе"9cyGf.]Q1[mM\q{.H'QʡI-cT|%vs!z$"0 K1jDʽ~ޟod[B v B]7i!D" S+k_c';z,D9fGΤzoWa)|rh5';8]ٷ:91޽zxtHI^7RڕPv< !ؚ8W͡~~)E:w.gރDXQZ 9qmhƀ5rX%Srk@ջiZPC OjEZti60^jRULQĞ[{<ޒX!F4Bn -J6R+Z(Qw嵺5IJ,`W!`OPeSՎt4p,UϊVE~CCІ`Ye٫0JPdѺq(1c2+ - FGѥYOFV'6ǿZ f'm#z(ˈ`>@J\`. O> ]1NŰObg| p$R.݌̩/!߳OLf5֋SN,SPWy:3j$#V޽ݐ(DH0*OZѸ [vm"{.*n qP.nؾz@dc}1%JWuiuz(`ky|*Փ AhYΗ1{@hY1Ykl *9(P1!Qvy@GG .? pUbCvp+O-:į0\Ap&jsJccSi'fKrp}X:|jYA FufzCXqU:xbJ$)` c{ cQt׷5odb@Lygg9)V#uP"a&}uw|,Ni޿G^axoCh:~ө~W%'΅BZ;HOӛ"d਷gAbCuR?6A输}0q ~H58K߆ Tt d]7RӍg\9NвĞ8"捳Md}℉v ?^Ƶ`OC M=Xfr]ħ-4틛soea[- /I0Pft4R3Fė#SwѼr!3Zf.l$_2"1JC&τ2$Nf).%]/鸩ֶJW9E@*Q;I1 5sukDŽ-qR|F_9E|<`w\ ID9"y a?>ЄD} 2PŁ`+g!3a“^>@G ȦTA(ǜۍ$a=I"S@hƯH=jﶒv' FN98nn{޵ZmOCn{ƅk׉f '' Hrz8}z:i:ZI0dmY -Q@pi|r.4 qgR7iR t?ore*&eYq=iQ]k[RZt.uIs_.50b|2X(1 )$Bƺ8֒NaqV۩7k$W[EPXV!O-O&ZvBȢkBȎAHӄic[G#'Μ˅9EmӊMU8 |ETc3d9PO"a%`=9IJ.o2U).$fh1f'Uaco>::[E"{~&](0u;ޱ& _%aJ 2uDsxYNقYf_wn2R:lr-aV2ە0̯{yD% nkXz b3?*朋.(,:݄cR~ك["jJȳ GW9MD8OEG(G6-ln>`#%Δ 7x<.b.,bi3PzG}/kru@LCJPɼjƒahĺ͹ AyĮŮayc 5uEfc/~>CK^3׏74VVP@ 4;ywuۄKWo>UUӗlZG4ƪ=XTe>fhg[SzK2h@?V cU&Ѩd!h˲L0GFlbvd17q^i'盠&X`KNc1BiU*¾CrҚELƮZHTHs +=CROițzİ"IGO^R3g\X y3,)G xexPy?[k fJp Ss 5.pH3Gxo$O#uQEShngwQ3i=@},a Xiw3l'jGZ{¹VT۫Ax-}Wp 7G jCPPi elhb@c4#)2[U/iy$ʩ6>>n Ի oYWč5s$Yot R EěCifAAh%_ @P\'+VH^,ˋt껙t 裐ͦJ&Tk(u\'}U<rS/aGjc(Ȝu[\ׂӓ` EJFjgv r${rOsd(A謊ݸ5VoYXՁn9+C -DnAʋ5 x8-*8X@glHP{EYQ{=]fHEʇJw]}`5iaN8Ĥ_t֙W%ba 筘\ҏ~m&p۔w\kĽ-¶BmW_Mv򐿏z }XQ;v>Z|)C%3[X6P?렍Eh/XȊ5iκGJ7wun#sIټoȨ@3$Y76/|bu<jd3Ls5;4 Wzx򗣧f8ː07~%,a4Q9gʨ'G$u[͒u`\erttKA nXLЕV?SO+KHRM$ֽgOCU8i`T6&c;SBފi,X=1P)21Dv@J~YiH d ̚B1ubodصђuZ:;Ȕ5 J*g+7xԖGUte;8:";P5ahC:ZW][aA WN%9bxצ7`Rݓ7g |p̴ʫ@[9EHː 0lA`2@vEA)j]Bo5K!WX[g ^:y 7u!], nw cuY+i%M⟪2,N1 Y3|Rs5}g^7)rUH-[KgG&6Er6H&Gw=Ģֲ"P'h(zNW<2` mOHkFd$>|X!~o3<#,H @^ꍍ1. 2}eӺa0͞"3 9+ G!.ܽDEUɻ(sL;f8B-f/jǍ@)lj9EqKhE)^@r'm-j-堖ݳ)@'ƿ9ԕ.+WjBvW£DL?"VYViAnK-O|!Ɔh V$ d0t7&p2RKFrRQyV|$C7kH|UaDR Imb(^vM2F7Ev1tJI}]!5t%2,OavO|z$Y@0eƼJ٨ҹ'F?)rħD@.@y5$ͧ_Eg\;:= )ruYWg<$/X4-b#&]R7}VVQ:قF{Bsgᔷ=(?߳H:ȳt$&%U:rؓX_]iHTW/=5B`l5O% B&)L%z͆ԝN{wO2s RG+Y]T~'2@ rm 8)JIt_FE9qB .w:+Ii&=h-P!X"-E3 [݃6@Ɯ}MIlp]*jD̜9EׯQ: ϓy.wTm׾)8Q|FvۤvIeD-ӃsLeFH.~1KqiwO !l$ Xh:Ywn=7"#d+iko5)] cؗ&mSR}$ZM[hFZ5iv߁  Cufф&g_U9-) wj|>ΏUP2-@Y$_"Qq'sXFkhqZlczsr9 Y 7!-ͮX,YtyaE\ Ko4qqyi`xlhL茷ODSP4G6Vi\H1Nj1rFئk97=-^!Z8w *Ӵ̧Wbֹ: F+RN."NYyOLCvՆh&w?*aGdߌ#5CŖYs:+z4Z7Q7 _ qyFMvh <{( 50"5[ z*Yb"{}yf6Eе2lǴX?H@dP+nָN֣AN6bM;&K/MƦC+Q]^ HHx"m@iS:!7^0'Ru4D?A ulօyL~ȡW|Ae{-mSưdm!Z7c>v3n (o2P2#-3V) __rrmkήLcT:ܩcbɷ+%R6ɼ<#ڍă-'m9_o{ Qi'{\}6];ǩٹHSq-{=R\7A?H=g+STqZ\R5@(H%1a|`$Pލ퉥{?.(GJR/Gus-^,VA¼ԯgxe0+٤FH<UnTw/<KWgB+.2Z)x/2T;wԅs(LR@{sw ^f&qn@P)yI`os7~%N sGcR Bċ2MB$w׶僨A!D7_g?"5L0p3<*}zL20K600C*Pu(hs5 ( Б+ _Oਆ#/#xbaVZէuaMyiXb+p>D:)"z{ZgƋ܇If#: הs}ݩ==鈢Mf;ډCk_?h ˓y7')րZ&5?e&v!`@-g0!\z$B:.Jmiُ'?܀JΊ%wd 7m55 894փR7 [ xW-sinw_\Mz͋#瓪 |Dm:2?2oACL@h>56@Ԋޭ9k֔dkԮ 5Čoc]N@>Z! &5=Z.xJq>C' cb~ȬE|&+גkl%d4Ye&AȂA e"J8[]8P6*N%q äip%۱k!z>=]Z1Jw#3j@i:ݑ fW7a86I0d|R'bar̰߂2y3WuY uaY'mS1ԉmrEI24y(/%ܳߛA{GUNf&ubPCXUy$sqIaS?5-qDD"!~bGi?gە=IQ"!ot!X3E%?vHk ilc+5ѣG{XW+B 4D\lh'˜ʼnP1s6"E/:G%H!= ^~Ċ$wa/Ҽ*QD7=7$2Z@B`oJh t30ֆH=QN]w`) zF\H؉حD% D ^ӄW#Ī <)jYg˒)(,ea{s&fD f,ONA`#Xga;ձJY,@_@OLkLCLGGj"|tȕ]k,LU02]Y1D(c˲W%l.;IӐ xh\m UE>=%:Y;f>݇u2Ԉ3Tѿ[[LՊqOg(dz.)ZYEh, ٜ-)M);5ԻK=uz.sD6l!݁H1ڳC~Fpn$ur3b;eIĆC V";H1QZj⡈u:lUDzOkWᒃ7ȫ3k܌wf&"nZۺEU /ja59?TO!*ALKN6Ykޚ2ywqK2FeXz[ ?IA]v󑯯qN0>tmLeƘUKE;@^Z!YD8d!^{Zaboybju:oYH?2F emхD7R*ޤKr'&o~ ySȲ1Zd:"v8нayɼ&TPQRys z3r.Gĺm.en֏ ۋEgxxk ve?q\Jex;bSVgFxpi:<v>+o?Uo$|Rߌ(aUQӧ󍧊klژ3+q#q)iP?gxy$F$n@;΄LwQ\OYƞkEP0UNmE#LW)"|l= uY__uK zneOs-QtĖmZ:꙼_H# X(z Vn>'v'T!Y4gFԾU [{z\PB_Wv2zn=H2ƎyԿQ97\ ?4yGi%#ηEl0r;C,̕e~Ԫ0'rk7ӟWA1 bRH/)f#0.o>8Nǽz/E)~*~&(ξjFF˨´ܐ3y$@J+jxU\OpNWqsNzt> ^osYOR\;{[taTPm jɀԙ_QBNZ KQ\A3OqxuuL4#ac>$bC1:W|^}*NW7jvՔÜ 'HbTi p<8#1oFt?iDB8g+GN~7*_JB4ONIv~&E0kQIׅA(ڦ p,#^]`2N2;U/ O N>S79@K.Ǎgecֶ%Swp|n'F}ioGIN% nD1xhNЗK?W^9u{tT ç:Ъ"|.Ѿuk/{d""7QR ̟p|aFV-ӅSef!u䠩#K@ , 4K@pkGzcRӜ]sU`B)_x3X`s%k$䯅*]}ޓi0_F:j5&AJtLoL(7.0U2q_tarZ'MbQ -_ TDg6tTsYCRѶ[?5&(󈊑x|V8lcu1s '9^2>.mmU:(v+6"Px>3ABo=aGG4pS{ %8D~)ɿ*H$.H $ f` esp77u,Hl;ώ} *צNۓ?SV8 ūr!l7)>P9*/5"ԉ+lۖ˼yp֜JHTC "ǦVA( :d3WBHCW,h5}AA^آywxiSݵo'g B%̓fMq\)Fw3f""Yٙ*dyEQʀ>QFşh_({-wL{3/*duGh8o8Qk~ü3vep`I#Tmާ%0M7]1haDXҒφl`.ewWX5xa.H3۟L;]n4Y@]B7uZȬH^ۭt)aFb1Ud[iGq%>>T:wD"`vεZm롪eragp6" 0ڛ̣ 4lA մwVCWāֆ#K [mv_MI! M%DP}ʮϻE{:.Sj6X*1mwyXN$77r^mSH><4$+_r=!}Koܗ%άl4$4k T\-0V c<;wIIe oql\N(qN|0#d)b]@>.m<-b[GdKn؈7VMQlYy!^io<8H!Dj)a6%s0Kk)okwask(@Օ JG#*M7q;XjI+?cD?[@,P^]{ѣyuh` xFd c@oGitx`ʽNUx>339cf?년o{$oaJ/ȓU]TP[fQAKsEO^}`EWu x/pʥB-ͯnvD ZuKAؙɲ54(eg7V,*f/.eG q;QP_7h"To;oG2 ;Oc$MV%z6B1 Ip3- wjA6oZbU\SXp&{j3e(~n&,є1VWv;HF,@lJ-0n=pHv.*_qoB=gMLxn8ytnG+ꏭCPK},[i"0 0IOF|õ2%`͓dAΜk89=mLi48`I qfcWC߾RCb_cœG  {[@ ;l_[,ۼzj{1cj28mcPtO__K5pZٍSz.IhlZ"sxUZv^A$+ZK%lAؖr|_@)o̸ f۽&jƊ ؿwаzouWb_ۉ0mol(-Kj4g󢖼i5~?K|8a~jR3vq뿑*K,'57E[FHY r,GlKq, 3lk['OVOiQ]-ȫ!&wVeJ+1K_CugI b3H&}J_ǹSk(._m es@{u&FU${oTYhvmPDm2Zo Q.qv1Nk`Yvhj:}B44TQ++„t_$=P ܙҍ N! PQxKى.P|dbrwǢgoY[ I#H`PRԀyTv8\Yׂ#aFicHJpF7Pu&RsRb:O[ ?$FaeSgPq0 ϸ.'l="# +Tw%j#k}~Q(q5؉)ƒ!zz?7| *,Zl׶aLl)hlc3\B ^#4RzYyi6g'!1isJz%jG E>?t^v ˹='P*$O8IGUƧzBX:)88?h!}ú^sXDI%(,8ܞ̏a x9)-BcYC. ; ěF[v٘ c'2q;ٴMA$Yj}<;Î eGo"p.\`'Ff;}d%KI@r<@5Z,g*d}h5r͠R#UV?{H@AFua 3oHYT6`쵷 I**aK he1Ao90>)B\"(*7EbLUl1QFjJcRn9yw_9:XRXdE ڽ:C |{\1uTDM*vޔ"S=C~agm4l2JL΁ lҙ=ellT6[ HqGTmoShkI+8w"mcuTEE&΋@ͪy7M)B'2m%c(S2OdX|KQVVYh7_=Oa4+cEq]=:"Hd\W'=̅ 1i *zx䰍4GXpRrn<@7sX[Q4rmei:!uc $9A8l/xno8] tZ5#O$3\ӸLL!dsqhܣ"y3F!jIM_cݼcmICJ?xaܯCdH#R__i)sJ aULC?hd|i7=-a_syIh_x*<=&e_;[jPG~\vZ@LsJXb H(U0Z/ʣ4agg a⺺c 6 njW Q,-x]d#.m:/bAIu\lx*ҭ*4+yퟜwJ3Fٱ] IxLqkTfH;oK o`үdpeNt 8d̟UN5ÙI)  1.s-#_>68[ .D@JӺIs3B%?IR<r"me&f>8Ϩ^55hB( ɘ^w+#_cG[OV}N| ϛmK_s-RO1 Uc@[C$6VMV_O61z|xQMɾ\7Hjnj]d9КۚVaՠ_ǏB3+ns-ϲ CTenC=TH>JL&dEQ@bGOTmR؄{ӷ$n_{&O^'3EPbsh܃Ff 82s<w37Od,2j8 뿽B|Mv3?w9E`U8#,Nm{$GMqԁ}16]Ej)?<}Q&vz{*z҄]n^_#BUF?N-plEsפg:T6cHۋx{6IQoc[G8L}C&UŢDzcd]գd0(TPZձV(hOۺ~#A$ԝTp}۶9]44bLԙJ&K r1UbȞh)6FKw(U 2GMxliAy<^Q{Sz@d6;?:TV0A}5Ix<$ڋj/ytrLkmgzZj)~)v;1]7FK#-VE;k\!?0.N? ;z^ͥRrZQ5tㄭU E) \^Rz!YʙXIC̅[/N"c hU'hr0;۟o N#!}C=:8s[̨0 xkUE PL =M 7_Yy{NlFāɵ&%bB8[Sٙ";\= CYOA,Ť6rܮџĥ ?[Pp ']IpղjªUIly-MVH ?9QXj¦43SዂC|3#0͢7L >gwe~AV>x0H!Aj$](T~^ o~Vm\qm8O"!I!:K=!{Wr\WO"I:=+T+ _*met5[noڌ,=gy9 fpPY!X̔*pe Õshcb?BMz*d 8̇nkܮ#rۣ[%Ht!T%lن~6}YHVƫ49/cn~6J4djj2|jobhm.b"p aun|V\GAT><`{g:i䷴K)Os%& y`~eHy7"*F@bļ2U2 a]-)5 /hj? [oI^R@l>((g y`zӠPHl8_TKHne-Nz5h. DE<95]$̈́51mOk9kI,r"ںփ9ZSI [7rI}@amHOm_Dq~b1 qVҝіˠb;4&&e@on%"L Unh k o[շ[1|7^2Bp+ִ80ܞ VaGxX! 5ykA3I SC-$rntf(C19\ t ecIY|cgHQ{ԚmngJB*50N1qLA3l/l:9pSsH1R]9jɕy2bZUbHy "Rw|Rv&؎>[ieku[7yl9[yJ5Kd. 51WU@ @3/] } =wd=X훽L|r@QcuBy->G`93U-$fbFBfx14_]L 7)=l{Mh}=UTDa=!'Qk$ŅOJg)pR"0]Q,6bv_ӛ z˜ZE[E2XE{]id8skE*y84:B=GA3XRey2SCG 8ƗlbR?!IvGFxN쏮Ʌ$T]SCي;u¾L(?SyŞ2<􊲢ngPxXYнd z jhP/[$q-̸gѺg^sWM >pau-qLxGDi@%VVБ+3$Qbiyĩ>'A"~w8n*`SjѩPCs('HS`Ij8(8C0b0"alěUA`P~1_ͺ~p`r{?9BY F S\rA0n^QԺTPvP,rv+$XCSG8(xa_gzkqGjZlCC?{>u=bx] >/qU  IJB!OL =rF q>Es]}rz93:m)aXWNG7+SCfiHpF\Tڼ2h`Zלժxl?+U"i;pjC[cy ĖpXYBT%oh~ 3+)^ׁa+E^|U)xIvxۍC>= #}Sk굫ez[bH |[#ImDRnf2Fv /i\JXٱU"k/{5fbZS+D1^okOʖ917҃=›X GM;*5Yj1 `_bt5NtrAr+[?eS:0?5Au>˒7e@ <w si1*=x]9!þs;A^ug1RIIMiK,약-N  \#XvgtIX;f1Ѳ;4k֒-,{ FaGx5jɄvMU9Y1{Pr 3v<4x%l2&r@o<ɞ~?1#1eɰa*U!n%ø~Jt-T6ܓip E@p[3]$wWrU "xz6e Սd>Ņ&ۅJM ePB ,ҵ u m"= ^+Y% 0vEZ*Opc6%FRB~2~f8Nk!W90L7|.̃G Uޱ%nּVkΡNrkmf Լb6'(nFGM8M(K;:Wv]D\y/[ 4@+$hlwQ~gS-E+"0s)>_˗7NǷ42ܴeC:\TP%ʐKoQdGGc >2gocfElZ,URk-QcHב=K>fMQ쏤ݓp@c05l@ Շ2Ve譝wyD9sPʉIr8Dkn{+RNF3UQ s/Ѓ%|;)ɂ/Sv2 ,"<5tp3k]CsL/"Į&2avQ |TޛF-y!#D>Y]G?^ fEІٖ&& .WtBT`Ncw^^#TthEf<6BS e\k1%`DM 6eeG47jZ_2/^+#!QZw@) q(E'>c곈,Ytl3Lrl2\HZ!ƫw#i܁!l^q[^>z4QfȌ9A~u2*Xcʁ7ItҸ JMVũgKRM2bZ'Q ?:’ezu,G(`WlXD?c%2]UHG>xtv*w!83 $Wk|3A1IFK8`*1wvshX,VhRLk' Ag+%48axf1>fݐ5˂xȒ; <= 3NB!, %w HLFŠ`6e@ w +w~yWv\.kPAKݲ CC O?-D#JQS"'w;cO1C'æYeHBڔ&uWqx%kef7Ӻ6:sqSMX5xLpP3xw"p$}8gs@_їBT[.޿f'y5ۨw?m'4ħr๫+d;9g6iPT*>h}'T%w0tO +`Kbw38fU,:Y-2xJSi>vXCl7-l|j= ƃz_;akxA~MN'8$ mDlN*@Iρ;FZC(?O +{8Pn޺DQ-]' t#3 >R ʲ| 5U >²R{3?~o!^_CO{xZ*y<W׿|aMBzm6.ܬ%ID$isZt7~F\>v6>3 'Y88T+ŭu;ʴ$Z2:=˧,H>y@7+ cko0ZA{YyIL7(}C; Q!t}7Z4E9! Gh#~b8=l@jr(-T0(Q޴ן\vڶ7(? yaK0.v-'pb}EDc >\#M5FUʱS U [p3r>3%#죒_g36"K[/p M\{t>_ra~iPfNwi*¨:Hfz S Lœr +h ;$+NHzvLDkc&ϼ'>@)M_'iV<ӑ}M 2Ev9z4c,E&ԏ<8{߁k>Vܢ ;O<CkYǚf0ھE QUy3CDsq) ܝ%j^6^Pgߛ08n>¦ 1W_?]>+gL\' |Gg@y6>(,%8{̊fxi `+qZYi 0f ͗ (~L40Ojdo(΋N^RqbD1>" .U@Ʌb 酪}}-uA,o%k)d)Нv/ R#߭dʜl`Uk.c1B'bxӶNVDLK :hq8AYgVkN"L9xQ5K%":fZ(rpD1$>CdB뱟YkT.mUE#w*K]Ԍ(8Ix&-2Ktcblyp&9uo1hq|T:&ao^[};",]gBҽ N6~"P?oq>>I$eE6p~=y5$c0ćJxA|/` @XP|g\;$Q0WRZK!/Mes VJW=]n3p-@1"c7^֋\ARbFǫ 7Rʹ# ډa8f8 ߰GwUHaxPx7[fH,8x~GVISa>)̮0ZJ @NLs&o;F%.\IM h[~Xu2+ U;cDoגץ !\׺a'1wˆ*ވ$>_ʉãe gH-B7%[3 )2KrwLJ6-p(H. rړM^.{9}VUɂX߸d\o{f_{>SG@,)f/<xLؕYHJqImC;+E)xݜL4F kz5]fy h8~NґnXE*yoUp,~pfl`>Y]S(dpj7MCPkG2֤JВ5h`Ǩ=/JO x*uzwnĪV41-ϲ;!K‰[WVYaoGSXKD#,amԜ͓jK>Υ1jƞ΅k֟ܝ rwZp4LxWn8h" }c7̅٨XۆX!O3MqmGVr] 98 qzZDֹi7armtJѿcSbEOx`effrH?5mmdaIɄ9+:g_z&7%$?Wx78!9Ya!VX3wЁB!+U0KvCր@]E2KkO36E,7u0Ϣ|zɁf}L#q\^\[) [lM Tг\ >#PJof $C9U״y;.3.N 2" z}=`81$?0/[rmH6AY)6Y(O|!91^> wৢ &NErF(2"lT;PqG!?NRg a#{SM}ЋtdiGh;NyUh7ѫV яzN"se۾e8?}Q( DښM i/w?Ns GAbht wRHn5WMNŪcxT"ښ3I֫y~s7jPEd%%O-phӦ c5L^`G~:0JrPe~3&8n+L$'P–)cl-UƝnVv}_:w!-]Nsjq]{D-+hUɶ=l-gr @\:\`!פͩAYa%}<E/kbVMvDon#_QgTK}:`wZT ڨEoټ(e#.؝@0ԥhoZ<׳GuiV~eeoIkXӆio]8 QBX X= a(NC+ᓜtPl"^kYUجA#,;q46TL΢a*#?3L^ŝfY-W{S@7 yzX GU_*( }U)uBJ+j{ ܿ k0z\FirԾ{e~ԛ(:Z<]Mbޒo)y92>o|ʥZHd;cbIWHPx bV :syyi`m*X\|P8h\"IСȧO;9T2`pHiLH#{P1:V6u.6{8EQVJ |mk3[ZnNmlۤ.g9[&q/հʂ brT/>?ޣvޕCepeԖ.}O/3x4Dl9fT%[BwQT̄D,Xv3wثEb>.m?ju5|tS6amɻuj#t!Ic OZirѢH}PRa2([Oc+ Z jEqAL%hǿe3JF&Bgל`}ۚomLjY_ vn- '@w3-*٢qE}uQ - e v$EҐd%v3,2j QgE?< )=Afl EA1F4_Ψo^k9AVKn:=x;3?+H ۚ A?'\6iNQG2FM@ĕ>L -kzהцd fM@mG;X'Y4ZQ-DkAf4 LqJ؁¼N0An{=7׍jzl麐kOKghC79A˷r<}:']b]X~ feni ,8T-`2 fIMcj@_u:%0ݲr]˲R|؏Z:p|>NV)AGY@բ2G2YETSڭ"iw8e:`Z; 5\&Q [=L[=Ur nYu` N1D y"XNC$<ɈyEdJ.MƠx+Zn&{n@Sni2m !UTME>R2Eb$A̍H5O'L9XaCQ, cZ%]f2)5:O#by.Us/7juL2˞{.=CiX]zk%ӍI߆"Gl]?bKSt돸wDG#KUQG6*.=[~jVPi;P,~^q.|(Mk(3[b{wACxt^t⳴;T5&/M16B I{G<XJ(/Jj- R1\BHYrW۽oL`{/lx)Aet"sq}mzqoU2ɕ"{ E==`LKGFgu:6.ri/އm9$:}[8'΅ k1+GI U!V Ik{?xKl(j@yfKr{)%c4|?3@MT$nף^‰JL Z[F#W] dU(u,unͯ嚛\Edj`j@dk~kc!+/[*`>X)ٮ[0ز@9wPU.[ wp*]9rP& xj+ #>~p-SCx )ݙ7FgYG=< JbfXp)AYLɵ:19.)3pY]Vўr&a gq_P"y(@U8t2qtlg tQёeRn_6L5;8 n."Lk3 'nYSQwJOki6)`b0ͽ3^rtՆf+0ژ+AExV$x +r?: (-OlVKS Ytj߭OJٖۖk. 1lׂb(|==Ɩ C:RuXN¬UYj ctSrL_be,J15ĸkߋcZ61V.Sґp-ɷWv[ >TP$kl^GhI^, 5mOSz>Woz81EkNi28oT)AwO$`tH!?}@J 婜R Ε# 1|?"wA+jJC)R:]0n ʹh@R4JcU{Og5Ԧ;tc4 ?L@P) 7✉L-2*%Pł P>{ġ޼,1(o>QΨ@ :m.AКaZꍼS n(DLK|^@/vCTH\kT$w_d'p'uULL ݆k9fs,^,P%2+Жq:i;zx1Pp_*;'!{S!޾I$4p)aIKbG4.Q8oB6VF^햺^L7Iŵ*HJuPVqHEÿ6C'J"T"kjJJ3bL#D4N_WS,pʆd 6[#B46$]ȓ{F%)o*. v{R(٥#]6T4$c[B7TW1ױA-XkmbEVZx/Q[R Y]im%X 3P 4d9Hgyr;zʮ2O~ ղy ەKŕ-j,c}*~ZܗgֻruqQo DOu_ͻfǗ]@m<O|6uCe:OފZĂ@o~eYBT2Kسbӑ2V~q( Gkqzwy#Ev[9Ј=uaJL}Jr1;CCmuk֫۴f+ m8:\>ݩVp6n27E2+ɹ3'_f V!8rd>!3F3=f@D@o-j1@!F p2N΁"W9RZ)IO_`WQeyR]y[L\3&g;}\HTKaZ,yeD;1^5zЖXqn!, qͮp$$=?z뜈@ , 4yA wl# dqDL饾j$d 7r+wvSX JX~9+7Zz*b;ۘhSsl mCa8^\55stn+|qBhWQk:Dty%h:d0&脠Ğg$z~)\\!c°S@rG!3 vˆw: @j%f 94I$tIXQ.V˖UjB}ƘM~ğœDTu~9gf:l<49?-VPǗD5=mML^XxX_ 9五î&R3 s%/DS/']T #7+*:JMcwc-Fb6cC F5KV3U< E##+aftShKЧ;"ScV1fђmu=Է8. JuTe9I6I)iAAr!MͣE߈?RmOՐpeBXwNzIT#jĒ5$/ȵq3h@憜"OᩈK&FzӦ5L{fJIkFAı'h|צ1nb G7zfմS(gcN6ɂ*LwE-_q^ҧ#mČ̲g.L+ PˎO#γZz-11`ڨ P0XZ$ak> `JꀚJ'u\cA{%ɯ~'ƹ,KmQUirv%c2[f6ZO"l{ɍ2 9/YV<Qψ{ؑS:'s,_dNj `{ 0 (Akuv'odFfK l^sIx+$Od=l Q[l\S 1% Woh= lINku!Jg9_ZYB pIU8Ծޢ# r2_ m9" w@S@tcLл#k齟{f(K燦-i$F?qt>Df]TICN@K ` zϢv2˄ch!hh@L {O_ϟCOUNhMtɉƮX 5/P1UW6AAK+/ .TVRH+Z}-,%h ;^_Mõg6HU Ҵs=#Ou9ރ[OX'c嗰Pa~8٣v4xr;/K1>~kxM;{ץ"Ɖ<6vʒi iB,,Ead.Cf(Ps֒my((3@K{^+v򔘋#4 =y Nw,Luc'mC2[ect35?6 &eM\L$pG%zпoxiX2$05IWAmznf]5}kbSu"+Y1N0S:a/Ü6@ghS18;$L_ccEܤ 2/ZR^\I-!98l`'.xpK^Y7iG1iޗj:Z=Y[Nr|.Bs6Jsy?E|r)bP.;ǔb@yt.Bw?Vq $77qeAr ;3Gl#5"恰w sD3[W#>! :NF瓡XCpw_(]7Fjs f {4&wKiH~eSO탩"XJ ܯ FN`6'Hx֜9Gk$W/_⾹pzg~_X\MͮXq)ߏ|-*{`Gb׆z&8'|Qq_ $2udv`7F rVk !ﻨmcGb<7/UکѬ߉ȅt D+TF ye+uشJmRP.@[FW+ ILN7XolkYX}%'O}]wDȔK¬hQt c_IL!S*i<0Ğ ;3d][z]jblÆR?= vZf!Hs)쓸{Vt|7VUWu*.RIrqY,v(=…\"7Vt;@h`ׄ D= g9)J, k:D$WwL =@' Mk;6FVt7`puiHbv>.%WU/SDa[UmK|McW120Խ5YmH <~.2ZtbVn౏fٳM>ЀG `.Nc.{([-|a(4K\U{Mnķ 2btx!궪1DfrT%^䜧&Y8ٽrE6ٴrKj{uSfA*B5e ߶o֌5rx )h֏nOg[ vĢl0OI'*LHVk| w\RtL`ጊjAI)pi't逪H?B*9QFї+T Vf"If_:zbehh2buAK> |Lk8UT;Fވc^QIG8p⡉OgN; u:^ OD1/Pi6Q|,?Zc>˥%*ڴZNǾ~NFRZ g? guǨxv_ۙѠĠDw%!S|72M^ЖEQ';!mv Sx26&=\ X:ռHTdvv >o m;=6^ , ehΟE T7+I턄$FtU"2%ij|_Oai+JS/B_񋵌q0}@j}hpn켸IT7鸄e'iGYHU͓,޲ͼ[/rˌ>&$Ñ8dya3mu߂c-'(:#?Ypi' ݵx 6vΖ0e͎K o)5R i /2A0r`%7Y'fb$i; Z #j3+Oo5OP{ѾQobV%'}` h͠_cwE~<:f9/T͒y,B][ePcʟw/%-z!rAuk06|OlAN9`0&b jwVIr"oGeaZ <d'5@KUpMR3y5fJR9Kdo@l)X;'h*@[G+hLh &AxU_u <YJL'pmggnҔ_`YCŦ,ZpG_UBy:?|jk,ݺ[BG,Z=K\'Q S٣<[_$OÄL>X/1ᗯaQ]`u#1\#cX|8n&wvp0*vniQBѵ*"C`~GOD\29kUf9}v4-l<)1`Ȱozw7 _Ҙ jj͌D"\WN$РU :JAPXGx_T:}vk}fm%oRȴ0|)pZ 9w58lf )% `lG Vd9?:(!IWɋXPJ<¸I>CCåy32wR su@$B2} :s$wwC8sF?̱YC٧9/]IJW}#)`0'|/\۞Q qA-(ԣw͕S+s}]64V| ;) .BSH`$@LNA=K},TW# B)E m ih4+I@7l3IC#:نOy߂*Gwr#Ew1OQFB+`ndgAFp>V,GA mxjg:N uÐ^`2l<>;I[+DVY,|qKS|x-W<ZĺsY[B(W2zL?R!"$ ctN69vg4{QiTHhm37m~|J\7ͧ" nv!8iddpEWa%x_>+*Sl;g5|tRľ A4lq,Ȯ)BK/eዳ!j&_ѱeI?nPُ=^E+ ':M{d\ÿ\2E=0qz=EӚ]Az5wp0ʘ4' #q0Qˉ K-z"?ПKj7kw#ke =S`Y1cڵtΔm m]͛<ӹVI {kdu=3k)*( H3$sKQ($. ED4kc߶r9MZ#[t E6靊;cch@,VTaЊ@Z}p.* ; K[pde#k)Ivd[Sr q4ǥ|>ihndfu.o;( Aǹ) ZPkIwNQ,ώ{|, dS`nTѐ"FnE)kY|_xcO<(,7|q-V&0W'kıSg.(GQV3F Ň139J竫W@ 5VJdyPFFtLVeL~wqP6IPye u9<ٚm;`BѺQ`<4t*(t=Mw6dn.BALX.M1x)C8İА7BlpkrC o:)ݻ $?pr 2,Nh=K3[HO{y-Sjp -wcGkRN A\ ,Ivb_?RS  vp(54TIPl#n V+)'fa 5w4&shtwtQAMيZȫTRPjɶ( 0`#>TGP ѯtfYi. w<ZR)|c@C<ĮrWD\]ř̝sΏ3Ϫl{ѵ-H}$h`Ռ2N 5Cf3}d@@v=JЀ]x!Ա~lpM.Br͟a`^=98tjjgN <-Sfzb&<<w P}Ay f)JxjIP%uTKY*KD8*ɻb]އV aAWEPh0*|I@9M4:g69Ɛ1HnG f2ѭoA7nèt7a؟v ᗟ" œ(R%6}+$xQ6V(,rYҡO'\͖16qF#Wj! XG2A02|A1 3/@Z{ȩ4HBHVwi| }0O(@>E3mGv%:yGPcT.o955.-F}75cKR}~âk=Z!븦=x< 5r^ł|hiFɃ FB70ΆE+5 Y~R/)]# עOuQ;NC̠Z%n]V!|֗~0d­ձ{p5u;^h'4v2셫9M a'RmMI_7U- >`.Yңod;~ V{ C+pk*II&O]^aS_!DhZ8ճ;Z7k_Ӕjh˜w?( 1=s&2O܊#"ARŴ9^<*>[)zdTZ+S@  [:Jh!c))X]wbID,?M߷F$ss6r/J7{6 Y4?P!@2" _n'-{oFR\[kg[}9P^RZ#Sr5uh! H̱? { PG'B*P` o/ӜrF\y3**hMt,٧SfQ ~ "ԏOW wǓ܇gwC7u =[aG9Iѥ@Y$칪>)u;Z@`I$j F)QD.ÅAbh=4>Pl^93dC$Nr"euP]R?u8:}zGXCyH!C *yr+sK4N"x(TF8gHQ@G g<=qZa/߿oL?ն3#䒐M»W|ySTƧa VG-iiGF-TJdtVtz[^[&0_{7Mpdk/e[kSFِ'}G'q/.2olA!ƌʅ/u.gyھN% ˔#IRAqcPؚ G`3.bP$]WtC vxh;pLZVdh> L[rԂzӚ弰W` yM >'$Ѿ.oQsNs q<N}8YG >9B_Q:|BDT5`SuͤLmDzow׌ S֘#9Cc /{`d<[0鵭 DgXV FCXm9ƤcC; 0uZp!D w 9>On)θQ3(Nn27aecĂz~DoR ЈW!+SǂɦinHRó_"<#z}wIV+Ѩ˘Hvխ*TWx(`+ }bG eg#҆c iC#CMHQ>VK` 1Ll8((:b.|*䇄FBp+N}Jb8QDeErv~=ɷhT!{j<)[>fa |L͇Ll*`j~x^#,M JLR~  -AvLfG&t+7SՒ=7M'e\2BA&wj0+\ A09 } ! ;MiJ#"X?FEYD-䗩d]6/_FznP 3p8X.-(J/qe/!JZ?U~DH Tܔgz]%-7m=l|87Wi҃r'͢1-du1AhލSdD{ 8lw̢-n`{jEגAU~y!\lj2&Ya'[ߖEpa7SBÄ Q[~`XR0׬OblsB~ZW6#%4ܮo 2'Ӕ ~/RvIZƩF!8i,m aj} | 6)ٱT iWbsK)E'DefhM8gxv秉r&=U\ǘ\Р58D 1ͰWvTVM3B$ER0v!`9)gl@8 զ&(Lܓj~۟_3.cL/YrˊĈ!em锶HLثgF]qdW q|[%s,?(v^+rD*RR`_{Uf 1@EaK49}MJΥ С5zvhǫ-5ݶ~ ~d(U+i_i\-,?X숤bBXӯOC?SE~";יm {AzНg/0%+]{g fYbk.My.^?oie׊m-Z5PF,M^^$ʰ#qCl l* T$!uޱvB-贑G%⻒yq2刖UiA?QDŽ ٷ ZyWˎ{@Lø@s,dɯXʛSlr4يeC=ڋwyg0CgXFωqU˗~8[9N)>{'1|N 6K]/[s D =a<,F/[nFnq4Y=xF`HPyx=0C.t3P"Vzt > Hw)b=3gm!<$'=1O%n02)o&{i_E Դ&}G {gA1yکaz4i ۿ'܈p=;ѶQ3}WfF nWFu-*!H۳ Y(t]5_-ٲ'{Y-២.,:1gl~d<$T v G.- kō?7%UnΚPX{)y>bF{]j4¤?bA;"TO xX97QF-!bXdUl'IǼ0>Y:O_a`z]e!Y{QbOxzzEisCSdtiC"䑞n~?[>i#|[Pl0"jן)=~am.;24Ov΀`<no_(Ow%=>kȝKj5Rzȃ((W6Y,B\/F&`RWWƎȬ?o![Em܊n{Q MA` )cE0yl /XVٰR4 M?@Yl| HAL)h+RH͗箨y2U쉴$ ڒ8~PKˈg~@=Itm5T Z`fEH}$ %"3ې(Y'Dgz㲪iƢ4ǼTWа"Tx.и;W<@eـPRDYI/mT||FBџ)PqߤZ{z-.ѣLpE$[`gp9[AH`rOB:_s{? A5N)AΝ-h1ؙ 6 lYǴtnٿO򽀩J_Ç|zwR -XU|Q<,2hUeQovq{$-hR`?'PT\2%"߱3U1za ?E7ҌCc9]D|J%UGd}u@`J*K"9%OUdm {!|eeD38!/vj+zq__|^"}#TJQ:pӬFZb8]=?X -6+l%?Z r2y )-*ipCF~8Pق+I&YCWc>BHx){B ר- )XvˇrC)̆]_Z{\՞OA+̺d=(f ycP>[*J`LK}j9UaaxfqR|bzZG߃g:im>%hP3ā9(Am0AZᚯIS0~֜]Hư7v90:).jg!JPjƟшRAO.Tx'FXnx_VJl5@gMXi Ab VOsԁΫˈIo,0_h[sQo,.|h} LfDNɿYgqE#4޿L\<`Ί"Cj\1n w0ʯT'ҕL7H8Fȟj;$Zc!4r[?V$;`׳{~UͽnH V.z5=uo]FQ24✁f O:WdOmJs|]rR-<宜Rɬv;4%x@zB}j4\ -S0X;\\Y9_%˞UW_?CjDF;u7~Ua_uӣzsщBpIg1gWFDJİeH7]?`wdo[7Pxqŕ SC X-údcm)=ޜypmvT9Wu/-8xAݻlB>B٭;e; tED'J(^175vn  H-՛}w 9Ɣ)-236kyd:lNm7fu[C9WBw㓯$C;:J5蚠fS/3D,&iO),_)Wj+Fu}OPB嚧JÌvAꋴ-Au{@ҧU/LZi~>{DMJ` f)!k77k T`;v5{o.cG6^?7!*}/#O݅:@㖔1'q}E1m9A|s%2"E̟ĜPKe-L17 srӘ8s>e򍉧 Kb*w eTu]$3\\HEsyY{Xc>dI0Ruk60by~&2b^h${C͖?ҿ\AYxmbeȍWf mJU2ɐ}KG*姴I*ӒCHkrdfqcloWxyVEKw%yCx"^ʉXHӎ!PGaavzO1hj?I LDp2Sv ħ25Py96ŢKЁ`w\;*L Rzū 4!Lqv.;eߋL ]3XfBjgazQfqVvn"|4  R1IcnrS3I F`! I JeJ%+ڹKeS$cW*e8"agB1]/u-m^OqѹƆbݤpPՁ KA _;gM~;)o)\k%ILAP&5&iVóRV8 sV}*HyK8:=Кjv*5,GМƊ U]S\AySjMwSVՄs8v:}QUd9i.|?>< Zו3r"!`EG;*h=7ّtiʓkM?Ԫw׺6S⣙QMZM'/0k?R_s#GX %lhR 2~Unh9~4NfdCeTeIŴ))MU]R1uhiNѠz_0"Pѹ]6ȕQiT:׭,(b$c2.jO!h%T:nmލ{5Ӣ6 ԽǻEZP'A޼mf//쯬}5YedQ]*H_; LDSg"Ӕd?m QuWš1lzqI 'g>Z^-s!Dq+wJ ,sf.wZh"2fcS8LJn5_7f.\NH࿿Gnuqr5CD VՃ\0INU˕n| SؒؕUT=|nb8C&YK龋Y~,Jɞ~*jͅ?| 6Jo@7lOVA0#b~! u[$av [g+!vb(MK fzYEGO/i BkW_RI(Tf}2C?Ef CC $\gTLzF lJ-&Y0RBPw!q\a &#!nٗLC۹M^ $JD/~#jP4)Wi3΍dvVR+a2b=Ah#=㏊s%36zK|*<"> /rHoO1z^"$ R1amq"I\%j:i؛1%c/V#貰i*cVGpFX%r5W+ц$vH2W#gݸ*b́LP J{,҃Tɉji=ִ0h-uXL-YT1Uߓ«Y }eQ( x+o vwDlsmOZ:H[}%2`ЋQg_6`p&T[d~(Z~U<h,-(Ϥ0P.jbgCD ue=?׿WK &0 'Lh\!Rŗ ;E9~bEj8PU{B}_(f\GYRh,x.zb i;>o>9S:  fIr6yƖTN A l=0 o캟(89X_׷Z04Fc8"zޭcs8(e1+\Ƥš>*@5EYVn[H,w}޵ N 01(/1YqZ]x"?O8g. hak`{MmV_ڀ)md/Shd2 iHAZoAZ]fN4q)ʙ+C?<#+FZWhU9Yk*6=\r/lq|?iP#7M5S! cGh\`  ˷4J8SBذaK>Umwu. 'Xiӻ6d_nz?WoQ /''o@;CPWcaU_ȹvgpyOƒSՄ\Ϩzy!.aS&Kvx_K[,Dp}tѭg#DPm{$_RtzfݐxiЖ{HYG)m^(ZI% =CM˺bJk!Q6$6OK3EĖU5ӛqk:ˁ@C2~T|rYs+>'R]_9cV}Ga=}:u@}wղQOWމ;ed* {/Fo]&h38t[| !xWB9]Ctx6"Ѱ^ >: bEt{[ kЍ_.{7{ (:4SkMXy(7, *ɑ21 C+a,~a߯I;אaN$#k #q8\IK4S>tlA5[9Wɴo߂bsHwwJO{vwQ NL;:ڄM1fN=LH8&l׍Su䢡kicbF.h` &vCShRX"Fj]橩f̸슶aqDj/b4KVNl-6%D,)^i\~qy:/_ꁃ򐢈kyة+\DZG~Yrqɵ4:U"W`={C(\w/=H\b+Gr_xLZN ZTxswMS)gA`4 |hVz&M)6KqhI-,AȩǮBPFkkjV]~ocJJ;Xk "F+csd㑌 2kE[eոz]yU$)۵Iνap;>{j )%VKF}LiyĭQQ4WƐt~L׳xrC--1{қˤSL%5z]K| eWB@Ga$Kx\reLZFdraę `4ф2r2KOIҒ,oe*lIduL+ Hxa V?˳MFX{x*@- iBۋgkhXTZTJJT{tmh [ͳ:ڋ$HgM2ѥ$Rx")X;げWM-^zƀg"i-heΝS9yO㜄 TjyU梓/Yȹs6Vo8_" vW]inYV0{#j0z]ŀGҌ ;7;g,˴RkC@<yqa9tVY.}B#`2p-l<-T${1<TGMOt")Drw fK=[ONmF] \\5oǾݞ̻ճQM'F4 yU@uVf$xa]ppcJmfS@Es;; Kf /^Ő`iC1xB2BZ{'"E*O%ˎcoP6ХC*5kNHT&_8,}N/Y3:]OƗFK-0/tn[ǮkFiuGRmM;y};掼'\gI]K ܫ#ͪ$.cHL2vzlq4>0"F]}AW0.BZ\%S Ua&~SS]!ȴB3 ZfipF6ݤF+KxṴ@g{ yt,4 O~^v~MǸ};-䭐PbXG92(0(CTrnTg6BBZ3SC6ﶂeso\#:쯨Q%Ԍ xeI6S`NdKZgjYj5syIir );J<)`=pޖ-Cd^b9<-*u*tp_ \}}Yv๯YżAC\@}HtT5fì ŷ$ .ȊQ^9Wm +O? cB#،N@ܕX%%‚Wcݢ\@1b9s[.Kʒ ~ hMcjՂɖRCJCg)y]E5T^^vӿZem, ve 7C2:n9{ % 0Q±4U(?C?*{<Ȭ>!ǃ^g6c6fLVY6ݹRvճyӬmRζ]v5K{,Y#6R3 vqvEN+&1qZfzk >r8{y!sJ{@b!i X$ 沄m 6/{@aB*%9+d2kG:JQ$,/uhmB\s*jqv0͜v!J@2+9ŀsSn~,f@(5]yXRY.RT8 4IA'\GRFRja&tTac;@yW/w`p0E!_MLosF6rSVOJ6ר?8e1;xM0`Ն7b.6f q3ρ7GَDv'?9GI|v9'`mGSm!OWWP˟O/ksGU^R IqR}@ Z[L֗)JEs˯nxR빔.7 Ōs0VQI<|Z(Wà M/-[7v Il!}:xuPĢt9yV"ޝDF * ae J)6qKNs"̤,q$ r +Ś\EbH9ؗlsR 6ڔe2ԢF%)+G_j[QXa}fk^V= DͿ<5"=~Í,%h+OVjLu*qS>';-<D^(qQv +#Yub i7Cy2\m3`;͢tAk5l7iק"QPTfbENa(fOuѹvUu@jp"PvL6a5т)AeU%rGoDLM.db0g'FW= ֑pw-~~`Ĉ wSV=;WM%pi j⩗I@X Ŭx#Ez376-5A{l?75e~1ۘSx#q/RҐnJU¯_ƫJsXFfFMkCL8UzxPM48c1]-5ncK=w?4 '˻ .0m'|x̩*ݻ( :T|2tHFG'蝳'T;&~dqۻ_1E iMjΏ} gqoq♵ ^8˄;fR@ԉĿ[<ЭIvqFl NJQC#Yw9 d$@jɽ^c&rAvk<yȲ>dC3ѶQ+rb#`;^#1x EP=[?itRol|17=77/nt\u{EUU7܄LI(< vԆ"qU['O8k"e9mɡ5 > “)*EZ`n{-6a;45g3E[ VǼJ٩Y8k! kQ<^_a:nVIgXx筇Ѹ~C:kT2j8|nMM4E 5]bSS:8GYLyrڈ띢ĬPpG צuً>}ϭ\ޓ7pS|][.LIf '!*o5B~{~kͳ$@[?s(T@vfyKLPZ{ՙ|93N#sϊhZ\;Z5=hB&m^`"$d>[չ*_ oQdz*'I( ;#S~D"1uSU1PGpۥLjHis#5GF[3H-H0QnYU*qI;Ya{iP,pCi@+Am"\i'>ZWSCr\Y~n8=ftpe2/'w9AxW# 3N\m~o|iQK@\l!hb _-w?ˡHjձV]ΠU{7[EM(!˪ްb/gW/Y_&wju}p̠br^w^14~%ZI5l ^5|݊,xp ZtuY1L^.Iܫ4.w:B4kY>E"c"JQ =k?Ξ\h[h udf  *f.,ȼ0JQg 玊ZOU8 &}+ f%3Lyׄq>>7Y{" D9GhiN)2}l=vi Fk*7HWuFD趞d9f\6nV,7ϻCa k}tp;ޜTl^ LS3L~E?1W}+$!GUƒ$C,(;l?$ AwmIl 4䱳& ndv`~$*_Z3Zw^z>\MS=vq,) -'1of8@T_(kсZ+L09|y{tl$` h߅w"] 4~V#\}O@7IEhR#:"2Z.!D#5Ա^B8.LXvgv#^2"dG4k+J=ZM3n,&r~7 qCu"qk%-,Gcy{ن="8I`QXl;niJ狳Wp/Fi/P%3Bvx8q)s^u/ie["lz, cmNmP3.ؗc yg՚*oo(k5|А=VRv3U"Q>S**E|Vjp@Ĭ2VG'IvXwg?8~JHD`j;&toncxEtjrC:e#k,*oO'ڮp{ L#H.GpŀO[2\[#FuJSq[i{ւ5&  ݐa\D_e"=]B&P *xl{c`OuP``Y%HDڴ)BヿyW/~uil~(;yA;{e{-uAjt(݋^-8uy$>]c8Q%ۏ?cπuv$fP8[0<~ UK({~ ̒\w{tO9Hh^ߴR8ֹX_K布-]-P|X\}#ptP{=?.4s|!!e3}́<=>p 6ml'ш!b?1D"( leښl87&hDٲ~?t+P׹ a5:Dz9^pC X+U8"]?,<ފdFan;ɠnE~9:m|0U:c ?e3]Z"MS7"kzA/CUu\0䊋aL!Quݕ4/=jQ%uj¾-+bqM軯QW,٣lR:}H`R3'Fᑜ%Q@׶ͥ`tS#HSo~6Gr?lݘ =HqX[&3M~Jd!hC~OtA6XB]6rT[(/sB$UI{෠Tb%!>hZ *9~R؁]5 N ӡ03=Kc}+4kP6"\4ن\Ԥvs}Q8@: /}ʜ S>GkJ3g%u@q?sF&t5(̨FN3iaO:RyHkt$EEN9ha T(&{: {2[U#"& e+󪦈MyD01y9 k.;MN3M Чr V2JdNSԬ5\n }|'#[p T eЈT;"P(ІV*[jĘš7+XBm>e? HNBYa"e%UG%)6 #q_jx@\5XPOͱ;uO4J_ʵwne%>V((]kvMT=Umߠ!S)))$D 7~ufuoWr X%XlFIfST}3щf=efGy6l| cN ]OuPB(fh nbySD]_I=Y `Z%9 o" >&o=[ܼc>V 9DI5XqF ZV%+FقPykPa_zȏMÂ&V8GD]A=qvW Ui3qFTxrGFOAY$qo$[{$O/gz C6]vMyF޼X@g]סZ,q~pf9I- \IEod|qW} mTez&ֆ۵Wy(|a J~όD *C& w3@ô;R@ƪe+ww_[ЍĜ#+i%3 Af>eis /FM&4TP1A,Fg 1bEfΎ@=T0К@.'5|˶$)2Z=ѲZv 趿M O|>J7l\osďٚF%r`[+m&bmlfVoěɛ.m~nA0j[_'*NSدNĸK֥!O}rE[u4cPLn پd,٩0:zeteG|VT ;fCd! +֫8ѡddl[16=t(t3%HbAթY|13F?xN.Yܔ]:ӑO DP(S]5cqQ{%  Y󕃙%CEs&v^B~'~kh۾<_gZRRk"]'a^He \Yb8LDO& w0U[#$Bw.Y(8 >qԲBSF.Bn(_cn|Ͳ1N&mL8r NyŤ nO`dһD܆MSA S5Wk]>iСf)O9vr}2m:ZJ:t*07 @QISo)bƏb}lA4`XNr>4:)Ia}T!16:WV!b.IS>c|o8ZРVFhؑ+Nև+\ؘfEƒU$r8VqQ|`A'#/ExdsnC6B0k4{gȩ :eah-vV*ŷ-GеTt `)o 6z.,5nM2"#xڕZIjņN SBZ1鴌Q-~]73u_u-Լ]uh]a#0 {KANnwlCboa5f#B+M.z,BqbCDcPlpPO`k߯i$6UG\ a&7"bw~2o]2Zco7!N&|a>-ӎP"?83 3ƫ%7E} -T?i:^Pw~BYr VV7=:=BV_þEH/ l)wi6 @ ~qc*jn6>~)Ck1{#l2 V$ڮδo{DB02HQ,OXyqm Gփޭ-'K|M\kbrgUoZ|U$#FW`}~?cu2`-X:\Mn"CozOSX?h.KB YW؁!+o5nCZRLμcW9n.^srTRt-ΩZZ[.к/8dzȱxSfg[hcZ Uc@ްkgg$P(&P0246HA75-x"=kR;&i] fό#aYU$Tw'_!?a WZx&#C:E}ϑαiqDcwc? =Mvzgҋy0Ne!n@2ӁN3"Md6'RqaɑxǮ~|*<#{w}DiWJzÎ/nL>4vOhla#/TNE67#-C_G -ț # ^ ЛY/dRVsQ4i)VwЋL1,qid|&Q c,SsJY[< jQvL78w]pvsUp/0? >6QTZx*!Z;∤"$q,Bߟ;k1w+WQl Ox5Yk> KK b z~DB*fIBx鬔|rT(!OFrit2*SoDےLXDᣆXEĆ8=+$Oe$'Y+Zn&έ >Tj|O)Y͂۸]%+e;4lWڽ7o/偙W@%t)-(p8510r9nwQKYH u˝S* 3R&8{䈃+s25iZͲ>b_Q|p7Jنb !ƪxiWW³,:*9FgtsY&IƌE͢)J`d1d ƽA7Wӧ^Ĩ|ϯt#CtQ%$Z| MTFN/cfb LtBZR^f!+0r@+fFj.%O51ĈUv4:yK"yIx*{<>k tZSbv>9-I$*M.Un,K"ޠ~>߇ٜf*JfcJzS<=q͓f`}elGb^G1+4,>hm9&Vvwdb cυ!4>hDAN3I>ڕ>&Ctvvj*yGӵ޾յ,FT%>uSǀF0Q,J?v_+4lqND7Prf')15lZ´"߻/MW֕C?wdK 1:+#!]y' n /G&3iet;-&ZOY5pC= Z,\Qk:}v#7nyM0fUҙ)RdK1w{o2F)RG8p!ҚFD^٨?E:0h+N-3_VkIU_KM^!٬x;`K͏wY1-7pP-rD~Clq~M%{htz^@Ό='iH[3֖ڦ. b%:裩b`AH^y89tR礄BP/_Ϻ}?!NrAbID [ءy2" p>.6EI1ŝ/ {L"~R%.AۙݯWo4&7#s q5^s'2M$.\wzP y+wJ5zF}Sq/ h=,K' sUP1OEs|&V]go^9\&sN܊Et[ѝ*r&A QRKեiM11º2Jr .`zaߏ0{[,J *@{ASM;eBGd Z{ÐL:!xJ쮠!u/tM}GQEH,:kRW :|9}Rgs1aE-]]ZH|roc}ϼ {#t8`Ijeb'C<]P| xmpm8!/7$,_ܸa4zg+VS̓b'wVtC Ox11.|E 7 x)&z)0+bve H]m3/)3 yC`\W_Tb8;]mI'˯jc]fܘ/؄AimR[{y!!9aZ{xDP۱,5Du,7] <.B q(z@j3 όQ&bS082 \nG 3U rOmA'I0:֋#TH ]t{.솒 ŏ*Q>(pxLnA:X5&+!7]:JwvZE]B_}߂(erA r| ,MMs,-Iܔv/[pwtBuZL@XZteEV?L4LI%bHKp .7"=cdpr[Avkm"r~ Aq+xrU-nPFù4e s4Փo[~>՗@9'Y7nY8`OQqp5Ъxha8]Ks \iiA&-g@n6H'LATlHowsPUjl)&ća:;'Im2&c|#Hi==k'X 8^]sa0]؍?d_Ҹw]kX0~Y̥t͐r0]:VqMz֋7QI rԒkG* _y;xռ[I$7#r]-ݨx%ykzwK"N}#d!NPM]7147Dԛ7ɭTTwyIz/s) _ȥ́0c&YXӍ_-p]ߌ EhX )ԑ{O5~kw#Z .L"T#xqwfUoFiL,#7$wc ' ]X2JŶ1^:D;U<  T3z/r֭Cc+Emj~x$}ymXK2]ĄQsrm{VJ@+W Zgxh۶&bhd8S-ϥ{yyuZB1c ծ|9OR-Rۚ Xr1mcy1y/ǩ۝\dH㔅D}檩J !LjɽsC*/ ybDaw`bJ+3O.'4<ߞlgL#ՇXD;c}JϨZ3A2NNKWFGD 1P쌷ckVTFkih17lqa6IX76ۻoSw+$6J3U"AS*='I| #J2"ߦۻn~{ A(SG٭zN^ŧ{0?%T!jXҺ b t'C`J)BP,4Js*J5H]BRwvRKCɷE +vU}l*+LahSx$E!p1+po'DyjQRb>%jB:] $Gs֨m/pD]aBqDƂGRW]̕+0wC$nDz;i9)/m8Zc@WI뜎Lj\"C>A;Ш裿5E}cOm_b/Ѵ8lX%2Tm.C/й8 w  .ĀT 8| 8aZjd9JsQNՒ!"%4" xϸQx-pi:r܁ٌ ҅+o$TĆ"u9/pËqJ AE[ϔ@)jE4>m.D8AHB\C}:&nE!!M/|yA(eg4hTRK9z/GBtGƮqtDqᬼ<خ ^!]NԚt2_PV>ܠ7x 4bqsN؍nkj8,lȟԫWT'͎ƠLUtiOėLeIRe/&XmDCYEXjM~lZ"S7'Hpp߄RSСI߶E5Meg# Y1 MʆHn"xpDlq0b+MJІN`mpa#Fngy:r >eg3LT 2Iha֚TI Ke +0"A Aky+iw mZh *W Nv CpѢc&"E=$XRω%g6eg227Ea73pâ;>.h(TFD y%>UOpXEz9_ݿo3IQġŴ~W!/ ov tZN&5 ۯɐH:9l 1K{1'Ursbҍ~h޽RZKCTW]؝vd%D¸ٮ%HyG +wQy"ivA&^`J#w*UsS·ig5sQa%Stεםp nz*TV%/=Ռ?%}DU,ly A:nκ!M'ϯ 2,=0]+8)ìN#-5t>~B53 g}}H$ܓ0 ҜQ4˾7WV5;>]!ReN.o*ZU hW!ٚɗGr B7DzP* B/X')PhU] )(:EJ86Ee^ ֣lfe?J4m$7+6JqÀhm}>?k#(ǁ Yh}pCz]7(TY\^Y~$1aکsEDã9ŋ[{+5*!?3=ײX7 2W\=ʧGTgtޮI*z]嫗2SEBD Aۄ[}W gIMX6 |isARaI,EHsEfR8OH=ٟ*_lEol$0~w-h2]Q+L7"hN'5.r!̪?!_JK7$*.%C:v;@ ^lZ}{(^V͹kB?mP;iٵ6zHX%O>Y'ӚtA_@6mQb'e Ffk vW7͉ӛ*~Гyhޫ}1VQrm0B eJ_0kƌ~nIƆZ(+=Ư!)Y)CO w/0qҁ]xxY3yTv𜐬P4v3T5Շ>btMn79(!ѢqIYb㙃~Km`?>W C-8 Zbpҏ.#8Ԉvr)zOg9*BL"mWd}3#.C@]|AYDWWTDv|Jbrbv=wtv,_Q⠋®2?w0uHbFQGLp)wy?1|H{/.nE(mP8jRWZSjڳ@Z (戬DZ&`f3_sGBz:6mk >ak {f= % /aۀ+ У蕈 & ,{M"MG̣o")*w/TfCp]{^IL^8UJ`׎.kD_yE0#&7aGOpI13PNu`HаU([/o^V~x=ew`ܑ?(!^֜[XߙS+|TEt`t4df]Nqtt3使JcP1{!.rv;$qq%u : s{Yϋ4+3v %HɭvF[J`#_!:IUX"d+ CQ,r`$}J^'@mbPF%Axgo-{ uFThWil{'a_K&+s%%.g#X:. Yֽ/Zl4e rP'H0*gNmfֹ~e ʉqK?2Tґ2( *d \ J^ XV0m _@MpL M$p [;AGb_Q;(b& 1m"rp1)1 /?r TY o**d\0ߊSBH2>g͟3HFI Yt|qg4d9ݞ7tu/X ejG`7lL:WfB N_DlciYX`cUFܻ!şuؒ ʅ`DV6/ n+fdDḗ@AsaK_ 8_\~dB0\%}]ј4W@qlSXLHsC'.MCb3 o|<]t(փIesYbJ.gCJA\6=lCI&!J IڇQKBb DKF+qI-݆F{'#2Z {yJ=P9[ޡש<9.jRd{n#`v:]{{nzةG~Nί6@A`:s"i:Yn`jilϑiI>n:$+Z*HຊlakLέG._; ]1Q2WѾٔLrӹaa{BOYbі<޳7.b*yN5@n7W|n),8 iޅ|}S܉27h=whXb4m'X!McKXeHd|L ;Rn?{%VX41vI (aGş8;d9n/|{xldR`3n)Erbأ&3Z<, |ثUY;"_;Cr8QI2o*w#gO~P* ?X3=I) Cu8'kh~c_ 5l۞+ӥusQRYDN)nPzH4-~ J<3,~RĒUHІ3CSYSI,WE@Fa&'ʮtkp+{ y,—J|X~g.!CmО'nۖsuhaq.9ɔn3vz#[/ZgqqֺٓO힌ʐ+kbX J%nJWu!7f9 Z}7Zٟ ~Dz7zՃo'RZ.x%mcr,m'E ScCQ8"ys0z} |CKlAE%|Mt7 @"Q,˄'־*ukߘ+UaĀu+GG nkvJH3&< sĎ|͖4gdh A#| {YSZm;}^r#0z=|kV>B ʼŕ0hֿ7Y;foQuM&)>|T~eڙozb eT0߂fMt$rCN-8|M7)yIuLFq$~>}"|nmBElξĒ6b!9.HY6oIJQG {L"n*ե񻠜p_3P,QoC/t X=UIG|ʂgyJr֓- IkXޕym m p,;lU;F츂?$Y=Jl,ƈ՟ ڙ;e聑y0%R-giWY5ЭLY_ʧQGf̮y&cf+{RԦf-BHfi䴰E{ #ĤJNOwo b~R0n;!VsxN1@$l)Cs0ψ󓚋WOeci[*W &p8l &_}7mj t^ljݏJ7*X=wtfhů< T0-%{~,.ב6!rHr- _ Н/3֯W &, 5%EݮWė:36";!`B?1Iڌ{ ?qRxzdB,mqǪ){] XNjsx!ԃ>! og3.[L!ޚR3CCѫӧBg-"9υIO-mwр"U zA&n6WYI$z |fߵ(r4X ;+ -["D%zw%rvqǤ-am^Y*s5ɺN$0tynݦ1%.XJ uqN\1fٓ-?vFF>h0S3Q>AR($?pY'ޱi&IsHasX+ s'' %ڐ|}~HaQxcϾY/,z ^5M?1eǶ5-)aXm#gf_\8tTbALw̹(%Xqbϑ Nݐrmd$vq,.e |VXW< ;@Un ԧaQÀӳmQC4M2:; UQ<6%c+*u)ќi7~3xcMm(Q& ew\@R:Rw M(A3AP̹$Oyٯq KfEBh {^V0:u #80r-C"Q|pXm^2gF`N׊Ϻj[ӈFj492 6ૃ6x/'#_C4$:;jЀM_5V>ȼߒb wk,{sb=2Ɲk͓X?_Z3*Q\Z ٮ W RF0W&l:_Y%-F+ߕWڊjv &(Mk)SGL9X&ijO09=YrиeC>3#To2\dV4"䣩P28@|RqFM_{"Q ~&}!`힗Xjyl "a:^؈052YaM< 'FS6*A-H 1b~ d]r !n9叱WQU7+r gWGstEt)1UF^`?JvufjK~Ɠa `jů6A6IV ܎6S՛)ej0#>˧kþH{*Bu՟6q=Xd%W`ff]$zqݒ_}yp1tH'"'IV?' } yvpL:`\0 3G4p5b`,("ٮ\;67:AxgZNM wzrц(&;fiCnȳXKZ_~HUVeMzKo0Vϔ LYVi ]Sp2%F |Bj(6G\khEizlle`LÀ.(Y p7ǾM.ҝˠ39Q9 .g%F)djAK:<"ȯHXdq}X=O B>rjuۂy`Mա!3ukMQ(H" ɞ[` W 5l.uhD6BP=4u:x} CX iNo*9^GYa U.BYFU iZ$-"x R9ZĥZש^5,Q⋷H JR׷;~>Y$)PlF»&gj}[Ux^abؐ0_h$&͂$9Fn&X-iOmAu`29 {fJ/>%h5Lzc.y;_LG<:x!^^ xs+oOԱu^FNM)@>Vcx)иFT&U7=%d}˼rokAG=yci,Knts3A*o>*݃ӷ8#Ivl]#"XX)k1ɋD6 E?yf9FcgPʞR Vk`EUnuYz'Iضj%/Ap!fyZyaJylpf'GK4HyԳWR: {_)3Y C> 9{%?^>'aZTZXfNM'zϸ'P"qQ`֭jE%)cO8i<_q-_mNEs;zA hW"8DM6 &?Y!Wr@f[0u-;K E#V|Ps|J5eu[o.MZBO]SS̅t82{ |ӧ!Dqn aߐrEjl$4| (}~m*3n@qf"B rR="ߣ\{m$tH@t1J,)eHR Q|poqbg̍<\!_fQ6)iڑmD]a6Ǿ0IB02CVE{&A,UC '¡͔m /b7- !/H-< WB[d "wiGa0[G-"x#? "ۗ1kgU6H`K!v>?rVӿ}?KVU֛[@H1P@@'cxZqH"W"QO',mlUw MŘՖ杦 SQEV$zTF>rUیIT*wzV/!O %xTA M3d{.[ H o\&!CN t/NXD̚al W2XVs1Kͮ^GwyDt4PM][&q}HHFnv`K~aɉd/U4Bsb^.qQ5^"^UՉ|Vwt\x+q!(V}C'Y~R“/OyfQ#^c*AξNdK15]t\6 7i݃sώ4,~QAM#~"yPj>DYqld^sw26INl9rAÛ?x8{c=wr[OL]Gؾ0.ۘ耯Aqk OjʯŁdEUt+$Xu91/gP&կP%Efulmm(8wgy"Z(uWCN󖣯 ?["paͮetxF!if8G$Q`%sn[Z ]Lܒğ6Rڈ"5yeįV o0ux $AfH9*űeʶ_ {P%\)Lf>/K˿4$\z8E]IN8}#L#;X"zig;KJzЛD,_J]` @fBŋ^O8ث-G([ܛnr0/p7$%//ͫs[hGf=٫{Vxl@K07=Icq{A՗tI >Њ CC|s=ULgٽ^v, 7,}W[Mâfu]- 3 qg1zvQY9x'ʂZL*RX;WFbUGJ=덭[K,)CYv1( ޚ4д!w!%ԓ2n7u);æ+'}HX*~.AeŎG.t0P !- u I`4YcgG3IBUH *eK_THKS% P:+Lg:Q^;0Cef6F JLPǠ ~V=uKc]MmhΕQv/ V#ka@"\BQuFC@fO#bu +F m/3\- U!aX7{imie"}֡ Uc6+Dj￯tqdqG߫JP0բ `Su"aUcgҖCȡ!P MHzi7p m`X6>@N]?CQҮNhŸ"M̌ၭL\{N =DE4^3:3R!Ĭt\I{#_X!+- J&9v*,T&UsxFJ?- ҎGwG% 2oV Y6S!euWPFĐǍ}XxrKLz g3T dLS}gB23X6w XBG:ԐK(h˖^ir<3]x\n?AkpoV| (Y7>ޜnDbq!ѾX;76݊vRls68М_tsmDoUKڿn]E9Q PEz_~8r9|a;ϚEY`ݐ*B_ҷJZXVZdO-6#BOksŻ@3ޣr\fI`׼'$*LF%} *i/7{ɪOXORgx6WxI|[Lk_=o '`YIM<|~8Js[9z'Ȱt'-nR*@Kzq C`62T3vC&Ωʤ7ITɤzvD ?]FvjgC *ڗM/?,+gKlOD4T x2bڥN);luu^rNqKMԐT(eT5S,DhG!++}O`CjցL5Iao܈yqe9{6I&ƨ8! #uM% ?Μ_ W0HK5oyɵ"qKW^HqjX`"v^mokrH&v-/h/S85[f7AhG-r$\@P\YX45 HMLEnTX 9FdTsY/إҤa<.TO,`-v-\;l [38G:ֱK/ͼVzZ)RW Tl1NUXT"wZ@F"WDIQ&oӳ%p9RV,wΥ$.MMV [C-.P,c!9%^%cJxȽ,#0`a/-`VSHx6KKDzC@Y˺"fESWPYo6asX1z:IIMޠCzZ 6"Y{boY +ǣVSP m zU+>C<3C&pYttw;zjXLow,G 7)HYಜun5Ww_/ ;BzKX抅N<)\iCu-* ;fO(ӫ}#V= splj8ua4x7"[|=#hh]3} =H؉3@FI,4,FCdBHǤ97WR}} yAۇԛ= `"f*tߖ%޳dZ@MrvmL;4Nh zL(AxҖ1GגxmB "LpHim;,% ~qC(xb9l džnas~3xP1WXĹIWAMM(V tN??iBQm.mrê.Ss/ҌS]c3 ޵U]6ݮ/ z6|XtMx]Nym:r%H!dAPM*3)S2IQ_>Z/&AhbD䶸3e\f8*zx6`De-1N4W&>̞ oIp( ^~9aCQM7u9)]!'ThRhkqJ;nəÕ{gxІQdAacpE- 1I2q N3j9( hXnCf?u޴&.҃ä{9dcՔᄽL^ԛ!{ZB3j-?Ss 9{LxE,,,Џ7@`԰wD7-jz5m֯%2mІ#*x#RĵHhX7?ֳSa\os,^ $f=u=F)#%fYQp^ח%l,G>RFhZ'IӡSȗ\6doHivKv%CEI3|F3ǼM%iJt3Wo9}WF퍨3)F w}fgQPZ{LuB y>wvm}u9%%{0ߵ5jR?LpdZy~Cv9y}s$AGw `ڎ'J. ?uAW#{rnlД4샶+4t8?ˮkŬ$xp/LS8IyY!vS zT<˧FӐ9#"] mYJDH:l&&ъ/,g *`_rHLwb(m=~.ڷIaCT;(3q,SH`6\y$ԒE`щd~'dK*O4]LihiًYY5O+ˁ=/:U-˭- @7{.pzɜzt)QO_o+1h7:G靻maz9^RZn5ٗAɢwg ?%:.uE"Wbq6;Mpf}]gPFBL4y~(gD#~gPRE3%gg ^d;I/b^ĵnK? ^>dSB$ X=?άVNEG%d% GR~ؐk>N'Zk˨3!>O3ݰvB8H>t Tcm-r BU x+܅g1҃?CZy~nt̞.ZE׺Wڛ[=HƓ>2/2!^8r et [TCvX^hӓn:?°B)hH $4qMQo<.w7i1$WbE8勨GФ= FVOMw Ճsf|%'\nHm]Zf(u'e,d<J#uIy9)l WwEE|iu_' >ŶJDŁVيjptuedS S&At"BXD:O2@K3ms>'6'H]w7/]Fx~'E,dś?^h撠掴"h@c3^D-M8 )ÿᬓoa{Qn;G$s# gd4uݰW86B xΔfLSxI9VЫR߬ ,晎Q16-R+eCr.WE<GߟcZA^ ;tŔdqql<7..jxc7ub@W@Ovmjo&Q9F9np{; WId@3' ;c7>Cp(n~ }. ^ jp{߉v-tRX#jzvpћHL*/1rJƵ3^DIOyzsߠT&j^[#zGoNOmIbF*8P=QJR;حX^dH f"oLHsQ(uÚ]\|N d,LT#o?A%07SCxӋ"i#eUؤ&VEFl*S,hLꖭ#PD Ǩ k94Y @Cۜ`؛9MBPdQHP]X&5w3CQt#p D,3K Fdn٭,d_{Ɋ'7D `t;%gN~842$vhJ.WKFwxQ|>)%/^@WPpYؠ]ŊdgAut`8eV48Ƿ\eSzA$b@xH%yяXowʰFhƤ9g%E}u/G$*{9EJbh"AkեkE/[ {ް;6.K>. u{j3m@:A C8L E|d3t}pl>N3yk1'TWLwWѧ c53Ku@ZTj0U9a5'w51c7xmޟn)Z~s*[\Q/yu ]WF}K"-/*sE>t Cz=d9#my,g%^J#蘛N/G{ORѳXdބ>I ><zNp÷ǤSro*toaÅhXߞp2!Zğd;w 𣭤kc 뛎9HtrzF8}6&#eD8V }A 'N9}:Y]' ̠G~qb%Pڈ 4~ouWȁ݌Q6{5. ,w uH֥aYe~EYtXkm)P Ş\:s(mPCu. G`Q:+!p@j}Z 5cYeÇSegKV Zc G #ݻ [..5q,4_'u^;f6{97n^C 1}OHcaĦY#+}<c䣁K'M֊u^w0nat|[帏.A fOWX O ebD/[jэч(%!w?t U#Lwx` as"DZ o߲R~A,n* Y>% SˣiT-kwr_/,$per-N93 )$7 ٥C_'2uPf2/W-QYWUexKو5tmsӌ49EtKs=@o- mqtbɷ"4}<[p?\EKolw9qC;EuٙCuGͿbn1&F9#I6㐼hŔ%pG"#3I3ˋ>B7N21{Q6'|fVoKJKh{oH:'S>XPś.l!?>Ͻ(|l L0ġe'j,>hdÃz74)zmjdz.eFur>D\T(Qs%Ee 3Q!s@QX)ƞsEgP0MW]`P.YdN]+OJ!ZCXAm%;aE'ٕ'Y= Ǘp_0 r&}nb(UjcRdLץ 7N Y ˺%5m΄Ѫ$7؈".0p`--{!X!4qd:d7Jb5;AX?>%?L^ӋwVuIrX+ 3$LLOZHuE ί;5Ґ`l !Qۙ3B񩝜75~U1i0tDwQ/ `4oi&sH'2"s@Ta^@\MKBK$B?9Z*OksW€6>h>345F-[9#0*4AKgB=C%3d ۽brE ^m^]IҿڽcOO˅Yݿy1%D 6uccMS06#E g_+'{l -FFtUȟ^{5HV;SE*1-/5RU5yz9ih Z o/iW) <¡LNdOb' x6.PM>Vh#Qh`HV|=HX95%7:("ۋYܓ:qL#*ٙfRqd;|pO}Jw2`Y] hP*I7L=^gzz&8X[  | pO%X vysE";&?Y7[yKR%ѷzXO r7ړ0,3b4 oP=ayN\ư[vn1=hoQQ?.ƺnJZ} kf`՚0~OQ<`}[ )8CfkKI1Z˘_P+3kaAʰU7$i89ci;L?x^VQ+)q`}eAӀGΐm s\oQ6#Xb&Ifnf<gְ{ !\u HMֿQ}18mRT "nAT{|'f_gF#G:UXe_a -KPiozhT,";FTHBke:wCb7fK+`E Dj(0想QrdQ3k 0j"zDFgD W^2"UC~)Ĕ^chL}{lk?IY)Ȳ{̊C/G5IvPrƬ'd5|e-e!.#zi`Uσ=nm 127AV" Վ$ Ƙ}@IikʀgTrY0fk^33*}:{̂}~D5 /E>m;TJXc*rRO8Qʆ"L%1zo4PFZܙ.0$#~x'xv*L{-xK?InEEGI$d*;.z분?f){eYNƖ;l+i~uS^Ɛ[!1O!/_LP>sWS5eAî`B]:9W|C-|;/θg *7;Wl`~>Yڅ+7 e7,;&cOG<[a:DB܁j+rJ [kTpȶycp-X[c:p/@A x8>AʍfFnŌeyٽew#X[nϵJ56Scl?ꨪ>(' +hҐ~G#aT ʴ<] ;BN^e|MX#wls" ]z|/ôehzT2!?v9Q}΅UmcjH NQϡ/PܥAM1*`j2mgUA$"͖dIy|H B`(|an嶌3nբp g/ї}[6xxԂ(ߤ谭*;"VGB7m+HʖژI}Jl,S̯-D'5K# t.Z&ûT|HLݙdȖ{D>Tzu 8ێ%:wwh5*,ye\TY}|)t LB=3Oeх?aS -"Sf91xlQROHk_AJxE$0.3'EB/hVbz+]oK4-@/a%."jFy@ݸ؇؅}?ӻ23m^L4:AA"7v킹-CA똗D'p4y$jB]Ti0-B-APY!;Aw=cpq=oaPw՘pkBUb*؈vjTF4Q]ben-R5n[mnY\BĴBa=20Y}*lhNJT'6ZE_{x9^>`篌Obk[S>L xۏl K̓BaU5^J}xȿ-77rkKP\hPbb?:}k,JgA7Rt]XDda &S@AIޗ8JO@p0Igۦ5E6(N{;&1Y9H:ci1)zE'jxE@ː#`ynoruǡ[7PX#^Aq`OT:Vyˤc ?i]*jVV`{V|O&,=/ϻvX1K7`oG !.dVzaZ@&|\u)T)^) [%cսB7Ɠ4w[,6=\ ,h= W|袓yUslͶ!CL8n=",~kn{,qǍmk}ЧE(P*2sshApPm|ᴑtV_1T=/Q֨>l%voD ~C[6p/uDynl'lg˃ѿ<fBܻ@~1oTLz.Z}md)Bл%X5_8H"$}Ѫ#.ڠ4zLTT.=gqPK6$('p k)TɲIW`IoaD d"WٹjBnhU]t`kkb6~Bq8$c =O\{Mm5G l M%ᕬϝβIB_%Ͳr[+nb5 &os{x v+`Z bχgo%{i F 7Őp39D ǁJGr^ .mvdAr4.24-'@lr4W?_eM#;"\,Iy;`P4ZhAR$&3eG!FMs)I8 5?:s @̒#q̌)Ȩqs+w(-%Ynٜ+\C4+ ~œyD誷qc <9X~[(i:VJ޵^spGKFjpWMd ! C_ AU b;5!?`vH~MyN-`Ć V͟i[_z8x ^.h9_lt]'Ѐ'yn!Ȟ4gVvsSµc3(6a\IPI|,^}'ܿtj<X̬*^mzv39K61,Jq$ՒV 1 LvçXkĈ}Y++ե6:/>5.3sr4TI2.[9 &aKd VHCzѡhϮ/Jg 8HO(]u{Nvnš/+\2r 3苺dd@\2$}hԢ Y`24B*q۷WH!<)`Y!~$ys.6y14M+> <7UkGuiR9f4d <5 $"[qH#J)pW2"ড[˧͎m>[r< C͛\d&W_gƀtK|QRZwo#mlCncO˺/.nA[ف㦚X,:v-^CńZc8iTWr$|560lkc*ޚ7x+5˼>G~* PegmQ-˙Ԏ$cV&׀?X7XnwvUV0I4+!Ψ@,5BpM=3r[ELVKpZ k6Wi srp}s?ēY8$1&8;mrg8`&*!e*";Y)j,0ԙGwa4ZSXƎ_ 3sØ1FeH`']FX^~fUxIvY<㭰z5QG?ӂp_)A!@8H"4BCP>v1Ut6_{npߺSȆ{F&tՇp?dV!d[HH 9 -rYg~H#yӮH K AD1gjr'?^峳 yeJPi;8?dhr~)H߂$Ur3/AĠVp鐝KBU5ȓG !+^+INܰU5vH/9e}JGqC>G`Y+S)Z'a9~ڐ?V# 8`-T}wop1ANܒ5to?y{Mی" Z᫪!)!WɀSf)^8Qk+tG$+1u?UeM!YUyktsUhsQh4i0u*zl3 FrI/aJ13Zx]6P-~}1%I\O`4X^U$vvr<>/̀c "^` IhXfF J ]-|GOye\_yhtF E8рp/c m l(d1z5#EPĮ0bE甹gH& 1уkgHv5:1%F=QIO)NahPqg=OmV+?.w#TY t ? t7P9j/qJާnI\8=}uG,;Ck횊=h'򭉧!vU7VG XsQV #wje Ү%D2#!oLR[ZtArDJ"U(H8zJE%:zZ@e!. T]QC *#׎!ЊUJ%jnfi2|hɟH%"M^<,uNOw\9n~ӖƏĎC ܵ&#欟^!TL?؅GrS\?6e`R/Rs[:\Z7Eg0M?Pyo g=SPQHJoTpBPO=҇=t] B iL~Ufڎ'I:aگ&2'bZz?Y8|WLӰXZS'qf2:$tuBqp ;5x2+%&u%B=+p# 8,C!!&ZHW9o̥頏.݆o@ >{}k+Iu7 k%M057 xf"r(qkʲklzq^oijôI8rLK9BRdvRg qvLE=8>5$d∐ X,Ld#0( 5JQFDGJi۴5,k".1- +R"i35 jM޽0/|޴ӌ^B< &Nո"e&.V 62".Jǃ~|(:Amf2ܐ OlF{5u/ߐI$Wד'LDUbV삚h*2 .?W(YۏZjWHjjmLlNox2VٽWs *xT+h ߽wTUߊ}O më2=8s[>YV-~b]AtI & A[!| N!RowP!ZΜBƍAI4 a*}|2;uogS슌Q i%{ .#PLCɊ?zlQm<_5Yo.Q#6?Һdwi:,O2#Ҍ= ]&H'{Ls׹kf?2K%s#W]=a"dd8A]s] kEW_ oJ}~){F}MTB.33dP1a,Js<le՘ay.߹y0Pȿ2hh aQ$xaj+øP[y'kMPwX{$W|+nszl~b"scϽߪkLEY.룁9 I F~En[A nY)?Dٺ-%k"wm"x;:cmyDgd"dWN0o"+l_*Y%n8AV$Hv8FՙfШs vA.u sհ* @U_Yr^fV<ىf%BA<-:ml*gG2%f3P;.W&*Gۭv2͘@eD u)c.>.A"s$ zDGnM"D 1"Cp~s}za Nf<}ܱTLd8z16+u~tt!Sl`d9[fqa[!ө]؃^yf` ȶ0*{{oNo0O|'IV\D->H%3;ۮaIk֪.>%ҁ6$D'dJtk0w=|afkJ&QpHyUg7VVsmD>mӶ@ޖ_^X'bfX4^I7OB۟Βhמ/cJ =fؐIٔU1vu3fş'cّp#M|)&= )k=E!D\ 'о%e)%*G(qktP]\HscMp( f UThAћ&➻Ne?,6T~>LDU(vPk>Kr=鏃LҀ@aiZQJVvƥz6gilt݇#PCaժIR9pܞ"&j%ez N>}b75kdn/ܴ75(63{ t Xy=Jef$8Jo1~oHQ'м'B}6;4v۴ FxMJAҴlD΄;2"+^a.pH-;*t{H4ܶvE6dԳ|N!T.AM6T滼L+@znOP .ל9ՐetKؒ*UO/_b"FʳeGonLIVQS6)Ccu>r&/谇ֈ07MUj2JԦ98vpW>xq:)1L :7Dgκl@X]}*,~؆PN7(D~Fg9}8@B, G_f1RHNoD+x0|A`\8D"f`vρQ &u8'|6zy,h ei;f[J˼]r7Jmc60ĸ{.s״w"1846HŠAvW|!oW6 _ڤ 鑴̸AgҞ+bRa]~--u =m PϾ馚pyko{2b-@ Wq%!H*D"0&f5?܁Mõ%Aihj /rUf"kÒMc>,jfQs82eP74>~p_]8 B2wrNDf( 5o_{TpD^#8M_".dsH׆**BR)Ae6iyTS2llE(c"cOJ?ϡR{jTz{Cf{DECHZa Eb+ԛ^}PJ^L ?@,C"bws?zd:#m!")&K7 - ޜf{LbIE_Z:@Sv{UONS^FN~ WZ擜aͥR)MC /Rȼ{[KO.l*ߖu7"d"1h*Ěv&Uԁ|&+ xݟ涽^HKoi?Q8KvEa 0,U|_TmQ7O.9 d:CA$3)=c~G@<<9#CvJ73ro:Ff_IbYT1p䧝<9FbtweXH{ROhQq^)p?] joIXv[Ogv3M}y!9r0e}= 7d z@ !cOOC0n-vO~I˫ת?IO2eͯ{(Xdٶ+.uxt ӾvY_2M ypTöwcAΤ'[)e'FkEzhKjsH8.Sz,Mx.s eVn`SRX|M봉ӗIgL̀j9c3*k'by]%1"ȸR 4iD~VD.ck~ׇlW3ϯ=*ތ?&'Zz}¾Ӌ`1}Wd)T4.Qa9+{ R*-2.c3' |bIu/Yv!*Yv+,򅸺". ~*)"xo 5JkK3{y" .X-%rA )n&W.x|n YzլYE`8J7ȡ³EmV#܎h:E?ᇸK}:ك{If`Êui#r@Zg?Bu⇓a4gr)B,|w˸[Z/] 'S`I/obgf̲, uRiqc:Z@.#^N 5;gJEY2StxfmݍRdV\ aCٶ٦h&YS y "4..ŭ2Ck&Ջkӵno" XiR7&t$@CncQep8dDfA)VFqW 9[x^H W?R3%AJt ]}؊Wzh5^#}zt*s"HKiA*IHS031+2wm^Qͨ 94.Zp@)!K2dB}!B-WNk}L59Ꙡuc=qj3UZTӖkrB"Y7V:\DgEN9ҟ=! 8Zn[>AtӱUtUyIv4U\B63BWjiL` 8S啗D}#IOP$BwG~Svco `QM{iO {‘*Z8{6r?-Ir0#h3a+^՗aMĨ+8@P\ʦ/r\; XtuhLtufiMQ48] iUvgiVy2A㙔Fpij8%qCBNIPa8֌K:=󽳟S)6-tJgg:H*ʵ.648OHrUApwvO-H#N汻j#T@ޖ+0pͨ:X*&&zwXvٔ;q.Ti]"x0hnW?_O@OT¥J ˻Qk_MVJRTTPZ@"eLܑ/{q5 Wsbr0+W/Dv8Mҡ{1!FCXǕte %x/nIuY;e Le{Ih}O4"Z_l{2^+_bIU _n^?مl*5umIZdX`O=6t..n+9e:vRH#ي&*Ҍݜ'cAԔUWXTa])`:̓OOnusZ-!)%-F3"}qNkF?DK4G)AE!Uﻃ&+L;>+,M3 8QV/)׎+:^6:dvTG] 9 -',WHnЊ[У hzT+fWǚx*@`l'G0i̫ Ix#@ IoIN/p)ޛ;D'kvRvkNӈLl95e=ݟ5g5e!J7wےY2X~%k@Cq $1QV\۷S%@S\-H$Jb\e_jg^%i'2ϼЇ/l /O~KUK j ee"tX?c^JۖɌيs;S |C5֕NR,Σ"vӡj9+[!:0i^3_7fiNa_2E<`UvҶы 28G!y逇' k5NrwWorSMjM2Z)f%Qɪ;0ثىbkG㳈$,a΃EH:[rNU帆Vż[đĄ30;+Y]s%}K|'dCR| 8z·OXY5wya$R a`|XL,>G Sl03V)֕ӓP^ewV5 mbEfqK)bǒvYr]~qL5|j}Smڢ")Ҟ;y{@v'bjaTcj=pf.c*>}utW:OϚTN%0ғ!hQUw_B~ 3,Z+DH,gGTF|;k_'J7X5Blڈ K3J[u6T㢨б'.e awJxԑKt5#y u~_F3mg]i\b-WTPQV2/%ȺCtY u^j*t4"ľ)d2()Y[~gj~= p;݇1` `|so*?k-I!`:Ѫzt6?(## ZM ) 忮nB޿qxkw}|9*Ͼ G \ں"0$ y0d>wjrcox"g^՚+B"tL'sT?\bC-Y2A,) ҜAYa( 0_nQtMpљ߰p9^̓OwE:tkX焖{m@Ou7F*z4{.~O>8UArh#v1Y gFXJ@b{srȆNِ,T@uK$LUmߤ@!2;H[1eg)o-XK->#W5bgq[&I5q~3"˃BoOч=oeanq|Qow.?`OIخOa43-u`S=w3-ZAk?XϪ>!'!TTPkE71U_N_"HQk?vr`n\?&UI0^B|Ҳ Pk6|@%O yp)dZ×ѐj: =-T77r*bvҷ;DģOð%דYh^.*씾l跺=9Ctx 9]Q4xt  -!V7kY e讎H[Y5>X)[73}Kgvk>AC[8B8E,F+3:`V݂s\)[Am&fT&xAC"aEВ$8nZU($]^ a^[]A/ ңe/2-Xv[ z4uGfѳIҀX N' R'"&f+밿@U6I?"˨eu6^2)},07bR79Rǜ|)YrAϟ@0G+xu%n%b,[ͫ }d5|)d;{_6Ort.~YvPwunjB:)oI&f3k1\bŗ=-wcx>R ShhW{ ;J޵ϞF-deNj"i.ا^5I ITVSaig.cWP:Xh /eݷ~ [`COP,/. $.r# _XK쉍y~D*g%'7i(,3s 4yhz隌9ɸDimOg$`-SWq$u剐wUͩEiˀǃw<9.(85#1hھ^k$I݉I0&oKd*]Qtr->뷍/3~p_sIDhڅn( )zĦo52qҧܦ3P+[4)o"|=ASnTo{[u0e)%Fw@vC 2YJ|jձZrŕLuH>tC%SBh]!$g6˚XB1gW= [*bvkin%DE;f ir2;|XClkuDEG~F n% *+ >iG.Y\w߮.&hڄ:QS| >r7'f+!C*J*nx9sPSt4Gmh%%UqSVӞML1z΃񗿝5ѢvzHODp"<b-ur4ˈe?c;釿XK+W8cg\m\#ؤNDDbݢYuI~`w]q3'Jk&2egn d[\ׂpdDl\xUS09:>,zi{Qqu8-*;T^6O&Љ~svڸݹ`+20iDג&?]|Y$:CO#]M 4u Yt&o@_Y*oqDaf<2~ "N?パ3IAc!Fh|!!I@gPʗMNA3S65ȥW^n- ,@#m1lp /JV>0 YZGuerry/data/Angeville.RData0000644000176200001440000001010214053175241015257 0ustar liggesusers x]u}˲l^ebRl?m*aX8.wEw`!|, 4fe`9 A+h +*[k\j7ŹHNU:SOȇ^-)rDj*dub@%JWM-T6 rM&))vcky&sWvD2[ź46h+ע)9y-ꜹ|dmɂjP%Uk\Gv-;|.Md`5'=-nZ3ëq<7usy9ٟcGh;޵`' x[a˂?E=B )-M>Gxfm!޾Hy#8[,Cne+|ck@O:KJ5XIHqoJ؞$UwK|t|| H#| :r](IGbC>z1oS>7=* 6tjjG:Ed;/&MZ|,dlLVs79&CY;o'[\ ؋7uL4j2\vWxn7OǞ,,bw&C٤?D{gcd.L=Xh]Y;bŤV |=dWf|R]˾Zғ]$"#ҿ٫|O*?~+1=? J!C\9z _}lv@$?D1KuZö=r`>Ա;sjXcMaOe^%rxgF_^{=B-1[ -?AX-DZd):|b=$|sj8ʉ(gJCTS/W`溱j줜st6^JeQjWʱ);gA R񩌹*լqɰk$[ #p> lׁ ޣcoj$vv*zJR'Z/Ӷ=s5IS۷k[{*m:W tm6n+c"t؂٧zإ1t}*Kњע#&~9cws'=&#}|Ars.&H_tKbg>lHƆNG] aqO$ %l_*xQyH}CLVv|_c_QJ%~Xxoᳬĭ.îc?C.AuuF7KkUs_1eO&o~6~>io5vp_{C?13v&߹Į:'>lY1%0޴&!m]0'o3~ƾy~Y!c^gbo=j]b.cl$ԎAc3xuƿST&=<@zn3bҧQ3>2x2{O[NA)T`sY42ȏ=*h5EeY_Em2ihp؆{t2AW#}{ uD:?n?cOʳǥco|wV@`i.3E8KNH,?tcŮc3i;OҸy[LZI3dp>*qVr\ymBCWGT/)MrP׸Fݠ_K97Kny_v{%[)+wGXx|cG5c0/+/rtMJwQ{n\۽nғ}\F/>aC.:o\izth>/t3"-jaW.U歎OoJFѺ# ɛ[jVcRAkQue|z}+fHnmo[T]&wu|ַf[/t3+;]ٻӕ;3n}a'֗sk>H:≛\{9rю. '@3[O樫Qyr۟]8uO[g}qCݾ:g;yu8>;?[n/(_]j7N/9vrlnJ\T7뮠/y9KA*j)[=|C" 9dǦdؿ%&tVtdT/oJ2aoegן][J&FG,:ݩtKYֹ%ܒ oOW$S]t:cԺ0ٛ;2!yV%7ξhu .i?eNS/J'o#%ZN:E{o!D Guerry/data/gfrance.RData0000644000176200001440000055033014121664616014777 0ustar liggesusers7zXZi"6!X])TW"nRʟF\ XvӖ:ݹm~rY2E3CPv9O(Ԍ[+8ZRb)~&9q?i]&s5p{h럸 tċO+\x0R$@a)yͧH#f߈ǶmT:zEYVG~FqtXNIu_sΖQԠI YV^!d:rş i]ecB s{jxx o1?Xٙ9x3jG@ە!kslܥӳ s'UFk@dg{nԡ~#y7{';2u[ o, "|ڼRo3OIK@*),<m7Z#e?2nf~fbka:^A%wM87)gr:p꒤+u״g`lTioUPL}/i $,sm'ʱݤT9uf5d@+y:8 D9t;ܶax-_:;%U;j?hV%]C 0ؼR$s{ !HG0HgVY\C/tP=)mJqzfaf67|hBa^[/^;`Dt]B;..+ pʨNU_4v} onU<y ?%~^J2my,OE՚ņL1G>ʉmX<חpk2zÅ)/ fSS8B`p鳑 Lq>&li`2c~|6BU7HnW|4t:)1望bϓ5(p9杤(uO-dbHd1h2G#Uxg Ƭ}㷦B0d]pS.l/Lwd1E?4j)tuLT[<>,3̘wJz~#Z:)vL\tjK⸡F:ࡏHbT6VE8<iZ$]M?^+YZ: -HL!Hh~ R+) *ah*+c5:*x}6N?$m9EtTtΆm\pEш&"*=fC5p# |{'W/oFuWDo- h͖ z?'O&j{mvB_5*8쁣96j*#J\Klg*hۣ~yX|=@"j0/)KG[ EyRG86ZXR5 NdU@p5qV!xaTv֨VƘ~38_`z&(# !2 |[_ R8j'vޣ5Dr=B=RNEۆ١p R&iI vҕγ.# )Ԧ.M%:FbcФS9ӐW:k}6OSʨ/uŧmܹRO[9#-9)[X'^6b`njK|5 $**jtG2T\g c)?*??d!ss(Rp݆>/j9eɯ 08zaJBzj-rj!/Ϫ%/)ڼlk\,h(`F%ܓCDoGqC$6JCt-d甏*VEl?n7 y S+gΩe]4s2V?lfF tf)m4VPawW{] ͶR+ [y&Cd=̠f{MFXg)J IY&CG|"C'T(g"gמA¥@~! T[T .XC Y:BC;*ܑBu&XY8IPkqUu4cR-ئi밵ZT_#Fj Qz`>n']aeS=_)Nkn}Q1G>:5t|/zΠ.=T*ir\_Q+#V-dhiqxW=t#EL5{)%ؒ"@;;lPt]1e\@9)0Nlģ + GNc^L- =USGM˸QI.PFCم$:p'UnjSWMKGԊ<5zS ujM(B<۴-$ 3 ䷣Vk!<. ~5YFwAkvMsZ@r5x3(7# qYVJ8\=xDi6dCsCNWyf R>zr!ΎˢmU~Pzʶap 1b>h8~N,zmo> O&i32ho[-h؊Un颶~;,aq3C0qt5(ul7O:϶r%yt`1j$C9Wvja+u%э+:GjP{Qp] 0[V+&%@R]2>oy^hNq˪9>͂ nϳ]N(p&W߶СV]B ]/\j;t~>57/2O4}J|vvQƇǤJ$7jID3&W#{|tK:IdмYӰOڸƑ /_ǻtXSY7\u HT JwN`Fvl&V[C3tkju>KX=,)>gu ʉON0Nz4tysUdYI"NNUخs7au,y ~ynvq_}ISaQu(Ց.;GBEWtu D}Bp^H4#g~v/v2LEL=IOO]*GBJNfEp q u^CT4#\ Ʒj7X3L3m+}1 u\ė}4ȹy.^܊BFI6d*7&h7ŹyM* hO|o&bw:%ǚ%uguxel1gԩ.ĘcqqdO?/>k̓vߟﴘaV?&O?jEl]Cm=È'-TQ2\MC^+>V3 \){E+*rrVMY`5'j$kqW,w1*%҅Ӹ _PhnQ8jx1s Ļn?\? 7(S79ݼ&\y̽BCD了ՈiO޾o 8j: `ҿ̔{#bJ":J=L`z8MFw ,2`rv;oXLg4-8| <.:uL4ap*(ҁjJ+9=mUs^b@0;ڪ`|HFS߾B[*7;6\,)I엦D4mZ-Ä' \}Vh'P]Qf|cix`mQV`ߎtJZ2||X6WONL(笞^wT )|ٰkub ֽVk̺uN|-Cg۩G''bs6 SdQ ^l.| _:-Si%%PX3kL n49ZoIVu.q3)\ʖgnm#QC $ *ղcXCb<AM\ݵ)}e0씿]OWzz ."+O R/86pisr$-u> ͌yZ؞_΋l%Ʊ(Y4EکL2O QHMS}?qL:B 8L huO!,;'? 2Ϻ`8H[ӝYa{̲Uj wEkEʩ\I6}1/&vؾ=$w-/rT9%ZJ^tӐ+@@6$Ǩ)iqPxh reF*%l̑= vz 2/^!o 4"a pV*nZeE\s8Ƚi.o9|T]3$9/ފ oH`qCM (*^D5\2 -c1*i6f'{QZթU$piŞG0өētl0un>eҙ2o?ͯ݁G)>dRa:ZqIԪOQw;Fy̩yKEz"Nj4's]*r"3'x1>W4uo\{73ǝGFZ4zl^>.eӱ P_QiT(">a+W; B.5Cj:L*nXj$%AC7UH#f؊`&9 ((]!3A.nȐؖБn[I^I-E ϕ$}K/>,=L]c+eGBE bj<4~CCaLyT둃M#@$TBڗ9G\IOߍ %9>ufDy1g|y 7>f7JDZp|ˡSk|0/Js/7g TpO3my nazJ6өxW@WM3# 1'/RV"=ڙ]X7ٶV4d–oMDJL ]Ch%>3kouFFFm8v' ֭2H&@ONs^^Y=jdI!Ua2_#UX32~M4{K+YY𴑓e,qˈIn#@*aXo0d)^Dߖ>ܧG3Hܹ,3~m= _f{RBE!U$#iv]m-?-b^vg," ==-"%( U<['\GG3DԝRnV-=O[/:v1ž/0-Î˿^@dŇXWˤ.d$\7X P8 D=}[jGBNKG [#I2㽵P ܦCwⷍw @.ugt5I^*G3dG?Y>H0M&g于 Mo|C{1;%JW;O-G˾ vٳAѩll@L(XWa0/J\2p&b>gܗ@/=9+XVޖ&Vb0k/oZE!p p8}OU*,z`/K bnCx'rż"LDm}`;_}G.~i : PE@0`u5_9o9's#qϷyU'P<.(y. ,;lx}f|'T: d}UQR 6=|(:>8^>8+]`Шfeb_Hc$kߖcϔp߬71]^U)/Lf ,?fň߄U):aА*^i&p/M\V|dsWt;7VtB>~eiE\"S %?)6F25O$g)\XWߦWՊ)SJv1h nY&Z6T4uK,&?|gR?)sTEG^\W;j1+M78p\4vY+\A Yn#u@&DF$i;qS~MpX"$IPUVKUvY|}C^172Q6ϜE8–,艙w1mrNa)[TBNcđ893ƹ}<N>5YW^g|J*8^Mrua3hZP&Ous&Q$9–4RMB .d)VHQcr'–څrkHZJjJH0V٫ҙ2a)?"F_H^X)@H v_ d, q]awl]4<˨V_Y `,"3>Np#ZhdɊ{?^s0Ձ'yeAWi}߇2DdwO1O~?}o67Jy3bnʡb&4BpWAa*'f@)b>\oskfm{k/w:k%+hnD0킲V><\b1O!7R>@%8y>UgTh_m)#ݬ_a@]{Bxl2_"̬`F.۩m# wCc]q Hxah?c{j'$x\dg$ʂ!ğU ւ.F~W\ :_c7k<\C|OǞ~5a;+@O"أ,c0dNuۗCw|TBڢ(?l˵) ܾRaޗOC$ -X d@S+q/gO1hY;5w_ ;G`sNwZ.g?fx_8~Gڨ*7)rO^_L“ 17S{{m "k(Сp$)CP r9Hm G2gULT'_^ UA^z=|){s8d%D "*}\eZXU6m͔hs<թ^ϥڌwT/Ձ0+Ϭ\:c݅4pcI?&G}ARyM;tY\ŏ R/;Hd [Җr eݔk_1jQqJ6mqhMuj%杏㯺s%dN']9Q{6X:=s-~Bd`A>j_E~,Ai?(Dh7G 2nɜm:,c@^H g#F]؛4 i_juA8Hlblwp7,f u)䖵rf}6^‚Wi$ġwYu^ߍWMK)1,9fۋ%`)ǞIHԃrʏ :*!BXs66j9n+\YOQj[{Y\)u #=ǵ8bmܕ2fA;+DT@ڰ*4X}'Źt4-!F\6Q9Q9mKc0R{]V>1eSw;U)I.%\NN.na AKn}۔wn!:8Yf%Qcj)ϦalzYOWpT a\3!_ ڞt u9xW+mu[Y_Vlcx὞qlw4t ,!N6@.* @ &Q^۶qFQ猎p% !& ʥ4/07ֽR٧Qts*g>k+fU#LAS2_u|9xCnL*Y&_R֤Ej>%fWIUSFGtDڹ}#f+CX7\ZpzIpx L_l(Ihgu r 9!+n6A~ނi]Uy{;s]bQTFRM%d.ƍ%~ȑ 7T SFIk@S~%Y&J}Lq|+7˴ًSڂ٪3$ZkBa[ 3a:p15G$lrېW N,nF{`{JFzxrQÒrP|2^&P/aϠ&U\W0jUL<2m!F&iTo&5< z}2Yϲ_b*.d- +k hM ;Ǣԗ dB7LnE t=cU}fuė Xm ];r)@ CI״4 Wk*\_Mc:ZKnZњ/gvANJ j(Ya(o|*ŊnWRV鳼Myr+R]Lag -&}H) q7rc[7/.LK݅D=yK6{"88 ,)c ?UŁKLpivmiCNγ#%bi'6o},u%g!~,F1Bg?5Ngekn.4)n%*T4",( C@Rokl䭩Фڪx5~Au3u7O>Xbi>yHwا×12?HhSPv97}"E k)<th/@~@0%`UnKBF%X9&d#/+4u1Ktufc`yR1iC;':FL;j2G4a>&ް&åpeQ23G\/np%!4D]8Q~{[s<zu\~`Σe<|pK݇+Zrd6_.*yǁBX/Xj&@s -0 aV'꘻̺,3]2M=fjpM<Z!*7_ A(s*q 8ʍ $nwnϟI1|pǛB %{yea-h^-p@<]:T?e}#0u)Trյ k$!0QPa$*Ԭc8E,?:Fi1V_: ϣ\v2{5-Rƶg-ɋyZW&oÕӏ۹Ykđ̖L6Aia]I\ r H󴻬iyhrPBQ([:@8b5v,geA\bN1>&=U=;\6ΖdT$ CL=bDέ"DZK߹3Nuqo5 ܾSYу +tC;b<ҁL*'ŴAuɹY0-'bZXRVXdRkČ#*fupFࢺCmoL;<^pz̅6eLJ(isxȠE;Nx^?<DCiFϕ*8b 49(r MH JB%f\ ϹI?a;8j`~yҮZ`٩1̃5ejOvM DgC++ez%ޖܪ%Bk:@TWUllp s'H`5qW7^Giv07ܹ2N=PF|5lt__` \Oc½yam+,prMf]jO/pgm{6=E`50 Y0̤1\Źhs,pr/M1"Ģ^#i`xZ#~H-&eJ|H7Oи18]f䡮h6b&r!nId\vZUՎOeݢtx'rvYҖs@6I3S\vsow#\\pKC3"יH/]#!ll4d|П)t+@2+dpL v3ӯ7RdbAgWwʕxU$1avXmWBl:>tH@ ʇrjG3  R`A^耎ˉ#' BP+«(bWeὗ'S4v+KcKvO3_ d2 QQI݂oj7}|R,p?od3 r]crB9yvcr%ZXn@S􊶼 |y=FrJq^N`P_5|k{'! ~ JT{'[??ť+l|>m]3zޝaC);Jw2e*3FNMF|Hz natM(Vi"L{;Udllih7: "6QCY%G@vTu*zE+ (͇;pmXWv2 b2ڗZ^XO7Ą. `G )dO9FdhxGjq!P\k7rv74EX.ΖUK۴V.mU\a@L>rǶ ?ij,n:<`nFX ,1}̖EϋObMrx|/ru(m6h`k69HY(\ݲi#mD8v.8eȅYHliOּzEE "y }qυgf;H^ D[$f XO"|L߀+|=XJL7]_2J (z8 ް= Wwdj#}x8s5ky#;̻WL>`JNRS wTwqi~ 6kP8\G(Ӧ9Sϱym2zrg觹$K9 u=EhUh[v fc˪r*t_/}NI)U1Kqy:|S`i-JS( W:^FISV^ڵtuE4ޮn*S wJXNf'/r!Y2nI\ǡ'"XgOe$Pz;ͨ"CLI΀2 !sQ-"ĸ6!: ffy9dd#j濶d/=[D޽nL UE7~bm\^ДR\8(1#63%X5G\ W mGԮ. '%M3X`nJ#oK5EMi0]g*poOUu) Js`?Y{!՛%܂Go)LƏk(#+K=lDhqĺ \}PƤ*[%Pvvrd;2w]|}YBG%hsD58֍FC{" t0 -HC!VХ4"vW }vT.lJc& idfGl)xXmkui[:O(xFX%U c[m qsIEZm/G:rsu\J53^J9'Nrm`:ۑV9ڧC-+0X0lyLlRyLFvA֯σP^q_;N!cԷ Q>xXwCUO 4ߐCFds͵ޮadb0۔VǠJ+|G4܀ x%;-hBˌp:Vh~,߫]x)ҋU<^t.^DyoXOx>V OVo[ew:jaT1G8&?Ђf⚑`W1ٵ?g@rH3Q?xuVȬ#q b 9ـ`[eHYdR{ʺsKO>$N/"Lhc:{:s`/H##dhJGQI9κ=~̉wx7ÞK_59v^STM'ZSw؞Vq 4<t'P@0sk-EOx˔п_jjtM &EɁC3fP ŏIts5V} =x#PAK`.d$iQ-\~;=(0zci Aq`7` '(J/1P*s޵ؒ^jv x)S?sfnhjʓC>*xR:[J\ASQp| и wlL%T)(:!ћu_ q_p. ͪ[ zސWzg _Zǣ(_}!Zwnh&g&sr˱| l|]c $=@n'HB>B E NC|.]Dʞ3Q uk{T({7ڑbkuOTCxK1 GqJA,U$efN eF" șbʚMBq0N9 .EJ!Gj$wdVɌw{D$z HN [:õFo\ο&EG&[^!Yi&0\/*%a$#: if:}i,d~P=}? TdP3UII$1xy?7η݅d[UN QƳxѲU9VLeOTS\I~o`AFr /OhpB܏W$MU: /,6䞰Ӝ"}.Oc|#j6l WX.0^ӵ!A6;3ql(߅YH_>!mtrqXvJms5Ԟx͹KqN=}hy1fFՏRh;'O_%0!a=O?m]@2]%*HeE?n'~KvUoY(ZFYS-)Cr+^0A/JdZ/x2!XKak]K!Ž$qF`s H& ́т[e2%>#qʄ} ɫPz=N0_OYF5mHc+_Q32? 71T*lbz^mnv&cÑpfjFҍTB^s|G~^ : Gwrƿ3}Diݕ3fdj]u&2?yȤh6|+4cfG h%_Ƕ2pu0!;k3t0~K˲"ÄIkV]`Ku ܭ ŐuTl*.z.2SMLq*|97FRmѳ g̴;A;`^hU̐%Z;zb~mC$\ f&iNy GYyrR6)bNf!1u,^zD֥ >7**BLdn>`h^NC]ٟ>Ԕ*am X8鿹!UBr KjF5d/e,SJ)pr% ^EX<#S1L^>j$XׇJt|ϓyjvnU|X,6Pу&c^dئ1]_"gL]Wv\t# Sr\P H9erY4!~ Kx6sGp|k F&?ac#3Q+6&z8k>OVmƐ6>DJn*@G/?"9}~{^\2MR6G/qvdZ!cshZ+RLJ&0jYwzdijٽ^W#P]ڶ)'c˶]ݣ7W8E=5% >ePێ fn欹kSW5Y J%if?W~MaFX)jv1Iᔡr+f5SduL IQt߁JNC'Ԁ"Gě>Ћ.^( (6mAe jC|j-w OJQ8u=P]CH<4 ЪNAp<<ǀ@HaIAu"`N5^g#dfZ!^%u.K LGrI EZB4/FggD8V7B J3UBv; ?z)^L0GtBo/X]SʄQ{Ͳok>5?k& ~B{ll@5dS=~ԛҡE'"2Uך -y۔t&"JCo@ sVkg& <x2oB)y^ZݐJ'|(|. v[xFvwv{md̷Di=6ՐoKIf|X rIe.'u=,]@RՍPSҳM*|6ڐZ ed KFJzO$2AzɨUiG\'}t`h@Y/*vnEqkRCN5}VXMx63K`'`Ttv2qB)q)P9 q&4snSI~C#J <ʍb"+}hܘBj,.YE!C+Bqi/S$dg+ԒwS<&8sp3r i*({\Aay%5clHCʜY:}=%ٜګ@m)[6⋡W#&ߜKU/MqPMi'M%F52N PԪ  0ƪCU=KeIf81yva47XZAD .m(2>7Uz:3cJA >җMGJSc(D,UX[P4QM6.0ßtA'!|UkFa}l ͊ ӇDQɼCW#&ǷJS7nWE@ bJ/h{ 3u8c⪑[Xb$4}ZA 9m9!D-!ׂe#6hM ![fv@6#Q^@>)RVy|!u<1J**KY~Ѕd#Iɵrrns9G#^UxOi<@9ʭ53pW3t{L9 C54&t]ީ/hiZkF 4iq*GVY{̘S&t Ԇ]\R{F83MJ5.2<כA< eah<ށ(hJ2-|$%YZۢEli~z?<x ,AbCÂ&O6'Ph=9ꠖ)̀I"H"2;o4܍k@qM'ѫ'esPj/wP~Rۮ h_u 9 Xدn:^&a@d%Nsq+-2/xS p k')+C<ͅT8߃U>" tKN9ZOj4Oۗ*!Bʟxt]zbU:.i# ,2kQvKvH4^բHE`ڗV Uj͙PZsGG|b1̠i3x:߆}lDr%0?P`,ea6Xpŀ\e=T=~i|[* B{+Tu PN ֖1#ns0aj󹇱VYU*304`yUg]Uz ɬu{vty5ڧ|w-ߎűT[Il X3H}H7ߴ86FC'\ű~Pz$"Wq=DbSCXo _:"S8}N7R{AdRd|\ծ0[<9Gbq4}Lȿu%0j0tufԘt"8_[a2neh2>!2*Q9zψ4Hn~78& ٔufˀJ_/i Gzf.DAkb$AeK?6* Cǃfl@-xR0* `1 E.,;2Gp&g!Q8&O!NJP-hĠy8WaVz_y֢gv{.).QLcїkm-Q/ܳ\n_MM ܷ_Y}zR$Kgߙ]Zoc=6e .^m`VwP%C:N 7f8Q |HXA*6 V7K$#-GZ4zoXzA-=\YݩbGõ ʴX7(f2d{\>ή$5y.MMg r~`M "( m,S ƵP'@uR`8˭9y ;^@9 OW"?"z߰[VL,Nwf-e`ov ,?ͦ%>;4G>x&Nz:Ef_rM^7 V^6$hp=m-VfrѳNbK¯Yo!1 P{&Hf1 xG^)zֆ)$UFcܞ@*J)?k^'12lUpx_/${SF/p_oCz^+X!h:Ĭ9wHBѺbwypa‡f :^Z&yoqejg6Qdȴ_sh{H} B,vEto4 > ̃Aq*㇙Ρ,5X:Iji R +AwIՉ9y. D4 V}suT?z|@XORPb%?6>;,M(Q Ѿc 2D aN馨H ,Ùn+0Jo ZISrmG@p<$AA CMٔN`8BC"@3`(M.|[ 0ݒB"( tG7y<.rה?|5Eۍ])D5$)Y!/z!M(gz3dcJ!F%~9:>H.m[0q0ydiT\pb(`@Sr/doky3:7K0u }IfOB$/V;(I5.[9' Q_)Q~~sJzЛ偊5׊l2$Uns1o]А@2e=$ߜeGTR5\\3M[^?WQf50Y-36Io+ 3qLC͒3֤jO]zGsצ㕸6(pFvN^_b 2rM,^qI{W8Bk^T >[9A,}TK,OKD5 4O?U9~'`m%vMܔp4+t` uV$;+:L&$G%&uZ~1Q.5TZՕNXZo3+֌V@ p]#j5:cRV39 \[7E϶[M5\RF 6cAj.a :|F7 :+*U>e*-pbHd0"gZ _l#\æ$YMq\|` fMv[m.0 I`] !JL>w͏+Ϗ^¦nj>q|)3U%?LGAT > f㚺=~vI{"BqA[!lݾqnVެ`X5M)Jy iFd>Oߊw!u 3٠Bc8Ui)W(v=iC㌪23?߃_Ӫ=87iZ)σƵR# 8*]cls7:׳<8EסzAe-x9ٕy+SHJ%iCܼۨw7ԅxZ`'4]9;H9ÁC|Oj"qGU/\pPCזQ/t_!9J4^# z'>c6cZa$uԠ5< &$ƨ#>Viqޢy5w|d%Z-Q(ť͛Zqa–m7 P )ZyΊoDz[sٵe`njӫe D3;w:0[*}I`#9*P$lA)y2HNn+̮ޡc])GmlGv- AiG1#ᬂ$dwEh&2BP/UicaExzלkFq?|ͦͺM 7|qeP5~"%agɄ )ʩIԩB$w 'ʓV G7Ti_U͌(i*2`qyud._kwcqF!z1s#{`+P/pȒQ|"D6vRLe_wQ82!~"g%(_tЛ7]BJ?tEsdRR;dh~]N.r&ҪBx6>.#]-qxε- {:LD殨=qiWZ>/հk?y k?|Ч&꼑lO8aZ\BdG+6s_w@.9fvp=g")zr`In߸ %BP]J=c=`p{t  |+ B'N2l_K/ixE,YH_CpiltLKd4Ε*:)l~l}q6@ZsQ:uѻA{?dU$42x;|^nxdI` ϸۊ"-ב.UrpTF>VmhqM?T7jaϏ1Oo -B$ԓjGAؤNcT¯s[_a !5q}Ő͒Ts Llig~k"ȵ:VNBk[н+n0Cm0%¾i }fQ3y_ xvH{P2iq' ˇg7z o25ėaJup 5H{1c.ޛw L:uB#8[LSb2@YTQwrc ?¹ <s|@_Xi*b,6@##@=(tI " mwL/0@Ph}bu.FO32uM*E@J: sǫΨ?M1ZyޕlݩЪsL ~|k~8)Gl]q$_~.Ҥ~rl{w} @LsJbb'\t>U|.-YeSJbOGo1~&W+'>eHPqzSCyumʲF"9F;/8턁ͽ甕q}t/m(ͣה"֡ns.[[.{w6#M1_"˝֮Cp&mHҒaS8-??3Vl(9JbmB*яoD'FBOBv=%mlL!&DOmiJۜk̦Q8?zɧ3OF]Ê(ei5,Ոゼ-nt%.knؘtyހyy[ؗA$S\П6&WOEhE@x)PN܀PNs4Uvl|&\ `q<+k 2r2T>,&l+(>|^5]X~ .̱2ݢb(@?"PYNY霴mmn3E; fK v\bAI%i}{. lC|W[q_v(>}lГL}XN KP*5:!_{C=fgGIpkOͲd}.GĠ oTjC1}+0 6z?̈5u;D6o,<_Z{8]5x6{̌=l PY]x$, rMX^\%fj8YFif,) ϩ齍:) ?\=AC]!62En;PJ|2_ DbR0NC"-#L﷒MFѿk@:}A ϸpm1ɰVX" ,(Ke/UhNAp]ͲLCe~LO&gvZ&tEü޶'hyB?II6uMrs)Pi,r #5 {ZU s; SӴx;\~96vZBQZa] u I*ﰾo>\3z2\I˰~=xVإwC & K^c'2[&+yK';U_`4xGeu>7 :Ҍ>r$llbn->?"]y 8jX5%[Y)JV0zLV=Vo~F#PT6c"zlnf-C,/JRh+VӞX0zcUճQl q\: ג)D'^500Hjg1A+,YM) /laTdi{x1L-Xsȵ? ǍdOTB+6J2FTDi{I!cKU3O'|Qe _N,E ȿz'㛲WuuwjtW&Nhx{ \ܙb.h OWz61g[si[ri?5mۍaywpkx("uk\9/ެ).fƿ+ rw7dEy=GI@`RXbܠm_oE:r3Xaib4Aq|@zBO, =hד];YRT1Ny[l_VטE %)+  `Tl%UE$&ˬ^L #ΖMLڌ7zFM9bGI߲v2hOr0_lG搎{IG֬FP"W;2Z'9ߏurO;'biUC4{ {+9QM7`o ǗE\ l'F{(~Ba\>#.?Ӗ(APFnɗEȰm#39Pv//9njl`_5S͛ɻ 2&b-s" xW+Fjpï*_8Jk96х%(;f9\j.~3= %)eK:Wh2 /ZeE jhˋ{a4ߡuz6 P%J0l,Cvr0677fyRΣH ,2Ne}bkTy+֭`2}d۾y_ءΏBu;|i[Qm%بŵaby6h{*:S /_*>$vǻ$܄~6!eHLUԺc>TX1by5C"o4g^ڮ : Eҷ 0r{~ɸ8&$;R EKـwB,Y~Qp9[*~'NdPm."t6Kb[+Ūp8$̧]u?N ŷ M3٘W\ђz+RJ~xϒ꿯:~zRqDi}.Iib KGl#)f}?"( ^|*9"+޸!>JlZ|zGq=Rɸw+OiJRU (E!iD#oWȘ01] SyiL[š뚧,nIY^!_q+VUuEhCE )ILNWSw =Hx. 4qނ:*WJ)-ʛ Q*<"z es5s=>ң.u-]ERt"NdjZL-_yeC q*`X0I7nvBVF#S ?Fk7Oh@ l_,Ey@*Ap K%ĭÁӹ { j\>3Eu꽞$N8U9oq&4u@W JZ?=sgb,Qۡ²P {-<>b@TfV^JpW4A]1tz1O#9',w7iۡ-/q`J돐6=:p7#c0$7Je+Eqʫ,`0$h(k<ڀ01xQ 8F?3S TI;u=Le +#ҥf2]-t=sj/.W$"].\L%7H|H$\u$% |c,H@j:U`k) vؼl>r~+c?/qgߪ +F+5N$B9z<ȏ=óymӵ AWbgJpBmjG2W7ٞa3a(%}+,P 2_Z#H.ix\Nt,c}fj:p[*T>ϵHV-}[fe5J~K%1 oБuAv;2f~,m;GWIPG*GJMuϋRүUXr0g4 RM2uy[Fe5P;UBv27|s|D+&sI̅GQ~'5Hsy_>3$Fmȵfy8?&|^`u.I'P %CiZkܾ#neɜ6/^)N|lC>%n!{ hw_auy;bb ]MjJ`G vŎH Naa9p\xt-+NGa='WR,6o]Wm^AvːB7ok|/: 2:IRq^UFȷvl5FkAWc&T}ۏZ \r×IY*.ʸIÒ5*"yd*w2!3 BmIC?/oծOJaG/R|n# y7u=ukˈZjD!s.–W6gO[Gna\,&Yf uroIwI>m 8"҈G+|q!䟓rf*@d)d X8+M Vк Oɪ~ƏTHwOЉ8{^L-܊oV/[nEIsBb+ s C8'9+Z(M;!;j x\,6 L=8c9hO4.G K487i>K[ 7C2vdu1R̰4ou{Vkmc_B'XLǎ+,O/a ( ]Z4:S֝Uг-sMfxz"W,L)N~8&I}BE H< 8L\v`F-|C(GPW[ۏ{q# U˚lUs .es * OkbDRԛ]eG[]"`e;@qk[g HEԒ 84VCvrK@¤3{hJSspXp{uj{o!ˑl)$%w?xDfs5{WL0݊:ws_Xb\ o(!fD)%d?.]_'G[*a !uѰ[d^L;$* oPx cg@ r*} ?P5sziZMf\Gq0]û@8vMcz݅4E ,7I%qmyJOqO2>G^3niD<|M> l,jkH^c8]k\[T#ɿtCֲ"qkƱIo" J|mm垃A"{?f %_ Mx\5,TFcjsk7Glh^m?0Y,2u1qWgŦ]j_$YzdhsI*09g'~t s9xvQFFOQ{k"N%f7^.xj: VRqzz>L{H(Ludj뀪gSyA0kh&T]jZ،xа}zEe~ճA?@[ұL(ҏ3ʧSnG*nY-؊A8z0$b0~}#]AX~<> d"\K`&P"=ċUY9NrJxJGQ"O_k0Β W_ӰՕ&;V1+~pxjƍ8sծ^Z!)XjŸ-/p3`b.WbL:I Hr%x}k2L 6,_oIUذuK)gRSUJ᩵I;:$wzIJ eX"|wpSK{) wKCu¬t#P+p fGPW2 2z_"^|va{qlWh^pU\I݋&HY3yC+~~֏`UCM|Gcz #%[XT~77MЌGK@}sM] asWw!ǐxs*ըڋ1rƳSW=^ ?tjI(RQ5 &D4%cKV4\TR͓T˪@CK*ؼR2Q;v}cЁްc _tfxzW@#qs_4mjH5]g\jZYvG# JsDHn2>~g ͜B JB;IX:;z8HAJ ՋT~#eQȃI>Th's ʻXр1 mJ'B0"*r(6?gzemUۆ4nw 'RXwZ1,\_=*V8㚏٦:|2V(P?Ҽs<<*((Օ٨Im3IyWКiZݶV `.|N5"])Xs^a\j+?Gh $I~A(F }J/W }H(=1iGI뛐+{d 6=̓kex1h/߬Ţ@mqXD4ēCVfyob! LM6ZfˋO.Y8p$dH2"I`rC7em9Ci!ZUm+I$ 7Z)c!t nlrE7F^ccc]v}: K?Τ0'YXMXY╵s4CbHANH_)oSh_:zuV 4)׳%ekW2Ra3SM ˵_Ѳ{0S }p]xXǔP66lZuJztRŞV龒a#+9HfݚV?ck\@ג+/Ŏ`!)>^J(R@鐉7E BYE$W+E }9U*8g{Jt)bx^y"{V6iBes1z֖-6Um0s|BݬngE'&xhzTߏQ<Afm=l, <7rҞ?\~2M7W>y+LX/du+"cA2@{kBUt*U~KfEz2&ܼ>(E# 9}i#"啦[^,I>\y|[Wd9k [`İqVJ\1GbV,cr\W+8Hld 3 (~c0a7*,?k@-SO{\^+@yvb keHsjF˖^g 1v)Oq0RK8/S]EXɝU߲6O/3SlM5V':T r|+̕HTN).`+$Mv} Xr1| h| YRhT #N0I"N#G3E},sA&伸m䉈.q-}90s>wN [L=m+ l`1wٻ4ݵ0y%2֏|ƶ-ab/\U -L\c`OW.!!yۭ6٧ M"vzM*,19I򆎗'xԓ@Qd7vh+RҔrlWN .ͤ50CKVwx@>2;0k})^ @5T=5!9yR>7s |- v*d^U4]8AE.YrG,8~B{ӕ\s$;^꫉o[iDĂ!ZFh-=Y*={(v8o&d9n3̶T$-|aWtjp"9 7 f37\F \rVQ72i+`0*ZMR9q5!*5~@̶R˞b=3XVQ C;Ŗc`h8P8 nkmZY ^$ 7m (u}` `>3<=AYo3ioGщ-BHUpn'AA ~flӚś45n 3sUs =w ^սeb 7@4|~<5D?7vfv5oHASmvM>%e3 C>: 2}kDu "/'H }/8Fx"/#JdO8O`.K P@6bmV"ZXafľ؟$7mV;5;އ9[&)G)E4{_,$Fҥdx]m۹A)?5*7eFSH4oᦘ՚bn u!cMA1(e>G0׿0ubג%c ]Tdg8?x tb/֟ٹhf_<@zQ:b* p+ v-uQ LLꑺ+"@Y4‚&6yZ ёHʍw]ziӃ=1߄ Yr¿6(Rs 3UsN5|O0ȇؠ'j4NJ<8=[NvlD8xkE['s ࢊvAehIH8:GaemC: i{$db4;ZA^A ֵzi2|kыK$R[dOE|FX/y2`\NfbSe3Sm5Ñ4@Mgj޵E{J])h7NHM)Qor(k_+9/d$7%l> "hhYϒruF}ⳁxRuaLEEY(M _jIctQ.3O-l+OvvM` ._(jےa^LgspLJ;Ҙ&> `z y{9N_%-83w NH9 cc8|ץ>7WJ9޹lI3(P+)7ZIasAz>!83ctDZ7z!}@_H[^V&@.h21xnO񼶧%}_m_/zzZrP|XuO󒴔?5LلvTzbֵdx ۊK2F^Ws [ r ijc$S3$]7:`g"4=pٜ1'lնpc0b]<;R06 L`M20q˾C0ZF.2(W^``J3wqkDȾϑތЉJTٌ҉9hHR0 X,5Dz [nz <P,hQ!SnVnK]2MhĐV|uT?s(lh̓&b Wqm $ej-Ly@fXűYHXbyjm{Jcv)a0`S{>^F)JluSp=1)"hS׸Z;<҆ϼI|!ѫJ}[tq0\d^mpu}:E2st#е()`B퉐%_Bg׊ͻv]4z?r?jqvq@Yq/:!l:$FZ.;$VZK1<)8bbU Us_Ug{PjSJO1' Yģ7@<5؀Y ~A7(жU`OR!9j ;BrL۲x0ǟ"!/cwS&xuWsaA\] \DWWEp ғ<+}ϲV ZMQKvܑnxqLHv>Ș г8p+< n~0B:sq+Lgq[;J)ҥ]G~,P?m2<8c{?T^QXkJoL!ff)Yѧ#SY\gL)&Q&O*ΖJ:`$J P?F`c.OUXyx8 p+X*QXs4hLcP֭}OfY3P`X>rz> +cnSh!#,z@)*}WC"̓0B; L_t$ǵNIBRf.-D.+'C_Y+9"3NYgUSg0ŗۇ\lZg! !5cv|!a\`aADu{"ϵ+B#A6 K ACb-GZFˎkRv ҍa2K$D71쯍cjd<_Q4RY?ǼkNO[;;5CD4ICw1ap|G q.Mvl="s欃݌(eQ r//<[:rO6K襽sx? L3]al 6LWz|' *dc(_-!?+gӪ7n`C՞{z0J.NX‡V&YBD@< G6Ȧ>;Zo1g[ .ٗ`9-= yv~;,y!)7XvlyxlIQwhиd[\EuxO/r{rv}V%e?i)x5xk 8|xW&";a_u!,*'NMXBȨ4[Y wJ o^"TeKNwb+1j B"r>y٢Qr!J{'wKG w14C엀\ǘ󶰎K{\|qෟ''lky^;7p4XځX/)Վm9z!ʽsPD$ zޱW"?-KGiC@8]R^4bGiqJIu"%s륨j](KHu1 W( o(u58h7iE˧_!PqrZKwלuP5P+Q<(23Z4S5#r D!!=?z!zo!=+?{{UL[פֿIZӲ4ʼ;0 ]a{;߂a;=]j$*pnzvdP*_`6}7صPCTCCa?t6֒LGϓw8D󮏎2Cc'w--WsRs|pUq@HX' g«4G&_hx9()7|` =lՅu&sː3ܱ*-hpU2Hlf !:ʎ𰓶ń g'.ypΨs }գJ:n3Ļ^*+ֳqRwSZm˨: RC' JQ] ^oo$8a?P6;Z*\58D牺l$ 9hĎ{w&sgJD7n転[P;v{;" Yc4v@ߞQ ?ʁR\0]\cX<7]m^6+mdq= #mS lW q:kgIx+iȢ#1eG#rpL"(EųUWa\%˶YT@0d|TF_uJKa<@]Ӓi'ESi⦞klUd0 ["cQmt6{,yp:}9[S6F9!n0r 7m=){Jt6B؂Si_j|W5*u`w&e,>6k'c>E )1G0a R)F{V]\Z2~06!q͝r`Wx"mRTp;ތÅmw.FGm2~px7IpP"?BIRiH;'@[Tn쁑ajq3;3lJ .d9wu&=n/@UZ?G#6<Jnf:P.;ǪCdY#4 qT .ⶄfVx{^ET y8sZ=i'n$)@zRE 3^U+` ⊖ ԍ$c(gT^)،x%jV6s ط~ 7rɴ2 ȱ9lH1VFUbmg%Y'PF9;.PgyVX/2q#of$SCoL7YuMsJ(MF&R,1/e!At( 31HJiEaOx@b7hfu s뮘^ےKEavG[|E?*ؓ+^f[GHIty ({. 5m''ۼarH,ϬΩ{LC58߈#`t1 ?6Y|7@;:-YL!Dd‘#(ONl߲Z@پ#2[n(#=] 8VW(xt DoqzEY0R%)Ly[-SƒrMF9]74&\M[q s2iQFE Ԓ`O'-f{(VFaCȢr(Fb+ Vʾgt\DI-F0Z2Ur̘4bt&`Q?۾034h4k ;eS0[Ҟ6e/֯+n. kGRb`Ьk5zsLh(EQ-G[f*0I1|wtPgG͒5)Bej B mò<|H҂__1FJˌXZLjr\yT];k:j#Eם__%;NWvU&z}55HoM7qE΢GBۡXoHa~{_1 ,$ Μ,SM;<0P8Xݟ"U3h#)r }06*kڊ0I@_IRf7ZZ# K vEօ;ٿTL01]z"_Sd1sB?m#4~(@*kjk@!WWn&4\}z}޽Ie*.EUŜE#2 ,&?OMi8SWgnjgᔜB))q3eH<E(8Llw0m? f,5v P8,y@XV'_Qd2~9uhArՙJibd4[kJk'S9ʣ{|VqP΂Z E~q(WkYQnх%;<q=24˫HV.@.VG>aph aJ=zg FaN73gԕs%P3%E}ޓmy?DxE'B\e4MCufmL&e&\ OjBNU(a@c{?O46Y7 q9 ؃$"'o_$xOTImkj#oOK}kٰКVaf:.t/R՚EmUB3t˦*Qc_2TʊA}e3I`HF8DC6j1AtXI vOlc˓HXi-KZ1I̷=(p0̜[-KURj_u 30Zw$^Hq1,w .;O_g\9>t]%[L4dEණq8Woz{A]|wthјͦ[݇U*yqȝsӺNLNC)0à<آ9By+W>d޻ mcF.(i`:])+@_q>pKiWk&@eq"==ýv 5F8`?4ow!B xX[E EpWI=Zw^Wy 4uvY`6ʪ$[lRVðf·#@<:b|a2ZqH"yԊӲ==J'k7jD#`+ ~-4+B`}狖+{uׂ> nɷz~!}k,Qy֦5ݬ$? ƓЀ@L+BuObY15^PlQW'.8@DzlW¤~ ĝ.őOV:Qu O]˹afQzZ AňJ[(2c`-mBB\ΰP̾/&!) FF` +_) ĩ: BSSXJ4YwwOc1b^*+5Sh᭑zt;ee1yqiJ.tyA|[5o4WWˁ߬ 6\Pfבz0of@*PS\ (g귌_xPxscJ0+jEW3#QVjCDQ.FG+N{AbKeij0'2t y3{–b;AgK~+0X@egv 3y1-|!lon|GW^ߵ5t] <'#ۈ.FN1-B@H&}MG';% k#2{ۨiu^NF^X=(.OFJGUXdom6"h(֎nrI5݂Qnd+XHwMo}R$_Ei/H"|P}d޵ (ʃhd-,I7q}POG'nGV-X_|T-]'SkHÜp: 2ub'Dxqa%kkywmOܔVà+Btك(P]G *ŬYm*JOȥXe%$;`b>NR>f/0~pR0ΡκꁁW/ @/KQ4asr3\z*_lBbh= ơtEqS *t H,Uԧ/o'(W$ թ YrKe=>[{ 5f#Çt*_DQ^ ɜ6ׄ' Lr $㱯.i=W%5[h,FBJ rȭ ^Ү.tFBK_`.`-gJ1p%wAA܊i9*\3H_gZVGԂ 8͍.LBߨ!ާ\g!"?p,.-xt=K-Fᒜ0>n* J]:ΓrɽȫX+;gYX*\ Sq ICru`5_|?:xB ɞrdNI=ɆKgpBFƼk֒KA8 pG|݁uz,=NԲS2/hW?K,[Un(H"s%aa?!d;vuSOp[`Wc'ƟlM'$JMD>>KN{ux1QL$=-3EWĉdGC=FV襺!ڷG9Tr{]ٷ>;nz֜ Z=Џ 2U ⍶-JݔGYr]'yT~<)Ok쑹N4=O3X7L'MSݻm:AU(7-Ǣrm}]0@tZ>$#"PL9 B@$e8^u,gs>NˉC#k0Sm;l?HWI@9Dtcg0@Jh%` (L {=+b t!HJOʦytT6pf Z}u[Wb"N82*O5: tq.MS'kWf}8tkJqʱgcm_D;0\GXxjI9"c :/THW<}9=?iS|}%'WXp6`=$ $;|%p]욷RݪGYWQ,/y<])D-d|:"\0QWsSQԼ!5ITN0E L=19]ĩ`~\L 2P|Gy<<f Aso<`*ѧ`sڢD.I_~sz1^= aK<{ t_ݳEcc&i5] q?9=UߵdCЗ7{Cw^^da Q{Hd%8_u$ (ҢKQsaq놿3Xe⣷)m|??kԛ2LG :Őg[wpHqDֵp|hy_=e9ۅ 6:II,a<2aĴjYۊ8}=||D'̀]iIcfG9m"T E^b> # NF04'B`@43ZWlF5gr]^R۟oZ[v΀1H#R>{Ă8>)֟nߑ|P5;diyinC!;Gd݄{RZN4;$?eXJ,qZbG ;=[bfFX$l˸N8"൫!LЁ2%H_~7)dQ};Q@835^ Y8_Q?t'a|a3nbfFrgܪ,ǻA8S2trџ"0«Y ތE )W^VߔUyUoHGWY!io(DhOa#xlӰEL$IΆ;φ]Hǟ3V9rg\E!?/6E+Ty4xS> 37Vg$+i@%Fix$~˙c #>Az+y [Wl]ǚ*`#dY:ҋYNER"Rv$$Jj_}-Ɲ 4#hˏ6Z}涍\ M\Y{͗ C ~5s9;pJ+F 52\2m1I8JqHW.L­$Zxkߣבt㝗#:iͿ)O=/ӻ7dũ?ܢ\_⽅9[JpF^)e\`l\3ָ/ïqd6Kͧl#VDLI?5JCS!+hl0/`,Ƣa=Xt6|0FiW!;C>-E-b U'Ъu]æ ~OpN6"֭w!7ht$H+mвPu^w= J4Eno-]<:Bn<sG^krtޕ?֘kfwvJCn֨?y/7跂s _}a Q'}5Asą A!_f ,,%ǬO&~̮TZ451=9[s-1  B)>X2c!}ap`SGI C 1& %d'oGn^F S$S "U` J!5!0L똝R~C3oB-ݦdXt]}MmHөp]h_'?C<)zë_}l$r}銎(xԻ]"j.xTE?@$yu^ }T/9&#Ϧ_tN<ԝ'sh2Phuo*7Vx6r|t\s87L \ eԏMIhOQԞнe 94.ˮ'taJ/9.BHĘcp=@ֹ/ӏAuZ.\!e7cqSzVn˪. ]dA]M7IR[%PXCN^*}%\9@7TTȬ:/13%0r/X^*!B,튯,Gٟ'/vD 'nŘun\TMy~ۿ(Z(Rm],d@EaHt1T'sp{@O4pThLV9 OldxV TUz݆@i":)q,JRW3y̨ QwctUuЬy6hb?3k=}%YI1sgIØ_#Ч PKx)pz$c7IŸ>0WǏ~O8`v /j)_rx_fcGA!HN*uQ=&n`k[\<'Ȥ.Ko}\`mνGހbOGuf4 Je QYϩ5y'Z'+tɐW-=ق>Gjs!v7MhͼɤwvhuN[=BL}3ZĎQ?7;aԏ#WU,+uV, *9Z}c!a ՍH:H74BcMB}s+261d*Mg.; ~(#/8r 45(Ðt;R`VW?٧{) (u#ZD + boZIM;16g9$8>oA DgAXeyP gcŷyAt S兪%]hJ">0̌sqtpqpq$B0gAe,> rZHgn)qxErtD5fFOp 05:ɏ`6VOo>4rxd; ot b_{ԮS 6׈_!X-͞P 71}JO<-٢MD2Ͱ1 mFC:#66 vUDt C#OՖxͯ~wb).!,0VѫLC5^ilꨔF?$y"9d;[!& A U)ˆ0˝p<ѽW{ޑՐs1J"MHd=$?}MDi#~!kC&{Ђ@o,(/EwMڑ7_I?TO1PbиL/W*s%t2 5͖>EQ|@}!g!KmnH0\`/ J`0~ ^s(ޙdX-EҮr>qQ,xnmaQrpGqht,]hlKj^]5J9`CAEK \Zt͇z7:h?hJZ/ߌ-³|U>,`o}/~Uqlcdر%xd`]ׅ t@Jk&/a)##UGALfU\Sr60k_&`N{?o˙1d;b )߯; q"O~wms2i7e(~(M4o x] V؃RF[*t4ĨaF%!'TM(;*dY""hVI=މ?2>r,{= w(wTd)|p =}Qf㱦|;y3 BSkRRD%6GsiG}2r+CvO}FH;rxEHNՇOPϣDNMySG3!%O}!s{5(Jq&Aˀdќdb&=~\.Śd(Ue 06MtU1yT -n# .~ɕ6>D1rRÓȹdCND|1Z cd8Zy_Ʒڒ8sf]y+:탨:9Me*Yil"f:, !^3~'ZqE]5rjU'9/9\ Ǭ+? +]ő2L )kѓH-70됼3i.q{M g)xicAc5eIиmp,}BWⱃS |Qz:CϨݴR/ d"v4d6ԭOV2GܶOldCPh~I5n8ЌnS<ڤtƩ|):01r=)!Lh_9ΦMEsks5N)$ZL憢&f'Tݚα7$Q62MS<>j),χv@ue:}#O/(/^*zc]AM@e+}jfzΓl(f E30G7*ާk- KG۳rGwww4 > wl)EZ_ineD&̻Ik`fPH%HE{93B#ٖZN-VU7f:Ghwf *4Lx TF1GRiO[LD 0Sd;VNI#`{.aKAxV7 `nXa5E \B[oFqy u ;34&;6*t:[MtriaHXA<`;n3K{͡5Dq:~ACݫ!ڶe'5κf|[ݼ@W喪U5o{Pn-ʝ#kR%\o (\j0z Jj{(aG Vߒ>| >9W@2\+wb'$W 5<-E4K|KN#{``kd'uo$xʮ5a2#HI6^ٯߵ ^t598pr/)d"&2E+/\-lB6bt#?n|tl1%9n3+Ea#.u7^D40]Źsf&Q"H;N[gqY j(.S<@"c`dznǎϽОwqP^jBU%rq\\bW(c0,E-C.WMɏ"؜+&K1UnoIyb9dHn!FoTiI#TVXߚOtjm;mǷPmͣgf_;u9=&8$o58[iJO;hʶlaRPחԳ:vU.ƙ@rZ٣|eP8G+8,$ѭlXVKM+7 wو0CW@e3 !83*~+ 9Oj9v}(0'C6! $G;^ ~i8"a0x}KƑWԽp7 # YfXRW.5t~#KX>9,(>h_z)KɅѨ/2<^Ṭ98o\( x5=S2!K*c K9(̉bAOR~ 8h9^|+])G&׉y Pҷ+`SK52/L ;oi]Vq?B즢$bLB/6!`JZIyOK !j]vfP)ۚ>.a*S:0m۵ۭ!*C؉\nhv߃.yLGπJ0t*DF c,'\u&;}ȔdWy*/ܿ 3sK'nI"kW4QS'^^o3S\MV эk~kw>FU¹%լ`BRPM$BLӚ-r-~(m2au7qO2H`pyZQcDHu|㤆,B,, fv;'r$ZVJQ3鹥-U EyS='m0H@}Ⅷc IъH6ø:߅؛4fHb!/qD š.zNvy?Thspy[ʊ!ٷ2ʚ}K@9ڵ;\4F^1WqfW]C(kfz3{W1hjWk"?lHODЈ@ޚ̰Pz]5nhMOQ[b34eUܨskMO!B6|WO#x /_dAEXv]N?]Mݩzp9^'/.05>+|iҤhf\NNДl$`^CRDS.ʇM ˩)ѳfsAӌ/zr 4b 5\#HMtSݘqEdY2$}Ys ۍޔyhG:N[*kc9JۗNnA~x/+yzC%=Y7}osePx*a0YЇ` R/SUyȕk:9G[m2NJij-"hPXh>w=n}$OSönJ/d^ALI7l uc/Ec%ZԴqݓi1yd e+H"t%R[h ?b47oT`G&=N fX~UOn.+ʕcy ȼ)g2{ avWCXn¨ay-$*~c#ح[rBZݕ+Ʌn3- WqwH$ԀKb} @Hb>ЭmLV͸SJx({PQ0Y.d&a^r;5KfyuW{{*byĩG^m?9¦SnΌdD0 >8$h=V9"{'cHmV|oTG217^|l ~,]{sNP?Q̽EJmڵYJ)dڕ .z (h4xG By#|ҍf$||cGƱl;r-z]9uĴH&ti?eM@w$SHZ|u&&+$kvLgBKU~dkYc%6 R5Cr5KUVzdZ܈;)# Hʑ IPY$&¢‹Y Uk9ubrxBEF`2+`Ao}̇1:g[d~LE|]{~_Qgx ]17Ł;?Pjra/Ie,јdzd>D8hm(O]En \B7As*@Uա5Qm A#CyDDN iG` }DžtKcTG*d*dư:M͝M 6#.sO]WmMowY5:6`Zʍ6S8/H53#CBttʜ3Q>5${/OL&[ţ2mNM{_Iv{hl4D~=mR;98MYsUXሕ"K?H˵A T >*J^.`T3@X@[^=dLm=|zirɉam O|>88OL} nL! ;,c[.wdBjC̝yAr'8lCQlj929rJ4c#'' KKaK!pA& ; ԟhQ!\Y'x.~Ho!emxf茝SXAKIkOz}5_[-¨Zu3ҊpVJ6Ya.yͷ͉0p-۸Y,P훔'!I2y-zG ,Td(>(ʇW ʘoh>ĐˮIXs60EI\w97p(=ٟ*[rm4逘v?( &2{=E&A؋ R,U\;}I򲴢]pzNvg\:qH}IQ1x8-m-ď&J{Y-o=?SƝ̖d8 ?t=쇔2YcԧK/EGr'qT[ieumE|P9g >.'GFݻ>츓 y 9hVK}ph|"yz ::Z냃u\}4C;p|{^="*QP%,ol6p?#oN)6ˎB׏t:&/f\i ]#ܐg*nzũş t(*yu{|V IY~|]s|w;TϾi"v_\ԘEհs u%s&ȫ*kEEwGG$A\ 5?ƉopP]6l$ZJ2?']m{3΍H~х%Qڧ@!TAQF>[m@jPKtط_iBZ ׿'+'g*.>'5;j9T-FK}xbpa;ak*.R^" oA|$O#_RMQRldASeEIP\{P|9T-&(!PڔXa;ĉ\5"'Bvtat*IRxwr?.Gz`(I#^|aRmv5ܝ (-2X%)rj^w Q+) ר13\ʅbXt2,a<`e; y:oXF)9Αk^|QoNf 5tlʤ='FsFcy]cZ[ppw^A1t@+DH,Ih98lfO?;|͒KW̕-;xup{ hG5Io@/@577}y688r\a~zY:#&3ZI߭+ћvcqĢM#,>Hv@A[p>#ueqv\{9(V]wj-#Ejo"kTaONXTƒUovo *q v)Ak* 002t9VBAn]1s 99] ޅ49{]`d=|5"i)k辇Ƽ`u$X"N2[y@b$ 6͐fc=JRhW5ثRQxx`?BeW!;NPO"ȌY1MkP Y5#բ[ 2Hz]{^DF>ן1 K+ O+f:F θs8k[ژeNol(}0nwp}M=3H ]X}&]yP x>=: V'_d[J(޲u(Z*HX~Fg"So In!!;z5ɷXGMXf>囩"g0(.΁R59qmZ ƛ?%If_=x68 j%#nrQ:uȄlo'IJT=h:JSu\%{Q+\QQ 5[cWARH3;MN݅ۍo+u/Cd]3CQP-ұ_dͺxիomDXvAڐ6Њ)?mէPǷ戽7U>.އLȸ;ɧ \ȠIMOV d/&y4Tshk~Y*QJ}+E:z ^NQB XXJ0',Ycpg! SZ H j龚r齬=z80c}Ci"g:9ԑAjNn#>Y2; Ү9liM'd=>CX,wf O &dAVjHL$qaIT+tI[ /W02?p [BAf+w=+9#0#k_^9zU)3s@|T&Zj"5%$eƁ `zo,fu?ERzS ~6n8e@En;$ OG-ls$t_"éAXS$&?6" ʆ 2iԝdR<?T۟ @r 5DudNtpNO"9 w-jNMp6RCρgaXCJ݈>(#BR NFgma7ފN}},^~z@/ v;p>d|M.SKy.Nc4&#[ģOr"y"dDֈJFb:e,|#4GnB T\brz2,ed=ؾ}q+mwe FF؎D3^ *H~D7 R?A?:OF#hm,8f=Ǵ.ئS|Y.ԙlddWz !+ qM|D yʧmNkFV;@LmRS˧O0 4n*h<9xlM)ȁ#^qH"jy+ oƓm„Za ( UhtD`,%6ְ"p1١ƓT(fj't&` (jyiZZn`{@p\jItOvcV8.޳8hTNV*1q AzHw=@(J瘂V5=IۦTk?]qƂS ebF{gd5+E`ܕ* kg?M(NCQӧ?}?>0mfbTQ9{^\栒^/b|5Zфd,O,Ԕ7N$@I"@m5"狯"Hz˜M>r@hծl@\ QFj[~QSy|J[n>TO>ڷ2ܸXUq!ɕqoҔBMw(_{ʦbS٫ge14"uU2Pv\+Oax'\t>%*/֒n $ POH:ہKU%004<͋(z.a5ylQZ42G r׽2V'5 %x[K!C|>} i;%|,Ah>f˅8 RGꅗ߷C}#6HFGdl FjN}پDvoUYr Vo|3+*Kd̒Dc[! (Z c9ٯ+?.-/J}}B {Xv- '=%,1bP<!3u6bv{wJN.M BHb'M3w~l~XJ66w&< E6n(n %Q aۈŔ=;{rזVԘƅV{ _ybޞ` ( J#0Wl;"x%yҝ$VBݗYTJ m6_r&55MFGCfs.,>{)[<0cW[jmCK>uG)HQҊ7sj>MJ JsDl\wCj @xxaׁƵbrfL~}b;Fp;(H4Vjs >Qlj؈㱶 g'jS^z bաkqK٩0"񔁲;kZg,r\M18sx%s]kj޶,H~ہ 3 -+"yy}F HuT3akA(7YCLSzޟr)D3,lU8wtE2}2{plO}]fX^ ̉[A x4bYlq$[_lY+cw&sq}! US=!MTH`8i_5'őLfF>d|Wf[x/>~ei$V :ԏAm.-2yؑI q@F|Ki\?@l{ol怜 w|mQ53#`iQ Eǭ6OGit3vva-> 0VS}kv/DtHV^E?hB6tYJZtX]?"MuaSѵ+⿪ |J3@6VyCmyē%6#wO4R,-C"hOVVJ˛gYχɁ R78{u0Z<^ae|siXjVTTNǥx^M^r (87c7J:4I1#eV^khkg3mŊIز Ύ)tn+M52'+T*X`BocL ^sPsEU۾Za/.;h[]2Qτ MqS;)vc˩~?껃ou}kާ _O}w<̣Q#ֵVj7բ]t!,Wo!!-xuj`M&A1URrGFЬ7F 6u֯0&نDK]P95I;bw G]Ճ]%َig\$/ܤ^ ]Uܲݐ|oUjۘmQCz!i7{ hvCPˋ]8n;S({݆>j*c'[" :&s=maj)$1$uq-.>T1Y l[pLRt\fT@ 06;TpO;di*/ PiAnzJr;R{!ۮ0/KJ|`l0X/ m]n:iwʙ,ʓ5=FũQw# uzn YqeN֕ OGgzrIýh)'PGNYK6QՋdž򫆧rVXm2zaV[T$O[ĺx0Z(ejGsDQQ}riE&$Pfn]yy?\]@xMk&5J{Vv'Dl,JceD.7H*7Nʓ*uTKyduS pfNEC!BZR|!AY}R#K_Ї:lUZ] i$(xӚW͉/*N 76~_$z"T44ng$ aEq8JiWQJE}8b!$/\^R zld@ to #s7R/Xw5d;5B]zl@XL*\8 +qTD9Uf o@ *>,z!}d1Xs<'hj&>;(t!O5WaLUuͤ(Tb!a}e`Y#o ښUGc*vG`z5a#n9tѕ}"1<͗6L0OrEۚ ^ vBw4lN+2򱹈h9[tJlU@ ?^[7x_eqq]Nm :jY~U0KY~@ꋤ2+U+yd|ᙆ\w.Lڜ'!Za-]PCJ7iRK ͆.sk.*u>*{5A ,w:JҗmE2 ^"ƋKLٷ 0.V3% GDyh.y =~CG(9RϭKGF!AX3Gy6/y%*r]ȪEA{j=vln=/OlddUw *+`I VVGrue%d5K^^yIL\+{+sI0xL J|I>'hTqSBz;8IՊP!趀.1BaēFby-Uc.=HPU hWa_! `Q$}EZU N' VB Y|)pM4lHLͬr˶D-,Z-k0陻5ni=k:S EoS.;u~ҩTZ_ |<ќ[~K3tGvʲÂe ""fT? I͔hd~)y%O!2IW)zTx8,SA" KyuىsH~HK۵kRy8QDaY%q]56{׹GU33ʙbP|ɑEp}'|}xiIN6/#y\iGlJ J)1q?DƇ#.Kԇ7Q˰z 6,,)˫ JO裡y-chx?soz4;8aũ"kp\R2pGWDŦPt]ϛm!R#!iY>?rm|0-"?t~b$`NW?;jWVUTU=.2 hs+0 ]=jI;P T.Vٿ1ISޙ~ไYz 5THkY "Z5e8*D^ٟ(' Xԍu.h( Q `s;#XyɅ)y!_ 6ڬ # ]{3;cP^N:y$Lb KRybfP8$-Ǖ5,sքTBVUm*{5Ʉ+X݇PuŅ|fsm)V@u}oCm uz&-7*0Th! ־nBZcyꕩ.j)bqBQ!W.ZQںĩ)JWf߀0s]:8q* y',1#ƎEUD,WfCg<:Zy+5[g o ( |b'uB.x[pJ)"' ]>h>~WFԊOqe):}7ኸ$HDVOrD"u;cZ( 7ejm BM1y_(?*?l!D>xYZc+Q.hHq[&ZϾ-2c6D6\ U)h*kvL.r{|Һ0> t+sKyɧ1o]b{)T֏I$xO#\A aS廥HBKz7$(j56Q.+v |ٲ6lzbQBzw.OF4-CְCi3<;ڮuV_ɦy4kr1spEIz/ra[G< Eekk pm[X cz3p9 IQ.W@B)H(@-dn䬝Ba9NB6?VU=,s~|(% s9؞xh7 }o sr [~P'dkgԦ`SI(` Gvd!Fcҿfte7@tw@9++%xndY*6n%YA3 aY[ Px6ϧ!Ԉ}M (˄ruDYό*]Zea h[Ota,:2Tc:Ar˔~}9(vH] Ivլu76.}ɑp\"z-r .u opTQZ|A e>^bHFO zL+ ='ɻߵ/8ɯL\4ifg[9pXW-> se4Tjik}7 ~₼GaKh&iN(҉5ĆBvޓ-ſ nχc66s|-)1^equWLVwOY)9(zSP2Be[{16t)HboVZR5|\NԶ GJ׬|A@=x PI?uCDN#c3Ā&XF4TJ5!ugTz7YD˧Qeƅk$_2옉&ˬIΌ3 #%8]CO(qD ^{IzuPI$..a&g+t`>X/!zy/)ieGζbM;/*cl$c>$ӭy&<;E թF y4xU{ #p b) kS2:MuT\G[O-f?URX,>ٹ\oP˱ϗ % n3w%&0=bGQ`(i C&H5%!EvFHe?F˩BH*#T k{n9y0^VBc}\t2|aӥ-0jwcEN$6G$̧nM_h60atxfluy6r$sI.Yr!k}YNĞ7. Bg;}-'|L%&wq=Hhȯѧ);0׋x& d'J]ĈFҋ"Mo!U"D:;j6sdn. f$ mضߔ []>ӂy3۪р,N;&py,Ce>_67wJt\.B`D|(r6;di)xU)+e2**chx('?2Y8X,ɧhǶE~gCʆCG'[o< }NbS'Q rܨ` A*P8Aݽ:g; q)f yt$4s{ei)N3ٙqcZ;~<.$3 6y:Q[agl 3$1(x"1.gl+#™agSa1—N5eL$ ֙uhb91, Y#TgGi}l5'J"=kbh/߯9s&mKH`.C8pYOC-) ^Uv "esr]E>L]TR䯲_oCo˥1J^ۡ/El*0;.YDS*7Q q<'PHޞ/=+iEV;%fi`92^Qh@b}h1T<V"篙0uNtɈ-Ɯz}<4=me'Bx3?+ !pIuS /Sq";S WSCxALڭ:%q[~%G>F|/Lc"1'/&U1AğFS?EJf2xn`δ4ZZ:=<}v)LIW3!?~fz'مVŦ{ݸOܒ`9 %{Ko1t-8 =g'wϛhp8\4 q#& UN0u`_00+3~gG{*&Y*!fV㬒8mW z9_ژ  :SY'Øk#ؓS[ւ!XF#u neѬŵ#.J%.vq.G&3K"z¬t5I<$S{ PfM`b+@ymż Rڰ;~|u _r͞JU|<Zl푾5<FUn lrW@1mfD] WU/p{>z>ܺrif\lVͺZ-Q[,CNAvۦjײ@y#m(W6,sPl4؊rrq"yI>b)3AL2;FB.z&yÍb#7`QxB˧\AXV^^P }Uف֨~pڴLΒ}݊q"X&=RO7JB/I̋7*p5/GAPvz$;1$Vd~-6 N{@Sf7!{Ϫ[{-r$n"=mج+G m^\)T&ȣky[ %?yjm< fL+M{$sWR{(9+$C]$fA柯2t,N`R2$'ti6 ]Rpi1nN&Wq@JkiG>%`)*t2V':vF[gnV͈%[O/y"GկEmzrEˤ|p_ 6 xoݩ5U-A FO(hWb 2N2o[n<5 (a! x4 R{]ֺߤ/ ?̈$udi| ,,s|iDiof d4h{J'r:^%3*PPidY-;^T{%SЕ|0{Ӽ$D.&~/S MGgqQZS e1qR)VǪ×NàxVTY[_ٺE$ RX3=GRgSr)9UtqQU\Ct&ɿG  .N>JF%$ӍG}ee]s()>.6/ҍ}Lu6IpWvf^Ɍ>k베`Ő^ja[Nk=V[w? '3;pup)(a_MU_9Y&!r.'> wЅHs?WO#9kWɩIFTp}hN4tIڬv{?HDL2j+<+q#Ε@r7ܟ:Z{Sva.{j/{RsgV=zBfN' {6"XY<3v.]'^LP4o*Rϝ w /ȹz:M.~ `S44oã)De9K &f91KK|9u̘˱ |ugGcK;>.,"MO)Gx윷v8M ^S6€{޻T^F@ƞpm(8m1&>H;q})[џ-Zv"KXA ҨENᆲFPC9+'@N&o]VnH%c 3W{vr|K8 oˉͤO@rX2~][ vJG`eDd 1E`Lmr{B(%G RV7t'Gd`!(+&tx/츧҄&XMTygsxزBH 9 _P pXG?vXXLR\4s+ +穦jPQ R+w~HBd!r)߉ UuH1X/2L?Iu}01DxVJ?^ &ɗicb-hg'G9M4:.ܠ}hԪI* z=p9g#kJ6r*hvyD;YӅ^۲H[(q+rMh#lhZ)D{fTr#K;j_ʴB:^o*(e ^@pæyuk''ݹAZdVN7SlQA>"G<&~ 4]U#85M_@E*ߢ$R(FW8Vh߹2XhZe=f(kƤ|L0=1,VSKNYR$zP,QNUu13i!j/ҚgF>xY[<ӭ>FISH=[K AvvZfC|Q?o`ۘAL&"zAnֆ gxΜ: ,9D hҢ"jfٺضdj%iJ:E|}wJJg@\ 95jW)&>÷ASZU7fo ʻܗ^\{Kƛ5j׺uia"-_~ɿVһ[:mFϓ;;ab6bMD+`7dPqu*:Xb21 {X/0]U$ARi;!J4Q@8jH,M^ZX~ X!&Oώ aQcr)9#6G\^.PW:Ҙ;Pu\N +Tޕ'oӱbĪ &(A9)ܽ@B9h7osP=[<3ALOu|JQ&*Im[JLQIٚˈEj n񈬍<#E\0XI{ ]1dbw?gդSJ5Gv60\Z- ,J ^^ߙyE5i#ƿlCϙznX dH 8B'+ΨР,vMV[iB֣6?8'},PO:#n=Ö÷_R~n=axٯݐA;*~=map-˴ +P_]inᾳ^v&6 .[p}@1Jo5ddҸj6TPѽ7q77Xdݤ)m~Aob7E'p!, 7-|)OPY"ZyKZLoScb0?|Ĺ˲o\tBƹCrZ SLVWi[$"e?z9UIxOUW- t0/\َ»eaϤ=dM YلO6~pd,Q߸+iBjCKJv ;aW 7|lBټXJ:&t1' pt乡"KY5 T]"ʜrm+@zj;kq+y8/HZɶH.N1pH NI ZSmٕ pi߽A aĤ xlsB^/ka6/hDR-Y `F._ݝqcM0'Q"_jGT\Q{@tFdB>DTV-BϾ憎aB/hBn9(>fGW{q(z@z 0:UH k3QvXӆcxJs%?\y ~- s[a!0+/>(MNO^b wӿ#&gR'UF1#)H31 S9PzQ3Aٶ ?S[gtF'Xne ;wC%6^T 0lpp!8:?*2nZ˶'# /Hf%e\__pQe{}3Dyôʀ+\n2wDM|v Z-s0f<-nCjΩ-|u9PblwH//wv 4&U+⵨]De=ߤhoDjkaRs\Q =#w h._ی)UP`+Vw)콻iGbm5\+NR/%/:z \QB-58F8=d5dr_PHhHjYY[|E8]G!!4ofnDMwR8*qp v&`m&jD`6gƢD`c,:K?0T7):J&{QQeݗTgirC] > RI v<@23/Q~BUbh%ШT~b_gIY6pVx@r2ȶ,؞<0G{zJ!^RC Uu~.j/)O8'*H_\zb(M95y! Us½T-9W'jI$NI^mLƒxmw4@Cw&#pGPޝacMڤtDC?d|,bqHFILu5*/&dweMa#-etp+?hPVc{~힍TXK"ն"<  S-c.N KZT}q C|eŘ (?C ypC)),{9\Y60q%j#atWzpݵ׭TP^[7vUpO%n`B'~d"Hb:O2z*'L彰h4}Uh󽐴ѱK5ѿGglqz4w hfJp2nKoXYHX&3hS+&ouz\Gc @ȣ:R:kKJ`~_uY*X!)‚؜N]ڄ^(_!s8ؗ`&eT 0u} NSCHBxaWT꫈dyˇ@UPPxX-rl޼(.IKrG,Ԝ װ ~,+ld3Fv'$-@eN.kδ C(aAt|nEZ!yk~qe pl˶bF!jyY-h2&h+v#gMsFXߍHϥb-$Z޵H]w=]b9C6&)-p]b}/WkhѼv+./ @+ K0ܘa.Y*5JlHRJ ,TF=)*wE[VȒ;xSgґ{8ݱJ, Nחhgg8;ԖK?.p2$AC'"q îiŰvxBG{HD3nBn6F1ZKN)^* 'cc9vM=xRDžݗ%`MȞPҴOQ]3`;M!x辸XT^c!h[=0 &k@ԞSpD*j}23-]~o8`%s"e2nq{& 2'+ۉ)ڴGzXM 夂繭*epgZPa bU1DOJ3'2uvm)!~@[73aP8g`(1IC?djǧLyl$Yu'LYi%]=!$'9uݱ2 .&l*rz3 _"NPc[ONClDٕ1GUuo*h?rWrok7F:.df'BzG~7̄eS<evӢF*o'M9|CVc*?/u@` g*Y:KszH̓#%# xƻ,r͈5TBވ X0,CNO!„3aF B\-'&iVQ9eg9MmelOgO"ZKm=xbFb ފ1 qU )G4a5[ .k͘ vc VOpK(P:g:^UlLH͔IڹKO/QhFbOw|>}ky=֤b,a#_ۿg|MJqұe *4Y{F qݞor;3~=fV4 u;h{#N๻(pQةbi]~=րR~x%6D}{"+8C%]^dLI o6|I&Gx֦fyЭ!'jמ $'m0ۣRCMV>'InsXMI`ٛzQ= 5]pRŸcAϬ)@:Vąt*X.cҁ\Yq[ġH:YJ#s~^D(*>ABaaqus:\X9tz7SF26ϥu{+ {uխ)b)A3@ ujL%Ğy -aGS|2`&SOؿ%ݒJ$ F(J< *Scĵ8^#c"< =CJ|O<y?yY`X;(!j~ BI2ooU>vl`=,U6:SDt(#ӜXLGU:T-zv.N^nɞK`Mh78t;Ķ! ,&(9O¦! 5HA' e!MI\T6l+Г6}MxQt/\->k+ q2*54?-M| HSE`o޵4#ɒbC \ 00Dwt[0U*`SCřз]DZPuyj`Vy(`ylIAD}(={#Lzu? w!6TM ᛾`tiխaH0s/,2N෾Hf ^D:$yG46E?ݎ,20@<C\n",\/#Xd=O2xSw!B權p67U?Op~ТQՋem|z.RMg1>yPK0D22QȔ-0^iY8 `?ZtΨy]5NOvgcHlWӰXȽ`1&n1~_i_ E{+T(׹X<3YO&~Bӏ8^|K?05|lvYr3glۛWMΨi=lYW 8dP.;n>I_6FɊPZT7$iAujڮl6VH*.̯1x,TrܓwJ')0?LW9^&H[}zvcԢ - JYȠ(|kGyNbiG <OkG`^lEQ%IpҳM-_qC&6IZ">'.,3P`+Uw^pm vYNKՑuoj&I`0лV.]݊K[0*wn*vGZ+(hHpƇh 4|I+]1X+ƷViK$e+jԉ8E(=₻aCvs7zk=- X m=yF}r+XzSm s_f?v@nt&4M)P g<60 "ľJt [+-L/glgyc Fu:z50'E .CslLڸBk4ݏiDd!gXc+֟ǾY)fZ9??@[Ϋ(d1kHw @?8Oeg~HOAY֙fiK2<$c<f?2C66V lIX%h{!=dHǢ[IgHԓ"嵠 sEEV;)HEqҰ *y'̥>*g~2 ܁9̵l'r{:?$]j\nVa8s#ثUx/ּSQH9JdJMEQRѧr-΀|Vd֮{A46\;E%NtCdq#nM}tM+HIBdH9T}$ '\J3EX?74M !ž3K/C.tn @׮I0jtCkoNJm#&)i2 LJ6[8ag+ڄC᫅'JMYً[Vo]R $F-ʜBNP9pn|m o]HQHv/,"̕8ZP0 X]4nAhOPO>"ܵJY<Y_N3[8:dH $܁^w?khfTf3@K 4PKzĥO5{)D1KU%A=ѝ 10 򵉫N^LTM [)z\)2xŗeKxDF S %Tax(ն )_z[LonZ1# ҋs..8WaYN=SaP:g`B>I:aRo|'ox"=BH|Td"QRCHYm^4)in_tC7W1k2uA;6uП'2)[N! q:=J$kpy&~e͍0]G3bUW`pU,ɔĖ8$?gP~5yDU7u<q'jjԓ`"o7Ͱ\|r_:nEO{8'h[H h&Zi?[>Y RN0}ˑs-.=i> ?Oት]28px?"m=B!8+T*k&8͖% m5åQնY 3mɠN)=lǢFƘ&/jO ʻ0֟{z: #" X12ZRmeY W"S"t:fys}Qc3΀KwMBńB'm J_:hD"cO_)?k>gâĵu{014Gq@D"wuH@E()!E-9\ ?-,X9tp0ʬm=)NV}#0AVٰ9ǧ!ؑDm;.zPȾ/C̳,VL>Y [*_6p"8c0RN49`1ɬͦ xCMjQAQaaVRj&S%=ߩX\ NɌ<޴ccbe01['-F+dr[#[CigE'=J6]fQgm1##ҦϡP1fy)%u GV Zln"o<<`G8u^m-[H<(7V|j BsrJ(GfG{KpgiJ$jU<&X;@ Ǵ`+v"k@T^L]dn9m*$,UZh ˟e#z:"{,ͅVeɨ:"~3ϩ;bFS+e+' (5k(k'_SBb٪xn]Er5SI5Lܪom h1eO|=ג]N1u]AƱ3r;MY?(3];3jt%*onp Jv^Xziozlr94Д C5J%E2PA,alEb2܃DZ/Z*^3u`%>-oSqFuDxu^N$A$+RRi\nc :7N$JIg ]{\ q"tɲaxIdM~T("zpϴ`-ܕ9-{I镝` O3T#cۼ3^; wJ&*pR?>7u;2~`GmiT: Pݵ 6.,pIJ#lƜ]6 um `.瀲mŏShӋٙj6r}ԳQWb DIPD@tC;9F,~\q/'M6~Qg*bIFIP[L(dhg*~夲t*ʑ;}hL{]҃ZBH)bf Gv[ˋ# ܠH;% #=b-:1ǭ (g Pܗ)pc?V'S ٸJ#eɽͤ |TfS_5RAY!T5R23oۚTLTi8$,{E~ƹX @#sddE2+q|uHbRs 'HF]mIԔ1Ýoh*w$Lz m4.2/uV| V}DY/F$앂Ӧjڿ%Ҽ]C@ڵCR@w)=[: v%{5 }бD#p+ƨZY^mOKuD,cEruRh;iufHyr7EAٹr"tچn-$ Im?}VhK;_O@C s;HIb`_"L Fј3; (lY|gSf1<WZ1ZV\j1sP碎!6TC"Q6RF<[ *]E+3ù7J%6=xCR6B WiTu1k$N's^ +56#n&2kR\*&zVqDf4@\F_ z)ޓ|/>O+mHA8& /. [ye~}u=@}gbNVAKa]5|Iէ-b˛d:zkUC$7՛')ZA9F(K"Ei:%esjzhh8u,$傄Z "X)sth){n/xѵž i @̅hq2$vA[ǔF+ ?$+s5nUCgaME*~v>'RH{F(#9KijcmKZkxmuxoOqp9&mH 8#/KZXѾn}'W|N JMW .?at OFˬ p 9'at0<4-(w,CUV}(Th:x ;ռ`gUOcs )sT9 O;~(t?>C<{Ҕ Ηm/ ^]pOV±2z"="-U_t GWu)btA#As b ow tKm?B^|^]`Y[R_+gd kZR>`S:ZibC:|iSF_zuYz7GKap+7$#>V_ e wK;2 \p⥨BKtÒܓ'"'s\eI|dy}db+o!Pu>f}d^ZCTU0#S05 !ܴ9lSHcbSڊ$tJ2,bM]j)$իYd/u.8R%x20?%kǢ8fc lu(L=tP֩i̩:Nʾ,&n?1P ) zLgj =' 铢w*_MlnꜾ8ѹK%nk~ĺJ-[EKicY{)hA ?yPrFxKJ^pЧK྆iIv1Xqv%cJfy''[># 1|Ym"_~Q8h>H }2 K2C|tPv`3JIbI\q/Zj,ɵֽƣBY+C&"-Ґκ;#GCl= OT,<|^ws =JGK[uٸ =ߠɺ2L.&Fn 3P褾$-:{:semE(B:ϩFqP&&'G't8 04Z&+3O5EacFZ}_Mpu1 bB-~Fйr˞[-Z-w3r}8 =v0;69H+&vrTߎΚ7`O/O~Ue-':9P:pCn?BR5j{JK69)w CiD͆ԩtA~ %Lʱ {mD 7 լjI(MHS:nz(+TJ|_Zĕo:WJ2ZII nՇAE(%HLN4059"}^:f}N0p?]0?#bjcˇ٠N|t|6~J 9ۙ+S4T4'?7;rAM^w5z:ߋ1VMgN\p1GCZGZ.Qx_q9I6R1?ojn rn_Y^\*՞X8(ΠV$)+ae ۳/ιe 0  "K:'6xw\j2qX";dwݰ~f|w'<@e4]3.P W>ek\E GUCw\sAz}U:iq 3#+fI: @p]?9gI=uzy=r1-13%n/=}65 ?ZdKdF:7su7 ]:d ?lPVRF ~ſ {Z4-/bLu!rz5Nk{v\zqpa&8wԓ@vv+Z4?ao qN߰BZ?SF2!-Fr%ֹuXȢ擐4CP/P@b;d> OKf !F=*yw]d&tzfl[Mo^L@U}_EQ롾J:?yC! ›snPQ0YD @x䌗?&0ZufE 6?p'5G*q[$_1U7<` }J4|꩎zN+.D/E1m`[g1׎L!b]JgDXhY.5!" q SÃi>W +;5gRZS]vu("Hg [_eQ3g3fgh@̥nl<ܸ:R=m4]]yaH':+{zkzo+#6p rVM~. ,WWZ8%SrB'Cv@3ӳGT/7Ø]y"ΙpUτc;Li$07ɗ^Sfz#H?h.av;Ll{tUKi:ܝE=΅{b>m 7JJ0k*vk'm|Q={wB2c04 76%SFKrF~ wB3`eRA.(Yn4 A,&b X=ਈ{L,rZi3'ƜĿ_yGYj/ǰom4㭎[sQn7>IKyU-amLhdBLj ܷ#SQs8#L43tD]nAP"6||?%D Dc~<|#1׾4̐0_5 HQ'7L|6<βj2tW0&L`a1"M۷{H%Ozm Q U+|(Cla˱c!Y+yJ]@I5 KG 9t_i6<•8~ɜȫ*͘+K'w/ʨ {6~#*ُEb: 86X(͐m/x g522P$*T \`}ͽV6ϛB/񀫇Fe*:tvi._Mc[8Ib], 5$ů<1ˣjxz_:q2bCk%R>m߫7!7qzHp5#֒#Xbg.[VR#";\j7%X[1饸 drKC C& 2\Ffc퇳4iB=9,^议_f"@=tZ$=º0C+cڞD%0sn!mN3c?5U:8%=8#&(_SJ NJu J͢F)7u̝5xYF†7W4p͜ߕ{,IP+~Ƀ|zyŻ ~pEc{Js ,BF-&{T[u(9)O .c(ziyr&}l ǘ -!>*̖!^J@;a˄ӥAqOqQmu^+Q6]=lwaVS^[ 3YšP@ 6O|!4ʚ$U(5\JܹKtR9h7C%4$;z'28 ,8bcy]y>}xcY_쬕8YD[߀ H5Y<_+|X X#9Z~2TŐ4FWz+=ZR;jEg8He8%L\9:WDħ)2 ߷A;ESD_akA:;n1_ N65z4PwBgҝJ:'[qk(JȎ5c[+w ׍E> t z̯TB G%]ƬSDXZ\YHD(tF̄"f.RZЉ1k3̨_}LJY3]fUC+$}l'qc6QE2& *ї#~$sU+AtH?7rpdCjNl0#}7kY0\Qkvt36T:K'" k͑aU4lw;<8QT>hdsO@-5]?~(ɪ,e{>?mlDp:[7}rBRS*h:Pe1AqGS*9HqL'xْC2[DSIDj9ksBy+HCU9P0N_Ɉ>N zy^5A'daEW%wV>frݨ.F^lFU?>Fw{״;b?˷-c77bPSqгu)WZAI>T@ܬg.swZ+Tk.CqfEߺTڨ>=*r4=!@e>|AlǶPٰ2Scζ[wjE- &-Mٜ^q9E]WM)LCu~\)JQQ˥N(*jA:ۥcSJ%%>dP)E1A-͐PZ+ Wȇ)HP}v?@|LCge`X::bUEb֧ ߶L9ײch > i^w>fBBMޮJټjs[/66"v\2Xג(  ƑxnԒcL~ b;b]KoN~1",B O)44vר/GhYG# vd\LqkȀtuiLJJYLCILʸhLyU9iD*j /H]kԠ`>FvL" D@2Eqy3de'ԄqXw Jڏ V؈r c. +$?g%8;u>fgYWxP2P=<$# fF8TγSZSyj( mV[G.Yx Qej.?QN`uXT*5j`STK,:@x5-a%|mv}6JUF>0t,+qNkL +ꁭ/'C~q\ i%g߱dQǘJ' q'˨awXn]fRze{ 7M~4j;^&橂[aGU ӣaa|1x]qtyO>jgse#6f`V|O)-}eΙ.QpˏY<ÊO;ԡGU|9)O}Ϟ0[^v̆jLLP'ҋ.|m2^ʩThjS]Z{^+qTLLZO# J^@)6r,`ʪFۧgORElb7uܿlD&Hz<F-mbOŮRUd72{kį ]6&.K@t kN)m$_\lDi3u%ڜ)#ysM2BYYCoV"_4J-t[7b1awX_21RP: 2h6ˆ஗SeUSa˫c'Tۉ|hIv/pd\Jy:iNy~m \S,TGK<8U9rirX8b D/1uHG%rH~`/:WqtpxbӟJ3Z2.Ɠ`XOXTC96F42ʨyEQ*פWb2 a'9`higHRpYuFC7l&{?qxFDal>,`6kW vp Hr*'nt'M"1`23=+y-4 !%{@IvObf}bEaۥJAVǼ*tY;4]U?"Ya,4…6P,pFJ 2jxԽ5y8%F6kS%wmB,w$%9/\;OΈն ?(lř,n݆Һ$*[I(-:Ǭ$s٢4/pvDu2اRp]\'5DY?.Dv_:n qٯ vC9!-?2g]?Qfo5JlcH% 1] a2_YUj2NHJ˶`qO3%FV%?w4;-΍yx6 J+"Qy"m[)A1ۭ!3}Qv)1T~Ruw5v ZU@cbeȴ];}1]Ț\t'њ^HCt!4y+4vpǠD=,º(B>ß5\c -L5;p 1>G1]*N3+d]u~(Yhc+ A']!A`iz{E }'P̵b#Y(V0G>XHPNESqt| <ڮ°̄IPvSKA`eF%`/ڵa܏YtmgX3k'5ϿE/gU^_<⩫)>׊+bS8bu9DM#埰mj\*H(8xlVkl/'HvK5caߍ6˼sbe7 Qp3éy+ Lݓ wn(l'r}ѶKUN_d9<MvuT/rDe*JЭ~'^ƥGx9ڶvcW r]3:ENн¹lV;Wljq1i>1KV,kʉwlhwUh҄G}cIu>ob\ P-9. ? C 'bb,;ڪuU+=aRn\B,; +dttwENݘnl 2K&p 3SͰRrY,}\Nlqs`gP\wC[rLPDT;/ppSEBңNd*p91Լݧ==>!ap9Tp]hzwY_u9V>&Sq)yJZbNv=hyr=KpsVY4`Umr}Eߛ獽 ~+.)n_TH ;_MeފgVT!Yװ,K(/)qJUp""&ݫV }\Wey(`GRBTbLġnO&5_qpd c'~#B14Rn0`s7rL]P}Eu6w¹}nU~ыfS(. \ ZBA+ ]m˥(GIڦ_ܪ,za|kJkUe'1N{RGl?0aeS@D^"N"Cճ0NA9IS+\ID•-rs@cF9G*xXq ڰ[*rȾ msob|H$EM;P◕pF] Ү *[cdwL)k<=[gnMu$^͊UH7j.RZ6iUQơj`k4Zj?g fuƢYUM[l!OI`.,;nX. M-}ݎ[T~J< ۘݸ;¨IAґ-MQ,jjaf:nvLg5sڅd[j,f.JyU?$9lמ~8npѻF&$ 0gtM6}tm);#Ņw>^eTih'BCAW b4Rb~Ad&{Rg۷rК^aib!EV + d&yu-B3K"S3I&2v-51{=VqU-Pz7ǚUY^l|Kpm Eʉuhi,yްԾjyw )g"276 vg YJݶ}f%>YjG9х*OίfF ȻHPK<5p8o^dbbe(WR{BF8l>G:Rh٢:j`H[ (*Ks*y /\-E&?QL-V$mҮ$2[~ n5E0t>΋k +>sΒU)-/]`-g,@j(9flƗ uH$~;RLw, }P;MCڑ-İcLJ܇ ǩy/R`c.$ \Ŵ`OZ'| Wd Z3Y s2t4 \CY5Ï_aCEN-75gln~f \\L/ YS/l#'v$ \ywmE@AָSط9Sn\Be 3w`êq~,S'Q]gx?.j{yrH&=fgB}UogC)mk8?Y]m-_ =nFFQ pfp}hvU"&%m\zFs/_ru!qf%ݫjOOjTگ{ }"/~3)9i_J(CIYEw#wPu?*l]Тl[])N;B@-{^RQ+F3!`qQ{\!BW,ˇD"0P#xqqJqf'D?((H,aZAn'6oVBF|6$a?v F>P7 v!BCxRƛsؑF[/О>%'&bFRqYrt Έȿ;(d0.V{ꒇSC. >XYuYf9T'k91WNg;iKWs?{%gf;e^=1gOhV P1z8Vz&1{3Fm!iFP\qf:E]9% UhQ#͞qsԉpT=(2SH\ͣgY(p 2ybFHWpjwPU0f\:dW`ˤy}(oV!4pituQ[/E^! 'hu˃Xeq1JE 55P4ȋG]{B~z\ |@f.Gm?'6q=??ﲽL$$V}9qޓ>wÛNt5xyi;O6קNuB &-{_ :P!nź.**_DgFUW_!"bY|Ϧ7.10'/ L~zrOiѩkByp%5'rW]\^2x"u@{J=kaw4d[A.Hˉ8e8Hyh_&ѓ >T|ele+fbZG'4!s˴1lYI7P;һﵞm#v_Ll#IlNpyZ]qPR9/*+XYכ -yh~,Q)X杀0"S*OH`Jj4 a'dsG\|)l{3rx@o={ܠe)J2Cwsix+)'%[E$jۉ| e:_)QAҋ<6WT$G;PB_9ی\bw#H3pFVfO,K^Rgwz>b鰉eQØWM %ñWSZ3Ud^'`CkDZ+@?ˉAӂt_9f5w \ikFY]vXyyRl,5vЦGԸ%"X"KFDxwN 2{: q>4y r3m |&bAAJ4^UvǶ9jX06f5,P).]@]SWMX< VvV>zb?\0{J-}{,[s.` $:5STߡs,4V [#7A`@ãz vGZ[H:> 5"\] 1?)8 )f`}[Dx|VGiZR 䆏uGG"u* mV0^J%F}.k=2 |ض jr[BCDU(J2]E0xYt5J3]5j,eUǔ QH(#E;X0 rd=4ApTU  %흌YgU1| ~ "FK*6 *IJEDsML$P?aӰAUmv - "`èŢ5Z=i|@qaoM5'w.gElCǩa 䦎A@Zbr}~FS#ߏX5ct,@8APF/\PQŹMnq+ u ϋaNhՙQL~r|`y %ZꞄAzk5Pg tvv}[yoH 8*=&U?-X"n`@mk?lڌF*HṆ KQp*ZpvZ5g׳2T&1>}՝B㇖\?yڏd6yHV_4"Q Ԗl{fݬ$}'@[[L=zFrsq*XOl^$RM-ڭMˀ?؅ 9P̡hVɐJ8\[qT# B ͌$B7ԵAӗ8pˡ?qr-VtL) )PRJ=ݚ8<|F l&5;h.5EЀoɛ[4wr-@Iɂ5+՞SJ8SncCԹ!X1l? {1N)([<2Wl)<65|]=|6yN<={"SQ>O=o%ʼ &Hdɵe #(!kUfA<ІZF⹟ośD.Tt ggea|c7١ hJ:e3k_߈SnEE 4jG³EkQrm]IZkEbtO=Jړ*ӨK4NJH| 9ϝG+Grv8g3N{D +J=QwQ ξyXi]s He'厩C횣M- Q~]ÚiDCL;A@Bg {.Sњpȝ[  P8N=_V.sWL(Ϙx>UN}4Fi؃@}:Q9:i?̴ GFn§m}%Wɾ alɵ zsKChh,!0b<zr^6v#jyMz"sHӥkJ=я/%75,%S@3 Y3|M=ӀlM||^?5ˈ3& a &>+a-M~$?iٍ+7OA1 ~a\$ݘꋑ.܅;,Y/#up{ Q_%/!a%wӈ@^,ʳx^s$2u~Ai j8W.[lֶq}C'VXe#GvF٠> ʗ|G%4)|ƌ[ОͿ!Aw@/-bCI&j=/25tMaO ȴ1d%1 ɇVAGg L_esMڝ7oĵm51S IMXOFx%2">{Y~7 T6Jv~ោXtx[=='&rt#S]gKʍ< Yy7' ΃4a'M?dU]o;r([)$tAYbD<.uid;Hc:մ0\n$yw4qً}BIg#r&~)9H-HO<מޭ+/4 !b-KTMK#}^\Jm/}o0lMaO rE76$ͯ?4K*Qe`c#xczF7x^m2% ;If#k5-b~ '1ӕ!MNh7UAg#!BNiށi4rUf onB xG8,$|Fx ԅlüȟE7Fjfڥc BvA腆:7cd 6= sM* nڲUƹm8r ]YwsmR;m4%b-0OuiVץ;>*`2FV:}:fax'p.N)tn8Y\Ps{CzA`,8h8{7tz5據MUg҅xqDpܠU1k1iը B-uN!r523[51_׾B?0U6WT߱c0 )x\eߩn wcU v_p^ތIX eR^q(!~6Hm,%s.-u""Cs{Rj>PMؙS"^J^19 bE4J6C(}ذ+IC6FQ4ԊT˴ շWH.@˓/]Z+iGk`qwg!O, ^ѓ${,9{ẒCnUſl߮#/DҮ*u{#q]F?)͎{ۿ] u&[@2$ $.:1RsgM)uI$ }̨ܼvr!D[źk۞T\!P{_ַmHnuj_ ze&6eɂs䰵0RrS4 .Quj1fZ&(p%S)е)mO`O L%`5LzPXiu3'ҁtBE#GcR_;>VE=l sq)ȸ'+h/hMglՊd?v9USϵluWbkfR* Y06֒% קO,A{vުw{D|$nD!hk RڐV׵m;SlgLW=dZW >k|v3}/Be] UH#zZ gyz ȆXc/hڨ`VD?;ϗݤ30MQ{_#%?&e3:~&T,v\O5é}98?1og_w[}u{ن6CyɩkFdD .#O2]$;!{$6~hFD Xc\7aqHU8JbbX^Ơc^'1i"rVzr@`g9 u Jn o-5&_q2)!|i Wqߨ0,Xè4&ЎV;`J?S#z?`X cO;nS~;?lB؞.w)A%I̵r;RZ_l[lm&+U lIyXsZd(-MJ]5ޯR(SVU)c \j "rggLi:Ag+T o[,,6ܷ~x[{?}A +͒ Zx`]ZDFS1!5N!qo#\|ixO?ْ7* {wB"JsQGc*sR$*OCHkmQcvJGtªҰtnI F9!#ʘh[{q<@(PA }ow]A n8@!~Hnmpi܉2E΃X[|,H=I`Y vθ<Cr17ں󈖠Ps yN ?b@i'xS .I@'wݔ )9ت&uQQ+̝ X&+*E.{vFԽgw~oc7" oDH{#s=ב um1Tft^ .G?wJRQώRH'5g@ [i]tZjeEiym" h]2; @[歁ɓ?ퟘN מ VpGmku sB=)>$<4Rd<K^Z8qa6xP?Lcё?=ƿ/Uaq|Ky}4{]hR)ZܔBP%bakzU?0c&^g#$p xGڥLH~H*=WsGޝ[IW*$dczS,PYo@7='0/~PKL1fy [GBHa Dnj6\(oq4ՐE_Y:j.Sf+-kU04LPl>cJE IkL+GnC} %"Qa śԩ+z:38 g!E5s8SgøIxtb%[**?b ' m4A׺K;$zl1ݥݱcm۫d7iZ`3zۨUT\&gy5iL#ߡs[[yfr Cwz/J|F+lkvw@dž#iDJrm3dVdBcP Z2pƜGdzt? 5$H#Lr?At"J\ѡϓЃA-vqw՘C- <ࣉ`d 5iI>˜͟o CW]粻u.0GZq"a× !T#&UPU)8iH?Ւ5~s×@nn1)F>0ʼn0E9 PiD_q^v2OCCש6]ᇨy£L+n6_B"lPt5:=O5(Th>j4sNmǧ O׎9`ftQ:,²g>{@al Kסc8Ga`q8EZ1ΆKud"ndX_WsGWK40Ol'VF#^,b, f6,4'?C4u1d 0;G]v'7<=j!fjrsjJl#s~r[c<&zꑳ:<]!=H  )'&W*C5ljܠ +CI0yБx8/MdXl$ɨ% S*N'':b%y7X$qO5wr3կs7Bk׬Gp_Ȋ]eVt80nG~O5h ̽"gw*lڥ}8ơuΪn8ѵL-&/3ao~SDa! f*'qQqEzPjp-^p\ҫ 5a_%WåŔ#1#NP67 P5'A@6EvIѣ){iЩY8郿%9%'^ـŤƵ"4޼8@: |S>D^mP[{:$ˮ* Kwkн6`Se?n;%0¨3Ȅ(O"z?ΞWlNNm*^*1{k._y"]jݮ[ο< ^ĕgg^NC$9briGk?Vq[}:wNPD2+R[t%aTw{0xyBS\gf_9!x4P}myL}qK02L8]oƑX [&GF@^jwB҃ \[s(Qrezi8Ob[RQ@.WpC&g~mD TR\Ȓ4cLw7wZUY) 2vɕ"& {Ƥ [?&\"/Pjl7"qJn2=P h"As,Иd;unD%aA[s.;orqMS^HYwvp4jf2QqBҼ|qV\ _&2gQn/Q|rn5NYz~n״EU^N>kowǢ4쩳ݢC,K[Ae4ye%Bz;v48`Uyێ_B V`3&(47ZExwAL_(2\I8˨ ܷKy7?)zQ]05~@úȏv,|[3Bd 9ب1#"$R 2a27Dl` ճAp 0ZL+0Y7x&qqb'bdJ WǪ.8|t+ngz7E^'ujÁ[ 7]ظc -Rf9< }%7߼ѹk 20ޕA>_q\ ׍W0Ky~c0bp5Gd9v7L=iөQiw?J-T9qx;ժ(#Í}@CN=P{e>BtATKS_zU?J%JoWΤj ,B[6 ^e+{FL>hR8y ta~_}WWNEs 3*[Ƭ,>mbͱ$ߣ'biK#ϙ&̔ JAH_2^mɬ-'1 &OpbfXX*N$SڠHcO^k4kO;}Í" 'E8()Dj:$6j߀PASn^_fM|yZH@T͇htZ Qs]b#ʏg;p5s.Fq8gI3@dD'+6@noT)LJv^kMa˂ ل5^Z^Nɒ2.wLsZcq=yx> Ҳ$?w%%-"ld[蘘+(C4( IVb'.:rR.P| h'[" 5ѱZ;C,7qk;OG҄7#&%#>u831FfK)&}73ͱfi\2tҾu7tlLY!mSepL&YnܠwzRjQ'EMEZ*Of{`j{xnXH-'&,k]j7mޕAr/4EQ&>8lKJ/ELͧhL'jZT$;D{JM7 Pk!F 6ȩ~0 rFǎ%o`V90VZSEIVefQz6()L7u3x`}|r1eҶyƫF(==t&*{s[i5{ځ"2Y5lT8v^{f2k~CS]XƤ/+"q4@GCFFkhxiF}%+Imy`A >́r!>(΅& 6xXeЎr 2g*[=2JqФ}ei;ukC%хj8qWh0}Lϭ[*+z-BX!L+0`!!g@fٰ/m6~ǭ5rBdsh[9I}_]'cU#rbŮ$ͪ\0dFI@|o]?saͩO#+4.e#A \+tΪ(r?KT=eY E.ī=n?rXT@JZC$jIrl8. ]s(^:owȘ (wpQ|=,61&|=nM2*P!YyU @J HEj ϟGŤ<[Rǰ1&gHpXϭC Z-# \-q&7݈ڃ g?pG>Kf~'eka!%-X}))9K\9ž;HH}"cfhc9du. %Z<~] KHXS? uC~:PI˷{JuMRDDmpiVa41]).}WhAxi+=+0 A? |7p#YB+| J0AJng[4Nr{ hTMg`Tg#uى2CM +@*zX2%]*"=/9>Ojh Nf[zխkm͜*`c>`:Hq Q~p5{J>?hZxCĬC$iɮC)e(z9pGi9h/aդ仁_lx;20'/F@v"W؀LX\VV'Kdz.κZ WH(30K4 DA9cɌFK}ҘcU`JH[^ZA d jo>,< #ź8]&C1W*6q>(}b`_KZaڏ+A6oN Bvބ7T;]' ;6l=ȋ_aCoFx;V d!34$P-b"t < 1k4EQ }i!5o{+TOkFwB|Uiz>4=zT@,Ǭ:C%.ڽT2!P @8@cc,n-;5VTB <=Aze퓱h"S5}+Qץ ?zr=uMHܫ9K/L-_b!>˂>9HMR.i=,#Yjmhglmtk"NbTʰwIYLR A֬A"d{+XUD,^S˼[3}J|}49hY87 r|ۑˡg ߸>LeCyKق N_)DRF:5Fw"{-fu94d}IwnLǿlb׃RFQzX\Q뤹F; QA`t'jn`4s=S ;Ї)\ݰ)nhpQɿ[u]Ž$*A{~`Tria kZ6u?\U`>,:n#79ا%@IƗWIoO!HjvL*!d4 w!dCt:%3|Si2~{ w iUcEU<1n9qȣrxV v,;& A0щ>)d*%ǒ48rr3̓W$ *3}T[6t͗ JgݴC.oL#XB,^-H)iMޖ5 bX>~ub1~Ig451"櫫 pԻYA0U&W!7Ed5ەϵxod!O~֎vꄫ.C>l8K`s'nVkֶٓD:Xol uJ'gb sxj@6:TZԈbhoӅyf(N/b0X+7Gc4>֟MR)n.rJw={QuL{ $]o;^6Z%LZ4x ;w-3k*YqZxݜ;sOФ$ZK@e,Ͱ"xnہ|m=/M 헡҈UO1BCywn#;k&*"pvO*scx }$SSnRV_.&jjTr;4\ T U_ ʪsfxh`j[arʑs:Դy8g0MabE/et PXʺƇZsso2**4s$o.:ow[5/*LJ/98a p Aհ|=넪R7WJՆmEhm P'T(v/ eWƻ+MlB2B.]ը8^5@E"%>7n9Zû@C0 '7&Da1ycl&r8~dIߕ -Gl懷*b9{'$g Ȝ=ͻT+ v嚚/LrsBPX{zヒ3m:. tjNjʬ X2vQ&nQ)Ζu!F\&jxJ!xg6+(fnЏMƫK7ǝ P;2: JRA\"5}ФR|wTu|ޜBe猭"~`vu'C<+-p,?#ok(u{U+u{|ъ;2l Kus't۩Kj!= b~7*X FH.4*7(HIHk'ڎuT\qʋAK,f'(>kl{gesԃ@`#Zif6<@l2˺}eFxBLmH3]u~R j~*<|v4{ J@SBҔqw%ȴ"$ܣ}fav>/_娒g6nA,wŗд8/Cܲ$u:52G#"G7:auc'eT:h\Q}s .{l`˼T?4 A_#HPօo@ov綶r5FK~P$wR(uB?=<ɁV9oeX5BEzv_֮O`inv$z9ld2;Eֵ(B =Q"@@+wxQ tXXT1GonNk+MhrrEl$& id!z]Nnc|}%i H͌SB>{M \ +^ AvJMN NC8e-͌-']t \D6Nn:r&ڀOHF/7"8} 3 ֵO6ЏEF3#OZ.sJ#^H/ +W2/0M-Jg !c@+Hn_MKID;De\FOF#ғHr/$;snnq.Ggc3/P/7Oz P4(cI8m\V/F[?b+EcKn7M Nt3-sG*]֎n2BC OfuPL4 ,4DMSx> b쪺$p"*ΙOC߹ǀZ.4ƍ@_%߃%kd s` ;`46j%6 x/3XR"עi>T.Gʊ+rEEܗ_?CV ,Ai|YȟZIIу Sd!= Y8rncd$L:O;$uyY$|$Ef>pH91ޣ4E"}Ƚdkyߕ`}6>Pkˋb;ABJ&)>sу'A: ]Mد0#zÂP Q@I$ &9ԁ`QQgza\O1lZӇ?i=Z.v$Ā'_M&G[+@hE.pB n)(g dY5`58|NmZ.,Z:9o1nlf73 uEOebFct$0|SV.A/ a؝)ESQηyx$ e\dھ04{S/Td4䆰&D 8K3Z;? jn]{3ez1E 6)a4*A!e9HZlʥ?<{ώ3UFEK,̂H` %}_rxܵ*>Cz6-^G} "U`#FZI׎a,oc`W7,!NiMb1r;̥?ƂmF/  @XB0NƉ{jQq7SM&DqW, ߕ|,ScR0ڃ1xo3MDȥIzvsr|ₛ)t%^X?;eWS~?eo@OԒKI8b7eDn*JS-Kث] +Qɽ*AO'cϐB .lc|g". ($\+GFr 8;?g΋*&)*HIt- khijgW_r ^8yt&Ggf}zh>|Ct[{Da7m`77ai@o jlӤj{Z%TUקi8:61PD:nbg̔s,!^^{zSk))okEFlwkaCbAHeb.gH7@ ',4mㄕ`^ows%ĽG .CpDzNS Ip늪*R VŃ` 2`űo5uZot-

s4(P.U@2r[Bj$F I&b2"1P Lu^u)e/^E6iN֑s+KRF~Y;;:9w3;QgcdmT*~Vqc "C$x γYXjAi:u~ 9a[=ÉU(JH\K u<oD h&<G۬/I|mI(8M9+mVQI|qjbLn],/Krf3;Ȇ[4!5˫y8D-iW&B@a2&d|#xx1= #UCtg|ƩԓcG)oP&/Ca^>BDN,%֗S(jqg/xf=6TEH[9)R K?O^j.Ym=^`cuNj9Fc+=ߍͲ@B͒KP- l>^i o,ok<|nƑi0v tO:iKP%2]gs{S Y K_.0{Qn*ֻR::fj@DTp- i^D*î|}d Xƕ]_]{k5uQNL1ۻB20 E9)A;Eu@ji2`qw զOLy0^ /ZbAd69)c*\sηjHy+UqA(v͖VG"<3OMG_n[0]0-Z[[N4LFD@G*pvh ūd*$h킂57+r+A!:IJʻJ߇e(!C.bCH(pOӽ8ge۬.Eu60(^=ⷨBF"W{20"K˰fr-?\4m9)% &Fos; 0Fg+gk G6j+IEyaDYL@XqB1o=M'[E}FVéc6mdW3wDIH[F2;.GL'}SLǯN0HN Uj;H?njEZ6d :vz꧹,Lt1fِr0g`e0 y9ʷ-KoÚ+ݷ8Ӂ(?_G(َؑdS2d&`D?s(b>X&@j &le9YwStu;xoii5NLYy'd+n67 Z뾀Ǘ"KחŢ"LS Cڈ OD?:ђr_KQɌ2|8j,ڀiHŖ;E1 +eA8[R4ht&$k_2@fԧ5.ۼYP37;k*ggJ##MK% o,=s?g2IqXGexgq}+Q 8!|6㩮c+tŕQ]LGk$hlf/oRb3PF(j1>gcE ŌLQF fjD8Yj`#,-D+b_P_|TP3 Ȋ)ɛsJ]>=Ow8 NB1 beVVuL\kl-Һm=2]ڞྚ*DbOζ#:% { ^o 3t.nUcP+C܃F*We.BY0JNU},1R3klu=B]"9ė+6A<3 tw: ,Yh$ 7sCKS9h[bZ{ f ==sل]jHtoN Xzf9k&-vkl yorԤ ԔMT,z#!-4|>2/< XZBql ͷ yn4QQdsjTӌ 'S!W)\$n !󎒊{d쑕!O}4/^869i(rXG"˦6& 0&!FV%Ct‚}S6ww/ͨS)S. tCEVr] Q}OO&i%UDhk.7qI/xڂZs?\ٖSJMo P1!ݡc; H ry.cHxDkkd8F (!;Z;_vZc[h+6)B&Fio\֟v4,0/:A¤p2 ";*I#_rP^ K o %1̱j9eʠ K2tSj¼{%I¥N;פf?] 5$݋2V  buEIP ]T*;>R[GL0R^#'ތBҏA85=;\ףL\ʞC5 E([џkz$}^e+؞!,)o*/Y'$Md~ $)gz0Cݯ6FrZpǞͷ%n^.(prX,^@u.କ\oHHv^qb*ݹ?Kٔȥcv>9%T)kI*?pUMӺ 5KE"5h7T)X86w4aǒSEIY0ɵ$DƎ7&e;x(5$BB7a\b;~;-zC2xB*җg ЍR*`|[d#4ofT2Dd1WV9Ք)ꀐ' ^!^Vp#;Xt4޽'T.]fc oY%]? t#۩,2wBH]uEBT}WyZVڠYZՁeWXNjC!7?R#*D-;7C&ORE'͐-.sܷї-sO1^˦P#ddZ J?doҁxO+'Wk@.5#+ 'Pud G"Iv(iHl:gT-O=b,NNzIkspaDK^v4Xdh Qd%2RA*o;3wSߊLJe] .u&.3;E:6N6I[E24, {|07ϝXvX-m=_+n,'ud/F4p13boU?W tN3y?v|;|N0dh#첶Kr z:wr; 7 % ֌Oyqls0kڋF `)򝿵ǦK#'Cg#uQ+|.Z&Ybwr蕭n-:7X|*H;U/N϶g:$p;?%o &}SԂ;vq% +߬qL vjTYYK̺)X̀~#MPb8 #~,Ҁ j\)Nr ' w +FL"WjSٝa4-aUqɻ M[n ^17mԾ x"AkjK+,Y"XtCҾЖ160.Q#/7{_fͤ_Leb!_0~1]b_{LC(~pD~" k[ /;xK \hw{SlS_2pAzh(@͂H:[\䆐Fa.t{6)sV,N߼ NUg1!xiI[^璍K *D:DߜIr"J='G2=|sCLady@c W e9Ch\&_TBܹnM#[0KBNz4::S4%ySި;ܱH3BU6`Si>nfDT ]9ՑQ {n t w N7ҸSʓu͔!oW8&QĤ@p#]SD(&pJB=-?J*q 3&ߐ᥄5ʠ){#I+]KsL}FƗ<\ B&LN9[.͒"x67#95_"_®2'ܡFMf]AzW%GW@ Oroz9#Y8v3%\;3 !ޟP;4k/Z^AW=<?`MW8_g.3Э(j~yEq׎`e\e4}V|ٷ(yaz$eu%FI/{LiN8:ug[r'x~q[ zy(TVJvEMra/s PmHpAeCw Y3_Y[,XI>XGEvYR㡩C#kv3;Ϻ3!{ F#UQ&?3`8eB%~9ۮ GAS\6Vf;ZNdIEI&M7Tr~ rWIKˀ[ϒQôNm1x,=C[:ȋ*-"W|3Od>>&Tjw'FybS i @P֦In\jr- ڒY|̋M@/1jCO>*zD]$/A &hʻ=#7 ܉~ԹODωZo܀s@_Dy?u22AH:r ^Zk\RzY|v6F#KN;#$qʹ|e,0"yNCeZИ$wNNy8veEF4P Oy0i*m^Ռ^VCG7/7^pr9PeOx{g@+Q>v>/HsjU pz:/]`|&Fz-k{ >Yfgq/` xq ^K/L̵1z2. f ,EU'j(j -jF12$u[j6$ ޺s}zev@9/ۛrGSRP 67LHAe# :.$9M|#%T N%]<֓,Z1mn%,TUJ;^jwz&NNGGZ]tde{ʸ4?J5 ?~ئËq=tt;z%6undF*+k'RAy˴8D Ur>dA9Pqg܂O%e݆RqT} ހm%&﹚WĆkW F NtHݙ⩑#D}1܋'O_Q֝5UsZ{g(\)"*6gUTlUΟA w Zi_Wk/Zʠ?0cϙD5VO K{,g[˕ۓ8Ī55<#bPxLmS4!&8hNc6lg$RPU?rpYx=Q8ЭhGκ^1yǓ9lF]tb5zU'2.@,Iع3 䢷KlQrf'x +2A/'>XDI$T[2|O[f,4!k!UH^L(`ʯȊO)t%;K1u;u!p8Յtg <KL/Ȁc$id-p?<`VEȵ+g̹Rkd1VeXـdUYCI^ҐU0 Q2b u} c s t3i<}8^}24$htU/Hެ;tL#!7Mx3R& ݀ M]2g J={g'Tyfޅиa P%Hb6!Gj߆[8+{2-BŹaTe')؛)f aޓn0+p`}zjj.0δ?<Z*@ Ԍs9xȓ+j^MJ,q?c5WgWI!>4 Lt.,‰p 3(F%v%i]M~?1 P@:S6. XuMCđPj Hi\|`n 0Ym,֦+aDe4Qڪ'݁(PX8|9>s|K~{p8TJ ".zo򘫘K _}Lmr[%RV(M&CXu$hHUC5X:=}3=3b>.PZu]շKetƋb@,eAgN23l*KM Ba"-*UD%B|EY<2l9U68(&uD\- 7O(D+# L\/XׅO |Fs՚$N]:l0+xWFi'J/YGɃR1$;6ѓvW'" Yt_f YK1y CR%x9R{ߗMve*BNmM'"rE ZAKSlJ=PDv u^8xTrf4 FD_g6lG#>cie.r-9.B&f:!`oo}ڑmVVT%]_;6҇T)2yz%GF9< RB)dU`nL{=qh12 Z5cܻ?I~d`+f#Z>h.&@.y5J$96b!>k=Ɵ7#ZCD{: k$x}hG աT޶9AM+EyY|֬+(K]z8AMH.+:R9+t`];?+=qr|QHRos:ۗĩcp [ʟg&Hyv| {Cfi 0\IkY;[*pM>{I[FNsc#Ȁ=~G=Ɣs>)\0;#4x #j;K{QYEMtf@H+6T0A~_3^Tc'M\)j ecѹ6,!qx}.'}(5YhOȇJJvjhr clǯ.fk"0uLؽ|tUCooC5&|# & $7a}Zǜc]Z_.ok]{OF2IPٮdѦBO(Bˆ:[#MJB.˧naK &ޖtmSM釺}c=J5YcQɖ&A}<5}+\m(§g ^\%F:4܉0zqmR"lv3aIVc:˷ %Jդ<@~_TD;I0DER;o27HJg1xuJo#l{#Ÿ*z8Z^x]{Q(kERކWôeoʸݺE8ɮ#Pb6)$˚*ʁ}/l (~IC a3뜫'K6^\; kߤx/hK6R7bSy7yO5{_@|[+[(_*DIv( Ef+~B`;Ђg9< bT8 n%\ 9ٗEs\WZg(ӇȿlV8긦BzOB!k.̈́h5-$6!rÔG*קo`9žhj:o'b6VZ[+bԷ}wϧ'I$Mߞ85UMU"h.ΗL^Ktm=Uk ^UPrO&}[9פP%Hqed99:n !qy3hO*Y8f$Rv.by -&uQ#1VƦ8ZFB<-h24|wj͚9x|*ͳL EsXH˩0ȳK$DC0=;H-B?@\꙳ͤѲaQ7,.F+e ~;Dd .gwVC?Z+>GM #WHݜ]&Q[ 0*OԶP""%_8W]TO%3?g'hrRf#Wuo>ξJH4Gq)Fk$, }%7_쓾(0ƏJz!Fk6X1dFGY@[h}n |NrHQI7u_?N(\~dl<' +g {CM'KQT }2_6V`м]PnE$z#kf3]3kWd*1ړl-|tR#ӃB9"a/y{,#~i\x.]*=_z9kF龆'@>owq7- ѶoIo`ub{G Y@Lyv߅jYkWG !#Iw| (o ѕ}]('zBƬG1ߣ<ܹ̒=.`NI,¢ :˩,SȲ6Yԕٮ" ל)t?`FT9,6YR,Sy*-J .^:ކU/˟c(v_,߽to(n zpLq跜 媶SzI!ItW*ڄK"tlm*Dro]3ԻF5)}.a ;@و`̂a<7V)-&WB¦҉Km).fB2rOw fyw!e45- u,7NI&@Is[;D#UL)t%4adiҮmyEI|Ω_۾7cе-Y E%Bŧ9Ai\R_sIw}N%R6<} 7?Y;cDn5j |10 7Ε=L BqHgeϫtsPC: Q> گ( ڨ^LÝxbMC3_|t3UhOc'1BcU(mWX٬ѕn$P;!ϾE]<τy j_kG[EOn+wGX RΡ3.oC צ *M6yKG$Z߅Z#2K(Sepiz7QG]#␞ x=B0=溩vZv} &0fBwD"Մ.G\.eϟ#x-լМܸqn6J;'|yf++WòsC{\t!Wσ'g rBI+wb݌@a~6!e$V#I z1}@4E~O-ok[̸ދPA(ܫ=T9GA$_LJUxEA5Ϭ- ;`g 9#<4{(GdE9H@"{'6+@_nāCZ$' 0b"Tb-վUR#5IryY ~H SbwXjAś}swBCR,Uo,' Dejޠ6IBo,V*'e'zs:횲n:]\ZK& uS@p?bՑM_\"i'Fi;V\2Pqvݣx?w9`C18:˷m9@Qoe@)uMOe!|1`0᳉[AWN6z^P%B +OVM`Y8FA}K3вHu2)h30mzaƎEVZ#gƑ3=y5ڎ,N~{wVT"qpZ#R5n^M i5Ks1N :QNb$y]3D>}Vo,ϕ(4y07ճať2amįyeA5V$jEKeLx&wlq}}ǜ+t BmS;h >JÄ8Է[DD V:j;` Wщ;PI)k v'=+w3ÏaW]}QRTKMN~(nذQ 3xa2~>I5iHҒxvѝꘜ@ G9#T-Os7%N&ɲ\;[dABW\fnd4܎ϩkG㼎ts9;ywJ& [dz4|3-w:Μaz'!`WX)cMӛp"*yE@VaZ"yJV \Zz%E'0',GLƱkPpK+gZ<~vӨİ^l/Zn cOU+J[iW=|m&D6uJ_$@ Kٵwp7aRM[.`*)%ƝBL'MPZ7G227~4׺NƴU\UXKG gMp7KXc 1TbC_Mx;oz7גT t v*@@@ƳI: Tٺ'-  Vjm<.QH,'@s l_D+ap$Ar%X33^X0(6,Cߗ?8Cݔӡm ԊM򧮺_@ku6j5źH(6蹄`> cY#J?ðzt .kV1tG(LҲh8z7y$5 #FZۈ7jQ5cnF N1p[OyGj\G00f#UA5xa@۵bN7a8)2*MDs,-aF?!=E񟏟n)<,Y9=P)L~;RJmj0MvP[,k `=nbkCK]*XTwq;9"A$dq){B*z{+nOB.E{fR򚚭"x!s #T'펧 kdA辁ܤX5zj_AN;#T)nY]&8PJe_m))] 4Ay#3#Z pl^7hmo;  u/H.u| mcx93ZwBfX]JDY>t|qhw*٠nw5O|PZXuƜ|[PvSBZݽIbF4FڌA%hޏw=T[ˍOq;Ev*0^Mad<>;Sxb ]E;==s,CQFNr!{0WJ!<*.ʹ&NM  Y'9YdBuӹR>0D>a )S&}oK_J\/sګT "JڦVL~y]-b2'tώ/*jq6af f?)*V!-cRā,{%.}gÐŕLiI(\f .Q(S?9XQ/$,J8zyDHU|% ܁vM0mďq(l̊[tpe0&^}KAW0LU~c(-V`B}sh=pp q]!m%l}q Kjm:'~:DS|uqngyAFzo H%pvKtC醁 Bu;ጒ׬m 'H]wZnAmxGzyqՃGU_4UVup?Nfcy\ 0aX h#{M>bȁA.S0P'38iz} @.MJ~Ț02Qd_1A5*,ĚIxTЂORTS#g XlƧ;Bs7b:4zV rh}Q ~2%=STZ"֐ WKF PzeJgVLyѴgKCq@UGN*J.Zd&?ѺPjS|FS!Sn쿼W`vE_c5>_(!yk7lڊJIb*u&f%6`fSkĭ0(/'ᡂ!ZPj Mj?.T25d< {.zRTVq̞)M עq0b¹T7`/oipHб0 =Е)^BѵN]`06o،A]9Z W:àx5Z4ŸOGN˞X.+__Ѩ 7b"mzSP:소}ek BN0A DLp9E 榻b BUX [;v/{9]/ʼnw-!)dʘEiA/EB4$~D@)=S˻ʋwsUWAmn5Ia GGjB(tj>L٦x=_ $@ƒ(۶̪@mgdh 4 ?̗k&;sWG%,u8= p^%yK>)i4ĄCX5hgF|-sJ?=YJbMx MR![V)vw-҅I*ic-x3̉>?|;s9ܱ942[+4ymc\=%Wԅf41Q8eg)]®(׿{QQvȯ[%Z*0I9gsYi J&*;>"ySR?:1ϻÖPHY`M-1 /Yy{=hy;0&*á0MP1h:^piR G,!lMuPXUNT2IS1jOO EFkJL`f=H)AE.͔7sm$B $"q݊`f=X7J1v\j*o[mWyZjVۋUQ? ЭZ'VևfktueLBEЭT33a%c' )HC_VXpUkDalHIN8GIRP ^aOl>6TtE³?=D r˖ʋHHw~6ٌy1bEHZ{`ڞa[zlU 4JP{=ovlPt`r`Dљq%}Xy+HIs%Ř0tvi*8߷@DYG3i< ٜ";Igom%|#题Xe7qKb& sqzs]vFL F/)ଗ2QuB ~[yIZңz}VB,nس=hRy1}@.i 8AJI>`D<4l]m6=}ٸk\G&,䖎7w}@+/Tsjk]J!^P!׋Vy.EX @P -ADz H|MGQ|dw}oݪF)Hԅuݽ+J&ʣ5-jYmŷwRfm43ZS77}WXWVXcP g7]GĴbM$j`:4yI!^4½,`~~ mkm9EdrɌTbP\2:WN{{!CøH%ouL^5q@-+7@ҽhNhZ;Ljn "aNڄ5iyR\yV 1m#^T Q6 xHx2YF6  ʸ0f vn*٣nM]G赉~Ls8jRq}U"7Ojh"Nl5JܯUx%N ^ǂzP.X㯏BŶ* FL1S48XL`^eSdZuT).fs:lER+L|VS%eE0,-soa!-&VcS`~x! *6w]$H'T9 Pѝe.Gi}P啋AOw 0 M`ڑ%BJ.=b׀Rn7>ED{tu+WU:0ZoӴ&-sa!Z%йjHvoTs]mmeIیCKHͶߎ4 +l̊e ]A+];qI lGum 3,]֠n>f>@)LQ6^@b,餂&1ee%)S>kK, }=XJC ZZRl 8DÙW(ǭn-iA̧W@dx KtVʛǚF\c4<}&(C`@'d9Iu7eʫDTTK}KE " ~Y58S$DERfmO kN%Lx-I0ɭ>яtM)KM3 9YI{֟: ;صXrCZ ,oeBJ F=$d7'N[<nF;e){F7~>'I/ߞϹwpZ^p25 ot[:"Bͷlhɣ)Bc  K~sgY!{_<$: )+;s*sSN Y {-v*`n0 .{o]椷Ԏ3~B2g{'7B܈K~/0GZa;'y LY<ׄ2#1҈̜ٳ]\U|];춏YsP:VIH6"oYbczLȲ.Ӻx.1zCnj\u@Ztu 9?xL~Is$]?1h\2A/@/_@hur5~.}'O/bZvWj O@][+ WPρ #o>8/zvⵍ_F ҅F8/IK0gntįglC<0lA9aM 5l~˲6Xbh#+>iUeF~‹Rd vPs5_̕ڌ9wa焱E^2<4-] rZgJ#y.Gc@hVs_ej5}6п^{+ՅL =Ř?vH Ps')͵!Jl&ǐA!in| FUZ[@@>…*p֕/H, wps6y ILs.&d*ޙ7,ػU4BUafëzA,iáŽ8&j~N$쀋Wph#,[gqꇩ;<L gd#K f'.a/e!>6G#ApLrU4,>v0MTE&ۃl\P[5 mu{A(w,i}Z&D"_WE,N({}؎r^qKc: )0 vs &<ƴ#.5M#&L[51TL<~{mYT wdm 3۟ )8U)`rnoX]G4J;Q,>;Ib8ɪh_KZ4 b3> 臟^A00ɱLtkSkb%, :N rmدd:187O )4>7G`C~n>oA#Y-u_>W Tz:yYZnʖ}8Z@9NKkr]bO…>]7@/pPTzP7G}ruF9[U~4}F"QGzbA9zo~@#{˺wb;R"j4TP-5!34=AtU-n:I1J]N)l:YSY-:(ʸbEJd4aet;LGb=ЪKN|SՀލۻwMB&zB ɻDAG`#81%m Jus҂v.BMM LYz5&@gC ߥ ǃ_|)(VuueztX6[eM۽=ZPvO)\gO`CQ]&^QԈw(!MjHWy!+yﱷeYf *ɡYH*\'eni3 c h0ьS_3CR'8@-etWT!ɍc F{3o\XtTȑ\63".'FgW|1G*9[ jֲ3kkbeYjٌӓIdmLقQC&dl$S\]5pSM*;U8#FKC(M^(nXW@qcS\>]TG,)^! XX@xV^$r2CO$FU^"Nud(>]( y 9^üqt6|()ԕ\+j(|_A&=%e&+(y -|3@hJOSax2e~I0`İ%nyZZ\HCAITR09|8 y,E5D6_ygIf{2'o6W Ǡ_lV{͘ppt"P֥&_ƶ>`8vʲ?K :\-ɷޚ<u889a_|TCY0^H-0H>$daH]b waU3(6E`H3lfiGm\PC/>&{9Bq8*)G?OiԞrW5YD6! vyry3rM!.7#jMz 8 DAy2mxOjdM*W{JeiCKfl}a[H:=DMtF9P#=r*vb}_먴XT QC61/*Xlht+i l;\Rv-)Yˋڿ<S5M !WN7`2V-l4^[(dj0u,bjŬ-O)z,?/,<Ԭ.S@ /cϢ}X8\{0PD| ӂ+"ʮ^baSד/Vh,$ŵ9}RU܎`z.?qnnPL/lpj/aR3r.r7u֗3du:q;8J\ қN +\9jaCZa)-eDl:  #Ϋ6?Y&ER׭V?} H,)eyH}w3ׯ|*iDž?6Aw'stVuOZ&3$֕>uqv%sPR;1UgGRp3BWFMg[VtZ$QS#JɚDEx>i0MdG2KC3'6}#~7^R4j%"p$ُ8dBJ%9^o3Kož_ 븍|I#_gKV;KrjZ{nN%6V2.Z@keH9,,лC oܜF.~սzKt8`)VЌUʌJy6.1W]-ӹ,dlq DY/MŤb=飼}l.JnǷ oɏT밸!b1tl(ҁim6 [n*_R-~XJE- pRFN1Sudvv%# H¯/32 -fMi }P۳;QRhLUU{YnQhz{ TV 2he!w}yn;͔;mB,lfS mG>:x'Gw/4 s}h5e<F<@[l"˴<Fk)>YE: *g,n/ @B*sЊ\xIjiVC+:^PD.ZH*e:f9-/ tؖQi8jzEo)}A<"{wZrUUG0͋%l{Fovn\ˍg)p,ac'sZvW WRZo֡ԑZ cGț Jg+OJ%9G {Zԣ3 :.٠seBgk 5>obGduvfo1ګ -uzD.%d\bc"/hIЗj7`zhǗ"Qbw~Vz~Kg6 U3ܘteu@ϟ a`ҝ;H5`\xϦ?ؖ i3`f yOrh䛹*:0 vݼ.osy2N~겗xoB8]hMprg\/> Csܪ]Ihj5d2q#T7V/68H>3ݬ<=s*dQA=dv2/? I^y0G~$ )4uYI^f}F5/ҦY W7Jx !0aƄ˿東_D I~ʅuVlR אV e4X+хhnr`Ct~)d!: f}&|A!Ҏ1ʌ9݌:&ɯMFGL($)3Hp0.CEu9&!9+/ض^=f7(I؋< :;:V1؊MUup`6!Šsʀa)@\z?X+EsG(Nsz X#9c"!5MfPCM%20 4-O^c \M)$+_-K@6nFsFnHpB!9x(t<ۯu2"ĉo;kudG]q (E}qD3^#g&?l>sʊ5<˦AV-ICm8G د"]Aȿ>ۢGeYۼAoP}Id^S·NAHfdW$DP׀#l9pBߚrA{Ky Gd28"ɈcpcbfJwwI7v0"H3R9Y5">Xa\-d؅SXgdOsAumǬPkr.BۅqT騞n^ 8tE#E 0C@BN41'_xpTx gCza>([)17SvO$B$;?Jb0'NOX\%xdӏ!lG8& mMQ}5ZMXĽY!Ft3"x1p™ke;k/r-8[,;,a-YZZQKNGj1wt6pF4b]ﺯi""&+zteN/W\ęIWNV+  o$iS=i@}.0}GzJجbuz/kUC8WI'S;GzFMrsL|AH(a} !4I"@wC~/o 硬]m10"Z.XJ"ëm:UYdxZg?r0sIDWͅBE0Ŷt[ _b _{/9UfE3+!E")8!:H EJ&GYZ!QV/ 4 c6!Qδ[ph40gVXu̮Iq5wk:U1pIC /i&S{mBa}2ޫ9F8\ ;@.agshWU6POkg|%•E0=cX&#Pi̦NCy!_=@"t\JʮEuDJ-lت\xn._c8*teA}tL Gm f 3dk% dgD6:*1 \O3~n٥껣gA'ѩDHC!՚{iZRB[x2ꥨl)<' +|Xa%hrBe3roM[Ct$`ɷ8 M eACˁnuxkGV _kC.3S *]ƻ14M(mkNpexNz6!7:F2h] 59|BEDG2hœi`t=7wVGk%#-!#Z;xNMi%niX_gAEz ]Pq:: i\_+>D:jZ?@!Hw_ t$~W}1ʟAƯRmT \v="537: j8/Tj )B lVdAkRff2OA̴!j:9g5v\!I&y.nJTAL$9"J4zouT1xzƅTd啞9#B'lz?"PW =Y<}$Tg#eLK+̶k:,rl8.ŤY!퓤 s"8\;< ̀apEmq/3w/kK.R~#FBh..bH_<6X >:c>$3Xaj[眑#J+58- KGܴ˖qV{9WLz86J8)o;'lc/Lc~iQt0-|VsʳVY"UdZjlN`s=(zpuhB FcP`}wz^}'J&~&ڥЪM?_Kg?bMF9Ē>rw]]BF,.MLZAŖ?riǮm\@ = Ti!BR:uY%г!y)|o*!vZ 188]jʍ8;[ A^@b7\83Q5WȽǀ;4fd<)!v3$7X󖌜 ja e_!&rܲ_|{}Pko+^ȮS̅HCR(Ě>;xܕv @ԛ}gmƨg Hu]%rO FtR0,i,|JܔHPM0iEtrMw[,p E4T v%/ikܮj9Wybsp+.tϺs`r룉NEO˦l{e |; 99I65q)7\FBn#D?aRXY0*~A(W#1U!Kh5+H R$eP̅ziZYMQǙ&'h0'=HL4BSzid:Du8; }BzbeECٙWQQhUr*UIrc2}Gx򄈍8^O#/9C0,,ڀa\s;)>GlgiX`H#Km,L.%>]V039̡8K&ϡH+n0vTWM )X @قKEU!o^O9C$[_989|oD0= p7}Hf4BU1S6l)_aylرv}#y_ /Hok-cyt68HlW{6h1DsLM;9O֡/)]>Lզ/eF zb ZÙkj*=!+Mx$t3&a+h랫"J-!/P"AKW~+X`pYx%e\1+r+?~0<@Ᏻы:|C&K11F&wZ)Cmw~p2,ْ-tfI~#1j6 Vk\ķUaίكFWfGQtͩc!zS}!J*<ʨ\KEFrL[Hi໛Q^ukgxHo]7 *s15Sj:Oڌ@ ?՗3 q;Lb&&ÆUkë_4Qژ3'V{L wAdY"D래9hm>0] e4nq#AЊ ~8_hw9nir3 mg%O0@)*)oh %vbKw)0DtDǾ;"59|B`28T#0DU_A=UM2|16NT4:EjpUj04!ڲc4Npt]/Wl-p{n&ߥ*t|-fmTQG݁-9:hV(GWPd/P5N[^|c"Ф.3]@M\ip@:%6) VK%T+"dIaٛ͝EPnb@(Fi3T7 A?mi3Rj\:2 v`WBQ R8{[<3D?(]šB! 9P-hZHgV̓9 hd52@7J7:2ܝ9_3~wB5uG>2LM$RhJb]~:|\ʃgF+<8Nj &B§E3wƷROymާm˘cea`9a ;fm{6☨b_Lٹv]W篶 N'D$d!N SS,!.4I rFq<H)x7ĜxX0u,jVLpv|733ۺKTX䭈MiܞzoOF 1瀵ߩl2Ӵǿp#0&.ČpF"=W$)\*?r G}q8#!~Br;FnϨT{Jǧ a%OCxf\&Pn))4tX*5nsL=МY_Q mCڙupSGZL*qoٷSF"n7zM=ߴ;x2E`f^9AiQ(e : UuĘqKuݏZtU:k~)${?Fb }ё[q&03H< Ŝm=n#.$0ڷ.aAۛm 1:{XZk_{,I"ʙdBv'q7%0 \4ɃV տ1O{k-4XSepsxY""z*p}&n-% ĚaeMGH`שkN`$4^'Q>Kž!|ԘX\nP½ eS0z|Bhw2u3in:~|4g^i^Yc.? j1qv8fB:Xby?gClY"P}µA VGBΑs{#'0ʱ5Jbބ^]:n X>raQoR$zf+<+lFEwaނF1y*]v I`gX#Pbj+` B a`rk!QQ KAOir4N{"cu ߱NdgW_Λ=^>nNGDF.Jm w#ܦx\׺kvq GHB%<BE6d@[ ӮѮ9ֽ=R2aAT&RTP$W2 VN.m 23ցHGtz%`N΁_`LVŕwi/mgbIWy)E y-5QP'r!')Uw^ GCUGtJy:?ot΀ e#z2>t*MQNM|xm(nyKw\W_gBaa|%,w-O齸l- HaUH!N.~c4z|%1=mN,4UX3u0L!u]Xo!ZTL1<ԩw0uii>&O ~/.ʉR92QfܧMcaĂ^ueȗ;!Z$-]^LSX|? ` 9܈N%[ښ)+0+miٺ\Gۿ#n">!hӍF|@y!k+Ev/5C2!%:-ci %{P$*)Ex1"w@(RZ ;l]Ѕu@pneff-4'1ml^ x)n]ۙP%FP >2]Z!Az.^%QK䫌$PYx!^gD|%1 g NȔtB jc;LUO/?+8 9פFzۄ߽\%g ڎ-ts!Ih:_b}T$A  /|RO2$*vD}8K Rfwۇ )u QPbf bBd^cFo(D|5&޼(AUVHӗQuXvIc+I-bcQ,xxE&<0 7J]}3R2X`~γ6 ũzq6ZY>ݫ'o(W5;%gi-Y9pR"{T/+E({#Ub.92 C.aJ|Q;O Gy`V~=d_nykvYH+ysdݒ4yz54."h_H@! 6 J4hJyQW e#CHY"nH(WLgSl=@GoV4fb8>brQ?RїG?H4x:HrCxfkm(C[b\eM"52%:pV7nD$&|+j,lÌq1,4x5i'b?R9|[Ih%T\1dMwn{0+'K8t/Դ,LgͿ6z&>qB!=§EM4ZHGVZ $| ru@ lP!" Z3k uu*'˿h1mq/Wg-^bi7kIA`,\D?~|sӷP ]o\=ge6\kuM7ok+ZXS_dljd1{m?$wBFӪOpK|]7(?HG :yꖰ}P<~٤۱K<4w16|%\Ɲc–-ϸ * T4xC;Ho. :j1dy' ڼ.kB S̸xUX0ɬ{"{D,) Zr+B ߝ2iIvS 5⩈@@$ͽhrF!wc6#vsVaj@}Fu@РFAXK@ac|=`.Qp`!HO1 xWuK0bAǦԝ!aC뾈529(:pmkjn4OÈ@"xT6ZC]-xAߑyzn$mZH*̢-!"- O/J빭(-¸tc$5EN$X1C*PM]qZmvq1;WL(3wB7.9vֹ/~ cc8'KH'{-lBg8'M hv&2QuTxK05 4h cn/x~\0״QAqCLv?lyDdd QQ(N?,' N. tz ЭȞ*MHJ.k{٭\ȓZavdE*9wcTD3*%L A8+8UO纏t]s5:$1~ BK_HSV> 2ͫac/Nɝv2v1"f) W^H!֡<@_.=,r=$4_W]XOd6Yh` irs6>ۇ?F%qm5lxOLX+0Lex3JڲNQ5JfU":_jCs0qPM Bʹt]*bn ,nֿ}j¶Ǘ y1O@8o3ÖXWX.G58 6C_6qkޔ_1-]>5"oa%#0Z68{fEU3޵>WٸHtzC~9&+ŊqWP /\M2 )՗,5 %Ĉ\Mj)6|S4cLe^4i3 ؎:VE˜ B ɳ->nZ V(h6|𤋮PxI7[ J}q tE$8HЧ:2_JWHy(Z_Fڰ1)O0Zd:7W %VX@+Dیa߈~Q/==h$-%j;$2u+#6M-J$4Nbn/ϩX/^|ĥG[?nI&Lw+1ٴbVY\k =IY0`ZeW\BZ\[Ltu 8d=QRG7JYzU([+l-\(5A5'R-Hx=\Y'lC]& Kwk+mn6_`ޱA苐bp6~"(EEx[Y0o7skxc~[4osf}"jн[KW+Br|S ғ|*oډQCMjOC-v^5kbȨ0H#YV֙+un/A?WaaZ{I?z`O BZCA\(Z0V6]٠70yK#opUytG7AϾJ# aa0mWU*ՠZ˔+J8sE woSD-b0\mH6Z~'[@o<O6_R  }OQ Oy"Ӎ;G[|6}њ^sfn?. I) 6@ozVF8F32ȶ0+hK\JA0y5Kz a;]cv^W.<2M,_Poy YOFsОKt*kl.3XO/@KAh"#*vbk \tu,ک~Uz"1O[WG?ڦoKw+/JׂK7ggGNXryTz+bpxwl9EC]oXzVpz?]X+*'$M =Ƈ6̶>^"ΑH2?v`#–> R!=:{}U8^]:DRf)Vm"TZL,bR0k~OCa{VV U # D&ьjfD_9Vۣ.h"jaiψΙh\_/ ,P.^nF0ܖ:d4~ 鿷h퍀x裶腠y"=S/Dzߚ뭴gKWM[ǦF:]-jV;tJf]pW;`*RPQKDI;%93p@z>`3)cY/"0Ҟ ul,W%">d K;3fGi@x TD"5=۹H9VC*WWޢiXC഻LLq/8[rW-)"*ļks0kX~Ef>Ե>On PYt)a(Og\-TbH=ߟ 8,ZAWC dMZ7K lo@/!{_ƪل , yk~Cml򴞑"@Զƣ%z唤 #u./Lyjc%Ecf`Ā@aiz&k=&b y?|/WgQ顿kdf7j82Qvm-^O8Vu//qX^tWtxgv4p3}حGrıXf]|թ$EZ2pxa "@946q^NaDC FT$Np0X n8S3*[߇:ׅ.%_;*ww:]gY4ܤ@=n9K/Y2dGM̂.LBm'c2*|}t1V:Rq"uG>9C=Tbd@yY?Me\ő'n. floݒMTsv9[VĤ5h>LbpRiebQg{)J{64~"_܄XW; =2OK8Գi/vX4VtԏyA导7r.;;4=O!'jϦG`z= qkU,K|$R.$%Q0^ 3Γ;|!Q+E FW0,!s! {}8ÄՉ_xZh)Y {*[Up嵉M` cCL,\(2iޭxu5?Y@XJmKP,LҒ|x hZDF?ʶ66ɾ14ߞ }ld-ūTNyr|SYcϝđͰؚ/dd=WoRnu.CV pl(K`IVmקaz`!7ʮ䍞鮿;,bUaab%5;e9U\1Sȇ2EEYzr ^0ʅMsJ|VXVˡu5lOl8'2IׁRjTsp?h,*)C]/F1i-rY==j9)ELENxYNZ"~L,4hʿ3n.7ߞVqFb}7zغH"7O_DHT;B} #wC$5NKT34,~ x0rm C,%lvF;g+| f NA4=UhWܒLz;^nB)mr##Ph0@ADW7٣`C ]+*Λiᆒ:tԳI1F =EՊ٦ T|Y |۶P 2\g FEd6«;{c %>Bi?jaJP2n|ɿXWى҇оBgQ\NPu>vߌ, k^eJ?`!7+dQnRqBF"=!"Ut\VZjM`zF)ڈY"T`3^|"&1wo Gb= #P&WKe,HiYJ7jb-#KdHW@j=` ƪI_m\*j֬&i=ș-ٺ8DUAA@vtJ{Jeβ6Zud{4^~3*p;:Po6չlMW &~:PW^kGˆ"WOG@ SZ?@޻z^ӎ<߀`åx; "_p< NaFW`2°:%N@aݺ;ӓ*c"*I |v:+.&UCqF2t06 !r)P6z3bƋOCӎmn5KXy0KƔ󏋊3DX#eW"3u'ksתܶUvk2/ZhθB!AIyo*<ݧN| Miͧp'?+P6 ۠sݕ@ǁZ8zg[m@pK>y>9Q-@$dw[(xlM, U߫tÏNvNjwp";zu4 }"h^@~Ki  kIEUC|yvEЬS`;3&@;aͻ75\-=̧V2-ɑ72p=+tVC(j]9Д=؍ʇk Ԧq_g|;)GQ[sS 4'k%-g7J^ↄ=SgA::xbTzVcL92f/k``蓪=o 6Q=l)M92(d-UK/4Ä/(!b lBF_^/ð7̉6e3zNħ"eR:$@>IsS(۸=[@nr0 SGI/W2ƹ$A: RnXq&ګwi2GSX !#A3BRt t1vg_4$GVJvrHHc~rʡDWFwcAPîs@(r >Z;(Up\%=jNf4OɢgbzR1|P@ W7@A8H5*6z7ܠ}9bAo_f}@S"B7$V%'9 ,",qx.NHVۯzDFtE-} .NgA|hi&n"?Y nˡ&U^&sX= 1U`ԆtcѢ.ӑuќGa:s|7ԍgayH[Mkđa(Μ:Ԕ DT,xYK 73n^ bauIwͲʫZE+^R! lؾyRV$";sI@qYl9I@a,`H]<\Y*|i5vR|\ (dcj?#iD'~}!9~:lSAlacGbEe1+!i]j \Y3rEt-;b^=`Dii>I@D(]7gv%Fi"P"cKE22,p M]ZBU;ŝNj]٫RHE0(5GAL|]ƅlen埊ܙJ*h~rc4V*,c?Gevfj2.!­O ݰDɎưQBВ T/4NHˋoAόZ3$+dIæĝ-YfU %ǥ/o]n&JY4@[ do #*μhke(ꊼ _|-) |X+"Q: Jp'Giy/HAV-we`~ʍKA!{m͏-宮 >9n}""ZS*0/5h?B8 2DƮT.LnmlBNPzID|{"G{` Ч ]nv)D [au+-D@|=-޿ j;0Ť|K茓cy.Qt/?uV"B/@!^l[E":l̂~!/Ives̽}Sé۲;;—(]. I,~^HօIND^gx.ʄnp7Mh[5̈́)uDY:d];)C7W@LjM#JfI,D;g3cϟzޓX54x)@n {} ^4fxN*>A#gAi6O:$XR@ Cy02?=uYw%$YohoQ@: 0֠P"DG ;X .#ڋܪN*csl%;B )hD}DChAm%!)Aǵ0 YZGuerry/data/Guerry.RData0000644000176200001440000001220714053175241014636 0ustar liggesusers Z |Tՙ?3NHB$! !@ȋG!$!%!pg&$|ZUK *Zu]J?ժVuYujߜ̽ uq=|{ޓYۺ.iC):CD\Ci usQ+WW(Nzo3eC2&q87l|QP 9_&2(VtP_"E&E e`\*!FEe/ xE9'7z HLGD&czn0"LFqӯKhUk"ۧ9`#<;n>#2A@@Zt>բ7vH:|4[,[iLW.<Cb*zT˵oD0PdMr3F͈> mDLpD6K2U]~?q  Kv="Gla*"bĕz(hF* UXEJ_PnF-ä!EEٛǢ07fuxaP DJ ?(t)4BLԥ _ 67pd3˯npK ',yҺIhuy.; nHM9]B}&= x"Lb{S{F"N(ܒ{C4j9l2eUh첇nZ]SOkgxl FIjd&wYF9ݟo!qnc==찴(9R6QPu# 1(?Wd חc՗u}%u5k-BQ6P#?RtBŻuUP'=1&DA5ԬK'(???FBM~QP3;!_^'hԾҊ(b!|߆[bԣjt:BܛP+[P"QǪ!kj_ `oALo8 @_םN| k.FI<7`5 e&>Y'o Rxx&YPwsC&xMm#u7x5(Y*>Eہ~cjsl ~ SКC;ζk9k<+\i[x\KV6&:R]J|T1I>հ_ ;>F?y n>/`.u'96C/Q,-Jp-Gȅ^12|4|7 3SPFj'QC; ^G<^G=,M=3m|z82yϩn| yozJרzc_ky~tE\{vOkwoe̻7_!h舱 /DNISEBo}PzI9|G@8ȂߦqJU?|O j< d ?; UГρ @t=1&} ~_kv_|<;sj(63GO VȅLyÔq ; Wxh?B_$T5s_'-7'SS@_+sX#m6l�7|=/Cln:÷@q{b]|?56>`;_X^^ 9 q^>_{ =6q8 Y^ߎ- [+G'b,vg:0X>S o%{ۍ0Z͸3Wx)ہ8/OXuKؖ}6|V+)jM :>ƥw2f,_!z-lƾ+fY1 I-c81flniGvZ6vv_)ۘpdMoTJwW6|y<7a/b{ ۘO-2`*X|2ƦIaְX&u.a3..-c<Yll_dƗlB~FA>|pkf :;'H~]b]XbXx0e(dOW1z=mUȲf}yltZ:-d.S8뫧mru cDX.b엲} [뉌?!ٝ!Fr:m]ƼkYDa}-d+1R1JXXf 7SjmVl8aI1 lsš|/eo  ^ƲY$a&볊9Yjm BƽHg9SY:֡enV^cV=Cxa\yq۵1g[g1 $;+*Oo5 /|n@T{f+~=&0 M<_!ˆA͆i,g cNxĞD.X"On]v=)pC6;: : pcvJs'pr~Xv7k[nzM@6'Bl~oiX9{}mRml3h랽{UinmOuu]?ڣ+g;S-[gDCy&D/[=ok[2{ͻ1lNcyP@ igv]?§=B4@9e߭OZAlnColϵ8d>X^|+ݦovzݏH>OkE;m Ryi~ֶ/j~7륜[ޔrn$-մ`S6Ck&=wtjcc3߁G] R]%;Ǖ\] Ӛ+8+|eO/B[|S?9&?F>A@^~0/!yǞ~Я1xF )BO#HcoYtO.ֿ|"w8? ,9/j!OS9ufQ{c_O8/.@yjֿ3m[i=Bd敚9e'|OKyM=r|J r9,h~r|?Flvki~=,@o-MhC/5R ANͣ21yױl.ե~ΣgxJ#I~ҥCr<)|GR)7_5+K1vVgRR%qjK=9?yrai3\)ρϾ5GrI=9yT^/y^)oץoK9v?/{Ei4^^}Ӈ <0F(sC? ?%#6|}R6rΈᑄ.O0q~Nl %AT }!O'kLh Ro[Gf޶x sǸP҄(/ +r)Y?-ɍa=@S hC?w0JVO ""6v6F&Cy}_~y4A;W*Guerry/man/0000755000176200001440000000000014053175241012304 5ustar liggesusersGuerry/man/gfrance.Rd0000644000176200001440000000467214053277132014213 0ustar liggesusers\encoding{latin1} \name{gfrance} \Rdversion{1.1} \alias{gfrance} \docType{data} \title{ Map of France in 1830 with the Guerry data } \description{ \code{gfrance} is a \code{SpatialPolygonsDataFrame} object created with the \code{sp} package, containing the polygon boundaries of the map of France as it was in 1830, together with the \code{\link{Guerry}} data frame. } \usage{data(gfrance)} \format{ The format is: Formal class 'SpatialPolygonsDataFrame' [package "sp"] with 5 slots: \code{gfrance@data}, \code{gfrance@polygons}, \code{gfrance@plotOrder}, \code{gfrance@bbox}, \code{gfrance@proj4string}. See: \code{\link[sp]{SpatialPolygonsDataFrame}} for descriptions of some components. The analysis variables are described in \code{\link{Guerry}}. } \details{ In the present version, the PROJ4 projection is not specified. } \source{ Friendly, M. (2007). Supplementary materials for Andr?-Michel Guerry's Moral Statistics of France: Challenges for Multivariate Spatial Analysis, \url{http://www.datavis.ca/gallery/guerry/}. } \references{ Friendly, M. (2007). A.-M. Guerry's Moral Statistics of France: Challenges for Multivariable Spatial Analysis. \emph{Statistical Science}, 22, 368-399. } \seealso{ \code{\link{Guerry}} for description of the analysis variables \code{\link{Angeville}} for other analysis variables } \examples{ library(sp) data(gfrance) names(gfrance) ## list @data variables plot(gfrance) ## just show the map outline # Show basic choropleth plots of some of the variables spplot(gfrance, "Crime_pers") # use something like Guerry's pallete, where dark = Worse my.palette <- rev(RColorBrewer::brewer.pal(n = 9, name = "PuBu")) spplot(gfrance, "Crime_pers", col.regions = my.palette, cuts = 8) spplot(gfrance, "Crime_prop") # Note that spplot assumes all variables are on the same scale for comparative plots # transform variables to ranks (as Guerry did) \dontrun{ local({ gfrance$Crime_pers <- rank(gfrance$Crime_pers) gfrance$Crime_prop <- rank(gfrance$Crime_prop) gfrance$Literacy <- rank(gfrance$Literacy) gfrance$Donations <- rank(gfrance$Donations) gfrance$Infants <- rank(gfrance$Infants) gfrance$Suicides <- rank(gfrance$Suicides) spplot(gfrance, c("Crime_pers", "Crime_prop", "Literacy", "Donations", "Infants", "Suicides"), layout=c(3,2), as.table=TRUE, main="Guerry's main moral variables") }) } } \keyword{datasets} \keyword{spatial} Guerry/man/gfrance85.Rd0000644000176200001440000000424214053175241014357 0ustar liggesusers\encoding{latin1} \name{gfrance85} \Rdversion{1.1} \alias{gfrance85} \docType{data} \title{ Map of France in 1830 with the Guerry data, excluding Corsica } \description{ \code{gfrance85} is a SpatialPolygonsDataFrame object created with the \code{sp} package, containing the polygon boundaries of the map of France as it was in 1830, together with the \code{\link{Guerry}} data frame. This version excludes Corsica, which is an outlier both in the map and in many analyses. } \usage{data(gfrance85)} \format{ The format is: Formal class 'SpatialPolygonsDataFrame' [package "sp"] with 5 slots: \code{gfrance85@data}, \code{gfrance85@polygons}, \code{gfrance85@plotOrder}, \code{gfrance85@bbox}, \code{gfrance85@proj4string}. See: \code{\link[sp]{SpatialPolygonsDataFrame}} for descriptions of some components. The analysis variables are described in \code{\link{Guerry}}. } \details{ In the present version, the PROJ4 projection is not specified. } \source{ Friendly, M. (2007). Supplementary materials for Andr?-Michel Guerry's Moral Statistics of France: Challenges for Multivariate Spatial Analysis, \url{http://datavis.ca/gallery/guerry/}. } \references{ Dray, S. and Jombart, T. (2009). A Revisit Of Guerry's Data: Introducing Spatial Constraints In Multivariate Analysis. Unpublished manuscript. Friendly, M. (2007). A.-M. Guerry's Moral Statistics of France: Challenges for Multivariable Spatial Analysis. \emph{Statistical Science}, 22, 368-399. } \examples{ data(gfrance85) require(sp) plot(gfrance85) # plot the empty outline map # extract some useful components df <- data.frame(gfrance85)[,7:12] # main moral variables xy <- coordinates(gfrance85) # department centroids dep.names <- data.frame(gfrance85)[,6] region.names <- data.frame(gfrance85)[,5] col.region <- colors()[c(149,254,468,552,26)] if (require(spdep)) { lw <- nb2listw(poly2nb(gfrance85)) # neighbors list } # plot the map showing regions by color with department labels op <-par(mar=rep(0.1,4)) plot(gfrance85,col=col.region[region.names]) text(xy, labels=dep.names, cex=0.4) par(op) } \keyword{datasets} \keyword{spatial} Guerry/man/Guerry-package.Rd0000644000176200001440000000735314124372565015460 0ustar liggesusers\encoding{latin1} \name{Guerry-package} \alias{Guerry-package} \docType{package} \title{ \packageTitle{Guerry} } \description{ Andre-Michel Guerry (1833) was the first to systematically collect and analyze social data on such things as crime, literacy and suicide with the view to determining social laws and the relations among these variables. He provided the first essentially multivariate and georeferenced spatial data on socially important questions, e.g., Is the rate of crime related to education or literacy? How does this vary over the departments of France? Are the rates of crime or suicide within departments stable over time? In an age well before the idea of correlation had been invented, Guerry used graphics and statistical maps to try to shed light on such questions. In a later work (Guerry, 1864), he explicitly tried to entertain larger questions, but with still-limited statistical tools: Can rates of various crimes be related to multiple causes or predictors? Are the rates and ascribable causes in France similar or different to those found in England? The \pkg{Guerry} package comprises maps of France in 1830, multivariate data from A.-M. Guerry and others (Angeville, 1836), and statistical and graphic methods related to Guerry's \emph{Moral Statistics of France}. The goal of providing these as an R package is to facilitate the exploration and development of statistical and graphic methods for multivariate data in a geo-spatial context. } \details{ The DESCRIPTION file: \packageDESCRIPTION{Guerry} \packageIndices{Guerry} Data from Guerry and others is contained in the data frame \code{\link{Guerry}}. Because Corsica is often considered an outlier both spatially and statistically, the map of France circa 1830, together with the Guerry data is provided as \code{SpatialPolygonsDataFrame}s in two forms: \code{\link{gfrance}} for all 86 departments, and and \code{\link{gfrance85}}, for the 85 departments excluding Corsica. } \author{ \packageAuthor{Guerry} Maintainer: \packageMaintainer{Guerry} } \references{ d'Angeville, A. (1836). \emph{Essai sur la Statistique de la Population francaise}, Paris: F. Darfour. Dray, S. and Jombart, T. (2011). A Revisit Of Guerry's Data: Introducing Spatial Constraints In Multivariate Analysis. \emph{The Annals of Applied Statistics}, 5(4). \doi{10.1214/10-aoas356}. Brunsdon, C. and Dykes, J. (2007). Geographically weighted visualization: interactive graphics for scale-varying exploratory analysis. Geographical Information Science Research Conference (GISRUK 2007). NUI Maynooth, Ireland, April, 2007. \url{https://www.maynoothuniversity.ie/national-centre-geocomputation-ncg}. Friendly, M. (2007). A.-M. Guerry's Moral Statistics of France: Challenges for Multivariable Spatial Analysis. \emph{Statistical Science}, 22, 368-399. \url{http://www.datavis.ca/papers/guerry-STS241.pdf} Friendly, M. (2007). Supplementary materials for Andre-Michel Guerry's Moral Statistics of France: Challenges for Multivariate Spatial Analysis, \url{http://www.datavis.ca/gallery/guerry/}. Guerry, A.-M. (1833). \emph{Essai sur la statistique morale de la France} Paris: Crochard. English translation: Hugh P. Whitt and Victor W. Reinking, Lewiston, N.Y.: Edwin Mellen Press, 2002. Guerry, A.-M. (1864). \emph{Statistique morale de l'Angleterre compar?e avec la statistique morale de la France, d'apr?s les comptes de l'administration de la justice criminelle en Angleterre et en France, etc.} Paris: J.-B. Bailli?re et fils. } %~~ Optionally other standard keywords, one per line, from file KEYWORDS in ~~ %~~ the R documentation directory ~~ \keyword{spatial} %\examples{ %#~~ simple examples of the most important functions ~~ %} Guerry/man/Guerry.Rd0000644000176200001440000001627714124362261014064 0ustar liggesusers%\encoding{latin1} \encoding{UTF-8} \name{Guerry} \Rdversion{1.1} \alias{Guerry} \docType{data} %\encoding{latin1} \title{ Data from A.-M. Guerry, "Essay on the Moral Statistics of France" } \description{ André-Michel Guerry (1833) was the first to systematically collect and analyze social data on such things as crime, literacy and suicide with the view to determining social laws and the relations among these variables. The Guerry data frame comprises a collection of 'moral variables' on the 86 departments of France around 1830. A few additional variables have been added from other sources. } \usage{data(Guerry)} \format{ A data frame with 86 observations (the departments of France) on the following 23 variables. \describe{ \item{\code{dept}}{Department ID: Standard numbers for the departments, except for Corsica (200)} \item{\code{Region}}{Region of France ('N'='North', 'S'='South', 'E'='East', 'W'='West', 'C'='Central'). Corsica is coded as NA } \item{\code{Department}}{Department name: Departments are named according to usage in 1830, but without accents. A factor with levels \code{Ain} \code{Aisne} \code{Allier} ... \code{Vosges} \code{Yonne}} \item{\code{Crime_pers}}{Population per Crime against persons. Source: A2 (Comptes général, 1825-1830)} \item{\code{Crime_prop}}{Population per Crime against property. Source: A2 (Compte général, 1825-1830)} \item{\code{Literacy}}{Percent Read & Write: Percent of military conscripts who can read and write. Source: A2 } \item{\code{Donations}}{Donations to the poor. Source: A2 (Bulletin des lois)} \item{\code{Infants}}{Population per illegitimate birth. Source: A2 (Bureau des Longitudes, 1817-1821)} \item{\code{Suicides}}{Population per suicide. Source: A2 (Compte général, 1827-1830)} \item{\code{MainCity}}{Size of principal city ('1:Sm', '2:Med', '3:Lg'), used as a surrogate for poulation density. Large refers to the top 10, small to the bottom 10; all the rest are classed Medium. Source: A1. An ordered factor with levels \code{1:Sm} < \code{2:Med} < \code{3:Lg}} \item{\code{Wealth}}{Per capita tax on personal property. A ranked index based on taxes on personal and movable property per inhabitant. Source: A1} \item{\code{Commerce}}{Commerce and Industry, measured by the rank of the number of patents / population. Source: A1} \item{\code{Clergy}}{Distribution of clergy, measured by the rank of the number of Catholic priests in active service / population. Source: A1 (Almanach officiel du clergy, 1829)} \item{\code{Crime_parents}}{Crimes against parents, measured by the rank of the ratio of crimes against parents to all crimes-- Average for the years 1825-1830. Source: A1 (Compte général) } \item{\code{Infanticide}}{Infanticides per capita. A ranked ratio of number of infanticides to population-- Average for the years 1825-1830. Source: A1 (Compte général) } \item{\code{Donation_clergy}}{Donations to the clergy. A ranked ratio of the number of bequests and donations inter vivios to population-- Average for the years 1815-1824. Source: A1 (Bull. des lois, ordunn. d'autorisation) } \item{\code{Lottery}}{Per capita wager on Royal Lottery. Ranked ratio of the proceeds bet on the royal lottery to population--- Average for the years 1822-1826. Source: A1 (Compte rendus par le ministre des finances)} \item{\code{Desertion}}{Military disertion, ratio of the number of young soldiers accused of desertion to the force of the military contingent, minus the deficit produced by the insufficiency of available billets-- Average of the years 1825-1827. Source: A1 (Compte du ministere du guerre, 1829 etat V) } \item{\code{Instruction}}{Instruction. Ranks recorded from Guerry's map of Instruction. Note: this is inversely related to \code{Literacy} (as defined here)} \item{\code{Prostitutes}}{Prostitutes in Paris. Number of prostitutes registered in Paris from 1816 to 1834, classified by the department of their birth Source: Parent-Duchatelet (1836), \emph{De la prostitution en Paris}} \item{\code{Distance}}{Distance to Paris (km). Distance of each department centroid to the centroid of the Seine (Paris) Source: calculated from department centroids } \item{\code{Area}}{Area (1000 km^2). Source: Angeville (1836) } \item{\code{Pop1831}}{1831 population. Population in 1831, taken from Angeville (1836), \emph{Essai sur la Statistique de la Population francais}, in 1000s } } } \details{ Note that most of the variables (e.g., \code{Crime_pers}) are scaled so that 'more is better' morally. Values for the quantitative variables displayed on Guerry's maps were taken from Table A2 in the English translation of Guerry (1833) by Whitt and Reinking. Values for the ranked variables were taken from Table A1, with some corrections applied. The maximum is indicated by rank 1, and the minimum by rank 86. } \source{ Angeville, A. (1836). \emph{Essai sur la Statistique de la Population fran?aise} Paris: F. Doufour. Guerry, A.-M. (1833). \emph{Essai sur la statistique morale de la France} Paris: Crochard. English translation: Hugh P. Whitt and Victor W. Reinking, Lewiston, N.Y. : Edwin Mellen Press, 2002. Parent-Duchatelet, A. (1836). \emph{De la prostitution dans la ville de Paris}, 3rd ed, 1857, p. 32, 36 } \references{ Dray, S. and Jombart, T. (2009). A Revisit Of Guerry's Data: Introducing Spatial Constraints In Multivariate Analysis. Unpublished manuscript. Brunsdon, C. and Dykes, J. (2007). Geographically weighted visualization: interactive graphics for scale-varying exploratory analysis. Geographical Information Science Research Conference (GISRUK 07), NUI Maynooth, Ireland, April, 2007. Friendly, M. (2007). A.-M. Guerry's Moral Statistics of France: Challenges for Multivariable Spatial Analysis. \emph{Statistical Science}, 22, 368-399. Friendly, M. (2007). Data from A.-M. Guerry, Essay on the Moral Statistics of France (1833), \url{http://www.datavis.ca/gallery/guerry/guerrydat.html}. } \seealso{ \code{\link{Angeville}} for other analysis variables } \examples{ library(car) data(Guerry) # Is there a relation between crime and literacy? # Plot personal crime rate vs. literacy, using data ellipses. # Identify the departments that stand out set.seed(12315) with(Guerry,{ dataEllipse(Literacy, Crime_pers, levels = 0.68, ylim = c(0,40000), xlim = c(0, 80), ylab="Pop. per crime against persons", xlab="Percent who can read & write", pch = 16, grid = FALSE, id = list(method="mahal", n = 8, labels=Department, location="avoid", cex=1.2), center.pch = 3, center.cex=5, cex.lab=1.5) # add a 95% ellipse dataEllipse(Literacy, Crime_pers, levels = 0.95, add=TRUE, ylim = c(0,40000), xlim = c(0, 80), lwd=2, lty="longdash", col="gray", center.pch = FALSE ) # add the LS line and a loess smooth. abline( lm(Crime_pers ~ Literacy), lwd=2) lines(loess.smooth(Literacy, Crime_pers), col="red", lwd=3) } ) # A corrgram to show the relations among the main moral variables # Re-arrange variables by PCA ordering. library(corrgram) corrgram(Guerry[,4:9], upper=panel.ellipse, order=TRUE) } \keyword{datasets} Guerry/man/Angeville.Rd0000644000176200001440000000666314053175241014514 0ustar liggesusers\name{Angeville} \Rdversion{1.1} \alias{Angeville} \docType{data} \title{ Data from d'Angeville (1836) on the population of France } \description{ Adolph d'Angeville (1836) presented a comprehensive statistical summary of nearly every known measurable characteristic of the French population (by department) in his \emph{Essai sur la Statistique de la Population francaise}. Using the graphic method of shaded (choropleth) maps invented by Baron Charles Dupin and applied to significant social questions by Guerry, Angeville's \emph{Essai} became the first broad and general application of principles of graphic representation to national industrial and population data. The collection of variables in the data frame \code{Angeville} is a small subset of over 120 columns presented in 8 tables and many graphic maps. } \usage{data(Angeville)} \format{ A data frame with 86 observations on the following 16 variables. \describe{ \item{\code{dept}}{a numeric vector} \item{\code{Department}}{Department name: a factor with levels \code{Ain} \code{Aisne} ... \code{Vosges} \code{Yonne}} \item{\code{Mortality}}{Mortality: Number of births to give 100 people at age 21 (T1:13)} \item{\code{Marriages}}{Number of marriages per 1000 men aged 21 (T1:15)} \item{\code{Legit_births}}{Annual no. of legitimate births (T2:17)} \item{\code{Illeg_births}}{Annual no. of illegitimate births (T2:18)} \item{\code{Recruits}}{Number of people registered for military recruitment from 1825-1833 (T3:32)} \item{\code{Conscripts}}{Number of inhabitants per military conscript (T3:33)} \item{\code{Exemptions}}{Number of military exemptions per 1000 all of physical causes (T3:47)} \item{\code{Farmers}}{Number of farmers during the census in 1831 (T4:65)} \item{\code{Recruits_ignorant}}{Average number of ignorant recruits per 1000 (T5:69)} \item{\code{Schoolchildren}}{Number of schoolchildren per 1000 inhabitants (T5:71)} \item{\code{Windows_doors}}{Number of windows & doors in houses per 100 inhabitants (T5:72). This is sometimes taken as an indicator of household wealth.} \item{\code{Primary_schools}}{"Number of primary schools (T5:74)} \item{\code{Life_exp}}{Life expectancy in years (T1:9a,9b)} \item{\code{Pop1831}}{Population in 1831} } } \details{ ID codes for \code{dept} were modified from those in Angeville's tables to match those used in \code{\link{Guerry}}. Angeville's variables are recorded in a variety of different ways and some of these were calculated from other columns in his tables not included here. As well, the variable names and labels used here were often shortened from the more complete descriptions given by d'Angeville. The notation "(Tn:k)" indicates that the variable used here came from Table n, Column k. } \source{ Angeville, A. d' (1836). \emph{Essai sur la Statistique de la Population francaise}, Paris: F. Darfour. The data was digitally scanned from Angeville's tables using OCR software, then extensively edited to correct obvious errors and finally subjected to some consistency checks using the column totals and ranked values he provided. } \references{ Whitt, H. P. (2007). Modernism, internal colonialism, and the direction of violence: suicide and crimes against persons in France, 1825-1830. Unpublished ms. } \examples{ data(Angeville) ## maybe str(Angeville) ; plot(Angeville) ... } \keyword{datasets} Guerry/DESCRIPTION0000644000176200001440000000265114125066266013251 0ustar liggesusersPackage: Guerry Type: Package Title: Maps, Data and Methods Related to Guerry (1833) "Moral Statistics of France" Version: 1.7.4 Date: 2021-09-27 Authors@R: c(person(given = "Michael", family = "Friendly", role=c("aut", "cre"), email="friendly@yorku.ca"), person(given = "Stephane", family = "Dray", role="aut", email="stephane.dray@univ-lyon1.fr"), person(given = "Roger", family = "Bivand", role="ctb") ) Author: Michael Friendly [aut, cre], Stephane Dray [aut], Roger Bivand [ctb] Maintainer: Michael Friendly Encoding: latin1 Language: en-US Depends: R (>= 2.10) Suggests: knitr, spdep, ade4, adegraphics, adespatial, maptools, RColorBrewer, corrgram, car, rmarkdown, ggplot2, ggrepel, heplots, patchwork, candisc, colorspace Imports: sp Description: Maps of France in 1830, multivariate datasets from A.-M. Guerry and others, and statistical and graphic methods related to Guerry's "Moral Statistics of France". The goal is to facilitate the exploration and development of statistical and graphic methods for multivariate data in a geospatial context of historical interest. License: GPL URL: https://github.com/friendly/Guerry BugReports: https://github.com/friendly/Guerry/issues LazyLoad: yes LazyData: yes VignetteBuilder: knitr NeedsCompilation: no Packaged: 2021-09-28 13:52:26 UTC; friendly Repository: CRAN Date/Publication: 2021-09-29 13:40:05 UTC Guerry/build/0000755000176200001440000000000014124617031012625 5ustar liggesusersGuerry/build/vignette.rds0000644000176200001440000000042014124617031015160 0ustar liggesuserseQMk0 u$ 9۠d1] c;-~:X'mK/8K9\AkI+aѾxj(yIc!dЂ-ڈyWieoF9 !4oA˸d#mwOr 4  lB "Dk;}¥O//9EO?Mt)LV ;tllտUYӜGW)qL.ۿv$sT9s?BjE/~5U /My9d/' QS4 2.ذW(s)/gρ0̯~> _c2™Jqa.QeNMͨem{Qq욥*FvVlέK;4TuCU'ʃY-J(&QJ4\i+Id-@GvE#TpQPﷀϥryJEiËd-l| A|:`#ovZ= aįt[(ՁgdO! &A|zfC!xG* z=$V%OBU3:iĢX 4Kݮa k2 㹲 `!>jŏ_gyPV5\<#("ֵ,菮t|w> ?ǭBn3D,?h;6g+Eu@sd1ufi(F֩[4FrNT#Eħە52#սӍ@漩9tb]W=LIQw ͓՘K+5ݨ2 1+b~QAD|3P+Ru94p5IXU-sIxZIux,M ݥFɞл:݋*Jli5y&p>TLIegˠ8cP!$,gˈ/ǖec۱v5ɶ(ctuaU%uK|%jRw~FR7߈-ӷ`aN8zŶW1]SJ҄fJ4YZr@&Ы8/QJ*y෈˩7'X{D(Ƞ3v#DҨ8nWDpb—]}' w?-YxxTޙV \"+,*{I]Lx[hTnL.?.5,6 OCl;ܟ #<ÈX?MI Ljkʉ9rdvRm;5e EQtM=bg`Éir8D:Zrb,pz ?u8|K223=hg9(|41'qstCþɝ(QmM,sR<)jIQF >[%C2cu|LccwӄVx a+ nj:SA.W}䥷'۪=y;pѓj8yn:97Q:IdA62%C c]Nl,և,GO}zLz/C|:4I9"Ejk_ZSD1,!6xgJ~؉[f#Uıؘa20$ g?-Dog 5<$ӝNdo2wOB!t x=LEЙ5}/fs!>1-4&ёSYT=we܃ZC >S̈́ODtyE?Hy]e`e@PW]WdKqt6G3dQqVՉ\җ7ozZa2Aw,)#E[?K !kObjxdK6*Uu,BW9ydaɺpfz+6%D`B[79sb>}޶ L1/bj,|1 `(MD7GbalDA(Gқӿ&3SS3٩ Rؽ_~JWG& 8ϩx܈u^ h3>GZKn?/R#g?~QqJ/Lkǡq&wk$1©{*kc?coG-@p )*0CacgX}S=U'}c\i]%mrIJ(t./"Ep}H2 B܊{gHڇ>̳\K#!7Or)`1| ׇc/tܛ}8qѣ6# oz6vdm&l) WFU7eKv~zf*ckňqxD8̡ǝ b>ħl05GeMJ \ڶAa/ Ol)#WM'T LQezr@|#Lm_C>f$bnd#zu ~xG9gYG6^t=iOtߵHke M5į%f馅QLZUW⯏Zdp W?r"\E>b󀮿 jԲhmy5cE̒2qy1ǗV2ʐʺWr]nR=8L2sdIMNA-2&#v "N߬E>bH'/;TG 7>|8H~:'A|v]n+ٴ_x$ohmr4^,"6Kn3E~L Kab}:\%vg]#VEsCU1OӉξG=7]Kg@I(2yCJ(E/&> "P>◺_+@ m65dRRyb6zy|E|g%OL6ܾŝ A9W +Cg,]S\{^6PsCUЙf)վUXME4ӀbČ{}2` < reoqS2ԅViyM sJ}d~@kު:N#s_la[wiE%P[zԨܔZ84 \ 5;[{qz XDɽ,le vLyA?w [U7_ ; s\67qoש̽,++洬i̲N:w_G?_?`YNyۆkm ܊dKٜ:9]TLj D@./&^튴Yjn:`/Zlu[VnTHSa5k6^X-t߾({8r 9%üe 2$3T^ooM1sW#S1e!7!\oΊ񭿝ޝMp-fCtzo CD _ODdڈ-ɘ:$ :Jp8A o{EIcjnyxz8PzWCZ䃉D|[#'Z/VW77EC{}ȇd@GZLBCm~ %(M$$q&QY9f}/٪F q-qO=u Z|T{fVzW .E cv/PHAVGuerry/vignettes/0000755000176200001440000000000014124617031013536 5ustar liggesusersGuerry/vignettes/reference.bib0000644000176200001440000001155614063162341016163 0ustar liggesusers@incollection{SD566, author = {Anselin, L.}, title = {The {M}oran scatterplot as an {ESDA} tool to assess local instability in spatial association}, booktitle = {Spatial analytical perspectives on GIS}, publisher = {Taylor and Francis}, year = {1996}, editor = {Fischer, M.M. and Scholten, H.J. and Unwin, D.}, pages = {111-125}, address = {London} } @article{SD565, author = {Anselin, L.}, title = {Local indicators of spatial association}, journal = {Geographical Analysis}, year = {1995}, volume = {27}, pages = {93-115}, endnotereftype = {Journal Article} } @article{SD59, author = {Borcard, D. and Legendre, P. and Drapeau, P.}, title = {Partialling out the spatial component of ecological variation}, journal = {Ecology}, year = {1992}, volume = {73}, pages = {1045-1055} } @book{SD577, title = {Spatial autocorrelation}, publisher = {Pion}, year = {1973}, author = {Cliff, A.D. and Ord, J.K.}, address = {London} } @article{SD148, author = {Dolédec, S. and Chessel, D.}, title = {Rythmes saisonniers et composantes stationnelles en milieu aquatique {I}- {D}escription d'un plan d'observations complet par projection de variables}, journal = {Acta Oecologica - Oecologia Generalis}, year = {1987}, volume = {8}, pages = {403-426}, number = {3} } @article{SD161, author = {Dray, S. and Chessel, D. and Thioulouse, J.}, title = {Procrustean co-inertia analysis for the linking of multivariate data sets}, journal = {Ecoscience}, year = {2003}, volume = {10}, pages = {110-119}, number = {1} } @article{SD966, author = {Dray, S. and Jombart, T.}, title = {Revisiting Guerry's data: introducing spatial constraints in multivariate analysis}, journal = {Annals of Applied Statistics}, year = {2011}, volume = {5}, pages = {2278-2299}, number = {4} } @article{SD163, author = {Dray, S. and Legendre, P. and Peres-Neto, P.R.}, title = {Spatial modeling: a comprehensive framework for principal coordinate analysis of neighbor matrices ({PCNM})}, journal = {Ecological Modelling}, year = {2006}, volume = {196}, pages = {483-493} } @article{SD807, author = {Dray, S. and Saïd, S. and Débias, F.}, title = {Spatial ordination of vegetation data using a generalization of {W}artenberg's multivariate spatial correlation}, journal = {Journal of Vegetation Science}, year = {2008}, volume = {19}, pages = {45-56} } @article{SD922, author = {Friendly, M.}, title = {A.-{M}. {G}uerry's moral statistics of {F}rance: challenges for multivariable spatial analysis}, journal = {Statistical Science}, year = {2007}, volume = {22}, pages = {368-399} } @article{SD223, author = {Geary, R.C.}, title = {The contiguity ratio and statistical mapping}, journal = {The incorporated Statistician}, year = {1954}, volume = {5}, pages = {115-145}, number = {3} } @article{SD264, author = {Griffith, D. A.}, title = {Spatial autocorrelation and eigenfunctions of the geographic weights matrix accompanying geo-referenced data}, journal = {Canadian Geographer}, year = {1996}, volume = {40}, pages = {351-367}, number = {4} } @book{SD955, title = {Essai sur la Statistique Morale de la France}, publisher = {Crochard}, year = {1833}, author = {Guérry, A.M.}, address = {Paris} } @article{SD308, author = {Hotelling, H.}, title = {Analysis of a complex of statistical variables into principal components}, journal = {Journal of Educational Psychology}, year = {1933}, volume = {24}, pages = {417-441} } @article{SD455, author = {Moran, P.A.P.}, title = {The interpretation of statistical maps}, journal = {Journal of the Royal Statistical Society Series B-Methodological}, year = {1948}, volume = {10}, pages = {243-251} } @article{SD516, author = {Peres-Neto, P.R. and Jackson, D.A.}, title = {How well do multivariate data sets match? {T}he advantages of a {P}rocrustean superimposition approach over the {M}antel test}, journal = {Oecologia}, year = {2001}, volume = {129}, pages = {169-178} } @article{SD540, author = {Rao, C.R.}, title = {The use and interpretation of principal component analysis in applied research}, journal = {Sankhya A}, year = {1964}, volume = {26}, pages = {329-359} } @article{SD626, author = {Student, W.S.}, title = {The elimination of spurious correlation due to position in time or space}, journal = {Biometrika}, year = {1914}, volume = {10}, pages = {179-180} } @article{SD694, author = {Wartenberg, D.}, title = {Multivariate spatial correlation: a method for exploratory geographical analysis}, journal = {Geographical Analysis}, year = {1985}, volume = {17}, pages = {263-283}, number = {4} } Guerry/vignettes/MultiSpat.Rmd0000644000176200001440000005444114124100247016130 0ustar liggesusers--- title: "Guerry data: Spatial Multivariate Analysis" author: "Stéphane Dray" date: "`r Sys.Date()`" output: rmarkdown::html_vignette bibliography: reference.bib vignette: > %\VignetteIndexEntry{Guerry data: Spatial Multivariate Analysis} %\VignetteKeywords{crime, literacy, suicide, France, spatial multivariate analysis} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r setup, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, warning = FALSE, message = FALSE, # suppress package loading messages comment = "#>", fig.height = 3, fig.width = 3, fig.align = "center" ) ``` This vignette indicates how to perform the analyses described in @SD966 of data derived from André-Michel Guerry's [-@SD955] *Essai sur la Statistique Morale de la France*. It illustrates some classical methods for analysis of multivariate spatial data that focus *either* on the multivariate aspect or on the spatial one, as well as some more modern methods that attempt to integrate geographical and multivariate aspects *simultaneously*. # Preliminary steps Several packages are required to run the different analyses and should be loaded. The `ade4` package for multivariate analysis is supplemented by `adegraphics` (for associated graphical methods) and `adespatial` for multivariate spatial analysis. ```{r} library(Guerry) # Guerry's data library(sp) # management of spatial data library(ade4) # multivariate analysis library(adegraphics) # graphical representation library(spdep) # spatial dependency library(adespatial) # multivariate spatial analysis ``` Guerry gathered data on crimes, suicide, literacy and other moral statistics for various départements (i.e., counties) in France. He provided the first real social data analysis, using graphics and maps to summarize this georeferenced multivariate dataset. We use the dataset `gfrance85` and consider six key quantitative variables (shown in the table below) for each of the 85 départements of France in 1830 (Corsica, an island and often an outlier, was excluded). Data are recorded on aligned scales so that **larger numbers** consistently reflect "morally better". Thus, four of the "bad" variables are recorded in the inverse form, as "Population per ...". With this scaling, it would be expected that all correlations be $\ge 0$. | Name | Description | |:------------|:------------| |`Crime_pers` | Population per crime against persons| |`Crime_prop` | Population per crime against property| |`Literacy` | Percent of military conscripts who can read and write| |`Donations` | Donations to the poor| |`Infants` | Population per illegitimate birth| |`Suicides` | Population per suicide| The dataset `gfrance85` is actually a `SpatialPolygonsDataFrame` object created with the `sp` package. It contains the polygon boundaries of the map of France in 1830, as well the variables in the `Guerry` data frame. As an ordinary data.frame, it has these components ```{r} names(gfrance85) ``` To simplify analyses, we extract the components to be used below. ```{r} data(gfrance85) df <- data.frame(gfrance85)[, 7:12] # the 6 variables france.map <- as(gfrance85, "SpatialPolygons") # the map xy <- coordinates(gfrance85) # spatial coordinates dep.names <- data.frame(gfrance85)[, 6] # departement names region.names <- data.frame(gfrance85)[, 5] # region names col.region <- colors()[c(149, 254, 468, 552, 26)] # colors for region ``` # Standard approaches In this section, we focus on classical approaches that consider either the multivariate or the spatial aspect of the data. ## Multivariate analysis Here we consider $p=6$ variables measured for $n=85$ individuals (départements of France). As only quantitative variables have been recorded, principal component analysis [PCA, @SD308] is well adapted. PCA summarizes the data by maximizing simultaneously the variance of the projection of the individuals onto the principal axes and the sum of the squared correlations between the principal component and the variables. ```{r} pca <- dudi.pca(df, scannf = FALSE, nf = 3) ``` The biplot is simply obtained by ```{r} biplot(pca, plabel.cex = 0.8) ``` The first two PCA dimensions account for 35.7% and 20% ,respectively, of the total variance. ```{r} pca$eig/sum(pca$eig) * 100 ``` Correlations between variables and principal components can be represented on a correlation circle. The first axis is negatively correlated to literacy and positively correlated to property crime, suicides and illegitimate births. The second axis is aligned mainly with personal crime and donations to the poor. ```{r} s.corcircle(pca$co) ``` Spatial information can be added on the factorial map representing the projections of départements on principal axes by coloring according to colors representing the different regions of France. ```{r, fig.width = 4, fig.height = 4} s.label(pca$li, ppoint.col = col.region[region.names], plabel.optim = TRUE, plabel.cex = 0.6) s.Spatial(france.map, col = col.region[region.names], plabel.cex = 0) s.class(xy, region.names, col = col.region, add = TRUE, ellipseSize = 0, starSize = 0) ``` For the first axis, the North and East are characterized by negative scores, corresponding to high levels of literacy and high rates of suicides, crimes against property and illegitimate births. The second axis mainly contrasts the West (high donations to the the poor and low levels of crime against persons) to the South. ## Spatial autocorrelation Spatial autocorrelation statistics, such as @SD455 Coefficient (MC) and @SD223 Ratio, aim to measure and analyze the degree of dependency among observations in a geographical context [@SD577]. ### The spatial weighting matrix The first step of spatial autocorrelation analysis is to define a spatial weighting matrix $\mathbf{W}=[w_{ij}]$ . In the case of Guerry's data, we simply defined a binary neighborhood where two départements are considered as neighbors if they share a common border. The spatial weighting matrix is then obtained after row-standardization (`style = "W"`): ```{r} nb <- poly2nb(gfrance85) lw <- nb2listw(nb, style = "W") ``` We can represent this neighborhood on the geographical map: ```{r} s.Spatial(france.map, nb = nb, plabel.cex = 0, pSp.border = "white") ``` ### Moran's Coefficient Once the spatial weights have been defined, the spatial autocorrelation statistics can then be computed. Let us consider the $n$-by-1 vector $\mathbf{x}=\left[ {x_1 \cdots x_n } \right]^\textrm{T}$ containing measurements of a quantitative variable for $n$ spatial units. The usual formulation for Moran's coefficient of spatial autocorrelation [@SD577;@SD455] is \begin{equation} \label{eq1} MC(\mathbf{x})=\frac{n\sum\nolimits_{\left( 2 \right)} {w_{ij} (x_i -\bar {x})(x_j -\bar {x})} }{\sum\nolimits_{\left( 2 \right)} {w_{ij} } \sum\nolimits_{i=1}^n {(x_i -\bar {x})^2} }\mbox{ where }\sum\nolimits_{\left( 2 \right)} =\sum\limits_{i=1}^n {\sum\limits_{j=1}^n } \mbox{ with }i\ne j. \end{equation} MC can be rewritten using matrix notation: \begin{equation} \label{eq2} MC(\mathbf{x})=\frac{n}{\mathbf{1}^\textrm{T}\mathbf{W1}}\frac{\mathbf{z}^\textrm{T}{\mathbf{Wz}}}{\mathbf{z}^\textrm{T}\mathbf{z}}, \end{equation} where $\mathbf{z}=\left ( \mathbf{I}_n-\mathbf{1}_n\mathbf{1}_n^\textrm{T} /n \right )\mathbf{x}$ is the vector of centered values ($z_i=x_i-\bar{x}$) and $\mathbf{1}_n$ is a vector of ones (of length $n$). The significance of the observed value of MC can be tested by a Monte-Carlo procedure, in which locations are permuted to obtain a distribution of MC under the null hypothesis of random distribution. An observed value of MC that is greater than that expected at random indicates the clustering of similar values across space (positive spatial autocorrelation), while a significant negative value of MC indicates that neighboring values are more dissimilar than expected by chance (negative spatial autocorrelation). We computed MC for the Guerry's dataset. A positive and significant autocorrelation is identified for each of the six variables. Thus, the values of literacy are the most covariant in adjacent departments, while illegitimate births (Infants) covary least. ```{r} moran.randtest(df, lw) ``` ### Moran scatterplot If the spatial weighting matrix is row-standardized, we can define the lag vector $\mathbf{\tilde{z}} = \mathbf{Wz}$ (i.e., $\tilde{z}_i = \sum\limits_{j=1}^n{w_{ij}x_j}$) composed of the weighted (by the spatial weighting matrix) averages of the neighboring values. Thus, we have: \begin{equation} \label{eq3} MC(\mathbf{x})=\frac{\mathbf{z}^\textrm{T}{\mathbf{\tilde{z}}}}{\mathbf{z}^\textrm{T}\mathbf{z}}, \end{equation} since in this case $\mathbf{1}^\textrm{T}\mathbf{W1}=n$. This shows clearly that MC measures the autocorrelation by giving an indication of the intensity of the linear association between the vector of observed values $\mathbf{z}$ and the vector of weighted averages of neighboring values $\mathbf{\tilde{z}}$. @SD566 proposed to visualize MC in the form of a bivariate scatterplot of $\mathbf{\tilde{z}}$ against $\mathbf{z}$. A linear regression can be added to this *Moran scatterplot*, with slope equal to MC. Considering the Literacy variable of Guerry's data, the Moran scatterplot clearly shows strong autocorrelation. It also shows that the Hautes-Alpes département has a slightly outlying position characterized by a high value of Literacy compared to its neighbors. ```{r, fig.width = 4, fig.height=4} x <- df[, 3] x.lag <- lag.listw(lw, df[, 3]) moran.plot(x, lw) text(x[5], x.lag[5], dep.names[5], pos = 1, cex = 0.8) ``` ## Indirect integration of multivariate and geographical aspects The simplest approach considered a two-step procedure where the data are first summarized with multivariate analysis such as PCA. In a second step, univariate spatial statistics or mapping techniques are applied to PCA scores for each axis separately. One can also test for the presence of spatial autocorrelation for the first few scores of the analysis, with univariate autocorrelation statistics such as MC. We mapped scores of the départements for the first two axes of the PCA of Guerry's data. Even if PCA maximizes only the variance of these scores, there is also a clear spatial structure, as the scores are highly autocorrelated. The map for the first axis corresponds closely to the split between *la France éclairée* (North-East characterized by an higher level of Literacy) and *la France obscure*. ```{r, fig.dim = c(6,3)} moran.randtest(pca$li, lw) s.value(xy, pca$li[, 1:2], Sp = france.map, pSp.border = "white", symbol = "circle", pgrid.draw = FALSE) ``` # Spatial multivariate analysis Over the last decades, several approaches have been developed to consider both geographical and multivariate information simultaneously. The multivariate aspect is usually treated by techniques of dimensionality reduction similar to PCA. On the other hand, several alternatives have been proposed to integrate the spatial information. ## Spatial partition One alternative is to consider a spatial partition of the study area. In this case, the spatial information is coded as a categorical variable, and each category corresponds to a region of the whole study area. For instance, Guerry's data contained a partition of France into 5 regions. We used the between-class analysis [BCA, @SD148], to investigate differences between regions. BCA maximizes the variance between groups. ```{r} bet <- bca(pca, region.names, scannf = FALSE, nf = 2) ``` Here, 28.8 % of the total variance (sum of eigenvalues of PCA) corresponds to the between-regions variance (sum of the eigenvalues of BCA). ```{r} bet$ratio ``` The main graphical outputs are obtained by the generic `plot` function: ```{r, fig.dim=c(5,5)} plot(bet) ``` The barplot of eigenvalues indicates that two axes should be interpreted. The first two BCA dimensions account for 59 % and 30.2 %, respectively, of the between-regions variance. ```{r} barplot(bet$eig) bet$eig/sum(bet$eig) * 100 ``` The coefficients used to construct the linear combinations of variables are represented: ```{r} s.arrow(bet$c1, plabel.cex = 0.8) ``` The first axis opposed literacy to property crime, suicides and illegitimate births. The second axis is mainly aligned with personal crime and donations to the poor. Projections of départements on the BCA axes can be represented on the factorial map: ```{r, fig.dim = c(4,4)} s.label(bet$ls, as.character(dep.names), ppoint.cex = 0, plabel.optim = TRUE, plabel.col = col.region[region.names], plabel.cex = 0.5) s.class(bet$ls, fac = region.names, col = col.region, ellipse = 0, add = TRUE) ``` The scores can be mapped to show the spatial aspects: ```{r, fig.dim = c(6,3)} s.value(xy, bet$ls, symbol = "circle", Sp = france.map, pSp.col = col.region[region.names], pSp.border = "transparent") ``` The results are very close to those obtained by PCA: the first axis contrasted the North and the East (*la France éclairée*) to the other regions while the South is separated from the other regions by the second axis. The high variability of the region Centre is also noticeable. In contrast, the South is very homogeneous. ## Spatial explanatory variables Principal component analysis with respect to the instrumental variables [PCAIV, @SD540], and related methods, have been often used in community ecology to identify spatial relationships. The spatial information is introduced in the form of spatial predictors and the analysis maximized the "spatial variance" (i.e., the variance explained by spatial predictors). Note that BCA can also be considered as a particular case of PCAIV, where the explanatory variables are dummy variables indicating group membership. ### Trend surface of geographic coordinates @SD626 proposed to express observed values in time series as a polynomial function of time, and mentioned that this could be done for spatial data as well. @SD59 extended this approach to the spatial and multivariate case by introducing polynomial functions of geographic coordinates as predictors in PCAIV. We call this approach PCAIV-POLY. The centroids of départements of France were used to construct a second-degree orthogonal polynomial. ```{r, fig.dim = c(6,4)} poly.xy <- orthobasis.poly(xy, degree = 2) s.value(xy, poly.xy, Sp = france.map, plegend.drawKey = FALSE) ``` PCAIV is then performed using the `pcaiv` function: ```{r} pcaiv.xy <- pcaiv(pca, poly.xy, scannf = FALSE, nf = 2) ``` Here, 32.4 % of the total variance (sum of eigenvalues of PCA) is explained by the second-degree polynomial (sum of eigenvalues of PCAIV). The first two dimensions account for 51.4 % and 35.2 %, respectively, of the explained variance. ```{r} sum(pcaiv.xy$eig)/sum(pca$eig) * 100 pcaiv.xy$eig/sum(pcaiv.xy$eig) * 100 ``` The outputs of PCAIV-POLY (coefficients of variables, maps of départements scores, etc.) are very similar to those obtained by BCA. They can be represented easily by the generic `plot` function: ```{r, fig.dim=c(5,5)} plot(pcaiv.xy) ``` ### Moran's eigenvector maps An alternative way to build spatial predictors is by the diagonalization of the spatial weighting matrix **W**. Moran's eigenvector maps [MEM, @SD163] are the $n-1$ eigenvectors of the doubly-centered matrix **W**. They are orthogonal vectors with a unit norm maximizing MC [@SD264]. MEM associated with high positive (or negative) eigenvalues have high positive (or negative) autocorrelation. MEM associated with eigenvalues with small absolute values correspond to low spatial autocorrelation, and are not suitable for defining spatial structures. We used the spatial weighting matrix defined above to construct MEM. The first ten MEM, corresponding to the highest levels of spatial autocorrelation, have been mapped: ```{r, fig.dim = c(6,6)} mem1 <- scores.listw(lw) s.value(xy, mem1[, 1:9], Sp = france.map, plegend.drawKey = FALSE) ``` We introduced the first ten MEM as spatial explanatory variables in PCAIV. We call this approach PCAIV-MEM. ```{r} pcaiv.mem <- pcaiv(pca, mem1[,1:10], scannf = FALSE) ``` Here, 44.1 % of the total variance (sum of eigenvalues of PCA) is explained by the first ten MEM (sum of eigenvalues of PCAIV). The first two dimensions account for 54.9 % and 26.3 %, respectively, of the explained variance. ```{r} sum(pcaiv.mem$eig)/sum(pca$eig) * 100 pcaiv.mem$eig/sum(pcaiv.mem$eig) * 100 ``` The outputs of PCAIV-MEM (coefficients of variables, maps of départements scores, etc.) are very similar to those obtained by BCA. They can be represented easily by the generic `plot` function: ```{r, fig.dim=c(5,5)} plot(pcaiv.mem) ``` ## Spatial graph and weighting matrix The MEM framework introduced the spatial information into multivariate analysis through the eigendecomposition of the spatial weighting matrix. Usually, we consider only a part of the information contained in this matrix because only a subset of MEM are used as regressors in PCAIV. In this section, we focus on multivariate methods that consider the spatial weighting matrix under its original form. @SD694 was the first to develop a multivariate analysis based on MC. His work considered only normed and centered variables (i.e., normed PCA) for the multivariate part and a binary symmetric connectivity matrix for the spatial aspect. @SD807 generalized Wartenberg's method by introducing a row-standardized spatial weighting matrix in the analysis of a statistical triplet. This approach is very general and allows us to define spatially-constrained versions of various methods (corresponding to different triplets) such as correspondence analysis or multiple correspondence analysis. MULTISPATI finds coefficients to obtain a linear combination of variables that maximizes a compromise between the classical multivariate analysis and a generalized version of Moran's coefficient. ```{r} ms <- multispati(pca, lw, scannf = FALSE) ``` The main outputs of MULTISPATI can be represented easily by the generic `plot` function: ```{r, fig.dim=c(5,5)} plot(ms) ``` The barplot of eigenvalues suggests two main spatial structures. Eigenvalues of MULTISPATI are the product between the variance and the spatial autocorrelation of the scores, while PCA maximizes only the variance. The differences between the two methods are computed by the `summary` function: ```{r} summary(ms) ``` Hence, there is a loss of variance compared to PCA (2.14 versus 2.017 for axis 1; 1.201 versus 1.177 for axis 2) but a gain of spatial autocorrelation (0.551 versus 0.637 for axis 1; 0.561 versus 0.59 for axis 2). Coefficients of variables allow to interpret the structures: ```{r} s.arrow(ms$c1, plabel.cex = 0.8) ``` The first axis opposes literacy to property crime, suicides and illegitimate births. The second axis is aligned mainly with personal crime and donations to the poor. The maps of the scores show that the spatial structures are very close to those identified by PCA. The similarity of results between PCA and its spatially optimized version confirm that the main structures of Guerry's data are spatial. Spatial autocorrelation can be seen as the link between one variable and the lagged vector. This interpretation is used to construct the Moran scatterplot and can be extended to the multivariate case in MULTISPATI by analyzing the link between scores and lagged scores: ```{r, fig.dim = c(4,4)} s.match(ms$li, ms$ls, plabel.cex = 0) s.match(ms$li[c(10, 41, 27), ], ms$ls[c(10, 41, 27), ], label = dep.names[c(10, 41, 27)], plabel.cex = 0.8, add = TRUE) ``` Each département can be represented on the factorial map by an arrow (the bottom corresponds to its score, the head corresponds to its lagged score. A short arrow reveals a local spatial similarity (between one plot and its neighbors) while a long arrow reveals a spatial discrepancy. This viewpoint can be interpreted as a multivariate extension of the local index of spatial association [@SD565]. For instance: * Aude has a very small arrow, indicating that this département is very similar to its neighbors. * Haute-Loire has a long horizontal arrow which reflects its high values for the variables Infants (31017), Suicides (163241) and Crime\_prop (18043) compared to the average values over its neighbors (27032.4, 60097.8 and 10540.8 for these three variables). * Finistère corresponds to an arrow with a long vertical length which is due to its high values compared to its neighbors for Donations (23945 versus 12563) and Crime\_pers (29872 versus 25962). The link between the scores and the lagged scores (averages of neighbors weighted by the spatial connection matrix) can be mapped in the geographical space. For the first two axes, we have: ```{r, fig.dim = c(6,3)} s.value(xy, ms$li, Sp = france.map) ``` # Conclusions Even if the methods presented are quite different in their theoretical and practical viewpoints, their applications to Guerry's dataset yield very similar results. We provided a quantitative measure of this similarity by computing Procrustes statistics [@SD516;SD161] between the scores of the départements onto the first two axes for the different analyses. All the values of the statistic are very high and significant; this confirms the high concordance between the outputs of the different methods. ```{r} mat <- matrix(NA, 4, 4) mat.names <- c("PCA", "BCA", "PCAIV-POLY", "PCAIV-MEM", "MULTISPATI") colnames(mat) <- mat.names[-5] rownames(mat) <- mat.names[-1] mat[1, 1] <- procuste.randtest(pca$li[, 1:2], bet$ls[, 1:2])$obs mat[2, 1] <- procuste.randtest(pca$li[, 1:2], pcaiv.xy$ls[, 1:2])$obs mat[3, 1] <- procuste.randtest(pca$li[, 1:2], pcaiv.mem$ls[, 1:2])$obs mat[4, 1] <- procuste.randtest(pca$li[, 1:2], ms$li[, 1:2])$obs mat[2, 2] <- procuste.randtest(bet$ls[, 1:2], pcaiv.xy$ls[, 1:2])$obs mat[3, 2] <- procuste.randtest(bet$ls[, 1:2], pcaiv.mem$ls[, 1:2])$obs mat[4, 2] <- procuste.randtest(bet$ls[, 1:2], ms$li[, 1:2])$obs mat[3, 3] <- procuste.randtest(pcaiv.xy$ls[, 1:2], pcaiv.mem$ls[, 1:2])$obs mat[4, 3] <- procuste.randtest(pcaiv.xy$ls[, 1:2], ms$li[, 1:2])$obs mat[4, 4] <- procuste.randtest(pcaiv.mem$ls[, 1:2], ms$li[, 1:2])$obs mat ``` # References Guerry/NEWS0000644000176200001440000000311714124350437012233 0ustar liggesusersVersion 1.7.4 * Restore MultiSpat vignette Version 1.7.3 * begin guerry-multivariate vignette * Fixed problem arising from new spdep when rgeos is not installed [thx: Roger Bivand] Version 1.7.1 * translate/update/restore the main vignette, `MultiSpat.html` by Stephane Drey Version 1.7.0 * Update links to Guerry supplementary stuff to resolve CRAN nits * move `sp` to `Imports:` to resolve CRAN nits * Removed Suggests: shapefiles * added a hexsticker to README.md Version 1.6-2 * Package development has been moved from R-forge to github, https://github.com/friendly/Guerry * Updated Guerry-package.Rd from `utils::promptPackage()` Version 1.6 (2014-09-23) Removed MultiSpat vignette because it is no longer compatible with CRAN policies. The old PDF version will be made available on the R-Forge project page. Removed Suggests: spacemakeR (not on CRAN); moved sp, shapefiles to Suggests: Removed thinSpatialPoly, as this is now provided in maptools Made some examples in gfrance.Rd \dontrun{} to reduce check time Version 1.5 (2011-11-08) Added back MultiSpat.Rnw vignette with MultiSpat.tex disguised as MultiSpat.Rnw Added NAMESPACE for R 2.14+ Version 1.4 (2010-02-15) Remove temporarily MultiSpat.Rnw vignette Version 1.3 (2009-11-19) Added thinnedSpatialPoly to calculate thinned maps Added MultiSpat.Rnw vignette Version 1.2 (2009-11-12) Added MultiSpat.pdf vignette (without .Rnw) Version 1.1 (2009-10-28) Added Angeville data Released to CRAN Version 1.0 (2009-10-20) Initial version uploaded to R-Forge Guerry/MD50000644000176200001440000000201614125066266012046 0ustar liggesusersaf4580bbffb413e17ccad47ec1ab9576 *DESCRIPTION 195963848221ae8485a2687d34977ed2 *NAMESPACE 112cd20fd3f84e74bb04985019e66589 *NEWS 1f3d336e042b913fb53a0957828d0e07 *build/partial.rdb 72824d4e53a968c82e60202a8bef02a7 *build/vignette.rds 4d3e3b1d1307b61102745af6c164195f *data/Angeville.RData 5c12af3e1e4d205ea46f96e4d0ce9813 *data/Guerry.RData 91bd93041f2bf418dd0424591dc4b5d9 *data/gfrance.RData f45237956849addb495f83a6cded42d6 *data/gfrance85.RData 77681528c11458ab0d5ef1566bde5f47 *inst/WORDFILE 2234a49a9894b0add189101b621f8dda *inst/doc/MultiSpat.R 29c7e9eb842c5e8c1fc542b31a72364c *inst/doc/MultiSpat.Rmd df4a5bdef78f82854467455267ff2580 *inst/doc/MultiSpat.html 0543a444f9982c2ee4e186e2b1b9d2c6 *man/Angeville.Rd d0380be47d4fa6d32736a209b8d9cf97 *man/Guerry-package.Rd 614528e0cbf9dee1ffd8294c6ab52822 *man/Guerry.Rd 1f732c25f06d44de9f98b17977b6eb5d *man/gfrance.Rd e795de3c57238650dd45aadfee3e34d3 *man/gfrance85.Rd 29c7e9eb842c5e8c1fc542b31a72364c *vignettes/MultiSpat.Rmd 3370ed77dc47aeebe758872617f1cb52 *vignettes/reference.bib Guerry/inst/0000755000176200001440000000000014124617031012503 5ustar liggesusersGuerry/inst/WORDFILE0000644000176200001440000000053614124362244013650 0ustar liggesusersAlmanach Alpes André Angeville Angleterre Aude autocorrelated BCA cdots centroid centroids Centre choropleth covary Crochard d'Angeville département départements diagonalization Duchatelet Dupin éclairée eigendecomposition général github Guerry Guerry's geospatial Jombart PCAIV Reinking Statistique Stéphane Guerry/inst/doc/0000755000176200001440000000000014124617031013250 5ustar liggesusersGuerry/inst/doc/MultiSpat.R0000644000176200001440000001542314124617031015322 0ustar liggesusers## ----setup, include = FALSE--------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, warning = FALSE, message = FALSE, # suppress package loading messages comment = "#>", fig.height = 3, fig.width = 3, fig.align = "center" ) ## ----------------------------------------------------------------------------- library(Guerry) # Guerry's data library(sp) # management of spatial data library(ade4) # multivariate analysis library(adegraphics) # graphical representation library(spdep) # spatial dependency library(adespatial) # multivariate spatial analysis ## ----------------------------------------------------------------------------- names(gfrance85) ## ----------------------------------------------------------------------------- data(gfrance85) df <- data.frame(gfrance85)[, 7:12] # the 6 variables france.map <- as(gfrance85, "SpatialPolygons") # the map xy <- coordinates(gfrance85) # spatial coordinates dep.names <- data.frame(gfrance85)[, 6] # departement names region.names <- data.frame(gfrance85)[, 5] # region names col.region <- colors()[c(149, 254, 468, 552, 26)] # colors for region ## ----------------------------------------------------------------------------- pca <- dudi.pca(df, scannf = FALSE, nf = 3) ## ----------------------------------------------------------------------------- biplot(pca, plabel.cex = 0.8) ## ----------------------------------------------------------------------------- pca$eig/sum(pca$eig) * 100 ## ----------------------------------------------------------------------------- s.corcircle(pca$co) ## ---- fig.width = 4, fig.height = 4------------------------------------------ s.label(pca$li, ppoint.col = col.region[region.names], plabel.optim = TRUE, plabel.cex = 0.6) s.Spatial(france.map, col = col.region[region.names], plabel.cex = 0) s.class(xy, region.names, col = col.region, add = TRUE, ellipseSize = 0, starSize = 0) ## ----------------------------------------------------------------------------- nb <- poly2nb(gfrance85) lw <- nb2listw(nb, style = "W") ## ----------------------------------------------------------------------------- s.Spatial(france.map, nb = nb, plabel.cex = 0, pSp.border = "white") ## ----------------------------------------------------------------------------- moran.randtest(df, lw) ## ---- fig.width = 4, fig.height=4--------------------------------------------- x <- df[, 3] x.lag <- lag.listw(lw, df[, 3]) moran.plot(x, lw) text(x[5], x.lag[5], dep.names[5], pos = 1, cex = 0.8) ## ---- fig.dim = c(6,3)-------------------------------------------------------- moran.randtest(pca$li, lw) s.value(xy, pca$li[, 1:2], Sp = france.map, pSp.border = "white", symbol = "circle", pgrid.draw = FALSE) ## ----------------------------------------------------------------------------- bet <- bca(pca, region.names, scannf = FALSE, nf = 2) ## ----------------------------------------------------------------------------- bet$ratio ## ---- fig.dim=c(5,5)---------------------------------------------------------- plot(bet) ## ----------------------------------------------------------------------------- barplot(bet$eig) bet$eig/sum(bet$eig) * 100 ## ----------------------------------------------------------------------------- s.arrow(bet$c1, plabel.cex = 0.8) ## ---- fig.dim = c(4,4)-------------------------------------------------------- s.label(bet$ls, as.character(dep.names), ppoint.cex = 0, plabel.optim = TRUE, plabel.col = col.region[region.names], plabel.cex = 0.5) s.class(bet$ls, fac = region.names, col = col.region, ellipse = 0, add = TRUE) ## ---- fig.dim = c(6,3)-------------------------------------------------------- s.value(xy, bet$ls, symbol = "circle", Sp = france.map, pSp.col = col.region[region.names], pSp.border = "transparent") ## ---- fig.dim = c(6,4)-------------------------------------------------------- poly.xy <- orthobasis.poly(xy, degree = 2) s.value(xy, poly.xy, Sp = france.map, plegend.drawKey = FALSE) ## ----------------------------------------------------------------------------- pcaiv.xy <- pcaiv(pca, poly.xy, scannf = FALSE, nf = 2) ## ----------------------------------------------------------------------------- sum(pcaiv.xy$eig)/sum(pca$eig) * 100 pcaiv.xy$eig/sum(pcaiv.xy$eig) * 100 ## ---- fig.dim=c(5,5)---------------------------------------------------------- plot(pcaiv.xy) ## ---- fig.dim = c(6,6)-------------------------------------------------------- mem1 <- scores.listw(lw) s.value(xy, mem1[, 1:9], Sp = france.map, plegend.drawKey = FALSE) ## ----------------------------------------------------------------------------- pcaiv.mem <- pcaiv(pca, mem1[,1:10], scannf = FALSE) ## ----------------------------------------------------------------------------- sum(pcaiv.mem$eig)/sum(pca$eig) * 100 pcaiv.mem$eig/sum(pcaiv.mem$eig) * 100 ## ---- fig.dim=c(5,5)---------------------------------------------------------- plot(pcaiv.mem) ## ----------------------------------------------------------------------------- ms <- multispati(pca, lw, scannf = FALSE) ## ---- fig.dim=c(5,5)---------------------------------------------------------- plot(ms) ## ----------------------------------------------------------------------------- summary(ms) ## ----------------------------------------------------------------------------- s.arrow(ms$c1, plabel.cex = 0.8) ## ---- fig.dim = c(4,4)-------------------------------------------------------- s.match(ms$li, ms$ls, plabel.cex = 0) s.match(ms$li[c(10, 41, 27), ], ms$ls[c(10, 41, 27), ], label = dep.names[c(10, 41, 27)], plabel.cex = 0.8, add = TRUE) ## ---- fig.dim = c(6,3)-------------------------------------------------------- s.value(xy, ms$li, Sp = france.map) ## ----------------------------------------------------------------------------- mat <- matrix(NA, 4, 4) mat.names <- c("PCA", "BCA", "PCAIV-POLY", "PCAIV-MEM", "MULTISPATI") colnames(mat) <- mat.names[-5] rownames(mat) <- mat.names[-1] mat[1, 1] <- procuste.randtest(pca$li[, 1:2], bet$ls[, 1:2])$obs mat[2, 1] <- procuste.randtest(pca$li[, 1:2], pcaiv.xy$ls[, 1:2])$obs mat[3, 1] <- procuste.randtest(pca$li[, 1:2], pcaiv.mem$ls[, 1:2])$obs mat[4, 1] <- procuste.randtest(pca$li[, 1:2], ms$li[, 1:2])$obs mat[2, 2] <- procuste.randtest(bet$ls[, 1:2], pcaiv.xy$ls[, 1:2])$obs mat[3, 2] <- procuste.randtest(bet$ls[, 1:2], pcaiv.mem$ls[, 1:2])$obs mat[4, 2] <- procuste.randtest(bet$ls[, 1:2], ms$li[, 1:2])$obs mat[3, 3] <- procuste.randtest(pcaiv.xy$ls[, 1:2], pcaiv.mem$ls[, 1:2])$obs mat[4, 3] <- procuste.randtest(pcaiv.xy$ls[, 1:2], ms$li[, 1:2])$obs mat[4, 4] <- procuste.randtest(pcaiv.mem$ls[, 1:2], ms$li[, 1:2])$obs mat Guerry/inst/doc/MultiSpat.html0000644000176200001440000130334714124617031016073 0ustar liggesusers Guerry data: Spatial Multivariate Analysis

Guerry data: Spatial Multivariate Analysis

Stéphane Dray

2021-09-28

This vignette indicates how to perform the analyses described in Dray and Jombart (2011) of data derived from André-Michel Guerry’s (1833) Essai sur la Statistique Morale de la France. It illustrates some classical methods for analysis of multivariate spatial data that focus either on the multivariate aspect or on the spatial one, as well as some more modern methods that attempt to integrate geographical and multivariate aspects simultaneously.

Preliminary steps

Several packages are required to run the different analyses and should be loaded. The ade4 package for multivariate analysis is supplemented by adegraphics (for associated graphical methods) and adespatial for multivariate spatial analysis.

Guerry gathered data on crimes, suicide, literacy and other moral statistics for various départements (i.e., counties) in France. He provided the first real social data analysis, using graphics and maps to summarize this georeferenced multivariate dataset. We use the dataset gfrance85 and consider six key quantitative variables (shown in the table below) for each of the 85 départements of France in 1830 (Corsica, an island and often an outlier, was excluded).

Data are recorded on aligned scales so that larger numbers consistently reflect “morally better”. Thus, four of the “bad” variables are recorded in the inverse form, as “Population per …”. With this scaling, it would be expected that all correlations be \(\ge 0\).

Name Description
Crime_pers Population per crime against persons
Crime_prop Population per crime against property
Literacy Percent of military conscripts who can read and write
Donations Donations to the poor
Infants Population per illegitimate birth
Suicides Population per suicide

The dataset gfrance85 is actually a SpatialPolygonsDataFrame object created with the sp package. It contains the polygon boundaries of the map of France in 1830, as well the variables in the Guerry data frame. As an ordinary data.frame, it has these components

To simplify analyses, we extract the components to be used below.

Standard approaches

In this section, we focus on classical approaches that consider either the multivariate or the spatial aspect of the data.

Multivariate analysis

Here we consider \(p=6\) variables measured for \(n=85\) individuals (départements of France). As only quantitative variables have been recorded, principal component analysis (PCA, Hotelling 1933) is well adapted. PCA summarizes the data by maximizing simultaneously the variance of the projection of the individuals onto the principal axes and the sum of the squared correlations between the principal component and the variables.

The biplot is simply obtained by

The first two PCA dimensions account for 35.7% and 20% ,respectively, of the total variance.

Correlations between variables and principal components can be represented on a correlation circle. The first axis is negatively correlated to literacy and positively correlated to property crime, suicides and illegitimate births. The second axis is aligned mainly with personal crime and donations to the poor.

Spatial information can be added on the factorial map representing the projections of départements on principal axes by coloring according to colors representing the different regions of France.

For the first axis, the North and East are characterized by negative scores, corresponding to high levels of literacy and high rates of suicides, crimes against property and illegitimate births. The second axis mainly contrasts the West (high donations to the the poor and low levels of crime against persons) to the South.

Spatial autocorrelation

Spatial autocorrelation statistics, such as Moran (1948) Coefficient (MC) and Geary (1954) Ratio, aim to measure and analyze the degree of dependency among observations in a geographical context (Cliff and Ord 1973).

The spatial weighting matrix

The first step of spatial autocorrelation analysis is to define a spatial weighting matrix \(\mathbf{W}=[w_{ij}]\) . In the case of Guerry’s data, we simply defined a binary neighborhood where two départements are considered as neighbors if they share a common border. The spatial weighting matrix is then obtained after row-standardization (style = "W"):

We can represent this neighborhood on the geographical map:

Moran’s Coefficient

Once the spatial weights have been defined, the spatial autocorrelation statistics can then be computed. Let us consider the \(n\)-by-1 vector \(\mathbf{x}=\left[ {x_1 \cdots x_n } \right]^\textrm{T}\) containing measurements of a quantitative variable for \(n\) spatial units. The usual formulation for Moran’s coefficient of spatial autocorrelation (Cliff and Ord 1973; Moran 1948) is \[\begin{equation} \label{eq1} MC(\mathbf{x})=\frac{n\sum\nolimits_{\left( 2 \right)} {w_{ij} (x_i -\bar {x})(x_j -\bar {x})} }{\sum\nolimits_{\left( 2 \right)} {w_{ij} } \sum\nolimits_{i=1}^n {(x_i -\bar {x})^2} }\mbox{ where }\sum\nolimits_{\left( 2 \right)} =\sum\limits_{i=1}^n {\sum\limits_{j=1}^n } \mbox{ with }i\ne j. \end{equation}\]

MC can be rewritten using matrix notation: \[\begin{equation} \label{eq2} MC(\mathbf{x})=\frac{n}{\mathbf{1}^\textrm{T}\mathbf{W1}}\frac{\mathbf{z}^\textrm{T}{\mathbf{Wz}}}{\mathbf{z}^\textrm{T}\mathbf{z}}, \end{equation}\] where \(\mathbf{z}=\left ( \mathbf{I}_n-\mathbf{1}_n\mathbf{1}_n^\textrm{T} /n \right )\mathbf{x}\) is the vector of centered values (\(z_i=x_i-\bar{x}\)) and \(\mathbf{1}_n\) is a vector of ones (of length \(n\)).

The significance of the observed value of MC can be tested by a Monte-Carlo procedure, in which locations are permuted to obtain a distribution of MC under the null hypothesis of random distribution. An observed value of MC that is greater than that expected at random indicates the clustering of similar values across space (positive spatial autocorrelation), while a significant negative value of MC indicates that neighboring values are more dissimilar than expected by chance (negative spatial autocorrelation).

We computed MC for the Guerry’s dataset. A positive and significant autocorrelation is identified for each of the six variables. Thus, the values of literacy are the most covariant in adjacent departments, while illegitimate births (Infants) covary least.

Moran scatterplot

If the spatial weighting matrix is row-standardized, we can define the lag vector \(\mathbf{\tilde{z}} = \mathbf{Wz}\) (i.e., \(\tilde{z}_i = \sum\limits_{j=1}^n{w_{ij}x_j}\)) composed of the weighted (by the spatial weighting matrix) averages of the neighboring values. Thus, we have: \[\begin{equation} \label{eq3} MC(\mathbf{x})=\frac{\mathbf{z}^\textrm{T}{\mathbf{\tilde{z}}}}{\mathbf{z}^\textrm{T}\mathbf{z}}, \end{equation}\] since in this case \(\mathbf{1}^\textrm{T}\mathbf{W1}=n\). This shows clearly that MC measures the autocorrelation by giving an indication of the intensity of the linear association between the vector of observed values \(\mathbf{z}\) and the vector of weighted averages of neighboring values \(\mathbf{\tilde{z}}\). Anselin (1996) proposed to visualize MC in the form of a bivariate scatterplot of \(\mathbf{\tilde{z}}\) against \(\mathbf{z}\). A linear regression can be added to this Moran scatterplot, with slope equal to MC.

Considering the Literacy variable of Guerry’s data, the Moran scatterplot clearly shows strong autocorrelation. It also shows that the Hautes-Alpes département has a slightly outlying position characterized by a high value of Literacy compared to its neighbors.

Indirect integration of multivariate and geographical aspects

The simplest approach considered a two-step procedure where the data are first summarized with multivariate analysis such as PCA. In a second step, univariate spatial statistics or mapping techniques are applied to PCA scores for each axis separately. One can also test for the presence of spatial autocorrelation for the first few scores of the analysis, with univariate autocorrelation statistics such as MC. We mapped scores of the départements for the first two axes of the PCA of Guerry’s data. Even if PCA maximizes only the variance of these scores, there is also a clear spatial structure, as the scores are highly autocorrelated. The map for the first axis corresponds closely to the split between la France éclairée (North-East characterized by an higher level of Literacy) and la France obscure.

Spatial multivariate analysis

Over the last decades, several approaches have been developed to consider both geographical and multivariate information simultaneously. The multivariate aspect is usually treated by techniques of dimensionality reduction similar to PCA. On the other hand, several alternatives have been proposed to integrate the spatial information.

Spatial partition

One alternative is to consider a spatial partition of the study area. In this case, the spatial information is coded as a categorical variable, and each category corresponds to a region of the whole study area. For instance, Guerry’s data contained a partition of France into 5 regions.

We used the between-class analysis (BCA, Dolédec and Chessel 1987), to investigate differences between regions. BCA maximizes the variance between groups.

Here, 28.8 % of the total variance (sum of eigenvalues of PCA) corresponds to the between-regions variance (sum of the eigenvalues of BCA).

The main graphical outputs are obtained by the generic plot function:

The barplot of eigenvalues indicates that two axes should be interpreted. The first two BCA dimensions account for 59 % and 30.2 %, respectively, of the between-regions variance.

The coefficients used to construct the linear combinations of variables are represented:

The first axis opposed literacy to property crime, suicides and illegitimate births. The second axis is mainly aligned with personal crime and donations to the poor.

Projections of départements on the BCA axes can be represented on the factorial map:

The scores can be mapped to show the spatial aspects:

The results are very close to those obtained by PCA: the first axis contrasted the North and the East (la France éclairée) to the other regions while the South is separated from the other regions by the second axis. The high variability of the region Centre is also noticeable. In contrast, the South is very homogeneous.

Spatial explanatory variables

Principal component analysis with respect to the instrumental variables (PCAIV, Rao 1964), and related methods, have been often used in community ecology to identify spatial relationships. The spatial information is introduced in the form of spatial predictors and the analysis maximized the “spatial variance” (i.e., the variance explained by spatial predictors). Note that BCA can also be considered as a particular case of PCAIV, where the explanatory variables are dummy variables indicating group membership.

Trend surface of geographic coordinates

Student (1914) proposed to express observed values in time series as a polynomial function of time, and mentioned that this could be done for spatial data as well. Borcard, Legendre, and Drapeau (1992) extended this approach to the spatial and multivariate case by introducing polynomial functions of geographic coordinates as predictors in PCAIV. We call this approach PCAIV-POLY.

The centroids of départements of France were used to construct a second-degree orthogonal polynomial.

PCAIV is then performed using the pcaiv function:

Here, 32.4 % of the total variance (sum of eigenvalues of PCA) is explained by the second-degree polynomial (sum of eigenvalues of PCAIV). The first two dimensions account for 51.4 % and 35.2 %, respectively, of the explained variance.

The outputs of PCAIV-POLY (coefficients of variables, maps of départements scores, etc.) are very similar to those obtained by BCA. They can be represented easily by the generic plot function:

Moran’s eigenvector maps

An alternative way to build spatial predictors is by the diagonalization of the spatial weighting matrix W. Moran’s eigenvector maps (MEM, Dray, Legendre, and Peres-Neto 2006) are the \(n-1\) eigenvectors of the doubly-centered matrix W. They are orthogonal vectors with a unit norm maximizing MC (Griffith 1996). MEM associated with high positive (or negative) eigenvalues have high positive (or negative) autocorrelation. MEM associated with eigenvalues with small absolute values correspond to low spatial autocorrelation, and are not suitable for defining spatial structures.

We used the spatial weighting matrix defined above to construct MEM. The first ten MEM, corresponding to the highest levels of spatial autocorrelation, have been mapped:

We introduced the first ten MEM as spatial explanatory variables in PCAIV. We call this approach PCAIV-MEM.

Here, 44.1 % of the total variance (sum of eigenvalues of PCA) is explained by the first ten MEM (sum of eigenvalues of PCAIV). The first two dimensions account for 54.9 % and 26.3 %, respectively, of the explained variance.

The outputs of PCAIV-MEM (coefficients of variables, maps of départements scores, etc.) are very similar to those obtained by BCA. They can be represented easily by the generic plot function:

Spatial graph and weighting matrix

The MEM framework introduced the spatial information into multivariate analysis through the eigendecomposition of the spatial weighting matrix. Usually, we consider only a part of the information contained in this matrix because only a subset of MEM are used as regressors in PCAIV. In this section, we focus on multivariate methods that consider the spatial weighting matrix under its original form.

Wartenberg (1985) was the first to develop a multivariate analysis based on MC. His work considered only normed and centered variables (i.e., normed PCA) for the multivariate part and a binary symmetric connectivity matrix for the spatial aspect. Dray, Saïd, and Débias (2008) generalized Wartenberg’s method by introducing a row-standardized spatial weighting matrix in the analysis of a statistical triplet. This approach is very general and allows us to define spatially-constrained versions of various methods (corresponding to different triplets) such as correspondence analysis or multiple correspondence analysis. MULTISPATI finds coefficients to obtain a linear combination of variables that maximizes a compromise between the classical multivariate analysis and a generalized version of Moran’s coefficient.

The main outputs of MULTISPATI can be represented easily by the generic plot function:

The barplot of eigenvalues suggests two main spatial structures. Eigenvalues of MULTISPATI are the product between the variance and the spatial autocorrelation of the scores, while PCA maximizes only the variance. The differences between the two methods are computed by the summary function:

Hence, there is a loss of variance compared to PCA (2.14 versus 2.017 for axis 1; 1.201 versus 1.177 for axis 2) but a gain of spatial autocorrelation (0.551 versus 0.637 for axis 1; 0.561 versus 0.59 for axis 2).

Coefficients of variables allow to interpret the structures:

The first axis opposes literacy to property crime, suicides and illegitimate births. The second axis is aligned mainly with personal crime and donations to the poor. The maps of the scores show that the spatial structures are very close to those identified by PCA. The similarity of results between PCA and its spatially optimized version confirm that the main structures of Guerry’s data are spatial.

Spatial autocorrelation can be seen as the link between one variable and the lagged vector. This interpretation is used to construct the Moran scatterplot and can be extended to the multivariate case in MULTISPATI by analyzing the link between scores and lagged scores:

Each département can be represented on the factorial map by an arrow (the bottom corresponds to its score, the head corresponds to its lagged score. A short arrow reveals a local spatial similarity (between one plot and its neighbors) while a long arrow reveals a spatial discrepancy. This viewpoint can be interpreted as a multivariate extension of the local index of spatial association (Anselin 1995). For instance: * Aude has a very small arrow, indicating that this département is very similar to its neighbors. * Haute-Loire has a long horizontal arrow which reflects its high values for the variables Infants (31017), Suicides (163241) and Crime_prop (18043) compared to the average values over its neighbors (27032.4, 60097.8 and 10540.8 for these three variables). * Finistère corresponds to an arrow with a long vertical length which is due to its high values compared to its neighbors for Donations (23945 versus 12563) and Crime_pers (29872 versus 25962).

The link between the scores and the lagged scores (averages of neighbors weighted by the spatial connection matrix) can be mapped in the geographical space. For the first two axes, we have:

Conclusions

Even if the methods presented are quite different in their theoretical and practical viewpoints, their applications to Guerry’s dataset yield very similar results. We provided a quantitative measure of this similarity by computing Procrustes statistics [Peres-Neto and Jackson (2001);SD161] between the scores of the départements onto the first two axes for the different analyses. All the values of the statistic are very high and significant; this confirms the high concordance between the outputs of the different methods.

References

Anselin, L. 1995. “Local Indicators of Spatial Association.” Geographical Analysis 27: 93–115.

———. 1996. “The Moran Scatterplot as an ESDA Tool to Assess Local Instability in Spatial Association.” In Spatial Analytical Perspectives on Gis, edited by M. M. Fischer, H. J. Scholten, and D. Unwin, 111–25. London: Taylor; Francis.

Borcard, D., P. Legendre, and P. Drapeau. 1992. “Partialling Out the Spatial Component of Ecological Variation.” Ecology 73: 1045–55.

Cliff, A. D., and J. K. Ord. 1973. Spatial Autocorrelation. London: Pion.

Dolédec, S., and D. Chessel. 1987. “Rythmes Saisonniers et Composantes Stationnelles En Milieu Aquatique I- Description d’un Plan d’observations Complet Par Projection de Variables.” Acta Oecologica - Oecologia Generalis 8 (3): 403–26.

Dray, S., and T. Jombart. 2011. “Revisiting Guerry’s Data: Introducing Spatial Constraints in Multivariate Analysis.” Annals of Applied Statistics 5 (4): 2278–99.

Dray, S., P. Legendre, and P. R. Peres-Neto. 2006. “Spatial Modeling: A Comprehensive Framework for Principal Coordinate Analysis of Neighbor Matrices (PCNM).” Ecological Modelling 196: 483–93.

Dray, S., S. Saïd, and F. Débias. 2008. “Spatial Ordination of Vegetation Data Using a Generalization of Wartenberg’s Multivariate Spatial Correlation.” Journal of Vegetation Science 19: 45–56.

Geary, R. C. 1954. “The Contiguity Ratio and Statistical Mapping.” The Incorporated Statistician 5 (3): 115–45.

Griffith, D. A. 1996. “Spatial Autocorrelation and Eigenfunctions of the Geographic Weights Matrix Accompanying Geo-Referenced Data.” Canadian Geographer 40 (4): 351–67.

Guérry, A. M. 1833. Essai Sur La Statistique Morale de La France. Paris: Crochard.

Hotelling, H. 1933. “Analysis of a Complex of Statistical Variables into Principal Components.” Journal of Educational Psychology 24: 417–41.

Moran, P. A.P. 1948. “The Interpretation of Statistical Maps.” Journal of the Royal Statistical Society Series B-Methodological 10: 243–51.

Peres-Neto, P. R., and D. A. Jackson. 2001. “How Well Do Multivariate Data Sets Match? The Advantages of a Procrustean Superimposition Approach over the Mantel Test.” Oecologia 129: 169–78.

Rao, C. R. 1964. “The Use and Interpretation of Principal Component Analysis in Applied Research.” Sankhya A 26: 329–59.

Student, W. S. 1914. “The Elimination of Spurious Correlation Due to Position in Time or Space.” Biometrika 10: 179–80.

Wartenberg, D. 1985. “Multivariate Spatial Correlation: A Method for Exploratory Geographical Analysis.” Geographical Analysis 17 (4): 263–83.

Guerry/inst/doc/MultiSpat.Rmd0000644000176200001440000005444114124100247015642 0ustar liggesusers--- title: "Guerry data: Spatial Multivariate Analysis" author: "Stéphane Dray" date: "`r Sys.Date()`" output: rmarkdown::html_vignette bibliography: reference.bib vignette: > %\VignetteIndexEntry{Guerry data: Spatial Multivariate Analysis} %\VignetteKeywords{crime, literacy, suicide, France, spatial multivariate analysis} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r setup, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, warning = FALSE, message = FALSE, # suppress package loading messages comment = "#>", fig.height = 3, fig.width = 3, fig.align = "center" ) ``` This vignette indicates how to perform the analyses described in @SD966 of data derived from André-Michel Guerry's [-@SD955] *Essai sur la Statistique Morale de la France*. It illustrates some classical methods for analysis of multivariate spatial data that focus *either* on the multivariate aspect or on the spatial one, as well as some more modern methods that attempt to integrate geographical and multivariate aspects *simultaneously*. # Preliminary steps Several packages are required to run the different analyses and should be loaded. The `ade4` package for multivariate analysis is supplemented by `adegraphics` (for associated graphical methods) and `adespatial` for multivariate spatial analysis. ```{r} library(Guerry) # Guerry's data library(sp) # management of spatial data library(ade4) # multivariate analysis library(adegraphics) # graphical representation library(spdep) # spatial dependency library(adespatial) # multivariate spatial analysis ``` Guerry gathered data on crimes, suicide, literacy and other moral statistics for various départements (i.e., counties) in France. He provided the first real social data analysis, using graphics and maps to summarize this georeferenced multivariate dataset. We use the dataset `gfrance85` and consider six key quantitative variables (shown in the table below) for each of the 85 départements of France in 1830 (Corsica, an island and often an outlier, was excluded). Data are recorded on aligned scales so that **larger numbers** consistently reflect "morally better". Thus, four of the "bad" variables are recorded in the inverse form, as "Population per ...". With this scaling, it would be expected that all correlations be $\ge 0$. | Name | Description | |:------------|:------------| |`Crime_pers` | Population per crime against persons| |`Crime_prop` | Population per crime against property| |`Literacy` | Percent of military conscripts who can read and write| |`Donations` | Donations to the poor| |`Infants` | Population per illegitimate birth| |`Suicides` | Population per suicide| The dataset `gfrance85` is actually a `SpatialPolygonsDataFrame` object created with the `sp` package. It contains the polygon boundaries of the map of France in 1830, as well the variables in the `Guerry` data frame. As an ordinary data.frame, it has these components ```{r} names(gfrance85) ``` To simplify analyses, we extract the components to be used below. ```{r} data(gfrance85) df <- data.frame(gfrance85)[, 7:12] # the 6 variables france.map <- as(gfrance85, "SpatialPolygons") # the map xy <- coordinates(gfrance85) # spatial coordinates dep.names <- data.frame(gfrance85)[, 6] # departement names region.names <- data.frame(gfrance85)[, 5] # region names col.region <- colors()[c(149, 254, 468, 552, 26)] # colors for region ``` # Standard approaches In this section, we focus on classical approaches that consider either the multivariate or the spatial aspect of the data. ## Multivariate analysis Here we consider $p=6$ variables measured for $n=85$ individuals (départements of France). As only quantitative variables have been recorded, principal component analysis [PCA, @SD308] is well adapted. PCA summarizes the data by maximizing simultaneously the variance of the projection of the individuals onto the principal axes and the sum of the squared correlations between the principal component and the variables. ```{r} pca <- dudi.pca(df, scannf = FALSE, nf = 3) ``` The biplot is simply obtained by ```{r} biplot(pca, plabel.cex = 0.8) ``` The first two PCA dimensions account for 35.7% and 20% ,respectively, of the total variance. ```{r} pca$eig/sum(pca$eig) * 100 ``` Correlations between variables and principal components can be represented on a correlation circle. The first axis is negatively correlated to literacy and positively correlated to property crime, suicides and illegitimate births. The second axis is aligned mainly with personal crime and donations to the poor. ```{r} s.corcircle(pca$co) ``` Spatial information can be added on the factorial map representing the projections of départements on principal axes by coloring according to colors representing the different regions of France. ```{r, fig.width = 4, fig.height = 4} s.label(pca$li, ppoint.col = col.region[region.names], plabel.optim = TRUE, plabel.cex = 0.6) s.Spatial(france.map, col = col.region[region.names], plabel.cex = 0) s.class(xy, region.names, col = col.region, add = TRUE, ellipseSize = 0, starSize = 0) ``` For the first axis, the North and East are characterized by negative scores, corresponding to high levels of literacy and high rates of suicides, crimes against property and illegitimate births. The second axis mainly contrasts the West (high donations to the the poor and low levels of crime against persons) to the South. ## Spatial autocorrelation Spatial autocorrelation statistics, such as @SD455 Coefficient (MC) and @SD223 Ratio, aim to measure and analyze the degree of dependency among observations in a geographical context [@SD577]. ### The spatial weighting matrix The first step of spatial autocorrelation analysis is to define a spatial weighting matrix $\mathbf{W}=[w_{ij}]$ . In the case of Guerry's data, we simply defined a binary neighborhood where two départements are considered as neighbors if they share a common border. The spatial weighting matrix is then obtained after row-standardization (`style = "W"`): ```{r} nb <- poly2nb(gfrance85) lw <- nb2listw(nb, style = "W") ``` We can represent this neighborhood on the geographical map: ```{r} s.Spatial(france.map, nb = nb, plabel.cex = 0, pSp.border = "white") ``` ### Moran's Coefficient Once the spatial weights have been defined, the spatial autocorrelation statistics can then be computed. Let us consider the $n$-by-1 vector $\mathbf{x}=\left[ {x_1 \cdots x_n } \right]^\textrm{T}$ containing measurements of a quantitative variable for $n$ spatial units. The usual formulation for Moran's coefficient of spatial autocorrelation [@SD577;@SD455] is \begin{equation} \label{eq1} MC(\mathbf{x})=\frac{n\sum\nolimits_{\left( 2 \right)} {w_{ij} (x_i -\bar {x})(x_j -\bar {x})} }{\sum\nolimits_{\left( 2 \right)} {w_{ij} } \sum\nolimits_{i=1}^n {(x_i -\bar {x})^2} }\mbox{ where }\sum\nolimits_{\left( 2 \right)} =\sum\limits_{i=1}^n {\sum\limits_{j=1}^n } \mbox{ with }i\ne j. \end{equation} MC can be rewritten using matrix notation: \begin{equation} \label{eq2} MC(\mathbf{x})=\frac{n}{\mathbf{1}^\textrm{T}\mathbf{W1}}\frac{\mathbf{z}^\textrm{T}{\mathbf{Wz}}}{\mathbf{z}^\textrm{T}\mathbf{z}}, \end{equation} where $\mathbf{z}=\left ( \mathbf{I}_n-\mathbf{1}_n\mathbf{1}_n^\textrm{T} /n \right )\mathbf{x}$ is the vector of centered values ($z_i=x_i-\bar{x}$) and $\mathbf{1}_n$ is a vector of ones (of length $n$). The significance of the observed value of MC can be tested by a Monte-Carlo procedure, in which locations are permuted to obtain a distribution of MC under the null hypothesis of random distribution. An observed value of MC that is greater than that expected at random indicates the clustering of similar values across space (positive spatial autocorrelation), while a significant negative value of MC indicates that neighboring values are more dissimilar than expected by chance (negative spatial autocorrelation). We computed MC for the Guerry's dataset. A positive and significant autocorrelation is identified for each of the six variables. Thus, the values of literacy are the most covariant in adjacent departments, while illegitimate births (Infants) covary least. ```{r} moran.randtest(df, lw) ``` ### Moran scatterplot If the spatial weighting matrix is row-standardized, we can define the lag vector $\mathbf{\tilde{z}} = \mathbf{Wz}$ (i.e., $\tilde{z}_i = \sum\limits_{j=1}^n{w_{ij}x_j}$) composed of the weighted (by the spatial weighting matrix) averages of the neighboring values. Thus, we have: \begin{equation} \label{eq3} MC(\mathbf{x})=\frac{\mathbf{z}^\textrm{T}{\mathbf{\tilde{z}}}}{\mathbf{z}^\textrm{T}\mathbf{z}}, \end{equation} since in this case $\mathbf{1}^\textrm{T}\mathbf{W1}=n$. This shows clearly that MC measures the autocorrelation by giving an indication of the intensity of the linear association between the vector of observed values $\mathbf{z}$ and the vector of weighted averages of neighboring values $\mathbf{\tilde{z}}$. @SD566 proposed to visualize MC in the form of a bivariate scatterplot of $\mathbf{\tilde{z}}$ against $\mathbf{z}$. A linear regression can be added to this *Moran scatterplot*, with slope equal to MC. Considering the Literacy variable of Guerry's data, the Moran scatterplot clearly shows strong autocorrelation. It also shows that the Hautes-Alpes département has a slightly outlying position characterized by a high value of Literacy compared to its neighbors. ```{r, fig.width = 4, fig.height=4} x <- df[, 3] x.lag <- lag.listw(lw, df[, 3]) moran.plot(x, lw) text(x[5], x.lag[5], dep.names[5], pos = 1, cex = 0.8) ``` ## Indirect integration of multivariate and geographical aspects The simplest approach considered a two-step procedure where the data are first summarized with multivariate analysis such as PCA. In a second step, univariate spatial statistics or mapping techniques are applied to PCA scores for each axis separately. One can also test for the presence of spatial autocorrelation for the first few scores of the analysis, with univariate autocorrelation statistics such as MC. We mapped scores of the départements for the first two axes of the PCA of Guerry's data. Even if PCA maximizes only the variance of these scores, there is also a clear spatial structure, as the scores are highly autocorrelated. The map for the first axis corresponds closely to the split between *la France éclairée* (North-East characterized by an higher level of Literacy) and *la France obscure*. ```{r, fig.dim = c(6,3)} moran.randtest(pca$li, lw) s.value(xy, pca$li[, 1:2], Sp = france.map, pSp.border = "white", symbol = "circle", pgrid.draw = FALSE) ``` # Spatial multivariate analysis Over the last decades, several approaches have been developed to consider both geographical and multivariate information simultaneously. The multivariate aspect is usually treated by techniques of dimensionality reduction similar to PCA. On the other hand, several alternatives have been proposed to integrate the spatial information. ## Spatial partition One alternative is to consider a spatial partition of the study area. In this case, the spatial information is coded as a categorical variable, and each category corresponds to a region of the whole study area. For instance, Guerry's data contained a partition of France into 5 regions. We used the between-class analysis [BCA, @SD148], to investigate differences between regions. BCA maximizes the variance between groups. ```{r} bet <- bca(pca, region.names, scannf = FALSE, nf = 2) ``` Here, 28.8 % of the total variance (sum of eigenvalues of PCA) corresponds to the between-regions variance (sum of the eigenvalues of BCA). ```{r} bet$ratio ``` The main graphical outputs are obtained by the generic `plot` function: ```{r, fig.dim=c(5,5)} plot(bet) ``` The barplot of eigenvalues indicates that two axes should be interpreted. The first two BCA dimensions account for 59 % and 30.2 %, respectively, of the between-regions variance. ```{r} barplot(bet$eig) bet$eig/sum(bet$eig) * 100 ``` The coefficients used to construct the linear combinations of variables are represented: ```{r} s.arrow(bet$c1, plabel.cex = 0.8) ``` The first axis opposed literacy to property crime, suicides and illegitimate births. The second axis is mainly aligned with personal crime and donations to the poor. Projections of départements on the BCA axes can be represented on the factorial map: ```{r, fig.dim = c(4,4)} s.label(bet$ls, as.character(dep.names), ppoint.cex = 0, plabel.optim = TRUE, plabel.col = col.region[region.names], plabel.cex = 0.5) s.class(bet$ls, fac = region.names, col = col.region, ellipse = 0, add = TRUE) ``` The scores can be mapped to show the spatial aspects: ```{r, fig.dim = c(6,3)} s.value(xy, bet$ls, symbol = "circle", Sp = france.map, pSp.col = col.region[region.names], pSp.border = "transparent") ``` The results are very close to those obtained by PCA: the first axis contrasted the North and the East (*la France éclairée*) to the other regions while the South is separated from the other regions by the second axis. The high variability of the region Centre is also noticeable. In contrast, the South is very homogeneous. ## Spatial explanatory variables Principal component analysis with respect to the instrumental variables [PCAIV, @SD540], and related methods, have been often used in community ecology to identify spatial relationships. The spatial information is introduced in the form of spatial predictors and the analysis maximized the "spatial variance" (i.e., the variance explained by spatial predictors). Note that BCA can also be considered as a particular case of PCAIV, where the explanatory variables are dummy variables indicating group membership. ### Trend surface of geographic coordinates @SD626 proposed to express observed values in time series as a polynomial function of time, and mentioned that this could be done for spatial data as well. @SD59 extended this approach to the spatial and multivariate case by introducing polynomial functions of geographic coordinates as predictors in PCAIV. We call this approach PCAIV-POLY. The centroids of départements of France were used to construct a second-degree orthogonal polynomial. ```{r, fig.dim = c(6,4)} poly.xy <- orthobasis.poly(xy, degree = 2) s.value(xy, poly.xy, Sp = france.map, plegend.drawKey = FALSE) ``` PCAIV is then performed using the `pcaiv` function: ```{r} pcaiv.xy <- pcaiv(pca, poly.xy, scannf = FALSE, nf = 2) ``` Here, 32.4 % of the total variance (sum of eigenvalues of PCA) is explained by the second-degree polynomial (sum of eigenvalues of PCAIV). The first two dimensions account for 51.4 % and 35.2 %, respectively, of the explained variance. ```{r} sum(pcaiv.xy$eig)/sum(pca$eig) * 100 pcaiv.xy$eig/sum(pcaiv.xy$eig) * 100 ``` The outputs of PCAIV-POLY (coefficients of variables, maps of départements scores, etc.) are very similar to those obtained by BCA. They can be represented easily by the generic `plot` function: ```{r, fig.dim=c(5,5)} plot(pcaiv.xy) ``` ### Moran's eigenvector maps An alternative way to build spatial predictors is by the diagonalization of the spatial weighting matrix **W**. Moran's eigenvector maps [MEM, @SD163] are the $n-1$ eigenvectors of the doubly-centered matrix **W**. They are orthogonal vectors with a unit norm maximizing MC [@SD264]. MEM associated with high positive (or negative) eigenvalues have high positive (or negative) autocorrelation. MEM associated with eigenvalues with small absolute values correspond to low spatial autocorrelation, and are not suitable for defining spatial structures. We used the spatial weighting matrix defined above to construct MEM. The first ten MEM, corresponding to the highest levels of spatial autocorrelation, have been mapped: ```{r, fig.dim = c(6,6)} mem1 <- scores.listw(lw) s.value(xy, mem1[, 1:9], Sp = france.map, plegend.drawKey = FALSE) ``` We introduced the first ten MEM as spatial explanatory variables in PCAIV. We call this approach PCAIV-MEM. ```{r} pcaiv.mem <- pcaiv(pca, mem1[,1:10], scannf = FALSE) ``` Here, 44.1 % of the total variance (sum of eigenvalues of PCA) is explained by the first ten MEM (sum of eigenvalues of PCAIV). The first two dimensions account for 54.9 % and 26.3 %, respectively, of the explained variance. ```{r} sum(pcaiv.mem$eig)/sum(pca$eig) * 100 pcaiv.mem$eig/sum(pcaiv.mem$eig) * 100 ``` The outputs of PCAIV-MEM (coefficients of variables, maps of départements scores, etc.) are very similar to those obtained by BCA. They can be represented easily by the generic `plot` function: ```{r, fig.dim=c(5,5)} plot(pcaiv.mem) ``` ## Spatial graph and weighting matrix The MEM framework introduced the spatial information into multivariate analysis through the eigendecomposition of the spatial weighting matrix. Usually, we consider only a part of the information contained in this matrix because only a subset of MEM are used as regressors in PCAIV. In this section, we focus on multivariate methods that consider the spatial weighting matrix under its original form. @SD694 was the first to develop a multivariate analysis based on MC. His work considered only normed and centered variables (i.e., normed PCA) for the multivariate part and a binary symmetric connectivity matrix for the spatial aspect. @SD807 generalized Wartenberg's method by introducing a row-standardized spatial weighting matrix in the analysis of a statistical triplet. This approach is very general and allows us to define spatially-constrained versions of various methods (corresponding to different triplets) such as correspondence analysis or multiple correspondence analysis. MULTISPATI finds coefficients to obtain a linear combination of variables that maximizes a compromise between the classical multivariate analysis and a generalized version of Moran's coefficient. ```{r} ms <- multispati(pca, lw, scannf = FALSE) ``` The main outputs of MULTISPATI can be represented easily by the generic `plot` function: ```{r, fig.dim=c(5,5)} plot(ms) ``` The barplot of eigenvalues suggests two main spatial structures. Eigenvalues of MULTISPATI are the product between the variance and the spatial autocorrelation of the scores, while PCA maximizes only the variance. The differences between the two methods are computed by the `summary` function: ```{r} summary(ms) ``` Hence, there is a loss of variance compared to PCA (2.14 versus 2.017 for axis 1; 1.201 versus 1.177 for axis 2) but a gain of spatial autocorrelation (0.551 versus 0.637 for axis 1; 0.561 versus 0.59 for axis 2). Coefficients of variables allow to interpret the structures: ```{r} s.arrow(ms$c1, plabel.cex = 0.8) ``` The first axis opposes literacy to property crime, suicides and illegitimate births. The second axis is aligned mainly with personal crime and donations to the poor. The maps of the scores show that the spatial structures are very close to those identified by PCA. The similarity of results between PCA and its spatially optimized version confirm that the main structures of Guerry's data are spatial. Spatial autocorrelation can be seen as the link between one variable and the lagged vector. This interpretation is used to construct the Moran scatterplot and can be extended to the multivariate case in MULTISPATI by analyzing the link between scores and lagged scores: ```{r, fig.dim = c(4,4)} s.match(ms$li, ms$ls, plabel.cex = 0) s.match(ms$li[c(10, 41, 27), ], ms$ls[c(10, 41, 27), ], label = dep.names[c(10, 41, 27)], plabel.cex = 0.8, add = TRUE) ``` Each département can be represented on the factorial map by an arrow (the bottom corresponds to its score, the head corresponds to its lagged score. A short arrow reveals a local spatial similarity (between one plot and its neighbors) while a long arrow reveals a spatial discrepancy. This viewpoint can be interpreted as a multivariate extension of the local index of spatial association [@SD565]. For instance: * Aude has a very small arrow, indicating that this département is very similar to its neighbors. * Haute-Loire has a long horizontal arrow which reflects its high values for the variables Infants (31017), Suicides (163241) and Crime\_prop (18043) compared to the average values over its neighbors (27032.4, 60097.8 and 10540.8 for these three variables). * Finistère corresponds to an arrow with a long vertical length which is due to its high values compared to its neighbors for Donations (23945 versus 12563) and Crime\_pers (29872 versus 25962). The link between the scores and the lagged scores (averages of neighbors weighted by the spatial connection matrix) can be mapped in the geographical space. For the first two axes, we have: ```{r, fig.dim = c(6,3)} s.value(xy, ms$li, Sp = france.map) ``` # Conclusions Even if the methods presented are quite different in their theoretical and practical viewpoints, their applications to Guerry's dataset yield very similar results. We provided a quantitative measure of this similarity by computing Procrustes statistics [@SD516;SD161] between the scores of the départements onto the first two axes for the different analyses. All the values of the statistic are very high and significant; this confirms the high concordance between the outputs of the different methods. ```{r} mat <- matrix(NA, 4, 4) mat.names <- c("PCA", "BCA", "PCAIV-POLY", "PCAIV-MEM", "MULTISPATI") colnames(mat) <- mat.names[-5] rownames(mat) <- mat.names[-1] mat[1, 1] <- procuste.randtest(pca$li[, 1:2], bet$ls[, 1:2])$obs mat[2, 1] <- procuste.randtest(pca$li[, 1:2], pcaiv.xy$ls[, 1:2])$obs mat[3, 1] <- procuste.randtest(pca$li[, 1:2], pcaiv.mem$ls[, 1:2])$obs mat[4, 1] <- procuste.randtest(pca$li[, 1:2], ms$li[, 1:2])$obs mat[2, 2] <- procuste.randtest(bet$ls[, 1:2], pcaiv.xy$ls[, 1:2])$obs mat[3, 2] <- procuste.randtest(bet$ls[, 1:2], pcaiv.mem$ls[, 1:2])$obs mat[4, 2] <- procuste.randtest(bet$ls[, 1:2], ms$li[, 1:2])$obs mat[3, 3] <- procuste.randtest(pcaiv.xy$ls[, 1:2], pcaiv.mem$ls[, 1:2])$obs mat[4, 3] <- procuste.randtest(pcaiv.xy$ls[, 1:2], ms$li[, 1:2])$obs mat[4, 4] <- procuste.randtest(pcaiv.mem$ls[, 1:2], ms$li[, 1:2])$obs mat ``` # References