HSAUR3/0000755000176200001440000000000014660157032011223 5ustar liggesusersHSAUR3/MD50000644000176200001440000003757314660157032011552 0ustar liggesusersc9f54f30f9fdddb0b601516ec092d548 *DESCRIPTION 08c7c9e8acb0266eb09c9bf07a1104b5 *NAMESPACE e037b0b716fc388cc2cfbded5b1300a4 *R/Rwelcome.R 37b36983346f76358360694e26d29ffa *R/citations.R 8963a5301ce00df40992a68de11bbae0 *R/isi2bibtex.R ab7787d3daf0f58ff87020f01176a6c9 *R/tables.R 70f58684583c52bfa5a1b529d7bc17c6 *R/tools.R 26fdc3be860fdaceee40445cc8fb188e *build/vignette.rds c2f6e0311f75e562b4b5b9894ad50ae7 *cleanup df8649b68d6bf843721bc45b41b00af0 *data/BCG.rda c82373ad9d5a787d954946e6eef6bc79 *data/BtheB.rda 5ae72d63282fbce488116970cffa81d4 *data/CHFLS.rda 69bae06cee8564b8fc3c9b86cdcafcdb *data/CYGOB1.rda 37298bce9f0070ac1c2ed4d2b1a60a31 *data/EFT.rda abda8c8ace1989df8932bbfa0f8fe758 *data/Forbes2000.rda 44ffc0c2017114639ae5fe3279fa6e53 *data/GHQ.rda fe6f3b873d9316c47b62dc2f91889042 *data/Lanza.rda 7ca4bc98f164865c66fc53a8593b1ba1 *data/Smoking_DollHill1950.rda 2dba6678dfb073393c9feb6c3c25f347 *data/Smoking_Mueller1940.rda a21c54fc743de7a24706a608eaa6c1be *data/Smoking_SchairerSchoeniger1944.rda 75605f856874f562a8fd79c6dcdbedcc *data/Smoking_Wassink1945.rda 702a4fa288f4faf6b2f656113cb410ea *data/USairpollution.rda d3c9e4da1933ae8dbdbca61cb4673eed *data/USmelanoma.rda 3770935a11dc4d03caefa87726a4f22e *data/USstates.rda 39c28a87cd54cb3f7bcf679fbb193dce *data/UStemp.rda 6b8a2c608e761158fd477bbe5192e808 *data/agefat.rda 79ef95e2fc7acd6bd1cc9fa0bdd0f862 *data/aspirin.rda 1aa0f055c3c3dc4b12b685de841b2d27 *data/backpain.rda 7b8d9071228ccbbad1358015a167b3a5 *data/birds.rda 2f848c3bf90cc8f3df4bcfec2fcc6a29 *data/birthdeathrates.rda 62b85263756f5b1f6fe23d94ffd22ed2 *data/bladdercancer.rda 3d8c3a976f06de590dc1ec83dab5422a *data/bp.rda d797dc92ee9380bc3f7b9ecbb73692b5 *data/clouds.rda 242f3cfc57b2221add80d615ba0f115b *data/epilepsy.rda 54b09296243597c425377f708ae2bca3 *data/foster.rda 05e0585e480d1ea0f5e52d8cbaadf9da *data/gardenflowers.rda b12591b2df301668f696d0e7e62dda3e *data/heptathlon.rda ff375252bcdcfe1f8d062111419c2347 *data/household.rda 91c64feed83438aaf12df6903a807dab *data/mastectomy.rda bb84090c1aed38d71eac51289e787261 *data/men1500m.rda 2bfe58e4f9fea1a68d0df4187d96caee *data/meteo.rda 175e1008cf118422a9c446893e56332a *data/orallesions.rda 1e6d6a71ad43c52f326bf3038c976ec1 *data/phosphate.rda 4c11830d296714a2825e426114d20fe9 *data/pistonrings.rda cf7d0f6e8fc98270121c646ea7e07b0b *data/planets.rda 011081ee1f5e341db75fcfd1ddea02fc *data/plasma.rda 0c4884d475d6ecb3a52ba2a39dfbd01d *data/polyps.rda feee75f3feb0c729a4c349bc56565c45 *data/polyps3.rda 451793a58c3becfec50361003b6a3427 *data/pottery.rda 799a6aaae1a298bb5e02404f65c73ea7 *data/rearrests.rda dbf9e96c0dc321ef85c8b6490f018d4f *data/respiratory.rda a9de191caeebe385f24b38e8be4ee11a *data/roomwidth.rda 7878cc76d27e0136ccc3dcc1647025a8 *data/schizophrenia.rda 9b18489b28b3fc9647442bd7b3ba258d *data/schizophrenia2.rda 9c2bb25a8d9819bee49647e4c20ce2c2 *data/schooldays.rda 70aa798e309696fc34f92b92adb79185 *data/skulls.rda 65330010da3e58d360dd985ee03eb6a5 *data/smoking.rda 09e1451a7c53a8b6c35c80e6d656bd05 *data/students.rda 4de30be86172b245ee0f161b63fa89da *data/suicides.rda cd05b12e304910229e2641df194e1830 *data/suicides2.rda de83514e94506b964c5425372ea73de8 *data/toenail.rda e14fc311f2b36ba3128aa4dc7ed9bed8 *data/toothpaste.rda 748d06879c649eb69c117c52f59914f6 *data/voting.rda 090fa9d5ce11b9f2e230494a76f0ecd2 *data/water.rda 0dbf6f420ce54d4da559567db7107f4a *data/watervoles.rda ed4c085f3b18f439263e5ce0ecfc11dc *data/waves.rda 616f5636cc18a08aa585710a12cd8fae *data/weightgain.rda b5551cfd36a91a26caeb1c1448082164 *data/womensrole.rda dc1dc7889a7d17b495fc08427577bde2 *inst/LaTeXBibTeX/HSAUR.bib b49cfcbd98e9d5acfe8536cb4eb37f0e *inst/LaTeXBibTeX/refstyle.bst 06e4b368936e0fbb227b42494c985873 *inst/LaTeXBibTeX/setup.Rnw 1fbd75eb3542d43da5e3220d8644c18f *inst/NEWS 8c85522a291e4492cdbd6919215d5ad3 *inst/cache/DE-bootpara.rda 0383f1729295c85c3869deaf5e0724d9 *inst/doc/Ch_analysing_longitudinal_dataI.R 0814ae2054014967781371ef549e9c8d *inst/doc/Ch_analysing_longitudinal_dataI.Rnw 6cba093a49696e7e5a303a6129aeeea6 *inst/doc/Ch_analysing_longitudinal_dataI.pdf bd577c486b60681dff86e5e22bb01f8a *inst/doc/Ch_analysing_longitudinal_dataII.R 6697f18d269facd65cfe2bf87e6a4861 *inst/doc/Ch_analysing_longitudinal_dataII.Rnw 0b016281b375894ae0b3789dc00f4eaf *inst/doc/Ch_analysing_longitudinal_dataII.pdf 3e13fd9c07f69d124a61ca93a731c570 *inst/doc/Ch_analysis_of_variance.R f3fb91a7a06195cc19b7e751f4c779d8 *inst/doc/Ch_analysis_of_variance.Rnw 42221fc14be43cfe9acfd3fffaeaa502 *inst/doc/Ch_analysis_of_variance.pdf d34e7caae766d91f920c820d3cbd93c6 *inst/doc/Ch_bayesian_inference.R 6ac6083e89b50a65aea2dd47aa426198 *inst/doc/Ch_bayesian_inference.Rnw 0494f1a5b962da4465f82885015deeb3 *inst/doc/Ch_bayesian_inference.pdf a4199159472a94041fd516a51bda54b4 *inst/doc/Ch_cluster_analysis.R 5498a10bd6c199daea66dff32806aaa3 *inst/doc/Ch_cluster_analysis.Rnw 967bd55a38d26ff3b7330eb8e258c030 *inst/doc/Ch_cluster_analysis.pdf ccf2420a35cac3611521f005a49e3235 *inst/doc/Ch_conditional_inference.R 229afa54a67c3de1c0e3d3a0d4001a3d *inst/doc/Ch_conditional_inference.Rnw 1ad794d26914789db60af258ce94c401 *inst/doc/Ch_conditional_inference.pdf acb595c7bb23ecac06ba6d19ac3708fb *inst/doc/Ch_density_estimation.R 8ca53fb1b54170e4a7263c43ff6b02ac *inst/doc/Ch_density_estimation.Rnw 95f68dac486e5dac50d00114fb88489b *inst/doc/Ch_density_estimation.pdf 549534b89fc35c849bedddb98c96c50e *inst/doc/Ch_errata.R 08dd8a45ccab98efb3c80a5ba3459f02 *inst/doc/Ch_errata.Rnw e6461ba69386cff8477ed4380bf57fd5 *inst/doc/Ch_errata.pdf c7ed7e6df3e0a65e0e22f5547f5de42c *inst/doc/Ch_gam.R a0684b721d8b22867cc4d2be11afda7c *inst/doc/Ch_gam.Rnw edce7a3ef5736ffa1e53de85a3aece46 *inst/doc/Ch_gam.pdf a8279615ff821847948273b06a90791f *inst/doc/Ch_graphical_display.R 255e1df7e7e21aa35cedde119741dcd3 *inst/doc/Ch_graphical_display.Rnw b37130698e4cd5ee6ac81e6e6bc2d600 *inst/doc/Ch_graphical_display.pdf de088bed10856840b8ed2529927a6875 *inst/doc/Ch_introduction_to_R.R f983af71fd2bc668a5e2edf2ae226eb3 *inst/doc/Ch_introduction_to_R.Rnw ee66838fdd447d16965bdc8f3055655b *inst/doc/Ch_introduction_to_R.pdf 8adc888262955dce7d7075b45df6d6b0 *inst/doc/Ch_logistic_regression_glm.R cbf07d7ca92481bde11ba98077955e8b *inst/doc/Ch_logistic_regression_glm.Rnw 9d82277ff5529590952fbc54b2170625 *inst/doc/Ch_logistic_regression_glm.pdf 81e50e1464d6d9e97bb65b32bb386037 *inst/doc/Ch_meta_analysis.R 7495a1d40e34166b09835abfa91d82b8 *inst/doc/Ch_meta_analysis.Rnw 59b2eaf967c4321732de502ef76e0238 *inst/doc/Ch_meta_analysis.pdf a5a0c1194a76b18012f596c471ee8378 *inst/doc/Ch_missing_values.R b20231ae22cdc7610b80adfe259f7144 *inst/doc/Ch_missing_values.Rnw 436079434dfcd41a3c38ad021e9c3af6 *inst/doc/Ch_missing_values.pdf 0e51a696bedad62c09e708caeed2240c *inst/doc/Ch_multidimensional_scaling.R c56bf8040fe4b91e83877830e1a756f6 *inst/doc/Ch_multidimensional_scaling.Rnw 92e0a584b9c4dc72896f32fc8529f646 *inst/doc/Ch_multidimensional_scaling.pdf dc89da0d9cdf1819fb0e86157b68cca2 *inst/doc/Ch_multiple_linear_regression.R 6b093667c08316669a41dc3a7f6958d1 *inst/doc/Ch_multiple_linear_regression.Rnw 63567342817545527fce14771c0e62e8 *inst/doc/Ch_multiple_linear_regression.pdf 854ece30828d8c5ac04ffc42c5e41fab *inst/doc/Ch_principal_components_analysis.R 4d4ff5d0699d23a7c3840f10e72e5106 *inst/doc/Ch_principal_components_analysis.Rnw a8c07e111552a9d900c388fdd6234274 *inst/doc/Ch_principal_components_analysis.pdf cdee07aa026b67bf5f47d68fdfaa37e9 *inst/doc/Ch_quantile_regression.R 51086648b3c1409837a0a818a30395d6 *inst/doc/Ch_quantile_regression.Rnw 4dd95131150efda050d0fbe74078248d *inst/doc/Ch_quantile_regression.pdf 2c99bb333ea59dd03a917fd837f27a4c *inst/doc/Ch_recursive_partitioning.R 80800ff360858c127a29e92210a79d3a *inst/doc/Ch_recursive_partitioning.Rnw 41140ff53f5b159f6aec08caf5649acf *inst/doc/Ch_recursive_partitioning.pdf 8a51b6ed00cb6d2e5472470c73af57ab *inst/doc/Ch_simple_inference.R 5bdcfcdb82c367d215615331bc49cb43 *inst/doc/Ch_simple_inference.Rnw 522281a6f884b37e89bcc08049e0ddfa *inst/doc/Ch_simple_inference.pdf 46a7cef0348cad008ac807736efb59c5 *inst/doc/Ch_simultaneous_inference.R 1762dc48aa1b5e44e1a8a34d979f3d56 *inst/doc/Ch_simultaneous_inference.Rnw 937b5df83eb3c4fcff6a8c934827de2b *inst/doc/Ch_simultaneous_inference.pdf c519d01e44f0bdc0331976c176edfd27 *inst/doc/Ch_survival_analysis.R b50eada6d5ffbe95546081208016bf42 *inst/doc/Ch_survival_analysis.Rnw 49597ea84cad1b78bc87e52497aa87d4 *inst/doc/Ch_survival_analysis.pdf 3f3f012255088e103a4539b3f5288389 *inst/slides/Ch_analysing_longitudinal_dataI.Rnw eb1c173570420b948643b9c658a81f7a *inst/slides/Ch_analysing_longitudinal_dataII.Rnw 871aa5d22de1ce9ad777aaca19fb289f *inst/slides/Ch_analysis_of_variance.Rnw 473a113cae53bea78d56fd1da83b3917 *inst/slides/Ch_cluster_analysis.Rnw 15620d7175e48656ecbc2fad998a8325 *inst/slides/Ch_conditional_inference.Rnw 7c7a9b69e5b55829848373d96e3d688c *inst/slides/Ch_density_estimation.Rnw 187e9a3c6a9b6549573de38bc9736747 *inst/slides/Ch_graphical_display.Rnw 204305320bd3e31a2ff28abc9a23c529 *inst/slides/Ch_introduction_to_R.Rnw 33e517f46472c6743c24fe4750fb27d7 *inst/slides/Ch_logistic_regression_glm.Rnw a7c5a4d66dd22fafc6e4dbacc003d40d *inst/slides/Ch_multiple_linear_regression.Rnw 0a89260d948c4971e6af97fbd463ee3d *inst/slides/Ch_recursive_partitioning.Rnw 1e16bbc277e8be5423cad3db2c4cf650 *inst/slides/Ch_simple_inference.Rnw 707663774a2995d62d2f583146052444 *inst/slides/Ch_survival_analysis.Rnw 592ae1055a5c7af852ba5b6faed2f650 *inst/slides/HSAUR3_slides_4up.tex 9a5b5d322f69b1a652245a6d5cd0be5f *inst/slides/HSAUR_title.Rnw b587cb5f1561e6a8e7c45650df5ac148 *inst/slides/beamerthemeHSAUR.sty 53e42ba8f0222b5225ffd8f194c832dc *inst/slides/definitions.tex d4334ab5d760854952312ef3346ecade *inst/slides/graphics/HSAUR.jpg aa9a5d45b7d56c6c09b2de17b2799fc3 *inst/slides/graphics/Rlogo.jpg 8f38990c110066034cd66e04e2d724b6 *inst/slides/setup.R 8445b9caeb489ee7f9b11cc4116aacfb *inst/slides/tables/CA_perm.tex b6509f4091b26915ba508a422de52774 *inst/slides/tables/CI_rtimesc.tex 4f4809f5350f593c0a7748030dfab90a *inst/slides/tables/Lanza.tex 4ddd561262f148ffda425a71fa1cf548 *inst/slides/tables/MLR-ANOVA-tab.tex fe83d92b9c60b59260f25f5e1d649746 *inst/slides/tables/MLR-Xtab.tex 3c9802a4e3b16cbd51adb92b195b0d39 *inst/slides/tables/PCA_tab.tex 3e45eab10b07e5f68353d73eca518705 *inst/slides/tables/SI_mcnemar.tex 41e395ca7cf9dca56e527521d3f2f112 *inst/slides/tables/SI_rtimesc.tex 32013c89e73d1cc57325c172da41df2f *inst/slides/tables/exMDS.tex ad5988ab88c5fccb7ae8e00ced1fed5d *inst/slides/tables/rec.tex 6bc333031969a6a3e2642e358a4ad336 *inst/slides/title_UZH.tex f9ba0408a428d4b8b6bc7587e352c0d6 *man/BCG.Rd 83a780cac81101abe73e97cef7af269f *man/BtheB.Rd 379776bb9a7844c3e22b64543269b007 *man/CHFLS.Rd e51aa354de3c1169e0cd47a6e7482a5d *man/CYGOB1.Rd a0944f758c1cdba392ae83bc87abcfa3 *man/EFT.Rd c3428fec98ec7de3085ae5c77629e9f6 *man/Forbes2000.Rd 6ec1adf517271eea87056e836db81eba *man/GHQ.Rd ae9256d8d7a60e88133fe22731a7e36a *man/HSAURtable.Rd 7f1c2336e25535d1e384eb821316bf5c *man/Lanza.Rd c54a25e18269a7dfda6a59f4d35f20a2 *man/Smoking_DollHill1950.Rd d9464c06b71705f979cbb553c30d032a *man/Smoking_Mueller1940.Rd 00ca6dee070fdaed2b333cad631d075a *man/Smoking_SchairerSchoeniger1944.Rd f415d2b6de8223beeaca670991ad00fe *man/Smoking_Wassink1945.Rd dff06334210986f77a36a044fb572b35 *man/USairpollution.Rd a9689f3398363fc241e747c3abeeaf0d *man/USmelanoma.Rd 4d5e320117cfbe6e00d67c51d69870c2 *man/USstates.Rd 0a13a0c6b2e9d72a1a053a8c2999d7d6 *man/UStemp.Rd b7d2f083161dfd796b4ef128182e9ff9 *man/agefat.Rd 823606625813acebabc08b0671ebe2e8 *man/aspirin.Rd a1b1bab8e7da52b6f26123776602dbc2 *man/backpain.Rd a9f6790ab5f99fcefcf6896914489faa *man/birds.Rd 9de00ee110f9a5568fb0de5d58235acd *man/birthdeathrates.Rd 27b5151aa085e50ea74734c87c6c2fbf *man/bladdercancer.Rd 0b7591d442d5f7878f0db0ff4c3db44d *man/bp.Rd 246b944215ade8b536c986fc5715f8c2 *man/clouds.Rd 83e1004438d51d9f8cf2ab25fea545e2 *man/epilepsy.Rd c51b5ec6fa0db139705350fe9d5578a6 *man/foster.Rd 2f98524fb276e3e06ad62cdb0f913fe6 *man/gardenflowers.Rd ffb04966dd8cc6b3fd8913c9165453cf *man/heptathlon.Rd a21345831ad55584895c988b9663e743 *man/household.Rd 2aff2e93e618b11c058d93e8a7d7e05b *man/mastectomy.Rd 39266b6b7317624e4c45e5b33910c4c4 *man/men1500m.Rd 289ef07b173e4fa85458a2d143c67380 *man/meteo.Rd 5c2f1e8f2f8e51063856652c790fafb3 *man/orallesions.Rd 6c9a990e72933be538f041fa163585e3 *man/phosphate.Rd 1569cc6868cd96f46589df8fff508fed *man/pistonrings.Rd 01f973eba2b876c59446646cdd0f3374 *man/planets.Rd cc81da706e7fe538678a4baefca4f40c *man/plasma.Rd 1eb4458aa3000bc3b3caa2c81df27c9a *man/polyps.Rd a417e3f3f85f2a378f4dbb4a45e6df98 *man/polyps3.Rd 4532e74368374d84f95b5dc4fc8bd41b *man/pottery.Rd c63298442837c6081f72dfb65c722a1b *man/rearrests.Rd 02e1d715f434389a8c690981f708e297 *man/respiratory.Rd 883a98c90fcec8a5000a2d9ccf0a33d9 *man/roomwidth.Rd 84b1ad81a1a15eb9e300a7be821e5ee6 *man/schizophrenia.Rd 41ce7503dfb0eba06386f60786d801e0 *man/schizophrenia2.Rd 74e12e9a00327160c43c9581f0b74ed7 *man/schooldays.Rd 68d188277c29586ca5ab6c8b997eba11 *man/skulls.Rd 1f66ee2d9a676eaf63edbbbdb079f22c *man/smoking.Rd bb2199ecde8e220413749c4452d5dad1 *man/students.Rd 07381875ae4b87ee7191c7e7fa7dfc2b *man/suicides.Rd 0c294da81d8904adb8c6813d691555ff *man/suicides2.Rd f8b1d69e7c4e6272de4112cf97295ff3 *man/toenail.Rd 335d80e2167024443a91769bc70d512c *man/toothpaste.Rd fdcb5fbb6718fe3af1f7424e95a50afa *man/voting.Rd a795f58cf6cee55792c56a84dbcd2797 *man/water.Rd a70fff4537501e7a79575b9562cce449 *man/watervoles.Rd 399ec85c35a2dedcfd0c46e9342a8ba4 *man/waves.Rd 3656ef7811f97cf8cf153e597e5ea1b1 *man/weightgain.Rd 9d04e1d5053b38bd900f4c0b2a48584d *man/womensrole.Rd 0814ae2054014967781371ef549e9c8d *vignettes/Ch_analysing_longitudinal_dataI.Rnw 6697f18d269facd65cfe2bf87e6a4861 *vignettes/Ch_analysing_longitudinal_dataII.Rnw f3fb91a7a06195cc19b7e751f4c779d8 *vignettes/Ch_analysis_of_variance.Rnw 6ac6083e89b50a65aea2dd47aa426198 *vignettes/Ch_bayesian_inference.Rnw 5498a10bd6c199daea66dff32806aaa3 *vignettes/Ch_cluster_analysis.Rnw 229afa54a67c3de1c0e3d3a0d4001a3d *vignettes/Ch_conditional_inference.Rnw 8ca53fb1b54170e4a7263c43ff6b02ac *vignettes/Ch_density_estimation.Rnw 08dd8a45ccab98efb3c80a5ba3459f02 *vignettes/Ch_errata.Rnw a0684b721d8b22867cc4d2be11afda7c *vignettes/Ch_gam.Rnw 255e1df7e7e21aa35cedde119741dcd3 *vignettes/Ch_graphical_display.Rnw f983af71fd2bc668a5e2edf2ae226eb3 *vignettes/Ch_introduction_to_R.Rnw cbf07d7ca92481bde11ba98077955e8b *vignettes/Ch_logistic_regression_glm.Rnw 7495a1d40e34166b09835abfa91d82b8 *vignettes/Ch_meta_analysis.Rnw b20231ae22cdc7610b80adfe259f7144 *vignettes/Ch_missing_values.Rnw c56bf8040fe4b91e83877830e1a756f6 *vignettes/Ch_multidimensional_scaling.Rnw 6b093667c08316669a41dc3a7f6958d1 *vignettes/Ch_multiple_linear_regression.Rnw 4d4ff5d0699d23a7c3840f10e72e5106 *vignettes/Ch_principal_components_analysis.Rnw 51086648b3c1409837a0a818a30395d6 *vignettes/Ch_quantile_regression.Rnw 80800ff360858c127a29e92210a79d3a *vignettes/Ch_recursive_partitioning.Rnw 5bdcfcdb82c367d215615331bc49cb43 *vignettes/Ch_simple_inference.Rnw 1762dc48aa1b5e44e1a8a34d979f3d56 *vignettes/Ch_simultaneous_inference.Rnw b50eada6d5ffbe95546081208016bf42 *vignettes/Ch_survival_analysis.Rnw dc1dc7889a7d17b495fc08427577bde2 *vignettes/LaTeXBibTeX/HSAUR.bib b49cfcbd98e9d5acfe8536cb4eb37f0e *vignettes/LaTeXBibTeX/refstyle.bst 06e4b368936e0fbb227b42494c985873 *vignettes/LaTeXBibTeX/setup.Rnw 5a132c6c9e7994b2c29f42b4e3b68901 *vignettes/chapman.cls a0e5e5d1fb2b8adb4e400728239b4fb4 *vignettes/graphics/Rlogo_bw.png 8445b9caeb489ee7f9b11cc4116aacfb *vignettes/tables/CA_perm.tex b6509f4091b26915ba508a422de52774 *vignettes/tables/CI_rtimesc.tex 51c3707ffceeebaf14994b7806f079c1 *vignettes/tables/Lanza.tex 0e8b881930d42ea4ecabbd14b209e417 *vignettes/tables/MA_table.tex 4ddd561262f148ffda425a71fa1cf548 *vignettes/tables/MLR-ANOVA-tab.tex fe83d92b9c60b59260f25f5e1d649746 *vignettes/tables/MLR-Xtab.tex 3c9802a4e3b16cbd51adb92b195b0d39 *vignettes/tables/PCA_tab.tex d0af86886c7e0333dbf0392f94171b61 *vignettes/tables/PCA_tab1.tex 7b1e1bfa03dd8ccfa67b4b1ddce7e91d *vignettes/tables/SI_mcnemar.tex b6509f4091b26915ba508a422de52774 *vignettes/tables/SI_rtimesc.tex 32013c89e73d1cc57325c172da41df2f *vignettes/tables/exMDS.tex d8ddaea43747ef1481c2116af519ceba *vignettes/tables/rec.tex HSAUR3/R/0000755000176200001440000000000014416277347011437 5ustar liggesusersHSAUR3/R/tables.R0000644000176200001440000001443314172224352013024 0ustar liggesusers isep <- function(x) paste(paste(x[-length(x)], "&", collapse = " "), x[length(x)], collapse = " ") caption <- function(xname, label, caption, pkg = NULL) { RET <- paste("\\caption{\\Robject{", xname, "} data", sep = "", collapse = "") if (!is.null(pkg)) RET <- paste(RET, " (package \\Rpackage{", pkg, "})", sep = "", collapse = "") RET <- paste(RET, ". ", caption, sep = "", collapse = "") RET <- paste(RET, paste("\\label{", label, "}}", sep = "", collapse = "")) return(RET) } HSAURtable <- function(object, ...) UseMethod("HSAURtable") HSAURtable.data.frame <- function(object, xname = deparse(substitute(object)), pkg = NULL, nrows = NULL,...) { digits <- 0:6 table <- matrix("0", nrow = nrow(object), ncol = ncol(object)) xcc <- object[complete.cases(object),] for (i in 1:ncol(object)) { if (is.numeric(xcc[[i]])) { d <- min(which(sapply(digits, function(d) max(abs(xcc[[i]] - round(xcc[[i]], d))) < sqrt(.Machine$double.eps)))) table[,i] <- formatC(object[[i]], digits = digits[d], format = "f") } else { table[,i] <- as.character(object[[i]]) } } if (!is.null(nrows)) table <- rbind(table[1:nrows,,drop = FALSE], "$\\vdots$") RET <- list(xname = gsub("_", "\\\\_", xname), pkg = pkg, varnames = colnames(object), rownames = rownames(object), data = table) class(RET) <- "dftab" return(RET) } HSAURtable.table <- function(object, xname = deparse(substitute(object)), pkg = NULL,...) { xtab <- matrix(as.character(object), nrow = nrow(object), ncol = ncol(object)) RET <- list(xname = gsub("_", "\\\\_", xname), pkg = pkg, varnames = names(dimnames(object)), data = rbind(c(" ", dimnames(object)[[2]]), cbind(dimnames(object)[[1]], xtab))) class(RET) <- "tabtab" return(RET) } toLatex.tabtab <- function(object, caption = NULL, label = NULL, topcaption = TRUE, index = TRUE, ...) { RET <- c() nc <- ncol(object$data) object$varnames <- gsub("_", "\\\\_", object$varnames) if (index) RET <- c(RET, paste("\\index{", object$xname, " data@\\Robject{", object$xname, "} data}", sep = "")) RET <- c(RET, "\\begin{center}") RET <- c(RET, paste("\\begin{longtable}", paste("{", paste(rep("r", nc + 1), collapse = ""), "}"))) if (topcaption) RET <- c(RET, caption(object$xname, label, caption, object$pkg), "\\\\") RET <- c(RET, paste(" & & \\multicolumn{", nc - 1, "}{c}{\\Robject{", object$varnames[2], "}} \\\\", collapse = "")) object$data <- cbind(c(paste("\\Robject{", object$varnames[1], "}", collapse = ""), rep(" ", nrow(object$data) - 1)), object$data) RET <- c(RET, apply(object$data, 1, function(x) paste(isep(x), "\\\\"))) if (!topcaption) RET <- c(RET, caption(object$xname, label, caption, object$pkg)) RET <- c(RET, "\\end{longtable}") RET <- c(RET, "\\end{center}") class(RET) <- "Latex" return(RET) } toLatex.dftab <- function(object, pcol = 1, caption = NULL, label = NULL, rownames = FALSE, topcaption = TRUE, index = TRUE, ...) { nc <- ncol(object$data) object$varnames <- gsub("_", "\\\\_", object$varnames) if (pcol > 1) { nr <- ceiling(nrow(object$data) / pcol) object$data <- rbind(object$data, matrix(" ", nrow = nr * pcol - nrow(object$data), ncol = nc)) d <- NULL for (i in 1:pcol) d <- cbind(d, object$data[((i - 1) * nr + 1):(i * nr),]) object$data <- d } RET <- c() if (index) RET <- c(RET, paste("\\index{", object$xname, " data@\\Robject{", object$xname, "} data}", sep = "")) RET <- c(RET, "\\begin{center}") if (rownames) RET <- c(RET, paste("\\begin{longtable}{l", paste(rep(paste(rep("r", nc), collapse = ""), pcol), collapse = "|"), "}", collapse = "")) else RET <- c(RET, paste("\\begin{longtable}{", paste(rep(paste(rep("r", nc), collapse = ""), pcol), collapse = "|"), "}", collapse = "")) if (topcaption) RET <- c(RET, caption(object$xname, label, caption, object$pkg), "\\\\") RET <- c(RET, "\\hline") vn <- rep(object$varnames, pcol) vn <- paste(paste("\\Robject{", vn, sep = ""), "}", sep = "") if (rownames) { RET <- c(RET, paste(" & ", isep(vn), "\\\\ \\hline")) RET <- c(RET, "\\endfirsthead") RET <- c(RET, paste("\\caption[]{\\Robject{", object$xname, "} data (continued).} \\\\", sep = "", collapse = "")) RET <- c(RET, "\\hline") RET <- c(RET, paste(" & ", isep(vn), "\\\\ \\hline")) RET <- c(RET, "\\endhead") for (i in 1:nrow(object$data)) RET <- c(RET, paste(object$rownames[i], " & ", isep(object$data[i,]), "\\\\")) } else { RET <- c(RET, paste(isep(vn), "\\\\ \\hline")) RET <- c(RET, "\\endfirsthead") RET <- c(RET, paste("\\caption[]{\\Robject{", object$xname, "} data (continued).} \\\\", sep = "", collapse = "")) RET <- c(RET, "\\hline") RET <- c(RET, paste(isep(vn), "\\\\ \\hline")) RET <- c(RET, "\\endhead") RET <- c(RET, apply(object$data, 1, function(x) paste(isep(x), "\\\\"))) } RET <- c(RET, "\\hline") if (!topcaption) RET <- c(RET, caption(object$xname, label, caption, object$pkg)) RET <- c(RET, "\\end{longtable}") RET <- c(RET, "\\end{center}") class(RET) <- "Latex" return(RET) } HSAUR3/R/isi2bibtex.R0000644000176200001440000000727414172224352013623 0ustar liggesusers isi2bibtex <- function(file) { journals <- rbind(c("J. Am. Stat. Assoc.", "Journal of the American Statistical Association", "JASA"), c("J. Stat. Plan. Infer.", "Journal of Statistical Planning and Inference", "JSPI"), c("Biom. J.", "Biometrical Journal", "BJ"), c("Stat. Med.", "Statistics in Medicine", "SiM")) colnames(journals) <- c("Abbr", "Title", "ID") tfile <- tempfile() isitxt <- readLines(file) isitxt <- gsub("(^[A-Z][A-Z,0-9])", "\\1:", isitxt, perl = TRUE) writeLines(isitxt, con = tfile) isidcf <- read.dcf(tfile, fields = c("PT", "AU", "TI", "SO", "LA", "DT", "DE", "ID", "AB", "C1", "RP", "EM", "NR", "TC", "PU", "PI", "PA", "SN", "J9", "JI", "PD", "PY", "VL", "IS", "BP", "EP", "PG", "SC", "GA", "UT")) ### journals only isidcf <- isidcf[isidcf[,"PT"] == "J",] ### missings isidcf <- isidcf[!apply(isidcf, 1, function(x) all(is.na(x))),] ### rename interesting fields cn <- colnames(isidcf) colnames(isidcf)[cn == "AU"] <- "author" colnames(isidcf)[cn == "TI"] <- "title" colnames(isidcf)[cn == "JI"] <- "journal" colnames(isidcf)[cn == "PD"] <- "month" colnames(isidcf)[cn == "PY"] <- "year" colnames(isidcf)[cn == "VL"] <- "volumne" colnames(isidcf)[cn == "IS"] <- "number" colnames(isidcf)[cn == "UT"] <- "isitag" colnames(isidcf)[cn == "DE"] <- "keywords" colnames(isidcf)[cn == "TC"] <- "timescited" colnames(isidcf)[cn == "AB"] <- "abstract" rownames(isidcf) <- 1:nrow(isidcf) isidcf[,"title"] <- gsub("\n", " ", isidcf[,"title"]) ### author names for (i in 1:nrow(isidcf)) { au <- strsplit(isidcf[i,"author"], "\n") names <- strsplit(au[[1]], ", ") for (j in 1:length(names)) names[[j]][2] <- paste(strsplit(names[[j]][2], "")[[1]], ". ", sep = "", collapse = "") lastnames <- sapply(names, function(x) gsub(" ", "", x[1])) if (length(lastnames) > 3) lastnames <- lastnames[1:3] jour <- isidcf[i,"journal"] indx <- journals[, "Abbr"] == jour if (sum(indx) == 1) { isidcf[i, "journal"] <- journals[indx, "Title"] jkey <- journals[indx, "ID"] } else { jkey <- gsub("\\.* ", "", jour) } label <- paste(paste(lastnames, collapse = "+"), ":", jkey, ":", isidcf[i,"year"], sep = "") rownames(isidcf)[i] <- label isidcf[i,"author"] <- paste(sapply(names, function(x) paste(x[2], x[1], sep = "")), collapse = " and ") title <- isidcf[i, "title"] if (!identical(toupper(title), title)) { ttmp <- strsplit(title, " ")[[1]] lower <- tolower(ttmp) != ttmp lower[1] <- FALSE ttmp[lower] <- paste("{", ttmp[lower], "}", sep = "") isidcf[i, "title"] <- paste(ttmp, collapse = " ") } } tags <- c("author", "title", "journal", "month", "year", "volumne", "number", "isitag", "abstract", "keywords", "timescited") isidcf[is.na(isidcf[,"month"]), "month"] <- "" for (tag in tags) isidcf[,tag] <- paste(tag, " = {", isidcf[,tag], "},", sep = "") pages <- paste("pages = {", isidcf[, "BP"], "--", isidcf[, "EP"], "},", sep = "") headerkey <- paste("@article{", rownames(isidcf), ",", sep = "") ret <- vector(mode = "list", length = nrow(isidcf)) for (i in 1:nrow(isidcf)) ret[[i]] <- c(headerkey[i], paste(" ", isidcf[i, tags]), paste(" ", pages[i]), "}", " ") unlist(ret) } HSAUR3/R/citations.R0000644000176200001440000000121014172224352013534 0ustar liggesusers HSAURcite <- function(pkg) { ct <- citation(pkg) attr(ct, "label") <- paste("PKG:", pkg, sep = "", collapse = "") for (n in c("note")) ct[[n]] <- gsub("R", "\\R{}", ct[[n]]) class(ct) <- "HSAURcitation" return(ct) } toBibtex.HSAURcitation <- function (object, ...) { z <- paste("@", attr(object, "entry"), "{", attr(object, "label"), ",", sep = "") if ("author" %in% names(object)) { object$author <- toBibtex(object$author) } for (n in names(object)) z <- c(z, paste(" ", n, " = {", object[[n]], "},", sep = "")) z <- c(z, "}") class(z) <- "Bibtex" z } HSAUR3/R/tools.R0000644000176200001440000001766114416277343012731 0ustar liggesusers ### some tools that make life easier ### copy *Rout to *Rout.save cpRoutsave <- function(Routdir = NULL, Routsavedir = NULL) { Routfiles <- list.files(path = Routdir, pattern = "\\.Rout$", full.names = FALSE) srcfiles <- file.path(Routdir, Routfiles) destfiles <- file.path(Routsavedir, paste(Routfiles, ".save", sep = "")) file.copy(srcfiles, destfiles, overwrite = TRUE) } ### attach all data frames in the global environment gattach <- function() { env <- globalenv() var <- eval(parse(text = "ls()"), envir = env) df <- sapply(var, function(x) eval(parse(text = paste("is.data.frame(", x, ")", sep = "", collapse = "")), envir = env)) if (any(df)) { var <- var[df] out <- sapply(var, function(x) eval(parse(text = paste("attach(", x, ")", sep = "", collapse = "")), envir = env)) } } ### extract and check Robject or Rcmd LaTeX markup extRact <- function(file, what = "Robject") { x <- readLines(file) indx <- grep(what, x) out <- sapply(indx, function(i) { obj <- NULL while (TRUE) { where <- regexpr(what, x[i]) if (where != -1) { x[i] <- substring(x[i], where) dm <- delimMatch(x[i]) obj <- c(obj, (substring(x[i], dm + 1, dm + attr(dm, "match.length") - 2))) x[i] <- substring(x[i], dm + attr(dm, "match.length")) } else { break } } return(obj) }) cmds <- unique(gsub("\\\\", "", out)) gattach() for (cmd in cmds) { a <- try(eval(parse(text = cmd))) if (inherits(a, "try-error")) print(a) } cmds } ### try to polish S{in,out}put environments, this needs ### manual refinements in some places prettyS <- function(file, texenvironment = c("Sinput", "Soutput"), width = 63, split = " ", write = TRUE) { ### handle Sinput or Soutput environments texenvironment <- match.arg(texenvironment) if (texenvironment == "Sinput" && split == " ") split <- c(", ", "/", " ") ### dirty hack: in `Makefile's I want to call `prettyS' ### right after weaving and thus have only `file.Rnw' available if (length(grep("Rnw$", file)) > 0) file <- gsub("Rnw$", "tex", file) ### read file x <- readLines(file) ### remove all end-line spaces x <- gsub("\\s+$", "", x) ### determine begin and end lines of environment start <- grep(paste("^\\\\begin\\{", texenvironment, "\\}$", sep = "", collapse = ""), x) end <- grep(paste("^\\\\end\\{", texenvironment, "\\}$", sep = "", collapse = ""), x) if (length(start) == 0) return(NULL) if (length(start) != length(end)) stop("unbalanced begin and end statements") n <- length(start) for (i in 1:n) { ### iterate over all lines longer than width lines <- (start[i]):(end[i]) lines <- lines[sapply(x[lines], nchar) > width] for (line in lines) { cat("prettyS: line ", line, " too long: \n", x[line], "\n") y <- x[line] add <- sapply(split, function(s) ifelse(length(grep(s, y)) > 0, nchar(s), 0)) if (all(add == 0)) next() s <- split[min(which(add > 0))] y <- unlist(strsplit(y, split = s)) nc <- sapply(y, nchar) + add[min(which(add > 0))] pos <- cumsum(nc) <= width if (!any(pos)) next() newline <- cumsum(nc)[max(which(pos))] plus <- length(grep("^\\+", x[line])) > 0 && substr(x[line], newline - 1, newline) != ", " x[line] <- paste(substr(x[line], 1, newline), "\n", ifelse(texenvironment == "Sinput", options("continue"), ""), ifelse(plus, " ", ""), " ", substr(x[line], newline + 1, nchar(x[line])), sep = "", collapse = "") # if (length(grep("^\\+", x[line + 1])) > 0 && # (nchar(x[line + 1]) + (nchar(x[line]) - newline) < width)) { # y <- x[line + 1] # y <- gsub("^\\+ ", "", y) # x[line] <- paste(x[line], y, sep = "", collapse = "") # x[line + 1] <- "" # } cat("prettyS: ", x[line], "\n") } } if (write) writeLines(x, con = file) } ### extract all Sinput environments from tex files chkS <- function(file, texenvironment = "Sinput") { ### read file x <- readLines(file) ### determine begin and end lines of environment start <- grep(paste("^\\\\begin\\{", texenvironment, "\\}$", sep = "", collapse = ""), x) end <- grep(paste("^\\\\end\\{", texenvironment, "\\}$", sep = "", collapse = ""), x) if (length(start) == 0) return(NULL) if (length(start) != length(end)) stop("unbalanced begin and end statements") n <- length(start) y <- NULL for (i in 1:n) { ### iterate over all lines longer than width lines <- (start[i] + 1):(end[i] - 1) x[lines] <- gsub("^R>", "", x[lines]) x[lines] <- gsub("^\\+", "", x[lines]) y <- c(y, x[lines]) } y } ### read in a BibTeX file and return as list readBibtex <- function(file = NULL) { bib <- readLines(file) entries <- grep("^@", bib) labels <- gsub(",$", "", gsub("^@[A-Za-z].*\\{", "", bib[entries])) if (any(duplicated(labels))) { print(labels[duplicated(labels)]) stop("non-unique BibTeX labels in ", file) } biblist <- vector(mode = "list", length = length(entries)) for (i in 1:length(entries)) { nexte <- ifelse(i == length(entries), length(entries), entries[i + 1] - 1) biblist[[i]] <- bib[entries[i]:nexte] empty <- grep("^$", biblist[[i]]) if (length(empty) > 0) biblist[[i]] <- biblist[[i]][-empty] } names(biblist) <- labels class(biblist) <- "txtBibtex" return(biblist) } ### the subset of a BibTeX database actually used in `file' extractBibtex <- function(file, bibtex) { if (!inherits(bibtex, "txtBibtex")) bibtex <- readBibtex(bibtex) tex <- readLines(file) tex <- tex[grep("\\cite", tex)] enames <- gsub("\\+", "\\\\+", names(bibtex)) cited <- sapply(enames, function(name) length(grep(name, tex)) > 0) biblist <- bibtex[cited] class(biblist) <- "txtBibtex" return(biblist) } ### output to a file toBibtex.txtBibtex <- function(object, ...) { tmp <- lapply(object, function(bib) { cat(paste(bib, "\n")) cat("\n\n") }) } ### set package version in BibTeX (quick'n'dirty hack) pkgversions <- function(file) { x <- readLines(file) indx <- grep("VERSION", x) for (i in indx) { xx <- strsplit(x[i], " ")[[1]] xx <- xx[grep("VERSION", xx)] pkg <- gsub("[},]", "", gsub("VERSION", "", xx)) version <- packageDescription(pkg)$Version x[i] <- gsub(paste(pkg, "VERSION", sep = "", collapse = ""), version, x[i]) } class(x) <- "Latex" x } ### set package date in BibTeX (quick'n'dirty hack) pkgyears <- function(file) { x <- readLines(file) indx <- grep("PKGYEAR", x) for (i in indx) { xx <- strsplit(x[i], " ")[[1]] xx <- xx[grep("PKGYEAR", xx)] pkg <- gsub("[{},]", "", gsub("PKGYEAR", "", xx)) year <- format(as.Date(strsplit(packageDescription(pkg)$Built, ";")[[1]][3]),"%Y") x[i] <- gsub(paste(pkg, "PKGYEAR", sep = "", collapse = ""), year, x[i]) } class(x) <- "Latex" x } pkgs <- function() c("scatterplot3d", "alr3", "ape", "coin", "flexmix", "gee", "ipred", "lme4", "mclust", "party", "randomForest", "rmeta", "vcd", "gamair", "multcomp", "sandwich", "mboost") HSAUR3/R/Rwelcome.R0000644000176200001440000000240314172224352013321 0ustar liggesusers Rwelcome <- function() { tversion <- paste(version$major, version$minor, sep = ".") tdate <- paste(version$year, version$month, version$day, sep = "-") x <- c(paste("R : Copyright", version$year, "The R Foundation for Statistical Computing"), paste("Version", tversion, paste("(", tdate, "),", sep = ""), "ISBN 3-900051-07-0"), " ", "R is free software and comes with ABSOLUTELY NO WARRANTY.", "You are welcome to redistribute it under certain conditions.", "Type 'license()' or 'licence()' for distribution details.", " ", "R is a collaborative project with many contributors.", "Type 'contributors()' for more information and", "'citation()' on how to cite R or R packages in publications.", " ", "Type 'demo()' for some demos, 'help()' for on-line help, or", "'help.start()' for an HTML browser interface to help.", "Type 'q()' to quit R.", ">") cat(paste(x, collapse = "\n")) } exename <- function() { tversion <- paste(version$major, "0", substr(version$minor, 1, 1), substr(version$minor,3,3), sep = "") return(paste("rw", tversion, ".exe", sep = "")) } HSAUR3/cleanup0000755000176200001440000000146714660150123012602 0ustar liggesusers#!/bin/sh for f in ./R/*~; do rm -f $f done for f in ./man/*~; do rm -f $f done for f in *~; do rm -f $f done for f in .*~; do rm -f $f done for f in ./tests/*~; do rm -f $f done for f in ./inst/*~; do rm -f $f done for f in ./tests/*.ps; do rm -f $f done for f in ./inst/doc/*~; do rm -f $f done for f in ./inst/doc/*.aux; do rm -f $f done for f in ./inst/doc/*.bbl; do rm -f $f done for f in ./inst/doc/*.blg; do rm -f $f done for f in ./inst/doc/*.log; do rm -f $f done for f in ./inst/doc/*.brf; do rm -f $f done for f in ./inst/doc/*.out; do rm -f $f done for f in ./inst/doc/*.tex; do rm -f $f done for f in ./book/.RData; do rm -f $f done find . -name "DEADJOE" -exec rm -f {} \; find . -name "svn-commit*" -exec rm -f {} \; exit 0 HSAUR3/vignettes/0000755000176200001440000000000014660150123013225 5ustar liggesusersHSAUR3/vignettes/Ch_bayesian_inference.Rnw0000644000176200001440000007256114416236367020171 0ustar liggesusers \documentclass{chapman} %%% copy Sweave.sty definitions %%% keeps `sweave' from adding `\usepackage{Sweave}': DO NOT REMOVE %\usepackage{Sweave} \RequirePackage[T1]{fontenc} \RequirePackage{graphicx,ae,fancyvrb} \IfFileExists{upquote.sty}{\RequirePackage{upquote}}{} \usepackage{relsize} \DefineVerbatimEnvironment{Sinput}{Verbatim}{} \DefineVerbatimEnvironment{Soutput}{Verbatim}{fontfamily=courier, fontshape=it, fontsize=\relsize{-1}} \DefineVerbatimEnvironment{Scode}{Verbatim}{} \newenvironment{Schunk}{}{} %%% environment for raw output \newcommand{\SchunkRaw}{\renewenvironment{Schunk}{}{} \DefineVerbatimEnvironment{Soutput}{Verbatim}{fontfamily=courier, fontshape=it, fontsize=\small} \rawSinput } %%% environment for labeled output \newcommand{\nextcaption}{} \newcommand{\SchunkLabel}{ \renewenvironment{Schunk}{\begin{figure}[ht] }{\caption{\nextcaption} \end{figure} } \DefineVerbatimEnvironment{Sinput}{Verbatim}{frame = topline} \DefineVerbatimEnvironment{Soutput}{Verbatim}{frame = bottomline, samepage = true, fontfamily=courier, fontshape=it, fontsize=\relsize{-1}} } %%% S code with line numbers \DefineVerbatimEnvironment{Sinput} {Verbatim} { %% numbers=left } \newcommand{\numberSinput}{ \DefineVerbatimEnvironment{Sinput}{Verbatim}{numbers=left} } \newcommand{\rawSinput}{ \DefineVerbatimEnvironment{Sinput}{Verbatim}{} } %%% R / System symbols \newcommand{\R}{\textsf{R}} \newcommand{\rR}{{R}} \renewcommand{\S}{\textsf{S}} \newcommand{\SPLUS}{\textsf{S-PLUS}} \newcommand{\rSPLUS}{{S-PLUS}} \newcommand{\SPSS}{\textsf{SPSS}} \newcommand{\EXCEL}{\textsf{Excel}} \newcommand{\ACCESS}{\textsf{Access}} \newcommand{\SQL}{\textsf{SQL}} %%\newcommand{\Rpackage}[1]{\hbox{\rm\textit{#1}}} %%\newcommand{\Robject}[1]{\hbox{\rm\texttt{#1}}} %%\newcommand{\Rclass}[1]{\hbox{\rm\textit{#1}}} %%\newcommand{\Rcmd}[1]{\hbox{\rm\texttt{#1}}} \newcommand{\Rpackage}[1]{\index{#1 package@{\fontseries{b}\selectfont #1} package} {\fontseries{b}\selectfont #1}} \newcommand{\rpackage}[1]{{\fontseries{b}\selectfont #1}} \newcommand{\Robject}[1]{\texttt{#1}} \newcommand{\Rclass}[1]{\index{#1 class@\textit{#1} class}\textit{#1}} \newcommand{\Rcmd}[1]{\index{#1 function@\texttt{#1} function}\texttt{#1}} \newcommand{\Roperator}[1]{\texttt{#1}} \newcommand{\Rarg}[1]{\texttt{#1}} \newcommand{\Rlevel}[1]{\texttt{#1}} %%% other symbols \newcommand{\file}[1]{\hbox{\rm\texttt{#1}}} %%\newcommand{\stress}[1]{\index{#1}\textit{#1}} \newcommand{\stress}[1]{\textit{#1}} \newcommand{\booktitle}[1]{\textit{#1}} %%' %%% Math symbols \usepackage{amstext} \usepackage{amsmath} \newcommand{\E}{\mathsf{E}} \newcommand{\Var}{\mathsf{Var}} \newcommand{\Cov}{\mathsf{Cov}} \newcommand{\Cor}{\mathsf{Cor}} \newcommand{\x}{\mathbf{x}} \newcommand{\y}{\mathbf{y}} \renewcommand{\a}{\mathbf{a}} \newcommand{\W}{\mathbf{W}} \newcommand{\C}{\mathbf{C}} \renewcommand{\H}{\mathbf{H}} \newcommand{\X}{\mathbf{X}} \newcommand{\B}{\mathbf{B}} \newcommand{\V}{\mathbf{V}} \newcommand{\I}{\mathbf{I}} \newcommand{\D}{\mathbf{D}} \newcommand{\bS}{\mathbf{S}} \newcommand{\N}{\mathcal{N}} \renewcommand{\L}{L} \renewcommand{\P}{\mathsf{P}} \newcommand{\K}{\mathbf{K}} \newcommand{\m}{\mathbf{m}} \newcommand{\argmin}{\operatorname{argmin}\displaylimits} \newcommand{\argmax}{\operatorname{argmax}\displaylimits} \newcommand{\bx}{\mathbf{x}} \newcommand{\bbeta}{\mathbf{\beta}} %%% links \usepackage{hyperref} \hypersetup{% pdftitle = {A Handbook of Statistical Analyses Using R (3rd Edition)}, pdfsubject = {Book}, pdfauthor = {Torsten Hothorn and Brian S. Everitt}, colorlinks = {black}, linkcolor = {black}, citecolor = {black}, urlcolor = {black}, hyperindex = {true}, linktocpage = {true}, } %%% captions & tables %% : conflics with figure definition in chapman.cls %%\usepackage[format=hang,margin=10pt,labelfont=bf]{caption} %% \usepackage{longtable} \usepackage[figuresright]{rotating} %%% R symbol in chapter 1 \usepackage{wrapfig} %%% Bibliography \usepackage[round,comma]{natbib} \renewcommand{\refname}{References \addcontentsline{toc}{chapter}{References}} \citeindexfalse %%% texi2dvi complains that \newblock is undefined, hm... \def\newblock{\hskip .11em plus .33em minus .07em} %%% Example sections \newcounter{exercise}[chapter] \setcounter{exercise}{0} \newcommand{\exercise}{\stepcounter{exercise} \item{Ex.~\arabic{chapter}.\arabic{exercise} }} %% URLs \newcommand{\curl}[1]{\begin{center} \url{#1} \end{center}} %%% for manual corrections %\renewcommand{\baselinestretch}{2} %%% plot sizes \setkeys{Gin}{width=0.95\textwidth} %%% color \usepackage{color} %%% hyphenations \hyphenation{drop-out} \hyphenation{mar-gi-nal} %%% new bidirectional quotes need \usepackage[utf8]{inputenc} %\usepackage{setspace} \definecolor{sidebox_todo}{rgb}{1,1,0.2} \newcommand{\todo}[1]{ \hspace{0pt}% \marginpar{% \fcolorbox{black}{sidebox_todo}{% \parbox{\marginparwidth} { \raggedright\sffamily\footnotesize{TODO: #1}% } }% } } \begin{document} %% Title page \title{A Handbook of Statistical Analyses Using \R{} --- 3rd Edition} \author{Torsten Hothorn and Brian S. Everitt} \maketitle %%\VignetteIndexEntry{Chapter Bayesian Inference} %%\VignetteDepends{rmeta,coin} \setcounter{chapter}{17} \SweaveOpts{prefix.string=figures/HSAUR,eps=FALSE,keep.source=TRUE} <>= rm(list = ls()) s <- search()[-1] s <- s[-match(c("package:base", "package:stats", "package:graphics", "package:grDevices", "package:utils", "package:datasets", "package:methods", "Autoloads"), s)] if (length(s) > 0) sapply(s, detach, character.only = TRUE) if (!file.exists("tables")) dir.create("tables") if (!file.exists("figures")) dir.create("figures") set.seed(290875) options(prompt = "R> ", continue = "+ ", width = 63, # digits = 4, show.signif.stars = FALSE, SweaveHooks = list(leftpar = function() par(mai = par("mai") * c(1, 1.05, 1, 1)), bigleftpar = function() par(mai = par("mai") * c(1, 1.7, 1, 1)))) HSAURpkg <- require("HSAUR3") if (!HSAURpkg) stop("cannot load package ", sQuote("HSAUR3")) rm(HSAURpkg) ### hm, R-2.4.0 --vanilla seems to need this a <- Sys.setlocale("LC_ALL", "C") ### book <- TRUE refs <- cbind(c("AItR", "DAGD", "SI", "CI", "ANOVA", "MLR", "GLM", "DE", "RP", "GAM", "SA", "ALDI", "ALDII", "SIMC", "MA", "PCA", "MDS", "CA"), 1:18) ch <- function(x) { ch <- refs[which(refs[,1] == x),] if (book) { return(paste("Chapter~\\\\ref{", ch[1], "}", sep = "")) } else { return(paste("Chapter~", ch[2], sep = "")) } } if (file.exists("deparse.R")) source("deparse.R") setHook(packageEvent("lattice", "attach"), function(...) { lattice.options(default.theme = function() standard.theme("pdf", color = FALSE)) }) @ \pagestyle{headings} <>= book <- FALSE @ \chapter[Bayesian Inference]{Incorporating Prior Knowledge via Bayesian Inference: Smoking and Lung Cancer \label{BI}} \section{Introduction} \index{Smoking and lung cancer|(} At the beginning of the 20th century, the death toll due to lung cancer was on the rise and the search for possible causes began. For lung cancer in pit workers, animal experiments showed that the so-called `Schneeberg lung disease' was induced by radiation. But this could not explain the increasing incidence of lung cancer in the general population. The identification of possible risk factors was a challenge for epidemiology and statistics, both disciplines being still in their infancy in the 1920s and 1930s. The first modern controlled epidemiological study on the effect of smoking on lung cancer was performed by Franz Hermann M\"uller as part of his dissertation at the University of Cologne in 1939. The results were published a year later \citep{HSAUR:Mueller1940}. M\"uller sent out questionnaires to the relatives of people who had recently died of lung cancer, asking about the smoking behavior and its intensity of the deceased relative. He also sent the questionnaire to healthy controls to obtain information about the smoking behavior in a control group, although it is not clear how this control group was defined. The number of lung cancer patients and healthy controls in five different groups (nonsmokers to extreme smokers) are given in Table~\ref{BI-Smoking_Mueller1940-tab}. <>= data("Smoking_Mueller1940", package = "HSAUR3") toLatex(HSAURtable(Smoking_Mueller1940), caption = paste("Smoking and lung cancer case-control study by M\\\"uller (1940).", "The smoking intensities were defined by the number of", "cigarettes smoked daily:", "1-15 (moderate), 16-25 (heavy), 26-35 (very heavy),", "and more than 35 (extreme)."), label = "BI-Smoking_Mueller1940-tab") @ Four years later Erich Sch\"oninger also wrote his dissertation on the association between smoking and lung cancer and, together with his supervisor Eberhard Schairer at the University of Jena, published his results on a case-control study \citep{HSAUR:SchairerSchoeninger1944} where he assessed the smoking behavior of lung cancer patients, patients diagnosed with other forms of cancer, and also a healthy control group. The data are given in Table~\ref{BI-Smoking_SchairerSchoeniger1944-tab}. <>= x <- as.table(Smoking_SchairerSchoeniger1944[, c("Lung cancer", "Healthy control")]) toLatex(HSAURtable(x, xname = "Smoking_SchairerSchoeniger1944"), caption = paste("Smoking and lung cancer case-control study by Schairer and Sch\\\"oniger (1944). Cancer other than lung cancer omitted.", "The smoking intensities were defined by the number of", "cigarettes smoked daily:", "1-5 (moderate), 6-10 (medium), 11-20 (heavy),", "and more than 20 (very heavy)."), label = "BI-Smoking_SchairerSchoeniger1944-tab") @ Shortly after the war, a Dutch epidemiologist reported on a case-control study performed in Amsterdam \citep{HSAUR:Wassink1945} and found similar results as the two German studies; see Table~\ref{BI-Smoking_Wassink1945-tab}. <>= data("Smoking_Wassink1945", package = "HSAUR3") toLatex(HSAURtable(Smoking_Wassink1945), caption = paste("Smoking and lung cancer case-control study by Wassink (1945).", "Smoking categories correspond to the categories used by M\\\"uller (1940)."), label = "BI-Smoking_Wassink1945-tab") @ In 1950 perhaps the most important, but not the first, case-control study showing an increasing risk of developing lung cancer with the amount of tobacco smoked, was published in Great Britain by Richard Doll and Austin Bradford Hill \citep{HSAUR:DollHill1950}. We restrict discussion here to data obtained for males and the data shown in Table~\ref{BI-Smoking_DollHill1950-tab} corresponds to the most recent amount of tobacco consumed regularly by smokers before disease onset \citep[Table~V in][]{HSAUR:DollHill1950}. <>= data("Smoking_DollHill1950", package = "HSAUR3") x <- as.table(Smoking_DollHill1950[,,"Male", drop = FALSE]) toLatex(HSAURtable(x, xname = "Smoking_DollHill1950"), caption = paste("Smoking and lung cancer case-control study (only males) by Doll and Hill (1950).", "The labels for the smoking categories give the number of cigarettes smoked every day."), label = "BI-Smoking_DollHill1950-tab") @ Although the design of the studies by \cite{HSAUR:Mueller1940} and \cite{HSAUR:SchairerSchoeninger1944}, especially the selection of their control groups, can be criticized \citep[see][for a detailed discussion]{HSAUR:Morabia2013} and the study by \cite{HSAUR:DollHill1950} was larger than the older studies and more detailed information on the smoking behavior was obtained by direct patient interviews, the information provided by the earlier studies was not taken into account by \cite{HSAUR:DollHill1950}. They cite \cite{HSAUR:Mueller1940} in their introduction, but did not compare their findings with his results. It is remarkable to see that both \cite{HSAUR:SchairerSchoeninger1944} and \cite{HSAUR:Wassink1945} extensively made use of the report by \cite{HSAUR:Mueller1940} and go as far as analyzing the merged data \citep[Grafiek I, E, and F, in][]{HSAUR:Wassink1945}. In an informal way, these authors wanted to use the already available information, in today's terms called `prior knowledge', to make a stronger case with the new data. Formal statistical methods to incorporate prior knowledge into data analysis as part of the `Bayesian' way of doing statistical analyses were developed in the second half of the last century, and we will focus on them in the present chapter. \index{Smoking and lung cancer|)} \section{Bayesian Inference} \section{Analysis Using \R{}} \subsection{One-by-one Analysis} For the analysis of the four different case-control studies on smoking and lung cancer, we will (retrospectively, of course) update our knowledge with every new study. We begin with a re-analysis of the data described by \cite{HSAUR:Mueller1940}. Using an approximate permutation test introduced in Chapter~\ref{CI} for the hypothesis of independence of the amount of tobacco smoked and group membership (lung cancer or healthy control), we get <>= library("coin") set.seed(29) independence_test(Smoking_Mueller1940, teststat = "quad", distribution = approximate(100000)) @ and there is clearly a strong association between the number of cigarettes smoked and incidence of lung cancer. Because the amount of tobacco smoked is an ordered categorical variable, it is more appropriate to take this information into account, for example by means of a linear association test (see Chapter~\ref{CI}). Nonsmokers receive a score of zero, and for the remaining groups we choose the mid-point of the intervals of daily cigarettes smoked that were used by \cite{HSAUR:Mueller1940} to define his groups: <>= ssc <- c(0, 1 + 14 / 2, 16 + 9 / 2, 26 + 9 / 2, 40) independence_test(Smoking_Mueller1940, teststat = "quad", scores = list(Smoking = ssc), distribution = approximate(100000)) @ The result shows that the data are in favor of an ordered alternative. The $p$-values obtained from approximate permutation tests are attractive because no distributional assumptions are required, but it is hard to derive estimates and confidence intervals for interpretable parameters from such tests. We will therefore now switch to logistic regression models as described in Chapter~\ref{GLM} to model the odds of lung cancer in the different smoking groups. Before we start, let us define a small function for computing odds (for intercept parameters) and odds ratios (for difference parameters) and corresponding confidence intervals from a logistic regression model: <>= eci <- function(model) cbind("Odds (Ratio)" = exp(coef(model)), exp(confint(model))) @ We model the probability of developing lung cancer given the smoking behavior. Because our data was obtained from case-control studies where the groups (lung cancer patients and healthy controls) were defined first and only after that we observed data on the smoking behavior (in a so-called \stress{choice-based sampling}), this may seem the wrong model to start with. However, the marginal distribution of the two groups only changes the intercept in such a logistic model and the effects of smoking can still be interpreted in the way we require \citep[see][for example]{HSAUR:Tutz2012}. The formula for specifying a logistic regression model can be set up such that the response is a matrix with two columns for each smoking group consisting of the number of lung cancer deaths and the number of healthy controls. Although smoking is an ordered factor, we first fit the model with treatment contrasts, i.e., we can interpret the $\exp$ of the regression coefficients as odds ratios between each smoking group and nonsmokers: <>= smoking <- ordered(rownames(Smoking_Mueller1940), levels = rownames(Smoking_Mueller1940)) contrasts(smoking) <- "contr.treatment" eci(glm(Smoking_Mueller1940 ~ smoking, family = binomial())) @ We see that all but one of the odds ratios increase with the amount of tobacco smoked with a maximum of almost $30$ for extreme smokers (more than $35$ cigarettes per day). The likelihood confidence intervals are rather wide due to the limited sample size, but also the lower limit increases with smoking. An alternative model formulation can help to compare each smoking group with the preceding group, the so-called split-coding \citep[for this and other codings see][]{HSAUR:Tutz2012}: <>= K <- diag(nlevels(smoking) - 1) K[lower.tri(K)] <- 1 contrasts(smoking) <- rbind(0, K) eci(glm(Smoking_Mueller1940 ~ smoking, family = binomial())) @ The two largest differences are between moderate smokers and nonsmokers (\Robject{smoking1}) and between very heavy and heavy smokers (\Robject{smoking3}). The latter group difference seems, at least judged by the confidence interval, to be larger than expected under a model with no effect of smoking. For the analysis of the three remaining studies, we first perform permutation tests for the independence of smoking and the two groups (lung cancer and healthy controls) in males: <>= xSS44 <- as.table(Smoking_SchairerSchoeniger1944[, c("Lung cancer", "Healthy control")]) ap <- approximate(100000) pvalue(independence_test(xSS44, teststat = "quad", distribution = ap)) pvalue(independence_test(Smoking_Wassink1945, teststat = "quad", distribution = ap)) xDH50 <- as.table(Smoking_DollHill1950[,, "Male"]) pvalue(independence_test(xDH50, teststat = "quad", distribution = ap)) @ All $p$-values indicate that the data are not well-described by the independence model. \subsection{Joint Bayesian Analysis} For a Bayesian analysis, we first merge the data from all four studies into one data frame. In doing so, we also merge the smoking groups in a way that we only have three groups left: nonsmokers, moderate smokers, and heavy smokers. These groups are chosen in a way that the number of daily cigarettes is comparable. We first merge the heavy, very heavy, and extreme smokers from \cite{HSAUR:Mueller1940} <>= (M <- rbind(Smoking_Mueller1940[1:2,], colSums(Smoking_Mueller1940[3:5,]))) @ and proceed with the lung cancer patients and healthy controls from \cite{HSAUR:SchairerSchoeninger1944} in the same way <>= SS <- Smoking_SchairerSchoeniger1944[, c("Lung cancer", "Healthy control")] (SS <- rbind(SS[1,], colSums(SS[2:3,]), colSums(SS[4:5,]))) @ and finally perform the same exercise for the \cite{HSAUR:Wassink1945} and \cite{HSAUR:DollHill1950} data <>= (W <- rbind(Smoking_Wassink1945[1:2,], colSums(Smoking_Wassink1945[3:4,]))) DH <- Smoking_DollHill1950[,, "Male"] (DH <- rbind(DH[1,], colSums(DH[2:3,]), colSums(DH[4:6,]))) @ The three new groups are now called nonsmokers, moderate smokers, and heavy smokers, and we set up a data frame that contains the number of people in each of the possible groups for all studies: <>= smk <- c("Nonsmoker", "Moderate smoker", "Heavy smoker") x <- expand.grid(Smoking = ordered(smk, levels = smk), Diagnosis = factor(c("Lung cancer", "Control")), Study = c("Mueller1940", "SchairerSchoeniger1944", "Wassink1945", "DollHill1950")) x$weights <- c(as.vector(M), as.vector(SS), as.vector(W), as.vector(DH)) @ Before we fit logistic regression models using the data organized in such a way, we define the contrasts for the smoking ordered factor and expand the data in a way that each row corresponds to one person. This is necessary because the \Rcmd{weights} argument to the \Rcmd{glm} function must not be used to define case weights: <>= contrasts(x$Smoking) <- "contr.treatment" x <- x[rep(1:nrow(x), x$weights),] @ We now compute one logistic regression model for each study for later comparisons: <>= models <- lapply(levels(x$Study), function(s) glm(Diagnosis ~ Smoking, data = x, family = binomial(), subset = Study == s)) names(models) <- levels(x$Study) @ In 1939, M\"uller was hardly in the position to come up with a reasonable prior for the odds ratios between moderate or heavy smokers and nonsmokers. So we also use a noninformative prior and just perform the maximum likelihood analysis: <>= eci(models[["Mueller1940"]]) @ Four years later, the maximum likelihood results obtained for the \cite{HSAUR:SchairerSchoeninger1944} data <>= eci(models[["SchairerSchoeniger1944"]]) @ could have been improved by using a normal prior for the difference in log odds whose distribution is the distribution of the maximum likelihood estimator obtained for M\"uller's data. At least approximately, we can compute posterior $90\%$ credibility intervals and the posterior mode from the Schairer and Sch\"oniger data by analyzing both data sets simultaneously. We should, however, keep in mind that the odds of developing lung cancer for nonsmokers is not really interesting for our analysis and that the four studies may very well differ with respect to this intercept parameter. Consequently, we don't want to specify a prior for the intercept. One way to implement such a strategy is to exclude the intercept term from the joint model while allowing a separate intercept for each of the studies: <>= mM40_SS44 <- glm(Diagnosis ~ 0 + Study + Smoking, data = x, family = binomial(), subset = Study %in% c("Mueller1940", "SchairerSchoeniger1944")) eci(mM40_SS44) @ We observe two important differences between the maximum likelihood and Bayesian results for the Schairer and Sch\"oniger data: In the Bayesian analysis, the estimated odds ratio for moderate smokers is closer to the smaller value obtained from M\"uller's data and, more important, the credibility intervals are much narrower and, one has to say, more realistic now. An odds ratio as large as $40$ is hardly something one would expect to see in practice. If Wassink had been aware of Bayesian statistics, he could have used the posterior distribution of the parameters from our model \Robject{mM40\_SS44} as a prior distribution for analyzing his data. The maximum likelihood results for his data <>= eci(models[["Wassink1945"]]) @ would have changed to <>= mM40_SS44_W45 <- glm(Diagnosis ~ 0 + Study + Smoking, data = x, family = binomial(), subset = Study %in% c("Mueller1940", "SchairerSchoeniger1944", "Wassink1945")) eci(mM40_SS44_W45) @ The rather small odds ratios obtained from the model fitted to the Wassink data only are now closer to the estimates obtained from the two previous studies and the variability, as given by the credibility intervals, is much smaller. Now, finally, the model for the Doll and Hill data reports rather large odds ratios with wide confidence intervals: <>= eci(models[["DollHill1950"]]) @ With a (now rather strong) prior defined by the three earlier studies, we get from the joint model for all four studies <>= m_all <- glm(Diagnosis ~ 0 + Study + Smoking, data = x, family = binomial()) eci(m_all) @ <>= r <- eci(m_all) xM <- round(r["SmokingModerate smoker", 2:3], 1) xH <- round(r["SmokingHeavy smoker", 2:3], 1) @ In 1950, the joint evidence based on such an analysis with an odds ratio between $\Sexpr{xM[1]}$ and $\Sexpr{xM[2]}$ for moderate smokers and between $\Sexpr{xH[1]}$ and $\Sexpr{xH[2]}$ for heavy smokers compared to nonsmokers, would have made a much stronger case than any of the single studies alone. It is interesting to see that with this strong prior for the Doll and Hill study, we also get relatively large odds ratios when comparing heavy to moderate smokers (see row labeled \Rcmd{Smoking2}): <>= K <- diag(nlevels(x$Smoking) - 1) K[lower.tri(K)] <- 1 contrasts(x$Smoking) <- rbind(0, K) eci(glm(Diagnosis ~ 0 + Study + Smoking, data = x, family = binomial())) @ \subsection{A Comparison with Meta Analysis} One may ask how the Bayesian approach of progressively updating the estimates considered here differs from a classical meta analysis described in Chapter~\ref{MA}. We first reshape the data into a form suitable for such an analysis <>= y <- xtabs(~ Study + Smoking + Diagnosis, data = x) ntrtM <- margin.table(y, 1:2)[,"Moderate smoker"] nctrl <- margin.table(y, 1:2)[,"Nonsmoker"] ptrtM <- y[,"Moderate smoker","Lung cancer"] pctrl <- y[,"Nonsmoker","Lung cancer"] ntrtH <- margin.table(y, 1:2)[,"Heavy smoker"] ptrtH <- y[,"Heavy smoker","Lung cancer"] @ and then compute joint odds ratios and confidence intervals for moderate and heavy smokers compared to nonsmokers: <>= library("rmeta") meta.MH(ntrt = ntrtM, nctrl = nctrl, ptrt = ptrtM, pctrl = pctrl) meta.MH(ntrt = ntrtH, nctrl = nctrl, ptrt = ptrtH, pctrl = pctrl) @ For moderate smokers, the effect is a little weaker compared with the results reported on earlier and for heavy smokers, the meta analysis identifies a stronger effect for heavy smokers. Nevertheless, the differences between the two rather different approaches are negligible and the conclusions would have been the same. \section{Summary of Findings} We have seen that, using a Bayesian approach to incorporate prior knowledge into a model, the odds of developing lung cancer increase with increased amounts of smoking. Of course, our analysis here is very simplistic, because we ignored that also pipe and cigar smokers were present in the data, we merged the data based on a very rough assessment of the number of cigarettes smoked per day, ignored whether or not the smokers inhaled the smoke into their lungs, or if nonsmokers were subject to passive-smoking, as we call it today. Most importantly, we must not misinterpret findings from case-control studies as casual and, in fact, none of the authors cited here did so. The debate on whether smoking, and which kind of smoking, actually \stress{causes} lung cancer was initiated by the publications cited in this chapter and many famous statisticians took part in the debate, for example, Sir Ronald Fisher \citep{HSAUR:Fisher1959}, took the view that the inference of causation was premature. In retrospect this was one issue (perhaps the only one) where Fisher was mistaken. \section{Final Comments} There remain a few hard-line opponents of Bayesian inference (just a few) who reject the method because of the use of subjective prior distributions which, these opponents feel, have no place in scientific investigations. And there are Bayesians who think that the only defense of using non-Bayesian methods is incompetence. But for an increasing number of statisticians Bayesian inference is very attractive, because we can use the posterior distribution of the parameters to draw conclusions from the data. Although this requires the specification of a prior distribution, we have seen in this chapter that, using data from previous experiments, priors can be defined in a reasonable way. It is not absolutely necessary to rely on rather complex numerical procedures to`estimate' a posterior distribution. When we are willing to cut some corners, we can implement simple Bayesian approaches using standard software. We should also keep in mind that the prior can be interpreted as a penalty on the parameters, and many penalization approaches therefore have an (often implicit) connection to the Bayesian way of doing statistics. Of course, just picking the prior that `works best' is dangerous and almost surely inappropriate. \section*{Exercises} \begin{description} \exercise Produce a forest plot as introduced in Chapter~\ref{MA} for the four smoking studies analyzed here. \exercise Produce a modified forest plot where one can see how the evidence for smoking being related to lung cancer evolved between 1940 and 1950. \exercise Use the \Rpackage{INLA} add-on package to perform a similar analysis by using the coefficients and their standard errors estimated from our initial logistic regression model \texttt{m[["Mueller1940"]]} as parameters of a normal prior for a logistic regression applied to the Schairer and Sch\"oniger data. Compare the resulting credibility intervals for the two odds-ratios with the approximate results obtained in this chapter. \end{description} %%\bibliographystyle{LaTeXBibTeX/refstyle} %%\bibliography{LaTeXBibTeX/HSAUR} \end{document} HSAUR3/vignettes/Ch_quantile_regression.Rnw0000644000176200001440000006432514416236370020433 0ustar liggesusers \documentclass{chapman} %%% copy Sweave.sty definitions %%% keeps `sweave' from adding `\usepackage{Sweave}': DO NOT REMOVE %\usepackage{Sweave} \RequirePackage[T1]{fontenc} \RequirePackage{graphicx,ae,fancyvrb} \IfFileExists{upquote.sty}{\RequirePackage{upquote}}{} \usepackage{relsize} \DefineVerbatimEnvironment{Sinput}{Verbatim}{} \DefineVerbatimEnvironment{Soutput}{Verbatim}{fontfamily=courier, fontshape=it, fontsize=\relsize{-1}} \DefineVerbatimEnvironment{Scode}{Verbatim}{} \newenvironment{Schunk}{}{} %%% environment for raw output \newcommand{\SchunkRaw}{\renewenvironment{Schunk}{}{} \DefineVerbatimEnvironment{Soutput}{Verbatim}{fontfamily=courier, fontshape=it, fontsize=\small} \rawSinput } %%% environment for labeled output \newcommand{\nextcaption}{} \newcommand{\SchunkLabel}{ \renewenvironment{Schunk}{\begin{figure}[ht] }{\caption{\nextcaption} \end{figure} } \DefineVerbatimEnvironment{Sinput}{Verbatim}{frame = topline} \DefineVerbatimEnvironment{Soutput}{Verbatim}{frame = bottomline, samepage = true, fontfamily=courier, fontshape=it, fontsize=\relsize{-1}} } %%% S code with line numbers \DefineVerbatimEnvironment{Sinput} {Verbatim} { %% numbers=left } \newcommand{\numberSinput}{ \DefineVerbatimEnvironment{Sinput}{Verbatim}{numbers=left} } \newcommand{\rawSinput}{ \DefineVerbatimEnvironment{Sinput}{Verbatim}{} } %%% R / System symbols \newcommand{\R}{\textsf{R}} \newcommand{\rR}{{R}} \renewcommand{\S}{\textsf{S}} \newcommand{\SPLUS}{\textsf{S-PLUS}} \newcommand{\rSPLUS}{{S-PLUS}} \newcommand{\SPSS}{\textsf{SPSS}} \newcommand{\EXCEL}{\textsf{Excel}} \newcommand{\ACCESS}{\textsf{Access}} \newcommand{\SQL}{\textsf{SQL}} %%\newcommand{\Rpackage}[1]{\hbox{\rm\textit{#1}}} %%\newcommand{\Robject}[1]{\hbox{\rm\texttt{#1}}} %%\newcommand{\Rclass}[1]{\hbox{\rm\textit{#1}}} %%\newcommand{\Rcmd}[1]{\hbox{\rm\texttt{#1}}} \newcommand{\Rpackage}[1]{\index{#1 package@{\fontseries{b}\selectfont #1} package} {\fontseries{b}\selectfont #1}} \newcommand{\rpackage}[1]{{\fontseries{b}\selectfont #1}} \newcommand{\Robject}[1]{\texttt{#1}} \newcommand{\Rclass}[1]{\index{#1 class@\textit{#1} class}\textit{#1}} \newcommand{\Rcmd}[1]{\index{#1 function@\texttt{#1} function}\texttt{#1}} \newcommand{\Roperator}[1]{\texttt{#1}} \newcommand{\Rarg}[1]{\texttt{#1}} \newcommand{\Rlevel}[1]{\texttt{#1}} %%% other symbols \newcommand{\file}[1]{\hbox{\rm\texttt{#1}}} %%\newcommand{\stress}[1]{\index{#1}\textit{#1}} \newcommand{\stress}[1]{\textit{#1}} \newcommand{\booktitle}[1]{\textit{#1}} %%' %%% Math symbols \usepackage{amstext} \usepackage{amsmath} \newcommand{\E}{\mathsf{E}} \newcommand{\Var}{\mathsf{Var}} \newcommand{\Cov}{\mathsf{Cov}} \newcommand{\Cor}{\mathsf{Cor}} \newcommand{\x}{\mathbf{x}} \newcommand{\y}{\mathbf{y}} \renewcommand{\a}{\mathbf{a}} \newcommand{\W}{\mathbf{W}} \newcommand{\C}{\mathbf{C}} \renewcommand{\H}{\mathbf{H}} \newcommand{\X}{\mathbf{X}} \newcommand{\B}{\mathbf{B}} \newcommand{\V}{\mathbf{V}} \newcommand{\I}{\mathbf{I}} \newcommand{\D}{\mathbf{D}} \newcommand{\bS}{\mathbf{S}} \newcommand{\N}{\mathcal{N}} \renewcommand{\L}{L} \renewcommand{\P}{\mathsf{P}} \newcommand{\K}{\mathbf{K}} \newcommand{\m}{\mathbf{m}} \newcommand{\argmin}{\operatorname{argmin}\displaylimits} \newcommand{\argmax}{\operatorname{argmax}\displaylimits} \newcommand{\bx}{\mathbf{x}} \newcommand{\bbeta}{\mathbf{\beta}} %%% links \usepackage{hyperref} \hypersetup{% pdftitle = {A Handbook of Statistical Analyses Using R (3rd Edition)}, pdfsubject = {Book}, pdfauthor = {Torsten Hothorn and Brian S. Everitt}, colorlinks = {black}, linkcolor = {black}, citecolor = {black}, urlcolor = {black}, hyperindex = {true}, linktocpage = {true}, } %%% captions & tables %% : conflics with figure definition in chapman.cls %%\usepackage[format=hang,margin=10pt,labelfont=bf]{caption} %% \usepackage{longtable} \usepackage[figuresright]{rotating} %%% R symbol in chapter 1 \usepackage{wrapfig} %%% Bibliography \usepackage[round,comma]{natbib} \renewcommand{\refname}{References \addcontentsline{toc}{chapter}{References}} \citeindexfalse %%% texi2dvi complains that \newblock is undefined, hm... \def\newblock{\hskip .11em plus .33em minus .07em} %%% Example sections \newcounter{exercise}[chapter] \setcounter{exercise}{0} \newcommand{\exercise}{\stepcounter{exercise} \item{Ex.~\arabic{chapter}.\arabic{exercise} }} %% URLs \newcommand{\curl}[1]{\begin{center} \url{#1} \end{center}} %%% for manual corrections %\renewcommand{\baselinestretch}{2} %%% plot sizes \setkeys{Gin}{width=0.95\textwidth} %%% color \usepackage{color} %%% hyphenations \hyphenation{drop-out} \hyphenation{mar-gi-nal} %%% new bidirectional quotes need \usepackage[utf8]{inputenc} %\usepackage{setspace} \definecolor{sidebox_todo}{rgb}{1,1,0.2} \newcommand{\todo}[1]{ \hspace{0pt}% \marginpar{% \fcolorbox{black}{sidebox_todo}{% \parbox{\marginparwidth} { \raggedright\sffamily\footnotesize{TODO: #1}% } }% } } \begin{document} %% Title page \title{A Handbook of Statistical Analyses Using \R{} --- 3rd Edition} \author{Torsten Hothorn and Brian S. Everitt} \maketitle %%\VignetteIndexEntry{Chapter Quantile Regression} %%\VignetteDepends{lattice,quantreg} \setcounter{chapter}{11} \SweaveOpts{prefix.string=figures/HSAUR,eps=FALSE,keep.source=TRUE} <>= rm(list = ls()) s <- search()[-1] s <- s[-match(c("package:base", "package:stats", "package:graphics", "package:grDevices", "package:utils", "package:datasets", "package:methods", "Autoloads"), s)] if (length(s) > 0) sapply(s, detach, character.only = TRUE) if (!file.exists("tables")) dir.create("tables") if (!file.exists("figures")) dir.create("figures") set.seed(290875) options(prompt = "R> ", continue = "+ ", width = 63, # digits = 4, show.signif.stars = FALSE, SweaveHooks = list(leftpar = function() par(mai = par("mai") * c(1, 1.05, 1, 1)), bigleftpar = function() par(mai = par("mai") * c(1, 1.7, 1, 1)))) HSAURpkg <- require("HSAUR3") if (!HSAURpkg) stop("cannot load package ", sQuote("HSAUR3")) rm(HSAURpkg) ### hm, R-2.4.0 --vanilla seems to need this a <- Sys.setlocale("LC_ALL", "C") ### book <- TRUE refs <- cbind(c("AItR", "DAGD", "SI", "CI", "ANOVA", "MLR", "GLM", "DE", "RP", "GAM", "SA", "ALDI", "ALDII", "SIMC", "MA", "PCA", "MDS", "CA"), 1:18) ch <- function(x) { ch <- refs[which(refs[,1] == x),] if (book) { return(paste("Chapter~\\\\ref{", ch[1], "}", sep = "")) } else { return(paste("Chapter~", ch[2], sep = "")) } } if (file.exists("deparse.R")) source("deparse.R") setHook(packageEvent("lattice", "attach"), function(...) { lattice.options(default.theme = function() standard.theme("pdf", color = FALSE)) }) @ \pagestyle{headings} <>= book <- FALSE @ %% lower png resolution for vignettes \SweaveOpts{resolution = 80} <>= library("lattice") trellis.par.set(list(plot.symbol = list(col=1,pch=20, cex=0.7), box.rectangle = list(col=1), plot.line = list(col = 1, lwd = 1), box.umbrella = list(lty=1, col=1), strip.background = list(col = "white"))) ltheme <- canonical.theme(color = FALSE) ## in-built B&W theme ltheme$strip.background$col <- "transparent" ## change strip bg lattice.options(default.theme = ltheme) data("db", package = "gamlss.data") nboys <- with(db, sum(age > 2)) @ \chapter[Quantile Regression]{Quantile Regression: Head Circumference for Age\label{QR}} \section{Introduction} \section{Quantile Regression} \section{Analysis Using \R{}} We begin with a graphical inspection of the influence of age on head circumference by means of a scatterplot. Plotting all pairs of age and head circumference in one panel gives more weight to the teens and 20s, so we produce one plot for younger boys between two and nine years old and one additional plot for boys older than nine years (or $>108$ months, to be precise). The \Rcmd{cut} function is very convenient for constructing a factor representing these two groups <>= summary(db) db$cut <- cut(db$age, breaks = c(2, 9, 23), labels = c("2-9 yrs", "9-23 yrs")) @ which can then be used as a conditioning variable for conditional scatterplots produced with the \Rcmd{xyplot} function \citep[package \Rpackage{lattice}]{PKG:lattice}. Because we draw $\Sexpr{nboys}$ points in total, we use transparent shading (via \Rcmd{rgb(.1, .1, .1, .1)}) in order to obtain a clearer picture for the more populated areas in the plot. \begin{figure} \begin{center} <>= db$cut <- cut(db$age, breaks = c(2, 9, 23), labels = c("2-9 yrs", "9-23 yrs")) xyplot(head ~ age | cut, data = db, xlab = "Age (years)", ylab = "Head circumference (cm)", scales = list(x = list(relation = "free")), layout = c(2, 1), pch = 19, col = rgb(.1, .1, .1, .1)) @ \caption{Scatterplot of age and head circumference for $\Sexpr{nboys}$ Dutch boys. \label{QR-db-plot}} \end{center} \end{figure} Figure~\ref{QR-db-plot}, as expected, shows that head circumference increases with age. It also shows that there is considerable variation and also quite a number of extremely large or small head circumferences in the respective age cohorts. It should be noted that each point corresponds to one boy participating in the study due to its cross-sectional study design. No longitudinal measurements (cf.~Chapter~\ref{ALDI}) were taken and we can safely assume independence between observations. We start with a simple linear model, computed separately for the younger and older boys, for regressing the mean head circumference on age <>= (lm2.9 <- lm(head ~ age, data = db, subset = age < 9)) (lm9.23 <- lm(head ~ age, data = db, subset = age > 9)) @ This approach is equivalent to fitting two intercepts and two slopes in the joint model <>= (lm_mod <- lm(head ~ age:I(age < 9) + I(age < 9) - 1, data = db)) @ while omitting the global intercept. Because the median of the normal distribution is equal to its mean, the two models can be interpreted as conditional median models under the normal assumption. The model states that within one year, the head circumference increases by $\Sexpr{round(coef(lm_mod)["age:I(age < 9)TRUE"], 3)}$ cm for boys less than nine years old and by $\Sexpr{round(coef(lm_mod)["age:I(age < 9)FALSE"], 3)}$ for older boys. We now relax this distributional assumption and compute a median regression model using the \Rcmd{rq} function from package \Rpackage{quantreg} \citep{PKG:quantreg}: <>= library("quantreg") (rq_med2.9 <- rq(head ~ age, data = db, tau = 0.5, subset = age < 9)) (rq_med9.23 <- rq(head ~ age, data = db, tau = 0.5, subset = age > 9)) @ When we construct confidence intervals for the intercept and slope parameters from both models for the younger boys <>= cbind(coef(lm2.9)[1], confint(lm2.9, parm = "(Intercept)")) cbind(coef(lm2.9)[2], confint(lm2.9, parm = "age")) summary(rq_med2.9, se = "rank") @ we see that the two intercepts are almost identical but there seems to be a larger slope parameter for age in the median regression model. For the older boys, we get the confidence intervals via <>= cbind(coef(lm9.23)[1], confint(lm9.23, parm = "(Intercept)")) cbind(coef(lm9.23)[2], confint(lm9.23, parm = "age")) summary(rq_med9.23, se = "rank") @ with again almost identical intercepts and only a slightly increased slope for age in the median regression model. Since one of our aims was the construction of growth curves, we first use the linear models regressing head circumference on age to plot such curves. Based on the two normal linear models, we can compute the quantiles of head circumference for age. For the following values of $\tau$ <>= tau <- c(.01, .1, .25, .5, .75, .9, .99) @ and a grid of age values <>= gage <- c(2:9, 9:23) i <- 1:8 @ (the index \Rcmd{i} denoting younger boys), we compute the standard prediction intervals \index{Prediction interval} taking the randomness of the estimated intercept, slope, and variance parameters into account. We first set up a data frame with our grid of age values and then use the \Rcmd{predict} function for a linear model to compute prediction intervals, here with a coverage of $50\%$. The lower limit of such a $50\%$ prediction interval is equivalent to the conditional $25\%$ quantile for the given age and the upper limit corresponds to the $75\%$ quantile. The conditional mean is also reported and is equivalent to the conditional median: <>= idf <- data.frame(age = gage[i]) p <- predict(lm2.9, newdata = idf, level = 0.5, interval = "prediction") colnames(p) <- c("0.5", "0.25", "0.75") p @ We now proceed with $80\%$ prediction intervals for constructing the $10\%$ and $90\%$ quantiles, and with $98\%$ prediction intervals corresponding to the $1\%$ and $99\%$ quantiles and repeat the exercise also for the older boys: <>= p <- cbind(p, predict(lm2.9, newdata = idf, level = 0.8, interval = "prediction")[,-1]) colnames(p)[4:5] <- c("0.1", "0.9") p <- cbind(p, predict(lm2.9, newdata = idf, level = 0.98, interval = "prediction")[,-1]) colnames(p)[6:7] <- c("0.01", "0.99") p2.9 <- p[, c("0.01", "0.1", "0.25", "0.5", "0.75", "0.9", "0.99")] idf <- data.frame(age = gage[-i]) p <- predict(lm9.23, newdata = idf, level = 0.5, interval = "prediction") colnames(p) <- c("0.5", "0.25", "0.75") p <- cbind(p, predict(lm9.23, newdata = idf, level = 0.8, interval = "prediction")[,-1]) colnames(p)[4:5] <- c("0.1", "0.9") p <- cbind(p, predict(lm9.23, newdata = idf, level = 0.98, interval = "prediction")[,-1]) colnames(p)[6:7] <- c("0.01", "0.99") @ We now reorder the columns of this table and get the following conditional quantiles, estimated under the normal assumption of head circumference: <>= p9.23 <- p[, c("0.01", "0.1", "0.25", "0.5", "0.75", "0.9", "0.99")] round((q2.23 <- rbind(p2.9, p9.23)), 3) @ We can now superimpose these conditional quantiles on our scatterplot. To do this, we need to write our own little panel function that produces the scatterplot using the \Rcmd{panel.xyplot} function and then adds the just computed conditional quantiles by means of the \Rcmd{panel.lines} function called for every column of $\Robject{q2.23}$. Figure~\ref{QR-db-lm-plot} shows parallel lines owing to the fact that the linear model assumes an error variance independent from age; this is the so-called variance homogeneity. Compared to a plot with only a single (mean) regression line, we plotted a whole bunch of conditional distributions here, one for each value of age. Of course, we did so under extremely simplifying assumptions like linearity and variance homogeneity that we're going to drop now. \begin{figure} \begin{center} <>= pfun <- function(x, y, ...) { panel.xyplot(x = x, y = y, ...) if (max(x) <= 9) { apply(q2.23, 2, function(x) panel.lines(gage[i], x[i])) } else { apply(q2.23, 2, function(x) panel.lines(gage[-i], x[-i])) } panel.text(rep(max(db$age), length(tau)), q2.23[nrow(q2.23),], label = tau, cex = 0.9) panel.text(rep(min(db$age), length(tau)), q2.23[1,], label = tau, cex = 0.9) } xyplot(head ~ age | cut, data = db, xlab = "Age (years)", ylab = "Head circumference (cm)", pch = 19, scales = list(x = list(relation = "free")), layout = c(2, 1), col = rgb(.1, .1, .1, .1), panel = pfun) @ \caption{Scatterplot of age and head circumference for $\Sexpr{nboys}$ Dutch boys with superimposed normal quantiles. \label{QR-db-lm-plot}} \end{center} \end{figure} For the production of a nonparametric version of our growth curves, we start with fitting not only one but multiple quantile regression models, one for each value of $\tau$. We start with the younger boys <>= (rq2.9 <- rq(head ~ age, data = db, tau = tau, subset = age < 9)) @ and continue with the older boys <>= (rq9.23 <- rq(head ~ age, data = db, tau = tau, subset = age > 9)) @ Naturally, the intercept parameters vary but there is also a considerable variation in the slopes, with the largest value for the $1\%$ quantile regression model for younger boys. The parameters $\beta_\tau$ have to be interpreted with care. In general, they cannot be interpreted on an individual-specific level. A boy who happens to be at the $\tau \times 100\%$ quantile of head circumference conditional on his age would not be at the same quantile anymore when he gets older. When knowing $\beta_\tau$, the only conclusion that can be drawn is how the $\tau \times 100\%$ quantile of a population with a specific age differs from the $\tau \times 100\%$ quantile of a population with a different age. Because the linear functions estimated by linear quantile regression, here in model \Robject{rq9.23}, directly correspond to the conditional quantiles of interest, we can use the \Rcmd{predict} function to compute the estimated conditional quantiles: <>= p2.23 <- rbind(predict(rq2.9, newdata = data.frame(age = gage[i])), predict(rq9.23, newdata = data.frame(age = gage[-i]))) @ It is important to note that these numbers were obtained without assuming anything about the continuous distribution of head circumference given any age. Again, we produce a scatterplot with superimposed quantiles, this time each line corresponds to a specific model. For the sake of comparison with the linear model, we add the linear model quantiles as dashed lines to Figure~\ref{QR-db-rq-plot}. For the older boys, there seems to be almost no difference but the more extreme $1\%$ and $99\%$ quantiles for the younger boys differ considerably. So, at least for the younger boys, we might want to allow for age-specific variability in the distribution of head circumference. \begin{figure} \begin{center} <>= pfun <- function(x, y, ...) { panel.xyplot(x = x, y = y, ...) if (max(x) <= 9) { apply(q2.23, 2, function(x) panel.lines(gage[i], x[i], lty = 2)) apply(p2.23, 2, function(x) panel.lines(gage[i], x[i])) } else { apply(q2.23, 2, function(x) panel.lines(gage[-i], x[-i], lty = 2)) apply(p2.23, 2, function(x) panel.lines(gage[-i], x[-i])) } panel.text(rep(max(db$age), length(tau)), p2.23[nrow(p2.23),], label = tau, cex = 0.9) panel.text(rep(min(db$age), length(tau)), p2.23[1,], label = tau, cex = 0.9) } xyplot(head ~ age | cut, data = db, xlab = "Age (years)", ylab = "Head circumference (cm)", pch = 19, scales = list(x = list(relation = "free")), layout = c(2, 1), col = rgb(.1, .1, .1, .1), panel = pfun) @ \caption{Scatterplot of age and head circumference for $\Sexpr{nboys}$ Dutch boys with superimposed regression quantiles (solid lines) and normal quantiles (dashed lines). \label{QR-db-rq-plot}} \end{center} \end{figure} Still, with the quantile regression models shown in Figure~\ref{QR-db-rq-plot} we assume that the quantiles of head circumference depend on age in a linear way. Additive quantile regression is one way to approach the estimation of non-linear quantile functions. By considering two different models for younger and older boys, we allowed for a certain type of non-linear function in the results shown so far. Additive quantile regression should be able to deal with this problem and we therefore fit these models to all boys simultaneously. For our different choices of $\tau$, we fit one additive quantile regression model using the \Rcmd{rqss} function from the \Rpackage{quantreg} and allow smooth quantile functions of age via the \Rcmd{qss} function in the right-hand side of the model formula. Note that we transformed age by the third root prior to model fitting. This does not affect the model since it is a monotone transformation, however, it helps to avoid fitting a function with large derivatives for very young boys resulting in a low penalty parameter $\lambda$: <>= rqssmod <- vector(mode = "list", length = length(tau)) db$lage <- with(db, age^(1/3)) for (i in 1:length(tau)) rqssmod[[i]] <- rqss(head ~ qss(lage, lambda = 1), data = db, tau = tau[i]) @ For the analysis of the head circumference, we choose a penalty parameter $\lambda = 1$, which is the default for the \Rcmd{qss} function. Simply using the default without a careful hyperparameter tuning, for example using crossvalidation or similar procedures, is almost always a mistake. By visual inspection (Figure~\ref{QR-db-rqss-plot}) we find this choice appropriate but ask the readers to make a second guess (Exercise 3). For a finer grid of age values, we compute the conditional quantiles from the \Rcmd{predict} function: <>= gage <- seq(from = min(db$age), to = max(db$age), length = 50) p <- sapply(1:length(tau), function(i) { predict(rqssmod[[i]], newdata = data.frame(lage = gage^(1/3))) }) @ Using very similar code as for plotting linear quantiles, we produce again a scatterplot of age and head circumference but this time overlaid with non-linear regression quantiles. Given that the results from the linear models presented in Figure~\ref{QR-db-rq-plot} looked pretty convincing, the quantile curves in Figure~\ref{QR-db-rqss-plot} shed a surprising new light on the data. For the younger boys, we expected to see a larger variability than for boys between two and three years old, but in fact the distribution seems to be more complex. The distribution seems to be positively skewed with a heavy lower tail and the degree of skewness varies with age (note that the median is almost linear for boys older than four years). Also in the right part of Figure~\ref{QR-db-rqss-plot}, we see an age-varying skewness, although less pronounced as for the younger boys. The median increases up to 16 years but then the growth rate is much smaller. This does not seem to be the case for the $1\%, 10\%, 90\%$, and $99\%$ quantiles. Note that the discontinuity in the quantiles between the two age groups is only due to the overlapping abscissae. However, the deviations between the growth curves obtained from a linear model under normality assumption on the one hand and quantile regression on the other hand as shown in Figures~\ref{QR-db-rq-plot} and \ref{QR-db-rqss-plot} are hardly dramatic for the head circumference data. \begin{figure} \begin{center} <>= pfun <- function(x, y, ...) { panel.xyplot(x = x, y = y, ...) apply(p, 2, function(x) panel.lines(gage, x)) panel.text(rep(max(db$age), length(tau)), p[nrow(p),], label = tau, cex = 0.9) panel.text(rep(min(db$age), length(tau)), p[1,], label = tau, cex = 0.9) } xyplot(head ~ age | cut, data = db, xlab = "Age (years)", ylab = "Head circumference (cm)", pch = 19, scales = list(x = list(relation = "free")), layout = c(2, 1), col = rgb(.1, .1, .1, .1), panel = pfun) @ \caption{Scatterplot of age and head circumference for $\Sexpr{nboys}$ Dutch boys with superimposed non-linear regression quantiles. \label{QR-db-rqss-plot}} \end{center} \end{figure} \section{Summary of Findings} We can conclude that the whole distribution of head circumference changes with age and that assumptions like symmetry and variance homogeneity might be questionable for such type of analysis. One alternative to the estimation of conditional quantiles is the estimation of conditional distributions. One very interesting parametric approach are generalized additive models for location, scale, and shape \citep[GAMLSS,][]{HSAUR:RigbyStasinopoulos2005}. In \cite{HSAUR:StasinopoulosRigby2007}, an analysis of the age and head circumference by means of the \Rpackage{gamlss} package can be found. One practical problem associated with contemporary methods in quantile regression is quantile crossing. Because we fitted one quantile regression model for each of the quantiles of interest, we cannot guarantee that the conditional quantile functions are monotone, so the $90\%$ quantile may well be larger than the $95\%$ quantile in some cases. Postprocessing of the estimated quantile curves may help in this situation \citep{HSAUR:DetteVolgushev2008}. \section{Final Comments} When estimating regression models, we have to be aware of the implications of model assumptions when interpreting the results. Symmetry, linearity, and variance homogeneity are among the strongest but common assumptions. Quantile regression, both in its linear and additive formulation, is an intellectually stimulating and practically very useful framework where such assumptions can be relaxed. At a more basic level, one should always ask \stress{Am I really interested in the mean?} before using the regression models discussed in other chapters of this book. \bibliographystyle{LaTeXBibTeX/refstyle} \bibliography{LaTeXBibTeX/HSAUR} \end{document} HSAUR3/vignettes/Ch_density_estimation.Rnw0000644000176200001440000004716314416236367020273 0ustar liggesusers \documentclass{chapman} %%% copy Sweave.sty definitions %%% keeps `sweave' from adding `\usepackage{Sweave}': DO NOT REMOVE %\usepackage{Sweave} \RequirePackage[T1]{fontenc} \RequirePackage{graphicx,ae,fancyvrb} \IfFileExists{upquote.sty}{\RequirePackage{upquote}}{} \usepackage{relsize} \DefineVerbatimEnvironment{Sinput}{Verbatim}{} \DefineVerbatimEnvironment{Soutput}{Verbatim}{fontfamily=courier, fontshape=it, fontsize=\relsize{-1}} \DefineVerbatimEnvironment{Scode}{Verbatim}{} \newenvironment{Schunk}{}{} %%% environment for raw output \newcommand{\SchunkRaw}{\renewenvironment{Schunk}{}{} \DefineVerbatimEnvironment{Soutput}{Verbatim}{fontfamily=courier, fontshape=it, fontsize=\small} \rawSinput } %%% environment for labeled output \newcommand{\nextcaption}{} \newcommand{\SchunkLabel}{ \renewenvironment{Schunk}{\begin{figure}[ht] }{\caption{\nextcaption} \end{figure} } \DefineVerbatimEnvironment{Sinput}{Verbatim}{frame = topline} \DefineVerbatimEnvironment{Soutput}{Verbatim}{frame = bottomline, samepage = true, fontfamily=courier, fontshape=it, fontsize=\relsize{-1}} } %%% S code with line numbers \DefineVerbatimEnvironment{Sinput} {Verbatim} { %% numbers=left } \newcommand{\numberSinput}{ \DefineVerbatimEnvironment{Sinput}{Verbatim}{numbers=left} } \newcommand{\rawSinput}{ \DefineVerbatimEnvironment{Sinput}{Verbatim}{} } %%% R / System symbols \newcommand{\R}{\textsf{R}} \newcommand{\rR}{{R}} \renewcommand{\S}{\textsf{S}} \newcommand{\SPLUS}{\textsf{S-PLUS}} \newcommand{\rSPLUS}{{S-PLUS}} \newcommand{\SPSS}{\textsf{SPSS}} \newcommand{\EXCEL}{\textsf{Excel}} \newcommand{\ACCESS}{\textsf{Access}} \newcommand{\SQL}{\textsf{SQL}} %%\newcommand{\Rpackage}[1]{\hbox{\rm\textit{#1}}} %%\newcommand{\Robject}[1]{\hbox{\rm\texttt{#1}}} %%\newcommand{\Rclass}[1]{\hbox{\rm\textit{#1}}} %%\newcommand{\Rcmd}[1]{\hbox{\rm\texttt{#1}}} \newcommand{\Rpackage}[1]{\index{#1 package@{\fontseries{b}\selectfont #1} package} {\fontseries{b}\selectfont #1}} \newcommand{\rpackage}[1]{{\fontseries{b}\selectfont #1}} \newcommand{\Robject}[1]{\texttt{#1}} \newcommand{\Rclass}[1]{\index{#1 class@\textit{#1} class}\textit{#1}} \newcommand{\Rcmd}[1]{\index{#1 function@\texttt{#1} function}\texttt{#1}} \newcommand{\Roperator}[1]{\texttt{#1}} \newcommand{\Rarg}[1]{\texttt{#1}} \newcommand{\Rlevel}[1]{\texttt{#1}} %%% other symbols \newcommand{\file}[1]{\hbox{\rm\texttt{#1}}} %%\newcommand{\stress}[1]{\index{#1}\textit{#1}} \newcommand{\stress}[1]{\textit{#1}} \newcommand{\booktitle}[1]{\textit{#1}} %%' %%% Math symbols \usepackage{amstext} \usepackage{amsmath} \newcommand{\E}{\mathsf{E}} \newcommand{\Var}{\mathsf{Var}} \newcommand{\Cov}{\mathsf{Cov}} \newcommand{\Cor}{\mathsf{Cor}} \newcommand{\x}{\mathbf{x}} \newcommand{\y}{\mathbf{y}} \renewcommand{\a}{\mathbf{a}} \newcommand{\W}{\mathbf{W}} \newcommand{\C}{\mathbf{C}} \renewcommand{\H}{\mathbf{H}} \newcommand{\X}{\mathbf{X}} \newcommand{\B}{\mathbf{B}} \newcommand{\V}{\mathbf{V}} \newcommand{\I}{\mathbf{I}} \newcommand{\D}{\mathbf{D}} \newcommand{\bS}{\mathbf{S}} \newcommand{\N}{\mathcal{N}} \renewcommand{\L}{L} \renewcommand{\P}{\mathsf{P}} \newcommand{\K}{\mathbf{K}} \newcommand{\m}{\mathbf{m}} \newcommand{\argmin}{\operatorname{argmin}\displaylimits} \newcommand{\argmax}{\operatorname{argmax}\displaylimits} \newcommand{\bx}{\mathbf{x}} \newcommand{\bbeta}{\mathbf{\beta}} %%% links \usepackage{hyperref} \hypersetup{% pdftitle = {A Handbook of Statistical Analyses Using R (3rd Edition)}, pdfsubject = {Book}, pdfauthor = {Torsten Hothorn and Brian S. Everitt}, colorlinks = {black}, linkcolor = {black}, citecolor = {black}, urlcolor = {black}, hyperindex = {true}, linktocpage = {true}, } %%% captions & tables %% : conflics with figure definition in chapman.cls %%\usepackage[format=hang,margin=10pt,labelfont=bf]{caption} %% \usepackage{longtable} \usepackage[figuresright]{rotating} %%% R symbol in chapter 1 \usepackage{wrapfig} %%% Bibliography \usepackage[round,comma]{natbib} \renewcommand{\refname}{References \addcontentsline{toc}{chapter}{References}} \citeindexfalse %%% texi2dvi complains that \newblock is undefined, hm... \def\newblock{\hskip .11em plus .33em minus .07em} %%% Example sections \newcounter{exercise}[chapter] \setcounter{exercise}{0} \newcommand{\exercise}{\stepcounter{exercise} \item{Ex.~\arabic{chapter}.\arabic{exercise} }} %% URLs \newcommand{\curl}[1]{\begin{center} \url{#1} \end{center}} %%% for manual corrections %\renewcommand{\baselinestretch}{2} %%% plot sizes \setkeys{Gin}{width=0.95\textwidth} %%% color \usepackage{color} %%% hyphenations \hyphenation{drop-out} \hyphenation{mar-gi-nal} %%% new bidirectional quotes need \usepackage[utf8]{inputenc} %\usepackage{setspace} \definecolor{sidebox_todo}{rgb}{1,1,0.2} \newcommand{\todo}[1]{ \hspace{0pt}% \marginpar{% \fcolorbox{black}{sidebox_todo}{% \parbox{\marginparwidth} { \raggedright\sffamily\footnotesize{TODO: #1}% } }% } } \begin{document} %% Title page \title{A Handbook of Statistical Analyses Using \R{} --- 3rd Edition} \author{Torsten Hothorn and Brian S. Everitt} \maketitle %%\VignetteIndexEntry{Chapter Density Estimation} %%\VignetteDepends{flexmix,KernSmooth,boot} \setcounter{chapter}{7} \SweaveOpts{prefix.string=figures/HSAUR,eps=FALSE,keep.source=TRUE} <>= rm(list = ls()) s <- search()[-1] s <- s[-match(c("package:base", "package:stats", "package:graphics", "package:grDevices", "package:utils", "package:datasets", "package:methods", "Autoloads"), s)] if (length(s) > 0) sapply(s, detach, character.only = TRUE) if (!file.exists("tables")) dir.create("tables") if (!file.exists("figures")) dir.create("figures") set.seed(290875) options(prompt = "R> ", continue = "+ ", width = 63, # digits = 4, show.signif.stars = FALSE, SweaveHooks = list(leftpar = function() par(mai = par("mai") * c(1, 1.05, 1, 1)), bigleftpar = function() par(mai = par("mai") * c(1, 1.7, 1, 1)))) HSAURpkg <- require("HSAUR3") if (!HSAURpkg) stop("cannot load package ", sQuote("HSAUR3")) rm(HSAURpkg) ### hm, R-2.4.0 --vanilla seems to need this a <- Sys.setlocale("LC_ALL", "C") ### book <- TRUE refs <- cbind(c("AItR", "DAGD", "SI", "CI", "ANOVA", "MLR", "GLM", "DE", "RP", "GAM", "SA", "ALDI", "ALDII", "SIMC", "MA", "PCA", "MDS", "CA"), 1:18) ch <- function(x) { ch <- refs[which(refs[,1] == x),] if (book) { return(paste("Chapter~\\\\ref{", ch[1], "}", sep = "")) } else { return(paste("Chapter~", ch[2], sep = "")) } } if (file.exists("deparse.R")) source("deparse.R") setHook(packageEvent("lattice", "attach"), function(...) { lattice.options(default.theme = function() standard.theme("pdf", color = FALSE)) }) @ \pagestyle{headings} <>= book <- FALSE @ %% lower png resolution for vignettes \SweaveOpts{resolution = 100} <>= x <- library("KernSmooth") x <- library("flexmix") x <- library("boot") @ \chapter[Density Estimation]{Density Estimation: Erupting Geysers and Star Clusters \label{DE}} \section{Introduction} \section{Density Estimation} The three kernel functions are implemented in \R{} as shown in lines 1--3 of Figure~\ref{DE-kernel-fig}. For some grid \Robject{x}, the kernel functions are plotted using the \R{} statements in lines 5--11 (Figure~\ref{DE-kernel-fig}). \numberSinput \begin{figure} \begin{center} <>= rec <- function(x) (abs(x) < 1) * 0.5 tri <- function(x) (abs(x) < 1) * (1 - abs(x)) gauss <- function(x) 1/sqrt(2*pi) * exp(-(x^2)/2) x <- seq(from = -3, to = 3, by = 0.001) plot(x, rec(x), type = "l", ylim = c(0,1), lty = 1, ylab = expression(K(x))) lines(x, tri(x), lty = 2) lines(x, gauss(x), lty = 3) legend(-3, 0.8, legend = c("Rectangular", "Triangular", "Gaussian"), lty = 1:3, title = "kernel functions", bty = "n") @ \caption{Three commonly used kernel functions. \label{DE-kernel-fig}} \end{center} \end{figure} \rawSinput <>= w <- options("width")$w options(width = 66) @ The kernel estimator $\hat{f}$ is a sum of `bumps' placed at the observations. %' The kernel function determines the shape of the bumps while the window width $h$ determines their width. \index{Windows, in kernel density estimation} Figure~\ref{DE-bumps} \citep[redrawn from a similar plot in][]{HSAUR:Silverman1986} shows the individual bumps $n^{-1}h^{-1} K((x - x_i) / h)$, as well as the estimate $\hat{f}$ obtained by adding them up for an artificial set of data points <>= x <- c(0, 1, 1.1, 1.5, 1.9, 2.8, 2.9, 3.5) n <- length(x) @ For a grid <>= xgrid <- seq(from = min(x) - 1, to = max(x) + 1, by = 0.01) @ on the real line, we can compute the contribution of each measurement in \Robject{x}, with $h = 0.4$, by the Gaussian kernel (defined in Figure~\ref{DE-kernel-fig}, line 3) as follows; <>= h <- 0.4 bumps <- sapply(x, function(a) gauss((xgrid - a)/h)/(n * h)) @ A plot of the individual bumps and their sum, the kernel density estimate $\hat{f}$, is shown in Figure~\ref{DE-bumps}. <>= options(width = w) @ \numberSinput \begin{figure} \begin{center} <>= plot(xgrid, rowSums(bumps), ylab = expression(hat(f)(x)), type = "l", xlab = "x", lwd = 2) rug(x, lwd = 2) out <- apply(bumps, 2, function(b) lines(xgrid, b)) @ \caption{Kernel estimate showing the contributions of Gaussian kernels evaluated for the individual observations with bandwidth $h = 0.4$. \label{DE-bumps}} \end{center} \end{figure} \rawSinput \begin{figure} \begin{center} <>= epa <- function(x, y) ((x^2 + y^2) < 1) * 2/pi * (1 - x^2 - y^2) x <- seq(from = -1.1, to = 1.1, by = 0.05) epavals <- sapply(x, function(a) epa(a, x)) persp(x = x, y = x, z = epavals, xlab = "x", ylab = "y", zlab = expression(K(x, y)), theta = -35, axes = TRUE, box = TRUE) @ \caption{Epanechnikov kernel for a grid between $(-1.1, -1.1)$ and $(1.1, 1.1)$. \label{DE-epakernel-fig}} \end{center} \end{figure} \section{Analysis Using \R{}} \numberSinput \begin{figure} \begin{center} <>= data("faithful", package = "datasets") x <- faithful$waiting layout(matrix(1:3, ncol = 3)) hist(x, xlab = "Waiting times (in min.)", ylab = "Frequency", probability = TRUE, main = "Gaussian kernel", border = "gray") lines(density(x, width = 12), lwd = 2) rug(x) hist(x, xlab = "Waiting times (in min.)", ylab = "Frequency", probability = TRUE, main = "Rectangular kernel", border = "gray") lines(density(x, width = 12, window = "rectangular"), lwd = 2) rug(x) hist(x, xlab = "Waiting times (in min.)", ylab = "Frequency", probability = TRUE, main = "Triangular kernel", border = "gray") lines(density(x, width = 12, window = "triangular"), lwd = 2) rug(x) @ \caption{Density estimates of the geyser eruption data imposed on a histogram of the data. \label{DE:faithfuldens}} \end{center} \end{figure} \rawSinput \begin{figure} \begin{center} <>= library("KernSmooth") data("CYGOB1", package = "HSAUR3") CYGOB1d <- bkde2D(CYGOB1, bandwidth = sapply(CYGOB1, dpik)) contour(x = CYGOB1d$x1, y = CYGOB1d$x2, z = CYGOB1d$fhat, xlab = "log surface temperature", ylab = "log light intensity") @ \caption{A contour plot of the bivariate density estimate of the \Robject{CYGOB1} data, i.e., a two-dimensional graphical display for a three-dimensional problem. \label{DE:CYGOB12Dcontour}} \end{center} \end{figure} \begin{figure} \begin{center} <>= persp(x = CYGOB1d$x1, y = CYGOB1d$x2, z = CYGOB1d$fhat, xlab = "log surface temperature", ylab = "log light intensity", zlab = "estimated density", theta = -35, axes = TRUE, box = TRUE) @ \caption{The bivariate density estimate of the \Robject{CYGOB1} data, here shown in a three-dimensional fashion using the \Rcmd{persp} function. \label{DE:CYGOB12Dpersp}} \end{center} \end{figure} \subsection{A Parametric Density Estimate for the Old Faithful Data \label{DE-waiting}} <>= logL <- function(param, x) { d1 <- dnorm(x, mean = param[2], sd = param[3]) d2 <- dnorm(x, mean = param[4], sd = param[5]) -sum(log(param[1] * d1 + (1 - param[1]) * d2)) } startparam <- c(p = 0.5, mu1 = 50, sd1 = 3, mu2 = 80, sd2 = 3) opp <- optim(startparam, logL, x = faithful$waiting, method = "L-BFGS-B", lower = c(0.01, rep(1, 4)), upper = c(0.99, rep(200, 4))) @ \newpage <>= opp @ <>= print(opp[names(opp) != "message"]) @ Of course, optimizing the appropriate likelihood `by hand' %' is not very convenient. In fact, (at least) two packages offer high-level functionality for estimating mixture models. The first one is package \Rpackage{mclust} \citep{PKG:mclust} implementing the methodology described in \cite{HSAUR:FraleyRaftery2002}. Here, a Bayesian information criterion (BIC) is applied to choose the form of the mixture model: \index{Bayesian Information Criterion (BIC)} <>= library("mclust") @ <>= library("mclust") mc <- Mclust(faithful$waiting) mc @ and the estimated means are <>= mc$parameters$mean @ with estimated standard deviation (found to be equal within both groups) <>= sqrt(mc$parameters$variance$sigmasq) @ The proportion is $\hat{p} = \Sexpr{round(mc$parameters$pro[1], 2)}$. The second package is called \Rpackage{flexmix} whose functionality is described by \cite{HSAUR:Leisch2004}. A mixture of two normals can be fitted using <>= library("flexmix") fl <- flexmix(waiting ~ 1, data = faithful, k = 2) @ with $\hat{p} = \Sexpr{round(fl@prior, 2)}$ and estimated parameters <>= parameters(fl, component = 1) parameters(fl, component = 2) @ \begin{figure} \begin{center} <>= opar <- as.list(opp$par) rx <- seq(from = 40, to = 110, by = 0.1) d1 <- dnorm(rx, mean = opar$mu1, sd = opar$sd1) d2 <- dnorm(rx, mean = opar$mu2, sd = opar$sd2) f <- opar$p * d1 + (1 - opar$p) * d2 hist(x, probability = TRUE, xlab = "Waiting times (in min.)", border = "gray", xlim = range(rx), ylim = c(0, 0.06), main = "") lines(rx, f, lwd = 2) lines(rx, dnorm(rx, mean = mean(x), sd = sd(x)), lty = 2, lwd = 2) legend(50, 0.06, lty = 1:2, bty = "n", legend = c("Fitted two-component mixture density", "Fitted single normal density")) @ \caption{Fitted normal density and two-component normal mixture for geyser eruption data. \label{DE:2Dplot}} \end{center} \end{figure} \index{Bootstrap approach|(} We can get standard errors for the five parameter estimates by using a bootstrap approach \citep[see][]{HSAUR:EfronTibshirani1993}. The original data are slightly perturbed by drawing $n$ out of $n$ observations \stress{with replacement} and those artificial replications of the original data are called \stress{bootstrap samples}. Now, we can fit the mixture for each bootstrap sample and assess the variability of the estimates, for example using confidence intervals. \index{Confidence interval!derived from bootstrap samples} Some suitable \R{} code based on the \Rcmd{Mclust} function follows. First, we define a function that, for a bootstrap sample \Robject{indx}, fits a two-component mixture model and returns $\hat{p}$ and the estimated means (note that we need to make sure that we always get an estimate of $p$, not $1 - p$): <>= library("boot") fit <- function(x, indx) { a <- Mclust(x[indx], minG = 2, maxG = 2, modelNames="E")$parameters if (a$pro[1] < 0.5) return(c(p = a$pro[1], mu1 = a$mean[1], mu2 = a$mean[2])) return(c(p = 1 - a$pro[1], mu1 = a$mean[2], mu2 = a$mean[1])) } @ The function \Rcmd{fit} can now be fed into the \Rcmd{boot} function \citep{PKG:boot} for bootstrapping (here $1000$ bootstrap samples are drawn) \begin{Schunk} \begin{Sinput} R> bootpara <- boot(faithful$waiting, fit, R = 1000) \end{Sinput} \end{Schunk} <>= bootparafile <- system.file("cache", "DE-bootpara.rda", package = "HSAUR3") if (file.exists(bootparafile)) { load(bootparafile) } else { bootpara <- boot(faithful$waiting, fit, R = 1000) } @ We assess the variability of our estimates $\hat{p}$ by means of adjusted bootstrap percentile (BCa) confidence intervals, which for $\hat{p}$ can be obtained from <>= boot.ci(bootpara, type = "bca", index = 1) @ We see that there is a reasonable variability in the mixture model; however, the means in the two components are rather stable, as can be seen from <>= boot.ci(bootpara, type = "bca", index = 2) @ for $\hat{\mu}_1$ and for $\hat{\mu}_2$ from <>= boot.ci(bootpara, type = "bca", index = 3) @ Finally, we show a graphical representation of both the bootstrap distribution of the mean estimates \stress{and} the corresponding confidence intervals. For convenience, we define a function for plotting, namely <>= bootplot <- function(b, index, main = "") { dens <- density(b$t[,index]) ci <- boot.ci(b, type = "bca", index = index)$bca[4:5] est <- b$t0[index] plot(dens, main = main) y <- max(dens$y) / 10 segments(ci[1], y, ci[2], y, lty = 2) points(ci[1], y, pch = "(") points(ci[2], y, pch = ")") points(est, y, pch = 19) } @ The element \Robject{t} of an object created by \Rcmd{boot} contains the bootstrap replications of our estimates, i.e., the values computed by \Rcmd{fit} for each of the $1000$ bootstrap samples of the geyser data. First, we plot a simple density estimate and then construct a line representing the confidence interval. We apply this function to the bootstrap distributions of our estimates $\hat{\mu}_1$ and $\hat{\mu}_2$ in Figure~\ref{DE-bootplot}. \begin{figure} \begin{center} <>= layout(matrix(1:2, ncol = 2)) bootplot(bootpara, 2, main = expression(mu[1])) bootplot(bootpara, 3, main = expression(mu[2])) @ \caption{Bootstrap distribution and confidence intervals for the mean estimates of a two-component mixture for the geyser data. \label{DE-bootplot}} \end{center} \end{figure} \index{Bootstrap approach|)} \bibliographystyle{LaTeXBibTeX/refstyle} \bibliography{LaTeXBibTeX/HSAUR} \end{document} HSAUR3/vignettes/Ch_gam.Rnw0000644000176200001440000006234514416236367015123 0ustar liggesusers \documentclass{chapman} %%% copy Sweave.sty definitions %%% keeps `sweave' from adding `\usepackage{Sweave}': DO NOT REMOVE %\usepackage{Sweave} \RequirePackage[T1]{fontenc} \RequirePackage{graphicx,ae,fancyvrb} \IfFileExists{upquote.sty}{\RequirePackage{upquote}}{} \usepackage{relsize} \DefineVerbatimEnvironment{Sinput}{Verbatim}{} \DefineVerbatimEnvironment{Soutput}{Verbatim}{fontfamily=courier, fontshape=it, fontsize=\relsize{-1}} \DefineVerbatimEnvironment{Scode}{Verbatim}{} \newenvironment{Schunk}{}{} %%% environment for raw output \newcommand{\SchunkRaw}{\renewenvironment{Schunk}{}{} \DefineVerbatimEnvironment{Soutput}{Verbatim}{fontfamily=courier, fontshape=it, fontsize=\small} \rawSinput } %%% environment for labeled output \newcommand{\nextcaption}{} \newcommand{\SchunkLabel}{ \renewenvironment{Schunk}{\begin{figure}[ht] }{\caption{\nextcaption} \end{figure} } \DefineVerbatimEnvironment{Sinput}{Verbatim}{frame = topline} \DefineVerbatimEnvironment{Soutput}{Verbatim}{frame = bottomline, samepage = true, fontfamily=courier, fontshape=it, fontsize=\relsize{-1}} } %%% S code with line numbers \DefineVerbatimEnvironment{Sinput} {Verbatim} { %% numbers=left } \newcommand{\numberSinput}{ \DefineVerbatimEnvironment{Sinput}{Verbatim}{numbers=left} } \newcommand{\rawSinput}{ \DefineVerbatimEnvironment{Sinput}{Verbatim}{} } %%% R / System symbols \newcommand{\R}{\textsf{R}} \newcommand{\rR}{{R}} \renewcommand{\S}{\textsf{S}} \newcommand{\SPLUS}{\textsf{S-PLUS}} \newcommand{\rSPLUS}{{S-PLUS}} \newcommand{\SPSS}{\textsf{SPSS}} \newcommand{\EXCEL}{\textsf{Excel}} \newcommand{\ACCESS}{\textsf{Access}} \newcommand{\SQL}{\textsf{SQL}} %%\newcommand{\Rpackage}[1]{\hbox{\rm\textit{#1}}} %%\newcommand{\Robject}[1]{\hbox{\rm\texttt{#1}}} %%\newcommand{\Rclass}[1]{\hbox{\rm\textit{#1}}} %%\newcommand{\Rcmd}[1]{\hbox{\rm\texttt{#1}}} \newcommand{\Rpackage}[1]{\index{#1 package@{\fontseries{b}\selectfont #1} package} {\fontseries{b}\selectfont #1}} \newcommand{\rpackage}[1]{{\fontseries{b}\selectfont #1}} \newcommand{\Robject}[1]{\texttt{#1}} \newcommand{\Rclass}[1]{\index{#1 class@\textit{#1} class}\textit{#1}} \newcommand{\Rcmd}[1]{\index{#1 function@\texttt{#1} function}\texttt{#1}} \newcommand{\Roperator}[1]{\texttt{#1}} \newcommand{\Rarg}[1]{\texttt{#1}} \newcommand{\Rlevel}[1]{\texttt{#1}} %%% other symbols \newcommand{\file}[1]{\hbox{\rm\texttt{#1}}} %%\newcommand{\stress}[1]{\index{#1}\textit{#1}} \newcommand{\stress}[1]{\textit{#1}} \newcommand{\booktitle}[1]{\textit{#1}} %%' %%% Math symbols \usepackage{amstext} \usepackage{amsmath} \newcommand{\E}{\mathsf{E}} \newcommand{\Var}{\mathsf{Var}} \newcommand{\Cov}{\mathsf{Cov}} \newcommand{\Cor}{\mathsf{Cor}} \newcommand{\x}{\mathbf{x}} \newcommand{\y}{\mathbf{y}} \renewcommand{\a}{\mathbf{a}} \newcommand{\W}{\mathbf{W}} \newcommand{\C}{\mathbf{C}} \renewcommand{\H}{\mathbf{H}} \newcommand{\X}{\mathbf{X}} \newcommand{\B}{\mathbf{B}} \newcommand{\V}{\mathbf{V}} \newcommand{\I}{\mathbf{I}} \newcommand{\D}{\mathbf{D}} \newcommand{\bS}{\mathbf{S}} \newcommand{\N}{\mathcal{N}} \renewcommand{\L}{L} \renewcommand{\P}{\mathsf{P}} \newcommand{\K}{\mathbf{K}} \newcommand{\m}{\mathbf{m}} \newcommand{\argmin}{\operatorname{argmin}\displaylimits} \newcommand{\argmax}{\operatorname{argmax}\displaylimits} \newcommand{\bx}{\mathbf{x}} \newcommand{\bbeta}{\mathbf{\beta}} %%% links \usepackage{hyperref} \hypersetup{% pdftitle = {A Handbook of Statistical Analyses Using R (3rd Edition)}, pdfsubject = {Book}, pdfauthor = {Torsten Hothorn and Brian S. Everitt}, colorlinks = {black}, linkcolor = {black}, citecolor = {black}, urlcolor = {black}, hyperindex = {true}, linktocpage = {true}, } %%% captions & tables %% : conflics with figure definition in chapman.cls %%\usepackage[format=hang,margin=10pt,labelfont=bf]{caption} %% \usepackage{longtable} \usepackage[figuresright]{rotating} %%% R symbol in chapter 1 \usepackage{wrapfig} %%% Bibliography \usepackage[round,comma]{natbib} \renewcommand{\refname}{References \addcontentsline{toc}{chapter}{References}} \citeindexfalse %%% texi2dvi complains that \newblock is undefined, hm... \def\newblock{\hskip .11em plus .33em minus .07em} %%% Example sections \newcounter{exercise}[chapter] \setcounter{exercise}{0} \newcommand{\exercise}{\stepcounter{exercise} \item{Ex.~\arabic{chapter}.\arabic{exercise} }} %% URLs \newcommand{\curl}[1]{\begin{center} \url{#1} \end{center}} %%% for manual corrections %\renewcommand{\baselinestretch}{2} %%% plot sizes \setkeys{Gin}{width=0.95\textwidth} %%% color \usepackage{color} %%% hyphenations \hyphenation{drop-out} \hyphenation{mar-gi-nal} %%% new bidirectional quotes need \usepackage[utf8]{inputenc} %\usepackage{setspace} \definecolor{sidebox_todo}{rgb}{1,1,0.2} \newcommand{\todo}[1]{ \hspace{0pt}% \marginpar{% \fcolorbox{black}{sidebox_todo}{% \parbox{\marginparwidth} { \raggedright\sffamily\footnotesize{TODO: #1}% } }% } } \begin{document} %% Title page \title{A Handbook of Statistical Analyses Using \R{} --- 3rd Edition} \author{Torsten Hothorn and Brian S. Everitt} \maketitle %%\VignetteIndexEntry{Chapter Generalized Additive Models} %%\VignetteDepends{mgcv,rpart,wordcloud,mboost} \setcounter{chapter}{9} \SweaveOpts{prefix.string=figures/HSAUR,eps=FALSE,keep.source=TRUE} <>= rm(list = ls()) s <- search()[-1] s <- s[-match(c("package:base", "package:stats", "package:graphics", "package:grDevices", "package:utils", "package:datasets", "package:methods", "Autoloads"), s)] if (length(s) > 0) sapply(s, detach, character.only = TRUE) if (!file.exists("tables")) dir.create("tables") if (!file.exists("figures")) dir.create("figures") set.seed(290875) options(prompt = "R> ", continue = "+ ", width = 63, # digits = 4, show.signif.stars = FALSE, SweaveHooks = list(leftpar = function() par(mai = par("mai") * c(1, 1.05, 1, 1)), bigleftpar = function() par(mai = par("mai") * c(1, 1.7, 1, 1)))) HSAURpkg <- require("HSAUR3") if (!HSAURpkg) stop("cannot load package ", sQuote("HSAUR3")) rm(HSAURpkg) ### hm, R-2.4.0 --vanilla seems to need this a <- Sys.setlocale("LC_ALL", "C") ### book <- TRUE refs <- cbind(c("AItR", "DAGD", "SI", "CI", "ANOVA", "MLR", "GLM", "DE", "RP", "GAM", "SA", "ALDI", "ALDII", "SIMC", "MA", "PCA", "MDS", "CA"), 1:18) ch <- function(x) { ch <- refs[which(refs[,1] == x),] if (book) { return(paste("Chapter~\\\\ref{", ch[1], "}", sep = "")) } else { return(paste("Chapter~", ch[2], sep = "")) } } if (file.exists("deparse.R")) source("deparse.R") setHook(packageEvent("lattice", "attach"), function(...) { lattice.options(default.theme = function() standard.theme("pdf", color = FALSE)) }) @ \pagestyle{headings} <>= book <- FALSE @ <>= library("mgcv") library("mboost") library("rpart") library("wordcloud") @ \chapter[Scatterplot Smoothers and Additive Models]{Scatterplot Smoothers and Generalized Additive Models: The Men's Olympic 1500m, Air Pollution in the US, Risk Factors for Kyphosis, and Women's Role in %' Society \label{GAM}} \section{Introduction} \section{Scatterplot Smoothers and Generalized Additive Models} \section{Analysis Using \R{}} \subsection{Olympic 1500m Times} To begin we will construct a scatterplot of winning time against the year the games were held. The \R{} code and the resulting plot are shown in Figure~\ref{GAM-men1500m-plot}. There is a very clear downward trend in the times over the years, and, in addition there is a very clear outlier namely the winning time for 1896. We shall remove this time from the data set and now concentrate on the remaining times. First we will fit a simple linear regression to the data and plot the fit onto the scatterplot. The code and the resulting plot are shown in Figure~\ref{GAM-men1500m-lm}. Clearly the linear regression model captures in general terms the downward trend in the times. Now we can add the fits given by the lowess smoother and by a cubic spline smoother; the resulting graph and the extra \R{} code needed are shown in Figure~\ref{GAM-men1500m-smooth}. Both non-parametric fits suggest some distinct departure from linearity, and clearly point to a quadratic model being more sensible than a linear model here. And fitting a parametric model that includes both a linear and a quadratic effect for the year gives a prediction curve very similar to the non-parametric curves; see Figure~\ref{GAM-men1500m-quad}. Here use of the non-parametric smoothers has effectively diagnosed our linear model and pointed the way to using a more suitable parametric model; this is often how such non-parametric models can be used most effectively. For these data, of course, it is clear that the simple linear model cannot be suitable if the investigator is interested in predicting future times since even the most basic knowledge of human physiology will tell us that times cannot continue to go down. There must be some lower limit to the time man can run 1500m. But in other situations use of the non-parametric smoothers may point to a parametric model that could not have been identified \emph{a priori}. \begin{figure} \begin{center} <>= plot(time ~ year, data = men1500m, xlab = "Year", ylab = "Winning time (sec)") @ \caption{Scatterplot of year and winning time. \label{GAM-men1500m-plot}} \end{center} \end{figure} \begin{figure} \begin{center} <>= men1500m1900 <- subset(men1500m, year >= 1900) men1500m_lm <- lm(time ~ year, data = men1500m1900) plot(time ~ year, data = men1500m1900, xlab = "Year", ylab = "Winning time (sec)") abline(men1500m_lm) @ \caption{Scatterplot of year and winning time with fitted values from a simple linear model. \label{GAM-men1500m-lm}} \end{center} \end{figure} \begin{figure} \begin{center} <>= x <- men1500m1900$year y <- men1500m1900$time men1500m_lowess <- lowess(x, y) plot(time ~ year, data = men1500m1900, xlab = "Year", ylab = "Winning time (sec)") lines(men1500m_lowess, lty = 2) men1500m_cubic <- gam(y ~ s(x, bs = "cr")) lines(x, predict(men1500m_cubic), lty = 3) @ \caption{Scatterplot of year and winning time with fitted values from a smooth non-parametric model. \label{GAM-men1500m-smooth}} \end{center} \end{figure} \begin{figure} \begin{center} <>= men1500m_lm2 <- lm(time ~ year + I(year^2), data = men1500m1900) plot(time ~ year, data = men1500m1900, xlab = "Year", ylab = "Winning time (sec)") lines(men1500m1900$year, predict(men1500m_lm2)) @ \caption{Scatterplot of year and winning time with fitted values from a quadratic model. \label{GAM-men1500m-quad}} \end{center} \end{figure} It is of some interest to look at the predictions of winning times in future Olympics from both the linear and quadratic models. For example, for 2008 and 2012 the predicted times and their $95\%$ confidence intervals can be found using the following code \newpage <>= predict(men1500m_lm, newdata = data.frame(year = c(2008, 2012)), interval = "confidence") predict(men1500m_lm2, newdata = data.frame(year = c(2008, 2012)), interval = "confidence") @ \newpage For predictions far into the future both the quadratic and the linear model fail; we leave readers to get some more predictions to see what happens. We can compare the first prediction with the time actually recorded by the winner of the men's 1500m in Beijing 2008, Rashid Ramzi from Brunei, who won the event in $212.94$ seconds. The confidence interval obtained from the simple linear model does not include this value but the confidence interval for the prediction derived from the quadratic model does. \subsection{Air Pollution in US Cities} Unfortunately, we cannot fit an additive model for describing the $\text{SO}_2$ concentration based on all six covariates because this leads to more parameters than cities, i.e., more parameters than observations when using the default parameterization of \Rpackage{mgcv}. Thus, before we can apply the \Rcmd{gam} function from package \Rpackage{mgcv}, we have to decide which covariates should enter the model and which subset of these covariates should be allowed to deviate from a linear regression relationship. As briefly discussed in Section~\ref{GAM:VS}, we can fit an additive model using the iterative boosting algorithm as described by \cite{HSAUR:BuehlmannHothorn2007}. The complexity of the model is determined by an AIC criterion, which can also be used to determine an appropriate number of boosting iterations to choose. The methodology is available from package \Rpackage{mboost} \citep{PKG:mboost}. We start with a small number of boosting iterations ($100$ by default) and compute the AIC of the corresponding $100$ models: <>= library("mboost") USair_boost <- gamboost(SO2 ~ ., data = USairpollution) USair_aic <- AIC(USair_boost) USair_aic @ The AIC suggests that the boosting algorithm should be stopped after $\Sexpr{mstop(USair_aic)}$ iterations. The partial contributions of each covariate to the predicted $\text{SO}_2$ concentration are given in Figure~\ref{GAM-USairpollution-boostplot}. The plot indicates that all six covariates enter the model and the selection of a subset of covariates for modeling isn't appropriate in this case. However, the number of manufacturing enterprises seems to add linearly to the $\text{SO}_2$ concentration, which simplifies the model. Moreover, the average annual precipitation contribution seems to deviate from zero only for some extreme observations and one might refrain from using the covariate at all. \begin{figure} \begin{center} <>= USair_gam <- USair_boost[mstop(USair_aic)] layout(matrix(1:6, ncol = 3)) plot(USair_gam, ask = FALSE) @ \caption{Partial contributions of six exploratory covariates to the predicted $\text{SO}_2$ concentration. \label{GAM-USairpollution-boostplot}} \end{center} \end{figure} As always, an inspection of the model fit via a residual plot is worth the effort. Here, we plot the fitted values against the residuals and label the points with the name of the corresponding city using the \Rcmd{textplot} function from package \Rpackage{wordcloud}. Figure~\ref{GAM-USairpollution-residplot} shows at least two extreme observations. Chicago has a very large observed and fitted $\text{SO}_2$ concentration, which is due to the huge number of inhabitants and manufacturing plants (see Figure~\ref{GAM-USairpollution-boostplot} also). One smaller city, Providence, is associated with a rather large positive residual indicating that the actual $\text{SO}_2$ concentration is underestimated by the model. In fact, this small town has a rather high $\text{SO}_2$ concentration which is hardly explained by our model. Overall, the model doesn't fit the data very well, so we should avoid overinterpreting the model structure too much. In addition, since each of the six covariates contributes to the model, we aren't able to select a smaller subset of the covariates for modeling and thus fitting a model using \Rcmd{gam} is still complicated (and will not add much knowledge anyway). \begin{figure} \begin{center} <>= SO2hat <- predict(USair_gam) SO2 <- USairpollution$SO2 plot(SO2hat, SO2 - SO2hat, type = "n", xlim = c(-20, max(SO2hat) * 1.1), ylim = range(SO2 - SO2hat) * c(2, 1)) textplot(SO2hat, SO2 - SO2hat, rownames(USairpollution), show.lines = FALSE, new = FALSE) abline(h = 0, lty = 2, col = "grey") @ \caption{Residual plot of $\text{SO}_2$ concentration. \label{GAM-USairpollution-residplot}} \end{center} \end{figure} \subsection{Risk Factors for Kyphosis} \index{Spinogram} Before modeling the relationship between kyphosis and the three exploratory variables age, starting vertebral level of the surgery, and number of vertebrae involved, we investigate the partial associations by so-called \stress{spinograms}, as introduced in \Sexpr{ch("DAGD")}. The numeric exploratory covariates are discretized and their empirical relative frequencies are plotted against the conditional frequency of kyphosis in the corresponding group. Figure~\ref{GAM-kyphosis-plot} shows that kyphosis is absent in very young or very old children, children with a small starting vertebral level, and high number of vertebrae involved. \begin{figure} \begin{center} <>= layout(matrix(1:3, nrow = 1)) spineplot(Kyphosis ~ Age, data = kyphosis, ylevels = c("present", "absent")) spineplot(Kyphosis ~ Number, data = kyphosis, ylevels = c("present", "absent")) spineplot(Kyphosis ~ Start, data = kyphosis, ylevels = c("present", "absent")) @ \caption{Spinograms of the three exploratory variables and response variable \Robject{kyphosis}. \label{GAM-kyphosis-plot}} \end{center} \end{figure} The logistic additive model needed to describe the conditional probability of kyphosis given the exploratory variables can be fitted using function \Rcmd{gam}. Here, the dimension of the basis ($k$) has to be modified for \Robject{Number} and \Robject{Start} since these variables are heavily tied. As for generalized linear models, the \Robject{family} argument determines the type of model to be fitted, a logistic model in our case: <>= (kyphosis_gam <- gam(Kyphosis ~ s(Age, bs = "cr") + s(Number, bs = "cr", k = 3) + s(Start, bs = "cr", k = 3), family = binomial, data = kyphosis)) @ The partial contributions of each covariate to the conditional probability of kyphosis with confidence bands are shown in Figure~\ref{GAM-kyphosis-gamplot}. In essence, the same conclusions as drawn from Figure~\ref{GAM-kyphosis-plot} can be stated here. The risk of kyphosis being present decreases with higher starting vertebral level and lower number of vertebrae involved. Children about $100$ months old are under higher risk compared to younger or older children. \begin{figure} \begin{center} <>= trans <- function(x) binomial()$linkinv(x) layout(matrix(1:3, nrow = 1)) plot(kyphosis_gam, select = 1, shade = TRUE, trans = trans) plot(kyphosis_gam, select = 2, shade = TRUE, trans = trans) plot(kyphosis_gam, select = 3, shade = TRUE, trans = trans) @ \caption{Partial contributions of three exploratory variables with confidence bands. \label{GAM-kyphosis-gamplot}} \end{center} \end{figure} \subsection{Women's Role in Society} %' In Chapter~\ref{GLM}, we saw that a logistic regression with an interaction between gender and level of education described the data better than a main-effects only model. Using an additive logistic regression model, we can fit separate, possibly nonlinear, functions of levels of education to both genders: <>= data("womensrole", package = "HSAUR3") fm1 <- cbind(agree, disagree) ~ s(education, by = gender) womensrole_gam <- gam(fm1, data = womensrole, family = binomial()) @ The resulting model is best inspected by a plot (Figure~\ref{GAM-womensrole-gamplot}). For males, the log-odds of agreement decreases linearly with each additional year of education. For females, the log-odds is more or less constant up to five years of education and only then begins to decrease. After 15 years, there seems to be no further impact on the log-odds. When we plot the resulting fitted probabilities in a way similar to Figure~\ref{GLM-role2plot}, we see that the interaction is even more pronounced in the additive compared to the linear model. The flat curve for women with less than five years of education can be explained by the rather large variability of the answers in this area but the plateau to the right is due to two groups of highly educated women with a rather large proportion of agreement. \begin{figure} \begin{center} <>= layout(matrix(1:2, nrow = 1)) plot(womensrole_gam, select = 1, shade = TRUE) plot(womensrole_gam, select = 1, shade = TRUE) @ \caption{Effects of level of education for males (right) and females (left) on the log-odds scale derived from an additive logistic regression model. The shaded area denotes confidence bands. \label{GAM-womensrole-gamplot}} \end{center} \end{figure} <>= myplot <- function(role.fitted) { f <- womensrole$gender == "Female" plot(womensrole$education, role.fitted, type = "n", ylab = "Probability of agreeing", xlab = "Education", ylim = c(0,1)) lines(womensrole$education[!f], role.fitted[!f], lty = 1) lines(womensrole$education[f], role.fitted[f], lty = 2) lgtxt <- c("Fitted (Males)", "Fitted (Females)") legend("topright", lgtxt, lty = 1:2, bty = "n") y <- womensrole$agree / (womensrole$agree + womensrole$disagree) size <- womensrole$agree + womensrole$disagree size <- size - min(size) size <- (size / max(size)) * 3 + 1 text(womensrole$education, y, ifelse(f, "\\VE", "\\MA"), family = "HersheySerif", cex = size) } @ \begin{figure} \begin{center} <>= myplot(predict(womensrole_gam, type = "response")) @ \caption{Effects of level of education for males (right) and females (left) on the log-odds scale derived from an additive logistic regression model. The shaded area denotes confidence bands. \label{GAM-womensrole-probplot}} \end{center} \end{figure} \section{Summary of Findings} \begin{description} \item[Olympic 1500m times] Here the use of a generalized additive model suggested that a quadratic model might best describe the data. When such a model was fitted it made reasonable predictions of the winner's times in the Olympic Games of 2008 and 2012. \item[Air pollution data] Finding a suitable model for these data was problematic because of the outliers in the data and the high correlations between some pairs of explanatory variables. Except for wind, the fitted partial contributions are well approximated by a linear function for most of the observations and it might be questioned if the more complex additive model is really needed. \item[Kyphosis] The risk of kyphosis being present decreases with higher starting vertebral level and lower number of vertebrae involved. Children about 100 months old are under higher risk compared to younger or older children. \item[Women's role in society] For males, the log-odds of agreement decreases linearly with each additional year of education. For females, the log-odds is more or less constant up to five years of education and only then begins to decrease. After $15$ years, there seems to be no further impact on the log-odds. \end{description} \section{Final Comments} Additive models offer flexible modeling tools for regression problems. They stand between generalized linear models, where the regression relationship is assumed to be linear, and more complex models like random forests (see \Sexpr{ch("RP")}) where the regression relationship remains unspecified. Smooth functions describing the influence of covariates on the response can be easily interpreted. Variable selection is a technically difficult problem in this class of models; boosting methods are one possibility to deal with this problem. \section*{Exercises} \begin{description} \exercise Consider the body fat data introduced in \Sexpr{ch("RP")}, Table~\ref{RP-bodyfat-tab}. First fit a generalized additive model assuming normal errors using function \Rcmd{gam}. Are all potential covariates informative? Check the results against a generalized additive model that underwent AIC-based variable selection (fitted using function \Rcmd{gamboost}). \exercise Again fit an additive model to the body fat data, but this time for a log-transformed response. Compare the two models, which one is more appropriate? \exercise Try to fit a logistic additive model to the glaucoma data discussed in \Sexpr{ch("RP")}. Which covariates should enter the model and how is their influence on the probability of suffering from glaucoma? \exercise Investigate the use of different types of scatterplot smoothers on the Hubble data in Table~\ref{MLR-hubble-tab} in Chapter~\ref{MLR-hubble-tab}. \end{description} \bibliographystyle{LaTeXBibTeX/refstyle} \bibliography{LaTeXBibTeX/HSAUR} \end{document} HSAUR3/vignettes/Ch_multidimensional_scaling.Rnw0000644000176200001440000002740714416236367021434 0ustar liggesusers \documentclass{chapman} %%% copy Sweave.sty definitions %%% keeps `sweave' from adding `\usepackage{Sweave}': DO NOT REMOVE %\usepackage{Sweave} \RequirePackage[T1]{fontenc} \RequirePackage{graphicx,ae,fancyvrb} \IfFileExists{upquote.sty}{\RequirePackage{upquote}}{} \usepackage{relsize} \DefineVerbatimEnvironment{Sinput}{Verbatim}{} \DefineVerbatimEnvironment{Soutput}{Verbatim}{fontfamily=courier, fontshape=it, fontsize=\relsize{-1}} \DefineVerbatimEnvironment{Scode}{Verbatim}{} \newenvironment{Schunk}{}{} %%% environment for raw output \newcommand{\SchunkRaw}{\renewenvironment{Schunk}{}{} \DefineVerbatimEnvironment{Soutput}{Verbatim}{fontfamily=courier, fontshape=it, fontsize=\small} \rawSinput } %%% environment for labeled output \newcommand{\nextcaption}{} \newcommand{\SchunkLabel}{ \renewenvironment{Schunk}{\begin{figure}[ht] }{\caption{\nextcaption} \end{figure} } \DefineVerbatimEnvironment{Sinput}{Verbatim}{frame = topline} \DefineVerbatimEnvironment{Soutput}{Verbatim}{frame = bottomline, samepage = true, fontfamily=courier, fontshape=it, fontsize=\relsize{-1}} } %%% S code with line numbers \DefineVerbatimEnvironment{Sinput} {Verbatim} { %% numbers=left } \newcommand{\numberSinput}{ \DefineVerbatimEnvironment{Sinput}{Verbatim}{numbers=left} } \newcommand{\rawSinput}{ \DefineVerbatimEnvironment{Sinput}{Verbatim}{} } %%% R / System symbols \newcommand{\R}{\textsf{R}} \newcommand{\rR}{{R}} \renewcommand{\S}{\textsf{S}} \newcommand{\SPLUS}{\textsf{S-PLUS}} \newcommand{\rSPLUS}{{S-PLUS}} \newcommand{\SPSS}{\textsf{SPSS}} \newcommand{\EXCEL}{\textsf{Excel}} \newcommand{\ACCESS}{\textsf{Access}} \newcommand{\SQL}{\textsf{SQL}} %%\newcommand{\Rpackage}[1]{\hbox{\rm\textit{#1}}} %%\newcommand{\Robject}[1]{\hbox{\rm\texttt{#1}}} %%\newcommand{\Rclass}[1]{\hbox{\rm\textit{#1}}} %%\newcommand{\Rcmd}[1]{\hbox{\rm\texttt{#1}}} \newcommand{\Rpackage}[1]{\index{#1 package@{\fontseries{b}\selectfont #1} package} {\fontseries{b}\selectfont #1}} \newcommand{\rpackage}[1]{{\fontseries{b}\selectfont #1}} \newcommand{\Robject}[1]{\texttt{#1}} \newcommand{\Rclass}[1]{\index{#1 class@\textit{#1} class}\textit{#1}} \newcommand{\Rcmd}[1]{\index{#1 function@\texttt{#1} function}\texttt{#1}} \newcommand{\Roperator}[1]{\texttt{#1}} \newcommand{\Rarg}[1]{\texttt{#1}} \newcommand{\Rlevel}[1]{\texttt{#1}} %%% other symbols \newcommand{\file}[1]{\hbox{\rm\texttt{#1}}} %%\newcommand{\stress}[1]{\index{#1}\textit{#1}} \newcommand{\stress}[1]{\textit{#1}} \newcommand{\booktitle}[1]{\textit{#1}} %%' %%% Math symbols \usepackage{amstext} \usepackage{amsmath} \newcommand{\E}{\mathsf{E}} \newcommand{\Var}{\mathsf{Var}} \newcommand{\Cov}{\mathsf{Cov}} \newcommand{\Cor}{\mathsf{Cor}} \newcommand{\x}{\mathbf{x}} \newcommand{\y}{\mathbf{y}} \renewcommand{\a}{\mathbf{a}} \newcommand{\W}{\mathbf{W}} \newcommand{\C}{\mathbf{C}} \renewcommand{\H}{\mathbf{H}} \newcommand{\X}{\mathbf{X}} \newcommand{\B}{\mathbf{B}} \newcommand{\V}{\mathbf{V}} \newcommand{\I}{\mathbf{I}} \newcommand{\D}{\mathbf{D}} \newcommand{\bS}{\mathbf{S}} \newcommand{\N}{\mathcal{N}} \renewcommand{\L}{L} \renewcommand{\P}{\mathsf{P}} \newcommand{\K}{\mathbf{K}} \newcommand{\m}{\mathbf{m}} \newcommand{\argmin}{\operatorname{argmin}\displaylimits} \newcommand{\argmax}{\operatorname{argmax}\displaylimits} \newcommand{\bx}{\mathbf{x}} \newcommand{\bbeta}{\mathbf{\beta}} %%% links \usepackage{hyperref} \hypersetup{% pdftitle = {A Handbook of Statistical Analyses Using R (3rd Edition)}, pdfsubject = {Book}, pdfauthor = {Torsten Hothorn and Brian S. Everitt}, colorlinks = {black}, linkcolor = {black}, citecolor = {black}, urlcolor = {black}, hyperindex = {true}, linktocpage = {true}, } %%% captions & tables %% : conflics with figure definition in chapman.cls %%\usepackage[format=hang,margin=10pt,labelfont=bf]{caption} %% \usepackage{longtable} \usepackage[figuresright]{rotating} %%% R symbol in chapter 1 \usepackage{wrapfig} %%% Bibliography \usepackage[round,comma]{natbib} \renewcommand{\refname}{References \addcontentsline{toc}{chapter}{References}} \citeindexfalse %%% texi2dvi complains that \newblock is undefined, hm... \def\newblock{\hskip .11em plus .33em minus .07em} %%% Example sections \newcounter{exercise}[chapter] \setcounter{exercise}{0} \newcommand{\exercise}{\stepcounter{exercise} \item{Ex.~\arabic{chapter}.\arabic{exercise} }} %% URLs \newcommand{\curl}[1]{\begin{center} \url{#1} \end{center}} %%% for manual corrections %\renewcommand{\baselinestretch}{2} %%% plot sizes \setkeys{Gin}{width=0.95\textwidth} %%% color \usepackage{color} %%% hyphenations \hyphenation{drop-out} \hyphenation{mar-gi-nal} %%% new bidirectional quotes need \usepackage[utf8]{inputenc} %\usepackage{setspace} \definecolor{sidebox_todo}{rgb}{1,1,0.2} \newcommand{\todo}[1]{ \hspace{0pt}% \marginpar{% \fcolorbox{black}{sidebox_todo}{% \parbox{\marginparwidth} { \raggedright\sffamily\footnotesize{TODO: #1}% } }% } } \begin{document} %% Title page \title{A Handbook of Statistical Analyses Using \R{} --- 3rd Edition} \author{Torsten Hothorn and Brian S. Everitt} \maketitle %%\VignetteIndexEntry{Chapter Multidimensional Scaling} %%\VignetteDepends{ape,wordcloud,MASS} \setcounter{chapter}{19} \SweaveOpts{prefix.string=figures/HSAUR,eps=FALSE,keep.source=TRUE} <>= rm(list = ls()) s <- search()[-1] s <- s[-match(c("package:base", "package:stats", "package:graphics", "package:grDevices", "package:utils", "package:datasets", "package:methods", "Autoloads"), s)] if (length(s) > 0) sapply(s, detach, character.only = TRUE) if (!file.exists("tables")) dir.create("tables") if (!file.exists("figures")) dir.create("figures") set.seed(290875) options(prompt = "R> ", continue = "+ ", width = 63, # digits = 4, show.signif.stars = FALSE, SweaveHooks = list(leftpar = function() par(mai = par("mai") * c(1, 1.05, 1, 1)), bigleftpar = function() par(mai = par("mai") * c(1, 1.7, 1, 1)))) HSAURpkg <- require("HSAUR3") if (!HSAURpkg) stop("cannot load package ", sQuote("HSAUR3")) rm(HSAURpkg) ### hm, R-2.4.0 --vanilla seems to need this a <- Sys.setlocale("LC_ALL", "C") ### book <- TRUE refs <- cbind(c("AItR", "DAGD", "SI", "CI", "ANOVA", "MLR", "GLM", "DE", "RP", "GAM", "SA", "ALDI", "ALDII", "SIMC", "MA", "PCA", "MDS", "CA"), 1:18) ch <- function(x) { ch <- refs[which(refs[,1] == x),] if (book) { return(paste("Chapter~\\\\ref{", ch[1], "}", sep = "")) } else { return(paste("Chapter~", ch[2], sep = "")) } } if (file.exists("deparse.R")) source("deparse.R") setHook(packageEvent("lattice", "attach"), function(...) { lattice.options(default.theme = function() standard.theme("pdf", color = FALSE)) }) @ \pagestyle{headings} <>= book <- FALSE @ <>= x <- library("ape") library("wordcloud") @ \chapter[Multidimensional Scaling]{Multidimensional Scaling: British Water Voles and Voting in US Congress \label{MDS}} \section{Introduction} \section{Multidimensional Scaling} \section{Analysis Using \R{}} We can apply classical scaling to the distance matrix for populations of water voles using the \R{} function \Rcmd{cmdscale}. The following code finds the classical scaling solution and computes the two criteria for assessing the required number of dimensions as described above. <>= data("watervoles", package = "HSAUR3") voles_mds <- cmdscale(watervoles, k = 13, eig = TRUE) voles_mds$eig @ Note that some of the eigenvalues are negative. The criterion $P_2$ can be computed by <>= sum(abs(voles_mds$eig[1:2]))/sum(abs(voles_mds$eig)) @ and the criterion suggested by \cite{HSAUR:Mardiaetal1979} is <>= sum((voles_mds$eig[1:2])^2)/sum((voles_mds$eig)^2) @ The two criteria for judging number of dimensions differ considerably, but both values are reasonably large, suggesting that the original distances between the water vole populations can be represented adequately in two dimensions. The two-dimensional solution can be plotted by extracting the coordinates from the \Robject{points} element of the \Robject{voles\_mds} object; the plot is shown in Figure~\ref{MDS-watervoles-plot}. The \Rcmd{textplot} function from package \Rpackage{wordcloud} can be used to annotate the plot with non-overlapping text. \begin{figure} \begin{center} <>= x <- voles_mds$points[,1] y <- voles_mds$points[,2] plot(x, y, xlab = "Coordinate 1", ylab = "Coordinate 2", xlim = range(x)*1.2, type = "n") textplot(x, y, words = colnames(watervoles), new = FALSE) @ \caption{Two-dimensional solution from classical multidimensional scaling of distance matrix for water vole populations. \label{MDS-watervoles-plot}} \end{center} \end{figure} \begin{figure} \begin{center} <>= library("ape") st <- mst(watervoles) plot(x, y, xlab = "Coordinate 1", ylab = "Coordinate 2", xlim = range(x)*1.2, type = "n") for (i in 1:nrow(watervoles)) { w1 <- which(st[i, ] == 1) segments(x[i], y[i], x[w1], y[w1]) } textplot(x, y, words = colnames(watervoles), new = FALSE) @ \caption{Minimum spanning tree for the \Robject{watervoles} data. \label{MDS-watervoles-mst}} \end{center} \end{figure} We shall now apply non-metric scaling to the voting behavior shown in Table~\ref{MDS-voting-tab}. Non-metric scaling is available with function \Rcmd{isoMDS} from package \Rpackage{MASS} \citep{HSAUR:VenablesRipley2002}: <>= library("MASS") data("voting", package = "HSAUR3") voting_mds <- isoMDS(voting) @ and we again depict the two-dimensional solution (Figure~\ref{MDS-voting-plot}). The Figure suggests that voting behavior is essentially along party lines, although there is more variation among Republicans. The voting behavior of one of the Republicans (Rinaldo) seems to be closer to his democratic colleagues rather than to the voting behavior of other Republicans. \begin{figure} \begin{center} <>= x <- voting_mds$points[,1] y <- voting_mds$points[,2] plot(x, y, xlab = "Coordinate 1", ylab = "Coordinate 2", xlim = range(voting_mds$points[,1])*1.2, type = "n") textplot(x, y, words = colnames(voting), new = FALSE) voting_sh <- Shepard(voting[lower.tri(voting)], voting_mds$points) @ \caption{Two-dimensional solution from non-metric multidimensional scaling of distance matrix for voting matrix. \label{MDS-voting-plot}} \end{center} \end{figure} \begin{figure} \begin{center} <>= plot(voting_sh, pch = ".", xlab = "Dissimilarity", ylab = "Distance", xlim = range(voting_sh$x), ylim = range(voting_sh$x)) lines(voting_sh$x, voting_sh$yf, type = "S") @ \caption{The Shepard diagram for the \Robject{voting} data shows some discrepancies between the original dissimilarities and the multidimensional scaling solution. \label{MDS-voting-shepard}} \end{center} \end{figure} \bibliographystyle{LaTeXBibTeX/refstyle} \bibliography{LaTeXBibTeX/HSAUR} \end{document} HSAUR3/vignettes/chapman.cls0000644000176200001440000007263314172224353015357 0ustar liggesusers% CHAPMAN.STY % v0.17 --- released 6th April 1993 % v0.16 --- released 11th November 1991 % v0.15 --- released 8th November 1991 % v0.14 --- first release 3rd November 1991 % % A LaTeX style file for Chapman and Hall books % Copyright 1993 Cambridge University Press %Modified Sept 1995 to work under Latex 2e % % based on the BOOK DOCUMENT STYLE -- Released 26 April 88 % for LaTeX version 2.09 % Copyright (C) 1988 by Leslie Lamport % \typeout{Document Style `chapman' v0.17 <6th April 1993>} % % Books use two-sided printing. % %\usepackage{times,mathtime}%for latex 2e user to use mathtimes font \@twosidetrue \@mparswitchtrue % % draft option % \def\ds@draft{\overfullrule 5pt} \@options % **************************************** % * FONTS * % **************************************** % \lineskip 1pt \normallineskip 1pt \def\baselinestretch{1} \def\normalsize{\@setsize\normalsize{12pt}\xpt\@xpt \abovedisplayskip 6pt plus 1pt minus 1pt% \belowdisplayskip \abovedisplayskip \abovedisplayshortskip \z@ plus3pt% \belowdisplayshortskip 3.25pt plus 1pt minus 1pt% \let\@listi\@listI} \def\small{\@setsize\small{11pt}\ixpt\@ixpt \abovedisplayskip 5.5pt plus 2pt minus 2pt% \belowdisplayskip \abovedisplayskip \abovedisplayshortskip \z@ plus3pt% \belowdisplayshortskip 3.25pt plus 1pt minus 1pt% \def\@listi{\leftmargin\leftmargini \topsep 3pt plus 2pt minus 2pt\parsep 2pt plus 1pt minus 1pt \itemsep \z@ plus 2pt}} \def\footnotesize{\@setsize\footnotesize{9pt}\viiipt\@viiipt \abovedisplayskip 5pt plus 2pt minus 2pt% \belowdisplayskip \abovedisplayskip \abovedisplayshortskip \z@ plus 1pt% \belowdisplayshortskip 3pt plus 1pt minus 2pt \def\@listi{\leftmargin\leftmargini \topsep 3pt plus 1pt minus 1pt\parsep 2pt plus 1pt minus 1pt \itemsep \z@ plus 2pt}} \def\scriptsize{\@setsize\scriptsize{8pt}\viipt\@viipt} \def\tiny{\@setsize\tiny{6pt}\vpt\@vpt} \def\large{\@setsize\large{14pt}\xiipt\@xiipt} \def\Large{\@setsize\Large{16pt}\xivpt\@xivpt} \def\LARGE{\@setsize\LARGE{19pt}\xviipt\@xviipt} \def\huge{\@setsize\huge{22pt}\xxpt\@xxpt} \def\Huge{\@setsize\Huge{28pt}\xxvpt\@xxvpt} \normalsize % **************************************** % * PAGE LAYOUT * % **************************************** % % All margin dimensions measured from a point one inch from top and side % of page. % % SIDE MARGINS: % \oddsidemargin 6pc %5pc \evensidemargin 5.7pc %5pc \marginparwidth 4pc \marginparsep 1pc \topmargin 12pt %0pt \headheight 12pt \headsep 8pt \footskip 2pc % % DIMENSION OF TEXT: % \textheight = 45\baselineskip %\advance\textheight by \topskip \addtolength\textheight{3pt} \textwidth 28pc \addtolength\textwidth{.5pt} % \textheight = 43\baselineskip % %\advance\textheight by \topskip %\addtolength\textheight{3pt} % \textwidth 26pc %\addtolength\textwidth{.5pt} \columnsep 1pc \columnseprule 0pt % % FOOTNOTES % \footnotesep 6.65pt \skip\footins 12pt plus 3pt minus 1.5pt % % FLOATS % % FOR FLOATS ON A TEXT PAGE: % ONE-COLUMN MODE OR SINGLE-COLUMN FLOATS IN TWO-COLUMN MODE: \floatsep 12pt plus 2pt minus 2pt \textfloatsep 18pt plus 2pt minus 4pt \intextsep 12pt plus 2pt minus 2pt % TWO-COLUMN FLOATS IN TWO-COLUMN MODE: \dblfloatsep 12pt plus 2pt minus 2pt \dbltextfloatsep 18pt plus 2pt minus 4pt % % FOR FLOATS ON A SEPARATE FLOAT PAGE OR COLUMN: % ONE-COLUMN MODE OR SINGLE-COLUMN FLOATS IN TWO-COLUMN MODE: \@fptop 0pt plus 0fil \@fpsep 12pt plus 0fil \@fpbot 0pt plus 3fil % % DOUBLE-COLUMN FLOATS IN TWO-COLUMN MODE. \@dblfptop 0pt plus 0fil \@dblfpsep 12pt plus 0fil \@dblfpbot 0pt plus 3fil % % MARGINAL NOTES: % \marginparpush 5pt % **************************************** % * PARAGRAPHING * % **************************************** % \parskip 0pt plus .25pt \parindent 1em \partopsep 2pt plus 1pt minus 1pt % % The following page-breaking penalties are defined % \@lowpenalty 51 \@medpenalty 151 \@highpenalty 301 \@beginparpenalty -\@lowpenalty \@endparpenalty -\@lowpenalty \@itempenalty -\@lowpenalty % \clubpenalty=0 % 'Club line' at bottom of page. \widowpenalty=10000 % 'Widow line' at top of page. % \displaywidowpenalty % Math display widow line. % \predisplaypenalty % Breaking before a math display. % \postdisplaypenalty % Breaking after a math display. % \interlinepenalty % Breaking at a line within a paragraph. % \brokenpenalty % Breaking after a hyphenated line. % \def\thin@rule{{\parindent0pt\par\rule{\textwidth}{0.5pt}\par}} \def\thick@rule{{\parindent0pt\par\rule{\textwidth}{1pt}\par}} % **************************************** % * CHAPTERS AND SECTIONS * % **************************************** % % DEFINE COUNTERS: % \newcounter{part} \newcounter{chapter} \newcounter{section}[chapter] \newcounter{subsection}[section] \newcounter{subsubsection}[subsection] \newcounter{paragraph}[subsubsection] \newcounter{subparagraph}[paragraph] \def\thepart {\Roman{part}} \def\thechapter {\arabic{chapter}} \def\thesection {\thechapter.\arabic{section}} \def\thesubsection {\thesection.\arabic{subsection}} \def\thesubsubsection{\thesubsection .\arabic{subsubsection}} \def\theparagraph {\thesubsubsection.\arabic{paragraph}} \def\thesubparagraph {\theparagraph.\arabic{subparagraph}} \def\@chapapp{CHAPTER} % **************************************** % * PARTS * % **************************************** % \def\part{% \cleardoublepage \thispagestyle{empty}% \if@twocolumn \onecolumn \@tempswatrue \else \@tempswafalse \fi \secdef\@part\@spart } % % Heading for the \part command. % \def\@part[#1]#2{% \ifnum \c@secnumdepth >-2\relax \refstepcounter{part}% \addcontentsline{toc}{part}{\thepart \hspace{1em}#1}% \typeout{PART \number\c@part.}% \else \addcontentsline{toc}{part}{#1}% \fi \markboth{}{}% \vspace*{-17pt}% \vbox{\thin@rule\par \parindent 0pt \centering \vskip 17pt% \ifnum \c@secnumdepth >\m@ne \normalfont PART \thepart\par \else \normalfont \phantom{PART \thepart}\par \fi \vskip 17pt% \LARGE \bfseries #1\par \nobreak \addvspace{-4pt}% \thick@rule \vskip 25pt}% \@endpart } % % Heading for the \part* command. % \def\@spart#1{% \vspace*{-17pt}% \vbox{\thin@rule\par \parindent 0pt \centering \vskip 17pt% \normalfont\phantom{PART \thepart}\par \vskip 17pt% \LARGE \bfseries #1\par \nobreak \addvspace{-4pt}% \thick@rule \vskip 25pt}% \@endpart } % % \@endpart finishes the part page. % \def\@endpart{% \vfil\newpage \if@twoside \hbox{}% \thispagestyle{empty}% \newpage \fi \if@tempswa \twocolumn\fi } % **************************************** % * CHAPTERS * % **************************************** % % Chapter text macros % \newif\if@chptxt \newbox\@chptxtbox % \def\chaptertext{\global\@chptxttrue\global\setbox\@chptxtbox=\vbox\bgroup% \hsize=\textwidth\normalfont\small\noindent\ignorespaces} \def\endchaptertext{\egroup} % % Heading for the \chapter command. % \def\@makechapterhead#1{% \vspace*{-17pt}% \vbox{\thin@rule\par \parindent 0pt \centering \vskip 17pt% \ifnum \c@secnumdepth >\m@ne \normalfont \@chapapp{} \thechapter\par \else \normalfont \phantom{\@chapapp{} \thechapter}\par \fi \vskip 17pt% \LARGE \bfseries #1\par \nobreak \addvspace{-4pt}% \thick@rule \if@chptxt \addvspace{24pt plus 2pt}\unvbox\@chptxtbox \addvspace{6pt}\global\@chptxtfalse \else \vskip 23.5pt% \fi}% } % % Heading for the \chapter* command. % \def\@makeschapterhead#1{% \vspace*{-17pt}% \vbox{\thin@rule\par \parindent 0pt \centering \vskip 17pt% \normalfont\phantom{\@chapapp{} \thechapter}\par \vskip 17pt% \LARGE \bf #1\par \nobreak \addvspace{-4pt}% \thick@rule \if@chptxt \addvspace{24pt plus 2pt}\unvbox\@chptxtbox \addvspace{6pt}\global\@chptxtfalse \else \vskip 23.5pt% \fi}% } % % \secdef{UNSTARCMDS}{STARCMDS} : % \def\chapter{% \cleardoublepage \thispagestyle{plain}% \global\@topnum\z@ \@afterindentfalse \secdef\@chapter\@schapter } % \def\@chapter[#1]#2{% \ifnum \c@secnumdepth >\m@ne \refstepcounter{chapter}% \typeout{\@chapapp\space\thechapter.}% \addcontentsline{toc}{chapter}{\protect\numberline{\thechapter}#1}% \else \addcontentsline{toc}{chapter}{#1}% \fi \chaptermark{#1}% \addtocontents{lof}{\protect\addvspace{10pt}}% \addtocontents{lot}{\protect\addvspace{10pt}}% \if@twocolumn \@topnewpage[\@makechapterhead{#2}]% \else \@makechapterhead{#2}\@afterheading \fi } % \def\@schapter#1{% \chaptermark{#1}% \addtocontents{lof}{\protect\addvspace{10pt}}% \addtocontents{lot}{\protect\addvspace{10pt}}% \thispagestyle{empty}% %% \if@nocntentry %% \else %% \addcontentsline{toc}{chapter}{#1}% %% \fi \if@twocolumn \@topnewpage[\@makeschapterhead{#1}]% \else \@makeschapterhead{#1}\@afterheading \fi } % **************************************** % * SECTIONS * % **************************************** % % \@startsection {NAME}{LEVEL}{INDENT}{BEFORESKIP}{AFTERSKIP}{STYLE} % optional * [ALTHEADING]{HEADING} % \def\section{\@startsection{section}{1}{\z@} {-1.5pc plus -1pt minus -2pt} {6pt plus 1pt} {\normalsize\bf\raggedright}} \def\subsection{\@startsection{subsection}{2}{\z@} {-1.5pc plus -1pt minus -2pt} {6pt plus 1pt} {\normalsize\it\raggedright}} \def\subsubsection{\@startsection{subsubsection}{3}{\z@} {-1.0pc plus -1pt minus -2pt} {6pt plus 1pt} {\normalsize\it\raggedright}} \def\paragraph{\@startsection{paragraph}{4}{\z@} {3.25pt plus 1pt minus .2pt} {-1em} {\normalsize\it}} \def\subparagraph{\@startsection{subparagraph}{4}{\parindent} {3.25pt plus 1pt minus.2pt} {-1em} {\normalsize\normalfont}} % % Default initializations of \...mark commands % \def\chaptermark#1{} \setcounter{secnumdepth}{2} % % APPENDIX % \def\appendix{\par \setcounter{chapter}{0} \setcounter{section}{0} \def\@chapapp{APPENDIX} \def\thechapter{\Alph{chapter}}} % **************************************** % * LISTS * % **************************************** % \leftmargini 1pc \leftmarginii 1pc \leftmarginiii 1pc \leftmarginiv 1pc \leftmarginv 1pc \leftmarginvi 1pc \leftmargin\leftmargini \labelsep 0.5em \labelwidth\leftmargini\advance\labelwidth-\labelsep \def\@listI{\leftmargin\leftmargini \parsep 3pt plus 1pt minus 1pt% \topsep 3pt plus 1pt minus 2pt% \itemsep \z@ plus 2pt} \let\@listi\@listI \@listi \def\@listii{\leftmargin\leftmarginii \labelwidth\leftmarginii\advance\labelwidth-\labelsep \topsep 3pt plus 2pt minus 1pt \parsep 2pt plus 1pt minus 1pt \itemsep \z@ plus 2pt} \def\@listiii{\leftmargin\leftmarginiii \labelwidth\leftmarginiii\advance\labelwidth-\labelsep \topsep 3pt plus 1pt minus 1pt \parsep \z@ \partopsep 1pt plus 0pt minus 1pt \itemsep \z@ plus 2pt} \def\@listiv{\leftmargin\leftmarginiv \labelwidth\leftmarginiv\advance\labelwidth-\labelsep} \def\@listv{\leftmargin\leftmarginv \labelwidth\leftmarginv\advance\labelwidth-\labelsep} \def\@listvi{\leftmargin\leftmarginvi \labelwidth\leftmarginvi\advance\labelwidth-\labelsep} % % ENUMERATE -- with optional argument to set left margin % % label macros for Range-Left and Range-Right labels \def\makeRLlabel#1{\rlap{#1}\hss} \def\makeRRlabel#1{\hss\llap{#1}} % \def\enumerate{\ifnum \@enumdepth >3 \@toodeep \else \advance\@enumdepth \@ne \edef\@enumctr{enum\romannumeral\the\@enumdepth}% \fi \@ifnextchar [{\@enumeratetwo}{\@enumerateone}% } \def\@enumeratetwo[#1]{% \list{\csname label\@enumctr\endcsname}% {\settowidth\labelwidth{[#1]} \leftmargin\labelwidth \advance\leftmargin\labelsep \usecounter{\@enumctr} \let\makelabel\makeRRlabel} } \def\@enumerateone{% \list{\csname label\@enumctr\endcsname}% {\usecounter{\@enumctr} \let\makelabel\makeRRlabel}} % \def\labelenumi{\theenumi} \def\theenumi{\arabic{enumi}.} \def\labelenumii{\theenumii} \def\theenumii{(\alph{enumii})} \def\p@enumii{\theenumi} \def\labelenumiii{\theenumiii} \def\theenumiii{\roman{enumiii}.} \def\p@enumiii{\theenumi(\theenumii)} \def\labelenumiv{\theenumiv} \def\theenumiv{\Alph{enumiv}.} \def\p@enumiv{\p@enumiii\theenumiii} % % ITEMIZE % \def\labelitemi{$\bullet$} \def\labelitemii{\bf --} \def\labelitemiii{$\ast$} \def\labelitemiv{$\cdot$} % % VERSE % \def\verse{\let\\=\@centercr \list{}{\itemsep\z@ \itemindent -1em\listparindent \itemindent \rightmargin\leftmargin\advance\leftmargin 1em}\item[]} \let\endverse\endlist % % QUOTATION % \def\quotation{\list{}{\listparindent 1em \itemindent\listparindent \rightmargin\z@ \parsep 0pt plus 1pt}\item[]\small} \let\endquotation=\endlist % % QUOTE % \def\quote{\list{}{\rightmargin\z@}\item[]\small} \let\endquote=\endlist % % DESCRIPTION % \def\descriptionlabel#1{\hspace\labelsep \bf #1} \def\description{\list{}{\labelwidth\z@ \itemindent-\leftmargin \let\makelabel\descriptionlabel}} \let\enddescription\endlist \newdimen\descriptionmargin \descriptionmargin=3em % **************************************** % * OTHER ENVIRONMENTS * % **************************************** % % PROOF \def\proof{\normalfont \trivlist \item[\hskip \labelsep{\itshape Proof.}]} \def\endproof{\hspace*{1em}{\begin{picture}(6.5,6.5)% \put(0,0){\framebox(6.5,6.5){}}\end{picture}}\endtrivlist} \@namedef{proof*}{\normalfont\trivlist \item[\hskip \labelsep{\itshape Proof.}]} \@namedef{endproof*}{\endtrivlist} \def\proofbox{\begin{picture}(6.5,6.5)% \put(0,0){\framebox(6.5,6.5){}}\end{picture}} % % ARRAY AND TABULAR % \arraycolsep 5pt \tabcolsep 6pt \arrayrulewidth .5pt \doublerulesep 0pt % % TABBING % \tabbingsep \labelsep % % MINIPAGE % % \skip\@mpfootins : plays same role for footnotes in a minipage as % \skip\footins does for ordinary footnotes \skip\@mpfootins = \skip\footins \def\thempfootnote{\mbox{{$\fnsymbol{mpfootnote}$}}} % % FRAMEBOX % \fboxsep = 3pt \fboxrule = .5pt % **************************************** % * TABLE OF CONTENTS, ETC. * % **************************************** % \def\@pnumwidth{2.5em} \def\@tocrmarg {2.55em} \def\@dotsep{4.5} \setcounter{tocdepth}{1} % % \@dottedtocline{LEVEL}{INDENT}{NUMWIDTH}{TITLE}{PAGE} : % \def\@dottedtocline#1#2#3#4#5{% \ifnum #1>\c@tocdepth \else \vskip \z@ plus .2pt {\leftskip #2\relax \rightskip \@tocrmarg plus2em% v.0.16 \parfillskip -\rightskip \parindent #2\relax \@afterindenttrue \interlinepenalty\@M \leavevmode \@tempdima #3\relax \advance\leftskip \@tempdima \hbox{}\hskip -\leftskip #4\nobreak % \leaders\hbox{$\m@th \mkern \@dotsep mu.\mkern \@dotsep mu$} \hfill \nobreak \hbox to\@pnumwidth{\hfil\normalfont #5}\par}% \fi } % TABLEOFCONTENTS % \newif\if@nocntentry % \def\tableofcontents{\@restonecolfalse \if@twocolumn \@restonecoltrue\onecolumn \fi \@nocntentrytrue \chapter*{Contents}% \@nocntentryfalse % \@mkboth{Contents}{Contents}% \@starttoc{toc}% \if@restonecol\twocolumn\fi } \def\l@chapter#1#2{\pagebreak[3] \vskip 12pt plus 1pt \@tempdima 1.5em \begingroup \parindent \z@ \rightskip \@pnumwidth \parfillskip -\@pnumwidth \bf \leavevmode \advance\leftskip\@tempdima \hskip -\leftskip {\raggedright #1}\nobreak \hfil \nobreak\hbox to\@pnumwidth{\hss #2}\par \endgroup} % \let\l@part=\l@chapter % \def\l@section {\@dottedtocline{1}{15.0pt}{22.5pt}} \def\l@subsection {\@dottedtocline{2}{37.5pt}{30.0pt}} \def\l@subsubsection{\@dottedtocline{3}{67.5pt}{20.0pt}} \def\l@paragraph {\@dottedtocline{4}{87.5pt}{20.0pt}} \def\l@subparagraph {\@dottedtocline{5}{107.5pt}{20.0pt}} % % The default width of TOC entries for sections in CHAPMAN.STY % will only cater for sections with numbers up to 10.9. Numbers larger % than this result in the section number leaving no space between the % number and the title. % % This can be fixed by placing the \widetocentries command before % the \tableofcontents command (but after the \documentstyle line). % \def\widetocentries{% \def\l@section {\@dottedtocline{1}{15.0pt}{27.5pt}}% \def\l@subsection {\@dottedtocline{2}{42.5pt}{40.0pt}}% \def\l@subsubsection{\@dottedtocline{3}{82.5pt}{20.0pt}}% \def\l@paragraph {\@dottedtocline{4}{102.5pt}{20.0pt}}% \def\l@subparagraph {\@dottedtocline{5}{120.5pt}{20.0pt}}% } % % LIST OF FIGURES % \def\listoffigures{\@restonecolfalse \if@twocolumn \@restonecoltrue\onecolumn \fi \chapter*{List of Figures} % \@mkboth{List of Figures}{List of Figures} \@starttoc{lof} \if@restonecol \twocolumn \fi } \def\l@figure{\@dottedtocline{1}{1.5em}{2.3em}} % % LIST OF TABLES % \def\listoftables{\@restonecolfalse \if@twocolumn \@restonecoltrue \onecolumn \fi \chapter*{List of Tables} % \@mkboth{List of Tables}{List of Tables} \@starttoc{lot} \if@restonecol \twocolumn\fi } \let\l@table\l@figure % **************************************** % * BIBLIOGRAPHY * % **************************************** % \newcounter{dummy} % \def\thebibliography#1{% \chapter*{References} % \@mkboth{References}{References} \typeout{References.} \list{}{\labelwidth\z@ \leftmargin 1em \itemsep \z@ plus .1pt \itemindent-\leftmargin \usecounter{dummy}} \small \parindent\z@ \parskip\z@ plus .1pt\relax \def\newblock{\hskip .11em plus .33em minus .07em} \sloppy\clubpenalty4000\widowpenalty4000 \sfcode`\.=1000\relax } \let\endthebibliography=\endlist % \def\@biblabel#1{[#1]\hfill} % \def\@cite#1{[#1]} % **************************************** % * THE INDEX * % **************************************** % % The theindex, theauthorindex and thesubjectindex environment's % \newif\if@restonecol \newif\if@royalflag \def\theindex{\the@index{Index}} \def\endtheindex{\par\endthe@index} \def\theauthorindex{\the@index{Author index}} \def\endtheauthorindex{\par\endthe@index} \def\thesubjectindex{\the@index{Subject index}} \def\endthesubjectindex{\par\endthe@index} \def\the@index#1{\@restonecoltrue\if@twocolumn\@restonecolfalse\fi \columnseprule \z@ \columnsep 1pc% %%\twocolumn[\vspace*{11pt}\@makeschapterhead{#1}]% \twocolumn[\vspace*{11pt}] \if@royalflag % If royal 1 or 2 is in use \chapter*{Index}% %%TH \@mkboth{#1}{#1}% \else \chapter*{Index}% %%TH \@mkboth{\uppercase{#1}}{\uppercase{#1}}% \fi \typeout{#1.}% %%TH \addcontentsline{toc}{chapter}{#1}% %%TH \thispagestyle{empty}% \parindent\z@ \parskip\z@ plus .3pt% \small\raggedright \relax \let\item\@idxitem } \def\endthe@index{\if@restonecol\onecolumn\else\clearpage\fi} \def\@idxitem{\par\hangindent 10pt} \def\subitem{\par\hangindent 20pt \hspace*{10pt}} \def\subsubitem{\par\hangindent 30pt \hspace*{20pt}} \def\indexspace{\par\vskip 16pt plus 2pt minus 2pt\relax} % **************************************** % * FOOTNOTES * % **************************************** % \newskip\@footindent \@footindent=1em \def\footnoterule{\kern-3\p@ \hrule width 0\columnwidth \kern 2.6\p@} \@addtoreset{footnote}{chapter} \long\def\@makefntext#1{\@setpar{\@@par\@tempdima \hsize \advance\@tempdima-\@footindent \parshape \@ne \@footindent \@tempdima}\par \noindent \hbox to \z@{\hss$^{\@thefnmark}$\ }#1} \renewcommand{\thefootnote}{\mbox{{$\fnsymbol{footnote}$}}} \def\@fnsymbol#1{\ifcase#1\or * \or \dagger\or \ddagger\or \S \or \P \or \|\or **\or \dagger\dagger \or \ddagger\ddagger \or \S\S \or \P\P \else\@ctrerr\fi\relax} % **************************************** % * FIGURES AND TABLES * % **************************************** % % Float placement parameters. % \setcounter{topnumber}{2} \def\topfraction{.9} \setcounter{bottomnumber}{2} \def\bottomfraction{.5} \setcounter{totalnumber}{4} \def\textfraction{.1} \def\floatpagefraction{.8} \setcounter{dbltopnumber}{2} \def\dbltopfraction{.9} \def\dblfloatpagefraction{.8} % % \@makecaption{NUMBER}{TEXT} : Macro to make a figure or table caption. % %\long\def\@makecaption#1#2{% % \vskip 10pt% % \setbox\@tempboxa\hbox{\small \normalfont #1\enskip \itshape #2}% % \ifdim \wd\@tempboxa >\hsize % \small \normalfont #1\enskip \itshape #2\par % \else % \hbox to\hsize{\hfil\box\@tempboxa\hfil}% % \fi% %} \long\def\@makecaption#1#2{% \vskip 10pt% \setbox\@tempboxa\hbox{\small \normalfont #1\unskip\hskip10pt #2}% \ifdim \wd\@tempboxa >\hsize \small \normalfont \@hangfrom{#1\unskip\hskip10pt\ignorespaces}#2\par \else \hbox to\hsize{\hfil\box\@tempboxa\hfil}% \fi% } % % FIGURE % \newcounter{figure}[chapter] \def\thefigure{\thechapter.\@arabic\c@figure} \def\fps@figure{tbp} \def\ftype@figure{1} \def\ext@figure{lof} \def\fnum@figure{{\bf Figure \thefigure}} \def\figure{\@float{figure}} \let\endfigure\end@float \@namedef{figure*}{\@dblfloat{figure}} \@namedef{endfigure*}{\end@dblfloat} % % TABLE % \newcounter{table}[chapter] \def\thetable{\thechapter.\@arabic\c@table} \def\fps@table{tbp} \def\ftype@table{2} \def\ext@table{lot} \def\fnum@table{{\bf Table \thetable}} \def\table{\@float{table}} \let\endtable\end@float \@namedef{table*}{\@dblfloat{table}} \@namedef{endtable*}{\end@dblfloat} % **************************************** % * TITLE * % **************************************** % % TITLEPAGE % \def\titlepage{\@restonecolfalse \if@twocolumn \@restonecoltrue\onecolumn \else \newpage \fi \thispagestyle{empty} } \def\endtitlepage{\if@restonecol\twocolumn \else \newpage \fi} % \def\maketitle{\make@cornermarks\begin{titlepage} \let\footnotesize\small \let\footnoterule\relax \setcounter{page}{1} \null \vspace*{-17pt}% {\parindent 0pt \centering \par \LARGE \bfseries \@title \par \nobreak \vskip 0pt \thick@rule \vskip 25pt \par \large \normalfont \begin{tabular}[t]{c} \@author \end{tabular}\par } \vfill \@thanks \null \end{titlepage} \setcounter{footnote}{0} \let\thanks\relax \gdef\@thanks{} \gdef\@author{} \gdef\@title{} \let\maketitle\relax } % **************************************** % * PAGE STYLES * % **************************************** \def\cleardoublepage{% \clearpage \if@twoside \ifodd\c@page \else \hbox{}% \pagestyle{empty}% \newpage \if@twocolumn \hbox{}% \newpage\fi\fi\fi} \newdimen\htrim \newdimen\vtrimtop \newdimen\vtrimbot % \htrim.75in % \vtrimtop.8607in % \vtrimbot1.027in % \hoffset-.49in % \voffset-.63in%.04in \htrim4.42pc \vtrimtop6.26pc \vtrimbot6.37pc % \hoffset-5pt \voffset39pt %\fi \newsavebox\ul@box \newsavebox\ur@box \newsavebox\ll@box \newsavebox\lr@box \def\top@cornermarks{% \hskip-\htrim \vbox to 0\p@{\vskip-\vtrimtop\llap{\copy\ul@box}\vss}% \vbox to 0\p@{\vskip-\vtrimtop\rlap{\hskip\textwidth\hskip2\htrim\copy\ur@box}\vss}% \vbox to 0\p@{\vskip\textheight\vskip\vtrimbot\llap{\copy\ll@box}\vss}% \vbox to 0\p@{\vskip\textheight\vskip\vtrimbot\rlap{\hskip\textwidth\hskip2\htrim\copy\lr@box}\vss}% \hskip\htrim} \def\make@cornermarks{% \sbox\ul@box{\rule{18\p@}{.25\p@}\hskip8\p@\hbox to.25\p@{\vbox to26\p@{\noindent\rule{.25\p@}{18\p@}}}}% \sbox\ur@box{\hbox to.25\p@{\vbox to26\p@{\noindent\rule{.25\p@}{18\p@}}}\hskip8\p@\rule{18\p@}{.25\p@}}% \sbox\ll@box{\rule{18\p@}{.25\p@}\hskip8\p@\lower34\p@\hbox to.25\p@{\vbox to26\p@{\noindent\rule{.25\p@}{18\p@}}}}% \sbox\lr@box{\lower34\p@\hbox to.25\p@{\vbox to26\p@{\noindent\rule{.25\p@}{18\p@}}}\hskip8\p@\rule{18\p@}{.25\p@}}} \def\even@head{% \top@cornermarks \@the@page {%\RunningHeadFont \hfil {%\MakeUppercase \leftmark } }}%\hfil \def\odd@head{% \top@cornermarks {%\RunningHeadFont {%\MakeUppercase \rightmark } } \hfil \@the@page } \def\@the@page{{\thepage}} %\def\@the@page{{\PageNumFont\thepage}} \def\ps@empty{% \let\@mkboth\@gobbletwo \let\@oddhead\top@cornermarks \let\@evenhead\top@cornermarks \let\@oddfoot\@empty \let\@evenfoot\@empty } \def\ps@folio{% \let\@mkboth\@gobbletwo \let\@oddhead\top@cornermarks \def\@oddfoot{% \parindent\z@ \baselineskip7\p@ \hbox{% \textwidth\@ciprulewidth \vbox{% \if@cip\rule{\@ciprulewidth}{.25pt}\par \hbox{\vbox{\noindent\copy\@cipboxa\par\noindent\copy\@cipboxb}}\fi}} \hfill\@the@page} \let\@evenhead\odd@head \let\@evenfoot\@oddfoot } \def\ps@headings{% \let\@mkboth\@gobbletwo \let\@oddfoot\@empty \let\@evenfoot\@empty \let\@evenhead\even@head \let\@oddhead\odd@head \def\chaptermark##1{\markboth {\uppercase{##1}}{\uppercase{##1}}} \def\sectionmark##1{\markright{\uppercase{##1}}} } \def\ps@opening{% \let\@mkboth\@gobbletwo \make@cornermarks \let\@oddhead\top@cornermarks \let\@evenhead\top@cornermarks \def\@oddfoot{% \parindent\z@ \baselineskip7\p@ \hbox{% \textwidth\@ciprulewidth \vbox{% \if@cip\rule{\@ciprulewidth}{.25pt}\par \hbox{\vbox{\noindent\copy\@cipboxa\par\noindent\copy\@cipboxb}}\fi}} \hfill\@the@page} \let\@evenfoot\@oddfoot } % % Initializes TeX's marks % \mark{{}{}} % % \ps@empty and \ps@plain defined in LATEX.TEX % \def\ps@plain{% \let\@mkboth\@gobbletwo \let\@oddhead\top@cornermarks \let\@evenhead\top@cornermarks \def\@oddfoot{\hfil{\footnotesize\rm \thepage}\hfil}% \def\@evenfoot{\hfil{\footnotesize\rm \thepage}\hfil}% } % % % Definition of 'headings' page style % %\def\ps@headings{\let\@mkboth\markboth % \def\@oddhead{\footnotesize\normalfont \rightmark \hfill \thepage} % \def\@oddfoot{} % \def\@evenhead{\footnotesize\normalfont \thepage \hfill \leftmark} % \def\@evenfoot{} % \def\chaptermark##1{\markboth {\uppercase{##1}}{\uppercase{##1}}} % \def\sectionmark##1{\markright{\uppercase{##1}}} %} % % Definition of 'myheadings' page style. % \def\ps@myheadings{\let\@mkboth\@gobbletwo \def\@oddhead{\footnotesize\normalfont \rightmark \hfill \thepage} \def\@oddfoot{} \def\@evenhead{\footnotesize\normalfont\thepage \hfill \leftmark} \def\@evenfoot{} \def\chaptermark##1{} % \def\sectionmark##1{} % \def\subsectionmark##1{} } % **************************************** % * MISCELLANEOUS * % **************************************** % % DATE % \def\today{\ifcase\month\or January\or February\or March\or April\or May\or June\or July\or August\or September\or October\or November\or December\fi \space\number\day, \number\year} % % EQUATION and EQNARRAY -- put here because it must follow \chapter definition % \@addtoreset{equation}{chapter} \def\theequation{\thechapter.\arabic{equation}} % \jot = 3pt % Extra space added between lines of an eqnarray environment % **************************************** % * CUP SPECIALS * % **************************************** % % cleardoublepage with empty page % \def\cleardoublepage{\clearpage \if@twoside \ifodd \c@page \else \thispagestyle{empty} \hbox{}\newpage \if@twocolumn \thispagestyle{plain}\hbox{}\newpage \fi \fi \fi} % % redefinition of sections to get en space after chapter number % \def\@sect#1#2#3#4#5#6[#7]#8{% \ifnum #2>\c@secnumdepth \def\@svsec{}% \else \refstepcounter{#1} % \ifnum #2>1 % \edef\@svsec{{\normalfont \csname the#1\endcsname\hskip 0.5em}} % \else \edef\@svsec{\csname the#1\endcsname\hskip 0.5em} % \fi \fi \@tempskipa #5\relax \ifdim \@tempskipa>\z@ \begingroup #6\relax \@hangfrom{\hskip #3\relax\@svsec}{\interlinepenalty \@M #8\par} \endgroup \csname #1mark\endcsname{#7}% \addcontentsline{toc}{#1}{\ifnum #2>\c@secnumdepth \else \protect\numberline{\csname the#1\endcsname}\fi #7} \else \def\@svsechd{#6\hskip #3\@svsec #8\csname #1mark\endcsname {#7}\addcontentsline{toc}{#1}{\ifnum #2>\c@secnumdepth \else \protect\numberline{\csname the#1\endcsname}\fi#7}}% \fi \@xsect{#5}} % % redefinition of \hline to get extra space % \def\hline{\noalign{\ifnum0=`}\fi \vskip 6pt \hrule \@height \arrayrulewidth \vskip 6pt \futurelet \@tempa\@xhline} \def\@xhline{\ifx\@tempa\hline \vskip -12pt \vskip \doublerulesep \fi \ifnum0=`{\fi}} % % redefinition of tabular to get rid of vertical lines in tables % \def\tabular{\def\@halignto{} \def\hline{\noalign{\ifnum0=`}\fi \vskip 3pt \hrule \@height \arrayrulewidth \vskip 3pt \futurelet \@tempa\@xhline} \def\@xhline{\ifx\@tempa\hline \vskip -6pt \vskip \doublerulesep \fi \ifnum0=`{\fi}} \def\@arrayrule{\@addtopreamble{\hskip -.5\arrayrulewidth % \vrule \@width \arrayrulewidth \hskip .5\arrayrulewidth}} \@tabular } \DeclareOldFontCommand{\rm}{\normalfont\rmfamily}{\mathrm} \DeclareOldFontCommand{\sf}{\normalfont\sffamily}{\mathsf} \DeclareOldFontCommand{\tt}{\normalfont\ttfamily}{\mathtt} \DeclareOldFontCommand{\bf}{\normalfont\bfseries}{\mathbf} \DeclareOldFontCommand{\it}{\normalfont\itshape}{\mathit} \DeclareOldFontCommand{\sl}{\normalfont\slshape}{\@nomath\sl} \DeclareOldFontCommand{\sc}{\normalfont\scshape}{\@nomath\sc} \DeclareRobustCommand{\cal}{\@fontswitch{\relax}{\mathcal}} \DeclareRobustCommand{\mit}{\@fontswitch{\relax}{\mathnormal}} \RequirePackage{latexsym} % **************************************** % * INITIALIZATION * % **************************************** % % Default initializations \ps@headings \pagenumbering{arabic} \onecolumn \frenchspacing \flushbottom % end of chapman.sty HSAUR3/vignettes/Ch_principal_components_analysis.Rnw0000644000176200001440000004132714416236370022477 0ustar liggesusers \documentclass{chapman} %%% copy Sweave.sty definitions %%% keeps `sweave' from adding `\usepackage{Sweave}': DO NOT REMOVE %\usepackage{Sweave} \RequirePackage[T1]{fontenc} \RequirePackage{graphicx,ae,fancyvrb} \IfFileExists{upquote.sty}{\RequirePackage{upquote}}{} \usepackage{relsize} \DefineVerbatimEnvironment{Sinput}{Verbatim}{} \DefineVerbatimEnvironment{Soutput}{Verbatim}{fontfamily=courier, fontshape=it, fontsize=\relsize{-1}} \DefineVerbatimEnvironment{Scode}{Verbatim}{} \newenvironment{Schunk}{}{} %%% environment for raw output \newcommand{\SchunkRaw}{\renewenvironment{Schunk}{}{} \DefineVerbatimEnvironment{Soutput}{Verbatim}{fontfamily=courier, fontshape=it, fontsize=\small} \rawSinput } %%% environment for labeled output \newcommand{\nextcaption}{} \newcommand{\SchunkLabel}{ \renewenvironment{Schunk}{\begin{figure}[ht] }{\caption{\nextcaption} \end{figure} } \DefineVerbatimEnvironment{Sinput}{Verbatim}{frame = topline} \DefineVerbatimEnvironment{Soutput}{Verbatim}{frame = bottomline, samepage = true, fontfamily=courier, fontshape=it, fontsize=\relsize{-1}} } %%% S code with line numbers \DefineVerbatimEnvironment{Sinput} {Verbatim} { %% numbers=left } \newcommand{\numberSinput}{ \DefineVerbatimEnvironment{Sinput}{Verbatim}{numbers=left} } \newcommand{\rawSinput}{ \DefineVerbatimEnvironment{Sinput}{Verbatim}{} } %%% R / System symbols \newcommand{\R}{\textsf{R}} \newcommand{\rR}{{R}} \renewcommand{\S}{\textsf{S}} \newcommand{\SPLUS}{\textsf{S-PLUS}} \newcommand{\rSPLUS}{{S-PLUS}} \newcommand{\SPSS}{\textsf{SPSS}} \newcommand{\EXCEL}{\textsf{Excel}} \newcommand{\ACCESS}{\textsf{Access}} \newcommand{\SQL}{\textsf{SQL}} %%\newcommand{\Rpackage}[1]{\hbox{\rm\textit{#1}}} %%\newcommand{\Robject}[1]{\hbox{\rm\texttt{#1}}} %%\newcommand{\Rclass}[1]{\hbox{\rm\textit{#1}}} %%\newcommand{\Rcmd}[1]{\hbox{\rm\texttt{#1}}} \newcommand{\Rpackage}[1]{\index{#1 package@{\fontseries{b}\selectfont #1} package} {\fontseries{b}\selectfont #1}} \newcommand{\rpackage}[1]{{\fontseries{b}\selectfont #1}} \newcommand{\Robject}[1]{\texttt{#1}} \newcommand{\Rclass}[1]{\index{#1 class@\textit{#1} class}\textit{#1}} \newcommand{\Rcmd}[1]{\index{#1 function@\texttt{#1} function}\texttt{#1}} \newcommand{\Roperator}[1]{\texttt{#1}} \newcommand{\Rarg}[1]{\texttt{#1}} \newcommand{\Rlevel}[1]{\texttt{#1}} %%% other symbols \newcommand{\file}[1]{\hbox{\rm\texttt{#1}}} %%\newcommand{\stress}[1]{\index{#1}\textit{#1}} \newcommand{\stress}[1]{\textit{#1}} \newcommand{\booktitle}[1]{\textit{#1}} %%' %%% Math symbols \usepackage{amstext} \usepackage{amsmath} \newcommand{\E}{\mathsf{E}} \newcommand{\Var}{\mathsf{Var}} \newcommand{\Cov}{\mathsf{Cov}} \newcommand{\Cor}{\mathsf{Cor}} \newcommand{\x}{\mathbf{x}} \newcommand{\y}{\mathbf{y}} \renewcommand{\a}{\mathbf{a}} \newcommand{\W}{\mathbf{W}} \newcommand{\C}{\mathbf{C}} \renewcommand{\H}{\mathbf{H}} \newcommand{\X}{\mathbf{X}} \newcommand{\B}{\mathbf{B}} \newcommand{\V}{\mathbf{V}} \newcommand{\I}{\mathbf{I}} \newcommand{\D}{\mathbf{D}} \newcommand{\bS}{\mathbf{S}} \newcommand{\N}{\mathcal{N}} \renewcommand{\L}{L} \renewcommand{\P}{\mathsf{P}} \newcommand{\K}{\mathbf{K}} \newcommand{\m}{\mathbf{m}} \newcommand{\argmin}{\operatorname{argmin}\displaylimits} \newcommand{\argmax}{\operatorname{argmax}\displaylimits} \newcommand{\bx}{\mathbf{x}} \newcommand{\bbeta}{\mathbf{\beta}} %%% links \usepackage{hyperref} \hypersetup{% pdftitle = {A Handbook of Statistical Analyses Using R (3rd Edition)}, pdfsubject = {Book}, pdfauthor = {Torsten Hothorn and Brian S. Everitt}, colorlinks = {black}, linkcolor = {black}, citecolor = {black}, urlcolor = {black}, hyperindex = {true}, linktocpage = {true}, } %%% captions & tables %% : conflics with figure definition in chapman.cls %%\usepackage[format=hang,margin=10pt,labelfont=bf]{caption} %% \usepackage{longtable} \usepackage[figuresright]{rotating} %%% R symbol in chapter 1 \usepackage{wrapfig} %%% Bibliography \usepackage[round,comma]{natbib} \renewcommand{\refname}{References \addcontentsline{toc}{chapter}{References}} \citeindexfalse %%% texi2dvi complains that \newblock is undefined, hm... \def\newblock{\hskip .11em plus .33em minus .07em} %%% Example sections \newcounter{exercise}[chapter] \setcounter{exercise}{0} \newcommand{\exercise}{\stepcounter{exercise} \item{Ex.~\arabic{chapter}.\arabic{exercise} }} %% URLs \newcommand{\curl}[1]{\begin{center} \url{#1} \end{center}} %%% for manual corrections %\renewcommand{\baselinestretch}{2} %%% plot sizes \setkeys{Gin}{width=0.95\textwidth} %%% color \usepackage{color} %%% hyphenations \hyphenation{drop-out} \hyphenation{mar-gi-nal} %%% new bidirectional quotes need \usepackage[utf8]{inputenc} %\usepackage{setspace} \definecolor{sidebox_todo}{rgb}{1,1,0.2} \newcommand{\todo}[1]{ \hspace{0pt}% \marginpar{% \fcolorbox{black}{sidebox_todo}{% \parbox{\marginparwidth} { \raggedright\sffamily\footnotesize{TODO: #1}% } }% } } \begin{document} %% Title page \title{A Handbook of Statistical Analyses Using \R{} --- 3rd Edition} \author{Torsten Hothorn and Brian S. Everitt} \maketitle %%\VignetteIndexEntry{Chapter Principal Component Analysis} \setcounter{chapter}{18} \SweaveOpts{prefix.string=figures/HSAUR,eps=FALSE,keep.source=TRUE} <>= rm(list = ls()) s <- search()[-1] s <- s[-match(c("package:base", "package:stats", "package:graphics", "package:grDevices", "package:utils", "package:datasets", "package:methods", "Autoloads"), s)] if (length(s) > 0) sapply(s, detach, character.only = TRUE) if (!file.exists("tables")) dir.create("tables") if (!file.exists("figures")) dir.create("figures") set.seed(290875) options(prompt = "R> ", continue = "+ ", width = 63, # digits = 4, show.signif.stars = FALSE, SweaveHooks = list(leftpar = function() par(mai = par("mai") * c(1, 1.05, 1, 1)), bigleftpar = function() par(mai = par("mai") * c(1, 1.7, 1, 1)))) HSAURpkg <- require("HSAUR3") if (!HSAURpkg) stop("cannot load package ", sQuote("HSAUR3")) rm(HSAURpkg) ### hm, R-2.4.0 --vanilla seems to need this a <- Sys.setlocale("LC_ALL", "C") ### book <- TRUE refs <- cbind(c("AItR", "DAGD", "SI", "CI", "ANOVA", "MLR", "GLM", "DE", "RP", "GAM", "SA", "ALDI", "ALDII", "SIMC", "MA", "PCA", "MDS", "CA"), 1:18) ch <- function(x) { ch <- refs[which(refs[,1] == x),] if (book) { return(paste("Chapter~\\\\ref{", ch[1], "}", sep = "")) } else { return(paste("Chapter~", ch[2], sep = "")) } } if (file.exists("deparse.R")) source("deparse.R") setHook(packageEvent("lattice", "attach"), function(...) { lattice.options(default.theme = function() standard.theme("pdf", color = FALSE)) }) @ \pagestyle{headings} <>= book <- FALSE @ \chapter[Principal Component Analysis]{Principal Component Analysis: The Olympic Heptathlon \label{PCA}} \section{Introduction} \section{Principal Component Analysis} \section{Analysis Using \R{}} To begin it will help to score all seven events in the same direction, so that `large' values are `good'. We will recode the running events to achieve this; <>=a data("heptathlon", package = "HSAUR3") heptathlon$hurdles <- max(heptathlon$hurdles) - heptathlon$hurdles heptathlon$run200m <- max(heptathlon$run200m) - heptathlon$run200m heptathlon$run800m <- max(heptathlon$run800m) - heptathlon$run800m @ \begin{figure} \begin{center} <>= score <- which(colnames(heptathlon) == "score") plot(heptathlon[,-score]) @ \caption{Scatterplot matrix for the \Robject{heptathlon} data (all countries). \label{PCA-heptathlon-scatter}} \end{center} \end{figure} Figure~\ref{PCA-heptathlon-scatter} shows a scatterplot matrix of the results from all $25$ competitors for the seven events. Most of the scatterplots in the diagram suggest that there is a positive relationship between the results for each pairs of events. The exception are the plots involving the javelin event which give little evidence of any relationship between the result for this event and the results from the other six events; we will suggest possible reasons for this below, but first we will examine the numerical values of the between pairs events correlations by applying the \Rcmd{cor} function <>= w <- options("width") options(width = 65) @ <>= round(cor(heptathlon[,-score]), 2) @ <>= options(width = w$width) @ Examination of these numerical values confirms that most pairs of events are positively correlated, some moderately (for example, high jump and shot) and others relatively highly (for example, high jump and hurdles). And we see that the correlations involving the javelin event are all close to zero. One possible explanation for the latter finding is perhaps that training for the other six events does not help much in the javelin because it is essentially a `technical' event. An alternative explanation is found if we examine the scatterplot matrix in Figure~\ref{PCA-heptathlon-scatter} a little more closely. It is very clear in this diagram that for all events except the javelin there is an outlier, the competitor from Papua New Guinea (PNG), who is much poorer than the other athletes at these six events and who finished last in the competition in terms of points scored. But surprisingly in the scatterplots involving the javelin it is this competitor who again stands out but because she has the third highest value for the event. It might be sensible to look again at both the correlation matrix and the scatterplot matrix after removing the competitor from PNG; the relevant \R{} code is <>= heptathlon <- heptathlon[-grep("PNG", rownames(heptathlon)),] @ Now, we again look at the scatterplot and correlation matrix; \begin{figure} \begin{center} <>= score <- which(colnames(heptathlon) == "score") plot(heptathlon[,-score]) @ \caption{Scatterplot matrix for the \Robject{heptathlon} data after removing observations of the PNG competitor. \label{PCA-heptathlon-scatter2}} \end{center} \end{figure} <>= w <- options("width") options(width = 65) @ <>= round(cor(heptathlon[,-score]), 2) @ <>= options(width = w$width) @ The correlations change quite substantially and the new scatterplot matrix in Figure~\ref{PCA-heptathlon-scatter2} does not point us to any further extreme observations. In the remainder of this chapter we analyze the \Robject{heptathlon} data with the observations of the competitor from Papua New Guinea removed. <>= w <- options("digits") options(digits = 4) @ Because the results for the seven heptathlon events are on different scales we shall extract the principal components from the correlation matrix. A principal component analysis of the data can be applied using the \Rcmd{prcomp} function with the \Rcmd{scale} argument set to \Robject{TRUE} to ensure the analysis is carried out on the correlation matrix. The result is a list containing the coefficients defining each component (sometimes referred to as \stress{loadings}), \index{Loadings} the principal component scores, etc. The required code is (omitting the \Robject{score} variable) <>= heptathlon_pca <- prcomp(heptathlon[, -score], scale = TRUE) print(heptathlon_pca) @ The \Rcmd{summary} method can be used for further inspection of the details: <>= summary(heptathlon_pca) @ <>= options(digits = w$digits) @ The linear combination for the first principal component is <>= a1 <- heptathlon_pca$rotation[,1] a1 @ We see that the hurdles and long jump competitions receive the highest weight but the javelin result is less important. For computing the first principal component, the data need to be rescaled appropriately. The center and the scaling used by \Rcmd{prcomp} internally can be extracted from the \Robject{heptathlon\_pca} via <>= center <- heptathlon_pca$center scale <- heptathlon_pca$scale @ Now, we can apply the \Rcmd{scale} function to the data and multiply with the loadings matrix in order to compute the first principal component score for each competitor <>= hm <- as.matrix(heptathlon[,-score]) drop(scale(hm, center = center, scale = scale) %*% heptathlon_pca$rotation[,1]) @ or, more conveniently, by extracting the first from all precomputed principal components <>= predict(heptathlon_pca)[,1] @ \begin{figure} \begin{center} <>= plot(heptathlon_pca) @ \caption{Barplot of the variances explained by the principal components (with observations for PNG removed). \label{PCA-heptathlon-pca-plot}} \end{center} \end{figure} <>= sdev <- heptathlon_pca$sdev prop12 <- round(sum(sdev[1:2]^2)/sum(sdev^2)*100, 0) @ The first two components account for $\Sexpr{prop12}\%$ of the variance. A barplot of each component's variance (see %%' Figure~\ref{PCA-heptathlon-pca-plot}) shows how the first two components dominate. A plot of the data in the space of the first two principal components, with the points labeled by the name of the corresponding competitor, can be produced as shown with Figure~\ref{PCA-heptathlon-biplot}. In addition, the first two loadings for the events are given in a second coordinate system, also illustrating the special role of the javelin event. This graphical representation is known as \stress{biplot} \citep{HSAUR:Gabriel1971}. \index{Biplot} A biplot is a graphical representation of the information in an $n \times p$ data matrix. The `bi' is a reflection that the technique produces a diagram that gives variance and covariance information about the variables and information about generalized distances between individuals. The coordinates used to produce the biplot can all be obtained directly from the principal components analysis of the covariance matrix of the data and so the plots can be viewed as an alternative representation of the results of such an analysis. Full details of the technical details of the biplot are given in \cite{HSAUR:Gabriel1981} and in \cite{HSAUR:GowerHand1996}. Here we simply construct the biplot for the heptathlon data (without PNG); the result is shown in Figure~\ref{PCA-heptathlon-biplot}. The plot clearly shows that the winner of the gold medal, Jackie Joyner-Kersee, accumulates the majority of her points from the three events long jump, hurdles, and 200m. \begin{figure} \begin{center} <>= biplot(heptathlon_pca, col = c("gray", "black")) @ <>= tmp <- heptathlon[, -score] rownames(tmp) <- abbreviate(gsub(" \\(.*", "", rownames(tmp))) biplot(prcomp(tmp, scale = TRUE), col = c("black", "lightgray"), xlim = c(-0.5, 0.7)) @ \caption{Biplot of the (scaled) first two principal components (with observations for PNG removed). \label{PCA-heptathlon-biplot}} \end{center} \end{figure} The correlation between the score given to each athlete by the standard scoring system used for the heptathlon and the first principal component score can be found from <>= cor(heptathlon$score, heptathlon_pca$x[,1]) @ This implies that the first principal component is in good agreement with the score assigned to the athletes by official Olympic rules; a scatterplot of the official score and the first principal component is given in Figure~\ref{PCA-heptathlonscore}. \begin{figure} \begin{center} <>= plot(heptathlon$score, heptathlon_pca$x[,1]) @ \caption{Scatterplot of the score assigned to each athlete in 1988 and the first principal component. \label{PCA-heptathlonscore}} \end{center} \end{figure} %%\bibliographystyle{LaTeXBibTeX/refstyle} %%\bibliography{LaTeXBibTeX/HSAUR} \end{document} HSAUR3/vignettes/Ch_recursive_partitioning.Rnw0000644000176200001440000005514114416236370021143 0ustar liggesusers \documentclass{chapman} %%% copy Sweave.sty definitions %%% keeps `sweave' from adding `\usepackage{Sweave}': DO NOT REMOVE %\usepackage{Sweave} \RequirePackage[T1]{fontenc} \RequirePackage{graphicx,ae,fancyvrb} \IfFileExists{upquote.sty}{\RequirePackage{upquote}}{} \usepackage{relsize} \DefineVerbatimEnvironment{Sinput}{Verbatim}{} \DefineVerbatimEnvironment{Soutput}{Verbatim}{fontfamily=courier, fontshape=it, fontsize=\relsize{-1}} \DefineVerbatimEnvironment{Scode}{Verbatim}{} \newenvironment{Schunk}{}{} %%% environment for raw output \newcommand{\SchunkRaw}{\renewenvironment{Schunk}{}{} \DefineVerbatimEnvironment{Soutput}{Verbatim}{fontfamily=courier, fontshape=it, fontsize=\small} \rawSinput } %%% environment for labeled output \newcommand{\nextcaption}{} \newcommand{\SchunkLabel}{ \renewenvironment{Schunk}{\begin{figure}[ht] }{\caption{\nextcaption} \end{figure} } \DefineVerbatimEnvironment{Sinput}{Verbatim}{frame = topline} \DefineVerbatimEnvironment{Soutput}{Verbatim}{frame = bottomline, samepage = true, fontfamily=courier, fontshape=it, fontsize=\relsize{-1}} } %%% S code with line numbers \DefineVerbatimEnvironment{Sinput} {Verbatim} { %% numbers=left } \newcommand{\numberSinput}{ \DefineVerbatimEnvironment{Sinput}{Verbatim}{numbers=left} } \newcommand{\rawSinput}{ \DefineVerbatimEnvironment{Sinput}{Verbatim}{} } %%% R / System symbols \newcommand{\R}{\textsf{R}} \newcommand{\rR}{{R}} \renewcommand{\S}{\textsf{S}} \newcommand{\SPLUS}{\textsf{S-PLUS}} \newcommand{\rSPLUS}{{S-PLUS}} \newcommand{\SPSS}{\textsf{SPSS}} \newcommand{\EXCEL}{\textsf{Excel}} \newcommand{\ACCESS}{\textsf{Access}} \newcommand{\SQL}{\textsf{SQL}} %%\newcommand{\Rpackage}[1]{\hbox{\rm\textit{#1}}} %%\newcommand{\Robject}[1]{\hbox{\rm\texttt{#1}}} %%\newcommand{\Rclass}[1]{\hbox{\rm\textit{#1}}} %%\newcommand{\Rcmd}[1]{\hbox{\rm\texttt{#1}}} \newcommand{\Rpackage}[1]{\index{#1 package@{\fontseries{b}\selectfont #1} package} {\fontseries{b}\selectfont #1}} \newcommand{\rpackage}[1]{{\fontseries{b}\selectfont #1}} \newcommand{\Robject}[1]{\texttt{#1}} \newcommand{\Rclass}[1]{\index{#1 class@\textit{#1} class}\textit{#1}} \newcommand{\Rcmd}[1]{\index{#1 function@\texttt{#1} function}\texttt{#1}} \newcommand{\Roperator}[1]{\texttt{#1}} \newcommand{\Rarg}[1]{\texttt{#1}} \newcommand{\Rlevel}[1]{\texttt{#1}} %%% other symbols \newcommand{\file}[1]{\hbox{\rm\texttt{#1}}} %%\newcommand{\stress}[1]{\index{#1}\textit{#1}} \newcommand{\stress}[1]{\textit{#1}} \newcommand{\booktitle}[1]{\textit{#1}} %%' %%% Math symbols \usepackage{amstext} \usepackage{amsmath} \newcommand{\E}{\mathsf{E}} \newcommand{\Var}{\mathsf{Var}} \newcommand{\Cov}{\mathsf{Cov}} \newcommand{\Cor}{\mathsf{Cor}} \newcommand{\x}{\mathbf{x}} \newcommand{\y}{\mathbf{y}} \renewcommand{\a}{\mathbf{a}} \newcommand{\W}{\mathbf{W}} \newcommand{\C}{\mathbf{C}} \renewcommand{\H}{\mathbf{H}} \newcommand{\X}{\mathbf{X}} \newcommand{\B}{\mathbf{B}} \newcommand{\V}{\mathbf{V}} \newcommand{\I}{\mathbf{I}} \newcommand{\D}{\mathbf{D}} \newcommand{\bS}{\mathbf{S}} \newcommand{\N}{\mathcal{N}} \renewcommand{\L}{L} \renewcommand{\P}{\mathsf{P}} \newcommand{\K}{\mathbf{K}} \newcommand{\m}{\mathbf{m}} \newcommand{\argmin}{\operatorname{argmin}\displaylimits} \newcommand{\argmax}{\operatorname{argmax}\displaylimits} \newcommand{\bx}{\mathbf{x}} \newcommand{\bbeta}{\mathbf{\beta}} %%% links \usepackage{hyperref} \hypersetup{% pdftitle = {A Handbook of Statistical Analyses Using R (3rd Edition)}, pdfsubject = {Book}, pdfauthor = {Torsten Hothorn and Brian S. Everitt}, colorlinks = {black}, linkcolor = {black}, citecolor = {black}, urlcolor = {black}, hyperindex = {true}, linktocpage = {true}, } %%% captions & tables %% : conflics with figure definition in chapman.cls %%\usepackage[format=hang,margin=10pt,labelfont=bf]{caption} %% \usepackage{longtable} \usepackage[figuresright]{rotating} %%% R symbol in chapter 1 \usepackage{wrapfig} %%% Bibliography \usepackage[round,comma]{natbib} \renewcommand{\refname}{References \addcontentsline{toc}{chapter}{References}} \citeindexfalse %%% texi2dvi complains that \newblock is undefined, hm... \def\newblock{\hskip .11em plus .33em minus .07em} %%% Example sections \newcounter{exercise}[chapter] \setcounter{exercise}{0} \newcommand{\exercise}{\stepcounter{exercise} \item{Ex.~\arabic{chapter}.\arabic{exercise} }} %% URLs \newcommand{\curl}[1]{\begin{center} \url{#1} \end{center}} %%% for manual corrections %\renewcommand{\baselinestretch}{2} %%% plot sizes \setkeys{Gin}{width=0.95\textwidth} %%% color \usepackage{color} %%% hyphenations \hyphenation{drop-out} \hyphenation{mar-gi-nal} %%% new bidirectional quotes need \usepackage[utf8]{inputenc} %\usepackage{setspace} \definecolor{sidebox_todo}{rgb}{1,1,0.2} \newcommand{\todo}[1]{ \hspace{0pt}% \marginpar{% \fcolorbox{black}{sidebox_todo}{% \parbox{\marginparwidth} { \raggedright\sffamily\footnotesize{TODO: #1}% } }% } } \begin{document} %% Title page \title{A Handbook of Statistical Analyses Using \R{} --- 3rd Edition} \author{Torsten Hothorn and Brian S. Everitt} \maketitle %%\VignetteIndexEntry{Chapter Recursive Partitioning} %%\VignetteDepends{vcd,lattice,randomForest,partykit} \setcounter{chapter}{8} \SweaveOpts{prefix.string=figures/HSAUR,eps=FALSE,keep.source=TRUE} <>= rm(list = ls()) s <- search()[-1] s <- s[-match(c("package:base", "package:stats", "package:graphics", "package:grDevices", "package:utils", "package:datasets", "package:methods", "Autoloads"), s)] if (length(s) > 0) sapply(s, detach, character.only = TRUE) if (!file.exists("tables")) dir.create("tables") if (!file.exists("figures")) dir.create("figures") set.seed(290875) options(prompt = "R> ", continue = "+ ", width = 63, # digits = 4, show.signif.stars = FALSE, SweaveHooks = list(leftpar = function() par(mai = par("mai") * c(1, 1.05, 1, 1)), bigleftpar = function() par(mai = par("mai") * c(1, 1.7, 1, 1)))) HSAURpkg <- require("HSAUR3") if (!HSAURpkg) stop("cannot load package ", sQuote("HSAUR3")) rm(HSAURpkg) ### hm, R-2.4.0 --vanilla seems to need this a <- Sys.setlocale("LC_ALL", "C") ### book <- TRUE refs <- cbind(c("AItR", "DAGD", "SI", "CI", "ANOVA", "MLR", "GLM", "DE", "RP", "GAM", "SA", "ALDI", "ALDII", "SIMC", "MA", "PCA", "MDS", "CA"), 1:18) ch <- function(x) { ch <- refs[which(refs[,1] == x),] if (book) { return(paste("Chapter~\\\\ref{", ch[1], "}", sep = "")) } else { return(paste("Chapter~", ch[2], sep = "")) } } if (file.exists("deparse.R")) source("deparse.R") setHook(packageEvent("lattice", "attach"), function(...) { lattice.options(default.theme = function() standard.theme("pdf", color = FALSE)) }) @ \pagestyle{headings} <>= book <- FALSE @ <>= library("vcd") library("lattice") library("randomForest") library("partykit") ltheme <- canonical.theme(color = FALSE) ## in-built B&W theme ltheme$strip.background$col <- "transparent" ## change strip bg lattice.options(default.theme = ltheme) mai <- par("mai") options(SweaveHooks = list(nullmai = function() { par(mai = rep(0, 4)) }, twomai = function() { par(mai = c(0, mai[2], 0, 0)) }, threemai = function() { par(mai = c(0, mai[2], 0.1, 0)) })) numbers <- c("zero", "one", "two", "three", "four", "five", "six", "seven", "eight", "nine") @ \chapter[Recursive Partitioning]{Recursive Partitioning: Predicting Body Fat, Glaucoma Diagnosis, and Happiness in China \label{RP}} \section{Introduction} \section{Recursive Partitioning} \section{Analysis Using \R{}} \subsection{Predicting Body Fat Content} The \Rcmd{rpart} function from \Rpackage{rpart} can be used to grow a regression tree. The response variable and the covariates are defined by a model formula in the same way as for \Rcmd{lm}, say. By default, a large initial tree is grown, we restrict the number of observations required to establish a potential binary split to at least ten: <>= library("rpart") data("bodyfat", package = "TH.data") bodyfat_rpart <- rpart(DEXfat ~ age + waistcirc + hipcirc + elbowbreadth + kneebreadth, data = bodyfat, control = rpart.control(minsplit = 10)) @ A \Rcmd{print} method for \Rclass{rpart} objects is available; however, a graphical representation \citep[here utilizing functionality offered from package \Rpackage{partykit},][]{PKG:partykit} shown in Figure~\ref{RP-bodyfat-plot} is more convenient. Observations that satisfy the condition shown for each node go to the left and observations that don't are an element of the right branch in each node. %' As expected, higher values for waist and hip circumferences and wider knees correspond to higher values of body fat content. The rightmost terminal node consists of only three rather extreme observations. \begin{figure} \begin{center} <>= library("partykit") plot(as.party(bodyfat_rpart), tp_args = list(id = FALSE)) @ \caption{Initial tree for the body fat data with the distribution of body fat in terminal nodes visualized via boxplots. \label{RP-bodyfat-plot}} \end{center} \end{figure} \index{Cross-validation} To determine if the tree is appropriate or if some of the branches need to be subjected to pruning we can use the \Robject{cptable} element of the \Rclass{rpart} object: <>= print(bodyfat_rpart$cptable) opt <- which.min(bodyfat_rpart$cptable[,"xerror"]) @ The \Robject{xerror} column contains estimates of cross-validated prediction error for different numbers of splits (\Robject{nsplit}). The best tree has \Sexpr{numbers[bodyfat_rpart$cptable[opt, "nsplit"] + 1]} splits. Now we can prune back the large initial tree using <>= cp <- bodyfat_rpart$cptable[opt, "CP"] bodyfat_prune <- prune(bodyfat_rpart, cp = cp) @ The result is shown in Figure~\ref{RP-bodyfat-pruneplot}. Note that the inner nodes three and six have been removed from the tree. Still, the rightmost terminal node might give very unreliable extreme predictions. \begin{figure} \begin{center} <>= plot(as.party(bodyfat_prune), tp_args = list(id = FALSE)) @ \caption{Pruned regression tree for body fat data. \label{RP-bodyfat-pruneplot}} \end{center} \end{figure} Given this model, one can predict the (unknown, in real circumstances) body fat content based on the covariate measurements. Here, using the known values of the response variable, we compare the model predictions with the actually measured body fat as shown in Figure~\ref{RP-bodyfat-predict}. The three observations with large body fat measurements in the rightmost terminal node can be identified easily. \begin{figure} \begin{center} <>= DEXfat_pred <- predict(bodyfat_prune, newdata = bodyfat) xlim <- range(bodyfat$DEXfat) plot(DEXfat_pred ~ DEXfat, data = bodyfat, xlab = "Observed", ylab = "Predicted", ylim = xlim, xlim = xlim) abline(a = 0, b = 1) @ \caption{Observed and predicted DXA measurements. \label{RP-bodyfat-predict}} \end{center} \end{figure} \subsection{Glaucoma Diagnosis} <>= set.seed(290875) @ <>= data("GlaucomaM", package = "TH.data") glaucoma_rpart <- rpart(Class ~ ., data = GlaucomaM, control = rpart.control(xval = 100)) glaucoma_rpart$cptable opt <- which.min(glaucoma_rpart$cptable[,"xerror"]) cp <- glaucoma_rpart$cptable[opt, "CP"] glaucoma_prune <- prune(glaucoma_rpart, cp = cp) @ \setkeys{Gin}{width = 0.65\textwidth} \begin{figure} \begin{center} <>= plot(as.party(glaucoma_prune), tp_args = list(id = FALSE)) @ \caption{Pruned classification tree of the glaucoma data with class distribution in the leaves. \label{RP:gl}} \end{center} \end{figure} \setkeys{Gin}{width=0.95\textwidth} \index{Classification tree!choice of tree size} \index{Tree size} As we discussed earlier, the choice of the appropriately sized tree is not a trivial problem. For the glaucoma data, the above choice of three leaves is very unstable across multiple runs of cross-validation. As an illustration of this problem we repeat the very same analysis as shown above and record the optimal number of splits as suggested by the cross-validation runs. <>= nsplitopt <- vector(mode = "integer", length = 25) for (i in 1:length(nsplitopt)) { cp <- rpart(Class ~ ., data = GlaucomaM)$cptable nsplitopt[i] <- cp[which.min(cp[,"xerror"]), "nsplit"] } @ \newpage <>= table(nsplitopt) @ Although for \Sexpr{sum(nsplitopt == 1)} runs of cross-validation a simple tree with one split only is suggested, larger trees would have been favored in \Sexpr{sum(nsplitopt > 1)} of the cases. This short analysis shows that we should not trust the tree in Figure~\ref{RP:gl} too much. \index{Bagging} \index{Bootstrap approach!glaucoma diagnosis data} One way out of this dilemma is the aggregation of multiple trees via bagging. In \R{}, the bagging idea can be implemented by three or four lines of code. Case count or weight vectors representing the bootstrap samples can be drawn from the multinominal distribution with parameters $n$ and $p_1 = 1/n, \dots, p_n = 1/n$ via the \Rcmd{rmultinom} function. For each weight vector, one large tree is constructed without pruning and the \Rclass{rpart} objects are stored in a list, here called \Robject{trees}: <>= trees <- vector(mode = "list", length = 25) n <- nrow(GlaucomaM) bootsamples <- rmultinom(length(trees), n, rep(1, n)/n) mod <- rpart(Class ~ ., data = GlaucomaM, control = rpart.control(xval = 0)) for (i in 1:length(trees)) trees[[i]] <- update(mod, weights = bootsamples[,i]) @ The \Rcmd{update} function re-evaluates the call of \Robject{mod}, however, with the weights being altered, i.e., fits a tree to a bootstrap sample specified by the weights. It is interesting to have a look at the structures of the multiple trees. For example, the variable selected for splitting in the root of the tree is not unique as can be seen by <>= table(sapply(trees, function(x) as.character(x$frame$var[1]))) @ Although \Robject{varg} is selected most of the time, other variables such as \Robject{vari} occur as well -- a further indication that the tree in Figure~\ref{RP:gl} is questionable and that hard decisions are not appropriate for the glaucoma data. In order to make use of the ensemble of trees in the list \Robject{trees} we estimate the conditional probability of suffering from glaucoma given the covariates for each observation in the original data set by <>= classprob <- matrix(0, nrow = n, ncol = length(trees)) for (i in 1:length(trees)) { classprob[,i] <- predict(trees[[i]], newdata = GlaucomaM)[,1] classprob[bootsamples[,i] > 0,i] <- NA } @ Thus, for each observation we get \Sexpr{length(trees)} estimates. However, each observation has been used for growing one of the trees with probability $0.632$ and thus was not used with probability $0.368$. Consequently, the estimate from a tree where an observation was not used for growing is better for judging the quality of the predictions and we label the other estimates with \Robject{NA}. Now, we can average the estimates and we vote for glaucoma when the average of the estimates of the conditional glaucoma probability exceeds $0.5$. The comparison between the observed and the predicted classes does not suffer from overfitting since the predictions are computed from those trees for which each single observation was \stress{not} used for growing. <>= avg <- rowMeans(classprob, na.rm = TRUE) predictions <- factor(ifelse(avg > 0.5, "glaucoma", "normal")) predtab <- table(predictions, GlaucomaM$Class) predtab @ Thus, an honest estimate of the probability of a glaucoma prediction when the patient is actually suffering from glaucoma is <>= round(predtab[1,1] / colSums(predtab)[1] * 100) @ per cent. For <>= round(predtab[2,2] / colSums(predtab)[2] * 100) @ percent of normal eyes, the ensemble does not predict glaucomateous damage. \begin{figure} \begin{center} <>= library("lattice") gdata <- data.frame(avg = rep(avg, 2), class = rep(as.numeric(GlaucomaM$Class), 2), obs = c(GlaucomaM[["varg"]], GlaucomaM[["vari"]]), var = factor(c(rep("varg", nrow(GlaucomaM)), rep("vari", nrow(GlaucomaM))))) panelf <- function(x, y) { panel.xyplot(x, y, pch = gdata$class) panel.abline(h = 0.5, lty = 2) } print(xyplot(avg ~ obs | var, data = gdata, panel = panelf, scales = "free", xlab = "", ylab = "Estimated Class Probability Glaucoma")) @ \caption{Estimated class probabilities depending on two important variables. The $0.5$ cut-off for the estimated glaucoma probability is depicted as a horizontal line. Glaucomateous eyes are plotted as circles and normal eyes are triangles. \label{RP:glplot}} \end{center} \end{figure} \index{Random forest} The bagging procedure is a special case of a more general approach called \stress{random forest} \citep{HSAUR:Breiman2001b}. The package \Rpackage{randomForest} \citep{PKG:randomForest} can be used to compute such ensembles via <>= library("randomForest") rf <- randomForest(Class ~ ., data = GlaucomaM) @ and we obtain out-of-bag estimates for the prediction error via <>= table(predict(rf), GlaucomaM$Class) @ \subsection{Trees Revisited} For the body fat data, such a \stress{conditional inference tree} can be computed using the \Rcmd{ctree} function \index{Conditional tree} <>= bodyfat_ctree <- ctree(DEXfat ~ age + waistcirc + hipcirc + elbowbreadth + kneebreadth, data = bodyfat) @ This tree doesn't require a pruning procedure because an internal stop criterion based on formal statistical tests prevents the procedure from overfitting the data. The tree structure is shown in Figure~\ref{RP-bodyfat-ctree-plot}. Although the structure of this tree and the tree depicted in Figure~\ref{RP-bodyfat-pruneplot} are rather different, the corresponding predictions don't vary too much. \begin{figure} \begin{center} <>= plot(bodyfat_ctree, tp_args = list(id = FALSE)) @ \caption{Conditional inference tree with the distribution of body fat content shown for each terminal leaf. \label{RP-bodyfat-ctree-plot}} \end{center} \end{figure} Very much the same code is needed to grow a tree on the glaucoma data: <>= glaucoma_ctree <- ctree(Class ~ ., data = GlaucomaM) @ and a graphical representation is depicted in Figure~\ref{RP-glaucoma-ctree-plot} showing both the cutpoints and the $p$-values of the associated independence tests for each node. The first split is performed using a cutpoint defined with respect to the volume of the optic nerve above some reference plane, but in the inferior part of the eye only (\Robject{vari}). \begin{figure} \begin{center} <>= plot(glaucoma_ctree, tp_args = list(id = FALSE)) @ \caption{Conditional inference tree with the distribution of glaucomateous eyes shown for each terminal leaf. \label{RP-glaucoma-ctree-plot}} \end{center} \end{figure} \subsection{Happiness in China} \index{Chinese Health and Family Life Survey} A conditional inference tree is a simple alternative to the proportional odds model for the regression analysis of the happiness variable from the Chinese Health and Family Life Survey. In each node, a linear association test introduced in Section~\ref{CI:Lanza} taking the ordering of the happiness levels into account is applied for selecting variables and split-points. Before we fit the tree with the \Rcmd{ctree} function, we recode the levels of the happiness variable to allow plotting of these symbols with restricted page space: \newpage <>= levels(CHFLS$R_happy) levels(CHFLS$R_happy) <- LETTERS[1:4] CHFLS_ctree <- ctree(R_happy ~ ., data = CHFLS) @ The resulting tree is depicted in Figure~\ref{RP-CHFLS-ctree-plot} and very nicely backs up the results obtained from the proportional odds model in Chapter~\ref{GLM}. The distribution of self-reported happiness is shifted from very unhappy to very happy with increasing values of self-reported health, i.e., women that reported excellent health (mind the $>$ sign in the right label of the root split!) were at least somewhat happy with only a few exceptions. Women with poor or not good health reported being not too happy much more often. There seems to be further differentiation with respect to geography and also income but the differences in the distributions depicted in the terminal leaves are negligible. \begin{figure} \begin{center} <>= plot(CHFLS_ctree, ep_args = list(justmin = 10), tp_args = list(id = FALSE)) @ \caption{Conditional inference tree with the distribution of self-reported happiness shown for each terminal leaf. The levels of happiness have been abbreviated (A: very unhappy, B: not too happy, C: somewhat happy; D: very happy). The \Rcmd{justmin} argument ensures that split descriptions longer than $10$ characters are displayed over two lines. \label{RP-CHFLS-ctree-plot}} \end{center} \end{figure} \bibliographystyle{LaTeXBibTeX/refstyle} \bibliography{LaTeXBibTeX/HSAUR} \end{document} HSAUR3/vignettes/Ch_simple_inference.Rnw0000644000176200001440000005240414416236370017653 0ustar liggesusers \documentclass{chapman} %%% copy Sweave.sty definitions %%% keeps `sweave' from adding `\usepackage{Sweave}': DO NOT REMOVE %\usepackage{Sweave} \RequirePackage[T1]{fontenc} \RequirePackage{graphicx,ae,fancyvrb} \IfFileExists{upquote.sty}{\RequirePackage{upquote}}{} \usepackage{relsize} \DefineVerbatimEnvironment{Sinput}{Verbatim}{} \DefineVerbatimEnvironment{Soutput}{Verbatim}{fontfamily=courier, fontshape=it, fontsize=\relsize{-1}} \DefineVerbatimEnvironment{Scode}{Verbatim}{} \newenvironment{Schunk}{}{} %%% environment for raw output \newcommand{\SchunkRaw}{\renewenvironment{Schunk}{}{} \DefineVerbatimEnvironment{Soutput}{Verbatim}{fontfamily=courier, fontshape=it, fontsize=\small} \rawSinput } %%% environment for labeled output \newcommand{\nextcaption}{} \newcommand{\SchunkLabel}{ \renewenvironment{Schunk}{\begin{figure}[ht] }{\caption{\nextcaption} \end{figure} } \DefineVerbatimEnvironment{Sinput}{Verbatim}{frame = topline} \DefineVerbatimEnvironment{Soutput}{Verbatim}{frame = bottomline, samepage = true, fontfamily=courier, fontshape=it, fontsize=\relsize{-1}} } %%% S code with line numbers \DefineVerbatimEnvironment{Sinput} {Verbatim} { %% numbers=left } \newcommand{\numberSinput}{ \DefineVerbatimEnvironment{Sinput}{Verbatim}{numbers=left} } \newcommand{\rawSinput}{ \DefineVerbatimEnvironment{Sinput}{Verbatim}{} } %%% R / System symbols \newcommand{\R}{\textsf{R}} \newcommand{\rR}{{R}} \renewcommand{\S}{\textsf{S}} \newcommand{\SPLUS}{\textsf{S-PLUS}} \newcommand{\rSPLUS}{{S-PLUS}} \newcommand{\SPSS}{\textsf{SPSS}} \newcommand{\EXCEL}{\textsf{Excel}} \newcommand{\ACCESS}{\textsf{Access}} \newcommand{\SQL}{\textsf{SQL}} %%\newcommand{\Rpackage}[1]{\hbox{\rm\textit{#1}}} %%\newcommand{\Robject}[1]{\hbox{\rm\texttt{#1}}} %%\newcommand{\Rclass}[1]{\hbox{\rm\textit{#1}}} %%\newcommand{\Rcmd}[1]{\hbox{\rm\texttt{#1}}} \newcommand{\Rpackage}[1]{\index{#1 package@{\fontseries{b}\selectfont #1} package} {\fontseries{b}\selectfont #1}} \newcommand{\rpackage}[1]{{\fontseries{b}\selectfont #1}} \newcommand{\Robject}[1]{\texttt{#1}} \newcommand{\Rclass}[1]{\index{#1 class@\textit{#1} class}\textit{#1}} \newcommand{\Rcmd}[1]{\index{#1 function@\texttt{#1} function}\texttt{#1}} \newcommand{\Roperator}[1]{\texttt{#1}} \newcommand{\Rarg}[1]{\texttt{#1}} \newcommand{\Rlevel}[1]{\texttt{#1}} %%% other symbols \newcommand{\file}[1]{\hbox{\rm\texttt{#1}}} %%\newcommand{\stress}[1]{\index{#1}\textit{#1}} \newcommand{\stress}[1]{\textit{#1}} \newcommand{\booktitle}[1]{\textit{#1}} %%' %%% Math symbols \usepackage{amstext} \usepackage{amsmath} \newcommand{\E}{\mathsf{E}} \newcommand{\Var}{\mathsf{Var}} \newcommand{\Cov}{\mathsf{Cov}} \newcommand{\Cor}{\mathsf{Cor}} \newcommand{\x}{\mathbf{x}} \newcommand{\y}{\mathbf{y}} \renewcommand{\a}{\mathbf{a}} \newcommand{\W}{\mathbf{W}} \newcommand{\C}{\mathbf{C}} \renewcommand{\H}{\mathbf{H}} \newcommand{\X}{\mathbf{X}} \newcommand{\B}{\mathbf{B}} \newcommand{\V}{\mathbf{V}} \newcommand{\I}{\mathbf{I}} \newcommand{\D}{\mathbf{D}} \newcommand{\bS}{\mathbf{S}} \newcommand{\N}{\mathcal{N}} \renewcommand{\L}{L} \renewcommand{\P}{\mathsf{P}} \newcommand{\K}{\mathbf{K}} \newcommand{\m}{\mathbf{m}} \newcommand{\argmin}{\operatorname{argmin}\displaylimits} \newcommand{\argmax}{\operatorname{argmax}\displaylimits} \newcommand{\bx}{\mathbf{x}} \newcommand{\bbeta}{\mathbf{\beta}} %%% links \usepackage{hyperref} \hypersetup{% pdftitle = {A Handbook of Statistical Analyses Using R (3rd Edition)}, pdfsubject = {Book}, pdfauthor = {Torsten Hothorn and Brian S. Everitt}, colorlinks = {black}, linkcolor = {black}, citecolor = {black}, urlcolor = {black}, hyperindex = {true}, linktocpage = {true}, } %%% captions & tables %% : conflics with figure definition in chapman.cls %%\usepackage[format=hang,margin=10pt,labelfont=bf]{caption} %% \usepackage{longtable} \usepackage[figuresright]{rotating} %%% R symbol in chapter 1 \usepackage{wrapfig} %%% Bibliography \usepackage[round,comma]{natbib} \renewcommand{\refname}{References \addcontentsline{toc}{chapter}{References}} \citeindexfalse %%% texi2dvi complains that \newblock is undefined, hm... \def\newblock{\hskip .11em plus .33em minus .07em} %%% Example sections \newcounter{exercise}[chapter] \setcounter{exercise}{0} \newcommand{\exercise}{\stepcounter{exercise} \item{Ex.~\arabic{chapter}.\arabic{exercise} }} %% URLs \newcommand{\curl}[1]{\begin{center} \url{#1} \end{center}} %%% for manual corrections %\renewcommand{\baselinestretch}{2} %%% plot sizes \setkeys{Gin}{width=0.95\textwidth} %%% color \usepackage{color} %%% hyphenations \hyphenation{drop-out} \hyphenation{mar-gi-nal} %%% new bidirectional quotes need \usepackage[utf8]{inputenc} %\usepackage{setspace} \definecolor{sidebox_todo}{rgb}{1,1,0.2} \newcommand{\todo}[1]{ \hspace{0pt}% \marginpar{% \fcolorbox{black}{sidebox_todo}{% \parbox{\marginparwidth} { \raggedright\sffamily\footnotesize{TODO: #1}% } }% } } \begin{document} %% Title page \title{A Handbook of Statistical Analyses Using \R{} --- 3rd Edition} \author{Torsten Hothorn and Brian S. Everitt} \maketitle %%\VignetteIndexEntry{Chapter Simple Inference} %%\VignetteDepends{vcd} \setcounter{chapter}{2} \SweaveOpts{prefix.string=figures/HSAUR,eps=FALSE,keep.source=TRUE} <>= rm(list = ls()) s <- search()[-1] s <- s[-match(c("package:base", "package:stats", "package:graphics", "package:grDevices", "package:utils", "package:datasets", "package:methods", "Autoloads"), s)] if (length(s) > 0) sapply(s, detach, character.only = TRUE) if (!file.exists("tables")) dir.create("tables") if (!file.exists("figures")) dir.create("figures") set.seed(290875) options(prompt = "R> ", continue = "+ ", width = 63, # digits = 4, show.signif.stars = FALSE, SweaveHooks = list(leftpar = function() par(mai = par("mai") * c(1, 1.05, 1, 1)), bigleftpar = function() par(mai = par("mai") * c(1, 1.7, 1, 1)))) HSAURpkg <- require("HSAUR3") if (!HSAURpkg) stop("cannot load package ", sQuote("HSAUR3")) rm(HSAURpkg) ### hm, R-2.4.0 --vanilla seems to need this a <- Sys.setlocale("LC_ALL", "C") ### book <- TRUE refs <- cbind(c("AItR", "DAGD", "SI", "CI", "ANOVA", "MLR", "GLM", "DE", "RP", "GAM", "SA", "ALDI", "ALDII", "SIMC", "MA", "PCA", "MDS", "CA"), 1:18) ch <- function(x) { ch <- refs[which(refs[,1] == x),] if (book) { return(paste("Chapter~\\\\ref{", ch[1], "}", sep = "")) } else { return(paste("Chapter~", ch[2], sep = "")) } } if (file.exists("deparse.R")) source("deparse.R") setHook(packageEvent("lattice", "attach"), function(...) { lattice.options(default.theme = function() standard.theme("pdf", color = FALSE)) }) @ \pagestyle{headings} <>= book <- FALSE @ \chapter[Simple Inference]{Simple Inference: Guessing Lengths, Wave Energy, Water Hardness, Piston Rings, and Rearrests of Juveniles \label{SI}} \section{Introduction} <>= library("vcd") if (!interactive()) { print.htest <- function (x, digits = 4, quote = TRUE, prefix = "", ...) { cat("\n") cat(strwrap(x$method, prefix = "\t"), sep = "\n") cat("\n") cat("data: ", x$data.name, "\n") out <- character() if (!is.null(x$statistic)) out <- c(out, paste(names(x$statistic), "=", format(round(x$statistic, 4)))) if (!is.null(x$parameter)) out <- c(out, paste(names(x$parameter), "=", format(round(x$parameter, 3)))) if (!is.null(x$p.value)) { fp <- format.pval(x$p.value, digits = digits) out <- c(out, paste("p-value", if (substr(fp, 1, 1) == "<") fp else paste("=", fp))) } cat(strwrap(paste(out, collapse = ", ")), sep = "\n") if (!is.null(x$conf.int)) { cat(format(100 * attr(x$conf.int, "conf.level")), "percent confidence interval:\n", format(c(x$conf.int[1], x$conf.int[2])), "\n") } if (!is.null(x$estimate)) { cat("sample estimates:\n") print(x$estimate, ...) } cat("\n") invisible(x) } } @ \section{Statistical Tests} \section{Analysis Using \R{}} \subsection{Estimating the Width of a Room} The data shown in Table~\ref{SI-rw-tab} are available as \Robject{roomwidth} \Rclass{data.frame} from the \Rpackage{HSAUR3} package and can be attached by using <>= data("roomwidth", package = "HSAUR3") @ If we convert the estimates of the room width in meters into feet by multiplying each by $3.28$ then we would like to test the hypothesis that the mean of the population of `metre' estimates is equal to the mean %' of the population of `feet' estimates. We shall do this first %' by using an independent samples $t$-test, but first it is good practice to check, informally at least, the normality and equal variance assumptions. Here we can use a combination of numerical and graphical approaches. The first step should be to convert the meter estimates into feet by a factor <>= convert <- ifelse(roomwidth$unit == "feet", 1, 3.28) @ which equals one for all feet measurements and $3.28$ for the measurements in meters. Now, we get the usual summary statistics and standard deviations of each set of estimates using <>= tapply(roomwidth$width * convert, roomwidth$unit, summary) tapply(roomwidth$width * convert, roomwidth$unit, sd) @ where \Rcmd{tapply} applies \Rcmd{summary}, or \Rcmd{sd}, to the converted widths for both groups of measurements given by \Robject{roomwidth\$unit}. A boxplot of each set of estimates might be useful and is depicted in Figure~\ref{SI-rw-bxp}. The \Rcmd{layout} function (line 1 in Figure~\ref{SI-rw-bxp}) divides the plotting area into three parts. The \Rcmd{boxplot} function produces a boxplot in the upper part and the two \Rcmd{qqnorm} statements in lines 7 and 10 set up the normal probability plots that can be used to assess the normality assumption of the $t$-test. \index{Normal probability plot} \numberSinput \begin{figure} \begin{center} <>= layout(matrix(c(1,2,1,3), nrow = 2, ncol = 2, byrow = FALSE)) boxplot(I(width * convert) ~ unit, data = roomwidth, ylab = "Estimated width (feet)", varwidth = TRUE, names = c("Estimates in feet", "Estimates in meters (converted to feet)")) feet <- roomwidth$unit == "feet" qqnorm(roomwidth$width[feet], ylab = "Estimated width (feet)") qqline(roomwidth$width[feet]) qqnorm(roomwidth$width[!feet], ylab = "Estimated width (meters)") qqline(roomwidth$width[!feet]) @ \caption{Boxplots of estimates of room width in feet and meters (after conversion to feet) and normal probability plots of estimates of room width made in feet and in meters. \label{SI-rw-bxp}} \end{center} \end{figure} \rawSinput The boxplots indicate that both sets of estimates contain a number of outliers and also that the estimates made in meters are skewed and more variable than those made in feet, a point underlined by the numerical summary statistics above. Both normal probability plots depart from linearity, suggesting that the distributions of both sets of estimates are not normal. The presence of outliers, the apparently different variances and the evidence of non-normality all suggest caution in applying the $t$-test, but for the moment we shall apply the usual version of the test using the \Rcmd{t.test} function in \R{}. The two-sample test problem is specified by a \Rclass{formula}, here by <>= I(width * convert) ~ unit @ where the response, \Robject{width}, on the left-hand side needs to be converted first and, because the star has a special meaning in formulae as will be explained in \Sexpr{ch("ANOVA")}, the conversion needs to be embedded by \texttt{I}. The factor \Robject{unit} on the right-hand side specifies the two groups to be compared. <>= tt <- t.test(I(width * convert) ~ unit, data = roomwidth, var.equal = TRUE) @ \renewcommand{\nextcaption}{\R{} output of the independent samples $t$-test for the \Robject{roomwidth} data. \label{SI-roomwidth-tt-fig}} \SchunkLabel <>= t.test(I(width * convert) ~ unit, data = roomwidth, var.equal = TRUE) @ \SchunkRaw \renewcommand{\nextcaption}{\R{} output of the independent samples Welch test for the \Robject{roomwidth} data. \label{SI-roomwidth-welch-fig}} \SchunkLabel <>= t.test(I(width * convert) ~ unit, data = roomwidth, var.equal = FALSE) @ \SchunkRaw \renewcommand{\nextcaption}{\R{} output of the Wilcoxon rank sum test for the \Robject{roomwidth} data. \label{SI-roomwidth-wilcox-fig}} \SchunkLabel <>= wilcox.test(I(width * convert) ~ unit, data = roomwidth, conf.int = TRUE) @ \SchunkRaw <>= pwt <- round(wilcox.test(I(width * convert) ~ unit, data = roomwidth)$p.value, 3) @ \subsection{Wave Energy Device Mooring} The data from Table~\ref{SI-m-tab} are available as \Rclass{data.frame} \Robject{waves} <>= data("waves", package = "HSAUR3") @ and requires the use of a matched pairs $t$-test to answer the question of interest. This test assumes that the differences between the matched observations have a normal distribution so we can begin by checking this assumption by constructing a boxplot and a normal probability plot -- see Figure~\ref{SI-w-bxp}. \begin{figure} \begin{center} <>= mooringdiff <- waves$method1 - waves$method2 layout(matrix(1:2, ncol = 2)) boxplot(mooringdiff, ylab = "Differences (Newton meters)", main = "Boxplot") abline(h = 0, lty = 2) qqnorm(mooringdiff, ylab = "Differences (Newton meters)") qqline(mooringdiff) @ \caption{Boxplot and normal probability plot for differences between the two mooring methods. \label{SI-w-bxp}} \end{center} \end{figure} \renewcommand{\nextcaption}{\R{} output of the paired $t$-test for the \Robject{waves} data. \label{SI-waves-tt-fig}} \SchunkLabel <>= t.test(mooringdiff) @ \SchunkRaw <>= pwt <- round(wilcox.test(mooringdiff)$p.value, 3) @ \renewcommand{\nextcaption}{\R{} output of the Wilcoxon signed rank test for the \Robject{waves} data. \label{SI-waves-ws-fig}} \SchunkLabel <>= wilcox.test(mooringdiff) @ \SchunkRaw \subsection{Mortality and Water Hardness} There is a wide range of analyses we could apply to the data in Table~\ref{SI-w-tab} available from <>= data("water", package = "HSAUR3") @ But to begin we will construct a scatterplot of the data enhanced somewhat by the addition of information about the marginal distributions of water hardness (calcium concentration) and mortality, and by adding the estimated linear regression fit (see \Sexpr{ch("MLR")}) for mortality on hardness. The plot and the required \R{} code are given along with Figure~\ref{SI-water-sp}. In line 1 of Figure~\ref{SI-water-sp}, we divide the plotting region into four areas of different size. The scatterplot (line 3) uses a plotting symbol depending on the location of the city (by the \Rarg{pch} argument); a legend for the location is added in line 6. We add a least squares fit (see \Sexpr{ch("MLR")}) to the scatterplot and, finally, depict the marginal distributions by means of a boxplot and a histogram. The scatterplot shows that as hardness increases mortality decreases, and the histogram for the water hardness shows it has a rather skewed distribution. \numberSinput \begin{figure} \begin{center} <>= nf <- layout(matrix(c(2, 0, 1, 3), 2, 2, byrow = TRUE), c(2, 1), c(1, 2), TRUE) psymb <- as.numeric(water$location) plot(mortality ~ hardness, data = water, pch = psymb) abline(lm(mortality ~ hardness, data = water)) legend("topright", legend = levels(water$location), pch = c(1,2), bty = "n") hist(water$hardness) boxplot(water$mortality) @ \caption{Enhanced scatterplot of water hardness and mortality, showing both the joint and the marginal distributions and, in addition, the location of the city by different plotting symbols. \label{SI-water-sp}} \end{center} \end{figure} \rawSinput \renewcommand{\nextcaption}{\R{} output of Pearsons' correlation coefficient %' for the \Robject{water} data. \label{SI-water-c-fig}} \SchunkLabel <>= cor.test(~ mortality + hardness, data = water) @ \SchunkRaw <>= cr <- round(cor.test(~ mortality + hardness, data = water)$estimate, 3) @ \subsection{Piston-ring Failures} <>= chisqt <- chisq.test(pistonrings) @ \renewcommand{\nextcaption}{\R{} output of the chi-squared test for the \Robject{pistonrings} data. \label{SI-pr-x2-fig}} \SchunkLabel <>= data("pistonrings", package = "HSAUR3") chisq.test(pistonrings) @ \SchunkRaw Rather than looking at the simple differences of observed and expected values for each cell which would be unsatisfactory since a difference of fixed size is clearly more important for smaller samples, it is preferable to consider a \stress{standardized residual} \index{Standardized residual, for chi-squared tests} given by dividing the observed minus the expected difference by the square root of the appropriate expected value. The $X^2$ statistic for assessing independence is simply the sum, over all the cells in the table, of the squares of these terms. We can find these values extracting the \Robject{residuals} element of the object returned by the \Rcmd{chisq.test} function <>= chisq.test(pistonrings)$residuals @ A graphical representation of these residuals is called an \stress{association plot} \index{Association plot} and is available via the \Rcmd{assoc} function from package \Rpackage{vcd} \citep{PKG:vcd} applied to the contingency table of the two categorical variables. Figure~\ref{SI-assoc-plot} depicts the residuals for the piston ring data. The deviations from independence are largest for C1 and C4 compressors in the center and south leg. \begin{figure} \begin{center} <>= library("vcd") assoc(pistonrings) @ \caption{Association plot of the residuals for the \Robject{pistonrings} data. \label{SI-assoc-plot}} \end{center} \end{figure} \subsection{Rearrests of Juveniles} The data in Table~\ref{SI-r-tab} are available as \Rclass{table} object via <>= data("rearrests", package = "HSAUR3") rearrests @ <>= mcs <- round(mcnemar.test(rearrests, correct = FALSE)$statistic, 2) @ and in \Robject{rearrests} the counts in the four cells refer to the matched pairs of subjects; for example, in $\Sexpr{rearrests[1,1]}$ pairs both members of the pair were rearrested. Here we need to use McNemar's %' test to assess whether rearrest is associated with the type of court where the juvenile was tried. We can use the \R{} function \Rcmd{mcnemar.test}. The test statistic shown in Figure~\ref{SI-ra-mc-fig} is $\Sexpr{mcs}$ with a single degree of freedom -- the associated $p$-value is extremely small and there is strong evidence that type of court and the probability of rearrest are related. It appears that trial at a juvenile court is less likely to result in rearrest (see Exercise~3.4). % An exact version of McNemar's test %%' can be obtained by testing whether $b$ and $c$ are equal using a binomial test (see Figure~\ref{SI-ra-mcbin-fig}). \renewcommand{\nextcaption}{\R{} output of McNemar's test %' for the \Robject{rearrests} data. \label{SI-ra-mc-fig}} \SchunkLabel <>= mcnemar.test(rearrests, correct = FALSE) @ \SchunkRaw \renewcommand{\nextcaption}{\R{} output of an exact version of McNemar's test %' for the \Robject{rearrests} data computed via a binomial test. \label{SI-ra-mcbin-fig}} \SchunkLabel <>= binom.test(rearrests[2], n = sum(rearrests[c(2,3)])) @ \SchunkRaw \bibliographystyle{LaTeXBibTeX/refstyle} \bibliography{LaTeXBibTeX/HSAUR} \end{document} HSAUR3/vignettes/Ch_analysing_longitudinal_dataII.Rnw0000644000176200001440000005336314416236367022330 0ustar liggesusers \documentclass{chapman} %%% copy Sweave.sty definitions %%% keeps `sweave' from adding `\usepackage{Sweave}': DO NOT REMOVE %\usepackage{Sweave} \RequirePackage[T1]{fontenc} \RequirePackage{graphicx,ae,fancyvrb} \IfFileExists{upquote.sty}{\RequirePackage{upquote}}{} \usepackage{relsize} \DefineVerbatimEnvironment{Sinput}{Verbatim}{} \DefineVerbatimEnvironment{Soutput}{Verbatim}{fontfamily=courier, fontshape=it, fontsize=\relsize{-1}} \DefineVerbatimEnvironment{Scode}{Verbatim}{} \newenvironment{Schunk}{}{} %%% environment for raw output \newcommand{\SchunkRaw}{\renewenvironment{Schunk}{}{} \DefineVerbatimEnvironment{Soutput}{Verbatim}{fontfamily=courier, fontshape=it, fontsize=\small} \rawSinput } %%% environment for labeled output \newcommand{\nextcaption}{} \newcommand{\SchunkLabel}{ \renewenvironment{Schunk}{\begin{figure}[ht] }{\caption{\nextcaption} \end{figure} } \DefineVerbatimEnvironment{Sinput}{Verbatim}{frame = topline} \DefineVerbatimEnvironment{Soutput}{Verbatim}{frame = bottomline, samepage = true, fontfamily=courier, fontshape=it, fontsize=\relsize{-1}} } %%% S code with line numbers \DefineVerbatimEnvironment{Sinput} {Verbatim} { %% numbers=left } \newcommand{\numberSinput}{ \DefineVerbatimEnvironment{Sinput}{Verbatim}{numbers=left} } \newcommand{\rawSinput}{ \DefineVerbatimEnvironment{Sinput}{Verbatim}{} } %%% R / System symbols \newcommand{\R}{\textsf{R}} \newcommand{\rR}{{R}} \renewcommand{\S}{\textsf{S}} \newcommand{\SPLUS}{\textsf{S-PLUS}} \newcommand{\rSPLUS}{{S-PLUS}} \newcommand{\SPSS}{\textsf{SPSS}} \newcommand{\EXCEL}{\textsf{Excel}} \newcommand{\ACCESS}{\textsf{Access}} \newcommand{\SQL}{\textsf{SQL}} %%\newcommand{\Rpackage}[1]{\hbox{\rm\textit{#1}}} %%\newcommand{\Robject}[1]{\hbox{\rm\texttt{#1}}} %%\newcommand{\Rclass}[1]{\hbox{\rm\textit{#1}}} %%\newcommand{\Rcmd}[1]{\hbox{\rm\texttt{#1}}} \newcommand{\Rpackage}[1]{\index{#1 package@{\fontseries{b}\selectfont #1} package} {\fontseries{b}\selectfont #1}} \newcommand{\rpackage}[1]{{\fontseries{b}\selectfont #1}} \newcommand{\Robject}[1]{\texttt{#1}} \newcommand{\Rclass}[1]{\index{#1 class@\textit{#1} class}\textit{#1}} \newcommand{\Rcmd}[1]{\index{#1 function@\texttt{#1} function}\texttt{#1}} \newcommand{\Roperator}[1]{\texttt{#1}} \newcommand{\Rarg}[1]{\texttt{#1}} \newcommand{\Rlevel}[1]{\texttt{#1}} %%% other symbols \newcommand{\file}[1]{\hbox{\rm\texttt{#1}}} %%\newcommand{\stress}[1]{\index{#1}\textit{#1}} \newcommand{\stress}[1]{\textit{#1}} \newcommand{\booktitle}[1]{\textit{#1}} %%' %%% Math symbols \usepackage{amstext} \usepackage{amsmath} \newcommand{\E}{\mathsf{E}} \newcommand{\Var}{\mathsf{Var}} \newcommand{\Cov}{\mathsf{Cov}} \newcommand{\Cor}{\mathsf{Cor}} \newcommand{\x}{\mathbf{x}} \newcommand{\y}{\mathbf{y}} \renewcommand{\a}{\mathbf{a}} \newcommand{\W}{\mathbf{W}} \newcommand{\C}{\mathbf{C}} \renewcommand{\H}{\mathbf{H}} \newcommand{\X}{\mathbf{X}} \newcommand{\B}{\mathbf{B}} \newcommand{\V}{\mathbf{V}} \newcommand{\I}{\mathbf{I}} \newcommand{\D}{\mathbf{D}} \newcommand{\bS}{\mathbf{S}} \newcommand{\N}{\mathcal{N}} \renewcommand{\L}{L} \renewcommand{\P}{\mathsf{P}} \newcommand{\K}{\mathbf{K}} \newcommand{\m}{\mathbf{m}} \newcommand{\argmin}{\operatorname{argmin}\displaylimits} \newcommand{\argmax}{\operatorname{argmax}\displaylimits} \newcommand{\bx}{\mathbf{x}} \newcommand{\bbeta}{\mathbf{\beta}} %%% links \usepackage{hyperref} \hypersetup{% pdftitle = {A Handbook of Statistical Analyses Using R (3rd Edition)}, pdfsubject = {Book}, pdfauthor = {Torsten Hothorn and Brian S. Everitt}, colorlinks = {black}, linkcolor = {black}, citecolor = {black}, urlcolor = {black}, hyperindex = {true}, linktocpage = {true}, } %%% captions & tables %% : conflics with figure definition in chapman.cls %%\usepackage[format=hang,margin=10pt,labelfont=bf]{caption} %% \usepackage{longtable} \usepackage[figuresright]{rotating} %%% R symbol in chapter 1 \usepackage{wrapfig} %%% Bibliography \usepackage[round,comma]{natbib} \renewcommand{\refname}{References \addcontentsline{toc}{chapter}{References}} \citeindexfalse %%% texi2dvi complains that \newblock is undefined, hm... \def\newblock{\hskip .11em plus .33em minus .07em} %%% Example sections \newcounter{exercise}[chapter] \setcounter{exercise}{0} \newcommand{\exercise}{\stepcounter{exercise} \item{Ex.~\arabic{chapter}.\arabic{exercise} }} %% URLs \newcommand{\curl}[1]{\begin{center} \url{#1} \end{center}} %%% for manual corrections %\renewcommand{\baselinestretch}{2} %%% plot sizes \setkeys{Gin}{width=0.95\textwidth} %%% color \usepackage{color} %%% hyphenations \hyphenation{drop-out} \hyphenation{mar-gi-nal} %%% new bidirectional quotes need \usepackage[utf8]{inputenc} %\usepackage{setspace} \definecolor{sidebox_todo}{rgb}{1,1,0.2} \newcommand{\todo}[1]{ \hspace{0pt}% \marginpar{% \fcolorbox{black}{sidebox_todo}{% \parbox{\marginparwidth} { \raggedright\sffamily\footnotesize{TODO: #1}% } }% } } \begin{document} %% Title page \title{A Handbook of Statistical Analyses Using \R{} --- 3rd Edition} \author{Torsten Hothorn and Brian S. Everitt} \maketitle %%\VignetteIndexEntry{Chapter Analyzing Longitudinal Data II} %%\VignetteDepends{gee,lme4} \setcounter{chapter}{13} \SweaveOpts{prefix.string=figures/HSAUR,eps=FALSE,keep.source=TRUE} <>= rm(list = ls()) s <- search()[-1] s <- s[-match(c("package:base", "package:stats", "package:graphics", "package:grDevices", "package:utils", "package:datasets", "package:methods", "Autoloads"), s)] if (length(s) > 0) sapply(s, detach, character.only = TRUE) if (!file.exists("tables")) dir.create("tables") if (!file.exists("figures")) dir.create("figures") set.seed(290875) options(prompt = "R> ", continue = "+ ", width = 63, # digits = 4, show.signif.stars = FALSE, SweaveHooks = list(leftpar = function() par(mai = par("mai") * c(1, 1.05, 1, 1)), bigleftpar = function() par(mai = par("mai") * c(1, 1.7, 1, 1)))) HSAURpkg <- require("HSAUR3") if (!HSAURpkg) stop("cannot load package ", sQuote("HSAUR3")) rm(HSAURpkg) ### hm, R-2.4.0 --vanilla seems to need this a <- Sys.setlocale("LC_ALL", "C") ### book <- TRUE refs <- cbind(c("AItR", "DAGD", "SI", "CI", "ANOVA", "MLR", "GLM", "DE", "RP", "GAM", "SA", "ALDI", "ALDII", "SIMC", "MA", "PCA", "MDS", "CA"), 1:18) ch <- function(x) { ch <- refs[which(refs[,1] == x),] if (book) { return(paste("Chapter~\\\\ref{", ch[1], "}", sep = "")) } else { return(paste("Chapter~", ch[2], sep = "")) } } if (file.exists("deparse.R")) source("deparse.R") setHook(packageEvent("lattice", "attach"), function(...) { lattice.options(default.theme = function() standard.theme("pdf", color = FALSE)) }) @ \pagestyle{headings} <>= book <- FALSE @ <>= options(digits = 3) if (!interactive()) { print.summary.gee <- function (x, digits = NULL, quote = FALSE, prefix = "", ...) { if (is.null(digits)) digits <- options()$digits else options(digits = digits) cat("...") cat("\nModel:\n") cat(" Link: ", x$model$link, "\n") cat(" Variance to Mean Relation:", x$model$varfun, "\n") if (!is.null(x$model$M)) cat(" Correlation Structure: ", x$model$corstr, ", M =", x$model$M, "\n") else cat(" Correlation Structure: ", x$model$corstr, "\n") cat("\n...") nas <- x$nas if (!is.null(nas) && any(nas)) cat("\n\nCoefficients: (", sum(nas), " not defined because of singularities)\n", sep = "") else cat("\n\nCoefficients:\n") print(x$coefficients, digits = digits) cat("\nEstimated Scale Parameter: ", format(round(x$scale, digits))) cat("\n...\n") invisible(x) } } @ \chapter[Analyzing Longitudinal Data II]{ Analyzing Longitudinal Data II -- Generalized Estimation Equations and Linear Mixed Effect Models: Treating Respiratory Illness and Epileptic Seizures \label{ALDII}} \section{Introduction} \section{Methods for Non-normal Distributions} \section{Analysis Using \R{}: GEE} \subsection{Beat the Blues Revisited} To use the \Rcmd{gee} function, package \Rpackage{gee} \citep{PKG:gee} has to be installed and attached: <>= library("gee") @ The \Rcmd{gee} function is used in a similar way to the \Rcmd{lme} function met in \Sexpr{ch("ALDI")} with the addition of the features of the \Rcmd{glm} function that specify the appropriate error distribution for the response and the implied link function, and an argument to specify the structure of the working correlation matrix. Here we will fit an independence structure and then an exchangeable structure. The \R{} code for fitting generalized estimation equations to the \Robject{BtheB\_long} data (as constructed in \Sexpr{ch("ALDI")}) with identity working correlation matrix is as follows (note that the \Rcmd{gee} function assumes the rows of the \Rclass{data.frame} \Robject{BtheB\_long} to be ordered with respect to subjects): <>= data("BtheB", package = "HSAUR3") BtheB$subject <- factor(rownames(BtheB)) nobs <- nrow(BtheB) BtheB_long <- reshape(BtheB, idvar = "subject", varying = c("bdi.2m", "bdi.3m", "bdi.5m", "bdi.8m"), direction = "long") BtheB_long$time <- rep(c(2, 3, 5, 8), rep(nobs, 4)) names(BtheB_long)[names(BtheB_long) == "treatment"] <- "trt" @ <>= osub <- order(as.integer(BtheB_long$subject)) BtheB_long <- BtheB_long[osub,] btb_gee <- gee(bdi ~ bdi.pre + trt + length + drug, data = BtheB_long, id = subject, family = gaussian, corstr = "independence") @ and with exchangeable correlation matrix: <>= btb_gee1 <- gee(bdi ~ bdi.pre + trt + length + drug, data = BtheB_long, id = subject, family = gaussian, corstr = "exchangeable") @ The \Rcmd{summary} method can be used to inspect the fitted models; the results are shown in Figures~\ref{ALDII-gee-summary} and \ref{ALDII-gee1-summary}. \renewcommand{\nextcaption}{\R{} output of the \Rcmd{summary} method for the \Robject{btb\_gee} model (slightly abbreviated). \label{ALDII-gee-summary}} \SchunkLabel <>= summary(btb_gee) @ \SchunkRaw \renewcommand{\nextcaption}{\R{} output of the \Rcmd{summary} method for the \Robject{btb\_gee1} model (slightly abbreviated). \label{ALDII-gee1-summary}} \SchunkLabel <>= summary(btb_gee1) @ \SchunkRaw \subsection{Respiratory Illness \label{ALDII:resp}} The baseline status, i.e., the status for \Robject{month == 0}, will enter the models as an explanatory variable and thus we have to rearrange the \Rclass{data.frame} \Robject{respiratory} in order to create a new variable \Robject{baseline}: <>= data("respiratory", package = "HSAUR3") resp <- subset(respiratory, month > "0") resp$baseline <- rep(subset(respiratory, month == "0")$status, rep(4, 111)) resp$nstat <- as.numeric(resp$status == "good") resp$month <- resp$month[, drop = TRUE] @ <>= names(resp)[names(resp) == "treatment"] <- "trt" levels(resp$trt)[2] <- "trt" @ The new variable \Robject{nstat} is simply a dummy coding for a poor respiratory status. Now we can use the data \Robject{resp} to fit a logistic regression model and GEE models with an independent and an exchangeable correlation structure as follows. <>= resp_glm <- glm(status ~ centre + trt + gender + baseline + age, data = resp, family = "binomial") resp_gee1 <- gee(nstat ~ centre + trt + gender + baseline + age, data = resp, family = "binomial", id = subject, corstr = "independence", scale.fix = TRUE, scale.value = 1) resp_gee2 <- gee(nstat ~ centre + trt + gender + baseline + age, data = resp, family = "binomial", id = subject, corstr = "exchangeable", scale.fix = TRUE, scale.value = 1) @ \renewcommand{\nextcaption}{\R{} output of the \Rcmd{summary} method for the \Robject{resp\_glm} model. \label{ALDII-resp-glm-summary}} \SchunkLabel <>= summary(resp_glm) @ \SchunkRaw \renewcommand{\nextcaption}{\R{} output of the \Rcmd{summary} method for the \Robject{resp\_gee1} model (slightly abbreviated). \label{ALDII-resp-gee1-summary}} \SchunkLabel <>= summary(resp_gee1) @ \SchunkRaw \renewcommand{\nextcaption}{\R{} output of the \Rcmd{summary} method for the \Robject{resp\_gee2} model (slightly abbreviated). \label{ALDII-resp-gee2-summary}} \SchunkLabel <>= summary(resp_gee2) @ \SchunkRaw The estimated treatment effect taken from the exchangeable structure GEE model is \Sexpr{round(coef(resp_gee2)["trttrt"], 3)} which, using the robust standard errors, has an associated $95\%$ confidence interval <>= se <- summary(resp_gee2)$coefficients["trttrt", "Robust S.E."] coef(resp_gee2)["trttrt"] + c(-1, 1) * se * qnorm(0.975) @ These values reflect effects on the log-odds scale. Interpretation becomes simpler if we exponentiate the values to get the effects in terms of odds. This gives a treatment effect of \Sexpr{round(exp(coef(resp_gee2)["trttrt"]), 3)} and a $95\%$ confidence interval of <>= exp(coef(resp_gee2)["trttrt"] + c(-1, 1) * se * qnorm(0.975)) @ The odds of achieving a `good' respiratory status with the active treatment is between %' about twice and seven times the corresponding odds for the placebo. \subsection{Epilepsy} Moving on to the count data in \Robject{epilepsy} from Table~\ref{ALDII-epilepsy-tab}, we begin by calculating the means and variances of the number of seizures for all interactions between treatment and period: <>= data("epilepsy", package = "HSAUR3") itp <- interaction(epilepsy$treatment, epilepsy$period) tapply(epilepsy$seizure.rate, itp, mean) tapply(epilepsy$seizure.rate, itp, var) @ Some of the variances are considerably larger than the corresponding means, which for a Poisson variable may suggest that overdispersion may be a problem, see \Sexpr{ch("GLM")}. \begin{figure} \begin{center} <>= layout(matrix(1:2, nrow = 1)) ylim <- range(epilepsy$seizure.rate) placebo <- subset(epilepsy, treatment == "placebo") progabide <- subset(epilepsy, treatment == "Progabide") boxplot(seizure.rate ~ period, data = placebo, ylab = "Number of seizures", xlab = "Period", ylim = ylim, main = "Placebo") boxplot(seizure.rate ~ period, data = progabide, main = "Progabide", ylab = "Number of seizures", xlab = "Period", ylim = ylim) @ \caption{Boxplots of numbers of seizures in each two-week period post randomization for placebo and active treatments. \label{ALDII-plot1}} \end{center} \end{figure} \begin{figure} \begin{center} <>= layout(matrix(1:2, nrow = 1)) ylim <- range(log(epilepsy$seizure.rate + 1)) boxplot(log(seizure.rate + 1) ~ period, data = placebo, main = "Placebo", ylab = "Log number of seizures", xlab = "Period", ylim = ylim) boxplot(log(seizure.rate + 1) ~ period, data = progabide, main = "Progabide", ylab = "Log number of seizures", xlab = "Period", ylim = ylim) @ \caption{Boxplots of log of numbers of seizures in each two-week period post randomization for placebo and active treatments. \label{ALDII-plot2}} \end{center} \end{figure} We can now fit a Poisson regression model to the data assuming independence using the \Rcmd{glm} function. We also use the GEE approach to fit an independence structure, followed by an exchangeable structure using the following \R{} code: <>= per <- rep(log(2),nrow(epilepsy)) epilepsy$period <- as.numeric(epilepsy$period) names(epilepsy)[names(epilepsy) == "treatment"] <- "trt" fm <- seizure.rate ~ base + age + trt + offset(per) epilepsy_glm <- glm(fm, data = epilepsy, family = "poisson") epilepsy_gee1 <- gee(fm, data = epilepsy, family = "poisson", id = subject, corstr = "independence", scale.fix = TRUE, scale.value = 1) epilepsy_gee2 <- gee(fm, data = epilepsy, family = "poisson", id = subject, corstr = "exchangeable", scale.fix = TRUE, scale.value = 1) epilepsy_gee3 <- gee(fm, data = epilepsy, family = "poisson", id = subject, corstr = "exchangeable", scale.fix = FALSE, scale.value = 1) @ As usual we inspect the fitted models using the \Rcmd{summary} method, the results are given in Figures~\ref{ALDII-epilepsy-glm-summary}, \ref{ALDII-epilepsy-gee1-summary}, \ref{ALDII-epilepsy-gee2-summary}, and \ref{ALDII-epilepsy-gee3-summary}. \renewcommand{\nextcaption}{\R{} output of the \Rcmd{summary} method for the \Robject{epilepsy\_glm} model. \label{ALDII-epilepsy-glm-summary}} \SchunkLabel <>= summary(epilepsy_glm) @ \SchunkRaw \renewcommand{\nextcaption}{\R{} output of the \Rcmd{summary} method for the \Robject{epilepsy\_gee1} model (slightly abbreviated). \label{ALDII-epilepsy-gee1-summary}} \SchunkLabel <>= summary(epilepsy_gee1) @ \SchunkRaw \renewcommand{\nextcaption}{\R{} output of the \Rcmd{summary} method for the \Robject{epilepsy\_gee2} model (slightly abbreviated). \label{ALDII-epilepsy-gee2-summary}} \SchunkLabel <>= summary(epilepsy_gee2) @ \SchunkRaw \renewcommand{\nextcaption}{\R{} output of the \Rcmd{summary} method for the \Robject{epilepsy\_gee3} model (slightly abbreviated). \label{ALDII-epilepsy-gee3-summary}} \SchunkLabel <>= summary(epilepsy_gee3) @ \SchunkRaw \section{Analysis Using \R{}: Random Effects} As an example of using generalized mixed models for the analysis of longitudinal data with a non-normal response, the following logistic model will be fitted to the respiratory illness data \begin{eqnarray*} \text{logit}(\P(\text{status} = \text{good})) & = & \beta_0 + \beta_1 \text{treatment} + \beta_2 \text{time} + \beta_3 \text{gender} \\% & & + \beta_4 \text{age} + \beta_5 \text{centre} + \beta_6 \text{baseline} + u \end{eqnarray*} where $u$ is a subject-specific random effect. The necessary \R{} code for fitting the model using the \Rcmd{glmer} function from package \Rpackage{lme4} \citep{PKG:lme4,HSAUR:Bates2005} is: <>= library("lme4") resp_lmer <- glmer(status ~ baseline + month + trt + gender + age + centre + (1 | subject), family = binomial(), data = resp) exp(fixef(resp_lmer)) @ The significance of the effects as estimated by this random effects model and by the GEE model described in Section~\ref{ALDII:resp} is generally similar. But as expected from our previous discussion the estimated coefficients are substantially larger. While the estimated effect of treatment on a randomly sampled individual, given the set of observed covariates, is estimated by the marginal model using GEE to increase the log-odds of being disease free by $\Sexpr{round(coef(resp_gee2)["trttrt"], 3)}$, the corresponding estimate from the random effects model is $\Sexpr{round(fixef(resp_lmer)["trttrt"], 3)}$. These are not inconsistent results but reflect the fact that the models are estimating different parameters. The random effects estimate is conditional upon the patient's random effect, a quantity that is rarely known in practice. Were we to examine the log-odds of the average predicted probabilities with and without treatment (averaged over the random effects) this would give an estimate comparable to that estimated within the marginal model. <>= su <- summary(resp_lmer) if (!interactive()) { summary <- function(x) { cat("\n...\n") cat("Fixed effects:\n") lme4V <- packageDescription("lme4")$Version if (compareVersion("0.999999-2", lme4V) >= 0) { printCoefmat(su@coefs) } else { printCoefmat(su$coefficients) } cat("\n...\n") } } @ \renewcommand{\nextcaption}{\R{} output of the \Rcmd{summary} method for the \Robject{resp\_lmer} model (abbreviated). \label{ALDII-resp-lmer-summary}} \SchunkLabel <>= summary(resp_lmer) @ \SchunkRaw \clearpage \bibliographystyle{LaTeXBibTeX/refstyle} \bibliography{LaTeXBibTeX/HSAUR} \end{document} HSAUR3/vignettes/Ch_cluster_analysis.Rnw0000644000176200001440000004355014416236367017740 0ustar liggesusers \documentclass{chapman} %%% copy Sweave.sty definitions %%% keeps `sweave' from adding `\usepackage{Sweave}': DO NOT REMOVE %\usepackage{Sweave} \RequirePackage[T1]{fontenc} \RequirePackage{graphicx,ae,fancyvrb} \IfFileExists{upquote.sty}{\RequirePackage{upquote}}{} \usepackage{relsize} \DefineVerbatimEnvironment{Sinput}{Verbatim}{} \DefineVerbatimEnvironment{Soutput}{Verbatim}{fontfamily=courier, fontshape=it, fontsize=\relsize{-1}} \DefineVerbatimEnvironment{Scode}{Verbatim}{} \newenvironment{Schunk}{}{} %%% environment for raw output \newcommand{\SchunkRaw}{\renewenvironment{Schunk}{}{} \DefineVerbatimEnvironment{Soutput}{Verbatim}{fontfamily=courier, fontshape=it, fontsize=\small} \rawSinput } %%% environment for labeled output \newcommand{\nextcaption}{} \newcommand{\SchunkLabel}{ \renewenvironment{Schunk}{\begin{figure}[ht] }{\caption{\nextcaption} \end{figure} } \DefineVerbatimEnvironment{Sinput}{Verbatim}{frame = topline} \DefineVerbatimEnvironment{Soutput}{Verbatim}{frame = bottomline, samepage = true, fontfamily=courier, fontshape=it, fontsize=\relsize{-1}} } %%% S code with line numbers \DefineVerbatimEnvironment{Sinput} {Verbatim} { %% numbers=left } \newcommand{\numberSinput}{ \DefineVerbatimEnvironment{Sinput}{Verbatim}{numbers=left} } \newcommand{\rawSinput}{ \DefineVerbatimEnvironment{Sinput}{Verbatim}{} } %%% R / System symbols \newcommand{\R}{\textsf{R}} \newcommand{\rR}{{R}} \renewcommand{\S}{\textsf{S}} \newcommand{\SPLUS}{\textsf{S-PLUS}} \newcommand{\rSPLUS}{{S-PLUS}} \newcommand{\SPSS}{\textsf{SPSS}} \newcommand{\EXCEL}{\textsf{Excel}} \newcommand{\ACCESS}{\textsf{Access}} \newcommand{\SQL}{\textsf{SQL}} %%\newcommand{\Rpackage}[1]{\hbox{\rm\textit{#1}}} %%\newcommand{\Robject}[1]{\hbox{\rm\texttt{#1}}} %%\newcommand{\Rclass}[1]{\hbox{\rm\textit{#1}}} %%\newcommand{\Rcmd}[1]{\hbox{\rm\texttt{#1}}} \newcommand{\Rpackage}[1]{\index{#1 package@{\fontseries{b}\selectfont #1} package} {\fontseries{b}\selectfont #1}} \newcommand{\rpackage}[1]{{\fontseries{b}\selectfont #1}} \newcommand{\Robject}[1]{\texttt{#1}} \newcommand{\Rclass}[1]{\index{#1 class@\textit{#1} class}\textit{#1}} \newcommand{\Rcmd}[1]{\index{#1 function@\texttt{#1} function}\texttt{#1}} \newcommand{\Roperator}[1]{\texttt{#1}} \newcommand{\Rarg}[1]{\texttt{#1}} \newcommand{\Rlevel}[1]{\texttt{#1}} %%% other symbols \newcommand{\file}[1]{\hbox{\rm\texttt{#1}}} %%\newcommand{\stress}[1]{\index{#1}\textit{#1}} \newcommand{\stress}[1]{\textit{#1}} \newcommand{\booktitle}[1]{\textit{#1}} %%' %%% Math symbols \usepackage{amstext} \usepackage{amsmath} \newcommand{\E}{\mathsf{E}} \newcommand{\Var}{\mathsf{Var}} \newcommand{\Cov}{\mathsf{Cov}} \newcommand{\Cor}{\mathsf{Cor}} \newcommand{\x}{\mathbf{x}} \newcommand{\y}{\mathbf{y}} \renewcommand{\a}{\mathbf{a}} \newcommand{\W}{\mathbf{W}} \newcommand{\C}{\mathbf{C}} \renewcommand{\H}{\mathbf{H}} \newcommand{\X}{\mathbf{X}} \newcommand{\B}{\mathbf{B}} \newcommand{\V}{\mathbf{V}} \newcommand{\I}{\mathbf{I}} \newcommand{\D}{\mathbf{D}} \newcommand{\bS}{\mathbf{S}} \newcommand{\N}{\mathcal{N}} \renewcommand{\L}{L} \renewcommand{\P}{\mathsf{P}} \newcommand{\K}{\mathbf{K}} \newcommand{\m}{\mathbf{m}} \newcommand{\argmin}{\operatorname{argmin}\displaylimits} \newcommand{\argmax}{\operatorname{argmax}\displaylimits} \newcommand{\bx}{\mathbf{x}} \newcommand{\bbeta}{\mathbf{\beta}} %%% links \usepackage{hyperref} \hypersetup{% pdftitle = {A Handbook of Statistical Analyses Using R (3rd Edition)}, pdfsubject = {Book}, pdfauthor = {Torsten Hothorn and Brian S. Everitt}, colorlinks = {black}, linkcolor = {black}, citecolor = {black}, urlcolor = {black}, hyperindex = {true}, linktocpage = {true}, } %%% captions & tables %% : conflics with figure definition in chapman.cls %%\usepackage[format=hang,margin=10pt,labelfont=bf]{caption} %% \usepackage{longtable} \usepackage[figuresright]{rotating} %%% R symbol in chapter 1 \usepackage{wrapfig} %%% Bibliography \usepackage[round,comma]{natbib} \renewcommand{\refname}{References \addcontentsline{toc}{chapter}{References}} \citeindexfalse %%% texi2dvi complains that \newblock is undefined, hm... \def\newblock{\hskip .11em plus .33em minus .07em} %%% Example sections \newcounter{exercise}[chapter] \setcounter{exercise}{0} \newcommand{\exercise}{\stepcounter{exercise} \item{Ex.~\arabic{chapter}.\arabic{exercise} }} %% URLs \newcommand{\curl}[1]{\begin{center} \url{#1} \end{center}} %%% for manual corrections %\renewcommand{\baselinestretch}{2} %%% plot sizes \setkeys{Gin}{width=0.95\textwidth} %%% color \usepackage{color} %%% hyphenations \hyphenation{drop-out} \hyphenation{mar-gi-nal} %%% new bidirectional quotes need \usepackage[utf8]{inputenc} %\usepackage{setspace} \definecolor{sidebox_todo}{rgb}{1,1,0.2} \newcommand{\todo}[1]{ \hspace{0pt}% \marginpar{% \fcolorbox{black}{sidebox_todo}{% \parbox{\marginparwidth} { \raggedright\sffamily\footnotesize{TODO: #1}% } }% } } \begin{document} %% Title page \title{A Handbook of Statistical Analyses Using \R{} --- 3rd Edition} \author{Torsten Hothorn and Brian S. Everitt} \maketitle %%\VignetteIndexEntry{Chapter Cluster Analysis} %%\VignetteDepends{scatterplot3d,mclust,mvtnorm,lattice} \setcounter{chapter}{20} \SweaveOpts{prefix.string=figures/HSAUR,eps=FALSE,keep.source=TRUE} <>= rm(list = ls()) s <- search()[-1] s <- s[-match(c("package:base", "package:stats", "package:graphics", "package:grDevices", "package:utils", "package:datasets", "package:methods", "Autoloads"), s)] if (length(s) > 0) sapply(s, detach, character.only = TRUE) if (!file.exists("tables")) dir.create("tables") if (!file.exists("figures")) dir.create("figures") set.seed(290875) options(prompt = "R> ", continue = "+ ", width = 63, # digits = 4, show.signif.stars = FALSE, SweaveHooks = list(leftpar = function() par(mai = par("mai") * c(1, 1.05, 1, 1)), bigleftpar = function() par(mai = par("mai") * c(1, 1.7, 1, 1)))) HSAURpkg <- require("HSAUR3") if (!HSAURpkg) stop("cannot load package ", sQuote("HSAUR3")) rm(HSAURpkg) ### hm, R-2.4.0 --vanilla seems to need this a <- Sys.setlocale("LC_ALL", "C") ### book <- TRUE refs <- cbind(c("AItR", "DAGD", "SI", "CI", "ANOVA", "MLR", "GLM", "DE", "RP", "GAM", "SA", "ALDI", "ALDII", "SIMC", "MA", "PCA", "MDS", "CA"), 1:18) ch <- function(x) { ch <- refs[which(refs[,1] == x),] if (book) { return(paste("Chapter~\\\\ref{", ch[1], "}", sep = "")) } else { return(paste("Chapter~", ch[2], sep = "")) } } if (file.exists("deparse.R")) source("deparse.R") setHook(packageEvent("lattice", "attach"), function(...) { lattice.options(default.theme = function() standard.theme("pdf", color = FALSE)) }) @ \pagestyle{headings} <>= book <- FALSE @ %% lower png resolution for vignettes \SweaveOpts{resolution = 100} <>= library("mclust") library("mvtnorm") mai <- par("mai") options(SweaveHooks = list(rmai = function() { par(mai = mai * c(1,1,1,2))})) data("pottery", package = "HSAUR3") @ \chapter[Cluster Analysis]{Cluster Analysis: Classifying Romano-British Pottery and Exoplanets \label{CA}} \section{Introduction} \section{Cluster Analysis} \section{Analysis Using \R{}} \subsection{Classifying Romano-British Pottery} We start our analysis with computing the dissimilarity matrix containing the Euclidean distance of the chemical measurements on all $\Sexpr{nrow(pottery)}$ pots. The resulting $\Sexpr{nrow(pottery)} \times \Sexpr{nrow(pottery)}$ matrix can be inspected by an \stress{image plot}, here obtained from \index{Image plot} function \Rcmd{levelplot} available in package \Rpackage{lattice} \citep{PKG:lattice, HSAUR:Sarkar2008}. Such a plot associates each cell of the dissimilarity matrix with a color or a gray value. We choose a very dark grey for cells with distance zero (i.e., the diagonal elements of the dissimilarity matrix) and pale values for cells with greater Euclidean distance. Figure~\ref{CA-pottery-distplot} leads to the impression that there are at least three distinct groups with small inter-cluster differences (the dark rectangles) whereas much larger distances can be observed for all other cells. \begin{figure} \begin{center} <>= pottery_dist <- dist(pottery[, colnames(pottery) != "kiln"]) library("lattice") levelplot(as.matrix(pottery_dist), xlab = "Pot Number", ylab = "Pot Number") @ <>= trellis.par.set(standard.theme(color = FALSE)) plot(levelplot(as.matrix(pottery_dist), xlab = "Pot Number", ylab = "Pot Number")) @ \caption{Image plot of the dissimilarity matrix of the \Robject{pottery} data. \label{CA-pottery-distplot}} \end{center} \end{figure} We now construct three series of partitions using single, complete, and average linkage hierarchical clustering as introduced in Subsections~\ref{CA:HC} and \ref{CA:diss}. The function \Rcmd{hclust} performs all three procedures based on the dissimilarity matrix of the data; its \Rcmd{method} argument is used to specify how the distance between two clusters is assessed. The corresponding \Rcmd{plot} method draws a dendrogram; the code and results are given in Figure~\ref{CA-pottery-hclust}. Again, all three dendrograms lead to the impression that three clusters fit the data best (although this judgement is very informal). \begin{figure} \begin{center} <>= pottery_single <- hclust(pottery_dist, method = "single") pottery_complete <- hclust(pottery_dist, method = "complete") pottery_average <- hclust(pottery_dist, method = "average") layout(matrix(1:3, ncol = 3)) plot(pottery_single, main = "Single Linkage", sub = "", xlab = "") plot(pottery_complete, main = "Complete Linkage", sub = "", xlab = "") plot(pottery_average, main = "Average Linkage", sub = "", xlab = "") @ \caption{Hierarchical clustering of \Robject{pottery} data and resulting dendrograms. \label{CA-pottery-hclust}} \end{center} \end{figure} From the \Robject{pottery\_average} object representing the average linkage hierarchical clustering, we derive the three-cluster solution by cutting the dendrogram at a height of four (which, based on the right display in Figure~\ref{CA-pottery-hclust} leads to a partition of the data into three groups). Our interest is now a comparison with the kiln sites at which the pottery was found. <>= pottery_cluster <- cutree(pottery_average, h = 4) xtabs(~ pottery_cluster + kiln, data = pottery) @ The contingency table shows that cluster 1 contains all pots found at kiln site number one, cluster 2 contains all pots from kiln sites number two and three, and cluster three collects the ten pots from kiln sites four and five. In fact, the five kiln sites are from three different regions defined by one, two and three, and four and five, so the clusters actually correspond to pots from three different regions. \subsection{Classifying Exoplanets} \begin{figure} \begin{center} <>= data("planets", package = "HSAUR3") library("scatterplot3d") scatterplot3d(log(planets$mass), log(planets$period), log(planets$eccen + ifelse(planets$eccen == 0, 0.001, 0)), type = "h", angle = 55, pch = 16, y.ticklabs = seq(0, 10, by = 2), y.margin.add = 0.1, scale.y = 0.7, xlab = "log(mass)", ylab = "log(period)", zlab = "log(eccen)") @ \caption{3D scatterplot of the logarithms of the three variables available for each of the exoplanets. \label{CA-planets-scatter}} \end{center} \end{figure} \begin{figure} \begin{center} <>= rge <- apply(planets, 2, max) - apply(planets, 2, min) planet.dat <- sweep(planets, 2, rge, FUN = "/") n <- nrow(planet.dat) wss <- rep(0, 10) wss[1] <- (n - 1) * sum(apply(planet.dat, 2, var)) for (i in 2:10) wss[i] <- sum(kmeans(planet.dat, centers = i)$withinss) plot(1:10, wss, type = "b", xlab = "Number of groups", ylab = "Within groups sum of squares") @ \caption{Within-cluster sum of squares for different numbers of clusters for the exoplanet data. \label{CA-planets-ss}} \end{center} \end{figure} Sadly Figure~\ref{CA-planets-ss} gives no completely convincing verdict on the number of groups we should consider, but using a little imagination `little elbows' can be spotted at the three and five group solutions. %%' We can find the number of planets in each group using <>= planet_kmeans3 <- kmeans(planet.dat, centers = 3) table(planet_kmeans3$cluster) @ The centers of the clusters for the untransformed data can be computed using a small convenience function <>= ccent <- function(cl) { f <- function(i) colMeans(planets[cl == i,]) x <- sapply(sort(unique(cl)), f) colnames(x) <- sort(unique(cl)) return(x) } @ which, applied to the three-cluster solution obtained by $k$-means gets <>= ccent(planet_kmeans3$cluster) @ @ for the three-cluster solution and, for the five cluster solution using <>= planet_kmeans5 <- kmeans(planet.dat, centers = 5) table(planet_kmeans5$cluster) ccent(planet_kmeans5$cluster) @ \subsection{Model-based Clustering in \R{}} We now proceed to apply model-based clustering to the \Robject{planets} data. \R{} functions for model-based clustering are available in package \Rpackage{mclust} \citep{PKG:mclust,HSAUR:FraleyRaftery2002}. Here we use the \Rcmd{Mclust} function since this selects both the most appropriate model for the data \stress{and} the optimal number of groups based on the values of the BIC computed over several models and a range of values for number of groups. The necessary code is: <>= library("mclust") planet_mclust <- Mclust(planet.dat) @ and we first examine a plot of BIC values using the \R{} code that is displayed on top of Figure~\ref{CA-mclust1}. In this diagram the different plotting symbols refer to different model assumptions about the shape of clusters: \begin{description} \item[EII] spherical, equal volume, \item[VII] spherical, unequal volume, \item[EEI] diagonal, equal volume and shape, \item[VEI] diagonal, varying volume, equal shape, \item[EVI] diagonal, equal volume, varying shape, \item[VVI] diagonal, varying volume and shape, \item[EEE] ellipsoidal, equal volume, shape, and orientation, \item[EEV] ellipsoidal, equal volume and equal shape, \item[VEV] ellipsoidal, equal shape, \item[VVV] ellipsoidal, varying volume, shape, and orientation \end{description} \begin{figure} \begin{center} <>= plot(planet_mclust, planet.dat, what = "BIC", col = "black", ylab = "-BIC", ylim = c(0, 350)) @ \caption{Plot of BIC values for a variety of models and a range of number of clusters. \label{CA-mclust1}} \end{center} \end{figure} The BIC selects model VVI (diagonal varying volume and varying shape) with three clusters as the best solution as can be seen from the \Rcmd{print} output: <>= print(planet_mclust) @ This solution can be shown graphically as a scatterplot matrix. The plot is shown in Figure~\ref{CA-planets-mclust-scatter}. Figure~\ref{CA-planets-mclust-scatterclust} depicts the clustering solution in the three-dimensional space. \begin{figure} \begin{center} <>= clPairs(planet.dat, classification = planet_mclust$classification, symbols = 1:3, col = "black") @ \caption{Scatterplot matrix of planets data showing a three-cluster solution from \Rcmd{Mclust}. \label{CA-planets-mclust-scatter}} \end{center} \end{figure} \begin{figure} \begin{center} <>= scatterplot3d(log(planets$mass), log(planets$period), log(planets$eccen + ifelse(planets$eccen == 0, 0.001, 0)), type = "h", angle = 55, scale.y = 0.7, pch = planet_mclust$classification, y.ticklabs = seq(0, 10, by = 2), y.margin.add = 0.1, xlab = "log(mass)", ylab = "log(period)", zlab = "log(eccen)") @ \caption{3D scatterplot of planets data showing a three-cluster solution from \Rcmd{Mclust}. \label{CA-planets-mclust-scatterclust}} \end{center} \end{figure} The number of planets in each cluster and the mean vectors of the three clusters for the untransformed data can now be inspected by using <>= table(planet_mclust$classification) ccent(planet_mclust$classification) @ Cluster 1 consists of planets about the same size as Jupiter with very short periods and eccentricities (similar to the first cluster of the $k$-means solution). Cluster 2 consists of slightly larger planets with moderate periods and large eccentricities, and cluster 3 contains the very large planets with very large periods. These two clusters do not match those found by the $k$-means approach. \bibliographystyle{LaTeXBibTeX/refstyle} \bibliography{LaTeXBibTeX/HSAUR} \end{document} HSAUR3/vignettes/tables/0000755000176200001440000000000014172224353014504 5ustar liggesusersHSAUR3/vignettes/tables/exMDS.tex0000644000176200001440000000044314656356403016220 0ustar liggesusers\begin{eqnarray*} s_{ij} = \left\{ \begin{array}{lcl} 9 & \text{if} & i = j \\ 8 & \text{if} & 1 \le | i - j | \le 3 \\ 7 & \text{if} & 4 \le | i - j | \le 6 \\ & \cdots & \\ 1 & \text{if} & 22 \le | i - j | \le 24 \\ 0 & \text{if} & | i - j | \ge 25 \\ \end{array} \right. \end{eqnarray*} HSAUR3/vignettes/tables/CA_perm.tex0000644000176200001440000000057614656356403016555 0ustar liggesusers \begin{center} \begin{longtable}{rrl} \caption{Number of possible partitions depending on the sample size $n$ and number of clusters $k$. \label{CA:perm}} \\ $n$ & $k$ & Number of possible partitions \\ \hline $15$ & $3$ & $2,375,101$ \\ $20$ & $4$ & $45,232,115,901$ \\ $25$ & $8$ & $690,223,721,118,368,580$ \\ $100$ & $5$ & $10^{68}$ \\ \end{longtable} \end{center} HSAUR3/vignettes/tables/PCA_tab.tex0000644000176200001440000000056014656356403016471 0ustar liggesusers \begin{center} \begin{longtable}{cccccc} \caption{Correlations for calculus measurements for the six anterior mandibular teeth.} \\ \hline 1.00 & & & & & \\ 0.54 & 1.00 & & & & \\ 0.34 & 0.65 & 1.00 & & & \\ 0.37 & 0.65 & 0.84 & 1.00 & & \\ 0.36 & 0.59 & 0.67 & 0.80 & 1.00 & \\ 0.62 & 0.49 & 0.43 & 0.42 & 0.55 & 1.00 \\ \hline \end{longtable} \end{center} HSAUR3/vignettes/tables/PCA_tab1.tex0000644000176200001440000000043114172224353016536 0ustar liggesusers\begin{table} \begin{center} \begin{tabular}{cccccc} 1.00 & & & & & \\\ 0.54 & 1.00 & & & & \\\ 0.34 & 0.65 & 1.00 & & & \\\ 0.37 & 0.65 & 0.84 & 1.00 & & \\\ 0.36 & 0.59 & 0.67 & 0.80 & 1.00 & \\\ 0.62 & 0.49 & 0.43 & 0.42 & 0.55 & 1.00 \\\ \end{tabular} \end{center} \end{table} HSAUR3/vignettes/tables/CI_rtimesc.tex0000644000176200001440000000123414656356403017260 0ustar liggesusers \begin{center} \begin{longtable}{cc|ccc|c} \caption{The general $r \times c$ table. \label{SI:rtimesc}} \\ & & & $y$ & & \\\ & & $1$ & $\dots$ & $c$ & \\ \hline & $1$ & $n_{11}$ & $\dots$ & $n_{1c}$ & $n_{1 \cdot}$ \\\ & $2$ & $n_{21}$ & $\dots$ & $n_{2c}$ & $n_{2 \cdot}$ \\\ $x$ & $\vdots$ & $\vdots$ & $\dots$ & $\vdots$ & $\vdots$ \\\ & $r$ & $n_{r1}$ & $\dots$ & $n_{rc}$ & $n_{r \cdot}$ \\ \hline & & $n_{\cdot 1}$ & $\dots$ & $n_{\cdot c}$ & $n$ \\\ \end{longtable} \end{center}HSAUR3/vignettes/tables/MLR-ANOVA-tab.tex0000644000176200001440000000067714656356403017311 0ustar liggesusers \begin{center} \begin{longtable}{lccc} \caption{Analysis of variance table for the multiple linear regression model. \label{MLR-ANOVA-tab}} \\ Source of variation & Sum of squares & Degrees of freedom \\ \hline Regression & $\sum\limits_{i = 1}^n (\hat{y}_i - \bar{y})^2$ & $q$ \\ Residual & $\sum\limits_{i = 1}^n (\hat{y}_i - y_i)^2$ & $n - q - 1$ \\ Total & $\sum\limits_{i = 1}^n (y_i - \bar{y})^2$ & $n - 1$ \\ \end{longtable} \end{center} HSAUR3/vignettes/tables/SI_mcnemar.tex0000644000176200001440000000042014656356403017250 0ustar liggesusers \begin{center} \begin{longtable}{cccc} \caption{Frequencies in matched samples data. \label{SI:mcnemartab}} \\ & & \multicolumn{2}{c}{Sample 1} \\ & & present & absent \\ Sample 2 & present & $a$ & $b$ \\ & absent & $c$ & $d$ \\ \end{longtable} \end{center} HSAUR3/vignettes/tables/Lanza.tex0000644000176200001440000000064714656356403016313 0ustar liggesusers \begin{center} \begin{longtable}{ll} \caption{Classification system for the response variable. \label{CI:scores}} \\ Classification & Endoscopy Examination \\ \hline 1 & No visible lesions \\ 2 & One haemorrhage or erosion \\ 3 & 2-10 haemorrhages or erosions \\ 4 & 11-25 haemorrhages or erosions \\ 5 & More than 25 haemorrhages or erosions \\ & or an invasive ulcer of any size\\ \hline \end{longtable} \end{center} HSAUR3/vignettes/tables/MLR-Xtab.tex0000644000176200001440000000047314656356403016571 0ustar liggesusers\begin{eqnarray*} \X = \left( \begin{array}{ccccc} 1 & x_{11} & x_{12} & \dots & x_{1q} \\ 1 & x_{21} & x_{22} & \dots & x_{2q} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n1} & x_{n2} & \dots & x_{nq} \\ \end{array} \right). \end{eqnarray*} HSAUR3/vignettes/tables/rec.tex0000644000176200001440000000120014660150060015763 0ustar liggesusers\begin{tabular}{llll} \Rpackage{Matrix} & \Rpackage{lattice} & \Rpackage{mgcv} & \Rpackage{survival}\\ \Rpackage{KernSmooth} & \Rpackage{MASS} & \Rpackage{base} & \Rpackage{boot}\\ \Rpackage{class} & \Rpackage{cluster} & \Rpackage{codetools} & \Rpackage{compiler}\\ \Rpackage{datasets} & \Rpackage{foreign} & \Rpackage{grDevices} & \Rpackage{graphics}\\ \Rpackage{grid} & \Rpackage{methods} & \Rpackage{nlme} & \Rpackage{nnet}\\ \Rpackage{parallel} & \Rpackage{rpart} & \Rpackage{spatial} & \Rpackage{splines}\\ \Rpackage{stats} & \Rpackage{stats4} & \Rpackage{tcltk} & \Rpackage{tools}\\ \Rpackage{utils} & & & \\ \end{tabular} HSAUR3/vignettes/tables/MA_table.tex0000644000176200001440000000031014656356403016675 0ustar liggesusers \begin{center} \begin{longtable}{cccc} & & \multicolumn{2}{c}{response} \\ & & success & failure \\ group & control & $a$ & $b$ \\ & treatment & $c$ & $d$ \\ \end{longtable} \end{center} HSAUR3/vignettes/tables/SI_rtimesc.tex0000644000176200001440000000123414656356403017300 0ustar liggesusers \begin{center} \begin{longtable}{cc|ccc|c} \caption{The general $r \times c$ table. \label{SI:rtimesc}} \\ & & & $y$ & & \\\ & & $1$ & $\dots$ & $c$ & \\ \hline & $1$ & $n_{11}$ & $\dots$ & $n_{1c}$ & $n_{1 \cdot}$ \\\ & $2$ & $n_{21}$ & $\dots$ & $n_{2c}$ & $n_{2 \cdot}$ \\\ $x$ & $\vdots$ & $\vdots$ & $\dots$ & $\vdots$ & $\vdots$ \\\ & $r$ & $n_{r1}$ & $\dots$ & $n_{rc}$ & $n_{r \cdot}$ \\ \hline & & $n_{\cdot 1}$ & $\dots$ & $n_{\cdot c}$ & $n$ \\\ \end{longtable} \end{center}HSAUR3/vignettes/Ch_multiple_linear_regression.Rnw0000644000176200001440000005606514416236367022006 0ustar liggesusers \documentclass{chapman} %%% copy Sweave.sty definitions %%% keeps `sweave' from adding `\usepackage{Sweave}': DO NOT REMOVE %\usepackage{Sweave} \RequirePackage[T1]{fontenc} \RequirePackage{graphicx,ae,fancyvrb} \IfFileExists{upquote.sty}{\RequirePackage{upquote}}{} \usepackage{relsize} \DefineVerbatimEnvironment{Sinput}{Verbatim}{} \DefineVerbatimEnvironment{Soutput}{Verbatim}{fontfamily=courier, fontshape=it, fontsize=\relsize{-1}} \DefineVerbatimEnvironment{Scode}{Verbatim}{} \newenvironment{Schunk}{}{} %%% environment for raw output \newcommand{\SchunkRaw}{\renewenvironment{Schunk}{}{} \DefineVerbatimEnvironment{Soutput}{Verbatim}{fontfamily=courier, fontshape=it, fontsize=\small} \rawSinput } %%% environment for labeled output \newcommand{\nextcaption}{} \newcommand{\SchunkLabel}{ \renewenvironment{Schunk}{\begin{figure}[ht] }{\caption{\nextcaption} \end{figure} } \DefineVerbatimEnvironment{Sinput}{Verbatim}{frame = topline} \DefineVerbatimEnvironment{Soutput}{Verbatim}{frame = bottomline, samepage = true, fontfamily=courier, fontshape=it, fontsize=\relsize{-1}} } %%% S code with line numbers \DefineVerbatimEnvironment{Sinput} {Verbatim} { %% numbers=left } \newcommand{\numberSinput}{ \DefineVerbatimEnvironment{Sinput}{Verbatim}{numbers=left} } \newcommand{\rawSinput}{ \DefineVerbatimEnvironment{Sinput}{Verbatim}{} } %%% R / System symbols \newcommand{\R}{\textsf{R}} \newcommand{\rR}{{R}} \renewcommand{\S}{\textsf{S}} \newcommand{\SPLUS}{\textsf{S-PLUS}} \newcommand{\rSPLUS}{{S-PLUS}} \newcommand{\SPSS}{\textsf{SPSS}} \newcommand{\EXCEL}{\textsf{Excel}} \newcommand{\ACCESS}{\textsf{Access}} \newcommand{\SQL}{\textsf{SQL}} %%\newcommand{\Rpackage}[1]{\hbox{\rm\textit{#1}}} %%\newcommand{\Robject}[1]{\hbox{\rm\texttt{#1}}} %%\newcommand{\Rclass}[1]{\hbox{\rm\textit{#1}}} %%\newcommand{\Rcmd}[1]{\hbox{\rm\texttt{#1}}} \newcommand{\Rpackage}[1]{\index{#1 package@{\fontseries{b}\selectfont #1} package} {\fontseries{b}\selectfont #1}} \newcommand{\rpackage}[1]{{\fontseries{b}\selectfont #1}} \newcommand{\Robject}[1]{\texttt{#1}} \newcommand{\Rclass}[1]{\index{#1 class@\textit{#1} class}\textit{#1}} \newcommand{\Rcmd}[1]{\index{#1 function@\texttt{#1} function}\texttt{#1}} \newcommand{\Roperator}[1]{\texttt{#1}} \newcommand{\Rarg}[1]{\texttt{#1}} \newcommand{\Rlevel}[1]{\texttt{#1}} %%% other symbols \newcommand{\file}[1]{\hbox{\rm\texttt{#1}}} %%\newcommand{\stress}[1]{\index{#1}\textit{#1}} \newcommand{\stress}[1]{\textit{#1}} \newcommand{\booktitle}[1]{\textit{#1}} %%' %%% Math symbols \usepackage{amstext} \usepackage{amsmath} \newcommand{\E}{\mathsf{E}} \newcommand{\Var}{\mathsf{Var}} \newcommand{\Cov}{\mathsf{Cov}} \newcommand{\Cor}{\mathsf{Cor}} \newcommand{\x}{\mathbf{x}} \newcommand{\y}{\mathbf{y}} \renewcommand{\a}{\mathbf{a}} \newcommand{\W}{\mathbf{W}} \newcommand{\C}{\mathbf{C}} \renewcommand{\H}{\mathbf{H}} \newcommand{\X}{\mathbf{X}} \newcommand{\B}{\mathbf{B}} \newcommand{\V}{\mathbf{V}} \newcommand{\I}{\mathbf{I}} \newcommand{\D}{\mathbf{D}} \newcommand{\bS}{\mathbf{S}} \newcommand{\N}{\mathcal{N}} \renewcommand{\L}{L} \renewcommand{\P}{\mathsf{P}} \newcommand{\K}{\mathbf{K}} \newcommand{\m}{\mathbf{m}} \newcommand{\argmin}{\operatorname{argmin}\displaylimits} \newcommand{\argmax}{\operatorname{argmax}\displaylimits} \newcommand{\bx}{\mathbf{x}} \newcommand{\bbeta}{\mathbf{\beta}} %%% links \usepackage{hyperref} \hypersetup{% pdftitle = {A Handbook of Statistical Analyses Using R (3rd Edition)}, pdfsubject = {Book}, pdfauthor = {Torsten Hothorn and Brian S. Everitt}, colorlinks = {black}, linkcolor = {black}, citecolor = {black}, urlcolor = {black}, hyperindex = {true}, linktocpage = {true}, } %%% captions & tables %% : conflics with figure definition in chapman.cls %%\usepackage[format=hang,margin=10pt,labelfont=bf]{caption} %% \usepackage{longtable} \usepackage[figuresright]{rotating} %%% R symbol in chapter 1 \usepackage{wrapfig} %%% Bibliography \usepackage[round,comma]{natbib} \renewcommand{\refname}{References \addcontentsline{toc}{chapter}{References}} \citeindexfalse %%% texi2dvi complains that \newblock is undefined, hm... \def\newblock{\hskip .11em plus .33em minus .07em} %%% Example sections \newcounter{exercise}[chapter] \setcounter{exercise}{0} \newcommand{\exercise}{\stepcounter{exercise} \item{Ex.~\arabic{chapter}.\arabic{exercise} }} %% URLs \newcommand{\curl}[1]{\begin{center} \url{#1} \end{center}} %%% for manual corrections %\renewcommand{\baselinestretch}{2} %%% plot sizes \setkeys{Gin}{width=0.95\textwidth} %%% color \usepackage{color} %%% hyphenations \hyphenation{drop-out} \hyphenation{mar-gi-nal} %%% new bidirectional quotes need \usepackage[utf8]{inputenc} %\usepackage{setspace} \definecolor{sidebox_todo}{rgb}{1,1,0.2} \newcommand{\todo}[1]{ \hspace{0pt}% \marginpar{% \fcolorbox{black}{sidebox_todo}{% \parbox{\marginparwidth} { \raggedright\sffamily\footnotesize{TODO: #1}% } }% } } \begin{document} %% Title page \title{A Handbook of Statistical Analyses Using \R{} --- 3rd Edition} \author{Torsten Hothorn and Brian S. Everitt} \maketitle %%\VignetteIndexEntry{Multiple Linear Regression} %%\VignetteDepends{wordcloud} \setcounter{chapter}{5} \SweaveOpts{prefix.string=figures/HSAUR,eps=FALSE,keep.source=TRUE} <>= rm(list = ls()) s <- search()[-1] s <- s[-match(c("package:base", "package:stats", "package:graphics", "package:grDevices", "package:utils", "package:datasets", "package:methods", "Autoloads"), s)] if (length(s) > 0) sapply(s, detach, character.only = TRUE) if (!file.exists("tables")) dir.create("tables") if (!file.exists("figures")) dir.create("figures") set.seed(290875) options(prompt = "R> ", continue = "+ ", width = 63, # digits = 4, show.signif.stars = FALSE, SweaveHooks = list(leftpar = function() par(mai = par("mai") * c(1, 1.05, 1, 1)), bigleftpar = function() par(mai = par("mai") * c(1, 1.7, 1, 1)))) HSAURpkg <- require("HSAUR3") if (!HSAURpkg) stop("cannot load package ", sQuote("HSAUR3")) rm(HSAURpkg) ### hm, R-2.4.0 --vanilla seems to need this a <- Sys.setlocale("LC_ALL", "C") ### book <- TRUE refs <- cbind(c("AItR", "DAGD", "SI", "CI", "ANOVA", "MLR", "GLM", "DE", "RP", "GAM", "SA", "ALDI", "ALDII", "SIMC", "MA", "PCA", "MDS", "CA"), 1:18) ch <- function(x) { ch <- refs[which(refs[,1] == x),] if (book) { return(paste("Chapter~\\\\ref{", ch[1], "}", sep = "")) } else { return(paste("Chapter~", ch[2], sep = "")) } } if (file.exists("deparse.R")) source("deparse.R") setHook(packageEvent("lattice", "attach"), function(...) { lattice.options(default.theme = function() standard.theme("pdf", color = FALSE)) }) @ \pagestyle{headings} <>= book <- FALSE @ <>= library("wordcloud") @ \chapter[Simple and Multiple Linear Regression]{Simple and Multiple Linear Regression: \\ How Old is the Universe and Cloud Seeding \label{MLR}} \section{Introduction} \index{Age of the Universe} \cite{HSAUR:Freedmanetal2001} give the relative velocity and the distance of $24$ galaxies, according to measurements made using the Hubble Space Telescope -- the data are contained in the \Rpackage{gamair} package accompanying \cite{HSAUR:Wood2006}, see Table~\ref{MLR-hubble-tab}. Velocities are assessed by measuring the Doppler red shift in the spectrum of light observed from the galaxies concerned, although some correction for `local' velocity components is required. Distances are measured using the known relationship between the period of Cepheid variable stars and their luminosity. How can these data be used to estimate the age of the universe? Here we shall show how this can be done using simple linear regression. <>= data("hubble", package = "gamair") names(hubble) <- c("galaxy", "velocity", "distance") toLatex(HSAURtable(hubble, package = "gamair"), pcol = 2, caption = paste("Distance and velocity for 24 galaxies."), label = "MLR-hubble-tab") @ \vspace*{-1cm} \textit{Source}: From Freedman W. L., et al., \textit{The Astrophysical Journal}, 553, 47--72, 2001. With permission. \vspace*{1cm} \index{Cloud seeding} {\tabcolsep3.5pt <>= data("clouds", package = "HSAUR3") names(clouds) <- c("seeding", "time", "sne", "cloudc", "prewet", "EM", "rain") toLatex(HSAURtable(clouds), pcol = 1, caption = paste("Cloud seeding experiments in Florida -- see text for", "explanations of the variables. Note that the \\Robject{clouds} data set has slightly different variable names."), label = "MLR-clouds-tab") @ } Weather modification, or cloud seeding, is the treatment of individual clouds or storm systems with various inorganic and organic materials in the hope of achieving an increase in rainfall. Introduction of such material into a cloud that contains supercooled water, that is, liquid water colder than zero degrees Celsius, has the aim of inducing freezing, with the consequent ice particles growing at the expense of liquid droplets and becoming heavy enough to fall as rain from clouds that otherwise would produce none. The data shown in Table~\ref{MLR-clouds-tab} were collected in the summer of 1975 from an experiment to investigate the use of massive amounts of silver iodide ($100$ to $1000$ grams per cloud) in cloud seeding to increase rainfall \citep{HSAUR:Woodleyetal1977}. In the experiment, which was conducted in an area of Florida, 24 days were judged suitable for seeding on the basis that a measured suitability criterion, denoted \stress{S-Ne}, was not less than $1.5$. Here \stress{S} is the `seedability', %' the difference between the maximum height of a cloud if seeded and the same cloud if not seeded predicted by a suitable cloud model, and \stress{Ne} is the number of hours between $1300$ and $1600$ G.M.T. with $10$ centimeter echoes in the target; this quantity biases the decision for experimentation against naturally rainy days. Consequently, optimal days for seeding are those on which seedability is large and the natural rainfall early in the day is small. On suitable days, a decision was taken at random as to whether to seed or not. For each day the following variables were measured: \begin{description} \item[\Robject{seeding}] a factor indicating whether seeding action occurred (yes or no), \item[\Robject{time}] number of days after the first day of the experiment, \item[\Robject{cloudc}] the percentage cloud cover in the experimental area, measured using radar, \item[\Robject{prewet}] the total rainfall in the target area one hour before seeding (in cubic meters $\times 10^{7}$), \item[\Robject{EM}] a factor showing whether the radar echo was moving or stationary, \item[\Robject{rain}] the amount of rain in cubic meters $\times 10^{7}$, \item[\Robject{sne}] suitability criterion, see above. \end{description} The objective in analyzing these data is to see how rainfall is related to the explanatory variables and, in particular, to determine the effectiveness of seeding. The method to be used is \stress{multiple linear regression}. \section{Simple Linear Regression} \section{Multiple Linear Regression \label{MLR-MLR}} \subsection{Regression Diagnostics} \section{Analysis Using \R{}} \subsection{Estimating the Age of the Universe} Prior to applying a simple regression to the data it will be useful to look at a plot to assess their major features. The \R{} code given in Figure~\ref{MLR-hubble-plot} produces a scatterplot of velocity and distance. \begin{figure} \begin{center} <>= plot(velocity ~ distance, data = hubble) @ \caption{Scatterplot of velocity and distance. \label{MLR-hubble-plot}} \end{center} \end{figure} The diagram shows a clear, strong relationship between velocity and distance. The next step is to fit a simple linear regression model to the data, but in this case the nature of the data requires a model without intercept because if distance is zero so is relative speed. So the model to be fitted to these data is \begin{eqnarray*} \text{velocity} = \beta_1 \text{distance} + \varepsilon. \end{eqnarray*} This is essentially what astronomers call Hubble's Law and $\beta_1$ is known as Hubble's constant; $\beta_1^{-1}$ gives an approximate age of the universe. To fit this model we are estimating $\beta_1$ using formula (\ref{MLR:beta1}). Although this operation is rather easy <>= sum(hubble$distance * hubble$velocity) / sum(hubble$distance^2) @ it is more convenient to apply \R's linear modeling function <>= hmod <- lm(velocity ~ distance - 1, data = hubble) @ Note that the model formula specifies a model without intercept. We can now extract the estimated model coefficients via <>= coef(hmod) @ and add this estimated regression line to the scatterplot; the result is shown in Figure~\ref{MLR-hubble-lmplot}. In addition, we produce a scatterplot of the residuals $y_i - \hat{y}_i$ against fitted values $\hat{y}_i$ to assess the quality of the model fit. It seems that for higher distance values the variance of velocity increases; however, we are interested in only the estimated parameter $\hat{\beta}_1$ which remains valid under variance heterogeneity (in contrast to $t$-tests and associated $p$-values). Now we can use the estimated value of $\beta_1$ to find an approximate value for the age of the universe. The Hubble constant itself has units of $\text{km} \times \text{sec}^{-1} \times \text{Mpc}^{-1}$. A mega-parsec (Mpc) is $3.09 \times 10^{19}$km, so we need to divide the estimated value of $\beta_1$ by this amount in order to obtain Hubble's constant with units of $\text{sec}^{-1}$. The approximate age of the universe in seconds will then be the inverse of this calculation. Carrying out the necessary computations <>= Mpc <- 3.09 * 10^19 ysec <- 60^2 * 24 * 365.25 Mpcyear <- Mpc / ysec 1 / (coef(hmod) / Mpcyear) @ gives an estimated age of roughly $12.8$ billion years. \begin{figure} \begin{center} <>= layout(matrix(1:2, ncol = 2)) plot(velocity ~ distance, data = hubble) abline(hmod) plot(hmod, which = 1) @ \caption{Scatterplot of velocity and distance with estimated regression line (left) and plot of residuals against fitted values (right). \label{MLR-hubble-lmplot}} \end{center} \end{figure} \subsection{Cloud Seeding} Again, a graphical display highlighting the most important aspects of the data will be helpful. Here we will construct boxplots of the rainfall in each category of the dichotomous explanatory variables and scatterplots of rainfall against each of the continuous explanatory variables. \begin{figure} \begin{center} <>= data("clouds", package = "HSAUR3") layout(matrix(1:2, nrow = 2)) bxpseeding <- boxplot(rain ~ seeding, data = clouds, ylab = "Rainfall", xlab = "Seeding") bxpecho <- boxplot(rain ~ EM, data = clouds, ylab = "Rainfall", xlab = "Echo Motion") @ <>= layout(matrix(1:2, nrow = 2)) bxpseeding <- boxplot(rain ~ seeding, data = clouds, ylab = "Rainfall", xlab = "Seeding") bxpecho <- boxplot(rain ~ EM, data = clouds, ylab = "Rainfall", xlab = "Echo Motion") @ \caption{Boxplots of \Robject{rain}. \label{MLR-rainfall-boxplot}} \end{center} \end{figure} \begin{figure} \begin{center} <>= layout(matrix(1:4, nrow = 2)) plot(rain ~ time, data = clouds) plot(rain ~ cloudc, data = clouds) plot(rain ~ sne, data = clouds, xlab="S-Ne criterion") plot(rain ~ prewet, data = clouds) @ \caption{Scatterplots of \Robject{rain} against the continuous covariates. \label{MLR-rainfall-scplot}} \end{center} \end{figure} Both the boxplots (Figure~\ref{MLR-rainfall-boxplot}) and the scatterplots (Figure~\ref{MLR-rainfall-scplot}) show some evidence of outliers. The row names of the extreme observations in the \Robject{clouds} \Rclass{data.frame} can be identified via <>= rownames(clouds)[clouds$rain %in% c(bxpseeding$out, bxpecho$out)] @ where \Robject{bxpseeding} and \Robject{bxpecho} are variables created by \Rcmd{boxplot} in Figure~\ref{MLR-rainfall-boxplot}. Now we shall not remove these observations but bear in mind during the modeling process that they may cause problems. In this example it is sensible to assume that the effect of some of the other explanatory variables is modified by seeding and therefore consider a model that includes seeding as covariate and, furthermore, allows interaction terms \index{Interaction} for \Robject{seeding} with each of the covariates except \Robject{time}. This model can be described by the \Rclass{formula} <>= clouds_formula <- rain ~ seeding + seeding:(sne + cloudc + prewet + EM) + time @ and the design matrix $\X^\star$ can be computed via <>= Xstar <- model.matrix(clouds_formula, data = clouds) @ By default, treatment contrasts have been applied to the dummy codings of the factors \Robject{seeding} and \Robject{EM} as can be seen from the inspection of the \Robject{contrasts} attribute of the model matrix <>= attr(Xstar, "contrasts") @ The default contrasts can be changed via the \Rarg{contrasts.arg} argument to \Rcmd{model.matrix} or the \Robject{contrasts} argument to the fitting function, for example \Rcmd{lm} or \Rcmd{aov} as shown in \Sexpr{ch("ANOVA")}. However, such internals are hidden and performed by high-level model-fitting functions such as \Rcmd{lm} which will be used to fit the linear model defined by the \Rclass{formula} \Robject{clouds\_formula}: <>= clouds_lm <- lm(clouds_formula, data = clouds) class(clouds_lm) @ The result of the model fitting is an object of class \Rclass{lm} for which a \Rcmd{summary} method showing the conventional regression analysis output is available. The output in Figure~\ref{MLR-clouds-summary} shows the estimates $\hat{\beta}^\star$ with corresponding standard errors and $t$-statistics as well as the $F$-statistic with associated $p$-value. \renewcommand{\nextcaption}{\R{} output of the linear model fit for the \Robject{clouds} data. \label{MLR-clouds-summary}} \SchunkLabel <>= summary(clouds_lm) @ \SchunkRaw Many methods are available for extracting components of the fitted model. The estimates $\hat{\beta}^\star$ can be assessed via \newpage <>= betastar <- coef(clouds_lm) betastar @ and the corresponding covariance matrix $\Cov(\hat{\beta}^\star)$ is available from the \Rcmd{vcov} method <>= Vbetastar <- vcov(clouds_lm) @ where the square roots of the diagonal elements are the standard errors as shown in Figure~\ref{MLR-clouds-summary} <>= sqrt(diag(Vbetastar)) @ \begin{figure} \begin{center} <>= psymb <- as.numeric(clouds$seeding) plot(rain ~ sne, data = clouds, pch = psymb, xlab = "S-Ne criterion") abline(lm(rain ~ sne, data = clouds, subset = seeding == "no")) abline(lm(rain ~ sne, data = clouds, subset = seeding == "yes"), lty = 2) legend("topright", legend = c("No seeding", "Seeding"), pch = 1:2, lty = 1:2, bty = "n") @ \caption{Regression relationship between S-Ne criterion and rainfall with and without seeding. \label{MLR-clouds-lmplot}} \end{center} \end{figure} In order to investigate the quality of the model fit, we need access to the residuals and the fitted values. The residuals can be found by the \Rcmd{residuals} method and the fitted values of the response from the \Rcmd{fitted} (or \Rcmd{predict}) method <>= clouds_resid <- residuals(clouds_lm) clouds_fitted <- fitted(clouds_lm) @ Now the residuals and the fitted values can be used to construct diagnostic plots; for example the residual plot in Figure~\ref{MLR-resid} where each observation is labelled by its number (using \Rcmd{textplot} from package \Rpackage{wordclouds}). Observations $1$ and $15$ give rather large residual values and the data should perhaps be reanalysed after these two observations are removed. The normal probability plot of the residuals shown in Figure~\ref{MLR-qqplot} shows a reasonable agreement between theoretical and sample quantiles, however, observations $1$ and $15$ are extreme again. \begin{figure} \begin{center} <>= plot(clouds_fitted, clouds_resid, xlab = "Fitted values", ylab = "Residuals", type = "n", ylim = max(abs(clouds_resid)) * c(-1, 1)) abline(h = 0, lty = 2) textplot(clouds_fitted, clouds_resid, words = rownames(clouds), new = FALSE) @ \caption{Plot of residuals against fitted values for \Robject{clouds} seeding data. \label{MLR-resid}} \end{center} \end{figure} \begin{figure} \begin{center} <>= qqnorm(clouds_resid, ylab = "Residuals") qqline(clouds_resid) @ \caption{Normal probability plot of residuals from cloud seeding model \Robject{clouds\_lm}. \label{MLR-qqplot}} \end{center} \end{figure} An index plot of the Cook's distances for each observation %' (and many other plots including those constructed above from using the basic functions) can be found from applying the \Rcmd{plot} method to the object that results from the application of the \Rcmd{lm} function. \begin{figure} \begin{center} <>= plot(clouds_lm) @ <>= plot(clouds_lm, which = 4, sub.caption = NULL) @ \caption{Index plot of Cook's distances for cloud seeding data. %' \label{MLR-cook}} \end{center} \end{figure} Figure~\ref{MLR-cook} suggests that observations 2 and 18 have undue influence on the estimated regression coefficients, but the two outliers identified previously do not. Again it may be useful to look at the results after these two observations have been removed (see Exercise 6.2). %% \ref{MLR-ex2}) \index{Regression diagnostics|)} %%\bibliographystyle{LaTeXBibTeX/refstyle} %%\bibliography{LaTeXBibTeX/HSAUR} \end{document} HSAUR3/vignettes/Ch_errata.Rnw0000644000176200001440000001672314416236367015634 0ustar liggesusers \documentclass{chapman} %%% copy Sweave.sty definitions %%% keeps `sweave' from adding `\usepackage{Sweave}': DO NOT REMOVE %\usepackage{Sweave} \RequirePackage[T1]{fontenc} \RequirePackage{graphicx,ae,fancyvrb} \IfFileExists{upquote.sty}{\RequirePackage{upquote}}{} \usepackage{relsize} \DefineVerbatimEnvironment{Sinput}{Verbatim}{} \DefineVerbatimEnvironment{Soutput}{Verbatim}{fontfamily=courier, fontshape=it, fontsize=\relsize{-1}} \DefineVerbatimEnvironment{Scode}{Verbatim}{} \newenvironment{Schunk}{}{} %%% environment for raw output \newcommand{\SchunkRaw}{\renewenvironment{Schunk}{}{} \DefineVerbatimEnvironment{Soutput}{Verbatim}{fontfamily=courier, fontshape=it, fontsize=\small} \rawSinput } %%% environment for labeled output \newcommand{\nextcaption}{} \newcommand{\SchunkLabel}{ \renewenvironment{Schunk}{\begin{figure}[ht] }{\caption{\nextcaption} \end{figure} } \DefineVerbatimEnvironment{Sinput}{Verbatim}{frame = topline} \DefineVerbatimEnvironment{Soutput}{Verbatim}{frame = bottomline, samepage = true, fontfamily=courier, fontshape=it, fontsize=\relsize{-1}} } %%% S code with line numbers \DefineVerbatimEnvironment{Sinput} {Verbatim} { %% numbers=left } \newcommand{\numberSinput}{ \DefineVerbatimEnvironment{Sinput}{Verbatim}{numbers=left} } \newcommand{\rawSinput}{ \DefineVerbatimEnvironment{Sinput}{Verbatim}{} } %%% R / System symbols \newcommand{\R}{\textsf{R}} \newcommand{\rR}{{R}} \renewcommand{\S}{\textsf{S}} \newcommand{\SPLUS}{\textsf{S-PLUS}} \newcommand{\rSPLUS}{{S-PLUS}} \newcommand{\SPSS}{\textsf{SPSS}} \newcommand{\EXCEL}{\textsf{Excel}} \newcommand{\ACCESS}{\textsf{Access}} \newcommand{\SQL}{\textsf{SQL}} %%\newcommand{\Rpackage}[1]{\hbox{\rm\textit{#1}}} %%\newcommand{\Robject}[1]{\hbox{\rm\texttt{#1}}} %%\newcommand{\Rclass}[1]{\hbox{\rm\textit{#1}}} %%\newcommand{\Rcmd}[1]{\hbox{\rm\texttt{#1}}} \newcommand{\Rpackage}[1]{\index{#1 package@{\fontseries{b}\selectfont #1} package} {\fontseries{b}\selectfont #1}} \newcommand{\rpackage}[1]{{\fontseries{b}\selectfont #1}} \newcommand{\Robject}[1]{\texttt{#1}} \newcommand{\Rclass}[1]{\index{#1 class@\textit{#1} class}\textit{#1}} \newcommand{\Rcmd}[1]{\index{#1 function@\texttt{#1} function}\texttt{#1}} \newcommand{\Roperator}[1]{\texttt{#1}} \newcommand{\Rarg}[1]{\texttt{#1}} \newcommand{\Rlevel}[1]{\texttt{#1}} %%% other symbols \newcommand{\file}[1]{\hbox{\rm\texttt{#1}}} %%\newcommand{\stress}[1]{\index{#1}\textit{#1}} \newcommand{\stress}[1]{\textit{#1}} \newcommand{\booktitle}[1]{\textit{#1}} %%' %%% Math symbols \usepackage{amstext} \usepackage{amsmath} \newcommand{\E}{\mathsf{E}} \newcommand{\Var}{\mathsf{Var}} \newcommand{\Cov}{\mathsf{Cov}} \newcommand{\Cor}{\mathsf{Cor}} \newcommand{\x}{\mathbf{x}} \newcommand{\y}{\mathbf{y}} \renewcommand{\a}{\mathbf{a}} \newcommand{\W}{\mathbf{W}} \newcommand{\C}{\mathbf{C}} \renewcommand{\H}{\mathbf{H}} \newcommand{\X}{\mathbf{X}} \newcommand{\B}{\mathbf{B}} \newcommand{\V}{\mathbf{V}} \newcommand{\I}{\mathbf{I}} \newcommand{\D}{\mathbf{D}} \newcommand{\bS}{\mathbf{S}} \newcommand{\N}{\mathcal{N}} \renewcommand{\L}{L} \renewcommand{\P}{\mathsf{P}} \newcommand{\K}{\mathbf{K}} \newcommand{\m}{\mathbf{m}} \newcommand{\argmin}{\operatorname{argmin}\displaylimits} \newcommand{\argmax}{\operatorname{argmax}\displaylimits} \newcommand{\bx}{\mathbf{x}} \newcommand{\bbeta}{\mathbf{\beta}} %%% links \usepackage{hyperref} \hypersetup{% pdftitle = {A Handbook of Statistical Analyses Using R (3rd Edition)}, pdfsubject = {Book}, pdfauthor = {Torsten Hothorn and Brian S. Everitt}, colorlinks = {black}, linkcolor = {black}, citecolor = {black}, urlcolor = {black}, hyperindex = {true}, linktocpage = {true}, } %%% captions & tables %% : conflics with figure definition in chapman.cls %%\usepackage[format=hang,margin=10pt,labelfont=bf]{caption} %% \usepackage{longtable} \usepackage[figuresright]{rotating} %%% R symbol in chapter 1 \usepackage{wrapfig} %%% Bibliography \usepackage[round,comma]{natbib} \renewcommand{\refname}{References \addcontentsline{toc}{chapter}{References}} \citeindexfalse %%% texi2dvi complains that \newblock is undefined, hm... \def\newblock{\hskip .11em plus .33em minus .07em} %%% Example sections \newcounter{exercise}[chapter] \setcounter{exercise}{0} \newcommand{\exercise}{\stepcounter{exercise} \item{Ex.~\arabic{chapter}.\arabic{exercise} }} %% URLs \newcommand{\curl}[1]{\begin{center} \url{#1} \end{center}} %%% for manual corrections %\renewcommand{\baselinestretch}{2} %%% plot sizes \setkeys{Gin}{width=0.95\textwidth} %%% color \usepackage{color} %%% hyphenations \hyphenation{drop-out} \hyphenation{mar-gi-nal} %%% new bidirectional quotes need \usepackage[utf8]{inputenc} %\usepackage{setspace} \definecolor{sidebox_todo}{rgb}{1,1,0.2} \newcommand{\todo}[1]{ \hspace{0pt}% \marginpar{% \fcolorbox{black}{sidebox_todo}{% \parbox{\marginparwidth} { \raggedright\sffamily\footnotesize{TODO: #1}% } }% } } \begin{document} %% Title page \title{A Handbook of Statistical Analyses Using \R{} --- 3rd Edition} \author{Torsten Hothorn and Brian S. Everitt} \maketitle %%\VignetteIndexEntry{Errata} \setcounter{chapter}{21} \SweaveOpts{prefix.string=figures/HSAUR,eps=FALSE,keep.source=TRUE} <>= rm(list = ls()) s <- search()[-1] s <- s[-match(c("package:base", "package:stats", "package:graphics", "package:grDevices", "package:utils", "package:datasets", "package:methods", "Autoloads"), s)] if (length(s) > 0) sapply(s, detach, character.only = TRUE) if (!file.exists("tables")) dir.create("tables") if (!file.exists("figures")) dir.create("figures") set.seed(290875) options(prompt = "R> ", continue = "+ ", width = 63, # digits = 4, show.signif.stars = FALSE, SweaveHooks = list(leftpar = function() par(mai = par("mai") * c(1, 1.05, 1, 1)), bigleftpar = function() par(mai = par("mai") * c(1, 1.7, 1, 1)))) HSAURpkg <- require("HSAUR3") if (!HSAURpkg) stop("cannot load package ", sQuote("HSAUR3")) rm(HSAURpkg) ### hm, R-2.4.0 --vanilla seems to need this a <- Sys.setlocale("LC_ALL", "C") ### book <- TRUE refs <- cbind(c("AItR", "DAGD", "SI", "CI", "ANOVA", "MLR", "GLM", "DE", "RP", "GAM", "SA", "ALDI", "ALDII", "SIMC", "MA", "PCA", "MDS", "CA"), 1:18) ch <- function(x) { ch <- refs[which(refs[,1] == x),] if (book) { return(paste("Chapter~\\\\ref{", ch[1], "}", sep = "")) } else { return(paste("Chapter~", ch[2], sep = "")) } } if (file.exists("deparse.R")) source("deparse.R") setHook(packageEvent("lattice", "attach"), function(...) { lattice.options(default.theme = function() standard.theme("pdf", color = FALSE)) }) @ \pagestyle{headings} <>= book <- FALSE @ \chapter[Errata]{Errata} %\bibliographystyle{LaTeXBibTeX/refstyle} %\bibliography{LaTeXBibTeX/HSAUR} \end{document} HSAUR3/vignettes/Ch_meta_analysis.Rnw0000644000176200001440000003654214416236367017210 0ustar liggesusers \documentclass{chapman} %%% copy Sweave.sty definitions %%% keeps `sweave' from adding `\usepackage{Sweave}': DO NOT REMOVE %\usepackage{Sweave} \RequirePackage[T1]{fontenc} \RequirePackage{graphicx,ae,fancyvrb} \IfFileExists{upquote.sty}{\RequirePackage{upquote}}{} \usepackage{relsize} \DefineVerbatimEnvironment{Sinput}{Verbatim}{} \DefineVerbatimEnvironment{Soutput}{Verbatim}{fontfamily=courier, fontshape=it, fontsize=\relsize{-1}} \DefineVerbatimEnvironment{Scode}{Verbatim}{} \newenvironment{Schunk}{}{} %%% environment for raw output \newcommand{\SchunkRaw}{\renewenvironment{Schunk}{}{} \DefineVerbatimEnvironment{Soutput}{Verbatim}{fontfamily=courier, fontshape=it, fontsize=\small} \rawSinput } %%% environment for labeled output \newcommand{\nextcaption}{} \newcommand{\SchunkLabel}{ \renewenvironment{Schunk}{\begin{figure}[ht] }{\caption{\nextcaption} \end{figure} } \DefineVerbatimEnvironment{Sinput}{Verbatim}{frame = topline} \DefineVerbatimEnvironment{Soutput}{Verbatim}{frame = bottomline, samepage = true, fontfamily=courier, fontshape=it, fontsize=\relsize{-1}} } %%% S code with line numbers \DefineVerbatimEnvironment{Sinput} {Verbatim} { %% numbers=left } \newcommand{\numberSinput}{ \DefineVerbatimEnvironment{Sinput}{Verbatim}{numbers=left} } \newcommand{\rawSinput}{ \DefineVerbatimEnvironment{Sinput}{Verbatim}{} } %%% R / System symbols \newcommand{\R}{\textsf{R}} \newcommand{\rR}{{R}} \renewcommand{\S}{\textsf{S}} \newcommand{\SPLUS}{\textsf{S-PLUS}} \newcommand{\rSPLUS}{{S-PLUS}} \newcommand{\SPSS}{\textsf{SPSS}} \newcommand{\EXCEL}{\textsf{Excel}} \newcommand{\ACCESS}{\textsf{Access}} \newcommand{\SQL}{\textsf{SQL}} %%\newcommand{\Rpackage}[1]{\hbox{\rm\textit{#1}}} %%\newcommand{\Robject}[1]{\hbox{\rm\texttt{#1}}} %%\newcommand{\Rclass}[1]{\hbox{\rm\textit{#1}}} %%\newcommand{\Rcmd}[1]{\hbox{\rm\texttt{#1}}} \newcommand{\Rpackage}[1]{\index{#1 package@{\fontseries{b}\selectfont #1} package} {\fontseries{b}\selectfont #1}} \newcommand{\rpackage}[1]{{\fontseries{b}\selectfont #1}} \newcommand{\Robject}[1]{\texttt{#1}} \newcommand{\Rclass}[1]{\index{#1 class@\textit{#1} class}\textit{#1}} \newcommand{\Rcmd}[1]{\index{#1 function@\texttt{#1} function}\texttt{#1}} \newcommand{\Roperator}[1]{\texttt{#1}} \newcommand{\Rarg}[1]{\texttt{#1}} \newcommand{\Rlevel}[1]{\texttt{#1}} %%% other symbols \newcommand{\file}[1]{\hbox{\rm\texttt{#1}}} %%\newcommand{\stress}[1]{\index{#1}\textit{#1}} \newcommand{\stress}[1]{\textit{#1}} \newcommand{\booktitle}[1]{\textit{#1}} %%' %%% Math symbols \usepackage{amstext} \usepackage{amsmath} \newcommand{\E}{\mathsf{E}} \newcommand{\Var}{\mathsf{Var}} \newcommand{\Cov}{\mathsf{Cov}} \newcommand{\Cor}{\mathsf{Cor}} \newcommand{\x}{\mathbf{x}} \newcommand{\y}{\mathbf{y}} \renewcommand{\a}{\mathbf{a}} \newcommand{\W}{\mathbf{W}} \newcommand{\C}{\mathbf{C}} \renewcommand{\H}{\mathbf{H}} \newcommand{\X}{\mathbf{X}} \newcommand{\B}{\mathbf{B}} \newcommand{\V}{\mathbf{V}} \newcommand{\I}{\mathbf{I}} \newcommand{\D}{\mathbf{D}} \newcommand{\bS}{\mathbf{S}} \newcommand{\N}{\mathcal{N}} \renewcommand{\L}{L} \renewcommand{\P}{\mathsf{P}} \newcommand{\K}{\mathbf{K}} \newcommand{\m}{\mathbf{m}} \newcommand{\argmin}{\operatorname{argmin}\displaylimits} \newcommand{\argmax}{\operatorname{argmax}\displaylimits} \newcommand{\bx}{\mathbf{x}} \newcommand{\bbeta}{\mathbf{\beta}} %%% links \usepackage{hyperref} \hypersetup{% pdftitle = {A Handbook of Statistical Analyses Using R (3rd Edition)}, pdfsubject = {Book}, pdfauthor = {Torsten Hothorn and Brian S. Everitt}, colorlinks = {black}, linkcolor = {black}, citecolor = {black}, urlcolor = {black}, hyperindex = {true}, linktocpage = {true}, } %%% captions & tables %% : conflics with figure definition in chapman.cls %%\usepackage[format=hang,margin=10pt,labelfont=bf]{caption} %% \usepackage{longtable} \usepackage[figuresright]{rotating} %%% R symbol in chapter 1 \usepackage{wrapfig} %%% Bibliography \usepackage[round,comma]{natbib} \renewcommand{\refname}{References \addcontentsline{toc}{chapter}{References}} \citeindexfalse %%% texi2dvi complains that \newblock is undefined, hm... \def\newblock{\hskip .11em plus .33em minus .07em} %%% Example sections \newcounter{exercise}[chapter] \setcounter{exercise}{0} \newcommand{\exercise}{\stepcounter{exercise} \item{Ex.~\arabic{chapter}.\arabic{exercise} }} %% URLs \newcommand{\curl}[1]{\begin{center} \url{#1} \end{center}} %%% for manual corrections %\renewcommand{\baselinestretch}{2} %%% plot sizes \setkeys{Gin}{width=0.95\textwidth} %%% color \usepackage{color} %%% hyphenations \hyphenation{drop-out} \hyphenation{mar-gi-nal} %%% new bidirectional quotes need \usepackage[utf8]{inputenc} %\usepackage{setspace} \definecolor{sidebox_todo}{rgb}{1,1,0.2} \newcommand{\todo}[1]{ \hspace{0pt}% \marginpar{% \fcolorbox{black}{sidebox_todo}{% \parbox{\marginparwidth} { \raggedright\sffamily\footnotesize{TODO: #1}% } }% } } \begin{document} %% Title page \title{A Handbook of Statistical Analyses Using \R{} --- 3rd Edition} \author{Torsten Hothorn and Brian S. Everitt} \maketitle %%\VignetteIndexEntry{Chapter Meta-Analysis} %%\VignetteDepends{rmeta} \setcounter{chapter}{16} \SweaveOpts{prefix.string=figures/HSAUR,eps=FALSE,keep.source=TRUE} <>= rm(list = ls()) s <- search()[-1] s <- s[-match(c("package:base", "package:stats", "package:graphics", "package:grDevices", "package:utils", "package:datasets", "package:methods", "Autoloads"), s)] if (length(s) > 0) sapply(s, detach, character.only = TRUE) if (!file.exists("tables")) dir.create("tables") if (!file.exists("figures")) dir.create("figures") set.seed(290875) options(prompt = "R> ", continue = "+ ", width = 63, # digits = 4, show.signif.stars = FALSE, SweaveHooks = list(leftpar = function() par(mai = par("mai") * c(1, 1.05, 1, 1)), bigleftpar = function() par(mai = par("mai") * c(1, 1.7, 1, 1)))) HSAURpkg <- require("HSAUR3") if (!HSAURpkg) stop("cannot load package ", sQuote("HSAUR3")) rm(HSAURpkg) ### hm, R-2.4.0 --vanilla seems to need this a <- Sys.setlocale("LC_ALL", "C") ### book <- TRUE refs <- cbind(c("AItR", "DAGD", "SI", "CI", "ANOVA", "MLR", "GLM", "DE", "RP", "GAM", "SA", "ALDI", "ALDII", "SIMC", "MA", "PCA", "MDS", "CA"), 1:18) ch <- function(x) { ch <- refs[which(refs[,1] == x),] if (book) { return(paste("Chapter~\\\\ref{", ch[1], "}", sep = "")) } else { return(paste("Chapter~", ch[2], sep = "")) } } if (file.exists("deparse.R")) source("deparse.R") setHook(packageEvent("lattice", "attach"), function(...) { lattice.options(default.theme = function() standard.theme("pdf", color = FALSE)) }) @ \pagestyle{headings} <>= book <- FALSE @ \chapter[Meta-Analysis]{Meta-Analysis: Nicotine Gum and Smoking Cessation and the Efficacy of BCG Vaccine in the Treatment of Tuberculosis \label{MA}} \section{Introduction} \section{Systematic Reviews and Meta-Analysis} \section{Analysis Using \R{}} The aim in collecting the results from the randomized trials of using nicotine gum to help smokers quit was to estimate the overall \stress{odds ratio}, the odds of quitting smoking for those given the gum, divided by the odds of quitting for those not receiving the gum. Following formula (\ref{MA:barY}), we can compute the pooled odds ratio as follows: <>= data("smoking", package = "HSAUR3") odds <- function(x) (x[1] * (x[4] - x[3])) / ((x[2] - x[1]) * x[3]) weight <- function(x) ((x[2] - x[1]) * x[3]) / sum(x) W <- apply(smoking, 1, weight) Y <- apply(smoking, 1, odds) sum(W * Y) / sum(W) @ Of course, the computations are more conveniently done using the functionality provided in package \Rpackage{rmeta}. The odds ratios and corresponding confidence intervals are computed by means of the \Rcmd{meta.MH} function for fixed effects meta-analysis as shown here <>= library("rmeta") smokingOR <- meta.MH(smoking[["tt"]], smoking[["tc"]], smoking[["qt"]], smoking[["qc"]], names = rownames(smoking)) @ and the results can be inspected via a \Rcmd{summary} method -- see Figure~\ref{MA-smoking-summary}. \renewcommand{\nextcaption}{\R{} output of the \Rcmd{summary} method for \Robject{smokingOR}. \label{MA-smoking-summary}} \SchunkLabel <>= summary(smokingOR) @ \SchunkRaw \begin{figure} \begin{center} <>= plot(smokingOR, ylab = "") @ \caption{Forest plot of observed effect sizes and $95\%$ confidence intervals for the nicotine gum studies. \label{MA:smokingplot}} \end{center} \end{figure} We shall use both the fixed effects and random effects approaches here so that we can compare results. For the fixed effects model (see Figure~\ref{MA-smoking-summary}) the estimated overall log-odds ratio is \Sexpr{round(smokingOR$logMH, 3)} with a standard error of \Sexpr{round(smokingOR$selogMH, 3)}. This leads to an estimate of the overall odds ratio of \Sexpr{round(exp(smokingOR$logMH), 3)}, with a 95\% confidence interval as given above. For the random effects model, which is fitted by applying function \Rcmd{meta.DSL} to the \Robject{smoking} data as follows \vspace{1cm} <>= (smokingDSL <- meta.DSL(smoking[["tt"]], smoking[["tc"]], smoking[["qt"]], smoking[["qc"]], names = rownames(smoking))) @ the corresponding estimate is \Sexpr{round(exp(smokingDSL$logDSL), 3)}. Both models suggest that there is clear evidence that nicotine gum increases the odds of quitting. The random effects confidence interval is considerably wider than that from the fixed effects model; here the test of homogeneity of the studies is not significant implying that we might use the fixed effects results. But the test is not particularly powerful and it is more sensible to assume a priori that heterogeneity is present and so we use the results from the random effects model. \section{Meta-Regression} The examination of heterogeneity of the effect sizes from the studies in a meta-analysis begins with the formal test for its presence, although in most meta-analyses such heterogeneity can almost be assumed to be present. There will be many possible sources of such heterogeneity and estimating how these various factors affect the observed effect sizes in the studies chosen is often of considerable interest and importance, indeed usually more important than the relatively simplistic use of meta-analysis to determine a single summary estimate of overall effect size. We can illustrate the process using the BCG vaccine data. We first find the estimate of the overall effect size from applying the fixed effects and the random effects models described previously: <>= data("BCG", package = "HSAUR3") BCG_OR <- meta.MH(BCG[["BCGVacc"]], BCG[["NoVacc"]], BCG[["BCGTB"]], BCG[["NoVaccTB"]], names = BCG$Study) BCG_DSL <- meta.DSL(BCG[["BCGVacc"]], BCG[["NoVacc"]], BCG[["BCGTB"]], BCG[["NoVaccTB"]], names = BCG$Study) @ The results are inspected using the \Rcmd{summary} method as shown in Figures~\ref{MA-BCGOR-summary} and \ref{MA-BCGDSL-summary}. \renewcommand{\nextcaption}{\R{} output of the \Rcmd{summary} method for \Robject{BCG\_OR}. \label{MA-BCGOR-summary}} \SchunkLabel <>= summary(BCG_OR) @ \SchunkRaw \renewcommand{\nextcaption}{\R{} output of the \Rcmd{summary} method for \Robject{BCG\_DSL}. \label{MA-BCGDSL-summary}} \SchunkLabel <>= summary(BCG_DSL) @ \SchunkRaw To assess how the two covariates, latitude and year, relate to the observed effect sizes we shall use multiple linear regression but will weight each observation by $W_i = (\hat{\sigma}^2 + V_i^2)^{-1}, i = 1, \dots, 13$, where $\hat{\sigma}^2$ is the estimated between-study variance and $V_i^2$ is the estimated variance from the $i$th study. The required \R{} code to fit the linear model via weighted least squares is: \index{Meta-Analysis!weighted least squares regression} <>= studyweights <- 1 / (BCG_DSL$tau2 + BCG_DSL$selogs^2) y <- BCG_DSL$logs BCG_mod <- lm(y ~ Latitude + Year, data = BCG, weights = studyweights) @ and the results of the \Rcmd{summary} method are shown in Figure~\ref{MA-mod-summary}. There is some evidence that latitude is associated with observed effect size, the log-odds ratio becoming increasingly negative as latitude increases, as we can see from a scatterplot of the two variables with the added weighted regression fit seen in Figure~\ref{MA-BCG}. \renewcommand{\nextcaption}{\R{} output of the \Rcmd{summary} method for \Robject{BCG\_mod}. \label{MA-mod-summary}} \SchunkLabel <>= summary(BCG_mod) @ \SchunkRaw \begin{figure} \begin{center} <>= plot(y ~ Latitude, data = BCG, ylab = "Estimated log-OR") abline(lm(y ~ Latitude, data = BCG, weights = studyweights)) @ \caption{Plot of observed effect size for the \Robject{BCG} vaccine data against latitude, with a weighted least squares regression fit shown in addition. \label{MA-BCG}} \end{center} \end{figure} \section{Publication Bias} \begin{figure} \begin{center} <>= set.seed(290875) sigma <- seq(from = 1/10, to = 1, length.out = 35) y <- rnorm(35) * sigma gr <- (y > -0.5) layout(matrix(1:2, ncol = 1)) plot(y, 1/sigma, xlab = "Effect size", ylab = "1 / standard error") plot(y[gr], 1/(sigma[gr]), xlim = range(y), xlab = "Effect size", ylab = "1 / standard error") @ \caption{Example funnel plots from simulated data. The asymmetry in the lower plot is a hint that a publication bias might be a problem. \label{MA-funnel}} \end{center} \end{figure} We can construct a funnel plot for the nicotine gum data using the \R{} code depicted with Figure~\ref{MA:funnel}. There does not appear to be any strong evidence of publication bias here. \begin{figure} \begin{center} <>= funnelplot(smokingDSL$logs, smokingDSL$selogs, summ = smokingDSL$logDSL, xlim = c(-1.7, 1.7)) abline(v = 0, lty = 2) @ \caption{Funnel plot for nicotine gum data. \label{MA:funnel}} \end{center} \end{figure} \index{Meta-analysis!funnel plots|)} %%\bibliographystyle{LaTeXBibTeX/refstyle} %%\bibliography{LaTeXBibTeX/HSAUR} \end{document} HSAUR3/vignettes/graphics/0000755000176200001440000000000014172224353015032 5ustar liggesusersHSAUR3/vignettes/graphics/Rlogo_bw.png0000644000176200001440000003234714172224353017323 0ustar liggesusers‰PNG  IHDRµŠFvÃZbKGDþðˆü) pHYs."."ªâÝ’ vpAgµŠž¹O4IDATxÚå½y°^ç}ß÷yž³¿ûÝ/pIÜ™ej_,[ŽiIcɵ&ŠSÇum+q’:vÖiÒNfÚišz’™v’Ìtê4ãÎÄ•,Y©µQ"E-¦¸ˆ" ®;îöîï{ösúÇyÎy߸÷âb%5}Îà.÷{~ç·~¿G¤)ïÔ¥2MÃA¬E¥8ôš!ˆ¸[ù¯ÂÕ::†´fµDêºæˆ ùvŸøÆK»O`lÅ©_Ü¡Ýé¸fÓ+NÛ‹Œ´kƒrŒ.Тâé)¡®—%R–…LðKiM×W§j•¨–TíJäX¦”ÚÛýµò%Þf©N‰ÃhH'\÷×è8ÍØµql…Iª¥"E0ú“b ÉO8"Æ$%A)) –è‘”ÂF:Ïë³É4UËÒÅÛ,ïoÔiýVº‹×ôž3¡L4Uñ8¹t$‘‚:%"EWP§ àÎ O€„‰žØA=š–ØeÍ%5Ûx› ¿ÑP§I8ˆWã3ÉY¹*ûF¨'"ƒv\±áK4´1¨CÚ„T ?RDjÄåp>ÙïKZCÓ ùƒ: ÜõèdpR[qzF¨!2HsX/üû¢%A¢“(¨#ZñÓ¤T§žCNª'•hÑÝpv%]Ü {u# N¼p9<gÝñÍDŠb1¦..5$H¤R#cPo&Õ#ÙIx¹Ïz7w{ª!®»ù¼¾P'·¿™×× _GÈ1€GðŽ@N·RÄÔ)1RiéàÉ]5Üù‘é{3ž D÷$ûd¥t=ý•ëuš„­Á›¼ž®V|!ÈÜ‹Íß$Ô‚.H¤dî^L‚TZšBço ø¸dgǤ$D$˜áÜàÞø~c—cè[^ñwÔ‰ž¾ŸtN*’‹ÕÅfI|ª~Nˆ€”DIuîæ] 1üï…P§Ô1qöï´îstï®×Ìk/ß×ê¸7<š¼ÂJ9Ðåúx£9¸ãkÜ»ý6-îÑÏ“>Ç8ÌÉ&€'…T§ÄêÐâîÏ„‰…’4ß¡P§IÛÕ}EëT) '%u^Y<æ€%cwì¹XÝlv‡ëë‘FN à/vóçÅê1;Ò´Þ x¿½ÇÖ®™t_#¨Ó¤íŠ^3ºV*F0oµ@ªC7o¬ÂlÉ ÏåEoGf '`&c*gt:uBLDLšÖÂûüʽ×îkuÜñů]kÜüMšÁb ABL@H˜}%P¿ÍŸ§mp‘&á½è¿„˜ø}®$¢BGgÿÝ9Ô££<àTî1¥ñvC‡‡:‡êíR*$é]@Ã@WŽZ€‹‡O¤ä8ƒVªGQHüFwʹcBó^hGKŸ0þ~™vŽ ‰Ç¼‘qéÏï´ˆˆ˜˜)ÿÁæÇÅÚÕE—Wuäiý¸¼\Nµ‘DŽkd‰†Ž†$bÀ€!>a–›@ ¡)ˆ5´¶àêšNH^<¦ÆÞ˜ ¯•0öžš:¨;kÜßÎ%;"R÷@œ,¸é~°Z)_¹#xÅP§ÉJçGÑ[È ¶I³§a``¢Ò§KŸ!¡òä°ºº ::º‚ANÀ#Ý~¡$_øEĘ×2n–sÀ t4R"¥ÌFÞvy¨>/{ñþî'£{Úª’+ƒ:õú//”û–²¸Aó¯'Ð1±0!Zôñ‰‹/9.Ã&&&&:º‚g$SaqÄHñ…J#fFK)“ê¸* „… & »11!‰R51!¥à‘Þ£b¾q%ªä  Nó­ȳTŸ¼É³[ÔÀÄÆ$¦Ã-D¤êæÕ •‘)‡6&:BÉSo ŽLŽ“B«Ž‡ã`gP§ Þ‘âHǨ‘Tç>ÍHƒçÂ!‰ñ &ü‘ìò»*Iwv~Å{÷Œ~Ù²}ÙPþ‹íçÊnEN8e™„˜Ø”Ñqi±L‹!±R£CW_«D‰‚¤ß_ýÉ•Eî-LK¶P#X¥ÊŽôý…ASþäÄ7°€Pž $",·‚?¥O_¦Þ¾<¨“fûÉ[S‰–æèij“¬câ²ÌZ¸*é™ëá\;Ú”©P¡„‰T†)$ÄWG@8¡“/t¾ÆÍá8ÔRIµ(d7Ëêc nR}P_9a†u,lL"¼B¡DGHšîo>¸sær°—u¿ÕyR¶ëRŒüŒæ25,<ÎsŠ5snætuØ”¨R§Š^€\sTÈQTòÞ5e1òPI´ Ð3ù.!ñq •š‹”j‰‰Ð£·~­R³·§H¶ µçý°óúl¬É iÐ)Qg ÉyŽp†>ñÌ™é+QcŠ)**(ù ”$ Ï\¾ãÂ<@å‘BKD ‹šeˆ$Húš SR¬rlEøK+–Q""w4µBµå†:×ÝÚ˜ük4,Jhx¸„DJrÿ(IïYùmkGãšAÝ]}RŸrÜ èXT˜¥B›Ã¼I‹P) C=X”¨3Í4etÒ Y ˜}\† 2Äy¤,rÃ"5S;¬¥Sñ¼˜ K¥å¹zÝ´Z%YšÕ¥Ê¡Lóˆ0-EfŒ×¸þtŸÕµáô²×ÒÖé=B3©Ù£|<Щ‹2’!Ãè MosË=иtÒuP7‡ßœŸ‘r\¿éTÙÁÇy…³¸ Ìž1ó,3TЉ'\¸f—=zôqñ•L& bBŠLx*ÞïMnŠ÷š î¬SÁ6õ¬`¾½ÌS憑ð½¾Ö¬:§¢ÓÚétE둎ÈÝÏ,¤ªFSŽªM‰˜>Qa̳c®ù{ñ}sW õšÿdÙ–b<ñiRc%Ú<Ëë´ˆ ˜ #–¨1Ç5eGÚ8SÈ]:té+YŽ •‘ÿ­%µdaxkx·k¼¤/è£L/ŒgI$´qñ‰”BôÙáÿWƒûê›ÈM¡î¯3<·8îwL³‡Îó}^¥( 61±©0ÍN¨À®\HÀ&çY¡¥¤9»õ2¨Iþ»¿$ÖæË7ŠsIÀ“õá‹ÞÄá²kib<Ó ½mЦO€¯¬MÈ|óŸ„. ê`ø„w¤!ä(O`1Í>æ8Îw9Œ‹†©R4&5æYb«g_"!.mÎs–&}|¥6ò*Œ–î|<øÜ^6Í·O’7Ã;ð¾?ç´*BEþ=‡Û¢Ä&C"|<ÂôÎþ“,Ô· u>µòÂz´ÄfžýÔ8Â㼉ŽUmSbŠ,1…F¤B¿P=Îsšºxc»Ý2ø¬ø„\²ÄU—“®'ÞËþ_Çße¹*4½ðµFŠÄe ¯¸‹Ãô}­?(—­‹ßg#¨Ó7Zß­DæH¢mvp+5ñ'ѱÔ–RK줎(Âl_Ö.kœâ -žŒp™ÜÜùµá/—篲ŒtƒV¼ÞýÞð‰ÒjMjúX<,Ñ)±Â Èå¤ñ¯®þ™‹k‘@½ÚýšÖ+Ë1Õ1ÏmÌrˆ¯sœCe¾,,*̱›E*€?´O3œ`™î„çûýÏùŸf¡2nB"EsõômÐ")ºë¸NÕŽ CÈM/}¼Þ}’ïZëŽ&4UaÊI™˜eêû{8þv?8sáû\µßÿ†jf´É™çuþŠ#„ØØX è* ìf‘’ÒÐ^´Ç:'8Á:C¼±Ì]HÃûTï7ͽ51‰izüÌ‹-}xÆb3vD5šNã%1«• ¹!,Mζ¿ÁÓå¡¥+7»DÊ9zØ»;ÿc¸gvk¨£gWŸ™C嶦9È.Þâ/y• ÚÆÆ¡Æ{X D\¤‰2Ùržcœ¦­ê㹡ԓ‡:ÿ zOM»X—¥/žùÖβÒçÚ®.µRU½O ÛI¦Â=ÑmÉM²fˆ Lu½Òü²v|*•æØ1g °ƒô#+ÿ¸j•Æ_wku¾õR54ªìe‰¾Íë:º¤€^Ä!)‚•Ìãèsš£œ£[dê2¨ç‡¿íÿM»¾IÒ1ÅEc'=:Õ ¯ïŠT¶%" ­«½Å’Ùà¶Î»Œ¥Ê…¥-M¿gnßðÛï”zV^lƒ!%‰râƒøÞÔC런ÆäÔ¡÷cÍ-ç5 ‰Ã.ö2äI^ÂU኉¥’üó ètBty‹#¬Ðǃ:IÞÓÿ#÷Ý—¨[ r+š7ì´ˆY}dQá äIû”ýLt§ÿˆw“®9/Õò'탽?wߪù*ß™àRb‘ÓDDèx柕è/޹}_üXÿdM1f÷#y†gè"1”†¶•éèT«òŒ@›ce•>žRvø«Í?(ÍÍ_Êæ¥tpz7L¤êü=ú¸Êã—Dbšú“ú у­³ÕI3'´Ûë¿×ýÒòÓ3¾™K†”™# DGçXõ‹k_ˆGù1¨Ýþ‹NlJUQÖ©±—/óÖ@E†ÐUfXb‘²Jõ è˜or„5¸J¦]|fÝÿÚû\Ý´·÷Å[ ÙMïA’dŸ.C<† qñˆ€uý›sox¿Ø¾¿¤M~1UÿucO÷ÿ-ù%\¦ð²ÐŒP~£öÑöÁ™‹¡Ž_ï¬.ä@K–Xd•ïs’D¥’2¨ËL±ƒE*ˆ¢*‘ÙmÞä(ë è¡Rüÿ¾óÑÙíÜ }z<ÁÆç®ßÒp°¨2Í ³Ì ñèѥ˗¬‰/ä°}Nÿh÷~é‚8Ð(}̘ïü¹Ö´¦¼„èh,[ÿ±õÇ^~ †½WTÏ‹œY¾#áY^ÁÓÒuæY †–é´¢nÒã8GYgX=$àŽæ¿6î_¸g8EW…**áüñà½S×Y ÉXM6ö%¯hΨÎD$«gnlp%66 v°Æ2M–ù>0S0›4Öµÿظ½³óâ ¹¸³üó¯;±–1Uv°†ähõ5÷ÁêóQ¿4’é2³¼ÂÄ›5TÐ ÆhÆÖhr’æÐiò·ÚŸ­rÝsЂiv3‡Äß2º$ª /R¢}ÜMÝI*%¦8Ç ]~Â=L©$°†àpé/‡¿Õ×*½Ì|¸~nýdzȔÓô‘ôõ¿æÁ©á‰0Örr¬F:ç9Ч˜J†ªƒW¨)"XR0Øb†œaY%Is°üCÇp¸ÎKg/±é²N‡xK¨õŒÔ*µ”ÕIëtñ6¹L lÊœ£Å«ÜE U?´~p&ªn~Ì\œ©fÌÁEÎ㑊ge[Ï?¯NÊ †ä(çI½\ÇÀ¡L•²šU)–}D“3ôƈ4>Óþ¦óµëô­ÜNÈ)Ú´èmñܬ§ÁW`Å}B£†C ƒ!á&¯´Ù‰N›7¹• CUÊ=k}]?àÊÒůhÔ?ÒþüÀ‚ˆ5úÞrNymÚA¿4âfšTð&ƒ¢Â( .cQÎc\α>V÷IùU÷½%®óìäfº,³ÆqÎár©’BÖ0“5L„ ½+ŠQ½Ù%G"èr–y\$’Ö?ÓÛµÑ÷œ»»ÏÏ c2Ï2’–<ä¬è°*CsDö¶qXã ¡*ZæR]¢LIÉttL‡e<]½¿#µkÚźÑ*±‡ç8Ï!N1(äu+¨cÆ–©QGÐ¥E‰榑©Æ 1]ª8Š"8i>ïŠ6ȤÙ?;8ÒïU ³Ø ˆ´—ågbxDæDb£sŽ&©:“k«H2fÔÅ€5ZTÝ4ùLï–K²×®~M“rŠ5q”–bX]*RŠÊyuÐgÈ Ó¬³B96¿uf‰YÇ¥Š‰ŽD2O;¿fvª÷¬=UA$”©Ó"å¨> ôÈoŽ]L‰EÄY†äMByC…AÞHŸÑ½†¬1(Ü ˆ=þ¯•®¿ç¡ã°Â2ç9C›&]RìKPASb¦êo°U[Ñ";HY#dŽê¦—Ëb˜>)–’ê„×UoçÆO7°^õ:N‚Å4'¬8­H´¡5jF“h Y!(ˆÝšR &YI!‡:%¦«d:ç(%üœsõz  k´Uj«Ç*e¬-_“ *¡c«nÄŒN´†ÁBVˆl~òu<ÈHàŒv,Ú¹‰‰˜«ÝÜyÁ¤La h±œênàiV¤G›¸ JEH71T£[~DtèµTDÔ¢Gµë?-$ž ™òæeŸ¹xj+”D4tbŸH HEOÒ¤Ì-ti)U¹ñÔé‘`ªª'ßÔÞ›l|3 ãNýµ(ÐSªØ€«Ÿèn:cJ Ï h5Sªá--XÏ™Oš·EDï¾î1[>.™lâिöc"ÞR]KY ;½ä¬8$_*·#‘õ$ºtØÃÍ<Ç‹›Fž6%úEÏ¥ àÍ4 Ä&ñÃN{&<¯§Ø” =êa-ïÒ·Eôñ9¶®¨£þØ”~1fëŽåu:æ/Htôô6nß¹ŒË,Ü›|Ü_é}«÷龞¥™\<ör”eš461 &â™CsÞäfj«¤/u–2kî¼ôÖ’xrH•K8ÑÛ7âÎ3¡@|ܱÁ vò`úv1•Äv{¤tçÿfíw½qÆ ˆñ(±pËš¦ÄQmÚ™c™°¦»á¦Ÿ¢íJµ$e$)«kÒëGéøŒŒH5)OîÈ{Bòù™lûøÍÈõèÀ;f(æ6ð¶²~±YI2ŠH؃AÓ?UþËxÿ{;ôÝM?@ÌK+AIB³/³‘‚iô@E^ãCe ŒO¬Ë²c£c‘ùw0Éq,ŒG´ýCMÉuÄ \úäGs°óN‚œ¾8ÞÙ˪]I%3{!u}¤ùB܉lÂä±q`s–ÿÈQ¬÷Ë7–)sÕ«Z¹Ý3‹ÑÀ¦ðàoòl‰¥ä:U5(_&[§MYŽrŽH‚‘ê΢ÐòÄyæÌOAØlåÓÇ/ÄRÅü)R {Kå4VDu›Šš²Ô™k0>†h«¥Û5[ ¡‚…9i “Qûp¢æŒÃ/ËUËŸ<"T®ãâÊÝäü Û¯B~úVjH™·„ bUÛHq L¥w£"áVöVέuŸKì®K;±ÜdÂÜ ,äÐYØ=ºÖÜF¡<$}?Ý24~®d¨ ÝP%j¤pæ.\&)R1F²ÛŒæl‘ñIeZ<"ìp!–¦ÕÐÆÿE€U„+yv:*Æ´–‰=1Peyü´ v²ª¥BÇ¢Lh’(3vñ2°ˆÅ( ev`ú›¿yäõ{BæâKJ¦]Ò‘ÇÄXjÚyþ?‘jÊçÈdºÍ¤T´ßhHú•áOCWËØrû§¤TuÓ2CN‘b°qÇÁ$Ü"?/¹Uj[¤Í·5HÛ$ìH´E[Kâ"LH°1a úP‘ÔÓ1 Á ŒY´묲úÓ%Õþ‘a³œM€¨Sæ,§1(m˜Œ4ÈA1,ÆI²U"¢?¦®ß$Mï’†%a61ƒñAT ÎXÂ4cNx [£ŠS¨~ô§IW'+Ÿ4b™ÒÐxž&õ =)‡i|"ú #`!¾u«ÌKºæ†ºž4ic%÷ ¤„º=—LŽˆ×(©=¹¦pqÇ|îì¨PSme‘|Qð6Å‹—ËWM£óÝïZí’ŽC9¬ò1U¦6H@ UÀi*ò§KÊáÒVDæøœ‘jÚàt<`Þ?˜É }i§#w.&ÓLy#NÞC=Ägrz©ÃNAÊÑyAïÜ02r:3ÇS¤J*.õ²(v›ƒg½¯—ÎÖ5ªÌ2‡Áã¢Æì†Á »ðñèÒÂÅÅÅÇàƒQy M= VI8))Šêx6b¢ËP9ùù4›YjŠm`ð”y¢w½Î21.:u̱ƒ9ì"e¿g¤¨Xc†ìfÿ–¿ Înö]PI1¹ƒôYg…7iÓ£G—Ùäs®l~†M÷tY¦^ïpÅã‘pr~µ¼M{ÊïÛ1Ùæ °(†1‡º‹­xyè2Å<Ýb@ñŠõÕÖw:$Ab’’2‡A€A™’˜ô©ˆUÌ0Kƒ&ÿ–‡Æ^paIƒì¡Ë2«¼Êy:téàë}@ßÂÑ ßH‡%»ÿ†qÚ´£O’u>*:gìï¿`‹¢!‘”pñÇÀöèѦLµ¨7jŠöÞTõ˜˜H~³òè`oãúB `ëL±A I¤†n¾e*Ô™¦Žà'ü;þ·r'ûFÝ*,–¸•:k,sž—8I›6-z$ì¾—·É×Ú¯Û’xýÐ|‡û¨SRï.Íw™¯…þ˜4J,JEj%£ÊhQÆ@"Ðh°¨H :ëÕ/¶ÿap½©d™ÓÙá îc:6’€ä[íIJ”)ãr˜¯óeŽ2Å~îâ6l2§QÃaž=Ìpš&§y‘4iÑ¢CˆÃotÞ¢I' _Ò‡{p”£ŽL>'¦Ti»8³=ö-ÞKÆx9W£D€?1fã­ÊÔ ¨5$ tpÖ•ßï=t}[‘bÒ ÍYÖ¹‹;˜¢„TÕÖR­s’c<Ã9ŽÎ^öq€›pèØÔ˜cž*+´iqŒ×9G‹MZxH~±ÿ;vçNœÚ‰ÎÑšF¸öü|“»ü¿a楀Z×ßÍáÐ3ô"𖘔ˆ‹”S6¨ESq|òtvÐ/*}óÿôovg®3Uc†!.«|“Ç)©©;—Þ-`s¬âa±“]à6vPÆ¢L• 6³ôé³ÌNÒ¢C›M\à¡ÁÿЛ]Üüýûƒg´ÀtZ‡¬#ŽL>-Æsì~ÛkÝÖýÉôˆ¶’"± ÇäZC£ÇÓE@žñŸf”^Ϭü«•?ký®qùž/oY,!0X¥©¨o—Î ¤$LSc†=ÜÍ=,a*g Â¥…‡Ç5Nqš¦jmÓÂ'åÁèO’Ûç6¿qbÿ™áÚœt:O/µ¹¯ý)kôÜ1¨5ãýÚ›~·`R tœ±dxˆ†KƒJ1÷4Db2§Tˆ _¯ÝÜþÅ)®³‡íp ViÒ'&6q©%±©2Å.îå &=EòÌÂMŸ>k,³F}zôèÐ%@òîþŸD×·ÐPÑ+­Ã3BÈÕ§ovøw£ÙÆè—Vd©úPëÛf,G'%1‰qa ìML4¬"Ñ£á°HP|U_ÿÓÊ÷Òõ¦àèÌÐ ÜVa5ÿV&& îe7=NÒ¡Ë€!=ºjlhÖQܧG—!16¿Ðÿç½;f·:9Ѷvç ý…†Ë';Ÿ¨ŒÿIƒ­ýlùðàxáÆdùi‹„ ÐØš¸§3SPÌbb$–ˆ‹ì_ÛþWí|îàUô-nwe#/od‘ó¬±ÌIVpUì÷>d-Cz HYŠ~£û÷ô¹Å­€>wöÉŠ[2½õî÷v¬r“÷Lg«Ñ+çç:ÿÁZÐYØV7g¶Ä§ƒ†¤¦ #4ª,‘°¬"ɳýѹ›oØ›Éòæ¸Ì3Ç9V8Éˬà©yÂQ1VÔÃc ìO%ùÀðï÷>X5¶ˆI–Ï>îtzµžœ{K7¢¿ëÞuA?ÐEnè­åG:‘} lOÉn.ÙmP/Z8² Qe Á2}@rjö_¬ý£s·\W°%Ö&}‹±ê¾øBÌÑæ,çù gè©q#¨3™H©¦ô?ßû”5½°åwH–Ï~ÇiÏh©¶þ½Ò!ÛçSÝÏ]Ä­¿j¡ |ª{¨‘ªè:U­f9f9Wý¶‚ŽYÈ»F•H–é"89û/ÖþAûöéë³ ÁnæÐ6ì[Ìrì5Pep8ÃÇX¡E‹!ÙÖ¯£m%"LöÄ{Ÿ >ÍͲu@–ž]yÂiψÔè<_z¶ÚãÎÁk”/rv7®ûQ¥»\Ë~™b¶IBH–%‰ "BJLE)˜ ;ÐX¡‹ æôìŸø¿Ù|°zí‡êÜÄAJ›ô-¦jÿŽ †ô ¸Mz¬Ò¦É-Ú€IJHLŠ“îŒo÷Þç~HÜQrê—º#Óðxû¯ëG`u^NŸ¬6™õþ©{óÌFç»ÁZ¨}ºóïƒrªôuª²#‡9™±,£cª„$”X@G§‹œ·þUüŸµ>^ÛÞ”›í.[¸ƒPå&6ê[Ìk£&t5Ä>—ý.„*ˆ0X N³ÜÝÞ®íåÛ _îÿ¸â9Û{ƒ'+˜Á >ºáXŽSâöò£ƒ¿ˆç‹e">ÞúŸÌÚ¦jr‹œ£QyÔÂ}‰dJ¬Ld¾£DZtdÛ'…dÃ/›—SÅÀ¡Ãžõ%ãÅÖ¯¸w5´«šR­ã°Ê ç8M›õ¢oqü fÃ+ò®†˜–8Á)3˜è˜t˜b‘Ž¢¨g÷cLOµ~¸öýàÞæCÆüÔFª$‰NvŸ7—ë‰Ì¼´§økéÏ{ÿ²ÛýïìÙK™Ú†Î4*Ÿ(U›_´•ñdó ˜RBÌÂdĄؘ˜$^A~O1‘è”ð𠵕Æ«ßッ÷n9o‹Ë,åÔû|:=½ep°1¡¬kðñáÑΗìç+‘ ÑðéRf‰§XÆ`€eŽó»¸•[˜aš.mzô‘.à°ù$FÏÓ^Óz BË;½Z<ÅaúxØÑo4ª²MûgÿìÒO’â&}©w,êY‰íyî/U=¡~JT’>kh˜líª"£Fôì×­‡k^iX+ƒ7jƒS8ü„“4XܰaÓÀ¤Kˆ«f<ºhé£ý[&»ñBš³¥ûÝ89aÄBWp¦9Ç)ªŠ5âsŽÃ¼Æ93LayL!+ú)ËsB;³-: oð$Çà15ø'ÞïVœm Ê6=aÞ7;Óú¿;¯Õ‘¨RWR4LfÃHbµu ªÿÀTSù}ü"¾Ì³(VF%êwÒ§ü›ûÓ×cƒQ™úlw¾[ODLÄKìçEšT™e?34iÒf@Ÿ—x•ÜÃv ª9#1G´ii™8Fˆƒýê~¸±Ý”Ãö.¹{æwܯ¬?Y ­„ ]}x¾›[¾dfˆò†3 I h:y%ßD2""‘ýŠ]£~eVòË1?Ýk _*§Ä ñØÏ1:4©a1Ë»Ðb6=–yŒC<ÀNJ´TÖÒåM”èr˜×YËD'ù…îk·Ìl3²¼,¨šó9öuÿÂY-K‘ék|¯Ð¤ð·CÅtÊ'âd[ØXhhÅn‹˜è:òtÓ¿Ü9´Ì”Kìãyú 0h”(1͵S›p‹8xª‹þ'Hyeå¥4Üßþf¹vYYË %tç}ÖMë>|i*42óm—b%á9ܺŸª0^Cªƒ˜M ‰ê–Ìê9×m‰›í÷v¾9—º>öqœͱ)"eJÌÒc•5\ÎS¦Ž§šS<^f@›€€$¹·óGÞfåeÊÆå?¹gî ƒ'Ö¾ViV¤ˆ ™J¡ä?çpgUõ îÑn:n3|) ØUbm? Ï !}šìäfž§Cc"}—¥Éj̱F“5öP-FË„¤øxԽ϶¿`/,^¾]¹"QrÊŸ°îl%úq%0´"ý4:ŒÕ|rC…¾#¼ÄDg|àVÂUòàÓ-'fäÝá9#4zôÙË[thR¹hØŠÁ4:!ZÔÕÞ¡Q–ŒMü=÷}SÚ›¯ô®ÕošýïÙÁWµ“•XhJ¦GûËêÅ¿²Ú†¦Èî£VøT±£‚íoÚHé•Ð2["õåPRt—c#X õ°Ú[ñëýp­¬á£ЧÍ.nå:t±.PA…i\Ö©P+v{âì›»R?é*¤i?bÞá=¶òÝêš#DªÒ§ºÒÇrLº³ÎƒÑv®Zw>/*%%¸ ¨cùÄÜ “¦R¨®áT'~-©ž,&!°ˆôé±›c4iRÙÀwט¢Ï:k,R.¶u[Õ_”ûâ+Åìêl‘œ*}ÆüYÿkk?*õJYx"£Í|G2.ˆŠn°|'ü d|FÕ-_¶I,i¡ m6¶[XÐ¥T4bHBÈ€»9ÀStènX¶™Á¥GšÚ= Â_)=ÐÛs…cu¯Úì }—þ›ú‡Ú_ï>Wï9šß1||CëqøFÛEêjÁÕ»7°Ç Bå×£­…³Ž¡Øâ;™g…U.Î j4ðXc7ÕB®[_ñ~w¨_ñšxXÒºua¿w´óÍÎOêmG\w¾IõäNʹ?2¾­Þ•Kµ LCQÇÛX3 ÏV T(Ñ'!b@›*·±J‡Î†ƒö ¦ЦCa.×<^yOçAëJÜ¥kæÌjömö-ÞÉàÉöSÆj9“’=róFR~ño®Fª-JŠä˜›ÅQ^qtA,fñ—¥O—E9K‹ñiJL1d²2Ž!ëÚ—¬ÛÜZe;çt ÎàÞgï ÁÿQëûÚ‰²§ Æwï Ó xG—äê¢Å|êØ“d2OߣW´º´¨p+téàl ¨ z¬²ÌNʪù;âùÒã­OF—Ü5Ñ„±`ürüÑà•Á÷“—u3Ú„ÆÌ!çø³ýY®âs‹™¹ÚÈ3b˜[lèfÓk¤šg''iRe£9Ð6S èӥЧ‚.W|µü®ÞîË6Ž×'ÖÊÎCλ‚åè¹æÓÆ1§kB^u¾}UÖHÄU@2¤S° c5D"P“ZGÓcb˜””\gúú]Ú”6CÐÀ#eH]ǘˆcÖ_z¿íê—ÉɼމÍÜi>j<<þÄû±vÜèê‰ÌÕGØW¡«SΩ.³d¬t;ú;ÿM¬˜‡7‘md? Ë »9F›ú†¸sø¬Ó¥ŠKHˆ‰Ëw*ïé¾Ëº<.âõÞ_YZÖ-Ö-é/E§½—º/;G´–Ȭ6' ùÎ~ºòžiABñ¹&ã»gŒ@Ï*³$ÄJ_à,]Z”7„äB»0ޙӷ¦}É<0¬^–q¼1[Y ۸Ÿ¥òh¼éŠŽØ§¾HÔL™Lª¯Úýٲݜ®Öd9*;vI7¶ÞÖN3鼬·ì˜€v°—èPgfÓ(3…KS¥UóLß—Œ[ÝÊ6I¿“[]EbOOßßý„üðÂ}¥ýöÂTE×­KSw÷”îí öÕëÒg? ú471ÏSÔˆY§¤šdM$Ï–žô/9îE­wÔWµ._õÈÒûìù0ãc èâ°Ÿ„.ÝMü{›iºxÔp°00ʯ”Îö·ùyo7Doã;Ë?ã UÿéÒc/3 XßdÖof%k˜T°01Ð9bÿ'»Ûù¸ÿ?CÐv r}mq3éû¨›LSÆ¥£äÚÄ$á±òË›m6±~  Þ|—Ä«_óå»2ÍäºG‡=Ì3Üb·é2Ó˜4I©a+öÖ²þEc° ¹~'x ›,Iƒúð®Ù ûaãï„2 C[Y¥GÈÌ&Nþ &ÇXW»ßfžÈ³¥ïµáR{½s¡N±¹•{7„Ú@²Îàš|ÎôÔÏϤ‘„ôé°“EÖ(³Ò†wä/ñ"žJ«FÄ ä—K÷uw\"­ú…:ÁâN0d£;SPá&<Ö¯ÅGi÷§O÷U³ân›*·’â°¼é}cq;9AOÍG9lÿÕà7†rËšã;ê” ìÀãô&Ï4¨]#%RwY=]e&×mªìÂãԯШ°¤¦+„„x|«öžÖ[îûŽ„z“œ¹dd ^%¡A-ã>ë™þëµlç£U\šÛˆJ¤êå´Táá¼ñEsßÙbKÏw Ôm^ã$þ6ž™_¼úU™ú@ÿDâI‰Ï€e¶å&+~–†IDÌj?XýXisDßqPw9Í™M­É•Ó×®zÉ;ô[{‡ê –Y¿,î P“¬LúòË•{Ûó³›=óuJŸcœa[ÙMœp…9ª‰åØïk½YîëMNnó2/M Êx½üWî¯ojßAP§t9Äq5)j;KG'"½,)ÜdɃµÛ½ïT޳rEï&Ðq(ñµÚ{܃›\ûwÔzǺÜ“d[‚*‰µP¤XT±¯²“ƪ~°ûrÐ1¯|«j‰‰4Ÿëðå†Ý"½vQîU.°f†FJ¯9èn¶Dº ‘ `÷¹Ó—ìÜzÅÞjê]åîë‚Ò`Öܸéÿ‚[Ú¡|—l %tEXtdate:create2010-10-13T15:42:15+02:00±ç P%tEXtdate:modify2010-10-13T15:42:15+02:00ÀºµìIEND®B`‚HSAUR3/vignettes/Ch_logistic_regression_glm.Rnw0000644000176200001440000011117014416236367021262 0ustar liggesusers \documentclass{chapman} %%% copy Sweave.sty definitions %%% keeps `sweave' from adding `\usepackage{Sweave}': DO NOT REMOVE %\usepackage{Sweave} \RequirePackage[T1]{fontenc} \RequirePackage{graphicx,ae,fancyvrb} \IfFileExists{upquote.sty}{\RequirePackage{upquote}}{} \usepackage{relsize} \DefineVerbatimEnvironment{Sinput}{Verbatim}{} \DefineVerbatimEnvironment{Soutput}{Verbatim}{fontfamily=courier, fontshape=it, fontsize=\relsize{-1}} \DefineVerbatimEnvironment{Scode}{Verbatim}{} \newenvironment{Schunk}{}{} %%% environment for raw output \newcommand{\SchunkRaw}{\renewenvironment{Schunk}{}{} \DefineVerbatimEnvironment{Soutput}{Verbatim}{fontfamily=courier, fontshape=it, fontsize=\small} \rawSinput } %%% environment for labeled output \newcommand{\nextcaption}{} \newcommand{\SchunkLabel}{ \renewenvironment{Schunk}{\begin{figure}[ht] }{\caption{\nextcaption} \end{figure} } \DefineVerbatimEnvironment{Sinput}{Verbatim}{frame = topline} \DefineVerbatimEnvironment{Soutput}{Verbatim}{frame = bottomline, samepage = true, fontfamily=courier, fontshape=it, fontsize=\relsize{-1}} } %%% S code with line numbers \DefineVerbatimEnvironment{Sinput} {Verbatim} { %% numbers=left } \newcommand{\numberSinput}{ \DefineVerbatimEnvironment{Sinput}{Verbatim}{numbers=left} } \newcommand{\rawSinput}{ \DefineVerbatimEnvironment{Sinput}{Verbatim}{} } %%% R / System symbols \newcommand{\R}{\textsf{R}} \newcommand{\rR}{{R}} \renewcommand{\S}{\textsf{S}} \newcommand{\SPLUS}{\textsf{S-PLUS}} \newcommand{\rSPLUS}{{S-PLUS}} \newcommand{\SPSS}{\textsf{SPSS}} \newcommand{\EXCEL}{\textsf{Excel}} \newcommand{\ACCESS}{\textsf{Access}} \newcommand{\SQL}{\textsf{SQL}} %%\newcommand{\Rpackage}[1]{\hbox{\rm\textit{#1}}} %%\newcommand{\Robject}[1]{\hbox{\rm\texttt{#1}}} %%\newcommand{\Rclass}[1]{\hbox{\rm\textit{#1}}} %%\newcommand{\Rcmd}[1]{\hbox{\rm\texttt{#1}}} \newcommand{\Rpackage}[1]{\index{#1 package@{\fontseries{b}\selectfont #1} package} {\fontseries{b}\selectfont #1}} \newcommand{\rpackage}[1]{{\fontseries{b}\selectfont #1}} \newcommand{\Robject}[1]{\texttt{#1}} \newcommand{\Rclass}[1]{\index{#1 class@\textit{#1} class}\textit{#1}} \newcommand{\Rcmd}[1]{\index{#1 function@\texttt{#1} function}\texttt{#1}} \newcommand{\Roperator}[1]{\texttt{#1}} \newcommand{\Rarg}[1]{\texttt{#1}} \newcommand{\Rlevel}[1]{\texttt{#1}} %%% other symbols \newcommand{\file}[1]{\hbox{\rm\texttt{#1}}} %%\newcommand{\stress}[1]{\index{#1}\textit{#1}} \newcommand{\stress}[1]{\textit{#1}} \newcommand{\booktitle}[1]{\textit{#1}} %%' %%% Math symbols \usepackage{amstext} \usepackage{amsmath} \newcommand{\E}{\mathsf{E}} \newcommand{\Var}{\mathsf{Var}} \newcommand{\Cov}{\mathsf{Cov}} \newcommand{\Cor}{\mathsf{Cor}} \newcommand{\x}{\mathbf{x}} \newcommand{\y}{\mathbf{y}} \renewcommand{\a}{\mathbf{a}} \newcommand{\W}{\mathbf{W}} \newcommand{\C}{\mathbf{C}} \renewcommand{\H}{\mathbf{H}} \newcommand{\X}{\mathbf{X}} \newcommand{\B}{\mathbf{B}} \newcommand{\V}{\mathbf{V}} \newcommand{\I}{\mathbf{I}} \newcommand{\D}{\mathbf{D}} \newcommand{\bS}{\mathbf{S}} \newcommand{\N}{\mathcal{N}} \renewcommand{\L}{L} \renewcommand{\P}{\mathsf{P}} \newcommand{\K}{\mathbf{K}} \newcommand{\m}{\mathbf{m}} \newcommand{\argmin}{\operatorname{argmin}\displaylimits} \newcommand{\argmax}{\operatorname{argmax}\displaylimits} \newcommand{\bx}{\mathbf{x}} \newcommand{\bbeta}{\mathbf{\beta}} %%% links \usepackage{hyperref} \hypersetup{% pdftitle = {A Handbook of Statistical Analyses Using R (3rd Edition)}, pdfsubject = {Book}, pdfauthor = {Torsten Hothorn and Brian S. Everitt}, colorlinks = {black}, linkcolor = {black}, citecolor = {black}, urlcolor = {black}, hyperindex = {true}, linktocpage = {true}, } %%% captions & tables %% : conflics with figure definition in chapman.cls %%\usepackage[format=hang,margin=10pt,labelfont=bf]{caption} %% \usepackage{longtable} \usepackage[figuresright]{rotating} %%% R symbol in chapter 1 \usepackage{wrapfig} %%% Bibliography \usepackage[round,comma]{natbib} \renewcommand{\refname}{References \addcontentsline{toc}{chapter}{References}} \citeindexfalse %%% texi2dvi complains that \newblock is undefined, hm... \def\newblock{\hskip .11em plus .33em minus .07em} %%% Example sections \newcounter{exercise}[chapter] \setcounter{exercise}{0} \newcommand{\exercise}{\stepcounter{exercise} \item{Ex.~\arabic{chapter}.\arabic{exercise} }} %% URLs \newcommand{\curl}[1]{\begin{center} \url{#1} \end{center}} %%% for manual corrections %\renewcommand{\baselinestretch}{2} %%% plot sizes \setkeys{Gin}{width=0.95\textwidth} %%% color \usepackage{color} %%% hyphenations \hyphenation{drop-out} \hyphenation{mar-gi-nal} %%% new bidirectional quotes need \usepackage[utf8]{inputenc} %\usepackage{setspace} \definecolor{sidebox_todo}{rgb}{1,1,0.2} \newcommand{\todo}[1]{ \hspace{0pt}% \marginpar{% \fcolorbox{black}{sidebox_todo}{% \parbox{\marginparwidth} { \raggedright\sffamily\footnotesize{TODO: #1}% } }% } } \begin{document} %% Title page \title{A Handbook of Statistical Analyses Using \R{} --- 3rd Edition} \author{Torsten Hothorn and Brian S. Everitt} \maketitle %%\VignetteIndexEntry{Chapter Logistic Regression and Generalized Linear Models} %%\VignetteDepends{survival,MASS,multcomp,lattice} \setcounter{chapter}{6} \SweaveOpts{prefix.string=figures/HSAUR,eps=FALSE,keep.source=TRUE} <>= rm(list = ls()) s <- search()[-1] s <- s[-match(c("package:base", "package:stats", "package:graphics", "package:grDevices", "package:utils", "package:datasets", "package:methods", "Autoloads"), s)] if (length(s) > 0) sapply(s, detach, character.only = TRUE) if (!file.exists("tables")) dir.create("tables") if (!file.exists("figures")) dir.create("figures") set.seed(290875) options(prompt = "R> ", continue = "+ ", width = 63, # digits = 4, show.signif.stars = FALSE, SweaveHooks = list(leftpar = function() par(mai = par("mai") * c(1, 1.05, 1, 1)), bigleftpar = function() par(mai = par("mai") * c(1, 1.7, 1, 1)))) HSAURpkg <- require("HSAUR3") if (!HSAURpkg) stop("cannot load package ", sQuote("HSAUR3")) rm(HSAURpkg) ### hm, R-2.4.0 --vanilla seems to need this a <- Sys.setlocale("LC_ALL", "C") ### book <- TRUE refs <- cbind(c("AItR", "DAGD", "SI", "CI", "ANOVA", "MLR", "GLM", "DE", "RP", "GAM", "SA", "ALDI", "ALDII", "SIMC", "MA", "PCA", "MDS", "CA"), 1:18) ch <- function(x) { ch <- refs[which(refs[,1] == x),] if (book) { return(paste("Chapter~\\\\ref{", ch[1], "}", sep = "")) } else { return(paste("Chapter~", ch[2], sep = "")) } } if (file.exists("deparse.R")) source("deparse.R") setHook(packageEvent("lattice", "attach"), function(...) { lattice.options(default.theme = function() standard.theme("pdf", color = FALSE)) }) @ \pagestyle{headings} <>= book <- FALSE @ \chapter[Logistic Regression and Generalized Linear Models]{Logistic Regression and Generalized Linear Models: Blood Screening, Women's Role in %' Society, Colonic Polyps, Driving and Back Pain, and Happiness in China \label{GLM}} \section{Introduction} \section{Logistic Regression and Generalized Linear Models} \section{Analysis Using \R{}} \subsection{ESR and Plasma Proteins} \begin{figure} \begin{center} <>= data("plasma", package = "HSAUR3") layout(matrix(1:2, ncol = 2)) cdplot(ESR ~ fibrinogen, data = plasma) cdplot(ESR ~ globulin, data = plasma) @ \caption{Conditional density plots of the erythrocyte sedimentation rate (ESR) given fibrinogen and globulin. \label{GLM:plasma1}} \end{center} \end{figure} We can now fit a logistic regression model to the data using the \Rcmd{glm} function. We start with a model that includes only a single explanatory variable, \Robject{fibrinogen}. The code to fit the model is <>= plasma_glm_1 <- glm(ESR ~ fibrinogen, data = plasma, family = binomial()) @ The formula implicitly defines a parameter for the global mean (the intercept term) as discussed in \Sexpr{ch("ANOVA")} and \Sexpr{ch("MLR")}. The distribution of the response is defined by the \Robject{family} argument, a binomial distribution in our case. \index{family argument@\Rcmd{family} argument} \index{Binomial distribution} (The default link function when the binomial family is requested is the logistic function.) \renewcommand{\nextcaption}{\R{} output of the \Robject{summary} method for the logistic regression model fitted to ESR and fibrigonen. \label{GLM-plasma-summary-1}} \SchunkLabel <>= summary(plasma_glm_1) @ \SchunkRaw From the results in Figure~\ref{GLM-plasma-summary-1} we see that the regression coefficient for fibrinogen is significant at the $5\%$ level. An increase of one unit in this variable increases the log-odds in favor of an ESR value greater than $20$ by an estimated $\Sexpr{round(coef(plasma_glm_1)["fibrinogen"], 2)}$ with 95\% confidence interval <>= ci <- confint(plasma_glm_1)["fibrinogen",] @ <>= confint(plasma_glm_1, parm = "fibrinogen") @ <>= print(ci) @ These values are more helpful if converted to the corresponding values for the odds themselves by exponentiating the estimate <>= exp(coef(plasma_glm_1)["fibrinogen"]) @ and the confidence interval <>= ci <- exp(confint(plasma_glm_1, parm = "fibrinogen")) @ <>= exp(confint(plasma_glm_1, parm = "fibrinogen")) @ <>= print(ci) @ The confidence interval is very wide because there are few observations overall and very few where the ESR value is greater than $20$. Nevertheless it seems likely that increased values of fibrinogen lead to a greater probability of an ESR value greater than $20$. We can now fit a logistic regression model that includes both explanatory variables using the code <>= plasma_glm_2 <- glm(ESR ~ fibrinogen + globulin, data = plasma, family = binomial()) @ and the output of the \Rcmd{summary} method is shown in Figure \ref{GLM-plasma-summary-2}. \renewcommand{\nextcaption}{\R{} output of the \Robject{summary} method for the logistic regression model fitted to ESR and both globulin and fibrinogen. \label{GLM-plasma-summary-2}} \SchunkLabel <>= summary(plasma_glm_2) @ \SchunkRaw <>= plasma_anova <- anova(plasma_glm_1, plasma_glm_2, test = "Chisq") @ The coefficient for gamma globulin is not significantly different from zero. Subtracting the residual deviance of the second model from the corresponding value for the first model we get a value of $\Sexpr{round(plasma_anova$Deviance[2], 2)}$. Tested using a $\chi^2$-distribution with a single degree of freedom this is not significant at the 5\% level and so we conclude that gamma globulin is not associated with ESR level. In \R{}, the task of comparing the two nested models can be performed using the \Rcmd{anova} function <>= anova(plasma_glm_1, plasma_glm_2, test = "Chisq") @ Nevertheless we shall use the predicted values from the second model and plot them against the values of \stress{both} explanatory variables using a \stress{bubbleplot} to illustrate the use of the \Rcmd{symbols} function. \index{Bubbleplot} The estimated conditional probability of a ESR value larger $20$ for all observations can be computed, following formula (\ref{GLM:logitexp}), by <>= prob <- predict(plasma_glm_2, type = "response") @ and now we can assign a larger circle to observations with larger probability as shown in Figure~\ref{GLM:bubble}. The plot clearly shows the increasing probability of an ESR value above $20$ (larger circles) as the values of fibrinogen, and to a lesser extent, gamma globulin, increase. \begin{figure} \begin{center} <>= plot(globulin ~ fibrinogen, data = plasma, xlim = c(2, 6), ylim = c(25, 55), pch = ".") symbols(plasma$fibrinogen, plasma$globulin, circles = prob, add = TRUE) @ \caption{Bubbleplot of fitted values for a logistic regression model fitted to the \Robject{plasma} data. \label{GLM:bubble}} \end{center} \end{figure} \subsection{Women's Role in Society} %' Originally the data in Table~\ref{GLM-womensrole-tab} would have been in a completely equivalent form to the data in Table~\ref{GLM-plasma-tab} data, but here the individual observations have been grouped into counts of numbers of agreements and disagreements for the two explanatory variables, \Robject{gender} and \Robject{education}. To fit a logistic regression model to such grouped data using the \Rcmd{glm} function we need to specify the number of agreements and disagreements as a two-column matrix on the left-hand side of the model formula. We first fit a model that includes the two explanatory variables using the code <>= data("womensrole", package = "HSAUR3") fm1 <- cbind(agree, disagree) ~ gender + education womensrole_glm_1 <- glm(fm1, data = womensrole, family = binomial()) @ \renewcommand{\nextcaption}{\R{} output of the \Robject{summary} method for the logistic regression model fitted to the \Robject{womensrole} data. \label{GLM-womensrole-summary-1}} \SchunkLabel <>= summary(womensrole_glm_1) @ \SchunkRaw From the \Rcmd{summary} output in Figure~\ref{GLM-womensrole-summary-1} it appears that education has a highly significant part to play in predicting whether a respondent will agree with the statement read to them, but the respondent's %' gender is apparently unimportant. As years of education increase the probability of agreeing with the statement declines. We now are going to construct a plot comparing the observed proportions of agreeing with those fitted by our fitted model. Because we will reuse this plot for another fitted object later on, we define a function which plots years of education against some fitted probabilities, e.g., <>= role.fitted1 <- predict(womensrole_glm_1, type = "response") @ and labels each observation with the person's gender: %%' \numberSinput <>= myplot <- function(role.fitted) { f <- womensrole$gender == "Female" plot(womensrole$education, role.fitted, type = "n", ylab = "Probability of agreeing", xlab = "Education", ylim = c(0,1)) lines(womensrole$education[!f], role.fitted[!f], lty = 1) lines(womensrole$education[f], role.fitted[f], lty = 2) lgtxt <- c("Fitted (Males)", "Fitted (Females)") legend("topright", lgtxt, lty = 1:2, bty = "n") y <- womensrole$agree / (womensrole$agree + womensrole$disagree) size <- womensrole$agree + womensrole$disagree size <- size - min(size) size <- (size / max(size)) * 3 + 1 text(womensrole$education, y, ifelse(f, "\\VE", "\\MA"), family = "HersheySerif", cex = size) } @ \rawSinput \begin{figure} \begin{center} <>= myplot(role.fitted1) @ \caption{Fitted (from \Robject{womensrole\_glm\_1}) and observed probabilities of agreeing for the \Robject{womensrole} data. The size of the symbols is proportional to the sample size. \label{GLM-role1plot}} \end{center} \end{figure} In lines 3--5 of function \Rcmd{myplot}, an empty scatterplot of education and fitted probabilities (\Rcmd{type = "n"}) is set up, basically to set the scene for the following plotting actions. Then, two lines are drawn (using function \Rcmd{lines} in lines 6 and 7), one for males (with line type 1) and one for females (with line type 2, i.e., a dashed line), where the logical vector \Robject{f} describes both genders. In line 9 a legend is added. Finally, in lines 12 onwards we plot `observed' values, i.e., the frequencies of agreeing in each of the groups (\Robject{y} as computed in lines 10 and 11) and use the Venus and Mars symbols to indicate gender. The size of the plotted symbol is proportional to the numbers of observations in the corresponding group of gender and years of education. The two curves for males and females in Figure~\ref{GLM-role1plot} are almost the same reflecting the non-significant value of the regression coefficient for gender in \Robject{womensrole\_glm\_1}. But the observed values plotted on Figure~\ref{GLM-role1plot} suggest that there might be an interaction of education and gender, a possibility that can be investigated by applying a further logistic regression model using \index{Interaction} <>= fm2 <- cbind(agree,disagree) ~ gender * education womensrole_glm_2 <- glm(fm2, data = womensrole, family = binomial()) @ The \Robject{gender} and \Robject{education} interaction term is seen to be highly significant, as can be seen from the \Rcmd{summary} output in Figure~\ref{GLM-womensrole-summary-2}. \renewcommand{\nextcaption}{\R{} output of the \Robject{summary} method for the logistic regression model fitted to the \Robject{womensrole} data. \label{GLM-womensrole-summary-2}} \SchunkLabel <>= summary(womensrole_glm_2) @ \SchunkRaw \begin{figure} \begin{center} <>= role.fitted2 <- predict(womensrole_glm_2, type = "response") myplot(role.fitted2) @ \caption{Fitted (from \Robject{womensrole\_glm\_2}) and observed probabilities of agreeing for the \Robject{womensrole} data. \label{GLM-role2plot}} \end{center} \end{figure} We can obtain a plot of deviance residuals plotted against fitted values using the following code above Figure~\ref{GLM:devplot}. \begin{figure} \begin{center} <>= res <- residuals(womensrole_glm_2, type = "deviance") plot(predict(womensrole_glm_2), res, xlab="Fitted values", ylab = "Residuals", ylim = max(abs(res)) * c(-1,1)) abline(h = 0, lty = 2) @ \caption{Plot of deviance residuals from logistic regression model fitted to the \Robject{womensrole} data. \label{GLM:devplot}} \end{center} \end{figure} The residuals fall into a horizontal band between $-2$ and $2$. This pattern does not suggest a poor fit for any particular observation or subset of observations. \subsection{Colonic Polyps} The data on colonic polyps in Table~\ref{GLM-polyps-tab} involves \stress{count} data. We could try to model this using multiple regression but there are two problems. The first is that a response that is a count can take only positive values, and secondly such a variable is unlikely to have a normal distribution. Instead we will apply a GLM with a log link function, ensuring that fitted values are positive, and a Poisson error distribution, i.e., \index{Poisson error distribution} \index{Poisson regression} \begin{eqnarray*} \P(y) = \frac{e^{-\lambda}\lambda^y}{y!}. \end{eqnarray*} This type of GLM is often known as \stress{Poisson regression}. We can apply the model using <>= data("polyps", package = "HSAUR3") polyps_glm_1 <- glm(number ~ treat + age, data = polyps, family = poisson()) @ (The default link function when the Poisson family is requested is the log function.) \renewcommand{\nextcaption}{\R{} output of the \Robject{summary} method for the Poisson regression model fitted to the \Robject{polyps} data. \label{GLM-polyps-summary-1}} \SchunkLabel <>= summary(polyps_glm_1) @ \SchunkRaw We can deal with overdispersion by using a procedure known as \stress{quasi-likelihood}, \index{Quasi-likelihood} which allows the estimation of model parameters without fully knowing the error distribution of the response variable. \cite{HSAUR:McCullaghNelder1989} give full details of the quasi-likelihood approach. In many respects it simply allows for the estimation of $\phi$ from the data rather than defining it to be unity for the binomial and Poisson distributions. We can apply quasi-likelihood estimation to the colonic polyps data using the following \R{} code <>= polyps_glm_2 <- glm(number ~ treat + age, data = polyps, family = quasipoisson()) summary(polyps_glm_2) @ The regression coefficients for both explanatory variables remain significant but their estimated standard errors are now much greater than the values given in Figure~\ref{GLM-polyps-summary-1}. A possible reason for overdispersion in these data is that polyps do not occur independently of one another, but instead may `cluster' together. %' \index{Overdispersion|)} \subsection{Driving and Back Pain} A frequently used design in medicine is the matched case-control study in which each patient suffering from a particular condition of interest included in the study is matched to one or more people without the condition. The most commonly used matching variables are age, ethnic group, mental status, etc. A design with $m$ controls per case is known as a $1:m$ matched study. In many cases $m$ will be one, and it is the $1:1$ matched study that we shall concentrate on here where we analyze the data on low back pain given in Table~\ref{GLM-backpain-tab}. To begin we shall describe the form of the logistic model appropriate for case-control studies in the simplest case where there is only one binary explanatory variable. With matched pairs data the form of the logistic model involves the probability, $\varphi$, that in matched pair number $i$, for a given value of the explanatory variable the member of the pair is a case. Specifically the model is \begin{eqnarray*} \text{logit}(\varphi_i) = \alpha_i + \beta x. \end{eqnarray*} The odds that a subject with $x=1$ is a case equals $\exp(\beta)$ times the odds that a subject with $x=0$ is a case. The model generalizes to the situation where there are $q$ explanatory variables as \begin{eqnarray*} \text{logit}(\varphi_i) = \alpha_i + \beta_1 x_1 + \beta_2 x_2 + \dots \beta_q x_q. \end{eqnarray*} Typically one $x$ is an explanatory variable of real interest, such as past exposure to a risk factor, with the others being used as a form of statistical control in addition to the variables already controlled by virtue of using them to form matched pairs. This is the case in our back pain example where it is the effect of car driving on lower back pain that is of most interest. The problem with the model above is that the number of parameters increases at the same rate as the sample size with the consequence that maximum likelihood estimation is no longer viable. We can overcome this problem if we regard the parameters $\alpha_i$ as of little interest and so are willing to forgo their estimation. If we do, we can then create a \stress{conditional likelihood function} that will yield maximum likelihood estimators of the coefficients, $\beta_1, \dots, \beta_q$, that are consistent and asymptotically normally distributed. The mathematics behind this are described in \cite{HSAUR:Collett2003}. The model can be fitted using the \Rcmd{clogit} function from package \Rpackage{survival}; the results are shown in Figure~\ref{GLM-backpain-print}. <>= library("survival") backpain_glm <- clogit(I(status == "case") ~ driver + suburban + strata(ID), data = backpain) @ The response has to be a logical (\Rcmd{TRUE} for cases) and the \Rcmd{strata} command specifies the matched pairs. \renewcommand{\nextcaption}{\R{} output of the \Robject{print} method for the conditional logistic regression model fitted to the \Robject{backpain} data. \label{GLM-backpain-print}} \SchunkLabel <>= print(backpain_glm) @ \SchunkRaw The estimate of the odds ratio of a herniated disc occurring in a driver relative to a nondriver is $\Sexpr{round(exp(coef(backpain_glm)[1]),2)}$ with a $95\%$ confidence interval of $\Sexpr{paste("(", paste(round(exp(confint(backpain_glm)[1,]), 2), collapse = ","),")", sep = "")}$. Conditional on residence we can say that the risk of a herniated disc occurring in a driver is about twice that of a nondriver. There is no evidence that where a person lives affects the risk of lower back pain. \subsection{Happiness in China} We model the probability distribution of reported happiness using a proportional odds model. In \R{}, the function \Rcmd{polr} from the \Rpackage{MASS} package \citep{HSAUR:VenablesRipley2002, PKG:MASS} implements such models, but in a slightly different form as explained in Section~\ref{GLM:polr}. The model we are going to fit reads \begin{eqnarray*} \log\left(\frac{\P(y \le k | x_1, \dots, x_q)}{\P(y > k | x_1, \dots, x_q)}\right) & = & \zeta_k - (\beta_1 x_1 + \dots + \beta_q x_q) \end{eqnarray*} and we have to take care when interpreting the signs of the estimated regression coefficients. Another issue needs our attention before we start. Three of the explanatory variables are itself ordered (\Robject{R\_edu}, the level of education of the responding woman; \Robject{R\_health}, the health status of the responding woman in the last year; and \Robject{A\_edu}, the level of education of the woman's partner). For unordered factors, the default treatment contrasts, see Chapters~\ref{ANOVA}, \ref{MLR}, and \ref{SIMC}, compares the effect of each level to the first level. This coding does not take the ordinal nature of an ordered factor into account. One more appropriate coding is called \stress{Helmert} contrasts. \index{Helmert constrast} Here, we compare each level $k$ to the average of the preceding levels, i.e., the second level to the first, the third to the average of the first and the second, and so on (these contrasts are also sometimes called \stress{reverse Helmert contrasts}). The \Rcmd{option} function can be used to specify the default contrasts for unordered (we don't change the default \Robject{contr.treatment} option) and ordered factors. The returned \Robject{opts} variable stores the options before manipulation and can be used to conveniently restore them after we fitted the proportional odds model: <>= library("MASS") opts <- options(contrasts = c("contr.treatment", "contr.helmert")) CHFLS_polr <- polr(R_happy ~ ., data = CHFLS, Hess = TRUE) options(opts) @ \renewcommand{\nextcaption}{\R{} output of the \Robject{summary} method for the proportional odds model fitted to the \Robject{CHFLS} data. \label{GLM-CHFLS-polr-summary}} \SchunkLabel <>= summary(CHFLS_polr) @ \SchunkRaw As (almost) always, the \Rcmd{summary} function can be used to display the fitted model, see Figure~\ref{GLM-CHFLS-polr-summary}. The largest absolute values of the $t$-statistics are associated with the self-reported health variable. To interpret the results correctly, we first make sure to understand the definition of the Helmert contrasts. <>= H <- with(CHFLS, contr.helmert(table(R_health))) rownames(H) <- levels(CHFLS$R_health) colnames(H) <- paste(levels(CHFLS$R_health)[-1], "- avg") H @ Let's focus on the probability of being very unhappy. A positive regression coefficient for the first contrast of health means that the probability of being very unhappy is smaller (because of the sign switch in the regression coefficients) for women that reported their health as not good compared to women that reported a poor health. Thus, the results given in Figure~\ref{GLM-CHFLS-polr-summary} indicate that better health leads to happier women, a finding that sits well with our expectations. The other effects are less clear to interpret, also because formal inference is difficult and no $p$-values are displayed in the summary output of Figure~\ref{GLM-CHFLS-polr-summary}. As a remedy, making use of the asymptotic distribution of maximum-likelihood-based estimators, we use the \Rcmd{cftest} function from the \Rpackage{multcomp} package \citep{PKG:multcomp} to compute normal $p$-values assuming that the estimated regression coefficients follow a normal limiting distribution (which is, for \Sexpr{nrow(CHFLS) - 3} observations, not completely unrealistic); the results are given in Figure~\ref{GLM-CHFLS-polr-cftest}. %% mess with the output function <>= library("multcomp") op <- options(digits = 2) cf <- cftest(CHFLS_polr) cftest <- function(x, digits = max(3, getOption("digits") - 3)) { x <- cf cat("\n\t", "Simultaneous Tests for General Linear Hypotheses\n\n") if (!is.null(x$type)) cat("Multiple Comparisons of Means:", x$type, "Contrasts\n\n\n") call <- if (isS4(x$model)) x$model@call else x$model$call if (!is.null(call)) { cat("Fit: ") print(call) cat("\n") } pq <- x$test mtests <- cbind(pq$coefficients, pq$sigma, pq$tstat, pq$pvalues) error <- attr(pq$pvalues, "error") pname <- switch(x$alternativ, less = paste("Pr(<", ifelse(x$df == 0, "z", "t"), ")", sep = ""), greater = paste("Pr(>", ifelse(x$df == 0, "z", "t"), ")", sep = ""), two.sided = paste("Pr(>|", ifelse(x$df == 0, "z", "t"), "|)", sep = "")) colnames(mtests) <- c("Estimate", "Std. Error", ifelse(x$df == 0, "z value", "t value"), pname) type <- pq$type if (!is.null(error) && error > .Machine$double.eps) { sig <- which.min(abs(1/error - (10^(1:10)))) sig <- 1/(10^sig) } else { sig <- .Machine$double.eps } cat("Linear Hypotheses:\n") alt <- switch(x$alternative, two.sided = "==", less = ">=", greater = "<=") rownames(mtests) <- rownames(mtests) printCoefmat(mtests, digits = digits, has.Pvalue = TRUE, P.values = TRUE, eps.Pvalue = sig) switch(type, univariate = cat("(Univariate p values reported)"), `single-step` = cat("(Adjusted p values reported -- single-step method)"), Shaffer = cat("(Adjusted p values reported -- Shaffer method)"), Westfall = cat("(Adjusted p values reported -- Westfall method)"), cat("(Adjusted p values reported --", type, "method)")) cat("\n\n") invisible(x) } @ \renewcommand{\nextcaption}{\R{} output of the \Robject{cftest} function for the proportional odds model fitted to the \Robject{CHFLS} data. \label{GLM-CHFLS-polr-cftest}} \SchunkLabel <>= library("multcomp") cftest(CHFLS_polr) @ \SchunkRaw <>= options(op) @ There seem to be geographical differences and also older and larger women seem to be happier. Other than that, education and income don't seem to contribute much in this model. One remarkable thing about the proportional odds model is that, similar to the quantile regression models presented in Chapter~\ref{QR}, it directly formulates a regression problem in terms of conditional distributions, not only conditional means (the same is trivially true for the binary case in logistic regression). Consequently, the model allows making distributional predictions, in other words, we can infer the predicted distribution or density of happiness in a woman with certain values for the explanatory variables that entered the model. To do so, we focus on the woman corresponding to the first row of the data set: \clearpage <>= CHFLS[1,] @ and repeat these values as often as there are levels in the \Robject{R\_health} factor, and each row is assigned one of these levels <>= nd <- CHFLS[rep(1, nlevels(CHFLS$R_health)),] nd$R_health <- ordered(levels(nd$R_health), labels = levels(nd$R_health)) @ We can now use the \Rcmd{predict} function to compute the density of the response variable \Rcmd{R\_happy} for each of these five hypothetical women: <>= (dens <- predict(CHFLS_polr, newdata = nd, type = "probs")) @ From each row, we get the predicted probability that the self-reported happiness will correspond to the levels shown in the column name. These densities, one for each row in \Robject{nd} and therefore for each level of health, can now be plotted, for example using a conditional barchart, see Figure~\ref{GLM-CHFLS-pred-plot}. We clearly see that better health is associated with greater happiness. \begin{figure} \begin{center} <>= library("lattice") D <- expand.grid(R_health = nd$R_health, R_happy = ordered(LETTERS[1:4])) D$dens <- as.vector(dens) barchart(dens ~ R_happy | R_health, data = D, ylab = "Density", xlab = "Happiness",) @ \caption{Predicted distribution of happiness for hypothetical women with health conditions rating from poor to excellent, with the remaining explanatory variables being the same as for the woman corresponding to the first row in the \Robject{CHFLS} data frame. The levels of happiness have been abbreviated (A: very unhappy, B: not too happy, C: somewhat happy; D: very happy). \label{GLM-CHFLS-pred-plot}} \end{center} \end{figure} We'll present an alternative and maybe simpler model in Chapter~\ref{RP}. \section{Summary of Findings} <>= ci <- round(exp(confint(plasma_glm_1, parm = "fibrinogen")), 2) ci <- paste("(", paste(ci, collapse = ","), ")", sep = "") @ \begin{description} \item[Blood screening] Application of logistic regression shows that an increase of one unit in the fibrinogen value produces approximately a six fold increase in the odds of an ESR value greater than $20$. However, because the number of observations is small the corresponding $95\%$ confidence interval for the odds is rather wide namely, $\Sexpr{ci}$. Gamma globulin values do not help in the prediction of ESR values greater than $20$ over and above the fibrinogen values. \item[Women's role in society] Modeling the probability of agreeing with the statement about women's role in society using logistic regression demonstrates that it is the interaction of education and gender which is of most importance; for fewer years of education women have a higher probability of agreeing with the statement than men, but when the years of education exceed about ten then this situation reverses. \item[Colonic polyps] Fitting a Poisson regression allowing for overdispersion shows that the drug treatment is effective in reducing the number of polyps with age having only a marginal effect. \item[Driving and back pain] Application of conditional logistic regression shows that the odds ratio of a herniated disc occurring in a driver relative to a nondriver is $\Sexpr{round(exp(coef(backpain_glm)[1]),2)}$ with a $95\%$ confidence interval of $\Sexpr{paste("(", paste(round(exp(confint(backpain_glm)[1,]), 2), collapse = ","),")", sep = "")}$. There is no evidence that where a person lives affects the risk of suffering lower back pain. \item[Happiness in China] Better health is associated with greater happiness -- what a surprise! \end{description} \section{Final Comments} Generalized linear models provide a very powerful and flexible framework for the application of regression models to a variety of non-normal response variables, for example, logistic regression to binary responses and Poisson regression to count data. \bibliographystyle{LaTeXBibTeX/refstyle} \bibliography{LaTeXBibTeX/HSAUR} \end{document} HSAUR3/vignettes/Ch_analysing_longitudinal_dataI.Rnw0000644000176200001440000003373214416236367022215 0ustar liggesusers \documentclass{chapman} %%% copy Sweave.sty definitions %%% keeps `sweave' from adding `\usepackage{Sweave}': DO NOT REMOVE %\usepackage{Sweave} \RequirePackage[T1]{fontenc} \RequirePackage{graphicx,ae,fancyvrb} \IfFileExists{upquote.sty}{\RequirePackage{upquote}}{} \usepackage{relsize} \DefineVerbatimEnvironment{Sinput}{Verbatim}{} \DefineVerbatimEnvironment{Soutput}{Verbatim}{fontfamily=courier, fontshape=it, fontsize=\relsize{-1}} \DefineVerbatimEnvironment{Scode}{Verbatim}{} \newenvironment{Schunk}{}{} %%% environment for raw output \newcommand{\SchunkRaw}{\renewenvironment{Schunk}{}{} \DefineVerbatimEnvironment{Soutput}{Verbatim}{fontfamily=courier, fontshape=it, fontsize=\small} \rawSinput } %%% environment for labeled output \newcommand{\nextcaption}{} \newcommand{\SchunkLabel}{ \renewenvironment{Schunk}{\begin{figure}[ht] }{\caption{\nextcaption} \end{figure} } \DefineVerbatimEnvironment{Sinput}{Verbatim}{frame = topline} \DefineVerbatimEnvironment{Soutput}{Verbatim}{frame = bottomline, samepage = true, fontfamily=courier, fontshape=it, fontsize=\relsize{-1}} } %%% S code with line numbers \DefineVerbatimEnvironment{Sinput} {Verbatim} { %% numbers=left } \newcommand{\numberSinput}{ \DefineVerbatimEnvironment{Sinput}{Verbatim}{numbers=left} } \newcommand{\rawSinput}{ \DefineVerbatimEnvironment{Sinput}{Verbatim}{} } %%% R / System symbols \newcommand{\R}{\textsf{R}} \newcommand{\rR}{{R}} \renewcommand{\S}{\textsf{S}} \newcommand{\SPLUS}{\textsf{S-PLUS}} \newcommand{\rSPLUS}{{S-PLUS}} \newcommand{\SPSS}{\textsf{SPSS}} \newcommand{\EXCEL}{\textsf{Excel}} \newcommand{\ACCESS}{\textsf{Access}} \newcommand{\SQL}{\textsf{SQL}} %%\newcommand{\Rpackage}[1]{\hbox{\rm\textit{#1}}} %%\newcommand{\Robject}[1]{\hbox{\rm\texttt{#1}}} %%\newcommand{\Rclass}[1]{\hbox{\rm\textit{#1}}} %%\newcommand{\Rcmd}[1]{\hbox{\rm\texttt{#1}}} \newcommand{\Rpackage}[1]{\index{#1 package@{\fontseries{b}\selectfont #1} package} {\fontseries{b}\selectfont #1}} \newcommand{\rpackage}[1]{{\fontseries{b}\selectfont #1}} \newcommand{\Robject}[1]{\texttt{#1}} \newcommand{\Rclass}[1]{\index{#1 class@\textit{#1} class}\textit{#1}} \newcommand{\Rcmd}[1]{\index{#1 function@\texttt{#1} function}\texttt{#1}} \newcommand{\Roperator}[1]{\texttt{#1}} \newcommand{\Rarg}[1]{\texttt{#1}} \newcommand{\Rlevel}[1]{\texttt{#1}} %%% other symbols \newcommand{\file}[1]{\hbox{\rm\texttt{#1}}} %%\newcommand{\stress}[1]{\index{#1}\textit{#1}} \newcommand{\stress}[1]{\textit{#1}} \newcommand{\booktitle}[1]{\textit{#1}} %%' %%% Math symbols \usepackage{amstext} \usepackage{amsmath} \newcommand{\E}{\mathsf{E}} \newcommand{\Var}{\mathsf{Var}} \newcommand{\Cov}{\mathsf{Cov}} \newcommand{\Cor}{\mathsf{Cor}} \newcommand{\x}{\mathbf{x}} \newcommand{\y}{\mathbf{y}} \renewcommand{\a}{\mathbf{a}} \newcommand{\W}{\mathbf{W}} \newcommand{\C}{\mathbf{C}} \renewcommand{\H}{\mathbf{H}} \newcommand{\X}{\mathbf{X}} \newcommand{\B}{\mathbf{B}} \newcommand{\V}{\mathbf{V}} \newcommand{\I}{\mathbf{I}} \newcommand{\D}{\mathbf{D}} \newcommand{\bS}{\mathbf{S}} \newcommand{\N}{\mathcal{N}} \renewcommand{\L}{L} \renewcommand{\P}{\mathsf{P}} \newcommand{\K}{\mathbf{K}} \newcommand{\m}{\mathbf{m}} \newcommand{\argmin}{\operatorname{argmin}\displaylimits} \newcommand{\argmax}{\operatorname{argmax}\displaylimits} \newcommand{\bx}{\mathbf{x}} \newcommand{\bbeta}{\mathbf{\beta}} %%% links \usepackage{hyperref} \hypersetup{% pdftitle = {A Handbook of Statistical Analyses Using R (3rd Edition)}, pdfsubject = {Book}, pdfauthor = {Torsten Hothorn and Brian S. Everitt}, colorlinks = {black}, linkcolor = {black}, citecolor = {black}, urlcolor = {black}, hyperindex = {true}, linktocpage = {true}, } %%% captions & tables %% : conflics with figure definition in chapman.cls %%\usepackage[format=hang,margin=10pt,labelfont=bf]{caption} %% \usepackage{longtable} \usepackage[figuresright]{rotating} %%% R symbol in chapter 1 \usepackage{wrapfig} %%% Bibliography \usepackage[round,comma]{natbib} \renewcommand{\refname}{References \addcontentsline{toc}{chapter}{References}} \citeindexfalse %%% texi2dvi complains that \newblock is undefined, hm... \def\newblock{\hskip .11em plus .33em minus .07em} %%% Example sections \newcounter{exercise}[chapter] \setcounter{exercise}{0} \newcommand{\exercise}{\stepcounter{exercise} \item{Ex.~\arabic{chapter}.\arabic{exercise} }} %% URLs \newcommand{\curl}[1]{\begin{center} \url{#1} \end{center}} %%% for manual corrections %\renewcommand{\baselinestretch}{2} %%% plot sizes \setkeys{Gin}{width=0.95\textwidth} %%% color \usepackage{color} %%% hyphenations \hyphenation{drop-out} \hyphenation{mar-gi-nal} %%% new bidirectional quotes need \usepackage[utf8]{inputenc} %\usepackage{setspace} \definecolor{sidebox_todo}{rgb}{1,1,0.2} \newcommand{\todo}[1]{ \hspace{0pt}% \marginpar{% \fcolorbox{black}{sidebox_todo}{% \parbox{\marginparwidth} { \raggedright\sffamily\footnotesize{TODO: #1}% } }% } } \begin{document} %% Title page \title{A Handbook of Statistical Analyses Using \R{} --- 3rd Edition} \author{Torsten Hothorn and Brian S. Everitt} \maketitle %%\VignetteIndexEntry{Chapter Analyzing Longitudinal Data I} %%\VignetteDepends{lme4,multcomp} \setcounter{chapter}{12} \SweaveOpts{prefix.string=figures/HSAUR,eps=FALSE,keep.source=TRUE} <>= rm(list = ls()) s <- search()[-1] s <- s[-match(c("package:base", "package:stats", "package:graphics", "package:grDevices", "package:utils", "package:datasets", "package:methods", "Autoloads"), s)] if (length(s) > 0) sapply(s, detach, character.only = TRUE) if (!file.exists("tables")) dir.create("tables") if (!file.exists("figures")) dir.create("figures") set.seed(290875) options(prompt = "R> ", continue = "+ ", width = 63, # digits = 4, show.signif.stars = FALSE, SweaveHooks = list(leftpar = function() par(mai = par("mai") * c(1, 1.05, 1, 1)), bigleftpar = function() par(mai = par("mai") * c(1, 1.7, 1, 1)))) HSAURpkg <- require("HSAUR3") if (!HSAURpkg) stop("cannot load package ", sQuote("HSAUR3")) rm(HSAURpkg) ### hm, R-2.4.0 --vanilla seems to need this a <- Sys.setlocale("LC_ALL", "C") ### book <- TRUE refs <- cbind(c("AItR", "DAGD", "SI", "CI", "ANOVA", "MLR", "GLM", "DE", "RP", "GAM", "SA", "ALDI", "ALDII", "SIMC", "MA", "PCA", "MDS", "CA"), 1:18) ch <- function(x) { ch <- refs[which(refs[,1] == x),] if (book) { return(paste("Chapter~\\\\ref{", ch[1], "}", sep = "")) } else { return(paste("Chapter~", ch[2], sep = "")) } } if (file.exists("deparse.R")) source("deparse.R") setHook(packageEvent("lattice", "attach"), function(...) { lattice.options(default.theme = function() standard.theme("pdf", color = FALSE)) }) @ \pagestyle{headings} <>= book <- FALSE @ <>= library("lme4") library("multcomp") residuals <- function(object) { y <- getME(object, 'y') y - fitted(object) } @ \chapter[Analyzing Longitudinal Data I]{Analyzing Longitudinal Data I: Computerized Delivery of Cognitive Behavioral Therapy -- Beat the Blues \label{ALDI}} \section{Introduction} \section{Analyzing Longitudinal Data} \section{Analysis Using \R{}} \begin{figure} \begin{center} <>= data("BtheB", package = "HSAUR3") layout(matrix(1:2, nrow = 1)) ylim <- range(BtheB[,grep("bdi", names(BtheB))], na.rm = TRUE) tau <- subset(BtheB, treatment == "TAU")[, grep("bdi", names(BtheB))] boxplot(tau, main = "Treated as Usual", ylab = "BDI", xlab = "Time (in months)", names = c(0, 2, 3, 5, 8), ylim = ylim) btheb <- subset(BtheB, treatment == "BtheB")[, grep("bdi", names(BtheB))] boxplot(btheb, main = "Beat the Blues", ylab = "BDI", xlab = "Time (in months)", names = c(0, 2, 3, 5, 8), ylim = ylim) @ \caption{Boxplots for the repeated measures by treatment group for the \Robject{BtheB} data. \label{ALDI:boxplots}} \end{center} \end{figure} We shall fit both random intercept and random intercept and slope models to the data including the baseline BDI values (\Robject{pre.bdi}), \Robject{treatment} group, \Robject{drug}, and \Robject{length} as fixed effect covariates. Linear mixed effects models are fitted in \R{} by using the \Rcmd{lmer} function contained in the \Rpackage{lme4} package \citep{PKG:lme4,HSAUR:PinheiroBates2000,HSAUR:Bates2005}, but an essential first step is to rearrange the data from the `wide form' in which they appear in the \Robject{BtheB} data frame %%' into the `long form' in which each separate repeated measurement %%' and associated covariate values appear as a separate row in a \Rclass{data.frame}. This rearrangement can be made using the following code: <>= data("BtheB", package = "HSAUR3") BtheB$subject <- factor(rownames(BtheB)) nobs <- nrow(BtheB) BtheB_long <- reshape(BtheB, idvar = "subject", varying = c("bdi.2m", "bdi.3m", "bdi.5m", "bdi.8m"), direction = "long") BtheB_long$time <- rep(c(2, 3, 5, 8), rep(nobs, 4)) @ such that the data are now in the form (here shown for the first three subjects) <>= subset(BtheB_long, subject %in% c("1", "2", "3")) @ The resulting \Rclass{data.frame} \Robject{BtheB\_long} contains a number of missing values \index{Missing values} and in applying the \Rcmd{lmer} function these will be dropped. But notice it is only the missing values that are removed, \stress{not} participants that have at least one missing value. All the available data is used in the model fitting process. The \Rcmd{lmer} function is used in a similar way to the \Rcmd{lm} function met in \Sexpr{ch("MLR")} with the addition of a random term to identify the source of the repeated measurements, here \Robject{subject}. We can fit the two models (\ref{ALDI:ModelA}) and (\ref{ALDI:ModelB}) and test which is most appropriate using <>= library("lme4") BtheB_lmer1 <- lmer(bdi ~ bdi.pre + time + treatment + drug + length + (1 | subject), data = BtheB_long, REML = FALSE, na.action = na.omit) BtheB_lmer2 <- lmer(bdi ~ bdi.pre + time + treatment + drug + length + (time | subject), data = BtheB_long, REML = FALSE, na.action = na.omit) anova(BtheB_lmer1, BtheB_lmer2) @ \renewcommand{\nextcaption}{\R{} output of the linear mixed-effects model fit for the \Robject{BtheB} data. \label{ALDI-BtheB-summary}} \SchunkLabel <>= summary(BtheB_lmer1) @ \SchunkRaw The \Rcmd{summary} method for \Rclass{lmer} objects doesn't print $p$-values for Gaussian mixed models because the degrees of freedom of the $t$ reference distribution are not obvious. However, one can rely on the asymptotic normal distribution for computing univariate $p$-values for the fixed effects using the \Rcmd{cftest} function from package \Rpackage{multcomp}. The asymptotic $p$-values are given in Figure~\ref{ALDI-BtheB-summary-p}. \renewcommand{\nextcaption}{\R{} output of the asymptotic $p$-values for linear mixed-effects model fit for the \Robject{BtheB} data. \label{ALDI-BtheB-summary-p}} \SchunkLabel <>= cftest(BtheB_lmer1) @ \SchunkRaw We can check the assumptions of the final model fitted to the \Robject{BtheB} data, i.e., the normality of the random effect terms and the residuals, by first using the \Rcmd{ranef} method to \stress{predict} the former and the \Rcmd{residuals} method to calculate the differences between the observed data values and the fitted values, and then using normal probability plots on each. How the random effects are predicted is explained briefly in Section~\ref{ALDI:predictrandom}. The necessary \R{} code to obtain the effects, residuals, and plots is shown with Figure~\ref{ALDI:qqplots}. There appear to be no large departures from linearity in either plot. \begin{figure} \begin{center} <>= layout(matrix(1:2, ncol = 2)) qint <- ranef(BtheB_lmer1)$subject[["(Intercept)"]] qres <- residuals(BtheB_lmer1) qqnorm(qint, ylab = "Estimated random intercepts", xlim = c(-3, 3), ylim = c(-20, 20), main = "Random intercepts") qqline(qint) qqnorm(qres, xlim = c(-3, 3), ylim = c(-20, 20), ylab = "Estimated residuals", main = "Residuals") qqline(qres) @ \caption{Quantile-quantile plots of predicted random intercepts and residuals for the random intercept model \Robject{BtheB\_lmer1} fitted to the \Robject{BtheB} data. \label{ALDI:qqplots}} \end{center} \end{figure} \begin{figure} \begin{center} <>= bdi <- BtheB[, grep("bdi", names(BtheB))] plot(1:4, rep(-0.5, 4), type = "n", axes = FALSE, ylim = c(0, 50), xlab = "Months", ylab = "BDI") axis(1, at = 1:4, labels = c(0, 2, 3, 5)) axis(2) for (i in 1:4) { dropout <- is.na(bdi[,i + 1]) points(rep(i, nrow(bdi)) + ifelse(dropout, 0.05, -0.05), jitter(bdi[,i]), pch = ifelse(dropout, 20, 1)) } @ \caption{Distribution of BDI values for patients that do (circles) and do not (bullets) attend the next scheduled visit. \label{ALDI-dropout}} \end{center} \end{figure} \bibliographystyle{LaTeXBibTeX/refstyle} \bibliography{LaTeXBibTeX/HSAUR} \end{document} HSAUR3/vignettes/Ch_graphical_display.Rnw0000644000176200001440000010244414416236367020031 0ustar liggesusers \documentclass{chapman} %%% copy Sweave.sty definitions %%% keeps `sweave' from adding `\usepackage{Sweave}': DO NOT REMOVE %\usepackage{Sweave} \RequirePackage[T1]{fontenc} \RequirePackage{graphicx,ae,fancyvrb} \IfFileExists{upquote.sty}{\RequirePackage{upquote}}{} \usepackage{relsize} \DefineVerbatimEnvironment{Sinput}{Verbatim}{} \DefineVerbatimEnvironment{Soutput}{Verbatim}{fontfamily=courier, fontshape=it, fontsize=\relsize{-1}} \DefineVerbatimEnvironment{Scode}{Verbatim}{} \newenvironment{Schunk}{}{} %%% environment for raw output \newcommand{\SchunkRaw}{\renewenvironment{Schunk}{}{} \DefineVerbatimEnvironment{Soutput}{Verbatim}{fontfamily=courier, fontshape=it, fontsize=\small} \rawSinput } %%% environment for labeled output \newcommand{\nextcaption}{} \newcommand{\SchunkLabel}{ \renewenvironment{Schunk}{\begin{figure}[ht] }{\caption{\nextcaption} \end{figure} } \DefineVerbatimEnvironment{Sinput}{Verbatim}{frame = topline} \DefineVerbatimEnvironment{Soutput}{Verbatim}{frame = bottomline, samepage = true, fontfamily=courier, fontshape=it, fontsize=\relsize{-1}} } %%% S code with line numbers \DefineVerbatimEnvironment{Sinput} {Verbatim} { %% numbers=left } \newcommand{\numberSinput}{ \DefineVerbatimEnvironment{Sinput}{Verbatim}{numbers=left} } \newcommand{\rawSinput}{ \DefineVerbatimEnvironment{Sinput}{Verbatim}{} } %%% R / System symbols \newcommand{\R}{\textsf{R}} \newcommand{\rR}{{R}} \renewcommand{\S}{\textsf{S}} \newcommand{\SPLUS}{\textsf{S-PLUS}} \newcommand{\rSPLUS}{{S-PLUS}} \newcommand{\SPSS}{\textsf{SPSS}} \newcommand{\EXCEL}{\textsf{Excel}} \newcommand{\ACCESS}{\textsf{Access}} \newcommand{\SQL}{\textsf{SQL}} %%\newcommand{\Rpackage}[1]{\hbox{\rm\textit{#1}}} %%\newcommand{\Robject}[1]{\hbox{\rm\texttt{#1}}} %%\newcommand{\Rclass}[1]{\hbox{\rm\textit{#1}}} %%\newcommand{\Rcmd}[1]{\hbox{\rm\texttt{#1}}} \newcommand{\Rpackage}[1]{\index{#1 package@{\fontseries{b}\selectfont #1} package} {\fontseries{b}\selectfont #1}} \newcommand{\rpackage}[1]{{\fontseries{b}\selectfont #1}} \newcommand{\Robject}[1]{\texttt{#1}} \newcommand{\Rclass}[1]{\index{#1 class@\textit{#1} class}\textit{#1}} \newcommand{\Rcmd}[1]{\index{#1 function@\texttt{#1} function}\texttt{#1}} \newcommand{\Roperator}[1]{\texttt{#1}} \newcommand{\Rarg}[1]{\texttt{#1}} \newcommand{\Rlevel}[1]{\texttt{#1}} %%% other symbols \newcommand{\file}[1]{\hbox{\rm\texttt{#1}}} %%\newcommand{\stress}[1]{\index{#1}\textit{#1}} \newcommand{\stress}[1]{\textit{#1}} \newcommand{\booktitle}[1]{\textit{#1}} %%' %%% Math symbols \usepackage{amstext} \usepackage{amsmath} \newcommand{\E}{\mathsf{E}} \newcommand{\Var}{\mathsf{Var}} \newcommand{\Cov}{\mathsf{Cov}} \newcommand{\Cor}{\mathsf{Cor}} \newcommand{\x}{\mathbf{x}} \newcommand{\y}{\mathbf{y}} \renewcommand{\a}{\mathbf{a}} \newcommand{\W}{\mathbf{W}} \newcommand{\C}{\mathbf{C}} \renewcommand{\H}{\mathbf{H}} \newcommand{\X}{\mathbf{X}} \newcommand{\B}{\mathbf{B}} \newcommand{\V}{\mathbf{V}} \newcommand{\I}{\mathbf{I}} \newcommand{\D}{\mathbf{D}} \newcommand{\bS}{\mathbf{S}} \newcommand{\N}{\mathcal{N}} \renewcommand{\L}{L} \renewcommand{\P}{\mathsf{P}} \newcommand{\K}{\mathbf{K}} \newcommand{\m}{\mathbf{m}} \newcommand{\argmin}{\operatorname{argmin}\displaylimits} \newcommand{\argmax}{\operatorname{argmax}\displaylimits} \newcommand{\bx}{\mathbf{x}} \newcommand{\bbeta}{\mathbf{\beta}} %%% links \usepackage{hyperref} \hypersetup{% pdftitle = {A Handbook of Statistical Analyses Using R (3rd Edition)}, pdfsubject = {Book}, pdfauthor = {Torsten Hothorn and Brian S. Everitt}, colorlinks = {black}, linkcolor = {black}, citecolor = {black}, urlcolor = {black}, hyperindex = {true}, linktocpage = {true}, } %%% captions & tables %% : conflics with figure definition in chapman.cls %%\usepackage[format=hang,margin=10pt,labelfont=bf]{caption} %% \usepackage{longtable} \usepackage[figuresright]{rotating} %%% R symbol in chapter 1 \usepackage{wrapfig} %%% Bibliography \usepackage[round,comma]{natbib} \renewcommand{\refname}{References \addcontentsline{toc}{chapter}{References}} \citeindexfalse %%% texi2dvi complains that \newblock is undefined, hm... \def\newblock{\hskip .11em plus .33em minus .07em} %%% Example sections \newcounter{exercise}[chapter] \setcounter{exercise}{0} \newcommand{\exercise}{\stepcounter{exercise} \item{Ex.~\arabic{chapter}.\arabic{exercise} }} %% URLs \newcommand{\curl}[1]{\begin{center} \url{#1} \end{center}} %%% for manual corrections %\renewcommand{\baselinestretch}{2} %%% plot sizes \setkeys{Gin}{width=0.95\textwidth} %%% color \usepackage{color} %%% hyphenations \hyphenation{drop-out} \hyphenation{mar-gi-nal} %%% new bidirectional quotes need \usepackage[utf8]{inputenc} %\usepackage{setspace} \definecolor{sidebox_todo}{rgb}{1,1,0.2} \newcommand{\todo}[1]{ \hspace{0pt}% \marginpar{% \fcolorbox{black}{sidebox_todo}{% \parbox{\marginparwidth} { \raggedright\sffamily\footnotesize{TODO: #1}% } }% } } \begin{document} %% Title page \title{A Handbook of Statistical Analyses Using \R{} --- 3rd Edition} \author{Torsten Hothorn and Brian S. Everitt} \maketitle %%\VignetteIndexEntry{Chapter Data Analysis using Graphical Displays} %%\VignetteDepends{lattice, maps, sf, sp} \setcounter{chapter}{1} \SweaveOpts{prefix.string=figures/HSAUR,eps=FALSE,keep.source=TRUE} <>= rm(list = ls()) s <- search()[-1] s <- s[-match(c("package:base", "package:stats", "package:graphics", "package:grDevices", "package:utils", "package:datasets", "package:methods", "Autoloads"), s)] if (length(s) > 0) sapply(s, detach, character.only = TRUE) if (!file.exists("tables")) dir.create("tables") if (!file.exists("figures")) dir.create("figures") set.seed(290875) options(prompt = "R> ", continue = "+ ", width = 63, # digits = 4, show.signif.stars = FALSE, SweaveHooks = list(leftpar = function() par(mai = par("mai") * c(1, 1.05, 1, 1)), bigleftpar = function() par(mai = par("mai") * c(1, 1.7, 1, 1)))) HSAURpkg <- require("HSAUR3") if (!HSAURpkg) stop("cannot load package ", sQuote("HSAUR3")) rm(HSAURpkg) ### hm, R-2.4.0 --vanilla seems to need this a <- Sys.setlocale("LC_ALL", "C") ### book <- TRUE refs <- cbind(c("AItR", "DAGD", "SI", "CI", "ANOVA", "MLR", "GLM", "DE", "RP", "GAM", "SA", "ALDI", "ALDII", "SIMC", "MA", "PCA", "MDS", "CA"), 1:18) ch <- function(x) { ch <- refs[which(refs[,1] == x),] if (book) { return(paste("Chapter~\\\\ref{", ch[1], "}", sep = "")) } else { return(paste("Chapter~", ch[2], sep = "")) } } if (file.exists("deparse.R")) source("deparse.R") setHook(packageEvent("lattice", "attach"), function(...) { lattice.options(default.theme = function() standard.theme("pdf", color = FALSE)) }) @ \pagestyle{headings} <>= book <- FALSE @ %% lower png resolution for vignettes \SweaveOpts{resolution = 100} \chapter[Data Analysis Using Graphical Displays]{Data Analysis Using Graphical Displays: Malignant Melanoma in the US and Chinese Health and \\ Family Life \label{DAGD}} \section{Introduction} \section{Initial Data Analysis} \section{Analysis Using \R{}} \subsection{Malignant Melanoma} \index{Boxplot|(} \index{Histogram|(} \index{Scatterplot|(} We might begin to examine the malignant melanoma data in Table~\ref{DAGD-USmelanoma-tab} by constructing a histogram or boxplot for \stress{all} the mortality rates in Figure~\ref{DAGD-USmelanoma-histbox}. The \Rcmd{plot}, \Rcmd{hist} and \Rcmd{boxplot} functions have already been introduced in \Sexpr{ch("AItR")} and we want to produce a plot where both techniques are applied at once. The \Rcmd{layout} function organizes two independent plots on one plotting device, for example on top of each other. Using this relatively simple technique (more advanced methods will be introduced later) we have to make sure that the $x$-axis is the same in both graphs. This can be done by computing a plausible range of the data, later to be specified in a plot via the \Rcmd{xlim} argument: <>= xr <- range(USmelanoma$mortality) * c(0.9, 1.1) xr @ Now, plotting both the histogram and the boxplot requires setting up the plotting device with equal space for two independent plots on top of each other. Calling the \Rcmd{layout} function on a matrix with two cells in two rows, containing the numbers one and two, leads to such a partitioning. The \Rcmd{boxplot} function is called first on the mortality data and then the \Rcmd{hist} function, where the range of the $x$-axis in both plots is defined by $(\Sexpr{xr[1]}, \Sexpr{xr[2]})$. One tiny problem to solve is the size of the margins; their defaults are too large for such a plot. As with many other graphical parameters, one can adjust their value for a specific plot using function \Rcmd{par}. The \R{} code and the resulting display are given in Figure~\ref{DAGD-USmelanoma-histbox}. \begin{figure} \begin{center} <>= layout(matrix(1:2, nrow = 2)) par(mar = par("mar") * c(0.8, 1, 1, 1)) boxplot(USmelanoma$mortality, ylim = xr, horizontal = TRUE, xlab = "Mortality") hist(USmelanoma$mortality, xlim = xr, xlab = "", main = "", axes = FALSE, ylab = "") axis(1) @ \caption{Histogram (top) and boxplot (bottom) of malignant melanoma mortality rates. \label{DAGD-USmelanoma-histbox}} \end{center} \end{figure} Both the histogram and the boxplot in Figure~\ref{DAGD-USmelanoma-histbox} indicate a certain skewness of the mortality distribution. Looking at the characteristics of all the mortality rates is a useful beginning but for these data we might be more interested in comparing mortality rates for ocean and non-ocean states. So we might construct two histograms or two boxplots. Such a \stress{parallel boxplot}, visualizing the conditional distribution of a numeric variable in groups as given by a categorical variable, are easily computed using the \Rcmd{boxplot} function. The continuous response variable and the categorical independent variable are specified via a \Rclass{formula} as described in \Sexpr{ch("AItR")}. Figure~\ref{DAGD-USmelanoma-boxocean} shows such parallel boxplots, as by default produced the \Rcmd{plot} function for such data, for the mortality in ocean and non-ocean states and leads to the impression that the mortality is increased in east or west coast states compared to the rest of the country. \begin{figure} \begin{center} <>= plot(mortality ~ ocean, data = USmelanoma, xlab = "Contiguity to an ocean", ylab = "Mortality") @ \caption{Parallel boxplots of malignant melanoma mortality rates by contiguity to an ocean. \label{DAGD-USmelanoma-boxocean}} \end{center} \end{figure} Histograms are generally used for two purposes: counting and displaying the distribution of a variable; according to \cite{HSAUR:Wilkinson1992}, `they are effective for neither'. Histograms can often be misleading for displaying distributions because of their dependence on the number of classes chosen. An alternative is to formally estimate the density function of a variable and then plot the resulting estimate; details of density estimation are given in \Sexpr{ch("DE")} but for the ocean and non-ocean states the two density estimates can be produced and plotted as shown in Figure~\ref{DAGD-USmelanoma-dens} which supports the impression from Figure~\ref{DAGD-USmelanoma-boxocean}. For more details on such density estimates we refer to \Sexpr{ch("DE")}. \begin{figure} \begin{center} <>= dyes <- with(USmelanoma, density(mortality[ocean == "yes"])) dno <- with(USmelanoma, density(mortality[ocean == "no"])) plot(dyes, lty = 1, xlim = xr, main = "", ylim = c(0, 0.018), xlab = "Mortality") lines(dno, lty = 2) legend("topleft", lty = 1:2, legend = c("Coastal State", "Land State"), bty = "n") @ \caption{Estimated densities of malignant melanoma mortality rates by contiguity to an ocean. \label{DAGD-USmelanoma-dens}} \end{center} \end{figure} Now we might move on to look at how mortality rates are related to the geographic location of a state as represented by the latitude and longitude of the center of the state. Here the main graphic will be the scatterplot. The simple $xy$ scatterplot has been in use since at least the eighteenth century and has many virtues -- indeed according to \cite{HSAUR:Tufte1983}: \begin{quote} The relational graphic -- in its barest form the scatterplot and its variants -- is the greatest of all graphical designs. It links at least two variables, encouraging and even imploring the viewer to assess the possible causal relationship between the plotted variables. It confronts causal theories that $x$ causes $y$ with empirical evidence as to the actual relationship between $x$ and $y$. \end{quote} Let's begin with simple scatterplots of mortality rate against longitude %%' and mortality rate against latitude which can be produced by the code preceding Figure~\ref{DAGD-USmelanoma-xy}. Again, the \Rcmd{layout} function is used for partitioning the plotting device, now resulting in two side-by-side plots. The argument to \Rcmd{layout} is now a matrix with only one row but two columns containing the numbers one and two. In each cell, the \Rcmd{plot} function is called for producing a scatterplot of the variables given in the \Rclass{formula}. \begin{figure} \begin{center} <>= layout(matrix(1:2, ncol = 2)) plot(mortality ~ longitude, data = USmelanoma, ylab = "Mortality", xlab = "Longitude") plot(mortality ~ latitude, data = USmelanoma, ylab = "Mortality", xlab = "Latitude") @ \caption{Scatterplot of malignant melanoma mortality rates by geographical location. \label{DAGD-USmelanoma-xy}} \end{center} \end{figure} Since mortality rate is clearly related only to latitude we can now produce scatterplots of mortality rate against latitude separately for ocean and non-ocean states. Instead of producing two displays, one can choose different plotting symbols for either states. This can be achieved by specifying a vector of integers or characters to the \Rcmd{pch}, where the $i$th element of this vector defines the plot symbol of the $i$th observation in the data to be plotted. For the sake of simplicity, we convert the \Robject{ocean} factor to an \Rclass{integer} vector containing the numbers one for land states and two for ocean states. As a consequence, land states can be identified by the dot symbol and ocean states by triangles. It is useful to add a legend to such a plot, most conveniently by using the \Rcmd{legend} function. This function takes three arguments: a string indicating the position of the legend in the plot, a character vector of labels to be printed and the corresponding plotting symbols (referred to by integers). In addition, the display of a bounding box is anticipated (\Rcmd{bty = "n"}). \begin{figure} \begin{center} <>= plot(mortality ~ latitude, data = USmelanoma, pch = (1:2)[ocean], ylab = "Mortality", xlab = "Latitude") legend("topright", legend = c("Land state", "Coast state"), pch = 1:2, bty = "n") @ \caption{Scatterplot of malignant melanoma mortality rates against latitude. \label{DAGD-USmelanoma-lat}} \end{center} \end{figure} The scatterplot in Figure~\ref{DAGD-USmelanoma-lat} highlights that the mortality is lowest in the northern land states. Coastal states show a higher mortality than land states at roughly the same latitude. The highest mortalities can be observed for the south coastal states with latitude less than $32^\circ$, say, that is <>= subset(USmelanoma, latitude < 32) @ Alternatively, we also may simply want to look at a color-coded map of the United States, where each state is plotted in a color that corresponds to its mortality rate. It is fairly simple to set-up such a plot using the \Rpackage{sp} family of packages \citep{PKG:sp}. We start with loading a map of the mainland states, basically a number of polygons: <>= library("sp") library("sf") library("maps") states <- map("state", plot = FALSE, fill = TRUE) @ It is of course important to match the mortality rates to the corresponding state. We therefore create unique names of the states in lower-case letters for both the polygons and the mortality data <>= IDs <- sapply(strsplit(states$names, ":"), function(x) x[1]) rownames(USmelanoma) <- tolower(rownames(USmelanoma)) @ Now we are ready to merge these two objects into a so-called \Rclass{SpatialPolygonsDataFrame} object. We first create a \Rclass{SpatialPolygons} object from the map in the correct reference system (WGS84, in our case) and then merge the polygons with the data <>= us1 <- merge(st_as_sf(states), USmelanoma) us2 <- as(us1, "Spatial") @ The resulting object \Robject{us2} can now be plotted using the \Rcmd{spplot} function, see Figure~\ref{DAGD-USmelanoma-long-lat}. The colors correspond to the mortality rate, as shown in the color legend to the right of the map. We see that darker grey values corresponding to higher mortality rates appear in the southern costal states, both on the east and the west coast in good agreement with our earlier results. \begin{figure} \begin{center} <>= spplot(us2, "mortality", col.regions = rev(grey.colors(100))) @ \caption{Map of the United States of America showing malignant melanoma mortality rates. \label{DAGD-USmelanoma-long-lat}} \end{center} \end{figure} Up to now we have primarily focused on the visualization of continuous variables. We now extend our focus to the visualization of categorical variables. \index{Boxplot|)} \index{Histogram|)} \index{Scatterplot|)} \subsection{Chinese Health and Family Life} \index{Barchart|(} \index{Spineplot|(} \index{Spinogram|(} One part of the questionnaire the Chinese Health and Family Life Survey focuses on is the self-reported health status. Two questions are interesting for us. The first one is `Generally speaking, do you consider the condition of your health to be excellent, good, fair, not good, or poor?'. The second question is `Generally speaking, in the past twelve months, how happy were you?'. The distribution of such variables is commonly visualized using barcharts where for each category the total or relative number of observations is displayed. Such a barchart can conveniently be produced by applying the \Rcmd{barplot} function to a tabulation of the data. The empirical density of the variable \Robject{R\_happy} is computed by the \Rcmd{xtabs} function for producing (contingency) tables; the resulting barchart is given in Figure~\ref{DAGD-CHFLS-happy}. \begin{figure} <>= barplot(xtabs(~ R_happy, data = CHFLS)) @ \caption{Bar chart of happiness. \label{DAGD-CHFLS-happy}} \end{figure} The visualization of two categorical variables could be done by conditional barcharts, i.e., barcharts of the first variable within the categories of the second variable. An attractive alternative for displaying such two-way tables are \stress{spineplots} \citep{HSAUR:Friendly1994,HSAUR:HofmannTheus2005,HSAUR:Chenetal2008}; the meaning of the name will become clear when looking at such a plot in Figure~\ref{DAGD-CHFLS-health_happy}. Before constructing such a plot, we produce a two-way table of the health status and self-reported happiness using the \Rcmd{xtabs} function: <>= xtabs(~ R_happy + R_health, data = CHFLS) @ <>= hh <- xtabs(~ R_health + R_happy, data = CHFLS) @ A \stress{spineplot} is a group of rectangles, each representing one cell in the two-way contingency table. The area of the rectangle is proportional with the number of observations in the cell. Here, we produce a mosaic plot of health status and happiness in Figure~\ref{DAGD-CHFLS-health_happy}. \begin{figure} <>= plot(R_happy ~ R_health, data = CHFLS, ylab = "Happiness", xlab = "Health") @ \caption{Spineplot of health status and happiness. \label{DAGD-CHFLS-health_happy}} \end{figure} Consider the right upper cell in Figure~\ref{DAGD-CHFLS-health_happy}, i.e., the $\Sexpr{hh["Excellent", "Very happy"]}$ very happy women with excellent health status. The width of the right-most bar corresponds to the frequency of women with excellent health status. The length of the top-right rectangle corresponds to the conditional frequency of very happy women given their health status is excellent. Multiplying these two quantities gives the area of this cell which corresponds to the frequency of women who are both very happy and enjoy an excellent health status. The conditional frequency of very happy women increases with increasing health status, whereas the conditional frequency of very unhappy or not too happy women decreases. When the association of a categorical and a continuous variable is of interest, say the monthly income and self-reported happiness, one might use parallel boxplots to visualize the distribution of the income depending on happiness. If we were studying self-reported happiness as response and income as independent variable, however, this would give a representation of the conditional distribution of income given happiness, but we are interested in the conditional distribution of happiness given income. One possibility to produce a more appropriate plot is called \stress{spinogram}. Here, the continuous $x$-variable is categorized first. Within each of these categories, the conditional frequencies of the response variable are given by stacked barcharts, in a way similar to spineplots. For happiness depending on log-income (since income is naturally skewed we use a log-transformation of the income) it seems that the proportion of unhappy and not too happy women decreases with increasing income whereas the proportion of very happy women stays rather constant. In contrast to spinograms, where bins, as in a histogram, are given on the $x$-axis, a \stress{conditional density plot} uses the original $x$-axis for a display of the conditional density of the categorical response given the independent variable. \begin{figure} <>= layout(matrix(1:2, ncol = 2)) plot(R_happy ~ log(R_income + 1), data = CHFLS, ylab = "Happiness", xlab = "log(Income + 1)") cdplot(R_happy ~ log(R_income + 1), data = CHFLS, ylab = "Happiness", xlab = "log(Income + 1)") @ \caption{Spinogram (left) and conditional density plot (right) of happiness depending on log-income. \label{DAGD-CHFLS-happy_income}} \end{figure} \index{Barchart|)} \index{Spineplot|)} \index{Spinogram|)} \index{Trellis plot|(} For our last example we return to scatterplots for inspecting the association between a woman's monthly income and the income of her partner. Both income variables have been computed and partially imputed from other self-reported variables and are only rough assessments of the real income. Moreover, the data itself is numeric but heavily tied, making it difficult to produce `correct' scatterplots because points will overlap. A relatively easy trick is to jitter the observation by adding a small random noise to each point in order to avoid overlapping plotting symbols. In addition, we want to study the relationship between both monthly incomes conditional on the woman's education. Such conditioning plots are called \stress{trellis} plots and are implemented in the package \Rpackage{lattice} \citep{PKG:lattice, HSAUR:Sarkar2008}. We utilize the \Rcmd{xyplot} function from package \Rpackage{lattice} to produce a scatterplot. The formula reads as already explained with the exception that a third \stress{conditioning} variable, \Robject{R\_edu} in our case, is present. For each level of education, a separate scatterplot will be produced. The plots are directly comparable since the axes remain the same for all plots. \begin{figure} <>= library("lattice") xyplot(jitter(log(R_income + 0.5)) ~ jitter(log(A_income + 0.5)) | R_edu, data = CHFLS, pch = 19, col = rgb(.1, .1, .1, .1), ylab = "log(Wife's income + .5)", xlab = "log(Husband's income + .5)") @ <>= library("lattice") trellis.par.set(list(plot.symbol = list(col=1,pch=20, cex=0.7), box.rectangle = list(col=1), plot.line = list(col = 1, lwd = 1), box.umbrella = list(lty=1, col=1), strip.background = list(col = "white"))) ltheme <- canonical.theme(color = FALSE) ## in-built B&W theme ltheme$strip.background$col <- "transparent" ## change strip bg lattice.options(default.theme = ltheme) xyplot(jitter(log(R_income + 0.5)) ~ jitter(log(A_income + 0.5)) | R_edu, data = CHFLS, pch = 19, col = rgb(.1, .1, .1, .1), ylab = "log(Wife's income + .5)", xlab = "log(Husband's income + .5)") @ \caption{Scatterplot of jittered log-income of wife and husband, conditional on the wife's education. \label{DAGD-CHFLS-RAincome3}} \end{figure} The plot shown in Figure~\ref{DAGD-CHFLS-RAincome3} reveals several interesting issues. Some observations are positioned on a straight line with slope one, most probably an artifact of missing value imputation by linear models (as described in the data dictionary, see the documentation \texttt{?CHFLS}). Four constellations can be identified: both partners have zero income, the partner has no income, the woman has no income or both partners have a positive income. For couples where the woman has a university degree, the income of both partners is relatively high (except for two couples where only the woman has income). A small number of former junior college students live in relationships where only the man has income, the income of both partners seems only slightly positively correlated for the remaining couples. For lower levels of education, all four constellations are present. The frequency of couples where only the man has some income seems larger than the other way around. Ignoring the observations on the straight line, there is almost no association between the income of both partners. \index{Trellis plot|)} \section{Summary of Findings} Using relatively straightforward graphical techniques only on the two sets of data considered in this chapter we have been able to uncover a number of important features of each data set; \begin{description} \item[Melanoma mortality] Mortality is related only to the latitude of a state not to its longitude, mortality is higher for costal states than for land states, and the highest mortality is observed in the south costal states with latitude less than 32 degrees. \item[Health and family life] We saw that happiness depends on health status. Women reported to be very happy more often when they also reported a good or excellent health status. The dependency of happiness on the income of the women seems to be less clear, but we conclude that, conditional on education, the income of wives and their husbands is highly correlated. \end{description} \section{Final Comments} Producing publication-quality graphics is one of the major strengths of the \R{} system and almost anything is possible since graphics are programmable in \R{}. Naturally, this chapter can be only a very brief introduction to some commonly used displays and the reader is referred to specialized books, most important \cite{HSAUR:Murrell2005}, \cite{HSAUR:Sarkar2008}, and \cite{HSAUR:Chenetal2008}. Interactive 3D-graphics are available from package \Rpackage{rgl} \citep{PKG:rgl}. \section*{Exercises} \begin{description} \exercise The data in Table~\ref{DAGD-household-tab} are part of a data set collected from a survey of household expenditure and give the expenditure of $20$ single men and $20$ single women on four commodity groups. The units of expenditure are Hong Kong dollars, and the four commodity groups are \begin{description} \item[\Robject{housing}] housing, including fuel and light, \item[\Robject{food}] foodstuffs, including alcohol and tobacco, \item[\Robject{goods}] other goods, including clothing, footwear, and durable goods, \item[\Robject{service}] services, including transport and vehicles. \end{description} The aim of the survey was to investigate how the division of household expenditure between the four commodity groups depends on total expenditure and to find out whether this relationship differs for men and women. Use appropriate graphical methods to answer these questions and state your conclusions. <>= data("household", package = "HSAUR3") toLatex(HSAURtable(household), caption = paste("Household expenditure for single men and women."), label = "DAGD-household-tab") @ \exercise The data set shown in Table~\ref{DAGD-USstates-tab} contains values of seven variables for ten states in the US. The seven variables are \begin{description} \item[\Robject{Population}] population size divided by $1000$, \item[\Robject{Income}] average per capita income, \item[\Robject{Illiteracy}] illiteracy rate (\% population), \item[\Robject{Life.Expectancy}] life expectancy (years), \item[\Robject{Homicide}] homicide rate (per $1000$), \item[\Robject{Graduates}] percentage of high school graduates, \item[\Robject{Freezing}] average number of days per below freezing. \end{description} With these data \begin{enumerate} \item Construct a scatterplot matrix of the data labeling the points by state name (using function \Rcmd{text}). \item Construct a plot of life expectancy and homicide rate conditional on average per capita income. \end{enumerate} \begin{sidewaystable} \vspace*{12.5cm} \begin{center} <>= data("USstates", package = "HSAUR3") toLatex(HSAURtable(USstates), caption = paste("Socio-demographic variables for ten US states."), label = "DAGD-USstates-tab") @ \end{center} \end{sidewaystable} \exercise Mortality rates per $100,000$ from male suicides for a number of age groups and a number of countries are given in Table~\ref{DAGD-suicides2-tab}. Construct side-by-side box plots for the data from different age groups, and comment on what the graphic tells us about the data. <>= data("suicides2", package = "HSAUR3") toLatex(HSAURtable(suicides2), caption = paste("Mortality rates per $100,000$ from male suicides."), label = "DAGD-suicides2-tab", rownames = TRUE) @ \exercise \cite{HSAUR:FluryRiedwyl1988} report data that give various length measurements on $200$ Swiss bank notes. The data are available from package \Rpackage{mclust} \citep{PKG:mclust}; a sample of ten bank notes is given in Table~\ref{DAGD-banknote-tab}. <>= data("banknote", package = "mclust") banknote$Status <- NULL banknote <- banknote[c(1:5, 101:200),] toLatex(HSAURtable(banknote, pkg = "mclust", nrow = 10), caption = paste("Swiss bank note data."), label = "DAGD-banknote-tab", rownames = FALSE) @ Use whatever graphical techniques you think are appropriate to investigate whether there is any `pattern' or structure in the data. Do you observe something suspicious? \exercise The data in Table~\ref{DAGD-birds-tab} were originally derived from a study reported in \cite{HSAUR:Vuilleumier1970} which investigated numbers of bird species in isolated `islands' of paramo vegetation in the northern Andes. The aim of the study was to investigate how the number of species (\Robject{N}) is related to four other variables, \Robject{AR} (area of `island' in thousands of square km), \Robject{EL} (elevation in thousands of m), \Robject{Dec} (distance from Ecuador in km) and \Robject{DNI} (distance to the nearest `island' in km). Begin by constructing a scatterplot matrix of the data differentiating the islands on each panel by a different plotting symbol and on each diagonal panel showing the histogram of the associated variable. What can you conclude from this plot about how N is related to the other four variables? <>= data("birds", package = "HSAUR3") toLatex(HSAURtable(birds), caption = paste("Birds in paramo vegetation."), label = "DAGD-birds-tab", rownames = TRUE) @ \end{description} \bibliographystyle{LaTeXBibTeX/refstyle} \bibliography{LaTeXBibTeX/HSAUR} \end{document} HSAUR3/vignettes/Ch_missing_values.Rnw0000644000176200001440000006351314416236367017405 0ustar liggesusers \documentclass{chapman} %%% copy Sweave.sty definitions %%% keeps `sweave' from adding `\usepackage{Sweave}': DO NOT REMOVE %\usepackage{Sweave} \RequirePackage[T1]{fontenc} \RequirePackage{graphicx,ae,fancyvrb} \IfFileExists{upquote.sty}{\RequirePackage{upquote}}{} \usepackage{relsize} \DefineVerbatimEnvironment{Sinput}{Verbatim}{} \DefineVerbatimEnvironment{Soutput}{Verbatim}{fontfamily=courier, fontshape=it, fontsize=\relsize{-1}} \DefineVerbatimEnvironment{Scode}{Verbatim}{} \newenvironment{Schunk}{}{} %%% environment for raw output \newcommand{\SchunkRaw}{\renewenvironment{Schunk}{}{} \DefineVerbatimEnvironment{Soutput}{Verbatim}{fontfamily=courier, fontshape=it, fontsize=\small} \rawSinput } %%% environment for labeled output \newcommand{\nextcaption}{} \newcommand{\SchunkLabel}{ \renewenvironment{Schunk}{\begin{figure}[ht] }{\caption{\nextcaption} \end{figure} } \DefineVerbatimEnvironment{Sinput}{Verbatim}{frame = topline} \DefineVerbatimEnvironment{Soutput}{Verbatim}{frame = bottomline, samepage = true, fontfamily=courier, fontshape=it, fontsize=\relsize{-1}} } %%% S code with line numbers \DefineVerbatimEnvironment{Sinput} {Verbatim} { %% numbers=left } \newcommand{\numberSinput}{ \DefineVerbatimEnvironment{Sinput}{Verbatim}{numbers=left} } \newcommand{\rawSinput}{ \DefineVerbatimEnvironment{Sinput}{Verbatim}{} } %%% R / System symbols \newcommand{\R}{\textsf{R}} \newcommand{\rR}{{R}} \renewcommand{\S}{\textsf{S}} \newcommand{\SPLUS}{\textsf{S-PLUS}} \newcommand{\rSPLUS}{{S-PLUS}} \newcommand{\SPSS}{\textsf{SPSS}} \newcommand{\EXCEL}{\textsf{Excel}} \newcommand{\ACCESS}{\textsf{Access}} \newcommand{\SQL}{\textsf{SQL}} %%\newcommand{\Rpackage}[1]{\hbox{\rm\textit{#1}}} %%\newcommand{\Robject}[1]{\hbox{\rm\texttt{#1}}} %%\newcommand{\Rclass}[1]{\hbox{\rm\textit{#1}}} %%\newcommand{\Rcmd}[1]{\hbox{\rm\texttt{#1}}} \newcommand{\Rpackage}[1]{\index{#1 package@{\fontseries{b}\selectfont #1} package} {\fontseries{b}\selectfont #1}} \newcommand{\rpackage}[1]{{\fontseries{b}\selectfont #1}} \newcommand{\Robject}[1]{\texttt{#1}} \newcommand{\Rclass}[1]{\index{#1 class@\textit{#1} class}\textit{#1}} \newcommand{\Rcmd}[1]{\index{#1 function@\texttt{#1} function}\texttt{#1}} \newcommand{\Roperator}[1]{\texttt{#1}} \newcommand{\Rarg}[1]{\texttt{#1}} \newcommand{\Rlevel}[1]{\texttt{#1}} %%% other symbols \newcommand{\file}[1]{\hbox{\rm\texttt{#1}}} %%\newcommand{\stress}[1]{\index{#1}\textit{#1}} \newcommand{\stress}[1]{\textit{#1}} \newcommand{\booktitle}[1]{\textit{#1}} %%' %%% Math symbols \usepackage{amstext} \usepackage{amsmath} \newcommand{\E}{\mathsf{E}} \newcommand{\Var}{\mathsf{Var}} \newcommand{\Cov}{\mathsf{Cov}} \newcommand{\Cor}{\mathsf{Cor}} \newcommand{\x}{\mathbf{x}} \newcommand{\y}{\mathbf{y}} \renewcommand{\a}{\mathbf{a}} \newcommand{\W}{\mathbf{W}} \newcommand{\C}{\mathbf{C}} \renewcommand{\H}{\mathbf{H}} \newcommand{\X}{\mathbf{X}} \newcommand{\B}{\mathbf{B}} \newcommand{\V}{\mathbf{V}} \newcommand{\I}{\mathbf{I}} \newcommand{\D}{\mathbf{D}} \newcommand{\bS}{\mathbf{S}} \newcommand{\N}{\mathcal{N}} \renewcommand{\L}{L} \renewcommand{\P}{\mathsf{P}} \newcommand{\K}{\mathbf{K}} \newcommand{\m}{\mathbf{m}} \newcommand{\argmin}{\operatorname{argmin}\displaylimits} \newcommand{\argmax}{\operatorname{argmax}\displaylimits} \newcommand{\bx}{\mathbf{x}} \newcommand{\bbeta}{\mathbf{\beta}} %%% links \usepackage{hyperref} \hypersetup{% pdftitle = {A Handbook of Statistical Analyses Using R (3rd Edition)}, pdfsubject = {Book}, pdfauthor = {Torsten Hothorn and Brian S. Everitt}, colorlinks = {black}, linkcolor = {black}, citecolor = {black}, urlcolor = {black}, hyperindex = {true}, linktocpage = {true}, } %%% captions & tables %% : conflics with figure definition in chapman.cls %%\usepackage[format=hang,margin=10pt,labelfont=bf]{caption} %% \usepackage{longtable} \usepackage[figuresright]{rotating} %%% R symbol in chapter 1 \usepackage{wrapfig} %%% Bibliography \usepackage[round,comma]{natbib} \renewcommand{\refname}{References \addcontentsline{toc}{chapter}{References}} \citeindexfalse %%% texi2dvi complains that \newblock is undefined, hm... \def\newblock{\hskip .11em plus .33em minus .07em} %%% Example sections \newcounter{exercise}[chapter] \setcounter{exercise}{0} \newcommand{\exercise}{\stepcounter{exercise} \item{Ex.~\arabic{chapter}.\arabic{exercise} }} %% URLs \newcommand{\curl}[1]{\begin{center} \url{#1} \end{center}} %%% for manual corrections %\renewcommand{\baselinestretch}{2} %%% plot sizes \setkeys{Gin}{width=0.95\textwidth} %%% color \usepackage{color} %%% hyphenations \hyphenation{drop-out} \hyphenation{mar-gi-nal} %%% new bidirectional quotes need \usepackage[utf8]{inputenc} %\usepackage{setspace} \definecolor{sidebox_todo}{rgb}{1,1,0.2} \newcommand{\todo}[1]{ \hspace{0pt}% \marginpar{% \fcolorbox{black}{sidebox_todo}{% \parbox{\marginparwidth} { \raggedright\sffamily\footnotesize{TODO: #1}% } }% } } \begin{document} %% Title page \title{A Handbook of Statistical Analyses Using \R{} --- 3rd Edition} \author{Torsten Hothorn and Brian S. Everitt} \maketitle %%\VignetteIndexEntry{Chapter Missing Values} %%\VignetteDepends{mice} \setcounter{chapter}{15} \SweaveOpts{prefix.string=figures/HSAUR,eps=FALSE,keep.source=TRUE} <>= rm(list = ls()) s <- search()[-1] s <- s[-match(c("package:base", "package:stats", "package:graphics", "package:grDevices", "package:utils", "package:datasets", "package:methods", "Autoloads"), s)] if (length(s) > 0) sapply(s, detach, character.only = TRUE) if (!file.exists("tables")) dir.create("tables") if (!file.exists("figures")) dir.create("figures") set.seed(290875) options(prompt = "R> ", continue = "+ ", width = 63, # digits = 4, show.signif.stars = FALSE, SweaveHooks = list(leftpar = function() par(mai = par("mai") * c(1, 1.05, 1, 1)), bigleftpar = function() par(mai = par("mai") * c(1, 1.7, 1, 1)))) HSAURpkg <- require("HSAUR3") if (!HSAURpkg) stop("cannot load package ", sQuote("HSAUR3")) rm(HSAURpkg) ### hm, R-2.4.0 --vanilla seems to need this a <- Sys.setlocale("LC_ALL", "C") ### book <- TRUE refs <- cbind(c("AItR", "DAGD", "SI", "CI", "ANOVA", "MLR", "GLM", "DE", "RP", "GAM", "SA", "ALDI", "ALDII", "SIMC", "MA", "PCA", "MDS", "CA"), 1:18) ch <- function(x) { ch <- refs[which(refs[,1] == x),] if (book) { return(paste("Chapter~\\\\ref{", ch[1], "}", sep = "")) } else { return(paste("Chapter~", ch[2], sep = "")) } } if (file.exists("deparse.R")) source("deparse.R") setHook(packageEvent("lattice", "attach"), function(...) { lattice.options(default.theme = function() standard.theme("pdf", color = FALSE)) }) @ \pagestyle{headings} <>= book <- FALSE @ \chapter[Missing Values]{Missing Values: Lowering Blood Pressure During Surgery \label{MV}} \section{Introduction} \index{Blood pressure} It is sometimes necessary to lower a patient's blood pressure during surgery, using a hypotensive drug. Such drugs are administered continuously during the relevant phase of the operation; because the duration of this phase varies so does the total amount of drug administered. Patients also vary in the extent to which the drugs succeed in lowering blood pressure. The sooner the blood pressure rises again to normal after the drug is discontinued, the better. The data in Table~\ref{MV-bp-tab} \citep[a missing-value version of the data presented by][]{HSAUR:RobertsonArmitage1959} relate to a particular hypotensive drug and give the time in minutes before the patient's systolic blood pressure returned to 100mm of mercury (the recovery time), the logarithm (base 10) of the dose of drug in milligrams, and the average systolic blood pressure achieved while the drug was being administered. The question of interest is how is the recovery time related to the other two variables? For some patients the recovery time was not recorded and the missing values are indicated as NA in Table~\ref{MV-bp-tab}. <>= data("bp", package = "HSAUR3") toLatex(HSAURtable(bp), pcol = 2, caption = paste("Blood pressure data."), label = "MV-bp-tab") @ \section{Analyzing Multiply Imputed Data} \label{MI:ana} From the analysis of each data set we need to look at the estimates of the quantity of interest, say $Q$, and the variance of the estimates. We let $\hat{Q}_i$ be the estimate from the $i$th data set and $S_i$ its corresponding variance. The combined estimate of the quantity of interest is \begin{eqnarray*} \bar{Q} = \frac{1}{m}\sum_{i = 1}^m \hat{Q}_i. \end{eqnarray*} To find the combined variance involves first calculating the within-imputation variance, \begin{eqnarray*} \bar{S} = \frac{1}{m}\sum_{i = 1}^m S_i \end{eqnarray*} followed by the between-imputation variance, \begin{eqnarray*} B = \frac{1}{m - 1} \sum_{i = 1}^m (\hat{Q}_i - \bar{Q})^2 \end{eqnarray*} then the required total variance can now be found from \begin{eqnarray*} T = \bar{S} + (1 + m^{-1}) B \end{eqnarray*} This total variance is made up of two components; the first which preserves the natural variability, $\bar{S}$, is simply the average of the variance estimates for each imputed data set and is analogous to the variance that would be suitable if we did not need to account for missing data; the second component, $B$, estimates uncertainty caused by missing data by measuring how the point estimates vary from data set to data set. More explanation of how the formula for $T$ arises is given in \cite{HSAUR:vanBuuren2012}. The overall standard error is simply the square root of $T$. A significance test for $Q$ and a confidence interval is found from the usual test statistic, ($Q-$ hypothesized value of $Q$)/$\sqrt{T}$, the value of which is referred to a Student's $t$-distribution. The question arises however as to what is the appropriate value for the degrees of freedom of the test, say $v_0$? \cite{HSAUR:Rubin1987} suggests that the answer to this question is given by; \begin{eqnarray*} v_0 = (m - 1) (1 + 1/r^2) \end{eqnarray*} where \begin{eqnarray*} r = \frac{B + B / m}{\bar{S}} \end{eqnarray*} But \cite{HSAUR:BarnardRubin1999} noted that using this value of $v_0$ can produce values that are larger than the degrees of freedom in the complete data, a result which they considered `clearly inappropriate'. Consequently they developed an adapted version that does not lead to the same problem. Barnard and Rubin's revised value for the degrees of freedom of the $t$-test in which we are interested is $v_1$ given by; \begin{eqnarray*} v_1 = \frac{v_0 v_2}{v_0 + v_2} \end{eqnarray*} where \begin{eqnarray*} v_2 = \frac{n(n-1)(1 - \lambda)}{n + 2} \end{eqnarray*} and \begin{eqnarray*} \lambda = \frac{r}{\sqrt{r^2 + 1}}. \end{eqnarray*} The quantity $v_1$ is always less than or equal to the degrees of freedom of the test applied to the hypothetically complete data. \citep[For more details see][]{HSAUR:vanBuuren2012}. \index{Imputation|)} \section{Analysis Using \R{}} To begin we shall analyze the blood pressure data in Table~\ref{MV-bp-tab} using the complete-case approach, i.e., by simply removing the data for patients where the recovery time is missing. To begin we might simply count the number of missing values using the sapply function as follows: <>= sapply(bp, function(x) sum(is.na(x))) @ So there are ten missing values of recovery time but no missing values amongst the other two variables. Now we use the \Rcmd{summary} function to look at some basic statistics of the complete data for recovery time: <>= summary(bp$recovtime, na.rm = TRUE) @ And next we can calculate the complete data estimate of the standard deviation of recover time <>= sd(bp$recovtime, na.rm = TRUE) @ The final numerical results we might be interested in are the correlations of recovery time with blood pressure and of recovery time with logdose. These can be found as follows: <>= with(bp, cor(bloodp, recovtime, use = "complete.obs")) with(bp, cor(logdose, recovtime, use = "complete.obs")) @ And a useful graphic of the data is a scatterplot matrix which we can construct using \Rcmd{pairs}. The scatterplot matrix is given in Figure~\ref{MV-bp-pairs-cc}. \begin{figure} \begin{center} <>= layout(matrix(1:3, nrow = 1)) plot(bloodp ~ logdose, data = bp) plot(recovtime ~ bloodp, data = bp) plot(recovtime ~ logdose, data = bp) @ \caption{Scatterplots of the complete cases of the \Robject{bp} data. \label{MV-bp-pairs-cc}} \end{center} \end{figure} To investigate how recovery time is related to blood pressure and logdose we might begin by fitting a multiple linear regression model (see Chapter~\ref{MLR}). The relevant command and the summary of the results is shown in Figure~\ref{MV-bp-lm-cc}. Note that this summary output reports that ten observations with missing values were removed prior to the analysis; this is default for many models in \R. \renewcommand{\nextcaption}{\R{} output of the complete-case linear model for the \Robject{bp} data. \label{MV-bp-lm-cc}} \SchunkLabel <>= summary(lm(recovtime ~ bloodp + logdose, data = bp)) @ \SchunkRaw Now let us see what happens when we impute the missing values of the recovery time variable simply by the mean of the complete case; for this we will use the \Rpackage{mice} \citep{PKG:mice} package; <>= library("mice") @ We begin by creating a new data set, \Robject{imp}, which will contain the three variables log-dose, blood pressure, and recovery time with the missing values in the latter replaced by the mean recovery time of the complete cases; <>= imp <- mice(bp, method = "mean", m = 1, maxit = 1) @ So now we can find the summary statistics of recovery time to compare with those given previously <>= with(imp, summary(recovtime)) @ Making the comparison we see that only the values of the first and third quantile and the median have changed. The minimum and maximum values are the same and so, of course, is the mean. But of more interest is what happens to the sample standard deviation; its value for the imputed data can be found using: <>= with(imp, sd(recovtime)) @ The value for the imputed data, $\Sexpr{round(with(imp, sd(recovtime))[["analyses"]][[1]], 2)}$ is, as we would expect, lower than that for the complete data, $\Sexpr{round(with(bp, sd(recovtime, na.rm = TRUE)), 2)}$. What about the correlations? <>= with(imp, cor(bloodp, recovtime)) with(imp, cor(logdose, recovtime)) @ The correlations of blood pression and recovery time are very similar before ($\Sexpr{round(with(bp, cor(bloodp, recovtime, use = "complete.obs")), 2)}$) after ($\Sexpr{round(with(imp, cor(bloodp, recovtime))[["analyses"]][[1]], 2)}$) imputation. For log-dose, imputation changes the correlation from $\Sexpr{round(with(bp, cor(logdose, recovtime, use = "complete.obs")), 2)}$ to $\Sexpr{round(with(imp, cor(logdose, recovtime))[["analyses"]][[1]], 2)}$. The scatterplot of the imputed data is found as given by the code displayed with Figure~\ref{MV-bp-pairs-imp}. For mean imputation, the imputed value of the recovery time is constant for all observations and so they appear as a series of points along the value of the mean value of the observed recovery times namely, $\Sexpr{round(with(bp, mean(recovtime, na.rm = TRUE)), 2)}$. \begin{figure} \begin{center} <>= layout(matrix(1:2, nrow = 1)) plot(recovtime ~ bloodp, data = complete(imp), pch = is.na(bp$recovtime) + 1) plot(recovtime ~ logdose, data = complete(imp), pch = is.na(bp$recovtime) + 1) legend("topleft", pch = 1:2, bty = "n", legend = c("original", "imputed")) @ \caption{Scatterplots of the imputed \Robject{bp} data. Imputed observations are depicted as triangles. \label{MV-bp-pairs-imp}} \end{center} \end{figure} \renewcommand{\nextcaption}{\R{} output of the mean imputation linear model for the \Robject{bp} data. \label{MV-bp-lm-imp}} \SchunkLabel <>= with(imp, summary(lm(recovtime ~ bloodp + logdose))) @ \SchunkRaw Comparison of the multiple linear regression results in Figure~\ref{MV-bp-lm-imp} with those in Figure~\ref{MV-bp-lm-cc} show some interesting differences, for example, the standard errors of the regression coefficients are somewhat lower for the mean imputed data but the conclusions drawn from the results in each table would be broadly similar. \index{Predictive mean matching} The single imputation of a sample mean is not to be recommended and so we will move on to using a more sophisticated multiple imputation procedure know as \stress{predictive mean matching}. The method is described in detail in \cite{HSAUR:vanBuuren2012} who considers it both easy-to-use and versatile. And imputations outside the observed data range will not occur so that problems with meaningless imputations, for example, a negative recovery time, will not occur. The method is labeled \Robject{pmm} in the \Rpackage{mice} package and here we will apply it to the blood pressure data with $m = 10$ (we need to fix the seed in order to make the result reproducible): <>= imp_ppm <- mice(bp, m = 10, method = "pmm", print = FALSE, seed = 1) @ The scatterplot of the imputed data is found as given by the code displayed with Figure~\ref{MV-bp-pairs-imp-mice}. We only show the imputed recovery times from the first iteration ($m = 1$).The imputed recovery times now take different values. \begin{figure} \begin{center} <>= layout(matrix(1:2, nrow = 1)) plot(recovtime ~ bloodp, data = complete(imp_ppm), pch = is.na(bp$recovtime) + 1) plot(recovtime ~ logdose, data = complete(imp_ppm), pch = is.na(bp$recovtime) + 1) legend("topleft", pch = 1:2, bty = "n", legend = c("original", "imputed")) @ \caption{Scatterplots of the multiple imputed \Robject{bp} data (first iteration). Imputed observations are depicted as triangles. \label{MV-bp-pairs-imp-mice}} \end{center} \end{figure} From the resulting object we can compute the mean and standard deviations of recovery time for each of the $m = 10$ iterations. We first extract these numbers from the \Robject{analyses} element of the returned object, convert this list to a vector, and use the \Rcmd{summary} function to compute the usual summary statistics: <>= summary(unlist(with(imp_ppm, mean(recovtime))$analyses)) summary(unlist(with(imp_ppm, sd(recovtime))$analyses)) @ We do the same with the correlations as follows <>= summary(unlist(with(imp_ppm, cor(bloodp, recovtime))$analyses)) summary(unlist(with(imp_ppm, cor(logdose, recovtime))$analyses)) @ The estimate of the mean of the blood pressure data from the multiply imputed results is $\Sexpr{round(mean(unlist(with(imp_ppm, mean(recovtime))$analyses)) , 2)}$, very similar to the values found previously. Similarly the estimate of the standard deviation of the data is $\Sexpr{round(mean(unlist(with(imp_ppm, sd(recovtime))$analyses)) , 2)}$ which lies between the complete data estimate and the \emph{mean-imputed} value. The two correlation estimates are also very close to the previous values. The variation in the estimates of mean, standard deviation, and correlations across the ten imputation is relatively small apart from that for the correlation between log-dose and recovery time -- here there is considerable variation in the values for the ten imputations. Finally, we will fit a linear model to each of the imputed samples and then find the summary statistics for the ten sets of regression coefficients: the results are given in Figure~\ref{MV-bp-lm-cc-mice}: <>= fit <- with(imp_ppm, lm(recovtime ~ bloodp + logdose)) @ \renewcommand{\nextcaption}{\R{} output of the multiple imputed linear model for the \Robject{bp} data. \label{MV-bp-lm-cc-mice}} \SchunkLabel <>= summary(pool(fit)) @ \SchunkRaw The result for blood pressure is similar to the previous complete data and mean-imputed results with the regression coefficient for this variable being highly significant $(p = \Sexpr{round(summary(pool(fit))["bloodp", 5], 3)})$. But the result for log dose differs from those found previously; for the multiply imputed data the regression coefficient for log dose is not significant at the $5\%$ level $(p = \Sexpr{round(summary(pool(fit))["logdose", 5], 3)})$ whereas in both of the previous two analyses it was significant. This finding reflects the greater variation of the value of the correlation between log dose and recovery time in the ten imputations noted above. (Remember that the standard errors in Figure~\ref{MV-bp-lm-cc-mice} computed by \Rcmd{pool} arise from the formulae given in Section~\ref{MI:ana}.) Now suppose we wish to test the hypothesis that in the population from which the sample data in Table~\ref{MV-bp-tab} arises a mean recovery time of $27$ minutes. We will test this hypothesis in the usual way using Student's t-test applied to the complete-data, the singly imputed data, and the multiply imputed data: <>= with(bp, t.test(recovtime, mu = 27)) with(imp, t.test(recovtime, mu = 27))$analyses[[1]] @ For the multiply imputed data we need to use the \Rcmd{lm} function to get the equivalent of the $t$-test by modeling recovery time minus $27$ with an intercept only and testing for zero intercept. So the code needed is: <>= fit <- with(imp_ppm, lm(I(recovtime - 27) ~ 1)) summary(pool(fit)) @ Looking at the results of the three analyses we see that the complete-case analysis fails to reject the hypothesis at the $5\%$ level whereas the other two analyses lead to results that are statistically significant at the level. This simple (and perhaps rather artificial) example demonstrates that different conclusions can be reached by the different approaches. \section{Summary of Findings} The estimated standard deviation of the blood pressure is lower when computed from the mean-imputed data than from the complete data. The corresponding value from the multiply imputed data lies between these two values. The estimate of the mean from the multiply imputed data is very similar to the value obtained in the complete data analysis. (The value from the singly imputed data is, of course, the same as from the complete data.) The estimates of the correlations between blood pressure and recovery time and log dose and recovery time are very similar in all three analyses but the variation in the latter across the ten multiple imputations is considerable and this results in the regression coefficient for log dose being less significant than in the other two analyses. Testing the hypothesis that the population mean of recovery time is $27$ minutes using complete-case analysis leads to a different conclusion than is arrived at by the two multiple imputations approaches. \section{Final Comments} Missing values are an ever-present possibility in all types of studies although everything possible should be done to avoid them. But when data contain missing values multiple imputation can be used to provide valid inferences for parameter estimates from the incomplete data. If carefully handled, multiple imputation can cope with missing data in all types of variables. In this chapter we have given only a brief account of dealing with missing values; a detailed account is available in the issue of \stress{Statistical Methods in Medical Research entitled Multiple Imputation: Current Perspectives} (Volume 16, Number 3, 2007) and in \cite{HSAUR:vanBuuren2012}. \section*{Exercises} \begin{description} \exercise The data in Table~\ref{MI-UStemp-tab} give the lowest temperatures (in Fahrenheit) recorded in various months for cities in the US; missing values are indicated by NA. Calculate the correlation matrix of the data using \begin{enumerate} \item the complete-case approach, \item the available-data approach, and \item a multiple-imputation approach. \end{enumerate} Find the principal components of the data using each of three correlation matrices and plot the cities in the space of the first two components of each solution. <>= data("UStemp", package = "HSAUR3") toLatex(HSAURtable(UStemp), caption = "Lowest temperatures in Fahrenheit recorded in various months for cities in the US.", label = "MI-UStemp-tab", rownames = TRUE) @ \exercise Find $95\%$ confidence intervals for the population means of the lowest temperature in each month using \begin{enumerate} \item the complete-case approach, \item the mean value imputation, and \item a multiple-imputation approach. \end{enumerate} \exercise Find the correlation matrix for the four months in Table~\ref{MI-UStemp-tab} using complete-case analysis, listwise deletion, and multiple imputation. \end{description} %%\bibliographystyle{LaTeXBibTeX/refstyle} %%\bibliography{LaTeXBibTeX/HSAUR} \end{document} HSAUR3/vignettes/Ch_analysis_of_variance.Rnw0000644000176200001440000004721114416236367020531 0ustar liggesusers \documentclass{chapman} %%% copy Sweave.sty definitions %%% keeps `sweave' from adding `\usepackage{Sweave}': DO NOT REMOVE %\usepackage{Sweave} \RequirePackage[T1]{fontenc} \RequirePackage{graphicx,ae,fancyvrb} \IfFileExists{upquote.sty}{\RequirePackage{upquote}}{} \usepackage{relsize} \DefineVerbatimEnvironment{Sinput}{Verbatim}{} \DefineVerbatimEnvironment{Soutput}{Verbatim}{fontfamily=courier, fontshape=it, fontsize=\relsize{-1}} \DefineVerbatimEnvironment{Scode}{Verbatim}{} \newenvironment{Schunk}{}{} %%% environment for raw output \newcommand{\SchunkRaw}{\renewenvironment{Schunk}{}{} \DefineVerbatimEnvironment{Soutput}{Verbatim}{fontfamily=courier, fontshape=it, fontsize=\small} \rawSinput } %%% environment for labeled output \newcommand{\nextcaption}{} \newcommand{\SchunkLabel}{ \renewenvironment{Schunk}{\begin{figure}[ht] }{\caption{\nextcaption} \end{figure} } \DefineVerbatimEnvironment{Sinput}{Verbatim}{frame = topline} \DefineVerbatimEnvironment{Soutput}{Verbatim}{frame = bottomline, samepage = true, fontfamily=courier, fontshape=it, fontsize=\relsize{-1}} } %%% S code with line numbers \DefineVerbatimEnvironment{Sinput} {Verbatim} { %% numbers=left } \newcommand{\numberSinput}{ \DefineVerbatimEnvironment{Sinput}{Verbatim}{numbers=left} } \newcommand{\rawSinput}{ \DefineVerbatimEnvironment{Sinput}{Verbatim}{} } %%% R / System symbols \newcommand{\R}{\textsf{R}} \newcommand{\rR}{{R}} \renewcommand{\S}{\textsf{S}} \newcommand{\SPLUS}{\textsf{S-PLUS}} \newcommand{\rSPLUS}{{S-PLUS}} \newcommand{\SPSS}{\textsf{SPSS}} \newcommand{\EXCEL}{\textsf{Excel}} \newcommand{\ACCESS}{\textsf{Access}} \newcommand{\SQL}{\textsf{SQL}} %%\newcommand{\Rpackage}[1]{\hbox{\rm\textit{#1}}} %%\newcommand{\Robject}[1]{\hbox{\rm\texttt{#1}}} %%\newcommand{\Rclass}[1]{\hbox{\rm\textit{#1}}} %%\newcommand{\Rcmd}[1]{\hbox{\rm\texttt{#1}}} \newcommand{\Rpackage}[1]{\index{#1 package@{\fontseries{b}\selectfont #1} package} {\fontseries{b}\selectfont #1}} \newcommand{\rpackage}[1]{{\fontseries{b}\selectfont #1}} \newcommand{\Robject}[1]{\texttt{#1}} \newcommand{\Rclass}[1]{\index{#1 class@\textit{#1} class}\textit{#1}} \newcommand{\Rcmd}[1]{\index{#1 function@\texttt{#1} function}\texttt{#1}} \newcommand{\Roperator}[1]{\texttt{#1}} \newcommand{\Rarg}[1]{\texttt{#1}} \newcommand{\Rlevel}[1]{\texttt{#1}} %%% other symbols \newcommand{\file}[1]{\hbox{\rm\texttt{#1}}} %%\newcommand{\stress}[1]{\index{#1}\textit{#1}} \newcommand{\stress}[1]{\textit{#1}} \newcommand{\booktitle}[1]{\textit{#1}} %%' %%% Math symbols \usepackage{amstext} \usepackage{amsmath} \newcommand{\E}{\mathsf{E}} \newcommand{\Var}{\mathsf{Var}} \newcommand{\Cov}{\mathsf{Cov}} \newcommand{\Cor}{\mathsf{Cor}} \newcommand{\x}{\mathbf{x}} \newcommand{\y}{\mathbf{y}} \renewcommand{\a}{\mathbf{a}} \newcommand{\W}{\mathbf{W}} \newcommand{\C}{\mathbf{C}} \renewcommand{\H}{\mathbf{H}} \newcommand{\X}{\mathbf{X}} \newcommand{\B}{\mathbf{B}} \newcommand{\V}{\mathbf{V}} \newcommand{\I}{\mathbf{I}} \newcommand{\D}{\mathbf{D}} \newcommand{\bS}{\mathbf{S}} \newcommand{\N}{\mathcal{N}} \renewcommand{\L}{L} \renewcommand{\P}{\mathsf{P}} \newcommand{\K}{\mathbf{K}} \newcommand{\m}{\mathbf{m}} \newcommand{\argmin}{\operatorname{argmin}\displaylimits} \newcommand{\argmax}{\operatorname{argmax}\displaylimits} \newcommand{\bx}{\mathbf{x}} \newcommand{\bbeta}{\mathbf{\beta}} %%% links \usepackage{hyperref} \hypersetup{% pdftitle = {A Handbook of Statistical Analyses Using R (3rd Edition)}, pdfsubject = {Book}, pdfauthor = {Torsten Hothorn and Brian S. Everitt}, colorlinks = {black}, linkcolor = {black}, citecolor = {black}, urlcolor = {black}, hyperindex = {true}, linktocpage = {true}, } %%% captions & tables %% : conflics with figure definition in chapman.cls %%\usepackage[format=hang,margin=10pt,labelfont=bf]{caption} %% \usepackage{longtable} \usepackage[figuresright]{rotating} %%% R symbol in chapter 1 \usepackage{wrapfig} %%% Bibliography \usepackage[round,comma]{natbib} \renewcommand{\refname}{References \addcontentsline{toc}{chapter}{References}} \citeindexfalse %%% texi2dvi complains that \newblock is undefined, hm... \def\newblock{\hskip .11em plus .33em minus .07em} %%% Example sections \newcounter{exercise}[chapter] \setcounter{exercise}{0} \newcommand{\exercise}{\stepcounter{exercise} \item{Ex.~\arabic{chapter}.\arabic{exercise} }} %% URLs \newcommand{\curl}[1]{\begin{center} \url{#1} \end{center}} %%% for manual corrections %\renewcommand{\baselinestretch}{2} %%% plot sizes \setkeys{Gin}{width=0.95\textwidth} %%% color \usepackage{color} %%% hyphenations \hyphenation{drop-out} \hyphenation{mar-gi-nal} %%% new bidirectional quotes need \usepackage[utf8]{inputenc} %\usepackage{setspace} \definecolor{sidebox_todo}{rgb}{1,1,0.2} \newcommand{\todo}[1]{ \hspace{0pt}% \marginpar{% \fcolorbox{black}{sidebox_todo}{% \parbox{\marginparwidth} { \raggedright\sffamily\footnotesize{TODO: #1}% } }% } } \begin{document} %% Title page \title{A Handbook of Statistical Analyses Using \R{} --- 3rd Edition} \author{Torsten Hothorn and Brian S. Everitt} \maketitle %%\VignetteIndexEntry{Chapter Analysis of Variance} %%\VignetteDepends{wordcloud} \setcounter{chapter}{4} \SweaveOpts{prefix.string=figures/HSAUR,eps=FALSE,keep.source=TRUE} <>= rm(list = ls()) s <- search()[-1] s <- s[-match(c("package:base", "package:stats", "package:graphics", "package:grDevices", "package:utils", "package:datasets", "package:methods", "Autoloads"), s)] if (length(s) > 0) sapply(s, detach, character.only = TRUE) if (!file.exists("tables")) dir.create("tables") if (!file.exists("figures")) dir.create("figures") set.seed(290875) options(prompt = "R> ", continue = "+ ", width = 63, # digits = 4, show.signif.stars = FALSE, SweaveHooks = list(leftpar = function() par(mai = par("mai") * c(1, 1.05, 1, 1)), bigleftpar = function() par(mai = par("mai") * c(1, 1.7, 1, 1)))) HSAURpkg <- require("HSAUR3") if (!HSAURpkg) stop("cannot load package ", sQuote("HSAUR3")) rm(HSAURpkg) ### hm, R-2.4.0 --vanilla seems to need this a <- Sys.setlocale("LC_ALL", "C") ### book <- TRUE refs <- cbind(c("AItR", "DAGD", "SI", "CI", "ANOVA", "MLR", "GLM", "DE", "RP", "GAM", "SA", "ALDI", "ALDII", "SIMC", "MA", "PCA", "MDS", "CA"), 1:18) ch <- function(x) { ch <- refs[which(refs[,1] == x),] if (book) { return(paste("Chapter~\\\\ref{", ch[1], "}", sep = "")) } else { return(paste("Chapter~", ch[2], sep = "")) } } if (file.exists("deparse.R")) source("deparse.R") setHook(packageEvent("lattice", "attach"), function(...) { lattice.options(default.theme = function() standard.theme("pdf", color = FALSE)) }) @ \pagestyle{headings} <>= book <- FALSE @ <>= library("wordcloud") @ \chapter[Analysis of Variance]{Analysis of Variance: Weight Gain, Foster Feeding in Rats, Water Hardness, and Male Egyptian Skulls \label{ANOVA}} \section{Introduction} \section{Analysis of Variance} \section{Analysis Using \R{}} \subsection{Weight Gain in Rats \label{ANOVA:rats}} Before applying analysis of variance to the data in Table~\ref{ANOVA-weightgain-tab} we should try to summarize the main features of the data by calculating means and standard deviations and by producing some hopefully informative graphs. The data is available in the \Rclass{data.frame} \Robject{weightgain}. The following \R{} code produces the required summary statistics <>= data("weightgain", package = "HSAUR3") tapply(weightgain$weightgain, list(weightgain$source, weightgain$type), mean) tapply(weightgain$weightgain, list(weightgain$source, weightgain$type), sd) @ \begin{figure} \begin{center} <>= plot.design(weightgain) @ \caption{Plot of mean weight gain for each level of the two factors. \label{ANOVA-weightgain-fig}} \end{center} \end{figure} To apply analysis of variance to the data we can use the \Rcmd{aov} function in \R{} and then the \Rcmd{summary} method to give us the usual analysis of variance table. The model \Rclass{formula} specifies a two-way layout with interaction terms, where the first factor is \Robject{source}, and the second factor is \Robject{type}. <>= wg_aov <- aov(weightgain ~ source * type, data = weightgain) @ \renewcommand{\nextcaption}{\R{} output of the ANOVA fit for the \Robject{weightgain} data. \label{ANOVA-weightgain-output}} \SchunkLabel <>= summary(wg_aov) @ \SchunkRaw \begin{figure} \begin{center} <>= interaction.plot(weightgain$type, weightgain$source, weightgain$weightgain) @ <>= interaction.plot(weightgain$type, weightgain$source, weightgain$weightgain, legend = FALSE) legend(1.5, 95, legend = levels(weightgain$source), title = "weightgain$source", lty = c(2,1), bty = "n") @ \caption{Interaction plot of type and source. \label{ANOVA-weightgain-fig2}} \end{center} \end{figure} The estimates of the intercept and the main and interaction effects can be extracted from the model fit by <>= coef(wg_aov) @ Note that the model was fitted with the restrictions $\gamma_1 = 0$ (corresponding to \Rlevel{Beef}) and $\beta_1 = 0$ (corresponding to \Rlevel{High}) because treatment contrasts were used as default as can be seen from <>= options("contrasts") @ Thus, the coefficient for \Robject{source} of $\Sexpr{coef(wg_aov)[2]}$ can be interpreted as an estimate of the difference $\gamma_2 - \gamma_1$. Alternatively, we can use the restriction $\sum_i \gamma_i = 0$ by <>= coef(aov(weightgain ~ source + type + source:type, data = weightgain, contrasts = list(source = contr.sum))) @ \subsection{Foster Feeding of Rats of Different Genotype} As in the previous subsection we will begin the analysis of the foster feeding data in Table~\ref{ANOVA-foster-tab} with a plot of the mean litter weight for the different genotypes of mother and litter (see Figure~\ref{ANOVA-foster-fig}). The data are in the \Rclass{data.frame} \Robject{foster} <>= data("foster", package = "HSAUR3") @ \begin{figure} \begin{center} <>= plot.design(foster) @ \caption{Plot of mean litter weight for each level of the two factors for the \Robject{foster} data. \label{ANOVA-foster-fig}} \end{center} \end{figure} We can derive the two analyses of variance tables for the foster feeding example by applying the \R{} code <>= summary(aov(weight ~ litgen * motgen, data = foster)) @ to give <>= summary(aov(weight ~ litgen * motgen, data = foster)) @ and then the code <>= summary(aov(weight ~ motgen * litgen, data = foster)) @ to give <>= summary(aov(weight ~ motgen * litgen, data = foster)) @ There are (small) differences in the sum of squares for the two main effects and, consequently, in the associated $F$-tests and $p$-values. \index{F-tests@$F$-tests} This would not be true if in the previous example in Subsection~\ref{ANOVA:rats} we had used the code <>= summary(aov(weightgain ~ type * source, data = weightgain)) @ instead of the code which produced Figure~\ref{ANOVA-weightgain-output} (readers should confirm that this is the case). We can investigate the effect of genotype B on litter weight in more detail by the use of \stress{multiple comparison procedures} \index{Multiple comparison procedures|(} \citep[see][and \Sexpr{ch("SIMC")}]{HSAUR:Everitt1996}. Such procedures allow a comparison of all pairs of levels of a factor whilst maintaining the nominal significance level at its specified value and producing adjusted confidence intervals for mean differences. One such procedure is called \stress{Tukey honest significant differences} \index{Tukey honest significant differences} suggested by \cite{HSAUR:Tukey1953}; see \cite{HSAUR:HochbergTamhane1987} also. Here, we are interested in simultaneous confidence intervals for the weight differences between all four genotypes of the mother. First, an ANOVA model is fitted <>= foster_aov <- aov(weight ~ litgen * motgen, data = foster) @ which serves as the basis of the multiple comparisons, here with all pair-wise differences by <>= foster_hsd <- TukeyHSD(foster_aov, "motgen") foster_hsd @ A convenient \Rcmd{plot} method exists for this object and we can get a graphical representation of the multiple confidence intervals as shown in Figure~\ref{ANOVA-foster-mc}. It appears that there is only evidence for a difference in the B and J genotypes. Note that the particular method implemented in \Rcmd{TukeyHSD} is applicable only to balanced and mildly unbalanced designs (which is the case here). Alternative approaches, applicable to unbalanced designs and more general research questions, will be introduced and discussed in \Sexpr{ch("SIMC")}. \begin{figure} \begin{center} <>= plot(foster_hsd) @ \caption{Graphical presentation of multiple comparison results for the \Robject{foster} feeding data. \label{ANOVA-foster-mc}} \end{center} \end{figure} \index{Multiple comparison procedures|)} \subsection{Water Hardness and Mortality} The water hardness and mortality data for $61$ large towns in England and Wales (see Table~2.3) was analyzed in \Sexpr{ch("SI")} and here we will extend the analysis by an assessment of the differences of both hardness and mortality in the North or South. The hypothesis that the two-dimensional mean-vector of water hardness and mortality is the same for cities in the North and the South can be tested by \stress{Hotelling-Lawley} test in a multivariate analysis of variance framework. The \R{} function \Rcmd{manova} can be used to fit such a model and the corresponding \Rcmd{summary} method performs the test specified by the \Rcmd{test} argument <>= data("water", package = "HSAUR3") summary(manova(cbind(hardness, mortality) ~ location, data = water), test = "Hotelling-Lawley") @ The \Rcmd{cbind} statement in the left-hand side of the formula indicates that a \stress{multivariate} response variable is to be modeled. \index{cbind function in formula@\texttt{cbind} function in \textit{formula}} The $p$-value associated with the \stress{Hotelling-Lawley} statistic is very small and there is strong evidence that the mean vectors of the two variables are not the same in the two regions. Looking at the sample means <>= tapply(water$hardness, water$location, mean) tapply(water$mortality, water$location, mean) @ we see large differences in the two regions both in water hardness and mortality, where low mortality is associated with hard water in the South and high mortality with soft water in the North (see Figure~\ref{SI-water-sp} also). \subsection{Male Egyptian Skulls} \index{Multivariate analysis of variance (MANOVA)|(} We can begin by looking at a table of mean values for the four measurements within each of the five epochs. The measurements are available in the \Rclass{data.frame} \Robject{skulls} and we can compute the means over all epochs by <>= data("skulls", package = "HSAUR3") means <- aggregate(skulls[,c("mb", "bh", "bl", "nh")], list(epoch = skulls$epoch), mean) means @ It may also be useful to look at these means graphically and this could be done in a variety of ways. Here we construct a scatterplot matrix of the means using the code attached to Figure~\ref{ANOVA-skulls-fig}. %% %% now uses wordcloud::textplot but xlim/ylim needs to be increased %% \begin{figure} \begin{center} <>= pairs(means[,-1], panel = function(x, y) { textplot(x, y, levels(skulls$epoch), new = FALSE, cex = 0.8) }) @ \caption{Scatterplot matrix of epoch means for Egyptian \Robject{skulls} data. \label{ANOVA-skulls-fig}} \end{center} \end{figure} There appear to be quite large differences between the epoch means, at least on some of the four measurements. We can now test for a difference more formally by using MANOVA with the following \R{} code to apply each of the four possible test criteria mentioned earlier; <>= skulls_manova <- manova(cbind(mb, bh, bl, nh) ~ epoch, data = skulls) summary(skulls_manova, test = "Pillai") summary(skulls_manova, test = "Wilks") summary(skulls_manova, test = "Hotelling-Lawley") summary(skulls_manova, test = "Roy") @ The $p$-value associated with each four test criteria is very small and there is strong evidence that the skull measurements differ between the five epochs. We might now move on to investigate which epochs differ and on which variables. We can look at the univariate $F$-tests \index{F-tests@$F$-tests} for each of the four variables by using the code <>= summary.aov(skulls_manova) @ We see that the results for the maximum breadths (\Robject{mb}) and basialiveolar length (\Robject{bl}) are highly significant, with those for the other two variables, in particular for nasal heights (\Robject{nh}), suggesting little evidence of a difference. To look at the pairwise multivariate tests (any of the four test criteria are equivalent in the case of a one-way layout with two levels only) we can use the \Rcmd{summary} method and \Rcmd{manova} function as follows: <>= summary(manova(cbind(mb, bh, bl, nh) ~ epoch, data = skulls, subset = epoch %in% c("c4000BC", "c3300BC"))) summary(manova(cbind(mb, bh, bl, nh) ~ epoch, data = skulls, subset = epoch %in% c("c4000BC", "c1850BC"))) summary(manova(cbind(mb, bh, bl, nh) ~ epoch, data = skulls, subset = epoch %in% c("c4000BC", "c200BC"))) summary(manova(cbind(mb, bh, bl, nh) ~ epoch, data = skulls, subset = epoch %in% c("c4000BC", "cAD150"))) @ To keep the overall significance level for the set of all pairwise multivariate tests under some control (and still maintain a reasonable power), \cite{HSAUR:Stevens2001} recommends setting the nominal level $\alpha = 0.15$ and carrying out each test at the $\alpha / m$ level where $m$ is the number of tests performed. The results of the four pairwise tests suggest that as the epochs become further separated in time the four skull measurements become increasingly distinct. \index{Multivariate analysis of variance (MANOVA)|)} \bibliographystyle{LaTeXBibTeX/refstyle} \bibliography{LaTeXBibTeX/HSAUR} \end{document} HSAUR3/vignettes/Ch_simultaneous_inference.Rnw0000644000176200001440000005557314416236370021124 0ustar liggesusers \documentclass{chapman} %%% copy Sweave.sty definitions %%% keeps `sweave' from adding `\usepackage{Sweave}': DO NOT REMOVE %\usepackage{Sweave} \RequirePackage[T1]{fontenc} \RequirePackage{graphicx,ae,fancyvrb} \IfFileExists{upquote.sty}{\RequirePackage{upquote}}{} \usepackage{relsize} \DefineVerbatimEnvironment{Sinput}{Verbatim}{} \DefineVerbatimEnvironment{Soutput}{Verbatim}{fontfamily=courier, fontshape=it, fontsize=\relsize{-1}} \DefineVerbatimEnvironment{Scode}{Verbatim}{} \newenvironment{Schunk}{}{} %%% environment for raw output \newcommand{\SchunkRaw}{\renewenvironment{Schunk}{}{} \DefineVerbatimEnvironment{Soutput}{Verbatim}{fontfamily=courier, fontshape=it, fontsize=\small} \rawSinput } %%% environment for labeled output \newcommand{\nextcaption}{} \newcommand{\SchunkLabel}{ \renewenvironment{Schunk}{\begin{figure}[ht] }{\caption{\nextcaption} \end{figure} } \DefineVerbatimEnvironment{Sinput}{Verbatim}{frame = topline} \DefineVerbatimEnvironment{Soutput}{Verbatim}{frame = bottomline, samepage = true, fontfamily=courier, fontshape=it, fontsize=\relsize{-1}} } %%% S code with line numbers \DefineVerbatimEnvironment{Sinput} {Verbatim} { %% numbers=left } \newcommand{\numberSinput}{ \DefineVerbatimEnvironment{Sinput}{Verbatim}{numbers=left} } \newcommand{\rawSinput}{ \DefineVerbatimEnvironment{Sinput}{Verbatim}{} } %%% R / System symbols \newcommand{\R}{\textsf{R}} \newcommand{\rR}{{R}} \renewcommand{\S}{\textsf{S}} \newcommand{\SPLUS}{\textsf{S-PLUS}} \newcommand{\rSPLUS}{{S-PLUS}} \newcommand{\SPSS}{\textsf{SPSS}} \newcommand{\EXCEL}{\textsf{Excel}} \newcommand{\ACCESS}{\textsf{Access}} \newcommand{\SQL}{\textsf{SQL}} %%\newcommand{\Rpackage}[1]{\hbox{\rm\textit{#1}}} %%\newcommand{\Robject}[1]{\hbox{\rm\texttt{#1}}} %%\newcommand{\Rclass}[1]{\hbox{\rm\textit{#1}}} %%\newcommand{\Rcmd}[1]{\hbox{\rm\texttt{#1}}} \newcommand{\Rpackage}[1]{\index{#1 package@{\fontseries{b}\selectfont #1} package} {\fontseries{b}\selectfont #1}} \newcommand{\rpackage}[1]{{\fontseries{b}\selectfont #1}} \newcommand{\Robject}[1]{\texttt{#1}} \newcommand{\Rclass}[1]{\index{#1 class@\textit{#1} class}\textit{#1}} \newcommand{\Rcmd}[1]{\index{#1 function@\texttt{#1} function}\texttt{#1}} \newcommand{\Roperator}[1]{\texttt{#1}} \newcommand{\Rarg}[1]{\texttt{#1}} \newcommand{\Rlevel}[1]{\texttt{#1}} %%% other symbols \newcommand{\file}[1]{\hbox{\rm\texttt{#1}}} %%\newcommand{\stress}[1]{\index{#1}\textit{#1}} \newcommand{\stress}[1]{\textit{#1}} \newcommand{\booktitle}[1]{\textit{#1}} %%' %%% Math symbols \usepackage{amstext} \usepackage{amsmath} \newcommand{\E}{\mathsf{E}} \newcommand{\Var}{\mathsf{Var}} \newcommand{\Cov}{\mathsf{Cov}} \newcommand{\Cor}{\mathsf{Cor}} \newcommand{\x}{\mathbf{x}} \newcommand{\y}{\mathbf{y}} \renewcommand{\a}{\mathbf{a}} \newcommand{\W}{\mathbf{W}} \newcommand{\C}{\mathbf{C}} \renewcommand{\H}{\mathbf{H}} \newcommand{\X}{\mathbf{X}} \newcommand{\B}{\mathbf{B}} \newcommand{\V}{\mathbf{V}} \newcommand{\I}{\mathbf{I}} \newcommand{\D}{\mathbf{D}} \newcommand{\bS}{\mathbf{S}} \newcommand{\N}{\mathcal{N}} \renewcommand{\L}{L} \renewcommand{\P}{\mathsf{P}} \newcommand{\K}{\mathbf{K}} \newcommand{\m}{\mathbf{m}} \newcommand{\argmin}{\operatorname{argmin}\displaylimits} \newcommand{\argmax}{\operatorname{argmax}\displaylimits} \newcommand{\bx}{\mathbf{x}} \newcommand{\bbeta}{\mathbf{\beta}} %%% links \usepackage{hyperref} \hypersetup{% pdftitle = {A Handbook of Statistical Analyses Using R (3rd Edition)}, pdfsubject = {Book}, pdfauthor = {Torsten Hothorn and Brian S. Everitt}, colorlinks = {black}, linkcolor = {black}, citecolor = {black}, urlcolor = {black}, hyperindex = {true}, linktocpage = {true}, } %%% captions & tables %% : conflics with figure definition in chapman.cls %%\usepackage[format=hang,margin=10pt,labelfont=bf]{caption} %% \usepackage{longtable} \usepackage[figuresright]{rotating} %%% R symbol in chapter 1 \usepackage{wrapfig} %%% Bibliography \usepackage[round,comma]{natbib} \renewcommand{\refname}{References \addcontentsline{toc}{chapter}{References}} \citeindexfalse %%% texi2dvi complains that \newblock is undefined, hm... \def\newblock{\hskip .11em plus .33em minus .07em} %%% Example sections \newcounter{exercise}[chapter] \setcounter{exercise}{0} \newcommand{\exercise}{\stepcounter{exercise} \item{Ex.~\arabic{chapter}.\arabic{exercise} }} %% URLs \newcommand{\curl}[1]{\begin{center} \url{#1} \end{center}} %%% for manual corrections %\renewcommand{\baselinestretch}{2} %%% plot sizes \setkeys{Gin}{width=0.95\textwidth} %%% color \usepackage{color} %%% hyphenations \hyphenation{drop-out} \hyphenation{mar-gi-nal} %%% new bidirectional quotes need \usepackage[utf8]{inputenc} %\usepackage{setspace} \definecolor{sidebox_todo}{rgb}{1,1,0.2} \newcommand{\todo}[1]{ \hspace{0pt}% \marginpar{% \fcolorbox{black}{sidebox_todo}{% \parbox{\marginparwidth} { \raggedright\sffamily\footnotesize{TODO: #1}% } }% } } \begin{document} %% Title page \title{A Handbook of Statistical Analyses Using \R{} --- 3rd Edition} \author{Torsten Hothorn and Brian S. Everitt} \maketitle %%\VignetteIndexEntry{Chapter Simultaneous Inference and Multiple Comparisons} %%\VignetteDepends{lme4,multcomp,coin,sandwich} \setcounter{chapter}{14} \SweaveOpts{prefix.string=figures/HSAUR,eps=FALSE,keep.source=TRUE} <>= rm(list = ls()) s <- search()[-1] s <- s[-match(c("package:base", "package:stats", "package:graphics", "package:grDevices", "package:utils", "package:datasets", "package:methods", "Autoloads"), s)] if (length(s) > 0) sapply(s, detach, character.only = TRUE) if (!file.exists("tables")) dir.create("tables") if (!file.exists("figures")) dir.create("figures") set.seed(290875) options(prompt = "R> ", continue = "+ ", width = 63, # digits = 4, show.signif.stars = FALSE, SweaveHooks = list(leftpar = function() par(mai = par("mai") * c(1, 1.05, 1, 1)), bigleftpar = function() par(mai = par("mai") * c(1, 1.7, 1, 1)))) HSAURpkg <- require("HSAUR3") if (!HSAURpkg) stop("cannot load package ", sQuote("HSAUR3")) rm(HSAURpkg) ### hm, R-2.4.0 --vanilla seems to need this a <- Sys.setlocale("LC_ALL", "C") ### book <- TRUE refs <- cbind(c("AItR", "DAGD", "SI", "CI", "ANOVA", "MLR", "GLM", "DE", "RP", "GAM", "SA", "ALDI", "ALDII", "SIMC", "MA", "PCA", "MDS", "CA"), 1:18) ch <- function(x) { ch <- refs[which(refs[,1] == x),] if (book) { return(paste("Chapter~\\\\ref{", ch[1], "}", sep = "")) } else { return(paste("Chapter~", ch[2], sep = "")) } } if (file.exists("deparse.R")) source("deparse.R") setHook(packageEvent("lattice", "attach"), function(...) { lattice.options(default.theme = function() standard.theme("pdf", color = FALSE)) }) @ \pagestyle{headings} <>= book <- FALSE @ <>= library("multcomp") library("coin") library("sandwich") library("lme4") @ \chapter[Simultaneous Inference and Multiple Comparisons]{Simultaneous Inference and Multiple Comparisons: Genetic Components of Alcoholism, Deer Browsing Intensities, and Cloud Seeding \label{SIMC}} \section{Introduction} \section{Simultaneous Inference and Multiple Comparisons} \section{Analysis Using \R{}} \subsection{Genetic Components of Alcoholism} We start with a graphical display of the data. Three parallel boxplots shown in Figure~\ref{SIMC-alpha-data-figure} indicate increasing expression levels of alpha synuclein mRNA for longer \textit{NACP}-REP1 alleles. %%\setkeys{Gin}{width=0.6\textwidth} \begin{figure}[t] \begin{center} <>= n <- table(alpha$alength) levels(alpha$alength) <- abbreviate(levels(alpha$alength), 4) plot(elevel ~ alength, data = alpha, varwidth = TRUE, ylab = "Expression Level", xlab = "NACP-REP1 Allele Length") axis(3, at = 1:3, labels = paste("n = ", n)) @ \caption{Distribution of levels of expressed alpha synuclein mRNA in three groups defined by the \textit{NACP}-REP1 allele lengths. \label{SIMC-alpha-data-figure}} \end{center} \end{figure} \index{Tukey honest significant differences|(} In order to model this relationship, we start fitting a simple one-way ANOVA model of the form $y_{ij} = \mu + \gamma_i + \varepsilon_{ij}$ to the data with independent normal errors $\varepsilon_{ij} \sim \N(0, \sigma^2)$, $j \in \{\text{short}, \text{intermediate}, \text{long}\}$, and $i = 1, \dots, n_j$. The parameters $\mu + \gamma_\text{short}$, $\mu + \gamma_\text{intermediate}$ and $\mu + \gamma_\text{long}$ can be interpreted as the mean expression levels in the corresponding groups. As already discussed in \Sexpr{ch("ANOVA")}, this model description is overparameterized. A standard approach is to consider a suitable re-parameterization. The so-called ``treatment contrast'' vector $% \theta = (\mu, \gamma_\text{intermediate} - \gamma_\text{short}, \gamma_\text{long} - \gamma_\text{short})$ (the default re-parameterization used as elemental parameters in \R{}) is one possibility and is equivalent to imposing the restriction $\gamma_\text{short} = 0$. In addition, we define all comparisons among our three groups by choosing $\K$ such that $\K \theta$ contains all three group differences (Tukey's all-pairwise comparisons): %%' \begin{eqnarray*} \K_\text{Tukey} = \left( \begin{array}{rrr} 0 & 1 & 0 \\%% 0 & 0 & 1 \\%% 0 & -1 & 1% \end{array} \right) \end{eqnarray*} with parameters of interest \begin{eqnarray*} \vartheta_\text{Tukey} = \K_\text{Tukey} \theta = (\gamma_\text{intermediate} - \gamma_\text{short}, \gamma_\text{long} - \gamma_\text{short}, \gamma_\text{long} - \gamma_\text{intermediate}). \end{eqnarray*} The function \Rcmd{glht} (for generalized linear hypothesis) from package \Rpackage{multcomp} \citep{PKG:multcomp,HSAUR:HothornBretzWestfall2008} takes the fitted \Rclass{aov} object and a description of the matrix $\K$. Here, we use the \Rcmd{mcp} function to set up the matrix of all pairwise differences for the model parameters associated with factor \Robject{alength}: <>= library("multcomp") amod <- aov(elevel ~ alength, data = alpha) amod_glht <- glht(amod, linfct = mcp(alength = "Tukey")) @ The matrix $\K$ reads <>= amod_glht$linfct @ The \Robject{amod\_glht} object now contains information about the estimated linear function $\hat{\vartheta}$ and their covariance matrix which can be inspected via the \Rcmd{coef} and \Rcmd{vcov} methods: <>= coef(amod_glht) vcov(amod_glht) @ The \Rcmd{summary} and \Rcmd{confint} methods can be used to compute a summary statistic including adjusted $p$-values and simultaneous confidence intervals, respectively: <>= confint(amod_glht) summary(amod_glht) @ Because of the variance heterogeneity that can be observed in Figure~\ref{SIMC-alpha-data-figure}, one might be concerned with the validity of the above results stating that there is no difference between any combination of the three allele lengths. A sandwich estimator might be more appropriate in this situation, and the \Rarg{vcov} argument can be used to specify a function to compute some alternative covariance estimator as follows: <>= amod_glht_sw <- glht(amod, linfct = mcp(alength = "Tukey"), vcov = sandwich) summary(amod_glht_sw) @ We use the \Rcmd{sandwich} function from package \Rpackage{sandwich} \citep{PKG:sandwich, HSAUR:Zeileis2006} which provides us with a heteroscedasticity-consistent estimator of the covariance matrix. This result is more in line with previously published findings for this study obtained from non-parametric test procedures such as the Kruskal-Wallis test. A comparison of the simultaneous confidence intervals calculated based on the ordinary and sandwich estimator is given in Figure~\ref{SIMC-alpha-confint-plot}. %%\setkeys{Gin}{width=0.95\textwidth} \begin{figure}[h] \begin{center} <>= par(mai = par("mai") * c(1, 2.1, 1, 0.5)) layout(matrix(1:2, ncol = 2)) ci1 <- confint(glht(amod, linfct = mcp(alength = "Tukey"))) ci2 <- confint(glht(amod, linfct = mcp(alength = "Tukey"), vcov = sandwich)) ox <- expression(paste("Tukey (ordinary ", bold(S)[n], ")")) sx <- expression(paste("Tukey (sandwich ", bold(S)[n], ")")) plot(ci1, xlim = c(-0.6, 2.6), main = ox, xlab = "Difference", ylim = c(0.5, 3.5)) plot(ci2, xlim = c(-0.6, 2.6), main = sx, xlab = "Difference", ylim = c(0.5, 3.5)) @ \caption{Simultaneous confidence intervals for the \Robject{alpha} data based on the ordinary covariance matrix (left) and a sandwich estimator (right). \label{SIMC-alpha-confint-plot}} \end{center} \end{figure} It should be noted that this data set is heavily unbalanced; see Figure~\ref{SIMC-alpha-data-figure}, and therefore the results obtained from function \Rcmd{TukeyHSD} might be less accurate. \index{Tukey honest significant differences|)} \subsection{Deer Browsing} \index{Generalized linear mixed model|(} Since we have to take the spatial structure of the deer browsing data into account, we cannot simply use a logistic regression model as introduced in \Sexpr{ch("GLM")}. One possibility is to apply a mixed logistic regression model \citep[using package \Rpackage{lme4},][]{PKG:lme4} with random intercept accounting for the spatial variation of the trees. These models have already been discussed in \Sexpr{ch("ALDII")}. For each plot nested within a set of five plots oriented on a 100m transect (the location of the transect is determined by a predefined equally spaced lattice of the area under test), a random intercept is included in the model. Essentially, trees that are close to each other are handled like repeated measurements in a longitudinal analysis. We are interested in probability estimates and confidence intervals for each tree species. Each of the five fixed parameters of the model corresponds to one species (in absence of a global intercept term); therefore, $\K = \text{diag}(5)$ is the linear function we are interested in: <>= trees513 <- subset(trees513, !species %in% c("fir", "ash/maple/elm/lime", "softwood (other)")) trees513$species <- trees513$species[,drop = TRUE] levels(trees513$species)[nlevels(trees513$species)] <- "hardwood" @ <>= mmod <- glmer(damage ~ species - 1 + (1 | lattice / plot), data = trees513, family = binomial()) K <- diag(length(fixef(mmod))) K @ In order to help interpretation, the names of the tree species and the corresponding sample sizes (computed via \Rcmd{table}) are added to $\K$ as row names; this information will carry through all subsequent steps of our analysis: <>= colnames(K) <- rownames(K) <- paste(gsub("species", "", names(fixef(mmod))), " (", table(trees513$species), ")", sep = "") K @ Based on $\K$, we first compute simultaneous confidence intervals for $\K \theta$ and transform these into probabilities. Note that $\left(1 + \exp(- \hat{\vartheta})\right)^{-1}$ (cf.~Equation~\ref{GLM:logitexp}) is the vector of estimated probabilities; simultaneous confidence intervals can be transformed to the probability scale in the same way: <>= ci <- confint(glht(mmod, linfct = K)) ci$confint <- 1 - binomial()$linkinv(ci$confint) ci$confint[,2:3] <- ci$confint[,3:2] @ The result is shown in Figure~\ref{SIMC-trees-plot}. Browsing is more frequent in hardwood but especially small oak trees are severely at risk. Consequently, the local authorities increased the number of roe deers to be harvested in the following years. %%The large confidence interval for ash, maple, elm and lime %%trees is caused by the small sample size. %%\setkeys{Gin}{width=0.8\textwidth} \begin{figure}[t] \begin{center} <>= plot(ci, xlab = "Probability of Damage Caused by Browsing", xlim = c(0, 0.5), main = "", ylim = c(0.5, 5.5)) @ \caption{Probability of damage caused by roe deer browsing for five tree species. Sample sizes are given in brackets. \label{SIMC-trees-plot}} \end{center} \end{figure} \index{Generalized linear mixed model|)} \subsection{Cloud Seeding} \index{Confidence band|(} In \Sexpr{ch("MLR")} we studied the dependency of rainfall on S-Ne values by means of linear models. Because the number of observations is small, an additional assessment of the variability of the fitted regression lines is interesting. Here, we are interested in a confidence band around some estimated regression line, i.e., a confidence region which covers the true but unknown regression line with probability greater or equal $1 - \alpha$. It is straightforward to compute \stress{pointwise} confidence intervals but we have to make sure that the type I error is controlled for all $x$ values simultaneously. Consider the simple linear regression model \begin{eqnarray*} \text{rainfall}_i = \beta_0 + \beta_1 \text{sne}_i + \varepsilon_i \end{eqnarray*} where we are interested in a confidence band for the predicted rainfall, i.e., the values $\hat{\beta}_0 + \hat{\beta}_1 \text{sne}_i$ for some observations $\text{sne}_i$. (Note that the estimates $\hat{\beta}_0$ and $\hat{\beta}_1$ are random variables.) We can formulate the problem as a linear combination of the regression coefficients by multiplying a matrix $\K$ to a grid of S-Ne values (ranging from $1.5$ to $4.5$, say) from the left to the elemental parameters $\theta = (\beta_0, \beta_1)$: \begin{eqnarray*} \K \theta = \left( \begin{array}{rr} 1 & 1.50 \\%% 1 & 1.75 \\%% \vdots & \vdots \\%% 1 & 4.25 \\%% 1 & 4.50 % \end{array} \right)\theta = (\beta_0 + \beta_1 1.50, \beta_0 + \beta_1 1.75, \dots, \beta_0 + \beta_1 4.50) = \vartheta. \end{eqnarray*} Simultaneous confidence intervals for all the parameters of interest $\vartheta$ form a confidence band for the estimated regression line. We implement this idea for the \Robject{clouds} data writing a small reusable function as follows: <>= confband <- function(subset, main) { mod <- lm(rainfall ~ sne, data = clouds, subset = subset) sne_grid <- seq(from = 1.5, to = 4.5, by = 0.25) K <- cbind(1, sne_grid) sne_ci <- confint(glht(mod, linfct = K)) plot(rainfall ~ sne, data = clouds, subset = subset, xlab = "S-Ne criterion", main = main, xlim = range(clouds$sne), ylim = range(clouds$rainfall)) abline(mod) lines(sne_grid, sne_ci$confint[,2], lty = 2) lines(sne_grid, sne_ci$confint[,3], lty = 2) } @ The function \Rcmd{confband} basically fits a linear model using \Rcmd{lm} to a subset of the data, sets up the matrix $\K$ as shown above and nicely plots both the regression line and the confidence band. Now, this function can be reused to produce plots similar to Figure~\ref{MLR-clouds-lmplot} separately for days with and without cloud seeding in Figure~\ref{SIMC-clouds-lmplot}. For the days without seeding, there is more uncertainty about the true regression line compared to the days with cloud seeding. Clearly, this is caused by the larger variability of the observations in the left part of the figure. \begin{figure} \begin{center} <>= layout(matrix(1:2, ncol = 2)) confband(clouds$seeding == "no", main = "No seeding") confband(clouds$seeding == "yes", main = "Seeding") @ \caption{Regression relationship between S-Ne criterion and rainfall with and without seeding. The confidence bands cover the area within the dashed curves. \label{SIMC-clouds-lmplot}} \end{center} \end{figure} \index{Confidence band|)} \section{Summary of Findings} \begin{description} \item[Genetic components of alcoholism] We were interested in studying all pairwise differences in expression levels for three groups of subjects defined by allele length. Overall, there seem to be different expression levels for short and long alleles but no difference between these two groups and the intermediate group. \item[Deer browsing] For a number of tree species, the simultaneous confidence intervals for the probability of browsing damage show that there is rather precise information about browsing damage for spruce and pine with more variability for the broad-leaf species. For oak, more than $\Sexpr{round(ci$confint["oak (1258)", 2], 2)}\%$ of the trees are damaged. \item[Cloud seeding] Confidence bands for the estimated effects help to identify days where the uncertainty about rainfall is largest. \end{description} \section{Final Comments} Multiple comparisons in linear models have been in use for a long time. The \Rpackage{multcomp} package extends much of the theory to a broad class of parametric and semi-parametric statistical models, which allows for a unified treatment of multiple comparisons and other simultaneous inference procedures in generalized linear models, mixed models, models for censored data, robust models, etc. Honest decisions based on simultaneous inference procedures maintaining a pre-specified familywise error rate (at least asymptotically) can be derived from almost all classical and modern statistical models. The technical details and more examples can be found in \cite{HSAUR:HothornBretzWestfall2008} and the package vignettes of package \Rpackage{multcomp} \citep{PKG:multcomp}. \section*{Exercises} \begin{description} \exercise Compare the results of \Rcmd{glht} and \Rcmd{TukeyHSD} on the \Robject{alpha} data. \exercise Consider the linear model fitted to the clouds data as summarized in Figure~\ref{MLR-clouds-summary}. Set up a matrix $\K$ corresponding to the global null hypothesis that all interaction terms present in the model are zero. Test both the global hypothesis and all hypotheses corresponding to each of the interaction terms. Which interaction remains significant after adjustment for multiple testing? \exercise For the logistic regression model presented in Figure~\ref{GLM-womensrole-summary-2} perform a multiplicity adjusted test on all regression coefficients (except for the intercept) being zero. Do the conclusions drawn in \Sexpr{ch("GLM")} remain valid? \end{description} \bibliographystyle{LaTeXBibTeX/refstyle} \bibliography{LaTeXBibTeX/HSAUR} \end{document} HSAUR3/vignettes/Ch_survival_analysis.Rnw0000644000176200001440000004023214656356403020124 0ustar liggesusers \documentclass{chapman} %%% copy Sweave.sty definitions %%% keeps `sweave' from adding `\usepackage{Sweave}': DO NOT REMOVE %\usepackage{Sweave} \RequirePackage[T1]{fontenc} \RequirePackage{graphicx,ae,fancyvrb} \IfFileExists{upquote.sty}{\RequirePackage{upquote}}{} \usepackage{relsize} \DefineVerbatimEnvironment{Sinput}{Verbatim}{} \DefineVerbatimEnvironment{Soutput}{Verbatim}{fontfamily=courier, fontshape=it, fontsize=\relsize{-1}} \DefineVerbatimEnvironment{Scode}{Verbatim}{} \newenvironment{Schunk}{}{} %%% environment for raw output \newcommand{\SchunkRaw}{\renewenvironment{Schunk}{}{} \DefineVerbatimEnvironment{Soutput}{Verbatim}{fontfamily=courier, fontshape=it, fontsize=\small} \rawSinput } %%% environment for labeled output \newcommand{\nextcaption}{} \newcommand{\SchunkLabel}{ \renewenvironment{Schunk}{\begin{figure}[ht] }{\caption{\nextcaption} \end{figure} } \DefineVerbatimEnvironment{Sinput}{Verbatim}{frame = topline} \DefineVerbatimEnvironment{Soutput}{Verbatim}{frame = bottomline, samepage = true, fontfamily=courier, fontshape=it, fontsize=\relsize{-1}} } %%% S code with line numbers \DefineVerbatimEnvironment{Sinput} {Verbatim} { %% numbers=left } \newcommand{\numberSinput}{ \DefineVerbatimEnvironment{Sinput}{Verbatim}{numbers=left} } \newcommand{\rawSinput}{ \DefineVerbatimEnvironment{Sinput}{Verbatim}{} } %%% R / System symbols \newcommand{\R}{\textsf{R}} \newcommand{\rR}{{R}} \renewcommand{\S}{\textsf{S}} \newcommand{\SPLUS}{\textsf{S-PLUS}} \newcommand{\rSPLUS}{{S-PLUS}} \newcommand{\SPSS}{\textsf{SPSS}} \newcommand{\EXCEL}{\textsf{Excel}} \newcommand{\ACCESS}{\textsf{Access}} \newcommand{\SQL}{\textsf{SQL}} %%\newcommand{\Rpackage}[1]{\hbox{\rm\textit{#1}}} %%\newcommand{\Robject}[1]{\hbox{\rm\texttt{#1}}} %%\newcommand{\Rclass}[1]{\hbox{\rm\textit{#1}}} %%\newcommand{\Rcmd}[1]{\hbox{\rm\texttt{#1}}} \newcommand{\Rpackage}[1]{\index{#1 package@{\fontseries{b}\selectfont #1} package} {\fontseries{b}\selectfont #1}} \newcommand{\rpackage}[1]{{\fontseries{b}\selectfont #1}} \newcommand{\Robject}[1]{\texttt{#1}} \newcommand{\Rclass}[1]{\index{#1 class@\textit{#1} class}\textit{#1}} \newcommand{\Rcmd}[1]{\index{#1 function@\texttt{#1} function}\texttt{#1}} \newcommand{\Roperator}[1]{\texttt{#1}} \newcommand{\Rarg}[1]{\texttt{#1}} \newcommand{\Rlevel}[1]{\texttt{#1}} %%% other symbols \newcommand{\file}[1]{\hbox{\rm\texttt{#1}}} %%\newcommand{\stress}[1]{\index{#1}\textit{#1}} \newcommand{\stress}[1]{\textit{#1}} \newcommand{\booktitle}[1]{\textit{#1}} %%' %%% Math symbols \usepackage{amstext} \usepackage{amsmath} \newcommand{\E}{\mathsf{E}} \newcommand{\Var}{\mathsf{Var}} \newcommand{\Cov}{\mathsf{Cov}} \newcommand{\Cor}{\mathsf{Cor}} \newcommand{\x}{\mathbf{x}} \newcommand{\y}{\mathbf{y}} \renewcommand{\a}{\mathbf{a}} \newcommand{\W}{\mathbf{W}} \newcommand{\C}{\mathbf{C}} \renewcommand{\H}{\mathbf{H}} \newcommand{\X}{\mathbf{X}} \newcommand{\B}{\mathbf{B}} \newcommand{\V}{\mathbf{V}} \newcommand{\I}{\mathbf{I}} \newcommand{\D}{\mathbf{D}} \newcommand{\bS}{\mathbf{S}} \newcommand{\N}{\mathcal{N}} \renewcommand{\L}{L} \renewcommand{\P}{\mathsf{P}} \newcommand{\K}{\mathbf{K}} \newcommand{\m}{\mathbf{m}} \newcommand{\argmin}{\operatorname{argmin}\displaylimits} \newcommand{\argmax}{\operatorname{argmax}\displaylimits} \newcommand{\bx}{\mathbf{x}} \newcommand{\bbeta}{\mathbf{\beta}} %%% links \usepackage{hyperref} \hypersetup{% pdftitle = {A Handbook of Statistical Analyses Using R (3rd Edition)}, pdfsubject = {Book}, pdfauthor = {Torsten Hothorn and Brian S. Everitt}, colorlinks = {black}, linkcolor = {black}, citecolor = {black}, urlcolor = {black}, hyperindex = {true}, linktocpage = {true}, } %%% captions & tables %% : conflics with figure definition in chapman.cls %%\usepackage[format=hang,margin=10pt,labelfont=bf]{caption} %% \usepackage{longtable} \usepackage[figuresright]{rotating} %%% R symbol in chapter 1 \usepackage{wrapfig} %%% Bibliography \usepackage[round,comma]{natbib} \renewcommand{\refname}{References \addcontentsline{toc}{chapter}{References}} \citeindexfalse %%% texi2dvi complains that \newblock is undefined, hm... \def\newblock{\hskip .11em plus .33em minus .07em} %%% Example sections \newcounter{exercise}[chapter] \setcounter{exercise}{0} \newcommand{\exercise}{\stepcounter{exercise} \item{Ex.~\arabic{chapter}.\arabic{exercise} }} %% URLs \newcommand{\curl}[1]{\begin{center} \url{#1} \end{center}} %%% for manual corrections %\renewcommand{\baselinestretch}{2} %%% plot sizes \setkeys{Gin}{width=0.95\textwidth} %%% color \usepackage{color} %%% hyphenations \hyphenation{drop-out} \hyphenation{mar-gi-nal} %%% new bidirectional quotes need \usepackage[utf8]{inputenc} %\usepackage{setspace} \definecolor{sidebox_todo}{rgb}{1,1,0.2} \newcommand{\todo}[1]{ \hspace{0pt}% \marginpar{% \fcolorbox{black}{sidebox_todo}{% \parbox{\marginparwidth} { \raggedright\sffamily\footnotesize{TODO: #1}% } }% } } \begin{document} %% Title page \title{A Handbook of Statistical Analyses Using \R{} --- 3rd Edition} \author{Torsten Hothorn and Brian S. Everitt} \maketitle %%\VignetteIndexEntry{Chapter Survival Analysis} %%\VignetteDepends{survival,coin,partykit} \setcounter{chapter}{10} \SweaveOpts{prefix.string=figures/HSAUR,eps=FALSE,keep.source=TRUE} <>= rm(list = ls()) s <- search()[-1] s <- s[-match(c("package:base", "package:stats", "package:graphics", "package:grDevices", "package:utils", "package:datasets", "package:methods", "Autoloads"), s)] if (length(s) > 0) sapply(s, detach, character.only = TRUE) if (!file.exists("tables")) dir.create("tables") if (!file.exists("figures")) dir.create("figures") set.seed(290875) options(prompt = "R> ", continue = "+ ", width = 63, # digits = 4, show.signif.stars = FALSE, SweaveHooks = list(leftpar = function() par(mai = par("mai") * c(1, 1.05, 1, 1)), bigleftpar = function() par(mai = par("mai") * c(1, 1.7, 1, 1)))) HSAURpkg <- require("HSAUR3") if (!HSAURpkg) stop("cannot load package ", sQuote("HSAUR3")) rm(HSAURpkg) ### hm, R-2.4.0 --vanilla seems to need this a <- Sys.setlocale("LC_ALL", "C") ### book <- TRUE refs <- cbind(c("AItR", "DAGD", "SI", "CI", "ANOVA", "MLR", "GLM", "DE", "RP", "GAM", "SA", "ALDI", "ALDII", "SIMC", "MA", "PCA", "MDS", "CA"), 1:18) ch <- function(x) { ch <- refs[which(refs[,1] == x),] if (book) { return(paste("Chapter~\\\\ref{", ch[1], "}", sep = "")) } else { return(paste("Chapter~", ch[2], sep = "")) } } if (file.exists("deparse.R")) source("deparse.R") setHook(packageEvent("lattice", "attach"), function(...) { lattice.options(default.theme = function() standard.theme("pdf", color = FALSE)) }) @ \pagestyle{headings} <>= book <- FALSE @ <>= x <- library("survival") x <- library("coin") x <- library("partykit") @ \chapter[Survival Analysis]{Survival Analysis: \\ Glioma Treatment and \\ Breast Cancer Survival \label{SA}} \section{Introduction} \section{Survival Analysis} \section{Analysis Using \R{}} \subsection{Glioma Radioimmunotherapy} \begin{figure} \begin{center} <>= data("glioma", package = "coin") library("survival") layout(matrix(1:2, ncol = 2)) g3 <- subset(glioma, histology == "Grade3") plot(survfit(Surv(time, event) ~ group, data = g3), main = "Grade III Glioma", lty = c(2, 1), ylab = "Probability", xlab = "Survival Time in Month", legend.text = c("Control", "Treated"), legend.bty = "n") g4 <- subset(glioma, histology == "GBM") plot(survfit(Surv(time, event) ~ group, data = g4), main = "Grade IV Glioma", ylab = "Probability", lty = c(2, 1), xlab = "Survival Time in Month", xlim = c(0, max(glioma$time) * 1.05)) @ \caption{Survival times comparing treated and control patients. \label{SA-glioma-plot}} \end{center} \end{figure} Figure~\ref{SA-glioma-plot} leads to the impression that patients treated with the novel radioimmunotherapy survive longer, regardless of the tumor type. In order to assess if this informal finding is reliable, we may perform a log-rank test via \index{Log-rank test} <>= survdiff(Surv(time, event) ~ group, data = g3) @ which indicates that the survival times are indeed different in both groups. However, the number of patients is rather limited and so it might be dangerous to rely on asymptotic tests. As shown in \Sexpr{ch("CI")}, conditioning on the data and computing the distribution of the test statistics without additional assumptions are one alternative. The function \Rcmd{surv\_test} from package \Rpackage{coin} \citep{HSAUR:Hothorn:2006:AmStat,PKG:coin} can be used to compute an exact conditional test answering the question whether the survival times differ for grade III patients. For all possible permutations of the groups on the censored response variable, the test statistic is computed and the fraction of whose being greater than the observed statistic defines the exact $p$-value: <>= library("coin") logrank_test(Surv(time, event) ~ group, data = g3, distribution = "exact") @ which, in this case, confirms the above results. The same exercise can be performed for patients with grade IV glioma <>= logrank_test(Surv(time, event) ~ group, data = g4, distribution = "exact") @ which shows a difference as well. However, it might be more appropriate to answer the question whether the novel therapy is superior for both groups of tumors simultaneously. This can be implemented by \stress{stratifying}, or \stress{blocking}, with respect to tumor grading: <>= logrank_test(Surv(time, event) ~ group | histology, data = glioma, distribution = approximate(10000)) @ Here, we need to approximate the exact conditional distribution since the exact distribution is hard to compute. The result supports the initial impression implied by Figure~\ref{SA-glioma-plot}. \subsection{Breast Cancer Survival} Before fitting a Cox model to the \Robject{GBSG2} data, we again derive a Kaplan-Meier estimate of the survival function of the data, here stratified with respect to whether a patient received hormonal therapy or not (see Figure~\ref{SA-GBSG2-plot}). \begin{figure} \begin{center} <>= data("GBSG2", package = "TH.data") plot(survfit(Surv(time, cens) ~ horTh, data = GBSG2), lty = 1:2, mark.time = FALSE, ylab = "Probability", xlab = "Survival Time in Days") legend(250, 0.2, legend = c("yes", "no"), lty = c(2, 1), title = "Hormonal Therapy", bty = "n") @ \caption{Kaplan-Meier estimates for breast cancer patients who either received hormonal therapy or not. \label{SA-GBSG2-plot}} \end{center} \end{figure} Fitting a Cox model follows roughly the same rules as shown for linear models in \Sexpr{ch("MLR")} with the exception that the response variable is again coded as a \Rclass{Surv} object. For the \Robject{GBSG2} data, the model is fitted via <>= GBSG2_coxph <- coxph(Surv(time, cens) ~ ., data = GBSG2) @ and the results as given by the \Rcmd{summary} method are given in Figure~\ref{GBSG2-coxph-summary}. Since we are especially interested in the relative risk for patients who underwent hormonal therapy, we can compute an estimate of the relative risk and a corresponding confidence interval via <>= ci <- confint(GBSG2_coxph) exp(cbind(coef(GBSG2_coxph), ci))["horThyes",] @ This result implies that patients treated with hormonal therapy had a lower risk and thus survived longer compared to women who were not treated this way. \renewcommand{\nextcaption}{\R{} output of the \Rcmd{summary} method for \Robject{GBSG2\_coxph}. \label{GBSG2-coxph-summary}} \SchunkLabel <>= summary(GBSG2_coxph) @ \SchunkRaw Model checking and model selection for proportional hazards models are complicated by the fact that easy-to-use residuals, such as those discussed in \Sexpr{ch("MLR")} for linear regression models, are not available, but several possibilities do exist. A check of the proportional hazards assumption can be done by looking at the parameter estimates $\beta_1, \dots, \beta_q$ over time. We can safely assume proportional hazards when the estimates don't vary much over time. %' The null hypothesis of constant regression coefficients can be tested, both globally as well as for each covariate, by using the \Rcmd{cox.zph} function <>= GBSG2_zph <- cox.zph(GBSG2_coxph) GBSG2_zph @ There seems to be some evidence of time-varying effects, \index{Time-varying effects} especially for age and tumor grading. A graphical representation of the estimated regression coefficient over time is shown in Figure~\ref{SA-GBSG2-zph-plot}. We refer to \cite{HSAUR:TherneauGrambsch2000} for a detailed theoretical description of these topics. \begin{figure} \begin{center} <>= plot(GBSG2_zph, var = "age") @ \caption{Estimated regression coefficient for \Robject{age} depending on time for the \Robject{GBSG2} data. \label{SA-GBSG2-zph-plot}} \end{center} \end{figure} \begin{figure} \begin{center} <>= layout(matrix(1:3, ncol = 3)) res <- residuals(GBSG2_coxph) plot(res ~ age, data = GBSG2, ylim = c(-2.5, 1.5), pch = ".", ylab = "Martingale Residuals") abline(h = 0, lty = 3) plot(res ~ pnodes, data = GBSG2, ylim = c(-2.5, 1.5), pch = ".", ylab = "") abline(h = 0, lty = 3) plot(res ~ log(progrec), data = GBSG2, ylim = c(-2.5, 1.5), pch = ".", ylab = "") abline(h = 0, lty = 3) @ \caption{Martingale residuals for the \Robject{GBSG2} data. \label{SA-GBSG2-mart-plot}} \end{center} \end{figure} The tree-structured regression models applied to continuous and binary responses in \Sexpr{ch("RP")} are applicable to censored responses in survival analysis as well. Such a simple prognostic model with only a few terminal nodes might be helpful for relating the risk to certain subgroups of patients. Both \Rcmd{rpart} and the \Rcmd{ctree} function from package \Rpackage{partykit} can be applied to the GBSG2 data, where the conditional trees of the latter select cutpoints based on log-rank statistics \index{Conditional tree} <>= GBSG2_ctree <- ctree(Surv(time, cens) ~ ., data = GBSG2) @ and the \Rcmd{plot} method applied to this tree produces the graphical representation in Figure~\ref{SA-GBSG2-ctree-plot}. The number of positive lymph nodes (\Robject{pnodes}) is the most important variable in the tree, corresponding to the $p$-value associated with this variable in Cox's %%'s regression; see Figure~\ref{GBSG2-coxph-summary}. Women with not more than three positive lymph nodes who have undergone hormonal therapy seem to have the best prognosis whereas a large number of positive lymph nodes and a small value of the progesterone receptor indicates a bad prognosis. \begin{figure} \begin{center} <>= plot(GBSG2_ctree) @ \caption{Conditional inference tree for the \Robject{GBSG2} data with the survival function, estimated by Kaplan-Meier, shown for every subgroup of patients identified by the tree. \label{SA-GBSG2-ctree-plot}} \end{center} \end{figure} \bibliographystyle{LaTeXBibTeX/refstyle} \bibliography{LaTeXBibTeX/HSAUR} \end{document} HSAUR3/vignettes/Ch_introduction_to_R.Rnw0000644000176200001440000015624114416236367020062 0ustar liggesusers \documentclass{chapman} %%% copy Sweave.sty definitions %%% keeps `sweave' from adding `\usepackage{Sweave}': DO NOT REMOVE %\usepackage{Sweave} \RequirePackage[T1]{fontenc} \RequirePackage{graphicx,ae,fancyvrb} \IfFileExists{upquote.sty}{\RequirePackage{upquote}}{} \usepackage{relsize} \DefineVerbatimEnvironment{Sinput}{Verbatim}{} \DefineVerbatimEnvironment{Soutput}{Verbatim}{fontfamily=courier, fontshape=it, fontsize=\relsize{-1}} \DefineVerbatimEnvironment{Scode}{Verbatim}{} \newenvironment{Schunk}{}{} %%% environment for raw output \newcommand{\SchunkRaw}{\renewenvironment{Schunk}{}{} \DefineVerbatimEnvironment{Soutput}{Verbatim}{fontfamily=courier, fontshape=it, fontsize=\small} \rawSinput } %%% environment for labeled output \newcommand{\nextcaption}{} \newcommand{\SchunkLabel}{ \renewenvironment{Schunk}{\begin{figure}[ht] }{\caption{\nextcaption} \end{figure} } \DefineVerbatimEnvironment{Sinput}{Verbatim}{frame = topline} \DefineVerbatimEnvironment{Soutput}{Verbatim}{frame = bottomline, samepage = true, fontfamily=courier, fontshape=it, fontsize=\relsize{-1}} } %%% S code with line numbers \DefineVerbatimEnvironment{Sinput} {Verbatim} { %% numbers=left } \newcommand{\numberSinput}{ \DefineVerbatimEnvironment{Sinput}{Verbatim}{numbers=left} } \newcommand{\rawSinput}{ \DefineVerbatimEnvironment{Sinput}{Verbatim}{} } %%% R / System symbols \newcommand{\R}{\textsf{R}} \newcommand{\rR}{{R}} \renewcommand{\S}{\textsf{S}} \newcommand{\SPLUS}{\textsf{S-PLUS}} \newcommand{\rSPLUS}{{S-PLUS}} \newcommand{\SPSS}{\textsf{SPSS}} \newcommand{\EXCEL}{\textsf{Excel}} \newcommand{\ACCESS}{\textsf{Access}} \newcommand{\SQL}{\textsf{SQL}} %%\newcommand{\Rpackage}[1]{\hbox{\rm\textit{#1}}} %%\newcommand{\Robject}[1]{\hbox{\rm\texttt{#1}}} %%\newcommand{\Rclass}[1]{\hbox{\rm\textit{#1}}} %%\newcommand{\Rcmd}[1]{\hbox{\rm\texttt{#1}}} \newcommand{\Rpackage}[1]{\index{#1 package@{\fontseries{b}\selectfont #1} package} {\fontseries{b}\selectfont #1}} \newcommand{\rpackage}[1]{{\fontseries{b}\selectfont #1}} \newcommand{\Robject}[1]{\texttt{#1}} \newcommand{\Rclass}[1]{\index{#1 class@\textit{#1} class}\textit{#1}} \newcommand{\Rcmd}[1]{\index{#1 function@\texttt{#1} function}\texttt{#1}} \newcommand{\Roperator}[1]{\texttt{#1}} \newcommand{\Rarg}[1]{\texttt{#1}} \newcommand{\Rlevel}[1]{\texttt{#1}} %%% other symbols \newcommand{\file}[1]{\hbox{\rm\texttt{#1}}} %%\newcommand{\stress}[1]{\index{#1}\textit{#1}} \newcommand{\stress}[1]{\textit{#1}} \newcommand{\booktitle}[1]{\textit{#1}} %%' %%% Math symbols \usepackage{amstext} \usepackage{amsmath} \newcommand{\E}{\mathsf{E}} \newcommand{\Var}{\mathsf{Var}} \newcommand{\Cov}{\mathsf{Cov}} \newcommand{\Cor}{\mathsf{Cor}} \newcommand{\x}{\mathbf{x}} \newcommand{\y}{\mathbf{y}} \renewcommand{\a}{\mathbf{a}} \newcommand{\W}{\mathbf{W}} \newcommand{\C}{\mathbf{C}} \renewcommand{\H}{\mathbf{H}} \newcommand{\X}{\mathbf{X}} \newcommand{\B}{\mathbf{B}} \newcommand{\V}{\mathbf{V}} \newcommand{\I}{\mathbf{I}} \newcommand{\D}{\mathbf{D}} \newcommand{\bS}{\mathbf{S}} \newcommand{\N}{\mathcal{N}} \renewcommand{\L}{L} \renewcommand{\P}{\mathsf{P}} \newcommand{\K}{\mathbf{K}} \newcommand{\m}{\mathbf{m}} \newcommand{\argmin}{\operatorname{argmin}\displaylimits} \newcommand{\argmax}{\operatorname{argmax}\displaylimits} \newcommand{\bx}{\mathbf{x}} \newcommand{\bbeta}{\mathbf{\beta}} %%% links \usepackage{hyperref} \hypersetup{% pdftitle = {A Handbook of Statistical Analyses Using R (3rd Edition)}, pdfsubject = {Book}, pdfauthor = {Torsten Hothorn and Brian S. Everitt}, colorlinks = {black}, linkcolor = {black}, citecolor = {black}, urlcolor = {black}, hyperindex = {true}, linktocpage = {true}, } %%% captions & tables %% : conflics with figure definition in chapman.cls %%\usepackage[format=hang,margin=10pt,labelfont=bf]{caption} %% \usepackage{longtable} \usepackage[figuresright]{rotating} %%% R symbol in chapter 1 \usepackage{wrapfig} %%% Bibliography \usepackage[round,comma]{natbib} \renewcommand{\refname}{References \addcontentsline{toc}{chapter}{References}} \citeindexfalse %%% texi2dvi complains that \newblock is undefined, hm... \def\newblock{\hskip .11em plus .33em minus .07em} %%% Example sections \newcounter{exercise}[chapter] \setcounter{exercise}{0} \newcommand{\exercise}{\stepcounter{exercise} \item{Ex.~\arabic{chapter}.\arabic{exercise} }} %% URLs \newcommand{\curl}[1]{\begin{center} \url{#1} \end{center}} %%% for manual corrections %\renewcommand{\baselinestretch}{2} %%% plot sizes \setkeys{Gin}{width=0.95\textwidth} %%% color \usepackage{color} %%% hyphenations \hyphenation{drop-out} \hyphenation{mar-gi-nal} %%% new bidirectional quotes need \usepackage[utf8]{inputenc} %\usepackage{setspace} \definecolor{sidebox_todo}{rgb}{1,1,0.2} \newcommand{\todo}[1]{ \hspace{0pt}% \marginpar{% \fcolorbox{black}{sidebox_todo}{% \parbox{\marginparwidth} { \raggedright\sffamily\footnotesize{TODO: #1}% } }% } } \begin{document} %% Title page \title{A Handbook of Statistical Analyses Using \R{} --- 3rd Edition} \author{Torsten Hothorn and Brian S. Everitt} \maketitle %%\VignetteIndexEntry{An Introduction to R} %%\VignetteDepends{sandwich} \setcounter{chapter}{0} \SweaveOpts{prefix.string=figures/HSAUR,eps=FALSE,keep.source=TRUE} <>= rm(list = ls()) s <- search()[-1] s <- s[-match(c("package:base", "package:stats", "package:graphics", "package:grDevices", "package:utils", "package:datasets", "package:methods", "Autoloads"), s)] if (length(s) > 0) sapply(s, detach, character.only = TRUE) if (!file.exists("tables")) dir.create("tables") if (!file.exists("figures")) dir.create("figures") set.seed(290875) options(prompt = "R> ", continue = "+ ", width = 63, # digits = 4, show.signif.stars = FALSE, SweaveHooks = list(leftpar = function() par(mai = par("mai") * c(1, 1.05, 1, 1)), bigleftpar = function() par(mai = par("mai") * c(1, 1.7, 1, 1)))) HSAURpkg <- require("HSAUR3") if (!HSAURpkg) stop("cannot load package ", sQuote("HSAUR3")) rm(HSAURpkg) ### hm, R-2.4.0 --vanilla seems to need this a <- Sys.setlocale("LC_ALL", "C") ### book <- TRUE refs <- cbind(c("AItR", "DAGD", "SI", "CI", "ANOVA", "MLR", "GLM", "DE", "RP", "GAM", "SA", "ALDI", "ALDII", "SIMC", "MA", "PCA", "MDS", "CA"), 1:18) ch <- function(x) { ch <- refs[which(refs[,1] == x),] if (book) { return(paste("Chapter~\\\\ref{", ch[1], "}", sep = "")) } else { return(paste("Chapter~", ch[2], sep = "")) } } if (file.exists("deparse.R")) source("deparse.R") setHook(packageEvent("lattice", "attach"), function(...) { lattice.options(default.theme = function() standard.theme("pdf", color = FALSE)) }) @ \pagestyle{headings} <>= book <- FALSE @ \chapter{An Introduction to \R{} \label{AItR}} \setcounter{page}{1} \section{What is \R{}?} The \R{} system for statistical computing is an environment for data analysis and graphics. %% #Z %% and an implementation of the \R{} programming language. The root of \R{} is the \S{} language, developed by John Chambers and colleagues \citep{HSAUR:Becker+Chambers+Wilks:1988,HSAUR:Chambers+Hastie:1992,HSAUR:Chambers:1998} at Bell Laboratories (formerly AT\&T, now owned by Lucent Technologies) starting in the 1960s. The \S{} language was designed and developed as a programming language for data analysis tasks but in fact it is a full-featured programming language in its current implementations. The development of the \R{} system for statistical computing is heavily influenced by the open source idea: The base distribution of \R{} \index{Base distribution} and a large number of user-contributed extensions are available under the terms of the Free Software Foundation's GNU General %%' Public License in source code form. \index{GNU General Public License} This licence has two major implications for the data analyst working with \R. The complete source code is available and thus the practitioner can investigate the details of the implementation of a special method, make changes, and distribute modifications to colleagues. As a side effect, the \R{} system for statistical computing is available to everyone. All scientists, including, in particular, those working in developing countries, now have access to state-of-the-art tools for statistical data analysis without additional costs. With the help of the \R{} system for statistical computing, research really becomes reproducible when both the data and the results of all data analysis steps reported in a paper are available to the readers through an \R{} transcript file. \R{} is most widely used for teaching undergraduate and graduate statistics classes at universities all over the world because students can freely use the statistical computing tools. The base distribution of \R{} is maintained by a small group of statisticians, the \R{} Development Core Team. A huge amount of additional functionality is implemented in add-on packages \index{Add-on package} authored and maintained by a large group of volunteers. The main source of information about the \R{} system is the World Wide Web with the official home page of the \R{} project being \curl{http://www.R-project.org} All resources are available from this page: the \R{} system itself, a collection of add-on packages, manuals, documentation, and more. The intention of this chapter is to give a rather informal introduction to basic concepts and data manipulation techniques for the \R{} novice. Instead of a rigid treatment of the technical background, the most common tasks are illustrated by practical examples and it is our hope that this will enable readers to get started without too many problems. \section{Installing \R{}} \index{Base system|(} The \R{} system for statistical computing consists of two major parts: the base system and a collection of user-contributed add-on packages. The \R{} language is implemented in the base system. Implementations of statistical and graphical procedures are separated from the base system and are organized in the form of \stress{packages}. A package is \index{Add-on package} a collection of functions, examples, and documentation. The functionality of a package is often focused on a special statistical methodology. Both the base system and packages are distributed via the Comprehensive \R{} Archive Network (CRAN) accessible under \curl{http://CRAN.R-project.org} \index{Comprehensive R Archive Network (CRAN)@Comprehensive \R{} Archive Network (CRAN)} \subsection{The Base System and the First Steps \label{AItR:Base}} The base system is available in source form and in precompiled form for various Unix systems, Windows platforms and Mac OS X. For the data analyst, it is sufficient to download the precompiled binary distribution and install it locally. Windows users follow the link \curl{http://CRAN.R-project.org/bin/windows/base/release.htm} download the corresponding file (currently named \file{\Sexpr{HSAUR3:::exename()}}), execute it locally, and follow the instructions given by the installer. \index{Base system|)} \begin{wrapfigure}{lH}[0cm]{2cm} \includegraphics[width=1.95cm]{graphics/Rlogo_bw} \end{wrapfigure} Depending on the operating system, \R{} can be started either by typing `\texttt{R}' on the shell (Unix systems) or by clicking on the %' \R{} symbol (as shown left) created by the installer (Windows). \R{} comes without any frills and on start up shows simply a short introductory message including the version number and a prompt `\texttt{>}': %' \index{Prompt} <>= HSAUR3:::Rwelcome() @ <>= options(prompt = "> ") @ One can change the appearance of the prompt by <>= options(prompt = "R> ") @ and we will use the prompt \Rarg{R>} for the display of the code examples throughout this book. A \texttt{+} sign at the very beginning of a line indicates a continuing command after a newline. Essentially, the \R{} system evaluates commands typed on the \R{} prompt and returns the results of the computations. The end of a command is indicated by the return key. Virtually all introductory texts on \R{} start with an example using \R{} as a pocket calculator, and so do we: <>= x <- sqrt(25) + 2 @ This simple statement asks the \R{} interpreter to calculate $\sqrt{25}$ and then to add $2$. The result of the operation is assigned to an \R{} object \index{Object} with variable name \Robject{x}. The assignment operator \Roperator{<-} binds the value of its right-hand side to a variable name on the left-hand side. The value of the object \Robject{x} can be inspected simply by typing <>= x @ which, implicitly, calls the \Rcmd{print} method: <>= print(x) @ \subsection{Packages} \index{Add-on package|(} The base distribution already comes with some high-priority add-on packages, namely \begin{center} <>= colwidth <- 4 ip <- installed.packages(priority = "high") pkgs <- unique(ip[,"Package"]) pkgs <- paste("\\Rpackage{", pkgs, "}", sep = "") nrows <- ceiling(length(pkgs) / colwidth) pkgs <- c(pkgs, rep("", colwidth * nrows - length(pkgs))) cat(paste(c("\\begin{tabular}{", paste(rep("l", colwidth), collapse=""), "}"), collapse = ""), "\n", file = "tables/rec.tex", append = FALSE) for (i in 1:nrows) { cat(paste(pkgs[(1:colwidth) + (i-1)*colwidth], collapse = " & "), file = "tables/rec.tex", append = TRUE) cat("\\\\ \n", file = "tables/rec.tex", append = TRUE) } cat("\\end{tabular}\n", file = "tables/rec.tex", append = TRUE) rm(ip, nrows) @ \input{tables/rec} \end{center} Some of the packages listed here %% #Z %% are maintained by members of the \R{} core development team and implement standard statistical functionality, for example linear models, classical tests, a huge collection of high-level plotting functions or tools for survival analysis; many of these will be described and used in later chapters. Others provide basic infrastructure, for example for graphic systems, code analysis tools, graphical-user interfaces or other utilities. <>= cp <- available.packages(contriburl = "http://CRAN.r-project.org/src/contrib") ncp <- sum(!rownames(cp) %in% pkgs) rm(cp, pkgs) @ Packages not included in the base distribution can be installed directly from the \R{} prompt. At the time of writing this chapter, $\Sexpr{ncp}$ user-contributed packages covering almost all fields of statistical methodology were available. Certain so-called `task views' for special topics, such as statistics in the social sciences, environmetrics, robust statistics, etc., describe important and helpful packages and are available from \curl{http://CRAN.R-project.org/web/views/} <>= rm(ncp, colwidth, i) @ Given that an Internet connection is available, a package is installed by supplying the name of the package to the function \Rcmd{install.packages}. If, for example, add-on functionality for robust estimation of covariance matrices via sandwich estimators \index{Sandwich estimator} is required (for example in \Sexpr{ch("ALDII")}), the \Rpackage{sandwich} package \citep{PKG:sandwich} can be downloaded and installed via <>= install.packages("sandwich") @ The package functionality is available after \stress{attaching} the package by <>= library("sandwich") @ A comprehensive list of available packages can be obtained from \curl{http://CRAN.R-project.org/web/packages/} Note that on Windows operating systems, precompiled versions of packages are downloaded and installed. %%Currently, the service of overnight compilation of all packages on %%CRAN for the Windows platform is kindly offered by Uwe Ligges from the %%University of Dortmund, Germany. In contrast, packages are compiled locally before they are installed on Unix systems. \index{Add-on package|)} \section{Help and Documentation \label{AItR:HDN}} \index{Help system|(} Roughly, three different forms of documentation for the \R{} system for statistical computing may be distinguished: online help that comes with the base distribution or packages, electronic manuals, and publications work in the form of books, etc. The help system is a collection of manual pages describing each user-visible function and data set that comes with \R{}. A manual page is shown in a pager or Web browser when the name of the function we would like to get help for is supplied to the \Rcmd{help} function <>= help("mean") @ or, for short, \begin{Verbatim} R> ?mean \end{Verbatim} Each manual page consists of a general description, the argument list of the documented function with a description of each single argument, information about the return value of the function and, optionally, references, cross-links and, in most cases, executable examples. The function \Rcmd{help.search} is helpful for searching within manual pages. An overview on documented topics in an add-on package is given, for example for the \Rpackage{sandwich} package, by <>= help(package = "sandwich") @ Often a package comes along with an additional document describing the package functionality and giving examples. Such a document is called a \Rclass{vignette} \citep{HSAUR:Leisch2003,HSAUR:Gentleman2005}. For example, the \Rpackage{sandwich} package vignette is opened using <>= vignette("sandwich", package = "sandwich") @ More extensive documentation is available electronically from the collection of manuals at \curl{http://CRAN.R-project.org/manuals.html} For the beginner, at least the first and the second document of the following four manuals \citep{HSAUR:AItR,HSAUR:RDIE,HSAUR:RIA,HSAUR:WRE} are mandatory: \begin{description} \item[An Introduction to R] A more formal introduction to data analysis with \R{} than this chapter. \item[R Data Import/Export] A very useful description of how to read and write various external data formats. \item[R Installation and Administration] Hints for installing \R{} on special platforms. \item[Writing \R{} Extensions] The authoritative source on how to write \R{} programs and packages. \end{description} Both printed and online publications are available, the most important ones are \booktitle{Modern Applied Statistics with \S{}} \citep{HSAUR:VenablesRipley2002}, \booktitle{Introductory Statistics with \R{}} \citep{HSAUR:Dalgaard2002}, \booktitle{\R{} Graphics} \citep{HSAUR:Murrell2005} and the \R{} Newsletter, freely available from \curl{http://CRAN.R-project.org/doc/Rnews/} In case the electronically available documentation and the answers to frequently asked questions (FAQ), available from \curl{http://CRAN.R-project.org/faqs.html} \index{Frequently asked questions (FAQ)} have been consulted but a problem or question remains unsolved, the \texttt{r-help} email list is the right place to get answers to well-thought-out questions. It is helpful to read the posting guide \curl{http://www.R-project.org/posting-guide.html} before starting to ask. \index{Help system|)} \section{Data Objects in \R{}} \index{Forbes 2000 ranking|(} The data handling and manipulation techniques explained in this chapter will be illustrated by means of a data set of $2000$ world leading companies, the Forbes 2000 list for the year 2004 collected by \booktitle{Forbes Magazine}. This list is originally available from \curl{http://www.forbes.com} and, as an \R{} data object, it is part of the \Rpackage{HSAUR3} package (\textit{Source}: From Forbes.com, New York, New York, 2004. With permission.). In a first step, we make the data available for computations within \R. The \Rcmd{data} function searches for data objects of the specified name (\Robject{"Forbes2000"}) in the package specified via the \Rarg{package} argument and, if the search was successful, attaches the data object to the global environment: \index{Forbes2000 data@\Robject{Forbes2000} data} <>= data("Forbes2000", package = "HSAUR3") ls() @ <>= x <- c("x", "Forbes2000") print(x) @ The output of the \Rcmd{ls} function lists the names of all objects currently stored in the global environment, and, as the result of the previous command, a variable named \Robject{Forbes2000} is available for further manipulation. The variable \Robject{x} arises from the pocket calculator example in Subsection~\ref{AItR:Base}. As one can imagine, printing a list of $2000$ companies via <>= print(Forbes2000) @ <>= print(Forbes2000[1:3,]) cat("...\n") @ will not be particularly helpful in gathering some initial information about the data; it is more useful to look at a description of their structure found by using the following command <>= str(Forbes2000) @ <>= str(Forbes2000, vec.len = 2, strict.width = "cut", width = 60) @ The output of the \Rcmd{str} function tells us that \Robject{Forbes2000} is an object of class \Rclass{data.frame}, the most important data structure for handling tabular statistical data in \R. As expected, information about $2000$ observations, i.e., companies, are stored in this object. For each observation, the following eight variables are available: \begin{description} \item[\Robject{rank}] the ranking of the company, \item[\Robject{name}] the name of the company, \item[\Robject{country}] the country the company is situated in, \item[\Robject{category}] a category describing the products the company produces, \item[\Robject{sales}] the amount of sales of the company in billion US dollars, \item[\Robject{profits}] the profit of the company in billion US dollars, \item[\Robject{assets}] the assets of the company in billion US dollars, \item[\Robject{marketvalue}] the market value of the company in billion US dollars. \end{description} A similar but more detailed description is available from the help page for the \Robject{Forbes2000} object: <>= help("Forbes2000") @ or \begin{Verbatim} R> ?Forbes2000 \end{Verbatim} All information provided by \Rcmd{str} can be obtained by specialized functions as well and we will now have a closer look at the most important of these. The \R{} language is an object-oriented programming language, \index{Object-oriented programming language} so every object is an instance of a class. The name of the class of an object can be determined by <>= class(Forbes2000) @ Objects of class \Rclass{data.frame} represent data the traditional table-oriented way. Each row is associated with one single observation and each column corresponds to one variable. The dimensions of such a table can be extracted using the \Rcmd{dim} function <>= dim(Forbes2000) @ Alternatively, the numbers of rows and columns can be found using <>= nrow(Forbes2000) ncol(Forbes2000) @ The results of both statements show that \Robject{Forbes2000} has $\Sexpr{nrow(Forbes2000)}$ rows, i.e., observations, the companies in our case, with eight variables describing the observations. The variable names are accessible from <>= names(Forbes2000) @ The values of single variables can be extracted from the \Robject{Forbes2000} object by their names, for example the ranking of the companies <>= class(Forbes2000[,"rank"]) @ is stored as an integer variable. Brackets \Robject{[]} always indicate a subset \index{Subset} of a larger object, in our case a single variable extracted from the whole table. Because \Rclass{data.frame}s have two dimensions, observations and variables, the comma is required in order to specify that we want a subset of the second dimension, i.e., the variables. The rankings for all $\Sexpr{nrow(Forbes2000)}$ companies are represented in a \Rclass{vector} structure the length of which is given by <>= length(Forbes2000[,"rank"]) @ A \Rclass{vector} is the elementary structure for data handling in \R{} and is a set of simple elements, all being objects of the same class. For example, a simple vector of the numbers one to three can be constructed by one of the following commands <>= 1:3 c(1,2,3) seq(from = 1, to = 3, by = 1) @ The unique names of all $\Sexpr{nrow(Forbes2000)}$ companies are stored in a character vector \index{character vector@\Rclass{character} vector} <>= class(Forbes2000[,"name"]) length(Forbes2000[,"name"]) @ and the first element of this vector is <>= Forbes2000[,"name"][1] @ Because the companies are ranked, Citigroup is the world's largest %' company according to the Forbes 2000 list. Further details on vectors and subsetting are given in Section~\ref{AItR:BDM}. Nominal measurements are represented by \Rclass{factor} variables in \R, such as the category of the company's business segment %%' <>= class(Forbes2000[,"category"]) @ Objects of class \Rclass{factor} and \Rclass{character} basically differ in the way their values are stored internally. Each element of a vector of class \Rclass{character} is stored as a \Rclass{character} variable whereas an integer variable indicating the level of a \Rclass{factor} is saved for \Rclass{factor} objects. In our case, there are <>= nlevels(Forbes2000[,"category"]) @ different levels, i.e., business categories, which can be extracted by <>= levels(Forbes2000[,"category"]) @ <>= levels(Forbes2000[,"category"])[1:3] cat("...\n") @ As a simple summary statistic, the frequencies of the levels of such a \Rclass{factor} variable can be found from <>= table(Forbes2000[,"category"]) @ <>= table(Forbes2000[,"category"])[1:3] cat("...\n") @ The sales, assets, profits, and market value variables are of type \Robject{numeric}, the natural data type for continuous or discrete measurements, for example <>= class(Forbes2000[,"sales"]) @ and simple summary statistics such as the mean, median, and range can be found from <>= median(Forbes2000[,"sales"]) mean(Forbes2000[,"sales"]) range(Forbes2000[,"sales"]) @ The \Rcmd{summary} method can be applied to a numeric vector to give a set of useful summary statistics, namely the minimum, maximum, mean, median, and the $25\%$ and $75\%$ quartiles; for example <>= summary(Forbes2000[,"sales"]) @ \section{Data Import and Export} \index{Data import and export|(} In the previous section, the data from the Forbes 2000 list of the world's largest %%' companies were loaded into \R{} from the \Rpackage{HSAUR3} package but we will now explore practically more relevant ways to import data into the \R{} system. The most frequent data formats the data analyst is confronted with are comma separated files, \index{Comma separated files} \EXCEL{} spreadsheets, \index{Excel spreadsheets@\EXCEL{} spreadsheets} files in \SPSS{} format \index{SPSS file format@\SPSS{} file format} and a variety of \SQL{} data base engines. \index{SQL data bases@\SQL{} data bases} Querying data bases is a nontrivial task and requires additional knowledge about querying languages, and we therefore refer to the \booktitle{\R{} Data Import/Export} manual -- see Section~\ref{AItR:HDN}. <>= pkgpath <- system.file(package = "HSAUR2") mywd <- getwd() filep <- file.path(pkgpath, "rawdata") setwd(filep) @ We assume that a comma-separated file containing the Forbes 2000 list is available as \file{Forbes2000.csv} (such a file is part of the \Rpackage{HSAUR3} source package in directory \file{HSAUR3/inst/rawdata}). When the fields are separated by commas and each row begins with a name (a text format typically created by \EXCEL{}), we can read in the data as follows using the \Rcmd{read.table} function <>= csvForbes2000 <- read.table("Forbes2000.csv", header = TRUE, sep = ",", row.names = 1) @ The argument \Rarg{header = TRUE} indicates that the entries in the first line of the text file \Robject{"Forbes2000.csv"} should be interpreted as variable names. Columns are separated by a comma (\Rcmd{sep = ","}), users of continental versions of \EXCEL{} should take care of the character symbol coding for decimal points (by default \Rcmd{dec = "."}). Finally, the first column should be interpreted as row names but not as a variable (\Rarg{row.names = 1}). Alternatively, the function \Rcmd{read.csv} can be used to read comma-separated files. The function \Rcmd{read.table} by default guesses the class of each variable from the specified file. In our case, character variables are stored as factors <>= class(csvForbes2000[,"name"]) @ which is only suboptimal since the names of the companies are unique. However, we can supply the types for each variable to the \Rarg{colClasses} argument <>= csvForbes2000 <- read.table("Forbes2000.csv", header = TRUE, sep = ",", row.names = 1, colClasses = c("character", "integer", "character", "factor", "factor", "numeric", "numeric", "numeric", "numeric")) class(csvForbes2000[,"name"]) @ and check if this object is identical to our previous Forbes 2000 list object <>= all.equal(csvForbes2000, Forbes2000) @ The argument \Rarg{colClasses} expects a character vector of length equal to the number of columns in the file. Such a vector can be supplied by the \Rcmd{c} function that combines the objects given in the parameter list into a \Rclass{vector} <>= classes <- c("character", "integer", "character", "factor", "factor", "numeric", "numeric", "numeric", "numeric") length(classes) class(classes) @ An \R{} interface to the open data base connectivity (ODBC) standard \index{Open data base connectivity standard (ODBC)} is available in package \Rpackage{RODBC} and its functionality can be used to access \EXCEL{} and \ACCESS{} files directly: <>= library("RODBC") cnct <- odbcConnectExcel("Forbes2000.xls") sqlQuery(cnct, "select * from \"Forbes2000\\$\"") @ The function \Rcmd{odbcConnectExcel} opens a connection to the specified \EXCEL{} or \ACCESS{} file which can be used to send \SQL{} queries to the data base engine and retrieve the results of the query. <>= setwd(mywd) @ Files in \SPSS{} format are read in a way similar to reading comma-separated files, using the function \Rcmd{read.spss} from package \Rpackage{foreign} (which comes with the base distribution). Exporting data from \R{} is now rather straightforward. A comma-separated file readable by \EXCEL{} can be constructed from a \Rclass{data.frame} object via <>= write.table(Forbes2000, file = "Forbes2000.csv", sep = ",", col.names = NA) @ The function \Rcmd{write.csv} is one alternative and the functionality implemented in the \Rpackage{RODBC} package can be used to write data directly into \EXCEL{} spreadsheets as well. \index{Saving R objects@Saving \R{} objects} Alternatively, when data should be saved for later processing in \R{} only, \R{} objects of arbitrary kind can be stored into an external binary file via <>= save(Forbes2000, file = "Forbes2000.rda") @ where the extension \file{.rda} is standard. We can get the file names of all files with extension \file{.rda} from the working directory <>= list.files(pattern = "\\.rda") @ and we can load the contents of the file into \R{} by <>= load("Forbes2000.rda") @ \index{Data import and export|)} \section{Basic Data Manipulation \label{AItR:BDM}} \index{Data manipulation|(} The examples shown in the previous section have illustrated the importance of \Rclass{data.frame}s for storing and handling tabular data in \R. Internally, a \Rclass{data.frame} is a \Rclass{list} of vectors of a common length $n$, the number of rows of the table. Each of those vectors represents the measurements of one variable and we have seen that we can access such a variable by its name, for example the names of the companies <>= companies <- Forbes2000[,"name"] @ Of course, the \Robject{companies} vector is of class \Rclass{character} and of length $\Sexpr{length(companies)}$. A subset \index{Subset} of the elements of the vector \Robject{companies} can be extracted using the \Rcmd{[]} subset operator. For example, the largest of the $2000$ companies listed in the Forbes 2000 list is <>= companies[1] @ and the top three companies can be extracted utilizing an integer vector of the numbers one to three: <>= 1:3 companies[1:3] @ In contrast to indexing with positive integers, negative indexing returns \index{negative indexing} all elements that are \stress{not} part of the index vector given in brackets. For example, all companies except those with numbers four to two thousand, i.e., the top three companies, are again <>= companies[-(4:2000)] @ The complete information about the top three companies can be printed in a similar way. Because \Rclass{data.frame}s have a concept of rows and columns, we need to separate the subsets corresponding to rows and columns by a comma. The statement <>= Forbes2000[1:3, c("name", "sales", "profits", "assets")] @ extracts the variables \Robject{name}, \Robject{sales}, \Robject{profits} and \Robject{assets} for the three largest companies. Alternatively, a single variable can be extracted from a \Rclass{data.frame} by <>= companies <- Forbes2000$name @ which is equivalent to the previously shown statement <>= companies <- Forbes2000[,"name"] @ We might be interested in extracting the largest companies with respect to an alternative ordering. The three top-selling companies can be computed along the following lines. First, we need to compute the ordering of the companies' sales %%' <>= order_sales <- order(Forbes2000$sales) @ which returns the indices of the ordered elements of the numeric vector \Robject{sales}. Consequently the three companies with the lowest sales are <>= companies[order_sales[1:3]] @ The indices of the three top sellers are the elements $1998, 1999$ and $2000$ of the integer vector \Robject{order\_sales} <>= Forbes2000[order_sales[c(2000, 1999, 1998)], c("name", "sales", "profits", "assets")] @ Another way of selecting vector elements is the use of a logical vector being \Robject{TRUE} when the corresponding element is to be selected and \Robject{FALSE} otherwise. The companies with assets of more than $1000$ billion US dollars are <>= Forbes2000[Forbes2000$assets > 1000, c("name", "sales", "profits", "assets")] @ where the expression \Robject{Forbes2000\$assets > 1000} indicates a logical vector of length $2000$ with <>= table(Forbes2000$assets > 1000) @ elements being either \Robject{FALSE} or \Robject{TRUE}. In fact, for some of the companies the measurement of the \Robject{profits} variable are missing. In \R, missing values are treated by a special symbol, \Robject{NA}, indicating \index{NA symbol@\Robject{NA} symbol} that this measurement is not available. \index{Missing values} The observations with profit information missing can be obtained via <>= na_profits <- is.na(Forbes2000$profits) table(na_profits) Forbes2000[na_profits, c("name", "sales", "profits", "assets")] @ where the function \Rcmd{is.na} returns a logical vector being \Robject{TRUE} when the corresponding element of the supplied vector is \Robject{NA}. A more comfortable approach is available when we want to remove all observations with at least one missing value from a \Rclass{data.frame} object. The function \Rcmd{complete.cases} takes a \Rclass{data.frame} and returns a logical vector being \Robject{TRUE} when the corresponding observation does not contain any missing value: <>= table(complete.cases(Forbes2000)) @ Subsetting \Rclass{data.frame}s driven by logical expressions may induce a lot of typing which can be avoided. The \Rcmd{subset} function takes a \Rclass{data.frame} as first argument and a logical expression as second argument. For example, we can select a subset of the Forbes 2000 list consisting of all companies situated in the United Kingdom by <>= UKcomp <- subset(Forbes2000, country == "United Kingdom") dim(UKcomp) @ i.e., $\Sexpr{nrow(UKcomp)}$ of the $2000$ companies are from the UK. Note that it is not necessary to extract the variable \Robject{country} from the \Rclass{data.frame} \Robject{Forbes2000} when formulating the logical expression with \Rcmd{subset}. \index{Data manipulation|)} \section{Computing with Data} \subsection{Simple Summary Statistics} Two functions are helpful for getting an overview about \R{} objects: \Rcmd{str} and \Rcmd{summary}, where \Rcmd{str} is more detailed about data types and \Rcmd{summary} gives a collection of sensible summary statistics. For example, applying the \Rcmd{summary} method to the \Robject{Forbes2000} data set, <>= summary(Forbes2000) @ results in the following output <>= summary(Forbes2000) @ From this output we can immediately see that most of the companies are situated in the US and that most of the companies are working in the banking sector as well as that negative profits, or losses, up to $\Sexpr{abs(round(min(Forbes2000$profits, na.rm = TRUE)))}$ billion US dollars occur. Internally, \Rcmd{summary} is a so-called \stress{generic function} \index{Generic function} with methods for a multitude of classes, i.e., \Rcmd{summary} can be applied to objects of different classes and will report sensible results. Here, we supply a \Rclass{data.frame} object to \Rcmd{summary} where it is natural to apply \Rcmd{summary} to each of the variables in this \Rclass{data.frame}. Because a \Rclass{data.frame} is a \Rclass{list} with each variable being an element of that \Rclass{list}, the same effect can be achieved by <>= lapply(Forbes2000, summary) @ \index{apply family@\Rcmd{apply} family} The members of the \Rcmd{apply} family help to solve recurring tasks for each element of a \Rclass{data.frame}, \Rclass{matrix}, \Rclass{list} or for each level of a \Rclass{factor}. It might be interesting to compare the profits in each of the $\Sexpr{nlevels(Forbes2000$category)}$ categories. To do so, we first compute the median profit for each category from <>= mprofits <- tapply(Forbes2000$profits, Forbes2000$category, median, na.rm = TRUE) @ a command that should be read as follows. For each level of the factor \Robject{category}, determine the corresponding elements of the numeric vector \Robject{profits} and supply them to the \Rcmd{median} function with additional argument \Rarg{na.rm = TRUE}. The latter one is necessary because \Robject{profits} contains missing values which would lead to a non-sensible result of the \Rcmd{median} function <>= median(Forbes2000$profits) @ The three categories with highest median profit are computed from the vector of sorted median profits <>= rev(sort(mprofits))[1:3] @ where \Rcmd{rev} rearranges the vector of median profits \Rcmd{sort}ed from smallest to largest. Of course, we can replace the \Rcmd{median} function with \Rcmd{mean} or whatever is appropriate in the call to \Rcmd{tapply}. In our situation, \Rcmd{mean} is not a good choice, because the distributions of profits or sales are naturally skewed. Simple graphical tools for the inspection of the empirical distributions are introduced later on and in \Sexpr{ch("DAGD")}. \subsection{Customizing Analyses} \index{Functions|(} In the preceding sections we have done quite complex analyses on our data using functions available from \R{}. However, the real power of the system comes to light when writing our own functions for our own analysis tasks. Although \R{} is a full-featured programming language, writing small helper functions for our daily work is not too complicated. We'll study two example cases. At first, we want to add a robust measure of variability to the location measures computed in the previous subsection. In addition to the median profit, computed via <>= median(Forbes2000$profits, na.rm = TRUE) @ we want to compute the inter-quartile range, i.e., the difference between the 3rd and 1st quartile. Although a quick search in the manual pages (via \texttt{help("interquartile")}) brings function \Rcmd{IQR} to our attention, we will approach this task without making use of this tool, but using function \Rcmd{quantile} for computing sample quantiles only. A function in \R{} is nothing but an object, and all objects are created equal. Thus, we `just' have to assign a \Rclass{function} object to a variable. A \Rclass{function} object consists of an argument list, defining arguments and possibly default values, and a body defining the computations. The body starts and ends with braces. Of course, the body is assumed to be valid \R{} code. In most cases we expect a function to return an object, therefore, the body will contain one or more \Rcmd{return} statements the arguments of which define the return values. Returning to our example, we'll name our function \Rcmd{iqr}. The \Rcmd{iqr} function should operate on numeric vectors, therefore it should have an argument \Robject{x}. This numeric vector will be passed on to the \Rcmd{quantile} function for computing the sample quartiles. The required difference between the $3^\text{rd}$ and $1^\text{st}$ quartile can then be computed using \Rcmd{diff}. The definition of our function reads as follows <>= iqr <- function(x) { q <- quantile(x, prob = c(0.25, 0.75), names = FALSE) return(diff(q)) } @ A simple test on simulated data from a standard normal distribution shows that our first function actually works, a comparison with the \Rcmd{IQR} function shows that the result is correct: <>= xdata <- rnorm(100) iqr(xdata) IQR(xdata) @ However, when the numeric vector contains missing values, our function fails as the following example shows: <>= xdata[1] <- NA iqr(xdata) @ <>= xdata[1] <- NA cat(try(iqr(xdata))) @ In order to make our little function more flexible it would be helpful to add all arguments of \Rcmd{quantile} to the argument list of \Rcmd{iqr}. The copy-and-paste approach that first comes to mind is likely to lead to inconsistencies and errors, for example when the argument list of \Rcmd{quantile} changes. Instead, the dot argument, a wildcard for any argument, is more appropriate and we redefine our function accordingly: <>= iqr <- function(x, ...) { q <- quantile(x, prob = c(0.25, 0.75), names = FALSE, ...) return(diff(q)) } iqr(xdata, na.rm = TRUE) IQR(xdata, na.rm = TRUE) @ Now, we can assess the variability of the profits using our new \Rcmd{iqr} tool: <>= iqr(Forbes2000$profits, na.rm = TRUE) @ Since there is no difference between functions that have been written by one of the \R{} developers and user-created functions, we can compute the inter-quartile range of profits for each of the business categories by using our \Rcmd{iqr} function inside a \Rcmd{tapply} statement; <>= iqr_profits <- tapply(Forbes2000$profits, Forbes2000$category, iqr, na.rm = TRUE) @ and extract the categories with the smallest and greatest variability <>= levels(Forbes2000$category)[which.min(iqr_profits)] levels(Forbes2000$category)[which.max(iqr_profits)] @ We observe less variable profits in tourism enterprises compared with profits in the pharmaceutical industry. As other members of the \Rcmd{apply} family, \Rcmd{tapply} is very helpful when the same task is to be done more than one time. Moreover, its use is more convenient compared to the usage of \Rcmd{for} loops. For the sake of completeness, we will compute the category-wise inter-quartile range of the profits using a \Rcmd{for} loop. \index{Functions|)} \index{Loops|(} Like a \Rclass{function}, a \Rcmd{for} loop consists of a body, i.e., a chain of \R{} commands to be executed. In addition, we need a set of values and a variable that iterates over this set. Here, the set we are interested in is the business categories: <>= bcat <- Forbes2000$category iqr_profits2 <- numeric(nlevels(bcat)) names(iqr_profits2) <- levels(bcat) for (cat in levels(bcat)) { catprofit <- subset(Forbes2000, category == cat)$profit this_iqr <- iqr(catprofit, na.rm = TRUE) iqr_profits2[levels(bcat) == cat] <- this_iqr } @ Compared to the usage of \Rcmd{tapply}, the above code is rather complicated. At first, we have to set up a vector for storing the results and assign the appropriate names to it. Next, inside the body of the \Rcmd{for} loop, the \Rcmd{iqr} function has to be called on the appropriate subset of all companies of the current business category \Robject{cat}. The corresponding inter-quartile range must then be assigned to the correct vector element in the result vector. Luckily, such complicated constructs will be used in only one of the remaining chapters of the book and are almost always avoidable in practical data analyses. \index{Loops|)} \subsection{Simple Graphics} The degree of skewness of a distribution can be investigated by constructing histograms using the \Rcmd{hist} function. (More sophisticated alternatives such as smooth density estimates will be considered in \Sexpr{ch("DE")}.) \begin{figure} \begin{center} <>= layout(matrix(1:2, nrow = 2)) hist(Forbes2000$marketvalue) hist(log(Forbes2000$marketvalue)) @ \caption{Histograms of the market value and the logarithm of the market value for the companies contained in the Forbes 2000 list. \label{AItR:densplot}} \end{center} \end{figure} For example, the code for producing Figure~\ref{AItR:densplot} first divides the plot region into two equally spaced rows (the \Rcmd{layout} function) and then plots the histograms of the raw market values in the upper part using the \Rcmd{hist} function. The lower part of the figure depicts the histogram for the log-transformed market values which appear to be more symmetric. Bivariate relationships of two continuous variables are usually depicted as scatterplots. In \R, regression relationships are specified by so-called \stress{model formulae} which, in a simple bivariate case, may look like <>= fm <- marketvalue ~ sales class(fm) @ with the dependent variable on the left-hand side and the independent variable on the right-hand side. The tilde separates left- and right-hand sides. Such a model formula can be passed to a model function (for example to the linear model function as explained in \Sexpr{ch("MLR")}). The \Rcmd{plot} generic function implements a \Rclass{formula} method as well. Because the distributions of both market value and sales are skewed we choose to depict their logarithms. A raw scatterplot of $2000$ data points (Figure~\ref{AItR:scatter-raw}) is rather uninformative due to areas with very high density. This problem can be avoided by choosing a transparent color for the dots as shown in Figure~\ref{AItR:scatter}. \begin{figure} \begin{center} <>= plot(log(marketvalue) ~ log(sales), data = Forbes2000, pch = ".") @ \caption{Raw scatterplot of the logarithms of market value and sales. \label{AItR:scatter-raw}} \end{center} \end{figure} \begin{figure} \begin{center} <>= plot(log(marketvalue) ~ log(sales), data = Forbes2000, col = rgb(0,0,0,0.1), pch = 16) @ \caption{Scatterplot with transparent shading of points of the logarithms of market value and sales. \label{AItR:scatter}} \end{center} \end{figure} If the independent variable is a factor, a boxplot representation is a natural choice. For four selected countries, the distributions of the logarithms of the market value may be visually compared in Figure~\ref{AItR:box}. Prior to calling the \Rcmd{plot} function on our data, we have to remove empty levels from the \Robject{country} variable, because otherwise the $x$-axis would show all and not only the selected countries. This task is most easily performed by subsetting the corresponding factor with additional argument \Rcmd{drop = TRUE}. \index{Boxplot} \begin{figure} \begin{center} <>= tmp <- subset(Forbes2000, country %in% c("United Kingdom", "Germany", "India", "Turkey")) tmp$country <- tmp$country[,drop = TRUE] plot(log(marketvalue) ~ country, data = tmp, ylab = "log(marketvalue)", varwidth = TRUE) @ \caption{Boxplots of the logarithms of the market value for four selected countries, the width of the boxes is proportional to the square roots of the number of companies. \label{AItR:box}} \end{center} \end{figure} Here, the width of the boxes are proportional to the square root of the number of companies for each country and extremely large or small market values are depicted by single points. More elaborate graphical methods will be discussed in \Sexpr{ch("DAGD")}. \index{Forbes 2000 ranking|)} \section{Organizing an Analysis} <>= file.create("analysis.R") @ Although it is possible to perform an analysis typing all commands directly on the \R{} prompt it is much more comfortable to maintain a separate text file collecting all steps necessary to perform a certain data analysis task. Such an \R{} transcript file, for example called \file{analysis.R} created with your favorite text editor, can be sourced into \R{} using the \Rcmd{source} command <>= source("analysis.R", echo = TRUE) @ When all steps of a data analysis, i.e., data preprocessing, transformations, simple summary statistics and plots, model building and inference as well as reporting, are collected in such an \R{} transcript file, the analysis can be reproduced at any time, maybe with corrected or updated data as it frequently happens in our consulting practice. <>= file.remove("analysis.R") @ \section{Summary of Findings} Data manipulation precedes every statistical analysis and is often more complex than the final model fitting and display. The \R{} language in itself is very powerful and allows efficient data manipulation. For really large data sets that do not fit into the random access memory of the computer, we have to store the data elsewhere, for example in database systems or flat files. Packages for accessing the data from these sources are described in the `Large memory and out-of-memory data' section of the `High-performance and parallel computing' task view. \section{Final Comments} Reading data into \R{} is possible in many different ways, including direct connections to data base engines. Tabular data are handled by \Rclass{data.frame}s in \R{}, and the usual data manipulation techniques such as sorting, ordering or subsetting can be performed by simple \R{} statements. An overview on data stored in a \Rclass{data.frame} is given mainly by two functions: \Rcmd{summary} and \Rcmd{str}. Simple graphics such as histograms and scatterplots can be constructed by applying the appropriate \R{} functions (\Rcmd{hist} and \Rcmd{plot}) and we shall give many more examples of these functions and those that produce more interesting graphics in later chapters. \section*{Exercises} \begin{description} \exercise Calculate the median profit for the companies in the US and the median profit for the companies in the UK, France, and Germany. \exercise Find all German companies with negative profit. \exercise To which business category do most of the Bermuda island companies belong? \exercise For the $50$ companies in the Forbes data set with the highest profits, plot sales against assets (or some suitable transformation of each variable), labeling each point with the appropriate country name which may need to be abbreviated (using \Rcmd{abbreviate}) to avoid making the plot look too `messy'. %%' \exercise Find the average value of sales for the companies in each country in the Forbes data set, and find the number of companies in each country with profits above $5$ billion US dollars. \exercise List all the products made by companies in the UK. \exercise Plot sales against market value for companies in the UK and in Germany using different plotting symbols for the two countries. \exercise For the ten companies in the UK with the greatest profits construct a bar chart of profits labeled with the companies' name. \exercise How many of the $20$ companies with the greatest market value are from the US and how many are from the UK? \exercise Construct a histogram of profits for all companies in Germany with assets above three billion dollars; how many such companies are there? And which product does the company with the greatest profit make? \end{description} \bibliographystyle{LaTeXBibTeX/refstyle} \bibliography{LaTeXBibTeX/HSAUR} \end{document} HSAUR3/vignettes/Ch_conditional_inference.Rnw0000644000176200001440000003730614656356403020677 0ustar liggesusers \documentclass{chapman} %%% copy Sweave.sty definitions %%% keeps `sweave' from adding `\usepackage{Sweave}': DO NOT REMOVE %\usepackage{Sweave} \RequirePackage[T1]{fontenc} \RequirePackage{graphicx,ae,fancyvrb} \IfFileExists{upquote.sty}{\RequirePackage{upquote}}{} \usepackage{relsize} \DefineVerbatimEnvironment{Sinput}{Verbatim}{} \DefineVerbatimEnvironment{Soutput}{Verbatim}{fontfamily=courier, fontshape=it, fontsize=\relsize{-1}} \DefineVerbatimEnvironment{Scode}{Verbatim}{} \newenvironment{Schunk}{}{} %%% environment for raw output \newcommand{\SchunkRaw}{\renewenvironment{Schunk}{}{} \DefineVerbatimEnvironment{Soutput}{Verbatim}{fontfamily=courier, fontshape=it, fontsize=\small} \rawSinput } %%% environment for labeled output \newcommand{\nextcaption}{} \newcommand{\SchunkLabel}{ \renewenvironment{Schunk}{\begin{figure}[ht] }{\caption{\nextcaption} \end{figure} } \DefineVerbatimEnvironment{Sinput}{Verbatim}{frame = topline} \DefineVerbatimEnvironment{Soutput}{Verbatim}{frame = bottomline, samepage = true, fontfamily=courier, fontshape=it, fontsize=\relsize{-1}} } %%% S code with line numbers \DefineVerbatimEnvironment{Sinput} {Verbatim} { %% numbers=left } \newcommand{\numberSinput}{ \DefineVerbatimEnvironment{Sinput}{Verbatim}{numbers=left} } \newcommand{\rawSinput}{ \DefineVerbatimEnvironment{Sinput}{Verbatim}{} } %%% R / System symbols \newcommand{\R}{\textsf{R}} \newcommand{\rR}{{R}} \renewcommand{\S}{\textsf{S}} \newcommand{\SPLUS}{\textsf{S-PLUS}} \newcommand{\rSPLUS}{{S-PLUS}} \newcommand{\SPSS}{\textsf{SPSS}} \newcommand{\EXCEL}{\textsf{Excel}} \newcommand{\ACCESS}{\textsf{Access}} \newcommand{\SQL}{\textsf{SQL}} %%\newcommand{\Rpackage}[1]{\hbox{\rm\textit{#1}}} %%\newcommand{\Robject}[1]{\hbox{\rm\texttt{#1}}} %%\newcommand{\Rclass}[1]{\hbox{\rm\textit{#1}}} %%\newcommand{\Rcmd}[1]{\hbox{\rm\texttt{#1}}} \newcommand{\Rpackage}[1]{\index{#1 package@{\fontseries{b}\selectfont #1} package} {\fontseries{b}\selectfont #1}} \newcommand{\rpackage}[1]{{\fontseries{b}\selectfont #1}} \newcommand{\Robject}[1]{\texttt{#1}} \newcommand{\Rclass}[1]{\index{#1 class@\textit{#1} class}\textit{#1}} \newcommand{\Rcmd}[1]{\index{#1 function@\texttt{#1} function}\texttt{#1}} \newcommand{\Roperator}[1]{\texttt{#1}} \newcommand{\Rarg}[1]{\texttt{#1}} \newcommand{\Rlevel}[1]{\texttt{#1}} %%% other symbols \newcommand{\file}[1]{\hbox{\rm\texttt{#1}}} %%\newcommand{\stress}[1]{\index{#1}\textit{#1}} \newcommand{\stress}[1]{\textit{#1}} \newcommand{\booktitle}[1]{\textit{#1}} %%' %%% Math symbols \usepackage{amstext} \usepackage{amsmath} \newcommand{\E}{\mathsf{E}} \newcommand{\Var}{\mathsf{Var}} \newcommand{\Cov}{\mathsf{Cov}} \newcommand{\Cor}{\mathsf{Cor}} \newcommand{\x}{\mathbf{x}} \newcommand{\y}{\mathbf{y}} \renewcommand{\a}{\mathbf{a}} \newcommand{\W}{\mathbf{W}} \newcommand{\C}{\mathbf{C}} \renewcommand{\H}{\mathbf{H}} \newcommand{\X}{\mathbf{X}} \newcommand{\B}{\mathbf{B}} \newcommand{\V}{\mathbf{V}} \newcommand{\I}{\mathbf{I}} \newcommand{\D}{\mathbf{D}} \newcommand{\bS}{\mathbf{S}} \newcommand{\N}{\mathcal{N}} \renewcommand{\L}{L} \renewcommand{\P}{\mathsf{P}} \newcommand{\K}{\mathbf{K}} \newcommand{\m}{\mathbf{m}} \newcommand{\argmin}{\operatorname{argmin}\displaylimits} \newcommand{\argmax}{\operatorname{argmax}\displaylimits} \newcommand{\bx}{\mathbf{x}} \newcommand{\bbeta}{\mathbf{\beta}} %%% links \usepackage{hyperref} \hypersetup{% pdftitle = {A Handbook of Statistical Analyses Using R (3rd Edition)}, pdfsubject = {Book}, pdfauthor = {Torsten Hothorn and Brian S. Everitt}, colorlinks = {black}, linkcolor = {black}, citecolor = {black}, urlcolor = {black}, hyperindex = {true}, linktocpage = {true}, } %%% captions & tables %% : conflics with figure definition in chapman.cls %%\usepackage[format=hang,margin=10pt,labelfont=bf]{caption} %% \usepackage{longtable} \usepackage[figuresright]{rotating} %%% R symbol in chapter 1 \usepackage{wrapfig} %%% Bibliography \usepackage[round,comma]{natbib} \renewcommand{\refname}{References \addcontentsline{toc}{chapter}{References}} \citeindexfalse %%% texi2dvi complains that \newblock is undefined, hm... \def\newblock{\hskip .11em plus .33em minus .07em} %%% Example sections \newcounter{exercise}[chapter] \setcounter{exercise}{0} \newcommand{\exercise}{\stepcounter{exercise} \item{Ex.~\arabic{chapter}.\arabic{exercise} }} %% URLs \newcommand{\curl}[1]{\begin{center} \url{#1} \end{center}} %%% for manual corrections %\renewcommand{\baselinestretch}{2} %%% plot sizes \setkeys{Gin}{width=0.95\textwidth} %%% color \usepackage{color} %%% hyphenations \hyphenation{drop-out} \hyphenation{mar-gi-nal} %%% new bidirectional quotes need \usepackage[utf8]{inputenc} %\usepackage{setspace} \definecolor{sidebox_todo}{rgb}{1,1,0.2} \newcommand{\todo}[1]{ \hspace{0pt}% \marginpar{% \fcolorbox{black}{sidebox_todo}{% \parbox{\marginparwidth} { \raggedright\sffamily\footnotesize{TODO: #1}% } }% } } \begin{document} %% Title page \title{A Handbook of Statistical Analyses Using \R{} --- 3rd Edition} \author{Torsten Hothorn and Brian S. Everitt} \maketitle %%\VignetteIndexEntry{Chapter Conditional Inference} %%\VignetteDepends{coin} \setcounter{chapter}{3} \SweaveOpts{prefix.string=figures/HSAUR,eps=FALSE,keep.source=TRUE} <>= rm(list = ls()) s <- search()[-1] s <- s[-match(c("package:base", "package:stats", "package:graphics", "package:grDevices", "package:utils", "package:datasets", "package:methods", "Autoloads"), s)] if (length(s) > 0) sapply(s, detach, character.only = TRUE) if (!file.exists("tables")) dir.create("tables") if (!file.exists("figures")) dir.create("figures") set.seed(290875) options(prompt = "R> ", continue = "+ ", width = 63, # digits = 4, show.signif.stars = FALSE, SweaveHooks = list(leftpar = function() par(mai = par("mai") * c(1, 1.05, 1, 1)), bigleftpar = function() par(mai = par("mai") * c(1, 1.7, 1, 1)))) HSAURpkg <- require("HSAUR3") if (!HSAURpkg) stop("cannot load package ", sQuote("HSAUR3")) rm(HSAURpkg) ### hm, R-2.4.0 --vanilla seems to need this a <- Sys.setlocale("LC_ALL", "C") ### book <- TRUE refs <- cbind(c("AItR", "DAGD", "SI", "CI", "ANOVA", "MLR", "GLM", "DE", "RP", "GAM", "SA", "ALDI", "ALDII", "SIMC", "MA", "PCA", "MDS", "CA"), 1:18) ch <- function(x) { ch <- refs[which(refs[,1] == x),] if (book) { return(paste("Chapter~\\\\ref{", ch[1], "}", sep = "")) } else { return(paste("Chapter~", ch[2], sep = "")) } } if (file.exists("deparse.R")) source("deparse.R") setHook(packageEvent("lattice", "attach"), function(...) { lattice.options(default.theme = function() standard.theme("pdf", color = FALSE)) }) @ \pagestyle{headings} <>= book <- FALSE @ \chapter[Conditional Inference]{Conditional Inference: Guessing Lengths, Suicides, Gastrointestinal Damage, and Newborn Infants \label{CI}} <>= data("roomwidth", package = "HSAUR3") nobs <- table(roomwidth$unit) ties <- tapply(roomwidth$width, roomwidth$unit, function(x) length(x) - length(unique(x))) library("coin") @ \section{Introduction} \section{Conditional Test Procedures} \section{Analysis Using \R{}} \subsection{Estimating the Width of a Room Revised} The unconditional analysis of the room width estimated by two groups of students in \Sexpr{ch("SI")} led to the conclusion that the estimates in meters are slightly larger than the estimates in feet. Here, we reanalyze these data in a conditional framework. First, we convert meters into feet and store the vector of observations in a variable \Robject{y}: <>= data("roomwidth", package = "HSAUR3") convert <- ifelse(roomwidth$unit == "feet", 1, 3.28) feet <- roomwidth$unit == "feet" meter <- !feet y <- roomwidth$width * convert @ The test statistic is simply the difference in means <>= T <- mean(y[feet]) - mean(y[meter]) T @ In order to approximate the conditional distribution of the test statistic $T$ we compute $9999$ test statistics for shuffled $y$ values. A permutation of the $y$ vector can be obtained from the \Rcmd{sample} function. <>= meandiffs <- double(9999) for (i in 1:length(meandiffs)) { sy <- sample(y) meandiffs[i] <- mean(sy[feet]) - mean(sy[meter]) } @ \begin{figure} \begin{center} <>= hist(meandiffs) abline(v = T, lty = 2) abline(v = -T, lty = 2) @ \caption{An approximation for the conditional distribution of the difference of mean \Robject{roomwidth} estimates in the feet and meters group under the null hypothesis. The vertical lines show the negative and positive absolute value of the test statistic $T$ obtained from the original data. \label{CI:perm}} \end{center} \end{figure} The distribution of the test statistic $T$ under the null hypothesis of independence of room width estimates and groups is depicted in Figure~\ref{CI:perm}. Now, the value of the test statistic $T$ for the original unshuffled data can be compared with the distribution of $T$ under the null hypothesis (the vertical lines in Figure~\ref{CI:perm}). The $p$-value, i.e., the proportion of test statistics $T$ larger than \Sexpr{-round(T, 3)} or smaller than \Sexpr{round(T, 3)}, is <>= greater <- abs(meandiffs) > abs(T) mean(greater) @ with a confidence interval of <>= binom.test(sum(greater), length(greater))$conf.int @ Note that the approximated conditional $p$-value is roughly the same as the $p$-value reported by the $t$-test in \Sexpr{ch("SI")}. \renewcommand{\nextcaption}{\R{} output of the exact permutation test applied to the \Robject{roomwidth} data. \label{CI-roomwidth-p-fig}} \SchunkLabel <>= library("coin") independence_test(y ~ unit, data = roomwidth, distribution = exact()) @ \SchunkRaw \renewcommand{\nextcaption}{\R{} output of the exact conditional Wilcoxon rank sum test applied to the \Robject{roomwidth} data. \label{CI-roomwidth-w-fig}} \SchunkLabel <>= wilcox_test(y ~ unit, data = roomwidth, distribution = exact()) @ \SchunkRaw \subsection{Crowds and Threatened Suicide} \renewcommand{\nextcaption}{\R{} output of Fisher's exact test for the %' \Robject{suicides} data. \label{CI-suicides-fig}} \SchunkLabel <>= data("suicides", package = "HSAUR3") fisher.test(suicides) @ \SchunkRaw <>= ftp <- round(fisher.test(suicides)$p.value, 3) ctp <- round(chisq.test(suicides)$p.value, 3) @ \subsection{Gastrointestinal Damage} \label{CI:Lanza} Here we are interested in the comparison of two groups of patients, where one group received a placebo and the other one Misoprostol. In the trials shown here, the response variable is measured on an ordered scale -- see Table~\ref{CI:scores}. Data from four clinical studies are available and thus the observations are naturally grouped together. From the \Rclass{data.frame} \Robject{Lanza} we can construct a three-way table as follows: <>= data("Lanza", package = "HSAUR3") xtabs(~ treatment + classification + study, data = Lanza) @ <>= options(width = 65) @ For the first study, the null hypothesis of independence of treatment and gastrointestinal damage, i.e., of no treatment effect of Misoprostol, is tested by <>= library("coin") cmh_test(classification ~ treatment, data = Lanza, scores = list(classification = c(0, 1, 6, 17, 30)), subset = Lanza$study == "I") @ and, by default, the conditional distribution is approximated by the corresponding limiting distribution. The $p$-value indicates a strong treatment effect. For the second study, the asymptotic $p$-value is a little bit larger: <>= cmh_test(classification ~ treatment, data = Lanza, scores = list(classification = c(0, 1, 6, 17, 30)), subset = Lanza$study == "II") @ and we make sure that the implied decision is correct by calculating a confidence interval for the exact $p$-value: <>= p <- cmh_test(classification ~ treatment, data = Lanza, scores = list(classification = c(0, 1, 6, 17, 30)), subset = Lanza$study == "II", distribution = approximate(19999)) pvalue(p) @ The third and fourth study indicate a strong treatment effect as well: <>= cmh_test(classification ~ treatment, data = Lanza, scores = list(classification = c(0, 1, 6, 17, 30)), subset = Lanza$study == "III") cmh_test(classification ~ treatment, data = Lanza, scores = list(classification = c(0, 1, 6, 17, 30)), subset = Lanza$study == "IV") @ At the end, a separate analysis for each study is unsatisfactory. Because the design of the four studies is the same, we can use \Robject{study} as a block variable and perform a global linear-association test investigating the treatment effect of Misoprostol in all four studies. The block variable can be incorporated into the \Rclass{formula} by the \texttt{|} symbol. <>= cmh_test(classification ~ treatment | study, data = Lanza, scores = list(classification = c(0, 1, 6, 17, 30))) @ Based on this result, a strong treatment effect can be established. \subsection{Teratogenesis} \index{Teratogenesis} In this example, the medical doctor (MD) and the research assistant (RA) assessed the number of anomalies ($0, 1, 2$ or $3$) for each of $395$ babies: <>= anomalies <- c(235, 23, 3, 0, 41, 35, 8, 0, 20, 11, 11, 1, 2, 1, 3, 1) anomalies <- as.table(matrix(anomalies, ncol = 4, dimnames = list(MD = 0:3, RA = 0:3))) anomalies @ We are interested in testing whether the number of anomalies assessed by the medical doctor differs structurally from the number reported by the research assistant. Because we compare \stress{paired} observations, i.e., one pair of measurements for each newborn, a test of marginal homogeneity (a generalization of McNemar's test, \Sexpr{ch("SI")}) needs to be applied: %%' %\newpage <>= mh_test(anomalies) @ The $p$-value indicates a deviation from the null hypothesis. However, the levels of the response are not treated as ordered. Similar to the analysis of the gastrointestinal damage data above, we can take this information into account by the definition of an appropriate score. Here, the number of anomalies is a natural choice: <>= mh_test(anomalies, scores = list(response = c(0, 1, 2, 3))) @ In our case, one can conclude that the assessment of the number of anomalies differs between the medical doctor and the research assistant. %%\bibliographystyle{LaTeXBibTeX/refstyle} %%\bibliography{LaTeXBibTeX/HSAUR} \end{document} HSAUR3/vignettes/LaTeXBibTeX/0000755000176200001440000000000014660150123015240 5ustar liggesusersHSAUR3/vignettes/LaTeXBibTeX/setup.Rnw0000644000176200001440000000316214172224326017077 0ustar liggesusers \SweaveOpts{prefix.string=figures/HSAUR,eps=FALSE,keep.source=TRUE} <>= rm(list = ls()) s <- search()[-1] s <- s[-match(c("package:base", "package:stats", "package:graphics", "package:grDevices", "package:utils", "package:datasets", "package:methods", "Autoloads"), s)] if (length(s) > 0) sapply(s, detach, character.only = TRUE) if (!file.exists("tables")) dir.create("tables") if (!file.exists("figures")) dir.create("figures") set.seed(290875) options(prompt = "R> ", continue = "+ ", width = 63, # digits = 4, show.signif.stars = FALSE, SweaveHooks = list(leftpar = function() par(mai = par("mai") * c(1, 1.05, 1, 1)), bigleftpar = function() par(mai = par("mai") * c(1, 1.7, 1, 1)))) HSAURpkg <- require("HSAUR3") if (!HSAURpkg) stop("cannot load package ", sQuote("HSAUR3")) rm(HSAURpkg) ### hm, R-2.4.0 --vanilla seems to need this a <- Sys.setlocale("LC_ALL", "C") ### book <- TRUE refs <- cbind(c("AItR", "DAGD", "SI", "CI", "ANOVA", "MLR", "GLM", "DE", "RP", "GAM", "SA", "ALDI", "ALDII", "SIMC", "MA", "PCA", "MDS", "CA"), 1:18) ch <- function(x) { ch <- refs[which(refs[,1] == x),] if (book) { return(paste("Chapter~\\\\ref{", ch[1], "}", sep = "")) } else { return(paste("Chapter~", ch[2], sep = "")) } } if (file.exists("deparse.R")) source("deparse.R") setHook(packageEvent("lattice", "attach"), function(...) { lattice.options(default.theme = function() standard.theme("pdf", color = FALSE)) }) @ \pagestyle{headings} HSAUR3/vignettes/LaTeXBibTeX/refstyle.bst0000755000176200001440000006715714172224326017637 0ustar liggesusers%% %% This is file `refstyle.bst', %% generated with the docstrip utility. %% %% The original source files were: %% %% merlin.mbs (with options: `,ay,nat,nm-rev,keyxyr,dt-beg,yr-par,note-yr,tit-qq,vnum-x,volp-com,add-pub,pre-pub,isbn,issn,url,url-blk,edby,edbyx,blk-com,pp,ed,xedn') %% ---------------------------------------- %% %% Copyright 1994-1999 Patrick W Daly % =============================================================== % IMPORTANT NOTICE: % This bibliographic style (bst) file has been generated from one or % more master bibliographic style (mbs) files, listed above. % % This generated file can be redistributed and/or modified under the terms % of the LaTeX Project Public License Distributed from CTAN % archives in directory macros/latex/base/lppl.txt; either % version 1 of the License, or any later version. % =============================================================== % Name and version information of the main mbs file: % \ProvidesFile{merlin.mbs}[1999/05/28 3.89 (PWD)] % For use with BibTeX version 0.99a or later %------------------------------------------------------------------- % This bibliography style file is intended for texts in ENGLISH % This is an author-year citation style bibliography. As such, it is % non-standard LaTeX, and requires a special package file to function properly. % Such a package is natbib.sty by Patrick W. Daly % The form of the \bibitem entries is % \bibitem[Jones et al.(1990)]{key}... % \bibitem[Jones et al.(1990)Jones, Baker, and Smith]{key}... % The essential feature is that the label (the part in brackets) consists % of the author names, as they should appear in the citation, with the year % in parentheses following. There must be no space before the opening % parenthesis! % With natbib v5.3, a full list of authors may also follow the year. % In natbib.sty, it is possible to define the type of enclosures that is % really wanted (brackets or parentheses), but in either case, there must % be parentheses in the label. % The \cite command functions as follows: % \citet{key} ==>> Jones et al. (1990) % \citet*{key} ==>> Jones, Baker, and Smith (1990) % \citep{key} ==>> (Jones et al., 1990) % \citep*{key} ==>> (Jones, Baker, and Smith, 1990) % \citep[chap. 2]{key} ==>> (Jones et al., 1990, chap. 2) % \citep[e.g.][]{key} ==>> (e.g. Jones et al., 1990) % \citep[e.g.][p. 32]{key} ==>> (e.g. Jones et al., p. 32) % \citeauthor{key} ==>> Jones et al. % \citeauthor*{key} ==>> Jones, Baker, and Smith % \citeyear{key} ==>> 1990 %--------------------------------------------------------------------- ENTRY { address author booktitle chapter edition editor howpublished institution isbn issn journal key month note number organization pages publisher school series title type url volume year } {} { label extra.label sort.label short.list } INTEGERS { output.state before.all mid.sentence after.sentence after.block } FUNCTION {init.state.consts} { #0 'before.all := #1 'mid.sentence := #2 'after.sentence := #3 'after.block := } STRINGS { s t } FUNCTION {output.nonnull} { 's := output.state mid.sentence = { ", " * write$ } { output.state after.block = { add.period$ write$ newline$ "\newblock " write$ } { output.state before.all = 'write$ { add.period$ " " * write$ } if$ } if$ mid.sentence 'output.state := } if$ s } FUNCTION {output} { duplicate$ empty$ 'pop$ 'output.nonnull if$ } FUNCTION {output.check} { 't := duplicate$ empty$ { pop$ "empty " t * " in " * cite$ * warning$ } 'output.nonnull if$ } FUNCTION {fin.entry} { add.period$ write$ newline$ } FUNCTION {new.block} { output.state before.all = 'skip$ { after.block 'output.state := } if$ } FUNCTION {new.sentence} { output.state after.block = 'skip$ { output.state before.all = 'skip$ { after.sentence 'output.state := } if$ } if$ } FUNCTION {add.blank} { " " * before.all 'output.state := } FUNCTION {date.block} { skip$ } FUNCTION {not} { { #0 } { #1 } if$ } FUNCTION {and} { 'skip$ { pop$ #0 } if$ } FUNCTION {or} { { pop$ #1 } 'skip$ if$ } FUNCTION {non.stop} { duplicate$ "}" * add.period$ #-1 #1 substring$ "." = } FUNCTION {new.block.checkb} { empty$ swap$ empty$ and 'skip$ 'new.block if$ } FUNCTION {field.or.null} { duplicate$ empty$ { pop$ "" } 'skip$ if$ } FUNCTION {emphasize} { duplicate$ empty$ { pop$ "" } { "{\em " swap$ * "\/}" * } if$ } FUNCTION {capitalize} { "u" change.case$ "t" change.case$ } FUNCTION {space.word} { " " swap$ * " " * } % Here are the language-specific definitions for explicit words. % Each function has a name bbl.xxx where xxx is the English word. % The language selected here is ENGLISH FUNCTION {bbl.and} { "and"} FUNCTION {bbl.etal} { "et~al." } FUNCTION {bbl.editors} { "eds." } FUNCTION {bbl.editor} { "ed." } FUNCTION {bbl.edby} { "edited by" } FUNCTION {bbl.edition} { "edition" } FUNCTION {bbl.volume} { "volume" } FUNCTION {bbl.of} { "of" } FUNCTION {bbl.number} { "number" } FUNCTION {bbl.nr} { "no." } FUNCTION {bbl.in} { "in" } FUNCTION {bbl.pages} { "pp." } FUNCTION {bbl.page} { "p." } FUNCTION {bbl.chapter} { "chapter" } FUNCTION {bbl.techrep} { "Technical Report" } FUNCTION {bbl.mthesis} { "Master's thesis" } FUNCTION {bbl.phdthesis} { "Ph.D. thesis" } MACRO {jan} {"January"} MACRO {feb} {"February"} MACRO {mar} {"March"} MACRO {apr} {"April"} MACRO {may} {"May"} MACRO {jun} {"June"} MACRO {jul} {"July"} MACRO {aug} {"August"} MACRO {sep} {"September"} MACRO {oct} {"October"} MACRO {nov} {"November"} MACRO {dec} {"December"} MACRO {acmcs} {"ACM Computing Surveys"} MACRO {acta} {"Acta Informatica"} MACRO {cacm} {"Communications of the ACM"} MACRO {ibmjrd} {"IBM Journal of Research and Development"} MACRO {ibmsj} {"IBM Systems Journal"} MACRO {ieeese} {"IEEE Transactions on Software Engineering"} MACRO {ieeetc} {"IEEE Transactions on Computers"} MACRO {ieeetcad} {"IEEE Transactions on Computer-Aided Design of Integrated Circuits"} MACRO {ipl} {"Information Processing Letters"} MACRO {jacm} {"Journal of the ACM"} MACRO {jcss} {"Journal of Computer and System Sciences"} MACRO {scp} {"Science of Computer Programming"} MACRO {sicomp} {"SIAM Journal on Computing"} MACRO {tocs} {"ACM Transactions on Computer Systems"} MACRO {tods} {"ACM Transactions on Database Systems"} MACRO {tog} {"ACM Transactions on Graphics"} MACRO {toms} {"ACM Transactions on Mathematical Software"} MACRO {toois} {"ACM Transactions on Office Information Systems"} MACRO {toplas} {"ACM Transactions on Programming Languages and Systems"} MACRO {tcs} {"Theoretical Computer Science"} FUNCTION {format.url} { url empty$ { "" } { "\urlprefix\url{" url * "}" * } if$ } INTEGERS { nameptr namesleft numnames } FUNCTION {format.names} { 's := "" 't := #1 'nameptr := s num.names$ 'numnames := numnames 'namesleft := { namesleft #0 > } { s nameptr "{vv~}{ll}{, jj}{, f.}" format.name$ 't := nameptr #1 > { namesleft #1 > { ", " * t * } { numnames #2 > { "," * } 'skip$ if$ s nameptr "{ll}" format.name$ duplicate$ "others" = { 't := } { pop$ } if$ t "others" = { " " * bbl.etal * } { bbl.and space.word * t * } if$ } if$ } 't if$ nameptr #1 + 'nameptr := namesleft #1 - 'namesleft := } while$ } FUNCTION {format.names.ed} { 's := "" 't := #1 'nameptr := s num.names$ 'numnames := numnames 'namesleft := { namesleft #0 > } { s nameptr "{f.~}{vv~}{ll}{, jj}" format.name$ 't := nameptr #1 > { namesleft #1 > { ", " * t * } { numnames #2 > { "," * } 'skip$ if$ s nameptr "{ll}" format.name$ duplicate$ "others" = { 't := } { pop$ } if$ t "others" = { " " * bbl.etal * } { bbl.and space.word * t * } if$ } if$ } 't if$ nameptr #1 + 'nameptr := namesleft #1 - 'namesleft := } while$ } FUNCTION {format.key} { empty$ { key field.or.null } { "" } if$ } FUNCTION {format.authors} { author empty$ { "" } { author format.names } if$ } FUNCTION {format.editors} { editor empty$ { "" } { editor format.names ", " * editor num.names$ #1 > 'bbl.editors 'bbl.editor if$ * } if$ } FUNCTION {format.in.editors} { editor empty$ { "" } { editor format.names.ed } if$ } FUNCTION {format.isbn} { isbn empty$ { "" } { "ISBN " isbn * } if$ } FUNCTION {format.issn} { issn empty$ { "" } { "ISSN " issn * } if$ } FUNCTION {format.note} { note empty$ { "" } { note #1 #1 substring$ duplicate$ "{" = 'skip$ { output.state mid.sentence = { "l" } { "u" } if$ change.case$ } if$ note #2 global.max$ substring$ * } if$ } FUNCTION {format.title} { title empty$ { "" } { title "t" change.case$ "\enquote{" swap$ * non.stop { ",} " * } { "} " * } if$ } if$ } FUNCTION {end.quote.title} { title empty$ 'skip$ { before.all 'output.state := } if$ } FUNCTION {format.full.names} {'s := "" 't := #1 'nameptr := s num.names$ 'numnames := numnames 'namesleft := { namesleft #0 > } { s nameptr "{vv~}{ll}" format.name$ 't := nameptr #1 > { namesleft #1 > { ", " * t * } { s nameptr "{ll}" format.name$ duplicate$ "others" = { 't := } { pop$ } if$ t "others" = { " " * bbl.etal * } { numnames #2 > { "," * } 'skip$ if$ bbl.and space.word * t * } if$ } if$ } 't if$ nameptr #1 + 'nameptr := namesleft #1 - 'namesleft := } while$ } FUNCTION {author.editor.key.full} { author empty$ { editor empty$ { key empty$ { cite$ #1 #3 substring$ } 'key if$ } { editor format.full.names } if$ } { author format.full.names } if$ } FUNCTION {author.key.full} { author empty$ { key empty$ { cite$ #1 #3 substring$ } 'key if$ } { author format.full.names } if$ } FUNCTION {editor.key.full} { editor empty$ { key empty$ { cite$ #1 #3 substring$ } 'key if$ } { editor format.full.names } if$ } FUNCTION {make.full.names} { type$ "book" = type$ "inbook" = or 'author.editor.key.full { type$ "proceedings" = 'editor.key.full 'author.key.full if$ } if$ } FUNCTION {output.bibitem} { newline$ "\bibitem[{" write$ label write$ ")" make.full.names duplicate$ short.list = { pop$ } { * } if$ "}]{" * write$ cite$ write$ "}" write$ newline$ "" before.all 'output.state := } FUNCTION {n.dashify} { 't := "" { t empty$ not } { t #1 #1 substring$ "-" = { t #1 #2 substring$ "--" = not { "--" * t #2 global.max$ substring$ 't := } { { t #1 #1 substring$ "-" = } { "-" * t #2 global.max$ substring$ 't := } while$ } if$ } { t #1 #1 substring$ * t #2 global.max$ substring$ 't := } if$ } while$ } FUNCTION {word.in} { bbl.in " " * } FUNCTION {format.date} { year duplicate$ empty$ { "empty year in " cite$ * "; set to ????" * warning$ pop$ "????" } 'skip$ if$ extra.label * before.all 'output.state := " (" swap$ * ")" * } FUNCTION {format.btitle} { title emphasize } FUNCTION {tie.or.space.connect} { duplicate$ text.length$ #3 < { "~" } { " " } if$ swap$ * * } FUNCTION {either.or.check} { empty$ 'pop$ { "can't use both " swap$ * " fields in " * cite$ * warning$ } if$ } FUNCTION {format.bvolume} { volume empty$ { "" } { bbl.volume volume tie.or.space.connect series empty$ 'skip$ { bbl.of space.word * series emphasize * } if$ "volume and number" number either.or.check } if$ } FUNCTION {format.number.series} { volume empty$ { number empty$ { series field.or.null } { output.state mid.sentence = { bbl.number } { bbl.number capitalize } if$ number tie.or.space.connect series empty$ { "there's a number but no series in " cite$ * warning$ } { bbl.in space.word * series * } if$ } if$ } { "" } if$ } FUNCTION {format.edition} { edition empty$ { "" } { output.state mid.sentence = { edition "l" change.case$ " " * bbl.edition * } { edition "t" change.case$ " " * bbl.edition * } if$ } if$ } INTEGERS { multiresult } FUNCTION {multi.page.check} { 't := #0 'multiresult := { multiresult not t empty$ not and } { t #1 #1 substring$ duplicate$ "-" = swap$ duplicate$ "," = swap$ "+" = or or { #1 'multiresult := } { t #2 global.max$ substring$ 't := } if$ } while$ multiresult } FUNCTION {format.pages} { pages empty$ { "" } { pages multi.page.check { bbl.pages pages n.dashify tie.or.space.connect } { bbl.page pages tie.or.space.connect } if$ } if$ } FUNCTION {format.journal.pages} { pages empty$ 'skip$ { duplicate$ empty$ { pop$ format.pages } { ", " * pages n.dashify * } if$ } if$ } FUNCTION {format.vol.num.pages} { volume field.or.null format.journal.pages } FUNCTION {format.chapter.pages} { chapter empty$ 'format.pages { type empty$ { bbl.chapter } { type "l" change.case$ } if$ chapter tie.or.space.connect pages empty$ 'skip$ { ", " * format.pages * } if$ } if$ } FUNCTION {format.in.ed.booktitle} { booktitle empty$ { "" } { editor empty$ { word.in booktitle emphasize * } { word.in booktitle emphasize * ", " * editor num.names$ #1 > { bbl.editors } { bbl.editor } if$ * " " * format.in.editors * } if$ } if$ } FUNCTION {format.thesis.type} { type empty$ 'skip$ { pop$ type "t" change.case$ } if$ } FUNCTION {format.tr.number} { type empty$ { bbl.techrep } 'type if$ number empty$ { "t" change.case$ } { number tie.or.space.connect } if$ } FUNCTION {format.article.crossref} { word.in " \cite{" * crossref * "}" * } FUNCTION {format.book.crossref} { volume empty$ { "empty volume in " cite$ * "'s crossref of " * crossref * warning$ word.in } { bbl.volume volume tie.or.space.connect bbl.of space.word * } if$ " \cite{" * crossref * "}" * } FUNCTION {format.incoll.inproc.crossref} { word.in " \cite{" * crossref * "}" * } FUNCTION {format.org.or.pub} { 't := "" address empty$ t empty$ and 'skip$ { address empty$ 'skip$ { address * } if$ t empty$ 'skip$ { address empty$ 'skip$ { ": " * } if$ t * } if$ } if$ } FUNCTION {format.publisher.address} { publisher empty$ { "empty publisher in " cite$ * warning$ "" } { publisher } if$ format.org.or.pub } FUNCTION {format.organization.address} { organization empty$ { "" } { organization } if$ format.org.or.pub } FUNCTION {article} { output.bibitem format.authors "author" output.check author format.key output format.date "year" output.check date.block format.title "title" output.check end.quote.title crossref missing$ { journal emphasize "journal" output.check format.vol.num.pages output } { format.article.crossref output.nonnull format.pages output } if$ format.issn output format.url output format.note output fin.entry } FUNCTION {book} { output.bibitem author empty$ { format.editors "author and editor" output.check editor format.key output } { format.authors output.nonnull crossref missing$ { "author and editor" editor either.or.check } 'skip$ if$ } if$ format.date "year" output.check date.block format.btitle "title" output.check crossref missing$ { format.bvolume output format.number.series output format.publisher.address output } { format.book.crossref output.nonnull } if$ format.edition output format.isbn output format.url output format.note output fin.entry } FUNCTION {booklet} { output.bibitem format.authors output author format.key output format.date "year" output.check date.block format.title "title" output.check end.quote.title howpublished output address output format.isbn output format.url output format.note output fin.entry } FUNCTION {inbook} { output.bibitem author empty$ { format.editors "author and editor" output.check editor format.key output } { format.authors output.nonnull crossref missing$ { "author and editor" editor either.or.check } 'skip$ if$ } if$ format.date "year" output.check date.block format.btitle "title" output.check crossref missing$ { format.publisher.address output format.bvolume output format.chapter.pages "chapter and pages" output.check format.number.series output } { format.chapter.pages "chapter and pages" output.check format.book.crossref output.nonnull } if$ format.edition output crossref missing$ { format.isbn output } 'skip$ if$ format.url output format.note output fin.entry } FUNCTION {incollection} { output.bibitem format.authors "author" output.check author format.key output format.date "year" output.check date.block format.title "title" output.check end.quote.title crossref missing$ { format.in.ed.booktitle "booktitle" output.check format.publisher.address output format.bvolume output format.number.series output format.chapter.pages output format.edition output format.isbn output } { format.incoll.inproc.crossref output.nonnull format.chapter.pages output } if$ format.url output format.note output fin.entry } FUNCTION {inproceedings} { output.bibitem format.authors "author" output.check author format.key output format.date "year" output.check date.block format.title "title" output.check end.quote.title crossref missing$ { format.in.ed.booktitle "booktitle" output.check publisher empty$ { format.organization.address output } { organization output format.publisher.address output } if$ format.bvolume output format.number.series output format.pages output format.isbn output format.issn output } { format.incoll.inproc.crossref output.nonnull format.pages output } if$ format.url output format.note output fin.entry } FUNCTION {conference} { inproceedings } FUNCTION {manual} { output.bibitem format.authors output author format.key output format.date "year" output.check date.block format.btitle "title" output.check organization output address output format.edition output format.url output format.note output fin.entry } FUNCTION {mastersthesis} { output.bibitem format.authors "author" output.check author format.key output format.date "year" output.check date.block format.btitle "title" output.check bbl.mthesis format.thesis.type output.nonnull school "school" output.check address output format.url output format.note output fin.entry } FUNCTION {misc} { output.bibitem format.authors output author format.key output format.date "year" output.check date.block format.title output end.quote.title howpublished output format.url output format.note output fin.entry } FUNCTION {phdthesis} { output.bibitem format.authors "author" output.check author format.key output format.date "year" output.check date.block format.btitle "title" output.check bbl.phdthesis format.thesis.type output.nonnull school "school" output.check address output format.url output format.note output fin.entry } FUNCTION {proceedings} { output.bibitem format.editors output editor format.key output format.date "year" output.check date.block format.btitle "title" output.check format.bvolume output format.number.series output publisher empty$ { format.organization.address output } { organization output format.publisher.address output } if$ format.isbn output format.issn output format.url output format.note output fin.entry } FUNCTION {techreport} { output.bibitem format.authors "author" output.check author format.key output format.date "year" output.check date.block format.title "title" output.check end.quote.title format.tr.number output.nonnull institution "institution" output.check address output format.url output format.note output fin.entry } FUNCTION {unpublished} { output.bibitem format.authors "author" output.check author format.key output format.date "year" output.check date.block format.title "title" output.check end.quote.title format.url output format.note "note" output.check fin.entry } FUNCTION {default.type} { misc } READ FUNCTION {sortify} { purify$ "l" change.case$ } INTEGERS { len } FUNCTION {chop.word} { 's := 'len := s #1 len substring$ = { s len #1 + global.max$ substring$ } 's if$ } FUNCTION {format.lab.names} { 's := "" 't := s #1 "{vv~}{ll}" format.name$ s num.names$ duplicate$ #2 > { pop$ " " * bbl.etal * } { #2 < 'skip$ { s #2 "{ff }{vv }{ll}{ jj}" format.name$ "others" = { " " * bbl.etal * } { bbl.and space.word * s #2 "{vv~}{ll}" format.name$ * } if$ } if$ } if$ } FUNCTION {author.key.label} { author empty$ { key empty$ { cite$ #1 #3 substring$ } 'key if$ } { author format.lab.names } if$ } FUNCTION {author.editor.key.label} { author empty$ { editor empty$ { key empty$ { cite$ #1 #3 substring$ } 'key if$ } { editor format.lab.names } if$ } { author format.lab.names } if$ } FUNCTION {editor.key.label} { editor empty$ { key empty$ { cite$ #1 #3 substring$ } 'key if$ } { editor format.lab.names } if$ } FUNCTION {calc.short.authors} { type$ "book" = type$ "inbook" = or 'author.editor.key.label { type$ "proceedings" = 'editor.key.label 'author.key.label if$ } if$ 'short.list := } FUNCTION {calc.label} { calc.short.authors short.list "(" * year duplicate$ empty$ short.list key field.or.null = or { pop$ "????" } 'skip$ if$ * 'label := } FUNCTION {sort.format.names} { 's := #1 'nameptr := "" s num.names$ 'numnames := numnames 'namesleft := { namesleft #0 > } { s nameptr "{vv{ } }{ll{ }}{ f{ }}{ jj{ }}" format.name$ 't := nameptr #1 > { " " * namesleft #1 = t "others" = and { "zzzzz" * } { t sortify * } if$ } { t sortify * } if$ nameptr #1 + 'nameptr := namesleft #1 - 'namesleft := } while$ } FUNCTION {sort.format.title} { 't := "A " #2 "An " #3 "The " #4 t chop.word chop.word chop.word sortify #1 global.max$ substring$ } FUNCTION {author.sort} { author empty$ { key empty$ { "to sort, need author or key in " cite$ * warning$ "" } { key sortify } if$ } { author sort.format.names } if$ } FUNCTION {author.editor.sort} { author empty$ { editor empty$ { key empty$ { "to sort, need author, editor, or key in " cite$ * warning$ "" } { key sortify } if$ } { editor sort.format.names } if$ } { author sort.format.names } if$ } FUNCTION {editor.sort} { editor empty$ { key empty$ { "to sort, need editor or key in " cite$ * warning$ "" } { key sortify } if$ } { editor sort.format.names } if$ } FUNCTION {presort} { calc.label label sortify " " * type$ "book" = type$ "inbook" = or 'author.editor.sort { type$ "proceedings" = 'editor.sort 'author.sort if$ } if$ #1 entry.max$ substring$ 'sort.label := sort.label * " " * title field.or.null sort.format.title * #1 entry.max$ substring$ 'sort.key$ := } ITERATE {presort} SORT STRINGS { last.label next.extra } INTEGERS { last.extra.num number.label } FUNCTION {initialize.extra.label.stuff} { #0 int.to.chr$ 'last.label := "" 'next.extra := #0 'last.extra.num := #0 'number.label := } FUNCTION {forward.pass} { last.label label = { last.extra.num #1 + 'last.extra.num := last.extra.num int.to.chr$ 'extra.label := } { "a" chr.to.int$ 'last.extra.num := "" 'extra.label := label 'last.label := } if$ number.label #1 + 'number.label := } FUNCTION {reverse.pass} { next.extra "b" = { "a" 'extra.label := } 'skip$ if$ extra.label 'next.extra := extra.label duplicate$ empty$ 'skip$ { "{\natexlab{" swap$ * "}}" * } if$ 'extra.label := label extra.label * 'label := } EXECUTE {initialize.extra.label.stuff} ITERATE {forward.pass} REVERSE {reverse.pass} FUNCTION {bib.sort.order} { sort.label " " * year field.or.null sortify * " " * title field.or.null sort.format.title * #1 entry.max$ substring$ 'sort.key$ := } ITERATE {bib.sort.order} SORT FUNCTION {begin.bib} { preamble$ empty$ 'skip$ { preamble$ write$ newline$ } if$ "\begin{thebibliography}{" number.label int.to.str$ * "}" * write$ newline$ "\newcommand{\enquote}[1]{``#1''}" write$ newline$ "\expandafter\ifx\csname natexlab\endcsname\relax\def\natexlab#1{#1}\fi" write$ newline$ "\expandafter\ifx\csname url\endcsname\relax" write$ newline$ " \def\url#1{{\tt #1}}\fi" write$ newline$ "\expandafter\ifx\csname urlprefix\endcsname\relax\def\urlprefix{URL }\fi" write$ newline$ } EXECUTE {begin.bib} EXECUTE {init.state.consts} ITERATE {call.type$} FUNCTION {end.bib} { newline$ "\end{thebibliography}" write$ newline$ } EXECUTE {end.bib} %% End of customized bst file %% %% End of file `jasa.bst'. HSAUR3/vignettes/LaTeXBibTeX/HSAUR.bib0000644000176200001440000023027114172224326016612 0ustar liggesusers> library(utils); library(HSAUR2); HSAUR2:::pkgyears("tmp") > library(utils); library(HSAUR2); HSAUR2:::pkgversions("HSAUR.in") @manual{HSAUR:R, title = {R: A Language and Environment for Statistical Computing}, author = {{R Development Core Team}}, organization = {R Foundation for Statistical Computing}, address = {Vienna, Austria}, year = {2014}, url = {http://www.R-project.org}, } @manual{HSAUR:AItR, title = {An Introduction to R}, author = {{R Development Core Team}}, organization = {R Foundation for Statistical Computing}, address = {Vienna, Austria}, year = {2014}, url = {http://www.R-project.org}, } @manual{HSAUR:RDIE, title = {R Data Import/Export}, author = {{R Development Core Team}}, organization = {R Foundation for Statistical Computing}, address = {Vienna, Austria}, year = {2014}, url = {http://www.R-project.org}, } @manual{HSAUR:RIA, title = {R Installation and Administration}, author = {{R Development Core Team}}, organization = {R Foundation for Statistical Computing}, address = {Vienna, Austria}, year = {2014}, url = {http://www.R-project.org}, } @manual{HSAUR:WRE, title = {Writing R Extensions}, author = {{R Development Core Team}}, organization = {R Foundation for Statistical Computing}, address = {Vienna, Austria}, year = {2014}, url = {http://www.R-project.org}, } @book{HSAUR:Ripley1996, key = {216}, author = {Ripley, Brian D.}, title = {{Pattern} Recognition and Neural Networks}, year = {1996}, publisher = {Cambridge University Press}, address = {Cambridge, UK}, url = {http://www.stats.ox.ac.uk/pub/PRNN/}, pages = 403 } %% Chapter: Analysing Longitudinal Data @article{HSAUR:WatkinsWilliams1998, author = {E. Watkins and R. Williams}, title = {The efficacy of cognitive behavioural therapy}, journal = {Journal of Counseling and Clinical Psychology}, year = 1998, volume = 27, pages = {31-39} } %% et al? @article{HSAUR:Proudfootetal2003, author = {J. Proudfoot and D. Goldberg and A. Mann and B. S. Everitt and I. Marks and J. A. Gray}, title = {Computerized, interactive, multimedia cognitive-behavioural program for anxiety and depression in general practice}, journal = {Psychological Medicine}, year = 2003, volume = 33, number = 2, pages = {217-227} } %% edition? @manual{HSAUR:Becketal1996, author = {A. Beck and R. Steer and G. Brown}, title = {BDI-II Manual}, year = 1996, edition = {2nd}, organization = {The Psychological Corporation, San Antonio} } @book{HSAUR:Diggleetal2003, author = {P. J. Diggle and P. J. Heagerty and K. Y. Liang and S. L. Zeger}, title = {Analysis of Longitudinal Data}, year = {2003}, publisher = {Oxford University Press}, address = {Oxford, UK} } @book{HSAUR:Longford1993, author = {N. T. Longford}, title = {Random Coefficient Models}, year = {1993}, publisher = {Oxford University Press}, address = {Oxford, UK} } @article{HSAUR:Rubin1976, author = {D. Rubin}, title = {Inference and missing data}, journal = {Biometrika}, year = 1976, volume = 63, pages = {581-592} } @article{HSAUR:MurrayFindlay1988, author = {G. D. Murray and J. G. Findlay}, title = {Correcting for bias caused by dropouts in hypertension trials}, journal = {Statistics in Medicine}, year = 1988, volume = 7, pages = {941-946} } @article{HSAUR:DiggleKenward1994, author = {P. J. Diggle and M. G. Kenward}, title = {Informative dropout in longitudinal data analysis}, journal = {Journal of the Royal Statistical Society, Series C}, year = 1994, volume = 43, pages = {49-93} } @article{HSAUR:Carpenteretal2002, author = {J. Carpenter and S. Pocock and C. J. Lamm}, title = {Coping with missing data in clinical trials: {A} model-based approach applied to asthma trials}, journal = {Statistics in Medicine}, year = 2002, volume = {21}, pages = {1043-1066} } @incollection{HSAUR:Diggle1998, author = {P. J. Diggle}, title = {Dealing with missing values in longitudinal studies}, year = 1998, booktitle = {Statistical Analysis of Medical Data}, editor = {B. S. Everitt and G. Dunn}, publisher = {Arnold}, address = {London, UK} } @book{HSAUR:Everitt2002, author = {B. S. Everitt}, title = {Modern Medical Statistics}, year = 2002, publisher = {Arnold}, address = {London, UK} } @article{HSAUR:Heitjan1997, author = {D. F. Heitjan}, title = {Annotation: {W}hat can be done about missing data? {A}pproaches to imputation}, journal = {American Journal of Public Health}, year = 1997, volume = 87, pages = {548-550} } @book{HSAUR:MayorFrei2003, author = {M. Mayor and P. Frei}, title = {New Worlds in the Cosmos: {T}he Discovery of Exoplanets}, publisher = {Cambridge University Press}, year = 2003, address = {Cambridge, UK} } %%% check volume and pages @article{HSAUR:MayorQueloz1995, author = {M. Mayor and D. Queloz}, title = {A {J}upiter-mass companion to a solar-type star}, journal = {Nature}, year = 1995, volume = {378}, pages = {355} } @article{HSAUR:EverittBullmore1999, author = {B. S. Everitt and E. T. Bullmore}, title = {Mixture model mapping of brain activation in functional magnetic resonance images}, journal = {Human Brain Mapping}, year = 1999, volume = 7, pages = {1-14} } @book{HSAUR:Everittetal2001, author = {B. S. Everitt and S. Landau and M. Leese}, title = {Cluster Analysis}, publisher = {Arnold}, year = 2001, edition = {4th}, address = {London, UK} } @book{HSAUR:Gordon1999, author = {A. Gordon}, title = {Classification}, year = 1999, edition = {2nd}, publisher = {Chapman \& Hall/CRC}, address = {Boca Raton, Florida, USA} } @article{HSAUR:ScottSymons1971, author = {A. J. Scott and M. J. Symons}, title = {Clustering methods based on likelihood ratio criteria}, journal = {Biometrics}, year = 1971, volume = 27, pages = {387-398} } @article{HSAUR:BanfieldRaftery1993, author = {J. D. Banfield and A. E. Raftery}, title = {Model-based {G}aussian and non-{G}aussian clustering}, year = 1993, journal = {Biometrics}, volume = 49, pages = {803-821} } @article{HSAUR:FraleyRaftery1999, author = {G. Fraley and A. E. Raftery}, title = {{MCLUST: S}oftware for model-based cluster analysis}, journal = {Journal of Classification}, year = 1999, volume = 16, pages = {297-306} } @article{HSAUR:FriedmanRubin1967, author = {H. P. Friedman and J. Rubin}, title = {On some invariant criteria for grouping data}, journal = {Journal of the American Statistical Association}, year = 1967, volume = 62, pages = {1159-1178} } @article{HSAUR:Marriott1982, author = {F. H. C. Marriott}, title = {Optimization methods of cluster analysis}, journal = {Biometrika}, year = 1982, volume = 69, pages = {417-421} } @article{HSAUR:Dempsteretal1977, author = {A. P. Dempster and N. M. Laird and D. B. Rubin}, title = {Maximum likelihood from incomplete data via the {EM} algorithm {(C/R: p22-37)}}, journal = {Journal of the Royal Statistical Society, Series B}, year = 1977, volume = 39, pages = {1-22} } @article{HSAUR:DubesJain1979, author = {R. Dubes and A. K. Jain}, title = {Validity studies in clustering methodologies}, journal = {Pattern Recognition}, year = 1979, volume = 8, pages = {247-260} } @article{HSAUR:Tubbetal1980, author = {A. Tubb and N. J. Parker and G. Nickless}, title = {The analysis of {Romano-British} pottery by atomic absorption spectrophotometry}, journal = {Archaeometry}, year = 1980, volume = 22, pages = {153-171} } @article{HSAUR:Alonetal1999, author = {U. Alon and N. Barkai and D. A. Notternam and K. Gish and S. Ybarra and D. Mack and A. J. Levine}, title = {Broad patterns of gene expressions revealed by clustering analysis of tumour and normal colon tissues probed by oligonucleotide arrays}, journal = {Cell Biology}, year = 1999, volume = 99, pages = {6754-6760} } @article{HSAUR:Woodleyetal1977, author = {W. L. Woodley and J. Simpson and R. Biondini and J. Berkeley}, title = {Rainfall results 1970-75: {F}lorida area cumulus experiment}, year = {1977}, journal = {Science}, volume = {195}, pages = {735-742} } @book{HSAUR:EfronTibshirani1993, author = {B. Efron and R. J. Tibshirani}, title = {An Introduction to the Bootstrap}, year = {1993}, publisher = {Chapman \& Hall/CRC}, address = {London, UK} } @book{HSAUR:CookWeisberg1982, author = {R. D. Cook and S. Weisberg}, title = {Residuals and Influence in Regression}, year = {1982}, publisher = {Chapman \& Hall/CRC}, address = {London, UK} } @book{HSAUR:VenablesRipley2002, author = {William N. Venables and Brian D. Ripley}, title = {Modern Applied Statistics with {S}}, edition = {4th}, publisher = {Springer-Verlag}, address = {New York, USA}, year = 2002, note = {{ISBN} 0-387-95457-0}, url = {http://www.stats.ox.ac.uk/pub/MASS4/} } @book{HSAUR:McLachlanPeel2000, author = {G. McLachlan and D. Peel}, title = {Finite Mixture Models}, year = 2000, publisher = {John Wiley \& Sons}, address = {New York, USA} } @article{HSAUR:Pearson1894, author = {Karl Pearson}, title = {Contributions to the mathematical theory of evolution}, year = 1894, journal = {Philosophical Transactions A}, volume = 185, pages = {71-110} } @book{HSAUR:Scott1992, author = {D. W. Scott}, title = {Multivariate Density Estimation}, year = 1992, publisher = {John Wiley \& Sons}, address = {New York, USA} } @book{HSAUR:Silverman1986, author = {B. Silverman}, title = {Density Estimation}, year = 1986, publisher = {Chapman \& Hall/CRC}, address = {London, UK} } @book{HSAUR:Simonoff1996, author = {J. S. Simonoff}, title = {Smoothing Methods in Statistics}, year = 1996, publisher = {Springer-Verlag}, address = {New York, USA} } @article{HSAUR:VanismaGreve1972, author = {F. Vanisma and J. P. {De Greve}}, title = {Close binary systems before and after mass transfer}, journal = {Astrophysics and Space Science}, year = 1972, volume = 87, pages = {377-401} } @book{HSAUR:WandJones1995, author = {M. P. Wand and M. C. Jones}, title = {Kernel Smoothing}, year = 1995, publisher = {Chapman \& Hall/CRC}, address = {London, UK} } @article{HSAUR:Wilkinson1992, author = {L. Wilkinson}, title = {Graphical displays}, journal = {Statistical Methods in Medical Research}, year = 1992, volume = 1, pages = {3-25} } %% An Introduction to R @book{HSAUR:Becker+Chambers+Wilks:1988, author = {Richard A. Becker and John M. Chambers and Allan R. Wilks}, title = {The New {S} Language}, publisher = {Chapman \& Hall}, year = 1988, address = {London, UK}, } @book{HSAUR:Chambers+Hastie:1992, author = {John M. Chambers and Trevor J. Hastie}, title = {Statistical Models in {S}}, publisher = {Chapman \& Hall}, year = 1992, address = {London, UK}, } @book{HSAUR:Chambers:1998, author = {John M. Chambers}, title = {Programming with Data}, publisher = {Springer-Verlag}, year = 1998, address = {New York, USA}, } %% Simple Inference @book{HSAUR:Agresti1996, author = {A. Agresti}, title = {An Introduction to Categorical Data Analysis}, year = 1996, publisher = {John Wiley \& Sons}, address = {New York, USA} } @book{HSAUR:Everitt1992, author = {Brian S. Everitt}, title = {The Analysis of Contingency Tables}, year = 1992, edition = {2nd}, publisher = {Chapman \& Hall/CRC}, address = {London, UK} } @article{HSAUR:Haberman1973, author = {S. J. Haberman}, title = {The analysis of residuals in cross-classified tables}, journal = {Biometrics}, year = 1973, volume = 29, pages = {205-220} } @book{HSAUR:Handetal1994, author = {D. J. Hand and F. Daly and A. D. Lunn and K. J. McConway and E. Ostrowski}, title = {A Handbook of Small Datasets}, year = 1994, publisher = {Chapman \& Hall/CRC}, address = {London, UK} } @article{HSAUR:Mann1981, author = {L. Mann}, title = {The baiting crowd in episodes of threatened suicide}, journal = {Journal of Personality and Social Psychology}, year = 1981, volume = 41, pages = {703-709} } @article{HSAUR:MehtaPatel1983, author = {Cyrus R. Mehta and Nitin R. Patel}, title = {A Network Algorithm for Performing {F}isher's Exact Test in $r \times c $ Contingency Tables}, journal = {Journal of the American Statistical Association}, pages = {427-434}, year = {1983}, month = {June}, volume = {78}, number = {382} } @book{HSAUR:Fisher1935, author = {R. A. Fisher}, title = {The Design of Experiments}, year = 1935, publisher = {Oliver and Boyd}, address = {Edinburgh, UK} } @article{HSAUR:Pitman1937, author = {E. J. G. Pitman}, title = {Significance tests which may be applied to samples from any populations}, journal = {Biometrika}, year = 1937, volume = 29, pages = {322-335} } @book{HSAUR:Barlowetal1972, author = {R. E. Barlow and D. J. Bartholomew and J. M. Bremner and H. D. Brunk}, title = {Statistical Inference under Order Restrictions}, year = 1972, publisher = {John Wiley \& Sons}, address = {New York, USA} } @article{HSAUR:Corbetetal1970, author = {G. B. Corbet and J. Cummins and S. R. Hedges and W. J. Krzanowski}, title = {The taxonomic structure of {B}ritish water voles, genus \textit{Arvicola}}, year = 1970, journal = {Journal of Zoology}, volume = 61, pages = {301-316} } @book{HSAUR:EverittRabeHesketh1997, author = {B. S. Everitt and S. Rabe-Hesketh}, title = {The Analysis of Proximity Data}, year = 1997, publisher = {Arnold}, address = {London, UK} } @book{HSAUR:EverittRabeHesketh2001, author = {B. S. Everitt and S. Rabe-Hesketh}, title = {Analysing Medical Data Using {S-Plus}}, year = 2001, publisher = {Springer-Verlag}, address = {New York, USA} } @book{HSAUR:SkrondalRabeHesketh2004, author = {A. Skrondal and S. Rabe-Hesketh}, year = 2004, title = {Generalized Latent Variable Modeling: {M}ultilevel, Longitudinal and Structural Equation Models}, publisher = {Chapman \& Hall/CRC}, address = {Boca Raton, Florida, USA} } @article{HSAUR:Kruskal1964a, author = {Joseph. B. Kruskal}, title = {Multidimensional scaling by optimizing goodness-of-fit to a nonmetric hypothesis}, journal = {Psychometrika}, year = 1964, volume = 29, pages = {1-27} } @article{HSAUR:Kruskal1964b, author = {Joseph B. Kruskal}, title = {Nonmetric multidimensional scaling: {A} numerical method}, journal = {Psychometrika}, year = 1964, volume = 29, pages = {115-129} } @book{HSAUR:Mardiaetal1979, author = {K. V. Mardia and J. T. Kent and J. M. Bibby}, title = {Multivariate Analysis}, year = 1979, publisher = {Academic Press}, address = {London, UK} } @book{HSAUR:Romesburg1984, author = {H. C. Romesburg}, title = {Cluster Analysis for Researchers}, year = 1984, publisher = {Lifetime Learning Publications}, address = {Belmont, CA} } @article{HSAUR:Shepard1962a, author = {Roger N. Shepard}, title = {The analysis of proximities: {M}ultidimensional scaling with unknown distance function {Part I}}, journal = {Psychometrika}, year = 1962, volume = 27, pages = {125-140} } @article{HSAUR:Shepard1962b, author = {Roger N. Shepard}, title = {The analysis of proximities: {M}ultidimensional scaling with unknown distance function {Part II}}, journal = {Psychometrika}, volume = 27, year = 1962, pages = {219-246} } @article{HSAUR:Sibson1979, author = {R. Sibson}, title = {Studies in the robustness of multidimensional scaling. {P}erturbational analysis of classical scaling}, journal = {Journal of the Royal Statistical Society, Series B}, volume = 41, year = 1979, pages = {217-229} } @article{HSAUR:YoungHouseholder1938, author = {G. Young and A. S. Householder}, title = {Discussion of a set of points in terms of their mutual distances}, year = 1938, journal = {Psychometrika}, volume = 3, pages = {19-22} } ### OUP, New York??? @book{HSAUR:Petitti2000, author = {D. B. Petitti}, title = {Meta-Analysis, Decision Analysis and Cost-Effectiveness Analysis}, year = 2000, publisher = {Oxford University Press}, address = {New York, USA} } @article{HSAUR:DeMets1987, author = {D. L. DeMets}, title = {Methods for combining randomized clinical trials: strengths and limitations}, journal = {Statistics in Medicine}, year = 1987, volume = 6, pages = {341-350} } @article{HSAUR:Bailey1987, author = {K. R. Bailey}, title = {Inter-study differences: how should they influence the interpretation of results?}, journal = {Statistics in Medicine}, year = 1987, volume = 6, pages = {351-360} } @article{HSAUR:SuttonAbrams2001, author = {A. J. Sutton and K. R. Abrams}, title = {Bayesian methods in meta-analysis and evidence synthesis}, year = 2001, journal = {Statistical Methods in Medical Research}, volume = 10, pages = {277-303} } @book{HSAUR:Suttonetal2000, author = {A. J. Sutton and K. R. Abrams and D. R. Jones and T. A. Sheldon}, title = {Methods for Meta-Analysis in Medical Research}, year = 2000, publisher = {John Wiley \& Sons}, address = {Chichester, UK} } @article{HSAUR:Woolf1955, author = {B. Woolf}, title = {On estimating the relationship between blood groups and disease}, journal = {Annals of Human Genetics}, year = 1955, volume = 19, pages = {251-253} } @article{HSAUR:Sterlin1959, author = {T. D. Sterlin}, title = {Publication decisions and their possible effects on inferences drawn from tests of significance-or vice versa}, year = 1959, journal = {Journal of the American Statistical Association}, volume = 54, pages = {30-34} } @article{HSAUR:Greenwald1975, author = {A. G. Greenwald}, title = {Consequences of prejudice against the null hypothesis}, year = 1975, journal = {Psychological Bulletin}, volume = {82}, number = 1, pages = {1-20} } @article{HSAUR:Smith1980, author = {M. L. Smith}, title = {Publication bias and meta-analysis}, year = 1980, journal = {Evaluating Education}, volume = 4, pages = {22-93} } @article{HSAUR:Easterbrooketal1991, author = {P. J. Easterbrook and J. A. Berlin and R. Gopalan and D. R. Matthews}, title = {Publication bias in research}, year = 1991, journal = {Lancet}, volume = 337, pages = {867-872} } @article{HSAUR:DuvalTweedie2000, author = {S. Duval and R. L. Tweedie}, title = {A nonparametric `trim and fill' method of accounting for publication bias in meta-analysis}, year = 2000, journal = {Journal of the American Statistical Association}, volume = 95, pages = {89-98} } @article{HSAUR:Oakes1993, author = {M. Oakes}, title = {The logic and role of meta-analysis in clinical research}, journal = {Statistical Methods in Medical Research}, year = 1993, volume = 2, pages = {147-160} } @incollection{HSAUR:Silagy2003, author = {C. Silagy}, title = {Nicotine replacement therapy for smoking cessation {(Cochrane Review)}}, year = {2003}, booktitle = {The Cochrane Library}, publisher = {John Wiley \& Sons}, addess = {Chichester}, note = {{Issue 4}}, } @book{HSAUR:Collett2003, author = {D. Collett}, title = {Modelling Binary Data}, year = 2003, publisher = {Chapman \& Hall/CRC}, address = {London, UK}, edition = {2nd} } @article{HSAUR:CollettJemain1985, author = {D. Collett and A. A. Jemain}, title = {Residuals, outliers and influential observations in regression analysis}, journal = {Sains Malaysiana}, year = 1985, volume = 4, pages = {493-511} } @incollection{HSAUR:Cook1998, author = {R. J. Cook}, title = {Generalized linear model}, booktitle = {Encyclopedia of Biostatistics}, year = 1998, publisher = {John Wiley \& Sons}, address = {Chichester, UK}, editor = {P. Armitage and T. Colton} } @book{HSAUR:Everitt2001, author = {B. S. Everitt}, title = {Statistics for Psychologists}, year = 2001, publisher = {Lawrence Erlbaum}, address = {Mahwah, New Jersey, USA} } @article{HSAUR:Giardielloetal1993, author = {F. M. Giardiello and S. R. Hamilton and A. J. Krush and S. Piantadosi and L. M. Hylind and P. Celano and S. V. Booker and C. R. Robinson and G. J. A. Offerhaus}, title = {Treatment of colonic and rectal adenomas with sulindac in familial adenomatous polyposis}, year = 1993, journal = {New England Journal of Medicine}, volume = 328, number = 18, pages = {1313-1316} } @article{HSAUR:GreenwoodYule1920, author = {M. Greenwood and G. U. Yule}, title = {An inquiry into the nature of frequency distribution of multiple happenings with particular reference of multiple attacks of disease or of repeated accidents}, year = 1920, journal = {Journal of the Royal Statistical Society}, volume = 83, pages = {255-279} } @book{HSAUR:McCullaghNelder1989, author = {P. McCullagh and J. A. Nelder}, title = {Generalized Linear Models}, year = 1989, publisher = {Chapman \& Hall/CRC}, address = {London, UK} } @article{HSAUR:NelderWedderburn1972, author = {J. A. Nelder and R. W. M. Wedderburn}, title = {Generalized linear models}, year = 1972, journal = {Journal of the Royal Statistical Society, Series A}, volume = 135, pages = {370-384} } @book{HSAUR:Piantadosi1997, author = {S. Piantadosi}, title = {Clinical Trials: A Methodologic Perspective}, year = 1997, publisher = {John Wiley \& Sons}, address = {New York, USA} } @article{HSAUR:Davis1991, author = {C. S. Davis}, title = {Semi-parametric and non-parametric methods for the analysis of repeated measurements with applications to clinical trials}, year = 1991, journal = {Statistics in Medicine}, volume = 10, pages = {1959-1980} } @article{HSAUR:ThallVail1990, author = {P. F. Thall and S. C. Vail}, title = {Some covariance models for longitudinal count data with overdispersion}, year = 1990, journal = {Biometrics}, volume = 46, pages = {657-671} } @book{HSAUR:EverittPickles2000, author = {B. S. Everitt and A. Pickles}, title = {Statistical Aspects of the Design and Analysis of Clinical Trials}, year = 2000, publisher = {Imperial College Press}, address = {London, UK} } @article{HSAUR:LiangZeger1986, author = {K. Liang and S. L. Zeger}, title = {Longitudinal data analysis using generalized linear models}, year = 1986, journal = {Biometrika}, volume = 73, pages = {13-22} } @article{HSAUR:ZegerLiang1986, author = {S. L. Zeger and K. Y. Liang}, title = {Longitudinal data analysis for discrete and continuous outcomes}, year = 1986, journal = {Biometrics}, volume = 42, number = 1, pages = {121-130} } @article{HSAUR:Lanzaetal1989, author = {F. L. Lanza and D. Fakouhi and A. Rubin and R. E. Davis and M. F. Rack and C. Nissen and S. Geis}, title = {A double-blind placebo-controlled comparison of the efficacy and safety of 50, 100, and 200 micrograms of misoprostol {QID} in the prevention of {I}buprofen-induced gastric and duodenal mucosal lesions and symptoms}, journal = {American Journal of Gastroenterology}, volume = {84}, number = {6}, pages = {633-636}, year = 1989 } @article{HSAUR:Lanzaetal1988a, author = {F. L. Lanza and R. L. Aspinall and E. A. Swabb and R. E. Davis and M. F. Rack and A. Rubin}, title = {Double-blind, placebo-controlled endoscopic comparison of the mucosal protective effects of misoprostol versus cimetidine on tolmetin-induced mucosal injury to the stomach and duodenum}, journal = {Gastroenterology}, volume = {95}, number = {2}, pages = {289-294}, year = 1988 } @article{HSAUR:Lanzaetal1988b, author = {F. L. Lanza and K. Peace and L. Gustitus and M. F. Rack and B. Dickson}, title = {A blinded endoscopic comparative study of misoprostol versus sucralfate and placebo in the prevention of aspirin-induced gastric and duodenal ulceration}, journal = {American Journal of Gastroenterology}, volume = {83}, number = {2}, pages = {143-146}, year = 1988 } @article{HSAUR:Lanza1987, author = {F. L. Lanza}, title = {A double-blind study of prophylactic effect of misoprostol on lesions of gastric and duodenal mucosa induced by oral administration of tolmetin in healthy subjects}, journal = {British Journal of Clinical Practice}, volume = 40, month = {May suppl}, pages = {91-101}, year = 1987, } @article{HSAUR:WhiteheadJones1994, author = {Anne Whitehead and Nicola M. B. Jones}, title = {A meta-analysis of clinical trials involving different classifications of response into ordered categories}, journal = {Statistics in Medicine}, volume = {13}, pages = {2503-2515}, year = 1994, } @article{HSAUR:Carlinetal2000, author = {John B. Carlin and Louise M. Ryan and Elizabeth A. Harvey and Lewis B. Holmes}, title = {Anticonvulsant Teratogenesis 4: Inter-Rater Agreement in Assessing Minor Physical Features Related to Anticonvulsant Therapy}, journal = {Teratology}, volume = 62, pages = {406-412}, year = 2000 } @book{HSAUR:Edgington1987, author = {Eugene S. Edgington}, title = {Randomization Tests}, publisher = {Marcel Dekker}, year = 1987, address = {New York, USA} } @techreport{HSAUR:TherneauAtkinson1997, author = {Terry M. Therneau and Elizabeth J. Atkinson}, title = {An Introduction to Recursive Partitioning using the rpart Routine}, institution = {Section of Biostatistics, Mayo Clinic}, year = {1997}, address = {Rochester, USA}, number = {61}, url = {http://www.mayo.edu/hsr/techrpt/61.pdf} } @book{HSAUR:Pesarin2001, author = {Fortunato Pesarin}, title = {Multivariate Permutation Tests: With Applications to Biostatistics}, year = {2001}, publisher = {John Wiley \& Sons}, address = {Chichester, UK} } @book{HSAUR:Breimanetal1984, author = {L. Breiman and J. H. Friedman and R. A. Olshen and C. J. Stone}, title = {Classification and Regression Trees}, year = {1984}, publisher = {Wadsworth}, address = {California, USA} } @article{HSAUR:Breiman1996, author = {Leo Breiman}, title = {Bagging Predictors}, journal = {Machine Learning}, pages = {123-140}, year = {1996}, volume = {24}, number = {2} } @article{HSAUR:Mardinetal2003, author = {Christian Y. Mardin and Torsten Hothorn and Andrea Peters and Anselm G J{\"u}nemann and Nhung X Nguyen and Berthold Lausen}, title = {New Glaucoma Classification Method based on standard {HRT} parameters by bagging classification trees}, journal = {Journal of Glaucoma}, pages = {340-346}, year = {2003}, volume = {12}, number = {4} } @article{HSAUR:Breiman2001a, author = {Leo Breiman}, title = {Statistical Modeling: The Two Cultures}, journal = {Statistical Science}, pages = {199-231}, year = {2001}, volume = {16}, number = {3}, note = {with discussion} } @article{HSAUR:Breiman2001b, author = {Leo Breiman}, title = {Random Forests}, journal = {Machine Learning}, pages = {5-32}, year = {2001}, volume = {45}, number = {1} } @article{HSAUR:GarczarekWeihs2003, author = {Ursula Maria Garczarek and Claus Weihs}, title = {Standardizing the comparison of partitions}, journal = {Computational Statistics}, pages = {143-162}, year = {2003}, volume = {18}, number = {1} } @article{HSAUR:Murthy1998, author = {Sreerama K. Murthy}, title = {Automatic Construction of Decision Trees from Data: A Multi-Disciplinary Survey}, journal = {Data Mining and Knowledge Discovery}, pages = {345-389}, year = {1998}, volume = {2} } @incollection{HSAUR:Morrison2005, author = {D. F. Morrison}, title = {Multivariate analysis of variance}, booktitle = {Encyclopedia of Biostatistics}, year = 2005, publisher = {John Wiley \& Sons}, address = {Chichester, UK}, editor = {P. Armitage and T. Colton}, edition = {2nd} } @article{HSAUR:Aitkin1978, author = {M. Aitkin}, title = {The analysis of unbalanced cross-classifications}, journal = {Journal of the Royal Statistical Society, Series A}, year = 1978, volume = 141, pages = {195-223}, note = {with discussion} } @article{HSAUR:Nelder1977, author = {J. A. Nelder}, title = {A reformulation of linear models}, journal = {Journal of the Royal Statistical Society, Series A}, year = 1977, volume = 140, pages = {48-76}, note = {with commentary} } @book{HSAUR:Scheffe1959, author = {H. Scheffe}, title = {The Analysis of Variance}, year = 1959, publisher = {John Wiley \& Sons}, address = {New York, USA} } @book{HSAUR:Stevens2001, author = {J. Stevens}, title = {Applied Multivariate Statistics for the Social Sciences}, year = 2001, publisher = {Lawrence Erlbaum}, address = {Mahwah, New Jersey, USA}, edition = {4th} } @phdthesis{HSAUR:Quine1975, author = {S. Quine}, title = {Achievement Orientation of Aboriginal and White Adolescents}, year = {1975}, address = {Canberra, Australia}, school = {Australian National University}, type = {Doctoral {D}issertation} } @book{HSAUR:Timm2002, author = {N. H. Timm}, title = {Applied Multivariate Analysis}, year = 2002, publisher = {Springer-Verlag}, address = {New York, USA}, } @book{HSAUR:TherneauGrambsch2000, author = {Terry M. Therneau and Patricia M. Grambsch}, title = {Modeling Survival Data: {E}xtending the Cox Model}, publisher = {Springer-Verlag}, year = {2000}, address = {New York, USA} } @book{HSAUR:Agresti2002, author = {Alan Agresti}, title = {Categorical Data Analysis}, year = 2002, edition = {2nd}, publisher = {John Wiley \& Sons}, address = {Hoboken, New Jersey, USA} } @incollection{HSAUR:Tukey1953, author = {John W. Tukey}, title = {The Problem of Multiple Comparisons (Unpublished Manuscript)}, year = 1953, booktitle = {The Collected Works of John W. Tukey VIII. Multiple Comparisons: 1948-1983}, publisher = {Chapman \& Hall}, address = {New York, USA} } @book{HSAUR:HochbergTamhane1987, author = {Yosef Hochberg and Ajit C. Tamhane}, title = {Multiple Comparison Procedures}, year = 1987, publisher = {John Wiley \& Sons}, address = {New York, USA} } @book{HSAUR:Everitt1996, author = {Brian S. Everitt}, title = {Making Sense of Statistics in Psychology: A Second-Level Course}, year = 1996, publisher = {Oxford University Press}, address = {Oxford, UK} } @book{HSAUR:Searle1971, author = {S. R. Searle}, title = {Linear Models}, year = 1971, publisher = {John Wiley \& Sons}, address = {New York, USA} } @book{HSAUR:Kraepelin1919, author = {Emil Kraepelin}, title = {Dementia Praecox and Paraphrenia}, year = 1919, publisher = {Livingstone}, address = {Edinburgh, UK} } @article{HSAUR:FraleyRaftery2002, author = {C. Fraley and A. E. Raftery}, title = {Model-based clustering, discriminant analysis, and density estimation}, journal = {Journal of the American Statistical Association}, year = 2002, volume = {97}, pages = {611-631} } @article{HSAUR:Leisch2004, title = {{FlexMix}: A general framework for finite mixture models and latent class regression in {\rR{}}}, author = {Friedrich Leisch}, journal = {Journal of Statistical Software}, year = {2004}, volume = {11}, number = {8}, url = {http://www.jstatsoft.org/v11/i08/}, } @incollection{HSAUR:Buehlmann2004, author = {Peter B{\"uh}lmann}, editor = {James E. Gentle and Wolfgang H{\"a}rdle and Yuichi Mori}, booktitle = {Handbook of Computational Statistics}, title = {Bagging, Boosting and Ensemble Methods}, pages = {877-907}, year = {2004}, publisher = {Springer-Verlag}, address = {Berlin, Heidelberg} } @article{HSAUR:Petersetal2002, author = {Andrea Peters and Torsten Hothorn and Berthold Lausen}, title = {ipred: Improved Predictors}, journal = {R News}, pages = {33--36}, year = 2002, month = {June}, volume = 2, number = 2, note = {{ISSN} 1609-3631}, url = {http://CRAN.R-project.org/doc/Rnews/} } @article{HSAUR:HarrisonRubinfeld1978, author = {D. Harrison and D. L. Rubinfeld}, title = {Hedonic prices and the demand for clean air}, journal = {Journal of Environmental Economics \& Management}, volume = 5, year = 1978, pages = {81-102} } @book{HSAUR:PinheiroBates2000, author = {Jos\'{e} C. Pinheiro and Douglas M. Bates}, title = {Mixed-Effects Models in {S} and {S-PLUS}}, publisher = {Springer-Verlag}, address = {New York, USA}, year = {2000} } @article{HSAUR:Colditzetal1994, author = {G. A. Colditz and T. F. Brewer and C. S. Berkey and M. E. Wilson and E. Burdick and H. V. Fineberg and F. Mosteller}, title = {Efficacy of {BCG} vaccine in the prevention of tuberculosis. {M}eta-analysis of the published literature}, journal = {Journal of the American Medical Association}, year = 1994, volume = 271, number = 9, pages = {698-702} } @article{HSAUR:DerSimonianLaird1986, author = {R. DerSimonian and N. Laird}, title = {Meta-analysis in clinical trials}, journal = {Controlled Clinical Trials}, year = 1986, volume = 7, number = 3, pages = {177-188} } @article{HSAUR:ChalmersLau1993, author = {T. C. Chalmers and J. Lau}, title = {Meta-analytic stimulus for changes in clinical trials}, journal = {Statistical Methods in Medical Research}, year = 1993, volume = 2, number = 2, pages = {161-172} } @book{HSAUR:EverittDunn2001, author = {Brian S. Everitt and G. Dunn}, title = {Applied Multivariate Data Analysis}, year = 2001, edition = {2nd}, publisher = {Arnold}, address = {London, UK} } @article{HSAUR:LiggesMaechler2003, title = {Scatterplot3d -- {A}n {\rR{}} Package for Visualizing Multivariate Data}, author = {Uwe Ligges and Martin M{\"a}chler}, journal = {Journal of Statistical Software}, year = {2003}, pages = {1--20}, number = {11}, volume = {8}, url = {http://www.jstatsoft.org/v08/i11}, } @article{HSAUR:Prim1957, author = {R. C. Prim}, title = {Shortest connection networks and some generalizations}, journal = {Bell System Technical Journal}, year = 1957, volume = 36, pages = {1389-1401} } @article{HSAUR:KaplanMeier1958, author = {E. L. Kaplan and P. Meier}, title = {Nonparametric estimation from incomplete observations}, journal = {Journal of the American Statistical Association}, pages = {457-481}, year = {1958}, volume = {53} } @article{HSAUR:Cox1972, author = {D. R. Cox}, title = {Regression models and life-tables}, journal = {Journal of the Royal Statistical Society, Series B}, year = 1972, volume = 34, pages = {187-202}, note = {with discussion} } @book{HSAUR:KalbfleischPrentice1980, author = {J. D. Kalbfleisch and R. L. Prentice}, title = {The Statistical Analysis of Failure Time Data}, year = 1980, publisher = {John Wiley \& Sons}, address = {New York, USA} } @article{HSAUR:Granaetal2002, author = {C. Grana and M. Chinol and C. Robertson and C. Mazzetta and M. Bartolomei and C. De Cicco and M. Fiorenza and M. Gatti and P. Caliceti and G. Paganelli1}, title = {Pretargeted adjuvant radioimmunotherapy with {Y}ttrium-90-biotin in malignant glioma patients: A pilot study}, journal = {British Journal of Cancer}, pages = {207-212}, year = {2002}, month = {January}, volume = {86}, number = {2} } @article{HSAUR:Schumacher1994, author = {M. Schumacher and G. Basert and H. Bojar and K. H\"ubner and M. Olschewski and W. Sauerbrei and C. Schmoor and C. Beyerle and {Neumann, R. L. A.} and {Rauschecker, H. F. for the German Breast Cancer Study Group}}, title = {Randomized $2\times2$ trial evaluating hormonal treatment and the duration of chemotherapy in node-positive breast cancer patients}, journal = {Journal of Clinical Oncology}, year = {1994}, volume = {12}, pages = {2086-2093} } @article{HSAUR:SauerbreiRoyston1999, author = {Willi Sauerbrei and Patrick Royston}, title = {Building multivariable prognostic and diagnostic models: Transformation of the predictors by using fractional polynomials}, journal = {Journal of the Royal Statistical Society, Series A}, pages = {71-94}, year = {1999}, volume = {162}, number = {1} } @book{HSAUR:Hartigan1975, author = {J. A. Hartigan}, title = {Clustering Algorithms}, publisher = {John Wiley \& Sons}, year = 1975, address = {New York, USA} } @book{HSAUR:Davis2002, author = {C. S. Davis}, title = {Statistical Methods for the Analysis of Repeated Measurements}, publisher = {Springer-Verlag}, year = 2002, address = {New York, USA} } @book{HSAUR:Everitt2002b, author = {B. S. Everitt}, title = {Cambridge Dictionary of Statistics in the Medical Sciences}, publisher = {Cambridge University Press}, year = 2002, address = {Cambridge, UK} } @article{HSAUR:GowerRoss1969, author = {J. C. Gower and G. J. S. Ross}, title = {Minimum spanning trees and single linkage cluster analysis}, year = 1969, journal = {Applied Statistics}, volume = 18, pages = {54-64} } @manual{HSAUR:StatXact6, key = {516}, author = {Cyrus R. Mehta and Nitin R. Patel}, title = {StatXact-6: Statistical Software for Exact Nonparametric Inference}, organization = {Cytel Software Corporation}, year = {2003}, address = {Cambridge, MA, USA} } @book{HSAUR:Miller2002, author = {Alan Miller}, title = {Subset Selection in Regression}, year = {2002}, publisher = {Chapman \& Hall}, address = {New York, USA}, edition = {2nd} } @article{HSAUR:Fleiss1993, author = {J. L. Fleiss}, title = {The statistical basis of meta-analysis}, journal = {Statistical Methods in Medical Research}, year = 1993, volume = 2, pages = {121-145} } @incollection{HSAUR:Seeber1998, author = {G. U. H. Seeber}, title = {Poisson Regression}, booktitle = {Encyclopedia of Biostatistics}, year = 1998, publisher = {John Wiley \& Sons}, address = {Chichester, UK}, editor = {P. Armitage and T. Colton} } @article{HSAUR:Bates2005, author = {Douglas Bates}, title = {Fitting Linear Mixed Models in {\rR{}}}, journal = {R News}, year = 2005, volume = 5, number = 1, pages = {27--30}, month = {May}, url = {http://CRAN.R-project.org/doc/Rnews/} } @book{HSAUR:KaufmanRousseeuw1990, author = {L. Kaufman and P. J. Rousseeuw}, title = {Finding Groups in Data: {A}n Introduction to Cluster Analysis}, year = 1990, publisher = {John Wiley \& Sons}, address = {New York, USA} } @article{HSAUR:Roeder1990, author = {K. Roeder}, title = {Density estimation with confidence sets exemplified by superclusters and voids in galaxies}, journal = {Journal of the American Statistical Association}, year = 1990, volume = {85}, pages = {617-624} } @article{HSAUR:Postmanetal1986, author = {M. Postman and J. P. Huchra and M. J. Geller}, title = {Probes of large-scale structures in the Corona Borealis region}, year = 1986, journal = {Astrophysical Journal}, volume = 92, pages = {1238-1247} } @article{HSAUR:FreemanHalton1951, author = {G. H. Freeman and J. H. Halton}, title = {Note on an exact treatment of contingency, goodness of fit and other problems of significance}, journal = {Biometrika}, year = 1951, volume = {38}, pages = {141-149} } @article{HSAUR:LeischRossini2003, author = {Friedrich Leisch and Anthony J. Rossini}, title = {Reproducible statistical research}, journal = {Chance}, year = 2003, volume = 16, number = 2, pages = {46-50} } @article{HSAUR:Gentleman2005, author = {Robert Gentleman}, title = {Reproducible Research: {A} Bioinformatics Case Study}, journal = {Statistical Applications in Genetics and Molecular Biology}, year = 2005, volume = 4, number = 1, note = {{Article 2}}, url = {http://www.bepress.com/sagmb/vol4/iss1/art2} } @inproceedings{HSAUR:Leisch2002b, author = {Friedrich Leisch}, title = {Sweave: Dynamic Generation of Statistical Reports Using Literate Data Analysis}, booktitle = {Compstat 2002 --- Proceedings in Computational Statistics}, pages = {575--580}, year = 2002, editor = {Wolfgang H{\"a}rdle and Bernd R{\"o}nz}, publisher = {Physica Verlag, Heidelberg}, note = {{ISBN} 3-7908-1517-9}, } @article{HSAUR:Leisch2003, author = {Friedrich Leisch}, title = {Sweave, {P}art {II}: Package Vignettes}, journal = {R News}, year = 2003, volume = 3, number = 2, pages = {21--24}, month = {October}, url = {http://CRAN.R-project.org/doc/Rnews/} } @article{HSAUR:Leisch2002a, author = {Friedrich Leisch}, title = {Sweave, {P}art {I}: Mixing {R} and {\LaTeX}}, journal = {R News}, year = 2002, volume = 2, number = 3, pages = {28--31}, month = {December}, url = {http://CRAN.R-project.org/doc/Rnews/} } @book{HSAUR:Murrell2005, author = {Paul Murrell}, title = {R Graphics}, year = 2005, publisher = {Chapman \& Hall/CRC}, address = {Boca Raton, Florida, USA} } @Article{HSAUR:Hothorn:2006:JCGS, key = {566}, author = {Torsten Hothorn and Kurt Hornik and Achim Zeileis}, title = {Unbiased Recursive Partitioning: A Conditional Inference Framework}, journal = {Journal of Computational and Graphical Statistics}, year = 2006, volume = 15, number = 3, pages = {651--674}, doi = {10.1198/106186006X133933}, } @Article{HSAUR:Hothorn:2006:AmStat, key = {575}, author = {Torsten Hothorn and Kurt Hornik and Mark A. van de Wiel and Achim Zeileis}, title = {A {L}ego System for Conditional Inference}, journal = {The American Statistician}, year = {2006}, volume = {60}, issue = {3}, pages = {257--263}, doi = {10.1198/000313006X118430}, } @book{HSAUR:Dalgaard2002, author = {Peter Dalgaard}, title = {Introductory Statistics with R}, year = 2002, publisher = {Springer-Verlag}, address = {New York, USA} } @article{HSAUR:Gabriel1971, author = {K. R. Gabriel}, title = {The biplot graphical display of matrices with application to principal component analysis}, year = 1971, journal = {Biometrika}, volume = {58}, pages = {453--467} } @incollection{HSAUR:Gabriel1981, author = {K. R. Gabriel}, title = {Biplot display of multivariate matrices for inspection of data and diagnosis}, booktitle = {Interpreting Multivariate Data}, editor = {V. Barnett}, year = 1981, publisher = {John Wiley \& Sons}, address = {Chichester, UK} } @book{HSAUR:GowerHand1996, author = {J. C. Gower and D. J. Hand}, title = {Biplots}, year = 1996, publisher = {Chapman \& Hall/CRC}, address = {London, UK} } @article{HSAUR:DolnicarLeisch2003, author = {Sara Dolnicar and Friedrich Leisch}, title = {Winter tourist segments in {A}ustria: Identifying stable vacation styles using bagged clustering techniques}, year = 2003, journal = {Journal of Travel Research}, volume = {41}, pages = {281--292} } @article{HSAUR:Elwoodetal1974, author = {P. C. Elwood and A. L. Cochrane and M. L. Burr and P. M. Sweetman and G. Williams and E. Welsby and S. J. Hughes and R. Renton}, title = {A randomized controlled trial of acetyl salicilic acid in the secondary prevention of mortality from myocardial infarction}, year = 1974, journal = {British Medical Journal}, volume = 1, number = 905, pages = {436-440} } @article{HSAUR:Coronary1976, author = {{Coronary Drug Project Group}}, title = {Asprin in coronary heart disease}, year = 1976, journal = {Journal of Chronic Diseases}, volume = 29, pages = {625-642} } @article{HSAUR:ElwoodSweetman1979, author = {P. C. Elwood and P. M. Sweetman}, title = {Asprin and secondary mortality after myocardial infarction}, year = 1979, journal = {Lancet}, volume = 2, pages = {1313-1315} } @article{HSAUR:Breddinetal1979, author = {K. Breddin and D. Loew and K. Lechner and K. {\"U}berla and E. Walter}, title = {Secondary prevention of myocardial infarction. {C}omparison of acetylsalicylic acid, phenprocoumon and placebo. {A} multicenter two-year prospective study}, journal = {Thrombosis and Haemostasis}, year = 1979, volume = 41, number = 1, pages = {225-236} } @article{HSAUR:Aspirin1980, author = {{Aspirin Myocardial Infarction Study Research Group}}, title = {A randomized, controlled trial of aspirin in persons recovered from myocardial infarction}, year = 1980, journal = {Journal of the American Medical Association}, volume = 243, number = 7, pages = {661-669} } @article{HSAUR:Persantine1980, author = {{Persantine-Aspirin Reinfarction Study Research Group}}, title = {Persantine and {A}spirin in coronary heart disease}, journal = {Circulation}, year = 1980, volume = 62, number = 3, pages = {449-461} } @article{HSAUR:ISIS21988, author = {{ISIS-2 (Second International Study of Infarct Survival) Collaborative Group}}, title = {Randomised trial of intravenous streptokinase, oral aspirin, both, or neither among 17,187 cases of suspected acute myocardial infarction: {ISIS-2}}, year = 1988, journal = {Lancet}, volume = 13, pages = {349-360} } @article{HSAUR:Mazess1984, author = {R. B. Mazess and W. W. Peppler and M. Gibbons}, title = {Total body composition by dual-photon {(153Gd)} absorptiometry}, year = 1984, journal = {American Journal of Clinical Nutrition}, volume = 40, pages = {834-839} } @book{HSAUR:Goldberg1972, author = {D. Goldberg}, year = 1972, title = {The Detection of Psychiatric Illness by Questionnaire}, publisher = {Oxford University Press}, address = {Oxford, UK} } %% PACKAGES @article{PKG:sandwich, title = {Econometric Computing with {HC} and {HAC} Covariance Matrix Estimators}, author = {Achim Zeileis}, journal = {Journal of Statistical Software}, year = {2004}, volume = {11}, number = {10}, pages = {1--17}, url = {http://www.jstatsoft.org/v11/i10/}, } @Manual{PKG:coin, title = {\Rpackage{coin}: Conditional Inference Procedures in a Permutation Test Framework}, author = {Torsten Hothorn and Kurt Hornik and Mark van de Wiel and Achim Zeileis}, year = {2013}, url = {http://CRAN.R-project.org/package=coin}, note = {\rR{} package version 1.0-23} } @Manual{PKG:KernSmooth, title = {\Rpackage{KernSmooth}: Functions for Kernel Smoothing for Wand \& Jones (1995)}, author = {Matt P. Wand and Brian D. Ripley}, year = {2014}, note = {\rR{} package version 2.23-10}, url = {http://CRAN.R-project.org/package=KernSmooth}, } @Manual{PKG:boot, title = {\Rpackage{boot}: Bootstrap \rR{} (\rSPLUS) Functions}, author = {Angelo Canty and Brian D. Ripley}, year = {2014}, url = {http://CRAN.R-project.org/package=boot}, note = {\rR{} package version 1.3-9}, } @Manual{PKG:mclust, title = {\Rpackage{mclust}: Model-based Cluster Analysis}, author = {C. Fraley and A. E. Raftery and Ron Wehrens}, year = {2014}, note = {\rR{} package version 4.3}, url = {http://www.stat.washington.edu/mclust}, } @Manual{PKG:randomForest, title = {\Rpackage{randomForest}: {B}reiman and {C}utler's Random Forests for Classification and Regression}, author = {Leo Breiman and Adele Cutler and Andy Liaw and Matthew Wiener}, year = {2013}, note = {\rR{} package version 4.6-7}, url = {http://stat-www.berkeley.edu/users/breiman/RandomForests}, } @Manual{PKG:rpart, title = {\Rpackage{rpart}: Recursive Partitioning}, author = {Terry M. Therneau and Beth Atkinson and Brian D. Ripley}, year = {2014}, note = {\rR{} package version 4.1-8}, url = {http://mayoresearch.mayo.edu/mayo/research/biostat/splusfunctions.cfm}, } @Manual{PKG:mlbench, title = {\Rpackage{mlbench}: Machine Learning Benchmark Problems}, author = {Friedrich Leisch and Evgenia Dimitriadou}, year = {2013}, url = {http://CRAN.R-project.org/package=mlbench}, note = {\rR{} package version 2.1-1}, } @Manual{PKG:nlme, title = {\Rpackage{nlme}: Linear and Nonlinear Mixed Effects Models}, author = {Jos\'{e} C. Pinheiro and Douglas M. Bates and Saikat DebRoy and Deepayan Sarkar}, year = {2014}, url = {http://CRAN.R-project.org/package=nlme}, note = {\rR{} package version 3.1-113}, } @Manual{PKG:lme4, title = {\Rpackage{lme4}: Linear Mixed-Effects Models Using S4 Classes}, author = {Douglas Bates and Deepayan Sarkar}, year = {2014}, url = {http://CRAN.R-project.org/package=lme4}, note = {\rR{} package version 1.1-5}, } @Manual{PKG:gee, title = {\Rpackage{gee}: Generalized Estimation Equation Solver}, author = {Vincent J. Carey and Thomas Lumley and Brian D. Ripley}, year = {2013}, url = {http://CRAN.R-project.org/package=gee}, note = {\rR{} package version 4.13-18}, } @Manual{PKG:rmeta, title = {\Rpackage{rmeta}: {M}eta-Analysis}, author = {Thomas Lumley}, year = {2013}, url = {http://CRAN.R-project.org/package=rmeta}, note = {\rR{} package version 2.16}, } @Manual{PKG:ape, title = {\Rpackage{ape}: {A}nalyses of Phylogenetics and Evolution}, author = {Emmanuel Paradis and Korbinian Strimmer and Julien Claude and Gangolf Jobb and Rainer Opgen-Rhein and Julien Dutheil and Yvonnick Noel and Ben Bolker}, year = {2014}, url = {http://CRAN.R-project.org/package=ape}, note = {\rR{} package version 3.1-1}, } @Manual{PKG:survival, title = {\Rpackage{survival}: {S}urvival Analysis, Including Penalised Likelihood}, author = {Terry M. Therneau and Thomas Lumley}, year = {2014}, url = {http://CRAN.R-project.org/package=survival}, note = {\rR{} package version 2.37-7}, } @Manual{PKG:mfp, title = {\Rpackage{mfp}: {M}ultivariable Fractional Polynomials}, author = {Gareth Ambler and Axel Benner}, year = {2013}, url = {http://CRAN.R-project.org/package=mfp}, note = {\rR{} package version 1.4.9}, } @Manual{PKG:vcd, title = {\Rpackage{vcd}: {V}isualizing Categorical Data}, author = {David Meyer and Achim Zeileis and Alexandros Karatzoglou and Kurt Hornik}, year = {2013}, url = {http://CRAN.R-project.org/package=vcd}, note = {\rR{} package version 1.3-1}, } @Manual{PKG:leaps, title = {\Rpackage{leaps}: {R}egression Subset Selection}, author = {Thomas Lumley and Alan Miller}, year = {2013}, url = {http://CRAN.R-project.org/package=leaps}, note = {\rR{} package version 2.9}, } @Manual{PKG:party, title = {\Rpackage{party}: {A} Laboratory for Recursive Partytioning}, author = {Torsten Hothorn and Kurt Hornik and Carolin Strobl and Achim Zeileis}, year = {2014}, url = {http://CRAN.R-project.org/package=party}, note = {\rR{} package version 1.0-13} } @Manual{PKG:multcomp, title = {\Rpackage{multcomp}: Simultaneous Inference for General Linear Hypotheses}, author = {Torsten Hothorn and Frank Bretz and Peter Westfall}, year = {2014}, note = {\rR{} package version 1.3-2}, url = {http://CRAN.R-project.org/package=multcomp} } @Manual{PKG:lattice, title = {\Rpackage{lattice}: Lattice Graphics}, author = {Deepayan Sarkar}, year = {2014}, note = {\rR{} package version 0.20-27}, url = {http://CRAN.R-project.org/package=lattice} } @Manual{PKG:partykit, title = {\Rpackage{partykit}: A Toolkit for Recursive Partytioning}, author = {Torsten Hothorn and Achim Zeileis}, year = {2014}, note = {\rR{} package version 0.8-0}, url = {http://R-forge.R-project.org/projects/partykit/} } @Manual{PKG:alr3, title = {\Rpackage{alr3}: Methods and Data to Accompany {Applied Linear Regression 3rd edition}}, author = {Sanford Weisberg}, year = {2013}, note = {\rR{} package version 2.0.5}, url = {http://www.stat.umn.edu/alr}, } @Manual{PKG:mboost, title = {\Rpackage{mboost}: Model-Based Boosting}, author = {Torsten Hothorn and Peter B\"uhlmann and Thomas Kneib and Matthias Schmid and Benjamin Hofner}, year = {2013}, note = {\rR{} package version 2.2-3}, url = {http://CRAN.R-project.org/package=mboost} } @Manual{PKG:meta, title = {\Rpackage{meta}: {M}eta-Analysis}, author = {Guido Schwarzer}, year = {2014}, note = {\rR{} package version 3.2-1}, url = {http://CRAN.R-project.org/package=meta} } @Manual{PKG:rgl, title = {\Rpackage{rgl}: 3D Visualization Device System (OpenGL)}, author = {Daniel Adler and Duncan Murdoch}, year = {2014}, note = {\rR{} package version 0.93.996}, url = {http://rgl.neoscientists.org}, } @Manual{PKG:wordcloud, title = {\Rpackage{wordcloud}: Word Clouds}, author = {Ian Fellows}, year = {2014}, note = {\rR{} package version 2.4}, url = {http://CRAN.R-project.org/package=wordcloud} } @Manual{PKG:quantreg, title = {\Rpackage{quantreg}: {Quantile} Regression}, author = {Roger Koenker}, year = {2013}, url = {http://CRAN.R-project.org/package=quantreg}, note = {\rR{} package version 5.05} } @Manual{PKG:MASS, title = {\Rpackage{MASS}: Support Functions and Datasets for Venables and Ripley's MASS}, author = {Brian D. Ripley}, year = {2014}, url = {http://CRAN.R-project.org/package=MASS}, note = {\rR{} package version 7.3-29} } @Manual{PKG:INLA, title = {\Rpackage{INLA}: Functions Which Allow to Perform Full Bayesian Analysis of Latent Gaussian Models Using Integrated Nested Laplace Approximaxion}, author = {Havard Rue and Sara Martino and Finn Lindgren and Daniel Simpson and Andrea Riebler}, year = {2013}, url = {http://www.r-inla.org/download}, note = {\rR{} package version 0.0-1379661604} } @Manual{PKG:rjags, title = {\Rpackage{rjags}: Bayesian Graphical Models Using {MCMC}}, author = {Martyn Plummer and Alexey Stukalov}, year = {2014}, url = {http://CRAN.R-project.org/package=rjags}, note = {\rR{} package version 3-13} } @Manual{PKG:sp, title = {\Rpackage{sp}: Classes and Methods for Spatial Data}, author = {Edzer Pebesma and Roger Bivand}, year = {2013}, url = {http://CRAN.R-project.org/package=sp}, note = {\rR{} package version 1.0-14} } @Manual{PKG:mice, title = {\Rpackage{mice}: Multivariate Imputation by Chained Equations}, author = {Stef van Buuren and Karin Groothuis-Oudshoorn}, year = {2014}, url = {http://CRAN.R-project.org/package=mice}, note = {\rR{} package version 2.21} } @book{HSAUR:Sarkar2008, title = {Lattice: {M}ultivariate Data Visualization with \rR{}}, author = {Deepayan Sarkar}, year = 2008, publisher = {Springer-Verlag}, address = {New York, USA} } @article{HSAUR:Mazessetal1984, author = {R. B. Mazess and W. W. Peppler and M. Gibbons}, title = {Total Body Composition by Dual Photon Absorptiometry}, year = 1984, journal = {American Journal of Clinical Nutrition}, volume = 40, pages = {834-839} } @book{HSAUR:Rawlingsetal1998, author = {J. O. Rawlings and S. G. Pantula and A. D. Dickey}, title = {Applied Regression Analysis}, year = 1998, publisher = {Springer-Verlag}, address = {New York, USA} } @article{HSAUR:FrisonPocock1992, author = {L. Frison and S. J. Pocock}, year = 1992, title = {Repeated Measures in Clinical Trials: Analysis using Mean Summary Statistics and its Implications for Design}, journal = {Statistics in Medicine}, volume = 11, pages = {1685--1704} } @article{HSAUR:Matthewsetal1990, author = {J. N. S. Matthews and D. G. Altman and M. J. Campbell and P. Royston}, year = 1990, title = {Analysis of Serial Measurements in Medical Research}, journal = {British Medical Journal}, volume = {200}, pages = {230--235} } @article{HSAUR:DeBackeretal1998, author = {M. De Backer and C. De Vroey and E. Lesaffre and I. Scheys and P. De Keyser}, title = {Twelve weeks of continuous oral therapy for toenail onychomycosis caused by dermatophytes: {A} double-blind comparative trial of terbinafine 250 mg/day versus itraconazole 200 mg/day.}, journal = {Journal of the American Academy of Dermatology}, year = {1998}, volume = {38}, pages = {S57--S63}, number = {5}, } @article{HSAUR:Freedmanetal2001, author = {W. L. Freedman and B. F. Madore and B. K. Gibson and L. Ferrarese and D. D. Kelson and S. Sakai and J. R. Mould and R. C. Kennicutt and H. C. Ford and J. A. Graham and John. P. Huchra and S. M. G. Hughes and G. D. Illingworth and L. M. Macri and Peter B. Stetson}, title = {Final Results from the {Hubble Space Telescope} Key Project to Measure the {H}ubble Constant}, journal = {The Astrophysical Journal}, year = 2001, volume = 553, number = 1, pages = {47--72} } @book{HSAUR:Wood2006, author = {Simon N. Wood}, title = {Generalized Additive Models: An Introduction with R}, year = 2006, publisher = {Chapman \& Hall/CRC}, address = {Boca Raton, Florida, USA} } @book{HSAUR:SokalRohlf1981, author = {R. R. Sokal and F. J. Rohlf}, year = 1981, title = {Biometry}, publisher = {W. H. Freeman}, address = {San Francisco, California, USA}, edition = {2nd} } @book{HSAUR:HastieTibshirani1990, author = {T. Hastie and R. Tibshirani}, year = {1990}, title = {Generalized Additive Models}, publisher = {Chapman \& Hall}, address = {Boca Raton, Florida} } @book{HSAUR:Hsu1996, author = {Jason C. Hsu}, title = {Multiple Comparisons: Theory and Methods}, year = 1996, publisher = {CRC Press, Chapman \& Hall}, address = {London}, } @article{HSAUR:Boenschetal2005, author = {Domenikus B{\"o}nsch and Thomas Lederer and Udo Reulbach and Torsten Hothorn and Johannes Kornhuber and Stefan Bleich}, title = {Joint Analysis of the {NACP-REP1} Marker Within the Alpha Synuclein Gene Concludes Association with Alcohol Dependence}, journal = {Human Molecular Genetics}, year = 2005, volume = 14, number = 7, pages = {967-971} } @Article{HSAUR:HothornBretzWestfall2008, author = {Torsten Hothorn and Frank Bretz and Peter Westfall}, year = 2008, title = {Simultaneous Inference in General Parametric Models}, journal = {Biometrical Journal}, volume = 50, number = 3, pages = {346--363} } @ARTICLE{HSAUR:Zeileis2006, author = {Achim Zeileis}, title = {Object-oriented Computation of Sandwich Estimators}, year = {2006}, journal = {Journal of Statistical Software}, volume = {16}, number = {9}, pages = {1--16}, url = {http://www.jstatsoft.org/v16/i09/} } @Article{HSAUR:Garcia2005, author = {A. L. Garcia and K. Wagner and T. Hothorn and C. Koebnick and H. J. Zunft and U. Trippo}, title = {Improved prediction of body fat by measuring skinfold thickness, circumferences, and bone breadths}, journal = {Obesity Research}, year = 2005, volume = 13, number = 3, pages = {626--634} } @Article{HSAUR:KelseyHardy1975, author = {Jennifer L. Kelsey and Robert J. Hardy}, title = {Driving of Motor Vehicles as a Risk Factor for Acute Herniated Lumbar Intervertebral Disc}, journal = {American Journal of Epidemiology}, year = 1975, volume = {102}, number = 1, pages = {63--73} } @Book{HSAUR:Keele2008, author = {Luke John Keele}, title = {Semiparametric Regression for the Social Sciences}, year = {2008}, publisher = {John Wiley \& Sons}, address = {New York, USA} } @article{HSAUR:BuehlmannHothorn2007, AUTHOR = {Peter B\"{u}hlmann and Torsten Hothorn}, TITLE = {Boosting Algorithms: Regularization, Prediction and Model Fitting}, JOURNAL = {Statistical Science}, YEAR = {2007}, VOLUME = {22}, NUMBER = {4}, PAGES = {477-505}, } @book{HSAUR:Schwarzer2009, author = {Guido Schwarzer and James R. Carpenter and Gerta R{\"u}cker}, title = {{M}eta-analysis with \rR{}}, year = {2009}, publisher = {Springer-Verlag}, address = {New York, USA}, note = {forthcoming} } @article{HSAUR:Rohlf1970, author = {F. James Rohlf}, title = {Adaptive Hierarchical Clustering Schemes}, journal = {Systematic Zoology}, year = {1970}, volume = 19, pages = {58--82} } @incollection{HSAUR:Hawkins1982, author = {Douglas M. Hawkins and Michael W. Muller and J. Andri {ten Krooden}}, title = {Cluster Analysis}, year = 1982, booktitle = {Topics in Applied Multivariate Analysis}, editor = {Douglas M. Hawkins}, publisher = {Cambridge University Press}, address = {Cambridge, UK} } @article{HSAUR:Parishetal2003, author = {William L. Parish and Edward O. Laumann and Myron S. Cohen and Suiming Pan and Heyi Zheng and Irving Hoffman and Tianfu Wang and Kwai Hang Ng}, year = 2003, title = {Population-Based Study of Chlamydial Infection in China: {A} Hidden Epidemic}, journal = {Journal of the American Medical Association}, volume = 289, number = 10, pages = {1265--1273} } @book{HSAUR:FisherBelle1993, author = {Lloyd D. Fisher and Gerald Van Belle}, title = {Biostatistics. {A} Methodology for the Health Sciences}, year = 1993, publisher = {John Wiley \& Sons}, address = {New York, USA} } @book{HSAUR:ClevelandMcGill1988, author = {William S. Cleveland and Marylyn E. McGill}, title = {Dynamic Graphics for Statistics}, year = 1988, publisher = {Wadsworth \& Brooks/Cole}, address = {Belmont, California} } @book{HSAUR:Tufte1983, author = {E. R. Tufte}, title = {The Visual Display of Quantitative Information}, year = 1983, publisher = {Graphics Press}, address = {Cheshire, Connecticut} } @Article{HSAUR:Meyeretal2006, title = {The Strucplot Framework: Visualizing Multi-Way Contingency Tables with vcd}, author = {David Meyer and Achim Zeileis and Kurt Hornik}, journal = {Journal of Statistical Software}, year = {2006}, volume = {17}, number = {3}, pages = {1--48}, url = {http://www.jstatsoft.org/v17/i03/}, } @book{HSAUR:Chenetal2008, title = {Handbook of Data Visualization}, editor = {C. Chen and Wolfgang H\"ardle and Antony Unwin}, year = 2008, publisher = {Springer-Verlag}, address = {Berlin, Heidelberg} } @book{HSAUR:Chambersetal1983, author = {J. M. Chambers and W. S. Cleveland and B. Kleiner and P. A. Tukey}, title = {Graphical Methods for Data Analysis}, year = 1983, publisher = {Chapman \& Hall/CRC}, address = {London} } @book{HSAUR:Schmid1954, author = {C. F. Schmid}, title = {Handbook of Graphic Presentation}, year = 1954, publisher = {Ronald Press}, address = {New York} } @article{HSAUR:Cleveland1979, author = {William S. Cleveland}, title = {Robust Locally Weighted Regression and Smoothing Scatterplots}, year = 1979, journal = {Journal of the American Statistical Association}, volume = {74}, pages = {829--836} } @book{HSAUR:FluryRiedwyl1988, author = {B. Flury and H. Riedwyl}, title = {Multivariate Statistics: {A} Practical Approach}, year = 1988, publisher = {Chapman \& Hall}, address = {London, UK} } @article{HSAUR:Friendly1994, author = {Michael Friendly}, title = {Mosaic Displays for Multi-way Contingency Tables}, year = 1994, journal = {Journal of the American Statistical Association}, volume = 89, pages = {190--200} } @unpublished{HSAUR:HofmannTheus2005, author = {Heike Hofmann and Martin Theus}, title = {Interactive Graphics for Visualizing Conditional Distributions}, year = 2005, note = {unpublished Manuscript} } @book{HSAUR:RabeHeskethSkrondal2008, author = {Sophia Rabe-Hesketh and Anders Skrondal}, title = {Multilevel and Longitudinal Modeling Using Stata}, edition = {2nd}, publisher = {Stata Press}, year = 2008, address = {College Station, Texas, USA} } @Book{HSAUR:Koenker2005, title = {Quantile Regression}, publisher = {Cambridge University Press}, year = {2005}, author = {Roger Koenker}, series = {Economic Society Monographs}, language = {english}, address = {New York} } @Article{HSAUR:KoenkerBassett1978, title = {Regression Quantiles}, author = {Roger Koenker and Gilbert Bassett}, journal = {Econometrica}, volume = 46, number = 1, year = 1978, pages = {33--50} } @Article{HSAUR:KoenkerNgPortnoy1994, title = {Quantile Smoothing Splines}, year = {1994}, author = {R. Koenker and P. Ng and S. Portnoy}, journal = {Biometrika}, volume = {81}, number = {4}, pages = {673--680} } @Article{HSAUR:FredriksBuurenBurgmeijer2000, author = {A. M. Fredriks and S. van Buuren and R. J. F. Burgmeijer and J. F. Meulmeester and R. J. Beuker and E. Brugman and M. J. Roede and S. P. Verloove-Vanhorick and J. Wit}, title = {Continuing Positive Secular Growth Change in {The} {Netherlands} 1955--1997}, year = {2000}, journal = {Pediatric Research}, volume = {47}, number = {3}, pages = {316--323} } @Article{HSAUR:StasinopoulosRigby2007, author = {D. Mikis Stasinopoulos and Robert A. Rigby}, title = {Generalized Additive Models for Location Scale and Shape {(GAMLSS)} in {R}}, year = {2007}, journal = {Journal of Statistical Software}, volume = {23}, number = {7}, pages = {1--46}, url = {http://www.jstatsoft.org/v23/i07} } @Article{HSAUR:RigbyStasinopoulos2005, author = {R. A. Rigby and D. M. Stasinopoulos}, title = {Generalized Additive Models for Location, Scale and Shape}, year = {2005}, journal = {Journal of the Royal Statistical Society: Series C (Applied Statistics)}, volume = {54}, number = {3}, pages = {507--554}, } @article{HSAUR:HothornKneibBuehlmann2013, author = {Torsten Hothorn and Thomas Kneib and Peter B{\"u}hlmann}, title = {Conditional Transformation Models}, journal = {Journal of the Royal Statistical Society: Series B (Statistical Methodology)}, year = {2013}, doi = {10.1111/rssb.12017}, } @book{HSAUR:FahrmeirKneibLang2013, author = {Ludwig Fahrmeir and Thomas Kneib and Stefan Lang and Brian Marx}, title = {Regression: Models, Methods and Applications}, year = {2013}, publisher = {Springer-Verlag}, address = {Berlin, Heidelberg, Germany} } @Article{HSAUR:DoksumGasko1990, author = {Kjell A. Doksum and Miriam Gasko}, title = {On a Correspondence Between Models in Binary Regression Analysis and in Survival Analysis}, year = {1990}, journal = {International Statistical Review}, volume = {58}, number = {3}, pages = {243--252} } @book{HSAUR:Tutz2012, author = {Gerhard Tutz}, title = {Regression for Categorical Data}, year = {2012}, publisher = {Cambridge University Press}, address = {New York, USA} } @Article{HSAUR:DetteVolgushev2008, author = {H. Dette and S. Volgushev}, title = {Non-crossing Non-parametric Estimates of Quantile Curves}, year = {2008}, journal = {Journal of the Royal Statistical Society: Series B (Statistical Methodology)}, volume = {70}, number = {3}, pages = {609--627}, } @Article{HSAUR:Greenland2006, author = {Sander Greenland}, title = {Bayesian Perspectives for Epidemiological Research: I. {Foundations} and Basic Methods}, year = {2006}, journal = {International Journal of Epidemiology}, volume = {35}, number = {3}, DOI = {10.1093/ije/dyi312}, pages = {765--775} } @Article{HSAUR:Greenland2007, author = {S. Greenland}, title = {Bayesian Perspectives for Epidemiological Research. II. {Regression} Analysis}, year = {2007}, journal = {International Journal of Epidemiology}, volume = {36}, number = {1}, DOI = {10.1093/ije/dyl289}, pages = {195--202} } @Article{HSAUR:Mueller1940, author = {Frank Hermann M\"uller}, title = {{Tabakmi{\ss}brauch und Lungencarcinom}}, journal = {Zeitschrift f\"ur Krebsforschung}, year = 1940, volume = 49, number = 1, pages = {57--85} } @Article{HSAUR:SchairerSchoeninger1944, author = {E. Schairer and E. Sch\"oninger}, title = {{Lungenkrebs und Tabakverbrauch}}, journal = {Zeitschrift f\"ur Krebsforschung}, year = 1944, volume = 54, number = 4, pages = {261--269} } @Article{HSAUR:Wassink1945, author = {W. F. Wassink}, title = {{Ontstaansvoorwaarden voor Longkanker}}, journal = {Nederlands Tijdschrift voor Geneeskunde}, year = 1945, volume = 92, pages = {3732--3747} } @Article{HSAUR:DollHill1950, author = {Richard Doll and A. Bradford Hill}, title = {Smoking and Carcinoma of the Lung}, journal = {British Medical Journal}, year = 1950, volume = 2, pages = {739--748} } @book{HSAUR:Fisher1959, author = {R. A. Fisher}, title = {Smoking. The Cancer Controversy}, year = 1959, publisher = {Oliver and Boyd}, address = {Edinburgh, London, UK} } @article{HSAUR:SchaferGraham2002, author = {Joseph L. Schafer and John W. Graham}, title = {Missing Data: {Our} View of the State of the Art.}, year = {2002}, journal = {Psychological Methods}, volume = {7}, number = {2}, DOI = {10.1037/1082-989X.7.2.147}, pages = {147--177} } @article{HSAUR:WhiteRoystonWood2011, author = {Ian R. White and Patrick Royston and Angela M. Wood}, title = {Multiple Imputation Using Chained Equations: {Issues} and Guidance for Practice}, year = {2011}, journal = {Statistics in Medicine}, volume = {30}, number = {4}, DOI = {10.1002/sim.4067}, pages = {377--399} } @book{HSAUR:vanBuuren2012, title={Flexible Imputation of Missing Data}, author={Stef {Van Buuren}}, year={2012}, publisher={CRC Press}, address = {Boca Raton, Florida, USA} } @article{HSAUR:RubinSchenker1991, title={Multiple Imputation in Healthcare Databases: {An} Overview and Some Applications}, author={Donald B. Rubin and Nathaniel Schenker}, journal={Statistics in Medicine}, volume={10}, number={4}, pages={585--598}, year={1991}, } @incollection{HSAUR:BarnardRubinSchenker1998, author = {J. Barnard and D. B. Rubin and N. Schenker}, title = {Multiple Imputation Methods}, booktitle = {Encyclopedia of Biostatistics}, year = 1998, publisher = {John Wiley \& Sons}, address = {Chichester, UK}, editor = {P. Armitage and T. Colton} } @incollection{HSAUR:Little1998, author = {J. R. Little}, title = {Missing Data}, booktitle = {Encyclopedia of Biostatistics}, year = 1998, publisher = {John Wiley \& Sons}, address = {Chichester, UK}, editor = {P. Armitage and T. Colton} } @book{HSAUR:LittleRubin2002, author = {J. R. Little and D. B. Rubin}, year = 2002, title = {Statistical Analysis with Missing Data}, edition = {2nd}, publisher = {John Wiley \& Sons}, address = {New York, USA} } @book{HSAUR:Rubin1987, author = {Donald B. Rubin}, year = 1987, title = {Multiple Imputation for Nonresponse in Surveys}, publisher = {John Wiley \& Sons}, address = {New York, USA} } @book{HSAUR:Schafer1997, author = {J. L. Schafer}, year = 1997, title = {Analysis of Incomplete Multivariate Data}, publisher = {Chapman \& Hall/CRC}, address = {London, UK} } @incollection{HSAUR:Barnard2002, author = {J. Barnard and C. Frangakis and J. K. Hill and D. B. Rubin}, title = {The {Bayesian} Analysis of the {New York School Choice Scholarships Program}: {A} Randomized Experiment with Noncompliance and Missing Data (with Discussion)}, booktitle = {Case Studies in Bayesian Statistics}, year = 2002, publisher = {Springer-Verlag}, address = {New York, USA}, editor = {C. Gatsonis and R. Kass and B. Carlin and A. Carriquiry and A. Gelman and I. Verdinelli and M. West} } @article{HSAUR:RobertsonArmitage1959, author = {J. D. Robertson and P. Armitage}, year = {1959}, title = {Comparison of Two Hypotensive Agents}, journal = {Anaesthesia}, volume = {14}, number = 1, pages = {53--64} } @article{HSAUR:BarnardRubin1999, author = {J. Barnard and D. B. Rubin}, year = 1999, title = {Small Sample Degrees of Freedom With Multiple Imputation}, journal = {Biometrika}, volume = 86, pages = {948--955} } @article{HSAUR:Vuilleumier1970, author = {F. Vuilleumier}, year = {1970}, title = {Insular Biogeography in Continental Regions. {I. The} Northern {Andes} of {South America}}, journal = {The American Naturalist}, volume = 104, pages = {373--388} } @book{HSAUR:Aitkin1989, author = {M. Aitkin and D. Anderson and B. Francis and J. Hinde}, title = {Statistical Modelling in {GLIM}}, year = 1989, publisher = {Oxford University Press}, address = {New York, USA}, } @incollection{HSAUR:Morabia2013, author = {Alfredo Morabia}, editor = {Wolfgang Ahrens and Iris Pigeot}, booktitle = {Handbook of Epidemiology}, title = {History of Epidemiological Methods and Concepts}, pages = {43--74}, year = {2013}, edition = {2nd}, publisher = {Springer-Verlag}, address = {New York, USA}, } @Article{HSAUR:ZeileisHothornHornik2008, author = {Achim Zeileis and Torsten Hothorn and Kurt Hornik}, title = {Model-based Recursive Partitioning}, journal = {Journal of Computational and Graphical Statistics}, year = {2008}, volume = 17, number = 2, pages = {492--514}, doi = {10.1198/106186008X319331}, } > > HSAUR3/data/0000755000176200001440000000000014172224353012133 5ustar liggesusersHSAUR3/data/weightgain.rda0000644000176200001440000000057214660150123014750 0ustar liggesusers‹­’ÏOÂ0†Ë6M 11ñŸàD å—žŒx@ƒF9(S¡âdf ˆÿ<úí\8pàð¬oº~}öµë^÷d¡WBx"rÂóœDcaaÆÃQ:Ôã‰þf°Ä?ÁX\¯:,Þaù×Éqdæ&š"nú]ÏWÆ„nEË$FG™º£~¤§®Œ›…ºŸÆ Òrë8öý´CÇžû­Úò~³ÐÆýÚìwâÅf™ï–ílX¸†_AÇŽ—à (жsïàÜ€ÌÁ<‚O0Ï`b;·ªÑà|€[K ¼€‹­ù¦­[Õô@ÜÙïxËÞãDw¾kkÏ’¾qg‘þ|›]?þÎ#) tªKa‚m3ª|/JÛº¢}‘«¸ ]P.T]¨¹Pw¡áBÓ…s¼J™©Â$™S•©ÆTgj05™ètH:$’I‡¤CÒ!étH:ŠE‡¢CÑ¡èPt(:ŠŽjÙþ¾Ë?QµxÌøHSAUR3/data/waves.rda0000644000176200001440000000054714660150123013751 0ustar liggesusers‹ r‰0âŠàb```b`aad`b2Y˜€# 'f-O,K-f``+b`àb!Æë\¶‹¯;°¤ƒü×Cý1ßb4@,e,—­ýO0Uè ‘·wP]дÿâ,qPm`q°vMq¨8Œ/Æ‘W~Ý*·#ðý¿ –ƒ,ˆûºæ.û¿`®¼3Ô yîu"UÝ×9(w`ÿ ênE³¾¶ õDÜþ«;Hƒ‡ƒ Ì Ý"Õ’õp¾¨18(CÔÙÿÃå á£f^b.(0 !dÏM-ÉÈO1Då¡iå,Ê/×CÖ.•`„id4‚1Œa ÃÆ0ƒ1Ìa ÃÊ`24€³ á,#8ËÎ2³Lá,38Ëβ@†äœÄb˜?`‚\)‰%‰ziE@/yÿ@5\žçžHSAUR3/data/agefat.rda0000644000176200001440000000057714172224353014063 0ustar liggesusers‹’ÏNÂ@Æ—hH<(ñÀÁâA´ åÿŸ%Á›'OxÜÀ–K¤¼ú¾€>¾†N»3hbâ&_û›ÙïK¶}e~œB8Â9§ ˜uà‘¢ƒ÷±ž™@¯…pÏ¡ŠÛ§ "ètºuA%PÔ] ®Peœ»y òQuPÔ³môëÎâ,u/’¥jßA¼”üˆ×§êâþðÅÖýj²”ÿ´…õ¥®±ßÁs%ì{[Ûv¿…ýÕ87(Z_òD¿î+eë>æ©7[+ô½Ûý¡ƒë£»sRÊ öë¿øŸ:üŠ¡Ù˜pT@§d70s¬²–ÎMB½¢clèÉzíÒã =74 öÝäO²&3³˜šÈ¸?©ˆüT¯u%ˆÀ.‘‹–¯•ý˜"Æd<IP%¨øu‚A“ …àxL“dª2Õ˜|¦:Sƒ©ÉÄ’3$gHΜ!9CúöâÅî•üÀK½HSAUR3/data/heptathlon.rda0000644000176200001440000000223314660150123014764 0ustar liggesusers‹uU]hU¾IÒæ¯©I›Ý¨1¢’ý¡…f7r³›ýÉ_c7 ©ÈÞM&;“ÌÎÄÙÔ¦/>X|JAˆ@}¢ úPE5 VÈ‹/чˆµV<3çÜI6Á“»÷Üï~ç;?“É^>Ûx¹‘1VËêêjXí1øYW jX;k£ª¬UDEÕMƒ±cíà9Ö æçA‘y¿cc—?<ç<<´ì><»xçz÷6×woÃ/~ž9}~c>°÷û7áy•‡¸ѹ‡ÛØâkÚ¾ÿqï¹2ç=>¹Jÿß».ÐÛÿÅäƒýyrëÜ?ˆõŒPúd=®SðR"Ô—È ¬SÐɺqˆ‡¨Ÿ×ë† òêâ-êõ+Hýôæuò^êK/Ý þ‚º'O¼¼½ßËç<éx ñ4Gw0ÞÀonãyLž¿âö‹Çhžb47ÒoÀyñp?£®ÍQì5ÄÇIWü9œëØw8_1Š—¸pã”wœê>HçƒX//Ÿ‡iN»p®x×6òû)žç€û©N~ÊÃ}ç¾5ŒçïFÝ~ª¯ÄùÎá¼ûä^òÐ\H¼æÀGóѹ‡óÑI:ÎÐzšâÊ};ÞóòIS]R¤;BÞÔ"ÎEæcÔ‘R±¿£ôÞ&‰/EýL¾ˆ÷ÔO‰Ë|†¸ô¸;q°áàSŸ9øÜÁ}_8øÒÁW¾vðƒo|çàÁi»;Wv‡¿ w§Ùa'=˜¿ºT¤ÂRQ¦"¦¢JEŠ&m*ºy‘AU¡ÊT•ª¢ªJU­ªQÕª‡‰ÃÄaâ0q˜8L&‡‰ÃÄQŠ£G)ŽR¥8Jq”â(ÅQŠ£GGGGGŒ'.æòæî`𮥮ð“ÁæÞx2«ž_cÍõÆÝ¼ïwÙïü²ÇÝ”ÞcîËöþ¦|ùù÷â6ÍÿÎïÌ|~g®~¿aaãÉ4ÿÎÆ÷ÒøóïäË~»«Ž»ÈüÄñ"Ž‹¸Oòhü_³§„s¾ËU^;K‹77¿`îUôœå•çåe}»îõ½n7Ÿçéy=s®¶#×÷àõt~äµSsŽ™»Ò5wæêý³?Ͻ“W§ÃÑÞüìÖ³Éðàô·ñÁýýlþø1ïÍóãýìØc1n1n1n1n1n1îÿ1îø>u4x:LûÔ~úÕœþúø—áfú]¦Ãt²ºµ3O¶†“ôæÓñhoûħ®MÆ¿?<úÉû'ÓŒ§CBľ–|I"*DDD l‰¢$£BF@FÄ–dL:*ttDø;B4 ©áïÈÛäH€G4'Kj„„Dø;R™Ìþ2e‡aÄóžê;ÜÏHSAUR3/data/rearrests.rda0000644000176200001440000000027114660150123014630 0ustar liggesusers‹ r‰0âŠàb```b`aad`b2Y˜€# 'æ,JM,*J-.)f``æÉ:$`‡"Ý ¡'î`€˜S2s/Ø8FQÂT’—˜› ´‚IªFâ&ˆ|Ô P>·_¾ÌY$)E±•j%Š~nǔҜ…äüÒ"˜|^¥e©y™9©PQ†è&%ç$ÃL‚ –$&å¤BT3üLˆiHSAUR3/data/skulls.rda0000644000176200001440000000254014172224352014140 0ustar liggesusers‹Å™ßNGÆR©U¤¾€Ÿ òÎì?ßmÛ¤½¨ 8¤…µÁQ¤’PAÚÞú)¸æQü(~’´¦žï;™ÏloAÚœsfÎ9¿ofgw#øùåÈo¶s=×Ûtÿ]îIoùφsÏŸ-íÓ›ßÿ¼¼¼qnóÛe´µ´_/íí*ãQ®Þ#]›t=y¤këq®ôô]NÿšÞŸ>÷W×Óëé*ßÏ?]]/½ÏËë›åuÛ´­»ÿiΚ•EüÛ|eÇ.Ú8?îÈoc~ÛOã³YŒ£ßIÝBæÛ4f=òÀ‰ºZèjÒñ3äA¯Km{—ÖMºx³4Ÿºï:Æ[ÑÓ<<~:—ùû:úiyÈk$¿Iû±^óÁ¥úxß]ªýh]“Ó¡[ûëþê¾1o.±äÓB×]j©q+ëÖ: oþpÕÇûÒ—yôvâDx².Ö¡ô,d½˜‡mÒ>¼.õ¹£/t)g.ùM:ý“~:ÏuÄ~Ü/ðQº8>AÃÏê½¥}¹/è'º»Î“žËSôí§ùУÏéÚ9hÓqìß;à6é<õ+·I­êF>ú£û¯Ï9ÞÛìߊþ¹Ä°è×J,ýô¼òÜ¡nžÖé}ç/ÚÎõË<×­ëê§:xþQuƒ³ˆyÊ]ˆ~pb~wb_¼ç1ßùý@ôJÿSŒ/¤Ÿèã9Õ¾¨“þè³öžŒy\´<Ç­XäG¾î§rùýkÓ:žS­o$6êÅþƒuÌ޹®…Ä}éÓO¹ü„öQn¬‹÷Áá½uócþ(öÅøM´È{ãã¿™¥uÇbß"Oú0ŽüF¸Ò_óŸH_̟ĺ_QߤüÑ,íݧn¬y¢ ù#‰Ñ—ñ<ÕqÒ<¬[÷éHêŽT·¬‡ë”ùÃyÊÁ<ê¸þhq.0¾vÿ:ô`¿PyÝ?®KÆÁÇ<ù².žO¬Kò±^í=Ô!–}¡\éϸcãG²¾Cí =.g™×u#±K9zîõy_»ÏÊG½äéû‚÷[91Æ>@'Æ£ý%ZÔ}.]—rU—Öcþ'Õ%úô|@מäé>©NÌïKý+ÉS]zžÁCŸµó žêGêx?¡Gb=ºåès…u¾–¼]‰Œû‹¾znô¹×û…¾]Ï3æ±ßú>Ñõ¨îŽ÷ŒþvìãøÃT·5ýãêü} z&ð&›\Âûø^:>»¾úûÅ—]ocêFÇà pr8œN§†3;ÐËèyz^N¯ WÒ«èÕôÈðdx2<ž O†'ÓáÉðdx2Œ@F #Èd2ŒœŒœŒœŒœŒœŒœŒœŒœŒœŒœŒ‚Œ‚Œ‚Œ‚Œ‚Œ‚Œ‚Œ‚Œ‚Œ‚Œ’Œ’Œ’Œ’Œ’Œ’Œ’Œ’Œ’Œ’ŒŠŒŠŒŠŒŠŒŠŒŠŒŠŒŠŒŠŒŠŒšŒšŒšŒšŒšŒšŒšŒšŒšŒšŒ!C2†d É’1$cHÆŒ!C06³ÁÀÜÌ\on077·0·4·2·6×h™Ñ2£eFËŒ–-3Zf´Ìh™Ñ2£y£y£y£y£y£y£y£y£y£y£££££££££££åFË–-7Zn´Üh¹Ñr£åFˆ?ËlþãV_…8µ}1þ4~ñîzùÁp«?¿|þGª6_¹HSAUR3/data/birds.rda0000644000176200001440000000074614172224353013735 0ustar liggesusers‹ r‰0âŠàb```b`b&f “… H02°0pi̢֤”bfaˆy˜ˆU€XˆUXˆ¹XJƒÔBiY‰@,ÄüP½|öWåv¾n•·À ¶‹¯sÙÚ¿_'RõÐ}ý<´ÜƯ‡úcìÏ€)Mûƒ ÑÀ7ö+g‚À,ûPþŸ3 pÖþ(P•Æ×Ãö[ÁÀäáö~šó b¾ýWã›ý¿40°¿ vF¡ÄY öÏ âϡûêþPu/ þ`‚úã!Ä}háõ Îò@¬ O`X2+ñ6 ÞÄÁ¤ Äý@<ˆ¯ƒ;I?” Äâ@¬‹$Î gsh\xC±2zdæ%æ¦#“A¬ "Èèe09ÁX®>P³Kj2œéç‰n^rNb1Ì<˜ WJbI¢^ZÐ*4åœEùåzÈNàƒJ°9gdæE!<ŸÄâ€Ä‚DŸ=¸4È­‚)ÉÏÉÌM„™´)3''æ&çüäÒJ˜Q‰¹9ùy0ÕìΉÉ™E0.KH"Ü ' ³ÆäÁ¬ñM-ÊLɲyY0Wpb^I¢obQI"ÜÖÔ¼ þ0£3åæWHSAUR3/data/Smoking_Wassink1945.rda0000644000176200001440000000036414172224353016257 0ustar liggesusers‹]PM‹Â0|¶•õsWéÅcÿ‚_o"ö Ô›Äjh›@SzÛ_.ûlÞªéƒdÂÌ0ÞvyµŽ-pÀÅã¸øô¼jàAÑߥ*2:˜ÖBÆÃÙd à~¢Ô˜ œùˆpA¸ý58®ð3 ÐX_¹‘"tË6¨´, ´H–r’O¾^é5zs£¤ÆÂ<#âk­.M¯çv†ò™ØK{¦.´åÖbsOLýæÇëmñ÷RSFû »ÎÄeöËý€ÏÈþX‡ï1Õc?Â/ÏÁ¾Ø/ç±þ-ð¸?ÅßkçEà¬Ç×?ÝsìCÊŸÎg€Ó"ÿx¼ œ:ÓìKÔŸ?%ø Bo"{.‘®cÞkÂ/ßGQè³?žï<ðpxUÔ•²~ixEä-€_†/þ~̳Ϣà—VæO9ò,Ú®·í‹³€kÄOjq»Žpt£ǵ&¢B«¾¿Øyº]R…Vü²Är'ìÖÎáp8ü*{n6¢6÷d2¬E;Qi«9]5pûåyèHSAUR3/data/gardenflowers.rda0000644000176200001440000000165114172224352015467 0ustar liggesusers‹íUÏsEž°Ê-µ@–VSž†Ã^ð m%! TÅ-\:³Ý.;ÝcÏldÃ9^ÑpÅ3çœ)=hËRËDEÜ„ò nzD{š÷uÂF þ€íªÙ·ýÞëï}ïÇL׆/Ÿª\®DQÔõ¿Öõpö»Ÿ>÷¼êž×ÜÖ…žTæ aó(:ð†SγÇ'>Þž}ýy%ùëÎÜv`feôöû}¶4|Éîf·–*§3öSù{k9ø­ž. g؆;}b¡Æ~öÇfX‡ö«~»Ê–n{@öˆä–ׯ°'瞇KØCŠƒs;‹åºË6½û[Ÿô+Ä r®$tmøã_±uÂ݈übïx¶B8¿Ñ¹oçËuƒuÈqû#áâÜú‚Ol_Ü5ÏÿäÿÆoè±G^|gY‡ø£?Ð~ÇÃ^c|ý—NÇ»ýò^F݉ê~ŸxCy¡Ÿ¨Ã2áþAý@?!Þà‰ó[˜Ò£ŽßS<Ôyvç»F}FÁó‚ºoy˜¹€Þ¨ç6ð?ð+ðyäËV øÈ<sæˆp/²ƒ/âC®QŸîyû"[DýœÝ|a=—ˆç¦Odg_=ýÁc¼·˜‡Ç>îçü0¨ÞËMâÛÝÇo|Ý¿ýÁÃ’7œ¬®¯Ë~è“,vC7À¡TñÜ}I£Ã{Që2/º5Ÿpœ'åñAÑ0Zò8¶ZÊxÂ(9-…–ùIrz{Ð3'CíBæ­<Î,©¹ ó[CX©ä#ž9´”Ãtx˜7½á÷èп?blCÕ)QÕ¦ˆ“ m“çm5Í‹=GFZi3/!.p+õg»Ð£Âr-[ŽW­5!5ôÇF¯K£ÏdäÙ5ct#XÇ/šÂÆÉYë¢Ä)·ZÌ£cíºmp'cÆBç»U8rÎ:‚ɧP¦F ÃÀy©Úq¢¤*ÙXÑàJÀ—¶ª™¬º Õi®”pžCF—]>!ò»ãÂhgç·Cñ´î–´Áãq—½çëêctœ¸ÁÑE³ø«‰zlMî¸×LÎcÛj8ëñ‹©)Òæ^‡LNeR»ÎíÆ¸ÔR2sÝ*/›!¦óÂR þq«'{²'{òååswÐ+çù„P¸„Þ$mïú¯KHðÞ%´ïzZ>ÿ¶³Ì÷gHSAUR3/data/smoking.rda0000644000176200001440000000102314660150123014261 0ustar liggesusers‹]’ßNAƇ²Ðv‹ÿP”Ô%˜ªÀnã•Z!‚ÄâÍt;ÂÒÙY:³ÅpeŒo`â[xé[˜xãû¿‰g†Ú‹_gΙžs¾of·:°2ÆJ,&XiÛ „Ÿ °*Ö²Éò~ªN›¼kÏÀ °ž‚9ð< ý.åg)?÷Á ¸ >ƒiðœúMQíCP¥~5Zݼ÷ àØ‚ÊoX¿€Ð]p6@üÏஃõ øJºŽÀ/PPü’ô7GæÍSÎj¸Eïn{e7Á"ù©‘îE:¿ö.—©. Ýst>C=fGæÙ»IéßÁø êàÉ?¿ ïÀz¤×j=÷àÏÖ]Oä瘼(^§ͱçR<†L”, ·+ünø\2Ö¤ªóõÑF îà•ÌUË(¦Døšg]!e¼F™™m~*´)tžE 'j[TZ\')÷-l|)®VWÝÚÒ¹1ñ:…Óm.eô´9ÅnrûœËŒk“«è…kÖv…Ž"7k³Rs­eG(#”_ÙM¥×åÇN[uË$—Yäá^ÒÊ/…V±kîó>φšû¢Ê~Êmì5¤:¾ |04}¾é®£ö69S"íAµ3åJ èô>Êï ‹Çþ OŒ[ cC"¹qoè’a¼þAãyý±üwÞâÇ6HSAUR3/data/EFT.rda0000644000176200001440000000052014172224352013235 0ustar liggesusers‹ r‰0âŠàb```b`b&f “… H02°0pifW· ) b/–K“†™HÃ(N`ËI-KÍ)²À²P‡å—Ã$ç奡icMÎI,†é‚›•–˜\’TÊðˆù@¾q(¾Àµ º!B-€Ðu tF„.8¡Ë ´„n—€ÐU t%Ti„Άêˆò8 ö@èB¨;*¡ö4ü@sÔ\˜{+!úàþð…ês€ÒP:êÎ(mõ§-”ö‡ÒöP:ê¾ Tq(m¥• t”vƒ©ƒê …ú×Ê÷†Ò¾Pu1P÷ÈÀ¼}y‰¹©°èc† ¦å—@9,%™¹©(ÉÅN`уJ·L ûÿÿÿÿ¢ù?jÚàJI,IÔK+ja€¤3†è HSAUR3/data/USmelanoma.rda0000644000176200001440000000173014172224353014665 0ustar liggesusers‹uU;oG>S¤ø°$Hwüœ´L‰Ʀdñ-ù¬ŽKrÁ»]awO4  l6ØE`ÀrÃ…‹t‰)7AR$H—&Mšø¸w2§›9RùÀïæfvæ›oçlTzzÇqRN*ç¸L§àtÆqVó` í¦Ï=&•Ïgáƒp° ¸øð ðàà1à[Ào€ï¿þXÀmÀˆ€o?ÀsÀ#¼sÿÜø€[€Ÿ_"÷×€'€_óÂÞ÷w?:€ÿްo€¹p°î¥T e9Ni­„ýõב-£_y3Ø'û‰Yâ©"Oã•sGp<-m -ãú:ò]üøø(Upy(ulRŸê@žMҗлüÔŸöµAû%Þ×'uR¼Jú±í¿„¶ŠñuÌ»HsIÔ¯'ú”±Žæ„zºmÌ»†õÝbd¯ÿÙ½Ï#ÛÀ¹50ÞD¾êhaüú¬kõ;”º&ªï=Ã8ÖwÞFñô›Øãmô»X×Aþ.꽊ñö¿Ž<;è7p}ëbýhw‘¿õõ]ŽôÞÀxu_ ùw“ûë!ÿUêKõØÿÍ çØÁº½(Þyz×ñ«pŒÔœ=íú4¤Hr–û>Þ÷­%㉺_¶Er/ü‚¬F™ÇÑ”Tp¯¦Ü$J2®Ç UÄ<æZ¥áê]2]2ŸSzƒy_iËÔùMáªí¤¸«ôý•-xGÅ2Ó ¦IôKQ´ÂƳ-¤·G"fÙ{p'âÇfq[ó¡¢Ý/]áRš©wÈfÏÉRc¤ú¼X3s£\iªà”ÞQôDï|‹‡ó4œ¶šiñ›ñ M·-Ñ;\û0HÚðüÌdº &&‡6»ÜåÆiù®0®’FPV¶;U>ÔE/¶óî¥ÝÌ", HSAUR3/data/mastectomy.rda0000644000176200001440000000062514172224352015012 0ustar liggesusers‹Å’?KÃ@†¯I+6(…RÛ»ôˆ[ÕÅÉ©kh¯PlZlB¥~ ü~7gg7ý"Õ7ö"ˆƒ'<=.¿§iï¼Ù’^ËB8ÂÉãîB³n! X^D±nÇÃp"„»Ž•dË*(‚ °ŽÁ è îÀxÏà¼XN¦šk`l¶ÁØ{  $8G  NÁè ‚Kƒ1¸·à<šö+x7ÝâìíÈüµhm~ý¯,šûS×\®ý½Ûsþ—o'i©¯ÇºÁ fG²ê †ÆÜ‰ŽRäÚý ²OpN7ÀqÁ¦éíƒ Ôv»kÆfã^¨çð ±ù°êg;ˆz׺“š” ¯JóÓŠæ¡LÅŠ´¢¬øVªVjVêVVìûWÊ´ MÒͧUi5ZÖ ±!ÙlH6$’ ɆdC²!Ùl(6РņbC±¡ØPl(6>>>>¾?û?ÝÔÙñ:A”º£àëHL>ÎëÈHSAUR3/data/pistonrings.rda0000644000176200001440000000033014660150123015171 0ustar liggesusers‹]½‚0ÅFñ#&®ÆÁã8:àì  +bƒ$@I‹ÿ>ñ„£ tèïúÞ»öú¸Ež9ÀÀ² `&–ÃÍ fÈy•©Z”2+S`®PZ.´+8Œx&öþž¸#n‰Gâ‰è¯@k0‚ùΠIJ½¿4ŠL1RÆÇÙ†rë6Ûù,tuåéÊ×Õ…ò&)ö]ÈúC‡IÈËZòÞzŠ/ZÃ÷mz¼½„‘è$¢¨$WJÈþ'9O͸;ÉcÕwk±Ž_9ïÒÐüå©HSAUR3/data/schooldays.rda0000644000176200001440000000162014172224353014772 0ustar liggesusers‹í×[OAðé¶…¶\¯‘5j0dn{I|óò®O¼.° Ii“–@ü*|Xt†žùŸ-"´…¤šÐä°gwgç73{º]¾ÞR­­–"Q£"¢ªKk‘ûSb¹é¶­þÎn·½›ÿì Q]qGên»à¶§ƒVw1BDwq“ªÈ™vq\´]5Šejq^§ùv·w°ÐÉÛtd±Óí¬—õRßiçýÐ ºÞËwŽº=—•ŠüX€©ðÿZäÓ^“1—gôK —õÌ^q˜· Ú« rß²Z^]»“ܳêQ!n»Vnk\×q’1WGç4ÖmÜû;Æú Õ®?æ+2úº‰L"SÈôX•|Ý·ú²óã< Fm3é™änþm^£Vé$•|Õ\§±n“ÎãâÞä)<›½|á~»{2JñŠrñιXçïÏçáÏ=pñÈ_E±ä1jç÷_¸°.2:¶LqÏÅš‹÷.6\ÌÓµ )V]¼rñÚÅ[1øJ×iO\¬Ó~°›4&íÓ’—Æ–;”ÍÓt<{$E³ÔköÌ|`Ž˜Sæ#3ùuœðùžÙ^^ëp“„n};€¦£gi‘E‰K’ìë×^§·_µ*i4\¸]ê a1öÊ7sß•_»{GSÅÛK¡÷òc Ç×2`µ³Ø©,N…JOM)]Úm§ZY£åÙMžÀ‹¹æw? ’ä"SºÌÿ}ûó€TŠòp,Zñ)ѹaÿeQW…éHSAUR3/data/bladdercancer.rda0000644000176200001440000000052014660150123015364 0ustar liggesusers‹µ’ÉNÃ0†­ ²ïú™tCN<§^ÝÄ•*e‘’$¾eBgF ¸ÀáK¾8cÿöȯ/sæRÊV®k)ÛAum|XÊU>¾û‹T'‰)cǦTÊ9ÃÁ¦ª ¾&î¾{È>ÒLj< šCä¹@.‘kä¹Cö¨æ9E®sª±9¡7­·‹à>ÞƒõOØ¿ÓiV/5o&­èÄ6zOQœÑ‡ûÜxwš§ºâY²ÖRÇuW›V·ÿú4uó§zªén9×™á-;|¶z•r¿^gEY­>x —¯³Esƒ:ëøeñ>l¯5 VÈ,ˈeÌ2a™²ÌXHìð^,±Hl$6›ˆMÅfb’’’’’’’’’’’IFîºél¿Ý ѵ.Kì+ÝŸÍ'{¥~ÚêHSAUR3/data/aspirin.rda0000644000176200001440000000053514172224353014273 0ustar liggesusers‹ r‰0âŠàb```b`âbd`b2Y˜€#s1{bqAfQf³0Hˆù@Â@À!€BÇ7@hg(ß Jg'@èY ¢¿ª¾CBwM€ÐÅ*¡ú.‚ÐΠê÷€êwƒÚ å;@ù¡†CÔ3:Ðì·€ˆ·o€ÚÕW|BwBݱpÔþ£ Pƒ‡5/17µÈ€H)¥Æ*³Ráb‰h†på—ë!Ä•ŽIÎ,I­öv, ²rÍ)ÏÏOI-IÌ1´47©…*‘DVâœ_”Ÿ—XT T`S iFpyjjInbP™%L™ ²2§¢Ô””Ì<¨]p5(Î H-*NÌ+ª2´´0€)‘@VâI:ÈòbÈòžÁžÁF@Y‹ZôPMÎI,†L+%±$Q/­N@Þ?ÒÑœ»¿HSAUR3/data/suicides.rda0000644000176200001440000000026314660150123014427 0ustar liggesusers‹ r‰0âŠàb```b`aad`b2Y˜€# 'æ(.ÍLÎLI-f``æI:(0€”€Ò2PTýÌ)™¹@Šl£ZT’—˜ ²‚AªFâ$°<¿Wi^ª®npjAIjnRjT˜Ç?¹$ÈÕÕõM¬DÓÂY’™—årùåç%AEPífMÎI,.†ê† –$&å¤ÿ@ÇÅ^Ž$HSAUR3/data/students.rda0000644000176200001440000000057714660150123014500 0ustar liggesusers‹“IOÂ@†‡¶(‹[Ô¸Å-rDƒv†U£ ÂÙƒ'® 0)´Uþ=ú|ó¥öDlòô{˜í˜á£Û“…^Aa ÇɈ:^áˆÕ-°KU·]èY`“ê(Rœpní·àÜ Zà4Á3xo‰v½F-±§sâ˜Ö¹×à œ&úO¨ÏŒÓóõ-8¢½:„ÞV¬ž"¹U¢ ºÀ%žˆrúgz?} ù8ô½x‚ËE v0›“:ãÏÑxµˆý“:ŽÂÀ‹½Ê0Ä’©˜|8›W’Q%sâ®iD©©©iii™›ã>²¹l’M±UÙjlu¶[“3$gHΜ!9Cr†ä É’3$gHÎPœ¡8Cq†â ÅJ_8ýGXü ß’>HSAUR3/data/Smoking_DollHill1950.rda0000644000176200001440000000044214172224352016333 0ustar liggesusers‹ r‰0âŠàb```b`b&f “… H02°0pi‘àÜüì̼ôx—üœÌœCKSf> œ„884@è|ˆˆC”Ÿ“‡ÒÖPÚ*_¡Ó@è@(­Ug ¥eÐøJPZ‚ÀíÑ€Ò*ØÕ!Š_™S2s/ˆ Älà`ce@ey‰¹©Å@)a¨Z°zˆ<§_~^10ÔR‹ L†º0–)ŒÅlˆ`!˜¦ÚPÓ˜ BÜ>¥yé ɉyÉpóXýK2€Tu,¾‰9©P6›[j.ˆ‡ênV¨£ÁÚ˜¡‚ìÐø…¹Ý%31=/¿8³æ¢àÔ õݬäœÄb˜YpÁ’Ä$­ Õ ÿúg\HSAUR3/data/orallesions.rda0000644000176200001440000000042014660150123015144 0ustar liggesusers‹¥RKNÃ0:–D­Ø°ôz( @b]t;$njd{?=7'¨p»Ù¡ÎÂãyóôæc¿?m–Õ¦e9VÄkÉâ1®¢¯É¢RÂI2 XDèöžÃ¿ìî瘚?Oû€| ùñê•GþÜLý'¨[¾Œø3ª™G~ øMø‰¿Œ8ñæ+Afú/@>…ÜBýäfíöùѼkàÛ ^œÛÌ5tÇ—Þäò÷Åô®ÒÎéÝDÆôŽšI[ƒó›©mæåhHªø¤ªá©CG’êÚ1©žä4/If°¥Çªb2Ûq+YuN™Ìõû¬ö#VÃO¬F\í£³jz85ª'G¦I.1vØ]˜Ö͘gnl¦0… è{œ6Lë˜õyê3©¾ksaC–DL&Cî¬pg=SÍ6ýÚ£€OÈN˜Wq;‰!;S\M&¼ÉžºQ‚[ï%¦Ä¥â1áÀe²élè™·$ä4ǼnȼnÌX_qa?8ç)ÌðcsXaÀ=Dc.+£^2ÖŒy‘0ƒŒLµËÑìçddDß9û2–;霞J­“ß½ õÝ HSAUR3/data/Forbes2000.rda0000644000176200001440000014423114172224353014352 0ustar liggesusers‹„½|#I¾ç©d3»`¦Þ{Ú×½53ûVÓ83½»ýîV’±lÙKUNKi)[©LMJi—êh™™™™™™÷˜™™æ~ÿÈ J©î>ý‰.[–R™ñýSüã7G_}ºöÕZ¥R1+¦ƒÿ[øÑ6ñ?£RÙYÅ¿k'IzL?ýøã+k¯¬ mV*ÞïÌßU¡w³¡áÍ+ÞÇ®€¶Ž¶‘®²…¶¶ƒ¶‹¶‡F×=@;D{‚öíÚs´ï }íÚ/¡ý2Ú¯ UÑ~Ú¯¢}€ö!ÚoD{‰ö=´ï£ýí7¡ýÚoF«¡ýí#4CûíGh?Fû Úh¿í·¢ý6´/Ñ~íwAû]Ñ~;Z­ÖD;B;F;A;E;C;G{…vv‰ÖB»B»Fk£ýí­ƒÖE{öíí+´¯Ñ~†ö»¡ýîh¿Úï‰ö{¡}ƒæ£Ý¡õÐúhÚ=Úmˆ¢}‹6B‹ÐÆh1Z‚6Aû9ZŠ6E›¡ehhhoÑæhïÐ~o´ßí÷EûýÐ~´ßö ýhÚŒö‡ ý¡hÚŽöG ý‘hÚöÇ ý±hÚö' ý‰hÚŸŒö§ ý©hÚŸŽög ý™hÚŸöç ý¹hÚŸö ý…hÚ_Œö— ý¥hÚ_ŽöW ý•hÚ_ö× ýµhÚ_ö7 ýhÚߌö· ý­hÚߎöw ýhÚßö÷ ý½hÚßö ýƒhÿÚ?Œö ý£hÿÚ?ŽöO ý“hÿÚ?öÏ ý³hÿñóÏ£ý hÿ"Ú¿„ö/£ý+hÿ*Ú¿†ö¯£ýhÿ&Ú¿…öo£ý;hÿ.Ú¿‡öï£ýhÿ!Ú„ö£ý'hÿ)Ú†öŸ£ýhÿ%Ú…ö_£ý7hÿ-Ú‡öߣýhÿ#Úÿ„ö?£ý/hÿ+Úÿ†ö¿£ýhÿ'Úÿ…ö£ý?h¿ÈÑ7ð?üàßÿø7À¿þ ðo€üàßÿø7À¿þ ðo€üàßÿø7À¿þ ðo€üàßÿø7À¿þ*ø7À¿þ ðo€üàßÿø7À¿þ ðo€üàßÿø7À¿þ ðo€üàßÿø7À¿þ ðo€üàßøíhàßÿø7À¿þ ðo€üàßÿø7À¿þ ðo€üàßÿø7À¿þ ðo€üàßÿø7À¿þ ðo€ã4ðo€üàßÿø7À¿þ ðo€üàßÿø7À¿þ ðo€üàßÿø7À¿þ ðo€üàßÿø7À¿ñ;ÐÀ¿þ ðo€üàßÿø7À¿þ ðo€üàßÿø7À¿þ ðo€üàßÿø7À¿þ ðo€üàßÿø7À¿þ ðo€üàßÿø7À¿þ ðo€üàßÿø7À¿þ ðo€üàßÿø7À¿þ ðo€üàßÿø7À¿þ ðo€üàßÿø7À¿þ ðo€üàßÿø7À¿þ ðo€üàßÿø7À¿þ ðo€üàßÿø7À¿þ ðo€üàßÿø7À¿þ ðo€üàßÿø7À¿þ ðo€üàßÿø7À¿þ ðo€üàßøE®öMðoš¹Ù`‚fB€ü›àßÿ&ø7Á¿ þMðo‚ü›àßÿ&ø7Á¿ þMðo‚ü›àßÿ&ø7Á¿ þMðo‚ü›àßÿ&ø7Á¿ þMðo‚ü›àßÿ&ø7Á¿ þMðo‚ü›àßÿ&ø7Á¿ þMðo‚ü›àßÿ&ø7Á¿ þMðo‚ü›àßÿ&ø7Á¿ þMðo‚ü›àßÿ&ø7Á¿ þMðo‚ü›àßÿ&ø7Á¿ þMðo‚ü›àßÿ&ø7Á¿ þMðo‚ü›àßÿ&ø7Á¿ þMðo‚ü›àßÿ&ø7Á¿ þMðo‚ü›àßÿ&ø7Á¿ þMðo‚ü›àßÿ&ø7Á¿ þMðo‚ü›àßÿ&ø7Á¿ þMðo‚ü›àßÿ&ø7Á¿ þMðo‚ü›àßÿ&ø7Á¿ þMðo‚ü›àßÿ&ø7Á¿ þMðo‚ü›àßÿ&ø7Á¿ þMðo‚ü›àßÿ&ø7Á¿ þMðo‚ü›àßÿ&ø7Á¿ þMðo‚ü›àßÿ&ø7Á¿ þMðo‚ü›àßÿ&ø7Á¿ þMðo‚ü›àßÿ&ø7Á¿ þMðo‚ü›àßÿ&ø7Á¿ þMðo‚ü›àßÿ&ø7Á¿ þMðo‚ü›àßÿ&ø7Á¿ þMðo‚ü›àßÿ&ø7Á¿ þMðo‚ü›àßÿ&ø7Á¿ þMðo‚ü›àßÿ&ø7Á¿ þMðo‚ó¹Éo ü[øÅÿø·À¿þ-ðo ü[àßÿø·À¿þ-ðok/÷+,ðo ü[àßÿø·À¿þ-ðo ü[àßÿø·À¿þ-ðo ü[àßÿø·À¿þ-ðo ü[àß"ü[àßÿø·À¿þ-ðo ü[àßÿø·À¿þ-ðo ü[àßÿø·À¿þ-ðo ü[àßÿø·À¿þ-ðo ü[àßÿø·À¿þ-ðo ü[àßÿø·À¿þ-ðo ü[àßÿø·À¿þ-ðo ü[àßÿø·À¿þ-ðo ü[àßÿø·À¿þ-ðo ü[àßÿø·À¿þ-ðo ü[àßÿø·À¿þ-ðo ü[àßÿø·À¿þ-ðo ü[àßÿø·À¿þ-ðo ü[àßÿø·À¿þ-ðo ü[àßÿø·À¿þ-ðo ü[àßÿø·À¿þ-ðo ü[àßÿø·À¿þ-ðo ü[àßÿø·À¿þ-ðo ü[àßÿø·À¿þ-ðo ü[àßÿø·À¿þ-ðo ü[àßÿø·À¿þ-ðo ü[àßÿø·À¿þ-ðo ü[àßÿø·À¿þ-ðo ü[àßÿø·À¿þ-ðo ü[àßÿø·À¿þ-ðo ü[àßÿø·À¿þ­_äî¾mäÑüÛxÁÿ6ø·Á¿ þmðoƒüÛàßÿ6ø·Á¿ þmðoƒüÛàßÿ6ø·Á¿ þmðoƒüÛàßÿ6ø·Á¿ þmðoƒüÛàßÿ6ø·Á¿ þmðoƒüÛàßÿ6ø·Á¿ þmðoƒüÛàßÿ6ø·Á¿ þmðoƒüÛàßÿ6ø·Á¿ þmðoƒüÛàßÿ6ø·Á¿ þmðoƒüÛàßÿ6ø·Á¿ þmðoƒüÛàßÿ6ø·Á¿ þmðoƒüÛàßÿ6ø·Á¿ þmðoƒüÛàßÿ6ø·Á¿ þmðoƒüÛàßÿ6ø·Á¿ þmðoƒüÛàßÿ6ø·Á¿ þmðoƒüÛàßÿ6ø·Á¿ þmðoƒüÛàßÿ6ø·Á¿ þmðoƒüÛàßÿ6ø·Á¿ þmðoƒüÛàßÿ6ø·Á¿ þmðoƒüÛàßÿ6ø·Á¿ þmðoƒüÛàßÿ6ø·Á¿ þmðoƒüÛàßÿ6ø·Á¿ þmðoƒüÛàßÿ6ø·Á¿ þmðoƒüÛàßÿ6ø·Á¿ þmðoƒüÛàßÿ6ø·Á¿ þmðoƒüÛàßÿ6ø·Á¿ þmðoƒüÛàßÿ6ø·Á¿ þmðoƒüÛàßÿ6ø·Á¿ þmðoƒüÛàßÿ6ø·Á¿ þmðoƒüÛàßÿ6ø·Á¿ þmðoƒüÛàßÿ6ø·Á¿ þmðoƒüÛàßÿ6ø·‘‡úðï€ü;àßÁ‹øwÀ¿þðï€ü;àßÿøwÀ¿þðï€ü;àßÿøwÀ¿þðï€ü;àßÿøwÀ¿þðï€ü;àßÿøwÀ¿þðï€ü;àßÿøwÀ¿þðï€ü;àßÿøwÀ¿þðï€ü;àßÿøwÀ¿þðï€ü;àßÿøwÀ¿þðï€ü;àßÿøwÀ¿þðï€ü;àßÿøwÀ¿þðï€ü;àßÿøwÀ¿þðï€ü;àßÿøwÀ¿þðï€ü;àßÿøwÀ¿þðï€ü;àßÿøwÀ¿þðï€ü;àßÿøwÀ¿þðï€ü;àßÿøwÀ¿þðï€ü;àßÿøwÀ¿þðï€ü;àßÿøwÀ¿þðï€ü;àßÿøwÀ¿þðï€ü;àßÿøwÀ¿þðï€ü;àßÿøwÀ¿þðï€ü;àßÿøwÀ¿þðï€ü;àßÿøwÀ¿þðï€ü;àßÿøwÀ¿þðï€ü;àßÿøwÀ¿þðï€ü;àßÿøwÀ¿þðï€ü;àßÿøwÀ¿þðï€ü;àßÿøwÀ¿þðï€ü;àßÿøwÀ¿þðï€ü;àßÿøwÀ¿þðï€ü;àßÿøw~‘‡ù]ðï‚ü»àßÿ.þà‚ü»àßÿ.øwÁ¿ þ]ðï‚ü»àßÿ.øwÁ¿ þ]ðï‚ü»àßÿ.øwÁ¿ þ]ðï‚ü»àßÿ.øwÁ¿ þ]ðï‚ü»àßÿ.øwÁ¿ þ]ðï‚ü»àßÿ.øwÁ¿ þ]ðï‚ü»àßÿ.øwÁ¿ þ]ðï‚ü»àßÿ.øwÁ¿ þ]ðï‚ü»àßÿ.øwÁ¿ þ]ðï‚ü»àßÿ.øwÁ¿ þ]ðï‚ü»àßÿ.øwÁ¿ þ]ðï‚ü»àßÿ.øwÁ¿ þ]ðï‚ü»àßÿ.øwÁ¿ þ]ðï‚ü»àßÿ.øwÁ¿ þ]ðï‚ü»àßÿ.øwÁ¿ þ]ðï‚ü»àßÿ.øwÁ¿ þ]ðï‚ü»àßÿ.øwÁ¿ þ]ðï‚ü»àßÿ.øwÁ¿ þ]ðï‚ü»àßÿ.øwÁ¿ þ]ðï‚ü»àßÿ.øwÁ¿ þ]ðï‚ü»àßÿ.øwÁ¿ þ]ðï‚ü»àßÿ.øwÁ¿ þ]ðï‚ü»àßÿ.øwÁ¿ þ]ðï‚ü»àßÿ.øwÁ¿ þ]ðï‚ü»àßÿ.øwÁ¿ þ]ðï‚ü»àßÿ.øwÁ¿ þ]ðï‚ü»àßÿ.øwÁ¿ þ]ðï‚ü»àßÿ.øwÁ¿ þ]ðï‚ü»àßÿ.øwÁ¿ þ]ðï‚ü»àßÿ.øwÁ¿ þ]ðï‚ü»àßÿ.øwÁ¿ þ]ðïþ"_âóÀ¿þ=ðïü{àßÃ=ðïü{àßÿ­‚ü{àßÿø÷À¿þ=ðïü{àßÿø÷À¿þ=ðïü{àßÿø÷À¿þ=ðïü{àßÿø÷À¿þ=ðïü{àßÿø÷À¿þ=ðïü{àßÿø÷À¿þ=ðïü{àßÿø÷À¿þ=ðïü{àßÿø÷À¿þ=ðïü{àßÿø÷À¿þ=ðïü{àßÿø÷À¿þ=ðïü{àßÿø÷À¿þ=ðïü{àßÿø÷À¿þ=ðïü{àßÿø÷À¿þ=ðïü{àßÿø÷À¿þ=ðïü{àßÿø÷À¿þ=ðïü{àßÿø÷À¿þ=ðïü{àßÿø÷À¿þ=ðïü{àßÿø÷À¿þ=ðïü{àßÿø÷À¿þ=ðïü{àßÿø÷À¿þ=ðïü{àßÿø÷À¿þ=ðïü{àßÿø÷À¿þ=ðïü{àßÿø÷À¿þ=ðïü{àßÿø÷À¿þ=ðïü³õóâ_Z'_m†³p&Ù¤xaç4ˆƒÔªÇQЛ¥a¯x}¿>ð›WÏãYT=U>²vüöm·’»0*^1íâ§í†ªÉ}µø8ÿÈY§ÑÔ.²ÑMæÉ̯¶’Y’òwøqÕ–ðËÝúQ­å§³jo ¦ÅËÖëF‡?ÐùÕ©vá§7És”ÍzÃ:à Òo~¯¤£é0Lƒê™?úþœ׫6î&à‘›CÊoÁ:o´Š.î˜?ózãª]mûixçóÛz’5ï‚N/™E~Üç8Iƒ~Ÿ=ïäí#?GAÚ¦ó)þå}S0¾vß›Íað&q7xë÷’âE·}¾[¿ÅÃN«'~:àoØzƒQx—à‰’ñ8‹‹WW~Ú‹ü9¿ï­â±;3?ŽÞ[|f°!âïݹ '\°DÕ—ô>­°—&Óä~Æïí*˜Î"Þ‹{4þùM`VÌÂ$æÜ? ²Ù´7 ò~Óž¹ã žj/Úgk>øÖñÕ9¿Ûf'½¤= £(œð‹?Å5{IµãÇx´~V›A~;<ü;7®Â鯪ï]aó[^­U×¾÷I'é…Á,¨³"ÐEB;Às5‡aÌ{mÿ·7¦I…ÞÔGðy£ñ¦^ËG¦Fw~R}¾ëùsþY"GL,¯Ì.Ã{~ckg Fã(˜$b¢½ AĘ?H Ìü™x?†¸7B÷6WÉ$JXšVÇWÇ—ü¯ã0 ÄpïÞúñ`†qje³LÌŸí&gÕúýœˆñÞSºLùmz˜ý=_üºó&‰FÓGÄÚ}t“Ñ<ÒWx÷±Ú"z†ÕþEÖ-:rŽaf_§ Ó$ík¯ìuçèqêÛ4fŠçX{Ý©²ñHùm¬ß$tAíÎtéÖôc¿ÏGlû4òß&q8^D¡˜Eßa3¢Ê&Gdc†a0Æœäßlw’˜ ç* êVf$›q,ס fÕ£p µåC5Õ³)! yI·Æ{ûÔ7IŬØnúiÜ'YZªè7ˆ‡ùtŒ…„;‰‚`ÖÀÈa¸OÂXH¸›ÛcíÓû˜&ù@¯Îèb>ÇV]í­‡xë,蓾èApv‚ô!ìÊuèÝ 7Œ“(„BѹDÌTîQòXîÀÃz0HHIO³#¨™s¼=ºyÄ~†>Tßáv¡->)W›Iϯ5“ˆæà2Ä ˆv.pøÝxí`2 Vkí4ëCº†âÖöùT!à˜6÷â6’@Ê.¯þ@ä^»Á…“¨öuû„ß×Uð8Ábz®5ê]>åSY%Aõûg?ÀýŠo°0›8ÿí IÑ|6Ž¡¦ºÎµëÝ—]Þ{P޳$Ô‰ƒÀ›áV[@pZíü< ïîø|­Ó´ü¤¥°‚œn0º{¿~w—ÌfÕKÿ.IqéTŽúFã¬M’1ÂÌâú`a®»ìqš§}Ù÷v«qU/~~Jz7‰4\ԲϞw©?­ÑO°C –ñ›°î6 >'>&fõ¼ÅÕ­s;šO˜,ÉVO ‹ )ÁY`2HΩÃãój?ƒ`‹gÕ~P½ ÆÀ’?úöäá‘OGzõ&$z:A—øBbxƒù£W÷ /àß²U¸c®ùmãNE—>é¦þCÑÈAqãÆgsH51½a*ôa7T¸“ÅUÒC ]î ãYí4¹Ã¿üÝÇôÕWþ}r㇑´2wÏÈ0 Iåßýñ$"" x¡ïÎØ@qiÄ!j¡¿Ò@|«Szâ³›W…<¯Â¼çßtx lâ÷X?6]a_B¯|CLñç=ìbâYR;JÆaŒ«©ýpëÛ_®•6[I„N„™ŽžäظH’®£]´€ò!”jýÕ4¬µÂÙ4»Ã_C~?˜~¸ü;½z±~Ëû®…™û+I¨õúÕÏøÓó«6“ ý8 û‹#¹}™ôFâ˜\1˜·ÿ=˜»5šã(Ä”ˆ¢yÆ¥40öryžc µ‰àZ;Å” Æ“ií&èCÉq)´Ž9<UÏæý”_m/͆˜Ÿ¸R6‹©¼×òã,Z6!šÃì.{Ï`uóý& î²÷øm ,ÖZ½#šKýo„»ÕhóÏš\¬8õûHx2ëLUðݰÞãù»ðµú%ëbólž®P3OœúÆ'1£OÓªºMŠN÷"Mâ‘¶.³ fÝޯݦ›üI6/¿¹&ˆt+€Ä|õ.a$äÕ›0©v1JüKWÏï‚´¯Ê±¦? ¡öÉj^ƒ=AÑM0…|ë á¾ùš½ Ï!¼ÞöæUð&¯î¦YuÑíB @V¿NR!aE>$ÚÓÀ}‰i zÒ©3a•»¯;¸LñÛ3røú;ä𦰘ùš¯\‡A6Û ö¥",6sm izo5á×§…!"œË‹pŒž‹æµ&„·°ÏÎÐu=û^w8ŸNƒø"Í&]Pu&ÄJõäúJLo žÒ-Çq¹Ë`ðÀ‡*~yB¼|ÌÄØ>&æÈFvCøv3}ê GfIåPõžºþ(€£ÉÍPXž}þõ nÿ¼ 2Ê㇊%&O^8? ÁÎ ÿU´AbÂg.ÊTM'Aÿø­`.÷ß—«VŠLÉžARâb¶æï.iœ£^}4ó‚Ï•†½zð~p¯S¿'zåIûª)û—óÂ} (L;¡9«+rN9šÇþXFv0Å0Œ/«­ÞeÇB¾¯¡cɤ’Ï»ôïÉZç7ÉúBÆØ…ñŽ>'k ÓCÜÕAán§~ŸlPmž­¶‚~•àÃþªJ6Íô.KEpì$û6¬¶‡×xôˆ#ÿœ¬â@ø„ì–uÙ*‚HГb˜óOu`Ï×c«žÍ’1(é©íÀóžQÄ,†£¬L =á€ßÝ:ì·E8ÂpjgwÕÎCOé !»0ëÂ2–¤FqËsh³Ûl&1œ{¿z’$bš{Á\ùèYfLYô?•2m£ÓFÉ>©«®{½lv|»ðŠÅ€Ãøú:ù}>!f8¢{¯sܨuFdiä0Î÷êIûRwLYñ úªž¢;3Üe)Б%)fÝ.¦æ"´oF£v*Ìáî0OY$Q<¹ÓN¤RÞª§=$Ã@ õ~!A:ÙÎ̘Â"ô…[KîÃZgÃrˆà 騻ÀX ƒÄj¾á?©ÃdôÛ†9Ë¢;Wnü9®+®²qÀúL¡ñË]̳éð=—Û©Þ%ð]ïÝ\Øá!»&Yä‰xT«sÉ Å£àäv¬Ìѵz„©0›J-àBŽË8×þ9¤zœ„SÈ©$ªÞBÉ‹º { —#pDÒA6‹ƒûY0€¸“òÁ®Ë§µN}aœ’q<6æ6‡E¿?·NÃÀ{oµy®Ç믂4ábx‡‚{pÔÈÃPC$û7EAzI ËHŸöà¸Ïœžeá'§3—óÈ;%½>ã¤Cp½¥ê²ÏmQLyê¸JW‚$ðÃ\UQîqLÎ*§IP¤‡÷ÎN“Væ ús¥AÏÚÈxw­ðÍ?ÎÒd8Ÿ'@Ä/3˜ÁäËð/}C:ZëÜÝhõ'ð±J&Õ{0ÆÜBÌm¥óN§ò½Û¹ˆï—¼÷mò0…¯‚Ù£2§ö â ¤˜xɼ8FALnTµ3ñSÍPØ«ÓÂÉeøóŒü'MÐ7®›,âR½a—µ¯.«…•̇ºå+CÝM0Hwü¬º˜¾»M¿OÚ§Š»| &1œ,Uño`ªÀŽÒæñ>°œÂòèûSËgïùT³Ô[ÝnÕ.æcè–@|w ðáZÛÆ¸P)û°D Ëè²GÁ„–¤DØ–2&% R}»CR½YkGI6àC±Œ'þT7ø6؇kÚ(¯¾jâš± znÃ^M!£;“¤‰po±.£Ø©×c¨ôd¬«#¨‚‰¼ÂuÔ×ÃÛÖq«É;…lN?~Gr)ê“÷ÌßÓ¼9ã¸ÀcÞƒ;é¦_P‡øtXy“ôý{ÉÚ˜±…£ÜI¢L5’í«ó îÿxÝ4¼ËÄÉbá9î ?f!¸µ“4 ˾Êa§Y¯q“¸‰»Ì¢DºÕ 1hÆ¥eÏt:Ó¢R;‚qºøH\|õ¨ÑÑ>juê|Ô:}Í•™ µŠå©q·ÎãÙÿQT»‘É.‹hå.eƒL >¹÷‹µˆN© ³¹Îœ’­“Òb=sÝÞ“q›ƒ\4ôÈ—º Èš2¦óK›÷q+|— “…ûÛ%Y˜‘’ïôÂ@ <ÿY–Òz×{}-÷(„_ TðÙ+È’0~Çe1)â¯Ðt¿ŸÆJbÍmr˜dÔ@İ Që÷­˜bÁ‡ßÇE2ŒD¸Ì; ˜ÃüÏZ>º>S¨0I„eÇWs%œŽ?¸¬2y}—|òÿPxR«Ú½ $8zvã5a§ ¿Ú=ÒM;ŽGo˜ñQ‚½pŸD£*艩ßeKüÁ¶Õnó•ÓµN¼Ó)HÃþˆWú<¥˜ú-Œ_ø!Á+‹_¯ãD¶ö¦Q;ƒõn;9§Rï·|øIKMÄ•ŸBa¼¸”Ø)–à£ì­n½ž‡÷J2åRW\†°¾”·vÔ=Öc‹bÕ›Òri±ªwM— `¨+Šã ´Òàý~L}âC©ð;n“W3 ù¨ÉêMZb µ¹ (Uv}òª,{VZ/»ê—o²€2…jo^¹…#Èäò¨'ÖZŽÚ5ºWZ°á÷ßžK¬ *¢P÷ÚŠìF'{—ôïÅ£`ÊÌ<ŸGŽ0ýwŸ•†žßãAÙO"éW°UÈjŽ@T^äXíÔle@Š#ð,Bá”+Ntl¯ÝíVÛÙ]„1a&šX^­7ôLŒm¨já(wޏ8Þ?Â\.Œ1æ—1éÅ//‡…ÏütvOKö$K+Ä›°ùÒV )«xqÅõex†@½7ÃVüôÃË€æÏKž»¡Óßñïa’¯wçä¥iáŽz4óûbuv«Ý>]tïvI1ÂËY\S©™ )­ìÃ…˜Í«×÷Pzc_ŒoxGÎ-ÿºËpÌ8jÉ!#HIôóD |Sdò>û6¬pµW?qƒF³]k@–cL‹ œ}+ƒaJ+U²xíI— >å4ˆþèoI ¼ü4»ƒÃÄ{ð(%×èK¬üÞêŠßv•Œ1‡þ¿L-ë 7Q–®`mÕïî‚yÙˆÙ~ò˲Tß~Üß³(s­F‰ÌN¡ ¸’´ r”ˆ‰¸q–MGsýéìë4– …»ƒô"œwÑ}4¾ýi‘ý!=Pº$/õðN±ÁWVäšgxŸ‰œ•FûÍ•.Ú©ÿÖßM<¹£ü¿Ž’(Ö•–æ±4}ôEõ4‚ê_¸ÐV˜ÁúïŸùqœ@ÄˤœÕ£Œe*­[¨çÞ(¼ 7£P†Ÿ¼î«¯”@ îÈŸûqiÉr¿>&½*_ÊXÚZlíAxH…þêÌŸ\; }=whï8nÜÖ!MÀ¾˜dÛ'Ù]²¨ (pÞ™ø2®ÛùªøñÉ ¤YD Að©p¿q•<$5JïE‚Ás¼1x2³êç´r–»›¡ðBxt"JáQŒ[ÆZw…ËTêÝmRËñ‚,¶u±êÝÀÔ‹ Ý,…ó zž›wþ”k]‘S’Å»2)S»m´ÃY ÙÝ€%(¢]°%¡Xêá4$,‰oyãÏ0ßï gŠ?Šl¦µæÕuó_ùµ_mG0Å—zÍP•fÛ­Þiê?ÖÎ('V ¦Õ<óï¢Í½ÈE)zš4Wn’á˜åDœùBå­5im±J™Rü²2, ðd,j¬Û6šlñ(šn‘õ8¯ùa_ò ÒSêd¢2Œ¦#h½‘œE.ú‚Usù5†´É£z½Rêâe €Ùî±?ð1ØSu°7š—ís¼3ÇŠÅ×Úm’D$,¤ÁEI‚ÒH> ¢¡¾+¹y„e$‰ä?~Ûdk±ìÓIù)sjDÄaõvm;I„‹¹óµ7"ÉzCZàóS®ïžœÑ¢$üÌš™~ôáϸs½R,ôs™"ç5ÆñÉP¬VAÚô~Îç20àÚ‘È…?M³Iñž¦”|-ü¯ë©?ò•°Øn¾F\¡fಢ#7n)cΫ Ê; BÑ(^%»Ú+‚S­°Àç&B~4üdJíyʲ³UQ¸Û!„ƒ¸dÕº]hV™ùPHQ=ûz·È,e±Ž™ó2€«ÍZ²;\˜J^ø+–&Fk¢P/òõü•¤Þ”'ÄÞY6À›—äŸÃ๋‚‡¦mõêk/‘¯¦r·À‹M¥ù·îϾnæf0 J†Ìfê0éæìÉé‘ÏãËÔ)ë ë¨ÃWÔúš©Åzü3έ"X¾ŸÈ"¢³4i%ˆóÙVÿ6Œ¡DÖÏóeÁumn½å¿+åÝ»01‘ìVãœ+m°‘>€ƒP˜ÉEÒ•ãøŽ-Dñ.Ö Š˜`©ÿ·:pJ“²d[mÕukx–'1 ±\|Sî—|»‚C.9åa«ð”Í/ר—¥óœ€…%6˜Äàð.S,àÂÍSÓöíöéKÞ/RËAYWy8‘OG ÛC£A©P°(èå“ö\¢ŠrØ*R­"Ÿ&¬ð ÷^ ¹0kŽ¢ÚÂb`Rq–ä™gpùmoÖ˜cŸP TP”gÿt™¨œ)}TÍ‘ä.ŽÒ¥GáÛ¤´»÷B«éøw~yµð Žó{ÈsVµ ÃNàÓâ•L&§œÖ¹LÜú)%LKsj_KÁàïOHø?à=Z,Þ‰@ç-Œhe¤¿Ø—Qè`¦¶Û¥UáNB±]ÀäÃÞ¤MTw¸Å hÈä!›ª& Ok7¹K¿uÞí.jl¯s¡f(ì“ ÆÐ”‚sn‡|±È{v“n]Â`u¿zÍ/sF+¥´~?hªi(¹.ºòßUñçê¥ÿˆ¼ÍµF2¾#Y-&™=_ÊŸ‘ ª;L¹5ç5)1‰ŸC¾«JÃn¯™¼]žVf“Ý%>ôƒ·Ã¤ŒÓA“VŸc “.ÈÛýËŒVr–mDXç[˜:"iÎm‘ñ)’N[Ð8´ŸÏ³{¿7ËR)ø]X0™ë—‡K™å¢{-;*8YÜÆõżÂYž”Ü› Siµ“?ÊD¢;d8kß•¥dËÕ³—7ÕF$ƒŸÛõÎI½F" ¥\\1—N³PÉ?¬c<{Êb„&mëSöÓ)Ìá4¼¹âóçY3¼óiÁ–>GYæ…qMÉUÊZìj7I{ñ̗Üj“^R¶%7`¨S§hñi³ÓêÍ7Õ×Â*"ѯg!\,%¾Þõal‡âZoôøO3"‡–XàqÏ”=k, )ôÌŒgÜ`èŒæ´eÄVÜZ˜ž”ÍE)Ø”_¦$­“[¥6‘ Iï;¶’¨=^ë´*R_jËÎ}_0Ý¡H–ÐÅÇwïïŸÉÅè=žZËÙ‰ôk·ÁôbQª"æ½0Ž'ÍÒ.×Âü:›Ê JÂc‘Þ—Õ:GÝq ÍIጒ"g–¾j€:´tǧ<¥Øed¶ýTh¤-| í@ÔµË6Þ2Âå)h „ÀÍMï$F$B$õ±*ÿz úT/hY¸²mÚORžO\ø$dPÁržiKä!ƹѸ¨ãfå\ß=ï¿]xŸÓ¡ | Ž!ÈÜŒíë&ÿ3¡ˆòôï—%+Ôjuoøc]BW¦}J툴öí‘)Gÿ^ÇÙ¸M®I_ÊÿõnB’óØª—Á[z–¥«QðçûÉr§m«>™DA•¯…ò®¡”J¹¼å÷!’¦µŽá e¢ø±t_’Û “‰|µ°4ü{,&·§;.´çímá¨k Þ1刈µQ· ·Td­E{Ù4Àª·¸Ë¾I;Í{%Ñû¤ÀK–"´´‡–@À:ï†ô$›°ÌáÓà8œú|nžaƒ¹fÖòÕ)¡¾'íà"Ädàë3ú"7ÔŒ{y˵öÎü4õ‡ßLólÒ™Üèãufé|$wŠRÍM0É-Lå ›—á3ÖZH¸þõþÍiÔÈÀTɼß-’»0Saöå®§õ›$Ц5XRr&]ø°Fýþ <^Òn‘£B6¤žL±xÖ¥äæùû½ ›•$Tr[HÊ`ÈE¸{óglé¹4Ÿºä™™=ðöD UÞñ£dQyžÇHÛZ¾`~<=KF#ÆÎò±Ý×çz:G! ¯a^*+ îY6–é;ù1™GÏ_o )í!—kë„pO¿) UúdÌÈÒ÷^&r±«å¡í]Ö>[nÁmvƒ1¤@í9e‘r–lvœ|ÜšLànóõˆÂœ¿ð¥}| FôÙšÿø.ûH •µ:|- ±²›£õ­’D!¹ìÞg¼®0m1›$òZ,þXõïùˆTá‚f ³Ž>ãWO0É‚8ÌD×êF@ìà;dáÓ¢wˎƶªK+s³œw)D&Ò°®Â ð7]„¬ôF^d„Ûq­KÑ–o½qv[2 6X]]èn‚ŠÛ4$ã¹úJ&ÎDә܎V‡ü¥ FغŠWQ‡ LÔ=J"ÙþYÖg)ýd5èªÌ»<¥…Ìvlê¹+p?0KÄšãSJ¢»Â’TVWi UܦWl¬$å‚XÌÊÕ‹D÷†½®?S$o!­î«ßç#¦í{w®ÓQ$ÕOÔ£Â2×ÿ§ã÷Xï„þ¸ªÅ<¶/³·Ší•6ú0AræO¨ ±¥åŽv€[%(çˆ6mWù~“¿ ßÅBò‹LC”6f>áxÅnÈŸÁÆPt%—glv] ž Šç õ@íA}Fï x¸Ó]¤ÅtüxŒ™Zë4¹(Ùm&[<ëE|Q‘ΉgbÍí:šC?I´zÄtgi'#E¨ÄÈuà>†q/qð{(ÖVò]RŠÍ¶ÚÉúï ‹¥üµ?LøÓìæF9YÛúµm9wÕ9{ÐÉâSJ¯æ1a%º©7ªžÊ•zHŒÃw|$7Zß§+?ÈÊEV÷è‚t §ÜW6~óPÓIÈöçµ Ã…z+r,“= ï„uI#¹i¯Ç7!ñF#ÊþIûJ¸+7›Â%YKîmä@U„FÈPXÚðlï)“ƒt"–z‹{”;7ø\2 É€ÕRÅþù·äëÙ»ÌQ,<-Uÿ™éUØ['=Ú´Õò{?ÏÐ/ža÷èÏzÃ’NR¾d;ÕÂö}ôÃÚUØÃ€‰ÅÚErhñ†õ<@À’cŠ—ž uÈW)tgÊ#¾£ë Í"R¥­{<éPo )œŸõɾ…P®6DÄ ë‡ó÷8˹ÑÊr3øÃ‰(Ê›~7å.ÑÔæ¯n¶ü"N¦¬9zmˆŸ@ÖÝâñ«K)PNüqAäV£– ¿Ç<[5XPY>,øqU-`³VA9zZÅ¢H5ÿ UŠ–?¹3Ù¦ýà|öÑ2ËÔ,ûhüq‹¼˜;=imÓn<¶¯©Æ´'ŸTŒÂÿä~ö(ý²]HRÊ7Ùݘ¡°ÕÉ!kIäûl5"ŸT: ù²ýÓŒm4,™Þ«õÔ¿Ó$!eËqÒŸœŠÕ”(Sn>œ*‰ìóXˆ§ e•KŸ\:WÉçÙIæ,йf0¢‚#üa®‡£0^dƽÈî±ÜlSÑþô­Óó&>ð!§¨Êµ&Û1—UÒv„¦«7-=pø\êcYßH/=Ö.óEýo;"m!OöZ!)Ì8.zÅD±7×Ñg™nh9¸y¡«Üã^‰<ÝÍÆ]”„¥½&+-8¾,›°v)‘tmßV*¬&3:©àeKÉþãKå ™á›P0ï²d¤›Ù×oYTµØND«~bõºÛÖR ;ã,½gµŽ²óÏ:½àù-[déú”–DbÄ×;5Ú«2½¯dÔ>Ò—Ê<Öý<ŒÌrà}5×2§Áj]ó ú­|)±T·æPÄ…r¡Æðã²uåŒbKr9˽ñ£h.R6»É]VÎ+Zœ"÷B)p¦”,s[5¥âÌF}pï×Nƒ?«¡^7Sbÿõ¢Á²Êøç)sX1+ôLp­…qˆ^€ˆT…CÇŸL¸pXÉq’1蛀ðÕgçaÓ¦TÐDÄåüì†/Âd›q8Ϊ7a¿/Dú\ø-$•ÄÕí£·O†„BÚ¼¦  ‰EKl_ƒA0£h3æØ¼zH+,вK÷¶,|˜PÚï–º6]]$²æ>ú%¼F}x­˜éWÂ?Üo´ojÇc „To`NËíã›·/ok·%AœŠ5xîj™^½×£pŸõm²¿#VBÜy’.)1a½®óY¼›ož-,o‰8fSQ„¥M"zª7>1%# õ›W¸òpR…D­¬Ãa#M’QnÃ.È=Z€‚½è÷Ü‹&g­Kƈ*(Ú´TÚ‹òýj|Ú\ÐŽT™ÐG“4ômÈ›`n)´}’%JP•\ÉÜ©OiÒÊ–Á¨{6Ï·7“tà—â;ìi…y(|GûB k¯íÏ_&Øe¡·x1*²Ãiê–å©ÜÞâñ!2dy†=–»¥æÝЫܰÎ/¼›ÚWÕë4’µŠê”‡Ê«•:Ú¥²AB4ã#/‰TSr6nr{ZÛæ×<º-~|zÝ÷Gs%P¤‹ôíάú*Wd°I!³‚Ùt ¿VHh¶¨*K»µ‡A4™Âº•ÙG,ªÌJw²tJìÙßä²z ë~”aDù ð ¢)%H)2*~ùAýð.¬ª»³9Ų!ôÈ–_JëuW].U”²QwÊ~”Üubùdq”Ó$éÏe‚ææeø®ÚŒü“.–AÜ(úeµÕÕ¨Ö.‚4­µz§¢ Ìæñõé‚Dƒì¢ê…˜Æ…8nJ³ze%=™Ûb_·ÅVà­ëÇ žÖxÝŒf"ÊT‡mQ­ç¹nü¶iãÍ4ˆ’É;´ü ÑKe#ùùÍnódAF­eaÚçü…ã–¾’ò¬}ÞlÊ\£—T!/SüªýW~œÉÙ¯ç2ÑŽ/‰}~rÎG’r‡¢V¬Èe{Ÿ´%Ë#Z eéF3Ÿå›Jg¤(övÚ3Ê¿¡„ƒºpgžp{M<ê]ì#¸PnÆÅ •VóÓîÍm¾Jh£ÕB²x3àI²y4Š×,R¢Q‡¢RÛCÓ_ZƒëWál–Pàr$¬èúØ—Ä?T¶;ŸÇ2Ÿ˜àã¯]øÓp„ ~§šºA¸`ÿ=åyë§>uiXJ^RŸÀÛMjÇý,_žÒm®*¾6}O Òu,„òê% '™²¾›ÓÓ¯ŸðOïMí 󌰫Œ¶ó1üiÜ2ÁkÚb·í =KO.ˆn‡,˜¶ ¡a³PŒ4Ytxׂ¾°®ÞðXγÜÃ*’¨ƒj?¤"F²ÆëÚy«£‡Ïžt!æiùS‹ l^Œ©¹þâ³"ë9¿[*fo¥‚üF¯HMN—DoZ8RÃÏ™$d†<-¹-æßl©µ…eĹٹѓã!lø™x(6=ánQ2!(ÔÕí<¦\J~B¥fY‘é^p³È‹H°DÞÉPllÞ‘áfBQpÎ „ã‰,‚‘ šÂ#£Idv5“)|$¹Ph½¾úš?Uæ(6´ç¥䯗‹pÜ+EŽhÇÇ;±Nõ9ãÂ%ÜnDÕÓšèñ2*±ƒ»bÒA©]½~’$³*™”.ÈW°ÕcNÌ +Ù!õÇ3ÚïÌPN˜è “G_“Oø‚[^·Ú.•²Ïʇ…Õ´˜þæ•Û”°QRvECi×ýó7AzE\+4ÑÂV–­®?’´zKÂ8ü&£BS ÇÛãAu¶€÷ŽÃû{©ÐáÄŠ…õºÃKµ­Q¹µæ0QÊ)U4Á‘ D¤Cy æZ‡êºC¿Ü‰MÏÍ0– /‡·ALrfi&Û ÂoeÕY’ŽƒHÏAa+ÊÑ’œû|U¯ˆ€Èm1Ïö"Ê”œ†c¦ÑP®<97Á[á<ÛõËž±´Ôã}„±}å J™Ü'AÀºÞg±]-„¿ÙT7^/>ÍãïKÕyÎ<Û0~.­à¯ðÄb¼jŠÌ+=îÊ[ÏΩÃXÔ B+—åÆ!+ŽŠ»ažpy(2oš´$ åÇø´» h§DÊbCÊôvn”}N7‘ñoç*“Úf£Ž¹·(l*^cY–Æ7N䵕øÜ8£djn¨ûxKS­ ¢§Wœe”O¼¸"±uâ³4æ™OCôò hŽÇäµÈmáþˆ¢9cYOï”ê$Q6Uœ+µÀ6©ŒÅ˜jf‡RêxÇã;¸{r•Œ c2R ÐC±O˜:¡Ê*LU/©ð¿‰Æ«²ÔX¿¦#=—ÓÃi¯ïêÓúùeõû¬ˆàø æ[qY;QÄŽœŒ½p¡ëìš0¢N–rÁV‘dÕ×L¥=Z¹f{騂ÍeQ~ãŠì>%¹Ç!¼ÇÒ1žÖµ´<߯¬9üû眼RÊñ¨ù©LõXkÍa_¨Y-›²¦ãYCÔb:ÉÒŒ®P–»k0;üjý.J„îª?Èi°Û% ò²z9/ÞðìÈg<_’…bÈÑ—+³öY".r ÜK©!çSXüúnõ}6C^.[:d¾Xæ)2kù ¾Lê/d©­ßæi2âl^£´‡Ó¹ Þʵ¬&ÓVÉnæ”ߊ˜®aB1œ÷…)áRޱPèÇXFÙXe÷¥C¾Nr-Õ¾Ï=šÇŒGÀ^*²*´^aò>÷ž¶ÎrýkÿU…e+ÉÐ>’ _é§!lž%Y^D‚ßëQ§[‘ý³y¾]Zågå,é gaÀs}©@ÈL,ïm-Ýš/aJ‹|—]~zÌ›’̤|µ¦=é­]ÂÄà–§v³ ÀÄü+ù$¤T¥¬Èñt’·”VC3¤7꯫×ÝZm¤Y<} ÅêÐ~î,»¤uÞå"pó(¡‹ô™ow¤Ú¶ë²4ÞÖ%ù.ÕÏt9|@‰ þl¦z6ꎉ¼ îà9tÞƒ°ýÏ‚è!˜´¶¯dh’B¨-K*Ùl°õ²&Õ;Í..ÚÍZ¾$t‘‡J$;Ñ.ë‹]©.’T³æÉ¢×z™ˆœ}(ᨴXx%ñ?”².·Á-Î.z@!›×¥Å¨‘8çû<•ª}ìçn¤ˆžÑŠ ÿÜùÅõ¯S®¸Y§ødIѹçøv¡7œ«p$÷Dzù“ÇÿµR'Yì/ìß¿¹©Qqêˆɨ:Šøânõ&y¤Ò4ŠkA[–oz‚‡ÅêòZÏ&íjzGžmšÍ…R¹ ' ÙÔj(ó)Öż¢µŠ)‹® רÊîŒÝz `‰£Aá©aD‰2lIQ´^÷Y|EÌ®áá} Ài›g6Bœ”$Ķ,¨Œ{ݵ#-•:¥u !ÔL|Ž£Ê½Q•í៣ZA|G† ·.D5]¡\@l"¬Å­3ªÿ-æ«ú«m½“#R'ø.h¹SžüµBEìCåX"/¤ Ý¡GcŠZæ´¹Q(ÍÆõÅ¢eßa…A _ÌWnk>°¨øzªNˆÁX=cJYSáI^ƒt-²5‚hâw.›êX¤,†³˜¬pqY¯uƒXÎ+ç:!—1É b¥µ²ÏŠ‚øåo $r3H‡Š+¿¡ÌÔ·Õ‹_BÙ;;:iÖ({'̳~dä„v¼ â©.¬w/)œ‡t5¿ÏW0)‘„Nc“SœVŸeåFL¢4¯cp•È“ÙV;u=›sõùÊ„‚éXl-ïia²›a"QÝjõ Çaù¬±¢ „Ÿ,|r@k~ï  >cq$ /Ãò ¿¼$ößøLV±£¯J§j0·´$á¶»0@Æ A¿­&Å ÊöÚM¹~ê; —¤d@Ž„¼Ö’Itä‰[gaš0ÏSíÀí<Ô¿Pi…C}’(“ƒ‹6¦5CÑÇÀ§%öVíåµfÞ-.g®±£ä‘%»·!Eú©E*Õv˜Š] í´ýQÈr´õ}_«tCÚ¹õjx.ìÁjk0šL¬6^@<–Kû¢û’¯ŸíÜÌá(„ ϱUòýÖú“ Ø«sŸÈS37 óRKü„É}NÓJ_Ù}ÃïŽoŠ”¤ÅKè†àè‰êâ;¯; ÑèÈÓ$øWC'ôJ-**k±“—øXu Èã~´àʬ·#(Ò”•óQd¨–ºnóÖ§âê…þåoï Ùbô´z”fv¬ç¨TY=\¨K‘GQøo£h3“†EÇïÍÓc‘ñ%ò"Ÿ6aS&9xðÆÃF`”¸H“Ç•z||¨:¢Üò¶Ô¦êF“õîq³ä¶©V÷”UÚ}Yå¹)ÅNÊ}¢Í€j·éÓ{WÔÆ(uç~á)ä)ñšf³AÌ ¹ì]ÇïIoy*k‹í z"ïf^L;ªµ’¨é¶Ê’À¦ò6N³>MKZ§;1YÅÇbÉPÄÎ’‡˜¶ôÇK¿p™àâ×üaÀÊXk‹JÖü6€š·ò“³Ô3ÛÃ$ ÿX=§(ºì+[ Ö j¢ä‘¾AWT‚áνºO|›ªMûATZÍÙï·j¥ƒCEß±Ø,îNñÆö¨î €-–®Ï†® -Vª”èÃõ(ÔÊÓª)µë´®šØ…<Ÿú“À/;ÜÊÏ9HjÍ,’à`¨ŒóÓlx'±g`qU.IøYŠyþ’Xg{Â6Ʀ~ïI"¤ùÆ ÅGõ3ª¶eζReɺ–ë&K³¨êéÀè¥ÞZLè•W~/¹#¯tRH-^‘Œe@Økfãq¨8‰0É¡NäF1™ÍPËBŸ­{~-Y$‹™o²üÁÚiëfÓNÑUV‹í:(¯‹TM5waOÖ“ªQ5+Y`ŒÊç')b’ìÑ·*cJI¬§-‰ŒÂT‹*²#ûøa´Ð2U7îÕ#âûçÓ‰?[¾ÿb.%u!cptÂäONÙ¥ŸÉŠ•^ó†K¦¤t¢gw¨V?í¾.Ù2lc~ý=¡ßµvòAå·q™dá#S® pF÷žsTΧÒ{Û¢dÚ„=ÊD’«{ë+¥ö¯‚pÌ–d¡ëKöÛñx"—æž¼a^/O.+…×Z×¥Òakílêk‡?®±’jÎì(™`B®!e¹—‹nl\ƒ ÄºÓH”³»a–¡"5ßg»ƒ¯Ì)¯F«Èõ†ÑB½îÒ4‚Xøà.Õï-Ê·£, ËSÿJƒÌr>èÀÏR ‡ª5œF0™þ«pÉ á¤b+C{±™p:öŠ] Kôqë¨Yžnfó¿#$c-yÙ“ˆÊS²=ó¸¤ÌV5v7Þ°ä£xÚŠbû_ûK ¿òPÓbS¦†®_’·˜Ð|NùrÕü6ÈwûÁi’¾Í|+pýe*ÖT®®ßÔŠìy§zF€wb΋PÛf¾,ñ6bÎU(3{¶OÈv€•›²»rmq÷„b·X£yëÂ,.q<¿aç«h{õM±u:„F©~ÂÒÿ/úõâã­lÄ,¤ü›OÙBDiÄ=*tv/HVò¤oY´Ž•1˜DsÕ—·[b ÊÁU0a4äcm£#+æõ‚ËowÚTû“›9RλÅjŽ(¤"Îj“¡/™ßÅGÕîò H®•”ùΫ /Í2½8Éi–”ªCÒ‘ªLž…—rUŠ;|{••Wàïd÷»$Ä=ŸBȉ²D2JQíŸ~§Ö+¿'GÖ;Yš –¿¾ ãr"öV 2 µ®c;y…±·„ßo~^øy,Ý/BÝØ$¡L[MÕ¥úuoÐ&Ø* «Ùš·Û{˼X=êC• uŠÝáãz¹t+‡Tº´“Zø¼zâGJf¯ö°ð|"æ™g- !æ¿•>ü!z‚|KƒGÛ|®_È`„Ÿ~åÍiæ”ñjÇcJ!€)9ÿAñ—'ùÀ5Òb Ç@NT´^Kp ™0ÆÇ™!;¯²8¤ú0¥sW×.‚ÒÐ9Çw¾\¦>¦¢«Á ¸àôÜ)F™¿“ÖÐÂ)UKSv`¯½šSŠ´jPűI;ç“^”ºJ½Ý `ÍËst“Š™Ôêµ¼Þ;®®Ÿ)å}Ž?¥m†2J%÷•µöÓŒdÇû´°Æ'×ùQù“m2’Þ‘Òð• ^ƒ*~Êú9ãs%›A ~M%ÛÕ…ü‹lìlëA©Ó|ŸûsÇùv,2óyÇ·³APÚܲÁëͪ‰ð•8ÍTD&VêÚ@ÑoÜzÕ)ñ´~C+ûjuy«~+ÎcÇ4øù‘0I¦›Õ~ nÑš© ‰í½ L¸"!sJ7o^ž.ÖbeUåÁT…ªÅêµi<Š*«štDE>–¸H;¹á×… (yb” Ô¤—…ϸ[ävV 3X–ÏFý£<;ó°(ÚUTß+%Ct!ö¦´™oÖ“%XÂR°b§~‘GyËszIYïm5é€ò^æ}Ú'ÝK“ñ]°’Dò­F[$½(>˜®Û·™}¶PyÐëоr¥°Ü¨4¥w‹'g-°q "¯"ŠN 1ÊNc[‰´šW¼<Ÿ¬ç¾°qzõüê\ ïçÆ[;bEõÕÀš±ýêˆ)" ÛǤsàªÕÝtü7áL®Ý㢵¶O 2ÕÓЗ¥L×븯TÇ­F8È-õyìãXxzTý,ÀÃ._¶š¯g d­¨–ÇbZjÙnË»òŒ¢Œ 3É›ù>$5½íð m[‹–çúLý Ó|ì¼blÞÄ[e:ÝdšˆŠI't$¸?íÂû*—Xg5éBýعma¼kéÜ`bðXÔ:埯·Z²] Ç3e5þ8ko(%¯Ø°EÛNù ~Š]’vý†Šä÷e91xÊyÞ쨨(ÚÆ¿˜­ƒø%{³iêËòxÒûd+3YPæð$?]@žI©ì_Ë^¨ »ÔFÞ‘B¶ó¥†g^uXýã¡ —ìÕI€¥ÕWUvÇ@ž+ºÍ6>-¸6d^"²¹E•ném½Å(y·H:©²3,h– ©5`Ph}ÈìôŠ•ë‹kÍåÌ“E¾|C©œAÈÓ^O8%o:,–¬èåÅ-ÍÞˬ¨¿Ã;¸þ0KüwâW:™PœNµÑÈ‚Ø`棌ïós,ËG; ³Q)dUKs‡Îu’‹˜öyS'÷™Ê­ÑFòÇy\kùr›ÃÚ1,Õ¼êf«Í³gé˜Zܵž‘’Ç¥Ïe2­C‰éBežtDïBqÈÍv£'»>U'ü#IG ‹Pe, ¾Ï‹bPÈV?¼éð2{Çö“,ƒ&€¥=å"!äõÒ: Äþ ¶|#¦'Ë—š…úŒyÚèéÁàÓöSq¾Ôö?¿KýËÜ:xæ€Ñ[¹ãüƒ²•½'.,›0;m¶ï~Ìd‡G¡Jc¼Óò{£Z3FO¯@øwI¿äSoæ)q%G»“ ‚ž/7߬P¯Hª2»ÞÇ+oåÆtia—N),ÙùÎJìûQ/Y4~ܫ୬ú\To¶VQ³óoîwâM_–ÚÊ¿/”×?Gûí7–Þ¿S4þ¹½%×T¯û¥rÝÏ•ÏìïùnñÚ§ï¹Î'Êõ>T®Åÿå÷³ñÿsþýßUžiG¹ÿ½âš{Êkžò¹Õâ6Š÷m+×5Ñ~X\ïKåzß-õÇʿnéýj¿­*÷÷iq}ºÞ/—^§Ÿ¿§|Ž—UúüŠÒ׫Êß¶”Ÿ?«,΃Õâû赃%Ÿ7•×>)®÷‰rų¾PÞ[þ,¦ï)×zQzïje±¯Ô¹ñe1üZôïo©,Ÿ|\?S^û¡r å|N”çò‹÷|'{þû³Òw½¨ès÷Ke\Ê×þ¤²xï¼=©è®(}ñ¢øûû>Kíʽñ{ø°ôýŸ•>³Z\—5¯úìe6^(×]Ö^}XïrŸ.{þ¬|¾ü¨4f|>*ÞóyÑO|NVüKóÚ«èÏ^æàËÒs©÷°úžÏ¨2òYE—µê5hÞ\Ü?¿'»øÜG)+?/®¯Ê%ÞO?\üW‚úa1¶ÊXñùÌçâ'¥ûÞ©HY»§¼ïG)gøû?/=ϧE?©²}Oy?ÝŸ[zþ­ÒõÔ±ßP®Áûù³Š>7>/ú‰_£¶d,¿Pþö¢þ÷•Ò3|¡ôÁ‹ëZYœ긫Ï_f—Ë.?Tîã£Ò½®(ý½ìþùüåcSfé»ýþ>(þÝ«è÷ú«ÅÏæ’ë|\\G}^>>TžñÅ’~Qï›åjEÎ'»ïUä|.ß;ÝË*úýlUä¼ÝQ¾ƒ®Asý']?ð¿s©^îc¿øÙ¬È¹üEEç‚Ë$þYê¯âžés¿¡ÏŠ.¿U™ÉÇ÷‘:6|óùÍŸëËâþø³½(]þý¨xÿŠç¡×¹ÎUy]6_¹ý¢Ú9êõËŸá¯ý¨"çô~eq~ð>ü¬zíyÑWê³ó>ª–¾ç“ây?«H»€ÛPÜözZYÔÅ;¥k¨,}^Y´±ÔþV¯óaEÊ×ró>°•qSÇg¥²ü~øS9ásâGÊwYÅ¿ïÿIñœÊu˜¤|ÏAE—û/Jÿ~ZYdþ£Êâ½mTt>ÊcºQúŒú·O+rÎÑØ|§"õú¾½Ò¿ô:Éß'ÝTù8¨èrõEeÑ|RÑm˜e÷øAñ|ª=W¾.¿§ßZŒí¯*÷Ãß«Újû•Å{Ú/îGëÊ3¡|F½Ç½%ß¡Îg>oLå=œ1’Q$߸<¥÷ü¸øþ‘þþ²"å8çãËb¼~µÔå{Tç Ÿêœ{QÜïJ×yQÑçá'¥k}®¼Ÿ—:Î¥ë©òš¿Ç@[¯Èù¸ŒC>&t¿T‘º—¡z½Ï”ï,Ûj¼Ÿ¿[ѹQíÀÏ—|FûÃÒ³üJiÌKïWu5’®r]>‡è³W¤|*³ð¢t]ulø|á:øEÑŸeµ^üû㊜_(¿sóqésêx˜Åµ©qÙÉûò‹Ê¢ÿðeñ>º¯ß\‘ömùù–}¿÷s¹ä}]žëåû^«HÞ©Ù¥ÏÕ*2.Àï㻥÷¨ã[ö7+¹ìT¹äýK¿s]ºZ´å=VäœûIeñYøØqyöAEÊf®—øýðþ÷*ºÞ+ó©ŽÓ•ÅçáóñEEʵïÔ9Ëc7üïôlªüUÇõGiïðï/ë>õ}|W‹Ÿ¿W·ËÔ×ö+º­øEe9ŸÜæá÷¹,.òeñÕ?æ×ú¼¢ëïO*’wÕ†£ÏòùVfBŸ•gùIE—KÜnùDùŒ*Ÿ(ŸQçgèsåø=p]¶L–(?«÷QîúÝ-®]Ž!pÛ…ûbê|æòðÊÔëËüv.ë¿«\ó³âº<Χ~†û üºåyþeEêµÿ9OO–¼¿lÏp¾¬¹ìúþ’÷?«Èùð¢t]ÕïçŸù´"㢪M Ê®?øüþ@ùýN²ïcå;ÔùG¶:÷©ýrE¿ï•{Uçí‡Åw½¨èö!¿7U§•} Šçú¼¸ær}bü·)Ïñyñ×E¤cv•¾æ×Tcü¸ÜVÇqÙ+Ïåe±4>çTÖøøXú^αú½ª½¥Æ‚6”±ýD¹Ö÷*2ø“âýû9ßVJ×ß+úc§¸Ýk­¢ß?É©±8þÌiòûå?«1?µ•}j¿¢|NÕMªß¿¥\ãƒ%×P¿ëc¥¯ézj\d£¢Û»ûÊçø¥Ÿ·+‹1 '¥÷r{^Õ]Ut½¡êÂrSŸñ åÙT‘v¬:?MyV¾„ßó‡Å³}TêŸÕÊr½]þ÷ËÒûÊóø£÷|æEE·ø\ãïW›:‡W+z?¼(}'su~ñ~]S>[Ž«×û¢¢Ï§ø[Ù6úNE·¹ég.gÊ}¥~GÙ>Pu:—Ëü™ËrEÕ%_–®É_û@y½Ì¿7•®'è?YrmÞH†s{L}6•ÍUåú<iVôû_U¾ï…2VܦWã6_(ý\ç_©èq+ú÷ו¾ ?òÇÊßÔØ(ïúÇ&xœŽ³Ä¯ûIeqŽ«cþ¥òîß«kfŸ–®wP‘zt™ ÈçÉXÕFå±JÞwüýËlˆrŸñ؃jƒÒßUßìóâÞhœiü&å}j\ƒ~ç~£:×¾(^ÿP¹·¹W‹gV׌_Tt_Œ¯ûrœë‚O*r=‹ë"Õþ£ßMé7~=î—ò{ÿ±òÙü_›Þƒy²Ã–ß#ÚT7-þúëždrŸÊ‰Õr¢ÚsñÂG|wÇEH)Öbƒ°~–×ð‡þXäá{¬ì©²›XÛ™å6¨$ŸØ»«•ÌØjúsV]GK‘pÔ³ ípæ;Ú•ÉOJá_xÄJê½G©†2MÕ=QO2~’ÿö¾ç<¥ÓxE)BWÛ³¿-‘úH½'ï,‹¾È3qÔ}ð«å²úÞy(÷æ•rCòïâJ3?—e#øû^%©R3lá–VÝšÛÍ- û_foƒñÿK×»€ÙuUwžWï·T%UéQzÕC¥Ò[uÞ÷Ê–î)I–ü¶üÄ€I¶ °!ÒÐNȤ{:“i¾/évO:L¦=a’ !¦DMšIÒ0@€$M0&@ÀllŒ1ãÒþÿöZwü}þJ÷ÞsöÚ{íµkíµ÷9ûu÷>_qµ’#l(}à½k®¿°°'ÈWs»ûê(rÍËŠ_~ý½÷»#Qyÿ'ýrî%»x˲¿¥ç.ÄÝ·klkMÔÛ¹{ •éûlnzèÜn¼ãD_¬ Oè Œ5á;¯Æe7ßgÔ,_xÚ)îä^sóÛÞøàO…pAxž-¼=|àׇîS<\iý÷mò¶Áo¾lwéöô‚—wÔŽô’ïÓÔuºæfÿ6äU·]¸çÂO¯M¢/º]= ·±£d“þ_Ü1O@äD‰h}á÷-Éõ«tÏ}¿ZßoM~'ƒ¿Fÿ^¥:,NêÀ ‘U‚2êÊõuÄ{ ¹r¸´c3²G«õÿvÕƒòÆt »^†ôï•®Ž«ÝßMúm‹Ú²ÑÉ_«ïÉú¢‹1•u©«\WªŽkôÛ÷Û"'o£îÛªò©ëV§÷Õ’¿ðwØÉA'蘶lÑ5 ÿ^*y‹uïÝËjê ׆uî:t8âÚ<¦/´e[ÇVåh×*ÉZ®ú¯V™#únQDzhD3ëuí:÷ú£O׺6nÐõÃN>uÛêê²T2Ö¹2׸k6Hî¯Wê7lû]¸U¦µÒöCŒH'«];ømLÿª¬¥*‹r«žèg“dx{^'Ù\[« K:fßèÔ_ãÛ²Öõ3z’°ÇáŽÙ«ïCV½9ý/ëØ¸¥ü­jã}7¢ÿ7èä/qu£Ÿ7º>[Ú±1ɘg5™™0̡϶è¾ÅØ9¶¿ÆÕ ÛVýF:6îÖ'õ÷úY%Y”ÍXÇ–7tlǬîÛø~sÇf• uab×[]ù\ÏŠ-m£ì úHí£ý«ôû ýeÓvlÓ3—hwMÇì9´sÄõ?ýˆ¿ ü­ê3dlwÿ¯r×Â]Vxhÿ+k“Êc ðÿ¶Žq߆MR/úgúu¹¾_Ú±Õ.üáúŽ1ŠÕ î]æä®re/ëÿ{pV¦õómócz/s}å¿óýAWtÌ~ýØG/‹Õ.êÈ8Áw±Ó€q·RecOØ«TŒ]|Û²ŽùG8µ¢c6çûÇsŸµ´3è·Æ\ÆtÏɦ¬MºžþcL-Sè“’³Rr¨Ï&WÖvwßpÇvz_„=,UÝðè׳ 9øû1ýÆx¦|vàŒ¹rh÷²äß«;æ?¨?öºIe¬t¿SÇͪ÷Àr8A¿yŸ0Ö±q6¦{–vÌ~ÙéAÿÁ˜­ó? ÿfœ ¹û·Kè†~ctA£‹Q¶¨žølÆcƒÙÿ*ýŽ®ÄXÃA‰V¨ŽÜ³ÑÉeܰò‡/ Ö^Ö±бcWª>KÝ÷Ä0èŸ4ÔÔ7öœú.bg|é*WÎ&÷ýPÇÆöºŽù4âQìm}ÒîuóŸ‹ÔVb9_qϨ+½{_€ž¶wãeR8JŸ£_b¡ÕËÜøßÖèžE’˸b<{~°ú€ÿ ½°Ãó˜~…>FÙØ1Ž®ë˜M-Ôíûq~yÇÆì’ŽùÙUc6ó2ì}`OÞ–±Æmb áGWwc¡¥*‡6ÃpbPbŽÍÁXa‰þ=Ô1DÛ˜uÌltmÂN·©¬å0‚v¥~›yêû;ÒäÍf'‹v‹Ó—Ã’Åêø §7|º[áîßù9ó®e›ú1èçO+U7ú»€…~Þ0¦º[²³gEÇâoÊEï¬2+mî ÎwWwŒÉ¾nØ:÷þÕû8A?ùv.;¶ Èôþ{Xzd¬À²Q×ÔÝÀuú®`#踄˜“r¶vs Ä"ÄK°~“Ó#÷Át…/ }—Eó» ÿ†“\C¬áãl¥K$w‰Ê¿­‘l~§GŽéSêŒoßè®ós½¡ŽÍ3ù{689Ãîú`Ôµ¬è³ð£+:æ·tŒ_”¿\ׯïX|³Eå{? 7¾O°©‘¤žŒ5xÃ\b¬3˜/ /_!ø¼ËZwv9Ü1›'NÆF–vã3âÙ5N°ù1¼Ä×`ä=˜¥ccKÇÆbjØ2þ »&Faœ0–à/ú`|k!‹X nøyVö·8yë:ÆX8º¬c±BÊØŠà{È›ø¹áâŽåÅð=Øó–Žùhb õ*cCÇüu€ý‹Ý5´7åö½Í}G ÄgX€Ï NIdò×Òwøj|1<÷ø±ÎœÜ&yDb<Æ ž¼—¸ë‰¡áòªŽÍ}ˆ¼oÆö×tlî@ˆyñö³Ø 6@¿-é 2;¢ŽpŸ½Â` oÑ/¬Åï3V}Lƒ »òhß¡Âø]¡2ƒÌÁ|\I]ð‡0aKǘµZ²×u,æ…eÞW1>†œÌ-îwrväû|Ž–:`Ë0|Kg0þYìþ'ãË'Æ#aáðõغó9ò/^õôóRŸ‹aÄû¾múŸ8š>ôqcmYÇÆ y¿öÁµ«;67ô¹Bê·­cþ•¿+:6Vñ[:ƒº_Ú±ù<塿ÙèaCÇæñ\;ì®õë+|És¹{ð·+:ƒ9-tÃØÄFÈ£¬wåâë||AŽe•“MœÇ¼qo?La—&|òëUÞ>°íÅÉïK\|Æàzð»$øöù¼®·ìx½Ú–ÎÕÒ¸Ú燼0î¶»ï`°×è+ú>ð±ú°ûmÄ]ïLJŸ1î†;ƒ6½Î•ïs[øƒuî3~†y(eàûa)óêèsÃÈóí¢>KÜw°‘þ&7M>žq²ÒÝ‹]Œ%÷bW>Væ;®÷sÖæÄðrIgp}j{g0^e<¯p¿ã»ïà·÷KØmD~ –ëËo>æà³_¯ N\çÙ·Îýæë‹¾¨lYÚ±9 yœÝg<{YäiX&ž[éúÙ¬;z]0¯óú`<1ÄÎÉ©ÑØžìwaÙ}ñ÷:ƒëw›æ.Üï÷¿sá½§w]¸ûÂ=ñmJ+^°a¯•Ùߤÿ@xß‹èxèÒ‘~¬ò¯ãè×»7½­Jßÿ¾îÔ½÷¼þÍ o6tÖ~Ÿ×3 /|÷ÐÂÁe /C}Ý›ãÅ›ýi1wó>2~]8*t¡v¯{㽦¯Ý¹ôŽÑ»NféŠï}Ýù;ãΔµ—~{Ë¥Cr)Œ×_:”ãÂ[zc8ØcoÔê¹ò%Yo~`|á1ç^ÝúàB Þ|á<7†ì\80ùÂî}ó]/ýtߥ·¯¿¤«ûßP»êª—Úì7­ºná][®}Ëü«Gn¸téëÏ?0¾ð6™w®ºéƒçßøf÷ÒòwpqÙ¦…#€ßvþÒá>I«vÛ±ão8ÿ]º*êA—m×+ÍÜ»CÓ’†õ‚·ñ—.»ïü=îÝvß÷œ…U·>øRÅûq w †û}·ˆ, Çm_ñŸîûÍO­>Þ¾ö¿ŽüÄcgmo>p|á‹öM·ï™?ýÅ;Ú·l Ÿ¯ü™³¾tE{F¿¿öùð÷êÿeáö·¶÷- ¿_ùã¿úÒ¿Ö¾âÑPÞk¯³ð_{íŽPÞ™ì«?»ënjo»òÆ…´¯}pᲑöìgÿè¥/v·s/þkÏN„òî|w¸ïúW†rï¸<|>}$”ßÿ‹…ÿþ²=÷dÓ~:”ÛþtøüúÙP¿WŒ…úÎMþâûžù³öÜÔK_ß÷îöÔ»‚üëÞʹõ?.ˆ½²m_±zá†öêÿ°k¡bímÿþŽÁíå¿êwì7ÃýÝ òN­åßt*|öŸ…ö\¥vŸ^ÚÓ½$î'ÛF÷Ÿ“ž»_*åÆ'Úk?êW©¼Û~îî…ÿÚ¹? ßg¨_ý©P¿î¶ —jÏÜ?„úÞð@¨gï3á÷vSø|âÃáþc ×¢žÒo¾8Èéë÷Óÿ.ØG®ßoû¤¾ÿïAgžz»zg¸î.Õ÷äŸ/4k{Xõê©¿ò…þŸ zGÿ7HÎIÝ_ëûËï ýwDöTT ŠøV{»ì Py‡tÝéeVz:®rÚׇÏýáïÕs¡?Úsá¾ìb°—â‘ S£AÎÙ›ƒÞ*Ý—IßÇžS¿«¨}W÷W¿Ú\í/÷…ÏíWC?ÝôwúB97®÷•÷„rædGsïýQ<®r õ:ý_Ô/ß 3Ùщ7…ò/ûã`g{e7Óõ¿U}Ÿ¿Q=tÂï—©^ÇŠÐîýgeo*§Qû gµ««ß«_³ŸR½–{9)¹Õ†úO]ìæúß ý½GåTªç”ô9ùÅðû éFr°ÓBõ<ø¤úq8ØÃ÷õ.é•ñ*9²‹)•×—åÇ‚^ÊöëúË)ü~Bå4²¯Fr÷‹ ùÂõ§1èñ¨Ê™Õ¸?|whO¥ñ³÷Â8ß+Þl{,Øåé+C9ã²Ã*ÿj“#ÒÓõO&=Îêº=ÒûŒÊ›R}fø«~Ü£~˜Fþâ‘ÊmÅå\z<ú³¡Ü¿î?¤û'‡z'ʾnÔø¹BãéÐùPŸ Õ³OJê·õ™pý´ÚRõ›•üqõÃaµóÙmóC¡ž‡d×Ûe“ÒÿNý½âëáúW¿®§>Óú;÷BÐÃvÉÁÎjµkFò¦$gVãòêsP÷åú}Jãr«ô[êïQqko7´³w2Øc&ûoÖýf·{EÿâÊeÒ[¥úí‘>§õý¨Æéù“Ý7!»ö§úo‘¾GÕ¿…îß,n«œƒò#²¯ËoÔøù½PîN•3¥~›Ôx—ÜÃjõ—½íS;úâ×QÙÁÙ×¹ôqì—C¹ô;ý‹Ç…ìvŸÊŸ•þùà ’·Eö6÷Í w\ý°G;¬û¶‰Ǥ¿£ªÏ¤Æá„ô7+¿¹_ýtTã}=úÐý3âý7&»œ¾Ç¥¯JúÚ¦ßó¯½mSÿ4[Âõ7KÞ~ÇìáþZõÙ’èwZzÙ§~Ø#»Þ«vÇñ'N¬¡ŸôwZ<8+ÿ?W5.f¥Ï9ùYÆÉFüŠÆÉ”â·#Òßz`üˆk“ÒK«8 ýÓø×ý=ù±Ã*—vÜ®~Ý«öd¿Ê™ŸÏŠsŠ;÷ª_7«¾»Õ#²—ÙûéµÐøÜ%ù×ê¾ÕŠ_öª_iÏÔÈ ºêê ßSŠ÷É/]«úíÐuTÞF}>¨z¬Vý2éc³ôt­úc“즔ÿ:*ψ›à¥ô´]íÙ¡vlQ}KqjíÏöIoÇÕO'¿-yêÇ)éq£þIWËïv5^ê÷³Ä1*w\í[)¹Ç¥Ç#êÇQü–âZìkŸÊ»á†pÿjÉ™Ðõ;UÿC*gÊÝ)ûÙ!þÝ6®ñ(ù»õýf•se©þTù+¤Æëiém¿î’½ß¶ËÃ}Èß¡qv™úk™ì}Bý0¤ömQ94n2Ç*wXýz@׫ßÇ$gRý°]õÎäwàÖ¤ä"o¿ÊÝ#~m×uâI«8¿^*.Ú¬ö쇈_ÔÏ“âÂzS½Nª>;$·×{ >œÐõ4Ð;v²Qõž?š’]¯•=õU?úcRõÛÂ8UûnúÅ©Çø×uêß]²£öÞP.~æˆälSýש?†tßõÛˆê_k0¦~Ü¢r—«~ëÕOk¥ŸÍêŸíj÷â~ùéM´‹xKý¿Y×í/–Ê®vÉ®£ýªß6Réo\÷oÒ8—~OÉ^ÇuŸÚ×ÿ¸ô5-;¹ñÝò7’3ªöËÏ—í”gÅ¥UÒã´þžÒü'—^sñg©ê5¢û'åOêïìG‚ÆÇ¸x»Aý'¤çFã÷:Å“jvÇøÙ­vìT;†‰côý¤ô”©&±OÕk¥ô[«Cê Äá*g#q—æW3ªÿ¤8¶JzÝ$½K_›tß>Õ{Á>3Ý·5ý]r·JŸeW'¤Ç•²cô¶‰yø=,¹«ÕÞúœÉ.{ŠWÅ ðdHv¹Oö7¬zlSùÛUoââaÅgaWÄ/ëh§ê±Qz]¦vmÕ÷ði‰ìaFýÆêïzý>$»,T¿\q󌾟”¾çþ«æ­øÝ?£¸jöŠP.~vJí.e—Ãú~§ìhµä-Ѹ[«ß—¨_ÆÕî1ý¾LõÎ~]ã½èïˆ8¿Hשœ]²ÇMêÇ)Õ~í‘\Æízê¥ë÷ÃI•{òGÉU­ÑïÌ»¶«ÿ7KG5vézô_(Ù+ù›Uoü6~v%q±ìf³ú…q½Zí¸\roÌCiO?òûß“~×é÷åOògý§eoÓâUû÷¨Ý+4®˜_¿Ï¨+ˆSeØÁFæš7ŒÊÎ׫œ½Òÿ¨ê‰?Ý$=b‹¤“þ?i<ŽHþ„ä¿N‹ˤ_üé*æÉÌ+˜KcºôA\<¬Ï[‚>úφrúß!¾Rœ2>÷¿«vŒË?~»Uû7‹[{TâMõ_œGŒIÃj÷nõã¸ä}Gõ¡?± æ5C’;)=0ÿ_θÂJoð?©ûûß%¾S.Rýˆó×I¿«Ô¸zDßïýy8©zΊ#ðb©äoÒ}ëCûû/jü§'äWv¨ÃÒKÅ|ùä>KÿËËö¿­ö'úÁ¿m ûϪÞ[ÕÄ=ß–^àÞrýÅn(?¿Tå}ÿ­~XBŽ¿R=Ä»þ p[zѸX¤ûÖªœýªçQé…<â¤ü.åI?‹ÕÎ Ç]Ä¥²Ã¥Ìá/ñþQõ\ÉüYzž ×õ¿'ûc¼îQý©œ)Õ¯#=í‘=aWKTßÅâÚ×ÕnÆÁ~Vrà\¥öí ûO©žóªÿ&8¬ûˆ±?ùþ?&ãSvÑŽjü}‹y€úZíÚ¥¿{ÕîØ£>gÐoäcàêZìGzÀ Iþ’ù^˜fíî)‰›¶ª^ðtZóœ¡ð}ÿâ+v¶idp„U='ƒ^úÏëzå ú_V9Ëõ·C|!®ïÂŽUÎ^ò²?æ+{TOüãk‰Ú1©ùA¶Wó&õû¨änQùÃAOýô;óŒ Õë•·Gã{Åžø¼Fþóä ‰ÿ9Üÿ¶úe+ý¡~Wú_Tû˜®!ÎT}"O¥ÿå*÷ Ùó »U¯Åºîh¾Û†x^¼]«¿kÔÞeê‡MÌ«ÕÏ«TyÏMŒ;ýÝ —$w íW}v¢/•Ó‘žÑßIÜOþzXí]¯ß·©œaìMõg|¬P¿>-?§Gø‰|gÞKIvÛnS½¿¡~Ó÷[á–ämÑ÷5NÐëñÇõ»Æõw’¸–xÎ0_%Î[¦r—¨ÞøcÉíÿy ÙíߤûÈ-OâÕýÊo“WÀ?Š÷ýoª>keÇk$wZãi‰Ê_¹âSâùâÆWuÝAÙ±Öúë{å-c?(ì?K¾AíÚÒ×ZñþâÉSò'ßTQüšæeØcôË¿ýgÄ©ÄH‹TÎj鉼Èv¯jç7™ÏÀ%åÕ7êzæËÄÛÃj×3Øâ5ù¯þ·Tý9ªv¾¨¿_Òuÿ¨òÄûþ¤çÍêòG#jï.•»N~뫲«µäÅÂýý¯ª=‡UoòÄÓÌ׆ä_‰ÿà3ñ |ߢzÿ“¾'Ú,=|YŸÄoKšÇ8™| ó³møK•¿IåϽ.p`X×͆ø°ÿ?tæ1Þwúß•½h¼öŸP»VÉ>ä×ÛJóì'eøcâRâÊuêgò›¤/✌ø‹y€úóðVýý˜êõ¼ôùºÚ³ˆxC퀷=õŸú­ÿ"ó-ù üÞéqx0®íNí[!}`·Å•KÉkk2^ÉÛMi< ëwæ%Ÿ%>×8’}£Çþ‹Ò§ÆAÿiÕ“ñýÊÞûßÒýäGÈ.Q}c<ÌxV?WgEùš8•},•]GW/R9«¤¿]ú̸QÜÇÕî#Eœ¿i°ŸÚíøMƉêõœ8öMãïªÞ›Õîé®?G\Bœ¢vgÊnÓçqµ—8cˆ<šì`BœxNõq‚þîÑ<0Θ Gµ—|àbÖ•§XϼGñÑ‹â1üíÐÌGø]íÝ©ññ•¿‰ò¥—o‘—“ž·W3Ïb^­ÏÌ[;â1ó˽Ŀ’³{‡ýˆ˜ßª¿žÃOëûÏiœn!nÔxÿú/ÐNý¾ZŸ'òý§$÷Ëð{’^6_Rœ½J×ÿ¯ñ¨x½GûÚNܯq¬ñýîç¥wåûûOhœ-'^“}l&ÎÞ·§%yÙÕwùuìQfÞÇ|†ñÍ:’â‘X®äF;] ÷ˆ+Ô~Å=‘{äiä§Ú]ÒǘêCžœu_Æ×Sê—Çõ¿ãþÖ‘ÄùûJéu†ÝÌ›¤òyò‹ý¯¨Üeäïå7˜0ï Ï6!¹ãÊ·“_Y,;S=6Jñ‘8ØJqÓß2.¥/â¿oËNžQ}dý¯KoØãÊÄ>Èïãož$.‘?«r>¯zwL·‘\8Iþ‹¼ßRéãÒƒÖõ#/–âÇõWù¢þWT/âój¿â͘ÜžpMëQ1~!ÏJ¼C×utߘê»NÊ.U^ÿ)â+Ù÷3ØþTú]"½c¯ÌïFU_âäÙ7îR×1?úŽì‡¸yÅ´ô°Få/vÔ/ÊÛõ¿¦Ï´‡ø ý’Ç`=pµìó=îQ>Šõz⇠ƒã€u…þ'Å{å«—ýçeGø%äÊOÇñK¼ƒ_†ûä×ê_ ý¹T¼üÂà¼)ŽWò=ò§|ßÿžÊcœ,KòlϨžÄ«¿ˆ+ð›ð;æYŸ!OǼ,™G¬½Wk¾‹]Æñ£ùVÿÛ*wÕ ¯â¸Ç~§”¯ÚÊüU|Qýˆ_ã¼öŸ¤wò"ä!;øgõyO¸¾YzÀù~±äáçŹ8ÿÅ.Y?Þ©þ!?J~ÎiýœyIÌÓÿø]Ö‰va/ªïbÙõsGä'©Ï“Ì •—îÿvpu¥ìk1ó|ò+*÷Yx¥þQyÌ·‰סOéGvIÞ?çã“—ÂÏH/_£Ôné ÿEþ*ŽGø+H^ù~\"o¦ýLýçÕ/˸'ïK\&»9¢¸o‡ì€<öM^–ò‰{>Ÿä%5ŸêÿþF¼f>°‚y¤ôĸ•E®¢?‡‰O¥gÅÏÑn°ò!£þßDÞNúyzÿý/ªýpî`ÿ£Œõƒìµÿ¸îÿ ñùÕ—ñ/ÜNr?3_qÇñyÙ3Ü$oÁúžöqÇþxœ8Võ$'´?•õâ Ö#b»˜—0Έ‡‡U5ð˜ùþAz"îV¾®Ý˜ÄÌãW«}_ÅÞt=ú&ÎÃŽwÔßçT¯g˜ÿ0 .Â~7J/OÿG>\õ‚§ø[â:Íbܦñ×£°7ò‹Cºÿ¥v±NK<ØLíúsµ‹Ïªÿ1ÆêK>‚ñ´˜õ'Éa_¿æ³1îÕzsÿiµOíŽ<”‘Gߊݫ¾_à>æýØ‘ú{‘®#oˆ_‡ûë$'ÆyŒõóßHŸÄìícjúý–ôBÞPqXÿÓÒßçyýܧUÕ?Ú+ëäo˜‡kŸiœ‡®$ nqßJÆùŸŸé?-{$¾Qÿ°oŠu"â»'¸^õyµKíkÇõ;í׺Qä=öùy4æõä·˜ŠÑNáз$/±?ö;E½k?,þ3Æ“ä3Èk*nˆõû(ý+;‘]0Ÿù¨?Ñgü½êã‡íÌÅGÖÓ7Êß—h~õפ§N²Î³]v£<}ÿSâ‹Ö¿b?2á)þ™<šö»ö?.=#ɳ®ôÃ1S?Á[óÿºŸyy”aµûSŒò äe±?æS²W¸þ×굓¸-棈OÈGhÿcÿ;¬ÿ©_˜wnÕ}Ì{èï¸N'¹ßU;Éó3O¡^ðßQyèŸý´“û?”è=® UâäáÏ?‰ß&žg>-½Ño÷qŸ œÅ=Lþ¼~Uú‚—ðkó ßy%ö­áoÉK(žŠz’ŸŒñ7û³4zUý˜ojF,GùÁèåãü€aþ.%¯,ùëdWëYGVL_“<ÖE‰+YDz•ý¿¬›’o–}²þB>u‚-äÉß3ßÀÿ«­ßµkˆãˆSõ=ûT‘C}É«“#Þ ÿÈüf'vJ^Lò¹øˆ¼òójy Ök‰“ÈÇiÿHôÿ¬+ð< qyímÄä›ÈsËÎY7x‘xNÜU%îϯ³îÊü–¼$ëH<¯AœG¾C&gë0”÷sËÆü€Ösã¼`1\…äή‘§P}‰—XÿŽùgæóÌ—ÙGÃ>Ø~ñDqvÛEG^‹ò”ÿ‰¥]ıè•<ó@ò–ÌÓ˜ß÷°n€ÿÅÏknœ“§&ï€=±þ­u¼èoÙ§Éúqó|Í¢?aÝö³ÔýJùsö¹²_‹ü0õ¥½ì#c=„<¬â°8~‰™×2n´?)æ£hóbòœä?˜ÏRõ¡ìG~q'. _µ+¶ÿ[ÌóóÑ¿*/í€v²«u§xŸôK|ißkÜ·}MíÃ.þž8Bõ[98óì™})Ÿ‘_Ô—~Àÿ’ÿúëÌ¿tâ¾(ï#º|ñ3úÁ¿óýk<Æø‘øšv3/#/J?`§ìËÁŽ™gÁú“yåá7øü'Ÿ‰ƒ‰×°Ã˜÷ÖgôÅü‚| ó'­WÄÏÄ…\G}°>_.´§X/ì€þ‰ó}•«}1Ï@ûˆ·ÿ?ÙqóŽ/J¯ŒÃï$ëÑΰgæÉ’Oû¨'ý翪ó¢O%\FŸ”û•Ďм¢Ø%zæïcÉ8cÝŸû™ïs?vÂxd¾Â÷è‹v2NÈröñÁ$Ç>éôŸñÔƒ<1ú£=ì¿!^&Î £ùQÿ¢®ûè`ûç™0~©ŸôrñhH¬Æv“DŒ?ÚC=‘K}UŸ‹½O Ì+â:_´ Õ‡þÒËEòxös±RÞ;MÇv@>? q1OÿszbÂ}ØõÃïPOæÝIÞ?ɧª~µþ9¯üÉ<ëIÌ)Wõ™—}],Câ‚ñQqR¬/ú–]Ü¢zHOðžþCŽÆá<öJ9ðÞ¤yW}fþ ÿ±#Ú×—d×Ñßèw⸅\T/Ž]7ÿÚ£þ¦ðoŒKìOó°Xí£^äá追ÐMÆö†Þ°/ô€]È~.²Î€|òOp^i;ç>—Œ+é;þN½à*á¾ÏÁmé™rˆ7ÇðHÜž‡3È+p’Ï’?OœÄ}ØÇ{U¯O æ…çY§$>¡?°/üâŒXx¾ÿ´“<6œùBaŸ_Iì•z Ÿhoä±¥gÊùyÉå:ôŒ}Pÿ'ÛÛI?Ȯ扣éOú…ú$ö:OüB=Ô_óÄgè5Ú‰ÆIj¯p•} øä¥ëHÊûÌ«œ‹ÚÿýöAÁUôþ•d¨ýÉc«¾w ®ÿÄqýñÀ1ìžøžëÿyY•íˆõûÐïy.†ñý“ýT¢ï¨<æÏòÃóïƒ7º?æ·TΧû+Æ|–^çÿÛ þæÑ+ßÓÔž0ÞÒ8†ûéWx†ÿ¢Þ%úá/ãý½_åPÆYì'ÕG\ÇÎùžqò'‰¾Óø9åýƒ}óýG’qÞ©å<ž”‹~¤Çyìœþ…ÏØ–>çñ;’ý­Ú9¯ýTóÏï«ý1®G~§bWiœŠžé/ìŠ~¡?ég⾇Ô9jï<ù ô·“øî"yò$ÿÇïPÂÕwžûgW rûPdýcÄ5è•ø#êKz”>æ íñ.qã8ÆÅâ2ëi\Œ~eóH¯Ô‡ëèôÂ'>Ã_êCùŒ{Úƒ>é§tœ`—”KÿÆñªvQíFo”Ã8þXboØç#ƒöå}$á2õaÞÆ8æzì–ö ?ázêÏÈ=ìAýõŠ>Gúç:äa\G;dwóâÓÅUƒö4/~üóKë¯+~#ÚYª?ú‘ø‘8Œúc±ýj_ä«úõdñ*Ú7úzoÒŒSôGÄv‹S´ó/°¯¤_è_ì;Bn´CÕ›ø@×1¯‰ãœ~Ñüw>úyýN?Ó_*þÏ$¹ôSœÏ'¿Çø'/I=£}'þ“qGùïäK¼zóû‚|þXò—xK퟇ôSl¯êûnÕ¿EüHüGyÜy¨ûù̸ƒÿØ)÷½;‰ÐýÆï”ƒ=ò9‡_Óýè÷SI;ÑgÒ®hÿôvˆ}S8”η©ÇýNì÷÷ ÚWÔ“ä\ܣ뉣èOÆÉ ƒ¿G;Næ?ÑŽè/ô‰Þ‘ãã$®à/õøTâ¯Å»Žþ‹íB_è“q¤ò¢½¥q¤âùç^Ißó´=r?ýªq;O^•õç4΂/ŒìO×Ïy±Ý\ŸÎéÿ{ý1.áï_%ãîŸÁG“ñA=Ð;õßç™·ð=zÀ^Ô¿1þ—þc}±ìýò=öÅýÔ_õ»¨çycœF?RÚ§þ4{ŒG£&|Šúc^O=¸žúÄñ¦~IóŒÉ<&Žc~Gi~ Ñž"Ouý'ÿËõØ;vBGû’ø—çÖæ5oŠq;íKùEýRAÿa' ûžÒÞ‹Ú÷t±“´;ñÙE=\ÚMûâ|WzJâ“yqžx™v1îé8L}ˆc(?åõIâ–yö§ý@yïKúù³‰àzò'´;ÂhvŒþUßÇQî;ä³ê¯§|øú,ó‡$Þ»)w¨×»’xž~A¿'v‡ž± Æ9ã€ö±ÿ .0_KÛI9&ܤ^é|ƒø.íþ~&áãü½‰_~8øO惩þ±Söó=õøëÁöZž†y«ÊÇŸ¢ç/ êqž}Û‰Œú‡ƒqß–®ÇOp=™·`‘»úžÏ$ã~MóÔ+‹ÎÅ~å3ý™rÅïéü;%ŽAoü¥ø¯Ôß§ñzHãêɸNÇ+×'\ùìŽ~†÷_LìšëMxI¼Ãøàzäïw?šüçÉ÷1N´¿#Æ5N8ñHâ7Òù?r©Oâ牗Ñ÷¿?ñ3è>r?ý'dÿÑ_Qâ@¸Î(‡¿I¼>ÏþÙÙEöÍcÿô#õdüRß$θȾ8’äæ™ï¦zÅ>ùü¾D¿èåùÁññ²q—λc\¢ú£?þbw©NyõÑÄN‡üÎøÐßÿKÎ|ê'ÿ$áÀ‡“z#Ÿö#½$yḾÎÐûG=«¿#_ÒùiâcC»ù›ÞÿþÄá7öòžA{‰ýþ>˜ð0?8±ä¥þXvã8ä¦óù´}Œ7¾Gö’Œ‹—éÞ`çiü“^Ïü3ÍWÐ~ÚÉ÷ð ÿÆá”Kû?žð ­'ýGý¤—h¿i¼ƒ½áßÑcb//«×ûžò÷‘Áþ‰ùÚ?ä)×QßhOÄÇô߇“òÓñK½Óü ÷½+i'~ ¿¥zoÆuqꉞÞ?xßËø–úWôœÆ}ïKî£^Z‡b}9ú1ì„~@iùôÿòóižFí‰ù^æÏøxüÁ¤ýLø€½p2oˆã5ÍߤãrRÿ€Ý§ù©÷–‹}ÇþKÆyÌ—¤ñ8y8üH2nÓyUšGdý–çdÇq¼ÑÎt½}¤ù_®o™”oô÷?’ÜO}S=¿?WÉxýËýüE~ê‡S9i^›r±ì1ÍP/üÝ»’z¤åó»ûä3¿§û‹øËúá_%öÆõäӼ˻ÿFÞ">¿'iWêÿ iíJó‰aÒËúþù«Då¦v„\øF{Y·Jí)ÍÇÑÏø­wòãe¦] ÿbþ =ò;züA¢<îKò›±½éxKãIìýêsäV¾;é·4Ž¡>É|o>]'¤]iûáÑ“rÈ$~d>ÉÏF®§óЄ+ñ÷t]z%ãžø'r~JøÃx™'Ï ï¹îÑ„WLì%çqå¥~"¥ßÃ)ê›Î›>˜Ø÷QÆ)þíýIý)?]¥ßˆƒ÷‰Qîï$õ¤¼Äþâ¼0áâ|ºÞ†þÈkÐÊOãš$ö2Φþˆú¤ãvо?”Û™ÎÛRÞ$¼íHç™ 7æÉÇ=œ´'͇¥í¢¾Œ×$Ï{q©ìû ½ŽÓ~:ÏHý#r‘óɸNÖ5‰b|ƒ<ú7çR}Ò>ôø¾Ä.‘›æù’x7®c¿ »€‰ÿˆzLãšÄÎ'û^RýÅvRÿt\§ñE:HýC§ÇòùK?±oyÜO^Žx9‹Rn$þ2öë¾)¯’¸"ÚñkÚO1¥z ìîáÁqñ²x„vò¼Ç»’qñ®¤)‡~‚ÇÔóÑÁr£þÑCê‡?§Ü¿Œë_Ƶ‡ÇÍ|ºŸ†r(?my‘Ô>ñwϩӸ‰~c~“Æ-žÜǸ£}ôçg’ë©/ãžûÈ ¦~#™wÇòP|—p ¶¤œ¬k¿,_F?¡¾~ƒ|BRïd½}ž÷a¤ãšëù›ÎÓù!þñÝ?@_È#.ä3ã7µcúçÝÉxâóš÷a*ÿ"ïMJçiÉ~ˆ4Žíðú¿¹xI?í¿øåKÒ>|üRµwýý¥~jïÎ/Õ·}ç¥{þZûÎÿ3<xáG/Óö?Ö·_u,\÷ ¿s©½í;ÿÅ%{i_yäoÛ ï åýü‡B9¯ÚäÝêß¾óÊPÞÃÿYrÞq©¾íî¿4^ÚÛ×\jG{Ë/_R`ûCK‚œ»<Ôç®ùðýÏÿÉ%½´ï~¶oå¼îoÃõ·¾ý’bÚ6]²§ö•—^ôñ“íÏÿY¨ï­?êû3aОӹ﷼=ÈùÉПí?»#Èùñuá¾zkø{“Η¿:<`Ò^su¸ÿì-—:¦ýñ{Ãý?·"´ó†Úu!$RÛëÃøhïõ|û;B9?ý`wôùc¿ʽm¨×Ù_ ò|K?÷…~¹-LûÚ`Èí×yg z¿1ø…öÌûƒþßš}üô¯¨ßý¿Zí¸£ õ{ÍÁPÎë¿~¿n}¸þŸ¿dwí !.m_ÿ;ÁžÎ|>\÷@x@¾=>{‰Gí™ß×߸8ü~|o¸ïÊÿêUàe{ß߇zÞ|UÐÛiÉã|ª7ü« ‡Ûo ÷¿é›¡ÏT¡—ÿPhßÜÍáû>Úqú© ·û~'èímËÂçk–…qÑS(ÿ²Wù÷ËÎ{êÏ{~8|ÿ¦0¾Ú«ÿYÓßêêwÃýg¿ûÃç9õ#ça]'}^«ñÀù¬Ç¥—c?ú¹$iI_—ßÊ»âÎ`_Ê>¯{UèÏ»¯ ýÀyç?¸Ø^â³öG4NZÙÓÉ÷9\þžü™pÿqéá¾;C{ÚýÑèûnrOË^ý·¡]}éáÚ Aî êY¨o¸&”×ÿÃÐþ;~2\ÿ:õâ¶öŸí¹NöÓÝäÞù‡ï{‡rÏ… ¡íõ'e?¿úë–¿ z}í¿åÝ.ôTÿL|i¾ôRI.ç°õƒjÿVÐ{íu_ ýsuà{{Ù ÷Ÿ–÷Ž…úxeÐW¥~¸ò‘PŸVvxÛŸ½üJ(ç˜ì;â|9êõ÷‡ë©geÝ¿hO¨g§‚^N(è»ýãPŸ*Äí•Òó+ÄÅVúàüäÓ²¿öÇBÿÞ‘}>þv?ÚuçÂßÙ7„zݬqÒ>ìª UÚËeïEðGí«Å•&¬÷··=ÚwH㯾8wï˜xtB«Ÿ íè…ø±=ªûn·_^Ô¾NöÇùÙרý™øpJ~æŒÆÿÔ¡÷ŸzOÎ.Ÿêºnð»í1õCwGhÇá…~åú›†ÃçÃÁQ·G¥÷CχûªœËøüwÛÓ¸¸^~æ@˜ŸÅó »×†v¾Jý•8èóÖÇÂõÝßß—j÷åâÈlˆÚcÒ_#nßþš`7‡¥÷[Ã7íkeÏ…®ÏT¯2L ÚÛ~!Ôûü§ÕIù§eÏý6ð†sûß³?Ùï…ë¯Ñu¿¾?*ûž–}Ïí/5ÙÝåÒÿœxtH×”]Ÿ› /Sýލ³=qï E_Ãu{d§S꟮ÆýrAr»âÉ-¿Ê= ~“wŠ¿‡ô^‡ƒ²“J;¡û ÉÉd?×ËN9_õ´ä½å?{,t)½çòg¤λ¼Vú<¨qpHÜzõ.]'û~Å¿¤—}²“SaƒK{LãbŸÆó¬øˆ^±V<Ê5Nôñö0שž‡d‡¤ÎùÌUþ´úñòÁÎ÷«?æÂ<¥½Yœ<¤öþ¯†ï÷êóé}øqßÒ`œï¸SÉîÈ~μ/ȧŸ÷Kÿ™üÐÿçО×þt¨÷­ò›zV»W<ÈÅýƒ´GõžÑ÷?ûêPN«¸ìUφòáÅ>ÕçêׇösnÝ™EAç=Îm å¿å‹¡œLqi_ú¾Lõš7^Y…v'¦e'·ïå÷gt5Î8—÷„âÈqqí_N;¾#<ÀÚþOŠ¿KñdZãàܯ…¿o /èiéÞPß½ê÷û~*|>&îOJW©^×+ž«e73ðj.\·Cã騾¿^~øjÅ:6žÛyPå^)?‘+Ú¯~9©þ*õ—q”M„úß¶Uzá:éqFŸNó)ËIÕ‹ó¹oÊåÇñºîÕãzÉÃOî“Þ÷kÞpXvûð_*¾PqNÙ-»ŸÂÈŸwUÞŠ'÷É_\¡ëÚ,èsZö·Mòfd‡ûÅÛVq'çEWü0)»›‘Þ??ò¦`ãªÇQɯTï»Â‹WÚ9ñbÚÍ9Õ:÷³½Vö~Fúë*Nä\½ŠÐ÷¬â“³_õ8wBÜßhïqcîß…v^£8¿×rñóîÓ¡¼BqΫÄå?ôçx´Š'Å_ÎÕ¾JóÚŸ|MègÞ›>¥z\q.È)Ô¾«ÔŸã²OÞwvƒÚ9+=ï.“ã\yÞ_Æ9ÌW¨~:Ç®½Búá<ÑCšÿ¶š¯Âµ9q˜s´[Í÷8טóo9iZã¸÷Žð=ñÚvÕgRõçÜHÎÿ»Yù€½êgÎ%<.®!óÕO+®›ÅNˆó5^+Ùß5§UÏ]²ûqqt«>÷õùvq¤–}µŠW8'ºRœÀ¹Ø¼—îüÃÁ.ö«=õ/çHÿèëÃ÷‡åwè÷Fñ:Ü?©~âÜ BóDÎ ÍÄCüçÀ”ßU=i¼]+Žbœ8.>Õ}pTç—ÅóûŽÁõÇAé‹s‘9oó¨ú—óâ9×{½ì¢§vïONjNü؉=©~zßW[+æ<¤Ý²xGüÍ9ÝWi¼ŸPܼYåÍ)nÚ&{㽇WÈ> Ù üÞ¬zOâÇ5îÇuÿâE®vLK¥ÆþðJµc·ôy™úsF×€ogœ_Ãù&;d“ÒqÅvÕÿ„üçŒìeZöÃyç•â5äMÈ>¶‹'ÄK¹ôÔUûc<¥ÏzOj{™êu+åIOœÇpqˆúaZõÇ>uïáíÊOåjÿ˜úw³äåòGÕÞÃÈ9U»Ôž×ÝäÀ·LöT‰ã{UßJqo¥y-{PþNrvI/½h>ªùõŒøtë¿ý›3oW½/xÏê>Õ£ ßâúaù½#jïÅܨëôá¶Ôø½ãÖÐoGP}8§ù¸ìtŸÊå½ßÌ?8Ç—ùÎaÅÉœ×;®qtPò¨þœc g§åGˆCGtçèöõ#çX–=íQ½+Í÷§¥ŸÕ;žË,»ä}äêÃy5{ô—x÷ªžVü¬s&Û-*¯”~†T¿è‡ôy³ÊçûBóÏ5j'qx­ùï_í*Žƒ»œoõÚ»äÔ®Bó‰iõË•ÊÿìV¿ë¼Ýöª3A¿ô?ï E¯Ç™©ÿx¿ì”ìû õÓZÙ7ó²+4ÞxoéYÙ5ï5¥ÿ6©9_i¯ú­ô¾ùv›Ê缚)ƒktýzõÏÕÿ”ü*çÝOKßUΣ?Uþåú|@×Ó¼}F~vFq嬯þ‰óÝ‹CUÞ6}ßÓ÷›ÄÓBùì®R<·SãáJåß±«Z~åæ§C=ðË{d‡+UÎ?"Ÿ5G»5n9÷˜swè3çÏKì{žTûw¨~zÿhÌÓ­–ÜcøæÒÓmgƒœCº÷»W3žÕ¯¥òÓjùæ“Cjïq›cê7Æ'yüçIŸPÜËûšÈÎtKü;M\­òŠ#{¥Î#¾;*;žÂn¤‡×ü”ú]úá<¥žüМQû3}¯óVã9É#jÏ^µ‡óEöH®Î¥ŽñzØ#½Kþj„<‚ú„ø‰8VymÞ·Œ¤g¤/oÑö$‡s“"—Åæ+¼ßyVqÌ•Ϲ]cÒqï>(»Û¦Ïœ[…=sÞ£ÎmwI_G˜ßêwüï¬ÆçPŽÈþ‰ï®”þaGòwÿuh÷q٣Πo¯Ñ¼v¯âÎ!x®ñɹóÓä1U£ª/çÇï¢]ÒÇ8ó`ù»k˜H“‰ßâ¼ÇCÒ3ç ’ÿ®d÷pôH°ïx~çyž]ÊPûyß4y¶“Šg8‡•ó©jÙýzTíåo‡vMÊ_LhMkýò>qÞ¯Íõza»E¿ïV}jå9|Z¼éË.FÔäµ8hô5-ŽÃÃÓò[ijœ/ÌùfSçÔÿFùÍE*oVv u·‡Š¿P?õݪ/çÝ¿Yòµò?ùŠã¹žq«ÏÌWô£øþn¸À{‘9œõ4Æí•ÝLé3ç’ %~½÷¤'ìsr9s;þG÷]¥ñOüqRvt­üôqw«îƒSp¬f>.=3¯$Àzç”ê;N¼¥ñÒÕ¼vRò°×Zñ õ—ýé¼Ë7êúíaÜÆs38—à„â³í*g¥ê¥ó†âù6ôçâw8çœ|Ó”ÚG=8ïø”ÖuÎGœO‘7WÅ÷FOk~½TõbžŠ¾wÊn÷j<]õñP1Õ‹s[iß.ãâË´üC<ÏJr«=œ{EüÀûݧ˜—„vÄsgÂïñ\“=ªï!· 8«úTùÌÃŽI¾ÞGÝNHŸÃô§Ú;¡þÖ‹bþ÷ô“ïÃè=ø1>"`“a~}@ótâ,Î…›$'S½ÉÛTa'ž/ɼu_¸>ž'Áûä§¥'¸%.Úy÷”£~Ä®tw|?÷\È#ò~ë¶‹¿’¼œüEÐCô#±çÐö~tü3þ.¨ßá-çÌjÄóÈ7°ÞÅ9Åœw¥sÓxÿ|;¢ò9O¨QžFçˆÆs€ÉÿÜýu­?è3çýÌh¼l§]øCø.;"^ÌëV„öÅs °Ã¥Ì$~p^óœ Õ_ç†ÆóÆ8¯Uç Æó··è~Î=â|ØiñŠ~: ¹'?>UœÁyœó©÷~Äsê¶é~Ö ™ÏlÃ?ãïôwT¿oÐý¬§Í(.Ù'ŽŸRý^D¯‡œ[Æ|“8aþNö¾SíÕ9QñœpVד×åÜzò†zg»êó¤úŸùO¥ü÷ÞŸÇú’ï$?ˆÞ†Ô¯œg¢óÁã9Ó²Ë ù#¸1&ý’&΢¿‡ôùÜÿ£|«ÚÇy ̳8…x5Sô ôØ“¿Ä®9_vBq3y¬qùò¬£é\ÒvÊ;)ÿ<®öÏåŠ9v«ìgFåÆs¥§ÿBž@×ëœÐx¾|æ<ÅsñüÎsæ¼{ÊáÜlâZΛÞ,yœcJ^ƒóÜ8ox·î'¯†}±~Éø…Ëœ‹œ‡zÆs GˆGåôžÊ88©¼4çŽâÿ+­¤Wâ78D^ƒy|a~1ôbçï†zÆsH÷ë/çGrÎÜaßÇ0þFãm.éï)ů¬Ë1ÞHÿ¨?¿*ù:÷²%ï«8fVý|åhà ãˆuêaü0ócòm¿)?&;œ•üƒº~;óré‡u–5Òã)å/Ù¯Áù ØÉÙ§BûvÃ[8£ñ¶‹xYv þŽõY+¹»dO×jÞTã‚ùΧkO‡¥ù,q9õ—ýküsÎcäëÙO‡qt¹âëëÎN+ÎçºϱN¿'Õ.ÎïÆÞö‹Ìgˆðo[w ΓøNײ>Å>ê±Sý1¡~œ ó1ιáüÒx^ç(OãËmÒC<÷‡ñB;4/à\)Þo…Ý£znÆß‘×’>8olXòã¹@j/ñú¸ìRó;GŽûâùí}²ÿËÈcŠ1Uy/À=Ú%;›R?mÔ8y.ÉÞ–‘“é¼·˜ÄÊSã?ˆ¯†zrnG{Xúÿ§„—½+Âø{—¶É¾'¥gâ)ñ¢mÔ?£Ò÷”Ú¯÷£Æó¸)Oóžx¾öaòPú¬ý]œ£ÝvÄ=ü ç )oÏÓ}žü ýϸ]pß!Å;gŸþDç–Ç<2çrrÓ³âô“êŸÈ×è¾Íâ&çqž”ÎŒó~òAÌ/Y'Á0þÎjþÊù©œ‡Ç<…ñíîÉ^¯ <ŒçÑr~ç;sîs¥ú°ÿ?¬¼C<˜s¶ä—8_+úa_ÛV’s{–òhgoV~up>ÏõZ®ñqFz£¿”g‰çÛnÒ|ç›úý ¸‹¿f½‘sE9ýEÖÅÈÃ2Ä+x1ªß9MórÞ—óUsÊ+Ϩ¾äNÝ+h|3¿ÛC¾å?jHœGœ«xŽs7èû,¬ÿÄóÔ¦Âxçܧh'qþ¥}•ŒΣl'ÕÞ¹iå÷ÔÞ9Ùñ-çMsž³ü{_ï%ù öï´ïã¸}›æ[ò³œë½UòuQÌó¬Ö¸k•wgÞÏþMå?ã8ÍÔßø;öG/‘~‰CO¯É.ö¨:Oª½<Äu1ž"J|GÞHçÄýAǯP^J×a·ähç^þ[¡œ?È:y¨Ë'B9—I/ëõ7?¦ü:ñ½®¿Lë=¬·áÇÆåàÄ1åáßfækä#ÕoÌçWæ)9'­]'ùËôž¡ÿÙ þ˜uè­Š_ž’¾YÃsî;™a¼(N"Q=ñã=Å=‹Åòûå—µžÏ¿£âú%ØüU½ãùŒêÇî¯+.ÑçùY­ïǼ#ë˜ÌOž ßGBå3^£qݨüF!ÓÜ#;wÐÏgŒËNÉ“4!bŠçÉ£gâ­úÁN8×ôi¾×xå\fâñ0îâ9‘ÌËjq”s³÷+¯óÌÛZóMÆÏrò¡ä¡tûTˆïVêzžƒã|>ÎOä¼EÞWCŠs79/óhµNnÜ'Íú¦ôM|Rjž'±ï%ĹŠJ­3?R=™ïîfž¢ß Í7©þz~²-”ÅoM«]ìPÿƸ±úQýYÇ8°]+½î?É?Ê?Ú»{DŸú=ö›ôBϼ6W¼—k<×ÐÞl0Ÿó‰{dÄOÄ©ŒK­Ç8‹ø ‘ý˜ì‹yê—i\°Ï‹8è0þ.I?òo¼w/ÎsV0?Õ|‡}½Ì§ˆ'´îÛÿžìIû䣚eŒìó¿yþ`5óWòÆÈeAöÀ<ü)óž¯Øÿõ;û!V¨ýGe¯cêgΫÕxåÎö¨âmêÉyÆœ/Îùqœúqµ{”ü¹ì;eÏ~²ÉW>2ΛGTÅ9œ£Öaþ¢ömT½öLiÞ-ýà_ÈÎ8'Yñw{Xýx}w°¢zV}GENmV9Sú»Kò˜×ËÎâ®»MûZ¯’Ÿ;skÐÿþ·P¯c²‡[þ×P¿HÛVë/¯V¹¯ÙÚ}VqùM!ÑßžR^ó”ìü˜âÐsW@ןP|LkÈó¡×•ᾫå^¡rûš/ÿ°ž·¹jM(ï”ÆÍ«69׈Ÿ×¼3”{r.È9©¼ÝÉ_ åÝõ§A_gõ¹Q¿´®»üÃï7)”såëÂï'¤‡S!ŸãùŠøOOª¼~E¸¿ÑºÏ­*®çŽ)¾šSœvƒÊ;¦øúÙñ µóœ®»MvÇs•ò™G5^ÙÓµÁq´·|@óöƒüo z¹VåWZëÊ?ÍÉž”xiçÔž®üµ²ß\óãÓÒûÖ+dïôs_ŸKõÃÜo„ò®]g6â,û{x^¶T<<÷{šGßì¸Rù­~¯4ÏéÊ~Îh¼ÔŠ·fX7ûdwH¼íßäÑu™¸»O~¡~Nv"ûf¿`­öß .Ÿýe£_W}&”¿_rÙoËßÏ~9è‹8lZ~ç¼[õKÉ÷šO•ú[©?Z­NÈ?ß"îñ ëÀñ~ùÇk•w¸LñÂêgžGΆþ)‰;eWÇÃ>‰v¿ê¥|r{Hz˜Oy>Aþ·-÷ùW¨Üã²·qÙ7ÏÏVšñ¼'qöeÊe’»OõÅÞKͧOiܲ©‘~Ž‹ãÒë!ÝÏósÇdGd‡ìG8H~Núâ¹Ù“êDz×}Ò3vÃóå¥ì‰ç ¯þßC{¿+~b¿m&ù7- Ÿ2Pù¹ò`=]¿_zaý:“VüÇs}×jüL‡¸£="½³¾3«~ÍÕ?=•;«qx@qBö­G(ž@‡Äêq@åîÏN¾?”“éó!ö7xîeŸú‹çŽfÅ¿Fz­4îÈNxž‡}¨W)Žf=ý°æIÄ?ì»äyˆƒ²‹qâ"ém¯ÆG.½î—þ&Ôïp·+?vPz%O¾Wrséå¤òšä=gT>ëÈ3ªÇ,rŪgWß7ä5ÎÙß1…?’¼ýÒßaÅ·øcö1î=³c—®o¯±¯¸o·È>çôýõÏyò<[¥~žÖßý’‹Ëžg5îÐ/ûHY_:¤ñÁórlj‹%o¿þ^¦¼v|ƒôÀ|nFvÂóEGÕ¥Ú9&{le§W® vÃ>tž+>ªz]ø¸òìê¯Bñ Ïýà òwG¥'æ™Ûe7ãâæ­ŠkHÞ5jÏ!ÙëÉe}aFý·Möqf(ØÇ>Ù×9qtJåñ\Í.Ûšñ*NI¯ñù©->Iþ!é‘ç\X—W}èWžßd¿œÛ¥ò·êóù`§¾8s…Æï•²oæ•§Tö‹Öúý„îWû*ÅŸ§åïö‹ƒ{ÕÎ[EýŠýª=g¯Tü¢vìÒøe½ƒ}X&ýð|Êùö¡L¨_i?ïo˜‚ÒÇâ8ùIö£°>Æ>‰]êò{…ÖsØÏÊsU¼ŠüìÖW忦åïØŸÅsa»Õ¾ÝèGràÕ^é•u„ qŠç?x^‹çw·ªÿxŠç"7êzüC¦yÁŒô6¥ñÅs®<§£<^»KíÄß—±~ľ}Òë¤ä²ŽW‹ƒ<|€ý Ò/Ï]ì×÷ìä½¼÷¡ŸÜ®úbämöèó4œ‚Óº~³ê{Fœg? ïÇà}\ÇscdGð~§îc.ûšyŽ”}âÄ…Ø-ýFœ‹]¿c¿9û‘áÉ y<éIã¸ÿ5õ7ëtÈ™U;&ÅíªïaâYüªêË~ЏOHyžþ ì`ЏFþqô|Hòv0¾eç¬ËïÒï3Ò3Ï“Oê/ó„MÄ=ú¼Yþ|„qA£8m-þPö7!9ôûšÇÔŸ”Çþæ [º»%O?lVûæ”Wa¿úV•§ýs1.j¤Ÿê¿mªO|.Såk¼ŽI.ÏSoò ìä} äÇôýÙ Ï)Oª}»Õcªûâ'Å™QÊW=âs-’ÏszÌ؇wPzÁèÉ%>fœ²¾Îz+ïY“½•pýÃúиänb¼‹<ïÄ{&eGèý0ëª?ëªôW|ŽD×Å}¤’Ëþà1é‡uøÍºÕÕƒqÄ{ÛØ?±QõÏ%¿T¿ð|7ë謓ä*‡÷uÀçúËsIì;cŸ?ûåÙO¾Xíâ}4ÓjqO>4Ï`Ÿó â ¸Í{)Öê÷mêÖiy“}T¼÷„çGxŽã2q‰ç¿vˆ‹ì×à=î­ÈcÝFzÙªöó~â½qýN<ÆûOô\HÜ?K>`Xúæy]ì†}õ›õ;ï§€+<ç5‚×¼ÿȼç2°êI<·[ßóþ.âFÖI±KžsÍ”ï =ííÒþRå°N wYßà9CòY[‰ËTxN»yNvZvÍ:û¯x^ÿÁ>öAj½¤e¼gÃKOžK›T9z«Ý¤ò˜‡±/›÷T^ícHúÚ¨zð¾ ÆñïaØ•´—ç9¸ÿ0ó8õ Ïõñåéü8.´¿5îƒÐ¹m)}oð(ÖùÙ7C“çÌÈOŒªžÚßkÅóž<7Äs,«TžÓa¿ë²ÕÈ稞¬Û3Þñ#ô=û´4îGàù]öÀÛýÒûby#×éý௙ïáßÉ[éú ’7¢z-ÓuØÙ Ù?zå¹¢˜§“~×§É&u?vEÜDþNé~ìÞ-'Ø´]v‹¾È×mÔïćñyî ?î;\£ßש¼¯„ç‹y>?Éó Œcâž×æyzæ¯cÒË•‹ŸãyWöQìÞÈ‹±¯Ow»ô6 _˜O«ÿ™ßc§<O»°ÆÕìï†ö“ã9â_ì„÷3Œé/Ï+m”>ÿ~‚¸”xnLß/ úŽûgx.•爻´ÿ'>7Ás6û™o¿Ÿ'Â~àûMy¿ù~öÁÄç§4¿ã¹gôD9[Ãõœ+÷m°ÿv¡§-ê?ü¾öËÅý+ì§Ö>Öþ‹²[ö]òœ)ý+ýrnHÜߊ]ó ž+$NcŸ'Ï+²O‚_XMªñÏú`¦vпÛÔNžÛÎÁ«Õ#ï/à½bÄ1Ø7õÒ}Òk;æqŸ¿üdܯÅó†ì¿ƒÃp›zðüÛfµqFp‹ÚÁóñ9_}îHÿ‹õóü<þ‘xšqÈ~cñ9î7á½&ì;&þày<þêyÃøœ“æáqŸÏj¸¥ëh7ϵóá Õ =è{Æ-qöÈþkæÄ#S²GöÿÃ+æÄÑãøý? íXJ܃ßRÿ—òþ?åßúß•<úUñvÿYÕkTyžË"^Ç?Àë)Í3h^¹Š8Ž<ƒþÆïe‡/Jp}¶Û×âsäÓx_Órø’äùˆÏØo¤÷”Æçã±GôÄûEØo¸^å‘w%J{àÏ‘Ïä}^Ø9ïÕ€Çð!>ÿ®vñ|0qò*úGåâ—‰ÏxñÆzqÄNü…ÚÁs`<ÇÌ{AÈQþZÝϾÉEćì“=ñ\õ ýÎ<‰ç¦ñ³<ǹŒù‡>“?b? qÎphÜ·®y û¹íyhéSÏUÆý³¼g ;æ½ìŸãù*Æ!ùòÄIÛʼnÐ3úd^ »€ ¼ï=’o`ü²ORûy>-úmüy/ög“·"ïÉþ^ìgOà@ÿëj׳ÄKª7û±Ù7ÈsŠ«õ™ø€ç °[­ãp.W\oàù»gèµã{ªñ(y<挟øœ±Ú«8„瘿Æç(Èh¿Ü7É|€ç.ž$¯C?ª‹T.yâvÆïWˆÏ1„úö¿É¼VòG™ÿÒƹêÃó¬C2 ÿʼœç$¶ÀÕP¿ø|Vô‡Ò7ÏsE?L{Õ¬cjÿ-çýÄqÌóžK°KÕƒ|)ûGÅûø¤æí1n`ÞB^uŠåÄkÒ/þ˜ü/¼à¹}žÓþæ¾Î}ç9Á¨Ox¥çã>ÕE‰¾x¿<&‡»<ŸÎyÈ²×øퟎㆸQïeŠÏ¹’÷oô/ýÎøa~ ÿ‚EÞ0¿Õó}ì¯ë&Z‹qq)y¡• ?ÉÓ-IîÃïéù³þWà†ôIþ„÷ŽEN§¨ž“¸‹xˆ|þ8W{ueÌð¼=ö¦}Äq|k>ʹTñùÙ[ÿ{*ŽÅy›Úñ´ú‰ç­¹ŽçŽ•‡ïë°øü9ùå?ãù^¼§g-qûYð_ÌÛÈG—é¾ÍÉ8Ó{·âs”äX¿äycž»bÞ ¯±ož¿Á_òü Ö¡x®‰ó¿âü Žoc¯Œ7íËfÞÔZrñwį”C>RåGÃÿ¸ýqµ—ç’™Çó~žßâyž¦Ýøù} ã—ç¸àè"òPðXíƒãЧû§~äýìC‡‡Ä{pŠ÷àÄù³®Ã­DÌðcj—ôãežKÂŽ™ÏÈÏÇþZ ï%‡¼ ÏÆ÷M©æÄgÌ'ˆ3Fjñ ò¯õ?%»ù:ùzÙ!óYÖ­˜Gð<,óoâaê‡à¹qÖÃÔOÑoaÇôùZ=ןëÜ88nãs—Ê_F¿õ„îû&ã¿äIÅø|:ãn-qñ'þCåþÙõÓƒåõS¹¼/…ùϧ1^xNGùÇþ‹Òåëù‘ø^8‹¿‹ÏkJ_&?!·Àì…z0_ ŸÖ‘ž5žâ¹†zKÔƒâX8ç%â×Ù{/T¯•áo|ñ…ž3ç5~ÿ&=È?Äçãóä’+û‹ŸyžŠóÜ™/®"¾ÕïÌ#˜§-¿ž#>?ÂïwÈ#©ÿ'ðîcÄ)ŒcåU,ŽfœÊþ†ëß[1©ñB|ȺãùÏgi=Ú#yÄä#ÔÞ'Õ?p¿K?£¸þÕã ²s­ÂåþóêT?òhÄ—â°½Cv‡]*nŒõW~9æ×Òߪï`^ÉûÞàó*æ%*çúcp]ˆùW|O| ~´ƒxäãøMâuò†ºžx˜}O:ϧÿ”ìÎ|CvÅs´3²/Þ³?Ö ¶¿Ñ_âLÅmñ=pFïψϩ’Oà9gæµøKüqóPžoeþwèï/I¿|fÜ>©¸ûëú÷~Q~N“·ý ù òXZ_âüí¸~A»y"vÌ{±>­qE\ÞgÞ ý`ýeÕ~À#òÅâqJÿï˜o¨~ÄåÔŸy6ïçÕü4žƒû%q‰þ`Püï¿Ð8îžyêÿˆÇȃOb}Žvðü¤Þ'Ùœ~P{G±ÙóŠÄ*®çð¢Oâ0êEùq^«rþAœûœ¸E·÷hþy*?ÅúD,Ÿ÷(,"Ÿ¢þã}3êß×jÜÆs}e¿1Ÿ¤÷‹FÌ{pÄ™ø\9|'îã/ïO!¯ ?ÈKð>¢§‡²Ë§T¾ú›çWù>®#ò~ ô >Æ8@ñýjó'øD»o_Ũ¬/ÒNígèÿ­Êe]?@}y6>L%»æ=uä«8—\ëRÑ¿(þd|D{W¼í ^¯Kæ“»Þoâ}@Œ7ž;–æè’ŒùÙQúž¦eðŽ¼ óò©Ò\^JÜ'®ò>!Í_ý’¸LþƒüyÿoÔpPëäâs̬ÿ1_â=ôÚ·çbÞ‡öð>”¿!þ—\x„æ}v¼'nh½³ÿ˜ä¦ã};óPùâzÆ·ö¥Çøœù:|dŸ†òÑñ}¹<ßÍ|?7&¾(ÿõ 'x–ü ï§1ÿ¯~‚çÏÓÄ’Çú ãìï5Žáû#ŒGµû1¸B|FܯëŸ/&(}h¾ÍùòQ\$O¢.?ÿÀâ§5o9ÿ›.<ø£çßüÐ…¤B«î¿÷mG\¥V|T÷,ÊøGÎ? þQòŠÔü£á]þÑÓ?g³ñ_YüWÿUÄ•ñ_UüWÿÕÄuã¿¢Œ<ÊÈ£Œ<ÊÈ£Œ<ÊÈ£Œ<ÊÈ£Œ<ÊÈ£Œ"Ê(¢Œ"Ê(¢Œ"Ê(¢Œ"Ê(¢Œ"Ê(¢Œ2Ê(£Œ2Ê(£Œ2Ê(£Œ2Ê(£Œ2Ê(£Œ*ʨ¢Œ*ʨ¢Œ*ʨ¢Œ*ʨ¢Œ*ʨ¢Œ:ʨ£Œ:ʨ£Œ:ʨ£Œ:ʨ£Œ:ʨ£Œ&Êh¢Œ&Êh¢Œ&Êh¢Œ&Êh¢Œ&Êh¢Œn”Ñ2ºQF7ÊèFÝ(£et£Œn”Ñ2zQF/ÊèE½(£eô¢Œ^”Ñ‹2zQFK²ÙYûgfÿÌퟅý³´VöÏÚþÙØ?»öO“–™´Ì¤e&-3i™IËLZfÒ2“–™´Ì¤å&-7i¹IËMZnÒr“–›´Ü¤å&-7i…I+LZaÒ “V˜´Â¤&­0i…I+LZiÒJ“Vš´Ò¤•&­4i¥I+MZiÒJ“V™´Ê¤U&­2i•I«LZeÒ*“V™´Ê¤Õ&­6iµI«MZmÒj“V›´Ú¤Õ&­6iIkLZcÒ“Ö˜´Æ¤5&­1iIkLZפuMZפuMZפuMZפuMZפuMZϤõLZϤõLZϤõLZϤõLZϤKrcIn,É%¹±$7–䯒ÜX’KrcIn,É%¹±$7–䯒ÜX’KrcIn,É%¹±$7–䯒ÜX’KrcIn,É%¹±$7–䯒ÜX’KrcIn,É%¹±$7–䯒ÜX’KrcIn,É%¹±$7–䯒ÜX’KrcIn,É%¹±$7–䯒ÜX’KrcIn,É%¹±$7–䯒ÜX’KrcIn,É%¹±$7–䯒ÜX’KrcIn,É%¹±$7–䯒ÜX’KrcIn,É%¹±$7–䯒ÜX’KrcIn,É%¹±$7–䯒ÜX’KrcIn,É%¹±¤0–Æ’ÂXRK cIa,)Œ%…±¤0–Æ’ÂXRK cIa,)Œ%…±¤0–Æ’ÂXRK cIa,)Œ%…±¤0–Æ’ÂXRK cIa,)Œ%…±¤0–Æ’ÂXRK cIa,)Œ%…±¤0–Æ’ÂXRK cIa,)Œ%…±¤0–Æ’ÂXRK cIa,)Œ%…±¤0–Æ’ÂXRK cIa,)Œ%…±¤0–Æ’ÂXRK cIa,)Œ%…±¤0–Æ’ÂXRK cIa,)Œ%…±¤0–Æ’ÂXRK cIa,)Œ%…±¤0–Æ’ÂXRK cIa,)Œ%…±¤0–Æ’ÂXRKJcIi,)%¥±¤4–”Æ’ÒXRKJcIi,)%¥±¤4–”Æ’ÒXRKJcIi,)%¥±¤4–”Æ’ÒXRKJcIi,)%¥±¤4–”Æ’ÒXRKJcIi,)%¥±¤4–”Æ’ÒXRKJcIi,)%¥±¤4–”Æ’ÒXRKJcIi,)%¥±¤4–”Æ’ÒXRKJcIi,)%¥±¤4–”Æ’ÒXRKJcIi,)%¥±¤4–”Æ’ÒXRKJcIi,)%¥±¤4–”Æ’ÒXRKJcIi,)%¥±¤4–”Æ’ÒXRKJcIi,)%¥±¤4–”Æ’ÒXRKJcIi,)%¥±¤2–TÆ’ÊXRK*cIe,©Œ%•±¤2–TÆ’ÊXRK*cIe,©Œ%•±¤2–TÆ’ÊXRK*cIe,©Œ%•±¤2–TÆ’ÊXRK*cIe,©Œ%•±¤2–TÆ’ÊXRK*cIe,©Œ%•±¤2–TÆ’ÊXRK*cIe,©Œ%•±¤2–TÆ’ÊXRK*cIe,©Œ%•±¤2–TÆ’ÊXRK*cIe,©Œ%•±¤2–TÆ’ÊXRK*cIe,©Œ%•±¤2–TÆ’ÊXRK*cIe,©Œ%•±¤2–TÆ’ÊXRK*cIe,©Œ%•±¤2–TÆ’ÊXRK*cIe,©Œ%•±¤2–TÆ’ÊXRKjcIm,©%µ±¤6–ÔÆ’ÚXRKjcIm,©%µ±¤6–ÔÆ’ÚXRKjcIm,©%µ±¤6–ÔÆ’ÚXRKjcIm,©%µ±¤6–ÔÆ’ÚXRKjcIm,©%µ±¤6–ÔÆ’ÚXRKjcIm,©%µ±¤6–ÔÆ’ÚXRKjcIm,©%µ±¤6–ÔÆ’ÚXRKjcIm,©%µ±¤6–ÔÆ’ÚXRKjcIm,©%µ±¤6–ÔÆ’ÚXRKjcIm,©%µ±¤6–ÔÆ’ÚXRKjcIm,©%µ±¤6–ÔÆ’ÚXRKjcIm,©%µ±¤6–ÔÆ’ÚXRKjcIm,©%µ±¤1–4Æ’ÆXÒKcIc,iŒ%±¤1–4Æ’ÆXÒKcIc,iŒ%±¤1–4Æ’ÆXÒKcIc,iŒ%±¤1–4Æ’ÆXÒKcIc,iŒ%±¤1–4Æ’ÆXÒKcIc,iŒ%±¤1–4Æ’ÆXÒKcIc,iŒ%±¤1–4Æ’ÆXÒKcIc,iŒ%±¤1–4Æ’ÆXÒKcIc,iŒ%±¤1–4Æ’ÆXÒKcIc,iŒ%±¤1–4Æ’ÆXÒKcIc,iŒ%±¤1–4Æ’ÆXÒKcIc,iŒ%±¤1–4Æ’ÆXÒKcIc,iŒ%±¤1–4Æ’ÆXÒKºÆ’®±¤k,éKºÆ’®±¤k,éKºÆ’®±¤k,éKºÆ’®±¤k,éKºÆ’®±¤k,éKºÆ’®±¤k,éKºÆ’®±¤k,éKºÆ’®±¤k,éKºÆ’®±¤k,éKºÆ’®±¤k,éKºÆ’®±¤k,éKºÆ’®±¤k,éKºÆ’®±¤k,éKºÆ’®±¤k,éKºÆ’®±¤k,éKºÆ’®±¤k,éKºÆ’®±¤k,éKºÆ’®±¤k,éKºÆ’®±¤k,éKºÆ’®±¤k,éKºÆ’®±¤k,éKºÆ’®±¤k,éKºÆ’®±¤k,éKºÆ’®±¤k,éKºÆ’®±¤k,éKzÆ’ž±¤g,éKzÆ’ž±¤g,éKzÆ’ž±¤g,éKzÆ’ž±¤g,éKzÆ’ž±¤g,éKzÆ’ž±¤g,éKzÆ’ž±¤g,éKzÆ’ž±¤g,éKzÆ’ž±¤g,éKzÆ’ž±¤g,éKzÆ’ž±¤g,éKzÆ’ž±¤g,éKzÆ’ž±¤g,éKzÆ’ž±¤g,éKzÆ’ž±¤g,éKzÆ’ž±¤g,éKzÆ’ž±¤g,éKzÆ’ž±¤g,éKzÆ’ž±¤g,éKzÆ’ž±¤g,éKzÆ’ž±¤g,éKzÆ’ž±¤g,éKzÆ’ž±¤g,éKzÆ’ž±¤g,éKzÆ’ž±¤g,éE–,Íf#Lþ¹çîß…ûwéþ]¹×îßûw×ýÛÉÍœÜÌÉÍœÜÌÉÍœÜÌÉÍœÜÌÉÍœÜÌÉÍÜÜÉÍÜÜÉÍÜÜÉÍÜÜÉÍÜÜÉ-œÜÂÉ-œÜÂÉ-œÜÂÉ-œÜÂÉ-œÜÂÉ-ÜÒÉ-ÜÒÉ-ÜÒÉ-ÜÒÉ-ÜÒÉ­œÜÊÉ­œÜÊÉ­œÜÊÉ­œÜÊÉ­œÜÊÉ­ÜÚÉ­ÜÚÉ­ÜÚÉ­ÜÚÉ­ÜÚÉmœÜÆÉmœÜÆÉmœÜÆÉmœÜÆÉmœÜÆÉí:¹]'·ëävÜ®“Ûur»Nn×Éí:¹]'·çäöœÜž“Ûsr{NnÏÉí9¹='·çä:^eŽW™ãUæx•9^eŽW™ãUæx•9^eŽW™ãUæx•9^eŽW™ãUæx•9^eŽW™ãUæx•9^eŽW™ãUæx•9^eŽW™ãUæx•9^eŽW™ãUæx•9^eŽW™ãUæx•9^eŽW™ãUæx•9^eŽW™ãUæx•9^eŽW™ãUæx•9^eŽW™ãUæx•9^eŽW™ãUæx•9^eŽW™ãUæx•9^eŽW™ãUæx•9^eŽW™ãUæx•9^eŽW™ãUæx•9^eŽW™ãUæx•9^eŽW™ãUæx•9^eŽW™ãUæx•9^eŽW™ãUæx•9^eŽW™ãUæx•9^eŽW™ãUæx•9^eŽW™ãUæx•9^åŽW¹ãUîx•;^åŽW¹ãUîx•;^åŽW¹ãUîx•;^åŽW¹ãUîx•;^åŽW¹ãUîx•;^åŽW¹ãUîx•;^åŽW¹ãUîx•;^åŽW¹ãUîx•;^åŽW¹ãUîx•;^åŽW¹ãUîx•;^åŽW¹ãUîx•;^åŽW¹ãUîx•;^åŽW¹ãUîx•;^åŽW¹ãUîx•;^åŽW¹ãUîx•;^åŽW¹ãUîx•;^åŽW¹ãUîx•;^åŽW¹ãUîx•;^åŽW¹ãUîx•;^åŽW¹ãUîx•;^åŽW¹ãUîx•;^åŽW¹ãUîx•;^åŽW¹ãUîx•;^åŽW¹ãUîx•;^åŽW¹ãUîx•;^ŽW…ãUáxU8^ŽW…ãUáxU8^ŽW…ãUáxU8^ŽW…ãUáxU8^ŽW…ãUáxU8^ŽW…ãUáxU8^ŽW…ãUáxU8^ŽW…ãUáxU8^ŽW…ãUáxU8^ŽW…ãUáxU8^ŽW…ãUáxU8^ŽW…ãUáxU8^ŽW…ãUáxU8^ŽW…ãUáxU8^ŽW…ãUáxU8^ŽW…ãUáxU8^ŽW…ãUáxU8^ŽW…ãUáxU8^ŽW…ãUáxU8^ŽW…ãUáxU8^ŽW…ãUáxU8^ŽW…ãUáxU8^ŽW…ãUáxU8^ŽW…ãUáxU8^ŽW…ãUáxU8^•ŽW¥ãUéxU:^•ŽW¥ãUéxU:^•ŽW¥ãUéxU:^•ŽW¥ãUéxU:^•ŽW¥ãUéxU:^•ŽW¥ãUéxU:^•ŽW¥ãUéxU:^•ŽW¥ãUéxU:^•ŽW¥ãUéxU:^•ŽW¥ãUéxU:^•ŽW¥ãUéxU:^•ŽW¥ãUéxU:^•ŽW¥ãUéxU:^•ŽW¥ãUéxU:^•ŽW¥ãUéxU:^•ŽW¥ãUéxU:^•ŽW¥ãUéxU:^•ŽW¥ãUéxU:^•ŽW¥ãUéxU:^•ŽW¥ãUéxU:^•ŽW¥ãUéxU:^•ŽW¥ãUéxU:^•ŽW¥ãUéxU:^•ŽW¥ãUéxU:^•ŽW¥ãUéxU:^UŽW•ãUåxU9^UŽW•ãUåxU9^UŽW•ãUåxU9^UŽW•ãUåxU9^UŽW•ãUåxU9^UŽW•ãUåxU9^UŽW•ãUåxU9^UŽW•ãUåxU9^UŽW•ãUåxU9^UŽW•ãUåxU9^UŽW•ãUåxU9^UŽW•ãUåxU9^UŽW•ãUåxU9^UŽW•ãUåxU9^UŽW•ãUåxU9^UŽW•ãUåxU9^UŽW•ãUåxU9^UŽW•ãUåxU9^UŽW•ãUåxU9^UŽW•ãUåxU9^UŽW•ãUåxU9^UŽW•ãUåxU9^UŽW•ãUåxU9^UŽW•ãUåxU9^UŽW•ãUåxU9^ÕŽWµãUíxU;^ÕŽWµãUíxU;^ÕŽWµãUíxU;^ÕŽWµãUíxU;^ÕŽWµãUíxU;^ÕŽWµãUíxU;^ÕŽWµãUíxU;^ÕŽWµãUíxU;^ÕŽWµãUíxU;^ÕŽWµãUíxU;^ÕŽWµãUíxU;^ÕŽWµãUíxU;^ÕŽWµãUíxU;^ÕŽWµãUíxU;^ÕŽWµãUíxU;^ÕŽWµãUíxU;^ÕŽWµãUíxU;^ÕŽWµãUíxU;^ÕŽWµãUíxU;^ÕŽWµãUíxU;^ÕŽWµãUíxU;^ÕŽWµãUíxU;^ÕŽWµãUíxU;^ÕŽWµãUíxU;^ÕŽWµãUíxU;^5ŽWãUãxÕ8^5ŽWãUãxÕ8^5ŽWãUãxÕ8^5ŽWÿwŒ›PÄPˆŽÃ¤ ±}œ/E9ÊùCôÅ[m?•õ‚WÁ«àUð*x¼ ^¯‚WÁ«àUð*x¼ ^¯‚WÁ«àUð*x¼ ^¯‚WÁ«àUð*x¼ ^¯‚WÁ«àUð*x¼ ^¯‚WÁ«àUð*x¼ ^¯‚WÁ«àUð*x¼ ^¯‚WÁ«àUð*x¼ ^¯‚WÁ«àUð*x¼ ^¯‚WÁ«àUð*x¼ ^¯‚WÁ«àUð*x¼ ^¯ŠWÅ«âUñªxU¼*^¯ŠWÅ«âUñªxU¼*^¯ŠWÅ«âUñªxU¼*^¯ŠWÅ«âUñªxU¼*^¯ŠWÅ«âUñªxU¼*^¯ŠWÅ«âUñªxU¼*^¯ŠWÅ«âUñªxU¼*^¯ŠWÅ«âUñªxU¼*^¯ŠWÅ«âUñªxU¼*^¯ŠWÅ«âUñªxU¼*^¯ŠWÅ«âUñªxU¼*^¯ŠWÅ«âUñªxU¼*^¯ŠWÅ«âÕðjx5¼^ ¯†WëáÕðjx5¼^ ¯†WëáÕðjx5¼^ ¯†WëáÕðjx5¼^ ¯†WëáÕðjx5¼^ ¯†WëáÕðjx5¼^ ¯†WëáÕðjx5¼^ ¯†WëáÕðjx5¼^ ¯†WëáÕðjx5¼^ ¯†WëáÕðjx5¼^ ¯†WëáÕðjx5¼^ ¯†WëáÕðjx5¼^ ¯†WëáÕðjx5¼bß~ÿß·Ÿ5æëóò*B¼·¯ãçøü~¼Zпçý¢Óëo_HSAUR3/data/CHFLS.rda0000644000176200001440000004026614172224352013471 0ustar liggesusers‹í¸l×u×Ïœ™93s¦BèeÓ!@pâØ±åQµe;Šl+ŽEË}zº’<¿gžžˆæ!°!`z_j¨` @_0½÷^.½†òÑ›ÃÿéÿÖÙ¿³×Ì•Û|_t¿ok¿ÝÖ^ký×Z{ísfFïxàݟ׾»­ªª®Æ*õXÿœÔúϨšT ÕÓûßüÐÛÞYUãÏVCÇkõ}âÎÀ+å•òÿq™¼R^)/£4Ÿ‚2~¥\ªŒ^)¯”OByÅ~_)¯”»åÓ}Þ~2˧óìúTäQùtçÞ¯”—_>vóÉ(õ·²ò©ˆ-Ÿn?™åÓm¯¯”oÝþûJy¥|*˧;G~‰%{9Ð\?}ÿéõgõ¯Ï¸Óêz×÷ß¼òìí+×·ï¼ù¾ÛÏt+w>¨ªë›=|ãú•O>Û5§Ü¼•æ/^hœ¾8yuÿéÛ·DàËNÕ‡—W¯_yÖl$枺rõöÍ[ú××ÍúÄî­Õ »7uõ›Ñ~h·¾ãn¿º«ïéê»ù`Þ½]ÿý wo´O×Þísº©]åôÂ~tý–ô½Îr¾ ýaåqm¾ïÛcÞ>ßßzy-Ö{¾÷û¢®ÿá*—×zKû€Ï7€ŸÄ?æï@÷‹»¶ñô|ïÿ…]ý¦®ÿu]û c¾]ŸÏ7_àç-ÛýžçýÍ·åz曯ó~ÆÑüØNÌï}Xïu‰Ú»®~[·Îxšþ£]mÜ-—×ÙŽ½oÒSWÛ½þmè7ÿÆé-]ýð>ï·ÞéX_Ö‹é™NòÔ^G|=ÿ!Öû|ܸ¼uŸÛîLþo¾lׯÁz%^¯ïjë9á þ迦÷zÌcÜ»uZ:öwÛ‰å2N–ËãÖÃò¤¸ 9ØoþÞ€qïãýmWÞ‡öä¶éXžÿ6ÌK~±Ïé¸f|4?ä7éÇë»qëßqÛþf;2ÄÍtw¨m‡Žn[/ô3ӳܴ?ÚUt^:ÞÿÐO;Lþƒù·¬¯GùïígÖ¯õæùæÇò;~<Œ~ó•ø@û¨éÇÖg²‹}^›OÆoÓ³>ÒyÑõó\2Ÿ®Mç ¨=ÿ¬³^Þ†~Ÿ‡Ö·ë×xjãc}ñ>—c‡Ú|™_掶‡äÇ ãùÖ£õÄq׿Óz4ŸÞßü[^ž»–—çz’¯ç¹î6ó1Ó%Ÿi~7nÿq¼·¬_ãK=“ŽõH<-gÊ#öym;ñ8ùqmzÆÁûx_óãóÀvæxgý›û•åaêù¶ÓaâóËôl/)®˜¯}Î'óÓKù¹éyÿ®Í<Ózñþ_²Ïùð¾ÞÏ|Ù.­/òA»yínñJòumæ7–Ëó¼Þr§/À¾”Çú`þO;±=˜¾ñôþ^ç8~æ%~±ŽqŒçï[–Ãüß·Ï÷3]Û×ó¼7^yî3®óžg\Þ„yÌûxŸü’®ö½Ötlwæ/ÝÍ•{é2^¤¸ãv7nÜR¼Úçü›ï„ç>_Ïs&åíûœ_ÛŸíÆ¸Ûn½oÊwöùþ^Ö9?÷>–Ãçƒñ´?[ÏÌû¸Ÿù§_{<Ùg°ÏÎtª|<ùaÀ7ó’tŸ=æ÷bœy‚ýšy ïÕÌ¿\[ž”w›¯€oów/jæÅƒxYåòîÐö:Ûç¢æ½Át?mëqá5h3>û£uû|œqÓüÚŽ/xÞòÞdúƒç!]mÜ_‹~æ¬g쟼7šÞ}]Íç5ÆÛ~áñ×£m>£ûóÊtþìóýHÏû'éjžk|žðôÓ_mO|®h,Ÿå0Îé9 øe¾kûàs‡(ÿOù'úͯéð|0?¼‡ñ¾’ôßÕöÿt> æ=Ï@Ûçø}˜Ÿžîs~¬gçe¦G¿g^Bÿ¹ýn§çØÏy#ó)æ-¶¿{Ñ6ÆqWårÓ¾ëÌ'ã4Ï¥Ú´Sò‘žpŸ}¾ÞöDº¶'óCü˜[_|f¹_~ÓuÍøšòÄ*_ï}l_–q÷NæOƒçïU.—kÏ·üÎC¼Žñ‰ù/ãï ®›ø%Ÿ´ž'^G{cÄ8>¸Ïv5ý—ty?w|KñóͧñqïC¿ýŸùÂë0Ÿ÷ê—ñ;zžÍ|è´}.ò¾˜žºîÆw<ž—ž3b?Ïçsûï+¾Ÿ¸ÍøGaÜ ½ðy¢ót¾/tÁ÷;¶ÿH¯ÞÇršó£ôžtù|ÔvÏóÏëì'Þßø%}y¼«ù|<Ýo»Úç˜qó9dùy>2ž‘_Þ,—÷qüç{ÆËÁ¸Êû郜¿Ïçó<`Éó(åmãìïjÛßw2â{Þ_xÏ~ýŽS”ÃqÇøX~Ïg>Â{óm>Gçû«Äç>çƒvÿÚæÇt\ó|sÛ~œì¥kß×ÕÖ;ïkÌW˜çØÆüôÞvŸ·2ÿ1).umÇ/Ï£^¬?ÇûE²¯}./õë8Â÷„|ƸÁϘNô\Ôr1þ›ïèy›ãÊÎûƒë›ï}ùßm¾÷¸ù°œ|_@}ð½»ùã{DÆ/¾ïaþáy¼·»ŸzŒì„ï™?Ï«Á—å´Øî™'Fq“v˜Î%Ìãsã×a>?ïìµù1Ý(/OÏ·ÐIï«»šÏ“ø|äaÔ¶7Ïóyú jÆA>ϼít®ìóùŽ·<×ø9×|Ÿmþøù>ç¼µí.}¾bŸËåué¹öµø^›Ï!vhóÞÀû˜ù±\”Çëø|Íúâ9g|x_6¯åzÈËýù^Ó~ż”ç¶qÎë× m½š¾‡³žw‡œ¼×ñóS®÷™‡ñóc÷a?/Âó‡ç„×ó|`ÞËÏC™^zÞcþ¼o×¶¾íÌßÜÏ{aº×vmÆÑ”×uãÄ/á„õ|ŽÂ6?Wb¹¬æ-|–ò}N—çtt>ß·Ïùöþ|~ãy|Þ›pîjëƒïxOaücaJqÔ|vmæÕÉ/ÀÏ›Ñ<ÏE?Ïíôžòð9BzÞë}ÍoWó¹ãŸÿ™?~^„ÏO¨¿]W;®§ó¯«é¼g3?°þÓ=°k3àç…l?éyNWó9ïÉæƒöI<ßÈù¦ÓÕü\ ?ÇÁ8c¾íê¤Ï}Þf\NϺ¶íÏM<Îçü|)?OÂÏñòs®¯Ã|ãáçô‡·ý^÷hWó}¬ûù¹ ëÏöÁ÷¶ü| ñâç_ùùVû'ßkX/¼oó2þæÛÏwøü‹Ÿ+åóô]Wó¾ÁÏ›ðý?§ËÏðy?ÿÁÏ= ¹lÌç¬Wããõéù@W§çBû¼ìqŸ×ü{tKú-íA>È뱘BÝq yž`.Ïhú@iß’ŸLzôŽÝ¢xÉX@_럙¥5‘O–ôWŠýÜ̾[ºÏ0^”ÆK¶Õǃ¾xÈgy†öi1nôuÕ¿ÿ–î¹QÃs!òAê·¯wæÎQ=*ÐaüdÌaìa,ïÇA÷7Æúºå¿£³!òIÚ@?Þ”ü¢Ÿ71îpN¢Ucß¾,%¹ú:,ù ñŒüüК>f̧Kq¥Ä/í¸o+<[û¦¨mo¥<„~à¹%ìÿûÍSOÄ–gãH[J÷EÚW$Û¡Pò¹RŒ>„u)–|†þL%úôR*±#¬tÂþ?¥˜BE1½äÃŒ‹Q¬+A´Ÿ>Í’5 Wò-Úv]Ø—¾ØŸß÷/ê _ùaÿߥ3¹”;ò¿ÒzÚ^ï ú"š¥gÕîï•âPIï ëªÁ¿Çè›ôÆJóK÷ŽqN)fõm¢Ôß‹“w~&¨þ¦*ÿ¢Ïyäôý§·¶Wnß>½ñäé“Ûg¯>sóæõnð3¼~úžÓ·¯Üz.ø¬·¼ïƵ›·¶Ï\{úŒ¼ó4Ùtk®Þ¼~ýôéÓ®·ýÒ×ÄÀ³×n?w—ñ9¬»³›·ž<½uúdÿ”Ñ×l«;»ìîÖªîÖ·Îóº÷ßîñ®¾ÖÕÏåëÒ¼kyÿîkß›ƒ.û]¿¢á~¬½î«ºý>¼Ëëwíóù£¿‰Ÿºú«/òþkàz Á¼Ž¯ÔO¹¡ÿ„—ù4^–×ó-ÏGve>?„¶é{½_á™î5Ìs¿k÷“ëÝtÙæ¾~z±<^OÜ!_Zgþ€[§Óh÷Ö·Ç£}­wâòÜáù!òa>i÷æÏz4n¬i'^oýz_ð›ÖE~bz‘zõ¸ãyøè$ÿ"üCÿ²|–ׯ†½/ù2c^Çú§]Þí(nQ_Ôc`‡?ŠôÀøHúÝxšoz–;Úr¤õœùÁãA¿íàØzïÃ8ã~Ç5ãùúiŸÄŸ¸ðÜx mïÿæ›>ד.íŠçûg'l/´CÚ“ë#ëü7°W·½žûñ¼ì‚ñˆû'ßÞ—ûEòGüGñÕú7ê‰q†vI¾"&.¶¯Wwµí–vlþ^u¸í¿ý™ž÷{ûþnM;NuÂúhü1´™o<Ì#]Úÿ«0~H¹ÈçQîH.·Ÿ(—kîcûr?ã ãi`7þèƒñ/Èç=Ø_¢K½˜Oúó&ž+”›|2î2¤ÒOynG~Ñ¥<äÇt˜×±åÃŒ ”‡ø²},ΘÞ¯(/ãÇ?þÁ¼Ÿòz®âkè'ñÇó÷•A¼&_Q^Dý1ÏŒÎÃc~F9£û ëH¯Ñ¹ôÌ‹ø¦ü^ÃÜ·³§$7ò­£òòå“Ô7Îqþ ôÉÏs”㼑¿(N2 ý(ßñ8òŽÁ~>9N9#»çùäËÌCûP>ú#ãí•vKûøH¹ø úés^”g1®3¾1žG·A/Éů(.Dç4ýç\Úï˜è·”?ÂéÞ÷?þiÿ´Ó!~A~äq¿ó*ì3˜œ»i^doÁ}‹½Á¼‡ÏUú í<²³(ÞúÞn:_ÿÞ|8 ør~Ë<'Š÷ô×(ï¢ý<ÈE¿ ½FçB·¢8ˆ<“ƒü…q–çC¤Ö~NmÜxŽDúC¼N|  ä`|ˆž‡1Qß|Þäá¹ky¢ç¤Ý—çÉõÅ_æ Ô ùˆò‚cykϧ]Gú¦_FúbÍóüó|‹îƒ|.ÀøN~Žé‰ø?ŒGxFûEöù-éö‘ÖYþcç4øçßà>9Ò<êûÓïLÇñö‘èRÞËæ£ÇžSx'º|.‡<5|âûk'C¹¼_ô¼Ïµùà|ûyùeÞÇ~ïÇ{;ó¤ÈN/]›ú+ýôáª_$_Ñs—ú¼çX^ÂbÜL—|ðüaü¢ýÐn‰;q‰ì•|_úYä?nôƒy¿ñ%}ëãØsèÈÞpŸŸçQ~æ¿ÔŸÇy®ñ SŽ"‰ÞÏÒn˜gy_Ú—vF¿òû.Ïs~p̯¼žþíÚýÎCy¾8/ 3Ïrÿ=Á>¤ñÅ(Ÿá<ëÃ|<†õôO¯7ޤãqžgѽ8:YGñ•ñ8Ú/òH_—|>ø‰üŽöÜÇøiêîËô“ ®¥q¿o¦_{>ï팯ôSòä ÇþqÌù¾å4Þ|næšúñó'ÊåUÑû¥è\ŠôŸîqžÏlÓˆ[DyXø^÷1·­§ès/|þêu£M~è¿ÔS”—rñ9–ï÷í$ŸùŽòÍ(nÒ¾ŽÉݨwÎÿÆ©âé…Ÿ/ˆòöGyï1ÔíÒúr›Ïƒi÷ct©æµÔoWû/|Ïå¡Ñ8ñù•Á è•~†„_yäüþ×òkÌ­±Ž_*é–_â¿'ÕP¥¯A•öìÓ îüïQ¡?úš*iÐ>û²E_E¢­’·þW•ê*׿:\úúç–¾6vìëj}ÐNüïQËGÛ‹¾êD= OÚk ‹Ë|­²ä«üú+u­+ÉÙbÉŽK_§ÿÓgû¾Õ—»ôÕ½þ\â@þJ_Ž|«¤Ÿ(n”켤'îí¶m«´Ž}ý¯’‡ñ5òoâÑ÷#âÑ…Q|àÞ‡ôƸȘéò2±…óû˜»&ýš²R–R¼ŒâhÄ[Ç#z%J²OQú{’‡Ò¾]ò^Ú§„-i•l o‡¥øé¤dÿÔ y;¹WaÞ¯£XÓ÷}êaŒ“ÏR¾SZ[™¸nI&®‰|«Ä{É·#õsÛ>o´>‘ÂùP¡.øÕü’­Fy@dÏÔão©O椇J Ûþ¾´AîWò±ˆ?ÎaÞÜÇ=Â#â¥Gôs%¾F½ý¢RŠÇx¤—xâYJ{Œî/ÇÎ’>‡òPúPÉÞK~ù@”k”tw¨Ð6èç‘_P_ѹU:Û(gŸ‡c¶Ižhë_¥XÀ7A»#J:­ tè}ü"üKº$Ÿ¥Ò·_Ò¦½•Æég—‰ñ%‹p/žþx]د¤#®§®ùï’MF>JÌÅ’Ýôåˆøtü«:Œ™‘^xÒ7¹7ŸWÑJúž+M«¡ŽÙAäÏý=J±±¤Ÿ’o•b,ç–bã~”ëEg-ûŽÅº¨ƒR,:tÞŠ ŒQŒ.ñR¢_¢Uòé>Þ¥3¼o[ã€^í!þKöÅ­’÷éöýä=Gû•è÷e(ù(é2Öó¼‰â ýè¯RÏ%?$¥ýKtJ:)ÅèÌal¥ìË~ÊhZÝýe É£7oÞêþ=äæííÓ7oúWƒ&]¹æ±É›^ì_<ø•WO¯_?½q»zÙ¿>ôäYuçowu·~ò¤«ÝÞuõ¶«/òùWÏ»þ t΂ñ®}Za?»}†6Ö¹ÿj7ïó®šOóïÚëºyO˜¿}Þ&ŸiÞ6¯“¼;È‹ýN=~‘ïwu’¯ÊÍ}0/ѱà'ɹÏçy½é…t@/­Cöá8×™`ß„k7ït_žçqÊÇùÔWªÏºú¢£³íètü¿D¿kÓ.hïžGý%ùÈÛ'Gæïó~ËI=XÉI‡r~šwž÷'ù+ôïƒ~ó 99ßóŸžñúÆ+´#Ò©0ßütµõJù“^w>ΰ÷½æ»Þvô;ùÇ=¶Ïrþ®¢øôº‹¼?í·G]åí'À?õŸp9ì—ôÃyÝx¯’]ïÊëiGžº Ö™ÞÆ-Ÿù‰äÃ>Oœ€Ï¿Èç[ßI¾Ž?ƙݛï¿C?kócy,Ÿ×ïÁÇ9æsݵùêè%{sM~<ÏôÌŸç»m>,öKö]üz¿-ö9Ç:Ò=Æ¿kÓÙåëh¯ô;Ƥ³€ÏŽúçàœ…Üƒý/òyÉ^½ÞõÚ;ðçvUnôúÉ®1ŸýÌóh'”#õŸ•éäÚcßh?¬äÛé øÛ¡ÿ"çwXžm¾ÞüÐ~èWŽ×ƒ¸Ö­gž›âýy^ÎîÇõ˜¿Í×¹¦ý î^¿G·þ´ÛçŠÇ/@÷ünËt8±6ÿætݶ Ï8nzŒÏiýó;zÌŸØçt¬Þ7’^½èò)òë~Ê{V¦GÜžðº*—wà÷æ×ôÌ—éY®m×Þ¢ßt¼Ÿåðú íó¼?ù‘ù»À<óWõINop¾£ý„éåôÝ?ÀáóÏò}=óúI?ä÷"——x î[çùxâËóNPïóñA^c9þ=Ïü=±ëêˆ]™cçþ Gë/Poó}ç÷#=óíýÜß­Oö~ùžçñú½Ï>ç+Ü×|VØ×tv·Âº¬ƒ¼é~ãu9è9AÊã½ÿ è`î;8?A?òët>šO®s¿éšŽkïK¾°óSŒâ÷E>>° ÏÛcß]¾ßà<Üçã|N–ä9^ïù;ì{rxþ î»m9(Ï.¯ù öKú<ËÇ“ý@žÄ—ù è'yÝ¿Í× è^äýi}…yæwŸÏ<Çpmy¸Îó·h{øKÏÿv¹<Ñó¤Aþ¶}Ð ï ƒ~:8+´½ÿ¾<poö¼³|üX“p»€\|ƒ{!éü%{:/¯O÷Â*XOy]Ÿ€Óíøáý¸ìò"ç—þ‘îKû|œõ ¿0®ëö ó>Ï3ß”ÓýÝdçUy?Ûù îž•åàOy¾ç èó9Ü /óüsô›þY.OêÇ~¼¿î¡oð¾g—»Ÿùø =ÉÛ~^7ð3ÊÕ­KúØ‚¿nõ‘ðöú}¾OºWVùøÀ/«r=ˆÓ ?xd~<ï<ŸÇçÆé¼Þåôùœ1Ê xœŸ»|þàÜÃ8ûqô¢<~Ôþ+Ô{Ì󺓼N|™ÎY™ãï³|O=×ð¿_à—ÏCŽÊy†šr[Îèx>æ%>ÎËóØìýãQxþ‚ïAÞìv…yä+'½ó|<éËríóyÔcºgžåìø8Eæ5ݾO æÃ;ôoËóyøÄç®=ˆ“¬÷ù|Ê•òÌ“œßAž’÷'}˜oð—øÚ—çó¾B?0TŸämÊ1xŸ¿ø0½`ÿô<‹ó÷ù¼t.Tû|Ýàþ9¼ßë„÷r÷c|¯È‡ùƼÁýrìóR?äcÞ”î£Ü¯“ן‰Þ—2_<¸øïè§ssŸ÷§}ªœŽù½âý=ÏtL×ûY®}Îw˜oœažåöú=ú±~ð^çó̯霣½Ëå ñ7ó¼¼o§|®1 § ìzI®hówþ÷èßòzÿ³®½+ïòÅy;Œwty~ò¼órÿ Ï&*˜žËËçn¦CxÊóÎòþcùÑÀ;º§ç}m€—Ç/0o‡ñˆ¿ŽNz_áù–Ûû>óõ}ºÝÉ—>·þÈOzîèõgy;ÊC÷9Òå|ò³Çþèøí6ç'¼wwû„÷bôž/UyìÁë¶h›O˱ÃzË…}è÷¡½ºÞ£ ~vëq¯;)‡~>ÓûOÒ¹€æ¿›Ÿü{›ÏãœÛÞo—'9ÏÏ;úœÄòšnU^wz–ó;xÎy’·ï…ÑŽò:ò?Èß=NyÎѬãyÇçS|ïÎçòƒç’noóv:ÇÏs:©íùæÇô÷åýø\$|î{–¯£} >h¾Ü’ïŸî!'ù<¾¯ÎߤgÊ»Ëù³}QƒÏÿ™þênÜï+÷&ïs¹¹û¤v7ŸÏÇ#9=>È›÷‡<ƒç ?°Óéøãóµ<–Û|äu’‹|q½ë‹ ßòšžkÓÛó!ï‘Äãh>º»äÏ¥o-]¶”°õê’¼/E¿¥o6ö÷c¯Cúº ö/G\C—°?fw¥y´®)ù¿¡xY¬K6ñ^¢Iÿ»ŒÞ¢¹Ñ¾‘î.‹UÉ^Jñìì%z—‘½$ã!"]Œ‚þH/}ºô™hR¼>„G]½4[;„?ãkÑ$ÎŒµ—ÑÛ1;+ùö!»ÆûüE²FgÎ!ê?tβ‡ËîñRðáYP¾„éË•¿$çû¿Ü³‘<²È·ŽÙ#K„ey©úˆÆåW/çL½¬ï½º—™[â5â…¶Yš_Ââ2±ö˜ÌÇüó õ‡ö(É[²£cùÛ7Ç&"|süûÐyÄxíuŒ×ËÞaJ¼¾”3ö²¹RŸî±œ8ʇñR¢s û—ªŸ—ªKÚ졼!’ï[ò|;„ãKÑçeÇJùÍem÷2ç?ÇÍÇä=¤ÿ—/шÎÅËèä.íËò}Èÿ.kC/—÷ËêïÐÚ—ëJ8Dû‹‡}}z4^Ž_½\ÝõÏŠRÌ,ÝÇ™×FñèØYz(F_›híeÖ—r‹’nŽÑb^z蜸,¾Qîôrr‰Ëè¡ã"=#­ËÄ‰ËÆŽOæù{l¯—ߢg¼ïyN7Ñ äØãµù<ÉûÞgÝ>¨ݳ|ÝÀž;>Ò'¢;>“)·ù¿|¹¯çwµqØK×¶ÿø¡\¤sŽ~È9°¿ˆNןô~Žuû|þ ÎlÑOºn›^…ù ÏOÞQ_‰Îy>Å»4ÿí}^öëjãaœvÅu–Ït·ù¾üäþÀ®¶ùºôÉ™ó|~WQû¦ç%;tûû{ý¶¼žû$ù÷y?ãb§ç÷#sŸ ȵÅzŒ§}LÇòcŸý Ÿqa`?æƒô«¼f^ÀšŸÀÐéöå7"~Jþwùø ?Ù—çGú¢Ÿ…yÂE>/éá"o§ù[ìsú?Œÿ¾ºšvúKÄ¿çuõÕ³`^ÔïzŸó—øïøKçvÀçÀ?£ºBm:¹œ´¯è“ÌôÏð]çù¼è“Iî€ßÁ/ €¯(ÿ²xŸ·!çà<=ÏûC?æÏr'½a_ÆW~¢0Ù§éš?ËCþ»6íˆùt:ï¶y{`Oì¿(Ïã½Ãró“åzgy›vOÿH¸Ÿ`½÷½A}ôwôS|éæ%œºúØ'z¾û|~ÊKÈöô{]U|ã€|ïóuüfñàœ<Éçñ“̃ûA…ygù8ÏYúÛ þn7žwç{‹ñ=jîKº»`žÛU^üöý[¬¿Èç èDûwë.{Ž îçà'c¿`~ú¦Œùq}‚uä+s÷··«|^”ǰ}õtAÿèyj>Ϲ.°öؽéXÓ'åy)ž»|Î5ðÉü”yðQ»<éÖYNòm>vy?Ÿ?¤¸±Ï× î¹'ÃôÈg·îiËqy/ò:ÌKÉoGwð &Ý|>§¡½ó>M{Nö…z_½÷%½=ä8ú/ÐÏ}Ï0Ÿ×ƒsƒówùxZ×Ñäg»¼ðéz‹qóí¹÷ÿ󎯎Ÿ={>øMþì›î/gùºÁs‡*o§sôøæë½Th{þIÞÏ{öàù è&ý¸>+ÎW¶Í×6˜·Ç¼®ôsñnÝÓçàó¼<ò'º<'?Ô/ŸGyóCâ:˜¿ËÛ—=_Ãçb\Éþ¼/ùrM¾Ï¾@o`'ç˜w^žÏ_ÜœÜ×ü¹ÞÞ­¯ž—ÇÃçU>ÎøOûOmóëõgà§ëœ›–×rã¯ëz‹yå:í³Cû¢ÜÏz ïsìËÚó:9Sœ4ÿ[´¹|ô„yéžF:}¾¯œÃÛ|ü˜ïñýb¿ÈïÒ¹ÔÉÚ÷%ßä=ÉÇÃ8ïqÓ|ƒ¼¬«­晃çrä¿B{‹ýÜOz¼ƒûÂ6Ÿ—øã¾¤ç¶éZî“€ìÌ{™'¤u'7ß\9vÍõ®·Ý|Èüªã'ù¹ù?Ëûz#nŸçýƒ<Œ|ƒÞàyÖñ9æ@Ïùx¢C~!ïmé9œÇ«|þàÜ?Ï÷£Ÿ]=ÇþÜ×ôÎóþAþ»Å¾ä‡|ºöÞ{';†\þÎòñÁ¹¶Öïóñ½˜OËs’ÏœcÑ>Û®]¡6¿ÞÇëÀ??ï@;ø)çåí£Ÿ71ÝhÝ._78_0>°£óœ¯ð¾hþ;:ÉŸöyŠ#æq_ÒýÝR^ÈǼzð~€r]äíA¾â6æ§8ºËÛÉ·wë§Ùo~,‡ù7}ÈÚ ùô>ݾéù ø>g0x¯ìyU^ž£ìþÎóu‘^Çž÷žC.®äéÚɰ>ÙÙY>oðüÏt,×ÖòúÓà¾yQ^7ÈóNrzaÅ~˃ýçóI Ç>ߟõàýAW§üÂû’¬ä;Á{BÒ¹Èû)ãÐ Ÿ ð¹“sÌßë÷h[ðËÏ!FùÐ@®*—Ï믂NtãûžtÚåý»4ߦGy<ÿ¤<>ÈÙ¿ËÇŸçt½ÏåH¿`ãù'Xo¾°n O…¶ù ¿¤ïº£Ï¼íh>¸ÏûŸËØvûvítÙçó¸Oôb*ŒGó¹nÈÍy–×ýgAÿyÞ<¿÷¼}^‡ãgy=ȽÏYN‡Ÿc õp†yüƒ÷g'ùxx€î±ç?ƒ÷O^·Çø>£S½øKD“jøÍÁiõâ7¦Uù[wú›ÂXôÍioMÌíóâùýþº*ÿ?£/ó-‘>ÝßÐH²]f¿=Óôö˜TÃo˜ú–Mi¿cûr¼ÿï’®¸Ç!¼Lƒßøœ‚~›×—ú #%Ýôånz}MUÖIɦJºnúí}õ¿éÞTey,7¿q9­ÊßÞ›b>í¡ôMÆq07ÒoŒ¿ÆÒ·ëØN0oR e PƃvÚ`=åëËÑa¼ÏcåíÓ Ný±Ò¯¤õmº„wm #þú¿A_¢Wšshí ë÷Õ Þ¯ï}|‰Cä}~ß3?Ó½ì7ÀKñqÐêó@{öè•l®Ý}QÜ >Kzš放ß×iM’?s ç“—ø•¾!]²ó(†Š¯Ä´Û¡8\¢U:{I»dGýs©Û)#yàë¾æôs—þÚ¾OLzmâTÒÅ!=Ðî"Z¥9}ÛéûRŸ.cgßßÌaF^hó%_¥ÎÆ _ò™¦*뮄m¤”÷ôc€ûh÷ý~Æ#ú;ó>¿ÓÂúÒ¯Pöù¾A]Â6Їl|Œñ>)ö-ùì´@§ôk “j(yöÙIžH‹úŠöàœºÊÏõIoßc:îÓ+Ùeß^úu‰÷’ÿ+ë-ï»qíæ­í3מ~#ï< F6Ýš«7¯_?}ú´ëm¿ôÆ51ðìµÛߌŸ2úÀ®ºó·ûPu·þꋼ~®ëÿšíÝúÖy>ÿZWÕyÞö:Ówÿ‡Ðïº[ï?ÏOí#ôó¼Ï‡wyý®}™/ËÅùîôÄqÈ“j÷{ÛÝúÄ¿é?Wåý¤OþAtvéÆŸ‡|®‰³ùtûC÷:Óõþî'ž'ßä—üϯ}oÞo=ø%>¸žú!âI~¬'ëõ#¨=~Ì.?Œùœçöc]mÌí…ú¤»Žì‡ú¥?¸¦Ÿ»Ÿvÿ8ø /5~?úáãXÏ8½ üò¥u‘?ÓOˆ·í!›ôàGƒ¸Ì}H‡ôÙfdïn[>ëÝãôWÒgMº¬£¸Çx ºi¾íÄú¦ßÓÕ¶GÐgžÏsvýÚÞÿÌ7}®']úÕsw¿ñqM{‹â‰ÛѺk˜w,Nñ|ˆâxd ã¶_ÊñÆéô¯Wë#¹ÈçQîH.·]žK¦G{ãyÅ÷(Þ{ê3²¿èüæ:ÆwòÅú­×Óߢ|*:W.[Gçʱ8pÙ¸Åþ~ðnMÜ"¿öùI=sÊO½2Ïtýñæt¹_„Ÿå Þ˜ò~ñ‘`ãiÄ¿×ñüqm¾"|=~ò<èó|ríy¾Q¾D>#¾";ãzλìx”o;oh¯®?9¸žç¢õ{Ì>içœÝ»¸>ZÇ8Ý éW‘¿F|Gô©¯è>å^æ3N³¦ÝšçQïÑyC¿%=æ%ŒôëÈŽ¿>wüz~wx=ùˆöžX¾#¾Dú!®Çü‹mÇ1âyÌ~hoÄ!²ãHÿ<磸Çõ\ù!ãË1ü"þWqŸ×hׯ=¿lÞÅ+ž;\÷<ú#»Šò«c| ýÔ›ývíGµç1ôÉù”ï²ù ý)²ï(žqÜô€ÿzüÓý´Ïè¼ñsjÊÅ·ùü‚~ÅÒ¿–‰Ÿ‡<¢}¨—è9 óÌè~Byy^¹ŸñËýÇâ(Ÿ«‹_¦Ëý#\hïÄ‹võÔÔ Ÿ_òùíöMþ£{¨õAùŸiä“rDz"þt5õF{øÆ¹ï¿Ì£ç Xï¿}PïÔï)°‹D7Â÷:Æï(Ïäþ‘¾è¿Œ7Ô'éú¹Ô‡2qbûâ;ù¤¿’ß(ŽEçK”?G÷½è|c;¹“›‰æ#QœuMÿ ÞǤ}É'ãrO£÷GŒ_Œ3¶ Ú›×ùùõFù>Žç-‘ý:¿òxä'ô+Ïs~½¿à}þØó÷3/ô:ë‘úŒâèãUyŸ32¾2îGïc8å´ú!å¦üÑ9ÌÚëŒk¤O~Ny÷á==Ê£çGò3ÿ…ë]ÓžYóžŽ(ÿ²l7‘\Ö'Ÿó÷ǃšã‘ýš.ßPnö3Î0îEyóKú¿í*ŠëQ<Šì•z½ìý”ç,çËG#¾ig¼gEçé3n“~ä?|^èõ|¾Ëù¦‡¸ï¿ÁyxÌÞø~q.Šѽt_à#ú;úyÚCtnGçYdg~¯ÅóÇýÖÛÃUÎGä׌^OÿvÍ÷n\×åûþKó^ùÞÿðÅý¢~òÇxG{ˆâ3kÛ¹ùþ†wçtˆc”_EùT”OGç(ÏC÷Sn¾wòiÚ-Îÿ…Ï›ŽÅ îÅÏH_‘>xŸã½ëØþî÷ûfâbœ?Žç½‘ÞˆGÄ7í=òó(ïŠâºý†ú‰ò/×Q¾BùÜÏùÇòòÏó+úœé0®óÜâzžÇÎw×¶ïËâ@|Ïá'þ ß¿Dy%Ç=à:êŸó¢}yÞoâA:Ñóóˆÿ¨æ{ˆ(o9F‡yD„#Ç£ýéïÈ‹ü78"¶>ùÁ5ó÷ˆÿcŸ³òüç»Úù[ô>/ʣώ÷aüá}m×ä‡ûY_CD7’Ëóèo¤ÇøÙ_äç]ÛaœÞÏßý¢@5ê¾0½qå=§ÏVw¿5Ðvów|ù­Ó§¯Ý¼áIïøò+éKjœ>ù¾g^»qõæ{N_l?szåúígúíkO?sÛßGP»÷ÿbžß›OïíÓ¾×´s–·n~Åçšmÿ,“¿ÂѪ,U¾Ê·Wù*ßQå;©lU¾‡Ê÷R¹szo•ï£ò}U¾ŸÊ÷Wyʪ¼Våu*_¤òz•7¨Ü9)ï(ñ^•ûTîW¹óÔûM*oVyDåKTUy‡Ê;UîdS?RåG©üh•£òå*O¨\UyREVw~êÎa>£rÇãïXÉOPù‰*?Iå'«ü•¨ìU¾JåÃ*?Oå—«ü •_©ò«T~µÊ¯QùˆÊ¯UùÍ*¿Eå·ªü6•ß¡òu*Ï«ü.•ß­ò{T~¯ÊïSùz•?¯òTþ¢Ê_RùË*E寪ü •¿©ò·Tþ¶ÊßQù{*_å¨ü•­òoUþÊQùo*ÿ]å¨üO•ÿ¥ò¿UþÊÿ­î~囄±ð ¿ÑJEØŽ6*ßFE8Ž„á軨¿‘ð ¿‘ð ¿‘ð ¿ÑPùA*?XE„ÑHTyHE8t£½Eå­*oSùba7z»Ê—ª¼KENT®¨§Ñu•÷¨ÜTy¯ÊW¹¥"ÝVyŸÊW¨|¥ÊÏTQPýl•Ÿ£òsU„Óèç«ü•_¨ò‹U~‰Ê/U~#á7~#á7~#a7:Sùu*¿^å7¨üF•ߤò§Tþ´ÊŸQù³*NEx„×HX„ÓH8þšŠp §‘p §ÑßUV#á4ú‡*r©J£2S™«ÈÉjáP ‡Z8Ô¡õgª|¶Ê·UùùX-«…M-«…O-|êïªòÝT¾»Š|®–ÏÕßSE¸Õ­nµp«…[-ÜjáP ‡Z8Ô¡–Õò¡ZxÔò£Z~TËjaS ›úËT”d×ʈë¡"ÿªå_µü«nµp«…[-«…]-ÿªå_µü«–oÕ?KEØÔ_£"|jáSË—jaT £ZÕ¨þE*¨Fõ/SNµpª…S-œjáTËÏjaUËÏjaU «ZXÕªVµ|¯–ïÕò½Z¾WÿvaU˯jaU˯jáU ¯ZxÕ]EþU «ZXÕò©úŸ«ü •©ò¯Tä[µ|«–oÕò­ú¿ªÈ·jùÖx¤rç‹`Š…ã‰Š° Û±° Û±° Û±°½ó“vcù×X˜…ÓX8…ÓX…ÑX…ÑX~5þa*Ÿ§òÃUt¾Ê¨(^Ž/ÇŠ—cÅ˱bãX~7–ßåwcùÝXñq, ç±p ç±p ç±p˯Æ7Tä[cùÖX¾5–oå[cž±bßX±o¬Ø7Vì+öºÊÏP‘¯…çXxŽ…çXx…×XXŒ…ÅXXŒ…ÅXXŒ¿VExŒ…ÇXñn¬X7þý*PåTþÊVù#*ç*Tå©|\å«È‡ÆÂe,\ÆÂe,ÿga0–þÇŠkcŵñÿ½ûE¼¾a8º{xM„ÇDXLî|•PúŸH÷é~"¿š|†Š|kòY*ÒíDºH¯éu"½N¤×‰Î¡ÉUtþL¤·‰ô6‘LäùÇD~1‘?LäùÃDþ0‘?LtÞLä“§¢6‘ž'ÒñD:žH¿Å®ÉûU»&Š]9é|"O¤ó;¿˜5‘¾'?ME6?‘ÍOdóÙüDñi"=O¤ç‰t;‘^'²ó‰ì|ò'Tþ¤ŠbÕD±j¢X5Q¬š(VM§&²ÿ‰ì"ûŸÈþ'²ÿ‰ì"ÛŸ(^M¤ë‰t=‘®'ŠWézòT¯&:_&ÿT埩È7&ò‰|b"˜J·SÙöTqkz'7ާÒñTú*vM»¦Š]SÅ®©b×T±kªØ5Uìš~gùÂTqk*˜Ê¦ò‡©âÖT~0•Lu¾Lu¾Lu¾L?W凨üPùÇT¶=•mOeÛSa4FÓ·ßI˜T¿¦Š_Sá4Uüš*~M…×TxM…ÕTXM…ÕT±kª¸5UÜš*7˜*nM·¦Ê¦Âc*˜þTa2&SùÁT1kªx5U¼šê\™Ê¦ò©bÖT1k*ܦÂm*;ž —©p™ —©p™ “©0™*&M…ËT˜L…ÉT˜L…ÉT˜L“¦Âeª³d*\¦Âd*L¦ò©ìªø3•ýO¦:Ó§:ÓaÐHÿôßHÿl¼‘þé¿‘î龑î龑ÎtÞHçtÞHßΆF:o¤óF:ooùC#hgÅ™Fq¦Qœit¶7:Û齑?4Òw#}7Òu#]7Òu#]7òFún¤ïFúnätÞè¼h¤÷Fzo¤÷æôΗeU¤ûFgF#}7ÒwóÕ*Š;âN£3¾Q6Þ(ö4Ò{#7Òy£3¢‘Î鼑¯4ò“FçC#_iä+bR£˜Ô(&5ò›F1©‘ï4Š=bOó1ÅŸFñ§Qüi„[#Ý7ò‹Fúoä0h¤ÿF~Ñèoä|£ùÇ*òFþÑÈ?ùG#ÿhtn4ŠI3Å¢™ÓLØÌ„ÍLÌdû3a03ÙþLÌ„ÁLv?ÓY0Ó903a1³¨"ÛŸÉîg²û™Î…™Î…™âÔLqj¦|y¦|y¦|y&nsá6ns9sa7×¹3nsá6W\›Ë¯æò«¹üj.¿š ¿¹Îô¹0œ ·¹bÜ\¸ÍågsùÙ\±m._›Ë׿ò³¹ðš «¹°š «¹Îö¹|j.Ÿš ³¹üi.š ·¹bÞ\ØÍ…Ý\ØÍ…Ý\ØÍå_sùÖ\ñm.ÿšË¿æò¯¹|k.ߚ˷æò­¹|k.zá>*¬Âj!¬Âj!¬Âj!¬ʹš´Ð¹´& a²& a²Pž¼Ï-äs ž…|m¡¼k![Èߊ ùÛBþ¶Ðy³_-äW á³> á³> á³> á³P¾µP,\(çZ(.„×B-„ÑB¾¸/.t&-ä Å¿…âßBño¡ø·Pü[Èÿò¿…üo!ß[Ÿ…ðYȯŠ 7 ÅÀ…°Zȧò©…°YȧÂg!|Âe!\Ê“Âf¡8¸P¼[Èßò·…|m!_[È×ʇº.„ËB>µ6 Q Q Q Q á²O-äS ùÔB>µ> á³> á³Pü[(?^(Î-äg ùÙB~¶Ÿ-äg ùÙâ?VU+|ZáÓ ŸVø´Â§>­ði[U­ü«•µò¯V˜µÂ¬f­0k…Y+ÌZaÖ «VXµÂªV­âc+¼ZU­ðjås­|®•ϵò·V¾ÖÊ×ZùZ+jåC­|¨>­ðiå7­|¦•Ï´Š‡­âa«sªN­ba+·”-å_Kù×Rþµ”-å[KùÖR.…áRø-u¾-—ŠƒKÅÁ¥ð\ Ç¥ðZ ¯¥üh©8·”ž—ÒóR~²”Ÿ,å'KùÉR~²”î—ÒýRyÂRú_Êo–ò›¥üf©sj)ßYÊw–ò¥pY ¥ðX ¥âÜRçÓRqn)Z —¥pY —¥pY —¥pY*æ-ï–ò«¥°Y ›¥ðXêŒZ*þ-•_,—Âc©X·T¬[*‡XÊ¿–Âg)ßZ £¥0Z £¥0Z £¥0Z #¥ÞÕJ±p%_[É×Vòµ•üj%\Vò§•pXÉ—VÂb%,Vò¥•°X ‹•°X ‹•°X ‹•°X ‹•°XÉ—VŠw+á±+á±+á±R<[Iÿ+é%ݯ¤û•Π•üi%Z ‡•âÜJqn¥·RŒ[)Æ­äW+ùÕJgÒJ>´’ÿ¬ä;+ùÎJñn¥x·’­äC+ùÐJ>´’ÿ¬ä?+ùÏJþ³’ffléJ˜®„éJx®„åJgÒJx®„çJx®„çJx®„åJ­„ÉJ˜¬„ÉJ¾²’¯¬„ÃJ8¬„ÃJ8¬„ÃJ±n¥X·’¿¬ä/+ùËJþ²>+á³>+åy+a´F+å+åà+ÝCWŸPù¦“VkSkSkʵðX µüd­8·–¯¬å+kùÊZyÄZø¬…ÏZø¬…ÏZùàZùàZ9ÃZql­8¶V[+gX+'_ —µ0Y “µ0Y “µÎ µ|d-lÖÂf-lÖòµðY ›µ°Y —µâÛZçÐZجu­å'k7kåqkåÝk3k/ké{­Xµ–¾×Ò÷Zú^Kßké{-ÿYKçké|-¯åkùÅZ~±VœZ+N­•¬•¬•¬•¬ÿ€Šüc-ÖÂa-ÖÂa-Öò‰µâÕZñj­xµ&ka²&ka²–ݯe÷kÙüZ6¿Ö=h­¸´Öýg-ݯ¥ûµt¿þ¦~f§ÚH÷é~#çØŒ:7Â`# 6ÒÿFúßHÿé#ýo”Çm”Çmä/Å®ðØ(7Û(¿ÞèüßèüßèüßHïùÃFºßH÷éy#=o¤ç|`#odÿéy£ód£ód#}oä ådÙÿFö¿Ñ²‘ío”Wo”Wo„ÅF1k#<6²ÿÎl£¼l£¼z#l6Ê6Ê6Âh£»ÎFwl}#[ß(vm„ÁFl„ÁFl„ÁFl„ÁFl¤ÿô¿‘þ7ÒÿFúß(6m›6Â`#›Þè\ß(öl{6Š=ÅžÍ7âGü‚ }òÊí+ŸûÔ­+w^¼ðdùÿrÎs„HSAUR3/data/backpain.rda0000644000176200001440000000261114172224353014373 0ustar liggesusers‹íÚçwU‡ñÍ&´(ŠbkÙ;Ý^°`AņÝMŠ„S@¬Ø{ï½÷޽÷Þ»þ3à.yæ÷…œìÌnàçäÅ'sÉnæ™;{gÉÉŒ©3]ëÌÖB¡P,ÇW¾6W†-ÅÊ—¦BaÒ„Êv|{¹cîüòœîB¡yrõÁÊvbåá%ƒÏY®ˆf´` ÆbÆcZ±ÖÄD¬…µ1 ë`]LÆzX`Cl„± 6ÅfØ[`Kl…­± ¶ÅvØ;`G성 vÅnØS°ÚP‚ƒBDˆ‘`Oì…½±öÅ~Øà@„©8‡àP†i8GàH…é8ÇàXÌÀq8'àDœ„™8§àTœ†ÓqÎÄY(£˜…NÌÆÙ8sp.æ¢ óÐÌÇyèEú1€Xˆó±àB\„‹q .Åb\†Ëq®ÄU¸×àZ\‡ëqnÄM¸·àV܆ÛqîÄ]¸÷à^܇ûñÄCxàQ<†ÇñžÄSxÏàY<‡çñ^ÄKx¯àU¼†%xoàM¼…·ñÞÅ{xàC|„ñ >Ågø_àK|…¯ñ ¾Åwø?àGü„Ÿñ ~ÅoøàOü…¿ñþ´ÒýnlWç‚ήê»hϨ~·©”\:ðÒŸ‚t¦ƒ(Äé aP,µÙ¨d#g#ÏF¾…6ŠlÛÈÎÎÎÎÎÎÎÎÎΞ5’ó8ܸž×•w]4úÝO£sØè>³Îq½çiu©÷¼e]3«rŽjÍ{Þu:Òckä:jôuÔsŒ#YÏFxއÞ—ßñŠÝ=Œšuö5|[¬u©Ö𾡠7­õ¾}ê9­ÃÂz›yŸ9ò¦ºÞ[ZÖkn\K½—Q=KkÞ²ÝÈkÌ;§yÇÐè5VïkÏš¯¼ãÊzkg]{µÎoÞ|Öš»z–…¼k?k޳ÞY¯+ëñF¿_Ï57ì?ëügük5ëœ×jdÍ{#ç1o^ó¾Ÿw=Ôû¼¼÷NÖÜå]×Yó’1_«é¶¸òo^»Ëó:Óß¼¶¤ûœ65ýÁ¾þrÿ@_ú¯Y½stö¦©Õ7Ð>ÐÛ^î²Ë ½= §¤»­þ9Uqqå˲eK§×8ºÖYåþò”Ù½•<ÂÂÒÿg6 (&HSAUR3/data/toothpaste.rda0000644000176200001440000000064014660150123015010 0ustar liggesusers‹eR9LA–EÙMTäVj¡ 6$‚gAò!&ÚŠ Í* ¹×µ°ÒÄÄ„Òhg,Œ 6ÔÚjaE+µ –Æ7ÃÌŠ8É›ÿfþû×Φ×213c2Æ4¦ë.¦¹Au ›‹éÌ€5írÙÞ­Xu;Ϙ;€›a`0„ŠGÂÁÃ0$5^©QÚ3à8Z@¡Ÿ°o=¿åZ ·ÍDå¶MþîS#ù"¶ùq:ÙJ“犯kšÈF¸‡üõfð¨C3q±h¨!4&ÂM'ŸOæñK¿Þ I“çW'ª’u¦e>oA, ôlß,Uà¸{ôÿ.gÙ¿qj«ƒÂlŽ” 9KX´š @¯gš}á땼R7.Ìñ¿|!tŠvÉà£uŸÉÝ”3…Ä'š£)YÇT÷*ߟWö”¬b¾â'/·ìýÜ¡çõìÕêf¹}¼Wy_•w¨NÖuQ]×TeØ×9¾½»t_Ý3ëâþ¿º]ü°µM[K­Û§ÉóÍpcÕ†U}}}5ñŸKí›ò¿K.šj\wzëöîÚW»ÞBM}XïÎõýñü'¹¡›+ì>ßTxòÄýûšLLæ&c“'&¿492™ d~fòÅ]q?ô©É¡èMNmßù]µð¼‰Ù…6ÿÊäsÓOmÞ79¿L>6ù­Éo\‘n²'ëÏÅäÏ&qÂ_øé78¶Ž<=5ÙuE=êñµÉ Y‡>ý@ž?´¾ðù‚Düà‰ÜSá©ÈëXöõeùÊ~äIë¯}…xt~"ôá³ísΉ“}ZïÔ^Ì'ìðÜG&'òp"öˆ§+sÔý oä1{Ôe*ûñ|øß÷è3“8¨ßHìúusüôO‰k,zäMÏòûBì7üàý"û;ò=_ÈÎ3òÔ½ÞeÞ‰úôDöe;ܨ۱Ø!.©^´?ÜÊßÿÚ¼?üƒýÖ-®ó< Åþ<*êž“Lö Kö[;äõ‚ÿ¨£>õA¼ˆ uD_!Ü}yúTô\?{û<£ß¨/êºud_T=‡ìïPìÐWNô]™ n•ü-Ņ󊼣þÈ7ò?ñìÇý§}x$|Ẇ֟vÈ›|q}á¹Gi‡ûèTôz?~wWÍÁ:ž?–u|N oˆ çEû çÒsN´5¥sîOé#ÄYÊ︸>qÂC<ò=Ã׿Mß“J~£ogõãIqÎsÑ«÷ùÀË—GÜÃ%;ûžè;'%ýaµ¾d‡~Ä÷iôÕIuœ¾ç5­“‡{CîÑÒý™ˆ¾kz=ƒâùC~}~±ßPÙG»#WxyωֽW²/ø¯÷’¯ÿKŸkò=®t?ÀNãðœ¿Æ>ß"—õü£®¥ºéçՙ̃ú¸|õ¦þ£·ÿ×T¯oü¸F»Ù7=·i÷'úC>Jý ù–﫾¼ñþêšlò ç¤SܧçDë¥?Ü]Ïsüp×1åƒËåû7ÿýxýfõÖfû«å|¶Z̯W¦xøËå»Á¯Ë9¬7Ó`qfqa–-ÄýåÍoƒû.m~QÚ,ì001ˆ0ˆ1H0H1È0ÈmÐ 9qprqs”p”r”qDF@F@F@F@F@F@F@F@F@F@FHFHFHFHFHFHFHFHFHFHFDFDFDFDFDFDFDFDFDFDFLFLFLFLFLFLFLFLFLFLFBFBFBFBFBFBFBFBFBFBFJFJFJFJFJFJFJFJFJFJFFFFFFFFFFFFFFFFFFFFFNFNFNFNFNFNFNFNFNFF{4z~y<¸œ­fƒ×ËõUà¶¿>~üó °ZnHSAUR3/data/pottery.rda0000644000176200001440000000274414172224353014340 0ustar liggesusers‹­WklTU¾ÝØ]ÚŠ¥ÛÖRK»÷.¯r. ¢¬~Ò]¡´–ZjŒ¨Ä·ˆŠ5"þÀ4l•¢‘ÖøB‚ AÓ4R¡@y£­@íÃ{÷|ßÔ^䉛ܙsfæûfι³Ù¹wÎ7ƒóƒ†aø ŸßùNtÔ$Ÿó•`ÉGö+[ZQQT¾Ê0;¦ë:Ðyrls¿ûùÁÎ;Qì~lÓŠÄŽ`_üž6ÜmZænt?ïØ9ˆË.Öq´s°IÓ2ygB >%òÿÈlÞhøqý6øä>ä(ȱØ9Öã7š¼fyx½ëŽ">R­ãèŸWÝ»nK×-ýœZöÁ‘ 1çÌšÌÚ¹væÚ‚1mûÖÚîwÁívØcþ²3? ^UCošYe‡‘7ݵ†¦y³ßªEשN7Åu õŸÒ÷ˆç¥Î _ëû¡.¢¯'Ðgú7ã¼.Ãï2xÖ}œðdÞVð¤ß œýê4oµx{Á³çþ­~_ÔWèí¯yD¾ýèãaàsÿ0pÞÎsÈï•;§ ~UÆïÚØkž¨_Áëz²ç}ýýý$ï_Ðg®³¬÷pqn”ì+ãy/Ͼ²_Gáçíç—àA›}dσ}¤_îÙO¿¶xúEÛ»>ÊúVØ^‰<2O˜£~ÌQ?ÞO±1?‚xéä:æªóÎGï§s5€÷¶æAïysÀ¹Ä|`î0GR7üR8Wà—œþðÂoø&Ã/^!¬†_üB¸Ýš—Ì=Cç¯íë=W¹¯:?çÛað£ï÷E܇ xÿ/‡óâî×Ïc¾žÇ¹rÿî÷)ÄqNœÁûA¿ó˜Œ÷æ¥Mÿ³úwZæçç çççÙï¨ÿ8â9‡ÅxÞ9ìkçê%þž"yŽgÚàQÇK¿«?½ków{ŸU;Fµ¬ü©³Ui3¤¶ßRÿî‡Çæ©mS-WúÕÇ¥^ÍÿmŠÚÞ\8íʼn³ÄÞ¶gù75“ç«Jào^\'v xìD]µÉÎ>té#µ»ÒÕ²JÕì~ø©« #ÔN7Û¢’w3ê'/Î…}Øÿ¸ä»«áփͅÓÕç'K^ž±~µª ÅUM矎Ë÷£¾1wø¦=+T½[Udtðýý|À]ÞÚq\ùf…ø]^g½ öbØOê:¥ß¯á^¼:^AâîWD®C½6å ÈOù:p)ßB½”ÌCÜ è7ùxóÓßÿ âׯî;²17]~¯Ç|äá]÷Ú/mФô’ño?Ÿí»éÞÏĦ?ùÐöôÕùß3Àí·þKô¿?¾|ñ$ýÇÓçÚ§×_¹¾%EË‹J–9Z2<ÜÕ„“ŠE%Je¼'UŸ…%±eÌ$ù‹c +––;Z—×½4öh݃\œVbæ[4î.ê1g?”OuFŒjÒý1S–ï5iÞ’|SKÅczOà#KJJ=ŒåKWŒû7«œl‡V&P™He•ÉP|‘<Ñ"¢™¢Y¢EE/ÚÑ&Š6I4Á0à S0LÁ0à S0LÁ0à K0,Á°Ã K0,Á°Ã K0,Áˆ FT0¢‚Œ¨`Dq5»=·1¸(VW\¾‘F×?É îHSAUR3/data/voting.rda0000644000176200001440000000103514660150123014123 0ustar liggesusers‹íUËJÃ@kѶ¢FtÑE%H‰¥Hëè¢H7‚DA· v0‘&*õoý¿@uNGƒ?` 9™;çÞsïÉ$œÞžtn;Bˆ†h6×Dcݾ6ö±&š¢mqãÉdJßYÂŽ½ wõ:ôöh~ìpTcàpXÕËõ'â É>&>ëMþð;®òr}Ÿxñ»4ö¢Nôû…¸>éhù#N¿‘¯Wƈ‡úF¤x>ñ9/FÄröë“~æ¹>»„\7¯ò }œëcߌÉ÷5×;¤yøŸûÀûÏ#?`‹üPê†Þ„üú”ÿ€øéCÇOß(oè">÷ù@—÷G­ª~®‡|¯Gñëú̺XçñHï‡~@| ôÐgΫ®ÞÖïõ±~îxˆ¾cÐÞüð92 {@úü½2ÿó]÷QŸ›|þ±þ¸&Ÿ àóy\w>Ó9P\•¿äz¤¶ÅçTˆÝï»BiYŠ–‹8µïûŽç}ñ¾ç7g: Â#7ì\I-¤.,í™y–Ë(˜Â°u=7‹‡Ôè´w¾ŒW‰ý_ÏWi\rÞ:7Ët•Íã’Š´L’²š¸~'™IïUaj‡&RÚ” J«t^:¡²1#SR¾Kù¢2URžJ­â$-Ź”Yòߕ߻òþyâÞ¸ó° HSAUR3/data/USstates.rda0000644000176200001440000000112414172224353014374 0ustar liggesusers‹]SMhA“¦iÖª‹èÁZPÄzÈA{ÕŒ46?¤M6E)"Ô14ƒ»;ËîÆØ‚ू xVOþPL8Ì›¤IÔ„‘hT¥Û²X ¤ƒJoÑ©K›k{ѲDÀ=VŸCeKY4xæè9—׿„2‰º¼ mQ3:0•÷ØL Ú~ƒ1óyáÌ®++åÉvæÿÒ Ì˜fú1†åa™ˆ\ò}‡\ϨC>• O—Iü½\yW&ÊÓ—æ©Fï?”ˆŠ݃øVä_ƒ5ðìçÖ>7àŒpÞ â×ýurN"ï"¿ç¶’¼ºÃtvâCsvÞµ»ëO›îP¥èávöl«±%ýIºžY OƱZñ:ÙmªÆY’ÛHŸ›¨«†`¼;`ßêO ¬ïxýxw$ß?2ÿÄ}Þ/k¡æšËò¸¬Åz>Ò)’¥Ze<5ÓÖ¥4ùªínSE XB–K“¥ÅÒfé°tYz7¨‹b¡XC¬)Ök‹uĺbrFX/êóþ¬Ÿ]ž¨LÕ¦©©?|óªÂÝËŽHSAUR3/data/respiratory.rda0000644000176200001440000000526414172224353015215 0ustar liggesusers‹íœùwÅÇW’maˆrß! I€8îªî™Y ß67ärî¬åµèð“DòòÛþå$£cë³emI^ä…·~ïëj§÷;=ó™îªÖñþÕÛrîö¹N§3ß™¢ý{¡mžšoÿšëtΟmã“ýÍnô¶Ö7þÛé,<ÓZlãSí¹/ìž6ÓL3Íô™h~¦™fšéѵ/­9³Òÿwe³mß;cûè\6äÀù§—Wz›ÃÓíCîõ–Û¼¨m}rŒ”È»ÌI÷ÞžI÷=‰q<®åbÒÏršžï´s0iMû{4MÏèQîé4½ç'1ŽiÛI<ÇuO'}-'ñy'ÁAPÛ)Îüÿ:û“ Å+½åþõ½žÝÚè÷¶Vûk[»ç/ ÏŸ›Hô¸žÖçQ_”·gÚŸå´_ßçQk¶ö=‰ÕtšX›öÕï‹r-ÓôŒ¦}é<7 :s¯¿Ú[éïýëÔn{|þÓyz;ÿYºÑÙù36¾Œu0^ÆçƒñR0^Äbt¼¯ãåA,¾Ú‰Åƒ1ú<¢¾9«`ìãA,FŸGt/cô=Z Æ›Áxi‹ÑqDy¹ŒŒÑ÷-úMšû Á½Ï×±åùV0FïstÑy(:Žè|ÿr0FÇqs‹ïã›ÁGt>r]—:±ø\06Á]® b1úyoã­A,.ub1:Dó¦èú1é÷<ê}Ï£ëtt]ˆrõòr%ßÄbô=Š®ÓÑøv0Fç¡èóˆæ9Ñ|#º•`Œò÷z'£DÇåùZ0^Äbt¼Ñü>ºÎDç«(§ïbqÒuèR0FçÝ(Ñu5šOFç¿è}‰^ß{XŒæuÁycBßeãí e¯í`Ÿ£øì¹žq^GÝó÷9Ñ}µƒŸuðXäÞ{Ÿsœ½ÅÃÚÞ¹Çõ9l ã|¢Ïï8×w”Ï=Øž$÷ǹw?/zìa÷ëaü6Þ£°xT®ËÃØ‰>qã‹^ÿaã7î(ËÑñFyT¶¢ã?ª×¸ç1îÚ{G#Ïø8 EŸïqîûÃÆõ°k>ì}Ç︹á¸ïÂqžÿžÜ¯/z°¾ó5£öýõõ»GþîšíOÚùq­V§gÇfÇfÇfÇfÇfÇfÇfÇ¦çØ¾ìgûœŸ¯ºØq~âj·¡ÃF>Íï¥D‹ëwûý»Gþþc/?[ptÊÑiGg-:zÂÑYGç=éèKŽžrô´£/;:ïè+޾êèG_sôuGßpôMGßrômGßqô]Gßsô}G?pôCG?rôcGÏ:ú‰£Ÿ:ú™£çýÜÑ/ýÒÑóŽ^pô¢£_9ºàè׎.:JŽÄ‘:ÊŽŠ£ÊQí¨qÔuô’£—½âè7Ž^uôš£%G—]vtÅÑUG×]wtÃÑMG·½îè Go:zËÑÛŽÞqô®£÷½ïè·Ž~çè÷ŽþàèŽn;ú“£?;ú‹£¿:ú›£¿;ú‡£:ê9ºãhÙÑ]G}G÷Ýwô£}äè_ŽV­:Zs´þiíˆ?v5&1Úm”a£6êa£6º{ùtÑZÉZb-µV¶V±Ve­ÚZµÌCÌCÌCÌCÌCÌCÌCÌCÌCÌCÌCÍCÍCÍCÍCÍCÍCÍCÍCÍCÍ#›G6lÙ<²ydóÈæ‘Í#›G6bÅ<Šyó(æQÌ£˜G1bÅ<*ó¨Ì£2Ê<*ó¨Ì£2Ê<*ó¨Ì£6ÚÖs›ßù¨¿¼uÀþìÆú.Œ\ÂNY·ojlGe7NlrYP{ó²½–sÜb›êÚN™N…N6ò0lVl;:Ut²©—ÇfhÛ©¢SM'›¦yÀ6×¶j:5t>à9P°i¹íÔÐÉPÈ6ÛÌÍàm';Smîk;Ù"^6Ù/ˆÍÄm§D'[°ÑÖ…¶S¢“Љåfm i{ ½”^,U0!0¡0‘a‚i|øøh ¦\øIð#ð£*˜ž(f°`*‡ AAšá‚i„ i –J0$0¤2XN€(‘‘Ð`é¢EEZ`ƒe Œ i –40J`$`¤6XþÀ(‘€‘Ø`©£FFZ`ƒeŒ i –`0J`$`¤6X®Á(‘€‘Ø`i£FFZÁi%00Ò 6HÀ(‘€‘V°AzF ŒŒ´‚ R0J`$`¤l¶€Q##­`ƒŒ i¤C`”ÀHÀH+Ø u£FFZÁi%00Ò 6HÉÀ(‘€‘Ö°AúF ŒŒ´† R=0J`$`¤5l‚Q##­aƒŒ i ¤›`”ÀHÀHkØ 5£FFZÃi,%00Ò6HyÁ(‘€‘Ö°Az F ŒŒ´† Ri0J`$`¤ lvƒQ##m`ƒŒ i¤ó`”ÀHÀHØ õ£FFÚÀe%00Ò6()À(‘€‘6°AùF ŒŒ´ J0J`$`¤ lt)eaŒŒÔ0Z(VQº¶½`ŒÔ0j{Q"à ©aÔö¢œ† 00RèíEY `$`¤†QÛ‹6ÀHÀH £¶å6l€‘€‘Fm/JsØ##5ŒÚ^”ñ°FFjµ½(ùaŒŒÔ0j{±`$`¤TÇ…-*0J`$`”)¤ ÛY`”ÀHÀ(Ss¶¾À(‘€Q¦%¹\ˆ‘r 1ñŽã•Ç;Öì:N®††$Z „hÐ54 QPÐ!!(éîøÆžy;¶"Dñù}ïÍÌûfÞ¼ÝõAç®ß¸Ûðiø¤á“†O>iø¤á“†O>i¤F@i¤F@i¤FH!i„¤’FH!i„¤’FH!iD¤‘FDiD¤‘FDiD¤‘Æil´æ·öÀ[üOÓˆYήözЛÿ¯¹ÿ/õuâüo HSAUR3/data/BCG.rda0000644000176200001440000000063114660150123013211 0ustar liggesusers‹]‘=KA†g/—\> 61B ñ+—Äh#˜(Š…Š$å’DPŒä‚ˆ•µø´°SlTTÄB°üöÖb£ø^nöÀÞ׎Oü &A I”1gr9z½¼bóx#ÜÛŽß`½,gNñ…8 fÁÏ–ôxQƒzz'2‹Dý—íOÐvî¨ãÞ¢-ûÞ!¢ù'wäÁ0Èzöâ¬|ÖÇo‘ú÷Çàœ{pN9>Ìaœƒ[pϿ#ëµDoçsxsÕjW÷T‚^+pb Y—• §Á冹Ç'W§KÒÚD§çz¹&›]÷‡šÝ1ï Q>i%L%2Jd•È)1©D^‰)%¦Yhé W¥]eº*Óý2•mÙRS©ÍpUZrl£‰‘ýÚü2£™(#HSAUR3/data/epilepsy.rda0000644000176200001440000000310414660150123014446 0ustar liggesusers‹íZËrEMdIvƒÁ!<Âûi<ýЃ,( ,¨lÈV¶Ç)SNä’(ø~2ߘ‰úÞÓ:ˆ%vÕÉÜé¹Ý§ûž~ÜVåÁ·mÿa?˲<+ŠV–›Ú,òúŸVVd½úÙ­.ÎΫ‹ù¯Yföê÷Ný¼V?Ÿ½ð¹ÂùþOXY×óêçê|^[»/¾.K·.Î'ÇÕÑ4¾ö~˜MMŽÎN*ªÝ>>ŸÌ¥²6y:9^Lgµõ¼†lÛÐ!t ß^'ì<á¡O`ÿ»„— Ÿ~$XןøûM¯Gx‰p‡0$p}ŽÇ„ï öÜðá:çË}ÂÇ„-«„k„Â{/·ÏþÜßß ÜîÿÛ„ã·Kàö÷ <~ž_²nY—7 Ü.ÇûñÛçuõ>ç5óq\xݳÿí `>î/ëô ÇËß¹>Ç“ãý×Ç›÷æã}†ù¸>Ç—ýß%ð>Í|Ü_Ž7ëÇãç}šãËýáø²Þüû·I/æãþlZçÜ®Ïó—ׇ¬Ûv CHËšc¼È–íh7hÅg³§5z÷"o;ÖéÆo¤~µ¸5Ú‰þr–7öõØ·N¬s;úub\Åî&})bY9{ѯik7[ο~,ßÎð×Nlo›fý݉O‰GžÄ%‹|[ñ½ø›gNqíÆ¾IŒd­4gå~,o%O“Ä:±¹‘a/ÞŽãìeÈ$w錳“´'c)_ùÞļÉöb,eˆ:?¤nzÞqŒ?W+‰ýº9&}•ñíÇq÷º±_2϶²ÕËŠŒµŸÄFøåï´Æ×5¾«ñU2éS7ÃÜ”ö%>í8¶¦Í|‘y+ÚËÚÙj\oÅ~KD›´_YR–ôiå2-u‹«÷«÷«÷ó{sÎÿÈ–{hoÀ­R +†Ã/ë©£Wîé줚U'ë.ÑùKßîùÀ/m_ºùR×ðM—F¾ô¬»T¤àKÞ Â./¹œœr2ÌÉ&'SœÜq²ÉÉî¦ä‘“]Nfù2ÀÉó¦Ë'»ï8ùÜ”,ò¥öC'Ûœ¼òeíSÂg„Ï |éæ %dqO„$áK÷˜ð%áÞ*V6‡{ÿhsˆFc ÆPŒ‘ãhäå¡Z¥ZV-§–W+¨5Pk¨ÖH-å°Êa•Ã*‡U«V9¬rXå°Êa•Ã)‡S§N9œr8åpÊá”Ã)‡S¯^9¼rxåðÊá•Ã+‡W¯^9‚råÊ”#(GPŽ A9‚r„1ks]ý‰öÉäq5îXØ[̪Éâqõd Уɼж™<sg^ýötVÌ& )ë\T³³©œS[ó§G?UÇ bíͦ¿¤ÌÏxö›R§mmZ˜º´ÌÂÓ–I©zJDƒ§ƒ§ƒ§ÆÃÓÃÓ——V  ð ð ðTŪö@ÕèÚV9‡ê6T·¡º©Ö#u©ÛHÝt²Õm¬nc,yÄø‘?D¸áš(“˜&6 Ô·pµI)ZE}WWwy{2¥‡«‡+V§vÅ”®®XdºÁ™r×\pjá®C¸á:ÒÂ\GpÁu¬…c¸Žá µ,æ9Ô²PËB-ÄÝ–‰é`bûEý¤VZŠVQjY¨eÝåÞX¨e¡–…Zz µ,Ô²PK c¡–…ZjéYb,Ô²PËB-=lŒ…ZjY¨¥§‘±PËB- µö¨å –ƒZ¦+3Ù·p¡>Ôr6)E«¨Ÿ$ ¬92ƒZj9¨¥gªqPËA-µôÐ5j9¨å –žÊÆA-µÔÒcÛ8¨å –ƒZz®µÔrPËc¿‡Zjy¨…ù21L¤¨µ¼MJÑ*êC-µ<Ôò8¦’¾$\Iž¢jy¨å¡–‡Zš¾µ<ÔòPKóã¡–‡Zjid<ÔòPËC-ÍŒ‡Zjy¨pæB­µÔ°C™˜&’+Ô‡ZÁ&¥hõ¡V€ZjigÔ P+@­€¬"évÒ­$9TµÔ P+@-ÍM€Zj¨¥©¤ P+@­µ‚ª V€Z¡Vk}2Ú?™,&§³:ýË–ÿ àùŸÅEGa$HSAUR3/data/Lanza.rda0000644000176200001440000000131214660150123013660 0ustar liggesusers‹å×ߎÒ@ð¡7`4&¾Ç†ù?sï ‰&Æ ³·JBÂRSªFpkµ²sÂ4(\ ¦e~Lé7ÞܨÑÍH‘‰~¿'²¼ý¬}艾¶Ïƒ·ÅêG!Dþº}ÑÍ_´Ïw›.§eÖò jýÓ¶­ây¶,¿–Ëu›^mŽ>ôö&]È&)å“ ;?î–àtY¬Ó z^L›ªnÓý™‹ò\7é¥-—4ß¶ßå”ý”uôüÝb]}®«uS-»®«÷ËbZ~ªÞ‘§wüÿš{j!N ͱçjƒ¿hÿúÞzj‘>Õ8‡®Ñ¹çûø3šÇ©¾Ë}s=æ:ioÕÜ m}2•‚NÁ¤`wÊ/ìUUÏʺœí«Æí sUÜ–iÃÌSçºù2ûÞ½6uY4·åªé:^nöØÅ|1-šEµÚpXWß®z÷góé‚KÁ§Rˆi÷—c$‰¤4’A²HÉ#$ †‚¡`( †‚¡`( †‚¡ah††¡ah††¡ah†a`†a`†aaX†…aaX†…aaX†ƒá`8†ƒá`8†ƒáax†‡áax†‡áaxF€`F€`F€aDF„aDF„aÄdäróÀ!?²ºŒ÷­î+Ë£kXçá~tl^"úÁG$¼NÀ³>z¨ƒòà¤â׉ø1’zø™Xžñèõ¾áàw׿¿´þ‘ð6îúÐôë›×°zRÿÐZ­Óá«>àu:2/¶¾ëeÿhåÜѲŸ#áÅ~õä|ÿ›'[.zÕ/ö ŸðÿXzþŽ÷œ ÆýÔg=zu¿™ÏùÓ{O]x©àÊ>ÓRŸáOÞêÞü4>¬ƒ7¾¨½Oø¡|àÄOÎ÷}îèæ>Q‡sþ×ù°zmáÇþ‰/Gõ:žç\ Gïw"ûG¾%çSýF¿¾ßÈ«~½?Ôƒ/>ÄuþîõÔÕ˽a?úÒ6÷ø ox°¯©øìüä}I¿­çBtú{µþ^øÃWöE|r?ô=¯:ÑÓ•>óá͹&ŸÊ8¾ûÿÅ=~vE—â§{ø¤~o½_îGýså~òiÆçJ›äÇeùùÁ:ñúÜ¢d}~váÙ̳ٳlîQáÑk.ô›pY~={ÎàÔ"ªGŒ¨Q.5º$¸"¸&xvvîQ摳͜mæl3W•]ztåѵGŽ‘;Fî¹c䎑;Fî¹c䎑;Fî…cŽQ8FQìnü õ/зÉzr6_V^‡ÝWèÓoŠ9)г HSAUR3/data/UStemp.rda0000644000176200001440000000074714172224353014050 0ustar liggesusers‹]’KkAÇÇ}d’qEE‰Ö·AYÐEDa7‰„E“%K09–“v·±§;Ìô$zóCúTô¢> 뿱jsøMWuUý«º{6W¶ï%ÛIEµ¨ju˜>Ç¢F4‡ufkèU¶Eõ3!N€ùÉdòüÀð1ı~1ØK û+Ösà2ìoà7øòX?ï0ϳÿGôÁEp6hc=bÎ9d½GàJ˜,€ï·@\³¡†ó.…>ý%ŽÝÀ-ðÜfíeðÜwÁ*X÷Áð„k®qMàaE¿ .ð,Á>Í3ÔC_îj³½Ègn³Æup²r†ö¿úÿ^§i)S_Pƒ7ã>Ù’òw’ÓÝ˵a§Ñ/âÔ»W*?¢9—»ƒNUw^ò»Þõ$y=2^g.Wïé"£üü9=Wxg%¸<Ö)œWÈ*¦ž²û„½U3 B2gלu¦4¥­¹²¢;Ó/­" &Ï]ѵ#e”H7_hÊ´Œ¼NÅx_3y]ì¸éÈÍŒÆr¾x0vÊê·2ÇÀåáü»r“›ÊÊŒ­!Ùg9ÙT©ìÅCEÞO;%/ÑZÛQ˜üȦ¸¹kÙLvÉSçuŽg€~ùÿ0ˬHSAUR3/data/watervoles.rda0000644000176200001440000000165614660150123015021 0ustar liggesusers‹åU‰Kq·Ål5‘‚è°ƒ("¢ ""¢"Òe-ˆED#N­µîÊìª HˆDEDTt+v)ÙiQº™vX†y䵕R!VfQFó›}߯ò_h`fvßüæ÷½ï{ß{³66y¡-Ù¦(ŠE±ZƒË(ã§Õb\‚«2Ƹ۲U¯¦g¹šÇXnD| t+9"eåËOTðfSôÞÅ+è‘s_Ì‘Ü`ª¸ðãsÕðó¶CýjÔCê™xØ[¾u7•iT5³mþä³÷¨¥ª¸ÿté<ê5V\øIþÁŠƒf¥®û{ƹŽŽÄ=š?×–p›îŠ·³jèéå³úr¨h¨¶yBþ\ª PkÂí‹h'•¼Ï›zsͺ—U}mIr½~a&L=ÆeyÕyjâü[mË2Š%Æ‘¸çrÅÆSèÊ"ÚaP KÓͨþä¹nûÐsjݺë{Ëô:*>°ºciêzò•‹À zU:/<É:‰z‡?_+|Bí"KKuÇ ©ø0ŽÄ-òùNQ™e°RæÙ,TŽ9Jç…<é¿ïŸ-œCo7›u±^ÐõnàÃ8÷b¤¹€êfõm¯þBµ7×%©ó ”-œÚ­fa©—õìiT_£N&VúõnàÃ8÷8ë("mb_àý&æÑÃë;„Ú‘—ÉÏõ†ßàÔºãHÜý¬ÇÎïºi—ªg=Á³Ñ¤DæÍ*} ¿Á¨tÆ‘¸ˆ×&™ÔÀ÷nî‹NÞ§ûý_ÃoðêÝÀ‡q$®™ýÄÃTi7…¥Væùœy=v}ü@ö)úGúšý >Ð |Gⶈ´ßçQ§á–âþ3ÔÄüFÌô)úÇ?¢ðêÝÀ‡q$n7÷Y“Oâµqþ˜;˜èSô| ¿õnàÃ8·ŒçÆ Ó~6Ù‡˜;˜èSô| ¿Á¨tŸ²s£ÈkJÎQøsy OÑ?ð5ü >Ð |G‘Ç?_Q©iéÆm¬ù‘Q”ðÀùÏ’c‰KMŸe<¯‹0מÛ3u]ËÁ'ÉîÐÝGš®qdÌ:·¾íï€-QÓ½Ž¿#!Ñ)šžªi.þçÔTWT¼šîp©³F;3<Øa]æ·Ç©f¥áéèxMOW]È"x•[ÏVeN‰9ºæÒ4OTGBÿDdÈxÅ눲g¨iH#ÔîΔ¡ÿ”ô/qþE0eŠHSAUR3/data/toenail.rda0000644000176200001440000001213214172224352014254 0ustar liggesusers‹í] |YUÙš&i;t¦iÓ-k“t™6÷¾UÄ>e„‰¢Ž¸ŒŽ„6£qšÓ0¸<pC…8Š;ŽŽˆë¸`W-.ŒŠQhq¦t°@éô%9ßwÎ÷½5/¥ùýþý¾÷¾ï,÷Üsî=÷Ü›ô·ßå:ïêL$͉æMËhY¾mm^þ§)‘ØÞ±|m_˜›šœ>H´ìXþض|ݺòmñÍ Z ´h3°É@»Í: tè2°EÁVÛܤ`»›t¯Â·¸U`§» ìVл { ìU°ÏÀ~ ô)è_…e .cH`ØÀA#F Œ8dà°#G ܦà˜ÀñeŒp¼dRÒ2²r>ÏÀ³|¾gø' ä |¡/2ð·øbÏ5ð<w& |‰/5ð|_¶Œ/7ðî4ð•^`à« |µ¯1ðµ¾ÎÀ]¾ÞÀ Ü‚o0ðî1ðM^d`ÒÀ‹ œ4pÊÀ”{Cð;ÅÀ´o5pŸÓf ̘3ðßf`ÞÀ ^jà~/3ðí^nà^ià; |§ï2ðÝ «ð=¾WÁ÷ø~¯2ðj?`à ü‚6ð#^càGü˜7ðZ¯S°¨à' <`à'ü”×øi?càg üœ‚Ÿ7ð ~ÑÀ ü’ ü²_ ÁC~ÕÀ üš‚7)øõUø ¿ià· ü¶ß1ð°ß5ð{~ßÀx³?TpÖÀ#Þ¢à ¼ÕÀx›?1ð§þÌÀŸ+ø iàíÞaà¯ïTð×!ø›œ Á» ü­¿Sð÷þÁÀ» ¸dàiŸPðÿ. |ÒÀ§ |z®øŒ«žÑamé45hVÐb Õ@›MÚ l^…º¶Øj`››B°ÝÀͺ ì0p‹‚[ ì4Ðc`—Ýz ì1°×À>û 0Ðg ßÀ€Áe 6p0k¶}7žºêôJÕi{ñéµÏ¦q¼qxãñ&‰7i¼ÉàMnšÇÓÝ8Ý9ºót—¢»4Ýeè.KwÄÙgGœqvÄÙ%éŽd8â爟'~žøyââ‰Ö“Vž¸xâ’$.Iâ’$Ú$Q$‰"E)¢HQ;R¤AŠÚ‘"~)²UŠ8§ˆsš8§‰s𸥉_𸥉_𸥉_†øeH¿ ñË— qÉ— qÉ—,i•%~Yâ—%ý²Ä9Kœ³Ô Y’‘%9’‘#~9â—#~9â—#~9äÒ2~|œoß&ù6Å·i¾Íðm–o™/Åò-‹g¾ãÌlœ™3³qfæ˜9ýò-3s¬¤c¾Žù:fæYÏ-öÌ×3_ÏÌ<3ó¬¤g¾IV2É"’,"É"’,"ɪ'YZ’ù¦˜oŠù¦˜oŠ™¥˜CŠõM±¾if–ffif–f%ÓÌ7ÍJ¦YDz_Ö7Ã"2Ì7Ã|3Ì7Ã|3Ì7êgXD–ùfYõ,‹È2³,3Ë®âÀJæ˜YŽ™å˜YŽõͱ¾9‘c%s,‚#Ë?ηã|ëøÖóm’oS|›æÛ ß²2ÇAæÆYÄ8‹àÐsã,‚£Ðq:ŽBÇ¡ç‹p,‚Òq@:HÇé8 [%‚äY‡©ã0u¦ŽÃÔy–Æaê86ǦãØt›ŽcÓq@:H—d¾IVÃÔq˜:SÇaê8L]ŠEpÄ:S—b¾±Ž#ÖqÄ:ŽXÇë8LǦãØtfƱé8 ¤ã€t.Ã|³Ì!Ë:d™Œ£Ðq:ŽBÇ¡ç8ô‡žãÐszŽCÏs¼yŽ7Ïñæ9²µŠ«Ãà9ž'¿kÖm'OOž¥/@î<¹0·²%~5ÁGNW%:zjÖ2JàS ¯8ïÆ=2ö¯VŸo¤q|# Þ6”9X9ý^ª¼8þZJ¾WÏróœàÛµšûJ;4{WcÌ/ÕQ-;ÖÓW+¥©µjm+¥oê¡_-ý7ŽMÖ»ÖKÏreT[Çj-ÕÐQÓ¡caµÛVêü±Þ¨…^µhoÜ1³}XK[—£KÔüXj ”Óî84èãåŽqÇŸJû=Jv5ý¨ºÕ»ßÖ“Wœ˜ŒÊªZ۵ܹ¹Úv.×öµ´U)þ±‘ã­Ö>Vªo•âòyL¾+ÛÀÍ+GÏ·Ã÷+;¿[fçf§úææûf¦OŸ‚ïºgæNMÍO.\ûþÌÔýSóSEê¤nнo\KÕ|²–ãO-ÚVëñ±^Õ°G5ìS©î¡ÿká µh_µxÖ#ö×Ûþõð•jûýzÙ°–òêMW+ŸY¿h?ÜzÖÛwëmÿFèïëa|h¤ñh£èRï8Xß®• ê·ëÕG•È©¶nµè‹ZÐÕSÇzñ¬…/U¢[½û´žq»òªi¯b«jëRÏ~©†=ªÍ#ئ]ÅÏ®‡x¨ê©s#õU#ÄØzÅk­mU ºjól=$Ýzûy#ÄS9<ë­G-ä5’.µ’WÏð}ãé…ùÉ“s³“¯˜;=ßu-LÍ¿xzvòÞéÙXÆ+ÿ¿Êµ ãk?'>:söâÜ¥Wå·L Ý÷äŽÁ|÷ÐbêrÇëòûá:Ô}ÇïxÞÛó‡†_¾ã‰[ˆîcK3oyO>ç7}/|H¬ù9q ¾O,ͼ«ýsùNø¼ßïžè½Òz.?"èžZ|Û±w¾>ŸXœ¸§çƒÏÏo랉¡‡»žzc~ø-ͼú|Ïy¢{®W—fžóhn:¿äìFywéFï^K'塞û×¶+?RX«ç“Ø>¸"]ïb±]ƒçŠúšº8òè˜J‡zîòF¥]Î.=pÓù÷“=7Ãu÷ÌÙÇ[>Éåä]ÚúÞcEÊëAyÅvåIC¤[¼ã±|n>ýŒý½ üd®£ÂOÀž'>vÝ$ÚçÂíxâ*ðßí:ˆvˆxÛ³®‡‹þKï?ß7£àGØ?²ÝнPÿ>Ð»~×vé?)Ú'üÔZ;a|4ù©ò;AÆÍ\¥üré½™/øA3úÄ ÆÕ Ð=¤´®[àºüõPÁÖ¿øR<|ňûkúùˆxÿã3Œxß[ÑŸéûÇ7ò[ŠÛ¡¨÷¨Œg'`Ÿ@?šVâQØãJ³'Œ¿'® }`<Ø| %ù‘ Ü÷¬·<;(OÄK v¢þ:œ/0‹¸G9_ å‡ç¸îϵþ¤qâöØâÚ8—t]3g|bï›ó½Káã¾|¿߇ÏèoGfÖÚóÂÙ¥{^Ôþ&ÖãáìÒ—¶½P¿Žç'9~õËš í?êw9õƒŸ ¿¤þýº0ž°}…âUÆ!Ì3ÅÏô\æè‡8/ÂÛ/í½ßWìõ4ðmƒëÖµzù‚=å83˜.öËaa×L =ø†Ëwñ<…qôê¼(Úó>‡ Oö‡ÌOÐßvýFåOý þEý&ü_æ8þ÷ÁûÃż ržÇöìÅ|ð\1¯=gç12¿¹Q~ ÑI=/)ùH¯È[Gå¸t8¿uÀu7ÎÏâý@ž‹ö‡ëôCT»âæuèÏÀ¼$ü‚Ç;1hùà.ðûðãù`;ÈÃ|¥äDôw¹t<Ö£Ýáý&çUÊß”ü3n? ‡ÓQ?àüÚý€ó¿œ_¥¿ô‡ÖFé)é@žüÈŸ{À>ý ÿˆðƒré*ôös°Ón\Ï­•Ctr}ˆ\×…¯)ÿìó-ÍSQþ³_T:°‹æ¯8O7A»*–'èF„]þŠö,Q^»œ÷•8F? ĕȫռÛ'òϸyÆf1¯÷Cÿ˺ƒÿ˜_ã8<*ô¼z5Áû¢^1ðPÑ>‘ëL Ûew°7¶ó ¹.ÁùAú/æ›ðý!Ñ_ü®ÔϘOEµéàZªc}¢¿P¼Êu½Ìûp\Ø-èë5¸–ê‘ó-ô÷¨/É?À~ðó«1È[ŽhíC»€¼ýp…zTþ˜bOìw´ç¾¢žê{˜‡a{h]³žDþãr”¿Ç'#ǘt¸. q®r|Ôê^·B»ú`¾‰K·õ„y`4|}§Ú“Æñûè"ÖÉrýBãªRÏÁq®KÌ߸.‘u9þ·Â8¨«ˆyQ®—1?‰™Q^ÈO–Âûï2ðkþB¡ú6ößCåå›ZÝŠæ ¤Ãx€8+×_¢æSMÏ5jêõqò˜ß¢ÖÉš<…ŽüE­Ã…·ïĈC¬;ï…~.öwþˆ¬ɸ•íü&¦ž4¾\ˆè?Q”ó®S1ìÃzu”?DÔõÔñÛ ×Øãpèy¶/ŠNÌÓ4îâÉ‹Ç='b®‡Qæ‹('ª]p¥º\£ú›è°Þ þUGº>\†ëWnžOõM¹_¤Ùƒö-`|ÇüOßå8†ù¶6ÿ ÿà‹õïàTØKîwÐüŸq~<,èH/±€õ˸ë/°Þ'÷o¥eÝü'BŽô»áb]*Pw“u~ª¯£ßáü&ì¡Õ(φïû*Xçó)ÉÃyJø…æG{ÀÏãÆù+ú“RÇ—ûÓ1ó_¦+­ÆñˆyŽƒJœTH° í3ã:Uôåy˜¯‰y×Ucw‡çk(g/\FÔŵ:©ÔëiØÇF»“°ˆûJ¢¿`ߢdº¨yÖ³ö·Â•ö=¿¶OYôú^Æé6¸âþ%Ö ”õ‡:ž`\O@Ï.Ygçê<+ꀴï†uĈ}>Êëq\€ün,jý WŠs\Èq÷ËÁŸe“Î×DÈë”ò@ß%ÿÃyg;îoˆyWæ¡4ïù›ôSaOÌSeÝ€ò2¬ƒ(yÚÏk`>v°XýðZw”˜ßÊ<šêx1ó²}p•ó¯–¯Ëó?Jý) g;\o…kTžIó¢lWL¿’çBâÎs4žÃµä<ºí[C­çp!\Om|߯Ä'­ó•:Æœ×9¾Ï™ßŽ¥C÷Y¨]}f´c™õoeŸ™?Ëõ-è»Ç“n%oûÁQã•ègzëɨÿè—ƒqÈOKŒ[ªCÞw=…ywÜ÷wbÿŠŸ#ãû±ÄõŽ›T—ˆI§®c…ý‡< ýû&7q¼Åº®˜à<ÑmÅuØ×—Ú9¾O‰¼÷ç'ÂÏOâù-9ÿôÁó|¹_.óè@^kï“’=;D=ýRæD‡ãRÜ}ï¨þ»Ê¼JŸbîÏåEÐ=.ö‰J­ëhûRègê¹9Í.(¯°VÍ8ž‰sËòœ:ï‰ý†aÑ.¹þÇ}@Y¯RãUŒÏÃ'jõ£V‘•[O“õ í<Å|úç`Äy ´óNåœ œ¬c"×à §UœKÜ#êYZ¿ây¸Nqî’ÖÑQù“8G€þZê>YÅã·è§ó‹[_ÛõÊÀ::îø°{!ž^;q+¾Ÿ ßÇ!:<‡¸ýBÙO§õ!¼ëûÀ¹gáwX?„ýN<÷Û¾˜ÿ)q@ŸiŸIû}ƒBiv,Õ/0ÀsÃÏyðyC1¿ö£ýµ}Là~DÏq݈u6\ßö‚”?‡¯ÃƒóÈ¡ú°]WŠ´£¬‡ì±O‹õ€¸ë6ê·çs<—<í–ç9󂔇ív¡ó»`_yÎX«w¡]ð¼-ÖÐåzH˧p=ÚûäÊú$0OöŠsê¾µì7ü½ ˆ:ެ“Ñ9h¸ÆÞ¿”çÇ„EÉõB~…µtZ¼óÝWލ~€þ³~xNõràOç²ÑO"ò#\?£?£]ûb\¡zÆ|>ªœcÂù`þ^‹2.‰öò¼uÎLœ3•ãAÜú ÷;h~%ÏçH”ëȨ}æØùž8/ëT×û!xþ¥?f~.Ïciq&Ïy´‹óƒç;eûõ©»Ü ×>´K¡øY­G yÝHŸ¶Ï…· :¬óÑ9µyó(éxçs)O€+þ^]Üß{“ë•×¹ð9ö9ˆ}’¨ü$ ý%úsâ“0ž`žˆý·Wúw¡4û¨uMe]„ãì0Ísø‡ñˆ[–±â5mËXѶÝxVÍõü,ìûRÞ/G¶ö}5ÚÕV%X4ÕÐ}½úíÓ”¨¿Ýêý¬RDõjÇzÛ«ÚãH£é¸QŸÕ»ÑŸKÏA‡ò¬t¸ñìÆ³JŸUš6R[)_¨¿õ–ÿ¹Ú¿õ|¶íŠcÛFµ×Fxv#6^Ûâê'g¼ÞlsãÙÆ‡ZŒm×›ŸÖ«ÿ*íïõô±z¯KéY£èQk»Ö« ëa«Fë³ÏÖ>«2ßV/¯ýeæ¶ÙÉ™©3‰âŸknƒ/;^2¹0=5»0q;|Ñ>÷Ò…“s3Sø|a~jrafù ø¢uaš¶Ý?}fzAˆé˜Ÿ{Ùm(jëŠ^…åžyæòká1ºóÔäÂäm÷ÎO®ð½öW£¯~‘X2HÁHSAUR3/data/roomwidth.rda0000644000176200001440000000105014660150123014626 0ustar liggesusers‹íÖkkÓP‡ñÓË„ Á/ """£9÷0Nç AqîmÙR´+½èÞæ£ùɦ¡9ç9&ÆØ+ÁAöü—¦û ¶¬=>:‘{'{Bˆ¾{¢?¨æ°_}ꉡحº»Z,æ—çg›oB l/ƒ»U—õþ§ŽÞÿ£}4~ÙwfÅb¶®ÖýúOb{v8-ŠM¼b^lVźõ¼ÓÙdŸÆ7›NN7‹Uµ®ªã^u,ÇÅöcü(ôñ ûäš>mõYGŸwtÿ–u4»¦²UjCóЃÐòî«ðõQ¨ï¸þÅ ;n7x‡¢£e³/EGËfãÏ}ë–;×´löèhy³¾­†óïD³ï»®ÿ :Z6ûQ4û)œÿzü³î—ðø×ú|ûö½˜Ì‹¿îúïçñ®ß /íW†Ëý?Ÿ¹ ô²8d*‡‰ÃÆáâðqäaô³+cI–bi–aY–cy†ÄCbH ‰!1$†Ä Ca( …¡0†ÂP Cah ¡14†ÆÐCch a0 †Á0Ã` ƒa0 †Å°ÃbX ‹a1,†Å°Ãa8 ‡á0†ÃpÃax á1<†ÇðÃcx ‘cä9FŽ‘cä9FŽ‘cäÑd£QšYš2M•¦NÓ¤iÓtiú4“–%-KZ–´ê®ßþ?üÍ÷{g“Ídºªþ3‰ú½ÇÕo…dʲç HSAUR3/data/schizophrenia.rda0000644000176200001440000000216414660150123015467 0ustar liggesusers‹íÖÍkWð±ìbH)´‹®K(¥£¹ï»qR%qœÚ.ºÊV8rpì ‡ºÒÿmH«ªïœS]še ä{ßhÞüÞ|èH¿=·ýçûÃ0L†½½a²»n÷&ë;ÃÞps]o]ž¼zýçÅÛWËÅùëù0ì~¹Ùy>_¿®fqØüÍîõšz-n{ëõû^C¯S÷~tã;½>Zý[¿vÎA¯?:ׯõ~¯?ô:öjnÖu¿»³>~Òë³¾ýéj{û]·þcç?èõ—^‡íã¹óÅzp|¬·¸ùÇnŒy?õš{ý¹×_{=pûã~ázâxþºâ>aÝú1ÿ©[·_?Ö ×Ç?êcÜ8x.ýü^g«íí¸/{ýÐ}¸çÆúqpqœY¯¸/Oœ‡ë„uûë‡õ×aû|¿ë÷%¸yÙmÇüoÜv¸þzû1öÇyâ¾Á©n?ïO]57Æ}À<¸·{Åçç‹ëðm¯øáü²ÛŽýýúà`ýwÝûá|}îŒn|èæyÏ-ΛÏÉjûü°=º1Ö…çû¶ÛŽcî}ÿùõÏ_póýsâÏû=êõŽÛŸûèæÁýÊÍkn>Î×gÖǸøûóóy†uÂñßWÿ¿¾©ãzàøðý÷‡_Î.®¿÷üóùÌm÷Ÿ3Ô]äžܧ™«È»‡½"oñ¼÷Šœíç¿þž¿µþw5üóCàúõ©¼&ׯë×Ç{mýð¿q¶ø}qv¹î¾Ø¼Û·ž.ÞÌÏ}´·é·ç}vr6¿Ä4ìt~òîb¹îÞûÝÏço^Ù¿qãåâüÅbéfÝ\^üqðß™Wý¡ h"š„&£)h*šÖ›É8e7²3v]d—Øev…]eGÃh £a4Œ†Ñ0FÃh@#Ð4@#Ð4@#Ј4"H#Òˆ4"H#Òˆ4"D#ÑH4D#ÑH4D#ÑÈ42L#ÓÈ42L#ÓÈ42B£Ð(4 B£Ð(4 B£Ð¨4*J£Ò¨4*J£Ò¨4*F£Ñh4F£Ñh4F£ÁاSµ£ZSÔFµImV[ÔVµÒFi£´QÚ(m”6J¥ÒFi£4“fÒLšI3i&ͤ™4“fÒ‚´ -H Ò‚´ -H Ò‚´ -J‹Ò¢´(-J‹Ò¢´(-J‹Ò’´$-IKÒ’´$-IKÒ’´$-KËÒ²´,-KËÒ²´,-KËÒŠ´"­H+ÒŠ´"­H+ÒŠ´"­J«Òª´*­J«Òª´*­J«Òš´&­IkÒš´&­IkÒš4e‰)KLYbÊS–˜²Ä”%¦,1e‰)KLYbÊS–˜²Ä”%¦,1e‰)KLYbÊS–˜²Ä”%¦,1e‰)KLYbÊS–˜²Ä”%¦,1e‰)KLYbÊS–˜²Ä”%¦,1e‰)KLYbÊS–˜²Ä”%¦,1e‰)KLYbÊ[gÉæ×çî_Ãö¯ÚýówóƒÓåúwè°ùe;¼ÿq^ØQHSAUR3/data/polyps3.rda0000644000176200001440000000063714172224352014241 0ustar liggesusers‹…’ÍNÂ@Ç—–R¨ 0š`¢7‰lùòâE¯^<‘xZ`!$ý mÅø>ƒOŠNé̺4ÿÎoggvfºûú<áÎÄaŒÌ(Ã×,ð)0V¯€µ×¡÷¹Ž]ÆÌ,-°5°­,d'#g‰uýçÓòöÊ—<¹‘^ TÇÈw!}áI\3Þ˳fžˆ)M¶³$Œ€¶Úùös¨Õc9ÆßÆO®q{퉙œ†4ô³Ú`ï&l—Q»6è-Ükƒn@' jæ/<‚ýÁ²&AC¬Ò9¸_ÕÎ?E_s†¾ÖIó9¨qmÜOϺÔÖ5Œ¥õ­v~ ô”ÞöŸÖ¹Bûû…¿´Žþ ¬q‡}w0ÇÊæÜ¿ý@ø’nߢ߹”Á\Føë+I$EâË ÁíòTÄÒ[ôªL±”´¼ûS¹~®L% ?ºz©æzœÀ%è †#‚1Á‚Ñ»WÔSĹŠúŠІŠFŠÆŠT ®jpUƒó#Ó™‹DtLϲºýS#máMHSAUR3/data/USairpollution.rda0000644000176200001440000000243714172224353015622 0ustar liggesusers‹]V[hUž4Ýds¡µc‰ÉæV³TVhûˆ ³—$›î%Ù]4-†Ò“ÝÙì!³3›ÙÙÄTÔ¬}h_¼Ð—Jõ©ŠE|)Š‚Ð*>HñM_D­ E£‚ ~'ç?ÛÍ|ûŸÿþÿçügfsñ“G'š¦éšî÷iz–{tüø4m_'hïyÆÝªcYu;¶¦µ€Ôô! t}À£´`«=D€C€ˆ¶Ÿ0L"s¿ÈB1H.°x¸üÉn†ôSÀiŠ/ât“ýÑ`”|BÆÜMñÜ2R¥ÇÈÜÐÄc$ÏI:÷ªÔ'ßÏ›Æ|ŠxMêß‘œüÉ~þcâ1'¡xÒg'¥ß‰Ã2oöAÉ' iŸ!¿$Õ—!šû^Êg)ï åM_—ñ³$M_•qU]Iª;{Qêç¥>R?’=åM¢¾TÿTŠâ¦vïCÓÙ?"ÏßWÅ­ƒ¾$϶çæû ³ò(ÎI?úteL×8ÖoCö (‡ìeÐgAŸ…¯/‹õ×ÐOŸ€óv8|¤i{á«} ¹°_Âúsà¬A}Ï 'fÓ÷!d"æbS­ð'twa#ì‘C›ƒ:$}uÔªc†ÚRš¼_jZûÏ —Q3jÕ0»¾!{kÔ©£oßè-à'¬oÈž|Çe}~øê³€˜Ãëý<úÑÑ—Ž;¢oC~?Õ*çtˆæoˆæ`˜Îo„è8ÉÑyŽßOs=FüÙ+~˜ì“Ý(é•|ŒòŽ^Õ1Jú Ƀ$&^ù?Lò1Š;H|òµÔ£úé#ÿá»UG Uv#Êò„v×ÓØOãÚÁ³?Ì]3wÈA#qäÂÀÇÙ_ø»B‘0¢½R?#ãE&²w`aĄ٠Fä9Aèù9á`Dþ‘úÝ£iºŸÓÛŸ¾¾<þ—1óþò8–F¢âœ–þÉÇ…xÙˆª÷DæÛŸ3¯Éüê}‘¦¸Sû…{ΘüýÊíÀÔº1§îïŠô›] LU¯Ü6¦ÃÒ?ö·äûiÿ¢ý2ß õ5“”}‡Éïø{B2b&õyWæ‹­K:}IîW<ØzïÅ= ¨p¸œ•wC{ xÈO«ÞÚó´Þ¢ûXŠî­&Þçhû©mëd·B¹Ä$^¤»-øS@ x‡üE-9ÀmùŠµÛ¬b ñAñ“°-¿p”–{<³RUë ³ëʯêTë–Rlr»Hë½U×,påâWd[µ–¬®³nÎ,¶nÇ;b­0{‹¸.põõºé$òG<‹Ù#¶3Ê,W·¡ÖK%f9ÄbeæZfÍhi+ó[½gÀí·mæq2f™&’IÐs¬ze¥^S5Æ™e±{œio˜® 7kÁ´ÃmSéýqÓsî©` æz%ÇUÁý §ÞT]÷¼]äÌfø[ÁU„Vsì nYªÍ®$³k¬Œq¯±Y)îy–Ì9…5UMÊ©óZ³Ÿ?ã,7B·§9«4Osk“Õ×ÌF’46ÆÜUKg†ÕÊ» ɘ›Ál1êQ92Ž[r,UDûB…•Õyu/–¹ÅЦ…"”Ì¿XvL›?­Š^Dµ•º»ZnH\gƒM» ²väx¡\qGÔ›ÇSlÍlÞ‘ž<³ƒ³.Ã× êÀýy“‰}R å½ppg›T²%tÈíÕ¦‰YB2Þ¹À·*Ê`÷]*`,ÔD+a È<.¹vpÿ ü^å¿ú\ HSAUR3/data/suicides2.rda0000644000176200001440000000064414172224352014520 0ustar liggesusers‹]“_OÂ0Å+8H„ÄWŒ1>³èØðÆ ‰04Eâ[ê.ƒl#DŸøh~2c'ç‚ë’ö×swÛs×vÏÍQc9–Û’}^×s²[c¬R,ÄSè{"6ËïÈ€&Û¶le»Æþ{$} ž€u° î‚{à%XQòi½Ðdô,ü¯¯*l‚ 3_°kg}•z©®&òè£l=Kÿ¥> ì€ e½¾âk(y´NK™§Cתï¤z:˜×Ûà‹õÅ~Ú6Hçå"ß…>¥¼yÖÿq:òy‚ÏÕ¾~góë é¼é¼¨Š7È?sAµD,éõÑÜp K¯šKUµts¥LK·VʲôÚJÕ,ýÌTÿh<ÓÿÛ”Ó`š~ËCîqRnq@i>á!Ħ3“È_fÞE< zÙш‡Ÿ$ÛÓðG$57á‰Ò£H>DðЋi­î8•”Ý›pŸ\7z3á R¥ÞÌO¾“Êõï1Ê÷{Žº±Ã€ÇôÅ,z<áú[$7CªŸ´ýß±?DHSAUR3/data/GHQ.rda0000644000176200001440000000046214172224353013244 0ustar liggesusers‹•’MkÃ0 †mÇýH`¬0(ô°ÛÎaq?wtÇm§^Mëì’&”íßwSI8!‡ÕðÚ-KоLtˆ„J¨)Ì V0I!f!¬Áþíæ‡útš‹vÈÆ ŒhÆ  b‰Ú=ºín@ñå RÿW§´qæ¾]VÍðFsšº³ÍîtË¿Ñ1³¹q°Ô/E tõÚ¤QS,WãxíP¥H´‘]{¬¼øï GÐý@¬þx-ð[ô@ =Ÿn¹¹=;*WwžE[ù—ËO®äæØª¾Ýl¼Èc<¨c¿½®E'{±qZB†^Ö°,~b?óÿˆL Á’`E°&Øl v/*yfJ˜ Ó’iÅ´fÚ0m™vLœÃpÃ9ŒÁ×rýõRº‡HSAUR3/data/men1500m.rda0000644000176200001440000000161314172224352014065 0ustar liggesusers‹uT½oEßÜ÷­q)Uº•4+CDA´g'ŽßY–ÑŒ÷žïævvæ˜õåºþÒ‚”;$-B‚ $º4TÐ"!•Íï›±±ÌHs¿{oÞ{¿yï;ƒ»^ …AÔ‚ZçZP«ãßF ®Á.b'ùêëyÔo¢ÜÄ}÷­äÙg]ɳ¯ ¿%ü™ð× —á ˆpƒ0!œ>!|JHÓÜ Ý¡‰£¾*½¢ÕWr¤äù±J³‰9)Ú=iæ gWÆêå…=bÎx­¯Š¨'Ç À‡ß-¸¼’¬³¢à2ã.ÞÄ¡*µR4Tîþ7ßRÙB9¢<橊¶¸Y¸ÐƒRòtâB”4˜ð§ªHÕüÿïÙ‚*uw“é„’ÌWÁ&[ÃÅH‚göվ؃ν8Ú,ÍH·âh¤cHóÂCìOÌ¡-|bq4œÀlÆôÈ9öâè!Æ)|ÝÚ¨ÙáÂݶ³G{¥Î];;—écwÛ°o™Ó” g±f™Õ1f请†N÷4ÏŠsš­°˜œc âè.`%|î¡u‚+Ÿ•½ÍPÂùívãh¸t­ëâù;¬`Â]¯‹4ï2‘öÕ£-WJmô>P>XgY:qr¸Ge{çßÒïA.œâúÙ£û%h­Ê)N„uêš Üë´´ë´[–ÀöÍÕ©‘®M6á?«[ ΦÐÙÿÔ€-pïfÝ7WŒAs_^Y­óOq›Kì€{ë÷ñ•›hSsÃügÖ~ á‚MóaÂu¬¹‹ÅðÑûåcÈ•;O¬žJSÿíÁ¾™dýJ?}ú×w¿ÿJ2=©ü³ž‡wf_$ÓHÿáëL¿Gñå¿/§/Y.ý&) `Úƒ,ÁÕeÎq>¸£vªJœa çe¸…ÿ ßÕj; û€jOðçôôô÷ʰ~z©òáˆiv6VmõOþ5)ä@>HSAUR3/data/planets.rda0000644000176200001440000000276214660150123014273 0ustar liggesusers‹e– lUE†oËÊ£.Ye+aë»÷Ýå©8£•àET 4å¡H)϶ÈöED–‘M+¤UBÒb ²©ÔPb-‹P’R¡‚H©R½÷ž¦Üä½sfæÌùÎ93wæf ­G5M‹×8-¾™«âÝ¿8- µreËXvfN4?OÓš¥ºMo¼û‹Š}»G^[Òu·(µ‡ÿ¸ýF¡øùÂó;Ûͺ ަÝ9¸zL?Q+:ò®øEóqÂíM»sHœÞä=›ÅØŸsÿ\Mœƒ?%iøqÁk¼.j0¿í+¾Y†¸âabÅâ*ú¯ƒÏÒw?[\?ê=e¢~”¼±Óà!yq³„?–à߄߿À¿…|nMôQu^˜E§XÞ^”’³aåqùÖÃO½ç>í®¸‡üà¯aˆ_PÑ¿ ¨ß?ˆç>ìa×»‰'5´wPý¥Fu“q· P>$ÙËæþô lAqÊ–žùµ%282è•ñàj¤xdâ—­a—?mhd[ÃdÕõÄxü%SÞ2™ò“)°KÅüvˆ§=ÕMv@ÜûÇ'Û3Nv¦ºË.ð×í®ðÓóºAvGª£ì‰¸{¡¿×w”ooÔ«êØù€ŸôK4/4_Ãã¿/2ãmoù¬zT½|®'Õ?£ŽòéøqIB¨ÏUéýÍ8Þ([¢ž½Ë^9ÿÄ„7dbêÙ wûO–I̽WùX¹l]3þéåö‹Òz„Ö7Á} ?ùj |Ê/{7™2ýØéöËúËÄPEmÆÜ Y<”òPHãË/Sü“¿&~Q èKùì§vÂÞw\`O9õ}ö2ÏNrÅ3”ï´dªClµçW“ßÂÑä§7r,ê3ORÖëGq6µ×ï&9#Frv„Æ;/x|mQóQrÖVêvŒÖó£µÔŽÁßìR²Ÿ9žÚ3“©ý~ Éꟃñ—úç€ìØéÓ}ïÙ%—a<§ÙÌ¡vöŠ?/ŸÖ± @ý‹6S=·¥€WErêÌÛKöo!C½ Òh|ü74¿ñèØßÓÏ›u´Ocï¢I®Åú´èuvð£rËÔ/—äJÔqÝ«$bOÇü5GHŽ<ï¿02†ñ˜7vÅ»­žÚ/µñ¶S¼Ü„¼6b]˜ïâI´þÛ±¶.¥u~-ŽöͶNˆû"Éî•O.É®”[aý4ÿ}×ð¾hM¾?ÊqÎî¹¾RµÏ{oKç’‡æãÜT_±öå87á‡í¿…½/†½º—ªág?îŸôÞñüBœë_"^ö‡öo¸?”¬‚u?~¾Ì_q綺O+è-&ô×þòÏKŸv>Y\wðÀ7ÝóÍmÃ3—=h@Ûð4Îå'É{LSÂS†’ ž0u5Œ"¿gRgãìÚø9BÞ ï`·ñyŒl9ã`ûѯ3/B>ý”¼ÅçKä…=¿öÕ~¡Cן8¾â=î·@N‘ÈaõV5ý%Ï º°-8@ÓôÀ‰´LDœ&r„¹Á.[Ž·Ÿ¥(Ì7a E&—LÍBKwglÉW¹-ù^Ûîð©u˜þ(w 0°?]‰$¤DÐzNgÊ¿lÓ}M•$Ú–½XËœÐÔ‰ÎÕ$³eÿEÉBoßÂÖæÀ™N×!•B+™9Åjb¥vçõPøËV›p’Yðmnã.@3RT ÔR“Œ•iØüqÿz?$HSAUR3/data/meteo.rda0000644000176200001440000000105014660150123013723 0ustar liggesusers‹]S=hAž¹[/¹EÐZ­D‹9vgs¹»àbžÁ?2ì푽۰Y#'(ˆ˜ÖÂ*bgc!A°ÑBA±ˆµµ‚Mô;™s²f¿÷½¿}³ûÞJw•»«.!¤B‡’JT§JR<4Œò(%¤zH ðàá"@%Ae¨@ô“)8ÓpT²‹± Ö’h+J6A;VxÑ:åw¸Ç¸oQŸqnQÎx`Ñ€ñ‹Î0Þ´h“ñY‹Î2Þ²h‹ñ¶EÛŒw,Úa÷Ÿ üò7 ¹in0¹W,Ã<Í@Û‡sTÝM\ù³òTôƈái¢D¬= ”ˆ^€¸þl䋸™ ^ê¸øòøeáŸÔv°n#.D¯1Þ'Ï—°ž¿wËvÏø‰‘¢þùŸºNoë/é¼Þ{´_Õý^{‹},¯¡½û]Çë~äÄDÑST»ô¾èE8`sÂ9Ëà;ø üÛ€÷'wž¿õæòG§DëãI¥ˆ9waãùWWtÞ)Xs»'î~»°+Ú‹hŸ×w0yí_ß8û[4_(åœh£½ü‹Gr™_\ÓFgÉLën&£KéV7 7†ZŸVÞÅÛÉXóz&û™Ò‘©?DI_Zý[%·/sÙˆ3h¡ÔV=Kï4ìÖÌþP³9Ôì 5ÛBÍžP³!Ôì5[AÍ>P³ ß›h¾êýÚnî/HSAUR3/data/clouds.rda0000644000176200001440000000150214172224352014111 0ustar liggesusers‹…T[HQž]w×)u\WYs £ðdí躊È9…V*„„/Óîl.ìÎØì¶^è%¢‡Bª‡èòR!½DH7zˆ,©°‹’]ºˆ/ÙR+‚²ÎÌügZ—•¾ù¿sþïüÿ9ÿ¹´5w\Ç0 ˰Yäo%ÔÆ’Ÿ…aølbíÁ¨²/gki9ˆÍ!Öc(`I±©`3hØ4ÿqÏ"*%¥(™ÃBëee˜µOЧ É FÅ8a=,ŠJØ]  }ñš Ô.‚b‚/A)AÁ*‚Õå~‚A=A#ÁF‚f‚6‚v‚\-úe$ÂY'µïæÃú‡ÙÇÚ7†ó ?úiøÑ<ôs`í`-0>¬úó í¨Ñ?Ì@|òÒ89 Ëÿ2Ðg§Yžkê>ÿ’Ã.CO××BœMs†.ô…`½·ò¸ ]íJй!­ƒŽ¿æí[NëFëzZ £õ°-éâu ‰Ãm÷/|Aó-gÞ>èB:øÝ۟΢·ÏÏ]o9‡žÀ~“OÙñ¦=œnÿ1>‰FÁÿÎé+Ÿé}®°¯yµ¾ûÑþOG»Ð£Ð.ïE§ÍôjÂÍhøVrôjC8“Ð?¾Óæ9ž¸‰>ßhýphå 4¦U»i/Y—«yÐ塲»§§Ñ.•°3hX‹®¡{F¾”›˜éfºKá?ã´kÅþI»{ö˜’ŒÈ{ ÅÅb"¢È¢Úgè­TŸùæ'©êбÓEîþ©-—ܸ¸òÛÈ@gö•ÀVع嚷 ½K?˜M¸N€Úvðóp‚Š´p•ßqA§W•Æùô&èa·bâÏèB\~ƘzoÄG_a‡&´(­ÓYŒIôÁqÀ²qI ý«“-‰IôÍŠË”rú#T’’J{ºU©GJÈ’þ„é=R°K‰)Z•¡Ç©Š9,F£iÉV•žêÔÉx`€ÅG‰@I %µ”ø)©£$@I=% @Xß“ùL&˜¬Ædµ&ó›¬Îd“Õ›ÌÌ!˜93‡`æÌBíG ‰ ±:¬Šzéµã·ðü¤=øHSAUR3/data/foster.rda0000644000176200001440000000104514660150123014120 0ustar liggesusers‹¥”[NÛ@†'¶‹DÔ¢J<±žPDæàÉ„Kâ\Ü„§ðhHH‰¯Ý]躺€n€e&™sþR‹´)Œ4™ÿ̹|3ÇvŽz²Ø+ !<áùVžý)ˆ@,Ûu©?géHÕZÖí²ëî,âýÓ{Çôß8ƒ·Ï?;3HoÒÁتÏ3¯Û-챨²ˆX4r>œ’1øÝðä4Ú†‹É?šý·f¼vEš?¯Î¢Ü<{Ñ3Ïi¶÷ôÿíõ9çÕŽŠ•iGÃø‡˜Ž°ûñÁŽŸaG8»ºµýëÎŽoaó«³É¯¹ýÅÅýéëT¯qâüßä<ªS§üýÇ×]~D¼ú=Õ£¼¨ïìÎÅSŸ÷ ­->7qjwtN²#ª{@qUÚ¯¿ËuØ«é;t¯}âÖø>T¯É+ù#òR_š¹sµ¾»ºÜ—í·¹tßùè-Š‹)ÿˆâ"ÎË='ªŸÿஓ«”?8ßñevž^³u5|iݦ—çÙœ«x–dI©?²Es åÑð¶ô¶Ë/i™…d¡Xh†E…Å‹m;$¼ò&TJB)( e *P[PÛP`H0$ †C‚!Á`H0$ †C¡ÀP`(0 †Cƒ¡ÁÐ`h04 †CƒaÀ0`0  †ÀaÀ0`TÀ¨”…û[›<ˆ¡X|ËHSAUR3/data/womensrole.rda0000644000176200001440000000103414172224353015013 0ustar liggesusers‹µTMoÓ@Ý8ipÂW€8pBœ*5»NÓòÑ„*ª€‚ \¬dUJlÉ TÜø)ü”þ$~Aa¿yÂ.GºÒø½ñzæÍά|øâÈvºÆ˜À¡<›B[<Æô:‚ÝÓlîÓEžÍ¼1Í;ŶØu± S®Æ*Z6±·&Ö»"&)Í*‹ØU±kˆ½!vS¬'vKì¶X‘{ýrr6µÞÆ%Xðÿ­2öÌó³Nàô­ƒ¤˜ÈŠ·÷ý|åUâÖÆ³d¡aLvœŒ—Y.ì-Ûˆ{eÏcôžþ] †càñð1ðð¬Ä§ð‘(~ü‚ý=øO€÷}`XâÞ¯Z=aµ.Ý×Å:ÀGÀ¨cþë%¾‚?=«ÆYà= ž?¬ê×ë5ÚWóïÅóh_5½/QŸöuþ0ýYâ;øïQÿß®ÅkßõÑ…º+ëBŸµN­{¨s~½·¨ã Þ/?Œ?Áÿã{øz?´¾aµ.{ýz§ÉÜëõnáeÇO¾Ž“åI–ê}ŸútâsI¦¹÷pÂÉÉ~%q'ÏNû'/úUl4J¬§$R2T²¥d¤d[ÉH0Ø$Y2G‘ ɶÈFdÛdÔ°Ô°Ô°Ô°Ô°Ô°Ô°Ô°Ô°Ô°ÔpÔpÔpÔpÔpÔpÔpÔpÔpÔpÔˆ¨Q#²åìš¿Mõ7×$ˤœËMù«;ÿýwyëHSAUR3/data/CYGOB1.rda0000644000176200001440000000103214660150123013536 0ustar liggesusers‹e“=LALJc1aIðfwvÕF[L x3ÇÉ‹šœ cr áHL°¦¦ÖVkjjlµ¦¾[,;Ã{s×IîæýgÞÇoÞËn>ݲùV®”ê¨,›RéÆÌ:Íß”ÊÔl³ßxò¢ÿüqO©é2z)5ßü–Hû§æëû_/òuÒy4&ÚÅEú"^ÐüÙÆåñÝ3*š¨£ñ³ä/yæÂíÆ/Òì§YwÅoáêüdç>éÞ?¥®ø·tÊ#þ­8äÂoÒÁíòxr.~|ÞGPšc~9OïûÖÏTOêÒ—è~/ù%-ï“úr¯âšhékæLý7\¯æ÷”œW´ ÛÕwª˜¿øÖªbC5ÏÁ0oÍù*®WI_…CæËlÒMéוýV({~ò_¥Ïån\d˜£ÝÜÿ–ö’95ç¹-õ9ÞH<ç½#s‹î;Tó{Ú~FúÃï–9žgÅñ²×œ·”¹*^ÿ|3ïߌ£{ý ]÷ÞŽA ßµÃ^ # “Ãüõàp°¸{Ðdl¹Ïì}\ÄJK|‘m÷¼L¶ÛíÁ^{ìU°×À~”ì™íÞC=…CáQ,£XA±Šb X$°H`‘À"E‹ ,X$°HàÀ!C‡ 8$pHàÀ!G <x$ðHà‘À¥þ„ß_”ÈÝHSAUR3/NAMESPACE0000644000176200001440000000037714172224353012450 0ustar liggesusers export(HSAURtable) import(utils) importFrom("tools", "delimMatch") importFrom("stats", "complete.cases") S3method(HSAURtable, table) S3method(HSAURtable, data.frame) S3method(toLatex, tabtab) S3method(toLatex, dftab) # S3method(toBibtex, HSAURcitation)HSAUR3/inst/0000755000176200001440000000000014660150120012167 5ustar liggesusersHSAUR3/inst/doc/0000755000176200001440000000000014660150120012734 5ustar liggesusersHSAUR3/inst/doc/Ch_density_estimation.pdf0000644000176200001440000101144114660150121017757 0ustar liggesusers%PDF-1.5 %¿÷¢þ 1 0 obj << /Type /ObjStm /Length 3871 /Filter /FlateDecode /N 60 /First 489 >> stream xœµ[YsÛ¶~¿¿o7N Atz3ã¥Iœ½r’:íô"!›,¦å¤ýõ÷,¤D‘²-»®¾0Ià88+ -'ŒH¬V¤¤DE±ppƒw©ˆ•1‹X§¼qªcÇBŲ(¡4>k¡¬†LF¨èÅVèXAÙî ¼wBÃ(,€Œ±FG^¨H“ 1a(§”°±€¨°Ú¢Œ°i•X‘Dò'"‰S+”‰¶X4Ü@~½ðPY$Rh¨T¤i¤ Rácïµð +‡ž¨c…·@T'Â;¨O;áS,—bçñ´9ŠSh&vZ{+ ô2J-¼QÐ}$ÐL¤º Ý2^Ag ‘@ë ð"vÀ”ãø½ˆUe¡–XÅÞC!¡¡. ”•u©°@Y9htؽ²@Yy`›M0¥€²Ž` ,PÖ ÈZ$ ]I€²61ò 6RÿùñG!_‡:+²:ÀÏHŒ…|»ªgå<,aÄéù]v†Þÿõ%yùgÕ¹xò„H¬ê‹j!~œ†éØd¢(»Spi¸ðÙ¢^E&m¾ãût“·ýžÄœNL“_5ßýæ¾·@[µ4¾K¸ž6/Òwæ ´v²º¬æÇYÄ£ãT¤L”ûAdcõ}¤þEÿý®Éýxô*{ÎÄײ¾ÐßÅ"LáóËð××jQ,Å#xx]·‘{·¨ŠU€Þ³w¯Ä³‹jY/óEù¥Eðòœ®&„¼nY‡]EvÐ5¦¿/ëYX; ì0)Ù*Õ0ÓɆQÄ츹ûÎÀ SuC/oè·´›w®ÉOÌÕ Í&Må1¯kÞ+¾+h£ÖÍ`˜Í %f38TvÚ ¨ÒJÓQµš×h*ä˸ýؽ˜ÅÑÒÿŠÅQñÈ6Þ ?κ@Å@ÿ趉ïí³mîœ]1ùß[g©o|>¯jlŠâÂŽiƒå£SNYRÎ’š–ÞQ5¯ÃŠÇM«AåŠ2;¬¾A¤`½MHM<mÿë^@VåÆaY­9´›ò¨‰Ô5ª¹¨òÓPùîø)4=|«À“'Ý^ôø $ÊŲ ‰WÙ&ÍeÖú¿Uî±ò8,±.fœ<ûô+v=rÌâý(¡óÕl†}àJÓ©%Yê^ó´-â[ÑŠé±ïèyWt‹m±fqêˆÒšõöX߈ÍÝX˜-•–§ÏÏÞ¼8úþèõ!0Mþ4Ï«¢œŸ£A'ªÄµ£‹l®“*ž“Ñ»Gfr(4!5UˆÕÆmí\Û/eQ_ ÜZk©¿ÿÊ9æYtóµÉÙÂAíôÏw  <'૸~ú¢½ÛQ·Ù%þšö(y øYº'èè-·ÃÚ¦êÁT ¾ß¶_¡<|ÑÞÀ­ùƒ¹ñÂ4ˆUD#Ê&`™£`€™C÷÷åy(Ï/@†} 0( ä<”GòXþ$ŸÊgò¹<‘§òƒÌäDæ2¯fÕ\2H**Ãe‘-/äTNË« §39Q“çòB–ò³œÉK9—•¬æA~‘àƒÊª ¹”ËpærY~“µ¬/!Èúk%Wò›üë;ÒPjæc¡¢Ï²stã$ ‡­ÔÓ7 õ>>-gƒ‹F'ñÕ›ì2ôåõÜ~™ÌÏAcáñu¹\‚ô’”cåi.?‚Ž$]9숰œ×h01š¼¼…ðch ¶ä‚×rqVà9èÿ{ÐÔzÔkÔèŽ.×òjKg×*C$‰Ôzz3ÕÓ“ ´/AÛ㻯ÚB¨t›Ú‚4Lƒ‡â0’8ÁiÓ8¡ôÐ 7ùÿ‰îùÝÛ=î›_Ço>üB¬Øò¸­Ömü¹ÊfèêÑÛ7¿õö0ü^Ê?Öná÷Æ÷£2Ì´æÔ‚è6FäOù窪C1™Q†öóÐÓæ=¿äâ²äæn‚‰å Û¹R\ɯVÈ¿åßaQmY*»ötÛV걉ø+Ož8½m©tÔ·TÛê¹w€ïëéÎNŸ~:%_úO" Ý7¢H`ZúïE`m‡…Žû\îqaßxBíËåã³7ÇŸÞý÷ï÷æ²6C.÷ã6ŒH÷´·4Ããÿ£&uß+ºñévÚ×åÙõ>ºæÿ}ëzÈkSÛN=¸jErtÅâõucL{¦t™—%[PN×å¬D[µü v²Èr¶`”b †ÉÏ¡^¿†4È{6¸¨f³l±1Å­ îXßs\ñ ‹¡ž…åòn¦øËlµìØc6´w7¬"5 ¯uϲòW«wj¼êk|O#ûŸ}ë å¶þãÖpõ·Æƒjm ªE]Šiá 8¶þ}½vÔ.á⑲jãâ‘Òv™d³xôŒ_ŽEbgGNaDâGi Ñ¥FãÁ{‡ù×âU9ÿܶ™í†A¨Öÿ<=A[œ~™i'ö¾ñýÅ¡“KMšûÉz±Hž½ååßÔ7óîu»uÓjýP'»Ûyã"ÖzÔr/-{Ë¢·µÐ©jµÍê{4tã–^¾ûx4þƒ »ï,7:¥þ$¦{º~Œ«÷¸Öà®}¥Çµ}es¶1cl¢àê, ­ÍÐÀÜPàçkì˜ÁÊÐo÷ (ìõ íɼßBͽ*ó0~v6Š#þÅEÐC°„„à)Á2„ B LL8æŸ"h‚!XBBp„”à aBÈ !¦n2VüÓC°„„à)Á2„ B LÌ n2Öü3KHŽæÚÝ®óŽ/Úµ‰1؈vò=v±hf³ÃYîìu&観4‚Gòî5A7íŽÖÍóÍñÉÙÇÚ¸ý´%ú¾/úÑPò}Oò£}w¬½È%D ]¹äǵ\^–óÕr×sßÞÿÀ“œNõdÐ Vñ·;¾÷~ãudž†éíÁû'ß¿)/'«åëjþêñ8œ¯ÞNfe×ýG}6ëá–žºÿ½Wò› :¾ãÿÝ7ï›÷û\›R·•Ö;üº‹z¿uwmá]jë> ¬&¸¦Íbr²}¢Æn/vl/&ŸìØ—ûH¡ÂC® _Ü}3ûµÞ”k—€)’? 7ݹºf18N“V3]¼½ Ö™>ãdgO?û?7éOW[‘ðfq˜†fK{“}öà6±Š^¯:Ý1øc<'ÞçÛœNÇÑtËÆ‰@·Ê›tŠÁénçb`õ—=É}Ž`îˆØV³âÆÅÉÛc¯ÃY§)žøéðp½ük˜¤gNzf‘çÀmkØ<ÀruÇ‘ûΤðéý¹w79ò[mbt¶0švÐùWœÙ6>yÜÞÞ¹…¡}të¿~ý:ZÖY=úš-/@úëj> ÅJ^æ³Õò§¥ÿŠÄþµ†ŽF±ÑN#®‡oüØúe5eÎ_ű,£TÞƒëVúó’täñšùJbá[G´ðoXâÛ¬+xçºZëÛt\N§´Õõ7:³<ñ,–·nÎÓ¯Ë܇°€¢Ö¢G¥^®Šåé®’Î4lÂÁ¸¾sþ†ŽTtÏì ýì#B#·9¸ÃÇÍø ѵçܧ‰ˆnô°„{'|z¨R4H;‰ýX:«:endstream endobj 62 0 obj << /Subtype /XML /Type /Metadata /Length 1484 >> stream GPL Ghostscript 10.00.0 2024-08-17T18:31:12+02:00 2024-08-17T18:31:12+02:00 LaTeX with hyperref A Handbook of Statistical Analyses Using R (3rd Edition)Torsten Hothorn and Brian S. EverittBook endstream endobj 63 0 obj << /Type /ObjStm /Length 2413 /Filter /FlateDecode /N 60 /First 497 >> stream xœÅZÛnÛ:}Ÿ¯àã ï7 (KÓ“4I;NÚ¦s×QÏ8v`;ç´?kS’-Év¢\æ†-ŠâeqqssmÊÎ0ÁœeRGæÓÒ2ç™ñÈ ,(Ç\dR8Í#•ÀU2iDd^1i)_3éñã “Qæ-SRIæS ™Þ3e®©™VZ± ˜ÖQ0dikúbÚ Ã‚f:8ÉPÅY°Ì 3Zá t`C`Æá'DBëš2^Y%®¸‰ŠYŸ¨™Õ`4ÌZ…|ˬ˜è˜ õ<®Ö°pÅ8bd6ê€Aƒ©(!‘B)Žš9eAð:cÁ„mN ¢ ü9ªåA¢ÂÜaT2‘f@Êy~¤ýH©À—öH€H%1,¶ LQap$À‚” A4(1zm)tšŒ/80J¢¢)Ó‘úRšˆþooß2¾›Ïæìwf1õ=ÆÏ¾ÿSª3¯Ì•Yª9¾Ø9ãÇùÏ9H*ú¹?ÍÇsæ‹»Óá|”³·—ùå¥& ár!¼ÁW!Ýú°‹æO›»û½NcA¯nó²3Õ!}‹ R[Ï´(¶R+åâWÔrªçÕÇŠ((š€¼µs¸ŽB˜Œ&c~ÁsžšHÂáú×íu>æC>â7“än!$HMŽòËy‘š¦ò¥º˜òŸóùõ4Ïùÿ“ÿÚ 3bÓ5ãQñÂS­QV´M»e{uÛ~ƒåO7˜7?+Ù3F-l}2½È§¥‹#õÅwpSØÔùBƒ«Ò#“WVe2‰pm3aj"ü7 d¼—R•`3OS.|¦áÑ!¨3£iêc†šT~±‡ãÿV˜·ÆãÉü‘èê!"/ȃ ðtZÉÌ`A žÍ Ì\k‡AÁòT¦âs°‰„®†ÍÕ°i™yO‹…8v6i¢`³!3럊ͽ̌¼6º(3¬× œ’Óé_Ü &‹ÐXÚ©,@s#ôÏsxÄ·Q¿²Ñ)e³Ï‹q`0 ™£“ %²˜BŸ.è–:`ûðôˆö¾^è¸5Y¹âB[Ø®;“Õ«Ášs¶)1Crš w)ïÓ²ôصÒr–•ˆ\ê€:]Õì2 ‡P Ž\…,;ía楯Ò“_¥#«Ômܸª ìÐUe°¬ý¢Œ§½2MÑg™6’ùª®Õt*Gé ”£ÓfŽ#ª‘UCÞ@[ChÔl™Æ®¬E½¥‘}Ûþôqûˆv¡Óøô¨)¶£&:këhfi¡Ýÿ¡2Ër«5Ö·±¹åMOŠüª·ã§ž­?*CSÍ¥@—KäÊH”ï#…怮h,tZ´Éveq(UÄzJµWGuR°XÍIl/þÏâæb¡œB¿¥¨€ ¿Àæ]¥ÞàA…Çd ’RÕx•Y 3†Ó ª«û|:4‹­Ç»°iëÑ@§.1!è$ÝÁ¹«6ÀÉ¿.:HmÚ¡–èŒÎ<ףЭñ=‘ìÍ<Ö÷,ý Z0ô¡ÖÀì KvoKx”_ ûµŽh3X02 ±vø[Ê…^>›ÜMùŒ­&Ó“Ûþ O¯ #½b(‹'Z”¿#¹»ÒnúWùNyƒ§tŽ^Î>ýø‘I/) ¸IŸQðŽèE…´®I¶“:a˜b³‘¼4_ä6)¬¦|òÅÕ•W_^Cy-ú;oïŸO|A²ëI.I]ÏásÜd©°˜1™ÅÀ-ä Æ>¬¼†ADìÿ߃<€ÎÈB·@G“Àâú«Ð!8‡Çò¹‹Ið "ÑÄe„ð—*ð¯‹NE!8D#*üuàœ™Ur¸h2Aï¶(5³sˆn$&ÜJõÊ褎cÂ#F‚rɹ„ÖÚŽÝcZC×tp]û.ÝêÎ^ÌAmØîuPÏqߪ £Š/6*ó”QmÚ®“U `î¬åN$ÝêãÄ‹ Õ?a¨ÝB| RVc|£!™Ì&'.á¼%,ZËQ`BFÿ-Ð*fª«ÌzÎZªMÏz«ã=OYoN>ZZ±q –ïå¶ÿuvüÑÉöÙ#ŽÙ«óÕZ(B/ÏÛa¦ï|š¡Ò·ò)јDBuÒN‡trî”X c3ì‹:‡¦£æI:D¾«|áþw"E:·í£WýÍ`ùb¯Mg×7PÆ=âYUŸ¾{æiwxy™ÃFÈ(ñ¢°=,J>¥9 oî ‹Xy(Ï`·Åkÿêá~Àÿ$P¢2endstream endobj 124 0 obj << /Filter /FlateDecode /Length 3829 >> stream xœÝ[Y·öóÂ?b¤ÇÖ´Y¼éÄœØrñ±y²d´§ãÙyK‚‘ÿž*’M{8»³ŽÔâ°Éb_}Ul}¿#,ýÉŸ\ÉQ‡Å«#±øäÈj7* g,ŒÞ.®Ž¼´£ ¡Œl޾< ÂVû…³ZŒJâ¬2â!ŒÖÄYFá³f“¦>G üѰýŒqø«oö›¤òÁÎ0¡ò—É*?j˜LÜèp™ê¤<ÐÌÉ2•Ý&‘Ønz UZ¡d¨.¡ýè5ÎÕ·Ñé2B“Åââèû#ˆZ_ä¿N®¿?>zï ia VÚÅñùQ²,¤—£naÁµÔâøêè«áË•¥A»á~¶£Aj3³>Æa´Ñrøb¹RJvðËoŽÿŒ›Zà9%M»­@ÁhP +ePÓ(Á)nó­ ½ÎhaT³7~¸Žû)mõpKÃ*„aø‡!héÝp·”ntÌð&íì…òh¡Á©æµ»%-¬}0¸;ÜDùá*+íܰ¦aÂzšM Aª¸ŸZ‚¶×ñ¬¨+?¼?í¨øŽ7Q8émîi ƒ»8?¼Œ3@)·»2(—Κ½ …%; Ÿ0‰Îhr ¶È‹ÃƇ` ÎP8Y{ƒÏˆë)>úüˆ|˜ÅƒÖŒB²x˜F(öźçn,à’£Ã%C)—bÁ$ŽGiôË•ø^þ”Ïé¤D…¢7j4r:šB>……á±]®p†!'…°•BgS ÜpBÈu•Ö p“ÃzÜ|0ÚM¨¨ .|U.Ž?=:~§•R))À0º¤µ)ÀœÞª`RH)Zg·D‘P€!êyR€¡mÁewÇ€ ÍkÙˆÝ)…("Å— ¸Šv»“³‚ڳ͠ŠÎÇ粞J[‹ÿJj FÒï D#H/LHçÏ.oéá;²Åbt@ã•T6E‘Ũ€¤«´Ö;ó†V@$Cl8´ÓÉžqj=Z–ì-Œ÷éìAà™3xtý‚-"©•Ó•–D·–vC i<"ªðDq¦l¸©6`GºªzϚǮ‹zY}4º9èiÚÚd{)Ô°c.ÇÌ…€94 HðñE•¸c[€0Í]ߦ픇ÆÅ’A%BÆzf ¨yÅ\â:)‘»Õõ$¼JZI£í²)deḫfpü¨Ò"Bð<C è,+) ¾˜0c âyÜÀaÒç:»¸g¡‹Oœ1L«jF‡ªÏ—“kP(7iv„FŒÀ÷¶­uiÚw¸`.Ä9/p{H@?ËÆ^/ÿ9·˜AŒ@ÄžLö,‹ Š»Ðeõdz4A#ÜG¶CÕ‡6ØHHµª¸m’NÕÙMMÖ× *’¶ƒB:°IKxhl°k1/¤l°‡áÃ:MÁ:I×–eºDqUáhT„€¿'@VÄ\ÝLc5³XÕ‰_ çåpD'`rM&Ûm:†5zÄ£pt»¯~•&H¯"Ó³aøG]íEñ•æ5J”ÆXÇåmUᯫb»A¿>aá=OÓ'½¦5æÁË|w²ÿöÅ’D˜7ü°4AË¡5Ÿ–>qX+kŒfbºBæ†,TNõW«#µÚO’¡TÞk°GG–¤vXRõm&÷ÉÌ‹Aå w”íuZŽ,~Ú…öfªdØ®p:ìÚNù‡2NÐ{¹Êúe$þV(Y'ûäºtØÅùùÊ/êà}µ ;F¬0ÿdÚ¢#{|Eu¶RMú` Ê³ô^ÏÍ¿¿ŠÕ½a4˜9J0w³YµÑŒ³AÀÔñs5­Ôæ Îìj×®_Ü)ÁNƒT^„IÐ˺n¢Âè…·Î\Œg9÷`÷S] Ù²~À £áÌÿ&½ç¢¥ÒÕ|á1¯|¦«Ñ)ZºÊRd­‡Î²ÈHçæ5'P§Ê4ù·}³`G¥ Ysh>êÃì£öTQ è Â×%öK3¢ÏºŠÁ0ÂX3R 7‹†5S.OÕÇ·wy°m1‘\Y•—3þ²,”ƒEȼk,~xŒp¦µŽ<¡=ñoib, €5 ’•øoôžC™ås0"1æZ¾M¯íx"óZi=:Ĭœ~ge^øC×µN»˜¶Þä“ g=õ¦xêj¼”ó:á×!Sb¥¨ §|*mÐû„_4™iÍ[Ñ`!8ùÃ^±£”¶B!D4BãŒ¥ÓªÙ`•f29^ý_–é/EÕ] §e)30ÞK­•žQ2e;{¹ÑiW«ý×ÑÓ©¹7œ3À 5M~k^Ì4+ûÑZ °åШ 4†(ÎA²À²XMM³3+‚¿hÞ XË¼‡kéƒË×G~ì°®.:­KOîˆP”0µ½ÇѰ¡žá32¨ø¯WÒ£¯KÛ.ÝÕD®^7È”°Å;Û$ãyÉ1áUª9¬ ®!ˆ$Š¡{ŽpPÅ¡ÉM®80ó£t%o_Ô|ÆnÍÓêuÃ~9ÉW¨'äPLÔêX:½IƒžÚ ÐbÞ­íÔ~Yìò£>râ}@[V¸J{(0¼šy9‰#YB¤JŽÖEÓ¬¯§ m‘mÇD{»Û>áZ!`¦õ\°<¥p¯»K3B&·ôlY³nÌ:ýŒeÈ0±cÝ6åþ¤c&ñÌg]«uùb5£<õ?€ØÖM¿[®Œ¤î4L¿-¿¯êàID,›EyzVgÂÃcy:x¢9tbèM”‰þЉÝÕƒ2"FÅžÁTK¦‹ˆ®Ò¯Qú¦ ž•§ëòtQžîÊÓeÏL¯ç²ÍA–¼C—;“¶­Jí#‡¼Î$dƼÆM¯ÁØ%NÇ÷jáuçD7åéÛòtúˆ¶n;Úú¾§óÎ6ÛòtUWü >^uº~TÙåõÕ#ñqÇyxûuo§Ç¶÷‘í_”Á7Ýík W¯cðˆ‘å©K¡ Aêž+©³ô;]æp÷JÕ‘Öàâ_J„ˆÔý|Â*ÄgÓk…Ä{Õ²o±Ä$¡mÙŒog$›õlÒ~ñLÊ)“OKïKe½­·ù¾T6‰˜Wtì¤Ý~“aÖš4³=ðºs}Bz1t;~9MPüª’'5Nš†yÃ7´íô憖6%3Kí xwN àv‹Æ‚(ª­zÒ%LÓè#Ó^ÖV9¼™B×"BÖMñÔHö…‘@¹Þ_ÅxêÕi™µ+lÿýZ%wÖF &.9MÖäøÂÐw3‚†ƒ^ÈýÞ‰¿S·ì‡ëû%oϰg²)ÒYÉ}.†‘ KÀ®þnóqïõV’³½¹èw8ߎ£ˆ@°gµÓ´šóûÚiôé7"YIžÝ} U®w!ªÛ d«(Bkúê‘,ŽC&²é‚·-aj×%õ-ŒËÍÍ |C ‡ß´A0§ˆ{`•:„#^>’€{YBL†jºg¹xzzYžn¦ëÎÛõiÃrÞƒ‰”åÉ󎌕TŽ\Óye ÛÎl¿5O¢eËÎï÷L»OlÉîiæXL¥lÓã{=ÒÙû™‰Áï;©eŽ5«ï»+õIÅjzuUè+­ð!ÑT;Š}WVÔ¤T ã Ò]=› ÷ }ºú4ñ“˜>Ï8­µ1›Ð4ø*<œV˜ªõ‘Ö(‚iýÔ½F_c¬Ò™ü…4«.o²¢½µ¹¯Ä¤x–&ÊíÍ!h?ýC¢¤·ñëký†vü°nySWj.‡É¥dÐTÐLÞ·{K¹ï¯ë?ÿê@auï…‰=àÀ¦Mž™»6éBªãîè±æi´¦½Kž¾0˜7¿³Ÿç,bÃüŽ!~ƒ ÂMÀz¾tFúF¢s}Å·àÒÝ/'Þ$ÙŒ7LÍyáˆÆw á`r,%›Ðã‚ÓìUüŠì\pÓá5•Z|úGûyT%xëÓ©c•Z>ëµ¢8 û±rX¬>3½ËÔ±E×NÈÃç>íȾíˆyÕ;Y—‘Ö™gC^w»9OWÑWå©6I¿é‰SyèéϾµêlÝ4[áAÛÈÿ{ÛèÿmÌ~ÛÌ ²êÔ,½‚)÷a¬ùb¿žØ X‘Òq䬯ÊÄ€nõs ×C¨®œ’Oí+ú`øWì‚}µÔ݃‡¸û –ø ×N/îQwoŽª‚ï{&cKÖ×»7]< ^H*‡ì¾îŸ.G!Õóƒ®É·S¾|ÄX½wz¼俤utöé¼òº«ÒóÎŽßv¤­­ù©âüª<½:påÞ…Ô;@bzF-Ôa}ÛÊë ,UW’n§EþâU• A—ÿUöùÑ¿ïôI/endstream endobj 125 0 obj << /Filter /FlateDecode /Length 625 >> stream xœuSÁnÕ0¼û+|t1»Þµ½{¤RâÖ6œÚÒ‚èëSKBâãY'yy~”C¬Íxwfgòä!¢‡ö¬ï›K‘Õÿtà߸Â5RE_sÁ(Å‹êVypWN¡ÆÂâkaˆ” µU5–<£2Ù™;СÐcìcîæå\í«œÌ;°•XsGj-ôœ Iä¢'Á°çt­…ÌÊi›v ÔMïž΋ôëëfçÏ&÷êÉ[·„™ýtç–-£G¦X }ûæ§û^#%‰8¼ V@•> #DPÕª5ZFÿ›Ïê£æœú|&ä˜mÅD²È’Ði0#¡Å¬7mžg†–Z^6Ÿ Qœ5 ]‹9v,?6ËrT±ïA@RVxâðeN> stream xœ­XgTTçºÞãÀì­"ˆº£¤ì±ã1vcMr,V°"*£ ÒÑ¡#M¤33ï UaèRGª¸± ‰51׉I<š˜X–cʽ7ï&çÜû h’sÌ»îºÌŸYk³¿·<Ïó>/2Æb#“ÉÎËgÏ2{ÈÎ_ãz7X‚•¬,Šßyc®³}jsj8cþ›¶L½<Ø!d…c˜SøÊˆU‘«wG{ÅìñöñõóØäºwß°³ãçÌ}gÞü 3Ìxf=3ÙÀLd62“˜ÉÌfÆžÙÂLa\™¿0[™©Ìrf;ãÀì`V0ŽŒ³’YŬfÖ0ï0ë˜ùŒ3ã¨f£eF2£žyÍŒaì˜7˜é4lÆ‚‰gÊÜd§ÍÔ,—É·É[,8‹ ËE–‰–½ …žÂs ÎÀý8Øwð¹!o ùlèò¡«…VŸ [5,ÞÚÎú¸õ ›‘6SlʆOg;Ú¶jÄàI#DIcÝ›"¾!J®e2inï;|rU’>b ’C‰ßó1éñ:Z³_ñÀ©Øcú6Ãq耳ÚJÝi« "›âz½!ó²å–¬É– U Sæ·Ð­p LóÁù,9/mâ“K⢰–΂(ÉM²Ç¨À¨KÑx…¿~ȶy­W ºdiХн’ ÞJrÅIÅÖê/Zè/jkû¯vBå_ˆ§‹ËÒç ¤fŠ5é» ­Ð—´eGXë^wš`— KDŽÂÑ…ãåM½ËyÕ“¾ÓUÒío öUv²ÄÑÜËR(ƒ|m©R`?×—ójO¤.¾ª¾©ª ¸3mk‰ ë¶u‡ÇÞcuÑJëÞ\Š˜ý]|Ï¢ý»È±ø.¾…,†a<‹ƒÉB%ÿ‘¼ôàö&\U7ºTzæm"‡ñ)›Ã=‚6;«ÌEœ@±Ñ,âáó[Çã`QÞËb ¯RD‘×öO%‹›ˆÍåŠGYË•"6©Ë3šk€‚£BvÖ‘CÙ™mÁPD±aÓòé­‹{ë*ýr½òT‡]Ã)îò§úÒûÙk£ ‚>ÞQ\%dWО×$Šè*JCúŽ×)w{g` CTøj`åÅ4ðȤ©ªÐv2ûÞêµûÂ’[î‚÷Uí×pÎÁ÷mWzîÞÍï„/á› åä/D3±dk÷¦#n”5*2¼F"HRöàöo»:ŒEÊca—Cr;…E”¯§µ¡M†ˆ¸¤LvE9n“Æñ8L$Ãp³J¡[L“38¿«¤†%̨??vý’p^åʺÆù«wÁÇ¥‚uo%mg«ˆâ@;ÓÍéïÉ?þšÙ4½=0üûÓ{B H:<ÙWž˜À6g>¤oƒ‡ÐÜßùéØŠé¤õÏž°”Å´á²ó¿‰/ž“\ø—Øseü]Ö®Ó•÷ø=KÖþŽÊÖþ“àgÕçàz‹ _©@ÇK‘uN…V¥ÄЗŽ{ÁÏ‘4 ,§i<~šàE?3À¯?Øç}¦P™Î| íôóø´§Ð_Ǧ™Ð£§›us0Î1„yØÃ?]vØ’ÑÚÙÍÑ5õ ÆŽ†È^0fåꀻTí¾RéÇ’‰2ÚÆs ŸݺÜÞÜe¢`ë#¡CQV•eI†D½R• …`äˆâ?oM¤Ú+¢½ᘂjƒ`-™;ñ3ýC4ðOpÔáÂìÜ¿ƒÈi½t1Û ÁzsüTöóuÅIŽSÇ,EÆò¤¨Pë¶k½Áõ~óë,Ž".ãȤÑT±íTlᔞjS­Ï0$äÝA‹1÷ˆåN•¢NÕP Çà„¶©ÿÄÊeÂç—Y×Þ5ü€Žö·£ïY7Û-–‡·©/‚{~íqú”[Dæî ÌÙÆ7v¶iÔ…øÂæ~¾ìˆ÷‰ ÷_* m¥ãª’¨LÒQVЬ\r”ó¹%†Ü«À‰l˜V­ ƒ ØiHÈ^êÒA§œO‚o¬Ç™)v˜«°V»BÁÍÐð ‹3úÆ¥D†¯9eìî— I Õgè‹rÊ‹ ‰k ¯ VG{«Zvÿüô ñ(mÁ:5mÚd” CÐVŽg¥i|rJbDp/[mYõ{d̼Yd,™òì]zìÍz´È?r’â3t3„Ôý‘k—ì-iiÕuA7wpøã£ùZM±ðÇ¢šoq3#ÿ¤yˆ¼À÷vW³Wf8pd¨ý»d ™öý”··Ö6)½X\û;Úÿ“%оg|„Ÿoð.ZGuUBKb\¤³» z š‹Ú«Ú¡Lñ5>´¾¾T,Ö5ââŽà©\šŠj¾*W_ûÀŽª™„Ÿ=—f4é‡yÔž¼Þõ“ñh4¤ÇjÓ¤+Ã]6Fí¡ñXÚ^T6ZèÏd"{¸§@&D(­ñB?l1Ä$û™ë8BŽžT…‹S~RààÛúüÌ,Ðe I©b!”ólŽ®®k0¶wøw9ÌœèEÂäª äç?Ÿ5’†ì4á´ïnš0¢]VMY- \޳¿âC ¡åp*òòõúÂTSÌE*ëÖn~q&¤9)_Y—Ÿu$K§Ñ¦CVS]]RZYßìï§ ðöÔnÏ ¦ Ûàø¾géžcʽ{4¾Ô[&¶·Å¥m‰€MÜŽ“EGœýÉå8ƒŒ ¹¿ðNpåô¸|ã8oß.NÊ.âÁÑ»Ë;pÛ{Ÿ“'/€åKcinò«Þr…ûžmÁ‚ï+þH¤Óÿgs‰u´?ž€³dO‘‘c€ôþ„_ÓnOOÏfÿÎSÓ ¬#c›ìõúS†¨ƒ3ZSÿ‹œ%{3ã©¡ûg§ìƒghx&—ö¾´t:]d„âݸ³d#N¶Žs‰Å£GM ²ÍÝ”r?²"½5)G{*²d;xq;ö¯\¼‚Xñ©‚î(dG¾Èkúò!½¾¼B¨­½àñij+×>ù‡\Š>Ö¤Üý¡÷¡ùÆàÜ€¼Ä¬€Bu ÉÝ•ÞBû22Î'[ÈŒÏÖ¿œÊ/ÔÝÌâD³>… ü/Ï òr?2kf„f„SI\÷R5ŽVe¤jÒÒ´:%Q’Q–Ò&öß«\/LSÝ/*â„cXScaÌC2Òì’"à€`.ÛdžJóN¡-Ò3l¨_Ðf&R3w˜ð‡£ôÓyï(éÊA_™Yži:¼Ë¨kЩ´~”²î¿þØÊX#µ¹º* è ’ëÎ’·§z." ß%HËþtÞÎ`É›?MÀå8ãî/8ZèGôàü<þM¥Íé5PätR3ò…À›×’Ïh ÿ»í%FûqÚkø§Þn!Bôýw3ƒÀ¶y©×sÿO Ñÿ Öf½ÐÚ`|Ÿæ%Ò¼Rt[24ZHÎ Í ‡Jd+2Ì“X*í_JÉ+¹âÏøþŸ?a‰‰ªÕs–²-õ¦Ún:'Ké‚«Ž£ûf ÌŠ*NÈ6ßÇMîg%Úeœ%Ç}_òþÍž/yÖÙÜÜIõ]Cû&ž(“Qm*ÇOzå|C:«×ŽóöZM—«ž®/ŸX¨Ø–ÌG`Žç ´ ˜e޵þ5™dðkœü×8<Ä›þçg–B*¿ÔL0‰²Ó8‘ÚA.¹bÝ4á©;Æ¥§Ì§ð¡µPÔT~tµ¦²¬ô쉲ÒS§"œápÐìÛÄzÜâ• 6tÇW6´•Ÿn­òÏjêZ²©½—?Ùks´Ó²™J2‡ìH:H“¶‹‘,Ì×&v6P×kÙò7TšZeô»Œ®{Š_ñ·³–-u…iK½ Ë”u9 r]Aõ»ýC¶-¾í„–8ñö·ÿqqß×ĦV8Svë<âîP3e5Þy¹£ª1ÜÔUÕpܘܱ%G¨ol͢侢wH…-ñ^ʘ]áZ_m˜6U±\Ìa8:P[”‰’#-n“YS•8‹ÿ\\"-RTérƒãÒ!>I —úÖXª¨ï”M5ûλ›ípZûË»„MiO:‰ç@n¡N4=Äáe²‡=¸Ðl'Hz¾8#GG­¾y-ªsµù5ZHOQîŒÞ™â.àQ\fÐ4ÀÅCBœ’´³û!¡"?+37[È/®ï¸ÜUX>S‰û” Þ~q{iów—†wІò:hæz<‹ÂãÝ’]Þ»<‹Öóµç·ñu´]t— Þ­Ûç!ôdž?›ºÑ¶Ê\ô·P‰J9:I–aìþFòU›T›b¤Û~wpèÇ!{³„ÌPX T9whö¥û†Eøöÿ3!Ñ(å -­¾Cm‘"=ååƒr¸¢fÁSšé‘­ÍÓq*…?ɵÙMÙ­…ÅÙy_ÂZÇ×N35Ä–¼ÄÍnÅyÈ-³¯ =,ÜÊÁ¹§®õ_Ò)Ý¡É~ƒßÈñ™Äò´ÔQaážþµgæ²hÚæÊM|„ûÖ{À,ŽX>ZO—máæ#Z@ùû§üË2÷g>1w_)´p=§ªÎ^ïºec _t¼@MáÿkUKXS$¸Ù­Þê¿j‘ׇŸÝín+9" ÇüFjiЫ¬&í¯2]b± Ìj0X «¡`5‚aþO¿ÖŸendstream endobj 127 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 200 >> stream xœ½Bÿ CMSSBX10‹‹ù!ùJ‹ ‹ ›÷?¿¼R3oøˆùR‹ ÷¶Ó÷uáæ÷$÷Ÿ÷øw÷Ôʚ걋÷÷Yûm‹^û„g€füêg–°»±•˜®÷›÷÷8û³™s–‹¡‹ÆŸœ‹©ü6÷õ÷u÷÷ ]IP}Uû 7Ÿ ‹ ‹ ‹ ‚J&endstream endobj 128 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1769 >> stream xœ­•kTçÇg˜™*!3©¦œ™rŒ¦ÄÔ( ‚—˜ª¤‰£èr§°Üv¹$n¹¬Àî>»Âr_aY–ë° ×€å ZŒ ž9)m‚95Ml¢ô˜hšw¶/§§˜äKsò¥ói>¼ó¼Ïÿ÷žÿ„« A’$´ÿ-¾‹ok!Û¹×æî¸»Ö{±;=¿zìÚ£ï­"ŸÇ”i¯ff©öfGÇÆ%&ÛD¯ëˆßˆDNø‰@âUb7L„/~Ä£„§|áJèˆÿÑä.þ.ŸPÞÔe×]ÇÝv¸ÕÑ¿¤ÕÌzÆÌôJ:iDÉËF"bÅLSÒ먔ƒ/ CÕ¥8bN‚g .@›ÃîÓØ«ÀMÉü©òÄa·0Šá•L›i:@„qhÓº¯™ßæÃˆ€B™o®_šœ´¼Êãü={2ÁÐÉz8ƒAD×mhH$?‹nݦ†/qJ3s²0^Xè`âu…A|ŽRr§÷ù§wç?Æ+ë„;ÖëWáÏì­>Á?çñn|ƒC&¦ÛTq†Gžô½^¿ðàƒ˜~…?ã"õÝÑkÌÝQÿ]ÛC_ö<$M¡]òµ‘³¨s–’"Q2‡8Ÿû˜ÅîÏzcOüø½ˆF+æÿ‰¥5Åü{Y×# ÁaØŸ(t¥>q¶èbA®5Çz¼N ilTfÄóÁý÷Ô|©Œ£¾¬tÀ@Iž€½˜<(©.7›øò 0ªï?2 À~36ñÑxrWQ•àH7צš-ð>ëh:û9"Í›RL¼Q['­r«Üæ*Ùß'E`#ïO#/;…vJ8ä-bo´OM~°q³ŽÍùv0˜úPuaª{r†ÿ£:Œ RFÇî/xg¦ìߴ쟸äߨ%})=àúNVÏð6‘ÎÒo%¤Â6È2É€¾X\ˆÇP!ó§~kºÅtS^‹N¸ -AéªûdEcØúS§<¤ºÂ&é"i•T”ô,úŒ«²7 _5²"£Ôk ²á8]º™Ò—§BéKJò×ãš5Øõ”X åkÛúÁÊ‹L¦þ ¤C2è!tù“KP]Z›‚Öá¯)טJj¡̦Švq}lèíÆÖ›ïÛÈ37бéY;%=lœ¼ßƒ‘‰] K$°Ûö…‡(5Í- -ï&Àq¡yèœuس—ã¶1 >ª{Év±;ÿ‘yåÚÈà¹F¾ìˆ#aئ ËÇÂ%õæ,­&.œâCÎs>ÉQ‡õžCkЮÚ^/‡—<‰ÏÙPÒ Ù3‹¬Sº°9ƒÉ£zBåadŸöÁãÕw|Ëì™ÑF‹°›AÞÕn"³G[q^þÅ„,|ÈAè4ê¬ÄcÊCÀf`¢½9S;hïlŽAÇ(LB¢úÚ·e4y²ú=…v”Þˆ‚–òC;II«ÑqÎn‚Ư¿Ä`úù§ð*¼æëg…VŽ ¢É\RV¬•¹ë… ÿ½ªh`£7t —…FÆØÈU¢-·vÀ·`ÆÞÆ$ö»L^”õc±ì1!šÖ€¾¦±ðýî.4ý_sµÈ}°ƒhõ<‰Hn ´Àµe7§e¨³ÓS[r[Ö6;y*#¿ZU,#oý!;ÎÉk`N/× )-$WF—-:·´“ãhf‚B±’÷Vb®²\šú+ °ã­QfÞ”¥Õ7)˜Å|Ñ•ÂNðÉ¡“Áµ‘°SÛ}×G4DöÅ=±=E7òz´5–â÷TŽp8ÀþæÍWûk†ó¯•κ •ZÙ¸‡ £XJ³ÑT[Á—U6õUžê™Jº,r»ƒ\®¨FÒ»…øEMlµœáAt§ItmŽrz;·s ótÎr³Óä[Õ‹|Á*Ó«ÔÛtÆ|P± "“>AIw™îËÿ†x]K °œ$‘VSU}Y¥I„F T%X°¯í‹ÀçÉOç)´ï<×®jÊTæ¨2S[s›ÛíM¼¿ÂÕßæþ3p_î+ÁÝ“ þ ü> stream xœUŽ» Ã0 D{MÁ ¢ÄŸ&Hd„´q‘*ë',™ ‚‡Þ{SSÝçØÏ­4È O©t+Æ åF®Æ£­ø¨YÁ«> stream xœµytSWÖõ²õÍ‹l`žB -„ÐKÓkL¯Æ\pnØ–‹lIG’{/’l¹ Û€MqÓ! @¨&$´I¹Ï¹Î|ÿ•d“Ìÿe&ÿš5¿Y‹ò+÷œ³ÏÞû (›n”@ Í]¾jü8ó¿yaí¯òö$[è%„^6ц÷¶G»û¢~oéC™–9mŸ¼qnȼÐùa ÂF,’.Þ±$Òci”ç²h¯å1[?ñvöYáë·jÛjÿ5kƒÖ÷ó~ìØÜÇŸ0qÒä!S¦N›þáGÃ]gŽp9ª'E ¡œ©¡Ô êCjµ’z—ZE §VS#¨5ÔHj-5ŠZG¦ÖSïQ¨9Ôj#5—zŸÚDÍ£ÆR›©ùÔÔjµO-¢S©%Ô$j)5™ZFM¡–SŸPÓ¨ ª7eGSoQ}('ª/eO‰©~K½MERý)Ê‘@ ¤Q4OqCm£ºS==¨å$/” ¥  þÑM-ì.,¶Ú¤Ú`Û Û6‘†þ€–2˜Xæ‹îó»WöðèIõÜß+²· ÷¦Þ/ì6ØýüÖ²·nõñîs©ïоš¾¿Ú?ôÕ/™ÁêÞ¿ÝÜBÿ`‡i¿8êŸ8þ6À~À¸Ûì8a`ÜÀ—ƒ²ýø·2nw@2HRõÎGsi°~ð‰!6CV¹=tÊÐŒaëx…]{˜ÐF¿X'¨mwòCÚ—±©ʬXˆ…<5{u|ï½ÁkçZH—«÷kÀ­ÊZÕ‘^CMôÆ0c¥V«ÖH¡þ¶DÇðûê4ÒƒVCH7h/ÃØ‡TÍJó-Ñ´3ÄeÉêlàsYd‹oÚb©ÈŽooÛ,5Ø£n—÷¥þ⃨zÊb=í*ƒEäAõ꣚*¨$ïÞm}÷"” eôÏWN^8Ÿ·v‡ãþåµë! T»´š†û` lˆ+ñ×­„9à⼜ßxEãÁ2Û@Z|ðrvÊ&‰]û’•‹´×d$mèôÓ9Ïû‹yÆwc‘Š®Ódµp¨èiý”uK7MÅBÉ£$öiÙ¥ pùöƒ»øm®£[`…è†Fæ+騠ů|•²¹ð@~9>|ð÷o§_ÇÂ|Ér|‹Å}E.ʬ: ªD+ègÍcÍ[?}˜ÄŽWÈŒü8ƒ º íjòÈŸEýF¼Æ½qßÑX€ûböç÷PwÔû§‘˜Ã¡Ø…u7}È¡°p`/¯8Pu¨E¿À~i¥{¥;¬oð…µR7©«ÛöÀX*ß.0 нûBþþÛxîLz-0&:Pé¥ @X© U“ìÒMÅQ‘2y|š\‚§c=^Œ>MÉ d8êé9í«˜[Á¶¨=4æJé/![VŠ|ð÷x=Ý¿¨A{…œm/\…¹,ôNJܽ´–¶k÷‘šÚß7ÙŸ|ÉÔ‡û‹ŸœDß³Ø MÁãÑ'hêH‚˜\ÈŠ—Áv££ñO¨­ß} ŒÃÃuœ&…ÀƒV/A‰t dÉÒÒ !™ÛèäÓ°áÈ{à(~‚ñd<»“t·âu&4ÆÀ;6‡í__BÅmýÅOÑl¾{‘ÆÃÌȸ’%w“ˆïtøuAl·ºUS UpTYÿG8ΠsèŒØæµ_ƒzþü#b‘xô3l#? n‘RF‹‹XN×=\s˜«ç&b[Ü{þT'/o]Sˆ$NjБâ¤w‡»Ï‹Ÿ ëÛg±t¢ºðÔM„f D+Ð*<dz$¸ßoï°Hñ{¬@}.ú .IÎÛ¿"g2Ì,Œröݲjåp¾¢3òÑÆHýî6TL:ïßç‹þûHùSRÚ{œ­øiu¼çùbfÈhü6îût8bHž.CÓ~C £E,LC@t°4<>. Ę9Ÿ<@4êy¹íÚíæIëH¯Í ½vÖ„êv Рh“½gÔ…hÐM¶+Îk¢f”g& Ãc#æàÙÀ`ÇζÑ=¤ŸæL‘Qi˜h²,p47¥ˆ¬ ÊŠÐûPµ¦K£(Im;Îvu¥?°‹n^_|}¿¿øú}ân4–˜«mañÁßÉg¯ºES û öY»ƒvRæ5HÐXÒ´¾ÎÒ€JÃ)T‘ ÊëwJùµµ5îœøÆð]çN*ú ³Å„YÃ\cDCBþVû ¶ãвпi•zíMÒ(Mð¨³Uüé1PP/Aªûô¹]OMô›Œ2;î%B£Á¸ºs$`;ž“ø)eöuưOQ´1âÓþâh+ZÇÒîÆÂ\fƒŸ×Ì©¾§¾‰âªôD`â!%Z‚èHÉËP«ËÊ84¥e<ªôÎô¡/¾:´+!_â_»5Û#›ðæê¼E§ÔW6ÝGÝ2Æj8uR!¦2Ê$?YÚ.U ñœ"-1)Má]í ;Iõì¼­ö+®’JÄjC«å_Å‘ü¥¦$ 3ñïZX`Ê¿úþâüÃóltŸW09]$Asè½éŸÒñQ­QL_­™tjé‡Z™d)-nÁ6Xœ¼oªGG /l¬;ûË£ñxÄ¿¥…€ÚµÇG‚#þOÁ°ö@“ðD´J"ÞynWî>CzÅAfD#t(Ø„¦é?_BJøa,jÂCѲ0‘jzÐ;£Òé7¸†Æo=Ih¸R}åw*l íäí³•pVÁýÌ„v›,8h} äÛùlƒ&ïWaù)œQ{Ãlð³DÕÙô8·¢xú/®ú~®ÙÝסނŸpúc `‹P+.ú««!Ê ÒfÒ oÔ8Šx‹O£ay¶&z~rÖaÒÑxÄ›vÁ èI›ΙšÖÒÊ¡o:s$x4=Æ¡1œ8ê$¨®ùŒ±C¿uòÛ B$5ǯͻÅUš#›AâÚ 3:#«¤oi;#SÈfp¡æ3ß"'Þ ·:ÏJÏPXÎ\!ÓóL‚2>NÈOB÷Ùœò’ýÕDÏ"”ÛU[41V=kTåE@$)ÓÒdïâllƒjå¸ÇʽPJÀ¤Z­Œ€ðRY>éò‚@4 #‡Ì8Mj@zNz.AE®ÔpÙð;L‚&dƒFÝ¢h$ûÁÆÕëä á´/ך¿«²!X,ÝçætÅùÁ‹«—¯çIÔÙäu»~ÝTçÉÝ”Þ*¢¡ÁÛxý#Äûzô±†Ujvgÿƒ°¥GLõæ°¤$,)lWM”5¬•!šü_ÊÔøq8Ça$ªMËW™uºj/èÈ;¶«6(Ã!¶wEÕÅÊÜø y^PVÔdœê0éRóÉÁÒ»î°æ! Ö©}­w|E~²Ç¿8dÄi“ÍyÐdfþ„^àÆt™ù#ÇÐZs£bL(ÀPùpüãCû曣©—®y:†îͦ{Uy´£?WxGr2l5½2L.óO;˜Á!ša¯oãÖ½‹73}Ëâ ]Leu©®2?µn‹ZRU8¸•ç¶NøÐâýÇ6(æ+–ÍÞ¶ܘŸ†çÈK.¡}e-L šÆŽ ÇÌÝæºÉ³þȉæ64=“´béï ä‡ñSY´9eg;zGíh¢C¾° ¶Y BïSeF@Ä&&&§à‹¸Õ]ù/4ä\1Äé.Æṳ́œxHp Ú ‘f kñÍõ°§Ó7ÓkaGzгd›¥Ë$ÈçÕB´%°»öì9\Qijh*j1Ã"T¤ %E^§‰·ÂB¯ÌŽ'n>61>U¾|¦ÃÌŸ’Ìæ-ÓŠŠrt–;T‹•±°\Ô!Ö"_µªÅùfÞÇ=7¯\¡ÜŽt¥Æ¤®„hVVX}€T›RE`¨©;÷Õ×#²e±|II;C̳Â.õI؆½ª]]Dk"j ¹L5 Ÿæ.³µ“˜­Þ,ºÜé¶,„ÒñÄH«ÕÙ…U-ŒøpDQóÆk»,Õ¨gXD˜y&¸»ÄFKUÌ"OÊ@W¼÷ä‰ì 8 ¡Þ•žÚUà >Jçí®;½ýׂ+øV„7—¥…R¢9¶„‹½tŠM2(Èá<ó×QÐ!à2Ì2¬ÖÔAîò—à¥JÂ7¨i$ÿ­[F|Á«ch³Ó󪽷ƒºãЍ««µ_Z&Š/ ñ]ÅWtu&ž) P¥DãàŽ³$`äûÍFô©öþ]6'ÏLxLA2DsøªH†'ÛE™/ÊQ7bzD"\ÛÑ;IJHuŒË"å@m¢äLÜhî±Ã 3$¨¢.Åt´€ºÓGïäûœ`ÓhÄïšy˜ÿùÇôö÷ʵæg …Y,þq$2#ûÜm¬eÞ{Ð,JYLÐfW©»À•á{B›§ˆ9lÔœ­9¨7í©;Nˆ¢y§É5/†œ3ú³Ý j~zµílŸÀ&å«ÔQäEÖˆŠ@§*R•+Ô*ˆb:Êþ¢%tFªZ•.çÇtµR@Ü£ÛKa»7zÌ"wü!—à…ø}< {[7C Ðôšˆ\9ü þŽ}ø¢|4ü˶oÑÐy8—â¿Mý@b‡N[ÈMº—m ›‹¿¢¹ü\1ôwŸ~z@[)E\BZt<„1Å‘U5EºŠFŸºuó§¬ÌazFà-|ã¯fˆëHd¢­cОJtÞ<ô=@-/…(]bÑLê…¨;Ïùþ›¿þÃbá/¤EJXTnˆÐD¼ÉH#O4ï°g9Zuú^9‚rûêÖÈëhÎõúV·ÓýÅ¿ÈPšÍN‚çåUêÚ"£$;¿¼z0߈ˆUÀÎ0IrBD°³•…t(/Ñí nR”óäÒ¥±aå’†Ý ¥æhU²´T$01 ŹeYå% µ[#ÝäžœG‡V ÌØ >v3xwHâwFûƒ#n§ °ÀÛéà^ÌÜgkêñóÑ›õqG7TsëªWÂ'„/Ý!E¾Ã¤M†áKìðGÚÓx@+9#ºl`òÚyGI¬‹%K[ ¬^Vˆº}ÍþÿÛ)M7ço½ücŸÛµGH ¤¾Ç ¨ÕdO†z¤B¶³^þPÙ_ü+Š@¯Y”OC9ä´¹šÐóÙ¤áw„ˆGJžÇ³O+nžƒ›ÌXtàð‚ÿ{·Òå/2M‹+&nª~Û_„E°¼š¼›|OÈws³änu&äÅË )E%‘Ïó‹ƒM|4îIüm‡è ›êÖ”·¾Ë2-£Þ¯í¯¿ž±¿ø šÏÂâwÌ~ž#'DfèJS­ú¸¦‚ÐQ}Wš§e안Jç÷°µaúà@iHhˆ!ÔTmÔ×Ej•šÚÇUÛŸ¬ ½€¾¼°Ž$ä*zÁ;°¸ŸiyÑÖãpÚñòñs7ÑG<Í5“SËAž×9^¢-–ù-E¥JHáüVÕx6M ó›pêÄÁӎ͹"ÉK;šp9†?©JÙ•Rí£Í% ÅÌÛ8wêöY‡×q++.¨T¹É è~],Ão–Z“—ÅZ«­;fÚvÁ÷Ñî·DÝ$â«ð|ñÝ©:’’ÓDá‹¿ãÃ-YñzÜújÉEs1}ÌycÎ˳‡y‡vMš¼45 B¹¢t]!T1•ѺààèÈÐõ'ƒO]ÿìÂ#¢«ícmjÂ+¶oß¾½"¼¦¦¢¢†ØS’õézäÔ(h0¢ì(Û(lÛ>í@¢(,%*Uˆ&Õ¡÷ ”À2W©OD0Û nç(jÒ¾€CäÏKh²`‹…»ÍêH0VXšžG]äEþ…x²ei`5—(´Yðú¢ðõ›F©#ÜU»`ŸjŸò÷FyI_8qcpójˆvŒŠI‹"×U«ÏhôÄ#Ö¨j¬×ù€¼a1Zè Ò¤fß•~ålnöù£Í½Ù{nWÄC0qÙË5qVá(SåÊ "ãˆËŒíøˆî¤$‚˜þVÃÖn2¶XýÑÜÈVq|ß¿4å½i<1˜<ÑŸ Q §ÕAìcÐUºšõÌWµY¹ ü`³Æ÷zfi„vaáE!šß¾„ý£]-¡ß$ë˜ÆF"£`»ökÿ¼â¶ÌÕ‡ÿ›[îÿ{Å}ë”çúf;~çÍvü°µ¿æKõíƒÉHúk¸ð×Áü]¶ôÔþܽfo¤ T‘ñ–vmŽ¿Péüɤ-W$+åxt‡§žÄǫҕ™d(Ýu*-Ëã…–*¹k<­÷œ=äûæ;`I‡žÌËTZâ8´ÿòúëžšïƒ\:Ú´IÚÄ(MVzšÎg8 ;2­:Z?e:¿i0îGôƒóþ-{lîÝ#¨ÆÊŠ÷”àò_J^Hcû¤XùGq›J©„¸¸²=»¿ï³] ‰:ÎS)†XÆ¿2¾¬¼¼x×™5ÍNcqÏ XÀaÑ?Ù‚?ºA´áµú¨u°Þþ>ê.5˜“›š½ÞäåZÒPœŸ™Ëi4¶jµ*nið'n.¹œœ*IÉHËÈ¿u ÑœºœO òP©Õ gö4.]I|™K|šOCÙ¬¡#Mj~#¼Ü-Dkޱÿ›ˆkÐê]­œäû ù%í.l™ôAÃä%åÈâÒþû?æ¤ÆBU:Êr’ò Óssµä»xîõ`Ô©³ÿÊ E½Ì¬áW³•1U¾‘q‰r9§RšsÉ(¡0½6ë«óŸIòÍk-“•šž*›6 ÷p®pÝ__ZUi>…ÔÐî`ìmCÙmBÞ]eávêm¿k[~˜^ìÎ0'ÔslÀ‚Ô™ðÌNß4kÿ‡W#ÃqøZàûÚK7áƒ}ñUv+¬0Fÿ ; á \€‹ÙÇËPÏë9Fb€/F—Ì] ³`!…²¥;Ǭ r5¯Ë;¦: ¹&D-íýØ ÐDpË—N„ C¯Ž<ªµ’é("0MϘÍÙ·Äóíƒo;ÍY=^‘×h¶`p½zõ“ÉþÈ+äöÈj‹Å7Ø×/Ñ8Ä=Ï‘hüml‡m>˜°úhKêó›*£+ý’• RpåŸo< Ì£ýNÿhãŒ5Ë%x ö—™ç”pGñ+žU£9dHI JqKÜ™’¼˜ð°ùüÒê+d€VŽzüô™Ñ¾ÙLy>z<ëe1¦Ð~ôн[uú2ÉÐ݉'ß>Ëy–¿!ªÆ¤3ÔqœéðÅ‚`šNHÇ'(W†ºI‚6oS„©’UáÊHV¥¨ ‘wÈdYPÂÝm\8 Z°ÝÍ}vÉ?I}ªÉ{˜†Ýöð€8·qO#²{ôèG^ w—ݪ·& 0ñ$Ã-7H†Ñtv’Ùã8q;ÌzÖJ|L3ëÔ³NýísÓ~3É}fl’¼ÍÅg;¶¾BF‹"¤à»ÛZBGÝ~DË ¨›ý‘g›M(ê±»üZ´…E=§?ÇÔf÷X?_­§uòº”Z"úo]~T©ÈHQ)A‘*‰LÚ¹¼`K–‹>Y«$™f!9V‚ÓÑ\˜¥Ñf¦syÅÇï@+·dGûh¶ÂFFü+çpð­>¡[«®:sFK8™ºcEEŒÑ?Î/eËäK£‘Dü b^ü€Äf€ðK÷¿¶¯C½¤†kæ¿ú‹ÿÞçï³gúwq€®07“X#Z­Fqi)s—-—$$*,<×ö5êÁ¡uoÿ'·Y2Ç)o{´æ!ÚúxÉÃþâä€î°4ñ—}ŽV4Ë·¸^àX±ÓP¼+gïY·O§á~x ™iC%â_±1óž á÷'÷‰'ü€…œ¸c!ølˆÜÌ žø:» ‚ÎÊ‹¢[à6”27kŸ?,>ËM\©l ~t3lŒñ rÞB|”Äzþó‚“Æï ùþ5›c& =ƒÓDØ”ieL˜È{‡¤-Î9_Ÿ•y H=½D²ØX õúc ¼K èzèÌåŽÒpB{"ûxzyáýŸY;}q •˜D@•"Ž˜¿œÊoa·ìJÛ %̹ϛ¯\½°~›ý8ÃNö«ÆÃ­p‘y<áÔ¸:Ö¸6»py aFâB_®Ü>yõȃ_,z…l¿oû¥Avл™‹ÒÇæ.ÝÇŒð`Ñ[3«£Z‚àG§Ùë§OžûYÛéÚ ß´XÓßðø^9?Ìœþ%ÑÖ‡fØ Ñ6€ÆñC·¬ŒY«ÙÂÈ®)1…Icƒ’¶.:îù bÉØ4ì#¦¿œ°fS´«;çéá³Ü÷»QȆÿrššËO3¸ÏÇl,lÀóÑpÌ|Ù¢o¬:²§ žȺm%®ùéË` 3mÛ艜E(Pp§Vðvÿ[,ðÍ?q´AC³ÍwÚßEÐüÓŸß-~Õ!d‰1œ¹Ô)%ùw@~u15Êkk»0œ¡µšËRçi²³,ó¿‰hBÅAsÛžóh ­¶/C½YÅŒ¥þ®°Ö ØsèØ¾/ÝÚ{Q_ÿÀì@}”kUr✧vm?£ÂSST ɚѮ Ý×Å«ø77D?ûåפ¾‡bÛæ-wZ3Ø#snýnÜh×-¡!°ÖqÒÝeϾ9³¿®‘»ä|&öSøΟÒÜg:¼Qr[qL̽}µõga¨rñ‡“ÂC9÷XƒKQÐþåeÁ ë}–®Zž Ì´ˆ§Çïìn8Þja€FýV!liÍvsTMÑï––Ú’ˆ‘ã>4vŸàdûûÂö¹è6[T:]ÄI:~ÅEAddIøïñ:¶Ðú›’Ž¿‹vZShv´oX澕`xäùŒùÀ]:Ƙ…þšUíÿŒÿ¡ÚÎúÏL‚C§UyvZˆîáÖìSbJp_d€VzМ=hz õ-è|HšVž8~!¯à6àn XH¼ðÌ<Üû¶=‹ßº¿$˜Ìtm–ä÷G£Xòìf¤eᦠõ^ƒlÑ[“?OFž–&'¨,ZòãÈSx"`oÀ³|ð<ÜÛÇ[“&OOËÌ}ø%ŸáŽ¢nùH÷çܶ_2|!Ÿ‹O¾òkÌß/Ò&b.уO[þ鯩Áo÷ênÞi©ÜöÆÕ!ÀŒÁÌzLIþ&òùË%®5/)lé§w›??\jNEÇ(#ͳ›\V•D¦¸$H`0MÛq=l¦êzu‡^= WOèeOQÿþÇôendstream endobj 131 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 166 >> stream xœ›dÿCMSS10‹‹øýùJ‹ ‹ ›÷À½ºR3Oøˆù‹ ÷¼È÷˜Ãëá÷ÚÜø7÷Úò©ÎÒ‹Üîûâû#û…ýJá÷Ñ÷2÷PûÑäüGø÷˜÷$÷ÍPDDKPû  7Ÿ ‹ ‹ ‹ ù> stream xœy \S×¶þ‰ÀÉQq"õžÓjÕÖjk®Zk[PÔ*Š#8!3H$ac²Ãæ9aE¬³âP©ÔÖàtë­¶U±ÚÖVíµ]±›¾ûvôý¿÷ò‹?99;{¯á[ëûÖ‰€²@ á7w÷÷¦™þäSq´qßKW;µ½ÙÛ {Û’±¯G9@Ó5ì³á”éåº(xqȦ%{—†./û(üãˆHÉŽQ;WFïr‹Ù½Ê{õßµ~ëüÝÖyLÞòö”mS=ßywšô½éò±3gÍž3nî¼7æ°àÍ·(jµšO­¡æQoPŸP¨µÔDj5‰r§Þ¤ÖSoQ(j#µ˜šBm¢–PS©ÍÔRêj µŒz—ZNM£>¢>¦\¨”+5“ZAÍ¢VR³)7j5‡Lͧì©!Ôj(õ!5ŒN ¶R”ˆò¤FR^K¢)gʆM¡ì¨¿QÅS©AÔ Ê–Š¦~  ;@9àß6ëlNÙ¾o[a7®‰žF§ EÂ$á&z p`Æ Qƒ’ݼ}ða{û£C¦ )òûÐMCO+>|øÑ#Gœq˜î!) ¹µekÙû£¦Ž Õ8ꪣÈq¦c ãq§ÅNÙN:Ç9Z:úá˜=cþ+{éoÓp«¹rî[~ Í_4V 5V ý¿ô`¸#¨5úÛ€Áx‡U«Q0’"…7Ò­s’£p”¬ŒONN@±LP *åžÓeU¨¡Q‚|øÊÙÁlºr¼U¡2þ9]Zƒ Sòâ²øäŒ$C ^bŒ`Õôl°ÃNtϡСw×;<1€»ÁQôÌ3Žd›Pñ.n1-“jP wxY®`]Döm#)ïËhѱ§7œ>[²šÃ’Ýžuµ¦uS­×ÉègÌçD_}Œ<ý¢¢óÙ‘zðÔ;|o™a 9Þ3'XAWáæ¿3Àe2ÿ ëCØËGÏ æÆª»Ø†Ã‘´<V£¾¶[N‹^ìµ2NEƒÝŮۆ-Wæ•ó.¸€Å"ˆŽþ®a±çæÝkfòäàd=|¥|n€jƒÑɉïü‚m±í;oâXôã~ü 8¼Ïb¹Ýzüý•+×®_vöŽÛÂE|íF¹^Qdƒ5Äd]\M\ #®Ž§ebb]ªâÇáxùéy0'Aç\UÄHÖw»Š¯£áM|Á¯ û?ƒÁ–İ”¢x½1G/8h€«mŒQÆÛl ªŠNIHJᔩH+ö¯Û¦ÝHrËFcW¼Èÿ0 ˜{]›ÃP¼"+ù¤·æ…íDÌ´Y¿Ádxëþo]Ïm›WÄgĤKÓ‚tZ“_X¬‡wõpµ’”;0JÙ çÏ^ºy~ñÌ·—¹.ûÀ÷ÁIO´=´ãˆ¢ 1 xò#ˆ`ØôŸ_ßâèÇ‹žÔ+‹¼ÿ‚ îºÿ‚èþhÞ5@™Áæ¢ØÞ•Å|E·<‚î¿‚48>€×`Ìœ“±3…Ý'X£ü'!صcgÌàŸàaØÆÊ“›=¡«$yr7¾Æ–£ ?_ãÍí­ßY³–ÄÌvÂ,ÂØ ®o­Ôñ8`³U6Þ·dc3½€]»yîÜE®u¾¾ul gÆq„¼zæh8fØJ‚öÇ=d±ÜÈÓÍÙ¹M|—ÐlA¤„[޵BQ7D€£p'’¶ìCåÜãÞÛÒv/Pn £PÄ>Sr¸ÂÆäPï(z§!‡ Ï”dˆ³‚3?*@Ÿ25M?~SšÁ©cÒc{!lšª#,Už¤ä¼t^(Šäøýð¹>ネy$çEÛ¿ŽÝ0zÏÿi[×åßs)e©ù¡ˆ1e„Ÿ,”"qCn‰ºµ€kó9«¬#ОÞôÍI^ô ý ³º€,¦§a†Žê PC`µ¼ÙªJRÝ=Ál âa:ÛnÞº1ó> &ÁÔ¯½Ýr)S¥|zŒ&®¦×dà{lŽL‰÷“q¾ »Šw›íßÀc° ^ù/ì ƒ??ÜP©å#Äisx®êÕ LIŸN’!6Ò,̱ÄϹK÷#mîLsS®&~€Óè·¯úܸyçHWÒùú«"c8•ÛÚ„pÄ,@gªy«¾,¸o_â¡ ipÕV{[ùX=±/xþõ®4¬÷°ên¹Ørõ×Ö ¾8RL¿ºñ™ànBv3EÁM¬:@‡Êsƒ.©î ¸œ÷„»t¶þBW~„”Þ›057qP)üϹôÛ†°œ(ê:”×ZgJl긥T÷Ú“p6Xù4ÐbgøÀ-»º¿¬è÷³!~\à§E:ä\Ž*Q~sÏö:Xd½ ÄocÜf:AGœCѤ‹ÑÑadÿJTηћði;Z{<îPô¥´|_”@`‘–´ s©FE{Ài»63󇣨þ¯ëPwe†gÈ"çƒ(#·L_ý@]”QÁ¨é,V<03± ¦  V”Q’YÁôEù=ýS½Ã9Ãö.p#‘Ž4hb+Oª ¦®—¶v$de$ò(¼¶þ[üÆö hqNZU\—ÛªæPŽZ­M/R¢\ÄüãLàR^t/KÃÃ6½=zù%×çœ(²udŸhdâIcú»ˆ˜ÈÝÑ>1ž(1n;÷}Úv¯&dZXµ«Ýêᦀ»Ý~Sö’LÏ0õ=³²À>¸ÜÊ+„Å},2ÉÜM’ ‡2ú¯žÒýk"À™~ á5œa×/ n™ï†ä•™©U:Ó×R‰ó³ƒ fð´ÝAº¨¶¯#ì£øZ~ÑÄŸÙÕô‘;h1ò ƒð›x8že·Ëò) 4ƒ&ò÷`XfÑW -gìê-€ìú¹XFô™ ®ÿ‰èn -A‘¤Ah«9QÛŽC„™ÇX3/’mAžÑ~ Þd{Cøln‘4$“޲œ}»•ϳ-oí–ï±\íû¨ž4I$¡¶d¡‰£ôÆ}zÁ‘ûÿKA-Á~±{’£“UtJ¹B—Tþ$9U¿ººi‡_f& %R9#¥xn¬8ØÝG)S!uV*dª£ËÄ{c¢CwìÛÕöô8ågrýŠï†ºlŒ{@ÀÖ£di‚R’Ä%ÇFm]„˜ÙK:¿?YB£û)xµo¹¼ 1UºÒúã‘'^¸í˜Àïû¹´·OŽ7@ƒ^ÐÙÕ³GŒvlœ"89˜Ôh‰P Ô$T‰‘1ëÌþêPß-Dö:s· ¼1T-Ìßv»gÆæ„zg%i ’ P!*ÊÉ)ÊÐ|š‚³Œº;”~å—åÂ&]/×JN•+B-@n3À¡¢zÉê´ê TÊì‹@Q~Lû'&úóÛ„ý<]éB|·EJTi(ÆÙ¯•sÆat…iQ1sÞ"^¼q…°¯{\íèþ>€þqŠõAòƒœu“6j^Ѥ§Ó¢¶zÿ%ÛÇ`ÁÛ=*ìáäßNÛÑáÚºzl— ×yÎY°tõµ®Ÿ:¯t^n[çnÁéãvˆ$1_k¼ÎÆ5Ë2ö"æ#+Z2OÿÕoVÌb QÓ°²;­Ð·DUƒœ 2ðFMµ°ÅëÖô¢êÕ"c/ÂH½àœªH çÃ:VWŽZ^ñ3…¿=‰hΡÏ& N'V› ˜•ÄGl\¯A ÑÂSÒ{Œú"[tã¹ND&qîL¿²o7@-ÙÕγp8²»a·È½ø>¬Û n°²¢sx'Îag ±.îTÜitCèjþñ wÑ-Ô¢(v/ØJNZ…ÜÐÒøõñëB#§£~ÀR×+ OîÛ€Æ$†Z•ÖÐôí/Q—š»»E[YRwñ}$}Á¶™Ü†IÕð wL´ÈN¨²¨Ã‰¦áè‹°èósaÛE‡úóQ&Âþôü'×E¿Çƒ–²ëwœ8ûùÑ£g>;¼uÃZ//þ=_6Cy ¼ 1n\ïjPÔÇÔñº‚ªÌBµfoeRbJ+ ê+£×ÇoVùmã¥ù¾åÛ3uéÂÙÛKý‹£x¦â¥Šˆ ÑÈ·Hœ·È}„â™Y/VÁHù¢ã»ÖèSk¹Øìï!fˆbQbº %£¸¢ø"•¥£Ìô¢Ì<ãK줅GŽ–å65iùê’\t1]`‡fy-Ü>©·È{.èÑ!6Æá8kšd?6M±¬zE'–ÿÃòÿaT6Ï|›z·a.†-).)L#]ù:ýèèš-›=?™Æ/¡Á=€ý¢µ\1÷>¼‹qxÙÿMùÓ¢S·‰Fl@M!‘(í@®(¨< 4¨Nº1—ª¾8ÐDfG¢ ƒT|¢rOL:~öÊQTrqõá:y~?ºîù*Tu ÚÓlŒs‰ û¯Ñýö’EÆ][§öŸ±qÙÉ(0¯R¥HÁC]œd‰‰©(†IÊ ¨ÊÔ¨³ ¸ß:~[U¤HGä\•×”]ªÈŒËî!^! þ°ÛlkPM€·80pOChÓêÆÆ't/õ‚óÆ)6FÏ—ÃØì5B9L™¬T‘$‹Mæð7.O’ªJtŽ.ŽÑVdjúyEpÊŸ’<›Tת àˆ`ÛI=OW=ÇŽ0lŸÂh çK”×®0Þ„‰†_nÞè| OÂoºâAð=‘„S¦w_)eQ5:˜‘SvàAz b4ZMAô2,ˆë’Ñ&¼'D>Hæ#õ‘mR…#&Y’T¥ÊãkT HK_ÏàyB„<Ï?—t1dÒo¬«<›ö£Ff QuÚ!÷†ÃÕÅÍêj3‡êŸx¥;.÷>%ŽJŽ‹Ká¼g{ÄG)¥ªH%9[\–R\~Hsà(×=ošÐ"2-ÖûH–tß3· Þ`óåyV‘˜œ‚äŒifæà‘ 5½ó@T‡ô…Ó?Ý:rðRûñËèkì'ÞÂCñ ùsgï©‹/ÕU–Ö¤*²¹âã'Ï!æîWÛf,Ûü‰‹û«bxEuè˜Gý–š•™¾ˆ‰! /´<•4`NIâæÏ`âý®â€#áë”[Q*ƒ— úà ÊžPKïÿ¨½SÌ«5èªc IЊ÷—ì/>©®2ç¤!LÀ‡©ñ€te{ïC½ô‹¦Ÿ"Žv­î‚½†]„Ÿmà>Û¾¿îsôssñ—Xˆí—mYî_-ךü)JÎKË௙{\=åã$óÝÁ„Š•>ʵ©2„‚ѯ¦òáŽÓ¿œþø“UëVNÛµ ÿD(Ÿ••M&*¦*J+Lò áWÇï=æDOе­\L6ãÀÞõŠÃ}øÕQôÑÅø¶DV"ONINâ‚BB¥rÒ”sc b %:?´…HÃc$²àÍH‹¥%ùš,M6×PWSR„òˆn+Œ+ŒÕFîCµ¨®¤²T[\_Êz5¥7Ô ê;AÜnsÒXE,™®%ŒnR#Y˜r³‘[pâÔmËÕð‚nNÊñãBè0”¢Š•0øýn†1<·ÃÏ…=Anÿ8=Ì"ª®kƒT$È¿CƒÑ™õE^I;#X I–I W˜»*.F£ð¦²Ì¬¼®¶éPÙyÂmÜ=¶Øõý¥«ÿ²"ç\‰hN6‰h}xI¤,H±{ηËÀFüòl8ÑïÏüL„±9Ë­0—ö?AÞåÑóƒÓpøž-‚׸ûíC%ñY)ä•LBV&©©Ö–6´ù|6™´…ÑxöäD/pØ.þ? ö@ÏèÂ8‘ÑyÄxîdà5|ˆuE»Û$z¥F¥Qj„T™ˆ¼Ô¹²¯ÊV–™×qñÔ?îœýxÑ,—µKzÍJ×Ã6>ƒ»é§ ÓãÎ'P Ýìb·cígÚOþóöç[<Öºy-æÿÈ~]{¬ }ÎÜ}ÆöŸ?oíñMÿ åD¿.Œ\±fáèÉgÀpxôàÉ-× ‹tÜ|ÜÄÎqi7èÏ_úþÑç+W-wY7§§ß‚S±©ïþhóoêö¿)ãe6ã„_N,ŠBÁñ^…ØËI-ˈ¬#-«L]jJÏöÿy…Ù™¹ÐJblðè‚ØÛ¦:zjØ<üƒ7ß&JÂGY’™•¥A¥LU´6T,‰ ([J7'R#`3 2$cÃl3q‰:ý`: ?9ƒÎ”;Äà72Ùy¾¼yÿZûõ#uᒾƿ`cÁ(Q JÉ”"ã¾~íÎÌ!àbá£í ¾`ûjr¹ ¿ù-¸Û¡¿ u8yE×wú_nš¸öO‡zö‹Ø#žh#Úè¹uE<³ ¤,– =5;+d§5™y9¨’© +•(|R·Í9¿˜xni(il@Õ%Ü! -?}u¢¶_ð„ZFô_ga·°9õ”¼dcBbJŠeÈ$P««*hýÊý:”ǵöŒ"H,å¼…x@ìŠÑ"¦ÁÌd:m׿mØN£“'v䙒Ю3ziÍ4½Æ(eó³ sˆ8ªŒ**ÒT 9‡ïâ]ŠäØDåŒbsâó’àöv*Rd¨H/+)/¨,'Ÿfóø ¸Ø™°âÑy·SpÀènctƒ§lA3aý=HÎI-ßCX¿Ù¤R^à)lQ+¹ãoÒÐqþäN+Ñ©µg-ÁB®Æd*LÌOÈÆ÷ÀÛIž›¦V FE>%²ì vÁä_|R‘áåq%¹êÜ"Sjæê^†ž[dúeb=‹Š“2£ ððo·3[ôôð0úû’üìLTÌä¤hCƒñvì„sñàãïµlâÎ.¾µŽ@M–6‡·l¶ŸÏ ă·=ô=µáÆÂö0Ĉ“%‰²ü¤¬4æ`A1žEFäI{0ÇL“‘> stream xœíX[O[G~?¿âˆ§ã4^vfo³UZ©UÒ¨­Ò*à—ª)Ci¹*üûÌžcï®ÛÁ R*¯çúÍ·Ïe«´:ýÍÿœ5¨llÿitûºñʶÁyPäÛ³&D­Èæ…Óf¿¡*´Á[­ ²R^!ˆÊ»^Ë!ål¥•Wj-ã­²TtΕ|UiQ$\Éjþ¹NÊRÖÇ*)‚ HÃRREk±²¤5O*‡[äTÅÓíqsÙ@e;ÿwpÖ~;iv÷еQE¾5ÌÐÖ«×AkLΚ_;;#˜ˆÝË«¡ë^ÆZy­Mì~Úçe«¢í¾OË:’FŒÝ$}@­£ Ý/£±1FiíÙ”¡æºc·Ÿ\ Ñ$e­’@np#ÚîM’ƒÖäM÷͈PEò8(SÔd—”æeä-'5ú}òW騵l&U9§ŒElÇ`qk&‡\äRŒ50s =èî€kˆÞv_ÆS:ÐÍòâ4Kåëyq\òâM–Î+ë…t¥“,]¿uY¼-‹£°Rx—¥÷YºÚÜÓ‹"‚¨ð¬ˆ:+¨,¹5­ƒo|lo ~³ Éÿ{³Êj…ÃÃr©ÄÍûlÛçcÁ!ë«Ï­÷¥M»Bº—}¯%瘥gYú äx¦B–¤8ãÕ•ý!$TqbWþzžÄ¡÷ö±<¹]ÓÿýThBUó‘ЙB€³âñ«zo-¾7Yz.U¢¹hT¶æh$ÀZ`ˆÌ7®{lC ËNE®ßJ8ȗ𦇕؅;a+LEw„"v$çw‚âÉÖˆUèÊ»ØB!ø©«L¨Ì7ç‚ß‚ _ð{Ðû ´ŒI}õH ®>¯$.\ ÒÆG÷ÛÜz[í#<Âc÷‘ħó•8¬ÛQòÓé;jsÞm{+̉GŸx›¿G>) æa€Æ§´€w,¬W¿6Ä»OºÛh5`›§³ñQ\ú=Á¥ôd|',éšHçáLˆû\º‰&+·ïS¥ø1(Ç´ê ÁÉLþúÍ x…þõšƒ48@obäV®b©€ÑTw‡ ü žÍJ¹¯·Þp«Á(žŸî2ýr5¥ß×B'Ö½Aþh8JœV¾?Ù +Ñ{ó./EGVjîåÈû;µ³Ž)î«Ió¶¹l {÷ýÜl!ƒ%§8´^+íÒØrwÏCûò"™Ü3‡ãꉽ­çp¨Q["Z¥yßôs¸ïÒø-Ä cÎ"9p¦;¾``·9MÜÀÆDcPyr©¢ sè=VQm‚1ÆvÃÜ.FØýÙôcÐͦý°-Rð¡`£!³"ÍÝaH¿\´ŠÐókV+§#H[îb$$VHã:ää4EHdmÆÄÔ¾`¸ëÐÝÔ*WI…ÐS<'r8¨k f>òQ¢g…4!´œT7;-|˜%ÃÓyœˆÝÑM¯ƒÄ¦KiU¥]'‘ÈsZ'ýà’u¸ø¾ ö¨Ý²e•­*ê™Ao›!]²Uendstream endobj 134 0 obj << /Filter /FlateDecode /Length 19099 >> stream xœím¯-ÉQ¥¿ß_qåOçÜMUee½Œ†‘@k!áîÑh„Éï6Óm›¶Í¿ŸˆŒµbEî>· ¡á`¡>'ní]µ«²"#ŸxNíx¿<Ö÷‹ÿÿýÁ—ï¶Ç~¿ÿí»åý·ßûùhçúþìÇú¸Ž÷_¾»¶ãqÜwF¾x÷Ù»{9Ç~½?}y´Í¶Êȵޣ­z³Ÿ÷²u›}±ìe½Ÿö¯×´?Õu_³—ƒB ÓÑ®Ç~Ü嘮õ|\ËZI!0mƒcʽñÊÞ–÷?y÷ïÖq"ßã??øòýŸ~þî¾³õ÷÷ã>¶ãýç?~'y}¿îíq6;±vP«mñù—ïþöåOþúOþêõ=îûxùŸŸ}°½Þ{ß·—ÿöá£]žeÙÏöòÙ‡­µÇ±n/ÿýy“å¾–m»_þúÛþÛ¹,×Ñþîó¿ðc8Ë1\öaûµÙq|þCÛëwÆÆ÷u]6®¼ívÚ—=6~é>ÿ{Û¢_ï÷Ç}­Í·øØöþ8l“ëþ¸®=Þuõw=–¥ÝxÓ»ž…þhûzéÖDzÜÇþò_?|ìÛæoýòË ~‘?ý"úuþôÝ—üñwùÓOò§¯ò§ŸåO?ÌŸþPûûꕽü6ú,úMþôeþô«×Žæûßø’_¾öâ¯Ø?½r"¾Wö’þ±~üÑ+çä—¯œ“½r¿zåŒé”üüµúÓWìÕ+ôã×>«ý»‘íÞ­¿{uÓz†b`=E¿ÉÏÛÆâú¸{_ã½¶Á`ü»ÁŽã|,kùÿôÊYüÑ«gþ[¯\­o½vY÷{\Öo½rY_}s½¥†ð_}Ë­žÛ×Î(OÏ|FÛ¿ööÖÔÝñ“׆Ìïþß~¾;Žyÿ×~¾_¼òù~­þ/ü¨à÷^e¯¥Ází<ýËÓ;v–Jðǯ¼£nÿ¼r§ÿ³Æ÷ëUyåªþì•—¿–«þ­’ÿt÷7>¹ßçõX÷í²b¡ï·¾Ø(ºßoÛr=¶ýýW?zÿ?Þÿü¢¥_^?­ïÿÂþÿïGµ-çb;zßîÍfr/~,Òëˆlþß/=Ò·ÇÕ#Ò§M?p4ëæ7ŽE+VFÀ«yÀþûöòk÷ˆýw|ÌÕŽâðȹy¥5"Çã‘§kí~ª-rY…Ÿ³w?qñr0"÷£{ä^ñ¯»<`§"ŽÏr½+ò6œõÕvºŽÈÉÓu~`ûbç‡s-~E,rûŽˆU?±3p!b×h³HÛ[œ»=6߯>0ù>½ÚÞ¯¡<°-~¤ûbg¿÷‡ÿ»}k‹]©‡¿…övFÀ†‹NÛ?×ÃsÜrñäÙÿ=NÜ Žv³uÈ—{³ácçu_íCÇ~Z÷«¼¯–ínDì³±ñyŽË´YkûÜW«Hc×ûåƒe÷ë'a³²yÄÿ/²¡±{Ä z¼ +¤÷õ\­2ˆÝ[±k»!rûpÜW»’1j¶³ù}¸ûëllt¬¸Ú›Ý~!rø}³ovM°s;'›Gì³ìˆì>÷­ï|•¥Ã#GŒUÁÖl´Üvm7»‹ï;"ç5›Ý¡Ë8œf‡Ñ|{õ¯²sÙm›¶Ük¾Ü8=by!>D³³kûØ›]³E䣦ù­;zÍŽ0Njk#CìÍŽpw¶e–±½ÙØ=âU6Æ»¢ÍŽ0.N³;yóˆ‚1ÜZ·Œó~·aðXâEýôñh生Ü.›½d·Ã»cGÇ1FÎî÷lœ KvÍ#öfíŠÈ>†än·^eÙôô÷9™ìÚXùXÄn¤cj3î¾Û9"bW·ˆçÞH/–i<“íÝìÞƒ²oÍ÷`»»Æ¨ì6L#•Ù½á©Ì—Nu¼jOe{׈cTvÏ!±]¤Û÷n÷ÞîSÂÞ}Ä‹,Ûív=»eµaÕÆØévè1šì’ŒQÙí¬GõSç£òX:N†©1*¯JÆG·Ïì©Ì"WÜ vðÓ?¹íu¤²£-žxÎ5"w,¹í¶^Æ pŽkÌj±,±ˆÍo8G6;l¬®±‰ÍK"glcó’g³ÃÎP\©noE$ÒP·sÔFd乹ƈôŽØ&¦óˆHœónç` Kbq}»gLDbJîvðûˆ¬þß“–Eì,€ÍK7"—Ÿ8‹4Ì*GÌñâ9"GŒH¯7Ƶ:,mx6;lV;c»-Ç´›r÷±Œçç\X¯Ûȼi˜íCò´=Ä&–m®¸‘ýKx>¹ž+¯§hOf§Ý·qOû>&×3Š®¹<›ÓÇѽܱÀíwÅœ>O q{øpösúÛ÷ˆô‘ÌN»Gã†9lrò!yöx»>O»ÊK­×޾ŸÃ—§#bãÐ3Ùiã§Ê«Øè‹k9®¡®]„»¶lçòZ¿ŸX¶œA®õÓèãæ²çÁ!“g²Ë³À8Âs,v,b£wÛ"rŒTvy¶‹mì¬ùüzÙ¨‹é§Í¦»Ñy̧MM>p.;ŠǧçX‹Üvá—;"ç‘£dŸâÜÇH´´¾û9‘>rÙ(ãU–{|‚½múŠ[ïôéØö~ûÙ8#rùU³²`àœÇæGß;®Çc³Óe»V‘,ÎsÌd}9:nX¿›G,ÜØæöKÐW?Í#àéÜ^HÅÙñIô¶ˆ¥nâ±c@ÀƇý~5”ê—Õáý}ß–†jþ²‰é´€WlpùÀé›§âˆxî‘ùÆÉdó€g—q$×6òm÷¢ûñ"ÜŽ¤Y†‹bàòᰈ妨÷¯6fÞl¬Æ°¾µˆÏ¶ñ>>£Û6>Æ|ryñ*{GËWÝçžµ—Wáñ“¯ò1e‘¾Œ;Ô#^†{ÄgÔøǘGºíÌ_íw–Vºƒß=ŽÙËp\+Æúu‚ÖÒiìÚ·ÿºšnDÆIé‡eò¨Á.>–ǺßèQ®\–­ºG|Ús{îj[DFÜOÏpãêÞ^‡{ÄrULw>ämW§Å\cÔœýƵòÅÞåÛUÌ£÷vŽáxÚ^ã}!çÃÑG\ÏÛï[»ž~ícFñuÛỮؗïÕ#YÆÞ–ëümârxÀrðu° ‹4»š—Í"q×ùýgwv¿ltÅkŽ‘ímƈíU¸ýê§#f—ÛçiÛ¯ø8Á¾B³<Öï UøX ';_ YëþÁ"%Ü^…{Ä«Öì>aX ûç‘ÛûÝ—¸úÍ—l÷ˆ  n¾d[GäŒß/Â}ç>ãÞéc4ÞÞÍqvá-‚¢Íªûqî»|¼Ï6Vù#2IóeÝ>oãEøïsÆ6öq,‹}5DºÏEãxö8æ},Æ1Çö1êÆÇºãpú¸Ù-²FÓ–Ã7°ìÝã=ìšú˜ñQ°Äçx;ÅWdøæ ÄcD°6³È5F#Æ G®ñúî˜âŒ]{ ^¯¯¥™qÝû)K|&›•|Ù$Ðcçö“E_uûhÎÖ1®ŽØyƒç±ËŽjÔ2¶ZÚFóñ9ƽEŽ6NG~oë¶ÄpÜϸÁ›[#ØpÆ,Õ8x»ìSÅ÷å©ÈËß/ÞÇKp?ä¥ã{÷!yÞ¨U›Ïc#÷Çûx îˆìcLúL¿ÇÞ½÷È~Å‚®9r°‰¦Ÿ6:FíÒ9ì#u´¸â¾ð=FvY#AZ¤G&³AƒË‰ÃÈd6ùöØ•—à9·(ì,rE&³„³Æ66)LælŽ“4_@{&ó•ŨњCŸXe™Ê"–p,ó:@ˆMlb² aŸ×Ü©ƒ'2K¾8_uû ìû…ÛÓ©ƒJ_ˆÝ±扬¯(;,²Dæë€%ŽÏ«p‹ì¾óØf÷ÅÍ0Ç#ÞÅoû+fKyÝ–—‘`,ÒÇÈÙÛ†+åÔÁÇä¾ó4§>&÷9Ô"WÌ­ÈÍJž‘ÌÆŠ6¶ñÜ#ǘ<â5¸Ï­;&‹ô‘Í|Qoã%¸lç1L,§ÓÞ"ƒx½p¡?Úœ:øtê0f9ÆÜ<ÁŒ ÓÖqëvG11´:ØÚèœñ*¯Á=\È#^ƒÛXÚ¸ð·È9’•GÚ )VÐô˜ü›SOf«Oã˜[4w»ÃÍŠ<“~ólñÎ^„{¤Ý­²aåÕS}sìà›¬²c‡(É8˜ux>s„âcµBîæÛœ{{vóœñ*ËyžÏ¯jc›k4¼­ DÉo‘Á»§Ý¸Ï›Wâ#²x¶‘î³ë²h4Ç>xœíb©ù0ê#²EAe‘±.²òôŒé³í^ˆH{ 0hJsÒ8b§žÏ–õàÛlƒ‡X«q‹\cT.kì9@Ç(ŒãßÛ …V€¡N·«2ÐíˆÄåÝ#EÄ6ˆÜcH.+ggëˆlHT^÷5Käß݆â1ªòsÑî5ø¨Ê—G|¯Áwì7޶= ÷˜:Gù葆U¡ ›æo‘;–19G.óI5²¤#‘ÎOcŒ:rh#ÂAáeèX$Xü4ÇI~Îí öøÝ¯õµcx:q „(GäÄhÜb1l#xB¤€¾õXø}5•ㆱ`œ-GÞuÜ0––¸Í=F¢çè+÷¥oÄxÍqƒ§1_{àU^€{¤ƒS5Ïö>mµˆ«Ô½÷ˆçD‡î`¦#rûBÔr`[sÞày̲2nÝî5¸Gì Äô{x î‘.ߎ˜¬»ßøq¾œ7xó›:æDç >µŽÈ8Žîp€•vl£Ëš˜Ýœ7øxÜc9ë‘6Ø­M àRÍšç±½s~ó5…ç1‡lQV‘ ºCÍø^ƒûLuu~¹Ïe·ÝÑÇQôà^8–1³®€žíêÜhÆôæ¼a̬~õâ],{sbYà1 òˆ×áé±ÜlN|H:Š[̉ÃXrüÔ÷HŠÝÇÂïâeø3L‰gÜèiDF“Æ"ãP¼¬iã× á´)é@=qb›Á-b#>ÞdÙÍ"¬î6xë#÷zÀ'sb„z‘e/MÆñ:·ñQãoYÃaÃ:" sÆ6"+þÙ[,YÐŧ´›ò‹Ïޱï°a‘-°^sØ0–¬1ÉxÄËp?ž0Ú"cyÝý~‹¹÷´­ïQ91½xÉéYÌ^k·æ¸¡Ìí´cõñhCuÒyˆbcàÀ;_ËâÃ\ ùŠr+‹îæ¼aÔcvgFrÙO1ê1/š}RuW×èÇ.ŽPžÉ|ÜÇý|mcZ±{cÇ4{Q÷ž@¬ ¼b÷áèð;Ɖó†uÐ…ó†Q‘9Á‹{ >j´+è‚Eö‘ÊÚ} j»z`”v¡Óœ7l£jCÏ©9o´ÃRc ‚Ë‹pØ>WDzÔz±tsذŒš Ëù漡yf[ž›ëŠzìŽþ]»|<’íÂ|~y>J¶ÉØqÃ(ôì³E"ñõõ>J¶iâö%[Lò·Wà±›-J-ç Ë(Ù6$uç >­®Îc_Û嘟‘xU[¢³\ÃÏÇ÷(ÐV,ÎVÔcqûJszvóGë«Q/.Ö‹¾Z½¢ÒŠÕåÝýß:Ä ,íŒiÕïÐ òÙ½…7”w„G%æM€ˆxý}Œ+é¼ÁÛZþß(Š88 ¾½UµG¤{aô²ãE6'Ù0P›xýí‘Ä»9pð&‚ó!? Ñ"öÀ…ñi‘c àëYÝ‹tj­µ¬Çª—-’õh{_k¬GÏñ2Á#Þ©}mƒ¼F¤O3òïÓé¶ÚiUÙî§Ò»gëqÛYd4Øóë¯ÚGÙ=móµ;pXZ45Æ”½{廵hËàsyýÝ¢´Å;{ýíMƒvÅýb‘;Ú&úÑ”^½½³£l÷ÌHtdv[2óŒ]c¾[f¥Ðh\; öz(vn¹ÎßÀ!wGÞSCëw_²î£ü;"rŽÂî=¡XÇÀÜí3ÅjtwààÇ{mW¼—¬£ÝÙ£ÐÝoojyG´E`gV)1"G;|4Zï-V »ó[ží^¨,ñ*¯¿=r:ï^zÁªÏ¤¹GÁ—Yñ¢>ƒ­a·H&»ã8÷Ø•—ßÞ÷¾GäCr»P!ŽF»ÉÍ.ïŸê·ÜîµÞ¨‰-2Úž»×ƒ8;×€¶ûÖàêõwG}¼üöÀºD‰¶;nh£oG.¶T>–ñ»ÃŠ1/Yd05Ûå9pûî´Á¤ù¨xvÇ > WËc†¶È9š+ïi;Š‘Üíd#[¤a³nG4Pvç Þ×r—eWµÑ€ÃãŽlƒ¢Œ!µÄ«Æ°£pô–ŸÜ%~µÐ_p¶(w§ C9À—,r‡0â'8>Ò1NãîkÊ+÷Ùu÷EåwŽuÖ¸Óá‹XÞŠk°ùÒö}dxÍ5Ö>Ö_ñ®qîwg¡8à{t‹,uœñ{PlËyh6ÚˆZ}86±c‘¹·XOXî gdwÔ°¹Úsa‰f‘Ñѱœ|cOÍËïA!ƒ×Ý£¥êî¨aþOÇptÔÐFd‚Â"ªÑ‰»¬yù="- ѽíã^jƒï¹Â5ÚîËëïi|Ÿ>xxsôÜãU^ûÞfÖ¡U,{(U'"·/ãšÓTœž³…k´a¡i‘ÓóX|5ö~åÖP¼ÎxÕ5ʘ©cˆ:kØÃoóYèg¾À´QÝü¾¶ûqÐ?÷ªð_èg¾F¹­”û„~wí˼½ñÝ|}«Œœfäϲ«_¶b¤nͲeâ#m”‘º ï²#e«çÏS>aÙê›4}û¾ø;m÷ÅÓßl’\|Ü.[áé\?|ÅVÛ^–G¶;nWÞãÇîÂ1£MÑ]>¡lÂkt†¿ÌHõXïk[m£ÌHÝÊ2êR6¿Nÿ¾Ç²½l²s!_¶:-/Ùy+[!R·²2n´•´#ÓVmVDÙ ‘i+¯ îi+D¦­p^ÊVåLýó®ª_Ñ~ia.î)ZòÜlõ4.«M»v5×ü—Î_öÿó‹é·éß¶ø7'þÛôomz]ë¯ O ¥ÿìÏÅÑêÙeU…'ÂÝ–xö±^~粡îÒ]óŽ}þÝÉË}‹žòÎÃõ9[@{{ÉÿÞãÅß{œöBx­¶7ç(VƽÿX·üîKl:˜Ícçu¯øë‘ß½þn>óL¾ûÁ·‰ó“&í7¤œ{ÁŠóRδM´<ëFˆ”­ØT*)‡‘ºˆ}ÙŠ‘ºÈLÙŠ‘º€HMrˆÔ­°*[1R¶úÈÊÿ—Ùâߣ¬ÿÏ\eDä*G¾ÊÊááUYJq‘•ñ±ª¬<ÅUU¥ºÊ'"r•qÈÅU>ãìW9¬ˆ"+‡3Tle˜Ç²•£Ñ_le˜ÈÅV¨ÚÊñš"+ãm‹­êGÕ•ñÆEWÞ¿¦+‡íU}åÐÓä+¯ðŽª¯Ÿ:uå—EºòQUºò‚Ë+]§èÊ ùÊè_9'}å ¢vêÊà EWnðE¤+ï°(¥+÷Ç“­ ŒVlå3ô¤”•× —*eåí†[(YO®2Ü…â*ó¤ËUn|ãt•÷äeªÊ=w©*!÷…Le[Ã÷ÉTŽÑóE1•Û™^2Låý„a—¦r§]š¦²áåi*ŸèÊT¾R¶†©ì Æ3MeOÅq€4•W ai*oì¹4•ÛBË—¦r»¸ Måë'™Ê}K1ª²»HáëRU>JÇT•O:•©*;µ ª² Îç¤*TÛ@Uî7DºÊ£ÍÇLWyYùÎt•ÚÞé*/'Ï]åuÁŒ’®²7—bºÊkãûÐU^wˆïé*¯ý©*¯‹ª27¡©œoBS9÷CU9%Uå<ÜT•ó#¥ªœ;Uå<5T•uú¨*ëÓUÖe «¬KEYY—“²².9ee ÊÊ:”•5¼(+kRVÖ0¥¬¬¡LYYò²n Êʺmh+ëÖ¢­¬Û¶²nQÚʺi+ëV§­¬t@[Y)ƒ¶²Ò meeêÊ™›h++{ÑVÎGYY9²²Ò$deeRÈÊ™ké*+ÓUVʦ«œY¶²?måœ(+kú ¬¬)†²²¦!ÊÊ9SÑUÖdFWY]eMŠt•5qÒUÖäJWY0]eMÒt•s§ª¬©žª²ÊªÊ*¨*«¬ ª¬Òƒª²Ê¨Ê¥„ª¬*'LåRÁT.µLåRNÁT.TåR”AU.uTåRÛ…«\Ê¿p•K…®r)"!+«Î„«\JQÈÊ¥\…¬\JZÈʥ셬\JcÈÊ¥|†¬\JlÈÊ¥ ‡¬\JuÈÊ¥œ‡«Š®rYÀU. ¸ÊeqW¹,@à*kUY«ÈÊe¡YYk!¸Êe¹W¹,©à*—e\å²4ƒ«\–o\ç_FÀUX+Ñc°ÿÊšhó×F€ªl‘ UÙ"œ» *fü% Te‹À7„ªÜÜ(¿XUy´Añ¾e•zUÙ"ü›L¸Ê¡’]y4XqnBW¶ÈB%;tåæöjÌëð•G$þ¾ró'~l‘ÇÖ®›3„åÑÞ„å 7²E)(,H´u!,[„î%„å Âróñ1 Ë#-[Ë£®%„噄å Ârsu÷B¤¤½iôAX‘­Ë#2†?e‹àφ±<~ AÆòˆÀƒcyD±ƒ±<"K5–›ß)!DÁX‘ðF`,uä5 ÿ’ Æò„5ÆrüwË#°!2„å ß²Gâס] 2zlå¹à&,]”?`+×HØÊ W:lå‰a[yŠŒ>[0‘—6%²Ç€ôêþòR‘°•#{[¹FBWž"CW‘Vuå)²Ç€,‘+†"¡+HЕKºòºòq]¹†®<†®\#¡+O‘#F$Y;uå)2tå)rcDfdèÊSÀ}å_yŠô;ˆ„¯ KÌS¤? Ì5ó¹ž æ)2 æ ƒyŠô§„ƒ¹FÂ`ž"çSBƒÁ¦ó˜ÿ=,æ)²?ÉìÛ+ó9ŸÆ$4æ)ÒçIs„Ƨ3zÌ5ó9çu=æ)r̳,=æ)²Ïc’s„Çe4Í5òÄXh4g ªÆû2-%mEKiD꣧€xWà ·¼ÊŒ¹+DšÖŒ {hDà …=T#aM‘+k©hÈš"GøjxW¯úЈÀ] }¨FB<¸0ô¡ˆ„u‰w1räU¾ª>4"wõ‡Ú鿢œ›òPKNy¨—Sj Ô)µdî´‡ZryÚC-Ù=í¡–|ŸúzÔ‡Ô' >¤^õ!õè©!H= Djk@ R烑º#ˆÔA¡@¤. "ub(©[CH DêúP Rgˆ‘ºGˆÔa¢@¤.¢Ò©‚@TºYˆJÇ QéŠA *3D¥»¨tà •.¢ÒɃ@Tº}ˆJGQiB *}ED¥÷¨ô'!•&¢Òç„@Tz¡ˆÔ.M!9;ªˆJÓ5 ¢Ò— ƒ¨´nà *Ý]D¥ ƒHMbD¥ H­føCjFC*ýjèC¥§ }¨ô½¡•Þ8ô!µÏa•;ì¡Ò…‡=T:õ°‡J7öPéøÃ*Vì¡bÀ*ví!´‡d)ÐJ‘ò\ÊCÒ!(ɘ <$©‚òÄ ÊC’3(Ià <$ɃöDÚC’E¨¥N{H ì!9)°‡¤­P’ÚB}Hú õ!)2ô‡¤ÑÐJÓ†þdúCvèIêI(ÅŸˆ$}Z ’dDˆý!©Jô‡¤3Ñ’òD(­(úC§è¥[E}Húõ!)ZÔ‡Òâ¢=$Ï‹öT0ÚC²Å ¥OF{HÊí¡´Ò(I\£<$¹ò8ÊC’ä É£ƒ<$Õòl<ÊC2öhÉê£=$óöP±aƒöP± aöP±a£öP±a3öP±'¡ÃúP±0¡SúP±9¡ãþP±B!sQ±KaQ±Ta‘Qq]aɆ ¨ø²ˆÊ!Õ7 ¨î(¢z0!•†@T>¢òÁC *ç&¢rú •S ¨\DåRA *—Q¹äˆÊ°€@T†¢2¼ •!¨ SDʈ4Ü)é– @¤Û†‘n- Dºý(é¥@¤»˜‘nt Dʈ”/()§P RÞ¡@”©‰þ²×ð‡2»QRþ£>¤I}Hy”úP¦ZÚCÊÆ´‡”±ieR‡<¤´y('ÊCš;(i~¡<¤9ˆþPNSÔ‡4“QÒlG}H3"õ!ÍšÔ‡4³RÒìK}H34õ¡œÄiiž§=¤Z€öêÚCª)h©î =¤Ò„öªÚCYßPR DyHeå!•R”‡TnQRIyHUä!v”‡TüQRHyHE$塬3é©¥;¤r•îPV´t‡²èMw( ãt‡²xNw( ìt‡²Ow( õt‡²˜Owˆõ~ªC¹$Hu(— ©åÒB'ÉåGªC\¡¤9Ä5LŠC¹ÌIqˆ+¡ô†r±”ÞP.¨ÒÊ5WzC¹,Ko(Wné åê.½!.SÊ5bjC¹ŽLm(ךԆr9šÚP.YSÊemjC¹ôMm(—Ç© å:µ¡\f§6”KñÔ†r¹Nm(WôÒ†¸ê—6D2 mˆô@Ú ƒ´!RiCé˦6”¾ljCé˦6”¾ljCé˦6”¾ljCé˦6”¾ljCé˦6”¾ljCé˦6”¾ljCé˦6”¾ljCé˦6”ÊljC©Ì¦6”ÊljC©ÌJ¢2›ÚÙN6ŽWÚuYiCôe¥ A˜•5DaVÖ…YYC±)CqCe(r]U†bWeˆ)C¡ËVeO ,Ê#R†BŽ­Ê#R†¢~¨Ê#û …'e‘¢ 1"e(nûª 1"e‘¢ 1"e( Ī !R”!F¤ !R”!F¤ 1r?©¹UbäzS†yS†¦È›2„À›2¤È›2”‘7e¨DÞ”¡yS†yS†¦È›2‘7e¨Dþã(CÕõ[M® ¡âß RüØ?Å¿aDþMûšÈüø@Å¿aDþ ¿\Tþ ¡ôoÑ"ß„™ Ž"g.µçÓðÑC~ø=NyXœâ AÁ)Μâ ÁÁ‘3§8CPpŠ3 NQ†ààH‚‚S”!88R† àe NQ† àH GÆ  C0pä ÑÀIaˆŽ„! 8) Ñ¿‘0DÿFÂý Côo$ Ñ¿)Æü›¢ Á¿)Îü›â Á¿)Îý9Côoä Ñ¿‘3DÿFÎý9CðoŠ3ÿ¦8CðoŠ3ÿ¦8CðoŠ@ÿ¦H&ðoŠˆÿ¦È*!àŸNq^hàH‹¡#s†ŽìšO8²thàÈä#Ù' é@pŠ1G›À¿)oÿ¦ìþM9ø7åxáß”Ïÿ¦|nø7åÜпÑù£Ãs,ÿ†—Aþ /•ü^Îôoò’§“Ã"ý›:éßäðJÿ&‡`ú79LÓ¿)Îü›â Á¿)Îü›â AÀ)ÎбM œ" ÁÀ) œ" ÁÀ)œ" AÁ)œ" …ƒ#_(éBtpÒ¢‚#cˆ ŽŒ!*82†èà¤1DGÆCTpÒ¢#eˆŽœ!8Å‚€Sœ!8Å‚#gNq† àgNq† àgNq† àgè §8C0pä AÀ‘3DGÎ9Cp¤ AÀ‘1DGÆP 8i ¥€Cc(ý›4†RÀIc(CCÀ©ÂÐpª/N†BÀ©ÆP8Õ §Cž„,c(œb …S¡pª1DGÊ9Cpä QÀIg( œt†RÁIg(œt†ÒÁIg(:C©à¤3” N:C©à¤3” N:C©à¤3D'!8r†hà¤3GÊ)Cp¤ QÀ‘2DGÊ)CpR¢#eˆþ”!ø72†àßH¢#eˆþ”!ú7R†èßH¢#eˆþ”!ú7R†èßH¢#gHþM:Céߤ3”þM:Céߤ3”þM:Céߤ3”þM:Céߤ3”þM:Céߤ3”þM:Céߤ3”þM:CéßÐJÿ&!ú7© …“¾Pú7é ¥“¾Pú7é ¥€“¾P 8é ¥€“¾éBtpÒJ'u¡tpÒJ'¡tpÒJ‡ÆP*8i ¥‚“ÆP*8±ŸâßÜõÛF+'ÿ†Pño‘ÎPõoޝù7Ç×ü›éÛF§ˆÐ-¾ß³ø7Œœ3žüFäß0"ÿöOño¹ #"ÿ†ù7väß0ПWýDŠÈü›­~ß葃țS"oþMFÞüEÞü›yóoyóojäÍ¿ÉÈ›3EÞüDÞüEÞü›)ò{ù7©Hp+)m›ÔJäÎߦdžÔÈ9?O\ÚB‰2iB ¶P"{~xF®|rs´ÊR[(‘3Ÿ'¶Mj %Ò3¡Cš€¶P#{Ö'DÕ¾”¶Lè³¶à‘«j @³>´Ø7p$ßÐY|Cg!å* ²o¨,H¿¡² ÿ†Î‚ü: òoè,È¿¡³ ÿ†Î‚ü: òoè,È¿¡´ ÿ†Ò‚üZ òo¨-È¿¡¶ ÿ†Ú‚üj òo¨-È¿¡· ÿ†Þ‚üz òoè-È¿¡· ÿ†Þ‚üz òoè-È¿·Püx Å¿·Püˆ Å¿ q¡è7!.û&Ä…"ß@\(ò Ä…"ß@\(ö Ä…¢ß@\(þ Ä…âß@\(þ Ì…âßÀ\(þ Ìù7Šq¡ø7Šq¡ø7Šs¡ø70äß@\(þ Äù7ðäß@[(þ ´…âß@[(þ ¼…âßÀ[ÚBÑo -ýÞBÑoà-ýâBÑo .ýâBÑoÂ\¨ß„/ÒW዇ô­BŸüâ!}7¿xH__u¡|ÃÔé7T¤ßP]~CuAú Õé7T¤ßP]~Cu!õš Òoh.H¿¡¹ ý†æ‚ôš Òoh.H¿¡¹ ý†æBê7¤ßP\~CqAú Åé7¤ß@\}CqAö Å…´oè-Ⱦ¡· û†Þ‚ôz ©ßP[~m!íX ’o¨-H¾¡¶ò µÙ7Ô¤ßP[Cm!ýZ òoh-¤CiAþ ¥ù7”J?ÒBé¹CZ(}yH ¥wχ†¨¿ÿ釆H ´ ‘€Ò‚dJ EHø¤´PÄH ’(-H€´P$Šc›, H ÅÄ€´Pl H Å耴P¬H Å ´öHJ i˜PZH …ÖBz*i-¤Ë’ÚBú.©-¤“ÚBz3©-P­Im!í›Ô´ ¬…ò.ÐÊž -”£·PŽÞBùTðôÁé-èÜP\Ðù£¸ sLqA×â‚®Å]OŠ ºæ4.(.hàÐ\Ðࢹ HsAƒæ‚Æ1Ì uš ºh.è–¡¹ ÛŠê‚n=ª º=©.膺 »ê‚Õ% ª ’o¨.H¾¡ºö Íé74R¿¡¹ ý†æ‚ô˜ E¿¹ ýâBÑo .ýâ‚ôx E¿· ýÚBÑo -ýÞBÑoà-H¿¶Pôh E¿¶Pôx E¿¸Pôˆ E¿ s¡Ø70dß@\(ö Ä…bß@\(ö Ä…¢ß@\(þ Ì…âßÀ\(þM˜ Òo .ýâBÑo .ýâBño .âBp .âBp .âBp .HÀ·Px EÀ¡· ‡Þ‚z pè-HÀ¡· ‡Þ‚z pè-HÀ¡·µ 8Ô$àP[€mAþÍÐR¾¡µò ¥É7”R¾¡³ û†Î‚ì: ²oà,H¾³ ÷†Î‚Ü: éÞPY{CeAî •É7t$ßÐY|CgAò µÉ7Ô$ßP[|CmAò µÉ7Ô$ßP[|“ÚBÊ7©-¤|“ÚBÊ7©-¤|“ÚBÊ7©-¤|“ÚBÊ7©-¤|“ÚBÊ7©-¤|Cm!Ý›ÔÒ½¡¶êMj ©Þ¤¶êMj éÞ¤¶úMj ©ß¤¶ú µ…´oR[Hû&µ…´oR[Hû&µ…Ôo¤-п‘¶@ÿFÚýi ôo¤-п‘¶ÿFÖýY ôod-Ä~в·tU"×Ue!rU‘²þMUbàTe) aÛTe) QBTe‘>Ca) ü5•„m㶯Ê#R)Ê#R¢>¬Ê"R8Ÿ4šª,0"e‘¢,0"e‘7e¡DÞ”FÞ”…yS2ò¦,L‘7e¡FÞ”…÷oÊ¿we!»ÊÜJ]å‹‚BvzKäÊ¡ ÉNo‰¨X@„ÞÙ% ,³vzKäÌ» ú Ùé-tz/ Ùé-‘=ï~ÄÅ»èôzà,ß©Ó[#=ïkêôz$º›ìôÂX`›WÊÛ¼RØæMe]^) ìòJY`—WÊÛ¼RØæ•²À6¯”¶y¥,°Í+em^) lóJY`ŸWÊû¼RØè•²ÀN¯”vz¥,°Ó+e^) ìôJY@«WÆ[½2Øê•±ÀV¯Œ¶ze,°Õ+c­^ hõJXˆVoñ¢Õ[t´z‹®€^oÑÐë-¾z½EX@¯· èõc½Þb, ×[Œôz‹±€^o1Ðë-Æz½ÅX@³· höcÍ^ èõc½Þb, ×[Œôz‹±€^o1Ðì-Æš½2Ðë-Æz½2ÐꕱÞ", Ó[„tz‹°€VoÐê•°€No1Ðé-ÆZ½ÅXˆVo¢×[|ôz‹¯€^oñÐì-›½2Øì•²Àfo* löJY`³WÊ»½RØí•²Àn¯Ð7»½Âãìö ¡³Û+ÌÎn¯P<»½Âõìö&Ñg³WÌŸÍ^õØìUï€Í^õØìU‚Í^õ)ØìU/ƒÍÞlwŒ^¯Ú!ìõªcÂ^¯º*ìõªóÂ^¯º3ìõªƒÃ^¯º<ìõf#ˆß‘­"~G„þ˜ûÓ_‘ÎïˆÐŸóÔó/Ëù÷éúãóOÿzþ ;ÿ>]æŽNoùSxtzËŸË£Ó«¿¨G£·üÑ=½ÙdŸW½CöyÕ_dŸW=HöyÕ§dŸW­LöyÕídŸWQöyÕ5eŸWÕìóªûÊ>¯:´ìóª‹û©>¯:Áìóª[Ì>¯:ÊèóªëÌ>¯:Óìóª{Í>¯:Üèóª Ž>¯úäìóª—Î>¯úíìóª'Ï>¯úölôª·ÏF¯úÿìôÊ`§W;½r ØéM^ ìôæ&lôê]ØéÕžØéÕѰի#f«WŸŠ­^}r¶zuvØëÕd¯Wg™½^] özu±ØëÕõd¯W×½^ öz5tØìÕðb³WCÍ^ S6{5’ÙìÕ`g³W7›½ºiÐìÕ}Ån¯î=v{u²Û«{˜Ý^Ýçìö*°Û«|Án¯r »½Ê;ìöfjb³WÙ‹ÍÞLplö*²Ù«<‰foÉ¥hö*Ý¢×[22z½%k£×«ÄŽVoÉýhõjz@§·Ì èô–Y­Þ2¡Õ«© Þ2›E§·Lx}Ì9#¢Õ[fMôzËÌŠ^o™}Ñì-34š½šÁÑë-“|ôzK½ÞR* ×[Ê ôzKÉfo)KÐì-¥ š½ªnÐë-z½¥HB¯·Rèõ–b ½ÞR¡×[Š6ôz‹¯€^oñÐë-¾z½ÅW@¯W¾Z½ÅW@«·ø lõÊW`«W¾[½òØê•¯ÀV¯|¶zå+°Õ+_­^é lõ¦®€N¯lvze+°Ó+[^é ìô¦±ÀFo ìóÊX@Ÿ7…¶y%,°Í+am^ lóÊX`›WÊÛ¼RØæMe]^) ìòJY`—WÊÛ¼RØæ•²À6¯”vz¥,°Ó+e^) ìôJY`§WÊ;½RØé•²ÞT²Ó›ÊBvzSYÈNo* ÙéMe!:½é+°Ó›ºBvzSWÈNoê ÙéM]!;½é+d§7}…ìô¦°ÀNoú ÙéM_!;½é+d§7}…ìô¦¯Þô²Ó›ÂBvzSXÈNo ÙéMa!;½),¨ÓKaA^ AöBåJ§—‚:½Ôé…° F/…5z),¨Ñ{ǯêòÆ]»¼‘ìj—7†qíò2¢.o µËC§vyÉ.oØ ¥ËËÀômBµËËÈ>Óà©Ë‹Héò2r>™µËËHvyP—‘Òåâ°vyGdêò2rÌæÁÔåeD]^FÔåE¤tyyëò–È[—W‘·.ïyëòFä­Ë["ÿqº¼läVÙÈÉ„~Šœy1ðHØ ôSäH±]2AL’Õ|LJ_fhPú)rf‚À·¥Ÿ"ºÌQ@€Ò×HPúR†Ó×H`úRÎÓ—’˜~Šô¼@ìéG$Ê+`ú†ú Œ¾©@sHßTÁÒ·,òÀè›ê@0ú¦ZŒ¾©ž£oª9Áè›êR0úR»¤/åm@úRÒ—*¾TÒ ô¥Ú¥/90}©ÚéKeL_ªpú²B§/‹pú²Ð§/‹€ú²`¨/‹ú²ð©/‹#ú²~©/ ,ú²©/ 5ú²˜©/ >ú²(©/ Gú²¸©/ Ð õe¤¾,cAêËR¤¾,‡AêË’¤¾,«AêËÒ¤¾,Ïùmι‚ç·9sŸ_æœ ¿ÌyÓ“c—'œ_æœÈ!¿Ì9±D~™s¢‹ü2gÒü2çäù,Y"}—3 Ê7}•s>º•O’Õã]ù$Y=6Ÿ$˧Ä~Ãdóa³|’¬HË'É꡵|’¬lË'É&ËÊ'É&ïÊGÉ&#¦7#¦[¦OúFJ/@GJ/ˆGJ/ÐGJ/HJ/`HJ/¨HJ/𘒕p’’•üòþ&‹4ÿ$+I)!½h*!½ˆ+!½¨,!½È-!½à.!½ø/)}"bBzQdRz‘fRzÑhRzkRzQmbzaobz‘qbú„ç‰éÅ׉éÅà?ÍéåÓ‹öÓgC€˜^=`zµzýNˆ¤ôêLÒ«{AJ¯)}6AéÕ'!¥ÏV ½š-€ôêÇÒ«gCH¯¾!½z?„ôêÒ«‡DJ¯>)½zQ¤ôjW‘Ò«¥EJ¯¶)½Zc¤ôjŸ‘Ò«ÅFJ¯6)½Zu¤ôjçÓ«ãGL¯® 0}éÓ—î"0}é@Ó—.%0}édÓ—n'0}鈦/MS`úÒX N_z¯àô¥? N¯.0}éòÓ—MÓ×w N_÷48}=–õõxÔ—P_>6@}95õåôÔ—S P_.H}¹T õår‚Ô—KR_†H}: õexÔ—!R_†)H}Ê õe¸ƒÔ—[¤¾Ü6 õåÖ©/·H}¹EAêËm R_nuú’œÔ—|¤¾¤ú’u@ê•—êKê¨Wv§/ œ¾$Éàô%‚Ó+ÕÓ—T L_²50½:(}Éù ôšéËÌH_f@ú2Òk’£/ó}™ëƲ×ùŒ¾Ì™`ôe^£/s/ }™Ÿé5…ƒÑ—Y˜¾TÀô¥Z¦/0}©:€éKeL_ª`z8AéK ”¾TINéKJ_*-PúRÒ—Š ”¾Tu ô¥ò¥/ÕaPúR@‚ҫƤ/U( ½*Õ„ôYÍ&¤ÏŠ7!}VÅ é³rNHŸÕuBú¬ÀÒg•ž>+ù„ô,ö“Ñçz }®’Ñçº"}®=’Ñsy’ˆž ˜$ô¹ÆIBÏePú\)% ÏÕTú\q% ÏUYú\¹Ðç⎀žË¿äó¹@L>ŸkÈäó¹ÎL>ŸkÑäó¹^M>ŸkÚäó¹îM>Ÿkãäó¹|N>Ÿ+ìäó¹ O>Ÿ+õä󹚟çŠ_|žT@|žä@|žtA|žB|ž”B|ž$C|ž´C|žDD|žÔD|ždE|žôE|ž„F|žG|ž¤G|ž4H|žÄH|žTI|žäI|žt*ù<ø< Wòy20ñyb²ÂçÒ Ÿn+|þæá&Ÿ¶+|hO|>à_ÁóàƒÏ <ÿ56÷seó‘ì*›Q\Ù<#bó‰Nl>FMeóŒˆÍ÷ØWaóŒÚî_cóûר|\—Êæ)lž±ù¸ï+›gDlž±yD ›Nkeóˆ6ψØ<"bó#ð:›/Ll¾0u<ý«pnFĹñ0­Â¹çn_ãÜŒˆsS>çžtô)r?=U@œ[‘3ÿÚ«ç³Ç¦_lîÃ'ëVdÏVÀ|²îÄ𗺨ŒœÙ »ª^Á9w’ùäÜIæÅ¹óbɹ‰æÅ¹“Í'çN6Ÿœ;Ù|rîdóɹ“Í'ç^ç'U6Ÿœ;Ù|rîdóɹ“Í'çN6Ÿœ;Ù<8waóàÜbóäÜbóäÜbóàÜBóàÜ"óäÜ"óäÜ"óäÜ"óäÜ"óɹ“Ì'ç™ç˜ç—'è˜'è™'è™'è™'è™'è™'è™'é™'éš'êN6OÔ-6OÔ­oý"êÖ7ƒuëÛȺõ cdÝú2²îüž2¢n}•Qw~ÛY~g¿í¾2-ÙAw’ùÝIæt'™OÐd>Aw¢ùÝɿɹſɹſɹſÁ¹ ›ç.lœ»°ypîÂæÁ¹ ›ç.lœ»°ypîÂæÁ¹ ›ç›ç&›ç&›ç&›ç&›ç&›ç&›ç&›ç&›ç&›çN6OÎh~¯V¤8wbùä܉åɹ…åɹ…åɹ…åɹ…åɹ…åÁ¹Eå º…å ºEæ º…æÉºÍ‹uÍ‹uÍ‹uÍ‹uÍ‹uÍ‹uƒÍ u“Í u“Í usƒÍÎ 6_87H|áÜŒˆsƒÍÎ}|s3"Î _87#âÜû×tFŽWÎ=¯qîÄdɹ“‰j^•à•ˆ5áU‰^ÕHO㜑;ÿT*¦eÒ«¹dœ´½Õ&½*Ð+mÒ«¹ó¢B4¾ª‘SÆyìüJ`›«D°„º °„º °ÀºI¯»¯Äº‰¯’u“^‰u“^‰u“^‰u“^‰u“^‰u“^‰uƒ^Öôª nЫ‚º¯ ê¾*¨øª nà«‚º¯ ê¾*¨øª nà«‚º¯ ê¾*¨øª n𫂺ùì|¡n>;_¨›ÏÎëæ³ó»ùì|Án>;_°›ÏÎìæ³ó»óÙù »óáù »óáùI»óáùzt;ž¯§»Ov==_ˆçãóõy>>_šçóóõ8z>?_¬çóóõX{>?¿Y€OÏÏïàÃóõÝ|x¾¾¾€Ï×Cøð|=X€ÏÏGàÙùåéxv~y€ž_rÀ*èA| ByXÂ'¨Pº€*èÁ Xåá XåA°ô¬ò”ˆXåAXåaXÝXÝXÝXÝXÝXZÅ`i¥G€•‹Aò+-ɯ´¤$¿Ò²“KKS,-_I°´Ä%ÁÒ2˜+—ÉXZH`i­M€¥õ8–ÖìXZ×`iíO€%>@€•üJ”üJ$‚üJ´‚ü*ñ•˜ñUbÒ«BNœ^´ôJððªðÀ«ÂphióS–f9Á®(] 9] K}] o] ]‰’]’vUhàU!r€W…Ú^²xUèèU„ W… ‚^‰2_‰D_‰V’_‰h’_‰z’_‰Œ’_‰ž`‰°`‰Â`‰Ô`‰æ`‰ø`‰ ` `‰-‚%øL‚%@M‚• ›K˜›K›€_•w¿*{ ~UŽ«,Vù<Xù™`åyI€•ç.VžßXy `åuJ€•×2V^ïX9&’`å¸I‚•c‹KãKc”Kã˜KcK÷ –î,ÝW$Xº÷H°taé&ÂÒ}N„¥\„¥t„¥ŒB†¥¬Cˆ•y‰ K©‹+³– –’$–)VæZ",ec",¥k2¬ÌèDXJúDX9/`iê ÁÒôB‚¥)ˆ+g),MdXšì°4!`iÒ$ÀÒÄJ€¥É—K4VÎáäWšæÉ¯T _©\ ¿RIA~¥²ƒüJ¥ ù•Êò«¬p€¯T |¥" øªnà«Bº¯ é¾*¤øªnà«Bº¯ é|U@7ð•@7èUÝ Wt“^ t“^ t“^ t“^ t“^ t“^ t“^ t_ t_%è&½è&Àè&Àè&Àé&ÀJÔM~•¨›øJ¨›ø*Q7é•P7é•P7é•P7é•P7é•P7èU.î>{÷7ïþáݺ¼÷ÿá??øòýŸ~þî¾cËjÃÆàç?~·ÆïW;§Û2ÊôÏ¿|÷·/þÁU­ÕÒóËÏÆ}ííå'¿ùðÑ¿CÞVÆýå+ß×yœ/?úð±5¿VýåzhóíÃß}þ¶W»òÚ«'¨ÓîÔåýç?´ý¥¿£ÝßëvûÛä[~õsÿeYfU¾ý‹?·Ùîÿëå‹ýæÚïuÚþW¶…MÄëÝ^~íáã¶ñ4޽/¶è/_zt¿¯ízùž¢ÍNö¿¶·ë:¶ñnþÆëeïå›ÚHïçËO?øQØýp¼üâƒ%mËö/¿õ}Ùr{Ym~Bl_¶—Ÿû¦Ë~n§Ÿ*7»x/ûøi|¨å²Õ{Ùá[Ô\}{ùá‡6 .›ïõ#wûqõÅâ;ÿ±ŸÀåê§-ƒíùØÆ§ü¦1à[lËñé¡ôÃú‚ŸéØÿq:Íö£-Ž>oþ©Ï÷Eì×Þ©^ñïâ‚N7æ8¥ý¶‹2¯ü|õsLƒypÍ¿&añ›ÉÀm•ÿ†¡zXíWðOyÛ|€ßûÄhžNÀ'îÕÖ<_œ¼Àô+ Jº´Bå°©£ì§‘¸¬àz%ÉÙ¬iǾqÛ?¶Ñ~9_;^™­Þ¶ãµ]X–·Ù†/ûÏ:àWöaWÏÖ'7ÞG±eK;_Ï/´Ã¶´{ØÄk/ü¸YÕÑìM>6ŸUÏxý|øxú×؉úòƒŸ›YíÂó§_çO?ÍŸ~‘?Ù)÷ºßSÅëÇoå¿ÿUþô1úÓüéÏó§oçOŸ}ã+ôÎ82ÀøÂ«Ø?ÿ«wŸÿ§é³|ñÊÑþö•Ï÷Õ«Ÿàùïß}É—üéñJl-‡–ïóÕ+{üåkïýê«wmùáµã<}ðß¼²£_þÛðû•Ÿ~Ÿ¾½²—å÷9ö£Ÿ?ûÜÊ ¿y÷P²a{endstream endobj 135 0 obj << /Filter /FlateDecode /Length 2663 >> stream xœ½YKoǾ/ò#9³9ê÷ƒ@”-%Q#–(äæ°|ÓZ.i.eYÈŸ÷WÝ=Ý5Ãm#D ƒšÍžªêꪯ¾*þ¸½\ úWþ?½Y¨ÞÄåç…XþeáŒïµ—Koìƒ[Þ,‚r½‹±îlïQøÞ™°ôΈ^+œª;AÆÞÙtÊj¬ ;4lð3Fà—–é³Öã·a¤o°*ÄÐ{ËŒ*Ü&§Co\d6éû $·©*£3Ŧªm0‰i3} p™4–Á]„>œ5>ÄÞ›ºC‡ÅòrñãB&¯/˧7Ë—G‹ï¤^Bµ’Ö,.ùIäR9ÕGO—‰}ð~yt³øw÷rµ/z£òÂw×+Ñ+a”4Ý –:Æ(c·¡#>Æ C9!µÝíå}ûaMg¤.ÄîÛF(omwµ‚OЪûÒ„üçèÍâÕÑâûEì£c÷uÊšü¦Ã}‡ºï×îªì’ä(ǯ ‘½‡H 9Ö¹|ÕoÈ%D4¾[oWÊ÷FÛ=ÐJÊH6ÝÓboµ¯¡9H×ö´†4\ ‘S”ˆ²;ËÛ6êî]¹»ñ:ûG oÈ ØvBhò DIÚÎiŽ5Fú°»W”D—D iTWT»oI‚ðAÙa—Îwi[Ee:<„9^ág4ÂÏLòxÁ‘Ç)*w•%+¸ëè Î9YY V#»[ZÁ؈U»ØÃ* 1’Ë N2`™w½‡½/É„R$ÆŠ>©°¢EDèCÉŽÁà»duPJ¸ÑþýÊJ†75¼È’;ÒB/æÈóÚ[ °ÁÉCïÙCï§±ÎvÿlŽ}›•8a\÷!oëà%>„}ñì;¸2]îë^¯°PR…îI F9×m™’ӕ̆—Ÿ) ŠÈâÃôDü“­CtQÄìØq[¤j´ƒcÓSfÃèð¾Vª·J/÷¥ìáM™O}àø¶¼—ŠL¬2½Ð"b¯V²‡5ÎÀøÇ«»º:¨«3«oêê]]ÖÕwuÕÏœÛ_íÑbPLÛ}]ÝÖÕuu^W§36÷3ß6y—3Ö7½ëÉg~{9cËŸëêdÆ‚[féÜc£¯ÙckÔ r| |›üSÑd}Jˆå$²åãÊZ dÚåy>¬‘8?ÑBæ 7FÈÉ5xwlûºfÈí6‹°Ñw²§| N§ô~Ë‘ ñ…™Ä_ìs˜ )U:FWÒá*@>{EÉ‚Aþ^ÐEÊ™u· gá  pL È(dL h¢NNš 2ìwG“|,ø{ÒüH°cƒVÚ!ê.;›M’T¸’ë¬Ù<@´UjíÞ$X²€©¼›¯Â[ƨŸî1æ¢f(ð„-‡+$5ª®%t±‚¢Ávk×!»qa¾‚¬ œÏØ>%„N#°H™@Gï+µöÙ Òd¼N+”é»Í»"øN^1p<§#Ä€ÌLñð@aޤÙ@lc×pŸ‹¾§ï‚™Kô8““(‹˜ËCñ¿tß–` J†ìÂÏ|ŸRZ+ÄC÷áï,xòvvÄM®Ò‡Æ¢P­ïZØÝ¤#1ÄÄ^Ò—Îú-‰Øî¯ëL4R]KË =Ê .ýQ²(q‚ïö㘛¤®)—} è\N aF›–õxDº?2FÈ”AŒ‚[L5Ò¶Ï×e0E´gÔú¢…ôênŸ·¾g9§û0)¤Tõ€ *Œ™1fSBM“RŘÞêøød¯ÔΧØÖ |Ó Ø<ˆ'y›†£ûíOG†&ÄçŽfbž8—÷©*ä"XöpCÀ^·ØØæÅ2v—{ÍEglÿº©ä…ƒ€ÁIoM)-8‹¸¿niƒEP¡N%•WZZ|RK{÷BÈ…/À¡# àp¶æ]ÌŸò˜…à—”%s—ì³"êÁ¨t oïbÊKê4µ¯!q–wº ù'MªÁÝ@–¹ãs! RÈ¡§Ôö$ À/.a×\×n[š«€8ËžÃR">ÂñÒS&áÄ^{Ð?Îu‚{S¡í £&ô):€cx2m)æ4>G#XÝHÈEÞöÒðjqÅNœÓ "}šŠ—¥kÆ nåbç­àä˜u^–Þ4/O©zál´ÍšA{F / ëQ ™ðõœÏ_)'ŒÑgížáâª;ˆüÖ4OÒ¤wÊçäg;<ɸœ0õ­2'>* Ü ë¡qÏ…yz'UyÝáÌ6×ã蕚)~µÏ©ÈIh®XÑ—5D8)ÿë´,<^6]…êf*ŒÏQ+”‹¤j\**%k&Õ¨„ª}©¥˜C¿mTÒ䫚ó}˪vt‚´kQ{ÿ•…ºÈ!œÑʬÌÀÿ(IêBêñ'¼’ôù ÿ§Ö_ÑtÊ›á­o&˜^’}Ã8`®4J¾% ÷š hšü6@*€¡ê.UMP@¯«;Q@$~°2¹òž,ohH¡\n”y,ÇÎkjžeµpHŽ$'ðø²È•~e­zÇ)âÓt5ÃÍAM˜Î†tÎ!L2'K›Ò…?€¥…G#‚ÇÌæ¶´(É€C?ÝüUá-×–[mMðɸZº•#>tU¯JÄT’x‡ºB:½q™»×•»ôpÄÝÁ!.•HØññëV¼:Ö.1Ôþ™!cúŒ4ÿÜñA³ì0/÷Ýe‡ÚV \ò~1š-lª»HW8°Öt>Óz€BwË ÛÇì–¿5qt‚”x´B¨~e¶±¹Ç¸„’, ‹oØ ”¹¹·Sm½ ë γ `ù#iÔC¡'¥@ŸîrÑMnÀ<´ª0·›Ä9~ÕëçTOgöžÆ[¼9.ô¯Âc`KAˆŠG5öæIHùý†ÝzÍI»|_Ž84“|ùx?… Ï·œ ‚8Ê„ñ'é(f“.íŽ9Ñ^{¢ù–À„ý™[”¡4}›´´íɈy™q)|ŸqÙ)1ç'„Ãã¥-`Fqí…ç6ù¢e9gÒŸó“8Ê0Î8ÒôLK¨1ãš`Üp*íÓ®“røp‘kó`ÂlqlIŠ¥ vÿ‹ô³åë©r½›)¯Ï2­ÿ©®ä̪kå_ÔU`çæ^Í+ÀT}µé@ íW¯´™”³÷®ø„aÓJÔ¯–Ù‚ƒi¨°ÊÈ(LzŸþ"7{§mhσû=3d‚ôX›½o“g¼ ™ð€ÇÉߪÚßç'åiøv9Ÿ:¡W«Ú6üzÎò¾ é/ Në§&̓…3ÏñÞÏm›m¥AœÑÆLÿìà=‰04²­,á`S¦§eûŠÍ¢î˜ð<ÿ²Öå‘-IÉ¡‘íh² (ö“ ×óMsÓÛ¿_üV#Öendstream endobj 136 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1298 >> stream xœ%’yPSWÆß#sÊÄÂø¦ ³&zøÞz&âÿÂì`-ÑÚeKT¢u€•78áò2»<}ówr¯ö:ŒÀM¸vü‰ÑÛ%BkR—/×)À `ø$­‰›ýi’ aøBƒ¡œÆþÇ"~æ„ «Ï„hî‹ÕD{I-WÁ@Nß æU¦d¤:pBÅçŽ<€>¡À¹Œ³2GÉ6È'§á=”Þ2ÐÐk_Šø{Â*Å™ûÒüÓò„$`ˆB|õÌÍó[^íƒq§ëëÄ‘|à²Èu½!]WÛXÚÖW¾#‡«ëìÓÿÌ“»®ž«?[%'™D•–®íwö;yµd’P› ­‘k|Ž–Æ%(Æ£h)Â_q”}|)Èe–oˆ[*±‚…¼-¯¨ª™S±ÕÑ1;÷(Qº g ×ó§OF–þDÄ5Ê~hüÎ3#³.;2ÕeýüÍ-Êêë*š«ÔEäqÆ9ÀÜèÙ¾"P=oæ!y¬6C§M ’˜„(åÞE+¿®œæ]~ñ¯Ñ“5[ÞWR­Í‹Û«Õ&§r¯Ä¯6Y„â½EÐ4.2TÜ•== ôŠæ´fh¤Ä ä¿HÜùÙ,ùt½µzÍqQJÇhœcÀÖq*øÓ¬)¥ aΖ×誋; ’)NÍÎÔhàp*§NñKþ ‚`mÁºÒÔ#Г åÄ$I€”²Â¬ìÂ|®Å`ªÖ7FéöTEån…M Ìߺ%(3VÁÒºýí9:=T1»«câ£R¶¸ŽyáttÅ)ÏÐ-f¿ r_Ebt÷F'ourðEm }iìTúã]6˘5Üôi¿}îá‹îÆUƒ\¿=K ÁÂuŒ*6:rð›˜ÇWðƱ"!æy㢠þ ›ŸÙY¹L9,‰âtdη¹ÚM£«I¼E»8»¸p ¤0/÷Ϭb`0]¬Ü¾‘X‘9Iä#ðgÖ~¨ÔÝE\¹ðË4»x•yë~\p~ _^ñŸãköŸŽ&\`þ%’Ó„&6³–;ÏÞÖ³‹sض&¼"Cû`´ÃÑúJ‘vì^©çˆâ9V™R#ÄõÊHý;£á‹Ý‰x›V«…ÜtÎ} ‹s6ïëÞ!ö>N‘nóœ:=EÊØ¨{Ë¿ò嵓¼µ bûñéxߌÅQÑa> þU}âhqÔ?ZñuBDúf"Fg¨Å…茎¨ÂÃD:F8ç‘Q*ÎO‘²T¢èÝÜ¥4Æým0¤ë¹ÏÏ•¬ ÔG#:wžÒ¶A? åè[Z‹KôõC3g Þa^ œäS8©¹g¹ÌdRYÌŽ¢þIÜœendstream endobj 137 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 4109 >> stream xœWiXSç¶Þ1’½«ÜÚÞ„ëTçV[k­u¤Š¢ÖÅ EdPÂLA ÌIVÂ$c9!dR €8Sµ´µ­Ö‡Þ¶¶Õ«Özlm];çãÜç| ¶ÇsnoϽ7áyÂý­ý­w½ë]ï1Ç1"‘ÈÎcõú¹Ö^¢³\±¤Ù½쇗¿8ÚÉ—8Ýv<6б~&/[ñöÒ¨eÑž1ŠØ8¿•ñ»÷ûï  Þ»1Dj?múŒWf¾6Òd†ˬaÆ1k™uÌf"³y‰ÙÈLb¼™MÌfƇYÂLc¶0ÌVæmf)³Œñd–3+/f6³ŠYͼÄ2Ï2Œ#ãÄ83<#ežaF0Sèe™áLŽÈMT&–:ì®x‹¸ø¬á×íÂìŽHž“èØ5ì®ò™°g¾‘2âÆÈ]#OÙO²ÿùÙ¤g¯9¬r¸í8ÎñÞ(ͨþQ×FYœbN:óΛÛ]F *K1˜q›Yð¬5[Ö‹…é–•|V©ê`"$‚:33‘„ ÞvMÙ¼@ÃÉÙöœzhƒ¨ÑœU·gf×kÌP …º<]^/ò®X"9M¦æ¦jUåº"¥r¶;ç$ô@7äÀ—*ë¡v5( SM™ƒÞøyy½NªKÖfÑ;•C^5mêq´©]ÌøF•è—+ø¼IŒ×„ñ¼™LÀUá¬fNðø)*.êÒÀ’á_ÄœºØòÁ%i¸7»X´¾­b#K»ViH¢Ôêü»F î8Ÿµe¥ÇY]§¥øK¦ZésT³dd ^à×ÜבqNB_mÃyÎ%^û†'Û™YÏ´‚>â“36Ê9G”ÕÂófQ• ãrD^•¯Î‡ÎØ •…]êÍN†0²¡ÀöRý×âD‚®ù‰U…Pu‡ðEüµúDKI‹–3³¡*_PC8ȵá:Û©õ¡ ©u¶rÉsu°$þQÿ§8=_ê`9úDfÝoQu¾åν¯=d…6LµR­£Aë;T“FŸ ñ®JÏÊ 7ÉWü„mÓ_•Öš%¾ª °ƒ~7€¯ ZöŸG\wÎY*0=pºmÃ.PS‘Â…,: ®!••…@é¶öSQ{7ç8õF*I'lϳ« ©0¤‡$ã×®”‡6• Åb||F!héWwíÞÁƒæææº CDÐrÀþ_É¡W—¦Sr$¦)³2W¾å:ÿAF¡ZnPR\Rk= ŽÔXɸö øtêžµ?ÞU¹i…"jËšõêX n§ºh‚&MÓÐÔŠÊQ‚"Ê´2}EÙØhh¼>ѵRAƒe‚259Új‘:uuÚ.Jª~82”“?„‚ÂÄ õnµànÀÀN:Ð@îa:p/ó´´ÅåÍ=}åíÐG£~Æ]ºµÛ37Eú+BvË7/ÔE·%US*¹´¼yçñðÓÂN“{ÏíÁÑ2:Å/>™Â¶†¼c¢Âq„øÊ¿bhƒ}-F/ü…Ï,ƒ<ÐqÆf¨¦ÔߪŽÓøÑæø •n¨T—Dà¬AÖ5j­bS˜§¸EAB©JwPk:Íœ1¾<&jb„ogàÉ»Þ;S'żbcEÇ:73¢’CòÓߣ† ÈevjvúD’F ¼]iÂÖÛ &QóMÜyG,0¿ñ±ÙqIÆEVÅÕ‡Ìï/m•ŒžêNœÿh25в&|¶°D T‹Õ ™Ò˜e"}€[9÷$µ¯Üè=_zZEÇâ¡|Î6 o¸DÁÜО§LQˆ•ûîˆ÷‡]à_ÙÙ¥>G«Ü›Êx´¦©Ã| :áhl}@I"h žË¹ÀgåûžšOgš£ûd§?OÄ‘ŸuwUWP¬W²8õ7%= ¼ƒ°ƒ&\‡ lNNõ±XOm@MTÿ´áµqöÓÇ‘QdÌÏ/Ñîpè{\[•Ÿ–ªÊÈÖÈöN˜¥>Û`w}Ló¾>Íyèä´u|!θUn‚3pÞOKFs8ä˜Qg¡Ý¥;߉ñ”m¢ŒD;öv_wWQ‘:»HššMÝFY¹ßP_Qil8¼qþܵ/I û–ü:ùÓ¿0x…’§ˆì®ÇU7ê1£^Ôp\m>+F'ôä ‰æ=ÀÝ»üñõ¾ðæä2ÙÑÖ^(,ª°ŸSÄ×–•UW&™ýÃ|•AÁÒˆš=eÔ~Nóð|˧1¨ü€L­¦š²·<¨~¿O¢ lçÞ~°G£ãϧ®vÄ¿X'Ýв¦Ñ–t]X~|=­Uyž¾°”û1›Ÿ?ÔÔëšÕÉôUõzp·`JL L™)ë! ø&tÔ¼¹~ïôÉ‹{Ï”}tS6´eØh!¡b\iñâŸî—ò?v­èÅþÿW’å°5X¾®$Øn-^'Ú#ã|™Å” wp•ðOÆ[¯òAa&µÕ¿†ïÖUkß…rÊ̾!UñÊÎ;"sy˜#´óÑu¡ò˜¨°°Ú(sc]]#ü›´‰ÚÌX| ‹ÌVû3—ÿ++‰# ;“¤ çV5à*; P¤®ÈÖ¦R~Pß ÆJ÷È%­98Œ QПVÛëö°cAO½v FmaUn‘®*€†¨ +#smÎЪ֒FŒì=¾$¦~7”"Ùß…õ]AÛ `Ðt?ëCöƒÓ÷ɘrÅÁHrKU¥Èmi×iØ4¸a(í}­ :FÆ¢·ë_÷ù8‡ z0õTd#µÞCJ£×”dÐùŸ˜œ–ÎÙ€¶ˆ:­-"ÆUTëè…Cš¾ØPî?½”YÿƸôÙöRd®?¦bÏÒ?bÁ¯Œù_=üe¾Ó¾¶Ø:ÿ’à[ýÂ7¥œóoó`ëæØœËš$ÿ—…öÉnNw ´>¸BqSXÆ'jèÔ55WqÀa’Gw[úkÛ3£ Ò=Ù™rHáBëjë«+Mý»ç½Dì½Ý¥Äî„ã÷‘Ã?ál¶7?y·ŒÔüñ“Â0–ÖˆxWã"dDèe ã©œ§.lîBì,:14\V~FAñWqÄ'‘m{‚ã#""*#Z z½Vê€÷põû¢b¬c;®æß'õ«­á€†ú1úœæ¢ ¡¡ÑQa¡uÑCý!) gƒèèM,£ûu(~ÆÃEÕÍàÏwÞ]X·ÖÀÂèSC–e½ ÁK7¥ë­Þׯ%öÀ‡pÅÔùŸó?‡‘“OùPð(‹G»Ôsp“üázÉ™ªï>¨h†vˆ«œQ¼æÃ*X sRׯÉâÔ(ëæ]DkÑFÝXÜU1ö[\xƒF%]½òejX©¨„ pÚÈ –±ª”Òk;~G»¥n=iÆv†ªÄ:ãh |Þ,øU‰ðÂqúðr4Φ甋¤ ¹d çS( 3þ2 ØÎ)ØEVE¿ù£y‚°•­‚‚ø&)MJò‚ÄnPÂR³ˆ.]8»KÔoY$¶øàW|Y%T×(à€lð±ä€±UP*þBvñú¨©Ž‡$ÙàI’ã VQzë¢CtÕY_%z8 Æ»$‡¹<üG ÛŒâµè8ã3ºG¦ªÓUY:UA†ì½Í8Œ¼¤ȸH²L /¨UÙÙÅ©téE%·.£è´ôØ÷u?ÚsÒÃçTÙ?ö#À~$Ø;3Ìß(Óêendstream endobj 138 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 375 >> stream xœl“þCMMI9‹ûUøÆùJ‹ ‹ ›÷îÆ¿ºh;:I ¸óøˆøä€¤ø'¤÷fµ÷éË•Ï÷³ù(™‹‹”…‚}3ƒ‰wЀЋz~–‹›º‹„‚‡‹‰†yû#üÓ‡}‹‰‹ˆ{˜~œ™•™’”¯ ¢äŽš•±Žš—·¢Ä÷ ÷‹Á‹VzN\û€ll‡‹xU´m¸ë²÷#–ˆ’€Š†~‡r6aeg‹„y‹«¤•¥“¡Ÿ¾³õ‹ÃäI VOXoZc÷±ûU ÷@÷÷J¤÷J›‹j‹9AD……‹Š‹‡„’†‘–ÜÙ÷ Éu·`iwqooŸq­šš–•÷±‹÷ã÷÷XÁ¨t¤lltrnn¢rªª¢¤¨ 7Ÿ ‹ ‹ ‹ JמÓendstream endobj 139 0 obj << /Filter /FlateDecode /Length 1323 >> stream xœµX[O[GîóùGQ¤®“xÙÙëloR«ªw܇*M%c ¥ÅŒMB}gÏew,ÄE#…à8 JV½f`Õ‘ŠîzN™?QW4©¬»Ù¢þnRíìIS{î­´õä¨jÓ 5P@SôÂq ‹É¢zÃìh,AyÉ^Žè©p( Û·B(Ï~Ý'µ€^³‚ZxRz6 _¤^;öÇh¬”âBX:J©¦¸=ÛÆ;¯‚±àA@Ó‚€^jöKhûv„’{´²5F/PŒ#µ$‚šHÞN~ Qú> stream xœcd`ab`dddsö Ž´±Ä»»Æ|_ÂÚÍÃÜÍÃ2ûÐ>ÁÝü;@€ˆ—1012²hþèàû¹ù{å6Ƈ?Ù˜š¯;¯{á‚òî*ù?{تʻËJçuÏ•ç“ãb1ŸÏÃÙÍÃÕÍÃÝÍ#ÄÀ[b#hendstream endobj 141 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 5453 >> stream xœ•YyXS×¶?ÎáT©VâÁD{s«h½ŠužGp@”:· à¨ ó’Ø!Cˆ ΢X©ó<EkÕ[Ûzíõµõ^­µëôÛ¼û½}˜xß}÷û_þØÙgŸµ~ë·~k­ åÙ’H$Ý‚£7­Žß:/fsаÈuñóWoŒ×ùtüÇ¢?úÒ:o òö@ÞžUþi€”uy—›Pâß”©›§ÅL1sKÀÖÀmñ³V%®JZ3/9"8rþÚuQaÑ Ö/ܾñÓMË>^ñçaþÃ?1rÔè1}ÆŽëןŸ8ТúPó©¾TÕ ¥úSQ ¨ÔBj N}J ¢QÓ¨%Ôtjµ”šAý™ZFͤ†RÔ0*ò§fQ³©O¨9Ôj.5’ ¢FQó¨ÑT05zŸšDu¡ºR>””êFq”/Õ’QrʃêAõ¤hŠ¡¢(õÕ‘šJ@ <©x‰§D'¹ßa[‡_=V{¼ñŒôü/ºžYÏü䵨k‡×¯¬ê=î=õ{ßtœÓñn§ÐN;½»zÇ{ÿð¾ÿû;wîlìÒ»ËÎ.?p¥+×5½«à³Þg¯H«¥ÍÒß»õï6£Ûñn-Üf‹}¿é¾¼û.YOى˘hò¨QgÒP‘üÖ¢ú ÁkçNW´š“b‡HbÏAGŒ£»ô%Èí\¸›G—˜W/ž>?½þ‹YÕ¼ôùƒÚÚ¦+=î„6Ràb×®3ŒGrõIÃæªÎ¶%U¤oCÛÙ€) ?VH_âU¸šûRhðc.£ƒª½‰ÕÉ1(Ž1=hœhGŠ]Ø%àá|BOa:‡ûá±/æû~=$Ð>ø7“›q^¹šûñJÈÌ`>¸Óð Kß o #ßz’©n½Í:wn ß ÜÚ†…U³Ñ,4'.|Yøò•éÁÉcdÚÔÜT”Âbï‡BÇ;_í?}U±§ÊhFŬImÈÊÎÉÍÎVÎ ‹ @ìGS¾~Uš_®/ãËîVC'ð|¼LÚµÕ”]µis"ee¡Ö€,¨¨Ho­O™®PWˆòYé0³Ê•®T&åˆ~â`; µÃ7N 4 ŸC¡ÀÇ®°ap‡+îÈpÂs9 d?ˆ9 gŸØôÉ¡Há}óRÙË™705yAlÀ,…t1„žå¾¿´p|ï¾~˜5ÿÜ£ß^¿šwF[ˆ'To²{mçܹˇ +xî‡>%çd•ù•ÈÆ;í!–(p¬;Cƒ[â¹WB< }™3èpê –ÕhÊÌMËMK™&ÛÖKü#¶]Ol¿‘Èn…jú3YŸåeÐÙF•¹Ôl¶ê{¡»®€°2_nRÛPR~FãþŒ“LL‚ß;û÷O·Lu'^’n|>ej`Á¾éÅ3•iÎ3·àN4¾ù6ÿ6Ú}¤§á³LRzVšóÙ{ÎäÌ$Š &M·Å *-É.Låq sâhi¯—нnWCϨ"«r«A•Ÿg@l©ÅRbR–¤–òÛ+’qhú4{ŽúBà"Š7Û 0©Ln|êΗ·´Å2Ý™÷ŪÂd+DŸ“[l‚W]4IаÐ6v—A‡=\ž6O…rYçÑ&³µ@¡/¦¥‡ÖÖ4%]ï ]^Ý}R•¶w{9·#ªx¾q’ ¡íæs² •³õwêÔÔ*3*E*ÛV”£Ý(+Ì.Ìi¥µôv+ûõ¬ôC1éY™ 9 é¡›W•…öÄ’!Sã-[­é|UòÕWÙgÕÕª]i֌Ҕ̆N\>x|èczAgTèò‘ž$‘+· ¢Ú6èäLsŠ$ÑoˆäJÛ[¿ÝžÙ€Í‹[›½Éq§é—_Væ[ l|ys5Éöx!yjȬJ.SVÅ䩵ëdâLa›3•?ÊòMH':ãí"©6–6Y»Ø:»'î°Óqÿ”©2M|n<}¯lG“bŸ¥ØŒJØ"•1[£ÍÓd)Vn›œ¼±¡‘»ë tF‘?6šäó[íw¾‹H{èOŠN¬0×÷¾«ªD3o{1 ®/Ä¥¤ÎÌÞØså¦ý*È7ð×à,ýŽP‘mÚ̼L”)Ÿïˆ¼qóæž³7.•™.TrЫݎ$73‰n1Y‹{¹-5»måߦªþê yÄB»ËdìfÅmǬMd&ÀSúFûrÄ`×;ó´Å›nÇa†dvŸçxM˜“*ŒöýÉur8CÐsÖI³üâû¸È!‰©ë5 «4ªLz½NW¨hÞi7Õ öº#vµ‘(ð©3”o*\Aø¥è5u/ÕÍ=ñ—;×wŸo&´/jàÆ…m†Øà¨Ý ·8^ jåaþ­B'ˆá`)øÓ7/;¸±ƒ¯<+@&]o¶sµûî Äþx-l\.ÒMjí…vÉ+‡04Õã„fÁÃð,ŠåýÁ ÆÂP˜áÀ†^µšûÛÍñ¸Ù$'Ûøa³CE²ÙoÅ >" {M¡n…2–ËE'O×Ü@ò]ȮݥmT#[¶´¤¸Ô¨1(óù †ÙÆ4Mþ4uZz°ìVO}—Ÿxw\àá™m¥ Ìz) ë!…#ÂÝ€~þûƒ9g‡òXõ¯±pŸaÒÜCÆî4èÅQäöÉ•¡ýgøñÿÒ™ÿFØö@0ÁÜÆ›Ë÷O'iÜwÅ`_¿Û¿4_Ü󃹴ÀÙ  óX7añb¾DöòcGkV0ÛYéÀï…ôP3ÒÅxz,÷ø\øDL ˆ;Œ_xöÑoÿøûïm;éN8HÜltÞrþl«ð®psLærLMË­k+Î"¹U’á°<Õ”H†CMž²u8\á&2WFf }~‘ÎLŠÇ/ß<·m8\k‡ä6Ô7CG Ê­¨Cá§ñ(ö¼ë€MÌbè“p8¼˜Ú‹Ð¶yÎ¹Ñ œïÒðÿ“IîùAf2&Ó0„¹vjeøÌAA½Þòí××aˆ¨(nŒŽNÊà‘níÃ?ݺÞ tq!L|_úb«@oµ ï“–Ñ.6Á+ÀØÐ]Z,œJ¹ öÏ+CH„½ú~2(ƲɖÌWÇ×dÜʸaSÛR*Ò-[P<;ÖF¿ˆk‚"½(æ(24Ê4&M¥£¬¬œ¤mØS–—“§&Ý´4 ½µ/PöÑÒcËœ»Óó*jÞÓPw´¦ú4jB“o«Øb5O±m1“8•dî"ãÖW®?;\—ž\¡0+w®'²¿ªmª,AEÅúŠ¿Êò¢`²ÒÎïtÄ„º‚Õ ”šäåÈ–i!Kgfvsc&Çüˆ¾¹^ùü'!T†k\ÝRó[¢í¤vÞ†oí­“Þ8&uZ^.ÊDyrŠŒ)mu¨ YËrf fˆÒKk]Ž—5Ó0Þò>nA+pÕžwÄd+ÌâÎ~}Hïã¶½{;CRCñX ó ;}Ü9’Yœ-çÚ½“Á+ñ€GB'q~ûO­J«*ªÉk?$šø;i;ÜuÞÏ%#â4ø,ÑÔÌáH>eÑÉûEº} žÑ÷]5Ž0Ц榠4ùŸ¯ý žož]ÕVX*I…“„ÆÃOdˆöÁ{­þ‹Û„dð x.3†Dìk×A»‰âžïÜ@]›XArkê¿Þ@½½(k¿FjkÄáBZ{áDmÕáž{wÅm …&OÍÏ·é{î#Å9°¸p¤ê’ïß¹eCkˆ¿"›Ü®¤.Âá|“ΈŒòQG–®Z›°d©"£)v×J´ E'®\.ŽÏøû=tó„KÜ/nŽ+<ô¿7Ò p½uè(¡?‡»`½V«FyzQ–¥Ôd¨,SÀ °Ò®¡t 7È- †þ±‘&“Þ/Õ¹ö‹x`*Ú¾–û|ÍÚUw%â‹™úºZÇm;Ö‹,Nµ Mä°aõð¨ÞC¸¯9ãý~´ÏEׇãHE¾^‘0@µI» m–cÏSsžA‡ ÿ¾ñg¹vèV]ã¾ÃG­ÄÞ9¼ø£XmŒf+Ÿ8 ¥²*ÒÈ ¥FžËwëï öÚ©e¡aÛ6ci?~À¸1sLNŸ/Lù×\Û¦Pªut;R>‚Ê‘çì‘Cà1÷äÐÉËè.{/ääˆà„u+ )ÊL¤d³Œj³IŸ_bQ=|ªò"dþú@†–슨Wsò5ˆM'^¥Û¶Œçk·K?N¼út‚.ÐçiØù‘«"” ZI 'ìh+%&‰ ‰ áŠ¿¶žx”F—ƒ4â-Z‘Åj=çP€' h/¾èQ,x¬»¢5hô$1:o· #màc³Ù{ÇcwGäM>}(êœEÚendstream endobj 142 0 obj << /BitsPerComponent 8 /ColorSpace 29 0 R /Filter /FlateDecode /Height 550 /Subtype /Image /Width 600 /Length 45970 >> stream xœì]|TÅÖ?s·dKÚ¦÷ „’ÐCB/ EB/R¤# ]:H“Þ;ÒEAŠHQšéˆt”Ò ! ›óÍ™»áá÷àá“ìnðÝÿïÇÞ»»wgærOfΜò?ˆ (P @ (P @ (P @ (P @ (P @ (P @ (P @ (P @ (P @ (P @ (P @ (P @ (P @ (P @ (P @ (P @ (P @ (P @ (P @ (P @ (P @ (P @ (P @ (P @ (P @ (P @ (P @ (P àŸ„÷n\¸pèОm[W­úlÎÌ1cöý¨]»F)µ+U*^¬@X˜ÉUm"ø„ ([‰P5E u;B—¾£Ç¦Ì!Ì[%°ya×!ó×ïØûÞü-¤Þ»sá±Cû·m[³jÙœ9cÇ íÛ·]»f)ïUªTºXtX˜§ÉL¦Ð°ÅŠWª”œÒ¨]»ú3fæœÏV­Ú²mÏ¡C.üäNÍŽ ÉØ'ÄdÛj!3‹…ÍÂÄ%’ð‘³v …ÌÕ˜(Kc>!™BLMdÃQ¼÷’嶈¸²ŒøYeYnßíu–åv”èi²èv®,·›ÄxvÈr{VŒôªÛ{ö~ï žÞ»wíÂIšgÖÓÓíl‹Á¾æ5´÷쉤¶í/üÒüzmKêUÐ" q–¦Á0õ.þé=?¦ï8påûýèhh‡8úC›Œöm0¤§½G`O|0ѶýU¹ò¾ÌJ€¢½Ù ìoª/µï6‡/xê‡â¥¸Rù!ös}rnm=®èa³ÿ]´µñÿlî ¾öÁ¿p_Å?akð#·]¸;/ÄÿNvÇV?ã5¯1|Œ«€ØÊ­¿'°f½í=Ø7¢úö=1½¥½Gðw ÜÇìkìäÁ5¨½šh§ëüÃRwÚ¯oN þî9ŸD5L«P×Þ£}# íµ÷ì‰/«Ú¶¿”Ÿ^÷Í--¨LRÞñ ÜDÜ£jnîtón´ÏÆgEêÐ×zž˜Ú"¢j7qXpÝ`šíÆü÷àvÙÞ#°'~ˆ¶mÕv¼æ‹Ë òÇÁè.ÎhÆÍªqˆÏ4)w1­B¼X Ô1 Vqû bèËb!—¯„O¥t{Áž8ïmÛþ^gnÿŽAáóºOq5›ã2@³ÑHðßÍrXÅêM—®"þæ²³â=Ý™~(Œ¶Õ˜ÿÎúØ{vÁËñ‰ôf¸ pž9{ž x/ëœf.f¶†dúl¨ÛJ¿trI£éÍ•¥øù þ¸~f'Fh Â|»ù ØQÌÞ#° ØnˉЎm‡±;_õé-ɇ}—“šîÑ ñž¡1›Œ8Äm;n•Ž#NQ7qÝÎ/ºÄv ¦B|?O‘½a–M‡þßaY²½G`¤B¶(ïa›vüþÜW|xSeRMíïy‹Äq¥$Oí¬oÙŒn;ø7z¤&¸-Ç~tY¿þ²Ø! oº­ÁÎ.¡ŸÚrèÿÆt²÷ìß ˆå¬ì76íøÊ£W|htÔ¼!tD ¿kˆIQÈh"w ¦…I‰WùLçoùN¿º¨­ÚT·-ÞóœÖ à¨Mÿß ëH{À8â }*Ÿ¥,´ïH8⺨Ú÷ ‡¸Lçq–´Ôèð¾Úªbôç͈ûý@Q·-4¯”×ÁÐm¼1³hß¡j/Ô[dïØ[ý|7Ëg]GÙ¶ã÷s NÔÎÈtîZÂy‚´‘tV½ zI~Ü¢šÔ\è¿Ï u™èÜ>˜¾g«c%¨ ¯MGÿ_ äv{Àø¼@Lwùì“n6íxÀ€ÿÿÉ÷`µ‡ýŒuJ<ÏÕùGi®ÝñšÇܬš‚W]„¦?|GþS<øé—:3>ó›u¸ ¤´d¬¥M‡ÿ×áÚÞ#°¦'ÄFÊgómÎqæÿÿw_—ÜËyæ>w²ˆ ²™ˆÑñ\}_¡^¤"3VŸ`DsC܆Ÿ?ñXÉßDAüÔ± sV—/m:þ¿ŠçªW)’ÿx mãzQœmL°ïH´Ð™o\8=Óõ>·sëØŠA"*4ÄÞñ¾Ç‚3>‘GÖ:¡maÎsá:¼ÛZÜ é†úfÏá¿W\ì=» kOŸz³ÅÙ¡|6íøü~_Ê» ßÏ~ÂјnœÄ'P‰¢o®jÖˆK&ëTž¢9ßP~þ‡ ×Ï2gñ5±HÏ­>á®&›ÞÀ_Ä({À.h:Mš-‡\µíÖìæz» Ü=ºi+¥ÿÀ,¬Çw}÷Uò¬™ýšŽò×tTÓˆs]éµ ù3Çy¦ãmç¸Bo^ÖØ¦wð×ðe{À.rÀù×õâ,SJµeǧÖüé­Lâá›—Iï#~ËNñb«ÅQŒEbtêÓÀñH¦Ñ<éÒg¾d¹Èê61¨œ´Æ½ÏóŒÌ€Í¶¼ƒ¿†)­ì=;!_vÀŠÇEû "Š E—TílçÅšg:å­tûí‚Ûãy+RF3v÷ø1Õc]<2Í#ݘר¯/t,rjË,pðŒuÅéÆ0P=¶ß-¼}Ù{vBùõ–“‚ûlÙmêËûÁ-àÒÙíN½¸¬§Ú5?ç×ášùS=×&é·I4=/г›ÇˆGÐÕ÷\jêòÎÚ ákå1šd«¤Ì* i>#C À–·ð—Ðd¶½G`'4™c9©ô•-»Ý\á¥7*6ÐýÓËÒA¬ø38ßG¬P>‹ëVql¬¸`äÉÕ.¼Îˆê`Êi­³Â¦ðó=W‚o'ŸŸ!÷6Ø{vBÏ¡–“f3mÙí¹Áÿ:Ôx÷}V¼^–öò5±u=Ÿô¯]ωoàGqÅTMql‡ØŠõfäÛù„oq®;× }—ãu¨ÇØÚ ¶å=ü„ÿ¯’~Œoo9é5ÄN#Ø0Ãá‹]®—±—žM®×Ÿ–‰2Š$–¹„õãˆô¾NäùŸf‡ƒ#ciò Ü`\!|Lö†~k×ýÖÏa@;ÝÄë ¿mïØ Ë“,'ãÚÿÇërÿÊÛWCdƒRYã.ZèÍçÏ?œÈüÀaÑm×\sîÿ<|¼¸¶kÉuóîtžœÂ_>à+çv79d]…²—lzo‚­y/rv·œ,­mËnϾ0ÃVX"í™çõƒú!Nô{¿dŒÔõ¸ŠY8ˆ«âQŸã$aÃZÊ´tx,|…ëuüå iî•Z¢9d:¦€‘ymyoıP{À^øÕßr²­”-»½QÃrÂ×®J¾º æ7uŽ×Ì4q*ºåh§t\åzñ‘×¼öAwøÑÄ'®•Ò¢ ô£¶åøK¦ÿgüµP«Ç¸ÊqD(nW•…2ÐÅ–·ñ&l*kïØ Õ–Ð¥öá=1J ‚ÕBú徤}P˜f§Ëo™%ê¥fÐ÷ã &aaëÅÅj nòý*2Å÷s« a’”8uÉŠ/%²ÜD 4·‘½G`78Þ”wì¢ ,eàëÑ]gá$ÿðÐ_T[øg~a…Ë ù dʘßÙ8i1ÙÙÅp À›É*h5ïÐïpöò¾Æ:G_Ÿdçÿ8¯ØtÞ}†ô²÷ì†<–Àö,í›8^rÏ,Ї`;9Ï' ݦ=lÀh}›åMf„9U(ÆÃW¾2Ó!Q0^Mô*Çʬ/É2¬Â?د¾35Æßq<2‰IpÞ†÷ñ´™dïØ e7YNl–î"fÇíSÐs".ôyŠ×™æš…!ÍGÔ¶óÜ~qÝA'—Õ*‘‰¶LøÇ›CÒqÄ Aüty Ãçàs©@ÍÊ÷Ümxo@µUöÝÐ0;ý®ø[v+Sә쓭ðxŒÞŸ"Ö¨ÝÝx§k~’Ÿ©^“(”ý¡ÃBìÃß?÷i_ÚS·­x'2´X ~~…ÝB¼o8ÅU­hÄ®…ë1UF -䢄BÛ:Çrº·œÔúÜæ}Wÿ5“Ðo®r„÷¥}æº~ò|˜æ<쟘…çØïüʘ§cäEǸºÚ÷‹I)ž²Ô’š!•ÒqŸÚ¼Ô½Ø>U%l~#¯ƒé7{ÀnÛÑrÒÖ¦º@Ê#ÄëíSíÝhºÃëWFLuvš´Vê2W»’®”\Çz^Äì}õcÓ‰¸r]¼Œú¢ÆcVÈ\uŠt Ê5¶†Téß9ÁÿW°$Ûõ1°Ÿ-»õå“?¦¤TÂÁ¸ÝtŸ¨wò…OåøâcÍF¾‘ˆioœL—~¯Þ)QvcM¸W^mòÞ€«üb#ßy ÍØ7/ƒ‡—çL`¶¼“ÿ€3¾öý°={_>í}[v{! ·AizÇ÷.w0œËt‹ÒüãÆå'Ó±–ˆvØÀJɶ¨Bªtø’léMý[å§7ËEØqâ­_ùbù˜/†iÛ2ŒmvÖ¶¼•×ãûâo¾æŸŠSA–“ÕÕlܳ ׈RK‹ö:_ÇtÍf®Èk¶™ãê\ `dÄ#Ùâ¬ò•î±[ùœúU¢ 1KálbkYíÄ_ŠA,0§ø_soÏr‰qtInsƒÛ÷4–g°'Æ–ÝŽ½¹B™ º…ýY‹Ëô Gk:SpÕYvg9aŠ˜ÁR­’µËì&–ˆËÀhá8ÃßÚ”™6¸ Žhö]˜wö‘v}døÉVf.L<³Fe[§_L\6À90èØªË((âƒJüå#¾ý{j<„ÏÝ·àßnà}ï6›Ùìv^ƒÕ6.¶»ð¢ðâ<ÛͯfmÐ(³v;¦Ô@ìKJR‰Ž7ÝçÝ‘Ò÷ÕecšijGYê+°Zâ8œ/„³Ù†pæžì_;ò—|žÂd.HM“¸ þÑ ö$hìï%œœKÜIöÁ‹ä åmÕåm€â^_«Úö~nÖ~ÃÅgâ]vgë’ÅŸø}éabï–~@„²o6}ê(~ù+K[ÀVaW‘ГŒTO!Ÿ§¶ò¿ oÄ•\¥)9˧¹ºA[ÝÏkÐ{ð›¯ùçâE ÞŸòÛªË(É×Ç…'«]´ùÃ̸Þĵ¦–øž.„Ç&¥v(‰˜îÀu§üãøÆÊylš³ FÆ‚u¥ˆßêé\ÌRX“([šÔF¼·ð¡þ ~’'Caè*[ÝÏkÐxΛ¯ù#è¤|´Ùö…OW‘¬¾´ã”ãío5š-X€jÜè‰â=FUŠRÕßã)v —ä3éÈpdk ens ö3'Z.3MD ;Û÷PÏ¢ 1˜XèN¬ÜOH™—Áá±´ÔF7ô”ÛhßþíŒØmò1=µM‡ \©.–jNNá¼aR?ʈŸDª¸1ÖâÖ´¾UhqSÚƒ´A¼~˜˜ûV‘oj$±Í«Ó”^Õãkf5pª8èKø~÷†æzÇ<\1Ë3 ·§nàh›ûyÂr/­¼-P7Û‹å~É62pƒÁîÃQ· ëÕÅÍ:¾ Ä@2rÌó=Âe,ÓB‘¿Ò%ÈL‚ÛúÐ^0Õ‘cBŠIhž¨µÌíaŠªbè~Z|+Lû*…%¦v/£§Àx»VCÏÒݱg÷vG§1–“ûmÒ߀æ7ØÅ%>™¨ÿÑÁ°;Gmè0L©€Ý£i#ñ<N‰Ë—¨C…Ѫ^ W¼"v± ×á¤0U…ÝØƒ¶ŒýŠñŸ˜¸v–ÏC×ÉR›kz仦±ßÑý¯’3È‘MÝ^q­MúÓAD¾A­+aÁ¾¸Â;—ú,–Ç“ò}šÝÀ“ì¢a¥¸Ì×Ä{æ‰ã W\èv7ÈAYŇrá ŠqÝDŸ|Gl uš#ß*Îs‡õYþ+W²b6%·ü8nÇÎsæ7°œ4µIa¬ØycücéŒî…X¨/~ä,Q²|")M)Þá"^çcr‰±rL^7¨“ùSÄõ )ˆ›÷$úÚ'úó\9t<‚8#q½#^Õ^îPá¡T¶Å½ËÙ±ó\€o²É)^p¬Y^) »“º•ÆÇÒq|Ä~ÁÌ`š›ÒT”mw\޾ÂÒ­* þã#l˜…ª9I%R‡ª‹Rõdcp·à—)GÙêU;P”{:>ÒÇÏ@?Ý€U0{ÚFgÛÛ~fg¼˜¯?íø¯Ë¤Ô0-*Ó>Ýc.ö,‰Ø=–èª^Íź(}¿ÈWˆ¿³S‹EjDþΩŽò¾ª¨^$³N,¢fµ— '"ôA$éãé.B )»4Ò¾.̶eõúåòÁÖÆM‹o—Ø¢º{m;ÝS8äx=ùÂËÅ ÷: u6£Ëgô}x¼Y*¥àçÄßw눯ˆú¿ ßs¬ìØ©E“×~ ‡-ÿY»J²”˜8ª\e=!ÈÁ·ô´žl¿¾sÌšòÉÖÒ6è{ÙÖ#ó] h†Çï!‰–o•Y¸ÝZOʳ9îDŒç{)éb³ªˆÞ׺ѽÆÊÎè¹*–g¬`sŸD;¾ç¦|Wï»qµ+âj¤-â v±Ø üŽpÌ÷ôjT]m·®s²kN·Á¶|¼]4{‚>=¾Ãê|ªÒŒ{7î‘BúÓ÷•áx¾³#Þµ-8ÝûâÃÄŽiÃå¢ }ŠcýÀK7€hgN 3i] ]hVñÜÄçnÛñ#Þ·AQÓòXÿž^™mr/JXŠÞÖY¿/ @‡€àl”¡ÃVDíwˆód!Örá±4KÂQz…~úPiðSr=®Óìê: Qš‰•ä'›]oôŒ œ–Ô4U}.–Åtǃø›WI (§Vd}oW…XBÎp›‰› F–ߪÓ,ºÚIs¯mçhUûãyv^îªêÖíHí,¸å´ú!W×=FòÝßRÌ*@2r‘©¦Ê®ÁÊ1Ãcÿ–O??P….ß!¸ÝbZS‰+nɯÑn“¶ùÓhÒíRþÎRRËâûq«ÌU2m±51h0”8cÝÛz5Šo^s|ÎÊÇÝE¬ÚÍ7îÒ¼êÇ'ýJ"‰ÖqG®…¨V & qÉO©Aiª½ˆË æm4û®Â^1ÃE¯»A%ÑR´°ŒL02®vMà§çÉ‚u…Òžðu9°6åbŒnضÊGªÊ`—üÐìÿÔÿa•yËð¬uù0½™Çû k5Á  د@&¦¼‡\¾º:›QGü¡·ØùЈ=É4úƒÚì#d§c:¡»pÕ\Vus;>žÌjŒkV‰ý^ ™LIŸßb ˜øT\âu?~_åzí’I˜¡Ê Œ6öEM Åö#«R`™Á¨i¸küúû ƒ¼Ž¢ó*¾ç+•Y°ë"?ê·uE‚èJ9§YamÜÉ0…[uý"h?7—D>Ë?„6%‡ˆvôvÙdg§U¼1Íx-“;\æšÿBü¥?ÍpnÆk¦Xñ¶^ƒßìdÞÈMh;Ñrb¼iÅ^³0SÃä®Ïº—Å;¬ãõƒŽü/:h"nWE*f—ex›"†ŽAlˆøQ†›Z(óרCœîq‹ˆÊ¼Oôq û¡$âA{Æ™üeiY%‡r5¾&_`W`whTjðp`Ìéßcuì-dû>sgG …[33I íLË+·B¿éÈE “#—¯+|ºòípåÕ°F”<–eô!^9û zìc‡Åˆ½äaÙ¾Ývá§Â@Ò–v'©À9Ò²zó+yóÉ«®ÕºÅ>Xñ¾^U¶¦Î…˜•M‘QæÛÿxÝ[á 8jf¨ŠÓ@³ÿô{fã:‹óø±a‹oÇ_v¨eÓ(–Ùi™®²D!÷/Vžj‰o–Ó&†z²–€>\L5/³¼D)°5ˆ©ìW:.ðÅ»°4ÏÝt%­w_¯Á¤66ï2×a]EËÉ{‹¬×I4„xº;—w9ß4_”nTëÌwo~Td0ÀTŽHÈH Ï2ɶÿ»¬®¼Žt.r-Ý*šÕRõèÝTø‚¿f‰bð’pëÔ¥Š9¸–õøb´Bl MߤD€Áö)õv«—‹ðc¤å¤ó˜ÿxÝ[;ƒeõaèxsEUËn¥ÞG¼Nåo±Íì:Ž’}Íj™Nþý ‡E°•Y·¦œ\Ã/“õÇrtxh4YXQP+‘[sRZ´¬˜±r_àìR!+Áw¾O)5Øœ‘±Ñ\[÷˜ûp%›™ax«õñèYq¸gú<•Å v¾uõ›åxtì\k%aPÈyÈ…+ _b(¹fæ7–½Lƒ-|VäĂՄ´ -L¯M‰­ýgõã)qzÒ¥@*5u&ß>6I!Wô$6‚­°yå‡õ÷þ‡‘!Yò7_D6ä<œ|:Tºl¸?® >a—Îx;f zQÊ©Ïl< d×èªý*P}ÔY~r¢Žó"<*BÓå™l±GÀÁ¢ŠÁw‚Wf6•_ZÕ}“iã½{‹ =ólÃ9x]ØD'Û›°BíXŸ{àyA>~]Áj]ði¤]à´U0z ŽŒæJ‡Œ|Ÿv™ÒlÊyÔ¤‹î³Óó(P/øÄ]\)Ÿ˜n‰mUâ”Ìø‘é|ð{¶·‰$¢§:*øõ‹d>˜×D¡ÕºI"ÏzAÜü‘³Ì¦ U™Z6¦¼Îr°ý4÷!úùøBÑÊqŒáëÓìRÀ Tÿ„† jâ¥S-H˜Dèf¡‡ã‡qxßxQÑéç^ÑÜÑ­«sSm—CÙ«·4ŒF|â ¢ÇKuY–g~öá¡4ƒ ¥Ø™€µˆuê6W± Ø¡2&Õ1é§‚­©nÿ“3ÈÈ®k=#± D; .ú]Yá—eVÁÃÆÇ<Ý(8Áƒô¨­ ¸í<øºX§V‘-m*¯ô¦ðQJÞª^]ÖÅ‘2zªÓÄUBÔøêK„U,?Ÿ¶¾% Äz©Ï>6¿ qN]éŽãóŽõ`ë…ð°ýò€rZYé乵̑õ£† -Ž pap6®‹iùôÏîòï+º‘©\$®rJS ßl4ú‹ú2áòEvq¡à&Âì6z âÑNˆýYERíïÃ]ºöℼˆ»uˆ“Áíg–ú“&³p‘³íþlC‚M»Ë¥]ÓÒí²u: F×Ū£‘#P¿ã>ä3S‡˜DÒÒDÄò9¬vÚX™æ©4×d9¬â™“ë}qR®Wq2Ný&„þ¶Z-íµÂ^únV÷ÚùƒÈjŽšÍ_ Ì@ܧ%ÍëwüQÓZï6ÿ¹Ëþ¬1€mÉÔg5µiw¹Ó[ZN¢X§ÄäàLéÄ^—ttø¯Ã ^èÆ'WJ2Ûè™Ù²¼œLˆø>|&ÿÈYŠÁÑ>Lì+òGºDÝê´cÄ» „® cÌeLs #}kªЦH"˜)>3 §{Ai¬Ñqk¬sg¯ÁÀ>6í.—bM6ŸOâ×Vi? pb\·y!X·~ïšÝÊ?º{Îx,=æDÑñp¯*}FˆØñ WÉ‹ñYð’}ä„¡ö|”kÜ®Œ’7QÄ;sGF*X Z0çRvê|ÊĈŽØ5±Ì`ÄNÍŸnˆƒáhC´²CEîþ‚–“&Ö¡ðí à5ÅáûØhúkñÕ.xb÷ïZWDôivñ™g0%rƒ-âX=Až’ð[•œ'ô…f:MÁ=2—IYªg¨ÈìJö‘ä¬þçîåWð/zÅáypÚ®ÁD-”›5T^cËÞr+.»[N>f•öuP’-vËÔî<¯¿Î_b*»xø³‰˜žWEQ0K}ùD5Å’ ¹f$¶¬LõÎ"²[)B#—?½wëΗ9A¹ÌÍቧE¹’å$]f—ä`äzÚîä5ÌÄ5|{ëætxX„Ùv!´–BñnáYö>pl'k4ŸP,:©ùv÷ÌöUð”ᎊƥuHiú”êbIrÝ×É.çþE×êãþ²>.F'†[âX w•ŸËŠ]Æ–^¤Äcô¡Ôè‹Bº*Q3UºyV:¢ï&®Å¥aí&¤®;um¥Ì–ÕK¯Ú°³\†ô߬1°uõ¯«î–}àb«Fn8Ø©€š9IEêLÁ!øGòíÕƒ^Ä‘&‚×µ²\ùNK¥è>[ÎäÂ"í/ˉ¨Ø EëcÙÙ–÷bm"¤k‰áÚL’e´nk~ÉJyÖÓï™a‡KYp±Æ½½þgÉZò`ÂKëU±ùÕ‚NE˜r©*ëØ@7yx˜æ¡Yu±YBM5ˆ³ƒÈ6}J-¤è”ñ&s l«é fºî¢”ˆ³–DTl¡‰C–¬p/2¹äEBº6‘µ™HÛÉ2úi~ÄFp—׉ò½ë:Û’Z洿ͺÊehUõý'…:~%×ÈV3…Y¡«G±•nÁS¢u…!¸„ Òm‰/i— ·ƒ§b´X×Rj{sr}Ä|#M‹Ú{MË5FlCtX˜©—£ÛR„®Ô GôázÒu—žï“²?>qŽëladÈz¦÷3 $øÄ 7÷jl·} anÂý$LbÝB&‹Å[z+ôÒ@[Ôoü€8Œí‰#üÙ¤ø®\}ÒòIŠ«[½3U¢°óªN4Yê6!þ×o2Š!ç‹·¤ÃBGçèSp’h0f©¶3åâ!d²tE+r6â^>õ=u¸Œ5ˆÅÇ`)¨¦?Àl·.²Š>ñîà3Mhmé'S,¢Yó0ç;ÑK¤“†£~Fú–©·#Æ’ÉÌ>ñhš.:èødÆŒT,€kæ=Šðð+ìqm¯SÎÍcÍ·äÀVJ k)*P` %}<¡ÒáØ²NÚ¤â-îzCì¸B£1Ãp‚l݃˜tÖÝ–k#»Úª§ÜˆŒ.Pzš!ßq¾`d—ÊóËùÜ`3=çù¨9xÌñj÷â(ØÁç¥í”ŒœX'WÈD3«LØ*ü!–×v š#,BYÏÍ%Ù§kÀ½GX´éG…AË ß|áÞú'óaØìiw²bàm®ÇxhŸŽ'"ôóÿ•=’¢šƒè à]¥r»MæÖI¸Ë”‰ œ3¾'•|QDý¢ì•ñkbë£b— XÎdìeÉå;WÀ›Ò~¼*ÛCnÀ:28ô¹9‹D ÌŽ•ñP¨“tñGJ¦h_q¡šÅµ‰%CÖ5v; t‚À9Çoî5H^f«žröùi…rõ(:퉶|Xã‹ïÇŒÁ]¾ªÓ g`ƒ†ˆÞsKÕLªãËõ!ªª; (Ok§Kõu±P2;XH~¶‚λÆË’e>X¦¬ W‘›d­p%ÿJv\ìQ™µ»®?‹øŒSɧó‹t¶.pEËw=¬Y »ÕA¶3Ûa«žrfký² {§]°¸â°uÎûµªHßéx,KgçÑë3¾ú];íê°¬ fJd8/Zš«UXYPÙDid?Ò°Ýõg‚ ‹oõ~`4“5“ÉÊÜ ‘eâÐì•åN,ƒ£¡ÆiÄ’dú,:Ž¢Ýùúë|Ëeáôz-1¥Ù#Hv}ÀŠùF‚÷9u”ëpâo¼xóãSÉB>öñÇ9ÝÑh€=î­Y$S8&qˆôâLû¦ÙŸ‡ïòt‚Q´³^fέdáq×}(ŸqÅ0f‹bŸIâ@)ÍÕ;“ÅTOzXGÚ ´ãó_†žKYB?¾3ðòêó`a©L3½åwVÇ‹„ÿA|ô';WKzñ”¯uí Ó!bôÐß GákÜ¡Õ,A©Í«¼Í#Cq£‡MI6¬ë¿tþµ­¦-‘ÑD¦S´è¥ë»Êù€D¥óaÑæê^»+R‚Ίf˜CÂS’/±=ãk·l¢Òâ-v]ÞR¶Š½ìf›~r)Ìg6­ß& TäAù£/jät' BתŽFFÃf,ʧC-רCk«´Z Ð+ßo°óåDLµ”§Šk¼3’źÝ}¿…ÍOŽFÈr߯•⒙·èÝ$QÙg‹!´Ð%ìKšÙ12iш*¡Ø=/dîëÓõg;‚¦/À9}{¯Ä…mÒMîÄwÍ„#Ç£5V‰ëäwÍá^vÔ×/öÉÒì;mLEín<àœÁ5«_«»~éE{>J#L®ï°ƒ®ýÞô¡°SG÷”az“ýš)× ÿÑÉB±Ü°#(f'Ü/Êy†ø¼G!Ï §,k Í\g%Ù­SL{½Ìà³R[ Pðßh |ae‚º\ŒŸÊÞ[øó£ÌŒËÛÇ–úµ™¥öà™œfÏÏ ¡BÍV»LÏùÞÿ€K6~qa(g%(1k¯Ó3Äõ*aV¨ÔzMOT>ްQUÄš¢"WLÇ‚SEsŸF oÄBþžé¸züØ]¾”CJS©;Zñ•2ËmÞTl¯ñì—å¹Ìå=)‡oïÕ˜`¯bvÇx¿1þõîäÉރ峇ê¶I3É:ÆôEJ# ™‚ë#úÌç‹_'ÄÂnUŠjfÞ×궘½7!ö¢Í`Þ¹üýz>мH%ÎuCZ÷k†=æ’(»db‡S V}j#ËxE€­Ï©üeÅžB·Ÿç[ÞÅ„Iíz;”°IüÊG6©ä˜ ±«íÿ+Y21û/Ìp+G;ú  ¢j;ÜõZ”)%™zÌ~Gtä¤Ò™Ä–N%²—7zfb+¾‚xA_—œHÆQ¡-•k‚KE`(fTü·x[®°Û=‹<‘D«Wƒ0’ í=nbßXÚpDýGHõK(“£·÷4œg‹^r!^Jš¼$&¨ÏkZÞ†ålþwQ€Z¾ýüÊC¡Ä`!Sã¸J{FϧðíÅ"~­f޲×:á Gb¥ÝàˆþŸò£Ù}§ð=gÇ`™ä”ìpÁ6ü¹Gõð›"§ ñãRüå$mi ÄË#®v‘™ú_~qk¿S÷Lïf£…°Ìf[ô’;1CŽÙá!ˆ6vfëëq[r´@ÑxU`áðN¬ÉTñ¾ˆ…Ϲ#»…í{¥¶‚Ÿ]»1ÕñXMa=xbøÊY¨êu[ ð= OÀ~‹Å´‰(J} ¼Ïr K¼¤ c4;±¬‹½)Ù,îùr™"]t¸Z À žåèý½!ÇmÐI.EAÿù|™™¡n"þ£_PÖÖ]œ“<0ìïŽ. I\­ràÂ:1]¨ÜýhÉCã†A—û’òžÔR'“»Ut–MiSCäªq…$å)$ûø¦ˆ@±EZªÓ$g^&²>Œˆò(,]ž[ñÜÇ.‰8¢‹íròþ^,‡{Öï$·âÞÇŽù¿ü@m¡}œMYÛqlNvÒ F;e8­¿wÓUç÷ +Ãi..®¿lÖÜl‡œÒNKiXJ$Í×ûË#?‰ã ©¹ð/O§0¾M®'eÍJx—¯k<„”4ÑN‚±k\òhv:$Ó€ä]HZ×vgžÄU*ðÇœ¼¿WÃ*Qlïn7x±q‘íÙ/÷Ê DÛš×áÁ¨bø«¡­c.‹Bø7±Û±pÒ‰°ß%cV û-°SinÑ„²¼UÂ÷,´&ïá&4« ª¡Ú`°Hž,ì£ÕÉW½”´b9ÞÎÀâ|žkHÉ_`&x\cEuzøžÎký>r1¾÷,Ü^¸W~qH>În’“]€Š±~áÇb©ÞØ­¢¹ð%«¹úô+3q>ˆ·eˆ#"愈ÍÄãl¹ò´¤b´Ì\kvÝ ¼a“†âÓ¸¡Ø&ì¡loóèQ:Åi.é}Xdˆ¯F[wÉJW“lv:Œ ÞƒÌÀ6PÖæä ¾ëË¿ùš.>U5x‚gÞ³ä'Èt¸.1»è P@·Uu´è4|‹ùGáCàÍ;­G<âøŒ¢<)|á2U%9Ï Êƒ@&=ìXÉBq  ”5Ú£ët®Y‰É ?*·íÇb—˜ 4Ù®£°™,—NQR>]×9Ÿ÷24˜H‰ÞפÁ ÓÇ ûBxÞà«1³Ù›¯ùÇâKIŽiÜ/׎llá[9•ƒ}x´Ó­u7ë¾»¬‚šq®¯iÕyÃcÄVI ã" °/ÙâYD”;†Ô‘=‚U›N— ú¾ÐYHgGF åRô£Vþؤ'Æd?²faA Ï¿BŠ{_æ7ä8ÆŽ”ÓŸ¯z<æÂmìQ–B’ô“»ªmà{Ð×ê]ä^üôgNíìLçuÅ3€Z RΞö.‡{]žcÅ“õí‰Î#`fÓyX!=ä§Dž†õåã{ì¼ITmÕn³ôåëï&B‘q·ƒž¢úÒu"¶é7¨JËc±sãû‚ËwÓvÏðDZƒ:T§ì®Ué<΃}Lùлu8 kV€ÊB°lE¼?ÕÚ=¼;gÙ?c9gà¹ÈÀ5,`V·ŠXh(¶¬èºÚ\N5AXNÝDÇõ|ø æ½ürˆqÏ2XHNg<Ïò!GÏev©†<´gÚÂBÐbÅÂ=ƒ‰"â‚ § 6¾ª®CÓ‘ÁdV0)Îç³>eðAE6ïŒÄ×Ê[›@«ÝÂ7µrì_ƒJ_Y»‡\‹[§q🪠.K¶œ˜~ϱNª1U5í.éläHÔîÁà©xþÀÓð9âtbÕæ âlO, Yjg‘Ã0çˆR8ƒ’†žT—/€¢µt&XµeSÂS«¶Âœ%©½.pÅü>ûI‘o›„¸œoÇ;›Ú¹îÅ3nCQè Í±| "´v¹÷ûxk_¦Àü>»Ìuv$VÀÔ—ú£æÀacºY:…cŠ ®†0ÄÒ=pÿÏ+ãÇùD¶èRÿ^”]ã3T*Þ% 5k· Í›£ 9~œ7ü¥Fü ab¸)b‘Ó´¿ãU"YÜÓ‰ ë %°NãýœâJÖvã‘ UOªkÔJ½Ç',kV—"8]³r¹ÏŽüúèå÷§³Ct+¬Ï±>XÕêI-÷;g¶¯Žk½³0¶7b횦¯P¿û&³{³ŠÒIº´l"Óv£ùf`‡~<Ãñ¡‘Y2O¢!EVýˆ)æ;j ifƒè)cÙ¬K"T&†\BùÊ Ïõ<½VTož‚õZV×çr•£¦ß‡uË¢½cx Ó8Lj8ç€Þ5|œçâÖɘg<ÖmŠhä{ÏÅÃüÈÊpàéWÄï$™àU·í¹W§¼ÉðÐ5MŸÑ‡þkГ”ú8 âv‘Éd>›Ñ§ÅÄ`áýhíåöÌQ„ïSjEÃf”n±ßô®ÅÏ¡_+GEƒ/ø^Â'§îðÕøÅFQô™9ÆkçôuÕûؕɨ>ŒÞ ‘Œ iìÊcï¢DÙ¸”í,£Ðòv¸¦cËxQD…n4îusiÓzß;S¿|éŒ-Dtý}yK1ß·¸¸æk®œ/ðNÔC£òª‰®2ID’~Cï] ÂâÞbhUƒøô½–|ƒ‚8°_¿ôÔN¼ëJEË\É©[|%>{ϪͿcˆÿF>.Ê©ÿ•[\½J|/±Óz¯¬Æõq_ï ãê['b1žŠ8SCf„=Ù5œ¿D|l8á&S$Ânq¼ÀäôÁ?øŠæÃ•¢1òÆð;‘ÉŠ¢€ˆð›dÚ.˜fR@ß}âr¸|É-»x( «ÔÈ­P ó, N%¬ËÊ1¢›U›ÇÐ`|ü6§"*€Þ;p†ëÈÈâfa%>»PŽËWüùC0â*AfÕ0%j< ?ÄjµrkЇe§jJ‘³6º>ÈfÁ¯™(¿¹AŽ˜ Z½Ž­Š:¦ú`2lyo•ƒ•s;ÇDbý(v§Q£-nA—C·øjtøÔªÍ¿+x¾R<Ån#ä·Gsʦmé}0J^ V ivÊ ŽPÄÊõœbÒç½pŸ„Z¾…3$¹¢†ª-M¨-&̪‡S¾¬ÌI„A ¶7@(îu«©gp!&ê÷tQܤ6™à«ô :H¾É»³œáÌ`<Ñã#îB´´r>}Òr«6ÿnàñä`9…jŒ…Zô¦!‡ZP5©`†ôË<ë·±מFPÐé‹6qBûÊ©—ÒÐ[ăÿòI•tò:¸,´w‹œä0žh²!¬v«!H”ÑOä¦õ!hQÔ±0ù ‡!¬ͺ;ùÜׂ/ñCpŸ>ÇÆ: ¯ M¾Ì¡{|%ŠäÁn0²rRþsq7E 1žädXL²¬ —¨d‰Á:òf‚$=ÆL’mÉÂ7è¡§év“X[Ôç/_‘y” íX±7â'|¿Ø¥’°”F¶àvÃßbV ò:oÍÖs7;ÜÇc-4³Y¶eïŽ}ÏæH>’`®ÛÊæïaÐt,Íj¡Š °~âX®pWˆñ§í\‘\ÿŽê)“5c"ÌÃGOkqšô³çvñÉeÜ)Ófº_ªœ(ÃÈ7Ø2ˆTt¼&l[¨PÎE2#¡{–“=óó-ÀÆ›ÁìqÃ4îVÍžH—žZ±õÜŽñ’:\gþë¿àd°å¤Èîé€Ú޲ka“Qu]Çû$»›ñ¬žwÛ q&"Òä•‚åPÏ&B/¿ÏΡ1ƒ aR[ñMm«pë¿ÓlK¢„(º´ýè#âÿ¼H¿#FÛ,×–Ìç%>|Fæ÷“FXJÇDÝ (´C¿ø„õ$Gîñ•¸äþækþÁ¸6¯‘78×øôG #ôÝlwaõU9Ñühí¹0Õ?ow3?„[{È:Ѓ,LÆÍü¹KCøÙNu^Ä y~7P’YïX‘ÜÅõ§I8FT}6ke C–ëÁ~y3dQáL5ŽÇªÂ]¹'’A‚‚ßËQîD‰±øx…Šo9ù”÷L{•°ÍŽ8QºWµF€d´^p‰ýïâä”Ú.àXU&CÖ[*|¶Ê‘è¡N\®jÖKjuÐùy«Ú8#’kë1꾨QöàeU0×à님âÚrî~· X…"”'!ÖiEIη-Æ#ón·d"Têî@+bóúâ]ÀÚâ•ÍØWpƒ÷Né@ò~˜ˆûëg "M|§X`YJoAú¨9;¬ÊÜ·2Ç©SÞEŒOAž‚ç,RSfÐdÇõª;ì*âä0ĺu©4×iþ÷”Gòʇ Ñ䯔%°v¤×u¹â2Q0‰ssV")àê3Œ½}lQˆÚÛ´°”úlº¬r½¶ i­èÊßÎzm¿[à `ÖâŒÒ–<…Émr¢M¬¹ú ;9Šâ=–áf3ìSçLÙêÎ_*´Ã»²=Jë@âõ]Äc’»PÀçQ®`éÉÿ?€¸Aîa!™üK™Ä{dŽ» xøE(c"Ó™\6¸ÇÄžÆïÉ\Ò¤1ß—ºwuv ṫuÅ0mØ,+ö°N¡wŠåØU´jú{’Ä•5_uù‰«†îÎ_ú Ãž#Žéì7Jò&‘Z£Ý+^™p¸(H²ËÔžf°áE¹tû®Ab¶ÉòؾƋrëûò-b)¾sl+[HȶP‹âî-rŸˆ!ò9…ãj÷´dÖnS‘&~å¨Bˆ‡4x½-ô"5¬_,Ö©Ç´‡è!'nòÕh0ßjM¿ Üx³…¬ðéÚdýp>QXêí,–­W£T§Z£gti]«à’PİI˜®åóÇON”ŠšqW½+z]šÒp3iOQôgÞ"é*"S·E4)â¸ÞJÇdSb¦V-gi‰ ç)&9p¦¤H¡°c<Çôq'1‚ÊžOŽ+¿;¸ÃAŸâ=â("pH‘>ì’.F ÖKûöÍ×üƒ‘µª˜¶xJ—ŽÍŠéŒmÈÿ‘ÍeÿkNÔv1€ŸgäÈài½°àLn‰|_ˆ(iÒDESªmúTJÔì£K==s:ˆ™©wK=ZËŒßS%A@rî·¥Ùì¸XæzN– ”ᜦ[*Œ ØNÌ=vŒmsýë=ZÉ+ö¥@~’w)¢ÇÚòwJ.\ëúÀóýÕAg=WNð «5ýŽàâôö‰å*wÿ\6æ,”7YÿŠð{¸ÕsØ­:Vdêv¢ï|<àòw˜ŠvÀPŠc™Œø…ÊÖbR²ê4ÅÙ”7AŽèÃãÙŒÈQ3ŒDøa̎ˇ˛xRÜ«–ÍÆœ!~JaǵüÂhÒLëk÷ üoÇùŸú¸(& LïGž]bæ÷;&zèÁZγö¾•Z~Gñ"Aû­ÛúÀØC·Åd6l=¯j–ΈI¥uòzMšŠÏKf飄çh(‚ùÞXRˆ4ÊO%K5Zn©]¸¯Li˧Ÿq¡™›džÑð;޽„qa¯0FìÖ™‹‡ŸkKÜ*Š€ŸG鬱\Ì•DìR3ucGd™öLf­ü’J½õM¾7ŒVjø]űPËI°ìð…F•R¶m­ëºGýãqb>®å‡%¼øîs­ùÈ Bú ¦P­;ZÙÊS@n༶¥|²H¸•åâîÓ-y˜ 7ý¸ -Æ…Ç#Á¯ämœLž?±C< rr¸˜}Á¥lŸÒbB]›WÅòýv€—j@vÌDNãP„•~Wq;;*)vë[·åŽEDŒQ‹Œð ×¥4qÿź£;65 ¥—¬í%ïO-í-ԖdzÃܹÖWz=Eô—÷•[J:sy%=ý¡”˜jñädê+ÖCbF®B2L4kPO„ÝË߀ `µX™%"ø' +[1¨³ä­Ûp¯jüV³?®'ym‚§á1C:räÛ7-JySÞ‡Qù¦"nö &Éúøï “ÓM-Y~) KùuH  ±Úò…Mr?EN³ cfd¼%¼Ð1ä2]E9^ü"‡óøRqtÁÔ8 ùbH$tçrµà­ïò•˜ÑÜ:í¾»<%ß>Þq€ãG°×î¼î&<@Õ1ì^±sUþø™#e;SÙßröçJxmaì?,_ÂŽ•bsÒ1ãƒ<ƒÉ’ˆ8È…MÅ=ŸœSSLx¬)&®`WÁ‘ìEôµÍDFkGÚp1+<1`=ntÁÛÐéˆëÔ„2ÁVËÊù¸¿uÚ}wQJJÁ!=ß¶¥"š&ÅŠ¨ Q«î4™±0r®öõYŒ³Å§ûü”‰î¢òÕIvvLï'ôézõ±¬x>k½[8öëkŰdÅý"“íOm„ÿx£3¶òÿ}¥ðç$-ÍÒÒ>¦À3²ºWb8ÛåpqH‘:Žïµ²r²K„*ÈF¥òqVÓ·mIúh štäàx†,K:þ|öpéh<8ÈÀëÒ Ÿ}K¶œ·” ²ßåâÍN«±Ÿ˜~ŠöØjѸúÊŠÖMAZ"DôáTá(¼ÂÆ»µxr>¤Ò—)gu9)õ$fduï]³\am/×BSֺV«rYÑúüZï²) ×V|Û–<ƒ “asRkt+¥öü/êRñ´žoåf]g§\(€b@޻ػè¹0œA'3¸>Ö]å{9秸&¦4é(„b,Û Jp>Ì· ‚nK„Ÿ+ÛBÚ:­®s‰Ýˆ¦&3²º/òC,=”(©©{‰e:&2€KÀýòçÁ?Ãe^ Üÿ¶Å>>gàð+ÜõŸ—ή̆±8° b/bý”NaJyaˆÌåG%²`ÓØñ$$«F3aiGìWŒ?(üžª²T2!Å=ª3ÖÞñ‡´éëL™‘Eì(¦&ÌÐò-Àœ 9€ôñƒ$üÜë´)(Ë´7ÎÁ5ÒÿE¨© ód†E¼äñ– åçÊKhÈìHT\ˆ§Õê_Jpe)† Ò&Ï,ÜÉ„)ÝaÁ}Ì f‚œvR,Ä5ðLª–J –È£¸˜øLãk¤0Ÿv+•O&ÛçŠû.—«8TÐ~ ˜¶Ât‚Ôô(|$$­4UÌ,0W3²º?åë피xBSYzùþ˜®8¨Þò6_‰j…œáÿaS9ù˜f¡àÿÛPKÉ“Zïw67nˆýËus1~#‡¶7£ŒP'Ú‰q¬µ±‘I(9¥zãG\ËžJFM®`}o¢|POïd»i\–È”í¤¸÷·°>r¿5bÏÀqÂ+=J0H†Pú`;rB6lNböX¶ºG,!ÛV†öò]hÖ½ü€HëX°NZ£Õw‡óXN²‹þ]p¸`ØTÿyݪ`ødŒí“Q†O"¿éžÈ~AÔR|h‡jsŽ ÆËV*®Õo6p%øÃÕ ÂFµÈ“)¡‹–0\ç™6AN¢¹ Ÿ»Ý%JHä°<(í¶u¡G!Ö¢Ô)t+#È$¼F¶º×kƒw  ÎF_i¬ßÀ¬aÁÚRÚ ¾Û¸‘9˜ÿ§·jg—«4U'c†‰Ýe-•à`úWsYºêÀÎñ¿°ðŠÕÈ}|£ÖŠœoó]G’åÿdt—·ie-@p5ׯ¿­Ù]×bÐLÜàƒXŽÜqši‰ºm*ˆ)Š*”é£áÙÍUÞ†®™X›Yj;_b£óÐ )²™1ðYcµXƒ ö÷”6/É`Ô¼;EÝK™w£¦dᢠáHÌŒd÷9 Ùxâ Ü¥Þâ8‘oZ­°w‹É™¬ÞÚÉyÇøÙ[éž1Ù¯pÏoA»ê£Ø²bí~üÉ‘«BÄ]»SÃ.ñ+¯ëâ¨,"{jóXLÊ«,e@ü¹R%àí$¸’w’â¾ÓùއàsOw¸Œxu ¦7¶.É`ƒm+Â81ŒÖ¯¿­¸—R¹€<Âã0låV[€YÃEèy!çÛ|בípÞÿ6­8€ƒþCaýey(6fb—W÷ÐB" ã¹b›åÇ•®Yýú—AJíÒʼÿFK\½®œˆ~ƒ…Y&®JNdŒç $?DõÀ rÅ“h¾ÊöÜ+v‰ZòáÜA2!Æeˆ;hC(j‰ùǧ‘|CXìQŠ­êreì:øø­kÄ`=“Òr¼Íws,5—ŽäùÏ×ýgÉ1¹QRë=®æM°gE.i{1“ýÀG‘œˆÕ0O~Äù½ á§Á}D2=Þ¹¾Ä׋²]¶Cb‹£24Ÿ|Ì·O±ß°G‚xÇgÁq>„áÉ.Åáµ 3 9ÑV@Ȉ°¿.|EÜà‚ø¹'—1ÕÁ ù)ÐÁCòëÌåjÍÛÜè«pÁ3§[ü`½\ãöíB´ä ›â?¯K5 ™†ÅâE]®ñÃ6%ibº/¬."ÅYLTô¢>*öŽ—kÝ$5Å Áã=w‰3ÆL•¥f WÜãZ".’kpNŒxìÀ ?ÐHxû¥å)¾Søg¨øIºæºl®?Ïä}âGŽÚiNè ±µ¹\~‹}%vÇät‹ÿüd™ž«ÿýF*øµ!«hô0ÊírÚ„CK#6mÀ.4L"§öSæ5[$òó “ŠæÕP˜ó—T2¼Åœ‘ Lc@¦½™qȶ$à÷†ªe³kŠMÆ'"ܯ[Ï …¿ãÈ¡±H6‘šõg0 ôÜÀ^f>¦ÆÎeœMC¸\iþþ}¾+¬^$åÄÕl6 Ÿs¿€Ë ý.³aÛ)cæC®Åsµ-ÏDÄ"\ËÁ äf™Ñ«8î),òþ®¨giVI!.D5:”îæ51Ë]h^!cåõj§¾YDI x¬¶2í‡ì.õŸ!æ'ÿŒˆø#JÈ"dt:ru÷è²ÚÀ¦tíÕ™!]ØW*+(XãÚçt‹ÿdfÏS1{þ~# y¨Z«èƒ~ 8›ˆd¾äKÞâ÷ 2ô” Xýƒ}jó:ƒØå‘Í +}³DIææIˆ‡iBr[‚X•˜…gWêÈ”AõƒÞñV#ì¨ËD<ñúmª‹†‚ êÑÕãiî¥$tÛ+× àÛðìyŒ/˜»Gwf±p€œ®dÓ=ÇØïÿIð¶ÌSÕVÿí&®pµÝ%®WPT1ŸÌRý1©5¦³«xÆÀUqGÇîø¨vŒç²¬€é’H .å*ÌR•?À,ï-ü«…|v:ˆÇˆy¥ô7­Ž#,z—ìÔm)x²1A)¯ŠYNÇø^±´à¿@¡ÌßÐÜ»˜d.nЍš^eÖЭaó[ÂÄ5¬JûF_+ec¼ÛȦê{Úßn¢!@p'$º;hÔkÑ®à«Ú€²”Ø<Ñ„³h!ÎñT0‡Ã0J†3ß&ÖoÆ÷q”[±Ö'š¨Öå¸J¦ùçPÉ„µ¢¤ºûŠð™VÒ•‹Éaw|ÉQ-<„ }ŒímjË9„óåÚDÖ(Ö·Q•­9NÓMÊ£àeÔi<±ßÀ¿Ý„€g!·f­…ÀǪSذ1bl_Ä©Ÿº­¯LÉXK¿s¨&Tí³†'[¹–N î\¯ê&l¢ƒ‹P„»Lú¿ÅíÞ’³Q§‚LÛ'¢¦ûÍ•·‹‘bŠhS{¸çL$âϤ›©²‰È!Ÿ_¶›RZtû\FH&¬Ö}—wÌáÿh3I>Njû·›ppß塨>üE@U'W3†NEtYÇ•¥vؽ¨¥ß$µâk§NãuKÄ”F²• KD®Æñ­‘"Ü9BW`)ÚïÉU»+ȇû´Ü9ͱì ´CvgßYšI1ÍEé^ˆ¿¨’Ÿ©oò_¥áäY-œ'sŽLË6½‘%¶a¯CÀD:R6jšêV“K .Þµ 9{ùÿØ{°¨®­}|ï3}¦Ò»4‘"*ŠX bï"[,±7ìKì%6ì½&c‰Æc4Æn4FÑØblXbADfÖ¯½‡È½Ÿ÷»QÉ÷ÿ=†õø03 çàœ³YkíµÞõ¾¤EaW°Þ}Dî½´£"/†?o;³)±u5\$OÜV?$O^;[I_–æ,èÀ¶eàI"²˜Yt˜^·Äm_ç ™óqPÙD9ÚlÏU„ë LÿÒƒE¡a“I‰&"Útça=QƒÆx%w~‚Tæî÷Z¶h-b-; !£cLr¯Õ=k„—dëªðdÒ™Ím[˜g{oì†ÉñD}ÿ-Ï@¨IÕ/h~8H¿Ì/˜gR²»‰œWaNÊ%x!ö*‡Ã_æýâ &Ý~ôRrDœF“ö¨-½·€iY>÷1\!å°F±YüwËNËqš$Ö-TBzNˆõRyÕÁ2ŠAá}_ëT>·À—:¤Ó|ÿ‰J !ßò“¾Ö†+̳½7ö2_‚ãm¹ —R^Ù$µQ»# ~mšB.5¬<©gÁNõê|¥b‰V_¿J³Ù»¨%ó€èÕi¢P¡€cz“ƒNO‘,tÞnÎÎç>†,ˆ¿ŠÕ×¾qb¥<˜Ê%8ä#^–(Ù—Ë·=L»÷Écò n²l|òý$ÿ•DTï!¥ JÖžµÉ(̳½?æâ@Ò•ÿúíŽ/IhTTè´€9ªAÀ\ôQ›üf:÷f‹ãºŠ-‹.uó<6láp„šÁ6¬àû7ð­)×ʼnÂz“Ôš"‘ÚO™Þ˜è¨à'èHxÐÃÈlºÉr-_yI`Jyz£…— :qa[T‰”»†c˜äç*n¾PÜí/D®½T¸Ó©Õ¶æÙÞ+yH<6\ývÇ+ )ÖA}@q4n0‚Ž5û ]3k¸S: FØ\‰½Ëc”­àµ +ÉñÃôbÿyN·UlÏŒëG Ræäh­Þv-åTWœûئ.&h²Ëñ!…Ï Ö-Ä”×N^™çÈ¿áå¶” ÑG½ßq)θMDêZD9¯:Kvúls!šÂMÜCOæÙÞ«éh ¾íT ˃]&’Ÿ•ÏMŸ_W½`™;„O‚mäK€ø4ö¶ú[8*óÁ”*‡Þ„¦jÑ…+õÎŽu³¸RÀ%݇ªz›Jˆ®ÝÚ»‚ûxDñYBp¢=±/ÇK 6æüœñz`ôìA-ƒ›† œëZçî/Õé—Êkˆr¨ßõ…"°VßD"Ó’ÂäépºóßæŸh:´qÒ¼Õá¿â¡è1¹Œþ6©,3h÷ÁÂ6€æ8‘šÅþ¤ù”Ͳ`–Ívðn ¬u»>Ÿ (…û޵y‡Å6kŒƒär@¨(|ê—Š:LÇrÑ^ƒŽ#mÊ`EÂî„òçs!·†VþÜ1]3Müèx íDz®!q({,¯•ЃRˆ¥Go½~Ï-ŸlnÞÛ‘¶!$NU÷Ãä.;Ü F7,[=b.k‰ZiEPLÄàö‘·ru;±Ýgã íjw(ƒ“9ô ôÀá E¼ƒÃœ\7!e‰ôµBÙò{5Û5zç>º»ÑϹ¥Ç!¾Yرðö ¡üˆPþÓ§^(òFË^Y+D9,÷‚úz¥×|‰xfëù¬áë½²9ŠÇ/j¼Õá.„D” ˜ëµ¤K=ð\†™û‚–@·-5A Pëà$\n,+>†ˆÁSóº4äøþ$œ¹.WT^bÞ+ÉÝ”`¡˜ÅŠt¼ØY(MÏ\˜'/¼ßfp¨_v{® Í ìÐ!· ŸÞÛ™OT°õ<‡EMÄžž‘ÃÃ$ÙãJ8¢‚A%‰ü Ro.Ì¡œ] ï\ï•}îØÖŽz«Ã)Û¶wW“‰²³˜¹7b µØÜÕºæØ‡³ \"˜ÌHøàᓨÈ͘N•€Ù·U°²ãÆnµ—M°~@–4Æ¡¼z'JÓ×ÚåÀ#Åf>n“ßÏáBÏ• î;ªb1 Õ&ЭY×á9y+¨Ó/äÉ’½Ìë#¶!l¢&äÉ[}Ö×ÙÒ”B;Õûe‡ëéêÛ•°´Ý¥Z§VSÛÂÒ`Yט•²IæÐ˜P@q®«_ÀLòÀlÖ]Ô”Û8R`áåD}ÂYeÛ—Ík¥ÏU7mrD —ÁUæ²ÈÆr€qþœo™6ìYŠþâ@,€•ÃÞ/J¶’¥îµA®,žÕã´¡Š!Ò#' d+8§5ËÕª ~D²ë†ÔêL´ä]iä^Yþ`o‘ý›½í2ÃÍ·8º,%±Ú¤® }Y6U©?$u‡ËlMM,p\ÚÐçm†$Ø}× ¤Lý^_ÐìèQZð)ëADm´ôŒŒ@Ìð?b^ç¤Ó#ý?ø’ð’×qAœµ€àFƒcø"pËhUù”} ¨¯0UçJ5 "@÷š,ï·ÖÒ`%Âsç©O‚‘ /Áª»¾ÐNõž™Ù¡÷Xüm |JBJÄ{-vYØ:s)å0eÛÕY$Nbü vôˆ·ò1úÕV¤š½¤ÍøÌî÷yT‘ÎOÖµfIÞl›Ï¼\2Kâ» ¡¯‚ D`÷ —œsñ ‘€yTù§…œK9¶´i¶ýÙÎ ”SDÎ!)s¡Ú¤’W­Â„4D¿Ã¼ÉûmGÅcâö·8˜Ý"ß4‰m ‰åkzdç :Ûz¬d‰t é)Èq­: _«?囼«êìŠÃYLrƒOTÀK­ô#?Ù2O®ÇYâ®Ü뀼 þ„hM¯Å¯N ,J ¼F_‘`ˆ=ƒez+×cS†Æ hözÚ5ƒÝ SotO>FTÊì»ÿ->ëk-¿ VdÿnI_ˆÇÔ·ý¼Ãn‘±¸¦³UÓÔY•÷ƒSx¬@ÈžeClÿ³:+"AïÃKs'£X¼ 刂âI9ÍR¢eço$à Õõ>y€¥fv•ó(þmTƒ‘!î¼Þ J 8)ŸæÕg»žsrnLÕqÅQ2·Ø»,ñ Ökt©DmsŸ ™ÅþÓ…UÍ‘ tó>Y~C¾ÏÇo~l*!Å)‘M|DÂ%ò5uÄ`½¾Ø2KžX‚‡6‚ÙÓ«`‹…»1è,)Îâ「Úäb±D+ ßÊæøÓ‚ºŠõÈr˜¯ãƒðbøÐI­6]ÉÛÚ|ºž³­•žÅ¶¹ˆMu>ylsÉB¤M}©-9ºWÞeÈ0Bha‡/»Ò‰Þ?ì˜Ä™ÐëÍ5Sââ\ª[•>Ÿ@\·²Šp”­©þI;Ý Ë€§®‹3£ŸÞô“÷†\§“{,¼÷±&z¥p`ÀrESè˜Ä7ˆPÅš¼§Îþ '·úDÚzð®(1äÈ÷ÊÖ }8Üù‰‰AÎÜÀËó8HQb)Ÿ7ŒX˜ÈXR iM OÑä@éB:ÑûgùbôËÞ¢ÂGÙ-ªê³ÈcE‡Æ`ùì¾, ²Sžeß]ê³}ùŠýŒ'zªOeˆMø Áƒµº¶¿iƒƒá¨šŠÇ4â`Kš'Oä8³|Zÿà;ÑwùY¹ª-0—ÂD‰‚#òÁW¼ó̵'°,ÄkØ…‡HDÛÐß Ç{&ҰÿµõÍ?ìëlmýÂ9Ï{hŸ9ð™_Å¿ù±H(ÕOqB~&z,H—:}7²Ø7`?ï-KHaÚ’7ûPƒ¦{ 9‘"f[6ñ¦’!ŽÚì1>i#*é íŪ–\îXÖ.¶{Žè* ëã¢Ïœh›£ù”*êàÈ>–ï\ Æ’2±“2–Hõ„’TÒ”®…sž÷ÐòyvN…¼ñ¡ÛX@qš®<«~©ß~Do?d˜¥6|VʶyºÝÌyÉ_ãð#ÃuÙT¶€Nˤ|:AWä¾´ ¯™ÚdköïÕbºŸmærdǹäZô4ÅžüA ®@ƒ…‡«ŒPä]ˆÃºƒÒJ¼ÒÅ6|¡«>ðŸêÍMöiÏæ^„D¼Å•zõy7^Ö÷Ù.‹b¸íüƇVd÷GÖ¯ää²l) ©ƒ«Ø“ÈMØâƒÍâM¡ùºnŠÕH¥ýpŠ< $UíÇ#Úzk"ÞX柧5´zd>¼E­}Qã«–`²nmâ«ÈÂËXb8-µáàRœ›w”àl¢¤%Œ/)Ø~æÁºÕKO)¦ˆÛ$[îë¢),º¢¦Ë ç<ï¡e;8y²goz¨–jš†íêvfYzB?ü·Z¾:6akÁÁýè1VªÛ Ï´—t»–7˜îŠÁã6y Ãbxœða#æ›:pž5Pí¹'À¡0O”½r(±Ú­¬–7›w h|ˆr ûZa§¹rt¹Øº.Í;ѽIŠI%Ó¯‚–­x{烖(ù*_¢"Ñ„Þå’åÛ­7ÏIÿ9ÖJàÈ¡Ýí½îSœ…ÁÅààù ]WÒ+þöÒ»8°Lê t,Û®ìŒDÞq©Uo¯~zù«j=pƆ² ˆ£õÿŒ•OÝv–#!4f£«•S°3«ïÉ [ξh>ÍæB%À'C`;‰@Ž.Š®íaªLÞfÖ÷ñ}®ï¢÷Qz–àíô˜ZêÑpÃ!•¿7)¥œãa…q–÷Ô¤‹ÇÁ#ÿê÷&Ä*HÒdKÛ•-š§´>d°×èÕzÁ7,Y.Ï’ðIX™t]ÇœÁîã,ÄNSså0o˜Ž¨tœN}&,bTÀIg,nVbß­ØÓÁãÁb%¤BÍÚ³¬=0O4›íœ§9Ix¶&9“-×M}FªKÕ2p9v®É»í›ú¤‰µ~7¤DÞj„´*="}TÆÂIÜ¿(lò¿÷ɦw3þRÊ‘»‹ÁkôMf©™ I=ØíÇ!çß8ýB2VÏ‘!u¥WwO`J­Äl.lÑMž²¿Ô\lÆ5,{We ×AGLƒ]¦PQp]À´ÀÑl…þþç÷9+s,)oÝ %UޱÜê¶IŒ8­@åß²úê‰pB‰iؼ€xrÉ}&©@òy!ÞÉæ´+„“¼¯–Oýz_·t¢Á]çº$V5o9[Wamœvi¾MèŠP¾$n€º¡'_Á>‹{5ˆÓu[…Ksa_Ì€<Ã8η;Ô ªüÆš8@n…,õµ¡ð¾Šë.HÚ‘)f•Ûsž>l 0ß}/1œåS¬ üñ«ËþÇÑžAXªÀBê& î²á>É™Htð„dçÊoïÕí!s‡jiX—nÈðB8Éûjß:à*ß”û_ì|w¹kjGùŒæžTåúEæB‰÷dr…üá¾úºêÅeõK°|ƼÆ-ãNÙ€X¦j¥d™“Øï“ºpsK¯juƒv¼\ºØ;T—ô‰ÑñÕY”Æ- o+[eÇÇ uQŸ~IÑäpÈÕ,ƒ_/äˆyÃ…›k’n„'®2ÜQhpÛ`<ÛHxìàu7(Ä…w­Íþ&Œ…péZÏ+„“¼¯vÑK<þ/:Å™ý¢4ÚäÅÎ÷ ¥$fñµ•’šs&ÄM3Â{] ÈÎÍ( “Ê2—ô+,ƒ¾¾ærJas%¤7͆-œ{å>ȼ`|8øqžÜó’L„£5Tt)ót?È~Îxl¦DüÛÚåúØlæÛÃ/ csÔݹ¾åmžÊGiv˜ŒÓ9b¦•Å–Úx€˜OX8-W9j÷±ëÎ”Ï nQH†ü­t‘½ÆžÊ„žúC¥ýuo¿˜RÃDJ“Áw&GZmâÉa4@ihvžmI»zíšž×Xëw„:åïÐü¸Æ¹¬Ì :9 Zó=[õÆ,K¿ÎÇæª¬¼ v½¯ø—ˆèEC…DÑåÁúïTGs†­ =Ÿ{‰äéÖzY:*Ø´ó{<úl1ɰé‡á&b6ï¹ -ËÚš·›êX”¼2›–ÌXE>rMˆ¬0÷ á$ï­9(ìªÿã­-¼¨“vÓƒu„DØíSUOÊ’¡>‰&ˆ‘©XvdÔÇãâpÕo> fYwèT}ª:@y·UχGCçÆuY[bîUß¹xïsuã¾ÑÛιG ‘ž’Àöu® —Ém¶ðÄLNª`›m·²mZlT ª†>\k.f´· B‡ø#ÖP7â³xæ0ǰ„X¶AXq¿´2¡Y‡#Ä~JˆœwšÝÝw>Å{lùuÿÆýS¯P©´ô·J•äÓ~°4¹•Õ©7>ÞFhDÚ—åÙºŠhjúÂù«än : Êcß œ”6X…°•©1p\nSà ´ÒßzVù£Yõîxê*–âw¨¢Åã¨ü‘¾%Dü'2 9î#¸Ð.û/ ÖÈÑYZ܈ƒ_“8&!ƒ¿óA˶îgxY> ÃîáÃfBšb©@Ý^°‰tÞãÄÙ,®EEHÔ©w»poOrø°ÇÄDì7~+s\Y¹¢Ö´{Ë‹+ëÇÜ!‘R ®œrVÊ]ZŒ¤éi¡»1~c¨?q– ¾¯|vSù„8õn£ÆùŠãÎÉÝÁî3•'`£7|a`é§“EÄxÔM…£`¡tÐ×Q =¤Jäp¡]È‘ÙÌgbðOÉ;„‚»o/oùŒÑyü$–üÙ¸RÀ¡¤ûYRß' ~¤t&…åÞ`‰&ä2Ñ\êDÞiœæ§€w9ú½·|Ñð|à^,W“¸k, õ$TÚ˜5¿4‘Usdªí¤NŒöxº(QI½&¹âälѦº~)éÂÂa6Û¹I?s7µß<2‚–ë ]Mœø?µ<"™9+l¬204œ…| cT4ÜÎzFÖXp$£õ ¿¯È³¸¼ L%2&˜ü~çïTSc؃)†?þl½›Ð½¼É~bv[k3Ò/ß«¡BK’äJ)iM£hØá·¿p;+½ý±ÿKsPwž°+ÞïQ¦ÌÎJb7?ÞãBihÕÞÉ,áYG›ÜóË­ÆR,ÁŠ#êÄ5î)N¹²gty¨i5®ÑÛJ¯c½a'áEž¶Œ§4¹e\‰"Gó lòp Í[%“PX‚wÎß'„vMKÅìs.rz€>ÉE¼À5jGPÄ*-Z­Œ¤=JéTbÏNpýð£`×^€ÌUºïí@æß#Öv)%ê•@É8Òn4'o­Ï¼8õmüGØ,GnÓ+"Pr/§üåB/?¢H]r}:õ—›Sª[® ’Kn ®>¬DÎæUô›R^ídb7Fé’Ð+±ÿÒ0Ó΂QìÏ·Ä$.aR­âp0^H(8r–Ë *¯¸ÝxD’2SjÉ1£5;Ø|ˆbA±vŦ)á+‰ÓÐn7eÇÚ7œ¤H8.(ýÄ@aéYpF6ŸC•1£º„Ø6|„‡Æ°=CÄbN^Tñãç‘Á`:üqô|i þYlZZLíBëuч¼å8áè~owÜ?ÄòÌ ÕɰŸŽWRmõIÛ\kVvRÇå/VU%¤|ú¡“NR6U:°?Õ…Ð>ßä"˜Ôð]ä¹¢MspÚXŠ„ª½Ùék„Õ2äyLÃÑα§œ¬(V"Ò+0㻸Cú—38èE¿I`f Ü€OpèÚŽÜ#ZtAFи#Øt+Ŭ Cß²Eëlà pE>KÏ œ¸SÛ4ì ¹òLh“ ƒÈÉØÉ\Α!ÞÞ„«)‚‹i'ÁwFê·ïm.ÜGÓßæ¨žEú›I©áI»1–ÿ2ëd•ü?ú¬l‰´P™‡9éÞýt=14_z1ÞT^ƒÕvMÕQÅ©’[éíód4x.Õé2!Ѧ'‘«šÇПcB‡¼|àꨇ' „»ô¢ #â‚pB­%^Á0“V#@9†Nbø[‡s}å™SÇ~Ž%xþ›at ,$>­SO+^ÈKª’ðï"æéˉ4ÞÜßðãÞµ?{‹‹ü´M¹ÌKi¾D“ºäƪrªW×ùþ¢D­L=é´}¤LGbGõS¬jãEÍŠm,mWzÌ!¿*r Ûö¸ÂüŽü |ʼÌ÷HϧÅebÀy‡&‰”Ũh̦!Ú‰—È&—¾Jäâ“$2¨Žôj°ÑÝæ¾¹—_ï[ZÖÌWG…5îV5»™5} 9ðt­¬;i[ôg<£z‚S_|tâƒV¢ÈÈ|ñ¬9ìÕø„•~Fž(IgBèþ¹·"¤€~êí†Dî¿óM¯WÉ7EBþSíW¹FSeÂÚ³®™§Ës¶–HHÏ//ø—y´ ³¦ÅRRaáoYÁ*,ÿ(F„,ˆúÛ€оiJ°ú%´k 0cœÄnl.÷Nalñºgˆ‚ïö*÷ã«\ú+×®€ŽÞ_•®\a‰YÏgQe C³ÕÁè‚pÝ¢l‚æQŒD0%Gêíqˆ}Ì ]÷;r«Q±bðk·3GÍQÁ5º‘¸‚÷ödBÛ√‡S„Ô>'·1!îŸßlðZùf—Ë\¸Ò`ï±Í§ÛÏw ¤¤Úº{£d*–¥ÇE­NÒkôa§ìËZrоÁÊC%Ÿ’ìϽž²MÓ–-í ý¡Ô˜û†2,’~Ìòã¨Ù챑;/D¹÷© wÉS|nÊKú­Ð¤‹ø~—:+]°á,ò5àzÉóË‹Žô1e†_Ë5œt;›(°%7§ÆÄP×#%wp<ðñ%°”йÕJ/àEäh˜Á\ -Oy½žU‡ö ¤>ÆA÷‹°+ZRx›ëg˜:ÊìlôÞô«ˆœá¯Û(I›<í§tU-SÞôü|Wo¢èòÅÓï”*C³¡ÒÆ 5 „t=óØ]‰/3:râˆä1n†(­ œY,qYä•çË%MîW:˜Ì åVª¸˜^ýSCYê„À¯%>°€¯’„ápµ—FbÆdŠŠ(<#>œ£6Zð6[b°¡øµÀ¿ãPW™z|*•‡@±¤Úà¯ÅÜ 9ìºó`UÜä8-ÃIYs…ìRw¦žTb r}©l­£ìi=êFHâã‡#M¦¿Nò«û»_ïŒUˆ<òt­lŽœ©2IWë“ý>5›»‘Òæ­7šˆ¥ãçû(Ëje”Ðèæ/ô;’z"òŠ^:”G>T‡«Þó€Bq»4º"<×çüµ°ÁۻēÊÒG#RÇÿ$‡Š¼RÕ7ê#ÚêsdôhW )¹ˆ\¿%×È¥|xC$_å¦ÂËÍJØæO,©Ñ\"º%N°2¹ xo–ž µÒÀ-hZ‰¯ôÞ&– ¶PHr–}“3•µúnžŸ±G¬TÞì¹î/^ªýe ázÿSÌæ&«2éôóH“7 ëØèá¸h¹ÜùèGµ$~Â8ÙÚ^Å$wº»8ÅÆK¿Òß}ÝT¾8ª·ƒª§z#Ë’êÙÝô\nó^§Â´6! ¹篅æ-½q€«˺_¨/gr¨hžÓi ϽV»c¹E-\3掊(€¯`Wã5èKñÁîÄ'(Z§f*Ö; î.ˆšáýC.WŸŽ`2ý)€F,¬ÖìÏ~Í:@šPA>ÒxY©ˆcŸ@µÚº¿²ÜWQ|T„fhÎ`¹DúÀã1ÎNËÿÒ¥ZÓà¯ö?ÈîèúOˆQé]ïÞxJÊŽ8ô-­YBæÑ”®†O“å´äô_ì-d„ÈM†©ºfP͈‚ôx¶{\²XC€!ض‘ý½K¡>¸°5=þާöŸ; giô¸MŒ›Ë_B;gž¦œ—Îê°©cg‰Ö§Ç¢"Šâ˜‚n›»1ÐUÇ¥xTÑ0Åñ5gfàô2«pä9(NÉV¸ïEކÅ¡µÖ]–§ÜCZaýMÖzŠ).õ²ÚÆRâ4ÿA†¯±¦ÅØÚÕuÕ_¸R“»½ûÕþÙ)ê9tÿËïî —¦ÒÅÛë› iðƒývE"óîôÅåÌd½&€Yí7´ÊC’•Újô€ÕÁ°Œˆïp‘m Rt6œ|8Oýù™e?>&÷Ù‚ÁªfZ|)â v›S NÊŽóÌ)Ø‹qçnlYÌyìÎðÝ+¸e>yƒÒí®£*Bà1\RpV•åV»ÛªU>>fåbë'Å9Âo‘l5Az„‘Þ[î­ äË(BBnÙ·–T[Í v!‰he“!k‚R»ì¿^¨ÞoÁö3ëŽ?Ÿ.1Ím`!åÈ8[æWbj³þáBY‚™Tj%ûñþ¨pBêmzZ†Y²¡nçj½W…Bødð]š€]ÖÀm-s!ÌÇØœ‘i'ß§¹¦òq}ÞÖ°œ4™­ ³JtO>#ŽL¹’Lló{Ô=9¡„4T \\Ðu¦ƒõ#c§¿%8¹½pg: A$צUB×.ì/ ”Ü5á·O‡«s•ç ²®~·h­†9¬F»¾ŒV÷j¦ ÕŒkcBü¾{1×ÇXFÚ×ÍôßæÞš¬x·Kþ°sôÕ˜W RgÝ}è$Iù1CÇÇ•TèÉ”‡pЗ’Ø1'»ëFŰ["•œã³˜e7N»pµÔXæœô‚²¢¬t8SÓ…c8s.´µ µZ¨ÈÛ‘·ˆ“˜==GnˆßÚ…iÍE¾G0 ö­Ê¾dÒs$“;|l6g‰÷EY!–ü?ájŸÑÄO…Ã"B,j6%©ÌãžFÏÑ—òûðœô£î`S]ïl—ØÕ°Ð‹€Dš%£ºa—û𔣉>¦Eð¬!¥/çÌö6FÈbGxfü/WÌû»]ñ†ý&“õ˸¿Ô©ÓÚ²•*C³¥ ¼Ïwõ£ÅΗð™ÕÖœók*%TF¼f“+ä™qË^WX XiRmDÈÜ’Ÿ¸ 1|  ÅâÒÏ*^ÕìÃZæ5ò˜ÿçæâwŇdƒ§Cxð¹RÍ—Ë1,IWC=Uö¤óüçgè©ÜGUá)/4ˆøAKÜ3{$ö¼HïËv îß\¬ABØ HHç3³È2Ýrö"4q„«×vë0¹$Mœ™®jYä‚Yž.K? "®Úù3E¦ÿŸ.Xžüi!]ú÷Ûz½ZçkNÜT lïC#BJ¼„O«)yÖåœx—H¹GǪ޹gÛ%¢“«Fù­(ôê€$ìÎ5Ø!1í-ÕW¤í06.µ <â‹hD|8ËUnª³á•àÚŽq2)T'ðÝk6ªhw°m‹BVØa$‘'ªñÈy‰é,açh™ˆ%›‰ |ê^ȃÉ\s¬ŠÅÁ¨Æ$) ®×¤4rÙµž4f~8­a=ÙŽ·ÊõçŸxX*«B‡8§ÿϸMo§¬÷ϳ?ÌËwŒzìxUÔYuR_É¿ûºèl{/ª8a‡5’îñÒÒÒ\×·°%¤8 ô7$h¸©|°„åȲŸ ±¯ïBÀ¶àï¨Þeäãƒ5bh§W2œ'òCÄºÇ ª ²”lÝXíE2Ùån íÏþ±’,|á©©Î7iYsþ¨IIìÉìî®m^@ùD/dç…†#ªÒB(‰d^5öçµ›­5O”¹Ê6†3ÂØ2ìªw>Â^tl4P5¦LY‰”¡þ$t]ΪóàhZ¯Œj(ÀpJ ‡áZ{èb4ÈrÀÚK’Éç@ÞêPe«¼W«Õü¿é6¼¶ùðaó«¢Ìò¥ç;xQ³3Ë×ûPRiÒÏ+¥™LR3úÌ—VRõéIjCR/XP|¢øj·™€¿jxû½ðtjÝ0ñÇêjCÛÕ—Á*¿ ›Y.æþum2#OycBÉ#d[/BB«ÔèOË]µ‘ËdKÀþY¨Jã>zg¼¼óÃÎJORù6d~$Ñ€Õ§¹»Î¨-Ň©{½RiLüòï¸ï«M‰Êþóù§D[{Þ‡¡eªhš$¹[m+*I¤zwÃØöTjTB¿Mþà-ñ]­SÅÌ„úûOõÉØõÄÒ¨/G’¨<%.¼]“C?ãLŸù§;Ï–Ó }ˆQ²Ø¢‰ƒ™–ÅH±¾–à‚ŠNÜÇ}¼Ö%€ îtæ±”×´NœòÂòLÁZ›Èžg;Ô€Í)7éaPqY÷™ëRO¹ŽÙ zöz*…̹9ܹ§¡¼¤·…Ñ…2â¼!ï§FR•ŠRrw}äq8d@•UÛúU“ü•üŽÓÒÿ,³7iõêEGOÆGÈäÅwäÀWµ, ÷Þ¾:Ó„¤®”ô×ív_Ý£ⵊã9rI&Kužä˜ô¸‚dˆdÑc—8S…]™ò„;Â%AÏQü•FC€1Ã0¿XVsÕofG¨8¤Beñ‹€G»Mä K0UJdë¹Ä///p²5<£]{sUG°ÿZ.´hCÈÉšýO*ÁÇH.É].s/Gk&É»ZaƒŠ(ÖÃó)÷@š²°„v<ìö$¤RÜìNÕ´Óé©nn+¶êCTÝÄÊÒfþÍ·âý²§Å¿z‘Àö}£N|K?éâCcŠUd™JW™ìiƒœÍä±ì\ÜP.בeƒ~ì`éùê`”Å9Í¢™3+*gOgpm¢ÌèéÑʱd| ÂXÒa³IáHB‹œë×u8謠Ž\°_! {ëä|Aì<¯r}Šø—üYzœÃ‰¬†Ðf>€*ø“—ãP 滳¨Ø¡1€ù ­€#9Ýk?"¹É2Åoºš¶µÈØÏì*©4zîk&5Éšëf0ø„¼Î’zÀÊÛfxšвçáYuB*gÚ7E+Rrþ#ýN‘ý';cz¥œj3×±ÃþF*ZfÞïð«9Ô¬­17É—œ!Å-SJ×XÝÖq²/$£mô&ôª-†7QvÕÇ`‘ü€©fæ/8`½_+‡Ø¦½w€,6±¼ªŸìì›(¤ã°ïÒ9ÙÁè é(j 8d¡ÝœOLÆ#`™Î{ÊùÕ,æ~ºúÝ‚é?§Ü~ŒÇs©œ:}„OCVf,ò‡=ºÀˆ00J#$½)YÛÝõá`Zæ|­¿¯iÀwz"ŸøøNZ¾«³O_O×u`kHHð}¸Úžú<&Ovu_ 3UjEûœ3Åþþ[ñ~Ùÿ‡>¿«U›>øl 6sc5­ž¦<øB®©OJµ¯Öc|Èš z*¾džI Qni a©ʦBZÒŒbX Å…‰2¨ô3¬wa =Öµ~•@Ëg«V¹oôÄ?~¤CöÄ]–'~{§éŒƒ´8iÀ_æþ:|VùIó=³pÒŽBÃ*zú–Ü…°NÜГeþŸ» iÓŽðµ[»;‰ÊM[$#¦‘®9Q­`—š(WYŸO2$ÈcfDkÆÃÃ$B|oAödgeØ’­¥Ui/ÒT^$î*dMRRÃììmeåIÿöñ¾Yûz¯\üvÚÿ%äÎRÎ_½øBXQeù°9iå´Åe]r·ÛÊÜÆ ÔØ:–j,_/&J±‚ñƒ­´s’•“40ç£ÆZÔ;\§VbàÁnY£á´çeÉB¬®â¸û—_2 ;;øù wµbèªD×Ú¦˜fÿ q÷ãR`.K龿¼î>ˆ#+;8z¦—Ø¡€“9¹²P–hRº&QpŠúЖâà`8!þ×Á¶Ú[!ÕØýc])õrYŒ1äØW*‰óÚ¼ -ibWmHš«KíÓˆöï¾ ïå”™üêE†¹GˆT|p¹XÈ™MI“}ÖnÙâô˜þæ³hA$„MÓ—°f)ûùÛ‚ZÈm"m7oßu‡ŒXN¼O:"С9æUÞÛ6Š–_Í ¡‡ksR 1àn5y-‹ƒ‡Aµ"…–ë|7”sÈ•Àxƒ×s¶(ÅàWu¿·)rz•{·ìå5ÇšFèjæ[-8Ra…;”§¾”g‚ÏöL²fxÜ#ÒIýBí”n6“ˆìM’¦û¥«-¥†[Ãi#Wß=ÌmKÄø-ÜKÓGT•Užì4 rêâ÷;dMtñˆ‘§üY@.²¿j¿š @Öj’þÌãœW;Óˆá'Ót›ÍÞ¶n´Ñ'Zµç]È*ê5V8h²cYÁw-OÛmôt¨ÜÛ³¢?ljå,U5i×DÐ$bFbµr²À/`>b«yG4?w€ð¡ƒ¶ösÂ… "9sd,I´!BÎS"Ù ¶™a–Pkõw¬óáWzÞˆŽ %,Ë|Àk9]¸/ȾÖBJíçìÙÓÕw?º!âw žŒ0 ¢íVEiÒáRBŠ]ë?¥,vËéFRíÌ-¥¤ZYÓ¥¿m«Ç­W/¢éìEãÌl¿þ$]AFœ W\—§¶¸©Ì‰Ïö3:æžTßL.ÇîgULv÷ª˜ŽÉÇ>¶\oŠáÄŽµ»ÜC®3ånö|j¨§€o#¦À Jæ#JІ¼ãWž¥Ü£…Ìí]ý{©äå÷ÏêsÚùi,ЧuùñA8ôƒmfXˆI=îŸbãlcˆ)}B:´M…–¤»’úÇ©»YLán9BªæÂãÁO'ïÉ›#uÓ`•›žDßd1ÑKF[þxéšt¶¡¬²— ‹î'|(ËÚÿ¶+ÿž[ÿÄWJµ9NÊäù·`»ÔÌŸ–W±dôGwɽ€9³K‚qÛQƒ}Ry¸¨îY¢~'€*lé­ ‚ýŠª˜¶÷©‰Up-Î{-ƒÐÅpS÷}¯òÍð)qÜW%ó3Á˜ÏI¦M~`ƒ€ÐL&{ù#—3 ÏÕâq[Yltº’_ûŒØº=˜jñÚ–…eðMØÿ¬N_žÒ·KÁºÖ$™–BŸªŸgóŽÔLk½>ÀeóÃVòR/ ò«%ýø?.¦H¿uþÀÃ}ÀW*¢Ùϧ»y¦G¨Z½ª¹Ùš5~È«?*2àr'BÒ®±}–¹Þ/ä§ôÚØÊРŒ/Gï:‡­ö÷ܾ)Ø<5˜¶Çc_Ê Ô:K¾:Ô… ˜Ÿç(¬µ-‰BµIù2“:ºøÊùþö?A1$?6ÄŠÅ&OžŒq)g„h–ó=/ÅwÁâ;¢ÇÉyQÅ ~@"@Úœ!rtYXî»t~ä⿼ BWs.)g5§;%evÙO$*út×÷6…gÞ—gSÏÆ›}JÒf«ÉÛåXçÊ彊Vջد/^½ø’š´5Þínø}D0rë[lú)'kЬSÎöº] x$wƒîä;,ƒb©¡gŸ5!¡ïêaò¾Übñä-êèà+… îJ¡h£mÅ;M;–ÄΟˆ|7iM!…1“ú ‘¢µÁýBRmp¿7-frûxK)Í88Nôþl²7Véý"{cûÖ¥€Îe{ÕI€Ì¾‰™xŽšé¥>5@ýÝø 4´ûÀg!üDNÁM s†­+žB5ÞÄø+µêvr6O]"?©Mj.&Ñë~%6~«qÒKKxXûo]kªÐÍÂIŠ“Îwx[™ã˜ùk »¶xZl“¨ŽZk¹¶n]V¾…o [µB9Þëì8Ïm¡1IÎ3ËøXÍ,€¹ ¥ê[€³Ér_©æÞ 7Ÿ}Ö!7R? lkÜeÚ®Wov¦•~ç¯é^Tbw_òù«5Ktö$•§G&mq9‰îŒýˆ<©×tûrÉ=Pœ„¹¤.ÌŽQj ÑnÎD±âP&}ñZ)F&lTLÞlñt°ZYÖ¶CÕ|D)>—‹•Ô´ûâüé—é‡1®\Z\@œ‘»Xæh‘¸þÄ !Z ½)5HrÒ¦tjE<%W) F–ÇbižâÔîµ÷Ø ƒBí+< :¯É:ÐFÙ£‰Ÿšý$MNƒW¾<Æbâ–b†¶n>l³ñ£1i„ŠÙø²›Usï0Ÿ£u•ù÷;q óy[)BI%–þ@•=¯Yç¹ùmo"/ß‚ÖЙr÷±è1ÊÃX´ª Ëþ\^à…nhîŒ()ˆâTé_r¥u*h¿Ýçý“aZi¶)[1 d#«š_< ;eqÐõ>‰PbLÞgÑž`¼ÅâZ#G{-³òãË8ˆ‡Î버‚§D«#t=®;ä9 ï.ûë6NB ¼/#–ûr¾R>•Úk­ãKv—×®ØÉñ³,*úô)¡`î.dTŠra½‰ª:\4“¸ö_ëËzMuqé`Ù“È׳p[UQÍÅmüB/÷mð´7ÑèÅÙ»Ú¦£Ó’6â4|*­hnÔ5ªé^b‹€Ã«BB¨× ¬ôÚLTvNÄN²r'¹ƒª,gŽ8Ȭ¥¹~Š| k˜ƒ ü¤:ú0›ô+ÔÂzDÙ!ð€W:Ôzòl]1›sFŽª^B>§òpÙ!ô?¼Õ8¤"Ë¥3x)b6'5ÂÍÌB\joRêkè_ÕÑ/¬Îö¶5ûX3HCH¡\Ø%¢6EÒR¤.6°&Ò(r&C¢iÊΩu.ŒW*%ögòlœ)Àâñ†<~Eö_l~pfÅDà ¶6Rä´úº§S™ìb°FO¬-d œÄ#gôJx2Ù•[9‡L£v¹ºSДëÚä8&›å'‡"Ðjƒ/À0œSBx×;#¿·.‰-ã ÅíqèšÝ“ŽfÞæ ä¬G÷sÍ+ê©íØŒ’=)*ŒÌƆpd,@¤%2Ÿ¥-Ñ®>|\ lNg z(vá›}eEôÚO,%.ÀÞB*g|+W-ÊžïîµçÁ“óë¸e²Fm|Íw‹ì/Z»†v@]½tMÖ·vͱ-C™棢¥ò⊡!R$à¨ó‚p˜ºƒ&› 5záÂc¶ô…½9pÒÉúfHÚ ö¡3ºuzdÓkð ÷lV©¹C8't…z°abvu ámæš|Bú€GSŸrP¼P¤GÍh8/ÏóÚŠs9X3…Š~Wa³&U¥pXëÁbë8ø\óm„q3\­Nt®îu¦ZC¿›'ã•é9ÝTá¾®l¡?í¬Ðz¿FMýÎÂ8Iúß&ì‹ì¿ØóR/_€|å3æC4rÿÇ®x˜ûæ`¦âù]e6Ìf·[f…ëXjHýÎH¼sÊÃ0!׳V´ ”< ½j°mû)åW© :bÙÎä¨|†ÇŒàMŽa£pXéÉ_µ×ñòQ/>¹w›>W¯wpŠ ¼ /•æ× ·‰×¸´’"£vª?OÉmC3³4«kM°ú,ɬ×Ñ”wÛK-rg»º”S"äb¹œø}a{þ±1ò»4½ÏÿŒ€&Åi,ÔãL¡_ë”]²PùxéÖÖÆÉý|*ãX_+Ú+‡<\‘¢"êÂþ†?ÁŽ^‰)l º¥³g·Ù’;¢<¯á5êN0å6DaÑiä2ïĶ™ eäPQ©ôPeÙø G†)9‚Ý1›ê"2v!šÎñØÿ#Žc/|0Žr ¦3$…ù¿È%À‘Ç0!YpX Oœ,XÀšÏVà˜ -AúÊ—7çOžÙ×ûz|ÞX?ÄXò²*ÑàWBT³um\É`n“ýïïÙ›Ùgžw^½¸¥ùô=l¿à2rB(-ÓWá·Æm‘Ú n^¡Ð*º=XrÇÍ',œYÛð±P~Å'L‘þ£A'XÅñ–ÕØ$Çu„ÃÍbfKqĪºÄYCx#‚GôrþŸùJ0#D‘c Û.`w‘2W4ªtàS¨‚×GR³±åí³^h.CsRZ{‘­u€qD=ì.ì 3nè¦.>Ì-àþ9û}·?¤>¢Å_CCdŸ²ºµ1Ùøß9׊ì¿Y惘æÖS欟xŸÙ}Ï IH{4©­ gµËôaðLàð%LJÖÃZ@-Ý <öº:'lñÍ7Ôl‰Œ‹‚º<Xq-oôØœÎî6£«ªÆönk½íà¨ÀÏ• –,Ž ­ø‡,€£œeá,î#9$W[ÊSÞ¸©ëÀvz!:¹Š8Úµã’Ó|¶*ƒéJ¶Òz;û ô(Æ¢Y¦‘æÙàQoZ¥m¼³™ÔÉ—*“àW`ìv½³!­ihQ ,{Y©à\ï$˸h)lÔ–žg"š»¦Í þ"ÆøÍ‚¸þ–ílEtÁ û)~X»œÌiõÄïÆ 6Æ-à.¸r%¯õ.5T4nBîxPÿ´r–£ èUE^€*,FfI'kñŒÝÊÛ†§Góù`^dlm)?E¡a7ÇD¡/ܦÅÃK—O\”Z‘e䣞´AM©ê¦ †§ Ÿ¡þ6ZW‡–ùñu—âFoSï#a©EôD…b¿»m)ð*‘tÅkÞ_Uœ–štµ…›tùy êýð„^…9îȾРS¢:Fª#„w•«ô…¾cUÀÂêC’)¨l/J&î‚ KÇ}›j/ÀhÑ)TÈÅ~¬+Kî{VpMp((DxrXÄwœqTÐõ%)Yá3Äb?‹òp®"äiXì#p7Ý*0pòp %Û‘œ !!Ï_‡9ûÑ.êã±~jJ‚οî:ܬï| ÿu~÷"ûßí—«^…Õ°ÚEK ^üg^ Û²âl˜ cË ª êbÑÁYJ‡\S!ÕñZ•”]ÖÖwø* j%t»ìz‡Äåô{¹íkÊ‚ì:OïPÚöì|KÄUØQÌ`,Áâö³a4˜Vºòº‹ð`°¾ÍÕ×½Qdom£Ëìxf(&÷têY™J°*F˜Ü²%¤W1†ãÆæØóûŠ­¡ÉÇÙ˜ Á¢’múÃÄ:j©í,Nå Y;LDrÿŒøýþh=­ùC3öðNÅ’ÁÛáýŸëÅöðÇQp"®?´hÞØ®µI˜áÈ1 ÷  ‰½ÄQ¾PŠŠ'ØÈRñ¤Q=gŽÏ _0+Èî /²i¿£—pÇÇ—Ò'í/˜Øž“̔ʸ,_y›W¿øüj鹂¶‰yz®rR# +£è“qFOS ÛX§«äžÓŸ½œj,ww_)öþë>|öL÷¤"*†¿ÇŽ™Ïx5PîüÁ¶\Ø"­norJDװ؇ýfcF­Žœt;a©;¯–Â×lõ ¡Ð Ûõnb…Îv°g_’lµëH'ñd„B`±t>nÐ,Æ1aœ3ýÝg¸+¦™Yv·Śtpa»H3ŽÚs-Â&g‘ kÖ1éз `er-² /®×UL¶ ׫)Ogïß(Aeͽî“ç.ôJ:þÎׯÈþƒÍ}RàUéÒϘ¨!V²M÷|)ŒùvG3|_,ôà£ÎW5ÏXB}‰° uSˆ'Xe˜qèÍ×ÃZ0 ’Êñ ®Ü ¨ "dz äHl5Žò—;>×±©½‹,ú9À”±, ¬ŒåѱXóïr*ˆñÛ‡±a‹Øöñ…æLEI·˜D­‘ÓÀ•VØâëó×±òä׎¾\XéÛB¸|EöŸ¬uAíu›O³i¡´ü¬ö&–"¯*MÔw·»°dœ™ä¶÷Ç] «Æ»ÅÅfB¿Êp›³Ê€ÅÁñèæ,›£Æ8àLÍÄì 씉ü™ ŒÅ¼,VÌ6óàåYA÷Atw3y“š3‰BS§ßØ×®èÔÖa&Ç9iê2‡v S2$®E ±Ûzÿ•ý^+ÙÐìöŠÒm° Oc‰¼]hl¹!8nÛ;]µ"ûo–>§À«ûrÖ¿¬îW]é3ðÇ\«uDõæ1âÓ'YCnê^ržùÈOÁ&#L£€žB7ÉJ{‰:ƒê `«½O::‚ˆp`?É!h"8¢Ëï99-,ðçÎMñ«Žr&ÑÛ2ÞAœR†Êð )Èc˰Àõnùñ‡@¢¬çX®â¥÷*#ØâVoÖ·0WÆé÷9„$cË,¼{Yˆæ£‚”¡¯ìëržþ"+lëV½à•®MFcü SŽºtÝ«³Að¸z5hÃ¥ßRú¨0 fêqH‹”s¤º_„¬o ¶ZåwŽ€7-2Ý!CÚDâXd1›jXS‚×!ìÚ XbÿR yyóYêÄQOTk8­"àÁ¡¡ƒU,.šÓžý‡fý»p=I½úL,mù¡„½¤¬2D3äõ〫ø/´¾ö"+|{YaLÁ—Ñ ¹p9ÕÙ@20\QxpäA;Â_#\•Úà_‰Ã Ëœ,<¦øµ7ò4\ö¤b›û‡¾[X`s~ SyÅ4fÈg.âüƒ/RæÊYBtÀÝLÐ¥G±Õ[·±]Ï+J¨Q‚X†rÌ'®å X<öZ#ˆõ'î@]Þ©f÷K´ö^”´d |O€÷‰9¾ú#ÝíH=Ÿ™EŠàÿ‡ö›Û®¯^X*yÒsFhîÂÆ)BbyÌϰÃÅÓ¬(0¥Úܤà<§d¸D8z4›žKÅÚÀ~“ &³etÔÙ*ØjÛ6GFyð¬ïAmd4„EÐø’ƒÐ¤#dË!7)8Ð1ð±«éÀо§+R(§cÉ¢E[ôn¿€µñŸû…xߢïQC93ˆþƒ ÒO)®“^»;,²¿Ív¸\+ðꊔŒ—½–JãÞ÷4,”˜ kó vËæá¦oŸñ7(3Vh8«ÌØÒ° ëëHcŒˆc. 0<–¥HÝlÈAcuÐÆ€Aª~7°±•´Q¸±!¡s,¿dö1GÁ/' ùÏ#WÍD ®F…gv[ÔQQY‹Å‚ìx¢tì ÍoOv3Mxý'<Ÿâ’þäõoÙßgÃËçxµî…'iîN¾þ<iD=püê©Råž0&¢ù‚ºNùœMØØûãПŒÂnY„Šõ,Ë f,,ÍoÐÚ1<÷©³ß¨gò³pcK}@³I9E?™åW”ïèêc…}îŽ`Z…´™.´ÂV»m:mh]êaà¿æ'=uý€Ï« ƒ‹èÒþïìÏúŽ-¹OÁï5— æÿq7 5\mád‰µpØ÷H2`ª÷3€%«†S E!tØ*=RÒù”#ç øTôy.I°˜c’Ø4­hÊ3©•jóò"²PÏÄ* óßi&æ9jTâëêÆü‘ö#k ÷qW¸Çùr5©šç¶àœ+µLy O?’F=eöøäõŸò7¶ªþ(¤+VdÁΕü"™é½¦à;ѪøpJi¤õ>‘[5N×Vúµ”ŸÊåi ›¤Æ2ûZÓUó¬MñÃá‚Óâ&í÷š1ÒÙœNWåÅ­ÉpkQ#yG'`Zº(¥Tßäz&Q¼®u‡Xƒú\‰òKq…4Œ—¸öò‚…+:9ëÝFhóSð[¢n·-ÝÙ¿=åíÇUTåõj¿÷Öw¾óú·Šìo1kÙ°Wé#æŸ ¾TÏÛËËJð(ÜtR8µÜcƒáêzexrÔ׈5(«óhÁa ²[õ« ñ½qQm„0\…q§‚µtì s:v–â_Ù!ÀVÈ\ÏDhЃ“…7„Âù´é(l3Ý>ÍüžòaýD”P-7mOq­ÂÛx*]öŽ„x]¸Óßàû"àýÁúÎ7ßáÙ›Û8yÁ†þôÈg^=rŠq2÷<s`c)©œ¿ùOƒÏ´à[‚ýá6QVØÄ‰â0äm_oÒ1ÿ•³¿h u‹×ð¤æ‚põ',•³ÿ$ž.JÞ‰ò• X°–È1³Àe"Ë×x1…äºãÀD%•¡ÿ-û Ú ²;)£ÃÝ9´5Er ÞóúOø ÝÜæòëß*²¿ËÎ(F|ioÖ²àËc´=¯õ´ShÝÒÎÂ)óTØRF*Ÿè….$gÊþ*fO G6¸Ûà–é2µiqçÆR!IàÈ(¶ï y„bö«¸)>s†|´bŒ|ß¿™Þ7Ëð]n§´UŒùÒ¡<òÝeFÌr±¾¼O‡iäqÛìÏ{I£àz7gßí¯ÿ€Y“L)ßéÙ›ÛËR¥q»u._H²Â|•é8XÇûÑ3__+©Ú¥ï9x^)öU”•ê-í„0>qÓ¢QbW¶fFÙ-Õ"]swý·#R"ðëÈ‹/c)þ9æ“Iƒg"à*ààÞRâAygkR^…éÒ)ãdηrgߙώ º wëK‘çWÞåîC#½þó=›d©÷Úé›"û[m”Šy¡áÅI£?¿ó“ùDÁèåQQVbʧ%«bfN+PÎÉw]+7ta?7G6Ø…#Ú79«¹›‚šÑöãPÁî÷| PO×—?6î @UŸð¹æýjÍC û\¯gÑ|fòNàb©_›!ÏÊ §«Jîõ§ÇÍ•R½Ã°Ù5.~iK}O¿þÓå.ôHzí¤`‘ý}f³¡aÊ€bÄòá–5èµ~ þX ú[|øÍÍOYlÌ ©¾ [JÓŠ>÷iK BÏý¹“ÊÏ0‚ŠZÅêhØÄR‘‘ÃP"FŒGÄB)$Ü;ćl¼»‹-òe;/„©þü•NªÎ£>"Úôu¥VÞJr:p>Ž*àÖáf5]söõðåBïJÞêÒÙ;XÓoFH@ßýÿÖÚïT·`¿ÖêÎÖEÎ'cü¶½…ÚÙÒ÷<œsçë(‚ëkxý|Ž'AÊg[Řê ùd7¾9ë>O%âxhË­sµñ­BŽê:À4מּÂÁµnƒC­p땊êbÉE ³NIV¸‘L$$²—:DÓ9åÎÜMhè+©Î1Û† Šÿƒ¡Èþ~›B )=ú5ÉGNÌ¿´An©ºÄI¥æü±Qbü«Â©§…;·ï¨Ñ)õ»½áav³±‹NÎ7þ½ Á]Ù5õ(˜„ÀÎãÒn[ ÖÝ!SKŽðóý(_áÃWZÌTÈU¯†Ÿ$^o•«Â)Õ<_Rz™VÿblÁãhã}ÕèÄöºªuX yÞU6¤­|íõζ!´|ôÿ;µñ·×¿qÝõ_vìûI"g"š j ñvåqT"Ëvj*‚¶VVHe?ƒ3®}`{4­ÑQyè;³”Ùuäè‡LŦa®Gj1–#/-Be·dHÁª4¥`›±M,.·UÑÁŠÞÌ©m‘г0‘fl)Ù§ÓÞ›‹œªŠ±‘ê¿¿þØ·EGÁöþß³/=þ¥Š8ÕÂîªmv ‘6`:}Ã;ÆÇ©å·ö%²C;ÜU_Ü7(Ôæ>—+ðl€ßçqñìÉ#ý°…VyqÇ 2øºŸ?.÷¼*á6n&ד¸Je™‡Ù· É:NŠ;ŒJõÿewQÀ&Aÿµ¼¤ÿò:@Ñôkæ„4˜àí”òõ7”íá¬ãhÔWí·úû´â’4ÔÎ|ÜùÏÅí1áæI6çÏIJ1ydÑ«|(£ÚɆíYܺ‰¢àmµ£lKùYtŠHfG—îsÕ~ÒÞùmͳ¹°iGx¨PÏ9•¬ƒÍ Ý]v E–ÍB$ê•s‹ŒTÇÎ’x®JÑ—«Æ2¢¥d2;®Ë˜£ÔgŽ[Êîæïý^WËXº"Y¦sPÎ:‹;<‡ñV7Û±ˆ<=Ʀx„ž?‚qM”CÍá4¶Ày ‰³ÏÚ·ýN´)‘‹,º§ç)s6*–^Ç»ÐRþþÒN=š£¡×½`d›~²·ÿˆ&çÛÓªKgœŸ·fˆ6&,^qŒ¿Újàë¸]JUfvš‚t3µžï[\Çö½ƒ/—ºE8Ð éª §Çw‰óúÙ¦U޶37!þíuí…JfÀ_ø—MÓl÷F±‘…uƒÜšø~“ÀÉŒt“ómo¹1§od·`Ó Ýp ØêýXEßö÷iü>Mɵ§»²ÊÝ=9¦Øö·a‹Q¸Ž[yª2£ê ý;€Çì„ú胗&×|дÇÔØ?œ¿íŠ`Ã]hÊP¼‹ã¼×òCÅvvç½¹J» Äô)ðzšHÜ5D¾ áC°+ÞdàOñ¬<”®ì@ýeÞïâlY!³‹—Ò„ÚÞ¬íËùÖË£öL$—çIºqS’Äf‰ÐJgu¦"µò ý#€Ço³—ÅÌrCLŸÝUºé©ÇðIí ¾{ xd®²q†d¿”ô\}ª•!{"MßW ”N’/VB ß–¹Tå#Yy4~¶¡VëñR6—ßœTqº|Z?€C)eW„é+î¾í¬\(ôSÞ€ŽO›é£,†ˆïY²øpz('Fäb4\©Ë¼„óØý|0¢n ÍŸ=‘e£w´âÖdõúr? r¦·Ë4‡t€Ÿ=á;Ø}"U3‰“…Ó™õ#§Ö¯¬Ã«YþSJÐŽ&½½7Ib§8 Áÿñ,äp|ÚÜ ^mqýGÕ‘\”\üKްˆ˜ùôžÿâ‰ÖŽK®áL)?snu·í/§ÁN˳"6êÓ6Ü8Äñö½W¬]W…yÒk=ÃÍ$ïÏ»G”áÃò.$rë<©È÷þÞÑaFåÜ üšÏ[+íl«Õ@ǧӭ妑aé2o‰Ïåm’¿]"½Ä_‰b˜uäF­}¦mªãÒjÓdU ?Eú IïÆHE!ù-¸>ڵѴRk·8ÔHûãç,3–ì»»èT—*í½í„{?2råk8-í˜õƒ³´v‚uÜ ‡ãSk—ƒe®W¿h:âT:1«ÉÂû‹ªÒÁMW“¦3! ÚBÞÐ:V÷†N•QÞœ¨«ãƒüä® 3ç!V2¯wïâ†AŽõøOFEz”íxe2&¬ˆŸs¯…8ßÚ¨·Ë* q%gýn¾Àê>úÑš79Æýýÿ7·œžÝÊÜAOÛšt31. D#bÌÕ‘ªÔÈðß7øÿÍa†ÖO|QïÉC]H¿ªàwÈœÖ4\¿ÙÍ&¥Œï`|G©Hà¬h07ÁZ§]TÍÿªªÀ?ŲÆ*iì}Çq|ë?Á²-½‘¥Öý\-Û<"K:{!mtg­ ›i^`q}Q û"Ö\¿CÌd`kJЀŠ[Æ++ùæL[ÑIúùÓ¤½ÐÄc¸õ%éalzÝÚ8^L·Ä´Mãî_b¦B¯ˆý¿4<ãq|mð¤]sÜiqý)“Jƒë‹úhGEÚ)|ÕÂ_Œ{Ñd¸V/V¤•ñ#ÎSÕxqŸ†8Ñ»Á|Ž}žlshlSÊÇR›î¾"%ë\_ùX34 2Îâ†Ër[ñv3Æå³Ž_ýH¦Bß>k.‰XÓ‚ƒ×<Žo ž¸:ËÒËtä¾¾j’˜I¤±Ñ)í¤4þ¯ø¢Ó \qp޵³͆ëüåhx1]ǺÜÃÙ|°>FM§ÀË&dKµgŠK ÊŒäp¤“ÜžÆ2ÉtAkJKE¾ß`!ÅÁ½:ß Ú¸ÔÚ{d }J, ²Ü$0¯î@8Š+,`ɆõÖEÖ̺}ï¸6#õÛÖRn Ç UÜßo›à¶½Ê,¥™ŸíIi– F™*ƒLiKdW'HzoÚÂÑG0ûœï,ò›Óö³–ií3¯Vû‘ò7£8†.+´N°ö´}é,Æó%?`ÓCk>ó¼¡x² qØ>ÿ”Š‚„Æ<$‡c1æVÿÚo þ¥ny|hq}]f.ÃÕ+B‰ûù)i¹ôbûZGõ«ï²4&ª‰a´›IO*wO8Ãëwz’ΰÙA™»L–8Iêÿa ÎGëÈø„tæ’ôçœQh§uܨï†<4‡ã7lž«âMHôøTøAiy ø—Gr¹Ø©|üÌ /H¤^ë0~›;‚OE³CÞB您o1ÒT2²Õ…y7¯Òë³nNµ&SfM2bæÑXª½ŽâRºä~t4òî´Žu"Ùîá›Aóô¸q‘\ða"èV6x[&ºËUï›&õÊ®½éEŽ=‹bµtvú³Aâ¦Çx'úãU:ÝkzóNÑ«6Èï½fŒÛ¦Z_¬$Ïn6²ôüêAgÆHï]ô94’Üi7ª4Y—õµLW’Ä!°iôi15Éòl6µ—´”i—|â¯L>ÜLvÁ˜^•IEæil+›(÷\߈ÛñsfUÔ‹P¦$#Ëä[Øp±¿"£È>…þO꼎u&ås8¦ûßü»Üé•cÙF…ÖDF½˜<Ë«t›t;UfÌ©ë@‚›ÊDÄ,¦·mÓ¦E£È"\B:VI •›“Qå±Õë|ˆ]꜀ñAìpáÌg—=‡c¶@bÐ=#ygÐê0™¿Õ-î“.2/ìbQôNÓ=|7ÊŸ"Áúb ¹83ô7ƒw¸+3ÊÛgѨ›íu÷s†ül ލãFAÇß²í.×-®¯Jÿ#%ìÇø÷6|—Ø€F£\|Ù‡¿{t‘)f’Ãÿ$¾ èFÊí÷Z6${ÕàË#¸gÞw¦Äq¥=Ó¿ j‡4këS%}·5Æ{å‡úÉ,“Aï+¼£^’ôÙÖ†JÈÁ­\?É8¡ƒ[$‡£r8öûuÎ'D¡±ßb|D½ãÃQâ±y®|¡x²¥¾ ®"ËUïqt³TMözÇUÑá£D zx_tO5îY6¡¿àæyÖÆuÓ5曺 Æ&‹æšc]½?H‘rþ‚#}¤|ê}Nßñ³ëȵŽJŠ[„©Ðr8ö0‡5vdÚ…noÃ-±~| >WdXˆÌÛ?MÁ¬zÃŽiçãïƒPÊ™W­h†‡†—‘rðßÐ^9{œßK˜}8ó~á[¾Ã¦Iú¨Ïãí,Éç¸R­6šÓ)TØ)f_á{Ì‹¶U¸!G¯ÙØÅç÷ƒ‚Þ=Ò”‰–×&ÃXÚ.†1._¶Ÿä»R¶øô"÷œ» ýž!/ì0¨óžó¶çÔ ÔyXXq(äpì¡nûo°l¸i•…ñ!(y 2ŸÊºíÆæ“„kÆ$ü‰‹2³æOìgä…ëóXmW»Ï¿…Ž=×)Õ!ˆ¸LOEÚŒ·rG6VW%qQƒ]ÌÝã‚•Tÿ&YŠßÈ}ƒ¯g©\j#Qñ‡+0tH»Áj’9ùÔB«À0²'æn8)^iZbkÐÜ/r¿R¶ia¡æ†c"®ÏǤ÷å³_ãKÈÿpŸ9uÅî+ˆfÝŒ7eFÞíB²’ÖOõGï™_Z+ž€‚»Êúr%U™'³±Gß¡2ÍÎvÙ“¼\óf5yÐŒ Yš@¡ô9ÆW Ž9Á†7[6|†hT¾ýÄ„FÒÚ—«ÅgñÉÔU¯‚‚ÞÀ‚éÙ¹Z–ëȼÓ(Jt¿œò,Û}©‹!9¡ 7xPµsÇÎßÚSá(© Ï6çP;4 ¨ãF‘ŽPÐtð¦¬C‹·J‘žºãÖáî&|0éj†»“ã P•ôh«{w8îP'KǹÛùßÔ÷È% Õq#r8€ÛÇ=ß¡å8gÞµ7%wu8™ôîj•ôh ~›;´ C-¸8L4¦«µsS¡§PGx'ÕÓŸÍUÆIR»zzl*ôé4‡#ÿ+Ï­ce`çtµÓ¥½¨¯@GþÏŒ„ª“t™Ã€_Üë—ýèo~hGî» }Ô¢Gß q}XG~ñG›×)‡#ÿ”Òd]¶pÎ~3)ªGËáÀ#«HQ½›AÁã¶ûµèIþÃpŸlendstream endobj 143 0 obj << /Filter /FlateDecode /Length 14283 >> stream xœí}ï¯%7rÝ÷ù+‚|xƒxnš¿É `#ö"F`À»2ŒÀÎY;ÖÊ–Æ^I‹]ý÷©sN±›}ß·I³ãyzX,ôî™j’M‹U$ëôoï¶K¸Ûð?ÿïg_½ˆ—<î~ÿb»ûÅ‹šÛ%µp×J —^ï¾zÑc½Ô1väË¿z1¶v©¹ßµš·KŠ&µ#=ŒK-”*Éþ΋ÐV™¼Ù?–¥¾Ršýk?Õ7[ÕG¿´²4ʵM5õK®ciSíÒ·°¶érà$ãmÚk›MZjÛî>ñÛyçÿùì«»¿øäÅýe,wã2j¬wŸüó ur¸ 9]Z²ŽµF“øä«ÿpÿçóçÿçe—1êýÿýÕK«uä’ãýÿ~ùʆgÛrK÷¿zù*¥t©!ÞÿݵÈ6úã¸ÿ›_àWÛ¶^Óÿûä¯Ñ†¶´¡ÛË–­ŸüÚjý%…GコðÚà˜­Û·,áûöò“1‰Òïòeô ñ*år©&ò*äKïY¥”Z·- /t¬½P.)‡~´ \¶mÔ|ÿ?_¾*1¢èû_ïà§û_ßÞÀþñ~ÿó?íýó Á/nó›OünÿëË%ÿÙÑ¿QÉgû_ÿzã_?ßÿz}ó?Ž?j¾ïÛ³”øPî›/ð/_jD΃8‡äU—QJÐÈÄ;Š8þüïû¿¿:ÀŸz þóþ×ï¿gÉöf§ïßEéÇvÑ—7úÝþ׿ÝxÝ£ñ‹òõ¨Æ|}ã}ÿp«˜°ÿõßö¿Ò-í?zë³ýò¦~™¾›Bõ`þ±½ý›ñÍã=û‡[¯ÿ‡åUvü?ý‘éý÷?J9÷o zðzyÁý‘å½ÖÂ÷ÿêѺ/·ð¦qüîGõÏ_ÝPÜãu~{cN¼¾ÑÚϨX)Øz—ÆÔŠïn¶û–b5çäj¾—wÐÀÿb‹u­í²­‹ÅñFÿ¶ôÇ­>z8_ÞÀ%øîf¯~²ÿû1!þnÿë/o Þ-[rS[nÞ/n<} Ô77þúâÆK-ÿzc”¿¾1Þ¯oôÓäÛF½þ°Aþ§C{4ô×7_ãñ¾üüF9·–‰w\ßsSÛÛO·xÝ2¯oŒõb€nuÈ›GÕãÛ¯þÇ,õïo”óë%þææPëa¼eûþìVWü~©çV™ñÝk*eÿ±ƒu¨Ð1?¼ß©ãyq~^œÿd‹³Î²ŸÝÃ`qŽ5q¿=ªŒ¹ÇÑ~Þëô/oŒÏg7šûéÑûüÆ(ßÒ¥¯ÿD«¸çÙ-ÚðøvÄ[µá?ò‚þÇ^ùñØýüÊÏkû÷,üÍjÕøýü[öò§Ÿq7UèÆû­ mñÖ.cì+ôô]R¬¦Z×®Á¢—o˜|½ü ݘ?6‡ßnøm}öh_˜ž=š·y4•ññ‡g&/ÞÚïüøü˜‡^íãOÒy|âÙù~Ìãç zïåxYàt‰a·Àïä¼$SÂüˆóòøÌ{u^þò“‹CæÃÅškÏ—žïÂVÃ¥Ö»bº¤p÷õ뻿¿{óè‰tïw8@¿:‘îÉZ—kºô­â@úþŸþî›o¾øôÍÝ¿¾þúÍë/uök+T¹ôÑ·ÎÛ.¥¶Áe«Wëv½úß¿LÖ--ØÐ~ñío>¿ûö‹¯^s÷÷_¼¹ûê‹7%Ôû ÅÍPïRÍ—¨ãðû¿úúõo÷úÍgß¡^¾ü­×·åÖÆïÁë—K‰#—»ßÛûýµýÿ_xÁÞ‘}•¶/çý1‡xÉ;€³ü‡B‚Óú&©qg`•Ú‘C*n±\b[+Ü‘E*ĸŠèçòïÑ4«¯XdR(—Ó›M`‘9¿ìòö‡Ìczsú]qÚ¸ôn#0¬“6¿Ê·—¯bh¦ñ¾òï:.±Þwû;ô‘.[¼Ûv(v°R/mÕ4‡½.$çö^(ÕZÂ팉œ¤r‚¬RŽœ¤ZË—íT–#«TÖUu-k"')oë"µ´þûõë1)š N‚*$lÙ«c73 ¶®·‘Ñ…ö+ð—éTǯÈ_ǯ4%~壷9“ö¾”:ÔØ.ÑÌaÈ­ã>Î4$—³)Åui9œf•† ÷Kª)Ý}@A/þâ…Iu´èTÉíRS›Rû$Z¤Ì,u›õ¹¤]ªÕK¿QÖh—ÜfYÇT;K%û£ly—²ªËŠö‡É”Òœ<‹XÃÌcß%LÛszÐò²Ù´Ù ûÌ=—’M£¨h^[Ì_Ïê+{‡îüª¨˜mTÇ.du{X” 0_λ­ôy狚[ØmÖŠ*]6[;väK f죔…4Ì"9馇Žt"¦± )*§›ê!6D’~6bæ=9Ò‹âÚæeÚ‹±Ì~ .`/9„x‘¥àä7“¼W:Ê"mI2±‘ˆ ª²iøûX§æ(¤«Ðp{g³mX ‰ ´‹HáSÝþ²ç 1Ë \üwu a3$â¿Dò¥8Ò†‚ûp†$L" óØS8|_Š~ÚšøÓ_±ÛÈCÏýŒø`ÏmªÖ\©Î"‡¿N7¥ÃÀ‡`¯“…TΟŸÉŸjø`O«£pÅìé râÆöôPóÌCڈبd,é(Ù«6¥ÅÀc¥Ÿˆ½ šgÿmze3b‰ˆ}·?0öÁl”¿SÚ8ö61/Þ1öoû`xT1)rìCÞæ˜4бÉü¡Âénæm R5ö%¢"]c_*®<û ëIĪ Pæ0æ¨Á‡=Ѹ䄾6¤ø¬èÖ ¾MŸàOU >¦ƒË4¾i¶·Í~*€THÙ¨ÑT¢ª9¶\AÌàaù"bÏf:Ø”4 Ö©Ð¥P"zT¯Y8ª ·«:Ç<zÖÝP+è"‘¨Ɇls‘ÀúÑõšÖ.è@²—SÕ!{ïT;z‘H£ $3†EúgA’™)o <( û¤ítrS¶™X‰ÔŒ ÑDȦá]Ýe–:SŸ:`ÚÈyŸSÝÔH™v®›u„dk³wÅØ¨pºÞÂì% î~ã•.Ú7öw07:P¬ÅÑK)Ô"k@¤QŠMÒìH§›:jÍØ6ê@1}NI‡1hY©ņ¾ùS‰JPl„º?U¨Åú­ûSؘ6~jÒ©uãÐT‚jÿ•M¦2Ђjo¡763¬5­3g¯^Mýe—FÈTƒjS9 !•jP "\ énFà@¦ õ—ŒÉ€âµjA5ýð‡ÌjB jwf%¡Ýï"ôySÛ¼ÐJ hXéðPRƒ%ÏB5 ÁÔ0£9ð{¸=f!í›YAµ,É‹2—ÐõsXw`üìê±QÆø·’æ šÅÅø·BW”Èàø7›èZ«î‹ÃM¯{Geù›­MË6räøÃ ŽdŽ?ŒèOq‘Hð(4;†µlC á0¨ó2ÿJð|àÌ^5"¾¨øóø]½¿Käè7SeùÃ^£uÞ;ËTÑm߸Ä©}®ôªÈÌ Fˆ‹HŒ>Ö~o^å¢KÄ»K·â‰økV–ÈräQ ›&ÔîŠ_© ŽGö§šTžŒËt©ü*ƒ*0«0ÉŸȰñ ŒÍ•Âôv` Ìèt)Rïó$©Ç@™Ù¡ ´¶Ë ©@K¾TX°$°FiåöDV¯›Ê@ ò؇Ü^JÍGq, 8 É»LÇd6d“Ïe:ó_ª|‘ˆ=ÒDÄ °!‘ZÍðù˜WÆ ; þP¡äºégÅÊfžSÕcL£»J˜5‚ìîVÜlæ@rvçÅne`¸ È6‚>[o£d(/¦RrJrÀ iò“{†Ð[3p(Ò‰Âmm*ºÙHºƒÚ!åFyp·Â€8'«y•̓CŒ`“‡a@§7·Ù6^Õ[³™£ i*û8•kã^Ç©n3‘ÿ½yfã8üði\¤iø1AÐöø;"îæÐ[×I¡gsègï"„æÈ›§¡‘EÍ¡ÏÙ5A3G߆¶9Ò`Jmø‘Ê%¤kø‹ïDÄÍþZ\ï%sø[9Â.b¦jΩ‚°™£ß³òȰo ããÅTÍÿmóáHYkrÀ½9º5M9(À74„Ÿþ6Qô ¾"+ý©Ìá‡í©Ž†‘ŦNVûuèuWr„ßœÿcó·ŒCkÀ縘âr ÙmwÀê ‘.À21ePíKEk€uz÷§¸–ó¤³úSkäªö!êÖÔÅV °¹‰ 6éXçhBŠž<à¶Á£ÿÚ| ™Ë)“‰4¹ˆªÔ]кhE Ê&o+“*7ãÀî€faØ’HË&3ŽôÛ\ë‚y•ôÇœ‡AëCB`“½®€Ï¿¹È  $ ªÅæTšÃ™àJú{šm„Àír=†7noE†-TÚߌ¥¼:bM5ÀF1ê­*÷ô2V‡îÅ0èÌ[e ø¥6MM 2ÌNu„£–9KÁqöÛ»öL ÉЂ mð÷„ÏÒ )aΛOiéoÌ-^ðÀTÉA.Ž­Ð;3Iy6¹ÓL›IS·qP$û#ÜÒ2ƒdZçT¨€¤0ç™ù¦©g7~ùBÌV»›-ö„˜áS=¼œ¢ïc’ fÊ<®4$£éÙŒÙ40ðÏí½SñÈÂëmjœ•k4§¶OÁX0›’Ò ŽæZA hÞYæï@l‘*Š` á2mV3ú”Á6R"Ò½n[©6Tn6#n™U Ý»8bsÑÞFžÛRÑì&u Ç:k7+  ]WíV"tÀºÇ§0 :`1KœÌ–>yÉí‡Ú^ Í%‘,3“Ð êÒˆè@ÊlŽMÝÖU•wÂî æÈKŠ‘•±k±ÅŽÔ‹—Ó©X›W>¨Þ¯ NµÀÔß½ûhU@ ²õvq™$-À浪B@ æf‡!•ZÐ缉q¹½fñU/b߈Íd-•Ñì$Õ TŸ°ØÑ£ä¢]'C"Õ ¡J5Gn½uEr³3C sVÂì÷ÌëœéýáÀjmBE/yP 0‘´ØG›ÞPìzŸnæ(ß–H¢Ä膪Aœ;Ô†Tšì‘8Ðd Ú… ªŒ¡÷©J¨Œ¾wO¥ÊXîäŒÆÊ… c™/Ž0VÏpn\OÍ€À©ó—¨Ü¶Èpe“ËtêÁf ;Í·„ žqEµn ’ËzŠDf¦aT2vް" šw™Âº ¶fàh;:>mÌtrEÅװظš¥¾ÇC±ó8#áTO,"ÇFõ@‹{´²ï~GØ¿Š ÛKþÏ"܆˜Å‰C,]•›wY¹•³Mdlô ë»ÅP¤k‹µo/GìÃ/h˜¢x¨kFoÌ¡)C$ÝóŠØÔAì [ì¥t…†mzH§?ðdê‡d>Ü‚š}#ÖH· ¦âvg¸™±«ß30$kcqó}uCªbCk…ÖBÜÈÍÜÄôSC¸÷l®VpÞ¶bÃáA&Y¡×}ÑOCK?/ Èt Íh©¢@Sb¾ât.ÎeÁÍ¥`³CÀP`°^ <×:Wü Ó%Öd„Q€ä<ܼ¦˜$ßA‹¸C¬Ð`ïQì£ m+ÞÅ>=tÀ&–¯ï)‘§!%‘À€2 _ÖÒ À:'W"Q=—Bý.T¬–h“ëisDGÔ0³æÕÍJŸ;0ÖPj@ÒÖ*‘H @)òǚͬm*'kŸº!GÕº’ÍÔŒ¶@û˜£›uˆ (ÝF€s†ÆLÒ“¦ùlÚB ˆö_¹1¦QÔ€ˆý[i@áñ/Ou4¡qð°?|}HE‡ŒXÈ´ ’{I²oq¬3O ÑFaÔ $‘B€» 竦¶8{´R¿ü›Y#hyy“Í¿„„¾Ï…Fo%ÁsUGüӵ鱛¡À© .R1h)ÈäiT8¹»ÆÀ0ÁU–£Hg*è¬Ï»ÔF:?]Ž—™B4Úx$½8æ:,  ²^L¥ QÝÝϱ8 T„B 0 —¼?˜›-¶èŒ³ÆÊTDo>{M#Ï`÷aTžÁÊÇ¢tN«µ‹ *D¦7’qÖžÀù›#\gyü«rò¦]Bĺ]"("{±M üg×è‡èÞlG?L^ÔÖu|-³æW Ân†éª&‚O‘¢Ñ‡9VUÖ$޾™lé46?Úè2CÿI n{¼•Úb½ÁlØ©× ÂnBäadDß:ö÷RІÞúoø3Íïb`5K9îDx ûmóÅ»FÑo)¨[üKÒM†áÏ!ˆ¨¹˜ãÕ¯?¨y^PEf+‡_´è^ ÍÀqÑ"b“¥æå2†!#?ïkÀÃÅýFGÄ6Œ ÈIÈ™ñ,o… ¦ù5°æa#vjj_î’˜ʉx\6‰¸œ•Ãr!%b3¯¥åÒŠ!™£¿_l1¤ø¥9 °'ØÖ 2ç«!œ‘áWך»Ù C_‘_½Ëdž¢2\q”I_o/N¤nÛ_-—±©‰¼7):ó')G>)(}©ÒÖ;µ_-ÈÏMªòNù*5‘g©.5/>Ry:R]1ï"5‘+5üÎó!5‘÷#7Üñ=%~ìȇ• :yZ¤&òs“z{~ÏÓ‘²è«Œ“ÔD>¬”fñ©¬+W‹ÔDV©Â÷Uj"?7©ºã‹y:R3EîšÈ³Ô-)ì£çÐDž¥~„ÔàÝìUÊ‘g©IJy˜«ÔDž¥ž¥‘³pòÿväYê}K½ËâYF2±ë$öšÈ³ÔÓ“J¼)»JMäYêc’ʤ§X¥&ò,õs•*¸l· 9ð,óÓÊL¶œCh"OGªU1ðRy:R—éV©‰¼»Ô¨W;Ï;òd¤Ò&‚CjGÞ—ÔÛ8æ>v™èW¡‰¬RIL3‹ÔDV©L®šUj"ï.U²nORY¥ÀŠpràÁµÂˆ¼ô6®ˆ#Ë&ŽD GèáÄùËן}ûé›Ï÷å§_?B™/!•‘oRG¦ïK‰ü|Íð=SGF2Þ¬6)7¿*„cñ@ê@FHœ¤väJL³>Õ¸#‹4é@)¤ëä“ÔŽ,R¸Ô~š²H]½÷Ú?†G2’Š#¼…G2—ïÇ#ÁãÄßÉ9‘•‰ñ–Ô‰ä.²“HJdaÜEvI‰,ô‘{å;}$EVîÈëöM‘NÁ5ÅÕï…8òè<)óµíeÞ™8ò˜GFÒýôRgâÈc¥ÎÄ‘ ¼ùFY'âÈcž=F™}Ç©3qä1áŽLHéÜuæŽ<¦ìcä‘L9êË:“Gû1öHÒ,<$Ð|„<2¢¿u~ŸXÈ&ïËÜŠ$qëÊjPªG?BW>…‹TçHœ#]D'd(?ä@f¶Ï‚¨cW$]—ìì–+R”,¢ªQþÙ‚`x®àÙ“d¤m¤OŒÎçcH&o&´É»§+¹!¤™ Ò¶|…(pA@µp…•œÓ¬ËïU £^™é m#‹aå^k ›’1HÚ–N€¸v€”mg@tHaL¢ 0¶ášr«c’Y,7ÅšÉ"<é_lÞ®1l¬ÈPÉâ ئQ‚æ/Mb°jžof.’Ò ‘뚈DÏ(e[»BºJ^ñ¤-R !c*¤¬0´‘X)õª+‰ÊèE[ ’=u Œ å iL“Y±Õ-HÚœ³0ø#«—%—ä p`jcɵÌöÀ%R=ILmà¾Xñ­Ù!V$+'89-7î*!ÇJIQC©=LìÔ›gÒDqj¬HCÆî QŠÙ‚¥˜i¥ jcɵMÍ(I%÷™õ8õx…ˆÜdEšJ^qŠqí©Jõ+!Ì^®açZr-¬Q´)efŃ˜ Ëߊˆ£nE—µ«k)“šÌld6ôTg2³E1©(×Ôl$½ÊÎ|fHfÁ+R¸¼¬s°Oˆ’€k™¦$!µˆ5ÌUN$dó©Ý£JN¥‡“WÖ±Oÿ.â©©b÷Zec·-Í!íÊÆ‡š2Îà ä–f¾=¸Ø°Ôµ¼MÕb]¥ø­ˆRüV¤©äœ… \l,Ic¨+m›óÒå*f½.6•ìÄicïQrBog„Ü'D®’A/£÷KâjÅWÉä Š¾”UH¿˜}Çàgí ‘.µ0•iDºìŒ!Nþ—¼!JG%ïÊdv,› XRÿˆcF'¤\'˜jlsÜŠ6ÑHèé2ÍKvnÖ^5Æ7!)Sš[ m´ ¼já áXžg%¶J®U%›Ú'½{‘vÛúì1y¹4"Mµ7¥¹ƒû4¨ÍM,s+¢ §+"–¹j¦ÃòyXÁqVÕœ›µoJPO$Wƒ ̺šÜ7ç0tÛ˜6ñM¤’$3¯ æ]{QÉ9‹†Å1`Ôf{œtZC*6‚•æ$Ö†ˆCjE"K^‘,ž®„t1íÓ® ‚$º«é,f „i,¹4·q LcÉ6á ÒTòÑC`´gd¨ä™l’ ­UCª¯ àGÃ!q ÎÇN†w”\¶i©Á˜6ˆˆ¶!«,‹(â pNÏà¬I îè ÷„Éc!?³hCØzö3ÈÑÂ2ÜÏܘÃ+$ªäÉ»ÍíRè„æk Ò’øV}Nv1Õ­ˆT' m\!ƒÜÿ b&¯]!Q%çÍÍWp ‹:’2óSp ‹:š¯àˆJYò¾@¤]!C%ïHÜD½¼"d“2O (þI DÃÊ‹Ï* GôÉ‚ÎïJ “HÇÜŒBÄ$²"bò\óíâB*ƒ0EQ(%DÄÍ‘ Ò²ÿÉ®ÅPDµ dÒ:!âS]PÖ\!A%× ~‘F4lÏ€?9èMcVÉÖ—rÁˆ†•wEšJ^mЭÙ+2I €¼À Þ¹}V 1zêK æ5;’-Ÿ’-ŸŽ9tBHÆ—aÙƒÌE9c–eÕe¾X2œ Í¤’‡óì&ðŸEG伃ÿ¬^!]4‡ BÚ• Vœ®W/"ƒ‹“«?ÿ %c÷<ª=…49:O“¶=à­Xœ¦‚„ËQÆ9 l– `0ù¨båÃSQ]• Jš9ùI8ŸéŽ©J%—Ö SäŠðÛ1 4IHÛô=¥­»'¿"9 æ7í V]†gG í i8¾ª£å$f(Ÿ)òöjÜ }õŠ ¾P/GŒnü‚Qm€×W# .½uW)Ä,®{Q"ˆ»Bt º"" ZÕæ”?üTL`´·¹‹€ã:ŠÍy¸XÌè(EºB’\ÅÑç`€ /GŒM%9¯ä‚Nw-iŽ’ÃO‹ ÉòÆîÔƒ²,.¿Ò¥.¿Êò7㪦®wÇW DÝís¸“ :ëûÌÅýÝð/Ù_ñü“Lm+ÖS¶Ê_gèàèÀÀþ¸Ó±³rxƒ@´ãj²v…ès\+BÚÝ"¶<’!bªOúB ûõ6DÞ¸"úÂËŠDî­HVÉ BÖ1Úo™ ð‘¡ä¸Çú NDÉðH›ÀP6Έ¨†Oˆ>d±""¢«,’±C|tjOôï?™± Žˆœž£?¥”ž‘ô ‰ôW$‰É0ø×`x Ï/KÁQPu ØŠû2`–äñ"ˆÙ58ó;\’ oAtp¹"~pYúìŒì—¥úB}WÉs÷Ôd<_ÄÁ°?¸ÜB¾ãðcËH;  ?Ð’©TÿÎ?L b7_2ú²Üy&HÎíŒÔM%/HPÉ ¢M4lxÖyj|k8W?µÄ¦Žú¦ú©¥©¢+eõSËi~j¹ Á?'w Iç‹àtÄO-ƒ+ÇÂmœ´jŸ |ú1-§±üœU=#ÎS¶"~t¹ q/y"ùºä^”Üô‘¹éJÎÿ·#cÿߎˆ*sŒsçFÇ9×Àb›—óuCªóÊH•Ì‚ ÿÈãDð)q…Ìo"Èü&┫’ËV”Ü”<®Köïl­OGOHº.9dÿøãèärEœ¦iAÆuÉQ'—+®KŽéºä˜¯K6»w]r{Pr¿.9mN’x Á¿Xy ÉùDg—+Rœ~q¿Åô£ù÷ãëå®ÚD–;ˆûCj"ïKª„+‡ù¤ð©Ãs¯NäÃJµíŠÛaGÞ—Tß®x"väczûMÎBj\±6ìÈS‘Â)ù™­î@>©0ÎŒòs“ÂUŸt’šÈ³Ô—š÷a©‰<)¿F±HMäÃJ•væÚ;÷%UÛ9'ù@>¬”vÃV©‰üܤޞóñd¤Ëž2äÃJ…r9 ÐÞ‡L,g–½ù°R3§ášÈû’Êùœyx ï.å]¤&²JÕ|ŽÐd•jéœíw ï.õö­+5|KãšÈG …ëÛiwd• ñ”¹?™Ï,sòt¤fêÔ!5‘g©[R9œ¹ÕäYê‡KÍÉRy–ú˜¤j¸ŠÜväYêYê1©¶¸ÝvàYæ§•y;“Á³Ô-)ìûŸ½‚‰E ‹«RíÀ"ƒDÀ°*ú,R¸|š²H]½õÚ?†T¹·…þ6©`‰ßT0ä[¾“Õl"+Kß ©>Da³ÜÈÝ¥v^Á]j¡Ü¥vjÁ]jaÜ[±³ N©•`𺭋ÔçL¦ä§Çï…cðèKéÃæ<&ÊcƒyóÔíG9é´HµxÅ1˜Mu´;øÇà1éãd2ðxXÖ™cpŸ›P æhßòƒ¶Ÿ) üÅ`FžV)ßðD1xLóÇ(32%ÒòáLàsëý4c¾º›?&saó\Ü!"É‘îü“‹„jüÂçèž9DC¤é)ª‘r8¡ Õ”Ì0<© „j 9›fª"S¢ôð©‘Рþ…]’‘` uQNìµÓ’üÌÌÔ„(‡ kÌÌÙ’Sé ¿)˜•K ªîI¤0Ä)żo°“p€†Eù= XcÝaf¢ò^{½#éŠ(†H‘ Éž+ Ê5 wG9Ú XcÂÏL‰¥ªrÐÃ襊¸æÀŒ2«JÔ±áPâ"טœî:5.*·nó—¨Ì¼#+‰Úç¤È¢ò‘ªJž}ˆ2Æ24×/¤Ã2± Dƪ--Æ´Ejø[· Š{œºÖ”¾|e¥­53…‘9¦È+¡„WЯ1?oãÛéäTˆ¡z’çp–Ž“'¼âšzWî~jFƒÜ@¹Àà^#Õa.N¶3ºnÉ€:@©Š`ccÕ5z¶=ˆXu›Ô:`ccÕmÌAéLW»ñ /±9; ÈØ0ÝÓ6³²IƆ$Î0‰†sv ½Hil^æmVçX²_Iì‡)J¦Ã.=Ê cÃñ7j³ Úû&•%«SN™ôù¥VTž7ÏÜÎø2IbBÚ ®NH˜¥$NJ[—ðŒÛÜPäê!ð³eñÑä!$ˆkÆ4,7!JhÎmÈdP´‰¡¦Ïª¬ŸÄqÔ”[i3­™‹Õ!kó£¼ÉATuÈbŠBó4Dí4a2_*àSq„,E†Œ‹Þ ÆÛɽNêQD]H¤‰†Ä׎YsÊþ6dpéUÖ#I\Jet©dÞüêBE*œ2K¤ªls¥ˆJjtÊ2ClÊlZR–yÍžqœq=@Ésl“èCkÍʸˠscÅp³4L™s ÕîštnÊý>¶0±qá&Ë`sCÝ;™!ürE Ujžq'X´lYÔ dnû¢V$zð vš¸ z71 ¶ÙÈïvJº.5/JÊk¥Ëêfл!˼|³'X“5#BÃIS@Untë›ÌXF˜‡‘k=ÏÑuVË~5½D%‘™ùvÛÙ!~¾ª¾¨Îu®Gº(ý‚W4Èiз ‹”Iö›-‹Á “ì @›-úCœö ƒë C×Å–C¤0 t®õM,L=8ƒJÙ+}Næ¦lÉ÷wêC’ º!‘ÙËæ‘ʲeпe]•w§ŠeŽB!Vujd××?zl³Éâ1d7lÈeå¾Ôe°¿mM2Y Q•—©&Cá­U>”=‰÷t­¤f1¤¸b1áO!ir°“5?ÜÍ1¤heȤ„OYU~«9KÔÉòFLoªw…»#Ô¶ìÅ(•º5¢‰z±6-”päÖ!— J¥leNyıfÙ\8+ا妦…Ìä–œ,5ã¾.ëMa¾",,Ú‹bòL†8NçáS,ˆ:„ìˆÒr0ıj³*8*³šü¥zØ,ÃáoEÚTmpü½£Ha+ÎûšÊ«È;ÐÔ.^È3bsŽLÏ ˜®µ|q¬ºv7Hà‹Ã°Áj»bÕu›=!šj3¡Å§!øâP·Yª®õ=Ùªœ" Z4 ú\mùµÀ>' Ò¯IÒ>¢ÿ ÏÞ‘,nGdþ«æÌ¥À(Î… ÇŽUoN”•AoÀ&&L2¹$²\õL,V#›xòà "´-=ˆõÉñEƒ9±y1dt²e¯ËéËN`H˜=#æ9[,ë^Π֔¦ŽWñé±?Q|ÉÙ°ËuÊ„©YUl¦ òðÚj»&^Œ˜F RU^EjˆäY¹ˆJܼ‘ã‰)Ò>aàËv¹r.pÙ"›/V¶Êÿ#õBM¿ykÎ{¸LSø…¤÷¦wh  Ä¢§’;©A˜–/c—á8üÜtg9lN7œ±GN½*PÁeªa±sl‚3Á»´‹["ÙeÄÎnˆ}/çà "(èXyªSM?¾. 7tCá81¢‹TdÛð‚•Ö·†ðfÑÀàLL td¯VôK$0ø‹ˆÖ©3;Ä‹¨Ú#÷gîÄOR„±®$·/ ¤cå[pcJ:Q0Š*óCžð¶ÇôKÁH—è8»«ŸÉHDÆÂH„¼ed.uV[ À™92éŠ#›‹T¹ñ#{W€ê£‡bäbD˜Z'ŠÑŠŠ:UÞçkÆà~üTS„Haè=«#ŠÁЛ#E|–[q³NŠº¨.u@L&än¡zrduNµý¡à4ã&.Ýx$ÿ»LRÝ)Ï7‡?‹ö%w¶ÁP§ÂÙj Q:o^êâß nÖAY'ž¹öâ¾*§5í#dRÖ%M4W.g6½Dq¤(„°¾‰Žˆ“Ä ÍËi¢ˆŒÉW~nLÁƤä!(났™VN^»„}ƒ®–¸‡>TEAXiu,J¬ÅJƒ AX“…º´ˆ7õX¢Ó Dˆ*§’FΚ>»½ŠI±§!ÊÎæo«^rË;F“¶ÉÂÚ±LËy­]«ZÿµÊÄŽÝiW/¸µy! ϸá†(¬µ8ËiôÏÌUŠn;Ik×^ÉLVpcE_4Àjo¾ç1u°‰Ìº£z ¸µp {Õî‘è×(#g<„dd“¥¥ l<ù#]avd¼×;Yˆl.6‘–ÄíŽA¼w9vøÒÃ]׶νO††þŠâBÉ›´Èàg`ø@ÁÖ‚ ­M¯×÷4É æ&qøn¸?Á Œî‘OÕAß1ƒ5Ç_h0+–Ë®†?mâúÃ%Ÿ ”w¢xÌîE€òè0zên„ƒŸ.6÷ÀÉœ »œü °éAN»W¤ÍiAÆ_„ 2W’ˆQ•úã!Ü!Ê)úVLèæ°?¢‘7”­™4jjr`f+Õ´àÃ#5ã¤K4„Ê’ÁÌÕ½ò°fr`ˆÜ°%Ðw»Ø Tž““›gðáá;ÀÒFðá¡òŒ¯œ¹ )«2È‚úKd 9‹®œ1C|×,ƒ!µ×8GÂjEÁuÚ…”¸Ïss-?¨?Á¤ª-OiêI$eÍp*´æ€5·>;4qÃ2ck¦:2Іœ'Kx=N/Á$+ŠýtÖÝÓìМTySß2Ã0"rRW ÜYlßæ"’ý)n•¬µž;Ñ’LÆ<5YÎ óôæÙí¾ ÂÊ««%ƒ0ƒWºÇø©TU>O‹2®€á„XÉ+ª\¬ú@*é2r›µžª Å2Jo2,-:u›Á.Ï[“ˆ6åßDž=ÍamíPÛé8‚CãGÞ>iE%‹{Iº¨”mÙ‘ öË8cpè‰ó4ÎÑjŒÆhädAÀª‡ùéÍmäÌ jU˜÷YsÜ@0ê¡æ¸ïbûšFU&©^p›£×†¡¡¥u£Ug0ÆÐÈõDÔ–Œ‡#´˜[Ÿ3º“ôŠÞÀî|ºm®nØüÄØa“HaŽM3Œ/â I\•Ñéí²{lÜ@u¼vÀÍdHÑØP(B¤‹%8O €{†p ç}2Y ßñ‘ñð­Xk¸ŸiÒ!ûqò§”ZÚKö%· àÐ÷46´Œ¼ÊanUæM<ÏmøÁG†/¸ç0U Œ|Ûe—!Ñ«iÂæJF¾È•¾Še:Ãoç—bt³ íȤ`ð,#ï%‹ ÐçHnkSùº#ܯå'X´ÀÍD4Ÿ¦¸Œø =+hã—¼à á,Íe‘á\2¹ £Ió±Òìù¨ˆ T”þ¦‰æ†Q®·9‘²”¹C™vÛÈrðàã"žÑ•?S=Ý´‘ÏTéªÚ$;2 úw¦2°¨Íòâ€Gc“™Š‘LñAe2öÁ÷ÍÓF|Çp,µÙÅY¤‘Ùür—Gæ®+8û‚‡Z²0ÙùI$iC4~ e6Ÿø íÛÈO渱Âôhî!$E8KèM.úð ,ssÄã±¼¿–™ „X‚&¢ÏQ`µ“·Ec‡…¶ê%ª8ºiU’m, 6Í ô.+ßæzXƒ'JcWÉ&FCØMoN :QšÆÊàõã‰RõÈ «”ê´UX¡y TœÏ=#ˆ ~våuÕc?:ÍJs?œkdÂ!™3r­Åè!nŽ$U.? $¬yž½eKÏçÒœA~tíÑ;FcØ(j˜›“Îý\K ó±Ýt Ec°ý$FØWqK1ŠŸAŽ9r0¶8>´““Šó b²³òTæCADoØ›ÔúP‚ûêµ± …0ž*6è³ Ø•~‚5c#Þ‹U ÄÜLdˆ›2n®±4EMÓòŠˆ)ç>“Ÿœñp»«(>Äà qÊ.^FSÍaºáØ}ãÀié!2TóæŸ¨É°“ÿ(W»x¬|›&ˆ°‹ñ5ÁÀ؈d_ðí1}Uqú”Ô¼r¿±ƒˆ#‰ý!ƒ!à~É cß‘#7/"U¹ßU0 yå~ŸÁ.—Ç•Côá…ýZDÆõÝS³ò¼32£¬+¼©=o`dnžŽå–†!Ñï¶øMCòrÕ#ãËúШ_ÉØ“=ñ2f~Oí øñ©›2F$¬·jˆD'­H^¿rJ¤œ‰, áJsBx ö“’9Ò7ÛN-;r\ð<.C÷'ò¾¤Â鮡~þGú÷ÏT†òa¥R<“Èû’ÊñLºq ƒÔÛoÈ~ R5œ 1äéHµp&±8Aªog²ˆù¹IánÏé–ùŽ©šO…;°Ê4^¼^…&òs“êù*ÂØ‘§#5“Щ‰…;¦vZ…äuû«—¸7¶:î¿àŸ%”tÿùï^¾BòâØb¹ÿøè­¶û×/_!¬½Ü÷Ë!ž'[c\ªÍ eÜ’UM–ÆÿõEz9o^‚O®‡Ús½ÿæ%¾ÐkoÖT»…m‹÷ß¾ÄuÚÐÊýw “CrJ°l—Ö‘Kc™,rTJ3YpCà¢ð©ˆ¯PrŒÍšû)Z»!}À„_áûhÅõ€q‡Jr¼ÿ·CôŸ²5È5î5†ûßày« Ù#øÐ}÷ŸÏ­ïúÝÒN¼j }ëù$òµR­»Æùɯ9 ê'{øß×z—ö`ÜJh)µéo¼é!Þÿz}ðvG|ê-§â¾bÓG•GÜsßÚZÉ2tÞðºåŒ õ>oi×Öí}O¹Ž‹–~KõBzo0Íw}BÉÛ°N­eíù¯ñ~걨ö«<”ðjñ*Ø2#¼¶ÜM0Ü6á¬Ço‰[}¤[÷G?…ÈØ ——s[œñÿû-Ïendstream endobj 144 0 obj << /Filter /FlateDecode /Length 2438 >> stream xœÅYYo\·~ŸöG ‚½Ójn¸/E[Àާ«[}’íA$,â(¿¾ß!yÉs§ûÁm ?ø /yÖï,¤Þ.Å(—‚þ•ÿOoj4qùn!–/NÊÑJµôÖÉ1¸åÍÂG1S®oÁËѹôΈQ+lª+AÆÑٴ˪ GkØ®ºÂwigF˜@k‰“8©b½mZ•ß\)§Ãh\dJéÇ äL©¶kZ™í*JUq“NLžX^.Þ.drå²üwz³|~¼øôµ²Ë8F§Üòøb‘Ý,—nÖ ?Jì8¾Y|3„ÕZIÕðb…¯Âe‡ÏWk1:!tþþËFÈÍð'Z1¥âpL?”ÑøáëÕZk= áp®†ÝqxClôQÓf1lf"…ŠÊ #Ú œž­‚cp*oQ3Ûü Ë (µúçñŸÉÊÈ­4c@@Žÿº8þÍ7Ãë•„>љ᫵UÄZ×uñ»JTê¾R›ÎÚS¥¾*ùI¥þR©óÎáÛJ½©ÔM¥¶jW©«Ž´oWÉÀd´V¾×泎U»ÎZתÏ*õu¥^VêU¥žWJv¸5mî:’O+õ}çë%sleó‡F61_vœü¬Rÿ¨Ts“>ìÚƒþü—œ56¿¯‹ë¶xÒñij¢T¥^ôâ÷1*õ´iѸíèõ®“Uí+r/~)wªån7ÿK6Ÿ1É-Ôè}@ù<>C±l¶0{ØYO§Ö9Ac>Ü…Sÿ¶ãä]çëc§¾0GüØõòÇ¡v¢~Ť¼×O?³ª§ÄO?‹BÝ«´Gµ¬ü–”ÑqŠYpÝ9|ò‚×Î4t\ö2«™‹ŽÀFVkwlq¢Zïºë|í5ÒÝ{•ig?y¿Ãžþ—ë­ý\1[ê‘¶±—´ç¯!íÄSÇ¥ª|~¼øjñv©e0˜yÒH7ÑÒ;b ÒÂz1Qú:êå‹-90"J½ 8ìLoDT`¨pшøM†A ¡3‘VZ=\>æ/ LŒ÷´ƒwž £µf½0¶í¶ÌlN1±†Æ·§òú ³hÀ` HÓ^Ä܉XÑ ¨ p£ ðŠôŒ¨1zŸ¾ ÌÅVû!é$$~JÂØAX¤¹ƒ­_'Åñ €JÌ¡¹°Ä2K×\äE^%&;Ò)`D•ÔË?X¬" mœe¥×€XY_´VÖ÷´Á AXeŒB*—ÅD©Mæ á2xšf«¿oÉ|©4”òkšÖ?dæAùŽÊƒe¤üI ,ç<V4ïcj×ܱI¡=â{“ƒ[(89wóÁ¾ó8ß«¤q6®EÆG4 Jæ›JÁÇg8£CGEñ®äËF¾jäóFÊô4]2|…Þ̽,FÌD¶z”­µ<Ä#CU±Ê ÄpL[Òê¨mIs‚2~D 1'@×iL´‘t—¡¸…Q˜±A‹÷î:_Ó¤7eÞ>è™ë­1¹‰•eÖæ˜Q'I¢i,¨q<Ë2lê³Møí´ì8*긱ኞ·¢X4{]=óÂ|ôšuµÍE ŸC±ä¾=ïR9sÀ*L Ý£I5 ý½Ë_æ @+3"¹ç@Jw££fNnõåÔ¼Xb’Gó<î¬nR¢£©[(Ù›x‘ÊñP“‹ ~éC·úmÒ$/ƒÙ†ck¯ Ö§-Ô<«Ùæû¾Ï™¢¸C"¿gΣ«5«tJt:‰¡h¯xÒ*åÏ|ø­ð¹ní~”*ªžM:)n̶E+Í"N¦1¢“€[¡ó¢Pˆ§õéû^£®Èº)[Pú·…7ÄZ×÷KI™özÃz:u¸eLç¥F0¯³ÎÛÎåjùtÖz~7O™ý?›RI ÿ¯?›¶‡äÓÎ+ícçÕt÷Ò¯ÿР²endstream endobj 145 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1402 >> stream xœmS{lSU¿¥c`ŒG¬®hî5á!Tø Ñ@E„ÉxgŒ›£{±n¬…µ{´·íÖÞöko_·u}ÝîÑÒ±1LjŒ‡`Äà Q\0F 9w1v31&z’“œäË÷;ß÷{ˆˆŒ„H$šµ17wËêUSÏÅ•ûlÞ„~&d‰!+£í¥™O}¿ðÆüOSg¶¼f«JV¶îç b;±ƒXI䛉-Ä|bá'æ¤Ñˆ âœH1£E¼F<–¡Ïˆf|7“I1Ù©_i>õ:/ÂÏnnŠ\—0-J0"u«>à ¹#.Òjówvðrœ¼“wÄìAwÂj$G~þÐ0'«ÈÝ/<×p˜Ò+-Z ÑÞ²óOãån0F²nsÅ®ý€ê›=±®ã©ðÈ ž×ЭÃWïߪ¬'W‹“…Pªº¡¼)LHç›ÇjådðnäB ˆWSq‚¡5û¨ì{“xåôà©5߈‡…l‰¡ÜÜ|–•ÁarS]`ãp z˜n¸˜µÄᇈWMùàâ|ƒx­«ƒòËãeŸÂ/ÄËñ+wŽ®Ï/(-© t—GeÓÓèÕêrÍv`þ;M°ÕpDÉЦzê&-quuÅCÞdÂ4Ð^–—W!ÌR¡Êß+¨Ú¢ùÑi룲'ArB”¥œ© kr ÖP«×7âs}Æ~’u[=V!;ã2Ç¡–Q@)”°¥S[4k¡®ÙÁ¸,oæŒÐê*e‹qr±0’óþ–ë³yÆ@ÚÁA„3ØZ¨jØÈTƒ6±òéf ¨´éš?d±ø¨6³“L†Ñ ‹'{rt%fÃÛi™Òj}ÀÆï²§¢À[ÒxskŠC=¨dÕr9y6@µ^òø/áW1ÊÁHà}5`†iÕa‹ž¦¡Žö€Av p™áÿÑ=UlÕp½(;u›æýqÑC?/JŒã[ãbü¾"qvÆÆï€Ú!ª©6ÖÕ‚5xU]|whàR^kù޲½J-Y;ºÇ#´d§ ©RÈÍÚ8Õót´£P¸W¿ãhý2áeª!·¬è´€Nø;|â¨ë¸»±ªöXeáź¡Ñ¾;N–ôÉúJnúý–tL™Wo65›©Š—7+*•4t÷¤íïJ›¯I(âÃR5I¼ìaˆŒãÛãâ”8µTr?3â™¶Y=õVfgÚ£­w>)¢`‡N«™teЈ”!m¸3Á÷Ÿ+Œ—oS¯¨"[N0:…°½Ÿ©¢§u S£™&)õkõ«öÔµ  c¹> ˜Ú§:&?~äàâ“+×ûCd÷—1<ÏêJÓ96g,áûS‘Æë%Vðh”ïÌÇHƒ…¶€¥ñlÍ:’©–MŽ™š¦…SFŒ\[›¯ÕA†ïñþÎ»ÔætŸ²:Y.yµ§‹oK†Ï:ë-/ÝsD)>¢ JcÚ“ÿûƽ•›vÿ;ömg‡ñ\ø}õñà†mG ed6> OE÷ŸŠñîIBÑ.—+ry»"‘hoOÙ)F`£ÏvEDWS/ˆS['HÒyõÝÜÌ´0¤ðäÏ\£L`‘ÒœÞëg]Agºñ7áhoãSoFD¸ÿ!qD=ýà@A­§ž©¶”éIaéä=F›^Ú,môjƒQ_ˆµ‘vΩ¿Ñ]3lŠÀ83Üçž®‚^ˆÅÚºƒ}þ/À†¦7´˜š²þCu^1 ¦3Âûλ{©8&Ø€§ß:bé(ÔÄ5YÊ äa»6Ÿ.btR‹±`Õ:@ùŠS—®¸+Ne“s2ÖF²fCÖÈš Y‹â/Êõrendstream endobj 146 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 114 >> stream xœcd`ab`dddsö Ž4±Ä»».ù¾œµ›‡¹›‡eÊ[¡}‚»ùw0€#/c`bddÑúÑÁ÷Kà{ÙÆï ?-˜Ö|/½¸{ñ’’î*ù?/ت‹»‹‹uÏ‘çëæáêæáîæb`"¬endstream endobj 147 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 278 >> stream xœ ôþCMR7‹‹øù,‹ ‹ ›÷Á¼¸12Q½øˆøÍ‹¯ø¤¯·Ÿ÷’Ü÷ãù¦‰ŒoKL0Šb‹g£‹Í‹Â§ü’j‹~'egŒ÷ް‹ª‹÷ˆ¡Š½ #¯e'‹˜¬øÍ‹à÷ìõè¯Êõ÷ƒìø÷JiˆuP~ƒ…>‹}‹ûLôè®§ÇºÕÆÐÉ‹ê÷ !Õûû74/X¶†•£¨œ¯„®WªÒÏ¡º‹ï¿=:4MFkgû…û‚‚‹‰‹oø0 7Ÿ ‹ ‹ ‹ àIpÆendstream endobj 148 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 121 >> stream xœcd`ab`dddwö Ž441Å»»z}_ÄÚÍÃÜÍÃ2û­Ð~Á=ü;@€ˆ—1012²hþèàû9÷{ÕfÆ{?¾3ÿTÿ^%:gn÷üù•ÝUò6²UUv——Ïíž#Ï'ÇÅb>Ÿ‡³›‡«›‡»›Gˆ‰§$> stream xœÞ!ÿCMMI7‹÷òù+‹ ‹ ›÷`¿¼¹iJ“øˆø(§ø§÷è÷ÒªÓ÷Øù›¡opnqnz˜v¦¨¦§¦û`ü‡~†‹z\³eÂï·÷š˜~‹ˆ}Š…€‡t;_bd‹w†˜¡¢’ž”¡•¦–¦–¥”£¯æ—ޕޗ‹•ºc±T(]ûz~™‹Ž™Œ–Ž¥á·¯°‹›”ƒpt…|rM 7Ÿ ‹ ‹ ‹ 5î[|endstream endobj 150 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 4771 >> stream xœ­X T“WÚþb$~.E?5µçûZuÜu´ö·.u«R«ÖEE¬ED\ l"{X²}É›„,$@X#›AD¨âR Å¥U[»¹Tj§Ú¿íÌÔioâåœÿ¿;u¦Î9…Nr’s¿sïó<ïó¾ÏPC‡P`ØšM›×/˜ïý8) äxò|`”F -yjâE?´nì½Ñ]c(ï߬Õñ/&¬I\ôÒÁä”õÒvE¾’±{SÔžÀ½Aû_‹Ù7wÞ‚…‹—ΘIQ“©@j DM¥‚©ßQÓ¨j:µ™ÚBm¥fQ³©mÔ‹Ôj.µZKÍ£¨—¨ùÔ:jµžZHm ž£Q›¨W)_j4åG£ÄÔ$j85‚šMvL ¥œ‚Áý!ë‡t ¥Âë³^ä/² 1ì8=—v 1fDùÈY#oZù„ø‰k¾K|‹FÏ}fLÊØ±_ûðð\ï¸ÿc8¦düªñ—&Œž°wB—›÷õHÁ…¶»Ü/WzÏÎVÃac ¸ ¯‡®QSLEPnW€BÏ©ôû äûSaAéÈo"JÙñRŸ´ƒ¹²\HÏ-#Û ­Æh‚£|£w±¹ÊŠ å­5Z.Â#Ò9uF)ˆ¥ Qªdt,2‡ðM¼Gäëî‘9Ýs´¯mê¢L´†19Í•&gÑiЗ.®êøèc OÂS7íÄ#³ws9Ñ|¤Ò;ëöüºÍ4Ù Ìm–†U$&Î :Uç(®¶ÕX«¸Š³mh(tÓ·7;·/y=0=‡UžŠ®€}–,KßZZnS‘^ï4±e×ÊO¹€®x™”O×H¹Uø¬V¥S/–Y³* K-åÖ×Bà|׉޹üÜ}ˆýb‚ÿ×nÆÝϵÀ ÑÑÛºØE+~‡Ež(B’<ùÖ~ø9|Bt X|I$•à¬PL´šlOêoõñÿs´B¥X7iàç(áÐg"4 CÃîörçš?o0xŒ(Œ³Ñ¦7s×P£Z%úÚü?f-›‚‡p¾nëCD‡\C…ׄn3r1ß]}Á žŒ§M½¸é341äÁÓYlÆLÔ^×]5HØpŽkî=Y èSu;ƒ"R¦J¹øÍÛ·íëÙ™âòÌu Ь»BÏiÏrFŸ¯7C>mÐYåZ5ÈòØWVG\ . 1ŽÄœ‚sñ⟦"…"Š9i“ƒZ¥ÏmÃËñØ‹~~áy4ùB5Zp á®üñŸýãÑÙÏPK€ç¼´ØúÒ|–œou¡9§r¾'üc± >JGç*Mj WKä[ ÐÈ»Hä[(‡ìm`¶™-5ù%ÜQ4Í’YyÄd?#Ñ 4ó§ÀSÛ#öEÇs¹Ýá…I¿A**¸ždÆÚxáÆ[@wØ^“ìJÄ#ã7r¹IÛ€–÷Yz£ÁÊùz4àò\ÏËŸ ѪëŒ"šP ô/ܾ#BÁ(E£4eé_0ÃáËÆñM=Ö·¢[7Âñ„ x¸h:·ýµµ»–=õ)øz–e¾ãBGž ÍBÏJ”Ëè ÆÐÓö\àIµ'ç±Á˜Ý¿/û>²ö*ªó¹+ºb‘&*uYŠx´Zðt® Ìv£¡,Ÿ} %zqa.hr€OU±ékÓS–½TÔ‹tÖ#ÞMŠÑX¢ªãÖ&jsøƒœN­Ëó>ÅùÅúü2{kT âþ}¢L9däX ¢y:Pj²8üdÿ‘A˜ÄƒÉ}PTz½ÅAûº—È*ÑÕ¢‚™w„ÈŽÚ½±1Ÿƒ ê "{¿Œ—€šÎ)H¯)s;³ÁóÒ¾°)+;UóoV}½å°Õ@ªþi‚í›.ÔI°]Ñ,DWѧÌg¢ËY‰™)Y¤Uê4JT[n,_o“Ø‹}ŽŽÏP³k¥IDøËE—PáÏ€ ýäŒ}é ŸÎ's:©Ïc±zý7`e#× Ç­Ð oòÞ"(($ERN.z¬Eù`Èw˜#s¾}Í»Òåôû¸Oyù½½ãúÿPsBÞ!‡-´$qÙÔ”`Ói){ÚÇÁ@—ç¥&'d†¿Ú½ï}4«ùvÞ]^YÀúÿ˜`Þgm²ªòÊÍÚfy”•h‰ §eæÌªÒšÂöÎÈcëñðÈÙ¡¬ÿXq9»NEû¢>âPbZSA*ñ!*rOeúD¥ö‡»]&jF3ò‹Á@°«Ì4É“ä©ÄÜ£ðBŸE¢ÌŸeqS´·ê4)d‹ÃŽì>óçÓ[A.è2lÆë»W½t"T—X ÄRGŽ}ä¡-þ¾-èºmîIŒÁL2Òv…#-N¯Ð²/âuhórÄé ñq;Ï;q¤÷È—ÕW8k¥©Êé®Wļýx†jP@†â|Öêªý¦h»?pPž˜Å8°BéçºãÏm¬¯¯b˶´«Ê¡*«®²–ÂnèÀVuº›’þJ4Р¶øç­2ƒÎñ¶;HèžàFŒµÁ\pèJÛ€©i¸Ý°‹„Hˆ0Fzy&gGãabZ"5?ÕߦˆÉS¼ âÔ<ÈY´–q´A´ó­ÞE¯C* mXìz0(Ùâ¼ü;Û%¸÷ƒÐÝHzš¥ÎbíÚA¨)P)">Âa‡q§÷^÷`£PT v(Ó:y«²@ãu.L÷굀Íd§û«m,@·8«kÒŠRù X±îÜîK÷þøÑWNb^sò³ ÍëE’SB÷ô£LÐ¥B6-‹]¼5>,:Wó¡ë6k)79~#aø)8‰m®9ØÐÁ—’&ÑTTÚ±·5±Þãmõï×_9†æÁYº)ןœ”œœcQš•lÕ£„”ßnÉäÌÈ”PIä@‡IÛŽè«ì'¸ãè³ÓÖ ùb¯z╉D=ƒ­wR…Ö釨+heïÿOÐ_zûöæÔ¦ßLÿTýˆø%ÊhµŽõïhO—”H&a!çài‹:>âü?9 '*[OÑç…Ùƒ’MK7ƒx‡¢§¾Ë…†—çª{;»ÚÈðTºK«SkU„∔ÑÞã4ìm”øž÷,`­örÌËu:ž¡ÈÕÉt.–Ù ø¤A)çùб3ú9/„=âç¯»Ž†¢áhšîm¤{¢S%Ñ,ßïË$ÅT~t¢ é0q–*08*·¶4¶<®Yúz† ý‚»Gèï¾Ï4™m·€¶ šŒHhƒh—q·WqªœÇ N¿ê«DNÒ3Ì¥#ÉDÐçÛI$m‹ÏÕñéJVòl¦ñ|oãz¤yº3ð.ÇÙ›N÷Ô ™Óïû¾ø^Çù þ?"O ³/Y½3 è׳[LzÒ‹ôœËTX %t¥Ôž‘¥ m‹~ëþW?|_Í~çfõfqñ£®ò¦ÿÿÆ+wMúO …8n'¸ªŠŠè.QËŽÁQoWŸÐ½Îý¦"hii©]z¨¶ÊÙr*¢yãϓߌžõ_ qŸýÉaRØN®`WÏ}V“ ô–¤Žî³µ­9ɽÜÕÔAj¹C눤}Œ$èÝ/Œu»‰Y­‰ ø™'Jdøëþ CÜÝZ§’Pü¸w\avÈžÜp­X!Óeä™y WF—·$Îm$9*õ¹Ükm 8ÀHœ©‰Ýuõ¢Þþ ™ t€¸L³Ý=Ü# _ãgú/þc#l†c$´@ß<àuÞ<¢„´`°èÁ2àuÖ_ a V…îsÿB!ãœ,Wbí.rÒGJòè‰ÊS­Üo/w‡¹Š ª"³ì«Ë6ý«ÂµÂ!]Y‚Mj‹‡tàu­ê!é‰N´Œ°.ºŠÔ-B¤@R¦Þ3ž,¿Ñ—ÁBwî=¶q2ž2 ,8¹è›Ç3¾Aöþ±[‡¥–3;™v´ø£ èÖC‰ÑÏà%CìØ’Rãy¾F€f|éÞÓ'ôv1hñï¾Å~xÞå8 Ͼ÷4z í@{É«bû§÷¿Â̹Fv£§¯!_î콯®ßúÓñ“ ÷añÖùÜ,|6h©|Ôƒw9ËoºÓ]hî§•NAÒtŒtõd¸-*µ=T×rQñ‡Æ2Ç5k³ýìQG¥¶H§Î>itJ™¼¤ºº¢©=òPäÌ$<>Zɦâ!$1 ¤®ÜÑ‹ýÃs7É#U©bEtNè>CºQæ¨7WAḭ́I“’Òö‡·§6ßoC{z£w€n©AÉÔ>þ !z]eÐïEÈMú ~gIo>ûOÒÛ?j¨Ïx Z‰ý£½“X1GdÝñsjü\tíôiY3÷ìäöG…¥’ùÜOôw*í;_Öû¯¹5žÑW§%#¸V,+È*¯,*µÙ|Go©ÌØGõ†²†Š†ö‹×þûåýûãb Œq)NäY':ã¸3 ñK¯½“q¢Þj°W”}é;˜«ÒÌÛ²…‹‹K&Éhšf“XzôÊ]¸NßXyeqéoFÛ{q쟣}•ø JtüŒtM6Ÿ—ÂÉvh²!^Ý+¹x§þG«EkÎÉÑ©sy63$N t_ÛPc¬2ÖpÆC¦P ç÷ßVæ•î 'â[~hÜù7ßÚu{‚¿ÝAS˜GPŠOœMPRdëkkŠŽ5s—ÐJÛaÂZ¹ø­=Õ{çFã™ê_ü¾àHÍ×~¯N>(‹W¦sq‹sbrÉKœ½GCäLGUEž¹wÍÊgýÿ v'3ÕiÖìÔÄ´„¤ EqE]ùa2yôx>¿N€^¿‚v^zFü}BWët$¡‡‡D½·VŸF vC¤1êñ3Æìþñ ¤€\ŒGÝYwù“£GCjY_D ÔÃÜ{ç_,ͱýÄÐÕi%ÞztïÉ–ŠÚê"¶´©ø‰#^©U æYeRf@ú®ÿÒ.|=Ý¿\˜½Ú‹¶þýÙ)0Vîjï&q¡¶e%*ãµyÄv‹~uÕŠž\#þÕ¢ßîWìÛ¹3ŽU\ -‡@ØýÆáÒ yPàyÁçÈ,Do£@¦œ$~c¡Álv{C#‹CEi MŽV¥N÷^X¡Œ,ëÈ „(é"ã”V&Hbâb”eÖ4ºŽÔ{vp¹\HP!p‡{˜Ÿé³ªòU*.+—]15@Ï«½fÒ¹…ï8enz“Å#úã…|9ˆƒ™”Äv®:Œíp:ùKXrh¢ÈÔçèSŒ*=ƒÙP Ï'Üšâ¼Mr] þî|ãº^×yíç;Þ#þÀdìåV(åêDåÝÚ¥y3B¹„è7’Â! Âêµ¶kŠšÁA—ÈJ’·i3Ö ì#5ç÷W4ª\s}e{¿©û+ø˜îÛpj99mò¢ýåñÍÍM]å2W®J­Vñz­QÅêu–È¢£% ñiªò²_Ýû¶ùdÆ©á%^€Rê<£«ßv]| ­èqtÝÏ ~æû“Ýï‡ôÇà!Ó§NßWœ`ËaÍ ½®c7^ñBúL§Ÿ¿¶Õ»!Ú{}Ù×V˪,QÉô”/˜ ‡Ü Uô»½ûÉÙc1Á“ñØuo= ]ex"Sr(<`ÙÂe¿ß¸³ýÒõž/¾sK”𣟗N,@[1yŸàÿçÇëß{ }Ê’V$DÇJb“KÒê] .rœ9ØXù ¤B€æt QV2$h”¶-·}p ÐS=îaH‰"Š‹õzR‰Q%ÃÖâÉϱx^‹7ÃÓTðJYXõËíÁÅ@›óó½ÙáoíëºýÜa ôä]ÌèJz/¢;h•F£Ò‚Ö"çÎ-±.‚ÀOõÃJ‘­ÓO+óy³ »…&ßeÑ´Þ…6ÃO´/;bèó£†Ã¨0j$Œò£¨ÿABgendstream endobj 151 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 221 >> stream xœÒ-ÿCMR8‹vøzù-‹ ‹ ›÷T¾»¸3ˆøˆø§v©Ô÷÷±òÅ¥Õñ÷bó÷‘÷âÚ½Q"ûDfVT@ŸÀh¯¤¢¬«t¢kpozc,ñM÷÷èçïÞI×%¡Ú§ÆÏ‹ÛÛ1Ä# :Q?f¤{¥ªŸ¡¨°k™uŒµÂØŽ‹¥×ƒ$Ena}{mlt‰N‡xŠƒŠ‹~}”‹œ 7Ÿ ‹ ‹ ‹ aOU¡endstream endobj 152 0 obj << /BitsPerComponent 8 /ColorSpace 29 0 R /Filter /FlateDecode /Height 600 /Subtype /Image /Width 600 /Length 11244 >> stream xœíxÕÚ€'›B …D$7ào”""(Š —QЋ±TÁ‹" M ê/¥š¥H€ ‘€$ÔPH€@HHvÏ?³}7;mç”™Ùï}vÚÙ9_v^vÊ~ç„ FæÀ¬ŒÍbçÕ»íYÿõ)Ú¿ËÐ+†udaylÁ+ó^$ yl³ÏMNÛǦn€-äŽmjg#~ ýºÖ;¶©\ÒòÃyyÙiýC–Ò®`±c›8À97ºíºæ;¶Ñósbh× 0‡Ø±íÜ­Ô>cØ…vÝsˆÛa-'¥ed¬™–±…vÝsÈÛÌ>•„ÛÁÐÞ¿Ò¯` Éc[œ³-=»ˆMÝ[ày;@ ÇöÄA¯ÅÒcN^C¼n€¼êÊy-ÎsÚœxÝ#(x•Êò*ÇqÄ~d f¯JY@ÒÏE3—‰^cµWfž·“£{´ƒ‚W'z-–8ikn¯ŠÂŠ%¶>zZ , àUWÎkñë8'¡M‰×Í’­¤¶¶ÚA+&Pð*Y,)ÄäçÁ9ÏIm}ÎÜÝAÂõ1^Ÿ-µuÖ Zq0¤WY‹ç&§íßnr¯ò%³¶´§Èy•šÀÙˆý‘Ìä^IcÉfQˆy•Ê%-?œ——Ö?d©H‘ öÊäó*q€snt;‘"æöjËÖ°„˜WÑ®&bDŠ(ôê:÷Â:oÇ1såáÈ r…ëNP¸×úôöÝ‹ÈÖÏb^uîæø Ì2°‹Hr^}²ØoƒP;Òø—^„¿O:­‘Þ¾¦ÙúÙBÌ«a-'¥ed¬™–±E¤9¯FJ?q}•€Öè\é¹Ñfw‚Üý`fŸJÂí`hoÑn¥µxe½!¼–y¯t{团ê]ЯWe~ÖiàxM¹5â­QW|~Uœ³-=[¢ 15^Í®ÌßU®»¿Z£±%5;§áw(~ú€Ê2‘{½Ó«ž¼ÏëPM!ïk1WâQð“ÖÑ× vüæ¨p}5ïª&Lµ w‘£O×®öŽŸXJľ¥]<²C5zÅÏÛ¯æUJAhIÈÀ¥ïUéÁ{Õ¹í¢ó(¾VÇïçÔoè±ÞéÕ¹ïȹáᕳà˜Ð1 “BVä>Ó*ç¦Í«÷¹ÁKGT~¹Š”5n6{^Bl!¹?ÚÍ™¥¡1†W +}%¤õ } ÇmGMëgÁøºüëlî¼{½÷yÐí•£à™p~¥EWûy÷*¿Êp~fz壮"‡¸oÊzÉÌg(:«§*U½€Ð.õäÉ“‡Cf ¦ý…õñÂﺛ¹3îõb^9 ®ä.ò3×ò]^mæþäg.pK]E®Æ5KÆ3ÜÖ§f¾*—Ç^Už9€¿1·ÿ.ÄCM…¯?Ù\p¯óÊQpV¨c³Ó«î’°:ÝUýÙ§×h²ökøóQÙ2+Lœ‚e¯¦¡ÉÜ6´‹s¦47µµ÷ŒòoxÜëýx5GðÊQp)WÀÏälsyµ‰;ÀÏäs‹]Eø×²Ì¡Ü§šÿ¶õ ~Vî°^s5ºÅ^}‡JïlUv­ª0ÀÚÚ¦‡|¼r¯÷öªÎ‹üËc^­,4“mý€Ë«¼ˆQü̬JG\E¾o ŒnÚð ÍÛ”!òe†LÑ\n1ˆWh#7}Ľ¼l|Ü£¾ßWîõÞ^uš¾qP¨‡WhHø{‹ŸâV¢¡µ¶ÚîÿòæòwB_qï+·ê= ¿}&d£æ¿íß_É—ùêßš«Ñ-Fñ õ­z¥$F5YTÁ+×zo¯N=^«÷™§W–)-£Ú,Ehï]UvÛŸ_}~wÔ¿lϯœE¶vŒnŸ¦ýo[rV¾Lf3íõèx¥ ˜¢ã¥t"ëÈan¯V€WD8~šuŒ¯ˆ0HÑ“Šâäã`xE„6éJJí¸›pì¯HP®è—ëÂpÓvÿ^‘ «±²r³ÈÆÁðŠ&++÷”iÛV€W,ùF¬ œá¯€W$¸Ä:æ€WÈi¤´äU³fÿWH}TiÉ>«HÆÁðŠcG+-9z,É8b&¯fÚÒ‘«%.Ó´W²Mà<¦8‚ei®LŸ˜Ë«OSRÎlÉýàgã¥IU¼zDqӋ캚+Ó'æòÊ6ˆÃÅ*þF¿UÜvƒWʱÜfÒ¡äLèjs¯Ÿ¼KùóõÊÞbP‡ ½²6Ú©:ÛÖ{µ/Ø*²þ —<ÚÍ£™wÕ~nWîn&xå*go±¨F×^HqÕ·¸Ý«¼±•Ó=ÚÖ{µ\yÄâñ±ýÝíæÑ„¼»¨[U_¯\åì-öUòÂOjßa>tíU×8)jûæ¢Ìt4P]ìÑæÞ»í|¡EØð;Ýmð ªNA¨¼¹¯W®röû*iò»ò²çT¿# k¯Tb»L™Ý"ö¤»Í½wÛy„JŽüpgSwüMÜßüÌX_¯\åì-öÕq5¬Dyá’° _»¦À\^Ù®¯Žs³Ümî½ÛÎÿÞ®R‰MÝmðçsÂaýÄ×+W9{‹}uloÑ/ ÛÔ×`LèŠánsïÕvþZÄ3'ù?¹©»½à\?ó®Ó«9v¯Ü嚊ŽÐ,ÎU=þ?¯½Í¾1£Wµ#WÛz¯¶óéœÐw`’‡Wç§ó—_-y¯\­îy¯Üåñê–ªK²Ï4¸7 fôêvþ6ÐÕ¶Þ³íüùÈÎ?¤õŒ«¶Çݾy|ØËz4ã¬îV÷¼Wîrx¥ŽRsæÔ˜Ñ«ž•ö¹ÛÖ{µ_ߺJœ#w4s{ez{Ã÷¦Ey´º®¯\åÈ{eRÌäUÜüBhÂ÷‚ý=žV÷Gß±£ä^¡æm­Šüãç?­®ü‚Í+× ÁîÕ¡DŽ‹ž"ß·žrÞ˜¤®ü$ímé`÷ ¡|ÌÝß¿N]ùuºøp^á&FAÏWžœ­†óÛR/€W¸Ù¥ö urH„ÁðŠ9¿ªø9Ñ0˜È«~Žß¹ÛíËJ‚£š ,˜È«m)))mãøǸ3J‚ÃëÕçpîͰ˜È+~ Ô¿¯Wµ¨}‡UrÜzƒbV¯üd¥SIhàîÎRMå¤0¥Wö¬t¡#mê íë:ªOG•O¼Œ€®½²å·óÓ2az‹Ÿ¹ÂO¯{l¨€Ã+[Vºà„v&ðôü …½e ]{eËoß‹ÐaúB§jðÓ pxeËJ¼¢“ÐîÁžêߣöE# k¯ÔãðÊ–•nP‚FB»VÎikø¯KÌé•-+]ðŠJB;PszeËÆã½¢“ÐîÁ…Zÿ“`n¯è$´{ð‰ª6NN™ïBs{E=¡=°Ö5sž×T©!èÕÙ"þß—“Ä•“÷ŠzB{`­Õµ84ļºÖ—Û6Çp•¹Gĺâa‘Ï@ ¡Ýsïµ^VÕBÚójH•wo”þ³Ë‰²cƉa’'ƒ?¡Ýƒ£{_S=:b^Õy¡,NøöÃx‘"L¼ÂŸÐŽ©YG€b^5ü¡=‰…–Ĉa”ׇ;¡ð1¯žOÈG¥ÕWðsÿûHóå‹7kwìª!æÕ…fµ‡.ýáÒ~a[DŠ˜Î+KÕ˾Ót™2äž3œWÏ–Üᱦó*ðÞ«ÎÔ9$Ÿ‹ZÎîÝøû9ñíø½Ê~6>²ñ“¿)+¬4ÿ]9˺úÎîfûéÙTÏÛ„Ö<ç¿wp_(*­4ÿ]9¡|„ ƒ@Á«Þ7ÑVWdzm1{•Uùa¡ÓŸ[I•UƉžòåX®xDƒ@Á«®œ×â—œ‹¦x+êYÕÞæT­y;î‡ïj8^©&y˜ÈÌçÁ¢°×<–\ë®<«£O×®öÀ䚊ä¿8ÐõõUñ„J „üörþôYŠÐ•b^Ÿ"ÇߟⲸyK®Œu§We›Íž—[蜊ä¿kÀÂòOgô*kñÜä´}âÛåóÛkžGoÄe 9qÿ‡6Å@§jôDåš96øöߞέæ_· 'Ø6ëN¯qßð!½tÔ9õŸÿ®åïŽýÓ¸ó*5Á~¿D¬æóàInÿz!%%åÑ6²#cÝéÕÕ¸fÉÂ8[Ωÿüw-h]þçgµÔ¬?ˆy•Ê%-?œ——Ö?DlÐuÌ^Y#8æz·ñÈXw]_ýÙ§×hr™kê7ÿ]K³oVc-5ëb^%:2ÝN¤îçW}ÃìãþÖl㑱îÊcç¯Ó2‡rŸº¦~óß5T_^ø›KÃ}Ge16Ä¼ŠžïœÛ@+ŸáXXç|~r³/}åÎXwæ±߀W5|Ã9õŸÿ®¡ú?Ûj þît-ïÖļêÜÍñ¿×2°‹HìÏÛ—EÕ}#yÜ͆¶ñÈXwæ±çV½gá·Ï„ltNEòß5 áë ¡—¿ÖònÝAÌ«a-'¥ed¬™–A/Ÿá¯ZÄtþ èÀÛë®<ö­c£Û§!×Ôþ;+n•3«šäî3ûTnC{ÿ*V‚Z>öšû©0WøHWp8ÌæBùŸõihKë«•4ÃÈfàU@˜Ï+ÒsÙ¹˜ž ›Æ«+äÃðÀ|^y ;“á§w³xµ®'¾êÊä4˜Ï+ÎUø»Z•µ×m¯&ˆ È÷vd>¯Fs¯ÛâœIâ0丛ūÞ)øªK‘Oî6ŸWh÷\²~>ù†ºÍâU£?ðU÷G#Ù"&ô -¨Üë`®c6–ºMâUy#ÿÉÜŠzÜŒ^¡´.:K«TƒxUç8Ýúî—ýò;ðèäQýœakôc%˜ê¯œ^¡¬ÚKôÉ®ð* ÌçUSÕ¹ZÂD{Ý&ñªë)q¸1ŸWOx¢½nsxU†éëÛA'¹¶æó 3æðjWs¼6ß%S¼’Á^}Ño…ý¾)^É`¯Þž·Âéƒe €W2˜Ã«kš†³¬ÈF¹žÿÀ+Ìán,r·—à• †ðªö Öør¼ë^É çÕV¹Ëlì€W2˜Â«ãqט!ÓÁ&x%ƒ)¼zh5îW?$½¼’Á^UÇ~]¼ºÌvðJ3x•‡)iÈ5ö¤ävðJ3xUö+þ*;ÿ ¹¼âÙÓG|›¼"Áé^DÀ+ž4‰NÀ«€j¯rëÚ‰åø‘2fðêc 0<j¯JqMFŒ9²7Ç¿ˆ”1„Wµ$/¢/EàèÓ—¥’ ÊOÔ&P%nÈWVïsÙçAi¯6%’¨óÞMR[ƒÜ+tæáúÌîÕG/“¨ó夶»WÈ:3ü¥æöª2‰:“ûKm z¯ÚwW”¹½Zax„Šì¼Kj+x…Pñ‰èLàJ¦Km¯d¯¼²sâ Èã{uô(µ8Ü€Wvºz_b}ɹÀж•8’^½2Sá^RfYÑÇ# ѱƒŠ~¦.’ꤼ²“ìÝ혵ÀI[Ã_I?h²sí>þÏ1ÑŠVÏ(BÞ¶ýºü¦Ü{Òï•Ø^É`ˆó`M‰f e‘ùÒo¾úpdÝ}Í{å]7£ ÒoÌ”xŒ²–t¥º€¤WY‹ç&§íßnx¯4”zçÖɨ|ýUÿÛfWÝ†Ä·¹W© ö‹¨ø%b% ïÕ‘Io´<$õÌ´°}¼TüZ+é[ñ··W©\ÒòÃyyÙiýC–Š1¼Wâ¬ípI¶Ì†G.Šn[¸Jü}ÁíUâçÜèv"ELìÕgÒ)ŸNJÿ@ºip{í3fCŒHÃ{•ëwí¥ľ +òõ[jã v¯:wsô[`ØE¤ˆÑ½:YßïêßF©bë"k ů½‚Û«a-'¥ed¬™–±E¤ˆÑ½Zíç?ÌY©Ky¿h½ÑÏÚ$ñip{…2ûTnC{‹^BÝ«ñÃ+®ë26Jr*¬.ÞŒ:ȽB¨8g[z¶D'‰F÷*É÷ VzÍo9YJNô]µ(I´tÐ{%‡!¼ªqZtS’Ï×ÌÕĬ$«ïš D Ÿª`-4¯dðÊ—+ 54Ι¾Ùk±¬¹è/9à• æò꛿5Õós¼Ò¡èÁ+LåÕʦʿش^É`p¯}ï¹Tz]sUS{*!¼’Áà^ÅÿæšÍë‰ã˪däy÷©ÅŠW2Û«ëaîVÉŸÀÔ[ÑeW—7ÂľÁ+ŒíÕÎj[ÕÐÕp¬ÅN‘2à• ÆöjñóŽ™?ÈçÄ(fµ+wæÙÏEŠ€W2Û+‹s<€ù9xpÚ1í,±ÑÈÁ+ áUuÿÉ0.dÛ@¨eSM{¥·Ä~;]w•¯dñj_MéÎõ`»HN¼ðJC{uÌ><Òê•êüë/©­à• †öê›^ˆÀIÐΚ:ÂÕû¼_üo¯d0´WÃÞGèxý?ÉTú«ðàý}‘ wðJC{Õ9 ¡­_«vÏy”ÖÙÿ&ðJC{UóTÉ.kgµ,?ëÿ!>x%ƒ¡½úãFûå$ë]‹P ÿ©ªà• †ö ý=”pÛ{2ü§öW2Û+â<5ÄÿzðJCxç¿Ñîo¯ùŠÈy6Wf¼/]^Éàß«2ÑF‘±LñûÛ$x%ƒ½ºXEi6ºÊ«T÷×d¼’Á°^íï¿¡-ºÛÎJó³¼’Á°^=µpú«4ê~uš¿µà• †õ ¡}ýéáã‹~èçÄ c0W2Ó+ËØS‰ç°'à• †óêË´kŸyÄ1“›éZ^É`8¯²«†+ ¼’ÁX^]måúíæ¦ÞcÔ°ÙÕZ¼’ÁX^ý2Ô¹Ê{^¤0~à• †ð*æœmâ™Ã0Õ_v0!–ôðXÈ}PÐâl,½ê¼’Aðʪ¥ÃmÚsé?Ëx%‹a¼ú¼5…VНd0ŒW{ÝZn±Š…gÕVðJƒxUèÓÞÌ€†‚ÃĆÚåà• ÆðêäÝ)Þkú’ëÈi½—sáûJcx•=ÑçW›;÷ЬϾkV€WÒës>+®…êýÑ?7Ã|Ë´4©B³þ¯¤ÙêëUö½t#h•á³bGUºx%ÍëU|½¢Í ßÑ~ÏÆ–³¼#Ux%C4½ÜÿÜò}&{.fqGÝ‹^I1ý{¯*p.¦ìÖ_¢²€Wì¼-¿‚W¥í$õyq.†qJ çUÙš©Ëm_×û?)¡{¯Ê +ž÷ÝN;ŠWŽz/Û¼z!‹vê æÕ¥û8Žk)$eÏåDŠèÜ«‚í«¯W Ÿ¤Ç“ ½—m^-x‚vê æÕ«±ëŠ~ªw_™q½J)¼úzõÖDÚqL|Ë{9¸Ïƒ·Mæ_ö†Í1®Wkl úzõÈZêq<à½ìðêÌBÚ¨˜W1¶ÑÇÖ,4¨WŽ©¯W¹ÔS±r}úÕvxu±ÞvÚ‘¨€˜WŸî›nÜñŒ1½:XÝÑÄXÏ|útžO\«XT7óê»^)ü¾-¬Ç #zµ~±cF^ù྾:ª_³È=gø²6wŸlnÄÑ+Õ¼ÇCýŽRO2œvÎéÉ2I>µž³56°ìH) _¯>HvÍúxÕ}íXø ¬Y^‹n¯JæPE)ð¼ÝE­Ü©ùxUï0í`:\ÏkÑíO)ÝPCÁ«E6èÖ+O¼½:Å eŽ%ÊëÏÓ«Ò:ÐŽF¼êê}}õuœ“ЦÄë„ü÷=—¼½ú¹=ÕP´_ï¹äõ}µh>åXBÁ«dïqŠË œ´Õç÷Õó^Cuy{•¿‹n,v^›ê¹äå•^ë« \ðj,ès}Å„Cû<—|¼Z;Žj, !éUÖâ¹ÉiûÄ·ëÒ«ôïe=xåWùÍŽ1 D r^¥&p6â—ˆ•УW{«û%/¯n~M5ÿ÷y0•KZ~8//;­ÈR‘"zôêÜnŸ^^mO ‹›Mž7„½š{Üw sˆy•8À97ºHýyU|±Âªªž«>Xa;žÿÔcáB5ßÍ3ð]Ãb^E»n€7ˆå éÏ«? /¯þ3›^,žÌþÇBE¯<{‹Ô äòº9[v)¢;¯,ïUªËË«6éÔbñ"½Ç‚¯Põ¬0ˆyµ3¬å¤´ŒŒ5ÓE‡ØÖWþðòjV…A&éPîñ{?¯nÜ.zwÄr÷ƒ™}* ·ƒ¡½+¡3¯6¶ô·¶jÅK.¼ïñEêÏ+”#öc#H>¿*ÎÙ–ž]$¾]g^÷Û½£>¼òįW]ÓU ð¼]O¯þ¼Â.7"^ýxû%ÊH^Ù¹ñXŽÿ ž^uü‰N0±xŒò,âú?=5‚¯ì,{V$ÆÃ+K5¿cÓÓàb´;<1¯*aÝÛ x%ƒ‡W×fFí¿]³â^½ú•X”^ Ìü•çšM}”F,þy4Õ5{Q´ÿ«K¯R‰E àÏÉú'D·yxµ~…XDãî,WÜ+^ Hd‰{xÅ’-îÔ>I¯îß@>%€Wèwɯ!xå¤W›Þ¦‡$àj¸Bj«Û+kT9zÀyPx%=¶¼Û«Ÿ!Š·\ÙÑ2^µ=M<y‚Ý«¼¹2Ü^M~p,’Œ›æœ“û¾úp&éXì^u)SÀíU¦IÈ_÷qÎÁyP=xuZîµÛ«&¿ŽE’ß›8çä½ú«Çu²ÁÈÔ^Ýœ%ÿÇË+ë]“þ(RæþIÞ«ò$oEhÔ^½¦ “Î*ùäãPD{gÏyQLãPFP{uFA¯ºñÊ…"¯¶ög;t@ðzuk†¢óšA½ºùäVâH¼^ëªhp]—W]J–£œe`ëU¾²Ëp§W%a¬“Eïv¬Ô«žaØ9Vzus¬Ò®9^ím"]Ž—…ó  ½*UÜížÓ«w¦J—#ÏdG6¨ ¯Rï¿*_ˆÁèÕ…¾Ï|qzuyOžë¶OUxU>ò€|!"£WcG©(¬Ÿç –³ö©ºó` ›øƒÑ+UèÇ+'ê¼Ú\ŸÉó‘ ójk u=GÚ[{nÓCò‰|uãѯdÐ3xz5i½|O^y‡@,*ÙdÊJ­W]ÙŒ?9‚Ë+«úŽí^uK•)GÔn¶‰j¯NÕ£|py5äAÕoqxåÑ.”Žv±ª½Bçè·°.¯–ªœc÷êb5ãLøb©f»#TïBůPîm&ˆ¼ÚP²›Ý+Ëoxc ŒŽ¶kÃ@¼BÃÞ”/ƒ“àñêz€®2"uÔûÏ[,yÅC5Ý5x¼Bå#èÉ+;zõÀXù2دòZà;í^Me›}éE ^]øo’‰W»'–øN›W…áLÛL¸øªîO:µÑ^ƒÁ«² ß6Bsè­mdËQ¡\|)2à÷gÔ¦Õ½m0x5èa­^yõËÏÛ¸¼B7i°j~¯¬¨@˳'›W^ãˆ0Ä6ŽŠ¯:]ã{LÁHbv¯nö~QÛl^­ÉÅŒflã>ió ýþ3žX¤1»WEk""Bº»ºŽ4{Å3Yl„5|˜Ú«ÜAÚPÓ•W6´{µ£“ÒV#cj¯fŒÖ~‘*xu”I “Ú½v²HiÑÀ0¯W»ð\Ÿ ^½Æ¼Í„“Â?0yuá>² e¦õêLÝåXö#xÕAe. 96tÀäB·Ð‚CW›Ó«â¥>^¯ï•%ê¼|9:œ²àò ¡ãÈßkN¯z>v׮ ÐẸv¦º‡Ñå\;;kA»å•™Ï+ëºlœ)!¼W'¦É£E÷e½B¨üBch˜Ï«¯›cí– \'½k;øf=V¯õ ÊÛH`¸&sye]‘‚{—:óŠ«W<5Ÿˆw‡æòêXGìÃxçAÜûÔn¯åZûæD yõ^w¬»s^p¦‰ýÊe+v¯x~|ÞšÄ+ëÈú!‘>. Ö>@b¿Òm ¯<…ñ”o¯º«Û¾¼ /˜ø¡]Ä[IyuùË"ô#®1PLàÕÚ'ΡKÄF  /x’á°ƒYð$)¯Þ®‹éÁI¯²ÏMNÛ'¾ƒWE+¯¢¹ßü 5¼ ¿š:»Ùט¤W­úaøOJΫÔÎFü±Z½Ê·¢Á]H^VH¸•”¶ºN¶† ë‘õåÅwBÌ«T.iùá¼¼ì´þ!bYd½^u¿¦÷+Co^!T@Ø+EÃuîn ; æUâçÜèv"E4x5¡Ú~T€í7@)‚Ó+ëè-û3Àwó*z¾snCŒH‘@¼â]{ýM-á<ìùe´ªR%¯l¼v¿¥¤ðFb^uîæÈÕ´ ì"RD¥W…»z*ê:|F[dêk‘A³:yrÚRôJ`ü#¥hÚl•™·Ä¼ÚÖrRZFÆši‰[DЍðjÉt„Ú¶¿ò¨·; #ž ®Žka”½XñÖUôF÷\tEioäî3ûTnC{ÿ*VBÞ+KÆ^t©c/dyiÞà”óæãLøÒ$ŒM½¹ßß@ï…oA[ßÿ›?22…I>¿*ÎÙ–ž-ÑUº¸W§¿9†¶w˜Ü;Y¶3ÍÖ í˲v<ʶþ¬(­ò$tæíʹ­Ñ×óö }.¡×Bv¡%Oì@—6袅UXž|º|P™u$Ü×­[`ÚQ»&m1íè_ÿ´£¶M0í¨]‹Ö˜vt_kß#Ùž¡W™¾ÁŒ‰Àõ‡6ªiGíB1íèŸÿÄ´£ÄL;jW»¦µŽð=’c³ØyU‘G0íè“—1í_¾(¶3C!¶v/‚iGG`Ú!À+€Wª¯^©¼Rx¥ðJà•jÀ+€Wª¯^©¼Rx¥ðJà•jãê‚/[§U p x•…ë ´[ÿÌÙ˜vtSkw¤¦Æ¢¯åuþ)_%~ŠÊ¡£ü“Ú%¦Ñ¥£I³@¬ÃA5ììso*†ý Lñ`ü„05B «4|ÙÈÊÃ1ìéË'¾Ó¶ îr›a8Ž™áÝæ?‚E,,ñàü„ð5B”þãþõ%±~#U`­dEh-·Fóžv'†rŽcŸ–üÿçž Úw„)ŒŸ¾£FŠ“ívñ¯#´¥žãRø×"nªæ=Ÿ;7Aûq,®<‘]ÎiÏíÃÎOßQ#Ê‘æOißIÉAa4ÊŸ8,'ž'´Ç.=ÌaɫĿOÓQ#ÈÚªÜÝ70í+«^‹Š˜†ã¸£ó¸¹Ú£Áä• \ŸΣ†•ëû÷ïÏf.¬ý¨îV{º1.ì^-£‹»v„ã8¦;¼JÖ¼'„Ï+­ŸÍG;8Žëê˜ßÀíۧíMj~¦é^džã˜m»>ζ 5ƒÉ+ÍŸÚŽY¾ï(œóÏpœlë‡m@J DZ¨ò4þ5“…J9x¼Âö a\ñ~µ^Ú÷´ƒ4W`¿ö]á9Ž¿†?¿qLˆèÐfªÀâ¾OßQ#Féð6Q-?ÀÐ85Å>F‡¥A/–ãøËƒ1÷áÑ O<?!lG ÀÅö¥¯òë8“ñf­K¨k{ ë0“q½ñÀ‘GXG˜Ž-!QX:¥/Ú„cëøœ|Qg0ëÓq6vêÊtÖQfãñ6e¨w@ÀÊ‚Ê{:=‚u€›ÿØUªËendstream endobj 153 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1071 >> stream xœM“{PTuÇïå.—¬„L·qBï“ÆG6 cÚƒsÑXGCc”$d–•€…EQ8 ¤òZˆÝå±k¾ÕjÔ ¨UÍ«UÝÁ÷WŽ=;DÍÿ¨}Ñú<ƒæp|E­£¶S¡Tõ!•Dm vR[¨`*@ I©¨\êW:–ö ñ¹Ä„1UÌߪ·dG ì õî•èGÌ÷0c2ò&dqB³Ø9gÌe-¬b‘u?žt§ßë':¿tÃ牛"Œ@‚I{1ÐoÊ—ý©^³I\O.ó¨Ç¿)׎ԔôÄ­âB2Ù(Ñhô0rœ|•·±M¡»G&q­7O'ØÅm< ²¤q•¬e WæÜäìÐÓíõ*ÉQ¼\`m,®#ßùÁ¯8Žd9•7 d­N%`.‹Ô°JÆ2I‰ðà׌ü™<É[Á™ehkoäI¸YB·DÿáÁjƒ$or)Õè•ÂSq?Ûu´¿ðpÈü5Áñ„¨ö,ÊÉ/•Öæ‘l‰´U¼6gK]²Ð_.äÝî¡›·Ýš×ÂwÇDíøä—‚wr# ÌMJ®|ŒåŸŒ?DJ8“î*o®ÍÞâj5¾žkHN»üz,2¢Zæ=2òƲÑ~±4 ÂÌs«p\¢ïHX'1ò»òÚnùæòÓÂáÖ HámÚ¢Û3`h°ˆ½Ç\3ŧ~.…}\vNÆËqivwPn;U¯.ò Ä-~&Ðw[›Î¹Î ßdŒ‚M±½ý÷þ¡ì.ƒULëÈ«}Åzðó]õÐÇuv»?>“i¬jtÎåˆË÷KtŸ[ %ã!~QDÍšô jXË›Q1ÀEFÎâzÜ8931r=åíz±ÆTSØó4 Š~ =4éJ-¤·')=©CIÙE´³dŒtµ´ˆ¹ueÎù‚—  WHô·w±NÔvLàm¸ŒÜî? O7¿DHÐì|_ü­Ýnº`,)ã Ñø>”Alí-˜æªoñ­Scý?ÀOðÕsïp‹2ýÞÛWŽòx嘋h‰ö˜ž\%WìzÔb¬Ã‰Wrˆœå# ßQvÝ|îÁ0w‡/6Ü…Iè27&×€ØiÞs<Å`ŒÎ»{¬ôÆrE0ãO7¡Èr¢ô¤ý^š>í´©ÊX G¹‚zsû@¿ÝÖ&̽¾l·j—v+œ üU…:õ3 öu¨ƒ)êv@K}endstream endobj 154 0 obj << /BitsPerComponent 8 /ColorSpace 29 0 R /Filter /FlateDecode /Height 600 /Subtype /Image /Width 600 /Length 28050 >> stream xœì]|ÇN[Š%Ä Üݽ8—B± P\SŠ¥ÅÝ Á Ú@ñBq‡âNÐÁ!žÜÍgfgv÷n÷îr¹ Ì÷ûq7w;»·ä¾›yóæ{ïÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀð‰áÌ0†Ï#Î<^ªð±ÿ÷ j¡Â¨È«øÙ êâc~·ŒWŸ/¯Ôãƒ`¼bPŒW j€ñŠA 0^1¨Æ+5ÀxÅ ¯Ôãƒ`¼bPŒW j€ñŠA 0^1¨Æ+5ÀxÅ ¯Ôãƒ`¼bPŒW j€ñŠA 0^1¨Æ+5ÀxÅ Ôýnõ»&Î>û‘>›ácBµïÖy±Õì¾úÚ®«.£?›á£CµïÖn*³,_—mFF6ÃG‡ª¼Ê?¶F”ÈèÏføèP•Wö«akµCF6ÃG‡z¼š@µa°Õ«” >{]ŸÑ3Vþuòö܃úPWßä¯W)ó9–}Bº?ûvàIû7¯ZÈûÛoºÆÛèT„j¼:¼|dë’N+ÀI»Æé]&Žsþ-‘¼xÖ¤Ä=܃ºPÙÆI1ÇÓûÙ‡ V¿.z©sٚλbPš÷·¿êé¡—¾uÐ{˜ÒÈ d¯¢¯H^^ #(ÛÂì¹ú¥î½ŒMõ¥¼¶Ùí1¨ àUm;ÉË4gn΢fÏrBîíÄwmss ê x5€ÂJ•ÌzØMÉFŸéó„3˜ÅÇ´¯Ìòê…ß&Åc+Ü.Ùönl yõä÷oÑø]ŠÌñJߨ‰£3ʤZw_ Õxõ¾µÝ¿`¿“Ý7vuº˜ãÕô¦\ ºJX{o ªC5^õÎ>*.)g蔿œF*t1ë³.×L¿îrËÊ{cPªñÊk çínr­‰Á ]LóêCÐ 31®šÞL†Õxå?€Óvœ‰Ö8)t1Í«vÍ}DrÑ…ÖÜC@5^u.ú$¹näZmj*t1É«=¹ß›ýŒqÖ܃úPWÏ xþ¼nŒãĵm3PèbŠWú²æfAˆ:³­¹5õ¡žŸáéH;ˆŠ+õ0ūȠ >ãoÿ$+îŒA}¨éÕ=9·÷ìÊÇMð*5Ä2ÍB…ˆ´ÞC†@£þö%e,[êm aÊMB›¼JôßoÙ%t!Ûlu7 ¶„6yµ¸š¥×¯`“[a°14É+]àNK¯‘ìÈFwÃ`Kh’Wû-w¤Oèj››a°)4É«“,¿È—Dó2ZäÕ;‡‡i¸J©í6¹›B‹¼ZT?-WùÃì>"CÆC‹¼ª¸>-W¹ïÈUµ òê¦sÚˆR1Ò7Ã`ShWÃeÕÇ—Ž)ÉŽç4·Õ 1Ø Úã•Þï”øå¡Öè)êÄ0…=æçöæ5  íñꊗØyuÇ m@?Û ÀS¥Œ ÚúÎÒ íñjV{Ñ‹×3ÑóªDžUÃ8ŒÐ¾¶¿7†ôA{¼j²LôbLü ãw>Cͤ…†Š¿£¶¿7†ôAs¼JuŽ^Ĺÿ‹«¸XÌþ`A¤ár1Õ…Õk šãՉыÙÄCú÷vݺ›¨± l0:§9‹ŸÐ4Ç«ñ½„vj~ªaŽ^$]ºyD³à{5n!ЯªoÚŠIt 1³àcÄÊËðéþ9á@´³%bx† „Öx•’5FxQ}¥ÌYü48=«ÈÌÊ{N¦#ÃG„ÖxuÅ_h?ÍþN欗üse‘Õr‰-ï‹!ýЯÖ4ÚsMnÐÌh'´'šJ<Ãð 5^ !´«­5uö}'a_g'S¹k ZãÕwëhó™ì4( øn¡«=Ë…¥-hW9¯Òæ¼f¦Oí-´½¯+÷cøÐ¯^e<Õט>ý_o!&õ;“S&C†Cc¼:X’6ŸÛ›žÈ{’6G±ÕM1ØãÕ"A̰¡ŽøÀöUÆç÷šL›kÙð¾Òñj¤°ü9Tô~bžÝF}AxSÚ­j¼*݉´†–WèbÌ«ª‘VÑÇüO8®Ÿ:eéyA§¼çÙi³$Ë‹lRyµy`Y×Ù.«ÓpaÕxåHÓ,ì±¼N\±c¤•†{•Ü+ßò€%`“à‚°FZõ6[{§_.”±|ÿëd®Éæ;¨Æ«êõøo_÷C ….Ƽ $V~¢ñxêê°ž±‹OÈ}…´¾g•rÒˆ÷øTÝ™–ÕÎ}oå2î†PWÇ3¿íÈ‘¨°ÒY-¯—›l;?·'o=voÃ.,–xJÒW¥[‡ fð"Ô­Ñ1óÝ$8æ|Ú|' õÖƒgZ~ —ƒ™š*Þ½1¯Ö“\ì·}È[ûˈ;èΜP›ÚðÿûÝÚýÝ×±ãeóÝ ±ÒÏR9’šþ«ø;‡Þø |ÜD=¯³´&ôü¦>¢õrÒš–[û²q±£cßh«ÎQÆÂœÂÚò·S(KZM zM%­qƒLõcp¤‘SkUúÖ--³È2€WÑW$/ï”®¨p[iÐDCï×>ZÖyäHÒšöSúîò .ª¢w¨ gò¦uª—*˜ÏÃÙÎyp´ññø2– ’2€Wµí$/—»d* xNÍhU@Fܲ3iM¥Ù²±²æ¿$¸pD²òñÛ£|J͉Üsàì•»1o®÷vlñQ—‡>¥ËÏ^Í pÀÄ<¸˜ZU®Œn£V½À¦•,·š9¼çYc»ò43»¼sÉ󛩹K­6¤á1·ç|–Fí«emIË[&wèñb¤%ðoU ›Ý×ç‰{ýs4RÖ,¤nhhßl“a¦i²¡¬ßïÓf¯Î|šŠ¼zÂ-Ÿ,¯”uÝ$¯"Z’VîkÆG^-¡‚­5f²9|á8×ɹÿ}Å£)%)ˆ¬Ž6Ë/-¯öÚó ùÏSWï[Ûý ö;Ù}cWÇèWÀï–ž7>*ðj)M‚µ®‰5wù…`{UŸÉo&G‹4±Ì Ë-3‹˜O»©¯zg—”³FtÊ_N#º˜àÕ_ô„ñQWËÚÖzI¯„W-–)ÿLŽ(PÜ«8üžK¢$ÕWšnö3Uã•×@ÎÛAÑýÄ`….&xµ™ ÝË/IÀ1*:oMZ‘ û1@ðë«x0)" B”Y—ÔÿÛâ——\Ìú¿Tã•ÿ<NÛAoûËõ Ö&­Ê{Œ ¼ZÑŠ´6}gÅM~H u]§xðí9«ì³ä*Óü$a9}:›;A5^u.ú$¹Â¤Ùmj*t1Á«ÕH«¶a¬óJð.le9r¸]¦†Œ£ãBçæ–n=Ïò½'zõÊã¤bO Õxõ¬€çÏëÆ8N\Û6³åz†=Ä wiª˜%2þÎÉTB:ñgÒfD‚øþ¹äe{)QÍZD¥©˜‚¾i'Ñ«w.·{"¨éÕ=9·÷¬ ϘWEóø¯Éú¢¿a'ºÍ ­Át·jÁÆý¾pÜ j%ë\¸5§ø¬ 'ý·q§ü·sD¯~6S›O[þöÊ4çÍ;”joÌ̪ÛI«?šÎö pÒkŠÌ»ñ+«9÷–Ëú„‘8=é!VLJ/—ZfW]Ž /î9šŽÒ¯Ð=ÍÔZÙ¸ªï ÒÔÇ•v!¿Tlu‘Q‚œíí\m¥œ„*~Ô*4¶íçÆ1œšgq¢Þ@Ú^PT ¹å$` ÚâU[lQ™nÿü2Ú°W\&êå«I‹{aØíËÆ,w㥠u|FȚꆹ寋BSaÌÍZhêÇÿùÁ°ž¶¾š(pâ´¯B¹m mñª5œZ†“Öºz†½.æ¥Í4N÷—ßlykŸ:ô¡yâ)÷t •ÝR;ÛÉ¡ÓE¾ 8Q<×?£7.4tBÜt9*˜Ì8¦-^ %­~I+ÚÙð±V`Z.ª”£ µ}YC1ËË!N?¿”éú`RÁÜ¿ ¶äš?ç(´½UVˆÂÞZ81R),A[¼šBïBÂí*†?ŒvtTKÌD•£ßV}þ‚‘Ú±’Asl˜K+ÏÀ½i•Ø+®ótáë¨Ãàå;pô&8«Ê1:w¾v6 ãÅxFЯ„4ìÇ„ÄÙk Š*%»ÐÑør.ún…åñˆÔö•¥´JáÙìŠQ·KãJ8µßgðî»uw¹?ù~ºà¯•üÏäRTÛׯŸÐó;S¿dmñêZnâý·töKö•.‹w ©®6ÓmD¤¼vþÂð¶q é>óÛïÊ ú®„»wŠRV9p¸Aؤ«Fm×»"÷ÂÜÖ†gˆ -^Ýò¦Í|‚îjTwI§^‚r’»ÁE*>ûrq.©#án¡vž…èÐÜù•ßàÑ?6Ö¿ßs¥¼l9Qx×Tõcmñ*ŽºÙAsa”}˜CìƒÓù\¤í.4¯QòWJêÁ/ †©ªŽz…J^'F6rhµOV“tì&nöß6¼è Ä½,˜L—§½„¿s°‰T+Úâp¢.ÞP!‡6h:CÔå¸(CdEêåzâhÛ{ûDñ¡]ÐEé;K]%‚+ÃÜK-’ËKôn稪ق»­¸ ÞY3¦MIÇú"w{KjWU¦‘À`Ð0åѯ ÒWd:=¢Ÿ×Páܨ!ÀÆ7÷éàøn:£] ê /OGœ¶jCŸa7€1ž,®—­Ü/[cÄï=éu¾ˆñ&2¸­…éwñwa ñªM§vßI˜çõ……I1ÁWþ<ÊA—ÈU±ýýiÇWD`Ÿð¬ëˆ|«ëBi§Äï+Џr¡jðc“èÃŽ…웬‰šøÓe?mo áé¤ËMúIÙ”6¯5Ç«‚M" Ÿô n¾ëDYVÚãé¢ò_ôK9«S{X‚¿ó™¥bëÖ†¯Wýݠ׉‡«–µì¨ƒ [2;{]BRÞõ ¥ÇËìJЯÑ80x¨èý^H9=½¹§gsQ”ýþO¨q‡ÚÅ#nÔ¾KBJpJ°¹ B-ß–í@Çüä™.¤~Ìøƒ¡Õ³úß&S9´×yP·×b—ì ©3@Oå?ºÆxu„êDÁñìýÖ»S‡|?,‘nzùýK›5däÊŸ#R†„!}ÇQè=çMè5Ñè)ÖÀ›ð¡bWjxí+TM’˜úĘ*ÙŠößÌ`aNbÁÆ»óˆËN·ˆæ·—9Cc¼z…ÉÎÑ¢³¿[gT«å†›à‚ñý2ÒÖ>ªìÿ¿õ°ñ³£ã± mœ%έђXŸÏä'Uˆ˜kÀŸ–åžð”oîÌ7êÓ}µã!ŠçiŒWÀ[ø#µœo|X‚y‚Ã÷}&“ªÏQîýÉÌÆUß×õà¸|½¤†ÍÈOô^`_a({QÛ¾U”°%hÒåÎahaž€Ïsð~‡Y486³b™ÖxUSH?»Ü\$Ä÷Âêç¬rjšÏ)¡^B ÙÓ Wl`ê03rËãÍ¿ÔVu c®ø‡’wu;Û9Ô[-Þ|!õAÅ?¼pTú Õw¯È“çGž*w]èœRB1HLk¼ê;ž6ŸÚî‰J‘ê&hÔÖ~Q©OÊÔ1¥ @ß®&¢Ž¹-%ï^*2剴ãzÞ±£Ѷvqÿìv®A.?÷HmÉL\tç/Hƒ1)Š)µÆ«ˆÆB»æbãã"ìÕ øÿ„G†™« !à·’d†:ãFf€¤±ÎÓSzâ­ðy˶¹ö¿3Þ·Â&QÇW¼‰U–çv›FE*mjW„ÿQTÉï–¢,¥e¢¢?/< 0±kbˆ(²Œ»äATîçKT•+%øR&º3)²LÞ0!;Q;ÞÊÇàÌèJŽˆtJЯ@žs´©Þ-Óàea•ü!«¥8>i<ÈŸ†‚°7Ý Ynúðc~ü0×E¯4ºG)Rv£ì%öÖs¥ ¦÷â3ñ%·…ÕIß*ýÝ5Ç«.Ó„ö<#i»Ó[ íÝ¥muOEJÈxóÞ$2û¹ù¬ö‡Ñ]ä—ó+9~?ã ™äyÅEþdÕçÃB÷$ìê‰ÉN'äJä4Ç«pQ«8·‹2=0’ ˆ³QmwWšÄ¢²–†H¨OBtåÅcN|Woâ¿Jˆj•­v„xsZ1–þ‘´…ò›dõø 9žTÒÜD)xBs¼z 2°À°î2=0ªˆþÒU·Øî®´ˆÅdFøP³1/‘Š)€¹øºxÔÍÎŽ•æÉEOÈbpþOí„Wüˆ_צcÜ0¥¡æx%6°ÀãJ+ëGÎ"ýGb6KR©~˜bÊ âMÅ6¼ë4®»œs·ƒÊžû¸…n¢M¿Z¼û«=fö„þè)åkºßüí;ùËhW—=%‘F·ü ]7WÝ¥:Å&感8æ76ßwô#N*}3\àåª;"É6Pdu%¯þξùf3†Ý®B™­…ðx4 ».ÖñÛ°^ÔÑà®^ƒ¼%¢$/ïç“î`¼È/^ZüsþDQi½eýþô¤"´°¢Èþ|š{|Zæƒ5Ý÷Ë•]lJÊã¼/CMÍ‹c¹N¡§3ø ” åD Hä‚´È«™©H¶Æâ+ –žÝܦw¥9Üw2­ë ØåBó¿œpEgByô§Ú኿üíîÃŒ÷Áã·žïB¦Œßñ®FRVäõz“_ ezY…ä±ZäUŒ½Áô8hmëZ630Ê|æNÑߺXÒëQ[/L㇗úÖMáŸê” š S†z á5`Y^•Ó¨¿©QŸßø{íˆîåðÅݱ£¡;µy•ʵk‘W ¹áÿõiáO®þ9'´O‹Re 4Šç<>s©h)å CVº M°ð`fø§úïἩ]UÂ|pQu¯â‰ñB²°KjE´¸pþ§>8–¬4žP…²­’Xëró-ÓF›ƒ"¯NyŽüï[dõ/Ý ó ©+vöm™†ÙOñY–\"¼éW4­Íþ|—]àªYW ÷ þ(ùùÝáCNþŠáyÕ¤‚d ù}N>®k1&Ø$ð\KêÇRÃä{… BkxÕ SæÛLTG´ÊuêÌR:b„;Nïw}š8b"ª˜Ç¾œD¿¶+nÈÖN(‚dÚ#ËÃo꟤áþEž¤oñœø>òáÔÝH–¥‹ð”‚mÀ»Œÿâ´áØÎjŒ «qÔÄm*“Īy0fNy;·¾J ô»&ÎVÞ‚PæÕ᜖§ Ûó}>iLQÞ{ÇHæ-NíK–Ë=Ñrf¿7œðÖ¸ œ{IM3a6JÿÝ~*œÈØ^÷w ¹ ꆢ§Tœ>m7þ®ÚbMóªi´ÈÂZûêîovÁ“Kdà<€Øjv_}m×UÉ g¢ŽI=™*²xìøÄ|§O-—˜<¬ßÒT×€`KN8Ž?ò„j¢Ho³óºFm!Ÿ;œþwù´àéZÝÔ)®ºà‰³2z‹ÏéÚO$a4 ÈwB’H ¬äUò®nnv…2 WìaÇÙ{³,_—ÍØaŽa‚W]-œÝ~öiÛý/™8·0$P’ [ß®!r<ö€Êš”Êpçôšr7Ý îN—;ûÂÎÞ¼? O‰b»+*OmZG´8¶°~ …1YÑ‹Ÿqú«)}H§º[åoÌ^%nïìlWdüMða´âÎäU~4G(¡Ðů@gË”z¯œÒPâå“Ä9d|N<ž†ºWŠ”Š&t5Ñ÷:¸wôuÀ"Ø>Fó`}X^Źj© <.Yìì\j.”8uâÆº ò‰Ø¿±JÓgFCÝ(¼œF˵גú°)¬áU»Bã°g7Öî/¥NWöH_¸ÚA¡‹)^=p’©ëlŒ±mÍ÷ù´±µºÒ‘ëíst3Ë–åÂ΄‰åàÐåó”£X½žð5®üÈr¤sŽÚ«‰ùúú¿ÕMìëJJÔ/ ä9·ðDx×y üÑ6ö$,éšEm¾ê °†W¡WIK÷X1 Ýª¡åh¯R ]Lñ üVÁ‚çe™êÏŸ&ü,ÿ~â0ç±FjÆ+ü`sÛ nà½ò†û¨3JAz„{¡õÓÛ9…s3Z½]Q1×Ñ:é;â=,€²Éè³ “¤ *ä'À)½Iç26ô·Å+Ð7ÊÕÍ9Ø}“¿^¥Ìç@RXö ]LòJWg‰£‰Åæ˜í󩣇|ÍÛäf5uxÉexS¶a(|쪻Hû±Ü ©_Væh¸]nZ=XÇëwjfôæuÌmÑæ"ðC¶N)d£ñ ÁÑÔ®Îmj` ¯ìp￳›êtxùÈÖ%V€“v­XrxžÓìþL¿ú–G|ª¨+ûWHmWY&5ÂÐÚøï±-tŒþåË™Dº*°ŽÍr/4a.÷µ$7â„ç‡sæoôóNj˜£͘õúôŠBåH6I[­5þͦbïAs”p"cÇzO¼0 umw*¥ N+¯~å>êWËN™/­8³ P9s§uC~„Ǹ™là©}Gag¥að³BäwFoÍ ÙºzÒ/t5QòpŸø¶óU¢ä³ rÂU]âþE澕œ˜2ߣ1¬Þ•翪%8®ë7ĨEàc4õuÁ{¹‰§i¥’¦2­¼ònÂ-< ÒvªÌ̓¢<¶ %‡‡.°ûK/¹ªtÎg…¹ ßyé"c}'× ðyÅ!Kî:Áíæf°$h¸_¸×ÿ@ÛɨC_שKÏœ°pý]VdÅ®BQ§¸";¯š¢oA—…˜w¿Š’éK î%Œ7*/ü‹\ôÞUx÷Óô÷nýûrÆÂ2&oa&Ö2'¤t-BFÀ¡ñsô×Þ‹V"Yx545âÜÿå §vX pM«xõú6H™ÕW1 Búô X¨«^ƒ±à¯Ï5Ö güî…ö—/惫Ñ\‡…ì!Hu‚JÂʈ¤ÍXë#NÝÁx;ÿ¯L¦¶NŸžÁ®ä¬KŽWs£"7¦%ÅÀ' w:ËÔGßçB’Ú¯BÆ{]¸l›U[Õ-,Éýªiep“v¥n÷Y¼%>§Î^Õ>>E‹Ñ5h6,ŠÌ{OôÇßЀœ§XEÍ^U*väú´5ÝN=F³ÕÒ×Oís®ßó$޼§îÈ~úÇ—3^yp˾×ÜWœîƒã˧Ræå.9Ú•¬!)ØÖºb«í ù½ç '™Ôo ÛpÊUúô8 u 1æb²)ÍEÖðÊa!¸kwD8™ê”N=F5½À\ãØ»B´´õ÷h§/U?AÍA˜s¶Æ@·œX¸YG9÷ ’{K :« ÁÆâŠ9Ñj¥“Ü€òRûÁ™òí·È±ÕoÒÑ"@ÖðÊc&˜Ÿ#,w1Õ)½z„¢Û`ÕŒôä© ©!¿17ZØm JÒ†§0¿g¯.˜ Î\ƒŽƒó[uQåòÎÄ{—¥3¡®"N”ø'åk‰ö ÃÉo#šõÐÑ/Ô§)¿6ᑞ¬áU‹À•­ÀýRUMuJ¯ž!·Ôò2»Ñ¾ààJd·+Îíá%@¥U]îw O€ÐþæÈ7kü¢'(k <²h5??^vÂ!-£¦ô€(üfr¡¡Ú]'±—¶$)h9LQ/l ¯nçµã E?‡LuJ·žÂUjo®fØa›õ’ŽÇ)4'À I§¼â¸àαpv-|t÷„L2<ý-ˆ%kÅ:áè «Ö£Aª>ÜrF~†„¯ ý6á¼ÚÑäqy ¬ò3¤\娽ͨ^ Ò£g`àEªÙÏpã–-†û‚Oãµ¼¡8¯7\%åæþWÌm[Qî'Nâ2"pÅ®½¨^®àŽ¢mBí 2¦q†í„oˆVËã6P€u~ѧ¬9UÆ+³H±“s6(©_\HÝç6lç¦ݸ‘ê¢Û[æ äk®2Á±ëÉY¬#Ò¼ÌG¦¾°Ý.¼˜ý # oûðg¼ûVQ{o ¯NûÙa¤ýT ¯Ìâm&ɢl{í›R9ÂF?$rØçCT[Cwjsn¸JÎC=—oËT9¡åí±-ßf‚C[«pîa<ÔˆB‹¯6(ÖRûMea•N&çŒýi?UÆ+³xâ,yYSzxnº‰ü×H †S×uç×\r笕Å@4žWžU©@GýºpØ~¸@’¯`g1ôÔy‡´=œ#GBŠl­߬„ô1dU(Á^e™›ösäÀxe·rJ^ö–æ¢8åJ5)ðª;¬*À~€áXM9#=9ßnðrÖfH"Ñ,¸¿d‘²ánIJ¤8î$ÅùDG£ÀÖ¼ÐOÚf¬¯¼ ¥iÈüú4”cŽr¦+x•üj“2^™Åù@ÉËà£âW/r Îø!µIþÈú%î:Åp.áéÏØmg@J€q¥ž¸N¿1°ÜëÃñ;qøégTúxZ@V€>‹np­øêÀˆ  íƒ ˜d|)*£æâa ¯‚ Ò~ªŒWf±Q" “$£Ó‘6ûâdÁCGÔoðhGš(t Ü*ÖXq19€Diµ@*\¬×{ó-l#‰–„q^u ‡t)2²h(‡Þ^¹Î¦&óõ1¬(\Ú,½xïz™¶+.æß‚v¼®7À¤ø€}‰‹1Ñ­ϹN‘D\ö©ÈÇ9/ÀK¼@( Lý :3¯jÃH¹ ÉVº·G ì Oˆªï‰’ X˫Ìé×3^™Å\ÉŠ«€¸DøïBišMAxï÷¦ðqC!Î’Ú\œkM¡¥ôfãù´‰¸F ‡ÔfÍñD팮PíË )Ú©]IöpPs‹æZ¡âG‹ñgÿ£$€Væ“ih÷•¨g˜‘1­`¼2‹°¾¢ï2‹¼¢ >4AjNé‘è "ëŠÀ‘¦&G}˜Ÿšú 9‘ŸþŠ«á®u|^H€¶Ûú 8fhvÕƒVTS$|•Ì]ä+8°•@[B+ ¡—¶а†WÃí7\·Q.CÓ~ªŒWf1F,ø§˜èÅRÁ'¹ žÜ#ÉÚÂ:(á ®]ô|e¤©x¿¸“ñ—½ÿú Ç)È€ <x^\äИ€4Q(Œ#±ÃLpÇ^ùÿ îÛ0:oÚO•€ñÊ,~;Bgˆ'Åb4¡Y¼/ÎÒ¯‚º=}$D¸÷ÒîÛøs ¹x/´|èhœL!Þ§ÙZ>nA^u”ôå…€#×Åü€c|žñ· ©Xôýrå·J/ºñj ³Í"0^™E7qÀCWQ ÀEoº)³’×Á €_û~XŒ9Å“³é_gÀU'˜ŸûæÊÜ!øÄþö¯jð±8ô¾–Û“©½æCO7ÂÐüCØžª´“?µ ²TÅ:}{Ä«îeÍw5}Æ+sh²FôBü2¢?mVæ½îmÑNN[hšï…3+`•ÀɰÄépœÛ·©\¦R>sö9ä4ÂÒP¤%ÌÃ1óY6®±†¥þó^ÍÃŽ œN$g6QÅ^íøê§H»+cì”jûZ Æ+³(/ ¦Ó‰ÝE´fÉ5WlÍßu„ŠÎ—ÐñÞú­CçCE8•E#LŠS´Ì'4ÂÉB΢œhé•‚Ù¹Eáù®1 FŽõ‚êÓ¾Èùú&3/0½ækâÆ­ò3¬Éigg—cŠgJÀxeùD±ÍwÜ…öIê‡ú‰Ï?× mLoÁ=$Ãôï¡ &·|›-É}B[\8ôt!ø¸Jåu_ÇÁ‚œõ¿ΰàÞs=¸ÆÄ^ˆ“$«Æ¦Ú&nܺ|}I—£N¾7¯Ï0^™…ƒ(ÃÇ6‘*e ÍZÿŒ7¼Ÿ9¢Šm…àд:¯ÖÀîË¡¿þOüwÓÈ ¶ÂO¡PS$á{™{¸íÍ=,†Ù[«ÃÕ@¸DD^S°²)æoý ¯%‚jùú,ã•9Ä%J²:Aà….'ÍN0œ¯?-ûAs¾ œ°ZÀ½æp°ù'C+/›º¸?ÞYއ.„{ž€w~þ ‡Â|—àÏš•a ¡t;¥z•óõ™ã•9HÒ–µvqþÉOZïy Ö;ôÜ5”{Hr½ @\ÎJJDÒâ"á¡7YeëìŒÄ8‡80& AÚœÍÐãÕs*ÔÆ¼åÝWq¼h¾„*(n*nFËùú$iËŠâ«þô[›…cpÀ 4;Å瀓áNèVØ 7š÷B¶¼Ââåíòí±¸<Å”óñÐß¾j¶æÁ`‰†ëxmÌA( áÕ %x:¥f3޼ùúÁxe[k íÔ¬B’¾B´^iE¾W”ÞvbÇ/ð;E“_(TvÃAÉ‹ÛË~D\èm2ò´W†N‡YpFí–‡[5ì…,›Ý™{XØÝF6¾ŽÀÕœF×Åãhs: íÛž´ù<; E}ê+~î,©"°„II¸7Xê\Â[ .’­F ½V'ׇqÔ:ä¤èC|*ìâæØÌÜÇLïÆ½ê¢?£Ô67H0Κ†¦îœÅãhÃEßÎv!¼|ÆæðŠ…¹XçRzµ8&ðúô®ÑÜë‘xqØX¹O¸éŽ)9à q.Aéý<ÃŽCßC7¨B.Eu‘›ac]þÌ!&™Ãâq´ŒŽó…ö”ž´)„OTç×D>÷{.Ðe9rm7œ¯£!®%öPõM޽§ DÀÂ÷©0ç–×ZÝ å¸qOïDZ\HïJÊ5ÔÙhêÎY<Ž–QCTX°›Bô¿/ìñïev䘃rÁ|Î=Œ‚ÏáHÑR ÷n.÷ =p}Ý?àlúCQÃu8Ñm„Ðÿ›ÈQ*G©»Ð#› ™ÿ-Èe¨ˆY,GË( ZrW¢‹žÛój¿\†5„6x<Úî© íø^4D-\K\ü’ ' Ñž\%è]·˜Q¬WÕ(nt¼Gö,Ž­(À{ÎçPJ»Àâq´ q•7šÿq}ÒªË×lˆv”áØ¢  Yì ÷ðˆOSV\.ÈaÖ‘¦:C§}ª=<$”Õ5^?ñ>gÕU¼g}œ$Aü·|…†•MÞ9‹ÇÑ0^eÆ„Y©0¦/‰†ˆÏг‚$gGCÒ!äP}›g¡½”’ FCŸàsŸÉ¹1ß`#iÚó;Žu57pf»7ŒÝuáLúß “¿´ÐpN¢Sd“ñ7Ùå%‹ÇÑ0ÄnÑÃEi³ìn¾ñO™³Øý>méT‡VÊj˜c‡mäåL= ´íy%q5äCï ¹ð";Gƹ¹ÖB蟨ÉOï}5Q~™ùSë+ çÁâq4Œ ¢(¯ÅmH+™–Ì™Äçùœ‡]žà²ÞºÜÇ@û;DwóÖr!΂`Y~löŸö‚&y’;Lp4šl£á(ÕŠ[Œ&Aãì´äõÎh_»¿BÅ£ Æ+ #ìB—Y†8K³¸4âÍ«Î8QLahAE;C‡Tkhp­G´Œâ]7¿*[®|ˆj ´(Ü„ÊT„ÁÌÅ÷ps!¥ŽÂ r.ô7Üô@]óñ+‰+¦ÄW Cê˜(‚ñÊ ~š*´Ðyg¹ôî¼r3åÀNÈ eV[š¦Ü虊<^$´Uïnø=±8ïѺéŒÒ.4…î£ûNÜšì¡·à<››{9Žˆpà«Ñ’3&/°Xܘ„Æë˜|Ù¨³Yhç»@Z݈ ò?½Í‚¢KO!‰z(t\éQÌß´ñ²†Ì WI¯Þç;^Ø)_^:À¿ñpsp>´¬&ÀÃzÐïêuÉ»>ŠÄõÿ8 ˜›5ŒÊ%‰úvŠ’…ÝR>ç6Ÿ¶×j çFl±·Dñ2ËI”ß„>’‹oÎÉo ?Ër˜ÎFW+…Ï áú¯ÒV¸½ó„›@ÑVOe¤Þ5˜?;è0 Æ+í"5³PzëbnÒŠÏLtTÝøß1að‚/7L9´­Ñ®XDÒ8ü-?wÝ =‡âü‘eààxÖ'€8û§¼† f´½³Ž^©(=nm>QíËl‰À$¯´‹»"Aûºú¤E=H ÔAüÜ þ*B% çÄÈú)ˆò¾Ððä„ü$¿‡çˆÛáš3²Òöå‚Ñ­ál‡B^çC¹Âè¤jí®“h±`Ïë¢#«›¹wÆ+íâ/‘K{4™€ðn0„Ž”4)¿=yÁ »‡(0y²ØQé¬ÉC8èE•xoJ§¶®2"˜® LItÙî3…{@%¶qfZžãS£¹—ãKcWIþ¬.2Î0 ¯´ $}âÑ‚Æ÷žÌ7¨ Ë 8q™à€ƒë«ŽF¾ñ–‹³¬ö"‡l%¤ì?Ÿ¤÷rÙÈCM^_=wþ¶ ÊǯLã§?„v0 ~ªHÂI|·Lˆ—Q&ìmÈ[õ?4œ ’6 ákj ½Ï=il=¯&ÿ¦R÷'nhù¾ ¸93Ý‚æðc{@õ…ôDšçwÙ©ÈK¡ÏùIÒÉÀº8/ôd&ÎkCQ,þ ^£ÔƒñÊ4ª „²ÝËk:!&ò;tqžŒ?Q®äùÈJo‡öe¼pE=Áou êÀõ?yBu,ú«‡¼ ¡øø~Ž—W¸10Õ F/À•ß4%c}‡ñ=¨çµÁ®qäõ˜˜ÛÚ¥´“Äxe>BÏs¤u˃´ÚóqV¼~¬ßÅGaÕG{yn¸JI帙ԖÑXŽÊžñ€ŽÕ!ÐoµÆàï…Îö+žpÆì…¶ºçlÅ­2“@µ8¯ÒHkhy….ŒW&ñþ[!xp-ItÀاÎa*‘ú£§ÝQÖcœÌà lM ü¡ô]k ©‡/[Xú:cÝ éTóG˜ð%xùÐŽOc^W2„jq^ŽËHkRBÆ+“8#ʱ=ˆŠÓéÂÆçðÕ#{£ š‚ÐWã€Õ[}•ê©é{—AüÐ7C¯| ‹bTBœòâ(瘠[ë†+´ê㈗a]MÙ뉡ZœWõz|NhÝJU ¯LbES¡]‹îè4"æj4‰YEÅF¸¹ yj!·xJ뀋æ‚Õt„3ÀÀ"˜™Ó C_~b0ܳ¹À׆“s¡Ëìª;ÑF¢(°µ$r£•aq`cX·|ñ ÁT—ã™ ßväHTX鬺0^™ÄБB[(œåGJLì+Ç7ªãLC…ÑTUùرç åÝƒŠªxÙë ÄÃÏIW¤EŠ6–ÂqoNîŒÔ¸¥ÓÚk:tíÖ|\ƒÞݤ´_Üš8¯\–Äyiù5ì“©é1¥ŒW&ÑH¨&!ˆÉ_f%Fׂ|£0Þªó‡ê)PéAˆQ|Ê4PbÜå À… _åAö׿¨ÒášÜð¤/eëá¶Ïg(éÛ‰\ü©®üÂÒXqc «æÁ\+w#˜éçÐÁ&’Û2^™DÞó´ùýKí+MZƒ‰Éå—çØJÇu{CSª?y#¡YbÌðFϺúHä•PŠa^yÁؽõÁ)¹Š@‰òB¸.­‚âÙ@ ojx1cXëì Í÷±ŒW¦—I˜¾&Q® Ñœõé¿E.Ký×ÈÃŒ,v¼3؆_:ý-SÝ{ޝÝú­ r›vk=Ý¡J&¹ô›m,‡È’PÔüÛë£I¹¥žaæïÞ^‘‹RFôÉË[‹” Š3>ôÍá:Ì#­"¼}ñ׈— =åEìÂÈeý¯‘Jr ¥zy|íÍûÆö»Gçչ¡ Øn ΃é•õÅ`¿ã~Ð: ï\—!Žþ"Å5å` ¯UISœWm©v 'wá´ö—ƒ•M„vÝÚ ¹b±tÃ-œ0á¡+zòE&uQdrÑÈyâwâ‘4˳)oyŸrƒ!ƒà’ œ8“ Â(ÂXïƒÜã–8\uBîÐâhy‘ÿÖßg‰f‘V^ †ðóê8>[vÊ|¥x06šÂ°´ù!3ù&ã2{•V9‰×r¡'ÏhøˆJÚòø9uÄÛy—ŠT%¢¼+(»è«ü¨ý°Ú°Û('˜\úÁ8Âî¤Z*,#J¥y¤•WÁb¤íT#0^™B=A-uˆH‡é€HVö`5Í%ëåƒÌ¦j(6z±¯8æCŠZêg¸Ì!,{” ųê¾ëŒ®èƒSϸDs“QyÌÎPÓ Zb¿kâ8ëjÁÝ««“Ñïš8û¬âQÆ+SðºI›S»ÒÖ¤5‡ì“Eâzœ(ø#»©1JrP3Öú»—š uÇÏ¢©p_£­0¨4ÝŸû@=6û÷] Kë’+4ºî9"ïé=gbüäWéQ‚5¼JÅ0-•pžÃÝd5»¯¾¶ëªÈÏxeÏí…?[[šV¦ mõ™Ä7– tgàJh ò!aTG´b¿#ö3%D6rhµÉc0UÍÄUÀúå5>0G‘®.2Wº¡dYP­úHéõ?¼ M$ }Ìid ¬Ò3ð°/³R9÷ƒÝTfY¿.›l‚Àxe»*íü¤$ÈGGÿê$ùÊdœÎö8V¯"½[¤ÜJüZZ½þÙŒ¹„ÜRIuÚ£oï‚+Z„•„„Û‚ŠÚo €'þƒŠ¾rD3«.Y0LìnÉí[ëÁ#fŽ*Tà÷ÎÙ”=Wù‘hc„R91Æ+˜Ü›6_e!cÌK¡¯'™&ã0ÎÃØiƒ=W#°®3» e€®M=dŽ¿Ì È`?Š•ìSý½Ï Í3}yäþÃyö’Qª‚Y „5¼êX]× lrTìyev"V+ÕÑa¼2¶‚óy-¿»“JŽ^fá%vàG¼ |ob?†5v‚Œ0 ,ZY&WGÓ\´ô7èj!•_?4³®)5 ‰>xíØžŒ ¨Ò€yXÃ+|»ër÷vŠÒ»)ܲdlõRr2^™@-à &Ò¡ëWšÂ]H‚•1`.´[ yæÿ€^Œ¨xùñ!XËЧäçûÂhâü½4ÂθA÷ú?¤X†W›oiåÕˆzݾ5¼ ÂyæÍ.Ù½Rêd÷Mþz•2ŸIaÙ•ô?ŒWÊøEð=7¢nͺTzK—ƒ ÞUÞ…E,¨Â)X‹}ª;%uÆÅØì«T€ß ½ôߣÄ!‡]á\‚“Ë P±X¼ <®9³–\ñ&cXë)ßNºõîöï™Ã®—S¼qpxùÈÖ%V€“vÙz0í8 ¥©(Ð "‰ë¸y‰îç佄žv`•[5´Ù²^±Ù~öû\Š_†~×g9Q2¬Þ  %õ·RA Ã:Õ.d/Îv`¥ÿêWn5˜eŒ~a°¹"Ï© F¹Hã•2&÷¢Ís4Æ?ÂÆ—°0ÌŽƒù´1¨%8Ë»¬«n’½øq×â—#=UJ5´ÊÂáõïr!ŽÝâ)ý3u›ýda‘\ëü¢¯÷-û‹ûé$˜ïi ŒWÊhN›3H <K+Ѽ.à]&<lŪÐ&È#ÍWü&,*E¸à£á/Íè‡Èfƒ*ÂKÞqCZWœQ«>vœÞwâgMðÆñže÷ÏâRµ ßk´ÙœZ4•hÂ`š×ÜäQmÆÛw­-†ª¼q8^@æÒ—=áŽÌoðËÄ2ÈQ±Íò,±Z÷íõEèúìàèL*:ƒiÆÉÙäÁò_i¨Qª§žªØl´@é(Z'î¿YƒK‚ŽhdƤIu6^nû¢.KÀÛ¥«p¦T÷:ПpÝS½qõÆͦïsâéò²IŸ«Ëÿ·…ÿ–ÿJ“Ø(ÔŒ¼ìMZ;…Âǵ¨á´ó ¬GéŠIAh^C*Sz÷aœ>kIêÂTðz#Xœ®ßD^° þ(wQ\ |0_º É“ ¢ Z²‡ÁæAMb°31䯿 '­'ê7œÍ©_‹Å ÿñ÷…xÁÖ\z2wØdoçAÇëʳ.0ÄBß 9¼®»"'èf?4Ú]rÆq­G½¨–¼¶©’ƒ0^ievÑf£¥|ewÁØ', ûò<áÓ§ýŒ·£+ó± bq†ÐüïFÌO\»?]}naØíCA”§ô®ûAø”T }©%¨Xõ Ÿ|d ÒÊ«áb¤íT#0^)¯È O}V(» F:3Ñ$s±+`>Òˆ·*ˆRIr¸C}ažGÞ£PÁ4hN(L>±¦æ^ 8¿1õøC‹V^å#m§ñJ QÂ_&ŠUý„ieÄÆ Y=þÀâС¡è©=cfJ'Â&£%/zBÒ&E3ƒP–™^ óÙ^yÐŒ‘…R¥`ó уì=ÉФóý—¼·G¨ð”È´~Å+D^ÉЇ¤8zì ö/Ê) »KØ€dÈ8í Wää^‹"(À›\üˆ÷Õê‹È{YeÁx¥A$»Qï•ÞDîdßÝ„×}d8ãƒ$FcUüúµV]Oû¦ôσ¨yu!w’–þ„¼QyÃ-›ç~ˆH·\q˜O[žNç]HZ$ðW ÉJKR0^i;ñ9_bTu§îÂd7aœA†“~8_(ÞgŠ£Î¥™h^Õ®Œ3¤D¬CdÝç ýRO ^ᢎq•d•Lª`aCÚÜIR=uxAÞ«)¬ÐÀ#¢Vþ𠞺†àUãiQîW¨™ºïôH1 YW•ÑvsäœØé…¨ù¡àlþ¼¤­hG4,•†ëÈ!.-´žçã*ê TúÇýH+X<Žå8*…`k„ý@›ÝÇð®dÍT`›¨k=‘<„W³ð«d;‡Û<¤-¾óþƒ¦páwÕZÂ)‰À2 îö¢ÛÍ Æ7my?¬ãÕíµ¿¯¾i¾›|j¼JÕ/U eè—ø GϜȗ;Ù>ä³€€`ÙtÁrÀ³¦AÏë {Ž0qH+³E›ÆçåW =¾N¸ë¦T4Ë ¬áÕü¯]zyyÈWóÍw5 Íó "A”½ëjz#Ì¢Í\Ò"",}aþëŽiìt*IÔP›ˆ,Fÿ¿ùR~?ÁDÛÚp¾YôëQš‡šh|ú•—lmö{Iû'”´vóÊ*?Chv;;»¬£Íw4O‚Wbð9ÒÕƒN¨×wtâÂZåô?••ÎNÉ*ökÞY_6v¦$Ì ›…»6…C¶±:ãÊ&1½¸jŽ5°²þàþûb¬üDŸ¯Ä;c»Ù§¨ ṟã£_E7"Ÿ°ÜRDêEÐyCû±yÛ.Æ8*Gl…#á‡ìO‰ÒëGD–ÃpŸÿ‰T ¸jŽU`:d3—–9¢ò‡ ùª¦ñ ˜ýy±õÄý0í5¦ÀSéiÇò‘Ö]¢cè5Uæò]BácOœ gÀÅ0gÈóP“rÝoÝt*—\d4‹Àâè•´låª5RyÈ)µ E ®ŠñNÏZ¼ÛDPšÏÌeèCN§H:SŒð&ÚçË ³o·‡ÛÊ5àXø+Ú¼þ‰X5 ¥Ýߋׅi‹£WÂêxnÙµIbþò¹÷Uûld£è²'v^öÂpìGXFJ¼ (D³R'>ÅÉý ;0…¡^òæl¦d—»üCÀ½`Æ÷W|F¾ã^Ôpã“ÙZ 6*Û53å %•¬Òµ´Îû ~#å{^è]c692ÃËHCrÓ…n2ï' Þµ3¾|’’ýö{á/d6tÒ¯DKÉÉmp— B0زBiªhÆ+%ü‰óÄoMï"ßÕVhB¾U}.lÙ<È tA|¼ÁߨáÙWX)î%ÒŠu;æ‡$ðõ¡Úwô‡Öù «Ášƒ Ë{rSÎ{Ÿtm†2^)âxøª=«%‘66*@¬€74çH>¼¾ú~] ›<ŽöÚQØÑ¡¼z“ÅH(ÓepHFþðþ†{Žp™y2'Žº¨"XTƒÛXÿ¬Nœi¼M”¼Ìõ¯B?Û`Ùw¤Õ +ñn¸¦Ûö¼s=¥‚L…É-…ö>ÒêÙ [,V„kÚ{.)¼¿!¹zãô€ûsÑáJ’(Ë ¨Æ«Ï°NÜ)æ;¥u‰O#Á'öXŠsýë‹“’’Cªg Jö?&¼xÕpA¿pl¼ƒ›Ë³¡j¢'ähAhò'ñù´ª þ&2ëÉ´@5^}†uâ&57ß'ˆ±'*ôu<;Já¨ÓÈBü/s·—apŽVʉ^í§ÕåF3èX/DªCGüw°–}®ópX‚Óå&|‰ƒ~txþ;g𢿡*¯>¯:qoÝΛï”Ì£¹ÑëãŒ@‡r¡ñ15„j~îetÒrÕŧ¯Ö}'íx×;M€;ÔñöÏøÖ§œ†| |à~M“‘ZdUzþ'@e^}Úuâîì…~/ßÏV¨ºŽo¸æê˜ëpeXu3tÄBÏÅźP{E”SÔZ¨Ç«O¾N\bÿ\¢om­‹¥¥¬Ä–j¤U ›Ü‹°NtkaS!•z!‹ÑÑœ‚˽Ÿ-¤ \òÕ‚š2¨j¸ç ¯‚§Á‘4ŸöŠ‚6H"—¼Š¾"y©{MP^û¼ú™®‘ú!†Ù£lj^é¼ñÐX -㤯œ/Òž)3]:)Š*'‹‚HËÒÛdÐKu»Íϳ×à\8ŽTxLõ&{ ï}­”´K¼ªm'y¹ÈŽ"@õ϶ù–,cµlÒrPóêT.ôÄ[=ƒña¨VøO‘Ò&L½-¢¼z«Kß}õ¹:ùA…ñ-ðç<¦Ukýdx‡VA¢Š™n“áJu^n©|ŒñJÀY’«F‡Ç‹Tgä0¨ŽÞ,EÒÓÞw1çœ][D±8’®4”Û€Á[àäh˜ë}>Ú=zäHlõŠi(‚cjój›ò1Æ++Èžö5ùp‰¼?àxÓ‹$¤4kîBúR+”áŠo½a|Þ0.°4Ôb/Ù²7ùÔ!Î<ÔâÕ#o g;îA¡ã•€Á„0ØË>½3|ÜP½èK´ k ˜O9v0§B½¼;£óá¦ÁT÷¼ÈÎM½/³£x²–D!3ÇF› jñ*©«]þAƒnj7x°ñv)ã•€z‘|£.!Ò yÙ;¢äT ®|¥W^²Q̨;Eþý^hwæ œBqßêzÜÃRd¹¥ºÉiõ4g•‡zóà&×–¯ØvÈòór­dÞÔWB»3:èÿÌ{š{Ãç*t5 åÁX¶¨‰Ì©Ö@M»]?5KßµŒW–à0 Ÿ¹ˆ½¢óP˜Ö¤‹äy 5ÄB±Ý+_™øŽe¸âÛA¸î<ã§çV ð“N`why’ö±ž¢ÑŸF¨»¼bÏxe "ˆ¹¼©zú %ò¨‚DóùúõÅ,Ûý›¯›¡}Õë¯ÚÁD¢ý _GŠ9ãPàþ«ì¼Dæ}zòñ‹¡²Ÿ!~’’ѯD˜@ö$¦`ÕÊ“¦Ë¶%ÉZ­Ô:™åñ®Eñ»’7b bq ÜnLr‡ÞûàƒÜCeä[CªÊEÔµææåÀüíšÀO¤ìiœqÈæ+ºî›¸ð»ò¥!H?Óm‹øugÞäš“1l‚5¡¯¸s—{Ÿy:’ÍlVRƒñJh@Ü ß¡Æ+dƯA>€ ¼P½zÚ‚bÿñ&8Þ—àÄ©y`Xk#˜KäמÜÃ6ø£óä£qéôñ`¼ÒŠAy02ƒŽ¢D¦ƒQæºiÑÞi¬Âð¨| åÞßKGw¨äÄG-‡iž¡¼íE ð¡ðÝÓ$ËÆÊ2×±ŒWš€3/"Ðc òR4mÕD;Ðð­išK=&õõȓɣlëa wóò±Û®PdúÜY¾…Ê¥ 4¶¼ñΡÝ4¹ëXÆ+-àC&Þvú/zîz¤UOA©eÁuç7 çšÀé˒;Ēˆ›Evs“a “ûx·¹<–˜è$5öÓÆ+-à& ö;Y=Õ‡VÖ#'èW¸€SC4±®¶úNõà¾ó!hw•€\š6»ŸgçÙ·£¤â¹iã•p‚$†ß‰7š‹áN¡Zº[ðÒ¿ÒN¹óÒ„þ%ÑM-˜JëÊÛ†µ HáŠé- "ã•°« ßX‹÷Q| ka;*²4ç‘õJËuT.zh´?xE5÷…i%_`-Cm~›(ATv.Ý`¼ÒÖ‘R%óQ¥ý·Ð-°)7!}Câ7‰ògŠùÇ}÷,¯ÍÛ°zÍ9ÏGÖƒ¾ª÷NpC{1ÊæÎ+e¸ómùu0^i :ñIýáãË,вšåœ U8|¼ëeöKrT%ù,*þð'$•ÇjOVÒnÙÌFU{±u Ñ8·—bM/¯´€°¾|cJ;u ÕKé‡j–Cáûÿ˜Ëlš:Ì_H`wBKãýE¹òGþÁ=胡µÆoÖÇñÔàƒ-Ë 3^i#Híœvý”)¥5úÂ}PŠUfRo½ª]Y¨86ÓÌëqTà17¾ˆÄ9w˜ïxoì°Õ7|CJ묨lÆ+- 7‘xâ2PîªÐô r³Ë¥Íár¾>âeú²O~qn$qVTï¦)Úlˆ’‰® [Ídܲ ¯´€È~oS$^Ž•†VÒ‹lèýQ#dÏã±ËMºw½èsŸ€Ç‹ˆ[”H#QzöónÐÇúç©ÏGØÓÂ)¶ã•ОÿrA¤… GŠ«rÐ ÿ€ )Mé-"ÂbWØASu£6m:&©Ï´ØeS®ƒFDZ(i8ÉáfÚ6kã•Ð:œoàñjÚ¬SU¥Ú!ÃRå¬×©Ãò*Çþ'V.‡! 2Øí=XIÞ° /øƒÔ(·ÕšWã•Ђ(Œ1¯"P0oÕ]𹲈×]CË>W<&†~P>”GWùAW㌑¥ø¡îmVÛÄ 0^iMÖI+QbÆHtîˆjw,£têa·‡J‡$HjWóoE1´Z¬€r¿ÞÏÁ«o¶WP8ÏJ0^i HµpÌ«ÕÈ«P÷òB›ÿUJ½ó6÷z…#RÄÖ¯‰#¸r¡úòç=Ñü:“dcb˜–;`¼Òêãój ŠjÇ%Os#ãé«Â™í;[ô¯*4ç¦ßq­.8¾ºÚ¾C9Ó?=`¼Òj’8+Ì«uh÷¹1‰B€ôÃ7òÙñ¨?™]óœIÿBÆ+- Ù‡™ˆØ“ú œö£jHO³ãï>Æë ÁIº¦­DÐ/*70ëÇÚ퉶Á>ì¬êBxyÕC)Ǿµ`¼Òzúó:£'¤½…r_>ôÚ<ï¥' *-J½};¨§¹°U}˜'3§«À÷Nd~œÒÙš»6Æ+uð>lκ—þ³0z?ĵçÍ+·œ±”¡i8¬•tpyn‘^ꨗÙ0°˜º¥ïáÖ´Jxœ²–Ö´Ì –0^©}³j–Ëç`çhZá‚1„LH;°w©P¼‘ôê7¢ù‹ñÚ'œñn´«Ñ„»HêËá°oO¾lÓs¢ñ£YKIå‚ñJŒõÂæs£ó!†…KåºåG‹¡§nHqP­Öv#½6{óê<ðh¸Û÷T¹tÃý.È]5uÓêÕ¼–<Æm3y»-_4ú¸7M#mçLÀx¥ – i 73ÑǬn|ƒ÷«wC&ûÏhq˜’ó4é¶Í#ñç:9t•ëùм¸Á!owÍy þÃŒË%+ß&çóvZ ªgo`ûzèŒWª`U ÚLÍ¿×l÷µ$M^*–/ìƒ_ÀfèB…ì*ÔxUÛk˜8Ñãâm¤‰jŸM_7- ÃßèV¢ŒqžsèÊñ”+¿ø3)gøØÁŠXj3`¼Rë íÙõÌvßGÝÝùDê©=\÷ÇdG{Ãÿ9 ÉÎ’~Sr¥¤¼åý¼c Ò­…뀹íã†ô˜nX4ñUžÜH-DRØ€‰€ÍÁx¥ 6‰ª+ǹÿ«Üãßü¤U ‰€ C ƵàZˆÓq<•žy?ßo†ƒ†’X>Àº’cºzd°¤ ¡£>à ¹ûK;¯TÁŸµE/Fv1×ý‰#iuÞ¬ˆ^=x7f~E¯etž‰Fï…sÿ6AEwÚ¿RGú˜²||k¼?ÉþÉ›ÞbÎ2`¼RûÅúÎg9Ì•2JþŠ„3Ç !û‡+±ƒI¸Oö,nú‰JP.í‡æ¸?_r›$€{Ó.DÎs&õÏ|sBCúnçñfîÎ0^©½Dvò£ÉhgIº ;F#=û}G¼‡3­…ìIàš¯¢œÒßoöUÔ=e1ÐÏçV“@ÂY‰‹þBé D ÿÂ…z&>8=¶ãUàx ¹!Dïr2=Å)ô£§W®²yé@_Ö®B-©«K–=5îý¦¯Ël2Ÿê[w§ïOkdîæ¬ãUàMfÅ[<¯æ ™Ñš_ç‰Üžc{âw‘ÙÚæ,$H¾”¯g’qô^/×” *Lð=bæÞ¬‚š¼:¿zîüm²ž`Œ/†WÀÅ\làPÒ*Žswt@†ÓmgìšÒלdtÊ<÷ô½Ýu–Ñq ÎW ÙhpµL„Ùµdº§êñjCQ\l7XqãËáU©ÌtXHÂø@œÜl5vzLÀï^Ïú‡D×§ª*D êÇzÊH¾¾¥‡ël‘Úá¡§Pc09·¹[³ªñjƒ]ãÈë117¶µÿJ©DÔgË«+ÃÃ7®9Z.7sÆR¤µgZÉŽ6cfð|˜[Û¹/­¿ž¸4¤à2šë}³’ ÃáëÓ#šë[s°Xš•XvŒðbQ£³lÕxUš:q‡*i§?[^͇dx.¼1tŒRWsÖ9œO”A2úŠ4õÞaî¥ÁiñÝL¿J‘‚Áv§P{é>Nâ–Ƀ»6­RÐûÛL͆‡Ÿ2Œˆè^G895`ùÿŽ5PWŽ4=É'….Ÿ-¯‰t4s†Þ¬à’³áÐ÷1(Ã8æ%¸ "Ê{81À©•8Xâ´÷dÉ•.ÿìV©_èìÕ»NÝ‘±Y”[ä‚ßXTŸ(„j¼ª^_ è~¨¡Ðå³åÕ¸z{(šþ÷˜&.Aêvƒr8–á_ð¹…Ä÷u¡§ïÿ$™F·»ŠÍׄåå=~¹Lḋh%¥/»Z¹gº ¯Žg.4~Û‘#Qa¥³PèòÙò*nÕÊ%›vˆÞˆªjî”.¤D ö zJÍ…™í%ÂÑÆòƒáîÕ#M»Ày÷¢W‚,´¦ê­Ï´ü.35=¦Ôã³å•~ÿÉ\Å4MÐq~:Œç°Û%¹ ,p]xÑ'G‹J= .y®½ŠÏcã(gjú¯âï:xC&ìà³åÕÃ7~œ!×MŒk41­Î ¯û^æà÷W–åQ´yQ­ž œzX¶Á ùn"ìò^"~ùkm¥Žéó·«€E†úƒ »Í‚ :#tç% =†óoô«$›dûbQÎ!ïaæBµtKl¿ñØéŠRßt#x­t÷Ÿ-¯Œàrßl—Æ´nT9ü|ŕק6Úìp%]äj4F 9"¤H„4¬ý@³we52€Wµ¥¥xw¶"p/¨úğ‹÷U´ô4»ù°Ï°¤ïÀ‹jIëuÐtÃîÿ4ööõ>´–_ž#VHbD@¥(—Âq7[Ý•Aðjþɡ‘ÁŠÉÂ>q¬\Êñ(IàÂA ~dÍxÏז„ 7ݶ‹ûê¢*ø„ ifon«lo ^ŠëÂ<ëm×èÊÚ¬8ª ˜}¥6XÄÍ8‚~Zóç$d£Öy8/ LÍCá{Ýú…ÿËûbgç)¹F䨿f8šÝåÕ ñÛñ=$ô9 Œ° ¨9‘Ez 6¯N·T>öùò Äν'ŒW©ÌšíšÐ›N¸¢3ˆ¾úã¿5Ï¥tϧŒq¯/†Hém0Ňý½û¾¶ÄE%\v9gÁMY µyµÍNùØgË«ƒÜ¿+¨õ²¶˜%›%ëßi>LUWFØ÷jßïmƒ²t”8©^Õ+g(rÞÄUx°.qòšë@BÔœÕãÕ#o g;îA¡ÏgË+”P5DˆËAWÝù¤Ç=ÍDöý›¯S¼á{0ç8 úoVÔe%M§Ö–Ü“õP‹WI]íòo^òÿ®íOÃ&Ï_ó—eeFŠ R«E%¨±Ÿ:Ü÷¨AÇ›?:öG“r–Öq ?ã¿2-l[ GÌß®!LÈK›ºòs…÷£Ü$Y/urî/ÂbjV• D•Åy¿á¶NQ+ Æ+ á½2ôœËÂ+ºø÷žP5t'-AyÔ·§¥²Ï¿ÜÃÓy‚ñJKh&r‚÷î,:ð¦kÙn_}ëR±”ïTƒm‘«E~Wb×6ñT%¸YŒWZÂQˆÉkã`Ó7wÏì‰2ðZ|h§ ‘1@RTûUæÛ£0¯´…dñÌ–T¡¡R$~†«œæy¨s+‹Ö‡*ƒñJcø£©øUÜpç0¹A)eUá¢2–øýþŽn¿ýÀx¥1¼w•†[Þªmœ 91¢@ñãònÇžiØTŒWZÃð Þˆôl% ¤?Ó·’L.„>ÎÃÌV¶Ì00^i Oï¼óª§Û\*µz3Ú¹Åi`Œ{%e˜3Ý0^i£ê½uªbP‹Ú5K•Ê—Ï5[;YÍÞn whÆ+Í!Q¦b¡~gdäÞ}§ÎÞ¼+;(éÃ\¶©~_iã•öpÈä;Ôï¿/–‘{–€ñJƒèn¶P“7 µË hšÀx¥A¼öQ*´$‡-æöž?¯´ˆ­>G̤ ó>d¾W†ƒñJ“QΠÃÇUªÊDë||0^iºß[$Y?à5"Å|¯Æ+m"®–éÌ ‹d÷žµÆ+"®¶Yb)¦Ô¯´ŠøÚ LK9ý£Àx¥Y$64I¬íîa&Ž~l0^iñu›(V%9ÝÔGÂ6㕆_¯±üˆu¤¾g˜Ê‰ÑÒ Æ+-#¡±ÏÈh£wTÏ93.ão&M`¼Ò6Îôtj¸C’©ãÒw~ ,tš~D0^iïæÊ3 AŸÙ2³½Ë$£LµãÕ'€Cms´ý±v`Öl!u»‡e@R4€ñê“À³³¶ÿ4…ÁxÅ ¯Ôãƒ`¼bPŒW j€ñŠA ¨Ë+ý®‰³eJ*ò`¼ú|¡¯œç[Ííº*% g¼ú|¡¯ì¦00ËòØøuÙf(ta¼ú|¡*¯ò­%º0^}¾P•Wö«akµƒBÆ«Ïêñj Õ†ÁV¯R ]¯>_¨Ç«oò׫”ùH Ë>A¡ ãÕç ÕxuxùÈÖ%V€“vÙzð˃Ê~ÑT£\ñêóó·3¨ àU´4ÁïÃH‚à2ª6ÃGB𪶴ÄóÎVþUUÿl†„ àÕüï³>>æwËxõùBÍï6 ý¹å§>Êg3|\¨öÝ&ý┵E\;;»¦ ýÙ ª}·¾éþ[P ï=W9ü–ÑŸÍðÑ¡Úw8€póŒ-œÑŸÍðÑ¡Úw›m=÷`«FÚgôg3|t¨öÝ â¶?ã&–ÌèÏføèPí»ýõ›q'áóûM.ƒ•>»Â0”)]>ÝÈ—þK”Lÿ5ŠJÿ5BJ¤ÿù˦ûe‹~OæQAµõà€oËÃçÊv”’Î1ºç‚éþ#”³+—îk´O÷%Êû{§ÿ.é¿Æ·éçfñ,içÕˆó*ñŠc*M¼õpê—•Né„d;‹Ÿ›Ä¡Òé¾ë÷ÿöÎ=8Š"ã¿%‘@6›ô‚áH…ƒ„€äB‰%w‘*…B¡@Á×U¨å%A•“‡Z%ŠILä¡‘ˆ/½SD)ލQr#'h¨@bmÏììîôlYÒÝ‹ëâ÷óG§§gú;¿úÍ—íÞe·[_ctðÆ^Òtrîf(Ï—Wê‡^à+ø*DÀWðUˆ€¯à«_ ÀW!¾€¯B|%_…øJ¾ ð•|"^=­¯ñ¼¾Äéìêwð_úßêkýì;LC±~ðëÒx<Üè‚èC‘QCM1¢Dã¢ÌØÌBûÿ»O–þf†CãäÄ”äûêô4Öõug,Qù6€-ú†$ôß '±á†„Ô{ÿ¯§t¤ ¡”Ò°2½M~YAT~ a3I'AÔ8‘ÞgM^ìmZ«i̺Ym Dˆ~oÌðu\òƲI<ç]ôh€& # µ”†“ÆËòò®CuÇî²IphÌI:ÅØ\WŽFÏ›yQ#ý-A{ôc{ó×»Ü, ‰Ö¤‘­Œm¥7tÂPJ©£—RJÃJÕ@c!‡Eí|CNëб3d“ j´$çñ²~ÿY8ºNåÅ“Ñrbô碌¥¿6’äoÊí5´ž—gi©Fj){©¥4üÍã«®èü]ÒdÀ¯ñ_*kÜ»_éûÈ8ôÚ’:RVÀ}%•óò0•¨K44¦4;Hv,“¨–R{/”†‘­qtu½Uÿ<æ-¦â+›Æ>šß‘¨Ë;Zq4%¢ Ù‰ªýôO^ž¢Õê&Ÿ%÷’|¢¢†ZJ…^Ê) +'·.¿r°w}s½øTYÅW6 òl¬;rC¢ôdÀ¦Áîñ,ݹ*y¸Ü£ÏòÕZu Nýœ¶ý%ßî‹j){)§4Üì¤}æßBwiyù¨ÄòO44>%c ±¯é9 ½æÄæ#É1LŒþˆ9Ý>bކŠŒíî~ÅÓ²ïE µ”нtR&^Ï1›jzÁ<* /c54j¨”—MQjh”Ña^6·Y ¥!F6ê1^–ÓçêlWÛÛÏH…¬¡–R±—ZJÃÊnÚÌ˲-ô.ý¢íиîv^l§ÍÑë]zM2f~Tv cã35$ZºÞ$ßÛF𑼆RJÃJkn‡%›ñÜÌØÚa_{›¤“àÐàÿÈK ‡I¬è¬qG»‡6,î8¨Y2fEoj|3±b¦Ká×¥~‰=4yµÁ~0üGJ) /ùýܽžgl:Y[É'Á¡ñÎøŒÙç´4~\Þ'¶ÇC*Ÿ×˜Ñ[q\Ÿðg•-û%Ö[£ÑJ­0˜–¯4R €K–®³d{|?´ý΋ ¸”÷ÕJWÉw¿tÍ©õÕBÕüv÷UAÚ/_sO¶J,º]ÁoI_µÖ³‚ X<ÍiŽá(x!ÓÖz5ÈW¶s b0}õÌ5qYK[xeEϤ ›ÈZ`íØ­IžÁ{»b3÷k`i«W¥¼’KDÛX㢫Úwždì9²²o|ޱ¶è¶¿xRg[þȯÙãoÉ\<‚’¦ý¸ -þÖïY5íèG)S~°õ0e}‚Þ®â-m¾z„¦•ΈšÊØ‚Ëæ³|Õô§ô§žÉJ•RGmŸNs_Å}aûš–@SÖ'hvuÜRÐ÷Um¬±Qβ¨c§ã kΰ|uˆ^bì³»ŽÙr'cH2ÇÁñóx‘߃UÇð“-½†5þqox…v{Uù`hÉÌneÍIÝøè×}4÷Õµ\þMÚ8oÊú½ã pK‡6ˆ¸¯vѼr’JߦÿðÊlËW?tH_û•Q <äñÆ¡5¿j8º¥GÛLÿãõºÚ´¡ªªê°ëq¯*7G %ÓØÑ)Çè››Ë}õã‚.yó^YKÐé+~Ρ "î«õdîͽlÓž•¾ùÕc=”º¸ÉöÍ ÀL_}:°Íåƒ²ÓØÑÞkß°ã=äæ´dNç-9“˜å+c)f6è–ÀySÖ'èôU~6ˆ¸¯Þ¦¼RK%Û©’Wæ’a䦽yüåÅ|È«Œ‡\`4¾ªk7®Š_™ÆJé4oªüàßtÈ®ÊÍhqøÊ|½J½?pÞõ Ú|廥CDÜW§Ú=È+O´9Z³ŒO–z[¾z½ Ò,åÖi ÿûWÁWïч¼62‹ZÃ+}×Åó£­i–¸9-_ ½WPqà¼!ëôúJ¸¥CDÆûÁ‡]ß8+š¿œ×vaÙˆtò®\~<îڋƹ*ØßÜË*&G ¾:Ñ~È–òÜžOؽ1óKÆð±m9Ý]6¯Ã–jÞÞ=ãoqøÊ3¼x‰'«9Ðà ]·µA$`~~µæjwãó«Ö¥]Sæ?æ¶N½Ÿ“]9cßÜä¡ä§_±7ûÆf­:Ú-µöv÷36þXŸíN-𭿯gìÇþ‡¯Ê&%wžxÆÖÔõ š]·´A¤qþYc£œIýƒÏœ”ß÷g¨¦mvaèn ÂMÆ€g_m_t1oqÁ¾—‡²‰â [.æ-à«ß%µ’ÛJJÓ°«ö"ßpIðqêÙñendstream endobj 155 0 obj << /Filter /FlateDecode /Length 1417 >> stream xœ½WYo7~ß?‘…ЇUëexA[ÀN#Eâ ¶òØ~×+[éê°´²cÿú÷ )›jƒ ô ÙáÌ𛃜ámŠI±ýuÿÅ,¡ˆ›ô>ÁéQ"¹BL‘T I–é,ÑT"iŒãTÉib°B’ëTIŽ£ å8š$E#%Ð<ê¡ ǰ(‚ý„P°ª·öëQi£‘¨Žb’L#.M€I…4&!&/Ô1¶d:Ln·R°N¯“Û„4L»¿b–Œ’—'T¤Ie:š$mIJ8CŠA`‰Ñ,9Ëö÷ß 5EÆÈìóév5\pš½æŒ¹bÙé0gŒ!Ihöé©6Sj²ã#û¥0Ö’]Œþ´T€Aƒ³BSÀ1º‚]Oa£µ–p˜r;æ­pf†£/V€#*išŽ´æ½U‚06’g¿sAÁ)M²¥c–ŽZ9jí(/wž9ò«·ó›'_»õÏŽ:rÔG8Š8êÊQ?»<—ÛóÛ=ü`4âñ‡€˜8êÆQcGÕ0[6„ #IGï’ÑÏgÙ/ÜCOªˆ‘˨#ƒˆÎÂQ×^ÐÌ&RN“ȆEP€ÎL0{j©ÅXÍÆãuOFëá{FË/Oƒåç9®½ŠœGü,#«ëÈ&^ãagÚò1OËçñ¤ŒÀª#gÛ17¯ü&Wß1 ÏQÉR1<ŽÆ#wëÌQ"v­xç¿FC3>rëþÂÿä¨ÃØ6—‘2ßíßjü|ØDïp”|LnSF4‡æÔ4Úž&‚D˜ýÐwí”óò„`™þ±°:;:7(hЖ<Ö¹©qÂæÊvî7Љ‰ƒ2nIAË®7¶µ c0pßh%•½{£0BˆL#/.‡mÿ…Vê·åÐhf}³Y‹ :»²Å`{>¥¢`mr#µñµl‚µ!¶þ,øÂ4» e™¶óãRg«PÂòÛ!‚BYAW‡™,6¶ئöxãe3—´>Í­*a’p{/ƒE˜É´ÚÚ¿RQÂvQ –iºecmi˜¶¨Píö†c©šˆ ¢3pR­„ÑTw>Èö|Ä .¼““– øBÙ›¾´Y0> stream xœì\GÀßîuŽÞ;HW@,((bï{¯±ÄŠ Q#FűÆ{ì5~–ˆÆh¢Ñc/ÑØ[4V¢¨€Çûfö8D5qŽûÿéÝÖ™wÜÜì›™W%$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$þ^ÿó§b‹"Q4øçáK—Ž9°k׺µKçÍ0adü nÝZ7k\­ZÙð^^6VИh­¬, K+г¥x¸@åj”:Í>ëFéOI˜ 0{eñZ”]”ýG(G/ ÜÚí±ÿïçÙÇ·.>räç][H›™7mBb||ßníš5«W-2<<ÐËÉJMÚˆÚÊÊÉ+0<<²Z½fÍÚuëŸ8aÚ¼¥k×nÙõó‘#§/ÝzøP‡#ǾQðCZ¶Ài¡uü,´Re©Ð†¦éT¢Ðºú -VÞŒÖO‰Ô7È@¡u: -ÕŠËiºjaßI8IÅ §Rêé›n;¡¼¾BáDbÊ4¡Ú¥ú¦»EçgA8ò)(·±Ÿ‹õur7ò5N£_ßëMÆŠ¾'ú¥¼ÞdÈ_~ ý‹Ÿ¦éÌ«ïëÆý<¹x*|ûwõö¨Ð,ö m$Eß` ­g¶¾ÑšU?¡}¦opu„ÖWYßh‹ ÍÒEh£–¯ú[‹\Ö[e%á¶Z´„F Ûv ´îÐÒ¥@ñqq½ ìOQ8º:99ÛÚZš›ªT´Å(ÕZKKGWOOÿàÒ墣kÔ®ÛªMû®½†%&%%'Ï¢þo׿bÛ®\<’‹ó—r¡×¤²y)âg®÷cî½T½@×ôBžÐ ¾/w7¹v™ÐäæÍз¹Ñú¾l€¾§ì¬ouMªÅDSB‚\](Îf¦í«Þ”3KŠ…•-ÅÊÖ`Í‹ôç0 šfݺ÷ï?lØ!_$ŽÖÿá&$Åçb`·\dÿõ4ª–‹èð\”ðÊ…þW äyî+(båÏ.ê—ÓƒÝÎÝ·ÎÝëýœ»?ü.wO¹d^.¦Òoz ŒŸ0Y¿¿ Ïoû $ÇÚž»§¯ô×Á†êbKÀ’j›D­~yWÆ>yÏÓ䌫¨{V!Œqµ ˜ÑQl XÒvލÕëÒøXñîóÎÖWïjJ0®÷ã‰!¶,”(¶l¹¯yçék O98>%¹¸¿pÆLî!jõ'‡2.ð®é;O—Ó/Ž~Áw{d½•qÅMå-bKÀ’åD­>¥2ão[¼ëì_´ˆRÊR;F2®ø£ñ9*¶,Ù!jõxÃú]g«<Á’0q›’qÅÉ]±%`É)O±%`Ëûwœ¼ŽÅM;¨žc†Õî“éƒx Ì[–ÜS‹Zý£IŒ ¼èôŽ“•¬5Á4¸Ù±}MÆ5$'?­x–ò‘˜ÕŸõ`\ày×üÏ݆oJÂå>x¿‰ÿ3a\óG²=Jl ØâzNÌÚ3¶3.ð] µQp–õFlÙ ±Y¾°ø‘qÕÇ‚bKÀ–Ò?Š-SNzçΦò±øTÄE órŠ.(™>ˆÄbKÀ–º«Ä¬=k9ãùæ{* ÆÓêP½±)4M®R¸¦F»N[¶tI³ö÷-çýkŽäo06%EàåSDÇ0W¼ Ï×ýQÔ^#¶lÎzÆû_‘5öý×ü+ç{*Î×í†É¡ˆéÜ/Ü],6qÝE‰bKÀ–Ok„æwFÇ+3½f"iZ¸À#b«B5£ËáŸkk‰Z=ëÅ‹ŸÂó;³‚Q³] VíÉn8ÍŠqÝÃ3žµe‡Èü”ï¼@°¹Å¶¼Ëæw&TÕì9¿32ûÄMîxÎ$ïÁ=ÄòƒÒÕçÙÖý1ü˜o?[DùG&¦ s¾¯˜Ï‰­Ö¶«{ÕÅ‘ä|ý¿rÇò¢Y^gyC±%`öŽ˜µ?d\Þ¶ü oJtŸˆHÀJË&û׸‹q%WþLø\l Xã}\ÌÚËüƶ¼-Uó9ÁÏ—?³[‰¶«Mv’ý•à²F˶î¡O’ذ&ò{1ko~šmykä}ü9ŒóAÙi /¨i4ˆPh …ǧñR±%`M“%bKÀ’uuò>¾@Ù­ÁeUÆë,Œ‹!ûiüžWÓß²…Ììãé5Al X²º~ÞÇ«TˆŸ†}j#Ò9þ¡áO5í mÊö.\D5+1£ãĬ½ÛN¶å­ÈÇ^ß¾‘Ó’¦0<Qqˆì;ÍÀ¨afl+ÿï¼”ý#¶¬™ßJÌÚÛ®g[ÞÒ¦y—Å+õŸüˆZò“ÅKÄ ¦÷0±D ǶòÿÎwº{I¶ÄˆY{:c«îEy›Ç]åfAªéJkhçÎQ‹‡Æ±ˆ?«îà ¶µÿgŠ-sRñ&´Îóð8HtËä4U•/Ñ[–Œ¨ù1Óü°sa³¬Ïg[„¹.êòëÜÍŒËk—çáø¬Æ:è¸ØѺl“= ïR»{-q½'_1½“Ø0'3ÒÜÀñlË›•÷dcÓ/´´®O]¢i`*ŒU¦xqc[ûfÈbKÀ1-î>`[Þô¼Ôp‘î3ùŽX¥?ÞV¤g”aá¸lYañNm=Wl ØtHl 2µ{^G÷@u-ø½gâ_r‘|=šÎÇAÁJ—/Ñÿ[öTe¬âü+0žòžœçúm/H · ;Çn ÛÊ}èÑz୺ɶúÿŠ÷1±%`O1ûੌãÙŒï›×Ñ` öªýÔÍ+b(Ù`¹q«eO>x"Ûêÿ+š¿Å–€=G‰Xù5ÆÖcó\=PAGø’»uS‘NKÍ· ñÆçÚäSàR‰mõÿ‘ûªO*8ƒžI=Å–€!_Êã`*(*›ïWë–GTþŠ:îÆ}ËÑQº,{ΦÀ%Ì‹ã^bK`–5±ò[»Ø–72>ƒ‰àkÞ~™?ö«ƒið÷Y#µ¶ºˆØäl«ÿlËÏʵ’ï#%_“ð ?»–ÿÊðáy, õ¹mqµ±Z_ÜₘP™€ÒmÖ#=g#*HUú´‹&gbÁ…mýÿZkÅ–€‰\Κ«óâ‰q˜±OLß<Ö€2¤5ÝQd É¼­|ŽhÿíIî.ât(ΩÁ¿ˆ-3>7778–Ú+ž1ûôùä·õ'íªi&st9þ/8ñâ!þô'ÓâJ¼ÇT3VÖ滑c(?‰‘ñˆªç9Ò¯%Ò÷6µÈ/ÌIL×Ü,õ=k7®g [ÖâÙWw™Á´¸€#oЀö;õv¥àQQÝìŒÁÖhÃÖÒXÅ`Šý•×÷-¡fð¾PÍv¢êW,3’hò—ñ²*Ïšè^4áHG]—¦jZmsãk•8ãýŒS¹ˆÎニ­D"ƒ­¾ló†Ñ‹Ì.$É%z#A÷Ñq9žS¿ÄÙ%'—Aœàêä±—?€ø\C4ÌæâdÞ:øþkŠ·sòEŒCøm¦ÅY¼a&¥¾ÕÊe“È^²DTÂY!t8ˆØ¨3éª>Kí6«Fg!>ôèÆT–ù†µ‘—9ö¯w4ï¼Ð˜ü0„iq¦¯›ê_XÍO¼ÖbÝwª³gÂlGÚTÈh¢¾'#›…èPLÖe³åzuˆvû©¬ðdmeD޽¾N.Úì c4÷_ÛM‚8î(ÔSþ–í[à^[RÒá v7]ÑA”ÝU :Ò‹›¹U‰.x‰ÿÓËÎ8¼ PôÉx„(^7M¨#å›`ÜkÚ#†aÑ#íV ÃÁL¸‹©ŠWTéxCÁuGìfö4w¡À%þ¡LWilê­2l…íK†ßØ®å_wmq„>?›b©/Ñu!6í@ZÞQ¼¬ÌÜé—û N)…85ôh±À~6¿#¶-ÇTša©˜kÞÆá³¯ [µEš»A<Ât# ^wŸVB‡¨â£Ór4Ù‹!cñ<ÅÙÁˆñU;5!¿­®D}ï‚÷Kñtµô"w”¥8¸Bá”)¯ÂðvbkUðoHgYX&¼^ [›ï]Õû‘»‰¶kq镈êÓ_¯¾Ó€£nsc¹zCwÆq)ßO/Æ™ò srÆø y…=/‚¼€—¹wŸƒ&r0̯ѹÛçÕ:TÇþ5…ÕAúTDËïˆê~<öõ…S¹ã†vC‹ÜpyWh|^ÙµOë"– ÷[¾ÿš'íõp¡kÁß«¤N9¯ÎZ„Oà‰ÐOÑá ò0ê¸kxWù/ª^aáï;øcx=LîÈRž ôž®Ðøö7l­®+– ×™Æ@üGöÚn¨aá çm×/ Àž p« é—æÃAªf°Ì‚Ø&•E<£ÉÀA–ýeõÖp<äXðCP#pxHÕ:½ nXïk1ñ ˾%Í ºÊ•ðLy¤_Œ‰Ãá1ˆ&? ÃA:^±Y[ÄjŸ#«ˆ˜¡µÙƒYÞ3Y ô^2dO ´>ã0ž÷2/ïËgþ2yC0à? ExüçžÉk»2 ਃû5{£÷,¬×M0ì£ÃÁ.dtÓOo4ã´1‚FQȉÖÿEÁ:']5m;#NÉ’°Ú"Ý›€bo°*y,Z¬¬þ,­»ï˜½¶ 0 â˜|Es¥LmÓá`øHDgÒž4?’ÖGúoˈgM‚Hë:Çht—% ²6#1Å3 Û%á “ì¨+!9Y‡LÄJØ©cê tëõÐ,À&-æ— ^üŸtüGmÓá Í:!ŸÉxˆ'L21»…80f!U  Ôýxm­‚¬ÍHŒ(ƒß Ñb±~¿vN^–b'ó¹ÅèlgYص×ÂvïTs-ÀiHïú¨8~‡<ãdç°qGýpÿCÈg²Ü›üQ¢È¸Åƒ\’øÂq âd–½©] ²6#±¿†Óbq1dkî¯L˧äwO‘â²Cî½ÆÅd1÷Ù5ú¤Ããµ^xWþƒÆ ÃÁóê—8‡¨Yí›!VêØŠÎvh~ÀD/Òçqw Pâ‰X™±HrJYëÞ똽?<'»hcÑB§~Ëò9øçkÆ®î.î-·L9`ƒƒ«ãjÒh¬6‘á`N%ãßmƒÇ!Ú}‹èL#b¥á]îbå‚LLÜr~Vf4nÅöÞ/ šbPÒgµ7œè9)Ÿ;ŒŽ Ëù›?Ürï©\*hFÉOÛ¬ŸZëôÄþµ„¾ŠcÉ/+€|dÓHú£ò`vD¬/N)Hk´(¦z€ˆdæZAÛXݰ5Šq^­gËù›Ó¯å~åZÂNøGy¤Ss2Ìtuí1N‘! ý¾BÔ¦`:ÜÁ:¼JŽ–¥÷VP…µ†´F+öiÄv=Öq\xËlÓ׃A†ãsÙš‹Å ŸÜ{`Û6ÚèàATž;bqKò4ì]pVXÁžb¼?þ úÞ77|©‡‚ò¿É¸T`ÿ·Ü“åƒAkS¼[ìÜ’h– O¿„㎫¾Í–ôLµôi½¬×"Ú¬&½8uQÕÉ&åj}ÁE†<êóþkŠÝë VlYÊìðù6W²O\µK¤±,Ìm>b"—W«׫ò”.x]™‰n ð¶âx Î'+uÊr麮† E½¿×9>7;‚÷qVÄüù_tAÕdT‹“1uî‡úý†ÄÂ/x¦öub±?,׎™?@ßiÕûÞç¸ѸÄQó.óE,©V¶·Y)´§Òum¡6t ¢n'lHÆÈ%óȺjæ|zíAXþìÈ{fOÕȱb³+Šùc–9h÷åÎÉŒ¶ÞðÕzݰ+ö¬:¢«÷h@a3·Uï„u¤“îM‡bSzˆY¯Æ¹ÎäY`!^F°usÞ¡™8öVön‡£€Ã"IÔ†¥½äžÜ7ø,S³ÙP&D<£à! ò¼#ߤÉxU5:ä%;x CôŸˆ8ƒ*˜wá>ÞàRq“E~°¦Syƒ‹$¿m§¶1:ë‡! à ÇcÞJÔP@Œz+’ÿGùjû,xü•‡e]Ñf=µè£¾ó® …á MíÕplSŽ/>BõbU:É>’6Ë“ñT¨†êmölDÒ¯ýºâ:Ñ@.3rRð~ë ;r=À†€ ÀÿÌuð9Œ§–íÚÝØ¢-RŠŸ©±LKD§¥¤‰¥Œ/Åu!#êóV2‘¼Ä“gièä8ðÍx¨E”?šÛÅ5’6¤u9VýG‹(3¶Æ¼Ú.6œ|N‰£fæÜº'ðr×1t4f’GÝè d°8Fp%üÉ* §»{yþI ePA‡1ûTˆqQùÕÀs<÷A7ÇÞã—ìÂ%º€>³‹d6p…¡Tùsî±ÿÆ»¹â­<¿¬{ž3mµ#2ÏëÏË—ï¿æƒY›Ë¯üÁ¯}àäHË Ž4(Q×XÁÏ«>é«Ì¶ãeõK!{ªãRêâET-?:.¤÷íå|O/u˯ ¦ì*x¿}cñâÊ/ëg&t¬y[Á ´4L[}ÑžW5ÈÙüƒ+#íÖšô…%ÇÑŒ[\ý‰FÎ]ÁY¡zK~/ªÒQÇŸ ‰Mã„?FM_5b‡ò"ï’O&Pbª´k¼¢šÝÂ#)Ï^EnÿK+’@ÛX|û*ˆÆPðts[¨:ÀmnÚ‘:л}ƒC‰2eñ?˜…¯¼ò-@֙ߡ ”=³_õœN3ܦ!ú.*3±y[ÒW}‡ÇLuØ  ùà‹‹OAÌâ…ήjWìZS¡@r|5øöýײîü~qRï&ú%û!_އþœï-E‡ù¯–qñ²…¾¼;*Kq$­( Í· ~ó%’H_uÇE zÏ@”&uà8¯¤öÙêœï†èS ÿá?D-A%¥0- -ôÝDrŽ›Q­uâteˆ¤99ûH>cO—Aj¨’GEáô0¡1unBúªxž¨Xõ?#è'¢m½ÄS&dXܹ®ï¢iÙfâqò¤ùŃH öÌŸ¹áàÕôÝC »¯~t,ظ9l¯Ì°°™9©’ï‘vÕºB}PvÛg‹±è¤ÂUò Œ.ø&—úªTxŒÃ+"¤u\g';’ß]¢kjOḂp§ÏÈ dð© sÔ»<ïË1X:BIžìgXØ´Ï [óH»ª×*&Mˆ qúÊæA—áUE6o'D¡n©Qô.ÎéÜÅÇæûPEÃUßÄøøê§“P4ëáýÏœpOÉŸ‚ãíW= [M”¬}­7¶l‹vkÐy)vo(„½¢*VÐL‡ûØ<mW"jw"ÎöCìQn#¦XïK»û|Ø_àÑHÖ½ßÏ) úXÈOyÃÕªzâˆótÕû¯ù`&å¬rzøxΕŸ,H#1¨¡–WiŠš’ÁâVÜæ¬Ÿåÿ$mè1b…þˆg¸ÒB´ÏÕ¶ˆÎ`8´¦¶ñë( ¶»+½Ý0kdf0ñû±t~·—“,s]ŒëgØÒT3ß ?ÃSÇåÏáq&ÜC×o„ÆTš<ôø+WS˜$Ýg‘…©Ë„†ôYX„¼ã—9Ö+¯ç¯>{ÿ5E„³ÃgmÇ(ú(¼ŽË¼è,¡ì5KÐRyU€šÛ›=Œð-ê{8ñäoÎ…g'nŸÒÝp"b—(ò¼d©IÌÞ&Ÿ±‰ ¾±Y×®%Ú¯B‡‚q;w{ÖR¦ÒÉ,‡oq›b£öˆs‹Ó»¬]æèLeO^·ÆÅè‘ô²T]EÁ1nج ¿\É :µ¢¾a«Ñ' ~ ÁJß ìTÑûÇ#†£ò7:o:O™è0ri^ׄtq²Ó؃¨U®Dˆ¢+‡ÌÿÁº¬¤Y§¹€Ÿ=Íå“÷_STÙ“3ìéQP>(opëý—|0ý“²7xðòõ¸ÿ¸,J‡‡äÚ® ãQÓ,:A‰¡‰äÚ3ˆ&TÓ‰îBZfâäb/Cfá £;þ^ÜØ5$ÇG-|ë–d»¿Š°8(¿;Œ‹ ù}&èßu^5-Àô{'Ôü´×WÉ«†qÕ6´n…¨<„"„&“JãA¹£%5†kÉãO§8€¸[h?Û´Â]F7Áú.æý×ލ´Ê&8²SÐ§Ê öåsÚŠ#P-†–N=§èßpëΛ‡ªˆÜí¤ˆœ[ÿ!Š6Î`=è<ÆF]£¾Ò6Z5LÜâß4RÐ"'úfÞìàNËTWo‚±„_‹ô7 ½üîÿ¡9žµ²3!›¢´nª–ï=E†nÉúw2t žÍw:®ÍªÎùwÃoÉCÇ¢M$ð‘ý».ãÙC<,šLÌè’mÌU À*ü†‡$Í ¹Ë·~á3 »6œ»º…©É9عO;ÅŸEßqè»ð6Ô1moÎ ¿´y6ÜeÄ‹ÂÛ|ï1*ϰ+«ãlý»%˜«kø8/±[Ó¹‰7¬Gí.,ûžÓê°Ü0Lƒ¿1j î°ËÒÉNÌ‘[fb|ä“À¦¿Á_ôÖМ¼ê´ç°CõwÔÄ‚j\AAò¼ì<¼i¾+ ~Ôï7ÿÆp‚'Vô±÷_ó¡´Í^=à Œón¦> ø=ÒÊ—;§#]‘ÝjafÔf-®ôD´^‡mšár·“œ_,Ònë›Yõ5ú2޲áSq¼;;Áò$à×÷_St z‡-Äfk¥ýÇNXÜK$f´Êþ‘”×h†ÃuxìhµE™A}ÈO þóülß3¹è1 cºª†¸ÌAì8â.YˆÑà§ŒWÚ7ÇÍÆŽ·mÆrŠEl.AÕ~—í¾jØŸø¹aËï7q$bHóÅÂÛ!€plñƒ}:ÌŒ£"ñ¦2®5ÕaàxÜà,¤[ÒšVIã.á W:ädeÈÈe–ÝD!·ÀÄ <ÏWØd,]½Åæ^Iý\»!Ö²F†3ÑÿE AÙ•ÕDïEl ]ËŒ©ÐþnÛëvÃùÁ‚å1ia4p{»¦˜b£;§áN|S ± ]ËúJwí‰jùYž±Õ3U—ÙI–gE²L2"¹B`½  ’ÕF“5ìÊj¸Rx+P qëfm¶6 Ép°]KL‡{X­>ûè;…º¢v5µÏªÒÑ”Ú '8T€ÈèÊYYV´¡_!Uqc‚¥Dµø‚æXgr´Ó~cÞq—ñ¸Ãp¸POßFíÜÁ)<1Ì‘«L5uÒC…ŽÒðº.Àå^ˆªýXl::@ ´Ø€ç4OhŽÏã}Ê ³?kô'Ed™À¦,]±ßF´>ÆáX•†Èôãz‹'#j¯Þ ·Ê+ìÁ½ÊÎèˆBn½QÈ£ø Ésñºêʧ̽ °5\˜å…‡d™Ñ¾dó !)qÙÉ8¢”Q…Óïý×!ÞõÊžoQS1ÄÁ5 휪ëÃMS@åay¸ç×7é,…q`Ô¼£|Žq\Ük­paDD¶I_èPDßé_Q ƒmBÒÕN±¸Â¸Aí{ˆ–ëÊ(ܽûzöðœ”–Û *øáëôÀ®¬*ÂÐ〪“à&lÕì›H•õóš—è¸\Èåe²cú`熨õrÁ‘øœ»ˆ¨““ÁðHÿs@Ê€†@©­º}Töžê>Žú+ŒZ|Áózöð ßg>*ŽÙÆŸ #ÇG Y×FÔH´íë@TõM±îg‚ƒ³üM?ÿ„<ùìV ÷ÔP¶*ÆéÔÎjÑþäR}hßU|âMž“3nÞ‰°}Æ,½ày#{xÓÅÙÇo›å{KQ!Š:ka @4@ï 65Ri†pŸdlÖo+ÓÑo .ñAw å¿»Ç:,9l–å¨}PÁ‘§ôÐ>ä­Q‚*ðkí¹%Æ6'kû'ÂÙÃû|¾”±LøÁgè8±›¾:ÚªbkÈ­Š¶«ép0p¢±<[µÄÔïë>ìã®vh@Ɔ?’[¨éb²ýv::ËØÝR\¿["šhoñ*éÕ'ÂÙÃÇõ1œpå4‰a$æ2Â@`Q,8Ä–T닲“t8h¾ [µÆçpý&c׆ح¾•Í‚âè>Zd ®tVµ’á[í1Ä#Š'ª¥è» û3ÛÖe‘ÖùÆÙÃ_M£„° ÁñÁœÚî¬RB/Pz6±øÝcÞÅ‹‚E{ðxÜàF†¿?bà8ôµ&Õ»gò§‡*”¤«ª ÿm‚¦f b†IhLÖë…3Œ©übÄÂÅàìáßW0œ¨¹^,‘XBû_%Ý8 —[*ž©÷/ôÇQðˆ™U­{|P³eæ0Ãzõ^QÂ.„ŸŒJ¡Ÿ{ÈU[j}bIzîѸØÂÕuŒX¸(¼ž=üdNNä³Äæ!C'º jy2•Xχ²þÏáAçX¬÷&•œæKÄ…¾xž|ni¿À‹ßgYmÞnæ ¬÷ª¸P v¯Pçʹx؉öSº±p±HµxrOe˜pÿ"ï‹Ëšï¿æCñÿ¼D6Ê1P»Ùg,3‹'cƒÏð€eunnÞ“C{ÉZÍÔ#aªOæÓPánëEçù‘à)«“@£7ý Å—J†6‡oglsÔ'kNE•¼XRv„¢WÞ‘SE or†¡5nñãäÅštW Bù°Ñƒª£ÝJ:ô†#¢g‰â_aMsÞ b+5ãùø‡ é¶äÃæÿ ã¦ ~o¡¡¯—Ls *?@µ¤Iùٻ7VÖÏç†"ƒŠÈI»*ïhgµ9¦?Ê븛4—WõÞxÐ< Õ{S•í›n®ìFÎ$ÓÅ@¥WCòZ…(œ±í¶g_ºê*ù½™žÀºFôyΙþTØÂtß×mÛWÎà@¿§Œâd1´št?‡t8ÈCX,ã/¹-¸#vÀ"‹&tŸ‡Ã£ñ!$(à\GKþGðÜc‘E'Lñžâ{ÙÔ)ö‘.Ûû\F,I5ÍÐØ¿ØûjüïxˆÃx|¡Ï=Ÿ¡ÉÎ ÐØRú¬›âgW–Ë29þ&°Z«Sý²Ä—f…Ûg‹¨:ˆUú>iî‚3em=ö$‘‘pàDÄ%~X¡+&#zæaúqZ;ê;Ñ¢=Î6ž§»NY â ¤ÂÛ#.Û?îsCÒƒW&3É•VìÊr¼„Øl©ù•zLD<êÚëuÅöGCû–JPÔJ+•0 Zc³NT›G‹mˆšâ&e¦7Õ¥2M¶6CœìO¶¿(‹)<;ÙÞ@´Ä1Fã¼’vT÷ëÕ{zñ§5ä8¦¿áŒú¾ˆb±ÀŽ<ÚK€ ؘCÙúŸmqÃr ´*Žs®PÜ¢YGH¾i·û}ÁµXXJµyaþĬÀ~Ü5ZBÕ¸d¢¯§Ð/}™#^1ÞDÃ_£-ºUÊÊ]j™Š6Aü¦¹áŒÇéwÝW°º‰h –P‰ƒîÞ3âj¡Cy9L¼ì¸”(ä¸×J÷„»¹ÍúmäÅáw4Ý%„¡6¸×{ &†î‡Tü›ÚËR¡N}ÂX¢n®b¬’Åâ‹€*mO]µï²¿½¢áL¹Ý"ˆó€a†:ó¿¨ï  4˜«ù1zÀuð_ ?‹ž³iÚ›YX¯Ý ຩ9ÅSêU8Z÷óçé*°~:)Å$MI¶vµžc@";á^gv$´(Hž]zöÚþ±œÕÕ†b¤zìÁ®,íßø’«î»N1S=[\›éhòJ߉Ý-×XQó,J, 6;‚Jž˜¦¾ÿš#‹hÚr  –{²cY TyuÜU´Üˆa_`ø°tÎL¹PÏLùIÔþ ¨Xt‘‡èR+çPÿyê °ÓÃLõe¬£õB£M4˜Ý6VÉâ’+]ƒcÈ/%Ä„]¸‘ È F}jö*xÅä˪ }q§¦“~Éd'j~˜INX+ÇÝQ¼ÐqwpTÕØi*FÙÙë÷OSjÕÜ QÛs½| ½üsóXþ)g0ðºECwCÄÚK“-Ûh<‡¬Û¤YñÐþ€ê꽓Ka‹Öس®öÀ;êΛ< ”çRàÏÖˆu{ î¦úœæ%– £óEX•áækpó)<ùÍŽ¡OnΈ²ffl^·heÈ*óŒÏA˜á̼©žr8Rx 6ñêasRë|†¾_јǭZâ¸pìWeUÁ´˜)üÕ©&VBôžI†~UÉãÊ!Æ—Æ….éØº©+¬šìmuÑy66R¬åS®¨¼aÑ0/g…Îü¦ÒøgURªƒÔUššt˜ˆnsQ½Ͷ¢w2FõGÿq}-[Bu9ØÒüuzÕŠh–•éTU26ܧBGÒsO üzávjÚ^)«Y ÷:"9——7,þ—“ ×÷HÞ7•_˜¨QÍ5hCaN£zµý9Ü¡Áµ-7 "‰kiÇ·ˆA›u´¯T+—EäNϯ_Z±|LzÓt w¼FÓãtn„óŒ4 Ýÿý×9Þ°h8âg8Qi«81âo-UÛ-¹3Ž{μ®z±ÀêVÕ/Òà¯ý¼ŒO¦.«Ê¾(;‡&{puµRÒ¿Š:\4—Ó9ð¿!=RŽYfä'6®$þ`¤aw‘²0•7,nå¸3‰b»ö/V%ýe®#íJƒ9 m¦òQÛ›·¡ÞË£Êã|?lÝ  ¨‹í‚«ªLÚW ¡ÑžÒºP:^-Œý¶õ€t,;ŽHf‹×!…•t¯Qo¥QŠ—7,^ÊždŸè›ôÎûŒCfooZ% Ó ý¡b•ëÊgDm/>ý'b¥8¬Ó墬I|+ˆ’5Pš]÷’¾ªzoÄå4*Å"Áh¥£>roí>³`3vj„xLY†æa¹e™¯°ð¦Eƒã…ìI}Ef#3Cä«v~BÄ8ÿð2Ã&‡ jû>ê-h³ZÉáœß0k +áŸ6­? Ï9ˆ]bÉmZÐÛCa-}KˆØíÓ¾'¤ b™'øv—ŒR¬¸¼iÑÙdaó·/.B\rTÒfå!oþ¿ÚÝPñÛ#H}^rW39«V.:Y'“RŽ+‹aH’:Uó3bx"¹1HˆQaf+ôM«í‚³> –ãNlh”¨È/>µà ^ UwuöƶJ"ˆræÎû¯ù0.¸Ý•öÀß. ˆÚ>ßÉ¿ï«mŽÕé´ÒUÕÔñ= Õf,6ŸÓ8D6ÔÉÛŒÆ7J‡¡‚)Ø9]dx•+ŽÂAFõèüx=VשهÃ8¶ÓlV%saZÔì›â(?6¥wÛö”'”lƒÖ+«T€Ï`[¹áÈ_DÍ^ÜAW©Q_&G‡ëÜ+h):ÓSµ -Ëì¨`Ñ0ž½»ÒÿÄO¡F(T|Þõ…Á>æ–¹¬ü™UI§Ì9¡]ÕŽmwN!¨íWµJ­bH–ó‚Gp×Tie 7íVŸ7ÑeÂß8¨: ühà"B‡Ø ¡/7n,Á2‰¾‚»a1+ñr±²ž Ÿ7B`å$,ËäE ÅŠãr2tä¸ î_*îstrK’S‡tüŸãÂÎñ|¬%X£ìÌÔpÜMšRLâTêeÖOp? ‡•#Îîu–BuìØq-^…ÆFtr÷÷_Sy#Öæª†ö" SR³*éwñÃÎZvH~´r_T´5ä}šô&ék]±Ì.c‹¹ªÊhÖ‡Å`¦%yüÇÒ¨:å…4ö&»0^©ÞY{lpRâQêÔ¬ÄËEÿÑ₩òF¬_sR—åÌþ)žH°.ÕZñ«Å UØ?¶«tü…Tøû¦êŸ•nX|¢ªoðHª|n¾í¨Ù k¸‰ãˆ2uD&¿‹I‚VåC'[ÚÅ¢ow¬&3e±ðI¤±ÕÂ9°¹ :3²pQI˜˜eÇ»ÂnNdѯD"·šY´»‚D³T+¾ÐqWwÛdÍ÷Ç1e°a{jзYÝ’‚‘»>Þ‰«Õ‡’™RºQY¬ÝƒÞ¬¢Ó_»/±½‡ýŠø…Êc·ŒÜìWorÁ²™7sýË÷W‹ÒOúÕZ—}|…‘ÌnßŦΌ z ,:w¨ Úï·8a÷zX¿3V€Ž‹¶Ê88¬voЪõ!‹¬z0zzù1AlÙæ–ÍJ9äæ{J:År\¦‡8ß½˜Ütã¬}¥vò€ Fò½â7¿÷_S”I3_,¼wšž}à‡²¢Éòñô¢Í*Ư¬Ù}xÜ!ƒ’ÐyZlÊä®ÄB@Àˆ ü¬À‰£¢PÕ8«]KDÛ5BÈiZ%õ˜%¤MשJó€z%p¸Ñä —ß‹Sæ’nªúþkŠ4¥Ç oÆfïŸ1vNccbAŸƒSrX˜\’Æi×ìAþl*Ü]áŽÅbº•õ…¦ß×î¹¶c¢G*ˆ^n·ue㫆ú±1G-:Á?îpè">…ÇèÏ~@8«=ó" ›äú\–3;dx B¬“¬Âš êÕ ¨Ï]¬Ö“¨KwáÉ^+Ýœ¬ßáøÁ~©™ qy~m—i&jƒŠ£ˆ£9áÌC˜í8BÔq—mía¤Î„ Ú\·bC¸úÎjÿ ̦ì ·ëݤ‚+xêƒÆm¨‘}•í <+(î5ŽG &Ã6Ÿ•Ø–ÎVÔï€ ‰Å½“p?ìÐïçD%\_#ß{ÚP0ç8Ï6L¿YÓßÍûy À…·^egWFßÉh²¨:Ô]bþ²KT¬_…~Ù¬¹R·‘þIv—eü¢ê¥Þ‰ð±Fˆ#šÉ]C5cÀ•7p2lÞ±v? ŒW!¾)ÚnOïà ,ÿvdÈ=_è÷‡~‘ûK¾ã®ÎÐÕs§¶4çXšѨUÏ0€æëJ$î°Ë ŽªŸ6»bŸšè7ñ¼ú¹J û,¶ø¹š¹aB Þ•?Ç^õçÒé/š*Ü-š–±Ö…¼DR“Ž…®ç2K!ö«‚«Áš€¹ø2Žmy…ˆÞ¡™8Öà:ݰö{ñZSÁ¼\ߣœ²ƒ˰Lìú´ßš>UüBÆ‚f[¯óv¼Ï•V-0äKTíO¨x™×ÂcjRë…Õ^ˆÑÈŠÂõÙ-Z’—¾1äå€ Ò¯ýºâ:Qå! ;!ö—ÏÅÛÚWÎäO¢×”H2NÎtîÂJŒÿ~ p£ÊÂR^Õ“4ªõ9¹}ç2]ÀÍ®ÊN/+† ; ÷T4ûy.ðC{¥²õ¬à#¦žplh vh†ç4:lßqt$)É’š8~‹c}Q£O;Dá++p0w€Öšm”35íÛƲ´BÆM‚mß ×Èù˜Ërcl¿|n(Qž_-rÇtþü×tÈ4„YŠ ÿ.ÆØÓ¹!u%¹¿˜q#„1JšŠ™ÚíÛì³t@—ù¨8” ÷69cýΙœ“Û´FG:+•Ïkô²#pN Är#²˜Ðåj:z’¿ªÒ‡—3¥¹&žÀb€–'dOq©Yy9gÂÒ|hE‘Ï£ýº9ö¿dçÉû~Û„Ý6ÛµoZä}ýK€ñÜ…¨>85päË8ÏlÔ÷ÃÓêþ×ÄŒóí_Rf-sôâ˃lýÁ8‹ŸÜg\МŸº{sPw®+(51a2pwΕ¨Ü1»Ü§ºÎÕñv[ë†VÂz]hxmþ„iÍ[ªgʃŽP«9šü@ÃÔF Ó­6!ÎD!Á3iÝ2ý,øÈrÔNëô*ª´?GX’cÙÅôð°ÂÆ]½çàËÕz½}ªÁÈüH>.H¶`î2ð Ù ”"߈¢^ Qlÿd#ʇ .õ SɹÁ_™çÕ«¬ÜYeéË•ô/*ÛêãBÑg²Ž?¿Ù»ÖÇrCIO…Š_SlKÀÔÉá·UÏø¡£uÜ_tÕÙy1fÒ¡ ìlö”{ú² Ö 5…ŒèLÝG­ÈlÙÑ}¶–Ñ ›,fXX¡äÉ4Ðçt^eÈtÓ"Ï+ïøpnÍšâZç,¼pñD°‘¢ã{‚B<[Æ\c®šÜIPwºoÆ•”Ex€;ØÚsJè0x‹]f‰‘(;¹Î[6Gÿ Ô}ž?{F“Þ• ’ÿR£çô’'àˆÕ¦Ÿ-‘®:«êïÊÉp¿,]¥Þ9˜zµ]µof1ò¶ÄùÀž±!ˆµúáX`™ Â8!–Å瞯Gæf¼…²Cv²‡½¥²ÏeæÄjx6 \!ÜRŒ!ÊAŸJQ4[4Ç&HfÏuùŸÓm)oÕ´² œ|ÄBsNfÙ$@b ÎP&„ °™Õî|ù^(ÿ}ƒcV£vè1UûSáï=Vº„Šháþ‹ú¹ó¢úˇ"qT$’a&ù)%U ê3Íë@SÄROBÜh…GLÓ÷Ó2¿)3”·Ù q@4nx’¿Œÿ׳ìÊ*T¤j{<Âí¶#rìa/ä(KvyNËí”3lïB<šì@t™1žÎŠNå˜M5äÍ/]-y÷¦–ÅjYX¯íÇ”÷Ñx(lœå Â8k°µƒÒ.#ÚWCÅþ.Yõ:¢ã"”¸¨y>ߟšõ•í^ v-‡²Ó“ø®§´ºú]±vOÜgØ´#bﺤ ]”ÑÑ^_Þ“ÖÙ¹ѨîÑîëA„\â¸âŸì–ô^Ê™%Æ+lLáå`ùu®È™Od†Eº¿äqÃ6ˆ„Á•~äÔÍŸã=îæIº<}ÆñBœoÛó,Æ[Cèš ÚÉæ*s(c¯m\ L ªŠÜ `®ÅßÚu ܲ¢{¡õªtî é¦FDb½Î˜„Z®ŠêYt¿cf/!0kbYš„©ø4L*4 ²Gpôº®¤^DžÎ£yLGô£FÉÅÖ¶3é < BX9ûc®4 Ÿ·´tó:“~ͱ^05x[嘎æÆÊzÕé1"*Ô±9bÿ(DÏeäh001q™¹ì&D(¸È¤úœ½Jmãm|ç$prÞ©™•C%s0“w¯Á«@ ªÁýW;d„Ä£fçø{Y1ìRŸæF%:»:9按@ÛUñ1×9Ž;а ]r&ÿšv O>òèõ˜‹¸‰úwÏҺخv!zžŽÆÂjI#}Ôë58,;A–‚â,>©À«(vŸ&§§7´ÓšÙJ³ïïÙ‡ÛåÕV8(Qßgzíî[`)¢Û4¢E“£ÃÉOoxîqwæ2òÔÓZá(ÓBYUh™Z§”çxMõÏ87_™Ø$–‚*ðPÆ|'wÍX¦ìøA‹ôÑe¨eµï$Ag?³€3/€ãtÜ•òñS žžŠ»†Ü KëD­4ù1ŽšÇ¶¥fWÈÿÑ®!Qº¨GáDúÍÇGn¸Ö…sÞŠíÔì÷Õ˜UXyyxBõ6úÍèÿeœøöu‹¼‡jS¼§¥Ãò¼†¸U9qÉÖ,|ÒržÇß·qå bõ NÆyw´s©ç&ªEó‰vå7 ç`% | €¼_}Þ”Ŭ¿,×åwq¢?6m¡#Û˜C©pw4¨äþ7êtEëµÛìÑz}Mè‡ÚÝGM³Î©_Ò\^©ðToxCWh`<¦Õ-±G¬MŸw)ÔÊo™Óy€Äd¢HV„lÙùäÌèȬ¨ÂL¶§WËùÙûSòÕk JûeÜMí®àˆƒiJƲ€`O+…Š®p¬—¿\.Ÿ¸Íx릟qþþ2KØÙŠYëùA¼9çUškX_ຨ*y“gc³6ଖ{+½â´cÒ•??ãn–'s¼¬ÄÎÈ8t\œÎÝèÒHÇÝ0kÔºe&Ü\FXu–/›UÝì þnF>¹¢Èšf¡]oeËš†½Ož|ø»â¥IƒŠEæ/¹›CJ™s§íBKäö ’Eü¸äÁàr&jÝ=Hò*c£¾Z;7xŠ€ûÄ*™Ü¢‘Ÿ¦º§„Fs¼TãÚÊÈØÐ LÍÊÎTÄO…NQ`Fz1ž<µlêžõˆ–tü…µî8~«Ó180q·6mOWÛ€e˜›RÑc2°­ÙK^x:¿[£'bÀ¬B²gt#ÊÁ3x°2ñkO¼ÂUÍg}ëßÓ–Y<Õ¢ÀdâÕîroÛÐP12â€yVLÿ–Õ¸«Ô„¨%ÕA–|ôÚ|Æ4_XÈf/õ%ÛÓµvdc·(VÐvk^úXÛ«M,僻©Š/®)ä‚pòÎÐüï€EÚ˜’Ø«*6«w©L§¿ŠG›Uäa˜í°ÍjÙ5?vmäªNצÄW¥&1e:8™{!Vé»-”¯Ns†ßÉN €îD‹ï¤ŸÆkÐhÐ¥@€ÝÜ«Á,³Å>öƒˆaÖó¾5Dê;íñÖ¹€ÅvSÝìäh»Qêc¸ðqfX)Õ]9wÛÑšeÇoksÖ2ûŠÐv é¨ì­³Σ{gÎÑšèUö=AMÆ8(ãëP†íŽÓ–9fV툾£Ñm&:,DÓ-(?œÆÝ:fš1ßæ ñš~Wõ$¸ ‘ÇôGò(3‡Þ]ë HçÊmÅŸi èd¡-)‘Ñ¡yi½ObØ‹2n¥´ãÌ­ðMGØ€Y¸íâ¿¿ÿšO‡ÊdoÜW½KP¾‘ÿä]PuP§¤YÆ]“_ZÑ$`¡ÿÙî\‹ârõŠá¤­DL_¨R©Mª{ØŒŽVÈ Ë/ÓÔ r“;”rUMHsjWƒ<ül»zÑFåS~·ÅãÀá¨Úõœ?›Æ]y·.«S÷Z¾œã½«c22œ‚Šß¦†¢lûnrE×…È_«°ÂPDõÏD«ª­8?š:ˆ6§®¸wD¥z JýZÎwZ먿FAG€FPÑn7vª¬üqµÌòLιfod)ߌ+ý|‘AÃÍ·úMy©È“Ÿ÷uî/j*_P/åÏhx†çtQ”ÿãsóÚtÁ h"y™/L*…kõ+SÇ¡wn$t¶%cåá8Å߉QŽâ‡Ÿlp†Ò…ZA¸­ÇÚfdt×is'çœÛ¹¸ö æynø©vÀiëM.a⯲ ãÚ´·Såçu& s1™`Ã6åcºDÜæÎw©‚áq0 ƒFaÉ‘è7Ýg¡õTíÓqÏkÒ‡F£Óâ¡pŽ?>ò5ö¡~j[ÏQËÙ/ª“p>Ë"«²¬Ã•AÈhöc'Fä1Gqpr€ã=:àsq!6×ÀëIC˜>굜摌_ÚuLù þ<ð‰íç¤÷bõ²µV<³”fA{èØ&XûÏša¾X¢ƒp“Ó¡z€;«‘*5A<º… Ñé³Ô"º œLJÔz}þ6O !‹9óRU§qÄ~Êhà.ójFèì"v¶;«]2H° ÔíÈ­jîk”GÝv´ÚŒVï£nÊŽ¡p© J6z¢½õv­Y›7>mpz„–$dueu"Îj|\nÛëI°¨*ñ™a A»-¼G¨÷÷®Ë1€K©‚£:k<ÿexü_“ÿyæºÿ§òÖì—¿’n¿\Ä!Ùº<¿ùEâÊ (ÁDƒø lØÒUQrþQéóÑX;âé¦þt¬+@ÄÊ/}¨M‹èD2û:so%^™2Mc×ÒÖÜò=©¯×w/bYu6øõ¶RÄ€·«ªÿ;+Çz3ؘëX*}ÏîEÿÆ9ΜMK/<£­.€Gåä~%ù© ŠîIÊ/¨kWùa»žýÈ®¡É5ä~Ì(äÉDƒeÔf+UNÅõu8­á`_/–ÍžÕŠýÖô^§Ù*U¹…¦CˆŸIŸ¢ö¯Gæt~-÷9yçk9Í#ó3_nìjù»ãœ¹Üwš}}1×1ÐÒ€Áv©3b Ïßëžpµƒoí)9¶"ˆûŒ³­‰Ž¸u%é3Cx^´ø»y!ãc”X$°Ýýuàã.ÓØÙ“gõÁA€ {#Zp "£ßu¬ß¢ØÁÿ[îTz Z/FÅT¯|G$tOî†cbpQ®òÁ嘉C’0y:4Ò§³òlÑ&猓€‹)j]Á£Öˆ7%T!¹¿ƒõ–Nq‘Bu—•UŠ|ªÆ ¶¢wã)”9‚‚eù-ñ¨Ò|-÷9èõо1òþ/ýf㱈/€ˆ€‹¤†»Õ+û·£þ!w ñœª¤‹$®R‘N‹Æ§hX¨Lá&|”—BÀføÇ#‰µH›jˆÚ–,Èúô˜Šãmztú4WIÁãão(’w¼Þ]*Wøp«N¶& Zýó0 Ý7Þlj©vsãI—Vêòýúqg÷ž.w®Ýg¬,"ë›A@¾×<ŒƒM³0nFŒC¿ÙhÚ”OB†GR³Ý' ù«!U1c0­¥¤kBSÄì"Y¦Ì`D'–LdÆážø¢7…^ÓXôÐuG*ôÚ€ŸÊ°Îà!¼–û¬í]þoËÑ_ª ¾·ùÝqÖÅ¡§4–¬•ÖRw*d:š‰ÏĨ¸‘•§^ç2ÕðäÜ/$hÁŽÛr¡¿šn›ç'•4ÚÆë|k€6Û¯¹sRY³>d`?'ªv?Ì'-m&Or$Îжt‰–ö[Ä"ûQs4r’~i>ç¥à!³aX¡ô]abt™†v‹ÑöiŽ'5= ©EMj÷ r?JO™9_¢/_()÷›{C¶™È ½–`Žb"ÕE»2°þˆ•á¼/«SoI_à\?¬â¾Eüˆ•´ëŸ pzŽO(fOL¤íËó?9Ãïä׸à³ßQ`"“tïlÃ5@ÃnVv~Èz© –s_ámRE¿`ÿ¾Ý猪vw²#~ýÍ)R%½½øšˆ—ãs½)¾Zz¥)g ÞÝ¡ÇâÞÜ%áˆ÷p{¡K”Lnßç7¢ÖfL^¤ÔS°K#©£¬TI Û¾^Óh8±~§rå]rù”úáYuÉr•;0f δm@ ç.x\ ÅÅPúƒ0È]; òàüP”›ë+ÖQ¥…Š£80™;jË)š<ÄrúÇKòÝœEŸ¬sb\Ì*Ý pŸ–Ð!ÝwÛ†"|^G:ÿ_<µÿýò[kœß±‹›„Bâ¿^zä¿3“»80õ©ÌV÷\Àêž¶ ªþË_eyñ"áÝïߥÆ.|Ò4.ÚG0íníŠð¼+ç,Ö´&©Ç;ª¿fâŪvý¸A½@¦Úÿt4yë•íEqNÄBeÛt*[gTBl&7ü‘KÈuÏ ¬´ñèÿ†fbçdÜc|Q#œgË I!©rP¨_#¯&ò÷®è°ú”Å /…ÒdÈà¯Ü”V›ÉÏ–úyÙ§ˆÚ<ÄÑ,Y4¶§ê˜&ã¤oç¨àˆÛ ,¾Gc…Líp!¿#€MÏú µNšÞŸbÐzã· = îA2—F DXp爜#žo æÚ'¨äý7ç^ŸÀñ¶sM&à{FÓ¢¬Ól«³Ý´z {@®£tÁY>XDn£r7ºM8i×j¾±Ã§™hµ¥†»9' ;Ö{¡Þõœ¼fAž4"ZoÇ–cÅÝDŒc‹U¦-"±ëP_ó•<·\~Ê` î9Ô¹CýÝÙx‡ì|Œü?èðøÿV\®¾Üˆ>ôÛÁ:¯¼»KO’Ÿ•}¸OÑîqædÅPÂ&°~$Uù ¦€J7åä!©DзO/J£HÊý@aUA-w”´uáì!ºxG€Ð§ZŠÆõgéÑë\êrmÌ[íêæ„br?TíϵG× "yuì[躒Ñ?>½À)±ˆË`}íà]I&eˆ¿ »§ô | c-¾­öFÎE½aïžø€Zú–où¾b…á³ÿùwþ»¤ýæ—Yó~=6@å.é9&á¨5:ñ¦-¸Úñgø”}zV40{u+îÎP!ÈÞãþ‚P€…—goÓÍ×9/Ý´´;䉋£ôƒ|kH)>à7îp²¤¡RmгíRvÜMàt$p®ùΖ2†=(ðHÞý¸c+(#‡©¹VØÇ½ì2w =ú–´×øßU€éixA]ŽâOY•Pøhl6ˆýk8 Û(‚ïÔÅR}<+¨~†Žëp³bKª1:u£€Rô¬>©ïˆÀ’¯ð- u}-äZ®¼T™'ò¦{Öˆ×t'5øÇïrúæþÿ.ùu:Íú•DÛLÔm¡SFìèщ(WgR3Ò†zE‹ÁR\á'b`ápx¡‚Ö… Œ9:”÷—Ëš[5¾3Æ  ù¦ûCˆšø ÷òØÈÂ6­¿z’F8Mû÷bU]Ý9'ˆv’αÀìϺ > E²>ôÁt'€˜=%½ˆb…ªÛkõ#š‰ýɂڡ…ÎH.¢i4.µ*FãðecB/Ü`o."(úåQ±%§Ëàç ÑeÅ=4¹¥TËJÎ[>ÜW ÌEÌa%íX¨Ó£>ùj*{=__NO­d;™oWØàï'¡°+ ÷è¶½†œÑˆcüo–Ìþrcݯ :Æ lá4Ûô~ô˜rxW,­F‡µˆ1ZBΫg1€UnÝÒ€Û^[S­Áú•® Òdö½x/±¦1æF–#µz{ž % Ò`BÝ; *Ä\+ï D×is×܃sÑy•_Hpɾ0ƒ8ªäIÖWfÒ™éöôf ¢°¾ÔQ¿gÖ-Ùûy‰h÷¬DA9ÐTƒâ<3›b޽ùœªòš¢â¼ºzqFBábcSâðy³'–QüÍ>(>´°ôõK§?Þs}‰`QfT[*Ýñ/ó£ävÛÍ— !õ2O‚)ÄÙþÞä'ø›Üÿ+±¿þ‡Oñ†ÉÆ/7>núrc2V*>¢§z¿pÙ&g‡k­mCtéÌeÉW™õ+XÞãHŒFxó2˜[p>ˆûÐ]Qú$CïŠu@b_Íä\ĺ û€#\¢òÊçpR4¡…baŠŽÎ¦oj¦sDÑnÝ4$Ø8+òï áA3ï‡|kŽt¯¥Óbç61.WÊ!àûª¹ãzxÀ¾q±hØ^C~bEóV;pè­"vìΚyÕ %ŒÎ<Üɬ~‡JVK\ÇÂ;s½ëBèë©ô‰ùŽšÆþ­XfÇ/…Yö$þÁ¼yR'þ¥Q€ñN=9€³AÕ= z¬ßÂôÞ5¤ðšâ ˜>û¨8ŒÁ—”Ö¬À%x¸&—qD™²r=‰o(Ñø‰ÎgÛ€Ð5çnŠØ•7õ´núãhw€&û*r ñ1”Ÿ5ÐP«W{Y¤á´ýAÆ6V­ðl3ߥ·Vªl5òä8ÙÞ5ÞÄ^r¨ –tw±ë¦?Ž—$CSEŠl¼Ç}Š«mž`pB4ÇïGÉ1tX‰!“¶ œŽJÒPS0£ŠÜÛo£V–+ÆX뱬ž´}9ÓY ³éKZO|Ç¥Vf¿9x—]“Ãbš€øW*Rg}7Û`­¶=lúƒ7yyŸ?x‚7P!“ø¤gI£ã[C‹^6({-=`ƒ“cëÜà>Þ•=c‰,ük€õV,Ë*E|v²nGº(œO×죤Qö‡Ž~­õ½O­ÛKÍYÄ‚«+ˆ»Z–¥¼±#A+VÞ)õådŠ¦Ù¦ÈÍq29¤™ÇQwÚ6…´Œ’è=ÅŸÖ¬Õ?é‡ÚÞ„¤]ÇÓÒψ&SO•xÝ îŽ5Š x@[€>Þj¹WFî¡è,Ê ¸«Þ§ ^|v‡lÃxcîJª14Yð5Be°²AF]‹®+ð‰êä»Égt3^U>´tN­Óž 8GgÞ-Rƒ)}C óÎýÏeÜ”?x‚7P¹açC¨²"Z0&{»®à¯Ÿå'2[aôhì£GœÈš@ºÔBQ€usUŒÈŒÃ)xÚ’n¿åÁq‘R°êžÉ¯›ìÇ‹øõ%ÅM³é½³µr°Ÿ`kåö¤x’4ö^ðÔûðö0¼$Û é`åz‘’sÊì,Z5Ý—ˆE;kŠý¸Üªíf¥ê¦ÙÙ˜dòÕðóÐìÿM7NQˆ]BÍh5?ÓÜ}nhC„Æ­Åëp©.à”€†œ‹ªêŒ®4ÕÁTçÖÓÈp?PÍ´þ|Ž=âÏ{سx¼.Ac2¶ì‚ø¡ŽaóÑÃô{ÛÑ.ymý£ ºýaòÍ“v9/7ÂÄœ^ DlPsv1â­ÒÃV•P> ;1•”`Fó*ªÂ%œ$(‚ñ(s»¯þ:KˆÖC”§cÕ¡¶°šùeYˆH¬“Ou4$^¬Ëq>cÉènÎde]~4€÷Œ¯&q¡v$´òê­A2¦ç—&ñFÒp’³ûÅ·üËp¯ô7ðF€šôªö )Æ]ÄÆéw9T ËX<®}€ŠÁ㔡 ‡ÞŽêlÖ>€â¾mÐi*¡Õ6ìÜÍb Ïj¯ÊÍõ½Ïië ÅŒ‚ÂÂ;>:ž¾l3˜E,ƒŸå"OˆØàø…ˆb²Îø¥è1üŽÝ&¿ÒAý‰$kÙË1éþ¬T˜œÞ;– ›°Ïõ{ÌäGtâÞB駈GõÖì¬FרËÁ5ªRs 1Æè‰= yT<Š€±ÛÖÝúˆ±¾ É­\ê º¹h±—©ÒS¤g¶Ä‰‰°ª°.…ºŒ)kì¥Ë[©å:ëÛxÜâïži¨M2@S}d͵l—Ý=ç¢PéßÚDÏÕû§/<¹ Ç¸•Ûðt(xš_H¶a®¡]&â‡ÅÜe”~ŒâOîÂÃÑ1è² ù+ðN¨“›lb¢ÂßnÈB ?¡%TˆËX‹Ø:‰%,<Yg€éî,TȺÖïÑýHá@µâ2®p¡ë\¬Ãß¼uÿcñø»íÒþ{¥ôÙËD¡GÎí/ G¶¶ñÕÉípðƒM×e•ˆÉ½ÒXǾ^ \Y¼k’¯O|{êÑyóë ÊRˆŠ"«VÚº›ˆÂp¦öºß1GÕ}Ü8wkÊâ‰2P9øc´Ü[0õ¶n\±ÂÀ}wù‚DÛe±UÌžD¹š?ÆÍ‘·Ùø¾¡A½¼™€yÔZby;®é¿ËA³_p°ªQdêã^] –cÇD\î\»ÊÙÜ7 Ýš¹«gÕµ[]ñ:/@§Å탷ŒV“Øz¼TUñ,ÄbI×#–å+öÈP|)µ´—˜ïËj¨º\Ô|$^æY¡ÅBHüCô ²‡ä¯ßp©‰úêîòNä¤3Úº©TMAwV&¡Ü»ÚžúêÜ©þ¬Óê'ÒŸ\mõàÎ Jðí+W4ˆZWpÛ¨PÊ“&ëFj£è|÷P+1g½>¥¿ñ„ñ潩Ó9æÔ^£§?ï”JæW±‚Ô„ý•j©¶Û0nÌñV2 )Å· §uýœ—BÔô"Åï0k¼CKj2ÀåÚ,—h77ÚTÔˆ£Ó|ôÊFãÆîú^›ºÌ$ì–qΨì±Sò#©N²™Ú–SRw0;†þn{V󾀿¨N+ á-™…:°ŸÒRûÍ*qÐv×·š5çp¡×·Ðˆ +ÄU‰ÿŠTåÏ$%¿ãþZ`§Ù9>žåîR˜ÞJ41_Yq‡T¢__ F誔ù?:ÃÌo'œ/]íOˆÏ¨ã„ /Î1@q·|pÝw”.æÜdÊôdÙÅý­d<¿øGœDdÐdAQvWGbò°4™ϱg&q­ v éÉ¥^fÛ¼g‹ˆ½J™ž&Z}"’ó%cq±¬á`n€gh îäÞ@¸µ˜cU†6 pl@]¾²¨ˆÜº­(YíŽiÝ0`ºëˆrNBTDÍß-5 +ty—!öJFÂRfmW!†Ö¯ù[–÷°ùˆ3ƒÎHC gûa­æÜ˜‰—Ûr¿]ñ?’ƒÑhXÞ|9huë•=³ÿ4ëÊ …/ñSá¢a bf¬rýÌ}YàEá™ °vÓaßæVÀuÙúh;qS(ZuŽží¤ù5î$ÄwüR2x~`„ÌJ|WU§mïX¹§éåÍtÉxo°†9×~n*qåÜGººnm‰Uûª*SˆT‘¾9A¶*UìÖ–ŸsÍO7o ‰å6¢Ù+ªü¤5¤9ÌÄÍ6••ü9Ô¾ú”|RI~ü‘ã=5ÕרyS•~ÔÏÏ@\XÓG!¦nÇ*–O5ßó“¨Ô@¹¥ÃH Õ7ËÖ ¯'òU2àöë­›Æò 6ô>J›p±K .¾à_¸­k_Omë,s|_íŽûƒ–ûv^PÕ`Wh‹÷XÛ¢}¤!ƒöÃâèËWâu°‰ õDBÝWóšèÃ;¢*jÖZ¬Ã悞âXÄ74Ý¢~â…º5ÄJp2„ߘÛL*‚ÉOp›ÀAówÞ7ÄŽv!þÐkŠ@uâz¸:Z¡êhçYt»ŸÍ8•BµX²#ܰ—ëW·$ÜÇh?Ç6À3ªòëŠ'g5Uk܇‰¦wÆÌD| }Š-!ºQŸ·ù4ê˜u¤¦[0ÌBI9i\ ±$d7ZP¿8·^PÉ[BV4À°q6#»+¼mÈ Qj5GðR84ø ÿ·’=úŽË›.u]Û¾Êÿ5[¨Nï…ƒ)H7¥(q(ƒîwÀB”™Ç"ôf«#ˆÞ\0€xâ 2lP€È´ËxXsn×±«#%jèYŠU m¾ü|¨i 3 ²ó¬®Zn¢~[ŸOæ|UÊ´Tñþ›ý¨jËúH$œû¸%º6{›K5м¿ À¿ÅÚÏô݌šÁ…e#„¤üYDå[Œ{蔺)$i4ÂW¨_‡qý°S;lßñš5„(ßf) qf¢UN=˜2n¥ŠƒªÐ‡…í×Ñ—ù¡ˆçù©õ%”Ùùõ¹2-`{96$]|N‹S{à÷ÀÙÃÝG4Fƒªw×ì[Qø—œ*B©lôjÈ¡Æc‹Ë*ô™‹eäÍ {fû‚ÅZ”BQåŽîR'3Žsd«ôàânö³?¹ßLŸj€÷šÂ1F©¹å ‘©:®rö½4ДÆëXÝ8»Ìã#¸átò òVdpœ}ã o}‰ÝÒN4Í˸ºö}-dQU™Xƒ ›Õ<'4ÝR“fËï6!Åó‰Ži¬ðŒÖ&ÃÁRù‹¬ú ½ØÅÐï|ìÊ C$j?쨗;‰¿À’¾NN—¿Ö‰løÚÝ»ÐE$û6î•©%Æ>³um‹Æ8¸UmˆXÓsß ~z¶+ñ&ó±r„ˆ³úóä±½”¢·ñ‰t-îÕÜAÃblÜ ÓÚ!5c«Ü©nºƒQcù¯©%£N.ÿ ²MˆîšÔ aq¨Î÷?ÔŸ­‡°¹„M&RuEŸŠìGÆäÐ+ª‰šˆW(œQmàuþÉ4KK™S'| ñzõ¯ïÞ_ËMÓë¡7SÌ)=~ÛùÚ 9éô‘¯¡ª/[©0¦Q¶c™L'é±çj]©UXjIêÞ†·ö—JB¦óì@–þ~ñ >Õø§qá >(}‘Æ[‘È…}ß9¾ÔÏnÆMr¶ÿfš$Í‹s ŸÄ­üßùÂݶ™\ÓÅÞ§¸j¾Žzšw1W«æÃrîeÚefü€(Œk$Õ™µoãRûçEÜU”@«õ9 WyS,¸Oi͸¨!âqõõ¬÷Üf¹e–± ,*²ƒV»è³ÄbÑ8ÓŸª+ÄM¨ÁÕ<¤ qSV.[ðŒß7«]yž Ô~†w{¯›x¦'ixå¯ïß_ʉ?œÿ_"Oý_a-l#­@ã–Ki“ǘ\ð™|œñâjã¯ÑžDìJÆY²â–‘á©ø¤W{‘iÀ<2çz/€Æß£¹-ƾû–r#{ZA4µv% ñ5nkûA‹ô GÒ©n³½‚µÉD"O^“É/ØÓT¢„Þ/ð¾áügžk-YÞY£j(lÁñDiÜ®]S±D #Í=«ÍòÍØ¦ ®v¬½­x„ôQˆË¢ö¬¶FlJ^¿6H]BêÆí·®Û.W²58uM½)>œŽ»—….õ‚À±|}*f‹ˆófÌŒE³mÞ%€#ÖÉ· ‡«½"ùО¤Áeœ@ ðò߸ƒ¿“œ¿Ñ{èÏ)·­£Ã?¤yöЍ¡(½ÇÈ,dØK_ïXú<·§š,OÖØ$Tc÷Ö‚AMLÒÈdÆD”²®èˆ>"€w¨ï…:H¥Êp ¡ë‡Ë[T•ÉÏ•/òÉ)þÆGÁ’— ÊæÓ1ìu¤:GïíÇù Ö¥š Š”²*p\A:}Y:“|ƒ• œøˆH ¬­Πû Ì9©©FÕ^Ëò”ϼz·Ïku Y˜®ýÁJ¼ª`Ȉxüš«0SsIÅ,·–±â‰‹'Zív<,C% ÒiÏ8ßŵ&û|¼Ûp¦…W€‹ÿønÎËüÇŸÿ‰ä¨î›_·“—M£ž`ßD<% Ãèê»B{³$Èõ;TjöùÑ9EÍFz*&$x‹÷=ÃO¥F©®û{¶)Ec\‰Ìx qáUÛ/xº¶ƒ˜0ÍïmoâwN@'œžK"ÒpH¬3oRi0éH¼"wŒ1pÔO8)ã ùú/´«›‹íB¥{ñ§ÚE{à†.¶q‘ #·ûGà=êáés0­3Êž`“ÑÈÖHªØúËMe¼í¦õˆER†¬Ÿ;¢ïŠÑ'ou´\’™K¶¼GM£.ö$€Æ“¢ÊªsxH†Kx-€?ÿ8€ø‡r±½IH>NäÀÿUú¯$kîkŸ7V–zýRN'ü²õ›ÐlŒà.OM,)[Ãc°rM4Œ¨Á®m \„e ŽñéS9ªh-8xÖàÍ6Ô .¾u×Ï>FªëjW\˜Iñï[÷±È ˆhÉ›´Özy‹EÚ‘ :°…^ÏŠ޳ïÞ…§ç¢3Uºèûê‰\ˆ-Äöæ¦àµt¦cµæ·%2í„U³Å¤W5nåÞ¦³È]!!ÑSÚàuå¶Ø>±1²ª7¤•¸Õ…eS—Ì´ ñ«'B™¸ü—p³è<â Ûøúö‹ëùúΊ“("ËÓTkÀ¶i*qp1i‡‚‹8i‡Ü>¤Éí5V*p¿w¨Î²]|uñ:ý÷ïeÚûÿ–!z3e@â¯ü}ð^V”QÓÀüt´ÈzË`gŸA^rQÇJ¼aݨ?é =ç‚Ú­¡·®²QëäÉ«Ã\ÊÖEˆ¤ÜÖjüÎH éª‚Ñ|[w9Á“ßE«ôçæŽv)?ýAž75<ý‡ú5²ÒÇöãÅze¤ôJª=×q‚¢]î 7§œhÁ+LAÍœÊ5‰k Y5.MŸW94Êð"‰=}!®£&vïexŒ(ïÐê¦8¶\u›ž…]Â-Yt D%£®?§¦—Y¢Öwq ¦²dv—±8tq*¨¤Ú±¹SÅïgéƒAݧè]Ïà Àèâï{’ÐÆ\´Eg-㕞'ÿÞ­ ÿäï}ò'”ê¸_™ì×Êj±]Ýðt¶X=Êrx+MÜÌBÄ9^ÇZÈÃ…ÜPˆckm V'(:»r6ªûX9“Ç‘gžw‘¥[Có^üŽš%¾Dár‹3€l+/¢èØqÁ·›éP‰Òtà4®<(8ǣΠîašÕRв¸%é¢&zyr²$¯ROÑës4Ï Îëªq;Ç D³oÄSìëRŒþi?í€Eïš ïQN•§¿ESËÿéÈþ¡\Öžz¹µ*Ḏ:‚Æw¦ùà*Û ¬sÜjökôt“ûÐw âbhÖ?¤ xvÇš‚DcÖeJç4×€wñ¢ÈR6?^C:… ®#lš›÷Eò6°ÅÑô­Ëç "—, /g+atqˆÞgŠzˆxMiÅV0v×P“¤—'5ԜŠqÁß`Ý|Ž ù©Ê¹ž9ËíÂÜ~Ül|ˆAýY0†¥eá$ÿ›Óla¸Ù²2j·ŽÏÓéYÃÝÀ +Å1sÿÄV²7ÙX wèF>1^®9VÎ EŸø)Á]2Ì£¿²±.èö·m8×hy<ߥâë÷zïô'RÒûÌX­ËῺ?iþ£õÉÛ— !FŸˆ‡ôåß“2-ËUÎŒ|„˜;Ž“è³lvX-&?$ÓöÙ‚ØÊ@£ ÅžRó`qœJÙ~·Ù¼1œ;¸_ †¬ó¸J$‘÷>‹dk&Z©ÛÛÕÏ+–5Š2wŠ8ן(S¿T4üI`Ä»-ÀY¤‚ðR¬îN$Ê®¶[¯ñ#ÍS…)…aÚ9wG¨UvYX%[‹g4÷0£9+ÔÑÓPç/¨•Ÿ¢%£wdl2sìZ9Ï–)³Ï†ež—‘¬~¢”Ðo$2CéJµp­•‘s80×1:kì7ÖÄSWˆœxFrýªð„z|}¥-—<Õ¨O%¡W±À…ØüeÇÂsþÿ±{CdZƒ—µ:SSŸ÷êC…¹°X×QâÅêSš²”™/©QÄqA5“ÁÛ< ôÈôm³ü4».—g‹Î «atš»ç8òóKöý Ši’#çãø ÙÆ!r—%yj‰Þ¢§$°@7êöÚ îKœâ«ýv·ñŽÍdkjN»YÇ«í|¬òñ"UY!·ßá êš»‘4­M¨O¶7£Ë8¬Nâ)õ#̱®ÄïÉÚu"ýmÌc«#XNL4K)ƒfôµCWvy³þL®#ŽfÁèwí§;=õ_ŒØ;ÎSbËE»¸I‡˜íÈúˆÇ„IVâÑ0IC…í„pqfME2€Ý]¼Ýè…œ‰ZûÝ¿»‹»[ü§ÆëM‘ºŽéõ…$wù{xPíõv=UÁ4bI¦YêÌ^]7RsEžb.¨7¸‡¿|×ncäš.~8Mú¬v×'„wbè%c¬€[þŸ5QïsxO0­j¤8üãh/×7†Éò‰ÍÃ*ÔóÑk–‹wUgrVðŽÛÀwjÄÛqFH¬Àçí‰LÕõà“÷W’1ŠDïÑ}‰%öbqÚr wéK°GcÄ€<Í @½3£eo/¬èȹŒ¥˘­šêJÎ!š,m§ü§c:Åïv,®ó3)*>ÂÉT 穾Srœ9©>×ÅBr³Ös¢ u$¦¯W›RmÀÄÏÁº½Þ<¹ëód.í|, cÃ’ ¢}5ájÙkjù_$åA/9[ŽÃ¦ ¥Æ|‹²¬Kß%åx¦‹”žv=Œ*³0_½Jxx¼¸Øêdâ.ó/æòŒõ$úEžËHã7ST+C¹ÐÙöA§#ˆbõ0™öÓyîtòžÁ½kêøŽá‡´Õ[ŒÅØ&ŽÑ‹Œæî”ÄŸ‹’$_ÇCöÍTŠTwëKxª1€Ç}:j¸>Å ºÐkb@>±Ü8«DG¨ûv/ª`GMor;Ì5 «¨“!ÎH‰X À}Þ'¬²¬f±™GÄæb©Œšܱ^ W(óÛÞJ;M…8˜ê²ô6øžæªWÅ sãÕš NºQ¤¯lKÕü¡/ñtRžª·ý-‹mìÔÿä½rצ¾Õ íOÜÄÁ…õgtx´žsÓÅF¬íMF4‘a3î– õ‚»á±têÙwÅ‚¹öMæs@?*Û„{ºWáÕvb® .&$âzî½ó½‰¹’´ùds`ÌuaÛr©Fñõé."÷¡.Ãu\vuƒ^ÏŽ¸‚m=11•U‘LÄÚ>'ŽûjÛhŒã? —„qªq£0pI!Ë4BŒ£OA£Aˆ=š±©tn}Ô[Á–Ø{±¥… òÝS»å-9Š[œê°ÎciŸúÎS 5z:]ësS{îˆr¤p1—lÇ ¨1p|˜hå­t®×wá–cí™V3òãf|çò5:-ø]Ã'3¤Ê_ø º®ùÚ› Ÿéó-ï©. Ž4kµ[8Þõi­ c,,Õ}VƒÌaª>§’*ú:OÁ¯tzú8û´ˆ°^>|· GêA¹à6> W”­&£ú+ìf¾­‹p²Zò"WÛ“"aèÔÐ@d3Z9»†Ö¢õhî™S<†ëè“ÿ5pŸQEѶ8B¤šN!Š-5K½@®ú 38…hpe†.«›&…hy·˜»DíÖ·h–PÝ1þÖð.ß°  Ú±qžEíÜFY‚…ž!&‹¾ÌsÒ×s_Ë<ÈŠAÜ`S©/²Õ;½û†oš¶ÌŸCS€‚8÷¦o¶¹Å³õ.‡ÇªlUÔˆ~¢nÖÓúð,µc¦Ñªþ„±¯©õø—lt¶Ô€ŸbåÉ7UV¹×¸“Ô#l‚æ8»\ÂÖç2Ê¿þ;ã€_W³Tùèð$h2mÉ;FnE”·äˆ]«’ÑöÄCø’-O‚d{50‰ÉüòÝÊê&¶‡{èç5°žêàÕÛ(!Öä4æé ‘1ÆàµÊzîˆ8€¨Ý¥àÁOñqBì²o<`œ¸­ÖìÒŸ‡·Œ?á¾s<ˆŒ›ž¦µFœâmÆJájüÈuÙ"þ ¦©Xrº7=¹¹gÑÆÐõ(ë;£N–¿ˆÇ¤Œ²¡°/´Ö7ÈMêÆ>à \A]Ó êŠÀ*ülr4îÁÓ€Ñ/ªVÙë›J½5úVVe®àÓyVjV™ïþOþ”’mÉvôxŸ"tŠ…G4´f ñgDìüˆMF"ƒÅt\åJñ7ó‘S3³QøñCi+o®§TÜ ñŠŸk‡‰›É­G}b÷ž£vR‘·„„ݹo ¹;_l?9q‚\¹Ç¼c­Ð/@œáL±Ð%B,Å}yCË1VšBT~n#hIƒÉÃIðÌPÁ5•x¿—"vŸÑ‘èùž/°—nåP=!¬ìA¢X§]O±!ËŸdË]zj‹Xùà Öô+z>«±\ ëË6ºpKÕjÝê9Ž=Îi[ Uã#{"¶ÃoÈù$kUÌ^'»¯žåE׃ÃHÈõÂÖ —RÓw8ŒãCroö!. ØèVÕI‹ÿ³öNžuý[4M5Í-ds{|Íë èü_Æf`6‰:Ñ÷5–TÈæ¬©m }Ù&½83x™–çTœÈS×äë:<¥¶#M‡¸W–Œ ¦£g5V"ZŠ'µV=‰‡¨ÛóùäØ-ÑêJå| 艇´÷ó¬È—ø\Ât‰ÓÈ9,€wCçEú6³àäàÚÑA½ñÁXêš ÇC1Ô@úžÛÂù„;¹%\MDí²\¡Á`·k%TÓžÓüD1“&™Û‡¡ÔÃÀEÂÏ„õ#l_ßÒ[Ê[X>Ôß«o#Þ=…~ÍÝlß„³›|긣BÞ ù8Ú¡Ä%„^ˆ¼™IJ„Þ$ºï6ˆ9õl¾Ñnc¾i˜xH ^Ö·´®b‰I/ü©É(°ðS¼tbŠø¯/ñ`õ]u~yJ¶$z,D,—9Gv»J”l ¶¨.Þ.Þ)§_jHËé§oi®¿Yƒ'ôsrÔ2µ?Â?Ûð¤ñÊâ¤O¢Ðà½e¤W„fâS3}ô½z£Ïu™פ6‡š?S6VIùmiéùWšžÔ„e`®0°*š:iÙtÊxõךNݬ¦gÖ×·Ò#ÆwÖû±¹(¦oú6ýHϱí8ÐPë÷´ð]ý̈^LÇó©^Ïí³ÌFæ…º…z õ–«Þg ±°yMƶ.ÛÝj4o"¥£è¹ ˜žH]:ÿáS‡é_eí t^˜l#Þlυتv"-‹ð‚È\¬û(DâÎ7ÝÕ›4ºV½Jø[ý?ÿD²]éó #$’W‹½®Y@u£ÂjŽÇ²8–øIÖ•XµëX¹$TÄË$tHENÍ[ñ…XÛ¤9Ñà¸ëÓ›*@=0ïéSû¹^¤A3åm,¯–é>£§ôÑWN/xÈeCübªrtß×(Wár»gØ¿aÝfÂÂçV¢AÒÈ: ݹ{øÂ[ú2Úã2êÃU޼ŒøNxÏþeT‘Iú ò!ú7¯ÅΧ;QbÓ°Þ@íÞQmsf"®å´5,’ü‘³ªòy:¼g!ÝÆÈa°<÷ä'üÐBò”SƒNþßàÀe®Ïp%X¨ý¤r*¿yªøs÷È\cBÕjƒï{Qœšñr §%ÝÎNÖºŸ¼—Hì…Ñf¼Õ•èÿÔêªztú­oÕuÂm|åÃCVß#VÉ(VAïÖ•Ö»°ÜЭ.Ö’²4ƒŸqg²¨=y¶H¾ö­æzà¤Jbm£5|Ëd1Ž6xÖ ¬ ö"áï|áp,t;Ó^bOÆ¿¨Šp8ó¾|7‰7`§ÐZ³b>#zŠf!¦Ä²1iÀÎþ§Î‘t~pãéì±O3Vþ2E«l™^­¶Ì)× 2þºhf:ãç»G–ÔR[F¸5Î“é š¶f§1ñ—ß±TÌ7í‹U^c³,Kq5ü…jGê&t¡Wjdù°- ¼—q¼(lôU)Ô*6oW4VAõ£=õx‰ 8t)š¨†<ù)–npP‡ò}*ñag}eÎõ—Ž_á¨üŸ¼ÿ»r/B´âÕýn2]ö+»ómÃÊxjJá8¿‡Ö5˜CõVM;¢f„·ØZ|¥Ýj¶ð¾ëì‡ãÉ’Ã_|b˜NaØXêÆ.>å‰yMDÖðµÑ@ºS—l¹ xÔØDb‚Û'£ 7üwÕbÛ8†¥ß'kó +J¸LL–¼;ä b§àS@§’¤uºžï0Ö™$.qÏHp*´Êåg+Çâ.r+UÔÛC·Ëø­ô}‹©ç-°iq¨ô.3—Ï,:EÍŸ`¿œ}¾½J¬àÏÓ,:…çZ­#>RÎÔkããwåŽMôˆ^èÙ ¹ô»+äã ÁµsÒ¥ø( e ‹w!ݳHÐe,o Š9ÿþ‘û?-‡ Žç~wà®Rå<ü¦†nɵøÂáÔQr–­²{7zF§‘~ßImð¥)–G¿-+ XÂòƲ¢¼¾&ú·{I”gÛ0]±Žç¬†ž6/ç&ÇòËzHÏl1دù:\!êý£¼~¸ÀÍÀµü±ppô§¸ÂœÑ’f;vˆ%š”@"W‘ø•–ð´­’‚xðlíH†ÏãÆïåÇnH3ßQ›Ù$†ê©±Žñ}2uÕ‘z íªœåc©$§®¯ö1Ï2Ò—º2m˜TÏðì6—ÚxõÉL W×|ÕrÈìDOÕ%é2„ˆ³¬2uBÜÈdêÏð ÙZPÞV™ÖË”_·Q&&±Ûæé]NâA­ÐÇtñ·Ö.ÿ7Úÿu1OçZ>ÂÛ¹;K;–ãÔ½ú×ÝÊF“¨õˆ‘Z,ô& ´zKIæÔ`‹Øâ úê6Ù'OÐtZ:±· 5‰ÀºPÄv˜tj,¶êV‰÷úHˆ5æhP/~Ž÷#´¤Km„Ï}ìåðvöŒÙ'!ƶGÌÓQß¼-°3gz=ÇÔ‚Q4×g²$ˆ4"gÞ–H–üÐG¶ïÏ‚¯$DJßÄ}.¯0Puø%Dz|v€~ÆMü¥ÚÙòT(=Sm[µ ›Q3ØUôVä^Ä. Un·\nàX ½ÒiÞˆŸˆÌ8§ÛöùKl©qÎVWá:áfiƒºl~[y3bÅ»v&‘X2V*ÒŒ»¿ÕS¹øÉ,|-þÉåq .Û\6„Uþ––V¨IoÝ´Måoû[±R™ÂÆ#ÞZ` ®XÕ·#ìÈÂ'¥Zƒ„Ž­Nçä > úZ_¬À5ü©¢‰>ø}Z‹eMTö$ùƒ}ú!…%î£ôƒp4ç{ç«Î«gé¯àýUœº ß’omèøÕȽ)ŽfÓã¹<…Œ¯GõaMPD8´õýìÞ}pÖÑæ½sv'Ž pµñ^õ(ÇUmJ§®-' Wa«Ýs@ª"½(j70b´gb¦c‹ˆ…bAÄ–JZj(nûúGi>a9€wÈÏ,¾s@3ψÓtfü˜¿5‘Ɉýl.ÎÈ€èÜUgðv×%KaßÄ`Í<"˜>ø7Ú •‰G°ÆÝäâ·†i¨eÅÏèžyBÑE•%Uø¬œ³¬— þqì}»šåÍÜØ/Î&FYÍiî:>q˜r·»š¼û¥_8–DÛ—uoÃb"ta«‹~ÞŒÛÁÿ_ê¥Jn‰‰±L_eÙ†¶?¿ú¥±¡Ï?Jq¼Eÿ€`ÆC…‘Cp‹Îu˜”Uîì–0Ñ"ùêª>®Ôwk/g6g¸´»‰šj ³îfWZ7ム¥(pSUe7‘,šž¬‡®U…ËmîãɼXc–+=UŒšÖd«£Kϲøªbì\Hâ»zôSXš`x-Kœž¡b3öšš^bJLËî–+l84ÉRFѺY>ÇŸUFjDÛ¦×ùwC:pÇüX ­wW<À"¿Fø¢“òÛªv¼H‘6ÃÚí2V.TØ¿Pðõ§“õíËôoýîð°fµ¯ì™Sz˜i•±,)í’8—VÕYx9ëªYp‡‰*êT5õ©Íi®ÁŒBêäü¬) “\4¯p'n :š[í°‹Ý=®àç2roð{)®nU÷¢=Lµí~rÖ&é:¿½ÊQ÷ã`"gÌ5ªFª¼åëu)št<¿­ î]eªÉD]Ïýºˆ­mj ü 'M è!êFÈgꇘí¯®–N†±¬Tõ®N°¨˜BrýK¦°ns±©å[ñjœP°A³]<ˆDŠVíÅhî¢/Ç>Íð¬-!®ÂTGðqIÝEœÿIéóŸM2¦òfò;¿;ZÝäw)iOý½ïðŒŽ³¾±/›J•- 1s!÷Hj°h¤¬[MÝ;Üh¦Ó4œb—£€8 Ê+ë¥~P0Ī`¶¬Ý…ÜfTuUL·²š³®©>Nšþkœ» kMI-·¢s0ÖZr ½˜EÞ¬»d\fº½Uò+ãônñß>¬ôj:6JÆxÔ 5ÕOe£shº#ýqVlÍH·Œ#Nm©¯:ÃM²§Ï`n£&ÐÒUw•ŒÍýRÎR.ØAdëmÚ"&SFoÆG¶Êrh‰£‘‰7Ätª;½„:æ4S5V·t©ÅM„S§#}±f.iSõc:pÍnÿ;ÇèM”ã€ýËä'þâð=냯îÞ¶þ¸ÝÌVíÊq·¢É\)Óuö½¬9ËÐzáG±®ù]NÏÓß¶ïEÜ0h¾æá›n7:©ÕI$®>ôz†µ_z€ñ9>°‰|€ÛÕ3,vR§»5A¼Pû€­ð¯Á„ÉÆÕEõ8©Žúþ$_ÌVÝ ðs²é‡o†Šö`¾²ÕDß`¾±ð!â{:mæ¸0 Ç:JU¨¦cVñдd9Ïsžó,½šÌ“‘©-wÓˆ®Nª—Gœd!9UöïÓê4q}ªïL)Y€Fµ®‚"æ]/9ÕióšÔ7ÁqÉ|(O;?¿Äu/ÝÅe:töa=së Â»åzi9Tú½™ïŠíÂÏà ð‚®òëu߆ ú"(Nr: ÷zÉûi ²aÿ};Š¿7¹åP8Le›ªÍhò úÃ,ß.ެ–ØG%n·x8'}ý ë:Ű­— 6 ˉڙ-¿nZÙJfða!˜’Õ#ÝQü|ŽD‡ö’¢ÆÔtš†q¢ßî{¡¾(óox«$Yt%ª2œzî“ê8Ž©’ÊAÖ-¶TÜ„þ:Eí®ivéwóæör Ík$«ÎLcÎKXB¤l4ýa²[iùÓœéÿɹ‚á5sD²´@ßËv¯Ð/ìÜÔ‡ÙšE0ÚÀ‘íµç`-5Ù¡L¿Ú­U 4!Ÿþ®#¬ãî¯+îU¶Š‚sm‘|Â¥‚.wÀ’!fÏvòQ¦üa÷å¯Ï½ÆsŠ+FkJ«3?S³ÈNj¼7‘» †hV,,G®xñu\’eýÊHäÐoE®©íDþ£Ÿ(x¿´c3^E“½žN,õËÞFÇ›6âi°Ì÷Òv…9öá…·o⋈Xª…•D:òhÑœö^fO¶ˆð a ]hÖ`VýuPC0m‹ƒ¸!l¼ñ|sÍ÷‹5dq^ü à0¦ÀÝ6~!ÂLl!£`uõ”àï]Ö{ dG[,>Çb v[E6Óûìñ‹<­>QISë7}YH *u3±É„eiÚû5bœ·Fr‡®‹œ{ÿˆîÊKpØOhßR•~÷º#RUGÈÏ íÞÊj |jTC©Œëæz7UHùùGõF¸ÔÄt£Æéc¤žã—13øGcÿŽjÔ*Ê‹>ñ>vÁÑs.÷Òä—OóÅjz>”HÝgäAŽs˜³Û 3lUIúIq„fϧx„ø)±¦‹ˆãáB[¤{ÜíLät›°ƲÞ[§EGìÒ¹^½EÙ+ 4ˆªb”ˆ©¹ '?BŸÝééÓ9šHM1[â• Aì¬Í®˜z–ÙïP––^Ô,,q ©—Ë‘êõ/=ëæÓ\±µ©[ŒŒÚ––ð±lÂÊÎ'ù¿í¦ú²1à¯VU©²a‰†ŒjÛ_œGyàÀªô™´ñ«>¢=SýῆÒPê0¥l‡“/Âx7"©8ò¹›uæò9‘"j½¾î·ÍŸèƒÃQ6\, a™×nG–LñÀ Ô_4G+h‹‰àÆccs3ôq>F¬6Áy}t”ËøwÚxe•ç $Ì€ƒÆ¸¡hä#ÅÆK‚kî£fhê‹mÈõŸ`¬LwrŸÕ‡U[{ãð™Wà#ñœ •Ø-û™*ª—»9ªŽ–¥u¾F=÷™¡(Ö%Qî1yƒHsa¢o[Ç PÖ¨8ö½Ý²<Û‡hÐÈjsœfÉ‹­C¬I9“T"ÍH¶´¤rÐÄQ×Ü“*±=ÒŽx8ì¡‘,;윢.Ñ‹ø[¢ÝÆIYBàt¾O@ö½âï ˳#"ØwYŠØRöº¸‡¼}´ :ª"^`Ë«“…ÐyùO»¹+­‡ù${‹m5:¿ ;¢}²j¬”9g™çÏP¼Dö0‰ñk~ÎÚ8,ÝDÁyY†#>¨„B¯ ¹½í\†[oþ¹Î¾ãûß{÷%¢ÔOÃ7’ÿé Yg‡.÷wº·‡ª%â&2Eüì F\e.O“ÇËd‰d™n¾‘ ˆƒÃUÅW1³pÒ]¯¿éDÄgŒz_Oš²§ñÑY¡¢R¶¥J›†ÑJ~pÌ7DKã©Òýéâ­hD~†³D¢s8‰õƒ fž¸O&j¯DîÃìòòCè7ð ÝD @¦Å¦s¬©8‘íK~¤¨¨J÷ø­v¨eÿ»ï/èýÞUË–Æ~Ù¿–3äÔ…¹g½™)bä¹ßŽü–Ÿk=käÀÝ4Ü€Q¸U”†"Üù3̱+Èå‚Ü]©|F©wè²f™° *2ýšp‡ÌÏ)¼qüÊÛÏè J&¹8úê>&û¦$òTÒžµTÚ&¦Ãþ­ì© U¦íç3˜6¦Û4)g”þk ‹Pj†¡Ð׎—5 ;|wê·§¡¹×ùj!‡FAÐÎïKœÏ‡DÁ65sñUY-rFˆ‰×£qÅ&„}Åíú‰0@û9|ƒ—ÂJ=5þ.jtã9ì–±mÔ¯]‹G;›·4 YUUû(ÇU3wXTÍÃP=?†µ­q!sÂÝ”#ÎC¦}Qn/¹wG':ITøIpËwîÜöcÝJ¦·s±$4˜qe¢ülŽ"ø„‹Bã…e‰èú8û€w²„÷`™³>™ï 4¥ì;ìF&4s@늓xå%)]OžÂ‰:ꙥ2ÃxI’;•»“x ù¹;2OÇ·aâÀTd…Ý È«ßÚð=~Iø¢ó¨&{w¢›Ø?ª×Á[bw¤ˆm…|è7üDØÂRBˆ!iÕ»0ÒÇ`öÿ¥Ö¶ Ìëë‡Ù”ªœ¾ÿm«Þ Öüœ¢ž£i4™^ãéýB,•s 'm3›â¢a{ŒØÀ›e¼•épìÂÛë„í°7^¦·V6ê/*ô£ŽšŸw¸rª‹Â¥¹=ÝKÛ/E‘Ÿ Z‹UnTýn“aVqÎéî­BÈ'¬–¨¬~Ùe£W†$ê¶’i ¾­(<ŠS tÄhçÓ°'©èžOÏò¦×u*¶V 7õDJFÏÝbý»æ8˜ÌñÍÏûºíiìÆÞ; 7e~ÒK’F4.r„ý%t[¦¸aíC•«#Ö?>qË|hœiønN<ÌϹâý˦Î5cMçÃla7ÜèkçfdWþˆ(Ó¾tNkÀŠ!1iLǪÁ{ª^‘Ÿ+mtlLSëá®/vè³½ªj€Ãñ‘:§}í‰=ó‘—JCÛ mÑèFÐ|ªé‚kJªíJWá eÞÿœCYp*´Ä#©¹Üú¹,!RÕè룓õtmºÑãïÙ:µ@â4†üZ¨Ï§ŽØ¼9Ô'?WIÄÆ9nèçÑо\i˜LI„£S³ËÐò¨ò[?  O2ƒwém®ñ¥+V4ßòX©*ßú‚Ñ(C}xƒ¥:±æç¬/ßôâv}Í^Žõ¸Ã&Ó—x§i¶NÀL§`‰çËßÁbÉ©üF‡h‘ªs4ƱKïZ†Û]^Œ›÷°£¦ñ  [^|Ö2Jž¦3L¿sX?ðvœ:£ü˜¡×{'íhŽW…oóXªÄÆësÎbbE•öbÕî¸Ì.âàâ2>øJÛJËÂ]Ú„Ö»õØîL³ßéD΢B“]ñòËAsµ7âž³ÆHr÷áOà”a8ä8ÅÝ|Ñ‘XQÂîC®qt$ÒQè1 F´¬áGxí»å±—ëBÇÆ½<½>}쳜‡Xós¤¢)%¯6­ñÏXå¬fqÃI½™7 Kv=÷9¥º”æµT4ŸåÒîx{gK‰¢=Õ_«‘Ç”ó´ í†Nr÷I/ÉO€ëî$Œ^ êꀈ{Óù騨 †·©µ:ˆXåyŽ„‰:²&˲+9¯n·4€Vq„y·þ¸ò [- ·¶zk\XÜN;—ÎP°I}>vÅ·eÓË^ÄÂôàKáÊö0ì'Ƹ".9 ßj[ i&¨ê£-Z¡¥k–ÝÂëV#k§86¨úfri–[ììröÒzQÑ‘ÿ×üËÏ+ïÖ8ln7¦Æã|û‘P0L« ÕQ+¶—ªUèç@¦¼¢±ÿoò’ÉÒçíúìœ%n†+ B[_êϵô"šèºK䕽xA…ol1À1ÜÅ@-sK?1•,î § °dÍW‰'a¾¸Õû%¥áí`}C!2œ9¿²Ã®cÁƒ6þE“\q—Öd’3Í‘ Ø•%`ì8?Ç,-'3Âö„Ó a)y›Þ9ðSHèvgU–k1ŸÉôÖµ`I-±µòÝóÈê÷å2JÒöxIóNqô§9U‡u/eiY¿‡ŒLný#©{É$a Uèr¿_}úÇ&Á‰Ökß*« o{ÐS÷3Ô±ÐþHÃRå.z=ƒÌ?o¥8S—tÄæõÚݨÁªåšžú:ÿ©šŒ»ÞƒÚQ~_kk6¢`‚¶EºŒ;·¼ÞªsêÄv­³0Š^e±»ZIêMïäLDä4ÑzCè[LuqÒ¼ôílq;Öª¬…ÌÖ Âª/ʬÅÔÊYн¹µ[Í–éäò†uM¸騱”CÃN7FL[U²DAHlP˜)ÙsÚß¹q\$а2Ãy½ºFXñžŒnvö %šTQPÞ¢>Ét€Axf3djŒ)Lô!Öú%— ¿|Í;Ú$Ûaë[ùdWÁ{ßÛÀù•;­ÅYð˜(¿9¡¥5Æ%{çŽ68va*¦á·y¿.9=ØVæ5É›n‰\ï…„ÔCdHpïìØ{{ŠÓM0Ï÷Gh «+ø ÍV”lÁ3`™›zb—B€‰²atËnÎX(€"¿ÐܪNPr&¨ËÁœŒÇbvÏÈ?ÇÏçDÒx)sgÎfã —È¢ž®/a›úÌ¿Pd·èuåaXhÚ`¾ó°t {a‰T°žwip Jã¼Ê¡Yè](ŠŒ…;ó~Çü MÒq›Wêp/îxÿ¹ßþÀc£ü,½úլƱم°Pzi[3±þ(Ú\nÄ#‡A{Íðƒqø oÜaU {_‚„ùwÉDø¬c+©ÿôë¯J¿)b¹ìÛ¤r·Y÷ ¶ø&ɘɷžŸ’ÇEù×Ï®1¦HÁï.¸ Ýb[¿-;;Ý·M ¦É椟M‚×½º)\&ih†ÂQ:)þ”Þæ©¢'~f}ŇxìŠëÒ÷™- ÉôÓîêP?›“€ú3×öLÔˆÍ 78º¯žõ‚KÑxD(+1tÁ¹¡0‘˜q¹õBEf‰Í×¾"Š‹£Þ§±Ñº“X;gÈT™a–A”$t냂¢ÕÞ³vì4°ÿÙÞªhᘴ5ûØëiÊ” 6/Ðéd“yjjDù•§>t9|§©iiœ‘¼W’î‚»5gu?qD!³ÉT²P²±—½>m9^P6I+wÙJ¤¢°‘Gn¾ünou>œè sÅ´¬Ävê—NÀ)×å£|²RĤŸãíAì±aú.vW˜’›ŒiPç ?O¶w%œrr]h¨òj¥¬;™ÅÈH]!4¶ô}¼zµö*=ø v`Ûƒ§$C™o ÷UøÏ¿èLì­E’ pXCÖg=º³who >Šâø¶4¬5—HÕ%›×çlŠž‡ô=55£ü®4²û¥ù‡Þwj \ƒqôÂ;p' ùTW;ç1‰4Rªd² µÝL&žõBzC!jÁ~Ãx€sÝ䢚ªSO;£ã³{ÌoJ¤MÀ1˜•dÜ&ਵ&°¼,}Uï‘m*K4L“$ß¶ ³Ë=g 9MÞj'¼'M¾û.k0A´g;Äßàå;üô™{´´ÈÇ`ÍÂæn÷ଔšýï ´`@©Óä$Z®¹ÐiŒ1Ð ,W…¦ši¦1µ_ÔUÀ.LÆ_ño– Î¬ªèíp bú“s¿’¦LýÑæõ¹šªJçáÇOO(¿-êzßýúÌ jîmô1RÏPA/l×{› ŠÂãVGôבùæ|wu¥¯üFç†{lý)¨‘ئ‚³Œy†&a‰rÜYØ­yÕ<Ç 'FÓÍæ7¥¨?5YÊ£Oj™Ÿ“ £èÙÒ¦ZZ¤e¤ªx—Á뎇~¤|`_j_-¬wÊ:h¾sdU³*TÖañUÅÁÝÛWÁƒpbÚï•~UI§µ—ˆ”U¶ŒØ„×\ë‰äT`«R[ƒF[àRª*­FÂ[ ®‘g s°bÞ–>¯ mR-ʯjîYmÂ/ªÕ­¸YtÙ¢ Üb [çŸh‰ì'ž¨LôyÅ wÿlšì,šºÉ­ÿ}Y¾‘pyAÙP…+ZxÑü)]¼®¡ezÍiÒ4õį’õu$nd¨“mlš-ÓŠ òR1o@o‹‡Q~³%‰T%4®þÜËÍ*kŒÝ/lÿº­Ôûµv4Aª|ªjNöóÎ}ÚJýg\îàa‚ŠinŽhUPgõ®ÒÀ·òtp.1Mw”µ·ZAë0ž_åÕ¹/;¹ÍüT; ¨¿Ä—U±‚ "b[•å­ø•2êÖx±ä9!ùtG7*±· è:qëØÈãP“½™+[ÇÝ–[Uç.áãçôÔ¤ì¼ÏyL!ÉIlºÁœb ç¹”–ªý˜K}>H2dܳyQJ2µÉ¶z5WE}¤?^‰ÖÞy١󉼣8”ânx ³ÒßDÕ[W%L¬9î-‰rà^3…´ÛÜDŸ7Úžµ…£œBö[Êšù´òîÌ’‡òÉÎŽæ¦,o*“¿þd Loº9ö÷d»?'•(t5‘€¯ôý»‰±[ Sòö×¼žLm-ó(‰ž¥IÀ nû-yç8?Óí$¡SŠs]ŽCŽÌ˜6aVü¦ªÏëÔú:'Í‚òfQ4ˆë4|©om¿ƒ„ÎyåiÂÉŠëp? {z¿úQ’1Óöîqi–s‚V7¦ì«ð’sOß0§vGàŠý7O±ÿAÜoc-'“ë[,·ª¦ü¢ óÜjEÅ×£ŸK È>í8€ÞÆ•ÔUõ±°hŽa*¬a›¶¯H ~«›Sœê³˜ŒÅúsïÀß8Xà…û=§ N¦œúHM§bù©ÆåƒéYÇ«ï)ë¯/måKf˜iŠH-+‡UÜÄAèt,cäÇa‡³Ç’ò–ßéš~ B¥S_¼&=~ÓŽ:!òýúÑÓé9ŠÛ0QÈ8Ä&Ê›n㉩ž Œ·èõÉ—ñžY¶ýœÙ® ßÚz²ÌåyøIÑŽ|GD+{„l¯%9¿²]xV¶Würd¿¦–:hX6ÍwÎÂt[ÿ|Òéò®8³!ŽÊ>ïCL­Âj…ukø°ÊK _Tx¿­Û¡­™Ž¬½-¾‘bßÝËxéÁ|œ^øÜ'ŽÜŒKo¯jƒ KÈ\UÔ,à=W¶ù n*Ñs£ {EZOýzÜ‹×Ýœ#¦UÀwîsŸ¥sÛ+2u ÛÆ9¥P³ÉÆÒÃ7Ôó YOJiœâ—øaž®ÑëòawŒw逕Ùî±ûÿ”™Îè Äó0Nr îù49Yþ©Ó³O‘ÿq˜§0?Ã>AVíÂf†×Ô¥Ž8t.ÑBЇ2ÜqOi¤û¥zžîƒœwn[¬, .€²‰z¥†/—ÅH…z³óÉúo5|„»„„Ó;TŒôo›îÇ«½Õi××â¹›½4‰ ¶ÈúãYT”öi'vŽÜkN»~}X¶><è.èÙ{Ñ ¿È4xžL°Î²):Á¡°¹³2ƒMP–¥u–cË–&¾Ù5Æ—`}@³ÇÄôÝ¥uî‡Ò€ÏÂÏc‰ø#,¼ÀC±žÈí¶Z´}®¤¥qñoG-݇ÔöµÈLë:Ô`‘ŠKÆ´™^¸ûÖTY[Ý|N!c d¦îš¦BÔÒ¢x>˜çxbO%Ó;‹±Üõµëß0Èt¸™;Z ;<¦‘M¥° '{h3 -/KÃ.õÔ–t‹ò«¹XÒÆåÛ8œüÃûme1Ph$aaSã/ªá„}¿ÑrªYû¸œZÍ’Öˆ£ôtHy“Ø7 h5Pó–FÁ«lG%˜×…¯Ü±,¥µ¯7•ólá4¼¢ ê¯âË ??å%þG’ìN {ÝÑÓWÕóë ýWÔ·¼1ÀIóR7z‡#çÙ´ÌB·åA8aýN¼„ÈÀDÆ,Ú-8LêŸy»´%¹'[ÈT†Yl¾^T¦ž¤ ºå7ºIÖÅѸ˜§”³%Ú ÑC5锵3äu:¯Ô³8öýR”L—ƒ[´ãgÛEí‡åÂ<¸ÑÀkoI{íMØ"I3ÃdÙ èàEæÍéòK0Cøö³ÀxSÚ•À˜×7­+pwÃ8ÑkMðƒHk5Wzö€»ªÇy 7Éß Õ¦ÚÇOiŽÕ<ð²·[[÷c¢ŠFë”Cæ° ™ó‘˜AåñSaZ´•}»e=3˜çy#”FîUþ®æJ•nüø/… IÒݘ‡p—/ˆŠIR_èà“uÀ¥9¸ÉW‰ØŒù ƒTèLæªcÎ}`g rDo¶‰ä«éýߪ•oõ¡.ÉœÖ £SÕ½h÷†¸í§¦­xÀ{þ8˜%…ÁQ…B=–(¯×$; úÉ‚—4õ¢ƒx"7¦ô¦‹ƒÔnsK~Žö,‚Š1ö>ˆÛÜï,ÁÏ^%¢ÿŒò»êÌ*øO…)B†2%»h×Õʲ8*X_¸¥UÀƒl÷:¥êT²Áf0è8îè]ûÀþI玟îšrÕöö«çª^Ô¨9n›Õž±Ðè{PÚ$Ö‡á63™W Þ‘¢g>'SÕE×A™îŽÉ»çIœƒò‰jÁžíó}Ž£\3~2=ë” 7“eîÖ;5ãøí(m¯½µÞG9j»U«¦ñÔ…N%¥ÕÝ¥‘k«öèú“5bG!RdÑ‚¦HÎT÷>½Ö•¹G²ÄÎ4ÊJ[<È0n…Ò,ר/êøÊg’õ6]ï» yÔ8‡f´ £sö™Q¹ƒýÿB­\ÕÍ.µâE–hNSJ­nîÀ¬¦ï¤ãDš)/ìÍí%÷z½£;U磑jõ Ìx$вo4©O,ãƒ1%Q‘­z^QwÜa¹âK^é»b¶yü é¦Ñf…©ò°UŸ`º™t=ñ¡ãôŒwT[!é,ÇÓÖ蘠ýÐŽ|‹NÆÎÿzšKÈyk®ê¿«íÕ›Z¾RkŒ‡’¹·ïÕw±w}å2ìÅ«ázo…Ç3ölþ\ð™™äð‚ë½äþo¥)¨;>·çÑéá ͘dY½ÌÂ)²oÉÑ$‰£šî׺ -7™a†¸ Ž7Å]µ,PgB©]ߨŠçte•åw¹KÙîÜ_JÄ£´‹ãñºlò¡Úç¡è9ŸmÚ¤Z.’\OS¦Úê³n/Cat³kªÊ¯¼Þn0OŸÿ?aÍU­š$|Tíà-×ZŽ­úÉÏ娩=›Ê>¼pÇϪÌ} å°º>îìÛ• E&°f¸?Ü>÷“¸ë¦ðª­6»!¯=T­¼&†“v—Ä»ÁÚÖ«›³We Få‹?@å»ð‘§jL8ó©Ã(,÷#™ÿÆI>Ýâ§J;ÓVužv––i”¬YFU Æj–ä8·ñê7Y\3»¶&?§+Sml[CŒÙö2L y@›ý8õ|ºkÈyk®j^kä;¹ºµ¾W¹æ¸+Òi}néWáU´&²3§ÎƒVJ×)×à¢Ë0(æd$•T‘¡Äé&‘›þshÊizÝÄY„)CŠ:^%”=£Ó J˽ìOl-s¦^‹™GÛ2IPg@Q™¹f댯xÄ2#ª²Ÿr r˜tëbeýõ•#¤Ûˆ4ù†[í »I;«R΃mî¤+S.Ûxî—cº½ ‰6ùÿWí¿œ§…åªpUO]ÛWøªÚñµbK¶£È­ÔC½ZœQ'¬¯¦.&sNÖú±…äq5Qjk* [Üß8M:¨YøúW±œ¼Ó!íè›}eÁKÞ©UС)TïÞyÉÞ7«t¿n@ù;/ÄšrW¦Hì|݇‘>E0Kk§³–ph‡”ïÑsȯv©ù°K׋¨qzN)u)­âLM²ítÁ_BŒÙöòÛ¨}œÓn›c9OÅlI+ºìU=zÔÒuh­QVÊ=ED/Q=T™è7Z£N=ó“O2™‰¦Tغ0›#¸8 < ¦ºBXˆ“D[?ã¤]D.>:ÙRˆÿl°=uX]j„ÕtN:åÖ¦·¤á*Ó&<ÌwÏIýX‰?(î gö½_x9ÌTzNѳbµ-‘’i½ïýBÛ«íS¯×ñåJ3µIuÅ¥ÿbL·—Í3ãSmçAsž†ânh³™f£êa¶w}WÖØ©~á§ qâ§½ÙôFÈ~u0ž5¤&I‚2ïn¡¢×_¡·Î{팯ހ[õcˆª3ª‡>,ÛÙ>Iä6MöíÞpœ¼/‘Õµ:†ä,dåK}·$1v‹å}ºÌ+ õèž ä·´·÷Í®€‹Á~…¦Ñ²èøÓÍëÂä²uõq{í’`Ú·lL½~ 1æÛË¿/÷[Ymôë~5ŽUÕŽÎõ•8§_"/ˆnRùº‹jøN÷èÑ%ÊL³âÜ(»Þ4Þ.¬NÇ‹z'æ+ú)@/¯· ¾ÕƒŠñJ—Tk”´DNc®ùKv¼¸#þ2š¹Þs‚=‹^ÿ·¶*`YQ#«€%Éäa›-ä·CNe¶³t`]•?+²ÝlyÊâÅH<¥Zˆ1ß^þ#Ø©÷=[#*׫•Pþ³ë;ÿpäRb]ÐÎÊdçõÆ{5š*&ËP/j=[á·êáäÝe­½ˆéu° ÖÔcæ÷1½‡$råØŒç@Ù¯A´C/Y×E"õd"%Ïh~ÚìôâërðûÈ58ÿL;x4|UUu‰š&Øy²Ü{0¿,zIúØH#eT®ò‹­ÝÑó®5ž£:UãѦßBŒùöòïyšÐ™(–QÉ0 k-ŸóIq5ÑinNýµo³Çé·ÛL é%âÑ‹I’ð¥cì¨N*z£IÔUT¸ÔË1åÌ´[Òž¬d]“`®'F¯3Á2á(iïÛOÂT`e8VÑ×Ý‹×Þø2§ìó§3ØÍÆH΂ú¶k“'Ú¯ªZ§I%ÂûY„_W7óúz1¶÷ «Eªõ,ñ¾<Äø$¿ø/*C5£’KC²jûP/ z»¶ ;¡l¬ZÛK´êÊv÷ù’ܦêœBìšö,¾ °7ߢfÐu¿¶óÝÔ©çκ҂H{‰€Y+z¬Å¡’&WÁÛÂ:0¥;yô”²ù¥¢)vJ£µ%5¹çãpÒÖF4¡´¼3™‘ŸãÙd{´Ø£®ž“–-áauEÊÀZëþÏfô-1þãHvÞGÕŠJ†óºƒµöÁ°»5OÚThòþ}˜dŸ…CÜÚ¨˜Î4 NƒÁèË-ê™sš mÖ†±5faW$›Gœvé·ÜKúÃQm+˜Ó?,2´ GËBWVÀ\a5í2®ï*a©•ü,ÑË¥ÝNõ—D¯k­aÛΫ±Ð¥ÎN¦»Û”ª vióêpö Ñg<Äøã&µ~J†=j_ñfMîSW¦›L¤¡O`髉ÆqWš:zš ` W„?™Q¿½ç*uz,ïó‚báT+¡õ*ïtxY¤x‹ZóG ƒ?i Lù~¿n,yt¥FÖ¨¯qœ£WV),¦*v); lUj†…¸]DІJ·ÁÎæb÷:awßl›țՓ{P“j¢åFÖ"›I^œß•\räp-ç‘ñµnÉ%ùÚsò€Ì[‰´V¿ùM£àÈ ýÒèz1¸õ†ª{1G^tððaãoèíð@¢,¯xu‚ÜŽb“wÜX¡bóóH6•.¿Žž"ªî«47J†Hä1ÌϺYÛÑK=ñ&¬Á“ixƒÐ g°÷[€HúCª£†ã†2c‰x¶÷#Û¿“»NÿT׈óÔШäo8"d¬¾,ªŒZkÜM)êNœ… :Þ v1ˆ¹*çEg&`·ü[Æ ±ëM7|»K)]etcÕ÷à²Q‰{µzÞ£ c¨7Ëͺ¥8I‡S‡ë —.yÝŨUGœi/X¤½˜Yþ¥!±îq öº‘éqsc±mÉì_'yØ µ˜Û;F Dž=—‘ÕÒˆƒK?–ó{1Yv¯âÔéÒåÁòêɩן׸E`eˆ`Â]©€]rN+LUøe~ëÊiVº*<_§ùKn½zKƒ²îÓš ‹ÝTÆ6ìuÝuBì&3\ôJ˜­×Oò¶ÿãNT·^ô‹ªZ¬uÉü.°!vN";¶88_/x]„tp…?¿«£†£¹ñ(ÏŸ Q“1Ù“HWld 1þùfØ8É1]},/V?¾G¥ÖÈùºï¡l´Ê0[C æ"Ün ±ªr´™åU®ÓwëhtçþäÆB7Ϻ¤LttÉ(¸àNóoD`m#öº«¾nö¾ KázP”„áçBƒÙ}¾æˆW¿nG»ß=†_8ÒÜ™j̪…H2Üv’)áûd]]5Ç IDº‚ijíYš–¸ñ%ÿnYt¯ÃȆåÚ¬Æñ©ÑµõJ²O+!zU9¬s¨…¥ê#XKg½ƒ…èˆ@ÀoÂ2/Õ¨ º zøzS¤]Câ·äüÈjðšµjn÷’Ø»39¹éæ­LË…‚fž%ts°aKÖ7J Ni?”÷¶Ë1¯¯¯x¡Î¹ªŽŽÖP˜<{šý)¢ÛLϹi­mp™`œß ñC¨h:¤2°fßgsû‘µº9XC^±ë, ZPs¥çÖâv‚Õ/ñ–ûÌ!˾ýxìÄÝV꘣ޔ‚3YéX¿çâpì–¼ðº,˜¯íØ2´ôM;±Õš#x޼¡§:AÆÞÐ2^ô´¹N! 5³ Ãrâ …™d‹¼W$µ÷.#çñ5úø)¯ç¿!¦7¹?ºñPÍèÑŸÚÍ<ÊÔ¬ÜÔöP$ÙÎÜ#ÆkŒé×á_4éëû6B¶&/lÃZåÈ‹´5×TÈï+ yÛ%…ÿ¡dp'Ê¿lŠ“KÆÍöFêºÐ±]0§É¦¸©Ò KøàÁ;ÞŠ´:ÃÍL³QÑåÄÿ S ¤åÛ·¢_7w¶óÚÿÿ ¾†¿¶Cþ~íèÑo´µK¶^.5ÍrV¥oʼ W: a9SR#ß ÂÉÝß^ =Iô×h7VÊŸÌ\*¡íç8ã<`…»jL UÙÞpD!«*ieÕÓq8éÛ±rVühžuc¢½OÍrWͨó¼ë¨áÈrâ …™&§¥›MüXÎÅ:=ÒütýÑèѬ Ú£MXº”¬Ñoz$Ó kŠkš, —oÂö¯áeő«*W2Ûk[}Œ¬õ¾3F¨\ÿU?5%¯î,¶ˆucòcj-8 £1’–·T^‹–a¶YÚ[ªšuAk8Ú¬ÇNsâïÿ S¤¥Ae|ø?§ìèÅÇF>×·öÈÊ«ìwŽÌ^÷r.±ú}úÀÍÒÐe­X‡-ØoÚ3Ñœ+ùf±‡:íÚ¿YxLÉóRI[Üj‹;‚²vbm¯ñTÅË­{YX^oE%Ýf E3 ú…užqI¦&¹Žd–ÿ[(L¦´ŽÔ ÎÊã¢GK,®=,>‚¶Žè&­oÍÞ‚³WÜi—†ü·<”#’\˜f,Csét÷)þà&u|3²2Éûë!æH}ÐY›iÐg@¦d?>TÞ[®¿16ÕVÕy®¥YÎI6j8þB‹ÆÕªí•þ.çwÇFôèiuí;bö걫NØb™+¥Áã‹Ü”ˆ%òÁuú2ÇÌ»P`†›]%Q}ì­qÂSîN'Ácúáð±jtN«¸f~£W˜Û{–¸~4r•yŽÆÜyU㸶Îs¥5mwz{È>´™‡ÂüÿÇVôè¯üZ#ïÈìÆ²$—TuÞX'׌;kY³EyÃ¥ôø½†ÁÑ8iX+óiš‹SWE)@ŽBaxý±·#‚«*'ؾ›âÀ|¯ù(€yÂäghœ×Ôy¦´†ãÇ?U£;DÛ0 …ù³À¢Gk04¡vˆÀ—¬™ËìP³é7C~õ` ™ÂöcÖÃf‡ÔÈÞ¤*Y?ÇHˆ¼+î¢!Ÿ>ºáì•w"UÒFëÍ`~ÑîÝ\î0óa%ˆ‚ÏŽ:Oм޿¹­B 5»CМø<æÏ‹=Ò;¹zI×Yì/ÕÛfSîW?Éz  VŽ Jñca‡eŽ^ÿÚ×n¬©nÅ(„g3­:GÜM‹0TÓÓ6yE­3Sº–Qò(Ü#‡vé%ÊôúH¥Ïc+4þv‚ë£mƒÖêÁsâÿ$°èÑ[A­„êÑk†µñJ×ê'߀‹†ÉÄâãèÞÈ—9Å×G ²€whqlýdÈï-m¸º¥?{â†'Š Eà+ݸpÂá{Mýè²ÿDBÖÖb{´CSqЗužŸeKdh]Á µºCðœø? ÉÎûò‰úØ“ª»·9?Ò`Í/`V˼¸›$2»¼("Ž<ºÔûI­¯<¨ö‰ò+ŠŠ ³î:\ƺÂ;˜E‚½Ÿ‡#pÊùL sƒ_lBŸ`‹ïŽj`«Ä£ùèÒfÞâOÊÍ›× {KæC•íù÷k%¿É1µ]Šô,Õ º æûè×݇ˆÁI‡,ƒ´Ô·°7£‡EƒCƒñ bL£5Av: ÐNaO5(éæ2Y nƒË©8Âv×eëG±†Þçv ¬Gªxwˆ?+s¤7ax°å ¦åÓ­ägN[{à5YÀ2åK#¬mß Û¤«ÄÊDŸª5~ê´Ü­Á¹ˆnlº³¼d¿È[E$é––ˆ\ï©q·Æ)ÌÚã&Ohòw8Þf GBû °i\ ïñge…pΣ/*‡—Ô¨äwÛý“Ú#?ÇýœÜf€¹§› L“”®#ñ&8Ý(8èü ^x[’‹ '¼ú³W,Ñh ºO“±ÆCŸQPïN•é±î8ØVqއy´¡÷ÎjY×ËãÝ!þ´»Žð˜üH%¿¯´'NcÚ±¬q“²zY÷a¹˜s¬iIª"ÐÛh éÖ"ð½q˜3”žYÏZk‚À@ìÄ–‰¥ñ.%'’…¸ÜºOêt²þ‘`БR–m­7{±äæ{{¸¿êÏÊEÏ1(ëÑJ~³C¹[I¬g)|ß?g‹´t»SŨUU—\èVsÑsRg¹52ê[]» `ê©+$æäý ÎdO”EØ ‰OÐZg[ÃQÅbÃÖ›½'g@C#xêÖŸ–¯ÛúŒ3Y+ùUO®·ô|T»ÐË»BqÊ:­µÝä1{Ô‘…ã}£s³»»¥*ÙH¥±è9%³…\E’ó{?b(íb[{[ k{ók‘k#´=ÛÅü¥Þl/ºXõ_}cÎÿk%¿ZÉõÅõér|ϱ£‹f"1Ê?öl t£²>3áîtQö oU•°˜½ºüy$¬d‹ºxîÁx±{I¦´†£ÆFCï}hB«²ï~©7{Ññ™|Ëgvsþ«¯Ëùß`­äµ“ë¿Ó<â^:‰;[Óf˦»ªÉRï¬H³PwÖÇDëZ¿(Ü'Ñü±…O x4zC+f•YÆ"IŸ:r(uÔp„ÏìpVÅoõfwWGWÎÿwî[㧬ÉõÕVazß©=ô#ÌÄÇ4A@o²ÀíÎ#ÖùQ {]N—x9QØ`-¯"Í\.Ž©gËÆ†ÒîO0¯i ÇÚA¿²kÖX£þk½Ù‚ï×UdógÁš\ÿyxµ€Ñç“ÙCïú#Ü$ _oêƒAXõ&³‡R D(SÎÿè5€>¼Ñ[»,AaTèÚ0ÙÛÎ(­áhk†uô†$Z%ž×›ý‹amùej\¿Ú„UÞ(ó‘qͶâwXànÍr-ñ÷0÷«*R¤éð§ àBN:’aÝÉ©ÊB²u¦ÖÝÐÛZrà8ízÁëÍþµxØòk†¤FÕ»‹íhrÒY h\0Œ(À…ð¶”ê\d0[‡VyàþgÈcír¡ò½»—ž S–åœ`kSç׎Þ=ýM¼Þì_ k˯SÒÚEå–‹’ŽìÚÐi”cM‡/½Ã:ÊÁÁPŒ¬ë˧,‡ÉOèRW Çj½ÎËy½Ù¿¬åWedCª¯ÎÁHãüé 7nªü45u«{è|mvˆ2å,@ºýÏ*h:|ÄÃÔ‹Ž*õ$êrŸ/9Bû¸)§<áSÍëbljµZ½‰ê•l´5–óç„N Ç$É|‘nÐf[…Z~!I°æ›»»{$ÐRÆ?$ÓÇËõh‘uÈÅkFÍü'¼e}PX]ᢵ:zò<ïèýÏ£m8Íï&z:Z7”+}‡;î¯ûU´†£>ÃF™ãª%Ö­ä‰È©õkYÎɼ£÷?³w7s^w¡ùžÊ¶Ö-èK}QБ'½êJªÊVCo¸r6øá*îÓ 0%ö÷9SÎ_Š;ö¸{—U]%n=±4ǵ:zßlŠ$Xò°¾Uñ.€Mòw~dzåüeØG{DÒJÃç Ãûá¨ÓOÿc ½Û„«X(°>HÇqÁⓜõœ¿)ÙkÂÉýÄÍà:j8Rò]EN¬i@•³»B‚!çïKªÛODª’qŒÍ8Ï_¸“¡M©UÃñ³ ÖßUû^[x®¡}äïRÇÞ¿ÿYrþrDùŽî ´}¤šCm[ñ¯5ûùç68@®ÞV¡N§:áÿÔçÏùS!GŸ¸ÁRš©KzŒ´ü ²¦‡]|ÏA~ÕÕÕt/;Qýüï~’œ¿…OHÜ¢a{.6j8t.¥vÕûäÏ|C¿[ú˜›–µ¾oÛÙh%ÁáüF5á²4àbÍ&9Ü?ä'hdëo ¯l çpRõ®w«:*§ ÕA…fýsº÷·f_$öû±ÿÕÙqþªü»Õ®ºžþQþ:À05ûß’\ý.µŠûßœçoLšªò]"O›6³>> stream xœå[[odGæy”1Šx8žCß/ˆ AX¢ $ˆÄB»i|]{Æk“]!øíTõµú¸g<»¹€@yÈÙž¾TWUõUuûõœ|Îð¿ôÿÓ›™•Ÿ7cóOf†óQs1·ÚðÑ™ùÍÌz6:U®g_Íœå£u|nb£Щ´8îG£C/-œµ"½J í%•# j­äˆs‘³XλÑê*Uú7ÊH7*ã‰PŽÛÑ1ÞU{å–¦Wª,—e"ë±ùåìõŒUÎÓÿNoæ¿?žýêK¡ç~ôF˜ùñÅ,ª™Ï9¨+Ø=³#‡Ç7³çg‹¥`΋á ø™Y'ôðl±d£aLúዯ Y1î¼>ÅfæÂÇøÁ˜WvøÛb)¥30t ÷ÃWØA{ë%vf#~8'áLx¡†ÏñÛ2æŒ~·pbôΈØÙyæTÓùÏÐ,@@B-^ÿiúòR¸ùñg³ã_<Vk\Ú æùpÒÞ Û°-ÅaØ«"Ûyü]ánã†{øÙpg§ƒ®ðÓI~¸ÁÎ’1îõ°Â.Ìkm…Œ³Hï•’qi©Ø_xç-ôÀ¹a¤@9‹vïcgÅa»Ðìâ2‹…ZÇÂzz zä0,oüËÕ{£†ß.–Z 9¬OË×ÏË×mùZ•¯»N[å¼|m;muì}gµÞ,uõ"nѱ¹½•.lQŒZ ;_r ”óã3Ä*@Îjd|aвt(ïEì§ÕhKzŠÁÁù¥%Z³°£˜e-~GðÎÜs®t Ÿ*æ‡Cå"Ì­¬6U¨õ¢µj~aØ&Îæ½Nà$ lÝYjŠE¯ƒlFÀTdÕuœÀ1»ÿ´Âj¯ê@Ò! ƒ…`,¢€WµÇ座„1i§É݆­à$BK 8T ^6àïÅûz0_Þ±Þeê¼,fŒcºF\éuÇÔª!Âá<¶µÿ¼Ý»wµ«®/x,ýygæûÎ,—éWU•pN=ד-<ø¤âQ¯ÉœW9ÎÊ‚Q\R}­“¶èàÅ]ë¶“_¨þc ö‰XˆŒèÍ^EK…ŸåăóäÞ0e>iÚÜWÖAÁݽ°ó‡"Þš¸Ã¨Ç¥–U¼ Á{×”àìød‰Gúôj³&Vë½Í)lñÄ8Ò¨·ˆD‚A{Jت¸FÀBò¦` ç TlSÊqÊ<âxÂ*hWÐ:€v|Hjíðí£ÔüÛÅa'`º!R¡Ì`H£,8 b…“’ÑŒyÇÈrøDÂMHf nõüȆϳΆÍEEeM;@ ìFK àqU7ÛŠŽÊ+¼™Ppmt9›®CBƒ ›Äâ*ÍEØm ²æ(¾…ÄzB—£¹E`æQ >®Š¸ŸU²3ŠÅËÅ.^³nü¾î„©“½·¶½íE÷Ë×EùºîDÊ7XxÕùõÃi, J2rï®èÒ¥ñ7¥qÙïùþB’ý×QY²í´UFqYåúWýäå÷£ÚxÖYfKÚJÇz{Ý/Ú«Î>tôDÄù¦» xÌcZRÒô üü&xµ¼Ö5F¹ƒyƒGñN¼¡ÒŒÀ`<çbo€ü)wÖ"'rW`o¾ëÓ|-y±ÒüÛâKšdluƒ†;Æm32j\K«›f’k{ùƒ=‚Ô)P{ò‡Ÿ‚îëì™;q¥ô›ÎÊ·_×ÖDžYðÇfÑÐ{˃ÒHaaøxss;òÅñßgËükSO8Ýœ_Œ/†O×Ûó»ÓóÛ-æwÜbNà 8 ËÀËdÉî¯.oÀQ8»Áj¦E s~ù<ÅŽsÛyЉVÆcïyŒ°\9FÎüÇH=RøräÁLÐÚ¸à_N"Ï TÁ ¨Î)!£H°ùÖåyeÑÛØìÞ£Trɳ45»Ü ¡€ê¸î³°žVzîb«å²­²’·X‰Û·Èa…æçÆ_yWMµ´ò¹¸FêÅ‹4î{ûvìâš%“0÷9A¬8ÿ·éL¸œ’Ç4êªðÝuùý2òXø‹ËŠš‘zX Ù#ýbYªäý HvSÑŽúcTy‹Y¿@ÊŠß%îª4`î›VĸÏ8¦«MþA•Ë×V«ÀµqI@­õ_T8ÒEÖyæ `C+"ó¸OJNh…¼œn¿¢GPL‰=BŠ{׳ìt9Í©òomÕ¦f·ç±‹ŠfR¬ç*R‰ùÞeSa,è¾Î“š•¤r+Vä’¨MLäVdòIý¿`%9%r2×5e!(¿|qk›ÚÑu­š¥ÅRËpÛ”b‹k"¼Ñü±^ÝœL¦  ó;ÈÐ3J ŸM1£DX‚Mº]„•œñe—IJ…e¥L×±Öá€]vý¶åÊ©ÜyóP g›ÅÂD…wûÑÅßaAV¤ÛœÔ[{k=¶äN[,¨j¨¶“’ý¤„Rî–Z©¨Ô‰‡pMIˆfÁÑ‚·u3¡0îay†"iNÔºÑÁTN‚븦h'í§ X県»©†Z×äì·õ»—g@Àæ¼&ü¿­póì©E½"¾rñ1~ⵓb™á'ÜG;fÂz5úÑP;Xe²_ÎcR†)GC$Ð>\×™ieŠ:÷\ß”Úó}Ú:±‹øm˜Øq_RöË³Ç ` þ…®C–¡[«õ7*à*vð(7™;9Ùï_]m@.´•.÷2'[˜ÁCÕ ¤ƒ³Ýx¤…¸“¹mЗ\7¸ÆØ à✇qu«¥ÇMp½Ú)·ÓPpSÞéHÀÚë£ðfdH ҞƆ"Èñ:Ù© È¿ØD· n—ºÕ£|ZœTùvEå´.ÚaT¤é8¡÷O*ŸÄ ê¿®ªö'uûR+MO+H˜ºª¥™´½àÔvÕè%ø&x‰h¼ÛårÏcoÅíV¯éÎr%AŽAx+" ›o]ñ›ê‚²g`Ðí!ã›ôâšpX"uCdÂ0ÆUŒiéäÀÃ=s5:›Â=¸•¦ Z[‰<ÍÊùÎbZCœ$ègLÕ9&u‚ó£O~67 /G/ Ã"QˆG‹WLQN`qMtZ©¯+|üPÆÒRY^½õ†_î­.úQ)åE–˜ñä4€µ¹]Ã.è_JÈ›fOä™t6Zñú–Å—;ãðž:  ,¼óóÎÕy-àÛ^%س¬d¶:ÚG=B¼?gªkN)î«°Äm7½vî’ÿ)Øz9ü±z/²^[Èè9ó£<…nƒ^>ÄþË™*#[7'„s)î0Úã М½ XHF±ãÊ”ˆF°OõÖuï”TMH ÙF‚½²ÓÃD_'ðÄ+|7Ø]…À…À¡ì|ëÔ–!pºGуŽÀ›ÈýûÔŽwBãS.UœHïv§^Ù¼éÁZºWÒ„£(%^¥R6Ckø;†"¢ŸÞ•è²î¬qÝM¨jÅLbC"?E×:æÇ1Û ’½+cêåÒçi¬™lÄ VöèŠ<8ãë|WcSE%aö,N‡Ùah4ÞsÓûÒÙî[Ï ˜…3¶malø«¹“|¡®´eò°‹(Þ|ÒŽQÜÐ>F¤+õÁwx(zÀ.sëh8, ÿ÷±·{|1”ô ¸bÅ9rÊb³ÜåH¦‘e…Õ ãÀ&ÄÄ ¦a£t¢'ÿäÌ ~¡QÂ7ÁrÒ³’´u$þO(wĆž¶¡,•8K0—Ú¡Ö˜ÞÖŸ§x̸i©Ã%ÅÁ6½G(­ÊÃB~T*‡Ž·„ÐÙd—îc._Eî¯=¹PFõ‡Y‚Æç°5s<ŠÛö1GÞKsyR* Ð3º°£ŸÕ¬¼#^.v.çäe9ñÇÏÈš Qkc¸ýdœtn¾6„kírQ‹»O<¹¸ê]œ=ñøâ¡/O;¢]u_÷v]ßf‹Á§¢2Ùvó Üö/11Pßv¯žØØû0ݽ›x¾÷ÝHo/{ è½b©Ó|òÄ=gw¢Ugí§'":õ Ö“)7wôøÅ7ÌUËu0þ¬ûüùÓ¼LîIÈôôæ7ÜYŠÃ„¤§@“¿¶{v<û ü÷olâ7)endstream endobj 158 0 obj << /Filter /FlateDecode /Length 11681 >> stream xœå]¯Éužïù+„\:æN}I± †Xcí‹Ñ 5¡ArF ’þ}Ö»Þwu÷m‘#YFs1g/VwWW­ªZ_ÏÞ¿|J·ü”ðŸþÿÕ»åÖöÓ¯_¤§¿y1Ú¼Õ™Ÿfù¶ÆÓ»«ŒÛØû¼}ñÓ;ÍÛhëiŽ–nµX«C²ò¾î­zµ¿Û¥Q®mZ²ì—çõ>í_×Ýó¢Wk¯Ûì—NIpíÓ¨ëÖÆ¾ôiåy[)_ût6’à®út<-ºtyZzúæÅ/_dÈ'ýï«wOùÅ‹ÿô¥?íÛe<}ñ‹äü”[½ÍjkÊÖâ‹w/þéù/þþ/þîå*·½ÇóÿúéK{ên½•ç¿}ùʦ'¥6ëóO_¾ªµÞF.ÏÿøÃ&i¯TÊ~þû¿Á§™Òõ_¾øèüôaÙËöU¬_|mOýo¼×ZC¯.uÜVQãçœ_~ñ¯h²/M^ÕÒoe=½Êí¶V‹»æ[J{´çÿöòU/öR+?{¿;þúòøëÃÙð¿ÂW§ðlùýñ×íøëíñ×›í>ýóóñç£îœý‡Ïtö¸áË—·œo»÷üôÅß½øâÏ~ÏûŸýæ3ïzöüõñ×/½Ã/ôè|¯wçÿëùg;þ=ýùùÏ/7zty>þ=úF??„¿}x£ô`óÇõ÷æ×—k>=˜gË÷ÆèÃe´ ðuμã»õååyÞûsËàw5ð|ʯŒÔŸ?Ò›¯ÿD¾Þñ÷N•RùÏËËÿ—óUþïÍWy<_ŸÞ¬~ñ™YúûöÝyñŸ}fÿÇóÏËÜ^ü;rO÷©|zúßø©óP-¿{Ðßó½~þà½~þàÉÎÀ³7á/Ž?_ð¿þêQgóà׎=zÌOŽÿÙƒku÷”»À7N©³á£ÅýýCMºÞüÁÞðèÙ7ׄšÍzª;Œ'ÓŸø÷Ÿ\† -_EÓW¾ÚÚä¦ÙuŒyK×óñÑîöõƒ—ùð™±ýæÁ}ÎQþíþ~rZ¯cûèÑóþAwÎWøÌV}ÐK×~ûGtí«G|h§<²CNÙxÜ·Ø.óùîÁ`¹é<ƒ÷†úû;è—±øÅ#áùÀ_æ¼ú='ͧ-ƒÏ÷ùÍ–øÜ5Ÿ<0/ŽÏÙ,‚ÏÝþñ“ΉúÜ©r5v¶hZÞÿ&ÅúÚtŽð£èý§‡¥ÿiöŒ?jôNûú?=4þ£où“ïýÃ+ffš#¿÷5?z#>Ÿý×Vÿǽ~ô˜óŸO:—÷«ã¯¯ü빿{ð¯6 ÷—n}ÒjøÍƒþŸžÀ‡Ë­lTž÷ý'éñÁ~™ÒœÚܪ1Ô—GgþÛG¯ùcwá//·ùw£û ãõW_¼øŸˆäõ’o¹>•œòÍL83ålIŒãÿ^?ýìéý'Ã~c?­Û²µT®q¿2Í&Lý©”zÛ-3î÷³—-™ý0Êó—o>¾yÿÍÓÇ7ï^ÿôÏÏoÞ?½{óþ¦¾áúW¸Qù6Æzª}Û®Š{<ÿ÷×ï¿óñ·ˆÎù+ô[/»õ§_Û“m÷}úWç–ÔìŠùTF+Ö·§w/Z]ûfÇsHÌüÝV‡¤[k…A™êmõÁ)µY¶¹°»÷Û˜ø”ï>•»OÕ?[ÏøÔîþ­Ç§‚OãœRߨbƤ¡¥—q3­*%-¬ÅبnË>|óh[¸M»ü²5p¦³y4¹N€d“•í>/þòÅ‹Ròô•tßÈ ;{ÖˆF± Ü7BŽæ¼.©?l2°Ù®mb£¸oT»uyõh´–½Óúa£búnjtl&?xÜ´O+•l+úwî”k¯·´£Ql8?ldÛzލÝ.Ù¿s§n«9ÞîØ”~p'¤Rúѧe˺ôß};Óƒog¦u²ÝH»sG¹µâ›·u§Hšé–)¸IX&éP—ØU’yë.0]®.Ø·2)1Í2ÁÌ\¾%Mè1$oâ’ÊícÚÞFµqΉñdA¥!±ÕFAå,¯lêO‰]„þÚ¿,ll™Œ¸Ë¶‹¼ÉÂnì’ÁÙÛ™vÍÅçŠWuAEbÓ$Ø6)·åm6{Hròc™&nIª­HÜ¢døJ[iÞÛ»ÊÞiÙպʎ÷î’¦Þ˜ö¯ÁĬ@Rí"ëð²‹9¹ÚE[?ØEÛå|â² Åz¼jFJÒ%ö~tÍAÆÆ‰×Å ´d[ /…-B»È%®Í.±¿ðR¶.©#yØU¸3E—TäiM²Íü d¸®-h–OC6(èòXX–.ñ (Ëþ_øž—ØŠI|KÓœ»ËvÑÅ›ØÄO—Ø«ÍtU[»D‡M'*:¼ÆÞ%ÕuÍ÷s>zO×µm›‚à hÛ¼”MIueÛ¶ú—$v•uxÛ2ó´´ízÉ×¶Qo“»Ê%ÊûöÜws-ƒÄ&Ö¦Ú$6\™’êúfž°t©”éú¶m±¶1µhè³ eZuÛ¶¦Š$¾˜ŠYÄ}HL-ºlËaJì*¼èîñð6¡o5%Û }P}“„`ëI¦65AÁùâ}¢[5™F&¶1­èÕ$ ¶1­Ø8üMß4€¶‡Øþ_Só£ ÓŠŽGuŽ•©ÂÆG³c'obûƒ½œI6OêbË T“ýK¥ âmkZÇ8˜Rôw‡fÙLãm«[í|”)uu{ˆÏ1€u‘m¶†_b¯£¡bãe÷­ßv ›¤šŽJ&nW³- î÷±[b T,­-Iƒ®™dc³u ªLbÃAí«¦ÎN> »äV¨i” v¨Q5…°Å`×–[fw¬ctbR2axùÆ·j8×M`wÛ¼¨5hZE>_ï` a£RÝõ1÷£ÕzìŠ@Aƒ¦Õ‚³„76° ª˜ÑÍ6¦.-¯¶ØQ LR¾‚*ÕtC Á„Aòd¯ÖµÛ˜½çšf£®©ª6ñÐ4{)ic5•°¿*F„{, “¬tÓ ³ÀlˆŽ×4°ÅVñ.ܵên®lÕÞŠÃgZa§HE·¸i¡äÃK ¾%ß0üüçBm('Am¦¸˜·{[4Y¼K¯Ð wÖáfK,³éËf{C¥ ak¯ÍÞ’ÛX³I„²5›eê9þÍFßæ´im¦›BnZh ek6czT³½&¹­X.2\ÞØªül :l{ gªñ<¨mÅÖ×l¡k [²$˸6Ûœ;ûg ;¡Ç;T¿™R@Ùºi1²™RL7ç&¶RH̲0…©=Ú Í”ÊÖ3ŸcO¦…Ý·NÙ’0I×FÓL!̈0Ɇb¸ÄϳâŠÎæ ¡A20;.±«\²¡<.™®j+Þ;×mR3ºÛâ8ì¦PµÞ┫@ÕzOZQÝŒ3<ÜìÏÒ)h®j½Ç‰i/‡#Í$1æþ‚~ÕÔêè0ÿ¼ÍÒ\v,ì ÉÆf‰íÈ¥S2xgÓ ([ð(™®lP‹{óÁt M n:1&ïùà îE‰Þ­wïO?¼Îd9ø§ä=:žQ¿U+ßœ1•˜ÚQ},W6ŒŸm*Q}Œ—öën:1}f¤CÂ'¦JCûʾzK1y¦®kÜ']²¨k5lânjW´×Dí3ÿê6dŸu˜®nE&%–†g9˜&ix™Úy¸dQÝRmԢᥬ-gj rÊ×ËŽ;Û¡nPMñ0­hXÏkk6Gq“Ô$Uën˜£ëËw†À”¢»$k“öÂÛ7®1Fñ[Á‚†âPbJõÐz¬£ùùdÎ%:š{&&IÀaJÑÑe3X¨&£7ím±Ò†©Ô­åXŸ±,ŠÖƒ96ðD*vÜ)ÉÂ’«Ø¦iô{³ÁÆ‚MlÃJ8P̆TM- n8Xº«Å0µ8>àÇð6Ë;–ö†±ü ©8 iZ S „Úìµn^h’î ‡c˜7½@Œ°BS\2M/ÐÂ&‘gâLpˆ*ÌZÿÓ´ÚVqªûlNÓŠ‰ÚΚ¸3w×·B÷íáW˜KPx‘ÓOè…QsIÇŠ«°ÔxÞÍ⧘ëEŽÏ4µ˜8¢©Z³º`¶AKP¹i?èÓ‰•ib$vÆvÂB+„Ûß4•€²ÁR¡"MS‰åÖLÓ©>m—ƒ²eœ£“’å¶ažKS7YéYÝ—  Ã1KªM–ëZ6 £¡·Æ+Ü.8¡8²³½‹¦ÅÛÔ,K >'lWw×xÑòí½ÂÉãtÃÅ„®e›1½ÕÎn¾žVæ4•€˜ì=¹ñOÓ œÙPÑVq—Òí×t“ »®ÁiæzYxl^ÓPZÊ óï¾9?uW48ôM’åÆa‚qÏ{Øæë5µ¤¿p:ºÞ´â—)T-Ùÿiu.;a½&:÷p(q`';ž¨|p(¡j)mmp(“»±¢–éT-¥,MZmÑS:Œ¿ejèžÒÃ.&\ž5u*-Ó‰×É–ó¤Ä¦Þ%Xd•’îŽù¶.Á’£”h~­Yè'ãѦÝ«ª9°Û¹›dC¬Ù#3úÛ9P„iw¸Ä]“¤¸j»ÿfÞÆÒ1ºèx!Ú†£Ç%Ësxˆ´2¶-ÊvËÚ£<·×4KdQà^¼ –”dÛðt¹†—¶³/[“tMÃ6µ@jרC·©EÙ”pòܽõ6U›Ôfƒ*ûf›N ô ÷j@¦¤ñ ª›.á¾M'j烸Õù4vOM6ÝòþáÆÎ´èNSmà"ÏÉ(j³é–·ð<à47ާ^ á¬Í1/¼Y¶ôʧfaOwe|àX»²õª£v›/“u@CcZA¯ùnzËlÚÐÝ°Ñ )n‡WD)n ºÊ´z÷ÚYÈ⇵ç"'%Ã-Ã:µ±˜dÓ)·áá€!’â¦kÊ´/ü܆žµ,_Î$ži3ëQ^™ÍH¡íÊà–K°ŽÌP]´‡<ü2ÜàU:Ó†-µIâæ¨û¢Ô<6=%&jN¶ëÝS2[añÎÓ›;š„<àUŒL«½z"^ÂÞ¼Ê4Ã}‘£?H>ÕØ3/2ƒ¶+ |MßfVlÔ4Å€Ê^¤Nˆ[ÂvEéY£`¸Æ ëƒS®iи±ìª[Ât¹p‹2Ép›ej) bvsÑô!l‰1;s&ðÙ¯sž &ÁyU ç+ j ÛVO—d¸Â­Û´ê¶™‚„1ìºc+0CÔÕm3ÿã’ížvkª$—¶öæÂ«ÐQHrÕXàÈ “”N“ÒÝó”Zª±Ò<|6Mú‰¸=iÓ’MŒ£Q¶šýônɶ2Ö7.‚—Ì&Ù³6ž:åŒ#æfmبý¶ ` ¶l'ÛܬMÎMݩųJ ÛÆäUÅw¤†Ìõ ‘:Ó·œ£Œ­Ä¶€†íVMÙ(©ž´1‰œr <iFÞ¹zÒ¦!ÛÔyçæÃj1ivú0\i2M¿ŠÈ¥kZkZ½ˆ„º¦Õ8àΘè³mVœ&Buæ´ázCÖÚˆ`éD—SÓ¤4ÏÂb¹Ä4µé9›3€VS›>Í ¶DåÙm0I¸Â›iTÍM^µ<«d+¼ßÔÄ€׫®mD§ü´"AÅe{‰¼)ºì)ipzbÒf{‘%žTªnûR0µ³UmR=3g³»¢h&ñc·º•ž)™î˜ïÒ4€½0m³sØ4•N¶9oˆ\Â-_|YH*³6klmc½2§´ºœ'ÜáÌ^p•xŸæ»LEr”‡"€0^ÍiÖé‹È%üòÉÈ$‰ä–9yJÖW)ðΉ› ‡=LÜ ,­Ã\˜ðµ‡[6aZ8}2m3°³Íd^i˜&l>hz2Øv˜Â@`í‹y®\2]„U2“0o3ò ÏeÆó6Žd›ÝÞD˜Em˜¸A¿¼ÉHÉc@ˆ;ÓžAìV¬ÇM %ž¸éÇ©4ìqå(l‚ 7"ƒ; ê‘™¸~óÍGaâ1Gž‰]ˆmÁVL×¶Óu`Tæmê$$ab {W—㶆%¸Ø7SÆ"—nÃ2yí%nšâfU1qSë1½Ñ†-ª0 375…A?†çþܦž’0±tÚݰΆÂsôlgfô‡ÂãfÖˆPá¡·Í«l³Jö¥Ø^’Î#û"ñäÍE‚Bˆ1î%ý¬¢—dóÌ>%¹OÜßIöí®;µx|àN2܆½Jö¡q’ÔÂ3û"ñìÒdçúoÞë¡pxré*؇ºQ€r¨»ÏÃí׋À37iĺk1<±tlžÕ‡`–CÑ$n¹^ûT3¬rjðŽ®Ÿ÷©bOÀhþé Y³÷žàì‚;ù—§ôôõÉ(Àæ-íÊ(¬aŒÂJEYí`àƒ$! „PJA°Œ¬mq bà¥dIÈ(¬£(8 XíëR@$©HBJ¶¾î,JEº³0d8˜6LîN€ C>ÃVA›88ùŽSXX?8üÅN¡ô¨N¡L½ÖÁ)™¦'§P“ ÏN¡–¨™P¡6eºP¡F%Ã* œN‘ 5êºRE§oORK‚7R¡5U¤Ÿ¤BHŸ¤BT¤BŠÂÿƒT(ñ¢©µT©ÐûíTèc RE¼ÈAT#ù§àÆ&þœ6`IÄ)Œ¨»>8…E˜Á)xyŠÚS€›Gu Na™jŠ8§ÇOýâÖŠ¬àZM¢È) †¥ª 9°A%SXë Ä)¬«œÂÚJÁœÂÚ#®¨°v”‰ ªØ&@„ÙŸRl T0I:T(p û•TpŒC\I“Œ€6H*8Ø!:€¤BKÉ ©P<~ÍûT(žd + :Fz+XÁ dø(² ^áR®°‚´l¾a/_¢AXáJŒl/gQÊ `¯—áî!XÁëeT7OXÁ$- ý +˜DIÁ€¼x…ï-XáR¼"XÁk¥XÒ$XÁKh¸ Vð]å+h( ¬àeZâ"+xM’d²Ž(_‚´‚ã+¬=­à5b,š­`’Ý!­`’©ZÍÀàˆ²h(p„öX±$\e1Sü£Ê‰Ì·®²’®<Žùö¤à‡rÐ+”aÉqÀ pCõÞ‚krßž°Ò;‚)+À!XÁýPÞY´QÞG´NUUú‹Vð2 zãT%ø´‚Ÿªâš0^å=\!©ƒ'pœ«TìàÒTäâààzŠ3¯×Seùâõ&`”ÍL¡ zãUg+ ˆ€A+œu˜A+ÀÍÌw´jdxœ­à)>>J´L½“h˜Tã 2\>]´Kž1+xIŒˆ|{ ’·±ïqøI õFñ ëFWÀI¨±®€|¨æR¸¾  E`ÔÛ=FV¯ W@¦•öTà 8øøÞÂPŠpqxˆåW@a «WÈÌB½=qøƒ0WÈÇÙ¸‚'©Ùeá 8×OˆV€÷Ç]>h¯ZáE¢pˆ© a¸zé +ÀÓ»² 8®4b "Å.ª¯® ^ «€röM¨BéYX  ðáxJª`'?T(#*#T(#øÄ¼ÐD0A…2g`àQED* ¬¤‹e ©€#†3¤B‰¤õA*À Rg «á* ç%*œ*FøÖÁ)àü๜¼¬,rœ¼,•â“S°«4±Á) dz08¸T[r 8¸|‚S¨-–`p (þ¨"È)à$`…jp p›î9…  N¡Î¬DœBE8…Ÿ‰)`Ÿ'‚u` +ŠÝOLAÅK'§€¬°Èq [ßdpp -(N‰OŽ8ßÄE%S@ýmÈàÀZ µ!¨€R ª…@|AB½‚ æÿ PÁË2„%TÀÍwP¡áDÌ@P¡µ€ˆTÀ†L­ PÁ‹÷„.ThCåi¨ÐP„# Yß~%!«Ð@6X…6µä…* ¾B<†Pl·´&UÀvË3)Pd¶iZªÐ£²â@°¹òÆB:²b$„*€jËw¨ª Å!U@õoCRiP$|#å`‰T8*R¡× úƒT8Á¶ œ–¢€ öMÚ®* T‚ RÁÑ-²"NÌI…Î*ý·'ªÐoT¡-Š'P…>•K0 z$MþZà nòg õ&¯€UjÂÜsàF@\Á‹+­àþŸCXÁË»…/V0·F…€LÒõJd*âLÜ÷Å*xý9k¿Å*°DOÝø—#PÕD+¸gÆ:~/åtßMXw«,ë'­à`•ÄóJî"fñ žº©ˆâ‰h ­àåý*­'­àîèÄS7) ­ànm–¤Ò5gÖâíA+¸{ÌÓW´‚»ÐÂH+¸›.´‚=24Ñ î­m­à=·CÑ þÂÔEÑ àb­à±ƒ¤6“õÙ9 tE+øl°Q´‚3|ëŠ+x,ƒÛ qW½q‰4!®àaîZ+ -8´‚/,f­ày6­õgéuÐ óS Z¡ î>A+`íeñ N+ ¢$ÄA¸B=À’À™RÕ¾pD¯Ê®àùJ„+`Ó©ˆ+_ptà ¦©ú_¸ê¶$Ä“{ \ÁSA á Øn`PìÇTà ˆR)WÀN/šB¸ŠÙ¹®àß>q‡+ º„•È+”“¦®€°g¾ÃpÈip„+ vªÁ®PzŠ|ñ ~IJ´_¼´EmøESU†Rà 8ÞU/\Áë~(`榔(þZÁó¢¼h˜Ymˆ+”ƒº \ÑkîA+ÀöáE¢¼(Š%ù¤YM± 툥«Ž_´Âñ…­ë-IBZ!ÏØDƒVðœ6%¢`;% Z)‚* 7H#ˆM`Þ™=Š´‚[¶â˜¹AÑÛœÀÌ P,î + &@|Eð 5@ÙƒW¨¦¼ 9yçàà´°Z>…¢¯½:™…xôÁ,äØ@0 ˆkKÌBÓ{‰Y@n‰;ÃÁ,l}KÅÉ,ì`‰faX@0 + faiÁÁ, ¦[D‚˜ÀˆY˜±`haÌàZðìO"Q îyj(œZ sÊ&¤Ü¥E!jÁYþ}¥<ß(D©¤$¹~-xÚ²¨ s7HmjÐI-xú“M-øw » ´àYT½‚C þ[Œ‚û«ç×’µàéZ1¤L§ƒ¨ÏúrWµà‰aîw¢<æG2 È.sð‚Y@š;o0 ÈRß1 Hdóìfa«¸^ÀÂ>6Õ1§ÙÀ‚=\-, 4$!°€ QÂ@` üÀ,œüI (ÐUP,ÀuÀ PX@¥;¸€Œñ (] ŽÀj42PÿÐ#X@ݲ»ãIÀ‚Ç÷cp`áÄaX@YGžÈè{i`å!´”, ‚Dty…}„¥‚WÀ¿Ð¾ ^Á#Ÿ,¦¯€z•× XÀ÷’²,x¯X^/bµ3Ün‚X@} x_¿"Ï¥…ÄJy¸M±€r.ð )ÎwÄÂñ¬±€Ò""0ºˆ”(Õ;b“ϕĚr²°ÆŽñ²€Š)®‘@6«!d•W‚#„,@[¹jY8¾œö@VÈ‚c¥¬|²€B1áB°z¶ " «§§ ¯à Žeøâ¼j—WXMØî,xñ›ð„®R·ƒ4°€º|,xÝÓXðR¼§ ¯¸i³._¼‚WôñIVM$ˆXÀæ´ÉDé`åmE,¬r ”ˆ…ønâX@'ø ØÅˆX@±£H ¾—ŠO ±€¢ÉΫD, …”82"P|9$!±€M BPÄ9¯ÈÂJŠôȾ¸yß! ¨¬æ²à)/‚B–êàÅ+ ,•E¿Á+xéªèò (o¥Š¼ÂV¦ÿäö 6BÈÂÁ²°UVv" [ßât" ö²ëžYØ*º;™…­¯7=™…Åé‰, añt%Ö ö ˆ…øî“XXª€=‰…¥ï%=‰†baiË:‰…u+D¾ïĦ*xN\aŠê>q…øšñW˜D8OZa´ÂT"礦¾ õ ¦¾ô¤‚s;iø¢÷´ÂTLò¤âËÔOZah?=i…ÀãNZa )ÍA+ }‡ÊI+Œ.X&hØq¼MÐ £ô ZaèKNZa×'­ßmsÒ CïI+ þVmD+tÅ5NZ¡+ŒzÒ }EƒVèŒ-°B|ê+ty÷'¬@ß +ô€aXAß8z² ]iõ“UêÿtE‚A…6tÖ BS!ÕI*´®Íñ@°Y°Á*4X!¨Å“V€#ËÛ®ÐT‹}ò ­ÆXhü^¾Xh &ŸÄB“%x" zZ«u (T¹CšÊ¢Nf!¾*Ð!…ó§2JcÅwÃãýïPÀä£ð:œ`Ë1]Ó)Áq5¾ w¯ëÕ’|îÄß/ ™"á›IÐÛÙüGGþúÍǯ¿~úøë—(ê´SûùÛW_}ûî»oß¿~ÿñéÝ›ß|üÕ‡×O_ëÇ‚ü‡Ù`ØÐ³éß¿yÿÍÛ×Oï¿ýðò éJZÏï¾|{wåù${m»›-yüLŃŸ=Çö\ìøc§_"@ÓØÏoüÏž{}þæWø]ò¾·YJÏ ßfjNü–|¬þ¼ngóù’?^nÛÎùXÇLìðÐuÞ=771•çøõÔÌèõ?Íê%ã9Ç3¿~ù AÜ”*~Õ_f~ÆOXáwÙm¡¬çïðm›MõüåK|K`3›?^…+íI¸Éyåë—0Sìp[÷wüÞïb½êÓ7œÛúåaÈ]ðën e‰ ?‘em͇(ÃîZjfFôu¯«ì8·Ï¿Æõ3•ríò+Ü?™/úü^ÛúRæõß/oô©~¯!Ý5xÿFçx½ÇãìBtÁ»‹ÙúcFÎ^tovD“…Aé6~C=^ÀçÍ ~{Õ_]óá5G£äúü‹oýæÙú‚ß-å(íùüÍٕˬüö¼ù÷®Zˆzv³K¥Khê÷*v/ÿ¹×hð 5yøÅK6³Ûs3Ê~þÀ®± czvô¢xWÕôa²AM>|¶GßkÑ—g×/7¸Hoç½.KöÿøÀ endstream endobj 159 0 obj << /Filter /FlateDecode /Length 2612 >> stream xœíZÝoÇ'üÜgBHc+^öûvÓ¦€¬8… Õj%¶Ea§À‰¤%O!)ÛBÿ½³»w»sÔ©¯T øÁëõììì|þfŽ?ôINûÄþ©ÿ_õX.LÿSôÿÜS”æ’²~!͵ê_õ Cr-ÂÆ¼wÖÓÍ Mû…$ç ˆÂŽ¦&WÒQI¦y.¢ ;˜Š+‘ .”RðÜòB76bi£óBF©êc¡×¹P ¥i‘kB[BEªf§EU ®kdB÷‘þEï‡uªìׯú¯G½/O™ì›Ü(¦ú£=¯fÚ§ *àõ¤È)PŒ®zï2ÊCF´aÙ7øoRh&³7ƒ!É!ÜdoÏ`[ªÈŽì61š0f²‘ý#Ĉ"û÷`È9Ï Qpt 7Ù™%¦0Ü“Ü.´ôL(a†‰ì¯v]¢ÏšåF+扵!Z´ˆO`›€„|7ú‹}¦ÁÏ,rÙîŽ{£ß½ËN2Jd %³¼iv6«ÄjV×aU†Õí† ›Ã‡ßò> ˉ g‰#—‰7a5«/ÂêÓ=9ǽEX]„Õ~|݇­lái\~—4’­«÷ƒÆÈØ—ÝJ›þB8Iû£ 8ñ¿BÔ(“MÁ ‡UY¹²ÎÂgx=GR´Bd$î(Õðëu‚‚«]F¬?¤_´:]Z¯Ôª ¨Ni~ž•ç1‚ܶQD(°O @Ä냀„koý šð¬úà×Ò˜¬º±2F 'tÛÂV${x’—ÝE ºãÊE«Ñ¦ÈJKAŒ”ãL†\+P€ÊþSëžS`.ä§ôk›D†RµUÆJh›­1"èÚ€’¦Ò™w#Á”ÊÆhÛ‹« e•pŽkxòNdaä[SŸŽ]‚ ¤¯¥ ¨Xf‡(w—h@Á GõTÈ ¯ÁI&8ÂîÂíBØR/~ˆ4'ä},é"øR%憔‘&mô€œs§l£µVεœû^úBC¦‹¯ºDÅàØ^-æ–ÀŠ&‚„f…$i0¨€:¢€ Pj¹W@12«Åz¸•YA*9oùƒ7[u©¨œY8;CÆ3¼ñ#ç듚3¥õ³ÑòÓêÊ;‚5b¢Š`ÂB†5^ü'UÓ<¬Æ‰Úªàs•çD1Їol¦ÉRµ—lœ¸f/uaªžNÐ…ÍêóŽ*ê &}•›‚k—‹iÎo°Îë““ÑÙèôàoƒ!lNÀYOÞ~{ôÍ›·‡€å eS–½½9ýçÁqME³ÃƒãÃŒŽNæÙ[B<¾á[®¦“†§O ž—ÊÀïIÃhU­Wë¥ÍËéõ|6.×Ó•ãLenñ_Ãn>ŽÇ¿ —SbË3ÏÞûEu³®é¡ô}Ý\£Ý^—Ër?Þ¼¾½ž6¼¦Ý;—{ûQ³Ådú9žC”´Öú†ÔG‹õtù±œ¯â¡ :„"k莧§®$£ìõaéH쾑¿ ¡ŒÂQný>ÜgR€dÔž€`f<ÞP‹â´VÎÇ7ór=«DC:ñ6J‰‡Mv²œ]Ì6Öæ?—ói eÁ³mÞhžÓ†WÐÔp#º¢h¡(—Ž UÒâ DØ$ñåÆU=C )úÌ¥Œ”cÖ¨š¬ü®…¥g †¨KÕ€epeia åÐ¥\\h—¢ç}¶O4´]#Ý®4¸´±h­ ¢f±CúìX)ÖÆ+7Q@ÿ0Hq‡™¯  AÂÑàaE¿®5óxÇšG(Ò:ðp=f]ýªAÃê“]Pm1ûh7ÁX-|æ$]€ËìÇÂç Uý ­:ümêK"ì7Ïsèâ¬ÉW ¹ÊêzK¨ƒ_uaeÝÝ+ÞÁ°õKæT5À„aTbð3HàF×.¢+¶1–ƒM 9dÑU}­MÈ+ƒ4(Jg/)·¬¡5­èÆø¹;N¬Ý¤dY¤ãÂ?lc«Euñºx*Îqèš™ç˜üŠoŒoØ}ð ?ÀÁ…ú™45;¾ü%{8ÀÁØ,p6^·u$vLdò}|ÂKAœ"Äÿfù‹ˆŽ1œ´sƺ´ý&ÔÔšV"7V =§ U.Œ°Ê±G¨+7ÐáS¬€ÔYPÚo)QQ˜t·®[Äæ²¬yŠØl§Øª`m±£|ÈU³¤:ÐÂMŠºUü×ô%24±ôçLÐô’Ÿù#ò3jÜïÙ€f?ê@Ó¨Û—ï9¿uÍE!”Ùh‹béú#@¨Åºõ½*³ ˜° !ñ©ß¤™èJbx«[¨;€Ož–ùÆÒ.!)feû‘¯ï§.ãˆÉÛB½sÏ¥0¢Ýž†Žçº«=KÍùw¶¶Ï†f°3­;CΜmãÀD¹‰ºHB_‚'à­>ÁQK—¾7ûVA©2 +!ùÎ!zz(:=«R/“B]'|¦?u,}×I5´^¼©qÞ” ;áoxÝ Éð°Ý" ›ó}%2­×¤V²Ödaåêì--˜(sM<Óšÿ—‹†C÷w¶5‰fÀÃsӌʖ½§±ƒBœ:Ñ3`]ˆÓFceiûX£P±)¶ºT ¥´hM,ÐPÇ=ÐöÕ­&Øꮡ RBG›¼á)uOŠ>J\xýpÈÖåhô*ð˜$'QèsÈ8î"Ã"oëþÂQ{û Gó- TP œ{ꂤ¨Ђª*Ôêú¯MBæDnŽDð·¤ÊK(ÞÎ[ ›Øx˽2€£Â~ÞAÑþJ×u÷¯¡ ´Ò®›©°Ý¾Š»þ !6ÌÊ8?‰€ò&Ø+m™ÖwÐèU˜=˜ ôlïRÆŽbƨ¬à4ÖÁ»[ЂÄÒ•.ZÎj7Dv¿ »†Ò<óOæIºí?qHýú`‘€¨©ßT‰Iþ(,›8|µõ'‹È{áðÿ?zxÖ›7ÈïÁìTp‹sRÂEÑW;Ô»ëôÝW¤º‹¤R¿Hy‡´–RÐý4þÝfǰ¡Üz=ÏhÑÖýr²‡Ìp×êÛ厞 Âê«°’ÈÖ G¢‡îJ$Û“${Œc&„Ý•ÿ^tߨ|bêÙuf#Ê\R<‘ƒnwè>uÑç§<<šðK.ü2ý3°í™t•¸<þ0íj«hë„è]©¬-Š32ímjs;GöŽóÄcn“~sg¦ÞéñUBÊTÚu‚÷åŽô‹Úûx÷cLû¨wþ×ïNgõçcôÓñ0h«íT!ûÉm¾õþþ ^‘õšendstream endobj 160 0 obj << /Filter /FlateDecode /Length 10104 >> stream xœÝ}[¯f·qå{#Ïó|¿3ðùB²Š· ÆÄAD=ÛÚºX2Ô-E—qüï§V­âÞܧOK²§@Úß:ÜܼW«ŠìÿxH÷üð_üÿã·¯Ê]çÃ^¥‡xմߥç‡^[¾öðöÕ(íÞæÄÿ>~ûðóׯþú_J}˜÷ÙJ{xýÙ+r~È*÷.6°Ö¨l%^¿}õ«Ûßýòïþéq”ûœíöo=ÚW§V-·||²éII»Ü>z|‘{ËåöŸIs¤Ræí—ÿ€_=¥Ñä7¯ÿÚз6 ëlÅÚñúûê¿xá9ÆhQxop‘v% ß²<¾þ=ŠÌ­È“”z/ãá)ë} ]µæ{J³éí=>Õbùöå¾9žþx<}u<}<}w<ýúv<¾}¡š³à7ÇÓÇÓ¾TM>žþæx*ÇÓÏÎf¿;À_hì—gÁ¿=ÏŠ~ý¸?bˆs¾ÏZóÃëzõú~`¨~û—¾z¡·_oíø¡r[¿ÿôªß¼0¸o^©‡ï¥é:§æÝ‹Ã÷é S÷õ ­8Ë}ûÂÓ/ôïÝKCr6ñ½_½ (¿ùYýo6•òßr*Oý¡©üûׯþ|>k»k~¨É”B5V½—ª9k»×ùðͧÿúðîU½×b,l*3?Øâ~ø½«Î•HzL³bˆ‘•ÒùV–{"3QSf@ì/•ˆ \!ÂæäazŽ€2ï#©Ý‘’ï5Î&¼n€r¼ Ðû$ üíáWƽÄ+#^™h¦!õž‰H6ýI¤ò-Ó¨B`²^ñjñÓ¿[”TCú=qàê—Hp`b]÷Ù·&rÜÔšHåh›`Ndr$u`x ™kfkº—F¤±CÕ žÖøWIåˆRïHc{ª7Þ‘ˆ4ޏ|ié®[¹"½°ét~ [ˆ ¶ÙF¡29Ùè!&¡—Õf´,Ì·ì©‘´õÞÀz{Ç8]yOû9Ìà‰/)û0 zwã×½22ê}èñNGYGBjÆ„ˆU43³OÆ# ¤`®‰±1V(Ž(æÕ‘ŠQr¤³Æ Í›Å(3ñdHÃj4$+¤@øV6Vè>ç=ä++¨##V|6VÈ>Ã3zž“KlÅ(5… ° f5F >1Ã:š‰ÎŒ [ D956n3Þ ²«lrÂÀU"A@ Ožl¬ ¨Ç.ºU‚€là(p¹.$ÈlôÁ¯2SÔLÊIB¸³rªXŽ8å4ÈÆ8圂 ³‚²Ñ¢°WÆÅë9‡T¦«‚l,HáÉF 8­QoEE_HØÙèÊ!—‚ ½å%á Ž Wh§°f£‡ìH[oUß9U´BÙB£(‡¬eÍ„ÑCqÄ”#Íç_èl¡ÑæÆëãש(W]=m¤"”%…äF*Â_ ç¦‘Š²qt´‡qA•J Òî_RÎEA…ΛZ“¬·)¨æeY”F ªù¬‡d²’ ¡U‘%J°plzmĸˆJ÷5h@‡NpD\;Tt&—ŽZs¹ôîÚ¡šQEA2R€r¨  N„ˆ©¸˜ß3¤V[¶ƒß6}h£Þ¸Ü¨®š-“U‹×WT_ OÖ–вLW.µ™üІ)Óù§;VŒqiÖ¡X†Óù§Ù€Å°LòOëËB-“üÓìsÙË`u|fÎÐe’H@Ý&E;P7a£ØH"uk\&@þé&YIäŸÞ–E(™Ô»F‹%“€:šeÔÕÂH‹nÄHjaØ_f¼Õ]- [°ˆ+5›”¥”ÄHja@¥±ÉF P ä‡ GŒ †™4Q>ÔÂÀý2µ µ0m)Ψyº^˜öMVc Îêr DqÚŠåNCŒld¦©G.oRÏ4Y‘RÏ4%V£ ©gŽã»JîÁÞëRð‰‡†-]T£`‡–Íâ2îi©Ô5ÝêÜÓ°Ù‰90NxËÌŠT§Ÿ†=í©¾Òv T©R¬üÔˆ8ÿ4·îÙbãS ÍíL6Ð8!ËhJGƒ©³ÒÜJn°{ j¡eÕÆö˜ˆGêjas[¶ÁL-AãS F)wHÎÉŽÔÐØb¤Ð±2¶u1¤¤°±‹Ç‘¼ä¯»ÆoùP&àv"|i8ÿàKÆ ½a¯†ÓeIúpúñ/‘d8ÿ47ˆÙ¾éüÓ`4ó%˜'ìULÐw;¦j:ýøÐ iŠ#-4˜ck°‚)Äðw·ÁAg'ÕxA  ôID¡¬rò‚Âf‚†èÐ >ãÔ/jÍÈŽ¤0åÕxa¸œ´U Œ!Èvk¼.·±šÃZH¬ÍðíCJ×DZDX Gmh1/ØPÇÇmø»#-NA¶DzŒŽ§ ŸmL-NA¾°pjpqpG =œYÆ•š%fc` Vb_¯Bš°çØ@!MhvB‚ú’Q•` ¶¸V•Tgð¼ªSÐ%É"}UŸBÓY=t ,(† ¶å0/@1L›d®­Î“ÆŽ¾ µ…bƒ®2êŠaØêËì‘ñ4ÃÀÆ!áša ‚ÃöWÍ:Ð{Öc¼Í00À,Ó„š!/Æq z -•®Í7µÏó-ç Ó0-, íÎA¦…ú’Hú,LSÍP¬Êº!Ë Ý9¨öº¸C»si¼vr?mˆÄj…}Ó´Ë!Ã9È]mÎA¦\ç’ádˆ›ÃŽ8R‚7ÝÎÊPÒ3XRÁ ŽpBmMú/¥E¤° ñ»¬ÆÙŒwÐBÔÐÝ.E8*ŸgCjpT5:¨ŽHHcM®7 Y¶ Ûw0DìmrRµ÷›#5–]µo`^̦¨gú¼´@3M“ÏK³¹£ÜÚ.ØmÓ†X”q 2gï×ìß0Dîñ’SÙEc50;"!’¶!sÓ´ÕNF8®aš¶ºQ¶)rÓö= ¶rÓ´Éò\ØöÆMÓfK=±£6­°¼ˆSÛ~”Û•¸i û0^2é€i ’ZºÂÐ 3Sâ­NÛÔä‡Î)ÛAÐ65ûŠSö—+ªÛÚí%"áÔ)ØØ8ö[9€EZöW4½7Ô@HÊ#%öWN¿I€<ŒêÜÃöØë•@8#µÈ°X†aôÐa½ Ðhn\"åBC²¬‡@¸ÀF“3#±f˜¡6Æ#’â(ÁDm9æG &Zi£ÁnåÇ‹³)86%ˆ¨•ØÂÛ9áºDtäi ":r9†ùC‚ˆŽœ!AD‡#|Hщh¢†8²M†jˆ•£bˆFÚʼnÔH»8‘ie ³Î»\€zý; ˆØ”ª‘wq"-ò.ùˆ™;•N`ÅÃÖ–d:í=vl*õG2wÖ2dÚÏ[H°î>ó~©…è„ѽ”z%ïur)«ÝIú(È¥”‚ÛöB.e–=y äRêYÎî¥~(©ÕŒN5U{Éjõ-½õmÀÙ˜ÕZËãSAeŽ[ÕxÎóVÛ™kufZ!~ÌÁ$Ò ûÝ~øèÅRˆÝ—¹”Bø³ï…\ÊhrwÏV(K)l«Ë^ˆÀ¥ ôãµM\JM¸(öBö2«Çg¡} ~Ú„`2ž0+÷N2ãö5#öhÓàÞ°l?ÊþC÷/ÎЇrá>°ôreTûÙÒû!áê@¬ãù’2]*Y°÷™V¡uåö–éÈÖyd„3ŽÛ[ÿÍD0=íyËG¹mž 3f¦YI8ýP¥ýåÃßÚ×Szxxøù›wŸüá‹O¾ûÜ ³›uLTsŽ-•Aµ¥j´„ýïOß}ûÅwD9¶?!ÐLˆdfäNFÆÖÙ é¹Ü—]h»Èý¯¬Af™ÊpO”éíßX#?ÙHäæûE›ž·± ìòç-}çmʱ;³Ùž´_ߟޖÖ/©•¿Š¦AÆØs 0¨<‚á?‡‡É<Ê€`iüþž~G ìÂçQÁñ“_À 1å×ûêÆåùþþøÕÙ†(q4‘<ëÃǯ~þʧ]ª&ýÙ£žÊï-växºªø|VާkL1:8\92:]‹»yž!ýÈèt /•»ÁÓ Æãi;ˆ»yÊf_ˆûyÊfƒ=K§»»Hàè) DÆ}næŽÀϳ[Dânž¹YMânž@| #îæ DÙb¸yÆf ‰»yéìÜ^pôhÞÇÔAå}ÜÝÑ#ûÔ¸£§ì+È=eŸawô”] Üѳï=Å=ùXAîåÙ¥Í<Ûú‹§Ì]‚‘ 3ç.åpñ´±¯¸x$øPYì[p‹§÷+R‚õO$,õ ©¡Žš¥.…ÌÃ%í‹§^Ú¬åp D¿TC3¬•é.݃YUÛjuÏ‹§\‘“‚rR+®'Å·ëÆ@ñÒŒ}ç1íd Éž·Å@áx÷ñd"•ýl‹Â{dH¸ ”iÁ@‘…/pðfè:8xœV´[ààép¹ƒÇ3»#W^ÜÁYäÂôI½o2ë™zN=¾5„z¡WúX¤s;Kw!Fµ€½UT3Â39ÖÊœ‰š¡Ïõñ™9/HPdGá߉\ïX@“áoxJ¿5ƒƒ–UààqbøÚ8xœƒF$v<91=8Ò³;·611h4¦·“sÆ å•9aY èTõƒ) ܤ(ÙŸ|8û“I*8-ÁnN’²Â;5IBG¬Õ²â±Q I![ÿôLä äi“Âg"•Òƒ$áõÁ]ãi“†TWpÐ FR&”²£%Þnž"õ™¤>m5A9” »†dWHG&1L´¾¢Æ ®ÀÝPÂÃc@É ?ƒìd†Ñ©+&Ò¹ž‘Œkˆo¾ªx€Ë7©ªäúy·ùý´y4¶¸¾ªR"¸mˆ³Ò¢‡âìƒÌ}]@–˜BöABtYÈ>¦§W½Bú±õ Šì0ÄEdEóìü£)K†</ò41•üƒÜ6®„©ä¤¡Åà(ùG‘ë€qôRº¸tgõícEâUÌu_}EzÔàVß xŠyŠ·<ÌSkŠÔ)ANœ;ëË·šŸýñ„rVÜü4WõV+53-†ô(ôÒÇ'Çgú˜[Ó˜˜™ÚyÀ :¤Ò@!²–NöÁî;BöiIüF0اá­Ú}°Säžv²ötœ„AòÁÆ+J{°Câ0!®¶¾Vò„ï‰S#ÒT !÷i[2'ɧC±±q“äÓsÄÚ\¡<¾I ¹RèÌrvd¸R@¶xtiNW ½Æ GÅùV(…Þ#U‘7 ¥Ðq2Gˆxæ_… ³Þr¦÷üq' Cÿ†= #@)@m»a§HÑÄ´ ÚDŠã­˜–aø{ÔÐZŠ4k&”G I‘üé å6©B¤}@ÈÙÇSÌ'²ÏäÙGH?3óÓ`\§¨a0›S8š„äƒÕÙÙ!!ù`¥(CöðGÓ„ì3q¤ŠÉÒƒià’Á¶â€zÚ82~—FPdÒN¤óff:+N¸6%¯2ó³¥aC&^o8eÛ8Û51ÅV·Þ¨§óæõ)oϱešˆ#žIÛ|WÉNT?hØü„+%¢zޏ!lLsîinÛ²Át]y³ðÎqƒÁY9tC4˜Ž•#Á³çPgvÇuŒ¾ž™LžC£j%m0éBº“§xÇTu'O6#y•™â1ZÈ%b2ùdk†“Ï‘’®Þ½¹¥¤«ÓDr”ñ£#Ìug½LÃðO/dzž¿g³°ÁX}Ž0ãR1JHó‡m;øNi6&ì‡$Íiþs-ÔéV¤ñˆ23f†L¢0Â91‰ñ) +¼ùiÛ@”Ùä­2EOa…{69”Ã$2˜M®‘kªžïH^5çÌlr‰Ä>õÑô]øV®L'Ïq>Hq¼ÕÓÉSÄg Ô³¾‹[? £;{Òw¨CÅpHú&#aJªÿÈTó†fWˆ2+ÉV4?l¬ÐðKVÛx<´B%zª†º ¬@šƒ ­ ízNa‚‹#™¶¤!ÝMÒ)»&…QÞ;O¼Ä[êóQÝ¢ ¤¸Z˜+ J‘Â5æþ(Ž™B/ÀŒã«çR7΀Æ\cWÉ?àS®ä—O8¯ŒŽ)ÌvO&_NŹVX¤ØCD§jg2¹6îê qòtÒ.àxÌhÉ,räÔ"-.†qïÇŒàïb ›)©0ê4γzÂ9é97' Úq–-ì~Ò¹z kîî,¯pÙàg’\­öxÉõn nAò «ærü}òø2ÃÙI¤yNfKónÎ3cŠ9Ô,e¸‰¨îBŽj˜xÓd)l+0/p¥SÖ&ónZФJÅ6‡fiœLQlu³§‚ØžìY°fÌFz¬b/äævÔcí€Yzd:+¶Â.ÕñE¬¬µ2iÑêv)rŸ+k6Z@8R"‚­È¦…­]Âë¡Å˜v)Ãp”q®sãgjØ{Ý æâU¤ò*ïqÄ ÈÏà$SÖø)9'›¨6q´u:’CJ±yk¾7 ³ÞrÀ/Ï~ƒŸ:ÙÒò+<Àc»žNg¢–J’šV¯*9çäB *9'ðâ[•„,ëõ„¤ÄÄ‘Ý6ÅÙD.`œmmÊ#Ǥ}?¨Ìlmü€‡y `ómçC£ónpuÕ2]5à/´pp²u¦Z'¾…Ë(<Õ:Ūñ]jæ6˜z5zfu SœlmÜ^Çšé~µBêÈÏ8ÙŠ\ÈsÎ a¥°ÚA *žG@¤Ñƒs9œ‚À1˜ƒžÉD&)è8¯¯8ÖêÎ &Û;Bò¬eÌ$I'8ÛêÞŠÞÅÐ×n/#‰$gÏ$Px1ÁJ0VdØ´F/R#Ðx/ÁÊ&6ÄÔ»wjD5“÷s¦{z(¤wÂ[ÜIE”·Yï4^J_ɼ³Æ"˜®`cp½ ­=÷FC˜MÁaÖZÈ=îg „ÜÓ«²æBî9<˜ŠCði¿Cq¨µ‡g”l„ çè+mBîAF0¥Õ×Õæ–Ul­ôÜrý‹’{àÝ¥ ÏìVÛdx¬W¤e6‹’{ŽkDÔäGzoô{ÉHï%7‚ $Ò{£ öCÍœlí‘ðK«~º±SH„IXÞó}[‡n>tÅÁÖù¾\`ÒÖµ5‘¬ /æ×.+OÚº¸&®f1d]\Ó—ô1üàNþè/ïq„¦ª0pæ +=)ò†c-t²O:ì$lõP¶9Bú9®œQlÐð“/™¡ŠƒAúñlcöt8ý7à(ø¿1àÁ]£ ÒϺÃGq®Õ£i=¯3 £i+ùXeÝœµ’ ‰›³"ùXå¸8+Ì2#˜6iBêqoVÜ·¤zÜ›5B*ô¸7+²†U{³"MWq²uÅÒ¨oô¸7+üHªÇ½YwTœl]±|Š|iŒåkØHF‘ˆ?³â<"šÏhªâ`+Ci‚UèrÝC¹Š›!rnÙ˜¢J[êçZkÜÇ•YñqsV\ë¥zÜœµ¬?=nΊä UÞ;s¦|²ß1¦ºîΊ´Æ‘ÃIÓF»³"ýDõ¸<+RT Y—gȺ<+R]T˳Nd]žõ_—ê9èâJÔ¸@cO}¯P{z¥dOÂ\È^J™;¼}ŽÀ¥ LÏ.8 r)õ¬gËÿ²¤OÐ픯IŸ}<>e¿jÞú<ŸGŠç\o#û3n¹rf‡‰S+Ým!Í ½÷ ¹a~fÉ]JáäœÍøV*K)×ó«iR\JaŸXó^*½T4õ,´µýOÌál¨ýDÄóNdk^g'æpž?Úþc¼4Ê?’Ð)™1’ÿò„NPxÅÈü åÅ„NDͦþ© 9_ò9!Óï­ùá|Ο˜Ø÷á|Î÷eWqœçEþÄ|N÷íJEt˃¾I>'²³‡¶Ÿçsº‹úå|NwŸ–º7æ@<SãjÁ•­é®IG¯|ÎåAÅ5ÏP²F“÷³8ׯÍYÙ¾Š-N7“/îsþ9ŠÛ ôzûêñ —ؘ n¸BÚlçqûŸlsö~ûö7ᬨ¡Æ"c´’oß¼A‰™ì·¯­!¸^r¶Û'~ÇtNcfÜÇŠvÛ¯T¼–èÂV÷7覎l‹÷öÛýÕï÷Ûg÷*½¹6©âVY˜ê©”Û›³ïöJ>9‹|Œúr¥ï]¾”þ«g¯ž?>õ‹¶9ïKËš÷J11p. ¹´÷Ý#®3ÚÙ;´W÷Íÿ{ÄmÓ¦ëÅ—9{ËÆÿ[öÁÖÝí3´Ü¶7&»&ÿÑ÷±ýÞoÑÛ­Eññ–Tý‹¶¥Ê¶Ÿåpº”ø϶´'Ä2¶½K¨ö¾¾E£qAVÝ»òïÇíV³©[?µ°b³Í«(ª}Zõ>!ÕÅÈÒkçL™1oŸYóLß%ké<‚ó!VÐ`&·?<Â Š™Þ¦÷ÉGƆ_;ç ×î¼Éf2ë€@cMt3F>$ W1@éa+á;6§s”Õ°á+>‘VnÿÉ´EÐ)sÚÿ*ìß|ÊÞÙj~o’Ñé¼KÏçÏš„%µÛïÎVï ýãö}.ëaµ_e=˜ãÙZ¾Ìâñý ½Ÿ³ÿÂñO‹€ž÷‡ŽÇœ¾Æ;¸PX)®qQ=:â÷ °eˆÚÆ:È£k»Â˜¶n”ÙÚö91ž¦Ì9eÝ\¿_KkéÖ-÷V’÷ÖïíFJTÉy‰øWŸ±ifÍÝÞ¼[ÏÆœF^žÄløï)hÉ›ÛFˆœËø´MŠK ®oM”D«¬HÃÈcéÍ/:üæ;c[Æ•ŒJ>9[ò[öµ'ørOÿÞ[4–±:ócƒ¿tÓ?Ro-²÷é+x.”OÓ-³˜ÔP6•ˇãòí1Á[Y# Éù·ÝFšP Å-œŠÊÌ–õ6&ÁJyL*Šõ@Qâ(j3úúœ© þt{ók—¾-H9˶”Èh#Ik¦|.ß8—HBk°<è0AX°Ìl—äÃÃFÚ~isdNb ¨ÍsóÆ»OÊ÷3>Û7n_}6çÂmö‹|{‘§ãŸ~Ø>äddm/¾áÀT\Ñ·ËÖ^ÉÏøpÞVÉý|Ü…p+û{úáÉô.Ö›©7ø‚p3ü—§\|¿=¾pŒÌ¼Š—û0K/úþ$­Ï—KŒîO].ŒŒ„¬öÂ-ó/.\*V´œï¡wÚmi3™/¢÷æãÇ%âŸG#wq˜ùGÇ;—GjNœÈ(‚Ød-ôXD3Õ÷„)MûÖ(\,f_M_BêräKé7>f?Û^}›ŸÞi›úLÜP‡×Þ=Ö'ìž—½ýn#Ñm¾hPŽ cŸçoðœ\ƒú‹í!‰fÜ r{sg‘aZí§oB¿31Õ$|Ö{;ÆÖa±ü³gL$l2¼àóCa#Î/OXEþ8çu)áV¤mò¾~ÁNÈ0{c§cˆ>¹® «w'‡ìÉ/Ôæ¼•ÃÊÞ€b G%H?dÿCûÅٖ猸j¸2â[–²=q]œÔì«®¹±¾~³µûÂ-•L?ÞÝPø,»«Ô¯.:ç£ïbëê@R³æn<ôLW#º4L ÿÂ4‰ûò–MnÞí [ýù€Zß$„«ÌôAÆ€¼^õJdaØhßåñ‹ma°ÆOÙÌ@o†©†ë"Û ”'Þ;?4lõ¸SèŰ1æcWëŸè6—Br8Lø K_M þ›D¦,|‹°£öWè _°w~Â,ØÛ¿>Â52Ûeàßl:ýkê\kC,HVñŒÿŸÖמŽ}ç™?E/Lƒ”³ï_¨·Žakr(w*%ëL»í:ŸmH¹Zg}TØRÝê+¢Øfp6qÅ¡üd³éBù›Ù4li4r>ÖŒ¹QÌ6?¡Ž­ôoL]¿g$Æ"{%Ô˜œa#m+Èáž>¸‚>°V¶ÍÃ{vvÞ·°ì«£ÿú^òn%ø?®Ð—„þ¶ªØzÂõ±H(lE“ä7¥š Å¿ƒ•¹Yì9÷ Û‚d£‡‡Ë+ÏX-lh.jÕ¿¤yåG›gËíÚ¼M3¼;—^h†ðlýâÜÜmbpx¾°n\ªì)z¾LÓ.¿—Û‘ã~.¡ÃëøÏ¯þ?o¨2endstream endobj 161 0 obj << /Filter /FlateDecode /Length 142 >> stream xœUŽ» Ã0 D{MÁ ¢ÄŸ&Hd„´q‘*ë',™ ‚‡Þ{SSÝçØÏ­4È O©t+Æ åF®Æ£­ø¨YÁ«> stream xœ’íOSWÇoma‡§2Iº@4÷ÎŒ¨/|Á²Àœ²¸ taÀ <è@y~¨y¸-´”¶Ò-OJ ©@7˜v IJ Œ½‘dš,q[ܘÛ\‚[æ¹xy1*þþΫ_rrÎçû͇G</ .ù£ìŒ„·£|K¨žï$úA0‚‡ΰ×B¿yð ×^©+¼XYE©D‘IdqD<‘L|Jì½Eˆ<â^áÀf¾¿Zp–m²T3lø ïæaæñÙßñ¬èŸø .ˆË=ÆæFÞûáœm| ‡‘Ü"×-*ýlðžÛö[”sÝ;½èú×ÒøK5œ@’EU'¥—g²RÕŒ pØ“±ÞÏ8'Þç³1ìaQ‘J I¬2»}vxñvútìû¥—›h²\Ü•ó‹tJ³¬¼¥„|ÄÀ Ž’çÁx9i¼:o…›h®Â$-.­ÎMÚ(y2ñnn…\ž^‡iU»ŠÕ6‰!«§ª«Ð³Hþë™Z)dE{!ý<øãaÙæãÛìÑþƒƒà’B3ïß³pÕÒe3:z¿²I­by‘&OA–pGýNùÓR¨¦¡ŸÚô?Ë]ÓÊ@ šˆ¤Õ²5üÚ÷˜ì“CSÃÈTdÁñ\ºP«B7iÕ›:(á±ß.Ž~Êg±¡¢Î~ЃMÕšëå—49 òçÒÒŒV,Žh–KdU€r:<£k®_ÇÖ©n»Á ƒÈ›=ùV.w¨¾ÙýVX:I“cüÏU@†n ë•šfª"Zé(j£ôáļáæ"i-½!sƒì.˰cÞâ…Näã¬e‰šT•Ó”R¨M¶—œ¬ó'Nñò°à/,yÆÇ[;ÇE:ƒ¾ `¥™f† Õ„·0 Õˆ‚nóØÉÈÝwZK ”\ÈOÅ›øÌß8‡ã w¿> /W [ 1 3 1 ] /Info 3 0 R /Root 2 0 R /Size 164 /ID [<86b685f29ce08bfcb1d375dfd5ecdd0b>] >> stream xœcb&F~0ù‰ $À8JÒüÏÀ?å(Í& ó×=£aN0—÷…9¿=(´™wHDɤ"Ù]@$ãu) æ )é "YOHïg ’{#X$lBØ„‹ ’­¬ëd]boÑ‘–b Î `5WÁj΀É0yL:ƒHá`ÓÌA¤N+Ø–.™6‡ ¤’ñˆÍŸ"õÞ€ÝSW?Œp?ër3!´ endstream endobj startxref 266581 %%EOF HSAUR3/inst/doc/Ch_multiple_linear_regression.pdf0000644000176200001440000031022314660150122021471 0ustar liggesusers%PDF-1.5 %¿÷¢þ 1 0 obj << /Type /ObjStm /Length 4564 /Filter /FlateDecode /N 99 /First 832 >> stream xœ½\[sÛ8²~ß_·­©Ä85•*;Žã$¶'±Ûl̓"Ó17²”‘äL²¿þ| o²iEÙRh‚Ø}ùÐ"XÆ$3Ž)f´cš¹Ì2üÌ2žqÇãÂeÌ3®8þdŒk«çŒ[+‘ǸwšqÉWÈTLkPˆ cPÞ0™I²Lr‡÷ŽIéñ½gÒ Áª÷Ž>f*øH0ÅÞK¦Œ¶L(¦¹ô YÚdxo˜á2c­ÔÊ;4……gÆ[͘åxœY©8CÕV¡KR2«Ñ)©˜õR3üsÜâÙ0'©¼ÅÝã=:¬é;ÏœEýè’ó¨ ¯!ɦ·“ õ!Vâj•pQىлÒj4$WW’r‰‘Ï¢T‘4õª;•Ñ¥äUÒÒúFk’§KÉk ïl)}¥¤®¤5HÜJÚîè;ìz¢½X÷ý”†gîڞiÁUÊ©Ênɶð?îȘÒ=2&w$cÊn!c%—|—”p‰Ó¾Í%ÞÇ¥Wóük%;ƒd÷ƒÝÛ e§l»bc7*9hŽüÿDx©ì>I«'jÊÛ× Þ×MÀñ5K¾’^µ#éÙÒ»?Zäáëôý×'oÏ}r²ö¤O§ãÙe1ýDÐ*P ÆíÉõhN.%TîŸ XÀõÚè…2À¸Áƒ/C…T-¯jµ½+.—×ÁiXû›ÝUeé§‚Û²šj¦ á^ XL%€ ôcY8z`À,”_ZxAMe­ñ+ŠÍŸ‚#¤R 3p74ãѱ-xŽmѨRóz[å’îcr‚¤o¨dl§±e ,ŒK´p‹q?¼†ür”Ÿ®á1€QSâ( è/é^ú$}š¦Géóô8=IOÏÒóô"}“ŽÒé8Ï&³iz™æiø<Ío.G‹ëô*½*¾æé$&ý”^§Eú9¤7é4Â륳t†¿_RÀ¹bv™þu µ&Lçé"]ä_óiº(¾¥Ëty=Ïótù÷,½M¿¦§ßÿT,´û‘ÈÈÍNFŸ‡AÞ¯„9äy€l:2‹I¬ž•‚C¯NG7y[ ŸLã½é'( OŠÅB„'ð:=_æ7oizR¯šd¦ïKNÎïÈüó×/_ù£aÒ¾þ‘“Î… Ro£g“RV¾n€‡®¼tü†¿•§Æ…á h)&åÈ|^ü øñg+O~ _þjåÍߦïÒ•O/æãÛ›«Iþ­tïãÙÍͨîä§ÁÉçÝŽ&äêé_‘†äô'k¿ýýË5¼y‘þg -˜äW˘šò¥ùø2¹]¤­ÁÁ_·³eʆT,ÃMzvø–~Oÿ›þ7ŸÏI¯ZÓ=RYÌhò£-ƒäÛ©©„ƒqêÐ>œ¿Þ}úƒƒT]}ï"g3Tß÷ô7¦Öém®¬A«/'ë)“uêí+Õ,ßWðþhÿªÚ{ñÖÞ×JP¢Ž¾È×Õ7𨴤°¤®ï¡¬£Å¸(¢¶Æô²˜\æH’v,>C™?ÎGãÏù2hM™Žz3n©öål2ÍIÃ+¥®á÷O‹Íçu}&mžä‹Åp•¦~wTz|ùqµZ»˜]iêîíô2Ÿ/Ƴy¾Vã¶ _)1ŒjS‹c®–¶–VQƒµ·t¬­Ä£oµkª4½‰* ÷q/Ä]õÞ;Ø{ÿŽÌÇÅóÁê­tW½ÛóN˜kzKM*BP ¤P¿²òo÷g9~ ¨DSc‚ºkªp,R4´$HåÕ&ÈëR&¦èNíªž«6 –Þ½u;ÃYF‹ƒx+ãWwÕÐR`»æ7ÃccîK^óE©vqÖ;ŽðªÇÇEÿÖšÛV¢ÝvH­©¬^ °h 0x²!—€ÐÌÛÜ£¡nHlšWõ íl,‘-¡QZÞÅU:K¸ªÅ'ÐD‚¿cúB‘H¬gâp—Ö&IŒbRÎVr|\L?W-¡Ú®Bï_œ\?vÕIwѱÌZ꤇j“–¼köMÓЇǕ¼éŸ-õM¶)›bFD¥%¢- ^ ” €è;‘IcvD VTiO‹í1 &ˆjÖ0""jjÇØeOŒï*Æ.«¥Ó-£”o޽ݣyæIÓ.ûr¢W›\u£4RmmµYCˆûª L?æËQšY`V†v¹Ñ¤¶€=,lȵPe¢ÝÒjμŽ6`¨Eå÷¨ÏöF”{ŸHÚ8ÐkD…щ§ ±p‰çŽ —%óJ!-­? ³¢ÖmÌ–¤¬ëöZÞœœxúŠB}š TÍ V ”uõ§¶¶Š r®ÂméRàEMºâãJºnŠ) éÍídY|™|ï‹{¶cVY–D¦%H@s‹ƒCVjè ñÝ›ógÏOÉÊÛ¡Òw¨ªŽÇ³ƒ-V}i#>Ñߎ´ ýŽ«ˆ“ \a2ßTé»Ý!7u ׉Nô¹Á¨ãàOÔ_½{õÇaˆmFòÆvB´bxè™ö“Ýe‹zˆoiÛñæ3m-ëZpÝ´à œóhzÖŒ ó{âÂÈ7aïXêtâÂ-î]WØd­×øýìbÌwÏ_< *]W9/ï7mª ²ƒë|wýFØÃãcÓ¨ ³e¥¯[\vm.7;>Ø'Þ·z3È'–;Œ‚SÚ%š6äI­íݧ¨¸N `¹LœcJf‰¥P‰Ã\â ¬ê>°Zú²«z› !×)湑6´}µL;&Ë^iÚ’Q¥S<ýQ>ùš/‹ñ¨® ¥¼C´»¡“““#Z‘=óuJ¶­T=€[·½×·ÝÎ ‡™*ÀŒô•Ñ•´íØ 5±´¯Ôc_ýd­%ÖFˆA´­6÷´RÓ†_KólSÞIæÕê}l•.ÛçÊRUnF;§qÅþ„%BÛtyÝ·ðÐ4ô´ìð<=-—ââB<)š¡“Ï«àÉÝk­ÈÿrÛoµŠvw Ï…=Üíˆ~µ›¥K©Ëá`¸æîß {6¼9|ñäô×Óâæãíâd6=~t–ºýýã¤Ø>Ô¯;bð&¼¼YùzJ­ßկ®&­Í4Ûuo*µþÕ[Üþ»¹Ík}_;èþaÚ7ÍÝ5>¨'Âx59š¼®e4ß&tçî ௗã¶]Œ«Gì7¬¶ ˆØÓŽRC½oNϳB6mÝ!^¶”´ð¼Kqê:ûFnÁãÒÐa3dQn­Ã²'„ÿúbïðàMˆÔÑ Ï*˲†û²«¬PÓŽ²ÎÞL ÐÍét«m(î,Íoð7ÿTˆÂ¶cš²Ól,^éb9š7†~#ú¤,ÚžB$Z£^áéÕ¨7Y½«)ܰL ~r/›…·Om€ŸÜé„ÎúpëY–-æž Œl¯Ñ¦ØÕN]âúíÑæ&„¹ U6¤§#M1m(X¥Ãy¦2­è$S mþPí÷cÚ!­jOLl‚‰µ›(éAµæþÃf¶™Ô@Æé‡—Oi«ãöºŽºÞ2Unh`Âõ…ƒ\3äá ÷Ã÷:©Ã×-ÛÑÝ{ØäÂà%2½ ëQž„‰“Wïa許‰R⎈n†9¹á.±žvyÜA)Kè¤åC‡Ý‘,ÚlYƤZØ[ž23‰u›ÖUæ‡JÅ$%d¢ÃiÅpi¥Ò–÷(ñvöEÆÉŸÇ¸‡K×&œö˜‰$œ·µYBçTµ” ±‡­ ‰4ôÛõôŒD;«[ÖµÁ:{ytþò$ìÇðí•ïî‰0ÝM¼ƒcÚµD}{2ÖÝ$”5Êönÿ¡ÈÅÆí?”¹6€qÇÁzw!ï:Æ®c+Ú] £ê²4ƆªhYÉÎv¶&ë·Ú cïŸ Ã?ı޼@Cœ©Ny(±´90&ÖÑNRžø6GpZˆ£¥5•cÐ-ƒ´ eaŠlrzpCµûàÇM·JÜ£jŠß©õªûÁ›£'!Š?Tñ{IØö^ÇÁ‡$⦊ŸuHBšžÝh²3µm2aèJÆN`ÊVÚ qðÄ4Ùäy1ܤ%b¨:<Þ×-Âý“ˆºÌ¥gžö õBzɸHÁÉÕÜÕ1c§(TÇAzÊ> stream GPL Ghostscript 10.00.0 2024-08-17T18:31:14+02:00 2024-08-17T18:31:14+02:00 LaTeX with hyperref A Handbook of Statistical Analyses Using R (3rd Edition)Torsten Hothorn and Brian S. EverittBook endstream endobj 102 0 obj << /Filter /FlateDecode /Length 3576 >> stream xœåZËr·ÝÏWÌ.=)±ƒ÷ד8V\ÊÃ6“,\©Êð!Še’#‹Rd—>çhࢧ›éeJ 51hàâÜsŸè·b”[AÿÊÿç·5š¸ý¸Û¯6ÎøQ{¹õÖÉ1¸íí&(7ºëÈÍæ»M~t&l½3bÔ ³êHqt6ͲφMšø#ð£eûYëñkèö›¤ 1ŒÞ2¡Ê—Éé0™LAú1Éej“Ê@7§ÈTw›Db»™1@&†d€K˜0ƒ¹Æ‡8zSGh²Ø^m~ÜÈ„ú¶üw~»ýýéæwß*¿ctÊmO_o²FäV5Šè·Î[¬¥·§·›ï‡?ìNĨ„ˆÆ/¿øûNŒFDeìpÊ~øÃ:kÔðíîDk=Jé·û÷éרLÚ-Ω¤5´Û‰Tr8׉¶@\`›ïÒ©0\ÓÂ>Æ Ãp‹a•w~xKÃÃ> 7;ÚZj<^Ò~jôB{š!±HˆÃ]ZOyk‡‹,‘ÃŒ¿|H‚ztZCÆÝð>$F¥±w]øñý^]§%¼Ä‹wlö%m"´ ¶é]~3ˆ¦ /i8%M®ÞÑzÁKÈ”× ÒpOS4$•Ϙ-b®ƒép— Œ>kãÿ AÖœÈ0Fb†ûe9rÔq8ì@kÌÃÇÝ ÆpR7üí†f!,Ô{‘Çq¼áº¢vŸu À7 w©µOHÒçý‰-¥R¦Š¡ýßò„¥.'‡ ~Hx@h;.óÎ.š‡T.Ò–à/ŠÃ GìCC¬,$m©¢çZdʸ`3˜øÿ$ÝUbý—§›o6dbÌ\pvŠ™ë4Bæºfª°žcSÅ’£Ç’ÖCí³©º1ñ'0rwbp&hìÏ ¢½R(h'« g’Ñf˜ƒÔ°Þ ð£Bå“BQÒÙ!ƒ¥µôÃ9 “¥:Ò;q×B¸‰»HBG‚Ä«j{újsúÛï‡Ï›ßÈî¡óE˜ë½68dâéÕu;R¢ᘥ"ñ,‰ …!ó!êi²þ;MacR¢ Zi7LÜ#‡}Zö.“;hõ|³€•% :Bj¶X}‰¡w^øjŒ.Ë:ev¢¹ ÃÏyÕ€Ç}ƒ+ÃN˜r2_»|²‹:ÈľgÛÒä*¨¿ÏU"ÊN´r81¯ËÞÒ ÊägL®öÙSj ªìJÏR"p•g<¬ ¾áE^ÆcÆþ‹žf4P:M§ô.8䊜Z%JÁÅüÜÐ^£ÿ ÐÕ(}UÉÃÇP*'«Ïx‘ÅÒzZ{ÖNƒ›Ûi*ëþ¬ùWÒ\MgœÇi9ü“,qFþŠ˜RéyÝ"9'â}ÞNgâ“‘ ; Æ“§ñAk›Ý`yõ²Ùè}¿âlŠreÎxéV 5cüYÒ¯@¶ˆ(ƒéìÌ67»Ïj¢>0KÈì¼ôGÔ(3®Òâë΂v¦@úÇ4Áe“ë™f¼ÝÍüפÑ:ü.¯á…/ÒH¢ Ÿq‘g8(Ç–7-¶0Ù_·½ß\œ÷yµu_¯e*s÷m"¡cçR^Ì òs°hq›7ÖÒ¦,a:ŒWo²~½jç@zqÆ‚; kœ§Ì)óü‹¨¬À ÉJ ®T¼æqºQû0ɬŽPd`'®–zª>œüÇ™auQªèu¢O”K}f©Žåã—-'z— Á@‘úŽ«”‘‰F£32y)OEïMó+‹¬80EB5éE—D­9ÜÖä(GÃé-rñ˜éqùÎ[ع¤¾0Ð^%ò0¶Óâ4ìáþæ³´¡ó‚Uª=gàoò"äKºä}) ™;Õ¿µD=AÝãQÜA<”|%ê©ô© Ë ¢êîBÝy~˜@ºŸqqz§1e ©øTÀ®d§?¦¹© å^óº /¿—HaBnó”¼3Ù Qij¬T‡c³èg¥/&é÷=™Ò06ì Ù²øûk­Y 1÷¾®ê© 5 !¤{ rÄ\2ý°T£ävJ©R;dwù-*®Vb£g®Iðfuu9GòÍÔ‹SÒ>P»,»Mdºf7g‹±à=IŒJÑAbEÑx–>0/UŽ?Ý­f z¿ZL&ß±~î®)A=4ÊS½ª%ö5]“2IÖ®-æ19³{jo$\r±Ê™ºoŸX|¨¡—\©;cesiÝ(¯\ªí^L$ï¹ÕüjY '㇠í}篸WLÅå¬0K½XNß:nÁà¸AqÌ»b,ϱ֫Ҏ±”?Pã*›=g*±°?Õè¹yCÚG)ð°ã2Ý_·Ôf9z2ÓìQªõÁçy Š/™rƳó}$ÞÀÃuƒ+I2Ïqnòì€üdevç€I"R°|èøg»FLf^÷EJIy@n6ÉQ¹×ÍIáa–·z¶~ÅW0“7}Ïfª¨ÂÓлº¯ò‹1†¤Ô°†~„ÌÎ@:;«yn .ó­‰áΤsKîh_î8üÔN¨z¯æqµ’=ÞwÏ5ʯ„¿±¹§…¹Á€ª“xŒW3Æ©XǪíÒ€ú"©&Q§º7Ž”žêöæ ån©3‚ljŸÍåR‘Í„¯ð®U1ovrDÌrڞΞnêÓåâþft¦ufVz_cÑL°«ÙÜÜo=Þ:&r.t° :ažž†?Ò/§Ë3°&W|Æ›\8ÐÕBNjY'ÎëZµ%"÷UÛZ¤>Ϙ•îqf×®FZ‡š–îqàqÀ©:B÷8Ÿ6kõb6.Ýö¸0*T¨©Á ™o{®*+ö Lic?Õ'`(e¤®>TÓ(uüò¡>×§ëúô~iÁ‹…‰÷ ¯4¹î6¹lwgZªt}†ìÈä;î:"­Už£†b¬2ÿW0V6 ؆¶œe¤ã샳žô1´žLm‹T…„ ö_¿"ç­šåìÉÌ% µÆ(•èÅú¦˜tÄ¥ Ñ?ǧO8ž$rJ¦Œ[Ù;‘µS²‰ìDl"—Vor`Îìj'T¹y{i¨,[Ü™¶xä}d·€‡"?Ò#ô+à ¸éÔÃpà@œ@&ÒŸÌòJ;6ÿ«dAÃ#÷Óó›54$$ù"-žéá£aëg´s‡Nš@jŒŠãQz> žr§GøaP"0ÊÈDö /žC©à¶žÁíX›>ƒºôt8è‹o°"}Ÿô?LìthÚ0@‚›‘ÔàüT@Œª€ ¯kk+É aPwäþcBèùü0`w|ŒÖ„I`d3DŽΣÙCÁk7î)šûÐÌ}”Å{4ð0ÚŽŸç£‘â·| ÝÔgÌŠûðá9¶¢¬ažÚK¾:'Ç"øcQÐy>ˆªÿQ0\Cé;‰úY`ˆÈ"mj ¿ä:] ðT ðPÆý+ð@hŠú1r8+bÁ¶3‹ä˜>íXÃC MŸJ·IJ¥8}ŒÓcˆ‚ϳѠÖjô±Ã7O'9R14´{; ÏÀLÅsvhîG1`èš³cBèéxè>d  <¡ ;ÒwlSQÚ"‹C¤öŽÀ¼a™˜‰‘ʈODD[žæŽˆ`ˆ,¥¦ ¾€#R0z>C¼…{„!VYîþµ:"uDÚçÄ­§Húc »àMQÃÚQu)=Gß?Œ‡×šé0ƸâQ½:®› ²ÊéôTM#¼nzxÖÚÁðâú— I™O–¾K-ßp²PSYæ^.’AO Z¤-*:ºÛ·tR!—ûEô•µ_ôõ- 5̆?Q‹LÕ^º¤‹ÎÔq–éçÜý_¹Áê¿}ª×#ì./7I Ý–ÿb}µ1Ó÷0¯˜B^´^ow]•GékÖ[+ëż ×#M:Sõü§©ˆ>·~KcÚ[&¤vÒíÔ™” •/=Ã_"±ÍØkéMÖNYâ-÷X|mú¬©¶žX/®5L‹ êš•Ôû6ô¡²¾f]†6áC3Ö¯¿c¶P–Kî›Öé^  Y²þaTÒ…¬Õ/ŠÂ|¬ÿÅ«íæ±ÜúÑwÉó ƒ,}Èý/~LÁ®>ß´‹°ù}áñ¥cYns oâBWYg%Tªµ•á«é‹d!"ÎŽV£´UÉ,t½Ì1Õ{|³ù˜Û™åendstream endobj 103 0 obj << /Filter /FlateDecode /Length 5285 >> stream xœÕ\[oÉqüÈì8dŽ­3Û÷KŒ$Ø$²@»¶eúÉv€#J¢ä%y¸¢¤]ù×§ªº§»j.$×zÐ`NO_ª¿ªúªºšßíÔ¨w ÿÕÿ/®ÏÌèòîû3µûåYpq´Qï¢zLaw}–LCÎíÍÕÙïβŠcpiƒS£5Ъ½I:ÁS+oáÙ±FÓ ÞÆ)øÑ³ñ¼ðkãM³J9ѳIÕ|NÁ¦Ñ…Ìæ”t“Ò|N½Q}!ÚÔ9µÑ¦)±ÑÔîòì»3M‚ÜÕÿ.®wÿ~~öåswyÌÁ„Ýùë³"d½ÓÎŽÑ‚`aRÚøÝùõÙ†ßía uþk€ QÊE;|ϰ:˜äðhá”NÙ ÏžîÖš1¨<<ãí¿yJ(eóðÕsldá'7<‡o³ Qëµø%¼5Ù©¡Aïä)¤á_„YµÆ4Áì¼3e†*'eL~h]¾ÙtÒÞ ~ÿ§óÿ>9fkÒîüÙÙùOÿ0ܶ¾Ãï£R)Øá¼õɹ ‡—øÚ笃ÞÂkXj†ÖÔ†÷ØÞÂ#~Tð:àwp´^ì 6Á´>•— ~?–Çœãp‡Øœ³Ãš1)×Ñl̆@9˜lÜp|ÑW…¯sPG¦îM­wG-R0ðxúÐ?œ&§ÌpoMN0ÓþͰ*h0‰åÕzoO¦•¤áxC›`T®Ò¢1PÖ_>@1¨% ¶·ó—®oúȯö¥¹DfµÎzjÎÄq‡ƒkÀ]à’yÃ猿쇛½‰ÐРdÛò¯ñeÈ´5|TI×=§}W¾‰¼î»Ø»/’ô¦‚°E$€G,ÓÂFy£ß÷€h¾Ç$°%ùV ª²Õ²0qš®IN£l:ÃÆìZÙ{]„¢­R8ªìål'p >ûAÞˆô+ÖÅaì"ý¿T)FoQrJ0ÏsxSVÉákJN0{Ü9¥2(#mKÖÚy¹}ôilm4‹\|H7©*ë‚í÷5G î†ÒÙð¶¤uóÌ“‰þ‡€@¾´I ú4t‰9ÜôÉuN j 3;¾ëâ¾ä{Mm´‰& ?/_‚y_‡ó[20ÊÆùä¾ëÚø¡µ=VYÆ´”¥†m€·'k@ÏrSÅO}Ë lÓÏl/æ3R°€áx×e]  !ÑLSB›]gO¹¬šÓWµ…òs{S»(Fæˈ”w„èØ îPÊð^Sw.ºáô® nMlòôa °·dö`œ8Ãnœ3!< ÅUËsLÆ/ç™Èø/|a7äL……qŸð?·¥Ãdo¥{íuŒlÿßß VÃÇ«¾È«>Oeü¤R]£&ô¶7¾«¶í[tÜ“›€wŸ:ï¶Çú`þ? Ü´Ulp;;EvîNØ¿¶±Z¿Â "k‘B8°7à—;C ÂH@F` Ñ¡ @ ß§ÛnF™sG@B UHܹ~Èœß$"07RDØÒ) mM ¡ð:v“¯QÙ (r»ñ²3i¦þ.±;3¢—9r4¼*ÃØ¼a¿Nw]Û¨­Ýõ®ð'¯Õíþ›Õyp3[>þ¸U_tésËÇȇ0g`µN„TÚþ+ ±ÉÃ÷$n´áðÈtü²­yIhŠ«'–ï% …yãx®#¥®zÃÀô謷àoË$”ÏKÀ ® :*usêŽa¨hz¶èj1 a—¥‚v€¨f¶€”ö¦2ùf»W-nÝ(Ð1Ç9gƒ.Á.ÛÆì)-¢’v6EFGp"§-€Ð¡lÁ¯¹€hxŸ^·Üw1 ÍaÇFh¥Â)ù}y2%eŽå)çÄ™§¬@×!z;3¦ìµ8;8µ}ÑÈ  ÄöØDk‹¹Ê ðø-©²\ƃ˜tŽ´ùÙ G°Jç‡ÓuimÒ4b±d §¾Ú¥¥ þ¨È^«5xWŨóÆ ®CÚ•&°Ó(Re$ïbARׯS6Ь7 ¿(î"¤S›^œåxAÁ†¯oº¬7õ¤èÞ6£„h¼¹¿ºÞiEëwƒÏ\ÉP÷Þc Sez»o6H50$JM '„K2’Hõ ;5Á‰ˆEYܪ±æFûŸ¥™€X2óXÒNAÿÝ^C(ŸAg˧—íém{ºiO—k¡*Æ™æW:F;=^¬³ÿ¤¹ nkëèá .zµA5×·|Ës¹–îÀ;-t“YU7¹­škár›œÝ‘‘~Áô…73¨D Çm)“Í:Š˜Á“3mŽïCýê´QZ’–|Ï61s òÇ}ß—'ˬô0AèPÕÖLÌb ÅkÙ(?‚kg–ÿ¨ùšôTzÁƒ‘AöR U$!¸ÕÇ™Åb`_Ã<À1¾`ÁMÛ´y|„è¡8ru†ÍÐòÕ÷Ý,Чj:¸b”µ.Rœ”z¸èyù°O‘CÕA¥³_¦© 7t–l«îrE×N•È…,ò—2ÞÌWq!”ãá6†gâ>í“6°uPæ !UÝ!W㸇)óýnàÈÕ¼XA‚"O4Ù²)3íËL›Ê ^R2ŒI±HæE‡žÈ¾ÖI²üô27ØÊý¦H{7f7EBéÿS¤5™"—Ü£Mš^ñÍCÌYÌJ Ü­÷뽓„ÇÖ~Jò„Wd^’¥mÄw”Ê—Á–‹õ}â»ºÊÆåéSSºž§”1¼xž2‹ÇɵÛÄlçG|Tg>ô,c{Ð0‘˜#‰Ÿ²0(ÇóMCêqcä #zÒƒ5þ¹éÙò|\“Ù8§á¡@ëW꙳,DÚ“œ±ðö/ëÉZé((`ÎÛÑeKýÎd^f'òÄü„ïXZ€Ù™…¶eŽßætßÙKùNK_1…Ìß—ßÍ£(mSäÂ켆º@^,dh`]á »¼ |,ìãi­¢šVc˜”ñeéÍKyŸöõÈÚÚüØÃ“I_%УzŸ[¦ÈWýµ@MÏ –‹Úlð4ÔÊlë\?I®ÛÇ¢>&»™«ÒGœ9ø(tYM#­Þj½úâbañ(“Çf'Ó÷3HZ«FØâÚ¢‡­sjëYĺ‹v®}Û»L€û{–·(DfkËÑ!hv̲‰@ýq5=(C(–5l9Òi'ñt¢F†­ÞgM¢÷¾dkm9J…Ø>,ÄTñ{9VÿVcÛ ?–IH®IÒ¤žH Ú(#Å2Ø,ë°âZ·iv¶(Y‹,;óà㼟öízß1>t‡zÅÓ•l‘\.´J—œ—šj¯¸7² Ò™œzëám'{7L¾¯öK°’GkÞ:CúìåZßí½$ÒÑ-<%F—äÂ}ÌÚxVÇPÒôî®Höø¶‡÷'6ÒM_ØZ¼¥†ð“˜fNüËçÚ Jôè,øt¬Ø•ÂØ-™Ûœ±Œ¨Ôk.K( ´pƵ²ðïóE™Ì”A‘Ø«›Ë”T)!m醖uº$«\÷ÀA·<Å3¿nl¨”4áÁCžN•øâm[ü׌µ—Œ©'!ƒÓ â<ú¶ëîò :’M>¹Ä<ð}B ìàó½HÖ¶\]Hdž ,¾zëz»È“$ Ðt;0’Ô½)RY}¯è™Ó ÏäAY]U¢Æª`ƒ& “ à»-èKšéjŒá?‰öGDc.ÁË=èÒlQÚÓñkA#‚Jš¸b6‚5º$è«®NuE¡ær @_1å`µ$3sdÀFç¼(ÈZî;­ý½ðDkçi^˜47 g,{¯&ãùÜd`¦Ö‡¦7d260áÆÊS‰ãF(p¯Î7ž£1|'®[üuä}¿Ÿ¥€6jã„á¾, Qʈ]~Ãö`r½}ENÞ0ÛÍüÄ ÆÃî}Äl°õX‰lgýb¶6Üðï~ßiÊÍbÊɃ3úȆëN£¹‚Ž¿õ8—¶ö·š³ßÐÞƒNq^P ¸G"G™^CÔÉ¡“×y¤<«¤Û0ò ±ÛgÃ0Ö ©ç-°²DÖí¾]˜ÙQ¼L¡ìÖñï%«’’”û!M¡3i—¡Íxû¨Q#_åõ¯<æ©ë•Á~‘ÆVÖ’-÷ªtŸÔ<-? a‹nµµ2NÊ“ä­ãÆŒ±œÕ7êP}Õ 2;¥?}[¾Æ¸ðXW“2–JÚ[»’´·ßÒ¸bÞò„Ÿ+GL3ü)£åzþ%6±‡Â½NY„Vð)ú­b-ð®|dFÔ³QúÔ ±ôÅ©µÕü0ˆsp<\Ã9–žq[$«?´s‡à7™µÝ4çÂZ„"q5C÷9Ma€·2Ö#ÑBt|É]c'YpS‡Y¶£¾#2übÕl\ÎVâZ6võ±ô¡.¯s²“qb7:(*`¸í+á·?X±Ê¼2„p4Á˜ ¸'wO4wÑ7’%><Ú0«¤T+¥’‡'ºž°ed«õ4 ì²â}ª˜mrY^ûœDÝÒZ°FË›®lñ\ÆÆ=‘qÑÞ·†’XüÈ-<¦ò©µrÜ8l$Äð"L¶–q£%"š_ma),QÛÆtøÉ´”©J•’ÌèpŸË“¶—µ ½3¯G¤Ò–õ¥‡ÍìØìÊBY)t¥¤+¿ÌÁ»[LkhBÀü<¸Õ!È óõŠAY2R; ó4ËJ™È¯ÁSû¼¸5U§ÎòiÌ¿nœp1ü“IÈÞ%é.Æ>à=Ø5šp%’Z-cüÃŒôxqS¡øè·]гšlQÏ)‹Ñ”<î•WïËË” «¿ßUïoGØö•¼¯J)”,`ö‘g‰ë¢mŽœ/È3{澺—œWóN³gò½…ÃïrîLÀÍM1lrÌRzéZƒ8|øê$|HßÙiè©ô¦´¹‡"ÚH—Ê6(â“Ò"‚º÷âæß×é^„t¥¯jˆšqV\2/ÝǺ-yU/~‘e¦y&º~º}¤G÷˜ Lœ™O–£ÔûæÛFrj-UÒ*nËïªauc·«ÜÕ ¾·Ú+•ª&–ú’–¹ŒGˆ¹hrá¸Í›·/.b¸T‹Ê¹÷¥¬gWî®mo”õzN§lŒõ;°Aerý;v ˆzá…^É!>±¨£H͸ëƒÿE´n`g=õÝä÷׋+0ªqñçýg_o«Õ£viÂfõ†5I@3ö¢Z¯Ö&f+ÇØ(©'€vëÿ4eeä‚ä`S'ñ8ëX o»÷x¯œpïÔ€ËT¾\ƧLæË^O±~ñ`´Ç⬵+A³ ½ö:ƒ?£g2Òuƈ§ÅYléç"8&b¹OþeÈ9õ9à_½¦ã‹fŸkS^¯™õ:À¬G—±&­ÜA'=T°!>Y¿ÐÀdü(neŒ!5ýÙýë‹È®=ù‡ /¯ŒDY5‘Rôu|¼·nAª¹rm³Ûx+ïά9°ƒÈÕ¬<¤Ù¼å -‘fÍjֺʣÄ6YåÉ™Óýµy2¥Ñ™=-îA%æÍïJçxÿ[Ø|YöZæ†_ÍŠ›ª±ê”抅ÙâZ•𳣨dÀ²d®÷ü¡ ¶;wÈ|ÑÓ`Jáb¬J¡S ‡ã ¶ðö·³;ñŬH‚V†o»j³{%²v±žfÞ”¯B­ïTÙ±iÆE~õ¡˜W*•kõ<}Ú v{t…)O Œl…ŒR±WþTÁÏïUæäFí·­•7lc@{`~çF2©–çï*KŠSù¬ØË0r;*žY¶XJ¬6|¡±¢éöðímN;3ðïêà'—¬âcÝè³»EGvës‘P_$;6~èÐY¿„p,,ÉûhØE×z˲+í¶ó¬öŠ»ïž™kÆN×K$敇ËËœcË¥M7Úàæ×ϱd4iC™f4)JI~/í8K¨md/˜ÝbÅ"¸œ_•1bùã.-§QúRa~‰cz½á 8}Äæmœ¬hxªªíï7LÛ&Þ1ó‡MÅ'ë' ⠑ͺlVŽòÏx4éÕËk6³n¹w8N0x`¢ƒ+g®Èб@¬Šâߘ›dÏë¹oåUcâ¼~œ`‡¯®fÁÙ"fåÁÙå›2mLlüî¤uÇ?áæ‡&§Û^±¹‘> stream xœuSÁnÕ0¼û+|t1»Þµ½{¤RâÖ6œÚÒ‚èëSKBâãY'yy~”C¬Íxwfgòä!¢‡ö¬ï›K‘Õÿtà߸Â5RE_sÁ(Å‹êVypWN¡ÆÂâkaˆ” µU5–<£2Ù™;СÐcìcîæå\í«œÌ;°•XsGj-ôœ Iä¢'Á°çt­…ÌÊi›v ÔMïž΋ôëëfçÏ&÷ê³·n 3ûéÎ-[FL±ú"öÍO;÷!¼FJ px;@¬€*9|Fˆ ªUkx´:qápÛêYUª„ëa´ d {;Ö 5ì¿- %ìïÚ©‚•µ k‡^Z‹¤šh™‚ENÊ_ œ Já{«nÁöÍ¢yF UK¸é}»‡e¶5…çEŠp’¿ÐmbªÖð×Ü:WÈ'Ã?7„Rnå& ü¾Q('à…^’¢6plL¶Çûáãô®yS{o(QÄ,æÏtk~\¶ ÕØ’¬è'Ç„F$g?¢D¡Ë­ßƉRTÛ =Ïb„‹4»ˆÈæS8Ÿ•3V²jÇt›6ïwµÿ¸ß}' ñ9ŸÜ…Ó¨ÅþUK“ý–&¶L²e”«h¬|(´Œþ7Ÿê£æœú|&ä˜mÅD²È’Ði0#¡Å¬7mžg†–Z^6Ÿ Qœ5 ]‹9v,?6ËrT±ïA@RVxâðeN> stream xœ­WiT×¶®¶¡«œÀ©¢S‡DŸq6Æ!&F œQ#­(2ŠÌ3´ÈLwï™ZF±pÀMÔ•˜Ä39\5Æ›áÝì"‡wß= šä%ùñÖ[úÃZ]uÎÞßþö·¿-cì02™Láì¶lö,ÛÏÙþKBÏ:{"‡!vEãøÊ¸uøÇÃÛ߬¥Á!Ρ.ᮑïD­ˆŽÙåµ:n·›·ÏZ_?ÿ 7ºï š1[=gî«ó^›¿`á¢% 3Yˬc&1ë™—™ÌdfãÎü³™™Êla¶2Ëgf:³y›™Á¸0®Ì,f9󳂙ˬd^eæ1«™×7f ãÈŒ`´ÌHfÃ3Ï1£™1Œ3–yžy‘™MS`ì5sO¶RvfÀâ¹Ëå·í&Ù¶ûÑ~–}¶bš¢–åYwösn ÷ñÀU«2xòà¼! †¤14Ña”ƒÑᬣ§ã~Ç³ŽŸ [3ìoç¿8b㈎‘³F^ÅŒJ4=™ âó¢än–Is{^åS*’õqIFü{ŸŒÉPë4Ášm$¨S±5úÃQhƒÓÚrÝÉ!E6Õ ôzƒ1OÙŒr{ Qˆäyû*…Õø ´@3Ü«Æöâk,9+màb{²Fá Q’[ePóQ!—bñ23â*‘;oõZ,è¾W·RíUìex+ÉeW[­¿dh¢'^ÔV÷]íŠ>,Ê?O™3æ ¤j¥Šµê; ÍЗ´æþWXI“Þ"´Êªq®ÅQr)Cx?÷Kø™sÈKdÒÃE8ÇÜû _Hqã}Á§4éXj=tC#ˆÐ™Ww éhÙQh‡úà¼À¼=àÛA[’’½}#ý€sèñM¥_DÙ9œ.ï™Þ3›/¼¸­6-UX¿y{ËÖÒàD¶’™d‰&ø ÛqþCý³9MŸ˜ñ:e3uõ|+^9yíÓÂvø¾t³— &(®Ro¨TRÉfÇ[¥a-²¯([h~h!“yWtQ‰hÜßúá3|'Ïø±Û±k_°¯²%.6dKÀ ùÚ ¤B ×›óg„]¥¾¢¶¡¢¸S-«ˆ#yqËæmž{kŽÄ*z&RÞ4Šx KF€Ey‹U¼JMž‹™J7 K÷³<—)ElP)–ez΢ðÀ΄…‡ˆ'*öbº}o­êaïÓUÒ1J‹%ý´ø ™¯ÐAŽîÍß<„öw..‚9¯º˜šš:K˹u•ÛwE¼%èî+È¢ÿÉ”F}‡á84Qøú¹÷*ëÐÃÒxËD,}¯\”K§zó½Åý—+)_ÃwÐÚ÷ „eÅìÝl¯%ýá/Éðš#Äcé=Nƒ‚ùɾƒ$¤[¥çëdõ7Ðí†ïHoô•>5&)-Qˆ?’ëœóÜðñ۪ ö+ë›R§´¤vï7nÝõç`ñj¼yPgŒ.Ò#•DÆÆBÊa“  ÙYó²-!mpˆÒ±éúÍ‹{k÷*÷Ôû™¼rUÜÀ ®ûº¾äNöªhƒ W2ÍÀ•Cv寨ôt4c¨ˆK̲ۨ¸'Êq«4žÇ¡"ŠU Ýü¢x9“ó{T±„ù<úÊ'5^ΪÜY÷ÿàp¥Dpè)§¸5‹X öã–ä=zFòE…¿f6ì¦Ïlð7RÈTIÉÀ‚‡"û§_zïN§e1Þ£·À=hìƒx:6ciþ«_hßž¦ÈÊÎþ*xFZÃ?+²;ëì¿fÕj]i—€ß±dÕoåOd'ò¸ò |Ø$è—+Ð%Ç^dÝÒ Y)1ôÐñ”^wi*#iXJÓx"*ü43À‹>3À¯/Ø'½w§P)1>€Vút÷¹Ms#úb+‚ÆÜ2ÎAŠO·¢g-N·)é@œc“ìyØÅ?Zz8î!£µ³=c«jë,muQÅ:½`ÉÊ5îR¥Çr¥K&iÈh˜À-xx³»µ±Ã"DÃæûB›Â\åædC’^©2B!X8¢8ÃÏ[ìÙÚ„pLA¥Aè'Ã(+®?û›Î¹÷¬äû…¬¯ò½;ÙN±4¢%ø"8áÐ'Ÿãdœ>å&‘yx«C”9[ùúöæƒõ`…#>{`#å§lSû¨öDø‚/šÃši¢)áw›%Y?áåÒ™>UKsާò=¸Ò]$*¼4S`=aúï.%ÙHBTVé‚(+AV.¹HyS±ÁôÞï™²ÝØ_Iý)دËHò5rm-ÎL-s:÷—l™Ñ;>5*båþh§¿ÔxH­>S(§ô4põå!Á±Þª¦g?9yMm¦Q]R½B Á9<Ù(éRÊ2Œ¡tàùPT.) tš(M4¤£RÕ‹+…N­µoFǰÑmHÓ‡A¥œÔ g1²÷«ìĬýp2CVavÆKßÑ÷ÞêÓéÛtB5ÃϤBºûP$ÞôjY¹ßSÅ–û›tïYö«t¬cw4z#€#ƒ'¿N¦iß-AyksauƒÒ‹ÅU¿ÉŲDÑû˜ôó ÙAÙ\‘ؔԩ%h®‚ÆC-õ­P Vu•½Õ—ªíêz\ôÔh<’KS1˜¯0é«ïúá@J~ö\ŠóKÿ˜‡£qlÇ–ñ¯ÍØ—¡ŒX³>z7ÇpøEe½þ”Ù;À=21’NÚ”¤¶E‹Í[à—6±ÿÎc2y ‡’¥ä¢$#IIÀId0.ÕøŽÀHÜ ÝüZðh »°÷ºî|L‡áÍê+õŸ¯á<œñ«^^¹Z¿ –ÁbÝò`ç°Õ›wo¤F/Pöÿ(b¨Uö-2â9î¤3ã8å¼¥Ï7f.KHNÛaÜÎÆØÊ#u–Ö6ÿ癓¼ˆBxy½êùñ¯G°¤!Û­8íÛVŒl•UR P.ÇÙ_ða†°Rʈ²Ü|½¾0Íw‘N;‡ 7>=Ú˜œ¯,ÈÍÏ:˜¥Óh3 ™ /Ž«¬,.)/S7z©ý4>Âîêw³B(|C×¹¼±³dwM¤rïn/u«I†w›Ò7EÂnÛñ7ÑgÐ} g @8Áô3ï —Ož‚îk×ÀíÝ­°ÆUÙA<ùOÛãwxïÙ:q²Ïñã—ŽA±ò™Uµ1êÏnõmÝ[CÞQü^‹NþŸíj$YÃE¬µb­8‚2iáôÑ#ÕR4­ú㊳Wà÷ãÔ/È›ùº_thG|Ó7<¿ùu¬Ö²#O|­0Ã(÷1B¸ÁjÈ4EÕ,By2÷»Ü‡ùe´Íã2ÓtÊLϘðêgÓΧ¾§)KïÔ¹‘ê¤noëæ2Ž¥üëX{[ÏÃò·]Á…¼ tÀ#”$ߟ½‹³d‘c€ô_ü1¿†];ýýwîlôoo³6ÈjâL›î⯦¬VÂÐFC:õ´ïݤɶ)Oó¿Úeç£á±\ÚûÌ:ëtQ‘Bh¨wýöâõTI†»Ì%vë,žU{”-ÖÔ;QeÍÉ9ÚQÅï‚·-fù¢·É|1MІì¨g^jeŸ—ÊÓëKË„êê ž×ÓšélxîƒoqÐ¥Øãá Ê]ç½ó^³„˜r“² ƒ›¨ê,?'›ÉxŸlÁ¨Î¦3ð©¡ê±ÉÝh .½ Û Ö3Ÿïý„úÝt{Q‘‡L_â(àNô~FƪÆŸ ‹>?Ag¿+}ÖÉÒL òˆ¼Ï:–÷·ÚÛL£(žÀ:þç'…¹¦÷ÁId#5A´p>°úÙ°8\‘™¦IO×ê”´åGÙKØ?2îÊêŠcXk}aÜ=2Ò’#aŸ`+ÃC¹m3Ó–ö/pq¶V¡ÖQkL)¤ä-È?žš½ë]òžQÒÏ<”‚¾ÜXj´€ 8³¨ðÕ©´~T= ~}±™Y X´&]…tÅõcÉ+Sw.$ ß!HKÿÒÎ`ɸ&RÉšqûg-ô±Jº{¶ŸRžî¶ôêh·´Ó%츶á×nù˜bøß-Ïú²¯7{ ¿õ¦÷–P!öÎëÆ@p†­^Ák¹ÿ§µòÕÊ4!Ú!Ý8KŽAŸñíþ;Ÿ5H{cc;ÑšpºxÌ,£Sj°?è‘óu ¬X5ümËv%Ý>»Š¹Þ|b§b›Œ÷Á–þChêgÇ:ü¢Æ<« ~Iÿ’€y¼õ_ ~6¥ƒÏãD«(;‰“¨[ä’;†S£‰HÛ¶?!#õ5Z'Ž QT•¿ÿ^U¹¹äô1sɉ“Nq8`ö-â0~Ñòùë:Õåu-¥'[Ã*üs„ª#MÙtñü*ÿe¯±®Kg*ɲ-y?õ˜±Nq’íÚ¤ö::£ì›>B¥µYÖFÿ—Ñy…aø+ké[î0í­=Þ…æp呜ú2¹ŽÀZÏ]þ¡[ÝrE{œt뛟.}I«…Sæ›gà>÷9õ–C&¸-sQÕGX;*êŽZRÚ6åµõÍY´+/ëÝÒ`“ÚK·#Bë« ×¦é ž‹;‡û±E™(¹Ppl‚­ÄYü'âi¡¢Bg IÈu²@.õ®´WÑD6Õ¶‚Ø|E+\†æ>x—Ðñ/màI;ÙÙŸÛûè„“¬÷pXYv¯ Ø6ˆ‰’ž/ÊÌÑQ§‹ãn¡]¥I›¿_£…ŒTåöØí©^°<‹B Ò ƒ85$&(I+‰eùYFS¶_TÛv ¸÷`ÙLx&)½ýöÒâï*‰h ¥G ‘ëÚy(B½%eÍâîYÏçžÜ±8|ám28v—.ÈSè‹ ´vâð è/ •rt•ìyȆnSçatø,¿œî åi‡âB5{c©b”…4[«ÊÚÎ^Ÿ:‡¼µ4®rýPö辄“§_œ¸¶… ‘{üˆ®N®Nµ@7µšzÔº7K0†Á ˆ¤µM”áéKý Æ"åàpоjó„¡Ò#>/ ÃU‘`6 vêÃŒžÙÚ\Í!N¥ð'&ªÙ ÙÍ…EÙ¹ŸÁAŠãX…ëLM&NÙâôöY0‰ÙW….næàÜWû.i—>§É~™_Ëñ±Äò皎Ðæ½Ùõºfá´å.øÛ‚ÖzÂ,ŽØß_‹, 7îSåoœð/ÈÜù$SP 4q]'*Î~Rë¾iý¿Xµ@LáÿùNSxClqZ±Ùÿ…^ç?¾ÝÙR|°é2t> stream xœ½Bÿ CMSSBX10‹‹ù!ùJ‹ ‹ ›÷?¿¼R3oøˆùR‹ ÷¶Ó÷uáæ÷$÷Ÿ÷øw÷Ôʚ걋÷÷Yûm‹^û„g€füêg–°»±•˜®÷›÷÷8û³™s–‹¡‹ÆŸœ‹©ü6÷õ÷u÷÷ ]IP}Uû 7Ÿ ‹ ‹ ‹ ‚J&endstream endobj 107 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1769 >> stream xœ­•kTçÇg˜™*!3©¦œ™rŒ¦ÄÔ( ‚—˜ª¤‰£èr§°Üv¹$n¹¬Àî>»Âr_aY–ë° ×€å ZŒ ž9)m‚95Ml¢ô˜hšw¶/§§˜äKsò¥ói>¼ó¼Ïÿ÷žÿ„« A’$´ÿ-¾‹ok!Û¹×æî¸»Ö{±;=¿zìÚ£ï­"ŸÇ”i¯ff©öfGÇÆ%&ÛD¯ëˆßˆDNø‰@âUb7L„/~Ä£„§|áJèˆÿÑä.þ.ŸPÞÔe×]ÇÝv¸ÕÑ¿¤ÕÌzÆÌôJ:iDÉËF"bÅLSÒ먔ƒ/ CÕ¥8bN‚g .@›ÃîÓØ«ÀMÉü©òÄa·0Šá•L›i:@„qhÓº¯™ßæÃˆ€B™o®_šœ´¼Êãü={2ÁÐÉz8ƒAD×mhH$?‹nݦ†/qJ3s²0^Xè`âu…A|ŽRr§÷ù§wç?Æ+ë„;ÖëWáÏì­>Á?çñn|ƒC&¦ÛTq†Gžô½^¿ðàƒ˜~…?ã"õÝÑkÌÝQÿ]ÛC_ö<$M¡]òµ‘³¨s–’"Q2‡8Ÿû˜ÅîÏzcOüø½ˆF+æÿ‰¥5Åü{Y×# ÁaØŸ(t¥>q¶èbA®5Çz¼N ilTfÄóÁý÷Ô|©Œ£¾¬tÀ@Iž€½˜<(©.7›øò 0ªï?2 À~36ñÑxrWQ•àH7צš-ð>ëh:û9"Í›RL¼Q['­r«Üæ*Ùß'E`#ïO#/;…vJ8ä-bo´OM~°q³ŽÍùv0˜úPuaª{r†ÿ£:Œ RFÇî/xg¦ìߴ쟸äߨ%})=àúNVÏð6‘ÎÒo%¤Â6È2É€¾X\ˆÇP!ó§~kºÅtS^‹N¸ -AéªûdEcØúS§<¤ºÂ&é"i•T”ô,úŒ«²7 _5²"£Ôk ²á8]º™Ò—§BéKJò×ãš5Øõ”X åkÛúÁÊ‹L¦þ ¤C2è!tù“KP]Z›‚Öá¯)טJj¡̦Švq}lèíÆÖ›ïÛÈ37бéY;%=lœ¼ßƒ‘‰] K$°Ûö…‡(5Í- -ï&Àq¡yèœuس—ã¶1 >ª{Év±;ÿ‘yåÚÈà¹F¾ìˆ#aئ ËÇÂ%õæ,­&.œâCÎs>ÉQ‡õžCkЮÚ^/‡—<‰ÏÙPÒ Ù3‹¬Sº°9ƒÉ£zBåadŸöÁãÕw|Ëì™ÑF‹°›AÞÕn"³G[q^þÅ„,|ÈAè4ê¬ÄcÊCÀf`¢½9S;hïlŽAÇ(LB¢úÚ·e4y²ú=…v”Þˆ‚–òC;II«ÑqÎn‚Ư¿Ä`úù§ð*¼æëg…VŽ ¢É\RV¬•¹ë… ÿ½ªh`£7t —…FÆØÈU¢-·vÀ·`ÆÞÆ$ö»L^”õc±ì1!šÖ€¾¦±ðýî.4ý_sµÈ}°ƒhõ<‰Hn ´Àµe7§e¨³ÓS[r[Ö6;y*#¿ZU,#oý!;ÎÉk`N/× )-$WF—-:·´“ãhf‚B±’÷Vb®²\šú+ °ã­QfÞ”¥Õ7)˜Å|Ñ•ÂNðÉ¡“Áµ‘°SÛ}×G4DöÅ=±=E7òz´5–â÷TŽp8ÀþæÍWûk†ó¯•κ •ZÙ¸‡ £XJ³ÑT[Á—U6õUžê™Jº,r»ƒ\®¨FÒ»…øEMlµœáAt§ItmŽrz;·s ótÎr³Óä[Õ‹|Á*Ó«ÔÛtÆ|P± "“>AIw™îËÿ†x]K °œ$‘VSU}Y¥I„F T%X°¯í‹ÀçÉOç)´ï<×®jÊTæ¨2S[s›ÛíM¼¿ÂÕßæþ3p_î+ÁÝ“ þ ü> stream xœUŽ» Ã0 D{MÁ ¢ÄŸ&Hd„´q‘*ë',™ ‚‡Þ{SSÝçØÏ­4È O©t+Æ åF®Æ£­ø¨YÁ«> stream xœµyw|×¶õaÍа˜`wDKèBO ôÞ{wo¸7án ۲ʖäÞ‹$[²llc0Å ¡B(B'ÚMHHäŒ9Î{ß‘l“ÜïåÞäûýÞgÿƒÅœ9gï½öZk ¨Î(@ š³lõ¸±Öõ÷Àº7ò–$;è.„î‹ú¿×à€,½ø#=)ëÏ’YA³ƒ7Í ™:/l~ø‚ˆ…ÒE;"ݢܗF{,‹ñ\îµÂ{¥ïêíküÖú¯ X¸ad÷Q=FÇŽq;îÃñ&NšêuÑaX,ìý~oUïßXý»ýßÝôîå>…ŽË–9åôßwaßm}cûží7·_ZÿÎýÍýÿûõÜLÎ,ù@rRòfÀ¦±Ž ì:ÐkàÃAÓwBñJû–$° M~‘^PÝ2KÈjYʦæ«2c!”òÔxìÑúcôF¸uj&€.Óì×ÖšUÕê#Ý[èMa&³N“£ÑJ¡>vDÇðhB+…Sàáè:ÝeØûáºQe]M¯€øLY ƒ|‹ìðM;,ÙóÍ`áí¥FÔéòºÔG|uBÏYl e°¼¨VsT[f²÷î¶½Êà -¥¹râü¹Üu«9ÿoŸÝa ÞÅ 54<K@]|±Ÿ~̆­®ÁËñW4(³  Å/g¥l–Ø·l$Y¹`D $¹‡N=Ÿý¢˜Ga|'©émf‡zŠž×NZ¿dód,”œz ó$Ëð-÷mUeÖH­¤l³pC$ö¼RfâÇ•÷Ю{BÞù±¨÷Ð׸î5 p/Ìþ2uA=~ú‰9Š·²®àb9vÎB4Àñò‡š {áì—š]Í®° ¼ÀÖI]¤Î.A›€±U¾E` û„ü¯ü}¶þìé´j`,t€ÊC°Jª!Ù  ÷EEÊä ¹Oż}š’ZHw2˜ÒrÚG9<Á ¶iÜ´Ö%ôEÈ’…"oü#Þ@·Ç/ªÓ]!gk€+P§´–%‚þD™Ó Aëhûo©¥e´ÅáÄKÞ¿6ÌÔGüìúŽÅh‡–£É? br 3Aòj.0 €YŽ7îFG%âŸP3Ú°û,<‹ß×sÚxPS:ƒí¤‹!S¦P@b2·i–wÝÆ##ÁIü ¯ÀñxìJÒÝŒ×[Ð(#ïÔfrx} Ýë#~ŽfòÝÙ 4bEÆ•L¹‹D|§Õ·b»5ÍZ3TÀQUíá8ΦÓc×} êöˈEâ?âÎñóéàæ)et¸EátÕÑÃUG¹zv<¶Ã=æMžåá¥ß"‰7€ô¤8iíÅáðâÂÚ–l@9ݨ‡KÒ£s÷¯ÌžÓ £VølŽ Y½ê}¾¼=ò¦H½Ãî{¨ˆtÞ¾çY/øÏ‘ò'¥´×X;ñóÊ÷s÷ÃÌ ø]Üëùûˆ!yº ûö« `ñ@ü£ƒ¥á ñþ![™½ü¢Q·Ë÷®Ýnœ°žôÚ4Òkg,¨f·õ„6›ÐH“Î$Dýo²q^5¢\»0Q1Ï;µ·þ1ý<×’Ä„JÂDe#¸q(EÔÖ ¬†ŠµEX˜DÁHj×z¦£+íù~tóúÂë}Ä7ÐÇèu¢±ÄZm ˆþN> š&m%ì…&ØkCîz–*·N‚Ʀ}ôu¦ÔZN©ŽL„P&Øg,1åUWT¹râ³Ága¼+©èf“j s­ 6 ù[-ÓØÖCoÉÂð¶Uju7I£ìƒ'í­âG‚üZ R? ¿ÏéxòN¿‘ÜD”Ñpw¦5E˜#ÛóœÌÈO*u¨1…}Š¢MŸö?Bžh=kTÜ…9ÌF_é“}N~Å)óÕi;I€”h v¤c %7]£)-å´ZЖ”p;¨68Ó‡¾üêXà®Ä<‰_µg–[áÍ5¹ óOõ­5ï{€:¥ Ðrš¤lB L>¤—J~²µ]ª 8¥bg’BéUéq¤zö^ ×øWH%âGÕ¡•ò¯âI~LRK’…Yø÷l,0é‘omqÿø›/Ýë‘ L6dJÐlº!-ý B:Þ굪@ð€Iࣳ’N5ýX'ó–,¡ÅM¸3'/Æ›kÑQ ›jÎüúdúiÁ¿zÝñaà„—ãIøCì†ÝÐ<­–ˆã®ÂmóîÓ¤We&4T‚-hŠ^ðË%Ô— t?„Eƒ-x0Z&RO 0\ÁH¿ÁU4~çYbÝ•Ê+繓akéY^Þ áI1×&¸Ÿ[Ðn‹ Í„| ÿ3[§Í½Á•[D¾ÊY„¨½`&øÚ¢jozœ€›QýOýN ?׈ìîëPkÃO8ý‰ °…¨þÕS„eFi#i·jÅ÷»ÅŽ£Ñ\; =/9ó0i„h<ôm»àùô„- fOV45sè›öÿ¹ Ê%x=Æ¢Qœ8ꨬúœ±G¿µó[ÿGB$µÆ¯Ë½Å™­‘M#qy´öÈÌô-]{dJÙ4.Ôzæ[äÄ p«ýÌ¡ô4¥íÌå2ß×"(åã…üô€Í.+ÞACô,B¤Ž€pئiÓ³zunDA’J¡½‡³qgT-Ï'ÀÕ:™ „€+P½F!à¡ ´)}ÒäùhFŽñÚÔ|ȇ´ì´‚[ï¶mK¬îé¿Ñ#¶äˆ%¿Öº­”l+… pÖFµm[§6F“¿å JM‹³‡¡jEžÚª£  '»©7ªÂ!‚:v­‡"UNBº<703j"Nu…ô©yäœi+ÚΩ€õŸ¶G O™çð¯Žéñºdë9µé?¡:ÇŸq}šÌú‘S>èlg'6ÃcAþFóãqOolyŠ&_ºJä7ðzð5›æQáÖŒálÁɉ°5ôª0¹ÌOq0C[ih„ŸzφME[€™:ë¢@}Œ¹²DoÎK­Ù¦‘TÔÎ%nâðIÏ%Þ´xÿ±ÊyÊ¥3·‡mæ£çaç8²É8´·´‰IASØ¡ô¨9Û7»×ù¬ñššÁ‘ŠZIÚ"Èã5B´%²»öì9\n¶Ôí+l²&8T¨%éZ¯MhK°A••@|kì΄Tù²éŽÓJ²Ú” '(,ÌÖÛV¨©balÕ„´¥ë2hÔM+~ĬãhÜm˪•ªà@›µª QUÞ¦xR]J>‚±ªæìW_uÌ’åÇ’2&%Å…X]ñ.Í ­‘dƒz—ÍâÒë ZQÅØÚˆ c°y7vØŠ8b+z°èr»¯°µNë3­ÑdT41âÃ…›®õë0ÃÄ"ÂAÓÁukl41E,r§¡4¹E '>Ë*‡ƒPZîev×­wðV­rÞàå·œÁ§<¼žø ””ÚÖñÐó\ë|c•”ˆ‰dïÅ;9—T°MQù]ôn(øŽ«±ˆ|”cÉ+=‰gø7$׈¬ÂÍXrŸ—’Æ»/äÇ“0Ÿ;ª)‚·} [µÒ¶úXÔE1ĈïT«RßÇjG,DFEŽ*àÙ\¥\[bþØwŸ’X |шVcjB¼ŸÁ½>Àîɉ_áÞ?C ê[ºçäì%á ¹Š ³8Ñ1¿~ü~4QbÿfX; ¨äËe8›dT’Ã1xú[UWÒ!°uˆm,9¬­8Üᤆ@S…„¯ÓÐHþ[§ô„t‚W§\Ðe¥å"uKGMëQU×ë.Ú¼ó—PÿGªæË;DO…¨S¢qpëG’0ñ½‚FúœT»/ÿ›k¥&?¢9|U$ÃíL¢ŒŸKëQ'"ï"®ní‘$¤:Åg’r {¢b´‚ø®$Üu‡ fHP]EÚàdu»cŒã{~Æ.¢ÑÐßÕá0ÿË!Žè :Wó:ë; Ç,ÿ0 Y‘}î6U3ÈлÑ,*YLàg©«Àæð=¡û”'‰ ª×ž©:h°ì©9µÐgqÎ!çŒþÃÓ¿’ŸZ)Dq-²IyjMÙè“€*Q!èÕ…ê2¥F QLké_T¢˜NOÕ¨Óäü¨ÖçŽÙ‰u&0Y*áÓÐô’ ÔW½Yå~°YëÛê—°5DÒ:ƒnÃ\ Í6:¹-éB˜ tQ:›†ß7íæeîç)ÁI;XT-2êÀðãºç¤û˜†à^‚¹¾¯Fkl Ks’µ©I*y²Šó2vÂ&ðØQø)\€:u‰ÔÜ2Ù, >É奰Š=e‘+I†¥Åx'`wb`Æà±h>ZŒF¢ñÈ™ÃßàoÙ‘¸ï·¨å¡÷/Þ{ˆÏÅÙ¸ÿcò{tÊF¶hÂý,£u¾ðô¡Íáç°ˆ¡¿ýôÓºBH)äÑ ÆDEVTêËë½kÖÏ›´~ ‡éi·ð¿rËבÈB·þ=ftÎ:Þ a1xìóÚçó™|07‹ïVf@n‚ ’RÔù\ßè0Ø ÉGãŸ%ÜvŒ>¿¹fm)ñ¥»ls!êñÚáúëyúˆŸ¡yür°øE¶œ™±#MÕšãÚrBGµiZ¤HoˆJã÷°Õa†àiHhˆ1ÔRi2TEj–ZZÆV:œ0‡žGϯ' ¹Š~æYÜÛ²¬Ðó8œrº|üìMô±OqÎà4rç¶Rh›mRIQ«S8ßÕUîû>$“ŠpòøSŽÍ¾"ÉUM¼ÈŸU¤ìJ©ô6„æ†bænš39hFúáõܪãÊóê:uN2(;Ƽ­¶1/S£ÍÍä@£ÓÕ³l?ïóˆè@—Û? NñUx±èîd=IÉ)¢ðEßòᶬx&<èAP°ÛªŽc%i¹Ð¥@^PèW€'ÚÆã6s‰B¯/_¿m”Â]U° öª÷ª~o”—ôùÏn l\ÑNQ1Š(ò\¥æ´Ö@â_;)‰ ¦O›ak±X [,‹øxÔVÜÕ„Vs|¯¿œ{Ðx b0y¢?C¢bN§‡lØË «t ´ê™z‹j;øÂ­ÏôÌÖ-Â$ B4¯e1ûG»ZL¿MÖ1­ LDFëÿÀ*Ö“ZGزEØ"àï²õU5íW‹VËþöj±Ym%v)Y)WÉñ’ÖŽx ¯•Øf±ª“`²Ý.Î'¡m׎~aõ„^(®õcfTº2ŠA›ž^@dñÚ¿^"Û&×Ãÿ›÷Èÿ[¬ÿpV®óÛûç;o•þM^[KÞ„ ß $ ,9¹?§Áê©Uj2 Â’Ž~©Öû‘YV®L& Ñêîˆ'ð ê4U+w³- lèpÕº·­9 Èó1ÎsÄ’ÖYx"/SëˆÓÑýÛç¯CZjž7ÚÚÚâ¨KÒíÌRŸÌ´|4•OwDµf´}èÔö©ÕL1 ƒ{Ñ!½€·Û+äG£«á)(½> â%¸Õˆ  42¢â9\ƒkèø(ˆŒ$U• ò—(¢ôz(-àÚ¿°ìGô£:ëeZúÔJ?GÐ=~{(3Á]‚Ëþ3y!’bÕäœÄ÷Ô*Ä÷Ã]‘èÇ{?ßU·3BϹ«äÁËø™JËÊŠv^Û8k î¶ 8,úgóç[ 4i¼Î°548<@]¤F«÷sѰçÃ÷yøF‡„†‡ÔåedåpZ­F£Ž_¼Üe«D.'§R0)éŠô¼[·ý6b¤ÐËlñúhŸóbí_‚ÿ/ÚGn'¾£µF¡õ/p'$É Â‚5ƒ%7 äca±Iͳ¯]Ë®€¤J.I»B!:+®XNÄàZqJ‹J„¨ ­`Oá’UÄø*ñŒÀ+„¼e±ÆV…Ôšx-xðZˆÖcÿ'ã£]<÷z jŽÔ;|e”¢îÖl­å×°æ˜ ŸÈør9§VY ƨ  ­:ó«sŸKò¬:&35-U6eÜymI…™¤L)5¶8 ÷PÖ=!²p;õ¶ïµmßO-rƒ0;Ô}ŒÿüÔéð1ÌL·oÆþ®F†ãðµáÀwÕ—ÒoÂ-û૬'¬4E/;Oá4œ‡ YÇKQ·ëÙ&2(\ˆ.–³fÀRB² dKâF­t¶^ +I¹ê-ôrMˆšZz³å à–-þÀÐzòªf3ÓZHÚ*qço5±‰7Þ ÛM¬?=N™[oµªp½zõ“ÅáÈ+äò¤m|ß`_¿Dcwæ8¼pB¢q·±=¶›õÁ‡kŽ€®¸6oŸ9Ú웬µ’+ûâxý)`žìÿhêÇ›¦­]&Ák±ŸÌ:Ï…;‰_ñ´¨Í&Ã\j`ŠËθ”äED¯¬ç—V^!ƒî2Ôõ§ÏM¨ó¤ŸÑÇOg¼ì#ÆÚ^±w+N]&º;þÄÈ÷g¬˜ágŒª²èUG¶Bg9|!¿˜}ŸIÇ%ªV…ºH·lW†©“ÕáªHV§¨a'#n•É2¡˜; º[¿`8î??ÈÅufñi_ImªÅ{˜º}P¸¼ËØg‹Ù?yò3G¶†»Ko6´%õµðn$ÃM7H†ÑTv‚Õ ÎâvXu¿™ø½F8Ö®ûí“ÆÃ–¡ü’ûŒØ$¥õ~ŸiÝNø™¾•"¤ä»ØÙBG~@K¨Ï=‡#?n± ¨Gd,àסm,ê6õ¦¶¸Æúúph­—פTsôÎå'ùÊôµ ”©’Ȥ͑ Á¶en5$ëT$ÓÌNHŽ•àÃt4$djui\nQýñ;Ð ¦mYÑEÞZOØÄˆßÁ]îî麨Àêc1§u„ƒ‰á«)6•—ǘüâ}S¶M¼4u–ˆEÌÏß#±Äv`~PÙ½'{I#ϧ‹÷·"Gt‡-§‰ýíYw´¼Q¾ÝÈÅy€s@yœ±hWv×O§àÞ¸¹C%â7X˜¹Ïð»’uâ¿ÇBNܺ¼7FnaP7|] gä…ÑMpJ˜›Õ/‚e®Ä6»¼6Åø®ØFlž ;þ‹‚¦ïž ùþ5›míQƒ"lª|E)&òÃîÄÀ銲ÏåçefÜ„|’F‘,vHýÆá~~X9:s¸£4|¦û,ëxZYÁƒŸ·}y“˜D@æG¬_ÎMæ·±Ûv)vC1sö‹Æ+WÏo˜³ÚsË _ÎÇ~U¸.0O?<9vèG³ÆDk·r¹‰õa&b’_® š¸fXß?/|…ì¾»÷kì W#eˆÍY²—êÆ¢w¦WF5Âr§Y37L8çó{§ªÏÓd£™Êº§÷Ëø!Öô/~Š<[Ñ"DWX' Þ¶*fvww «ªØ^( Lò\xÜýÄ’©®?ò'ÙGFL_üpíæhgWÎÝ9 f2¸×·ÃQgNüëYØ×XvŠÁ=?acaœ‹®‡#`¥©&C}Å‘=ùµÄßÖl/vÎóO[ Û˜)ÛGŒçl4‹‚Û™–·ÿŸT‹oþ‰á¶‰ši]éðàu«Ÿþ|µøYT«%¾uú’Y)ÉàJ›Vå~u1Uªkë:¤-]  —©ÉÕfeZkÆ×î4 ¯è…Hgu}qÿ’hdD¿WRbG,rÚ‹Æìœh-l™ƒn³…î õ{Q»(”ðßáõl»oˆ“´þS×ᬠ"±é-‰uoÓ[wþ{&ü kÇ©ô9d”Òj4`´¯ðO™³t™$1ñ÷@î}º’Ò:báͽàÇSBt§°Ä½kcŠq/äàV hö4½ƒzå·ËB'ß9n¯ä6âN‰XHŒÝô\Üã3lw¿ó`q0iºLÒ´ðúŽ]zrÑèpâ©áõbÓó{„ZQ"Ò²€ž_©5Wè uÐÈœò¸‡cjÙ‚ÅÛËâˬ7éÝ ž³;UØHzF õw-æøÕqÑ\D­›~0£qâ7ÿv|þ†›[Ônæ^> stream xœX XSÇÚ>1prT!žÖÿœ[­Ú[­µV½jÝp«`µVQÔ*¸±o¶@°3;HØW).uÅ¥¥jPÛ·Ö[í¢´ÚÖº´ö~ǽ÷Ÿ$ô©wÉÏ““™Ì|Ë;ïûND”ÍJ$I–¬òðxmšù-ŸŽc…½OÜm5v"d'Fv6º±cUްÇìì?E™_‹\C7†í_&[¹"*:f»|Ç[±;WíZíãëç¿6`]Ðúà !/¿;yÊÖW¼¦z¿:íµé¯'̘9kÜœ¹/N˜7ÁK¥¨qÔÛÔj õµ–šH­£&QÔzê¯ÔÊ“ÚH-¦6QK¨W¨ÍÔRj*µŒz•ZN½I­ Ü¨×)wjõ5‹ZEýZM §æQvÔj5’ZHÙS‹¨Q”åHI©Ñ”7ÅRÏQN”˜C=OÙR4õGñÔPjåJò¦l¨XêW‘BtrÈŒ!•â±bµøgÍ÷¶a¶_Ó é«’’™MLóЙC³†MV5ÜqxÐp“]ëˆq#ºFNÙmïiØþɨwln;NuÜíØâh’Ž–Î”n”æJoŽ~et ;…Íg.Á‰u qúÍy†óÏ..Ÿqã3fÿó”P5R¨BÆ_Œ`º!ªÅ`n°ê}JM0 E ¤öÁ#z ÎJ‰R3SS“PR‡Ê¹GtE jjŽA~|õ/¶0‹®o냂CjPÿˆ.¯CM%i…ª\>5; Å#/¢X }›l±3Ý·)t=ŒŽ÷Làar’~s…Ñl *ÛÉ-¦2²P*åà.oë¼N—’u›eHÁ{Ã2ZzäÁÕ}'O—†½Íá˜]’¾yõæy¯ žO?Üxh'ý|ò Ë™¾½¥Q´OðÃaø; ¶i[E—™¿Žâùñt¼ …W£j~)ž¸&Úê«Qs“Ì2N†êP_MƒŽÂ.¸Ü6ŠVD½kɧ¿X–‰@‘üØpo°Œúãy‡HsRð¹Qô‘ jMbÁ‚Yp˜zÛ`›©/a,ýa !?üŽÞŽg²®«®ÝýîâÅK—/¸O›ºj‘+O–À2#¼j„Oû ©%…¼s¡œ={æôù«gϘ¼Ì}Ù|ÿÛÇ9<ÑæàöCêÄ€èÞ ûé?½ð®Wlp/½×˜Yêó‡²÷6ü»²ÓÖ]¯ELPM‚÷þÂV¢ªçÃínÜQ·–4ÜfÂ,Å£¾†|z´½ÚÀã Í’¾ÂÖ oÐeµ}…Rð›éåìÚÍs渺w{§Ûôŵ# Ü8 H¢ŒàÝ—œ“éˆi Ið·{F6äite¼ÀÓ­y-|ÄAt ·ë%Ò^ˆ'ɤhÛ‹ª*¹»ýÊvoÈÜ@ËQÔÞ6dÐsW$Í©…\ïPks›C^1Áò[NÒ# ƒÕì÷g„œ&¢<¦1Uz]½^õþì+cßòय़ïµ,…‡Ð™ÞÀ]s­OPjE÷ïhþ=2ÁX’£B cégÆ>!û±;X+ÒÚ« ´>ÁTk¡=`çxÙ*c°ÑIúNB>™“-Ë Íy³ígêZšø²4$<›ÓÄí‰kFŒy'Þ$ѡڈteJ&çmðFrÒã7"çø½ú8—ÞíHþ"aÃ_ßÀi[Ö]—qiéEáˆ1w„Y¢@²¦¦½˜ëð;Ù@`8½åËã¼ô!ú³† \ÆÙ§ÆŸõ"s½§“:Èš…ÙÖðñì›ô@“ç̰xóɺ3èÉŸú]¹zãPO2øfEÇqY«Ö&E"f:UË[Êm/£è– ü fÝ„clí µ‡[{T‹½°?xýqtà„×ö*eÖ'n%ƒhðÇѲAÝT¡zÞu⇶uýáõ„÷kÚ†á—ð(<Óv§õSjéV4 æ¿ûloöTnÈØÀ;û±g0‚í€VÄÑufÁýÏPêÕÒ1(šÐ¾–“vl?H”ãùAÂÁKãßE^±Á ÞdsEò'µÐX™ •ååä´uÊy–Yí½J_ë“`÷”Î ÒÈI‰&tž*1«ŽÜ(ì5ŠÝú/H^‚|ScS‚]²è´Jµ!¥r*¤8×>ÖÍ4ŒÃOr’P&ÊrA™²9 ²P¿Ìø,¤ÉÍG%Lml…lw\løö½;;ç¢n@¹¯˜ ¢G,ø‚ˆmE©Š¤Ì˜.5A¾Å1³–tw¼$ð¼a?RóÿJe bj åWÆ#/¼èm<öul÷ýp~ïOåý0o‚&£¨»j;ÅpH°eU~êÐÔPr8’޽řڤR"f%_já{•’ èþdn>C/„k$E[/`œ„üÈŸÜmrqJ1*A¥ùù¥ÙÚ¯A[|šÑô†ÓÏü²RÒbèÇà:"CéJuøÀ±ú´@ï=Ðo'X?¤<À f/Aû öšNK;wè¶=E“ûœÁ·/ÿJpÔ‰Þ¯ohd Èf©d×ìKß¾Ôóc÷Åî ë<¬8ºÛ Ѥ&k…ˬª5>{7bÞÄ×fFxúuå aÞêÍ(ñ×eÕ!—¦âì}¼ ­• Ìxa0¯‡eõëãØs0Ú(úÐ5D(æÁ:ÖP‰Ú^ù~Ÿ< Ûã‘' ÎǾ­5·>69CžÂGm\¯C‹Ð¢ŠoÍ9¶ôÊÙ»Ñ)Ô%+x‘yÊà@Å[¦{·Ä 5ËÛÈA¸yŒ¾þ jâÒ vµé«u çÞ@Š7lÁm˜dÕº‡¸k¢Õ§@ÕNLìóf±çÀõ£ÏÁÖsŽgäf™ÙæËNÒ$‚–²ë·;ýÑáç>xˆµÞÞžükþlvæ¾ÈÄܹr¹§IÝ×ÀŠkrJ4ÚÝÕ)…ˆ)¯.n¬–7¯OÜœ°•WùWnEÌ+KÍÚVX&祘JT¨£BÆ ÿRYÊÕ ½‰™™WÃhý¸ëëöØ비¼íU¯!fŒPòžx”ŠT¥‰¥Yz´åì)Í)d`8>ÏNZtèpEAK‹ž¯Õ +ˆé[4Ó{ѶIý'¤}¢>õ á(köö+̾žƒÕÏ 1å¸>ü—sE›úš#±n¦í&=A¾¦J»Lß9¼æÝÍ^ïLã—ÐàÄ~Ü^iD™oÞÄÃ8¼ìs ´ôÄuâlšPKXU4ŠBÛ‘; © *iPìEÌùš÷µD DâfB²øäL߸0tôôy”¯®æT‘eѺnÍ‹w@=Ûúe šÁxn[3/lsNýNn{}úûYYåYAý¾;÷¿*miKw Ĩ¸@ŒsùvÏ¿÷U%üŽ»óæW0Ò‡s+¶û´¡c.';Ž_‚ae¯k¹ì¨¢T}¿÷g‹ùL‹ Iæv´­/ö"æS¼hÞ¬GݾŒ æ3'ë^di†õ” '§lH§YpóY°‰mÛ Û=uøÐxžb -Øq·ÒHG¯ró #7ÈEo¾Aq•ÀõUË…·¯ŸÃ¬Ë[@#dE×LHpºž ¥é)?’ýÙA÷ ü=ý7OÏ î§þÁÁ÷M²Ì³fݧ±ý­W<¸uì©«œHë á“þ>O„õçz•dëóÍA<óœ9ÂdƒYM+„xK|ïú÷`ÙÖ€ÚøølÂù”mf%mK/W·¿,¸8·ýiæ{¤?½å…>:Ôˆ\êQ%*hg]ŸNwÂpóŸùn*&°™M1(1AÖ¯ã.‰_tÿù»m©d4òãáM‰´£çృեqîVJäOéµ?Lú¯SÒˆ™zzÈŽ„]a\üÞ°Š@ÄHo¡eD”9Òo ÑÂ|÷<ØŸ¿¤wüTpÆ1;Iÿ G@Ë|õÝÛë{P>bô%e媂L /+³5¼¨³ÎÅy%y¨’ÉA;9S_•ŸÊá/_ž¢ÈB(Ù%¶,N_•WV¢`ZÑ ì'­…3,¬žNx¶™„Ç`w¼úv‚!`óƼ?Îgç»Ã0x &šî_½ÒýW< ¿äŽ‡Í·¦0Òøˆ4>”û‚p5“¨=áçï¿;Š —eúe®MG(”‘þlFw”¾rÅ;«×½5mç‚¢cá|nnžé™¹^4ýÞ;D4œ¾¾s—“ÞC—¶œuk2Ó„ ;÷‹Ž·àg'éׂ›ð«‹×)SÓRS¸°p…’Üi“ ŠJb h7 SDÆÅćF¡XFQ¦Ðisµy\SC®õ.Q•$è£÷¢zÔ «.×—5V¡Š~Þ¤ŒÂP½¨±dâ}ÁªÈ%† ,Hiæ S«Y‰Ö&­êºõi><¦[Sò¸0:¥e%Ä0ø^†<²Å$}Eîü 8#Ì$ÚÞ³ÁY¤Èÿ€&Á…õGÞ);¢X )V³Œ«,dƒ+%±(²¥"'·0Ÿ«o9Xq†Ðéo7,vcéÛ [™ÿa©h~©hc¤.:>D½köWËÀî bNú‡ ~"öÈÒåö.˜C4âï ìñ4™ùd|Ç–Â ßß¼ö"]bny¥’FTÄÔÕêË›:ü>x™…1xöâ¤qØ,¾¢Ÿ¾; _ïÁC8©à‰<ã¼v0ð|uG»:bŒ™Ú,m¦–A(+‘—¦¡vã³ò2ËQÓuîÄg7N¯pé¶v‰9,¸ÇDÿ¢ÎQ?ÜüAü/êú¿(á›}, ?ÉQhb¶w övÖÄgG7 Z”[¡)7WjÛžaIwN´“tMž=pÝ é¡ŽM£æ¿4©‘Ÿ&Z—“›«EåLM¬>\T±”8ig‚GØLò…T,6MÁ≳IèÛÓä{ï:U~ä ƒ_Ìaçnøäê­K—5DÆèøºÀâ}˜‰ÒPZŽ©õkgs–7+Ó 6¦:|ÖæYô7ÛpÖxõ+ðøªËxVïxæÂÊž¯÷¯šÕàw…Föã„C^h#Úèµee"³,Ž—xiwTÅŸÔææ£j¦!¢ Œ¬<ù êFa÷ñ„zFúÏÓ°KÒš~B©Û˜”œ¦B Ldyt½¡¦¸ýsËxX!×Þç ƒ‘LÁùHð„• ‘+ŠÐb æ3Ý6k 7¼‡N¢ãÇtš›0» ÆuAFŒïµuvuþJþÅÂ’'lNáž\‚3IG¤È Iâºß—¥'e¦¡¹NQY“WAîÿðõ/ìUß³›6ù®qum_sâDûÙ«ÜŒ¥¬J^øpe}qqånooùn¢ë ã^ßÕùîfŸwÍß¿îxǾ3×,3¬h*)©Ùá-S™ù®Ó xë-ª²FP°Ey%ùÄTTË‹êŒ,µ’Ã7ñNujB2’» „üÄÂøû8—ª³³Ùé*‹«+ɧy<>n¶f{vßìí<ÄÂ*xÀ·•ò%wsb$•¾D¥ZÍêþOaKÛÉH Y¿~£Ud¤x§?Ƴ– ´@kŽ•$%åáoÀÇYY¡Q#F!WEÊɧÄÎÀn˜ü'¦ôY©Òdk JÍ€™cxATÈÕü³ëz•¥äÄãQ_m6èÁ>àaÌwº¢¼TÆä§éÃCñ6ìŒ ð𣯵mâN/¾¶®1u¹ú|ÞºØ{DÒÃYÁð­ßúŸØpeQgbd©1ÉñE)¹<ÌÆ¢2<“ܤ&ùb??-ž Å3ÉÚ˜ÚFØFNT7’ff7Ù CvÑ#Eý?È×& endstream endobj 111 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 4458 >> stream xœ­X t“eºN ?P«´ˆÌùÿ#"‚ Â à ²t@hÙ, v£toš–îi¶fÿßìk·¤MÛ´4Ý¡”Z±µ# (^PAQ¼ãÌ•ù’ù{Ϲ_Zñê¹Ç™;Íé99mÿôýÞçyŸçy?6kò$›Íž²aë®——- ½›Ï$¿ &†A8Â'×üjÖ¶Hô›Ÿ=<ô+ô5 wƒpctþ¡‚¢-I¥R¶LMKß‘±s×îìœÅK–=»|ÅJk+†ËšÏÚÎz‚µ€µ“µ‹µ›õ*+Žõ4k=kk#+šõkÖïX›X›Y/³–³¶°V°~ÃZÉÚÊÚÆŠ`=ÌŠdE±f²x¬Ù¬'p}¬É,/{'»uÒ“np¶N^<¹5ìé°zî+Ü7§¬›òá S»§eN{wzzøÔðÓ¹#ž}˜ýðÈ#¹|:ãZdDä’HTæÌ‡g¾ËKh#‚"ð£}þÀæ:öHð!Ú…Âx‰k5é:M—MhõN² }à‡6m+ …?n®S =¥Ò§ðÏíf—½ö=9•pÌê°âCÒD™J¤.0’ÝpÔØÐ¥í=lq»R¢8­Í§£ƒ\ÚKEÀF©’Ù ‡×ÀÜcr##2o`±—ÒFÑÖQ*Cxf¯¥Þì­<úÚÃUý\â¸!¾hk3]|€’dh+ ˆHhI;ùeZdv(@)]¹†T…‹¶QDWW59|¶FªîL/š ÃÄÇ»¼ûV½S"!•ƒ­‰Å¢œ’’XÐr˜+õz¯™t_ñ úð@&Ò–hDÔKÌŠVƒ–/³•×¹j­+°Ý¯xÒäºÂ XŸ÷UìåÌ# ™Ç,˜ÿöÖOÐ#ˆ‡æ¡'IÆÂÔñRRýï ù§í,Õ=z²õƒ- ±‰…ó³b(Á®=ñû€ˆ&úƒ‹ýlôÔmNðTp OoÒ[ÀDh›\§Yùûu‰—·×ì>“Ìd1…Œ”yþoó‰âežtÈA­R‚BKíaÖ03^yˆç–ŸCóÎ7¡e7Ð$êÒ_ |Ľ®§W䩳@K…Ží4êkM¡1¯úÑ3㧠ļÃùœ™ÉSd+´)4QVšÕVªÓ£Ú CëGÓÃ%ñ°8,VŸ©†êB ¬eMɧ뙎¢E‹ŒÙ—˜–! ¤Ãñ®ü_Ðuˆ”¹ÔHÏÖqþú@ô;vd% ™é‚W(i~bô ¶ËoÙŒz£ÁFE5à²ýìàæO8襫,[&‡R‰ê†AQAƒRSN1޵O´‰ÿ6që@¯·VU²ztùz5fÁ¢›äD½<½±ñ>3´@8]¦Í5!±—øÜþª#§·83—¶·PDÊΤx2ÿÅ©jµ¶0Ÿ‘yß¼–\òF^»¥<‡"ßÜuvÔß ½¼ãò~9ì&²„/Ì/Ün>%"O™á¤²¨ ·,~ÛpÚ»è©1p{;ÙNFÝ˵¤Ùúm¬¿t£¹[žâ$³4 !È ™¥¬±ÖçêH>ò235ùé82êïðâEq‹Šˆ@·ð\óýhCæï[T˜Ï»Å­ub¢W€ˆzÛšªÀf~}™Yž//Â’“Â,[É-û¾™7¸˜£´F#1oûÓÿuê¾@I.U¥¯xiBhª±Bµ…Š´ß“_¢e£œ€#0—g°èÍ`$œŠêâ¥@¡#×3ýêRÐUHø%¹‚œ â+Ž·¶Þt‰²Õ›«ÀC eú—¤3 Um7T™H›¿ù«a œNmÞ!¹PœBåEç­ƒ8bŰà왎ÖÖFÒ½»Oån¨oªö»{\ø¡ã¥Òt¡Šï,ù}yÐ\õ}©‰÷K]:Zu-ääp^§Ô/(È/(X•%Ù˜gÌÂÚœ»Ÿ11SvˆڇÛn7¿Gšk,Õ¿°Êì•Å1°ŸXzA0‚~;€þÛ‡©á-ô^ü: ö³ï~à tÆxÖ«­ˆjŒ]eTP˜{Ú ˆ‡ýÆ„8…Dk·œàÖyµ6ÊAx†KSòÒŽè] éMŠ^m+=ÞŽ&_qe‘6^ÜtöÀ…»_|pÇKM¨ýÜ:7±.¡µ£³£>Dá9÷uuþâÞ]BM0'K™¡¦É¨þ¾’¬š¬¹ ‡™Æ<Ã,X9ýõa¯?:HœEVÞ~f»"këê]À߯iò£©îcTÓèÀP/öæ¸$­Ö©p…¥LRõ™ÞÀü:™7òÏ·£ÕçfGÝCAï ³j]Â^ ^÷˜õxÈõ”ßìj†¢^ä,•¦¨vÆõf¼ñíoþÜD~ õ&ÿAâ‹úOò@LìÜÿ/çðP€¿±²’gê¹Þ?á¡I·8M‡x{U!rŠš½=ƒ‰Ý¯|o© G^þ Íüä/Õf…S¡¡i¹‚\·øYM»óû‡Ï4ç;Iu]êìÇh÷몓‰ïM¥cOàÆ œ .ãMH,"VNÓZr¡BJËh(áËPuÒ ”kµ ±ˆKÊýÂæ$l¶ÀÓu¼~ð(õË¡¯¶4R±ØJ·½° ˆŸ€hƒÚë9PZZ£Ã"Êj!S;ôs‚x5Îë £K_kÓ˜+¨lÈÄ"œÆìÕÕ(‘Ùi;uZg+ƺ_¡Sê̤±Wæ01ZU ­Ç^ÀÌø‡ïYÏ‚‚VN1sƚŻR%¯ëø ]ZaÑZ©Vè0â÷MÇ8—R/¥vt>¨#XL5ˆpÍAYcwÍåz]ð±÷èÍžû  ½èŒ*÷2R÷p‰x­ðŽñ¤çz\+1zä•yÌã ˜èe'W~õóˆn‘½{¤ÇÑom¦,^^zþ£ˆ£ ŒǘUIE &Éë¹(ñ£ÅÿQïeçßDç±Yµbµþ˜[ëžeÔnÕûFwõ[·óLît½®R”£‚b¢Ð-¯ijªëìKnH^”ÏÌÊP’E̤°—C=*Æ4¨¦Îs×M•n•'«ŠøŠ I\È¡Ä(«n5W5Bá-uˆòó‹ÓãûŠº¿íE©]¡P˜ˆ«r}x׈ðb­8sSxivÔwèÎ^ÑsÒ½ª¢Ü þý°I „Î:›«j‰Ê O^i¶8å@wéÍï®ýᚇDìÀS5– Ó¸TH  õÕa±°%q.3™™Â,d[yb–ŠïNA_¯ËE\DU¼xf‹"kÛ,»uל'[ÑÔúTÓÙãý8k¾eNAýh nsã¤}fáØmZ‡Ã†Ž/³—{ê+kFÒT݆fY[&Òº½Kop·Õµõ½}åß‘Ö7§§çd“ÁœB/Î\g¼è´Ÿ(EìŽÏ9Y!hµ¬øÕ .| ‹Uš%»wS9‚½8.à¢1à]—nÃUâúÚËÌ ’©ý™ðÇÌ;ú` r‚‘êßeŽ@¯öHh¬¡]F ÅÛÁf7ÁTE]D5aˆÅ=vZ´A¬­ï¤dû5b(!Öf½}³õžÍª³H$´Zª%Ëvæde‘£mnó>ÊØ`>õp.ýØ7N»â‰fž;ñFÒdz£è&zœ÷@—§q—b}³¯²½²›º€Ö:cÔ<ü76¥.Î`©`{»ïËqV’ ”%TÎó’L)~ñÅ5˜ÞDJcòé»íè)õGu €×Tl ‹sóëUu-žÃ˜É#xYÚÂF¯]B —8Ái?ÞEÔ4w‘ø)ïlÔciy˜aãï)qÞW‡…”EëUUkÅsN—Û´µ¥N±³Òˆ¥kž|ö¥—º¾m07$ôL9g¨¤ºÐ 㘃:%­ÅqPeÖX¬zƒÃF:]¾6Ge÷î å§@‘ˆƒE‘‡•½ymT¾_j|¦¥ÄœmW2ªËÚ —øøÃ?ÞºÛ²i]­Ô’´8ìÝ&˜þÓÍʺ9ÁgŽMo34C-ß6ˆ·â° ¥t2Ða÷‘„Zi0ºd+Ú¤7áàkâ‡â9æàƒT¥±Ì¦9XuC,ë¯ÉF#i0èõß ôXK=âÑÁmÀ›®RWýgô ùrL±‰ è3u ÎOÁi8«="™ÝuN9”Så\d´kT›  +.&\È0&³ñrÿÁÏ»Bv…lì ™ÿ‡+<Ëæd1¼Ç–."nWǯ¹Íì¥þX`k³ÙÞ~½ÜN¥AI„dm €dcJèÃT’ÿ=5OÍRdA!ÈùLøÍMwQÆgšÔLF ¬2AÞ1öÝ·þI}™1† P] åüW»ROöÔ57U’µUpÍ‚Zj-©Ì/‹.IÊþöþáþ`Û(zõÇWƒ`pÕê¾ Äì)*º j Sù“µþ(Z1ñ ÿ'ýëJvs{Ýþè½ 9¤ârœ'b`_fÆëÿ†;D1çØŸ" ½‰bxÌS£Ë`±xñ”ŽÓ•‰ÃtÕáER§R—„v6¸ñc#p›ƒòßæyEõ¹Y™9™yî2_‡¿½5t€‡%רuì@|÷=|6•I¥¢ér)ùâüh¥@«AXF`"›ª-'HfÚ˜@‘¥¯¾b‚ã8P}Ðoìƒã0 =>.¤W"JÁ•@™^¢/4ªô˜ãƒ]o %¶Â+V/ryÑŒæªVîE¿ËAϼÏúôj¯ß–ܾs@SÖœ]Ã,\ÅÄo)¶$ö_?†Â{Ü•Z­Âc©×‘©IRBúØ6©ÜÜrñ‹"zOŸgžXñÜÂX2^˜t().ú9Y4Ðã½w ØÐl-î®VZŠ›Ê|¥þ£X{¦  õÎûùN¤¡ÄÉ)›7C.¤ØD¦4[Š=dxºtôxýÞoo ¹þóØd½ì¯üW[o{¯¼ç}+Ñ7¼2̹ j©®gX·º´ba\ •›ñz~<ì…½­º÷û4•ÝPMÔÈj öèbJ7Œ¹……/ò;îÑ\]ÛI~Û9|®·¶ ®a¦/˜·2Ý#èîèòÈüÒÐɵzQEêi«ʉŒ¬\A±Êã¾~çO–nÉ™XfÕÄMO=ZÞZ߸VÇ>XÏ ,Cq¼ñÄa$|‡ôÚU^™†ÔÊ2OѪõ¾^‰À‘ê,ÃÃ.Åt’Ш‡Ñ5Сx"P•d&3# ßÈ¿ef>­Ñ*µYe "4V‰ÍRí²9I»Ín7ÔA§¬RÝ(÷*R™Es4å!‚Eµj‡§ÒÙ`!»Ñ m ð[.VÖ˜U.ÜXÐÈ©Re>†J¼¾©õã}n Ìó~uãh…_DÆ÷ZÚ9ÈnáÅJϾ>€J¿Ê ‡j)»Ô^ŒÃÖëé̯ŠSòö'%îâú”×ðyãFüGΜ/´kiÄkêd¥ØVêëp·ô ¥ŽYµlǨ•Lx!³¢ñ¾Î,ºyè©!á=&l[B"žêrÚäçê§Bø4Ÿá‘,ÖÿÔ-Òendstream endobj 112 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 221 >> stream xœÒ-ÿCMR8‹vøzù-‹ ‹ ›÷T¾»¸3ˆøˆø§v©Ô÷÷±òÅ¥Õñ÷bó÷‘÷âÚ½Q"ûDfVT@ŸÀh¯¤¢¬«t¢kpozc,ñM÷÷èçïÞI×%¡Ú§ÆÏ‹ÛÛ1Ä# :Q?f¤{¥ªŸ¡¨°k™uŒµÂØŽ‹¥×ƒ$Ena}{mlt‰N‡xŠƒŠ‹~}”‹œ 7Ÿ ‹ ‹ ‹ aOU¡endstream endobj 113 0 obj << /Filter /FlateDecode /Length 4041 >> stream xœ½ÙrÇíÎGì[fSÚq£ïÎKÊq')Y‰e¦ò§*+’:R$WÒŠ:œŸÐÇ4zvš‡E¦ô ál7ÐúíJŒ°ô/ÿrq$GVÄê»# 0+g,ŒÞ®.Ž\£×Ӌ󣼃ÑyX9«Å¨$.šÞx£5q•‘^F³UÓ¾JY=jÏ64F«‘`± Z>øÑ™ŠUþ›#e•µ )nô¤êªò¦Y•‘š¶+8±ýÄêåÑÛ#ˆ¬\åÿN.V¿?>úú™t«0+íêøÅQb3¬Ù©niVÇGÿôz,¨QÈáÇõFŒV†?Ó£^H†ï×b”Á7ü ŸR†'×¥o†ožþþ£÷+á“Ãߟ¬=f8&xRˆ ] › j°'1@ðÍ¢§+fß+‹õðam ê2r›˜jS"Ï+"­!Nš°¯Ì3†§»¸;p.m©ðÙâÄÌ!}ˆJ¶¸€í·`¼’ܪp÷m¼Èen2Þø%Zˆ­VYk´KŸìg6™¹ô>ûþ’X *EPûô{óåyt«pñ¿|µF³D„<çÑç¼ tÙ |E¾F‡[w ›¿Ž&Œ:ã ú´G#fÈ¿V{&²òHFÁµû¬ê¦ÄÛ BH mýL¿êsvú ”#¾?>>úáH£yc*„Ô·•5Ñ×` •Fü¦”ÜjQ7EK)‚×(@¿²¤L)Â~Ò¬³…§ªw¯§§Ëé =²Å”u9}¸ð‚Ü¡GÕåÎY…swƒ8©¿™^¾[ åãÂ;TôD@ Òãéå÷ëžœí"'&ÉNÒÒB¦D³H+¿hDzÝ¢;e}˜ÃŒVQZ #zë$Ò2wS$æ%‚x„_ã#ŒL»ÁÂ:”Ì€ib48ô#†G0ÖâƒkNgH¾5|²ë’ˆõƒÀdah„dKsµhý¹ r¬6ïMöWøKrå>“K´®¹ý!ÿ ’,’E%Y9Fr¨$'Ù:ü%ýÀr†! FŒ5ö7ÉË["*ƒÉNA9Œ&¥‚“~rtü›[¦*ašD˜É„1²(!øe$ÕSÎ;qE†Hè² •Uw$§L%Ð0JÔ2FÚûœå‚ø"Í´JFŸã’êØ¢÷GŸäôi³$¯Ð“Wè8ËÒÞ¬˜×>¤B*¦6 Ì­!\°ÑL\C’b$i†»]&I‰{ô¢‘»žÒ¥Bꑾ—Ð÷Gn¼Ÿ½W)hÜ€ç1K2Þ±gàü€úe )4#Ú¯ï(ŲŸ“»ñ÷(¢&@ [™ÿ ªÐ*]Óãéù7uþ»ñoŽÓ·¥KÉŽIñÀ+¾C<”I‰E¿½g‹‘)Õ¡)˜eßÝ¡ Á=bÂù6¦LÇÆB'Y7(Jf^OnðFbzCt‡1úˆ™">4ÔØ;k`Ï[–§07ßI÷å³"¢œÍÜà"5¦gO½°ÛñéR¹ÿ[.d¿ÄÀL/ÏpëH/Ø{LféIyW•4¶C“ï8ú®ÆÌàËd:ôéNÂnz~D>¤’¦¤ÜoqT΄ڞr‚YVÎN&"œz LDÜY9­¿M\9;G¸Ïìª9šx¹¤œVÝN9½ìŨôù› È{”Yc|b©šQÊè‹2óªC“íîNõ ì=†¸Ffx9¨d*#©QP‹”å¯d^»ènýkýÄJ­€TÉüõ˜!ض%•| H'í¼ï’W GÁ::0‰OJä[¬X W½â-8ÞBúU|¬¦BtUO¾alj=¢=‰M¿¼»j œWáä&iüò4}iBiOæ=ÒÚŒx§WÛ‰,­‰—Òî(Y¾bŸv¡NZ¯kE¿+ÄŸýžz%(ì¶ÁÂùÑ´Q }ä´¤ u|dl6FtBê÷%R—µó4u˜ðeY™u Ô¹‡Z3nnÏ“u?‚’µÍV9ØÃõ_£+SÂc@33ÿ;¦ u<—ë¿îbdsBxûÍ´Z¾øsEæ0‚¢¼lô:¶cÀ%pÊûácAš¿`M³¶¥J‹-Êñæ>*ïà³]–Õ-u¸ƒh£/s+}]£{'P³xú9®d7™Q9H`²´–Á0¥Û&^ã¤ê5yŸï¼úÓB\®X—•W=K)h¼b:³Káð%¤óe,e¡è°=YljåÙ ].üd±ƒ?—EnË¢{×`0šøÈh –°[6¶“eV5fNŠŠâ±iž‚À¡œg›Ó†ˆÿÀ%¸}]™\w|Áú§çõ<ÇúÀcçP ›¡4“á ´¾©nHŽ¢¨àŽýj‘ÖÁ(w0¡PØE"KTqK½ªØŸ:VG @_¡x“i /1ä𜷫‘5ø"3â~èg[=Œ]l©8Ñ»èÝu Ã4D°MX¡ïèè²sKÀÚ2?óbMãŸÜ9 Ç¡àN¢v(©,±¯íðÇ—Õ€"Q€)î°·Lñ@מ¹<³èQ¢ÃŽÙöYEî4mh1 ~$4Q.j&£i-WªG‰T×ô(¼BÎ"í„\š‰îlßV”«¾2h-òq†0ú¼ í›| ñPÚÈ¡¸›õ­Æï˜±±ñŠHuÆ{þ!ƒL”æ¹6ò&qªèÏLÅçPRa¤¸‹ækmÑÌ]Â¥Ãì’§3/Ù€ÔÙ2ày0.[´Áø[eçÉÎâä]Ò6ïlÃà+¦ÝÉßáé$æsšFRïóÁz¯ dX¢Ÿ)âÚA¯E¬ä]pÉcfqq ¿Ó™ˆê$~išMuu8ÎêŸoœyáÐyÜ*ÕHä…þLWaQ£¥,wè #½­íjQ›¬3ŠÏkîRO +y¢õSžX'ܶíäËàÁ-»N+ˆê'šÿ¦°Îl ìû‚=H8iSTšb> û 3ѳ̭àyÙˆé§i6Më'>̪O|ÿUe4y\©‘½æp2gÌñwätØWU›–ÝÒeúÎ5?Hº;i^Þƒ”4^9 3¥#VhË1ãgYª"édigi;<t“žŽÃ8©§¦u|Åi!p ý‡ 4¸†ŸW•Ÿìü:«Ÿd«—v¦aì˜0 8+4°GД8;Yr•ß劉9Z{«+¥»Æ ¸¡lCÂä¨Þ,úHS 7y™­W¢3±Ÿ»±ø6„Ù™¶|õ•‹Û°ºÐkà#ǼDu–(EG{͉>ýÎòŠ}Ý-ˆÑ.–tS…à8ÅD3É…¡ôˆÂÔ¡© ly÷jò©œmÂû‚…o°à;Óvyþú¼&*Úš{8Sõ*4§Qvžâ5ÒtìTR×)ó¥2It¨ûi¨(ƒë|ÈLŸv¯*"Xª–KúHÐ_ÕÂSvTnË‚ò>}\êßûˆPÈ£ôë°³´;®øi÷=3|ÚÑF·å»/yq·ª;¹Ÿ[Ü|)Ì™ÙNltŠýw¯ð8”?5ÌÂAóER¼¢vž`Ї¨å$¹t¿Ê¡Ž©éÂÂïjTY¸Ý@~PºéÂJgâÁ˜å‚k®weIM /ÓÊMâSeþfæD‘£ÓóvÏ\ñ¦öC÷ÂÑä"ëê|ãH9ntæ’>ž??®§‹Vü(š Çr`,"ÚtfÇÏ\ŒM¬Ö±OÀ¨x×m–”ùÌy]„tt@›%ÉÓëXˆ”Tô7MŹ͓ãòPŠoq¹o/UÕRÝòfCÛG Ýí¡Á›/I ²©­ÀG6.Ì+Å„úpcÜ+ÝBIÕÃXnÊl“õ¶ý›2îÓI I¼”öœI>¥6¹7@÷Kµ³›\’®Uy×;Isõ;­šþ9‡vteë2=÷íªàó¼fšóÅZR^ÆKuªÓû´"ˆxá²à°ÜqÚòsž›Ïj‚D†è!—‹ü–g )üPñ“£Ï‰ªkwœ2++Ì-m ×±^` ^m7+ <ÊÎúZ¬ªvÉ^ïš\‰óˆŠ¿~¦€9åMA¥ éñš1 µaÒ¿‰Ùª¡ž6¾oÁÇã‰T½~ §I33?†0H-ù‰é}Z ÜâÚ_T§¨{™Pû2¢Z0D=ú ÍUÝz´žS5:ëj¡ž&#YßZÑN-´ƒËƒ Ïñ´jSóÇkƒfSµ4ÐÚݵ,8+\¶Ã¿›¯ºžd “Ëàç½×õ¼×Á—ìd2£_3ëš”áf„yÊ:ÁÿŠ;Œ–íù2{§ÓÖ #º[<š¨à±c³TѾl kÆŒZÍË‚ÌYjiÙäÛO5óoRB“'æ/R·Í·=³²*pe=]ݤ.T ˆL"R‡ SŽƒÖÓ£¥]ÆœÚmw½%Îpf·—‹ö4§t5ùÖ[ÖÌcK~ …Ñ¥v 7ó[‰¡p‹ ß9C«u¡éu£Kq‚燣ÿ{ª1‹endstream endobj 114 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1183 >> stream xœ%’kLSgÇÏ¡PÞ¹¦¨I3XÌ9Q7MMÜÈ41›l!n¸Ä ‚8t8TZ @)¶ -Ð -í9}zNï ´Ôb[*7u™™w7±ñÃDMö…Ä-1Ù>Ìļ5GÊûö|ú?¿ç÷üI¢°€ I²¸rÿþ}ŸîX?lN¾¶¼®+‰$…# o®_^÷¤$»–( É"É)¹ö¤\­imïTQ¬þF«Û-ÙDÕÄVâqŒ(!í$C |,QHÜ CÅ· –D— krŒ4B]o‹ç¶ÇÉÜÎEÑ5A*³´²ÖMÐcqÛ}tÒ| &aй¿H6»Ã š¡¿¼þÐU¼Ë;N‡U©–€0Âëð¼õÅáGõÇ››”´ùv㘠§i@§k5™ÀœÎ¸‡Š<Ž]Ÿ²ÈµŒÉ®§³&™7™LOgÒÞ +‰–C‡”B±NN·î=®TÚgXòpÀñ!ZúúÈàŸ3x~ŠÄwñ²¿ÅÏ|½*+­4ksØEÝ~ÔMÝÁ|8àË8Öo6;l½vêÜ—ZÝN@;ÄYìõO;]sP†KŸä¼r쌚f Àæm¼Õtz¢Ã_óIœ²7q·ºM~ˆÎ¦@—_fÓÑBé› æ&Öò”éóîŒ!àé4<åÓywKÌäª;¢¾Aœ4ãdA g!Ç©xÆá<žÇ5Œ¤ø­)ž+ËàÊ™}(§rÉ^ˆcwÒut¹xorÇÀƒ"Æ€žét´ PMByÑöU £bô²¸R˜µëA‡Ž\’ßþ÷Þâ XÀ>à`L6ªqs¦Ð9sx2Áy]Zš3'ãW—¯¾ë&²ÁßD9}nÌ5”'ò¢Ñ~Ÿ¹w°o€bm–v»ÎÚeUªOU¥ö¾Æ½û}oš›,L-Ó#?¹‚C×Úfë·)„þ57⦒/®LLòE íŒ¹ËÚCŸÞ¨; ? Ïvüzy*’JQ†£Æc§ëºZåªè‡¼þòH^ÉP(à„!Š2j—Y«ì=V?§Xxùò/\”¢¤x^‘Ï_‰pí-YZ“P©4•*¡I§‰4%Í-ucøó8^‰ű;N®”,E+{VˆÜ#Ù³Ú…ÝÕ½]-TíéÚOz*„ò·%¥»{Ð>à9'ÿ;N—FÎ)žÀx6}mîúüÅ,<…EÅÍæñû“÷` UÂn™Áfb5yæn‡ÙÍfØ ŒÂ6„×âjì•WmWº¹Ž¼õ§’vtÞäGa†¡KÍîvgW­ùª³©éHUóa@òû0ìŽÒYì‰?_ÄåXe÷§Ûæ_¥8;«WïÙ0O&/Œ‹ðFÜ-›ìOCÐ…;I´ðòs-¬^AkCú($уfþ™Î+Tб^@á¡ðPôÀ¥o…b¨ªhœ9ãbèCʶh@ßÝ;ð —Þ]öØ\ƒ6ÆÎ°T¿V£$€ì~<•ºõ`‚ž ËÎûÆœ—cÔÖgeò|ÐãFRjMᮘä=¬Éû YOÿ“ËNendstream endobj 115 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 253 >> stream xœ¿NÂPÅïmë?¼A%!¡K;²J|7 “'¢i—^Z"”Ï›¶P(Qš:©q3n,¾‡¯ñݦ–sò;ùm‡M!”Ò£›Þ]¿s¹×@q+Ý`*0ííÆÏÅîìûœì£(Õ¼“W¢RªyorV/²äEörŠmi©RÇf9Ä›Â}<öøDknâ°¼/+8˜è|å­–B¤©ƒª£r$拇ôt™¬„³Èœ‹ò ;ýv±ÛŠâ§M?Š0„ÅñÚO\:åܨÞÑù¢¿Õ¢Ns›AžÛà˜Ÿ‡Ž –•ÁÖ¬5í:g'ÀjÀN5ù† iªendstream endobj 116 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 423 >> stream xœœcþCMR7‹wøµù8‹ ‹ ›øÄ½¸179Q·EøˆøÍ‹¯ø¤¯·Ÿ÷’Ü÷ãù¦‰ŒoKL0Šb‹g£‹Í‹Â§ü’j‹~'egŒ÷ް‹ª‹÷ˆ¡Š½ #¯e'‹˜¬øÍw øÂà—Ÿ÷cêø«øð•—‹‹¥ûšc‹€ŒgŽW‰’ˆœihûj­š•Í›•“‘Ü‹š‹÷nkaXMvoûû@û3‹P€‹]º»‹¸˜³‹÷V³ä¶ÁøÍw««êܧø¨Áë÷îø6÷¾ûŒûeOuVªp´Ž­‹”¤z¡mmywnGÄaì÷#÷÷÷j÷Œûâû jF†SRijcd‹1ûð-÷ Û¶À¸¢û!Ed‹f˜o¹t°‹µ‹Â‹Å‹³¨³£®¬ ¿‹¾‹©k›q¦aŽE‹hû@WL 7Ÿ ‹ ‹ ‹ Uà·;endstream endobj 117 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 382 >> stream xœsŒþCMSS10‹€øýùU‹ ‹ ›÷õÉÀºoCvRP$W3L—Êøˆøˆ€Ë÷ïÈ©Ù÷¯Ùøi÷p÷'öû û*ûûûñ(÷ ÷ ïð÷ûpû;FCÃ÷ ÷ ×¼ÌÑÓWû û GPAù€ÌøßËÍåøÚ÷Pdiv(‹û$1÷*÷$÷Þ÷1÷-Ò¸zh™Ý` >˜K‹ûMû"û0ûfû2÷ ûT÷dç±›³Ìøa‹ ø'Ÿ™øDøRøP@<ûdvTl:ƒ\Š…¯qЦ*÷—=÷@üPãù‹ ÷¼È÷˜Ãëá÷ÚÜø7÷Úò©ÎÒ‹Üîûâû#û…ýJá÷Ñ÷2÷PûÑäüGø÷˜÷$÷ÍPDDKPû  7Ÿ ‹ ‹ ‹ {[§Æendstream endobj 118 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 114 >> stream xœcd`ab`dddsö Ž4±Ä»».ù¾œµ›‡¹›‡eÊ[¡}‚»ùw0€#/c`bddÑúÑÁ÷Kà{ÙÆï ?-˜Ö|/½¸{ñ’’î*ù?/ت‹»‹‹uÏ‘çëæáêæáîæb`"¬endstream endobj 119 0 obj << /Filter /FlateDecode /Length 4179 >> stream xœÕZYÇ‘Þç†àßPoª6ÔµyØÐbeƬ]ɳðƒl½ÃEa†C‰¤e¾ø·ï÷EžÕì‘dclÄTDÇ‘‘Yõí¢6½(þ«ofsyùþ –_‚Ö›×f‰>è-…åá³Ú’ëˆûÃo)ê-&½ÄàÔf ˆ:&é¼/TÞ$»y7QuÌLeƒÛ\šzïìFY“ÆfVÊi‹~XUáÙ¨`ÓæBžŒJ:nIéQƒªavTÕ¨®®Ù4éSËó÷-¡\êŸÛ‡å?nÿü…‰KÞr0a¹ùêP¬0hïUÜ´ñËÍÃáË5O9h»)³þöxR[PÊæõW|T9)còú›£ÚLN9®ÿ' ¯òúé'Ç“µ°;åõãÏþ“€ÙRÒBlUŠÑ¬ÿóé1Q°òë 奲‹{Ù”ètð^DXñ;¢Ï>–}üEQ¬•[¿˜‰>I:ä°þ’§¬C¼$1&9 géŠY}¤W¢U+“[ÿ‹B´Šú¸ù5£šç¨:øë–›O7?ÿzô÷‚[ÿýxòÆl±xÕ‘÷ýé±?½éO¿_ûãŸúÓÝ2ßö§W¾6üe<>»Âóú ÷¹?½¼¢oØõÑ5Ñç«;á¿Ç¯ûïoûÓÿ^yº¿¢ú÷GY’OnŸsd£¸ƒœÎù¶oÂÝbŒJ›qËwwËï–—¿y“G¡Ñ˯ñÿ)8:g·é¼8ë̦,öÚÀxXêä-ò-F=È«°öºƒ·£ŒßÔL`ÝÄ-@NZ-<áo1ÑvH. ©›ê‚¦—Æß¢. œ`-.Gϲú0)l0Ù/Pö›Ía¦×†Î,ED}Öƒ¿E>E Nu~ˆ§ICÉPMhվʾ3Ÿ¡bßYÔLc‹KcUÛàÓ– `”I0dVç Þ‚>¡\O¿§Ìì . „¡b´?`A|ž4˜Í„FÑLlöNˆc‰&/A%·eMÇ:ÁOvA]R¬ûõŽú-jì–:µ)›-NY¡é þ oˆhiMgW™¨»ü R~5 4›€½ tK²UåÅgtÏ–:0^o.ÖüÕ€ªvüíÀí¡ìùgn¬‰»‚E<é+ÂäÍÇe°£. ÍWé uSÞ~nÆ5ö½ù²©´EiÁo^³8#…µ FBaËhˆ® 2½cüºÇÄÞ`í…ºXSÅŸ+7v ëâ+LŽª¿S4ûš„É|É<.ò×+ëYX& Ea¨d˜A^a— œ-wDƒ‘L¹8QhÌa’Ðᢃ cP¶HÑ$h¿;é(08º¢YY%\ø!¾i‡Ô@´OŒê[˜~ÇnÄÐÙ;,òIß8ŒF´×ÎÏ…É“‚s~nTŠna•°w¡ úFz·sîd`ì˜X®Žx¢Ã:;‡»$æsG]Š3²0N*X4ȵ œw°ãŒÍ2øö0LhÍÄ&a¢KVÏ)YIaì˜$GX‹~‡uÀ&Ç¡BZo™;,»›÷Dƒ Ü§tþ dhl.MŠ*G2fU×P` ª • [Xù/| _r é°ŽLÛÀ{-Ði^‰„þ÷¯! ¸¶q…‰ò£Œ¤ Ã+ÿ÷ˆ:ÂÉeŒÐ´©~uÌ B] lVƒj`Õ¥ ³Uƒê‡^D`£ rf~aÐ)3=í­¼‰ðÇ“ˆlΫVxöŠ€«öò ÛâjÔ¸öí—¾Å"¹·-Ÿ1ŠA:m»B•B +f¦ÂŠ®à j˜U•?QMZ$…áa…Õ4P^MÔP(EÝ#±§†C] “7ß?Ù¢¶6–Ó(ú2íìYŸ½xýæüòöîxóÍd8ŽöŠh˜Z ÿÓ‘Ú*®w÷·/Þ¼–~þ¤8»&làvûš:ïkƒ­ÒqD‰8ÕÆõtÛõùÛòZGG×ïøÖFiäÍ]}›”ü¶A­ë»œ &­¼™h–j¹y=ò"Li…‘„o>ø(&×3Å(ëBZ߈Μcģ ¢ÝêEFû‡%¯D Bâz*,¡µy}܉±)|¼ˆ{¿Óד·wµY›;ò+††©PN }&…ÊCÝ…ðYºôÓY-³î«Á×\°Ëxƒ±a×_6_¦/ߌú}/–Vmv ¶÷}6ð‘AÅÕ2+ЕVðäw>·WÊð¨=_]«æ?Ö*Þ+\»!IãÀŠÉ‹…k çx‡•ZN|[œ³´ª2-ap¿¨}§NÜÇ&¦Ü¹´NÉ’k˜ØîϦºF¼ÏœKŸª|/F²¾.BlÚ-á닮ܾÐú²–p#È<žÜ~{^6HàrQɦgúh‚³—SxRµ›GæŠC¿°JZ6?UÐþr œ‡íe­±©¶ûøq·Î¥%™ˆƒÁ×µQÀ&“KWÃqSû¿…I_Ú¹0T?$¢ç—ðþÊÕ÷v|Cw_ "œ0ýõ¦jËmoiž.zF„9ô5}`p¯“85Mu²Íüx¨ÖÌ¢¬ÔL¯‹ÎýÀèPƒù‰¢œSDšÏåäXsvê°w…Ñ‚¤¥(˜xv¯‹«"¦ÊùÙnÿ\9Lq¿>„rN5ðž>•¤o5. ¯y<¬…rg­o¯Á]»85qŽþÏ¿±O€Å! _µE Of`óT#8Á·>%YW,Þ¹v˜³³Àø1ï'Š)uKMuóQÉj DËÝw½üÔúë¦úËlNH½o]K½]S‡ü°;]±¹úeÇòOü+óéÉbý“ÞeøúÇRÌw¶sÅiÛY_޳O˜ïb¬æg³3?{wÍ–„øÆápÇr~~.™°feƒÖÝ$7 'cöˆ““oÃ,ÆÊAQK™æ.rQÝÉè¥Mó*6‡XW´fÖ”àÕÝûr\ýãñÊRó)ÓE°´3OÄÊëðWNJכ;–}_àU1/eÎïw"ÙƒO7+‰ æÜyFåö©ß>ßÙæú­”—`Àv¹#执•%â÷®hˆÙ”Í aA¥§7kUö“¦½ºƒï‡Š¦²?õ©­QÄÝ7Ù5•RÞµ¡»Qf-“E;ÿÄKl}Ù9ž˜exг†]lºkxä͆áÅÝÆÜXöÇ@>¢>ºµq)?Efâ{j,𧲋JNyn¿?zÃz»þH!aRñé@~7³Øišg óW-w%h®$åy$ç|]6ÿ=O§>6¦f…’§ “„Ügr]ö!œúèí8wN­rÖ¼Û}eÈä]¾ÈÈÄuòňRæ‹ ë7fßÓ¶¤Z5ªªÓaºæGUÚcíø.δÓúÿÜtjóendstream endobj 120 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 3741 >> stream xœWiTgº®¶µ«T*VÄ,]Þ€{L¢Nâî‰â¾ã†¢€,J³ƒ 4{W¿ÝlÍ¢lÝ4ÐdQILt¢3g¢ñÆ-æ¸Ç%ú÷óÜs¿†81ç8™{oUŸ:ý£¾¥žçyŸ÷ùdLÿ~ŒL&à¼|Í ëŸ·è{.ö$9Øô/zgØìa8uèu»ö!Œõr œä±xw¤G”ç¯+¼}Vùú­Ù¹Ö_`3郱ãÆ3ÌJÆ‘YÅ81«™µÌ:Æ•YÏL`60™ùÌ&Æ™ÙÌ|Æ,`>d2.Ìdf³˜™Ê,aþÄ,c–3+˜Æ–±c8f 3ˆMwÇôg2dv²PÙÍ~~ý.ÈcäÇú;ößÝÿÁ€zÅ"ÖÍåÆs) Ô ¼=hÕ £ƒE›a6ߘüÆ5ÛhÛ#vqC”C¦Y;¤hȳ¡+%­t,ÒK¬iö¿ˆ>GØ·à 4ðÏþ~ìô—ù›W*I »U ‹•*¶M_¬k‡vÈ×v‰Gm-ìF­…Ãu,üUAuá•Þù›àؾ06ˆÓ*쿻ϒÑê*ö\Nòf”üˉ«¡U°íñ þÅ„Ÿ[†¡ãU<oÁÃöFJÈ×ê³Û”ø¦âA㜕s-œ$É ÕüÃ’¿†‹Ü͉Wˆƒò§*W|§Wû/ÊXQ=W®RØÿ"9)ðí;?Þ¾õ§o‰Ü ä2¿EÌ®Ј«Yä_1wåŸ[)W])M0ɪ®cýu¹…;yáø”Øû1£Èp2ôé8´CûGÐNI"ÉF~x˜Â…4i» >‡nScuçÑÂzè†Fÿ’åºà>°:t[ÐÖ­‘ÀÙöDGXz&YdÝ¥T³\z,ý7ïoYsr pd=™N>&îÄg’)¸g>Áwq`.äÄÆAr¢VH"ï›O€û„,îƒXƒKº~xøË<ò‰QÐÇéRó+‚ÌRãØýŸ¬Ñ$¦()½d½ß7IoZ¢+‡=¿ˆe×GØoÁÅø#_ûʼn’&à.šL¢p™:ÓÝ»¢.Lˆ+=s.ý+Bjw}Æ~÷pÿ3äº)ÂÓ[°?xš%ã¬ÄžÏJÙ.¼ðû7ÄJc^jìùùç7­ [ˆ{øÆ<‹ ¥–µ1ñÆ—F——–V×T»¯ôðX®´Jè)KÞ{„ºôùºN8 FíéÞ•"Ùùš¼ÏéRãÕ&é£2Ym'ÆuÊñ¾4“·¢‘*B|œRSRUeª¬p‡]ó7ú„”Gµª†äÎÄ΄ýš²èÜ$SxsSÇ@ìèkÇ㕚\mVJ7]ãòXX—Äìñ×1½€ÛJ °ôÈ,2uKŽÑÒ#¾^oø^i²(<5.°Þ.à™N P™Øïõñ¾ÖÊóãg)CUŠÆôsÐLïsШ±RÊÎ õtÊCêRé-‹¬D帑×d‰YÍUÔC±ÒÂnõÛÀÁ·wb¶ Š¡ÐÇtÈŠÙ§ÉاÏÞïà‡ÒÎ:C޳°w!Tº }ï¨*qÿ^­˜¦v$™´ô~]¶gµ¼g(Þà˾jÌ(µŽõÒˆ° ¼!¼úVlÖC$$ˆ)šäIºÃ4ÓòJ‡ô‘}ÝãV'Ä€ŠîÑ¿oD ”hóbsÔù^ 1U Ú$Âá}ÌO)¤Õ”1Ò|¨÷Û¶Òoó¢kÂξq´TDÃNäÉ3‡Ìøô„B(„Œ¼ŒÜÇxÐá 9˜‘¡.„‘…ž›‘ËYýÉY‡¾¦ª;u¦aÍ—Ün㬋*GØ»©ñî>ӣʷ8ÓéÂï…“AëX5lòõ…ö"%:³Ô’jÝ}ºnnÚ¥ªÒè sqIEó¶L­`®hÏ©®³Û{ª°‹µ¯`\Åy©‹üý"6€7ã~ðY%]ãh8QPÉ%þ•Ÿ0/`Û–mµG¿éþNÊ¢&s¨·¾eRž¿À>9tôÖ_º»oŸ¥¶Öø•æ@M0ýpoØóæB1?‰Â“¨NMY:ÛaÎÃäQÙ#Ág(·ŽðC´VZ×À޾½Øºê á"BÖ/ŽÝ´r¸8Êvºª j´5}Æš®Ù¹”³‚ÂFKEµ©úò‡â:Y ¨â´tP“Þ¨k¦ôtá^²^•\_a•J£LèÓD- MÔ3RϼÀS)êòŠj[;Ѝ²‡UxTlׯØ’²>Ä+ÂßSµÜÁÛöyl) ˜K\Ç[¶ :þ›÷ˆØ¸lñ ¨ŸýÕH{«íÅíJZÕ‡ˆ‡©èªN¥zMŽKðŸR™ ç*j¡”Šh³©õ 2û'*-P,‚qÊ Ö!tUÄú@—%02¢ó5ú}ºÊ}PËUD…‡î‰ voò9ö—æ/N•¸Xš•Wq ñŒ~¤…õר îÕÚiÁÒ@––4†$:ØJ[Ô•XÿSU¥¬ö:n»-—é]~wZd,r!%‘¥û-_/h˜J†OE†þéx„B ¾‘cPƒF btŠ2|áÚÀ-q ÇáGß·Ê?.†Z»ÏÅÞì›No:OÁ–F¢ O•¢Ù»[å¾5Ê‹—1¤)¤Yü’²Ü–ÕUq¸¬¦ÑÒMpx·ÙÛZˆâÒ¿âS³Ü»æPs·5žðdèÏcpð·-Í¥(ÖKYœøO›“ž¾ ¼mOÞK›³Hó,rT÷Lå“ ˆ¢SÍVU*ÚÁ”¬îE= n£iÿ9¡/ÐuÐNW¨=Þ'¸ÑÐn¤|Všóâù¾øLJØÈ"ØW,Hm¬ÚSÞ\ŽZ7Ø qºµ}0?·`áÅŸ)å[)¼~FœÛ›=4çä’íe™Púdí]{¸‡£Ý/]ß5Fñ1*×Ö­†÷©{ùC’>0+ÊLeY”Y˜“Ï=Nã§Àƒ2³¾v¿Q(,1Vw &„‡Ã„ÉB+™Ë× væš¹î“ÆÚv¢(÷›ëB_ï­Y_+—ãÒž%ü«ÖPôÇ —°ÿÿľ6û©ÖÒÄnÛ£‰0i,ØiÂNÂß»y?/üÀ2Â>÷àssY¨Ðçgäèk ¸ëhdüÇÛ–‘w”íåïš/} —¸‡ä+„ çÂkÈnK? Ö-ÑçïÈNgíkÑFqj¼3Òª}`/|F÷µ­Ý»Íçäwµð†1 4 '&i…Ôeª0Å^]’´?±,ñ\JKÒ׉g‰¼ŽŠ½Á*ö&´AfØed>¥vr—I+xâdEóLN Í‘¥/jÑ—êŽ@õ‘޾°$-ó`ÿ(]jà«ÃŒªðÐÀÀòPKµÑXmMÓ4¾T)ë>ƒWÎÈéÉä~VIÈ8Â=~æ*òÇ&Ž)P¦GéR ½9†qW¶öÅ'kµñÉʸ=¹ù»6D—l8:‰ÚÊÀižÓæ–™*´l;Šƒƒ®Dåˆwê´µ>°ŠsÙ<„ZèŒ$¥¶²âzh¤@\ÙHH2dët†leþ„¸ƒÇ¾^y9¡ƒöÛ+??ïÞ}$¬ZØ~Â=oI!××—ÕÒ${~^NCw/…°¯UÕ½I×`Ò¶¼¢ªGì™ã÷Ɉ¢ˆ}ñ;2A¯ê…̨;ÔÛm«ú Ûa:ßvòº:<¸Özè\:mÝ~4SùÐv¢sí3»B­!™f¦¨˜¸Ä¤>’zdMV;’ã²?’z+´Á~mÇïΉ÷_=²úZ#ì;zO­È\:zêÄ þ¨^ÌÿêåW*æTîú|·Ñ˰œa³GÐúø/½ê§Á,ؼa÷VÎþŠöâÿrÜýõäCïT›(?¸‹Bq]ZÈÇhé¢V¤”#¶ØOñôN]wyCJ˜I¹#-Eñ\€1ºÜ\Z\Ù½®eÖXbã:JIüΤ_þ?fÛ²â<RöÇoJýX[¼‹Ë¿–å¡YŽ ¸œÿš˜—³Vâ‘ÝDFŽóUa¦€€°ÐÀcXu_…`ƒôn)Σïàr“}¤kü™&¿¨àààâàºüüŒœ<¥^¯ÓÑnª‡”ÄÅ+ÜÜ©ßj4Ê¥f%gç^û;ÚÐJs$úÒÿZS"{tZŽwH"™šô”lÂã ¸ÐðÃj\…ÿoedèÓ!“ËNÍHŽŸìLd®J·‰aN@ƒsQœ ƒ¾$v·çÓŠÌÎÌÈ~›ãéÔ˜ÁÃÆc¿ (_…v|Kz b’&U¯ÉN¾Ø€ýÈ;@€8†72š¼-jÒÒèV5ú¤\í (;®l¿g|hÃÙ*õŸVb3lÍ`°Æ0ÿjœîsendstream endobj 121 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 4920 >> stream xœ•XiTS×Ú>ÎáTp"Hjï9Že°^çyžÀEÅ¡EÅG@™Ç„$vHÈ@†P x ¥8¶8[«¶ÖzmûõÚûi­Ý§kÓ»¾0$½·ë®õ±XüØì³Ï»ß÷yž÷y€ðp#Á Ðؽ[¬Ø¿oùèˆm;WnÙk_çBQèoa¿ 'UÞàí¼=*ß×ú@å@(ìß>€°ÿLŸ·oÿ‚¸…ñ‹‚L\’”¼9%u늘mÛÃv„GĮڵgï†QïmýׯŽË?aâ¤ÉS¦›6}ĬÙ1ŒXI„#ˆpb$A¼K¬"ü‰ÕD$±†"ÖëˆùD±žXHü•XD!Ä8b11ž˜@,%&ˈD(1“ð&ú³‰~Db.1ð!6BbÁ¾„!"Ä„;ñ61˜ –àˆ·ˆ>Ä |eƒHxB/Üv¹=t_ãþ?Q_‘§¨QT õÔs‚§‘ [Þ zëo}Æõ9ìÕÏKéõïý}‡õ=Ò÷E¿ëý}û¯@ ; kÀ¡·¼ØàÆ|(Ÿ!-Ü"|6hû f$³–ùÚWä7Ào…_™ßKÑþE?þ°Al± ø0Œ©Bþä*9[šž£S”qp,e5—šäš4n;5‘¯ Ñ.ÿõ¦Pmg"¹Ç¾”‘íXEU˜»˜I=…þ$4Ù”MÁÙ°…,¥º^øÌgóá Îø ï@?‰™ë<³–Zˆž‘›zÊ9èç á}ª jIaýÇÕå7׋ܚ\šaHI@”ù²µˆb]â8ƒ‰ÅêTz•‹o¯mšº5eÙ‡“nã6toä}ÝùÁü@ï _Ä ÿbÀ‘ðÈ@îÍœäÆI·0ß}6QÈ}ò¿üÚSHB÷7°×u’¾a—Õº5â‹ñ_óf{óêÊ%`1X¹!rctpVhÚT‘2#?¤ÓÈû»1°ÏÝϪ/\gUê ÀHëåZIn^~n.²,">ÐïÎýâUIa™º”+½W½ ÇOÐ ˆ›Á¹Ô#ô¹•Û2o›H+-Rj«-•ÐC¤*RBZ8Ö ÓJ²¤ÒÔ<û=Q¨ ޱÁ/©oÅþ3qêßs¦«Bn2Ò%‘8÷†2œÀT.ˆº5§–œÝûˆá(„}¡˜Š^.º…ˆ9«â‚³Âu0ü"óôÚêC‡"jòÊK~yý$9GÑùD ±V›;$mŒkâ(È8zTÃa¦K"MEa°Òžÿ X犌ÐÎDæŸHÂáT¨Ë8º³r·y Ø rò3ó3Óç‹E‚ÀQ€þ·Ûþ‚/û€?Ÿ1»oEUÏ4Š!o$öÿ,äןVßú„‹D2Ðs‘]À‘aàDRÂèÎ[È6'ߣ„ëЊ8æÛk«§„¨I+/=üõõ Huݦ۞XÁ¨:«8’’¼_Mæêd†ƒÁ¢fC?•#±P¬—éº+$}ŸD#©&¸„-TRàöWCŽìœç$Y5³.Ò¹À¯¡jáD\w PÛÏ”f:ÎL@^$jïåÜ›ð|Ž‹Žh*5K’éxö¾ƒp£¨û‚^QÊÁ;öË—˜r‹28B}ãIá—ЯáHóàà\Rq@++,кÄl6饦Œ.¹çK rDq~Ûà ÷Kµ²'ÌF0ÑÅ2]®BY °Ñ礭tø¶£ •N¥ã.C+‰‰Ù+žŽ÷'Ø1äGbÕŽã—ù~î¤C,õˆ÷&‘'•ä|ñjT‚…:4xɾÁÑ{«õ@S¨ånÀ‹äoSæä€ñÊÆm·ÚÛ]¼Å:åb_ÁÀ!=q¤r¨ƒJé-8ç€â²ÔᲕëŽþÝàmΑKw(´S …š Ÿ‘·zöà#F9÷بgÞ¤ýD+äqd¡¾p2>±ÂåDwçî³ú ꈅzr-…† }ì /üùÖ Jƒ>Gá>cªC&²'Õ mPdóù¡¾Æê•ÁOñýÑù|$… äèeñÕU¶éÛF§dì`³r\gZª“éÕj•ªˆí8lÓ×úfcÜ9À…æ2®*Û[´ ˆ;d^'T-;óÕÝ›G/w`˜73Ó–G˜èÐG›ï|{z67Ë¥u\oy/¸Ÿëá8Rër7ç]Z)4 ù…¾dËŸ_VGA_4% `RêB]±i! ƒ°? $—¹ì9wH¨.yßCyo¬hsa¯ðÐH4’D>.Od:¡°ŒâíúmvÄ„"½+ènýÃ]/= Ÿç]6x:ITæïnÛ‰¥¤¯£··òÞÌÎúu+p3 B"ä‡>_ôËíë‡W¹ë!+æ—^j)dy²\6lãüø¹€ž¸âòãVk[M#רvóä]К²¥™¤U{B¹CT„Û¸k‰kIÅw"¬»–Œí–¥“ð_p3àRï Á\;º X`¦c^Ú»e•³þJA/§Â—d@WóÐâûU9ŽˆuñpAN)ç8BO=Aoz¡ùÊÍW8Í¿õá_vYˆŒ,m^9Nfʉ½U3ƒŒÃ&J„†ÜŸ÷Óíµ÷®s””ñäTEW8éÜj „¯˜o®†Må„'=t¢§„]ýzþúRݪ7߃l‚×6žipç¯Â LQ•º”Ðÿœu PN}?Ä"÷Gs }£ÃRÝÆV—ãôä:©"/_!e7잸ÐA!Ÿ>×½ª˜3ؘúò ¿»1=(07zPßÅé}Ë Ã]0N™?)>w¡ö6åe‹€BÜMÆB+-ävk—èbÀx0gMÆü¬PÑg:Ÿ9l K~ï:ÝZÔ-S6¨ÆkÄâ¾ ¦3ñp$øõÁÒ‹c8$s–ë?š?†ºÕ¥ó}ŒŸ¾Õ$ÂsÑá³Æ- äþÔéá·ÌžöÕ 0†ýÐ@4ùÞ ~Ñqµºý·1™!KV‡à2Ò.¬ò¤>¶²3§ëOUœ4ØhaÀS>à?ŒÑ‚8æñ¥ÈYˆ@n3V_|ôËÿþóWG ž¶ ÿÈŽ~>Ž!¶á›N-‚£à"Ãh(šùy¢©h,ZŒ"àÊħÉìð¥¹"äŠ%ZYq¡F¥Ò°™îO€*P¦¬’ÐB³ä˜QY6¸ ÔOYÊ‹µZl¤‹eZi^^RÁîHN•%, +¨Ã(ð>!h¿y¯5«J¬Í¾}'Û*·¦—g™@"=mÜÂ1›Ì–$6«xÿi Õ´ˆz…FŽs+‘ä¥D¢‚¼9¶VÂàŸ§aµ'Há™'/Æß|tkn8][u´‚SiuË,q†¹æÐâCrY†)çöýŸ=ºù¼®!+­œ5Hﺸ¹{¼1b£ºüðÏ¢B&ÖÅ~°G޼ő(9æî¤Î€Ì°õK0z¹ —¡¾_Þ¬øáG>\„jnž*—La­ÀÄÒ†Æ;϶k| O}ÿ-å®Óí{£€›pÙæýûtÛ;þ”öŒ¨Ýrm÷]Âú+gë+ë?¿ Sœ[Œî÷]ÝÖ%h={åÃʸúpÂî®Þ‚>Û\ÆÝ«°®P¯ÒøìÎ×oÞžµžÍn;¦Ø”èŽ)i€í··ñUWðט=£žCEИß÷u¾5È~9Xâp% \â"a‹©3p“ÊHº ¢d£Ñ&-Ái’dt¥i1z‡ë¶Ÿ&…#Ô©•ò|9Pˆ³Š%æ½¶¢”…› …tÆK¦2A.…`)8æ·=$wñ ÇÚ GxFÞhdzûxç»ÎÜã Ø>i惭Û7ï9’T馆úÆ“írèÓÀ³þ“¹ÌïdÔo¤ý@¬V­øõc›à£&wþ |ÍèNª«Á z¬½9¹ùcå¿‹Mò—íUîûÄÈãüÒçÐí'(€ãjYtëGÆ|£ævCˉºÓ–F@ß­[÷nœr¿â—2>sÙ®à˜÷ÅûvƤnô¢ç^W+ªìâ¼€_Ëó Š O•çÊ@–8W—«Wc§odáF$è4Ûm¯sZíèi©iݶ—åï3]ÃcŠÈ’JÒòX4ü÷É]Ûë`6t×㽿ò8‘Q©ß| wÀ™-MâKmÖ¿óô‹¯O_·~=›Ÿ¸dÐ2<;uÚ{â“{Mw}ãü†ðˆƒûpç?}êRÿ9Y+EfžÔœûܣš´c›”.ÍRZ¢“ôêB“™=]w¾â2 Û[¶E.X¸rÒä2N®È“m/0+üækÕí5‹ßž4júˆˆ(KýV^”W(tNvvvŽ)ûhײ¿)ëc@ãÖÚÿ5$.ïú(ôX·Ê²Á78 c±±ŠCƒþð l”“ã±Ôq8ˆ¬Åùî¦J,õ„gÉ)ºÞ)’l$á)ƒÒ)ø!¶fGºÛàL|²§÷:æT8ˆÖ%uö­ (qMTR­\´ ¨Ð¬m9ô‘©¦):xkÆû 1\LØÊ]! D‰i’ëò €Î·ʲ&ŸJäêÎd}„oõèûÃaÏ".OÚ#MZÅupÖC¬væêp)PÁ¿°œ«9wõ9´? \i°+yA MF“©|Wɶi¶-^ÈM™¹ùÄÐÈëÊÜï Ç¯‚Þ߬¾6{ክÓÂXy$SÛTj±”5Ô7a Ð—7,5}ܤ•ÛOÝLç‡ Ôù v•)°ò6üö³|#ƒwçåæ+0Ûí4j‹Êô,<Ê—•Ü$;ߢÒç`ÁS¥¸{ð¯Ð°º:6wgÒÚ•˜ŽÃOÚ`bcq£;¿ÞbjKËŠ+Jë*[ÁGô—¡—§"ÁQínÛÃŽŽ‰ ³è©7VþbÒ¾úåü~Ûêãl ,gÚ›7¯˜7{ÉÄ¥l?Üñ„ EõLGkô’é“f]Õ|ãÉ×÷°gà iI‰gºARb1« ì·PKž÷u®–›zV»Bµ§]ãqŒðwF™@\º61"nsØ8$X<¤€4µÔþý@…k™!šV“yú«g§ÛïqOžƒ>24ô ÿ|,ò‚(ä=ùâÊ÷®7|u…Õ¶1±d¤¦¦oÝþAr  Wmn½þÇÏŸ^«ß½´Œ+JR) ch‡Úñïü©à©¶ Þ؆׷9×O÷ Ḝ_iäBb#þµûE¾ƒ Ì™1Ìñæ8KÆ¡ôc’O³Û3Kó,™¥9Æ$Bϳk«ÁœÊfâŽúörÂîròÒÒgöXç×M™ußÇ[òÅñÈ« ‡”ö6ˆ£Ìo™žÜß‹AUÖ‰”ÒÄŠxC°9Ü”¢M3fK¬ œ¾öù'÷«j¥ ["µ&Eþû•§³»…bµÅ|­×-Lí–Á»çxRq´Æx^„[–p£iåv»ìÂÆH}ޱ³…„9¥€‡Füùì¢û ¬e:Ýa†B­(T±Èòò|¥H©Äí-È •:¼…¢DCQTŽ\.æäƒ|U¾J)*”Ûã.ÄìתíŃϮºó×1ò²@Zjô*äü7!O€|Áú¢%Qeáæ¥ jy‘³Öl6 Ôjnß“ì›à6€ï^„ï`)˜d,èh|I‰ã~·®ºÃí‡feçà·ª”܉)¦¥  €<¯ù É yAPØ¿"›-–K,ô€þ-Ð@_ð(ºïøT©Åt¿d+?É }¬V+eësÆ x÷Þø¯AüÄ‹endstream endobj 122 0 obj << /Filter /FlateDecode /Length 173 >> stream xœ]1à EwNÁ ´Š)bI— ©ª¶ ÆD DÈÐÛ7¤C‡oÉöÿÖ3ëú[ïl¢ì=¼0Qcޏø5Ò'ëH%¨¶Ž®T˜U ¬TxÒÍ€fïïjFö¬®MU{¼Æ%(À¨Ü„¤å\¶ÆH‚Nÿ­ÄÍá¼Y$Ô’´u#‹8ßjŽŸÆ|)3ÖÑ¥^À2uøû-øStùÀVñendstream endobj 123 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 385 >> stream xœv‰þCMMI7‹ø³ù+‹ ‹ ›÷øÉÄÀstari?J‡“øˆø(§ø§÷è÷ÒªÓ÷Øù›¡opnqnz˜v¦¨¦§¦û`ü‡~†‹z\³eÂï·÷š˜~‹ˆ}Š…€‡t;_bd‹w†˜¡¢’ž”¡•¦–¦–¥”£¯æ—ޕޗ‹•ºc±T(]ûz~™‹Ž™Œ–Ž¥á·¯°‹›”ƒpt…|rMøÝ— øJŸ´øŠø¡÷³“‹‘‹”‚††û:k…pt÷M‰™‰—‹‹‡‚‰{uûNûL¯‰‹Š‹†‚‡‚‡ˆŽ‡ˆ÷2B¡0û:„‹‰‹‰„‘„’” £·²¤§¦¦¥¦¼YÒ<—€“ƒŒ‰‘‹’‘’’¡„˜<÷" 7Ÿ ‹ ‹ ‹ Ĭ¤ûendstream endobj 124 0 obj << /Filter /FlateDecode /Length 7266 >> stream xœ­\[dÉQF<¶øõæjC—óvò‚É l@ÆëAÙ õv÷ŽÇLO¯ç²ö¾ðÛù¾ˆŒÌ<5Õ³³¬wæDtd\2#ã’yNýþàNþàøÿ÷îñ*œR;üáÊ~~•S9ÅâeËþTóáñª†|Ê­ Ìë«_]5WN9ÕCÉÉbÕÀTßNyª-â9-D†Xi’÷EÞ¶üµîä™VµÕSÙ¥:bÕ)ÇzJ¹-:U_NÕùU§IÔ;š®Óf*-ÒÜáåÕﯼLä¡ÿs÷xøûW?ù"”C;µòáÅWW:ÉþàS<•ˆ‰…R>l‡W¿>þô—?ýÅu §Öòñ?u ©-m)ÿùúËã\*ñø«ë›ã)ûpü÷sת ¡ùsBŹšã½øè°¹E‡ c· Ç‹{HýBˆ[­5+ñNá0í.)ñ±\¿ø)ÚB}Ü)äp¸ñéTk2®þä\Ëéøw×7[€QÕ_äíxúv<=§ãéýxúÍq<>^`3 ߎ§Wãé—Øøñô×ã)Œ§¿šj¿È» ʾž„;'£ß\¯œbïOmÛüáÅ/®^üø™©úzáÿ±Ì‹ÓòÍxzøäà» 4~;uøßùxaÌ» £ç‚\š´‡K³{aðÊðÒìþö‚«|yáéõÑ}žùÛOòyuÁÀ‡K«1U|¼°÷çê¨O´?µO|®ËzüáÂàiõÝò×K+ãÏ ûÇWÿÆØØ¶|JþšC,Šé¶tð>åŒ~ûpøÃ›«í´„3äÀŒ~'9È·–#Ëv xbjFä9xĽ“+€ÛvòpsPfÀwWÁ9Ìï¤λSmƒÃ„UG&'$›Ãä°m„§ …ﮦFaZ*‡s;î7B¨‰w‹.|iá¡'ô apHä¢ó€’‘n³þ9@©eø€•?GtLhQ 7¡bIL@@nòíÏ]=½W_,Új<ÅCvDEZdªäakA@j!;pò†ÈŒ4âÛB"V ¡˜­A+ŸÆakT: c„*1TÅ1~o‚X•Q}ärØ*Ö8ÈB LóâQ¹8áßœ‹15[0Õ„Ð-OŠB=28 Xe`ÄÀäFjFâÏSF‡)£k1(LKã°·Cl«)æW¿d41>˪W”l¨tP4lœØP7*iÀ[s` 7)àë9- VÑ1¥aw@3ãPê¦p—ÑaŽèZ Š®åà°·Clsp..oÜ{ ¦ä“ãÎuåæà ‘•YÝÌH°¥SY)r=ƒUG#¹ ‡´ÉÊ s„ia¦¥qØÛ!¶E¬5Ìq£×>N‚ª‡WG”©0â*¸±—¹ : © þ劄˜‡‘ƒÃ€UG&èΰ9!kÊP˜Ç´0Š®dg°7Bíbp.Eù¸`6Hß(5t¸É†M^6®ÁÔ3ÈÞ¨™Ý¶p0Xep„aBEn:Lhb\d(,³×µèCËÎáÌõG”Ó…Y0¡Ë’820[/vÐ0Gf 0wl0}¥ ¬Œaá`°ÊàÃD‰'“Cx2e(,>ßµ0 ÓÒ8ìíÛR¥c`[#?ˆvÆÑO˜- #ÖÞ˜Mý€’=vÀJ°›ýä0`À†A¬ÃJMˆÁ/2抙BUìÃWõÕÑ¢Ù˜³˜d$IÎ'’)jšDßv'Ôó!ÆÂNÑ`zª§¸Rl…‰srèp—Á†a“IŠÎÉàT¦%¡«öwSÚ†ïPÃ’£ÙÕ¬ô¨ÄD\ã†D—¨ 7D…ï4ÊèÒv ŒÔ©ë V=èÂQÑ@TY$ØçLTèõúÐEs1Åc½“Åzu»Ï£r ¾:…YÉ`B<ü«¶³ÆÁ>® E@I´00P%¾# 7©m4vÌÊ^@Pùý咽Ž>Ó_+¨¤‘¨Tñ™Çæ,èYŠ"ѹSâÖ@ hÛ€¹5J”t2(ª¦c``5?Ô Øî6¾dñš!¡ÃÐu¦bg°·Ak(Ìós@Þ”°>µ0an ·,Û“Å K€³¼Á𔕂^‹©¹:y3¶Ãd€nD`¡0G˜FaJ‡º`¡èl•DO~\0(Uà >+ Ÿ¥Jåz$¸s°ÌgÕâÆ(r‘Bmp0Xep„a2KV¾m w$4áò7ÓLFíïõ{îƒ]/+&{³è¡ŠŒrR5d—»j®×A'¯ˆQ¬SÀU†”ð£¹rràÙR\d(,%|×¢S -;‡3;Ô6L™V<@Û ÓªÔÇPQäVW¥Ôµ ‹Üª5x§Èøw[8 XeÐ6Ãõ(ãP ;å)£Ã²}U‹AaZ‡½jæ¡õµ”ãÕ‰a½Ll¨èa2Atä<`ñ(?¼R(¸9Êd` J=;õn’0Ñ jØD(,¾Ø•0 ÓÑ8ì­èýIf$ÞÓ¢ö'ƒ:ùÁÆ6´`s×ÄÖ!KÓÚaiOÊògôßlyÇhƒ•¿ô&³i-¢ÃQê°Ü–ÆDÅig£÷úk­Ä3oD®´î²Áš²«`)0B“Šé5 ˜Õ f5Ĥ@äb%08¬2dDÇd=`RH‹ …¥ŽîZ…iiövh[ªö*µq~'Æ;‰¨G5îxׯŽ`„ê0³&žÊBá½Æ7ã`p—Á†QYƒƒ+šÕMF‡¥*V-…éÝ9œÙÑûI­ Ö4«m†AЕF­ÑÉиe)ð\Òb§ÃRZk È wªé&;½5jîɽµÀ&BaŽ0%ŒÂt4{+zÓjzóRÙ?.ô,%¹7F )”aÀ’Ī´IÀ¶". V=âËZH¡ ‹¨)@Á»«¡ýÝ´Ñ{h–=´“â&7z6ò˜j¦:úOŸ>‚¨Ÿ:ÇIaJC9.àk©@÷7°¢…Æ I¯ÙÄÀ•sƸh$®$«äE‘…äS·P¨Ìáÿ© y_®¡°+°2åX’£k¨íúÆgv»õèžcL§ŒçMž7ôÇàæÙ®ìn¬„ó&ç³SƒônÔí•‹Œñ†ÙQ±—‹+‘"v4ûB´Èû¼yàÜp2<¯Ýxôɲöû8øLÞª¶„©ˆe_˜ wa ž9Ü~Æ=O!ÙLïýðÿ±ŠØÖQ1%^¤*¼õîýí›»^ØM+¹ÝråéË)·nå7×î\9>¼~º{õþÛiÖ=··‘I¢ó6«qž€¢½Hºâ?xƒÆÂ¾sl“Ô²cƒžý}€Ë¾IíMt€+ÉÊv‘òƒvaT%g»OÝ s¶Åît­°…ÌgN7ôÇl5黕ç¶S5c‰ùS%TÎ “³£b¯üJÕ1;ªj™}P-¿ç΋¨š|jL³ØÃM'áFf•²GŒ;ò±VÞ/ÎÀ§·]ôž÷åúmY¥Çºn»_öêýû‡û6‹C8Þ¾þððNtž&ËŒœñœtÙ_<¼{uÿáöõ;î×±ù¾ÃÀOíŠ 5› æ^_Å9 ÃÎvˆQm,[+ày”gðF H ïQ`ïà0`•ƒ ì)Ã8ð¨´,2¦ ÓÂ(LKã°·ƒ9=V„6‹‹C¶qÃì»b…ko”ƒB I¬-ÊEJ‡!·¹¤štŠ'‰mr°ÊàˆŽI($):‡D×ÏSF‡1´]KãpfmK­GáµQtz–01|#ƒ£À›S[0·ß]¥Ð›e£~£Ã Va”óhQ&¬²â”¡0F -ŒÂ´ìÎìÛ/3°Ö™§PÌîS°úhLRÀj ®‰z  tyÀÔ´ÊUŤÀ¬KÃh:Üep„axEŠÎ!=ô6戮Š0½ÃÞ±×Q´#£Ç‰I¼FÄ(^0èuA¤¼„ÿxb0ä¦mëW"÷+ãÐá.ƒ# S5c‡Ï¸Ëè0Gt-…émövÈ~Ëh#’´‰h¹Ý"K.D”N RFŒ2, µ ËßÙLÆe¸ÁŸô†`KÄ@cãcUØ(̦Q˜†Æag‚XÅë“ÂýŒ‘†gb0kÄ ûÂÜ$DÄséNdHhòd˜äXÉŽñT˜|C –Áì1Ë]'wÈܤ÷?›r}ð^{µ¨J{‡Æ ©£Ð€–N2últpƒ©!æ)¯˜×-ªåDèåËd€LPÛ"Ba™´®„b¦’ÊáÌ uÀ¨ú°ú”Ä;"¹Â˜ Ñ7¤Ã{á@é4AúïMWúŽÑ”7I‚‰êã˜ë·ÁW!ql•k6=môNo‰цY‚”“810i“Ls$o<’‚¼Ýnfèu›\™vÔzë»í@åOòŽÐWDÆh}Cd²W˜+Úå©×ÇŸ Žç$èÃñk¯1†§é̦UR®=cW>Ñ0ì﨨Jš£ TöBß1Q*¨9>TÜM Köî…)hö&¨YQ^…•ü\Ô,àJ(¢™×v•UÀ-ô"¢´fÈòb‰ý¹…úà*wÙñ‚`yPe‹Ë`V²O:óË,¨ôAѵ öú‹M#1ÛÁ÷“‰Á q76g„ƒîŽRåõ%ƒ!· ˆ EE~ ur°Ê`%Ô1<ªäÆ0<ªD…4dt˜2ºƒ¢k98ìíÐÚ)j,*!ó öqÁ a4dPŸ´-Ü,„‘/S0wKÎ’HEÑÄ28¬2î®&Æ!ƒ¨¡ØÔ s„ia¦¥qØÛ¡µSÒ#¾•«ÔN† rY€ª$HævQj9©bB0ëlݰR`§û¸p0XeHµÕ1X?TÉÆA^£Xe̪Ť0-ÃÞ]·àúW^Ö=.¶Áœl ÙÂÉ::V+sNy¥Šì´’4« YéŽ rý29ð 9.2æÓÂ(LKã°·£×óM¸°dÑu˜$W\¨¤«7,zx0á[ÓêRa©Îå kPÔØR±vV2¢c‚\’M^.Ŧ …¥žïZ…iÙ9œÙ¡¶e§3æävøqÁ°f!—ÜúËõrâe¸¦\¾î‘&Ep®×÷ÊaÀ*CºŰú–„×9äu÷t–•îÖE×rpØÛÑ}2ÊUI‰I/h&&Ù. Ãx•%0=; X|2u/í9*l V¢iÇ©¾'/7rS†ïwvS £0-ÃÞŽÞ«T9†‹ðSyÁjb°[¸¿™Ù™òÈD:dEv²–^¥i`ÈÜ솃U†ô*쓳FXd(,½J×Â(LKã°·Cë+T‘¬È²¼]5Á­ÈÛº.x…¤YF90î ‹Fjû#_qËXƒå…§ F¹ìC¡š[+,…r—l¦™ _×¢õ¿´,°ÞËaÛÀ y±Õ¦y"ÒŸ­-’¼éÑa¡`×âä0`•Á†áõ¶Q*ÖˆôCF‡Yw-…iÙ9œÙÑ;J©1·ÐO†"ÉõÚ¹ §þ¬ó¤°Ö:JA)¼µ±›¾â;¬¤§ì/oM,üÒ¡ ´”]#è*Úø 3´Ò†gó:êq"·sÒ½XŸ¡©È’÷¡Â¥0Ø´­1¶~a`°Jè!F0ìÏ$1v¼S„‚wWS#è*Úø ´ ó‰ æ'[á /}ÁÓE;Çó²5¤#Óébã=Íìѽ¼Ã@Œ6ODxE˜¿²)ãuÀ¬½¼ Ì<¹“¢«í¹NhFÙͬ§4µ_Dnz½tºIÀ¾=7=?!¦÷A9x=î¶©“³áaAÎú÷‹3Ëô,˜^éåÒ/´f.jròFL?I“}¥|z...uŒUn™ÇŠégT*}±yžññ¦˜?Q!oßûråÿqü™qê!c$LÀîûðÍ»ƒ…ï´ÿ$gñð»B¸[ÝŽù4Éõ~˜Ý"1·¤“þá¯äÛCïBªþxwÍÀÑm·ã-Ù¸ˆ¼|O’ÜZ)xD,÷(sÈûµpqÕC…r|}Í÷KŒíø´cÃ7ÿr++ö+b‘TÝÆ»L¶‹-ïx“²S(dvÃK×LÓ4æ‡s\€ TM¿„#_lâÕ”7ÝÚÚTìâçY.j=¨ÁÅã®9(Tý™²˜L—ÚVù9ç¦ÙþŽ]ñ-®‹@‡@Xà¢fÇTÊX½®hE4Üq»ïSíá; ©ØZùøršòV¨ƒó©©á±lÕ®Fƒ;ýŸÄ½¿FÖêþôfZ²¸Á:ìÍ5]…Y*G¥L™üðM>| ©ëæ«™]JǯĴ–ÌùÍõ¤§"7¦É ú¥Æ¯ñ¨NKª¡•WÇdÄŽ_¯«÷zgßém˜#N}äË,gnË»O¸|ŸµeŶº¥ýJß‹É ­&vå‡UäâHËt½SîÉío]ƒ†¶ì3v×ÓËþÔ!ILêët¾š³òž×c|«Â+bÍðÃWó7d×±R’\=¹=éæ÷=öËJÞî·•0i+íS¯µvîËÓdd9Ëï—ßy¸à„³…|cÔ7sÉ&Eð+Ÿ³ÑßéLHòX˽Y~fÌú¬ -°º ÅáoÕb8Ûn5îÏ7ä: ¨Ýc)ÅìúZƒ³vaxcCÝMBtôiõÊè}Ëž˜Î¿zÍ»åY’G_¦ÓÜAêÿle*k¾5ГÅ/Ÿ¸¯á0üžþ&EĪÖð$,—¢…È„tºL&[ÐèW4jÌ|7)–qÏtûûÃ3+¤ãäÇD¾w@Wå.Ä–š[ZUîz`{Ÿ¾úÔʲC.exìw†åTІådyùÓaÍßB:ì†ì6]äöh*qz±x]šÛ¯çžøzLý}õ±þ¸†^iÈX3>.>y;w^]×ïrüþ° ÊÃCÕùá³k‰{ùú•h˜ l…Š<…Í£º÷~r‚èwûòA‰c­²„üCö~ïv»õ–‘«,3¹xšôh¨ÖãYvÁ{uV- J}î;Š`h~±K«» -PqÿÓ‡)ü˩җ»”Ifj+ën|zs¾%ÿ½ï¥+*Db>ê—ÌF½/ž±yÉöýç‰Â²Ë=º Džвë;öÏD< y.tï3»g"ÂΰÌF”Qd'àÏgerÁ>Þ¯cMÀ¿JÛÝ Soÿœ}|Ò,ÞòÖ¿•äýŸÂ¬Š¼çIíÍN6Mäyéñ§|à«åøQÕí?ƒk¼/½›aýi ÷÷û³"ñ™¨~)äy=YöÎk[ží£àãD²”ÍPùáóÖ΢<6¬|õ_ûíS<¥g#¿þuu,*­ýÄ~:{3¦3”ãÊI–³Ÿâ\îh–í¹‡¬Íú’!Öƒ ]ý–“ß÷êdSvÇ!ëÁíIu*õøËØ`Ëéé·ç¥Ec³àe?cç§%N^:zÚwrzü¶ã%SÛkg«ÎøÆ ‚ç„äø/zi=]ÛEZ݋ۖ‹ítÚ)MGŠüúÛc uß.ÕÆÎß߇º³ß.íoøIV ŸøíÒȯ—Cþ›¼™È8§ñäÆS›„?¾ôŠ“ò¿/üfiû쟿°:±óá³mÈŸÔ'\´aþøiºø÷9/“ûva®Âò×OþfçåÅùø'f§ÙóW>ß~Ç|ÇÂÿäó'ú“&ø‹,—Ÿò¼ôÛ³“ûW?ð7H/ ÿa³zö; ?ù"¯EFˆ§Z¤ãÎo•Ä[½qeH}øK´X?ú¨©CuÒݼþåRž.&¡Gð$yùýg\Â}Ö éîÛ²ŠV|+ªí²ÍZ£,ge/™îø¡œ í.ðø…„úp±Þø³ñ{4Ãó¢½Z‚¨Z0Ïn®ç¬åÜqÑiŸ½D?^L~{)?wzpÚëÙ_·ù?ä—ªendstream endobj 125 0 obj << /Filter /FlateDecode /Length 4514 >> stream xœíÙŽ·ñ}ã6Òk:¼#ìD>ÛIä `@6‚ÑÎh´À‡$¿äÛSE²Éb7{´’WF=˜Ëa“ź/ú§ëù‚á¿ôß³ËÑ+¿xuÂ_œÎ{ÍÅÂjÃ{g—'Ö³Þ©;=ùýca¾÷F˜Å鳓ˆf¾à€®àöÌö\èÅéåÉ“Î-WÞpÙ3Ñ}·\±Þ0&}÷™wLß}³d½ðÎÛî0’p+ß}ýh¹’àv¾ûôÛ¿â¢wއŒ9kE÷¯¯—7fº;Åýc^ÙzoÜQq£aó¸¥`ûjÑ· dŸ>Žs¦ºÇtÑ£°7Þt_ ÀÎscÇKÂ6Â)—Å«X–†x«p*g Õý7áÌ*8ùãéß«’S¬ÚÞKá§_ŸœþîIgâAð% ¡Ó«NÍÌ‹åJOq&»¿”Û]à%,ÖÝ~x>TÌøn÷×~‰ôâÞ[!ºíR‹ž1§qÄ{ï\X‰·aÊÊîä,)à/®Aýœn@Ù¬ãw@^$.X +V ^+¾"‘áhXÒ ÐÈg…l¢ßà3øÃP#4£X[ÞÊàã:†âõCW´ûçÅ%HØÝ©[!Ü„™Îô…2ò‡eüÁƒ‘H ßnâ ´ó<íG±:Òx‡JH3=(€M­4BCÀ©hÈÛ}^PY£!£õªøÈS,„ÅÊçEº ñ^E@¸KÚIØâpy¯LϪðµT–_@<+n(–óÚ}q@¨ø×ÊÁz—1ØÕI@“ä³AKNœQœ#yQ074h›xy½rG­z…8:Q0GÌûšø¼Û¢í¯Óµ¼¯®E¼¤MŠëx>§ÿÐèâD?®DÙÎ&FŒbc[ ÊÄDGÎ%ˆ>ì ¾® Øq —pú~¸íțތ7@7x4ÄMOáš'ášÅo­Ÿ-!-¯€†Ñ!nóh“G×­ðx_¢œŒ¸zC£Ò5ýã†pKõC_äòYQèW¦Â=M½ø’øFÛVpªa)Êe‰ÁÜ—üA iQµä‘¨,{óŶ äµ¼&Ùƒü’ê(b— ª­ÒEV\£kïó8åOË• õû”ޝòhŸGë<ºÌ£-¡ò0µ: ß…Yò6Ë<|r/~˜GW;“gÔ|Ôüy}Tžµnÿ4^çÑ‹`ÛÆhsôä]ãR-4ÜäÑÃeñýà~¼\qPíü ¨Ê5Ÿ7ν+,„²?&Þ5bÚÝJDª7`Ù(ŸðÑhV½ëð4èL„<àúÁL†ÉŸÝÞW•¡ÉÎ"µŠÄZ‘é†\I”Qæñ>IÜÒN˜Yå%­=­¤sP °vÚÞ è7Q»–â½Ò>ÛêX6•—}²j \M”ºYÏ»™1‹®ž6¹° "×t6¨î¬ñJ§*/`OLX Jy0È9æ„õ…‡£Èli©›9B0ì_r¼2š‰“ìVÅgŒ9/†É}5Êy•¨‹¦!Ð|C„V}çѽù6¹^°}V!1)\'¡â¢òmˆÓ.q狸S°$V=žçkÇ*ûø4¥‰&cc9 Æ Àfl>Î é‚ìt‘ÏÞ‹VB[!BNëi‰„ùòzäYN¾JhãrÄ8kÀU¦Ãy‰éЇ¼‰w9%‘A›)ÎSrUõVš%ËN»!µ¯=¸7g .i8®ëÆ3á I¨Öù¹¼ó.î  þªÀS’ X¢RµR©rI2ê«&#­oR-ÊëÙ<|öø~Nkî„×™ÉïUÄ{[C5+Fؘž¹é3Š·Mb|Eª=íô±$Ñy‰H¯ãâœIL„}]V¬)G¼ñ˜gÊl@؃)Â7qÖ2©«8éH3'Ê“¤w@Ùy‚ÊO P{A‰ˆ³ ¯wm «£o‹2¬Õ¸]YŽ˜ .(/úD´ÔYËß,sM‡NÓ$uÞZŤŒµ¯Ž¹a¦­©n^–+ÔD°,jö L@I(‘ý¦zq®:%”«7 “¤>IH'®le¤CÑALÌÜýe¤a?ÅÍ„/ÓteÏ:°Š [ºe÷2läà ÷ )ïíH’Ú#Q*)Q56ónšV‡i=V€-S;ã—=Ë‹µ«“!1©OåTÇHVƒÜÌ2jùP ”Ì!š¤s AUH¡åK¢‹’÷º“ñ r¬.NUÕ™™\±yÅ>o*cŠ—ôÒKjÌÛ©{¢8lÆ@'¬ÓƘ…£ÔÈY¸;È qŒ¶±«ŒÚˆ—2˜ã +H©®JCgC÷FÃK!"õíCÊΜBιª¥Ì³dôÕ2´$))ò›…޹tu)¥|¬+ž‰Z—£ ài¥ØÌƒ'ލn’‰Ž•ÆtZD™TVu‡‘GB`øE¢{q '‡Y3EíšþÒÆ¤Á·Ð‹–..àÀ©$'ƬË-Vߺc‰ôú.µ£šåë ¥ÂD $å›Ú3-j'ö·„tE]Ù›Eö¼ðÏë4e×Àº`Ø]•9°HÃ+ÕYú ÍØ¬Y|³†Y;¦Rã!¼®žïÅí&Øg¨9u?Ž‚…ð½Óz¤¡ë*SÚåèÉ¢šI4–tÎÉ ´½Xõ’ÖçŠyu^©Ê‡Ý3©r …d²ÄñëµäÝ3:¼8üKYòøa+A<œ3ÄöH‚ø—$]ÿGÏß^5øó¶qÚºó‡<¹j¥°ßÐýOþ2Í•·ù˜$V9I¬J®$æ(ï'ÍûI+¿|ÝødK!ûòïßЬð©#L¾ƒZËÅH–qe:5=ÌÖÞC]§—ˆÎ–³¦î·Ùå"QòÓª?qdˆéx=N?ZM.â}/ENà~_”XJŸ+’>Çä7¨ë…ÄÝ©øÉŸS]’YÞÀ“í(jЕÕ7UN"_Ì4«_•ÁŒ=EŽö"} ·Ô–5›mÞµÖÅ9æÌTÙ÷ á)|µ&ì}\á\6ÄhÓ`ÿ"n}ƒg× ®\^2Ë÷T[»/­\ªK3›£·#Šü÷c`@m4¥¶Ý`³®0¡Ío&¢Mš)ÞsÕé@ô¶& 2wd6J6(œºÓŠøó“.€NTC€Ó‡¨‹HTl®â¢jþ¥ÞM<úkáKì "‘Ò:'ô« ºgL½ži ¹‹QPi v» i¦Ad3ì1Î¥‰®=’ñŠpòf› øoi0w–¨½rÔÓL™a¦ej'ž÷Æúv&ûœ»ë‚ªÐT’01Ÿ ©‚¯xDí•–àkM„qh¶êz¬þë %Ä®\âÞ4 C ì[× 9öž™ìáR e¹ñ9ŠÍõ°Ž>TjH:"Z%ÑÝØ(¹Ð:JŸx9HKÞB2Ьúe\ ™Ÿñw?-QL2Ì/hD“gëfjŽƒ ÔÓ¼mL‰*Ì%ë@Ö(è´êG^˜Ì=­(‚wðNo¦˜L²ò¬·™Ç‡ò@åaº—Cy&º·&y²sUgÀI[½A¥oV(‡¢H8p[sÚcžœé¯h±ò‘cO‡B.Ïr-æ¢DΓæDì ej¼Jï;qêc·0  ­W#{7÷Æ–vœ•d‰ Ž´ìIì`ÑT’o©ú n“¶ñùœâ»>šC¬ÐkžÕÅ4þµÐª—á¯k‰èªÛ‰ö½ˆXDÑ`Šºê‰^f‘IÚVorÔ%Mðú*êŠig X—3/Œ í'Ý‘°­-Ý…Ó®ŽfÑp¸»˜í"ù€L¡§^ù2°8¸é ËãÞûªJðL±UãJáðÒ…9zƒSÁ{m~½ò'öãµ…‹þŸ÷ŸÉû ¯w&`+6¸÷'Lmêß! Rþ¿/u²ââ2æ'žüþýl~‡Žendstream endobj 126 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 267 >> stream xœcd`ab`dddwöuŠ041%º»^ÿéÄÚÍÃÜÍÃ2û{—ÐÁ½ü»@€1‚Á’‰‘‘eϾŸ?»wýx²‹qíÏ­Ì?*~(Š~·ù^8mfOϺ>ÉÅ}»—ws¬ØÅ–ØÕÐÒm×Þ·—G9†}n÷¦îu ]m­¿%~;KüVþÉzo[R‡Nw\wr·IwXå[öïE¿ÿŽû=·©¾³3»C²¼³¬«¼›#/†mkßžîm@snt¯ï*ÝÅ^ ´!cZO½}ß-¿çK|wúÝÊjö¥ïU÷ŽîÍݺ×Uj²óÉq±˜Ïçáìæáêæáîæb`™¢oHendstream endobj 127 0 obj << /Filter /FlateDecode /Length 1878 >> stream xœåYÛnE}Ÿ¯ñ4 Ù¦ïH‰Q {#„’<8¾ÅÁk'¶C ßΩ™¾Ý¾Å\S{¦ªººªúôîûž3Ñsú‹ÿ·×d:ô;Þ?ê¬vL9Ñ;có¶_w^ZfCÈšÃn³ Ü1«}ï¬æLI ²Æ‹À¬QFAÖ()jŒæøÐTþŒqøÔÏü¥¨|ðÌ™*¨¨¨c²Ê3mC“Žy.ê˜ (*f˜Sö–Bª¼ñ~¿{߉1‘}ü·½î¬º¯7¤ë VÚ~µ×MI½ÐŠ9…Ä"(!M¿Zw/†ûÏî?YxÉB°Ã¯› x Úh9ü´Xb{8×N ›‹¥RŠY!‡çç!Ý)ÄÍÆ¾Ý~?k¶\Ý;%ˆ²¿oªýýtÇÃüùÓO­ÿß ¼lÂ5uô´‘гƪŽë»PÿWÝÏ n’#ËZ÷ÚZdÛ÷¼ ÎÀå ¸¦íOvû_ú£Ž3/5¸ž”´)²×Û{ïÇ\R^ƒ‘ À;p=p$ŽÖúÖ÷v¤Óù50<&‰K*òICdòEŸÞÑÿ_~ítà¸Êp5Ú{ÜIë-ÃgÚqÉ@ÙÖ•f Šl%±^L³Fhjýèqò µ…›Ù Ü3н¤mFTe3¢’fD]Ÿ¢ÍN)#˜Ãò½W”æÂË ”ö|9Ö^A&“ Þµ}ïLš›çP¹`ˆÚkgÇÿ뢉‘­¤3Âñ9ʺS¨Y•qŠWÙÔ\Ъ²f´QÅfB%ÍáÍÒCá9Û ’Ï5a /i`Û¢.άôTl9üø¼Ý)ÏéRPt'C¥g ùyòAoD è(¤9Y0áÓ#ð)†ôy 1½~nÛXõ¥0R0¡záP6„~ªPÜ`pJ}9ßÖÜn©!bSWÛ5u‹TÖ˜˜ò³"hتPWݱo‚ãâ6»âÞDwH^A ¦kàf]’㎩/ù°{ZFUTÈ£¦ktÒ`¯ ã±E/ DÀ¥ÕÍ å†¨QQ3C…03Dõç(÷È ’43”⊾_¨PQ3C!©Tw*jf¨¸â UåàFû@{°¤Í> µÐ¶èQœÓNpÚ`Å¥"JÔ›AÑN"N¦Á/–wtfÍ dÙ¯ºˆÑâŠ*%±ÄeÛž—ÛB¯Xì’¦o+B ˜‡ÍÝ݃£}º§—µYš5Ï\0‹½×¶±up´·@!87l¶cþ¼Æ»ö4í€8+sâ¦Ç®40Qæ¡÷ˆÕ]wìJGU"ªc7inìJíÀFªa‘bªGŠ Ú zj”§Œèæ©[LÆã4*ê3·²˜@QSŸ¹W䇂Ã̱«È$k€GWK‹ÃISè.RSðéyo`æÙPNÐWQÅB~ž|଱T„}±`8 ºò1=“EB¤(“…ù:¶«S:Ì/J8}5u¡@j>!½3häŠO$Ííù܃-UgDЧ>I°qœj}}AÓ¢Ùdâ QQ“‰b1ƒ*‹7ÈM!Jì}E&Ô8m& ÄŽáÈJÁ§çB&2"R…l!?O> ™P™w¡/$Ê)T>¦çB' "E-œ[ÇßÊ'Ò´ªv.jfÍŸQY£@í¸œWÁE[êö|Ë!•ÄÐ;ã¤_ã"„Ä ®‡ßéhXZ‹éêÕpz¶uvp|´u‚£ Õí­߸À4$¥›Ši ËM^íT:‹“f†²ÜRkU¨¨™¡u¶ªQQ3CáçÜ&ij”☢¶•43Ä¡f@I3CÅuW¨*ŸÇ7¤F›0çZ$¾adÅ7|â$f¾.åç‹ü®|Ó„Oè¶#n¿9îŸS59‡tè+nþ9Îq9•H# ¹`azEá\©¬ÓxW‹œ«i?,8&OpÜ $z#Œö?ÐÏ(sW»ázÉøû.ý\ƒÒ%®È Z-¦ŸZ,¯¼júM³,þ.ó€ày´Ãñ×2ˆÃ'r¢9Ç?¼;·EœÁÐD°~8ã| ç¸äk1ìEßÞÌ}kí“kŠ?…KÀ°Uă"µâ4yU²Á(0N[mò_«0Áendstream endobj 128 0 obj << /Filter /FlateDecode /Length 9494 >> stream xœÍ]YeÉQ~/ñ#®xº…¨Kn'$@ v#Ê5=㶺ºÇÝ=Ø~á·{D޹ݞÆÂê‡>'2–<¹D._Ý_Ò%Ÿþ“ÿŸžïÊ¥­Ó¯ïÒéïïzΗ#—Ó8z¾Ì~z¾+]f3Æë»ŸÝÍ‘/cæÓè-]j!ã̼.ý ©£Ìz9Z2N”ª½]Ú £Õ ê Õ­¹æeî•ÐÑ©^ç¥õœšy\fÊ›S.¥œMJœ2sêS°—N_Þýê.SUžä¿§çÓß¼¸û³Ÿ–qZ—ÕK?½øâŽ«9Ÿ2TCn}—\ŽÓ‹ç»ÏÎ9Ý?¬œë%•óÏîÒ¥§T×ùð1­™JYçºO—²æç§ a­ótÿP+8>×ù¯ò·H”Ëœ™„kšc”ó¿ýø~¢âtœ_ ¾’Òjc×[î(g•<õ›ÐO~äžýõOÙpNíüÓ(ô#Ò”ûêç¿G‡çÊ}\‹š2[†`1”bòˆQ‘ÕœÊ*íüϨ$§ÑÀþý¾øG¬Ö«µA¼íôâÇw/þä3°“/^o翼8J¹,¨‹×Æ|´§ßÚÓ[{úÚž>ØÓœíñù†|gO¯ìé7·Ôd{ús{jöô§îö›ºÝÙ_»à_øcq‹÷ñ+úÎ:Žüɪúʘ¯oؼY-ïnT‹WÁ×ý?þøá†¤WïË[µñù'kÿñfm<}2ÿÜ®ûýu¥ý×Ôwáé¨ö¸É­?„&÷>¼ÿƒjhÁôon¨q'~nOaOlO?³§{úIˆô†¯·†¬7*ç–ÜÛÕéÎüá8_Ý(íþúÏMÿÿ÷£½¸ûWÌ2Æ‚ÙnŽ|— ©D.í’¤#ãrô~z÷òôï§7wí2êªR¹|‚pú%¥tfY˜_O=AÖÕ*d3Î)ãRN@BV3€Ä„b];åHB?AÖ.5‰#]†—Šõ£¸2ò¥Ÿ¼p: -ê™Fyu@%ÌcV°ðÙ(i œŽþ‚RN+—£¢ÙŒÊ€ž—•‘^XwJ“›jÕ$z½@êæ”fXB9¥Ã'>¹†’8R1A$Õ›ø ïÕE-¾Á ßÇ<.” :gUÈYÑ­~©Xj-Ìó ¾‚’huBÿA`N) ”fTB8c\~QÕ)ôL0I!>¨€ú¨ ö(8²ÕJe(—~0w`} ø éõnôËÈF£ÝE‰¹I¬ë€áŒfPÂ8ýÀ\xHMYm06Ô •P/UÃÇ=±C™ZaÍÁ_Í8 ¥ÁvIèv ö Yÿe‰ŽBë>F(ðÿM&°„r`4Håä`)Ó«›`’êB|óQ\EA‘­ }x-Í .…œ‘;ö…¼ ƒ2è4°v@?¡4#Ñê£D€NtAÒd †ŒCTøtõ0 BbqÁÌgQ°Å€a•}¾zÁÖÇ3&6XX4q3)ù¸Àª°¤^.°ðPú \ىѹ„j0šLP æ€?—4O¦!ctL¢¼ø ïÙC+½E@AåJMçhÐ++ö°ÀYhªäÆ6ôË:óÁ. F3TöŒ°.GÐ`4ÙÀÊé´v ðîÁÓXB½P õR5ìqpl=ñX9×¥ŠM9Ðj–êãR¡ÌR—Y€0YN£Ñî,ÔaLta Ó 4Û ÊÉ8”š†tÁ†ÐTì…I˜ß¢aƒc÷q@ÿ¬Ô“Ë%c)¨ý…#pž¬Æ¿¾ŒF»ëÀÁÝ$J{‡k0šm@ å´Õqœ3 máÊÛm6Ä “/MÃÇ7á uÐ7œŽ{P`¶à¬$õŽ‚ ºI~ÎKjA–þ­Xy#ÙP$m\A8=›&©îÄ0EÁU W)•æVºÏxůÚîa4Å/Rµ_Ž‚$Ž·&úS ”fXB9¦ö“+Ó-LcuB%ÔIQ°GÁ‘A~V°­Á0[E¦ì¯ÍÂHŽs&öWTzàŽÑäçÄâ0F@Jå”fXÂ8™Û¯j€±€Ú¯Ú`šjO¼P ó[4ìqplFÝ üJ±)ç>tL:  +hH·bÍÎJ³‘I`G.®@I¶@”I6GQÐ@u&„¦ºž§æµhØ£àÈ%±Ç:*Ž/ÏÒê§bv½†VõSsÅo¡4Ø­¦FLïgP 4› ÂiPÕ'+ $Fn€i”WDÂ\äòW1P\’œ´„ ˆs`v˜‡4zÈÛÈ éD¢ÑJMßÞƒí±Bq¥Ùd÷8Ì™hHí»¦±„º ê¢j؃ À ¯˜Œµ,)càPÆWÚ»…¦Cè™&¡Áî‘– "¹HsFJ:gŒDùž¯‹òA3 4PTÂ\ WAP`4ãPuM¬àçÀ9xž 9 k£`B]p9„«*¡ÑOXQ•h‰FtS 4›ÀÆÉXîþï=Ø`šê‚PóZìQpd'c¿,f¢çÀT­bBæœÀL¹©ãf}¥ÉÑN£Ià gʼnh:ó1 *`ˆö‚µˆ)QÍ4ÕšW uN5ìîsH˜tâxWñt‚B2-倞˜¨À0 >‰IlS­ÎƵ¼_¸ÔõÒJ&µ•kzü²ZZ&m¦ži, öUBýS {UÇé 'l£+ ƆŠPo0ÄÈR'¨ŽS°‘`¶Ãê¯Í «?ìâ¦@i6%„S ‚µ¨iÀñ¿˜¦P\<Ð×â •ÞCà°0ÛD™¢c¡q*f×ÁÒhˆ„ôU)´ Ý87{=mXi£‹…ÆÉ<™‚ÄH:š* ª‚= ‹¶‹]oR*åœEdBÚ@-ú?;ÆQœ(„»¸(ï3Hàr¥ F“ *!pac`NÃÞb6˜Æê…J¨—ªaƒc“£Œ;,Ô¿ŒIs¦Xè0j¬Àxn ȘD«°+þzeZã[i¥Y?Ê'QÕòyÀ€¸\¿ÐX@0 sYì!`X´)‰+DȆ¡ƒ lç5CW†VÄÿ×ßµ)É›€º£‰õ‚9A1ÎkÞå»’rtKã^ÓZ~ò’Ëu'Har#K'Há²,•(eœ uåkôÞ¥>uB “X‡ÚWŒ³IÕD+ %œM gUZ;˜”p6©£ËQ—«dZãÓ'á`Ú'k8cBÛéxƒ¦c£’Z ,Þª¿/ 3\+n4 ³'å$\™‚cÑ4o„¦~Ì.¨„;Í®‚àO–¸ÉÓ‘}1e@7&³0(`eà™6,œ‘‡Ñä'=¹D¡3dW 4Y Ê už+€åÀˆ&˜¦‡}PóYl1ðž8¬!õý¡{âÌixž`u‰idÃA7ŽpG›¹‘8ÉTÚqlèGPÀ´š Â¦ákº^Ì‚P(že×ê²–ÞC¯EçÍuÑýþ\ÊYøí¡òhK¶âP…IÍ*Í3µ}{Í º7š P á¤Æ#œhÀŒb,1 5s¶o¯Õ?-¾G sظLËž–<;7i±kM*[,ŸµãLðÐÔò1•r ì9»£Ù5)åÑ)Úq‰&ˆ¤ó{ñAÞ«ËRz‹@®OP²X'Èr}B8PhÑõ‰ÎíJU\›>¸Ðt€v \¢ã¦‚+’-<3êÀ!Ù‹oÚEµ§wê™Ü}—±–…”þLžµ”ƒÝÛR§l¬âÄäÀ+*BÑ|‚‚ý5®aPZiÖO»pøÎ‡+€ô‡Úª`’vq@ÔAU°‡ÀŸ‰¾'5ׯË_f,èå™îá< ¦öz ¾vA6˜¦J§£—À6˜ƒ¡ÅåCžN—2DÃÄc‹î6„¦{4ì…Iˆ×ª` B’ŒB£L08K¼iC ¥Z^˜ %m*±øüÁ4-/4§uª qÖg&’æ…æ„J˜Û|•lBn\Ñ5‹Š;(œ<)£ó¬0{ÂñsB>:läÓÔe:¥§&1 ~9W 4Y /…KAºˆ£ ðbÄL0Mý˜}PuQl1pX|k®öƒfçÀ»ìÚ“«Š·Ö”ök.A÷ú¬¼P‡ÍsÂÀÁ{¼4Œ×t½Nõ3í÷þ\BT {ª‚= »¬™è;˨84¦A©D³go‡i-Õh¾¬^wiZÜh°œƒ+³“”Î4Ú¹ò,ã¡›W uOJïþóH—H¨µÓzì9pøºÐtX Ý¥b”Ä×R”ÆaÚw ÐŽ(Í&¨€r2] PõÀ£73@$Š«òÞ\–Ò{ܽÝj€UÚYܳsðÒ&¯0‚Vª*ºXô¤=¡iš¥{’Ê34OŠ#Ź)PE*E^™âä‹MMs?;aêµjØ£øaŽ,t"L²eó¾ø€%ëÆyÍ{CWRÎ)ÐsäÄ¢Ó‡ Ê8.„Gh8F¸q\¨N¥AÈ8.„ 8»q\¨7ž9]È8.tq¬úîç—%3ðB|NÚF>îrƒÏ˜2í‘gRÏù‡"ÜW/ʬ*Voî£W¼™Ì9´p qL˜ÇÅS‚(ŧÊÙ¤&X›”p6©©Ç™&%œMj žUJ8QªeèÉ5žº(g“ÂcÝ#ž§(g“’¸ƒT¨‰ïw‚mnÍã#'!Њ9 !î÷; ùø¡ÁGz÷w£h‡SÐओ§×o¿þüéæYHÅ1‡Lô0Á’ß8 ©)ó'Nx>1A…7ÌÔáeTDÏB權×(`êtPGÅ«Ç|·Õ(©¨‹ÀÁ\ÚË3jÃ-(®Ã}P sšì1à(]B1¬ÃŒÉ 7;fƒV,ŒúT-ZF c îC4(­  ç0,Ã5jÃMªÃ}÷â¡–Þ"À  ‡4¼îæ˜ç0$£••†£ÑE8‡x<ݵ Ý}4— »uÅ­€ ç0$Ã50dÃm(¨ÃœPõQ\EAŸkðm)Çt8‡´çwk±«õƒ/ü(¦£¼ä5ƒ.à{Р´â-œÃˆ ×Àˆ ·¡˜÷B%ÔKÕ°ÇA_ QxãÔ0C÷뀸~QÈFÃÿñr‚:h¯ Î öñ –i0ZîÏ9‡1®1nCQî…J¨—ªaƒ¾Û‘¦C:„b8F=p'\£â=«Ü £âB”NŠà¯:ßfNÃ¥ls N+¾Â9ÀpŒÏpŠàp'TB|”ò[œmÔɘ$Åo8‡Ñ­@0¢‘Ð Q%XÙ†ßhx;™ïc‰7× ´b+‡Ð®ÑnCñî…J˜ß¢aƒ¿Ì9ºâ9p~Á]ÛÀt’ˆ£šÁ70—¦k&Ñ]ÖòJ*´"p|a œa& ¾¡>˜€ù, öxì€ü±X†Þpƒ/h´8Z:R Ð %ö’sœX­¸Ò ­pa/\C3D¿"7ܼ¾V÷¤ôî?·C<')¹á†^p1dFCØËœŽÜhˆŒé‡¿‡õõ-®´¢*œÃ¸ WÀ¸ · È wA%ÔEÕ°±OЊÜNëljd\†OžŠÜðéU%túU Fkbh†^˜f˜ o˜&¡^ª†=Š á‰‡#+ž‡±@÷Ë2hFÃ[Ã=‚7b$[ “T¹¥Y8”…»Æf¸ o˜*`^‹‚= Ž V73ð†s}4-tšÑ ,[±~ ¼©\åÛí*‘—ÜCg F+ÂÂ9ŒÁp ŒÑpŠâp/D¼ Wqp‹ì¼•`(ŽÀáÅ›¶Fi@cÊ k0£Úäý:lbÅ…s†á ¦áÈá.¨„º¨ö x¼Ÿ‹é äpã0èþÜê†Ó€ùµ*è§²Ä'ß.‡ N+ÐÂ8Å0 ŒÔP ä0˜aJéë¶° Èá†b¸RBj˜Mr¸KòZ=æÒN+ÊÂ9ŒÃpŒÓ0 äp˜ã²‚ëdÄïÔ È8‹; ^5”ŒÏ‰þ΄á8€3i“Á$`“kP`´`,œÃ( ×À( ·¡8sBÔGU°GA‘µƒær‡q8‡ G;‚“NÈÅè,q´6w[y?+v/®´‚,‡`¦@`fÁ€æ‚I˜Ó¢aâ9©mQ7r(DÃD•þŽ9¾)åLйoëQÊ8A oFÎ÷pNZ¼* RÆq)˜ù ¡¬Ü{ã)M\Ê8Aê*îXÿP®_nfEPôÝû‡œ ×CXÈ%±à)°«±«°a8ÎÍØ}ûŽ´ïF+ Ä8'qKªÑŽZÄŠ˜”aEL*`ELʰ"&°"&eX“ X“2¬ˆI¬ˆI1VÄD+rqùÞX‘Zhƒà÷ ùÝ ÒÑkÂ!düàP‘:ð"úùìü³‡Ÿ¼<=½ÃHà‹¯|~õá%R ã¹Î¯ÞòqˆWTntÊò-¡$ô÷‚’Ô^èDÙ¡$Îa Híˆjpè D„2u( ¬ˆÜ*qrÕ5(­0ç0Ä50PÄm(”ĽP õR5ìqĩʡ$ÎQ{sŸ©ø[Ôª%ˆyq •Å4(-A4çwª Iú§&’%ˆê„H¸Û|“mBΤöVâ F…´’èèL@#t2°F€•´ÉÛÌA‚K®@i}8ƒQ!®€Q#nBa%惘‹¢`A>ý)3‡•8‡`!T´VeÐTÝA“‹ÁJ zù$Û$òâ3+0òðéN8Œ qŒqŠ,q'DÂ| WQÈØ1y¤Èç4^¼Á$zlú«¬XRñå$𬱤¼’ úpÃB\ÃFÜ„KÌPUÁƒ$SiÇ•)Ý#®&Úøu\ ¤>%àJ€œWh}8‡a!ª@P#fÁp%æƒI¨ª`B¾/Î W8<¨á`znjoð2Da%•.ä —By%uLTC¼4ãF\¿"KÌPÿ¤ü€Lϼ:5`‰s‚·à†Uy¥”93\ 5¼‰l•ó;S ´?‡ !®#nB%悼6—¥ô‡ÅTÑ%Æa\õ…ì°‘zà2ãÀZ$:/ËUúpÃBLÀFÌ„KÌ “P¯UÃÅt„’­¢ Š†ër„C`É7¥œcÐ ð“{‰ Ç…pãdƒƒ8Ç…ð:¤MÈ8&Dwz‹žÇ…J£?Æ„ŒãBWÇ:øþÀ¼›Rß%‰@ðô| x7 ˆ‰Ŧ¿É¢@ˆ;ñ#QN„XÜ’âc†61)›˜T›˜”ML*€MLÊÀ&&À&æ«MT*‚MLÊÀ&&À&×q©ï 6‘£”ß'ÖäwŸ*\¥üÐX“ŠÛĸëX“ÏÎ_½{y_ð äÀ_,A¯aIt~ùáöÊ·ÅŸÜö òe„@Ž-¼Á{ 0–‘Þ¿»‡DeÒ1â+z< –Ï_~?àu¬•ʦ¿æè…†~Ylç~qñ&¿ëÕS°Ù0‘D ^|ŽÇHôb9M}ÎOô›`òúó#ªIÌóúY±µÆ€ÇU Ë‚6Íþ»¯HKš\ç×÷x>j]ç·Q þjÙì3è‡ Ì¢ÀâîŒU„0Ó1Ô[ŒÚÔ¬”ÇWþøæVȘ¥÷TTIíK ÜWTËP)0þ¼¹ÇÀÚ(°:¿?KŸX‘Ø/bm¾dXÄŠ ¿¹‡õDJyD»q€š<Ÿªòn2ü -: ŽZæœçÿ¾?p+±1ÚwÑ"òùç䶸äc÷ÔÈ ä©@¿xIù¹øÃ|¹CöYÏÞ"ƒ@|m]ö›³\÷Yª<ðÂ> °¸? Sâã+wçµ·çÇŸSÛª !·+ö*ùª/CŸ¾ðWƒŠäQ“à{JFµªwo¥ßDàër°0·å=Ø6ñ3×}üzÀXÏ’˜Œf‰ ½ÿ2XxÇé¤ÇýCm2ibBŸê`u)—ïÖúß»º¶s˜ãc ,|lj Z÷‚~ C<Âlù$¸Kã_¿%^–ñ/ç_zu*Tóù¿­üg?mi›/¸ÇWN.øY˜9$Yi'\ÕI ¬¨!Øî,EJü39|ch­”óëÃVæ#ÃÆ^qX[ÇÊû¨ºéGzrüj_Ñœ JÊ6|δm)Ô¶™pk6‘ùÚ>~Dßã;ÿÜÀ§.P®}çUˆ™F@MH5ÞR³ÃvîÛ¸38i´ñüó«·}ë†Æ+k—þÀ?µ ½«Þøb°Þá‡0ÐÌÌa†i䑟!ƒ<8C”‰|kÙ·†è§ý«ÑOmÀ îÑB¬ÐPàûæz•é„ñ‹dÇ”b¨¢î éF®t£Šp™ #ƒ†ýwŸ¬#œJ4æXGœ¥}£ŠÈ‰ïZE.ñÄñµüѹvï4ôÃÐ˲(0yl=Bæù|ä˜E‹!c óíU[¾®=ü“‡e8_ù9ߨ=êX9_µ0üHwÚ>2/|‘ ­ø“0Í9a¡“°Í<õÒ¼ú’ýŶý… P¾š‘lýã7®:´Ž0^>>]j9—QúÕ´S8¼%”kl3oÃÚDÇÙÎéOyXsv»®½—¨pUtóQ‚öÜ0@ *•öc­Ø?Š¹ÎŒ4JCF„‹Û½c±žuJ=†Q0”þdDoZKf ^¤ÌTÌà×m¨¦ãjdÿÄzªè]ì£<Í@Ð{V›ê#Ëô±FÿØRëxÖ9çï9ÀµÍ·ÈþÂp¶2q 5&ý}?ÿœÛÔœÃ+ì1VžGZõÛdìQäs±’±CÚ(ªú1n—ý/¢OŒ2endstream endobj 129 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1069 >> stream xœ•“LeÇïh¹ž³B·ìˆFr§.šY$a3anK°‰:~D³@¥ÒÒµ°¶0JO…ý@åGi‘–ŸºA„ig¶E9ç:6üC%°é²‘é¾—¼þá¶Á2ÿñòþqϽÏ}ŸÏû|Ÿ—$ä!I’Ôö¤´´ÍÁ·Ècj±SCJ”2PÊ[#C#×Ì­žWÁGi42[³5ïë ³"…H%Þ%Òˆ "‘ØAì$Þ"’ˆd"žxFÒ%ä„…8O®%{BÂBŽ…ü*{[Ö%›—WÈ»Ew˜è]È?(5 ѳ°wdsæ~›>—åëÚrØmT™ òõ^prç±?k9B±T ½}`ç²Puoz`l¬ÅœÊbs¾¢Ì(eñÁ,õŠ,JªW- I¼@R=20H½€Cqhôz¬Âª;j$Gò;w‘ŠÅÃ$¦\›Ÿ›øvêÇï’6nHILä–ý‰Ô² ÝÌýÉßÁÖkùªÓ@{:ÛøŽò‘7ÞÙmNßÇù}•:Ë)ûv+÷3öo]ŽP;ÕÒ#á™$<,[æûI@Ÿ21A|‘q‚7ßR]^õ›Û±l@ãíöSư¹¹’ë/â«ÿ*í®™9{hƒ1/*YÓy¹˜­rÕ4™€Ö‚¥˜‹QØ¡ ×Ùr’?ÅŽç]ÐhK×í³cŸÙÉi>=t<Ú™}âÍ&¢»{ù[·êuVû±É §€O·Ä´Â#ñ9fñT9£¥6Å•ëâ ÇÇ"·âÉý*z²ðÆÀðñÏα ]Ðôô“Îln ä×d•êÄ¡AæfÊMüÂþW Þè.éjõø’åëÛ¡è™Q}2‡·Öâg3áUzÛTÒÝæi8ëg»t~èšï‚¾Þ(µÁÉÃ\Â(Ò`;5@§æô ÝïG*÷¨áWÈð»LÔ"’é´7Z”µ‚­²Û²w»kjö‚ïo´¶­¥8W­£ÎQQ¯ómÚëry¯¿ ™8!?ÿ:»·…£u¾çé …d9[÷ý´î5ÊÚ¡ñdHÆÊ¢¢ðj>¯FÄȹ¶ÁAζ/ØÇú”€"˜ô[âw¥þ0;'L^»2þ^:ûp&gþ$Q…4•‚x‰á-“Éb1™<ž÷xx§àfyðB±‡­¸MþåA| Ý 1uE«4ë’!談ô8–²Hÿuu"þ±âˆñ,åôJ:…PÊIßÝ– W\21 ]dÜ€äîƒ=9lmÃáÑtÉ}¥±°¦§J€Ö/ɹa€Ã~EžôùAÄù%e+äqh‡â—ÏG‡]§Ë’XlSTœâêÿJ‘àÔ×ÉoÄ™¸IÍ4¡3Z(çð$õa.hs‡ ™ cWÉKLʧ@¹ ”Oƒr Aü ‚{jendstream endobj 130 0 obj << /Filter /FlateDecode /Length 2325 >> stream xœÅXm·þ.ôGè[V…—åð‡6…ëÚA‚8¨íKÂnå´wV Ÿ¤³c ?¾_–ËÕí] mpŽâgÎ gòvÎÍyøËÿ¯¶3Á”ŸšñùW3£,“–æVbÎÌ·3' 3Þ—™ÍìÍÌsËŒrskgR@ªÌ8òÌè(¥%ƪê'jÅñQWö´¶øêFözTÎ;fu*OÔ˜ŒtL_ard™ãTc„òÄH&c*ÖzH•5>¿™ÝÎ(:ržÿ]m繜ýáµ°sϼf~y=KN¦9)ɬ„cŠ„ž_ngo›§ß=ýváóÞ4ÿx³€U¯´Í׋áá\YÙ¼Y´RJfH4ߟ‹p︾ùî«ðËrîŒüçå7À y…Áa³Ú à¸\Áêë(ìs& i˜Y¸!Z\þ4{~9{5SÌ;d 6‚`ÐÜxçS#«ÊLðσ¾ñøÆ¸à_•|ózAŒsoTóå¢ÕNrÔËä]m'FË2:”Ñç2z×”áUmÊh?adUF„&ÖÞ-É»FÌ óVº¸eìCs ¿5Ï–›ÍÅâ‹™…C¼aîò÷o›Íö]s½?lï6KlÜÃ]N4Z´YÉ…k®6û»Õñ‡,ò$ËxÙ¬–§e#uEDšyEÀëî¸^Ý-7Ç€È4ü-pB®¼\ïœó†^õhLó²[­—ø |œh$¾‰pj¸l^.ŽvZǤñ¤Î¶0#-QZÙ#]ýäLXütÁ ã C›¾($~Ò«9‰TlãNxÔÛ<Ûw××ë«u·;a7HYœ¦„<³þüxZo—§®wSóæ´bƒÏžûCï7Õœ~\nîºáËßïš/9ý’}ÚN[{×|½;u‡«îà ‚­SÉ&6)•½û|#˜u6o; È^àÌsIÑÊYž;Dawó¹;.Z#¤Q¤„ô*¦”‘}hD#“ë³G1Å¥í5[â¾× a¯$°Û€…+Í¥A“¦ ,ª4/`¹×þ°»ýÅqÝÖ%Dðy7$gN)= æ,˜aUT?v@Rj"^8ÓB¨Âë…SÞPn¼Äï)Èxb®b¼3鬯q Š¿3NBGžõng¯W¹ìÚ WA%âr”n€*ÓP?ºOÝi€ŠãÁ¬Î&3Ød •T ½§6@íõê²Nkªô 4`áG¡¹@[5åÙç/§åi½ß-ŸëÌ$-ª< æ¥Ð5h3Ê\䦛=ÖN9ËPr<7µv´{YkWcíÖš³Zìôå²ØÚ­–‡U™èBý¸ª¶`"~kö»¡x'öãUwsèÂN5Ü4ûëáã5>­öÛ©ãôònsZØ uìu{¼½[ºÕE8¸1_,™')ÓŸ®~º;žºÕc+”·Å©/ÚèIÔË«‹¼†‡d å¹/—£]ña ¯¤m×[ýë‹'ÉP0þ¡õ¢ ‰eUFë‘lô,C9ÎVÅ2ú™ÇX¼ÁaFX†ÅZ¯¯ä2‘Œ Täˆ߬ãP“–ÍÍ]`HŽJyבּM¨òÞ鯰A\çFïk«ÊLj8—çÈÛL x%ëC‹ñÔËîƒjŽášÇ_C;Âiið_=&ÔJ…ˆWz®Óla¥å}½°K"‚Ðì'D¯O@úv‹Ê ‹Mwøa‚SA¶ú½ÁYÅÎ6(áF) ­@sOàQc“Å·›°Ñ7¿{`;×a?ýÊ{;ôØvzÝÉãn”eP¨ÞãWPådÚ{î‡áÝ0\Å¡ÑÚƒ NSÚöšGû]©`W³lðvfæ5]† а£1'µïSk‚(ÿX&»2:MÐãã£_ƒÂ?–Év˜¼šà̃½ëß„pz:U)ÚÿKï‚?„ß(„w­– -=J+4 ´XrØ"Ãúè²H\T/î4Xàb,Ÿ¸›1# ™v%ª:µª°h°¦Pã-fÆ´L*)|+ÍDi¨÷¬öl¨¿¨<@h¢mÄ™íž=%Ó™îDÓEO¤$4¸ÖLHgvƒg7ùAµedDF²ÜÅG‘«±´hhÜÇ‚.L(Àï1äcOÀwEçîCÞ”©ý!V/O¨ÛiȵO7KÃXz¯” ½J ny0Ô¶ÁçqÉ­×){L²}“ls¢d;kÛ/ Ì;m› ­± –‡¨ ±ÐÔÇñj´ÕZGÜá¡|„+§wZ‚ pÑVÈæ¾FiqÅþùüédôÎBá)Gö¥ÿÙ¢¼áì?:O.8’ܺÒÿQ-SCuó ø¨âYBˆù¿R¸Um1œZ¶•äÛÔN£ŸsµRÕsjyÞ—4î¯qÅŸ£«Ð…,M€E}sá«­ e-„ËÁí•¿ŽiV‚ /Sàм«ÀUÁÚ ®m–?]›A[•Ž×1O¶™B•Þ¾°åZ°˜SñbÌhEd@°s–€N´Øp·²tïmkhVîi%)& áÔõ(hÚ&Ÿrò:R'CŠñ©Kœ“ŒÎ„ é’IšžÂ«,ó±f÷÷2ùÿ!ÿÉi¿Í+ÜøÀ·9×»íS,X l*~)óê‚–Êœ&fBt$nÍþû1FZsäîmLcƒKNâë©ò-£^¯Â¤Z—¬!sMŸ ø|2gš“0r(\U¬°.^¨i@«2¹®ÛM,ÌŠ+©éMÒ‡ëprA®š›a!ƒµ“t¸* ÕÑB蔯!U ÓƱdï;ôaü•C+Ñð j„O[ W/Ù‰Q[%%¨]5úºvDa¨ç¯ZX@ÃÎq\<ΨfÝôÞõi_ _g»|—ä¾®—»ôدQ¨ÒÕÔ*3¸©’gœ;A’Ö°*°ýÍôW׌áxÝN¼¤Ÿ¦Îðp6×EãfjÉ¿2UÇ~êþšnìã¶ç<Ý Ížn]Z[q3¹ŒO¯1Kókiz|y5û7?=)"endstream endobj 131 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 165 >> stream xœšeÿCMSS9‹‹ùùJ‹ ‹ ›÷¿¼¹R3Oøˆù-‹ ÷ºÌ÷“Æìè÷ßâøF÷Ùñ§ÓÓ‹Ýòûßû#ûýJè÷Ï÷4÷RûÏëüRø÷“÷'÷ÏSCJNMû 7Ÿ ‹ ‹ ‹ à;¬endstream endobj 132 0 obj << /Filter /FlateDecode /Length 3656 >> stream xœÅ[m“G þ~Eñö³Tvè÷—@QeÀ¤ ’Éñ)¡¨½ÛóÆÉÝíùÖÇÿIý¦žYÇN€òg»%µúié‘züj%F¹ø'ÿ}}w¡FWo.Äê“ 'åh¥ZyëäÜêîÂG1S_Ü^|y¼}+‚AõMqt–FYôh UßðQڙѦÐZ£G”Å4³B £·Íªüon”Óa4.2£‚ôc²3ª*oºQÙ¨ª®ØÄô‰ÕþâÕ…$W®ò_×w«?\^üæ åWqŒN¹Õå‹‹äf¹’ài`õÂRÙÕåÝÅWƒTëM”RB _®7btBè8üE B©8|¶£Š!úáïð¤aYqøôùz£5âðìó?á?Ô‚¤ÁZïÕðÏO× ;\¢<%D4¾—t„'‘ ,ñÝ ÏŸ7Ëž}‘Ka†/ø ç$Iºè†OÐà¥óÓ!$F#a±¸Ãò#®Š´J¡¢2ÃßPˆÞ€þõ¿.ÿ nup«3èÖ(GcýjÛµ «Ë¸t)+×)‚BÄXš¼ý:h/Æhc~¼¹Ù½¼ß¿½9~|¼¿Yo ÌÂÈïï_ßžv×$¢—TÑa=M£’>&6Žá·¤1‹ÎJ%Súðxóææ5I™>’B\*ÅÓ™%o¤ŒÐÀt>ÿìøzûúåá~ûøvY3 #ªX4Kô|öoÝŽ:šëí¤_~{13κôœœŸM€ÁÑ %S2V„ñz¸L~ÐÃáß{!‚Óѵ–~¸Á×FçÂð˜‡Çáõe ;àË0Â^’ˆBp Zy˜çæ{|RBê$KÇhŒŽ ÁIoað: §ð%‚Wã°ß’©¼r8•À9ɪ êßÔÀ~…¿§@ÇSý}{ËLC%‚‡± l“2 oÓÒ|ÃáEæ„y§²;ŠcÀ ü´Jî+CëŠo›Š_´¸)”wÃGy@”Û5ÈòAi®ì~Vì ¼µÁºàAo6ÜÛkz¤öÃuÚB¢)3]Œi ¬Z[xLZ_ñª!…ˆ "Á§óÈ‚u,0Ak­`k81€T+ÓäG pÂÆVG¶Ú› `9Ì‹Ó}„3¸ £UͰ%ÏD%Às»ô3á*ÀJmž`´%‡â,ˆóÛÀV˜|«H@¹!ëÐÖ€ Jƒ9hnpàÙ§ÙÝa0“âÐ%•‰q€†Ðž'Â-Iãg-y*:H ?¶E_·5mïË¢äpEðÄxî¡ÍCÓÈÜ}…˜…Ôé0ÁKнx€8X nE·QA´3ƒ‹ÃÝ(OÇúô²>íêÓS}ÚÖ§[67ëìbeQšñšc%o h‹–°à$<*ýòþAζ

½¸üõWÀd‹á¿_o¬R"%[M;˜‡™¼›9òÿ>ë»ùÐPÿ®¾Ü´—?ˆ)O€Ó ü)Knsïš’5!‚öÖøÿß?ä0ß‘øÿðñ´Dí¡þùaM0 Û@®„,ï–#=üœd‘á ÞeZ9ObædܹT- ¢ô^‚å.½uÀ—ã;N ú½S¬óÆû¦\¾ô'|¥MÙHöT[1§Œ7-ï0k:Ko…ÈT8ÏË™)Sáög–Ê›öÈÄ¿¦œóé×Ém°*ÆWó†AÄ_ìï×uôáØM%z­ v‚Êe.|ë‚íø™QtÏ^B)à0·— ½m…ÔM’–,R¾ò;%Jƒ‘š#iZ(pƒ]P#àDÈ›{À4"}èËRz •ÿðçä/©¡Db%áþ©–ÞTšiEnd}Z™(¿éˆ=J16’“¤tØrŽ»„€Ê­p§oÒpÐp¸â4jRÏåg”­e°°§ì,¦í€ZÒrpø ú¬õ3è;ΠÏRë£/t 'dØ^eÒ§ßV6‚4p‘BÚF[A¡é*5  ìÅÂ` Q¬& ¬¢;¦@±Õ vF切FPô¡„mÍwP¸p7bYLÝ¯çØÆ ó­\>M]?Ì$¶‡³™k–ò ‹d ·hŽZ¢Ñè'€-;)dÒÓwkk`qHeö'…™´L¡JidÑ×Zµì<ÐÞ¶ŽÌá‰Õ»»Iüí*Ân¥a„ý—ŒÝÖý N"5>³š+¦…u9¦‡%Äï›6‰ãõPŒ`ÉŸQäªõ@(£3pî[Fx:AõLà‹œ‘ó]zïió(ü÷/[êìgÚIt/¾øÑî2yM³I0ÖSœ"l“j4ï«lÙvïÌUãS‹u™Q%D¯Ž4ålp_=&‡©“‚Œ³Q-¦•☆=î—ms>›IuÑ;H² R¶GJ^Î2¿0nÀ»8Û‡EXˆœ.t±LuOè`ÇŒ*p½ŠÑ+q²‚þ'ŠØ"¶¬Ôîš«lM4âò"MäŽé£yšhMn©²¿À·Ç›:”·€¤E9¨ð&‚PÄÇCz a€sqv¨xÙH„âN§€³4œ´mrrŒqÉo[¾j~(¶WóÑmÅvÏÒO‘7¹ÿ¯ÇZž°“ÂGæË¯Ø]N#Mî9ã”årƒP'`úËú;cŒ¸?Pz;‹ë:í0]«ò¤°Úwñ„Ó:`?‘ÛI)-ñÙwXÛ²» <,`“4žóß›d6¢î’ª!:ù1]LÕèËÌãy”Ýûp3>JÖ!ÐÖœ[á3EÇÕGÉt?W‰œ¦Òs•HG›2YK†h“´@€%ú…(èH,î ˆAÁ³.Çþ|‘yr-•Eôˆ\¨z¶æ{4ýiÀÛ}$ÑÛ'‚‰nài{lqm!zâÄ”g0CK±§‹HìÂ¥JL;AVÙ4 L<©a3ñlR¤ÆÑNœé­ã l!)·€aøpøŽAñW´`m#ñ^š(]ש Yj´pÒwÝ¡ªE™" Ýw/ð­¶ ˆ×k 2šŽAZ¬ù¯`7íVìªÈ-Çô.9ÞIÓç{:ìÀV ¦Ù²y‡)§¯T¢r¥ÉEÃf¤øãûBÀ7È‚Iî«øºnøbaì©«aê‡ 2ö©ù6½ l‘©gH©³®àÅ^6˜‰ã{6iÓFûióÒcVéºd9ëÜu À/ž¦ö’²©J¡¹§dÎD™Ò'AM/#Î[æ†>y÷½hħ9„ƒòš;a¤¢Å`ß:A­…yÒ(Íço™Ðøm×åèOUt–}ŽP“"†äÞrå”X–õÎO®œM$š9éyä ŸzTz¬ÆªÛRaÆZä5VAõÂz§¾OâbtËÑòÌM¤T@Z÷â:= Hƒ¡‘°J4N®íNŽW¾µS!ù-L¯|qKÌ{ƒÅ›ÅH4àÛêzN¦­qìÜÄùÒ}[×CŸ²ûj K{jˆ¾eØdáò˜ä!aÎg”>˜c,¦5ÃlšÒ pcÔrÜ\áSy`p½mÔaJ)3aàŸ4MÒˆ6Ž)s³ÞŸ>`Y²qlAÁè ~•5åÛ­q;M,‚¥³Oíš…€zÂåj}Œk Øhg'¬Ž=×gÇëj`ɼˆŠÉ-Hyæf°Øï{²PÌÇ$eñ;2%Y aü\«b¶‰8ËÃ(-d¨¶°)m(NižÕ´®—X\ uQòe,d0h  åü¾eðI•]Ifž§æ é׳@X,p»$9åx|vgNf±~Ò5œ@’¾kd†²`¹M„ÓZßW?»¬[.6ˆR… î8Q_yãBç‚/¬»|ÌqÙv–ü²Ë#i’g]G^Ú­Gï: k6üúX%o<Õthm×de8óÅVqÿ´¿g|þPpSdöÑòÀÎ9k a°T‹~·úVdÍ x\^ó± •ÐÔ/Ó6=»ÝfÍÌ]ÒÐ]o.t¾oA‰‡>¶LŽ…Û†…·IGè›ç|‹U•åMBCÆ2Í ÏRqÙšW8ÓÙwïÒð`S}*@‡"7`Ò{Fç ³À\ùâ_ô1¢Ü»’ߤCzC¡[éⱯ!˼m¹ ÇÏFÝ}l:Þ»?6MÉÃÆš»³+l޹ªÇÏø^´ ÆFL?†Hî§m© Lç»çÔêCÿC (vx¼è?VÐ—ÅøsÌ ì½ÚçK9)³ÜKïl±ïÎ$ÔëX¸Ze©û4ÔöWÜ{/²x­ÝT8õ)F,ö¿0¨»S; ,SLÄ eýðtë5 êSÎ0Gd¢B¿«|=YÎnÉÿ¨áùåÅ?àϵY7^endstream endobj 133 0 obj << /Filter /FlateDecode /Length 1796 >> stream xœíXKs5¾Oñ#T9Í+ÔRëu€ªP *@p–⤨`;!”×€'ðïùZ3#i“±#åƒ{[­~|Ýjµæwe4)#óÿ“ý`5gõj0ê‹!iOVEH§ öCÌF'®ŒóáÁ"é˜HÅÀF; ¡ÊI”uðEÊÛä´çNªrz)Xsê zÏN‹®ÎââVÊIGß¼š÷N—4‡Ü9•(êdèÀ©&µp¤f§ª¹Å§ÎžQφß*PªùßÉ^}º>:¶Qeƒ j÷t˜`&E€Ñ›¨ÉzµÛGâÍ69mìø`³5:ãòø¥&'cm¿ÞmsÊq¼Ê!¬<Þ;Úlƒã)w¿ùL~XagRŒvüþÞ&‰bãÇè³ÆdއºE#SðP>©´ðꄾ9jžÝ=ž “áñ¸:*š(ä0~!§L!¾.RÔØÄ„`% ±™”¨ŠU26[¿%d"Ãþæñî+5÷°2âeµ»7ìÞ;¤^àñ“ÍÖ[«3°ø­2Ï+õk¥^TêÑXÉ“[·\Wê´RW•ú±RO+õ|Å\£ÎVô}Øü7Î\®˜»ZqpÕ…?V\xR©ŸšàǼS×? ªš—+ÏW¢?+ÕasÔÞ'œ´Ý)ÎU ðN–nÉ-zJöž¦  ¬CˆÚÐøçŠùø_Ã}}k ë‘TÃ Äæöo ·;{q#Lœé|ý <-¬ýªÅýJˆ­´ºó×ãü&ïü þû³ñhÓ“5À÷×Nmçî¶R´–EºAËD¾µÓ­Á¶–‹•x;/^MžYó¸iï+pm»]ˆn h­7ü±bòÿÿ¶-^21Ÿlƒ““ýjÅ…ËUÖò|¹²»il•×ju«Ûï(eÝêp_;¯VÃjwØÝJݫԃJ½^æG»á;™9y‘Å™4%å(1†˜úÿòLý .¯½Íì1†“ÂQ¿”qÜ’“)H¹€¡18L¢ì°Í5ŽŒ¢oJUWn‹”OõR §“rÆ‘LºMªrz)N¹—Z8½TƠȽÅÊé¤^¨‹±“ºmÜFsLx D<ºyã–¾é˜ðØpÓ¼m6[ö.ëäÑ—f’FžIœÐHäá1’i)¥lxå"ÐCÛWŽ,5Sü]‘J¸?9TN/Å–Q¡“Z8R­³¼GªÔÌé¥<Å8½·©…s 5ûÚIuÞÿ3¤å­ÀM1#_,úˆIÔ[A•¬Ó.Ž[›1²S()7³%ÑTRð&ÀsAXoƒŽ¬¬5I[ƉùÇÖZÈ(;¼Ê4³üûüù‹g§êåÆââ%2>9¿>»*n´À|ÒµÏ^`.o¶ñøìêùéõ“ó«Íî—ÉárÌÿÖérÌ* x´%@Œ£Uaæô†ãÿfâ™9âmu˜øäå³Á9<1T¶Áö¾çm~–w-G´¼~óX¦úû¼×{ yr5õg±P6Ìò¥ãT8~±71ý–‹‹Äâã¢á0Š“á)`›`˜¦µEJIá e>¼eÏ`¼³ÉÊ;¼b)ÌfÈó6¡JÙEµM¤]àòj@ýbIÒì£B> Ï|W¶@‡µ¨6‡²Ç붬ð´Ó YÄ™Ð)g[–|QÆ:Z‡´ L~Z eS 8I¨a¯cð¨0Y‰²4ƒAqfdÌÑ´%É^Ï:F§¶!£Öp÷ÈJ.+š‰b†cœö É‰¹:r<Ò6'¯©`€¶Å5ºõ8åaÒF„CÀwÚ.²2<K@H!šÜ¦Ú1VRH.L ~A.£_Át_ž½›PpÒ; à¶Þ̦âä¸× [Ù„‚\bJvr7Y¤BÇ$Ǭ,MH ýd‹ H ÊÎy@zIµäËg?ùnçzÀÆ©°\Zž,0°ÀéFèÁ-ÆlACÐŽáŒØgc|ØHVË•¼’¨Ûî‹’Ça/Šfîi`™SÆÔ'$°rã³kù®âs6ÖcL?§¢¼ËÜuA7ñ8n ¦³ÉrÊs^Þ×÷E#jÈúˆ™LrËÊäûã0oåæàA4Û€¡<É:Ü8ƒh2>'«.ñšÑc–O’“2ÉŒ×ýxÒ¬œ—Ȱ`¬èí.Û^âY#;îóæóE¯º÷e‰€òø^/ó¢|ÞJÁÊ3E¾håLÄC¸ðŠçpd|¹A~|f{“Ã×`ƒºì‰)¦%6i|*ˆšÄB_ÎyIµ€©¥´äåâ9»äBIËLþÚÈëFž6òj-åNŽMý¤Ò iÉ;+Ÿìr@ï+ 'nq^”8=3´!Õ„¢;½!©ÀW7uTønø ÷©endstream endobj 134 0 obj << /Filter /FlateDecode /Length 2906 >> stream xœÍYÛŽe7}?_±ÅÓnDo|¿<€$ˆ@ш™i„AѤ§&ê3Mzf„ò÷¬UvÙ>­NDÄ ê‡vÕYu³Ëå²÷÷›9ìfø×ÿßžOîuû÷ÉlŸŸRȇÏvË1Ù£¤í|*.©ÖÁ¹?½>U“Ê–S0‡w@ N±õHQPÑc2VL0ø1.öbÌøµ\ØS¯J-GŽ‹S±ú”|9Bª‹OÅæ£»ú4Aqé> kêÒbÍlßž¾?Y™È­ÿ»=o¿»9ýú•Ë[=jri»ùæÔ&Ùn6ø#{L,œ².n7çÓß÷Ï^|öÅUqG­iÿÛë+X­!·ÿñêËcLÈ~}uí½?’uû_žBL-ƹº¿øœT6¦$ÿ›?Á‡h ‚ÅÁ›·°úJÀµ”’øÂaçÓQ\ï6^Ý|GH] ×ÞÅÕíÚ†£” ZíaLMaÿíÕutªØýûÁœ£÷cô0Fct£/÷1¼£ûg„?ÑÛ1ú0F_=cäîÜ»g´üjFòÃ3.¼£¯'ð7sø‹ñû«ŸmúÓ3V6¾¼ºârZ{ÔívóÅéæ—?cYîŸqçý3nÿ,Kô÷7§—Ü„5¦#Ø-˜œ±©7Q²ßœ3åpa{¼Ûþº½?Å#:lÔ9»a–¶ï¤ÞSÌQó37 ‹ÔäÔÚÔ–z”ºÅuÞoûY?èÛS°˜ó¼"öW™ÝlPB9p9Ñ5äTàæ´ÑéÛÓðBÃË®áI·¨QÞšzÄ´…ãá b›œ”lio-Ðt– í­«œB¥o!Áâ½"BE)^4(ÝlˆDç„€bµM >!/6M õBê¥j¸ŒCbCÙã …RÃÁ=ÕDNºw(ñ$Q£(8… î$lº„˜?'øºwºixgÏéVñ’ñ{ê;Mf~Ô]•¿p_"*´¶èdÍyáp¡¤ÐÙH3 %eاAÃjAñö+"`Õò¢AéfƒÊá¡8ç‹ !‰Wúïꢊ_ÑÒsWdù°?ƒ¤¡rÌ0æm.F2{,‡E²çN ¦@wAê¡Ê_ÆÐ޳[À ¬éyáஓ ¥V/å8¡àHf±ƒfžØ(+5lâÐ0éfƒÊI2S2NhµÑhgêEãL/›†§qÈ>Ãypd»EÃ›Ž”ŽÁá]ž¢cÃE#œ÷ì1ÐHÉŽ4ðiÄÀûá”WºY €r¼—B¸ÖQ ¦@wAê¡Ê_ÆÐâB$Ú@¾¹ž)Dz°âÐLùš…•‡w„4+íðDàÎüÔ t·A åàƒî¡Ád×èn£Ó ­{¡ˆáw×ð$‰ j1_(ÎÒUž'ƒí VÀ£9à ½z©§Þ£½‰ƒdý.ŽWô @Ãg‚¡@éfÊ1íÒ­JͲÈÝD')Ð}€î¢Ê_„ »,VÉŸ€oŠç…ƒª,GæíQ87Ð5%,;·~#yt⪸üŒ4²‹p'›v¢;#I_;„ù”Så&^­wÄð®+x⿬TFÕÅwUÉ‹óÂaf¸ óVxOÆuÕȵ2ãÚꉉÌAz @r‹|'›Á Ã1¯ä÷&îŠitÓßIâ»Ð .C°8W|,r| gAœ¤1þ{Nn­–ÏL>q‹×AÃnÂ4¦‘¤ lˆï ´v…¿«x°<¦FS@]P„º¨.ƒÌÙËéSh'óäd©¾.ó±œíW FÍå‰Ûi0¦ÕmE\y±U ƒn6(¡œ(¶¦† õzÚh4ÛJõBêe×ð$Æ&•èÊyáðÑ'^©\»«ë(õ-î×ã„Û‚÷»Á°úH¶íü»ùŽ<^‘};Î΃“ ô£Q¦Ï¡P˜p£SÎ*ñ~QVTç\ øèXâŠêœ…³Í²ðM”r.P|1iEuÎ*ã8K~EuΊҸ'j‰ÿn¥¸J×\.Ë-c,µP8ë\+Çw¹âd­ŽDTY®övaæZµ¡Û ±‚i÷“žYÂýð~[œÄ–ß)íÅg;©Ëè>Vùúu>í/Ïoî·—×/·?ß?|lÈ.ã¾æ-Ñã¸Ýà(N\“ù5íæŸwwßÝRüÓ›÷ßÝß} üœ'”Ãħ;~jô2Oû«»ïÞ~zs/H‰ôþì¡Â¾ LfNjÏ«ÎQpd‰_þødE[S Ï}áÄ•”wYá?\ñqÁšT÷w2Œ6úýÛOük5.îä×’SÞïø©“ÂqOÇ„—«ö™2™Åª¼¸¯ß4_\q_ÅRËþ@IãÑÛïgÂ\º²¿ÛܼÊ~u]ø>]íþ/ùŒjM©6줦.í_nq '‘ì ¿^áŒ(ÚŒîŒ1ÆÆ ;ØZ»¼BK‡«ƒÛ€IÏ7øriò~êXŒlf›×h¾iÜZàé|!nÓö:J ¦§o€ ÙeLá§ÕæÏbþC÷Ú¿ylVqÝ´û¹ñÑÞï·œd‹Ó/_ú=Ô]˜yÛÝŒžð#Æ(]¡î=ˆ„›Cs×&´²ë¼¾_~Ûã7q?/>°€ É·+|Õ¾¬OË¥r‘Á|Í«úÅ”QÖ1¹e>ÈŸGå¾ÃsøÕÞÏáùÙ4vH[ô¯=K?ûfÿ‰ ­Ãendstream endobj 135 0 obj << /Filter /FlateDecode /Length 1394 >> stream xœWÛŽ7}ï¯è7<‘Æqù^/‘Ù å"{AÀÌNØ‹Èçç”»Ûv£!„Æ}ú´«ê¸ª\ûy4šF#ÿæßÓÃ`µçñË`ƇC$Òì˜B$ãx}öÃË!'Ò)Ó˜¢7ÚY*’‰u …lv:øŽU‘žå¢×>wCðNË^ÅÅ­ÌY§Ð¼šŸ{§¢ËÚGîœÊ”t6´rª±dÅšªæŸ:{f|?|¨H9Î?§‡ñ×Ýðó ›FÖmwÃ$3È#z“4Ù0îÃ+Eq³e"§U/7[££1ŽÕ#YÎÆZVlŒ¶œ9©?±r‹Õ““ÍÖ98žYÝú›Æÿ¥H­Að4z›é¹.duIOK¤B:ÒŒDʨ7±,²>äžÕ#yJuëP¯ÈØŽUdû‰åsϪH–nSHr6Éõ¤q&Hä…-ê/õ¬qVÒbb%hF«+!x1[ö*ÄŠä}'[´¤•_aÖi²èŒ#”bÇjHF³J‹P¦÷«!¹´Â²ÎËÛŽõRXÎ;VCX»Ù"N^ÓʯqªÎ{Ç¢JǪHF5Í~EO:öÚ7„üVBCt«-I‡I{—aݬblX<±ØG±Þ±zdNBo|Ö¡÷«!Ð>M=äGcCªvòÞÛ@è=«"8í9¡=äÑ©÷«!–§œ(Õì‘ohK.† 9‚žëï÷«y©’¹táÏȪº*«!~Iö%i«"U“£Y¬HÇúʋޯÆúÞ5ˆóÅñù„‹»»-r.âôít†ÍÖ³´tEˈw^Q(kÜ—YYÓúgížõd$TÚÔï 嘤?öVYIúžíY3Ò³…(:5Ö‚¬X½èÓ±f¤gÍ®6Rçû)*jnEV’VPúú?r½H*:zcñBٲĥ”_ШbCóÚ~ófúaÿê‰3îcçF'n‚RÜ{ö7'Da•/7(»Ì!©Ûûó«âN /dô Üo˜¾0VÈ÷êÁñøéÞõxöáúæíåéùf÷±™“û- qÈ~ίýáµ:ÝoÏ®ß\lFÂ> stream xœíZ[o%G~?¿b´Bbìiú~A€$ˆ@+KÄF…<8¶c;ò%ñzµì ¿¯ª¯ã4Ža÷„üਗ਼ºwuuUÏù~‘B-’þÊÿ³Û6-ïwrù|çm&¨%8¯DôËí.j/|J s³;Þ%„·q ÞJa4¨&ª$¼c*gðl¢Ši¬ÄK7ès.àmÜè«VÅEpƒQ1ÚäMÖ§Á¦¨‚ˆR6u¢‚ØÐ›š¶jÒ M.—»ïwй”g·ËoOv¿øB‡%‰äµ_N¾Ùå «EY#‚A`a”Òn9¹Ý}¹~vôÙ›}Ô"%¿þõx­É:«×?ìX)m0ëñþ`Œ^éõÏOIdŠRë´}NP2zóÕÉaƒ“ƒ κ¨aÇÉ9´~ÁÄ)Æè3ñÆ`m¼ˆº¯ÊìO¾%’4ŒvBÇå ¬ˆÑV©JH™¼]³?8 §¢Z¿kÈ·íéC{ºmO_w–_5ä¡#O'rD{ºkOï&²/ÚÓC{ºnOgíéoëyÓžî'JÎ'fýd‚»˜/·úù\œúr4øò‰2åY·fGã§QRÒ@§ œ‹¥Í}M]î¡â­:Sc‹ýe:Ý”þ®Bµ÷¿lOúùõû±L~±È¯_,rVÊ©ßìþD³Nr^Xµqmv˜Á‚Y´–Qh»<\,YîvN8 ã¤ZpÌ-ßòX©µÂøÅê–fªŽ ¶,Ú8CC—3ÑgØ[¡}ƒÏÀ0uŒÑ  Î:ˆ£b`º„ÉMæI໎ Gµ¢RT+«„­gÔA½X-ð䛑Πç«\¥n€ÁHÓ€¹'æL'0 Zc¤HœVMÁ´–ã 8Sˆ˜b qêà -†Õ£…³!¢¢QU‡ …!¶$… Íà„£!ÁuÓÞGi2XØÌòAßp üÊïh–d˜4T *Eµ°Jظ@‘´JIòÞéóU&,ƃ#’ëVB‹ m%$Ò I\ƒõÆP¯µ{¢”¿k l%ÜNèR ó0+`úŒ@¶(~_Ø‘ ù$új@%¨V[(Z")¤_ §$»Õ0žc8 =&˜ [Ìè¡ÁÐ+=k¤ð\$T8ë`Ž‚±¼z]‚áÕê:2LÕŠJQ­¬¶~ð–±^ÑMŠ• q¡+–ŽÑˆBk)+=’ojSbºŸ#iÞ•ÂIÅ›®JhpÖŽ†á‹¡¥J0)Å g&ÙŠNQ­¬¶~°oJiáhSKä9—ƒ†Ñ’6—Qv˜2ˆ=ÏU ÃPK—Ev pˆdø+œ5CÁhº¡B:&ºBk L Ù„FP,lü[8}`±%QÊ,×”/Úó’JÝÔiï—†á2§‚PAù6Íj«H¨ Øí†vµŠ‘ŠmCJ"WX“¼ŽÃH –p%„AAU¢4îæŒÀ’/æÈΆ€Ï–·}¢ƒËj8biqQ›ƒj0¢“Ðx=PPàu—Ðଂ8 F¥DAj•WÓuøl׬¨ÅÈ*`ëDN,œ92¡*EN,*Â@ ºxˆÊgsÇptØýXUGW{‰–@{˜-ޔӅ¦v–_52)Gùfe6þvÀd÷à¶¥#{NÐÒÇyS` ŒååëÎÑms—Pᬃ82Æ$ Qd €)"UE9ôlC{ŸMìì['ÆòƒúŽÓv¨>\ÿ•nÕÇDTÔçV Ü«O£(µ¥Ih0«èÅ%^QÐÐÖ408”žú¾ZXÙ7.°W ™¢\£¬`·x#…Ý vÄ#½ôˆá…Ý —3ÄÖ0gÅà?e|À†N\†¤c¡À”Ï8³ã@÷躄gÄQ1Ô-E•`#ÃàhVTŠje‘ðÄŽŠS^P+† Îa‡ÚhƒDŠ¥T1¹áüÂYl¼‰¼ ¨¿Ã—7^&*¬³´TNøÃJñþ Z¢…¬@ßਫߘ‘Ç–7°Ëp}Rîs2ŠQ¤R1˜º#ÕrcF%¹?®˜ •GF*;R̆*au#QFŒ4˜¾4Õ°NT1*‡ ÌHU0*zg7² f¤ª^wª1/[JZÆ­§¢¥œ»äQ’x1±ÜÏZ¬?JZ.Û±¾c#V-âPnU¼‚žšUéÙþ«‹ŽÛÝR0(§1˜òÙìãÃÑÅrö°?(2UZ¯/*dÃz}Ç6ußQß=u2XTô÷YÈÞÆ1Œ‘ëéõ]÷á£/lz¾ðWrk©­áÉÿóÒ} ‹°‡#$Ò0„^ë+XyÞY#•Í‘Ùဗ±0gb _¸èry’ ÛµbžSÕ¸©³u#sFl4Ejü¨©aà”§Ö YŰ×ÜqFÃg…©e±ûæFA®ÆAB…³â¨Ã+]Î0êÈ0qT+*Eµ²JØúÁ§r•¢iDȾåÛG#‹ä+¨ˆÓ0ˆ«ÿ¨šRo@¿%pÔ; ·D®G÷ËÛ‹‹óë»KºFUÔèÃГ7»õ¸ :¤åTŽÍˆ³ ñä7t{‚¦6güï÷hˆ¢’ØÌ×üè²ÿòý¨Á¥$µÃ¦>Åà}:Åq¸¹Õ‹Nî÷ù—^jùfýPû™]êÄàH )•Në%°˜n1ᮌ/ŠÞÒ3 [xFdB.ÂD2K*¼XïI?È¥£M–î–ð)˜[¤K~½ˆO;ñ#qD{­ž«ÖCÙ%üAÙ´aüŽ”ã,Œ‰¾KcG¥Ò::ó¸G…Ö ßïérSj½’™è¿UˆÒ»*Œ~¨Ò8Pð¤úˆÐèŒ/Ñ¢ˆ¯gädé°>Œ¶e_ªQ/Zh©–À¿%zü8†ñtƒí†œ‘>åµCn:½ Èá¥ÃTáÍúM§¢Ûy©€Ž˜‡aÿ (ä‘òr» d;šŒä"âÎßèZе„zÆDºr×Är¨<E÷n)s¾'r#e –“…EuLŒ«Qà=8&µ_y[€T¼®C—/œ¡ØÅ>†M˜ÇçóÌIQ &kÍØØ~ÙU‰Šáú'1J¸_endstream endobj 137 0 obj << /Type /XRef /Length 161 /Filter /FlateDecode /DecodeParms << /Columns 5 /Predictor 12 >> /W [ 1 3 1 ] /Info 3 0 R /Root 2 0 R /Size 138 /ID [<1d9c9fb1a53a3252d5427605504667fc>] >> stream xœcb&F~0ù‰ $À8JŽ’T ÿ3yβÙäAéŠÏ Dо‘Ì»@¤ˆdT‘ì.`öu)Ë"ÅÖÕ‹›ƒHaÉú ,"‰DÞ‹œ«™ "ù€H‘É`ño`5·$£Ì°™oÀ"©`{€HµÉÒ"¹âÁºþƒÝ< DrøHî% ’m˜]Ì‹,„ endstream endobj startxref 102111 %%EOF HSAUR3/inst/doc/Ch_bayesian_inference.Rnw0000644000176200001440000007256114416236367017703 0ustar liggesusers \documentclass{chapman} %%% copy Sweave.sty definitions %%% keeps `sweave' from adding `\usepackage{Sweave}': DO NOT REMOVE %\usepackage{Sweave} \RequirePackage[T1]{fontenc} \RequirePackage{graphicx,ae,fancyvrb} \IfFileExists{upquote.sty}{\RequirePackage{upquote}}{} \usepackage{relsize} \DefineVerbatimEnvironment{Sinput}{Verbatim}{} \DefineVerbatimEnvironment{Soutput}{Verbatim}{fontfamily=courier, fontshape=it, fontsize=\relsize{-1}} \DefineVerbatimEnvironment{Scode}{Verbatim}{} \newenvironment{Schunk}{}{} %%% environment for raw output \newcommand{\SchunkRaw}{\renewenvironment{Schunk}{}{} \DefineVerbatimEnvironment{Soutput}{Verbatim}{fontfamily=courier, fontshape=it, fontsize=\small} \rawSinput } %%% environment for labeled output \newcommand{\nextcaption}{} \newcommand{\SchunkLabel}{ \renewenvironment{Schunk}{\begin{figure}[ht] }{\caption{\nextcaption} \end{figure} } \DefineVerbatimEnvironment{Sinput}{Verbatim}{frame = topline} \DefineVerbatimEnvironment{Soutput}{Verbatim}{frame = bottomline, samepage = true, fontfamily=courier, fontshape=it, fontsize=\relsize{-1}} } %%% S code with line numbers \DefineVerbatimEnvironment{Sinput} {Verbatim} { %% numbers=left } \newcommand{\numberSinput}{ \DefineVerbatimEnvironment{Sinput}{Verbatim}{numbers=left} } \newcommand{\rawSinput}{ \DefineVerbatimEnvironment{Sinput}{Verbatim}{} } %%% R / System symbols \newcommand{\R}{\textsf{R}} \newcommand{\rR}{{R}} \renewcommand{\S}{\textsf{S}} \newcommand{\SPLUS}{\textsf{S-PLUS}} \newcommand{\rSPLUS}{{S-PLUS}} \newcommand{\SPSS}{\textsf{SPSS}} \newcommand{\EXCEL}{\textsf{Excel}} \newcommand{\ACCESS}{\textsf{Access}} \newcommand{\SQL}{\textsf{SQL}} %%\newcommand{\Rpackage}[1]{\hbox{\rm\textit{#1}}} %%\newcommand{\Robject}[1]{\hbox{\rm\texttt{#1}}} %%\newcommand{\Rclass}[1]{\hbox{\rm\textit{#1}}} %%\newcommand{\Rcmd}[1]{\hbox{\rm\texttt{#1}}} \newcommand{\Rpackage}[1]{\index{#1 package@{\fontseries{b}\selectfont #1} package} {\fontseries{b}\selectfont #1}} \newcommand{\rpackage}[1]{{\fontseries{b}\selectfont #1}} \newcommand{\Robject}[1]{\texttt{#1}} \newcommand{\Rclass}[1]{\index{#1 class@\textit{#1} class}\textit{#1}} \newcommand{\Rcmd}[1]{\index{#1 function@\texttt{#1} function}\texttt{#1}} \newcommand{\Roperator}[1]{\texttt{#1}} \newcommand{\Rarg}[1]{\texttt{#1}} \newcommand{\Rlevel}[1]{\texttt{#1}} %%% other symbols \newcommand{\file}[1]{\hbox{\rm\texttt{#1}}} %%\newcommand{\stress}[1]{\index{#1}\textit{#1}} \newcommand{\stress}[1]{\textit{#1}} \newcommand{\booktitle}[1]{\textit{#1}} %%' %%% Math symbols \usepackage{amstext} \usepackage{amsmath} \newcommand{\E}{\mathsf{E}} \newcommand{\Var}{\mathsf{Var}} \newcommand{\Cov}{\mathsf{Cov}} \newcommand{\Cor}{\mathsf{Cor}} \newcommand{\x}{\mathbf{x}} \newcommand{\y}{\mathbf{y}} \renewcommand{\a}{\mathbf{a}} \newcommand{\W}{\mathbf{W}} \newcommand{\C}{\mathbf{C}} \renewcommand{\H}{\mathbf{H}} \newcommand{\X}{\mathbf{X}} \newcommand{\B}{\mathbf{B}} \newcommand{\V}{\mathbf{V}} \newcommand{\I}{\mathbf{I}} \newcommand{\D}{\mathbf{D}} \newcommand{\bS}{\mathbf{S}} \newcommand{\N}{\mathcal{N}} \renewcommand{\L}{L} \renewcommand{\P}{\mathsf{P}} \newcommand{\K}{\mathbf{K}} \newcommand{\m}{\mathbf{m}} \newcommand{\argmin}{\operatorname{argmin}\displaylimits} \newcommand{\argmax}{\operatorname{argmax}\displaylimits} \newcommand{\bx}{\mathbf{x}} \newcommand{\bbeta}{\mathbf{\beta}} %%% links \usepackage{hyperref} \hypersetup{% pdftitle = {A Handbook of Statistical Analyses Using R (3rd Edition)}, pdfsubject = {Book}, pdfauthor = {Torsten Hothorn and Brian S. Everitt}, colorlinks = {black}, linkcolor = {black}, citecolor = {black}, urlcolor = {black}, hyperindex = {true}, linktocpage = {true}, } %%% captions & tables %% : conflics with figure definition in chapman.cls %%\usepackage[format=hang,margin=10pt,labelfont=bf]{caption} %% \usepackage{longtable} \usepackage[figuresright]{rotating} %%% R symbol in chapter 1 \usepackage{wrapfig} %%% Bibliography \usepackage[round,comma]{natbib} \renewcommand{\refname}{References \addcontentsline{toc}{chapter}{References}} \citeindexfalse %%% texi2dvi complains that \newblock is undefined, hm... \def\newblock{\hskip .11em plus .33em minus .07em} %%% Example sections \newcounter{exercise}[chapter] \setcounter{exercise}{0} \newcommand{\exercise}{\stepcounter{exercise} \item{Ex.~\arabic{chapter}.\arabic{exercise} }} %% URLs \newcommand{\curl}[1]{\begin{center} \url{#1} \end{center}} %%% for manual corrections %\renewcommand{\baselinestretch}{2} %%% plot sizes \setkeys{Gin}{width=0.95\textwidth} %%% color \usepackage{color} %%% hyphenations \hyphenation{drop-out} \hyphenation{mar-gi-nal} %%% new bidirectional quotes need \usepackage[utf8]{inputenc} %\usepackage{setspace} \definecolor{sidebox_todo}{rgb}{1,1,0.2} \newcommand{\todo}[1]{ \hspace{0pt}% \marginpar{% \fcolorbox{black}{sidebox_todo}{% \parbox{\marginparwidth} { \raggedright\sffamily\footnotesize{TODO: #1}% } }% } } \begin{document} %% Title page \title{A Handbook of Statistical Analyses Using \R{} --- 3rd Edition} \author{Torsten Hothorn and Brian S. Everitt} \maketitle %%\VignetteIndexEntry{Chapter Bayesian Inference} %%\VignetteDepends{rmeta,coin} \setcounter{chapter}{17} \SweaveOpts{prefix.string=figures/HSAUR,eps=FALSE,keep.source=TRUE} <>= rm(list = ls()) s <- search()[-1] s <- s[-match(c("package:base", "package:stats", "package:graphics", "package:grDevices", "package:utils", "package:datasets", "package:methods", "Autoloads"), s)] if (length(s) > 0) sapply(s, detach, character.only = TRUE) if (!file.exists("tables")) dir.create("tables") if (!file.exists("figures")) dir.create("figures") set.seed(290875) options(prompt = "R> ", continue = "+ ", width = 63, # digits = 4, show.signif.stars = FALSE, SweaveHooks = list(leftpar = function() par(mai = par("mai") * c(1, 1.05, 1, 1)), bigleftpar = function() par(mai = par("mai") * c(1, 1.7, 1, 1)))) HSAURpkg <- require("HSAUR3") if (!HSAURpkg) stop("cannot load package ", sQuote("HSAUR3")) rm(HSAURpkg) ### hm, R-2.4.0 --vanilla seems to need this a <- Sys.setlocale("LC_ALL", "C") ### book <- TRUE refs <- cbind(c("AItR", "DAGD", "SI", "CI", "ANOVA", "MLR", "GLM", "DE", "RP", "GAM", "SA", "ALDI", "ALDII", "SIMC", "MA", "PCA", "MDS", "CA"), 1:18) ch <- function(x) { ch <- refs[which(refs[,1] == x),] if (book) { return(paste("Chapter~\\\\ref{", ch[1], "}", sep = "")) } else { return(paste("Chapter~", ch[2], sep = "")) } } if (file.exists("deparse.R")) source("deparse.R") setHook(packageEvent("lattice", "attach"), function(...) { lattice.options(default.theme = function() standard.theme("pdf", color = FALSE)) }) @ \pagestyle{headings} <>= book <- FALSE @ \chapter[Bayesian Inference]{Incorporating Prior Knowledge via Bayesian Inference: Smoking and Lung Cancer \label{BI}} \section{Introduction} \index{Smoking and lung cancer|(} At the beginning of the 20th century, the death toll due to lung cancer was on the rise and the search for possible causes began. For lung cancer in pit workers, animal experiments showed that the so-called `Schneeberg lung disease' was induced by radiation. But this could not explain the increasing incidence of lung cancer in the general population. The identification of possible risk factors was a challenge for epidemiology and statistics, both disciplines being still in their infancy in the 1920s and 1930s. The first modern controlled epidemiological study on the effect of smoking on lung cancer was performed by Franz Hermann M\"uller as part of his dissertation at the University of Cologne in 1939. The results were published a year later \citep{HSAUR:Mueller1940}. M\"uller sent out questionnaires to the relatives of people who had recently died of lung cancer, asking about the smoking behavior and its intensity of the deceased relative. He also sent the questionnaire to healthy controls to obtain information about the smoking behavior in a control group, although it is not clear how this control group was defined. The number of lung cancer patients and healthy controls in five different groups (nonsmokers to extreme smokers) are given in Table~\ref{BI-Smoking_Mueller1940-tab}. <>= data("Smoking_Mueller1940", package = "HSAUR3") toLatex(HSAURtable(Smoking_Mueller1940), caption = paste("Smoking and lung cancer case-control study by M\\\"uller (1940).", "The smoking intensities were defined by the number of", "cigarettes smoked daily:", "1-15 (moderate), 16-25 (heavy), 26-35 (very heavy),", "and more than 35 (extreme)."), label = "BI-Smoking_Mueller1940-tab") @ Four years later Erich Sch\"oninger also wrote his dissertation on the association between smoking and lung cancer and, together with his supervisor Eberhard Schairer at the University of Jena, published his results on a case-control study \citep{HSAUR:SchairerSchoeninger1944} where he assessed the smoking behavior of lung cancer patients, patients diagnosed with other forms of cancer, and also a healthy control group. The data are given in Table~\ref{BI-Smoking_SchairerSchoeniger1944-tab}. <>= x <- as.table(Smoking_SchairerSchoeniger1944[, c("Lung cancer", "Healthy control")]) toLatex(HSAURtable(x, xname = "Smoking_SchairerSchoeniger1944"), caption = paste("Smoking and lung cancer case-control study by Schairer and Sch\\\"oniger (1944). Cancer other than lung cancer omitted.", "The smoking intensities were defined by the number of", "cigarettes smoked daily:", "1-5 (moderate), 6-10 (medium), 11-20 (heavy),", "and more than 20 (very heavy)."), label = "BI-Smoking_SchairerSchoeniger1944-tab") @ Shortly after the war, a Dutch epidemiologist reported on a case-control study performed in Amsterdam \citep{HSAUR:Wassink1945} and found similar results as the two German studies; see Table~\ref{BI-Smoking_Wassink1945-tab}. <>= data("Smoking_Wassink1945", package = "HSAUR3") toLatex(HSAURtable(Smoking_Wassink1945), caption = paste("Smoking and lung cancer case-control study by Wassink (1945).", "Smoking categories correspond to the categories used by M\\\"uller (1940)."), label = "BI-Smoking_Wassink1945-tab") @ In 1950 perhaps the most important, but not the first, case-control study showing an increasing risk of developing lung cancer with the amount of tobacco smoked, was published in Great Britain by Richard Doll and Austin Bradford Hill \citep{HSAUR:DollHill1950}. We restrict discussion here to data obtained for males and the data shown in Table~\ref{BI-Smoking_DollHill1950-tab} corresponds to the most recent amount of tobacco consumed regularly by smokers before disease onset \citep[Table~V in][]{HSAUR:DollHill1950}. <>= data("Smoking_DollHill1950", package = "HSAUR3") x <- as.table(Smoking_DollHill1950[,,"Male", drop = FALSE]) toLatex(HSAURtable(x, xname = "Smoking_DollHill1950"), caption = paste("Smoking and lung cancer case-control study (only males) by Doll and Hill (1950).", "The labels for the smoking categories give the number of cigarettes smoked every day."), label = "BI-Smoking_DollHill1950-tab") @ Although the design of the studies by \cite{HSAUR:Mueller1940} and \cite{HSAUR:SchairerSchoeninger1944}, especially the selection of their control groups, can be criticized \citep[see][for a detailed discussion]{HSAUR:Morabia2013} and the study by \cite{HSAUR:DollHill1950} was larger than the older studies and more detailed information on the smoking behavior was obtained by direct patient interviews, the information provided by the earlier studies was not taken into account by \cite{HSAUR:DollHill1950}. They cite \cite{HSAUR:Mueller1940} in their introduction, but did not compare their findings with his results. It is remarkable to see that both \cite{HSAUR:SchairerSchoeninger1944} and \cite{HSAUR:Wassink1945} extensively made use of the report by \cite{HSAUR:Mueller1940} and go as far as analyzing the merged data \citep[Grafiek I, E, and F, in][]{HSAUR:Wassink1945}. In an informal way, these authors wanted to use the already available information, in today's terms called `prior knowledge', to make a stronger case with the new data. Formal statistical methods to incorporate prior knowledge into data analysis as part of the `Bayesian' way of doing statistical analyses were developed in the second half of the last century, and we will focus on them in the present chapter. \index{Smoking and lung cancer|)} \section{Bayesian Inference} \section{Analysis Using \R{}} \subsection{One-by-one Analysis} For the analysis of the four different case-control studies on smoking and lung cancer, we will (retrospectively, of course) update our knowledge with every new study. We begin with a re-analysis of the data described by \cite{HSAUR:Mueller1940}. Using an approximate permutation test introduced in Chapter~\ref{CI} for the hypothesis of independence of the amount of tobacco smoked and group membership (lung cancer or healthy control), we get <>= library("coin") set.seed(29) independence_test(Smoking_Mueller1940, teststat = "quad", distribution = approximate(100000)) @ and there is clearly a strong association between the number of cigarettes smoked and incidence of lung cancer. Because the amount of tobacco smoked is an ordered categorical variable, it is more appropriate to take this information into account, for example by means of a linear association test (see Chapter~\ref{CI}). Nonsmokers receive a score of zero, and for the remaining groups we choose the mid-point of the intervals of daily cigarettes smoked that were used by \cite{HSAUR:Mueller1940} to define his groups: <>= ssc <- c(0, 1 + 14 / 2, 16 + 9 / 2, 26 + 9 / 2, 40) independence_test(Smoking_Mueller1940, teststat = "quad", scores = list(Smoking = ssc), distribution = approximate(100000)) @ The result shows that the data are in favor of an ordered alternative. The $p$-values obtained from approximate permutation tests are attractive because no distributional assumptions are required, but it is hard to derive estimates and confidence intervals for interpretable parameters from such tests. We will therefore now switch to logistic regression models as described in Chapter~\ref{GLM} to model the odds of lung cancer in the different smoking groups. Before we start, let us define a small function for computing odds (for intercept parameters) and odds ratios (for difference parameters) and corresponding confidence intervals from a logistic regression model: <>= eci <- function(model) cbind("Odds (Ratio)" = exp(coef(model)), exp(confint(model))) @ We model the probability of developing lung cancer given the smoking behavior. Because our data was obtained from case-control studies where the groups (lung cancer patients and healthy controls) were defined first and only after that we observed data on the smoking behavior (in a so-called \stress{choice-based sampling}), this may seem the wrong model to start with. However, the marginal distribution of the two groups only changes the intercept in such a logistic model and the effects of smoking can still be interpreted in the way we require \citep[see][for example]{HSAUR:Tutz2012}. The formula for specifying a logistic regression model can be set up such that the response is a matrix with two columns for each smoking group consisting of the number of lung cancer deaths and the number of healthy controls. Although smoking is an ordered factor, we first fit the model with treatment contrasts, i.e., we can interpret the $\exp$ of the regression coefficients as odds ratios between each smoking group and nonsmokers: <>= smoking <- ordered(rownames(Smoking_Mueller1940), levels = rownames(Smoking_Mueller1940)) contrasts(smoking) <- "contr.treatment" eci(glm(Smoking_Mueller1940 ~ smoking, family = binomial())) @ We see that all but one of the odds ratios increase with the amount of tobacco smoked with a maximum of almost $30$ for extreme smokers (more than $35$ cigarettes per day). The likelihood confidence intervals are rather wide due to the limited sample size, but also the lower limit increases with smoking. An alternative model formulation can help to compare each smoking group with the preceding group, the so-called split-coding \citep[for this and other codings see][]{HSAUR:Tutz2012}: <>= K <- diag(nlevels(smoking) - 1) K[lower.tri(K)] <- 1 contrasts(smoking) <- rbind(0, K) eci(glm(Smoking_Mueller1940 ~ smoking, family = binomial())) @ The two largest differences are between moderate smokers and nonsmokers (\Robject{smoking1}) and between very heavy and heavy smokers (\Robject{smoking3}). The latter group difference seems, at least judged by the confidence interval, to be larger than expected under a model with no effect of smoking. For the analysis of the three remaining studies, we first perform permutation tests for the independence of smoking and the two groups (lung cancer and healthy controls) in males: <>= xSS44 <- as.table(Smoking_SchairerSchoeniger1944[, c("Lung cancer", "Healthy control")]) ap <- approximate(100000) pvalue(independence_test(xSS44, teststat = "quad", distribution = ap)) pvalue(independence_test(Smoking_Wassink1945, teststat = "quad", distribution = ap)) xDH50 <- as.table(Smoking_DollHill1950[,, "Male"]) pvalue(independence_test(xDH50, teststat = "quad", distribution = ap)) @ All $p$-values indicate that the data are not well-described by the independence model. \subsection{Joint Bayesian Analysis} For a Bayesian analysis, we first merge the data from all four studies into one data frame. In doing so, we also merge the smoking groups in a way that we only have three groups left: nonsmokers, moderate smokers, and heavy smokers. These groups are chosen in a way that the number of daily cigarettes is comparable. We first merge the heavy, very heavy, and extreme smokers from \cite{HSAUR:Mueller1940} <>= (M <- rbind(Smoking_Mueller1940[1:2,], colSums(Smoking_Mueller1940[3:5,]))) @ and proceed with the lung cancer patients and healthy controls from \cite{HSAUR:SchairerSchoeninger1944} in the same way <>= SS <- Smoking_SchairerSchoeniger1944[, c("Lung cancer", "Healthy control")] (SS <- rbind(SS[1,], colSums(SS[2:3,]), colSums(SS[4:5,]))) @ and finally perform the same exercise for the \cite{HSAUR:Wassink1945} and \cite{HSAUR:DollHill1950} data <>= (W <- rbind(Smoking_Wassink1945[1:2,], colSums(Smoking_Wassink1945[3:4,]))) DH <- Smoking_DollHill1950[,, "Male"] (DH <- rbind(DH[1,], colSums(DH[2:3,]), colSums(DH[4:6,]))) @ The three new groups are now called nonsmokers, moderate smokers, and heavy smokers, and we set up a data frame that contains the number of people in each of the possible groups for all studies: <>= smk <- c("Nonsmoker", "Moderate smoker", "Heavy smoker") x <- expand.grid(Smoking = ordered(smk, levels = smk), Diagnosis = factor(c("Lung cancer", "Control")), Study = c("Mueller1940", "SchairerSchoeniger1944", "Wassink1945", "DollHill1950")) x$weights <- c(as.vector(M), as.vector(SS), as.vector(W), as.vector(DH)) @ Before we fit logistic regression models using the data organized in such a way, we define the contrasts for the smoking ordered factor and expand the data in a way that each row corresponds to one person. This is necessary because the \Rcmd{weights} argument to the \Rcmd{glm} function must not be used to define case weights: <>= contrasts(x$Smoking) <- "contr.treatment" x <- x[rep(1:nrow(x), x$weights),] @ We now compute one logistic regression model for each study for later comparisons: <>= models <- lapply(levels(x$Study), function(s) glm(Diagnosis ~ Smoking, data = x, family = binomial(), subset = Study == s)) names(models) <- levels(x$Study) @ In 1939, M\"uller was hardly in the position to come up with a reasonable prior for the odds ratios between moderate or heavy smokers and nonsmokers. So we also use a noninformative prior and just perform the maximum likelihood analysis: <>= eci(models[["Mueller1940"]]) @ Four years later, the maximum likelihood results obtained for the \cite{HSAUR:SchairerSchoeninger1944} data <>= eci(models[["SchairerSchoeniger1944"]]) @ could have been improved by using a normal prior for the difference in log odds whose distribution is the distribution of the maximum likelihood estimator obtained for M\"uller's data. At least approximately, we can compute posterior $90\%$ credibility intervals and the posterior mode from the Schairer and Sch\"oniger data by analyzing both data sets simultaneously. We should, however, keep in mind that the odds of developing lung cancer for nonsmokers is not really interesting for our analysis and that the four studies may very well differ with respect to this intercept parameter. Consequently, we don't want to specify a prior for the intercept. One way to implement such a strategy is to exclude the intercept term from the joint model while allowing a separate intercept for each of the studies: <>= mM40_SS44 <- glm(Diagnosis ~ 0 + Study + Smoking, data = x, family = binomial(), subset = Study %in% c("Mueller1940", "SchairerSchoeniger1944")) eci(mM40_SS44) @ We observe two important differences between the maximum likelihood and Bayesian results for the Schairer and Sch\"oniger data: In the Bayesian analysis, the estimated odds ratio for moderate smokers is closer to the smaller value obtained from M\"uller's data and, more important, the credibility intervals are much narrower and, one has to say, more realistic now. An odds ratio as large as $40$ is hardly something one would expect to see in practice. If Wassink had been aware of Bayesian statistics, he could have used the posterior distribution of the parameters from our model \Robject{mM40\_SS44} as a prior distribution for analyzing his data. The maximum likelihood results for his data <>= eci(models[["Wassink1945"]]) @ would have changed to <>= mM40_SS44_W45 <- glm(Diagnosis ~ 0 + Study + Smoking, data = x, family = binomial(), subset = Study %in% c("Mueller1940", "SchairerSchoeniger1944", "Wassink1945")) eci(mM40_SS44_W45) @ The rather small odds ratios obtained from the model fitted to the Wassink data only are now closer to the estimates obtained from the two previous studies and the variability, as given by the credibility intervals, is much smaller. Now, finally, the model for the Doll and Hill data reports rather large odds ratios with wide confidence intervals: <>= eci(models[["DollHill1950"]]) @ With a (now rather strong) prior defined by the three earlier studies, we get from the joint model for all four studies <>= m_all <- glm(Diagnosis ~ 0 + Study + Smoking, data = x, family = binomial()) eci(m_all) @ <>= r <- eci(m_all) xM <- round(r["SmokingModerate smoker", 2:3], 1) xH <- round(r["SmokingHeavy smoker", 2:3], 1) @ In 1950, the joint evidence based on such an analysis with an odds ratio between $\Sexpr{xM[1]}$ and $\Sexpr{xM[2]}$ for moderate smokers and between $\Sexpr{xH[1]}$ and $\Sexpr{xH[2]}$ for heavy smokers compared to nonsmokers, would have made a much stronger case than any of the single studies alone. It is interesting to see that with this strong prior for the Doll and Hill study, we also get relatively large odds ratios when comparing heavy to moderate smokers (see row labeled \Rcmd{Smoking2}): <>= K <- diag(nlevels(x$Smoking) - 1) K[lower.tri(K)] <- 1 contrasts(x$Smoking) <- rbind(0, K) eci(glm(Diagnosis ~ 0 + Study + Smoking, data = x, family = binomial())) @ \subsection{A Comparison with Meta Analysis} One may ask how the Bayesian approach of progressively updating the estimates considered here differs from a classical meta analysis described in Chapter~\ref{MA}. We first reshape the data into a form suitable for such an analysis <>= y <- xtabs(~ Study + Smoking + Diagnosis, data = x) ntrtM <- margin.table(y, 1:2)[,"Moderate smoker"] nctrl <- margin.table(y, 1:2)[,"Nonsmoker"] ptrtM <- y[,"Moderate smoker","Lung cancer"] pctrl <- y[,"Nonsmoker","Lung cancer"] ntrtH <- margin.table(y, 1:2)[,"Heavy smoker"] ptrtH <- y[,"Heavy smoker","Lung cancer"] @ and then compute joint odds ratios and confidence intervals for moderate and heavy smokers compared to nonsmokers: <>= library("rmeta") meta.MH(ntrt = ntrtM, nctrl = nctrl, ptrt = ptrtM, pctrl = pctrl) meta.MH(ntrt = ntrtH, nctrl = nctrl, ptrt = ptrtH, pctrl = pctrl) @ For moderate smokers, the effect is a little weaker compared with the results reported on earlier and for heavy smokers, the meta analysis identifies a stronger effect for heavy smokers. Nevertheless, the differences between the two rather different approaches are negligible and the conclusions would have been the same. \section{Summary of Findings} We have seen that, using a Bayesian approach to incorporate prior knowledge into a model, the odds of developing lung cancer increase with increased amounts of smoking. Of course, our analysis here is very simplistic, because we ignored that also pipe and cigar smokers were present in the data, we merged the data based on a very rough assessment of the number of cigarettes smoked per day, ignored whether or not the smokers inhaled the smoke into their lungs, or if nonsmokers were subject to passive-smoking, as we call it today. Most importantly, we must not misinterpret findings from case-control studies as casual and, in fact, none of the authors cited here did so. The debate on whether smoking, and which kind of smoking, actually \stress{causes} lung cancer was initiated by the publications cited in this chapter and many famous statisticians took part in the debate, for example, Sir Ronald Fisher \citep{HSAUR:Fisher1959}, took the view that the inference of causation was premature. In retrospect this was one issue (perhaps the only one) where Fisher was mistaken. \section{Final Comments} There remain a few hard-line opponents of Bayesian inference (just a few) who reject the method because of the use of subjective prior distributions which, these opponents feel, have no place in scientific investigations. And there are Bayesians who think that the only defense of using non-Bayesian methods is incompetence. But for an increasing number of statisticians Bayesian inference is very attractive, because we can use the posterior distribution of the parameters to draw conclusions from the data. Although this requires the specification of a prior distribution, we have seen in this chapter that, using data from previous experiments, priors can be defined in a reasonable way. It is not absolutely necessary to rely on rather complex numerical procedures to`estimate' a posterior distribution. When we are willing to cut some corners, we can implement simple Bayesian approaches using standard software. We should also keep in mind that the prior can be interpreted as a penalty on the parameters, and many penalization approaches therefore have an (often implicit) connection to the Bayesian way of doing statistics. Of course, just picking the prior that `works best' is dangerous and almost surely inappropriate. \section*{Exercises} \begin{description} \exercise Produce a forest plot as introduced in Chapter~\ref{MA} for the four smoking studies analyzed here. \exercise Produce a modified forest plot where one can see how the evidence for smoking being related to lung cancer evolved between 1940 and 1950. \exercise Use the \Rpackage{INLA} add-on package to perform a similar analysis by using the coefficients and their standard errors estimated from our initial logistic regression model \texttt{m[["Mueller1940"]]} as parameters of a normal prior for a logistic regression applied to the Schairer and Sch\"oniger data. Compare the resulting credibility intervals for the two odds-ratios with the approximate results obtained in this chapter. \end{description} %%\bibliographystyle{LaTeXBibTeX/refstyle} %%\bibliography{LaTeXBibTeX/HSAUR} \end{document} HSAUR3/inst/doc/Ch_principal_components_analysis.R0000644000176200001440000001555314660150077021646 0ustar liggesusers### R code from vignette source 'Ch_principal_components_analysis.Rnw' ################################################### ### code chunk number 1: setup ################################################### rm(list = ls()) s <- search()[-1] s <- s[-match(c("package:base", "package:stats", "package:graphics", "package:grDevices", "package:utils", "package:datasets", "package:methods", "Autoloads"), s)] if (length(s) > 0) sapply(s, detach, character.only = TRUE) if (!file.exists("tables")) dir.create("tables") if (!file.exists("figures")) dir.create("figures") set.seed(290875) options(prompt = "R> ", continue = "+ ", width = 63, # digits = 4, show.signif.stars = FALSE, SweaveHooks = list(leftpar = function() par(mai = par("mai") * c(1, 1.05, 1, 1)), bigleftpar = function() par(mai = par("mai") * c(1, 1.7, 1, 1)))) HSAURpkg <- require("HSAUR3") if (!HSAURpkg) stop("cannot load package ", sQuote("HSAUR3")) rm(HSAURpkg) ### hm, R-2.4.0 --vanilla seems to need this a <- Sys.setlocale("LC_ALL", "C") ### book <- TRUE refs <- cbind(c("AItR", "DAGD", "SI", "CI", "ANOVA", "MLR", "GLM", "DE", "RP", "GAM", "SA", "ALDI", "ALDII", "SIMC", "MA", "PCA", "MDS", "CA"), 1:18) ch <- function(x) { ch <- refs[which(refs[,1] == x),] if (book) { return(paste("Chapter~\\\\ref{", ch[1], "}", sep = "")) } else { return(paste("Chapter~", ch[2], sep = "")) } } if (file.exists("deparse.R")) source("deparse.R") setHook(packageEvent("lattice", "attach"), function(...) { lattice.options(default.theme = function() standard.theme("pdf", color = FALSE)) }) ################################################### ### code chunk number 2: singlebook ################################################### book <- FALSE ################################################### ### code chunk number 3: PCA-heptathlon-recode ################################################### data("heptathlon", package = "HSAUR3") heptathlon$hurdles <- max(heptathlon$hurdles) - heptathlon$hurdles heptathlon$run200m <- max(heptathlon$run200m) - heptathlon$run200m heptathlon$run800m <- max(heptathlon$run800m) - heptathlon$run800m ################################################### ### code chunk number 4: PCA-heptathlon-scatter ################################################### score <- which(colnames(heptathlon) == "score") plot(heptathlon[,-score]) ################################################### ### code chunk number 5: PCA-options65 ################################################### w <- options("width") options(width = 65) ################################################### ### code chunk number 6: PCA-heptathlon-cor ################################################### round(cor(heptathlon[,-score]), 2) ################################################### ### code chunk number 7: PCA-optionsw ################################################### options(width = w$width) ################################################### ### code chunk number 8: PCA-heptathlon-PNG ################################################### heptathlon <- heptathlon[-grep("PNG", rownames(heptathlon)),] ################################################### ### code chunk number 9: PCA-heptathlon-scatter2 ################################################### score <- which(colnames(heptathlon) == "score") plot(heptathlon[,-score]) ################################################### ### code chunk number 10: PCA-options65 ################################################### w <- options("width") options(width = 65) ################################################### ### code chunk number 11: PCA-heptathlon-cor2 ################################################### round(cor(heptathlon[,-score]), 2) ################################################### ### code chunk number 12: PCA-optionsw ################################################### options(width = w$width) ################################################### ### code chunk number 13: PCA-options65 ################################################### w <- options("digits") options(digits = 4) ################################################### ### code chunk number 14: PCA-heptathlon-pca ################################################### heptathlon_pca <- prcomp(heptathlon[, -score], scale = TRUE) print(heptathlon_pca) ################################################### ### code chunk number 15: PCA-heptathlon-summary ################################################### summary(heptathlon_pca) ################################################### ### code chunk number 16: PCA-optionsw ################################################### options(digits = w$digits) ################################################### ### code chunk number 17: PCA-heptathlon-a1 ################################################### a1 <- heptathlon_pca$rotation[,1] a1 ################################################### ### code chunk number 18: PCA-heptathlon-scaling ################################################### center <- heptathlon_pca$center scale <- heptathlon_pca$scale ################################################### ### code chunk number 19: PCA-heptathlon-s1 ################################################### hm <- as.matrix(heptathlon[,-score]) drop(scale(hm, center = center, scale = scale) %*% heptathlon_pca$rotation[,1]) ################################################### ### code chunk number 20: PCA-heptathlon-s1 ################################################### predict(heptathlon_pca)[,1] ################################################### ### code chunk number 21: PCA-heptathlon-pca-plot ################################################### plot(heptathlon_pca) ################################################### ### code chunk number 22: PCA-heptathlon-sdev ################################################### sdev <- heptathlon_pca$sdev prop12 <- round(sum(sdev[1:2]^2)/sum(sdev^2)*100, 0) ################################################### ### code chunk number 23: PCA-heptathlon-biplot (eval = FALSE) ################################################### ## biplot(heptathlon_pca, col = c("gray", "black")) ################################################### ### code chunk number 24: PCA-heptathlon-biplot ################################################### tmp <- heptathlon[, -score] rownames(tmp) <- abbreviate(gsub(" \\(.*", "", rownames(tmp))) biplot(prcomp(tmp, scale = TRUE), col = c("black", "lightgray"), xlim = c(-0.5, 0.7)) ################################################### ### code chunk number 25: PCA-scorecor ################################################### cor(heptathlon$score, heptathlon_pca$x[,1]) ################################################### ### code chunk number 26: PCA-heptathlonscore ################################################### plot(heptathlon$score, heptathlon_pca$x[,1]) HSAUR3/inst/doc/Ch_conditional_inference.pdf0000644000176200001440000016472514660150120020401 0ustar liggesusers%PDF-1.5 %¿÷¢þ 1 0 obj << /Type /ObjStm /Length 3290 /Filter /FlateDecode /N 63 /First 509 >> stream xœµZ[sÛ¶~?¿oM§¸“g:™‰í:Nc'©­\;}%Êæ‰,¥•Kýù$E‚”dÚq‡¢ˆ‹Å~» €’EL1ë˜fÖ8f˜Ã¿e‰̱å1–0¡"ÅDÄ„eLX‹:ÉDLåŠI‘ R3i5bÒÆhg™Œ4vL¡3¥ž SF &Ñ»U/3-”dR2m ÊÓ ˆKÍÐ Ä 3DOZf¥Œ™“6Æ3fNÄ “ sÚj†®M@ìÇyÉâ(B§ŠÅÂPç,V–:g±v³ØP9jñ²ŠY<–(äuÄ£5˜c 0-Y’XË4‰B€êD¤ÀŽ6Hh¾-¼i‡„ 9E h )ËЃ€<#†¡ ¡1*A c IÙYÉ (‹#5 ,«¦HÈc64ã6 ,%¤kAYeR ’%Ð)^’C{!­ÓÿùõWÆÏÒ|4å#L?TáœñWë|–ÍÓ´Àç_®ÑEføýsÊø!ÚÏWìÉOâé:¿^,Ù¯Ót:"££Èâé$npâ(op§Q„¢HÇe=•ÇuÛªÞŠ"muÙ^–õI]GåP³HV4AßÙ¢Ÿª-Ñwú ¸]¦£<[ÌFyÊý’ÓQŒÉ‹•ò—HþE?ý\¶Ã8ކé{ö5˯Ù5Æ»\¦ST¿H¿],'+ö™³Åä6r¯—‹Ézœ‚Þ³×§ìÙõb•¯ÆËìseDø¡ÍÅúòé8¯DGC%qøû¬³|–njEC€ !Ùà­Rˆ”¶µ ¼°EùLCBU%½qI¿¢]–¹²½®*i–iÿ>µue¹,ž<*UN†®'Éêzrü»ÓrB“'•6.Öóö†¿È ì?ÉÔêÁbУPRU”é"gŠãe¡ó¿*-Ô¸ÒØù|‘q@¼lu¸˜çé…¶Ôû³t’ßЊ™Ä €ÁX‹ìÍ_Dp‰ö0ÎÓÕb½£ ¢ bdk -ã‹4þúèü¤ßrxò¤ÉZ8zÙr•³bütT§‹w6( Þ{¬?JWÔW‰æ÷>Â(«S0ݰŒ©cóõlFc(:‰ˆ¨B½])‹PU=o»æ3ЧJGš- ‚×=³™û=¼«–LtÅûKcpë¶q[öîÍA…J›¢÷ó^œh=°IÈIKp®šûôK%ߢÑ5] (dë!•­†V Ù©^C’f`áÈ7CÚ2ŠdÛ(v™Š¤©h@¾Âž{ ì‰øØ;­Rÿ6??>ºøøô—ó‡ÿ6/&Ùü쬧êasx=Z’û÷B¶Þ¶Ã}UÃÉ·÷õ–>÷R·¢ê½èí]6ɯÉIGã/þ1ê(¼ë«jA—vÿÎ[=‡ðÉÁ~Yä(„p±Å­Íí­§B%HûP¦¶‰¦°‰E[/ *ÔJc°þ‰Td ¾/¸1èR1B-*­8Ö(W ¯’¢uÁeÑžê¡9‘Ÿ‘Â0¯Æ^ïP†(ãóIš]]à %1²%Må#þ”ò#þ?æÏø ÎOùKþš_ð!ÃGü’ùx1[Ìñs3âžòôf2Z]ó)ŸBQø¿æÿÄgü†Ïù‚/æ)‡›Ïþ÷ A¬À—|Åsž_/Ó”ç_|Í¿òï?{yˈŒôltE’ŸÈƒJa}]‚(Ôù¡ùÊãl–"Î.Õ’J^ŽnÒ¶¦=G\•ŸÎ¯1dÏ²Õ zçõà ”_äéÍ[D×¶©A åãïK‘!Šîªõó?^ÿþ:»¸8xh6tpþt¾Êê‚ZÇcÙÕqÓÒqjÓKÅ]$;³Mê̶nÎöyCêÑFäË–Ø¡ÓèíPæI[æ1ô;P´]êA¼{õöÅz8ǦŸ”µíJÙµ¤Œe@oK"v ¹}Ù¤°ÖÇ=@§[º—Á’ÇEn''›vZ™MºÉ‰¯+Û©˜n럴²[Œ@ Ev£0'ôÄ ÒæÈ~¿ˆÝV Rtµ¾Ÿ@\ÔV pzû‚ËäÛ@ %(ep.hµVú7ÀMT¾J!Ѝ¬í<øqçÙò—·{ʳ篆¿ð¢hÚ[Él£ßBtÆ-EÇSªžúmbUz“È{œ~ºÞôŸ aº7y¥*Oõ»›^Ø#µ‹âÒ “±'‹„t¬}²¬4,Áúö aãw…—õo›Â3zYd(–Žwãµîé ‘©D.Ã÷5* [zÒíénóÊ&ðÊE¶á•:~ù žù|óyéßñ»<4‘äé¼òÓô›ñi†ß—´vÛX_§ó†÷žcT¹pþ™4{–Nó"µô47ž}‘§E Ù†UútVÙ·–—ÿ?ÿçÿðÒå"0fã}º¦Ãø@&ñ2 ‡l1½=¾èë{>üqúæäô‡Ï{»ø-ÎGvÂX¬ÀûSE…+1À|óÞI'Œb­#H:·ÒŽö¼¬ô­)Ÿ$ñ6WåûÒ¶HÑ“8ªòw½Å°¦D¯æPÓN¤ß0D©*Þ²VoqN&tN¦‰…ÏJ½{-Ð ü ýVK#øÓTj¨d ‡Ð¢ZЊƒ8 5Qµ5±¥)}U‘¯Ûü˜ìêåÅëáË·o©·ao½„éêèe;ôÒöu´‹ìß/þ£2µëÞ_»¿uÔè¥Û[;½‹“f]÷ÿnÝdÕ½5nú¥R Â’/oz‡£O¨¼Á[àb´gYžÍ&)’d WŸà.GK~¹SoÌ}ª0Ý”ü”æ›b¤‹Š¶G™,f3Ù8–¿×£O¿g£Baé\Ѷoºl;—YºZÝÍÃ|ž­W…›™\Îö:™õ|’.WãÅ2Ýço`ë* ›躨5€yg¹ãtæ-àµa>úÖ˜¿ôTR‚ž’÷ýÁáɳw§¿¼Ìn.׫³Åüôñyzµ~u9ËšÁbe™jÜo ;‹!Šç{áÞ–[6ØD¡\³¦Î7s·Ý!>ÂwÂÔ6ší}9¼Û8Úw벉uîÏg÷ïÏœ•Qà˜Ç?ú°7”C O÷E„wíß5b}‚´–ö [€±­ëDX,æ|5- I’!bM±ûPÓ„/Ñ­ì'%°í@ÖV[<|ÿòèÍK³0š´ºY“t1›Ü³íÅUŸËÄÛ·.z¼UñfµH£K'[p¾š^Îg7š?,•ö3Tæûލ-\<<†Ð}-m;µP5l[5ZóÑ{ïáNæ{±„*·„?£s8ŸýksŽPžÁ I4BC|J l¬ëƒ„ðH› czEËh€ðÔºEÙÊ èh_¸xi¿3±ÑŒÓlþ©bØŸÕuîtá3šwî¡ô}îjÈœœφ´À‹{†¹¦ëîT{ùeú"Ç(ÑÕZÆf6X­xã¶}§lÛ>+UÓ™Q µµ³»ˆ¢§®bżw¥»sg !ŠŒª´c²j+$«6´UZÑç#eš¾Oa]µz:OÒÙ—4ÏÆ£Ç‹ÙdïŒî™ŸÝd›Fµ„Ô]è^¼ýý‚6³Ï“&¥jÛaßþ›ŠÙ}ͳIvÝvÉØìÍﺜ«ÓÖím©ea¹"c·ÙzAÐÀº£¶xbî¡DUyÁJÅe«ª–> ’¸ S¯AKêÒ”wg§@Ø`§@´b¥ãr‡à²Þ#˜vލ>ïØÆÊëx$t7v»»‰Š:)ë9 ñÛ9) ”«÷VÕ._Óµ”'ç_<ó+“¤§©LºQ†ŽÚjÜ{§jÛŠ=\­Gºp ݱ´t"°sML•õÜ77˜âj:ƒÝžMÔà,ZË@KõtrBtƒ™Œ£Ž%D}¯5 ÛuüÕˆ “-KÀó÷go†>bé;Éq÷T]ËÖ$Ç}ÕÉTÝ1ŠëâHÛæ¨-mé‡2è´íÚhû·ã4@xÄL*7HèËB l望A,ûj—˜Þ fóP`–÷ó¡3‡úÄÔÜg¥zgs\ÏNg µä6ö‡r'Uì $~¨ÜçÃÃ^3Ò™2|{ŒÜQ6¦à–Øû³ø±ø ®þ&zÓø^a§SÜ}FÇõ„çÆ¥øœ£8Ò >áÄøM6_¯v -¾†6a4¶”ˆ*í²ú=Æíôþl¢¤Vendstream endobj 65 0 obj << /Subtype /XML /Type /Metadata /Length 1484 >> stream GPL Ghostscript 10.00.0 2024-08-17T18:31:12+02:00 2024-08-17T18:31:12+02:00 LaTeX with hyperref A Handbook of Statistical Analyses Using R (3rd Edition)Torsten Hothorn and Brian S. EverittBook endstream endobj 66 0 obj << /Filter /FlateDecode /Length 3515 >> stream xœÝÛŽ[·ñ]}è/¨EŽRë”÷KÐpÓ$N½A?hµ×f%mv×v·Eÿ½3$9<â‘åbµLSsf†sŸ!š³žÏþMÿ®73Ñ+??có¯fFÙ^Z>·ÚðÞ™ùfæ„é÷yçföjæ™írsk륨¼ã¸ïPZÂZ aƒÂ(?jBOk ¿ºŠÞÀ•ó®·š0•6(OFº^OxrÜöŽqÊSJLâ)SX"ÔT+ œ¸˜r½S«¬ó½UyÙüröÓŒ©ÏÓ?ëÍüÏ'³?¼zî{o„™Ÿ\Ì¢Fø\8Ñ3oçÆjÀ%ç'›ÙëîóÅ’õ‚1¯l÷âù߬WÌ ¥»òð-½ÒJt/K)eϹéÔâÍÉ_—s8§àZ!µ%G)‚X—Rƒ¤ƒ³ ÷Þkßí¶Š°Zwg¸¯½wÖu× $È%,`iÓÆÂ.@X€.~ ŒeºUÀȘq¾»A¦ˆZt_B‘ŽâVv„Î9"aÖJßÝ-X8ãÓ®`@rK€×°m˜ñ¶Á>¸òݧ…âW„‘·ˆÄuQAß/Ÿ6BÁr‰G€}Ìá4Îvñ`a÷2¢ö€î›€$ ‚‚<åx°yÑ]™PäÏŠÜPM`´ó%w=ÖG•¼ ÒaF8`»©…õˆWÁ,C•åM"³é Î+áPQð lΔW ¢ìHÒ» aY®»tr/d¢.•Ó{èŒWÎëÊv¢1p)í”éüñq¦­® 6…"ݾDò .ËY2KЖ%C2Œƒ¦KwÊ :ïµkäÛñÙ”g²{O,út±ïÒ^ŠnwÄøðlÁ) @OÚ^ÒC€\ ìêpD–Èé'³ïfLH`ÒCˆ$iØÁÀ4” Nì%@ ßJÍ1_„˜¤zt ^©:¾X*Ÿù|2+D²Pf´Éuov\B˜Ú lÏ8¨u1ÜèèŸ^Jn£q£ý—LFoƒÉ8 Žá&èÉ éLpàñ›ÙÉ'5—"sIãi W^)YqüÞ%c-ìÇp`˜2×`ý<ëKî’µZñ¹á\D[áÒÀïƒîâC4 °Ö“–ňVVFe´&ßEt†C°:ËçO’ )€ HAÎ*(í,-Ù–ÌÂzN„Nì,÷£gZÄÐú˜!J€ÖÇm<±b®ûOÌ­Vj ¸Ð»òMš’,ºæËbXX¼ —ÙFð#5Äåxׇp¡E@sl]sG—q‹]`ö`ø×É^’\‡a¤à£B&q¢ÄÄý@Œñº¨uK¶1ÛhÓ30‚„Û)o ©œ#ˆî1©ý=°â„ü(K™>Ŷ=Â"µí9šZ¸ˆ- ¡³|¹Ðhi ¢Ý"g=éG› Π<”(ç æ 9¶{—W„+”gÖ „„oŸ&¬&ER­£©ÒÂçªX=HA0.îR–GÓÙÆJA;/!ˆìè~Ì—Ì.9¾´^†9«²K"N·ºAŠàì È7$D§ðR'31\3/« v±(÷î"ž¢F¢ùKÅC†ã3'wà*†Æ‰Ý&Bçb^"ÆÅ=ç*7`«H$Â*„í¤f­Ðl! ‹J )ù:H «esÈKZñ„ìó4Ö ð)ºP2À&çÈ1d;ëT0-üL¦»Œ'UÂÀIß1ßF~,CÔ|ÁC˜c…Ü5Ĺý#¡' b2gTÚ9¥ÇD÷ÜÅ#ƒ6*‰lã®?Ǥ %6¤Á+b7·‹Š…¤*±»ˆ#c°Xpîk‘‘xAWitW¾«õ<°q?“Î%Ï*§¾ŽU± UX&ý¶Ü—ïÆiiC¸˜ ½zˆÎÁÝ$Ô—§³âÒw¡ !jÛ„ZK[ƒq mJhÈJrÈ54n¬ÄNP¯È6F´Ëï2©²==äMɇ䌗WÑ­ a*„) JŽGd ?QÝê.µ+ÎÈXkèKL(ë¡ø€"ßL)lBÊ> 0Ë‚‹<}¹OÈ÷=ÍbL Õ³„¸Q{QäCWñÜǯ0S½ØSŸþ==À³¢Sd-²£h¦¤S>0è~«›RZ=7ùW ˜-E8–nŠpçøž0}^s–Lð5˜êŠØê*Âb™0²û(ÄÕ"eİ̑Ñj<¿à –DËkb~„j<«$ Ecïr穘øÊŠØÅyÉœE ±¿Š•Ä¥ôì^p½/#G¡¥$ ¨lÊ<Ÿ$•Öq-œ–ã»Ôë@•÷WØ›‚y>ÔC Úß;”’b:T¡……&©v…!¯Ö)©A©7é Å’k3[pöÁ­Ï"í+³£²ÚÕnÑC°&(œC÷˜Ì±¶è»'·D$ Ù” jG‚X0ØFm°X`+†%Íî”ØXLZÆsQ%xrŠw ¨¦¡Ñ )gûØšp2¤†LzšQh ÄÃÀ!Œ‹¼CÄ p@À]ã%Ÿ­N bZEŽÅž¶êB#ý(d1'ÿ—ͺ‚3?¨áÓ½f‰¢[r Ú‡­%‡¾Cª¡ÁÂÝï‚.Hàü‹ƒu ›«¼zhìýÐååoóê.¯vÕ&¯ÞçÕu^5È]5h<+¼Þ6øZçÕ_/óê¼ ù¬, ™yõ*¯žçÕ÷yU„(Ìþ°>ƒejSÚ놘¶yõŽp»/⇂æysY6‹h/xnòê¾ñ+ÑîϧÓßåÕÛÆá¯[ý,o6•Ö:èyƒ‡¦5ñÖfQjŸW"¯ÜÑŠþg‡Uùÿ©ƒƒÛü˜úÃaÑýæhÆrkiò­ÉÙã/@YÇ›Ùúä©¢Nc†²ŠpƒØ¦Ç9!¯Òg²±ˆ–©Éö>ÕÁžUéÝÉz`£þ éao:1»$Å6ûÀ<‡Ó‘Nì1¢µ~ÔN‘ÑC$Këëüõ¯híXw0Êo!©¤öz¦CS½®tK¡½I-°\O¶5£qò¸&I¥Ã×8ù€k´œzÕ0A’~óêõG‡˜74äX£y5Ò6ªJöÂðdöSuÉÀe&pC2pCÎRõFz7`-ŒCÜ–`¼9åáÑ`c1Ìò#Æ1ÇV(¥øoµýeuÿ ­à)­Aé O›ÂmTIþÈÕGT? ÎHóGˆ_·f ÛV£ÿéÁóé–±Q«-#¤Ÿ^]DR­böß¹‹þ=øzJx”QªÕÃêþ_|é`QLæ „¡ŸO,¯_¼yú.ä¾qÔ_F?r˜³'èL’*!µàƒ„î?“ý¿:¢ýOµT³žjôc"aÚïUÌû/̪'åò*¦rhk ÝÅTnCœ¾÷ÄwÊ~TæU%׸΃&‰¼©‹fRäÑG"ù¹T»Ð_“b]RÞsí«R¹Ê •~€ôLðè1Íp-D5U½[€ã™ñX£%­reErèMiŠn"(ŽH®°&“NToÌH)·#R;âÒ4jt¸ JÕ°#š= (ïBšˆoÃã(ûøÞÐ%/cµ‹XÂ}·P ïÝWM=;AÙ2gLu‹bd2tjo†WM¾£×ûéQó± bXPèwò‹j^‘8øñØÊñ;ÃøtÛò‘WúK8—ãëÆp`û’\‘툉ÉA2ϥݑPÓg·å´T±ø?¿´I¢¦nËö—t*Q .É»¥p,à3 G’õðþ2|Éû¸ož¿ÏÝ1„;‡`ÓˆU Ë=ëD«±ÇýÂd“•ç8௹“§ày«>⪠}ÜøV ãÛ‰ H& è»r*~Öú<Øe¬>>" &÷«ÿØ8 èXõ¡€‡’àÕƒú˜§6¥WW7ñS|zÒŒÁäõU z~`p6è®z<Ó×Ðj„ûj€À§w´ ý ~ Æ:ê¡l ÖØ9‰pàêH$ˆîOì²$´á(~À±ØÍ—Bö¯±ƒdžÌ¨ü þ»ÙpÙ+endstream endobj 67 0 obj << /Filter /FlateDecode /Length 625 >> stream xœuSÁnÕ0¼û+|t1»Þµ½{¤RâÖ6œÚÒ‚èëSKBâãY'yy~”C¬Íxwfgòä!¢‡ö¬ï›K‘Õÿtà߸Â5RE_sÁ(Å‹êVypWN¡ÆÂâkaˆ” µU5–<£2Ù™;СÐcìcîæå\í«œÌ;°•XsGj-ôœ Iä¢'Á°çt­…ÌÊi›v ÔMïž΋ôëëfçÏ&÷êÉ[·„™ýtç–-£G¦X }ûæ§û^#%‰8¼ V@•> #DPÕª5ZFÿ›Ïê£æœú|&ä˜mÅD²È’Ði0#¡Å¬7mžg†–Z^6Ÿ Qœ5 ]‹9v,?6ËrT±ïA@RVxâðeN> stream xœ­WiT×¶®¶¡ªDVÄè«vŠ£"£Ñä%hPP"­ 2Š4H2E™éîÝ È,‚4£ HË(ÎqLLÔ¬ṵ̂b’Ñ¥‰1ÉÍ]ÙÕ9ÜûÞéF“Ü$o­÷Þz]z­:uÎÞûûö·¿£`†0 …‚õô^æ1Çöom?§X}ÁY ·Æ?“õ ®ùÐõÔÆö{q©&Úó ¯ØåÚqoƯܻ#hMÒÎàµ!¡>aá7Eú9Û#uî¼—-a˜IÌ:Ƈ™Â<ÏLe62Ó˜MÌtÆ—yÙÌÌ`ü˜eŒ'3‹ÙʼÁx1îÌrfãÁ¼É¬dV1/1ó™5ÌËŒ7³–θ2Ï0zf3š˜qÌf&™q`R™{ŠUŠóCF‰rQ9NÙå°Æ¡ÈÑÙq‡c5»˜íå¦pÁÜ7üZþâÐíC{§¨aÏ+vÇYçüñpÍð.ã]z]þî:Úu‹ën×»#bFœ!ÔÊ:k.H8N’}«ò<ëKBF}º1 ’ 2öðÇn9©F·W©À«¹£ÆÓ 肳ú:ÃiçÉ—éeF£)¯XÕŽJGŒf%2Îq¡šµä}зÁ¢³-|™#ä ÂRéHÖ².òYd¥EñY\€¬RNÄkÂmíûDéé´N#¾gÉ뙎jîZ!«ÈµåjîˆñŠ©îxYÄ~ôr áPù±túPuÎ<‘4®RscŸ©zàŠ¾zp ç"ë²;äQÅëp´RŽÄh'Î{@ž#‚û\ò<™òpŽB·{_â‘ì!ÞB(„Ô¤Ìl«Ð ô7—´¨=ÝТ)Ž,Þþ° Ô°%="=84. xkhš$ÿ,)ÞÁYJë,«‡pŠ“2ôú¬Lqýæm~5+a,ñ#îd4I Z|‘ŒÁm¸à!Žù©:˘¼/’ ª,â6cÍ|x¼šB¯†_ξ÷á=øFº~úæÇåÝð|ám&SM)…P |ƒÑÔ r±Ò"öK šÚx<‹Ó”Ç­ËõÃþYj™çp1þr‹©d% UdÒ?F rÿw܇ð®¦em]`Ñz J˜”¹Q¹Ñ[ãiËd2åC«„%çl»N¡’ÒÊa£ fȳ{gEÀOÁÖö~~À2•„ÇÕì²Ü€9b<–c}U¨<œmÍ{HyØ ßB§ýℵ•\AÐ’Áð—äÍ“±æ‹3¡lÁA2„†ï"‹Ùy\³¢åCôþP‰wå×ìfîMËÚ'&—D…ï9/vâÖÆ=eûUÍ‘m™½™W÷ƒ7ï³=u»§Fz?YÌ=hÈK^ Ùq*¢à!£ªÐeUbAþÁ₼Žè.¨]Ûnݾ¼»éírÕ®–°Â "u‰o œâ¯Þ2¾[°:Á$SM¹ÕÀ×AA-ż1MB_Iv²³ oà$¥u6& 7%6Tç ;)9gB@MU#§r¯®Ü§ñ_XyÛ_ ~WÿÜ€óðmǵswî”vÃ'ðWŸòÂo)…‘Üo©ëÛ·áàJ]5™Iž%q$)…ñ­¯zºÌª£±Wc ?å*ù¹ìt­Æ —T+î {OR¢ŸnÚÑÎÃ6Ѹ‚E¯Žçí*™¡›N|ÒŸ£hXCÓx,±aºÙDŸÙföñ@ÿtª\y “>žP{:¥vh®Y!)¬.²“pà©ðð§Õk ZÐ@ Ik´}ÎUjÒsSÝtw¬p¼,±Q_}4DA”1Êd[ÓËUúî=t½/qw[ˆéŽ]mXO…=¶š4öÍ.q8fÀé@r~zŒ­‡ü’‚Š;¸ßíÙW¤-Õ‚±‡ $¯¨–w‘“³-Є³lÂ:çÚ|>ž¾^z‰¸î"cô­‰MÍæ®æøJƒQ4癎¥Á…*Œ#StdŒ?Lâ>Œ¼}µ³µÇ,&Àæûb[]uÕé¦4£Jå`æ {^˜¿*^×Ù†CЭ¬Á$‚5Ú‚ë/PAaq •uôµ®ˆ×/È <êãú¤m‡æ2ŒÅá?Ãi8kúm¢ðN‰PðZºÛ¶€ŽiËBÊvÁF{ëlM IØ¥ …Pˆ¬ÞÓN}D ¹³ZV R)Ÿ·‹a–g2UóÀ¯”ûÑIbƒtÓa;ÝaÖo(§Q ÔµE¾$)#§”½ä¡Ba¥©ð]’±ÉXˆ„m¦}ƒHÏÀ~CNT/“Øè›ëÐ=³vì;«1¬ÖGÁØbа/¼Æá쉙ñÚUûÆFû‡e&C:è¹ÆŠ5pœoÑÖEDkƒÕmÛ/|tú¦TE+æC§ k‡¢…&á„#•xVž)dd¦¥@ÿ©÷—6¼JÜæÏ!ÈôG‹é²ñMèPzðmHOÍ5ìϳöƯ^ a°»&©=©ÝÐ}ü5ÀªJõºCÿŠí”-¶&êµÍ£'­âÃmo ÊÓO†M[L¦“™ß.Aeg{ù‘㪠WÿÚ8ç;ðHˆ ÞNqÐÔïkK;—é,î€se­-õÐ–ÔÆÞ.ƒ#ðœ¼ðœYç i:H çS®°­.^—YÀïU³'Œ’É' Oo±{„½\$˜²Œ±y`„^.áä)ÞW@ù7¶ŠkUòmjÀX—W“gªxÕTj j} Îßf‡¤š3ƒY_h¨×âù"JqM .zâ=¾VÊ3P#Ôô‡ÑyìNy´ÖÏ7Çàs=?˜«!'YŸóvŽJ»v}ÂNšàÈ˪ã™<äîÿ5Éq*¼DIù7 c,Šo¹Ï(1Jíiú,ýÔXš—†|1=ëídØÃ¶&6k6wv…÷xºO "¬8u½úùÛ3P餯¢N<õD¨¥ÁZ¼  ‹®ßßÂa¨XðWò‚ŠA–³TÓl¹_¸ËâpXûÒ|ð&ÃUóèDÕ‘mœù͇ŒëT4PIQ©DÏ…=¦=5Ú¢R£±<Ë’t™ÎD—K~|&¦5½TUVTš0ß Óç@:[™ÔÐPy¸®6µ5(5L"î<òV~4­Ôp¯×ï<§Ú½SJ½jšé­öÈ”ìMq°ßÚûïè…\½‰³É$ ¼Xø“°®>WoÞï·ü`írU >îNÞ¼Ëoò´ÞÞ+'¡RõÔ¨ÚhýG¯ú†ÿN¿hÑ€wÙßJÏéÿ³YÅc´øß_èÇ9Н‘Qb„üádØñáá­áÝ]–ã'E²†xÒ®ºü‹-j2ž2uÁ18ó„ÑÞò4Û@£–ôŸÝŠw¡é‘RÞýÔ” ñqbLLp˶Êõt²ôšG|Ì»Tþ–Ì»ñµ9íéô§â+ß‚ ~ëÞ‹Þ ÎGqB–h¨‚‚ø§nf•ÝÍ5µâ‘#—neµS™}öƒoÐéJboìqÕŽ‹ÁÅ/›£ #ŠÒò#Ê5mÔÐôÕ]¼ÓªÉÄ1/µ€Ž“§–f-ñ3.½¤À£¶?º@øˆ:ÎlG‰-Æ!…_àhàO |BžS³}y?Â9úü}ƒ†î9ù“>Ž.(\XL”vóV7Ø[lãVñ6 ?=./+*|ÆJ\œ. ´kžênU}n–.;[oPí(oà~æï5c9ºq––ò¤{d dMƒ·E ×Mu¶;¾fðj”d£!5oú¼ŒrªT%ïžtÕ­sJëhù'á«+#8òâŒÀWˆ(ôˆòÒ?5?³92þ‡É¸ gßù LjvVÉý)ð»9iK¯™2±›^ozõÇŸ2Ñú´†ÿÙñ”óvÞ[M¿ò>xKŒ˜xwq^$x‚_fÿÿtaû¶ ÙLéB»ä*.VâÆ*!g¦ïúØøtê[!›Ï(M+ªxÜãoD^\¿mwxàÎÆ3õ‡KŠŠìµ°6G‰QŸÝá­O{«»µµ›N1­U¶t²ZA'Ø0%~`U Í9!®\= Âm7àz%{²úð©Óf Îð8ÄãSâ2qÑŠ>}©uÍ5§;÷Ô‡µPëþeéÔ ‰Ë—º«È\²5}?uz‰c“dÛ±iÝÍôšàØöTYÚ]ô¿Â¦è{ðsáÓü¥¯ûÂÌ×w—WǪŽh©‰ï‰l Øã·èÓåèˆS>ýêÇËQ_×#â™êÛçá>ÿuxΓ¼—y©[´–žúæ挮MĦ–ö|ÚÐ׌ÞY°)5H•´]«ÕÇê³ Ì'•@Õ`mQ!É^´¸Çm:ªÂ9ÂGÒù¶ÞP’©é"¹2°ÊQMºb†Í¨ß¡üé„kÐn/ïj ä é&Ü ”èö œò?âI:þãÝôÃ[f¬@— ½E¬’:mÒ€mÜh½~çî£ÅÐÈ£@Ü!’°ëW¯ñ?‘RßÜTÓÙ’`Ž)[Žv™¢6mÎJKMP­››ýì⃸xÈ©­ƒuây²üOè%:9,¨v ÎNà< œŸa˜ÿW{,¶endstream endobj 69 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 200 >> stream xœ½Bÿ CMSSBX10‹‹ù!ùJ‹ ‹ ›÷?¿¼R3oøˆùR‹ ÷¶Ó÷uáæ÷$÷Ÿ÷øw÷Ôʚ걋÷÷Yûm‹^û„g€füêg–°»±•˜®÷›÷÷8û³™s–‹¡‹ÆŸœ‹©ü6÷õ÷u÷÷ ]IP}Uû 7Ÿ ‹ ‹ ‹ ‚J&endstream endobj 70 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1769 >> stream xœ­•kTçÇg˜™*!3©¦œ™rŒ¦ÄÔ( ‚—˜ª¤‰£èr§°Üv¹$n¹¬Àî>»Âr_aY–ë° ×€å ZŒ ž9)m‚95Ml¢ô˜hšw¶/§§˜äKsò¥ói>¼ó¼Ïÿ÷žÿ„« A’$´ÿ-¾‹ok!Û¹×æî¸»Ö{±;=¿zìÚ£ï­"ŸÇ”i¯ff©öfGÇÆ%&ÛD¯ëˆßˆDNø‰@âUb7L„/~Ä£„§|áJèˆÿÑä.þ.ŸPÞÔe×]ÇÝv¸ÕÑ¿¤ÕÌzÆÌôJ:iDÉËF"bÅLSÒ먔ƒ/ CÕ¥8bN‚g .@›ÃîÓØ«ÀMÉü©òÄa·0Šá•L›i:@„qhÓº¯™ßæÃˆ€B™o®_šœ´¼Êãü={2ÁÐÉz8ƒAD×mhH$?‹nݦ†/qJ3s²0^Xè`âu…A|ŽRr§÷ù§wç?Æ+ë„;ÖëWáÏì­>Á?çñn|ƒC&¦ÛTq†Gžô½^¿ðàƒ˜~…?ã"õÝÑkÌÝQÿ]ÛC_ö<$M¡]òµ‘³¨s–’"Q2‡8Ÿû˜ÅîÏzcOüø½ˆF+æÿ‰¥5Åü{Y×# ÁaØŸ(t¥>q¶èbA®5Çz¼N ilTfÄóÁý÷Ô|©Œ£¾¬tÀ@Iž€½˜<(©.7›øò 0ªï?2 À~36ñÑxrWQ•àH7צš-ð>ëh:û9"Í›RL¼Q['­r«Üæ*Ùß'E`#ïO#/;…vJ8ä-bo´OM~°q³ŽÍùv0˜úPuaª{r†ÿ£:Œ RFÇî/xg¦ìߴ쟸äߨ%})=àúNVÏð6‘ÎÒo%¤Â6È2É€¾X\ˆÇP!ó§~kºÅtS^‹N¸ -AéªûdEcØúS§<¤ºÂ&é"i•T”ô,úŒ«²7 _5²"£Ôk ²á8]º™Ò—§BéKJò×ãš5Øõ”X åkÛúÁÊ‹L¦þ ¤C2è!tù“KP]Z›‚Öá¯)טJj¡̦Švq}lèíÆÖ›ïÛÈ37бéY;%=lœ¼ßƒ‘‰] K$°Ûö…‡(5Í- -ï&Àq¡yèœuس—ã¶1 >ª{Év±;ÿ‘yåÚÈà¹F¾ìˆ#aئ ËÇÂ%õæ,­&.œâCÎs>ÉQ‡õžCkЮÚ^/‡—<‰ÏÙPÒ Ù3‹¬Sº°9ƒÉ£zBåadŸöÁãÕw|Ëì™ÑF‹°›AÞÕn"³G[q^þÅ„,|ÈAè4ê¬ÄcÊCÀf`¢½9S;hïlŽAÇ(LB¢úÚ·e4y²ú=…v”Þˆ‚–òC;II«ÑqÎn‚Ư¿Ä`úù§ð*¼æëg…VŽ ¢É\RV¬•¹ë… ÿ½ªh`£7t —…FÆØÈU¢-·vÀ·`ÆÞÆ$ö»L^”õc±ì1!šÖ€¾¦±ðýî.4ý_sµÈ}°ƒhõ<‰Hn ´Àµe7§e¨³ÓS[r[Ö6;y*#¿ZU,#oý!;ÎÉk`N/× )-$WF—-:·´“ãhf‚B±’÷Vb®²\šú+ °ã­QfÞ”¥Õ7)˜Å|Ñ•ÂNðÉ¡“Áµ‘°SÛ}×G4DöÅ=±=E7òz´5–â÷TŽp8ÀþæÍWûk†ó¯•κ •ZÙ¸‡ £XJ³ÑT[Á—U6õUžê™Jº,r»ƒ\®¨FÒ»…øEMlµœáAt§ItmŽrz;·s ótÎr³Óä[Õ‹|Á*Ó«ÔÛtÆ|P± "“>AIw™îËÿ†x]K °œ$‘VSU}Y¥I„F T%X°¯í‹ÀçÉOç)´ï<×®jÊTæ¨2S[s›ÛíM¼¿ÂÕßæþ3p_î+ÁÝ“ þ ü> stream xœUŽ» Ã0 D{MÁ ¢ÄŸ&Hd„´q‘*ë',™ ‚‡Þ{SSÝçØÏ­4È O©t+Æ åF®Æ£­ø¨YÁ«> stream xœµyw@T×¶þÁ‘9dž‘ñPs&FKŒ±±—hì½Ð‹4i£tF`˜²f†&EúÀ 8 ‚…¨X£Ñ˜¯IÔDÆöŒÑÄhÖÁÍ}¿ßž0Þ÷î}¹¼7úŽçì½×Zßú¾om˜®]錅KG²þ4ˆñ¹ª-ÙzJ g×Â+Qß»õ>ü cýL›:}óša3gEÌŽœ5W1oËVÏh¯1Þ c}>ñ]ä·Ø?`é¦e˃V‡¬ê9⸑£F;nü„‰ïMzÈÐa=z3ÌÌ"f³˜yŸÌ,aÞdÞb–1C˜åÌPf3ŒYÉ gV1«™éÌf󳖙ɌdÖ1³˜w™ÙÌ(f3š™ËÌcÆ2ó™qÌxf3YÈ|¼DŽ0½'f3Ó›éÃ832¦/Ã3¯2.Œ+ãÆôcú3ÓéîÐÝ¡'3†Íteôý þ³‹^ÒMRØUÒ5ºëÇuÒîÒZé6¹¹ãÝ»¿Öýz€Çz®îÙÚkm¯½NÓœ¾è=±·®÷ÓW<û,èsÑ9Ãù¬¢¯K߃ü>òÕɯ>w1»E¥G¥,_ð‡ wÅF÷Ð5ÀÙ*ßæ`qÀ7%ââ ¾áÌgé5ÀYØ`­·. ‚a‰!\O³Ì6FoUªÕ*9™DÊÈ<ü45 áVfN? XXÍtðOØ ÷4X_(f¿‚lea8ú‘®dÛ¿´Þx‘ž­.B½ÆZ–(öCMN£W°Nm~ KÛ;çOÄ º³‹ìþ |Àoœ@Fã'8ñ”#—Y‰JPmÓ )dÐ듈pŸÕ»ñˆ\ö+¶âªÝgÐáö(òV©`HÍà ÁX&Çmld)ÕjHJÖLó«_}ømp“Ý'‹Èx2–xÐt·’•aÝš#ÌÎÏ.`áuÙCüHìÉŸgÉ`+2.f©Üå²Ú:!¶[ßj¨„pD[÷2'³ÛÙŒ¸æß‡=~ÿy” DºÊe§€§ûVg$®Á­²Š)¸BtË´QÞú›œ°g!]•Œƒ ºf&Òò!Ò·§çPÜúÙ·-¶Z—ÿ‡·ùâÖü:ë¶ º­Ba£!Ú¾m½ÎCÿ­mZâ(²Ýu(Ö¨ótVÛÙ¥t×PÝjm$„@hç® P¨ÍIÌPå†dE'i®#°4-ž3½ó û9Õ°Rïoã0äiò‚Йüáš‘`L±žÓ™±ãW¬wý4¤+­_¹åƒÑvvªñ¦X ™*wÐäÜ|yÝ=œxáÕ¾£xó;>Ý{§g pegvü ?±Œ]¡Rªd¸ž…fhôoði\S¸¸I³×Ï )­¬*.­ÌK«Ý —ï¬;”K¥üÐIŸ1r?V¶ïèjÍ,Í‚6E¬wîý‡gºÉy8¸·¤…KÅ÷ø!숛6®õª;|¼ù:NÊhE­$mqÈõÜ‹Iü®={UTZê› Z¬ ׆èÂiºVí .Óf'RÓ·-1MµpŠë”_“­!Ó ¶—ÚÞÐÍÓÆÁX¯³§ëkÐëZ="¼ë;¤Çº%‹µ[À-˜­4Xô•P ÍÚ »°*Œ©ùP¦êÚ3ûnˆk¶2?Ž–199>ÌjIwéOLT‡u»lþ’]1†¨jÎÖFƒLè×Ü©éñTÓ{ñøu‡¨ÛZ§ý¾™Õë³wìlád‡¢ š×|Ó¿S¹‡="RÊASÀc}\ UîB½X(}naã‰ãÙpêÃ+|+½ŒKÁ ü´‹B7n ö \Á¿"²Š¹Š)J)ëx—Š‚u~´JæòRå› ÔËͤ´+ª¸‹Ý ;µ©¿f]Ò‡ ö¿ ±˜ªLñ4ß´ñnHı´*ÏÑ‹¾‹õ…½>]a,uÁÛtÚ´¤·ˆÎ•HФÎѦSrй~O‡#‹NPR’“bHKÖªR´BÀàѰ Ö€÷®¨†Oá<ÔÓ¨‹•m+¨Or"ióÅ{ýt¿±R „$uL"DpQ…[wV”V4øÕ®œ5aå@°“ƒ¯’Ëå–¿E©…µþ=•xÖ:[ÜÆ–'ÜŠxœ"ÅžÈüðø—¡?‘×ääÙKóë_ø ñXnŸ5nKq, \»h#µŽ±Ä«—žºQŽPî\Õºõ[œþm]«û)ÙJŒÀøqð¸|§¾¦À,ÏÎ+¯Ú Ü-¦ Ч$Emö¦@â|xH‡ò¢ÒÆÍMšàî_¸p¹!®!¢\^¿»>£Ø:‡‚Q§T§)!‰‹ÍO*Ì)É*/JªñÙê®òòrôàž†ýFùgÒ›ØƯ˜¹f˜Ü~akK»k“`—ïøÿ»«‹‰à¾(Ö—Ã'/÷¹S[”ÂDë{Ô„­g:;¢§>ù¹ÒEö£ðy,”CžÉ˜c¨†Ràî`W5ysväûd¨üq"ÿ°âʸÂýL¤7È|ùO@ð_GøNk›‰,+û{!õ%u›öøC0Ì…ùàÝäÛä\µ ¸+Eת2!—NïÉ©:¹jf@L¬…”# ÷¿w9·¶vy õ¥»ls!özæüí³Yç]d÷q–ø O^·øÅv%2SgšjôÇ ”Žê:Ó4OÑ(—ýš.îák"Ê6+ÂÂÃLá–*sY U¤V…¥mT•ó‰ÊðsøÕ¹•4!—ð7Ñ•'}- |ŽÁ)·¯¹‚˜È{3½ T¹ƒn°M*©:]Rª°4¤Ú«i T$Ç|ïèô+aò\õ‘¤¯c9Ùý©»R«üÊÂs(Cq3×̘:5ãÐJaÉ1Í9]½.'4cÞzÛ˜—¥7äf  7kZ6ó¿Mu Û÷¿`¹ì<žwm¢õÀ¦dRNkp¨7cömÌ6KÚF¶MâÛQMTBvàø‚Z|Š)fr´ejPBG ¶ Þ¼ƒ¥MÆßà ýóšlóf߀»­ÒE°£8=—¢­è;ÈxÛìjw~Þìðì¼äÙ ×Rb©†]°W·Wû'ŠŸ°çŽ_ؼ bÜ¢cÕÑô¹*ýg†2jàªuÕöçü@¾G‰ ç¸ê i™Ô¥_<“}öH³¡Ìj C5‰°üa¡!ÁÎê%º%$ÂÖ„¤”T28¹ŠQÿódZN»›j³XÝTOÞþÁˆõ¤»— bŸ¿Öz±d r„.ìû(-Œ¥°örx‰­…V±ñ×­Ón‚XgðIll(ms m.9/ÁYmóù—½dû"YG f0Skx©åÚ¾ùÇkNÛxwèó¦ó‹ZnMËÝøâ†ô‡7¤‡ì%xž§(kH'¯ç‘’çÅk|ñÉ}9V㢠ÖÑ) >î¼=üRWH>•&E«"ÃÛ½\É81Q—®Í¤³×®SPi»@œc«’‡ÁËþÎI(ƒ<Ó,W"oŸFÆ‹J‘Úã¿|þ[HOËóÃõím®Ædã¶|؆¬ô|œ$f¸âûí™ö/Ýìßr·Í–à}ÈÞ®·^Cá‚{ó)áÆëâ`þ`V¢—œ”ÿÏ¥%,qNŽÓѸɮë´ZHèOº££ôÑͽŸïªßU*xiU›!Ž ¬L,)//ÜõÙòæi#IÕÄA ÒÐì¾^f)ÚÈŠ²-Ø:°Ìù&vS˜¬®Æ]ÏŸ‹lòˆ / «/ÌËÌÎ G½^—ðñæOÜ×ËU*z*5—š¡ÎÈ»zYÁ oâ¢S¹X,Áj\ÄŸ"ÅK¨iÒ õ ª%¢³yS»ZaÝž9Ü|&ÁåGùêÈŠÐÐÈÈÐЊÈêꊊjʤ…©ÍÕäÐx³¯KD¼ÄÃ÷iß|³áçI…ž°¦‡{ š6>€ÒG7MÝ÷þ¥­‡à|W¶ÿAÍ…Œ+p•#þäï‹Í1?+OÃ=ø ÎÁùìc%ØãÛífê ÏÇ” ÍYSamÛ9ÊãG, ÙÖ‰™V­Á²¿Ôþ‘`K[_¾ QÂÂÇBÐY°”.ÕZɵP€$‚¬žåµB{áV‡g bGkr¬Î.ãÓ§¿Zœ?E÷»v·(»Ì?{‚£P8} »¡tô÷ĉ8N{w̲Ã`,ªËkªŒ© HÑ‚N#”q¬ápw÷½?éƒ5“—/”“å$Piµï‘n²§"+­ÂéÔ»§…¤ºo‹OM™GÐz~EÕE:× .Çî¿~nvnÆ®~ÃîM}â"# îçüµ§¾¦º6öÄÛoM]45Ð]m)5U^ñ‚åÐùüzàšŽ+F'i—„»ËCÖmÒDèRt‘ÚTHÑ¥ê`'kW*³ HØ/½Ö0g0;ÔÝ㣢ÏäuiìáêÃJC#ƒÜGÝŸ‡èt÷îoÝ®-¸2¨Ìž`ìg=i†[.Ó ã$~œUú§ [¬JÒJ彎v(I‡±¼õØ2D\GsŸ—¬±^ç‘Óí›(S ÙÂ5b7G[èØå\`B—ë·­³`ômêŸǓfG\€¿€«ØRUmj ÕÂÞ_ßÍÏÔd¤ê´ I“oM^»u.xƬõe)F-Í4· Râää);² ÆÌt!·°áØÐ æ Ù1…~XÃÉžS _ééã¾òÙÒ£±Ÿ)›P}¯-2WTÄšR7Œ¿0»Êe ÷ÛÏ(“Û,¾Q~ýî^Z§;èsoþY;ºâ|KÝÎ+õG*šU›LB¼7l ®ˆ7îÚÞxÚýÓ÷H_ÒŸNXárÙsRŠÜÌû(yðô=Ù˜Ÿ‰DµÏ¿Õ[×q؃|Ë/€Óª‚˜øй+5ï„…¡ØVSw´ÖÄú‡,ÚeÇN™øÅe‡æ÷$b˜øŒßn½‹*ãˆZJœ@›¯.á"¤Ä‹Zcáö³ùyY™W Ÿ¦Ñ[ªŒ›L£Iÿ@"‡7iÞ6<r„#,7Ï>–^¾ãæþÏíÅ/ObùpÔ~¬ÜuØú‹‰â~Ã.õn(âÎ|Ñ|ñÒ¹U3–ú¬[ ˜âù¿5j…óܽ1'G yÚÈÃÆæõBnRC„™z¢'KBÇ/ÚoàosŸ¢ãƒëÔ+ø6 Ñeq9ïå†xòØ{JUtK|â6í£U“ÆÏøüú©šs?¶Øh¦ªþÞrq°5ýóï¡Ï+Z$x‘bIâ  KbWv‡ û³«‹,‘ЏdŸ¹Ç¼~DžšøD³&Â~5fùÚ˜‚ׯ(Oøˆ#}~†]Ùg ©¹üG^ùƒ |6¦ƒ•¦ZÊvÞ“_GSí¦¢yAé `÷Þ¦ác3âærþ;;’+]ÿ;câ.Qncðg”Á{ÚÜK¼ÉŸŽ<àÑIá¥;r2©í4èõzà  J±`¡<)‰Â\c£ñÜëßawšWb,{¾¬ÔáÑ) Þ ©<5S†Ø"Òƒp à;€Ó÷àtì}ò­ø0rYj£jÛè9D¶XXMº$ Õ÷)¹¤×qâxšô¾9?¸Ìtc–üÏ¥1Ž®ÝŒF®(±×rt\„½Ç± 8•Z­Ò€¶$FþËГd,_ SýÈLò qN´U•®Î̹óÊ>Ž`—<”À «ïí†2ÃD %ú¿K".·^ݳ*˜œôö§-þéˆ[°{Ùbw_ušÚ°,# ¸„[Eù¿©žè÷—S1©±NEŽìÃkÍ_ªŠ½ ccµ[­~T¥Ø™Li2+ ËvX7 ªK•6Çàoýë"{Ô6”†òW‡ÿ“õW9Ê®«A§W‚vxQ›> V(üB¶4-Ëõn‘®|ýßÌÿß°ó(ýR;òð‡æ/‹vkâ*…mÚðd„øÌXSŠÆj°•µRûc÷¿;øÍö\%$«ã¶A8ÄdÇ©8'¡{׉¥=»AÏîгôtf˜ÿ6=˜endstream endobj 73 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 4108 >> stream xœ­˜ tSe¶Çá*-Q#Þs.ˆX¸ /eD â@A¥ˆ¥-¥¥¤MÓw›4¯æ}vÞiÒ4mÒ¦O’>>iËC,e,(ŠTwîºw/åtÖº_ZqéšåÌšœ•µ²Vr¾³¿ýýöÿwج©SXl6{ú¦í{^]¾,üqn.“|?4¶wDp bjÕSs¢Ð¢Ù·z”~ý»0{“hslnÞ–ü‚¢äéGÒÒ¾ž±{OfVüÒå/¬XÉbűv²°v±ža-dífíaŰö²ö±âYûYY›Y±¬_³¶°¶²^e­`mc­dý’µµƒµ†õ+ŠÍšÃâ±æá˜XSY=ì¶~ʯ¦tr¬S#¦š§½>í7—ûßÓ;ˆ]D׌Ì×g›5kÖùˆš_¬ŒäDŽ<²îÑe³ŸšýÒ쾨â苾ÒG†.*ü¡%~6JAÛG8HŒ6ñ¬~[­Õï>Æêã•õ}Ý¢×”X¸ý3Kz˜’eèË 8Ôœ>ð‡6´ÈêTZ†R©‰í¢öT68õT͹.4†‰O÷ø¬}#®XFª3IEù’¬âò` ”N°ºF¿•ô^ó h¡B¢/ÖI¨ Ì9ƒ†Ö‚ž¯p”ÖTTÛ}v22äxñ”k¨â'dCAÞ×;¯®dexÌ|fá‚w¶†E<4=K26¦†—šü`¨qZÎS#“@ 6Ú™T°@G ÷ìO<D䨡‚àØ’ =w—3vfl=Ïh1ÚÀB˜h‡Ò Eù›W’®îªJ>“˜FάùËD¢xÄFÇœJÐjÔ ÒSû™õÌì×Ö±zÅ4ÿrZ~ M¡F¿ü²ÿc ¾íx~eŽVz*¼m—ÙXm ïˆÙD‹'vŠ{ó93‡§ÊTéSi¢LÅj«ÖN5Áqs3´@›>COÛÜà«P‚t?Øœ6{£¥Šê@ í↔³ÀÇñÌB1hÑ_âã$¥g)ùpbEîÏȺ$êlêb>ÏÑvùæ[@ô9_$‹˜YÂ×(ynRì~ v)ï8ÌF³ÉAEŽé 8ƲǶ~ÆA®óTÕ $ (–—C….qÑ.´e ôôº?1<Š¹ÂøÖ¾`ˆõ`ÐI©›•·Û­@ü‘ûÉÍDæñB&nÕ³Ô×7'¿Än&˜í6³ÓhÃO\At)ˆZÛØcÛ:9c/#9Ïh2—ƒ‘pÉA¯ éü2rCÝÆ¬‚‰|èÞ«¨yÚ]î¨]"RÓ¥*!ƒô„Ü 6—Ùäµo!Qx[`âWÈA'}¡†,Þ\\°ˆuÜD;ZÃAòÑl.b5dmdú<ŠÖÒeáU\`©4Z¼&²Åš5Püñt®X %2;Ô ƒªŒµ®”bžoLÿoi åqkÀh´{ˆÈÐZE-ºzÓƒ)Xt›ƒ\¨‹g4÷!ÞïÀ ÍP#=ªÐ @KÈÊ‹½ÁÊ“g·¹Žý:=¡@B*Î¥úŽý“U°w˜0ƒ‹þ·o¡¥£Cþ¨wÔPÔÛ¯?}Jàõ*û”°—ˆ^\P°ËzFBž±B7˜ŸÌ]˜Ÿ-NÜ1œþ>zîŠì¿»Þ›RNF›mKwôüꊴYƒ+°² ˆ¤ÁÐ3Šp+:³ՙœ½@¸]àuè¬eT&dà$A¢9)\*)\à¡\7TÓnºVï A :0¨² ^0(²²“R÷ȱxío¸­øqþ^-Ž Ýdáóÿ^áÿòÞ<4ÿËëýÇ©ò<º ì`²™]D$ºƒµ‰D›jp ^â whï·Ú…‹µ $Ô‹ÜNc©Xùµb«2WYˆe3•Y1mWü·¸›˜S´N')?¡õðÙÿ;ó@då@—¨È’7ox4TÙ¡ÊÞLE†Z⌠å#œ34—g²­`&\*OQ–Z¨2™>m ÊdüâlaÖ! Ëz[GZ?o¥µÖJðCÇ‚IK21šItL•Òlúz—KŸ“§IS©œØœW žX9,<®-¨'½{{4>è„ÚOÐ{¢bC1*MhHéîâßd‘M•ß…šô Ôe#•ÐòANHŠàµËƒÂüÜü|™]mS“õ9fî/Ù 3}¯b¨u¸ånÓ¤µÊæù™Qf®*ŠƒƒÄ²w…ÑKýè¯däØâ^>‚–Ž ~ò£è%ž:›.)¡È\³/>tŸoü0ø)i÷Y§ DáÈhÌkÉîÓWc‰nwÎxÒN‰.Â%èî ¼=‰–Â9â§¶ ‡óÅ)ñ‚”7Htu—ë]½T7zÉæwžÂ†OP¨áœl|sk þ(ÄE/<ý1úÓEžë@gaûÏ>‚QÔð€u†–&£ûzŠU‚¹ ‡™É,f®êýˆŠþ¸zkO ç‘wÙ¥l_·øUCA4ÃÛM5ŒôuakПl µÍäñ¢7û&›sòNhKè¼ ¤`E’¸$uMõþƒI¯}׫c.¾ú_hÎgÿ뱪\*M+Uä+K^Љ؛Û7|®é›ÆªãÊP{¸ ÏàI!¾ëþ(­›=™NèüØrÞ¤vå³J¯¤i=£’Ó Šù 'T˜ÔJ½^4î²Ò ¨)óC›íè­óôB&vùÀª¯:/ÛïŸ<áì³7Q6?¯­ù³Ù Ä©:QƱCÛ,Œ¯e_y¾J¨#£¿>.5'Íe¦2Ó™fÞªÓ[0¾ßœž®Š â ªä%2ÛT‚ë1¾{ 7\4£ö4Õp¾·[ÁKå«UÔ°ºsÁ‹ð…€*&fü.mÀ^ÀÀW”—újÝÕ.3iñ´ ÇìÍ“fº¼Ãhò¶Ô´ô¼sí_a¦·=š•‰U-«À-Ñ9?:d‡J»ísNè±Ð8Ïp˜ìøjïþ,Ñè–îÝKe ò±E[ÈEqRì;FïÂuâæËW™Ù$SýÞŒ™;~êa¿â3uN™OÀIèÒŸ ·`{FJ E»ÀQn“¥’º‚ª¦!·û¬d“T_&ÝM)ê¤PL¼2"xçvà[‡Ý`“Éh­\OŠwg 2ÈÒ7µ4šëÍ”¹ÎÚ µpáh÷~/n¦“£ â…æ\8ýVò§G‡Ðmô4ï¡, EÏã,©¤Æ¦Fw«»“z½ì<ŽOÍÇëHCÚ’ f‘ö{ý.omüÄ~kóóBu1•µFvLŽ/¾ôˆãM¤Ö§œýª=g!£¯ åóŠÒBQQvnª²¦Ùw“|Ï ËšÙèQth”36󇣂–¦±cHÜúÞfc™G6~O÷ïQ6½_ãÑ JŸ8[êÐW—¸¤®H'–­ö… :îÕY›Ì.LFFÎU¹!¼ÃxæˆAMë±[ÓXu6»Ñät®ŠÆ§»sﻥg@QˆƒžDQÇÕ]9-TnPn^Ü\lÍ,ך2<âè">ýø÷w¾jÞòJ­Ö´tÚC£ÇØ!†˜Nö˜¢“ ¡ rF‡© ª¸W'ÝŽåNÊ ÖpY8•&³×LУûR ?ìlÈq'·ô )ÙÉlyB+›ø±¢Ì ˜Í¤Éd4:O£y͵ˆD·tjµ¡ ÷ l‰ÛÊŽ–)W`Ä&=PX©3pÎ|ÎÂyý™0dåPãRB)UÊ•@¦IÙf­*Áƒ‚‹wŒ×ÍþêÒ?X¶³Ç±:k‹ ”¿¯#màDMSƒ›¬n¯|;§0bZ hõ¤:W[œœ üïµ?rløû©yÇÚ÷ÃÁyLµÇ‡z†¯ÑûKEj¡¡ŒÚƸ4ÌžB+'ïáÿè¦^ nïª9›pèP©ºïK„88p,ãÍÁä}_\P;6ÛóÔû1œûŠÐ{¼¶ËõU§ÑRNÂN9™9ú<ÀQìnðÉidP¬(§íT5ݦÁÚ.×–iŒm<퉂‚6N(9TÛ|WŒ„r¹Ê¤¡Ò UŸ6±Dfx‰°x`åqv[4¥&ʨ3oT`Ð(鸼ޔ®¥Þ3ò+Ã6[íüO-€¾TyFªyü¯ÆB“Î|˜­jÁþq­±4ÕÀwànèœø–¦!6å¾ÃóKj³DzŽåxÅmÁÖ@ØŒáÂÉ"v ;”8ÆûŽ9‡Æ¢ÑÐt©œüÕ‚XµP¯ s'&0ÔÏ ­ý4É̪*åzà«&yÇÃ#Õ}æè…~}NN÷JÅ•Ø(3˜5FÌ»ÍTn´„=PÁ5»UøÑIŒàÚŠð£§ßç Åò†~w½+èEKï~q@Óן_ÏĬe·Ù’únv£ˆÞ²v™F«Õà5H›Ü"9!L›·C®´6_ùíD‘]§Ek˜gV®ŽÙI&Š’ó’ãcW+bž¦ÂdÂÍÍÑìí`¯Û\Ô n, œÂ:4½mt=pL%MIݺ²!Õ!±¤;RË3Ae=¿ÿÞ-47x7\?ûëàõÀ]ÿµü¸|ßFæ‰1ðJTSÍ\ß°a]IYL|•ñfn"$@BÀðaÎÝ ¢JQ•¿ßW²e îÁ¨oP„Owýåvò^ûðpƒ¸³mp=3káüUG}ÂÎÎþö!Ÿ"(ï\o4˜5¤‘¶Ë ”Èd ‹4>ïÍ/¾úcç@É&‰’ÙɬüS¦­ÔB7jؽ¡œÐrÏ›pf¢1ϨÏÒäˆu¤^y„yŽÖllì’ i.1€ËŸŒFuÈ<Œn€‘[¡&_¤&1³1›â%fÎ ±:½Z/ƒ„ÐÙe›§Âá"Ëåö‹à…hW¸µõJ¿*Yô„®¯¨# «µNŸÛUg#;ÑBí𛯸«¬š œXÐ)©u.6‰j<kD$9sêꚈ1"fAD‹õÿ(dÿendstream endobj 74 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 5560 >> stream xœX XS×¶>!prT!=´ïœ[­¶W­u¨­Zç N­¢8‚ È †0$ 0d…!ÌsÂ<)BQë€#Amœnmµ¶J«m­C¯¯;vÓ{ß ¡¯½C¾ð}윽×ð¯ý+ÊÒ‚¢%«]]§O3ý˧âh£î¹‹•ÚZÖB°¶,}å•ëv(ײ9=š2½/ Ù³T¾"Â9Rêåµ*zçê˜]Þ»}|×ù­w ظ1hÒÖÉS¶¿9ÕcZìtÙ ù̸·gÍ~çU§qsæ¾6oþ‚7þJQ㨵ÔÔ‡Ôj=åJm þJm¤&QnÔ&j1µ™ZB½Im¡–RS©­Ô2j9õ>µ‚r¦fR.ÔÛÔ,j5›ZM½C­¡FPó(kj$µ€EÙP )[jeGm§Ä”;õåA±ÔË”=å@YPŽ”C¥¬¨ÿ¡8Ч†Qé%Ä{Ê’Š¦þWà$h±°°ðZ=„ßZn´ÔZþÃ*G7‰D~¢gŒ3óã°•ÃN w7b˃µÔúÚÈø‘_ŽòuÚFhã=ÚftÛèŸllclÚ~a‹í8»»gâ¥âñ—6¿ôëÊžxù½—oØO±WØ#‡µ·_v¼6fü˜]cÚÆücì*cå(c%èÿ®G†[‚:£¿Œ·XE›\Á o<²Wç ‡pP¦'(•‰ÇÕB÷”.¯†Æ&)øðU·B³éªñV>R ª†rþ)]V E)ùñÙ¼23dÀà%ÆVM_Æ+ì@÷]Šºô®z»‡äj°Žæ_b›¡d'·˜Ž•ƒj¡˜?Œ»<Ì+4“.&ç6I –÷@ËhñáÇ×ÛNœ*YËaé.Qß¾:Ó¾7‡î“ÑO6šÇ‰?_î~QQ ¹[©GŸëg ¨Æ 4ú @ÙN}„-±åÔ7°-ÿ0Y ‹~DvöijØE«o<øîòå+W/¹L›ºzá"ž%zô–}6à‚†¸p ÍEeìùs§.^?·øíÉË\–Í÷½wŒÃ-xR4ƒ@bd3ã§W·ºGúñ⇠éÅÞ¿s¸·þ_9Ü4£\/¸m@åá#bv–ð•½òzp…¼hdýÍBoÏB“°#E½GY£üG²êÄŽ˜ÁÃ>Ä6XÈIzÓ€–ßµF´†ýþüh$§+“ÖS©-­ÓÆtÚ´2z•+/þ|Ÿ¨I™ïÇa Z& Àj(åo᮹æ*¦KL†‡‚ŒÇBúEÈí®êQ¼>Po/~‚N \6bj››~øª8(4“SÇdÄ4Ó:-o•BMPXª<9óÐy@Ò»ás|Þzs_΋t$}·qÌîÝþÓ¶­/¸)áRÊS Bñ…H)?I ’ƼRuk!×ás*½ž¤`FóWÇxñø;fuÙ`øLÿ³V`ò†Aˆ$FšENtI ±?Œ;ݦ+ ÒÏt$7çí~˜Õ(ßÃiôäÏ|®]¿u¨§t¾þªÈNµz]b80 àdÍ@p#õÈ]/¸k@¾lÎÆ£lͳG˜cVƒÝ±/rÿýÓØ°Ëjzåó 0ï’ Hä‹#%C¢?ôið]MI~QkQè×fV ƒr`®Ñ¥5ÐÔ rÞݦûòú»ô#e6}n|À<ØÛÌ¡*ÑwäÑ“ a×8qÔ8ßZÏ âE‘p'#jÚhY(1´§T¯SCÖmCöQ&ËSO¢zAµqи˜ä¥qHp†™®§±ßÀtêþw;ÖH#~Pè§8V@ì5Ù™ªC‹ H¨”„Æí¦t$aM*†Ž#çWAßAoÆ'¬TtjmÜ‘øÑÓ |!‘@1!"-y'æR¥ŒŠvC'¬:úI1¢¿®ƒFþîÉ Ï”µƒc;dæ•ëkî©‹3+5íÖŠ‡e%Æ”C!´BfiV%ó"]Óõõvg ;zÐj’²H£E3[xLÕL}%1Q2ÏÄìÌ$Š®l¸ƒ_Û1éb«KêóZÕäªÕÚŒbuäó·“KyñQ¼, Ûlž¼j/þ%ÉÑRvƒçÑSg?þøäéƒÛ6®óðpã§û²™émáÀÜ¿vµ§QÑSÏë «³ŠÔš=UÉùÀ”U6TE5mHØ¢òÛÎÇøVlæÍ¥ gï(ó/‰âŘJˆUDßbI^ü"wx˜YÏÖ —ÐKϺ¾n>¾©Ž‹Ëñ¬œÌ2: â )CJˆ/N(Vi!²2гò4_d__xèãò¼æf-_Sš×€éAV0ËcáŽ× ¢ ‚¾®+4¾‡Ž°&%ºÂ¤B9´æOXKþoÄî!uMMÐoÖ#ÓÛŽHgƒ§AK€‹¦»Jßÿøƒ­[Ü?œÆ/¡‘kûIk…0ß¼wçð²ÿNmøÓâã7‰"j„æÊHˆOp Š€² úØ}À\¬þ¤­9 ˆ RñIé»cBàÈ©‹«¨ââÂuò‚AtÝzl‡¼/'ö=@]Æ1l¿¨7/V¸ ¢k™ñ3Ž?1¦[ÖGT†„DD„„TFÔ×WVÖs}10æêíN^F¥—½/›ï@ul½ò+)¼Í¸íø`^È–¬ºœg]êAU¹ªLU0 ±CŸ`¬Ô7çqíAúØKD02Wïõ\ò9_Ä{µïÉ™_ΈŸÌ-÷,ôn£Ž':Ž]AÃKÞ Ôp™Jí€fEý¢5%&(‰ójÙPèND«pá¼Ù+Ž8FDk–êaxqšY(Õ£9¼PKéAºÖ“Þ±ýô´ØLO§c¯ÜMdV}‹ÌYrœ°ÐRÁ¦ÞË"$²j¢±¦éc4ž§X¡gýº˜{RG¯|Ëq9Õ|Í–[ô—×I)¼Õ?úõae¸ùøÀ~@Óô‚”`b]â^ã *$÷³æ\7âïé¿8»¹mt9ù ‡¾o‘cþl×#ÛÜ}ëñã»÷‘ ÷ÿ¥æ§š1¤Ž^&“²¾=„Ã^6Y˜¤35ær£¬ß¾ýº{'ô_«ƒ~>·1ê½ä¦¦Ü’Z¦hdtthùÃÎý$÷½eùޥЎuPy­ÌëT'az›fEq›Þ(…h`Ì_Ç]"ŸÈÚ¾×ÉH2b£÷E⎞GTǸpX.ŠzA7~·é?nI!ºÑ3‚¼âv…p²}!åþÀˆo@<,Âdé·ºHãüà"²¹xEk÷™ÑK?±ÿFVï·[ÛíY›¹Àh‹ÊKÊâóÒÕ¼¤ìý½¡Åˆ:ïP˜S”L4ìäðè%µêO Á1öúûƒ¿"XíœÊaꢈOŽS‚Ô1‚Û94újz¨Ê‚à¿w/ìÍkP}’^kÊ·“þùx’o AÓÚç#Ys.iÿdEÿÛJQ &q‡œ‡äyÊóñ¦LßÒ¡ùÝh™õ¤Ý.¨šEãèÂhiñ…xCãéBhñõßxÇãDñä_ß(ä‰ÌOǃo Ù\h2óºHT†muvhš¸ò’½ØˆZ2YÙêm±ñ©‰iÑ) ed%1eÍOO# ý®¢ËÆ.ö”W–BᕺÑ/¿•áΩ½`W†—:´– ªû!37£=ã´ú²ú´údÖ8Åôþ µŠ2ôh;)ƒ«UL¿Ð=D%¨—]¼úpçÉÎc_Ü<»ÕmÝjÅüì—u‡;à,s{öM<[¿3oîº#›¿åÄ?/Œ\ùÁÂ1“ÌD¶Èîþ½‡7\Î/Òqóp3ëäÜiП»øÝý³«Ö,w^ïÔ×An¡£‚Rq¨nÿ ü'uóŸ”ñ›yÔ/7¢ 8!Ó£{8¨e™‘õ„¤³ËÕe&(íø÷;ú™Ó…Z  n=(æ_Cµl"=ÿÉ udiVv¶†ÌÝÕÑÚP‰4&( |)™¾HÁÚ¢-H‰…†)X8щ „¾7@<< 'Ë`ðkYìÜŸ^¿{¥óê¡úpi)_ë_¸‰ÌgéªtH”¬XP0®Ö9qý9›» ÑòmŸ·ü³Öè¤;¯¿~¹Þé"ð°;wieÏ×úG×M]þ7:‚ØOâ¹Ã&Øä¾me³ŲX&r×xUÊNh²òs¡Š©+“*|R·;[€˜n·i²hj„šR®M„FUœøº¡#äžPLjÿq ííM=./Ý”˜”qLxYd®º°õs׫xx>×Ú7O‚$–óa‹¸•ïÁ"Ó` Í dº-×åoÜ'àØ±ö®|S:uFmoÿÀËäåYVU«HS)ä¾w*”qIåq¹ ùÉèìíP¬ÈTÞ-­(¬ª Ÿæð¸9[™°âÖ}»[ÐftW£Çlá^¢vƒœ'R\¾›h…½&}ô Oa‹[ɓи•Ž÷'OZ‰úü½=ëò4&{ (© 1ƒ¼äyij0±QñáQäS"Û±3& É}F†WÄ—æeªóŠM©™£{FJp‘éÇô ,”$gEâÑw¶#G@–ð¸ ñhÌw¥9YPÂä¦hCƒñì€óðˆ#Ó[6s§ßXOVm¶6—7¶Ÿ4Égˆ4I4bû·¾Ç7^[ØŒD)M’$g§ñÈ Jð,2ç¾¾óxì4ÉȘ$´¦í ØÍãFqÃ-£C¬‡õp°Övõ÷Q[~endstream endobj 75 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 4988 >> stream xœ•XyXSgö¾îåV¨Vâ…d´¹jµÖ©Š»¸ «"®-ZQpE-Ⱦ&!ä IØ¢BUT– Pë‚ûŠK±µj«­c§¿ÖÎè¨=·ÏÇÌóû’‰3}æy†?øã˹ß=ç=ïyÏ9WD¹8Q"‘h@HÜ–µ ;ƒ·m]4*"fCBèÚÍq–s>‡üõ» ­q!wgäîR3h`„”öI¿Ž·(Ëߌ€­Ûfǯ˜³}îŽy;?J˜Ÿ¸kMÒÚEɯ‹ ]¶!6"nɦÍK·D­|oõ¨?3vÜx¿ ý‡Nš<•Ÿ6‡¢†R¡T5Œ §¦Péê]j1åM-¡FP‘”µ”ò¥¢¨eÔ,j95›E­ æP¦æRó¨ÑT 5† ¢æS㨔µˆ ¦&R!”?5•z“šNõ¥úQý)JL  8Ê“ò¢$””r¦þD ¤Þ¦b)õÕ‡šI \¨‘‹(DôÔi£ÓYçqÎG]f¹|FO`\˜׉®Y?6½ñÆØ7Îõ‰ìsÞMê¦v÷p׿)zsë›'úNì[ÑOÖ¯þ­QoízëQÿýKûÿÕ£Èã•x¸8Pœ(.ðÞ€­qñÜÏ…ž^¼ ¼NIæI²$’Ÿ¥ÞÒ4éUái_á)2ƒ·ÚÌ"!¸ZìMÏ`veæ¤f”•<ŒfL¥Å¥ ] ¿ž/TÓøC‡_Ý\ß•@o¶¥eZF2ÕeÝLe¾oJÍÎd`:´ÑŒí…ÍñfA}ÌK|Š?n¦ýÎzf~L¯î9ØÍƒ—Ý…˜vÐÓâÆ{÷êv_؈ª¦]iE»P"ÊFª|yF’8ÿDvgâÈ£Q£GÅÒQ-SC>JZ8[FÜI5 "³œ›fga 0›ÃÃð ì‰ùw¾ ‡AÀÿjF'vâsÖr?^ì<»]tñ{ Áùôám7›6š<À©™&|'è¸õ­Kjæ£ ´`{äÊÈUÑó2BRü%ª´ü4”Êb÷߇>·¾¬;}E¶¿ÆP„JX£BŸ›—Ÿ›+ \±}bßùõóò‚Jm_q»ÜÀåWpBÒVt2yßNcnÍz¤Ê‹‘ès UzT†Š‹µU5à"Ñj Q+]$×ggää$çYâÄ!fxß ßX¡?N<ü Ò ôïÙájg°SWé`$Á¾¨’˜Ìû2§Awxþ‰-w‘ƒÞ)/–<›{S3ÇÏ ’‰—Aøîû‹K¦ yÇ3BÏÞùâW ykÒ…B1…çg°@£Óh‘HrCvz®Å¿-xo00Cˆ.=OãçL—Ÿ‹ÔH%Í1È‹Ê‹Šªu²ZèCÃ^F­êšÖFÛ/>nvÚÌ9&?žAp©ƒ¡¥g%ºê‚jdbu‹d8Þ‘r!] Üs!†w˜vÔöIlͦ²µh ÊÊOÏOO%ùxùŒDì¿Áø’ xW8¹M×—×Í@,‚`w,õþ2ð·»—ë®_â#±Žöq s¤‘rÂÈHF<œ…*ºÝNð÷ñ2ÏýpqÉä!C}1ãzöÞo/žcRÍM/ ]wB-ÙìÔ™t® Ÿ*­ìxpõÝÐÚRŸó‡3-CC“èóš}ðtW€½zۙᤜ#íÂR¦ÆBéÖrgNºõÎØÆ½Å¼Ùì!> O›0Ë$gd§[Ÿ½c­ä‘L’åÀ¨¬àá¦%øòÒÜÂ42ŸÃvZ<øx5ík¸íήީ—¨õˆ-/++5攦•ó»v§¶£(´4»L`ÿ7ììw€ ££ÜèÁRÇ"è… ›GÖ”•È Sx,³ÄœÒ¼Ã$¸6Å‘JhU›—x8íçÔ*µå³Ö«EU:™¶„Y_<ùÚ@è÷üöÚô»*ùí{bKB Óí*J,J1¡J¶åVÓÝúÆœÌjY±Ü´å©6K s ól5­«*¿i+i-+dÉAFvVbžL|äÐÖ5á±h|X@BÙΪ ¾&e¿üËÜ3ŠZù¾ôªÌòD”†O[5rJø¡cZ^ci ,uÇÚiU-XDZ€ ܬÚEN¿.C WΘzãvxfö Þ¾>7 I±ÛìKϪ ªt&¾²³–Hû+¸"ijͪI©È©Ù¦V¨6Hô$˜Âî`ª”‘ÆŒ»¤ªtZÜytý²ªùñ„¥˜ÞŒ‡§H” ù (‘H壙ðöå[Uõ×»]~a“&5;ÃÂ;¢¶[ˆo!éL{éÝa"ðÞülu.Ê–FœŠ¹wúNŞ㲃e%E¨”-–r•*µ2[ýñŒ”ň ù¤I§1h ü90ÑDKzI !†ÈN.áà œú_†ôØ&“~eQ•Z{}cwG¦}ˆch¼ÏJÌö?¶©µ²Ñ±¶{É|©´–2ô€á¤£Æ =¿²ßÇÜÜiìÊ$ÚX‚ËI ™7kàÀè-uÍF¤+ÐóWá ýZ7 fª,uÊ’†6Ç\ïèØÆŠ~·âΪ9»7É<îd’8bñv8êt0å{¥Cñ5ñÐ쀃7¼¨H3Ó×{lÈ#í6fæq—»µ˜@ ž…xÂrcµÃÎvë ~wÆ‘Žbð`l̃Núô›V3:rñI†Ì¥ ¸´ê9f˜=~j†¤XÒ„‰ž?ÛŸda¬sF‘ôÂbóä˜QIid™JáK:™Q«Õh e{ÍÆzÄ^kŽ_«@„x|ڜŕ[ W“’’ ðåÅš…'Ö}{ëÚ'ç:I¥·r“Eìœ…ØØOZoþp \[[9 |/Œ‚lã`Œ¡õ±8Ùc9ÎàIØsxÒm¬O<ïÀóè6Kí| d | ö¡:XHìÙLDÏ­ m eP+<#s¡BZ†>o·eÎpîªvl3?3Õiqë¼Ã§b¿H† HaÈóÙ·‡,Ú4g—¹‡—Bý±+¦c×É!—€ë+ zº¢…ð#áã/¡eX_˜©'ŒÿÅÊFÆQL3¬¶‰*QŒž>‡ÇÓ¸–±uùµ"¸“Æ6<Å{†ãá4öpˆ:ÝNç…Œ`iãeÖ—½LµßÝI´©øá(xHŸr0pµ—t¥µ§˜gs,Ñß7­³ãqÁ‹m\VLf _,Á^ØgÄWs_Þè4½À1í1Í2æÉ•òøÜƒã¦ö#Í|sûµC·PjÉÜ“RšS»)‰ ’1Ñ@T¸È¦Â¤!è,*<º»$©ìÅ ÿ‚i¤Á+Úh…n¦ Kkà>=í0•h˿ɛ7ƒ“ð3xF°%ׂ¾MÃâv_{G °^adâWôëÜyN€hý½•:»ìÔY޳ân/?2“ O†t :âNÀ¯_wÔ߾‹“’ÆÒ„K6wRù% ϹGÂüyñǍىaëo¯€éî$³Ìàk½0 \“³pVr…µÚTÎþmÚ-,Â#ô}± ;ߟìÕΪºvY]eq1¿HaÈQæå+sd+7MOX„XßÀËOtȨ)æ‹Ì\ã_ÿ±?^˜œ”¤¾mûÁ,zÞ,Ì"‹Æd¡“Ãþx4ÂáXzo ¸Â$x‚ ¸)O0ÃË×r혂ˆ‘”˜ñ£ƒ€L •1d½…ï’l½ lpî‡3e—ŠOž®¿Ž¤ûYµOÕ¦@¨€ V¥%å¥>§€ß¤ŸoX‡Æ¢KÓfe„HÆÙ³óØ:¶ù8¤ë–}fÅs»•; Z¢:ͤÿn„TŽˆ ú§ßî.8ó>åöìÿÇHI*Çä0O‘Æ-Mxuódtø´1s|ø?³ð·¹cUÝlR^¸?~ {úÜœ÷´óB]ÇE~æÒç/ $¬`ŠÔ•ù™+}Úx¸úP‘™ø^ñãöìxîÁÙÈi˜1;MYræþË¿ÿí·n€­T ù$Ì6G«äÏØDlµC`{`–EÕXVvãêáÝg´U“Eµ2͘DU¥:Ƕ¨®v(*‰½"> {–¶ XSDYT§„¬ú8d¡­4a½RºQß :ŽˆóØ#‘§ñöœý‚-Ì2šØÙLã…óè.Û¹àìD.°ëáædº=Å–=ûRhÅ\=9×wÑà^¾ýã…Heô}¬”Á~Ýþ_Cóxú ÷¹0&áúB7ºLI¦¿u½ ß™m«×d&m–:e!µT#'³{·RÕ#éZÅìÀ ÛÅ=ƒ¾NVÑIÃk C\ÑÙÕéµÙ AÜ™Ï`(énÛ̽zâN%¸cˆ†`ð¢?·î)eÖ9ƒ³[ïep4ö¾/¸Y–šÿÖÌl:ZM2IHƒÇZ™i±†7læÿ+ë#¨‰Ï{<Ï2Ð)TÓ‡z¶ðËÜc}Ð’Æ{ >AÂÏgü ~_Û7uìk+‹Í¡×¾¸œ·4XMòðï_\z7犞Ï&Ýo™ÅçO4Ö4 <°oû&"fj„oÒw§Ì³`:qþhÍQ$­Û»c“m¦ Ä_#‡O0 ¡À¨1 ƒôDìÑkÖ'._!Ë<¿/šìÚqIÑ«X{ð}=¯0°J¶¿k}•C…ƒÂùÚýÿ…Ác»â· ƒè`Gu jâéÿs˜}ì¦ÖïOø-óï"¹ .rO•1øýn¦Af¯År`8‡ûa­J‘¯@JiFqvY¹Q_]!ƒÕPEÛo„rÎ×!×2Þÿ}3M.&Ã@šõì©õÂòöÓPÂõŽ]ïÚ}$id³ùXîÃÖ¯Ù¼/ñ_´456úxÏFëÏfá8yÛè¸ßâ,œ‡œá¶dÁ%êÚXìäMúÖØ²DoùÕ´UŠ]N-xN¿‚ÆÔËðõŸ¹²«Gn4µlø´ª±·–½¯Ú¦ÜÉ'M_¸qÞº¤[c×%¯EìÜØ“Ïh÷ÖØjI$D ‡—‡'+rå(CškÈ5jÉÎU"ƒÁÍXÔUføí›JgO#Néø…#ä’ýD½$fN£}õ l€©m-Ò³í¦ÏÐ)öë +“†Ä¯X!Û±=!¥±r²J—ôåÙÁK·[n!öê©•áoÅâa¼÷dÿÞ32B%‚Œ©¼k_þº[ùº)AÞ¬¶NUað€{xää%t›½vr|XHâ†Õ²ÄÔœ,”ÃfEFmAi™ìÓ†SÕçÛÑ9{N¨ßZ„r^¡Ì“#9kÉLüè;Í¥Aò9yXÄòªÆµ2Ea^±Y™™™Y¥™Ÿ¤ñmÛZ2¾@,é‰ý^unãç!û»õh€^F“+xí[ëH»Ä1`]OìfgóPÑ|¥K’½Š†Ãf§2p”Œhûk¤ðÀ SÉÍZïBmPZ¹m“•ËòKÔU…ò¥š½Âˆô¨° Lß¶çóÒ&B–èy¥}°c¿.,tc Š@Ë÷­kQò ”ˆÍ Qe˜vNàwËøœDõ6¸A?ú8âœßšu9‰‹m¤„f4• Ä…$Pr%_Wü‚•æ3_=è|ȇàF®óxôüÉ~ÓGÏ]Þzõáww~² ûI³Ø…õt¶kjQvyUIIm‘ìÐÓ§<í§»K{Nm®ÆY`Ávâc3ü“S%"¤VäD%Dį ƒEAãPJÑæX>'iH.3 ESޤúíãO;nóï ná_Æ.ƒ1ƒÝ'œ ½{ûJÓ·çeúv.îôääÔÖ¸kb¯9~å—O¾¿Ø¸iA%_˜¨Q¬c­r% úCÅ:VgQ¬ÓÐNÎcìçŸö*xA='8ã´BUa¾I ‘Q§Óh%Z]A!Ò!}¾V^ˆ¯Ãr‰0–—èõd”"-Ò¨ ÔZI¾^©“#2^ç+T?ê5_ƒŠ ¬ÿ ÜxB†H»ê†9l„cð°?þÅòðã ÎÂryJIŽ^Œ]°÷j슰'ZQ[¾¼2¼lCÅ­‚ز²ÒâœZËo}˜y Ý@ðîDÊů¤!d`‹ä†lË8×/8ÖK32³ò5*Š?8±t DxDÙm<ð¥B‡”–¯ÅeUUg›eàÞmàŠÀÝç —Uz¥–¤µï.“àg“ÉĘûsCî};ùïAQÿKSendstream endobj 76 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 837 >> stream xœ%’oluÇïÖ­üÀRIæ‹;þë P 1†  ö‚ ›n éÊÚáhÇmYÛë¿Ýõž»ëõϵÝÚykÐÞV7™ƒ…"dÆh`Ù ‰‰Æ7K {¥bÌï–ƒ„Ÿï›çÕ7ßçó}H¢¾Ž IrMó±c-{v¯®M½Æù•S+4€Å–úâÊã ‹?¾~÷ buܾSÄ ¢è$öë sÍ€¨'î‘ïOë&êþÒ9«F{ï,ë»Ê¤þþ#ÓœaµE‰Ø9@!¼Q™ÍЗ4˜„)îøÁ²U.€š C ÒÙü,ÞŸþŠ.ôi=÷a„ñüÖòÉѧ/Ú]tx¾kÌgÀkø|Î`+p(¬€¨B9E•~UïÞTŽvp ë§[ºRÑFG¾­Ž§K€nÝè9~Üe¬ñuÓÎ#§]@-Á?S"ˆRž¶âLYoªâf•\xhŸëÛlËfUy•ÍGï5ßÄ[dR¨RüÜe¾'BÙ½ »Ì×Âà e@¥—ÌÍÆ4ëjû®{þŸŸðŽŒ6ÂsÌÕµµýŠÐÕpaò†˜N–h«4Ηg—f_¡ÂÄBî“î×mÉa!FÙÁðõø`„J E/±¾˜'掻ÏG7²ƒ]GZ}ÊÜ™þ¾ô`j‰.ÞNæ@Es½Ó;ÆöÈÿDÄ¢LU–oMLÊ” ·?ì‰yé ›}'á3ôÞÃ/~ž™*iü$Ôy¡Ýãìî;8+ùgŠP€á¼’U ð%ªº“á×õÎŽ;ŽÏž=Á eÕÿ€ªnL“úAý_[ZK¦òRVœ„1@ϱY;ë¡y6ªu—bÙœ˜© >$$¤¦N?õü¾ù ð|ÌÛjÞÈ'†@qy(­r1EÍãw¿Åoš1kÀFã\ˆçhãÍçÕˆƒc6AÓÅx yRM„ ­Á¸ AM|eõÆa"¡Ròµæ¢àé‚è¡û¤¨E@NŽ +ž0ÚÆðGÿ‘¸¥lÂçÛbÿŒÝu­ÿ²[õLæ ɬBI¢ €|ÜÓêrÑ ‰ÚE1™•s¿ÿ†×RVj]ý~Õ²,ëÀòX6ÄKSendstream endobj 77 0 obj << /Filter /FlateDecode /Length 2633 >> stream xœÅYKÜÆ¾Oò#xÈh:]ýn `'¶“ÀP`g€$Vû6vfäÑ®ÿû|ÕMv7)ÎhÄ ö°Íšb=¿zü±“‚:ÉÃÿËÝJ »+Ù}³rDÂ’ê¼u$‚ëv+¥¦VÿXOÂê¼3Rh¦B …³‰Ëª …5 W¡´\ÚaB£ÐZ£Ëj4Žf…„·Õªáº5Êé Œ‹Q¼’&FU®‘2áŒ*êF›}²»]ý¸¢Ênøw¹ë¾Ü®~÷½²]Ñ)×moV9ÌÔÂ@ÞK/ÛÝêUoÖŠD¶ÿÓz#…’2ßÿ} Îè¤qýË?ó™,yßÿ•Yd R©ØoþôIi¼N÷*©uôýË/¾]o´V"yTT¦ù53‘u¶ÿŠÉNª`¨ÿÔHÎ’™_&Ó{šÞlÿÆ®ÆÖU#²²ývµýí+È#éÿ¸ÞX•í¸+Äûrz_Nåôº/Ç]9]—ÓE9íËéjAôÍ©ª{½^³W´–ÎÚ]¾-§‡…ûc_>T‰¨ÇmùýE%>,Då§ÅÛÕÜ¡ÿ›òûÛŸ¯¶«ï¸ØL°HÓ†ª·Ó °Wþ¯»vû³•i(èF4)Må$ÊZ¡+á]ï/bÎä¨VEcÑ‘©8»RgVJF´l­Ü· ó…À-iÎR®%êRe° Ëx]YM>Py*¡arh®ºe*„Ê43±µ¹2ÌÔ$È%S¤…‘0Ø;áBî¡’ë‘‘‡~cqvާCÏähMŸH}Ö(ŠJrç7Rcñè)6Öì[à Î3üFÊ„Ë*ß²ðeû»•è‘Ê6,#e¢°¡å(®Áʆ«±ûyq­Ðx5±›¢,ü'úÈÂMG.NI sQJ*ÀFf+l.JIƒ†dF.íSvçApØ\|e½^` ž—ŽÑ?Têð£4ÚŸòzdŠN/09'T ‘i¬è¹åìŽ$7p½‚‘@o€ßþxÕ½ä®VJÚ5íh 8‚Ê@F¸k-Ów'ñNŒ÷èÅ…]ŒÕùqã­ˆI ý>-Ý·O¼òRÙþ˜6³àÇ`L»• ¶7¢²Ó:ïE^Õ^‘b„j̆Wý¼~‹eƒvc° çÙÌ š6.ôïÒ¦G2Dìb“‹ãa­0C¢Ñý¿ÀïH9Íæ²‰à‘ ÛŽJyØÕH|L{[ŒX#Ù7+5Üî•¡¢ú&Ë`Œ päÀ5ÿ˜ŒNñ×XtoD ê/ÓZéƒò3É•ûª½hÍfñZ¢]‡ 9ÉAÄ¥Êi\{Èl¼3éB«06>Ð äYŸ‘Fàú#³@% ûPsëS{ñsB×Po†È…ðœÐŒË¯’bböpàà:጗ õ¬='ŽE›‹FÍÄ>°%`ˆb ŽYÎ.Å+b#Ü ¨‰‹‰Ç¼¡©ꮺ2 žF‹¸`bÔAgÝŸwõø±ïëñªëñn±Ì°UéàGÝC¼Rµ¾çb‘ž¢>‘ÏÁå Âà¨ÃsY›¹©´æ‡Z[”í3’ÏeË+Ðð< 2¸ '²³O~ñIŠRµKgL˜ ) oÉÇÁp ùþ¶ ?æ‚'ô25Åþ»ªiB?]Ór‹Daø˜ƒî¥2Q!"`¯Ød‡ÉMÒLÕC ðC­‹„]±Òa)š`÷.‹Qš.JÕÃ&”¦Τi 9m]2y >DL¤è†§ò-©A¢RØŽbò<\ƒÖ‚ÖÇYj’-‘´™t®¦Œ/˜;JÎéKÂ`61és;“D4Mкl¬t“®˜rB*D.NDŠˆë1±*¶ùnÔx[§ÉgÒ$6£äseN5§×3Ðb›Þä X¬6}Óê[,Þ×úù;ªá-V5=dÁŒÉ°hµÔB¢¸ŸÎ“A}S-¹Ú'ˆþ°¶Øž¢Qƒ &¨xRz*(…‚š5ûD•ò,æÇOw½fЦFæ¢95\/ËìD -£á’©AJ,VC·í.'•ˆªÌ¾m]ÓFCÄšG!ŒÌ‡¹l,mìoN# ¨B¾'ѹBLˆöñPGÈ.G Ik½Ìõ%žØÚ¡ÐØulµ¦JoþÔlâ´+Ѥ?˜ôÆtÚœ—sÒPÅ´ÃÎÞdnÈaá%ÛAº0üú4ócó*2-Î‘ÈØ¤`%hˆ¶¦T€% ³¦ðk™`Ò¸ÏļƒcÆê±Ä¢1: 1*è19 æ*—ß&iyy*Ò²Þôú3ñz,f¼ñÐÆc£…–ÃM~¹‰G™ì¼Öí»M<7šºØl«I ‘"îå¶`³š±/*²§xÒ5Cü;fƒ¼Ô­Íwõ¾ëÌÀox12«Øhx¨a{ÈaõïWÜôÓTäß2c×thXý!ë ±Ó¼»Ò$o‡ùT3“2‡^öº¯æ~Öòl9¶bÚ/mÐ K]N'¨.— À(iSNæi8ð^ ÎEƒËj0-÷S7°ó„Ü­2Ôâ”7Yæð X±q_#u»I‘,/5j \x<ïnÊ»ãiž¹Éc½K]Æók«ñI1pߤ×ë%4®;fáÇœöÅþÝ "è²Î…pÚ¼éÒÞÞÕ à´<é© y“w–²b-Öà9¼ÅЧE<¼MÖ-D=¶Ì¢†òEuu‚’FGŽ–ËndèdhDB£=0lùu‚ýá˜[j04–K‚pcW8 ´ð+œÏ®U}äƒÁ T+ã¤$/æ%­N°¶'cغàÛ¶¶Ôpv/«ŸÝp \äÐå\ÛVÂ1;è—ÓpÑ„-ˆÜ]µ‡ÑÁÆñÉ‘„7qV‡c~/â)LÚö.fžÍàRH•™´«â}‘—'›§µ†yüÝKMk ¸léiXúbí‰qrâ#¯^g>Ýâñì·©Ç…_UÌï qsþÍû¥0¿èg±bÎg>-Z¶¿yζçºÓèùÏÒ0³ÕGÃ3Ú(£@a´ØÑâWô–¢"ö5^½Y/U¡C•è> stream xœÒ-ÿCMR8‹vøzù-‹ ‹ ›÷T¾»¸3ˆøˆø§v©Ô÷÷±òÅ¥Õñ÷bó÷‘÷âÚ½Q"ûDfVT@ŸÀh¯¤¢¬«t¢kpozc,ñM÷÷èçïÞI×%¡Ú§ÆÏ‹ÛÛ1Ä# :Q?f¤{¥ªŸ¡¨°k™uŒµÂØŽ‹¥×ƒ$Ena}{mlt‰N‡xŠƒŠ‹~}”‹œ 7Ÿ ‹ ‹ ‹ aOU¡endstream endobj 79 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 3245 >> stream xœW{TSwº=1sª TñŒaîLbµõAkok×¥ZW­­ølUÔ‚ ‘wx„‡  H '_HHò$ ˆˆ–jG[;W¯3>z;ÚV—ÓÚ§Nýz¸kÝ_BÛñÞÕé̽IÖJþÈïñío{ïÃ#B¦</tÍæm1ÿÜþoíûB!Œa!-¿|rú,ôÔÌ›'Ÿ$/ÑêœÜ¼üµ…E‹%%û%HIMKÏØž%Í~ûù…3bñ±…ØJÄ ‰íÄb'ñ6O¼F$kˆ]ÄëÄÄZ"–XG¬'6ÿFl"6oˉ‚âM'Äø.D¡åEñʧñ¦I§ÝàWóÏ…D‡´‡&‡N > דÿIÅP£Oˆž¨¾múÍËføÂ^«úÙºð'Ã_/‰XÁ*Ã'šÀ‡vûØXÏ?±Ï.™ØHך•ePŒBQÆeMÞVf¦¯RQR²Wë†è†vջ̩°ù>r›ºÔV0htÝ0¢…È$8Ã=[_¥VBmTvÈDRrP{†`´ð‰2°¨”Ü rC•‡â–¡4' éèfh8{ |l¨¯Â9 …\E©WçD¢7‘‰þæw§/œ3ïzKÄ•‘‰rXwÖXÕ'á$˜UcS׈‡|Pù(´„OÀ›Û]èI1'Àó°omE.¥D^»OrÏÈC¥äG†š]bÎöw7Z/‡!q8k”{Øh'Ï{»ÍgKPæÌÈEp‘ ær³¹™¡ùàŠqÅ\<gáqY¿j WÚãξÎÑS–c0}Y¶Œ‰:$ [ó÷æ&&K€ÂÕr;}è9'ûs_©gÖ£«¨ýöœÈ=h=úœö¿wÖÖÔõó/r'ˆ}éå¤Wwø° 4`¥bC\2æ‡@¡hÚ—hšµøÏÜô EûSÄ‘G/Ü¢@—õŠ}âÉôTç‚ï!tùÑgÀ×¢Ct_Zˆ"ɨÊ*¡€Ê³—vØ;,]ÙIoI$› ED’ܼAtLcV p¨.O*&_S6õˆÃ'–bž ûП‡æÞA»<|öˉ•ôä{ÒÁ5&Z¤-·ñ¾¹Š~áá£ëìÓ´{mÊ%UËÒŸŽVRùŸr^’ ù¸pìR÷ÅË¢ñÜäjiZÚ:ø¬M„:IÌ$¹³·±ÿosÃÎE+è¥ ×,¯8#B ¹g­ºÊ¥b.š„ J÷÷Õœ€Ó0Òá=OE–¨— Т¦P[Ý0"Fè»5Áö†³Çåvö>žeøhB´RÏè¡r«ÈGîc U{!r M‹†ù†5Á’ŠpH¨/kTÀš†VôKô±Ð>ÚmêVS>2[™ ä‚T« ®ò2­å ƒ*S'ŸÏé„á¥ß;±•?1}J·¿ßWo¬MV2 )PÉS'¨šó ª…²æ_9­prך±äh£\> ß1Q¹Kšß1kjEØTM¹9”ÀÔÊAà ŸCf…Z}”ûx°¶D\[2>+2¦Öá)bLˆæ¾ê*µU°@}S½ñ/è¨ðkîh}U½ÜQÐëT@IœÅÝ(Íéýc·sÖÀõÝ÷Њ«WK°¿¢ÖW@%³»\öVßoÞè}‰›ýì\n&G?\ŒmXÜ…~f0ÉA)¦T!*\'‹jcÌi´½psø¼ù “Åü;Éùyl¼½ó2›Ba4fвü 4)±$öA²CÖ/`Îá.ëÇ\'Ú»ú|cÐ'ºSLe ‚Jû>]«O{+qÄÜÅÍÍüó4ã?ìmë$zöMb>|8›ˆ Lw UAŸV~ÄgŸÆæÕ®û×q_`“[2Ÿ{’›ó×…(…<êh¨ÕWW)kêTâŒg–2å°ö» ý™#ªóÐO©´=§Ågá¼DÍͦÂÑTA'…^¾÷9µy %ïŽ LQTU‡=2Ÿ’Y9ÝmVWoÊÑí¯ÄlY(âÈ•ÒÜïÿ-¢«˜š‰big™¯|¨/®|tc$׸Y|âØ0˜ Vy¤Qò†’Žæ£ÝZáKÎI’§¥‹òÚ4ãpñܚؕñi-åb†ÉM‡DÈhIsŠ/KN…=ÔëÚ†f£ˆ¿Ž]ë+y'Õ!ŠëÞ Ïá‘΂#š}‰÷ªEg1˜©¿ÔÑKá«v·Æßê[ln‹¨;]XÑ/Ї¸UtŠP½¼mUÒ’Å«‡Ï¶?¼-žÊpAZð¦Ìˆ6Nl Ÿ—–ŸÎ$hùÿ|ë`Wº4¾pÔh^? CĬˆX zmbߤ¹§W¹hPàÐbÿ~ûA]ý´`fŽL©Ê†:Ýqqä-ÛKw8²¥…ù99ù¾N‡£S„] ïÍõðz|¨é2úø¯NÄÐÿE й¢P Åؼ(ËŽŒL[º óc²Ì€òy¢RÁ1-š†…hð×±àqÈy`ñ‹Ùv\jƒ­Þ¨qCà-l9Í\L0ÏÔZЉdý¼G—ù8¥eÓ¬ŒüQXßÑ8ÕýÐNÕàc°> /ž¹ÏÍi)j¬„Ѝ*e¥4X¶C}<¨ÁÞ©²3¡@v’›‡v¿º5tü#-ôtì´©XdeêSJcQ™j°“–”®>BžàõF„6ýT¯‡`ZU#çωûGþ´ÀgNäH0õ#âú©ógÛ¼ñS,øž1ÿÔŸ£Ì§àÉì9èH6%ÂØ%ÉÝYy.ùØ2X»Þ>˜HE~¬úJðy\ø¶¯È>ñ”gýVߨF$Í-g+UõÊœ"|ãàÆ¤LÀ&³j`ó”Œbh*5¶­Ã2¨RâÌÃ=5¹RÈ-cËqnÑàÜò÷VŽƒ Ì)H29)ÔUè&hÄÙJoE¯°z!Z5©Õ—jjš!Ê:½®ído -ƒnç¹€9K•Y8eA®zëT//¨:²¡j™:¦&ØKDð>CÅŸ¡½Îìì‚üœlGAçñQ/û+;zÿmvòQ*{‹¾(ë—¤—äååYóºÍæzC“H£Q«Õ@i@Q½>ûÍÝIXƒ”øaªÕ×4oý…áìñåÊŠ:óò?ç³×‚Ú†µõÎÉ¡A­ –ÿ­­=iþ­…‰Š´dÑAgrkPó92nž˜ ýJûãTC¿G™ÿŒs}è)úÁíÞL~UY§¨ZYP…«Òwà™j¨¤8’Ë&ÃEÓC–Ùž€°é6ÂfÄA²Îºendstream endobj 80 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1158 >> stream xœ•”}LgÇïh{½ij<7s—iLHâ4ñ5q‚Êâ o*l(Ì¸ŽŽR´í:¡ £ƒ_-Š‚P°¥E{Ê›/ ÃDŒ¸™Ü¾t:çb0à›dcÉžKÿØQ°¹v¹?îÉÝ}ŸÏïûûþ’$IR£wíZ3þ´ð³±Z6 *¨äµ ö¹Csú‚;ÕÄø¥Ò4MfÍG©iºýGì$v D"ñ>±‰ØLD[ˆ­D (érâ]â ¹š¬"_ x.Û)k–/’ç(^ÝA¢»D@ýyˇœ>™¨C™ R‡bV„‡`5V„"9’üŠÔ,ÖàeLdìý᡾¯îÜŽ^þvld$'I€€º…údȈ¶3¿õ"‚µkùâj =õu¼ópÇêÛ {¸FesÑI‹å”Eé^¨å~À]ë¦Wè4Usššõ`á°Œšâ»' JA&Fˆo1ðfKΦ:wCÐx£e™>±Ípªˆkù„/Ë=k}”ItfVZXŒ¦¾ÇÌ»¬Uz µ`4sË”ÈnrÔTð'ØÎ´npÖ6ütùzf£ÁÁiÎ<îØw|K\¤Ï6ñÏžÙu&{Tï…@_“›`êÆ\$ óù«6‰ ZAÕðyö8ùŠÇ”<Úñ Ùu«•¹Ùžá÷[¨Å÷ÒîôúZ@A®¹4£Œ-Ý£1逎€®†)uògŠ“:).`üž½CåM˜äà¾ÀZjÕúúõp®‘Enå«ïË©ðþ[ÛŽ¿Ê–ïwÁi LãíõûZƲV,‰É>ßÍM~ö@*/Kâ%¡N*_Q”QVoî—Eç-7­µZø¬–Üøm~²õ ]F%¡+ŠÎ= ¤,ÙÒß ÀsÝx°"Õ-¼à*Ø+ëz=m.[ m£ìúºè㦺X{~»D憊KôT£ïúPæs™¨E$So9iÊÏS![lÉÙ·è•QOo4þ‰æÕÕ”A9ç*µ•Ù í:ï‘Z ½.—÷»%Œ#bð›+pЋŒ7Ž:&íP€@¶øÍoê7ÿaêRÊäÔx¥@ÉÂÂð<ŠˆŽ«u.p™s…ý‡ƒh>“ðÁÚ Qqß>úï÷v¾—ÀNlÅô¡@¼ù=ª| ×¢xÆå†KˆÞú fpÐÒ%x6Vÿ‚æ¡7:†ÆkÌË—jä ;¶AÄêómëcœ?Þ¾üÜö”Š ôÄõøkø;¨ƒÝݱ&9%'=•EÛ^MÁKÓÞéZ9ƒEP/´^¿^cˆc±!C9Õpú¯”øGûÑï$*”b.ˆÝ oôèõF£^ï1ò¼Çó8Ïg¦çW»pÐŒm»¦³±=¤üSGÆ^Dß2q/ºÅ¸É—ÙI²¥åŸ^K#¤e°ž3Ã! Ó'‚å†Vw)ÓL“5L9¼’¾ Ò8´Iù¤ýZ›«:/šÅ9ʬI†»ÿë“ v–ü^õ¨fj6¨æÄ_Ÿµìendstream endobj 81 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 278 >> stream xœ ôþCMMI9‹‹ùfù9‹ ‹ ›÷¿¼¹T5Àøˆøë‹ªøû°øKøõ‘¡•œŽ“«‹ ‹÷­„=~‹|‚PŠƒ„„•—”š¥÷AŒŒ‘‹Ž™‹xüÍs‹ŠŠ„xMûD‡~‹‰‹Š†Žƒ•–‘‘Â÷0ª™÷%‹²§‹ˆƒ…‰„‰ƒûü«‚gˆ!‹k‚‹y~˜‹¥¨‹¦§‹¨Œ§‹·‹‹°Š˜‹Í‰“‹”—‹˜‚‹rr‹ptŽŒ‹œ‹“’ 7Ÿ ‹ ‹ ‹ cr)endstream endobj 82 0 obj << /Filter /FlateDecode /Length 2403 >> stream xœíYÝÛÆ×?QÁ/![k»ßRÀu'…k ¶£ƒB–x‰<‹’Ï~éßÞ™]’»¼Û“íó=ô!0à-gçswæÇá»9%lNñ_ÿw½Ÿq"ÝüjFçOgZ" ›¥±z¾ŸY®‰vn\ÙÍ^Î5DK;7ZR"8p+–9¢•çRh™0 )¤ðP%ú”2ðÔNô VYg‰Q‰QýBj“–Hí›,3ÄR–Ú™ú… OoÓ¨m0)ÑFçogïfÌrÞÿYïç]Îþü‚«¹#Ns=_^ÌBÙœIAŒ€À‚Q 8–ûÙ/Åã矕–çtñÏ—%huRI^üX. =”J#Š—åBA4ãÅÏ×Y¨³”sW<Š¿ ¥V‹_—Tjƒg•å`ÇrZ_xfg­Õyb0—v*s¡Êå€ ×Äa‘ì¡„k>_@Мà6ˆý…ýZ.”IÎ`•Âö ŽÛ5Â.HŸ/ŸÍŠÕñxx]<|°n› ²«ÞW»¯Ëò›Ùò7$:UfìÅôa<Ÿù-ÏÛ#Ĉ18s¼¨Ê…ä”Hª ¿J%“®Ø¢û •iÚ$X'ncé…0auéãÏ©cÅ%²hJ…+°Ê-0›¢-á`BRlñ¥YÍ¥(jO :ö¸‹;ë ªÆÂÙâ• d'}‚úb ,Ê .tÑ6QᦙÙÁ~î¸LWÓ}«ÝõÌ ‘FÒ2`dÃ1¹Œ‡0vE(ãld^DÇÞ—JάA}h‡ÕN§hFÑÄЮO}@Áp;Ù÷v[b2¥²ØÅÃF¸ iWXÃ\z :&)³`ÐÊçBPdy‰Ñ[Å 221\@Îá® ¸ ¬4w¥ ”9u.˜ñ| œÉ>nTFR­-ê†C©¬*ÚC,Á9ðÎhàÙ&T7öMÉ Èà>¨jä4$iF‡™;WPNƒ{Ǥre‚ÊÁ‡ÌÁòÆ*cRƒ»äæƒ2¬&ºôVÕZˆÔúþZ÷"FÿÒ;y’1ÿ‚L/ÑwËÙO3 —:(yhTP+9da{‘Æ:b丂½ãÖ¾áÎô ÍÚ„¾ñ¢dXNµ,þ’ƒË–Á•ë‘z3R‡‘ZeÖ>ŽÔëb$ŒÔz¤ÚŒ’&³j8Ç_ņꜵ;'h3RÕH]fÖÎïh2ħÿ©cæi—yšÄæc´ÿ¿‘¡Gg-âÆ48‘DP(´Ò&xw¬8¬ü`AòùÔß‚vœ­¤€ä„üŒ[¸"ûÞ¾Iìûk*qޤ4iö¾Èà)ãÊáLÒôQ6e"µ£ 'Ó*á1Ë‚k‰ÁÙSÝ0޹qf¸´ì€ÊDkŠw„Å9e–ÜGò*’u$7‘´ê.ˆ“ôó&m`63–›Ô¸›xÑ‹x·H™/ZQ%*<ô®°;Ϊ$jFìÖE¸uÊB³õÀæ§RU$»,`”`÷ØüÝøiö?·F‚Eendstream endobj 83 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 166 >> stream xœ›dÿCMSS10‹‹øýùJ‹ ‹ ›÷À½ºR3Oøˆù‹ ÷¼È÷˜Ãëá÷ÚÜø7÷Úò©ÎÒ‹Üîûâû#û…ýJá÷Ñ÷2÷PûÑäüGø÷˜÷$÷ÍPDDKPû  7Ÿ ‹ ‹ ‹ ù> stream xœšeÿCMSS9‹‹ùùJ‹ ‹ ›÷¿¼¹R3Oøˆù-‹ ÷ºÌ÷“Æìè÷ßâøF÷Ùñ§ÓÓ‹Ýòûßû#ûýJè÷Ï÷4÷RûÏëüRø÷“÷'÷ÏSCJNMû 7Ÿ ‹ ‹ ‹ à;¬endstream endobj 85 0 obj << /Filter /FlateDecode /Length 2602 >> stream xœÕY[“c7~7üÅÃqŸÕý’ª@-l.KmØ^ŠòØžYÏÄÇ“eB¿né©å‘M¡`kV£Ójµ¾þÔên3e-Ÿ2ü7ü¿º›ˆVùé» ›~:1œ·š‹©Õ†·ÎLï&Ö³Ö©4±›|1q–·Öñ©5еR€PšqÜ·F)-œlµ"Ri†JI£ZåȆZ+Ù¢.²ãh–ó®µ:[5üM2ÒµÊxb”ã¶uŒFe©q¦ŒJÛ6‘ýØôvòÍ„(§Ã«»é¯“go„žúÖa¦‹›I„™O9ÀÀœžÙ–ƒÄânòecfsî9×ÍofsÖ Æ¼²Íïf é S¦yýÇ\sk›—(¼cBøfAäÃΘ²2¬LJo›×Ï_ÍæRŠÖ;>Ê/TóúâÚèæcœ6L8Å›70ë¹Ñ\Ó¯ƒiƒ=ä߿ţZzTÛz)Ütñj²øàËFEƒaK0 Å=½^5òü¼Gs&›Oã>LúfI¥{fŽ9ã|sŒvy+Ds˜iÞJnDÓQñmV¾'ÒÃJ§¼i63Þ2n¼º9³NèBuHf¤àQÇú’zc@kÓj@ýêc–»(1¸å.¸E;UNß"äÎjf xê'xŽp~¶Á•Š1cOÆ Ç¥sáM+mÞ̈́Π'-H›fdV^PÙ-jsŒq.à`"Êg‰%a7é½R2îæ”0¦˜FÄ ·Z©s ×q?ð ÂÈ´^"ŒhЈ.{‹8ÃõÔöLj'…4MwÐ÷@¾‡iÅ=C8*à+.‡MœGÛ4ƒýºaCtOw-ÈxhfÔº(Îinã™å°èmó‚y['föL¢–,ùö’ó~ä.Ð2 o (z"p[¾#ñm¶ˆª+…Œ’Ù«!-Öoº@aÂKO¢è|”Ã%ôÚȸä–ЀË1LàA¥ð×ÀFÇtÒ8º"ã :Òà p‰oyî‚Ï“£×¨br¸ú¸\æàñÈŽ]^¾\‘£Ç$“®¹Ì_º¬b¹Ï˜å=Î1?KPÛsX(Èå[X¸GÞèüMœëšÏqÖ2[‘¢‚KQ”p&^là¾oºžìBììv™æmÜÅù‹÷a?8¸‚™x8€âí ="QvhÁ½ÑM\*@.nhD¸óab² i„FˆËÝ@<Ø]È‘x”»ûò™¢‘wÊÆ'`Ó¸G"Ñ0 ·î?\â(Å•/UÀL)u®Fo8 °ßöÊmßδÆsÙ1̆€A(¾¼Î¾Ýå‡} NØzEHÃ4Е„»MØšq$1åÄC:_ÜÜeNÃ/ª3‘™aÖ-ɸ£ás}T.Gÿ¬œ@³"‘6^j¯éyÿÑà ۟Üßá1!ø.fžAðsC芚9Wú4Š={Ã%yB!¢´Ìú‘†¿"/8WÞ^:5sãÂ6¾–Ò:9 y•‚ 4rVó(õ"ÇŠû„< cJƒðÔÜøI`Å· EàEtª²ªŒ¶”à)Q`LnfñŽĠ䊩6àpMØÐñâ¥$‘à!Ó6ÒBi%ž¼b)Ú¤ÓÅ5ØÄix©ˆô›½1ä¹Þ}¯¨@ßlZ˜„Ī äŸeƒù†$ÝÙ?ÚÚQ¦õùa:óÐ’‘·b› 3†H23T‘ R‚œ#Ñž<ÊÃç’hÙÁËÞ¨6á´Škü$Ê-wåœó=‚!LcÞsñ‰$ >§7–jWd-Ý-(¦>Ö{öÙL¶£)®ùï;:—Âõˆ†ç_³Qqµ.ÁÝI^¤ñ4í§iz›ßä›ÌîPs@ºxšéç —’zOŒÑ`¾NéU(¼Z§Ñ>¾#_+1JbEiÉK²Ä ÉNS¤øÖ)ªÈ¬‹W®tá I ÈíˆZ KiꆃÆÎà©í u‹÷ù4aãôÊ…'z| ä…ç$£IŽ+±Ø…:žnÁ$ÄÌ~¤Ä`Ò#ÈgHä-îLZÕ¥ÍÞ‘w„¾ÈfïW\o\g?to’w •¯ˆ…úºBˆceî«& –FߟMO×^eî+‚«4úºòõ66YÍGy˜·ù,¾H£çiôÇ4ÊàÈŠ±_Íű.ú·‹0^§Q_ƒöYO^} ‡½ä¬»ŠÜžÈ%Õ¿Èà 󮢻¯Œ¶itS™[]´0ËuÄš]}eõCeÒ>Öøô¯8]cÌ¿OåÏÞH>upçŒ wN·LðD° 2\A‡ýña ñBì­ÐŒñËË ÓÀ”R„&榖éóí!fC¾üÓ“ž –Pe.¤Öžóæ´=7æÊõÒùq¬l®†D™Ùó•(|Wfî+…,ÉGwYÓÛØG†Üÿ‘ ±~ƒ\Úô1I—2õeéqb—ÒqNÌá:t¹ql¯wÖUŤ¡FRû}%Z!F½ð´ó¢å‘ð) ªw1iI:´ã…&–iØ,¶|(Ó°ËuÆXLeèGcµAÛçëÓ6&ûŸ´1o—O»¸ØÊìêH„îšxJ@{J9ü¡ëôוTTa›G:Ý‚Ä:w à>Á5¸ÃÏR–9¾]ÕûÕ°Ž›¢ƒÔæn1ª%ÃB‹}à£s4¡H'½óO<ö´Yz,ÙZ’$_…5;_Ðì'´š¸ M/aâ×E“±³¡ÿ³¦=m‚Mû€ÝÕ°cúÅ*tÙû8«r9t†¸lsò”•"p™Ù••¿í\—Q#v†Î®—ë¬]¥ªÈÕÕ¡’°*UCµ¬]UÊ”m¥*8S^.¸³ò\¯½M£¿T –\ÍÕª"r‚ÿ«bî¿ZÊþÏŠ¾«ZëVk°ãN ­‘¨vü¾jYÝï“÷?ªžËj.äµIsYÒÖ>ËÊ>pE+딜W˜[µÆÍ†àòãÐëç]o€ÇÉj'ìåù¸uÒÃP€¼ž¼±™Á†ÌâyÿxwìŽÛÕXU˜æÕv¿Yæ×ó8+Ò}·ÚÆ2"ÕM‹MŸšyÚ"c ½^—Ž¥?­F†FºÃzsجÁü4y=;ð®’ò$¯!•ÅÕ jÝX @|¼˜üþýÊ?PJendstream endobj 86 0 obj << /Filter /FlateDecode /Length 2680 >> stream xœí[Ý·WûGAVíiËï#.àm ÚX-Ð:A±'íÕHZEÒ}}Èßž!¹K×Ôù ¸EbŸïáxÜáp83$3ÿ0%5÷Óÿ^n'¬vúzB¦_N”Ð5×tª¥¢µQÓíÄ0U+kcÏfòbb‰®•0S­©9ªØc¨­•ôT’C[ ¢¡Ó%šOJ _M6ß •±¦Ö Õw`™7µPÉd¨® ¡X¦DÔwd4½Lq¶A$4™^O~˜P¯Èiÿk¹~±˜üþ&§¶¶Š©éâj”L§TðZsP,Eb±¼¬ž}ýìṵ̀ÚZUýóÅ fµB V}5›ƒyšW/fsÎy­(«þ>&!ÖÆlõõ—î/MˆQü»ÅŸA‰e0°XiȱXÁ¬ßxbkŒQ8˜ P;¸Ò³Å€7@¡„£yHÍ›ÎAi–3Øþk6W 8Blõ45çò¢ÿƒšj?¿m67íl.-LhE$¤•içÄÌœ<”ÔVÚéâùdñÛ—U³9µ‡]sZß¶-¯^Ýí»Ó«ö¸>>I§×]}\¯ÚÕ¬°*ª@q<2ÝyE2biµrÚy¨’ˆ*„݈êrÆt-ãÕÝÐi€†MmÕºQà'J™êÊ÷AUÕܸ~ˆÛjÝÔ*"TurMÂ,Ã÷½Âl…óuC«%tJÃWU77L°öP*$fæ{ ×–»q‘¸ÙôË0--£îÙ ¾u€63ÔÀêõeâ|“œò¼njitGßs3ºnA@oû´Â}bæÓ誛Á–‘LõÆsV äD“lÝ(fÕUć] Öë E Øt•ä(š73‰÷ àìŒâŠƒ_rJ‡M„ÍsH»¯Y0¥²©çQ<Çk>0›S Î.ià‰MZ`NÔ’ù{o «‡¶­vÑ¢×0NHØ\<8`ÐÎXQœjF‰öŒéõŒÁå3ÿÁæRª¥˜™×²°;xî? ´cü0§ÕÈ}âòë „¡¢ZxÂ#tØ@ÁÛ¤Ãp pŽÉád׃÷éœ-œÒ+pºõÄÉ„ÕíLJPœÑn[9AßàmìÄTf V²JÐ3* N%•éLc˜Äkr>âY³ªé B´w»·L™[ AÙJf^„ L35øhœ©™ÎCÀM¹aÎzÀUÔ–æ<~•Ô††-Ziíº áÚ„}B¥‹´Mþ43>ÎüÎãœÕšºÍë†Z·aœ; Vu’úÛSôÞ)‰åÙÙ4®,Ü®ACýÞZÆŠ¨³ÊMæFgò] f¹èE;ÒÁÌÿ.mè@ÛûõÀƼ:¤7´]–÷o%@¿öÿ°Âêò Æ÷ÁÞÝX8sˇZ&jnÐVi –GwQv%†9ð :¯±“¢‹æIî‚ ‹T2§ÊÖ†9ì#j‡©zDEØQ¢ú`³ú |èÜÆÖ«Øúwlb«­cáë·Ul&Ö›Øj ƒSk[W…¾eË©@×ÅÖ.­óÇÔLc…E•xo t»ÝEšdu/Ã&>MÍç…1išÿ¾^,:œ;7þ8jÅ^=”×Ý»ücQ²MAÍ¿$ë?-9<–”LHKê~J]úÌ ó|;+5ƒ=Ïñ&¶. úk‘^>Œ{ýæ^c'i’³ßᙇN$Ãg±ó«Bë3¬“þ^À1D§p~:@*áò€ÈØŸkÏŽwÛý©;­—}Èïóõ®móË»yh ˜êc·\C¨ænÒ!*[´Ç“Ÿp§`°©h4®šS'.e! \nšãq}µ^b.D‚Cu‡U{hW }ì¼¼I8ymsÚ¶»ó—õ±Ûºã©Û\ô¤pÿuÓ,ÛË®×Cmž‰aùÃbX 1¬H\µù_±‚ž‰b¹T>KðÚ…6†PíïHèt)FýÍ÷Ž‚ZœÁu†rÂ=ÎàBÌà;¢GJ}Œy –ˆó §ç€aï4<¦pð·Iw9B ¯;iÇyÿƒL„ ÄR8óìŒÃé ®Å|1( jÎuI–n Š¡£Ä‚ëtÙL•åL…Wp“¬ å. ÈP`„.òë°BÝBYZ ¥J¡ìŽ¿ö,”³óþûø5pÈy9=$àX ËñÝ=D ¾€ÎA;a]zsnÁyJ­ò Ô3Ó ²Z èàœÃF™ûÕ›i›„²”µPö#² M>T[ÜT÷»á¡@wYö=ü§b$åì ­Cã›Â|Û‚²K‡-òÖänö­ÜÛ†µœ¹0†ÎÛ‚d›‚‹2îÇŽ¢’ŒI¿K8üs‡¶eÃ[;`sVíÛÃÒX_v»+€×»e›"šõÐ9€ú'žLi1pmö\Ý­éâ÷¯ŸžÑÐÔ,áôyâÑ?;9çÖ!U†OBÌáW†!=I¥‹ŠiK„ƒ|ððÉ ¢ì9¤U#Äa•D¿ ³:‚p%Úr†2Ë0§”hJ–ÅÁˆ»!Ý~à8¹²à황Q²5$©!Pbyn;$¾ÏÛ $.S’;ŽjbîSºð̽ ymrߌ~Æ â;²’õcVòÓrYÉû®â_”ûdñÛc~òaùIw¢ß› |`‘ Ȥ?l‘=[dóxý|Ô×Ïc&ác¹~>ÝLÂ?~¾÷f?§ è]dâa÷Ž!û|s-W¥’ÛÏB¹ g¾,É•Ø]ްÛ𛳯£ QG­M¨¿2`*“?žµ© =f5(ð•v ³7yµfÌ š j=vâDà:1h.‹Äc÷dÒ]í±ô¸¿ÉƵ”×j¨Av'Å™'Øü±5Jµuì<î× Ì,ë½hv—ÙaçÉ QgÊÑɈÞ?œœ'7Ê**q{P±ÌªëÑ¥¸î3–’êQÂÊ>ÿàM™¯§S{Ó¡}޵‘WÿÎ㙹ëÏL@E4Š"ä•À±Ìcœ0sR®Ã»…n_eðÇÅäoðóù½`jendstream endobj 87 0 obj << /Filter /FlateDecode /Length 3776 >> stream xœÕZmo·þ®ôGè[÷ZÝ–ï/nRÀiÒ¦…í¶Ž€MŠbuw’®‘nÝÉŽ‚ ¿½3$—ÞñdÃI‹þ`Š7;‡3ÏÌðÛSÖóS†ÿÒÿ‹ÛÑ+úö„þþÄpÞk.N­6¼wæôöÄzÖ;•'nN¾üÀSV†o“ÒÛîÕó³¹”¢÷ŽO4 սúqmt÷9N&œâÝk˜õÜh®ªéWA´$ùáïç<y)Üéù‹“ó_|Õ—° uzß½ ”Þƒ¦»uXOŠn Ã5ó²ï(aÅî `Ä]7nq^z¯”ìv¸{¦¸òÝxyGnÜI L68§zíD7Ü„ig¼ê&R¦»K˜•NYÕQv&=¬v¹IÁáCË}·Ì£5ÒZï`•n³ÚiãlÅ¢OKóê„®‘…WZ ø.ˆ,î.2㛲¥q6¶gpTÝb& ¨ x}3mHtofZãiØnZsÆr[I6\”Õc²ð"È.…â¤Bà È3‡µƒ-âJÝ“À \O1î@ƒc”ŽÏvwAzÃ@æ4­„UâAZ'4²ÎŸ.ghE’»øÃ-9_ˆ r âofÀM1G_y†ÊÃGóé«9ø¯5‹¹&–eÆ8ü®¨¥Wn¤ÔY€Ë¢×1Þ9¸5°p´RÅŒïnqÞ1ƹˆ–C¯ƒº×Ò‚=’/Ó’Ô+H ÍÙiÉ‹¼ÑG¼³ÎÒ¦½„+{5¿*Æ–ØzÊ”d¤Œl»fçÿÜ_Øõ žË{¥¶ûX‹ò¼þäDÉë‹Á5Ę{Õs­ñpp+*ÎëïáBÕýf6×"z¦Ež¼Í£ë<úGíòh•GÛÆ¯_wyXXßäÑÐø¸ŒÖytÙ˜[4¸ìtcmÊ>ÿU†å›ûƦZ¼otB—YÿP†-å<äÑ2óè¬|¼|Rœ¡~R†/ß!¿w¢Ÿ÷n2¿¬ouú½¾Õ¿„E¬‘àÉ® }·ô¹m {Ó8·ÿ'sú¤uƒˆ°¬uª¼5iž¦´­Ÿec¯gG†ÑAH€Oà ŒBpŠ?ƒcV€ L<åçÛÇۻݸ[Ct¿ ™îÅz³îçó8šÍ!‚ƒ ÞŽ‹õ°[›iRvç«í.R^A€!qWX»á@.È»ÅͰݮ/× Ê@Ã×¼–«ûÕ„Ï“±à>$W .FûÕ°»]mv”ÇËõv¼»·»ñælÚP÷ç›a±º“V&>mw÷ Èåzµ,û‡UãØƒéï–iw-)þ6­îÑ:¦áÜŸMúqÝÝüÍpó°šxªîc±šs˜¢ÃÍnu¿)Þ¬ŠR¯ïÆÝõj»Þ>+“»·c¿]/WËY#ºq §Êí´±OC‰!rÌ44*ƒÃ XÕ@@Å£À¨=¯ãyÁa’l#©b.†gÌÐ ™0§Õ ½_F€!”òVš†Ù³(„uèát†#;†Éz(ñÄùj݆r>"\F\XaÀÇCDe€yE’0B<öêEŸÀ}`¦wÞ†YìU"â³,sr—j: ?Ô8;@~¨Ðc:${ ¹§Ï#Ô§“yÄã÷ RgÝGPðÄ6@š€ÔK:9Ù”¢È¬ÈL8ÏÔžz 1…3p3«A0™$8¨ÎGs E¬Jìˆg$P×Uþ¬0@lœSœ„Ü'îßy/£V$—ÆJ2Ûº:uJEs;80%<\ s æFÕÃ8,Ä2XK¹fߊá–\Ë»€\=Sn/gÈçwZÇk`šM` 7£ä°†À+>Ñ®Ëõ£É$nJ=’¬«ÊˆösC³S°´Ù fá^dî,ÀñÏJ‚N©a³áL2-vy£ppßÃÕT—œ¤·%§»N§éÐ%–ûyß‘DˆRP4$ï;Ü•]b^wÚd¬õšÖž£RF•Ò©H\¯a{°½½S“ŠÓÎ_Ý÷¦s·m‡žNIøˆ¯¾EYLµj?•—ºOnårZª>ܽ«q˜æ¢•å»J ‘8UU¨=± ÊÈ*ÖÁefÒò¯#z»U¯ÀnDÊÏxÌÏ*v "‡`òýÙ¯'bQ‚Ö˜ub;‰gCDŠN2¨íu1›R¾ë)›J³Òë)ÊyRƈA{p¾Öì¾}‡;òìÀßW9$Çú’SéŸÈ![ùFAÍ· œÝ‚ÿÍ”áã<9âyTбnça[“É&œWy² ìß!†{×:¡NÞ †#HÄ;˜ÙÅ;R¦lïýsSoï¢lª°P&ôúŸ0§VÙ7ÓîitÑX¹¬GŒ²%l«üPÄþ®Åæ§×Hmfɶ$W!É/‹´’ü›f¬ËFcÝvÓ»UiùÉ*/óè³&Ër“ž=í#ŠÙ>ÿFOfêÿÅ[Ñ( á2Ôra {ýãä¼üDrÞ— H!C2 ›žs‡é©€»ž‡¢ å”t[½Ï‡•„YHKâS­Ø$îÀï0sG:…²|31 %‘€vÒr%YºÂ+#ó7„5‡œa^¶IºH@ï¯3'1‹XŒi×zê0h嫾Ś¿`«2ŠüHàf$X›‚åÔ—8løhÀ&¼þŽ"·f²^ó ¹:, å~[µk Œ ¼½VÎM{€(m%ÙYÚ¯¸©䃆*qƒ òaÚiŠ@™>tÃ*õÚ¢‚~ÐÅÆ“ …m”ºJ7Á[HNâí…̺/Í„UÁvËrPuoD†,ì@—YÛy±•$þuRBóÖýôò0^³CHéúŽå—‰–´¬"PvL·»µk7ÄúCJá1U£yTU! S§¸$&q$ã-$­Î›¸§MÒ¥ËÍ ñ„‘oü‡nPàÑ2Ý]úÐÈ î,[Õ9Ìv»ŒÚ„‹¹ß:‹û¬v UôBðb©i?)—ã3ûy ½¥Dd³Œ¡ )O’‚Úp²Û¸\4\eŸÎ¦TÌ¢ÿÂB”‰>ªÝ:êi±Û¬yh~Z]ŠbÆ‹re’S‡Ëî—±â§eOÞâ†ãÕ$)ÐŒ¤°C*F=°½+¼ßj•<¨|wXS1R¿4ºÂ{ot0ïP—³X«ƒض=’¶:«áäsgu¼(ƃò¹¦’; ׂ´×‰å‘¢¥^¢D¬kl“.)}0Ð ò弊ÓXkº+éuälDºP@`‘@cb.'׈ôÓ‡eRÕ=Ô†ˆ¿= ÏÁàçù˜ƒ5sþQ©÷sÃÅ?CEï§C›¾È¸³¦D™è¥Ó½2¡¸‰:ðm…\¶'ßÃ÷\ȦXÀYäg}¨óJmB䩪Þá;ÏS$ÈDËœÃ}©ï^Ås }r"u>°¢c’ºÖ°­` v>^ÑS@¹iNb+Ø¡¢88ÕÇi_²*X‘=pN–A§é‹›Rœ¡Øá{â « R¨CûV5PÇTnʆЀL.âÇ­÷ÁËxE­!âp‚ªv¾?¯jÝXŒ’΃¡‡Š‚£)ýúþмÖîŠíHG:-©†Nu6 f¢É[=j€‹qZn$¦8–jy„±Š³Q¶lDQÌÀ—”ï‰':²ò³ƒò¢¯œ5ZTnã5³ÂŸüÑÆ®Ôð#[Ñ/‡û«õ/FÈÁó~1ÞÂݬֻÇmA߯¶wãf»*LŸê3/ÆÍr½êmëkȧ/ܸ×Ï?¨·|q3.¾y¢·¼¸^Ï·ß> ÷È`ÚêÔeæà¤É¼¼,| ‰<+³mèBæWs¦ö”E®D^W?ôªkõ¾·øì3£§€„qDInæ$Ü” ­ž>+‘ˆ¸¼Ÿx¦…´= EÕŸ%­á:*oü+4©qÆikÇ7ûù_”ó dƒìÐVyBérßFÑÈß2l ²Éo‰kº‰¬ù]Ÿ#}HHÄm¾ƒ£ú”î£`”¿Q2P G¸ i l³Š‚oPÁŒ8Ï&fúxr‡|²шº*È1-W#礪  ’‰¤N¸“ƒNFZåehçë±áïˆh’(ejxœÒ1ì\Ôn#ä5>¶Œ&†û @˜‡hV‚àˆíIHŠ|ˆq9ÔÄŒ¼J²öŸ‹–šÐ´EL¥âêzzijbzÞ.Ì4sNûÈíñËf†P¿bªirN¨Üb¨iÍËkÕ¸o·—”6ŽeØÈ‹ŠÇ¦1¤gÕ:œJ`"$và.HÍi¯Ás5B%ÐaÒ Ð;Vè¶õŸ¬ÆÅlöˆS‚W(©³ f_ãðØ( 1˜!òð±9%èéÒ3·ßÊ놸²›¼‚ÑY,Þ¼œAJ;;‚ío¨ãBzÞ>ƒÚKEÒc5ÊË)¨¡S¥DÕjm…> stream xœVÛnÛF}g‚ËÂÜì}g´€‹i‹$Emõ¡‹‚–h›­$:$ßY^WãzÐhxfæÌÌÙ¥>¥‚ËT„Ïø½=$ŠL‘¾Mœñ\{™zë$—PŽ;ÄÙ³O.ž;©wFp­5{@"w¶GYM¶‰@“#ÆAmTÏZOOá¤ÞÄ ¸·©Ñsr¸qqé9sZ@£ã3rš«M”¢j"½M>%²d:~mé›äÕ…²)rtÊ¥››d²L¥ÑÜk,‘’„Ø’ìüÃù» GtìËŒª¢±F±Ÿ³œÖ#„ñš]f¹Öš;©ØïÏ!A(…ìÃÛðË Nÿµù…8ؘP³ñØì¨êEFpø„°24va0ÃlóO@`„ >‚+§Òœ††ZÁ”Vr!Ðö}–[E]d‡Ùy7[ÏV7[ålµ+O¯Øl³uœ­z¶+¸ýlU/–;[X/ÎíJ‘f5ÍüÝb®•þþÖ“OÖý ã ®\¥³]+(Ö לjÍ©—œY䤥æJâ$6ò>¼º c¤&gz5)OZ“åh„ÂÎÛ§Ã}WwÕ–J!i{_4·Õ±Øg¹£*”d?Õ‡ú¶<–U÷4:¥f›²íÆ_B±›º™ûµÙ•M¹S¢aoŠ®èIåt<…F™æJr”£¤wôøu–KÕdz¦lïëc[.®X=¤¤ÞÆ’–]?õ) º¾/ÁÑâp[wUWQ’¥­+öþÍÙBøâ|œSç‰É»dóíGÖvMÑU7ÕLŸB©ÒØŠd×ûzûïØËJå?§ 1™¹=[¦sŸ.öå2 (™-sáV8‘*ö]Ù‰×çrYÀÝÓ}ÝÝ•mÕ¾^œÝcÍÛjGìWîéè¡û}Ì_GºþD¸þ<«úëO ê¶Ü^©Zp ZiÇŠ6Djân4Ù6 –S—$åà6äÞFÅXÓ¢Œ“S$a¨ƒ­¤3ä«=jö°vËMUéV(Tá:œ±EŠ¥XG”€–zÚâóviJÖv n!QÑåHn…€>$ÄH†ûCùÀY7މ”Uß %Ä—8i „!Ý0* ž‚½¢}^gtÄ)d¼’y8Ö¢“Њh=uO˜žPBRZ?g©i¢ÕbÆ´ƒ@éüZ;ki73ª„ô&ý& ¯KPÒN„s@¤h@`”sa†áµkH`¡G¼ÁŸ€»Ðµ Í³Ç¾WP'š‹¡AP: Ó¼0L¬¿¶¥Ð‡‘( Œí÷Š;‘í~HBs^š®ûá ªx‚XXíé@4C˜§VcœÅÿà<ÌV2¶ýyZ,+š> BÝf½8´ ©ÃÄ-öçxFÇIBçŠÊyâü¦¿BÅ(F¯bÚ|ؽöàƒF~Ü$¿Ñç «f;endstream endobj 89 0 obj << /Type /XRef /Length 113 /Filter /FlateDecode /DecodeParms << /Columns 4 /Predictor 12 >> /W [ 1 2 1 ] /Info 3 0 R /Root 2 0 R /Size 90 /ID [<414b6b4bd4b0fc45195085a7c8cffd4b><6171a3b1e2c735515f209c695e453828>] >> stream xœcb&F~ñ‰ Èc%H%þóúbb`“† `Þ $ø%€£"`w±® ©8 !˜$Ä„€„HŒyàžRb$xÙë7Hp­±þƒˆ uÅ ±ƒ ã9Aê:ò endstream endobj startxref 59476 %%EOF HSAUR3/inst/doc/Ch_gam.pdf0000644000176200001440000041272014660150121014614 0ustar liggesusers%PDF-1.5 %¿÷¢þ 1 0 obj << /Type /ObjStm /Length 4430 /Filter /FlateDecode /N 96 /First 804 >> stream xœÅ\YSI¶~Ÿ_Qoã‰WîÛD_GxiÚÀví¥'ü ‹4’[^æ×ßïdVIµ §ŠÊÊådÖÙÏÉ,dÆ3•Y—éÌ—™Ì ”²àCæ2Á5*2¡¤ÊB&´¨Ê„s6(­2!3ÉU&¥E£Î¤ h7™4ZgÂfÒz”)ÁQï3e8êC¦¬ñœ)oÑId$ÓÚ`°Â=¸Lê Ó¢ÞdF¨`™± í.³ÒgV9ÜÖFÅñ2Jb²Ìúà2sœêUæ„×™ÒšQo2§c3Gð•Ëœs´˜Ì2Ï=Ã3/±.-2¯žeæ=ðêA9Üu4€¨à©¯È¤ }@A¦@î€' , w2@‡ Q,ÙHz`TxzI }Q0À1ªðÚ((¬dÒpÔ²´@ºdé¬Ìˆ2л²âIäÃ\P›Y@V–ƒè€¬†ýDÄBÍ- kI}ˆì ÈpDZ ÂâÁX'^VhàøD!>È Œr  R£àýPÈFÀdC“Ϙv æ)gAopGAzô!FRÀ‰d«AWt 8 €lÁ ôë DZò@l'œÈNÛÁ¤AwMS! `ˆ±±`b^@gPJx.Ýß~þ9c‡Åjt:Z@eHÌQÆ^]­¦“Y±„°Äç×£s<èôpòýs‘±§è?ŸgE¯VóEöóYqvƹќ[ÜÄ9z6¸ dpÔ¦vª÷›¾U»©luÙ_–íaÓFõ„~YÁ|à>ÎSõ%øN?ÂjÅh5™ÏžVEöàÙ?%Ä ©QB¨Ÿ¸ü;çÿGÙïñà`tR¼Ë¾NVÙÞw±(Îм_|ÿ:_œ.³x8œŸÞîõb~z5.ï××Ù¯óåj9^L>¯ 59Ç/ú_}üO1^U¨£W%tÄë#–~2YM‹u«¨!°†$ÛU"‘Êvƒ¨ˆlQÞC0„TU—ð+Øe+ûGäªfYŽã©¯+ëeºK¬Q©’zC$«7ĉcÏJ‚†G7=_ÍV¤VÙþØþ7i\â=(Nº¥h‚xKuª¬t©Gˆ7›ø×&¶vi€(oiä1Þsû4À¤Û‡ŠÙÿW¬>›ÍW´(è¶8e‚ µút>[3ô i1³ÓÉèÉü†ÒHL.IüE©þ@³,п³£b9¿ZŒ1/Mº7§^Šãb>>.V€Ã^?ÛÃ"‹o+xô¨¾Þ.b²X®²„v0Ú”Ó˜µÌ7Æ=4{V,i®„`öîý¤6s“rFÈfWÓ)½CšÄ×&ºÒ!ñíJÒàjâΊ“ÈnÄØñÄ•º¨¸Ùžn8~­FÌFåôªQr_‹+µûTp+•Eܯ֜y .Œ4¹ç5\¼$²„ÆÛ»ž·×¥üÄ7—›ÙIXiÊÉ •p•+h¤æJï[ÊëEñ¥¢×_C·± kÝ]ªHœQÙþ?!"ܦ<ÑFÜŠºÐGÑmÚ3 Ñž5-X*€Ù‘ñwÑ %ºJ½Yâ‹çp™8\Tž[ßfú–Ì×ñUqa‡×"»Ÿ–—(y&tM™¶5¤é&k4®!Oì yâÈS=Ì÷-×&lׇ/ÙÇ`uÔͶ*qUáÑÔTK/näŽp#åpód´,âhvðäù¿~ûã§§‡O€öËloGˆBKˆ¨Ï rÐ!m>!nð‰®óÉQ ï|tcà¦7O¤âèÒué< Ä;ä±íL?yûêÍþ3Ìp< ÍÚvÀJÑÖUˆ×‡ê*Ñ£ ú~lHjÃÆðš%†&Ý£¨ç¶ÂÑ>¬ûé_¥r}%±­ì§|ÌwÅ;Z„íÑ ¾Hk¾xÝñ<ꊤHøgøRÖI®WìKCh×2+x´–à CÆyZdÚÔ¤ïP±…øß$¶à‚ G‚Ò9¥ …À‰Òí>Â2er‹ºÚÞß@·lòÍÖøùÉ›§/÷#.Ö¸BښÅèr¸éXc7Ã/M.ßkúz¹˜§{A&Oy¯Êª+¥î`×7¶½²ì¸(#SPKžÔÊ^Ç6eI*FYà €Ðq=û$…ÉlÇñ&ÁƒÿåJÐõW©Ê +{ÛÊÇç-vÞD+/’¥2¶YúÍœ¦Ïà›†ÁO-ƒÿ¬aò`ô_6Ìþþ÷½¦ÿtR,Šåd¹ñf•@¿É˜n‚‹ïŸ/`Û'ì?[<’„iq¶J¥ä@…Ðû¬Ý†–ãpúqGTiPǧ¸œ¤õßÁ»0kC×TR5O­ð·BÄoKQ¹¶¢j ç`ÿB 6toÞî?ü“Mé·méïñÅe×¥_q[“je\Yc dú®uÏÆ8S´j´#’,Éèº-f}|ëh=; ÏÛÊ8‚FÃ7¾OÓÄYµM%ºÓÜÕsZ=IÒ_Ðõs³ZM»@ÐJ¡VUkÖÞt…º£.tñ±%t{½Þu%`d=ÛŽôZn*©é¸Ò norö÷Ù¬]·¦ßvNÍ‚1Ý€KûŽím²\§ } WÓÌ7™_ÙeñÇïŽ÷ÞGoñ>>³¼³Ïlu—ê»ó™Áz=>shc½……¡³¼A‘̧Ţ\ŠˆypJÄÇëtˆªå’¤qpbhÛN“µ\Òs¬Šœ™1 Ñèf ¡¡\@†´s¹$9>Žb î&³OÕ2cº¾ëXUy¨û'å«=²[e>†a©ž4 xm¯ÉÏ9´ê XRÚç¤C+,)rì­±´«Ü™?KõN'÷0³µ³A·4³–78šó²¦*m¯¹îªú_u{k·¶Ù»öõ«ÞÒ7«íIâZY7§¶¹‡kœkg—RB·nL¯Ìh2·°˜½¦r{Nê>rKRökEÞVÒL;€u‹}›)5Hˆk t'{Œ4Yªf!#ònë»JÛ’µ ©äÍÂ_wŸo~”ã¹î~E°÷ÛËÃh­ÃVN¸BÇ&$òE›Îž'º#T?_ñ£~èœõírqŸJ&lpT}'’»ÎJ#”îq²:Ùв‡F_ÛÜÄ&CXÃÒêûYãpÿàÍûWdÐÜШ™wYD·X„ú ó«l艚›Ô³ êA+ Ï¥¸+4¾E³N.µ…¡Ûæ_›×á1³³Éë”G•S^G‰ÜŸÈÍÖ¡R!æ…ó¹å´ hò@Ÿžk áv™Ÿ42;å¦öý3;á.'ï~þ´9¢ZãÏ©\!6¸þùl·UáÖÒG659]Sɦì†M­V÷kW©^kîB¬µB9ÚÛß?¢óSGöî ŶmÎ`…bÅ­Óp·R(Ê÷$àªÓ“…ÒÀÂ@…âùS(ÆéÜJ¹M ¸ÏiËUÑa`¢@車ÌÃ⇭N@Ý M_Ã¥U +rnã1¥Ü$Ý~×Õµ“ìåg'Í­­\îuØ–d÷"½òyд,r‹Õ"¨ÌÝ}uÉíܾºþ`G0O¶aó7º$u·ée]êä ;Õ£Yv•àwÕ±òÝo”Ÿ¥ I0ˆ#·P:ž±¯¤W¹†Wo­„9÷s•Ó6«÷‹pë ÉŠh÷ÇÒôïâomy.A8K½¼¯…aƒ%öÖw‘†-ÎÕ¿O¨v¸´ä¹¢X[—˹¢¤Ê%Ý,ÌÇéœûzk-Î÷°¾ÙQÜþi㻎 QÁÔRmó ¡JéƒVÚ[†u¹‹–úœë{iûTzŸÓ×Ä6Béq§ïimÎÃ@e?߬®O×qSov/­ÝÑÎêßß¾}w“ôa µ>:[sÜÝrµ÷™xÖݪà=;@twë5nü¯ôew—­œ-<-÷=T'iKg ~ÖrÆ:IÛ&Fï´ëá¶4¯¥tÂ-å¶ïtˆ&ÉôÛ”1‰ª)Ò£Ói¤ÿL#s‰ˆFý…‘ å쎤cgjzÜíH{u=¾Ó7ñ»z“»¸[Þ¤»Ê|2}ëcïo~;|óË úrç]ëìëuº3t3ž¾³Ç!%Pýûo!ÒÓ„êÜ«ŽßYôm7Ueh„ªÙ%å’­êjÒ_ÿ …Ï¥ÂC;f-¿~¯©Éþ†îoé?­óÝ#q3öûÑ‹µ~ÓYîTõàbµúüOÆž=~™=ü¼˜Ó¿WÈç‹söy4þÊÿßåÇù| Cl;EÛ#s«2£á÷ȵ+kL€·8ô@Ô_·za°zÑ(“M²çsú@Ñh›[Ät•ú·$IÞn·ïX¸k$ëÙä쬀T“ÿ;ž1ßœLN[¡éKÁlýßÖcï2bv9™]-w6ÎÎpMvM©<‰ûªoÚx¢Sºõ/b^~^‘¾È©¾½ØÑ*[óï(m&¥­–~€ÿ,ËÈendstream endobj 98 0 obj << /Subtype /XML /Type /Metadata /Length 1484 >> stream GPL Ghostscript 10.00.0 2024-08-17T18:31:13+02:00 2024-08-17T18:31:13+02:00 LaTeX with hyperref A Handbook of Statistical Analyses Using R (3rd Edition)Torsten Hothorn and Brian S. EverittBook endstream endobj 99 0 obj << /Filter /FlateDecode /Length 4801 >> stream xœÅ\Ër%¹qÝSúˆ»SQ1,áýЬF Y²-[RZ8´¸M²Ù&y{šl[_ï|à‘«8œ°ŠYt$'3O&PóÝA­ú ð¿òïÕý™Y]>|¦¿= .®6êCôA¯)îÏ’ kȹµÜ}{–U\ƒK‡œZ­^­%é¼O½¼…g':ÕÙÇ)øÑ‹ù¼ðkæ«R¥œÖè…P¥AÊlZ]ÈB¦¤ãš”–2õN¥aèSdj³U‘ÄlnÍ T¦É@]Ê¥59èëbÊkt­;«ÃíÙwgš´~(ÿ\Ý~uyö‹7&òšƒ ‡Ëwg¼#ú`p>!zË.ïÏþkùõù…ZRÙÅåwßüñ\­Neãür)~ø 4Ûì¼3Ë›ó kíªuX´:ÿëå¿Ál:`¡F{‡Ó]høÃÂB.¬Uƒ×0Ï·4² &-W8²Í9ë¼ñYÁsÌqy¢)á›áYr²1f¹ÁfØíòò šuöQùåãyåŽZsËé‰å³šf,¿ßÓŒ0»KËéü¶š#uníï©»ÁÄØjTˆ0ôˆ9'›–GÚ`'[Ë)/øì¡KLË5w J/¿]p@“¶cožÇºä˺L ]%&ªH+3J[èýº$ïôòw¡A$kqv…s›qcÂê[îp¡Ó CgÞˆoh#"Hx=Ž­&z_æAeÖý0–‹;7:D‹ƒºÆ±þ£¨5Áj¯Ï'áH“wƒ&qbíË/YcIĕߓÉÏžï‘Ózù£B)k–/¢Ë}GÖÇ®0¹BPÔ#8Œã£µWê¾+è+ž8f#4ÜUù‰‘ôòGT_T (UÂÂ:“âò¹/m{NfÚ@s£6+'_dUjk#«„Tvù³P6YJ‚gÃ˰´oΛmè=Š÷þ»Ïzº0vuÑ=eËzú—ódÉŒ¶.ÚzÔÊe·œ6 „_Þ ¬ž>U]ëåßñU…² {̾!ªd‹]Ó<'¾è‚ô©µ…•Ê5•}L ÑÈ›}\³Š(ñ/¸6ÞKébõ6Þ æþ³¾ƒ<èShùt×@Û)'•ÿ0¸¶~±0…ßC£Œ+È7ꛡ„>TØçÓ9Ø/ #IEâ,¿¹<ûÓF™¼Ë༈Lµ#Ó^Tz•`È5âÚ¬ÙqPÒj¥E[¾VŸ_¸ ïåå_iC?`ºhFvr©N»Ñz1uíZ™æè4øv6.kuQ Ƥ8ÜdÂU‹J)²4Ô¸²ä €1)ÐóïÏ.>‰iš˜ßŠé®ÐÓ¥laÜ '0‘Aæé’ éOÁÒRŒ2:FsŠè„lO%Á ¿mb’{‹Ú{ØR¡‚Sq L¯øVë\ ­ Y&¤x_#]JƒÔ]5Ðùä8Щœ”1Õá§ìM­äðe–®iú®7KýÿÔçCŠÅ¨l€ÎÅa·È×ZèÌ"ué_!ëIÐÅ.BlSà(‡34Ëh2‡3´œy0Ҿᮭ:•”bä0lÆ7mÔ5|¡‚q¶ù'çJ€™•nNÜÏŸC:zØÒÎ}¾ÛÊÚ$GÌ \pÅ>äMßî Ú;_ÔÞlºDÄJ\„9%ÿX™èÀô¨±ÝdoÀQÂË^kЃ]þ€­É™ïEc_:7½ç`™J¯Ã}æÆm}Àd¹Š‚=¼ ‘lM‰V%!|ÏoF€ße‡Ô‡áûž›s öÜ”ÕN#³ÂŽ˜¸vÅßõUÚ„ðüŸ5ÒÈ=%ô°éD‡Û*¿^XN ënpEìW!X¡þãí‘ú$Q=–böÒ+°ž€E¦ ÏØŽÙ¶pï4¼û#„pûÕ8S-óø‰ %rl&ÒE³œÂËn•²`bôÁîäø†Óf@\C'o“ò,5öTŽYVq’}ûïºÞyÅ× Õh` -XË+¨á¢ Q¼•® D²f×S †—W¯Àc×΃ïíàáI4 j8NÑšÁNŸé¼IŒ _‘(–ªVÁÖ䢓v:Àn¢0GÎ~ ­+YêCë'Ø›py‚·Ìo]PîË“¦ôPV­KNÈáî7=±o›+~¾e‚e #-É3ûc¡ÙÉHõÚí‡Ð &¶ë Z]ä“Õˆ÷ݘo…ûÔÃ4;—(qº|¬­ä®œË䮆ø¿5Ø~ 0VØYP¼ÜfT<öÙXíé)¬ÊÒ³yâ5¥ó8”§ÊHǸ³Mž­ÎaT¹ÔCÎ دJÛÆâ}çOÂÅ4µLú:¥V…ç`MÝ5#ì`;_æm¡¹Šz€D*"@%ßø Í–¼¦ÆÔÈWÿîñ«¾Ÿ#¬kvše†¡/çxÝÑ-³ ¨%³Ëb±JèŽRöìAZö˜Üæ&’ê˜(Ê­|¬­T‰ÂGhŸ‘\9"û‚›<¡ðÒb³(ЀÄS aÔbç„ Hén:iÿÄ3F­%@K ¨´.„¨ûU v9Ð ÿÙI^ò¡3q’VùH•AÒ ¼ñNxϺJ08AX¹–þÂ`´àáL#×Ïâsùy„ÚŽ«>ÞunÔÎxT»›\-êß¹ âOç5£€b¼ ¹mTŽÞ»‚¯r(˜ƒÝ{ו,\–K°‡Un©CŠ’:0‰Ô^Ã*Ž,Ò¦¸¯&güÄcdèq| _ 2)<4þj`÷„»…n†Ð”F²SܹÛõÖ’×åaÉëŸý‹ô{oì3‰w_¨":׆³#§>xéÝÊ–‘•ÍIáEa„â¶Kéc÷^´*x @h sE_ØBtaC.‡71X.{Ò{ÄíeÒèô^—õ”™ÚÙ† ä6ám`'apFº«×.NaßIÔè…ÙâÄäW®z—+ÞR;=úÇÇóÊò)ÌÒ¿ÄÒ‰[ó ¡¿ªvߨª¾ŽL×u¾±JEÅ2ð9çŠÆSÓ¾~AÖç°eÅ#s…¹Œ9âóTL/ U:‘ˆXwÙ ¸ø3ž¼œ±fåå;±u7cm&¿â„ªÖûl¶ŠôšL¥ö}[@îw•\_Û!’ÏŠ;{™Šä—tŠ€«Üò,XôßÏäQY…òîlÊkR^¶™8Nâ É £Ó‚‰5_YÒª‡<°PŽ÷Už!k1sÖR‡+À,¥xy¸*V/½¥d´BÇÈ2Ú´‹^ü»cQ”Öuñäe_ð>‰9ø«¼Ï&.ž{kØ÷¤D›À”)Ê Æ:|¯{°¬”ÈUãRGÐ?ö €û<Ó RÜ”h³fÂÄõX¶¸Üò¢"q®Q‰† MâE* 9v¼€E;»»±èƒ’‚ ÈT‘#9²PÁIH/ÇîêJdhe©N é4ÔnDÊ9 –ìR`ÀÀÅ,õÏä¹¶îTáBx‰>Tºˆ>ˆ„Eu"ÀøÏbõðø=«“™¨A™Lp¶c‘k§Sâ6оˆÊh2µžåwX„¬Ôn§_¼È—·(/¸±LÖ+Sö…ìFa,LC…Gø>±ô~À2†¡ÉvI8‡Z”Ê©´Á"}ã§¢Ô<Ç)}æ—Æ*Î[¯aÿæñ³#?â)¹<‘ûÜøVä#Ý×]ñ{˜»HÔ|ÜŒYÛißMb 7¬%kµ{QK/ú¯ë÷1Oþ/x+]•¤¾iöVÙ£ˆÉï¹ úìi;©Y¿žUÍIþO7‡! jæx¾QÑ5Ñ€‹ò¯-é&ÀYJºÝ»%Ý¢è‡Û-È“pcóo“À¶Ì³ê/Ô»lêa¢“¹é{Q1*¶ f4—\éGž}m9ï|Vt¥ÏŠ®¢òËÈ^:U³…¾àE\jךË1k Þðr~%‹|0ä}¤%.¯Ê­lÆKbAÔOË…x—Ò'>¸êÒ\Ò ÆÁ9ÞF/‘#–{…óGJW~Ú!ÉÙŠ2‘Ltj«îNVt{;•0eÑßEf*¶î4V7pz›œ€ÙXžk~ø«úWÝ}<ñ¸˜žð\1lIš_Cª¾DÙJ’\®òÿÊ'é@k³V°WÌû©DŽ˜iû ž€ èøjbÏ€½Uù8E‹É!¹ìð*Å$î:ß}©ÆA"e%õÜõ4¶ÖøôÄ]³¶Sí U|9¨>~וÔÏI×ÓVdàyy¨Mˆ†éìÈ‹ê:kvq×ô–ºŠFSöOV;ä+`…Ãl(f¹Þpësûµ5‘ííÔ"zÔ—%ÄÀ›a9o´“*#l×ì+WA†¬<,­/@ãßG¿=VI÷tÞ ¬ÝùJ¯ªÞ·æµ¿÷Ít´Íx•oÛ—½ê\09{tň³¨Æü¿ù\þD(¯:ï‰ã÷HyyRØòg©ÂñË9: ËŸûxÂþ†¤ žÊ¢Iů9u#­êáÈR^WKâd>¶Mp-¶"~Zqµëêµ—Bøý±^%ÎC$±» ù¬®sJóQq¾LRB¥(|áŠÂ _›ü ñd‘¸o³˜mE ®õu»é$#ÒÍøÌ÷íH¤;( “&g2ÖÇXÊáfŸœú9vŶ÷,8´Ê>FaôÊÝÐ'ɹC¢ÛNø<ÕõG#,ƒ ×Y9vѽö?„ú"èÂvœðV̶óÈ˲ÀÓdÌ(Íx“CøŽŸ ½QÔ«nt;•ë‚,;Œ&¯ÚqÄ çÃEA®Ž·â>ÝIV\Ĉ×u3¨÷qf’Òa$mó…bF±GžŠïc0‚×#ÕbwØÍæ›wüb¹J14Ö̈:×X:RçRܪ¤rñe€ÝrL‹WÉÄe˜VïúR¥Ò'7–ÌŽ ÷_¤]¤:öö™0ÊÉž€¶ðPâüQˆv|Ûu7–Ñf‚V2±£¸¿-Q,¬FœOˆpqÕ‡¾oW`¼"DL÷áç:ˆ 8_ží¢¶[F–wz Õ2Ôé"–ÁoÄ :¶hçC¶VЦ1<Ý\ï®MV„q4¬‚mïÐÕ9åzžÞÇ¡Â?ËG⢓ÿ‘º9™ªL®}v‚Õ¤ÇûÄEõCUà±[äHŸÊ©º ŠÓƒ'{â>“Sœn»Ê{µÜ˜FiIš$UÓõ:v/̇nu ”ôÁDhS.æàW4Ó)Ú¦ç›B/¾ØÄ+ã‘'âø¥P›Êedp혵ÊK#3‘áÀNFýωWžÆ¨u¾‹Ãâ½p‘kdଆ½¤»N’ü¾wÆ0<Ⱦ}–3÷ïÛôùšš|K÷ºàq„e1•žçè¹»®Êé<¨ù=¯ £6~U¦],ž+*’;—žû¶D¥qØË†AˆVåÛ¿ÄUãèLC¼÷Ž[ƒ¶û0æ÷F?ÛËY{Üyö_ô5„,,Ä›h›Þ`ÐóµZlµóùàË|à‡ò[„ÉYAì£Zàt¿µ6ÿãòʼnFüÂÄËKnÛ7%;=×M7‚[oUÒgõr‚þ"{oº?8ؾøuÕC½À™´›“`†Öùjlø\@¾ð¡~*sšÊíÖÙ?ÇîÃãLâD²èÐá·§[•MÉ Ú—’É‹»©¢@{{SÆ»®ïøO7Þ7ž\4:a¦¾Ëp¦Vïuÿð7\'qótû…‡Ã»¯»â†sMl3ˆÎUÆF§‚> stream xœí}[³]ÇqÞ;Ê?â<¸*±3÷K*NJ‰èKJ±l‰¤TêAÚ…‹$ú×§¿¾ÌêÙØ(Ñ’Ê(>p£O¯YséË×Ó=³~yÎñ&à?ýÿ“—ҹ̛_?7ý Åx®1ÝôÚây´›—ú çQáŃ/ŒÏ}Ä›ÞJ8çDL‹2â<·Ê\5|®Åq-ŠçÊ­œËp/¬µä3Úro´n9ν½ÒûNµ<Î¥Mשûy„¸uêà2ÊÆ¥Z¯³>¹÷…›ç~ù òTÞèÿž¼¼ùïü§LófžgKíæñWdšãM¤iˆ…Fú9¦zóøåƒŸŸbzø¨ÆNÜóôÅÃGáÜBÈóô?†sŸyŽzúÑCê_ˆ9žãï)„Yúöûsb.!ŽYNÿr ¡ô|úû£¹Ÿü”X⌱T<™s¦uz!- ÍÒ<ý/ü £÷tú)ësŒÑNòX ¥m/ü›{ÞøšNç:æéG÷cùÇñô£ƒiÌ™ÛéÇh2¤™Êéoéç %µ}h‹ßaŽÒ<ýŸÏ¥»u¶½“ÔÊh©dm°Ti"xÄi”xú Ïf˜ÅÿûøÒ¢ÐzºE)Ô³róø'ÿÅÏiñL/oåô_i9R:OêõÛE|½~Ý®_¯Ö¯7Ç#ÿeįñÝ•§Ÿ¬_Çû¾Y¿î®<ñ‹Óúù›ƒøð!FIj2k6®ÿH“ Äçôå•Ö_]yÏË+|Ǩ_\ë½Û~þùÎkïûçþõW¿ÕXï]¸W:þÝ•¡¾»2õî…/¯4sM&¾¹ÖÅ£™¸~ýçõ+¯_ŸÝ~u¥í£³¿>ÿòøý¤\•…ùAÿöÊzÝ}xZþùÊœÍ|}¥™7W¦ê ý¿õëù• ym¦Ž‡Ÿ]éÿAóºõáÙ»Úø×WúóÔ½æZ“×ßùþßë×ç×^ø=ìÌ_~Ÿ§!9’ÛË“üÑã§ (ÿéÁ##>ZÖãéƒOòre®Ó'yù$/!/WÍü¿;yùüñƒR.£ž |•B-¬'VÂ`é&"˜7¯ŸÝüìæÕƒrîyæLÑH¼!vóO•Ä^ ~Ï›ÒÓOÔpSÏ¡R¨²=ÓÑŒ¶D8K@>J©Ôs>UúÛ˜ç”NÐé%²ï§XÝ?tóÊñ*Q‹g%êirç áoRö¢óü>Wˆg mŒâ¹j µæ¸Œ²q¥2ðÇ¥”«ŒvΞIOOÅV_™”²qéx—áo·XƒGXŒH’1K¤ágšÒ¢ q]"‘èwâßHœB'ûþÒü_Æz„ôêÚºˆɪ曘Z?çFÊC¾¦d1РZ¼P²µ(bŒ$°¡YÃO?zþ ê}Ìéڤȷ¦|NÀ˜…7¿`>ŒBºÓg‰THñ)Œ;}mt¤µÇè¤×çAý&•îç@Ë•S;7¾–±A^È L,eÍÓ÷ÈR¸<@©ˆãA4CY(Ò…ÞÛå©!íLú[’–Y4"E¥çØ@Ì e`†kÎ £­D)íSèy¨ëSXý¥Óòt¦ärÎÄèçÂ…·8j fJ§‰! Ésâ.šóNƒ(¥ˆFQPLá0 ¢LÒ2…&Šu§c @!9 4ˆJ]W@C¥˜Ò’#txD¡)ØOgêM¥Wy÷Ü¿:#I2(“z ÀnMã1Lú…þµÐShâh ­LÑî8i4 Üd¨ßHn ¢~LiäEuÖË 1Ý­ ¡êòt«W°Y?ü —¡Ð΄ Lñ½‡ ”Iv2ya*pÒc¸2«-Ÿ e™4§19Á-sNUY•í€è'yñ4•mU‘@=Ö†U›×´HͨΨ6@³«ÆÆCÏU«#‚‚æ5ŸrÖ¯,Ù[Ô†xB32‰Ä¢To‡rèfÏÔV夨bÙ³\"¦ÖÙ<ÃØìbîÁŒ²ÚÎ<ò9{óš§y3Á…<¡J5Óˆ@´5å…„!;cÛ³÷%™A1ŸQ²zss+…|c¡åy ù+YpóN Èô™+´@ê`Õˤ2¦÷„%M•ó–%µåbÅ¡–UÌébPêtÕ1êºØ.sÞ…D\VFÝ{&QªÑ#ÃZ±x€öKì¦j’£šÊ¥I9 üYÊvľ¦ÙPñRÚ–PÅ.懗òêžÆj V9{#Ràݶ ÖÅ"I5F•ÞÙ“³WÔCUl3iÄc¯R³G1êETH¨sYJ±uj(´ìk M,î²Á-võçf§ÛŠ…Ì–7žø5³÷­ÔåÄ'´šEFÍm´*¡îr,­Uæ|9ïT½ƒj]cèåÄZ1Y~®uZæ  \úKPå™Oežìý.Ú‰›oÆ«‘«ûFodnÌãÇ’ hÔ­PhØ»‹J´ªvgÁh’<$iô×[aWŠl6zšG?@gWŠ ¤vEQ-ijB/Zk“d1ŠN^(^ÃΊˆ‰Aº ­UŠÀ>mD ÉçtUøH¬¢d“|ŸÆŸCÉrÝ8œŠ]C åÊ–®²¿àn!)1H\J’ %CÍgi‹tºÄ"Œ™[D˜»ãæ–íåfé–‹Z’FbßT0”E„i6U‹Ñ ¥hD˜(ø©>"ÄæyÛBBêéÙA•¤NA•E„XB —-"DMORŠD„ÁŠÆbxÜBÂHVNã\ #ùO ¸4$Œäj‚ìSÿöy•„zâºÇgúŒ‰RŠn'}ñGÌÕØyy.£ü`\ 1߯¥ÏEf—Q<×àMeÏe”ïÁ5°·¶q)Åq!ä¯[¿å{p5†¤žK)ׄFñ\döÜä¢l\¼O¹q)eãb¨±q)Ås‘hûâ¸&Ù²¶µµ(W½èEñ\@d;—Q<—x_Ïe”ç¢ÙÙ2«Ås¤ØåkQ6."7.¥x®Á^ÖsÅsMFžË(¿´¯öAÙ¸Ú¾Úeãš{¿Šç6Øòè‹â¹à ÷Ü·Qž‹¢ˆž6.£|{½•X‘xñ’°µ® +åij)ÇÓg„Òe‘ÕÕ!Ò¯Y™>×R´È*!QeÏGÒ´H”sz+MxipÄɵÄ[*£I“¯ìB©'â­¢>…Ân‘‹š$=Z–”\ rJ,Î[wœJ“ÄÙ #Ì©½˜uóh ÎkqVQ¶È¶©1ˆÐ5÷=xk+}5Ê…’V¦pò„w©¦6‚8'c—ʶúÓL8VÆ):ùç@Ÿ8ã)5“BÉÖ…Â4KĆSdçm–Ž #ÎóI©Ã¬œ¦ÎÍ`Ï´{mQPôCCÔÚ‚‰j"iHÙ}bp´NA2©õ)˜Þj&sr|Ç[|]S•_Æ9¢jÅÿ#S°…˜°¹˜…+* Av3B‰‰½NÞ ËH|d0ö²8dDØ ]¶,Iê¹­¶ 9|4.!Ó=Qxƒ¸¶œd9`{KÈš5Lò²lkïH> 6k»Ö@‘åT•¥Lî`£5ÂäJ§Šz¼™öÑÁŽç$òë0yC¶÷r¤Å@ÿz’ÄÉ€âÅ/¥K’(ƒ“X½jV—l0¬˜(í.qá i¦p½^Å~'&2*,‡V!ÉÀc \²ˆŠ™&<²5~že” Ç&UQM^EBÂYšnÏ€“1J•Y““HEÖ”M}¢LW –SàÄB¨àVSŒ¬;HGÉÒ%Ôj¡^‰)~tJߤ̹ð:l–(Õ9É,¨jD¦¼‹Äê3P„ûƒÂPõÉ y!ôp¨¾FšC§P.ƒ£•†IJ ?cj5gN2ÙD‘Ô aÊú3CÖÏb?ˆ¢Õˆ „Êr8{ ”G“G† µ Dé¬?Ó²ï9gÎ…ÔI–0I;HþŒÉ?xWQ>PHJ BÈzÊ:dÙÉ$Ê´—#‘…vhöyS?gÉt×)zˆMyèl™ÌUFò#ÈMr9Ó¬qï–ägdÿ0‚lzˆâU ÈàßIGT"§Ï+¶wа §ƒ”"EB™k<0ñLé¬?³4Ig$¡?°¬²Üp¦™y4ib€(Sê$Dœ]·ôí©K*ÖP[.0¥"~úö2gQa³bGG®£+`#…ålÙMFHk:]+ÃOid„›vì£(.MhÁK—™å¼­oèZ*±d аFôr;(¦Öd)’ÏŒÓË[$Aʼnd´êë%µÑª‰—dGœºÎ^úãZ?ÓXëR+Q"N¼¯h±›Øš2FÖ,^_aÓêô:gV¿czDçBÍ4pž­y둬8wYäÙÚf…gÓ†ÕR!Ï£·fxI&{Y¼déÜeÑÞ¨Þr&š Ñj³®i­±YàD.$§e¢S3Ù6žz6ïv>õ.йB|’I^î"-?i.%®žI½N²r™å™’€Lç½x6‡ØM ž9Á´a9Êl¥~Ë™!‡Íá2(j>™ËÛºwÛäÑU–̵ӟ¤4`yÿ,ÈÆ!„•H\("#'ïFFæ!{0‚œ£Â,Ù* ¨Éq^Ÿ,9Û å”t1 >‘¼Xʯ̔qC'CNE&Ù° h*ÜA`º!B<$¹PCx¹àUÅ•9Y!®aOL…¤Ìf=U°ðkæ0.A|- 7œz0¬X™B-- 0«/7V«aór¨ïlžfâÌ[¢*H½¥zTŠ-HS¯[!óÃ{æjG–ó^eiËÁש7  ŸPh’¡r`¢ESAMJ÷i)IýÌ‚,¨mS¥°¦Ù!‹}Z®)0Ôך# Q6'í*vlÄ©€Nñ%vÄ/m½êÂNm}ºU,Û†Dd vÛÐúûˆÛ0a3ÐÜe‰ˆ°n3ŸµÁÞØÁeð[Þ½„ï RÌï¡X3 ô… ,\è„—vYHÑ­Ös…=V 454鱋_áK'Ÿ*HÌBœž’ÅWay(A%å‹[HˆÍK®páì¨F`v)q{qD„=k)àŠ±WÓ¶ˆ°KQíê韚ùÄõGÏE²[6&%|âùÄó‰çƒ<÷'?q}âú£ââ˜b+¥8(Ÿ¸>qýqÝWó‡âÁ&KÝÊiåO€ gc·"ªƒâ¸î/ºZUB›ç+f.ª£ÞgR‚«B*„·:ÉEñ\­»÷ýNM…¯¾{ES}ø(á²9Q±$…Lµžb=ÊH2΄v_—d_Ûs §ùöê¥õäª^2._½´¸VõÒârÕK‹Ëª—ÓQ½´xVõÒbrÕK—ãq\ß¿z)Ãåp©éT½tÌø¿R½”±ƒ¼åï¹z©Är.s»êç§/ÞÞ¾¦þâÊÝ‘Oo¹»Çœ`³œÏ–¦sêyU2ÉC…L-Þ~F±}¹¬dº:Üû*™2êÒ‘BÇŠÊvzÅå’(ÈZU¡HjÉþ&Ù3AjŸ3Ф¦’C&·NÒ‡P†d Wâg¦*è8t ÷±óäÁ[v È^òÞ=ÉÛeshÖÈ[v뾋<¥€‚)Òp+Re·rL³‡s•KΧX§R¤¦câÚ.ˆš&Æ)ÖQ„2¤™ÙøhäLzÚ¯ ÇÍJ‚ùU(“FNËU‘‰©|4r&ݧ-¸R#4¡T¥ >9튂S¬ÒC=X6V…ÀÙÓ‚c¬ÒÁ&}d ŸœvB¼pœ;ØåŸF¢ "I‘#w¡ ÒÇÉfâ“‘Óî—"Êä“‘Ü d¢ ì(ɳô7§ ްöªýg*S†Èû‡[Ñ’¥°s¨ë´á„L–çSÁÖÙÝÊ¥óÁH–yªeéŸÉZ‰$$™åHëÐ Ž°r5çY" ‰V®dyfLéޤK»$#¨K\0%.穜[QÊ«r¦Vv¤Öùªœ©÷•$}¯cè¾nÁÙK¾+ùiî_’½÷Šóêœ9+¸W"qÁÞ&A>M]a)xC»p6±ÉÕ="¡H¤·(×RÉêÁ~ðS±Ú(¸«ö©Õ_çGg•둲t.fJi{ä‚S¬Cw&E¬Óœ¬BØ‚)FîšOw=\†æÓÅY‹ òÇ|ºØ  ßÖ‚û¦êZ2’oœ¢’x)8ÅÊW©ô©Ÿ‘|CnF¾–,e\öÈ™ çó!ý®®·à.Ž#%ïî|gg¬‡R¸æ¬æ%Wp ”7Ï ¥L¹Ý[ã¼Ä|þé·¦ùüRDD*4.BzaH–­æ‚ŠÇ,eÜ.nYáÓ»I·eÈÍ$±é#1…àÉS3¬F)TAþ KeÏUÁ†(9U° õ–$å¡&7@u¦P{‹R¨"Ýírƒ‘‹V‰pq‹ÞVÊLšYÕ«} ÒU\Ü››ø¥Âå—zÓCJŒrº8eUàÊ7®¢GK:ŒRpµEt1A¦F.¸‡lN÷r¢h5§u° üPlŽŒÙfB†)WRe7e]g³UP~,cÐ-Ъâg½Œ '×maÊ@²Á-]Á:é²¼| ‰ø 2ŠÙy“©äzRA–XT\e­àžŠ1<¸êée¶Öæäš ÀÒ&û!MÓVÕˆ2Š– ^j†ëjd’MqwGž^]ùÎâ4IïØ¼Ò'»hk†d—c,ãÚŸÝÀ ŒG–ÆŒPÆEÓ*üEí¦³l•ÀËàás²èf³Ý³ g–£±‡mÍV±Ìo¦ÿäM4fR:hf<" œeê‘zêûRËd˜Ë(–Í\n…<¢úAx?w&£üA¹ä›užkQ>žkðÖ˜ç2Ê”ëþà˜«ÖýRƒòCqͼWi”?.»äüàZ”O\J\ÃÏe”?®ûKþÝqɆºç2Ê'®O\ÿV\¸ yÓÚEùƒr­äÐâZ”ƒëî­ÿ Ð·S8uåÃÖˆÅrÓ—¿â/4ÇÐæéþ‰#ƒ§çïä«Ì3¤zzÍ_—½u|ìiõÃùàåÛÍÜ鹿š4ýÈàÏOÿ{.1÷Ó- :—6N¯ßâcÑ1”Pøýæ<‰ã¾9MáÎéÅÃGØ/³žðç©C WžîÐõ*ÔÓ«‡8§b?¡±4FKñôúAˆ!¤Ó—ü©êØQsz‡ÏYÏ#ª]ð!ê9{——‡Ü“6-Ý{%†1£|x‘"Ý<±¬þ}%ý›cú×í|ýŒ?¾½¦­Ä1NžüüÆ>]í§oåaêÖ á¯Iqýz) XÅ“'űýôú;íïÀ—škÇ·¹Ó6÷~ЏAþ˜÷š.éü Çôìáš7¿æ‚OŠÛÓÉ7ÉÓ18`:d’Êý‹èÞùgþOý?ž± aë§Œ%YÛ³¾ýgò¹òXøÓâì±G‡˜§çéglib,•^h“ôÌñ®Î ’:ÔꌔW‡&>@kO±Øö9HOw6¾Ðö1¹WX ¯E™F‰Yç6§Ü¶óòŒ”ÆôðVMIlI $DÓ­õóc­ÿl]oÜÏg"`qLH¯•”'P¨¯ëH¯*!%ÑòÞ}É3œÂ$IæåÈïaá·&ö¯¹ºâEF†ÕËr :Â%Žª%ù˜¥Ì›sÝs¼j‹l×Q%9Grëw‹_dÆé;ù󨦛g.*’(/j oèKñ®áçóîx«¸»–´]}LÜHék³Z›ä‰r“[=”›Ïù†nkòßÄÖ„Yºÿ}Å*Lš®<£=ø™t¹Œ9é´Q-ÏdÞæÙH­Jñ×õôö­;Æh25QÈRn˅ʹò{"©pwûĉ*³ÇÔÉ)ºæîÖò%Ç,€»?75ûDÛžžèäçå!Ô§»× rëÙk ;"Æ a?¬ky'uhÜA -gšö»wÎB }ìž8!—žµIzòviüt)øÐ¼£4Œ¬ØíÓCeŸîº¨ÆK𠇾-Ò¯°HäÙòjŒñÑš³;§*v‰“ÜëÇ…y@dn zƒËJgù€Ù”W;ôó7[‰›±š"çº×i¸ X‚œÜ\øç^Ú{–Éîc§y_Óéz÷‹×«9Ö þ ‰Ÿ®w× ê¯ôcÙÕ+ºk÷«ÃÜ9‘{«O‰–.VïNe™p^U½®A¥‡Áš+Ø7‡kdO3&ù|˜[~v“¼,T® ¼ºœ·¯„¡Ñª.j—´ŠZ°F†Úý²b)c‹â Î$\÷•µ»©µCïdðÄ·÷‹‚)"7³±/:CØÄó"r€;Kh½|gà ’߇nÝ”¿º*ŽO¥úëš¿âá0¯(Î"O1 /IF5xÇÂ(xyÃ\–ûOÔôÏ»µ»p‹ËÞ=G8‘ÉqRÙ„Ð7™l²‚$S¸5xáÐÂ7Zx ¹ DŸx°ëCq¯? %â¸JP±BóöÕñ:ïøØ3öÙÆ}žè¶ñ¾)¸3!^³cu ˆÖÅ&,äfnrÐá­Œyj$ú¡qz‘;–ÉaH±©áµïlþÚ¥uæÏå~@ÐômNМ ~þµmzì—n…œLÌ.¼5ONu–ùÝ®ÎýZC*i9üH}/£I¨D˜Ã!ù +žžË:Ô‚ˆûÝ!>Œy#ìfgð›âÜëKüÜù`žöÙB1{„«pû¸PîåºÜKЀx•½° Ö‹ÍÚ# Ë1îVè•g&Šùr¾Ïÿ-…ݳ$“„¬¼oE o¬N¿–çz(öa <ÌXùÜg|ËŽšìøØüÞÉ½Þ Ïݤ¬ºE-qX²,ÖO<þ‹ŸŸneÉgÈnÌÿ–©,hÚ“·6/gçÃL]Að(í%ÙËuGkfŠŠq]8rüÂ}ñ^dÎPÑ»oôˆIç½-ìé„@ÿ;­Fò;Ù9ÃVÛCì¢"F<’BÎó2bº4_gxîÌ$ïÀeŽnƒúé‹Ã‹}wÀ'ßûoÆ\¬õD:Iï%\^â_¨ WøqaªDÆAÜrˆ{˜-BÝZY»8ãÃÞ= ÃU„åÁ»ýý°H{Ð$ „Ç1õüµ1Ö Pi¥Xäכŵ9ó}®æöż¦þ c›ÚF¿´x%öÞÞÛ Yî76fce-¸˜xm·„$ ja‡…ï_Èsˆ±ßŽÅ£ÞçÏÅJð?Þ\Du²1¸Ùyÿ&¶ùƒšó2äÚv­6 ŽÒÈ.UÅ$W¿<¤óXÇÛ§Nû¼¼}ÏÔðü=‘†¡N2?½½??ïYÅòá ÿ˜_[øJÌûlìå+> Õw”yu¯H™g¸/¤qøüÉuqsûDµ2Òûa¦üý©Ÿø5k·g©ÅÏÜH¿¾.ÿ¯„»Å¼I‡Û {g× º_¼n}·Ø]#=’G?- BpDê!‘ ´Ð?ïbæ6“°1Ùu¿·ÏÆbè~zïA‚QÓ„¤m;ao…1ÕKÝg§Z.0>6+ÿB¾ÄGDOå Å„Û¥o1ç~Ý,ðý(ñꈦüˆ'!†V69-/ì‚®ÜAZ_ø99¸]‚â­pŒÎã‰^H=:zË“‚ ÆQ¯À„£[i¿×wp? 1á¸;¬['œ ý¾ þ÷¶¿Y’n¿¼HÀæNì4|ä¦?Õi¾e?©ô°š?e1.PÏ5º;Ò‡²Í»ì¤ öW­ i0̦=÷[dTrÝà ¯¤·p^7ÝŽ1t|ø¡÷÷ÒK½‘öÛ°·ïzEÚ&g#hMY©P|ëu òLþNk­;¿ǯÉÚö5÷ ¶ë{hn^nAp>°ù¡}¸ÇQƒ!¿g~Ë6ï „¥¼9‹;‡°îqfn ö æ]ÜYŒ|/VÒ #/Šd:ÙróèÖ²uôäöh/6$äÏ÷ånw[ˆ‘Ó,°U(8q‡aawšBð2ù›Ãú_ßÔyu¡†PO“ãt'ïAhÛ’[ n~ï5>WèYzM³þùñ÷YâÜ'›ê,œò­×naÒÄïö =nœÉ»ºqáöþÁþÌZï•\žpzþž,é¾C:ð¼å'oüº5uš¹aŠÃtQ$Çc£{»ÚiƒA¯UÒ‹c“ìhîÈ€«Ð ç}WŸk“R¿Üéö0 ߣ¦î{µÐõ^ØÞm)ñkûBx ‰œnÝ ûðš±Öß­´ìoܪ~s *ݳsùTú\IÚ¿\YÅï„Ø%Œ¼²C¹fg¯CHÎñEN Ñ=ävë.%ÀJ^IZÐ yÝ/‘)ÀÞ|ù›CæÞJ'fÓ Ì÷œõŠÅ™)?ïGß\Ø:Ý~í#©Îÿ&¥›*endstream endobj 101 0 obj << /Filter /FlateDecode /Length 8330 >> stream xœí][dIq~C¿¹ÚÚ*Ÿ¼gbÙF`Ù,`lËê¹/ôt=³,ã_ï/23.Y]5³øÁ’ÅÞ‰ŠÊKd\¾Èïtñû«íà®6úßüï‹wOü!¶«oŸlWÿô$ÇrÅ]•”Ý¡æ«wOªÏ‡ÜšHnŸüêIÛÊ!ÇzUrÜÁCK$ÕµCN]+y¬¤ºÝ­oäé“<ÝËÓ7òôQžžíäñ݉aTñAž¾–§?žÆÉÓäÉËÓWºì»cëb¿UÅ¿×GüÙµ}$Ã9wh)¹Ïšê½oOÌyÒ,ßžPTS½’'Ý·ÏnìöÄwÿKžÞœ8„w§¬÷áÄ0§†~av÷y‹žüí‰õ¼4Óœò©|®gðïòôããsûÿÃú?tX?~úä”`“w®"jÆ1\Ež WŽJH»zxuõë«»'™µ…€æ®ŸW¿í¥Ì5dPdÜäc:$ÊõŽ;K(‘?ÖR ÊÀ6´¼+H¥ÍŽ%£·zÀ:Œ–HŒVŽÕÌj‰Äh­Õ®^µ>W†ÒvU©úæ—:Ô`PÝaa®´Q‡6T‡TÃÁïÕ‰ 6ö;GÒ …6à9õç ¿é¹Úâ󨌭’ñ¦$»F%{˜ø„VD%UÉ¢ñY^´¦dÑJøfŒVkJ­‚ÏÜ¢5%‹VÅZ›³ZSbµPu'ŠÑbÉ¢5÷m´Œ%¾ÛQÑ1íé¼\©‡´y˜ .Pò8«}¸Þ×Õ~ïÇs«e·w×{çp\ÅÑyºè°QTûùت£Hé3Žæ6_>^µê@&ˆ1,üT,ºÔÝQ,^î‘ÞíaìXù6¹{õò›7¿¾¿»~ú[cŽL‡‚ î€ÿ’æ‡gªü•{výƒ7¯î^¾zøÙÍí+únßa_üw9V¨X?g€ìRеˆªï!‰@‹t˜®%X¡K`•Ö%¹Û';Bn®K# I°Å»¤n?CXå.hfš ñ¸Õ!Ø$ïÂI@îà= úŒ$Á)V’P̦.ÁvâóVà ¹Kqi”œfõä­‚TÇü†Ý ‘õCµu·î{%IÉ}[cý ˆ¸dó´t(43t߀w># ¶4.Ñ¿¶C ýŸd EƒÿŒÕ;ø°GþkØOëk#¸\+$£wA ‡H‚\ÈéH’¥ÁÔR”ìÑdƒw8^,3µèç(ÿ5’`Ê•ÖDtA‚ØéiÕcÁ´ÉÔ¨)èsAéPH‚£›@–<ÄD77\Øå?r$8IÌE‰{L…¥Ò>+ì»…}†H’gZò¾ôóIºcHüô$nT-ï[÷ËTa¥ÐÐVPm¨!¶¾À£R«4 à)‘Þ“ú\!äƒ$ ô¹£Ò\ØÖØDH‰Ò*Z 06rêû,Œ©àt™$½Í˜ŠJWÛ# ¾ÞI¶¹‰¸²e* gÔ§Š.P!G³sEOá IhÓ`‘B³Kðí>WÄÙn”ÙýÌÆqwÈ4;Vs!4=I\šÛŠÍJs9j„I@‘IT?ß·}”2Õ•¡‚ˆ,]â§ü BFXä¾âD¹Ö“¤{ Iš‰$š}}‰B~šs›—(6»$P–" ‚ÛÌ£c*ì ÿäCö ʰUï¥QÀsÏp¶*c„&Q†­FR@°SšHÙÏlã‘ãzeXºœ=9+šïLÀ…)$Ø(ë“ ö(MH3¨2‚3ÕQ‚˘q]‚`èËËNÚ"œÿ°õåe Î.™Ô“a7x(|‚Ü’?¤‚Í}˜‚ؤ¦¹¯¯ 6i—i$k’Plv‰#Ÿ# bž™€Ö–‡¤õJôI·DAÀQ®H}¿$€óR¥‘[IB™&‡±r·E¡Ø$ ÌUº- b“"(Á^#‹VÄ&¥Š´õÀ! åJHÈ¡\·E¿ÐÈ$ „*IB±IØ+öV5…P„½ú*B~çITfH‚ؤTa®^‚|…×Ñ>cއ­/adL¬$À/³ýR€¹jµS6pËä£]_(ŽÂÄì!,§Ù}ØÍk‹Ðò h¶Wì8ÔÚ´'ˆÅî!>=ežMôml‚/†27Á'±­‘§Ø bŠ3—±§Äìç&Ø›(cŒM°ÇÅÒæ&Ø+é°Ff`ǃ~qnlË-þï8JŒ`‚¼Æ|p¸²Ä¶å—xÄ.¦ŸÎ…ÎHÙ3¦éF­-QŸ '~Î ©pqàìAyeì€3 }2óg!äòQMGš‚9fRšiŒ bX2á/·dC8K\3fŒ3HVÅŽ¶5ófvÉÎy:çïÂUœS£ÆZ»ÕnYÖÆ©Ñ'uŠÏB…ÁÆ—Ã~@˜q®ã,*XöŽM`¹cÑ: ñÓ‰Z’2@ùÜÌl=19@nœ@eâö„G5™Ø’<+Î@ÿÀÓ~N<úƒ°«é Áì.³É€¤Íò7Ô}Æ‚³Y¸w½Šr;A…VZžmóÃï¹+ê Ãh®fã´¹8jº4W¥Fe0º¢ˆ£¹šMÚ6Ú·[mä¶‘cnµv·O^áúmW¡€5Mà† Ô¶¬¡Î ÑuâJXö‚¼T¼ÝnöܲEÒŒ#m#c鱈hÍʼn¥ D¬¤È] ¬æÍ)ðaz wçDq•ÆÁ(îÔO‰Ë!=µÕ+Ká˜aÏ¥ýumnmñý”§;I|Ä™Â%„qî•( iÂé±ùÑ5Hˆ î/} ‹³êHˆ¤æmbhèS_’Gã¢# î>µ$!d¹Ú–<T×\6ÚÉwä„nɉˆØ¼ö0AZû@)”’y⚣=§@ÉãŽ1µô[N!} là–>° 0nk(ø] £;mç ˆ©_œJµÆq¯ uÐÍ’¦µ2rK'õ”Ó­6‚Ü—h#f2ÒÒ¹¡”òÎ9YAd£Q"&À¥G_ÂH‚`í«;Æ#…{-Á,OqÁ5ÒÚ öI~º†à#@Y:AJ÷Buˆܬö‚ÁN¹q'hÇ<Ü à ·Npã+Á„-Ϙacm.3®D4Ú)ÐÈ諞¢ŒL¬Éÿp ¹Ð­c&†Â‘/+-S7» ꄃàXzA?¯óµ¤+޽'讟pxX»€ÆÍ¶t ñ±t5p¿È ìÔ”P_?æâÆ…ªìÒ RÇ1¼BšÁÈ…WšÁÈwÒ †‰è¥$ÕÑúq3è¸8K3èøºBšA:üµõCçÆûwç]ü!nËú’˜¹ø®Z”[¥)¸L§säʦˆär-<»…åÉÅZÎûA„(¯Ä’˵ÎsTkAHîi´Dr¹üÒžÑbÉÅZ*ƒUbÁ¥:HFea×Dr±ÖgX¿ËµÅmY¼H.ÖJ[GFK$—k¡’ºå¤Er¹Ý.–ÉÅZŸáR/×j½t[-–\¬U€ÒÓb ‘\®EõwÉJ"¹X‹ IY,!’˵Î3Ô—ji {î‘ lQ‹“þc-•(;èÖÄnCª‰—Zb\%F @¶CÕ‰Ñ:Z©]ûŸÃÙ4pì)ÎÞ%%íËiÒÞÅ…µ±vР|t*'Ö>$jX¢aí5!)Ö>µDŒµ°ö-e¿iÚ>P ½¡íÙu JÛ)¸áLÛº÷ÁÐöjôD†µyt³JÛz{Ö9ÃÛCÒ/’„¸ÔOoˆûs§ ”¸¹Ðm¡òöšYohû[¿'Ú>ЫªÑæ>Rö†¹¥¿ˆk˜ûP¨UiÊÜbsk3Ì}(Ôªâ>Ðí€s†¸t™]Š!îC¡ªQ qˆ‘nÕ÷îªS3Ä}¨ð~oxû@#5ÞŽìÇE óö¡ÒEBQÞ>Ôq3¡¼}¨tP ojé—‚ÊÛºPNÉðö¡Ò=B6¼=$¬UÞ>ÐRC1¼}h®§[åí]uåhxû@—Á>Þ>´ÑN oZê·ÊÛ:Ú§ðö¡[KåíÑæqͼ}h-uˆ/¼= fêÞmaê=¶ðöqóËQÞ>Òµe'Ü™·[ŒdåíѧvÿUÞ>nÄGåíãF±™ oXíÇ5 ÷q#’Ãâ>:Ø©CÜG‡à Á÷h›·Þc q¢3Þ>ÒÕý¦…yûH©¦:CÜGd\²r÷ÑÑ÷½áî#½éEyN¸{düÚYw¦î#$ËÜGô“”*„¹Ô{9g¨ûè{a1Ü=PKîQ$Ü}¤ÔÚšáî£O=Ù*w©ó†ºÀ©‡j˜ûè*±æ>úqs(Ì} Î\ s©/óÍ0÷1Pt6ÃÜGz žšaîc@tvÊ™û MAÄÌ} ¹³OÊÜÇ@äm5Ì} u»dæ>ºìI†¹‡¤Ç²2÷®ÔƒH˜ûH÷-DÂÜÇè;ðQæ>b²DÌÜGºëiÉ0÷1Â)æ>FD'% aîL s/fîåKÂÜËÀÂÜËäÂÜËú„¹—=s/ûæ^l!̽ØK˜{±©0÷bwaîål˜¹—ãæ^NX˜{ñaîÅS„¹oæ^ÏË·ã{iË~ý%Ä\e4Lg•_^Ó;â˜Ë]7 &©h‡úJó°ƒÝŽò‘T2úöÒ™6´fÉNsGÓTŒ’v¯I¼U€• ïéýàVwﺑ`™:ÇEuç6h ól§S?ÐÜ#úÝûí5ͼ¹b—ùìzLk°¹³{}imó޶èè¼íW×µîçoçDY,&ÂbåpÏlíõÇñû:>6Ï?OAx8¤ÀþÔ}¡¶šBv%gÖqÞÚ]˜µÐ`{mO·”ˆ°>¦]M?6ú³d­¸'Ûn¾u_Ä”èYh1—þƒvM×Oú¹’›ïe£7:Ëm·g ¡}Íù_žØD7?fzÇ%û3®NGðS¾~¸Wwz7äq=¸»1çæœ•žßÚׯVû#Å–ê"þ¹\‚­Ì~¾lâ¯ÕLÎès¸@±oçx16SÝîÁîýnwÈý†žpžBu!Œ±Ñk§û”X=Ú±ãhy·¬z|(LJ3¼iš}ôVÇ=LO@ê|zMáçòöE¥¡‹®Gý¶''OçŒ"ªTêk‡3xhJ}ñVGìãSw¨XÝY‡»3ÉÐXÉd“> >öm8>u:ÕæÊÕ¸:Í÷ÏzÙ¹˜A_©<2úsûÕÏä3 –=ãQÍ–ßÛÓnиîé%¢†V±ŸÇ®‰ákXÜÍÇ>ó,¤t7¶»¿›…Ô呯3Ý9#¬üå“?˜¯~ÒÚÒð>äœ6êŠw[/¿yKQO7/V÷y÷μÕ^ÉÆ|i÷û>nö1Œ:–·­§ZÆ€`Çjh‘{¤mˆJïÛã½Øo¢­ocõR–Õ¿ž{šÙ!eú8ÜG‹ÛŠÝÞýÈò\‚]þ ³º{£þž´k,±GÚœú•Qþã4ÌÖv7TÌCó’°éV>ð»iÌJ‡ÔQÈôäê©¶¼[ |$a µ¸ž¨zoµ’M\ƒFŸÊãí\…ó—|‹ÞÏBSËiâƒêöÀç÷ò³g¤õÐ+Û–dì-õoúΛÅÚàÓjÕ•õ´~lµ…ì—1†e òb¼±™–n=6 òNÍ#60Mlð:÷ôÎAKZï¿ê9}¢¥o1û0Œ,ôÖ,ì~Ä!²¢·^d¼òDHÒEgõlDûË{oû†bŠ}ŸÈ˜2OâTó™9v¿#åLIqwÿz©ÆF†;½•=ÝÛÑÖIú*à Ï»· æÊblã†w2Ü›±†V#¦“Ðû€ÝÖȄٕã"¾Y"vÜ×w‡Å¿<™l˜I¢?ò‰›qP)×ãÉûؔ۾5ÑwÕœ‹é( 5wéLĽykâs¬Bp2}/·¹WúS(;î̓ùUÆ!G…HvhkÛkÄ–j±pZ7!/abL2§kæEã¹’F+"tïbÿ(MÍïÍùB|È;ùZ¡ras‰S]’Þý5§ oé s;ÖÃøRF¾žþà©°-Þõï7,åãÔ×).à|½Z™é±ç˜³±Ï5±< ôŒßz5†Ž[oFšz°Nx?öŽŒIJëš]²ñðÃvýYO“"Œ{Ü꣭ÇÁ0óúÝ@|µ§9ÎC7l¨øžÛǹ Ä Æp>þêšègmÙêÌ}ß<Ú¬ÏÙÔùa¤úï²F¡²L¯ý:ËÏÅÍ>¢9| ‰ÓYáa|ÍØ£hí®÷æíñ×:.0_ûN‰—6QE_讥^&Y÷cOœwlüî^Õõ“zA#´ú*ÞØÃ}˜KBEº—çÂ6î‰úåqš¢Î¢èÎ鞀³†mÙ”frýâpl\›ÆÌï̇ÑC¢÷/ß¹ ÿúºÒÝ Ç=õî…z÷yß1'#[Dúó…°ûëå ºÏl3nÕ·¶8Ûôª²@À»yY„S·G=Ú§Í%gÚ|ï•I É~…ŽÌ”ÞPÀaë%rM|S›'GIt…™4y—:$:YA¿ß«î3ðµm=UÙ,üfo°ìÜhIæhõ‰¬J¯|´5h4t~»›7ÝÆmW—ŽÒÂkvòª/y£½ÞQDh½è/\¸3€ô…uV …µ³)¦ÆÁ¤Ö·?Ì}ûÑÈ< ^ö ‘{²ëÜŽrÝe °9²´ág¡gF²jªKj¸yqÝ1W¨CL©#ó|y½€mg·\‡c³ç›jLÅ}¬.Q~y\‡nŒŽsv½vŸÚš–-Í¥óÅçsÙaNw:éý¯’ô8ÎËc‚Þ÷kPílZ›1az¥ýŸ Š¥ÿ:ꎎ~ z)–£{ô1öÐ!¾6 €‘è9×|€}Xv<¾ÙêR‹Œ­?¨-úœXú $hôýÒá¯õ)Ò[DðÇï‹ê¬ècʽŸŒpq/É–²r7Ú—>›ÿ‹¹Z·!ÔoîlÜL±[œÿ§¡Qêq pªtÞ©N#Ñ7KªÑ1N:Ic'1 ‚ì·Çy±»Á8ïÞ…>®Á1f7ó¢¤dÍ‘ˆ¿襓¼ûák‹úN"à‡¡ëø‹Azn-}§#&ùFÖüj|ÚŠs5Êb8âÕøÝį›9Ù>¤ëô*NïVÄ­;0 º¶µC϶[S­›¦ßØfòþ¹ÄrÊr&GØëjÌçÏñß¼0'ôqž%Æ»9ÊñõÔ¸œ©‡š…·zµzÖž?^ëØcÀ9é4 °ø½ß@Ò-óuxôŸuÁ!Q»Ù«N"®ànú«Tú+ ©ŸôzE?Ë3z©1ìD»½CíWÁóÿýàv\ a›$ À»# º´ 4ÛŸˆîçïmè-ðT86øR;1k—qºx^:“’Ö$éÉ£ãZæ½\ðÇá>}É@ùsrŽïë~Ïð04¨ˆ<{89Ü›e>W?¿UȲ,Y Ëβù3½Ø­i‹ÏÞÑŸ?ô¤ à…-‘ÊÛͦ5.ïe£Î6n6¯ÙÄbC[D@å]˜a×)¡4ú¹Çíõýs[Da.˜¥GéFtE9q…ÚS1f)ýð÷ÿ¿w¼Õ‘mâ>j,ö<ðßïÇ‘0`䣛¢x(©_òÍúÒÛ™ ~qú–ÆªÞ ^‹®Õ—¶tÌ—[;{éróÈI†Ëý÷ÑD‚æªMbKwÊÙ;®¥_[ßÚ…|òà«Iãá{ä?¾ä»[Îè›׌ǿíEÀåA‰væÍ•ÕŸuòs-—Á¾ý¹¢ëêݭǽñãNêv^¥ƒQ.‰NßNZe=z”BÉɼÅûé#µ}/ïyê½€¢¾‚6š¶6é¡™‚Gíέ®I7ô÷ü[9V$ݦ÷+ER"q.ô.9‘¯ÆÕÅG÷ ´ fgOH<÷ŸC yz»¶-“\VXh„¶Î$ïßÙ:Æ 6žºÂíe¤ãµÍÝýÂHÄ[o²üž,/×2&:îþŽÔ[)øØ—D^R)VTó^3ÕñU°æØ3—êtùLT"μÑû*ô†véDžP’«åââJ™ÑÛÓÑùG÷¨r¡C“!—· Êž\ÇØlJ4z:®©']fMË(‚”ì¤Kv/~?v,™éñ”Úß|­¨`itÅj§î‹í"ފ׎ª‹à¦}ÿdج„#Í\Ý¿Ý3¤ëýÇ™bé–Änù–M^9i½XgC¿HúõÁâ×fjú<ºx:é>{ÐÓþFÝk%åTlí#û˜_çcq’R©Ø÷$l¯³N¿æ-Zg7îx–Ç7 Ãýʹ>ã±g.wŒñÌMÐÍÝç-áqÜEÑë§ñ({˜skü,¼ßǼX`ôQˆêU"Dp̼ÓÏB‹:éÿ¾ï̵L§kè*­W™¬kÆ]îÌÆþz¾^\Ó|”v5Ø„þWš€ípßhÀYÈ@÷ôwÎ.Ÿy`íN™wcI¾ûÚÞ0¬ÓrgnvOÛÓfM[¾¬Ë‹zgŽzð˜_¼ûÂi ®’ÎüïŽ<–gX=Ö„ªiRî»Ç÷ Gév°‰~6=€7Gž¸¦y+ädS$Ä­[“â|ÉšPàúÊÕÃ8ï_ß› Á3=Êó“¾gL¹ôÓe®ÚˆN“©§»»N‡ˆHø¶ãœÃÊæáR(©s1“!<Ð bkÕïäý:ß1o6}íè¦ùóWÿ°:þßendstream endobj 102 0 obj << /Filter /FlateDecode /Length 626 >> stream xœuSÁnÕ0¼û+|t1»Þµ½{¤RâÖ6œÚÒ‚èëSKBâãY'yy~”C¬Íxwfgòä!¢‡ö¬ï›K‘Õÿtà߸Â5RE_sÁ(Å‹êVypWN¡ÆÂâkaˆ” µU5–<£2Ù™;СÐcìcîæå\í«œÌ;°•XsGj-ôœ Iä¢'Á°çt­…ÌÊi›v ÔMïž΋ôëëfçÏ&÷ê«·n 3ûéÎ-[FL±ú"öÍO;÷!¼FJ px;@¬€*9|Fˆ ªUkx´:qápÛêYUª„ëa´ d {;Ö 5ì¿- %ìïÚ©‚•µ k‡^Z‹¤šh™‚ENÊ_ œ Já{«nÁöÍ¢yF UK¸é}»‡e¶5…çEŠp’¿ÐmbªÖð×Ü:WÈ'Ã?7„Rnå& ü¾Q('à…^’¢6plL¶Çûáãô®y£½7”(bógº5?.Û…jlIVô‰“cB#’³Q¢ÐåÖoãD)ªí†žg1ÂEš]Ddó)œÏÊ+YµcºM›÷»ÚÜï¾ÐøœOîÂiÔbÿª¥É~ K[&Ù2ÊU4V>ZFÿ—ÏdaĨ9§>Ÿ 9fÛE1‘,²$tÌHh1kÄM›†ç™¡¥–—Í'hg hF×bŽËͲU,äûE”ž…8|™šKµ]ü{Ò¡®Y[»´P$à„4¯|ÅœÍé`®Öcœ%dÌËÊ9)·6Ûœ®ùÕ —x _ÍÄ£¦ƒå;ý$½ÒÙ|¢%…­—£Š—#™ÍÑ ÷Ò&‰endstream endobj 103 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 5348 >> stream xœ­Xw\T×¶>ãÀœcCQOcÎÄ’`Œ½ÄškÔ€±`GTF@¤Šô"M¤33kf¨"ÂÐ;#UÔ`G£±ÜÄ$^ML,7ãMy7ëͽïí4É»ÉýýÞ{¿Çü3?fŸ½÷Zß·¾õ­#a,1‰D¶Âiù¬™¦oã€ìü9£oƒ% “Â0‹Ãã잌Âk”Œ89’1ý-\´¹2I1ɡįÿ™mz¼Z¤Ü§Š€xàl­¦M{:à}U…úä°‰F6Å 4­.OÞŠRK –ÉË– 2ƒî+hƒV¸¥iá[,9#nâ¿&Å–dÌJ|Œ¢Ô ùe8eR1/ñ·Â¯éŠmžëƒõw2òNŠ¥‚½”^rrÉQÁÖh.j[èŽT5æ£Ñ›Eé§Æ“‡KÓç¤zµ‚5hºµ­ÐU¥KX«>W`—‹ƒ6…¤M}ËyÅãþÓâdí¯?xúŦÉ"ù7%ï_‚¹Ÿ“×2|Àc1¾Ê¹ÄzYðêEr2˜Üá± §²¥Ðå ýnØÉà‘¼7!2Äm7Äg%*ÓÚÄÑI =o=Ž‘ŠÌãø9_“±„Ÿ1›¼F&=^„£Ñöá=|U ¡Ä‰÷ï²Äc)Ð Í`„ƒ-GËB'4åäíWØ pIòOòò‰ð¥‡ôù$ÅŸ’³8MÚ7­o_y1É*Ujаqëζme«ÀŽl#3ÈEÂñMbƒ;qþc´ù©4U› ±jy*±²v¼ õ>½~Ò®À#ø¾1^9yýÓÂN¸_8éÉëÚ¸(®J£­’SØÈV#Ž7ˆ#Û$÷(t.4>Ô{ÞduáÍZ€Ã!߆o¢ýô¿ ·]ûƒ|ä,q0aY¥¯*QB ìãú³©£ØÅWÖ7Uvwªm A^uÙºÃ}om]´Üªo"²Ùˆ{L@NÀÁFi‹Õ¼BE^Ú7…,n6—Éeº/—±I![žá>SˆÄƒÏd8  Î(Û‹i–ýõýÏ)úÇ(—ñ2÷ÐJŠÎÅß*BË‚ZAœgþÚÚ}ÛÙ U®;w…¿)¨ÉÈ¢ÿÎÍfM—ö8´Ðô °}.%Kï[nIJç÷•¥â©¾%|ñÀá²fÝcZ!Çá[h7?C†`y1û ËséÀõ—¦{Îb±ì¡ §BÁüCd½¾•(¤Ä—$7Ñé¦ï‹o›¡OÙ—˜š Ä ÎõnÅœ°ñ;ªC ÈZRŽ'·¥ô'nƒ[¼ÛŠ ãÕX!ãZ \8¤Eȉ„†ä#9Z(8"deÊËÒµw@rDË[öÖï/”ïiôÍñÌUt>'¸Þš’ûYk¢´‚&^›Q \d•S€ªèl‡˜Y‰×h¡õMÇþºQæ£\»)‰§‚»Ž†ª@ë×Ù%«‚\ßr¼.«¾€kp¾m»Ôs÷n~'|_n(#oü–zÀþ–âÎÝ›¹PŠ+ÈTò‰ QH©ŽÛ¿êêÐÉkÃzCr€;…E”²cÓÚpD)†qi©ä.Ê¥¸MÏãp#Ž›2õü`"{=ƒó½LªYÂ܉ºòIíµ‹Â…3ëçäWJ«¾ g« Œp¦›Â›Ð7šl”ù)gÑðvÃ,ð3‡÷˜t,xld÷‹ItØfÝCŠ|<„f3òÓ°ÓIëýÂÒ’£€KÎü¢”xZ\Ç¿àž3»ÂoÝšµê²¿eÉš_Y™ÀÚü´ê4\k4+eèmidR¡U.2tÓñ”õh(£iXFÃxf”ù*§ƒ'ýL_óeŸõ?˜L5U÷5´ÓÏ×Ï©=™>]‘¡G%âJq(Ÿ}X—Ý œ‘ S©Ã ܵû5¦ÇÙœcêD5¨3’äsIÔ›¨³:d¥PQš¤MÔÈ:(=Gd§ùy«#ƒ<#Ú[pÚTiXhÆRP*.ó¸jªu™·ÁÎȪÔàM{’A¶Ê 2I™ª´tÒIZmñâÿ‚•Áìµq )ÎN1eÐ.Ñ¢Óº{T±;¡:Íë"Ø ÌJ>Dscª‘èíΡ–ŒcfåüÅt¯•§:Â`»6x:ÚÔ‡“¦Ø¾ƒŒåq-¶«¼èÅ÷h|͸]cq Y7ž¼¶?zm|v ¶N{BCSçTúã¤ÉÐ&äÞA Û{d„åN…¬NsY[µpLÕd^±òyíŒ1àÆ3¿v+ç¾Õü@;2JÿÓn¶ÛXÞtìpø³;hÓ&ß"W¯øyö6¾±³õP# .¼À»`l6+ÙŽxïxÿ=á>ॡ­¦Ø‰Â ž7JJ•Šâ`>§X›sù·…±S›0½æP§'‚Zþ ¾¾g¤”ÛýÃâ˜Þ?>%2|õ(»`Wß”XH•&CS”]VM\cx…pP´—¢ÅíÌ''¯Vâj>F´I)C† µß§òÉ)‰qÁ½ æÕeUKˆí¼™äU2ùébºl\=ZäÚIñêBê¾È5ËÀö–Å´Æ´ª» ›»8òë#ù*åaÁêçÕ/8Ø#Ð#Ä`œÍ“Í¢:¹<]B5Ù›ê¢ "A®ŒTFA*pû²££ÖG¡[e0ó‚(mª&L(ãÄ& ‹ý÷²2èÁ®2 ³ 0VüÎVÓÛÜ-ïRÖµÂç/Ø)>xl$^tjUÃhþ7@›hA‹R¤éY|Ï-dsúý#«²d…¥Q–ý¨°àzdd?“’HylY%~";‚n– YʛɫÈà¶È~KS>]Lê{ÜäŸkìÖ­ÙSj¿˜L&S¿]ŠÒöÖš&¹'‹k~UÜÿ`‰¬ÿ)áëìFT™Ð’بÙkƒž‚梶ÆÊv¨C|µ7ć6¬µ¸è¹…|"§`_™£©yà‹ƒ©§ãg͡ؽö·yÔÏŽíú^$ÒcUéûÓåáë6Fí¦÷±´¾ o´ÐœÒ!{¸'@&FМØÑ'k3÷ç/LÎqþ•Ç$ò'ËÈ{DNF“8‡“ÈP\Ž«ñ¤c•@n’^~=¸¶‡žß{C}>¦6çVÍ•ÆÏUáœö­YYµV³–ÃõÊ ¡k·îÞL-*ž7«†$ß s GIу¶Ý¯“¿—áàÛš|]&¨3…¤Ôý±Êy4GWÕ5èÛ;üºV̘äIdÂëçÉÿÆ\Q׆¹íxây7v§Á`9žáÑV†#¾»CQ2ÿKò†œu“ý¾³¦‰øû2ëæÎ'2\>‡"®$; 8õ››Œh—TÑö( Tг>çCµ¡e”½å¹ùMaª!æõGVço~z*¤9)_^›Ÿy(S­T¥CVSUU\RQßìï«ô÷v×lÏ ¦° ßàð¶GÉîÚùÞÝJ:Q%j··Ä¥m‰€MÜŽãBœõaïuœN&ᄜŸxG¸tòô^¿NÛ·Á:Gyqç?íŒuóÚ³m¢½÷ñãA±üÅ8ebêï'ªw]wo Ôx_ö[Ý;ù© ÑfÄzÖGÑôÃ@œf3:^Œ¢lzZyæ Üä~˜ò9ù“@¾ü%û_™³ÿÕ/½¥ž}âKY)ÔA…wi„ƒ¬…ŒœÈÚE(M¢Éý6÷q~9•¤˜ŒÔ8µ<Ã}_X0m©çR.+ËÓºÕ:nt|b¯—ak9G„2~1Öß•á˰ò]Gp ¯È­°Žä»3p¦ä 2RôÿÁómÚåáççáÑì×Ùah:&µd-æ ¿ØøzÍ m½Ò©çå$Ú›šµþÙ)9ûµO¥âÞÖZ!„„x5î,ÞHUÏÚa±Ø w¯Þ#os5¤Ü,OoMÊVˆ,ޞ܎}+½K†Õâ«©‚údE¾pß«Íî;O£)+jjλßHm¥}西Á!£‡5ÉwóÊ{KœãŸ›˜é_ÔB xwŹ[h_JÆ{g ºø,jO^Xp“4ÛèqÙy Öš êȾù|ÿ'tBJ£â—‡ƒr¾À1ÀèÿŒŒUȺu?BýüÝÈXñ³nÚx!gA‘š‡†Ž.¦þI³xøŸžäæ|`jëÊ@ œ7¬}ÑØŽTf¤*ÓÒTj9•’1–â&ö_÷¯]ÀmYCcaÌCbivI°_0ÁpE[az{ *èõ1¦R¡Ã†J—\HíáA ÈßžWþißñ'žM…®L§êüKéÈ¡V¨|©Öºj}Íw+eõ Wå¨+• †H®$Kޜⱀ|— .ûC[4%㾟H¥púÝŸÐF0³J|pf€Rîÿb$Lá5Ðjé¤Þèøsbª–iÿ³íE]šk³Oûkmz¹„Ñ÷ë`ló ZÏý?½úø•òÏGRô}2£äç¹b¿Ùiß2–=ªÝêÚWçkBÌnŒ­†&¨I$úÛ{ÑÑò Ó°ðM•'-[/s²n±däDrùßÿŽ>ÿ”—•\v‡ @›[ŽÅ%¶Ôþ/¦¶;™Úî2ÈÎË¢öëÈVÊaZº½¸XŠ›ðéS7†E&ÑáÒ¸äüÄÜ¢gpܵ€swîõóØ]í}ª²ä`n® óc3¥øßé×ìñ¢à;››;©=R&ÄGI+åÎBÓ»ü3ÿ0ø_ )SÞ’€>è ¸ÿ©@ÿiä£Á9?íIÆ)@áü ëÌý¦WwªÀ›½(Ó È ðƒU03Ã5uî¶ýû̯€(OÒŒÇJ%Ô4 •â‡}R¾!ü…Uk&еœ‚¥CO1ןO,l‹î˜XóZ ‘£ÈÄcžA?ÇIŽÃ<ÞðÏ8_Ö´/ZSw=Ñ`”œÄItþ¤¢3†ñ ™2¹cK¶PߨšIÅì’ÆÉ?¶Ä{ÊcÜÂU>ª0Uªb¹˜ƒ`r¸4·(1Š4¹M¦>'Ç™ü'Æ¥âBY¥:'8.â“r±µ¥‚Õ’)¦ÅdÛá´šÓ»”º1qOç!Ø>@;œdxˆ# J%{pi&ž(jøÃÙj:»á¸ÛhQ•£Ê? TAzŠ|gôÎOX Ò´J­¸xHˆ““vv$”çgêr²„üÃõ×» Ëg(À=1Pžàå·—‚¿«$¼Ó¨-«ƒf®Ç£(<Þ%yÝ’Þ™4Ÿ/=»cÑzá]24z—:ÐÝÌÖNüÁÐÖ•¦¤¿‚r”KÑQ´ä! zsº Õgùt ®H-Š Qî¦Æ¿<¸ÕP]Þq:àÆ”ÙäM¤yCè‹’'7ñ5´ŸvÕ>Á v„‘‡üˆªIªIÑC/&.ýô¨>do¦  ¥|Ž Ê¾C˜îácæt¢^ÌFkš#œk²ý!â>/´ÔdW“ 6<4¡:÷,U®²ˆSÈüHm9YMY­…‡³r?ƒC4ceŽ3”Äš,âb÷îÈ9l̺*ô°p+眸j>¤S¼Cƒý3¾”âS‘å϶ÔQáãžü©ç52|Ý©›+6÷v®w‡™±|´Yn>¢ ”¾}¯L s~àsK …ë9Qyæ“zç-÷øFÇ dÐdþï﵄5E‚‹Ýª­~ï-ô<÷ñÝî¶âC™.Ç' øwS¦ÇáD'ű–W‡B¨*4c}Zh|HbL°Ÿ+$ƒ¿&B_›U^F!lЍñò ‰ØµºkÃ7÷qÞy4\, žK¼B7÷ý;aG&ýÕñûÃÇ4Ý•ÂÛ ¼D×fÔ(«à#8L‡è÷³«3õ%Çé„Y쟦QfÇÒÀ¦'ÍZù\ÎÐöIý^ÓH»Åïuëðé ý“]ij|úBÏõ»ý$þª¡ßßÇW®ûýEC›KK5š‹½ôÐz,B«F¬ÛMƒ³[x¸Ö|åîÙÎÚ¼v¨æ'3 €È6®Yëz4®²¡¾¬½1J’#4Övh)ÞW pËÖÔÄø(ùúÙioÃΓ„ôò È®NÇ?gaˆÅüÒaƒaØ6†b˜ÿ…Bí±endstream endobj 104 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 200 >> stream xœ½Bÿ CMSSBX10‹‹ù!ùJ‹ ‹ ›÷?¿¼R3oøˆùR‹ ÷¶Ó÷uáæ÷$÷Ÿ÷øw÷Ôʚ걋÷÷Yûm‹^û„g€füêg–°»±•˜®÷›÷÷8û³™s–‹¡‹ÆŸœ‹©ü6÷õ÷u÷÷ ]IP}Uû 7Ÿ ‹ ‹ ‹ ‚J&endstream endobj 105 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1769 >> stream xœ­•kTçÇg˜™*!3©¦œ™rŒ¦ÄÔ( ‚—˜ª¤‰£èr§°Üv¹$n¹¬Àî>»Âr_aY–ë° ×€å ZŒ ž9)m‚95Ml¢ô˜hšw¶/§§˜äKsò¥ói>¼ó¼Ïÿ÷žÿ„« A’$´ÿ-¾‹ok!Û¹×æî¸»Ö{±;=¿zìÚ£ï­"ŸÇ”i¯ff©öfGÇÆ%&ÛD¯ëˆßˆDNø‰@âUb7L„/~Ä£„§|áJèˆÿÑä.þ.ŸPÞÔe×]ÇÝv¸ÕÑ¿¤ÕÌzÆÌôJ:iDÉËF"bÅLSÒ먔ƒ/ CÕ¥8bN‚g .@›ÃîÓØ«ÀMÉü©òÄa·0Šá•L›i:@„qhÓº¯™ßæÃˆ€B™o®_šœ´¼Êãü={2ÁÐÉz8ƒAD×mhH$?‹nݦ†/qJ3s²0^Xè`âu…A|ŽRr§÷ù§wç?Æ+ë„;ÖëWáÏì­>Á?çñn|ƒC&¦ÛTq†Gžô½^¿ðàƒ˜~…?ã"õÝÑkÌÝQÿ]ÛC_ö<$M¡]òµ‘³¨s–’"Q2‡8Ÿû˜ÅîÏzcOüø½ˆF+æÿ‰¥5Åü{Y×# ÁaØŸ(t¥>q¶èbA®5Çz¼N ilTfÄóÁý÷Ô|©Œ£¾¬tÀ@Iž€½˜<(©.7›øò 0ªï?2 À~36ñÑxrWQ•àH7צš-ð>ëh:û9"Í›RL¼Q['­r«Üæ*Ùß'E`#ïO#/;…vJ8ä-bo´OM~°q³ŽÍùv0˜úPuaª{r†ÿ£:Œ RFÇî/xg¦ìߴ쟸äߨ%})=àúNVÏð6‘ÎÒo%¤Â6È2É€¾X\ˆÇP!ó§~kºÅtS^‹N¸ -AéªûdEcØúS§<¤ºÂ&é"i•T”ô,úŒ«²7 _5²"£Ôk ²á8]º™Ò—§BéKJò×ãš5Øõ”X åkÛúÁÊ‹L¦þ ¤C2è!tù“KP]Z›‚Öá¯)טJj¡̦Švq}lèíÆÖ›ïÛÈ37бéY;%=lœ¼ßƒ‘‰] K$°Ûö…‡(5Í- -ï&Àq¡yèœuس—ã¶1 >ª{Év±;ÿ‘yåÚÈà¹F¾ìˆ#aئ ËÇÂ%õæ,­&.œâCÎs>ÉQ‡õžCkЮÚ^/‡—<‰ÏÙPÒ Ù3‹¬Sº°9ƒÉ£zBåadŸöÁãÕw|Ëì™ÑF‹°›AÞÕn"³G[q^þÅ„,|ÈAè4ê¬ÄcÊCÀf`¢½9S;hïlŽAÇ(LB¢úÚ·e4y²ú=…v”Þˆ‚–òC;II«ÑqÎn‚Ư¿Ä`úù§ð*¼æëg…VŽ ¢É\RV¬•¹ë… ÿ½ªh`£7t —…FÆØÈU¢-·vÀ·`ÆÞÆ$ö»L^”õc±ì1!šÖ€¾¦±ðýî.4ý_sµÈ}°ƒhõ<‰Hn ´Àµe7§e¨³ÓS[r[Ö6;y*#¿ZU,#oý!;ÎÉk`N/× )-$WF—-:·´“ãhf‚B±’÷Vb®²\šú+ °ã­QfÞ”¥Õ7)˜Å|Ñ•ÂNðÉ¡“Áµ‘°SÛ}×G4DöÅ=±=E7òz´5–â÷TŽp8ÀþæÍWûk†ó¯•κ •ZÙ¸‡ £XJ³ÑT[Á—U6õUžê™Jº,r»ƒ\®¨FÒ»…øEMlµœáAt§ItmŽrz;·s ótÎr³Óä[Õ‹|Á*Ó«ÔÛtÆ|P± "“>AIw™îËÿ†x]K °œ$‘VSU}Y¥I„F T%X°¯í‹ÀçÉOç)´ï<×®jÊTæ¨2S[s›ÛíM¼¿ÂÕßæþ3p_î+ÁÝ“ þ ü> stream xœUŽ» Ã0 D{MÁ ¢ÄŸ&Hd„´q‘*ë',™ ‚‡Þ{SSÝçØÏ­4È O©t+Æ åF®Æ£­ø¨YÁ«> stream xœµ™xWÖ÷GÈÖ Í‹ 6°#ZB -¡÷j:ÆÆÝ¸7ánËEV9’Ü{‘dËÙØ¦˜â€ BO„m Ü1×Ù}¯d›dß7»ÙoŸýÌóè1²fæžsÿç~çJ@Ùt£hîò5Æ[~äu¯ämɶÐK½lŠH±G»ú¢~oéCY~–Íš¼inȼÐùa ÂF,’.Þé¶4Ê}Y´ÇòÏ^+½Wùø®Ùîä·Ö]ÀúÀ ‰½Æô;nü„÷&NšøEvêf‰]ÛF’• F´Çl$·ÑÉ'sžõó(ŒïÆ"5]§ÍjæPÑ“ú)ë—nžŠ…’‡É쓲‹çà sïÝ[øM®½[@…èšVæ#i¯ Å/|T²¹ð~9>¸ÿ×{Ó®ba¾d9¾Áâ¾"gUVU¢UôÓ¦q‹æm˜6\bÇ+e&~¼QP}í¼-äý‘‹úx‰{ã¾£±÷ÅìÏï î¨÷? 1‡C±3» \ !‡ÂÀih€=p¬â@Õ¡fÃ^8û¥•Û*·ÁjðX'u•º¸mƺóm³Ý¹+äáï°§?M¯ÆL¨<Ô!«µ¡’½z_qT¤Lž Kð4lÀ‹ÑÇ©¹ … Gƒ)ý g¦}”sÀÜ`«ÆMk¹ ”þ²eÅ¡Èç€7Ðñ‹t—ÈÚöÀ%hPZ¶%‚þP™»G‚ÖÑvmÞRsÛX³ýñç¼}˜©¿øñqô‹=Ð<­@S@ÄäBV‚ äIj.< €Y7îB-ñ¨mØu îÇoë9m<( )A‚’èÈ’)˜ÂmšíݰñÈ;à(~ŒWâÉx"ÞFÒ݊כÑ#ïØf²yßî/~‚>â{±h<Ü¢ŒKYrW‰øf»o—ÄviZµ•P-ªúßËqCgÄ6­û Ôóç‹Ä£Ÿb‰øÉLps”2:\Ä¢pº¦åpM 0—OO͏÷ü©³=¼ôûB$ñЀžlNzçæpwyñ3a}Û,6 ‚îRT—žº‰Ð Ä¡‘hZƒ¢ x–÷ûu0k•¿»C¨ÏDgࢴeÞþU9“a&`aÔJŸÍ‘!kV¿MDÀWtF>Ú©·ßu“Ê»É÷9Íâ…ÿ:Rþ„”öo+~Rà~öƒ˜:¿‰û>y1$O_À¾ýÆF‡X<„ÿè`ixB¼ˆ30sVÜG4êùÅí+_7MZOjm©µSfT·K€ÝG›Mè“Î$Dƒ®³]q^5¡<Û0Q1 vì,ýúIžÿ‰ •†‰&ËFsPª¨£@Y Uk‹±„1‰‚‘Ô¶ýTWUÚñ»ìæå…—wû‹¯¡Ð7,êFc‰e·­. >ø›ùìÑ4k«a/4Ã^«rwгUy 4Žíý¯²´ ÖrJud"„2Á†8c©)¿¶6 f'¾6|Åo#;:˜„ÙlF‡:Â\kBÃLBþFÛ ¶ýÐk³0¼.•zÝuR(ûàag©øÑc  ^‚Ôwéïs»žšä÷7evÜK„FƒÉ©s$`;ž“ù)eöu¦°Q´)âãþâûÈ­gŠ[±0—Ùèë1sªÏ‰o¢8e:= ˜H–`:Ró24š²2N«miÙ·ƒj‘3}è³/îLÌ—øÕzf»eßtÊ[Tpr@}å¾»¨[Æ„-§IÎ!ÆÀ@F™äGkÙ¥© 1S*’’J¯jwˆ#»gçµÈÉ·8¸J*߯ ­–Oòc’š“õ(ÌÌ¿eu)÷}ëû‹ãøgÙé^<`r »H‚æÐ{Ò3ÎÓñV¯U‚LÅtjé:™·d)-nÆ6Xœ¼o®G-Ä6Õúåá<â_Ú‚íºc#Á¯ÀSð{Ø »¡Ix"Z#Ç]†¯+w}JjÅAfB#ô(ØŒÞ× ~¾ˆ•Îæ‡³h˜CËÂDêiƒG)é7¸†Æo¦²ºT_™ŸV·U#©ª?œGhâð Ï÷$Þ´xÿÑÊùÊemÛ®Ìô'ag9ò phoY3“ŠÞgGÐcænwÙì^䓦ÛhZ&)•ÒßDÂç§²hš}´å¦ÆÑL‡*ýÉùÀØnU ½WÉ›””’Š/àVté¿P0siÄ]Œ ™É9 èè ‘Ä´rm=ìîäZzìH<`i©–Öbäó!Ú‹Ù»w®¨47ì+j¶È"T¨%›¼^›Ð! ƒ*;ÐvlRBš|ùL‡™?&[à*ÓŠŠrôÖ+Ô‹U±°œ5!›ühÔÍ+ŸbÖa,î¹eõ*Õp  +µfM%Ô@“ª¢£OKu©PÆšºÓ_~5Â![VKÄ—œbaùšãZ#ië{Ô;»ˆÖFÔ0Öâ'šfDÞM]0G`¨7‹¾è¤!kÁ·?6ÑMvaU3#>QÔ´éÊÀ.äõ‹ˆs΄mαÑyŠYäNChòŠ÷ÿ$»BCh…W¥»n ¸ƒ·jeËŽ/¿uà>á„‚tPJjË–x¥‡žç:¼òKÃDyl˜HöV<àyDwÀï¤wAáw\Yä£OnéIHçŸì4_*²`›±ô/%vqGÈO$e[y¶ES ¯Ý"œµÒŽý1«‹cÈø¤V¥%¾ÕXˆŒŠ\U:©ÂÊF(ã:6(æ÷nñ1‰µÐn8¤%Äûɤkƒ,…4 ¶SjNÏ6B1SU)Mtiò9rv߉œ¿Št˜ºG& ‰mxo² ÝQ‹¦Þj:šsVíSϹ+åÀ„–FVWêKv~>kχ¸ï»˜Â}8ñ ÜïéH"×µ¨Wnn(‰ÃÉU\и%‰ÞÀˆùõ÷£É»W#;ëjp5_qSˆäm£Ød£’,ŽÁ3_³ˆ’çáÖaê°¶êàpÿ ‡æ* ß ¡‘ü×n D¯Žy ËNÏCê¶ÞšöK¢®ªjÔ}n%þÏ ñ÷UÅWtU&ž) P§FãàöS$`âûM&t†ìöþ-6'ÏbxLA Dsø²H†'ÛšD™?•5¢nJD"\ÛÞ;Y*HsŒÏ"Ûn‹JÐJB‹É¸ÇWÌ zˆº:š£UÔœÇ÷ù„]L£¿õ´ÃüÏ¿—8 ƒ¶U®³Ücè(Ìbñ#‘EÙçàà.S-ƒ 6Ø&bQÉb·¸H·Y\¾;tŸò·Fí©šƒóîºcÄ(šâÌ.y1dÑ¿›½UóÓª…(®í=69_­‰"ú0 FTzu‘º\©QCÓ^ö';QBg¤iÔér~Lû‡œD: ˜BÈ*“ð‡é*h~Nê«Þ¬ò?جõíõsp‘´Ï¢;4h@sŒödÚL¾f Ê`3Ѩ;¦]À<ÏÅ=%8y‹jEFž®{Bªyw8î+!šðb4z»ƒHX–›¢MKVÉSTœïð ›ÀcgDcàÇpHÔ¥Òʶ©•Bw®Ï…m^è‹¶áwȈ·/Äcñ$ìN°k %è4¹pøü-ûð-*DùèíÏoßCÃæá\Šÿ2õ]‰:i5[4éN¶Q€l.<º'Dsù¹,bèo?þø€®R‹¸DEt„1Å‘U5EúŠFïºõó§¬ÂazFÀ |íÏÿ*™éŽ1ew%:kÊî£æçB‰.²h¦õBÔÍg?ŒüÿE‚_þnðÿ“Ö¢D%,*ïÒî‹ÐD²ÙH!O´Ìÿؽ­9y§A¹}ukäU4çj}«ëÉþâ_d( }ÄN‚gåUšÚ"“$;¿¼z/0÷`DDˆÚ?.L’’ìA„Äx²å%ú=Áû”eÀ<¾xñZclcX¹¤aWCF©e€Z¦H“A"SXœ[–U^’Xëé*wwãÜêÜtR`Æ-Xð¡«ÑË´C’í¾Œ¸‚€/säÊÿmàÁÌ}ºÙ¡?·\¯oÙXÍ­¯^ +ˆ_nƒTú32Ž/²o/h9zhwãäSÑ]d“×ÍÛ4JÒqðc-KAk Q·¯Øÿg>SÁueŒƒžÿ¾ÎíÚ"¤F²¿G¨ÕlO†n¤F¶³ž_Ù_ü E —,ʧ¡òº\m èy€lø­áÓñHɳöIÅõÓpù‹îàþìDð¿Ï>ºø"Ñ´ø×bBSõÛwû@,‚%à±ÏkŸÏ'òÀ\/¹U y 2HNUKäó|£Ã`3¤´Ä?NøÚ!úÜæºµe„¦wZ§YÔû¥ýÕ—ó/ô?Fóù,l ð|Žœ™±+MµšcÚ bGõ]iZ¬ÈØ#ÿ˜Îïfkà ÁÒÐc¨¹Úd¨%©Ujn_m¼2ôúüÜz’Ëè'ÞÅýÌË‹<ÁIÇ/޾Ž>0â÷]29äyãÚj¯RÕêÄTÎwM`û¾÷È|%œ:qÈûGç\‘ä)Z¿ˆaÄ«Rw¦V{Bs‰C1ó6Í4+ãðznõ1å9uƒ:7”]é³u8ÍÒhó²8ÐètuGÍÛÏùÜ'} û×? nñex¶øÖT=IÉIÒá‹¿åíYñxÔúbÉËfz[ò2Æ’—k9†L»$O^š¡\Qº¾ª˜Êh}pptdè†ãÁ'®ž9÷ôÕ¶q65áAAááAAá555O½IÖ§ÐìFAƒ eßGÙ&aÛ¸¶il;Ea)éR…hrQzJ‰,sUÈ ‚!šØñC9Ñ>ÝOpˆü{û¬šð ‡Bá.Kw$+,MÏ#‚.rƒ"¿B<Ù:ÔwÀ% m¼¼ |ùºPêˆwÕÀNثޫú­PžÓç>¹6¤É ¢£bQäsÕšOµˆ5ꚎÏyƒ¼Žb1Zè Ö¦eîJ¿t*7ûlK“Ö`aÏ eÊ^®ïheê\$@d|"¡ì!ØÎøÇJJ&Šéßlmf °Å²xèèÆ8ã&´†ãûþ)”÷¦ñÄ`r D?xŒD%œN9°—A—é:8hég>ê-ªíà [´>¿ëgÖBh'^¢ùmKØßãj ý:YGµ&0‘6Úø;W±¬ÜÐ6„aÛa›€¿Å6VÕ|®é<µ ûëÑVµ!”àRŠR®’ã¥í;°¯•Z'Èš`²ž‰. ¡mm]+9VM~ÀQ|[­RAü@ÜÙŠžÞÝ{fgCR„žsWɃ!–ñ«L(+//ÞùéÚ¦ÙãpÏXÀaÑ?@Ì?]£Imàu†¨uˆÁþ.ê.5Z0ÏUÞ ßçáZÒPœŸ™Ëiµ¶:~ið Wg‰\NV¥`R3ù7n úuÄH¡—Yãõ!Ñ>áÅ$Ú?[ÿ7ÚGn+¾©µF¡õ/t'~È Å§a’7 äcf±IÍã¯]É©‚äj.Y›¡W"'¾­<)ÈC¥BTƒV²'qéj¸JDðx…W lÖØ®Zò/w_ ÑÚ£ìÿ5w^)5¶9{n£ìÛB~ºÌÂ×i_û^Ùúý´b7X sBÝÇù/H› ÀGéöÍÚ?ýräa8_|W{1ã:Ü`°¾ÌzÂ*Sô÷²Sð>…sp!ûXêy5ÇD0þBtÙÈ\'˜ˈ.”-³&ÐÅr(¯$n4Ð PÈ!jnëÇV€6‚[¾t"øÝõäV­•L{}âÎß‚˜÷¹î…{ˆéOOPæ5Z@®¡/~4Ûy\vÀ½øûò9¸SÇà™#MøÛaÛÙï¾çtt%õùû*£+}ST Vråç5žæáþéÓ>Ø4cír ^‹ýd–i+ÜQü‚§EÕhµÒS]“âRS“nbY¿´úC‡—£?ž1Ù7!›)?¡ÍzÞ_Œ)´½`oUü‚dèÖÄãï¼=kå,?cTYo¬9â qœùð…‚`ö}"¨Zê* ܲ]¦NQ‡«R!Eª†$FÜ.“eA w@t«qá(õ•Ô§™°›iÑ…ûÇ»Ž¼ ÝÇ?qäÑpkÙõa†Ž£fÞd¸ùÉ0šÆN²Úln‡¥+·k‚£]¹s¸÷Ì<‚ßBrŸ›¬´œãSíÛ‰û!‘¤R„”|w[kè¨Ûh™õ¿mäé3ŠºO _‡¶²¨ç´g˜Ú²-ÖׇCh½¼.µ– Ë_<,ÈTf¤ªU L“D&oŽ\°5ËÙ¢S‘L3I+Á‡éhH)ÌÒê2Ó¹¼âÆc7¡L[³£‹½µž°‰¿"ípe¸[¸§wèVâÑkŽÆ|ª#Ip¬®ÄTQcò‹÷MÝ:ùâhd#ÿ‚˜Ÿ¾Gb‹@x‰Õ^Úס^RãËKñßÐXþ.{*üà¶.oÐæfÀÓj4`´¯ðO»l¹$1‘¬Piõ‡¼Û_¡Zÿær™5süÐòÛ÷Á<@ž–<è/nGè&[AJîÓÐRÑ$ßnäâ<À% "ÎX¼3gÏ)×ßÇýð@2™‡Jį°1ó#áw%׉ßû 9qûBðÞ¹…A=ñUvž’E7Ã×PÊ\¯}ö ø,7s¥Þ°‘PõØã¸r+¡A«ˆ üùk‚ã¦ï ùþ%›c9y50X!Âv *P”1a"?ìN8OWœs¶ ?+ó:ýôÉbg`Ôoè‡%ðÙ@—C‡à`.×BÃ'ºO²¥—Þ=p¦£RÐg'P ‰ùHÄTy âˆå›Ç©üVvëNÅ.(aNŸoºtù܆¹k<·¬ôåŒqì—‡[áóè½ãGLŸ=.ZëÒäÌå%6†™K?_4Ùiä€!?-zl¿»ýKƒì WeˆÍ]º—áÆ¢7fVG5 ÇÙm˜6yî™Û'kÏ}ÓÜ‘þ†GwÊùá–ô/y„<Xd+D—X' Ûº:fvWw »¦Ä^$ Lö\tÌýÄ’áoò'ÙGFLþÞÚÍÑ.Û8w—7øˆÁ}¿…l8ñ/§a_SùI÷ù…­p6ºŽ€Å/› UGvÔ ®Û^â’ ¶2ïo=‘³Z4 îtiÞîÿÚ4¾þ\nmtè#Ë•öw_F5ÿøÇW‹Gµ Y‚·3—ÎNMùM_~˜Õ•u]ÎЂFÃeiò´ÙY\s2"l#ÒïÇÏ 5&4Ýò*l›ÝæÌfæhuÉä%çÈ’ÒRSåܦ…‹BæÀ|XnZÛU²£ˆXø¬ySqwÜûËéW/Ÿ¸l ¡yG«ä¼÷‘´ø ZÌ™éµCûº_'$'@¨e¹É¹¹Úô¼lÎÄc# éèƒó†£-³‡bjÃÜ ~eûˆ?üÙŸ…,¢WÝ›÷¿žiÉÓëÒ¿ÛQõÂâB_w]†‘ •ÈûÂã{B~­å{MÚL0”Ýÿ¸ùàž¤5øîrZåê¥Hã‚2B€ƒ™ ˜úwiyÿé᮵¾ØÒOn5?\NMǨ"-3©\V•L¦ÓdHd0MwŽQVT×I¦0Þ"ãþ qOåfE lQ8ŠïPÿ.O\ãÍEÔ»é73w'hþo§ÁçßßÅÜûìÞžO+êÓ‚«8OUr8D‚4?¶4±ãzØLÕ÷ê½z@¯žÐËž¢þB²†endstream endobj 108 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 5188 >> stream xœ­X tSUÞO ©UZ42ß{¢ˆ À°¹(‹ˆ Ø"K™î”–t£tO³5ÛËû¿ì[פéJSJ[(в/ÙTTpñsfQoÂëœóÝ´xtFç™æô´'Í»½÷ÿÿmÿ+Œ! …£¯X½lö¬ð¯ ø”ÛÁPrDŠ rdíïîˉFKÇÞ¼çн‚ð×# så-Î/xa[aQÊKei+Ò7ÅeÄoÎ|5kÕjéšìœ„3gÍž3wÞcO?,< ˆ<(ˆL¬¬<,X-X#X+X$˜.Ø x^0S°Dð‚`–`©`¶àEÁ2Á\ÁrÁ<Ác‚— V^<)ˆÜ#+ˆÄÆ HÁxÁD!xïX0Rà®Þ±lÄ€H&B#E,Žè§Šõw¢ktôè¯îj9F)Œ´ß=÷î›QoܳñÞGïýzìéè‚èOc®Ž;9îïäÿºñÂñÇ&dÄN‹½"ù$9ÈD…d@Á}“¡»Eh5Š “ŸK6dU,[,Áp•nª¶›[ L;Š|ÐZ^·4­ã6›ðûN«ÇYw EÇ¢R±›:¢d›2Y¥„R¥ÌT7ì6÷ÀNèb:ÃÛ£Ð(4êÖ‡/ö/vÒüýüU’¿Wœ f»ÍìâlôEÔˆ¿°=¶õ‘gäGÐQAÇŠŽ¸ˆ<EA _Æ_˜ÇßË“üü”ÉgV|ˆîE$^øaŠ·ñ>2=#péP u£»OhßÄÁ¶¤øä¢ÉÒ8:wõºÄ @D…’Š¡!zäcQèph>ÉY8XëPõ ª¤^^˜|aeíz𩼔/â•ü“ßOFJ@B´å€K z4 ½ŽŸÏ}éI ž˜{=pº;†FÐçÿô§þ+@|×õè¼­z)0t¸-n3Wg¡ð‰øµ4}èTÁ¸·DŸñãHM¶†Ig‰JŒ@­Uo§[1|Û :™À1|=j¯›Ëfo±ÔÒ]hн¼9õHð~Æ ©hÚ÷qã6$oÎÊ¥•‰ž‚_ È´yôÉBÒÑyúêq ú\¯JSòù1¹/ÑÊ‚ä%ë€X©¾á0sf“÷á)UºpµïyÚur£^’3÷!ò#°Bøä™*F zBá,m©Tï:²Ü½å…Íë‹d”êhºwË¿‰Ñvûv‡ cô~ŒÑýÔß) =Û-BÐ{ä‡âsΊürƒ ?dÔ²`¥,¸Æ^+uåã†ZÁ*q+Q°L™ž*{^V€Û4_|y;ìÜ\ºÑâïýÙ/lcJ™Bš•E„¨æ,õ&ª-1·è $ƒ¯‰ËÕP¦°ƒo4•,h 4ßàMÆ60¸Ý`¦wÃónè‡ýL_¸eNnY%Èhµx8ª,`²Ôà*NWù_¿†fž?ä¾|C{E¿¾ñí 1· õä>uŸÖÒüg&­´–Q‡­°L„WQU\˜WžøÊÀæ?¢GzPTÿÇóëSTÌwy¶Í޽÷55œ¿ÖÚ­NwSRƒ&Ô„ÊVÞT×âÙÛŸºk?:õÑ*æ6<{NÞ¦#¢Ð Ì'I-öaܼ!BUÁÉä qûÎnŸw£©–j0áÚ5”[Õêb,Eéü܈ÇÅå?ðøšx1¿›5d —¬ß‘väëÃw„K l™†*{-mÁ«@äCs­jímøØ;îø÷§ÐìS¢ +8‘4ÙpƒÌ„[SS’£ÍÕ©E|Ÿ¾ Œ• Ii^nN‰•ûvœÚñYóyÚÑ`­/qhK yf&?U7 Sµ…rZ¿Âíf¶nSçËÓé­K¶.„bÞ@î±£ííMTýš½:/tCCsM ¾Ç3€ :´U–-ÒQòU¥/g±Z«ØjXo&úŒþh$8ž;5!æ úÛIÒ½¡»xç¯^å`ÒªF,µ’WTò[SðIB¸®} wÓ¿žÌ5¶&:¾ Ûó+Ϭâg´t@#[Ÿç’¹r¡Ö`ÔÝiz¾=ƒ».¾€ô="¤A2²Þ2ð^í€s`'ú3v½ôÿà~ÉìùË_®úã®WŸ½•¶ùɽèÉoÌ. v7ægM⟂-XìE-¡'Z„hêgÁM7D¡íÁx=ùÐW|4ŸÂ§ñj¾‚ôæýèwh#Ê@EHG ><ø29kÕhL5ºÿ"Š¢ÞüüíxïRßÜͼdí,z9/š¿'$t’Oñ{¯KhÆ{ ~aÁutû~;¶‹Äu®;èš/®~Ç\_sÑÑí>Ú…ËÑ`¬’åèåÛ „(ªW×67ûvîMmLVÀÏŠĈX†] îU }Z¼hp´r…:UW,Ñd)6ƒJͪšvkuø™KVPP’™¸·¸ûV/Êè §Õ§qèiAgÂÐøODè-tD¿£h4ñohôõ¥8ÒüÑHƒ^…íºšÆ°îû!$¾xxëK%Ó6%Ñ™éëKã€à£qàOÆeò\¹éFù±g½ž~BÌ·èó£dñÊõºâ¼,IÚÆ4¨dC¾Ûçð4`}®ªôn-Ë–§§u—]ÿöò›—½—[j°eX†,CY¨É5P1_n—ç·%OäGò£ø©ü¤Ç÷/Å–ñíaØÛëñçP5™È/×H_™-cñ²û@;ݰŸn>¶¯§Þ7œOhþ‘F7NÔã™äÄo`?uðcÖÈV‚Q¢rVxªêÜfÊRÓÆÛÛ†çggªïðuì=sñ¿1×¼˜™™“ûœSäÇ>êGGÂ`v~& ŽÇc‰½Ýa²ãWx8ûg˜¡3Ì\³†ÎÉ]_¸ˆ)b'Ç£@×ùámâêsø±_÷«ážúvýk8œCµH ÞsD¶XÎTÊWѪ9” OIÏ\oÿÎa7Ú V¯d¨òU9Òl r˜ÖŽs“¹…67Z÷AœÈܳ®>Ì­ážHÞFãNì?žòÁ„˜ ºŽ$R¥ÜüGq•4r®µ¥jGU7}=çÚŽ»æ•ßÔœ1#‹Ÿ¦ÿÑœ;Z¾2$}á6U®¶”ÎyR±E‰_ù&æ‘Þ”zäæôˆ…ŠùT,$›Kòâü’¼Ÿ¦Ú×æÝŽÇ’“x$šÕ&D¯GIçE¡»þq*Ò³,žŠW¥¿õ…³ù¦¨XWº'ò|c£¯ÑÞÆYikpPç—´¾ìl¬nhh 9¹«ÿf¥]ű)Z}&h††A[}OKYgâÚä”´,êÕe2Yf9ž¿elðüø®(T|Ÿ¬={¼#Ì®Îa°VÒ9°…É)l1g‡ë¤¯NúˆÑQ‚DzJ£Ö¨™Ãc¥<9iÖ Vw~î·vXýô_ƒS~sš}tp¼F E –ð‘×—ÞD1xãшV* aù ‘{„7ßøu;ˆó€¾*$k»2ôøZ›«¨ºÕgï”U¯=Ci Ê—”¦ääÇ´øñ é•Shí?Þ"“§aû¡½€è‡uùÚ\c%víªŸÝììF󆟑üì¡_¢¯¯ôm\²>))‡Ò\Hð&BlØ’õ‡ÿÂ5Ôíò¢†Ð$ ˆôÛSE·UÁ·ÈÎÓMµ,.ÎâÁKIÂVfÆD¦Yú“ÆN×±:ì®J}¥NÅÛ3b‹‚*–òR¨³yÏq„ÓÌ©1éè Hg2†–‚UX¾±ö»öXt&š3˜W 0êÔ¼|p^GÎ6°Íoq’êð|¬æÀïÍ6Žnü;Wl2àü‹s±ÕQƒÚ‚ëÔs¥ «‰$WXþC(î„ð#d¡×QéÅbcö˜l6?–Ú!Íá°æÁ 0êô¥áKÔc(ž„ï„( E¨à é—5äI·älÙZ_ÞÒØÑ¾W*ò‡b1pFŸAçΈ‚G‚Zr·çÉÅÏläÅqÔ†™Éüb˜CdO£ûÞ¼Ù‹:Gõ~уæÀûdPKJ“}ï}ð.:°óÝýî1'½]9/-\Âw%O§‹6®_—€“aЕ5/€„>a01Dþ@ ‡Î¢Ó±l…’zvòm.£Ó¢œÀªg©9hÛ¹ŸâïÌÕH5êù Ñ ¢,ô^è3ï…}ÐÏìrÝá›.­+ œSpEf‡Ñfrr–ðÿ.ºh÷#íÂ}ªEúу¡éï‡>z»7Pf~üùi@$FÍ?6ŸŸúŸ¸¼Ä–ÜwuŠì©¯Ü©Ðéõ:¬áœ‘²)- P¹“^Qª­mçÞEñ(ªwþ“üCóž˜O%æ§lKIXò„j °Cxö˜L8ý8Úê»ð m%Íå-e¢ÝبFõ£Eî;j)3ÐòÔô_„ªPG·‰½ƧË*§&ÄÑyY(H„õ°¾ÝøÎ^CU7ÔµªÚÂuƸ²¥ân`—ŒþEz o?·“ºµsàs¸LÜX~p>?fÊgzs»»ûwòªÊðÉÎhÖQkW@‘%ÍË-Ñyë¯~~ó«îe‹ej>žjø‚²Ímoh^ö ÷‰‚³Q9OÍDË6ŽÉÑm-7PŒzÿ«[ÔÒ«Èue¸Ë±€*1l,jDæt8"œesu…ùZj ?6‰|ž'þ—7g‰Ñ2Òr»Âa«ñ8Ü”Óá´Ÿ„zðÁNU•¾Ií×dðÓb á‹Q\§wy«Ü6ªM±±°¤í\U­UçÁ…ƒš.Ó Ù˜ôÜPÛñzÕ¨ËÂï¨÷’í 'ÍnŽã ,.Æ«m4úp÷F|òa]gbkÔÓ‰%‰štH‚tWn­Îl0ð¢F£zŽ=–eXMXÜpÒ³›Ìv;uøãÎí˜%¾Ì5«s(N£“žŽ/ÊÀRøŠýÊÌš0µ‰NïöFŸ¢º0A/]´wÙGh5Ñô«I—çý!µ<7ƒ¢6Êû.:Ìn^ˆÖòøç„˜¯‘ç1§ÞGï‘2_^V¶4»°¶¤­3ÐËCn(FG&áeªPͦp¦ü[ð©ŠÛôü²5 M\HƬµ{ѽh žô{’Ó 2s¥ê†ºz§ËEEQw|Â9"ï‚È1-ü?Š‹T endstream endobj 109 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 166 >> stream xœ›dÿCMSS10‹‹øýùJ‹ ‹ ›÷À½ºR3Oøˆù‹ ÷¼È÷˜Ãëá÷ÚÜø7÷Úò©ÎÒ‹Üîûâû#û…ýJá÷Ñ÷2÷PûÑäüGø÷˜÷$÷ÍPDDKPû  7Ÿ ‹ ‹ ‹ ù> stream xœ­Z[o%Å~?âGŒ"<éûå!‘ „ˆ„V‚<8¶YLöØË^¸¼ä·çûº»º{g ‰"?xªN]»ª«ª{æ›EmzQükÿo޳¹¼|wPËAëÍk³Dô–Âr<Ĭ¶ä:âéá“CŠz‹I/18µY¢ŽI:oÁ*o’ݼ›¨:f¦²Ám.M ½wv£¬I£˜•rÚ¢V5x6*Ø´¹'£’Ž[RzgÔ ÌŽªÕÕ‰M“>µ<9|sÐe)—öïæ¸¼suøõÇ&/yËÁ„åêËC]f½h,ƒvð^ÅM¿\Ÿ¯îâÒ‡â¼~rq©¶ ”Íëï.Ô³Íɯo_À<¥­^¯ø»Q*»¸{~ÄNé”Ýú1ÑZ)íú×!îƒA¢³ÖΓÓZ (B!â‚EÊëŸù¤RŒfýl1§”ÂZÙ‚ra§ð¯Ñø E›Í§¼¾ý—w+’^ß~—D)gÖw)R™lÜú>³r&ì]{ŸÏ*'eL^ÿö^5×ç°7RR0Î61…(›äôúAYMŸ¹Š¿úb‚pN1q°Ì-W®~ù9œÐ”·þá0f˰úYG>íOýéeúb=ƒ¼ïOÇþt7dÿk<þ0ý.O×ýéyzk°Üž!|9á:áoÆãñŒš‡þ¤û“ïOêÌÓñœ9ߟY¨aØ?Κófÿý³Ÿéÿ›“j!{¯%„¿Bž„±S¦ý_ìùôL Î<ûõÉø³SaJŸg–âfäÙÅ™µ’‹ñÞÕá#£lK™ *m¨AÆ›°E·èãæôòünùty8øÍ›ì<*¾^°Ë×¥òëœvûŒÁ~cÑë6olPŽ´pßmà7 ÛHwðæ`”ñ›š ¬›¸ P…“¶€ÚlÁ-ƒ Ü$WÔ¢ºb†iUÀ©ñ7(ÐF%VÅ{76–p ÝZRfQ÷ÞÇ£Žm©ƒÐª‘eq&ÀúÆÁ/`‘OòcÕnt–8¤ˆ.‰öús7®qï­/!Ž]å0ŒÐÀ˜´é1lh1…©À ·¦è`v¢0èFÖ ®:ÀÑ1*l†~4 .Gþï:LÍŠN!VŠ„½Å7ã@ž˜:Ç ƒäµà2)@©)l––F·)ßaZšE3E¶¨ø“«rÆûÍ‘B$¸À4:*L±B(ÄJ‘°÷£øfÑùp†Óƒ¥o‚±*3Eã?RÇê´ìI¡ÃÐk1Ì„™éÂ$¡ÁM9ƒø$³t &¦ 7 &G³¢SˆÝ"aïGñÍs§"‹vp,»¬cl)>(BX1.˜§9Æ£¨C-ÖnúÙ#"fâ¸Ê'¹`ØÄÊ®|Dz…IÞÔ X'Ü{û‹O˜šèŸG"³l' v‰Ea \uÂØE«ºÄ2$0Ô«§Aµó~’ pÕAÁ`—À0€I­€MCIÞLßÅÂÆ½w¡ºÅJ#U1é8aT¹l‰ £9ªr«7Z#)ýDab…›„+YÁhÊ&E“PÊÆPQAúÕlh¿‹‰Â~âDq,r—’Å—ºsœ0¨4ŽJ9DFebEŠÜ÷±ÃP›”+•@(’ÆÀŸ†„WäŒcC]†d.û]×Qa.…X!be“pâGñ-a—âœâUäí8!†ª ¹Â8!óMâ¶ï íÌ8;¥A‘~ð Xäƒ\`ŸqJY·Ç„>¤ˆÂE{ûYŒîõtȲIÆÿyþ$<ú!à\3Õ†pÛ ¾‡×s´¸0I¸¨ ƒ °g2 D€šå«*\Ô—ßÄ6aÜ_ü)‰ÈSš:޳ j“E¿cÛóÊh¶![öNè0t¢Voz¦p¥9 W䨗s1^$8Œ”›]‡Àä¨V Šjå°÷£úÆN Q'Åâ›`üØ¥Öâ— Ó¬I¹' µ°tKs1OüW dh&ž#E’aíL†j‚ˆ…ÂâCñ«´F½¸xÔ¤_ƒ&©¨ÃY È£ù‚Ƨ¸C†Vlj‰ áÌàïpÕ@Á Éb’íx+& ¦_Í„FÐ-lü'>¿\(EÑ%S¦äã„áŽ(ƒ|3°+—Ö¥RǦhîz¢ðåºbHè°i³ùÀp§‘€Y=hè¨0uˆB!VŠ„½Å·Òöý7õ6i`ðÒ¬†÷EnØ‹¬–wDÓÒäx}3( Wä J‹%…H@>£¯&‡X!b¥HØûQ|+­?2{b½˜”(pæ®uÝc κŠÙ.0ô†Xò}P$ÞîL®:È!Œª™"§ì'&‡X!b¥HØûQ|+ý¸„áò8a‚æZÚˆv¨¹ƒÑ$2;²¶ÅCoô‰9>(xÒO“«rÆfZ2$XUaÑQarˆB!VŠ„½Å·$ű5ìÑEÎÛ„,HÜè886Ø„ê–:µÉ9ÎïƒéQ` pUAÁ˜r­:$  ¸©¨ Ä!EÀÞ‹âYnå( ªªRù;;‚.£%–‚…~Á È»†Þ yNO¼v“«r™¨IÑ$ì)Ö<ÑÑ`r4+:…X)ö~TßPt©™Ñq°šcE2†MíêÞAÛGmŽÌ¾9ðö“ÅAS{]€«r†™H ‘Àz>©( = b˜XÙO cN±ynÇíyœ08ײ(),CdgWa–·Ða˜©1ņ‰B#9B:\uC0¡œ¥‡_ÎÒCG…¹b…Pˆ•M‰Å·2•bå¨í8a¢g“œ+ŒÍ"¥YÞr‡ii.ãU§0H“‡„Wàè_Û@—àjè:*Lb…Pˆ•"aïGñ­ sLóXÒû8a0¬qH388× bXÞL‡iiLÓÏ)”,ììW$ uGŠÂŽÒ†sÉ^a’‹~¡û„}ïAñŠƒ\âöǧ8Œ Œ-qu˜‰Øþ±Vµ%Z®‘é0ôò=L˜) Wä ²R‘B$ +9”t&‡X!b¥HØûAßÊe+Ò·ŒØ Í V§rþ37@î§/[Ûe \Ô2â²æó´Ü÷ ÂcߘJÒî;&ÁLD™ãÔLÓƒ¤Ÿ¦c&¢ÖYMC ’S7&ÇÑO½9ójá¸1ON¯ÎÊ6ä¨âx£šë«3Ú~q ñSÊÊ»ïa‚L€œüæõÊwXóoiâƒh5îÐÇ :/es¹¯˜ 9¯ûÏ%Þ„ŽÙQñ5d¶3UÃÌT8Qz6ÉA%˜‡~ågª†ÙQ[î´&ª†ÙQ¥TŽŒUÃÌTÍíA4­ÃÏ‹!ãwÉ@j´FËŽ†ý_ƒˆ”¾¸ÔåV߯ÆÌ€'"æë3¤äÕ„™*ž åë^†ül$ y×B^ÊQͰxðÙ…¶<šõîúyQ?•×ÑÚ¼>îÄXî|à.ùÎX›°~If:å×.LÚ<$ì$Ó …ÙX%ø[iõlÛÃlþm¡X¿+ï¡sÆÞ+‹çUpî„tÜ—·Ì€”Átm"r½«É˜šŠç&¥`ôŽüHù}×ïÌÞI Áî[‚K̓ùÒqú5%žIù¼¾ªo½³Æn€¡Öh@fÕ^©#²ˆº¡þ³]ßá—ÊGп ¼¬ÕC&…%m˜ÖÇ—ãµûWƒïŽ>e…BRÖœ:ßkRsÎÎÙ"Î褕^_ŽO&Õ×­‘qÖýÈÕåüŸ5åYi,Ý•/fwU5jÌúøe¥ ÚÏú¾ê|ÖÔÀV#š¶"í²æDÊq}V¾{€¿b«—ÔNNÛõš±Œ˜u¬±l¬U£Çá³…H3Iï§/,nšújû¦¢HÖ– oøRæýhÉëÇ uÍÎpÜ×—óE“¬™i%òt@äýpî5ú36FŠÃÒ;“RZsm ‹¦ª©Áï:rnî9Ö‘ÇŠÍHëñølÊÆë²xÔ‰ëÕ×”æ#:8$ÌšWwÊ‚›*Û5Ÿª„ÇbsNÖ`OqíaxÚLÖqŸsεUR)d²lX§´|:>…¹m5¡œSf’1Ò ËMÓPƒ¾å ¢èÖôÄÜT>EžۧoO…‡¦ ?-ÃíÙ÷@]8ìçÙˉëýâ4 ·§ßÉ ÀzcxlF‡i%Ÿ±õÈ””gõß-ƃpµÒ$ }¡ë9ž-3ïÇó™ ‡•ÁDãV“ÐÆI|i•Ç:±¿Jâ’êýé+$Æg°”vKö¢b¹ÏKMÀ3×l.uß¡]•Âf·Û­u@˼Âsèžïgô‹’ãÑ;'Ö±²N2¸}"»Š©‰ÖjÞ´ùÿYù"¬(ÙRñð|>‹ù©–¬ôyKÝ$Ÿré~|%6í‚—­ç&]ƒ‹Ã{Î?ªÇgÖö»é£®Iô´gª ̃æ¤ÍÁ“êiN~ŸÓ='j­Ô8‚…]V¿Jh¶÷‡f\ÆôÀlâ›Ô/ɵWÃ¥ÓÞÔjíi|«¶š˜šÃˆk‰ébY?TK!»9°?L•µ:`5ªÉ\.«ÕxÎs,èVt¨æüÓ‰'³Ä…à\_NšÉ>Ï¡eÉr0"Ï(y2Ù¼ й*ËŽXßÖõÃÛ†Fõýf|¶7wüÛ‹“ TÚäõdòiË„<ÿ² tÝó¦ßª4鮈Ͽ]$’øy]´Ëi£|?\ϵ M0±ÑôÄœÚò[¢ÃרµOû‚%žBÓèÇÁJ?¾ž¶’gòd@®M…rÚõáý`£„ÿK 8[îšEA¿®åü¨Ï+®ï‹fN•å'ór7F¶`<¯l<ïdÿ ŠÖè »>>)yãb¶þlíØ›Vs·ÎtÜi]çåþöÂ{N8˜ìS±.EÉë^¾¸,u-LÙÅ%=[ñe‰©1ÿãT·j]3ü&¨÷ÐÛ‘tµTµŸ÷¥êü,=ÍëSÅy"Cžy}ö•§Úé"zÜÓ³µð±OHÿ¹_t­ûðŽ6¹ iw¢_ |tø7'epMendstream endobj 111 0 obj << /Filter /FlateDecode /Length 3289 >> stream xœíZ[G~?âGŒò4r†¾_$)HE‘/²,Œ³^›ö¬µ“~;_UW_æìx½ Yû°óÕ©{wWÕ\¾ŸÔ¢'Eòÿü¸3‹ËÓÛš>ßõ}ÐK Óq—LXBÎrµ{°Ë*.Á¥)§kÀÕ(Iç%xæò×n`ª„‘Ç)üè{ÞGüšVöªW)§%úÁ)!Œ>›òàSÒqIJ>u&!¬xħf­º4XSÓóÝ÷;͉œäßùqúíÙî×ߘ<å%¦³g»’d=ig—h‘X8¥ŸÎŽ»?ÍŸ}õÙ—ûd–œÃüèÁV³óÎÌØ°ï ï½e†m¶U„ÏÇ}};ÿD5Sp;A[át/þƒ `»(žÄ÷»³Ý×4rd§'‡¼ qQ(ÚI‡‰~s1=œ®w~ñƒ¦:=!7Ów<Ý…έÂä˜=6‚!ÁÛ 8/Êg¨óÀ?6|‰ é#ä%ÅACÅÅK%`jsS×àcÁÕFÁ$Q½¨Õ˪aÇ9&2£ h 4 04mv‚7‹Öp& ºXÈ©aØÔ^ NçAºbVÏüB iˆŠ¼Ñ¼.Í@Á$`ÆŸ«sUzå=d4HvòŠ5/V£HµÁìª pT”.ƒYpɶaØ4˜½óÈTcbë*.6XB(ð߸©k GÝ`£`’¨^TŽêeÕ°Žƒc³ŠýñÖ"Íá‚Íãœ0q Œd_!¬Òš†ßa¬@¯¸`¡`öOiê ãj¡`’¨.TŽêbÕ°‚s 4=y:Ž÷çƒVÞá?%0àüÐÊ»œ9Á‚a×#aiàðð,™®¡ábƒ%„‚óa™C4àü¸ÁÃó]÷A~¯.ŠøI¼ádXå(°FÑ~ÑFcâZãpgœJÂÃl@ÂÒÀT¦Åj.6X¢PL¶‹‰SÓ`’c\m¦TˆC¼¬NâàØ‚/gÕ$O…è8Pr m&„D‡Û*Ï+"ÉÑL÷TGæ=ÑT\L°„P¢§ZÖ4ÀVÁbC0I'Cõ±*XGÁ‘EWV^g‡»LЬR ÅDŸ ĽA*Õ¶BØŒØ I÷ß‘ïh»´@QÏüBAú±…š¼&'‚IBbçðd,*,!”ÉVÓÀýÊu‚)âEã¨~‹†“886ïyÑ·ÔPèÀ Á0ÚEaÉéÁ&íÁäf.§£q ãA *.XB(T\(ôªÁÚ‚«‚IBœ¨ âb•_…ÀQÇãó:ÐØr(&Rì6 ‰ðƳ¡à˶+FQ9ï` ,!êu~jÊæÙfC0Iˆ£zY5¬ãàØè´EÚ9·2Z#@™Ã‰‰è!¼ùßàY*¼Õ †YîÃÈŒû4h¨˜M°€ Ï ¢¹ƒ†Ä_]ß«‡U|G• ×0œ³8.‡b,͘6aˆ¦m¬)˜ZPnVs9ï0(X,0!( /š´Ï†bmú¿xÐ8ª‡¢`‡•uYrëüb9¬FÁm9fsK}ˆ1ê‘ÒLÝÇ5 ³õ<˜ÙönÐPq±ÁB±Ž#oŒ_\lLÕ‹ÊQ½¬ÖqPlN•҅ͪiî:z¶{ ÅŽK:MFâhŠ¡m#ø˜üȤû0h¨¸Ø`‰BAs¥›È¦Á%Œ.ÝDÄ/>ÔßÅÅ&¾¢–¹Oò|8®Bˆà¡¡ÑîéD³¡AAkÞGaScbð#òíõ @°X` ¡Ä²‡ª†€ƒ–º $ >T†ê³È¯Cà¨t’²ZîkŽâË Zi*O£’BÚP2 êÁ2ù‘Ùö¶k¨Xl°„P’¡ÍÛ4P»°¡ÛL‘‰•£ù-NâàØL,«N÷‰Žê}§XO¯æœAÛgì`¸CϼmÃ.&Pz4Ô8ø=_ì.6XB(ȆcÑ€lPÌÍFÁ”êEå¨^І“886Ê8ŠTIl‚Q™žìYô{ÚòôÚ”Î(D{G0ÌÒûIß°;¨Ì7ù†‹ þ{ZQ@ÿÌ`¡`J…¸Pª‡"ÅÅÏ&q—È÷tê©t —ùΔ‡‡÷<›,OëƒMZtI¸Pè½ëm®Ns¦0ÉóŽ©Q:S.Om¦FiLmàlLÒ™jkéLÒ˜NƒÃkLw½Uöj¢1/j³z­œéÉ ¾¸ ¨”×Ê:+µ?ê€9™‚4e ·B¡"E( ¿-íÉs{îŒq”ZDZQ|¢§ëey¶¸”¥³JYqLåÆ\BYqe4`žÓ—PF.O·¬6 \•²â²‘øö¬q eÅå‘ÕÑ V<õÀ4äá~‹H x •Ôô €¢£›X †¼ŠFûý!£²àp6´†d($ à`ë/6ˆŒ7³q£ˆókùÎw÷¡îCªx}Ü&züJöü<›ùâÉ ›ïc*!è .ò¾^^__^?Ÿ^_/¦Çó«‹óÇ{úü€}þ—ß}´…‹É.Ü/.P•=ÁøzU«ØfØhô0lã£KÏYp 9êßïš§V!Ï—|éµ·óó7ôÕî•”ñó ÑsŠ!Òk0ܹcüŒvÓù;|›)¢ÛEÅý‹®r<ào@´2†æó=½HˆÉÄù ©Q¸?Lókb 9LjKz2“|4d´9p󒵨¤áCœ¯ÀåuD™›_¬ÔXO; Dpc¯š0?#"½X³ó{ÜàF/¬T“*¡k$útä¬Gï®%€”µ›Ÿ KšßÕÑkÃ)ô*`±ÖÜ+pɹR?P4.šHY*søè×Á袳Äx$I—“I¼Ô§’ƒ”4•jÎ ÚOó_›³¿Œ ™¿ØÓ3P§M‚üaïéîÉ™1!Cöߌz%«A9zEÊ~:=?»–èX4#Wôš¼FýŠmF.‡ ç=VùÈ»Ëzqëv’à©TÛÑ•Á:‰ªÜAÓ{¼\¤¯†DKJk½^§;6Π¢Wùmµ±Ñ°§}ð£Í¥_—“³þf©dÍ-õ¯#n6^ô>Ýx_ÜßPÿ, Ýý¾ø]ßxzÊä¶7o7»ÿï“©WK»z¶‘â'wækHç½?’\<ßRdîÌwÚúÐcKDo(¾T.?ÞúRaXš­/^oDÛ“öÃF®ÞóyGÏÅ‹ {}iº7O7|¸ÞÐ×½õy:Y˜u›ø“DLf8Í(!ðÎk9ŽÏ.Q5éybF¼z{ÓÁ›—e€84AÔTWÔû½T(ãF¥.f”€Ö¬£I–ü›Q6޲v”Uû²ÂÏñâÝüŸ—“¾§‡Ý‹Ûä…å®°|¨&\M~Z1‰ ÓÁ­b¢Ýº ½¯˜Ü!›ûÍØ×»Úƒ}endstream endobj 112 0 obj << /Filter /FlateDecode /Length 4804 >> stream xœÍ[[odÇq~'ô#†ÚâIß/¹’%'6;‘ †dÉÝ¥À®È]­7ùíùªúV={Hm øÀS5Õuïêª3=ßíÔªwŠþêÿËý‰Y]Þ½9Q»= Z¯^›]ôA¯)ìö'1«5¹Ž¸=ùâ$E½Æ¤w18µZ¢ŽI:¯Á3•7É®Þ ªŽ‘T6¸Õ%!Ð{gWâ%$6µRNkôC« K¥‚M« Y(•t\“Ò“Rƒªa&ªªT×tòÔîùÉw'š]¹«ÿ.÷»ÏOþþs“wyÍÁ„Ýù³“âf½Ópƒv°^ÅU¿;ߟ|µ„Ó3"ˆóòÅé™ZƒR6/¿9UkÌ6'¿|t õ”¶z9§ÏRÙÅéùS;¥SvËç„ÖJ¹h—ÿì>û#HtÖÚyZi­!q“òòïô¤RŒfù#-‹9¥–²,(&ÿöˆÄ/ˆµY}ÊËGø¤)éå£Oˆ(ålÃò ±T&·üY9fÓ~GÏ*'eL^þôiQ×ç0+ .)g+ØŒ‡#Øb“œ^>coúL^üËùï„SÄÄA3·;ÿìäüW_Á½BxpË¿ ƬZÿu<þSÿül ÷yÝŸýI÷'ßŸÔÆÓ~cE~rÅ/ûÓÛ .úÓý)Ù}“½×OZúögoé«þt³Áïš-}Ô¼¿µúÿÕŸnûÓ]z³!íA<=íêñ=}½ôÇ¿ö§e˜;å©Èüdn¼|ÒØW[Â(X÷ÿlé¶Êæ\m¾¸NøÏÿÿ™ü¡,+ï:tðͦڿèŸÿù=ýô !z£ üU5„ˆsExþÇèóåF¬O[Ÿ> ß;eDš=l¸âR¦ø»¾¨yÿh²ß>©ïÖîúü¼ÊÌFæ 6ÃÝo7ãkÞÛc?Ñ#”¯E6¾ŸË¨¨Ï7²zÈñ{»Y˜Þ¿¼~#¼ÿô¦¦mmX‘¹?i¾nñrCµÁçjÓÿO?‡ÙðìÚö80ŸžŸü'ÍÙ(š lÂP’ãÎxÖèv:ĸ:½»¿Þ}¹;œøÕ›ì<-½CEÞ}Ë—ÎÙ¡ÉÞy¯ÂjfÁDbÌ}1úõlµŒîUwðòÄ(ãW% ¬«(̉–@—=Md}¡Kaµ¶s® QWÑÓU« Ž•¿Ä\dTr«!.!£é‡A“0@JSK`&P+ð0 „P­¡•øÜ¸U™¾ºƒ…=Ñ7ŒOkÖ»±Þ¡á— Lf5 *EW°r82ÍÒ\ÂÎÛ˜hòÜ é ojLjÚ.C¢ÑpŽ †\£ ™ 0ÚRÂt.2hEÃà´ÎˆPç@šZ!£Àä¦E£hZVGv°mã.…s½{f.@n´”˜Ë02„ƒ(q*LŠB‘œ…Eæ0\t¸ˆÀŠŽb»¦s€â 7&U‰FÐtl f+Ø2çm o½Z xçmq6Bì]!ÑÁYY|ßf/–7<ˆº‚»Cy]m°{”`_aZQåwŠª_ç Ôg{¼uôË4[G2©cè Mo*à6ìP³Fèè=»¹Áê¡F–p«dPÁ"è+Âh²f,צÀM@iAS¡Q4‡Ù6 Ãüª5­qkàXu |PÕ‚µ´­±Êq¸|£t‡!7xhfE°n\dЊ†A.Ò†lr‘á*£Â´¢jÑ)š–ÃlÛ5ÇÝ%c×ÀÛ«cHSÄ9â†-0¤ÀS †ÜM²ž£584¸È  ƒ(À)š„ˆÓ‚¦D£hJV³lYBiUqçBàb³˜˜©¼ZLÙR*0VSöTbÉ‚$)(“àÐàÐJ\ÇøHûmp@9ÇA0d˜V4-EÓ²q˜í Û¬Š…Kô™…½ÀDzµ³*™ sù¶t¬¾<±tô Ã;…F9ypèp‘A+ÆÑÇm¹S‚;váüYÓŒV)ÎÆhä¿ÃyF¹»o ŒW¤T4œô>xÊK'Ö5˜”B²'A.‚Þ†v.°¢c¬§³wp Å &M‹FÁ*¶åB}¶5†$;ø,Ø \í=t †óÝ&> ,mƒIG0IRƒ­àÐàP ÝØÜƒƒKn2 L+š¢iÙ8Ìv°mÖ•É©À¶u Š ¶žµÞØÚ£ŒQžTr-Žž$)ïéÁ¡ÁE­he(;N»8dT˜VT-:EÓ²q˜í`Ûœ-¹‰³|õœŠCoäáuç gNÏÕ!×舤´¯0äÒ1šœ.×W° òŠÀ™MQm«`û}S Q4ƒÙ6Ë›x•ôšè ƒÉ†RÄ¢…`X+½Fž¿Pp†\ïËép8¦ˆÁ¡ÁE­hTÚ–ƒ ôºgȨ0­¨ZtЦeã0ÛÁ¶Í]ÓΓ?öãÏ=Á˜’~(ðˆ¥3’“¯ÀKçh”ðz ‚Cƒ‹ ZÑ0¨í(œåѦM‹FÑ´lf;ض¨jôc 9f/0)R3i#N†3(š’L Ahó(>†Ç£«\øÓ‚†' Q4ð„ÉC@iAS 4ƒÙ„bV.mqzÕ\A:{­™MГо})0œC©SaÈM¨Ñ 8œáÆ¡ÁE­hK_í´}& ¦M‹Jѵ¬Žì`ÛRâÀÛyòÙ ªq&9´aÎ<;YnÍb‡!—š34kƒ‚Zš88t¸È  ¸µï Äbèàn£À霷Aƒ‹ZÑ08„5Q4¨-Æ ¤M‡FÐtl f+Ø2úF™šS…]¢ébÂÀºnÍpr¨k·f9y* ±tA H XXà E-h´)ÜïÕõØ'F ¦M‡FÑT¬ fÈ.~鎅@ÍWæ“–rƒfnšlá'ßEÖ÷í=&E¼¸»"nùõÞMGØHçÓÔ‚¨cUÖ\ÝUÇ ªÖwªTõlT3¨ŽÌö š§®uxµ£'òt¯#k´î°-ÐËÄTîuè¬Ôé™IH‡œzCÌv¸ä:º`!)“ 4 \ú›æöžµ+¬Îð«â‚ñÎkÚ&dÀU ‘ÞÁ5ÌDeÉåNRUÌDåQ›¸]ïT3QEÚ ^RUÌD•Ñ*ñÈÖ©*FRycøÑ j˜‰ªÚ-¨„'Þ/ŒÂ3Š¥ÆØg©d ÿÆØVâh´?=Ë8½Y ‘ú@ß‘_ô+â+–8%¨œ7˜iðÞ´D´8“sš5£¯Œþ|ª-]/2ËõE¹2 ö •–°b Ñ/_Þ7‡ç»W7ûëÝ×ËÃõå×§§çßÿ_v|µ£i =ÎSRp(mÄ«§ ÷Jѹ@ïÖÛ;{éÅÍíÉxÓ m¥TAl¼_-cÚ V:ì)ƒÛ»IOüe«xkÈ_}Ó_„Æ´÷G-µ!L÷â±ÚЕ´þÃÅT2¼ÿ¤r lî#³ÅÞv¼ªM›³%Ô>£Q%2dhŸlaäh`êL Ñ˜hÕ:i:è-“ÔþMDZ™¤wn4ðÓ­¶ÞñÐ|É|{Ÿ ù†´©õÐ)Ñ– Å8—à®\6ßW$F-­cªAáã@LáËÔ3MásÅ#|tR™)|˜>mñC…HEÃ?ä— Süè]‘žâçÃ<ËKeðB(KFðàœd¦àáFÏ óý;¨C”±ÃVœck\z輩¢{èpÐ+7ŧŽ2v*¥ð»€îÔÊØ!t˜bgø]Ómk6K ä$¸-óÆ•EK¯~­.å·|ùN£óYnøÑ£{\ž¿.î²2~¹ç‹ƒ)†H—7è`H~A¯9èíi¹–絋NÎ}~I|‡O¡gu(«—X‹,Ò)/|çϺ–W|ç/çñˆYÜ£!¡]û—Ì9âr *çÙ¼ÜMl¬ö`¤%öaéK©¸¼=¥·=1ðVkLP©Ç=‘"#•‘ØC5 a\\®*7ð†ï;æìµaz…´>"Ÿ€v. ð?œ’9(©‘Ü^™êÄö›”‚Ñùžø€ëb%:ŽÇ4î|Qˆ•²ËR!F˜–g÷"$û‚GéŠW3ý8‚;œíu ;Û#””c†:ƒÜ“êî(y"Ò §ã zF#â=ß=k«ÎhBò(u¼ø 3²prÉä9Xg|=Öä´¼”h™-,Miª¾Ñ¦49±d³%Š{ÎKXMƒb l ÛZF(*Óµ8!R2”^_ÇsÙ…Ó…å3”XÔ×Ý}ÝêQ¬ØôßÒEdLžf¹£dÇ @7‡_ö;Ä÷Å™è1K }By­ú ,hÄ£” ­Î9*i¢°Ïé'*×f w¦;ÜTÝZCŠ‰æ†”·9-jÞ4Å”a £S’Áy âHžÛ›Fbvy')§§Äº•ÿf^±! ÞÞÝÂ…´¦ Ýf¦_@ˆ³ñµ4™IU éež8M^Rü±¢Òüí· ù4…yÙðæc‘ʲ3!ÀöröZúƶÖÞ0dŽ’ê-ú%MŽ™ßSrV¾snþ¤qy—¦g&"׋éÊ׳®Gµ–Û)a¯Æ/k6|-1|¤Aœyw¿÷t¤Ï‰ö}fÖÁùbÛ¾ËÊÏL“Ü¥[©s[VÅ$?tv}ÖyÚ¬ßoü/©Æ> stream xœÕ[Yo\Wr~'ò#Fºóæì žAf2Á`e†•IQš°I™’ìq’¿ž¯ªÎR·y)Ù'A`ºU]§¶S§–s/¿Ý™Åî ý×þ½<ž¹%ÔÝ÷gf÷ë³òâ³Ýå˜ìRÒîxV\ZR­s{öÅY5yI¡ìr fñTSl]RdªèñQGhš`ðcTòbÌøµ¬äu­J-KŽJ©†Ð:%_–ªÒ©Ø¼cµN“¨!V4M§!­«¤¤™ÝÍÙ·g–¹kÿ\w¿xvöW¿wuW—š\Ú={y&N¶;ü’= ¥¬‹»gdzoöŸýî³ßŠ[jMû¯¿8@j 1¸ýoçØcBöû/çÞû%Y·ÿò”ÄÔbœ«ûßýš lLIþ_žý#tð^éP`l,z<»‚Ôß3q-¥$!^)ìÜn‚ïóáÙ@/N èc—Üî܆¥”йÚŘšÂþoçÑÁ¨b÷ǼOwãÉŽ§8žÌÆÓäòoãévãW7ÿõ@žOäÖšçûñøn<½Þ ¼ž|þs>þ°aàÅxz˜„9³%ücŒúÓ¿*k›Ãxüô@[jíRc´»g¿={ößl‹hòû« Öïn¨ø7º-œ+êWÀ(2…ôß ­7¡p¿aÕŸxƒ§ãÇ’ÿO^VjÿqáӀ›j2~ÿúGúé%z†jU¡êSʋўÿŸèóÕÆ^ßmo0ä&ø¬(Šdê’óäÐá&ƒW4 4JL!\¶’ýšŒ“7šƒ¢ëÝ8œØÁ¶¥(çÕe/ãçÄ`À$¥BçÛUÏ{Ÿ0ä•2`Ò³Òœ¤(às†ÛúŠ^Ð0Éñá ° wÓŠ¦C'èvkØ®dç-GÏgm`HOìtŽ…a‡`˜òµ0Äfø­XE£ÞL¼¢a°>íKšú)£Á´¢i1(º–ÃÚ¶’sE²2ŽSÏQa0±C1Êæ¤”;¡%Ããêw8<ǹºƒ®çº± #ön®§»ƒ¢L+º¢+Ø9¬M ³¼5ÂÅÚBµá¨0Ⱦ¨ž~a˜.&2`àI_bòvŠ‚Z…¤8tXdðІ!MÓnp0µÜd4˜V4-EײsXÛ!¶UnB5H+•mëÉCÞ!éâ„êyÄS}ÉeÀ‹¼Kk'…çû–É¡Ã"ƒW¦ `3Sja²’Ñ`ZÑ´è]ËÎáĶÍîBv\.Ž ƒ]prà)ƒ T ü>@ˆ…Ü%krú\ßA×*Ô@ špàçrìÿ€dVW  ƒØ,Ÿ¹%@ÒÉ<*Lñt½G-ÁiØ)±…Cn@=ÊŠ"ÈÞà0àÜòÁÄ$Ô‰¸›¢£œ=eL¾èZtŠ®eãpbÛ׎€Vr±ŽS±py@-¡ÐH Ÿ‚B*Nö’òø‡Á¾|À"€4 йc a€J» CL®h* Š®bãpb#ï|À!Æ„xœˆˆ’¡($¡Øvº±¤¸i0iYå„ ¸;Ù¹¾ƒÂŸ4 "2íæzDd²J‚À´ ©Ð š~mùJ}¶(nq’5yá¨08÷P1¡‚PDD¤¸Á§Ä5¨Ã™¨þkŠÂóÓ`ÐA‘À pêýn¬TÑË”Ð`ZÐtMÅÎ`mÛ•=·7!ù@Ùò¨0!RÀzjÖ9æb }ŽA †ØŒ:”4¼‹âÐa‘Á+Æyª?“ƒ Ô:MÓŠ®E§èZvk;ضâ¸Ã …SGÇ$ËÕÅd6Š‹d«ÀT…ê€!·$I‘(B&›¦Dáâ4–S¢ßL š ƒ¢+Ý9¬`ê•GÆ]2u‹<…Œ¯äF6b˜JP0äÖÈÝ褀ËcP:,2xEÃ8˶ÖQXMÓŠ®E§èZvk;ȶ` 79&OÌÄÀ[lPÐ9e¡H2ì¸uèð%VÐÁÕð:&™É¡Ã"ƒW4LÎtr‡èuÄ”Ñ`ZÑ´]ËÎam‡ØV¹^¦ÌCâq"pÐ1E¢È ?ÔI†­›€jÑ9DM—G«tX$ðІI\Ò'¤ ç¦iAסtÛúµ l•--¹Ê|sT™pPL‹d>LYHº•#§Áꇣ¦ FÑO¼¢a’$ÉÎJÉî2L–5-:Åвq8±ƒmsYöæÅLibœ#G¸Rô–Ýæà œC,Qêy¿Ã˃ÁE/hš4wc=‹˜Ç†„“+šƒ¢«( Nl`»|’–4 Cq?*Œ•Dë±ÃðŽ'‡àáœX ©ôâ1ND½™ë,x`|MÜ04¾dîe»„“#D…AÐ4ìëOl »ø~2"» 6}F$Sµ¨†˜·•'à?r?)×ýr“6¼û[0ôBõ1ÕÀX(åµk¿öPT£©j?©:FQ†sP Œ¦êåeRuŒ¢:µHÙ¨¨>ôÒ8šŠÚv·zk\ãbéÈ”}E~kl«1‡sGu°V@N ªVPê!¨¨ßœ—q=n ÑÒµåq`bÁaAGOlQ¾™è˜UB_ž4‘ V4°EúôAÔ0š Cn¦<2©:fE…&SÆ´AÕ0+ªXœ¼ÖT ³¢jV+*凷‰´ç´“tÃQÝñ­¢+²‹ÎÆÃ9 ›Ñím!ÉI>ˆ (v¹VmIÈqï‚þ%Ľ|òmÂ6¡Ç¡·t/”¨ÙB·bÁ×¾¯n}ñÀâ§Åˆ±D‰î,Çíþ«×ww¯ïnvï^¯wÏ÷o¯/ŸèëÖùgx Ò^:TFå3?.ìm¦KÝÛ3u×m誘~Eœð*…æ¸X !2cÆ•§‹fÜãÑ—-Œ×_té• 3nŽŠ¥Tz{Öï[½W àó–²,ó˜ï±Ø¢¥$šï EòXAãÓG±ÔUž“RNô²˜Þþ³o&g°‚½Û¤žÏ–êѬœ£ÞÜ F‘߀MÓÓ2 üì÷YéF^’ÄçOF Í;º¤‡"ŸÏxš·à`À_)p,SÝ¿æG¸ßïoÞÓ÷-èí‹ûÂ×’S¦—µÔ§÷°xÒ‡ƒ|ƒ–nÊE] ÑÛþÉÌüµ5[µ¿ÄZgsqyAl æõ²G$©Öœñˆ°÷ìHèPàá sA@@‡¼¿=Ð(œ±Ãûûz)mÒØ—„EÉÍeÿÃ^(ÇŠ7)b êv¡N˜š^2Kû»&»´û+‘blØ µm2N$ÇÁLã@OätmÝ5óKµ]Ýô^áoDnAMR¾`jã3öâHØP‹+¤z⻎ò”|ö!Ît,ûWSÙ?Ó?îñ«îŠ´ÿîé>ÖG½g·Jà{68¢Ž%ß™$èE:3ñÛð öä(jÁ ñs©%ú̯ñéuèø¤á[6"°çï•ð+m˃l E†ØŽ‰vå’Kp ~“d6á¤"JÎ)ã™j×µ´Ë|nŸŠYýmWüsr’©ÿV¾6«ÿF ïúI»÷§xW)SógYè“aöþ³ƒC)h?^³)ÛLë‘ù3”þgb¥€ ÁÁšŒMß³d ¶ ¸OQbÖ†š˜µ7 ÙuÅãŽÄä…:dw¤ÛI¤®"¹ð'w„Äaú%HƒÅY¯zBM`‘3Pmë ;P9¤Á_Þͯú^¶ÔeaÒý ijķ5PƒŒž$²S€Teçp‰½Ey.cCâ@ZG·HŸVÐÝk1 ‡JlqñÈíÈ몉ίÖüþBDÀ&/Ò°ÑÈWï„)G²cß5¾`eLpÀ/®˜…*›Ç»Zb³Î!pZ÷ØTœXº²6v¥Ûqî~ÂÙön5t¸Vºßv;üJ!òªhVÂËÞªgJõ±˜\¤’¸b)ñ¾žPî_0š‚ÕºßÉ&á±R^$-§5;_iÑݸ/òŸ8~6K–B†­™¢æå½Åˆ¥s‹ìlûÓIzÍÖæ CÍH¡„ÝjÉ¥D ¦t8Fíô¹CÒ…X{ á•z»þ’ZÍqvÍŽB§Êm¡;6µâ=«Tå°{:ˆhóbáO»F„_¼eÆ1•¼Ú¤«NžVK/$Þ¡}‹Ã茈×[Êǘºúâ­Q´}öÎSÕå¨ÂÙGÉ ¥”æÙWJ7Sp~âi_ª/8Hc9Q_;þâýa3ö®'—ÍÀÑQ¨$ÞNý´Äv y{uÐ|ï Wè»»ãÜ|ÉAhþSVúøýÞ*M]èµÉfTT-çš»-£ÐP¶öJX ¤“x@<#¡×(ס§"k:„“zt´Á«Ø|=s Z÷úÄOXï%Jԫ¡ÊÒXëöËäw=ãfQÛ1ºUÂZ;“TõH,ofN_b„ë µR\ t}×ZºÒlrFÝPÉé-q¦9ê‰|£½tÿb¦æ“ÐϽµ t "uEyù'§¸Ûò¶[ˆ"C†SQD_ÍZ§… uÑT…B;µ±×<þýF,5ʬÍÇWu–ÞöÔu²yÅbæ~)z#m?|Rä0Yœr|K‰Âk—o¦›æ'ù´—t?ZŒÍ«`;Í ­Žƒrî( ñ¿uÙ¥ÇYJÞý˱R0W©r€Ñ Ùº»BÅÚÍå ¶ï>ü—4úáÎ…dcJúg«§rP[‡­vv2Yöd²|9ûŽiù±M-ÑN¶wó¼êòè4rÄêhPüf×|¯ò5GµãïÑb‹êEõåw§úßg2¸QÁ»k>-)Z·ŠµÖã? 6I±6D£«*«Í'¤/<3ޤ*Û¹ê(;åºÒ}?¦@ݨrš@»ZRâèä¸Q±A‚ÉOe=uZÙ—‰2ù+Q‡:-¢µ"˜Uæ}²Y×ÌüÒO°>Èõo§§•sîßo«©Ð:MS5Æ4õdâe©ždäÀÃñ~Ýg´^Þ”Ó¦¼EømßïØG’9OkŽ_ºä2ñ´Qý‰[èK.³îßÏó£ÛSéNRö$¯3Š9JÃÌð‘GE×I¦U˜ ~þˆ _႟Ý//øÆ!f,jb”è4¹GÚß©\¥ž7*b…«¢)ª"²“N»¡æýGÝP¥Û™´¾¾!$h/†ÍŽæÆáñ«ÃIõã]Sy†CÓ`ô¯ëZÛ•ø©)¿ïúÇg‚Õu †OòÓ5h5bZúS _Nšž•…cj|¢Mß¾ÔøŽ6~áet£ˆ©BgO¹º¥× û{©$|ÓôDÝÍh&cáqvoäÊ'Ì–ÕRá}Žª= GþVžƒ}´ãÌŒa^GÒö¤²*#]‰ úCæÒG8éµcæ¡á6pûç }„†NÔÐÞ`¶å?Gþ/zaH‡³K@³¬~ûFE‰*g·3K¨!‡{ˆ`« E®€E¯“ÖÂó+·ÿ‡{I9¹¼Š$}E«Ø<ßÏÄñÍϺÜ÷Þb“–õÕÞ9šr:iYÖ”ž™éÓ ß{щ÷2_Æ=Þ¨4+±çuàþq¢WQîè WzÃt.ßDé^ •}ûdÿÒ4²üR"ãôÛ¨#{»€ßv«ð¶1«ñ‰0T¬"KO…J‰'ÏióÑÌ{1®-$]ûðe }ü·|¶ú“û_Ê´£—Ûš“ˆ'.<d}BùåHÏ6þ¨ÊqRŠé¯OnÌà`4ÌÇW}ãraäÁ·íR—.zFè)eîçÇ)ŸŸý7UPPendstream endobj 114 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 221 >> stream xœÒ-ÿCMR8‹vøzù-‹ ‹ ›÷T¾»¸3ˆøˆø§v©Ô÷÷±òÅ¥Õñ÷bó÷‘÷âÚ½Q"ûDfVT@ŸÀh¯¤¢¬«t¢kpozc,ñM÷÷èçïÞI×%¡Ú§ÆÏ‹ÛÛ1Ä# :Q?f¤{¥ªŸ¡¨°k™uŒµÂØŽ‹¥×ƒ$Ena}{mlt‰N‡xŠƒŠ‹~}”‹œ 7Ÿ ‹ ‹ ‹ aOU¡endstream endobj 115 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 5600 >> stream xœXxTÕÖ½C’;%.IÀw¯‚•"¼€ˆtM € $ô„T2éeÒ ™=é½Î¤7A:„   õ‰‚ DAE@ºOüýϤÍðä•|á#gî™Sö^{­µ¯„1ïÃH$é\'gç‰ ŠÉ$L¯yæh¡²”€¥Xš¿ô·Tk̳ÂAƒN f ?sgûú­ž»}¾|A@àAÁ!†n\¶ióâ-K¶º{,Û¶ÜÓÙk…·Ëë¿î ×7ÝÞš0qÒä¨)SíGL›þêŒwgŽ}aF0K˜¥ÌtæUæCf4³œÃ83+˜×˜•ÌëŒ ³Š™ÃŒgV3s™7˜5Ìó³€™À¼Ï|À80“Gæmf!3…YÄLeœ˜ÅŒ=ÓŸ™ÁX2˜™Ì@æ=f3‹ÌX1ÖŒŒ¸1CÆŽ1c†1à æoŒÀˆL_¦3€1g˜_%ö’Ê>ƒû$™™›yš}ah~ÙÂÅBËZ±Û¥¬4‡ÎUöµê»±ïOýæô;ØlÿØþí–F (8g zã cƒí«ÿi5ÛêGëtÙD™ìì÷!S†¬R6äÄ»ü0Þ?8tÄÐ6³)³bÛ`×Ç.Ý®mXò°Ãm†o¾gøŸúòúrÐþS‹º[’½§êô·ø¸= •7øBÄm!:4¶ „Ä”˜ÄÄXˆâ|ª¡Dø™-­„ú†p+þiSÙŠ‘î!àíS ¥âÏlI5Ô$åFgˆ‰iA ™«âUìE¢³ ¶lç¦Ø¦uÖZ?Ô¡³ÎFö9N×á¡h“0‡Ó…ª¡Pÿ\·…†rtïD-~®•|¢Ã*™Þ½y´zó1'æoŽ%VDöÃxìƒ}~ø­²Lág;ÝxðÝÅ‹W®^pœð¦Ó¬Ùbçñõ ­CéKõGx [TEw  ;Žd#åàã]•â£8>íc5v•åÐP/‡ÈžÇ•P,jXKÎZ…riïgØß¸’"£Õgk%{ux霙>T“/†*Ÿ°¤Ø„$!%R¢äžµëÔ«hˆyz…aÄ‘,Dú?EîNû·; &.|SĄצln”_ñu|íî¯íçN¯›^(¦…§FÔ×µá^D®Å·´x©;5™45·p:–ðgÏœ<ýÌœ·ÇÍwœÿ®Ç½£m¾oøFàPòð”á I?½ò‘k˜÷6Qö°.¥pËs‰ì¨ýw‰ìCÝ:·´ÑÒ­¥ÛþþPËûô|§HÔ‹ìάœF±]ZåÛ< 8DX@ÔRY¡t#D4í‚ò2áA÷㈱A7LYɆBÐ.Ãõ„kÒ†ÄÜmBG_6ÒŸ†Û°j½)ñ .¸k#;„r\ÌöG ¨JBª€+Wר£÷Û¯Z¶ÈY”}¾«k)ÒǘÍ[¤mºq„…l‘áŠþ4åĬ{Oïäg¾Dïh†ïa-/±/<ûKè‰i/8»•1";;žÆ¾iŽ Ûrë«ZŒÖzkmdOð8fóé!iò ßô÷óác®º±á‡¯ }üÓUxjxC7tR¾’ )‚›Æ B)²Þ œæþÖÓðû Qö %þ˨•önõœ°vyÞM¹Tšœçœ!#âëÒ×竚ó…÷“)µ“¿:*ÊžÀ? ¯ñÊè.¿KÚ_ÔC¼'Ñ8Èõ,öÆãûÛlo’§½ÝUØUôŽ÷ÈvÜ%÷k×oh/‡§28\P:-‹ n&œ¨ê*L Ö¢«VrW‡´:huV™¬Ýߘ£*âJ<Ðõù§Ý›Uu(äÆÑóuŒ$Xξ¸j»‚ïlU»…âï¼ÊK¥À]c‹«(øƒBtÅÛlgZŸ£¼m”Ø&Nöš;¬þuF;NpM…îƒ}¹ÍµÜs|„Çè‘1ß#Þ‘éPÆd¼Çdc8yò ¼¡•Tê·›éçмԛ§¯ñµ,‘D‚7,jŸ›Ñ°z¥äAþ65hÀ® * o§áœÉœ­C3­¤Xc¦_gØAC£a"‘²atý ([ØÕ丅’M®Ž:½/ìüŽ<ˆ¥PŒ Ú‘°‰É!œ’uÁã-]2¡½_×@½xŽ´§¦E–Sª­º§*L+çTl†K3雟^ ùÐ iÅéå\Oº&jk­OëÖ·£MY°¾O#_î}T¹¸ÚnòÞ›‘/¢·ôÊŠ¯É«ëGÁMDeQmN³J€l•JZ¨*€àþqÂ{ž(;Bæï ƒV¶à¼ãÏ‚,¸Ú²Ž4p1”\þ.¥Š¼9Ì=ÜâsÚ¸ëã–;Í8*ݨ-í­fX‡¿ó8-v‚´Bf²!w]2GÜI™–•K‹z¸tLWb«h‚Ê;AÆÑc¶wNÚ±°/¾LÒ,=Ïot=§:!¦¤'g*S¹Z¤¦`›îE9T­,ö²…5=péÛ#t5âìÑï=±¨î‘8Ò×xȽ,ö#cÉ`2Åb“ñSìÛš`ðïà v2ÈÂ/¨§Òú÷ØÔ]KD-Zô*R$5 ¶<:þµ4:2Ù¦tª®d-öQ}n"O¢,ò#p ÛæÍ‘Õæ×¤Ñ4c!It˜Hki­¥V“;O5¼¹C±Õ8Ò[öÈOºÜÕ~æ¼%WÚ¼|ñò…–åÎÆ,=hÅ`Z%ËôWùè‘iÛ{ß„Ý üÝ;úÕ„ õ~*uì(ð(VVƒ]}~ÚQŸY%íñŠ© ø)»Õô¥s8D+9­ÃJ*+3p9¯)ƒfdþD†’þãÆAdà“ÑÈ£í‘o« ‹ßš ­Zç³`Ö±ˆ;œê_xíìéËpÚä9¯r½î®U‡5tU<ÃãþàZâDœ‚·“d¿f;:á¢òÜ/$›Ÿ rMô±èãpNC\Ê;\p¶!ÿ6Ü€¦¸"çüµt§ÅàóbVÄ,÷ž½…ŒVÕ‹tïša¦AoškàöægP/$çlnRWמ{"Þ™¹îma壸>!m£M„£Ò(£ "açpö'§ÏáºsÖugB º÷ñ™¯ÚÈ~‹AÎãWl8rò“ƒOœÚ¿vå277q¢Ÿ–²'°¸û×®¶×ÇՅ׊šüÊôUæöŠ„\àJ*òë*BVĬQn['Fäy”­îy³¦®/ñ, e„‰‰ˆ ò…òœèÙ®ð>ÄpSž.Æ!8äiÛ7ÍaÇVÕQYÊ'7Ÿ‡(ˆO„Dˆ.Œ)Tª!ÒS Ós9ìOÎócf8XšÓب«ŠsàpíhSÜf­Óí):.é”s3ý{x˜74 ¿€‡ÿ¡oùº–.ß¿ºÛ2ZS/ã Û SÓâŠÀ ”“®²÷.ýhë‡Ĺ,:{ñŸ6—iawç½Û¤Ÿ@æÿo6Æ“•»I­V=4ú•ClGð)ó*ñ©ØÜùÊO÷4ÒþÚ+¥Ÿ²5ÜŸ<ÙqBt] F‘׋®[­qËãô|°M?ŒïrÇ#LðbAÚÈ»zÔˆŸ¬ì‰>ż6¨ÜÏ/(Èϯ<¨¶¶¼¼Vè©ë±øâ–‹†Å[°†¯Mü*Þæ\Ö/á·&½f“°¡&y¿²TY¢,õê6¢Ä¶Ó‰–g6æ{}´¨å®Þk¿à¾?º@ܸw{Ö»¥œìÉôÒ ù[šàˆÝñ–£W°_ÑÞ™BZP^¢ºÛ £m—N ÷‰66­Èw¥nØlÖŒ©vø*€ºátåÃÀÂ\/ÏÓ@mG›ÎP<Õ›÷†bÛ[H8´ã Âa‹¿Çö-ÞÔøBtjdª*B2‹« ,  ÷}ï'؇£v£åAö@ÿË £ÓÅ‚Õ:´Ó¡mó³}A×0œõŒ÷çH{ŸœD»…‹Iß9û_Ú‡.ÒèOI£O«Ádó8¥M&~ñM1dÉT2ÞŸvmèh$Þ–Å£lÒ¥¬¹Å~yVß[]/:CÓϸ¼wwï»C+¹¡ÃZv+èõê{…îÏ›ôqä{öe—•Ž'~ðûzƒ'zѬG,t÷­ÇïÞÇAÂ¿ÚæÏžÏUgé¥~™7ß6¡Í¡¦ÍãÉVìoø5ôËý(>¥>€óêÚ]»EÒ&uî.ö{]÷ wß—ÊZÚ÷ÙWQî(…4´‡n<7é¿NI¢ÖÙI>£6û ‘»üJ=“ÝòE@ ñܣÅZIž^i¦÷£ÁÌëñ53Lø‚u#wâ'¸(ý¨I¼°×(3ã*!Žðˆ¥|-Y›äD 8d(ËN¹è_6u)3º\^-äˆ*öj‡:ã’Zm»PC®:-ëF¥ï¥F<Ýõ S¥dÉ«!‹>¯„Œ&ÿÕëç’çqÐù+jëKz[ò©ìÿðfòÚm[Õ—7ÔD¤B6pê‚Ò¢’蜕(/y§!2gmó³ ² ŒK‡ºM<7µZõ)ÔÑwzz‚gœ¯Ê!Õ_ ÌyEN $€]HTXdh^bA‚ˆ’¥„Y•!vÉà»WÀÁWSü•àkž;wÂΜ:å§)ÕÄØkŸ¤ˆ‘S<.y6€7¢ÁõLˆóÿX(õÎŒÝ% ƒ RÆ?iÀÊ- ¾{gÒÎ7ä2Vò8‚Ío‚¦&ˆÉÉæC“‡xD d$!¦z4A¾HÝÞH6<šèä|Ã1ˆ¨ Æb¥±Æµ8zá™›ÒøH§µÑɱ;Â’ „‹, /iüùöÑnþØmS ×–:ùÎÌ,Uj–ÉEú§Ÿ½Ò }“RÿÇH2ÞdìÐåpéW±ò²¤U?ÁL?^Áxþ+lïyé$½—¦å²wëŸðÑY‰°ƒ*oŠ2.‰ t°ŒO†p.!׫2=S••/üÚöëâ¸TÈ»ÊÜÆ¬’¸ôè¬NáE+ ½Ÿ•Þlã›}ª½¶È½½·Öû7î©jh0\b|ÏAÆÿÛsØkžª%gôãÍô®ÏñYÅ*€l®4²$$(!2*Q _ý± !B oV®.Ï**Èì•É1~LSík0f‹G¡ éCÌÇt¾e[ü3±Á>hþ‡!-JjÎÞuÄ~8Gë]¿vù52†Œu$ýÞínéj¦‰O¢á¾Ðý/41::IØ2Õ%&4%Bœ~œ¼4©¨l_枃BÇô R£l§Á4¡‹u ¼xâÖéÌ>;ÃÇÅ'&‚3ôrÞïÊSu÷Û¤P?ıgÿxãÀÞó­‡/À—Z޾A’~3¦MÝZS¢©(©ÍO*ˆËŠi8 ÜíÏ×Mž¿æCg±3˜z]µÖÛ—´ãvÝ&ªlõfx—oÝ]û œâ®ÏùŒH‰åüxV)ԆŠsw¤ W ½ð¥cî®>‘ÛƒD/yŠ{ʲäH_Nö‹UÂaöÑñ>\¼|Ñ„M3óŽø‹Y™ æ*CÕòÀ H¯I?¤²cóÍý‚ì!\Y{Ö¡Þ@úh´t¼h}±‘}£wÐÿƒ/Ž,ŽˆILJL|üü#”«âs¢ò£ B4Û`;øE†‡DúAQQœ—™‘™%Ô×VB.µ3ÑQêà]PµÅ%ꢺr(íòæ­_£ Å)Ô‚´¯Ô¡’^ý7¬×Ûñà–°1ˆÃe˜`lHy2i6–¦gäf 5ûJÏP"þýö¡9ŽïÌ[òw¿…Ù§ýè=³³è=닃#}â6Û=ÍÑêÑ·h&È~{2ó'êâºbß܆Өº|Šv¡Êãw|!¾òýí{° Šc2’èO"½X@iHu•º¤¾ÅýÔë ÃÈâ*Èž’X4Ÿó%?}–ÈNn'}™Þ\Â]7rø2ÙÇ;Âæ–mJ¦23%“P¦ýQ峩ÌJ)¡ž¤íܱÜ:ùÁì)Ëæv+U‹ë($tÎ:¬Ð^q=Ä"ìàç8j=Ñzô‹›Ÿ|ä²ÌÉmŽø…7ÿeÍ¡ø„»=õ&éO,ÿ>cú²Ã«¿ðd¿Ì ^¸tÖ°×LF+´¾ïá dz³5 ÒÈÛ;´ê´gÎwÿ“E‹8,·ï$[xDò'uŽùáöf27ÿdôø´#Û²£ |cÒÜ ˆ›­*2-¸ª £TUbHÏúÿ<£ë2ÓÚ°™ÆXçÒŽQ7 è~«ùX2øÝ±ã¨ì¹«‚‹Ó322¡„« SûËCÂ}¼JçÑ.ÖBÓ ×Ð c"1Ó'f£íiÔÙ{“ùá 8QrhG^M积üìúÝ+­WÔ†‹Õžù«:Ù0’ )=â8çËì….ÂC#ééÍÿÊzä¬ù‹˜Ð^sV{ýktþºM{Vm}æÂÂöo´®„á Æ:þÓ¨®° V¹®]Ã-ÆžDJ]37–GÏLÏ͆ ®6 $$Î=yý™™ÈÅ[ º¡ªŠ…=RXvü\†¿GdT 'û¿“¸Yº3ù˜¢xUl|R4DqÔ¶Öh*ó›?w¾Júå ;ÙäÂ)éµð=˜ ™„ÁÞÜeóe¹+wÃq8zto[®! ­½›º‹Ê—ê#ø¼¬‚lªä¡ùq;”q Ü&›â£â!Ô¢²crðÙb[—¦¤ S\–_QF?ÍÉ^t°0`ÅåòíË’=zg3½>æówRiØ ‘ú?ÅV* ; ’ú”Œç ›éOƒhüÎF{Ò'ÍÔT=že 9™†ó@A|^l¹ƒ[l9;TqÀE„F†ÒO©‡ØKý“ÐyÈÀ²èâœ4UN¡!5Ó4Ï(õÏ6¼^ÁCQBzX>üõ:´4‡Ç{PÄaßçe¥C—¤ö÷%ë‰-É!ýOlZ-œœscy%pÕêlѸØnª#Oñ,ØÝ·ÇV^›Õœ<1$>2/!c‡ˆöDRD¦Ð~nÌV"’á"iž ’‹Ï ©ªÃõ»9Â@¡Ÿy˜Ÿe_°ì–ýÁÒšaþµ´ûendstream endobj 116 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 3625 >> stream xœWy\Sgº>!’sT U<#:½9Œ(nuG©Ö[¥îZ÷]@D6 ;È&öœ¼ ›¬a‡@ * q£ZuJgt¼£Ö[«Ö^×Öeêî×ùýî°­s½Nï$üþÈûï{Þç}žç“0ƒl‰Dbë¾z½›õŸßÑö]íK±;)Ø *}g¸Ípœ>ì+‡ão3Ö—KpHhØâðˆÈ¨ýÑÞ1»c}öø®ñ[ë°>pÃFEÝ”©&e˜5ÌZf³žqe60™MÌff ³•YÄlcÜ™í̇Ìbf 3YÊÌ`–1Ë™YÌ æ÷Ìlf5óÄØ3Ì`fˆd3–nÄd3Ï%Ñ’'66ŸJC¥-ƒœeÛ®³}(ëdç°—¸ñ\Ó`»Á^ƒÏùýPf¨h·Ê®þ­-o]´gí{‚Rjþþö–a£-*{K/˜,¶¦ýptý®Žtlǰˆÿþ?N^|¹Y®0.ì«ÓIrU:7 ¸HÈ6RŠr5šŠryvnaqNNërÁ¡íJo{´!ªFlòÏ[X–³¨z¸ÆšÖoÉ›®•k’ ½¸È« ût¡w4áÜJÉ÷Wq´QŠ×-cy‡«BXõœ€±“T\øRÏ’A7#OõºtYÞ²‰]¨ð÷_wËåØÀR+õ ØÖŸçÕâŒóø™ÛVºÏÍh;-Ç[,™lï¨f d +À»# >º%휄®šúóœcŒf® 'ښإ)y]⫚~À)A•U–Ñ&I¥E”â2D^•+æBWw*ä&v—©ö‚ÿ,ÚÊJ¨ºtÊ?¨Ê‡|8¨Í+Ãwð¦SU÷¡¢CÎÄ© 1C j7åô.§ëè€g2í?›=›}V0ÔÑY‹‘'ß;å$e%ë@Ù…ÙϰÉé9iÊNÎVê`”² ² 8«‚飡¿¾þÁ!ýð¶ë;î㼫WŒ#w(ñá>ǻ޿ 8ýEÝÂÙ¬¶ùûÃñR9º³T´Ìž-~M;tÛ€›³Ø{¥¢*®ÎPQY׿•£ uÇóëëîñ%ìeë˜MâËö¹DmÎíqh¯œ>ãKh>SbäRþÄOú Èk§—ùÄg=Æ)¹rÚÑþa””X ¥ø Fñiù ¡oíõ‡šÌæÚO­0«BéÁ}©Œ¼‚Y'§R˜ãS”é+ç;½ÿmZ¾¨…¼QPTXTc­ðÃÔÖ¶®‡=­Ø±ö9á¢Â6/ ß¶f½¸8Úí,ÔC#4ª”+½r@ËÕ™¡Š’h»­ö¦4û •v¨‹Bqæ¬SøÚ¨ÍÁKWÀ¨pˆ+VijŒÁÌÕÅ”F†ÇƇz¶úücÛ'gjå¸Ü2¯°®¼å’v”‰Ý§R@âë³Ó!‚?d‚2393Õ•¤8Ù[v*xø›ú~Gñº/µ0–ã÷gF'@0V]WWUfº°¸y1Ù™ #ü‹‰8…F|+¿H *%ˆqéòÈ%¶·Òí$NÀé_tž/>-†[åu@r~Ó6]^™‚m…vVÃQدðôˆñ]àSÖÖ&ž£]îÌ=Uw¬º±Åt ZáØ~ƒoQ<¨!†Ëú”ÏÈõ<õ>Ub牄'þsÅ¡io«*§X¯dqòOšdyñ:ðözÀ€Z\ПTŸ[=3–¯ÎªçÒp`7Å…¼MFþm<Ú£}×Ëš¼ŒÜ”dUZ¦Z7S<;`·!Ò¼·K}Z9M-ŸSï•á œ÷Öœ}ß±¨ú¾õ’žg–ÈgÒ¾Xü/w‘iø²†¾§‘9Ä‹xát2“¦£p:ÎD/9yHnñ®D¸‹…¨B—£Ë|¢"…D˜å*Øã@´B­^‚¶—ï-ÅSýr?mÙoºÚÛ ÄÌyr&5Âp.¬"Vo(¯¨kömÚø¾ÛÚñrÂÎWÜ ý'Þ‡WÙg?lÄ‹& ޹‡çŸI-.ØË£ó³;¾{‡!?™|õ&/kÏ:KcSœ…öþáŠdˆÖ“Xžàû-ý‘ Ý€ØxzÒòž@ÆR[/ » ¸êâL3HêÏâkæ³R†Ky}¼é@p¯|~£+ÄœX";Ü E¡JÍ€XN™SSRZPU‘`ò öTúÈC«÷”ÐPö®ûÒù[üK¢XêoˆÝïã;¹¿]#Ðáo§®µÄ|ìW+ßph¼K%i¤jƒsc ”k¥9ºübîY&?žT´æ²ZAWiл“"#aÒ ¡ƒ,àÑAýÞúžS&.ìU”^eÂn=v›†ã˜;XøÝêgOL#ã0–&C,`¡N›_‘¯m„*àn£#‰³½V‘w”டƒëÜ·ä­›„çÊ/4»3ëX·D?ÿ¡ÙY¬£ídW Ñ7;³ÁÀ‡t_^Ç};ýÎC!p·twjs¡(!RRÕBÆ*E„‚b¯¬L-K©Nù<½=õBJ/‘âì±ÙJöV´Cfø dR¸«,ñd¬ÍKùé4ÉUýˆP»¶Jó1”Rqèö™9GǧY–f¾!¢6H\nj¨­m îÕeê›n”ô\›—¤mù?¯2ì|Ìõž¾t ù““]KäY1šŒ¢þ¤U%à&¶&¥©ÕIiòÄØ‚â½[â*·œ˜BegðœéãÞïÜ‘“!´{•gàЛ1ùbS FmöƒµÜÒíL_@¨.º¥ÊÕ:ÈMìÏ€ÑÙÄFCjQžFS”'/.ONl:yaÍä.jö7¿{Ù³ÿãˆa×ÏÂ:*%q rDrÄ„…÷°À$íû Ïÿ;+‹&Q¶FY ºUÖã$jTõP –gj’éøÓVÂ1ò= Ùá,´¡ÖÕôëp?:{Ø1 3 –jJM~evÖå@—¨ .!nÖ°mE¿OÒjÕ)®z‡; ÊÔ]¯ßGú¿~ô·þtìê¿"sýÄù3å{¿‰Ý?N¯úñk£pŒ{ì¯õ)òwØî²9éœÏá90¶oÙïÁ9ÞT?‘ý¿®¯äv؃½„f‚½ŠÛ–%|¼š¾@T‹4>rÄmd/ê©iNÐË÷d¦+ ‰ ª«1TU{6¶ÏOì69ˉí?¨ï/#‡ÅÙlgnânT¿ù—Öâê ’B4H±Wóˆa5km2’»ÈHqëi¾>BTÑðŠú.D[õßë+%O/JñIá!G••žGx²—ºNkÀµø;­Í‚./#;-i†;‘l’ï˜1ÈPpÏ'²3dÈ9âp‘¼œì<áç•1‰.ÝÙ<ügÚlAéZt˜úzûISUZU^šðÉ´!ïiâFvqä·¢*328•6µ èÞ”œ–TûÐŽ†³G?ù^|-µ\ëw>;ê|÷Žw´gAºî;ßóºHtù~½OÙà\»aŒðk;±÷×x%iÁßñOo7ÿ±È¬Žo§¨"’é%!9+º&Y•)” „%A¬½|È 9•vƒÁnØ »á ó?èß endstream endobj 117 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 4644 >> stream xœ•XiXS׺ÞöfW¨ZâR={[­uªÇyl'œ˜g*((832„$Vd€Äg xHJÀ©uÀ¡hmµµ¯=}Në¹µj¿ÝgqîsW˜ôœÞó<—üXY÷ÞïýÞï][Byö $Iß ¸íw/ß±ddXÌæÄà ÛâãB&úmêož´ÆG‚|<ç¡þ|!ë-èÓ»­åø›4kÇìø„¹óvÍß½'19jñ†%©£ƒb‚7mŽ ‹[¶5|Ûöµ#ÞùçÑcÆŽË?aâ¤É§L6tE ¤‚©ATJ ¦Þ£–QC¨åT8µ‚ZEͦާæP#©5Ô\j5ŠšO¦PÔBjµˆO-¡&RK© êCʇz“šNõ¢zSoQ¾””êK­§8Êò§(åA½Mõ£xê ª'5™Ü”ò¤%žä^å=.z¬ô¸â¹˜–ÑeŒ³…éðRx½dÙ¦7f½qª'×SÞó¶÷bï›>ù|ûæÐ^L¯ì^¿ôÕûaŸ>kúdô9ÙçzŸߊzë/ç{Xê+Ý&}Ö7¡ïinÅýà7Ðo½ŸÍßCü©—ø²Á4Ù$b,„pUx=ƒIÎ’§gëUåŒf¬¦’}&eQš°‰/Zh¼ÞíW×t$ÒÛCYΡŒÅܵàCæ1 ¡ÁdãpÓ¡‰ÞÇtøÄ–`ó NûKoQœÀÍtíYÃÌÅOèˆî ü]!|Ä´€Ž–Ö}ýõñŠkýêP¥Òš¼/ØŒ’PRç+VbçŸÄLYª×4:T"»¹²áà)‹çðá¤Û †ÄsÒo÷—þ 2îv£+ÌógO~8¿å/U‚ô‡ûuuÍŸ¿};´y"K]³Z5Žá ††ÉÌǨ*ךZ‘^º%³óg.Ÿ—þŒ£p÷)¤Ó0Œù TM©J«ˆG;Ù¹s–LuÄ‘n%6 xØE_»‡ØOœÃáwq쇅A_Î †þÀðjF;î!È7pß23Øc ö»äÊc ÁãôÈN8È£lð•äfr¥`/ù}0- îÑQI‡»ANP6–¨R…áÌy(:¹ðÌöûH@ o‚Lü<ï¦f,K˜ÈKWAh+÷øÊòÞ4 3ƒ/;`Ï;X2lb»ó÷Èú’`·ª8Ìä|TEçêÆ2£±RËMÉ{¡Ì ÐçdÊå©y¼ü#fœéjb’†ýnþqèŽYî©L8îÆqSã5Åš"¤uì)ßëÜsö¦qÛk†o³ùJÏÃS±#j_h?,2+Ѽ»2S8”vDñEn«²JqpoeVYJcC§­ñAè‰ÓZN£ç5…H‹ YW"Å/làk•À»%I¬ïBÒtf¼ BGÆgº”ê.†äçä¢Yع˜¯ÏßÝ·¿™?f.5"[¢ÐçªÔª>rÏŒ´eˆ 9\_¤ÑkôÂE°Ò¤8^K•óü]ùÂ`¢‘ âb¿{.Œcˆ>4öb’\/ÇeDƒæ/ܱ _äöãv**Ô × •þ]Õ“iêì‚l”- ¶ÇÜhk;ÒzÃ)VIÉùÁD²³Åuöp­>Ãà?áö80Ð+<ò >ÿÇS-LQ‡}–!šeªÅ&ºûBsm`óýÁ/ˆ(eˆ“üþîZΜúl”]^f›32%c3Ÿ¥R4Y¹^aÐj5šb¾ý€ÍPƒØëö„ JDà2æ.+ß^d˜0k¸ Õ,>ýÍíë‡/¶2”4rS–„ížØ ØÃ·þz¼•òZ—NA,ìä~j²íDÈ ){ÜMëtaËÎŽ«‡ XPÑiª€½])odðc\x é{n¦ýñ€é®Ê™Åt#ó܉ŒØDpYUâÏD¬SÈŠL]^…C¬=:,î{ü±<¡¥óOž‹ý¢QèÁ;ÏçÜywÖ’­s ö9÷è³àÉØ S°×Ô Ï‚×+ €q»÷÷¢…ûÑ-}™Î³täR?:cáʧ¸’±CDg¹úw+HOã*¦³ãl€ чHÞL¨õ“îŒÓØ×M/övÓ;UẌb%mvî„÷ 3»’Ü6? èsn¼\—;ÕÆ&zØb‰Ö¼I»%6‹>\lÝ*ËRÄâá8ûãaCïÍ{y³Ýúñe¡ÚºßJ Ð 7*TŠZ„ šÁhãêþöÝ¥gˆýþZØÔ|¤"µÛézô6És»8›˜ž©b;‡'ãÑ8‡bÙ×cÀ ¦À(„pà>xŠA±û[Û¸™$#Ó„Ñ¡L$ô¼ÐÝyá=Âï„êP(cþ¬äìùšHvÙÔÕMJ„ I_5•–éU:y¡°U·PÆ¢+2fgŒsaõÄÙµ‡¹wÛžÇü‹ézI¨p_4À_¹mmëŽÏ!¤ôÇoá>ØoØ­ù?µ_>ÞvEˆÇÜÞ —/ ´`ÝÊÄ‹ùÙÊOŸª;i9a´±Ò¡Å¡t‹ëï3ÒUxN÷ðBø4L Š{|°¼õÁËÿþǯ]·wr‘„t­&w)Z;e$Â팵[ŠÎÚ`6ß¼v²¢ÉìÈBœuy†!…8kU¼ÓYGtJD×R‹kéyЖhŒD¹‰³þ hÝž Å]Îz“ ÒH8vÎ(â@ÆÜŒ­?'²]lgVÁÀ¤Úð`ê._B÷ÙöE&ñ¸Ð¥Hÿ—Šv‘—ØUb­ÓhÉ\;>oø’¯ÉðË ‰8ÒaÂÜÒ =ùÄ't!ÿ?n†f<½Ä\“8ˆ¾Ü)7»­â›Vð¶9üMD#èý¥¥â9±ŒÛj[o !ö4nx¼y»5M¨J¬Éº™u+˪´¦Wdšw¡Dvʘ¹ïFG˜+“øÌ’øSHWÔ 2¨Š”(åää¥îÁžyJb”¤ó»][¯;FKO¯;Ѻóv¿«¨ýHcý©šªó¨L«ÝS±«2Á8ÓT²ËHòdÊ>Hœô®?­­ÏL«àò[ˆˆEèˆˆé •”j+üP¨'Œ'"ÖëwfÇU4»!ký Äóéx7¸ü»ÁN'ÉÆ“!–‚?ý‰Ó¸šsÍ>ÀàH<äèíp¹ÿ©‡uV¿’ÛŸÔþ¯¤¹ëÙ0—t9<óÓ”1çE²™+ÏÞ+ј´&á<%M÷µvº `µc:#?í•ýùú’ÁóÕ u ¨…2œÔë\‘åˆÞè ð?PÂýåzÉÑu ‚ÐjÖ¿¾\_?xöu??,ÎaoˆE»t¦îPm¿£wn%X ñ-ú®»·»Ö3—>>ô1’?°kk§ÇY€¿ “Üž²—¡¶Ð Ñ#½ìLìÇk¢6%­^Ãg5'Œ$O¤¸”ÈuŽGîcûímrÕ¥âî§îÇÓ­ãQÿÜFï:u¸ãrPF&{C Ý´-9M:)mì"ŒšÄ4^H`ÊÉè„)‰Ä¯ŸNïØMƒ9ÜkÕÊ|%RÉ2KrÌeePI»âƒ²ÉÜp·Dð ŒúmMÂ$– Ã9ö“3¼RÞy(å^›‚Ž÷\Ø“ Ĭ,·~㦨m“ª…R¦¡¾Î~bÏþ-ΟmäI*Ñ ð ÁC¼/8ý íqtŒÏ•×ÇâCHc»…O¢Ø®ÞŽvȰç¹EO¡Ç3òòSÃãçÌתoÖ7«=UiGìíÚUï%¨ãU»…”±{o™ý‘lGltêÄ΋=ûóQí‘âC$WŠ"‡W‡¦*s(S–«Ï5hÉ3¢”‡v,é0Óx€ÛÇŽönFì…NΉÕd“#DAlœFûê+Ø 65È.´Xÿ‚α_^º8(aÍ~×ÎÄX”Á*ÈS«T¯+ÓóÇ>»Óp±×έ Û³K߆L¼hÈŒÌà‘gÊï»Þ3]Z ØLw#å+*ìNo¹GÕg?CwØ»!gLJ%mŽà“ÒåÙHÎæè•Fƒ¶ÐdæOÕž³\Dl[SLøœ¹Á6 ¤TJUž)XG†xéwßjn®|{ˆ©ï†­®¬ÛÀ+‹ó •ˆÍÎÊÊÊ6eΚâ2?E,ô…Þ/€º¸å“ # !ÖÖBh…o99µäÄ-›Òw£ ”[¼óPFByÅÉ„ÔÚÄŠCÚ‚â3"£ãr²ÈÃÁÁI½®È`ä/\4Ž  ò¢¶&Ÿ]aÉ:N¢êÊÓ¶ªƒF2²†\½¼K ûÚà9o4Lãpßß} áR„8æ(ô%ÌÒ]XqÌ#‘§'1øjG@Î:NÚ8œÎÀÇðŠ>È8a…‡6øì¬%¹¼JªTβì˜ZÇã± ©Q¾L#×) H‡Š ͺ¦ýŸ˜ê ß"çoÌøhW´¼e C«F7(õy…*Äf3­É'…º]§3?!þ ¼¡7 |vqBT´wéÆ)!¼2œ«iØWYY^_×@XÉ^°¯]2bê˜ Á›N^OT ´ùõM*°Š6rúÑÎá%y¹ù*¢ Ž$•êŠË <ËË®Óo0é3ˆ<ªZÖõQÂRÄëkihìBÒZjR̓ì'lh/!ýc)Üàjö•—XöÙk5£Oد‚.NÆ’#†­Ý¿µe?2:|šÆN¾ü_@jþùËsñ¶åGù¨àÚ£–Κ¾pü¢µ¶Ö{Û A¸ŽkoŽ\8uÂôÑóV7^{ôíÝœL|úøJÝÖEåBq’FUÍ:µQìÿ‡òxú¸CÏC qŸz-›fû…dì)ñ².á q{ŽÁïþñ/ŽÅO.{ˆW f™(-5röÄC"°Â~hMqlÙêòPóæ}»´Êb5á›Ùl*-,Ðh…²®£›Þk…þ„ÄJI‰#=K:P޳³Ü¸ìŸ:6ÍÌÊÎר5jáØ$Ó"´á¡aäå‹'ª”yHåøjPb®¬¼`çÁ†4?ô <6®Ö©´ì^ÉVq‚|­V+cëyÚùôD>ä¿/Eý/§ñ‰endstream endobj 118 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 343 >> stream xœL³þCMMI10‹€øùJ‹ ‹ ›÷Îþºk:LÞüøˆøœ€¡÷Çå—¡÷fµ÷¶ÎÅè÷³ù?Œ‹•~tBƒ‰qƒŠ€Š‹y”‹š»„ˆwû%üÔ‡}‹‰‹…tŸ†”˜š”—‘”¸÷M‘¤­ˆÝ{‹I‹„‹‡ˆ‰‰‹€P³c¿©¦›°¡¤·–‹•‚‹ˆŠ‡}ˆwBtX_‹x~–¯œ¢›œ‹‹•‹ÌL¨6–ª««¢£»À¹¶¼‹‘‹Œ‹Š—‰Œ‹“…ЋЉ[ˆ‚d‹{–x¦¥¨¡²©t¬^o]ƒ;Ciedce|÷©‹õáõ÷TÀ¨s£nnssnn£s¨¨££¨ 7Ÿ ‹ ‹ ‹ ” –)endstream endobj 119 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 197 >> stream xœºEÿCMR7‹‹øù,‹ ‹ ›÷<¾»¸2pøˆøÍ‹à÷ìõè¯Êõ÷ƒìø÷JiˆuP~ƒ…>‹}‹ûLôè®§ÇºÕÆÐÉ‹ê÷ !Õûû74/X¶†•£¨œ¯„®WªÒÏ¡º‹ï¿=:4MFkgû…û‚‚‹‰‹oø0 7Ÿ ‹ ‹ ‹ aÍJhendstream endobj 120 0 obj << /Filter /FlateDecode /Length 1365 >> stream xœ…VÉn7½7òœØ€†&‹kÈ! ‚ÙK““•ÃhñH¶Gc[q‚$‡üzÉn6[j#ÐaJìb-¯ù¡WR÷*ý¿W‡Ž¤åþÏNõßuÞi‚îƒóZFߺH^zæºò®;ïXém샷J‚W]‰š¥wÙËضqšZ«ðÑ5ùœ øù¦ª"G\SÔ¸ÐÖäM”ÖsSSÔAF¥Ûšf§qaá3ÖT³M%5Ù¬äÈ´5¨ p)e´ðµ!² ¶®$gÕï»Ψ÷ãÏÕ¡?ÝvÏÎt葚´³ýöuWŽD÷äIrHͰŒ!ôÛC÷Jœ%3ÄÝ $)KÚŠK˜†™5‹wÉ%0GGmBÇýÇùŸ]òÑJùÈâ=–­¢àœ¸€©U†Ä_sß¶ßwßn»—KöM¿žœ-g:õ;­¤~?×+qŸâo[EHÒ!Žó¾iÕ(¥Ù¥“ˆBEY÷ÛëNü;lßtX"ÏÚ"\óí•ø”@‰˜Ü¦Xðx|ÐzÌPæbwŸpÐŒ3÷ûɰ1Fɢʖ„,‹`qÙg˜kq]–½öâÅqØh©TÐQüž2*b²(d*é˜#ú CÉç•2<§#±Rïió]ˆäÌJÃ&Ä¿rô)×JÊÁÄÅÅiÚ®•÷^  R¡q|È=3[kÚÂî2*&°i«Ù—¼J£Ï‘W1F/ö¥zŽÚ‹FkC.Ä9D›üùÔSg…ÕQ±¸ÒÆóþS9Äærn¬µÅYì,¡·’^¸ÿ¼-a+v¹M.Çû&âI²£cBbÆMeúÖ’Iô¾žØÇ €RÑ›\¤‹Öú|è•,w3·®²‡!ãKÊÃlü8^“K1†À–L¢ ×õ¸¬lágA9¡‡à`6¯kE7 œïÊ6ˆ˜ø¢:4²8ëù$3{#{«Åþ$W=àûrHˆ<;ÃP6ãŠø€‘ÍÈœçê”bJ‹š£eqA·.—ïø†tÞð BÈ®1¡¸x¸küŽ©«XÙPºtÐ}íéØÌÁDS.cu3`5îˆBéê냾—&šb¢OMžX¡™D'Ćðä- ´!BBçÁ Ü P¢âűpw -`¤ˆˆ1¨Y‚K7Q€ÌeË™þÇ(’ÚRÖH+¡‚±hd¤øYœ¾=ÑÈBÁfÔ .rÚÖ}Ä33WŠ-šÐ|ÿaæ×ý*‡Ëøx‚y¹–àÿñ8¯Û®Ò]æ“JÎ7Ídš@6-7óÔú)-*Ü»Yìë¸d:¸qfG)¹.;Z{q|¼3ûÅ©‘¯)¥.GYŠ{Ì+o$k°t©L¸ Ò\XÒ½žo­³6LÚå¦BrMªa¹q¸hYO,?4‡p98)°Ã¥§•^ì›3?é©DøŒµ ²_Ó Ü´’ð\›uÃéD¿ž5™~÷âMÚ@f“†iïmÒ-MF1O­÷Õz^­g+Ö7Õ:«Ö×Õú¹ZrÅo3lðte¼#æl«u¬Ö›jÝTëj¥f9}TèÙøG<>®¤Ø¯44—²[Iövåë~¥¼¯ªu¨ÖåJk³õÐ4´rð ¾ûøô¾8K–Iºß¼!vY–\z›¿œ³ñ*ÚíoŠ/èþÇÒ¦i^c#ô’ qàxûš 9 -mfY1’ÕWýËî?yë´endstream endobj 121 0 obj << /Filter /FlateDecode /Length 22149 >> stream xœí½]³eÇqøÞáqc^æ´ƒ}½ëkï*…åŽ$[š MH…£y‚°qÑ0Jä<ø·OåZ™YY§oCAj$£úfžUù±wíúÌÊúŸÇcz8äŸþÿôü*?Öñ𯎇ÿðêLé±¥üpµ3=öóáùÕ5ŽÇ^ñù«Ÿ¼êWz¼zz¸Îz<–zõoþ6‡ñ8Î|>|ô‹W|Ìé!ÍÇêôþ¸Sn=¿úé­¿~ÓÎk‚Çí'¯ßçq”qû‹×Çã5ÊèíöÃ×Ó¼#•tûH~ÏÇ1êµýýW\ÔG½ý­°ÓqÔ«Üþó÷£OH)Õ&%K)“º¦Âù^æC·ÿ(ýºòíÇRì½÷óÆbçQÏMá_@ãODt~l}Ü~øŸþ’DïéöÿP£œ·¿‘G¹Þþfþ9ŽšÏݵ¿‘¿ÑœÇíÿþ+šÛƹ9¥ô3×¢¯žÛ|ð8÷šn?ÂÓlCžâß}ôÎw2_gx'uZV>úÑ«þõO§éq*?ëíßÍבóã˜VÿgþÄÿzë}æ}åý7ÿëÓJ´Qgÿ#]L.µ>^çäLm¥•f“õxÎ’¹M ÒïΘ­Û付:›¬öx=šÈ3úéUêÇìòBô£?޼$,:PB9bQyXf8Ä¥ƒôÓ«e…!ÌJ•pçÇ“øÖçÛjMn›OU|sÎìÍržzóìAOK….íñìN‹¥u¾ñuꔤàÉ8»¼ˆUüœÐ–f‚!ÌD“°;AÇê%›QÏ3Nyµ©·9P˜t9òczb¤ž)-z§üRâªòÿ’`ôzÎI"Û%¨e®#< µÂn·JØý oíz¸¦ŒrÌZ/ue>¨z ú’^Øiz=Öóe•$(MRÀ}~qRaU@žC¢³/JãéÑG˜Õ&aó‚ŽÍZ¥ŽÏÁÛYà™rÄÎÞÄ®ù@å¥ÍNæz~gvzªóeõºc~GW]ŒV(aœôX\ì\HâIÐûÝmFé;Ô­Y+.ò.zE†?ý9FN'mîòÉÌ&ϼì™6ÖÇ3-ÄHsÌÞŸÑT!œ‘d|ìüé« ¥Å/5Ân5%ì^бùlðÒ'ë¨ðL9b×ÀMµ³u¿hw:ùô‹“°SZðÈÉ_x´ªÎ9d ïæhRÚS¡$žm0À²šî¼PÏ:[WyL|gÊ)ò õyâR † z’‘ðk~¯uý>{£®ÒJªxxeœù åÅè(mUb,Ä2™î\€[c~ÞgO|2R¬ÊR‹Žó±P«Š|CFÃÌ9è‘Ï9>”€+9[¯Kj¡—¾ïŽ ”†W4Áf±I¨K—Ì='£²wŽ4ÛG^L>*ˆù@föÇœ¢Tï AiÕ!%ŒÓ/és]‚4ÛmDGA£B˜«Š0»MÂî}›/½â“+œ—;GÚé&Õœ WÔ«S>‚©·¢W–&íæQ.­Ç*AiÕÊéçœÞ=¸„ÜçÔo© ÏhƒýnF[ñÝ u =7Þê(tL92ÚkÑ‘"¹àh˜‰q!jãÉ$MRÂ9ùQž¸ È׬¤ÁM¨ê¨þî6³ôîÝÊx¦“×õ 3Î2¤Áï£Yͳ-263FÚw+¢žZ/T‚ÑÔÆIÒ¹Rôºt(­ŸeKáv«„ÝõíÒn±Jø8³ƒØô̰ÙA–vña!Z•Ñð’`4uH ã\è®–„ @ð4ª…y«³Ò$ì~üñû6‡Ó‡ Ã|3Îü@»´Ùsöî'cž väÓiXÚd°s[z`4uH çäG˜€ó”QãRAO0„›M»ôlN xÅãÌzœ£'³MÑ Ò°sz”bØÏ$M(¡œi¨4&à<ÐH¸£‡6"î)7 µôîÝšc82[+¾/c´ ›æ3@½i¬1ßBqRtΖ¶•ã±…òJB>à¤g³ßÅD+=ÛÃÑ—x’‚7ý0ûLÀæÀ¯O³ÈÐÑtˆèœùVÑÅwØ:é.ëöÓŠÆy,é§Wù8lŠΤu O ‹¦”PÎpÌñá’3lj¦ƒ´¸fV¬¤„{?Ô·*ÏäÍ>›®)c¶IMž·ôz O og£‡áH˜Y9&#s¸ˆy0‹/òoŒÙ3Í÷°ÊgL+—ÒpK-0„YH w.ЫÙ<‰¦kÎ)³™º¨’Í@GI†&N 1?gu ‹¦”PŽl[È;5 2¢/AiT^µ‚œe%%Üû¡¾5>‹^阾á9ñ™fGÂ'1.VªTœ†‰MŒ_ˆ9ÅÊQ€ÓG‹3Gµ³§Yæ(öÊAiÔA†ÈÒ›ñâ ju–â)KÝ}Žœ!õ{)˜Ï Ô`i˜˜õKQÄt«D&ÁéÌ6fqüÌâÓ¸ùÅ»|’ú!Šö»Ù‡²»ùêÒÅe­ÓëçÀ™¨E~™t—.eZp<.Rí;JôK€Ñ‡Îé3¿ég\Â)<ÖÓU(‰š@ 6º€Ý z6…H'6gœt̳RÃóÉ{>ÔxÙ':µõà”ó٠Z•`4T €1dëÁ¤9V?ÓR¡4p„[­6/Ô±ŒF'ɵÐ82IÓ:„i ÌJ¥ŽIZœ†¡º6iˆÊµL—`4u „q¦A. ]U>zW¡´V 1Ân6ì^¨gËã©7Yuyœùâ‹´Ry6¯-¼øÙ¦ËiØ9›èh¢m•W’ ®Œ9Tx,=‡wG âIÃ+5Àf  Ø] [²_š3Ûºeœ~°ñs¾ô)õõHl•†EjþB´¡õB%M(¡ºÊ7 'fQKi|–j…!ÌJ“°ûAßf=ÙAšN}eÎ2ÖFÅ9ð ´Ç,ô‹–ä´èe[ ˆ9–­%Hp:Û[3Μ«àÃ4 uð­˜ÒZ}a…!ÌJ“°ûAßD¿ðæüe4øfœ‚µ¹Ùk4t‰©&öHòÕf§E¯,Õ€uÛ$MRÂ9‡Ìj–Ùs.Ai)aVÂíV »ôíÂLbòšHœ‚òI_ìIdßFè9rA}" K[eCÌf±ö Áhê@ åÌ®¢IkgRf3¤á›Za³Ò$ì~À·45iZDúý³ÅéR/&}bÜœd}PèٿȶÒS¯<;YÐsDæ Kp:q…dqd‰ð|p â< Ó¡´”P+aVš„Ýõm Ã?ºŽ©‡£¢4‡2:fS.5=͆Vº”†¥³F€ìl…òFÚ ÊòÕÃs–>/ôö.ž´àÍC˜&`wnÉ:{L—íçÀ‘õ:¸u¡q’‡!ƒÁ”¹§¥4ìLê¨" ]‚ÑÔÆIòª–„³áÃq¤á›Za·[%ì~зùœOñwŽ"¸ç댞Q:aéKe0—A_XÃSzªÍ)þœ1dõÒFfŽI·1$DåE›L¶† VR°Ôl¿«a^v·ÎÈ„B$Èpͽ1:6 ³L@NÐý”ÌLûpZt6ô" ÑÐë, FSJ(g¶cóu- '¯–ÒR¬0„i6'Ô¯*ÈÉk2B{YX…'‡ô9xV§<ØzIi£agU_qbô·$MRÂ8²![–„Ù ÁPÓAZJ˜†0+MÂî}«øð&Oãèç’÷?iY—À+9Hn§Ôn£ah‘®c!N,//N:üsÎ,™–€†ö|©hºæå6ÀLÔò»ôëD_>‹œâósàÌB×lAó{"’bòås•Eòt:-Z;úÆ…èK—£©CJgÚ+=K¨hß—ÒR¬0„Yiv?à[9mcö{¨Ž‹1d«uÒ(Üd‡N¦¶å:ùâIOµ¥ QÄ4•É$8-*P@–\\@Ÿsɺ4¼š`¿›…V|sA¼BMíØB­õÂü $ÙÿD‰­üo  ™³¢â¡7x(—Œió9cG"DÉ»Ÿs“;^✅²å Ë9%ua)#`d&0¢¾Å (Ù͹6}Î ¨;ãX¨o ,mǃ´•ýè[d©,3ÎÑo›_ó¢1²´¶×oÒ˜ý\½nÍþnõvòoÝ®¶b£<2jȈ Ê9‹luŸ¶ô>ª`Phœuœã.9uåÐÀ EgGõÊ`Ü…"gCÉ`–¶†RÎŽšóÉƆ‘EƱéSΆÒgPáiýv¯Q^áy—é”+©Y×· ¾Ç7é˜/ ±´·7õõ›ïí&ÌŒ÷~«/¼ÄÞ–æP`…·Ý}Æ­ÍI£D;g’±‚ý¯Ÿñw¯‹²Ö2§®m¶sê#>ܾùäùË×ý÷àh›ÞÈ”æ(Ò´ æ€Ð9ƒÏ¥1LwV‚sÞÈäkÎ/>úx>‘/ÚÛÛœ«ßÞ"æ÷*¥Ü¾’?K+s…PÆ2…äÛg¯°Ÿ¯Göµ,âmÜ7j3Z$ãŒÃãÜ--6mÊÙP åŠ(ål(†EE”r6cŒ"J9; »|ŠœˆbøKltÉØ0 &ÙZfrvÔ‡Úï ÅH‡ˆRÎŽÂ^ú†"gCq >¢”³£° º¡ÈÙPÜ=(åü.(lâm(r6÷þ"J9 [ODÆwÆp£'‚”³£°o²¡È ¨oéƒwV¼79Š å¥œ ……ç"cÃp 7‚”³£°º¡ÈÙQX_ÜPäl(®ÔE”r6×¼"J9Š«G¥œ…u˜ ENDéŠFÙ$"J9;ªÞùhœˆ² l%Ù”6¢t>P6CÜPœ[E”ζ"Jç)e3—ˆÒ1@Ù,  ÖÚGo6h_¨d^¥…¯ØˆAæù 2?f§8Ç>UFJ™;\ n²=VíÝ!Þ¼ÉÊé -¡³M¶óš Û={·Cf0ϑӥžZtwís@x\ÿmôŠ1w„F»„ECÇŠ1¯½¢w_$¬¤WŒùB˜•*áÎ'úVe9eò’<ãçÈÁü=ɱ¤–7Ј¾7–V÷Á©éY.aщ;Y‹S™è B²—Òâ›Ya³R%Üùá¾µA£k§#6F¤Î>–# `±ÎhõmÔ…Ë{]4ºÆ9Ó²Ò–9+׃Òê¬0„Y©îü o³LÃ3-2}œÁ:“>ùŒÏSô£þœÝiµt¤€HK猤àɰñ°ŠÏNùÌAi8¦&(ÂMT wN¨c™£U›gÚuašÖå±Lú’Ç1õÊʬ‘°3‹¸-Ù¼8M(¡œz!°Ù%Ô$M†« ÏÔ¸*àÎ õ¬¼Î‘qdÚŠfc`ü,†4 §z~i8a—A^ ˆ„+—à4u „r¤YG…U •3×A¾©Šp+UÂêŽæLžÅÛ8çd¼M—=VÐŒ·éâ%Œ†¥8´³>R`tÓX˜Å©Œ–q ²u¤ñ9«Šp+UÂêö|'ï|<9Ý5Ž,çe~âôà¹9g{9­¬ÀìÕ¯P^I*€cdÔ!C/=Ûñvñ¤µ•‚ŠpUÀ Œ¢?}—¬¥>ÎlëΓUá:¼êÔá4ì3*˜øS£Ë—†0MÀU8ŸãÐè9p$ŠF¿ã¬n±1?µùïÖÜÛ¥€i6û>`ôg†±¦}q- k8f6Âl4»ê™v×ÉÃ+«ÇÅ) ÕŸö!ãÔ$-n®NÃÎÆÑ„!®Ä  I0*OAç`~pæ÷0¤·N]f¤IؼPÇØe\yl]*»<º‘pÍ»Òúì1o2Ä|d˜O˜£/Úçä¡ý€·îhïßà‘®8(À¬ÕòËxMb‘eXeýÌsà`„×:» É1ø@1õ%  ¿UC\ÝZ˜@P:à=öc«8‡wKÁRš †p‹UÂîzeĤ'¶§³”¿˜Êá‹¿–jyã= ä€Ö$8ôĶs.œyZä+‰¯®óÄözwüÝL´â»îXÒÖ¸ sÌZ9¬Ír}f·¼Z5’êWËÀTK€ÓP¡~U£o3 Þ|x;©sY³Áf£ ؽðl*M[ó£Y:rINqŽÆžTi'áÙ¥ïT]µ&À鬇×sU®ñ›„i¸el¹œ´ä ³Ñì^Ð3¯HX”~ŽœÎ9£VÉ%yV—Ð@#EíÀœ$9Ê™—€E'9§WN¹U‚|˜2R…’[åU€Ùhv/4£Š¾G@¥œ†5®I™ËMú”õž,§P$°Ri†*òsÄ É0 FSJ(§œ8”äÊÁ#–¦£X¾[a³Ò$ì~l¡ç’d#Å©è1<ð;OKÓµ"Õ±çŽÐÐr—`4u„àóœ-:]%dì.¤Cø¹#ÌJ“°ûñû @¿ÄÌ Ì‘g#mZsކÍì gÌV­V Á¼Ø6:È9%1×Xíu”s*Û£UÎ (É|n(ç”®ÇàÖQÎ ¨;¯ãsX¨ß%}9äS»¤ùÏ `–Hå†wvKÇ1©ùÂeeë6+×ñ~èrÕn~ÅŸ·taµ6Æ]G㮳¡äèÎH¥œ-JýTL5F©+gC©ìú#½kgd˜=¨\dõºåÌŠ&[1Ýùý˜nû2ö˜îóûÄt'Œ¥gC7‡4öùí¯Ç|Þõh·_ÁØ÷¢»ëÃEõ[ûkÃ}x·¤n­µÿ6ÁÝod.Y[ײRêÛÛã0…&«ˆG}-”rîPWºG]iGy0ÒjX<<)¢ÚÞDy OÄè.}ì³PºÍP|P¹±PËQP±£öç°" Êvè*ìÙ/”.Æ”mG”n”m&ï¨ÑîQ£Ý£t;3 lƒ3 lcp¡Œ³¡Þ{öå…go›U eœ Å•°ÒØ›ˆÑ=”RNDéŽÄ)cÃì³Ý?ËöÞ{i/¼[8 ¨óET½îQõ¾îÙZh@)'¢lj¡Œ³¡tÕ. ”³¡ÆÞ‰.Ϊ܃î%éºLK1ºÂ±0ʈ˜q¯k¼§ËçÝkHbœˆ²iìBgCé„0 ”Q:» (ãD”NWâPI9¥£ÿ€2ÎBÙ@:¨ŒP:$ƒ ã,”t!! +ŠñÜ­ÿvIÃK*'3\¢c޳ ¯FERíH.YÉñeø2»E&Üš}ÿм∶’ÃéšÏ3Ñr|ñWBg&ÄBdYszºßvĬh8\gŒ¦)á„y˜2ÏÃu-%hÅB¸Ý*a÷㉾5¤t=Ý7Zœ„TxYv6xªëç“NÀ±“®ÛϲŸCq£ÝÒ1Î4«º&aÒYNÀ«Ä“ ö3í[ÅwèUË<3.]4Î)'a†<‹Æ,;’©¬ãé"­”Ñj¦ärÄÕ1 t ¤MJç“Ðää Þ1u ß:ϘÂíV »ê[ã©~¾ågçLËr{ÈVïHúžáBU†¥ ùBѽ7 ¤cÝ2NGt€I˜4=›£Q1žA3„Ùmv?Ô7r!@/ôM9ã”É(ž!ÞÊ!×Rð_ÃiXzHˆïBȪf Œ¦”hn)ª0% ¿Íìùô½ÑŠ…p»“}#Ñú&©%ñÄX!ØäÅÄñ˜´¡xÀ8øOf54DÇÖâ’`t×ç ä…“>«ø•$èj) ¯ÔC˜‰&!x .!bÕWF㌤U¾¨ÀlöNa"­^]Ðí}«£©BýG2Üô mzÐ@n© †0MÀî…zvéÚ.Æ9þú2«éHÏe$ì„G 0ŠæÁPF[˜\àd­‡*á<Ù”ª ’øŒÕ¸Õ*`÷‚ž]•Íé|‰ž9É¡ æÔçQ ÍNÂΦ™H@Fö¼,*f çHøºffûw¤¥‚¤~İÁf£ ؽ gRF š9ÜÒ~gÙŸi|í²ì%OûÊNÃÊC¿"d‡¥×%ÀéSsz/NCÚ’ çn‚ p‹&èÏjŸÞíW—ªf-ÁãxަŸ”Í'œŽ¼°¤™;æþNÃÆ*cGÈNýª„EŒ![œ†ÅÍ%aŽÎ$+Œë ¡V¬T w~¨ohñЇú¦ˆš¤¯'/2ökºÓúøëÈH¹xq£š&½^ Ü$á…+.’XÒIÃ)Õo7˜î Sã`½lÈâÿ8gbW;»!¦ØA´S–¦®ÑØÍ<˜ i!$wÒXœnzwÀâTæWt 1æKiø¦V(­T w~¨o™ÝdCÊ·çÈHÐ";k¹gp€˜iefd9rŽƒÖ†HƒÇ=U¢³özΩ\=r Œì^:HÃ7µBn¥J¸óC}Ó¡Ùœ–«kÊд:Ò‚e̓G|èX4 m²6°9ñT¬I0*¤€32Ò¹†O.ÅÚ{7BËjJؽ€cò-#×/ŠcΨÛÈ2qlBÏɃä,–½ÇEŠÒ’ÄŸ˜Ê‘ È (`ŒƒoÈäÊÏT5Ä“S à6«€Íu+qÆ'ñ89RñMT}Ü¿òé’VÇX/!K@)H0z=ãäÁ/Ñ$d¤Y]:Hë— + aVš„Ýõ­°1-Hð8^S¦Å’¶à”ï;Ÿêkç‰,;|ËŠ˜ß±I0š:PB9rõ¼W 9³“7¤õË„†0+MÂî‡ú6ÐχÌü‹K®²,PdÖ­KÈ’ÙoV3‘jͳqF_dœNKš ?«}Vx³Ÿ.ed¨Dmmh;Õn\¬Xø°eUÃI˜ˆ  ÊvNàôÁ(›ÅÉXÌXXß\Ix¥6Àl4»êYÖCÓ·8ßq— NÔ)<×öxqPÆ®c!5"k¬]à ?î*=ÛV`J' ‡T»ÜX°¯NZ3Ϋ>N9ù=òÍçxRJµ”ÊúŽ¢&X3 FSJ‡©o]‚,ÙÕ ƒ4|S+ áv«„Ýõ­j[Ô­Õ0NÁQ€,¯ '5q°Ztñ´~*lgÑ¿p“`4uH ç$ÌA]sY.©ÙXŬ0„Û­v?Ô7$¸µ–å9pض %Nê[Q½ÕIuí,€!ø*¯$¨c`¤‡U–‡…]8IíIR·w#TöOôk|Àµ„œ7c~¶§¶{ð† …åLŸª¥–ïsZC´Âå`t¶åÄÅ9°zà ]G²%3Âf³–ß\ W¥r"õ0ÄâðAIÒ–={ÕŒGEÏCdpž9 ΃YVL‚ÑY+,NBdâ’ ëv%è ‡§V¬4 »êÖ×Áã´Ù9åÐ&X3—œ>Æg_ºÓðíô¦9¦ž‚£©¾)'a…jIHg¤¦ƒ´¶º°Âf¥IØý oü&ð &¾7çtNA¬²”ª_Oå" iXš¯˜s,Ò˜§ãÑ'éhK£gÓ@:VyC˜&`÷Â=;+yÇež‘#i´ ”Õ­bÎØ*çó õ×úý¼˜MJK;ii«#')ÛÃ*àâ‘¥€´ºÅÔ`Š0MÂîÝj¸\ ¶²=4NFŠñ¬i8ÑC 7”Àá´è½:—– Ñ+Û0“`4uH ã1P.á(œË™Òxj…!ÌJ“°û¡¾uÎeƒoÊ ¾}KÑõ cºàG¦Ë7öRÑ7K2e¾A‚û–¢¯êÓ¢™oj¥û¶ùAßNmQ%9$\SF–¼ºYrÑ^¬\r[Œ,.â4¬,©„,ñ¶UÞHÊGåðýp H{© ·hƒÔ@+¿9 >mL'>)cuâ#:Òìœ/Jz¥á´ºÅ6]}p0kŒ† u Œ£sÂhÜ-UÜR#Ü/5Ò$l^¨cÕŸ&—rœÃ¡%„ŽØJ^ºÜJZ«UM1¸‚k”\ƒ#eXgÅ‘Û1(8ôTÀ2Áf¢IØPÇšÖLÄ?ï ­¢‡C[Ñ­õî8­»C·‡L‚Ñ©Yómiç–€#±_òÆ$ñÇМ(ÂŒT»ô¬ZQŠ& sNÆ…D™÷@Ÿœ£ÊMRÍé§WE6K±òEΤu¥ŒM(¡œÉÒ\‚¬(ޱt(§G+aVR½ôMÎyÁ_Ml¼ Û”¾D¤-.²O‹¡²ØP"]:õ…„@3ñðb03± `âb×à‰ÍMlìjbãÝñªÈõ6úÇe܃õØrH©³˜Cè3ëzŸ^Æ]䚆|ÄÕ82 NëEÙ‹“™eI8°ˆ°tz÷²Âf¥IØý o£sµnN% \sF—}"w$$ÝO¨B§Äié©·5Œ€È•SE“àtzdcT\F¸È<¬¤¥„¡7R%ì^À1Ü7";¬rýPCl…q æ:EngÇîzMTÛ‘eÝhQ;s÷+BB1¡œ¦ŽYbq0j_n"Y:H‹³Ân·JØý€oU.î —;;C¯f.µè…ž¼ºyÒ¼æÑ/w.uNk yr)HPÚn^ ,𻽺ÙUøåÎn„#Üj•°yñ{‰àFôÈ–e¶Ôá©1‹øû¨Å ù¸ej¹çövÎBI»xDÔâ”\‹qÄÜ–‹Qü5¢ŒPò<·œ¨‹På*[²ôÅ ¨»§Ÿ×÷É9. 2»t'1ç8B½Çê-§wÛ]¨·ÇSI&[ÞZ¦œwEhúû(Ið–'¢æ›ô(‡¢Œ³¡Ò#ù¥œÕ1 ‹(r6”ÚPÁúï.wæ"ÖCÎB¤õ4%Ôüê7䯧d[ÜbÃ_ŠLKÏyŸï{¾‡ÕË÷}~ÿ|ßr¹u“úïûËw_þêó-á7Œ\Äú~ ï[~[ð÷7ˆ¯yºþOðÛCÞBãbAp!],âÇ"ä.­…aˆfm(4E”†8E”†” m¨û« <øfCw =–%¢@²aN1Œ¯ˆM ‹VØP—Ž]J7ÿ7ÔØÓ¢¯Ýô€²]èÐèÛ¾ô†â~nDéï†êw:øniDq§1€tëqÃpÏ.‚toC÷úl?,¢t/iïÖj¹GÕýò Û¬Ù0Øîˆîl˜sOP¾v6Tß;¾µ&‡ª÷ ûg®+ÄdkÆê.­ýZ€ÝP\¸Œ(]ÊŒ(] (_ÜQ½Þ£ú½õ: (Ÿ`FTÚ¬‡•Ÿˆâ²IDÙBJDq"¢l]"¢®»ogÍò#ª¿gWß.Ÿi:Êæ· ¦m>¬²©bDé( |V´P6ŸÃ*›aD‡æ¥œˆÒan0)ç.Í·u¾[šïÖ»4ߥdÜmÕž’Ñ[e|“DëA¶9¢«8#+2'æ8eà rÅî5|Œ¨nr¯"¯õrÎÕ5¬1Ù‡¤=ê+j[龌û^Œ¦ŽÞd€=“ £³t‘áŽp»UÂîÇ“u"’ûü¼,’IWÕ@¦B+¤ÿA Rþ+ùÄùÈpÞÔ8M DÎáA6 GXÊRAR#&y8˜·™åwt‡»ÿ¸xN[:ãtÝ/b¼€dîÇŠ}fåÉý¦õã8ŒPÔHͺ팳ê.ˆmî›à¦Y½—fC˜eV|·]—¼ŠXÓ/. È•y;]“F7Ùó–Š¢éõ–†0#MÂæ»8žÀÌž9ç¢]v¹„ù’§3°œhô—gQ !+£¨6*aÑ"µ8’¬úzX$—õtf…!ÌJ“°ûñÇï[¿øížƒ¨Å‘L¨_™_»T“S,E¶%£aéÅßÒð÷%ÁiêÀ²ºq2—ÕM/’\:ìbÉe…"–Ý”pçÇ¿or¡™H‘‘÷6”Ñ‘lnªIˤ‘¸ö>{Dí( CÏð³ì›ôPÜhÈÇÆ†1VWKŸ¸Èm 'ç¦ê±ìeñÝ~îj¼©)õ‹.9cà ÚTy`ì#—ÿÐÌF¡´î¾HdŸ# Nt¸%¡@àFc8ï¥Ó…á¼ËWŒ8ÂMV › òêO^ýsð*e~¹ãd¦8çdYþãe‰¬ôE†a)9 3I(l+OJåNFG'/-[ åZò•ÖmVŒz a&›„ݺ%§7`uåQÕÅIˆÅ(2kƒ ¡‹Ìµ5£au@EÖÈ%Àhª@ rdïJz ­èå H¡2ÐûYí³Â»tJ"-àÆ®3BäL½ô.9ãBËiA‘mJŠÎvà ©$b±NçG>c¸¯Â$É p¹%Ÿ^¹ 0MÀ惺5°É#FõK9ùdw¢›”rÃy…óX¥a'ï‚sÄÙø-š£©CJ8²–„ƒ‘%®ã°Ø·Ân·JØýøã÷­^lͲ†`-ŽûÂëÍåâzT†[ûFÃRlî/óœ/ FgZœÔÙhš³ÔtÆóS+ aVš„Ýú6ë=Ú´rp33p.VdIÿ-ôü’|°'îÄ0–žü„ !×õµ Áéƒ9ô'gŽûMBÂAÖ¥ƒ4žŸZa³Ò$ì~üñû&qg’O¯nŽ/ެˆÚƒ­v=ÑêÊFçi$ÌDPÿ}$¶¨ZÚÈ¢GÈg~ŒBËg܈¸Æ£S aš„ݺ5x˯'/\¦,ÒùÉš–¦&,ÒoÈ6…'/,9%&4DºÐM«#-­ 3˜wpg^Â¥À2.á&ª„;'Ô±ÁZPôö8!'E:ôÓ•±]ò÷ä´švÔ†ÈM_±J0ºX¨s˜pIȸ4vé ð&µBn¥J¸ó¾‰–KŸn>\œ‚KÒJ.IÛÇSú|iÙ<ž\œ‘Jxœë÷–ø€­¸ÑT Œ3?™,®›€„3 Ki)a&ÂL4 »tl~ô¨¡ë‰Ú蜄Ȧ"¯ÂêøZòWN‹Þ³øwÄ9ø™£©%Œƒ Ü\B ò3Jãñu)ÂíV »òí_²oç¡S›S#ÎHæ>iœëñ‘i¾ §O>vÍýàËçy\‚ÑÔʹ†.aÊ–¡†ë §¡V¬4 »êÛÀW,ej¦oÊ‘¤Òä]•;‹D¸§¹; Kq„!oÑv FS‡”06,b`ÐRàf‚þnjéÝ…?¹õ/Ï­ÁP¼”;/(^œ‚ R¦”’=”šYJO­%1-•#$ue Œ¦)áœ$«ÒKBâÖu$›âºŠXvSÂðM. e+‘ÑÎhJËÜA,8kZʉc–F‹Ú“÷Œ;âBÄÜ’à´Î¬‘Rílo.¤¥„a3Ò$l^бÈK$šç®¦sŽÖ–ª·YKh¼,'×”™vŸ´D3§Á„é†ÈxK‚чž  œôàÅ‘T(-J Ü.ÔVÄ2z#ü|®ÅO¯ûÛ†,Ûng·P•u»Eq/£¼—§õnõÅáíëKog_:ìþöe…!ÌJ“°ûñ{ gxÉJß8kÚÅ»V.ï÷Q‹òaë)ƒ€rÎBÉÂ~EÔâ”®V”sJg圈š3‰ž6”qêÎïø$¾O6ï,-å–ê˜Íû|ýF›¹Ý.ùSÖ(Æ­ËŸ’•í¼×orBžá[JïG*ãž<¨´Øe™p=š; 4¶Ú8 ш-¢”³£Æ¡çÀEÎe~ÌÄómœ %:¬ †RÎŽj‚°Päl(õ; Â“øÝâÇg˜ó;ƃ¨ñ"± ·7uþyÈY²|{!~|Ï-^ßÏ-nñã{nñóûç—~í’j¿’‹ßþá³/>~1|ü·É(þ¡øqÆÿ3 ©I Ùid[$eD c·"È85ô¦Æ…2ÎBYtQlÜŒQ Õ‰(ãDB_"HsÞåä^œˆbTFD'¢QÆùÎ(ݘŽÍ·q~T¿ë0œQî0þ¿Eqƒ*¢ŒQØí‰ eD 6O"FÃ¥ú2ÎwGqi<¢Œ³¡ôrç€RÎwGqõ3¢ŒPßÒéGå"Ê8Å®ˆ2NDqÍ!¢Œó‡Bq% ¢ŒQœ§E”qþ@(@ÅA’q"Š“‘ˆ2N@ùÐÞQΉ(';Ê8{~ñ"‚¾‚ïH.W9ý6ùÅ«Ä$IE|aùüªJSÔå°•œÛáѶZþ>Sí<á\ëü˜/IXÝç|‘ 9^Ôwš¼ir4¹äÏI$ü’sÔ™¹±eú8ÉBФ“C.ìŒ‹Þ ’':9' rj‡d P2ñ™£©BJçÀ™opHCâ @ Ú ÐŸÍ>-¼;€©òœ\ä!:ÀºÈ/*\ù‘xh8 «žãU„Dè§ Áè¤[0㮇%à@8ùRA~©†0#MÂæã.Ìd C:G{RH‚¸p^¹xФ{8šÓ¢–{? 1p4dI0š:PÂ8H¿¾$H¦Út–f…!Ün•°ûA߆fKÏšƒ|qJÂåh’}›§Cy9Óqhöô¢ù¢ª,*œ= ˜sI0:kBªÅIÈ µ$ÌJwŒ ƒ´”0+ÈYVR½â[• id¯é1§qð‰¡·Ð'¤W95|ë¤Eïu2ãº!:ŽÎ, FWÍn8lº€‚]󥂴0# áfSÀî<“ÐÀ.<ÙJªh°”#óÆ>í’ˆèùÿ)/˜dÜäfôT+ƒ 9«îˆ©N>— ´êÎÉxÏ&7Cä¥Ci)¡V8ÂíV »ômúYÄ“zrñpqj|•ÿ³Ð'­Í6õÌhÑ+¹oj@\ˆœ^Œ®úí,NÁ=e. àl×Ràf‚þnjéݺubCâ”eÓ‚ÞÃ9³sŸSœ*¿4ÐÈ(ZáÛœ­»¢ 1kïA‚ÑÔÊ‘{ å%›¹¨°¤ñèÔ C˜•&a÷C}«jWa|ìâL}r6²EÏ´çFÃRÉ׳’d&”W’ ®Œ9™¼ô‰$zKü©iö–†0MÀFçB„’rß›¼`¹WU´'q gp1©ÿ>{Ù IÑðÆ8œMyù爖Òð‡€¦jé`·:2ôiþ~Œƒ,gUh y…Ïx¼$áÑ`µ0ÀÀLs púð7¤œ ™Ã—„óâPçå¯Hm0€Ùhv/èÙÀ¯gλ·8¡w53~ø”H‚º£ÿWzêÍ2ôóŸgÏ$-’7:klÝâ$ ¾ÓÒIâò–ìĸ½¥œ¿»m,zg<’}Jii,#§Ú§!mÑTˆ–SfÒ#É\JàCGH#u FWMJ´8i‹–„Œ´FKGÖÄGË C˜•&a÷ƒ¾¥B[Òj¸8¥Òà¤T‰s‘®1Û¡X*ݧ#ä¨Q œÖ{h§âÖö%¡àèÚÒA¾©†0+MÂî}Ë…· É ?ôÈιxË›<)¡ä ‡**5-z+‡žŽ¨ªº£©%”#™ÉóÒЂué º¡V¬4 »ê[ň&ŸX!}œ+kÄA®Iw¬$Èׄï‚4,ÅÉÇ…s¬=H0š:¤„qÚ…õ—Ð01Y:H«o°Âf¥IØýPßxçP– 6ô½)çÂ¥*Q/xÆÝ¾žá;™ÊÄ~–‹~Bi%)n‘1»Ó7¦Åed’M: T^Un?›qV|7_]º˜JeŽaZ£KÊ™-ìuñ8`s’Øï*kÒý( ¯°˜µ­èëS FSü2ެ ?, søZsÐAZ?eXa·[%ì~牂|"¯Ë8½Ò²Šs!§ìòœÒ>ã?#aèIµàíuK€Ñ—uL‹sÐ0“ ¹¼òRAOOm0€[­v/ܳ®jqGêâtÎ Dꥆ÷Dµ2¤QZ]K= NÜs¿$MpÍ80\¦ålrTiõí*áv«„Ýú&Y`iÖ±ïâà  *¡,2•ÌZ2²•ú<.§E¯¤ø …òFêùZg0é“•Î×`k£â•ƃ Ž0MÀ…lxàiæœÁèäm\bµÜ–Žª|:­nÉìΓA—àt¶úkœÎµ~“ –·²t(­õ—="ÌJ“°û¡¾!aÍäÆH9G‚&Ð;ͪS@ŸìåPÙ¢á޶-DÏê«JPZuÀ7åÈš™|(*AWôNªCi­Àå ³Û$ì~¨oØ·Ÿ<äx^œr åEÍÜé?%5S–·"©C†Óð N‚ >—¥U|SŽœ4pªÊÏú«zþfÖj¹Ýx:dÕY΃\pÈ¿ŸÊaÑÅA‘ Ö÷¢$¬ë¸QÐ2#ÉA€ÒªBJ8çзK â'FMöVkFÕ¸Õ*`÷‚ž]8ôw\™5Ž|0 ¯æò}U_„ y”†¡ ‹Ž8ǽ$(­:PÂ8H;èäƒÉiéP¾]žè/ë ¥Ý*a÷C};Õ_&(t†¦Ä×À—†ôƒUÔÂP¾5"ÊQ°BcŒ¶ì‘ØŒªM?è*°¬/v°›vÒECoÒ *¯^¾¨r9-–&$L_ˆŒž—§“ζœ£c“ H¿–¥õù¥ºn¥rv?Ô7Üÿß›s8Ë—Ö`à-p ÈžMu¾áøÐBd¼¯%Áéƒ÷À,NÇûr @¤¥CiøF+ áVª„;?à[9² ˜'æÒSçÌv ÏðèÚ[úŒO\wª´¾öæŠK;j`4u „q¬wš™Èz¨éP¾Ñ G¸Ý*a÷C}kr¨ò¼«Tù†.ýDñí¤ŽM¥aç©m¹" ¯zu FS…”0ŽÜ°ÏTÂ…pÍ¥ãÒ€Îe…!ÔH°9A¿²N$—V‚#•*µ¢nHÆ%¡KÑÑ@²ÚU~)†˜ó-|I&Áhê@ ã$#ºɸT€Ôgôw7Z‹ïNбRuæD ébÈíÅ…:1ÎiÈQ%\µ‚´hmÏß'îe\Œ† )`Œ‚û% `Þ¶TÖG# aFš„Í :Ö:§£²îŪèœ.ãëi2tYnKúÊNˆN¿×Ïãv+mdÒ¡­2dýTœÖÒ²|ŠE„+G@Ýþ³Úf¥wãéÐÉ«›Óèº<`9åƒOãÔf »J¬î"aâÁ/Ö›K€Òª%ŒsðÓP ²|,cZU¡$£ p«UÀî…z–QÍÅùtÒ3rļp²”‡÷}5N1¢QA£\D2Dæ=´.AiÓÊ™uK^–J¨ãØôPFk€²lY9ÂìV w~¨o¼ýEì(ìõœÃ8 –qבt#îà…ÞJ?1˜U–Ø1ÿ—QŸIX4th )*à(Ü*¦„iéÅ­dê0ǰÂj¥K¸óC㈓¾%½qq˜1£J®MY‘£+r0N–ïä4,͸_щùFL‚Ó‡^R8 7—§“¦1í4ÔX$ Ðî\:”~zeF8€&zùÍ…'Û®³]‡m×Ùý,ÉšëœK~¥zQD·˜óriîjEÔâ×f\‘¦„Ï’#A—Ò»™„4°³ä:”ÆëÕûó ¡Vº„Ý‘F¦U\¨S/ÆH+ l&‰ÌF?µÛšÓ0Ù QqþÆI O¯'ãì“ eFzZõÆ0ÐðŒF8­V »$ÝQÙ,ljsæä ñöñý¸äRKeû[i‹’q"{Ì’`t²'‹Ãun—p0ƒ‰ë8,lj[a·[%ì~зZô‘7Y*|¹ÌDÔà†6Þu"Vp:KRC™SZ¿Ï‘Ç‘Vi#)¡¦ÊáE«<Óe.¤á–Z`3Ð$ì.¨[¼åYÖQx:×9¥2ƵU½CãÐWDÉ­ñ¾¸dÀ¶Í–£³Ï]L —kƒLÇj¥Ì C¸Ý*a÷CCÛy—7.A`¼´s˜z  Ìê·dȬDžyq†rÎëÙÁ*A€Ó–»À9™ûy.!!ÈÈUÄÓS `6š€Ý ¨8ݶ. YÞ÷1iD(Ûu µ&Þë†Ô:ÛŽœ"ó>Z—`´Ýç±8Y£`MS}-vgȲÂf¥IØýPß "Q?Ç oÊ©'«H;‡·Æ=ÉA»KH?1Ëz9CÌŒ5T%Mˆ~VŽL:$”Í$d„å.¤¥„Ya³Ò$ì~з‚Ú‰2‰ïÍ9C㲠Ƭ™×"×Ú¬Álº†Zۥׄ(â,þLËFC‡”0/N^fÓ}” ƒ4âÍÕ C˜•&a÷ƒ¾]×£^ÛÆá•1ⲪdéE+Œ›j8!a4"š;&ü†hGÕÞ–œ¦Y‡=ºIÀiéPZtИÍZ~sa —‘äåÉ/›“ô .£™ÞW¤¶Ò!Üêm4Â9ÒN– .ã]Äÿ›Ò!Üf¥J¸óã÷>«öˆ)NìÉÈßG-ÎJÔ]%MsLì錀AÒÿ˜rqʶàÊ95˜í# ŒPÒšKäÉB9' î¼ŽÏáû¤"/rÊZxÅTäUÒ[ËÞüè·.Ÿ²C2n)#ï5B§oé|!ª¡&9…rŒîbÈ#ŠqØÆÙPH|£µ³£®Æôâ Eε.IqXÐÃÖ•³¡Öµô†RÎŽâbDD‘³¡Ôï€ OâwŒ5¯ðÕ,Ö\rÃÏOê*YÈ3Fs7yGMBÐê­¾ô†bBr‹;ÏïÇï ÉÛ÷OH^e©¤n É*ç¿}-sž|^·ß| ƒïcЛìä22x/Ý‚ÉÿÙ„ ÇJ+cmˆVóÊ8eq_ å‘` åT«3NDY@ÒB'¢4º' ŒQ*PƉ( : (ã”…oÄöU9ꃭpDqÛ=¢ŒóÝQYõÊ8ßÅíɈ2ÎwGq;0¢Œ³¡.F±”r"Š›eœ?êÜóÇ/ÎwGq½<¢ŒQ\yÞzfå”.æÆžÙ8 K‡J9ßÅźˆ2NDqñ+¢ŒQ\IŠ(ãl(¬Êl(åD×7"Ê8Å傈2NDéø€2NDaAÊ Æ1‘q6ÔÐ[vJ9Å JD'¢8Ú(ãl¨q×:gÏOþr÷9û/ JœÇ®#€ÿzòúl×n×H½¥VnŸþ ‡¯Æ«d¾þè×ì\?yýFVQÏÞn³'^ø†nnv©)¨•]õ6ßÉÁ®ô?¿Î‰W®Ù=΂G©g¿}õ\鑎zðv¹ì« v¶ãHùœ=è¹­nNnOÂCÕ©òöNdL«ŽvûâµùÝÜM„åÞÏœn_‰´:Zk×íçRîHG©Þ~ \.rŽq]Ô>tYeÓ¾/"úk1E:Ó!¿ wŒù»XËgiòüfÁ#ß~mÅšEƒ—_ÉS;úœ8µ –|õÓ4•Œ…¯ž¯ ÀzÈyûû×óKj£æíDK¡bjãÀÆUD«õÔãÚÀKLjô—"N­ø„åÒ|6›·_Ax>Òœ|ŒŽ6?­ŽZžP½d•DF°ZŸ è:²ÔŒO^K^<šõuô|ûITôc Úæ¸¾TÖUÙ˜ÍÏ…Ñ߬šU}RíF»fïž’m÷… þF:sŽ­Þ̉øYrg!>û1§çúrjÏc¯Iáõćû…|"Óòs«Éácà×"W}ÄÇó¡úú¸^-­ŸÝŽXšáòû>ßHd`¯n½,)Í&¯¯ô+ ¼^‰†–ù5Ÿã¨µà±·^r9E—¤)¸¦Óñ£² ”9%¯m‡Üs0ëÈókys³’Ð{•ö Ühåj/«Fõ#ø“û9Ú¤ó¨çíݧ¿¡îY´ +×(RS…;_ù¬×r sÎ%ä4þg½½%´ŸC>9/õöç°8#ñK¼FŸ Z/Ñ×üàŸ:çF_±®÷šÊíÝ3yè÷LKß>±Ù;ÎÛÿxÿùžß~ ¿çм­³î­WƒuÇ«[Mó/‘ös©Üó‘÷ëƒïŸÅ‰Œë…w.Q,)'ü³y¹ÞþúžÿüÀ²¼64ÿóÌgýêâH¨ ð±ñ˜¢³`ѨÝÞ~ÎFº\ÓFô#¥Ún?Xl±ëdJ=gÝ“=€vÚçv¤ò³×hçf•©j$•Û}-9³Æ‰:SpyFA‹{¦v õ»1ëâ[±¸ýº2L›ÆÿC¨—Ÿ-˾YÏà—·ŽH”)ÝâÓeÍ-e~]o?èùlù ×#—ÙÓX%~ñƪÿŸ³){÷ 3—TžÙêß½nù쎫7z=Û†‰—òÑ¥þ}áš?]n„O#¸¼[!/zŽæ#$d¶P-|÷ŪÙ_ÓNé c=š­ tNãeeLš¾ßØ[œŸ°«Ï/œûöWw_ŸV¤`ͬæ²T$ÔŸ:gë?zõÑ¿þéííKÀÇ2X‘ôõ'Ú[m¨ä;•Úq¤Ñ⇺Þ•ÉùŽwÊc¼_FøëÿÍ.zÎqû ’¤«ÃË„ u¯gÆf…ïä¼Ò^aXñ¯ù‘ˆ^I6ïMÇg¡cÍgM¨ÓÌ1º¾3!ºTVk@Ø­OfÉ÷oNÍà' ©¸ã§øgK!Û Ù·¬6H²8Ìñµ¾°¿ÅRÉ4èöï^¿i²GÑåÕó3ÿëçþ×Wþ×Ûx¿ñ¿f­´?ÿ7ÿëùï^øëkÿ뛤ÌJè•o ¾Í—ÿâÌŸ¼`÷g/xðß~]Ý¿uæ›ÅüôÍßçA„'»œú±ÿ•—æÿµþ|ôß°˜¿`Ù7çÀ?ÿ>OôËüúü…¿~õ‚ Ÿ½Pö‹ûŠðyû/ážþ‘7ýCgþÿõ/½·šjùâ÷2þ`ßËËOLGî烤-\O–kéd«‚†ü4ýÝ4` 4†³§¾PFveY[A?þò›ÏžexCàlKõüóO¾RºW4öü{v~ïÞ}ýÍg_Ì6ö<°¢þÙ7Ÿ|õö›ÏÞ}ñõŸ- õòÚó—Ÿ|úÕ'Ÿ|½~‹Ò~1úX:.ûñg·_H/AÙó[þú›w_*9»—?·?ûÔð³×¶€}Î^¿0.”ÉÛäà뉦_;¼ÙmÔ«H'Ù«ä‚Î8Tb‡šçÈñöiïrš<Ž9Š}â×”^óåžrŽH ¦KWjæýVÃdÆ7ÛÀI´ ™=„Þ§[çÌQdi£½lÒ³š´Tæ1f|Ìr"w0ŠI5õÛ½'6ô˜µÀa\æiAôÛ5îºê›úŠeð¡Uõ®Ç{oLi£&qœ²¾ðÞ˜r¾ù÷‡”³b§³é Ê9æ8zý§§²ôñ‘ ºûy–b€åyÈ͘óyÄ 4Ž*+Z/¿dù†!zt}ÁáêµUJZŸîf–?¿5òóxYÙ݈¹b3&áëæÀnÅ[̾'ÑÅS·®ë^ú¶ßq*Û.™ÊÚt2 £Ÿar ÏjNÀ£ïhÄüŒïfAfñý#Ö)ax©±º|¼*ÍH¥ªõ>Q”J$+àg³Ð»Ú)a‡,ÞXåüñ>uü7{Ʀ\vE:rGÉíÖmê¸ætö¥•Yľ.Ùë“›$ñW>VµÕ‘t“U™ÈÿdUÐ/|~ª>ŸÌÑÆ·ÔvDH]^ÛjJ>!¿NÁŸ†•‰¿—Ù¤L‹·a· ÙguÎ-ºª‹qypU—o6|%®ú¢îš,´GùEVÖîuVU°Â‡L¦ì…¦ìÝ7ôQîl5K>^ŸPÄ:ÏG™ò•ÏXYd)R¢´¾oƒê·a¦ò¹²ÓÐV9ŸxNkºùkú}­ò~àÓC–ƒØ£Yþl)‹éÝö¸þóƼñ–_ƪyº®p~¸¡}#Á…W:?Ÿ?Þ¾:1©ËfÊç«¥ýL[W¹Ñëâ¡Ø§öŒ¶:|ü¿¯´Þ+«jxããyQôv{xe Ó»÷øó¯Ù·ì–5›ÒùuÖï~×rT9_ÐïWîì=‡¥½¯UBjñ%¾ýð¶ ûqÝþZ_ô¬zÿ€µ»ž7èËÍrè@+¯Þc5–tŽ3:÷»®Š‚³³®Š,é5ÃâÍ[È5>®mýb[™ÆÔ¬hñIÞ÷\ø Õå®B‰æãØÆ˜÷=£Ž+ýwk3¥…õµèÕ{@í¶­QK^ûlâ¾%¥Ø½%ýÀи.ˆ½ƒŒÕþИ¾#÷¾;Œu>&ûÍ,n|Ëÿ_î”Äendstream endobj 122 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 204 >> stream xœÁ>ÿCMR6‹‹ø®ù-‹ ‹ ›÷C¾»¸2wøˆø÷‹å÷ç÷ä²Ó÷÷•ðø®÷Of‰}I|€„…:‹}‹ûO÷ó­¦ä˪©©©´¾‹Ò÷ûÔûû16-X¶…–¤¨¯¡~«_¢¾È±Ð‹ôÃ=:D\BEKûûmŠŠ‹løG 7Ÿ ‹ ‹ ‹ LMendstream endobj 123 0 obj << /Filter /FlateDecode /Length 5778 >> stream xœÍ<Ûr7rïŒ?‚åωy&¸ .®$UvÊÚÝØå$’ö!µJ¥†‘ŒHš‡²Å}È·§×sDÙJ*¥ q0F£ïݘŸÙÈþ‹ÿŸÝ‰Q¹ã_ØñŽ´2£4üØLšVßY¡Gí\¹9zu䘵²ÇF+6J³òˆånÔ“Ÿ5IxVdR sƒ'²Þ4øÕVë%¬¬³£™Rq€â¤¥•v'ËÍh§8•Iq šqÊ«%”Èjìøòèç#î yÿ;»=þîõÑß½îØN }üúíQ 2?æJŽFa).¦ã×·G¾ýéÛ7VŒÎéáß_m`U§&%†?m¶p<Œ)#‡W›­”rÔ\ n§0g™nøéø—aÌjù¯ÿp’à`a³“€ÇësXõ¥Ÿì¬µ:L® ÈÎT˜<¸Íëÿ:Ø(´8Þ•œ6À¹@8@+­íð7\ß > »‡‚Ìðãœ3aô0n¶W£±nøã OŽMÖt¶¶Ji>œ”Ù¿nà´ø; N°¦î‘Öp7ÜàV'‡ÝcxË1Vf 5\áš1éoŠá‹ áwŒ[îßbÖ ÁtÄF ©‡óðÚdõðËfR£àZ sXÙj§†÷˜§ŠtN)9ìãjnæËùºÐ}¸Û é”T 'å<þr´ðAê 's®Îø»@7í¬â’bJ¡]ðŒÃ~ï 1œfJT´0c¾ól&˜ãtãa·\óͧ›­ábRеoâ™9±Š=2磛&~üúÇ£×û8É-œ/°‚vžD–1Ü~·%g.¥âÊ!šRK ¶jZ­%n´¼&»LxîR NAÔÜ€³þ@æ[œ œu&LËíÞFh¡o%hgä@×™-PE7|0¸™€î#ep»úÒ2×þÐ8WAú2¬í@ÎàV ÏZ—OaªZ^Ø—c¼.uW&¤€ªíwø>hмD« Ð0›TÐㆌ9¢‹üô!?•_ïóÓM~Ú‘yý¥&0Ö¥•Þz…°‘ó'ûr!íYPcÜ:E™çº°û‰+n…s@,ú0±rYJUé´Ý-ž(ˆ,-BNup¶ñÇ k¾+ å’¨Ô°5nÈÖ&°TJå­½XŒƒ49§lpSØ`GÎü¼ÞVKHУ\ð´Ú¶aÜð¢@#¬rIŽWL{¶õÊÀÙè9WN ÝtEæŸÀ ´ÃÍ®ä°MG8qePü=-AJÃ#j¨TÍfMÓ³$üŠ`õAñt(„EÁž_Ѽ^mH†Ô»V#0ë)a:"c„é‚RPB{ã2¡F6~Iƒ=Î (/ªöÆ4 p¾ñ º\˜–Cÿ‰òªøäψMŸ/,Í)˜é+ʼ¨…ÑX sxÍ ¨1ãõ½=…¹–×~×Ι'Hg‘lõ6#¸‹¢(é)ô×>ØÃ|4i”ëý03àäQ⨣^÷ª¼÷/­3¥õ10®‘Ö«=æà8-¸ØÊ‰p ÂÓˆÌmGî@-€ÑSÇÕ+•A < [exqÒ`HïPz@í¹šo³ñ™Š.øODÑ¡†ûµàÒyŒŽÂU9™ëÂtCÔg ‚®Â1¯PšX†Ë։ˉ:–k€í&v| :+jëN ’_‘¡^Iä(~e·»Îï·^»âŸ¥fmÿ¾a"ø~Ϧ¶ž Qls`mbžý\rNsDÇX:š È[-Q›ø-³wž@¼+ïmym^X=.ŒÐdÿT¾º{º,ôï:ãÝÆ›¡Îè!'gø‚xÏÄ­¹|_6U‡ÈE€“lX2AÞyšüŒmšùÌ…™Ô·§ h÷fSx ”®œ8 e@ äéwDS"þ“ð»%f.Z Æ1.¸ñÊ}Ò«fì!¬‚þóÇ];+a{ÂËî„>žþ•œh–ÿh]ÁÜý² «ßD‘QŠJ8|p½øšâ! ¦Ù‡Qi½íÀÉ z¦š°Þïe|BÐ=W”ÄÀ!BG­<¡¿ â®óMÒ„€H9!¸ð,Xqú\… ²µÎÇA#¢ÏMBm€“øÍë˜ P*ÇÞÓÀX)§J‡ö½ÏƸQW«Ud8f6e´½1ìgvU´äÏÙÄPÑžÜ* a(7C‘åÉ…?è„prÜÆ5 S¸ˆsªPà{,œ]8 €öÊa+Á [ǺqOë á°ñæ·k¢ñæê9ÆÛbÆÂFã^ù¿3ÞÊgŠTÅÿû0,Á‰+G\ùCY®x¥t˜„ª;ÊÅ·(†˜®Æ”9/˜žú(ŸAóTÆ–ðAÖš©‡ÏGÞT·î¼ávÖÇET)#©D³TåŽh¦*ýv†'K»5ãy²ñ"i¬]ÉÐ}QæÓÂ2DN CFÀ-:œFH _§©(åÕPïáðïsõ^1C¸9dÐþŽ.¯ÒÒîÙ"&¨t¡‚ˆ†~ž *ÕMÇÕ+EŒøQG¬‹°F8뉀´ÅUŸ8Ï>ÃEtH5ùea%ݰvm01Ç€'CN1ˆäAAÅωáÙ¡ LR[Y)ÿeFßUkS“10l­¹«e6­·«âÿ0 ÌM8ºÇ‹‘4ŘkêZ}4ƤnÛ ÙÓIÁsÍ”xz3ÔWÌdGŸ„ š#¹ë›‚%™_c®%fƒå“R_ÑÀCs€Ä$0ÊüÆ=ø@ÐI'ƒl£P˜òò&€jë»M¼^éã´V`ZeÚ$TÎ>A8£´(•yéú)!|ò¥Jõã bõÜ«B9Êp$‘}^Ô u]ñrÓfw•“›§î:SWx¬òf’ ´Î)3ä‡íû&;fAtëx’ø©kñbëðp¢Ø§ Í2A Qßó ?+R@öŽFÌõmb1aÐýå%L,Y–³]Ùä­Ï( JÓUž!޳€1’ñö€yÛˆB­wgâQ½z]´&ñ::é?ÛG>˜WQ:¶®oœ|V\_5`Þ 4{ãØ´ Í‰yÿ| ¿CŒ¶VúÑlÜÏÈÿ“¡)H’œ«±Ú©+Å.„ ФµÆ¾Ž#xÍTÝìÂifQÂj$5WëS¤›¬ÅaFQ|ׄ$Q;(úÉ襢Ï)©ì0Pï$p³S#˜â&¯ ]a®|èŒ9M²}UL^£Xc ^Õ2ò*IŒR-‹Â?ùp¥I‘)?&åIêíL‡I ÷ £Ì]pk>ëZ2¡oV1èû¢Ö Ô‰_ª(·J?‹rˆ’>pÞ¸žz³·émDÍí”û”ìi\°Ë»3¿ÕïYê Ï&—qËNÅTv? NÖÔÛOfé}Ì‚) \7ÚGš€¡èÖÀ·õ˜ o×v¿¯©ŽÃü ƒ}#_à#ºDr=>kr-‘;=ã-KÖÏ(Uv*VŽÏåÌL."Îùé¶WNäàÞ‰B»&©Å¼fkJø¥/ƒÌ¾¡qWSÍ•„eî3O‘÷Ú2M*s‘´­W0€T™Ö¶‚Sš’uÔ‰Îx â•`Ë’Áë‡Úâ0úVÏ0äiê»" d‰:Ð~š:µQ¸$ã±(&FŒó½8#‚Ë5j,GÜHú{HçÖ–4Ûo8­}Cèn­Lý'3glÍ蘜ŽDÙŽ 7EÀñ °ç I/7ÂW±T0ïÁNï‹¶z‡öóó|x±1ô²¯×åÌêxgÍ8ªÏaf¸Ì@ó%¹æ1m?é¼VÐwEQÖ³ýøeøaSºhž¼KÿLðãì«°Á 'ÌÞËÏ4!ë!‰!¤ïõ,嶤@á Þ¸Eÿ–(§]í„Kz‚‚O€Öié,sG…®‹­ $—ñCÞLÚÔ!u¥o&nPíƒv+¥$P¢Áý=.)}zh¥¬å‹ Ìú|: Æú‰J?VD‰à>•Gôró®uM‰BÒwwµJ QnOzdìúU$BÓAñµÔ—äslS6*²¯«¤ƒhæÐ]©Í2«™©uÐÂéöIšZޏ«fá[å?l7­ëNš„dWB¼ÊùYKÜWlýŒzÿJ=øw¾†T% o"’¼Ù_†_¼®‘| m’Žnï £°˜sí:ŸD ©õH ×6l ¬¶ù¹ó‘ó‚_ñMòÄ} …e<ÓVI… T{ªÞ«cj$v=@ù—„4ÕÙZÉw59Y’§$­Bo‹Ì’gBRiòy É‡Ê¥ç" bð#k­$ÕV¯ËÆ?J‹¬²ˆB[à U^3ihªª%(¾ mȶR‰óSu¼ßCöI´y X79œ]qä«<Ô€Æú˜…ê¦Òó’¦Õ~ÑœÕ1®&Ö!=s´ÖP˜œº^4ºÞ‘tÓS܉ûIªm§[`àú’qÝ-öbmUÙΖž¶§œEí ®µpTûJ¨)z8m_`æ¿– MQ´JV¦Ñ ±”¶¾¡ío^º«„8á=S±()Û¦#¡ ±k‘èM ¸ÒéL¢¶•2ve=êâ·#rÞ„Ò?#AÏh^!}4M~ÖÆÉ\÷{FœVšžvdSë}„áÔx¸C¯âb5«8ÝJûG*Q%O‹ ç‘c1ÆžJ&cû‘Æjvæ›2=rg€öœhr­ãçBí÷}>]I“£‰³à*p’~ÖøÎÏw 8Œÿjåìáëd·ÆëÍþ”oº>K¼û;ŒÅÚ’ÑâÙôÎXL¨MÃ%Z»/0ÆD;ùɽÛiUçœ ãÎ%wÃëVZ)š:4eß§ ›8Í3'ÌÏÉô¹I…‡ë½™'œ¼”H—§“¾´?:¼™z ðžm›ÅAŒº e’§€¡Ìž5QgÍu '|vÓÎøl˜Y[#ëâ§°7z겟,i×B±„4 ˜©]Lå «v×y¿ |ý6¢LÏ[­Ó5´’‚P15@SƒUkd*րߔøëª¼6'2ZÊÊ´•¿îét`[ëÀeL‚Y€±­wÈq÷‰ÔÊÛ¸¤)¢}±–mIf€ÂÚ\}ï¸úýÕ.JŸØo€¯¡!¿ëN Æ~×Íy€P[æ]tnm]Ò¸xÖç’ª›uÉ6W+Êñ÷µ&´þå½~"¡º‚á…U»Ñ žL›'HïN£†Ã»Î9w9ÓkG åê½;âèÑ«U²28ym*È‹žaKÿ«0Ú}±½…R‡¬pÈ( —¤òڗ껲öúqpª ærÝ—Ý!e´Kï®E $™sZÄwEÓîïÔqîœ6¹Â‡´j›IÐï@*²²V@ÝÖ9Å…é3ÝŸìd%^ðâÓ+²Ó¨Á„{‰u`‚šÛÊ&ÅóGêðZ5&Ô´MûpJ‹,?ZZÛ¦6À_ö接DÖ²+¥Ac]Æ‹¾Ór=Í‚ƒZº%æÒ“‘­ß MMÓ¬è \¦ë»¼^ç ¦q9ÏÕ›M@oWÒ«NiíVQÃö4Ü3ŸÑ¼Föö¥IeÖ“ëÞŒ$ßfÄû’ /iC?e|O˜1=vn/?ôXUªQBÔ›µr{¡›Þ½­Ñq#Ó%»ôªs5z&K¼ Äp#ÏIÏÔI´Â‰E Ы þªö#Ûgdšš¾|/À|.™àÍU&h«b+Vº×g’:ìEÀd¹§°„åk¹þ:™“]È1¼‡¥¨o÷Ÿ¦=g/[ý]…gô5Lþºê6á:¨ßhâ•„Eç• A½Ú2IU{é:&mr%©D®“Dšåg9ú·?qئÛlSÏd¤§ëηžV¤Ô”ò Ó.iŽ*$HS­Š8$>’QÆÇÿÊúûJ}Çu% !çLt¹ô}×…†ÊU9¯2W=!ø]úëSÙÁ£©b¥™Þø(ë¿™ñ©^=î/t=ŒºE·AZnÅ“YÉ›fQ;I«…Ö²¸­Ì_ÖWm*¥.Æ«¥Ol >Gà U%ÿ oÝëûª>„µÍ½ûàŸù|)u[¾)vÏd¨È”¿ªò2óü?n¶“™"pÒè;"˯m\u¾¶±ïHVûÏüÔwä2Ÿ·e°ÿNz"hÿð™ÐÎ+ÿwyÜ÷ü¶³¯bõOÊÛ§=èÿP¿Ì¿Ÿu,wù}©ôÎ×½ïå|m <¨Œ‹ïò¿¸ò]\Ùúásy¾Kôÿfoå-<Õæ(‹-ë­xÚyç®#=Øsg²ÅóÎDJü:Ÿ[Í2ÂcPƒSuiÖDn¶|1ß^ß<æ#ìÐõÝîözŠÛŒèu‰4ùÇë;8F0´p ฽¿;{¼ÞÝ}‡ÀÝ€] >6~ø{àÍáÅîáöýÍüÍæ«àO÷W»ýõ>Em`ù~3|{yq1§ñtŸž5R0ÍûòìáKŒ„Ã׈ŸÞßž^<œ”Ÿ@!³Þ•_È$é0¾u ~yo ;3L¦÷›áÕãüðx’7ö{— ý¹i±L]\ìûýãõíüxq^àœ_\>\\ìË©¢Û’– ?ïn¿I'l8sé@Ä(d9a> Aÿ²j³åÿ”Ããî³oiE‚®Ÿ¨å„ýçï^~_ íÏv‰ïÀïEWJªn>˜WNÅ `nöTß‘"¹Œ~QÁç]p¾©—ñYïåhVbÌ·XzÇÒ6«*c4÷œü„‰¶GÑ‹yù;YϺ˜”ÈUû£ˆk“‡UfÅ¿&*>Zš]4zXáÜ¢€ŽA“ÎêCa¤ÖH뎴P¿¸)ó·é['À)Žy*ëíbûDjçÚ¦©u8õ¹JªÀ¾aåJA@ÀÉXˆ[!÷›Æÿö'I¶J‘õÏ‘ ÜäÂðêÔÕ ø&\»¨#üÀX_„óäRVdY|Ȧtœ¨•hÞŽáüÚbõ1Є[vÐo8„üð2 ±ÈéFjûôÄIXÓ¶²zTj¢w‘oV`só™´:ÖˆºÔßh-–Ú é8¹ÇVÚÙÖ“­TC ÷¸Â7´¾RxžWÏ[#™EÛý’îHÜFÀF>ëìiã"‡ÝzÕÇóLo.ZÎ Ó~²*Yiþ^¹Ïyž6¦k Y¹uYôÃ{È—ë¶,¡D‘WÚíÞ%p“×c%ÒÓQž %‹jLé?5œÕ»Åݱv=|éû×GÿÿþËàcendstream endobj 124 0 obj << /Filter /FlateDecode /Length 2301 >> stream xœåYYT¹~¯_a¡<¸&¹Ž÷EJ"5ÛÀ¤¡î„2ŠîT]w¨ªªø÷ùlßÅ=˜5Hyˆ*—ëØçœïìî7„3Axü×.63Ét ogœü8³B0#$qÆ æ-ÙÌ\àÌëqc=;Ÿy'˜ó‚8«9SDãŽY“¨ŒôŠ]P;%•²ši_04F+ï*8bùà™3“Tý÷R(«<Ó6Byá˜çâ†PÕ°sƒªjd7ÈTðãäjöf&”¤ÿXlÈí‹ÙŸŸÉ@ VZrñr–aD¡¡=wLHC.6³Tðyc„u çó†3˹ ôΜ3Tð†žÌ!JЋø»äГÇwóï=¹‰|ÊÒ»ñJ.ƒÔô!–kioªö0®yð\Ê@ÿy/‹k‚½)$nñVjÕ_è¼4"i,½ô4¡iBDñ狟`س0Іdš\œÎ.~x%s«éß`)Y€ÔçãæÙ¸’ãj5®ÚquœÿeÜl¦Í×ãæ~\-ÇÕå¸êÆÕ¢¸{Xý‹ŽËŒ«óŠ8]…Ý¿ÇÕUåÄfb2ŸGÔvÁñ 8}‰¯|Ân7®Ö•Õu±®rv;®þP‘¥Ô$âðQå_WDØUD(Œö-~5¬þôŰ7ÿ#WN›ï+VYN„–·*xß*.Ÿ|, >öG¼µ)¾«€;ÙrS帨AÞTôæ570Þ}o#"¶F†?LK1°q%ÊC5ØD¶÷ßÛ¾"ñd²«ÂÌ_ Æ÷vÅÀV5¸,Àª\€Ù'ºø±¢ú»ŠtÿG‰`_QðmÅkjueñPƒäW¢ +aJ9tk—èÍ&M>¾f mRj—O ³±]+Ô[}.V‘µ«€YW àûãï'ã괂潚EklÞ~'6Ÿ °É¼¿|5…笪âV“üt{YÒjÇ«idQ±çú3ÕoJ µÎoJØ·~Û½‹ÙÓ8fho:WéA”ð½ìø¹_’çd;3ÌÈ  f9AP!ȯi¦“Ý.Î(‹N9N3Z$ïwâ8óѸq…»L£œc²¤6 ‡1GÞ w&*%¸b˜&ªi§ ÒÖ2éKªq§ ò20U Íï5.1˜¨>5ÒN<&N‡!´œé‚b[JXŒ2ýL×H u2eà’6мžBSׂ)Mm±öqí&MT~Î'€¬<ΨÊqÏdœZ‡#Œe:O­*Ž@Ûq§¤¿\A5ìÜ ²N1kKª~§¤¤˜¨J¹¾ ÒgqÓ°P‰TIU`ª ëcëÖh+£ùhÞÖšYaý±ÞàÒHËœ&RF$4æ‹l­à ˜–‰ Ü’\ôüL®Úãüâ×B|ã÷h:f”ÈHC&â$bŠëÏŠ™âúë3Õ'¸µV0‡Ä“õ/-Ò(2FY'U2 ´‡ðJ#þ”È• ¤sˆÆ…TôúÍõrÿ¹FZf,âF@^øx¤¦'Çu»=¶Q3lKÍáq†¡ÕéçÛíúØmvûe$h"@Š@ œœèùݾ~ùr®"CØ·]çzìágÒ¢(áT‰òΪÝÏ›¨„wÈåËÃq·Í ±Ì;ØG1§df}gÕ-Ú«]b,¤Ž©#*ì­ïï¶‹n»m]ÞÇ÷Cœ5¦ç·^&Á¤ô·¹4ÈÏZÑ%4¾Ìâ”Ä¡ÆKf‚Qý©Ýúzƒ‚PAÐëCß6Øø"£‰£ž–Þm×ëöÐó7:ÄlÂxཾw—Ût¡ä¿Ï"Ç8\Eƒ>DA½tãò@íºí2ݪm|×’D:¥{Šã~×3.<¾„Å÷6à¢{{<ˆ #osn$=fÓp§ènßkm``a'âÝ;™Uy°»NæÀµ©Äâ÷XDéç‡Ûˮݶ¯wë.IÖØI†Dùày?e¿3´]¼:ì²îÁ8ú[·^g„;è ³ÎΘd'ú÷v{häNw|Ÿ®Ö‚A)`Vù,Þiw<®—äÙnñ*Ò ™Èø¿1VgèNw×Ý!³J‚BÃN rÞÈêÑróz5hÉÓ«#ò¿qùŽG]»IþE<ò!NÃ[¥ë›ÄGÝúmBW¿~5ZwÙ«‡*Ž”FG ÕÛí² O:È™Õùbú¸=¬&ɵŒxÀ`Ù{åãe†Óú–œÅ02ˆ —à n ":Æ®Žìö/ç2âžîÖ¯²õ³†‹ÆGÆÏèžmÚUÊJZ„O|·ä<+ðdÕ­ÛËåÀµ9 €Y̦MLÝíA¦Ú-·Ý»HoVÐ^GïôY–'°ß!ç% ½Þ_­úDb6ArÑ¢™z¿K0;ïá<—Ëí"ã‹z]¬½gZfðžu‹Õf‡Na`.䛸 ÌUÝ9²9m_1½ÌÎ6äí’<úÁåpbKî£ßã´E–9,rRƒâk☀ –¸Ÿ/Û虉¹²$à6‘•¦çGF’S¦˜X¤‰ž†X}>*¬¤ð€n{5$ÄÆ£¶¤õ± fç}E»!WCXãQlbÞTýÏëMÅP§^(e £ïPôê:? §îø²,tˆOTñEÚÂû‘ó&r;ÏÄFlFÜ(1Ì‚é™Ûpte÷}¡Qþâ,_¹4Y¼t^¦'lÁ}qò,¾´éµm¬3ƒB”á0Ä$k`S©€£‰OäÕú©cNsØïx™ï@”å¿ wœMreݬpjçÒã7,áb ÆåÁIÛW9=¼Ë "€?ºyháj—rmKa ’eúk*7Úµíþ¼’n0n…µ@BX·q TŠ„íˆI ›,4vOgÿ°£¿Hendstream endobj 125 0 obj << /Filter /FlateDecode /Length 4819 >> stream xœí\ëoe·qÿ®ö¸ð—µ{Où~}À š4¨w HŠâ®V«ÝXWR$­ýÒ¿½¿!Ï!‡<¼ò®×‚ 0`S¼Ãáp8߇þãNÌr'èŸå¿Ç35›¸ûöLì~q挟µ—;oœƒÛÏ‚r³‹±ô\Ÿ=?‹ÂÏ΄wFÌZªôgg•ÕhF´vp#ð£eóYëñkhæ[¥ 1ÌÞ2¡–.“Óa6.2™‚ôs’ËT‰–ކf‘©Ì¶ŠÄf»«³?žÉ¤ÈÝòŸ‹ãî§/ÎþùKwqŽN¹Ý‹×gYÉr'ž½†b!”Tv÷âxö»éó/>ÿÍyPsŒnúïçç˜5kÔôËó=¶Gãõôü|¯µžTÓW=‰ˆA(§/~Ay!‚ÓÿóâWAk&CÀbmPãÅ+Ìúe"Ž!—‰•vsP ñ$åù‹?€j¬${­ì¬Ân/Í‚Y¹ÊYˆèÌôoç{«°¨ §ëÒy(­÷¥u[ZïJë±´~?•æqÀ¦Þ—ÖÛÒúÓˆ,­Ÿ”–.­gUì›ï*ì·•ð_k³2ÿý9o’Š¥œ£µr÷â7g/þñ„ªJçÝ`=U¢ËÝõ@Ê¡"=Ø…ÊæÍ€ÍÃ@˜‡*õÿÕæçå÷«°L»¯žÜÍÃP»_ÿ@‚Wqh_h3þé|ïTðŒïõ@üo}×#…0™/F;ðÙ@üûó‡AßÍ@]Ÿ4üÙ@Ã/?õ)‹ŽÝýÅ > ­ ¨;ùiï]ú›éÓÿëµ÷çCóÜnÕãHñ9V¾˜¶õNÏBþͺ?ʺÿãÅÙ²µJÎRïŒzÖ@¸ã(– {ÜÝ_î~»»y[±³³°0‘¡`%`ªÛ0KC xúüê’ &ýº'2iýl¥ÛY€K}Ê¿>7˜7ìæÝ›Û‡·UÖ$­w(âÎ8gd%"ð©ÝIEý®È;k¡ ³@ÈßB.ÅÝRéÓ3‘X²X»B9àhÑg?=˜x¬Ô6HAXx¥vX ¶PçeTqƯ+o‹£š`6¼j¼CÀF"Ög§JÏõ°§u}ö¦!XEÐÛƒúJKà}³‘`!Ž(´Œ.ÄÑŠÙªnq 5GÕ~&–R„9ö¬Wjëe˜­®ÔUŠ ÞµŠny¿óQ¡@RÞ™œ¤-[©G½b7¼iJ_7jK›Œ™±îž÷BmQ~‘Vjƒå@Ck¥í¬Cµ%‰3(sQHÆ­Ø µÕ°[S©Mð(Ü6¼µq[¢9PýQÝñ^¨­‹vfÄ~¿Û;[ÛØˆSö„™®ÔÕL•Ñ1ím1ÁQO;ª3ÓuÀ*lDymNŠÐ²'L -|ÂmO/T'ˆÀEÐò -dj.‚uýš·=í¨E„AèÕ2 ÊÖ]èý°VeY{èìbKUzè ÃúLÕ…¬cíi¨Ú¨RC§ê#ıö4T­¯k§ê¼öX{8Uç€ÇÚé:W:ÖNÕyűö4T­áVoh©ZÛ:Öž†ªÝ5¶ŒêãÓ¯DÔŠ4%àKnç{¥•b˜µ)Œx?´Aƒ¬&I?HìÔ$HÙ·fl‘ÀÕJ=±p=¼|¸¼y<ßGŒ¦»ûËôwIÛ§—X]b¬ˆçtcÐ…*ⳜjéáTV"ãA…•jíi¨´dŒjéi¨œÒ±ÕÒÓP±Ð°P±5~Øm+ð4Ù'fc–ƒDv¾×4µ—øC¥?0Zá³þð‡ãd¡þ‚lP÷f§”æðy UÈ©jöæ‡F‰¸A{ÅQâïŽ//ï ¨°µÎûŠ*¨OD‰ ý$!D3–¨—Ì@¤Ök YI EóB!¿ÀKªK«gì1N–Ù2^©ÁÛÍÄs¥6ˆ–!ö¼†k!¡‹c6ðl¥¶V@­¡Pc?fï6re¸7®8ÑщuèY/ÄqVþñÊAÝU©J@`gQAÄ-çL¼:òJìÌßÈžµ:Tƒž[ûÓ¾êö@ (ñ¡‹ƒÄà õ0É#À ~éóD&¶t‰T!¶ÈÁ2l².ðÈjãØIÄj}âHd¥^DVêᑈŽä­Ô`U(96¬êˆ ÄùB)&øž·@x…†MñžëaO;ªK[ýÏÒo2ñ:{Ëy=uŸ­ÔÍùQÏ¿ J¯ùC¿â;ýÂ\˜°¸èII¡£?î\©­WÀ±J»T=ä4dl¨‹‰l™c$³R×`eñf«¶ݘÇ,ô=x<1Ëœ¦÷äØÍüÛžN¢âü¦sì*I“sz¢µƒ'ðε§¡j]òX{Õȹ–ž†ªu悜ª5çcéhhZÃ<ÖNՙرöpªÖŠeµ4­Ž™Ö? ìèàggåæ°5ÇîĉkÂØ éPÂ8f’È Òë”$¡ ¨eSéºÜ(舘£ù@èsz© ¨¨E™‘™a¡*ЧP1èSøè³RqèS¨ ô)T úª} ƒ>ýŠÕ÷‡>ÆÑ £ý1¡Ï(¿?c¹‘œ";3úæÌ>1Kýós˜cfŠÓÛÔ´Òêéê}f#"¢î©?B[~º¤¯Ïû¬QÌ•>#qèK²yà_rýÎìyúD iÊ9Ý-„(MšØJ¯uœnxÿ-ýÖ<]Ñ\vQN÷´EBMG*]Îb/fÄ, $jmš^S¯&¸¶§›»èýô†XH ‡hMÆbÓ§(î/ñG@Óeb bKÍ¢—?‘QÃÖÚ•]'5â/XA ô¶Kx<§Ãà”ärß¿_–ÂôÍ9]‚F§¦#xËx'~éë?5½<%@^…À†q]1–ò_eµÄЬÿH(-hºØÞS0²QxÄ“/zV˜ ‚³G´ÚÁQ¢µ¶ª[Ù™òô¹§^ kÙ'ŒÉV¹õïWê=,6Ò7J4ækL£ÅvLïSSí°¢Ò|S›·µùP›oyïÀú‘XaŠõÏu#_Yîà„ü€{ÍÚÈ<K§ó¾|^£ÂA#ÙO½q‹»ÀM¥³p‘½°‚õ¦u ßÈß-_‚¦ýGr0N®ûá©ÛIo }€ù4Š.ò„ÄL$CðÎÄ>›¸`î“å\–sé><¤ ­[å_úˆ·º¥O'1Rˆh|^U”ùï1í>R}ô‘hiGò¢²´‡Ç^½é¥Ca›–MüÈ[椫{#ž þHfMµšOÇ8ßTÆE³–‹l­„ÔÍŠ˜3Nñ2 ‰!„›׋œ1´ËÔ|à2¡Ëöiƒ[†ìÎá&}¬D¤onVï ¯ºÃË|¥6–ŠÅ£åƒ)†%C4Ykò[»¢öc$¤æ:žv¼_%Ù—ÍH [ É4 BR§ÎÅÀ7ê4¨+Š¤Îˆ‰\cá‡ËÌžÔn庘:ßmÖKpÑœØÔWuËæÌ6?ýŒ™ì›ì}˜b±IŠAŽïä«Ö] Fj¾“7«.°“¤U`D¡±Sïê®>.“Ãé=è€ Ï1Iå»ZŽ&v¾³Zðê—Ð,üU憠BçeÚÓ•ú]åÑÚº¬nûi˜Í ½™ä­…lj‘I ŒC@{[-7GX­è(Å®–ýuûáú~ý9›Al¢º`fsKpÁKkÏyz yñhÊИ٫îHÅ ñ6÷Æ”;Š=m4•Œèª÷/ ô`w[ھߑA°½Ïý{˜õÍP¢ùö²Øù‘Æ·r˜ûGÀmì@Ìòw¢2¿5ˆ È þ!B”¹˜“oÛ~­Â„õ)¹O¿M ((%\†z+9íB¡“ôåš *}„/Pã@ÿP-•R °–>}yn%Y²Í¼–ç×IƧh¬­Eø£ÐPÕq“9*¡çY`*-©òÇ}˜°EJŒ€¾9y€¦ïfWu2¼„”Z­*ä/:H:±„·µÁ¥<î8Ü5Ñx¸œ¸jJ×GÞTÔ¹¡ …’þÍÂÚ¡©N°"¬ŸeIQù¬ D¥I:6©öÀR 8P°jcÓj›‡ÇÌk;PK$¬ÎÌøöêm5Î)c D"o_äùŒ´<Ó2«¿ÚzCbÇ1oo%)(/;X‡UÑݪsZO\º,ªT› GE9º lÓ’§T¥7 ¡Ä‹’¬?‘Kå•ã1’‹w"A?ÒŒ³7 h†“ÞÔž‚+K+Õ\ÎqÅ£e{–ê¡M‚Xò:Â<]¤n Å\® FÁêÁ\”˜°lÌuçÉ__¯<Ô©^q ‡®‡.³ÍÝ,¢‚|’¹…\TÍm‹ñë÷£ˆW¤úKį¸Ã)œÊ§Dõžš‚Yä hÊveì Ll¾?–`È>b‘Joʸ=#È¡Ê{˜éßåT.ž¦„[,/kS9ÓøÅC¥ÈÉ~aÐ&û[fVÜ–šµ'Sñ«Ü‚JøÛ¤3$SuÂb¯k©5/,°›_õáa7]É@W—¡§vÂx¯F êDaöÓ81#ûêb$Aú§1Mb·> ì‚äÂå6¸jñà02>Ôê|g]/Ǩ'u]ܹ(òYÕu›h™y0Ìê%'šþž¡ÎÇÜ‹›/vï5`¶ÊH¡~µJîiÜBŸõÀsÖÖ9wÕ!oŸÎ-Èf©I)l_ß/Àú«ŽuÊÈ›s‘†9Ì}¶àÏtB¶Z-«:*‡‹q4évœUÄ—Ò/e’Þ¶ùœÙ7´¹tÒ·…ô!3HeËë‹›Ó¾HqQ5ßDîhÉL‰¡hŠ&î×z ˆô–1y³ âZtŸwHQŸ¬J:ç&ù“¼…Á)C°æq-Ý%‡>ù²î»ÞÚ<ù<åÛÁ³šã“/GZêØÑ«šáã•»„õ)Í׃_ùCÒÑCœ:Í–V}ÄT¤~UZUz ,ÜHæ‰-x=Ь?ÿKéÜÞ Õ7;£bu{ÙŽ´2z_ôOnGϦ>ž55z@ö0ür°®úžòb Åã@Ú۞ثBß-eô$y¤ðÑSÎïz÷÷çp¨ÿlÑÍö´áÇ öjlÕOÔ‡¿öûsè©y(•EÞzýäâߨMèiŸ-éí`æë‘Ú·ÏðúÃJ ¢<·~1>6 Àd(‡¹Èõ‘R!6 ¢Éž¬t]ÜUž„n>ìa%¸©­î7¶gÌ æLî1‡OœÛ?TPqWs9ƒ' MW¢Ñ$tø²Ôëï—™ÓVY½uáȼH™¶¸àŒŸW´Ë¯3†É`ÍÐÍ,ÛÉåÚ5#ýHw½Ò˜³Jƒ”`èÄäéœÑäsÆtø)PŸ[ºxHx—¾žrT…=´x7q’_¡¥)]l2 ^ø¶€¸©Wö]æg]eÖòŠÏ’YÐ[È’p Ýè¡=\õç¶ìJk¹xbFÙ‚µz`žxG©œ›.ÈJûÆ?6V6#?‹¿fÞñ>‹êCøÀ›³¤§\.ΓWé èð?RYZäÈ*+m“ ÍY[¢ë)åõ"^dÇâ\çéÓÉô®gÛØbdVó›|ú£2®gû²³Ëéþ¹µ9vl¿)Xãšó¡¸N^CwÕtìûúœ —ƒ|‘€fºÄ+Ç÷§*ågyÌi¢ ¡…›Ô˜:ö’zdz°`K-½±‰ÏùúS;¯×Oû—uÓ—)¡1<æO]%›xKÓ8É-«„NE–ÃO¯Òý½‚ÁüuËïr'Êó®8#Q4P믤ÍÙȺnÕøy,ŠÉ§‡¤Ex¶ü1Ú¡rñØ(.O(jIyÄögŸÔmöªgN/)SvÇs£ÀqS¸Èžü˜¨æð‡< “÷•°Ô3}92ÎáÕ*š“ö&.öA9µÏyBr‡Ï_×eŸ> Lz’6¤tûÄ/ÇY9*¼Ø”–O´ŽêôËE3Áœ:EâYPX.,Iõâe¬ÜñY=ûJüÿòÏ¿endstream endobj 126 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 822 >> stream xœU’oL[UÆÏíŸÓ+4Ø‘\ý7ê—!é–a2c¢+&“)¶D†™KÅ´{»¶Øµ¶l/h)[/FÇzÊØ2£›„`²nÓ3âªËâ‘Lü÷á½ñ샷ϧs’÷}žßû>‡#á8ŽÖÖ75í,ÞžÑÏêºuÐÎÝ vËØ?5å…-ù'ç¤xlr õx}„4’½¤‰4“:²‡¼IxCˆXÈnòWÏýnj5Í›kõÉ2}²WÃo4îËŽ̺ÛtT¯0+³VoeæX®D Z–¡Cdnæ\ ÷~þéë;w—¾ªß¾­Áå’ Ô°JüÆýZÀÁ‚=,(¤TÈÍ .Ä:ýÁÕè5àÑüh˱´æfi9ó{¤ËÝ ¿ø í’Á×–EºöxâàÆ Kô¨ÏÏݾ›ß½cûž×]¯½÷¸ý­†§5³¾KVP ã ÷í9)¶Ž7C xVwÊû? 9!]úPíý«ób߃nx›o÷{^xË}>{&úFeà߇pDrÚâÈ)©¤:"Î{n„ÁúÒ…_®ÎµO‡É=LT+‡†ëFá 1§>|ø‘·cP’30üH¯n!¢éS÷¹±ÆWu“pTH ¥’0Éçdˆ‰ŒÒ˜1Y÷p—Ò'%ú30ͬ²B®9æíð´'Y8¼´¥ ¦`xèl"9 Ÿ @´ØÛéß‘3ÇO4z³ð à3ìïŠÁþ „_Žû;ÜþcÁþäxEÿlðtx9z$àž~waiñÎÙ"!3BÓjL¦ ¯ +Í×w¶¼kkñ Û̉SÞÿ§Ñ±9é¦PwÑß¾Ÿ›K…EòÙº º6µXU¹©Š®¹.jþäð¸ñ34ý¦ †Ó²Ër:¬ªé´*²ö”_³“ÐÊYÙ&ÛEšÊ‚²!øÞ§«ÿé¢MãÜ2ãg˜°-ÖYªdŒêÃÐ)1']W¡¬Š=oÅ•µ!ëè:ðÇ6^èÜp;ð½ÏÀÙjõ… Í—…”„ö ùvZ&–X¢²ý °—€½ìå„ü pôÁendstream endobj 127 0 obj << /Filter /FlateDecode /Length 10633 >> stream xœ­}Û®d¹‘Ýûñ|DÂOyªœÍë&l¡Gj%h<#UÁ~èŒÓuSk×iUW,½co‘™-Ù0¡³V®³c1$ƒÜ$óO§íâNþ×ÿûúxð—XO~ØNÿô»$çO{ÊîRòéxØëv)q^>”Ý]öâN{ŽÛ%x"M¤¸zɉYÉ—pIQ°&"Y!ÇK,Â`J1\ð,aqÈ*µ\ö´TõKQ9”KÌUˆ*n¿”Í)Q‹5Åꢦ¹¡IØÛNïþôàØ•§þŸ×Çé_=üÃï}=ÕKÍ>Ÿ^½{hnv'Gnp‘J¿íçÓéÕñðÍÙÅÇÉíÄ®ç—/¶KÞ¶PÏ¿xÜ.{ µ¤óW¤osÁ_á{¿m5îêó×DŽ›+5žØm[ÜÃù_×ã~û/DqÕ¹˜ð—!ú×N©bÈKõüÏø´•}÷çÁŸíµ”’ÏíÏò³2ø_îX|‰GûK*õüÕýeûG)îüÕ/A*µ†|þ%¹ùêãù×ô±nÑg]´_ãóVËæ}=ÿ·¯›ÜT³IO)ÙÇиŸÈ\b_¢;ÿ–½™*¼ø‡W¿¡J¡ú•IY<½úíë¿ÿ† á.d<Çó¦êðþRIõ1Á¿ÌOßÏOç§çùéËüôíùÆŸ|žŸÞÎOoæ§óÓëŸ~àŸoX>n<úÓüôà Ï7J²þöÌOïç§§Ö~¶Üõå'ÝõvÿÓúøÒ7?ÜxÎóOoýízò·ò#BáëW¿CÓ%](BNé’öSp%R|Ìÿ~~{úï§Oô¯1QÿèN¿¡ÿÿ÷“~£r§HÍ財o‹!…Ëî'‚.âŠ4êMjhœTëe‹’4‘Å"MôY>j!‚µg꞊dMd±¬R©}±~ª{KÛ©Pï»S‡,û7êkJ§¸¡ÝùÖ¿m/ò–¨±ùs¢zß÷†‚³#8Eâ—ýìÒøìÏ~[äªßÐ/G¿sމäàF,ȼÁ*y§®}"Š•Ë~ÙƒduD²˅džÁˆb¥BCZˆbUªqú¯`uD²F‰K–ño«TÁ ÔF“ààþh$jõp!—Ó31ÔÓ?¼üGä8* ý#ËoÊúµ¡uÓCÈ'Ÿ/{ýæÇ×O_><z|õo¢|©\6‹cÉÔñgfþëççïž¾ûðñ׿œžßžÞ~ûöç÷ø;Ìíý¯Šþëí=Ó¸„Ä€Z)È ÄüñÁûXH•dQoBu,—- ÂSGbñh٩ЈV‘FŒ¶žöH¹€Èu?¥*š7!…*ɺD*É«ŒDZ‚¶œ/õá— 1£w Ô‚œÛ!P³²eÞñà‘ñ?jr”I!2REôQHµé=UäpW’©y~N¡~”òc‡zϵë‹Ç“££Œ¬ÆXÓ‘|Óþ™ ]P¤¡!·îó›“#W*³ß/9Ò· ê3ê‚R‚ MeÖ¥™›uA5 «""vdUT²UU mŒNÖEÙ¨õï².(x[8ë"Qµ×]ÔE¤"꺠çQh«º¨á’UU8ߟ2ªbOþª¬Š¬ë!Áq²å—QÖB$û1ªZ ¨ðº"È)©Š VâC¯ˆæø@E¸Pæš=\…î*dDû~ªÖæS;Ä ³þ¸ÿo£ùá’ ÊhÌÁqoð«_¾¼}súöüÏOßþ@£>uŽº6—gÆ7)¿z Ô7º”ÏoΞÝÜ(7É‹”¨R—@)*uÞTs¨Œ”xP¢¡Š•2…V‰Æ˜µa˜!$\&IBà”‚vŸ…!€õ=ŃSß3 møxÙ’1Ò0©×êéŒÞ†¢œÔJOfÄîú4GBœðPß§Œ¨6­ÛbÌ hrÒS¬éF‹I‹³6 $”¯j5ô@‹í‚!6f‹&ƒÝ<µâmWÊ¢•/u ;žNZåÓk/h»ZüµÅÜÒµÔ‡™œýH[,¦<šWö;YS×d-]”&ª;j[޾ÍH}Bï ¼£ŽTBª]CàШC#…²ÌNÒ³úÀ\n£ßË+L±V$LZ¤oj2&µ#ÎF|ÃŽUf_yh,1+b0,…ñ(H™Z05ƬýÂË$R½ÆÀŠ=1•žÐ˜b ¯jLZ”5¤1©^Ôµ‚„z„(?ˆ¨ÑqÔX‰Ô£áºEÿÔÙ­}± ,a¨R+O—µòks¹%jI§©ÒÆoƒúK )wî³Ù.ÒÕYKÔÅ|ྗ¾d«ž8!vnïÉ ªªèj4³<º®þKaŠZ–ûò “),ûÍbRýÆ]—Vß°cÍ%‹‹Òð–à–ƘUg£š5¦½Õ¨×³ø©ÚS,áUI‹²†4&ÕËÚÖ˜ðBD¹aÆÌ ¡öýNbK ù°+Ñ Ñ¢+÷EQ4ñ³üjcå®Å\‰ê¢÷^†(œ­1åÆÕÀëÊÙBQH4ÒµÁ“õ€Mïj§(ˆ9¹¸ÌE4V«^™j$)ûʰ“ö[dc°aR9eóY;Vy)/ Y» AÌᩘæHš2Å`¬i ¬½MÙ”r1‹'NÚ S,áQI‹¢n$µ‹:VðÇ…rÁŒ9QV 8_‹QinˆÖ¼X¥/ PÖ5Ú“ÁXub½kp 7TMá…¦¡{KË4§0åÈ|q–45MÒÐ(—ôD¢!‹&’,8ÐD®2&ÂèÑR@êÕ- ,8:Yé«Á˜•05çKaŠEÀ‹1aÑ—5ÒL¨§â¡cQê;v¬R{ªæ8XcV[ÝÐ,…Õ–´E1«­‚(õ‹J‹°SžÐ˜b ¯jLXT5¤1¡^Õ¶Æ„'z”(OˆÈѱԖá7¬?F~'‡ÒŽ(õ‹•¶€d˜4'>cõ™'…RýµÅ‰ÜÒ5Õc•¹òßyÄTg)LyuMk鬩+Ð<†ZÚ\*Íöê‚Ó^i¾Öºnß²Á˜Å„”·:§êc/ÚåWñ:IB‹“(õJNq:$¬±Ú¨­uL(OeõS;V‰ù›Þ/Œ_Ð8¬j–ƈ…R`Ú/-ŒYõ£ÔŒY•héƒ –t©Á„EY;êeMLxBÜ;®â¨=Ëgdf¼(Ãïm–Ò†hõ‹…%„¾ì5– ÆÏ ü®E©¿¶8[º¦z^‚â¥¨Š™Gg)LzÕy¼TÔ,¡k°¦.J#ÜžyŒÛ©}n¤z¯ÔÛSkÂjxÂv‡¾¾j1°Jå1h/aöTcV†²´SÛ£S,×–ˆ_^aÒbvmÉÿå&ÕÓ™³Qß°C”šRüØuŒYmÕ,…å¨-TmÑ``!Y¬Z½Á˜•±¢¨UiïбJŒíKãA b š#!ÞÂÚò~eLc`ÝÙ bNFn¨= 1ÅÞÔ˜°'+FAB¹ªb ôÈPNÑ¢ã‡YžÔ`>祥½!Zûdy‡#@¶žˆµW^őگíMä–ª©Ý“o1âMv_e´˜ôhoÚiªœ)*^°ÿ¥ ‰yÊV°œ·e Ø.5H‡˜$½SÆÀ":V6ÌüGI5Æ,,Áçk%‹I¥ Ãÿ“©©ÎXl˜TO ófÕ7ì…vy«¶-5Š¥±ydP –Ûx¦,ÕŒY”riGhHp„K5$­‰Ú1˜T.jÚ`Ò  Ú 3fTµ~ÕEk‹}Se”ðÅ¡n áAe¾H± Ï+…¶}5¤q<Êb`EÞe1ƒr#¼4&YØL_ «aÂbÁ+©¬-vL¨Ç¦úêµúŽ«Ô<í$1§ÉP î³6¦!pú~[©Û``Q:KIŒòÁ$KøÓ`¢¬ƒ-í²š5$|УC9ADŒŽ¡ö¨ÂÛKh:Ú‘‰¡s R»dí¼·+ÖšÆR‰ÅX; ÝFûµÁ†Ü’%ÄÇâøPM-eL-&]Wƒœ¬%k°–.RNᦖÚjiÄ¡^Y xÓ»<ó 1‡·ñE,UŒäÄ`°\±¯šJ7SZ…H†Ÿ=˜†„­R¶Ùl©.xwŸ”ꫬemmµ³x«a) ,ò*yPÔX‘BhícVÕ>Àú~zQü[ØPu¡1¡WU«ÆDÙ{4¨²‹Ñ1ÓX;¯™S,ƶøÖTö.Ùâ{,|à¹qgš,ÆOÙZ'/u_ÛÈ-EKw®X“¥î&Ï‘Þ`ÒŸÎ] ‹%t ÖÔE“OL´ªLé#:‡â –ZpÆïº ¹Áb`9^¸¡F<7ÅZŒYž2XЩäA’ÐâìµN·iHXÛË>–},&”ï8h“µòŽ«Äx×´ƒ«e욥1°R;R¨,j ¬ìñE«×³2µ#4&XÊ¥UíhL¨W5­1á‰!Ê"jt5VÝ0ˆÇBsænq(mˆV¿X4¬gô‡Øô>ü¥1V¿cð×ê¯-ä–®¥¾dŒ8oöaPBÒ§~³Œ)iR–¤ù²:ìÌ]sì9Äy‘‹7À Æ,^±¤B¥Ùm ¬À/þIÍØ0f Å –”¥ÆKD‹IÕØíéꆢ´Øm>ʦ1°¨”›ei ¬ïCÐ5ƬŒ ÆÏ دÕ_[È-]K=¥xȾÏMSS^-sÁs²„®ÎZºÖ›²PÈ¿è˜^¶ƒŽ7€qföc0°(|àMÀ )ˆ9HF k¨“,¼M/†Õ°e2ÝÙÁiH(Ç‹§Ñ™ìXÆqı¸`0fEìÛ2,…EO­ÕXÔXíd·¯1bÕ­…°ôƒÁ$KøÔ`¢ª õª¦5&<ÑD9bÅŒ ¢& G1iXDÚ×–F§Ì¼P Îìñß¹ñFÑb\@ßDH¿aq 7d éÕó ‚ÈïÕ†*I‡â½š! Qƒ´D­Á ¯æZô¸¶c'ð‹?žÝËØÞo1°¨ù"OÀŽÒñŽÁ`Ì <.EP÷á6IVª3K6˜´˜¶¹âj0©žÚêè¢ vˆRSv]‡ç4Æ,ÞoX ;pØ8¢•-–ëmy©·³ÖÈ¥',&YË«“W YLª_µm1é‰âÆ^/‹W±Ôž<"‘2_Îä–Ò†hõ‹åñh,óçNëÞyCé¾¶5[Іnzt½ð ý¹fk åÍ4–œiŠš¤Õt.>†Š1-º­b¹9†Ü—#^ÝQ\†ÞïÈó·n ðÚÄœÓiœcÉC»Æ$ G—vÃj˜´ççÄÅbB³c5É@‡()M„ûfO‹åøÔƒfi ,Ï{”Aƒ1kGe*í«½×T~0˜d ŸLZ\µ£!©}€ô@ž/',v\ÅMcµsÄ1P¤µ ž ¢U/Ͱ4G‰è8”d1ÖñIè¾67[¢–ôÈ»à"¸øiNaÊ•¡¤¥iÆÜl„ÛÛ¢÷}„Ëýí\ô44oûuEQF¢©.2’×ÛTX öä™/*ÙÛu#,|ï2úh¾š`lº6ØÑ.•É|wÃÜ,`1Åòó4„Á¤EyU‹Æ¤nWçAtƒ¢¼.÷ß;Ä/’¥±£]Ì·"J‹cV­^cÌâ)Žö„ÆKxUcÒ¢¬!Iõ³ž }æTËbÇUüÜógG|Móâ vD±È_”ûé`\êêDL¿Ú ’Œ û}xYPÁ%ã.Eãü³µ-ÿ¥1fñ›ÄŒýb% –ÂËÍg0iÙy5&ÕS¦ïªQß°C”šâi0Ø1o€0,…íòÔ•²¨1°ð² õc.K0žÐ˜b ¯jLZ”5¤1©^ֶƤ'Z”hO¬Èѱt׫Ùü<Ó~ë‘,RaÔãõ»&ø@SúLzÞ5AeÍhÁÈG¸¬ýÆ€Œ5ვsëOiæ6¯tÐ1ïx >dÞ„¡!řñ†¤-çtƒIÝ®Î3¬;Dy±§b°4vÌÛ KaǼ!A[Ô³vìñÐê5vྂm\94ü !Å™þÔ´&êEAR·¬aI´ÈÐ>XÑ¢ãç®?âçE×ÎìÈ¢äqËÔ8klÏÝĉòuƒCm§gò>nîÀYüÌÆÔyúÐ`Ìò=ÍŠó,¯ÁŽ~òºÔ®À}i!Éñó š†¤5äš»±Ö0©<ð[C­¼a‡(1¶¾ƒ;ÄM‚e°£Ý>²¶h0°¡J½Á˜UP?ÊS¬åRƒI‹¢v &Õ‹š6˜ôľî{1ØqGw¼:·ÍÌê–WÇ-‹…S»|‚Ô÷kÑr[“v×y•R{CÃ!wÜFTpn÷מUë%ãHxq˜7YcVæ›RK;‚ÔY “,ÜŸdH I{y¨4˜ÔN³¢`¤3tˆ§u¼×`G»"Æ5KaG;Öª—öNà!S)7³ÏÔ„4$9›“öDÍL*—µ¬1é…R×e;®bè®G;â×5€7<:É¢¤##ð »_±P±Ø;ÖA¯ë?-a•“߆¬cøXóïî5X޹§”×Mª;ÄÁÿTçam)NZÇä5&íaéʘcH*u^Ú`°C”˜FçÑ©ì(–Âqè_ZÔX©ŸŒÚÄœØNK/hL±–?$­ÉšÑ˜T.kYcÒ û|Sg±ã*†îz´#ííì=D²¿îJiüH)ݹ£JëG p »ÄÌçûéÛW”Ú¯¬Â)mð÷²&Ó˧vQÇ.Nikìh'ëÑêö¼¦Ü“,ª–yª]cÒ"n-ÞņIõØjÄ3tˆ2óOÞt’ÆŽuÊ]±4v´“éÁi{ \£\cÌ*| ByAc’%=ª1iQ֎ƤvYÓ“~(sIØbÇUÝóiG2%û}ŸvD±¿]O¸æ¿]XWiøÂ­ i}õŽßPâCô¹ux”ç´uS>pa_ÊâµÂÀŠmœÀ%«ãƒ1‹—Ý^ÙõÏbŠ篾LZ¤©”ÆbäzÇÆ! ƒ¢ÔnF‡Åq^±vð™pµ•EEcú•z1‹SXí )–ðªÆ¤EYC“êemkLz¢E‰öÄŠKw½Ú-žž¸öjG‹F”ÑÕÚ÷ïn8]6ÖeÏ¦Ž’-¬~ûØßêдp7ˆkÇ»Oƒ1kÆք‰©“¥0°Rj÷Zâ¤é`iL²¨ñs)“7?·EL¨wuÎ,v¬RãDtÏÒ³2ŸÕ,…Uy{ж¨1bùmÇ:”Ro0°œqƒæ÷™VD­L(V5¬1Qúªô"ZtüÜõdG0“ w=9ÉÊ|‹ir{¿éÊÃ3ë´xŽ?x„ãµ].ë±RßOS·8ñCGaœ¹ÖXûÞ~ª… ¬³4Ƭvw’wÛ<©d0ÉÚò<`f0açßgDhL¨G§ v¬RÃÏã@¨ÁŽvzš»Á2XxÛå´EƒåÕzƒ1‹w¡(OL²„W &,Ê2˜P/kÛ`Â=J”'DäèXºãՉĹ~Ë«,߉1úQîv—IGÀ¢ Yô;~•*DçÛ¡nœßhå([û•2R8Î ,j¬më',V,íxmqË¿“¬u7¢Å–ÅXC],-õ±:që€ÆŽYêX·¹£Äb`Q$àô•bi ¬Ä Ê¢ÁÀÂ/ iñ§ìí¯„ &Y§›öTõhh)W5m°å…!Ò "jLÝóhG0‘‰Ê vD²pÅøÞÎôsÓ9µÓxy¾g7yï~F —ÑóS±Ç‹°Ö:ÆTƒ…­¢ø%??›Õb`‘VJ #ÎYŽë± ¦X^œyV˜°ˆ_ çO &Ôã>ÜyžUcÇ*u*ûì© v´Ãðœf)ìàƒ¾(‡¶¨1°ðn.õ+;xN{BcŠ%¼ª1aQÕÆ„zUÛžèQ¢Õ˜´(«GcR½¬iIO´ÑžXQ£ãèžW²­“‡7¼:É |UnĦ–fãE³ÒVDÆêuØóŽ ¡È'®w8Ù •y †˜Ã·ƒr­Œ‘Î``Ž+ö✰Â$+Ôq­¬Å¤E_ç5Úi,ÛŠÖÞ C”ØÕyy–ÁŽv.6’‚À¡Ù¬91+·®•Ê5ƬÚêMzAc’%=ª1iQ֎ƤzYÑ~há¡ü°"FÇÐ=v÷nw]ÚÅA§'Ñ4£v¿cçÀZG=–®Ž§¾¿Íµqz’ÇO_æ]/+ó]9É­ZÒÐÑN»âðoÚòÌ ¦Xny4زÑe¯CByÜWìX%Ɖ®ÑÀ vˆs³Š¥°£uU[4³j?1·Ä ,Çw§+?L±–O &,Êê1˜P/kÚ`‡<ƒëçòŒÁŽ«8ºëÕŽÄutýÚ«‘¬Ì·^ðïç¶[9p-Tviõ8ß±W×B¥­½¥âCŠx@ê¯]€ïÛe†|ˆpxÖØÑŽ”f>¸ÍÑÔ`’Uæg’öpfИcHhV‡m5v¬¢Òà:7­LøT,…õCšI[´³*zYÚ Ä‡+ù?„ $9Ë›“ÖVÍXL(õ«Qþªø#FLÐÜudGpZÉßu¤8 <ŽS[/Øä²fþmµ´ž§mœk‡†pk™±ÞÀízc¿¢Œü“Ë“¥0fõ_‘§ÄÊs|“,4ÝnX }ÙÆj—Å„zü>SHZ}ÇŽUjÜ2ÜNh¨¯tUsÔE┈²¦1fe#[ü}áÆ¦Ê¯1É’¾Ôذ¥*EB±ª]‰²÷¨P…‘¢cçŽ÷±Ìä_E¼ÊÉínàßXëÖ;újZß =î=0¶0j„Žo‡ªe^'n1>1ɯª° >’2‹IVžï3,&-f7÷)HèNy,Jè¥Åüxœ]ÔX?»Ø®”,…õ‡|¹¡4¨1>rèx$”ÊÄœv‡‰òÆ$KúScÒž¬Ií¢’$½PæÖ‹Wñs×£ np7<:É¢©FŠ}[™!¡|ÃÉ@ZùÆ“ePAÌiçÉ¥rñ<×.ИdIgjLÚ“õ¢1¡\V±‚¤ÊÜ~b±ã*~îú³#©Ñ>ëÚë’ù÷9zc/aæq¤#`ýîáOn;áý?¯Ó?¾zø‡ßÓ FcW¦ÄäÕ»×'àqdÑ‘ið|u<|sþÕ#…†ƒzþÀ“KáüþÇÇÈÝêæÓù3ðZ(+?¿}|ÓF¹¤³Û.‹ï¶Ç?¼ú NN¦)u ”Ëo§WoÈÔ×x&eU>íçÿðˆ{‹ß+ž9Ÿÿz™úòˆŸ¨-Ù»ó/ðÞ0”p~a ”¤ßŽ¥þüñ»s÷ôÓþý›·è¥.­D·âòÃbõw&¸oð°Ím…¦gçå?^ãeÛ¨ôç'<†LnIŠþÀ$þÖ 5ƧfˆÒÆó»gPh¶æ3ùðù`‘ŠÒžºeWݽâu·Pº}þö¼ þÀ¾M‰Üü~Yøã#M·-(Ï~ûØäìndo|’E}ÓÌlDy'ͬʕåŸ~ÅîlªØÄâ\RVbïÑßAdp[Ü"D"¸0<Ñè3¢éYÉ EÙþ( !žg½{_¨¤a…)ü,ªæýªˆðìækÁ÷¸[|#ðqÖúÊŒk¥jÂÇû"Èï;Ž“Î}×”îçjN~Û²ožöšMðâ!4âžß}~^…8>#wù°³z¿l–¯îý¿#àùŠKƒCyI{xZy¿>ÊHŸ5©Ô"-¿n¢ËΟ¥oD•}Ö-†þ´ø\ööðP)¿meé æù¦G8Ô·L³Þ»ÿ¶Ç(o‡ÙF<­Â\º×·z~õˆ{a]ÞþjŒòÃTˆvÙ¥T´hü­ÇÇ{U¦Ã!D/™Ê5Oø¿Uæï‡Ü'6²£U8JÔ¿éžh©×FÄ{á­ƒ—¿»i÷ˆ‡¾m¦ü–ÏßÉ?ý‰.M¶Ò—Uam8£qyˆÏÎ^Œñì®^¥q½jÒ@ÝûùõAÁ¹6Šà×5öÈã§ßНµ Ò9—>Üî‘F^HÈ¿1ÒJ»o[ÉaTv149¾ 9£ÕN/p“R KM(TãY©¡‚a•r§2öq»†DíѧGÒ`ø Щ;©‘* ~n†¥–ì‘- øahw}Hê„Ïíy;™ü¾§˜¨“Ë÷—»€Šò™_öÞ¦Èí=ö°wµžÿÒ¸hÜïø‘|ùô¥•„ ä>±5—Ðc>µ¿£–Ñz“Z :ŸÐGÒp²Ke\5…J”ïˆø‘µœ×¢œo9fbæM3—·‘@…ªñÓB¥cÿ¸÷ôý²"Ô·'òræ~®?ëÎpÔ{àgx]¤Fÿ?Ío=E b …¿m1†ùF\FTgNös!N|¾nTk[ÚÊøÃK‹®@!ÅnýJ¾Po…µMJ™õ«ãÂ9ŸUŒ#ôqÊ’¼@]õu7#F€OÏëæZ¥eO¾În!OPÈÚòYÄ\K+öf…­¾+Ò/î-Gø˜è»îÕRŸuOøoìÕ:»ù–’MîhøW6!Bt:oÕèÞŸ¡"ífñÃù–;Ênh:q{ÕÝþl¯évzÀ£ûŽ÷/¢Y­þöCy4ɵ ©ø3R 2ª> ”ùñûóW¿ææäÞë1úÅ㜾FK©sÙUën¥Ø»je\K¢OzúΆVu.&éMÙ[¾]1y{x§&€h›g_$š÷·ä$Ì[Løbü•Až›Ó´›¾Ñƒ0~Xƒ’_®·f ȵ…1»X Í¶ë¿NUßå¤ZyFç\·züþ¬Ûƒîóê—ntø5QóßüpÒíŽ~|ún~z¾ñé‡ùéË­¡&{ö³:¾}\‘~Y½vëøŽa„0¥Ä=%‡Ç1ŠŠ~}áñE&IñüUëŽz$j_PÂЦW#Ùäç Oxš ÷ÿ§SÀÃ0ZÜËunÍ>Žr©î¹= ¡qo&p›ÁÝyÄ þ¥=¾ˆ±§é…»ÓˆŸ ]Qö"8¿t‰·~X 2!sbtåDnÔ쯰á/‡ÇèJM­p®6sf„™Ý£÷¦õbê³EŠ„ÜÖz€<¿±2Ä/«Ë<ü©7!¸]µÛw<ŠÖ ]Èí^vHè ñ (4ÈÈnYtòÙ=ùA·"ïùNO{i…Ã"ê/Pœ’s V/”|¿´>ióü—¤ìþ¬”¿G¬á #WÄHòܾ­åÿv¬›MD–ùg½T-¾=1a±Rœ?¶?£,cLÎ9…rñg?tÔX\Áa»§$Î(úíë¿ÿsÓiâû6nT—ÓYÀ³ È8ê/°ÛZÓFîPÌÏûzN¬Ü ~ýêáwô¿ÿŽkéeendstream endobj 128 0 obj << /Filter /FlateDecode /Length 1205 >> stream xœVK“E ¾OøslÜiõS:Q@…WA(Wq^ï#[¯7Þ,!ÿ©{<­Ù`(¨=ìT·Zú$}úäw£³0:ù›þïöƒ·‘ƃ¿r,6KÊ`1û}¶™h>y;¼È›#Ž%Ggƒg«ùlNÕ*þŽÊèt m¢ãˤâ¥TøñN¨Ð–¤@MShc&… ¡Xt 1u£é`a3a𣠩hn¼Þ P 9NÿvûñËÍðü•§‘,eŸÇÍõЊ #Ä`KàÂ2(ðiÜì‡_Í×+îFb¾[­ùÛ¹X‚yùÅ«uÞ¡ùJ.¼s‹ùIì)»˜Íüþd‹âæ`^ðq„œøøåF½|½Zû܈l ­~ß|?DK(@Öœ9ãæ’Éû€È.ÌŸòðÆ2I€¼g+Š(™ çÑ:6߬Ð[öèÍ‘ï=ºDæc»FHæ½ö»#E$sØ×6rË·SÑ·<«»m RÐ']ÚnÐê!úV×Èuàx#CI1š™9EúAB Aº D žg–W])—ýX®pC2çÀRJÐ^¨>Ü­Ö‘ç1qš÷µ6#ÜÞ7ŸÄ$o僥´ªcð!3ÿª“ÌÅ!+ßhÑüR‡„k9¹cýKˆ¨Þt»îö ÷Ì3d^¤$sÈ?ÖžÌÉW땪ù•âêCój3$Ç‘ßôÆ;?ù/;"•è LUÍ#îØ²/.-™¦¸Zýþ^˳‚̨» Ø;NI¡ìlîeûÀ×^Fø)åZIÎOÃ̧ÛF¸jN„;vù›HÖ®ÿ‰d3ƒ~;Vø!ðˆ>>érFÓòcïY$e>–! "/ÅîšZg€óͶÑÜÏGš7‡‹^ÂíE/ømW{E……jq›€{÷±9\·`‰Ë¥(¦´ã™4°ü,¹"ª=çy«f¥¦”#˜›¾”®ëi,q™È¾Y0!Y¸º­"õN…¥gš§ï$»È)˂ǚ4’Nölw_>;Ö>%/'`e&&A³J7SWä¬Í(û$èBé–¾n¸àľj“èI*b>‹ìßëűê…'n6å“^LiÅ:·­Úð‰dË1œ$&ªZ[%Ë§Ò è篠¨¤\ x*†š:ódŸþõ¶x?«îRO›âd^ÚŒ˜¥2,–Úö¾ÏÿùM¥Eü æÄvþ;fòóÏüé¡íã›ágþû {|Àþendstream endobj 129 0 obj << /Filter /FlateDecode /Length 142 >> stream xœUŽ» Ã0 D{MÁ ¢ÄŸ&Hd„´q‘*ë',™ ‚‡Þ{SSÝçØÏ­4È O©t+Æ åF®Æ£­ø¨YÁ«> stream xœ%‘mHSqÆïmsÝtÎJqoTü`eµ KS²¤L%-7_jk³Ò{§ÓmÎé=³ô®µ™Û´¹Õ,×f/ö&ji/˜õ¡ ‚ ¢22²"ÿ×nÒzΧçãÅø·y÷ù&ÿÞæÂø4‘á"þŠÈ(Æ…!o…°^X”ôtŠA{§Ð:O Â)yé>÷ÓË$öSÁ±‘ÞA .Ýfµ‚X—K©3rÊ÷!ãs8ˆÄ(~²;Œ¿E±hû ¿†_"/a@M„Ϋ÷û#wszS7”©¡ÉrMU.‚5ï˜ –!ã° ’ÊçÊIîÄ5/Ü$ú*쌲T—1®š<ÿÈÖw‡ŠtŽA/œm)ƒjŸ®5×q¸­ØÂ/9ÂPé#e¼|öɨ[hk'Žb§Dè.¿LþJâvCÐÃ@-¥8úO¸Ú|\àôu°>Æ«1”XòëH•°Î¬”ÛZ[Ú ¼4[Ë q–„z¶ @MÐ8åô°¬“Lú³Ú¤-…Ø7Êg(í+JE (fíÕ´B%mÔ“¦?Kå™0Þj t<¤ìaÎÏ]àÐâ8¸xÅß„/T»sw©W¯¡TIÙ¦êY$¿ÿQÏD¾‹Ð=tKÎG&>Ñ%Õ:+S¿Ÿ*R-•ÆÐx¨»®Ëy¹uÐE>D,ø‰s¹¬!Ž.¤Lº&#Ô9ƒåw~ Å]sT7‚ÁJšµG’wÑhO—#à Qí‘(F‰×Ù=©ë ŠÊÊÈc/Ràøì¤Cú–ªÑ,g䃮ÌP¥-2䀕¨uÁ™n›ÍÏ‘ö^ÏóNÎ|´ºÙlÕS ¡ÏZÍÐøï>®¿eÈEÊÈh1­‘.i4Hc@a/î€ñendstream endobj 131 0 obj << /Type /XRef /Length 150 /Filter /FlateDecode /DecodeParms << /Columns 5 /Predictor 12 >> /W [ 1 3 1 ] /Info 3 0 R /Root 2 0 R /Size 132 /ID [<764203207d271b0012bed47c8121592b><86b685f29ce08bfcb1d375dfd5ecdd0b>] >> stream xœcb&F~0ù‰ $À8JŽ’$“ÿ/²Ùä@©H˜ Dê\‘ŠW@$ón)j"•@$» ˜}DÊÝË΋0€H ’WldåËšƒH1kÉß"…êA$ÓF°¬<ˆd›6Q DŠß‘œî`ÓdÁî™2S ì6Öÿ—°41Š G endstream endobj startxref 136231 %%EOF HSAUR3/inst/doc/Ch_quantile_regression.Rnw0000644000176200001440000006432514416236370020145 0ustar liggesusers \documentclass{chapman} %%% copy Sweave.sty definitions %%% keeps `sweave' from adding `\usepackage{Sweave}': DO NOT REMOVE %\usepackage{Sweave} \RequirePackage[T1]{fontenc} \RequirePackage{graphicx,ae,fancyvrb} \IfFileExists{upquote.sty}{\RequirePackage{upquote}}{} \usepackage{relsize} \DefineVerbatimEnvironment{Sinput}{Verbatim}{} \DefineVerbatimEnvironment{Soutput}{Verbatim}{fontfamily=courier, fontshape=it, fontsize=\relsize{-1}} \DefineVerbatimEnvironment{Scode}{Verbatim}{} \newenvironment{Schunk}{}{} %%% environment for raw output \newcommand{\SchunkRaw}{\renewenvironment{Schunk}{}{} \DefineVerbatimEnvironment{Soutput}{Verbatim}{fontfamily=courier, fontshape=it, fontsize=\small} \rawSinput } %%% environment for labeled output \newcommand{\nextcaption}{} \newcommand{\SchunkLabel}{ \renewenvironment{Schunk}{\begin{figure}[ht] }{\caption{\nextcaption} \end{figure} } \DefineVerbatimEnvironment{Sinput}{Verbatim}{frame = topline} \DefineVerbatimEnvironment{Soutput}{Verbatim}{frame = bottomline, samepage = true, fontfamily=courier, fontshape=it, fontsize=\relsize{-1}} } %%% S code with line numbers \DefineVerbatimEnvironment{Sinput} {Verbatim} { %% numbers=left } \newcommand{\numberSinput}{ \DefineVerbatimEnvironment{Sinput}{Verbatim}{numbers=left} } \newcommand{\rawSinput}{ \DefineVerbatimEnvironment{Sinput}{Verbatim}{} } %%% R / System symbols \newcommand{\R}{\textsf{R}} \newcommand{\rR}{{R}} \renewcommand{\S}{\textsf{S}} \newcommand{\SPLUS}{\textsf{S-PLUS}} \newcommand{\rSPLUS}{{S-PLUS}} \newcommand{\SPSS}{\textsf{SPSS}} \newcommand{\EXCEL}{\textsf{Excel}} \newcommand{\ACCESS}{\textsf{Access}} \newcommand{\SQL}{\textsf{SQL}} %%\newcommand{\Rpackage}[1]{\hbox{\rm\textit{#1}}} %%\newcommand{\Robject}[1]{\hbox{\rm\texttt{#1}}} %%\newcommand{\Rclass}[1]{\hbox{\rm\textit{#1}}} %%\newcommand{\Rcmd}[1]{\hbox{\rm\texttt{#1}}} \newcommand{\Rpackage}[1]{\index{#1 package@{\fontseries{b}\selectfont #1} package} {\fontseries{b}\selectfont #1}} \newcommand{\rpackage}[1]{{\fontseries{b}\selectfont #1}} \newcommand{\Robject}[1]{\texttt{#1}} \newcommand{\Rclass}[1]{\index{#1 class@\textit{#1} class}\textit{#1}} \newcommand{\Rcmd}[1]{\index{#1 function@\texttt{#1} function}\texttt{#1}} \newcommand{\Roperator}[1]{\texttt{#1}} \newcommand{\Rarg}[1]{\texttt{#1}} \newcommand{\Rlevel}[1]{\texttt{#1}} %%% other symbols \newcommand{\file}[1]{\hbox{\rm\texttt{#1}}} %%\newcommand{\stress}[1]{\index{#1}\textit{#1}} \newcommand{\stress}[1]{\textit{#1}} \newcommand{\booktitle}[1]{\textit{#1}} %%' %%% Math symbols \usepackage{amstext} \usepackage{amsmath} \newcommand{\E}{\mathsf{E}} \newcommand{\Var}{\mathsf{Var}} \newcommand{\Cov}{\mathsf{Cov}} \newcommand{\Cor}{\mathsf{Cor}} \newcommand{\x}{\mathbf{x}} \newcommand{\y}{\mathbf{y}} \renewcommand{\a}{\mathbf{a}} \newcommand{\W}{\mathbf{W}} \newcommand{\C}{\mathbf{C}} \renewcommand{\H}{\mathbf{H}} \newcommand{\X}{\mathbf{X}} \newcommand{\B}{\mathbf{B}} \newcommand{\V}{\mathbf{V}} \newcommand{\I}{\mathbf{I}} \newcommand{\D}{\mathbf{D}} \newcommand{\bS}{\mathbf{S}} \newcommand{\N}{\mathcal{N}} \renewcommand{\L}{L} \renewcommand{\P}{\mathsf{P}} \newcommand{\K}{\mathbf{K}} \newcommand{\m}{\mathbf{m}} \newcommand{\argmin}{\operatorname{argmin}\displaylimits} \newcommand{\argmax}{\operatorname{argmax}\displaylimits} \newcommand{\bx}{\mathbf{x}} \newcommand{\bbeta}{\mathbf{\beta}} %%% links \usepackage{hyperref} \hypersetup{% pdftitle = {A Handbook of Statistical Analyses Using R (3rd Edition)}, pdfsubject = {Book}, pdfauthor = {Torsten Hothorn and Brian S. Everitt}, colorlinks = {black}, linkcolor = {black}, citecolor = {black}, urlcolor = {black}, hyperindex = {true}, linktocpage = {true}, } %%% captions & tables %% : conflics with figure definition in chapman.cls %%\usepackage[format=hang,margin=10pt,labelfont=bf]{caption} %% \usepackage{longtable} \usepackage[figuresright]{rotating} %%% R symbol in chapter 1 \usepackage{wrapfig} %%% Bibliography \usepackage[round,comma]{natbib} \renewcommand{\refname}{References \addcontentsline{toc}{chapter}{References}} \citeindexfalse %%% texi2dvi complains that \newblock is undefined, hm... \def\newblock{\hskip .11em plus .33em minus .07em} %%% Example sections \newcounter{exercise}[chapter] \setcounter{exercise}{0} \newcommand{\exercise}{\stepcounter{exercise} \item{Ex.~\arabic{chapter}.\arabic{exercise} }} %% URLs \newcommand{\curl}[1]{\begin{center} \url{#1} \end{center}} %%% for manual corrections %\renewcommand{\baselinestretch}{2} %%% plot sizes \setkeys{Gin}{width=0.95\textwidth} %%% color \usepackage{color} %%% hyphenations \hyphenation{drop-out} \hyphenation{mar-gi-nal} %%% new bidirectional quotes need \usepackage[utf8]{inputenc} %\usepackage{setspace} \definecolor{sidebox_todo}{rgb}{1,1,0.2} \newcommand{\todo}[1]{ \hspace{0pt}% \marginpar{% \fcolorbox{black}{sidebox_todo}{% \parbox{\marginparwidth} { \raggedright\sffamily\footnotesize{TODO: #1}% } }% } } \begin{document} %% Title page \title{A Handbook of Statistical Analyses Using \R{} --- 3rd Edition} \author{Torsten Hothorn and Brian S. Everitt} \maketitle %%\VignetteIndexEntry{Chapter Quantile Regression} %%\VignetteDepends{lattice,quantreg} \setcounter{chapter}{11} \SweaveOpts{prefix.string=figures/HSAUR,eps=FALSE,keep.source=TRUE} <>= rm(list = ls()) s <- search()[-1] s <- s[-match(c("package:base", "package:stats", "package:graphics", "package:grDevices", "package:utils", "package:datasets", "package:methods", "Autoloads"), s)] if (length(s) > 0) sapply(s, detach, character.only = TRUE) if (!file.exists("tables")) dir.create("tables") if (!file.exists("figures")) dir.create("figures") set.seed(290875) options(prompt = "R> ", continue = "+ ", width = 63, # digits = 4, show.signif.stars = FALSE, SweaveHooks = list(leftpar = function() par(mai = par("mai") * c(1, 1.05, 1, 1)), bigleftpar = function() par(mai = par("mai") * c(1, 1.7, 1, 1)))) HSAURpkg <- require("HSAUR3") if (!HSAURpkg) stop("cannot load package ", sQuote("HSAUR3")) rm(HSAURpkg) ### hm, R-2.4.0 --vanilla seems to need this a <- Sys.setlocale("LC_ALL", "C") ### book <- TRUE refs <- cbind(c("AItR", "DAGD", "SI", "CI", "ANOVA", "MLR", "GLM", "DE", "RP", "GAM", "SA", "ALDI", "ALDII", "SIMC", "MA", "PCA", "MDS", "CA"), 1:18) ch <- function(x) { ch <- refs[which(refs[,1] == x),] if (book) { return(paste("Chapter~\\\\ref{", ch[1], "}", sep = "")) } else { return(paste("Chapter~", ch[2], sep = "")) } } if (file.exists("deparse.R")) source("deparse.R") setHook(packageEvent("lattice", "attach"), function(...) { lattice.options(default.theme = function() standard.theme("pdf", color = FALSE)) }) @ \pagestyle{headings} <>= book <- FALSE @ %% lower png resolution for vignettes \SweaveOpts{resolution = 80} <>= library("lattice") trellis.par.set(list(plot.symbol = list(col=1,pch=20, cex=0.7), box.rectangle = list(col=1), plot.line = list(col = 1, lwd = 1), box.umbrella = list(lty=1, col=1), strip.background = list(col = "white"))) ltheme <- canonical.theme(color = FALSE) ## in-built B&W theme ltheme$strip.background$col <- "transparent" ## change strip bg lattice.options(default.theme = ltheme) data("db", package = "gamlss.data") nboys <- with(db, sum(age > 2)) @ \chapter[Quantile Regression]{Quantile Regression: Head Circumference for Age\label{QR}} \section{Introduction} \section{Quantile Regression} \section{Analysis Using \R{}} We begin with a graphical inspection of the influence of age on head circumference by means of a scatterplot. Plotting all pairs of age and head circumference in one panel gives more weight to the teens and 20s, so we produce one plot for younger boys between two and nine years old and one additional plot for boys older than nine years (or $>108$ months, to be precise). The \Rcmd{cut} function is very convenient for constructing a factor representing these two groups <>= summary(db) db$cut <- cut(db$age, breaks = c(2, 9, 23), labels = c("2-9 yrs", "9-23 yrs")) @ which can then be used as a conditioning variable for conditional scatterplots produced with the \Rcmd{xyplot} function \citep[package \Rpackage{lattice}]{PKG:lattice}. Because we draw $\Sexpr{nboys}$ points in total, we use transparent shading (via \Rcmd{rgb(.1, .1, .1, .1)}) in order to obtain a clearer picture for the more populated areas in the plot. \begin{figure} \begin{center} <>= db$cut <- cut(db$age, breaks = c(2, 9, 23), labels = c("2-9 yrs", "9-23 yrs")) xyplot(head ~ age | cut, data = db, xlab = "Age (years)", ylab = "Head circumference (cm)", scales = list(x = list(relation = "free")), layout = c(2, 1), pch = 19, col = rgb(.1, .1, .1, .1)) @ \caption{Scatterplot of age and head circumference for $\Sexpr{nboys}$ Dutch boys. \label{QR-db-plot}} \end{center} \end{figure} Figure~\ref{QR-db-plot}, as expected, shows that head circumference increases with age. It also shows that there is considerable variation and also quite a number of extremely large or small head circumferences in the respective age cohorts. It should be noted that each point corresponds to one boy participating in the study due to its cross-sectional study design. No longitudinal measurements (cf.~Chapter~\ref{ALDI}) were taken and we can safely assume independence between observations. We start with a simple linear model, computed separately for the younger and older boys, for regressing the mean head circumference on age <>= (lm2.9 <- lm(head ~ age, data = db, subset = age < 9)) (lm9.23 <- lm(head ~ age, data = db, subset = age > 9)) @ This approach is equivalent to fitting two intercepts and two slopes in the joint model <>= (lm_mod <- lm(head ~ age:I(age < 9) + I(age < 9) - 1, data = db)) @ while omitting the global intercept. Because the median of the normal distribution is equal to its mean, the two models can be interpreted as conditional median models under the normal assumption. The model states that within one year, the head circumference increases by $\Sexpr{round(coef(lm_mod)["age:I(age < 9)TRUE"], 3)}$ cm for boys less than nine years old and by $\Sexpr{round(coef(lm_mod)["age:I(age < 9)FALSE"], 3)}$ for older boys. We now relax this distributional assumption and compute a median regression model using the \Rcmd{rq} function from package \Rpackage{quantreg} \citep{PKG:quantreg}: <>= library("quantreg") (rq_med2.9 <- rq(head ~ age, data = db, tau = 0.5, subset = age < 9)) (rq_med9.23 <- rq(head ~ age, data = db, tau = 0.5, subset = age > 9)) @ When we construct confidence intervals for the intercept and slope parameters from both models for the younger boys <>= cbind(coef(lm2.9)[1], confint(lm2.9, parm = "(Intercept)")) cbind(coef(lm2.9)[2], confint(lm2.9, parm = "age")) summary(rq_med2.9, se = "rank") @ we see that the two intercepts are almost identical but there seems to be a larger slope parameter for age in the median regression model. For the older boys, we get the confidence intervals via <>= cbind(coef(lm9.23)[1], confint(lm9.23, parm = "(Intercept)")) cbind(coef(lm9.23)[2], confint(lm9.23, parm = "age")) summary(rq_med9.23, se = "rank") @ with again almost identical intercepts and only a slightly increased slope for age in the median regression model. Since one of our aims was the construction of growth curves, we first use the linear models regressing head circumference on age to plot such curves. Based on the two normal linear models, we can compute the quantiles of head circumference for age. For the following values of $\tau$ <>= tau <- c(.01, .1, .25, .5, .75, .9, .99) @ and a grid of age values <>= gage <- c(2:9, 9:23) i <- 1:8 @ (the index \Rcmd{i} denoting younger boys), we compute the standard prediction intervals \index{Prediction interval} taking the randomness of the estimated intercept, slope, and variance parameters into account. We first set up a data frame with our grid of age values and then use the \Rcmd{predict} function for a linear model to compute prediction intervals, here with a coverage of $50\%$. The lower limit of such a $50\%$ prediction interval is equivalent to the conditional $25\%$ quantile for the given age and the upper limit corresponds to the $75\%$ quantile. The conditional mean is also reported and is equivalent to the conditional median: <>= idf <- data.frame(age = gage[i]) p <- predict(lm2.9, newdata = idf, level = 0.5, interval = "prediction") colnames(p) <- c("0.5", "0.25", "0.75") p @ We now proceed with $80\%$ prediction intervals for constructing the $10\%$ and $90\%$ quantiles, and with $98\%$ prediction intervals corresponding to the $1\%$ and $99\%$ quantiles and repeat the exercise also for the older boys: <>= p <- cbind(p, predict(lm2.9, newdata = idf, level = 0.8, interval = "prediction")[,-1]) colnames(p)[4:5] <- c("0.1", "0.9") p <- cbind(p, predict(lm2.9, newdata = idf, level = 0.98, interval = "prediction")[,-1]) colnames(p)[6:7] <- c("0.01", "0.99") p2.9 <- p[, c("0.01", "0.1", "0.25", "0.5", "0.75", "0.9", "0.99")] idf <- data.frame(age = gage[-i]) p <- predict(lm9.23, newdata = idf, level = 0.5, interval = "prediction") colnames(p) <- c("0.5", "0.25", "0.75") p <- cbind(p, predict(lm9.23, newdata = idf, level = 0.8, interval = "prediction")[,-1]) colnames(p)[4:5] <- c("0.1", "0.9") p <- cbind(p, predict(lm9.23, newdata = idf, level = 0.98, interval = "prediction")[,-1]) colnames(p)[6:7] <- c("0.01", "0.99") @ We now reorder the columns of this table and get the following conditional quantiles, estimated under the normal assumption of head circumference: <>= p9.23 <- p[, c("0.01", "0.1", "0.25", "0.5", "0.75", "0.9", "0.99")] round((q2.23 <- rbind(p2.9, p9.23)), 3) @ We can now superimpose these conditional quantiles on our scatterplot. To do this, we need to write our own little panel function that produces the scatterplot using the \Rcmd{panel.xyplot} function and then adds the just computed conditional quantiles by means of the \Rcmd{panel.lines} function called for every column of $\Robject{q2.23}$. Figure~\ref{QR-db-lm-plot} shows parallel lines owing to the fact that the linear model assumes an error variance independent from age; this is the so-called variance homogeneity. Compared to a plot with only a single (mean) regression line, we plotted a whole bunch of conditional distributions here, one for each value of age. Of course, we did so under extremely simplifying assumptions like linearity and variance homogeneity that we're going to drop now. \begin{figure} \begin{center} <>= pfun <- function(x, y, ...) { panel.xyplot(x = x, y = y, ...) if (max(x) <= 9) { apply(q2.23, 2, function(x) panel.lines(gage[i], x[i])) } else { apply(q2.23, 2, function(x) panel.lines(gage[-i], x[-i])) } panel.text(rep(max(db$age), length(tau)), q2.23[nrow(q2.23),], label = tau, cex = 0.9) panel.text(rep(min(db$age), length(tau)), q2.23[1,], label = tau, cex = 0.9) } xyplot(head ~ age | cut, data = db, xlab = "Age (years)", ylab = "Head circumference (cm)", pch = 19, scales = list(x = list(relation = "free")), layout = c(2, 1), col = rgb(.1, .1, .1, .1), panel = pfun) @ \caption{Scatterplot of age and head circumference for $\Sexpr{nboys}$ Dutch boys with superimposed normal quantiles. \label{QR-db-lm-plot}} \end{center} \end{figure} For the production of a nonparametric version of our growth curves, we start with fitting not only one but multiple quantile regression models, one for each value of $\tau$. We start with the younger boys <>= (rq2.9 <- rq(head ~ age, data = db, tau = tau, subset = age < 9)) @ and continue with the older boys <>= (rq9.23 <- rq(head ~ age, data = db, tau = tau, subset = age > 9)) @ Naturally, the intercept parameters vary but there is also a considerable variation in the slopes, with the largest value for the $1\%$ quantile regression model for younger boys. The parameters $\beta_\tau$ have to be interpreted with care. In general, they cannot be interpreted on an individual-specific level. A boy who happens to be at the $\tau \times 100\%$ quantile of head circumference conditional on his age would not be at the same quantile anymore when he gets older. When knowing $\beta_\tau$, the only conclusion that can be drawn is how the $\tau \times 100\%$ quantile of a population with a specific age differs from the $\tau \times 100\%$ quantile of a population with a different age. Because the linear functions estimated by linear quantile regression, here in model \Robject{rq9.23}, directly correspond to the conditional quantiles of interest, we can use the \Rcmd{predict} function to compute the estimated conditional quantiles: <>= p2.23 <- rbind(predict(rq2.9, newdata = data.frame(age = gage[i])), predict(rq9.23, newdata = data.frame(age = gage[-i]))) @ It is important to note that these numbers were obtained without assuming anything about the continuous distribution of head circumference given any age. Again, we produce a scatterplot with superimposed quantiles, this time each line corresponds to a specific model. For the sake of comparison with the linear model, we add the linear model quantiles as dashed lines to Figure~\ref{QR-db-rq-plot}. For the older boys, there seems to be almost no difference but the more extreme $1\%$ and $99\%$ quantiles for the younger boys differ considerably. So, at least for the younger boys, we might want to allow for age-specific variability in the distribution of head circumference. \begin{figure} \begin{center} <>= pfun <- function(x, y, ...) { panel.xyplot(x = x, y = y, ...) if (max(x) <= 9) { apply(q2.23, 2, function(x) panel.lines(gage[i], x[i], lty = 2)) apply(p2.23, 2, function(x) panel.lines(gage[i], x[i])) } else { apply(q2.23, 2, function(x) panel.lines(gage[-i], x[-i], lty = 2)) apply(p2.23, 2, function(x) panel.lines(gage[-i], x[-i])) } panel.text(rep(max(db$age), length(tau)), p2.23[nrow(p2.23),], label = tau, cex = 0.9) panel.text(rep(min(db$age), length(tau)), p2.23[1,], label = tau, cex = 0.9) } xyplot(head ~ age | cut, data = db, xlab = "Age (years)", ylab = "Head circumference (cm)", pch = 19, scales = list(x = list(relation = "free")), layout = c(2, 1), col = rgb(.1, .1, .1, .1), panel = pfun) @ \caption{Scatterplot of age and head circumference for $\Sexpr{nboys}$ Dutch boys with superimposed regression quantiles (solid lines) and normal quantiles (dashed lines). \label{QR-db-rq-plot}} \end{center} \end{figure} Still, with the quantile regression models shown in Figure~\ref{QR-db-rq-plot} we assume that the quantiles of head circumference depend on age in a linear way. Additive quantile regression is one way to approach the estimation of non-linear quantile functions. By considering two different models for younger and older boys, we allowed for a certain type of non-linear function in the results shown so far. Additive quantile regression should be able to deal with this problem and we therefore fit these models to all boys simultaneously. For our different choices of $\tau$, we fit one additive quantile regression model using the \Rcmd{rqss} function from the \Rpackage{quantreg} and allow smooth quantile functions of age via the \Rcmd{qss} function in the right-hand side of the model formula. Note that we transformed age by the third root prior to model fitting. This does not affect the model since it is a monotone transformation, however, it helps to avoid fitting a function with large derivatives for very young boys resulting in a low penalty parameter $\lambda$: <>= rqssmod <- vector(mode = "list", length = length(tau)) db$lage <- with(db, age^(1/3)) for (i in 1:length(tau)) rqssmod[[i]] <- rqss(head ~ qss(lage, lambda = 1), data = db, tau = tau[i]) @ For the analysis of the head circumference, we choose a penalty parameter $\lambda = 1$, which is the default for the \Rcmd{qss} function. Simply using the default without a careful hyperparameter tuning, for example using crossvalidation or similar procedures, is almost always a mistake. By visual inspection (Figure~\ref{QR-db-rqss-plot}) we find this choice appropriate but ask the readers to make a second guess (Exercise 3). For a finer grid of age values, we compute the conditional quantiles from the \Rcmd{predict} function: <>= gage <- seq(from = min(db$age), to = max(db$age), length = 50) p <- sapply(1:length(tau), function(i) { predict(rqssmod[[i]], newdata = data.frame(lage = gage^(1/3))) }) @ Using very similar code as for plotting linear quantiles, we produce again a scatterplot of age and head circumference but this time overlaid with non-linear regression quantiles. Given that the results from the linear models presented in Figure~\ref{QR-db-rq-plot} looked pretty convincing, the quantile curves in Figure~\ref{QR-db-rqss-plot} shed a surprising new light on the data. For the younger boys, we expected to see a larger variability than for boys between two and three years old, but in fact the distribution seems to be more complex. The distribution seems to be positively skewed with a heavy lower tail and the degree of skewness varies with age (note that the median is almost linear for boys older than four years). Also in the right part of Figure~\ref{QR-db-rqss-plot}, we see an age-varying skewness, although less pronounced as for the younger boys. The median increases up to 16 years but then the growth rate is much smaller. This does not seem to be the case for the $1\%, 10\%, 90\%$, and $99\%$ quantiles. Note that the discontinuity in the quantiles between the two age groups is only due to the overlapping abscissae. However, the deviations between the growth curves obtained from a linear model under normality assumption on the one hand and quantile regression on the other hand as shown in Figures~\ref{QR-db-rq-plot} and \ref{QR-db-rqss-plot} are hardly dramatic for the head circumference data. \begin{figure} \begin{center} <>= pfun <- function(x, y, ...) { panel.xyplot(x = x, y = y, ...) apply(p, 2, function(x) panel.lines(gage, x)) panel.text(rep(max(db$age), length(tau)), p[nrow(p),], label = tau, cex = 0.9) panel.text(rep(min(db$age), length(tau)), p[1,], label = tau, cex = 0.9) } xyplot(head ~ age | cut, data = db, xlab = "Age (years)", ylab = "Head circumference (cm)", pch = 19, scales = list(x = list(relation = "free")), layout = c(2, 1), col = rgb(.1, .1, .1, .1), panel = pfun) @ \caption{Scatterplot of age and head circumference for $\Sexpr{nboys}$ Dutch boys with superimposed non-linear regression quantiles. \label{QR-db-rqss-plot}} \end{center} \end{figure} \section{Summary of Findings} We can conclude that the whole distribution of head circumference changes with age and that assumptions like symmetry and variance homogeneity might be questionable for such type of analysis. One alternative to the estimation of conditional quantiles is the estimation of conditional distributions. One very interesting parametric approach are generalized additive models for location, scale, and shape \citep[GAMLSS,][]{HSAUR:RigbyStasinopoulos2005}. In \cite{HSAUR:StasinopoulosRigby2007}, an analysis of the age and head circumference by means of the \Rpackage{gamlss} package can be found. One practical problem associated with contemporary methods in quantile regression is quantile crossing. Because we fitted one quantile regression model for each of the quantiles of interest, we cannot guarantee that the conditional quantile functions are monotone, so the $90\%$ quantile may well be larger than the $95\%$ quantile in some cases. Postprocessing of the estimated quantile curves may help in this situation \citep{HSAUR:DetteVolgushev2008}. \section{Final Comments} When estimating regression models, we have to be aware of the implications of model assumptions when interpreting the results. Symmetry, linearity, and variance homogeneity are among the strongest but common assumptions. Quantile regression, both in its linear and additive formulation, is an intellectually stimulating and practically very useful framework where such assumptions can be relaxed. At a more basic level, one should always ask \stress{Am I really interested in the mean?} before using the regression models discussed in other chapters of this book. \bibliographystyle{LaTeXBibTeX/refstyle} \bibliography{LaTeXBibTeX/HSAUR} \end{document} HSAUR3/inst/doc/Ch_multidimensional_scaling.pdf0000644000176200001440000013675014660150122021134 0ustar liggesusers%PDF-1.5 %¿÷¢þ 1 0 obj << /Type /ObjStm /Length 3309 /Filter /FlateDecode /N 62 /First 494 >> stream xœÍZëS·ÿ~ÿ }k:®«g§“! ¤@ i§ŒYÀ±©½éýëïïhwí}ذ$ôÞ;fYi%·Ž¤˜`)³Žifc†9ü·,¤9‚ažI% L¦:eR0i´bR2iƒE“>E%eJáŸÔLƒºaÊa˜´LêäXª4{–wÀpf·Æ3%™–†€0mœ`*eÚ¡¢4ÓA9e&uèg™ñ@¤ h÷@[£=0k€ fæJ˜oÅœ²˜$eNÓäšH“3çR e™óA3½Ðh÷Ì+z`>µ@F0o€¿–Ì;BJ1ïѤðA¦5 _ƒB5Hgƒò,xL Á/ ú Ù Ö.”QŒˆ$ –ˆ²s"¯Å"FÁƒšX€A JK¢9R¦4 |‘Æ£ ¥É€…”ß­$– ðG«³€¬¤3ÿúùgƲ|p1ÈÌjðþˆñÃE>M²9ØëïW¨”'ßfŒ¿@ÿñôŠ=Al-òëéŒý|™]^ u ‹·SxR¬e;}÷«¾U»•EÙ겿*Ûê¾ÀVLÀw¶˜§êKð~lgÙ M';ƒÎ–­²FÀ‘lcTID*Û¡"±eù5ÆQÓÞ°„_Á.¿¹²$nZÂ,Ëq<õuåwU¼pLÓ’zÅ$«W̉c/K††ç•4½˜.&9 ߨ¿“m!у´ÓËÄÿi!›P§ø*jP˜ø*»µ?*™-ĸ’ØÉdšp„عï´ꊗ¯ ¼˜Nòl‚¶è¥¹ ¶§_Aàg‚I`z¼–‰4àý`†þ•Òeóéb6Äô4÷î”Zd©\³éð8ˇ¿ßٮٗž?¯£Ý¤ŒˆÑlž³K¾?X•‹1K nŒû1e|'›Ó\å*Î>þ &.•d'C"ÁV6YŒÇ´†b_›DŠÊ"ÄÕ•ö¡)£à­)å¦âqõ¾X‚¥ì\6e­’׺L®dl)#÷¬Ãx•˜ VëxG$ ÌÝ:ÌËY¢Ù¨4J—«IÛÛ «kB “]%ÙçŠÖÿoÕ:qA¯–±ó°óMf$ô1#5sPéž}"Ý“þ+to{0Ïâh¾ýò`çõÙ/¶Aþr2œ^Œ&Wäf#Ô¨6/®32KqBÐ6Ú}¸™®Ô)ö‘ˆhÈ äqBšVV³³}]ä×d©”#‚S°Ô~V¿¢OñC¼„ÿÖÐÁ‚RðGÍ*êã*¤¡êLЉÔÙGK-iû§uQG'¾Áž‘VDʘ ]ŠÕP¢Ø‡¾V­–”"­°œ0¢hT„FDföz>Œ"‡o>n_g£«k DVœÈH\|Æ·ø6Á_ò]þš¿áü˜ÿÊOù>àç|ȇÓñtÂ/xƳ›‹Áüš_òKH¿â×|Ä?ñ1¿á>åÓIÆo9¼þhzÁÿZ@/:ðŸóœç׳,ãùÝ”/øÿ›ÿ;›M¿ÊÑûaø6\Qð¸] jlCÌ&ã"þ(ZwGã,FÛ…äàË»ÁMÖ±7¶FíÉt ÕƒÑ|‹‚ Êóìæ1¶­‹NMêøYI0 BwäùÍ/{»o_b²ããí³†HCø&[“ùhõa%Ü^u…Û´„›úô’m'T‡×ÂÑ൮óú¨Fv±¤¹1Ö·èNBŸÆÑMšû6Í;dèIv(Ñzªw LJÃÓ½Ìp„`¼•×™×¢²„=ëkBäM^÷³¡Ðy.t3HÝŸÁÆÇ ·ŽöaÙOÇèª(×1‰me¿ÔÓcã-Ø.vM@C,ŠêR,¶¡þ¯¡ø'PzRuRmRêR -þÜPÙ¥ÆJ„ï­¥¶ÄPqž¦…ŽÒ6ØÛWi±›{Hi!% ŽhK­JÇu“•“ƒPÈÂ=¶½¦ßî5[Žòaùaw÷`û,’¢á"UÛEJÙY·’){ÊwÜÿÓSÆÛ¿ÔûøTŽ4MÓ{œîº‡z×]0¹_<ÂGßæ,™²G({ÛRD Lue•a\Œc¨î Í+ül„` ˆR>Ü´—P¹×¥SÆ»í”c}ƒ[6Ñ)ËÂ1ƒÕ7ó.>…4 Ÿ\T[>y'zåWÑ/¿å{|Þù?äïùQTÖÂOlxêáôæ¦Pâ˜Ü5þFøûœ­<7öç×ÙZþçÒ…O°õYùqëqv™¥YU9÷hæÙͨ˜qž}¨ùèKËÓ†¯ÿ²ÎÛ›¥çišµ(ZÄ„H‘†épU¤¸4M}éíïe_ϳuv¼ûñ8ú¶oqðª½övðV›ÐÁÃúu¼Sm"·ˆÐ×½«¾D>|ytxDL<9éMäTw‰ÜŽ¢$¾ô´qlñ_”¥ûžnš)é´¯ÿºiN±‡ûgxãû{õ]qñ­õÕMW—;±ºèËX!â#–¥‡žoÿ­æë~ïh í:–Úb[sÙØ˜o”ó¥o_úôRŽ N²[iÍ5/…²íŽc*¥Ê›v(Ol*#vM9Ôm9¼O6 e¤AC(mÍè…˜u„òÝþéÙö!ôáàMÇ-ºrÚŽ[ôvÜkvæ>m0Û7LãûþŽÛG7™aÚÌh¡ox$7í¬:T>ØÛ?ýH¹ž46]§í}‹éKccC—ƶÙFpñïOeM ñM*Û6•DèIcðê~Ogp%2ž¤Ä ‘êeÒ¹<©)²Î©Lœ³dsdb”\e_+Ú˜ó"šxa?©DÒ9mj "'BDõ^’~4ùT¡Ï}:‡@¦H™BKêç=®4àßœs¶å6üq9çŠ|)·¾F>›&–޹C¾õØyv¶†]Љ ”âh¦°ÓÆ%†n •`Ÿ¬Ák%%S@’γÇ[mºLõOÄTíþ»L5N'V© d“ S 3þ çA>ë“À”À˜¸ûúj–>nÊ©$§%n„ Ô#±[ìýíý“ƒ²U¾¯Áî&š´hìÞy¦T®1ØÍýB¬® 6E-ëÓŽëŒ65Ó AišíNÖ±Aоfû=íÆ4#‚l%ª²cªêƒøBU}RÒÔªœÒœ²lè6NQÖñFM-]¹bíëlü9ËGÃA=oX Ü=ÌéÀ9;<}¹÷†è¾>~׺¿«¾N=¥ÛLþks‘Å/èz¾žîA9­6ö¦<"õÑÆ–o‡ D/¿WØÐÛ—}ª6ôt» < ¡hÁL4›YÒM®F¾!ëeþRy”¾»l&êªs¶ÛfR¾L³5OÓìrW©ºÇi–ùàãä ñ¢­" Qè=¦ì&}œ+Ôë\¡òiâí&W˜ø>¬Pi8LC÷Î,ì&4Ì„ÄÊ´ŸÝ\:>/ŸÈñõޝaU–¤f=t`ºêƒZ§u+±Zˆzª…|Í5œ•‘9Ù{µÿömLWôµ2t\Ø’(ÓvDR†GeüšÙ´U6®™kgãVµîÞ^Ý“ £Æ•¶ áWQ­I©Ë6~×Ìù Ù!Q4ÆäT-=î$‡šÔþçsC›vƒë[/¼({ºðYä§TýTª ŸT§¿•D«>Á•»G`ŸníüB¢Ö?ïb»ñƒéäÿzŸe:½îÖ ý|°u¯o7GäßÉÀi[”´]}MEEÅóR‚B_Ëþ~ ÚUÓ-dÇÙx=Xû®µpÒ6¢X­eÊ)”±ÀõÒRÜ6ü~3›Swý>]IB°ââ债Áè¤4Z\ì}®&a$¶¢€3þëÑ›¥÷Ò¡âÓ³ë<¿ý‰ó»»»džòy2ý’ †Éâ¿]œóƒ­ãcÍ¿¹y÷%»‰B¨mA›äÀµãiÖsü¿A]b[o]à7‰Ò+ƒÈ¡®mb­ë‡{/ êâMùÖ6ã]Þ]^f°"d6~/®æwÅV·ˆ—¿ "”ýòÏè‰Ò–åf4YÌ×ÃûˆoŠendstream endobj 64 0 obj << /Subtype /XML /Type /Metadata /Length 1484 >> stream GPL Ghostscript 10.00.0 2024-08-17T18:31:14+02:00 2024-08-17T18:31:14+02:00 LaTeX with hyperref A Handbook of Statistical Analyses Using R (3rd Edition)Torsten Hothorn and Brian S. EverittBook endstream endobj 65 0 obj << /Filter /FlateDecode /Length 3953 >> stream xœÝ[Ys·~ßäGl¹ò0›ÒŽqÎáR'N*vÙ"<ÈNjER”,’K‰’eýût£1@cCQ–ˉSz Ä4î¯/ìóµåZà¿üÿÉåJ&®_¯Äú/+gü¨½\{ëäÜúr”]Œeæbu´ŠÂ΄µwFŒZÁª2dM«¬†±a‹¦ ¾Æø£eûYëᯡÙoâ*Ä0z˘Êœ'§Ãh\d<éÇ $ç©.ÊÍšÌSÙmb‰ífÆ@dÒhà Ä%LƒµÆ‡8zSfp±XŸ¯ž¯d’ú:ÿwr¹þÃñêÃÊ®ãrëãÇ+º¹V¸Ÿðkç-ÐÒëãËÕÃá›­•ÑøáÓû_lÄhDTÆÇìŸÀ´ŽÆ5<ØlµÖ£”nPbóÍñß`7©×pP%­Áí¶R 8GXoµQ §°Ïg¯ /‚.´1è0¼„i/„u~x C£²Ã).°°À‡4«„Ô0¼Äi-ˆ8Ãé耫á*QŽQÆá&­ 1‘3*øa…óNHý°Ã±*!"'Z+¸#7U*'ŒJ»Y£^£ã»ŸD røÌF¡µÓà vZÆÓË$_8®æG¼ÙàÁ•axBÄœÐÃ?7A£fbGÀW^dLZ8­$ßïG™QPØ­ cT!Ò}üIܰç×ÁÄzC²Ñ¡Â»›SZ‚Ez`ð˜Ý㕺¨oÅT?;§“ )ÛDË_1ùÑ4È„TÛØÞèù‹DE­²’H¸2°1Êä“ãÕ—+´fmN8; ŬmšAk[²4ÐýCK’£’ÖÚ“¥U$6µv›­‰ðaþšOå•(BÔº\­„µétAj°¾ýf +„ªØˆtv ÛÒZzÒ]€çȶHË)sºãð³ì„N²Ó…OÕúøï«ã_ÏØT…M°ßé£d×甪i‡Kä ùårtÁAû¨É|U pctKÒ¨¡òBº´ÒÍWŒÛ¢‡ÆëÉt=àI2Ýà™å£g‹ag)¼‰œ4£|ž ìàüºœÿ>÷UÙï`À¤‡7i§€‹ÆQ²s¸I0—20@Ðv`BzkÌÒâºßù„¸ß#È]‚SdÙêUÓâÆl§ÕÛtI#£‹p3[-1,³ÜÇ­ShŒ¯™(®ÓM`”´‚û†VPS~#U,;~Ô›$+¢æ·ÓÜåQôp'üË“*»Q ‹k; /:#î‘LR\°"ðthSÙ'EæL"§e’ñÉùAà „Re†óà0ds–3ÚψÆ"vô)J'‹WpK²±„ï«TWÍÝ¿ iDàf „±è ö×u Áøé –ìè´>€ÃÍÆ (9˲ü&ó*í°Lrpàa^#NADPÉ4l•œTðŒ@H¸ òFÀ@ãÊí´t+åÇ•ôÅwH} º£rg Ì€£F'tžt w0˜ôø¶|¹F4—;ÈÆâ™±|+0‘;–D¨/k§Œ7ÃÍ«FÌ”F «½]À½¼[d»é¡UøÉFŽª9*5NË覌êº]]”ÑÙ¦s.#Gï`ï¼Óˆ…©ÐFˆO€ñ$S\~¬ÑÓ‹ « *öÔ‡8øš‘£°@Jc[N„1Z`Ø4÷‰´öŒ.°iøe¹íª§ŒßI³ä¢ý“âÙɹ&½nÁ ˆ'ÒòÒHëÚw­m¥ê—e‹ÈÚ]a.»Ü«êrAL*)?NdϤ^-ˆYÅLù@ °ihpì”HcLÊ5xπ캧ùi¬wÉõç›»¡M4hÄ’äÓßS´ w,%j è `–N÷žÉ´!Á0—3aôÏÞºxW)W;FœÅYHÁæÞ‹c{×—“ƒƒ`NÝ⚦-ß&Šä€MP+Ž³Ï“ñBfÔ ½bjþ´*ì‰|»l†"Q¡tCâ“5 pì†-¨È]RâiãÖU‡Ä±üEŽÝà`É­hŒ,Lß½NIFœ ÏHеäöLqY¼µ+‰n)€×%Ó[Жùó‡Sn$A]%ˆr˜ŸT¼«.6’MCà;°/Í(½ŸBõ¹¿ÙÚäæ$ƒý ñ/;s_eøA½¾õã³2zQFߕѾëQ}PÝí^åúº³quVÏ:=g›2¿«ÃºÍ§etTF÷Ëè«2ªâÔf¿Þ$+}˼»Lþýÿ]Hÿ¶Lnëäåý;ªñS(SƒgÝ«”‹aUšO™vôwîºÞÿ'ý»–?ñ]O£_u¨ð<`ábŒ^‡«&Cš@üP~³Áš¤rð£vg[!§5DévB·ØÎÀ8£øWÑ¥äIÈJá¡c‚uû©¨;ƒ g³u´d+GihMšÇS*̦ÔlÙr[Ž ›{¡åtV<,ÑU,RvFÅŽÊͦ°är°½I½@ßBüá ¾§àÆ·L¹B7£Út£&Ì0Á8K›¼ì›âÏ‘¼£¢¼{19͞ͼ`öõçÜÃç“B½µ3~ßD”¯–ü!mI-w‚ys <_qŽ ç”cJH þ}›å,A m,yá³fäç bÏ«‹`m^ÝÉ8ScKúá3ÆôyÒÒIÕf[5'ÝчXca{¼Ì³³s· U«`­„Lî‘–«…:éËlîlÿ?€ð¯ÎÂ÷‰ÿ)Ù,œô/p!9Ýw†¨Ô€¡-e–*-V]tjp`Êaã5LÅo°,¬@i`[Ú¦ív[©°­’îxU›÷‡vªò±²6º!S—€Oç=+ßæ%÷¦õ¿#a)øànN±iír•‡³ý 2\¬ ÍÓŽ$ˆ¸÷tçe“ϱ‘äy»ú‚¾ô î÷kæsgŸZstg¦SeM«SÍ\ÀNSÑÜxnËÔíÑ”µö­®ˆ*¾èXÊ7'úÔÍËŸ·¹E-Òç&#ä‘3I­Ä–Ô#µ©§9ÇuËÁs„9mOs Ré¶¿\úÛržkåÖ/kɲƒ°&+SmŽD7µ~̧3ú¿”§žN 6T©­“x^s|&Œœq[¦z¬]źóícˆÔFN7ßk¶LMògÔc­¶àÀKðÎ\MRCÐÔ'5äkÇÌ®T䦳S{R)(e&Ö*e>À;Ö–uNSGþùåþCëÆ2À’/Qôž©¶äö¬ß‹P`„KBgQÿ¾_{aYøL‹‘êÄìmÆ4Ýê.ÎbÇãºk+ÜÕ,+!˜ ž S ‡BÅÇ-i±¯ý¾ž„Qcf³;i°©ÚM¯v‰q¶ÙñšN$5ƒ…ÕV'¯Ý×Y¦œ8ZOC iG¡MÛÜO~‰uÒö—³²ËôUÛ×]~†@ζ—¹Ñá÷bªÜÆí5º¾*£—,2ï„À2.'âìÍFò÷¤•Þ¸ÈÁ®-Q¶5EPs i‚#ÜIŠaŒª³èUoIâS=òŸªô^:Ä.UO{îÁ˜¬Á¸æáöY qü†ŽîçGPt+’Uáxœ´/’”³p!}ÛÆþ“ªŽý×Wô+ÁGzÿ“f1¢4ß«s` Îyë·uoÄ~Låª=ɱž!¿l0£1vÄËÉÖ-6;f½Ô÷Í¿î¨Ëž­ë©X-f˜?êKjKF!#".peP x‰øÔáÙQI¬ñÏœÝì*ä½-æ¡!„j ÞæíÙAÙ;™ž¨Â¨°†-XõšGTjÚàÛ\2äÖÄÅP”zÓúØÓ¬ ‡)U?YRÂÛ ×óÞs³¬—š8Äxî çÜÙç˜H½t/x<ЦvÓÙx ‘#†ôœr[ÑvŸy¡Ú7ÝW,ìÏŽEËL­š§U,I¢ª_X úî}fð¨Z…™ÀšÇ¥ÆQú¹`<‡½ Õ¾i/!Â!¸á_$vIú§dqÆ+ò;ÙäfYÔi&êYÍÂFôçm@S…Ý>V­'+áÝì kyÿ¶ò¸ƒLu³1•l¡¼ówhí€(±1¥¬x¢ºð~…eÈìÉ ó÷±0…œ{ÙFùËŽ©¦ïØázš­ˆ¿…©ÉhSÑ þ p×@Žñ—¨Y5¢œúÀ±4ˆ‰ÈäEñú3çô1±ŠOó;à1süa¤v*©Ùç‹Ê…ª€.I3¯Ñ<ü­ñÀ ÑF{íB †YH³øŠ_s))q.xž½(iâÓ.½æL¿k€°\b Ã·„Ž?eÕLÆ|Jw¨ÍŒàίedÎú骞vâÅ|VF*££…:ýp¢—lKË%9wŠ ¹tîht.Ϫ´ßâÜ©4ã¦xÊéüÓªûuç#æMŽæ"i˜—£fˆs '¥%é§Aàcd“°¦KU?òIÖß¼·ë7ÝÒkêüÓ *¤ŸgpïÚZpÖô7ÕAÜ›~q¨P_oà/"@бò½Õæú°N¿ÚNô¾»Ótºè¤Xµ½ZŸ=í:soz]—:ŠvŸ)Úáhá Úí½õ÷zØK·^vQsÍó•Ÿãó¾wzçuW‘¼ß뾂VwìöÝõ¥1oÌ:½·’T–°£Å~„Ò# {F#]êe¦üÒîËÕõ¾·endstream endobj 66 0 obj << /Filter /FlateDecode /Length 625 >> stream xœuSÁnÕ0¼û+|t1»Þµ½{¤RâÖ6œÚÒ‚èëSKBâãY'yy~”C¬Íxwfgòä!¢‡ö¬ï›K‘Õÿtà߸Â5RE_sÁ(Å‹êVypWN¡ÆÂâkaˆ” µU5–<£2Ù™;СÐcìcîæå\í«œÌ;°•XsGj-ôœ Iä¢'Á°çt­…ÌÊi›v ÔMïž΋ôëëfçÏ&÷êÉ[·„™ýtç–-£G¦X }ûæ§û^#%‰8¼ V@•> #DPÕª5ZFÿ›Ïê£æœú|&ä˜mÅD²È’Ði0#¡Å¬7mžg†–Z^6Ÿ Qœ5 ]‹9v,?6ËrT±ïA@RVxâðeN> stream xœ­WiTTW¶¾eAÝ+APãm!ɻ届³‰IÚ¨$*Q”H‰ˆŒ¢RÌ 2SU»ª˜¨bV†*Åëc┘Ĥ;&mkâjÑå3¼·Ü·<¤ûIº“¼µÞzëqÿÔâž{ÎÙûûöþ¾-cœF02™L±Üoَٜ_ÏÙò8ß¾Ö\åàêtð¹±½cÑwÌ÷£Çßô¥1ËÔËc}â|5ño&¼•´-$e»_hXxDdÔúhÿwmš5{NúÜyó/a˜IÌf2³–™Â¬c¦2ë/fãÏü‘ÙÈLg˜eÌrf3ó:3‹ña|™7˜7™·˜Ì|f³ñc1«™wf 3–Ñ1O3ãžy–™À¼@/Ì81éÌ-Ù&Ù‰óFXåÎò yÓ§rgwçPç:ÅŸ'X/ÖÊášGþÇÈä‘q1¸ØŸzý©ï\s]ÿ9jÞ¨b7o·ÜúÝWº›ÜëG?3ºyô£1ÞcZ$­›=D|V”üÍ2iž}>ŸÕiHÈ€¬Ý$rà¡G^º^£MÒÅC:p*ö¡Ëxzà]]½þ¤ëd‘Íö ƒÁh*Uv¢ÜÕ ‘<ëü¢Ja3ýº ®€MëX¸%g¤·ù;¤Ê™¬V¸Iï‚(Ém²;¨ÀE¨KÉx‘¿¢ù˜È—„¬‰ôß+ÈkÙÎ*öb1„*ÉE_Ûl8oì ;žÓ5í‹a,Ê¿O4çÍHÓ k37vBœ×™‡–°nö@`Ÿ «DŽÃñ˜ˆ“äíöe¼êî@ÿL•4E¯Ëý¾yû âr@y¿æÝ‹ð×ïó5y^ 3ÉG·nàì&~|8„ÕfÍnƒ `Ž—¶–u©;½ÐS]ºa ¨`SfTfhx|=Äž!JEÙû8SnŸiŸÃ×@iJ–N—“-¬Û¸¥+ ö-ð$Ä›Œ#‰Dƒ/ñ¸ÝÅñÌ9†Ô½YªWæé«ÀëàÓ~!ò\î%¸ Á}ñÒÉË_UöÂ5øÆÏB¦ÓŠ¡ ¸Fƒ±QIa#Eœh“FwÉnPè6ÑøÐB¼x_ôQÖX÷u‡.?ü_@¯Y#NAÛöÄ„+{YâãÀ²ÌP®«ÑB6$qE¿ÅÔWêãZÚú€;Õµ’¸“ ›6nÞºóÐád¥›}2Ò*bÙi“p¤(·³ØÄ«‰äIÓÉbঠµVq»`ë2¥ˆí*Ųü­³…,{¨@o¨|éqâDÅNÌuh¡èMÑ?J‰¸dˆˆ7¹nrôÇDþÊtîôú”4ˆáBZ“jµt½¿¶1pË6Í› ‚þ¶‚,þwnZ }ÆcÐAÓ7Äöù”x,½oˆµOî+åÒ)û+ü@ÕÐá «é.­cð-t~C\°®Ší/ Y2tý%y!s…T¬½¥ÀP±h?A¯ï& ¹6éÙVYÛçè÷¹oJ¯BŸ”‘³WH-S—„·|^ÜÄÍM»+ö)[£;²eue_Ø~ÜÚ ô å1âÇ©Bþ~½)8 äÆ+‰ŒM†¬êb#TT …ûK M]ê8@tïøìʹ-{*•;Ú"ŠCJTeþep‚»ð™¡æfáÊD£`H7曫‡Â:Êgr»ÐÝŒ±".1Ë®£â–(Çi"£D2 ׫úEj¢˜šÏE|HšXÂ\K¼ôå¡OÏ gTþ¬ZdL\ªÜìõ4o"VˆCyË£kŸdš¿+*"µs`;}æ@¤‰¦Lu—T<¬¸+²¿yã¨nÖjºESÜ·À:˜â™Ø‰y¤ó÷Þ°”Û4³²3?·$|OZ̓ìÏ.\½r•¾ö´€ß²då/ðïe½>Q?h|>í o(ЧÈYdýr S)1tÓ‰”^ý4”§iXKÃx(*"´³ „>³ bð²ú§ÑæeºÝô¹ó„CÓ(‡Âó-ÒhQfw“\ø¢ƒÆâ³À‰¬F£×@ 5Ççl5X 63?ÝcÉôÆÎçDÅ.½¿N »`—a—ѱæ[Xœ:Ðk³ô:âíñ"f:÷ˆ µ~ííjØlŒÜì,‹ã\ŠR 2ëÁ³ Ê \Ç}×ÉÞM¹î x„2SIms©¹6ÜÚ‚3n$Îu4ñxš¿·ô,qßAÆëælµ&7µ´ZzZªôÁRPb< ÜùÆÀ7”,™¢%ãa÷âÝè+º­}!6Þzæ ¨7g3 J• *ÁÂÅ{ü‚ 1!ñÝ8=*ÂXãl¸îÌ/}Èß¾‚j4ƒÈ <8Îk5]1çÀG=¼†^8sÚ" MRðm½ûÛÀ‡5a;`=åO lNKÚ¡ ‡pˆ6ïî¤Ö•M:+Êj•K>ÒH¾¸ÊXü¡‰8ŠDDÃãÞ!$ §`Ÿ>/ôÊ…$N}y zg×y¾/*bô+u»`7l2F .¼È⬉٠šû=ÕÙ© :C¾á@QíhçÚ4õQê˜äPUGЙ/O^«iÄk©¬¸wÉÚhU¸à9¾+Íà³²3Ò žÎôÇK_! f“ dÚƒ—é²çZЩ|ÿÈLÏ×ïËr’V.…ØY›Ò™Ò©ïƒãÜEÀÑwªËuÚƒ‚ÛãOÈ:î´TAÔ8—'ë%}V]ž)– J­«ó H½F› M„à’TŠ#Ñhƒ#p\gTÝ$69†8 –“Ú ,ÆÜ(Ü[°Ïžf(¨,¬ÀTé{ÃÀÕÁ>x*@'|=\ŠRÿ]‘„ÒM¨ ‰ãþjG웥yÌ¡àO p-d 1i€#Oy½L¦‘ß.Aywges»2„Å•¿”ã±D1ð€WQtcövd´Ã9*¹]pºÂz «­¡ZÀ–ÞFO §ÝlU.~"ä÷äÒtŒáŠ Íý8’*+?gÍóóß- ®â™¾,ÕÉ—ªËÛ“§Ô¬^—¸ÞÇ pÌ9e›“á” Ù›ÀÝ29^é†gi‡ûQÄX›ì>2ŸâX9Ó6yGœöƒG^5”› @_ dæìI…Ý\°5¹ñp«¥»'²o¹÷”¢¦®S%?þ¾êHZ²Å†3înÃønY#m;Êå8çk~·qw-©®¤Ü`¨Ì±¥œ£ Þíìç_еf–++JÊ ö赺<ÈäâªR«jêëÒ­!éÚ¨0a{ó;jѨµ>¯×l?¯Ü¹]N-a†ñÎè´Ü ñð6·ùØŸÐç|rá2Î"“€pBñ#Þ.ž<._¿w`µ¯²lå¿êM Ý0Ù+ìØ±óG¡J9ì ÿÖ¾¸=@-èñ¦â_ËûäÿÙâa À÷gúq¶ì2rŒ’~âF´o ŽŒ ¶FööØÚ dYN9vîgo1œ0öÀa8õ„æ~’—C4¨ûG¯ìýh| —v;1½>!^ˆ mÛRµŽÎŸyÄi­ekÓeW -ûfB]^gf‘îDBÕ;ÂmNzcñëÄõNÈôÕP˜0,Í+¥¹Ô`¨­š›Ïný,§“¶²?|r]Î'‹kWnû ´t¡E]U’QUÓAÕùxýWÐËL&† ¦ôBÚ²‡õ¹~ˆv›-“F}[ùG++JŠ?O‘×î „Áªá^VÝŸ£ÍÍÕé•DIÆ9Ko³¿Îþ¯ ß=X[[eÊ-2r=3ãaàHÛ%c½cÐÕM )ÚPç 3eUR#[FøÝ­ÿì´Ü>NzÄC-êMµ& gáz•.‚–l 1bðnfÖ]±¾A zHàF³ä…éÁ/拉¿kf±ä¹&ã2œuýŽY õŸ¢ÀÖ_i‡#¼VÊœ^êÁéÚž&ò³-vdiÀ!EsÈ@¼>˜^/ ŒêaAn‡†LòêÀ:²T t¾îÐüô6¡°ü‰æ_c1ó§Tg³›À³L%ÅU4_PˆþÙ5\ƒe`7þR¡›b…ä›/›¢é6!1k¸ÿ§1éU5«‡b<ŸÆî0#W±ïÐm×ÇÓN½È;h4Ø&{s™4ð²ñ’|¿qľÆ~:û¶‡ŒžL>üŸßcøO# Ó ³êÀs?TKêp²ôŠNx™f,‹:“Z(*-<È9@¤U|gËq×_ùÞHkðp÷Z­½T5µ6é¶MÖIùõ’c Æ?ó÷sI8‰’=ý {1#÷<è?E>üËsïåŸd¡ ŽÂ¦Þ’ûLeÐbjÑâ‚ # Þ‚Ùù9óö$ Î|”K¹âQ³ŒêÓSrüÄ.ç[ó Jxkå$º–Îôc8]Å ”'Ûaº fÝ…Ž!ëÏÑô¦c©MÓäÓ°”·ý#-ÂÑΩ„à8Ù&ÊNâê³¹äqtêÑjr6ïKËË^HK€#®Š¦ú>lª7×¼{Ô\sâ¤E„SŽ˜s•¸M\üÆ¢µÇÓë[»jOvïnˆ,šwÒ‘îFùÔõɾK½•d.Ùœ¹ºÃdÏÉÉqlFo+ÎD玿 ÒÖ)ë¡¿etÒÄÝø5µ`ékþ0㵡•æ8åᢶ:¹¾è–­Û"c_õEgœrõïÿyn×7ĽY8e¾òÜæ®QWè:Éo™ªMcëkh=bÉêÙP$´´uÐuÑà•ÒC”)A]¸.N—£‡T.¥ Ƈæe¢äC“ÛîÐ%Îæ¿—H/)ôÅê´> stream xœ½Bÿ CMSSBX10‹‹ù!ùJ‹ ‹ ›÷?¿¼R3oøˆùR‹ ÷¶Ó÷uáæ÷$÷Ÿ÷øw÷Ôʚ걋÷÷Yûm‹^û„g€füêg–°»±•˜®÷›÷÷8û³™s–‹¡‹ÆŸœ‹©ü6÷õ÷u÷÷ ]IP}Uû 7Ÿ ‹ ‹ ‹ ‚J&endstream endobj 69 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1769 >> stream xœ­•kTçÇg˜™*!3©¦œ™rŒ¦ÄÔ( ‚—˜ª¤‰£èr§°Üv¹$n¹¬Àî>»Âr_aY–ë° ×€å ZŒ ž9)m‚95Ml¢ô˜hšw¶/§§˜äKsò¥ói>¼ó¼Ïÿ÷žÿ„« A’$´ÿ-¾‹ok!Û¹×æî¸»Ö{±;=¿zìÚ£ï­"ŸÇ”i¯ff©öfGÇÆ%&ÛD¯ëˆßˆDNø‰@âUb7L„/~Ä£„§|áJèˆÿÑä.þ.ŸPÞÔe×]ÇÝv¸ÕÑ¿¤ÕÌzÆÌôJ:iDÉËF"bÅLSÒ먔ƒ/ CÕ¥8bN‚g .@›ÃîÓØ«ÀMÉü©òÄa·0Šá•L›i:@„qhÓº¯™ßæÃˆ€B™o®_šœ´¼Êãü={2ÁÐÉz8ƒAD×mhH$?‹nݦ†/qJ3s²0^Xè`âu…A|ŽRr§÷ù§wç?Æ+ë„;ÖëWáÏì­>Á?çñn|ƒC&¦ÛTq†Gžô½^¿ðàƒ˜~…?ã"õÝÑkÌÝQÿ]ÛC_ö<$M¡]òµ‘³¨s–’"Q2‡8Ÿû˜ÅîÏzcOüø½ˆF+æÿ‰¥5Åü{Y×# ÁaØŸ(t¥>q¶èbA®5Çz¼N ilTfÄóÁý÷Ô|©Œ£¾¬tÀ@Iž€½˜<(©.7›øò 0ªï?2 À~36ñÑxrWQ•àH7צš-ð>ëh:û9"Í›RL¼Q['­r«Üæ*Ùß'E`#ïO#/;…vJ8ä-bo´OM~°q³ŽÍùv0˜úPuaª{r†ÿ£:Œ RFÇî/xg¦ìߴ쟸äߨ%})=àúNVÏð6‘ÎÒo%¤Â6È2É€¾X\ˆÇP!ó§~kºÅtS^‹N¸ -AéªûdEcØúS§<¤ºÂ&é"i•T”ô,úŒ«²7 _5²"£Ôk ²á8]º™Ò—§BéKJò×ãš5Øõ”X åkÛúÁÊ‹L¦þ ¤C2è!tù“KP]Z›‚Öá¯)טJj¡̦Švq}lèíÆÖ›ïÛÈ37бéY;%=lœ¼ßƒ‘‰] K$°Ûö…‡(5Í- -ï&Àq¡yèœuس—ã¶1 >ª{Év±;ÿ‘yåÚÈà¹F¾ìˆ#aئ ËÇÂ%õæ,­&.œâCÎs>ÉQ‡õžCkЮÚ^/‡—<‰ÏÙPÒ Ù3‹¬Sº°9ƒÉ£zBåadŸöÁãÕw|Ëì™ÑF‹°›AÞÕn"³G[q^þÅ„,|ÈAè4ê¬ÄcÊCÀf`¢½9S;hïlŽAÇ(LB¢úÚ·e4y²ú=…v”Þˆ‚–òC;II«ÑqÎn‚Ư¿Ä`úù§ð*¼æëg…VŽ ¢É\RV¬•¹ë… ÿ½ªh`£7t —…FÆØÈU¢-·vÀ·`ÆÞÆ$ö»L^”õc±ì1!šÖ€¾¦±ðýî.4ý_sµÈ}°ƒhõ<‰Hn ´Àµe7§e¨³ÓS[r[Ö6;y*#¿ZU,#oý!;ÎÉk`N/× )-$WF—-:·´“ãhf‚B±’÷Vb®²\šú+ °ã­QfÞ”¥Õ7)˜Å|Ñ•ÂNðÉ¡“Áµ‘°SÛ}×G4DöÅ=±=E7òz´5–â÷TŽp8ÀþæÍWûk†ó¯•κ •ZÙ¸‡ £XJ³ÑT[Á—U6õUžê™Jº,r»ƒ\®¨FÒ»…øEMlµœáAt§ItmŽrz;·s ótÎr³Óä[Õ‹|Á*Ó«ÔÛtÆ|P± "“>AIw™îËÿ†x]K °œ$‘VSU}Y¥I„F T%X°¯í‹ÀçÉOç)´ï<×®jÊTæ¨2S[s›ÛíM¼¿ÂÕßæþ3p_î+ÁÝ“ þ ü> stream xœUŽ» Ã0 D{MÁ ¢ÄŸ&Hd„´q‘*ë',™ ‚‡Þ{SSÝçØÏ­4È O©t+Æ åF®Æ£­ø¨YÁ«> stream xœµ™w@T×¶ÆÏ80çØˆ29Ô{&–Äc'&ÅÞ{éMziC˜™53ôÞf`h"XˆŠ5‰c,Q£Áò£ÑhöÁÍ}ïíÀxß˽y܇ÿàpÊ^kë[¿µG@Yô¡hþÊu“'™~掵¯ä‰–0@,І¸h2£þoD™~æ;Î Ú:?xAÈÂÐEa‹Ã—H—îZáº<ÒmE”ûJUž«½Öxû¬Û¹ÞwƒßFÿM›Lø`â¤ÉS¦N›>Ãþ£™2flŠA­¦FRk¨©QÔZê=jõ>µžMm ÆP©±Ô&jµ™Om¡æQ¨­Ô|êjµ€šH-¤>¤Q“¨ÅÔdj µ”šJ-£¦QË©éÔ jµ’²§VQQÔ@ÊŠz‹LYSbêmŠ¥Þ¡l([ÊŽB ¥†Q}©~‚~Ô„2lÈÇCö Ý5ÌfXÈßFü­™³áô’ÉùwßW6|¯°êL#Újä—– ê:„üˆÎlJ¾23b@!O‰Åî]?ÙFmqß½QÅøÓåêýšF0B»²NudÀH#½5ÔP©Uç¨5’CÈÆèþ@ª‘Cª]ÀzæüéFí%Ø ûáªUiº%Š^ ±™²zëùYâë–X*²âÛÁÈ[¶JõÖ¨ÏEäyÑF|õAY¬£d°„<¨A}TS•äÝ{ºß½D%hýÛå“çÏån\ÇáØzífU-ƒÖÓpŒþ±Å¾eka8º­dÄ×^Ðx¸ÌÒŸ¼”•¼MbÕ¹…då‚5­‘ä6:ýxÞS1Bù>,RÑõšÌ6 =n˜±iù6{,”¼…ßáºúøWˆ®idÞ’® ZüÂ[)û” ó燉ÝýŽÿ¸7ó*æIVâ,,rTfÖKP%ZC?i¸dÁ晣$V¼Bfà'éÕ·Qím!ï‡|Yôöè—x < ð`Ìþ6õEý‰9‚YpÖ =g¡šáxŪCmº}pöK+]*]`-x‚7l”:Kœ·cÞùNQ€îÜò¿ówئ³Ÿ§Õc¤ý•îª`ð‡µš5Éž?ÝR!“Ç¥Ê%x&Öá¥è³äÐ@ºÎv3ÒÞŠyà®°Cíª1ÝPB Y²¢ä…²Å›éžøEÚËdmÍp¦m §?Uä4KÐFÚªÓKjìüÀh}ò9ï×j°?:‰~b±;š'£UÈþ$ALdÆÉ@ž â’ðÈwgb0«ð–=è¨Dü+jG›÷œE‚ŽIøý2N Š`Š@«“ º2e©©ŸÄmuðjÜrd<؉áÕx:žŠ]HºÛñ&#š çíZC Ö//¢¢Û6âÇh.?€½@ãQ&e\Δ;KÄßwùôJlº]S UpTÙð¦gÑÙtzLëÆï€Aýû±H<î ¶ˆÏWç)£Å…, £kŽ®9 Ì•³S±%¸ÐÞÁݳ¬%X«5”‘ÍIëÙî./~*lèœÃúWнŠêÕSš…84­AëðP4Ï‘à·ÿþ.k–¿·[¨OE_ÀEéÑû×dO‡Ù€…‘«½·E¯[û>_Ñù8CD™õžÛ¨ˆTÞ÷ü ³,^ü¯#åOIiÏI–âÇÕqnç>Š™ãð;xðã÷Còt Zöëk-ògñpü¢‚¤aq±~ÁŽÀÌ[ÕhÔÿÒíoo¶NÛDjm©µ3FT¿G€†u m4Þ 5ѰëloœßŠZQ®e¨(O Ÿ‡çƒízʦì>ý8×o†Ä€JBEÓeþã¸É(YÔ] ¬}Uа„1ˆ‚Ô²ëLoUZñC{íæå…—wmÄ×Ð'èõ¡±Ä´ÛfüÃ|šÕmšjØm°Ï¬Ü]´ƒ2·Q‚&’¢íø.S* §PEÄC¤Û­/1äÕÕù׸pâkóÀ{I¬ ÙÑwI˜mFt¨;Ì 4Ò äotÎb»½6 ÝëRiÐ^'…ÒzJÅ—žù ¤ºKÿœÓ°}‚ïxn:Êè x€Ãú"Ì‘€­xN¦çg”Z×B?CQ†ðÏlÄÈmbõ©·b`>³ÅÇ}¶½÷©"9E¾*-˜8HŽ’`[:’sÓÕêÒRN£MIé׃*‘3}è«oŽÔÆçI|ë<²\³ˆo®Ï]’zHCeË]Ô'}²¿†S'fc`ò!½Tò«¹ìR”Ç)RSžÕn°›ìž•ç’õ>EAUR‰¸£.¤ZþM,ÉAjL,C¡Fþ=³ Ìèði°ïæïŸcó¥ûÜsɆ¬B šG7§¥ILÇKµAî0¼µ&Ó©£ïke^’å´¸ [`qbÐ2¼­%¾°µþÌï&ãÑÿÒüê6vxž§`W슦á©hD¼û ܬÜó9©[™.CAFôQ™à·‹hQ©?ŠE#x$Z*RÍ xwl*#ý×Ðø­Gñ—«/ŸçN…n <½–Àƒb®»á~aD{Œf´wùNþۨɽÆUE> bÔž0|ÌQõ=ŽÃí(Žþ‹«þ°¢ŸoIÛÝ W¡Á¬Ÿ0úS³` Q;.ü««ˆ!ÊôÒVR ¯»q$?ô;™F£r-ô¤Ìä<¢ñè×å‚ÑÓ¶/žgŸÚÖΡzþrS$x=&¡ œ8ò$¨®ù‚±Bïñ·aB$5ůͽÁUš"›Eâò€Y=‘UÒ7´=‘)d³¸Óšo7Þ5‡Ð³æ5WÈtü£ ”òÓÐ]6»¼xÿ5égáÊ@U8„ÁMtw?kRå†C$$*SSeïá,[lêäùD¸»Êf(!â P­W†C0¸«Ì>iò|4 #ÛŒXMJ>äCZvZQEŽTY𻌂dÆÞ¢h ûáÖõ›ä‹á´7מW[ÙT$Ýëìpyudz+—®æJÔYäu{~ ÝRçÈ•ž*GÒC§‚§9ðFúˆó!öèÕV‰‰Îþ u°%GŒù ¦°¤$,)‚“&²;¬F•>Šü_Ê”¸I8Ûv ªKÍS™útU3”‘wª¶(à {£j‚"eN\º<7 3r:N±€ÊRòÈÂÒzïèÎC*lR{wßqòy~Èÿn›«M2åA“‘^ð+j´}†›Òd¦ìòAÛ…LmD~úÊû“Ò[·^ÛþÙ_¼BÚ{À1t÷;6ͽʵ ÝÙ‚ï%'C×ÓkCå2ßÔƒér¤¡š½›<š·mfæ"Ç¥eÑ•Õ%e•y)õ;Ô’ª†Ã¹„VŸò˜"ñ¢ÅûmQ,T¬˜»3t383?=Ç‘—\€CûJÛ˜dô;šž0§Ó6·†#'Zo£™¤Kþ!?Š·gÑä•uìè÷j;#¢ð#ð†u°Ó¼!ô>UF8$BLBBR2¾€ÛmÑåCAΧCHw)Öe$fÇA¼]€D˜ÖÌÍ °·‡›é°+-à€©e›Z—QÇ«…hŠgk÷î=\Qill)l3É"D  !›¼I×- 2+ŽÐ|LB\Š|ålÛÙ¿&šà-à ³ËÌw¨–*c`8ªƒ»7ù¨Um«Ÿ`ÖöÜûÚ5Ê]`çOWjŒêJ¨VeE7HµÉùPúšú³ß|7Ú6K–CÄ—˜¸;Ø4+ÔªOjôšUµ½DiÂk³¹MÔ#¯Ö^ØÚM`k ‹.õЖÙPºhµ:« ª/lÝúíÐ^¤û‹ˆ3Ïǘ(‚TE,r£¡Ô¹EÍ'OdUÀAh ©ð¬tÓ®7ðR®tÚåï黜À»"¬‰P–JHϱ$^ì^ÆsÝ^üƒ©!£\6T${/–@ö¢»nÎàké=PðWoy+&‘Gz’ú';Í—ˆLXåª/¹ÃK‰ÝòSIÙVž;ª.‚×nŽi÷þUEÑdéqéD¯v¹ ÍJËEªÎ¶ê®Ë¢ÞªjÒ~mž(¾‚¦7«Š¯è­L<[ JŽÂA]gl{›Y{=¸»›t‚]J£Ñ´¶Ãüoo*ûÓ.•Éúû‹Y,þe 2 ð<Üc¨cλÒdO•²è€íNR“Î*Ãö†´(N†kÒœ©9¨3î­?Nê¹u·Ñ)7”õÆ6¬šŸY-D»;§°‰y*u$yѧþ5¢B(SªÊjD2]¥‘°b:=E­J“óºÛfÇ«U™À@f©„?LWAÛs"$Õ6¥/øÂ6O·öžƒc°¤kÝ-š§·&Cgâ…P³6,P:›ÆÞ1ìæyê!Á‰»XT'ÒkA÷dãcR$̇£ð` ‘Æã×[DÂÒœ$MJ¢Rž¤ä|FM†Ø îµáMŸÁh$Q—H+;í+òœŸ ;=ÑC¹àñdÒ[†ãð4ìFèk"ž„¡eh<šŠœ8üþ‘‡üˆ PzÿëÛ÷ÐÈ8—à¿Ù(±B§Ížˆ¦ÝÉÒ Å…‡÷„h>?ŸE ýãgŸÐBr!Ÿ¡LxQDUMaYE“Wý¦…36 ç0=Ëÿ¾öW¨‰Œt÷´²·3Íf¨í¹E ‹,š-BõýÓ_Æüˆÿ&Á/ߘÿÿ¢(P1‹Ê»gµš ÷9©·©¦cìVŽÖ¾SŽ Üºº=â*šwµ¡Ýù´øw EsÙið´¼J]Whdå•WïæŒVùí•$Ň¹!1,¤AyqYsP‹¢˜G/^kŠi -—4îiL/1Íñ UÉRSdÏDçÇå”f–Ç×yD8ËÝ\9×zW­˜‰‹}ê¬÷4ì’ÄíŽòFÜI¾§1bu´Ÿ ¸3óŸl@V¨ßoG¯7ÄÝRÍmª^ «ˆ­¹@²Ú/m—H™ŒÂÙ÷=vhoÓ­äsÑ]dÓ7.Ø:VÒ}þc.KA7r QŸïØÿ¿£{p^íÉ çoÖ¹Ug¸TOö÷˜µ­ÉìTÈrÎóŸ+mįP8zÉ¢<Ê!O¯ÍÑÔ@0÷‘E*~oQØÇxŒäiû¸âúY¸ÎüŒEwðhõ'"øŸG ½hZü÷"= ;÷zƒ?,eàÞâÙâ}B^ Ìõâ[Õ'ƒÄd•D¾À'*¶AÒÑØGq7m£Îo«ßPJ ºÖ<Ô¢/­¯¾\xÁFü-äW±ø]S€_fˉ‘é{ÓT§>®© vÔЛ¦¥©éÍñ¯iü^¶.Tä/  Ö‡« º:Ò8Ú¥ÆÎIÕÖ'+CΣ¯Ïo" ¹‚žñ¶,~Û¸²Ðã8œ¶»tüìuô‰ä”Á©å Ïí™Ñ󘕬RÅ's>ëjÜZ¦1Kh?uøGÇæ]–䦿͈U%×&W{éBrˆC1 ¶Î·œ“~x·ö¸â¼ªQ•“ŠÞÕÑ<£fª5¹™¨µÚúcÆç½;ÈŒÚ÷æ/¨D|ž.½e_FRrš4â¢ù0sVܶ¿XvÁ´™^¦¼L0ååZ¶ 5Þ¥§/O ‡ü®0­¬ª˜Ê¨²  ¨ˆÍ'ƒN]ýâüÒþ:'ZÔ„U†…V„ÕÔTTÔŠô"YŸ©CM‚FÊê@YaçÄΙlEb©¥AT€¦Ö£ñPBd™£Ô¥‚ ¢‰;‚s÷µhŸÁ!òï9´˜5áN€‚=¦&F4VP’–K] ä…¾xºy¶ïf@Ò*xyAøòu¡ÔïªZاڧü£PžÓçO\Þº¢ì"£S#ÉuÕêÏ5:‚r5ªšîë¼@ žÇ°-¶UiR2¥]>““uîh«FgBÄ@E^©‰ín¥ªÄADl<ááØÊ–ÿÇJJ$Š±éæªN£‰«bXÌNü‚§EÕhže¨(% Ù9awrÒRb²¦õK«/“!jT9ê÷ëëVd1ãúäáœç6bL¡ýè{«êô%’¡[SOŽÎê9¾úÈc™¾æˆ#ìæŒ‡/ä7ÓrB:9^¹6ÄY°}§"T•¤ S&C’*Y Œ¸K&Ë„bî€èVÓâ±xØ¢@g—¹ÅŸûHRŒzØË4—†ùÅ:Oz´ ÕƒÏ8òj¸µâúH]w‚Ñ#ïJ2ÜvdÍd§™ÆÛejVíRZáXO³êÁã{O£ùí$÷1‰ Ó‰*>Óµ“˜2Y¬!ß×Ò:êó Z¡G6·­<ÙnD‘„eùh‹úÏ|Š©í.1>ÞÚL—Éë“ëHGëÒƒü Ez²J ŠIDⶈ%à;2uIZ%É4“I1|˜Ž‚¤‚L6#Ë-j:þ=´ƒaGVT‘—ƶ2âW¤K¬s óð ÙA¬kݱèϵÄ8¥Ô**¢ ¾±>É;¦_‡,$âßóìg$–˜Ì(¿ý`Ù§ûÈãá²û6â.d‹¾g+hÂlƒV´Êwê¹Ýîàä_±[_T›Ý|Æù³ðÛx(™C$âW¸ 1 !áOÿAîOù 9q×bðÚ±AýñUvœ‘FµÁM(a®×=½_tV¹/ØBo;löX½ƒ°‰Y;:þËk‚“†Ÿ ù`þ%›m:®Ó18U„­@™ŸZÊ„Š|±¡mQö¹ü¼ÌŒëOÒè.’ÅÌ©ïd<ÔKà=’7§C‡à`w”†ÚYÇÓÊ îø¢[ è«S¨˜Ä|$üª<~Äôu˜=¿ƒÝQ›ºŠ™³_¶^¾r~óüuÛWûpúÝì7M‡ÛáópÊ©I£?v˜¥qjuärã›B „잯 œ¾~ÌáÏ–¼@–?Ýþ½Qvг•‹ÔÅä,ßÇŒveÑ[³«#Û`•ÃÜÍ3§Ïÿâöéºó?´™m¦ºñár~”)ýË"û&µÑeÖÆq#w¬Þ¨ÙÌȪ)6†Jc=–wû±d†üHö‘Ó_OÙ°-ÊÉ…ss w…¹ üãXdÁ‰? -­å§<èS6v€ÿ¹¨&8&›jÓ5UÙ›ß@ ¬~g±Sž_Ú ØÁ|´sÜTÎìŒ(¨Çy«ÿíŽøúŸP¢Ù¬Ñ\ÓÖw_F³þõÏï?Šì²¶f/wHN"W˜½:÷››ˆ©Q~»±×ÚÓ5 Vs™ê\MV¦é» ¬Õ½Z_&xrZˆîàd–œ&ºFÖ~h- ÍÛ‹æ¡·Ðà|“b´LfªVž0y1¯á¶à>ñXHšûì\<ð¶<ƒßº»,˜Œ4m¦äG£òìV¤eẠ܀,W£·¦™Œ<5U®ei”ä—1§ðTÀž€çxáx¶Ž‹7‡ OKÍȹÿ5ÎE}òîEßì¦Øt=¡XäuáÑ=!¿Áô} m$Ý’u|ÖvðOG÷FŸ=ë×8{¦¦pMëÓƒ™€™Í˜’ü['òúËi×™¦=Kúñ­Ö/WG‚šSÑÑÊËÕ¡U‰‡ɸŒiÚŠëga_6 / èúÃkŠúo’¦'endstream endobj 72 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 166 >> stream xœ›dÿCMSS10‹‹øýùJ‹ ‹ ›÷À½ºR3Oøˆù‹ ÷¼È÷˜Ãëá÷ÚÜø7÷Úò©ÎÒ‹Üîûâû#û…ýJá÷Ñ÷2÷PûÑäüGø÷˜÷$÷ÍPDDKPû  7Ÿ ‹ ‹ ‹ ù> stream xœX XS×¶>1prT%ê;ç^­¶UkŸµÖ:W´Úª8 82f’0$+ ažÆ0‰PÔ*âP©ÔÖàôêwµ­Jo­µUïµwÇnúúv úêøÂ;ggí5ükýÿŽ€²B Ѳµîî3gXþåSqŒYÿ|µ½ÆABp°+ïzÇ ÅF"ÇOGQ–Ÿw–‡,;°|…deXøªˆÈ¨ÝÑ{>ˆÙ»vß~oß ~Ý6MÙ1ušÇ›žÓ½Þ’Μ%Ÿ=g‚W¾»èõ7(jõ!õõ*µžšDM¦6R¯QîÔ&ê j3µ…ÚJ-¥¶Q˨7©íÔrj:µ‚ZI½O­¢Ü¨ÙÔjj5—ú€šG­¥ÖQé…”5‚ZD¤Þ£©ÅÔ(j'åD‰)Oj ÅRBjeOýÅQ<5”F-$RvT õ³`¾ fȸ!!C~nvÚyصÛ/¶o¥Gѵ¢9¢f #JÝ1ô×a’a—†ÏpppPŒxcDÊÈ™#ÓÅŽaŽGFyŒ~wtÚè‹NöNSœ‚2>vz(wŽ™>¦•]Á+»dìoÎëœ3o»¼áe®i®ãßÈt[Pkö"“ù6«h•k!¤ ØGôê]äJU‚R™qLP ”rOé²*¨oˆ¾òïöh]9ÑÞ' ƒª ŒJ—Ö@}aJ^|¯Ìˆ0x™9‚ÕЗ±É»Ð}‡¢.£»Ñé‘ ¹›œÅ_¢æ1l#ïå–ÒR 1TEü1Üåe[¡Ùt±Û )ï…VÐâco´ž:Sò!‡£ö‰úöÕZö½9xŸŒ~²õèBNüå*ðô‹ŽfÈÙJ#úÒ(øÌ„ªMB³ dÑèé?a;l7ýu<‹NCCЇ? 'ïÆsÙ%ko>øëåËW¯]Z=cúÚÅKxb"ÁhÎ1 ÚLèÊ¡9Ú|‹-ê ˜”ÄäN• ª8‰¿ÁC·•ÄÍ»¯àÕx "ÑXÄÜíù¶) á¬â“ßX¶˜sFSÐ÷~î¹pÖcAŸ›.­¦ô:ËaXbDoÑk¾´$_·ÑTÊž?wæâsKçL]±zÅ»¾÷Opx²ÝáÝGÀ Á£‡HŒgýøçž1~¼øQªhÿï²ÛkøgÙí¯YnÜ1¡2“ð‚±ÖÅ|E¯<‚~±B{hä|ý ÍEsæ¢)ؕǢÞvÖ,ÿA„ì;±+fðÐõØ ùþªG‘W_Φc¦$”_Ù ›=3O7eç6ò=¢r¨ðó…È(n%։Ľ(9‹ö€´ù T”s¬¥{8쌼j3 -)㮋”y~\ïPZ A«õƒ1‡Þ4¡•÷œÅÇ­c¿?ÿÁiÂJ£ª©Ð•ÔêâÌߺ&æw^üåÁ~Sx-“SUPÂ߯] l+TD[Ò 2 ­§ø[^‚§&4žÄ(Dï!‹ÆÓ/õ}<òG/ñ}´-#M½rÿAùžNW“ÃH¶ÐhvºfDñÆ@£³ø :…rØð̨ IVpæûð1SÓØðð«¢ Ð N›Û`–IdÁlXª ËÚgWŒÓ ,ùžEò 1Ó,šosÏ¿C¿(òÛsú;¸šÄx§ÑS¯ø\¿qûhOè}ýÕ‘±œzí†Äp`Áéj+”"ÈÓ(¸gB¾¤ÝÌílõ ÛÃm5ªÆžØyþþ©4ÌzXu¯\b[¡á¶]‰|q¤dPµ?íO¾»Tc,ýÒÈjôPÌuº¤êCAÎ{¢;t_Y7ÛüÈ›¹ >`!45r¨RôǹôTSØuN}çµ,9M=nUæBóR’ÎúA1 µùi ±ßÄtÓÞð»/⬧‘?(ðÓ\Ë¡ò›úÌëÑ%æ¡ÙÃr‚ž1¤­é˜0b¿Êùz>e¯¦SkâŽÇ޹˜–ï ‰A iÉ{1—Ũé-è”}G?M„Cô‹ë¡ž¿€{2Ã3dmàÚ¹eÆêûš¢Œ FCgmiÁC3“ bË Z £$³‚ÈòLãc£ÓYÓ®´–d:Ò<¤‘­<¡nÆPA\”€lwbVFEW7}_Ý5 –é¥UņÜ 9.½HS¹ÀüÏéÀ弸¯HÃŽÛ¦¾²òâê§œ8²º²Û˜2þ[D/r_ŒO¬'$³vÏÁ;î¶ I™üÀ!lé'DmHÂ"½nßFÕLk* –_2ù½'ö5V÷úž„ZIªFÃðëxžk¿×ö.Ú_­Häï"Çìh1€Ì¡¶3öZ±§GȈì_°‚Œ°¨ ‹VÿJ½Z: "ÉøÑUsâŽÝ‡ GŒD¼X¶¹|:Jv©~9¬h4?ÏL¨]A%y;Nì©A“•…LuL™ä@lLèîƒ{;C.ù™Ü ApÝ„Âz„fo$` Á ”&ª¢’9e\ôÎ%ÀÌ[Öý×$Bãôƒ‚×ø–Ë«€©Ò—Ö]Ÿžxñ‡xülìðý$䄸ƒ?–Za2Ñ„ê‚îNTÝ)DGÍöl¼"XLš#±}6*Pi«$ fc¼zhä{墀Hk0wÀÀ›C5¢|KØ=3.'¼pV²6© ¹ ¡('§(Cû Òœa4½¡ôK?,5ê­ÜHh(U®}ÑVWúth@¿œd}@ÞÆ ž^fíK¦×,ZÜQç¿§d×8,˜: ‹ñ¨o§üLpÔ Gj u °[.Úè9Ñò¯öüÐ}¹ûRÇFwk®Ç_@cŒ‚³&TEæöB´‘Õ—C ¢×üˆÇâáS_#baä“ɈE.íßV[*“”ÌGlݤŰø¤ô.£¹À]?¶NC—$÷Uf -Ñh‚ÑLî ‘ÖÂ6#Ádd;}ë ¨çRs÷5ë*K Þé;‹<æp›_³QÏÜ5Ù&P•Ý'[zÇ\@K>;{y\pª;m™úŸ[ÍYü$GËÙM»ÛÏ|öÉ'§?=²só/¯-üL_6CÕÞÌwׯõÔ+êb ¼¾ *³P£=P™œLieA]etæ„íj?^šï[îÌ›ËÏÛUê_Í‹1• UD½¾E’Üø%žð>$0sŸ­CcИg]ß´ÄœÜZËÅeﮘ Ì : â )]Jˆ/J(Rë 2Ó‹2ó4_d_[|ô“²ÜÆF_]’ ×éAö0×kñ®×¬€íƒ Ì„æ÷ÐqÖ¢WYt3‡Ö½dªÈÿ…<ÿÄ9ݧ¤·Y“ar7Ón“ŽQŠf sþî“vl÷\?ƒ_F#÷öó–r#fî¾wãðŠÿŒÄýiñÉ[DhÔCcHE$DÀnX Aå¥AéA`.V}ÞÚH9Aj>IåÇÏ\„E%_®—ç¿@×íÇNhÿã•Ä¿¨Ëü Û¯ ' ‹=îÂ#‰µ6üL ÅOÌ*;CDEHHDDHHE„ÁPQaànN§/£’Ëû/[Œw ZÖ ü* æ0[v}´0d{fí^nwmêu™ºT]`•aØ¥O‡Uh‹s¹¶ £ôÑa̵û=—|ŽÄò{Úd¿[ƈŸ,(Û]°¿Ú]Ouœ¸Š†¿¨å2"ò•:«D.ýZ0%6(‰ÛÓ¼©À“hAáâ…óVwû*ŒhÁLõ£ð¢4æ Ô˜« ¹"8IÊ„\^"`ÇÑþIIþüRÑ‹'gk¯|‹È&¦–ü?%ÛßÁÃIé´pk‹‘Ⱦyž>ˆgh<O³GÏú\m㌎^ùöAšm`Þ~›þË Ò oõ_Vû°2Ìf>°æ4£à¦ %ØD«…ä|vЕOÿÉmË–Í«OÿƒCß׋ˆ™—íú‰ÆŽ÷ÞzüøÞwÈq‘F÷%ï +†f ꣱½rbÁ¶¾3h†|9Ó‰†[^–ë À<‰UÕGA 0ý§ëá»D>‘Öλßg$¹²£÷E⎞Ãí‡+‹bWsX.ŠhÏ›¿Ûôo·¤VGô¬ =qûB8ÙÁ2`Ä· HaAË·úHó2üà"r¼xUçtÅì‚£>wÿ/:†´¬ÑÏ[×½»Vš9Àè ËŠKãsU^Rú~Sh¢Î»dfC9“ u{9ÂÔGñÉqJˆrM…à6º¦ U»A°«ü›š )·Ný¹ªÆRùÆçI5$¤Ö>ÁÚ2íFû'+ø_׈µ‰9ä6¨ ÓžO´Ôá¶½Û‘ NT7)&ªbѺ š›}!žÇÐDºš}}Á7žÃñQ<ù×· x"R&ÒñàÛL6XÜÀ¼>•âÑz'´M^sÉYlFͬlíNi|jbZL D1²âØÒƧŸ¢!Æ}{í  Ø_'iÒfkÒ³"'°:ûüÏVX¹ jƒi¿NÄÓ­Ýú…ù(ªêtšgÍo“lþ_¥_øK6™ôÝtÈü„ÏVB¡•Z‘‚Gº¹È’’R!–IÎ ¨ÊÔj² ¸Ÿ»~^W¤H-¸Vå5f—*2ã³ûøF Ñ­.¶%¨&`¿$0л>´±µº¡ÁÄ´G¦ýS?æëŸ‡ëçÌÓ„fÏçŽlv‰ ‡)“•FE$Ëâ”þêוÉR5@’kLq¬®"»¸PÛŸtÒòè¼Rª¡-#§¬õ~z30Z¶Š7fÄÍŽåÕJØ!ÌLø€ÌGê#Û¦&wOe”2,¨JÇר‘ -}ƒˆ <š¼K¸® »aò›Üçdxy|In†&·ÈRš·õÏÃȘYbùrl ÅÉ™1xÔ×È> stream xœESkPWÞ%ÉÎV@`«qÚ]¦uÔÂXE‘Qèà ¢<ŒZÔTñÉK0$È…HÀ©o¤X6F B}[PTНŠbǪ;u¬½ë\ìô&êxÜçžû}ç|ç;$!u#H’ô‹KÝ”œ¹=vsƂɊ”õ™ñÉé©Î8 ÷Kwñ?Y™ <$ÀCÚô%õÔèû^W¼ çñJI\9ùÓ à©ÓB§Ï›Is‰YDáIx£ —ð#â}b 1–ãoLHH‰­D#qxFz“ypþ) ÷*ÂK¯ã9L†¼…—ãRŒ/2ÔÍReµh*vrˆ¥Ð”Wé2ÈâXõW,€z—kØ*»P•WX©­ãpœò2]†¿eîÎwņéÐŒ±„fƉbVò¸‘ ®oEFÞêäÏ·‘ðgH3«×®KJß—ÕÌ™)G[«ýÈŽ½i®gAìÄlAx×!ÏÃçŒñˆþ08DCéÒË!Èm"–#$Íš¨ÞT² dÈ‘´;æt{ I|ŒEWþ`jz›¯¶µj9^oôõ–e¶”læ·s9!»æ§ÍU®’glPæ&ú« ]Ô049Y.z©(2hùÂ\M±È‹Å&}ЛYèoGäH ù¿í·?@5¼U q” AlÆ ì8V`Êô/îÀõpV»C~ö´í{ÐMßŠî Ÿ·eÅ vÛÖÌ ŸV›Ô&³±²ÖȺÔï¸èÞîÄ…ŠÈw<71<,fbdAüX‘¥¬·ËM"7©ª]*U®–U¯—½UÊGTÛuö1¾×Ä8È 5w]ýô„®i qYëW²Yyª" ¢w5U&}¹¥†=ÞÒÝpÐ}í)K¾œš €FÍix­¨iç„Xß÷Ë®~=.40|¼by}k2«1hË5€.*,,,²îÏçÚ7; ~4ôƒ^Ï!q.­#îÀk ¡Ÿ_`‚àlf ò“E¾< ¤j\†ØÉ¥R¡ŸìVð÷R©!‘•Í PÏÈØÝßÈàQAyü¾í£\ÂAÎÂÈz,o6.ä]ÎuÁ¡Ju¥ ”ÊËT•¨†òšÊö½–6lÇš¹kóWmSrÊ„ø´( Ë÷)£¶œtîªÀ–}4“kÝv¢ wõ!t‡^𣇊s¡IJU֢צ„§e«Å%q 9g̷껚».<‚dßCÐêJªx_¡3Úb¶XêÒjSfNM‰žÃ͘µ ùÄÐÈýüg¡ô_HA‹/F̉];3Õ,aŽ9öÔ×[ÛZØ(ôY{â‚ÀðàÐøuG/çq|£N_ÚFãt6QÀì§D;ƒGªµÅ¥<à±KÕUæJƒÕÄÂý¢µö²lä=*/R‡W”È‹±Ãj«ª*Xc‹ ž|£¤­ –àûØ~D€™öj»DŒ…W˜c{¬Õ {ì-M ƒ¾w. ‘þŸ$îÝx:¬\fÓa½ñ¿A¼†ÏþéÞ,,>ÈæÀ:¦ïdRìçó¦Å$ gn qq¨•è\3/<4"è«å'{‡îßøý‚©NI¸3Úá+¦$ Fµ4S±%)!‘ÑSAØ©WŠ Ú2<™Bl¸Í»Žß{x¼¯Ÿú¥ úÈÐÐ}áÍ $õGò˜~&þvOÛ½ólåi&uu~nnÞÚu«³•€^”ÔÙóçà£_/¶nŒ±r†¬2¾\I{fÛÄPô±Ùl”0ê„;ð<ðíCÿÏ òEendstream endobj 75 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 245 >> stream xœcd`ab`dddwöõõ441%º»¶ý´gíæaîæa™ý=_è€à^þ] ÀÀÀ`ÈÀÄÈȲðGßO±îUß7.ý~jãOÌß¿ úÝŽí»ÒwùÏßYnx^ý-.ÿû[ECwEý”îù3ævuM—ŸÝ9±£»¡»½«££þ·ÔŸµ)Í6ÝU UÓ»û–_êë^.¿ {aw/ì\ÐÍ1iF÷üiMÝiùÝs'öNè™(ÿ]êÇÑ)ëzû¶us¼f»w À-¥Ü4%]>2ο9¾›ã·"Ÿ‹ù|În®nîn!© brendstream endobj 76 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 197 >> stream xœºEÿCMR7‹‹øù,‹ ‹ ›÷<¾»¸2pøˆøÍ‹à÷ìõè¯Êõ÷ƒìø÷JiˆuP~ƒ…>‹}‹ûLôè®§ÇºÕÆÐÉ‹ê÷ !Õûû74/X¶†•£¨œ¯„®WªÒÏ¡º‹ï¿=:4MFkgû…û‚‚‹‰‹oø0 7Ÿ ‹ ‹ ‹ aÍJhendstream endobj 77 0 obj << /Filter /FlateDecode /Length 1224 >> stream xœ•VMS7½Ï¯˜£¦Š-©%usÕT*Ž¡bvíT*Îaa P^ ⟖4;Ò’IR.ôöôôÇë÷¤ù܃6=¤¿ñÿÅmg5rÿÜAÿC0jM}0šBÛ‘ :0Ožm·ì¢H} ÚY‰šfïEðâÞÉŸ¡o»¿&’ endstream endobj 78 0 obj << /Filter /FlateDecode /Length 2781 >> stream xœÝYmoÜÆþ~¿‚ú—æ¶ûþ´ÜÔ1¸nb©( %((é,)Õ•“lÙÿ¾Ïì’Ë¡L¹jÑ¢E¡ZîÍÎë3³3äϪ‘ô7ü?Û­´°©¹_ÉæÅÊ+%œÒMp^‰è›Ý*$)¢­׫£U J„¨šà­Fƒ¨îD•„w™Êéh„³Œªîp*ã­°‘ tÎA¼˜ÄQ­˜¢nÒjxæJy…õ‰)UQª™RÕ¸3£”ªâF˜<Ù\¬~^©ìÊføw¶k~w¼úÕíš$’×¾9~»*nV‚”…õ2ŠãÝê¤µë ÆÅök8IÆtû§Wk¨$µtíñz#…–2ÙLQjÚ߯§õì⣓ò*¶ÏißKiRûúÛVª˜ìœüD®d° yöj½1F‹m{DD.…„Ã_3%ž½z‰1á1¶¯_d ÉÁÔ¿%Ã7ÜŠˆ¿ZyÒ¾Y+Þ¶¿]oœ&1ªý0-]ßL›ïëf_W×uµ­«Ûºúk]íêê|îuu³ 㪮öuu·À央¾ª+UW?®É+€nrN}Öÿý øáQãoLêÄýÐÖå&9qaóÃó®®N'ÂßLË/êï_/(4­ ž]òX·`Ìv7æ‹Ï›õ?k^´`ÁÿKTïƒË™DïÍ:,(4)y±‹˜ùa]—_.¤­X€0‹Çä)27K^YŒÇ~ÁUÐç©…ânÁÆ ÁùæÔý‘t»è‹³ÏÖ²%Ì팾]2á~áð’Ç&eÿùÂÊÀÃ\²_8s¿hþ7õ÷guõª®ŽêêyÆ„A³RDq|¾"ÙÇ?­ž¯¾§ÖÃF'pÓ‚0ô?ZܽõÿaÛü¹Ù¯œp:Y‡þN5ÀXóSîó´FÛ˜ ¢ˆèp¬‘àÇ êp>¡©Þ;t! Á‹ѸÁˆŒŽ^5Õ N’Ñ0¢qƒ=P“é͈>ך¡ÓÅAÐL²ÞL«âfã´A•ÞŒºžõÆJØM‹ž Æ'¡|[~©6?DD>.I¡O¢ÞÒ$‡vSAÝqÇíÑxeu¨"m}ÝáTÖP0ŒjÜ™Q‘;œæTçr¸´ŒjÜ™Q™ …çÇÕ`£b6>-Š ÅD…xÀ%½²t5f½Ñè[…Ctð¤(:xRx´ÄJ{é…§ˆ(þ ÂSÀ¤ô ¶ÑZF¡-èÉŠW%4î3˜WL$½Û¯ûþp~µïî¶¢ôŒDp%† ë<òõb]s=gû?Ò5'{Ñãp±Òä9hp¡9‡íÀ·®Ñ&錋à RxÆïª>Ÿ­´•F˜0Q D ‡é9ËÈ'†¯L3q0F$.£<ãDÕb¤µ8<°ãlõv©¢ÁŠªZå?Y­ƒ;r,kÿBu€xÔ@³)X¡w¦¥SδïÊôž¤vèu°Ÿb@ÉÜ–ùÞG×¢˜Lôj]¦w'™\‡x:“JçqRÞDÀ-Pcƒ¨ûd š&0‘ÆúHÓ*½mPÁ´€› ÍÑìgÍœB‚'jëq[¦¨#)SÛÓÛ å h´@µtެ Ð-‚@-ˆ‰¹’1)êóª×HL8@LH ÎttR"$QTEÞq&wôºjõ™Ä;%Õ¾=£½ÂÃn©ÚZz“¢¤IeÒML˜i\A.²0qJ>fÙnzFâf0ñ圼 mШåÿ•€ä‰:dQHedziœªÊqyY#é,.K|‡æ|[êÄ(dƒ„öiÈ×óAGm£âöó@ëŒ2 5‡é3³îŒ"ôP.g*=R{±›ÀÁBqà¦|( 4yËÐy mM£ñ=9 Úq=7©Ca–p ¼ÏØÉs¯0wn‹-=ÆÃ hQj§½á¦>Ø"¢Ÿ”8%1‘où+ÓÍX| °ðÊÇÄŽ@€†A¹¨¡·ð~vWDåÉb$mwÑ]•Êgá=ý€Ê7ŸOoE·¤O’ÄãfÚ-Ç”²®„Û¤d­­`GKÊ1lãND/齪R2¶E†Å½wG)•UÃe‡;®ís}Ô)¦“Ñ*ü )UJ K`ÇûáAp6:b$T­ÃöU.¨ýªí™_ºë¢FD”9yë=f*SB[Œ½Ë¡’:øáÉ}õ—¡ñ𢓶Ãuãu?)Žû†äXgu¾nt„^žGc¸nŠW ÆXb ¿8BVð8.°FAðÙ¯ƒEŒÍL~¾ùèQ|&>dµ¨+2ʼnå¥÷ÂëîœÌ jS{q1Câ€Ød¼.ž’Z.˜rÂÀw³Ê1  ëî AŒ¶$¥– N½›¬f¾Þ×cå½Y?Íù ¸ªÒˆ>œRãÖ°à}z5üÀ'%‚‡Â,ÈY`³æè"S˜Aìv¶† Ô@k PS;iG“3çîšâz öÇ"1 ç»ÁèÑàõûÉ–‹B‚iX}X€äCv2Œ•Tâ7†ç™7—²›Û÷ÕÀJ eß1«.Ù·¾`Ë'ð¾¸^Éá]mŒ-õƒK±sÞ.þ/ù¥ S70u3JØTÈ’ ÝÐ)ø©?ä»J[›ïmìÂmt8GF÷Qã:‹RÖ6Â?•B‰†N‰Œn»ÝT¨JaÁø"Ƶ-$D)ç©6¤§¥Ü`Õ¿%å(mÚþmaìgµ™EŠ2±Vsèš1Ú7üƒéæepç 3Ÿ•ÀS¶½©_^–ÓåŒÕºávuÔUÜRÍuرþçÇ#5}9Üãb?äT²±ôœÅ˜ é{`˜%ãv¶&¯#X®e¼-©ú³Lë‹~Ð$ÇÆ×8\ÿ.ÓžM!d–÷ŸÈ®)š¥y4ú²›xmçÀtæé*x*e5Tšu¬6tË`=[4ª¤Ü2èvã8äG]Á…éE<6)pLü<±Æ÷ÐôÞb(z‡ÂÂ'·ŒÞn?qJZ9_Jš cí¬Ðê‡oÏ)ÎïÔ YÃôŠýO/U¸{¬¨R©2-˜„.ÀSŠŒçP©1¸œ¬!ǃ÷Ì¿WìÞ:vt-å6èAiæ=–Ä,ÒÃÁô €Òu‹¢®yʪÓi—ÅùaB†Î×Ǻ˜¬©o?¿_ýýú,|endstream endobj 79 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 221 >> stream xœÒ-ÿCMR8‹vøzù-‹ ‹ ›÷T¾»¸3ˆøˆø§v©Ô÷÷±òÅ¥Õñ÷bó÷‘÷âÚ½Q"ûDfVT@ŸÀh¯¤¢¬«t¢kpozc,ñM÷÷èçïÞI×%¡Ú§ÆÏ‹ÛÛ1Ä# :Q?f¤{¥ªŸ¡¨°k™uŒµÂØŽ‹¥×ƒ$Ena}{mlt‰N‡xŠƒŠ‹~}”‹œ 7Ÿ ‹ ‹ ‹ aOU¡endstream endobj 80 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 2771 >> stream xœVyTSg1À{*…*¾Šm'ñT¡îcuf”º—*®uWPÙ$°…¼w6aI +€( ("ZZªžÒŽÖ©ZO;Úå8Žm­¶~¡Ï9g¾„:õ™vfòrNòÇ»ßýîï÷»¿{y„Ç8‚Çãy®Ýº3Èõçà¢~zit'xóÁÛ£þÕ"&#zÒ'¾g_$\Ÿ—“Å)©ié™ÒȬ¨è­‡cbãâví%Í_@ÛˆíÄb±›ØCì%ö!Ä"”XK¼E, Öë‰`b±‘ØDüø#±•x›ð!|‰Wp~ƒ¨ ñ¤¼»ãØq#üEüVDOϽvx9ÈÍäGÔBJ;þðøo&lœàœ˜8Ñæ-ö.ñ69>ΰ;=íy¦ÉÈã:н>Õï4zÕÒ?þåüå÷´û· ¸\2L"òŒªIy΂–dÎyϰ“! ¬B»Iø lâŽtkŒ6À¡õybŠõò»ñ€ädž"òCuÉ~!§ÿm”AŸÐÇ©‘YsL<ÛÔy‡ïÌB 4š:ã1çËùNç¦p“ÏB¾ÈïáCä+à¤\ ‘¦ô’vúà8 ™º[Îé:aºõ -‘ʈ„XØ‘! “F…«åöÚÑ<“ó%{Žuò“ë¨ùÎT¿ƒh#ú’v¼{QßÔÍá78‚ó ^üfxŒ¹#M˜¯4QÁf‰ãÈ@¡‰hÜßÑT4yöwÜ„=¡Q1B¿öË$7ËUçÕªÒC§ñ¿Ugà3ÈŸ\}ò… ðõ(›î®A¯#/K2ln¤Q)†œC‹®µ-©5|[däÖt ÑÇ$÷Ú¿AtP¥UÀI0²—Ý™¤äEÍqœj¶Ìä\ØÌs  ü>zà|“nuœ‚|ÕÊEÍ¢ª 8ÿ#kBë$-B‡¨«d h °AÑœ£)6eA µ8ò$½P Phت ò 8[ÈM!s ¨¶J©ljTTÕh++{¢ú&Œ’oﵑÓRKF‹0¡=®zu¤r†¨¶–ž¯Q½4U%P@©¨:¨nÂ÷œ©÷³£¥zÞ×ÑËV>ºéœIÛ¹´EL²KâgÎQP©w9ÉyÜNé¸rU0$ÞC®ÅÅm€/¨•ÄÜÊLyØž_”윎–Ñ‹B7¯]*ï½ @Ÿ“Ü\x7@±HÈÍ!aDöÅÛ¤Ý%'á<ô·Ø†)¿,åR/4«ÆÓNU÷ ú9Æ ¸ó„Ìà|ÙÎÓ;>Ú€­¨bª š2wB“ÀNbÒÙˆ‡dˆ+Ç4`@èbQ ‡ü«r)Ô †cªêô*ºíoè¨íPRv2I ˆA¤«ÜQ6¦á(H eÊd3¸JŸÑœŸÓŽîàNBwéæ÷»+ ®ØhG ò z,c/[—R(dJ%¿çÊý‘E®…r(Ÿf¶«ÌøŽaŠ(ȾcâXDèÙš<µL `ä2`ƒ¸ ÿyH[ªÃÒ¯˜f9á®- ×s%CÂXÖ5S›€hîGÿÊ‚òBè ¢¦Bó=j÷ĵWVÈt0Måš åêm“´Å™lë0Mî½yàZvýšuªßº®Œ´Åõeº¬ûTøŽx7)ƒÐ¸88[/@kIÜÎŽðîØöºP –¬‹Ü,2ä˜-MzsoD%+´˜Ïªm@ Å,!ýÌÄf•|CâÚøŒ}M=HàŸA×Å:+Uô=gURÄÁǹ†þŒæW 0£îfäÕ9køè]”A—¨A‰ÕÍûÇŽÙãû.˜“)¸ðÈ~³ŽÑc˜s‹dòÒÍËýW|[¢fTP= jkj[\1Œ„uѺE|*¦oû#ŽöÏìݘ‘ºm'“ f»Ü6hƒ6¶mÌ%RË  ÁœÕévs«©õV S>¬d…ùi,êQ•½˜ž!8¡pECdX©±.08§›PlödÂ׎ ¬©wôõ×wA/œL3Gš©¶C",Ý+‰ÎHŒí…pˆ1¦Ï3`š¨¢Ý´=âœøÂ/¦7iÖCÎ;ø`|Jš»æÈÏ®çn§÷¬¸ʬ¨ók›•縃"îñ„ówtf™4’)‰^j6ì—Öu-æ¦ÌÎMâèdzÑ$lC/¨ke “S*H_¿KÔæ óhZøé™aí&[ÙO«Á>ʳóP€ÝÙy›?>* •¬çÓ2–‘­¤‹¼†ËG°«à:\vc’N®d° :›É㪚‚;·Ü+J $›KzÅŸKwëYU Lã–‹Z¼n¨d±Â§r2`K½¨ªSöcóÖ±Æh €³¡³T*û¢2¿¢¨¦Õ@¥ºBM=3Ÿ—ܰãâMW1ìÎițƚQÍ…‡eEÃ!ˆ6Jz$½Ì{˜ï3Uƒæ“ÍmÝöAè“™–˜Ú\`!‹*Ÿ–W…®Àžì;}6Gs“¾ D?>ÝkhĨo&Ñܹ“óñóø8Ã0üñF´Ò=Cò3ñ`i®ã]÷ñõž?ƒ{‘›úÃëÈùô?i©–W*JÊXaBÀ"æ(€(KºãH?; =”ÒH«Ñ‚¯ê­p†#•ÜÊí Heâ!Ï«÷¾ä£A·KODžä×ý§{5¦L#(,Ãó+•’4e›,M殘öÝ+‚¶¿.àÈå¢[Ü'¿1²Ðu,# eA[.jA%žítô†ã>š„‚iS®ýhP÷¯}x«_ìȯžì<µ WË!›’UgµÔÕk MyöèäpY\¼ ¥ùpüóÖ/i«?*dq<„AB}œ%;$7:Ro}»MA¾? ÞèÎ:kìêØóps'B±*¹*Ë‚¹ª¯Ô©µÔ÷eô"ø¦Ù¢r4…:½Egê+˜“žsÞöq+é6ä˾¹seøüÙ«Ï\¬×|pG8¶_¹eÁK|´ytý|çÔÿú¾€6‘ÿÿ2¶öÇ‹váeÌu¹ÈëAÞˆ˜| «±@ï¡-ηin¦ë*WÔ¥x¡0<;þ´Ê <õX™ýcþ²©¬ò„Ðïa¹³‹nM3&‰ÒS““[Rí­Fc+6Ñ‘ ûèB+oè º}…¤Î?ÑËô’+pйpåsDŸŸX'(ÏRÊkÝß D{H=+(aÙ‚A~¶F{d_Ž~ß¹ùXóã—, Xqæ@¥\x:¢QŽ&Šog©™ö%눅íTðþU WrØ2‚Š,nö|÷*"r{H)×V+•µÕmca~ûùKÛnöcïò¹ýÝ“¡ÌSi­ÂCÃk6é( ¹@ÛÒLIIi©ÉIÆ´Ö1i &x,Ñ{ï à=¼'Ä?Rc~Êendstream endobj 81 0 obj << /Filter /FlateDecode /Length 1870 >> stream xœÝX[·~ׯ}%ËÃ;¶€ëKœ`¶^y°ƒBÝÕî*Õ%‘äx7¿¾ß™‘œ5}Aã M±{æèã¹’‡?6RP#ùoø±™(abóf"›/'ŽHXR·ŽDpÍfâ£Á$Æzr> ž„Ôxg¤Ð  Ä …³ʪ …5*qJ”vF˜P(´ÖhÁ² '³B ÂÛlÕð]åtÆÅ¨@^I#£2êÄ¡£’º“M…>Ù\O~œPÊføw±iþ<Ÿüþ…²MÑ)×̯&}˜©!„ ¼—^óÍäeë¦3òÚ†öùA’Á{Õþýl “¤’¶OgR()£ñíWLˤR±}<Íôè–£"9 íæ;)ul¿9ÛH ÑŒáa8Io€yx6i­D ¦=g>bñ£Âˆ‡g_aEˆø í7_v¢…«ßÍ¿fÇcé¸9šŸM柽l_LI@†3ퟦ3«X µ·™üCú}–™?%æ.QÇD­µMÔu¢þ‘¨M¢.uHÔïõCE[MDZ"åe¢¾H%ê»)ÇE­¥÷Fäîÿ:"ê^DÞ†¬xý^‡_µ‰¼-ôá¬0o+‰úgþ1“Òï*ej_‰l-b‹Š3ˬ.—΃÷»õ?ëªzÛ žÚàsì:Îy!ë‰Éª7U·öƒjÅ¿¬ÕÌo»›Êý%97Mäg ¨´bQWYó]Åêåê*{ð ´çc·¾²ŒÞnêcÅ _aoxó‘q¨Æâ¢²z]‰O.ÕMÅéCÍ…_RªEQ®n+ªßTÝzš~˜¨³D'êÉý´¿3ן¦ñr n>plžÈ·½Î•SKú'JGîåZ¿©˜mûŠÞO_9yù"å{7ážú[º– •ùd>ùßßM°×U1࿦`pMÿ÷ËæÛf;±Âªh,†$j°™5ßwÃ’R¸âFÝhã£ðŒÔNX{bð˜ð&3”Nõ €2¥”: m2(32螥Iô¾Ñ“`Àdå1l³‹"6 VøÑQ?»ÌH¢ÁŒ±Âévf§3'ɶà9GëÖæH&ž²´mxî:q¬SÃNgXp30.qF¨€1IQ‰8%Ê`¾êÇÏêÄ¡ŒÃX‚zÆã­æ S¢¬Ä¨èu:qF(­5°jàŒPCl T­K!§oÆy$T„&®A¥»!‡@‘Ü(0/ÎLA+ÐFÆtΨòJ3[ d ­É\w"M*)ïKQY 7RfÐYíBªB®XÎåå”gÚG»Ýþrµ]— MçßîÚ $Fvƒ°JûX1¸³³Û>dk· ôv쯹©0B#ÿV¢MMßf'ŽÇÜÜàÛËߤ¸nÄô/)}_`ÇøÁ£s!!}w:º=ÇD´rh’YÇðÍ++b°2Iûq1¹ªmua»Ë>œ¼ÖÁÈÎV~Ÿ‰ôŸn.ÊòÞ ¹^P_˜í³×Ûã«ö6k¤ G8E«!ÉÐÌ/'íùb{¹Yl†Ðòg¤­ˆè6€^¶Ïp>t«Øw}íbùª}<œ3Éý–µCøüf·ùá°Ûö0HŸq[x­Y_àîÂEc»øyu\¡3X ÓK›Þ¶Ç‹íj¹>$ÍȉUF¡pD4nˆî_§`#!x<.·9Ó¹Ù«µ‰Ó6 »œ©½Ùa{Qš~Ï|:3t—&-YÝ^¿îŸÌ¢T72ðcðÎóÐÄj%‚e¼žöOfVz±5äº;_ºç?ò|-ÄÙë"ŽÕ Ag»À7\~â#T$®Lü®'C˜¦;Ë,:yn–ÂÄ “ Ûò"9­=nGå¯c/t©zE@K 0 GóEâKr2`­?0AñDÄoŒpßw+e0F2"òºrìߣlEM p…o[­øYàjß³Ebo˜mâ=£Æ+3Ö½|*œX£8`S H`aÅžÍ0¢Q˜ã:·|`}ʳcë ¯Žü„Š +ï’C€EáŽð_É——2|ó§zºèÊÒIsURÒÅ b롱’ë^rˆ® ôU¿i´ ·1åÇ^×å°\!¤¥ÿe™pè4iR®´g¤ø‚?‚ÄŒa»V2ØÒÂ(—‹\E*öeènû…–\¥¹gvWa?uIöcïÞ‘Øm™Øë^r@woº*vƄҙwØm‘…ûÔ¿Á\\endstream endobj 82 0 obj << /Filter /FlateDecode /Length 1960 >> stream xœÍY[o[E~÷¯8âé8ËÞ/ *¨T´1BôÁMÜ$Û©4­ÿoÎeÏÚ§íåÁ»s¾ÛÎÎl^WR¨JÒ_ÿ{ºœhaSu7‘Õ£‰·A˜ ªà¼ÑWËIÔ^ø”2åjr2I2oc¼•Âh 2%ª$¼kQÎ`l Ð@(1Vâ£+ös.àkÜÙo*¦(‚+„ê ¥LÞDa}*dŠ*ˆ(U)Óê ;˜^¦¼Û R±›¬Î'¯'ª5dÕÿœ.«og“/žiW%‘¼öÕìÕ¤3²ª”5"B) fËÉoõƒ'O£)ùúùÉ»&묮˜6p”6˜údÚc„Wºþe"S”Z§úÉ#š)£7/f?’ ¡!BY5ä˜a×g-8Å}.Öf—¶×n:ûƒ©@@)´×U£¬ˆÑ\•2y[3mœ†RQÕW™x™G/óh“Gs†ö.~¯óðfÉu-ÜïÓ)i©”HΩjöx2ûôˆ´ÛL¼‰_eb3—™X®aä½cä½aäÕ~“Gë<ºbVl÷5<ªÖ5Ãg}¿Øoóèó‘Ï;Žø–a>ªúr~=Gç|Ç´fŒrÆÄÑê=¦ÍÛ)&*Xµþ·hVƒ1¬ÓÖŸ!Yx„ä3n½dÕâä(ä9…lÌ ‡á§y4zA䑿ü1Z`ôÌ5gÖ+ÆT‘^±NÌŸ u/GjéQ&ê¾d„Û0ûÜqVýH1Ìü•Ó …]`«Qõž9"/˜z¿ûïZQ¡X!+þ}ÿ]Ä…î[ÆŒÿêuǰä2õ–Í5§ÌêQH.§s±ÃÆÉ|Ø “¬˜5w¬úßçïòèqäÑÃ6 ÊÝ”b_Mbo”“g“§T<;­„2•F!/”«ŒŠ5fþÝ,ª_«ÕÄ §Qò¢?QrxõGÛ§h#Ъ2Í…£BޮĦ§P•~ˆÊƒp]½¯£ÒÂû5P ”10€Š*SJT4J„Ô ̾¤…ìê¾íZÑ¥ËCÞ.‚‹„ýú•¾ž6V/¢©Ñ1`b<ìíëîKžØv…¡‰o×:J%ç……ÅlÄ ;œFoE’2_OØÁDô2aÔSJ”%; YQe…FMÄ’×@ÙAÅdé·@õ”Õ*3B²næ²~CnPÔÌ¡4& MQï3m4:5áCïÌy„ú<Ìp c;ÿh/ÑÜ’T9ÑŒKúÒípÀIÒ2 mqr>Xò; Û8°ˆp†ò$xýÝz½9»\Ío•¢s;j‰ÎÜ£¶±cÀ:òö˜¿WØû޹Bn@×é µŽ&,‡¦NÄæ®{KA*›¤ÿ”¥ÐK•ÕÞQߢöV.d8‚Úã~¥µÎ• Ί´C:"» íÞV''BË)R8Avz&öÛÓçˆT‡¨„ Ù.‘‚úèÃ6 ˆd„„uÞöYx—ý»€BìòeYÓ›aÆ‹¾'èòÀzGPœT‡¨¤’H¦BÊ–ä%e¼ Â䃱öLsÌ»üyÃ[E‡ÈUÖÓ³’kw ÇÉ€[ »‹vI˃U,ˆ}ŸÆ uˆb„êÎæÊ#4£)c'S€FÐbŽë¨Œ‘ÍÕÍOÉ€‰rȈ ÅlÁa˜w{ЊLÁ©kyöœk³RÞ£›ÓŠAŠ‘åî9ìêq:Á}€-¥¯Ãóa`/ÔCX¤„~ÿ[â‘lK!Å€”„k#éîš9¹ÝlP¼!z’ (|麀hÉ$¤mÔÆã€Pvr±Y_o/.F¢n ^ðÒ!µ;T3‹ö9ïùTb¥ë5ú_DnŠÖÖvˈµZ&x¹Av×{´Ë~ž:\b2úz±¡º-Aªo.ÆeM€:7Mc©J‘±éÁËÅæl±X‘@õˆ‚ÁÁØ©à:ÀëÅ|U=š//Vs…$¤‡‹C¦ŽÉÕõvÐÈF˜½ñd”’ƒFŠäÑõíùz{5Ϧzs9oEÃÙð!…J‘CáÙvÕ#ÒCCÔPÈÏQ'[²Šï Ü(ƒË¬7èÕ®z²ÞܵÈ#jyC6 fp âìɨª}€ì?¿Û,V‹Å¶ú4Pô&/ôÎ’ÙC´ÆáDYøÞR¥êtÞ·³ºtf¯N®ç—«vS$“¤Jc<˜Û…Âú6£v.m6Q¬GTæÞî> stream xœMT{LSw¾—¶—;,¬s^2—íÞm:ãc$:ç#™Ò½Xtâ|À ¥„‚mAiEL„S« RZ ô!½ ðÈ2dvó1åÎà´q:—E3Î=~7ùíÝRc¹Ý“œßw¾sÎ÷’Ç$IR勞^½0ò÷2à-¢Wv% J(åm/)Z&='<;¬""Ÿ²Ø¸Ùd.+ÏÍËׄ†È >!V™Ä§ÄZBM¼O|H,#Ò‰D ˜fâ9…쎣â´qË ²ÓòZù +ú’Dè¬@Þ £Œ°LT£AæáúÁ…YÙ…y,ßо‰]Bm3‚¡0nîmŒEh>åâ¡·¯lÜF”FýqõàÐË”Áb“!~[±”ÅG²fOÈ¢¤z;tQ ¿ #TOФJyˆX‘2«°êþl$GòûŠÅZ<—Qk®Œý6r~ôÒ…ô7çiÔj.J9$hvX†Ìh9óèâMD°_Û ´ßÛÎ{¶.XµÜ”¹ë‰ï«iÖ³XNÙ¢´Û¸Ÿqhq,B”«[¢g”èaYŒßeídbšø*ㆠÁ¼c{íN6ϳ*€ÆïØæ×39k¸eüŽÇÖ®ºë•°Ž.*.˜³Bë=[ÎÖvÖµÖ¹œ›oƒ’^·«‰ßËž,8@£E»G‡ŠzLnN»óžwnãG-p˜îêåïÜqè-vv—1{> ~åtVxÜI¢9áñ®-bƒRcƒÅ©7(øu‘‚ìâñÖ(4Dvô+¶QÓ.üxsô\ø`)TYËë lý­Et„ãè^ôX b‰L\*wSî(®•à ÔÓEvQÓ±0 Š® KˆM²›Bqø–Sç/LõÀ~p¢Ÿ‚·‰U21KçÐ×;N91}’ÊÆÇ T]Ðú]Í—¶Sum:ȇ:›ue•®2«n3Ý@­CÇ''N¤l%ÒëðÜ|³)Ï'Íuê8öµŸóß°wÚ]´rÛÓ-íGe?t€šŽÐÑYÎî ä©0²H |b®i®áW²gÀÒbßÖ@[Oã×,ïè€f ¯U¸‚Ëëñ Y0‹^2šþÀyŽ†Ø€>}@?iÆj+ƒ¦-\Ú(f(Ó–çW|u@glê;6ôèRÙŸ¬A‰RÝkhßU™¸­d:}pÑË~Ç Nzãu< «þš‰¦ Ç^[³e[%Xª9Óª¡ VÂ[ÊïÓöÆóË…£§áôg7-ôƒ·Œ Eß 5#¤qqïyÊ¿ÀÔ@%Ô8¬“*guóÎVh…ÝàÜÓ´õT÷}/|åvo5_ÑÅùœî].{c©·Æ%ÙÇÓZzÖ˜7~Q¬ãŒú– SÒÔ©ºVC‡‰«¶~^ ¥ë5îªÿ wç2°Ñ©ÿhÐóhò¿çn£ix9³ëQ<³6g ÈÉÌÌÉYËÙñ»Ì"aö½œ³Ôý‡{û‡w?5óõ?IT- [Ï0¼Ùo4šÍF£ßÌó~?Ïb NfbŽUàNšp†B1Y¼†~¢Æ ?Ž+Z¤#!í}#þÀDïÀü¨lº"8ÉÿYpò„øåJ8¥Ý'SIl‚|«Qù (@9 ”“ â"\Àendstream endobj 84 0 obj << /Filter /FlateDecode /Length 2381 >> stream xœåZmo·þ~¿bôÃ^ÛcùΙ-"mÐ HEQ$EáX²ª@’I‰“ßgv—\Þ‰»ç4¶«0 ñfŸ›wgxûm§•é´ü›þ>¿ÞXå¹{½ÑÝÇ›è“rÉt)D£(vײQEæB¹ÚœlX'=u)z­œªPȰŠa@‡µ¯@™Pc¼ÆÃPÉ !á)íÉËZ“J¡Rj"Ô:EGÊG®t"“iSë4ƒ&ÂfÒ©HË*UÒtw±ùvcGvÓŸç×ÝŸO7øÂ†ŽG»Ó›Ñɦ3Þ©äàX(e€8½Þ|ÙøÙ‡ŸnÉ*æØÿód ©ìƒ·ýß¶;„GkŸ\²Ý9çT4¶ÿû!D3ik¹ÿìcù”´¦èþuú‰è*ƲÐãô R¿ÀLDq× [·k?‚û´=ýF\! V6Úng¼"ò™«QZsôýŸ¶»`a™þU!^•Õ˲º/«¯ú²ü~xYV7euQVÿ.«»²úOYý¾¥×ó Xÿq^~Pž«²ú Åò‡†©ÏÊêë#Ì?jXx×XÍO¯´–äÛnöçM£$-ŒQ‚éN?ÝœþöËþwHÓҦúÎÛ·ô¾Áñ¦¬óŸŒÚu-oWE_4D?JÖþ¦¬f£¾Úë "ô4ÍÇrNVÎÉÚ¬E-WÜ4̺ûå ¬2ù1Ïéò¢¥B«Z¼ª·¾ßO;uŠÚ_N7ŸË)Ê!*o:G8•]ìlÀéž\g­&e}w{Þý£»Ž\«}T–:ÇA+vÝÐh.oÏ7/f… Â>(@ç~4 | [Bçu´ 'â*È1¶žm snè“SÁN¯))ŸO @@¢ûe€#’°ÂÁ:«Œ«³%EH"eZ<¢3ÊÚΜûnÉi¤MÌ\V@èñ’o:­ƒÉaÉù³FF™£ ØGéȺ ,¯k„ô aOJ¡XpŒG@>8tUMabŒdW!òKžÎ ã¢ôÜk| »œË|œg¥—Œg‹FUŒgè¡p!øÇ-#ƒzÑÅDË Íx)ö4ÄŽŽ€‚cåÚÙX :Ö‹ âtdE QÄÊä³'¨@ªNsÎLþ Òº‡\æZNVÕboêAŠ“‚Ûâ‘! ;˵5ÉËØ|´În[\ ˆu²«‡í² È¡DcÛbGÅý Ú€ P›¶Ñ‚Íâ¹á¸ ˆ¡­i~Ž¡LQÛk"Š¥¼ØhµöœXïŸ Ö+ÛΑ€³5DHÁ¦§…:•A8‘kÍ:UøÈl¼t>ƒcl×ÑeŠP Äí¢8óá£|‰Á‹5hU¼ò 5!ƒ<§ ü’>™“C¸5ã„¢¨iU#c¬(D˜a9¦€\Z¬wäC:Ôè!Èh£Ž32G=LûXÃ!Ú´#FZË9\²‡çå,§€dï-E,ƒ¬}pò>E‹³·­tDôLíó @<)^JŽ rÌSÚa¯c„â¿”÷ì‡uØ…¡UY2 âx u8‹™!:·måM7«º'[*ĤU»ŽÚ–œëË\öÏÒpÈÂê•§IyU¡¢Ðš„Ь›*ÞhŸ\³&¤sÏt±èKâ`ªËåü ¶‚¢š…± &'j–¡YÎ[·Œ䵕&cìÐ5®ƒÈÛÅ’ï1Ä!ç©Ô6}BH‹±P3$Ê(‘Ö˜PÀ)¶Ð•£j°FzdÔ˜(ûÞÉLm—ÿN£*ÆNË>t¯7¦ûÿ¿îÖ1@ Å"Ϲ×|¹ .¹Y~ˆ*”%mP8â¡0U¨B©P‡ü+‰jí.]²] ­/³-Æ6rîPý’\ ËevØî’joo4Öð•2©7ažõó¤ËH†]JHš% DŸJ;ù !SjTÐ(#ÖW¨LÙCMü+T%ñͬËwâ#WöZDL¦˜1~&ÃühP!ƒiš¿|Ññƺ”H írˆ£ó¨"è°U>º¼»»¼¾¼zv»ÝaJÐ&…þòþÇA‘Ùˆ(*I#*…_”ïÝ?»y~.wþƒÂ?ávf!å5ÆE†zŒc‰å7 CÊÕ Åkdl¸’[–(Â~6šָ6Ez¯7#x„9þo£½\T¼EÊTÞ%c¤vo‚Fè ‰Œ\@=$XŒÇ:>e [é‰ä¾ gö;&¹úJFpmQ ÷‹‚Ò¤Ò¤LMÈ{@‘]Ü:…¼kCa4fAÎ ‡IYÚü‡” Ñ´Qúùƒ‘›~M„ä…_1ÁJÛüCpˆÏð‚Ž#tè7Þ!%Øá‚í S†ß*m“"}zdJaJ´3äûJ±~"Ÿ%ñp=õ†G¬¿K E;^‡<¤œŒCisD6#2Gì¾Æ‹wãjJã€ü×­†D£#÷—ÃßõßÉ‹qYÛÐß )Å$o88‡²E¡‡çf¼ßޝÏ]‰ÅÁ!ÍF~×îTXZfœxò‚™8Þ­Y˜z+¬HÞðÝhbã'ÐôáÂy“¨UÓŸ‰ÚùHýíÙÈHkן՘ËÁ|ÒvÄÃú‹ê«BÖd`˜•—‚„M0ý‹—Ù{ ¨òsÛþTKˆƒ9Ôq—=5¹ƒê(È=;šÉ߃ ³#û—óò~^^ÎË›yyÑò´›Þù™XŸ-8¨ÒûÙh#×ßÈFJûÖ¼ÜZyù!ö¯«ÀÝßÃ4_ïå,ãºòu ¬ÄC,0òêhÜÉÚq NÞhƒ8I^À<«}Xi»ŸµRi8Z·¯b«5Ï¡F oKŒ$¹¬—ήlÇv¬SJÓ}p2FJcí+u!ˆ)¸¡äì²è½´žDŒê«Šv5Û¿çÇ*‡vNñßSA͘r½ûùæ¿Åµ8endstream endobj 85 0 obj << /Filter /FlateDecode /Length 142 >> stream xœUŽ» Ã0 D{MÁ ¢ÄŸ&Hd„´q‘*ë',™ ‚‡Þ{SSÝçØÏ­4È O©t+Æ åF®Æ£­ø¨YÁ«> stream xœ­V{pSu¾!m¹@­Ør"ν2Š,¸+‚+ˆU‘­¥¶P Øw)!%MKiÒ4Ió¾'IóNš>C›”¦…¾Kk[(`k× ¬E»®î¨;ëîêê/å²3{uÄYÿÀÝM&3™;Éy|ßwÎw8XÄ<ŒÃáÌß‘²sã†ð×åÀdݬšÍŒ„h.DGÔ=íŠE‘\½l1~-Ù.,+)-+ϪÈIÈÍ;ÌO.À°•X"¶KÂ’±l¶KÅöaÏaû±ç±õX<ö¶{{KÀ6ù8Éœöyó®s_ã^‰E|ùzÔÁù1ó‹ð] ¸  W,\¤Y„Bú˜Y)Ñþ`è¥&Îäì}\”‚"‰Ìg3u‡ š–ëÕ.²N˜ý„};ŒE?lñ@£K*#¥1æ›Øç‹ÛQÅ.Câ(ótdù1y¦Bb¹Ìd7ô™{àtéO†ÿluCƒGÒT½Ýo 2g£hm–O :µF0\â8s=’ɋРM*|¡Ç}”?…¦¸H‚vŸµÙâóœcý‰Ú–¡÷?ü´)½,!ƒY$Ë¡ªøúj(Ã3ÚòG>?‰ÖZœ*PW¡RGªD¢µI€—ÑÞÚV§ßÞB5÷£˜Ào¤øöo>(®"Õ£üöLȇòéQqNÕn0àJ'X‘î.¾‡Î5 UR“%„ýä[×Î>ä|U%b wQòâÌø}€')gìf£Ùd§bB›ÍèÝk^¶æµs‘ õFó"þhƒ&Ùa…^Z¼Ê!ö7k{Ͼì:òB~Z©”TŒç6ù/yh·°›XÖ)|o\Gë§Ç|±̨/ Ø7þ~iÜM(8­RÂ\ Ú²ª4ÉrFJž±À˜ðÆ*OYI¡$ý•‰ü+èÑ3üÉ3 Ù2îÛBk¾}ðÁ–æéëne®‹èT"Pâ «¤¥ÞïÎîÝÉ,È~,•Œ» ¿y[Ö¦ÁcÐ «^íhbÑ~“‹<¡UÄLT½‹¥¥¤Ô–¨n´¦¦L`á5K,Êbe+Ò\æW‘›¢$ vrPG]ÚÁôÑ:d¼´Îœ³?3'i9Ð*²â@ζWAk êlm,äsòûåÚ8Å 9CË “Õh3îRy˪…*ù3¤­CuO\(<šxzõéΩÎÏZ§){³¥ñ±#ÁÌõ‡™5š;°›jkH{0ðåà.—¾è˜R$Ë¥Šâ‹¶C*þä„ðÜøÉöö²aÏ ¦º¡¹ÕlèqO°€Þ.•¦K5¤,Yü[>àE¨ý¾Ô̹R7LÕ^@G¹!e(š8% KŠKJªlj«šl)2 Øi.<ÈÔ0ó÷(Æ:':> \%-uVï=VY°©<â. 'ÑÖaô/?3»n.ñÆ)´~ ØÌ‹ÑVB]H— W<µ7Þóœó¿¼AÚ-÷š)yŠ@|;߬£pH_Ïã)Oûï¡>Ñ$¼ ýíWÚ§{ÑzǪMȬ”d—¦ ²_ú›×¢r©t4­T‘ÛB'|OñÐÄxàŸþªëí±SCà‚!ƒ7¹¹‚³œ çw7·ro> ö»ý"àÍŽÛ–(¡˜%Q¥ Eóù­·–%‡& >Ë’†—‚ƒèÁ “±?¾å–%çÉÓ <•‚®¨¶êmT;œ4ÛsÖkÝj£œzÕdðƒÌ`­©C¼PÛ2cÔÔ­¯MP{ç‹Íê -˜å°™·.ªøÕ‹¬#‡SºÀLuC/ëà=ЯïGµ…\ åI`wÁV㥾÷=th€sG‘ÜйÙDØX:4f•^IÓzrJN+hóN¨1©•z}ÐdSU²ØNï^×éæÑ>êÞEíµ¶P»[Xg|eK àÿ!O;§ R§Ä §uÍé"Ú²õ.Òöp‘ I‰vxÇ<Òx­Þ>|¨w×JæáÕLüÆ‘M_þ4ã/+®ôö8‡lÊê#ÑS_›€÷ñW0›áÈñ™¹ÐÀÞ2~<Ìš[ŸÐº <…£²±ÙSï2“5Þô [Û{ÈÑe45t4u ^¼üÿ¸‡^:|øhƒîÜ_ˆ÷‡X´äÂëç³n, ¡ÑÃÄ]q„¢ÇØ8*™1à÷tzº©KèYç ¶¯FÞù¼ÖCó™µÚfÑÑéÿüö,jKŽ)„j1uô©ª#röÍ“åéPŽç¶dŸý¢=ZCÆ}ª •­åvY™¨¼°¸IUÛÔÖx‚Ý}“¥ÁÙ mt`eLsgÎ>CkŒV¨ÁM´]©¥iE5™žœûÎóÆrVO÷3ö3?Õ·wBDYõ>W7*[v¶Ò®¯¯pÉ\¥oxæ‘'¶mëúæ¸%`v‘`2šXR\Õ ‘¦2y5­g EgµMN;érû;œžî=—*ÏŽb=ˆbO¨û‹:¨â Ü¼®Ml)phM|¯¤úñ~:óEÛ‹Û‹hµ®”¤e‘a@\fc} ‹1«ŒYb€óÅ›?SÜb5¬-‡JÞÞ®C#=MVYªöëõav´ÐêIu±$^œU¼&$†\ñë¦è½¢At,†ýÖ«H¿endstream endobj 87 0 obj << /Type /XRef /Length 106 /Filter /FlateDecode /DecodeParms << /Columns 4 /Predictor 12 >> /W [ 1 2 1 ] /Info 3 0 R /Root 2 0 R /Size 88 /ID [] >> stream xœcb&F~ñ‰ Èc%H þó&fb`“À. Á´ÄJŒŠ@‚Ýĺ$¤ÍA¬ÿ@B¤H°ýqý@H/« àV`bé‚ôNAŠõç4˜Q\Œ [Ü endstream endobj startxref 48238 %%EOF HSAUR3/inst/doc/Ch_analysis_of_variance.R0000644000176200001440000002064614660150031017661 0ustar liggesusers### R code from vignette source 'Ch_analysis_of_variance.Rnw' ################################################### ### code chunk number 1: setup ################################################### rm(list = ls()) s <- search()[-1] s <- s[-match(c("package:base", "package:stats", "package:graphics", "package:grDevices", "package:utils", "package:datasets", "package:methods", "Autoloads"), s)] if (length(s) > 0) sapply(s, detach, character.only = TRUE) if (!file.exists("tables")) dir.create("tables") if (!file.exists("figures")) dir.create("figures") set.seed(290875) options(prompt = "R> ", continue = "+ ", width = 63, # digits = 4, show.signif.stars = FALSE, SweaveHooks = list(leftpar = function() par(mai = par("mai") * c(1, 1.05, 1, 1)), bigleftpar = function() par(mai = par("mai") * c(1, 1.7, 1, 1)))) HSAURpkg <- require("HSAUR3") if (!HSAURpkg) stop("cannot load package ", sQuote("HSAUR3")) rm(HSAURpkg) ### hm, R-2.4.0 --vanilla seems to need this a <- Sys.setlocale("LC_ALL", "C") ### book <- TRUE refs <- cbind(c("AItR", "DAGD", "SI", "CI", "ANOVA", "MLR", "GLM", "DE", "RP", "GAM", "SA", "ALDI", "ALDII", "SIMC", "MA", "PCA", "MDS", "CA"), 1:18) ch <- function(x) { ch <- refs[which(refs[,1] == x),] if (book) { return(paste("Chapter~\\\\ref{", ch[1], "}", sep = "")) } else { return(paste("Chapter~", ch[2], sep = "")) } } if (file.exists("deparse.R")) source("deparse.R") setHook(packageEvent("lattice", "attach"), function(...) { lattice.options(default.theme = function() standard.theme("pdf", color = FALSE)) }) ################################################### ### code chunk number 2: singlebook ################################################### book <- FALSE ################################################### ### code chunk number 3: ANOVA-setup ################################################### library("wordcloud") ################################################### ### code chunk number 4: ANOVA-weightgain-mean-var ################################################### data("weightgain", package = "HSAUR3") tapply(weightgain$weightgain, list(weightgain$source, weightgain$type), mean) tapply(weightgain$weightgain, list(weightgain$source, weightgain$type), sd) ################################################### ### code chunk number 5: ANOVA-weightgain-plot ################################################### plot.design(weightgain) ################################################### ### code chunk number 6: ANOVA-weightgain-aov ################################################### wg_aov <- aov(weightgain ~ source * type, data = weightgain) ################################################### ### code chunk number 7: ANOVA-weightgain-aov-summary ################################################### summary(wg_aov) ################################################### ### code chunk number 8: ANOVA-weightgain-iplot (eval = FALSE) ################################################### ## interaction.plot(weightgain$type, weightgain$source, ## weightgain$weightgain) ################################################### ### code chunk number 9: ANOVA-weightgain-iplot-nice ################################################### interaction.plot(weightgain$type, weightgain$source, weightgain$weightgain, legend = FALSE) legend(1.5, 95, legend = levels(weightgain$source), title = "weightgain$source", lty = c(2,1), bty = "n") ################################################### ### code chunk number 10: ANOVA-weightgain-coef ################################################### coef(wg_aov) ################################################### ### code chunk number 11: ANOVA-weightgain-contrasts ################################################### options("contrasts") ################################################### ### code chunk number 12: ANOVA-weightgain-coef-sum ################################################### coef(aov(weightgain ~ source + type + source:type, data = weightgain, contrasts = list(source = contr.sum))) ################################################### ### code chunk number 13: ANOVA-foster ################################################### data("foster", package = "HSAUR3") ################################################### ### code chunk number 14: ANOVA-foster-plot ################################################### plot.design(foster) ################################################### ### code chunk number 15: ANOVA-foster-aov-one (eval = FALSE) ################################################### ## summary(aov(weight ~ litgen * motgen, data = foster)) ################################################### ### code chunk number 16: ANOVA-foster-aov-one ################################################### summary(aov(weight ~ litgen * motgen, data = foster)) ################################################### ### code chunk number 17: ANOVA-foster-aov-two (eval = FALSE) ################################################### ## summary(aov(weight ~ motgen * litgen, data = foster)) ################################################### ### code chunk number 18: ANOVA-foster-aov-two ################################################### summary(aov(weight ~ motgen * litgen, data = foster)) ################################################### ### code chunk number 19: ANOVA-weightgain-again (eval = FALSE) ################################################### ## summary(aov(weightgain ~ type * source, data = weightgain)) ################################################### ### code chunk number 20: ANOVA-foster-aov ################################################### foster_aov <- aov(weight ~ litgen * motgen, data = foster) ################################################### ### code chunk number 21: ANOVA-foster-tukeyHSD ################################################### foster_hsd <- TukeyHSD(foster_aov, "motgen") foster_hsd ################################################### ### code chunk number 22: ANOVA-foster-tukeyHSDplot ################################################### plot(foster_hsd) ################################################### ### code chunk number 23: ANOVA-water-manova ################################################### data("water", package = "HSAUR3") summary(manova(cbind(hardness, mortality) ~ location, data = water), test = "Hotelling-Lawley") ################################################### ### code chunk number 24: ANOVA-water-means ################################################### tapply(water$hardness, water$location, mean) tapply(water$mortality, water$location, mean) ################################################### ### code chunk number 25: ANOVA-skulls-data ################################################### data("skulls", package = "HSAUR3") means <- aggregate(skulls[,c("mb", "bh", "bl", "nh")], list(epoch = skulls$epoch), mean) means ################################################### ### code chunk number 26: ANOVA-skulls-fig ################################################### pairs(means[,-1], panel = function(x, y) { textplot(x, y, levels(skulls$epoch), new = FALSE, cex = 0.8) }) ################################################### ### code chunk number 27: ANOVA-skulls-manova ################################################### skulls_manova <- manova(cbind(mb, bh, bl, nh) ~ epoch, data = skulls) summary(skulls_manova, test = "Pillai") summary(skulls_manova, test = "Wilks") summary(skulls_manova, test = "Hotelling-Lawley") summary(skulls_manova, test = "Roy") ################################################### ### code chunk number 28: ANOVA-skulls-manova2 ################################################### summary.aov(skulls_manova) ################################################### ### code chunk number 29: ANOVA-skulls-manova3 ################################################### summary(manova(cbind(mb, bh, bl, nh) ~ epoch, data = skulls, subset = epoch %in% c("c4000BC", "c3300BC"))) summary(manova(cbind(mb, bh, bl, nh) ~ epoch, data = skulls, subset = epoch %in% c("c4000BC", "c1850BC"))) summary(manova(cbind(mb, bh, bl, nh) ~ epoch, data = skulls, subset = epoch %in% c("c4000BC", "c200BC"))) summary(manova(cbind(mb, bh, bl, nh) ~ epoch, data = skulls, subset = epoch %in% c("c4000BC", "cAD150"))) HSAUR3/inst/doc/Ch_errata.R0000644000176200001440000000350014660150045014753 0ustar liggesusers### R code from vignette source 'Ch_errata.Rnw' ################################################### ### code chunk number 1: setup ################################################### rm(list = ls()) s <- search()[-1] s <- s[-match(c("package:base", "package:stats", "package:graphics", "package:grDevices", "package:utils", "package:datasets", "package:methods", "Autoloads"), s)] if (length(s) > 0) sapply(s, detach, character.only = TRUE) if (!file.exists("tables")) dir.create("tables") if (!file.exists("figures")) dir.create("figures") set.seed(290875) options(prompt = "R> ", continue = "+ ", width = 63, # digits = 4, show.signif.stars = FALSE, SweaveHooks = list(leftpar = function() par(mai = par("mai") * c(1, 1.05, 1, 1)), bigleftpar = function() par(mai = par("mai") * c(1, 1.7, 1, 1)))) HSAURpkg <- require("HSAUR3") if (!HSAURpkg) stop("cannot load package ", sQuote("HSAUR3")) rm(HSAURpkg) ### hm, R-2.4.0 --vanilla seems to need this a <- Sys.setlocale("LC_ALL", "C") ### book <- TRUE refs <- cbind(c("AItR", "DAGD", "SI", "CI", "ANOVA", "MLR", "GLM", "DE", "RP", "GAM", "SA", "ALDI", "ALDII", "SIMC", "MA", "PCA", "MDS", "CA"), 1:18) ch <- function(x) { ch <- refs[which(refs[,1] == x),] if (book) { return(paste("Chapter~\\\\ref{", ch[1], "}", sep = "")) } else { return(paste("Chapter~", ch[2], sep = "")) } } if (file.exists("deparse.R")) source("deparse.R") setHook(packageEvent("lattice", "attach"), function(...) { lattice.options(default.theme = function() standard.theme("pdf", color = FALSE)) }) ################################################### ### code chunk number 2: singlebook ################################################### book <- FALSE HSAUR3/inst/doc/Ch_principal_components_analysis.pdf0000644000176200001440000053441014660150122022203 0ustar liggesusers%PDF-1.5 %¿÷¢þ 1 0 obj << /Type /ObjStm /Length 3369 /Filter /FlateDecode /N 67 /First 542 >> stream xœÍ[[SÜ8~ß_¡·ÉÔTZÖÕÒÖTª Øfj:OšîL_r™_¿ß‘ìö­Ì%S0–¬£#éè\>;’%L1›2ͬI™a©5Ì2/W<‹rèO´iñ\Æ;é™RÅfèj“¬®6'ô½(6Ô?+µi{ºœŒ ñÒþœ鞈úiÂ_Ø>Ý`¿á¦â->4±f"¥$”ºÕ¹ÔÜÉdº 1¤-©¶§“E6ÁÃ4v„œçíé7PÑãÍnÉi1pž:g / ä(›O—³† þ;`FN+Òl::ÎàÃ_ì`>Ù·<{VŸZK `‘Ïæ WÆ÷‡U9öYYk£ßSÅø‹lNcE)ðg¿Á{«Aª Yëý~>a“åxLkˆƒ¸Ú ¢œt\]á úˆí¬ 3+ôˆö6ié“*öù¼h+ö¼t ©¾EïÂ}¥7¬Ë890^VëzK"ö•¤kV¢}5“´´&*›¸ª¦¶öš‰Õc\k&-¡¦¥^d_JÙÿ¿ XcY^TËZ³¿NÀ7Ž|›K©¹†Ò6Å#Ù¦p÷°Í­á< ½ùéöÞÎéÙ/Û[ä¯^NFÓó|rI±7p fµ}5œpB¶! ÌU™[ Aa¤aE9z1Z~¾¸ Þ*Mãz“ZJ*úÑ_ÀNÁ'9á¯EÙ7š:D-ÑHP‘Ñy àèkõM`TZëxâP‰‰32¦˜‡ÁXTrÀjô´lErAùòIRÐÓ“„ˆ{> ú†g@!Ÿ÷²üò ÞÉ;T!CÚÂ'ü9ßæ/ùßã¯ø;~Èù ÿ/ò|ÄGÓñtÂÏyƳëóáüŠ_ð‹üKÆ/ ü’_ñœâc~Í'|¿Ê§|Š¿Ÿ9`@>=ç-aÀ|Æç|ÁW³,㋯S¾äߦæ÷”05ß/ F…íÛ*Õ4´y€Ö4,,4îäã Vjƒ'o‡×Y[¿^uå£ç“Kªù|m ZÄÉÙõ{€s[×›šÊñ…À4ÄÜQæWÿy³óú%;>ÞúÐÐghÞäùdžW*Ív²«Ù¦¥ÙDÓK±ÓDvöš”¯±×º¾×G5©'+‘»–ØIãUèÝ”¹j˼#†žb‡­—zGÐ[§ïÞ¿yŽ€ÜûIyÿH[RÆi¡·ÿl¹ýƒSW¼[=ƒÒké Xš¤ùhçWtZ™U¹>“ÐVÐ)G— w´à×u µˆÕ•ZlÁìÃc'»žÀ˜ 3ŽÖû¥a±+ƒÀñÄ­eµÂaœ¦é¶5··¯Ñ&êV£…28tÞ+¢ÌM”J!"Vë„LóðÙŠ’·ÇÇÝWÇ{{‡Aø˜¶ã£uKщ}݈qEŒÁEñ¦Ÿ®ÇŸHO‘J9®¤¬+UƲ5qwÝEÔõ(#+%VŠìÈ+A©pî§…ƒ½”ËÀ_æ±—¡Õ]´¿k©?µP|ŒAÜ4—AÖ!v˜qoæPßšMÌ"g¢|FƒÓ.âÙ1MӈαZ‹Î[E|Þ ú5Ã÷ùbõQ­OùY#b¦××Ñ”S Ûô›óðK|\ÅpœÚ¯² LþÏ Áœt|œ],bi8Â5ÐìW‘±~ºÈU(E*òóì:³šg_0Î<ÿÖÂ_øWþçó¿³Ù´áfÌ*J5]ÌSÄVdÖt3¶ífš¶Õˆ¾Qêtçdëì5øŸœôJw͸ sE_3–&AS”ªòº«Ûº ,ÒÔJm~ušvÏúóÍü»TëgÚÿ.+©×Ö"¤ç_ÊÝE/aÖ÷2ØÝÛš­ 9öú=ÿƒû8Ž>e‹ ÷E9jþheƒçÓñx8[™bö×r8†Ý]Rþ,›Õí¬oœÍçÁïb}ŸÇËy4»óã5`{99ÏfóÑt–•–Ö¶3éK;ƒWkZl58nuá`™*Þ4ƒ¶ ¿Õ¤Þ´:z­.u·Çv¹Æw_ÿöî—·ùõÇåü`:Ùz”].ß}ç}QcÒ5Ç66ïU-¥Ž‹fYŽõzí¶«¤ïò¹Ïշ埳~uŒTÖÔ6°z× ‘/n ’ïC˜ü-Êív]fÛ>þÞ7t–¨úîQ8[Zª÷MK Ít² ù5MÕuLõ{©Û-ñ­,7lEÃrmŸxY™®ªLw:ƒ[*µÙdÊ_‡ê«ÄZ‘»™5)ôÀSfMi9°ZU™µ=Ì™ð÷ˆº§8_y?p†LÔ@zo• Ž*ÞÏ'ŸÊ9‡üv'Ù­¢äÉnÿðÓALv—ÙÖû%Ôö·öONÔ¸ž>ά99ø–3½‡]õÍxª+S :¾þ¹. AÍ”/#. mè¾¡Í Qô„w©¼Ým<7",Ȥ,§L–4¥,ièøãêgËjÛö²ñ—l‘†õC^Xo|wûwOv_Q°=òuN¥¥WÇÅnÒI=g¦w9 Ö½{öeb6 ÈR4To? :Y]b›ma^¶àó,Phc‹;ÎnØÞòy9/º»‚¦lu"qÿ[°’—)®ÛNx‰i&_v¾<.NpS[Þ 3÷1‹*œ4 O¯_7yƒ6:ÝvŽUNtÌ®®‚}OUÛo˸ª®ºïì>¹°¥ïéî(ËØÖü¤öN'¬úIhÓ‰¨ù¼ã#)³ñB•v C:nÓq|ÑírhObcÀìB´ö°“6oÊõGAv„ºÎŽ>ÿp¼sv’ÇÉ «vn·wÝê çÃGÉ ‹´{dr zK}óç·Ä® ® ìJ:°#¸’^Ñ—M:õWȺ)šÒL¢,{úz)–µ`ªŒ²ZÑWKµ(»‚m:v­Ã6Wôz0lÓÅTîÛzíHñF|‘ìÝ@8M;¢–^ø­ß‘T„· úÍ+¬ƒ6F ¼ñ¸! xsŸÍ©vâÒëq'ì}vbå€Þ¾Û~ór‡\ß«ÞhMLш)t.±“D]ˆ5U ^ñ+CûŠ&øÕ]ßþ¾8 ÈWñdÞŠ(„LŠˆ"»/b׌w\Z'ÙÚkO—æ6½\—÷饤!‹¿Ö;˜Hnt×I¤¤šæªyüjÿô=dxÐ_5…覰tûx'Ä]RXôjFuôŒ6¢¦g±ºÒ³ ÿÜHYn|YøšHL*£¦nuÒ-¹ôÕ-s¯œâîéÙÁÙŠÍgÍWråk̕軨ĴßÈõ~­Ÿ¦]{Ѹo€Äëåx‘_‡MÚ踡4íÛ‚n­½/.Ù„íï‹‹(H_QÑncPТ áNSI9H,}ô,tPSJÖÜ1çc¢Úßq>y$÷`Åæþ1Ú CÜ(=%Ü@!ŒIg©%©¹ABtŸl"ú‰¯Òc}pfï´îŒe*œRüÈRö©,Ó7øõP²&ótk:>¿ÑU÷Èîü¨–RCê;j6¬žÌŠpÆ@ãðÒkƒûMÎ6 l/ãÕ˜\"am3µô %ýŠ4†½«öÉÇÒ>õOhß&$Júß 5{Ø¡©ÅÀ­f7èú‹üâ"ƒ„I¤¿Sð+£TõuùŠø>C)~–øHáÿøu>YÎk†°ð‹ \9®1•sÊø×>`8¶U_N<š`Âk™ýûýÜendstream endobj 69 0 obj << /Subtype /XML /Type /Metadata /Length 1484 >> stream GPL Ghostscript 10.00.0 2024-08-17T18:31:14+02:00 2024-08-17T18:31:14+02:00 LaTeX with hyperref A Handbook of Statistical Analyses Using R (3rd Edition)Torsten Hothorn and Brian S. EverittBook endstream endobj 70 0 obj << /Filter /FlateDecode /Length 4012 >> stream xœå[[o\·~ò#EµÞSÞ/M[À-Ò¦E‹Üô! е$KJWZG+ÙN}g8¼ Ïž#ËuÐÔ(ü`ŠK·3CžïWb”+ÿòÿ§×Gj4qõêH¬þt䌵—+oƒ[]åFcíÙ}y… +‚Qµ'È8:›FY mÕ>ÆøÑ2~Özø5tüŠT!†Ñ[&Tîà29Fã"“)H?!¹LmPîèÆd™*·"ãfÆÀdÒh Ì%Lƒ±Æ‡8zS{p°X]}$“ÕWù¿ÓëÕïOŽ~õ…²«8F§Üêäù­ˆ\)ä'üÊy ´ôêäúèëáÇk1*!¢ñÃ'O?;£Q;œ°>†n5jøâx­µ¥tƒŒÇßžü¸I½E•´Ù­¥Ð£nµÖL "œŸÏ¹£ŽÃ-“Q‡«ÔŒÊ7‰GŒ2§86·q€^ØáöÚƒÃÛRâ°E‰Ú™”rÑÆaw 3]ÔÆ{œª`Õ ÙTα)”p¸ÃÚ¡ÕpGä´0ÃSÆñ&Y&5eŽâeÝðCRÅ¢¨û‰2Â<ßuÿ:K-Y:w_&6ÖFÒA·Â:f¶à«·–añ#™õÓm"/Pr&Àu" "šÊ§ÅSÆ,HÒœôŒaø$¯ÒÙ$& ÝÙûîE‘1ØNû»6‘7Òk\ÊÌ]© Ÿ}~„Ðd0wÂÙQ(óÒƒ0_‚8€îâ@rô@Œ0:é â°“e´vÇkabþœÁâ•Âå÷£‘Z“J`90$á4H °ß% )Ôp–5’Î÷ɶZKO …=î™Ë*&!¸l €¡Žh XH¡­Züõèä1Uó³‰@J o2¬‚öQ7L Sè¶!êĹŽxÁF”õ3´Rˆ;7vŽW¸PwNh;GDIØt1€ÉÈv°H[G `çÀPÐ6{š<`»çŒì``Û,´Oâ 8câ—}cŒ®v3³fÓÕlO™Êy9e:^ä{à6ö¤x€á«ã„-kÌÒàÆï¢xHmN\Ðþ¢éOƒ;ç½.£×¤v I'Ç!9„L m`û ÖÊùÀÓœ30^R½\ ËÉÍ‹Ëä¥^1Ð4)á,ضÁ[ìÁA]V4'·a£Þe÷§å|Aƒ-4qKÀIÌíwÚ̺»eð:'`ÏaÃiAB¿ çÌK¦D£¸i2ñî‚#5mÐJ»âxdˆ&söAY>v."KEÛÚÜ=áD”óâÄ8¯Å&ùÇÜ$’\šk ²Vép¼Ôæ†+pA1Àtø0»¡«` ì"èÛÐDˆ yÙbÄŠë}>À@þÍ0ÍhAކ—‹ìÂœàØ´ #¬ÕYñ‡ ðc•èïÇ¢èhÑs~$dŸÁä.Aë>§¶þ I*ÒI¸ ó•ô¶åÀ;V€ØGÈ'e’l£E8[„³9¨P á‚9,ž¤ÑBs¥îYjx‘ë 醔f¼åBᲡ îPZî µŸi&ÈÌÄzdö…NãDZ$pQÆb%“¶K®ëí¦Çn `;cuÐCÂ0qÉK°Ý¼9¨"%j¬zë´Ia†1V yAâ;ØBÏv;tJXÄWè©W¿?h¤u!-QvôúKyƒnûV¼Ÿ…m¿Qp,72ˆ>»½ì—ÒFйª”í8Ø\µ"“­.sH·ŠÁ¥,S]/Õñ´€˜Á¹Lr€Yb88Nè¦Ã CnŽñ9<3Ý ÏXJ2Íë½Nêä;ºº”|]6ú]ÉäÏx—#pÄxÖcÝb ]wa·I^y©~jÓAÇÏÛÏÞõ­I…¶”¯ÚÆØ±2ã˶(–Ý%ŸÁTø®agC¡ˆõÝ~¬Öã!+de+¡C«Ã$Í `$^¥¼lAfSÌIoavqЏͶìlfòÞår^:ƒf ¹måhF¬‡|ݬv}6ïfoX÷iëžBºÈÓ{\ÜtÚÈoY7>àEöâ].áRؾâ¼m¡kö‘Q¼“‹$!첋t).^áB!ýÄGrÏ@Ä·‹âáÂÄÄ"‰‰gÄnö-ßJ{ P}Ë»—ÊyÃ,|VtÖÓ”€ä‚[ûËvÉÀ šQaTõžÈ‚KÈA¥R!vç>†É(™žú2å P‰Å§ dVh{À‰‹W‘¯i„ª›˜-nQݯaÕG…”éÏlíB •Y¢Å×¼O …i¸F+JÑZÙ?]¤‹ñÜY †AÎýYsÞ ÊLê…ݰٷ¤ßÕI' -ÃárìúLÀµ°ë¹ÝÕ£ƒŒ k*ñ“Q»†¨û U y’m8Î °±]öT/LØà¼ÀfÆ£f=Rw%–hvʾfÁ†2ÄäæxÀpÓBŠs"‚)Åb–ƒpa³ûPšíìþ²µn}4ÄæÎëþxdpHâ[0º|Üesª$°§C'¸ËqlQîG™‰•çyE£öÑ(ñoé”»+@¤N¦Kù‰ äj¾wÀT5: PÓ¶.FÍ9>«ëÌ’d¨ ‚ªÉõ§Í‹ów1ÛÛ²ç Ïlê­©âaž¹{´°{½ªIåéLîv® †/¿À ”yÍÍßýžv¥´Ú/Å+sW¤Pfe¹"uò+ÒÛæÊˆí¢…oç ðUy¿®­'¬"]ZûG Ýäû–×{éj9ÅÏ«Wàö½¸ äbk¬à«'\‚ËûÛ³í9Þ4¦ÇNÕ]]\~w x†ÅLuÍK,?Ò ×ý 8çë6~»»¹èÆ·yy¾½ºi#`JÀ)”fàp€í§&Bà«N̉PØ‚(â³¥&  ƒ°% é=eýA´¦‰5pô•ëæg†< )âß8S‡™È9íÊQÔ¦…#éHÉ&¤!¨C#ƒô 7É)¹Ðqkb(ß$Rµâ_W§rj!”ž²H`oU©kÝ„iŒÚªçߢœš¥±ab#áÞÈÅzM/*›Š¥¦èõËÄŒ‚b³a¾STz¤ðX¢3^˜¯3¿íŒg7 Wþ€CWUžsÇxÇŠÍôH:# kfO“\yµÒû©wÖÊ`x–£ 3ÜbèSŸàMŠÖ8ÏÏü…ˆ#A!£ê^-uQE( 2#YŒ+ü$ Z §a°Á¨ñûƒãI¹9)LÎL#èÅ'j¨rƒ³iÓÒ9Á(å Z—Î}žÎí³ ë2˜Y-¼Uzók©LkCg¼Ö¸Á|{5)ÊåŸûxû]J‡’²0ýŒ<#`×ušB¹Gù³–Œ=)|úDn‰DP2ÍÄ!Ft(Ý%Í#Þ¿–›»£X’ƒ‰Êô…8£.Óä¶FxÑ«ûº!¿áD4… “|³N|Ò8ò"I» ½¤Ž×ï[ÌšŸöã<ºH‹)¥Ø°×Ùg¹»|‰ãñË\=Ö L "yÙ/¤“lqJ®d޹NLÞºXÁ¯ìðŽP‡ÿ´Ð6_¬«Sé u>¿`…p^‚­ýC€€n’/= KÖždŽý‹ê^Ô4ÂBòÿ& ?’oh'p:½N¾d‰q%ÆöwÛV æ #ʃú±)ò”åjŒu®c¦0aQx%«¬U°²wÜçD}æ£Þ$ª=>—ò4m\*òãˆ{výý¶µàjý=±ÑÁMî#òB4¯¼xѹ\†dñ›±ø@9Äà ^HçûÞxô· ‰}˜ôV÷0+Un§o´“`º‹¶Ô ,»ä•íëûB„-Þäë4 JÿZ(–3°ïÆÂÒŸ66åÁ¼†èT³£¹ð;8kA¹VÓØ/Ó1]KkÄ®ÇíÂýÛìØæ ª°Îè©&a¥Ñ2]9ön-õ†e,áïÞrŽìøX|4 kŠí’Ð]îrª‡9À~r™€ÝJ²åX˜·`±}ÑiIit-F‹ôm Á¡Ìïxùkû7h2½\†nt1‹7ÜIS“•7öôbói53¹Vˆ2µ°s®•®,@äõ¤bV&õ³·½8H>6} Ó7ÿ`®|ì`ºÊ&û† ™pwG$¢´üÔHãm>FÃòh="±þ®3 œ¦c(“ËϬò7 ŽôápdžÓôƒ-ö%TŽ 6÷¬üš3K3ùŒ ÍÕu2Ëööž\œ¤´oчÄÑǸ铹þùWò–’2[÷‰ƒ¾|CB‰üeP¾[ëÝEFgZ)‹ßŽ6ëO¾bÉavïË¥ù° ¡¤]ë–‘„Ì_'Àöj2D©IXMA5XÁÔ¯T??ú7äoTnendstream endobj 71 0 obj << /Filter /FlateDecode /Length 625 >> stream xœuSÁnÕ0¼û+|t1»Þµ½{¤RâÖ6œÚÒ‚èëSKBâãY'yy~”C¬Íxwfgòä!¢‡ö¬ï›K‘Õÿtà߸Â5RE_sÁ(Å‹êVypWN¡ÆÂâkaˆ” µU5–<£2Ù™;СÐcìcîæå\í«œÌ;°•XsGj-ôœ Iä¢'Á°çt­…ÌÊi›v ÔMïž΋ôëëfçÏ&÷êÉ[·„™ýtç–-£G¦X }ûæ§û^#%‰8¼ V@•> #DPÕª5ZFÿ›Ïê£æœú|&ä˜mÅD²È’Ði0#¡Å¬7mžg†–Z^6Ÿ Qœ5 ]‹9v,?6ËrT±ïA@RVxâðeN> stream xœ­WiT׺­¶¡«TV⫎J¢1QAcLŒy Q£¨‘FE™Q†V™éIT ›¡é–Q(œ§Ä$š•˜Ä“¼ëMŒ7û~ÕÞ}÷4hòîMÞZo½u»þôZuªê|ûÛßÞûȇŒL&Sxù-õp·ÿ{ HÐà ›¿#8ÉÁÉáД±Ÿ@¯±ßºÃØÏyÆÆyÅ{'ú$%¿™²|KhÚÖ°ðÕþ‘QÑk×Ålß1ÇC=oþ‹ ^Y´„a¦1«ÆYÃ<ˬef0ë˜æ9f=3‹YÊx1›˜7oƇqg–1Ì›ÌrÆ—y‘YÀ¬d^bü˜UŒ+ó£eÆ1ãžy’™Ì<Å<ÍÌ¢»e5sKæ+;=bñˆ}#îɽä×ܪ~vtw´(&)L¬œMc?á<¹jî¯#ÛGM>zÌèÑœâœ=·878÷»¸»wurm³dLê˜_$‹­D|J”Œ2i¾íE>»!KŸi Ù $jðþÄ|µN«Ù¥M5p*¶Eße8=pR[¯;î4]ds¼¡B¯7–);Qîˆq ‘<åø²Ja-ü3tA'\«Æ¾ð%–œ‘Þâï*G²Já"Q’[ewP Q!—Rñ"5é"÷Úº:VÐý¨ ¯ç8ªØ‹¥¦$}Tl³þ¼¡ƒ¾ñœ¶yèÓ>΢üsñø!cþ|4ùªX«~ÀÐ }p^k^ºHš¼.iœUÖŒãq5Ž—K1ÇãÔùwÈdÂÏGž!nwá8œxë|Z Ä€ðÚÌ£9f¸a ¬mÇ‘º#Ð æØ²˜²mA ‚ YÑYaÉ‘À¹Ø"2Eé¡({gËm³m| ”¥ekµ¹9šõA]k—Ã$²‘Ì%ãÉN’„Ï“ „ ïâ„Æ\}úžlH×)sÉÄY+ÀàÝq!ê\Þ%¸ ïÃ÷â¥ã—?¯ì…/ák?yÖQ UÀ5ê J "Y/âT«4¦Kö r­MdïƒÞŠÃI–½À᨟¾ÀçqÆœ?‡Í[vÇF({YâmG¶ŒP®­Ñ@ìâK~°ÔÇ7´¶7ôw¢kq%OoX¿)x{ËáT¥‹m:åEÄý§dØi8R”ÛXlâUŠäÉ]³È"àÜÐR«¸]¼T)b»J±´ Ø]HÁý÷8*_9H8Q±ó[Uw¿š­’ŽRZ,¦Å7È|ƒ.r ÀüÕƒèxSÐéÒ2 – mÛÕÒÒfêzÇ¿10hKÒ›)‚î¶‚,úG¦Xô}†~è ð sïEÖÅÆÒýÖ‰Xûh¿rQ.°-櫆?®°Þ¥|퇠{è2 ëªØ›Å¡K†·¿$?tžŽµ·øT,<@FÐí»HBžUzªMfþý>–ã 鵡ÖçìÊÌÝ#¤ïÛœ×üÄ©›š*ö*Ûb:rú³»r.ì?γz³W¬øAºPp@W˜ \ä%+‰ŒM…ìêRTT ÅEÊŠ »âzà m¤kÇ•«ç¶·î®Tn3G–†îSíØǸ Wô57ŠWì4zµ¡À\=×QnLÎëBW#Æ‹¸Ä(»ŽŠ[¢7JSyt‰3®U)t ãˆâÙ.ò=ÒÄæË—>kùè¼pFÀdDÅn†K5‚‹­žâÖ)b…8Œ[>N“Û¦ÙÆñwEE”ƶÒË¢ )dª»¤‚äcÅ]‘ýÝÁ›³i[ oQˆ»àX† ž˜O:ÿèÛ“YÙ™_OK«øÇM`½¢V­X©«=%à,Yñ[û÷°3>Œ»×x>êôËè]â(²~¹Ð©”úÒ©”^7i)ãhXK˸/*"5s ”^s rh³÷oΤRRxºéuç‡fÒ§Óó¬Üгíj2çÙekžâ¿ó92"n3Å1¶aOGf;œ£Ò§*,»Ì ÝÐ VuS8Å7‚ÎæJ3.zdKßÉ¥YË7”ê›oFâHê¼Ç|ZÑ3Y€prßO¦êTÈO׿ïÎW&­Z³s+ÝàØsJ³ƒþD!²7€ûÈôdªËÙ™=6E—݉ðk»-ÇoyÌ"Ï 3ñ$o%G2Hº‘Ѹ}ñßð LÈÇä¿»În¿¢»ŸRé¼Ú|Éüé»"¼ §#›—5®Ô¯€¥°X·,Ö+aåú­k©íáY*?‹o•}ÌGø„C¨ÂÜgþ¤À‘×ôå…E +²rw§CbIm<Üfêî‰êóšëJ³kTgÉÏÿ‹`S'À}Ýxì‘ðÓb°Ïð8Q®?^ÁÑ([øä9%!Ãò¢ø½ˆäI7ù t†U/.?⬜O[C‚¬øÂ÷[1¹[ÖH•@@¹=¾â µpêö•ëõ•¹Ö´sTs]Î~üù‰xKV¹²b_yÑ"F›Y\bUZccUM}ÚªŽÔD‡ [›ß.Š£mqö÷~-¤fkK²rûVMÍL™†·;c2òÖ%Ã[ܦþGoôøðÂeœC¦á„Ò¼\<~.\¾ ~oo„U>Ê>ÌÞ›¾9lÛÆé3ÂûûÏ…*åãÀdgêï3Ó[7Æ :¼¡øŸjpüÿšð0ÿÇ37Ñ]ö2rŒ–þ‹?Ù¾%$**$ÄÕÛcm?*•Ä‹ʹ_m·UÌЇá„Ö:ô"?i†]Çi4ú[¯ì{h¸'—¶?G:]J²fªZCÃÑXïùÄÁßÜ´MÙh͹‘R—ß™U¢=–Rõ6„r›v-[ôqjÁ§s]5§–Òꆂ\M^žV§¤c:ÞQz‹ýçnÑ‹+åèÀ#„}p"k5W¦Ý" oRV2ììm¸d¨·gomípDO³Ó†mav%ͪûiCþòhª®œ’ÛÆKx¨}}am¡ J3ŠŠJIu,Ð9´7#k“¶T× ¤pƒcXòü¬WˆÈ÷ ’çzþ–Lùi:•™9×àaˆUÒÍ3Ô þ'ë²—×F™ØKcv¿¶ý1mŸR ÿ»ë1ç‡xo3üÆû° ñBêW cÀ 6†Æ®æþE‡ÿë˜Ð ¹€îrÜñße y< ½K/u -8OxÅ„ÑÅl¥IelµØmO³:ìàá#Ë¥ëïô¶”uC‡<™ 1D±fÅÊÀ# m­µÝæ¦øRÁÜÒc8Ü%رn}n¦z§rõ¼¼×`ʦ@~]=”Ô §‰ÏL¤0Êa¡Ñi$8§ÑàôÃü•OòÎendstream endobj 73 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 200 >> stream xœ½Bÿ CMSSBX10‹‹ù!ùJ‹ ‹ ›÷?¿¼R3oøˆùR‹ ÷¶Ó÷uáæ÷$÷Ÿ÷øw÷Ôʚ걋÷÷Yûm‹^û„g€füêg–°»±•˜®÷›÷÷8û³™s–‹¡‹ÆŸœ‹©ü6÷õ÷u÷÷ ]IP}Uû 7Ÿ ‹ ‹ ‹ ‚J&endstream endobj 74 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1769 >> stream xœ­•kTçÇg˜™*!3©¦œ™rŒ¦ÄÔ( ‚—˜ª¤‰£èr§°Üv¹$n¹¬Àî>»Âr_aY–ë° ×€å ZŒ ž9)m‚95Ml¢ô˜hšw¶/§§˜äKsò¥ói>¼ó¼Ïÿ÷žÿ„« A’$´ÿ-¾‹ok!Û¹×æî¸»Ö{±;=¿zìÚ£ï­"ŸÇ”i¯ff©öfGÇÆ%&ÛD¯ëˆßˆDNø‰@âUb7L„/~Ä£„§|áJèˆÿÑä.þ.ŸPÞÔe×]ÇÝv¸ÕÑ¿¤ÕÌzÆÌôJ:iDÉËF"bÅLSÒ먔ƒ/ CÕ¥8bN‚g .@›ÃîÓØ«ÀMÉü©òÄa·0Šá•L›i:@„qhÓº¯™ßæÃˆ€B™o®_šœ´¼Êãü={2ÁÐÉz8ƒAD×mhH$?‹nݦ†/qJ3s²0^Xè`âu…A|ŽRr§÷ù§wç?Æ+ë„;ÖëWáÏì­>Á?çñn|ƒC&¦ÛTq†Gžô½^¿ðàƒ˜~…?ã"õÝÑkÌÝQÿ]ÛC_ö<$M¡]òµ‘³¨s–’"Q2‡8Ÿû˜ÅîÏzcOüø½ˆF+æÿ‰¥5Åü{Y×# ÁaØŸ(t¥>q¶èbA®5Çz¼N ilTfÄóÁý÷Ô|©Œ£¾¬tÀ@Iž€½˜<(©.7›øò 0ªï?2 À~36ñÑxrWQ•àH7צš-ð>ëh:û9"Í›RL¼Q['­r«Üæ*Ùß'E`#ïO#/;…vJ8ä-bo´OM~°q³ŽÍùv0˜úPuaª{r†ÿ£:Œ RFÇî/xg¦ìߴ쟸äߨ%})=àúNVÏð6‘ÎÒo%¤Â6È2É€¾X\ˆÇP!ó§~kºÅtS^‹N¸ -AéªûdEcØúS§<¤ºÂ&é"i•T”ô,úŒ«²7 _5²"£Ôk ²á8]º™Ò—§BéKJò×ãš5Øõ”X åkÛúÁÊ‹L¦þ ¤C2è!tù“KP]Z›‚Öá¯)טJj¡̦Švq}lèíÆÖ›ïÛÈ37бéY;%=lœ¼ßƒ‘‰] K$°Ûö…‡(5Í- -ï&Àq¡yèœuس—ã¶1 >ª{Év±;ÿ‘yåÚÈà¹F¾ìˆ#aئ ËÇÂ%õæ,­&.œâCÎs>ÉQ‡õžCkЮÚ^/‡—<‰ÏÙPÒ Ù3‹¬Sº°9ƒÉ£zBåadŸöÁãÕw|Ëì™ÑF‹°›AÞÕn"³G[q^þÅ„,|ÈAè4ê¬ÄcÊCÀf`¢½9S;hïlŽAÇ(LB¢úÚ·e4y²ú=…v”Þˆ‚–òC;II«ÑqÎn‚Ư¿Ä`úù§ð*¼æëg…VŽ ¢É\RV¬•¹ë… ÿ½ªh`£7t —…FÆØÈU¢-·vÀ·`ÆÞÆ$ö»L^”õc±ì1!šÖ€¾¦±ðýî.4ý_sµÈ}°ƒhõ<‰Hn ´Àµe7§e¨³ÓS[r[Ö6;y*#¿ZU,#oý!;ÎÉk`N/× )-$WF—-:·´“ãhf‚B±’÷Vb®²\šú+ °ã­QfÞ”¥Õ7)˜Å|Ñ•ÂNðÉ¡“Áµ‘°SÛ}×G4DöÅ=±=E7òz´5–â÷TŽp8ÀþæÍWûk†ó¯•κ •ZÙ¸‡ £XJ³ÑT[Á—U6õUžê™Jº,r»ƒ\®¨FÒ»…øEMlµœáAt§ItmŽrz;·s ótÎr³Óä[Õ‹|Á*Ó«ÔÛtÆ|P± "“>AIw™îËÿ†x]K °œ$‘VSU}Y¥I„F T%X°¯í‹ÀçÉOç)´ï<×®jÊTæ¨2S[s›ÛíM¼¿ÂÕßæþ3p_î+ÁÝ“ þ ü> stream xœUŽ» Ã0 D{MÁ ¢ÄŸ&Hd„´q‘*ë',™ ‚‡Þ{SSÝçØÏ­4È O©t+Æ åF®Æ£­ø¨YÁ«> stream xœµ™XT×Ö÷Ì96T&'‚zÏÄkŒ½E£Ø;öŠô&½4¡ ÌÌšz¯Cq@@ *ØkLÔ¨± –71¶hö!›¼ß·gã}ßÜ›|Ïs?|NÙkíÿú¯ßÚcB™v£LLL„óW®0Þð¯AÎXó›¬-Ö z  —iޠᶨ°êÓçh_Êð³ØÚwžß–ùþ -^"YºsYˆãòP§aÎ+Ã]V¹Ú¸­v÷X»cçz¯ Þ>›zíýÙ8‡ñ&NšToÊ—2§úPÖT?Ê‚QQ,õ1ÕŸ²¤¬¨Ô@j%¤ª;Õä‡IOj IeJ©L˜äšüw7• » Ï”3M333Û).»{[ìž«zõé•ÓëMoEïWæ`ÞÚ'°Ïï}=úî7¼_ªE¤H :þÑÀ®±ÓتW~|¡?Ýÿ²¥Æjº•t7`Ò€5 è:ðö ˆA×ÿ‘À}ÌEˆÍĹâËŸ|þ ?xáàâÁ¿ 96´™—›·Å‚mÑóK‹LªÚ¬ü¶lB¶"5"@.KˆÄÎí?Z†mvÞµAÉxÓ%ªýêZÐC‹¢Jy´×P=½%PW¦Qe¨ÔâC¨¿á1ü™*Q-ƒD+ŸuàÏyÓµš+°öÃ!e£ÂpKm‘©Òjkù ™á[fX"4ç[@Ï›5J´¨Ûeäz¹¿è ꆞ³¸˜¶“Âò U³ºÊÈ»÷t¼{‰ŠÑ ú—«'/^Èܰ–ÑÿòÚMÊÝ ZGÃCÐ{×Fæ{­y`ëà·’Ý|KãÁR3oZtðJZüV±yÛf’•KZT¯·@âûèôóy/û‹xÈwc‘’®V§6q¨¯ðyÍÔË·NÃñ“Xöyáå‹pyôù=ü1×ÞÍ»TxS-u·—Ò¢·î é—\7?Hˆ¬·þ×£7° K¼ßfq?¡­"µZŒÊÐjúEã¸% 6Í&6çåR?^kRqí¾/à½'‹>ñ÷ÆýFcܳ¿ŒAÝQïW?#‡°-ëöÅþ‡À9¨…z8^z üPSñ>8û%ee°\Á6Hì%vö¾[€1î|›‰Þ=x(àå°uçÎ$U£§½ÎJð†5êÉž7Ý"•E%ÊÄx.ÆKÑáø PC²U±.é §§ÝåóÀa»ÊQm¸¡€þÒ¤yÈ ÿh‰7Ññ k5WÉÚêá*ÔÊ ÛL)Ϩ£ ´y››Dßö™ÞâäÞ«&P×_ôì$ú‘ÅÎh*ž€V¡i?#1b2 5J ²%‡‡~2›³ oÞƒšÅ¢W¨mÚs™´ŽÇŸqêH瓚b1Š¡ó!Uš˜ÑqÜk·ÚÍGÇ€•è¶ÁSð$ì@ÒÝ‚7êÑX-oÕ¨³xwåÝï/zŽæò½ØK4fPÆÕT™½Xt·Ý£Kb{T-ê2(‡fE͇rœE§ÓɾõüågÄ"ÑèØT,z>íC$Œç²(ˆ®l>R٠̵s“°î½pšµ³kQƒ¿8²TPĘó¥+­ )²Øs告¸Ë÷=ÇâÅÿ~ü) í:ÞLô¼"ÊéÂ13d4þ÷{þ)bÈú¯@Ã~m%£AÞ,LƒW˜Ÿ$(*ÒËߘy«Zz^¹ýNãä¤f‘8«GÕ{LРV´U‡Æè4:t‹íÒóua#Ê4 âqÁóð\`°U§œ‹ÓÏ3½¦Šu¨ P8Eê=š›€â……à ÑgP¾>‹ÐIÌÚÏvU‹9?°ËÞ]z÷°¿è&ú}Ï¢n4vÁX¢ƒ˜B½ªI]û  öµ“¶VdÖŠÑ8RL­ß¥ªA©æäÊh`üŠwi tYUUÞ•œèæÜ_ÔŠ\ÐFV›x/æ3›=œgOs?õ}('ÏV&ÅñablI‡C|f²JUXȩՠ.(<àxPYLdFúúÛc>»£³ÄžU.iŽiÄÏÖe.É>= ¦¬á!ê–<Á[Í©bÓIÁ2Ù\(~e,‡DGqòĘØD¹k…ì"»gîºdGž_¹D,j­ ¨}Iò£“èc‹P žn¬Î©­5ýE»øÇØlÉ>çL`Ò!-WŒæÑõIÉ_3pS®Wø€3LwÁ ªèÇ©›x9-j¦Xë· o­Aͤ^·TŸýõÉ<âß–«WÕ†ã#Á ¯ÂSñDìˆÑd< ­‹v]ƒ;e{ÎZ±”êЈ"ä§GÓ‹L~¹Œ•ZóÃX4T‡¢Bå ŸOF%2’ïq%û<‹®½Zqõ"w*p=míãê¶žäsð¼íÑuÐÒ*àÛø×l­:ó&WªzÈ­‰ºÂ\ð0FUJ•£p Š¢ÿâ*ÒþÐÏuÒ÷ ¨1ê'ˆþÒ(Ø\Ô‚sÿê*bTR­¤‘Èû.ʼÍN Ñ°L3=½0.õ)„h<â}¹àEôäm‹çMKljáÐ÷¿¹ò‰b<šž ãÑXNzTTžgÌÑïMaP«I ñk2ose†Èf‘¸\`VgdeômMgdré,.À°æÛdÅõp»sÍô,¹qÍ¥Òb~€Þ¤ð“ÑC6½$ÿ%é3Á _e0ÁvuxGŸ©SfC(Ä*¥Ãqš%6EU²l"\µUY=qù(×)‚ÁœU>ÆNC_€$Y¶7†‘eJ¤:!²!)=)ƒ¨"C¢=Lùz“dŠF= h$ûù–ue‹á´;×’µ»¬Ö¯ÈO²#ÒÞúªMëëkWndŠUiäu{~5ÝÈí®J[ÒÛ&«1ðZúgˆò öèÖVšþje Žê³k aIHXð;uhGXµJmù¿  QãqºåHT•˜¥4ôÏòz("ïðUnVøvEUyŠŒ¨dY¦Ojèœ`9%d‘…%uÝÑ‘‡Dبrï¸ã(dɳ¼þÕ29Rgȃ:%9窵|ë’¤†¬²AÓ‘¹T®G^ڲǞÒZ4ÞÜöM»|´]Ÿcèáwl’s¹c0ÅçrîŠO®£×ʤž‰“9dKC#Ô»×¹ÔoÉÛÌŒE¶K}ŠÂË* ŠÊ²ª·«Äå5G2 E9å2QìF‹öÛ,_(_á3wGà&°gf>¼À‘—\‚Cû ›˜x4A¿Ãn«SÍÑ÷ÑŒRŠˆÆOcÑd–v¬ù®ÊJOȽˆÜa-ì0n½O™ ±/áKtõ?PóiÄ]Š‹SbÓ£ ÚÊÇB hiäÙØÛɳôØ™äsÀв ­Ko’Å«hŠfwïÝ{¤´L_ÛÛdE€ÂG@6y£:ªCÅŠ´(BÙ1Q ²•³-g¿Š5@UŠ俦ïP.UDÀN°UùwlòP)›l^`Öò3ÜsÛšÕŠ`åM—©õª2¨„FEiH4ñÙ ÚÊêsß~7Â2MšAÄ»ËßÀð»U'ÕZ‚ õÊÝ]„©ƒ+£¹MÕ"·Æ.ÚE ¨7‹®tRÑPÚŸéh•*-§¼‰ ÎmÜr}`êŒz…Ä™gƒƒmDA<9ÑPªÌ¼ú“'ÒJá Ô”º–9iÖ‚¸)l|ívz»zn;p/ ª#ô£Òs̈;ñ\‡ohÈ(“ J‡Gø]@t×ÁünzäüÈUë…îòñä‘.0û_í4_ 4`•£¶à/!vô@ÀO"e[v¡Y•ïÝ( lÕ’ŽýÑ+óÂÉØ£T$DŠ•–X€´‰Š$R…euPÈulPø‡nt˜ÄšãF·›X&DEzÊ¢$ëý-‡ ¶V OJÓBSš"‰ò±kt?z¡áÔ©RΜ_M:XõÓ:ô6=Ô†îÈ—EÓî5K¿ t¯áœä2ˆb B*ÊŠòw3§þKÜïsLᾜè-þèÅH"×U¨WFF ȉƒÊœï¸eÑnÀˆø“ö£)bóßFvÖÕ'|é]’µbcµr²8Ï~Ï:rÚl‡‡¨#êj¨†#]|9 šÊÅ|­ŠF²ß»%G%½Ze‚&-))Ûz[ªÚ¯ »ªªNó‘ô¿†º«Š/íªL<[ ŒÃ~íg-I@Ǥ5iÔ¡ód·ðÃÙôLƒá1ÙqÆákB)žb¦¦¼.¬CÝô…¸ª½w¬`™J¶Ýæ#B£±¸ÇN{Ì z»:¦•QÔ½‹ï{‚]J£ôÌ#ü/J{Ó¾µe Ï2 ³XôóHdPöE8¸GWÅ bSìH±(¤á>Ûì$—í hŸ"pX§>[y°X¿·ú81ŠÆ]z»Ìp²Î°f®AüŒ ÚÕ6‘ÍRªBÉ‹¾ô®æB‘2WY"W)!”i/ü‹È§“TÊ$?¶ý¹ez´J™ L¤Šù#t94½! õPnUx‚'lU{tˆú Øú‹ÛçКó)Fó´dÊŒ½h)JfSШº=À¼ÉÀ]Ä8v'‹ª„Z ¿ØðœTóù0ÜOL47àíh20˜D‚ÂŒ8uB¬B§à<†M€Øλƒë|Ã%¨%QHÊÚ¦•™z´#hsEOYä€ÇÑn^Œ?Ó±Áºqx|@“ ñ¹\tbX2Áy!啹E¥unÕNÝ8˜Ãô,ïÛøæ_Í7POwŒA{Ëвk\+jz#@!è2‹f Q/DÝ}ùóÈð?ÄøÝÿ_´9ÊgQIÇ)B«M‚Á[mò$ÃÜJÐÚÓJ”XT´„Ü@ónÔ´ØŸî/úUŠÑ\v2¼,)WUåêÄiY%û€y#‚ý•^»ÅqÑÁ~ÎDHŒ IP’_Tï× /æÙåË7ë"êKĵ{j“ ƒ;h”ÒÄ)D3áÙÑy…©%ùÑU.!ö2'GαÚQ#fÜ¢E_Úk]u;ÅQ»Â<ÁƒµQàíª± ÷rgfþ‹õÈõø¥ùVMdóæ ncÅXEüÒâU^I;õ@Êd¾Ì~º¨ùØ¡½u4â3‡È¦lX°e”¸ãÀÇX–&,+@ݾcÿÿõL{›pW½ù°ÎÍÛ‚%Z²¿Ç´¨Eo¸‡H‰Ìæ¼ù©¬¿è7ŒÞ±(‹†ÈÒj2Ô•PÌcdšˆ‡/ š‰GŠ_F±ÏKoƒ[ÌOXøàð×"‚ÿyæÑÅ)ˆ¦E¿çšªÙ±×¼a ,ç×÷²ÝÀÜÊ¿W‘™QRˆWŠe <Âa+Ä5G>‹ºcvqkõúBBë»Ó2êýÎâÆ»…—ú‹ž¡…ü*bð«t12mWšªTÇեĎjºÒ´41¹^,z•Äïe«‹ý¼%þþÚ}…®¸Št¤‰¾m|…Åɲ€‹è›‹IB®¡×¼%‹?Ò¯Ìu9§­®?w }¡ÅÓíR8• d™ã%Únœßâ•ÊèxÎc­O¥SÃD2¿ ¦M<ýؼ[þâÌÄæè+áŒèYyüîø ·â€ âPÌ‚-ó§ùÎI>²‘[s\~QY«Ìˆy×ðkk~SUêÌTTMõ1ýŽ‹î­¤t¿ó3ê&]ƒ—KïM+")9M:|Þ|1+ÎO[Þ.»dØL7C^Æòr3ÝÀ0ŸÐv±S–'Cv—›T”åLYX‘Ÿ_XHÀ¦“~§nœ¿ø„ôÕ¶q¦•A¥¾¾AA¾¾¥A••¥¥•OÝHÖg#ë:“ZJkEi:AÛ¸¶l;†b éR9hJn5D–ŠâDB0C4±"‡pÎÞÂÍk8Dþ¼£&œé!³ÇЉÆr ’2‰  < ×3O1tÀ% h4ywIðî}¡T彩ݰO¹OñG¡¼¡/ž¸9¸q„Y…†'†’ë*TgÔÅ„+••×¹\aZl©T'¤îJºz6#íBs£ºØÀž¾ò(ð#”½RÙÑ8 •Rˆ‚ÈhBÙƒ±¹%üÏ•KÓ¿ØÚô`‹`ñÑ_ŒµÅ=th-Ç÷ûK(ïMãÁˆÁäˆ~ü ó9M¤Ã>]£«á ¡Ÿ¹+·)v€lS»ÐÏŒ…ÐfBœDpI€¶-c?ÄÕ|ú}²Ž©u #m´îW1o»þÏGÏÆ¹úÈòôù?å^‘¬3íÞŸZß}j}¤c ~Ë’· &#éoA‚ßó÷Ø‚Sû3ê lë£ðV’ñ–wè~­,ò$“¶L§áÑíN–x2¥LR¤¡t÷i(3ê.6î’ƒÚ©ãžSP YîÚ…–XÜn§ðR¥†‡æ_^’²Üm{›¥&V“ 9 NMÊF3ødK4³=¥ãC«ŽO™ÎoôÞûÝZk8ÿC+žj÷(ºÏc¥F9‰qÉ¿ßJ^@c‹Ø%ù+Ñ}¥B‘qd&|ñpßùݵ1ÁEœ“BæŒgYTaIIÞî3ë­Çáž›± ‡…ÿ„þ t“&jÊw¢–ÁÅQw‰ÖNö*öbPƒ³G˜@@¾m^VJZ§V›©TÊÈå~«ìmÅ2YU"Ÿœ˜œuû6¢¹®ˆQb‘Ô¯;‰ö9/"ÑþÕ*øÿ¦Ýef¢»‰ T%ª½rœˆÃ0C°Éº¡â¿r׳ؓ¤æÙw‡®§—Cl›–¶+_Fœô!²9m’‰ ¨Ù°§qÁCèðÎäá;ZŒýßΈvóÜ»Á¨%¤Èâ[­õ2$f=¿Ž- /w‰Œ‘É8¥Â°7Œr’ªR¿½p^œe8ÖÐ0© I Òésp›R»ý5åe$;r‰¶ÍRkR¥Ýðè wîx\ßþÓŒB‡A\NªZ“’ÄeæÕ¿ - Ûž–ç¦v-Œè7Ò˜l‚ƒ\ܶ—^{,üŒ†x$£ê|]ii¸Î3Ò#~û”Ë£‘©Xô+b^ÿ„Dbã‚ù!%÷Ÿì#ûô¹<]ö¸¿¨Y¢»l)M0±omsi£l‡–Ûå vÞ¥»´y»ÓëÏÚžŽ?ÂÉh ý†‹³àüø_ä>ÑÄŸ°€µ/·Í!ÛÔß`W€ÏYYnXÜæVÕËÇy‡`¥ž+pƒÍ+·Á–pw›í‡ŒÚ)濺irR÷ãSïÏ¿cÓ 5ZÌàD!6Evb!(ôÄNt4yé²³RSnA6I£³P1 ›H<'àžX ÃIÞ삃\3 '4'ÒŽ'•ä<³+B›|`••õÜM3¦Ì?ÿtÕÅ6SQûôA ?ÌþeO‘ËcƒZè*ëE㨡ÛׄoPïñç¤Uæëƒr%>±.KŽ;}X2ý B^$ûH‹éo&®ßfçÀ9Ù;Â\÷ûa2åD¿žƒ†Æ’Ó îû%ÛÁûBXƒM5וÝ›]C8°zG¾]–WÒ ØÎLß1zg´Yä×é´¼ùÿ¶Z|ëOÀÔØ—Ð\Ãß…’¾ôêÏï= m°„ïf/·Ž#—ÛRæ·wS©¸¾¡«‹%«A¥âRU™ê´T2Æ__§EX Z¤Ñ>Òšœ<ÖêÐLÃß‚6ë6[6%]­&36]“/ã¶,^â?ÂJÝú–Ðü¹Ä9ç,˜†»ãÞßμqíT+2ͦ-â¯ÜŽ&ÔÂwЬOIR)-Û7ü>!6 @a%͈ÍÈP'e¦q:~²4ÍD_|•]|¬Ùz¦6Íß$æmÚGüé/Èþ,f½úÑ‚ÿñNc›û7IêÕÑ¿ø‡ìÙ ƒ]¡åd¤¹F­R©€QCd¢Wüü+ÅÑÑdëþw¨Ñ%Öÿ¶®ÈäÅiz€ãY‚Òêð|ÜYx¡5€>4o/š‡ú ~Ù½.Q#‹™°‹Vs›q·h, t7;÷>ÍÎâ>—e“’¤IÿñhAžÝˆ4,Ü’¢Þë‘™ ê3å«`d‰‰29( ÃÄ?<…'v<Ç /À}±ETÇReI‰)¿A¢3\3ê–…ð€”ßòHÖ’q¹]zöHÀ¯7|cFë .1ÂÖÃMÿô ¥ÖcϺÕö®‰ œoݺd`Æbf¦þ.u ·¿ÃÝ Bþí4¸ÿ @[ÚÉg/ÕŸ)­Ið+ç\±A’¬ˆ‚Æœëa:­¨WwèÕzõ„^õÜKoÍendstream endobj 77 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 4551 >> stream xœX XS×¶>89ŠOí;çVëÐ:ÔùªO-8ƒ³â¬ "3ˆ„)@Bv˜ç9Ì“Rgq¨(Ô}Új[«µÖ¡Ú»b7½½; ¿öÞwù’ïËÉ^Y{ ÿú×Z(ýA”@ .Zeg7uŠö#‹ƒ5Ê·¶ c2ÖCÆúùš¯3wS L¾FiÿfXïõÙ·Dì·Ìy@£dw°ÓžÕÎk]ÝÖ»o°óÜèåýéö wNšì0eê´é³G}Lý*˜-¨4qPšÞD½Fý¡úùô't£Ö ÿ`ü™Gƒ Î7 2üÙ(Ãè•q±fHØo‡þmh»‰—IµÉëa3‡í–9ìè°;¦cMM=-N ÏþˆËú±ç>ª)!/¤z­õ]A¥ÆCÔš»lD£Lá…ö¢Pጇt+-dÈELJGGïGaŒw*à^Ñ…e¨¦6¹ò¥¯ `]:ÚÀ5yy—¡Bþ]Pjrb2å)|tR’"/Ò° ú V` ºçRhSÙ©Ìž©ÁNm.º s5ÃÙ:”çÄ-¤CÅDQÊåã6‡'˜Nç½µbÊ;ÀZtüÅÍÆ3çr}Öp8h°G®R+7IWNJ¿Ürt'º½Ù»K$ ¹;Z·U‚ j(Wëi\Á‹ÓÉϱ>ÖŸ<›bÑÓ‰0=ý Ì8ìˆg²Ö«n=ùáÊ•ë7.ÛN™¼ÊÊš'*°XŸ©àZŸ ©Ä…»0 ØÖ‹çÚo^\8cÂÛ%óÝžâðXýÃŽG#ê‚gOA&Ó~þh»}°—;/zVŸëüžÃÝUÿÎá¾ ¨À¡çJsõqõríoÏT¬wÿoòx OH˨㻄E¨ÄÝ qKq±PÔ `.ÜB뢒"îIßqèn›ƒÄo¢%(à`=RsÂÚèLw®{0-õEÞ^Z­5º)ƒIjXúÀ\tİšý±õ'Â)ü ‚ÊSRœ_Y,?2{ËŠà•v¼èöÁ^Ux-Ue(Ÿ¿‹Ûæý6×Û7‰S„$†Ô"Fk5¯æ£ro¿XYT<ç t@ºÿõŸãúÙ›Ç2^ô¤9ò›°M#\\<¦ìØuGÌÅÆfù"F!þSa(×dä+²¹f×sñU$YÓê¾=Å‹^¢×˜Uz¦ha®‚é*8¦4ª¡‚ g#8³e¥¨¶¦Çx£§ŽÐr¬¿mÇ&ÄÌý(“¾ùåN}»?¦ øÄTyEŸÉÀ÷Øî.åÜjœò‰ÍÆã‘د|-Á葚Òb>õf­7<×T¿ ´I˜¦Ö±†fa6WN‚èGp‚gߣße~Όު(')|ˆãè ×\;oÞ=ÚUˆ”n !\ªõûý³-ç{3¨{•à܈‡6š“l¹Žn˱=vû÷OCýú.+ï–‰žÀh@J à†Å:Ð=íE€iýÔ ßêX…§"¦“Î/ï ¸Œ·‡{t¸Þã w SçÊ=ç¡u” ÿ,‘AOPûur"Éat8³¡J›ØX%X«AO%Èׄëiv’ˆÖ(É-~(˜ÇB:ØZŠŠøfz+>c@ÇV„nËrCû ÎÂ⢜0Ä$ЛáŒAs/7ú#É»Ÿ+Q  w%û'I›eJÊ(T•?Tä&•0 :esœ™Rˆ²QJÊO.aúÃ0UõBev^½« V‘PjÕ±%^§SUBL#©ãþ”¤H¼„×7~‡?Þ5-ôV†–åUe4(8”®P'æ*rPbþï¬×b^t/‰Ã&['ŒXÚnûŠ6 ¶´“µL8©ä¿ Íî v ±G‘ˆYµûà¡æû 0&™ï/~Ò"Üõ  Ä,Ð0Þ ‰Î­ì¯ÝÁ½ -A•¼õØÏ_Tô™×sâÛÇÌM4âñxžià4ð- î@ òâïƒI61ð è‡Îà;œúÀ¡PÁ;Þ•’ÖaÁ‚íŸsÝJ¡@R:Å在Ùñ0aá‘:$Ì‹¤Û‘}°»ƒ·êw ÿÄÜZš—¨4U‚£ô4 µ°ÐAûàWÑ‹°{˜Ktp”—eS¡Œ*š Qå+‡ZFá·ÉûQÄ,Óa-¼{úU‡ 4> VvÇå¸å'T Ëšì¤F^“Z.|'ñ‘. ù$ôµ”/Áp•à¼Ê­Íƒ ¬²5½âgü6š0›à¡/Ç '•k'‰â¶lŒðAVÈêtè}Fq‰Ííl=ß΢6qÆÇLoQ¬TAœJ@ OÈx.Ä“Y‚¦óÑ“'Ö°Çþ:M´[¦Ó¨è|Þ´F¦ÿ+ýÓÑ¥›6íZ:ø Å^ð%°¾pþì¼dV}Q¢%ÃC×Ý0ý#d°˜ÝèxòÜ…cÇÎ~ydǦõ›ù©nlR|£3bwÞ誉¨©â•ÙeÉ9ŠÔ}¥Q™ˆ)(Í®.•Ôn ߖྒྷÍr+Ú‰˜I‹­fí*ðÈ“ð"L…‡Fx@n¹â ¹µ=Z†Â™™oVÃpþ¦íû†àÓ[*¹°4Ç’©ˆYBG¢0™(EÑHžž›PŒQrbnr&F¸guôXaF]]1_žŸ:Óh¦ƒÕ®q}lÒƒ:AÇëi>‡¬vL[®Ñ8Xýµ,û“à1Ò= |« <´/3ÒàlÔŽêb‚øP˜BÚÜ úñ±µÛ·Ù¯›Â/¢ÁΓ½ÚP¤B‡™ûŸßÆ^òßõ6Ztúé¿5¨Î§$ Gd‹¼‹< ¼«B"¦½ìjc '=×;Œw ñA'ε£ôˆRN^í¯”e1ýT{÷…8¿XJì{mšlï5jM`€Ûð<ÀÓ(ZôR¯_PâãàãSPUURRÅõÄ@“®2;{ò¯8_Ñ*o†J¶*úÛ 4ƒÙ¼kí<ŸmÉ•Nœce쑄„‚„BϾ [ôÌH%©¹u\“·*ô2™‘˜».»‘çð»›ö¥Í/dD/ç:f;×£“–gšO]üI^©\R@VtqÿÌcÑ;§Å„xGr»ë7fÛ“™GÏjÞ¬å'l¾õ#sZrÂ3ÿÜ8æOT¨ÁR ¤ºN“4Å_ ª#iÈH~¡ðÝÉ9°ì–mÌÖYÚün–#•µh;Z: & 4¨×™F'$¹Æ³ðDxÓ{¡í55w˶éŒ2“®Ùv—þæ&)…Ïz÷¢¬¨÷꤆Ç-5„kÇIâ^M?ç’ûYæÀ?Ò³Ù¼y“íÙpðc¨ù+©ç46yðÙ‹ƒÉÓ‚¤'x_õahšN}Ð-#žïét¬tgþs-`¤}i×f _„‚ãÙ{»}Áã6¡k`_å=ìõ3l‡°L(jî:|òpinˆ-‡eBIyÞzOèÿ‰# §yïÛãÃIúz Ft×yËü´hy¤ Ô,ÂOÚÁ¤ýz±Ù5ºj.ú'‡TVåîRÜáXšˆÒSœS˜W ψWðâ‚e|sjµÈNËICEL2ªvâð°E‰Š«¨Ú2ðð@{6‰¾¦Úeñ( Y…K%YÑ9Q<Öbj­<*,YÆ¢½M »ï›`ƒöZF ЌꄫñÚlÌV½M²!&¹^óv;iÚ#*“ÿ}…Ð+uÿAlt²0ñíhmî*a~, sPI&”±0ŠÎ®GõõnHÎãQ0šÎFõnnÈMÎáÑx”PN>ºÕ£lžÌ£i9r«'ÂÙ=3 ¯ „lª4ƒ0vÅes‘ê“X骡òØýqÁ1(ˆ‘æ…Ô½ú©örpò÷öt®HMS$¦é8"#°:ÿö£>XÙè”ÁÄßGã‰:Ï6½;)ù)”uZ4Sô4sˆ ö_§ßÙ«˜ ˆm¦zp§mð®ðt{y¹ÔøÖ5–×Öj ˜Ø¯dâ¿ÕÑÃs‚Ój8D½.²°z ˜ãAXmñêWdïú/`йátv¾-Âx«~~³³ã<·Å†ó{Û•f¨ê ~ qù²æ«¥0I´\Ã9ÏÚ.‰MŒG>Œ¸0&¯èpjã1®{îá@HHè”ÞªÒÖýÙ[P­Öûê"ƒdŒW9Êçàqo¬*út‰‡#èÖ3?Ý:ÚÔÞrâ2ú†ã±·ðPl8oÎ,—ªðeiAUvLND—wâdíyÄÜ»½sú’mëlìz㉗ÈJgv¬kMìS;‘ŽòL£Ø–/ª. /™› ¿ÂBl¼dûRrY±VYntf\W[{]»5\;íjï-uÛÀ{úŠã]ã×ÇJÚˈ~Ñf–;A??³|Ýê +§8-È:é˧¤¤¥¢b¦LR,özN{¶ŽÐªù÷Ÿp¢gèúŽV›š¾E:Q;‰Mj;5”ªµ[Þ3ȃnváªã-g[N}}çÂöÍëW9,ä¿öb¿©<ÞŒ.0÷fÝÁFØøïóæ®?±õk_Nô‹UàŠµV#>}2LÁìñÃg·l[­•Ü<\ÇζiQ«.¶ÿðøÂÊÕKm6ÌîAÞ]8)øƒ »D=½÷TïêΔæ2›tÒ==Œìp{Ór°ƒ…BšX…ÊQJ¡¢€õ°ë?Kh‹AÙªºùØ}צj-6»xyE×÷ªç7µeõ»N@5{5ì¨=Ú‚¶ØïXά†PK…ö©»K¤gR“3ÓQ)SåWá»söÅÀ„s.ÚF[[ƒÊó¹F! -:su fŸçxL%#úç9Ø#<{Z–¿edŒ…1þ•ʲì†Ûv7°a&×ÐÓ^½8”sâAa+>GÖÈ/S0Ï‹éÐ_Ÿ¹é t:ÕÔ–Ùc}Œjƒ¸6Ý&¨oikù•¼õ4‹Þš²É™‰)()”ùEIÒqÅïKb÷ÇÇ (KI~hQYZ!YLàû×ìM—Ö­[]ÖZ[7¬=}º¡õ&7c1+—T;VT™]´ÏÁA²”çFR6wö´lßæ¼Îjþ¡ §š/Þꕬ:v¸°&'§Ð{·ƒÄG®ÍU‹RãPÜ[âk5¡lVZN:açRIvhD\B„ŒÃ÷°SDtX$’X¢°ôðÌ(¸-r#’bó‹²K‹È·i8[È2∠•Èý%ä[Òš° &ïð¨#ý‹äùIŠŒ\-yÍQ¾õ#Tb­ýÿÊFåE%gãaßíKúèE#ð0â‡ü¬´d”ǤÇûîÅ»°ÎÀF'¦ÖoåÎ-¼µlu)Åéü€²//½VÑÎGn§7uZµø!F)ÍŠJ‰ãa6äá™dç‚y> stream xœ•YiXWÖ®ª¨ÑH[Э¦Ë5ŠÆ¸+jÜpC@Å%¸ àÆ¢ì›@74ܦnö­Uˆ;ˆ¡Ü÷5hŒ:1Ž£ã—èŒFÍ©|—™ç»Ý v™Ç™çùüáêS·ÎyÏ{ÞsÎEBÙÙP‰¤›gðæÕ[ç‡l™7Ä'p}Ă՛‚MÏùDìù‡ßv´ÆQ‚m‘£]eOEœìî Ÿw¹þeú7cê–i!K§‡úϘ>k«û6ˆÙ‘s¢VÍ^=/fÍüصž Öy­ò ^¸aÑFßM‹7û-ûrů† 1rÔè1cÝÆŸ8Е¢úP ¨¾”5žêGyS¨þÔÔBjµˆHùR®ÔbjåG ¦–PÓ¨/©¥ÔtjåOÍ ¾¢–Q3©¡Ô,jåN §<¨ÙÔHj5ŠšK¦æQc¨ùÔXÊ“r£¾¦>¥&Q©.TWʉ’RÝ(Žr¦\(%§ºS=(õ Õ‰šI¡ì¨‰D#¹k3Ãæ¯¶¶Mv®vÇè/éZ&Ñ~¸ýav*{ˆ…OfRÙ‰éTäÐËá°coÇÇgŸnùôe牫»tí’ØåÚgîŸíïúU×ãNÒ¥ÒÃݺwËãn:§wžâ¼Óù–ó—>.Ó]V»Ü“u—iä=å‘rèÛ½¥Ç¸-=þ·çØžšž„…ÈŒÐd”AàÅUáôd&*)%n».­”‡aŒ¡0¿¤P•˯cF 4þFô«#ƒ«Û"èM¦GñIæGƒ™Š¢ö¾fà Nb`4Ñ%ŒåƒOŒ¡F'!óˆ‹ô&ä £¹)Ö3«™ø ½¢ãA.VV2§ —–ÖÞ¿¿¯ìJZT®2D•ÄçE¡H”ŒÔJ?ŒdÁ"ÿ$Vg‚É«:^“‹òå7ü¾ö\=wºÂâNœ‰?êCê]¤¯@nä|E]`^¿|ò¼eÃwU¼ôù½ÚÚæKÝoy7Qà«Õ)F¹¤Á9„ªR 1eqÛP;kÊ¢/ÒWx®âŽA ®ÌEt@¹'º*¶,…±3¦Ïoò#Î(HŒ°­œêm…Ât÷Ã=±3æûþ0$Ðzü»É­Ø†OYÍ=»ä5 3ضv1ïÂc ÁötâÍ $Ž ã vлL(*sâxlÃDvkd°?Žê Qôa+ÂØÖ _%ñŽ•8˜î#Â4Ûl\ Ê‰åû0¿õu N`CÀ»)ü$dsëUÎFhN˜ï2ßå³=cÝdêøŒxÇbÇgC¡Ó­ï÷µ\Vì®Ôå¡V¯ÊMNMÏHMU¸Ïõ ›…Ø/¦üðº8«T[—ܮ°{ 6HÞˆNÄìÚªO­\‡Ôé²Ü”u.*BùùÚòJ°“ir49(‹•ËSæ&'¦¤Ä¤›PÅžFj„Í„k&>‡B¸/­b°M[9í+ Ñ—„˜WJðˆá1-}`öñÍ÷z>9/•½šy S“†ÎòPH—€÷iîñ…Ez÷uÅ̘g¼}óhQ&TÎßÁM¶F‹´(K®Wê’RMþmƽi|ƒÑd “…€Âs4~Íã‘©(©å):e^q^^E¶¢ :Ѱ“ÉT·Ml Hô¢­7m6rbʇ2À!è vû OáYvEV2°ÀN»% *.4϶îµAC_檉ÿ6¨rcÑj´ mÏHÈHˆ›&ÛÖK\#¶£HÞ‚n…*ú3É+3“èT‹åZÅp!涇g?e%û3æšhb"]?°ß<Ý6U\?ý‰ˆÊNXÌTÃ(’Ôl¤5™’`>3;Ðøú{Ùdt’¶ÀS’QÌ21‰É æwï˜5d0mz O+áᦥRsâyìÎ…0ZÚë¸Ôíj챕%WlÍUfeæ"¶¸¨¨PŸR_ÌG•ÅêÂZŠíÆü?!°2PÁõvôJ½‚Åb"¾‡ =—‰fù*P’Rà S̱õáÁ¾.˜T›O#¨›\¤óÀf7—©ÎT¢ Ö|´>¯<[¡- ¥×U7Ç\í]^ß~T™°'ª”ÛT°@7IPT^d^¬•² ·êîUצ$U(ò•†­(]½I–“š“n©«ìòâ›–²Ò²Òž¦$&oLWHîß²ªÄ»–ŒòšQ´µ<‘¯ŒÝ­ü>õ´ªJ¹+¡<©8ŲÞ—žà½ÿˆV“«Ñ)4Y&î³ÖD𕿑æc³~P¤:ß — +f ïã<³š¶.ÕɱÃô‹¯*²Ê³ |ik)Kö%Ø#yjÜ^[’R’©R¯—å’`rÚƒ©x&ËÒ#)G+IÕ ´´õк%å³{àÞË1½ ÷›*K‹Èˆ@‘D®~žŸ_ºU^}­Ýå7Fp2H`\½-ì!¼#úd9UD|I§X;ØÆïÌHÎLEÉrŸ“÷[î”ìhVì-*ÈC…l¾R—š¦ÎLKVl›»±ÞßÖekt 4©ç÷-LÔ¬$B*á ?Žû€/½;lcH§4Uv•HØÅLûÒx—™˜§>nSef£¸÷²zâ˘:™pS:AÒËC…¹Îw­§3GÛ[;Îf.&íÛsÖì-î=6ï«×£ì¬\þ œ¦?Pdb¦Þž¹m—/¨¼výúîÓ×VÕ›.TpVobxÜÊD‹8bò÷=j™òï¥Cs†Lâ¡Q€È‹› !*Í| Oèk6äˆÁV#ó¤ÍÑ‚ƒ "žÝ žý*:ÌdüGÜĉóÇ!ùR´jçê¦=à,ÓÒæš0÷ƒØõÜœ£áWü5úí§/Ͳcœìé cˆ¯ïÔÇü9n =íÇà^XŸ­tËÇM+˜lâò †Ì…5¸ð}gAftz^oHÆ c±¾ïË*šg§<ùù…ÆñC¢ã×+’ÒT„Ñ,éSz­V£ÉQ´î4ê«{µ>tµ Jóñ3–nÎYAŠUÑkê ^ª™{|í_n]ýöl+ÑüFnÜ<Ÿ­ÓëômãÍ¿žûÆFUJµoB„q/ZŸlÚïµÈw¨a¿ †E¡'FÖAøËÊDÉq°"ÞÈàÇ8«²è»"ƒ‰ÿ¥çÀ$«àNµEp€üa8+ÂÔÆŠi3ƒÇaçÞàL7}tÎx8dzèQ½Ê­å΀¸BìJÏYȬÉLGª^›S%4‘D-*á™fÙãsÓËLÓŒm[…8¨_˜Š'´´qÖ“Aß÷ #Œ äÐûõôÛý¦ÎÛ8c>—¸G¸a{LõÂöã=/>ûw@#Jij?ñ:ÑüÁ¤\‚ò¯fE5!ø1õ°ÂÒ6ˆ&vtÂ`<ŠÆUŒe$[ ž‚#iÝS ÆYº£?îOc'QÔ Ö‚Ë¶B9]d:ÛGب¤öFO¢Ã†À#ú¤ÈÀÞÊRs×4 ¶Æ Òa>5O¨Í‚#T»¤b>bñ ,Ã.ØuàÝ™oo´çvˆ*ëSò”iÊteªÂkù´°)ˆ5ÿìÃféƒõ|ý©«ûo¡:Ô´#¶0¥j3J#}&‡ £:Ògò,}†´¼lSŸÖÞï¢ÕVù‚ÃDâá­7C7Å‚¥9pW+Ńÿ,à_¹Á+z %¹&ô-*,¢ð 1…MGè™Gøm%óÓ°ô9¸c1O …§iÈaÚ:áç©ëi¡³ã…y^Íú`øJZHã} )‡çô‡\|M€mü£“™ŠQV*.ÅÛƒo/=8…Oî3ðÎÔ—?\¯¾}™—FG  7-áÅñ‹Ü^s?Ÿ÷rã¥{1Û»fÇzÿìŒHý3œÁ–ì¡Õ":÷Z×¶5Ø_Ðн­(ú(*³M(½Ö€›ÆL3 £äQàêl…ó°ŒË©ÒV¢böoa HèÒ+°íƒÉÀ^i-ßwJ±¯4?ŸP&O¥KIKÏHKQ,Û8)bb¹_zšôš|>ÏÈÕþýçs/ûìŠÏø ”F´ÑÒ4tFÉëzaYøÆ ­vÃðöÆòûÃÁÆÁPð_à&<Å ¯\ÍýýúlCŒäÄŒæñl` ©æá à;ò _†½! o@ÞLÑÅü-Õ×|2ªw©›Tˆä–-.,(Ö¥å¦dñsgëÖ¢hòâøi‰ž²‘V¬ž˜‡iWx·¬àá™í2éc-IN=™Š6@G„ ºýü÷{sNå±òϹ‹n‚hÚS˜ ®´¦5ùæ‰ï‰Ãg¸òÚãÞ¶ÝôðWnÓõåû¦“2vÁ]ñgØÙõ欭ç÷]¿À‡`.Á}ö"wÂoè­áS²M›ÍŠFÐ5ºH „“B1·ÑøM…ɰ}ß‘ƒBŠ6bùªˆê¤I7“ *C\YbQ8Š`Ç ŸÑo튢òHEb~Èa”›Ý$KÓ§e«P"JNNÙ†íd™é™*²"Iguìkيܽ´ôÈòý§Ãnõ¸ŒZw7Ö®®jAÍè@lͶ²ðòм)Ežùáy$O…Ûw‘úûWŸÖÔ%Æ–)òRvn ²¿ªý¢åhËvþ&ËÒ™“•vþ`Í!ÔÊÍ@©H]Žn˜àîå?›0³›ˆ™ó ýxµâù/‚· W[Gf8Ró6C´áŸ¤wÞ„ŸŒ–õ}<?-3mG™r’ìží}¨YÛr&3D饵ÖÀKZi˜`NyQÒ²­½ç1Ù Üéï ™]BDæ. ‰# ÅnóÁ…>jÞ³‹Ì“gµÞÉà<àà`ZÊÿÛ¨ò~”†žD'c‡Xç]­2bZñŸF3s’Oñ;q7_S¨-äoÃS2ì½ï)âÆpÐô‚:>#%È¿º:ïW°{÷èÊöÆRAªÈ—4a~#Éä|bqð¿ðØ<Ÿ ™ÄÝÎgh%}iÇÝQ¬iS0¿hò÷>ƒÀ37’±¬÷K.šlöp;zÎ4¬À R[Sÿ|;úþ¾§¤ãг}d0mŒÒÚsÇk+kzìÙ¶‘4šLïoÒwÄ{Ù0?w¨ò’ïÛ¾Ñ2«»ãèºô<Ôdé5:¤“:ä¿j]äRERsè®´ G,g­Áwv¾ÌÀr¡ßî¶~ô¦J>ÖžKÉ´ˆG´…† =éù ökëÙ(„Òÿ#šÎ]­¦æ»bü™ñî$7ó… Ü ² ý×&ÖÏ 2ÙC ôçp¬U«2T(Mž˜Ÿ\T¬Ï­(QÀ (§­'B±7H”kCÿØD“ƒÉpo~öÂ|`ùz pïÇ˶/¬>ƒxƒ¾–ûfͺU›vEä ˜†ºÚúýÛvl0ÿlšÉ׆5Àƒ[á¼átûµûÐ^ìü®ŽÀ6ÈL1bƒ"r€r³z3Ú"Çv'ç<›— áÕ |í®èÊÁuM{k—×#öVÍ’/BÕ!i[ùè s7ÌZ»R¾%hmÌjÄÎ :ñjvwN¥¥z%‚Ÿ px©wŒ*U‰婺T½Vƒ´ èU%mE¦Ùºœ¶vMìûY8HÙM:‹ÌÈi´ï~„õðuSƒüÌ)Ãwè$ûƒÇåñs=CýýáaA(žU’Q²@—[¬Sì½x»áb¯œ\æí³m –öãŒw›3`râ™ `JïY¯KÚ5R¹žî@ÊIPÖgš§t/xÈ=:xâ"ºÍÞñ:1ÊË3rý Ed\Êv”Â&ëTyzmVa‘âpÍÉŠ³ˆ½Þè;}ƂѫR)yUZº)YS†ÒŸÒÜXìÑ}ôàñý|––×®V¨rÒ³TˆÝž””´½0éÛx¾)¤!ñbɼÒå Pg7õÜÝ®€ÝŒðŽ€0Œ 졸ÛlÕ`ft#óhE;ƒ™G‚‚ËàËm²äå40r8ŽCdäßŘ#…‡Føšœ¬%ð^&Ô†43·-²Rcº."z®FrMJ®JrQNVQnÓŽ£…u„ ³Öį _˯õZ°Áù ¥»Ö6¨téYiˆM$Q%¢DðµáG’¨>è}žøœ½jmJäB )á¸Ü ÅÄq!Ò¸‚ÊO\ãªKJó+Jêk*›ÑQöGϳnXÒk°ë²OmR YëëŽ&²nWü H¾~{2ĸh"Ê¸ë«æO4{ÔœeÆÓw¶>â=q-×Ú0{üèIÃf.m¼òè§;ÏÛ 6(0òÅzø§ŽD(S•âáºÊk8–xŒDÑ(V›bºNÕÌ$ÂÅL8ü—'‡¯ßæÝ?N8¼ïÃv½0ƒÇœ^pïö庿œSäžâ‚¿‰‰‰[³î›¨µˆ]¸ªùò¯Ÿ>¾P»qN)Ÿ©IËZËšÅGèùQý9²Ï¤?-pŠ<´>?ü^—ÈÀþÁÿ)¢­Êæ%Úâ‡ã~ÿÅôò“ó¶ÂeÒ.QlLÀBl‡¬Àö;#ÿœ â¥¥ÞEëKµª5aOQQaAV¦6SËoy”tÝ@ðÅièI(9º !¤có”ºdS†kçmá˜éÐĤíµFÍï[8¹#<ЇìNxLš*3¥™nœò‹ÊËÏÔ+À4=gô l×_Rç¦i Ø£ Âh8 ÆØéˆrì„ÉÿNõXà;endstream endobj 79 0 obj << /Filter /FlateDecode /Length 62465 >> stream xœÜ½[¯?ÇröÎO±á'ž g{ú27 `FÃQ›@ÈzY²pþ¾H2üõÓÕµÖªª-ò± 8äïúÕÔeº§§{M_þÓÇñÙ>ûÿþøí»þ9ßÿòÝññ?wµöy¶þqŸWû|®oßÝïñùL þðÝ¿þî¹Ûçý´ûšÇçèKI’§½Ÿ×¹µÎþŒÏs&-I²Ö¸æç|’ÃóœãÓl% ëyŸÏûŒ¨€sP×x>çõ¦ žv>G+A…%E AÉcJþŽ¿úî?}×ö­üÀ??~ûøg?|÷ÿU??ÞÏ÷ê×Çÿö;¿Íí£­ÛÐæÊþ¸?ÛÒøáÛwþýüÝïÛ¼Ÿþýÿþ»ßŸ×qŒ÷ûõ»ãó]Ú×øþ1éñ>Gïï÷ö?êÇñÎÛiÇ1ï±®])Ìv~ÿOÿåï~?Fÿ|Ÿ÷û¬ü¿-‹í½Žy}ÿ¿šø>Žç²ëŽuÙu¾ÐxžëßÿÙ?Pþì38–÷ûúgËü³Œ¿×÷ÿ׿^úã½Þw0’þöùý¿¶¿—½w¼ñÿ°;qç;1?ŸUh?üËï~øïþ|¥Ù>Wx×üþüÝïÏnQ·ïÿNÂõ×Ð_«¿þ2.ù$ü}ÿ‹„­¿þÝOØŽ_ÿÍ÷Ôõô׿×_ÿ·þú–ã_÷S¦ÿú'ÿ£þúûŸ0ý÷?qí~"Àëßü.îÃ?‘ôŸ„ðýDŒ¿t»ù×?Ên¬Œ×“ùžgû£¥úÿhäÿÿ×úsýõß§:ô_oþâë½ùç?|÷X#1Ÿós=cµ+ŸGÿí™ë¡Ð¿û—ÿçÇ¿ÿîü<û;ÏÕ·u_?þf·Èí9ì‘ú¸ÖÃþù|Œc=Dç©ÿö/W[´ü’ÞöñÇZ­ñ|\Ÿ× r–fkÅ8ûø¸vY¾Öl}ÿ×ÿùoÿŸ?üåßýñ³$Ï»ŸŸï—à_O2tÆj@ŸÕ*+åÃ^ïn–Bë¾–Ó[’ªu_« ,Z.)ZO;×ÉZT­s®÷MÑrIÕzgQY°üþZsÛ³ $Uë^/í³h¹$kñ¾„V¾S¿PÎÏõ²;« V ~oõ¡­7ê5¯óºW]èþ [õ÷ýyß ÝgÔý\1¶lÿH½èÇsXåYq¿öBþ–$ýú¼ÛÇÂ×纇ױÞ{—áw~¶KøÇïz;ÚzW…F[/àþ†a÷±¯ ¤®7uX8®Ïq%Žü.¢ †âv _òøqÝÿ~\Ïz¦²L’Õ?º×U÷ª?V¶Ï.½e¥ l§¯UŒøù=WÏ"].¼Ø”¬ê°® çk]48p`êôÏŸ/¯xV³Ûós¾ËÕ{í¬\b=ŠÕ YWÍçs|W×fÁsEØÜ^ýó¾’Ær³º‹aÀ1]üø]HžÕ?›´°p·n"}Û;ˆP`Ô4P³ðÌÖ³3îR^’à†¯>dÏåÕ§u­s‘õ€ä"[mÒ•‹LXEF ï9-°Lè#JQPƒQÒB͹=–çù®gt·‡!±§f¸ŸgãÇne·§éx…w¤Ë_KsùkɱûØ…ÉòµZæ°`OMK>ÛŒ‚Œ’jžÛjî¨.ß$‰ µžZ¯`¨pm¬NM©’½™ýÐè÷çq' Žs•¤„5Ê-Ds¹Jz¡Á¸i¡æá¹õǟШ“’°FMû7jÜ\£ªZ'çë5ÖÃrä:)¬:I k-°ÆÑGÔIF¡Z‹(i¡æ:yZ›Zž7JÙº§ÏÌÏÛ*«>o—µä)ûnå„•%zÞ`A‘ÃGäÆ(ô¼!J=o%ÔÉ÷s·µ©NnIÔ¨uÕýæ7ìžç:9Öo&i›É‚ã\')ar QãÜG®“Eª“ˆ[u²äá¹ 4Æ«‰}ÇÎ’sù··áœŸ§áÕL†Ï†Ú°ñ®aoúyƽ:árbw°ÛJ–¡\=Vè#w¼‹î©¡€ýênCr?„öC؆°Â6Dýµ!Ô`B Äꇄ½µBèe¨R?D-47,Ôv¿í[–¼vï~¼´ú‡aãš°ù]÷êžIã~üÙ áíc_á’g¦/«a°ð¬H¯7|ÛˆBˆRj(·ÇG ì„Ä»ëŽMo¡¼»±î1kz#»uî©?r¬ •º#€Ñ¡ÀººØ;aÝ‘ðO Eì××P`=Î9)J˜Ôê퇀IÝíó¼JRËîý$ÆõÔÛ²1ý&‰»Ÿ7\Df ‚ Û Ô,<3ÿò’«¢$¬H‡¿æUÑÖ¹ÔÄæ3’Â{x+Lª‰¨Á‚ê™»H1DUõe fá™­aù¹*³nÛ~KkêÌJ›txV™†×»öšÂæwÜ».HÃ>KÍdØ}Ø’4ëú‡…õpµ;ùplW0 j(nX¨yxn}ì(5IpÓçí@ʉ{Ûª‡{©&æñÁ-«Ø ‰»î¢yp©Ü…4¥,Ô‚>/û2Ü?‚}òêɇã`CƒQ—< |Ù ôÉ,ðµnÕc½9°°×yƒñî‰ÖÏàxu9±;H,ðµj‚“Õ°0v‚pà ±Àú™ññòšAaOÅ݉^’÷óù ÿº¢ü¼ƒŸu°~¿Ë‹;{”¬1âØ®_cÂy&Žƒ–ãš@!€O{£ÏL_«“<|­NòH0p"€¥zW€á#ÀçÛíù”…Õ@[)Êp"€¥¡¸a¡æQàs½ê@ÚP²Ú‡v}ˆz] ´µ/"g, л²@ì>|®÷é®»´`|N"€, Å 5BŸý°6ó[–¬Æ@ÜÍiŸ>EÌÖ¿Ôåu‚Ûpb}ÏeäJ¬ï¹Ú’ûLÆ'ÖW jð…õ«@ï'³¾çÒ>ös¾õ\]Ñ·# œX_i€Ó•`øH¬¯½0Î]œnaÚÈì À‰õ•㦅šGa}—ðsfÒw9>D8ݺZQÿÌB8‘¾Ò¥+ ÄÛEâ|Oû÷ùöï“\8Nœ¯45,”, åkQ´7Q¾K°{\"[Ïk?¢cƒò º²@ì>å{Îý\„…Õ/ÜÏ(}8N”¯4%-Ô< å;í÷dÊw®žÖþPÎuÚK³+ LÊW?ƒÐÕåÂÛA¢|ç=¬¥Çå×î݆uljó•ããå5ƒÒnÌÕsºžÒnð¡áÃk½±ôto˜üÎÖ—ÃAj?¦uðƒñ'€Sû!  5‰Âø¦ö=ýàZ£up66µàk¥>W€SûA #…µð‘ÚD! ÆM 5Ìø®Ú;¬Wò-IVû„ï‚·˜Ø ‚êÅoÎlẀn8hÞõÌï"ˆ«û¦ÆÍKI„æ¾_h^»Ñ3Ó¼«Vuňb=×»ï š—X4o(€Ä•bw‘h^«5=h^»Ñ#ѼÀ‰æ•b”šE¡y활=Ó¼óžxù T™ÃèJQ°À‰æ•H\Y v‰æ×j ?ÂÀ,öÄò'–’¶øšE&yW¹[×oIríö—ôê»}&K$oh8…K ÝG¼»{ïz ë1yÞäÃq¼”D”nák…ä«wù<™äUã z5:#NÀ'’7š§peØ}$’7:n!Úo÷œH^i0JuFJ…äÏÚ}K’Õœ®¦Fôê\¥ÞŸ `ƒä¥D.,v‰äË×;‚ä÷êGäÃq"y¥Á(i¡æQHÞù ë)'’w¾‡uVD¯ÎåSÇ `É+ P¸²@ì>Ék‘mÆŠîÃ+úpœH^i0JZ¨y’w®·|¿3É;WO q¼s ’Ç,,pp¼ÃõË…Ü|P¼sÍœ2ö‹×Ь%8q¼Ò`x4P($¯éÌ7“¼¦µ¿_çaßÄÀ'’W peØ}$’wZGñ –w®fs¢lj商ↅšG¡y§}…83Í{Ú·'hÞÓ¾•Üâ`Í+¸2 ‰æµN妣aaÚ§’!€‰æ•£¦šE¡yÇ|ô7Ó¼cuÚÏ4ï¸÷%Q°À‰æ•H\YÞ>Í;lŒvÍ;lŒv%ŽÍ+ FI 5BóŽ÷ýBóN[ÔhÞ¹^E™æN4¯4@âÊ0|$šw¬®E¦yÇj¸ï;|'šWŠ»šW>Í;׋St)YÏŽá$XçøX…# œh^i€Ä•b÷‘hÞi_Hzм³ïAVøpœh^j(JXø’ÇoJóN{¯´ÊÞÞÏYçgOë4Œ7ÍÏ>ûµ?)ýá§µ07™’2ÏùXÍñqåyέfß½ËülHªÖziÍ2?’¢…X“VŠþ¿aδuŽË~lÂôc„Oÿ¾óÏçûùÓ§ê®ÿê™Ó+ú×ZþÄ™÷ûò™`«ûÓ}&ølàÄ™SƒŒ8-»Ä™÷õŒÚkTÎýòŽg. ÅÝAF—< g¾š5Ì!Y/æO»”õ’ïq·õ®üïD˜óG°á¼¶]ÞV¤{Dë› 9NXHt¹~f°¼¼_èòn|gËty¯÷ö®î«cÞÒ„fàĘKŒ¸ wvÂ)YmÐ.ÐÂ=oòá88s)0F¨Yμݓ£JV¥ÚÃj'«Ûó—ÝÐéÕí¿çu„n8åm ÄöpœW_Íntwœˆri04Z¨Á¢Üdmf¢|5Öþ=u[íYOD9p"Ê¥\ˆÝG"ÊÛj‹ÞD”[äþQ>'¢\Œ’j…ðjøºA¸ndÁv5û‚8‚ŒN|—4@gÉ1>m¶Ëú˜q¹Á[rà8±]Ò`ˆ´2(TùêËi´ú m8?SÞ[¢É{+¹ÿú›×ÂpâÇÛêfîÚƒ«›÷¨e8ñãÒP°°Pƒ/üx[ïû'óãÍøÚÄ7ŸU!òºÅüÐÛÒý- ÄÛEâÇÛŠÇgmÁ@ïˆ.'~\ ’J…oëß12?n…ëä§3Óft&î8ñãÒû- Äî#ñãmÁw)ñº=qðÀ‰—†â†…šGáÇS-„„µ ôtÏÜxOÄxϬ8/LUPT óMµ fSýƒWi(L\^Ã.mıdó*Í„õLc5Å~F¯ÄYçf‚lh>RKq¼ ¿`áX‘çvÀ©¥†â†…šGáÅs1¹DÅä„4ŠÉùê(¦=ºDI9×­’r˜KŠ•Ô¾: ËçÂrßQX –…U‚/dx;khÞÚéŒé¶nèýg œ8qi€õ†…Àî#ñâÖù›‰·ŽT&Ý/IŠ{[øšGáÅ[›>` Ézú¾TùËàñ/Y`­ƒ—Xo v‰·~®ÏÙw+Î;ñâÀ‰—c¤šEáÅcX#Éøç”t[e¾[pÖÀ‰—XoY v‰om“ aÁ>D·äÃq"Æ!‰(hŠšGaÆUâW&Æ›õÆGã­u뽉´Nĸ4@{°»H¼øaß&v'Á ØÐ#Qï+î‚rœS(œø±:W÷›9q ìîØèã~mÀ/¾8qâÒã- Äî#qâÖvpqÓ¶p,ý‚lj—£¤…šGáÄÛê ÏL‰·UA®”øês9a º8Qâˆð†…„>ÈS°^{" ö5éÀ‰—ƒ¤…’E!Ä›µÑ#âV³Èdî~ΊsŒ «!. Ðݲ@ì>!nï·!nµ+ϬN„¸4¥,Ô< !ü‰$«‹Ðß`Äû]Ê {` "HmHyãzAw”¸õz÷§\½ú”ûËÍ;N”¸4 Ô %n]™yeJü8÷çm‘Ñæ•èjàD‰K„·,7ï„ÄÈù”¸uÆL>'J\Œ’j…·¸ÐêSrÛA‰÷m-1ùjÀD‰K„· »‹D‰ÛM>ƒ·¸®˜[ ˜q)0D\_s(„øaûìŒLˆ[Wlm=êýd5p"Ä¥º[ˆÝG"ÄõÜàí2gÎ8ñáÒ`0P³Ètx¢2%±ùÄ=èp{Åœ‰Nt¸4œì Ä>TIr8qïæ{OoùÜqÐá¡¡¸a¡æQèpëÜ=ÓáGß;DDÍb•T5p¢Ã¥²[ˆÝG¢Ã÷6Á†[Ó’æ<;L\8~˜÷Õ_Røm™ðëØ³áqÂóÏ+þ òvÚ¼ô;“·Óf¦¿AÞ.|;™ëÄ*q·Ò5+ Äðäí|žý¡Nž§ùk>€ƒ¼ Æ _òÈäí|ú㛓„ÄÈ€˜ð<«—˜ðLümüìül\NÜ5ýE’–'êwQ¼ ?^1~%Š74œÀ ÄÛE0¼Óöæ~ck‹…;&Ã…ã`xCƒAÒBÉ"¼ózlMó·$°ô¿»ð“æ#¿ ÎÞ†âçdáB°ò™ÏG¸»³ðà0øÝP`ˆ4PrÈüîu®™äõÉöN­®0Oÿôàä+qð»¡áìmXLÉ=ýë-\ßúpoh0JZ¨y†7ŠŒÞqP«*¯©Ì@ÏJô­,«Ì(Ð-‡ ]D¡1j0HZ(YdzwÚ2ô™éÝ%yíÆ‘[¶WÁ3‘‰ƒÞ 'oÂp÷…Q!9ì¡[‡>Ĉwù»"ô«¿¤ðÛÒ»½_6fü£QÏ=Õ2Otž¶&å­S˜“':CRµ¬:\EË%EkLvò©IÕ²ÑÁ,Z.)ZsìùKI ’ªåe­Èñ¿e:t·O‡—m mSø®ïgÿ™YÐ?[$¿†H_o4Îè¡d¥Ñbÿè…Ã=}¾+ ðýÙq^(ì¦>–Ë– ëŽ.  _Â/üù<{¡’¼ÎÌ€¿ž6§ÓŸ ®ŸÁŽëráÆ.($Ã>JÙh¬Z]äÏ®ŸŸ.¯þ|:·–øs[L14zߪ3 ‰. °ã2@ì.>À «Ký¾É‡ãàÏ¥ ¨[ž.n \Ž7óçV>¶sæÚV÷Ü6pâÏ¥v\ˆÝGâÏ÷—Ͱ»…±Æ=oâè. D) 5ŸÛÂbÔEJÖÓz`ôlïås4ðŒÎn']àÇeØ}$ÝVÕïñ -¬ƒˆàÃqbÐ¥¡¸a¡æQ¨°y<ü¢CI;jv°3 ©€& ]²@ì>6í‡T˜=;o̹&NT˜47,Ô< …>VÏaäYÑ«bÏÍmÀkuÃí0Qèü 9¯&tó‰B·×U‹¹ÑsŒéûQÒÁˆ@ˆ€ j …C×ËT’qاÛIìq°z:Í œxti€(—`øHTzXýÜB¿_‹P>€•. ÆM 5Â¥çÉ—n=—>¹§'x —˜rY†Ä¥ÛJº#qéæ$.8qéÒ`Ü´Pó(\úê£ñ#%¶ûnœË‹¨Áv“K×Ï`Êu9±;H\úhÍç¼ïË}UX猪ðO EŒËk¥éÏË=°(y}åŸÜ5†¼ïôl;Ní‡4Ð:С{H͇­Ø±È´[3ö"N͇45,Ô, “žšJЀÇVóàDw4`Âù;ˆr^M͇$xøy=:ˆæƒPC!ÃBM¡PégÛU4QéguÞFbŸ£û, ÐÜÀ‰J—ˆrXܰ 3I:vŒ \‰°Ù1 tt÷Ù—5‰Â£Û:ÔãÎ<ú^îþ! {^Ã÷ÄpŽÛaèü 9/<ÈS²ZÆçüÐå«1yÏdÞq¢Ð¥Áðh &P(tÛ'àš™CŸ6ý-6‰Þ=ö;ÜÀ‰C—(rYÞ>‰n·bÆö!û^øŽ‰ID龿QXôqÜÜÏ€’6}ð×£دÀnàÄ¢K9,v‰E·WÝþV ý…©N,:$)îmák…E·…‰sf½ÏKËAl|Ðí©Ž½=ˆ‹. pä²@ì>‹nk}?*XX½Ì´I4qbÑ¥¡¸a¡æQXtÛ^aôÌ¢ï$Î`ÑUÀp«¾ˆWG ÝGbÑmƒ…$ºí5Ñ“‡ …Îß!®®)½ÛzżuÈ.ø[‡ì‚±uq"Ð¥z\ˆÝG"лOˆ—…nâcëâD KƒQÒBÍ£è}lú/è}NŸ\ »ŸûÍ :dÉq½ ;½).ÝÑfã& ¿+\¿¸F_ô±zÈýÉ úX•<ö†^ï¾öÓ—}ÎßAŽójB7ŸØó±žnf²¯o§Ï/¥lj=—†B†…šB¡Ïí€ËÖ2>ì]>ƒ?öîŸb·.Ðã2 ܽ7’>±A,Ø€ñ .ÆH5‹Â [KÝòÎÐKr}ŸÅ™tàÄ Kü¸,Üç™’ÕqØ“Ãiá@_‡>']Œ’j…A6P83…>l(q…>l¨‘æ/' ]`ÈeØ}$Ýê×þºK «ŸñöäÃqâÐ¥Á(i¡æQHôùnR‰íke»C‰Á^}5[d!ŠÛq"Ñ¥Š\€á#‘èÆs?#XtÛ×êM4:pâÑ©¡¸aáK¿)“>žõÚçOO”f¬TÂÀ/Iþð“Z!Y=ÉÁm>V£¾^Y‹’¤õ^»{œ´$ ­¯Qä¸Bë׳ß:Ks€ÝûNÓµÈzX[ñýÏß? ñmkó*ñmë83ñÝld''ú›ä·iA¸/ ¸-ų~˜,Ø 21àÀ‰—£„…/yÜv8 ÞÆã‹“À@·õ nØÑš 1àúü¶.ÖÖÆ”ô½S`a5y>?@bÀõ3ããå5ƒÂ€[PoaÀÛê¶8i¶Éçv>85ËÙiàÄ€Kü¶ »‹Ä€Û† {Š9 [<’ ÇA€K!âúšCá¿ç&JÉ;}b;˜g«-qÓÀ‰ÿ–ØmY ~nÞ Jî×gÁÂq­‡5À‰ÿ–£¤…šGá¿mù_Ï»f¯’ÆÚ0ÏvÃfš@œøoi€Ý–b÷‘øo[ËxÄf s/lɇãÄKCqÃBÍ£ÐW¶bxöL_ÙIæ×üU³QWr 8ñWÒ=% Äî#X¶f¸Õl›n­raÔ`”´Pó(ü·­Y{òæ [ cVëóï¼´D|ûoà´yáûqBbó¡Î¸ÚæCɸãDzKƒ¡ÑB ¾ÞÆ÷]=“Þ¶BùÁU÷ެÃïÀîô ÊZ ´eØ}$ÒÛXÅ8%q«g&Æ›¿+f¿º¦PønK/0JîËß@à›û‰ƒ‘&ß­ŸÁfërbwøîãjþUh_~žþz¢ulj"Æå5ƒÒ`ØS0Gn0öJù+5«: œ j 9áÎæ“’ç-c¬Ùi] pj3¤Á(i¡æQïÔjPÂg„s´ NI§V¤µ4@jËq´”ð™§¶ ô­£ £¤…šG¡½ÛõªÌ ?|ß+QÎÖ{ÒìnàD{K¤6,v‰ö>®£Ì ?ÖÐìLÔ:p"¾!Iqe¹|$æ{Ó²of¾í•ÇïS»´ûÌg$ù-Û2 |p›4JŒùE` Ÿ6Ñ{ËqÐß¡Ái fQèo«£L!ß›9€4ßµÇx²4…8ÑßÒ¹- Â]¤($Ó÷µ¡Ûd.yØ0qß.ˆ÷Õ_SÈÌ÷xŸág¬„ä=´7̱ñåk •&æ;4œ×¦…Àî#˜ïaäçóLJ±9Ç™|8æ›’ˆÒ-|Í£0ßûÝ™GœÖø ÷<ÞìöØÁƒ81ßÒ¯- ÂÝ·ɘÚík[°7ôH>'æ[Œ’j™ùF½y›u×»s|N;/üø³ÎKóM ymZüh;JîGgÂÂjþžž|8ò;4%-Ô< ýmÕ–»N@rvœ4æÄ³í!‘vµ&Nô·4@nËñ<¹`†’ñ€Í„…Ñ Åœèoi0JZ¨yúû¸O²ª”<Ýgƒ€>žÇ÷®C ô7¤·q½à­ÁW,OêÞ³xÓ$ràÄ€KƒÒ@M¡pàöŽ?òÞÙÓ‡{gï·o½³‰ . Ðܲ@|ë|OIöͰpa³-úpœˆpi(nX¨y"Ü*¿2nïßdÝIh뙎`©.ÐÜ2 Ü}ËJJ†zLáÞ°&®0ˆðPðÃ@Í¢á‡}HÉ[…LÛ_䉭B8ˆI­a†hli€æ–áÃWp‡Ä–]n Bö°abÁù;#ÄÕ5…ÂÛø|F‰ÿ—¦‘ÛU#M#N¸4ÀpËñÐç3Jìü¿4|¿ÂÓg=žwìBxh8Ä;ŠL’õœa`½³‡ ƒçïŠÐ¯þ’ÂoB÷vï™G—1VÏO³ßÝv¾¯kÚö%{8mï‚[’?ü´–$Æ¢øöÕ½Ûž*OÖ’$k]{ˆ“µ(IZå(%ÉZ¾f'kQ’µlëü¢AÒ™}ŸK—ï%Y«Þ›|·Bëÿ;'ßÛž¨sÙ^¨7棯VÚvè÷Þ–{Uú³Ró¿Xº¬fLR_6_Ó'OQ2}]±¥õl¸—îOb®÷çôA¾~w@W¼éSb]R»×§í©QtüãwŠ@ ™j »skÓKí,k+ß}îA’ø†‚6Yy¶5P›ÛÕÎ,w¡1öúÏ0 Œ# BrïC µ5Ž=PT`Œ4P³ðÌÆ^`rÙÉ{ZXHÖ;ÆFòsìuf ?›-™«ƒe§«›ÛsOà sO Äîc_Éô3›dauºJ•Çûf j0JZ¨yÔR³-¼ŸRj6ç…wk5øoº›æÃï,})[Î…e¯È3–MÂÎ…å8 ÔàwBãÚ»”Z Ÿ›ƒ Á»Ç¸cõï}_m6C÷^ø£·OÖ ò÷gòãráî ´¶eÎýׯw’QsràØ®`Ô`„´PR¨U°á\¢t?”U…ß÷¸¨Žs¤+-7žK$Éq¡ÒÂÂjiŽ\Íç*H FI 5ZýèÄ\íðÄÔp¬z;R5Ù0×BüÎjÆ«…IF={¶¡ Øx÷L§ŠH=#0PSøòd½> ']µybÚœ{@N缨¡°ýz=`/vIG|Àü úxÀ.pzÀ  ˜{Í“.rU윇.ÉðYäªÃg™«š ÎCWE¢+-¨jrzTNŸE. Íg™ËGãi¶@yÐl€ô[Eb›žE§àÄWðè6@ƒ oùI›{Mdz¾ŸùM6°±Þ£þ³š \]¨åu\X;™½ËˆîTó5$º—«Lt·©¡ò…T:¾z€’þîùp²Ðß±§¢Òp*/i JY¨y|y™Ý87žÅ‰&›-Ȧ]S ràN´ ÐP‹ j/nÌùˆ—Ù»÷Š—ÙôžŸ^fŸÌâe ½Ì`¡æQëbk8$$Ï&£õ*ñ™ ñ®áÑrñ6‚†ºM0 ܰ_Š$ÇØ;IÑB¯¾ðõQ Œ‘j_jäáód“ÄO®Ž9öݨ‘÷qM5ª° |à EÔȱßí¬¶¿dªæêˆßUýêšB-°uG¯½î½L¾§ŸÝŒ÷ôÃõž†FêpœùEí.Ê‹z#%Þ?³‡ sïÃÖKÙ/® ”'ÌÖìø{L’÷ö×êö¨ïOÇù £žY vé Û§E¥'ÌVÝ©K œž0i(nX¨yø;zì ¾/#.|O9Iî= µÛ{°o?ÏþÀoïÁy ÛÔ"}“Ƶ÷% Äîc÷Ù!1úþ# {ŸçzH Å 5Ï­íÏ-—­0xý“äÙÛß}žûcpþ½ØüZ—|ÿ°0 |`ò$«7nõ×Û¶´Éþ†¦Íð;ãÃÅ5Z`'>s¥‡Ð¬Ž[eÓ½|0Î×ÍößÕDàr5 H2}=˜¾Î]&G  ‘j;±v£¶/;pàØM}Hl×”¾çì¾äœä1°MÚ}÷†¡á§bÊ€`ÇN ’{V¡ ØÄëѰ] ¤Ái¡fñ›RðçmDøOoå’ÉÜŸÕÛ>~X¾V›s®zPˆeÛµ«œ­ZØÌò÷ýïþê¯ÿæ?û¿ûáoÒDïß$K«NÇ×C"ÏŸHógi}^ÚÞZìN®×¾{5úfÄÑû ïÛ…bío- ¶§–l_-ÚßZQPƒQÒBÍ#wÏËæ¼åäy­[õˆ€ZÐÏìA8º€¡á¼0@ì.¢ ¸’¿¡…Á4}8V/0# Ô,r?ðK­aæ¼£Àì–;ÝLǹÀ¨Áâ `¸Hv¾ƒ*·°ïèµGIAQ÷<è Á^Ÿçz¿™¾^VöJ9’Ç몽r€ô2qØ¡áuX vAa/ɱk¯,؜і|8 ;47,Ô`F¡—ÄÎkïàÄÄVçç)1Ç91j01 Þòãåz°yåOrá8=^TPÌ0PrøÒ^•xZ‚‘‰§…ßL<—ñÍÄSXP›xUâiòdâiᑉ'â\©¡6ñÉÄSøˆQÖR9*u½«OÔõº3Qׄ1Ð’FR2ø¨Ôõª[#S×ç¼îD]ÆX+# |É"O+¬GP¢§/}ÛÍé‰^ÃÔñàïèUèr`8HýŽùú†4 g€S¿C ºe^4|üi·Ìvpñ¡$kh“JlÎÔSœ³tý7–®#\q(I¿œRäÕý) ãŽsQQƒ¡ÑB ¾¶f€¦Äž¿ÏlÃÇv>Õ‡Ðè¹§†^R°@|ðJ¬Òôô³[ß‘À©å¢”…šG­†ë™œ™]E>ýå‡`šÏTE§j( V2 v¹^ÇgêLMÛH> ¼µÐK­Ä¹×ëävãò#`Õn`/x5ŽsËA 6´@ì>R}<±¼,Œ×Ù+úpœê£4%-Ôç'Œ’j™„:÷nC™„Z‘ûó& …¯½NqÐP¡á,SX vÁCíÈf°†ç‹Žƒ‡ FI 5Úÿ˜Ów, ‰í[“ºçèkÂÜý€‚:~½àÔ‡2JÆÙ 0°FÈí sïƒ Œ¾äPóûD³o5Ó;÷«lÆoêW9,‰¹BÎäÎØ]”Ì#†ÂBßÓ0åÂaÎŒ ŠÚ |É¢ÖÆwŸÆ—jãiŸ|ž¨ç¶58ÕFi ®É‚j牾¢~>{¹j£M ©6:呪}°PóÈöp2bH|.!(äÓ&þÍ&Ž™Xv(8C„9Q’ÓçÒÀô©†ò09Q1Pƒ1Ò@Í¢”Úp6·!kèºûõ¼_kèš¾<ç6„,Z†Tjcõ+®+JÍ6u¼SÍN¥& Å 5ÌeŸ¶ë›Ÿè-ÉéëþÁ#Ÿ¶¥¯Õ70ÍÄAf‡†Û Ä“;öI²ŠËΑ…îëþå£sÇ>EA FI 5ߔ͞¶@©Uúö~~‚çý)Å_Þ/›n‹²[î4Ù7Ú'ušö7ÚÔiN&i K$ Äî#ušöÇ”Ôiê§¿päÃqê4ICqÃBÍ£t𬀝Òiê«ôªÏÔ½¹&»3S‰¿£;Ä‹a=õ—¬Í˜Ž·ðù¯î8úKR`À4P(ý%Û•îh¹¿dûÒõ˜œ|î]çÓ¨8õ—¤Þ,wv)±™·19ùì¶rý§þ’4%-Ô7H’Ç%­ÚlºDî'rW neøÆ!YC˜7‘»¹ÑÐòá8‘»Ò`”´Pó(Õ°'´-GÔAÛ&¦¥þ4pªƒÒ@ “b°ñ„vhÀ°Ù äDܧ ( †H )ƒ/ÍÅý¥öõ½€QÍEKã«ÞÊàªç‘/SCq­}ïQkŸ/'LU{~©}TP¨G­}t‘Ó±Sr˳d,cpºÍHÆÄéçGŠ ›ˆ·‡œ—“{§¼–é’—ã”" ”jÅ;öI¹î­‚=¯T÷ìðŸÄ·çºGT¹ÎŒÝG®~GÇä(·`ç“÷Tý€Sõ“†âîyzrøHc¨” *±ÛߟÛ+™Û3“«Šë0Õ@IXüjV0ØŽ HÏRP¨GžDSk ÞÉÇ{“DƒÄ¦\1§u?£WâYSßBè9È0|¤¾…ßcNëi;`ŒÔN} i(nX¨yüI6*˜ÇV„æ¢j'x,Uo˜ŽŒ¢rœ‹Š,*ZPÑm©¨l׸L»Ûæk™(ÎEE Å]iwùÈ-FÃN©é÷}¢ÅxÊàÒb@Co'XP  ¢ÅÀ Z8üŒ>ù8xŠŸ¢ †ZÎ1(yÔjØ/LŽŒ&sø·#T†ñÖV~¼_[yj¨U‡5êæFJÒ°LìÛiªîÀ©FR1Ò@ÍâKãaSèKÛqmZ ÚŽ¾aÑvl\Úh¨ºÁ‚Z ÎÚ— ;o¨¦ãú,-Çõù¥á¸>K;ËK ¥¼l/ª;/š˜—‡l–&² Ü>¿¬ÇlÝU»'ø¼c˜úT`Ï‚„ÝEê{Ø6› …Õ­ÜŒ6\8L})0Fø’Å—Ìú!yÐÅUœ–M·:N[qA!2q»Êlú†¬Ö¥ÌæÌ¨ ÌÜÀ—,J}´°Ê|øÓöIóáOÛ,͇'NõQ¬m´@ì>r}<ï4~våêè8WGj0H¨Y÷x†Í!I$®õÄ¼;ÕWLD&W  he€Ø]$×vÒâp­6g–8q¸Ò`ˆ¸¾æKlÚQ#S¸óµÒz*±ÃÏŸ×ítœKŒ^aøáç•N6»…ùÞ¾Ì>ˆ£ÈBCqÃBÍ£P¸¶1ØÝ3…{ôMÏ‹<µ Y­®‘^N®4@ÐʱûH®mÑzƒk ]ÉÆ‰¿åïŠÙ¯®)ü¶ìíuìU¿8K÷ç{;Ÿwâ#%ïÑ|ý¤wQ¾Áæú6ÀÑK ï…`øˆnÒ´í¶g°· 7oÃpt”BƒqÓBÍ#w•–³=}â[’ !Ö|f˳t‰£«Þ Ä]s6$iy–î|šïÍ+Ms6u˳tÃEt•–Ls«)áÌhï¦,Œ™ÓÞ‘!޾RhxW(,ÇÜjJ438sš>bn5£ £¤…šG)µûž8ÙK’§¥©º Þyª.q*5i Ld€øæÙO’\wžª»psn‘>G©I1Ò@Í"³¹+Œþy&2w ^ÿ.é4ê¼ß½‰'‰Vâ sCéڰ ܹ7·¯ÔË7ÿ“ ÇÁ冃¤…’E©Ž÷£Ï$”؃˜%¹ð•ÉVâT¥Ê& Ä>–Pbs b–ä‡spôá8UGi0JZ¨yÔêhçá–Úˆ"à㋽tøxo˜[üΊƫU5Ÿ2«u×Õ4«U·_5ñ>ˬÖPHOK+øùœ_F;1¢´‹Øˆ-Òøœ)¥ sJø-.<>{ÉÈŽ&ÌÙ®èO}~’tÇa „_kày“Å äš !¢ìŸ/µã¹J ¤ë-»\OïRÉÂê]¹–;Î5Šjy ²âº1â—ÄÖý©«gÅG „1‰‡É‡2 ì.b  -”±a DBAQ»/Yd†f…1q¬$ïÞ^¯ýÛ† ©cœ:Ò@×BˆÝGê|X$Wл ·üyš8u>¤Á(i¡æñ§Ûn0Ïóà~j’øzCÝ)ÛJñI÷Òq./j°4hAX>%sï¸Æí­6} øŒ‚Œ’j_ZÛuG ‚™œjAzÞˈ¸´ =oÑÔ^<|0%i˜ÑËäÌ à‰K ræ¯àa¡æQë¢M…-uqݨ)Êpw^FOuÅqîQQCý% Þruœ—¯§,‡ Ç©:R!Ò@É¡VÇ·‘–—äÅŠBŒŽ3O×%NÕQj>Þ¼â>ru´=f{ªŽ÷ã}Z5÷eSóñä…a¡æñ¥ùPÓ˜Þ‚ÇeÆv74ZFÞrj¤÷ð‘q´Œê£]S‚vOmˆZF¶!PP¯jõA»nV.>h#%.ÚÈ;K„á;²ÇƒÖ÷1ñ ¡zéA»p¸y.}‡¹B†_¨IÙéê%§Þó ïÚ ¯sZPPØ0 ¼=ä¼Vw9í ±pO;h漨Àa æPêáe§ƒçjxYzD5¼–³4‡–8UCi ’Éñƒ…¿¬VnÆæ ÷ÌH§Z( I %‹Lð.QÇ\ÿ¼>IÜÙÕç韰3=°ÞPðNîœtKÉ=ýë ØÆœwòà8ÞÐ`Œ4P³øÓ.2£ÓÖMÏÌï.É»ß W§­°¿bú,qð»¡áìmXîX-$Éa… ØÊé¿«ß!®®)ü¶ü®ܿҶ?±ÙÄÏ+þ~wµ³u]Ý>ÀºÅº…Óøj>ep5Ó싸ØM§®Ñô#ââò ›3ѺãÔ5’ƒ£…~éÙîŵk4mMÁ£®‘ýó¦¡pêIn_ºF¶ñÁ‚ñki$qt¤€e fQºFÓúJ]#››>ÒÄîWOcàÔ5’:>²@ì>R×húbaa¥ü¦1pêICq·/Ìô÷£ma–FÀ©Ô¤ÁW0 »‹ü’ýkXX]ÌLú§—45 Ô,¾Œ`&÷FV­mØÚµœuÏAT>)Ôг z²&¥ÄV‚åG­•GyÃò ùïŒW× 9c›D÷¼ Ã.öÛ0ìb± qbg¤òEˆ•ÌÓ¦…~û±¢ôœèi0JZ¨y”¾G7vé–dNŸòˆ÷~?(xÇ0õ=¨Àž »‹Ô÷° WS×Öv&¥ŽVÄûâ/ ÔUp”†$ãL{KLãö££Ü›òŸÕUò‹£oõè[*%-o,±jvЃ}‡¹/EÜòÆá"ÕB;å¥ìH;픀‘k¡é›k¡ã\ ©:& ½nJ;msù'ÕBë彩§Z( FI 5BìZSÝîL콚‰Ý1F!vƒØ•h[>0N’†M¼aà¸ó&Åĉؕc¤šE-5;ü¬¥vø,YÞ/;D<ͫΥF •,¨Œ#¥¤í“›Rëóî™xÑ>½˜«-4%-Ô< ·;ßÙÿ”ØA{g`«««ÖžÄ¼:NÜ®4ÀÜÊ0|$n×è×g¹k›½‰ÝNô®47-Ô<~S‚w=ÉÍ¿8÷ç Ák+£*Ák«è2ÁÛ¬ÿÝ¢œúIÒ@/HˆÛ—=Ô¦-„ÚÝ Z°ƒÐÓ œúIÒ`”´Pó(ý$[Ñ}2£kCv¥­ºÛ™œúIÒ@/H„¹ª$}ølfZh·gèÃqô“¤Ài fQúIÖ[úIíì>:C'¥¿QЋNý$i $ Äî#õ“lÅ|ún݉VN=%i0H¨Y”2;ž›Œ!%/N'Áí:|{ÝσͲî85P"2@ü°]–äöíUháXÏuZ³He&ÆH5‹ÂóÚ¬žwÚ¶ úŒÍöíšiþ.pây¥WˆNJNìùO Çé;ïÐÇ»È# j(nžPò¨õq î觲Ś_V`¤^5p®ÔPýƒÕ¾Á-ý(±/[©>vïÒÆ¹6âwFˆ«k _*ãä¤.UÆîÃ5Ô;Ö&=ÜÀ©2JC•T'çt©2ÞX^ÍÊXWçÊUÆ;/¿9³ûËv~[«¥ÄŽœÕQS:jüé› ìætl>JâpZrçyÊrMF5ôRÿl}èU꟭}Rý;ìLóÔ§ú' Ô.Y v©þÙ‰ê±Yæ<¦Ÿ–G¦úÇß³_]S(ÃÃ_‡irø Sã€Ã_¨(¦‘8Ò aw‘Æ"vøù“W‡¿aåÂa‹HAQ»/Yzƃ9r·c¯U¾R·c¹?ë œ»Ô@§B„;šOIžÓ)X°f{¤® pêvHƒQÒBÍãO½Õ`¶¶çP™À{ø®Cq¿L‚ç}4Mž÷œ,Z v¹Ô®£Là=Îé{¿Ò‡ã\jÔPÜG™À+¹ ±ÝzʼB[–×Ò"”}Xyú° œ›j° მTQr tc·…ñ¾·³©îƒ8Z‘Ð`”´Pó¨5rY/GŽíÖ&Ž[7äÌGŽçI Ö7îõȱÕÜéȱyØ_ÉÆ©:âgƇ‹k¹2®æhðLJÞ»wìj°ðå븼¢Ge ¯jaØ}De¶×ÝÓw>ð}>Ge FI 5Z`s÷ÅsÍßçüv­‹Ó¡~ĹÀ¨¡â€áΣY)øN vmî;NeFÆH5‹ü˜­l¿ì…²îyÙ eá² qUc•Kþ)9}Çm’$¶‚?í„Kœ¨i€ˆ‘âÉõŸ’Œ¤,Œ^¨dàDÕHƒQÒBÍ£vEî“ä!%ö‘sä®Èã[°+¡HtE\A ˆ® ‡"ÑÁâZ¸0Í..̓a TP×çYÕ,¾döbfQdví—¾¬¾ç¸[‡93(Dfn 2{ù¦¤ù[P™éL:Â’uËç„‹\n4T®Çëû*³&4œðǺÒxÄŸj5XÛhA¸sÃ@—¬§§Ê¹…•Ñ»û.ðAõ14<ʰPó(„ïaß òV Óöwxb«#HÇÆ@|­@çÊ€ðÁ峔̽r‘×ßP‚ö7Ll/g|¸¸&P l|ýNdûqÌ4‹×®J;½—äÈ;½„5_¿Y3þ¦i¼»“¦ñ焌’j™ëÏÕQ`!y}×gYdzÎ;öi ®74œÉ Â%&Éz Î0°^‚ÙÆAôêwFˆ«k ¿ Í{ž{¹ÁelÕ£Y¹ÿåý%½?æÃÖÏ;Yõ˜kBÉôå¶ ¾o¸«êÓ÷nÀu_#ðzü¾Êõêq5 Ìo}Hž{s‰¼~“F’Õ\Y«hk€·Ûgºm]‘Ÿ1þ ÓsŸú¶+…4¥,Ô<<·wsÝû]îÇ1JbÒýœÜèn{ä~[ÿz ïºÕ­Óíñ[ Âîc_‰ÍŒ±v†–mëþɇã]-4%,|ÉÃsó­Rw¿Å÷úɳÉÍË7OÝ‘#xùæ©Äû Ÿx¥CãÞsy‚pÃÐ]’cìah¡ÛÖð](¤Á(i¡æ÷ÚëƒÛ{aJüôÔÛç£ívÞS—0zÃ×›4ŒÈ~“á”7%VÃÆ‡ ØäÇî¦ßCàïˆW×Ѐ ¯¢ë…ç´¼$ë5q–—ü³{‚×°öKÍø|’Æûú£E ÄîmΖøY¶2°Þ¾ÙÆ?¦F ¿3B\]S@Z{cÊËV;à}FÉ{ã}vy«u ¼ÏV™–æ ¯ d€Ø]ì+(ñ• ´`K2v“ã.w^ƒ5 Ô,ð¦ÞÏßjzNl%ÉÝÑ+;w¡Û^§»=^a¤6ZÒx÷„°@ì>Ú–%üŒN6܉!üÎquMÁÓ*zg³(É»gد’zg¯5ÆÝãùƒ<áuîÓàBãÜGï„áŽfQ{EíæÉ-ØdããÀv¢£¤…š^gÖ„­kš½Š¾eÉ~—½»%5F«š‹wï7Ó~㇆-Ÿ¸x¹@ã«#Õì~óòÓW$Ëãý"CÔ`|´P3@·ÊÆ%ºAPðœè¾ØÓ¹,û”Û«`táÝØÍƒ4îc72 ìö”ø}²pù9òáx÷=<*0f¿¾¦°³²Ó†OËt•£ŸE’gÎs“˜—Í ·¡ÂyíA:ñrz®.ûó&{úÓ@ ¦rIb÷ù# Ø“ÉÆ¦Îð;#ÄÕ5OëÙÛ7­æ§I.ÿc´·}«{Wì]¡ÝÉc Âß÷>W\.|j8@Éôï20ý»ˆ´jVQPCq÷BõÊGP»ç»ÞŠóLÔî’¼ûHªçûøP´+qP»¡áÄmXîSH²^Žvæ¯,¬®ßæéÃqP»¡Á(i¡æ‘©ÝÓ>oùkÒ¤6‡ÃfƒUµolÇ´+p¢v¥âVÓEP»ëf<{‰4,,Ü÷,cø µ Œšj™ÚM¥¿ç`WU&à_s©9C¥æ n”š°JÞsZ@™È‡JMQPƒQ—<2Ç»ÚÉý¡à[’Œý9ˆ,ëÂí¼N–8hÞÐØDnìü8AMz>âò柙å ñC´B C¤…šDfzsugªÚŽUµ ,lªài¥WçúH «“[ˆêæ>r}ô(BƒqÓBÍ#S4©B†Ä«U70(©B‚b‰*ëLTiaVHIPdÕM>T!5%-Ô<2Ù›6I™­¹S±)7µ¡ádnXVn”ðQ¡>Jô£ £¤…šG¦{sqM¤­ÑF:›ê$ÈÚh#Ì6rãÒFBÂåR¹}”6rGŒ›j™î=_?Ôî[’œNˆƒh]wÈ qP±ÄA÷††“¹aXGé…¤}Þa`ìa`¸u2j(l7P³(dotH$Aw‚£rv7HÄF‡„T-5HåÒ‚°:$!ñî„, »!ê( j(n·ð%?ù–„Ti*7JXn [Un c£ÜHØJ„®,«ÜB‚»N ,úˆrcÔPܰPóÈ”ojIHž² ÙªvtljI@ØJ„n¼¿§Ñ’PÂvÀ-¤w×ö‘ZD! Å _òÈ”o®“’ N:ÙuÒéØ\'° 'tÂ0ë¤$ªQ°ÀGQ'5%-Ô< åuR¶à[ÕR€Mm [i€Ð•âhK$A[B ?*‡ꤢ †â†…šGæ}K[BIÜõ#·%ÎÊ–¶dÓ¶©µÙ¬nXV¹Q¢¶X*ôåÆ(Ô– J•|É#“¿ùy‘ªç Ä+Ÿ&0³ñ¸Eó P»ñÀbÌ¥ÇM=,uñaÚ.òÓæ1„£¦šE&O;–Æ„äu–Ú™×ÕÛömñAÍùNí†áFú;˜æºÄþžÏó€UsÀÁÿ†¢”…šGf€sŸ„ö(œ{‡³³¹Oâümh8¿ˆ£O"‰w)h€=ºˆ> ƒ †Âv5‹ÌÿæÌ(a\οFÜÎÐæÌœÃM™Þš+3à”% (n¸ˆÌ5¶¨Y$8WG P—6ýšªÚægSeƒ+ 0¼2˜•‘V%ZPUƒT=ˆ¨­;DUÅ’Bæ€ÏçÞŸ¿%ɳÛf°ËHÛ3ÁÐÎð†b÷ð’ìŽaÁX“;ùp4ph(nX¨yd"8YHü–ƒ…U‘€§Í-ˆ3¹Q¬ÎôF© «D7X&ô…Æ(¤(iáK™ >íÌ„–¹àÓx¤ýiÝyØÓvìML-qÁ¡á\oX vÁŸwLJqZèøpN]ŸÖ5%-Ô<~[6ØfƬBûÅI¾?¯¸½e!ö?þùñÛÇ?ûá»ü¯ìͺ©ç˜?üÛÁV±±ì­µjå²û÷ï¾ÿ»¿þÿ»þæ»þÃrý›¥8mUS«‘ßÏO¤øSŠ¿šò>»­n‰ò>í3®½ÉA6Ÿû3îM”wh8¡ˆÝGPÞçþÞò~„…s¿ŽÂ‡ã ¼CCqÃBÍ£PÞ6GÝOÁ¢¤Çžê ®¹{ãB’ÑßÍßAfój@˜Ol·Í‚·4¼¾=‡Ï•…àÄvKƒ!ÓBM¡°Ý¶í×ÑÛ}ÚÆ_]™Ï>ý 2ÑÀÁv‡¸læQ´’Ø$ݘÈ|ö¶Ûõðá8Øn)0F¨Y¶»ùÊÕÄv7[$dw³hd¡›/‹'I½#ƒëÝp¢¸›-XiÌ ·½XWÆ'Š[ ¾_(n“ù"I?Lür³ À®` Å- §°eðæþw¬A£ÍþÑå+ì=Ž'Š[ ‘j…ân¾NTÐ6pâ·OÛ–Ä6&%÷ üvh€½–b_$*Ø®}æ†.·5¹-9pœÈmi0DZH>ª½7*%ýØKfIuW8OÔ9½Æi¤Þb²2¯#„áDBµ×7âàÕö^°ªEãÀ‰„’†‚……|¡³›™Ùì¶š![]J¹yXLsS¯›\´4ÀUËñv‘ÈìfgcÞAf·Þý¡¡ lj̖ƒ¤…’Eá²Û±ûYß’¤íž˜Xd3:cê2qpÙ¡¦ZˆÝGâ²Ûѽ3 v.q©Ëĉ˖†âîy*søH\vª…°‚EîiÚ²j!8èž&,ë:À¨…!AÂÕªc0žj!|KCÁÂB >SØûÌò™ç+ïÚ¯˜¯¼ŸÔ+èeâ °¥‚Zˆá#(ì}Htùʧí½0b¾2qp$¡¡¸Ý—<þ4› ð½ëÆ>Æy}K’æ«dÁŸ¶Ùž¯åœ2qðÖ¡á¬tX vÁ[/Ió‰Ç°pØ ²˜M¼uh(î–§.‡Ä[·Æuò’t_åNÆØšž4˜8xëÐ+M Âëä%9n|m…£á+|<ÁKQ@CQ—< om;/a%%cø( Œq¾á9eàÄ[K¬´,»Ä[ÛÔ¢3¦*Ÿ¶cÜþbAŽo- FI 5Ì[Ÿ{šD[Ÿ¶QÝ3D[Ÿ6Ýè‰ƒ¶ '¥Ã°»Öú´åç¶µ Øòó˜© œµ~Wȸ¼¤PëÃïQb¬¿‹z>lK681ÖÒ- Ä—¦èRâåü¾‡lj±–£¤…šGa¬m³™ëÓ68»ºkë{aæâf“Sc,ÐÑ2 Œía%XS»ãbSÔö¼{÷˜øj)0D(9ººùnû‰®¶zµ?Ÿ(¶0Ç*8ÑÕÒ- ÄÚãŸ{ï¼-èj«[™Ntµ4¥,Ô< ]m+õ}_,IVï¿¿AW6Zx‚KNtµ4@F˱ûHtµí ²?Ђ“gòá8ñÕÒ`”´Pó(„õa«î¯LXÛ– ûÕ®øÀQ¹d“¦K¾Y £eA¸¡"‰­ìÁXÛ– »AŽc- FI 5LY[Xh÷!¸›Ï}w¶Ø¶ ò©ñN''Êš$¤i@Ø=$ÊÚnñŒµEu%V8k) B¿¼&PëcÕì3OZÞ}±;&-ïŽõ“–‰a- ÐѲ@ì>amÛ¸à«oÂ…ãÄWKƒAÂ@Í"ÓÕó}öÈߒĈàtõqøñÓ¤’]M Ѳ ì>‚®^’û9na¾·¯I‚â «CCq»…/yºÚvæº{¦«›‰{]}¬!þ®Œ ’]- Ѳ@ì>]}¬fú ¶úXM["«&®š¿+f¿º¦ð›2Õó:ögŒ_dª^ñWиÓ>(Ü™ÆöIá wáÛIY§X‰ƒÆ 'iÃ0|;[ 4îÂm¿¶é8hÜÐ`Ü´PóÈ4î|úÞá[’'›RÌgúÎ{àY‰ƒÉ gjÃqç¶Q!qžMšo +ÛF) j(nX¨yd.wÉNlÎ+‰êp“Ë]ðÙýð¬ÄÁ円3µa€Ø]—;­0žþÖÍ{òáX\n(0F¨Yd.wÞ÷Ä J’<ÍÂ;¡ºð½×B‚r%JW meAøžÚô’ëÞ]`YXÍ÷¦éÃqк¡Á(aáK™Ö]q¬w_bu—àÝ›A©êpx®ÄÁê†ÆfmÃaÇvÀ8^W_¾õœì;R74!-”2§»Dü\"Éò¾™`çT¾2ëJ´nh8oˆ~3‘ÄNzº>‚­jº’ÇÁ솣¤…šGfj–ìáܰ%óñ x@§[ÃßAÇDñoûÁ×쪺;øž÷Ÿ€ƒ¯ … %…Ìð® ŽÏžÞ%¸Óæë9Ýd| zW¿;y««ÏžÈÝ}^ùûˆÜÝçä.q»¡ød¡$ÉÝy¯ö÷Îäî´*û¹»Ëÿ r—8ÈÝÐpê6,» w÷á×g»Ó¾«%ŽƒÜ Å 5LîîÓØ1è§äÁägXõ¼€ƒ%Ž74œÅ Äî#x^=/²À± }Äh‡QPCqÃBÍ#ó¼¹|EA FI 5Lö.Ùƒ£%¹öØ…4ëºaës7Kdoh8•+ Âî#ÈÞ%iø. óôoÞôá8È^iDÜ ßFJ™ì]²é­¾«}ö•á››Û]˜4˜8¸ÞÐp&7,oAõ®8/_N¾c¸pToh0HZ(Yd¦wZ—Ìú¼Þ·užuZ·®KToh8“„zJÖtwq½«ØôŽÝp°½¡Á(i¡æ‘ùÞܬÓ|õ˜šLLoh8„;ö2“äÞPÂíêy'Žƒê FI 5Âõª¼$Àý&ÉÊò %F¢Ve "WENÌ“€wœP r¡SÔ`°P³ÈDïÜÎ2Ñ»$¯¿#œeW?’v–8ˆÞÐp7,wœL$‰uðEôÎQxpD¯~g„¸º¦ðÛ½v:kÿÊßþÄ?¯økˆÞi-~Þ¢bÜb‹Š…;}N& Zÿ ì­.$vÓ‰ß]Åï“$yùå;:ɺãÄïJƒÁÑB ¿ð»¶÷±wBònڀ̪ŽðÆD]âÄïJì­,7t(±ím F v¼×•ø]àÄïJQÊBÍ£ð»sÕ×–7žs½ ‡æêîÖc®.qâw¥öVˆÝEâw×ÝÀÜ\XXÅû&Žƒß•‚¢nyîn¸Hü®m`í>IÚüLûÏi ^ î8ñ»Ô {K Âî#ñ»Ãv!¿ƒß¶ yâ¿+ DI _ò(üîÙÔHIl,úÁ{ß܇,p"x¥á ® 6î*As"ƒ—Û139pœ^i(hX¨IŠ×ÎÁçJxa«³;o@ú8Q¼Ò+ ÄÏE Éá=X°çÙÁĉ╆ↅšG!iƼ±%»$ëõ‹Ò§m&’¿“ƒÁÕ‚n>‘4cØ"×é‹§é`ðë„" †B†…šBáxm 6îmsâÌÛ78ÉjûroаÀ‰ç•ˆ\Y†DõÚîe¾¹[°âîØø‚8Q½Ò`Ü´Pó(\¯=›eâ]Ðiâ…ËÄĉ땘\Y†ÄõާìA¼pÙƒ˜8q½Ò`ÜOÙƒ8|$®×vúìgæzmðÝ;Ë:V 1b¾-qâz¥&WˆÝGâzm¯Ïc×;|®OøˆùEŒ‚Šj…ëµ±£-%ï^)ÃÁø8ºoW 8Q½Ô ‘ ‚î!1½¶ÈhĦÓí)Ÿpœ8i(j·ð%‹?åF„éÙ^noHI÷ƒ³I²ž£cb•Ó°À‰ê•ˆ\Y v‰ê=W7{Ï⣅à º8H(0ü® qyM¢ð¼ÓFàwæyçêß yç5>{0°ÉËßÁàâê€î’¬G~Ï—âõ6Ä?“lj⥆„…/)Šw®wü•·^’ÛÙ*ЫÖy¿ œ8^i€Â•áí#‘¼v/fìC±oÆ~€èÃq"y¥Á(i¡æQX^Û&¸ß™åµ­Àç,¯÷3Þ``Ë+ p¸²@ì>Ëk¯¼cË»ÆX…IN,¯47,Ô< ËkëèæÌ,oŸ~ª6ŸNÛKÖ?Æ9 œX^i€Ã•b÷‘X^[JÇ­é'˜i âÄòJCqwmŸò(,ïúO{+Cr6ì­ì «jƒS°©º E–8\ v‰å¶L,Þ+ÓV‰…ƒÅËŸ.® ‚×¶˜öó¡$YÅ>g¼Vìcù œ^i€¾•âçÛ ‰&n»…~Omàq¼Â‰à•£¤…šG!x»–Õ3Ák[¹Þ±Ūj‡Ó.``Ç+ p¸²@ì>ËkûµŽ ymÙgö°a¢xù»bö«k …àµý²û“^Û2;¶Ÿ˜v¶XL´Lô.yË« Ý|bwít„#6 ^•ìôù”tà8±»ÒPȰPSÈô®ã[ÚJ€Ý÷[Þ*‰|Nü.5HßÒ@àÎn-%Ý7b–…õŽ{ßäÃq¼R@ˆ¸¾¦P^k¨[Þ|bÚÙ™áÖH /pbx¥þV„y^½$Íw—…ãΛ'†WŒ’j…ᵓG|0-ɪ¶>³ÖÙU;¥¥™¶À‰â¥\Zv‰ãµºeeáØ/ïðá8q¼Ò`”°ð%BòÎõ*ÁzHN›ªóÉkµ;'’W pe>Ék<ì&¼aaÞX’À‰ç•㦅šÇoÊô£ Wßý'§ô²ŽQi³šÃJŠ’?ü´–$í²rÜZ×ê&‡ù÷so[U(ÉZÞÍZ”$-Ë®Ÿ´$ÉZvâh/Z”$­/ç{Z¿°÷†-|ާì½a_lWiûhÑmï?ÿ¾¿û}kÖ•îß·±ÿ¶3Ù¾o×ïþâ‡{rüráýöÝÖ¯UöÝV;fö½Ù¨(6ˆ&N¼4@²Ë±ûH4¼-WsâÖƒ”ixàDÃKƒQÒBÍ£Ðð¶ÿ(4|³Ã'c»ŒÙìøEœhxi€d—á†G^’ÕøìIç´°2Ø“ÎéÃq¢á¥Á(i¡æQhx‹ë-4|;;ÕÚ x;œ¹å9p¢á¥’]ˆÝE¢ám‹ƒ;Xx‹kOñ¥ ÇÁÂK!âúšC!áç&ŸKÉëK7H[Mh‰ N$<5H±Ó‚ð×¥$÷ˆË±F ošd œHxi0JXø’G!ám©\ÏgNÛÚ~ÆÞû†Í4Ë8‘ðÒp’]T–g8ðòÃÏ“ƒƒÇ(j(hX¨IÞÖúTI¦/Í&ýÝlÈ׃ N$¼4@±Ë±ûH$¼-­íÁÁ·¾;Úò°abàù;#ÄÕ5…BÙzL¹£Ä: ij¥­¹ôCÜÛNì5ÈŽÑ‚°ûHü™­_»ÒLI[¿v·äãæREA FI 5BÂÛÚ®'辰µZpðÇ{9n ±ïþˆu^Gè†ó~Øt¡8ýOg*˸]–oj04Z¨ÁæÝ–ñ^=3ï¶÷9ƒy?ÖKv[+œ˜wi€W—b÷‘˜w;z=vƒžÇô“éaÃD»ówÅìW× én©£ÛJÉ}ù"TÐÝvDzK¤;p"Ý¥J]ˆÝG"ÝíŒô'‘îÇJȺƒljt—†â†…šG!ÝíY˜#“î{YyœÐ´£3QâÀ‰u§IuZÜÙ‚Rbæ´»µÜ#ö›&N$4%,|ÉãO¾í m}\÷—iÖ‡ï%Þûx|¹‰qàĽK̺,»Ä½×Q¦Yk {&~8±ïÒPÜG™f-‰~?l“¥|üß´5”¾é‰³ßû`ó481ðÒÃN î,FÉ1Pk·…ñ._û[’û ^оäQ8xknF™g½÷>8ƒƒ?Œ[Nó¬/ 0ì² Ü3»%»ýÀ€‘ÍÉÆ‰€çïŒW×2ý>Þg|ö<ÉzÝœGØniáË×å95Nô{h8¹ˆÝGÐïÃö(I>.]Ì(¨Á(i¡æQˆx{ÑcÚ?%«ÆïW?xp{ïW?˜ràÄÅK\»,ßÚË\’†W!,\g>o8±ñÒPܰPóÈlüqt{t¿%Á»?0‚?ÎfSœØxjk§Àû<ºdØéÞÙÖ£òbÁÒöA,6>vˆº¾¦PØøÃ¾æä5¦íÆñÄÎK)ѹti€k—áK%™{•© Œ½ÊT6LT<g„¸º¦Pˆx»¢çã§m2Ó\k»j¤¹ÖÀ‰ˆ§ivZúˆGIý‘¡ëǤÉÖÀ‰ˆ—£„…/yd"~"›¢ ë¬û»†îY‰’¤Õl©_ÏZ’$­/‘æØCë¿‚:ß{B™[Éð8wnÔ¹­ù¾ßï;ÿìßÏ/Äù?¼ãv§o>l[C;pÂæsîiU’̽"v%×PöнiðIøãR·ÁÉ¿û¤Z] ó¦OÉŠ7»×§Ù°G€í D †L 5…wQÚ›Åñµ¦öÝE)ÉÞÐnØ®¥ûŒìw·ŠºÛÀxùm«Á±ƒ¥a|ÏL„» ɪ\6ì‘…õ8·+ùplW0 j0JZ¨yxn«™ÞçPŸ§O Ée_VÖU66Ùø±ÞÅh~çˆÍïóøIØÔð{ˆÝ‡]AÉÜý¸°°rºzòáØ®`Ô`”´PóðÜÖ0ïÅ©ì÷®Ž’X»f{ÀÚµcµÃfaiµN¸og³ ~·æzòZ7½µ!i÷~ŸëêæúdÞ±]AÿÔ`p´PÃWJûÆX甹àÝÝ 3Úö³iþ–ø>ý k«‡wÅÏÃ(·¸˜°ovXØö{¹?tm{+ ÛŽ‘ÑvN G%úÑǾdúÚ°ôý1aÏxìÛp[­öqÁÞxRŒ.±°¤ñìñjX vû HVën5VVCc5V>ÛŒ‚Œ’j^X¶¥f÷:Û¼þIòz+°nü®«Ö{¤ýüH‡» ˜^‰ðûuxãåÂ%@‰ 1­€iÀ† gòàx—1B C¤…š„ÚÝP3_Ÿ›’]cÆá‡Sï‹Ö}‡ŸŽMl÷óÝۅƬÚqß4@èö”ì³d€׹páØ®`ÔPÔ°P³ðÌlP·+¦ª‡dì‰æãðÊ;бñÞÀšxWÛÂ:ŒDL×vÌ!— ]~r®n‡Ÿò@ó ³Ô#j0@¨)Ôšxî÷e®‰ö¹2×Äkü¢¢\ FU¢«-c´™ªç´ïaaì¥*ác`éJDA U>X¨yx‘½*8· ”ðù¯¿]Ø>Ìë3š‹}K÷÷ÊPX)½ézÀh> à³ÏËÙ6À~4 € j _ЬÖ³–¦×{{-±·-±­Áò •XÿüR`ûl´T`¶¡m*/ßß6—ÿ®ÒÂå%<_{÷ù^R’6¬s2öˆo•Û†óönNÔý„ìW=5îæ]Z vxÄLÒß=GNºQxgøÞ%ìQHQÊBÍÃs3úåñ÷wÛÝDIú>‡gá=7|·c?ëû³11"IÁ¾D§ëÝš¸é¦¤tõ±è óñ‰¨Ái ¦€7t÷>tk~¸E’ì#š~lÀ¹Ãì»@|8¼ß·6í>ž½KGnÎy„äV24ÐÒìáxW AŒ‘jh9N›ízÙŒÞ=s6In³¶nSÛg¶[Õº6~ö—À¸£Ç4ŒY»’áÃ?HbUk|È€MéáÁ¡©#þŽyuMÁÓ:00§ÑÉt®é8›Ùág»YöêÂæÕ^WÒ°wäHˆÝǾ’¾Ù*è›­’‡ M!àwFˆ«k h:öäàËÖñø;L’w)»žÿ/wÿÎóKެ{b~Šev»”æÍ0ŽLa{‚ ¡ è`¯3ƒFŸñ\"¸v÷î>RY…2V=ñFƒÿd2™¿d’;ÎyÞï?Ω{gpλy<'~mEFy…É’_:;B|m” Ë æÍ$²°‡óf„µ¬žwŽûÂjhey0+/ŽÚ³œ|¢=ãõ]Œ`©Ù®b N{ÌL¯§E¾¹w^YbŒñ£Lo%¤üý/•ÿ® yôZ…¤Zßl¤{ö¢zÄfùòË‘oþ›—ÏváV ÜB…î¹®n9Äv §4}¨O”%øRt.Œsèã!„EPþþç@K刿Ö5{õãîqúÙ-B¼Y­í·’ÙüŸ¼5Ú!fè}8º‰]·ôEóîxþ0ñ„Œf2Nôfüû|®Ì›¨—¾ôÊÉ–F0ðBÉ% ½rr òPŠŠ°V»°“t,—¿å<¬²äBßìu£Ä ¿˜cþÍž,î©ÔQl¼ÁúšÇ»g;S˃kXÚ²åk ˆçÎXLREPÇLÂÊQÖZü¡@üzb­ì_€x_}ä?ûÆý'‹˜z é²`hSTnmÎê-¤MbíARëÒÚÞ¹YYEÀßU†¾ ¯,äá¼…í¶-¤Å@k éfÉ  EQµA´8km!-[ µÁšÛ;—@Wl]eh éÊBÊRÖzt–[[H›ŠrhSTîmÎê=¤MbíARëеÁsY°´"h‹h•Q›H+‹òPÞŠ°Ö£³Ü~ÞlᯜZgÀµŸ7 Ùò²mg^ÚçMýêŠà³Â2ê¼) y(KEXëÑ¡î×ìØÕ½¾3ߥ ¬NýÆXFèUÚ\·£Õñ”‡_GГ¯Þ>z?€r~ç üJ@JPÖ*t´Û𣠩“ ª›°k5GY{Ü:tk޶°11‚ËhÍ‘Y”‡òV„µÎôæh‹Ó·6GÀ“¥ks}©Ön޲¸ksT­ùÖæ¨,Ý ÏÿÔÉE[ÝÊ‚ÌHV9Ùk«ély€ÞVkÕÍfæÌÜe¸nÎBÊRÖzt¾ÛÛ$q©[ñª[lk“ ´Õh“ßúø”½AÒàÖGWcCøÞ‘@y(eX«°6GmÖ^lµ^ [±WSÑfíÕ˜ä¡Æ¦ÒÚ6²Y¢†[±WÚ¬½’‡ÓF€µ Ý­±ˆ-I®j¤AúZCáY;€ÞúxJDlÀ(‡s”¡ø†898eX«ðçï?ÈFÛ)“Å?9èjð×vÎHhíA‚ëÒuÖlᯮ:+*£Î›²ð‰UÞŒ°Ö£3ÞÞ™VÿÄêî¶õ ´Õ$íþ#äÒÀ Ë?n7+ìÚÛûL õ0LYÖ*tÆÛ»|[Øaƒ¯V‡Û»üD´íž·X»Ç—Eý5¸;g Õá+y(GXk±0ÞÞТ¦DÀZýlï@€híA‚ëÒÕmQÂnj,££²p'¢¼Õ‰,õè ·Ÿ5[ø£ƒ²ÖI†íg œ¶<€q+‚µO›,úÕAgEeÔySòP–а֣ÓÞåF nZ8k]h ±ýF VÛ‡—øÕu©¥^®5Z|³ÎËÐ𮫯ho»[3oß­—ztÚ{ÅŽKï×hï´||§ûàùp¿ÀÑÀb¥‹ö–XnE°Þ…i‰=—îÛ¸÷zc˯ʠ.à[ÌÒÖztä[#‘²`!ÜêqxlˆØ–€®"Öˆ”eÿ­ˆ¯‡*AãJ––tÿk:ðíõ’Åõ:ñ ázm¿=K½m[½NÞ[U/êV/YP/p½PB«SP½œ4êµÖ¡CßÞmaKp­–$ÛÛb2ÛrÒ­ÖnŠ´¸!!€ÛKh-‘9؃9:ÀZ‹}¯÷É—Œ?›å½Èš“¸Î({LÖ’•.è[@ºAeônï¦1yZÐÅ}ËÃy3ÂZN~ë¬5Kþè®:)³uÖ„nËh·"Xó7µ…¿º#𬸠Ÿ7gafék=:ü½b½Ãß+>œ- ^¯X‚þÜf¥‹þ–ànEF…¯çøsáÈ7åUÆÁwé•…<”¥"¬õøcñoL€ÁdŸÿÆýÆÇgc¿ÔýÚƒdרYFc¿ñ9ÇÖØo~¾ÑØ/uc¿öpÞŒ°Öca¿×|ÊûúŒÞåÂ,n¢×ëÛ9‹p–ºØ¯Àv}<% (ö{=/ž’oc¿ÔýÚÃ)3ÀZ……ý^Ç«PþìÌð t½ÎÆd¯s4èË¿‘çê8Ë Ü€ï3pð½4GÁ¡ðµ‡RS„5ùØŒy.Ÿ>ïŠu®¶šAy]X&Å0…º{Ç85ËhÀ&îWÍ ¼b¬»fäI7`cå­k=à{Å´âÎ{ç)Ï×"­³#Í· b±Ô÷Úƒ4פ³ˆ†{/L+®³qo+ºá^{8kFXj±ÐÞÈ‚3òd¹OÎÈl½îîˆc©M{Ë4×ÇS¢€¢½ñýZN¨ãÑãä|;†§gä1y(AX«°¶Åw[góNËÛgóΟbôÙ¼Ò­-ÚÃ-íí³yUFo‹ózzz[Ä3r•ÝÛ¢<”¥"¬õè¼wæõbwR[tÕ·^±þ+KU´×N˜[C2ºaï4ìœ Š£u¹0:eÁÞrp¾ °æÿçï;IgóåRie™Åz§¬É¼)Šòòo¸>NòäÚee9nNµäÑdžn\Á¡‹ð–‡RS„5ù…ðÆ=:á½bê»ï;.\Ex¥MxË×ÇSnü~\†h2GÞø•ÏFx©áµt€µ ákqðŽ9"Ã]t5®Æk¥.Âkò[FðŽhм#¶l€—º^{8i¿Ö¡óÝÙ?æBV?›í_duê›®'{•.¾[ ·AeßÍQëóý¨¸‚ª èâ»å¡,a­ÇÂwÇ{ëÚ’…½¶Èªz±WêÆwíAzëÒï­ËLöŠ ^[eP7¾ke©k=¾;^µ!Ë—» ˜¬Ž˜›û{¥.¾[¤·Ž ýúà Yž\= " k©2 ßµ‡²T„µ ßÍ%Ù÷ÎwǷგÕñÝ|GöJÝø®=HoAe4¾™%«RMŒTÐïÚCY*ÂZ…ïÆêÚXÖÝ–XÝ»ðn.­ï½’ ïÚðÇ—þx@–ó17Íól/€LÙð.-•!üZ‡…ï†Ïø:߸I®Æþùô•²ñ];Þ2@iÑøîˆe€ï¼c>ZžwÙ/--ë ðk-Â;â ÄÕ ïµ9“®^gH“¿Ráµù­P³ˆFxc8™¨F¼%9«êFxí¡¬`­ÅBxÏ[ße—_U‹­ÆÐ9\'}¥n„×ä·Ž`­ï²m¹ðUµ# |uí2†¾ËvòP–аÖc!¼¹ÕBxãÛøNxG,áØ/u#¼ö ¿uj–Ñï9GðÆ8± –Ê n„×ÎûX¯Ëh„7¶ÆÀG¶\XœTluà¾júJݯ=ÈoAzhc[Î\†¡"XœÔeÚØÄYÈCY*ÂZ?”ðŽXk_ ïóþÂÛÿÎß²vDœÎÀ,ËÚ±ÏÝü!öyW˜C“\;âÿÛ¿å–{Çõ×ÿã¿Ûös]5â©ò½ñÇ?ÚÝñjx÷€»²,ñö!î©ÄÉS?yÏ%p–.¨]@ÖšeÔžÝXöÈŽð¾ywvÔµËCy+ÂZµgç™O?›e¶Õµç0eïP[º vyYWéC9eÙ;ÔïžÏUÆ®'g!ç½w¨]eÔž6½Œ°…¯È”§Æ«RgéâÚån]¤ý2¾Jp¾jp~á,ä¡,a­G'Ûãyv+ËŒßÈöÔO'ÛÒE¶Ëܺ"H?ÜZª,³Çkd;·…ßÏVt‘íòP–а֣“í™ÇñÛÕÀö4|˜ý®<Ÿ.LRy–6Ø.‡×u¼ä¡¥- ŸüâÃß¹ _E‡.®]ÊO– t¬=M§è”,1./®=õW é³tÑíò¿®Ò(£÷LìÆŠãö»•]„»<”¥"¬õè”jÄ ÿ£Aªöóç-|>þïíkpÊBTþ;žžëpéŒ_€*jÎ!çñþýYuªvŠO_,û¢_#`Pá™ÔöÛÑØöx±Ä©ò¼JÏü¼Ø™²À¶ÿlí£-7~ÖJÃÛÖ΋s+¬-]X»<˜Ÿ#,èX{<ñú±/R1bò¯©Èóÿw–6Ö.‡ÄÖu<% 0ÖÎMß//R1âuú½·ðÐ…µËÃ)oV·*¬ 0‘ü–ø^“úRq nmÐncWǤ*£·B^*ŽpŽI¥{+”‡óÞ:&­2 kXjþí‹TäyÞj‘Š©Ÿxœ y–,°]I®ëxJ`²YܵHÅÔ;'¦!>d‘írP‚ °VáÏÜgà=+x³%?ZXžMà .ô,]h»<À*‚õÆfeK¬€xþ¨ñ,·2  o—‡²T„µoOÛ‹%¸Ë"ú º<°ƒ+aojãírH|]ÇS¢ãíi؉¿q´À§ÂCÞ.§Ìk:Þž¶ñ[§Û9bÉïÄ–sÄÒfK›n—ØuÎ nÏ4o|gÎãçðy{ZÐE·ËC)*ÀR‡N·Gl¬ñF·§åÃl1på›s4º-]t»<À®+‚õÎõÜl™Wús˜nÏž[“¸ ê¢Ûå¡,a­G§Û½K”E]¸rõx ϽO›.°ëŠ ]½¢,êÕA½žÊ¨~QYÈCY*ÂZN·gãÙ°fn³°y+Ï('Vžy–.º]`×­Koþ°€–XoçùQÜÀXtÑíòP–а֣Óí;V\W£ÛÕ×+çÀú~Mž¥‹n—ØuEFE·g¦¹ÜjEP_§2 ‹n·ÞY*ÂZN·ó˜ëmt;ûÐ×t;òZTŶýgk\Ñ mÏüÆ.U:þÄîUŠYh[–J~­@GÛã‰ÛÙÏqpŽÏó©óó·ßJÙ.pk(%رÌW3—G,vŒ58PdmY*Eø¥k;voX{Ä~ßi¬=bµËкH¿œgÓ0ÀÇÇe{+º¨vy(EXêСöˆuùbÌ–/L€“G¬}Ô´eé‚Úåd]¬!jYžÁÉ!–ô|ZеËCY*ÂZµ}ÊÊ€_\4YgD¼¹N™ˆty€XWiþ¢eÀO^pJª´JBJR–Zt¢=r±è£íiÉŸA,yÄTÔ»h³tíò¯®Ö÷z²%6k1й"u•Y8ÛW†sއ ²Û2»û»øL, Z«P6>£¿¿èhI„o|æ Ðñg¾¨ÎzÁ äá”a­ÂucE6~JK¬ƒ¨¯¨ßÔ7× w¥n`×$·Ž@Í2ÛÅÌòAbݸ§VÁnl×Ê[Öz,p7®Ìeâ<Ñmâ©—ˆ¥ îÚðÖÇC²€‚»ñ ¿V žrYXºÁ]{(eX«°¶ÄØ!óZZb,ó¶¦xböV5•]ˉjlŠ 2zsÜ1{˶ ï±TtoŽòpÞŒ°Öc»±¢#µ•%ÞñÛƒf´°WÊÆvív«Ã©¾Ðn¬(yÖ¤å+Nb±Ú OÙЮœ0¬øSwd¢×þi‘CYN/#U½Îƒ«;ƒ»R7¶k’[GÞ?ñ1[Nf„ œ@ElâÊwÒ<|­ÄvcÌöt°›íŠëŽûÄdZpWÈ¢ºú3 ­Ž•ÚÄ2iÖå±çÍ¥Fº1]{(7X³_˜nLO¼ûÂÃÓòp¨æÅÆ\© êÚÌÖ¬³ˆFuãgž³œ¿C^9*ºQ]{(GXk±`ÝX$øx:ÖÀ5õòÎÎqã;+uúö ´ui”ѰnÜá¶QX7&üttLݰ®=œ7#¬õX°î}ÎèX÷7§¨Æ:²WM(–nXׄ¶Ž 2Ö=N¬OæsdÙ¥nX×ΛÖz,X7ftreeY® ³¨VkrííP¶Z ­#H£Œ†ucRç^T7f·­„”éêïÊG¯UXˆn,1}ôùÊyâGÍWÎÖ|eéFtíA^ëÒïÓøöÅáÓWó•§|¡‰2¨ѵ‡²T„µ Ñ=Îk|—%:Ñš°<ÛFžŸÌ•²A];Ú2@iѰn,ÖzÕ=b÷* Ucº0´ŒsKî_*°ÝX-ûx;Ò³k-ŠyçÛQbâV¨ÆsõgÒZ\ÑÎ ¶Z~x¶0|bªø çÒÒÞ1{­ÀÂscs˜}ï@7¶8kùáqrÏPñVêºv ¯uëCCYY®ÃÌst÷}­èFtí¡`­Å‚t£«ÞûJ#6œèH÷ŒízÒ¥nH×¶Ž`½i] Yv®ÿ­ÛÓ—8–nH×ÊRÖz,H7vɧç²Äœô§˜n쇲×béÆtíAdëÒ(£AÝh_93W¶ÜV·Ê€nP×ÊRÖz,Tw|'·—%¾¦ÁºÃDª³Uìoc®ÐêÚƒÌÖ¨YF£º^“p3B|Mó5®KÝÀ®=”·"¬õøCÑîùâaðŸNÚíŽÿã“v÷ýüíîZÚÝãJ®¥ˆ¥àµ ®#Hïç/Œwß0Þp„èçã¥nŒ×ÊRÖz,Œ7hݶ0Þ=¶šýŠñî±ùi­!ݯ=HpÁÚ‹ÈrœX|Wö›·© èÆxí¡,a­ÇÂx#¯oa¼ûuàáŒtu¿^,7IþJݯ=HpAe4Æ<ô)ĉå„Qݯ=”$¬µXïö>šŽ,ˇÝMÄV£-ì¾R7Âkò[G~Õ5Ûò|˜LÌ16üÚ”]êFxí¡,a­ÇBx÷ý%{²åà„mÖ(´9»ÔExí‚ëã)wîz\†3üpôÆ=¦~ó.TJ@N™Ö*,„7x€¾}¥%6Ù¼Šðîñ€q}¥n„×ä·Ž 2áÝã•VÞýÀ˜P%¤lxWW†®àڹʖ‡RS„5ù뺻ŽuãÄ€ªnÏÁÏÙÁ]© ëÚØÖÇS¢€Âº±7º×Á{ð”éêïN¯Ù¯ÍoÖš·/ŸØ›·/žø+t¸i¼Þ®PGn\Œ 2zó›O‹o#ºÛuñöÅ2 {ó“‡óf„µ Ѷ0ÎNt·ß4©F?ts¥lH×`¶>^òÐt%bL¶ÓîúôªÆ’éÚA *ÀZ…?A&Xa´»ÅÆämÒnôÄo›PKÝÀ®=ˆmAe4°ýsŸ´ðâj𘺡]{8ïm™´ë2ÛÝæÍíí;ËMËË—4ૹçx›UK]x׸>^rÓz4l'šk}~ߎŠðÒxËC *ÀZ…ðF's.³vãbÈ‹†p5~Ö«ÍÚ¥.Àkâ[°><Í—–Ù¥íæ»q5õø)ÝÕß•^+ÐÙîùEà>ewþ4¶:UúÆîwà®ÒÅvËä¶"H£Œb»g| ºÕ”Ý©7îVÄ2 ‹í–‡²T„µ ÛÝFŽÀvËÇ ‹ ªÑÙµà°tc»ö ¹uëCû¸ÊròÅ·"ÄŽµg+º±]{(KEXëÑÙî¬ïÐTkY¾” `uê—Û+n<¯¯sâBGö¹­Ò(£ØîüÕ.%Íóz{VtáÝòP–аÖc¼y¿;à–{xs\Ðà+u¼ö ¾uéáemd9_/£’ÎcÈÔ ðÚCY*ÂZðÆ¥ËM°d‰·›gÞíÍGñWÊxí@|Ë¥=…ØrókE¸1¯EEÜÞK9ÜÜK9ÞÜk­ÅByã¿õ%)F>ZÔ’yï=¼$…d½v Èe€Ò×̶eÇ-Pî«íd'ÙP/--ë»`­µXPo\‡ÇÝQo,Õ=¾B½Û®mÿb© õÚ ×¬³ˆB½g¬Ä½èòýÈ÷ƒ‚ÉÒ…zË9V€µ êÍ»|ßinÄHà­æêá¶=^ÔÚƒ ׬7~'kËÀGŠ pâ#E•²q^ý]òèµ å#޾Ó܈áÊh3w㨳ÍÜ¥n”×d¸Ž }òíMYŽ"ĦMÝ¥n”×ÊRÖztÊ{¾÷SÖ,_üàâ«ç;/Î|c+]”·<Àp+‚õß´,ó68~T€Yå^BÊB¼þ»2äÑkþÀ{Æ›¼ØŒ) ÕûC3qÿßý§~ÿU×›mì>î~–eàƒÀXJõ•-õš}Mìè9[r,Jñﱘëwù`IFOZf§´ç8þtÔ¿ÿE ØA 3À/È>àÚçÈ>\´* XRæÂûy –œ‰i#¹Éð§Ei®;ÚclL‹¬µ(-–”q„KθŒ[‹Ò8 y0IX*ÁzmØÊøº8uÆ–ÙSExsLýæ£ö—ák5ÛsW9œ¹rWFy-Ø#·½ºè8@9ÈC9*ÀZ‹¬Y¬/·ßØŸ 4ÚSF|Ù˜›?±—b,svÞ’³È\ï­¿Ï&“»½ç±Þ´ìO>¢øèx…p·ðÐq„Ê—‡’S„5}Véû`$ñÛ‰Éðåø0VíËó?ò¥ï˜ üÞ%3MnuÍ¿Çj#g;Üú¿´!–·x~ÔñóvŠ.:ŽPòP†Š°TµÊ]Iî˜ä‚cl9°LvL¢¿R?Ib=©ç³ÎD·ÜtÎßÅ­§Azתq¶Dï1~T„è=F+:«Æ,ä¡,a­êær`ÝûfÉ»Z¶”ãCÓ=C>¹s*d?ø{¼b̾‰‡—~³%ž‹úIŽç¦«•ͦž)ÈC)*ÂZ Tì½± }<Ç¡b²$ü?cK]Äñx;¾DZÒ™è] éáÆé–(!{Y°×†àõA?“‡³>ø[,µ@ÍÆ‰ ÆÍÕµåÄ\Ûø6àH4¦âÆ÷ ±ë/u^Ügn lûCÿ¤Ò‡¦ëÚ²cº­#옎ë2vMØuòP–Š°Öƒ—Zì;|Çþ»D¾|”p¾ñ"& |?ël+ùNª±Åú1‡tܸzŒÖ~ÖQjÀɽy·Û[i”‘í –Øf>H„"ñ´{UÔy! {0KGXëÁþc`Ô6oäXŸÜ–c ËŸKÏÞàLý`{r«“™inSØ6¦"H£Œl[´lÙT„-72©26nuRYÈCY*ÂZÖ-ûš´ìu“%7²™šc–À€ãÊ®Gúw ÁÆÕ<îüĹ·ÞùÀnËvæâ/ŠpŽ;ª êHlBÑ磆<.ìûîÖ‡º@Y„ð–b&q>z° ê8‚YØCY*ÂZÔmË fó˜=n;?»%ÒŒi–BZÍï;-£Ì9ž¸Îæ0ÇãÔÑ»îr²ÜWœ¿ð±âCÆJ@ÊNÖü³Nç³ó—ylÁ<‰©qÏ?>ÌÈ9c ˜a=Ë=?ìŽiû4:‚4ÊÈ#dÁJÕŽKp}­ è8BYÈÃy3ÂZÔm6öü=æ­{ñ”å͇‚óA¯S¿ã¡ ±eSÎŽæð t `½qž–-G U+@¬Y¤Êj1þYùñàµë »ø~¤,7Þ²ÔOõÆý¡~Ë÷·s9]ü»Î…—¾4ð·eàíˆ ¼q C§ ¥¨k%²bqÛžAö=ŸÛ~6×inÙÚcâY|7ñ«t”¹ç«Ýò˜ãŒûªã-®ÔgË– ý8@Ì„øî*‚:Ž@rP‚<~­À m¯gVêûÆ~ÿÚþC¿ÚÖ–º¶pC\BSí—+ªZ;ꊻÊC\V¬½£nY°®#ðW—á`•„œõ±Ü¾¡. gÛO×l†KfêÍrIUÛvºä®å.[¬µ®-Ü ×¸Y®ËðvºÎBLR–JtrÛ6ÓÕV¸¢¦Ú*W\µ6Ó%xµ¹¬@·½tmáN¸àrYBÛJ—9”‡²V€µܶSVüâ„§>#Ä«íœÀ–mE°Ö9³…?¹#ðŒ¸ Ÿ3g!e©k=:½býØÃm=ßóèqyê7wÝ"c•.Š[x>¯Ò‡Þ=Ø3ƒ’Û2ÂŽWÈ.c×Kfg!e©k=:Èm-R$G JU NµZ¤h‘=ˆiº5I[Ø¢Á-Že´6É,ÊCy+ÂZÎaz›´E-*)Hkq¶A­6©³ ~œ¥úk÷#²¨E)‚ZœÊ¨6©,Üj™¥"¬õè,·×ÍÖ µêÒÚûH°ØªXmÕÍÚu“E]œ"(s•QuS®=³ô»Ô£ÓÜÞ&ÉEÝ¢ÈQÝâHZ[›$‹µY­#@÷6)‹[TF¨‡2z›D塼a­G£¹µ{µ Ü{Úí˜{S“´¶Ý«ÉbËC׎"H{÷ê²äîÕÀÝ«]ÄY›LBJÇ/UX°EDlá@BÔ@ a…Š;ØP¤=)  Àq†Kð@Ä9ÈÃY3ÀZ‹?BÚΚ,úÑ |RH[ÛY#µÁ„#H×i³…¿º"謨Œ:oÊBΛÖzt¢»ô!ƒSöd©Õ‡€¶ö><ÖäµugLÝûY܇d„Ö‡d½A­aÞîC–zt¢ÛÛ¤-l“ãn ´µ7HðØò![†jgº–¥ “2‚š›Ê¨9îögå§Ã×,D·÷!´¨-½Ëã‹ykïCdýÀC^ëç!i·Æ²¨aµµoy¼iP·zå­^d©Gï—^Dþäè›Z/‚™z/’;7Õí;Õí^ÚçLw"à>„%Ô)SîC˜£û¥f»ËEÖï±Àªu»ö d¶.0ÛºÀR/-¾ÀØ.}}|Ȩ ,’h×W¿Å_ŸbÐÓ\±Ìû5¶;-ߨ¾x¢Ø±Ž=É«tõoår[¬wáEZb#L+A„7Öòûª ê»åÁ,a­G¼}è!‹F@«5²|ícàÙò¾­Ò5ö°cÐÈBEÔØCIÈÃi#ÀZ‹Žw{ÍdQ^¬•wØ^1 Úr­ÒU1[˜(m–PõR rpÒ8~­C'†­5–m‰¸Îm@¯µF"¿ò¬Öj²¨-)‚ښʨ֨,ìÁ,a­GG¼×ûäKÄŸÍò^ÃèŸÞØÐ÷•,Ä[¸@Eâl[å¸M»È¢¼åà¬`­ÅŸþ¬”^±ÏÁÞPﻋÄ;npÖ+–ÙŽWà±ÒÅzË(·H£„‚½×s|„»Œpà¸Ë8ô’\IÐA)òøµ ,ìé-ÛþϧèþcÇ÷^·÷ß²…»g´N‰Íµˆb¥ ÷Úƒ0׬½ý–-Ü<˸¹–Ëðö[JBÊ‘~©Eǽ÷l×Ûpï=¦·&êNOk„b©îµa®#H£ˆ†{ïÙΚ¨;5æ¹ è†{íÁ$`©Ä‚{¯X>ëi¸wZ¾xm$ÒzÅ‹ØB±f½þ3A®¶< ½iXéC‡ÇªW ÝH¯=”ž¬XHo¬^ïêd‰¶2é¬ÏFz©éµ9®#P³ŒFz¯àIôFkÛé¥n¤×ΛÖz,¤÷¾‘ÞëÅ Kz޾¾3pHa©éµŸÝAe4>pÍñ5žs´1öÈÆë2 鵇óf„µ éfü>ôN §n±^g#°>BÂßHouœenx÷Ú€ÕÑžšÃàÐ ïÚC©)šü‚f1>}ž÷؉Uˆs"± uÿéé!ð¢Ò,£¡™¸a\ítjm•AÝÐŒ=”·"¬õXðîS†;ݧœï vß'€¼R7º+±[E°Î"ܽ0e¸Ì[b¼—uÐ îÚÃY|eÑk±°ÝÈB3íh¹ñ=¥¨êuœiîJ]l·2çKÙp®œ5¬µXÈ`>] ^[®:a&wm˜Ü,jGÝÈ =Èýše42cÈç,2aoM3•ndÐÊ[Öz,<÷¼õ±uYð­´Xj|Øœ¨°•²ñ\;Ö:€µ>¶¶å·Ҏ0ð)µŠúÖÚ9ÈA9*ÀZ‹å¬åŽ< Ï6ÐyçR·³fE fí¬sÑynlíñ´–AÝΚ=œ÷±ð\—Q<7.\,µ#Ã…õ0‰R1k¥n<פµ =´gƒ-ñä(ž]Á{´2íÙ $è yüZ…?”çŽX‚i_1íóþžû÷ÿåé»×d{ç¹ñ!JN¼JÍOQF±VêÆså!Z«Ö(¢ñÜœ4þÏ=.Ük\tñ\;8kø¥çîßÉçEŽùs}…s-wUi…l0W'©ÕÑ”ŒÞPîþbW¿Çpøª¨ʵV€%ÿ寮ÛÞQnìKpÔš ×1°½¯h+uÑ\;Ö:€õÁnÖXOÀk.\¹êñ×J€n<×ÊQÖZ,WA9êþìA¬çÒ(£¿ø¯â~‘ØÝØ"uã~öP’ °Öbµ±æúÕ×Wȱ×Së+äúöú ’ ÖÚ(Ö¤QDƒµ±¥ÄY¬6ÚsÃÁ”ÕÚA)òøµýŒXêøì¨v>þŒìÔücÅš;ýç„îgL8AúÕ{”²l€Êˆ0oX/‰eH×)+çÍk=:ª}ž£¡ÚXC8[ÒÆ&¿£¡íº"v5E‚V{Ä:€4Jh¨vÛó…Ìž­M¼…,NË?;ß^ ñîüôã¯ÎÇUP )çÌkþÔÝhï¼ |\|Жãñ·Ã#6`>†$ÊÒE­Ëè¥"HïšR–ƒL‹b˜VDÊbÖþ»“æák%:²„·§!둳ä~ˆhÃIÙŽdO®Ž Úì¿FûhËMËYÊ2®ÊãOlãæ ‹V—‡T„µ Vh¢w_x.}‰ãrÄþÔŠÒE«Ë쯷Π/æ1jŠqþxåÀ2 I«ëÏÊO‡¯5è´:·IçHYæhoãæx£lÁdéÂÕö vk”Q¼:os¹"8#ßè󘥋X—‡óf„µk‡_æ¥C7çï²;ŠoóêžtõˆvP‡§Ò(¢w‰'c€9¾l+FH÷.QΚÖZ˜Yh¤\ßg}ÇB§ Œ[ù0ܯ6¢V%0é øE­GLÄÜ[C=w\¿,!¥‘µÿœÉñÈ–w'Ö#Vw>úôâ<Ñ£¦ç‰>kz±tëÒì]¤ßG8²èM#Ïà*(ƒºˆuy(KEXëщõ¸P„Ø"9±)Ë n@ÜÊRÖz,@<æj}©ëÀš¥?بE•¥·a‡#HïÚa¸,;?Ìd„[c©ŒÍ›g) y8ïÝË»µz,@<ærñƒ^Y†¦Eïñ,–¿1`5u£nö îvi”Ñ€xLè: äí†Ã*!e£áú»2äÑk˜6¿½Ã¬˜ “O¶dI1ãûiað@ÝN€<Ä«Áe4¢S(îöÖ#¦P<{+º-{(KEXë±ñ˜]ðöYÛé•Ï ÑÛ·ý0¨ÑHxþM›ÇY>ú’×–ø‰¯¢àÚfØÁ½±Ë–‡Rc„_’_(xL»NÁcÙËÏ7s÷áy_}8 4·'†nÜdÜŽ 2ÍÈk å± ì/¨R6®¿;g½V¡ð¨9gRÑ0«~|ÕncËð½pêÀíÁëĤQD»cÏð·ðm>®b8–ݸ=”5,•XxO\ãì¼''26ÞÑÕ5uñ;æ8€õ¡þS–Õï‰nû¬¯Ö¥ﱇrT€µþ^ƒ9v¿ïÎÁ7|d¸²Íèo­n,Ý8¸=tAe4h´R=T„k`ù•ÝH¸=œ7#¬õXPøòô=ñFÌâÁ+-èÜä»VÜn4ܤݎ`½i=Y¶“k¡båÅo6U é,Cºxxy(KEXë±ððèhξâFö5yñäÏu_ØB¬šºñp{+úpë£m<‘–ÁJ >þk%¤ ו]“ï(üüæ%ËOÃd™×à ³7¦K®SK ·A·#X£ŒBág|þŠYÐŒ0»íje@ /e©k=Ö®qäP¼w³¡Ÿíå`t·G{9H]]£Ôñ)€õá]hi99W€b»Ý³•Ý»Fy(GXka>«Z_G„üôiD>9Ÿ¾ŒHP-] ª<º+€ô[_FÐòèËF˜×Ü{´2 MÃË!ÔÑ-ù…‡G3Õ=êv¸ÀItLìmKaH÷®M¤ÝŽ =¼D,§–èa„óX˜;uãáöP–аÖcááۣͻl‰·¿Ù…^¼=¼˜QLZMÝx¸=H»Aúñ³‡,÷Û #Üœ¤2nORòP–аÖcâqSßú‚#>±8kÁ¼Ý^pC²qq;{;€ô㥿mÙq×S„ûj{ðI62ngÍk-ƺmGP»ŸÝòaÍ`ÒÍmÇŽ…âŸÔ±ÚƒÕ¬~;LË ‹c½Œ0¯•«ÂQc-dYÖz,d|»r ó³[8לTZO ÄÖõX!®mro°Î"jýäyå`ª9 HÕ°¸þ¬üxðZõ„z¥fK,|¶ Ÿí„A÷& E>õJÍ–ãæwŠ£–½•Ý ¸=”¥"¬õhPü|ïƒçˆ¿vòèóWæS¸¥ Š—w°>tºd™ýÈøQâ©«•ÒD\Vz8vÍþáá÷“ !ܦ^ÃÙ‡ß_Žï³ÊóŽ³Þ²üÇß÷²%pÉ ¯'æž>ÝË–î5/ÂØk¨yÉÒ¼ÞXõwñ²¥{½ÙÍv/Yš×/5êu,¯ÿ¸yP¹Ø.>"^€óóþÛ¿íѶý¯ãø›ÿ³ò_Ì/&ˆÆ>ÒÑE$@‘%zæèþö'†Æwtä1èˆ%)^Éß³ÎõÇù[~u$#§+ ónOïØ®8:Ÿ—:¼Y°=”©_3ÿ]§7Nùùj9£²àóÉwöb±Õùaµ¢÷J/=Ë}ãQåmw’øŠ`­õŒly°‘#ÜX®ÈeÜZÐÈYÈCY*ÂZÔ »ØÞ±è&oÙ2ËûÍñ¤~_¼Ø˜[:~Ó-ßÛãÛ¹•9#X£ŒßÿR–‘#Äæhe@GÝ”…<”%#üRÔ-&A=Ø«kzÚ#ßwú¤xðž*'§SòGýýÎÉé=.¶+D q€-Ø”ÅvlÊâ" ã%!gÍk-ÐãWˆmÌM·åÄdï÷Lâ—‰ž¼js“úSÓÅ£•Ävëö¸rXT¤M·eÇdoGØ1Üeìš.î,ä¡,a­ÎÚü·ˆrí\’º,_>©=WN˜7^o=÷ƒsë!ôyò¶XoÎÁ¨Özµ%&zÍÚ;™ߌT§¾SqòP–Š°Öƒ-2÷(h=ˆ-¼þŸ3oøîž}<½yb•׿ŸÐ¶ÄÚˆ-¼ü€½ƒKpÿáä¡`­ÅÚ\Çok÷q狈º€ç)‰99¾Ä¡[Bõ<^2ã·d`k1|Æ üä‚ .wo£×ìy ‹OB³Î˜Ü/ÃŽ‰&ß½g;>òøîüJT:oaúeyÌ¡Ü;Zi”71XŽØáøÎœ8ª2¨ó&–IØ)úø¥ ¿kpÿ^¸yc){[ìf;=ºsÇ'Çs§öÃù¶xÛj‡Ø¹w¯ã%Q@¢`ذ—ŽÞ°ÓÃoÚ Ç ÈC 2À/UÀÉÚn¶È˧•%w9Ê,NŽ„÷î؇>pþìÇjØïi¬w"[fÛ‹eáÀ°ÐePó·8æ¡,a­®¬q¢éÆÇÝžeÁÆÏÈm¶¬;ïJ9µN:šÿå_ó˜£Àãk¬7¾,%šVÜí æÛŽ*2;%¤ ¿3C½V!«Ïm¶^|a˼ÄÀò~“ŽaìÛø¼¹‚tL@ú°Í³<ž-WBpk”yÊ‚m@`Þk{ )£¥À¿+C½VØ­=¾§ÁÍK†/©Ê”7NwÞñ•”t^[ùŠÅj:ÜñÿK³à3cEˆ/~rBË Ž ,RðŸ•/Ž^Óç=ëÈÍq_\R–SEc„ò¦~êëÒ‹”£ à`Ã%x8âäá¬`­ÅŸ¹ !mãF4ðBõ°ŒµIaíAJëÒ5t´…ƒ?EÐàPeÔð‘IÈA9óø¥ ã.ã+`Ñ_£öñÕ÷þXÆWIbkx•œ¶FW!—Á [ÅÑËÐê«ÛZqÜ6´bÊZ-Uè·µÁ²  ‘ º‰‘±¶6H [ ´ÁZÍÐ6#G`3snˆÎBÊRÖz,·õ²èÂ'D­Ž”µõİö ¥uéê:lᕯêTFõÊBÎ[ÏRsÛy+ ~u’TŸ¢ÖvÞÈb«wª­ÞÇÚ÷iYø«;ÏŠËðysòP–а֣ÝåJÛú…’8µ®2ÐÖ~•Çú2#¯õu¦¦Rš,¾Ò°fz]jX3½]jo¿ƒ3__fÛo¿ÞC¯oÛù•DY>¼/NÃé ¼ ¼Uºˆny€×Vë]d‘–÷ÊɊðÆ*’_•A]P·<˜¥#¬õhX· e´øgŸ–ÑN³°³t„µð^Ïùp”-ƒ¯¶W¯çâ›oàWé"¼å€[¤QF!Þë9øz\¼ýv‡Þ; y(KEXëñÇ"Þ˜Ì'íïÍ{^ï?tü ïuǼ«AÞëŽÅ¹CÞ©_|Å+MÈ[Nˆ[GS"¼!ïuï¾ðÊcg‘ßÑBCä-%§Ã×ôÈ{Ïp½òÞózkRîÔøFI–ºA^{á:‚4Êh÷ŽùÝ5)wjÎ2TÐ òÚCY*ÂZò^±XÛÓ ï´|ñ¾HtõŠ÷®…_!‹ðêï·<ºä¡¡½,ãÂG`:>–j»ZÐïÚC 2Â/UXøî3ñ»DYbÁ“ÑøîïR7¾kÒ[G fï^ñÝ|ã»±dÊÞø.uã»öpÞŒ°ÖcỾYl|÷z±z—Èêõíè^È^©ßµé­#H£ŒÆw¯gÃ#³"Ìnúm|—ºñ]{8oFXë±ðÝX‹å}ß–œ¯!°Kâ›»^çh`—#³Õq–¸AÝkϯýëhΧqpèuí¡ÔaM~!2±”ÂÓ'Õy v‘XùúÛ ™P‘‘‰‹Ž§dEdâ^Ë/òhm¿®ðÔÈØC)3À/UX îsƒ;Óg;_ˆ¦ÎŽ4_ ˆ·R7¦k[GÎ"Ò½0=¸Ì›áñ¶" Òµ‡³f„¥ Ñ,8¹N–Xt7Ñkˆ¶RÑ-òZGFè^¯|aœ˜?§2†ÖsòP–аÖc!º±âÀ2+7wØn³r¯Xµ ÍÊ•nD×䵎`½­³r¯Ü­¢få^ã~ú¬\é†tí¡,a­GgºW| ~w¦[×xê+Ê¿®”&ºþ3pmMÍøt¯øB{èÖUÃøÔtËÃ)3ÀZ…?s÷:Û®V:“a^Âæ¹SÕ¤ÜErù7@Z&yju3[ìä£ìäàЦ¸åÀ¼tü’÷Bqãçâ^±ÞÎ]÷Š­ ®¢¸Ò¦¸v ¥Õñ’›>=§!W=(Š¿ïÙ(.u£¸ö`‚ ðKŠ× –’²åÉNÕü4—éEX©ŵ­#H£ŒFqc•ŠqǼàq©ĵ‡ÓF€µáΞñŒ!ÖÏf¹±(ééÔ7Ÿ¢“¯JÃ-ÚŠ 2Šáæ ³øajsŽžÊ€.†[ÊRÖz, 7fÂ…e ûkÑS]þâ«Ôẃ!¡u/ýja)[Ø(‚úk•AÝ®=”¥"¬õè 7Aj 7»ÏXK#j,Ÿq¼ÅW©‹áÚÃMƒ‡[¿úæ¢üµAáÁv.Z ×fzeïw̧ÓNq©ŵ­#P³ŒFqçy¡¸±uÌóTÔâÚÃy ÅuâÆ23X¡È–k#?ÈòC_VêFqíAFëÒCû‚Øo?Ž¢¸±tM’A•qh_g!e©k=þPŠ;båª}…³óìügŠû÷ÿ婺× îâÆG'ï(Š›_ŒB­Ô¢¸þ3(­¦Dø¢¸9Cü#Å=.Ü_ºQ\{8]¾¦¿PÜ=n Å=æý+ˆ{l¹sø*dC¸ú;ù¬Ž¦døp÷ûöèø=†ÃW@Ý®=”²"¬UXnl}±íàÆæG­ªp#„ +uc¸ò£U„ÒÚØ–85µªÂuì9T¨2 ŵ‡²d„_ê±PÜK6Š»Ç"šq÷÷-ºº¿þùc ‰¿‘Ìê8Inèv•kM…©w®xÎàÐ ÝÚC©)šü‚nÃÆoe™7»³¡Û=6Åhè–º¡[{Ì:‚ô£}`l¹o|¡¨÷Ž/UtC·öP–аÖcA·»x;eP³Àm,;‹½ ¯R7|kZG&l—ÜïèêðXoqo@7~k¥¨­ }Ù¿‡íO–cË%Å>޽‘—cïØ%ÿD¦Â£¨µËþa‰e·ƒû­¸Ô ¹ØÃy"À/y/ÄvŸ7§¾ŽÂµÇsd#¶;^ï§î5Ÿ€ÀÕ²Ž E4b»Ï¢0±—æÃ݈-u#¶öP’аÔb!¶ûüϾŽBž×«ÖQÈ £ÑTêFlíAëÒ(£Û};¸nÂÇíÙo|#Ê2¨±µ‡ó>úº UF#¶­Ò¢HTztZ{¬¨öèœÖ ²Ú`Y؆x´Ûƒ·VȲíádaM~Á´±kýè‹'\ñuÓ]‹'äEz7ŽJ] Öä°@Í"©=Â/žpÅ‚ºg-ž ÝH­=œ5¬µøÓõÄœû–[áÙ}Lj„¤±«–QE¥n”Öä° ©Ý7ÀpEØb«†©‹ÔÚA9ïm…* ‘Ú}×§¶XºT 4z›¶°t‘Z9ÄêxÉ]+ŸÊ°á¥¿Žž9>ÔR7Rk%È¿Ta!µ±€>¾í¶å<1›„t?±åŒ0*u#µö ‡ui”ÑHm|÷xÕº Wlû‘3¬UtCµöP–аÖcaµ¹”xGµ±ÛHBÒø2¹„Q©ªµA¬#P£ˆFjcMÑó-RkŠ6 Ù8­þî”yøR……ÒÆröÏ×)m¬½½Ei7n•&‚JÝ(­<Ä`ÁúÖ’¶\fï*Âurv/Ë€n”ÖÊRÖztJ»TŒic— ¬¥–wÙÁ!¨Ô ÒÊ£Ú/ÍÑlЊР°qEhA-Fë?3;½$¿ Ú;Ê6Dí ŸeŽFŠçYø”º!Z{À:‚´÷±•%î/ùN¢Mõ©¼Ô ÑÚƒY:ÂZŽhcÕUli ÃHǪDä£ÛgÀ@¥nŒÖD° ¤Ý° pE˜ Zí2  ÒÚ)êø¥ ¤Ý®]# [^Žd@H#Í»1Têiíë’»4+> ÒÆÂÎ9|PÐ ÒÚC)*ÂZ‰ÒFR\ÃCP7ãÑØ9 Wè @¥nÖD°Ž 2¤Ÿø*F‰Ým6/uc´öP’ °ÖbA´ÛŠ\}…p=µ‚B޵öÍöX¢µ¬§D…h·<ÊÏvÜ0u#´öP~<~­@´ã{óÆÏf‰ ¬GÚ-VÔi€–ºZ{¿VéW¯Mʲ%#ˆGþ£­tÚòpÞŒ°Öc´±Âst@»¶I ÝæH:šà)u´ö ~ui”Ñí¶ç+ ˆÕk[ )Õß3Ž^«ðÇ²ÙØD-8Ú?›aûÿ6;b"ôÓÙ숩Ð_±Ù©ÐVTi²Ùús²×:’áÍfÇû>€­qì;/ü«Ø¬t±ÙòPº:|M¿³Ùñ9âg³Äƒ~ͰïØû [é³åüZ¤M»(ËÞgØŽw¿HXÆ~™0 y8ï½Ï°­2 ÐN›&DÛÂ)ÍD£ScÆ3á©tZ{¿:‚uÍŠ–Eóšóž]†gF; y(KFø¥ÐŽ€G_FaÄ¡M³úéÓl¥‹Ó–HlE~´s¼-ó^Ò¦ÙŽè¥Yt±ÚòP–а֣³Ú·Š«¡ÚOÔO­¢0ž9¾kéBµå[¬.™+ÃÃÕeàÆ~!.ºHmy(IEXjÑAíˆ'¾‘%& Ô$Û4¡¡Tébµå[¤_¿ ‘%& Ü?*BL*¸[Ð…kËCY*ÂZNaFŒSFƒ0>Ä!ãÅßä%”&1ú3`‹–Ìàf1ÙRcüËcõÓ+6u±˜òp¶°fß±íL(&4ý솧-;¯ÒOŸIT)‹Ùúï ²>ÚrÃby2<ó9â«9¶yqnEl¥‹Ø–ós„¥ØŽ'¾…èÄvÄ`ä+b›§þ-b+]Ķ<Àc+‚4Ê(b;⻞«ˆíˆïz]Ķ<œ7#¬õèÄvĘÿù±94+dëK…`UºÀmyÍVi”QðÖ—Š#èFeÔ#޲‡óf„µÞŽx¾y;¼Í“½¼ú•Z•6¼- Ù " Þf"·áíˆì3Z šs‡rT€µÎnø3[*wv«£žŽ`[Ïkº*]·<Àg+€µ°¼-±ÍÊù£"œ É«ŒS\^IÈ)êø¥ àŽx&ùöFpgš7ßm'@?ÕÁ±J›àÚ„ÖÇK¢Ü‘­ðûá£9Óá¡‹à–‡SF€_ªÐ îˆk®OµÍáÊ8 ps¸Ò3.€[À³A:‹(~;ó¼sJ˜üö´" ‹ß–‡’T„¥ßÎ a'q/ˇVOç…sõ©¶ÒÅoËx¶"XïDF¶¼ƒÄž'Ÿd]u!ÜòP–а֣CÜÖÚ¾ŒøÔ}kë ‰`«7¢­ÞPºzCYØ™9;;—áîÐYÈCY*ÂZqgãÙ¸1— h]ÁPG€ž| Ä*]×ÕœŸ¾Ò†âÿÞ¯€‡W¶-—MŒ[fzeàŽ¨ý8LpGüZ¹†«tÜòHB[(³ÜñÌQñWK%L}`.«âCÀ-e¨K:¿÷˜ŸÍ#åÓøvê·Ï•.|[€³Aúåǹ6ÌŽm¼?*À¼û]{+ºðmy(IEXjÑñí4ÚÁ–ûŸŽè­ŽZ'AÚø¶ÏÖñ’‡fÌÒð Lrçѱ)ÐÓÂC¿-%¨k€[çKýÚ$§>d«í|‘¾Ö½XoFöù’A¿¶èl¨ˆ:_JBJR–Ztz;â»æÑéí´|ü0›ÇGðwM}•.z[`³ÁúЧ=²ˆ2½ñaóY%@½õß•!^«ðÇÒÛ#v¢ÿÊþ5pÿ±c–òO6N‹\ãCå¾qÚ¼ö®x ŒÛÂ#ïÙ)ÿ3pýÿp3Þ¾þïˆy"¹T>Ùñ~<ù¤+ºL-pí?LûhÊÝŸÿÑ0G÷Mp{Ì=w ÝÀµ=”œ_Ó_ÀuÌQÜî®÷ØÕµf} .ç¨LÝÀµ=ˆ¥ÁZ_ïÛrœ\”f rs(•ÝÀµ=”¥"¬õXÀuäõõýÚÆ~å^ÂFÆûìd¶Z»AºkyK+‚5Êhà:f>Å­#±çlE@7nm%‰¿ÔbÁÖÛûÉËòá-˜€q´…½akꆭíA(íÒ(£a똲ñ6l½Åv¥ [S7lme©k=l³ ޾:Ĉ%ËGM1Îl4nMݸµ=ˆ¥Az×ÃeÁ’1ްaó&—±iÅwg!çÍk=rÓ’pç²ep:™ñ>Ÿ r¾ ©2u#×ö —vi”ÑÈuLL: \ïÇöÛÙJHÙ°µþ® yôZ……>ÅtC` [b[ˆQø)æ­`¯0"êPr bÒñ’( T̸ AÅ4€goá½\sòP‚ ðKt/Éß>å8½öb×Û·YѸ5þF*­ã$*K<šÕŽmÞaØÁ½±Ë–‡RS„5ù…[Çü§ûèÜ:f@½WqëmŽÆž«˜2uãÖö •vi”ѸulE^‹ýŽmäîu.!eƒÖú»sÆÑkdUß£òØŸ °8v ßk.°tCÖö vi”ÑuìŽÑ3#D/8ZÐ YÛÃy3ÂZYÇ…0ÎŽ¬s>Þ]È:ú¡Ü¾„@™ºµ¤ÀúÐC¼,1$Û¬£×>÷*º!k{(GXkñgî4H}cßø\oøŠFÌx{ñÚGP™ºk{K;€4Jhàz›w¤®·ÙžrÙ•]àÚÊyëàÚ4p½í¿Ö,ËËm¤ÀsgïF–© \Ë`ZÇ[nüÞJ†y’rðšGŸß÷äg˜ /]àº<” üR…\Gçr.ä:§ˆ^E®·û¦¯ÄÊÔ\Ûƒ`Ú¬±nYFÎw€øX­•²qký]òèµ [φqrñ0[æXs¶žúÎ9 DÊÒ…­ËPº"H£ŒÂÖg|¯¹¶žzÃjŸ*º°uy(KEXë±`ëmäüg·|xÆÑÍ5/XºakyJ+BéCû£Ê7§³°uì[¿­ 膭í¡,a­GÃÖ³º5¿†Óû³?ø4·?‘²tak{°iøpë×Óûey4¿Ÿf‡—ãs•Ml]fz&÷÷ôlUŸËÐr\OÀ8榶Õ¤¶¶¡´#HÍr²å|ù½ #œÜ¾IeœZaÆYÈCY*ÂZŽ­·G›LÉ0‡çin½½9þ7W¦näÚ$Ó ýè™Ã–/1áÆR.ãÖ.SJBLQÇ/UXØuÜÊ·¾FĈïÎZ#"o³G­!Ýàµ=@§€òÑòÔ6ìX.K‡ßWß NºÑk{8iFX+±àëm;b8ú³[>,Bt¼í©-à2uã×ö žv냻ÒrÆÒ×9†y¹æÑZ`ŒÃT¡ `—²¬k=‚½Å»æ>yĬå·& ×ãs{ ƒ¶µ—Ü85L†i9<øäiOÙðµþ®äxðšý¯ãˆ£oá6bŠùhô:Ž:½¦nôÚ„ÓŽ 2¾ŽNûkø:Ç, _S7|me©k=:¿žâÏVY>Ì%<žOîÆ4 ËÒůËtº"XšË'Ëüwü¨óß^BÊâ×þ»2äÑkþ~çiË}âòÕiôÂpÇÊm<bOåyû¿ï;‰¶,NïóÛ꓆îr·£ûÐÒX~sjý’}Ø;óú÷ÿù/AÑÿ-pú˜C£=~Œ->UÚÒ·¿ýÛÃ×ãúë±ÒóúÛýW¿{n;Â~ùû³,#§Ü]4e\¾ãœ?ãõJþ>«¼ÇZ¹þó|Ø{Þ:˜’ÑÃ]–OÈ<ü|ñ©ðÔqË—‡f€_*ð{ž—=Wáœ>\6§Yò{½ûéÞ±¯î—«âŒØÛ>6⢎r±”RyŒ»i+‚5×µ)Ë“+ßT„;C•qsíœÊBÊRÖz nç·›;Ö×ÉÝHË2[ælSߨkùÆÄsö´÷aåÆûñÑ<âõùh¤QFAËÈqXE˜už±« èüý˜…<”¥"¬õȺÅn¼7÷È~Ðe‰‡ Ø¼÷J‘oFbïÔÌ)åïÑrxAê¿Ü•:•@èôÖ¦Õxsâ£ù¦Äá¡ã•/%§kú8][¾íˆ$~;ólÙðE°»Šç;ÁÇ)ôÿÙ@ögæçoûoùXë#ñmÜË|üŽ–ˆ‘×ËÖŸ•›_’祅ZÏ}¨Ï“åÈ…»³Ì/w¸~r&S¼Ö™å—ÛôÚ#ÖÂÞ[é}èB‘e>³dƒU„Ù͠ɳ hþr™…<”¥"¬õ`óÛâµs6ÙÍO–,oÄ @ñú3íMäÄõ›2ÛÔ†Kœÿòkà:Üšè±,ñd˜Ð'—)ÈC)*ÂZ T,V)>pÌŠÉrh±Õíàåtï˜Ð=¬£Ø7ßÖ”Çûb³zD y€,kÂû~[E@ÇJBΚÖZ fB²qxaT–è_â"½ö8Á™è™úE¿tr¿¡›rço,9лöAeä9 ef@Úæý9ž-]t¡,ä¡,a­ê/‘²1íXñ¸Y¾PÎr·ødoöÛ¢Þ¹¶·tf:rÓ-{ĪÃW‹`͇ƲĢ~Y{F˜OÃ1mÍe@çïÇ,ä¡,a­/µ·÷!¼ü£ÍgGÌî!öÌ>zÿ=÷(ˈ‘Îy´þCºúYxõ;{áîÃ9È!ÔÑ-ùµãˆ9|K¿³øŽÖoÌÓðí²†î=‡<Ô1(‚tÑ{Žåg|ª_%œør¿RàßÝMðð¥ l¹»{Ô:7W°aÇ£òqaƒúÙ“Â<î;ž¬¤³HnP/ÛÏ;€4JÈ#j û3inPÿ9¥RePç…… êåpqGz¿T!kµÏßíâm?×H/Ëôpl*ræ*Sç»é(t¿y_¤Çqà>ªÒ(#Že¼p„ °ÂelÜe¥² ‡³d„_ê3v>Âä ]Í’{èÌ~æD/|ä‹þì—¶Ï:З=â{ø½E°Þ-Ê2G Ÿz¿<'˜í 2¨ãfae©k=pÞæÝáÍR¶¸ üì–ì‘F¬çõìh^ÆbM1 ðN|g=-{az|9ήÖ¿-ѾâÅ7ñ9h•îLAg†:z­NÙìÞ¼_x Q–y§ÍQå©¡uŽ>ç§¡÷Ë$ù9–‘G¼K-‚4Êøý/eÉý%*À‘\Ç%¤ w¥À¿+C½VgëɯŒæññÞeË—0dêN,±ëïJço¿-//=©Ò(ã÷¿4Ë Œ}_βaÔyÂ…=œ7#¬õàU–÷„;îúƲ<Æ`çvSòCfÍñ@Œìqå.7Aúæþfe þ£o%¤ÌSÆøweÈ£×*p¸Å‹Í;žƒÐ1–åK²½ï•—é…õì_˼k&Ð,\ä<âP˜2ÐPŽ&q`ôÿÛãÈ”ÙÇ h;(5X“g…òë°;Fkn`¶|¸ã彆s¬Žx“ñZgŠýÏÑ–t¨þ׎†?/¸<0ܸZ\èßÿR%ËCiéð5q\Po®…rG4<öÛò&±®fþ;F”[®ä-w”7÷f¶ÇÎ6ÃÖ("ïs²äÚÙáÎÕʪ 輑*kø¥¼œrØãܰ!P^<ăLœúÙÄó1`|hùÐyiäl¨òàƒ‚#Xo˜›V–9Üλ Ä×â­„”ÙÁ2þ òà%vêO9_•å>009^´×yKˆÅÙu~R¼Aîgýy|üy´ôåq¾,#_îT€‘cn0<ÌWrP‚ °V!«µÍÛÄÑÙª _¾¸òåþí49&ÆÔ³ÐmV'¾=æíòj,|Ÿ[–-¿ïq€˜ôw@(‚:Ž`ö`Š °TáE×WLtù~Á¯mæõ?õûW0­÷î- vÞ5'åμ&©Þ»W¨Õ$± ­mu›å œEìË[%hçÞÊ•õ±°Û¶s¯gíÜÛ,¹ï®(©öåG­{EZË$¶"XsWݲ`ßÝŠ€}y« íÜ[YÈCY*ÂZÎjkë^SOn¾kJÊÍyÍQ½}¯I«=Hbºö×- 6àUíÏ«2jû^eQÊ[ÖztVÛÎ[Yð«—ú¬¨¶óFäZ@²ÁZçÍþêŽÀ³â2|Þœ…<”¥"¬õèÐöúŽdÿ?›åÌw^"§S¿Á>¬J·­?ƒËÖáÒG½n %¦D½?*ž¯ÑYÀηìU¾þ¬ütøZƒŽn{k$u["4u[#Vm­‘àµÚ+À¬#@÷Ö(‹ÛÒ‡|ÝÖ²ŒÞ‘Ey(oEXëÑ ÌÒeQkLþÑZãÙ{•B0­5&ai­QºZ#-n[ï5ªŒÖ™…[#³tk\êÑém¯›-Ì ä´2[íu}mµÇúߎ`íºÉ¢ÌÁ™³Œª›²‡²T„µß¶6)ª%rª'¶ZmRôÕ¤³ŽÝÚ¤-lQŒàÇ2Z›d塼a­Gç·µkvY.î$§Ú[lµvÍ}-ÐÙŠ ­u®›eÏÑ©`[ì*âôƒ¥’‡ÓF€µEoÛP¤#DN5Ì Z­aˆØ«Ç!d³5¡®qˆ-F0‚‡(Âãç ‡>Š9–AΟ½ïmçŠ-àSŸ,òÕv¶H`íABëÒ>[eÑïÍ:*£N“ƒræñK:Ãm½†h¨¯yÒS÷ ä«­× µxº÷²èšG„êPFï5…=œ7#üRÎp{k´…m ô´Úøjo °åBÛîÒn²¨-)‚ښʨ֨,ä¡,a­ÇÂp«9ÚÂæ$€ªæ&ÂZ RÖ$´Ž íY4(G`{snÎBΛÖztÛÏ›-üÕO»yV†Æå>oà°íÌ&¦­Ö>o²èWW•QçMYÈCY*ÂZNsûõF.ª«EUW“Hk]ob±ö «uèv½Ùâ«%#ÔÕ„2ÚõÆ,ÊCy+ÂZNs¯X@òýÍ–ïLRçØúâ»Ú±tÑÜò«­Ö»Ð"-±ŽäÍ·Ôá™&YcÔt˃Y:ÂZŽtûD@’«Öø"Ák€pÜ€<}ôñ¬C§† :N£ nÖì‰rÅñkêè.Õ¡E ¬¶ê<è²[}úŸÛÖÑ”U!X¥«×‡‘«B*ÛR¶¬Ð’|‡º­í•åã;üljX®½éÉ–ÇÎÆ©¦gí¦G‹#¸a±ŒjzLBÊQ~©Eƒº×ûäKßeˆž-ÛwÕ+>ÜŸ‘«tAÝòàÓƒ#H£ˆ‚ºÓ‚°!æ><­ èâºå¡¬`©D'»½·°…?8Àj$¯ýŒͶîäÃ9UkŸ1Z|Æ¡º‚,¢õÌÁÌÑÖZ4¸{Åzf{ƒ»W¬˜òV¯X[çÜ^¥‹î–àmEF…w¯çД~F88…_ez+î,äÁ$`©Ä‹wcúʶÿ—S“kŸFî3÷ý¿ïƒÙ²t§˜N{ŸÝ‰–Å)æj,‘hYœ°Orw‚¥;ÅFìW÷aqyóMe÷¥;±ºÍ©ýÿÌ„¾ÎØ„ðÅLè}ûÛ¿í{®Ðù×ýÌÿŸ=ìñ×ýþûó¢ÿñ™ûˆûukåã²`ÝbÑî©s]cñpi÷rO¯ÒZ”¸,X¶Ø°ªq• u+z8Gø¥ q¿çuy½¸ßó‡zkvôÔ_ €†S7ânòtGF¸ß烷ŠpjÚ(Ë€nÄÝÊRÖz,Äýš&-•%~J£îëÎÏšÅÂ! ·ûïdé:ÚòЫY¾röñ9¯VtƒíöP‚аVaí± .fYîùˆ2lE…ÎÛ©l·Qº#P³ŒÛ¯XѯÁöy¿Ìµ@TuƒíöpÞŒ°Öcí×Q}}ŠôŒraZZšÁ‹®OËŽ)´ P—\@Yt½]Qo;ºeþçï7MÏFË%ál˜ü†ëSÕìè…Õù7s&yr©¶²7§”ñè#wªàÐFêåÀ¼tü’÷‚Ôã'©Ï†t f_ûËÉ`ÀÝÔ…Ô˃™Ž ½ñCz[øHâñ#Ÿ ©S7¤.e©¿ÔcAêqŽ£#õñ`!%Á츯Q¸›º!u{˜;‚4ÊhH}ÜÛo¨XaºuêFÔíá´`­Eê³_B¶Ó‡3…wmÈ­-ÖVu[°ð¡2ÜÐð(Ýœ‰àVÝÉnMg}ŠN«|}adµÚ ÔÀ«þgTÖ¯sQ ¶­¼‡cnlArå[ÆUlš[˜ƒŸ°-§é·¦‘2ªòyæܙ5Ƕ&¶¿ ÊÆå.«À¶•†:`[»4w `ÛøÛãóËçLضÚ+3yÓ%¡-oÏ]—D«&º ƒ³aÁeEì!Òã°d·•7ª¬à@e`·¡á!ºÈÁ`ê±GÍӔƻW'iàK«yÑÿ ªøu&ša .<±Ør7‹•;­y‹5 =jžúÖ,ÌÁO´¶òÙ¨Hk+ÓC µU—ZJ­°REakhŒ .‹  µ•ÏF•×+f€›9 µ&­ Ò-L¹˜hm-r^ÐZ.Ü57³£HªÉ@kCÃXlXpY}­­¥%U |u"l2ÐÚЈ¸nn‘>€ÖB-´¯M†I’Ú6cÚ†ŒÖ¯3ja¤xÒ«£Ž™q¨…æ;4"X³0Ÿˆ–O¨ï±ƒÅÊ_™m¹ƒ…<£["TÒº‚3X7à²ÙJˇ‚·ÜÁbå퇗ØÁÂE ´¡ ñÚÕüï´‘PÄY‹ì„žh¶ÖU?çU@ʧoȽFPMBÆ`ÀËê(m-ŽÂÕBáÄ›œ”6<æ {Y¤ ´µÚ.±™ÒšÎ·Œr3K¸ ”64læ\®¶•k¦}ÙJÕ…Ðî£Ø¹m…iD”fá,¥å³ü³zKY{ ¤€´.º—º#T“Ò††1ذà²úJËŸ ®¹yÅÊç¤l|¨ ˜64žE€Rþ0•g]ŽPMLaÂÉê(-oÄ*<Ð ðN¬‚UFëÿGÈvù”…‰Ðòöÿû„–g¡º±‡Žy/ÖãHzj2ÚÐ0þ\Þ|ˆHá=¶eYŸY ÇeƒeÕ&¡ Ò-Ìù˜-ŸèÑÐò‘¼Ÿ£QgÙ§í OM@†_ÃBÈÕJÀ¨­çÙ½ào™y½»0ølhxnaÊÅ„gåèܽBjÖbŒFëÞàî;ЩɀgCÃàkXpY}žå>ç°ÇJmZSm2àÙа(Ü ÏòƵeC<[ø1·v~•êV”å)F5øl(ð£W‹ ÆÐò¾á‚¨ýBjŽž–U@ š˜ƒŸmY«3"eD_ÈNÙli§QÔâ‡%+d¿ÀÆÕ.V>ZB—™•]» A˜i•І†ç—ÏáO€–#Òf>Rlƒ]c£|ЂlbðÔd´¡aøÕ „¬.Ðò½“f€Ïº€eÕ&'Ÿu…Q¯?ËâÙBÏè ÛXÈkÏm,dмå6.ž ›!„—ÕàÙ¢;0‡6èlhXŒvý”„³ýòºâ5¤ðZbù^DÁh)ź?!§&œ E¯iÀåïH"¥e Ïejg]L8› uÁ!MºH8ËGPì àliy€wü…Ú™±&85àlhz .« €³¥ên Ø™æAD ³þ¿G¬OñY.»Yÿ±¥Î}Óµ±Ô¹óvÐÔ ¾º¬£Ë=eR²#*SGPe×AÇRP‰Ot¸öØS&% •2ìÿÃåÎû*QS' ”iÜus[7Þån;Q£yYòõ»üP»óRþ¡vçÅüGBm’wû|^³ËµSA‘u0Ù\$ÔîcìF±ÅÀ .oM¨írBíЈ¨ÍÀY.j÷ÑdõÈkHaD’Ë’ûè—%»œ\;5”[§—›¯YÉ”ŠË’û¨²~$}T_³Q¸FÄ]qYrúH²Mi¾˜r˱ܰ6YÎŒ¯ øP9!wjx”naÎBîάÀ¸;Ÿµç> }§ÉÖfû€¸Œ;ÿV‚—‡ÜlÃgOØu‡¤0°Éé4f_…DÜù·‡ç—Oñ#áî|~•¿;²ûåÊäÎgbƒv9!wj(ÅN .|d)bu>h£ÄŠûo$‰z† ›¤š˜$+þWT•—»,ö“eI=­#XVÜw`r²¬ÔˆÍ”äÝT¹kÀ»)a‡Í›é!å5E›˜°;þW”W‡Xl³GKØå ›¯âr~6K¢n—u§†Å¦ êî;?‚¨»ó¡G¢n)ÿ‘¨ÛåDÝ©¡ ;-¸¬>uËùðk¢nMl|¨œ¨;5"nÌNù@ÔÝùèÃ"ž2ì“?åÍñ¼‘v9‰wj(ÓN .«¤Þñ¼„Ÿù¹œz®q›…9A½;ŸÑ3‚zK1—¤Þ$ïŠrI»˜Ô;Œi‡Õ~Ro aKêÝù,–½§‹=À£Çà  _ ÁÿžÛ áÆRE·-Ñ·ÔQy,Ô¹ómû,ír¢ïÔP°BŽ÷žÂ‡úØ×ÞbaÙõ-”ûXü}†á ¢_?eÑwçCuäÈÈL±…«éV5ÝÏR±´Ë‰¾SÃæ…aÁeõ‘è»Ë©˜\§Ý‚-\ *'úŒ[-œåÑwçC@q}²ŒUdïTeÎ2Ví8\NòʵӂËâ"Á7Źéªn€†Îe*'øN Ò-L¹@îMDõ÷‘r¡Ô¥‚£¬¸>Ùåß©¡\;-„\´EÊèÓëJô<&÷ar²ïÔð(Ýœ¤ßØzŠ7ˆÊ³AT2-¢²ëÔP¶\Ž1R¼Ms Þà¹l= ×ð(Ýœ¤ßT{Š)Z¿Œ±L6cV6írâïÔPºB.±Eˆ¥¬:â VÁ‡ÊÉ¿Sãt s>€w>’r]€g{§èYFÕBIN»œ<5o§—ÕGðÎÇ.öîJ‡Ö⹕€§†Géæ| —kÖ\šRkì×]/Š}–MJúËãnWꣿØç¼*.zþh\Æûá4«b²ïTð¨ÜÀ7²ï¾Ó<»úî|c·ý®¤ÓiÃöÃÚµ­VÙÐwþ-h;¯6Q¬ùî{ÙmGj¾”ÚrÝŽÚ,«œä;5<6¿| Áwò®Hàaòâܛċ†]NîJµÃ@ÈÃ>fŽjÖø1 Ôÿ­\¨Ü;"D30ç¸7¥4?ËÃ]¿¨È¹ó©©-wúp9¹wjØt!,„Ü|‘±§ìÝ>0 |žÕ>TNð¤˜21‘ï(®Hð»mÐ9JC©4—aëP0¬\Žâò/.7àÅe¢´"WðÝÀ”ÀÞ?)áÐ#å•9wÞ0`ËõÂ.'öN …Úi!äf_BEJYïrIrçÀ—ô bbïøß´‹§ø¿,önm“ó9?µƒóuÅÏ!·Ô úOzÀSÓ>ªv[sªÈUÿ2×¹¬–ØRÉË8ܯÞôTƒ°­2[׈ÐÌÀYð°å³þƆÀ¶ó—#m¯:u˜j2ÛÐ0B®>%´>ïO‘šZXx¯¶&° ‹2,Ìù˜€mçÏð”½ÎKñ—\Š,w¬åRd—؆†áذà²ú`Ë‚Ž\ŠÜy-þq€•؆FÄ]qirú`Ë_Gèà.Rj¿ƒƒö:>ªŸA+L5€mhŽ .«¶ò„ ]µ°‹w¸ºÄ^e¶¡aQ†…9°åOP­Nz =³ ™®‹n|/DÕ ¶ñ·Ù¸ÜåêÇ_eJÕÍÜB± ‰ÙÆß±]>ç`b¶úo{}à)5913/êòuÿgã©&³ #²aÁeõ̶…nŸ›#?» Ì64"n³0çcb0KßýROaþ” †OÂZ‘¨ Æÿ7ÄâW»¨æÁ,4Sò]ß4{]÷uK¼kð\#B.±ëda‚¶RÍ7¤¶|úl0jÔ”§Òm‹W«›?2F^CÃÈlX0Ù|»õ‡É-0ŸÑ¸V#aqF—E·[˜ó1ÁÛå8;tO Ý#y:tÏe€·¡ah6,˜l>ÞòXpèÉÓ¡{.¼ {L‡î¥€·|Ü•½ÍòÞJÝæ.º§{µ¹Œo³R½†z C³aÁeõð–¼’õçnA7¥\PåQ¸FÄmæ|$¼å“Œì87íÎÀ£´Æ4ŸÑ*%`ÕD`·®àdÖ®Q­ºå*¸ä¶ò0é6âÁD@·¡°¸Bÿ]7 >×zØ)?žÐì+^ŦºÚWÁUMvFfÀËÕ¿ÿË”¦ïêÝBQà.Š3 Áþö€íâ)þ Üò7‹eGp+ß@Ä´o‹ÔCª*µõÿmRãW‡X|nî)4RÔåav=•¨ ÌÖ5"@³p–…‰ÙòçãžµG)»6ºÆKår ª&´ c²a!dñÔ–ïEÏ]%äfèšqó¡2PÛÐð(Ýœ Ûò¹xú™{¤ÐøŽÇ“Lÿ-¹åƒË€mCãð3­Í‚Ëê°-wor •YhGŸÐ°É€mC#â6 s>&lËêÉî‘Ò7ÛIWGÙ|tÚš[>¸ Ø64 ʆ—Õ`[þ$P?™1 4¬„}š]l·Y˜ó1a[þþ^ŒÞa`MlëµÁ‘jÖ‡®¡aP6,¸¬>Ûògø5©-oDÐÀƒˆÀlýЮž³0[>U±áŽRð=w”‚_rG —؆†ñذà²úbÛbeºO»+žp&± Ò-Ìù˜ˆ-?†kCbËö}sÝ ¼ØØM‰mCA»zìaܱ-U&Kdì:>µ4íŠÌÖÿŽ@õâ9î‰Øò¹~Ì´¥,r~¹SÓ¥×»\Pl¢óZÿSy¬_i’ZN\ËGþêö2zZ­D̮ʀkC#"µËçÈ'^+ÓœŠÀ–'Bº÷Ðrg3'ù¨ÊhªÉlCÃx¬H¹ùÕSš:èh'UÈ}¨œÄÖ"F3p– D¶Ü2WØœ¹óyʈlj‚Ùš È64|nãB.¾Õ²§T?àÒ,”OõsmhXn`ÊÄ„lùmÛ²ÕSxÇ©Ë L›Ô\Il"0ÛP0$\Vm¹j {U[me˜ìÈj.Th £˜sÔ¶‹}×` ¼¯‘¤çÈ”e<¹¦ª2PÛÐ0&L6@m­Ž%±-ïkt·5ÀmhXÔn`ÊÄE·ËàÆy½²bÙ"u%Æ'ŒÃÖHyuY+Rh¹ØÖËü%Ý/ЊÐâiF Z‘‚Z»ÝŒZžZg±bô©õùK—«ªpqÐ8Œ¬ìò`ÊÂeY¶Ìge·Sãß ¶zÉ̶záeÓ¶Aµ®¬®T}ZÙ:ºØÚSPéXbbS²\¶Íq¬¸‰µ§LJÌ 'I@ t ì߸ô{á¯RÛ†w+´ßA>ázºƒø&áz½•Jÿ‰RelÍ[ÄN¥JˆZåàà ê‘ažÐÖÓû7£”×s0—íSÆ{on“yÊÛ]§Æ‰ÉÆFãU1ÿo7ü©T-ÛqúQ~®u]N/ßßÜòÆZG!·œ~Œ}ÛOÏon¹/ÚÆz¢IbêW Šòu€_*5ž¹’ï?=#OÿÉ&K-ã¨ýôô†Ñó>Ú~ºg3eéÛ8ýÄ*Ûqì;ýä}èǺ7v<¾+…žúïôꆜ;uɧ‡É CöÓkVîtï†yÙêQÅtT›ëéñGÉ'EEåü‹^FOæé[+ƒY'¿¶(Ãûÿ§Áòz ŒOïB¯x÷©P{¯~øÂãXƲÑuñómþü)Þ_L ¯òçCþ|s±0 ÷GÄ3,Šéþǹכ1¨¤¿?e¾ïå¾c]¦›ÿJïIX²P$ïÑã›~°Jݯ…ÝÒ­ô~zw5ñû›Ô¿KuÍn[¿âsøa~ñ‡[™iQe¿å!(U͸Øåæ‡BúÛ w¨e—rXõØ|ëxÂ6Ú!‘QQûÁžx¼²Ûé_ÞðïýŽZ‰Óý+©ÿc;:j£‹G —ãd™Oìõ8Ý«òÎO´äy?Yñx©Pì„fÀÛ/ân£!ÊI>|çB J];$>ŽV¨Ž_sòðF3³Òo}Þ—ýXè‹Gj O/$о÷ÓÃût£¦šèqå‘[PZxavõô3ßDò¼Ì¹ ¿ä»—G´ãØÅZ«ë¶ÂÍ š£v´.Àÿ¿\ ·º¯T}ðN€ +¦:((¦·ÚîQŽøÖrÅâ9&=Ûþè<ü¤¥[®ÍËR8uS¨Ÿ¡¢$Ûj·¨ÒÓÁí‹—¾uË·ü½ÆJ=«8€{JeE} •U·fzïÑL‹B4ÓuÓfºÑ¯*ˆ/\ÆðfúX¸d*§³Sn[n™ÞS=Õ*¤Á6Ü+ø ºà ñáQîeÛ'§P8¯²"?`¡A]7¿Þ f&”«;~”ýôïÒœÈÝæGUsUæªþN“iˆÇœ¥¾„GmÕ+üê¦×k‘Â…÷š/î/—ÖŪz%¶gùýÏòK­”Tž»<$r#gÃYS©òqâIY¼ª¾PËT³+ {§Žs[¤ò¹®V¾µê%ئ½b§<߯5›™ø†©>aC(y”ÇunÅè*ÆTj>žJ2=&m2öVnÙ±õªEKsà²u½eÏUûì¿fê=—÷Á‹¶žÕ®,‰³ˆß¨­ œñ/ëS副Y“êÙ¿7Ëühb£*^*ušû•gMh¤ždÉ|ò®`u~x}Ãg îy©¡kÜ‘ Ü0‡ÕšÐ‡GË 9¡ $o9±/^ë ¢±C äômt¬÷o³—zuøFE³¦õ²ïjô¬?ó t“:øµÜ”ý Öõýü YÓ~‹‚Ù¦*v¯& FhtUöÛ°ñÍ× vÔºo4¦yÂWòâðƒã ï¥}ŸžÆ3^Ö³ú ë=K¹ƒä‚Ê ŸrUʦ„›Òƒü¤áNÓ&–îÓ^÷³"Ò@íJµàzÈ1le¹Ú›òÿ~>@™_}ÄØhS›Ö^UdëmA“ãþ¬lNrrÔõZ‹§u–úÕ]û}3ò<¼³&‘ÿ%Fßé]snÓ€‘GS/íéÓ˜ì™&Ó•gU‡5úJ1q!TÊ¥Ÿþ.nã››Ë=HŒp.xƒ‚¸Ç—‡2/ ÛÏú1¿ðêëЊ|Ö¸Ä €ë-k›*¨šãl¯ 4 õÁ <~:¸+í$DdEÂ]Ôà ÍöüxMý€tfmre:W8hÒc)5Ž7¦y}ñ õÔß;»õTÒÿšQrsÐkÝŽMçš9©Z;Íê\;±0µ)¡Ñça·€æ¦>œÍñ¡¶s³&t>*Mu³Ò½|Íé¯ü|±tœ 3ÊÚGš•ʷ̪íZŽeª<Ú€Ô¶·í3Êõ-410µQ¥í›6&ìqÌqzÁæ°àMü-‡ÊÓeq/4û‡´°^>’Q+5Èé_ce£‘2¦ÑÈÅQæå›:=,98ï[4»—[þµ§^»½^5ᪧ٢=à¬Æäe»Ö„C‹ ®ÕöN-ÝÝA=p?ë#µ··ˆÎF¡/ïu(<ú±é°lH§õî¬1)9ãþgje½´`6ºdL2¨ÿ’©ï³†Aç_.Ž’¦š«R§;‡÷Ü·)ù‡|J]£ìð¨ÜGÐÚÑÿ׿Q'p„ú,G¶S¥ˆéÆËòbÕ„^æ'uLÏ Uã•×^ñÌæ ï?r9†áɰ|®OæýŽ`m³§Ff ;^iv—v×ÇæuûN­…ÆÈÚ~ÚßVÑÕ’id¥îv—'‹çà>K†É…ÇQ8×þA=îÃUiŠ"„»#$Ééu?Ïjí¾É;ô.s> >×ÃøˆY¼T¡Çaâ[˜ÔXøDñæÀU^ËË‚y9ý¹öõ*)ñMÍÖ¿+Vhøî?hRb ÎËø ´E2V?„]ËM -£êqÕ‰–é?þð§øó'(3ˆO³@ì•õÐorß.¼0F¯Yï¡§Q¶R[›zŠ_ì2zlîõq³¹ó•~T´÷âã2<ã9»ÑU¤R›šu:)ìù­þ¸6ùx® ½,_rN*ƒÉ‡ÈÓørÇ}ÚÂ'«Ì3<vu~óñG»ƒõ#Ý:Ç^§Ùí¼JêÝÜrIÓ$›=–¹ƒ òþñ»¾Â®üpÍ/ûnž¯œón~W5ê~Ö“>… hMC¡J—}¤ X–»~eHhžv ‹›þŇïn*™¤úvúç›Ûµñ–|ç<ñyüz¿~Š_÷ÒòÚWñë!~½I'ÿ‰·ÿ?žýןÁ±ÿz¿?Á÷§øù÷ñëÛøõMüúú‚Þ“Ìçã…¾kæóõ…¸Þ]Šëóo¡Â>¤#èøÿþn~séç“øõ_7ßî˜Û[¯‰t M÷ç×Oôå Ž}z3!C‚¦]##ùƒßë]ïVÝž‚Š&cÉLøùú⟌ ‚¸‡!Æ3{W[úÜàÂ{‚+ÀÕ~y~¤Öœf[¿¼®{[ÐúÔ[…ñ?ÎMš½ÓþcÑsåendstream endobj 80 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 221 >> stream xœÒ-ÿCMR8‹vøzù-‹ ‹ ›÷T¾»¸3ˆøˆø§v©Ô÷÷±òÅ¥Õñ÷bó÷‘÷âÚ½Q"ûDfVT@ŸÀh¯¤¢¬«t¢kpozc,ñM÷÷èçïÞI×%¡Ú§ÆÏ‹ÛÛ1Ä# :Q?f¤{¥ªŸ¡¨°k™uŒµÂØŽ‹¥×ƒ$Ena}{mlt‰N‡xŠƒŠ‹~}”‹œ 7Ÿ ‹ ‹ ‹ aOU¡endstream endobj 81 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 3718 >> stream xœWiXTW¶½e)÷FI­ÜIÞ½& qŽÆ¤•8´Ñ(Š(Š ˆ J1ƒ€(sÝÚUÌ32Ö"¢@”Ĩ‰éh|mŒDÓšÁʸ‹>þx0ô÷¥ÓコõÕW?î>gŸµö^{3v #“ÉÆ­X¿ÙeøÏs@ôCW‡RÇ­lÇV^^%¿5vÕØ¾qÉ66wØvˆóà®?áùDçøÉãõvL¸e»Ôö»'g}áÒ’Èz«a b»õUºèRm¿Ôgëda=! ´·²ð)4„‹©(ÝsÀwÕápNk£¼ö-K¦¨Ç©Ø ÓwФúß.´F ]¢b(,øž[&¡Ógxù›•÷ì•VŒ³"߬Ïïð›ïÚ–l\ºzÕl‘̳AIÍß«þð\徘yƒ88UÍ5½:P|TËJê¥BŒÊFù“ÕÙŸ»ûåÛ¯~Dä%"ñ$×ù]R~³ˆÜÄ"wbú†¥ÿì,*¬Eêzë £¬á&¶Ü”[ãqöNˆQNLž&LC;TþðÚ $Žxò;ÀÏs"²]Û]pm§úÊ[`ÚBª÷Õùé<ÁaSÔîpoï8?à(Úd›g­ÏXÖOzxkoÚ+wáü’o~ûLu;pŸ›Gbã:ÿuŸÓ±h1©ôPŹŽ5E6ï8œ€c¾A{œ4ý{2ÞcGìžQyôK¦ ã|9/ÃW|üp¶Ný…ò‡—~1Lø*LàÛŠñ%´´¬¤ML†h.¢æ`]M]ycSh£ÏF?¿õ1Â0£Xòâï0Ú¯/Õ‚“`Ð^Ù)Ž]®)>N·š®6ZçÖÊšOaÒ)9~k}?…É™$' ’”šš‘©ªUåíŽ8ì_îRY+6«ZÓO¥žJ9¢©=X”fŒ‡nþT8<%òódAS¤ÍKî0¤%ˆäiö ¤–äétU•BN^qinnûž.‘¢d×qåRgœ9¶NÜw4(ÿ²ÈÜå¥0È5Õµ…LþÂ(½ K†ŒRàÊ ¿Š–^w¬“,Vg‹lð¾Õõ¶|hÙТ‘TÓ5šÔ ÁsYˆeóÙ©àH¶‘…ä5âC|qy=ï^ié­D´W …".cOæä^,¬›F Û`/¼ÁÙU{';9P\Ç™I.Ľcºõzï§eäOAŸ¤Ë¤9U@n ÅΉ–£Ò‚ «e?_Ågëåø±Õ™·)¸.œÕ.vž¡á¢n‘–Œ½ÓéØÅËÂ`¸û†*(h5|Q)`#KëMmÿ>7jN+9¦ã,l¨Æ$•.\?Õ 9‘¢•²ÔN$×A1tðñ¶C›äCñ_ûn[NÍp¬¿F‚ý‡ÁtÇmYÄAŠ”¡I™d;LE3…9²M½‰æè­Ù‰ ¢9†ŒF4Aµ¶øp¡ºÔ4 eªAëBbfaiF9mÇG󉑳yÓ³ùÓ½Â`ßhí5©dòäg‡Üäì”r(‡œâœ¢ûxÔáGr4'%G]Žå]”SÄ ë1îî3NêøØë.ºz¥Þ^饯¯¯ð¹~ AÀ/”"ž ßʪaGPôT¸‚¥ÓìÓxÔ«|p Vú­UÕ4™«ªM»sµ¢ÙÔSØÜ©Á€ùâ~Vib<¤e™«CVÇnÎåÛˆKÝãSh=SVÏ¥þ…Ÿ±,t÷®ÝÍ}ï~ˆ³óÊèˆ@ÈʬÅr|cùôBÐÑGÿñ×–æfûÃ0‡i"èÁ á˜Ë¥Ò4 sbª:3cíb‡%÷Ò %=ä;BIqIÝpD€©¦u3ìø è¥.÷ ï¹mMlÔŽ›¥ÀQ¶³ÍÐMФmU®¨lÍ(¢œ••W,¦Fcãõ©U±t± P§$EkiP»Þ ë ô  ÍH?„Bl=7Ú5ÖÉF l§š‡F*ºG©è^ái)êŠ+š»z+Z¡NF›üL¾zw]Û"ýcCö¨¶¢®¡Tq©[yËî¾ð_…xâ´ˆ­ë®àˆh‘*ù¥ÇJ<ÒîÔÓW: E Kþ¨ä<36]Þx™‚muD[žVŠæÐ•w¼?ø‚¿!²=²Cz‡²Ü×o:YÛÔfé‡v8yÀP’Zˆç²ßå3ó|ú—Ðé`7y:áÉÄï§â„:;j*)ÖkYœùOM²>ø-ðŠ¡b° É,2œl±.³ÈQ=4ŸO+Ñ@<]j±ªÞ¦Œé:൰à5…°3ú2]/•åÚÑ‚›=fÑZÊZ—åÍC:¤õ‚¤Û2 ó}ðŠý™RîMá 6àÒ/¡ù@nu¦¶6j~Üò55¶³ÈSÄþ§—PŠÞ‡uù™y©)šô,­¸oÊ+Ò!ð‚=æ˜æý½ÚsÐÎé |!ι]QgàœŸŽ<Í)pÔ³¡Þ(Ãq—ï|)Çþ‘É0DZ_õvvIYEBJãQ\dU‚Ñ\Yej 8ºu‰‹ûKa«®“¿þ‡ÑWYÅÐFjÈZêñòÅÛxî¾Üê„—xœ|ÿÖ7÷œoQ$äw,WgöYꇺà,tŽôa »T^1™Õ`ߨ•ûÆ]€Œññ¡?äu‘8ÛP5${̸îÂ'fL7ËÎâ¡kÍgå8]yc¢åPp__ùàzoxsR™x²¥J S“– œ:?¾®¬¢¨¦ê°Å?ÌG,DÔî-£nkÖ ×ÅžA‡DI oØWdNðLô„]Ü›÷6ãÓh÷Sÿµ¶ø· –c›`U¯HÓ‡åÅ›iYVä––r÷³øWà»Z³¾ùˆA,¯6—×wfÄÄÀŒybYÊ7¡öõÍK}fO£ûLEÑû7ÅQS=Ҳѹ+ǵCnüo¥¡âMº±ÿ¾v«¶P®ÀÖáJiG[d&]Gæ Ú‹wpuOœ‡S¹X˜A]\Í/ËwêktoAmÂÞQuËÊ=!*ȶ¶òцPULTXX]”¥Ñ`h¤SâR¬ehn½lð"Þ¸(§6ýOü¢êÈ‹ðwiàâgÈŸž9µLÈŽ×e–Œ¸¬=Øj(HN×j“Ó…¤„¢ÒýÛVoï›M{ò‰s§,éöÊÍ;wWfâ„ðñ…ÒÑ}:ms ¸s®;—Í]J¨þ¸¤ ÚrÈKñq"ñ`ã ­$_§+ÉJ+S’Žž>¿ñzJ/gÅïx+ºQô=ãSìVÎ@1$kî9®û#6º Žh{ÿåjòíooIAÃ_{eïÈE ™ûΩܻòxú…ÓÿÕË¿!õÔï?~Àà_â +`§_ø¶äwü[À"عý€7§¼¡ýÎæÿrÃz|ÙÉw2:÷S(nZWñ‰ZúI+QÏÄޱyp÷Ø`]kF´QØ›•¡‚d.Ôp°Î\SU?¸µsÑKÄÖc²@Æý‹Žü>røW|íÎKÚ#’Ú?~Ó:†Uà׸þ¼¬ÍrlÅõüyb^χŒì däè9À7DCC££ÂB Ñë°ˆê8•¨¸krRòF­>JX¿öejè¨+¨‚waÀÄ=*c5És„•MKö—ÐFŸÛÐ2Ræ!ìMÉðä*Š­²£Nl ²ë{"ì•×p™u'Zc†ãÜ{žxÿÚy•+7zûÇÆD¾ÏðQÜàîÎ>3ïE—e/”„#ñyYorÊ/çû¹opyö…ŸV#ƒÜwCæÛ7z¢*uAXer>7Å—ÇIKêõ…ÀÇÅ‹¼¿ºüü§WúÎ}Ø"Œ$rü/Ðd¾r»ƒ¡_Ù+Zíð>–%"÷Ýã™s4Rȱ)NÀIΔPŸº¦ß÷6òôqÀpAù4Û÷çvÊbO”Ÿ‰ãåÃàdeGø7ùD:¾BÎÇ·Âðèë¾šÖÆS'J[à0¯ÊI) ÌÙ¾ÜòýN³iNND_óÍÕ².Èñ.Iå!W“‘Ox¿W®|¹Ýñ|6'GŸ ¹\~fNzò¼Dæ!xÍŒv2V›3dü;ÄîÎrª ù¹9ùâ¯+c2]úæðð·d³åîh7ç#zÙK‘Ò4™zM~ºøövCžÒ Ä)’x‘)ä9I“•™œFŸVTrû Ê„žo ?Úr aüØÕ¶O€íx°¶“æøP±_endstream endobj 82 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 719 >> stream xœ¥RmHSQ>w›×«.]Ò•ˆ¸7ˆ"­ µìC¨\Ñ'¦†ÔLÊ´Mm.ÝZs3¢ °wD…eikÔ §‘-̈YzY 3Š(’hYDýx/‰îú õ£__ç}yÎó¼Ï{†hT„avE~qñâèm*ÐZù‚Œqn-Z5h5Í_ÙÔ§ûRnëHôpæ‹u{¹±šRHŠÈ&¢'«ÈZ’O.¢!VÒŤ3G˜oªÍªAuŠìI–= aPbÞ…±0¬–õØÍÜÒ½ØPR_Y.øŽžÛ!,cj ªò2œ»hoéŸ sØ3>hó[À%–bûa¸#8SW(кªø³‚òEQ1(VÑ;,áC‰¹ÆEÏ„Õ<êæ~¤q4nî,ª£ºHjPC@Ëè<^_ðdôÍÀƒÐP~Vf^/*´VÂ9¿Çv‡Õh¤µ|Ì,öÊîNGp¨‹`*&-øD5†íõf£xuÿqó_–Æ[c-%Ê> ÜWÏÏZ·F¿rçóáçÐAés+ƒ³Ã˜¡ÚdÙœÑìçl \¬¨«]È]ï´@eU”ñ%u±Ó½ õ…;öÀ§½±ê¨Ð¸µÌf.z½âOöLé­ÄÜ £MYÊR¼ÊŒÐi%3a¹Ùãð6_9qKð;MÀ=»Y¹A¤¹t²Ò¹e¡ü±ÓÃÐÙ+xM½àÎ盜®½prŸ˜âÁ {Ëì»ê·Áà wø¯>µ£ÎýK–À ŠîžVËK°ˆoõÀ5äÖ½§> stream xœ›dÿCMSS10‹‹øýùJ‹ ‹ ›÷À½ºR3Oøˆù‹ ÷¼È÷˜Ãëá÷ÚÜø7÷Úò©ÎÒ‹Üîûâû#û…ýJá÷Ñ÷2÷PûÑäüGø÷˜÷$÷ÍPDDKPû  7Ÿ ‹ ‹ ‹ ù> stream xœÜ½[Ë-É’ø¾Ňžv SKy‰¼Áh@!FÁt×0 ­~J­n5ç“ZÝ-ô÷'<ÜÌÜb]§JÒ†¢j›~ɈŒŒ´þ_>–×ú±ÄøÿÏŸ_¶W{>þÛ—åã_}9ÛõÚ¯õã:ÎõuŸŸ_îí|Ï#ɾüù—g¹^g»?®³-¯}ëZ’Üëó:¡uìýßÍ”(p¶ô?æï8®þ×{òǨîç~]‡Çtî÷«Åt¯×ë^V©” ˜t“¼1$ó¶|üõ—ÿòeòÿûùóã_üôåŸþÙv|<¯çÜΟþ×¼ÈëÇÚö×µ÷ ÛƒZ»ÆOŸ_þâë?ÿ·ÿüßüpo¯ç9¿þ?þC÷ú´£m_ÿ~ìݳ,íÚ¿þù?îûþ:×íëÿõ®²<÷²mÏ×û¯]ËrŸû_þô¯{ m·îžìqo=ŽŸþ}÷úgCù¹ïûLå)à­õ˾´TþzüðÓ߆Æe=žåµÛÇk{Ýw£Õõµ,ÏÙ¾þï?üxl=©{ýúþ¬ýgýëïõ¯¿ª&ÿ›„?–ð¿Iø7ú×ü†íúë¿ûú']ÿAÿúOú×ÿ«}Z`ü×?|Ëôß|Cñïô¯ü†éüFÛ?|#À ëßýP×áŸIúÏJøO¾ã¯]nþ럸› ëúzŽcýøéß|ùéù…^ý»?ù?þÿu¡þBÿú_m ý_›¿|¿6ÿò§/ÿgÜõǶ¾Öýc?öóµlûz·~sèÿÿWÿ÷Çúr¼Ž­ß«}b]?úuýøÛ1Á®woÔγßÞ¯ûc_ú-túÿßÿUŸ\†“_Ó>þÔ4´÷¹ðuö Û4õÉ ÏsçèÊ'¦¡¯ó_ÿþßÿá¯þ!îô‘áwËñ¸¶ãõ¼ÅþdŽ¥sÞ¯#fbe¼,}ª¼Ç4û-­e}µ&ɤu·3‚3-H&­§GÕVׂĵEiy\¿rÝWT,w\÷¸æ?ÆÅ_¯ãµíx¿°ë™€µOÚ?ü¸-m{]kG÷QÍGÁ/^É?Ñ [÷òº#îxÂE&%éÏþ8ÝÖ> î>–}똎ûľ4áŸ{‹ýêS½iôÇØzšâô-$Ù^ýÁR–óµŸæ#q´`ÔPܰ0çñs¿þÛòôëqY_–$"Ý{«Þk÷À}œ üôç¥ðÏy5úº¤4zÛfˆÓ"’õ~­÷GYˆHWó‘8Z0 h(JXxË#s;úÃ?¬\}avŒÜ$éë«·:θÆÇs÷®|î}] Üý.×ýU×ù:V³ <|ŒœGäXŽ'r,‰££ £¤…9Èmí+×9݃’àª/Ëö:Îê•>÷ÅŠ÷ÛÒ×jËj1—­fXý& ¯:-°WèCý¦(RRQ¦…÷<²ßÂJ·zïkŒøO—Ü1r»ßc\Ó»µ¸"#®» ‡ß¸;NÓØ˜¿Ê‚ðð1Z@²µ×ÙÓBDÚÌGâqý5%-Ìyd¿]÷k·!Y‚1žÖ§?¶[ã­_Ÿõu؀삾vÞm@ö)ìÜm@ k@R’é,äp“ ŽÇŠ ‘í§²Çâ5bžE(áXêÿ?lYö?ýÝÄæ•>êc=oˆk4RÂÑH ûFFA FI s-FŒçF #[ûÛÄm‘÷»âœRëâÞ=ùþÞ°ùÅ®Ô(Q`°ÀÀá¢2c º# ÌY`iy÷Ö`”£ñyò~×`»b1ãócuÙ}Ýz>…5)áìF œýè£Æ#£Ð€E”ÐSÙkñšØo½«×è4"Î'ÆÊðîc¿=ù è/vÄæÙ¦qö 3@œF JÖœh¡‡¹^æ#ñò3ÚO)ØìQ  rÁ;—« ÜÚµ Ὧeæ-C„µ )ÉXD”…\dÈW!3ÚO) ¯Ú¸pv‡Q¢{y=~}TÓ-Ö¯átö‹¸ùüC\·%¼Chw}Ô=Æ(¨Á(5ÿLydÅ=¦.£„}Ý}XŸÅº§N»ÇsfîÕË,óšš¼Oî©×57,Ìydn÷þ:Ú4H§ٓk!=ÍzÄmš?ú»ÀãóGfÞ§?Έëq çZÐìö8&+ j0JZ˜óÈÜŽÏE“”pDýñsÚˆ;¯þ–;Éx ó1yÇÛ˜ÏDÀ5&%áD qðQc’QPCqÜGÎ%ëÍ%ëÛ\ÒŸ?wõ[ÇýEÞûm¬}²i}¢°ö€5‘@ÀY­µÄ€ùšF€žåoÓÈúi¤¿¾ÓFn´þâ[÷U‡O.ùjÙŸÃ4Îm<Œd@÷@Ix—Ðï"ú¨û AP!²ý”ÂÈêîî~i®xblƒ!€ ž¹ÑÁËÏÇë¹^-,ô•ADû <±Òè—ö9Ìqzˆ”\‘4›Çägö eøÏ?3¸h9Gž]Ô–è®Zr”$— Ÿã ƒ%E¿¢{¾?pÑ1F|,ó¤qžc©. Ä\˜d,ÊB®)Ê57,ÌydnËÐõÜ(adë:†¹"ïƒy{¦Ü¶ WL£¿MW‡¸r“‘Ñ#§ÊQPCqÜGæoqÍG¡$Eëx>Ô(»c^òqïŽi÷›â‡”ŒqÈæ‡´¯qÈðwÆÇ1láç}µ·Ñé×~ÅŒòi’xޱÜ;9‰W_Òì_ã¡ Ü}ÞÇà'K#ÖiˆÓG´ d‹Ÿ8>ÊB¼Ÿæ#q´`Ô`”´0瑹]ç6iP‚‹}ß[D¬Î¸ãñß¼»îX"\>±lƒ„¨y¸º‹’¼ùÑóí³»þÎøFÛ9üŸÉRšx?ÖxúU.ü— zœÛ˜5?MÒ}YBòˆ_ã…%qÑ ¥‘$gY NEƒç:&ç²?°læ#qÑ ¥Á(iaÎc¢AÏ>ºÛiг_ª{-ô<®$lAQ * œ²@œ>Œ={N$l‡…>ñõe`ùHl4(5%,¼å1Ñ Ç1ÈO—ô¥t± =Ò—‘  åßAp²µà&Î’vÄÏ¿Õ~’‹£ƒÄÆ€JƒÒœÂÄ€}ͼ5g@Ͼ^lW1 g_híW±“ÀÆ€Jü¦,Ç1 }u÷©,ôGÎkÝʰ1 XÜÃÂ{ÚçŒxã4ôèOËõ,´¯cê; l ¨4ÀoÊqú0ôèý5ÈZ8ÛÀò‘ØPi(nX˜ópôˆUðe èÑŸzEañs©Éø·QŸÅjf3ƒÃ¬ÑžÇºÇ²Z÷UÞu”í„F{Jq±ý÷D{¶Þ•×í´çÑWŽËZ´çÑQ’ÀF{J¤¦,Çў-NgÑž-–ògù6ÚSŒ›æ<&Ú³ _ÍYÏÞÙëÙçQg=õ”8M Œô<ú{„“žñLÜîòÐHO)(æm"=éÁ8Ïb}œóìsèXØm<Î'žââ#ó”MX(œ>ŒóìW<î°²ÐnãÞ¤ÄÆyBRQ¦…÷<œól÷/ÒŸ&¸ÁW º±õ¦ëZ|$°qžÒ£)ÂÃqžíÚcÉZúËü}šÄÅyJ!²ý”‚Ï­ß¾çíóEÞ0uÛöÇý]·õ@>i AÍ ¼Ý€aÞæÆÅ àf¡@›7¤À€Ñ~Š"ŠãëÖëù( ý‘|?æ#qqœ¥Á(iaÎcâ8[¿P÷í§&nPŒš @BÇ)…ä0Õ0ÇYKŒÑZ³6ÌÇ) Hs Îq¶>®§qœ1‘î·8ÎÖ_Ú·»øG`ã8¥SˆÓƒqœ­¿±<{qœ­ÏËn>Ç)„ÈöS Îq¶~÷]«qœíéskÇÙžñR*Ø8Ni€Á”âô`gD•\,ôUù˜Ÿè#qT`ˆh?§0‘­?¶‰ìlG<Å2¶þ2¼× l\§4ÀdÒaz0ª³õwÝå(ª³ícR/‰ê”c¤…9‹‰ê ö8ÕZã§ ŒíXò§ÐÀFuJD¦,§£:ÛØ\TgÛZþôA‰ê”†â†…9‰êlÁNuýñ2~.Óxóp lT§4@dÊ0|Õ«Èk/¶³Ý[ôŸ|ß) ÆM sç¹÷[z{œóÜÏñ`Û¸_8Ðä#ó”MY>ŒóÜ#LZèÇjœ'°qžÒ`”´0ç1qžû3Æy¶xqX‹ólýeu1NØ8OjѤbø0ÎsÆÿea¿Çÿå؈Oi(nX˜óø®ägŸôÏHÄ9Íë>æM²}-4&›Ú${lñp?¦-«®•[V)™¶¿.}âZ¦M²LZë6f-Ó‚dÖê×¶Ý“VJ&-ÄjZýÿÄVÚx`.¾¥X~ø±›ïÃvûºñŸ÷×öíý´ßºê¿yCmþ‰±nLòvÿ‹ÃÝúˆºZ±¼ÀÆ$K<±,§c’·~g v•Žñ˜+‰I–†â†…9‰IîÓ\¾¯JÒ×䘵äþþ/¤äxÌ¿ƒ#fk@˜7¹ÏEƒ;eû5ÖãG96™ ÞR˜HämßbúøtÉ“o(àp·¾rÍíOÉò, ðIJ ¼q•JÉ6VÁe¡?ïÇ|$6&YŒ’æ<&&y½_Y)éƒk-"¹OpÅð®XƒÎ¿f;Â4lôñÚ_Σèãõ\ãR—ñÄFCR¡¥…÷à'ú8dksúxí/(»ÑÇ}JŽ{@Ô.°ÑÇÒ9, ÄéÃèãµÏIÑÇù Êé#±ÑÇÒ`”´0çátÐ Ê(vØîÅÅ­½îâj ‚Dd ÛOØï©ë..h]—˜d?¡qAR@|l_ÁOrÿßä ÙbùVüñ¶y¼­sœ)Ìv€0l¬q¬çÈCëxÆŽ‘·sX7Ž<ø–†‚……9ø‰5^ûX¸5ŽÉw1Öx ³Xc@c¥RXˆ‡c×¾ŒÌ¨0ЇÛY¬1 ±ÆR`ˆ40å0±Æ1—ÆÑ³É &_F›1ºÀÆKœ0,NƯ} X×b—~ËoÆLk ‰Å½å"oÎÃYc‚)àHJ¾vsÆx›éâ͹b6´( †ZkxÁ¸ Àt-ÊìqûܰÄÏú§Oq?ÓÝyžÓí{žÓô’ºÿÓ€0<Ø ±<à„`aé®ì,@›!¤À˜Ñ~Jab‹½‡Út­AÓ¢’ÅU%É›Ìv€ÖG’°²uõQ·>‚ïê¤6÷òüD¯ËˆQÄëz$ žví/ɣݸe6¦Xà‚e8}[«Ÿflq¬vœŠ6¶XŠæ<&¶x ‚«9[÷}¼ð‘§é&ÙI&ØØbHÄÃBáôalñº\øÝz¤—±ÅÀÆKƒQ¦…÷<&¶¸^i$Ù÷üU DíÚ&í‰6¶Xà‚e8}[¼®ù. 뎧ð‘Øèbi0JZ˜ó˜øâå‰9Çèâ5–á{ÑÅëºÅãFT.°ÑÅÒ, ÀéÂØâ%û»Øâ%Öáå!¡qÅü»BFó)…‰)^‚:{œ)^ú’*eIÔ.ýš=OQ¹ÀÅK!™`µLÅ/Ç“S´nî2ó‰)–¤9gŠ×u}5#Š×¾æ?7Å}•…m—×t¤;AóJ4° ¯¼òôÙ>wU¦%~[±ý¶ÀÅK²½'à4ñ3ón4q ¦¤÷Cî{Q¸ÀFK$° §£‰ãYó¬EÇxZl;,pÑÄT@ˆl?§0ÑÄE•HÒŸþ›í‰7»A‚Ä6žX e8}Që‡ÛöÄÆŠa0æô‘؈bi0JZ˜ó˜ˆâåX¹ÚäÎW5P´éi$.°ÅÒ , Âk.J”õ^Dñ²ß¹œ ÄFKƒQÒœÇDG\˜é)¹â\ƒ"Š—ëŠ;A$.°ÅÒ , ÄéÈâ¸ÊGñÄØiÛb'–ƒ„9‹‰&^âù¶;M+°øM˜m¬¡Ï£(\`£‰¥XˆÓ‡ÑÄÁgìÅÇv&ØXbi0H˜³p’ØÉKJúynE/Ë’t6\`#‰© X„oýŠ#É’tvZhÏ5~R¡â"‰KCqÜÇ÷%‰ÏelÿÕ²¿¬øxÍ6fBç5ÛÓÍ=Åk¶1·¯I\¼fi$kY€á£xÍvßxÌ´p÷åÅQ¼&qñš¥Á¸iaÎÃyÍv/ƒ›ù4IB¯uP@»ûse©ƒˆ‹Ú,¤.Ëqú(r³]Ï88H®¾¼j‡,q‘›Ò`”´ð–‡“›]¶å¦0“<¹¥+iÅé‘[¾’x$.r³4’º, Â7…Ar=-7…ÁÂu_Öä¸ÈÍÒ@”²0çáäf»ú”áÜf»ú e©s:¾’pI ’¸(ÎÒH³,År¶k»"Ã2°­øê.6ÌäĆ™œA¦…·,œäìQ¸Ù$ ª«‰äìøN:1 Hâ"9K#)̲@œ>ŠäìÜùY0-Yö˜ÄEr–£¤…9#2Æßçìqµd›’DhW®4„EdPBš‚ §‡"2ºdU {ËÍ/p±7îŽa T`Ìh?¥àlgbÇÏ>’ä ”cÇcGR’¸HÏÒHZ³,;‡%¹Æ+ ±¦»ÍGâ">KƒQÒœ‡Ÿ=Ž'VUŸ&¹Î삤ûÍÛß Ä|óY Il–âtQÔg—lØæ Ç Â0]$,ê³5 ÌY8÷Ù®uŒìO“l Œ·û‘ÓPò’ÄÅ}–F2›´P8}÷Ù®åÈ)ÎçÑ>€‹û¤¤¢L ïy÷Ù‡ðÃb è=lÖóÂt0Ȭ¤(‰‹-$9Ëq}ê É–¿8ÐBTûn>‹-ÆŒöS óìqc·€f3oMÍxÑãì¡÷<Í5,Î}6gy˜fÌ*g#Öì5{¹AÌf(0f´ŸRpÔgJtï.Òæ†ÁVúì‘|fi$ßYˆkö „÷>-pn š=5¥æŸ)gDûXÝÁhPDô&B´ã3^÷HV!ZIw–âá¢øÐ~¿œÉIÀÀLtñ¡ÄŇ–‚”…) §C{-Œ}š„Oú$"§'ýÕ„‹­ÕD’ÓjbàôQthgDžeaYso},8˜§¢ £L ïy8Úuîø°çÓ$±¬Í³#Ò­6ÏZIv–âôQth—, ºÓÂkÀ§|ZŠæ<œ £Ý·Ïö[åˆM$#[|ä˜dø`+‰‹-¤;Ëqú(B´K°SÚ‘¿æÒE…Å ¨¡°ÓÀœ…S¢5;–„³[2’öTœeÍ 5KaPžÕ°&G VÛ<Ë™¯Ìsn¬¨¡Wß<ë³#Å1nž½8Ñ>°öÀƒlñemî||r¾N\œhi$åYˆÓC‘¢cÜŒ.-,[þöM‰EŠ–Bdû)cE»hði‚;¶?lñýp+Æ’¸XÑÒHγ ¯ü •’˜3jól¿{îX6ʰXQ)0D´ŸSpV´·ØqÊ"%1ý¬ÅŠÖô“Ï âbEK#Ÿhe>Šmç}æ&JX8ï%9Nø.V´47-Ìy8+ÚÎcœÙñi’þ:k't%ýjoâE[| »—‡„ÅŠêç&R´ºL\pÒ‘ì–Õe¤4Õe <ÕeÄÕe”à‚Ë:D>ÔeŠ‚Œ’æ<¾/)ºõ7‹íë|;^¶M{¾s¶Å÷ϼ'Öµ°s’YëÙæãe)™´ö66a˜$³Ö=fr×JɤÕö“OhA2keF®U9þÏì¯Õ]×ûk÷ó‡×=6„_Ûö Ûj±K~ ýÜW"Ø("IOc­sj;6^¸å*…´qþ œ²§icûÓ`¼ùªy_\§YOl¬³4-ÌáO¬s[pª½Iú:å.ֹިöÓë, pʲ ¼âUJö§å¶°#+`ôl¬35%-¼å1±Î-9›³Î-:µ¥v\±­¶Ôë, pʲ@œ>Œuޝ*ïÚRÛï‡#ß§ÄÆ:KCq¯¾Å¶|ë_,ÓÎÑ yÌc2¾ñ)¦Kl´³4À*Ëqú0Þy|_pï¼Ç¥€ 6ÞE ïyLÄs|Ìyûñ´íèwíòñ|ôeÉs) lij4@+Ëqú0â9¾c>[Ïñ9çÕÌGb#ž¥¡¸aaÎé£Ö—ä‹OÛ¯ù‘ŸÔ¶‰mÕ×Ö„FA"b §£Ž¢XÄØ& që<ÚÃKhÔ‘3ÚO)LÄód´o³íCº;/Þyïë‘£(á„Æ:óï ”Ùš0Í笵6Û¶½/Q6wØ8gi(dX˜S˜8g=N%Ù—qKŠïÝÌAç,0Ê2 Æ9o7Ç]ZØ®'Ö8thœ³5 ÌYLœsÜ–›ï·½ÜŒsn8ëœ|pÓièdŒ¥F„áÃ8çø|i1Îy¿ОéØ8gH*î´ðž‡sÎ{¼’8ç¼ÇqÅ9ïûšt!ø``㜥FYˆÓƒqÎûºæv´[uÊ·î(*0f´ŸRð‰c»ŸÏ, FI sϼ÷©ß‘SÒ'ß<3)Þ=&ç:BØxfi€E–âôacඨc9ñõîÖøô·ÕM€6c@¢ù ×­HIñ\Œ5ŽÛb­}Ê€6cH!²ý”ÂÄÛŒ! ï÷$mk>HZ×Âñ+ ò ¬ƒÞï´Àù€>jÆ`Ô`”šs¦<&ê8îÉÅ÷mqÛîÅ/[2¬`uoÌ¿ƒfkÁaÞXãxÐÞuhCÜ8p`8 .Þ¸4 -Ì)8q¼?]–û?Jr£ðÖàm÷gkø¡g0»ÄÅSBn˜ /ü]’eÇOiá~.ýö>€‹=. F¹÷òpöx¿í¾K¹_!Ø›¼í¸bG¨@\ìqi$7\ˆÓG±Ç{·Ô.厗ܞH‰‹=. FI sÎï÷9Js}ºäAoÞv¿¯ŒÕ`v‰‹=.ä†Ë‚ð–siIŽãUäñ~÷éÏ= XÔ±þÎÑzNÁ‰ã=†j»Œ8Þ£xÖ%ÞxÑo§*‹7.…Á «9ЉƒN$8nü:-Ÿé´ž¸hãÒ`x40'`´ñ•™N«`Ö¯;žƒ´Ý£2ÓU'*m\I —âôP´q¿Ôw|PUŽ-ëñÑDZ±b‚ Bdû)ãŽ÷˜tìÔ†qÝÇGƒµÝã!b̈‹:.$†Ë€ðúòCú¥m¹Š¦õþè"±˜c)0B´Ÿ˜ˆãE”–$AHÝEÇ[ŽÙ@lı4@ ËqQZ”!eÌqL’y23|,:I†QPƒQÒœÇÄ/Û“1—d¿ò‡·±\Yëp_b#¥‚XˆÓ‡QÈK8VÖ3Ï.¢õäéFŒ‚Šæ<œB§B‡U r‡ÓÙ¾ÄÅ —FòÃ2E ï÷}ça„0tãU§B\Œšæ,œ@Þã„€éhß=Î86È;3$w‰‹@.¤‡Ë‚ð2í»ÇƒgÜ)´Ð'øAäÒGâ"KƒQÒœ‡È;æ¦O“ðMêv’ò)™¸di€®9‚8}¼°äŽ÷±³_>\Œ’æ<¾ ¼më 3Ï5¶viìÄo[ï–¾n8[cT»ÇÇ«”üáÛZ’ÄžâJùÆñˆ×MnøZ~ø±?Æã੎îcf‡õBþ©NˆÓóïî0¶Ûå.Jb3kQˆÓƒ¯@qèÊv,cW`_,ÄŽõ¬¿¯ƒgdcBXúô;s ²ýÞ—]›9þù  ‚†·Æ«ß“Ñ+çÞoÍüm^’;þëóù¨{[¹b·$û8ÜF ·iôÍs›âô-(9óGYèSMüü.‰££€†¢„…·€£¢†â†…9[ÝÏ7 ÎñPÔ@ØÎ{ìÑæP¶Ñ( Œ5Y N6û”;~K‘…1Aš†³û* j H˜’˜g>m#%YÇ·#uï®óxödÇ£,§ÁnÜ6£Èßcã1±GhhüÁÂ[ó½voY<Ç$yTwYÍ£¼Ë/û®È ¡{ „7œíwßõø½–Gy×½Ækë^K ¿·.Çôaãñ›l<æke„8ÐÔÇcbÔàh£á®×ˆÍ/d!_,ËGbÔàMSÙgÇøÎÿŒ]&c—…IîqZý~Œ“Æ,³ÝÞïŸëŽûûZâ+(kÓÌ‚ðŠz®’¬ù˨,Äîûf>G FA FI sÙgx‚Û$B ç€\pŠà¡&®"¤U k‘s€,`ŠšDçÆÈIdÎbžEú‹Ý1M"}rF8‰ìGá$²ã«ËšD¨ÁIƒ„·\Õ,sŒš»2‡B_æ"±¯B Q3]Z˜³˜»,6¶N=;[·ê±~1¿š‰½Ç¨¡JÕ?ÛkZ8nû(q_¶Qâ¾\$¶ƒ‚B„9‡iöˆ‡û==Íâw€ºmãl;»¯ô©×¼­פ¦íÑ–›*êA–êAvÕ¯4øä‚)þy²ÏbE>Ùy]M³û¨òZñŽ:°5UCƒS9-/\ÿQÒÆn²åŠÊËUÐP”°ð–Ç< ûkܾOÃpFí ݳÇ(}Q7õóz궇†FY(¼á©.É6NÙ–uü˜(+~ldùgŗߘ;ìÙ²B•Iòp¤º_ó𤺣^~ÝóÐк„7^~=¯QBv=ã÷=uXbï0hÔÓ8-¼å1Ý_ëx9·ûk[s®âðÞÅR7À¦njð¢âtá7Ù2~Ñ, QqÅïâÄ~“QAÒÀ”ÄÏÉ?œ1ZÎõÚ²XµIžñ9RÔ”iûÕÙ“q÷:*Û<¦Úc„ùu¨$=£˜2eá_j–ƒ_‡* j0JZ˜ó˜V[_Å>‡¯<Æ ¾kåÑ_)ÆÃ–«`[yHë Y N¶òØÖ±×«,,c?AùHl+i(nX˜ó˜r‹‚.yÈ`Ií,«ësL~-7i rYÞpÈ $W~Ñ% Y‡¬|$¶Ü¤Á(iaÎc“Ïž{Ž%‰qï# 1°÷. mDòïnjÎá÷€;/É=ØÝ±ý¶™Ø$54-ÌIdb˸g}Oé’<#ÐuÔw;×-w7mÛøñ8Ünã·ÙÒÈ£xd@pÓZ’\q3Â@lzÎr-„4#-ÌYÌ]vàä»Asc–®×yÛuEû4B M°@|쌔’–§¦ÉB¿l–ÄÞkÔ`”´0çñ]Ùâc2øFr>uÄï¯ê ¿ÂÌFó(CïÌllÜ>Ž;vqböëßüÇ¿þ›¿ý¯Ÿ÷ÃOk[u¿K’û1è¥orâS–¿¨ø8ß#NrYü…ë8ãË ½pux§,V5ĵn*\É€pº¨uÓgœÜõÂÕñê¯ÄZ:IA1ÂÀ[¾x:ÎþŒ>n[<ç±æÚ5—-g- ,lˆkñT¹4* Äé£O=ù+‰FZˆOxó‘¸OÒP”°ð–‡-žŽãØòÜ<ñ -V-GóUK'ÀZ9éï¹,RkÁ _àJÒWÆ{‘¾£”q;ÌξTÔ@|40Å?uWœø³µ©»ú3§]Ö]Qçà²K™Ø»‹ì Z†ë®ãÙò]ƽ]/áÄÖ]Ô¨¸ÓÂ[ÎúÇuå™m%¹Ç—Cä[{«u“ F–¸XßÒHN·,_<̹$˼²p¶1xå#q±¾¥¡¸aaÎcбQdŠÛ=^k4š“6 Ãñ7Ž1´\rKTI¢ÖK³Aul|&öAH DFSäÓ D™{„,Ÿ­îï¯SÍÀ6¥Á!F Àðaƒ°õ®kPC(X N6kÄÙì—ÙŸÀ6kH#ƒ”)‰yö»±ù/z½³[>÷Øù÷ØÓ[Ã#± Aip€Ñqúð!x./[Fµ£ï(ä"±@hTØÃÀ[ÓìÏüV)ɹäåÀœ¥²›M‰}Ö § N6cå?4ÊÂ> ›—ýáO• ŠÞ²˜û¬¯)ïiÚà¼]ÓÆâ»ˆ§iã}š€M'n³êUNœ6rÞ®icÇË~M˜Ù5²Þ§‘óý>ký•wõû,®Ãnï*qÙÆ’@÷ÀÅ%îhè.‚âtá÷Y<Ëv»Ï®<ÕH>û}F ISNÐãœçÔz\Ëø}ÔHÇY§ä q4¥‘ôKY NEÐŒÀâ§YèO阃ä#q4¥Á(iaÎc^y´–gµ”$Nî°…Çqå;+*9Õ²\VÀaC±¨’ìWî8¡}|åQ.ûºƒŒ‘æ,æÌò§¥Ï9×Ë×Tù㒥ƴ*5hX.—cý U’%¡…mú}žØs£†â†…9yDÆ÷ÇÈ#võeØqVâh9¸/XãIo² z€¯1z;eØñ68pÈÄ>"©¡x;eX>Šèío[n 6Iòà Yýÿ' K\Loi$‘[„7ü®%ÉqŒ5»,Äù—§ùH\Toi0JZ˜ó˜úmœDùL3I|O¸ÚLF®vMûLB ö -ÇõÛþŒ ²{/ÀÖoÒPܰ0çñ]©Þ­3¹yÝß`A¿¥øëçéò¡<’^}i1.K--ÆU³¥°--¤… § [ZÄuÝmi×±ÙÒ¸–T¨¨ÓÀ[ÓÒ"~59§¥ÅøI³Vã'Ízè'´uÿŽE[¼­*ÖûÌ×$´_c-y”`[UPC!ÃÂ[ ¾ªˆË—ÕVñ[ýX ây>Τ¶•5°­*¤5ƒ,³„$v­ÑŠ]kô±j×£ ‚¤)‰¹»úJ{^ Æïy¶\ïÛ¯åÔUù7õC¶#LÃÞQ}‰}zGë(h$㉽£ ¡Ð`á-ø‰ú ÙÚœú\±—¤ãz_ùh- lÔ§4@lÊñ…CÜJ­¸´p®IÒÒGb£>¥Á(iaÎÃáºÙþ…#޾ØjƒÐG_¬¶æ¶( Œ/Y Þ|óÂŒ\w ¿¨`­lÃOˆ*ü·©âz{¨"¯©bµ7TŸ×4áïl§Iâz{¨_#·ÍcOÕçkÜ·yìÁÂ[ðsBý1>ßK-Ñ– Èmb¿¥¨ÁÀix¸ð̶;w–Ñ@~ÏU.{fÐP°0g1 ¼Ø¤·ûØ‹ŠP§½n² ìc6¸Çé‡߲åû$,DiÜ͆° ?i0j˜’˜Vç6!ÁHâ²xs¶s›©ÎÍyN¶¬XŒ´Öø‚ñô-  sðeG#e‚$~û$Q>Òã=…¶u…4°j b¸°uEœ”¤FZXzà»­]€k]A…Šš´Ê”Åïs²¨ŽR{WÅg¦ÖU}9{Ùò Ø»Šì*¨®ãÇÛ%™Ié8ÊiT`ë*(TÔ3)-6[ħÚÓ“jÎl¶¸§ß.€§Ùz2Á‚f†s´j¶Àç´Ðã¼l=ì+jpz€)‰yn'>ª©rÏU8ögžß÷ç}~§†æsXÐt΂’¬ùÖ( ëî;0‰}4BCQÂÂ[oGœ´2ÍçxiÖ¼1mQ'žæ hh¨¥š%ÂÃ4mlƒV«i£/Ã}Ö8_ó¤1þ\gë9©¿â —Ëw³ËÕò×w\©%;Õµ¶þ’zCˆO|`]’ã™ÈqàÊi»€­¿¨¡(aá-ù[_Ó-¶âƒÝbmú1xºÅÚôc‚,¯¯·;¬åîW=oìŸåóøÃVÏchðƒOa"&Ö<Þˆ‰T{meQîFö1! в@¬é)Ç ®ELÄÈrò؈ i JY˜ó˜–ãȸӗqüÑVÑqêÝj+`[qHk Y N¶êˆ”îúˆæÇÆ5óÑx ¡¢ £¤…9·ÜV¬:Jrcí«=ÒÓH`ÏÊ„W,;*·6^_da¿ÇªB>{nÔPn°0ç1ÉˆëšÆdœ‹Ÿ¬j4Ä燗Ä6&¥ÁG ÄéÃÇä1¾l–#ë’ÊÅÁ*ç ‚ æ,&Šsq¹;Å9¹<ŠâŒu,cH?Å) ˜²@œ>ŒâŒ£÷b8cH;‹ l §4$ ÌYxŸµ8aw‚³Åñgçf}¶äq^º ‰½Ï¨‘=RˆoþQ’%©Ø´Ð[ãçú ®N+ Å sß—à<—qVå¯nóüeÅß@p¶qŒœíéæœmœ*S{âZP”F®d€.jEÑî;¿ã¡…û^Ç3Ž>€µ¦‚¢†·,|UÑîå̃^J²¶äUòyÞî-¿]ÆŸ¸V¥‘k†²@œ>jUÑ®XÞÔÆ¦Žw|Ñš>€kU! FI oyت¢‹¶igS<¾³©ÇyøÎ&âZV”F®Ê‚ð6ïlêq5ßÙÔ®ûÁWÜé¸Ö¥‘AÊÀ”ÄÔg×Þ&b¦]msb¦ãËîÄÖeÒ`‡Ðñpá=†ÚÒ2€ÚÒr±­óº] æ,œíUŠñ %Ç–ÏïäG¡â§6aÛYÉe–âôQlgäÎïåhaTÊGâb;KƒQÒœ‡Ƹ໭q{\ÍI§QaÝH'bŒÒàP£âtჱ-N:Kn´>±Fj0êÅH§òàƒQÕæ%A­x Ô’×PQµy &jp°Ñ±ªÍ×xÍZñ5ž³–|xV›¯{"5êžI oy̹OV×*ÉufÐjZ6Ï-±çF FN ÊõAu­’lج (›-‰=7hTÜ›­Q>l<®ãDcÛ#a;ü ZbÔàh£âtáã‘SÂÂÉ)áØÆ£4$ LIøê½à±uþÓ$Q ¦VïcF8kkq­ÞK#׿eXöK²ùê½_‹q¸}ùH\«÷ÒPÜ›¯ÞËGÑV’]Ž\°ã¹D¨Šì\DH‹ VQö’¬`PaE×åCeÙ*ê4ð–Åï~Q¾½m›:m]pÞA^¯uŒˆº ‰½Ó¨Á.ááÁúì|N|S”ÎgÉoŠà¸úŒ ‘ææ D§]qÁŠ@V š@.¼”Ô M °  „G^Õr%sJ }½ù$•ØhÔàSóP\nT›•$VícZÙlícZûlmŠÔà@£âôáC1«Ïü{4çòˆm(R£â^üŒ—òáC±/Žöm‹ýJÖgþýé´úgþÄ>©Á±5¡Ü8š«$«}æ?Gñv c€B½Ú—þåÀûLc݈§ïµ‡*§mÞZš.Nßj3cIVßZ}ÔÌÈ( Qq¯¾tš5D|ü¤ûl÷ß:~ƾ½ºÏ|/X÷4tŸíþû]L÷Ùí¿?t¼ùåÄÓ}¶Ùåe`Jb¢5®þb¾ùÐ.uÉE(\Qôªh â¢5J¤…,¯øUU’eÔ+—…ó¹Ç©Oôl´†4%-ÌyL‹óáçÇzœýðØ"‘‰}B .1h>lrÞ§éßñ’d'|Û"DŒ›æ<æÜŽQ.Ör;Ï=_‡hõ|ò!I¿‰-7i0rZ >N¸Iì l–[ÛÇ +‰=7j0JZ˜ó˜Æd|»úéíÄNRì$ÕxIlcRq²@œ>lLžËã”}Çù«Œ|$ö1I FI sN¶øº3¿l(É3¾K7Ùâ3àA &{I\iiäÛrBŒzµ åaê³ ÕD$Yq ûl[p¨,ú,±÷5ØG´ >»xh¤ú쉯 «ÏâyYŸ%ö>ƒFõYZxËcâEcðc—‹-&ò‘ØxQi(nX˜ó˜Æãró Ö4a$lyêŠÆJbÔàh£â…¥ÜJfâ¾yj³)±Gi0j˜’˜ÆcÕD—$«šk dÍsÖD×PÂß9ÒКP5ÑK’ÍÕÏå@5Ñ4*ä´ð–”VœEöLScœ§»>–×rúI«Äž59-Çå'¢ÝM°'¦]v›[nÔPܰ𖇟37ÓŠ^nö¦Õ–3'áP\¸JÕP¤† 4§ìá†b|²Ø›Vœ½Ú›°Å{âäe`JbZ±G-Úm¢D÷§^åZyßó›@®¦mÅ. ¬Çe8}ØŠ=Îè]ìmdÏm$åC[W57,ÌyLŒFœ–{ø¾ÃçöÞZzìý½ô2æ Ø ÒÀ íÓ-Ab ¸Û$րΙׄ sxËá÷<}0Õ£¿0ÜulùÙ!®Õ±çÏu¼˜ÀÖ_Ò@wЀpº°‹–‡ý~,£z¥\ XÝ…?WÈÛô«ºìÛC,N\½¦EÕe§öÓn§N+ªÝN;UkÁ…?k=µå±óZO8¸žë©ŸÖz \@ÁÀÿ¼žºFIs_O]W®u¸žº÷iöõ5¸~¢á…¥(‰£CêKøq)šB`…ÔP”°ð–Ç4 £€õ6MqÊ~{jÖˆŠ…öÎì³50Æh@8]Ø(Œ§ÜÒlÚxšnOlÓ*ê4ð–ÅüxŽ_¦^ÛÚ™o|0N»À£3±õš4øð¥âôáçøíÊ~±Œ·I+×@ìghTÜ›—k(þæÒÈ]sÔ®I]sŒs¬ð.¨±Âû„º³`A÷Ucœ”ÄGF~£­Ó<àt›åß OñOäŨ0q £q £ZA}Olä…4@MÈqú0òbÃ.`ZÕ Œ6òBŒ’æ<¦UGC|l¾êØâBÔgðmDl°­:¤5…,§[uôw—-:â›A÷0 -9øwÅœ­çæÅÔvg1Î’Äiض–j«»Lè+)üË$´ÖºêÆù %YýËþQ‘Þ™c`_GQC!¯þeù°‘u|¦3N»äÁÈÃHlÇxí×HLì#‘g² ¼ÍÇœöHÚx¯—…><6m$JƒQÒœÇÄ|Æ\'þ—$W í¸ïûØzL^ؘOi€×”áç:JÒçù±-––\§ÈGb#?¥Á(iaÎcî7¡³+°`£&®Øž?åêš&ö~£†ú ÔK;#¥$>Í٬߂ÌÜ|–zpeÍcÐ`”´0çñ]éÏý>òÿ¿¶9ô— ý9v ûÙémì ?µšX—<[žOz`[MHk(¼`³ƒ$±QØ~UMÙ§íü®Õ# ¼e1­&Ö8jZM¬Û埵ñÁýl« i`­  ?e¢dÝÇnYè·…Uv ¶Õ5%,¼å᫉5Š÷új¢¸|ÿÁ£|=îégU`[MHkY N¶šˆO–뛓_,_F;ÛzBˆí§¦ß;L›b+ýj›ÆÖcÀÖcÒ@Èqú°‹*–F‚¢‚y¹HlF ™Þ²˜8ÐøüÆ?„oñYÊ »A>Æ8qº"éI`£@¥‚S€Ó…1 Ë“Ì" ,w2‹tl ¨45,LYLqk8vF¼áä~Ž{ÚA ì‘f›ŸìO>×+{ˆú•¹|°'ö‘H ISoCqy#äYœ»†âîÇYZyïŠÐÐЃáågqnY@ñnùPyoE‹iá-9·Þf=¦Üú47åkŸÃïµë.†"ßçÜÒ‡ç¶ò{{XX÷ig>°ç E oyØxŒÖ6£äöV_âZ²ö”І"ÿŽq¦æ‰‡ñ†ûs£ T¶îxT*¦y↥`i bŸëKp7^• Kžä±V^6ÌXMÛz]XË‚ðÆ”įÖVìû¨õ]_Þ׊½4%-ÌyL$î _vœ éùÄ?ÏAÑjIØ–ÒࢄuCJÒNm°ÐòùHlË((FxËâw?s(ßnm™{mM¶×kÛ­ wþÎþÈÆ1dI¦íG…ú§:ŒX&…o LSF=ö¡Í>ê5×VÐýÙšÿ¨A\óFipf á…¿S²ìÓÜq?àáØæi H˜’ðØ§—”“$ŽöÌ!0®ÖQ¿)×@,fe8}Ô@Üã(®¥¶‚vŒŸÇè#q Di(JXxËÃâ~Ÿã5ôÓ%zz „û:üØXâ‹¥‘cM o˜K%9ŽWQ ûÝž—{°†"þ¬ø²ñ[s‡ã|ï°k{]Ö_×ퟯ{QC½‘O)AÉqã‡86ò{wAC1ÂÂ[~‹Ý]tÚ*±_{>*1¸UÃ?±Ýb÷\}±,§ »ÅnÖV¤…ç—ÓÇ¡Î5äTœ±<ÑSîoÞF_ŒëÔ·­}ì¶ÁçƒZ .ú¢4’œ( ÂëË?GfÙï2ÐÃ\os‘¸Ø‹Ò`´0e1/=DÌH´Šýè/=ö…<±/=¨Á…-‹˜©ÅK(Á‚Jô±ðEA -5/þT>¦Ü~4ªÜ.l®„Õ¶ûÑêÄž5”,(·‡_öI‚“žha=ó“PúXyx…¢ †âÞü ¢òaò~¸™M‡xÚ€œO%ö9Ÿ*€ð`ò¾sO D-ù«¾Á'¶) FM sNƒîñ=ötè_d;% ÈþlÚópÛ¤(‰‹-$9Ë‚ð2Úo¬* g–““…é5%-ÌyÌÓHÿÿ}L½Æ[”ÝÖ¯åãÝ–Ø»ïÓqúð‰¤? ÎÍ&’>¦¯Ý|$ö‰„Œ’æ<¾ µV¶·¢öÇ7XÐ_ÓûS>î¾®ÞšjÇ–õëï¾_›ªÛßQ§]Åîû•¹{oGIlþ=ê´ßÕP¥éK‚âõlÏâöt-42-Ì)ŒquÇ·dªÿY”®‡gÕºïð‰I“8œÞƒË/gpùe€˜uéK‚Êõ²€Êöò‘x\Š ‚ ‘í§FV×5ê.Vá{ P¶þÊàTÖþºß ß_Ï\øþ^Fñ,YVáû’Œý(2€²ör¡Â÷ ‚ :ÛO)d_mãTø^QPƒQÒœGæ¿ùVø^”­ƒ+k¯û¸™«ð}Ï0îjlã›Å²@¬Â÷%Ƀheíé£ ß3 i(nX˜óÈÑØ¶xã²¢Õ’ æ4>‡RMj|’eU«¯®¹7ÓÈR4eXU«%AÑiY@QjùPÕjEA FI s™[ìþVÍøÏ p}|+muí¯8!n§ýñ9º‘}xm› fUzIX·žXמ>€£E!… Qí§0¬Y TeïK’Çÿ^×(<¡¢ö×=J_XÙûë§•Æ3ÎE) Â,{/ ŠÖËŠÚˇÊÞ+ j0JZ˜ó@nQbÚÊÞK¯Máe÷Dµ(Ž«z=ãv)ÜKCuß4P˜Uï%AÑzYÀk]¨è½b Bdû)…Ìj«l+z_’,Yåw *ißï^ó>¾T½>>ö=§úöqßi¬G®†`¡0ËH‚êô²€êõò¡r ŠŠÞòÀ¬>ž2Vß¾$Yžþê+¼|Þgùúë'.ZûX²Và>V´í, …Yà^’¬Q/YÁ^Xà^!àç0­5ËÛæQ)znçQ)W6[¥î1=ï‡iô±>nfi{IP˜žX¸ž>ª´=×T²µlÎ|¬©¨½$¨I½Œµ jÖ_ýJµªro3-öñj¤ö€*iO Ò³5ÊÕ˼ Ú+j0@˜S@ZƒI³’ö%É‚ôñéx<ðY°>>_N/i­·iìcIYæWz’  ½, `½|¨¤½¢ £¤…9œ3Î3G¸JÚK‚‚ôçµåÛ ÖŸ=âãù°’öñ±ù½šÆ³ålF Ä*i_’,H/ (X/*i¯(¨¡¸aaάQÄJÚ—$¹Ò3μ¸«`}x)8R¯=¥póÊ€0+ÚK‚zô²€*;t¡‚öŠ Œ‘æ,°ºE¬ =%¬HKµGìû`ŠýÌUÏ~t¶ÕŸcK³Õ³'®zö’ = °Z=T9{ †Ls #­ãnY­^åìK2>'?žØÖ«ZõG¡8¦jöñqöu”Æ™Ãƒí ²š½$¨EO¬UOUÍ1HÂÀ[9·q"‰³—¥èÏØLwW©ú3Vo^Ëþlãô±Rhùì‘bÕ²—•èe•êéB¥ì# ÌY|Wjs*Q|ãûö_Óû-Ôfløhµ?üÇ“’Ìbüð®Å=») °—²@¼òˆŒ’là3aŸʇ>>TÔPÜÛÄwʇøÍãÙåþY‚}°ò ;¼Çïyà‰‹ß,d/ËñÆ:b’¬ù[š,¬ùé‡|$¿Y ‘í§Œß<â'Ûv¿Ù¹´µx¿) °—²PxÃêP’>oÛGYèóïx)§ÄEp–‚¤) g8½»(áåNn±º#ÙGï°ä'K#ù˲@\F /8-°?è£:ŒQPƒQÒœ‡3œÇ½ƒº>]r;ÃÙgÈ–ëïd‰‹á,ä/Ë‚0“dkÎpwDÚÌGâb8KƒQÒœ‡3œ> %ÁˆLn±Fd²>"“Ÿ,ä/Ë‚0G¤$P´ÀñF5"5%-ÌySaC’Œ§¤ 4ÜÀ#Ø€ÓPÉD”b HI0œdÃM>4 "ÛO)8ÃéiQ°’[¬°“}ôÄ’Ÿ,ä/Ëq%F £ÆM•£ £¤…9c8§ÙÎŽƒ]¬‘6èÇirü¤MŽƒ¿´É‘¸&GH49Â\ØÜˆ47fˆš=g8ØÞ²;ÃyÜf1œÇÈÒ„Åp–Bò—e€8]ÃÙ%¹5^b§ÌU.ÃY Šæ,œá¬åX;ॕK ²µø ?) ð—2@¬ÅGIré XZȇ ‚ Œí§~ÇóÆà «§â2“`d7‚¬Ž"I) ˜²@¬Ž*I^hY@?ȇ:JQP##Fs ßyNŸ,$Ál‘LcÍÉEút‘l¥=Ûö—?úõÜ‚@4×C j²`Ô`ˆ´0'ád§?I0~@3ÖøJ"ÒG`R•¥‘Tf@â”pÑ}h* h(JXxËc";mÆ „w<˜FÍ "mÎW©P™za!®IpÏÓ§ú¨9ƒQPCq܇OŸ4–ézcá”1ØHï°ä+K#ùÌ2@\F ;Œ4eÀGMœ#Ø£sw¿õTÒ…~{I‚»#¯EÝŠñ<®ëú¨æ×84Vö,²Sg|£í¾¶¼«PŒZ=€„´õhÊÒH³,k}Q’\È–ò¡†¢ †â†…9':=7JY’Œ–[°SjK¾Q!iÌ2@\©IÂÔ`A©¥‹ÊŒ1PAQÃÀœ…>)á0JžÑ†Y‘>“©,…d2ËqCJÆXbsŒ3˜×0¤û¦#ºÑtÞ)ÎãŠ]²Nqá5ŽÀM~ñ¸Že|I’¸8Ni€Â”átQ$ç“ßS$ç§î.§ùH,’³# ¼eá$§u•$¸Ò ÕÉ@ZW¢,…¤0˱ºJ’¸Þjž}Aóì*¹ÇŸÝh:ÿ}¹ÍýÌÒ¯îÛüeÅáeùøëiùˆÿð¿Ÿ??þÅO_þéŸÅ&¯þ<úÒñ§ÿÐ#*qö›·À~•ºÝŸ>¿|ý‡¿ùÏÿøÃOûå_þÔ]·çªóÇ7ÊÓÿ ÅßLàZyzIP]Ô©ªÏƒ\µúô _K#éÙ²@¬úô%Éòò²€òóò¡úôЂп<œÀ­úô À<¨STŸ'µªêôä^ùwP³l XÕé%Amy¶gíy:¨êô@ —í§è»­Òô`_XSž'¯Z¥éɼRƒÌ,-æÑï’lÜY6—¦—U;Ë5®©4ýœÄÄÝVizI²Ä!jȃýTyð£V… ji$ÃZˆU…¾$xÍ€™§ªBÏ(¤‘£¹…?q°U^'Êó¤H«=ITi$Ç*€*@OÊÇ«9ªËËêÏ+j0DZ˜“˜8ت@/ êÇ“ýd}yò£Už ª4À°Ò‚°*ÐK‚úñ²€úòò¡ ôŠŠÞòp¶*ÐSÀò ?U`ô¨• * ¬²@¬ô%È"ò4€óô ô WÈh>¥Pìk OˆÚñ¸YZžÌhŸ'w* p«2@¬âó’ t¼, ´¼|¨ø<ƒ Â­-ø‰}UÙù`c>¸OV•';Zuç9ÙS!ÉUµ'ÄÑÄ(ÏIåi½JÎÓ¿4 L LÔk—%ãÉ|²¤<©Ñ*:OîT VeX'wSÂ’ñ´À’òôQEç…4¥,ÌyLl—%ãÉ~²¤<ùÑ*:OU`XeXEç%AÉxY@IyùPÑyEA FI s[EçK’%ãɲ¤<Òª9OU `Xe@˜5ç%AÅxY@EyºPÉyÅ@ÆHs[%ç%AÁx’ ,(’´*ΓD•V VÅyI²`¼  ž<=¨à¼B CDû9‡‰Š­‚ó’ \éBU’ŸhµæÁ8–F2’e€Xµæ)a¥xZ`%yú¨ZóB ¢ÚO)gi…æ%È2ñ` UF|¢šã( 0’²P˜…æ)axZ`yú¨BóŒB×Th~NÂ9Ë*4/Êă7Ty0‹VhÜci$7YˆYh^…•…• šWÔ`´0eáÜ¥š—eâÁªŒ²4’¯, Ä*3_¬ÀiõnåCeæ57,Ìy¥ieæ)@‘xЉ*"Ÿ|£U™!)–2 ¬*ó’ð»FX` y¸¨"óŒA ‘í§œÒ´"ó’ D<˜E•OêÑj̃›,…ä.˱jÌ—$+ÄË*ÈÓ…JÌ+*(j˜³0vÓ )SÀ>ßN/0æÑÊ(ƒ›,vMæ…UF¹$+øPX@‘dùPeAÆŒöS ¿ãy#˜Âª*ŸáÁ0ªb<8H«)–²4’Å, Ĭ)OKÂÓKÆÓEÕ”gÒ8Nk^Á;Ëiõä%ÙøÒ¶ãÉŸÏuVP‹ŒÒ,fT9y PaYÍQ+^TM^!Pƒ!Òœ„³œVO^Tƒ¿¨jñ` ­ž<8ÊÒHS„UO¾$Y žX-ž>ªž<£ FŽ€øžòp–ÓêÉK‚rðàU.$¤”K) °˜² ¬‚ò%Yí³zÕ‹— ”WÔPØ«}Y?U”²ÐgÁ9…qòÀ —,¤ÏÉSÚ,yä½DÄ5JÂ9 4ÅÁGÍ‚ /Z[ðÎtZyIPT£jăŒ´*òœt©°çKÛª„<(ÏÖ(/ó* ¯¨Ái`NÁÉN+!_’,šQâADZ yP•¥‘TfYf yIPžX ž>ª„<££¤…9';­„<%,šQ“ˆH+!ª²4’Ê, ÀUB^€§ˆ§*!Ï(¤Á¸iaÎÃÉN+!/ ÀƒhTød"­‚<¨ÊRH*³ «‚¼$¨ÿ. ¨O* ¯¨Ài`ÎÂÉN«F.ÉÆc“ö,\ZãIEZ1rp•¥Tf V1rIPJ\þ°’.T‹\1P1ÒÀœ…ÓV>¾$Yü=©FÕ†iÕãÁVJd¦ fõxI²þ;  :<=¨z<"àŸ_6~K`â:«»$ÁÕ&ÏÈÞYÝE¦R `2e€XÝ% ®¶, 7èBÝ¥¨Ài`ÎâûrSEø?ñiý/+þ®³JÇK‚ðdG}x’¨OŽ2ÿS ‰U;^”~Ws”†—uÕŽ—sj08Z˜ÃwгjÇK…ßÁ.².<éǪO‚R 0e@˜•ã)aÝwZ`]xú¨ÊñB ¢ÚO)8ÅYeã)@Ñw’‹, Oú±ÊÆ“ ¤ LZVÙø’dÕwY@QxùPÙxEA F½Ú.Í©l<ÉÁ*/ о“^dQxU6ž¥4@aÊ±ÊÆS¢ï´À¢ðôQeã…4¥,ÌyL,g•—EßÉ/²(<È*OŽRà0eXeãK’EßeEáåCeã57,ÌyL,gÕ—eßÉ/²,<È*OŽRà0eX…ãK‚×~X`Yxú¨ÂñŒBŠ›ÄÁ”‡³Uú™‚¬Ý ž…É#¨ð3‰þ<ªðsI²l³Ú£¬³¨ð3 ÃEû)ú‰à¬¢ñ”°ä;©E–„'ùXEãIOJô¥,WÑxIPòXž>ªh<£㦅9'8«h<,ùNr‘%áÁ>VÍxÒ“T }IÄU3^”|§V„‡‹*Ϥ€˜Ù~Ja"8«d¼$(øNr‘áÁ>VÅxÒ“R})Ī_’¬÷. ¨Oµí„1PAQÃÀœ…œU/ž‚,÷Ž÷Tƒ'÷XåâÉNJì%Ûª\|I²Ú °<]T¹xÄ FŒöS¿Ï cƒU#>!껓UdýwòŽU!žÌ¤4À\ʱ*Ä—d÷œ°%àå‚âþžá¢­Å>1›U¾$—Êòï¤Už¼$ÿž¬%±8<(í®Æ¨ü.ëª /÷Ô`t´0Ç?‘šU¾$Y]‰t"k¿“p¬êð¤$¥Ê’ ³´$¨í. ¨ç-ªø­( ¡(aá-‰Ô¬êð’ ¸;ùD'ãXåáÉIRƒ”%-«<|I²º;-°ú;}TyxF! Å sEkVqø„¨ëŽûeßI9Vax’’Òi)Ä* _~. (û.* Ï ¨ñÖ·ôSExr‚U^Tt'«¨Þ±F&[)$m©ö€*OA–tgã,÷.ã,/ïø;ƒCã9ú‰Ñ¬‚ð’ œ;¹D–{'ÛXáÉGJ|¥,« ¼$Ú»›6”{§Má…4%-ÌyLŒf„—åÜÉ%²Ü;ÙÆ*O>Rà+eXáK2JºË@|—„Wø»bÎÖs ™Yá%É’îäQð<£êÁ“‡äŸAS²1¡êÁ—dÅÓ íQíöU^þ© €a`N`â1«|I|R²£Œ}{ÉXÕàÉBJ,¥ ³¼$¨å. ¨õN*¯¨Ài`Îbâ1«|I²”;XDVz'ËXµàICRƒ,% f-xIPÉ]Pé]>T žAP1ÂÀ[™Y¥à%A!w‰,ô¦±*Á“Š”¨J VÁ1IPÇ]Pç.T^1P1ÒÀœÅw%3çúîo7Ù TÌÝx!¡äßÖ’dÛ,†V\†ûr-I\ëÕ-]‹ÓÂúÌ´$q­þwo“%¦5N)|¦)q­9o¿¥õ+ç Ä×Rw9óóŽQfvïTŸ<úüò_×å‡×µ¿¯^Û×uÿîÝÞ¾®çùÓ¿®c~½ ËŒÚöŸ.ÉóñIô®KžO*ظfi€L–á…(‰ÍÕkÑͱ‹ÝN‰%6ºYŒ’æ<œnFiûO0®±`ßCU…*b£›¥2Y„òu”¬ûØ:" }²:7ó‘¸èf) D¶ŸRpº¥í‹nîÓ@¾3‚è]; lt35H&Ó‚pº0º9¾Ù¾ŠmŽO¶Ç–ºHll³4#ÚO)Ld3êÚÙߌ³ @óŽOCZÁÀF6KT²,§#›£Š¤qÍQDr|VF‰k–ƒ„9‹‰jκöÆ4Ç÷;ã'p¼ñ©Ò8v,0°1ÍÒ, ÀéˆæåYqªì‚û-é[º6¢YЦ,&ž•íg^cQQG·v|ç¶jpÀÀÆ3K,²,§ã™×õÊi!–݇ùHl<³4%-Ìy8mTe¶%¸ÀØ Ú†%´ÉëT‘m2?Ò3$Â,²- JdËJhˇŠl3* D¶ŸR˜ÈfÔ´7²yé3\~ؘ4ï²?ɨ6²Y ’e8}Ù¼¬jÿì¸PG}ÁO\Tsi$‘, Â飨æ=[jÿlÇø¹‘>Õ, E oy8ÕÌöŸ.yPzu¼ûÝåWíŸ%.ªY ’e¡ð†‰S’ãxÓ¼ßíy¹‡‹gÖß!ZÏ)ˆefõúOÂþ  ºp£6»}ÁO\$si$…¬ö„'Óä¸ñó ü½ .‹c.…å±ÖºsÌ,Zÿi’ Oºdy÷›"“&Öl[ ƒC®ö€é@s¿À¨îˆÖÁºïf>qÑÌ¥Ái`NÁ‰fT¬ÿtÁ=^ÊÀðöáÚü„Vââ™K#Yä² ¼¾ü”Ô–ƒçiÃE⢙KƒAÒ”ÅÄ2/Å‚Q$VU¤¯3vH±±ÌÒ‡, ÄEƒQ²²Ð,,(ôD .QÔ`”´0ç1QͨWoTó²_8Þ5¹Þx7[W‘Á€Æ6Kl² § 㛜c% ë™äÀÅÊS;5 ÌY8ßÌzõÅ7GÃ*º¹C|¼:¸`¢›K!Édµ„ƒb›÷û¾qQ¸ã„GB@Xls)0f˜sp¶™µê?]2~BÑÛŸDûøad"p±ÍÒ—,…òÓ”\YÁTÎ,Š''«æ1*0FxËÂÙfVªÿ4 nN0½?cËZRÁ„Å6—BrÉe€8]Û¼?ýQtÛÜñž›Íá"a±Í¥Ài`Îâû°ÍÏ™µTרã¥ÃLg²9gG”·?bñùeߎñI%ø–’}aÕï¤ÐéV‰`–$1­ ¢vriIâZù%¿kQbZo‘zì¥õ?À÷Ûæ\ÂJÔὓzøŽ#¤ž¯ÿ¹}moäð_ðØyü›¸á}‹of>ÎØŸ7öÎP›_{‡GÕÑñ¿žh 6ðç®|f jþý”¨1 Œ}HúÍ»ŽÙ~ï×y3ÀÑ"Âeû)úŸG'ž£[Î=èç6:‘’ä+÷5˜…Ïà$:¾G VàŸ£ÛÇΰÒ6c5 Äé#ZPrŽcËBÜ›ùH-5%-ÌyŒÜ¶¥EMá+Y|À}0Z<£Þiƒq·E%ÇQï4q\ÉØ‘˜F<Í3@œö£…$Ëè]èëÇþ+‰£b B†›-ôì§vfáÛ«åIM%ÉÓO÷ ª¯(JyÚï{æ|nḆçøy½4®,- Äéc\uHòôÓ²pæÙÑò‘8Z0 j0JZ˜óPn£lüü0·!yÛ<¬f=é%Fîð›õ¦Ü*q>k_•F,˜.³@œ>Fn”ŒŠ,ŒM GùFnËfŠæF‹”ÄÊxXÓÂÖç”x£àÑÓ…4¥,Ìydnã1}9úüÓ%ã`è}œïcÿÉWÚøAêY…G/ÜYƒ™û(ó[„·üv§$×8º,œƒ¯/'¾Ö¬(¨Á(iaÎ#ÇdÜïcmKŸ.ïœ_ã¹87c¼œWi„Ÿã* …×<Û»$gËœò½³|$þùKEA F oyÌc2–d×4&ûµŒ¼ÆäÞrÖã˜Lìc’ƒ´ ¼æŠØFíøU´,Ä>ýf>Û˜”†îX˜óÈ~;ÇÉ >—P‚™`éVG‰mÌK÷›×œsÉÒÇÞm }h^— ÖT" 'àY›Û‘s9-/XÿIÒ_7ǼB û8­|$WQ@CQÂÂ[™[þ2xƾØqN¸Iž×Ø¿-Ž~>âÎÜãèQ0=ñ¸¦ã ¸ÒÈß/Ë‚ð†çº$Q–ý£ ¬ñsbyXóçÆ g„h=§iíwçÞÝíiI2æÙã˜Éx4îy2Ï{Áp¥ëwSˆZAÖžpÃÕ§ öÄ@BóØÅº=²ú@ æpƒßŒû…+O“ÄiWNÀÛÀƒ~Ù—ü•‚xŒ’A_H#V{W LC?qRð¸gÑ<êzlæ 1"#j0DXxKÃðµcÙ½eb’<ã†hËë(Ú]œ?NŒAE㨑ƒ ã3Ò’ô®Ó--ùû™|øÈ³¢ £¤…9Ì-O¹8ãïÉ3%1€ƒdÈ·Æ>‚×|΂uƒå5ï¥qŒËqú×’$ðd!˜ŒÝ|$ŽŒ‚Šæ<Û>×ñ8¼rj”dpÑ£U¼\¬OÒëÁƒÇ’xä6ÎF,6¾˜+ Â[²U’k|þUÎqˆvùHüó—Š‚Œ’æ<0‡Œò„gl#\37Hbd︆çš#ŽYmÀÑãP^ýýŸúUs`8s$÷ }e †ðs—àŸ¿(i0hZ˜“ÈÄŽcL˜q3Ó’<èí ø±g‰OÔ›0–q÷i}±‹Üð¤–$×ù!ñLÏa¸×"ƒc¤…9‹A$‚wÜž<èD’3·eRƒch\ãx° €?-úŒùM ÷ØRˆžs"IËSJd!~²>ËEÂhÀ¨Ài`Îâ»ÉÇ8ûîHö#þX¯øÏ_9 ¢j…J…>É?¢¨JU …) Pœ2@Ì*ž&Éß-e!¿€-üFVAP1oΉZ™P’‡U)´$Yë“ô#k’ ¬j¡¤0K#)β@Ì‚ž%ÉzŸe!‹–V ­(¨Á(iaÎC$hU %Ì,J†²ª…’Ã,¤8Ë€0Êy–$ ~–…,Z>X2TAPaÈÖ¼Ó ÞS”ð:'Yý¥÷T’˜Ö—Y¶¥ú¸zŠ]gX`?ÐGõ£ £¤…9§A{¿|ºävô¸£øbQ”ÄEƒ–F’œeA‡Ô•$vö zÜë¤}$.´4%-Ìy8 j±$¤¬r¡ŠÒ#HÌÒH’³,s0J‚á$ kò¡Á¨( ¡(aá-'/¦Ùã™Çd5â’Zð1™äƒÍç<&‰mö8ç1I qôa³Ç1IF©Qýüñ˜LúÐs£„‘%Y‘'Eé¹%‰YIr–âÊFF Œœ>*7FA FI sNƒú˜”„„È•%à1â@Qú˜LÓFí 9mTkLRÂ1I qð¡1©(¨Á(9&ç<¦1©"½%É» ¨Á«ñ¢*½QÒÀˆ“b–Ð5Id/ Y„·|°LoEA Å s Z‹I°ˆ ÉEIÊZ†€Å”HN Ö*¤$¹Š ¬1äA‹Å@ E s¿û™„d¢õ%¼è #«S’°¬^|&ÿ ®“­ ÕcäõÎ¶ì š®î¢su(ÃeOá;:M ”s\¤MY=Ò'Ág–Fò5k¡D,è¡50 M ˆRÈ”‡3¢6%á@J.²Z²•>“Ï´GÃ1OüÄ5)á@¢4ú¨¡È( ¡(aá-‰µ¡H‰&¤#kI¾Ò&š5X“ï¬ØfJ0¢hA#>l AÔPܰ0çá´¨÷%¸ê`%Õ+I[Z·×,…A{V{@u¼âlÎ}u™ ¤9§E§[>«'iÏêÁZN·Úà5§æô¨¬'u tŸ¡¹Ôp`j„ û !ê>›’pZ´ ™—$ë“drR–UÉœ¤¦4@zÊ‚0ë—düØËæ£TyÙG)ó g|£í¾³¡¶ö+ðZY€©´µ¸ÌÒH®³,kíQѬ,äCkEA Å sΆN¹AÂÈ’‡¬È“©œrÛsM£ì×Yˆ+7I˜,0rú¨Ü…rcÜÌmÊÃÙPŠ”p(&YC1ÉJŠIg–FÒeXCQ’1œØCö5þÎø®ëã=|çA+ö+;zÄ~Þ¶Š=®c‰o¶ÈRZÉs–âôQLèß<Å„qhôršÄÅ„–£¤…9gB«»J’›,$;4eõyÌRHž³ ó’–$¾LPóÑ2Î*÷ø3£Mçà¿/º¹÷ì[[i'Ôÿ{·€q,ñrzœqîÐE ´Ã{Üy '‰‹-$8Ëqz( ôˆ#{ã÷5YèË¡øýM>‹-„ÈöS zöQ}ÜNžý"ß³A>žÇ• nГÀFJ§,§£@Ï>®s/,Ä)€ùHl¨4%-Ìyz[áGïo${ˆ/#@ÿÉ¿ƒÜdcÁ|)%m¼üUû¬™RXCEPaÄÆÖ÷Ä~Æ‘Õù*%ç2X;ñŽqlõØ¢fØØOi€Û”`ø0öóx¶¼'a!Ùˆ_H騨Oi(nX˜ó˜ØÏ>?dÑ’Üã$"ñŽGlã;‹™6öSà6eøBÁ1“äLJ²p¶²ô‘ØØOi(nX˜ó˜ØÏ#¾8½œý<‚Ù*òóØ[±’ÇÞœöÌ¿Ñd;Á%¿™,Ib­(Ï#°ÃŒ'6Ê“ Þ‚ŸˆŠ2ÝNTñö¹Q§ô>F"Q! в FT´;?A¤…+øÚÉGlD…47-ÌyL”g¾š3ž½Ë'Ƴϟã lŒ§4ÀgÊñpa„ç‹T#<ã1¸Ýæ"±žÒPÔÛDxÒ…ñÅú8ßyÄù†kñG(!.ØøNjͤáôa|çÑnlØ‚…¾†KúHl|§4%,¼å1È{‰¹èÓ%7~MÃPxÆ×Ê5X|Ï\Én° ¼à§yIú yù€ŒçµÈÄ> ©Á(iaÎÃùÎרÌ[|§npG}‹ŒÛ©?'•Y­a¿ÈÎ.á+èhÏ»†ö‹ì, …Ìeÿ”Âï~[ØGðž(–¤å›KÒÖÎÌÀræ’Âd¢´)†³ßñ£0Úm fqØL\ gi0"4‹yb8ãú¶ÓÎ8¿ö|ŠáŒÓÖÇ`á”øKZNÆpÆhûäa!®p> Ó°1œÔ`”´ð–ÇÄpÆ­Ø6g8ÛÕòÙ n1nÆ£ûl §4À_ÊñÉä’,¹ÿކ_(áâ(ªA@£ÂÞ²p~³O;¾]ä\òz$³Øñ™t@rÄÅo–F²—eøÿãîí™®7’4=¿Í—FSø(àîFH†L©=…Œ‰Öîìnô;;1±£ÐÏWeæý‘õ ÙäìÒbÐxyç“ÈÊ:(Ô®S¨¬6Ì7óîõóþàgí… 6J›oÚƒY2ÂÚ…oŽ8£O盜¶‰9€?B6¾)‡â—:²0ßäõÏÃ9e#>dã›r`‚ °vaá›c~HûÝùfL¡çc¾9æÇœë±€¡ߤø%PV æ›ãsç"<þÉíÐÝ@éÆ7åÁáK'¾™Û6ïoŽ9ó¾Ã|sÄ–èÃüºñMz^2‚tµÑøfdVë¤aÞ¤çƒ>Û(Ý §<˜%#¬ýX@glÉ{, 376çÌÍ·ç„nœS ˜ @9PÉÜ–37ñq€37ñq¥æ”sd„µ æµÎ¼aÎðÊß7G­4‚ZÝNH)@LE Öêv[¶ZÍUÉm|SGYÐCy#ÂÚsŽx®¹:æ¼âåÿǘóªÍ„!/n N)@LE€F sÆÍd.µE„`ye)ucò`ÞŒ°öcágTÍy;ï<¹,¤ñü\àŸÅ"¡ï”h¦"H\çNËlkk¼óŒÊ9wB7Þ)fÉk?Þ™5lÞÎ;ãuêØ‚ÀqÄi’wÊ4S ÑDãç›ø(B¼ê\4›€lÐSÊÖ^ü®àsÄæAû >ãß>»ãϬýü•·ñã6`Äò6þ¼Ï:æç²ÏÙs^²ù6þ¿üøç¬Iu\ßþõŸŽmû¾¾‡ÿûtùÞø“Èßg½ÝñßËzÇó|yÁðnyoÌ:e½âKmÖk"¹ÌzGl“_<ŒðÔÞ jZ¬×È™Ç/]è¬wÄ—o_î:ž=ßÊ&e±Iææå®Ôf½ö(’ëÔÕ†Yï¼ zãöH>ïYoª¢ h³^{ KEXû!Ö; ä›3Y±Ö™â•ì0–ڸׅs@úÝ åóÖØe„ÏS_ lZÀב ŽnÉwà›UïŸÆ{Glйyµëàfj`±Ôæ½öø°ô8"Pgƽ,‹ìUÙM”6d„¥öfÝÏÞhoV8Ï›ºâ¬Yf÷5‰¥6íµG±\G ®6L{GnÞóþàçQ¦l£´i¯=˜%#¬ýè´7?ñs4Ú;3… 6ÔÛ¾7¼·ôÖG^ÚÐ×…uºÚ0øÍ‚àI¯áµ’Žmœƒëx™<œwEøÒm\Ý–ªmN\ÂÚç*®ŽNäbB2Ž@Íâå¶TusG¨âçnƒÕÑ=˜%#¬ýèàwÄvºÇÙÈïø|î: ]çÅ[ ËR›üÚ£À®#PWF¿¬þìµi¯Û(môkåk?:û±ùÛ3û± fQÖOU ·BÌe©Í~岫ÒÕ†ÙïøàKF¸ù†%Ú€6ûµ³ä+šk?Ö1Y¿¡õ1¥fž6&çÕœ¤Œã¥t“ôh#.#Pë‡;[Žø”á¸ûVÔ}LÒCy#ÂÚÎ~][Üœ} W}ÀY×½µCÁ] fðfÙ X @w ¬.î衬`íÅ~&JÍŠÝ£Ñß9l7l¢,vÄ—ßú§ÖŸ ôêhÊŒ.<¯™¯ûf‘î­ÞFdhs`{ 7¾&ß1ðˆ­0ÏþÖ¿¾ò`ý•½Ñ¡íQ×7 Ô;w¿’¥ê‘;–ï²( x(KDøÒ޳rüÞ1pÖŽ?3ÓÃ˜ÚØyºÚ0ž–­¶mA„;îýê?µ9°<œwEøÒ‚óéì x^!WõÄöê?µA°=°u¹"PWÁÓ²·Wÿói?[…=”öÞÞþw ÆÀ}^¤…ÓZQXO{‰iû´X׉y}<¤gEöŽ=ç!¾'E&@¥¼w ¼LŠ ¨9pj„,lj!œ v|ŠÚ‘ÒRË£0¯PV ÂÀ9nj=­£÷Ö@ic`{0EDøÒ‰ŽGlÑzt ëÇ'¶QÚ ØÌ’Ö~t7qr!Øq H¿5+—6¶Ga^G ®6 ‚ǽ½õë;#Ìù};Z¥ ‚íÁ,aíGÁ#VyáÇMYÞZÖSvÄ"ÀÚ–)!-µA°= ó:‚ôÁÕ¿´lWíâRb™×éJšëïÌG¯]è Ø§Ì–úÀÉ_yBh}ÆHpíP„רùiÚRŸ·#ÔùPu¡òçTêj£‘Ðü­æc¥Ï_/®¥n$TÈRÖ~,(4ÖÇ<ýµÿqwíW y{1`Jè†BåЩÔÕFC¡±&,Wª0–ÅëÝFé†B塼aíÇ‚BÇö`±¼,û…E !DZcÝbaJè†BåЩÔÛÃ;`Y€!®—Zéðâ¼ÝWôpÞáK?€¡:ê¶d-t‘ƒª”.´ÀJêbü;Цd¡ófÉJè>¾ ¥»VRwôPʈ°va¡ ±)YÝÍÒ[ëî¯)è¹apPB7 *0NE€F‚ÆÖh9¸!¶NËíDÑt£ ò`ÞŒ°öc¡ qyg§ q¢G£ C/ ¡z)“ “dœŒ@6=k¢W„Ø{oºQPy0oDøÒu8î7Q¦å¸°÷Gi¼ìaQðàˆcêj£É}ÇÏ€ˆ°Õ£¼ÚØø°¯,衼aíÇBAcãÜz‡C–Xd:ïó±m!JhCP9qòxÊj 1ÐØ7÷ÔØ9Únp’jº1Py(gXûðGžBH¯ù ð^ÖA^gýTGJ MþÉ?pòhÊ o+Jk j»eENÙð'ÿ®\ëØ/¹/ø3V2mŸŽ?sÙ–éç|¨h›žB6öÉ¿lâhË ¿Ë2²|—ŸïÕ(ÝÈ'=” "|éÂB>cÉÛ=:ùŸOÝ®€9梷©$t#Ÿò×TéÅh‰7¼6?Œ|Y™m”nä“ʾôc!Ÿg}r|Ænû\ÐÐ16Ü?½<•º‘Oy€k*uµÑÈg|ÏmÃè36¡oËl©ú”‡òF„µ ûŒÍWÇèìóˆ_«n³Ï#Þ3›„lìSÅ6uGÕòQø” |òïL¯Žþ’ÿ‚=³"À‚=úÒp̺^ýJݰ'=5AºÚhØ3n:ö̺ {B7ì)fÉk?ì{_GǞǨ B޹qC’Ð {ÊPS¨«†=ã³QÏxÞì-¤lÌ“WÎuôÚ……xÆfïÇÓ‰gì,~xžóaµ±È’ wòï`™<š²Â7Ø;½×Š^¿×K‹j tƒòPʈ°vagTUë[NË[#˜ñ¸PHè;唩ÒǺÛéÌdÔTŒµÛÞÖFé;åÁ,aíÇ;c¢®=ÿmÁ²jÆó KB7î)€MÞXHˆ–9+_»ÑgÌÂmWUj£O9 E¿taAŸñ\ýéeŸ¦ë:î' RKB7ô)€MEÞˆh™÷·¹®æq­Ò }ʃY2ÂÚ£Ï}~ƒ¼FŸ¯v•}š29ް$tCŸòØTêŠßÐç>¿D>&ŸûYÅ(ÕDi“O9d~8¸¥¾€ÏøR¨îÈra‡< ÇœZ‡¡$tŸòÖTêj£ÏœlÍ=£ åçhM”nÜSLÖ^,Ø3îÞG§žûvi#׸'‰n䚟séF=妩ÐÕDƒžq_^ûÔU€íJDÐ zÊCYïÚÇÕ½X˜ç~ ¾_BËypNÒÆý|Pªx$tcžòÑTêj£1Ï}ÿÔ`„¨‰zµ6J7æIe‰_ú± ön–ên]Žg}` *í-æ 0 EÞˆi©ÒÜŽP•»ÝK{; z0KFXû±€Ï8f¿:øÜγ2rÜΪL( ÝÀ§<€5ºÚhàs‹ûÓàs‹WTÚSè>åÁ,aíGŸQѺSÏm~%ÕÆdÅ£º¬· …lÌ'ÐäáÐݼó|–‚Ê£§>jÃz<¸@›wÚƒé>,Gåô×qÔfY<{á}F‡æ‘« O·Qtõ1Aúà6Z¶|a„™6C¨6¨=íÁ,aíÇ;q}4عåkK>·˜¾ü¾?µi§3€Z¥,s>ÛŒ;ãúØÛ’Oè†;åÁ`íÅ~ö 7ÜöM…‘h)FîgmÅgIOü<GJm¬‰ÃF:¸W­ú×;›RxÚƒymDƒKæxžï´½o#žglÒxxÁçùØ,£$µ¡§= j*‚õÆ%Ž´l§~Ò9²D2qdµmì)e‰_úѱçœ\Nr&Z^¼Å_À1?±ZªšH’ÚØÓ5ºÚ0ö<ãÍ»Í >§æjh£´±§<”%"|éGÇžçsç^߻孳]Àñ|bŒ{Á'µ±§= j:‚ô™T–ùüjêy>óá¾·ÒÌSg†8zíB'žgíQ`S Ñ‚Éçù<µüŒž(?u¹ h“O{0kFX{ÑÉç¼N¶õ}ÿiùÔµVÌq~3õ£UQIj“O{×tém}ß^®:šnT¤c7+Ò) z0KFXûÑÉç¼@ïªvjK]¢¤ŽS¿±Ú X’ÒäÓÅ5€ºš0ù<ßyzn“Ï©OT~ª&Jš|Ú92ÀÚ‹ß…|žIr¿T°ÿðù«~¯;Þ=ê•îa@±ú{^oQ-¥ìï#KªÒý¿Cþ󨚜<Ò•îeA¥zÏBöˆïB÷l_H—Ç/Ùçµ[&Þo¯t/ êÔ_sÞ¼\Ùþ¼Fî[Ú*ÝÇnzY™±_E«t/­J÷² N½" Ž½ÚP¥{eAfÉk?з\oØŠÝË‚rõẆÃåì¯3¯ÄVðþŠß-ßæqåµèÔ*xoK®>QÔ³W*x¯$è¡´+ÀÚ‹ìY,9½–º÷² j},R®s?õ[%üT÷ûÙ£vTqjÕ½—UëUíÕ†êÞ+ z0KFXûQ}»Q[uïeAÕúØBªWµ}Æ,3ÑO]'t˜“x¿ej•½·¥6n`µG®zÏä ¬`íz–kw[¥jYPh:Öao‡ QÇ'~¸Æ}ví­véñfÑOG V©jYPiZP‰Zm¨Vµ² ³d„µÕ· KÕ{YP³~Äœä*÷gìØs¹Æ=2‚ô¸b^<AZUïiaÍzF`M{¶áª÷ÌBÈRÖ~TßÊ·U½·¥jÖÇ\oF©šöWݪÞ_Õ{ì¹}€"X³ê½,¨Y¯¨i¯6Tõ^YÀCY"—~TßÎQ¥’5ï©Q´ž£¦½¢«ê½Ú§óc€¥˜:î€Ü­ê½-Y·>–Yî˜Á"ÅxD¿pÕûþí´[Ýïžån5ëu”Wó¸îš«AšûÊ‚šõŠ€šöjCû* z0KFXûQ}«¥ó­ê½-U³~ä´Œ‚ö£VÒ·’÷±;è¸ìë…Ïˇ[³ä½,U´^ª¤½Z`Éûjdnuè—ä×ÉPõîm©½R8 ±œ='*¼çT&}™#‚4KÞË‚’õš QÒ^“¡ŠÞk2¤³d„µ¸¾>EEïeAÍúw+zƒæ]ŠÞàx­èý¸³©#P«ì½,¨Z¯¨j¯6T÷^YЃY2ÂÚô-¿hZÝ{[ªj}LQ, žß½#÷5ouïÇuVµnz\ùs¢#Hó >YPµ^PÕ^m¨î½² ³d„µÕ·ZÞÕêÞË‚ªõñÒV>(¡ªý˜÷ñèº÷š˜èû’Ý-µêÞÛRUëUíÕ†êÞ+ z(oDXû‘};?ùC|«{oKaÕóɶTÕþŒvG¯{¾O¬^’ǘíÛ¬Y÷^T­Wl¾©6T÷^YЃY2ÂÚêÛ™‹+[Ý{ZX¸~~È5¥V]û3V??¸îýy½uËŽ¿ßW=Yñph×½—Uë€UíÙ‚ëÞ3y0iFX;Žª»®º÷¶ä;æùÚÊÇUí㵕¥ì}¾:s4‡øÉüðñ’,{/ ŠÖ3‹Ú£W½g r`† °öa=a¬zoK­÷§UEíýy²ì½?qzðŒ05kÒÛRU롪ڻ Ö½wô`–Œ°öãw¥¡K=ûŸyñýWý~ uÅHPî‘8’å Á+]/’@Sž @­z‘¶TµGEÀ‹‡lBo&*:0ç£Ò^,(±‹”Å#U ¸²U‹дGOG V½HYPïQPRm¨b¤² ³d„µ‰¶Š‘¶Ô?h¤êA‚W¶Š‘ šö(àéÒ¬) J>*JBª Tô`–Œ°ö£CÑvÞdÁ§ŽËvÞ€4íQÈÓ¨uÞdÁ§®8+jCçMYЃY2ÂÚEY=þ{·<ŠªÆ}KJCQ;òtin& JØ+Jܳ‰’†¢v`Ž °ö¢CÑ6"mÁ£háH7Ë6"4íQÈÓ¤9"eÁxRŒ7µ¡©,èÁ,aíGÇ}DÒ¢ñ´×•¡ñöTùTÈžI Wx&¡öLB Ç#p¼± HfAf©1½ô£CÑÞ7ZØ·zJj™^ƒÛPÔ…<Ý7j÷ÎqŒÀ9m¸oÌ‚}c–út–~t(ÚǤ,Q…#=â Xö1YHÓ…<AZc’Ž(Fàˆc“̂̒Ö~4(ÚJµÒ€:«Å#U†À²jÒ´G!O V¡V[v̈€2¬jC…Z™˜3Ž_º°pߊȂ[ >óVƒÏè¾áS¼<ð”¯Ôº±¥n&÷jCw#Ê‚ÊÖ~üñg`ÅvÞhá§0©³tÙÎ[±M9ùÔñ>i4àÇÑ É·|]Vx´F±{>{—l÷ü;G ‡V¥úfÁs$èŠA ÐíéÞדF„µüù£¸!+Ëo–‡éUô\2…˜'þ”@SGA±^½ (hÏ#Qï^qK›wÚƒY1Àš÷Â;QI¾ñNÖ³'id½{²HèÆ;åÁ[F fµzYXÏžXïžm@7Þ)d©k?Þ‰Zòw²ž=I#ëÝ“EB7Þ)ÐLE ¾ÍmhÉ‚ö €z÷jâ¶aôPÚ`íE§¬$ÿ½YPÏ~Ôœ]ÅîA"©M;å–©Ã¥YªÞ³W»WçË—2þ™ùáð/=X'Ã*$ÿ½OœÕ1jÁlXºO‡ôÐl‡Ô,Vo g·šõ1–îó!=˜¥æ¥ íD-ùF;YÏžœ‘åîI"¡í”X¦"P³^½-¨h¯¨x¯6J7Ú)fÉk?Ú‰Zòv²¢=a#+Þ“FB7Ú)°LE f½z[PÑ^Pñ^m”nÈSÌ’Ö~,ØÕäöDI{òFV¼'‘„nÔS`š @Ézõ¶ ¢½ â½š(Ý §<˜##¬½X 'jÉ7èÉŠöĬxO 9´öÈ’DšŒ íµï²T!E@!µqðUeAåk?ކZò£±¢=1+Þ“s]zEž L dŠ­zõ¶ ¢=#°â=Û€n0MÌ›Ö~,ôµä¿w –Ì‚<²â=Ð$d£ŸrÛTi”«·íïÙDÉF?åÀ`íÅrÖPK¾5´÷çUïý‰–ngM<'Œ­zõÍ’íïÕt;kòPÞˆ°öãwÅ k©{ïúo0èÏ9þÖu¡×1B½ACç¦e"Èxñ3Ä(!• §PW ƒs$Äô¨WÍÊl¢dàr`Î8~é‚Aciõ½`Ð|óÁ4_|0 ,Ù(ÿÀÉ£!¾ÐØ4ÁŽßã.òrЀʃ)3ÂÚ……€Æk5ÛÞ h¼Ô“·qñÒOÞæQB7*@NEfIY¼ÝÊ;Þne;ßnUô`–Œ°öcÁ û¼Ïƽ -sdí~¨ØŸÇxrÇ-èeý h“ÇQVàÆ>c!y>&ñèù¸~÷à¥Ûã‹<˜#¬É/ì3lUO¾¶î¸Ç‹çfŸ}ÊdS¨?ÜŽ_¾µÏ÷^M”lìSÌ‘Ö^,ìs®¦Œ¥¢§Égl »Ÿæ“ÐÊ„S¨Áª)cËœÇtß7]4PºPy0EFh=XèÅ;-ôâØðF[aƒcoäâØl‘#‘Àq”ÜElã—cGÇ—BŽ-‡nÈBJÖää¹Ïgͧ#Ï}Ô®›| ÚGíºI ݧ<@4A:›hÈ3¶ÍÕæ €­ÔDéö(F%‰k/ä;á½HZâ{à6òŒ £áHè†<å ©ÔÕFCžûvÔS%"ĆcGêРyÊCy#ÂÚŽ<Û ,Ç`ÁÆ£ãÎceGº%=mÁÂÑ`¼ ÁjZLÇ/y/öØÇ¬=Úç¶€¯íã½Ûc7t{´—G #@£6ž¸[#Ä~õ;LµÝí塼aíÇt²'Ü·Ü\°ñÍ=ž#_Î=ž;_³HhcN9ÊÔñ÷3”D¹ŽŽ]\;B…n¨SJÖ.,¨sÒ–££Î¸ðóÇC@Ƙo6¿–NÝP§XÕŠ3ÓOCÐ uʃY2ÂÚuîÇ “d9Oü¦R”q?ñ®&8$tCòÈTêj£¡Îx™ðÚÍ:sKç¶´º±Ny0KFXû±ÀÎm>NÝuƾ±ùjMÖØ¬º±NzdòpêŠßPgìÆz>F±ûj£©% :ùG%{h‡#'¿Î…wnù׿Âí3ôë{ÎB(W£yªt› åÁ™Ž¨on4(Ëõú»4"\g-•d¥û\HfÉk?ÌÛ¿öß§{‡€/Æ.ì×k Ý(§<À0Ajd˜ßõ.}ˆR¶lºANy0IFXz±0νÊü5ÆÊëÏó.bæ™»$?B7Æ)LE VqAZ²¶ÆnÆ£kk«:¡ã”²T„µ ãÄžŽqnó£=ÚÒÎ-öî}L ¡ä”¦"PWrrçHEØ@‡m èPô`–Œ°öc¡œ±ÅmÝxØ’¿VŠ/F¦w#ÐrÒƒ “¬wÞxмõ4åŒ}sÏÑÚ(Ý(§<˜%#¬ýXxYäU“¾,Ÿ¬°"R›¿ÆxdYЗÉ4L¨«ÆËâS¾ŒË"±»!9è†ËäÁ$`íÅÂ8³âËÙg}¹Ì8ã~ú¾ !㔦PWqnì€sD7Š Ù§˜"Ž_ûÐÏØˆ½HÏN8ÇûÖîØú°¶ÚÚ^gé~ÆèQçèþaKímãýd†lƒÚ§ÌÊÖ~ü¾„óÞvl¯û÷zþ²c¶²ýð‘ÒöCü‡þúý‡ÿð—?ý/ÿG¼'4o¤cÁÕ_þÓÌ ]⃘½¹Èßõæsæ_¾ÿéÛßþÛ?ýãý×ïÿüã_þëŸþ׿Ìö¿~.ëÿÎ þ¿ìøë$·U¶§êAQ«|}1VV¶ÅŸ*qò8jU¶—•éu8 ×3¸ Û«i: 3¿dÞn«loKÕ¥?UÝzÖVÙ ÖÅhAš•íia]zF`Ýz¶áÊöÌBÈRÖ~tŠÛŠÛË‚òôà§*_ÂÚ ÜƒÁÚ£­#P«À½-U¢^P¿^m¨À½² ‡òÞ;Õ]êÜãa§Õ¹—Uêñx¤*ö€­­Î=p¬= ×:µêÜÓÂ*õŒÀ*ölÃuî™…<¥"¬ýè@·Õ¹—UêSUžhk+sk‡Âµ@­2÷¶ìXü‰(bÏ&Tå^9ÐAY#ÀÚ‹t[•{YP£@U5ì\[•{@Y{´ujU¹·eÃS]E` {¶á*÷ÌBÊÖ~tXÓJTËRE¦LX‚DÅ%ª\øw-©Õ¶TiÔj@%ª•=”2"¬]è|·U¹§…5êñü§ö ¯­Ê=ø¬=Šß*µ«ÜË‚õŒÀölÃUî™=”7"|éGG¼­Ê=-¬Q¸ªöÀ¯­Ê=­= à:´«ÜË‚õŒÀölÃUî™…<˜7#¬ýhˆ·¹§ê ´ª€=Hl+qVkb¹@­÷¶`…# €½ÚðS(’ sÆñK:áhõíe©úô@ *_øÐêÛO؃(UàÞ–*Y¬_Ï&\ážIÈCY#ÂÚ‹?ôôQ¸´U¸—åम*a$Û*ܳµC]©÷2X­UGW{Eg•{5¿+_½æßqo«ro˧mrÊ*ö±®r¯/}üw*8Z’UîeAzöj@Uî•=˜ #¬]褷U¹·¥ŠF±ª†=(l«rNk⸎ ÍÂÖ² F½" 0¹ÚPéreAfÉk?:émUîeAúñ fñé%§­Ä=H­<@ru¸´JÜÛRêìÙ†KÜg ú³2®Ã¿ô` Uß^Ô§×L„òõš«Tà^³=8Û1µJÜÛÒvÏ9\Â^m¨È½² ‡ò^^ê_ŠÜƒ”¶"÷² F=X«ÇAÑØ>RŠ×Ú£x®#P«Ì½,U©^ªŽ½Z`{¥€¿3C½v¡ÓÞVç^{gU{ØVç¬ÖÅrZuîe!ÔGV±g®sÏ,äÁ,aíG§½­Î½,¨RΪ*ö ±­Î='&yËujÕ¹·%+Õ+@Õ±W ¬s¯ðwå\G¯]è ·Õ¹—¥*Õƒ°²Ž=¬ë܃Ñòï@¸Ë+Šg}FyÉÒ¼®­–5µié^K-+ûü wŽÏö¬Üy~šñqF1®#°óÿõm~v?þy õ?ßæ×òÿ÷_þwóç_ÿÎBÎF†ó'B—ÂQƒð1¿…l|XÀ ½á7#Yâ·Ýˆ8~uòö²” Ë)òø¥ "ŽÓŸ^kZ*-ÂÙ\ÏàrXÔ ËX¤7à5Yö3 ¾)œ,Qº!by0KFXû± â}^®ï‚ˆ£žûîrXS'ê¾…nˆXÀŠ@]m4DË2?&ı*ós¶&J7B,&‰k/@œ?éǯ…µe`=UåºÃðºbyÿ*uµÑq– 4Žš•¬š”M”nvò`’°öbÁñƠ/÷ñË{íÜUd6ÔÎ]‰n!–د@W GÁÚý1Þ0×j²Áa9(gXú°°áXñ.lx?ì YTvŸß›7}¥nlX ¿Š@]m46¼ï“yõÙµ=¨–³d„µ Üq=o[> kÅVX­›ôÅõ¼ÉgèA~ÃÖ¬ç- ªq+ªu« ÕóVô`–Œ°öcÄqÌ~u@¼'J­Õãw…—á-tÄòþeéj£âmçšaDرf˜m”n­ôP–ˆð¥GõêN‡·ùõToÜ—ò±ÞŒ²±aþàW‡—ÎèæÂón%²êè©«F1ÂS› Ûƒé2BK¿CáØðÚŽùN\Ö'’¶Ð ËÈW¤,*e»P%#Ìœ° DµA-(l¤Èã—.,WFà Û]D,(Þ뀺ayp´0u»a™ÏÎ[ÃÂqmì µ@7 "fÉk?þø3Øê¶o,%K‘P°Ù(UìúWÃüsq_Kµ±R h›ué_ïñJm0læÆkö Ïô-ÆÆ÷nÁ^ fÏ÷À[ã…n© ‡íQwŽ ½qÉ&-›¡kDx^@W´m,5YÔ–Ú\ØE}ºÚ0ž9JM2Âu`³b´qq'eAf©b•K?:žq|Ç}ï†'á@eçØ}oWj³a{ùuéý§¾˜•¾à»l¢´Ñ°=˜$#,½XÈð&j%K0'—¿Êçž¶˜º‘ay€û*µ¨•,;ŠJ1†×ØÆ¦˜=˜%#¬ýXððϨ½üÕÌìS›§‚ÎÆCÜîݨ!¦ 0#HWox¡Mö\2ï6v.ÓWôPÞˆ°ö£ÓÆù=Áµ~´Ä7…_›ŸrÙì€Ú°Ñ…-˜5žÏS‹öà‰÷¾½Ò˜Ú¬ÑÌšÖ^tB|ƺÓe¯ƒ3Vž^‡ñün:kcÞÄ·”&Äv(þëÒÛº×Á¼2N|ZˆpW%>6q³TŸr sd€µË9{ç7çs-ç ¨NÚürzûI+ÝO=xÒºÚhgí_Q· ñÔ'v¬@¥ÛY“³d„µ¿!þ칃ë½ÇB.­w]1¶Ñ½GÐ|î{–Úò·Ÿ÷’ež´yA•×' ´w/Zš×3o%£œ¬½dé^ó¤«-Íë=r¸ž=-ÝkíQþxsò­kF‰ÂOçóþñÏ{üz³í߯ñ…7ÿÚ ù{'ó—ËUyß%3´Ä*Øü†:³²r,®Œ{Æ;ßL„üëŸò²zÿý“w¿:áß–y…磎?ãá§5G y0eFX»ðWžçmð4gÔz;õ‰Z–!ïü…ôyîªU\z6ú¼IÏíEK{êj!€å®»mE˜:ÖFé8IÐ)òø¥ å¸ÌÏîøàÇYÎeS犃;&½¸g~c3¹W:>ÍØÎnoóÓÛöºÚøëŸš%E)À0Â&JÇL‚J»¬½Àùzª0yì\pÖ ƒÛ' dKË;#|íÎ[–tÍtPð<ö׿]ýy«Ê +¦¿±4ç²Ç»å^J ­Šé² Þ¹" ºÚPÅt&A¤ˆã×.T¯ö•‹˜ÈRˆôŒÊkojŒÆ³ bCG£g1·ÇÈ"æŽ@]mİÄ"ÊXoÎGAUµG y KEXû‘}ûÌÛ+¯£›ÚR›Ê|>µé ¿m¡g»ŸºM°Ç‹±ÅÒv.‘åS›Ê(Â]›Î¨›ÛÒ( z0KFXûQçíÎ]¦O®MúÞ-õ”úÄ.Ñ¡ã:Nm‘’e³ùçw¯"Í<\zÇÎ@²Ü³<"àµ(‘S>Ú矙_{Pg,ê÷Æt¹c† O®¢øÄ-yMà9QnUÑ:Ý«æ¹<ö¤ó `½ãžY–½~jU„X«?Z¥óWp`Š8~íÆá¿M²àÒÿÄ »'‹9"FUÖäñ™3{Vÿ¦G<5ŒZ“‡,¸øsƒÚÐä¡,èÁ,aíÇ:ÌÇÂk™>â—ô£MçUs§Ò}ú § F>ê>ÌóKþë[þë&J·ÙCšãaé¾Êö,úFÝ,Òk`ó9îSsÖü4òÇÍ-O§Î諒¦gz쟪–]¬³‰<†ó*òÏÇ[¤ŸM”Î/2$Q'Y¾ôwV{|¬õ½^=“å þ¹ §Ÿèç7×”y“tdÁrþ}Þ3½-¹ƒ¤ËrÕ* ?j1ƒ(wUÈ€LÖ.T·fÔœvŒ³å“oe¿sïo]2O"««nJç þ[xÌ.ÕE…ÒÜwR–ùTzæ32"ÔnCûN* z0KFXûQÈœ“ߌr`o![Þ\š_2O¥+¹ð'ÞºÒ9k½±W—<žíByøŠ`}ðk–#7Q€=T ;~½T ø;3ÄÑkª[û^÷ 3TmüiK.|˜:¿Ýïxã#n¯£„ͱKG«ç^OLô8óĤœYâëëþAb©jübÈ6 ãd!fÉk?j8Ι%ý|0Øò±L–9xÂÌŸÔkÞwäqÎ{æúg{ph0uµñ×6äcG‘¼v!ö«à¦= ~:µï³dÁ}#ð>‹m¨oÊ‚}SÞèÛÚŽGÛP” lR ô² EðM{ÿtj EYrA¯¡¦øŠJg~ŸÏ_Óï`ôŠyjï`ôúÄò.2z}®-׬[R›ŒÚ£À§"HWF£Vo:B…-ûé*°iŸŽ@íÓEK~ä<œ§ñ}ºfæ—3ÇšþïKDϫ֣ýÜb܉þ¢ão`¢×=¿£êÕYb÷¡˜èÔ['¯¤6µGOG ®6ÌD¯{ÿÔ¯nŒ0»’¿Ê±Òf¢ö`–Œ°ö£3Ñ{îëiLô¾roâÈûªòä•ЉÊÄS¨«…ÆD︙¸ÍDïØ%ðmm”6•RäñK&zÅ›3ŸÎD¯ù]ý‰Î4jD´d¢ü;h'–+µ?y'Ž“¬À Æròû2þŒåäw^ºáOy05FX“_ðgØöÑñçÎ÷÷÷xÿ¼áOè†?帉֔‹°¥Þßw„²Ò Ââ,±À—~tü¹Y—Šå¢§àglÛ»aQB7JBN&­†Œ®=f Q˜½~@¥Í@å€üp|K~Á.¨N £“dÑtâ…c_øEý h‚ÇAº º-UG³\:ƒ» :Û–‡’E„5ù…zîçõÓÓ©ç>j—SÇ}Ô.§D’ÐzÊPS¨³‰F=£Rùõ1õܱ‘”š(ݨ§<˜$#,½X¨ç/øžzƹM”êA¡$D£žú3˜¦§®õÜ·£n'!ê¼ĪzêÏʇ¯=èÔÓÃŒ"ðÆ£ÏcÅGg|mðÉ¡ƒòéZîÁ‡¦é Dëø5ïuÆÖì™h‰W„îר3®Í»‘Hè;å–©Ðh£ÑÎØŸ½HEØžŒ­6 픇òF„µÌi‚”pßr/dž8÷ØÑî5ã܃¹½&‘ÐtÊ,¬7ì Ù,;^p¨Û{ýÔQ*t£°´¼ MéÇB;÷=ŸSíŒK?{gŒéfóûéÔvÊ,S¨«F;c³ýÏnÚ™~í„n´SÌ’Ö~,´s?nnšDËyÖ›ôûY¯kEB7Ú)°LE ®6íŒ× s{iFˆ_ÛOè†;åÁ,aíÇÂ;·yKvwܹÇ]øiܯ~ü‚:uÃô Ìdêj¢ÑΨa>¦[܈»…’uòïJ‡/]XHgì#ýé¯À_[lMt˜tn¨¤D ÝH§<À1úæÞ޲\o}¡2Â|”º?­ÒtʃY2ÂÚ…tÆÎ÷ý øiÀvF@Œ±õ}maŒ»íÒ tÊC¤Q;I†9WäÒˆ÷R¶xºqNy0IFXz±`νêP6Ì#ëôûï™çyAB7Ì)@LE VñKZ²¸ÉnÌ£kkk;¡æ”²T„µ æÌwǜیv´žQm>ƒ„„nœSÀ˜Š@]m4й· /# lªÃ6+¤( z0KFXû±€Î¨Ç{YÜèbŒLï!¡è”0¦"Hï¼³¤%ëiйÅ⣵QºNz(KDøÒtF^5õËã¢-ðŒJ6Ïe Ý@§<€1ºÚh 3>åËœ3»ÛOèÆ9åÁ$`íÅ‚9³äÎÙ1gVݹŒ9ãÖ:oi€ ¡æ” &#HW snì€sHw’ Ý('=”døÒ‹9Gì{vÈ9Þ·vz%^ܶ*+@ Ý §< a:õÃ_!l©²ˆ0ÞOm‹6¨ 9åá¼7Ý¥¿/ä¼·ZÕükË=Ùñ7@Îñ¼¿XÑòÎp¯!çÔÜ( 9íQӠц!çxì„O<žrRrÚƒy3ÂÚ9Ç³ÝØhš†}`;ó€Œ#ÆÃæWà©Í9íQÓ¨«“Î3ÔíWà§®½ÜÙ´H§*E¿t¡“Îi;°¾É–·¶"/Æ8b`çVåE!©M:íQÓ¤,q¢%†zÝGW„xÒݼ¨”Ú¤ÓÈRÖ~tÒ9>ñ4Ð@çøÄã‚߀ŸúS»­¤6¦"HgFžã3Ÿ7®ý80C³‰Cs8“ “d„¥xÎ,.^f´\U¥¬qÄ=ÉëŘÔ&žö(žÉÖÕ†‰çL䉋ÄΣªd±Ò&ž´8ËŠðµxæ~6è9óEŽ9ŽÏ½,U:hCOy€j*€tµ`î9-UÊAÎ:hãd­`&AæŒRK:Ó˜IœøõG–¨;ä÷W§ÆF*…¨6ìQð¨/>Ê2î|bR„:‰l£´ñ†=˜%#¬ýètæñÆýÔ÷f‰·0è¼xÜ»Œ’ÚÔ/Æ#PWæ Ó‚»qF¸êÇ9µQÚÔÊÖ~t:>ó†å „ÎËsÃjÌ‘#wŒ¥0õŸ súpêjÀ t|°#ÜØ‚-€0õŸ™_{Ð@è¾/^¤!ªN?$¡9Ü—x%µy¨=Šx*€´ÖìÛrÔm;#7¶“B¥ÅDå œëøµ ‰Î$þÈM‹ÎxÒHŸñâ•Ôf¢mT}jL0õÐn³²ì ¨ˆ…pîÖFi3Q{(oDXûñ‡Ÿ?€çˆ=6h0í­AGP“Ë[ƒR›ŽÚ£Ø'#Xg†£óªÉ§I¸ß,«&  GiQ’ˆð¥Î,´C>-ø®•Ôw=¸%µÙ¨=Š|:õ®mòi‰uÞtêÜdÆmlØtÆYЃY2ÂÚÎF§Ïƒù{³Ä] W‚f¦‡W‚R›Ú£È§#PWf£Ó²¡†FE¸ßjÕ´Ù¨=”7"¬ýèl4oξt^*Wßt$jûƒRŽÊìS¤« ÓÑiÙÛþ yo”5„ÙÄ0ÁBôPÚ{Û"Ô-˜ö)’NpE&=»ìSdÑM{ýtjO‘²ì}%¨'@¶á)’YÐCyï}%è2E‚,æèÁ[P´§Æñ“ú­mêÞ›¿|q°ø¦=8:¡qðý6~òwFˆ:u{k£´ ©=˜%#¬ýèˆtD¿¾tZžÜprÄg9Œ/©HíQÔ¤wn@@ËœÒ^¯×Ò“›Æ³ h#R{0KFXûÑéÅd÷ó©×Jm¡¦±/HW ïA ¼1j~0mSjƒa9 E¿va;®0nKÕ'RaýpBW'–‘°"H³Â¸,¨®¨®6Ta\YЃY2ÂÚ Ç1ûÕÁð6¯áZƒÓí_†¶Ð ËØW¨«†·+jaçš\´Qºay0KFXûÑÁp äN…c¤×¸Ee£”-ö,Åÿ7&Ì?øêØÒÚ<ø|T’ª£§®rÉO.Õ.aì?3QÞï08vÌ»öƒc˼Ï ÞŽš>j¡ –P/Xú•–¸U}ƒgNØ#acérî¢PIÈ)âøµ Æ5Ñ`ðv×OûݱÆjx3êƒåÔ«Ôºew½È?í³Ò ˃Y2ÂÚ?üœAŒ_![ß ‘íiE  .ÙP0ÿÐ[G7¹UÉ[Çx™l~C½Þ•Ú$˜'X¾v¡£àó¶÷m(øŒÝ£àùo½P LKml½Ž ½ ~²å=°"<±8Ù{­RÛƒY2ÂÚŽ‚ç s—Êòâÿ‚°ù‰]^ÂJml½Ž@]mŸñ2Þf<õ†Šéh£´Q°=˜%#¬ýè(xΚ¹¯ç÷nyó³…óî…ÕSGÝ/–6 –@¯"XœQi‰>üàãý©·Ò Xg†8zíBçÀgl·9>Ÿ±áæG8 ×·%¬ÔÆÀö8Q;(o®.—e>äÖ¬ 0ò›M”6¶sd„µŸ±›ãÝ7@}!‚¿ÖͳװR›ÛC¨« Sàù‘WqFE¸j/#µqq·#eAfÉk?:žñ|ún8ÏÁuÏ<úþ§Ô†Àö(ÄëÒûO}™¬j+À…MhÙDi3`{0IFXz± à˜³·^%*|W‰ÊŸ¶J–º!`yð*uµÑð¶_¨ …[-ÕWó+ z0KFXû± àíx±nL–ó£mBòkœØK©ð,tCÀòàUêj£!à ï|)Â~×Â0¶±s»²€‡óÆ[ck?:žßßÔ%¾/và)—ݨM€íQ|W Ñ‚ð¼ ~jé<ñN´×áRÛƒY3ÂÚ‹€ÏX“¹lpƪ̼R^¼8òž(0°òêT‘¼¾B¯· ‚õ¶n̪>.D¸?(€6nÖ´SðP–ˆð¥Ï ôfýTZp‰‚¿NýÖ$´qÍõSÁpíQŒ×¨« Sà9U¾Àáˆ0ÇtmÉÀ6O®W`ðP–ˆð¥¿ N †ïñû°ÀæBBÇùVòx×0ßy’åŒb¼?üíçÆ‘[ôвzÝO½hi¯²,^Ç|è½ïîËêEÞū,‹W¥Úœœû¯ ëxáì™7¶ùO lýçà×±çÊ­Ç&sW±ëùìóãŸ÷àuŸçÛ+²þÕúï¦sÏûî9ji…,s sÆ&éWÈX ?ÎÙɨ]PrÞöŸ±Q»ÿÛ¸ûØRˆÎe˜îžÞyìÂùÜËØÐáÆåÁl`Íþ¯y^ÆQ…’ç•;jPÑòäû™S3êP06ü8éh÷Îöíq#o€¬Ò¿ w¾CëÃçómü†­JÇLL‘ÖNTÇîüÍð>Oa[Îä`㌂‘¡çsà“ú “:Ú}²d€=^dÊÔÕF!Ë–'˜ö‘õ1ÔDé8€IÐCiW€µÙ³ãÎb›Y¹7_\²ÛD1î,òúÔ ˆ¨>éÙl=ÍÅôxs]#PWq-Øx@nü,Å6JÇ̂̒Ö~ÔYÛóÅŸÌë¸êƒeÚ(ÃþÉ"Ð[Œ’yUœYœ:GˆBõðwUÀeêj# %—È+Bd¶]n:Ž@òPÞˆ°ö—Z.Fsq[ªü÷ùGÕDyð©_•”Ï/À,;ŸŸ|ºrj÷¶¥Ê;B•w, î,èÁ,aíÆäžsÓ6j¡ˆ ñ¾ÝˆsýÉK~ç€Yú:d¾d'ß^rêj!(ËñÖ¢Fˆ?o° è8¢’C¥¨ã—.T¯Æ§Š>GíÎ×,¹›ÊˆZÖWÉÝVf _}ØeÄ™Ê ¤ô˜sT–Pfé£~†¶å“»©8«ŽÜÆUH΂Ì’Ö~TßöO÷y•^9mÉçÏqgU½Ž_ƒBÏ[àI¥£Ý3÷HµÇ@±VFÞkK[â[ÿøÁêùÓm”Ž#˜=˜%#¬ý¨¾Å¯™1Xâ–ì“}“剗›F솓Ãé5ßÅéüLã¾Ä¹‡£§ÜëŽX†=GÕÑÛ“k¾t~tH€LÖ.T·b÷™>Ѐ‹?&Ÿç†¸@ޣσž=æÇ6ÚìAíÙƒ\ûŠ€¹Amhö`t@Š<~éÂ2u̾«Ïó/`æ8/È™ãÄ‚ÏôàLÁÒG݃yj)²¬[‘e5QÚ‡8·áøÞŒ¿|¿+?„§† ×–èeãósT}Ô{Ô9üòµ3{TñzG Î&òÎ,ŸãÇ‹kM”ÆÕ›IЃI2ÂÒ‹ìXüf™UÖã+={fËóÓY?rfYöxÉ0~ûÎe§³Íøùýóøïó¢þ\>Zr&—åÂ*?r}‚(G0z0AFX»Pç«Êoç‡{××—,ù©äÎ+%¿¢ 7uÎSYÜgÆwiì¶hËœsNa„:/nƒ;!: z0KFXû‘}‹-PªÐùG=[Þøì¦Î&wì–;v̇ûý•ŽÏt5Ã#¶n9_G°>ðu.KôéØßüu„-ì/~=a ø;3¬£¿t¡Fâ¼³~ó‹ö¨í.›%ßH{üJ÷ÚõFʈݢ°7t|œ[¾)e9÷§#X:°Ä¡ñ­€GàÉ×m@Ç,è¡,áK?pÊ>qƒ2?“ï÷f‰%ë¹Î訣Žä/#že]:OÙ'î›ì±ãk¤«ÇŽâ­ÒqÖ˜<”%"|éG·7÷¼÷xîɾÙòÆ;WS?ñ™åÔó›7á-³qå?èÝŽ`}ÔBS[æ#GΞŒ0o~ãgPµQ:ϲ€‡²D„/ýÀíâÈû˺n¿ÛPöˆË².“½¾¯¯üÕ‹:¿h&qx|¶zÌ`êj"oiÉ©Áj*p¥ó‹YЃY#ÀÒ‰êו?™Ü±áÞ§¦GYŠÎF+g”[¯ŠK.i< &q¢G¬rû´ÒÞû”%65}~p„ÚÔÔm”ÆW`fAfÉk?j<îù¶ûÛ0îÙ7ZbTǓȿèbTç7Ü2¿p>9ø÷‘•8|84ˆhy®ZTˆ1|ßÇ-@ÇHALšÖNà;-«ùܱI}UÛ wsý¨ÕRq•¾§t~¥%¶Ç‘ké@òÀ·µ,1´âBD€XNõÞnSp–¥sd„µuÊæÓE~VîÛr×B°@®{êXÚëžSt¿¼áý;‚ôu*SXF>?;ÂØr·Ú(m0 z0KFXûñ»‚ä+_üüB7Ûjâ_õû-TU:mAÝW’HÖ…%«tåXÀL9êÔñ*+CUåÑ(«ð,Ðéè¡”¶¤ˆ.ÐiK•×$‡dùM’Jè$Ë´G¢N€déLª¶¦¯Ú›n€Õ9=˜"#¬è(ÔÕ9›¥nýA!Y{“œÒÕ9I2íñ"SFFåL[ª¶¦#TíM·ÁêœÎ‚Ì’Ö~tÚNš,øÌ!uJ*ÛIÊ´G¡NG Öi“Ÿº"ନ 7eAfÉk?: ½ž3ýÞ-O‡¡×• *© CíQ¨Ó¤ñZ¦-QéÐ0ôŠ_ `©Ò†¡ö`–Œ°ö£ÃÐ>&eÁˆ* éW ²ÉB™mÔæùZFõ}.c’–6¢>gqlÃc’YЃY2ÂÚF4–!YŽ§Ä m@Ž*òÜd {±pjHZ4 Amx@" ÇJQñw¡ÃÐÞ-Z˜VaH§] ²w¬Pfëz¢Îv­B»c´(1DPÞhÃcô`–Œ°ö£ÃÐ6m) ©±PÙF#P¦= u:‚4G£,KŠ€±¦64•=˜%#¬ýè0Ôqm©r¶d‘,wKZ邸À™vHØéã!Y©Ö†½7Ž®J·ÏZ¸N€JÖ.tê{p É ‚Jßeê¨S÷ Ô¾ ‘¥n"7jC·!L‚ÌÇ/]ø#O ‰ídѳ©ÓZÙNx¦<À;Z§Ë|ÜŒÀ³Á6|º˜=”7"¬ýèH´M¶Ô…"©‰̲M šö(êéÒœ:dÁ…¯˜Ô†¦eAfÉk?:íѧ¢n… ú€,ta¢žŽ@íI #p¼± HfAfÉk?.ê1) F¡$G©¥Ç$±&=H=AZcÒ–QŠ€§64&•=”wEøÒGÛy“Ÿ:°¤ÏJË~Þ m¶3›è³yhŸ7Zô©#‚Î ÚÐySðP–ˆð¥޶ëÍ–ºZ€%}5¸ì×[¡M{ìøZåõ&­ë^-ŒÀ«‰mèzSðP–ˆð¥Žº`¸-U¦‘ÔåÀ .]0œhÓ…>AšU½mÉŸlyxw| wõwå—o:®é7&Úo>`à½CÑHßZ¯ì÷E4íQÄÓ¨}û! n·lÃ7 ÌB·(È–Nt&Ú;F‹z–4²Ý4%¯ì=+¢Ùz–ijõ ºõŒ$ÆÌ›m´ž! õyóÞléGg¢}ÒÂaX@Rƒ Ȳ C@M{ôtj CYômfŒ¯aÈðwæ÷ùüð5ýNC¯x`ï4ôúŒœI"¯O …]¬’Ú8ÔE;ºÚ0½b‰÷kzÅ;ÛÝÚ(mjfÉk?:í§‹~ØE"}2ŠUöÓõo敤ž5¨=kÐRWþ—Yñuº˜þÎüòØ5ý߃žWíð÷Ôºôš,÷™«»ÿöó^XºJËâ+;ï¾À•–Õë:j#${•eõª’¨Ý«,‹W`¾ºSVŸçÁ’9•eñB¯›Wûþ'Vç^g¬<~°:wûñÏ{|S¼Ï·ýÌÿw»¾í÷ϯÓýåSøõ» lWCÔ³KGþ B<õ“#2µµAûxÈj@ˆúŠÍAâÇO½ïùۨ—6¢¶d€µ ¢¾ã ééˆú¾rb¾¯z¿º!jy‚VÈjÁˆúŽ÷¨n#ê{ޥǚ5Pº!jy0EFX;± ê+ÞKútD}Íû§Ç„zæùSÔ%ŸæßŸy´äAvHË|P:½R7 ÜŽ«5À=˜ #¬]Xètì•SW2-±b}|L§c¿œZ|TäºÑiy€=+4ÚhtúzúµæM@ýÚ6 –‡òF„µ ž³xm|fËS[Ê‘ _±àò69†ntZ`ÏŠ@ýÁÎÈͲÕèe„»v¥S¥–‡òF„µ ¾Ž-^—ûÞ-ÏO»átì¥#j|£céúˆ3“ÜêÕW[ö‹çqtÜ \-x醤åÁÔaM¾s%Ur§u•‰tP¥]ÌGuÜE…äj¤Ðª±nKUaW”UVªãÎ$䀜yüÒ…IOãO£éy²"='Ñ…HC7"-ðfE Î&¾Æ±é¸MÉÉÙDé¤å¡¬H³‰Æ£#‹ÜÝ–ûÄÍf=^÷[7£`ÅÐGË´Y¨«Æ£¯ã!ŠÂÝ­ÒG˃Y2ÂÚ…GG!ö÷é<:Êä&(F‘ochóh9oÖñ”ÖOÐP¾uôý©5 _ºñhy0AX»ÐxtÞ¡ÝG· &Pð¼H÷Ÿ¡bHÓhþ¨YGS#¼atV †Ñír« £íÀ„qü’ÿyÒ(ˆ;‡ìYoÚ2ŠyžÒËfS˜Bão˜ue6žz,ñÑG,qðÒ&Ðö`jŒ°&¿èø”ÇÝ ô5oî×úš·œH‡¡–ø²"PW@ã‘D⣎/>¶Ý´<¥"¬ýXt\‰ãèz|j*²ß¸¯a: Ý´<À—úC“%æ ¸†~eË&.#4$A¥]Ö^tþ<§Æï–Èrg‘B’ß©ïÚá¤Ø0µù³<@—AºÚ0ΛÖx3Dηêù±•®=˜%"|éÇŸÇsã“36ɯf°aèÆŸåº¬9ŸºÚhüYS"hÖFÐ?ÓCY"—~,üyÒ¸;Ž™4Þ7#ùó³<³aèÆŸåºÌÒÕFãÏãsçrIE˜7îÛÙÚ(Ýø3=”%"|éÇŸÇsb¡§,om¦IÐ3Þ»VµƒC7þ,ÐeF®6ŽÌjÝ;"|j;NµQºÑ*z(KDøÒ¢ÇÈêGÑ).sèq}j)=1tãÐòefÊ‚K¶Ì9=ÞT€9»ìWk¢tÃÐò@Š °taÁУ¾7†õÝ"<ê!âá÷‘åȬÔ~A–­–Á3ÂÁ—¥ÐÆá·©=”7"¬ýX0ôx/¬§¦åŠ]cè«vq&¾¸Ïƒ8²<™m4 7“¹JFllæõ¿ÔE˃y3ÂÚ…G*Ú‚ÅË Áç§ö–'+†njÑ2GÕnú¹?±äŽÛ9PËú&£¬ÀyÆ‚þ|PâÑñ؃—nÌSLÖäæ¶}tæ¹cãÒÆ=^üo̺1Oy€h*õgðôÒ‚!^ažz¡ º¡Ny€d*u6ÑPgHÏ­ P{s¹‰Ò uʃI2ÂÒ‹uîñrõÙQgœÖd8€Œt4 ÝP§<2ºÚh¨36EÚw£Î(-{4œ ÝP§<”7"¬ýXPg€°p(4s ã<àÔ¸MÕÆ >u¤â¶Ñ‡få¡<`Í»óÍ™`‚„t1®Í»áGèF8éA€ÉÔh¡!ÎØñ>·Ê@„@çpÐFœr`Î8~éÂn†Ü·Ü³qÍ=ö | 6÷ØMõ5~„nxS˜Š@½=ÜD@`dDØÞë§ÎO¡┇òF„µ âÜ÷]Íd©GÁŘi6o @ݧ<0ºÚhˆs¯‡ G˜™~â„nˆSÌ’Ö~,ˆs?nlT%ËyâW” _¬xWüº!Ny`*õª|¶ì|XD„ýÄ»ðhc?‰ ˜=˜%#¬ýX ç•€;ãÜãü4ãŒ÷;?Þ€º1Nz`2u5Ñg°„i°ÅM¸[(Ù'ÿ®”ëðµ ÞŒ º?}ïkû ½þ¤~³òÑ#tÛò¼déûæµIKÜ}Œ7c+í|¿„m”nx“ʾôcÁ›QJ o=0 µƒ ¹bTHöòÝè¦<À.Ázÿ©ï<ßµ›Aˆ—‚¶€ºÁMz(IDX{±°Í¨&Q»¦É +1ˆó;á ÏËsÃï×'j»_À[¤Ò&Ãö(îëÔÕ†ÉðøpS@D¸¹) Ú€6¶³Ô¶‚K?:ž#øå†´Ì“]LöÅp:ê¸(.µ±j­™Ž‡Ôû 2x&©£»e¾´!±=”2¬]hØuÞeàiO>ë³^×UÞ‰xå¬ÒC¿Kʲ×ó#T w·Á*ïJ‚Ìy× Óç‡^âý:ugÍ"é£áâ9N·zÁ.£Qéò&µÔÆÅöÀ^§Š@M˜ÏKåÖÛ¨Y£ù­¯36mZl$©K/:,žY°Hƒ,s‹ßðk —Ú°Ø…‚zg±Yª¼#lu‹¡66n´¤,èÁ,aíG‡ÅÓç‰u¾7KÜz=lfzx=,µa±= ;uµaX<-[ý €÷;/« hÃb{(oDXûÑaqÞ}Eì¼N®¾Síˆ×HÛNµÔ¦Åò VéjøxZö¶SmÞeuL61ˆô”=”öÞ6«u Æm^”óP­gÆ‚¹}f,ÜkÂÁžZ©53Ú²÷õ°žøØ†fFeç½÷õ°ËäÔš£ç=1žãëÌq X;âæ,c[8—ÚÄØ;¿×+‚tµadœã'Xa„(†¸·6JËCY"—~tf<¢âÛÑ×ÃNË“í‘ÅÄûÚÃ<—ÚÌØE„Áz×n&°Ì)? l9å=U·m@›)ÉCY"—~4f<á&š0Äl´›k6Ï¥63¶GaG€FfÆã~î¾YíÔ[!`´mfldÍK':3÷•¥ß›å>ûÆ S¿øªLžKmfl"ÂŽ@}iç Zb¤7f˜ú¬9–m”63¶³d„µ70& ÖÕ׎ëjt©ÍŒíQDب« 3ãqooýÁ~ìb¥ íÁ,aíG§Æ#^så›´¼õž~D¢óî¢.µ©±=Š ;‚ôÁ7=h‰’¾¢Æ#Þs=ÝBI3cýâèµ 2n§Œ~à€µ:!À¹í”ñòæbiaFÖ)“…8#ð„° Ÿ2fAfÉk?~_d|ÌGŒã+íü™ÝjÙñ·`ÑùU‰E²$ Q7¬v±ÅŽyQÉðvІÊ)*ÂÚ‰…†ŽñâÖV–˜½6?®Ã a© •X§"PîónË^ËZaÞ½ok£t£¡òPÞ{_ë6 åëÛÛqhœ‚ÜÉ$2^ük;ÈR7*ÐNE ®6ÍìóÐ3¾.½×uã¡ò@–аöc¢ñêàÓw©בŽ…"¯s¯áX Ý€¨<€;ºÚh@4Þ—­—ÞaNÅŸÑÚ(Ý€¨<”7"¬ýX€èØn#BË^{¢EŽ£6'¬„n@TÀŠ@]m4 :¶ÂŒWÏë¥·Ô ˆÊCy#ÂÚN5Ϊ¼nªq^ã§[P#Jî]æ %ÒàßÁ+x0eo@#ÎÓîp#ê+½Òr`º8~É~a¡QJƒ·´,5ÜpO[òÜnT+N ÝX¨<@:m4š×0 ‚¹¡Ú€n,TÌ›Ö~,,4.Ì£¯’ÍS< Ú»rà ê»[>wóéTh´ÑXhLŠ[c¡QÙqo,º±Py0oFXû±°Ðø6<—ìh,ô<ëýHÂJh³P9ëÔñÕ€Yh—ÛÌBÏZRãð^ÆÃè¡”`íBg¡Qç­v´¡á½Ëžòœ£ë¢n(”8^²â7oìĆ4®8WoŸ° h“P90c¿tà:g^1ù‚^^º€¬M¬Œ(¡• §"PW ƒÆÛõõDŠóÊl´dƒ ü»’Æák'/unŸAóýU3ÐùTÑ*uA6Ê¿oòhÉoZÒÕÂ.óÏy¶± ”nüSLÖ.,ü3Þü½GçŸ#Ö@}Ì?óÝßÙ$tãŸòÝTé ne‰­S¼!@~µ§&Ú(Ýø§<˜%#¬ýXøç9o®êeYæ-ÞxÍ?£8lÖ]3“‘Ó"Ìû»Sl£tCžò`–Œ°öcAž1Y£L­,Øc¼1žfs6€$tCžòÐTé;Ó2ïâKK6Ü®°ÒzʃY2ÂÚ…{žós©'gYÎzR'q<Ïú%—Lº]Ùô Õdéj£qÏaYÃP3Ô[5 ÙFéÆ=åÁ,aíÇïÊ=Ïgøóú…¥²1æ""œ‚=<ùÓ-ûy/Yö\·ñ·iq£ßœhè>ñãÆ±8ÑÒ¼ÎZ Ò³¢¥{­™öÜíõÛWÔîå_kóéq~PŸ#Ëõ´Gì'»íÏ·³þgÞ!ocóºZ.îÿœø~ærßý_ 7/¬¦eõª—ºWY–åÄÛ¼ÔÖEǰ¬^oNœÝ«,‹rm^-ûÿÁ…Ég|íÿÒù,ŸbÇð¿Og>ÿ2³<}\ßþõŸžmû¾&óóñç%;ÞKø˜Í?çÌûÌ·’3úÿöc¼è²o÷ûí¿äÿÎqu~ûÇýñϱ¥Ð»ÍVÿ%ìïó¹?ßþ㮃¯oóþÄþGæ4»õ¶f¯¨´uFãùfKÿg„ÜöíÏþí¯?Æ}Ùç9>ßþ!Âl縟oÿ=\î÷ý|æÿÆæâÏõ9¢Q%ð/ÿœQ¶yùÌ¿}ûÛq!|æØ·ÿ¶„Qgûý|ûÛ=åÚÎlýyîcÿö/ÿ%{:óÚŽoÿ_x~žoÿ)âÍ;øy®ã „yÛ®~äFžw=Çú$æìÚN@üÞzì£ÝÊܸ÷°bnxøª¾ï£m¿Òéáߟc!WJuGÎéë- ¢fÏËÓ§X*k¯ùŸHy:Ýî@Dz _±ßö÷oŸÞ‰?¸9?Lópìéè¨|tùÃt¼_È¿Ý}¸;ìCâ¤*ÎvvÛ<0bé„«|φÑf•áUpHc6ô>F‹•Ú/x߇Q>†O\E]|ùë7/¿{¥Ö9‹•¡Jì‹! ÅU[LêBìC+‰Df½Pxž÷’ÒÙ„l·§…X.ÃDèÃ`»‰’½KXÈå±–4£w r±Cû@8ænh„zFÿ ,T†Û¤x‰l»àF¼¢ëf:Æzür=QÒ ,€ëÚ—6;²É3fŠ*“`Òe&ƒÕðhž:mGYoÛ1ª¤h飺èÞ› /¥™ŠDN•Ù㨸o¡WT"n¤æ™„ô=8×WËe“†(–RĚīГí9ïWiÏ|®~3q)¢Ð÷œyמ›*ú:.º9ñ¢d JôþNd©§ù‹¦s-¨PÈÑä³C·­ˆeW]Ð+i…·†à徂stEqž jRaP;cGè€TrÑš•½,»¤<ýYlãIEwôV–Ñž<¶úÛÖ¬M5iŸÝ¹;åÜGpð˜¾÷ ŒÝ¨ë½uÙ¥ ,A[jháÃùPº7±!¾[Ôð å²Q7¢ÙÄŒVЉSôÔÀà´ÐZ2ÒåMÉhx÷CÃ'Yf.^ºÀK–V„þM—¯’š›.*5Æ–›UDXæ 7/«ïtåÙfÑ$Û$š%3ôàÛ[œ)9‚ª»÷—ÙOÊš(«8i¾Ðµì£Ì;èÚñ|ýŒò,•jºTª`8pò§ÍLŽl5„ #œßý"k É@I»¹é–¢D¼ô®\éG…´ìâB,ÐÑØÉb"=°8_nMþi=­ôëá¹u=ÓVãyu’'EÙ*5éùŽfvCµ,³†¤/‹Ù£ÜGZM7­wa¨•›zÿ¨âxûyêš“c=ž­@‡ü »%´m©b°$tÀ·Ã •U¾œZfïÎaå›î3ˆK®ä9«éär3’KKíœÏõ~9Ò´ò²PiÿÙ¤Xœendstream endobj 85 0 obj << /Filter /FlateDecode /Length 3841 >> stream xœÕ[ëIÿn!þàÃÅC¿'éˆtè!Y@(‰o×ÙuðÚ›}$ä¿§ªŸÕã¯I݉›i÷TWUÿº^]û~Îz>gø/ý÷üz&zåçglþû™á¼×\Ì­6¼wf~=³žõN•íìåÌYÞ[ÇçÖ(ÖK“ʈã¾7:ÌÒÂÉ^+2«ŒÐYÒ¨^9² ÖJöH‹¬˜ÙrÞõVW®Ò;eÊH×+ã SŽÛÞ1Þ0Ugå‘fVbª,—y"ë±ùåìýŒUÎÓίç¿=›ýê…Ðsß{#Ìüìí,ª™Ï9¨+žÙžÃŒ³ëÙ«Î,–\Y'ºç‹%ë cÒw/¬÷0ÛÈî;eÞ1!|÷ì)¾ Ƽ²ñΘ²¾×Ý7ß/–RŠÞ;ßÑɊܦL÷G¶Œ9ƒß1øÌhŸf8g¼êž}[Yyv†%ÐñÝ7Ï€¼âÞt ó¥7ÞË̉ðBu/ñèyéßœýa*õR¸ùÙ÷³³_¾êîðWé½R²»BNàtµ­‹oKX`i £ÚI!M÷¯0Áøîi8X×t·H‚IØænu&;.-Î@žxDÎW>­g¹ºáw KÜTI‘0Ãí6a5 Bt»òÕ9á}SÙ!Vw€,SÍìý5L·°æ;ÞímšåÈR™¾[À ûš¸z½‹<+¦»·%e°Œk{§xX$JÅšïF¥n˜ rƒØÜ%pŠ£ m«´«H𪩖@”@\Ãf^ØmœÁ›ˆÃd“¿äR º±}Þy@ZT¤ÍÜ,G’ Pš†ctv‡æ–`˜l–bÜ¢šÍÊp¯FLZgqe^a †ÆkÍãB‰3ÆåmÔÚ߯4=m#bp©¬Èênµ‹ÇÔ­#êÓùüTy¼àL€pŒã°²‚¶ßFŠÎd³Õ‰ë8YÂv\T‘ÉÞ­"X¥ò‡j°G?€ˆøäl!ç~uS¥%Ðñœ«D•ç‡úÝ]=âÍ¡+.£nÕy ÜF°¼–X^aÀ² žas³à=èÛàÉÉOçåi_ž®ËSDßÀžKÓ3cE¦ú¶²‡jý: ŠÆƒ»ßµvs)¼GÝàø‘˜ôMUycåÀ\k 4°}v£#“¾wZú,Û݈žVåi[žÖcz¾WÊí¯¢y1Ìà%Á@8V\“›4ƒA&Ï}s8Ð=nµRtAÉ~1" (¬ÍL^”§¿”§oGÅR½¦l³ °ààïÚÂ(€xžuDMŸküYúpT ¾¢1³Þ ¦ÄK ææ.hH3–¤Î¸K‹°æ°æÑ®+ÂÜ„Õ%¢^TôíéY(ûst€$ N €>] ~Af³•-sÃ$>2íc]˜…€/›AÏ<NgF@2' ž¢6“z[òeëÁ=¨ªç4Ø*¯tÐTXž&<-…÷CqóÛºØ}\Á‹ƒX;‡vaïèWíܲB"†8¯{šè:¬£ \mjˆFMŒPu¾—•‰#0æÆM(œ*cZRLý<̈Q^š¢Îè™U>YáÐWù\&1„„Q¸2€ü‚Às]cÇŸ[ð&Ȩ3.ÑX§•[ SüAxâ-4cÁÅ¢‹ 'ãppo¢ï 6e×à•0ª/x ÜÆ×Nö yP÷ž„dëjîëÜ K@¼÷üd"×tAÏÙ§·t‹>éäôÍ`¾CSÊÐ ôf£9ÖMv…Ê·%4܆”þY ¡!Äs\à±(¹Òͨ65ƒØ‘3{‰ ˜·Ò¥Ò±H­hñ%¯•ÿ'Q_Ö™#g€!«ŽD¥&æ„$„ƵqaÙØqŠŒ®xØÇÀ£:Zt%”D¨ Pžê>‡ •­óê–÷ÔcÄ-‡EE3ýI4Öi ’äzÌh@MŸç ìÀAÄ4iÂľ¯vŒ¸`bÇ&¾»ÈþAMÙ¬i¯cά&Œ4=¥!©8Üqr6Cå ¾dfÉÜzÄÜ‹‘Ä3’‹øö#qódÄÇ}‰?,´Æ²ƒmb?Ь~¨Þ‘8,ªx8Uî!O”=€©àT3W®ÁÜoK-° ÂA%•ùàç§û‘·Ž]½U-»òôÊ4t.Ìüº .ëàç$(ù PuÈìÿNÐWåéIåYO‡Q~z3Fðôü£|òu)XëN ó‹‹R ÀÏ£™SöªÆöl3¢°ªâÿóN=ÉìpÀüÜôèý‚{×l™Ì¼—÷«ÝÅê¬!Øñº‹õ‡Íê~³ß# * &t}Ÿn¾¶¯_…lœÈ_ñ7éK0`5ÂùÏ”T_9Q)c]”yúnÀaÐw­Ló.¥Õô27Øà(ž¹x±¿R¹^c@?Ãòc®û'Ú£<þuÝÙÑùEl­À¢i;_ùRÏŸr0ßiÍçOEðÞ ž$VôEÓñ:Nüêáöb»†á"ÎÇx@3Uàÿ´µ‚p+‰‚1VRàŠ^0Ûíó'¨S§ŒÑc{{µ¹¼z÷p}C¿–àdó†ë-%%‘¨‹ï¸ŸÚxÝ0l™5 0ûÌ…åCùjµ˜%f¢]"?&è‚\K݈¬t–ÎÇe†‹‚ÿ*‹Þ>ì`îu«iay£X§™lhpq›!á$ReA …ð'Ú“Âú²ìv¿»êWiÎâ*߈+ Þ(úe\×r±»&άùnõa½ÝìQ…­dRhÛÐpŽÙ–+¶¥rI¶m‘ Á¤vC ƒ•öô £K­,ÎÒÚBÀM$Ä‚uiÁ#š´ƒp”ùp¨tx¦àÄÙÅÙ;8pÍo’O8ÈùÀ"e1ꉨ’CFªÍ¿¦ì–ðLÍå Êx+ŽBrd8ÁG7sr„ª®]Ýر̨ y@<ñÓ•#EGBˆ‘¢ãÃHÄs=⺪çý4Z°…ìØ°Bÿ †œ[LÄÎ9¾K^2sP3ãŸÿP¯j­g¼Ü=‘[ÔËLž0‹€Ý%£ãeÃÇJãÝmÊœ¸Ÿ¨³În¨e”Š—ÓàYKhR1®(²HGj@âH%æ°øR]ro“ê›!Õüª½Îf M’t§d _†¾ŸpŒgóþîúf qÞùº:EÜÐÝœïaÂn½»¿‹‘ gXþr["›h@dŒlê‹Äû½@-7õEÓ—ÜPú5¸™ŽD³÷1œÌ±XŠ&›WÎéëI±äH˜óüv K)쯫ÛMT§)®Š7ŒpѾò†k0›–òÁ”0Í;7ÕQ>}¸~Ø‚>Ý£ &¿?`À*C_ÄsTO’Ë&obD¬•±è8‡CdÛ8´øLúcÅÉ)ûÃöê?Cá€Çÿ3%á¡ÿ}‘׋u ñZüAe7VÇVÅX»a…Xåx7›ü¸5×\sk§.9H¹v_œò‚ÅXËX ?p@ä¦é> •Ö5KMmœápÿà˜þ¦<)€áŠw\ȃãzØ\qPØäâ¤æŠX6^)•ç‘rÆ1÷Qm-¤Øócò ¿qfûyÙå€Ö‰ªfjÑ'Ztmr¢^G\˜P)´-Å—5ñxŽïkøÄnÇPXÖð:PÃ鯄Ï9ZF® 釮*¦ÝÙ¦,X7ö=äŸä]óæ2®–“cvjéziœÅ¶–`±’Íýö‹qà0ti®âȦWWaF¸ž¸”]ÝÇÎ ¦ÐΣ´ÆU<~BN²µ†>Q ¾ËܸÔLI\ÄaldÛ¶öŽ4’ êwïH4—X¤•/莚õ£q11©›qÞ²Pl²‹^嬩­,ô> s€ï|Ý09™Ôí¨~¤†Õ—Ñ……[Ötµê ä!¦&h´ó"ì=ðõ1¸'Ð+Mtq÷¹à·J‰~,·—©^îÀ-\w¢ÝžîÀß% ñE)rçÒ¨) Κ·0'­‹r06u{yxchCFfø Ý)ûÓP/Z&“ ‰@°{z‡H;¾’ç³ï#a¹ëï¢M2lÜA#Yïðß'7÷T¸cz:ÊRBŒ18 :‚J¹HZÂ:0ûµ=¿‚ Ù´÷vÖD4ôrz 7üðµ4.kgBDqd¢½3¸©mt§\åH?Á,ÎÓQœ['{üp€ˆNa¬Á?ûiCƒÂàGØ¥¶²!B7àT'ÀÝÐpåJ iómòÚÝ…ÄAìÉŒ‰Ûrªƒ‰6ÖOë}\Û11|¸®7R1´,hÌ£íºƒÚ êË`£3½nOr×V½t¢Á(Õ‹ÔÌEêêà€šÖ'¬0'{Uå¶W¥žâ¶Ã®ÚÇR£²€…ìÄ?EëÎ 'ë%D¡Å»ùRõ#¬Dµ±Õ# ?g.õ@´½ç…ا˜ÅØÐ-]H¬H‰«íyÞTÇza‡òж¬B§) ŽC¸KG›ŒKK>éëå3†÷BʬËCB2²ã¡ëYØÚTPK^¾lÊ~’9ùIe¿óáÇ.oׯ?ÅüîsäÌU“Gê¥'_Ñÿ„ÔõE ЃzÁ³}ŒAAXÚÈ ž^i¦†çZÓ«´y­…ýp÷œe1 Ñ+7—Á’ÉçXæ{^ƒª/Ò„Ä+TÇÛ–ùÁ}Æ®ÎN»l@Ù ,8ˆ ØÓÔÊüaD¢0È/Ãj\‡NN°àM·ÿvÔÜu3>ùSÞ|1‘þHk3Jî*Ë|x©RîOJLKçxõ¥†ÕBSäÕ‰)cœ·‚F˗غæ-F]mRMÝcÀGÒvÝ´FÇ&d´È¶‹Ã˜Tí‰/» ÛTRÜÛ¸¸ñÃFÛÒÖåA†¢¸gÊQŒÅº(x“ÃE©&ÏFúù”l$ˆw¿¼•³Vq·‘ð +D~Z+gä3rŸBǶ_³$NUþ·±¡ ©˜+ÐÖÎØ1•~oCô@‡0Ê 6h6í_UÿýI‘hþ‹Œ}{6û3üû7¼~¢mendstream endobj 86 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1438 >> stream xœ•”kLSwÆOiŃ4ROHu9'sDÁË2³E·§‘'ï¹ ©Õ¶"– ôFKiÏË¥J[.½¬åbE‘›\ÅédnFÌœJ–m?m‰Û¿zü°#ºÌdû çÿå|zò¼Ïïy_Æ‹À8ÎìÄäôÍ+ßþ»˜ìðý'I³€Ï>¯ñíȳ1Só®¾54{þEKeòÃEÙ9yâ–‚¥biX:¶ Û€%b±Ï±$,㳚ëåð9">‹àîáNóü³6ÌšŒÜ6 —µþð ?Œ£äq.*A‰„ÅoõYü®¨jjwúoOÞW©HÞËD«r)µØT |o[ÁàÃ(ÁâЃA æ²JR/—'¤® ÜAG‹=@yÏŸA<Ãï¥ûw¼'E©& CâcYPÅE¥•¹êT0ã:X\UU~ Ù|Ó3¼¤ÚR“²²”ZÏœ7WÐF0‰´ö2¯³É汑‚°ý¥ãˆ›Èy“¶¢ñ(õ»™¹ Á,bÇ}“|ÍEZ„–Œ•ñyù¡†[÷ø(Õ9>xì4àCm{S³ŽÄIR(iúÎÌÝ€³ªÌöZ>£N¹Áý•™OèèMy4^®¥Áb´Q­Ð^ÓÇá„)Ãüw­.ð8u Ú V‡ÕÖRÛHB‹m%Áœs BâQÂ_)C)»³ ÄRJ3–é,|É+ Ô £.öW¼x¿c«$[ÎDK¿ 4…Ywž¦›²×TÕTÛ)Ax¹Öé.zobØ39e¸ˆb.eÜŠ>E€v}º~lÃ%ò5qGÒ,#¥äˆz ÷¨]Š"YIæ–±‚ïÑÒ.$øymsN)üSf-°÷.ø&î¶vêòêII¥^:\k- 4µ8{rNof¢r–í …OáÓ몶 \€¦X¢Jô²_á"W8Ž˜Šlªg£)‡RjMd'НuC5XD¾‹®P§`‹’Ç|0kUd‰”š:h¤îF&2Ýtee)¨D»:rÏý>ò²V êÉ£{r×o\ÁF4ÚÚ¨Xè5ûc6ÖÇ ï ?.õ»;'¡|Á†Ps—sŒuF…¦Tª¯”_Š?­î*(øŠ1‰Al¤Ia¯RÒ(YÈp™9Ìrfñª·)áSÐçëÂG‘È`Òô’äOÒA”¡¿|l8„¢š{¨àøÀðvI‚;²Í´Ñ\Á:Ìš))Êïá Ù—ü]|²’xNuUWQ£7éhÚDÆë5´–¥Hë÷`µAg2©&ãŸQ´I—ûD«{6ÝB<…–¢%ÏË´O¬ˆIÓ3Q¸ßw»¯îd;Фl¨nð¶wwèú¿Âü³23nfã†GßÀM£. É[³Aôj.§ú|CÝÔëgÞ` P©v©¶¬Iü?éÙákºYæ(uHA &ºÒÌ–+œÅdûw¦ýaŸ…}þ|"VøývžP¬ÖìªPÈĢ܌\(5y½×îôAî*÷:z@•—ÛyôÁãÉo'=$â„“jXÖµ3¬5Ezi%)|Ô®’·e-dxÌl&žygÕÙM,ëÇ#Ð{Æéį#7‘É$é%[Ö²¬·™'ë¡(ßY*8Ú×Ï^+u«õ”½¸žHôS šñì…ì{±Â0z€Þ%^¹ŠRù2ö*êUU­-®W'u ­s´³É{DöóWˆ™ã‹KPí®%ë:ZŽ^_o,:¬•”ÔÁÔû5ì©öUj¡Ï 䜛î@KkIá/Æp,¶«òbY¡Wïö¶yÚIbi?!z8ÓWÞ¬t̼glîÆb(m?•?Øåm ºÈ¦“îkP3ÃÔXFi(,٨̖è_ªroµ—ü9À~ †ý ÕäN4endstream endobj 87 0 obj << /Filter /FlateDecode /Length 4236 >> stream xœí[ío$GÑ—øhñGì‡'b²C¿¿Ð]HîBŽ>GzÛ{¶{×ñÚ—„¿žª®žîêÙÇO"NŠ„îÃÍöôTW×믪Û_-D'ÿåÿÏnŽTgââë#±xqäŒï´— oì‚[Üå:c¹>z}…ïœ ïŒè´‚Ye$ÈØ9›fY φMø#à¥eëYëámhÖ¸ 1tÞ2¦òçÉéÐOAú.Éyª“ò@3'óTVXb«‰ÅÅÑWG2 r‘ÿ;»Y„¢¸p]ô:¤èª;bq…ßï¾ÝnîÖŸlîöЃ8ñìô³×Ï’b„0`Þå6¿–hÆ/~wŒ¯MH#Ëç›Ë›Í]š³U™€ $ýb ‘¢Ð·6¼Õ«µ—øM\®u'†€ú•“!QYc…Ý’yÝŸ^ïÞî¿ì¯îîE@î_#{Ø[~p¹{8Ýl¿Ü½í3ƒ;Ê”a¯Ï.®ÿ5³ƒ©¥×²S!Hίì¬ÐƲq'O;PðK‰±$>ºÞÜ\m/8kÏ>#Ö2•w›«m‘.1OÚQ†˜Õq 3êÓ>øÛ‡yÓ+'îÆü:­•iFtvb^@nNtžïîú‹Iáf*¹úb»¿if¼üã+œ¡E²¸åï®n®îidƒhdÏ?{5±À…Z5Ü*é½ht"¼Ù†”Œ`ÆrÕo®ÎQÀdß°òë¿|œ¬ßwÏïú‡-çì£ãɾ$yÇñÃî~ß_÷ ¦-£òÑÇŸüG0–F‚CkÕB·ž¸EÁàÙ€!péË8âþ¯·Õ|2÷ÁËO9ó/û‹‹‘o>¯ïÁwïv_7›#ã*b?X˜ÒÊ6l;­â€EƒeB·c"x¸¾&«.â"¶Ð¦ç‡ûͶx»á|?ÿðwÙO¾½ß]7Ï>¹(øqQWFa@­ª“2(‘9gZ«D^lîÀcû=ãüùñ3nî/®Ö·.}ò,”¶9œnvÛ‹õ®OþxZ6Ã×¥?ûz?«xt zýÄV†(djPA\U¬Ý³5Z‘ÔDCì†é ö) Þšj'SUðQ+1.ê*œ‘a0r»T6WÛ%D‰èÈR‹ç@=Å‹ f3;4h° ŽR]p_IÏÍEž!%´¦ˆFìe,{‚eZYa5òZb±xmœ8Ù%`kÉ}kÊkÑ™•ž¦o©0AÍÛ¡.¹çŠ)S©º ‰ds&·’ÎËFv¼úEE)i!*mY„ê©Z´€x­egà ÏèQÃë´ëZý¢ã±U'ÇÁÙ²è¬ïãØc´g[?¬çš0°¥ElP\ ¨IPžƒŒQ‡Fk¬Dl‚Þ†èPâÿ‹é§˜I]ª«™¤Æd&ø6—9#Jåü®-=‡ œñ«ê{•Ö¤0{˜30²{9ÄpÈݺO)m¹{<µð¤††Å]Âva;Á2&úRñ²ü’&Û$¤B®õKx¯«×¦[îZƒHüD7Êpøˆ‚7]úÓnµâFÎfð8w>ð6nÌXXÚÌÇ‘Ì/ËÇ}ŠøJø ´·¼Â#ý›Â2W&©,YrÞ)vzkÌ\Š©N7ÓäÈÝ¡ø¤8¶¡x526äJÀ*zfk°­îX«åýqÃ$Ó¢˜æôa…d¡6sü`)”Gئl< X›@¬Ÿ³øG)K#n™çD×Âc¿§•QÜô/kŒÉ©G„&MŽc3ÌZˆ­! ~<R2kò¬éè‡æâÀ–Vrà-ýù´‰T#­ö–óÂMëý¼Œ|Ĭ‘¿E«Á1c óUnȶ@,"5©À™ã(XÓŽ^ƒ=f7N6¶ëÏáu9W÷A³ò/PŸÞ%HÓ[õ²Mõ»Íð™o"ä[äN!Œþ®†p^Wãұá°¼`ð-u…·4Ù‰qŸ—F#fR|Ä:b?²í#š¾*iÊ' ™H3…|Œ`pဦ텲HtF6é}ØâÈ…¾­Jl“iµV¾w‚Ò õ@ ‚ÿžÁù=^ƒ šÎîõä#ï#ïs›B±smtËøš·ûé¨WséÅ*7„‰Z['Ì%A01ø1F4,üVëã!’B |œßkų… ¡êñbš,—_ŸéKØ›¶U¦˜ÖV‘” ¦™üt?ꆽùQa^uH¢€—PZâBâ3ßþ¶†0¶O&Cîƒ<=$B†7‚Šå·Î]63㎓{œ1¬Ý6w>vUã¼j܈v–_VéóLŸs•õ°E Ÿ;:´@k¯ýÁ‘ƒm®½©Îá‘Cæê;ì2(IE‰ý–2l,éšo€€nBGkÔAôJM]U àH¾ßP |å{m’_‚Ó]p&˜aòo«µLP6vu¡¼ªÞ‰©ÔGÐ~j5jÁ:68™0¨‰å’À>ó…=ŠÚ!Eí n>ÙLS|¾œ\fl´ÒÄgxš•NÎ[©? ö©V:ÀƒÄºx‚½éÙ̓hn$ŠÅ¾)s9„äEN_3F¹Ka¤¾4¬ä–ÿËc'›~ %¥ôȶcuÍÕËNùRÇÿ¤–Bô%°mŠÉ%ç + ö‰:¥ôÃäƒ::ŠTFkô¼ÎÚ}cÃJ*jErÞFÒRÉ¿z¬K± ˆsÍ]ÞÂÌÂq€½ÜX8€QÐ÷ÆÂ)0Äß™Aª‡×ß„ò®½wG<óFîØßLìOœÔàIâ OiÝiVÖÎÁlŸÙ'“í\]²E¶UZ¤Í˼kΣ, âÚaµ9tôµ²©#ÖóïÈ—ÎͽšÚeÉJ ¦ …äTêO¸ÈΣ~b¤õõÚPø!ÙX! Š³–ÙíßЗ€(ñÍúq“–ã´Œ™?Ñ p¶㎆‰|§¼¸?×J‡­¼Ïsc#ÛÔ@O*Q­OœMÇ{ôòhOqk"À/I=s±ÜÓÂ"$[àɡӓ9˜ª°ˆÒ$&Öw¢í\ñ÷M|i¹*DO1<µôÍ›MF$ Ì‘ÀÞý¨^Ÿd‰ÒC:oàq™U>ƒÐAñ|m=nÌ—l*íŠÞ¸®˜ƒñ® †æZiÝ_å¶iè|­~ÙÉTG”}:àÈסVMjÊôÙîró”h¶‰ùœûF±Kî€,X°œZ.I’$$‡€0Û‹Å÷zÞZSõgñê6¯þžÒ§qا‰ãm–³ßgÁ#oã»!BÛ²rزŠM¶¡•ATO<®È¬MΉ¦2¨îð´¦]òxY’í¨IKÇá8:×A¿§mJò‰k†]V*¤—”pÓå*Ž˜"ê†Ïsj×µaty|&çÖ.Ï-ËÛ¤ExŽ yŸšå£?y@rÖ»ñ%µ¡=«Ø1j6 n»Ï¤C¦>$å­ÒbóKÙ`Ç÷΀˜{¤˜¹ïTãs&Š_N³³%vœò|ÔÓ l ¾¬´Ÿræ[›mAŸÈ«ý©L ¿övÑ‚ñåÖ´ôNù寲´äè䆂±N Ÿ ´Š(iTà ûòÌCsAõ’ÿðäèÏðïßTóendstream endobj 88 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 455 >> stream xœcd`ab`dddwöõõ441%³‡ý8ÿõ›‡¹›‡eö/¡#‚ûùw 0€S^ƒ?C 3P ÃNÆâ|?Þ4,ü¡»ñû¯ã³N3?>&ÚQÓZÒÝÆQ9³iÖô¹“çO’ëé¾kâ’…O%&.œ¸p¢þ9“WôôÏZuàÙ«nŽSÒ²|£~‹T'È7•tÕw7pÄ¬ËØõrÃwµÉS›º;»;jÚäÊݳ‚£º9ªZ¦.Z2eñ”…òólýÎÔ}„ã\ÂfgÃ(ï’*¹¶ÃI«b»c»+R+«3kºÛ9§v÷NíéY8QnÎ¥ù»×wsÌŸV—UÖÑP.Ï÷£ûwتï:`‡ÿ0»Ì¼ã7ŸhsfgK|7G}CwEó„öÉò˺Wô-ï^Ó½¶cu÷^å 3ºçOkì®ìž4eúÖïæ“–ÈÏÈ[ž±¯›ã;ÇwÁïjßÕ_µŒNOÉ’o<˜° 욦ÊÊÌ:ÿîL×̙ٜZÒÑÐ^%ºAtÒ²eËçÎZ·jŤ9Ý›gdýf¯L•ÏtÎJëæð¬»7±·»·oº<Ÿ‹ù|În®nîn!—ÒÌ…endstream endobj 89 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 213 >> stream xœcd`ab`dddwö Ž441%º»rý¨gíæaîæa™ý=@è€à^þ] ÀÈÄÀ°‚‰‘‘¥éGßϹSüðÏø]ýG9óÉï«DÇ|®ŸÞÙÛÜ-ÙØØÔÐÒÛ9­Aþ{ÌïØß@ÜÐÐÙÙÝ"Ù0µiêäÞÞéÓå¾GaòïäÞ®Im»%§Ož2­·»¿c‚|Wïoãû¾{÷–˜0qÖŒ {zûû»'qLkžRßÜÞÞÐ Ç'ÇÅb>Ÿ‡³›‡«›‡»›GˆE¨Tendstream endobj 90 0 obj << /Filter /FlateDecode /Length 2675 >> stream xœÍY[o[Ç~'Šü†óЇeažîý‚â" ê¤N - ÇhJ–åJ¤"ÉqüïóÍÞΜÒvŠ- CËåìÜç›ÙåOƒÕ é_ý»»YéѦáÝJ_­¼R£SzΫ1úáf’£í׫g«Ô¢‚·r4D}'ª4z—©œŽft–QõNe¼md³f$^LbS+¦87iU?s¥¼‰£õ‰)U£T3¥&ª¶3£ªJuqM'&O—«ŸV*»r¨v7Ãã³Õ¿×nHcòÚg¯VÅÍjPpƒ²°^†Qâìfõ\ÄõFÙµøûz#G/¥Iâûµ¨½¥]™¢Ô:‰§¡OZÊdCùFIiƒÁY˜`•Ÿ³Þ£Ç“àÄß‚£J^Z/þFÛAÊèéœÄ1ïR¥ˆÑ'+ž~1©òôŒðIâó§`ÁD)DQh¤Rj~˜yìºÇÜ‚rÃ< &:€‹IIÑ™°´¹{nßí|(ýXÛ¤‹—l6Ôß(Ç´×`åZR½#ÚRRñh’ƒÜÉErõ"M‡7íô@–\*<Šþ6b xYµÓ÷ž“4àÙ;$“=ìbža¹:žÄ3ÃÉ.KÙƒ<& èÄú®lK•o`TyšY;øO|U¾wRž/7”S2©  ~TPîç5¼ïF“yf‘Æ+«¨5w¥ÇIé:¦ðmÓJÑóXüVðÂ`´Éö$4\Š×LJÖš\&já zy+Œ|ÇÆ°}9GÕʸÕ]¯x ¶ÃS&(ðT2B' `U Œf’q¨!;–/¢´âŒIÏêa¾°š½x_gJY'B J혉™.´¦ø¹no‹ZÊ«XI²âï›"~‚ É”.«›}ÜM÷“vë>Zïxy¨|£;NÀÌã|¯&ûöÓœŠ5Ù W›¬Tcð]ñ€§h¾šB481é"­¸<0Gžç2Æíp¤Úä›qàü­‹ì,5á`îB˜ÈŶð@™ŠG@(B^|’…X@°£Œ÷Òhñï kJéš6à‘U¢sV~nÊÌ÷S,÷SHH‡°Ç\ŸÔh€XFly¤A+_gÄBÔ¢ŸSSy¡¹úYQ\ÌÖ Ž2 n̨íŽy}—i¢`Y“mM€í·GÓu[¢|v3÷ÕùS‰¢5|È dÔŠúõó:Ú„oX®²gÅù@ª$(Ù‹E6ç ­=Ïõ¹cékˆËmˆ¡ÁáªÄÑ„HP¶ViR<7‚D}¡7‚n˜§É€Dh„©ÆÀbv‡›B‚»Ær¶ù½´‹*cÓÓ•D•ÃVÙÔç-¢|P¡†ÕhãËÄ„»hã-=ºEÆf-'ÜSjBŒÿ}™·LŒe6ª9}ØOÈuY/¸€Ð79Œ6Øy¦P½ãþ‹‰d‚ãGåT þØä¾íYÀ2÷ühz1½yjw®HVAçujD"x˜Bc±IÈß¹áÄÔÜ]ÛóiĶôd.»c®-I‰&‹fW–˜gοžZ ¯–Ápoæ²£‰ ¥#¯£œä¸à)¾‡c…í|NÜÊ,ž,¹f÷å.Ã`p¸S8îTr÷]^Mo5¥Ô\,;äa…É>ôºÀIøI–š<35•¹‹&YK›{¥£*³êe®\©sû£ÍNô±¥+*>¬§'Ÿ-kNç¬t·,î¥Ålé¤:Pœöq}b=cß•C¡iÜÀ°;ãQš†Â\Æ[:«až{Až:cÕv¿È›ªÑy‘çѳ_Í@7oiO#8‰Hf¾ÙEHÞÎZÀ<ÎG' }SÈ.«›¶q»ú¨B¿c3eôÌm™WL†a,´³)±1ãóØÕÔà …qi§%áuê &­í$Úç³ÐEÎ%#ÕCl͆cuW¸˜¡}Ϋ)y9 -ûKc;ÏPgäè‚aE¥«¼êhWvêE¥Hлc_“Ã33€?Lx|ünU|¡Üy(¼û_½Kþ¾¯î¼KSpÒåÑdÓÿÓêdÒ/}õœ)ÝVª¯^,Ÿ_Õ4`Ê &æ¨ÂH'c‹êsõ–§”‡z¨Hí=gþl&ô\8Ñ—·B™‡6¾Ëg}Â"€¤ ÖR1ÏÌŽê.•7´ñY4î5º ½™âtwÉê|9Ò'Uár‰Y¿ ‡ú=íº° âÃlH+@4yÓE¬wõÜPmèjJ÷q¿ï ­Cv_ÊÛ Zµ¨Kx+CE¥Ø^ÎgŽ~áB¦õÅ~3pD§Ë·ÒwFýˆûDƒQæ£ù@NÚ{yúвÑÂô··y7d[ØËéYCâ{°Å#¸Wä>mé]\šåŒ¥è}üôœ¾§»è>bñ!mÁ<šÆŸM¡â͉ÌÓ¸ˆ8•s³kþÛ×üñ¢_sóåPzhbm–½'ìšoç·æ·³ï~ŠÕŸšB. Í›'»}¨O¬QÕyÑà®8»ŠñÐß.ôÈóÛá¡fi¢PZ–ÒÝ•ôpÑ~ê½±q()iCeôC¾ϱéf—ý>*ÅÓðÔ §Ï‹±¸uü“8˜} ÒÝRºÿ> BƒPý0›Çæ(èUÇø“³1-`†´\B Ù(ã§Ý’òŒ¥ì/«¿œ¬˜¿BvŸ/`…Ø!¡Ú+d®7N¯ì'œ_ÚgÖendstream endobj 91 0 obj << /Filter /FlateDecode /Length 2178 >> stream xœXÙn·}ä#yêÒ Ydqy¸ˆ³8Q#¶tÎE ɲÆÊÌHÉ1ü÷9Eö–[‰mò°‹§YûÂ~Ýhe-ÿúßóÝŠ”KÍÛ•n¯¼ ÊÓöFEßìV‘¼ò)”íêx•tPÞÅ&x§•% FJ4IyÎ(¶X» 4jŒÓØäŠsÀnœñ¤Š)ªÀ•P=¡–ÉÛ¨œO•Lѵ©eš@=a†ée¹ "UÜts¹z½2ÙMÿs¾k¬¾|FÜ$•<ùæäåªÙ4ÆY, ¡ '»Õóö«'_ý´Ž¤RòíoÇkpM޵?¬;¸Gkl{¼î¬µÊjÿw¢SÔD©}òXž‚ÖÑÛÿŸAg+"”åHãä¸>Ëàcô<˜Ì®]·i}r%ˆP! Vä©éŒS1ºáT£´NÞµÿ]wLP*šöl$¾W7ãj;®®ÇÕݸú½—›qu±pÌôÊémóìöãê…“ÏNþbÒî|áÀí´ýŸ%d¥Õçãêr\8¾[x£’b"ž-¨zº ÌŸ þ¾®—ßž¬žJŒ3elc=³âÐXBaü=\4¿6ûö‘‰2bš#ü]årBÖ#¯gRPZJ€ÓÁH É¥÷@#9“lÁ‘Ì5h¤L(«]B‚T¨‰R¡lBvù5R*T@”'ªQ#eBÝ×§ÖpBýSµ°¨+*º`¨.DQi6”"Ï\.¶nÝ™Pׂ<Ѻ# zlQ ðàP3±UvÆ—På=üä\2†•‡Ú6±²NŒÚS¼a£¸ß”Æa…2CyTmkTO™¡P¸T ÕSjS°Òš&Ô@™¡Ø{X Fõ”*2ÌjTO©QƒÞª¶Ä‡¹PÜ׉ Ṳ́QQyæCkz¢<ÙÙÍž žPtqvñ¯I&ÊVÙÉÅÙï»´G"d ¹ñ÷pñÁz ¡h×X4AËIÔhùÚHc˜TEH2‚]j¢¶@H Y*©#ÿ.Y®#Ÿ*8I×°“úä2ó£wÝ‚"ôÄõ$ rK;ºÞìóú1#éab¥•ÍG›Ý!ob(@þ4EXæÒãŽÏÖG²íö¯lô:±LRf,9äëÍYæ`PQ£N8 8›7Ï7[Ù줪2K뵞bÊ›ßmwùM¯ˆÆêd* Ž ûÇ$2£J‡vÈìl#·:(è­/~º*ì;øÍ^Nqή(x}¸”M§¼Æ †71—À„yó׫ým‘Í)cPôWÖ`„’ÍovwÙ4˜”²ÆÌ€!,Z½(Fe™4:¨G…"÷#t5˜M{Óžî³Ü,ŸÁ˜«’/V{vw[ CqÂÄÑ!àH¤ÝßnöYnsKh ÄHeöh¿¿¼,’‰E³G òî`þ¶¸å•¨1Ñ#\йÞn÷½/Bð‰‹Ü½§ž·ßßíGw{ Y&ãDpêýòãšE½èÛwwیÌǰé`¢D þÛÝfN‡×lƒªÆ.QѦûaŠ]t®A§ÇÊí»ŸgyõéýÅÉI6˜@¹ÓY‘Ì»Ž°Âè=PJ…¼š(¨£C@rJ#­P#¥B¯%å+ÔH™PCëžP¥BYI®X£FJ…ò$ R£FJ…J(avÖH™P÷­SÛkB}J³ˆðb‹ézh^Z<åªß¹¼P®írƒ—àDkÀg „òÒ ÔÐú §Vá¬gã8’îÙ?{i|}[|<²n TÖ>•V=`J ;õª:õ=þ¨–è#[°“æÿI‘ ½Eaç „ÏVtÁsn°˜¨5ürÕOóû!=õcZ\N¼Ÿ¥&»†½Œª¥ÍmÞ^l/rÉFœÂ–(£p'+Uyóêrsõfw3tŸpò1ÿ àvs}Wj º¡Ôq/Õñ9.#ÒÆ¤öÍž´Þ•–ˆÃt›‹›M¶œ´½Þ_¬,º†•*‰A&ØÒ!ž·W¸Š$©ÙÅ4—AgÛ‹í«ÒJËgQPÒ$ˆƒÙ3´¡LTƒ!cT  x¹ì—[>1z&adñ¸ð’]D‘|ƒ@YFO“+ô¬,U§û!Ì"I÷é‡à,#Q€X&\>ìCgs@‘‘‘ÓMì‡h/y/R!Š­_Dƒ|Í⃇£¿ÃÔà±á¢Å)×0œúÚüŠ8‰göçîÁÓEw‘¡agIeÉ{¹$™E0,ƒeÇ?h˜àóõŠQ*UQA—Ml1YQ”Ox†wüƒ‚£³ËÈï „L½àM{#N‹(PÐO ¤.1ðôÁ ‡¾Iº.|!²³™íëÿwk¹ÝÔÒöU^²aÛ^¾‘O8ŒÀ!FŽ€žbÀUïB¾‘ò‘[„ð„wëò¡jN|Ù!¤­¾ =¸Ñœätm´¦öf-£  cèÅ›€än¯®-.wíL5$ƒ\M}Y¨ZÐÜ1µ‘i7ù³•ÑHÄÉG‘q+\{Óíù¤Úétò¶ï")+ålXùˆÃ¥Ô¹ö³šé¡fp7€DH鲘õÚ·kôØ ‰ NÞN8ïfvFm¡}Ù É–%Æ•­ƒgdR5s*šç*fçÙ„`t¹k ü:\0÷}를­ÑÎt”bÌ©í/•ߟd®Sl @n­ÔjV¦¿–ÐÐ!$i\Q¡úù{'ZÔ#q7*¤&…ƶõtõ7ÉYÓ”endstream endobj 92 0 obj << /Filter /FlateDecode /Length 2801 >> stream xœ½YÛŽÇ }ä#úA=§S÷ËK'p‚ŽY †"Âh­±³Z¯dÄŸŸC²XU½Y ~ aû°ÉC².,ÖôÏ‹Ùìbè_û{¾ÜêòŸƒYþzHÖnѺ%Çd·’–Ë!W³•з‡—‡’í–‹]r fóJ]RlÝRd­èŠßb˜´ºdÖò)l¡Lc ~#®É£†UjÙrQ5<•|ÙBªSPÅæ­» jh©d§Õ‚êî4¦ÉŸYÞ~>XÊ¥ý9_–?]þð­‹KÝjri¹úñ Ãl‹a°Ù›¼Yh\]¯VkŽ'\që?'³%c|]¿=š­B=ùõo$5µçêúüÏ„œ15dyc ÙÃ9×/¿9ž¼w[-u•ÿF[“ iý;‰³1%‘Yеi”’jXŸ5By~E„øjÂæ&jýfý`èX|…JBÞ*i(ƒ¯“èvÿüNƒk†Â—”\æ!Í(É.rJ*Á"ÇlûâI&»Ù ¶”:&§àK³†0æ‰A±ø •”Òh ©ÚÍÇá£a²hQt Röypn!&Á%¢à¢èRn*±€ã€C3Z|Èi3E¼¬ˆö¢FTHµh ’¢J NÌ&L­­ƒ´aR—]ATë}Àû$0$ÎÍI ÖE'Ř2T¯‚5›þZ#VkÅÂ?ç„!§ésŒ/ÖÎ`<å¤ Zïã眼‰8¨0¨žxÑuII´û¼ÇÙâ=0baì"­kÅpë‰Ö‘øƒbñA*Am¨¤¡ ˆÐ„ɇ`²Ð(TC£T†}œ›óðB &óx_&I)ÌâïßÈå•pÄûáÖ¥DËa(€ž±(Î:Ã]B–¤¡ ‘½»ˆ:Ç=UЕ`Ÿgf³ã™Äy°eJ¬ ’§2ím±ìÕAŽÑÁ9B«¸Arj|éÐþuCLKjŒº=l±AD 3 †nw©R3ßÇ,iP· Þâo¨.qž·¡u…οH­Ü{ë+κŽÉmD§å'X+ƒbñÁMb, |g@›%¸ùh˜,Z]C£T†}»ÜèÐ*yÎŽNÚƒ•µÉo;æ¦ÈšF‹¼3(Îí(”˜š¦ÜèœI“Ásnª¡Q*Ã>ÎÍБŽÉ÷`/s•î ˜ŸÃ‡`²Ð(TC£T†}”VPä*Œ“:?$èiª_\­"Œ­-.ƒŠJÛ¿aòkm±¡*ÍXdÑ$žªEÖÐCn>>zMÒ£l óÜPQp§D\…šäË$Aïå*Öé½\E!‚\19…3Ÿ' ÚçUÍ;ÇØ$–{…aަœ±:L‚jh|ʰÏ@²ÂŘÇ?ZÚ —I’mb¶¢Š‹Nk 46¨áÆuL~sØÌ¬A—L?1(<M‚;u¢U¡ h(«ÁçÈB54JeØç!¹9n!!Ë4Û—I’¸r§ãœeÞC¢6T1ûEc& œ—1M ŠÅÏB“î6í?ùL…jh”ʰσsËÔaöc¤+×€‰;}WPÈPábDØX]ÅF:„ËB”ã507 «6„Ukèe³ôܱfß:ØáºiôÐÁyKÅQ‡l%•ÑøK*–þ˜ŒŒãõH1'ã©" Ò¸– ÅEÔâPŒÄœ~¯’”ÄAÜ’„ =ÄÆ0gÀ)Eª™pQ0ƒ³ê’È]³‹4ׄ±ZSÍÃi¤Z' ªõybP,>ÈB%˜1ǃS†cløL…jh”ʰÏCrCLÃSp>Hï9C`å¹+¸ƒ3ö¼aò‹Î\ri1´\‹&¡_bò2àÛÄɇ`²Ð(TC£T†}œ[ˆ|–ÅŠº8·.ÁéãYH¼cu<å. a1±cø h›Ì¬Q¹Å ŠÅY4IÁz ¤ÑènZÖ}4L-Š®Ñ¢ì û<87‡³Ÿ î6‘î)C6ªÛëË;\ùÓòÎÃ/vÂVˤH+ƒbñÁM‚ùŠq ¸‹QÝî>“…F¡¥2ìó ÜlEMÁÙ˜¨tñ¬ ¬\gP•0úÉãœ@ eË…ðj°ÜôÀ–É\±8 • ZÐÖéÆo±N“…† ’¢0è¡ÜüÕÁ¡—uhƒ¡ßå|uˆÑ˜ã)xÚKuű§È­i÷*Ó«þKoÿ—‰ly5‰‹#Ñ1~Ëkî´è×;L JvZÕ›Y…àüž[h7³¨d§U2]¼&%Ì:ãPš£þm£J#z¢¡µ3h)I¬ lSÖSÀÈYÜ‚}XOÏ¡Òù¾Ò€æBÝøêÚ#4ÂûÉÐs„}Þ±6•§@Q-àzs}ÿñÍÇ›Û÷wÏ>œß?\¯~š2BÉ7ôûuÉh¿ò#ƒîÏožýúê‹Å¾&+ŽúÅ'CBcK×tt­O|ÿò~ioß¿þŸ¬Iuý7?â ê×w¿Èg$?q}àoW%§¼^Ë×­TâŠûþÐGùØ„ëÌði 1ËÕ[xâ/SÆâÖYìz†­³Õ–º¾!Ô­TÖüݫ֜ñh0¿h•9í<Ü3 Æ 1äõZÑfÜÖ×÷;N*[;K$)N&»óss¤ ª‰µpv°s6®H[ÖÁÉyä?Ñ=\ Ÿ­qNa6üp¤¯xÙV±¥ñDöÆ­ïH„&®wmLpì‡]žo%”Z„+%9ʆ¥¥¦2¹7(|¦ V4|Ø^‰µt÷ܹnf×·Sx3³è£+iƒS18™Jõ»îÅ/u<–ù±?E´·í£|$Egå)-. (J†×Õ4ÍÕïfŠž_3úÉ™…(NÊq²(®´'‰é~^—”[¨¸Ûä}hgÅ,÷UtŒµ¶³Î””ŽkŒR[ê¨9»ås¡14)„Býc®»EüÉ¥qw$m4üó2ÞÆö¢öâð_ç0dûendstream endobj 93 0 obj << /Type /XRef /Length 119 /Filter /FlateDecode /DecodeParms << /Columns 5 /Predictor 12 >> /W [ 1 3 1 ] /Info 3 0 R /Root 2 0 R /Size 94 /ID [] >> stream xœcb&F~0ù‰ $À8J ò?ï¼}@6›(^¾‚Hæ ’ÿˆdT‘ìÎ`ö5)» D ÅÅNIÆ/Þ`Y3°®`4À"ÿA²O‚Ž@$Û)xD2)€ÕèHî= ’ó4˜mÅ÷ endstream endobj startxref 178048 %%EOF HSAUR3/inst/doc/Ch_quantile_regression.pdf0000644000176200001440000061107314660150122020135 0ustar liggesusers%PDF-1.5 %¿÷¢þ 1 0 obj << /Type /ObjStm /Length 3648 /Filter /FlateDecode /N 53 /First 426 >> stream xœÍ[YsÛ¶~¿¿oM§XItr3ã%‹g©í¦I;y (Èf+KŽDe鯿g!%’’m9ñ{õ…& €gÈh‘#|*¬ð.NdI"¼>ˆT¨DCPZA‰PÆi(*5J(%t)-´Öpo„¶Y¡S ¤œ0‰‚g=œ”§Â¨Ô (2>@û ,"ÂZèHXj-œÒ™ÐF8ô5ð¥4œðÞx¡=0°áC í2‘*Ï‘¥FCg"¨Ä@g"XìTÃÙ3ÎÎ cEpÐ9Ÿ)`F„ * Ž61P<'*À“Àtbœ†œX díÄùLX”ƒV­‹ÔA‰…‹ „a\”'ŒU)`ßee@^(+—@ PV>dÂe•e† ‚L2;PÖÚ{ဲ6ðð T‚û×£GB¾ŒU>Ê«\[‰8òõ²š”Ó¸€)£û7ù9ÜX¾9ûz…<€ö“Ù¹xü˜Hì-«‹Ù\<Çñ8IœMçTÃaàÀ{GL(JlV×cy¶nÛÔ{Å×ÞÖíu]ÖuXnhýÔs?M[¤ŸÚÇÀí<æU9›æUÖ‰¶ ØTe BûS¢H’~¬ÛÁ8çgñø\VâÆ;ŸÇ1T¿ˆ_?Ïæ£…x7/g£ÛȽ™ÏFË"½goŽÅ³‹Ù¢Zóòª‚Ù$ðÚœ.‡Å¢jD‡CEqÐ1ÖÏÊjWµª%À–|ç©Zˆxíׂ"a«úZƒB55½¢¦ßЮËÒº= ×Ô4ëkzÛ¦u¹æ³©'î'ÉÛõäгãzBÃãF›fËi…Æ._” í?Á[ ê)VGVR0U<ÖJ°&:i>Õ…Ü>å–i “ç–ž[‚ 25nú¡QoÖøF¹§ÓY…lhîÚó3Þ5Ï̦UœB¥˜:˜Ô¨Ì÷g_à!,qÁ À§dV À.? ý9<ИÔI\Ì–ózÄîž5á³Úôæ³â4V@G¾9| ìÅ/xü¸ÍiOn@¢œ/*Áã–ÇùúšŸYÙw繇 ïøÀ¾j?ðîýàzÍ\3¸ï &]L—“ Ž;qí^¼i ¯vv¨‚n­¾+5(X½"‘ÖêS«ÚJÝHeZ겿º'ñ+÷ âßÏ‘ž–Oߟïýtðr'ŸL‹Ù¨œž£&ª$¹ƒ‹|Ž*J‚ÜÉ1€ïiTJmÐÝ£›¨¨CìV5½so¿—£ê‚ô“TÆ›l š6›"C)¸ý$—j¼ópçÉ¸Ò XX·fÀÜÁÁ…‚EêC¯~E;óÔÆ‚1ÒÙSÌf~àžùp„á ƒ%–6µXn5†K®!©{Kê'ð ê“ÐL°‰. œPÐ MWÏcy~úÑP¢ q È=¹/äùT>—GòWy"Oåo2—CYÈb6™MåHF/GùâBŽå¸üå4CžË YÊ¿åD^Ê©œÉÙ4Ê+ a¡œäGùq VÑEÎåBV²º˜Ç(«Ï3¹”_$›"æêMs’Ÿc`¥¹Ûot”êB4‚\ù´œDˆ×ªQ(z•_ƾvA .‹½é9Øܾ, Ð5Ò §<­âå[ÐhßÖš–ÂÉwµ¸,yC•~}ñô—'ÐÙééþ»Ž6ƒÞM÷¦‹r]°ÖkH:6ôZ÷ôÛì¤Öi¢7fÚƒbtfÚ¶gú¤%öd%s‡YVWî¨ï†žî Ýô…¾!‡å´]ì’ÞÿýõÛ‡Ðà ˆj71os¶ï> 9ÞÕ}¨kŒ¹ Ÿ½g§@axRÙ4é»¶“«v˜O7×mN¨®ng2<<¡‚MÐÑ ¾]éÅ>Xÿs°ú3°z´u4k4èÚ”Ù~?ulve²˜m#µžÝ*†¦~zdûÔß]ÍV·™-hA-„X›„:¨)\Ô×¼”ÂëÍé¾?dö¢äíññíÞ/Þ‘(:ñ±±º•‚+µ©àÙF|4;*¸Ëê(³Š&·£‰¡8zš,££‰¦Æ˜&šm‰»ÛlÍO¤«hLq5É( §GÁº|\g–êŒWu{ihÕ§'ð>ãsj8âÇa­ÖÄÛƒY% í ç~€¦ûB´57…hGS†Ýã™B8ÒÞ§]'Nóm/NR¤~F±ú…<–/å+ùZ¾©ãöDî·òwù¾¿‹Ùå%[6–qJ±<~\æŒèÔë¸>Y‡vXá]Ä)¸‚¿V1~ éñ:УêOâ¸â«9‘—Cig³*ކjØÜp[ºãKt1‹xY2¿‹ø :^”_ziÃ'ùY~‘_å?òŸ8Ÿuü‘[ų®/zh®…Ä(D{þÈ÷ýQ×wN#Ô®ñìùïŸîý—G]+o<ãÚÊ7³ÝÏ‚ý®Ù‚󛯆߉;æú˜t;ÖæË†·ƒ|7ù¶vc•׊zŽÛ q.'ùåp”7ªTåËöŒ+Lm¶ÍxÂu˜¼`½éNûÓÝ›ŽãÝu¾9Û œíœ'»9óý7Ì\·ÍÜwwN„µž™s>vD™Ø:Ë{†¾«=ßÑïjÄíÔ¬6æÝ2/4ݾáªÌ7†B×paUEÕ¸mƒíYnè[îMÖÓ6c$¼6dšœŽ!û]2²µ!›µ!Ïæà¨êEž¢ÍkºÁÅŇÕþo½ÎÀF ÒÔCÒü (³Þ~<ãR°ÀGLâ_p);H\Á}ê„ÑnyL’Ö}\Nÿnx¦ÍõvËé‹e×gYŽŽsBÇ«Úξ{“.~ÿÆoR'NwÜx_1r;Р¡óÓ+’øÂq¥A˜í¬]+õùhŪ|÷š_-Ψ6YG·¾ÄÎü§²ˆ'Ïö…†…Ü£„Š  †` Žà )!#BN ˆ cVüÓC°Gð„”!' aDˆ„1‚Yfš†` Žà )!#BN ˆ c ƒYf†–àž2B ä„!¡ Œ‘0F°˜YÌ2¶üsOH !rÂPF„H#xYÌ, f™ ;þyBJȆ„‚0"DÂÁªÁÈbfa0ËLØó/%d„@È CBA"aŒ`¥cÕà d1³0˜e&œò/#BN ˆ c«3+«O ‹™…Á,3ጆ„‚0"DÂÁ†ÂêÌJǪÁÈbfa0ËL8ð/' aDˆ„1‚M …Õ™•ŽUƒ'ÅÌÂ`–™pο!¡ Œ‘0F°q³ ²¡°:³Ò±jð²˜YÌ2ò¯ Œ‘0F°Û`ãfdCauf¥cÕà d1³0˜e&\ðoDˆ„1‚» 6n6A6VgV:V ž@3 ƒYfÂ#þEÂÁ®Ž» 6n6A6VgV:V ž@3 ƒYf‘ãHoRÙ²³c—ÄŽƒÍ›M…šÕŽ•ƒ§Íâ`¦™4þ‹½ÄÿÍo{âvQØõíD²‘’˜þ¶ÌÝ2}¹œÑX›èŒ–³*9Õìאָ¶#ÍnÞúu鵨´°Î×gJxV度Žç¬nÓÔ9àØ&x8÷”Ò' XwÛiâÚù!äß¼ó‰¹t?ŸwSæÎËÊV»ë˜ýnY¶Úõ²Uo¼þ€JÜÞÜoÔ¯-; ´ëö“¾nû©õÖÒ¬^@Ú¨3ÑzÏq‚ŸGéΫö;MŸñ5îâ7ïK`}^?~Ö"°JRMý J¶%µ÷”šð éèÚh÷Þ>}Jo-¿çÝ­ñ=³ÝùÝ­·×l0ÝË»[µm¿¤þJ§¥y=)ìúæVß²óùíK)çõŸë–R %øõ¡sÙ’lX¾™MzŒñ~·¥Ô;kÒÜQsçpgîÆÝµFHßpÞlès]Û [fçïÉì¬ú³»ãH6¹Oï‹ûkŠwà~WÙ¯Wì[¾†«}ñ÷(ý–m·þ°`m¶m!¨ Òmý–'×X, ™³Â'8/4œñ«)¥©q»@KHá^w ÒÖw"õÛåvÛŽAÚÌñ6¹îQ—§Bþvr´[@qу‹ªºúYʃ“½Wƒ“‡WóÒÌæç{¥\æÓjϤ.®wUjÓû(7ÀîΦ žÞ¦aRpFad;Êþ:Xm|çnÜÀAnax]üjTÎï¼Oöý#˜äUUñî0ð“5°©j&Àó¢ÿÿÙoäo}¹ƒksf¾Û,ÁÝÍûÀçÏŸ-ª¼ZÌÆÌÿ'md™¤wç[+ÔpL€OO&_AÆZ=Àÿ ±[R‰á 9àa9Gð2èVþäÜ›¿†\½jüM!Ká(á˜ÐËß·˜í¶>–  ¬ýYêÃuÜKо‘ÇpW¿‡Ç%¾„μDüÞb{Ÿÿdßxvendstream endobj 55 0 obj << /Subtype /XML /Type /Metadata /Length 1484 >> stream GPL Ghostscript 10.00.0 2024-08-17T18:31:14+02:00 2024-08-17T18:31:14+02:00 LaTeX with hyperref A Handbook of Statistical Analyses Using R (3rd Edition)Torsten Hothorn and Brian S. EverittBook endstream endobj 56 0 obj << /Type /ObjStm /Length 2093 /Filter /FlateDecode /N 53 /First 426 >> stream xœÍYks·ýÞ_ÍtŠ÷sÆãQ®¥RâPšZnFj%±¥H™\%ñ¿Ï¹Ø]rwIª”ÌÄ ‹ν÷A˜d.2es‰•˜—ÌÆÀ¼b¾i–¤dÞ0%ZË”6‘yG¯xæ=SÎYæSA¢ÅRIa<1-¥cA2­lÀRLÌ ši›0n˜¦ùÁ¢šÇtÄ>Á£Å¶! x™‘ΰlZ)%3&E3Îy†WMP–Eƒ6á¹e&ÊÄ¢C«1Ï£M†á@V:<Ìjzž˜5#Y§ëÖc‘¤qx«^±)%–,s û²3ØGv‡J9õÅl‚©.‚CE\iMl)ä$:âEt"uÀ“ ùj”$Æ€QIP¥F'‚#I¯ƒ å/¯^1ñ¦X–ì'æ ³!—ÿÍ”5<E2ÔÜ%-Ùìq:eWL|_üV’dóÔ÷£E1+Y¨¾]LÊiÁ^Ý77RZˆ×R‹dæ1æ©ïКjܧz¼xÍ^¿þŸP¼åRÙ>”´ ÊûEñ ܂˩ƒZãË8Æø`P¥ÓU߇;úÄ}ž‰'ûôÁvbŽÛ¸¬±fÌÀÒ µ³ká+*ìÕYV8f³y¹R(m«cµe¬ˆ„ææ¦‚½Í©[5ÕISµJªVÁÙŽç³çY„«EÄYq= æ¿aOqÉq2«8v»ZP-+†Årþ¸KFhßb5²ƒš›ùø¼ –Åû7oAÑx…ƒ¡ûù¡ •n‹ž<¼l Dre¡;±1õbv $mS"S+ÑuýQ•¢`ˆô¬ ¾ê[ߊí (˜•pZä©/'ïx>/ÎFã"ßyF&”n‹­ŒžÜƒÁãº=Y1,.øù?ŸÌ÷ ½ø4åz‹ è xÐ~Mù–‹èª}›¹Zõ3£¦f¸aßµ®š5£ƒùâºXÔ쩬 ù muµ‚¬} ²Ò@Ž*yžH‹Èß‚âxL¯ˆ@ázÅÅͱ#3ÞpÉ“8qùcþùãÏe&ét2ûoCX¶¿§Ñ©üµ….¬Ñi €w#ÏÃ¥Ñ;Щh¸·ð“Þs¯àÿ¤áÆ¢ [x‡ýЖEÖq:8½8»øÛñÙ02ñÙx~=™Ý2ña2;š-'뷓Ų<¾-àØ*]ÃÆ‹ÉC9_ÏÇ8µæ¬PÐþªQíúar]ÞÑUï˜í¼ºÀ–cR89°5zø¶˜ÜÞ5_±*©ó_Ey·(Šo2ƒyöß5ᙎn—ä8á0óƒÆ°è±>¯rU={;™ð´F¯íæûÑ}Ñãâ¤M'ã£Ù-VÂZ'Ë%ˆÈÀç+‹ûQdÒ:Y‹“úLC…h¡6a(ª6„¡F¿fmT3Ç ÂiæHµ6ç¡Õ4UÚáñûÁÅ?ßöÙIhÉB€ê€+Ñé¸3ÈžèhÎ~¢ƒiõEgq”–誯kÑÛ‚Sºœí ™ä÷{B3}¡uO¿§ÔàŸ”ÚšÜw>ž}¼Äòçq×µÙìn’«ûäîÉma“ÛÔå6u¸½œ–“‡éçÁr½—˼@\Û'·wú=ÙEñ´MàRZù葈cñNœˆïÄ©8?Š¡8#1cí3q- q#nŸûüpWÌÄDLŽ˜‰¹xóO‹›²ê-hñéº:Á« ±¥x¿ŠÏ:[%¼Fw2^<ªCÐ:ãîå½M¡d÷vkϼW‚­‰¯¸l²v«ŸcBWUw,ÒÏDué9AíFÊePyî¥T;³Ð•^ކï@åàòVŠ eÓJ}ßJAÀžµªü{‡Ë%¿öã*ËÓÙÆ¼«-ˆ´?—Õɽ–›%ÊÔ-Q¦N‰’´¼€n“JÏÄ'(,Ôµ£ªRïPUY=ôˆ|hÑ®žÚŠå¹ûjªÜU¶\kªÓ;tPÇüäžÙRˆ'$ÿfrsS@ëHÍ~¢2YSÏ" * «É/Z12*?n_íwM¸Üendstream endobj 110 0 obj << /Filter /FlateDecode /Length 4394 >> stream xœ[YGr~Ÿ_ÑXìCµÍ.ç}> 5Ö^–±ÔÒðƒå‡æt³‡Ð {4Í‘ÄÿvGdäY5.X«³""#¿83様åFàÿòonÔlâæ—±ù×gü¬½ÜxëäÜæá&(7»ë›û›¿ÜDággÂÆ;#f­`U}dœM«¬†gÕ|ð£eü¬õðkèø©B ³·L¨ü‚Ëät˜‹L¦ ý„ä2µEùE·&ËT¹‘73Ç*“Fƒd .a ¬5>ÄÙ›ú‹Íéæ§™´¾Éÿ¹}ØüáÝÍß}¯â&ÎÑ)·y÷á†NDnò~ã¼Zzóîáæ¦ÞîĬ„ˆÆOúöÏ[1•±Ó;öÃᵎÆ5}¿Ýi­g)Ý$Õößý;p“~UÒd·“ Æ|vÚ‚ªA„ðyûœh/ä´GÒ"Æè£Ÿ>ma¹ÎOŸa¨?Ø0}Äžu˜îᵄÅn:"o5{¡A .F¥ñeúLš8žpmNxü„BÂ\¢„Œð «E ÂuLΟh‹Ê¸éb„þ””ù =y’_ áBœ´Ø EªDImÚ¨¼`\˜ž›[xmáчé_ç燴s%`çÒv„T bé´’SÚXTÁÅüVAwmñmÛXR‰Â:$5È@ÛÉ0‰Hò!µ‘^Oç':Tíômz§tZùã»›·7ˆ*†P'œ…b-o¡kè¼\£HÎHZjÐ)Õœ6®-ˆ&·;áÃ8ý[Ö´W ñãg#µüì’f$¬% H ˆ=ow°BH8¡CÖ¹tv"ÛKÀ‚WŠƒp¬€ÇôPó±<Ê„ßìòG;)çh/ß6œQ\‚o]ç¦p¿šñ>9@!ê ¾„d”ýÀ '·'Åj+“¡!  )SWX“½%Þ6Ý383Sò>©Ì ’„ÇvÔÈ¥„äâÌHÌÄ0H;ý¹ó€çŽCçí§&>ÚF]rŸu!û±y.N„„ßæ×4s*Z‡KŠ„˜ V(KÔpYy pÀ`TN1ñcs‘‰;l<+_ñܸ<4èP–˜ô9W"’€(!¡2 ‰šsɲ¢Ë!Tf K+‰PgËÜ…´ã3£‰ÁÊz¤Dç^B- àÉ;0ÞÓrUv§p ÍÏh%¤îtx!–:H2=2€˜3÷œ•=:bðs™žÓ÷éŽÌÆ£wNŸ¨_gâ‡@boïœ ·ù‚cï­šO~îBBò…š©ôôr@%¸å½)Zê]y•/âfSáI&(B’á$rÿÓ%CeÁs}Z€¢h“’…Š·¼ïzÈéõ}Óí¹y…”[Qnñ!q3ÞPÞ‰žœÔ—zègž51äœ8tÒ—`ÎR¦í1œxê‡EòL „ƒe,ϪüŒ¼á{ÝÁ¦zý>.%bëÓWkêOg¥´Kÿ@WüבÖž™J:_’<(8³­ï›1~+b,6sÜØZÂ"ãÒ¡=¨3L«Ñïâá0’–Àò\ñ(0ál΄U„â…?ß–]¡·hOq¡…Eì/ÀÁÅ^”TÇ`áx×{«´ÄFÕw~ÌkùºÓJ‹?LÌÑ0F¹*TA¬>Òr¶PEgoþ/&¶v!ëZ)²D'á:§™ z×Vöºð>(tjáñmìö6EÚ<쳸ʌêvì–/û¬)ÇÛ–g`¾°Ã ©G‘k¦;£E<êN£PûP´t»•³`|àËÓçíH¹À•/Ÿ‘S°³.-\‰°,‡aÆÄýj ¼P7‚ü"dØc%Ó"LV|£¶‚|ñKîc,*Üs®˜Á\Æ$˜7bœ{/˜b§ñ)v‚<`* ·Ž}šÂ¸D,æ#.ûÅnPJEž9>7QÛD`ª?®O˜Ižˆ9Ø2¦²ô˜tû«c‘Ê+×IÝ'³‹z½ GïB_åøñ‡¶Ù§DÕ@޹ÊÛÙ8[°šÃš¡•UrbP9s?.މt50¤]a³“ÏG•Ú»˜8+«€[ÀÔåÚÊOûúôTŸ¾Ô'ð›åñPŸÞ·Ÿ·ÙnµÝ@ ð: ˜Ê‚) ¶ÉÙìÝ£³ØÙ  ’,ÜŒRz³ï*È[úîã'p;ÒÓâo@Óþ ñgù P€f&øHVB¹µr›I\aýÛçù ƒBúh¤Ÿ25ˆ£röv["âwÇÃGŒR$»™¾±zEžî7Å%B–Œ®ªr[`P)t¿´ïÁkšú½~:ôÛ°6QÈŸ¥ŸË6@ïÁ]@ä-ªønÿ+׃˜TdèQrva;B AŠØÛLj–/ p˜ß×§q¨ÿ}}¹k/Çß¼«¿@þTŸŽõéMã÷~`Ç™ëÓ¥}ü#¹™ŒjÄ1Ž^¶•š[^[9Húÿv» :`ðZÜ÷ƒÍÜÿ5[øÝ`3»úÛ×_м ȰMÿŽÑ¹¦ÍUòÕ\˜îª[&CÑå/ìf殕•,žÜ¢¿wÔ•ƒb¬§Ëоñ­­A&'Á£„¹® ¼Ò:Ò[¬a[õ¸’¼aÝ!¶ûKùÌ¥àŒ Å:lç® ^dˆio+- ó§¡&‘òãÅæÏ[kf%…F}öÙþ}Kãx©n[.óx»žíš[l½ÕZCq*¥t*þkŸ‡§0{–Ã,ûyIi %gYr‚–ÌÜó:ŽQ[ÿ]!Ðw…^ì3ˆøR›¡t2ë3"%bC4t ït†²Fl`ßåÅB¯7hÊi BG°³p²ªã×A¶ñ8pGç—kmgeU_# FX2Ë€ÊñB{°ÚÛ%`1^òuEã_Z“ç¢?n! +,÷8°ß ¼#€ßÌRþ“•i£qC¦DT ¬òÔòì3ÀþòÎ(¨$bÙ/ëÚæ;^ÊêÓ©©b¾ä Nº®}@ uË EýbË%ÖÒ ÜeÕÈœ7 …êR©k½³0& ļÊöî«Øb×Pp‚Käw=FDêÆ˜9à‹d¥mñ -¿2Y)$üËÇä‘Y‹µB?ÕÞ>ƒø…ˆè°ìÈ‘/eZÎêÎ=ë¼!ÎØyîbͧçÝ5+Ùx·©¿vªµòþºtJ'Ò݉&­Pg§Ò¸c4Íú5Šº°šŸ[£UáûQf©<6=*ÒZ? ò–ƒÌõIŽÒˆñÏ„±Ì1ƒ,_ÓÿôÆI„v³5Ú0ÓI—O ý%Œà-Fû3ó ‹^Z>’'ZŒÃ‹Æ9 éü¾ù *VzW. ݕٞ>⑵ ×:jWÂ(ð-’{5:VœíóÂ`$X^iO"±sÞ°‹fµ8/Ÿ=4——™ïåÙ nò ÐM—y”g ‡Ó ¿Ì°RΕXzúeç©À£wqkÙ!õ®RˆÔŽå)ÄÜÞ#D£Vq5‹`ˆÇ¿$¡¼q]“õÄoú#/=FRhleîTú˜¶LÖ!¿6ä=Ž/®[CBù¥Â Jg4Ç +Ò}} 9ýÐ \¨‹dCÁ1Ñ ûL¦ö¿ÒUbêNǵ*÷°ËËk¢Gw×ÖB„ÿ°à®¬¯û[,›f-¹cÞTX¤Ñ¥ë9u7ò—mÝ’ß׃Ԕæ^ïGjrE;ƒâÑú$%²Á¤ %Å‹ÓG´(½ W §é"šgÁ`äpp§ ŸË{8‡‘&¬…«3ÿ5©½Ðwx0N_÷™7bá7[½^ a3?ÝÏ<ðzëÒΟxhQu…c_-u£KN&°ÿÜ2Ê•‚‹ t3J(³»¾oO¯¥ìïøˆò©€¨ÓOÍ2x—“L_6å퉖†õ è¿q2ã}.°,¸y×O€$ižˆÚ™]w媊¾êÃ>¯ŠÈo¥éEæ[zÉײ©”þ¦½úX¼x9× Yäc±ïâS•K7‚TÛz°ìàÍÂ[2 I¦Iq@§™Wõ‚ûBöNêu÷UÃ0_ñÜ`Ș/ÜWvÃ}$gmøJb1TÄЇ­ªEV”„^¹0;¶¯^q3ð•CX ßùºFÎpÊÿ wOŽ F_»ÿgj¥NÄ™™m_RTÌDΗ1KZÑ_éï ‹Þs®9@6ÅÂ3…dÇXÛúÅ-¢v`‘ÏæB@Ôé¬R/:Q“œ(;Ž}êYɽË$¤|MFÄbŸMžY~òuç¿Òîº4°:“b ûº¿‡Åè²VF!Hh©øä—s|9¹2¨ÄhŒ¿ãý«ñŽ55(+ŠÊ?çÑ9  ¬ÅÖ£°¬ÄËÒuàÑu"à ð:¶U0¨€Ý°6|¤FvíÑ3½q¥y)_õ‰¿e£³Ä»æÏ.-YyEbÚ7Š*"R×0mÑ 4C-™ßÔÌøÂqé±Óyžï9ÓÝýgÖ˜€hÀÃ4oÕò¹/¦Ëç¥Y¼Ð×¥ÝB%«t7#dž(¿ÌÉ<„çÎ(¤ÂŽæå®Ãiæj³c#Z“K±ô¹‘Å» Ô) 8¸…4&]Ûó?Î`þ=®cµuŸqô]´®mgݬ½¯½ÏblØó ‰€³F:Ê®‰€²Æ0ZNç´ÎWïÄïÀ·„E¡¡O0¡ã0‹¶•±)[a‰í¾‘hûe½C¶Æ2¡/Eý6Õ‘Cì?·ØÆr‘¼A—•”¹U•bÔ&˾»qÏÚ3k¯ûjQÈõðzv!ià Ö¶É€åÀ[•¢ï@òÀe1¡rfÀÕ›LÄÂzÃË×w àä4ö_l'X5˜â×Ö¤iȵÁóÞÏ´£ûêíÏ1p1NÀîéÛ¸ il; #‹qèü· LP†Äµ‘³–L?Ñw^v<ÎéÐ#œåŠgµ7yÏÒuUa'1–CQ˜À½r×é󱤮‰ë5ç• O%V$ýR$Õ|ôê\Up]FóyUŠæ×C¦yf‹Ê·tY|¿ùXºSÈB`­Y:÷¥«Â1(~_5”H£GñÓ¬U¯oˆEX½ZÉDO+ øÞ×!!ãKw©¿1¥D-ÂÎ=V¢É9'íÈ&æéïêVG¿²Nä²Ò6yE¡ˆ2a;³ .ÉúyÃ…ê(Äp8…Ý ´»Æ‡Á|ÁÌæ^žNÑalî^!94:ÿ×_=©rüÌÞF:FC2o^ k /y>ÙŒ÷ÀT9~MhµIÓL21„E‹ÉžÒs„pFþ@S6 7õ(ßÞü?! Ëendstream endobj 111 0 obj << /Filter /FlateDecode /Length 626 >> stream xœuSÁnÕ0¼û+|t1»Þµ½{¤RâÖ6œÚÒ‚èëSKBâãY'yy~”C¬Íxwfgòä!¢‡ö¬ï›K‘Õÿtà߸Â5RE_sÁ(Å‹êVypWN¡ÆÂâkaˆ” µU5–<£2Ù™;СÐcìcîæå\í«œÌ;°•XsGj-ôœ Iä¢'Á°çt­…ÌÊi›v ÔMïž΋ôëëfçÏ&÷ê«·n 3ûéÎ-[FL±ú"öÍO;÷!¼FJ px;@¬€*9|Fˆ ªUkx´:qápÛêYUª„ëa´ d {;Ö 5ì¿- %ìïÚ©‚•µ k‡^Z‹¤šh™‚ENÊ_ œ Já{«nÁöÍ¢yF UK¸é}»‡e¶5…çEŠp’¿ÐmbªÖð×Ü:WÈ'Ã?7„Rnå& ü¾Q('à…^’¢6plL¶Çûáãô®y£½7”(bógº5?.Û…jlIVô‰“cB#’³Q¢ÐåÖoãD)ªí†žg1ÂEš]Ddó)œÏÊ+YµcºM›÷»ÚÜï¾ÐøœOîÂiÔbÿª¥É~ K[&Ù2ÊU4V>ZFÿ—ÏdaĨ9§>Ÿ 9fÛE1‘,²$tÌHh1kÄM›†ç™¡¥–—Í'hg hF×bŽËͲU,äûE”ž…8|™šKµ]ü{Ò¡®Y[»´P$à„4¯|ÅœÍé`®Öcœ%dÌËÊ9)·6Ûœ®ùÕ —x _ÍÄ£¦ƒå;ý$½ÒÙ|¢%…­—£Š—#™ÍÑ ÷Ò&‰endstream endobj 112 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 3862 >> stream xœ­WiXTW¶½eAÝ«"ˆz£Æô½$ØFcLÌ`”€‰ŠSDˆ”€ÈŒ2Ï”ÈLUí*PD@ŠY™ª˜Åë5qŒ‰š×1i_Ì$Ø’»“~_öÅÃë÷Nš×¼ï}¯îŸú¾;œ³×^{­uŒÍ(F¡P¨\=V.\`ý7 ȶ‡iƒlÁN v6‡Ÿ›P8]ÿâprn+×=Úqôå1¹c~[2ö;;ø™ãÊÇ]·ßeo´¿nßï vÿÊø?9ŽsÔÊZûÁ|pš${šòâÁ—ø¬ºLC ¤@dÅСSò4zm¤6IàÔìQC§± ºá]­þ”Ý,‰ÍvƒRƒÁXP,v Ò£T™fûŠZe)ø:¡n‚Ek}ðe–œ“7ñ÷H¹-Y§²—?IVZ÷P…KQ¥”“ñ23î¢tõX)èÿ¦"oeÛªÙËE(’Ëîjöˆá¢±~ñ‚îÈðÒîÄ¢òKéÔaSÞb4¬V³à côÂEiäÖ~ЇØkÁrI“p2&âLeëàJ^=0Ô碖g³è|½ïþ7›>'c‰?V~p>çúܾ&Ï Ä…|Ìc9Ng+®q\µz™HF“¯xìŹ¬ š¡F]µ6CøgíLOˆöÝ©ÀÙËÚÜNy¢Eq„®·')åŒâqÆâ{äYÂÏ_Dž'NËp"Néÿ§ $†xðÁTq,».$8QÜ| ½­¦ z %²8¢8|`¨Á+3,308>„.2œ!É%Ňè¢t\ÈWBqJ–N—“-lܲ­Ó»ú]˜J¼É|2‰$’8|‘LÆm¸t'ÿjÊ1¤¦gAª^Ì!Sæ¬]oƒ[Sð¥Ð ¹Wá.| ?JWO]ÿ²¬¾‚o<ªÈ Æ´"(®Þ`¬iÛÈ gXäñŠoië¼h}XEœywtS5Æ™÷´‡c~þ3¾ˆÎóþØønß,ö°ÄÍÚËJ0A‰®R ÙÄ íû}OÝå^¾®©µ®¸Ókˆ™îµe«ßΣÉtéÚß–n¡ÐnE¥R—·ð*/·èÎ€Æ ´b•Ó›äE2÷ÁrÕÕVÚl‰ÇӘÛyH‡¤ðШ¨ˆ\Ú6¯Àkè€ÓÏž”®´­T‹öƒ³(oÌ8cåÍL-)YlàÕªDòLÒ² 8'4W«îú­%lU«Væû-ðÀ·²WNRíÄ\Û¡&J¶¯)ÙŽQÞ/áý·È|‹öJôÄDþæ!´íôú”4ˆäš“Žm®êüpC½Ï¶íqï$ú»*²ìŸGÁlè5‡vÚ­‘áz‰òœ¥û­‘°úÑ~•’R>=ø:?T>²¸Ê\0@ò8ü]Ãï1XSÎöí X>²ýåy‹„T¬îWá\(]zŒ¢Û·—…\‹<­YÑòz|¦Ä;òÃLËNÊÈIRDíÎuq쌭 1¥{ÄæˆöìãYÙ—ö€·ÁWãë)}’*äÔ$¹ñ"Q°ÉUQd„Ò aoáÁâ½QÝpˆòÆ¡ýÆÍ ;›v—‰á-!EûÕ<ÀIîÒ Cå½k‚AcÌ7W {k(žÍíDFK¸Ü¤¸ª~I‰Þò ÇId¾§Vé—FÕ ù\ÈÒ@;þUâÕ/Ž^»(œS{²ži¡‘¾pµR°¬¥¸uHX*à–GõapæàD~@R…jÂz-„Ð ™z€”’<,ØßÝ±Š k.è§wB?˜‡!vÁÌ#O»ÃÒQ¢È*Î=Q@<+¯ã7Ù“u ]·f­¾úŒ€?±dÍoíOg?º_®µ †U*tÛg+±9Ð!Ê ýè J¯>ZÊDZVÓ2Hªí< ×<Þ샡¾ÙT+ îA½î=âÐlúvj®ýšÐÅ*^£q‘U——àþ‡ç‰C8™¬[ègNnhj®ênN(ׄªÂýÆFà.Öû¬CXâ¤%“}`&÷Ê@ÄÍK]æÞ*!¶ÜºU¦R¨5e3 ¢ºÊ Š#ª³ü’Õ ‘ñ]í8 §”Ö…@&Ypã¹ß¤Åsp5?¢ÃÕÝ?Ážªã:#/ÀT÷à+tF—Ù7‰Â'P&îóæ[z:¶€ãJƒJÃá=Ú#ت Ò„…ÇC0D˜b:8«–¨-òyIQ‰¬Rv“GóE寢+ÀIl¬.R °Í˜n°‚ÅNÃ}^èÅ—IlÔõõ8?»fꇒ*R¿F· bÀË6üàeç ÍÈNˆ[½'qj”OHv*d‚Îo8´¯ú´r-qµaQ‘Éêvßs_œº.UЊ7P§p‘³1è¨Ää¹|VvFÄs‘þdEýëdÊ’d:™}ÿ5úØsMhSrp7djòõ{ò…œ¤„5+ vV§t¤tè{áwpü½Šöð?j]ÅËJ´ãVû{D§ ¬¯9  82Öù52›Ìýi9*»:ÊŽ´Š,®ù\ÿÁÕÐ}>>$8Ê—âY—ÞžÑ ¨_u™Ró¡Î–º.h‹¦!ˆâLgsm .{ä‚?(å9É׎ô…àhjKüÂÅ´¢çÿº„Zò³½?WU$C^ª.owž·ncâº@Ç b‹át²w€ûȬxÑÏÓyýEÂh‹âGd®á%úÓ¡¿'ÍþY…£oJ A_(dæìN…Îßœ\ߨ\ÕÕÚë:ß)€¨„6ªÏ“_ž®¡²–l³àÜ?³`|—¢ž‘@M~ÍÇcª¡ jö— e9–” T®ìÏöåéhsf‰Xº¿¤ð`¡^«ËƒL.¶<¥¾¾¼²¶FcЄh„GÞ/Œ¢Ûàö†厣ñâÎÚ`š§2ŒïwD¤ånއMÜÖão¢.üôÒuœGfá„¢_yw¸|ê4\º~<Þ÷†uîb/ñã¿ìIõ ÷žåtüøÅcPN½*‹lA—ÆÎ~‹¬ï¤‘Àù Æ¡³R.©àñÅGÐ~â0“<ãÈ òÉD’F’P$øNWÛ~CpЩlÑ´¨Q%8Ûr*R4ºôl½˜®ÎK†dˆ†ˆ Iìæ_»’‡¶ðw8_Ô\mûùFUœ…‹áͯÖzß…°ȸիâ»",ÞÀ½쫃C¾ˆ‹2øä=ÑÙ±Àù䛋kL5-U±¾ÄÇAÐJÐßgÁ·}vxG z¼£úŸ"pêÿ!Ã+a“›¤ ”˜Ïá.t™Ê¾¢­É=¡/à&j2.Z¶ÔpD¨æ_æÛ*œ«Þv7òJðFJð¿ëÊQb˜üŸü±Öíþ¡¡þþæÐžnKë1¬%®t†/މz}B¼ز­|# MŽn‹‰Í†*¿†p±ÓÇ’}'¡&¯#sŸîdBùûÀmMZµìmbw§çú Ø›ðØÈWy±ÁP]#9rÞïFNåg>ýÇ\L>Û*nÿ(°øåª¨¢°ý…ae‘íÔËOÔ~tMdFÐ^¡@³Wwø‰›×ŽŒµ—UüiÕ'i>ûõAYéþ¢aªÄÆkwQ ƒ`ícU®¨ËÏÑææêô"eó$[yû¯ i3HF ÙqÇ)¬¥¥,¥ŸL†Ü©™ñ°[°ÂvÕXk=§èªGŽ3)Ö±¤9CWUFSö à_%ƒg”ƒ“ä_y¨CmAuAg’TÁzµ.„J¢1dxo&¶ ªtEú:-è!Ï’çø¿J@¾WW<5>ÌcÉs?Ï•8ïö¯8YfÜwn„~ÿâ‚Öòš)»{èḮõ »?§þWçã9ž¥Aão³è-$ßy­ \Á; r=÷ÿtÈú_-ˆ2ú.Pâ®?ó=¡fÿÇ„î1›{¨QiiÁ¹Ò1“‚šÔX%~:¨ä›ó LxwÍLµ=ëéÉèL97TBlÔl{Á]°–?í#i–cíj°Ø¢€‡iʇiXÌ[þ‘bÕtê#øβHŠSèDc ”=1–ym\ÎÖ=iyÙ/Ó>qÄNÕPûñ•†ZSåÇL•'OUIpšêáÂ[Ä~ƲUK7œÐÔ6wVŸêŠ© Ý'44¶ï¥‡¢oK^x/Ù}Å|‘,"[3÷€’§¦È6Öe3zšÑmÛÿ„¢¥CÑMÿ+èY cðkþV኷> stream xœ½Bÿ CMSSBX10‹‹ù!ùJ‹ ‹ ›÷?¿¼R3oøˆùR‹ ÷¶Ó÷uáæ÷$÷Ÿ÷øw÷Ôʚ걋÷÷Yûm‹^û„g€füêg–°»±•˜®÷›÷÷8û³™s–‹¡‹ÆŸœ‹©ü6÷õ÷u÷÷ ]IP}Uû 7Ÿ ‹ ‹ ‹ ‚J&endstream endobj 114 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1769 >> stream xœ­•kTçÇg˜™*!3©¦œ™rŒ¦ÄÔ( ‚—˜ª¤‰£èr§°Üv¹$n¹¬Àî>»Âr_aY–ë° ×€å ZŒ ž9)m‚95Ml¢ô˜hšw¶/§§˜äKsò¥ói>¼ó¼Ïÿ÷žÿ„« A’$´ÿ-¾‹ok!Û¹×æî¸»Ö{±;=¿zìÚ£ï­"ŸÇ”i¯ff©öfGÇÆ%&ÛD¯ëˆßˆDNø‰@âUb7L„/~Ä£„§|áJèˆÿÑä.þ.ŸPÞÔe×]ÇÝv¸ÕÑ¿¤ÕÌzÆÌôJ:iDÉËF"bÅLSÒ먔ƒ/ CÕ¥8bN‚g .@›ÃîÓØ«ÀMÉü©òÄa·0Šá•L›i:@„qhÓº¯™ßæÃˆ€B™o®_šœ´¼Êãü={2ÁÐÉz8ƒAD×mhH$?‹nݦ†/qJ3s²0^Xè`âu…A|ŽRr§÷ù§wç?Æ+ë„;ÖëWáÏì­>Á?çñn|ƒC&¦ÛTq†Gžô½^¿ðàƒ˜~…?ã"õÝÑkÌÝQÿ]ÛC_ö<$M¡]òµ‘³¨s–’"Q2‡8Ÿû˜ÅîÏzcOüø½ˆF+æÿ‰¥5Åü{Y×# ÁaØŸ(t¥>q¶èbA®5Çz¼N ilTfÄóÁý÷Ô|©Œ£¾¬tÀ@Iž€½˜<(©.7›øò 0ªï?2 À~36ñÑxrWQ•àH7צš-ð>ëh:û9"Í›RL¼Q['­r«Üæ*Ùß'E`#ïO#/;…vJ8ä-bo´OM~°q³ŽÍùv0˜úPuaª{r†ÿ£:Œ RFÇî/xg¦ìߴ쟸äߨ%})=àúNVÏð6‘ÎÒo%¤Â6È2É€¾X\ˆÇP!ó§~kºÅtS^‹N¸ -AéªûdEcØúS§<¤ºÂ&é"i•T”ô,úŒ«²7 _5²"£Ôk ²á8]º™Ò—§BéKJò×ãš5Øõ”X åkÛúÁÊ‹L¦þ ¤C2è!tù“KP]Z›‚Öá¯)טJj¡̦Švq}lèíÆÖ›ïÛÈ37бéY;%=lœ¼ßƒ‘‰] K$°Ûö…‡(5Í- -ï&Àq¡yèœuس—ã¶1 >ª{Év±;ÿ‘yåÚÈà¹F¾ìˆ#aئ ËÇÂ%õæ,­&.œâCÎs>ÉQ‡õžCkЮÚ^/‡—<‰ÏÙPÒ Ù3‹¬Sº°9ƒÉ£zBåadŸöÁãÕw|Ëì™ÑF‹°›AÞÕn"³G[q^þÅ„,|ÈAè4ê¬ÄcÊCÀf`¢½9S;hïlŽAÇ(LB¢úÚ·e4y²ú=…v”Þˆ‚–òC;II«ÑqÎn‚Ư¿Ä`úù§ð*¼æëg…VŽ ¢É\RV¬•¹ë… ÿ½ªh`£7t —…FÆØÈU¢-·vÀ·`ÆÞÆ$ö»L^”õc±ì1!šÖ€¾¦±ðýî.4ý_sµÈ}°ƒhõ<‰Hn ´Àµe7§e¨³ÓS[r[Ö6;y*#¿ZU,#oý!;ÎÉk`N/× )-$WF—-:·´“ãhf‚B±’÷Vb®²\šú+ °ã­QfÞ”¥Õ7)˜Å|Ñ•ÂNðÉ¡“Áµ‘°SÛ}×G4DöÅ=±=E7òz´5–â÷TŽp8ÀþæÍWûk†ó¯•κ •ZÙ¸‡ £XJ³ÑT[Á—U6õUžê™Jº,r»ƒ\®¨FÒ»…øEMlµœáAt§ItmŽrz;·s ótÎr³Óä[Õ‹|Á*Ó«ÔÛtÆ|P± "“>AIw™îËÿ†x]K °œ$‘VSU}Y¥I„F T%X°¯í‹ÀçÉOç)´ï<×®jÊTæ¨2S[s›ÛíM¼¿ÂÕßæþ3p_î+ÁÝ“ þ ü> stream xœUŽ» Ã0 D{MÁ ¢ÄŸ&Hd„´q‘*ë',™ ‚‡Þ{SSÝçØÏ­4È O©t+Æ åF®Æ£­ø¨YÁ«> stream xœµy XS×ÖöÁHÎÑ**ñPïIZ­S­Vëbä¨ÑcÆö7þý ?x{ò@çAï¾Á0ý˜ÅLf 3‘À,eÞf–1ï0Ë™Ì f³’y—YÅ fV3k˜éÌPf-3ƒƬcf2ÙõÌ,æ=f63‚™ÃŒdæ2£˜yÌhf>3†YÀŒe2ã˜EÌxæ#æ}ÆéÊlcì˜íL7¦cÏȘž ϼɄ0Œ#ãÄôbz3})#0³•éÄt¶éÌ,¤Ia:2:›^6y6ï “t’äw”tLìHlýlïHõì{¬‚ëÅEpŸwšE¯/ycU‡.Æ.¯º¦víÒížv ïnÛÝ¿û‰ÃzäÙ«dÊNöŒëy‹ÏäÅ7}ìÀáŒãT§NN§{ô:Ô{uoßÞ±½‹ûôîãÑçæ_"ÿrUH’w——¼eûVrß}×õ=Ô/®ßÉþ=úç÷ÿuÀ’·ßÕvÍq`Ƶfq^±Muó4‰Ø¯y!Ÿ˜£I‹€P«£ˆ{ËwŽakÜ#Wj9_¶T·__fhÒTktéof×šÊ ºL^~l¤ÇÈ0]’^IN~ËÁ_ðeë _Ân؇´ Ë-aìbˆJSÖpÄ(fòhK®Û…ÔNl³hÛ 0Úc‡‹¸å¢ƒì vÀ§<)a]”0—>¨VwT_åtí]­kÏUÂA9.d¹tâü¹¬•Ëõ/¯]  ÝÉárîÙ·.ªÀ»x)Lg×í‹8Ùµ,é«´õee¿LOX'·k^C³rÁˆ{Ìö(¿ƒ§žNæ 1PìÀ£–­Ñ§5 Ø]ú´vܪëÆ‰üQÿ´èây¸ÂÝï6yShéà[&½¦WzÊ[ÊXÙ OòC!ÈWì#E§‡þzÂU"É–/"7xÒCê¬I«‘c9.al>wæê äv¢ZiGm*ïàÎ;ѽyì9ð%éJz &6¤á‚°ëO? L Ä™w…%þ‡À¨ƒ=p¼ì@šƒ½pö+Ê]Ë]a)lOX©Ø¨pÙ¸m-pÖÊ7Û˜mðî=‰ø«x—¯?óir5pfÖWã®õ_XªÐÑìù²ûòCC”ªè$•œL %d~œ zHq*1%̬§z:l†M°A·Io¹¡ýÒ•ùèA¾s$«Ù¶ø¥u†Kto{àÔ©-e f?Tgî‘ãJÖ®ÙCanf¶?ñ\ô© 49ÈžœÀïxâŽãÈHüÇÿ€rä2!-Z ªX­Oú¿5Ø÷Y³ Êe?a®ÞumŒ ï ú(Pç—†9Ʋ¦LJ‚˜xaí4º5G†€“ì YLÆ’ÑÄ•¦»‰¬2ãP£èÔh²yóï8ÈžâT± %,ȸ”¦Ú(—Ýjñj‡Ø.]“¾*ਦö÷pœÄf°) +¿ßøåäQ6øGÒQ.{:6m Qp’Çc[uôpÕQà.ŸMlI×Yã§¹o)Þç/*Óâ$·G¸'ÊžIj›§ð¾el;¢ÚñÔAŠ“PÀA¸—‘Þ8’L‘“ž{‹·BJÜÝ ÔgÒ³pQqtæþ%ca2IèbÏu!þË–¾CA –µE>ØRl¿ëæÓλ%v?Ó9ÿ>Rñ¤‚Ý2ÂVö´2Úíܽ ×o0y“ôxúr4O_¾ýÆ*΀¾<éË‚OØvEPt”¿3pÓ?z€,¾ñå+7Ƭ¢½6‰öÚi3Öì²Á>p ‡˜ & ö¹Î·ÇyEÚ€Y¶Ò@2ÿê˜ßΘl¹wõæôMé”7—gÍÍ9Õ«¶|ß=ì2ÒW/èâ2(1p9R$ÿÉÚv‰ˆ‰ÔI±qIê-•nI«g·eîr¯üí ¹ìAu@¥ê«(š“ÂWŒfñm+ Œ{àUë ‹žãs{ݳ€Ë€ô<9Ng÷$§|FIÇC»Bãî0< Ò©f”ò¬¬‘t$²¸íóɺZœÈGdE6‘M8†ŒÆerYäe¸Y¾ëSÚ+ŽJ,Æíf|¿Øæ—‹Ø‹¢tš8€ÇþfÒJµüÞz7‰S|CªXÒíILÝ¥ÊKç…“+Øi~[<æÂ£¡uàž5ã.³M$b³ø3_§Ïº&”™¥^êi”¨·ÀTð²FÕÖô$š4a4û'WýF ?WèØÝ W¡ÖŠŸ öC+`ó°‰äýÙU”•FEm×Ó8Tì}ƒÉâ€,[3;+>í0mD– |Ý.d6;fýœéã“›ü¦í“ë %'ƒÙÉ0‡ ²Ðp ²ê,g‡kã·>$¨°ÄoȺ!”["›DãÚ “Ú"+goÚ"S+' –=ß ;Þ7ÚöÀNR[÷\¦,{™mŠÄ(‰8ïñ¥û/èè< ÖlÓClЇ·Î³zmV0„Bœ&)Iù6Iw$±Z•C«w*ß…\~Úåš`ðwŸu¢±ç Y•ã‹:¦Fés ’3’3)n=Z—-´¨§ÿÁ|ásN­eY]VÛÀEÚºlÖFÿW&1zÉp„ÕIÙZË­ØÅtÕmÚ5š ðƒmí«ÖC¾&3:E•å—:–$:ÅâÄlºÏäö;Z÷™«tž­wlu¶Ú“_S¢ ñ–}êSSrÂ:ÇŸI}²Òò–S¬{§2ÃnFcùÑí®­Œã/^¦ã×ïÞûšOv¯ØÔ\É™Ü[òËÙ¥*¥wÒÁYh€=žõ›÷¬Í_Ü„ÙÎóüŠÃË+ ‹Ë³k6è䵇³¨š8|ró(¹+Ûlz–z¡ßÔ­«a#7ñià9.rí-jäð}~ ;tÆV—unµG>i¸ƒRi«þq€8žÇ¹8-=ýØÑ[:'3 ö¡ò„e°ÕŠv¯65â "66>\ MŽxé¿Ð03Xä¨GJRã2¢!ÆÉo3„X$¦U×ÖÂî6]Ë®„É~,#Õ2ZÌ6Ù¢N‚{1†ß¹{÷á²rsݾ¼F ,4~ÚZäUúèVX”hÒ£©ÚŽˆNT-šì8ù§8‹¸Ju‚¼¼ŒbëÚyšØÎ:ÿÖ" :mãâ ï8Œ¼±~éÍpòeËõf]9TAƒ¦¬uN+ 9ƪš3_}=Ð1]™AÁéoÑò;u'ôF:Ö÷hw¶¦®â¬ÍO1Ý߈ íb(’Š¡®<~Ù¦†¬ ßòÄÄêt鹜ìpp^ÃÚ+½Û%Ï»?)eÎÉàêF%O>n,.+ωOÒËà Ô”m)w3,7ðÐ,Þæ²Ãw‹÷Jpϲ zª‚ PH{Ë–r¥{±(´rå7–‰Y| TùvÁ3)îZu€¸“Ý¹ß 5f©§z}äfªtþE¥ÅB©Eöl2Þ”.îJÄÑ´mËÏÕåÃk¶g½¢µ>fm~8µ±ZMbÌ;DëH$hLÊÔ$Ó.,¯‡"¡µ@á¿g‹i¬¹^8¸ÅÆ11:Ê[­X±}öHJ;…æät#äså¡ùÁ!Šh?—Ï#çö?Æ8™¸jô~+·{5¨­¯ÞªËnIPÕü.gTÓÍqdòk-¢fýÁy€ÕLÖ×@ n× ±B.ÖéXTý­CJt Å«SÒ“³PÛÜÕQ×rIÚÞUõ†/¬Šÿs¨ÿ}W‰eíI&K´ ad{ËiGš0‰=6 &IÅ[½þtÕÁóîšã”("Í.YátŸa¿ó^}*Å •ŒlÅÇeku¡t¡}«¤yP¬ÍÓ–ªuZåZŠþ¤lJ¢N›¬‡¶öŸI2H!ùËø÷ävxÊJ¶8ænºÑ;^x|_‚3ÄzìÐîúù§Ò{ØÆ®œ¹ö]jÿ ɪçMØÍ(V™ìO<£fî{þ,Ðì û¯æó+‹IÇË€áæà[·?Å>cIúäÒ·ïdAqÂçÈàÖøººùç„ê4r|/“ßê“Dw¾&þP^UIÍžãÆMK³äûByì|ìì 8„û'عàªöç›kS3ªÙß•Córß{Òûç"t:š YÊ8m|¬V®Z¹ÉÏœ!pWÐy®õÄÊÊ'6­"Y‚¾æÿÿV‡‹Ã·pøü÷e׬0R`3b“Ù…{¨EÛ)Ï¿/w½Â`|Éc6 ¥m4dê« ¸‡Ø1‰¼=;h"$Í?-»~®sßé]2P Ÿÿzÿ÷¡M»0JE–•ý-ŸÊÀÚ­»=ÁæÂ|pß·eŸç'ªÀ]/¸]™ YÑJˆK ©›éë þhԓ蛎aç×Õ¬(¢6`§Õ†c×—öW_κà {‚³Äxò–%ÀÏ2T”íiªÖ×—Q­mOÓ¼¤”=rÙOÉân¾:°d»¯Â?Àß`®4•TÓQÚ¤07¨´?Qp¿8¿Š&ä2þ,:ò¤§yQÞæãpÊéËãg®ãFò¾Kª S*«Í·â«1LÐjc¯e~UnûFQc(?ºïûǦ_÷—g%ù2œ“=©HØ™PéQI©•›¹vÆømSR¯–WŸ×Öi3ãAÝ®:M§ÏJ@g0Ô3o=ïù€°N7ÀrÙex6ïöøbš’STšä+Y³âþ¸éÅü –bzXò2Ô’—kñõë7vAb0äyÉŹPÁ•‡oß°úÄö“WÏžDAóðŽUAeÛ¶mÛVTUUVVEuµÍú„œVoSgÂô˜n’4ožÀ· 4”(èxÍűy58 ),35%I „`Žbb+DõÜ}¥û ?Ã!úûöY1áÎöƒÜ]–±N1–[˜œE]D ò¼sÉXëiD«*Æ€›—$/_7J %Ý*Ø {µ{5¿5Êsöü'×ú6,‡0§Ðð¤Pz]¥îS} ·UÚªÖë<@[ŽÎqÔêS©`L¾t:3ýÜÑ}‰E4oSGÃvjé£Z'^‘6S ÑCíA_bç(ÿc'ÅQÄ8´*Íf³EiFð¤ßà†:“Î&\&ˆ=þÔMteI_ä}²Ÿ ´@0Cìåð2[-ƒØS»^³¼`½ÞówƒØÚÍ6”I$$8«y>ÿ{]À¾NÖ1½ Ltþ×ÿŽU,;/iîK¥lózI³x›Ï­¯¨úB×v’kñ¯Or›´%TçÅ«UYвÑ,õª\«õ­: &ëaîlÚzpmßág1»#[^9¦…¦¨s ô))¹tž_ùÇ3{ëAÁáÿæ±ý‹5£îOËry}ÜëõqÿáÖÒ¿ÊnM`á« É«¾4…'÷g?¯–úqXОÀϵÅÞ *u.BKÀIvG«Ñ@ToÒm¥?ÞÛ{vg]lp±à¦Qm‡λ<º¨´4ç§+¦ 'o¬!6‘þƒŽúã%ðKQNV–ìÀ¦¾%ö÷°“ÂhQšuüù }î^aþþuù٩陂^o«Ói£lÿh£³\¥¢»JâR’R²oÜ@Vh“Š•Öx=i´OEöÏv!þõTÙÊn%V—¤÷Éu£ÌÆõ#6ËûËÿ¯Q §™'Þ45O¾>t%£â*…¸¤ˆX€°ôÈeð{¸ø”MJ° ó§HáR*³ÕH*ˆI1 ÓycK’Â’xisï¥Wãÿ™¦EµÂØìh´ÙsÓïHDW¼ÌÃÍÄ›^W6|?!,†énÃ}f'N†`jòÈ}SöO¼rŽÃ×%¾«¾˜rnpÄ“\æ7ÃSØ÷ÊÓð>…óp!ýx¾q5ÃDÄ…°¢A™Ëa ,¤d6G¹ rè2?Ë÷jšázóbô¿"ÁÆæž|胅E Fƒp¾l1}TS9×’Gá3Rð±¨ÜûT<ï…ûm*ׇ©Îª·hY¸†/^üd¶?ò7>jõ²küËç8…ÓÇá™JGÞ$vÄvÚ{£–CAmö¾ò°r¯x hÕBégÇëO÷hÿÄ ¬´b‘œ¬ ÞJ‹á r’½Yi%N§n/Ñ/acldBü<:,ûWT^¢Nx@)vþé¬É¾;Žû?x<幃Œ0¸_ð·+N}I3t{ô‰!ïLY<ÅÛZe.6Vq†HÁ|øBNpû>QŒŒÑ, Ø(÷[¿U¨×i ^› …XNÖ¢T¦Ap@z»~λ¤Ïìm]§|ê%¯M4a7Wç_¼-È'jãˆ'óÐí=úY KÃí…×û—´&{™ÅM4Ã×h†q?Æ¢¹¦ ;,óµ‰êª8Ö6_Û¬ÈýgæâzšûÔˆ8µåØšœnÙJy M’j)ªÅN¶ÖбøЈwìü¸ÞŒ¡¨oWâߘðŒ0ë]#¼<\Í«jª©éö壜TuJ‚VêDyHܺ¹àÒœKâ ši.â#ää0ñ¹izCj²•_ü4iCzX¾‡~3¬åd¯è`[´)h³GÀʶˎ…j \G…UM©¬,Üäå•°aìÅÁØQ.û¹Ÿ¿G™ ¢ÜÊ /ík°‹ÂxÅòâ û;ïñ§ƒº¶sCqnf*•jzNœ¢’|f,\$‰¡;T[ù!ëÎרYÀUoþ'·Y3'ö+½óh/ÌCÜüxþCY :â-¾Œ¥z·{ÝѲÕV£é.¾e‘Æü{Noüø}Ò“ô&< Ë^‘bäf>AÉw¥÷ÉF}O$‚¬ex¬ YÏáä*¿üN«òÂá&r׫Ÿ=Ì?‹ÌB¡¬¡úx=¬ ÷ô[¼ê:+ˆKÄϮٜ0}÷X"ú‹/ù Ëáo G’¤Ä49IE\ Ô›¸QÅfÈÏ8—“–zrh=ݥʈIÄFá=’ôö&rx›ÐåÐ!8˜)eáÃ'éÇ“Ksï8ÛÚ)øùI, 1 >€å‚X¾ü/nà7ìLÚÜ™Ï.]>¿zƲÍë{ ÆHþ«úÃMp{<ê䈧 Ó»48 Y1õ&ªŠŸ/Ý6vù ^}žûm¿»ókòà–!´$"sÁ^nà&»M® môƒœ¦M]=a쌳wNUŸÿ¦±5ýuï–Š,éŸÿ7?´ÀV‚—x–D÷ß°4|¥~—¿p ½ªÀ”§ˆð‹Û<÷¸Û7ÈSÿÙ}höÑHØ/F­Xæâ*¸¹o‚©éñí»ØQýzö5”žâH÷ùؾçÂêáXø²±¤¾âÈîœZ*hk¶¸dû$/„ Üû[¬ÛÛXZ´ûgš&×ÿ@a[NµÜiïe(EóO|·ìIh‹„§Buò‚i ñ¿ò«›ÈUi®¬lÇpŠt:!M—¥OO³¯åF$F0¢Áxßhsâ,.3áDË«¤yZ³3Ÿš¡7@*——¡ŒMLHP kçÌõŸ³`‘iEShÁޝŠ‹C!JÞò½4*BBŠ O.~GVñ¹­ŸDÊ[þ*lý$×"œ_“ǽVÞÑí?ä  /ûbSH±=5*°ËË‹…ŠLâr¾<¼Â3$*V¥´‹Pâ4›\öÕ¹³òlK_¸´ÄäDåûSHçÅe.ûk +Ê-TôŸÜf':CÉ«åÅ6?ž’à]’ÀS£/ =ÐÞ—œ¾§c7ì‘Óö$ƒ*vä"["¬!bˆ„JßÉY¤ë'Äö4évo~&p©É†4ùoÆúì4ðp]‰]W íbì6ö³XàTII*5hŠÂä? :IFÙdŠ™IºûèÖ¤©’“R3~²O…£Ø!%p—RÉÍVY–b¤=.<¹/WX¾eÍTKrÒ7üù:¯]Ë—lÜ’”(l«_žâÜP­&ÌÿU’¡ÇŸâ‘jËYˆ-ûôvÃg‡+CA'hÙpMˆÅ"ªtqÔ,ÆA GXÖNèÜq|q—NÐ¥3tyºØ3ÌÿlŒ+åendstream endobj 117 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 696 >> stream xœ]HSa‡ß×é<êš&Ø 6è® ($ µ$RAÄR»È°Ùü`¨Sç‰ÛqzœÛÿlûpC·Ã¤&M­(´ŒôÂ]˜ì¢ü@»î¦ yÏ8ÆZ?x®x~ef ŒqvEMMÕí[ÿQ Rc²:Ù˜ (2ƒÉ²Â_—óH†qVž²¥µ_שëjÑëúu!ùÝ’R}¡K(i± Oa;ÊN[Q&ªFè¶ã?Ä)%Y–¤ü“*AFš9:Ñ÷Aoê3ö„zc>ÿôœGãrrÇ9FïwÔ Z†;LQ¼÷ž“MÚçøì\Fê·é¨)ÒÝm2uwGLÑh$Õ(“ ú°¸§"‘%‹É0íåÝ<øÀ7Î3üÅ72¯2Ϧ…@1V+cåÙù ­(HÜEz£“,XÕÌœÕër¬_£w¥Æ0¹#”0/^À©ŒüSô]–Ê(M!1AÕï–ÔGz;4õ/믗IEóUϺÁ é×U-Ö®·À­n¬o~~»‡°ß¶Õ¾íìÂ>%UJ%´y’±›`†c¼Ó³f÷BæÀ?I‘RGÃÃÖŠ§=ž!gPƒO8ƒÖaÜr-À;p˾÷í|'÷ÜYg*7êõ •í*kÿô@€_Ôî‘álŸ¨ã«µZ¥xb'o†ð¶h•‘$Ù ?^Ý”nûƒx ” ÷pÜ ¸ÀewNMyÙÀDHz!&TƒñP“f`ÆÝvNcgÙ¥G¿¥%••^[,, fõ«yK08çõ¸ÓßUYÂ"ŠcòEÌ¡É=¹ V"ƒ0¬•bò!ÐCs“¡Ýø XÊVŸÛ9ížÑ|=ÞIwS§òkÒ¡Í‚MÍÌŽ1þMÀ¥Qjr3‹CŠPä‚"…ý)YJPendstream endobj 118 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 5141 >> stream xœX XS×¶>!prT!Aí;çVëP§:T‹Öª8Upªˆ³€33HCÂưÂ< &à•:âPqÚÖàtk«×ªX­µ½zwì¶ï¾@ˆ¯½C¾ðÁÎÙì½Ö¿þýÿkG@YZP@4™›ÛäI¦?ù,5î{åb¥²€µ¬-Õï ͲC)¶¨¯Í—)Ók¶S`Ðü]Á’ÐÅaÎá["·J·m_¾c§—·«¯ŸÀÆqãÝ'xLôü`’l²|JôÔ˜§MÿÈqøŒ™ïÍúdö˜÷)j8µ‚úŒzZI¹R«(7j5õ>µ†K­¥ÖQó¨õÔ|jµ€ZH}@-¢>¥SÎÔTÊ…ZB-¥–QË©Y”5ÕŸšM  æP6Ô\j eKm¢ì(wJLyPƒ(OŠ¥Sö”5„RC©a”õ?GñTª/5‡dLYRRê¥ÀQPm1Ì"Éâga’ð®¥·å «áVñ´=]-š R3£ó¬Ï–>Gûò}q¿`kë0ë‡ýû7Ø0 `À›66 6çmì7pþÀ,Û!¶>¶Y¶Ø.Fl'–Šï Ú>³+Ùsƒ¹ÁõƒïÛWÚÿê0Õ!Îáë!ÃŒåŒå ÿ»n ö}…È`¼É*š¢Uþ2PìÀý_k¢!’”qIIñÃTC ÷œ.­„Úºðâ+þn…¦Ó#¬¼"À? JùçtI5ÔîNÎÍâ“2Â@ žo cUôWØ`…èÎMQ›ÞMo÷Ø€Ü öâoÑLã ¶Š·qóh™„,T EüaÜæÙ;BSé"²nd¼'ZH‹?½ÖtâTQÐ GluÎÛcš7Á|žœ~¶îà,Nüíbðð‰ŒdÈÞIzô­^pÆ€ª B£òg‘íÄ'Ø[Nƒm±øÑxd,ýŒì8¼Oc–]øãW_]¾rÑeÒÄesx²DœÞ˜«0 Kç…ÆHã V UÒäøÄdN™Ê‰¯Î]³ŽäÍ’u‡b¼‘ßh0bîtÜßqŠPTò‰ïÏ Ù Ì¤i/ÑXôþÝ—çO»Ï,â3¢ÒeµÀ4€VcÚ Kôè=ºÔW6Áë&š‰JØsgO]¸vvÞ‡ãº,üÄûÞ1²lÞrPQ <~„ÄÈfÊ/ïnôúûðâÇ5Ê¢o¡ûZ÷¯Ð¥{w½Ö™fAÊÍø¶ Ê}¼!j·«fkµ+ÉÏräx,Æ‹,.i¬ÐòØoƒH.ÿJPóècº¸Š,BÝ@/BˆuÝ0c†“Kûýí†ï¯žíÌ™qM0 EwíŇ‘-g:÷3êÏ©BJ"ª€)ר÷hb¿p\·DºÔ»OT—”ïÃa ºg¯›¸mfïÑŦt‚AÎc!ý¦êvWô(Vﯷ?C'P.š‘!É Ìü´>gªëëý­( 8ƒSE¥GÕuÀ 2Õ6$%:QÉyj=!’dýqè ¯^D=ˆæÅ[¾Y3tçNßI›VÜpÉ¥)ÁÀxCx?V$ImžZÕXȵxRêHa¦Ôÿí/~ǬÖ/«›—ô¿j¦ü§„Hb¤Y䨋v¼EwÁÍø°‹éUPÌßéô¸K^W¯Ý<ØQ Zoß´ð(.m™k|(0³ádßn¸yèw È›TÑÙx”­2[»_/fUØ{#·ŸÊBº7«z-é¡~½³$(yãp‰úæO»Àw3ùÍqD¿Õ³*?-”s•VWA]m0DóèÝY×·4À‡œôÉ3cýfÁÞzUˆþ8#g¹Ê‰#›¡9¿QÇt¦mŒÖ P$ó8ÉQfth¢åÁ$ÐjSÔëhL™›ÌæQ¦ÈSN¢ëzA¥q—Ð8Ô¥Ö œ>½ ëh,À×±]·Ò½5£°Z‰ðÃB haHT@Á^Sœ)Zäd@B½@mŒÝM;h ! 屈–†õ+ Œo¡×ãVitJuÌ‘Øfé…Ôoˆ'TŒ KM܆¹”&^‹NXµtér(Döü»jùó¸#34C~†€Œ¼R}Õ=UQF9£¢³Ö6â>™ …Q¥P¡Î,gÞ”k²þ©Þî´asZFJn´¨gËý¥5£+'!J@¾%>+#Gþ¢Ë«oã÷6„yZYe±.¯QÅA®J¥I/Rí†<`þzÒ/>Цb›õã†.ºàòœ‡7B[ÎÑ:&ŽöDÄb·K½¢< ˜e[÷}Þr§Ìäßè±'!:€$,¢Ñ«tÑž7uê®C9ìáFÍyfUÝ^ç“ànW8@£¾x ˆ§YmëýõéªV8øówM¶± {Cñ>½{lë&±!=²ê‘a9±-¹ü‘“¯³éoØš*Nܲ¥™ˆò03MæÅòà!õñgðzË«¢?¹I#õÆ}zÁÁ»ÿxó±OÌÎ$i¢ÿ4:¹L¡M,›ˆªþœ…u4Ž_eƃÒ†€R2#Fèæ¥”§*+v3UÒRÉ®(ið–}ÛZžF™\a^5 ¡q'°º@H’Å+#¹¤˜ÈMNÀLŸßþã1¡aÚÏAÁ«¼Ë¢+©Ô–Ô\xî üÎTlýÓHd‡ø}¿”ðo8v©ÍýoÐüí8ëÑ8sM0fÿ‰&L¡Å-5¾[Õ›‡aÁ¸Nº?ö%µ¾Ø£«aŸåÑ*ÇÙ V\îø¹ý«ö‹-«Ü¸YxØŠÂ[…ÈÕx…Ý+ÏØ̧f*hÒ¹žÑK3!3©h´ôuênouZ5 ©-ÌhâÙU¢žïš«ePZ·ë¼s Ò NP%‘ßYh«-ƒFD/ùÆýÆÆ6xÀ³QˆEGïW™€•&¤F&òaëV+‚`.Ì=.»Ã¨Î³EWÏn‡“Ð&É{ys(-Ѹ¥†Çw…(Ûd̪>à(}ã¨åRò¶7h*ÔºóƒìãÙîrkF÷:È3Ü6ÊLý*{ÕoTg =œÎœ>ÜÏÛÕœ4‰÷çgW^±ÿ#E£ìê-GO9tèä—_lZãêé¹–ŸìÍf(›B[€ypõJG­¢&JÇk +3w«²wU$æSRQXSY·:nCš;/+ð.sf‚¹Ó7—øGòbLÅÉaCÁ»H’ëäŸB3íÅr4 zÑöC£ôøº=\LΖòÉÀ,¤ Òå±EqEiH‡Ìô¢Ì|õÃØÑs*Í«¯×ðUê<¸ L²‚ižs7îV•Nö :=IhœƒŽ°¦Vq±©MäÐò?9ÓÑÿ¦ý/zQº³q\¯G¾¦·1dgÆ0_†&“ºB?8ôÙÆ +'ñóiäæÇ~ÝX¦‡fæÎœ[¸/‡þw^ìK‹ß ýB-Ô•‡Cl(ó+ ÐÉös¡òë¦zÒ€’! OPîŒ ‚#§.@®¢‚‹­ ÕFô°ëæS;´ãé"ßCÔfÊvµ\ÃÍøb…Ûpÿ7˜ñ±^þ §ÅÏŒJK]XyPPXXPPy˜NW^®ëU6²ú±dß¹þ £eÏúSèv¢Á¯'Ð;‚½wíð'±éòtU©s£ -  ‹ œó 4£‘û‘õENüÐøëŸnÙuZú‘ÓbÑjr‘\Ù ‘Uƒ™ÛOì´‘ÆÓñx+ô¢‹.½rÐò:zƒY›3Ѭ½½IÐ{Pgø}{—÷§ÿSòÍÛùvrj0éFX³ñ-³ó<ØüÚtªõ3½M7q$«¬)0~]µÑÂ~·‰¼Â»Yx¯+Žpr[CŸŠÄ-ÍG›+Š¢\8-Š|CÕëoMúS’E@ô”€­1Ûƒ8ù¾ R_`Ä7ý :$ÌÄ Gý«$W 9Y+^õg{óp¦}~üïKDþÙñû8äl–ãøW#LYÞÔ¢OÚÑlÒG´¨P%‹†Ó… ÐÐà ±<ŽFÐ…Ðàí Þ±‡‹bÉŸÞ PÈwAÇ‚w™\ØÉ5^ŽJ°­ÖmB£–\´QC+_¶I›Ÿ*M†F^URÿüKd¡ßþ¹ç¶Ð¿5’½Ù9ªô®7‘hR´Ó¯Þí.š³ Æÿ>7;Ó{sòêMƒ*Û­ÆIBã ’Boü—éžxÉ$£Ÿ¶¥]€öŸ±±9IJÄL™¦HÆœä )Å$æûUff«r ¹—m/—)Ò!†Tæ×ç”(2cs:µ Ù H~¶Bt£m ¨öÛ!ñ÷ßY\ßTUWgJbü›@ÆÿË8µ¯B5‚³ÆñB£Ç+6G­ÈeJå%a‰ò˜$ÿí÷E‰²4€„!Òâ(MyNñîl®ç*|Ü€>'¥DgY´|$²ÇØrtçÍwùslO.Ô–OÑPDèäsÙO\P_42<¹vµý}<qÁ}?é BŽ›ÞoI Up #·´é^z0ÙšìJÂéB,ˆ™ŧ%Ázb&‹À ä^2/ùú4róIŠH ¨LËç«Ó 5}5ƒgŠ AM;’´ ›P*«ˆ!]yã›—XÇ¡,L-3søÅ½tZ†¨½£OÐ zob®D‡@rZLƒ?~ͰH‚ž[áç¢N[o#N¦éíNv¬1 4ò?P­që ž‰[ÃäŠ{{X\ޥϸL$…ÐúÒ̬ü\nO}séY¢ï¿Ý:<Ïåã+> Z’{:ˆ š›C­ U‡ËÛo/D–ÈöÉ}$äÄÿx6ûÒµtU¹± Í ¦õŠîXk0Ið@ô#[„ÞýéÖ=Ø긬dòJ"†”FTWiJj[¼¾KÔc(î=8ñ ,ç=A‚_n#kDOíÀœØ¸ÖFyleÐ_p3ëÛ["ôÊì´le6– ä¥Ê8n="-GYBÚ…¶óÇÿzóÔb§iήó;ÃÒõ‚C†3D¶ú“î ;á¥>x` &|JJ j¸,Ôˆ& yúsšÒôt(bL!¤“ÔRÓ5ÕÂ"ù-¢HÛ×eºîdÓõÈPÚàfúÚÌômÇcTŒ^³ó–n=Ùzì»g6®u]æ9ÿΟý~Ïá8ÃÜš~÷ÃÖÍšézdýwÁœø×¹áK>›;tìéÈÙ=¸÷øºË9'-7 ׳ŽÎ­ýÙ ?>8³tù"çUŽ>sü“Š9O=ºõHøOêÆ?)ãE6ã¨On DB`\†çnìé ’g„눜f•ªJLEßüïgt%3£ 5’ÊÖv ˜¦ÓùªfãñÀOÆŒx©ÂÕ™YYÙPÂTJ5Á’ˆ¨¿Ò¤Ww GËm ¥CIXh…£I-é{S)Ýã“p²äp3ƒßËdg®ùæÚÝË­WêB#Ô|µoáºNTB2$gÊ@Á¸­vuäº<9÷úœÑòF‡ÏYþ™ù9jÏé¯ÝFn·ÛH!íÎ^\ÒñƒþÉ5S/ð»A5ì×1=`¬óØ´$ŽYŽd,–‹<²·–ËOdgæçB£ )‰Px¥¸;ž˜8n§ék½ºZ¨RsM"4 ìÄh‡– 'xäFü¿§ÐvÑÞ”ãÑêuñ ɱÃ>u¶²°ñ[·+¸o>רù…¢?HdܶˆY2œ $Sh–?Ónéš¿f?œ€cǴ囊Ъ5zjºÜû3£Œ-ÈÙ eLEd¡L‘š¦ˆæð-¼M‘“‘C &7.?ÝÁ;ŠiD!Õe…eäÓ@ÎV&®¬m¿Õ.h2º ËÐS¶p/év’{6~BGï$ÝÀ^Sõg‹É_SŸðëKž4’ðíx\ ò²MñÀî„‚ø|ípˆÎKU)€‘EƆF’Oyt;cò—ØdhY¬:/C•Wd*Í í«b‹N¦/&W³Pœ˜)-Äo»£!€,áiâÑÐÕ9™PÌä&k‚ñfì€óp¿#“Ös§æ]_E¬¥:K“Ë÷.¶ŸØÙ Dì õs¿ï}|ÍÕ¹­!ÀH’"ä‰Y©> stream xœ•XiTTW¶¾%ÜË¢FÊ‹UѾ×1*¶5Î'™•¨‰(8(32UEÁ©¹Šy(¢¢@018&έ&Æö™î×1Ý1jöÍ:t¯wª«ÒÉ{k=~ðãÔöþö·¿½÷•PžÝ(‰DÒ70zû†ø]Kcv,¹9>höhǺŽ þÅ“ÖzK·òö¬ðN >з÷µ·)Çß4ÿ1sbçîœ7×îø…‰ë“6,Ù¸4"rÓæ¨ÐèeËöm_=êkGÿiÌØqï§Ÿ0qÒä)S§ ›þÁŒ#)j0DSC©jJ½K-£†SË©0jåG­¢fSáÔj45—ú5šOP ¨qÔBê}j5žš@M¤–RÔtÊ›êIÍ zQ½©>”%¥úRSåKõ£d”œz‡êO  êO Ô[Twj:ñšò¤â%ž’@Éón[º=ðXáñßžáž_ÓG˜QL1óÄk®×]v3{ï­Qo5t×}Þ=r½{zŸîÔóz/y/è½®÷­·{¿ýÅÛÏûLí³¦êSÓ粿O¶Ïk©JúSß%}¯rÁ\ooßßýzõ;Ðï•l¬,CÖ&">ï%>Gvn‡»DŒ‚`® §g2‰ŠÔL³ºT€1Œ­0¿¤PeH61ãÅ ìö«7ƒkÛãémŽ¥´ çÒ(¦¢¨óÀtæ §¡ÐÎá f@ ]Ât<øÔk÷óŽõ“Þ«8›åº³–™‹ŸÒk»Êèç2á#¦L´´þÁƒê²ËýëQ¹Ê–X’fMD ( ir•+1’E»Ù'qMŽšµ­ å˯¯lš¸1iñž˜“j%v x4Š>bq‡‡âØ Cîùƒ†Áà@x=³ w¸ï¾ ì1÷·äâ Áã5t:n²4l±ù@·Fâ˜øhà65/¯\ˆ E;ÃV‡­Y7?=0e²L“–›†RYìýÝ{ÐýæíêÓ—ø•f+*`-*SVvNnv6°8tç|ľ;ëÞ‹b]©¾D(¹U=Àóè†äÍèdòþ]–ìÊMH“)3)Œ*BùùúòJð”iZ#Ò±Ò1V¥)+]¡HÎqø‰íðžþì„þ8±ðo°‡@ÿG\­ îÖ^N‡¹F°·–“?æ4Ž,<±ý>’Ã@BO RÙó®bjæ²Øù xé*9Ã=¹¸|Ú !#131èìÃW/Zp]Œ';n÷ÚιÇ(–Að¬†Á…ge† ]²±ÀÎ~€%<ŽugF`{<÷BŒ§aÓŠêÒ>‰ªÜZ´­G™¹{r÷¤Î–í„%#G!ö?¼}Eœ½/‚§ÜÖ«áÕ3‹á¾ØˇßøùþWÕW¿°鯹°â( qÂéðËéVÿÈHWᥱÜ_..Ÿ:h°f&}ðóËçÀtø ©öǶW„U» ŠƒaLÖGyt¶Yi-¶ZËõüAè§5&ê䥹3BŠh<Œi‚HZ˜„‘¿Ú_ ÝîïJ²Vfɺ0ׂ¸‚©…ñ$î¤wÜ©Øã¼3÷ ñµ79·Íî#= ÏHÐ1Ë$§gíqž½ãL¸QL’cÁ¢.à†ÃùâÂlcš€˜Ïa'-ø#ôkØßÜ*˪ØeRêòLˆ-.**´( ÓŠ…IJóN´­ˆÅžÙÿ.’ºAp­‹ÒâÁ w®¾ “GéÎ()æ>§4ÆÙD¯†h’¡Í ié']Ýpyš<%ÊeW[¬å^_@Kk6ÕO¾Òz¿¸õ¸rÏÁÄRaçÞ¨‚ ó B‰ÖkŠ •²M7î×Ö+2*ø|¥mÊÑl“³9©g(/¾Ñ‘yzV:Àƒô¬Ì„^ZsxÇú’þX2>Ø?¾hWyºP™r@y;ûŒªJ¹OyFqJaC>X3jZÈácz­Ikæµ:¤' ì ¤S\à¥|l˜ÒèI‰è,HÛñNŸåâñ&ïËÍÊËFYòÐS‘Nß)Ù{œ?TT`E…l¾Òœ­Ö䩳øu»g¦,ClHä' ­YkÎ&‰ùF<ïÇ98äÈjÇŠ‹}ïºÒ!šy(zÓØ‹Ip=¼¡œ¿pG@ÿuÛ«-È 3 —á ý+Å!Û4™y™(SÔyõÚµg®ò.¹˜#Vp0°ËŽd·1Io.8)€º-µ¹mœ¼·Hî ô…‰Ä —ÉØÃeÅ ÿ·Eƒ…^ÉàØ’môéßßZÁÚ½é“ © …u¸îf®dvŸ¿5ÂK¢5iâ$ß¿»Î‡1Ngå±Ê/,³O”¶™ÏP«HTX…YiÑëµZ#ß¶Ïn©Eì•ÆØ *DÂ"¤Í]VºÝ¸É1?ÐßOjŸˆøúæ•OεRå7sS–„îšØÀ¨Ošoüåx57«uBW²KÄÃÁ‡0–6¹ùÒÍåËqOÁ¾ƒÀ—nù}gÍ øâ±8ϧn‰&wñ"€` ½ñHz±Û™kGÓÑ 'Db hT‰?’ÊC—–nÊ)sTö wEû;Sñ”–6Ï?r*êvRnd ‡A/æÜê¿dëÜE„~Å=þ2h2öÂÔ@ì55ðËGàõ¨.v°¾#ìùÞ͵tçƒ&ÂÏïÜå²Y\É4ÂÚŽü%ùÔ%IÑx<«œjb=ìQDKz:‹ûqÑ›‹ª_U±”T?,ÃýðÈw罺Þfûô‚PcÛk# fQX•jeŽ2›^3{ç,ÄŽ_zîÑq[kM£ÐØzåðMÔ€š2ö¦*ª¶#µf³ÌH긙ˆ‰•ˆIÅw2"‡˜ŒéÔ$+3àßðiðš¶8=™Õášý‘]B˜JÓQ.«\ gpþq2üHèÀÚF•óŠh·&ÎÏ¥¥þÎ+,Ìcüšþu(_ šéîŒd¢+’á83úVxÍ,Â[tQ2kåÉ»ùÚB}¡p žÑw]R‰ý\m]ã™"SÑùŸ®,ù<_?º²³Þ¸iý¶ý 5BÓÔPßxx÷Þ-Οíd¸–À˜&xØä!ž‡—œù°¾bÁså•q¸Ûp"£ã¶ð ÕÛ5ÛÑ9ö<µètû$0¶–ÇWÿÎ]®¹ÞÐr¨îhy#boÖ­z7V£Þ%$Û³xËüˆä;¢"’7 v^ÔÉê+;G"®E‡‡$«²•(]žmζèÉPRÀÃÀF,i/rtè®Áº­‹Ñ)]º]¬!— ‚)³sZýë?Ãf˜ÞÒ$?Ûjû bï-¸4uq`ì‡òq;ã£P«$ƒ[ÙTlæ}y«é&b/ŸZº{–†O¼høÌô ™È3¥÷]ÓQgê+7Ó]HùˆÊÆîXúçÂ?@è ƒŸ†ž›°>B‘°¬#à„lŽ<7’@ÍÜ+?YsòÂ3\{Š*P™Æê(CyFÄ–m)Žœò~䂹¤髰‹{œŸõxþ x»ü⌹K7N æUa\mSIyyiC}a%{¶qõ’QSÇNÚtäJª Þ—§ÏmphRžM´“×OˆÞמŸ“«&ÚàRÉXjáá±´ø Ýþ“:“È£iäŸ8* ¼¹Ž†æN$m  !Ù<¤ñ°âóIýX W¹Ú’ÒüŠ’ÆºÊãèsöÏç&cÉÀQ#WïÝÚº€>`'_ú/ 9ÿâÕ©ûòƒ|”qך×/õŸ±pü¢Õö3wµ=q=×v|Ý©fŒ™Þ|ùñ7wþÖ‰`´D ì$/6¿8MBy*ÅÊøÐØõÁc±dÁû( ¥èŽïZ™ Â=G¿~zôÚ-áñƒ“àƒ€c¡GÈÝ1Øs f°÷Ä3A÷o]jøú> stream xœÍY[o\·~ß_±è°Þ/úà$…‹4 `YíKÕ‡´R\K^]¬®ÿ|¿!yç 2¢"…Äå’ù|3ó‘{½VR¯ýµÿ'—+#]^Z©õëUpQÚ¨×Ñ-SX_®’ 2ä<Î\¬Þ®²Š2¸´ŽÁ)i V3Ig|Yå-ÆŽ-&ø§ð¥gçyñmšœ7h•r’Ñ3¥Ú×)Ø$]ÈL§¤£LJsú¢61YÓtOTb§9™\¦…fp—rI&‡µ.¦,£gh±ZŸ¯®Wºx}Ýþ\®¿=Z}s¨ãGíÝúèlUC¢×&™#“eŠq}t¹ú§øvs ¤ÊÙDÅ»’F9£øC›sÖY\Ð’˜s²©­Ð6&±?¿é¶´F+RW˜vÊDïůøÔ)kÄç.ä_G?¬þr´z³Ê2fo0ÞÕ˜ö3dïC¶š¼&9&pS!RFˆôãC¨¦~¿!c2^ìHD$„$>öé:tÚe¬PÒ'kl/6±ŠÙˆ¿J#ʉí‡â"£²§u ŽÿØ$+á-ö$.¥8¿ë‹oépøÖ9 a˜ŒI¹êÔ¦ë;_´µoiEPÊfÁô8Ek“F©t¼Ág•,0Xvo±ÛŠããŸ÷º„šœr'dkV>%QBštÒA칞|\0€%J‹â‚’óª#Ø!ûꣲX…½ØÖCÔQl/Ë)Š$î@BÚ•“2&W c¶ÁE ‡u&”X,n±Õ æßbEÐÑ;×b[¼Äöñ·ý˜4“2Ž »7¥Ãú@k™½×ë£S kœÃqF\—‚Õw£‡€$Ɖã¬êÝ­¸èÃ]•åtªÁ©@¼ëŽ­^Ë:D`ÅÄ’†1Ë_ÔÔKÀ“øÓ†,@…Љ¥M @*ƒª¦ü°ÑR©œØ·´v±Zb²Sa8½Ä¬°Ë.Ö"0Ä UÃÔJí'RÈK!Èð|,Ó9¹} < $7ž †9\ÄçâRÝXuh¶çá½·L'r5zCD â«ùÙ«·Š—±ÌV¨`F8<¢ž¯O8|Oúgä$¶Á¥`®ÙS}·'ùażŠû—͇À ‹}-΄Ð$–a•fikV™J<¹<•¢˜7õ¡’ xE78è¸!Ð (™â¾©ž£1ÜO÷=9_Q=™„íЃ\ÒÅ•ž\éÅO}q5,=‘ÆQ³'q‰ì=ÌN!9&ŠLÊÖ£p A Ç#'5¼€z@ߣÌÔ|™t4•àì-T ­ÈDTm 3‚Ê_³ÈArÚX|˜±U¡1h4{ô½*âo½ÜCaìR¨T“&Uë¨Jˆñûi¾· P‘‹H ÂÀ¦©c ³ÓŽ¡í¼cð¨£T^*2€dÓhü5ƒkq<7Hõ[JÆœ²¬ß/ëµ€30C 1 ùDàŠâï‡LÈ­¦[ËöZdÄaë¯cEÿ¸0ºG/ÇÑ7 £ïÆÑá8z5Ž~G²(t@|œxV/úVÔÐÙœ Sà†µžaôïq´G' fÈ…½]Þù‚AýÜí‚ä÷ ßž/èòçqt=Žîö~XÐùfAÞùf Y¢µ¾_tidñ](´ªqâžûû÷€ˆÂö|W×âˤ‘1H:8 ¢xÙË–ò­ÒÖJj"U*£ßq[Ūtþ éÀÒE7Hýb#„Äì&ÛdN*ˆWeœÊxNÇ14ÚÜàÆÿ¶sãëâÄõ u8{A²ÂvÁ¸ÔþvzG EàPvÍÝ‚ÚËpí2Böµ3îîïqw½ˆNx|üº *l½›dïP‹>ðªÅX<Í¢¬àˆ-»…0[ÿÃ\Pï:>¤È<·=ø“dcß@X ·]¦Ôh‘0tÔ ÏÞ×¢''q:†‡óí‹~ÄãÔ;WP„pËØî9fMõ„õÌBøµ6Ñîš=CÅ¥”îC4'l̼«Ë]fXhNëtxèê·½* º(O.ž£N˼­Y"j_ÁÛ;.ÈÈš®s&k3O‰˜ ¼‰´ÓdHõêRùÌœ³Jx¿–´›rI¸ÏG[·þßö‚Ùápè|´'Èh¤Øô"ÅæDbJÚ‹³r)>­Vô]7,‘ßõ[Ü„¹iC6Õ:Úb<í¢ßK¦ ¨† \ݲu¦Ì¹â¤zòá¢èŠCü§"£M7‚h•"€v£&<5(N=%( ”éqâq%ÞÜo‚ÞuæíUüâ½›3oÜ·¥3~ÖzØòÀ”¦i”IÃû„wÙ”óŒ'¡ó"ßf[9/{T@÷5Ä:IvÓ.–yl%Q'F¥ßõ:sB¬:æ‚ÒG¹´…ZÎGÆ¥­'ä8IºF)ópxϱòx‘¡§¯Yã(dÙÒ,—|Å/h¼¢ÔGû´¤<‚Ž˜¤5jr/kqy]¦G¥ø‡ñåû랟WN®`³½÷võñå‹…K·pÚn‰%ãz­SÌÿO,Y1–l{½ÿ8 íÒìq`NaKuy”ÂúŒ–â;‡E+ºÇa“R`>‡u.T®C ƒêò}o)²ÎFlœrØaíœè`:€h=ÂôÛ+ègz)×µ®ÂfD8ùÕx^kw¥?eŽ¥Æ¶R AØ‹U¹0fò4(BšD¯>YAú¡ >‰1w¶:ÚŸ‰3rPN¿‡3›ò³Kq#`YÆ—“=ëtwàQô?+ ¿‡?ýÆ›iŸ¤·üµ«Ëéí~†¥"% Ïø^e[[D]°ew´]M8¸’_©^÷W—W?uÂøã[›’^UA"td6³”ªÖÄ :_tL?@Î3å̳?ª£P…Ù3ÒYeƒQÙ'3¶ÉX9ÎØØŠÂöb«íœFÓá¡ü@Õ/ÇlÅcVåþ -îŸ*4 gæòOðf¹Äk„Y%þ2yv°ÆHoì ËÆv~¨¿¸0|z3”Œúy‰Á§GGôæ~»pÚRϼe(FgÏòVöÛ82ãÈ.¬ë½Z£¸Hº/ú‘®É)=.?¿YýLÂÂendstream endobj 121 0 obj << /Filter /FlateDecode /Length 1699 >> stream xœÍX[oSG~?ê8B•X—xÙû%¢H´Pš Qî©*Çv.Ô—$v H¿½3çﮓ‰CÓP¡páu;‹þÔŒ R¸I+­fGí¨…²HàÇàǃQ,“ŠgyÙÍŠp¥Èz-ŒÓV£öÁ45Ó§"D‰ûçL”‡ÍŠÓ§6.à~„y6Fï„ùнB¥É€óÓE 6xȰ4f)3@H[ºä!CÄS7”{­ÖcPë§ÄÎ9/õ&GÓ)°¨¿Fê7W1ã[Àw¼ñ©“nÜRuA”"6ã mt3_hˆý£cÐ pI¥p0ÃL3Ú5/ZÈ­O74”?Þ‚:󿎆²›¨=Já 'ù£kNòÄ}É/‚_„®¼©lyD¼«¶yÛ~Užòÿ¥aíîí§f> stream xœVyXSwº>1À9BOÑÎÜs¬[]ªU{gÔÚÚ**ŠRqGd1"›„-,a [Hò%l { ‘ (ˆˆ”j«­½£Åq›vlµc;ÚZú…ûsžgN°ñ>Ͻ;“äóG~ßù}ïû~ï÷Š(‡q”H$rôöÛ²Ìþð+ ºÑ‘Ñ\Gpƒ«CͯÝLøòÄ›î§^ ì..>au¢,)9E.Ù›¶/<"2*z«4vþ‚…‹~3{Em¢ü©ÍÔLj µ•ÚFm§vPÔ*Ê› ¤VSk¨µ”µŽZOùRÿIùQïRn”;5‘ò ^¤ÆSÎ/Ü…r Š©G"¹è‹qÛÇ Š£Äí/8\vŒq¼çtÀéLŸff2?ŒÏÕ¹ÀyÈEíRç2àºÜ5´ &\µ©Ül—Àbs´d=Ða#F¼Àybsµ7̆½0mÛš>Þ©í;÷S³3ZDÖÛØ8"¶ÍÀ'lÐ-åQÀg"šG¼ˆç³q|÷@õPOVÿòÍmïËè`2ÌB:Hí‘Äìf寝Й˟_»Þ»t›À⬟õäò“¯ìrZ‹élW¾‚Nœ†Vk2³!‰IhÈhjhªn;Û²I"ñKæìzyL“iÿ‹^uí‡fÍ…±ÛÈéUªŠc«æ(Œ¶…"ëã}Ûìa(ÏVª!û §Vçæ(¥ÒÒh¡ÙÉûWÄT%6¥ðVigþ@î@ÎaUc†>ϘáÌë³ kfâÏfs*½¦4˜,ÈKçÉ$:r+KµÚºZ®¸´ÂPRÒ½·We4àÞsåÒI¹9¥‰n,[Y•X²ÊÃÌ‘¦î¯‘*[*ÓqÚl(0SeuÂ=§ Âö´àÒzÑ#øR‹¯Ûf°27ÆÓš%Q3æªÙ—¤•&·’/½x™ŽßN¯”FF®ƒ¯j9l£å*ŒY°Ýÿ˜SÛT\Î.ÞµÁ{©²ç,‡_Ðdž¼k ZÌ“¹4ø‚¤7ªUÞ•Î@SëyÆ3M»Ô gW8ZhŸÜ²~ñ§3c€»f(l/YDõ£›Å£ñK¶ñîâ-c¡ÃTjØáaERºGS•rÈQ¨ò_#E“g¡Yi€"(šb²èLœ…Ví…LBÄ<;qê5Yå C¨@­T€fI™ü* ª… +žb~êìçÔÉš0á]qýìœ Bue4²äÇÉ%ÙE9ÕP ÅÅú°}ò#Ò^œS¬¨†)ÕP¤/Ö3v 1Êb¤±õ›£Fžë»ïáò‘+-^ž»øí¶DÒÙŒñBõMþýøm´vEF©½iÁ5¬!]í»«w³ddƒ´!Ãd®«7õ„–hx³éTy+0Ãá¯óûiOµ]ýŽr]ŒwTÊNc–ÝO¸Ä ïø:‡ªZ˜Üÿbç¾j=ýÉðïp~)÷Œ¾ÛT#Ft ƒFÁwÚß¹ÂBh+j¬½ý5ÐÇ“LÓ?Ä@PÁŽÄ°”˜½ÒáÍIDz@+XQî6Öz:þì?¼hâì‡ÄÕ'(*!‰ÌìÒOf4ÆéÓ{-´Ý$Æš/lɵ£/þÈTA è“ÐÕrD e ì{úI¨SW&àâ§ôd™ÊŽ8_˜"ƒ ƒJwHÛr¬Œ)­&Y–ž™Òqæãž†š9\o[^aªíº¨›b¡cTR8ñ ÕÆëÆ öª! AQ˜S˜7‹äNv³)Z°ãëÖ1k ½'¶Q¶ÿ`S åYÇ$ÖËM¦†Ã–Öt¾N&Í›J&öñtFþN(¯T€JêŒ.yíÖÄ`6,;#8å›}ç gÕ2»/<›•ÇÀÊ/ `Û¦ «Ý¹TR¥!Áia°š»{Ôçàô•šŽ7é² B7O5‡Wf‚Ò˜¢YeiÈà[‚…¸OCX2ñûYèòÙÉž†Zë 4Îûû0Ù?¼›-Xh0ªWŒ-4Õ§vóMgK áÑÖo…mæ::yxýåtC·þ'MeÊÒÜU~¡†ž¹X}vÃ^s²u¿æ[ܨ3ŠÐñò½;b3t¤¿î?٣׫ õ\N¡`·2&±.Ýh®­3u†·o{k™ÿ+¡ß”Þ ¿ÿ'‹#‚xôd¯7^¸iÆ|³¨õ}Ö±–CàÎÔ`Æó–æÓ¿’|ñ[ôûHTf1v¢û1ûÑv`}…”β­IÆØØ$Y\lsRÛO<ëSŒ£FÑñÛX%ÄåXüŒ…KªÛQWC¿y»y3l‚·“BçŬU¾oƒ¯nnÏ›}¿½žÙ ÃHK÷ŸÚ.•^…› ‘’ß±±à]•†Ž9çà¶°?…•Cõw.ÖZ¡.ÈëTlƒ·`#øÁ’ÿTâ´2GfÏ–zøcB†•_ãð¨'kÔèdœß†×„•ÏHé:øΚ˜§Ut„*{#uê(º]Â÷.tŒi8†^ ª´{µ>¥EÐ׈^Ÿ‹ŽÖZ0ç®ø1>`ÓAQu¨¨¸¼”kë>Õ|˜'@DJÁ/>„OHÒö?¬;–4¢…Ru0õ­†KJmBj|vØÂß¿†bœðè¾€~óíÌŒŒâqÝ–kQZì îÊCyA±R­e.”œ'BȡຜµàüL6ädØ“Ñ5ü÷–zÑà bü†ä²P¢**(#,:ïÃu€Þ€¯µ !ýe|©¸XW%L™²8?{‘7mçvÏKšÄ¼Ë‰Óq>GÜï­f®¬¤¸ì¹Ê˜-”Àbþãv¢ØÝ|&„ÐužJ©S•åóìÄqä×@:LO$»ÉLò+µª°”ŒJ—§¯¼{Eg¹Sn~èʸqÎKê]ǃ«3¸º€«Eý ¹n'šendstream endobj 123 0 obj << /BitsPerComponent 8 /ColorSpace 28 0 R /Filter /FlateDecode /Height 320 /Subtype /Image /Width 480 /Length 26619 >> stream xœì½w@SÛ¾ï»Ï{÷œ{ÞÞÏ}÷î³×RšFI!„Þ{¯""*¢bl4Q¤é½÷H€ÐK€Bh—^òfÀ‚Ktƒ ÷ZkŸ|ÿafdfŽù™cŒßoŒßƒÃá‰'žxâ‰'žxâ‰'žxâ‰'žxâ‰'žxâ‰'žxâ‰'žxâ‰'žxâ‰'ž~‹êø+ìú¯}¿T‘ ß‘¯Ç¹_;{¿PÞ‚¿öüR¡;¿'ßœïxò¿‡È²¿öüRÙòø~E<¾_ÕþòÒýO¾»›oÛ”þ U»Ÿçþ‚ö‘ï¶K~—‘äA ûvþ/è÷Ãw•ÿÔhíÿ ã¾}õŸA¯3ÿ±'ÿ‚öï¶K~—‘©ÿ|<úuï×|A¿¾uZåp¼u¹oc¤€—·?ý|cyìöï¶K~—‘Rà=(òÓdûž‰ß_Z4ðrÙ€ûö™0ðrÞšûöÒYgö_»_ý¹B ŠóˆÿJÔ}üÉ}ä»í’ßedžÉáüô¿¸G¾c&~?|¹ÂýG>÷õ_â*þMûÿ—uÎK8çÕ¿œ`£~ÔÂ`?oÿøn»d®632/ûïž›ÿ}ÇLüžø.ÞøSúÖ»¡ÿ¡à`Î}·þC-G7óê§âùËo÷ó÷ѾúxÉ2²Våþ<÷ÿß_:L•ÌáÄýë¿*ÿ¬sÎŸßø/+ûø›ûÇwÛ%¿ËÈ]n%ìl·ùé÷ËÄï‡oΟÉt:}œûvù¿®3\ù·L͵¿ü%ñÝ­‰þ¡{2à?ßîãoîßm—ü.#ÌœªúÏ­;ôý2ñûáëý®47ß7Hþ‡ÞÈ»ãNšwkÞžÿË1ø}üÉý¬Ÿ?^òûŒ¡ÿyï}·Lü~ø~I7Ž}¿sÿÝú'¿[&~ï|zÿwõ÷;û߉ïwÌÄwåëôýǯÿQõ;žýÎßg|ð;fÕøùžQ±û}ËðüÚWðK%ø=ùþþÇÿük_Á/Õï½ýý¾âñýªx|uñø~M<¾_ï¯.߯‰Ç÷«âñýÕÅãû5ñø~U<¾¿ºx|¿¦ß ß·ë;ÑNâñýš~+|W&ûÈsßôM߯é·ÂwrŒÅ¢~SLï×ô[áKf±XƒßtÇãû5ýVøòÊï÷Ño…ï ‰F™ù¦oòø~M¿¾œ•µoû"ï×ô›áûÍâñýšx|·T…<ø”Ã9øç?ÿù“V‚Ç÷W×¾ðf΂_/ƒ~~œÇwG­¬l|Óî¨}á›x™ÃY]ïÓøùqß´Áî£Mîç$‹¯j_øúš‹ðä” Hüxÿ“ã<¾;hÎb1¦öÿ¼;k_øzÀ^OB°]1¦à»%&…¸úßO÷á俦¾ß‹ÅšÜÿóî,©ƒ\ÂE¿è$O¯r8çCÖVÅ)dûq^ùÝAK4kdzÿÏ»³ö¥üÒ ¯_ 7?8¾>!Ú¶ý8ïNzC¡°¿q´oïÚÿ(LXð)gé,H(ü“Ã<¾;jýû¢¾E¼þ¯‰çÿ~U<¾¿ºx|¿&߯ŠÇ÷Wï×ÄãûUñøþêâñýš~K|ß.}K§5ï×ôâ;O¡S¾!D–Ç÷kúíð]ç†P’÷ÞíÅãû5ývø®ö|i«{þÞžù®µeÆ•¼Ú]Zß}Óiœ5NÚ{\ÀùN^ûóŸÑº¢ÿ,·›Ô<¾û§• ÊÄ7D@ïï]LäkîßÕ.'µÖ¿œÇw?õMcN{ã»mÝÚÉ–¿œÇ÷W×Þí+6«]%åñݽV§§¾ÇVc{æëý‡þW@»JËã»k­‘c´Ùý?ïžùþGìîÛß]kað&Þý³¾¸øñ&o,°g¿Øsµ±´°ùÙÊÂl¯=ó=´‡yN<¾»Öv¾k¤Ò{¤ëí5•Ä/l›³1I$ŸÍQ‡h;‡tí™o´eÛ+@»JËã»kõó(í]ÿãÌ‹Åxóîƒyr#±ƒô…xËÅkœÍÙàvnQv,ä{æûlsõñ?ì*-ïîõöÍÔû ÜÓ£,ÖØûéYj+‘HžØùKsÛ¥~ÂíÜÚ±†Þ3ßÿz6· hWiy|¿I 4«þÝ?Ë=ø®æž÷•ïÛ™7Û1®tRé@IM¡ÑwîœÞ3ßß}ZßoÓ,‰ôÑ”žmhž|qù–<4BYz÷ÁÚôÄp±r`³þª«ºuç*|Ï|= ÍÚUZßOµ±¼ü-Pkl yøî‡ÝZƒ§²ßf3XX2“Õ¿ÌY¢õ3iÇïî™ïŸxíï·j}’F'}à ýƒÅhï£öOÎâ²ò›ÞU ëO`°èKœ¥îàáŽßÝ3ßÉ-í*-ï'šÜÃ̲µ7S[ÏÂú©§¦ª?:ØÚ_™‡e‡;¢ÔOn)ì!L-N(cov<ÍÞû'W'8}»œÅãû‰¸3˘;ݺ•÷FÓÛå÷sØ#,Æäæx »«£[ÚÔNj¥6á˺€úš4ÏY¥W·ÖWõõŽÒ›ÆFÚs;î™oãÿ çÜý·ÝmçÂãû‰¸3ˆvèZ›¤Ñ&7æ9J?e«pyÆ:¹ñ:…«Hklj “Å“@Ãˤ¼¦–U‘†¨=,;¾ócÃÕžù¢ý%±«´<¾Ÿj–DžÚÖñøþÍ \qQrýX&i}}†=½B#µÔö,mFæŒÓЇ(%]o–'ÉL ]/×Ûíd‘:É, Àw ’ÉgoìSùýêŸóúO»JËãû3mƒ°Ê&O®5ó*Pí2×Ã] øxKw#‰Éx5˜W‚ëf°' {ÈŒ± öÂ[‘4ǵ¦ 5ƒ¬n2k ¶‚>99À 43: …;Ùæ{æ+¼$Èì*-ïNZ™ãz°“£¬qòê$­ïõÜ+À½¡s«åuÀÝ¡”Ò*묶ARaXu¥¥“Ø@x3;?¿º>€k “Vkš¯ ¿¢0©•µ#Ë 3Kksíu]mÄ,¬½·¿ÿ®á¤û§ÚOn­Ÿ†–|r˜ÇwÍö ÷³9kTn%ûð|ÊIƒ„òôÆú,{fžDéªiI¯î/cG¿LN)&;Z&ú‰tÊx>¾¦ªù ‡Ä¤÷¶½æ,t”“Gï|áyR+‘ˆÛ©sïöóOÁÎŒOm­Ÿ3šú¤”Ç÷sm°}«¤ÑQå'&‹ÖDœ& jeö¤GLgà±Ñƒ.#$üyÜ |sKMWc;y°¼:;"¯dl•ÙCèÀ ´PèÃøÞ nýÔR”˜\?¾ƒo½7¾Ç>å,„E}<¼µ~Nä5Gÿ“‚ý›â»±¸°çyÕßï:w, ec´Û2=3Ì¢ÖS†¦¸Çû_wHöà¶ÇKÊlO©«kpZÇãèŠþÖ6lSMÕí€{u-íOã#3¯ß{œöè‰Çí' PÛ/5„‡>M¬£²?3²öÆ·ßFùQå!ÞYŒÍ©d³ŸûxzG%Ö7¦´åf„†Æ…{øGF•WwÅ?|ás#(éÒíGW/<ÏjåŽ$¾iMÏŽ/Â3‡>›á°×ú¹óìÿù§ÿ£üI¬ÐÖú9^@|6aëÈooýœù!k”ý·Ó}¢Ýñ§2È»®Ö¦Hì»»¡&¥k}‚LÉÌÅÖÐÈŒž0ç‡O½Ë’ïøe‡·•¼|æþ,ȧ°65"ÓïnXdÐ#ÿ°¢Øj\{ê“x_çø›gï8ˆÎžåp&ªŠ°Y…$Öèg½cß²~ÎgvøÖú978£O:>~Kå÷‹G_ÓîøN2ÿuç—õÅ¥þY_/˯.-èËLΊË&4†·v1˜¸ë÷=¯ú¦<óóËŒô INŒ M¼õ$*$3Ö%øŽ›»—¯_xAidZdNR\Ò‹;þ±vÎ.‡MÝ£rë_-®¿®-ÈŠ£2qùÝQ[ëç0 K¯>þ-ñ]¦2Y{ `Û%_Ö—ø®’è“ëŸýó–4@.J/¨+ÍËÀ¦;f=Íj­'³†AžOSî»yÖýþˇ‘~]®ßzrÎÍÅ徿‹ë±kNž—C|"¢¯:Z^ñ4äÙ£“Æön9Ñ/_ÖQ jòª+›&~aûû%m®ŸÃ‰”‘)ûäðo‰/ga‚ôf¯ó;vÇwŽ6ö…úyê}ÏÔúÚÚæ?ÜŽŠÎ4ƒA.Ïhn&°)7|îå7¥3(˯’âCNߊŽHŒõóL y|óÉm·GϼnŸ?ïp쪫ŸGx\€w`xxí«¥ñz«®7χ§b_fÔ·â[ÇGéŸO0äÍ/ûšvi_-LMï<ó‹ÍÜŒ¤Zg ÛHÌÑ!z[7kŒ¼Î#w´TÔZ;«âo=áw§†ØT´£ãYžŽºŽW"ãK³<Šs½Ï^wŽs:kérëjàyï{QÁwn_wº‘¾8ÛìëpÎé¼£ÏíèôÀr"1—º-hë£x|¿¦oõÞÎÎlšê³dÚui}¼»ª‹0@(«H­eÑ—æ("a°kfy2ý¾¥õ‘cΩÅ1•-Ù.WíìÎ^¾ø,7îVzôÑãGl/åÝq¹qÞÊÎîÜÙ›ÜÏÞ±=såzp 9ãÊÇÓN>n^7b"S°¸ŠVZÇäg¦ÑÞùèiÑv—ô•ï {rökUý*y¨m9³ƒ5å#k“MéMí´&|ÌËàœìŠRæâD1®ŸEÞØXïwu°·9r3;%ªYårÎÌÜRë¤{ðà»áOŽ35<|78øæIkCGMS}“‡fj†'¼#ÂãýîÓ?zò‚›Óñ‹1í/^ä¤uE'~Y{æÿ£ß_?î*í?(ß·äQÖ†Ó·4;Ââº*3t\'~”6C§¶äášrŠ3^ܼìÛAYf÷и½‘„[Çž=ï–Ÿü8ôÅó„ŽGŽØ\v¹õ4ê΋"ïKÖêæÞy÷\\l5•Ìí%$ÌlôLÔ•••/ÇŽxæuFÏÖÜDÕèLxpvÞØ‡ë¤°h?|ÜûøŽóWNÀ®ÒþƒòÝŒEß9ÜiK3ôþÁ16g‚‰'¶ Чú[Ê"ÛÈ”â¸`ßë!Ñ¥Œ7‹³Ë+Ô‘NßËÇí=Ÿ×dE…EÞóŽõ¹i«k}ûŠÇÓ—÷Ÿ>:¡'§¬aþ‘ÏQ-cu C%)-Y5”¼ÚèIÀ‹¼Ø›n'-ôN¹zæõ·PðD 7XçSí}~Êk€ïëÛUÚP¾Üp6æ"’7Å.m%´N°û‡¨-µm³uøÌö‰×i±.7Ý#ʇ7ý´ù^|Jh`–‡md^[áKß;7œÝÎ_³5¿xÇÉìôí NVúÚÚ#g×xW=´¶´ª‚´²‚¤:ZŽÔr¼“r7ÀÃÆÉ\ÇüÖ•w[«ûšC ñX:ƒ$»Àf,Å{æ«ë±úWÎCÕ]¥ýå»>9È îäïrãlÞ®¬sHÃJkÏx ­½¢w¸§½­œPœG­ôytîì•ëî„••·‡´‚À;>Iñµ=EqqON]t=fjjdfæhdlétÛÑÑQWÅôÄùk÷ï:`ltä5Uµ¤åe¡`¥}áñ³X_+K-9ç³.‰ØÆÎÌÌg]“S«ÜÞ´ñ1Ê‡ŽØ=óùñÊþqWiÿAùrÖçgv ð_Ÿ¤Ñ†I4ò2wºHûà펎-ñ@GUcuLRv¥ÿÕG!÷ÂRc«*ˆ4ÊÌtÞiG››—Ü ƒ²kãîx_ôqRÞÀÌRÕä’½áÑ'­ ´Õ/8^=yþ„…‰–©†š–Eèjë±;ìm„A*z¤4‹°ØBüæUlF |ˆÚ»ý¼Rô,c—sÌþQù~A3#,–Οï¢6 3éÝŒ‰¡î¦ÆÖ‚¼ˆœÌ”$¯‡÷‚žÆ–åæ7wWß¶46²¹æåxóœŽËEÛãÞ7œîYHª¨éa,œŽš˜2ÖRS14=uÆíŒ¶­‹¡µÝ 5Ý«ÖFzªÊ†–rúGO[Þ¸ªƒ”×Ô´Ïéh­j%¤Wc³‹§¸O{ŒÅùÐQÇ‹ŸüšöÆw‚Œë¨éŠnGQnÙ+2©¾v° ›Y’’Д™‘’ûÐÛåüý+Ïcƒ=}="Ã/j£eÐ2öŽú RhC  u+IT,­ŠDÂ0*Š(Mu ¬~å’š’:JZ)$ªª‚Q–S7Ó•·q´µ¿æ(C*†a‹ð-BnÕNg‰Â!ÎâÅO~M_ã»±8ÿá.®-pÇ–ÇêˆíqTÖ(¹¾³.¥ŽI Žu–ÕZi”êj:öá£ó..÷ÓB<“žÞ¾p÷Òi$ !el*…€Ãä´u©Ë"Ð °8F%'¡@Ë+"`ÒRCS#e”$Œ€ÃdTÐH5µ£Ö:j*––º&hRöX|}+¶£°&*®°ƒ´¹îÿÊ̶ù¼øÉ¯é öÕìÔÜÆÆ$}ˆò®~K$½å¼¦àëš[¨“ôÖ–âÒ6F#‹«ÊÊî æ‘˜­­ýe¾>œŸ<¸u×ÇÅáÄ{¡|R…ƒÀàMM%´¨¨ ®UWÔ•‘E©Š€QòÒ2Z²H4RT@ —TÃÈkêëœ6“’WÕÓÑ2R„+X{†WÖµg6¥âr;ƒŸMæÅO~M;óeÓIýo'i|³Z;Ý߃íâüÔ[C¢…z¢º®$‡H­léÀu6¿,xY:ÜLhJxZäsíQj@Ôq;“3§Ž*kÊÊØ:èH€ÁpZE.# …Ȉëj(ËIaDá²2rŠšºp”„ FÊhª*a”tÇØè˜Š½ã3}«s^K‡‰õ uÅmÉ-ØÞÏxñ“_ÓŽ|Wû(mD\ËÀ» ÷3”¾¾ü¼üò~ Û\OÐufSIMwSñų˜Pÿ;™ÕÝeÉ/.žsõw¾vÁ×=ÊÛÆêˆýEWsumã£' •$%« …Ò’“@ óó ‹B!rHuIŒ4LR ,e …‰‰H(*cÄ"ÒV95-”‰É9M]ƒÃ"²#B¢ j‰eím£ŸÇ§ìOüäôÊ—Š'ë:ëúF‡Þ­`P‚‹*ópk”±rwk”ijMTQKYÀc×·GQ•¹IYO|Î]¸xåÞ‹(¯Ì¼ 7O]¸ãcjvô깓fê2€Il««m£‹‘’‡e¡®eèla„€#ÐÚšŠ r’ÒH-3kËc:òjpÌQuE”ŒÕåk7N[8º''à 2{¨¯çv\‚c_â'¿¤D¾kveGsW9¥=µaruz¤‹1RèVIÛ ³¨¸~ög†JŠvyøüñ½—®ùGúV¥_q¾|ÊáR@TrÚmÛ£v‡Ú9:éeh¤.§¡¡jqÜÐHÇPE^B¨¡ù%”5 4P)§$‹‘‘EjéxØ:ZèëéXXÛ7F™¶Ö¿hvú乫>ùEyÅm£_ØQiÏ|"|¹ÚUÚ_Êwyé︓ÌNúœï<‰:¹üS3©•4Žoîg VaIÕ¡‰1/8³=¥ø>ub¸²´&'ÌÇçÊ¥v篞»÷2—tICÛDGÇàˆã]ŸS§´Òª*F'.ÝÖ57Ei«˜[YêQ•EH@Äòó‹! T‘’8DÆTGFR¡­©®`¥om¯¦–‘5³³Ô³ÒS54–’³0µ:žÿ¬±etcón¯ŸŒùÿg{ЮÒþ2¾lÚÀž#÷WŸñ]¥lFé­Ì3™ B[ÿpf7¾*®´®"øYm}®1½”6ZZú8,(É?ð–­¾ýa]Çó÷R ÓâîÛicââš:gÌŒõ¢ q(H.¦¦§„!ÄÔÐRÒÚVŽjÒ‚ >>¾|‚’ aþ!JÚ( * –G‚Š‚À ]u \Rƒ†IÊHëZ^òt÷Žn¢wk}²ÿÓ)Æ{æûÇîݧýe| ul¯û«Ïø.¾ŸI½Ð7\[GmÈMÃÊS㪉ìòŠü—éxüçï…?v9ï`kráÌÕë÷ã²2ë}#.YËŠCÄeUNÈKCI ƒ„D„Å%eá0L %‰¡ä¬´ôá ¨à!Aa0&tˆO&!«*$ƒ”‚‹KK@$$A"òòh-s5´%Bƒ$LNº¥ø'c‹£ÉÀÝšz7•é½öÌ÷/_8ù™~ßÍÅa¾6 ÷ýõ_®5µå-²)U Ää|\S9>ðqHT[]RyJbLMyÜã'σ‹¼\Î]Pµ´óðzQÜC‰>¢GˆC *ê°Ð!a1¨$TMZ,*‰A¡’pcEcrHÆÏÇi… þ ­ Aë€p”ˆ©ŠV“•†IJj˜:z>‹ŒMˆ¾ÓÍž^¤±XƒÛ£D÷Þ¿ñO·õ7æIäï²ãƒ¾»zÿ3¾sÅuø‚±ýL¡¥4#³¶1>->äE´§‡åq¯ˆðs¦¦v®iÎ2$*((§¡+‡‚‚a" Q!AÍ+ÈÈië+``Â@8$£$ájÇí=ÝM 5¤¤•OÚÞ³ÐÕÓ5P4WU7±õ.o!¶RLÖèŽeî¿c|ÝÇ¥K>ha˜þÓVS°ö†=ó¡QØÆwª„öf¹9)1.ª·¯µ5Å#33%>ÎÃß#6:ð†‹ëµgÑ.–&–gïØÛ¿ê|ÂTKÙÒ^EßVÏÞÞAM -.…R•L"Á¢¢¨´,%-*,‡€a %”„¤Ž¼Œ$©j¨ƒ†DE$‘(ŸÊ'aTÍ®)©©(ëÂÅäô“Õå¥zFÊRZG®VF¥µÒ~"Q&w¬‘þ[Å×­Lv½ZÙ\ømêÓù~ËMõMÕLàÍ*«¡•:ô¡qþÈ÷-wiŒÖú|lx1¶¡â¥ƒýµà‡ïÜr»óÂÓÆÁî¨ãóüð'ÍÔ´ O_¾tß-Ú[Õ\]£$QWÐÖÀ(ƒÁ"¢@Í ‹@E "b’0°àËHTL…–ƒÃDABU1Áƒ?E"ƒ€ƒ%‘B‚¢ ±Ã¦zZòy-%ƒ3þ1NÆrRz*zh”œóíüŠ´W_Z½ÿ¿S|ݓ؀kÚ©MŸ(Î+Ä6¬.MÔUFe¦t˜lò‘ï*`˜Ò+»‰…Q!ר8u¾éüÜ=ÐýŒ¹ý9Û+W›ÓÔU³R6;qÞ;þþam˜¬"…AŠi`à`¸„˜°( ,$†Fm®ð!!D ‡E12H5E¨„¤¨€°LJˆÿÀBbpMy-Y˜0 «*()!d 4õmŽ^¼pMOEAQƒ’Õòݘd°º{úSBƒÎ»†:v9nvêÆ½Ç.ÛÛ_:ªav★¯¦®¾º®ñ)•£¶®î÷oê(©I(  DËÂ…„ù%!Â’rh8Bð\R x>00&¯–S5TDCÁ‚‚"($èà_ùQúö —ÎXéÃÄ%„ Z:šÊÒ ¨”–Õ·£nGe•åUQ rjzF^)íõ¬/æùw_÷öíúêµÒÆ4irá}ŠO>Y/èè"VÿAaˆ¨¸ ˆ°¨°‘‘•U•WF¢ ¨)ƒˆŠˆŠÃ¥åŒådD 0˜²4L„ÿG~°¬¦µË³Æj²0P~ÕÕA¢q¨¢™Ëy={EYc‡“–-c{碆ÆwQÏ+“$öÏ&šï•ïrÕo$¾nƒM!6RÈ?ç¼ÛAs3>tƒM%Ïo{–«’2ªÛ~n8s' ×ÛHãt&®%:7®©çC߯wm²¯·‘ÞôÂÑÑW·ÇAnÞÞîn×êdv\GMÅÀìôe+k;‹#ÖfÒ(0TŒï€ð!þƒ€U%Á %Å •ud!âb0 qqm´¦!’#¥ÅdU•ÒÑ4Ñ5ÕP‚Ê驾u'ØÓ攵ª¼º™ÅE+]Œ´Ž19îâèähnçpëä}_;3;G—ì*Ú»…£×Éc,ÆÏû½òÝøi÷‰¿'ßùq| ùù–^€÷32·™b‡'~ìmß 1ˆ•ùS«o¦ç¦æ>pŸøŽû&—Èc#Õ 5­”«Xlã;=ÜK¨ìj |ô䆉½³«·«s`˜ûegïKŒŒ”MLŒ+¢M¬ŒÎ^0Ô³;rü¤\LZL„ïÇ<Ä’”„#Ô4MMlÕµŒÑrhIiY%5 )1iŒ’²4"&*†±9kfyØÜðÒ¹ÓŠêÖö¶C#"n;ÛhØ;Z8¹ØË äÕ¡hÇ#·\®_¹|,<.&-øŠ™J@~Oç»Gv¹Ÿ»Œû§UÚžë犓ԅÏÖ÷>øç?ÿyæÝë6í;ß·ïoýÆÄ£¡‹²C?7>t€[AO3hm]”‘™µÍ¯¯½¥²X£Ô2ƒÑÜKîè;µÔÏÔ…õåÕYf;{áíÛmc’ÛøN6¥GEF>¸wÎÁðô1{óð;÷|î]¹qÒñ¨½….canwÊ\^ÃØ­}Äì°³æÑãêÒ(èÀVúëü"Â"0´±¢¹®’¤æacmuY UiuE8JAÃ@Â"P¨š“ñ9Ý3KS{m+‹€ϸX?—ÓÖFÇÏ»8Úk©)¨JÊ9ç|ÑýÎE·guYíô×+—_̪­~g^mîQHú…ýþ—Ïû'—A_·k¿ù.’¨¤­guÔÙ6ŒoÝ©ü®‡¶¦ÉÏ R;[iÃÊg†Lèf²˜ä7ì1|KS ¶‡[°W'©ä©7SK@mßÞÁdRX¤ÖÁmÏî6¾cþQ£}üM1âÚjÇôTÕM ÌλixØÊR&*®©£¥, † 0’´¢Œ‚ŒJMC]D€ÿàÁðøáÇ„eeőЃÂ"`R,,ǨÊIaHˆÿ|Paˆ¦¥‰ÆØàˆ­‘Š¢Ñù[Ɔ¶—ü®VÔ<âqÓ䨮‚¡ŠÑU»3gܺ}÷e-“6~üä¥{—b‹R ÞÍ ¢ Q6Å{Ï|_mé“c}_·kŸùr—wßPZ£0™½D•øj法kÞ.,nBß`wURÆÛ€RÛ¿¸ ¸7 ©»åõ,F©ÉÉ+Io㎑°‡ûiÝÀ#3;È¢4ÒYdBMrZÕÇ©ù®w†>»}ËÝÚ\_©`©k£h"¡*£¡¤k ¯e* 80(E- .+¯…–”€Aáhm- 94. x³@þ+DBJtàG~Ð!" …"’Êr% Lð€¡i`cc¡ n¢¡o©fé£uøüm‡[7lu-žxž½uXKÝÊóqˆëƒçQ/3óˆ4Vq¥ëÝkwo=ŽmÄ¿_µtyþçÖžôO– HüxÿÝë–¶ÖÏù_û»~wyF•Ës³¥é]ZŸ%1FÈ_îI~;I"q3ÜF–Eš$Œ75¥W–᫹CSݸÖ6ìëÍJÒJÇg‡§Uµìеғîô¨›ž’©A©ÊA¤edUut0âI˜˜º*.†BjªIˆƒ…@Rm5¤¸‚$* ,pPðÀ_ðó%…Dð ÿÓBÉÊ@Y°.QU!$ üâ*Çôì,Œõl´4Œµ.Ꙝyàxïʱ3öŽö!ñ.ú6W¯Oôs‹~^RZJž¤2º^ž }–Nhêc~q¸dký¡]mº©ú'»b8LÁÚ­×íÇÿvù]_Zá¬-í2HckyUnÙ\èÞm›‹±úÅÍ˧†Gô…%à`üÔ‚¯£6u–ã K*qíÜšl¬‘Hl`Õ÷0‹QÙKÉŠ|~¿´õó­ü6V;±½­nfŒK)a4Qòp„ŒºŠ,ZA¥$TDC$¡H-q(LXBB£ªdl¬“‰ Cò{ðG(ßAÀ³=$£†”ÄHPÒ(Y- ÅFcTÐPµ‡Ïß»vÁÄŒ‰Š®“¡µ£³™Ó%­#æ—übkroß ¼ãýÀ·[˜VX˜’ò4³e¤¿¤¨«§®‰ÎÜaa†wÚ—þÉuàž;…l½n?þ7ù®è4‰Þ·ËEÍç)4®C´Á¦u¶µÎ|˜Kµ<ÞN£|a÷¾ÅÚ‚‚þuΕ61QI$6—ãÚòrJ°UµEÜúyª‚PG›ØšöÓì$1×ÙÛ;|d'ûyì¡Ý‘‹×Ôd… ²JêR2âhI UP’â`´PËŠŠK+*AÀ‚?ðÿøƒ ¬¬k„ ˆ€ø‹OTäà|Š£À0)4\AÝBU)8Åâ#ÍÀ>×ÎW–•“CYÚ]5?frý–»…ŠññЄÈX¿‚ä ç•…éxBñ¹ñ†_4.)%Á7¡¢ªi¬6¹03¿så¾ôO>8¾>!Ú¶õºýøßäËf0Ymt³ïçÓñ¾00¸¶ÂÍPǪZ‡)Ëœ…¾ñQòÊ<©¦…<ö…ÍGpM„ ¨®®lLw·vµ4ápeùÍ•¸~îxË[ÒàHÿ¦»»²ÂYgWÆDù>Êûèlãûêî3 ý³¡'ÐrJr–*¦¸0T${T_XTÒhq4RAÍJYILXàÐA *!§†ò ‰ð @„¤¡"ü0ˆ40Å”N[è;ÚiW•’•UPÖÔ7µ8|õl`LahHŽóqS yc[+s߀8ç[f†.Á X\7›S×YMî&Œ²º þ!!Øö‚;YÅqìÕ•Ù>ÆçK3lj_ú'—΂„Âß½n×ßâ»BªÁõWѨøŠOíµå/†lin˜Eo¬frc³æ»f'FĦ!êç5ôÆÊÊzC‘ˆßŠ)š Qz ÒŠë;h[¡?ë³?±çßßµÀÝÝ?ø18eßñ»çôå”̵¡P)UU=]Yye °8BYÛÂR]QFIBË(!ÐH$ ñ ‰ŠŠÉKC…ÿrPPDGÊÁ$Åa²Æ–&ʲÊ9eyEŒ¢$ %ƒÔV³°³s¸àwÊÇÏ?Ù㼉…Œª•©ý¥Ç/Ý|ÝO]|T‘PU›Y˜˜V9;ÓÏkNòññ­'‡4Ô38ýŸwõp~ÝþÉÙÖâÌB±™XGy׳6?· ØÉã#Ô± ÎÛ¹¹5ÎÒìâÏÌ2ŸZNb°9«-,Zç8¾³¹ŸËpiv{&¹•îDS+‘¸e/O÷w_w“ʳ ƒ¥äþ)î™ú©Ü¶amnîíÆDYYlp@hdÞÇÊd_bŽ…¦¹º&‚PÖA)¡Ä¤Pp­¦cfl€FˆŠ€Å¤E¡¤4 ããçã< ù~ Á  Ea`ˆŒ¾¾µ¥®Š4à!d1ÒŠòŠJÚª)Ãëîžg\ý}¼.8Xë?zÎÚ-496æáÝ„tlPTYQPvuzFÅ0`‚0èMÍÞ½cr»JÄ:p¬‘þÞ¨_qþï[ ¹ŸXÍ ãpƒï „5ÒÐ0ye¥¿¿¾µâõ yx˜Ä¦|K³>Rø2‹­™ZÁ§¥ÄR£ÃØbîÀwŒv[ÀÖ,`; vÕU·rkõY*±[?ÞÏ¢7¤Èئ¹-ûŒ¶ ÔÒÃÃäé~<6,ÀËÓ+{'ÿˆ3–l ƒRUV‹:$¯) ‰H I)j*C%EŠJ‰ B `8ZR€ïÇ¿òÿõ¯‹Š 8 rH*,$ ó Jˆ‰£õ•eeÅÀââ0.o«f ¥ij£¨ãæåk{ëª_è£óV6gŽ:Øœ¸y³ _XW[“˜y/(Ð7ÄÏ=£—Ní*k.)jM‹Ë$„¤T—×âZÇqº§¾¹üõNôÞøFr8±{H¾ß•÷õèr?¥XYÒ18øn‘·-"£ì·äòܼÄ'eƒ¬‘–bihM5)… ™Ñ;û_sË-wŒö}” WSÜ}ü&f^³WgH¤7$rBHJs~×8¹ ÛÛÅç.FIÚZY»6%ctˆTx庋íöÙÏÔ0kc# 510¿HK^‰–>$C!1z†Òb¡C¢ aa¨¸¤‰€ðñ “Ì$ô¿Û>dkP6çUtIšoDVls¨e‡XšùarjjX~CK^RjÐó ¨Zq³ÝìŸëûØ Ï°X›+nÎÞQ_]IJz,® [7H/¡R:ç&€ß#M-°¬‘>b~MF”—“Ûóœ¼5ÝG¾Ë]igÌí5Q aQŒ†4LDH\L&%ŽB+¡E,ù@B0aJ & ¸½"‡D "ÂüüÂ0qe°Œ8 ,#+AÀ”ôäÐâbpQŒ8RM]÷°whdä}'ÇÓWê2ÝŸ?ÐP˜|óÁÙ›—£Óà M%qUÍ%¥­D|Dá‰×=¿§%e,bCõÐ £+#£xxÓ5\›Ÿ_Ûà>ÙôÖŒØß\ñÿ!¾©]%ÿ„ïê¶¼¦1ÖG¨í™á,°§WI$ ÔMi™`M¿]ŸeÏ®¯PÇ™½cS„ҀВ„¨‘>&ã³XÎj/ž˜ÔÙð$,'µ•ØÖÌ=¾19LëÞ¶AÉ…2Åý.· S r‚Ãcbc«Û›F™½‘© ñíM¯(]mCƒ$juÖれ'QeO¦çt~¨ã·ñmŒ°37²²CC¡""ê†ê2B| AAQIqu`D ñóýx@@‚CáH \PXP0šÁ¢ü 1( .).–’P•‚Ã!Òª*H´¦œª…‡¹Ú}ßа¸„'WoÝ{\Öt?>),9;Âýöƒ3Þ‹ Êbƒ=¢ ¢ó;;²zÙÙ¹ÁYu© z#a°ÖÓ‹o¢q‡É`ˆ´Êá.*½‚=·¿Æ{H»ïÛîʼ¢&|>£ŽØ2Ð3\Ú3@~»±H¬M~–RØPÓH¬ïfs'ÇÛGG;H]Å×’°yéÔöׯ™Ÿ™Ò³m¤®„œ†Œ¨”à¨Ô¦äÚXóÛø6…\4–QÓ@ŠŠÀÒmIQ!a!ˆ@MCEZDè?ßÁC" „4DƒFIn-*ŠƒZHR‘PR1×µ´ÒS1WSÖÒѵ¹bsËí–ÃiÏЀ°ÂäÔ™ÏBðuws⊋ñ£.úGŤ4Uç>ñ¹SžQLêÅ&Qrr›ê;ÚFzû7 ™D#r«æÍ¶åÍú4wÝÒ´wûŠMçjWI·ó§áбøºz±ž†k#vâæ9Ó´šä¤¨üÖüÔò&úfÝ:Í` ÒÈ• ñ/Ãñc,:F^øy¿ê™É"§×Ô·Õµ‹sóŸ¦Y”¾×¯ö›²Ìîì#¿ßK—$?8E¢÷ Å8¹ûû߯­Â–¿H‹ˆIÁÑñC@%NKÁæ<ªˆx–ãky=(ôä‰|—Z.ÚÚhhI€!âPY€ Ä hi˜¤ÀA~¾C|`(RU!&­§«£`¤‚†¡äàâ"‡ )ÉÉÂeЧ½OÙ;šªë8h]v°5qIôºãwÆåø£¢ìˆª2¿ëbüJŠÊ+‡«*Âc¼¯ÝòmJÀfzf6ß™³l2md|tz°3ú[ŒM?î“Í‚?מùzÿáŸÿЮÒ~Âw 6§ Û=>XYÚŠÏ)j#ú^OöàKCò±‰E 9…D ‹òfjv‚XŠÃiC£$Àvf±p¸1eòã¸ÈÆüÔìúæ@ÒbØÐÍ^Æå>ÉÅõ–1Ç s’“)¬îîrlS_ïò›iîãͽgM®/²û;êë¢î_»óÐ3³=; ÔózÔílöË–²:æHiszVš¯«ï퀨›ç“#òÞ{YÛ⯲jÊ@äà0LJ TÆbp0 .&ŒFƒ B"`0L£… Á¤tul ¤ÀDAŒD*¢PjÊ2VN·íŒ ÕŽy½p÷¿pÃÃÕû˜™Wp’Ï¿;¹YIâ祦ÇT%޵¶”½xñøaLBAT^vH"¡‰üŽ/÷Y¥Ïní,I)íÙlz8‹4&“ö…¾;ηô_Åî~JÁ6¾Ë?v¶eÔüÔ3ÒËjŒËI)Š.mÈJI, ‹©ˆM, Ëm¬ihï&õTÖE=z›ÑBë©&v4 ’bSˆý=u8Ê(y«f¶÷ôLlp6†ŠÂ« qEÍì7µOœoFª{J^ÖÔÓèÃ%¥…ø&"ƒA]ànoN&S&9ƒ•¸ŠøÒÄkªzúWo‡ž½åa÷ =-7ëaÐÈèï§UG=}xÅß7Øÿ¾í1ßÐÜ÷6Ú¶ñì]E)!A°ÀA˜0äÀ¡CüÂRBP)qA)i)I¸´Cˆ…A¢À§R*²0‰”EÁÑjJŠzjpJùâ{—mµ_s¾îÿ$Äó‚É©£ö×Rn?¿ž×H¬&D”e%æ'ÅÔP¦g_áâ’K’ñMe$ÒûÊkarb¸ ýíÔÁ×ï¯qnrbní‹óh÷Ì÷Ð.}_®>ò}K¢w-rF‡ºÓëJ^ľÌÉJNO ÉÎ|YY’œñ²¤(“Ø_^ÚÙz÷òõ›7‹ªüR’ËI”,l@j®¢–ØNÞò{–J‰Ä¦®ÎzgZ„¿Gd|nÿ5Íùæuߊ¨N\DigvêõhbuycN?‹1xþKÍ“o¢ª°1ž×-”ô•Oœ¼âuþÔ©Gq}u…OV”µ¶ ®0ÒëŽËo¿kævŽ×»Þ_öG¾‹!þÖ¨ Ÿ¿ ¿°0ÿÁ€ù$   .Æh@‘PXÍhY9´¢‚ž±¶–‰©Ý 9Y i¹—œ>fjyúŽ×]ÿG7¬ Ì®Þ9üìùÓÜäξ©Æ¾òêüö¬ÚòÎfîÝ3™)eÕ ¯¦f¦ßïØ½¼¸…t¹o| µ­”mLS(_šÈ³÷ùe–mŸÿ~IùÎwšñÀO-Rð„X×è˜Ðà–̼֘„˜Ž8„« áZÌêTbç倛7|rCâýãe•Ñ÷½C+ñÄÚ­_œ®!‰-+œeÂÓçgïß) ½xòì¶Wd#®èerSeý ›—ŠmÀ7·LõÐàèäh:¶Ô÷ø%5uÅ“'Ü=Ï\‹é®$âÒýS’)mÔ2..Áë–·w„ëïð”¾÷—ý‘ïLìyII L ‚"ࢇDD!¢|¢’h„¸2.£ ‚‰‰ ‹B¾šŠÚRêÒjFZ6gî\ºª©‚Q4¿áuNGÝÀÖénL|@DðYóÓWëk¢‚‹HË…±…M„ÁQz©o†³ÖYšCø›6¸µu÷gsè,ÖÈFöÌ÷Ù7íï<%;¨€eDhŧø¥§¤v5çÄæ§çUÔµ×U‘øÊš".¾µâùeÿ3^¾7.ß î)ÈΈKNgPp[ñ\Wsgsÿgïåy뺫‡_PøCŸ‚ªªñÕ5~ÏšúØÓõ­Äö–òüæ†AêêüàX_7Q^œêìâ­¯¨m sÃý®£Óy¿ü葆ÎödÀè§”I~n>úôivÖÀûËþÈ÷Í3¿#râH˜$ÐΊIÉ)ÂÄà‚¢¨X%%.$!!+ƒT’E d¡’bâP%SŒ æðI+«€»§]ôŒtŽ8Æ_±×1³=xßí´óí(\e}4¾Škúö2Æ&s¼–0Ìí£Yy]×84´Í3ä~o-jºÙ ´Ý¢zó•­CöÌ÷¿žÍ-õm+¿]M I9+"­©ðñóäÈšr\VxBqkÓ ¹©GìÅvuæç†? )Kr¿ïl­o¤sôܵ¸üÂçÀ躾á¾w­ÂZoog ×6î¹árꬳçY÷Àp¯ Þž …‰y1I¸Êâ‰P[߀Ï(¡³ú——Ç[pÔV\ùKgO7m YCí»Ïïzö´+¿[œßJœ Ñ»: [ʱ•#=Ü~ÍšÐÐ{¹EÅM%Us¸Í¾"TÇ>½d¦¡>$ ‘S·ÐVÓÖ‘‡JI¡%‘Ò""B`¸º™á‘Ãæ²:†Šg,lÌOÙÙj)©ZŸõ»xí‘Ç“ˆÈ+ž^÷oÅUÕV5IÄþî½¢š¹µ¥7›Á'¯½êÌ)HíæunòíÿXŽÞR˜ïƒ_ß݃Ú`÷Ñ&¿`a홯瑡ùo˜ß½ØUF£W“»q©AÏ%×_ãˆÄ¶úeJOóÔJcúKŸ[~¡¥ùÕ]Õ×­ëZ˜ÞŠêÈñÔû>þsïn®8»8>4èéÃg½ïºÆ&?n­" sóëKK“ŠÒ«3³°…í­]̱FÚ(¾¬…Ø00½Aó1Ö62<–ÔTH誫™nh_aiqZIßH#9Â*%äf%4‡å´~\3`{üdº³çi%$\KbÌt4-Œ´Ue% åä¥Ä!"RRj*fÖ¦z Ì‘3^¦&'Ž8i+«h+Ú÷ñòL/ÎÀ»ººû……5wÔÕŽ¿^d“™$Àõ. ³4ëoXݓ˜^\k]&vÓÝ™glßOa‰´™rG­®|i&ížùþé›Ú_ VéèX›KˆöHËLd”·”=ðÈ"vf—461+ZŸ¼æ¨Œ–AÉ t%1HeÛ‹Þ×o^?}äÁ£›çnœÑ¹ètëFRy…Öpêê¥ó³«bKˆDüm¼ŸB Ô·âßlÇÉ͸n ^^fvoß%6{‘ó˵g¾¦¦¦&è?˜í*í6¾+´Á¤ˆ;¾ááIw¸ØY;Ä'Þð<©"#/Ž2:æÖ‘V:DŠu>m‚QÐPQ¸~+¹"7öÕÔ\£žXÿ¾kS¤2¹+ŸˆÏ¿ïîï^HzM ¡ðÍÜOý úÔPK#±¢ŸÉ"E¢§¶*¿‰Ð»²‘\›þàÎ-7‡{ ¥½ÕÑyqÉ­óœ·ÃµÄÖW쥉Á±Áøäò<²Çá>xóýïl›?Ⱥ @ A ’J(qS}}+CMRJ®{òîC35Y Hª&«­© £iéc}óöQËë/z¤Þ¶¿ùôšó“àä 6èú%{SÇ”ìÔ¼ö&J7…ÚÜ•_×Fl§²93Ý@#²µ0ÏV6—)cãÔ#nö¦oÛß*¹«dÛí«|éƒ[¹-ã…1n§lí.:œ¼xÜ@MM‚Ô¸|ÿ~]c}fyTEe“·ýQ5´RÁ&Ø­€PO`÷Q ]8涉5\Ûr¼»¬±1åÄ]/ïøÔî֢ؤòœ¾‰Å7#Ì!<ðyw𷻦¸ªðºÓB/>xtûj`¥+¥ª:-÷5÷DܹJƒ œÅvlµ°´º86ñÉ bŃn›}õ榖:¡„BÁA’æÇŽß>f¬­##RÐ<|5ᨲ²¡¾´¢Š’†¦………¹Ûu÷{×Íò]h¬~~;(ÈóA')õÎa-IyuyÍcœô$¥Å@ŠN¾EÄ––ð˜°û9y÷Ž[i Ä`rö®±iÅý¯/¡±˜ÈÙò V¦¸ÕÖÔð¶’\–îuñây·KQ……¹÷Ÿ$¦F•§×&›Ê»š:HS”ñ¾J2e|s#±¹ì{îïßttòw)/J*íÍAÇI&k¸ƒ¹LïÃÓ†{y!OîEÓwˆ]í}vE£¤¤!ƒÊʺºyÉ)Æ2\ã´‹›•©¦Š¾™µ’šŒ¾ªÕqO§ãÏÂ/8¸VV潌¼u/#§¢x¬¹-ËÏú䕇ÏzÆée]ìµîáÑ¡Š^|kƒëþŒ}²§—/ã×â»ù—]¥ûÈw¼‘ˆ»áwßÙ+!䚃»BLIevñìG,4›…¦ç—¥§TÅÅå¼L{ávÊØÎÎú°å±€ª·ó³,îì>ö{bzÓèX¡0Æúw¢%v6F<ðHko+©Jxt9êJREÙôr“ÅìÞà,½n¤³XäÍM»Ö¡­(²<âBÄ£›{Æßí 3ß×íéüßqÀŸ¦%ÅÆç‘wèßX"Å?¾l¨¬¨ˆ”3Õ6µw¹ê¬on`ªgîhyñù©ÇÌÔÌLìŒUNØ9sqºëàq= —ŸÛCɈÍÍÈÉÏ /&ævW?L,ÉÉ*a®51Cc 1&&¶~m…=9³5­fš41ÏY!3”}XœqÏ|¹ƒƒÿòOOv•ö#ßöfbÅ [G7§§mõÕ‚âPI}Sõc×”tuT´R°‰‰ácý_˜ÜŒ_™Ùµ7÷Ìwst—ÇG¾“E¥>gtôÕŒôŽœ’—VD $¹€­–`J×nú¸¦–?ò ˆ~TqÅÒÄ Q’S9éõ<õYrzv>…½¾1?5³Y~¾£} ë³õåÄêÆÄ¬ÔàZoGï‹ÀÇNWî<)"Œ®‘t"¸okC­ ]#´–™•éW]méÄ|Òc«qIM¬þ÷¶)7t‡1A¢’9k3ìö@?—ÜNÂû z{û›ríª-PCËIˆi]º•ý숎1àÚÚ˜_ñ¹ëtÃñ„gF°ë¹“çoz=îÀ漬ª­)+ŒŠH¬H(ÈÌ*¨ÆŽ³æRSÓCHƒ”¹I*i¸ˆòóxŒBeìaîëú;íŸ2‹¿n ¡‚Á(Ù(I#äÁ‡D$ÅTœÏ©Ê€EÅ$µO\:rêÄÕ ÷"ÓŽ;KJ+«Êªª[Ù½Ý<è“Ôёɵ· “Ý-ƒÄzÿhUqR}=6ã~dZ=¹ª%·,6<øE¢cdnäg…^A`sÖ'{Š’R«jÛêZ:ŒÎæÖ̘ZBAÒ“„É7Y¦0ä• îR“Ãô茀“nqµŸÿrÖ.ŸµSG*!Äà '㓪½­T-Nªq²{ñ8,+ãnÀ Û3g¢2ºÚóâëª"##R}ÝÂãÂ^â郤™WUqAÞO“z_Ï•Ábÿw@›ommÇ÷ï®pú;íŸ2AÂ7R3•Ó7¶ÖVR2† JHc¬Ý®hȉ‰B1ê*ç,ÌõΟv ÄÆ¹ÔAI(É¡¤Œ ´ôÎù< íâp¦‹ëÉ£]]½ ­¿¨¢ ¸àçÙa×/Üxð¨™ÈÂÕå´ç–5à +ˆóKs¤Í˜Ú%:‰H,Äâð)…õ,±°“PP‹¯N )«-hcÑ>¸+ÓÓ+@óÚ×ÕË¢d'æ?/í"íP~Ù7û#æ†*¦'®T¼<å|ÓÆÖÎì¨ã¹+Iµ¹õøè›×CBË qŹ^•ás-3;rx®¹>·£°<Ëÿñ‹Â­Y;î`¸¾¸Ô:“#øfcß–eü;íŸ2Ñ“uË\Uë°…¥²¦½±¼4\æÿoïÌãš8×=î=÷žÓ{=÷ÜÓÞÛÓc—S—Öªu­K]ª¥Ö¥ZË©Êqëq©[ÕŠûŽZ—*î\ADE‘Å…È !f&{ÈB!  ™;“ dIÌh<Î÷ðaòΛÉüò¾ó¼ïû¼Ï3ÍkÖŠUó§2dìßïñôœì³gÿ¥'ŽL1~ÂèSf~ë5ï§õ¾¡H#ŸÎ-ä<.r!tЀ>^U±`FRèéßlÛ|Ä/Õ—y›—šèŸ›\&ÄË-úrrcR"£rsâ¥0;‘ˈ»ëwþQXDrDXm©‡$  ‚e‰*AêíÄ«¾aÉvücPÞÕMK¼o\2ãûÅ‹íX`ãªU>ËWo8x40”«„Á¢Ü³;w2V¥®>WT3‚oÝØ{†™—þPdqÒ3’Â.úgÐñ-P9,ëðkÄ¢ªVÔ¤WJ:nÒ~º(Š.á·ógÌX²së†-Ë–Œûbܘa=gŸ9äõÕÈaÃFO]¸tñ¬Õ?­Z¦œßèù¥ÇÄY_Oþlú¬å»ý£À*]ŒÏ, /HKË„Ë+A¹R(£Ñ®õñ9¸cíÑÐÇ9Ṵ̈”˜”(vò娼x —ä—²¥F£º4>:5!–ÅÎL¥ñ±éÁ·úß½÷ðNªÜÒÿšj«ÔM¨´0PŠþhòÅÒÄÌ€àØB;ñÍLÜ'‡7þ¸nýÜéžËÖîÜóó¼ÝÞ›~ݹÌsþÚ]WÒ+[ôÅ™OBC"ï'ç•´T‹ ôq39òn>3·Ž/grÅO8I ŒRE¥Ù^nRÚmÉjñdï-º*µ;f¯º,JEìù%³Wx¹vtÏ¡eÓGÿü³‘_NYøÓÜéS† útúô¹^kÿ¹kÍæ_ïÖ>Y³ç§¯¾öüî[Ù^gNÆ*å¥O…*1*.‹ý¸P 5µÔhõFfľ ë­^µæ—È<ˆgsŸrx¬¬äÒt¬S– EÕ†ŠüP&_Á(*檢Œ´»W’C‚¯ß9u=’‹ç-ji@×å ¶8(à cª’jF edæÙYßG4 OúíØxæàʵ‡Ïì9¼a«×Ê5¿^Ü?ï‡ û¯ Åj¤~Rüäæõûù±Í K²ò2:OõT"o0¡í—K—åW*eÊ @¥àWC‡äØ^,‹Bƒ¶¦¹N«xn ]ßEùSrÓOý}ÁOdݹâ³`´ÇçŸy,X¸rî?fÐoøgã=fí:wpב—ïqžìûmÕ Ï[´{ëѓٌ¸¢&³”çÓîß‹®i[ø¬zxú±íÿô\¾óŽB.Î/‚R·4›^ JØz=(Yt±€ 6£ öJ®ÿåk¡!1 ¬JT´¹¥ -5bezRzZ4O†5šd(`¿ÑKQ[†Ö8s$N>jÄçï}?ÿc›Î<ä¡ã‡Ö¢ÌÄ´è„ÜØð»éÅ’b X7hÅ*ÔþżåxØîDIûLæO%±Å Vw›j—ó˜7´:è¸í3zˆY ×ãçØ‹…GÎ9„ª¹Î9©Q‹±ÓÚ?oŸ5î£A£&ýzÁ¤‰SÆûvÉ7ßΛòÍ*A#Gÿõ\ï_O$ÞK`ÉXg.û.ÛtæØÖí~ËÌä²!ÞœtRô_ƒ5Þì:i'º„=0#[Hfä´8Ó¬‰3ì€GÎ Ü… ž6[ÖþÙpfè'ýû9iþÒyÇúÍK—z­Z2gèÈáÃ'-÷üûò›ô¸B(`Óöù¬X·ëЪ¥[Ï`$13B£Z T·"5<›•L+R)BüNÛ—J/e‹)ôÂè{Ó“Å%"Ho›Ũ)à±@|-µ^ËhÅ|Li-ëI’Џ/±UmB®‰MIPŽõU%G„DѲĘ7ÒS"t-z–ÊÀÛ®ðª1/GAzj7 WQ‹ö‚v1š@ß®k+Ïå|Xh B—ïäúçÿDþÇæ09G>¤±¢ŸÍƒÙª/¼qŽÇÄAc§Ì»¶dÄЋü½¯^1ùŒIF[°aÓÕ+2C“ÉÔd¤_Ú²cÓ¯¾;Öl9y“ ÊåmƬ -€þin(Q•Ëè¥éAB#òr‰ .eeåÇ¥?¨6µt ƒeTKÄÜ*^¹Š_£Õ¨äePq™ùF6B²r…MŸˆ~¶ÉÄ`s¹I„¹_¢¾Ú2URlnßM@qy#j4‰L‚[cx¨‡±ë*qÃØ¨@ §µÉ†;{œatT‰Èé‹výJ›Ã–È9ׯK²9nÕ·t÷c' ûqïÞàà_fÍž3wê…ã[ެ^µ €ùø£Ï¼VíÀĆyñܱƒ»®î[¹rÏ‘t¶9½Sˆ•&€WÂQƒý®œŠÊÏ`?L£s²¹l¦PÐ.Ðf«¢c"X\‹J!b±ù*‰’œa~^ê@ˆàòoÒ C•°Œ“’[Iøòµ/D£Ô Tå,N[´è5Ïì÷a¨*æ9 ÞÕÅtÑúQÄCûõï?yö–»{Íó˜8}±ï‘Í>æ/˜<âãÃ&¬À¡ajh$ô+×ýî]º³}ûiÿsr=Ú½–åa3ÄÑ ©ÅdÐä3réa‘´üôÒHZva~s1áW`f€e¸Ý݈m™5VÉt&È«æ$> ½ƒ? ŒÄé,<¥,YJüô56kEe\F›|uUêzB5­–>ÆÔÍImmè¢õ£Û“†~ÜwÀè¯Ö»åãåá9uÉIŸ+›¿Ÿ?sø§“¾ùá`7ëŸÒ“Ãn] »{øúÅ ³z£Z$«ø^§¤HMQNAúð„Þ£ëiñó £m»Ž–Ÿ•›lgÓ`Ÿ§nBžÆÜKJ é<‡=¦e‰£ŸÛê[òbË@6Sìª1Ôè¢õ£Â)ƒûþíƒQ“¸zc÷ÒEž_þxì·Ð(ßyË'ýü«—‡¦™g´«’“üƒï^O¡ÑŽß¹’j@L ­ˆÁ’yÜPScµ³ªb¢b'”ÊDj½‹…>ÿ”X+7é«u%°BÂkŸrÀÆÌr%¶vŽÔÇÆ¦%&vžùÃÖc%y³Øè‹ÎLÍæ2e‚žÓÿ>‹.Z?*þzð‡ï÷ýbé¢ý—·-š>mÒª=Gb#/üqêw³ç{ï¢Ñ+ÌÂU?ˆ|à’^RXrúÔÃl[£5`­.…&@ÌʉbdBR˘²Eƒ[ÙÕ"…TXN LjOõâQúå¤`çæ×¨ª5€¶ƒò¶öE‹–ZªPKÝqD„žyûÙÞú‘¬úfÍûfÚ°1³÷l ŠÜ¿n¾×œíW>ÎL»zòÐî•{?N—`1ô ÈÈO“b}¥DXÊŠm½ªå„é s,èô,n!Ûv¶Î¼­²¤X*´Î˜Û¯…eT°J¡Î½#:´_t”#* jL"N3´6tožqÇ<Ÿ»‹XõÍÜüõ„‘“V®=t'áôÖÅKw>xÌ—Tä\¹ì»?ŒÍ¹Ÿ•%ÆfÝ4å2±è©U¨ ›Û“Úêkvu´´VC­T KJ³³òÚûJc]M#bŽä&Ðë w_ ò°ôcæê:‡°w‚íóW²П ZAħ  º7ѸCºHß'ëMó÷yë.D\;²wÝΧbi|9Ç?ü Ï®¤ŒHZ;SV‹%=WÊ¡FP®èp7›Úš …÷¼0>eó™ÜŠbX®h³ˆL5BŽH Ã¶ÍÊ:Ú?­µÝåƒgb£¯^­b•ãäµ¶A§°Ú®…4èjºH_è’÷¼üÓï·{!—Â/\ˆ¼‹ÅD®\<¿ï×@ßÛ YY|ÌjÐh HsµmiõšêŽ ­Q«Åo¢¶¨ˆM—èju­V09YrÛ6[ÓùÙˆE°“÷Z#ê‹weÉh5¼V<F™µ›ðmL=‘.ÒW´oɲEKvÞŠ a&¤ðr ŒÜ¸||_Pð¹4zÃæqV§sÚ‰‚P7S–°V«–är „ŽVÌ[Õ>©yyËôÕ(áò4žf·EVöÖãK»¤kï È黾—Š[õ•œYãýýÌ »}oeJ’ä Р–© 4ZÀ–}Ç/ÞŠÌÌ&¶­V@T˜dgÈÛ Î)ÊáÚ®µiäô¼R‡y&L†ç±€lÖPóN,±É c•ˆõÔªo«ÜãîèvÈé{àÀ¿›±Ýë¿N¸TœàŸsßgÅœéëî¾~••Ëms¥€%NŽŽÜ{fOH&ßF½8ß?øñ¿žÇcÃÑëH£‡ÄF5É&jp·Çf}”•xþ´z1XÀ)"ZT=vƒtÿ<ï úò½Ke­új"ÏìY²|»ßDŸ]³Òê"~/->ürÐåÐÛÌu¼›áÑâìïß0Ó¤#®ñbqåZƒÎA ‡5‡qgplì«]¥°^ÈàrÈm› ^"äãOb›ÛŸþÙ¥²V}[³¶®\»ks  0¿ïI=1+=ÕÿQZ¶Ôö´æ‚àQ!•ˆ‹`Þ6ûž 6Êqœ9£ÓúNsq7Whgš¤çAZßaèKÐp—Êöï×&ûíØvâTP,=W‹ägfqónÜȼw3»„kÛR[5ù7NëœÜ¿³S«lu@ùKrÕýu¾ˆATòþ2z ¤õýÃ÷{æþ!Î¥²}›¡¨“g§†‹/Õh". ¤'N EÑórAÓV#—? ~ÍW;îñh`–Lh}às˜OXÜF©ÓÉ,Gú"&}m5¨:@~|Xù _ùìrˆ¾:©(-Œ–s+ðAL `jjlUËeÉy¡“ùy€Êvh ÀrFv!ƒ®’9ôàÇ£ùYŸÚ÷z¸†³¸«8õ}e ¯/+)))ú-—ŠôÕ°‚ï?ÊNð¿nOÓ¢e'¥ÄäÈódø¾›vªT*0½(Kà¬ïÄ6…9ô¶›¶Ý~IBÁ;.2¯¡¾ûßøß·ÿî ke­ú*ƒÂ¢ÒÑwBå†ú&l9H’E‹æð•¨ud³’ÐIxòrTA©ã8ئNGÓ ÒŸ$F ×yä5Ô·OjÉ|äÒ)—ÊôU<¾ò ¶"5:*%U ñ ÊšëÊ`…TVo0j,YNÚiih2ç>qÖw6;\±1*<š)jËìM`:Ñ·¡ºsæái}{WG!õ\*KÐWçñ8M'3²s8â¬ÂLn­µzŸšÞÚ}x>ï k wb+ØþE§Á±¾:BFúGÔ ÖwÌo¦áÒÿq©,A_ÉÅ‹g+PS·4Ã,ápsùºJ°$§˜|Oú,ðöKöÇA¶ýb‘ÑဠMZߔ޼sé³Â¥²„ý yI±9¨–> %åäÓ%Õ¥¥Ù¥ ªw9¡¶Ö•Iüç|þòI=ÛÝD=òös}³)þ®k‹%„øíùh´ Zó\“"=üvVÊ˳XBâbl\©Í¹X²=½)šIÙÏ:¡RîÎ8¯/ òúÆÌž!ºíZQBû͉NŠ¥£Ï·&,Ê…¤€Ä€>ñ2Y|8_ú¬IÂ6lüsºÇúšôššIûêÖ{¾}äïžu©,áù[–’úDŒÙ/Õ§HŽ¥ƒ¨ò¤H¡pÕ³BërI·ñŽÆg"}¬~.•%èÛX*µ8×´èA…B GL5Pchmä””ržéÛ¢WkšyJ%Ôµ^0¯¡¾®Dõ­ü“Ke‰ñÛ5š¶ùÄZf®¢ýÞX Üg:Ö TJÈ@¨¢‹x õµ¿¹rú+—ÊÚÏße‡´îÀÂzÝÎϸ/ž 9^C}Å¿÷Æø¿r;>z§-Šúšê5˜ z“¸Ä%« Û\K*,›x õE q":5%ú—,QtˆØè« Y d@š1×ôöåx(“Ïn5Aò2 ÌÕ×Q_{ÔNÚpÉE‡Q_OY”YjÜZË‚ã6ëtÏVΠÓuÇ`óuÓ×»ÛãË’\²DÑÁÙ=£¿¿µH„û02Zfîe›;†Q詼úúŽoV"ÞµÒÿ@éõöjs8ÜAõÅ£èàG4b ïhk™nD\Ð\ðQçÕ×wa¬Y ÎÙ½:ç†ýîãay÷<E‡xœØ?› {¡¿ÝÉè™»8ñêëKþùkG_´ýâQtˆmì+åÕ«·ïçtíüÓ‹BéÛª¯%Š}‹cîGçæhzêNJ{Pú:Ŧ…)™RøŠWaU¼×Mßp”^Ø«KÅmÚ¯Fν}" ïZѼnúöiÇ¥â6ú¶jc¸4nŽœ×37ÚÙåuÓ—$¶ó“FfÓ7$]ë2(}BÔ·¹VW!‡Ë zæ6hPú:…˜”ËJ`¦¡WJ_§ôíç7@é낾.-óö8(}BôÏá•»%u×Béë¢}Õàž|ò] ¥¯Sìûç¼BPú:…Ò·Û¡ôu¥¯S(}»J_gPú:…Ò·Û¡ôu¥¯S(}»J_gPú:…Ò·Û¡ôu¥¯S(}»J_gPú:…Ò·Ûé©ú6kÕÎâw”¾Ny~} \%é~wJ_§<¿¾",§\·7`J_§<¿¾æÏrßÍPú:åùõ5©%rëy_”¾NyûÊXWÛ¼ñ(}ÛÀâç’`su;nÒ‹Ÿ£üD'`³9Ò·Ûqcüœk;ä[›ÄÏ”¾ÝŽ{ô5ÇÏ9|AÖ…áŽ,ÀrÑ•w#¯¾¾f˜• ½P%xüœC~¨¾–ÈÁòŒÕ‘n¸ÂîäÕ××+̬„ã\Ž®€ÇÏ Ü… ž©ÄãTÿÜí¸Ë~FÛ¯|HcE?›ýŸ”¾ÝŽõE®—dsÒ·Ûé©ó=J_§Púv;/UßÀVz GŸÿ#yÂû“+ÿþ›Ï.ÓÏa²_ç¥TÑÿÙU .{‰úù”dùû‡Hž0žär}ɰì×y)U4}öâWá.(}Ý_¥¯(}Ý ¥¯û« ôu¥¯[E²|ÔQ’'L"/çg’`Ù¯óRªh÷âWá.ÈÆ6k&Èì˜^ÈýÇ ¡ÚzF=’ãC>8Dî Ìã–)£?ð#SÞçÃ~¤>ÀJ½/bǘ|òq’¿¡/vî#cdƒf`&™30[Ô~¤Ò ªt½|ΰƪ·\Ïcsê’¹ˆg`ÒUtÎÇIü†¾ØU¸‘¨Ë²6”Ä f[„nF‡Ì$2ïäŽnÕ¿Câ÷@Àw*Ngg`ÒUtÎÇIü†¾ØU¸¨L¢´Ùã–Çæ{ÿ™V¼ó?§È”'ŠCt~Î*ˆù8Ÿô†¾àU¸ÓÅsIÇ=nI°ÿÓJõà4×˧Ž É|‚L¢3ðsVAÌÇIó }Á«p­^KIíÖÆ=nIœà·A~&ñ‹ØVþSÀ³ËÙ§³30é*:çã$~C_ð*Üǽù¤O!×~ƒ++?Ês½üõ™õêOH|V0q:;“®¢s>Nà7ô¯Â}lüSŸ>}î’:…œ¾ÈÕú“µz÷ëû"ÏßÎÎÀ¤«èœ“–úbWAAAAAAAAAAAAAAAAAAAAAAAAAÑ™_{sðŽpù³ÎM:âæ‹¡p;Ÿöw´Ikqþ3Ož vïÅP¸î¿§öÛ}§hŠ£sLí+ê×v¾„K¢p#{g ƒN sǼµt~"™ýæÄügMëD÷ŸÅ–ƒ©c{¿{©x“Ö/9óaï)<©|“„Ë&E7Ðïâ3 Aªßºñôh¯€æ÷Wf¼c~çÓ„þŽ i9Xßû\EʬŠ?ü#YÌVxÍA ½Yؽ—Oáæïᦜ^<äúD´Ûý î½fñm~ë¿ Äøn2ë¬å`3Ïd,ùߤŠ^‚Ðz?nji@ }þªGPýgs/Œ#ÈÁ%è?_\x£Ê ìã¿U }´wÕ*ËAÓoÃGÎ{ÕÛx8¡÷ÌñiÖÍî¼zŠg`쌾ú|Š|þý0 b<úG.2¿÷6AÒß»4±Œÿ *ø`T_ÔºˆÞÿ‚ ì»(ò{-úZÔ«¤êí;Ú“¬ùëéªìwq‡ñ™¨IÕúÎ;¡ˆåàÝ>eõ—~mÖ÷ú»ÅêSoµ -¿'³'ƒ¢«YóùÏÀHîÈ·÷‰p<þûÃ3ø{~ÛЗõÔ#–ƒÍ+þÔÿä7Ù˜¾-?¿Ó{}gL·]:”X›ý ‡x¨~(ú ÝµÌéië½Ì‹¢pÿ^{áCÛÁìå«õ¥o;Ýü¡žúR/ŠÂ}Ä~ÇöPsPæ[ž”Ïz‰WDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaáÿ»>Ðendstream endobj 124 0 obj << /Filter /FlateDecode /Length 2906 >> stream xœíZëoÇ ÿ~èq0d·õmæýPSΣ[#@mAaÅéî$¹¾‡|ºú’¿½äÌî w=w²…¤€‹B4;ËápÈ9$÷ÞYÃÇ ÿÚÿ³ÕH4Êߨø‡‘Q¶‘–­6¼qf¼9aã}šYŽ^Ž<³Qnlb@•f÷ÑJK+BÔMPÅà¥&ûimá­ëí×Iå¼k¬&BµT&#]£Œ'29nÇ8•)µ=šV¦´['Ù¯GïF<(rÜþ›­Æßœ¾z!üØ7Þ3>¿E%ó1W²± Bq¡Çç«Ñ«êéOŸ×N4Þ›êï/kØÕ+­Dõ¬ž€ySVV/뉔²1\T? I˜wL_ýø>YÆœ‘¯Ïÿ2hKdppXíÈq>‡]_bïœ3‘¸'°P v¦"q¥ëóhÃ4ÞJ‡ k„ã‰Ðgp(¤üv³¸ºz3{³Xïwg¸Š80mb·÷"nþ좚^/ê‰3aª¯»¡«üEýç§Ï_~_O”Sb5 >ñÐr Eª³ÓÄ‘3žW*´ˆ¥\c«'ž74×ð×W ±ÖN4œœ‹á¡îß>ÈŠ´ š>ƒŠ7šÛ¨éž-&Ú5a9áàânïÑ~pj¯lu“ñ†ÜIëeµD ÇЀHR¸­6+œ—0ïu \]íq!S\yâB雷ïÀUVkÜÄYî«kdÖ’yÆ(Î 8ìÎÄxu½ Â8ãUµ¹ 2 æy5]FÛ ÐÊ»®ÁŸ¥ œQáA j'ȲÅýŒwŠËj–§á8Þ+%«Û £7ŠSMÜÎUßÔèÚÂq骎A`rNušßšVÒ™ûÏ,¼ó6ˆo8¨ZTó >cÒÇC{Ε®¦ëÈ={syh¯©ø7¸P{P‘ïvð{l¶h%§„1Uk\|Ñꢕs°{@=W)DåѵÕîÝ•À¶6©¸”Mò.Á!:¾Î¯5ì/“„‡xÏ; ÁѬ¡Æß=éÎZÌG‹AP6ÆUïð볎¶áÀD›È¬@Y‚]g\Ävh¥Îx‹{Üd‚E$A“0àÜ·¶­’ Cö‚Y ð€h°T§5ŠÑeÏT´3B‘dÁ-,hÙiçl.¨¯Ý&"Î}¯‹,´´º3R€Ñ¼•õ·ËîC\w³&ÐnŠ×5Ó}„Ì·‹QI;åE/®`Ä“ÖÙË–Y–4þ ý³Ò›Œ¯ VÇQäÞÊãk1:°°PÕ!Q@Ísô¦ZÝâ"ˆWœŸˆ8ÀßÙr+Œw\yt  Õk ‡Ð @qÈ2Å•Z æO³Ç]·£hZ¡½¯ÎËTrMðó° spÿmZp Ö‹“ ÚŒâÃawèu¡jq^¦)”w톂÷ýµÓ, ¬!Q7‰œgNÁ–`]€¦ ×A3s %€Žl×´ôq)-èC€xèÍw-㲇£iô:À¥ÅØþb9z_ßä."…b’Ha5G ¼dhø wqsJqÈ—+‰\W=@ô¦+‰N¯3Ê:Im¢Þc^zŒºÇ;Ùy:¸®SÚµÌÁ‘.SØ»ë4i*^ÇRX’3Ùp›Œ}v:[n¬±ÞvĘÆ£2H·H¸[µ¦Û\…“)«‚Ãâ¬ó’°½©CtCßõâH`޵̘ëc½lÀ=SGp¿Ž*0´ëzÖm@5ÄÞÆ+3ˆ«÷Ãw«§ÚÜ/ À0µ&Xîæ™FÃa÷ç]äê®XÉpóÇd8LðÖ€ì‰Bõ…uOî’ƒm# œ¾ QÍ0ˆÛGì™boÓ—sbe‘Ñ Tüsí–P2„0ÊP•šÿ´ÉûøZ@<úgºt;Y8q5ý7‹ªß# ÉWw‘V‚Èå„–œ‰\[(„dÂ!½9 â=—L¿~€Ó9ôyÄ>Ä|Ý»b¨¢ŸÐ݆P½sÒ€²P†PTÅ´ãæümJÓaœ†ˆÒx@«÷~:ªØX/:Ș¢®‚ÛòOMŒÂ:¼^r>td’Z\·®éÜãÄÛ° ‰§{pãSXØÖô7 ”…¸À!Àèýs( ¶]眆^N$–7­²®2è›Æ¶e9ÉIÂ=ÕáB®z[k®ocƒÆã¯^pÚèñPAZ“мw9Þé§0 kx¿HxÞöïÉ¥±lPP–â8Lª½¨²uþšƒ%ÉðèåLœìíðþä²5Ù^…d5&NJdgýÔ`ý‰P®Ñ+Õ0l¶=°Oê‰÷9À³›|“F—i”3-ÌÝ¥h¡>"XëF‡›uí ¬it]à ºÀc'¿}>:ÿý‘óɶÉþ‘F«ÂÞó4iÔ¤‘Ï»|&'y²´禰á”løü’‡Ó‚ZòêÇ™p^`¹'s‰ðO¥5—%–ûËC‘+(K–h;4Øê‰b»qWÀJ–bW8쾸uYAÄNiè)šÀ4gp—;ÄYõít¹<«¿ÁÕaC8boûÚlW‡%êb’wåêÚ¡7 ¬DÂ\¶¿äÞçûé!<Ð¥pÛŠùt?ÍO„l~©ªÝár·Ø¥èšµ ‡à?…n56n±+;I/9f¿GúÝxô‹êÙz¿ØÎ·{X:Ñ÷õa/ÜD@gØ8ï÷žÁ꼞(Rqz±ÙœÈö¬%ÿnq½],ví¡ Àæa< ©®àÕ|³:ëÔRAˆ”D§›ýtùǬxËóÛíb÷f~€«G»ôo^|ÁcrÈ‘ÿ44á’P¶³"ÄΔõÿ­ˆóäáGŠaĉþóYFœ'Ÿq¢ërBàMæ¼/ø@Ú'„ ûÙö«]øð¥­ï>¹qüÖeE~º(ƒôîAáò·áÇ)v4üôÓò^øù9ýVCP…nœ0 pÒ€_ÄIl@ÎHUÒ˜9Û£FÒË•K?ù¼Cg~ÐåŽi÷ïêD[îœh¡ÚÄÿW.HcÙByAŠ’Ð‘2ðäÔñÎs§Âßðû]«J9¬Ä;“ÒJvYwß17·m ä¡C~ÑïE£uª…§¤¸˜+Å)†§i í]¿›tÛôëè\EÒµ±îPvõÚEQ…žlwݱ+³Ë_ŒÚ¾Û°«…ªcmŸE$@{Ý¡m€ŽC6ù$Ü/ÙZÆâ#:`§ŠöT¬È7f…»*nkr«¼xS¸Þ®JKry˜˜r-T¸Û^¥O£×¥¿$غ Xé¤û_Gl"ÍíÉ¢wUÌ•¤xvRÜEùŒ¼íÑ÷磿Áß/ýcÌendstream endobj 125 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 166 >> stream xœ›dÿCMSS10‹‹øýùJ‹ ‹ ›÷À½ºR3Oøˆù‹ ÷¼È÷˜Ãëá÷ÚÜø7÷Úò©ÎÒ‹Üîûâû#û…ýJá÷Ñ÷2÷PûÑäüGø÷˜÷$÷ÍPDDKPû  7Ÿ ‹ ‹ ‹ ù> stream xœåÛn#·õ]È'ôAtÔ®&¼_M€&HƒAŠ$.ú° ŠYKvœØ–×’w»/ýöžCrÈÃGönÒ—û`ŠCžûÜWKÖó%ÃéïùÍBôÊ/ß,ØòË…á¼×\,­6¼wfy³°žõNå‰ëÅ÷ gyo_Z£X/,Ê3ŽûÞè°J '{­ÈªœhU´á6žn˜®,Èe­Üâ¾#;Ç’¢½ñv®ÒÿÀcÐVSm‹²4†}„€Jü—8iîEâÊÑÌjî(¹µ!þ.Ò縴@vpl£2EÇö2éCt¶ ž·DSö€€q÷,ºcëjw(¥ìUÒ¿xÒ!.t>ÃðñV (ÐeqDÈÄQ̬&òœrî¶Hù¼öÂWkψÞDÈÚ36­þõ ʽ±•SÛ'|7¯ ŸÉÑd?þNJ Uà3«¿[ñ¢Øç§«µèûqòe]åÑmmòè‡.Ëæ]mó袵å:nòÈçQŸG"d³ÊÃyÄóèÇ\_?/¹õCw±»¿y¸’М@|F©ÿ´6Eêÿ.@ÊÏʇÃð½Ù ¹Y±CùE–m^ÆUÝþáå~{hbT ×|³,H 1¨|gçü³Ÿëü‘kp€>¹e@p¤Ò®üGª¢:B…õÇ £ºÏwÛ‹‹«ó«ííaÿ|õû…Æ–Ûp"$þÉTÎɪxw½{³½QǺ)2ÝÃÝÝäS0¢6ðùP -X”ñ8ø-=“rù·ó2Îà¢äG&†e`y Q¹üS2HVUþ™í²î@`P±¼ò5Ï9$ uaŽ îp9Ä5N·äÓ \\í¼¦yá\öúnåmÌÔûæ´u†Œ ·6‹=R" bMHuá8é$ÖL¹Y²)ÌØ‘iR¾Mx‚òqÈx]<]‡&‹ãŒSJ.Š (+)SÀJ#QUt3%@UÁçâb¨Kø2ÞDàÚ™ªÊ¿N5¼êAÆl-ÍX®CA·û¤Ï5nèFíHIžŠø¢.âcý*•iù u“™¶…JçhWÀ|ÔC Eš×U÷i_꿪@¹jZdÂLÊßiYйýL)|¤ ¬Øe´ù¯¨~G¹"ׂ5;Ÿ˜¦RÔþ>C¹"õiTFàwÒóÒƒ“ÞÀ/SékžöÝî"ŽAœÝŽ´‹îÓ4¯ÑŒfŸÛ h"k`ÙýÍ0ôE†<+æ‹õt4ÕׄW³aŒ½L"0‚h¨=æCÛÁ )­•œSͯ‘ ¸(e¬Ù=ÎÑkØWÙC±= í5rC0.+Û—ŽÙ³ˆ†MI-e)c>ÈÜ¢­-Òt9$>¡€KgL;˜_­I£ùÍWìø ê~jû$‹ÑB¼4"ôÊp£'B­ò], 4YÁUpý[›çm>ú2ž2ÓýÄD*ÂU%î«‚'AnF!ˆ ¸(=øù&ëz:Q*±EñóÑ…"9ØìiwWI€».¡wˆ@<«4ë4ÍÎW£›ÿ)ža2$†ß[H8RH »ª.Ò#†ÐG&­³)LD°IOS­ýQ¦!æFs3q÷ká ãr!0‡±á®›»VÀï2x PM†Éeqa¨¯Îý(J³£zûÀDòfvé™Ù‚m ¹Ï¦0€>ŸØÄc0)·îá;X¼ÑUâ¸)~ãŠäç+rãÚJ$B‘tú–d ë¿ñøØéÓ˜OKo¢Ç3‘ýĽ)‰1üRBçŒþ‡8 Ù•÷§8 ¼z©P¹ØœÃéO³Ò˜î§ÁÉäm9¾«xÚÅæTŸ¤‰¡&cNøêõÂ@VlKA²ž¾òùïôýžEBl¸höìò›é*íL;6A¨jmÒ§ïµÒ£Ï!zBK|RaRžOKûØ( š:®óØé –ÿèKÒ`âàf s8AÖ}Ý©‚^céɶSºb5hdÏʀܢì# 5Ø?VN`ŸZqg»h£ ‘ô¸€xÈCàêÖ@ýl'.¡M”»8‡ ¢¡±)§ QW4·–®¸Èδñ`(ŠÛÄ@gO7ãGËÑØÕµu˜· †—D8Ä©mâ1 Áj314è4Rƒ¹¼©Ùè!Ï@Žr¹FÛ¶ÂoKú6é`Ñ',±˜õ8'²7ÎÀç÷å÷ž$jÇׄåv¹¤i‡V®#}ï°=‘àéEüP8ŸWZ—‹M{”©y\ ÑޤÇïÚgA¼[Ÿ!Ö“u鸋³ll$ËN­­Mr«I]ŠrL2‹ðêéÑ€¿ÎWFÒ;1½D(øÓ “ã¹ ÊxÄq8~âùh öõóÑäM“ÑX? ö´-#¥—VOyh‰ø(Xñ$‘×Q1L.½JõrK›vášÏ`S…/èR¨7!WÒ죢1ýHŠèèKåºí¡8{7)MN˜ÈIkªz')ã3MºÄB¢¸±Ÿ^(â>Ï)Öú)ÍÌØÁ„„P‹Ü*\Ld“lp\[·%©ú¥ˆ% À¯Î>Îâ R*‹Wçý ÑÁv ˜»Õ g@J7õ!0Ëø©œLhïÚµ!©Jþ‰úGL™!ôGñT"G=Ê웹Él‹2¡m’•DÓV¤H‚ùšT94ÕcA"ÛiyÍ—sNÍ—$˜9 D¨ûU¥}¸Tš„jœÆð;ûð·qWçF#cÆx’îcz¢º•™5kȸ-Úñ`AŸÁz¸›{«L}mÂÉÏëÊ>R…)Øä¦fÙ´IÚà…E•Á`eï¡2ÔÅ‘j¤€œr†ÁÔA8mj.I¯êØK.Né‹gâ>ç«âÒŒ'šŒ …9a}³ŽN•aW™^¡OʘVÑ0§ä»’Á;̱$ËÒ#˜)ñr¾©æZŠmôˆþ´eø+ÜÒ×H˜¼?qOrò ø\]•Òd=8ˆ×Äêˆg”…²òy­­wÝÒ=Ò]<β/é8n ÖV_¾'O½Åk= $Í×Gº¸Ÿ<½ó{üêµ_^½¾CoöîNýººæ‰¯fEƒáÍæôm‡7 lÚRm1¼­=£¯G¿nÌ]7a éÝÈèÿ¸Z[BÅ#ï· ¹¼nÐßF§¼ýmä[¾¶ÞV½J}Âô¡àâiË+ïj‰ÞÝQ$Þã¥qZ–eݳ¿[›[×nï¦uëvÄú\^œô í§ÃZ ;y Îèqˆº¼«…èßÒ®óÖêM+/Oz•émÙ¨TOÀ(0†Ö VA¶CÊB6˜ž—_z|Ñ‹{$Ù‰ÙcñÿTä="‰{TÙ£yuŽ¯Î‘éœ/Îß¿ÿ*”è_endstream endobj 127 0 obj << /Filter /FlateDecode /Length 2390 >> stream xœí[[kd¹~ï_ÑN'nEw•–$°°$, ™qavz|‹ƒoc{v²ÿ~KÒ9RÕ±ºmÆNlãKj©¾º|’NŸªþ¸”B-eúÿœ/´°qùy!—ß-¼ µ Î+~y¾í…±Žœ-Þ-¢ Â[Xo¥0gÕPQx—g9ƒmK&MtŽ•ø¡#xÎüÞ¤DÁ¥Æª“7 ¬D'PA€TT§6i`sF*Ú¤A“Ë“ÅÇ…ÊŽ\ŽÿΗÞ_üþ­ŽË(¢×~¹¼(NVKe‹J)í–ûç‹÷÷?|ûý ´ˆÑÿz·BÔhÕÃ_Wk ”6˜áÝjmŒ^éáó)2‚Ô:?|—zAJðæ§ý¿¡.u QýCD}›'Gðe2SX[t»´eòVûÿÁè /b0f >Rh¯—ktZ4ŠX·Z{tœÔ08-`ì¡ÚN OzNÈUÂŵB½Üÿ~±ÿÛ÷ƒ'Ë­0dŠô¼pyyZÈ'"™e$ „i 5AX¦˜&=Œøªã4Ù†&­ÿ¹#2aœP„‰a¸Ha‚ âp¹B¢b`ø\>VÑ Wõãkli.M\ë€ÀR)ÖÒ•„`)}“x%Ž)Yp6jšXÍ3¢tµYFP[ól“,Õ›³nѸèH–ý<'À#ŒÅVá_Hɾ,Bùáò¸´½Ô}8’%ËÈÔ͇–=kÒór´v¬ë®Xžšè$«ëÖÌDËLô3£HÏ뱜|¬¯XÀª¹³Ë0»##P=¼d=CjÏ`Ef—aÈÄ¿–UœÛRcÞ¤+ÖsÄ.ÅìÚ^Z¯è–›Å‹óÑ1o{²4³Ë0éÛãeX¼ìJ ³Õ‡Š,ˆåÖvú+¡b‘­†^ÓLºdÑã<Ô Ë2,ÎJÓÛáŽÁë¬c°ÁÆY°(,lù5E…åq3ÌÚ9+4²³¸QæêÞ®»³Ï,Ã⬠VdX¡·ëf¿ 1ì÷væ2Ťæ@b——ĮȰ“Î7ÂYáÌ‚E±|Ûár¼¼ñkü‹L¼bâ5s1Ó+ò¥˜câ鎟3€ó=00``Ä2ÍÀ"Æ]%™x= ½ˆe†€ñ(y¶ççp Ì3°ÀÀÊ ð—ýÅßñïWw7Õendstream endobj 128 0 obj << /Filter /FlateDecode /Length 4200 >> stream xœíËn$Ç ÈQð'ø0Ã=ÉN§Þ¿Çq † Û rðæ0«=I£ÕH»ÖÅß²X]Åêé–6›M€€Ýêj6‹E²ø*ÎË…èåBà_þÿäêHõ&.^‰ÅWGNÊÞJµðÖÉ>¸ÅÕ‘¢¦L\ýx¼ì} ïŒèµ 2dìMPVÝ[Ã Ê ‡ÒÎô&°­5ºG\lŬCïm¥*?s¢œ½q‘¤ïƒ Qj˜i 2Qe¹&¶žXœ½<’‰•‹üßÉÕâÇG¿ÿAÅEì£Snq|zDl– lv/|/•]_ýÔ…åJ cm÷ýÞ†à¢éþòù·ÇË•è•Ñøîk‹„R±ûæËåJkÕÛèºø‹/ñÁ Œì¾\0PîFôFJßþˆó6ú¨#ŒA>Q‰(i-)TT¦û±HáMì¾]þíøÏ°/m®^‡´/ßG­`øÍÑñoê¤Y®l„m×YÓÇåÊ XZªÎºÞ³'`óðd:*¤é,Ξd¯Ø“îE"–u1ª²®eëÚ^7+)ö86{Ó¬ëšu]³®ÍÛoÅêz§”ÈøëÔHeÝv¹2"ö:„îXhƒVÚuëkšv2t×ÈpÐÎØí– Dè^ÓkL·‡×NZuwOR ¥ÐؤÆPbÑÝÝVY_$Ò Óî*éO ÑçïœÝnϾKT¾»[™Ÿ×õ¶H{¶1õpô„MïÒžP0ºÛT$‰¤(¥±|Fhþ.)ßú’xàƒê^&§ ò`àð¶ã0ƒí²9ö•æÝ5m ÝŽq÷–¦0ŒØ¯|˜vh„ p*×iI©¼r|õ-a²¸)D_"@ÚßíŽ>)èFÁ<oÀ/ƒ+cè¾\ÑÛ¿h­$  Sž•ñ”Tg‚Œ„³z^Þ3Æp >Ã϶®ê?ú8®jÖcr[—ÌS°. ×Ä*qóE Àª? «5Á6S!£jÄ¿'` dîNilA os†¤ƒ -èwqˆêÜÅ£ßî'¼UA¾Û£CŒñmppY²`R‘ _žVußÝÒ´·Â¡_¡ •pj.Àx¨jôâ{4y#ëÜè/Ѩ4·¦I-4¨/¬S $ë´ªä„|ë¥÷[_!¨ Ö9=%"ðì ]ª~´+Ôhéò¦œ& ?%{H߸hÎø)JŒ‚Ûèãž(ßIÕ'hpé@Wš0ä.åœÉf2ìØW|7U‹Ö´¢@)år3é%!XC°ÝLaym<äÓıx›ì3úLˆ0Ž×2æÌ½qhÀ=;8k®õ£8—üó´•XˆdÁ àd¤5rʤÃÎÍ‹™™õäGa}K¨X±¬ÄHvŠŠ2c˜‰‡O)ÚõVEÛXhNh¿ väÖûFmn–õ܆=51šTF™¢J;9˜í”Ò‰6R ìAFN“U`¸!¶{µ„lZIg²Žç¥çª²fâl;,>£XÌW³\ï&E•NÉÉl¢„b/Û€ 9ƒªÖE™W½!ÒA¼}vP xë3.Óó®ãŒ²´ MÚ\{jØì¬ÛB#—änÅ褦kž»1 ϳ!„6$AY¬xTÒ6©{©‹¶±Ää@d™™¡˜E“Bf ­Q¯GtÇÍ÷µ–¾ÑÈ‹j;ïPb£€ª](4¿pÜ!u‹Ý̪ìšrBIQ˜:ò•7„4²6:°AÀž:¥É9¬ÁÀQDP–J^0æžÏ‡õ\jq„þ -Ž"ÌgÕp’Ð!ÅLçqÀìó®n« «˜uº.šÿ|9l&go ¨®uögÄI°$-–}ͧölšhµ€$…#iﲩ30UãŽ$)e²qnPÊg#‡;¼n5®©ha£}$k{"óÛØY’†°  ºqcçÕÆìÚx7}‰ÞâE•Ò}…f²;Y&;f}RX$•ÀN‡µÃ#å«&¶?T¸Çb{ÀZÛÊ\2W8Ä7Ôe™qd¸§w8[Fkâø$"9SÎã%fÊžÑw>Ø]áywJ“©ÄL  Û:ƃû8ÏFPõÁ#ÈŒäåA”=õ¨ê´‰‚„ÓU’”«§y¬!~WðmÛ˜1– aTïl+g5ODº.ðTC²À×hNÍfXZ5xwô™‘EãO»Ù[ÂFéBÝ/••Ìs⎴pZ5®|Æb]£ò0첉vøY h8èxÌ$Ûþix˜h 7Ä“c®Æ &ÌeLEž>HÂSD MÚ©–+ ážVÔ°§&ú,ÿS&õ„Z¦V-ç‚ùj)IàT aKÈwQ-(wÌÉ ´”ɆæÁºµQ «´Ö3î–`,ÄìUTx¼0DY ˆ¦SŠç,º—œîùÄ A„Ð8—¢¥² °¬w Yug;¾GÚb¢çŒ@b';Ã,³ÍÌïîn2O¥ä•Ô)çYàF(‰"JSkâ²ÙP õqHSST¥U2–Æ`-;pŸØ¦Z&â¶j@T3ƒ¦Ð;åÞ°ÞlB²BÉt¦qІŒÁ°±=;ÆÎ&Þ«~cM§o°€SËO{µ“²ÕWìl±|¨®ÑXŸ'·2¾ÍmA4ÆNʲI5Ògˆ™Gåí¥D9±¯¦lÙžq!7IÇ?°##Ý™¨ªS¤JÔpÆ­‰*eßÔÔ$Ö#Ïéj K¾ï1CB÷QByÇslºjPàb˜… 5о Ї !L±¥i¼€œ‹t2f¦ƒ Œ;˜™¿™Ц}[÷]\2¸f‚ª³Ãyð,¾;¬)¤z,·i»rc¬ç+£à^€–ùPëeÜŸ>Ë׬Ñä@o.òÊØZÕ¬9}еNfmC@¼¨ÖɯMu¼ŒÁÊc÷l —É¥Ç$¶\y”¬\ˆ±Oˆe‡ï#¬îF7Q[„¨,(¡Yq©Á6—õ´ì\lνjvZq®äÖú:Ä‹msÅ5Z÷¡X~ùÉ»ƒÌ DzЋÜøõèÃHà³úU@ d ‘ž6Ä J©ö³åÊ*Ø)EÈv‡ÙÛ2z¼äëן”ÉUœÂÖ9Ÿ(ï׋ƒMÅókÖ÷g_?«€› ”wl®~:õÍ‹)”w(ï'MCV”(©rب¯äwËddXÛ‘~S ÚOìûn’Ši^1‘•a¬âYòáT7sí<’Ý}±¾¼ühùá¸Sçöåóîtw{u¹ZvÒ•:mX‹ízSûn~­/ Ã{V_Ü­ïÓÿæÄf}·®O ló‚ ºýý‹ýön’Š”N"Ì'$°`ë+ØŒ:Á.Ž>Z•—ÒöÑл/vÛÓÓ‹“‹íõÝþ#„²˜XIŸ0;ð¬ÅŸVñßf‡Í;)æß);ÿÎ>ò§¦¦Õ4uÏ»¯¯ï¶·'Û›;¬_©ˆ|ж dLü¯:zí룑`ÈØ£M›*À+jàB]H\&‘ÓA&ð ŸôÁ“µüI…Ñb|3ÇGØã!;qϲbEÙ!¬Õs;ÔÍ.Œ"åµÑ±´Ðýq{v»Ýî³Zb?Ìiím;…W›ÝÕGՆ܂mhw·¾ü¸j4¼eu»Ý_lîÁó>ÝÈÆkÓ›êÅX+Ûn!齊cÿž2·YçÉãpêqTO8Ï %¦¯3Þ™Ç$?YDõ6®²ZÓéÛÑÿ;Íwè4Þ{ý‡<ægoï1½üò˜ŸxÌÁO{Ìdúžr™Õ ÿw¹LÕÓk´ýÊ7ht|HH>D ¯e‡Å 8ä^µNÅ{r?¬æ`6´Ã#I(=/%>ëý¿ÓuJe‹Åê‘«û´pœŸÝ§·í>mqŸF¨·tŸÁ¨GÜ'xîÂ}B&•‰ø6÷ ; ¬;hI¡CO…Ý!²-ò*r‚0ÂNûݦém²¸Æü9¯ßQ¹Œ–L-wHETÿBp¦U}ŸéŒM»â~È« ¼«Ý­Ãˆ÷dû:+D&¾…ÔãÖ¶ ÔpÑŒ®kTn–YÓLûìâômmÛRJAÔ, "€3Ô*Ö/p[½"Råãš‹j3`} Ô$–i+:ÓA\º[–©;*⬠#Ýä±™L¢†t½”î×wC‹‰V\9G-êZDþ›–ZŠ&¢ÅL¿K^³âÿÙLeî.ÓâÕ¯ò*ìÊ‹®IÁ†ë@Íõ*–A9å4VÑt‡æk“§›Cymr h¾6É/Vx_øÔÝÛÄmšô :ûEJ~ß8j<ȸ+6üNtmͬE:€Ô¬k®„ñKÁPQ¯§ŸÊÒM2~ ä?Çb½ [" àg[ÚnÓuËuÒ¬ð~öz¢Š½ÊŒïï ¦^³(3v›Z({Íàßß§[éBœpi±·Î³h>a¿M(œ{…#†fAbŨÅТ/öœó ¶u^¹kyܱ}è>·›Ö™¢ÚÓ ÞÐÂØðš Ç©³gú#ç˜ÿŒ‹›Zf5z‚–6¿¡cåuê2÷ ù5ê0l´•u™Ïü\‚ d)ÓåÏ|¨P.œ`ÝtA¬™çâ·€w¨eÈ·4«ÓOmø líÿ{Z|õ’sÒ2Í ØÐÒNFòNB"osk¥H× Ou:2òªŠ½mט¸‹â,_Õ#ÍÍEþ¡¡™t'µè³Uê‘EI ñx ?n~´œ‚QTo­çWI¡ûœ†xµ;Sù(ÊÀCvMÔäCý°Æ\âšw‚ lpmÏ©œšdÛ fA¢)íèîûaZe#XI½Ä0Žoðó” › q=È Î^yË€Co¬–åâè7­¯'Ç‚Y ñQ ú ~¼v¿“¹ðŠ›ª* ˆßãø’1ó€î»]2JÓ¿ËÁz@‚H?P(Š©ÞLÀ¢ ö›Ê4ëä©åw‰'šÑßütgü‹Ñüå´5nƒ ½õpy|ô=üýª‹vbendstream endobj 129 0 obj << /Filter /FlateDecode /Length 1371 >> stream xœíYYoG ~ß_±ú°j« 9'h ¸H›´ÄV 'ŽlÙ.$[¾=~{9+igÖ¥eÕ6Š^ȃ).‡üø‘s欅5¤Ë¿ãY¥•õÇ ê—•·A™€upùzV‘öÊÇØi¦ÕN!(o©Þ‚2š­: aTÞµVΰl £•¢´±À]ϹÀ_©o…Š"©à PKE‰ÉRÖÇaPXbÊFKEÏf‰©‹¶‚TDƒú°:«°%²^þÏê¯GÕóm먢׾MªÉX£5*&–A¡võhVí6[o¶^H«}óã΀£Fë¬n¾ ¹<6˜fg04Æ(ºùá¶ D­cóæeúÈ›÷£ïƒ âdiÆ1Úç¨Û­q$"¿0îÖ–i»0nâ`ô[SX0PÚëzˆVÙ•WTÑÛæ«ÁÐiNа™wÊI']uÒI6ü¢S³R³’ÆtÙIÇt*Œx×tâu'}žãÝHJÕ)%éÝ [þÖ·ó¯Ù§”ÿEòVãýßm·(ý§µØð1Ͷ~ðm'¯]O±å\ v×Âׂ¼saÈ\2Üxußï¤ôɆ%*Ø+ª0,O?9Á# Ø¥âJ ÝCqÇ¢ÁóðÓwWH!!OÀO³ZôrYÛëSž\Á²ñ¤SÆzr‹0cÁ¥|Æ!ÅÞy@˜]ÿÙ#-pÿîÙó„SÿÍŒ|‹Ì[ERŠ7µ'º` 9ä´÷s¼ß²(÷a÷ù‰¡+FAå¾¼¬ƒDª4YÄÝ[nÉå³îûÖú oÖ2˜×ˆâô’çȳ¹|2°/íRð!­\ÆhåÉ5¨U¶×ƒÅc­E\g•uW/»;í£0‚¶mÒH¦7='ë)õ-¤§óXΞ\Ð)hà|ÞzBƘ|F‰Á˜ÈXº±TÍZ6€Ú§§< Äc{!³x°0Ð@¥ÁÉ6El7…LËlÖ°} Ë •C ëq²&f«åÙ2&äé1n¹õ`S{g釤©™$ç„hÁ7ç%'=* F‹D&‰ Ë¿¹Ž 8¨—iÁ,BO›l‰Kõb ̰­‹&ò:å¤7€¥ÄÅ*QÞœYCLѤ=/V\Uˆ‘Å‹…¥…È×>v«ctŒ'QâÀ[Kev›æ‰nw)F–Ï i¬‰DÑ3o Nâ</*r~Ü63SË 1t⼄Ú­umù» ½ÎãbË[etý–(†ž'ç–¬÷®lƒi©SŸòÒ–xî×^¹÷2ó'‰5J&ŽsŸO‹dJ|É„sáØ*›t‹ËÛêw ¥Wendstream endobj 130 0 obj << /Filter /FlateDecode /Length 5724 >> stream xœµ\ëo$¹qÿ.äЇ˜I4}M²›M:q€3r>;¸œã=9ùpç­ÇJ›“f´«}œäO=ø(²Ù³ÚÍý-v±X,VýêÁy}Úwê´ÇÿÂÿ_ÞŸènð§NúÓoO¬Rݨôé4ZÕ9{z2ù¾sCzqwòÉ›T79u:١AéS¾³#µ3Ý8ˆQéeìÐ NL8Žƒé–˜1²å¼ë¦1sþ-™²Æuƒõ‚)§¦Îõª`*ŠoŠQ©4]äIÌןޜ¼>Q$ÊÓð—÷§¿=?ùê…ö§¾óVÛÓó—',fuª@ j€Õ÷S§ôxz~òãFéíNy?Ž›?máÏÎY?lþüõ÷çÛ]ßé¾÷ôù>÷ÞõZûÍwßlwÆènôvóBþáü‡íµÔæ[ Ú.ÆôÝ ”…oÀ÷£Ÿ¼ñð äuïÏ¥zíõ°ù#RQý4øÍ÷Û¿œÿË ­ÉùÓˆÊíNϯ` ¿Û‚ü{sx³Ý ýØYg73>‡Ç¿Aò°~³çI½²ãæÞŽÎ«7ñ3˜ÿæ ±n'5m^‘D °¸¹â£6‡—L–º™o®ùƒr›÷Ûq>ì´™ïpžÉ;çæ-n SîðÙƒÙ<Âk«¦q6gLcrnóa«I ¦M là奸ìpßMІ<°Ä{ ˜äí6 PÐooóg×¼”¡Wå${"g=¯<Ž&yx¥†Q’R:ìó`”Òžüæ5°(¿»>ïq±ƒÒjINX IÑõfrSØ-x?äxUÞm^ÒÎjÐ ÜCLß;KBÂÅô¸é¨7»¬8ª]W¬8<ë @¿n Å€ç¡ï­uøñW/Œ‘§ =œ(¢ñ°Uœ;ñé:=]¥§Wéé2=½Ý2ýâ´߹ѻHŸW8L‹Že»Ï»-·×3ši¬6%®_g½l,m7ÚLÁbõ†}a^$†ÿi»µ†3ç$½œÓÓ@øéå.¿|lÈêuzúi“_6Ä{HO÷™âoòã}Cèûñ¼;ééo?²®Df›ÏòÔo“ÇYËÔù«²†Ûœ”þ»“ó¿ûqó÷ÛÝd šF8aËÏ÷ ây]·Íuéï½d'Ç›ôðlÉË}h<å5<µ$©ÒÓ¯Ÿ<Ù Òo¾ûˆ†¼lŒÌS_6hg%>4¾ì¼’S§ ÿ'íì»Q#zõÿ´Z¹3™|ŒO÷Åäé~l4¦›kš›úý±oâSwÔpÍ 1\·¤y×ø¤i\ó|ƒŸþóø!ù*=™–&—ɸX#Œ ¸Ô •ìë¡•§ËN½MïÙÛüùQx´W9숻=öH#ä¡{e¤ÓÞ¼Éèó Ç*‚V5] (£G“Œ@×;?…·„7ï²ÿœß0 (¤IÛLÞƒ¿õˆ¼]3oçGþ̉ìÄox`p8„ñ+1Ûøät²2 dI€\•… !œÿ^b=D8=€¨bI¯P•Bgý¤×ظË{ÃàÌhc )Ÿáûq­…]І%„bQŒ_{ S ÁJàx™±à5)–éA£Š˜i¾™ªÚ~°óã—„‚ÁjˆX0¨œ{3j„?Å.…ZÍ‹­!è(/1(ï.C¶Ú^˜Çt°zŒ#ðqDicÿ€Å¢èÓ6\Å1\P²ÄàG8äBœÈ¢•úû.«‘8/s„&§4äk¡ŠbrZ D°ô ±ñ)‰À–QIü»äý‘ǽ^ 9ë×q¬uƒ˜³´Í}ºËñÆ,Ìü IY™Äˆ·AõlœDջ͟eƒu*ˆ§M"249rš—á+g廩X›‚Úqðº0”RÓ95^W’ýð,K#|âd[Ú;í ë¶b(:žÄQü¶~¿Çý²ÅiK¬ù•èvFMS®sk®™‚CÏ‚)JQºˆ¿îšð#S䥡"€Q)M§ôÇùy¦9GEÂýGU‚ó‰~%ª¢ˆÉ¤†Qø*Ôåü yZ†^3ÐòÃ]:¤Í‘‡R›å^_g‰îqW!|÷+æ“.ƒE*Ä·¿£·Ó`ƒÑp}¯€íÖÎq²Sµ¯ø!&;Àe6ø‡Ä3¦:»¡ÃϬp6ÚìeWN'Ðz°û…¶‹ý~‹ÇE)‡Ø¿&êäKL‹¼Ï»²ä‡m°tgY±¶B*_ $r—BM9Ú0ذ|£±Á°B„:š¨Í"-´P€, ,º©´2Ò*µò]¹iÉlî`©äˆQKð ›ä€ïâ½BosJZÖ+¦2:ÎCÆïPõÇÞiLXCÁ¦¯©‘Ðý [`ã8Û~Û7ðÂB_117·Òœã"<˜eôølÕÑT"ÊMÉ”!c&5ª pMÇC@ÅœmLÙa7|œðSÒ—ƒÄƒ"[y#)‘Ö€CÐhœ6x*Œ^úì,°™aëf•I‘;þ ßìÑlÆÉäFHÖ'óì]¡5¦W°,'Gø-(Ú!E¿ØpÚ;.c˜ä†jáp gI¤¯Û9ðù¢N$j«‘´r8œL n3Ìœ÷qÕ“tœÁÚ3vÖó^T²O©Q´å`?ŠHD"Vi;>/"$6£ÆéÈl¿tíɲUSÀô­šÜŠk&–ó©iga)„¾ ÇtÙ “?ðÞPMçJ`G ÌFÔðu|Ç^…WÝókÀœ"že€?ì×]Å…¬X7$«F‡K¯s‘Ý d¾é¡‰ûñÈ!J¯¹È‹ ˆÃåJÚ~ qd¥qqDð/ñPbâÃßg”uДìý’·µ‹[i7ç"N¹ÍªyDêäN¥é‹1 ~œJÂa‹Ï.„n ïÞ®äAx˜b—ÒGGp¢4‘ÕöŠuß§js‰TK«OÐZÓ6 ó|X&›‚õjÅš\ Ÿ ðóÄSÃ.Kù™ÌHHÝ Oœ}‹Ä”HÁrÐê¯íºÛ-¯ˆ!F\ñJ’€æ8ID)˜-Po´¯EÊF$è«©/„"gÒÈ»H×,,$³»jÂþ´#”aýØḳ”’2€Ù¦Ì IQêvµ á­ îëвû±`‰ƒoN»¦"ôO›,]‘©«ë0M¿†ä0lÆ« A¡H¿àíÔµkÆèèñ;ô¬¥ÕË.êælÇÑVÇ4pçœ_ ’›gà 7UÙXzpù‚Â= ac0›.ºÕ˜'JfPÔ¨#aÂzdS!¤Öý(òD²¾‹!CÉcKg.Ø~'|ùnÇÀ™°Ó–5lùiK.¶ìF—U²l´ªÿµpG’Ò3ÐRºŽÓ{\W­·²ÐŽ#†Þ”.¾ˆE0C01¶ðÀVïE”4KÏšFÄ ’i"fÊuæ‡ÞúÌ‘¯‚¿3þµÂ.ÆÑ"´“J—F0Ì%žè¼¦ÜMŽTÙX@D7•ëzÊBo*ù ÓÅìs¡-ûœeÆL;ašËà[>'rqýJá!M­-æ'õY6Fr¸Ó;3`SM•/”&¹q“õäøa0Æ;ÅQȹ6±¼Ã¢s"§öØhˆõ«À »9Í£‘É``ޤñÌWkâH¤ñ‚.Œ·°ÐÔîÆ(©[Ç9X´ìÙb»Ž˜O7×qKÊìK«#@b³H}*{xX²eeç%;úh5 Pµ!¥ ¢8ÿ/°Žá]Y¿Q?e#ôÔÒ}é€y,æx.„þð¢|Ë#\‰·ÑÕžÇÚ:­+¡Í€á®/ºË$ÒÊûÆù’^O–Ñ-²ÓséÊ#åÒ¡ÆÕÝ“­J bÄÎ%¾³„§ „B ¡£!Œ7Ò3‹Ó"ë‚È@ÍV±Í£Ð¾XRÕEžUŒ•ÊG¥4Ã.¡Ö²2p ×÷LESŒÂÄ‹†‡¨?“<}‚BpÍüÑsÉ`:™ e‡ü¸M•¢im,ÁÂéQ×I¤7êWEªó«F‰»ÓÖ¹$ðyõx0°•:VýQÒÊÁ)Üg‘ö‚4º\Šë3B]¸â×XõþW,&ø_ÙL˜€À^…VèVû”ey§ã)0}üýAd-Ó&NÇà2ŒÀ|É*\{üÑü23t8²¦`‰cùä]‹¬ÌÀÉ­Ù©Þw0 Òá ¹a¿³3ÇŒž»Dà9ÛAdÁK>+—;e%àJ²¤eôÔ¨ÜÎ<†UàÆ´3}ø9„͌͡ùS ΂W§ÜsÆ¥ic]ÌŽË“øDã‰GLE,àKb£€‚Ó•äcÚ/ý¹¥ñ‡Ìï›O Ú3¹²>³èÔa£†– 7_d’k-LU þ‘‡’£g F11Žú}èB3ܬ5K±œEÄe3Œ”ä«’kNÃPºD&Øëú¹2¥¦<2] ' %ÊŒ 5.OGrÜ{&5RÒoåpðÜg &¼Òm"ÏOSi™–àýA(ÉJ¾©]¿Êl¼ÌáuÑftV¨(ö©W‡tþUjð†Ôï½/NU³³PUY™½Œ5y£—/ÒfL¤9C½kÙ´Ê«ŒWËö7úÎzY,’МZ1ªN¹©&Q¿!.|ó…묋™"i#ÒØB=êÞÇ)øÙŸÓÑŽcªC±ãôDé’E˜w »^Ài××O¹@ÔŒkµàN߬ôO¬ÄÛeî<—},=’ÀŒƒñ« ‚cJ‡òhò¶©h”BcâK+VK‘f9*6XÑk•𶑈÷®‘r]ÍZy#.·¬¶é–Æ2ocø½÷Ë®º0g]ãOÃ…Í»æ×¬dÍÜÓUíÍiçžø;WT^¤~̢δ4þÔˆz™ç—]•¹©êÒGÜ’ÁæÔ¡z;É®xˆUªá‡©ÑFò™™’æå¥<ª2;Új’Ç“(s³*q G\ÈPÆÀ³èäáÈCM"òоk¤£d-˜1ôñ2ZæîfBcOi´¾‡ðRB.ÿ‰…çà Q ‚9ZëNcÝÆ”mQ+D–I"qÎÑ݆S6®ñ?¸·Â†ndK Ê"Ýó{¬¸Ë÷jPß”|—w?;¢+¹³aš•õáÁר ÒbˆÜ,e‹eµSWÏ*$'A‹¶†ö5ºÚgÁÜ–wŸzS®$wY_ű+]Z‚ç4æ–À#8Š•¼›0v² +In(Ò@œÁ 7…è³:!IIϋ΃ð]YÉ}^kÀk¤á%茵ŽcÈ::³¸¶ {¯1Gù–Gx³*`Êý—­¦fN¢‚¬\›{döÀů”œ~–•ZI™S©[ÁD• ~7ð'ÄOh[p¡&´%ô~;à5ì°Ú¿³°¯”uç#{(ºGo„í^ÀeâÁ¢D­dšû!À´ME§áȪ>¹åmÒÚ‹-?¹Vvw–9`.qáè4au{ƒŠmÓšŽ•ÙUò¶™ŠImF¸8é6ä6(ý){0¡be¢A¦µ¤wl‡Ä¬¢)´ÁôF` ø9†ózÒv³"sÜA—¤¯^ë¥0z 8Y5Øèõ„Züb%™÷Ñ»3ëÅ8NÚ,컦ۯ¼ô<ÊÛ ‡…ç>Ú=²“=HÉ» ¿íSD[ ª;ƒÇ>íiqsîÏOä#ÛHåµ7^Ÿ/%)”.4ô·|ÖV^Ty% §î•ô±³¨±Ï‹"$Ù/Ay¥ùù2@ÕéȬÂá"Œ2Cj?Ìd”ɋܲ”±‰q.#õÕD¥NÞȨY€å2˜N2œfëøo1Z´ÿZìIßç«…’S†ùã6&hFð)³yE+¢¼Z׬w•Å ãâcOÛ—%Äa-mû œ1=ºð”AÂa–"û;©•ø¡ó”[$vq[S#Í‚·•‹ÌVÓïCèU’Ý_UžïHý×)j íšrDulà4µ<·ó~óSÁ“õeBÔϾ;š_‡ÅpoFôWǪëmuá37šì“‰z ` ?´½YÏ<”™•2{Ôc60Á›™ùŒP›»í2Uëw^@îƒÖùwdR¶$x+°á?çöQ¹É—åºÓ–ÑK±L®Üš‘MŒ¡††imö„þ4ÕžðHÄ€æ´ê»L1ãy™Ã´¢4œ£ qM†P2ZV8lMˆ†FYZ)*c™/œãÏ5­ä¢÷‹kÌ+•9‘|.ûyýÚØÐ@?# ñl£Ê/ðw™´@£Ъ¨æp¥l¨ÖÀÙ…Ð뵂ý›?f~Á j:HKþÄŸuâ$“ï˜úQD®|Ñh£a¤­´Ž7¾K3Vv†ç÷eÃ`aݽ9 &ôèèg½ªŽd¼1AW"ŸÓÞp¼Ûi™ ÔÈ:äJUm%Œ}*#@ûÍo9ÖRÕïŠ]fõœ…çdÍ¿™X*ÊÄñeþ¹´âÖj3b¸bnl¸"(¬*Qs_V‚uõ§y5`'êi|-ÚÃ~'CÛvÈRDªªÆË˼×]m.Ãl«½Ûx)ÑkªÎ¾ørK˜ÔzŽQ4Å(k2ke>ü; çxsõ7ÛŽ´âaW0ñW‹&ÏxŽ©Vʸ:UE%Jì°‘ ÙÞÌ£ã`#¥R7lÓŒªzšßò_ßžhlˆtÓ‹_Ô š$ VÕK½^Ò[üà^¬×Þ¡è©Þø%Ú²ÊS°ýe‚î‘ W—XãtÂoÑw€xzˆ ä–ÒÔ¤Lö¯òzáÝv¬?/ÌM‰Äžš¾Ìj¬jÞF›òn_“wih…ò}Ù«õ&7hå,H}í·ìV cŸÕÖÊ£3³j”ðïø³“~Dº ºÌÜž@ÝD7J÷ˆóÕw;"ñ!X*r õÃÜž.sø)NôoÉäê a`[¢Þ䫊äHakŠÖÆ£¬ÝñG!€ßñ .ýÈOŠð‹>±µü¦z«©\ÉöUœ¾ÜÛXOT^Öw³ÂTÙñ/+Ôœvu¶#6ùC©…z`×Ë,îXП1 ÛŽ™EÎý!xê~ºNÖ¦j‚¼¬lº  ÌøzVê}‘Îøç<üºmªKgÈ¥¨E¿ ¯ôß±¹ WFyPI4°àŸ˶ äïóg¡wÎ*DQ®Î2IŒõÍùÉŸà¿ÿ€UAPendstream endobj 131 0 obj << /Filter /FlateDecode /Length 2880 >> stream xœåZ[o[¹~ׯ}Úè,ï ¤ÝÝ^°Ý"‰>d÷A+Û²Yr,»‰ÐËoï ÉC•‘ãÍ.Š¢EBó 9·ß i¿ŠANþ+ÿ¯n&j0qún"¦¿Ÿ8ãíåÔ['‡à¦7“ Üàb¬3›É«I~p&L½3bÐ ¤êLqp6IY cC„Æ *c|´DŸµ¾†NßhUˆað–U&¨MN‡Á¸Hl ÒAHjS*L±©jM"ÚÄt=y;‘)ÓòßêfúÛ³Éç/UœÆ!:å¦g—“d9•F^C`Á(©ìôìfòzöÕ²4·Ï›¾µ!¯úù\„3H(Ïå4\P¹CÀBÜ–ŸÕïÏ÷‘DððhÛÙ'¾aÿ3b9_¡‡–ÄáG¹ó‡§¦¹eìšñËg#­KF Ç}\¯ÆÇvÅh9=¦Yk«¯Øð4>‰l$“†=³û’I mì8Ý\[Øöþ}þ'lÄå„ÕÇúçÇ!wù¨¾ &‰O(c8sŒ‘”v8sW\|ØK‡ämcvÚ‘ r:[8µ|ÏÙÑj…ä4þôŸ?õ§÷Mœß{78*‡_žM^LÞNµ  Û¥ç%•´œJ«ä õT« ‡OWŸ¿”ÒO¿Øá’Ï1ð=ÀFÎpÏ1ZøAë@Ÿc¤p€C+­ž­ðÅÆ(”…â LðÎ#sá v&ÕÐäMy^1‘èµf0V£ö³sÐô ·R(“$%}P‹@Ú¸€¸øÆå= x¬W¨´pw›vA‚ ‚VJ¯u$Òm øè…‚YB*‰€Ùk;•ë6¼ÈJ*°-f‡(SñÈ{H¤Ù6ò>pˆ.%Ò+”B@´Rœ Ø$áx¬Æ×-„Ùð01¨0»Ä̓”F¸ÙŶ ‰(qäÃ"‚Ÿ!Ù©f¶…E¶¡èfQ6@ª¾(†9­½LyQ!8…>)0c1: Åf£˜)dUÄÃ}–4"Â5 Ÿêb´`†Ä gL  `[<'*U)°¬õ {\«cÑAÜÐ:…ÃÛ¦œdäî:B €¸™×á-5µ&-mmà»õò ™Ú@©Œ¶‡ÄîT˜e¡b@†¨:Iî·=€š¦e—2mvÈ]æ3hŒGó{t.X#;/²NF<2¶ž½%‚ìUJ¨§ ¡Ü4OzÚ~CÏô´Ô^_#?€ƒ“.³D¡•¨-`jbD6FšRð­²p”$àf‹,Epûæú˜¼É4åa ú”¼»É Ñ'xœÇ‹Ì:n9F3eÙ‚¶hŒÎ~ô¯Ý€! çšMæÃqµ™",âÞ&<ÚµS©™UfµÒŽ*I!‡óL© +ku& žƒ_Ë,c 5•I¨rB#®Qƒ«4ï²³EÍ:̓y2tó#'½5¦³ê:1 Ô 9ÛUh wé@!ÅãiÍH>FaCH˜)vÒŸeCÄÿÝ\98·àÓEÖ C„8‚hð2B’›þ†9RBv2÷ º b†fd¿}b#VOeqø ç«©[æ9/;ÑÝeKQÑ,"²9 OUÉŠÍÔ_OlšÄuª˜Ú«ÜX"W  $°h[ äb]Ô~Wd›Œ4‘‚`·%ȃH+å¢7Ê¢7¾Ó.…)sâ>Äì&oàÌ-3Ël—ŇD<#ç,{ÿ<_:Ãø;84÷0¢RlÕPvÞ‘ƒ{Õ$(N·YÚAaìNÀ˜WS…tYδQ.Œ¦yüöôTÞ—’d†?Øh[Ó¿Î&@¼NÂ#_êS‡¶‡fͦ±Ù—†{È©ôÑçÎ*¯;4ò¤ÄCê ~:  ŠÁôˆ»¬ÎAnöࣆôæAÃf ÏgN¾é\‡n°¬÷‚á;ò[º,îT¢7l€t¨ätíƒO`/æõX_f (ñ=d¡"*2@ÖbÅêƒÄÄnáªÔ'—>ÜDš1Z$vëìuÁSf%”F€wd"bÀ†gP‡ì1¯d}Ð%R-NÆ›§ˆ=Ïi¶wȸ±")® ½K¿"uZÉñ\%¯×Ùmˆ»ôé>ïR娄Àð¾8Jà öv‰ôeÀö w¤d%–ðAk;öIù1K|H’Ç4‘a1º·Ým8ôÐIˆ1~¬Æ/Rz‚‹åtf[f’ZŸ`PR©ðÎ#?ñrßð•‘aŒ“XGæ36ös`?E~ÏPQÀ®µtÑzûÙŽΫlÊÝ}8×SF²^*êß0Óñ(á:¿éìÏ]Ö¶<ï&Ç-®YÞ"êºâ=Æõ²m°#=ÉMªÎ8ûPÁIœX’È0Å/±Q‰)’.Ó>OëÄ É dÌR“…ÁËùÈ[4ûrR+Ćl»iG$V­‹zZrQ/ºNõæørCúÞ\pì!·ºAú§u)¢pG¤mûæJåÕÆH½ÓЮƒ3ÀBk¢K'9ËÞ‘¾zIZ”_–›VÆHÂY –¼F\e'²ÍU¡‹Vw üšO›¼Ü¡+=“N œ’ë;4Ì#Ií¨ÿoÆ4©§46Ä‹l…9E¢«\Îuá2]ãß"9æ0»àC¶|ß膊$n љڤ˜KñóùØäÞ—É®8„,u•,ÕQ©×¹æ¢ùÍRºàhJè«Qú¸†Tã tu8åÕ³f2­á$0¤ö_êÌà%Û%Ýçy&Èç*—Crõ©×¡C3bLšLj¸yÓ|-wzÈe:A›z¡ÃÝ>w pƒ± 0ýÙ—Æ¿eƒ¦ãnn1ν³ø¸‚T‘/ò‰ðq5•ÙÌ­™‡Fð™Eé¢Ô}ݯm~ ˆ^©Ü,•qzÅ•pwEC$ä>¸qnßÊK¿È*$íò$„O\òHΪt4 ¯^‘Ç Ì£ÁßûšÔ–—¿mËþ‡t;m²Åð`à$ÿ¦Ís¯‚kÌøþ@UX\¶6—²š×K#=mþö­„|`Àe±ï8ºnV§ƒß]~ê¶ëÞˆz úÆéø0ò ªvRwÇ–Þc‰Ü)ÛçÀ ¾}¡ _ÝÑJsq‚ZIe9ϰ1]—²ñḻãnQ¤¹Lh3Ý÷ +<įäµä¶±áé B¤ÒìK¥Àw‚ôÎ/ ]Hß³®“…vä1h÷¦…uèù#ýâãÅäߢö'éendstream endobj 132 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 221 >> stream xœÒ-ÿCMR8‹vøzù-‹ ‹ ›÷T¾»¸3ˆøˆø§v©Ô÷÷±òÅ¥Õñ÷bó÷‘÷âÚ½Q"ûDfVT@ŸÀh¯¤¢¬«t¢kpozc,ñM÷÷èçïÞI×%¡Ú§ÆÏ‹ÛÛ1Ä# :Q?f¤{¥ªŸ¡¨°k™uŒµÂØŽ‹¥×ƒ$Ena}{mlt‰N‡xŠƒŠ‹~}”‹œ 7Ÿ ‹ ‹ ‹ aOU¡endstream endobj 133 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 174 >> stream xœcd`ab`dddsöõõ4±$ºëÜúáÌÚÍÃÜÍÃ2û»†ÐQÁCüû@r,%‰¥ Œ2 Œí L@~辋ê|ÿ~ŽñûëïÿE¿û±MÛÚ½yyaw•üïólyÝÙáÑy…iaÝÍõ3ºû§õôN™(·ïâ‰îEÝOØ4~_i«îîên•,XÒ6yã¤õ3ûäøä¸XÌçópvópuópwó10=î=_endstream endobj 134 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 213 >> stream xœcd`ab`dddwö Ž441%º»rý¨gíæaîæa™ý=@è€à^þ] ÀÈÄÀ°‚‰‘‘¥éGßϹSüðÏø]ýG9óÉï«DÇ|®ŸÞÙÛÜ-ÙØØÔÐÒÛ9­Aþ{ÌïØß@ÜÐÐÙÙÝ"Ù0µiêäÞÞéÓå¾GaòïäÞ®Im»%§Ož2­·»¿c‚|Wïoãû¾{÷–˜0qÖŒ {zûû»'qLkžRßÜÞÞÐ Ç'ÇÅb>Ÿ‡³›‡«›‡»›GˆE¨Tendstream endobj 135 0 obj << /BitsPerComponent 8 /ColorSpace 28 0 R /Filter /FlateDecode /Height 320 /Subtype /Image /Width 480 /Length 29442 >> stream xœì}TSÙÚö|÷¿3ö^‘ž^ !@è½IoŠ4+X@EEEEéˆ ( €ôŽ´ÐKÐ$z#Å(=¨¨ˆÀà¨ëò¬E89Ù9%ÏÙû­ûÝtú°€,` XÀ°€,` XÀ°€,` XÀ°€,` XÀ°€_ϽsxZÿì+ø§ðéûüÚøÙ·÷áÀý³¯àŸB°üGòùþo€,ô³¯àŸÂ`ßi°Àï´˜_~”Ö°ŸÛ,_{:ŸÇþæ‘ßI—o6ï7ñûðKõc¼QanÞ2^,¶17ï£Óß.®|±:…+~c©xÕ<žrùtÉ7ÒÛN§ÿ½6¹çÞÄïÃ/Y«ž0ÿUýØ—²B†¹™½q„~Mñ×.£cä¶è¨ÌçùæßI—ÌÄØô ­´{÷oâwâ÷Ͳ°ñ­HÀEMµ™[#,OéJÎôPèô”¥Oú‡ÞÍççQ¿útÉod8íôÆlæûx¿¿µ)2~wñb Æ›º…ÅØÞƒ‡:µ3~¦ŸÆ¿TO9¯öó’Ç®~üF^½bìÛ¶wì£w¿¿ƒà£#›u»jxüà™[ÜêéŒ=u$z¯ÛÆy<çüñ;é’'näýÇý_â÷ÞÄåwÿZ/•úG?ûïÄàMàò ¿æ’F¿7Tÿû³¯àŸ‚ûGòûûÇWÿì+ø§øÝåïÅ¿ÓbߟŽ~§Ã¿ÓbߟŽ~§Ã¿ÓbߟŽ~§Ã¿ÓbߟŽ~§Ã/ÃïèÐÈ÷M…~§Ã¯Âï@g5¹gNß\àw:ü*üv¶ÒhUsÊéXàw:ü*ü’i4Zýœ’îø¿ ¿ ý÷ÇàWáw€D¥¼™Ó7ø¿ ¿ôÑá¹}qßéðËð;g,ð;øG–Í•Ng[½zõgRbߟŽyá÷ °ý-ôe?äËý üN‰ÑqØ)1/ü¡ÓGªe¿Ü¿Àïíª¦vÎç$‹i1/ü:jó°ÚÓ“¸x·\úlÿ¿S ¯–FkîžÿãNyá×ñ²–QáOoçž(1a`b½ë<ü_Fµ©î§7?‚ß7Í4­sþ;5øØ˜DãþÑA\Ñéî# ©²ß}òþ߯ÿVãîMŠÔü~ßSi´¦WóÜ©1/ý— {ùXxeçH¸dòþßß\U±˜Ïvüýê5…Ò5Çhßì1?ö‘'Û•þ~àõÙîß‹ßuµ/“ýŒþ<2G_Ô\°àßÇHŒ°jéW{ìßiñÛð;xc\=Åþ~§ÅoÂoÿ=Ì‘–)?YàwZüüö¸ÂN|Ë\YàwZüüvœƒ{ýÍO'~ ±ëMÇS<" w½Ÿø÷¿Íï‹s(×éÒ^~#~‡Ù#ßiŒ¹I+*Þ뜚ø÷¿Ìoýþ{Ó;‚%~‡ÞO{­©¼ û},Âs]‹NÏãœø÷¿Ë/q>ê{n†_ˆß^J-eºY¿ítz÷"æÖ%M:½è?ÃãÿvüòKP“Iù~«_‡ßf %yšçñª£‹ÿñ–±Uº¼¨Kûîñºÿ“üæ¨ÊfÒî×áw°šÁ/uðÛ |ôý÷¿cå{Hèµÿ 3ÿÙüÏlù.‰¸›ðbfmM~Gc„UK¾ßŒ‰_‡ßQR­4M^@cP3·ÞwÓéÅ@z³¯)\dÊìøí<¾zµ øOþè™´þù Çϸ¼ò¯Ã/} ƒÒ1]ô0kÆðöó •êUÛfj‡$?ÿòû¯Tg§_Çû¼dþ¬Ø/]üýæ¿¿ßtUM‰_ˆ_fýÙiQÂÇaÊx'jþõ.òÝg3÷™ÑÙñ;©nmgÑ÷›ÿjüö¸ÂÐfó…_Šß™ Î[ªçÝðiÇìí£®Z&fÔô×â÷ìÜ,ãêÿ"¿ƒ¯ºÿáRc/š!¯W|.£gͯÃ.f`Fm%~ÿ>‡rõøïñ;Lnn¥¾ó×ß%Ûàð§3¾^cÖü® ˜yîÁ¯ÃoÃïiŒ‹oáßã·¯žaÿtL¼y÷îÓ<Ú×õö›ž«Ñ÷}C#%NrpÓЮ)Ìš_ÎYÌsúUø}nÌoN9?‡ßaR]é¥#¥™©Äo,›3Ú™yI¢çý¼ª:µè™5¿~º%/˜QÛ_ƒßrc‰˜9&”ÿ«ãs uÂÿø¦‰FkþÔê%çËHS0;Âvƒ$Ï$wÐG™Î-ÊÐ×!¤9ð{k¬úø3jû+ð›.·5wÎ_þõ«¡×Ý"Y¯Zh´ÖÒo«Š‰DrÇ—Íß¥Ø Š£Žõúa Ó¹5ðU‰>~7Ýêég`Fm:¿£1¢ª3°ã¾‰Ÿcõ1X«éxÓÿ,»¢ðÙ‡ÁwèÍë:Sà"ÌÃw ¼ª¶ŽÑÓ_R¨µä‘¯BHô9ð»²mæm2¿#1xcÊ?:ÂO²ß’HŸTéÞ–¼ÂÎ íaˆÜs^›aáÖ3Þ ¿êh¬ ¦Ö ÓG^T¤w~B¢Ï_û ½ ̨íOåwà¯ù– ìr˜´Â<ó;Úß?—Äçá. ù-㻣Zœ¸ãÇèj¦eÛi5ýô÷µŒñ™ôu‰>~—ýò·×~¤}ö_ûÂJž_~G:©µ¤9Ì,ën¦5—Ìù°g# ò&Ð ­=›ÐL«}O_Ç ~BbXÅ ÙòÛ9޵ýiü2]Us˜ÂÕpéú™f1¿üöÖÏbfÙðëŽîñga¤Ž”xË©îYZ\ù$5:ƒÆè̈R ¹(¹þ¡û]ÒÊß…F‚Ö1…ôì㿃ôêNúIüÎÉU5¥•<¿ü2g–µOõÓ|ˆ õ¸‚®&Zs'“Çzy.éãw J© ÅUÙI}ŒñšÔK¬M/ÎM«~ÞR[ÐÚTÚÜ3:)„”·R¼e[#}ãsþZ/úù3[Îå§ðûU'œ¦´’ç—_æÌ²†)ÜCÃTjç˜Pí¡ÔPÆŸL†ÉÓVWÞ±)g™ò0¿ ´šZÒH"ÄwŽ2o;åeUR©¡êV›ÑÆ|lƯ:šÃt ÃxL€²œ‘`¼ªÎš_A'Æ¯à‚™QÛŸÀï]U9ªbiSìžgýê-‰Ü=Éñøaã5£_70}L;¶42ò¦ëÕ¥1üêxêû2­ß@I¨xÝßIng´{δvËi¤r2Âà·.µÖÖ5Ä4~ROØÄvöñ ÒÙêz{gŸ»œ`{¹lFmÿu~çæªú¶•<ßöÑè§‹ì"w0FæAÆPÜÆËL w€ÑÁÛŠ*óIí¹×·r)ŸÏnîêÈ‹}Fn®kíèê¢I=LmšYO«$ÓꞦÔvvÖ5S ›Ë ©—ùí4.¤¿_Îܘ5¿BþŒ— µý—ùýF'ü¦³’ˆý;ÐÃôv¶ÐÚȃÔê—=/æM-sXa˜;”ÄôcÒ@u»,R¬gz¥¨œ˜Gxý¶·wp¤.+L`hÓÍÙ)ä”öªÔ§Mý£}oÞ÷t<±F,S¼U±hâat:e5ÿj¹ºÙËß•²û•–=ý|çxýo(<á³Ýÿ&¿£1"ÛÊfÿµé­äÁïÛêÆš.úps}ɰ|’Iõ„gäW£#o»Þôìæ4ð¬nKj&Ýð»O$–uÔk)mO²3Ó _ÓIíµÏK^ÒûÊ’É-ÍÌÞÚn>d •Õ1nü2ž2^¸µvðˆÀìãû»Y:ñ‹Œ×Ïi…¼m|–"ôïñ;¿{ª €ßÁ÷¬äÀï(‰Alõà(©¥…Fù»F- 2Œ&†Tîª 3@bŽ\ ÉÎð+¯'4g…»{ݾ{'»°(³"¿”\ŸœþØ;:¡u°ý¡,£®®¤‰RÛX—ê{„_àDê«¢8Sáܶ—ãÆ/=nbøá'@fůñG1Õçéûi÷xýŸãtúÖÏ:ö¿ÅïÀ=Ô÷]U£ïú¾P¼¾o%ÿ~G˜±€šÑ–„Œ¢WoiU¹”º†î‘R'0^íÀÕ°À[WÎØÝ£¼}–xáäI·‡.v7üRjŠK2 2ÓÎ\½˜STãèa}ñÆÃkV2Ü›5½Š£ýû<¯#lÁ9ãüêù1^ÂkCµþ£:+~kô%®ÇP^-y<&…ËÇëç8ܤÓ÷…Nnþïð;3WÕHg]=yòèÒn¼õ½’»3ä÷]÷ë™»¥ÖM y¤§–B$¾é,ÍŠK ±Ð„ê¸D¥X»89žH÷q½™ÚE ¾}ÁÞ.Þ787?´$*ÜÃã®—“orzEàµ;lìLAëÐrÆ·3#‰¯‹Ã"Ö\~ªnÙÃ0~éƒËËCMáØåÑöJ³ŸË"–üß·ÏüãõsÎ1Dð¾ ñ=ÿ^ýœ7®<3rUõ6Ðh-Ÿrê ï~?¡cfüöR[šÉ36ʆ»I]ô®Ê¼ÌЊ‘ŽâM8¿yd¹ù™§å5×sfI!g/?öŒ/I¸wËÁë–˅ا¼#.Ÿ÷ôq¹îäžUúÀñ À&¨ž‰ùÙý»®ú=ndÈÜŽ´¸Œk–õÝôÅO’ þ¶:@wmÔy1—ú9_ùÈÇëçxÛÐéjŸ9>~|ÿ¹«ê3çÑL­ä™ñÛÙΰ_§Ž¸Œ¼{?:Å›‘wmIOÒã\¬Ñ M›‡„|¯âŠæö,ëKöÇCo]¾ásÙ=$8À#øÄM_÷ˆ+·³§NŸs¼ì“èd©¨=í`diµ]ó´oTî‹w#/ŸÆ< ô¬ŠG®ÂÉ Ìûéc¾ æ™æ±~N3üý ®Ï*Î%Ó.ö®¡çm÷¾tïšÏåkVÖ'n8eeuÉÉê¤ññýö‡måá¬(…=®É)®î·®ï6U79éwï^%&((3:èð"–m|6cçóm07æ±~ÝG@ é³Ý?–ßóY¹ªú:H¯™¬~ÇJ ·úôffüöP[¿1>wðL ½a:*èNªÜû¢ „ŒÐ«6.º<)xßLéq?Ð}ï‰?ïà€€ËöÁî7lož9uýÖ¹3¦Z²°õpÃkWœ½¼ž¾xß–kw줭…‡ÛƒØŒ{á¹)g%¹¥¸ÞNÄ÷Ç}Lü¶óCçÛU5ŽÁô†Oog¨_õu¿šZ–wµeRtcKHí- µ%•5ÌÄ$OG”¥d’ŠËÓm w]>›I,ˆaÈѶGöfJfG}<ýÙÅG9Xî³¶ôöÜo*!ÀÆ¡¢wÛÙ3ÖûmÂÞ½-qs4=°ßÂì¿à}òP¤©C%í†Úë‰øþ¸oƒ¹õ›òËè„©³ÿÖ÷:ú½GZ'}4ôö͘ªþ–L­«z?ÒV™VA¨#$ÅQ€a½ê¡ˆ„úŠ7ýa—t·í0¶|ïïZÔXauÌÈhß‘³Î·¢îžó3ܹÃÀâ‚èf¬ä£ûlžÞwÖÀü¨µ[9üèA³½:ûvËqn’Üç“‘•RLµÕêwqŒû6˜W0{~c”åkƒfÖôGñ›:§¬ªïYÉo]yÏ}‘Dü ~º:ßN7v ’›£-}ôm}frJÓpgyAXAqÔA«ôî{SÛßuÄgÕÐÈ££#5'MMôwØ>õÉð‰÷µ: ¥­+¿û´Û5—ó^7¤à›7Šî>¼Ût›ª†™œ¨æVkZÒª»¼½/_4–ä\Ò=ä_zçNäÃò8¥úήÿ~¸°¦?ºÞ§ŸÏ–ßÀ-—77³8Ϩíáw$Fؘ<û¯}ÏJ~9U¡•©ù"·Ðê¾]”…ñ¤41l±nú›Ú¬òìê›Úª5àÖýáwl»](£ôwÕ4Qßô’(„; ÷Yœ zrÃãÎí ³;ôXpõ={'Hg;LÑ!ú¢••œ¸¶ /¯–¾²†Œ„„Ä‘»w¯íâ[³+«!¥fîåö8­¶6¿:ËN£fÅ÷ósÿÑ‚êykÍ:¾EßLÏášQÛÀo¿ïá¦Ùí{®ª&†&þþëÝSó;–‹Nšîlµ5õ­]ôŽölbQ1jNÐÔ®ˆL‰¿ëæhíî—˜ßüzôÝÛþª¦rG÷#;Mìog>òõô¹èpÁÖ@iÛ™£vWm%`~a Y‹ë å%ÕedUÅùäU„¤q"|8¼,;§¶õñS»uD•÷œ´wŽŠm¨)¢d—ozT­;ß÷^¡ …"™xöóS^2ø}¹bFmçßùɪú uGpSZ™š_f:[ûWɓЕXL(îèªi¨p7@"­n§gG”v¼¬{`egë|Ú;¹qÌNë}žêáüÈÎÀ'º$öžãYËSÇ ´1z¦¨Æ^;½­ x5Ë“'•õø¥Dù%DQÒHŽ‹ÙdmCÏ_µÓ߯­¨}â¨ÍùâôêBUr–Ý=qÿùëÿ­Þ¸Q?§ø¾’Ýàfú5©µg~gêªúßKè  „CšNÍïHg}sÕTö.3Ïfh`„Nj¤PЉ‰6|3yÏJK’ ñÑU©n»ØwÔú´7a`€ñ8õ=Œq>{!ü~àÓgqwcîÞÜs褱} îVø ç˜Í#¿S Èïá{Vr޼jÁ4ÏÎ>zÓDkΨ¥=ó7ŠØÖ·×V6w4TäÇD{GF„Þ?wí¢‹k@lRTt|aezü]u5ýãçÌl(Z™‰A6ráh£$¥•ñ:û 5´ö¨ËKKªjî1?e®°]¸v/FáØ65e) U]á­†{umŽ)bEääL"ËŠÓŠ™C—Š~Ê4~»¨ZS<`®ñýŸ’?YcŽÇ¬ª`˜ÃzÓ©I³å·ƒœ•Ý ƒÝí•ô‚LÊ}Z_‘‘Tú88àšƒ•Å¥£·Üìí|¼)  ˜˜mmX¶ħ¬#£‡‚Àù¡üRX,/)†““ÁC¡ÒÛ…×,ca$°°”$^BXFKIDßÌÀ丙‰WõŒwTE ªˆˆœÈ­ùƒ¡¼§47ylŽžk|ÿ'äOþWÕ@Ú¢á;ǘŽßÑw½u²á¾¾aúHÂ~<@Ê•ÒBÎ-Ï Íi'P[ZË“rÅÁTJzzmƵëVV—ºÛßw=sðüas~,Ã'‡Y½d-'TTXAÉXF#òàEq¼ A1 ˆcõV¬œŽ bÐIA¬´´á6EiI]]% A–¹ózAl¦‰PlYþ™êÉ@‹.tbJ]Óìë_ýëù“?ÆUÕ熴ý~)ŽoèWo»{FG;k(RxˆTÿÔAª~>,§°¨ª³¶¸(>±¤9ŸÖœ•öèq1šÔ^œR\“äxáŠåÍÛÞ'Î_°2ÝuÐD´iõ.$/ C ñ’’rrâ‚`07 - —SÀ·üµ” Å/ /„Ä‚¹ÀX4J/"·Uq¯Ÿˆ”²¢œ׊¥é-9¥và¨2.f–Þ Ó[ʰ_ßý?î_<r®®ªéçM᪚SóÛUKJ©yÍ0’ÚÆäÔ-`;wüéÈßÏ3IUŒNÝ‘ž“I¬J-*Ë*/¼s/±±PäëååráøõW}wi˜È€–®ã@î0SQä…BÑ0AIE´€ ƒa<ò|ìË—nA‚ÐBÂbrJh// Å ÈI‰ãÅw) «iA¸Vø¤ôœ»–ØHÌ Ê‰ÝhW }p€aüFð3'x9/†¡1z¿rþätUÍLCœ’ßÁjJ 1«¨nlêí»äc<èý#ž$×Ði…¹„Æe·$dVTïÜò÷p:‘^™ŸrçГN–Ç:žöµ“†­]Õ×QP7Ü¥*ŽâehU8œ¼0/ÈÁ²®[ºh3@…çG P>,7Œ@‚¸xÅ$ðH,ˆ_ κj-›¤ú9%•íW¼{»ûÆ<%Þ†nÞÞC§/N:9–ß55áÞ¨ób~ò'¿Æ/Ó_ü﹪¦ÄÔüVe‰9å9ÕM1r37 à—5Li­#—0—F}U•éW”tõÆÉ«§®û¦FÝt󃇎^¼ãcnˆ^ Õ0:xö‚¦–á±»µd*±’‚¾ž²yÙ_Ë×#däU-uÔ0hŒ ¬‚œ˜¨0Š+/ªµM×XQDzj='0N@ïÈq›½:f§C‚²c"žU½ì雿O 7‡É9•¸OC›—üÉoáŸðÛë‚8ý÷ì¿ö=+¹ö[®ª)1¿£Ãô®Ô²ÂŠÀór[d\j^5U47Å:ÞõL¥Ž’iUùY5]£ô7U$¿“þ×n߸¸ëˆéq'Ç´‡nG-ìÑ“FmÆ›604ÚnhdÊÀîsªj2²²R:;UÕ¤ùY–._ÇsðJˆÉªÈbá VX\/ „•WTW±3ØŽeYÁ&¤i²S§µ}ÛÖCZ{w8váI\t|IË+f èÐ80;îDê }(mùx‘¾YóÛçíÈÄŒÚÎßîóðK¯éýïgiýWÕ¼º8íüß^RUg?ÙQ‡[ìl@AMs]c}Z)Ý#ØÿNýí³ÄìjZUGcjbf¤ç… Gï2²8vàâ=ç¬û‡%Ð\Ë×Á•öœ¿°g†_JGVRm×á3JÚ*B8I qàšÕHŒ ††dãà@bU¤°¼( & ©(€À0z1°‚—Ò2ÒUÖS–RUçÖÑÔ3÷ ¼•_ÔÒŸ¶c)ÿqgà{fŠˆ1Ïçȯö:ƒ] ̨í\ùï„£]Ô:òlÿG®ªq0D³Ótó) aXëØ†öfBIMcDevÚÝÄœ·[©#=ùa‰Ô–Äxž.÷œOl5Ù®dfqñÁc»­lë¸á(9Es-ue ‡ÑHieq  ¬Zº(£g&ÍÏ agggeçæBA€\[¸¸aâ `Óº¥ËÖq¢x°60Š‘U’Á£QxAJ€_I÷°ýé£Ûx¹tôeFjÿš˜b¼yŽü.­œyÛ¹ñÛ0! ß14ÔÖ™h¹ã(Ô”Lœîó︪˜øÊIö¿Ã%E!F>ÌU°úªŸæTåE=Ì"æåå%?¸›NìJNyr/,;ûšë‹^7¬,L 4š;n¡‡bS×w9¼MˆÆ#$¹KE„ƉB Jβò¯•œ0,'¬'¿A¸ÁÜœÜ@(àdçAð  W/[ÆÊ‚âáç…¡DQˆˆ ¼¶´ Ÿ Ž'áÕTÓ×’ÙÀ³×Íl¿£«§öš±©Lsæwãt“/0~?eUõ4~' 7ér[s¦ùx$Fè;®*†h6Ç~)š'óûæŽ6ÔÀçé«è]W=%-ò$« 9Ûù†»oIÎýäÐ`ÿÌä»7nÞv‹;guà ”’|ŸqÀ³Zw¿Òh  .)ƒ‡œ Ž‚ ×/^ºžAÂá\(´º˜:ã"8Ø™9­n.8÷²%ì[xÐ8N‹æãÇ ’¢ü’rвx€¬_+bãÉx´ˆÎš¯Ÿý·½m¬O0ùíÏ´›Ýüü4(=?®þÆdWÕ@Uû bünVÕ=”1uÒû÷oú¾’Âßÿ[ëBd|NËίø 3Þ—4Ñ*Sr2Òžß¹àã•ìrá”kîÍ3ʺ&ž{ZÈq/ß,¢ë—üàŽ¡©œ/ÁÁ] à0¸ÝÂG@8X¸¹ÙÜPˆœ ÉËbXI|

¬sˆü*÷U£Ÿþ©í¬ùý!ùu3šø5¾WÑùAã¥Kèd}µ‹‚á×]o> …Iüv×4Q_÷Þ¾ëû¼º¸8Ô.""4ð®“]€Ÿ³ÕÉã·Â]U+6 œ1Ñßyì¤Û.My ]É­Ê&&¦Òâ‚àæK7s ܬ`0 Î/„Áñƒr@kîú¸ÒäXŒa¶üŽrÍ"h7-¿es˪ŠÞ^ÁÜè­kË.¢¶¹¤×À=„.ÖÔ3Ö¢%+›ø© ç(©™˜ú¤{ðu¶hèÛ¼÷0ømk"Ww¾'·6¥çeSº>s¿¯ŸR+ œ¯ß´Qߊaß  }ÀÙóôK‡Ã‡LÕÔ$4Õ4Ô¶‹ jè©í3äÙ´’Kt›É±oÙ²…“‚B¡1Òrb2òê"0ÖeK7ÃD¥eùüxq ~ Fâõ÷ién×V=|`¯˜˜0d%Hå„·÷K}Y3ýV&8¸ ŠÙŽVGµø×sl=âvTEKòê“gåÌGÖo;½¿ä/2ò©LðæÙóKOÙ]Õ÷U}o¶Õ«W¿™x„iø[­ªÁ@ìžqGãhGSs^ås?Ř>Lj¥ÑꘂõU3µ¤‚ÒôfxŒÊ‘á¡*­¥ªï¾¬€ûsrY͇ܩÆø\Õ7Ò?ø¶½¦´«ohhÒ2‰ß΂0_¿Ø+V’ÜËxmm¯³/\î—è#•—4fÞ™®ªnú¹a|š|O}Uy1µ±ŽByÍЕÉU•í´6!ÙÄÖ좂¢ŒgÌŽ=ØYEî~Ýýž1Ú—–µ·Sh¤âúIÏî$~[|o¸n\±j^ÊXYJF]CEëÀ[Õízºü0œ¢¼xíâe[hA1Q$NZVÄÅÁÆÆÂÊÎʲ…($&áXùße8¡0,/€ðॄùð, ÀÁÂÂätÕ…86,‰)KŠ©YœPW58|ùèv1¹v¶†J*¢*üpŽÕp¹3'Μ¿÷´Úàµs÷዇âBc÷Ë,\ÿÿê«z&• ž ¿/ÆñÙ¾jÙO¯“15¿stUõ¸Â*hmcQ aJ{ûó|"¡Šøâ͇ñ÷Šĸ9<Ô÷nŒôÑ®ŠTJ[ £×Ö¼ëg˜7Í´g·yôJj©”ÌÈè„°fŒ¤«±†ZÉxdÞÖÓ(ùµ42!óª¸ä§©Ÿø)¿,ËÂ**¥¹U+ª«¤/¦Á+% +®¤""¯‰‚Ã`Àêe¹y„DäQ¼8ZPA^VX‚æ0¬YFftb†¼aã'„C¡Áp %!Œ—Ä#¸Yìœe;V@FCv«®´îùígLOØ(é˜Þ´ßwBµe\Ïáä•Û¾÷"žä©´øÔ“çŸ?q# ?»áÍxq`PïÀä•&78q͇2‰‹wË¥‰×qŒ×ÏY;Eýœ{|Gæèªú›¹šD“ÏþÆÖó÷#oIÍM䱺á Êï«\€¡N‰dl~ò͗Ûòêšâ ÂâS“²Ó™ž¯Ê¬â’Œ— ž[i”⪶lg°MjÑþ«g^Æz†§”Å5¥!´æÔç÷ùA¼.%”é“úo~ºåƒ32ZêX(Ÿ8^TÇ+‚ÆÈƒ6,YÃŽåÅŠ ÂPp¬Š¼äåEá¥ÄÕÕÅ(Ǻe.]½‘m ÌÎÎÆ°l9¤±(<Ç’WÅ¢7.]ÍÆ%µk»ÅÅã5Œ ù4$•ö«n3³ÔÚXVº‰mëð3Ïžó»â˜™û0664Ô5¢¨©&!®âYNAm;³Ö‡õ%“è%˜Ma¬UBï\Æç©ü“#Œß|¿ûøëäý_òÛyî ñ©–J#ÕVOï¿ú¸øX/…Ê4ˆF»¨•±%Åo&*¯¾©0À߬¦|ÃUùîiLLÍÈ›s€Ãµ©DbarVItdBFÚÓ8æøÜBÈ¡vŒM «R²tpðjšJn½¦o´ãÐqi!\H\†O€GæÜ¸xÉ&”0ÅgŒ²`~1q”›…c *¡$ùì/ưÍÁбØÙÁ 6vV.6! É'ˆ•ёIJ®ük5É˃×P“s¾rá¸ÅN !aaœ®Ñ1mcucIî•,8} Ÿ€Ë1!.·Scò ñ­ä|›Ë~Y÷CƒƒRÒ Z«©}o>‚ãKL~(31/þÉ+;G:À%㯓÷Îï F'üÂUÕÕÜN+©¥µWéiœ¤5MvU 0ïâ} ­5­¸‘ÒOï«nk¹¿UØ#³ˆÜúÅ›² i§P®¯F_UWde%=)ŒIͪaÆ8‡HõM5LUs$RȘԕêïëx=ú“ 0‰ßçjélÝç±KWX\XWBŠcé╬ˆáVeÄѤ)DÔOœÿ;D!—g§7×feÕO,·7Ljh$ ÔÔä§¼ì÷à— ï¢6}™KCiŠ½ç“‘‘z‡WÑ54€ÒÜRטÏ ü1c´“äûÛFZª¶ [vz1óÑz[ELÉÈm«¡Õæ…È)=ãúY‘=ìLAc#ùUMv†çÕsöçOeÑ[CT°höå‹×lâ‘ã‡ó@@¼Ü\>19U 8 Äæsù›V-^½žeËf¦Eƒ¬¬ N" ܼH$ºfñFv0/ ŠE‹H«ÈËiê‹)šyžs4°5P„mBk›šêï²µMʎ͉‰Ê ~àsÑÅÙÑýòéðçµUI… qÅïFÜCÓ“ŸfS¼õÀ ¶qÉ/§P³ãׇN˜Eó©øø0Žö×PJ‰© eõõEÞÆ¡µt ‘“£¢ƒvn‘M£5}™KÃ@_µ óî^ÖmùA~W‚Ëóók^2û-3FK£| º#å%¢;Þ¼ì|C"½&‘ƒÜC ŸT´‘K2ž3 if1J­ò8ìÚ;fmÊæ–R‚óQk+§«ŸRñ&éÏU×yÖ­ò¡ˆ¼?VääFà°xeU~$ À †pmZ¹h9 ‚ÅÀØ9¸¸X¹A\`nV6nAŒ”8ÉÂò6¬X²!"‡C¢ -K¯¸]mçÑS{.Øžqð;© Y•Œðt´ÙírV툽g^~U~lyMQŽÇ%?®ŽÎ.ÙÄø¸´´”ŠÌ'ùåäÚžZCàŽ’)ÍÔ©ÌÙñËî™¶&m 3jþ¿ï;ºHÔŠÖñp˜Ü”•An¯'ÔL,2^´‹þÂ/Æ‚EÆ;àQ{CÑg¹4ãèm$˜lÑO*оÿÀå¶‹ïSq,ka°šù0|x|Fc„d’hõcžh†¹\“•Â`7§¾6¡ªª®¼·¯t7ì:±»¯«™ÖTM|’î{nÿ©Û‘ÑǹOüöWxHëk›Èá \@0^–ð ¹|<8AqA0'×–U-ZÍ  €8È0{Aœ 8ÈÁDðH@xÀ›×.^µWäA¢Áx¬´ŒÒvŸKûdy¸Ñ2'nݾšb{eŸí¿0/BAÂݴ„Äbb¶w áæ¹‹—]’hļô†úæŠðð‡žFÙ+ѽ½Ã£Ì'»vªpøìø’äù/ÏfÔü3~2’3K›[« OŸ½¡÷u½|G"Q¤JJQíÕÐÈÛ®·#UmíÏ[»­95ì=‚|›ªÛ›?åÒ|(&–Œ…G;©•ãOÊH8ƘÒM¡t3¿ÛÝBcèN‘n^þé¥-íÏ}…†©Ào=¯(i¨/#U¥?º~Ó7ÉõZXdùÇ1~¿ùÞFÚjzF‚p8$£*#`‡psƒQ<28,×Ú%._ËÂÍ ‚†£±x47ÈPš¡`Ž@ópmX¼tR†ñKIbå„¥tì´¥Íõ·:zxzÛÊlÚ"q ¶ÈåRà}ÏÇÞ§Ï\1w¸“œàfçã÷¤¼ìѳæÇ£ÜåzïÇ‹n$1Hn§‘ÃrbrKr⊉ñQO\È4JõËù ùMéo¶5L4g&É×w“jkâââü÷Ÿvrº”Ó’–‘|‰¶ ÍŽ‹«Ín Ñê©¡‘W\R¼oE:êZ»x|œéð‰ß÷ÅWèËÊóBaËNt’——K¤Ð(¯Ë÷ÃÏÄfe© -$RÃHÍÊj¥Q:© Uã X¡¦XÄÛú;Ré5±š@Ì«ìêÏŠº•õ<©½562$„BË>À¾3µúyÿëWÌÇ›½§u޼ëª)ËÍñ½tüì5ûˆÒG»¸ÁƾgB3ß+JÊioJ, {ôÐñ¤ã™«¾¶Î!ÞѬ¬IùW å`Âh†àãƒs±­Z²d#; B`DáÅ`8Á§¤h ‚ܼî¯@(‹Ãá¤%ôöŸ1RW•6>wç´ÓAKMþÕ›äm‚/˜Û]>õèþõ»7¢„Ĥ·%ݹsãšPŒoôc÷`By‚ß΀ƒ‚¢çKF˜+KRŸ‰ú;j{;õÛi†³÷_Ì|‰ÓIüöÿ[^žù÷³¦š¬Gùw#Cãüó…'yú§'xFågæ•Fª#m³|¯_ /¢>K'–Ô“B‰5Ïr²(-äѱ qxé³g£ôѾ†8¯ôج¸Â®×OoZÚúÒŸ%ÜË̉ 9 ;›]@ln®êc.oN&S:éõ©Y)‰ÁÇ¥”·³3Y‡<`t%ìaÔ£káB~sM 5Ý×õÚQ'G7§KÆŽQt´Iñ…Œób|n”‹‹‹{íÒ?Wl`òà|<Ü|ü|(4?C`P ŒÂШ-K–®ó áЂÒâbÊÒhNâÐÙ‹G v·x˜•ò”XJ¦ 1ç7¼O$ *è#å½ì|£jšªZÚZ;¦ø–gy'Æéqßlo NOά¡5×1,ÿ÷ùù…)¯}Ó2üí­uEŷЉ¯ÅXZìÙsýnuNìÍ k)I¥ Ý$+ÖçÜY+s‡ËÇÕøÀÖ.û¿ïܶñÂàÜì,ë–þ¹t'+¡>!P CàbñP¼, A  ÷ºå‹7B±Â‚b¢Êê òšF»„…xù…w¾²×XCV°gxÞf›ŠÖ±³{ÝnÝv )¯îίNNRúèiryáko"B“Òƒ^ôu¿é{õz Î[mÞþnœÒþ궺RÚ¤^6úŠBùÖDžYóë§[òUü÷[øÄoo¡0›qªw”lBÀI?·¢bÿˆè ÿ̬,bCVJÕ]L,6ý1ÓþÈU[› QîNÁw›“Rý.9x¤f—3‚ƂƯ2‰DbѽŸàzÛnߥKþ1„¸;7o9瓟wI ný|äumFôƒŒüººì¢W ‹º¡¾¥³%,#ÑqçaiQ4´eåŸËY`‚Brb |2üÒjòúæg““Ä‹iÛœ3Dl\Æ)eéxÕÛmŸöÞ£Îι™~WÝâëH£ýe±±„ú–Ú4Rõúpyâ“4f¸`›O=³nY=eLn0—+l›ìó髥њ¾QÏvÖüÞšÓúί2ˆÄ²*†ÍK(νüÐ-ôAEaäÝØ'aÑ)9¥9i¤$Þ;“˜Xœrûˆ“ù9gG›#6.nÏbžø…ß k®< 4 ÷T–֌Ҳ/øÚŸ°>iwÙÅëÚ…;×]ÒÒïàùLoTw¾Ê-&–%?)Ì«¯ì­o­®¬mNŽ`iå DZ ,ksú¼Ù~‹ËOüšòÊKCìÚ@ %‰HŠñ¾|ý üfÝë®Õ}¸ìOü¾¾u ¾|éfN^†œEò ‹!hn0F€òãøx¼¼B¼ð‹V°s£Kû}§½Ît°º‚Â^ñ¿ŸÕDy×A"<ÍÍËO¨¥Õô÷·åeUg%ß³<†_Î" ªpþ–Ùy»[y„Òw­1™Á)eļg• ¬Äÿ„ë®ÌT» ö|¸ìIý7ò¶¡¶¸Šdáäà¼<08 Bò!à(ˆ—}ÍÒ%›¸Ee%ñh m™m¢"B[5Äð{ô¬-ÄØV¬Æžs4ßmnnéä|="#ñz°ïÍÛ‘©kÇcŠî祾Q¤1‡NŸÿ! Æ<ñ£?ýÝØÝL•j˜añ~V× ·nb}Ê)0k~W¶}¿Í|âw\›RPÕF¢wUÞ‰{˜ÕÞV–UÕÛÕÜt¾·ž—ìáqåAFÄ£²GW vh*iõ÷È®ô;åál ²oýø<ôU{™âñæù£V&.Û\v <… Š!<ŽŽ.Ϫ|ZF%„Æåæå5¶‘_WUEUVæ§7¿ÈVäÆ ª»V,><;þäÉÓ—== Ërž¶½|×En'1Lïrƒš‘×´ºÊÎ~úó¬â‡æ’àí¾ ôîú¶æÎIZÓ{ÒXË)18ð­LãYó»lNò—1ª<«+óº–Eð³{ÜÕ”\”tÅRpì~B~A{JñÍk'ímïeÅ'Ü8f&(/-«é_”s]jËþð‚¾O«–O€–žíyÿ±Ÿ•§"ûV÷[é‰qYyS#ãü£#”v ’©ñþ¾OäzK øü]ék«¯µýøÕļÇñž%íuõímY ÄøôZ„„BÒ›‡žîN÷]‚Ë>‰²Iñb¼ƒ"CêBÙ€–ä—“—åEnZ¾Š «!!$€Ã£q‚Hmye! >“SMÕåù¸V¯Ç‹KHékë;%GfD¤fúù] ¼zçaJYsíËÑ÷Ï Jk«zú™Üt5Òš;Fè~j@¼EøX°tôm׫ÏCÚ³Ïÿçw÷”>ò<àî”vÎÈôðIÿ°k6ÊëÑbâò:–~!Ä+Ž.‡]²|Üm•ÑP(ÎÕDW~V™«!ɵo)Ôò¿?›¨ð2õixäã+î—Õ6 Z_wòIM*i{Wž“Ÿ“™îíé•™Òõöo*é^X@¤³LØ-_`O)µ3îÄÔ€“.ÑTZaCkæÃbbRzN» “Zä~ûŠ£‹³µÝ…ª)òëÞS®mÇ#¸VvNQa ÞÍË–lÚ†ŠˆH kèn—”‚ àä0œ¤ˆö^ Øš5< Æê&ŠŠ2ºÛˆŒÈJKz|ÈôàÁ³·#<¹ùIoÈmí5 =Må”Nf| äm) `íš‘GžùZwßǬùõÇŒÚNâw˜ÜžäyêAÈ÷(«]§ìÍ]ã<Ä7©îÒQÇ)ª¹øè¶ã-ϋŠ)!Žöj‚BÂÒŠ{D8ÎÆùܪ!½¡Ð(ùéÕ“íî—q¡q©y7¥×ªŸ°»rŸ¡g¼¦´6µ–¥Æ%‡ÅådUT4PSÒ""CUsH‘ñ÷¬­LÕ$ô<£«3î»ú=iþ»›LÈËN9ÔÍ¥t2ºO¨¯ÏÕ7Ýï$f~œC;Iþ>·4GAl\Ü’må N>œ †‡_XÚÀìÚq3 AœF …ÇŠb1ìP‡öî¸rÝö€¹â¡ý'lîG“¨yA{޶8ô8- HÌn¥¶ÕP„Üâìú×Cá'…€. AÔß^Iºï»ºæ0ïî+Ìš_MMM Á?´fÔv¿ÔúûÞg½¼î‡Ÿßae´Í˽ÏÚ~·¤€NÍØÉ3/Ìûq¨gb)Àr¯^TµŠËæDHJTÀ‹îžêæ\bî˜ëHudrE )·™Ãi§‹ÝÃ2‹±¯{þ®i®ín(Ê'¦Ô´ÓHŒ.ñ,í·rØóÑ´€°+gOœ2½”ø<Ý/&únHq/}tˆ|ˆË áE×ûŽúÖúÀäh»¤^² '#Oš?H;¸ƒÀ`0ðšE¬h™­úzªr8,?Zi÷ùkZŠÒBxˆ0\ƒØ´d-\ùÂ6Û3†ºÖ÷®Ù=8cbëzÜò¦[HGs†‹õaM³ÐÇ¢K (•”ªÂŠ'9%Äh5¨ŽÃ£ÊxažñÛì§´¶UÍ¡ ù—˜ÛúVØ5›¬_åe'^9q5ª¨-Öÿ”©*ëFÓ݇vªHKóÀ°²G.]ÊÉÏHöMI-p01Ô†¬X…Öw;CÈ%tUWêò+²Ú)ŸtQ2F0„œÍ ÝuÞîœCàƒÊ⸀ûÉ‘ÕïF_7µ7d3>/©£5]h¥3,‡Ê‡W=:_¹~昳/¥"4-ýaÔKæü_øñ*Z}ý]iFNUlbz|@ðͳáÄ”Æå$ýêµ­¼ ?׿Å+Y8PÚÆ;Ï«+( ˆàDå¶ 2”PÝÊ/„ؼl-ZF[Gû”õé‹vÖZW®{ÅfÞ>zÕÂÍ?%´¶¥ôþ…½ö˜_ôŒ,©oê~_“yV t4{„ÞYYßN›4÷žiÓN6˜1æÆï»ÿ7£fŸøíËO¿}ÆÅÅþJ9éÁYÙ +yeDäŒîWFñ#!bûãˆEEî^þž—"£/šˆ®Z B›œ x_ó²žF«É'67ÛÝÌa«;Ijû<)ìÜ¡C§û¦ÄÆF]ºüÀ7üj¸³ ¹¢ ŒÔ]rbœOi¬çñÅÓ7.Ùší·ó:éŸ|?µbfƒtki§5–µ÷“þ{çÐDž÷ÿ}žßÝîÝÞݶó<×u×® RÖ²ˆŠ¸vĆ+ºXauíˆ.ÂÚ J± ‚€T¥—Ðzž’@‚’€t$óÌ$ Hbëþœ×A‡ïL†yÏ·J=›@eÔVå½ð¾óûCºûØžjí~>ýûUZó4õõMÎ;\25X–uW:í°Ýl•ÎÌ/¿š¢·pãÊíû®;Ùìóò=jãváfZZÜ‹@ûßãSê K"¯î°>q몞ž\!èëð·ÕÓÙù“ÌCÓŸ:™œJ¾ì?J_±ÿD•Ê ê[ŸÏ¶»zå”óÓ»fgéëiê,2?vÄÎÎÒbõNó{Ï_&?ÁD†y™ü{ÆÖ=;vn³rÃô¶·ò ï>A— ±Y2è’Øu”ܦ%~Ø bMynœß5ǰҒDÌs7÷ãN§&7wS¸Ù/cªHác£_Æø&81•i 7‚££ÁÙ6#óê*íÞULvc£ôÛ„~‹Ô­¦™Ð؉l6 IpF ÖÚüøî¨TvPßÒB|êÏ»:6ü÷t£Í«ô¦Ï×ÔÙh¶ÊêŒá†õFkÝB2‚‚b}o=¾~Ç|’–±‘Á2ö#ñ¢>‹añ˜ƒC+h»/f¥I>À,ÀWd'§Å…ådãâc\o^Œ*dC =Å{´<º AvÔ …DâÒŠÓ)9—½®9^‰LŽ{±³ß¦º«–\ÇcÖó¸õC{eh´¯ïíÌ·nXürŒãnã•[–/[m¶ãÔÍCÖæô×m9²uµîÄYË·Ylºpßaÿæ=œï]½tÙ?Ì?ú)Æ?*?3Ë7àaj¡G/ ~ñ"Å7“DÉq7næE›Á7m÷Zj$öà=--j¹¾’Ý}ŽA}ùñI®‡×oÐülªÙ¥ —ëéé@ï°Ú¹xÞœy†gιžMqwrÞ<ÑÊfÛs] C#k绡^ÏžG½$ Dâö¦‰­LÝ-)¢Öœ”2|z~Pd¨g&µº¬úþÍ[6'~»ëŸÇé#âviÞ¨0‹Ër+XÔ¢asCEÉs<|Ëñ¤_Àã%~;¦é»‘@&t}-‚Ò›WO{Ç”ç 4Ððþ7äÌÉÝ«—hk­ýÕ>ÊËrýf­™ŸM\fsÉÆîàÏNážçm­9ç|«,#:“•™÷À/(õilDdl:–SÏkË }îý4Ç{‡†Ñ™ð“¤`x\G¢rØ6é”3NùSZ3žœ]?çÓÉ‹ Mw.Ô[:wê,-£S¶+Ï­¥³yÝÏ¿Zعäßï…íÛ¿Ygንú+WmßýÓQ7·¨Òðõ sXü¾Þ®Ëì=‰™t‡†IÎÉÉ¿â–CÄÅ$?öõ¼tÐ?Æ¿©â§Å®†ñ«âƒC1Y%¸¢r6»¼°8âQV^lð'í¹¾§% Ý$6›(C¡øµô‡ánÖYeÃ÷¾ÜãGö¬Z`¨§¥»ÌúIp¢•îWÿš»~¥¥Íwo¿[>‘á.n?ï>|øAxEé‹'¸ \Œ¿¿_èeߟ@,½†ÐÒ€ ¸nµjºîÉÄn ·“¦0Z{qq)–¦Úú  ŒSþ”FBœî?§m2ظyÇ:CÃͺ3§k/\²ÃáÄj­ÙšKVÙZ¬Ÿú•¡ýÍŒëõ‹´ }oºi­±­ë{МCäTT”ÙÏ>ˆ£•ƒMt;Ûón”ÏÙ£v×Ü ñ¼l\tiLrnv\Zîã¥á‰Mm€ÇÇedcCârx<|\y^lsz†¾ol úvê!lnl‚Ý+¥¢šGŠ Šñ¼›TASy®{-·š¬62Û·Çøû)š¦ÇwíÞcþÓAÛÁnùY19؇çÎzßóMˆËN Q‰z¬[d¸ë™ˆ(ÿڶœ˜’ÛÖÚ“–¥I¾XnCQg'ØZóYØÂl¶ê6ï±¾#ËŸÒXµf½Ùʵ;-¶mZ±fïæ¥ u¯¶Ø°oÿÖµ45-Û²Êçsì½Óîúºêè/Y c¸n£…ùa›«A]@‹/­³Ÿs°œ4€Ý+7Ž˜•tã¶Ó©ã.± ¾ù¡ø”øô$Ï+:ú/éÔv¿¾±˜ˆÈ‚Ü&¯, ŸvqÚ"ïð”Bl·¥ƒTC¸·®†Ü¨ ÄúŽ,Jkâí£[×®µ<{Òö„•åâe‹Î705vw¶X©;þ‚ÅßN4ÜpàðþáDÌ£¦+Œ 6¬Zþýš {ÏyF[ÛX”|̶)‡ã3²yõ¯‰ì:+5Õÿæ… Ïr z™‹ÏÁÄb"K\¦=O¨àñªŠªË˜"¿:!*=1®¸,;™ÈLð‹K;0u“˳Иàtvû+niäwƒÒòÕàKSÄ`&eû>Š ,•ßLŒO ¿t`¥æ—ÿ™µbÏ¡³ö¿˜Ÿ;öëïg­L·²»Ÿùº·½2;-(0âyJaUo3”YEƤD<+Jºb=kù/¡9•iɉy՜גñr7ŸÐ4¤ŽB3"V‹4Ù{ok#_«W#‰_7¢ü) qw,÷Y¸ø»Ú;[­ÑÓÿá{݆;›­1Ôœ;mÂW+,ýdwðøï¡¥-ií¯\ej²ÑÈØÂÝÍ/®Ž]ýŠV¼oÆÑäâ²—¥LRwvQ~¸ƒ×‘öü-¢@HH(Ãs~›³32¥º œëÔ¦hôfaCQP>…“W^I&p˳¬&™y=zìö0/Í[ÔÛ N®ë‰Ðæ µœSU5 M¤¬ìÒB9ûû€à™ù”iúf×.ZºänÉö¤…õÁßï:šï¶u|HcðN^ZeZÀÃçEq=D¯WÈaa+B~Ñ^hŸQÎÁᱬ¢×u¬º—K•v®Â!É _(‹BgÓ›ž6KVÇðyýïˆò§dºmÞ¾ûâ5\ðý Ûý`ô½ÑöÖfÛÖÍþï'_hèm°»uÑÎÅé^hEšÃíý»wì2ßyî¤ëõœ¼øòÜüȃóo°ŠRŸ‡F½ØølŒ¹áuùôO¦{ÏsØŒ¢òÒßfɬÎÁÖ@¥Ð~=PÇÁaÔbBZZ¾0Ôfú¡È"ÿ§÷½NÅ—•Aúv’ðeà@¯mD*QRaš0x|^¹œñUÛ“sWn^²?õà>ÿŒ×1›MçNÛ·ÓêäIÿ‚Ü"ðŒ&V}ìã,l9·´žÇ+b¦8.×85D|B%QòNI–¥$ÍC•A”±’hgë†.ä׌P¹ %/Š4rŽß\ÍD™Ãƒú’¯\¹úõ…¬g7ŽÚ˜­^²r‘é£ÕkWÌøÛgß̘¦»jljs¿m?âtí«üòi3SÛƒ;v?çY’“¾iþ£agRii¶ÄêjÖD¯_>{àxzŸãåp _o3Õòeæ‹ØòŠª–ÖÂ\2äçÿ ü %gäå—ÖpÊì§ÙáSòc>§¥å%ù=€X¶ËD›ÇhùÝ€HØ'Tõ”dgÓÞzÀô%0ROpuuñ+.z•öÈæì=Ÿ»¶6¿:»¸Äâñ)àË!j"Rhl †^^–weí´ ×sºQ(–°Hrç-¬~S Èܦ^f"n!FõÈè^~',B¶K¨–øWÒÈ9usZ™3d•A}+L—jÎÖÓþñ›ë§×­˜;_w¶ö æþíóÉß|7y¦æÂ¥;.žµ8tÌîHÞ×êŒÅ¾Æ–¦îñž9éë]cÁ:@.IH͇,ŸIüN>)'1ÌÏú§{÷ÄæEœ¶-éùcLdb~©‘Çâ±h4©Ô¯>¼ŠJHxf1çv}R~V5µ2,æ®WB9¥h# êxµ©TFÿº¸‰H”,B>ˆokl|E¬zéºÏá„ó]£èÌ»uÍ×'àÁ£+û~sòK)É«”V¼2+%Ïw÷Œ•^fç—U÷vÃG/ŸDèè•8H‚ÿë„FÐ sw ‰µ5y»„}ÑàK-ñ¯¤‘süÏÀFñ7’,\®1M{Ér» »5ôt47˜,2œýÿ®Ñ;uêä™Ú‹Œùœ:yî©WjLØáÓv®:ŸöJˆô\°Ôœí  õ£||iy+d¥Â¡±yĬª{vǘòx¸wö¹Ì—yÉ·¼«xœx°i£6·S"TÌㅯмœÄimjh’êiY9\Je— Θªx\ü›ŽþªÚ >oºD¤®6¹þ¿¼„Ç!g»= /ˆATLT¸§k\„dz'Å$z-IêCÓ™pbÞ‘Ä2MÇ·5Ò¨ƒ±Òl—ÔÓ×Þ&iü{ÍmÀÓZ†ú8÷¶µË"5AS$³Zâ_I#ç\ºGB¤GŽ-„øúmüœ«53¦éél=¾jÁB-M#“oÿ1[ßhÝ]­ºZZ‹6X:øž¹Uì}å¼í‡Ÿžu³¿1os`InS|¾éXK¥FçÅ×ód‡+§~=´DÃ5§$î~ç=ÿ ÀX"›Äp8 {ßÄšè\Ê̈"³ JÓI æqxJÐÎÇ2yDÂàœ$’Ç05xÿûÜÃóò¯î1dpþÐWž”•Xö,³²¦R@$€o†¨äúšy‡Ã .8þ…¬åÈ 5oW* ¨ñ5ƒƒâÎAs›æáùMí4ÜòY )QBõø9òâ_I#ç8ƒjéœÔÕqv°}>½añ̹zË­Ú¾ÔÀp‘Æì/4Ö›®ßo4WWoþ*³c¿»ù&…&³ŠÝï]µúÕýòÉ«þm’/#Q¥Õ©• ¾ðo ŠÇÅÕÖñðuþwNl5Û…ž_Xû(?Ä+455/‘ÙŒ‡…Ûlœ”ÏæQ²8RíZªóÀjªßEå±™2n‰ÐÀ‡Ù ô´)ÌSà}íBrIõh³‡MŽÂuŠ»),vK¬”-î3AÙªŠÈõÝRÉøÐ(éíž¿~HÕøz‰é¤œèò€Ù4$3§]Ù%œ!iä?;0•YØlŸ…îZs¦O­»tësí¹_ý]ÛrÏ‹ý–›´tµµ—î5ݼ7À[Åk QËR.ì;bwAÿs=çkyÉùÙœ~BŸJã÷oÈô²â”Ôr.'ð¸æTËtluƒŠÁ–F…Æd¦0ªè¤öä(¢X“@$(!¥{©4+µ’)ÝTœ–Ì…û%öñ!'ä7q˜8GáúrSÂ#Sq ÈŽHÄbÂ[{Û[i©éy¬°ƒóÖ»USÉÍ•#5³w‚wѶԷbté¹F¬}d9>Î é°&_µÏñþ"Eæ°4r[³«ašLÇ<¨/ïè&#ƒ¹‹ ͆ù÷oWìôZÏÌŠÁàžÎ*n= [ueæ"Ï ð"»†Å«.ÆÅgF7‹{»ªAO ®z+jøFr=—ò¦IÀe×’*k%²‹ÄªçÈ´‰àw‹Åygo!„ëÛTKÆWUJêw7¡²¾ âh/¾Ñ-­YÔîNœëÖIÆ"‰›äôu+ÐP ÇÇY"EQ2}Á¦¿NŠÌáþÈ9þ‹'ËÔ·Úvã¢%ó>ÞA÷»Æ›Ì~ôºrÂåÀþKõ´4ô~Üw¥¸¤_˜7>ŽËÿ³ÞîÞá_.=&Šêsó_wó pßVÈK¿ÖU×8((î^à³üò‚ÔÈgEù$v=,2CÇ}C’E h¡·^ÐÙÈ,Œ#Õ•W`ËŠ‹%o üÜY͇gìNÏ‚É×WHb“òxÕ|é ŽK§ïô'HËC=#³]HeTx¶DªMfó¨ŸqÚ?Ân_º`žæö]z¯ššnÚ°Þí¬í%o3ýÙ³µlØõ{¬4Üho» `õÄmîøÞ=pòÆ£\h¯žQTÇã4>(1¡ÖKkK¶è¡Àã„ PjR\~ND=Y2Ðu¶zÌ;Eâ’ GÖ&qÚéô⼚ºR\~Q2¿ë¦ÈšGˆ;Û{øŽs¬3ðøDX,“GØÒ:¨ÝÇbÖ–[ØJ:)¨òÈB ‰˜Š­å¨ø|ÆqÚ?*[=uòÄ ŸNØuçª÷ m£uWÏ^tµÒ×™3kæ÷û£ó¡ÎPHL]ó­¥ëE;kk{—Ì<È9}hˆ•¶›3¬2+8´G÷Ý" ²Êb2°9ø²|U"”§``¬ ΉxŒ°ñ¤—Q¸5´2LJ–dÔJ$ÁLþÅzÉQM'r&)î5ì–ÿH²Ýøüмu7ÊÚ¨ÜúâŠhѽ|²ÄîCØXIæ &ý1NûGáËæMøøŸ O<;ÙÜÈ`Í®«.Ç/Ønݾ\gÖìùKl¢+R!5²Ìum}}z„zŸ>}Ãó»l^k ¡•€Ù ÿ7M·–^±PP”W€ ‰H-ʬŽHÍ)-ê©”¾’ìÍ"Z±V:îîâ7¶ˆE,6ŸHn®Hz,í Dð僮̃×r¥1KáÀ}E=MÕÁû5¿·K“Ôñ¶F~ì2}ýmŒXæË£fœöž.ýì‹)3¬OÏÁ糨ïOûû.Æiÿ¨r•ÆwßL]¶g§ã½S;׬^ºßÞ%.âîÅŸ41ÞzÌ.5ë©>”#®9:"Ú30³ªÔ¯sÃ-&GfPYõÓü;Ì·&…b£872/›ÄìŸSöÆ-_•þl¦s˜´z°.zVJ–z¥QúÙ/¢3pKy·Ù4jÆ Í]BÓ¦U&?l8&£¤¦—¹àH]qD„÷ äãgyûG Ôg¾~õü…Æö'D8Ùj±éôý‹/³3|®;Ÿ³>%ÊAÃ4ZçóŠ2˜ ¬Z5™Æ€Y!•n7 eÁ–ƒ$± 3qøÒ2Éj8ÞÐB62}çUU2iƒ«’úK“†ÂqŠ«IƒéùD±KLJ•ü2í3ô•Ì\z úF, ‘àË }jÙ¬Ffß®"ƒúf_µDw©õ!çàÄ'wí9çý’RÓ{ÿÞUÇ€³Ó_àЪ› žÅ ¿b‚ 5Bk{Ì·úâLÖäIMûk«°…Éä1«sp…=’¥*+ j{ÓH"¹QÛÛ»àyHÔB(ý˜är°PKÐ<-ðpdûßvbY"øš€hßÁšÁeàn"ƒªz¢ñqeœôM;²Ó`áfó#^áþ.çœ=ã—JaWx†]<µì»C©¹eÙ¬(éy›ÔEd×Q[¥f*’sÅ’…FÈԑÑZ^ˆ^åWRòñ •<6‡$êXÑñZÚ ¹Í²†Žú„üáÛZv<@92ú¶ó¹ÅõÒòM²A§ «SU i0ÞŒ“¾$ïcæÛ~ò¸èæåÅD Ü¿²j¦»WŸf%âph<Ô)h=Ͱ¦uš¥»@ázVý+†]MMÒ‡ØT^^†­iš©,*ÏC𽹕_c ·Ù7ÃûF(‚] |ߥù²æïï^u‡ëÛAå²RÀËû¤!0j›yhíªFYªË?ŽqÒ—î`iµÓòì“øÀü” ™Ã€ƒŒñ·Û\<º• É“éÎÚZûQa ž$Р,DR9¾Ú…ïâÞHɯ)À—Ðí˜÷ñ©Ø7¼vÖ¸®Š‰1\_A¯>ƒ,I³ ô²J 0ßzéÖ® ×ékó•Šê[ã~ðØ–u¶ç®>-Ï®IfsˆB~Ú6­óɾ'®Ü}‘¯[}zi24åmóа—·ÔG`ä–çâ…À+P&iµƒÏ[ZX­ J$”ûÛ+H ,™ý6Ǩ!BkS¢FzîÕ ¾}"A=æŽj™¾NNNGÿwíi‹¿_S©8Ì>çù…}›ÖØ\<÷Ð'TÏÊ«ÈþÉÀ·ˆ‘qÞÝ>0›"£K;£ÈóQtËYÃY¾^ídr­‹ùV¦vIÐNbTä5«°ð@;¼àmZ`¡Â¸Rdöˆ¬ZB¯¤|ƒXRQQ½· ˆÛgóûàGà•Êê+ˆp··Ü{ÚÃ)©˜RÖA}¹vÑ‹rJ-9#!ìÞƒ{AÙÚÔF‹z°EÓG᥻µ–vŠ!Ên¶Ê7i‘¥–õP$ *Œ;#Ef|ÕÛÚÖ_¸–‡ÇHjs2CÇŸ„œÛ_}®RÙA}û7NZ²;Ž!ñ(Á ×&qÉi%Ø$\fºç‹Œ¦ìi=%®-›qDYJo¸Lk›á›}òÀ™,Oü4Ëa+lÑ!†í/ôß`%_@#¾·•b}çû´U* óßo)Mñ8sêšÛƒØków¦sÛ|¾ðñãìЀœ*¼¬§UŸ dé”ý>Z>?œÉ²ȨµŸ.8[y÷–œ ` ?Ð<4Ðß0è é¥DŠÒ7ã}±¾qo±7û8^¥²0}{H‘×o¾LjþíŒ@@¥ã 4lòÄÔHlRaQÆä$qõâß½ ‰¢ðå6€’ä”Òh`GÀëßµ€$'ë!·‘Ù*¿¸Eúâö–÷t@5äó#’“õo”ºw—dômeÒ3B^ž˜¼êQlAÜÝÕÇg³R ƒ^¦P \øÔ·ye<;/§4Ëeɱàï †2ÄJ£ù öÚC}=†! Ô>h‘¬5q2ÞÆ‰¯Ùõ¸b”`­sMÙÞZé@†X¡$Ô _+‚œm¥v7èA4~n¥Õ±Õçu¬@®o¬ñZúSÕŠÂêonTrìߺ©]•^ÎèJÆr£Ê­# a—PÈðyÖhøõÝàØ3 ¸±R¥²òów÷¹<æ½ÓE¨Õ>ñb¹¡j<™wͳòê˘5ùýÿâ‡v ˆ¢cˆ¾âäèÙMc¹Ï¶¨›òFMCe‚œkß–@u»Uùõ„ñ^áêöïþ(:pdôm'”s8$! pÐ<þªÑÜkÊ:HD+Šƒ@®‡#8Mþüú(À8û£á¹aMfÍÿÏ×w¤QtàÇáí³˜t}ÙÌÓ™J毈W%@¾G ãÀ–?¿¾Èû_9ú‚€õWE~®oŽ‘Öé§Ïs­?pEQê{4f úêÛE\ßÏcŸG>*ÈÈÛ!áŠb»"»uê«™ö™HÃdGc(œá»âƒ–ˆh¹®á¬† AÊøÐô ùÈúT©¸ÌüWÀÆ?½O©m„+Нœu<ÆÜeïCÓwÒ[T*.£o_S,>ŸË&ËŒå^9Ì»=‚lÌãó=ÆÁáöCÓ!²ë“"–ƒ%À›TÖ¯Úþ# æ{4¶ ú*®oOKk›W[kSÒhFH)ƒû-¨¾Jç‡%²YU<˜Ó€·Z>™RW™äªãÞTÕW)0}‡nlEQ½ÄrØÖՂ꫘¾²Û¼¸5&È/7èP}•·Ï!×䣰Ü@ˆüPc ª¯Ràã«Îþ|ò=:ï:%E¡8ÆT_¥ ·Ïéö“F3BÈ0ƒŽqÕW)Cõmõ˜?’¥*ž½–оGêÕW)²úªtjò :ÆT_¥Àõ­=ªópA8ÁYrà禇꫸¾'ÂÞ#»UAõUŠ|ûg•Ám6A‡:AõUÊhô…/¶Á,Y½ ú*eäú éüR£Î[¨¾J©¾êt¨¾J™¾êu¨¾J‰¾‹˜Z2“«T_¥ ×Wý.b£ÕW)Hõ¥Ì cì@õU 2}+ÆÏîFUP}•‚Dß!KU=M|ÅñÇ T_¥¨®ïP1‘Í­Q%–ÊØ‚ê«õ•ã"ÖE‡rÊýáÕW)*é+×E¬›¦jÈý1ÕW)*èÛ~{žÃ°|­ æ×°©JC« ¨¾Jy§¾M®šWäÛ݈ÚZÞƒy0ªïPü¿¹š‰2ߡ︸ˆ Tß~ ø9usZ™3dL4”êË|¿–ªä‚ê+E?Çÿ l”Iü¬Dßêñr¨¾R$ñs.Ý€#!Ò.Û!4ï*(_þþ-UÉåϯ%RGuiügPßþÈÁìˆr‹ãL–cFõ}ãÆŸ__‹‰#°[…!Ÿãg¦éðãòÚgIzªQ}Û8òç×W]ãg°þ²5»¦Éxk×WN±÷Tß@}ÿÅ‹“eÕWn±÷T_¥Èê«0‹Øû ª¯RàúBÑŒþø !„ ú*ÅoÆ ™0}&ýQñ3þìú3¾ùâÝe¦),ó)²/›KL÷%4jÇP_8ó–îŒð}„ÛØ#¿@¤Θ\¢ûûÑß…º@õUÿ%P}•€ê«VP}Õ T_% úª=„å#]ž°áVrî/¿@¤Θ\¢gñèïB] ÒƒtçéˆGeþ£†h/ïÇ%PPPPPPPPPÞK®hNqFvdq‹Ì‚)HÊ_ønš¢/¤ã* Çù%†åãD‚ôŽî.ÔG–n§`v6’3 ‹[´Ìä¶Î}­zùÜù]_ªž FæTK3@Ž10âK ÏljéÝ]¨‘È{p(Á ‹[§ÌÝ,èkŸˆà}€qÕ g¸10âK ÏljéÝ]¨Ò4‚Ò‹[\Þ:ÿ'$'ì›ø™’ò0²@qàÆÀ#¼<çHè(ïBˆïÎB±]jq‹Çy¯ùª—O_LÈ›5ÂÌv8pcà^ž9’:Ê»P}{çH-nœàq~AðFœ/~Ø÷Ýåä‰3Üñ%†çãD€ôŽò.ÔGèVħ «¿Tׯg"Èûp]¢ß 8Ã_bx>NHè(ïB}ýפI“ž!:™¾€ÏÌéHæG}ǦMMÿ;Üñ%†çãD@ÿÝ]                          ç÷n)ø mï»ÎMvQóÍ ¨yÓ9iízw˜®%ãŸRøÿ—þCîoÊ #~»£îv n Eœ_ ̽þ,Xøåž­¾@ñÒßu~=­«ì?˜¾èÓ¯€†/R§a÷ï>5$Àë/þ¸ÜÄ(ª0í1pAš¿|üÊõ#ßžYޝ³&Kó¸Ì‹°E@ nÿÁŽOo5`>)nøøg€ûGÇbXè‹Ò?ööQ”“ÿW^wîGdà¡ØìNñŸÜW%¿ú; }l¸Ù°‡,U}•Üð R?}ÙÝÛ úA~U”÷„ãA¸-Áÿ,óõúdÈZè7¢ÿiÛècŸpûŠokëšOõ…Ïý–|j>mø#ïåˆ&=?/Ì|—?¿ó ×°é’ßMÈ€ÌÉÞë€þƒ ÿ×õGW Ðî9Q³ß ï`þÚ~–TÕ8!¸éúÇ~oþ{£1çk©Áø:pHÕ7qbÐðÙ¤Úïÿ’èûðëJ¾Û—½@ï_‘ød Œ7M$?f;º—EFÿüÎ]ú;Sà‡Í?Úþƒ=ûþ5ýºÓe¾½¿Lüt üÍÂ?ìÖQPÕÙ)¹ðCZ`Gkg¥ô4›cyS(j£áoa-^ßÉNfïùtTOPêüÁÿqLo E}Ä/øfC…졞Ù_UzRQñÞ J?ÿÞŽ-øendstream endobj 136 0 obj << /Filter /FlateDecode /Length 6150 >> stream xœí\Íod7rrÔî5·=A tgGÏüxä#ì^À^$0¬=AŽôH¶f`I=iìKþöÔYd“­ÖxìSàƒ{žøŠE²X¿ªz?ž«IŸ+ü/ýÿòöÌLs<ÿùLÿõÌk=9mÎçõüùíÙÕæüàæìë³°èi ú|ñ³š¬AùIÐqòŽF9ìäf1*?‘£¬Ÿ§9ˆ ›í„´ÄŒ+[!†iq…«ôoÉ”·aš}L½LA銩2j}RJLåéVžÄ|êüúìÇ3M[yžþwy{þ—çgeâyœ¢7þüù÷g¼Íú\Ã6èV¯–Iwþüöì›VÛ £s›¿máÏ!ø8oþóÓ/Ÿo/Ôd”Šó²ù7ü­bPÆÄÍŸm/¬5“‹~ó•üÃgø¯L˜õæ¯@ ~0FM³ÖÞýŸ»¸Dá7P4*jžK+ͼù¤¢Õ2ÇÍ—ÛoŸÿûìP´&œ?ÿâìù¿|³Ùßm/€ÚäuؼdrQ{·yE+ßqsÏ#lt›ÝõwüY/›Ÿ·ÆÃٻٿe¾ðqƒ/F¯f¿¹â±.ØÍrg7û~•Ù¼Ø^˜Þ z“è˜ÍNŒxØæ•¼Ì$h,È»Z€7˜W;ífwKÛC\25`ùGZˆ7³Ý.ww[˜yÖ³“Sð¢-ì',Æ.1ÀaÞÜúžZÌæq /.Ú©löoh–GhË›v«-%În68ÇyÆMâ£0¦¿XØ|8Ÿ´]$×÷iN~SV{%I€È(8Îyó¦HÕ„ƒ²KXH0`ÇÓ«`ü£Æ’rÁ,Dë ²k–ÿò›Ê´wbð%$Âu¨VÿªP.bqMÂùñWV‹[ç—ɵÀÍ{~÷ì÷ùüxìbÏübŽu“·Nûó Î˯üר}HïT·z†·a7Ï«Wžñ²–‡Òg–ûñòäKwSdçÝJaÙ\ŠãM£}„!òù”Ðu–{1àÝá •¦ëÊ›®kîŠd?à¸äºž}—Þ„ÛB÷Σ$-r5E`XH`F¿ÙñªPa¦ä¹O´ô"¶k/ àŸ²Ã]Å´# °“_ô* (Ü$apRp€5Trið?Ô’ÞHA˜v¦¬•úˆöM![8þÂâ݈ ÈÖzGp`«Y’ЯªÅ®ËÉŠª%(¥5]qûÍfÿ=…ê ‘ƒÙ¼.:rÿºˆÛÆ¥û´ãA);9#J “öp  ª‚÷åªh0~ÑÙ…®;Nfù°JOJÍRÓ¾–jÕ5ÖWÂöªlÍïóù^2f#;‚ÿ@¥uU–"TÃï¤6Ç¿/ ¨K!™÷‰0ô}¡À@P–Íþ–G˜èŽsÜ8¾„1•Ài8‘è;·LjF r’ÀÅÉjÜZàˆÓ:REæ}•*£kƒ•ç‘j¤¹IpZó¤—V~IàÀ ñz¦ƒ†Ÿ1†£—Dü¦8Iâ¢:8"­GªÿGàQ£À±7d$EI9ýН F»Êt ³V[T²Ö3ÚK&Ì¢—ÍáTHãNÑ…ØlÔ_X(]’Å}Ò®³Rއ͎4wt‹_*ÕM÷›…T(ƒÚ òp„ {yW„›nl5ˆÉî ¿çAEñ[ìN^¼Ì¸çÍy­$îW†¬¼Ý÷ ÕD„ÿµã!Î-ÆVrÅÄÑ|½à³1l/#j%÷Þ[ð4/¯ˆS}ixÝAjÉü5?‡c[*ŸŠUãâæ™·)=~E. š<ï²³¿—]§ìyÓCáä‘+¹(|Å³Ùj|Óœ7«üFžóVÈïžL„C=tI’…uJJÑJ¥ˆºËgÃúf‹Æ!z<€õWÌ¿¦üËä_vÛQˆ\d£ãJõjCOò •@‡ÚÃî !æµcÆ„Mí˜Ñ¹Â±êáÑ‹#–úQøWL»qÌöøŒÃŸÿ>ƒú¼,+‘בv@ZUZÉ@œCYìn˜#ˆÓëë±Î·Ããï0ŒòÏz/ˆ.ðÆ. 8[¦–I"k*ÿYœS-Õµ†IWGj˜, 9✗ ça»`%â®4ô]Ò`9¤-»' È;_1M¡ÖXY¯;—ÃÛ9_Ž×YèË5ù.ÿºÊ¿^å_—ù×C÷š€£^ÆJÿ{:Éy™¥ÊpšÚÇ»¡Å§Š„R\Žr!šZðÔ&‡f¬Î»ÙË6NÉú¬•­†g0Þö4+“%éŠçöÊ>õRe—„B.°2s¨.9Þ)$Ôüô;E—ã¦ü˜OZß±’± 4” ¹(v2,_e±ùóöÂðr`¯;Ê·¯ó+ÿš^”‡Ev_t$ö®#Ïÿ½É?ÙèìœÞúŠzF7 ?nA; &¾ëðòs‡«]‡—]Ù™?•Ÿ½sÈà÷%•q·Å.”×b`±ëGÞY}Ó9ŠoËÔÛÞOÞÙìi|±nrˆ ®cümÿ1o£Ç¬Ìþ¿D<*ï!ð³cÀXeñÞ'šÔ;gKÕ»4p’E8é@û'W–1p¸Lòà‚›£‘¦[ µL,jÓºg8q.íˆò¿f£˜±Ýʻڹ°4!^Ö ÕH;rKž¾_cu½€7ïSäÇ¡ñºšý‹bÕã;ÞkÊ`ô£®+¦áÂÔí:º{ fä=/õþÀ ß`·$K!L1ÇQùšaä‹4¶ö[ì>ApÄ.ð»xÁn|&ÿï3ár»õ`ÀƒÙK‡ò!Ñcü؇ ·èpà|¬nõÛfWsÜŽóÎj„¨Bxòˆé^<æáµp¬ 3=^¹Á5Ø]•ÑÂ?“qŒY¹G¼pÐ/Zºè§„ØPîó,2ü¾,‘¶8”k^þÄ’§¨°,z55^Id†XÓûuTž( O& ä!XÛ|z½{%¤e{VpPùè6ZR‡ø~O:RÁ‘I¡zÙè$"Æ8œG+^»äUBA¨É#^ŠÓ w"ªÄ\ ÎÕiÊ„;¸æ÷BaLˆdŽëÊ~ Áïy̯4::«¦«49ç¯åøçö}Åñ* c˜lAšï×3‹ƒyoK.cÝÌ@%ÁdZµž”b¹»ÜØá#§fºµ#”N¦È`¨ 5HºøÿT®ŸN‚Y* Ò¶!枟FLÖ–ŸòX“”D[ë‹Ë ºËXå/ÖUQ$Ì(tÿ† u'3És„áãçÛ`aò]èáÒbDu¨ šÒ‚%ßýQÞÈýFõ‹ÔP˜›à]ˆ{¾1»ên“*‚A‚ÿ™’GQ…:õÀh…Õàa– ÝË•‘Ãee¤³qVµ8„sÒ„ /ç©°'’^fϨ,¤”„¢Å‡`yvW•4âS¸GŽ_SãK3„¶i^ê©ñ*r*9±¾|pÈWïÈaãß’‰¼`Ý [Ù«ùI[±Ng$Ä(£²Bº›å‹»©!j—EԈϙÖô"OQ.`k¬Ðx¡s²nÁ*˜7I.g0‹ÌccÛ#ü«Zp³™â ±ñ‡)ß4‹í¼¤TóG˜q?—uA¥ÇÚv·‰ñ#þPø0i5‰ð#a¸Œ2eInÓR§„¥OOoµzÇO×g¼ÎÐÕ¥N‰®(3Ý£•¯'&é=¢3À™ïK„!Dµï'HQ݉è¼Ê_%Ÿaâ™øó×å†49°1„¶#LL=D‚« ûQˆ//ÞZ8é!*²þ˜ó‚”s¥&Aá˜R ú$ˆ3nÍNˆjcð¸o»nL_6ûEUΜ¶µ:ÉBø”Iw ‘ŒÖ 0ñF„ZBCÞm;¢`|q¡+° áNøÙbüS ~•ÅO¯JàwQ0 ­…®ogú%µ?e—Qˆäi1÷a=°Œ¹-j¹\>'÷òPi)Ü™¦8ˆ¨ã‘4i6ÃþµÚ+Â9{O^â?¤¥pÙ¢Däõ¶‘YƦ\LŽÍË•µ0R,Å›®ÑÕ§˜#ÕÕÑk@w;q"‚O™6¸(o’àÙÉ»XRS'Èõê¤dˆ~•úr«Ý”jDÖ†0»¯`4VC£õ "L]h»VÊê™’ 83Œ6A zúÐVÄ]3x%³*Z”˜ˆ>žXo>ÀJ‰/3ÌOêdHƒ|[¸suŒ€O}èS$…bAÀ@,JÁúæÌG²yåÅ+~Ž Üº]Hâ½ÔT`ʓԸ l«õTe÷ŒÛ øN5¼J}mPUH$Â3½Fm~µÛv•Ú°|·9õT`/ÃÀU–‡=Ή¯½"Ê›XѼ"Æä‘5!®{[ˆ¸Ÿ ÏN,€ÿ¸ù05àHÍQ¼\´ãºäq7TZæ uo3`Té }Ÿ(ëšÄØAN]‡wÀÈHXЫ­÷Vxª«NB7C+5¹é*JÏjØ·ú”=}Ák›>Lw"S«ŒëaÝ:×7Œç‘v3$îBÕj)ìòþí¶Qj+ÄEïŶÉs]øá¢† [A4œWªu¦ó95̼ ò¬"Fc1¹VX7›aÙ½PDGV ×®×<— ±Z•6°¬ÅU‰mˆÃH k5j³ 3·«Ê x¥\Z-ÉÂÅ B®'T8EIŒ S#FÞpšª¥µħ §¾ÌÚ2ü[J{#Úo´“æ¡vš‹V‰'9ËM™Eâ¹ÈöœVya|ˆðò¾ŽÞé1Ý2v?ÝìÕî'q•Os!€qtÒÂ!ða`Ä´Æ)|öÜQ•Fô ñÀÝ©‚õ=_¿yí¶HØ4øH^‘@°v/4o¯X“L ›ñª2C ¦Gv“À$©Ô—gpi^O¬Ý4ÒráR¯¡¯e†šßzÊ„}ˆü,/áWŠ-ûˆO¼»ëVKW•œ?l‹çè»Û™‚a¨é ®º’f`ëhSÒ½øÕ‘{ˆ€Kã”îvXTi “¤\[ogÔ%°…\©~Áº üûA“ªÀõ¼˜s½Èæe0–®\þ?OA@½¶uä²*‡7åTð4!õ‹Í-ùu˼™òd©š¹÷´¬úΡ.äêÄO¨Àž¾Ä!(úPuZó{ùÎâ”i×*|à~¥<“V£Ó7éÓÌhQ´P’0\¼ªô ADw$éeZ|éH:ù>à§]T4½ï5[8µÁ»ŽPÄ1è}‚ÃzEªU2/S €Fgu¥¶¸®7ÊI·v”¢ÍL8¹rõÇŽšgGpÀHqÂXrTaÙ5+õàÅXHiÞM<1¶6~ÉWF/Þ,…ûA52!ê8uÈqu]¡ÈnÁ2YüÎF—«Òn«BÛIH龨zYÉB@Y¥õ]1G”Uã/0ÂŒ§‘º†“þzÇ—2”©‹ÿÐ#7?Ÿ¶´”WLÖÅeÓ¯£¥¢Uƒ­¾ª¹-$¤Ü¿áÁˆÂ4ÅìJxjy׺dé·d²T$ ¯§•„ÛÈω/Ò4Ð0m¡ìÆ[Q²aô ¥2,»†áw)l&W>Î!‰$MëkG ¥†ù­Sµ"Ê>µ 0Å^¸¨ê±v*Ò6"rªû 9rŠí¦¦àcÇbSQ*Q"*Ô£é;ð|Ò©Ë·ˆÁÒÊŠ\Rõ©"ñ £]Û©­©&VB- lW›Ýè’l‡I,A¶¿‹ƒ6yQ¤ðº¶ÃÝèq­U5K.Æ*yâ«ï% ÐÑ\ªj¾¨QkŠ›O0£ã·ŽEç7õˆÓ÷V¥¶Ìèb{6}öåX$5° ¯m'Œ´…×Çk˜ª(—Ÿœ€ÉD|j4o€q\ºþ[B D¿…¢ /¯âšÇªôy¤ÇàâËŒ7¬É@HÀí ²ŸXé„îmtD¬µŸ~XÏKˆSón‘øhBñyÞzj rÄŸUÞNò€+40ï¸&èEXD™å³åÞq¹QŠn*ëdÖ¡‚àt³ùÇ V;À‚6:—}RÌb¯¹:ÄIåæj¥õW?e6nîECéñžëŸ:ý˜½ÞØBñM¯)´?õñöÐÊ¿é´}Þw˜(o<+dn:+(M¶×2/»ì¼ÎNô:oßé[Å2Çî©—í+ÝðÿÜÙ²Gúq»§þsgÃYWq Ç;|ÿ§GQç_wº¨Ÿ°S¥YJiþ³˜òUy*?,–>éìôo.ÄüélAÿBpØi}¼ ÿÛ“¿Ôpœ±þ—mÜ 3íÿ-?O&þØm8ª6zï/:›×ï¾/"s𽂵ïÜÂåvöwï\_¤z„Ž ß£_dôדÕâBí¦IÅ×”»½»M*ް”*t`Þ [¤Mî™Ö€SÒÛyJŽ{£hFßf¯D“øÍú„ËãÇ+kŸ1wè¿Ö… ¸(úÆg•Yƒ$Šž• Øó’;kè5ªê¡:p—c4£ÊoÁZÕO“2OÅ7Hƒ>SüH™ÐÞÕ5™¢Šjm2_Qv<Ë‚˜¡g¦Á9ô¥Iÿ¨g0'PŠÂÿT×ïÃvD×6°`Œ¨¿XF_ÔaÕ—ùõƒQƒP\c‰Á¸˜ÿ¬F-8Þ‰lŸŸ˜D¨:.îAPè°“h€ùר®Õ“sOu!ˆžmø ŸÊzbJ U†¿J}‡¨ )Õw‰ÂãÁ­Cg“6`€ò±Ùîrx†©Û!Ÿ¡¬3e~'}ñB‚YÚÑ6·¨@¨L×_-«>9˜uà šðAEñîK“VåIOh@q4P—$™\½Ï„ЉÖE'/‰Tw¬äæÙ·T•¼YK_sµ Õ*}{* )2ôÙó³¿Áÿ3m¦endstream endobj 137 0 obj << /Filter /FlateDecode /Length 1556 >> stream xœíYKoG ¾ï¯X=¬Új2œ'h ¤H›¶$V…“ƒ#[¶ ËϱÑÇo/gWÚá*´¬ØF¤A¡¹ò›ÙÕœÕZA­ó¿ÅÿÓye”Kõ»J×O«à¢²êè( õ¼BTH©×U[UÒQ‡u N+kÈª× $|kå-ÉŽ-ÜÆizèY<ï#=ÅA¼%*L¨¢g  Ž)XT.$† !*ÔÀ1£…b`³ÀÔG[BbÑt½_UÐY/þ›Îë&Õ£—&ÕI¥`B=™UÉPƒ³*Z"–@ñõd^m7Ÿ?~6B£R Íï[#Ššœw¦ùe4¦ôhí¢m¶Fck­ `šßVMtBmLjž?ÍE­1Ø×“_ ƒ Òf=Â1Ù¥¨/[ㄈ¡366(4 ã`4ùƒL¬e&ck¼2XÁ)D·ô Jë\óýhì m ¡9핳^ºì¥ãbøm¯¥¼f)M{ém/öÒ‰°âUÓ‹W½ôM‰w-)U¯”¤W£bùç(Ó  ’÷POžU“¯¶›¯)}9÷š“±#€Ûë¥#!NÁ[@ž +NRÛîÑ~WÄÈLïFQæe…Œ’©YqÄβ®Ög’ç¢ÔŸnM[bióÆ&¥ ‹º–úk ÝY/𢳝FRþ'M±ÈÙûµŒí½ ùH€%­½î ÷…ÅÛB×™W¾äH`XîÃé”»áAj¬~Œ5öÿ.¬+c9'ÿ.>¥ý_0+íóޱô±ñ}ênãÅ3ÚÞ?4>O¹Ïuw—É'(ïÃÝ[ÁîJxÊ;–œJ†¿®îöÒ›^úrü0ÊÄ®Ý(Ù6x {+€¸”BPðÚN:Зìu[À]˜/­öîaæÂ`ÄÂII¯6iH®g”…™ .å/5-lqðU#wO÷HSíÓîáë >í_0ÚÅáQ!þ õ@?ž{(ÛÞ-ñþ)¢\’ýã¿$†.ŒÊ]!8σDªÔ7âé-—ƒäò‹þùãõ{d ^¯e°Œ ööRÚå †œÕ€‹àr·\ßk?ošÛ’¦C¸”Ä2ÜfBiFJ/¡2¡S!Ê ” ¿É–Õ"=eˆ¤õÜ_.w„|ð÷S) ôv[|À/šwp$%Bª¤Û¾Ö×Ùlm¼=!s·Ÿü¤_fDB~-àå³FB>•¨¿¦@†)x:aüJ1 3ež¼‘p”¤ˆÿxƒÃ{™€Í_µ$ n»7Y9œT/ª³ÚRìÐÞ80VY¨ÁP`k£‘ŽJÌ×}^’Í““¼ä†,ˆ5’£à¤, GCwƒõÓH+@Ð!Q;dу·Íþe¾bò)iã)¤OCÌCÌZ£úŒ*övÔ]D¹Äâz§œ·°¼µÚj/¼@דV"šHôæ«2ëæÖùZ0F5í}49hàü´õ¢C$ò %Dk%wã4íQÒ’yÒ`B¾¦pií ä~÷:"š/`c‚öé|@ž¸E¿Gömˆ/eÖÓlZ[-ÏŽ0uÊ´å6h—˃9œç?\BƒÍ,;G§Csι8PÁe™eZ4:ú›òØÁÓøB Q´Ù)UOÀ‚µÚ¼Ä`òžL¤p˜¹Xn”ÎiÒ¦˜rF *€@s‹²ªS"ñ¢³t:ÑÇ ¹5)y“)ñ:8‡<¹Í}bÚF%d>â²Q/òb›S â2<“ÅÓ¥äü°­fâ–*b>êÅS޵ÏZëÚÑs¥—³é¨º ÓÐUP€UýE„ÞÁÀc—|ÊRâµy¼ô©Õù®8PI*b‡[›L¶œ¬ÃÒ Gl»CD%’˜‡p¿²jFNwÂ*v·ó‘òæãçtÐ{½‰4V :B²íõ]vC½¾¶×ZNÂPÏ0žÏYܶÒ#XÝ2Ý{°Ÿ]ñ­ð™ËÊølµQ b!v“ˆˆKƒâ2Ûwô¢iÃ.;/¼ŽÛ¢MoÎøîˆXz¥ªWªÐ:CO6å¿ïîœøÏãÕæjRem½¨þWŒendstream endobj 138 0 obj << /BitsPerComponent 8 /ColorSpace 28 0 R /Filter /FlateDecode /Height 320 /Subtype /Image /Width 480 /Length 31376 >> stream xœì]u\SÝÿÅBE,”†5clŒÑÝÒŠŠ…ˆ` €ŠXXX & ((Ý) ÂÐm0:ç#¡ H³ß Eð‹úúñþc»»;»±÷=ç“çsèôÌ`3˜Á f0ƒÌ`3˜Á f0ƒÌ`3˜Á f0ƒÌ`3˜Á f0ƒÌ`¿#Þzüáp;ú«¯à…gÇOä×nϯ¾½ÿ‚¿ú þW ~&¿Á?ñàÿÈ¿ú þWlœáwÌð;!¦—ßJÍ¥¼g7óäã“§óØßÁ4òËtÉÃ7’„c…>˜¶ã¿=|;j“Wº16ß-u~ÄV3ÿ¦_¦K¾‘–¥×ë]gM× ¾ƒ?‡ß´…=tºƒ&cÓ ¼l;5öû®i<Ù0¦_¦K¾‘(!`ê9¶Ù´ßÄŸÃ/Õx9¨Íؼ ^ö®clØE§·Í/zÇ+O¿ÊÇ*W<§œF~™.yøFÚèô–¥3öüÄ›øsøe eÉKÆ[ñÜ{±‹•›©ýôûú»¹Ûh@ÇxUk¤=ç›>~™.™Ái—`³üôoâOâ÷ó±…C[Á 󵌭~Îdºæ5ú»¿(tz,ëË®ÞÏÓyÆiÔ¯F/yäFúâm9RŸâMüAü–!ÉtºßüùòÀ‡~úÞ½ƒ{÷íoœ×ü5 ?‡$«\ôtžrZí#Æ%^ýÐ|øì[·sð«Ÿw¿=CýÛåÛ52tð$.u@=ý ØSN¢·ßâèžÆsN¿L—<|#gƒ°•Ùà·?ï&þ~ƒÙÉeeeõŒÍ®UGkNð ©š}‡ÿo΢¦ËK{§ñœÓÇ/Ó%ßHkPKüÒ¡èçÝğïÃ_ ¨n§‹,ѪÞ¿{aûð_Ó»—ƒU2uO9ãóè%¹‘pÂBøóè§ÝÄŸÃï÷plóÏ;öæŸüi7ñ§óÛñvEÂÏ;úÄïO¼‰ŸÊïîŸ<ʪø~ú¿‰þÄ›ÀgþD~-Ìþlè°üê+ø_!ø3ùýóãƒì¿ú þWüéò÷çb†ß 1Ãï/Ç ¿a†ß 1Ãï/Ç ¿a†ß 1Ãï/Ç ¿a†ß 1Ãï/Ç ¿á·áw ·ÿ߇~'ÂïÂowS ùÓýr†ß‰ð»ðÛTG£ÿPNÇ ¿áwá—L£Ñ*~(én†ß‰ð»ð;Ó~~»ITJëýr†ß‰ð»ðKèîû±Îð;~~3üN„~‡ã¹I§ó°³³‘3üþrL ¿­à†6Øû.è×ûgøÝÝ?ã°ãbZø}xNïé/Qùzÿ ¿ã` ¹„Ú4“,&Ä´ð{~­0·==ZÍuaÌþ~ÇAGVÓ2ýÇÓ¯ò}<±Ð‡Þ 8\bÂÄÀŠ›Ópðÿÿ˜~øü¶ÖÐh´¦é?îøÀò0ˆ‡ÿO¹y˜NßëÒH•Ý.ÌûÿÄþ[Æ$¿T­úÃôw|LKÿ¥Âß¿g_ÚÚßÉcÞÿ§ñ›®:vÇOѯ>R(Í?í›:¦Ç>r Þ¤wî‚‚ÜÇìþ³ø-UÔÏúj×ÏÑŸûÐõ#˜ño c€þÏÛovÎØ¿âá·ç¾hÔxûgø ¿ù(ëúq¿˜áwBüü¶wÐÛ›¿óÝ ¿âà·ñâÕ÷¿ý“øÍÆ­0Jñ‚rlë~ûÎo²ðÝÎ ¾þƒøíã þ¬?è>$-.ì4:9üöÿ™ßò÷ô¾‰M•߉ßÞÎ Öqh:ýÕ`„çª!`Éó¿ýÿå—¸Aò[ƒè+üFü¶SÊ(¥Èz¯§Ó[æ1¶.Ðé9³ú†Þ6üå7F%ößý>üö3R(ɸ½.[]ü¯6`+QNóÚ¿Z†ÞŒÿ_ò›X1¹v¿¿=%¿Ôžï7ð4ú/Ë ïü> veVßàÛßÂSå·//È/òÝäÚþžüö‡HšÖN®éïÃ艹VOš / K§g@[-tz.˜^ãÑxiÏÔøm:ÂÎNЄÌ{1™Ö¿'¿Q;K'Ûô÷á—ÞÝHiœ(º;±oýY@¥úP¿šÚ¡s ïZ?%~ÏJz¾g¼÷îVÊý÷æ¿¿žÿªS1ã7â—QvBäaùÌ`~d¶ÁÜUŠr¨}{8O LMfª[Û”óïÍ7~Û¯"ì?Nå¿¿“An$Ž™xT }Ô\ÆÀ¤šþnü&8MqÀÈoχ–ÿq©±®§PCK„ªS“˜ž2¿Í™`Rm'~뿞úþ;~ûÈ5uÔ¶þùçøæîxܹŒ¯œ Sæw‰ïäs~~ëw‰ÞÿœÅÿŽßŽ ÀþiþÐÿùóèŸ<ÐÑÜöÝKèì¾óWÅâF3L™_þ) q¿¿YÏ'ýTÆ]Ýþ5üö‘ÊËI_(íoÌOŠ#~gÙœ¦„s‡2œäaú_}'Äðüzç½0©¶¿¿ÙÆù“nÛå'¶©pôã:>×R‡ý­Õ4ZÍ=°œI|MúN¾eÉ«ïQÎpnQz¿ 1ЀßÛƒÕÇÿšTÛßß7ªkÒ&ÛöãMäÁ1«¢ý‡úUïÇ–/¸?ÔÒhu_2¤ÛŠs‰Drã×Í;ccl¶Ã”âé}†s«û›ýø]uûS€Iµýø%OúK¢o¶õã_buPi´Ò/WÒõ&µ0ûÍ—|ÚÞÖÝôþrz»Vk×VP\Vôô÷j¹ÿ›ýøe?“e\üb~ûˆ“nœf"øM°ðÙ¿m$Ò¨*Ý^›žÝ4|e½äʪsüxU¸eà‡¾U…ĸò>zÿ»Â„ܦoC ôà×~Ce;€Iµýµü&£Nv Êî@)áBØŸ˜–B˜f~ºº~$ñ¹¯™Bn~;Ðäëã½WˆÛccws -‘Ü@+í¢w–ã3iœÃð»ðÏ¿Ýýôú÷“lË»_Vc¡—¸1Õ1™^~û›¨e¤°ÒZjh5ù%Å÷…ùù9¤?@û)´†ÔŒZY'½³œ<ü6Äð9Všmªü6 aRm¿Ígäɶ-=(ì4¬¬Vìù*l2½ü¶WLafYßÇÆ–¡g¡¿üM %á¤1Nb§gpÜ‹D#Y›Q*%çÄT¼ÉhùܘA©Äð˜C^XcyVoÊþÉžFzÉ$§Gý*~Ÿ£nO¶˜Pš áþ°pk0#}5|N/¿Œ™e ãýuÝ_"C½]_t€æjZMÓ ÍYÂ|«7ß}S™[œ•]،פvzOYBî«ø’·µeYuÕù5Ÿ²p+ô0ŒõÁöo¶UÀ«Î”ÇçÌeîô³‹'·œË/á·®“þi‚883b7cäSMÜ7 ¦—_ÆÌ²ÊqÜC}MTjÓà“õ‰RJrB&O}yÁ?;AjâCŸÌ¬üj^)#¢i¼ ”÷ÅÑñ¤Êâ74ZYb=ðØŒ¿µ¶hV‘-Btžòöö©çOœ€‡ÊYtRm¿¤ÍâUÿÞjÌb7A5t¼&Ó¬_µ‘È-LŽÇ‘ úu%÷Á°cHýý­Íº)å~i÷¶ ñnôK¢ÕS#*)‘…»šÈ @»· k·€F* Ó(¿åq ´úæX†ñ+餺Lôô?t¥lzç"Ʊ§Ìï"†îö~á¤Úþ÷üzËGN²eÉôí/ùjéuãÿ Óm ŒFvzšÉMÝÀÈ 5Íõ€\fX¸Ý@¯Ï)Ê$5ÔÜ_ÁÇ+y2ñ}zØrMy]csG/HúÄЦ3’*hEdZyrlYSSy %»ª¦ ã j‚þÊ¿Äî j_›bcW-Ÿ2¿>ÀËñIµýùMŸ|l—!v‡5Ù¾>zÓ÷Â?ÅþíþÄð 7ÕÒêÉ=MÔ’÷ŸÞæMcXîÌJTÂ὞ÛyD\uMH£äÓ3>¶µ·÷ô—§¤“IÝ€6]“K~Gi(ŽK®îèhíìûÔøØ¾oö×ÙÜ/ h—ÙkÊzŠO]þ²©ìÖ\˜ 2toà%3­õÅö¿Ø§Äïæ‘¤œ7¯ÑÝCõs<ÐékÆtìÿŠß®ûÿü{£Ï€íQX»_œ¹-môΉ«*ÿ~û±€ÒîÚÈÄœ­U´âW”òÊ–þwý±*Ë×Þ¹wûÒ)»û”¶7QŽ'NÜzêlwÝ;¶47/1+)þÔåsi9ù¡7ïy=wýé}ËjÓgÀhß™î~gÉÉ”5'ã—Þ³¨–Þ›®=›ÇÊg0%~KM密RÞeܳve²A†êç8Ü Ówù37ÿoøm¿Ž´ý÷Ô–þ¦ò râ¨Ø¥7E}=]ÿL’ßÏ-'ï–¬›Zrÿ§2 ‘ØÚß”Ÿ»O“•ÙµõºÓy›Ï›W|ƒãšiï8ÚÛEx=|•éŸèêêçnçäé“PxïÊ]Çcöì,«$ÖÞz–ˈ$~Ì xî^eJýDŸMO_åjÀ·DD“ŸÃèÝTåoÁ>ä‚¿Wªßó‡ÕÏ9ˆà]†öü—õsü.NF¯j¯¬ñÄk¤|NÄøý»•<9~Û©µ5äI×\èk!5wÓ›‹Ò“ü û3o^²Õ_‰8ù°â›Õ•›g,¢Ÿ¾øÜ-"/òþm÷ÛÎŽaÉO<‚.žuót¾êäî›’ÿäüu>vÂÖÓ»·]ö~^èTñá‰ÏÂH‘èåæïÃõ—/±Ç1|Œ³ýHýœo|äCõs<ŽÑéºc?¿ÿÒN5L²eÔ"ç‹óˆôý_•4ý09~›ûuüˆKÿçÎq>ô®~™z‡wùJµóqî¹…5 )G/Ø>ïûâÅ Ï‹.úº>´¹áåäk}ëôIÛ3ç/º‡Fy>½"Á6gõƃN¾fVÖë l½B^½ûÜÿ>9ôÙ=7—ͱ•+Ðz†|Œ3McýœDç;1áŸÍoÍŒïäúMÙAÔ‘bZùùc @¿Y0€3uëIòKû¿=¤ò²¦þo>ô’ÊßÞڄۇ璳ó´ºöìæ³ÜWdZe†³ýMÿ³›ï²½pÿŠçÅ+ÖGmnì9im}ÁÉúÄæ#»íX‰‰8ÀZÎ1±7]n_Ýn®·åd°÷ýûi”Ð’\,WÍb[>ßòm00õsèžââÑcvÿl~ŸN.Ü6hív4’>vŸíï$t´zˆn.è´Ý39~?Që¾3>·|ñLõV6ãÃQÑMÿPóŠw%»”M@F¢ÿåcŽçœ_f=¨¡t½{tÏe§¯·ÇC_ß‹ö]®¿qêäÕÛgNíÝkn¶QxÎ\Èö³×ÜÝ“ßuÖ¿²;|âø^×[OÂĮ’=¢$×6ßòm0¶þØù¡9'92÷J댈ݰïÎM)>=ÓH§îcš{6Iýª£åÃø²¼¹a0“ª¿™–Gj¨­,Ë+*óÐç•‘Úå•DÊ-ˆ¿wlÓ¶‹§“ˆY¡€­fo¡iqÈÓíšwÔ3»ˆ«]G­<ÜvoÅò,`ÇÈ[óºuúÔÑÝÇ>·åÝ:o¾g÷^ ÇSžg•–ÍçXãSL³ßðq8¾?äÛ`\ÁÊožšÖ䲪ZœGF¬Ý¾Çbæ´q›õ‡ªÊövÜþ*nò£öQo[ë # L-/îì¯/Š/Ì(ψ?wý²Þ*ÐáРbFEakWSÀãu6[=‰ðñˆË©zd}ØÌl×ÁÓ×n‡øÙxoÚºaã^wcô<6–Ùž]Ç÷Ùî:½ÑòÐÑ[‘äÀCû,ví>$Å1·ÇÎ;1%6—z^£©ÿ‹‹ƒáÛ`8?¦Îo¨–ZÙƒÉ5ýyü&N.Y½œÉÚ}xü„Ž7…-ßÐÛ/ ¿ÒÄ¿ÃowsSÛD%~{ÈÕÀhKh«HЉ­îk*È Èʧ…³±s®± ŽjøÜ‘RJ# ô—ž0ßbºáøs¯ÐDÏ/ë=†kÕ¶ÛÞºâ|ÖýÆæÍü ç,W]¿Å|޾…ªŒÁý+†J:Û<Üï]·uuWœw9¸u‹ý¤g^nžç|oÔ\wêÝÍ;"¬sÙ "ò*[ö^uܤ¦ §¬¢#‡UÓ–PÂKcQ‚ÐUP©ÃGNn7’ÑÚqÂþZHXei%•øL˜k+c á‹Å9³íc VSŸŸòà÷ýâIµýüM üÃ7Q+™>'»Œ›ÐAsBZ’·íbþãê¿ãóËHgkø&#™ ÍQ¹¹Í¥•….Æüš(¬¹[@~ãûò§¾ÖvǯÙzÄT ÚiíoSý]¯=³Ûèù"/ìþùÓǬNî=²qíž àeËy1z'MÖ¨«KêZ¸wB‹`ª.¦(#&/#"+´hÖìåëOûŸ½lgº{­ÆZ›CÇÎæ&”d»†¥&–Õûû×sÍÛø%κ—ü&Ü/ÔïÆŽý'6ë+‚YæòàÖï>eaa¡©`°mï‘ gÍ%M5¤U•!l ._.„ëï»~Û÷¼‰±š”¾Õ.뇉™.A—xÙ7¥\4 ÉíE,’~C§ËÿP~N¹×<‰U“Ë+ž^~½P·&5ƒ2o³Ó\²Êo³ªÑé#n”¼§jOðýª¿½u¼ÿþ&*µŠD%w‘iUWËø ¦7òI\þ:>3ÁçÑó8§ÃW]ι=ñ%R)­^ì´0=~ð²mØCççÉ~§¶¯œ;Ÿ«¥¨`‹Î¦mÛ-L´Õ•÷YÞ¾w›‘¾ª"ÐqY¹Eqx„¨¦ºæ³m·tEÅq2:g®…úgÃãWèÀgÏÕ%4ç±>¥BÒ0?‡Þ~;p’ș‘ߦzÃdhëÄî˜<ª¼èñšUÙ lâ©XÞp¢yêS³Z«i5‰e´7¾/N)/'\È*+ªi¬,ÊÊÌ }áäÿèÌ•sÎ7}âC^Dd%Dœ2ÖÓ5=rÆâø k U%ñEl’Ê" JZ’F»7éîÐSSRÐ1ØayÒR]»h6Ÿ´¤úáuºZŠò:ÆRk6í4>vX'­ªº%øunü«3¢\óÖ¬õd(ÏÍ® ´êº¿?ü`~Î/ÉŸ$mŸTn v-KF?&jŽwi&Á| ú»oÓhÛG3î¦Èo#9åu’=ÿrv‚ŨwdÒ«äŠÂÄ HÿYAþÏú^q°Þ{áÐß[öçí<Ý÷«Ä â[,ÖȈ°Ïa™ÏG0P6"Ä`bŠ8RRA¯ª, ƒÉi/œ³„WT‚(*HÊK)jJ›ZlÜrÄBÂÉé¸=ÞÏ?—§‰³yU0V:_U“ãA?šŸó+ò'ÏÉGNfE™ Ħôâú¤VÎL[+0& [Z2N«2¤Í`q¤lÔño\Y€±ÈìiüŽ~ÕÖòi` ©¬’2,…{IEÉ\+Wª9Æç7•åæDDåÕdÒjRâŸ=M|AjÈÍ->ïxÉêÆ›³ŽÖæÛömQ@ ­`™³ ‰‚#1’ ªªrDŽ‘A(ËjŠ£V®˜³p)JL\MGÀA 8Œˆ’¤´ê†XiE- EqÎy³—+_K¨MËÊÚ©ò:föàãýÑ>lVÿÅñ{çO„ʬ›LªzïIãÑØ.#«êÍxGûúÔNÿôÍ”MùØ]ãóÛ\FŠ-ýIõƒrª¿ÉW›% ïQð6‰T têÆ„´È`bq\Î딂ìû¡÷£ª²3²Ü swwv'y…çD_¾~âòÉ«^q!žÝpܳoÿ¡sw½¬øç±ò‹¯;íh`¸éðží†Êâ€J¼QSÝTS+]Íú7Ëb¸²šŽ•‘®(F” ¢®*+#%"†S“1\g¼YŸ?kîr1¼¸ÉÁ#ÇvYØ>~ô¦ø}*†waàg}–ÇšƒóSæÞúüœqó'¿‡ÿ…ßvg¤íd’šNf¦~×pEý¶QœŽlààÑJÿ¡÷}e]WíÛ®;ˆqøè£7ǽÎ.ô³Ý§‡ÜB-¬©;ïçG ÓŠ3SJ›è­Å$ï>Wî\?·í ù'ÏóñOo²:¸ÃDÅ\“g¥˜ò³õ›ÌÌl?££«,¥¢¢h´UGWNuër„-/«¢­‚C@EqRr’â85 =m;ɬK…Dô·lÕî_·f¿áÎí{;¾ ‘Wûñà~¤ø¬Xið´e³0ËЀ6e~;<Î30©¶ÿ ¿g.|¤wuþKvF¨ìXk÷ñxYUoÂ7òe¾ÎÜ(¤.sz{û¹ çÿ¶“Š›ºþÉ8¹tÉ*Í«¯kÊ«*âI ®}î–ÓÛÞD¥–Њ«â¢’‚ÝØf¶÷ðžs÷¯¥<: ¢Æ;wÎ<ˆº­ãŽê¢bŠF* ºÛœÒ\«-WWг/X EÃQ<||(œ¶"-"Š‹hˆ‹ˆ‹ª«ˆó/™µ*©B—043Ö2ÑRÔÑÃJ˜XºÜ»™S;P'¿hé*}–Ò¡Çwõò»vùÆm&ÕöGù¥]b  ÍÔròDCô×b·¤ƒ1í÷k¼6G;ÏášIc¿ë TÅß{ŠÒ»LN²oøí¡T<1áÓ€™:Ôdä•V¥ÆûE¥ÅÞºý”Úÿ)3 ŠZázÝÍù‘Ó5›k¶¬×´Ø{îÉs; ?+;LXUÃÒPOKF@Á”’–œ(T´œe+XÙÄBILÊËËËÍ+(  ðq ÂåÔE…xÏý{ñJˆ0ÊÂDU4•%1"â’¤ˆ¸˜¦ñ{ÛCkô•ø¸D(ýïþ"M1þQ~Y¿f?ÆoåŒÃÜý h¨uß[ùh6VìÒ³ ê¾iÔóTN3bó˜oj—Ø@,Ç”£¬Ü÷ll‹¯øíûPy´¹/o€ÞQR•œVœò4…˜žžóÄ/Øûò~@jê•›×Ϲ_·Þk¾QŸåá£Ü-Ø–®Ô]o"! –Pئ--çCAB`a ¡¥ls¯ÂAñR&jk0¢BPAˆ ¿ E‚øy…‘h,lñ‚9KVŠ‹¡á"2"P!ii‚ÚZ%–€Gã P´îöƒ2óð™z{M¿ùS!KÃàT¦a~{´§Ê/ÇD“¯ðcüÞöªš ÷•Ø¥Ó½Æ)“óÊrèýâ[Ææót>RP ÓußmÁ?`þoë Ùe|b;j†¬¢ÏÍ”øtâã—)Y1©×®»xå¥=Šñè“ãwýÆ[ág¬÷ìS\Càgåá7òxëâ½A #* G((KBÁ ~!0 !]2kÖ‚Up( ÁèÉê!Eáü`$/#§)ÈɬäÅ`ðBÒx%+†ƒCdÄT5T$µÅáÂH!^Î¥Ë9Õ,G‹(Üø1D«|ê~ßÜÐ^¹|Êõ¯ô)Ÿ~^ýœ£¤u7|g!ÆþP¹1bw j¼fy–"#É¡û+™¾él-°†ûZ«ùÆIÆÌo(ÿöè:-5³ðËSÑ™WM+ŠMKŒ{÷º¯§{êCgÇ“7_Ý8¥e¼åÉ[·½ÆêH¶&7Ã#cžÜÝd®*C¡x8Ðya >nÖÙóWqÂP>NAA ªª-‰B C%+ + ó²ÍŸ³x)¯¤&FXŽÆ`$$eð*¢àÉÐZ·n»"A‰ ¹l ‡ä6ûÛž¾¼OÕ­ý´æ­"¸ëº%Š+ñw( k§ìßøûçÕßÈPÓ ÛIäñbdˆ]f-©÷Îü~»åq{:\¿Þß’E;õš$©‡ŒwAßÈßOi©¡#º!%#'*0(9óÞÓ{.w½í팷žñpßc``vXsù‚+0:[[Ù¿ð¿ñôÖÉfòxŒÇÏXűpÖA$äâC¸yy!y-$?)-%Š…sÏÿ{öBN~^>0 r K㥰hiu%¨ ‚BéîÑ%ˆ°Ï›½€„—U0´»t/Èýª{f(9Ë·¹üa¾Ã fÁ•1UtÊò÷gÖßxôõÅŒãu®´B]˦ç¡o̵'ä—ð~ëy„ã˜IFÔãüfI´æÁ*3ê©î|xrô‹oø­Ê!¾äýÝ=ÝaI)Á¤ˆ  ”ЦC A!¢pQ4 ŠX+³^OÉÇ>‹U‹‹b…!ü!!^£´u‹½­¹ŽŽ Å>—e¹°´–¦¶ìZEeý19Ä\JF­¶‰^îª3QÙÃ46M™ßŸ“_÷t2µª¾»ôÄ¥¯]Q]÷±#ªŽù®P˜‹˜J—0š{¢+KvT•ýÓÏ ßãÓÇæÖ¡ÀÄoKi5õcWö£‡~^oKrsýí‚‚üïùÙ9Ùùz_;f}âÈíÀ›:|KAì¼*ú¦[Ÿ¸µÍ@MÞx‹ÂšZ[¶˜+É„‘ì,³p‘‚Ü!&!Šƒ€…1p@£åðh ôò9³òHéhà (DHGð ¼X8RRÑð®œjÅŠù WI^}d¡,ÅiéÊcÕ6ŽózšKý‡”ìb²’ƒÓæëÿlêó÷J~]¿§D¶yà,¿rN<¼óuì¡ÜióåA©ÚŠÂ$¾öÄœ³Þu3Ìœ/¥‡è¹È“Œ +ëUÖƒ}Ë7=´ôÜâʳk”ß^FiŒÜWI©¾î‰é±÷Í·¹uåúi›“§ïÚ›š›™n»n¿Œu DTUgçÁNz;(®U––”“T–QW‘@/^0—• €À„Bp!”†lY$ … TPÜ+ç-XÌ)‰*¢y8® ÅÀDph §Që Ô±+g±,•“Ó¶tòÙ­'…Æj)hðRV§^ÆúÝßÊ#áê>N‚_Ÿ_×ì 5‰ànÙ±Ö.½üз™êi&£ŒgD0—Ñu ˆé)Y£;[Z¿Ìÿm|yLvücgcZœWÑÈd“Q~{¨4ZY\1ÌËÅãò壗LÍ7Y½æiuÇöšíä Ö¥ËÐ k6«j*™ÈnÛëpïÂzu¤„,/‰ñÌbY( ŒC0Š È\0? # 0†.œ5›БE ` èÖ\ F\FUZMF †#ÀËÙX¬FH‰Jh«®1Ý´ß-YI¤ò›½ƒ£p­Ê’8t ×…Ä„áØRòOu§¶¨íƒÐÈÀDjmZêƒßà¤Ê/Ge’¿½ÍEå ç;7ìv\?¤ov`ýé+WEÙ–°ñË+¯‘SÙ·ÕÑDIM­hj´Ñü؆Më€A¾löœ¥«Ápˆ° Áàpq EiyG`|‹þžÃÆ'ƈIéÉJ‰ Á‘Hy1¤LBuõY®9³sb`p=ee(.Œ5´Þ«µECVBC]¼˜}—žðôÌΡõ%uíHͽ#+MöÆ/*ž2¿]ñÓ—_÷ÆLößÁ»c“¤âu"s ™B̤'¹öýs¤¬ ¥Dt¶(&×·Æš<Ú¿\û£À„<ÆW¤‘"¸uNˆñ´ª4b©¾¬!%Ç;Ä/ëÍHñV&~ûšJÞf–=v¾kavý„î®õºÚÐ%¸ ÇO±ß©n´~ÓníJ Ú†;š¬3ӱΞ»šŽâåóóñ#…á’8aYy ¸0JhżY+ø$ä¢Òx4 '†’ذI«¡ª¯i "BHi)( cVñòk­S”V64Úo¢))†‚b$õ·Z[ì¶ÐSA²Ï[ ±ÑÐÌÂúy<•ÑYãÐôþG ZMóÈJ“ƒ1¤©ò; 0©üò!LÌï~ÅqSÇ€!vÇÚÚ©Rë•âöòúÔji€þÑCtóˆžÜíJ¥Ñª? ¶¨}¾ l2’ü<@ª!ƽléù¯+›ý‰ÑóÓ}=þ©¦Ñê«É%Mäºê„ô¤\JóÈÈÏÄ·q…Y×®Þ8¦¿ÅLuûb„ÙUÛƒVö›ëêÊèêë®—%è›èîÚ…p³­–ÒÄ ÄPB¼\\\ü|PŒ¨’ª¾¬þFe5=I÷ÂÙ ù¤”kGLRN^LŽ‚ $Mw¯_«s`ÏNY9©e³!öÞõ8eeª²ÅÂh·õq¼´2‚ m±áø&iŽ¥ƒÓOnÒ6T¸üòMã‘õ^OïÊ›K£Q˜Ê@¯ž:¿ôØíÅßÔ÷æaggo~eÂüRì_Ï•²c–çèHr+4VפRh%o¢FŸ€hä‰â:­œaþ6ùk¡N½®nŠ÷ö÷õÓhµÅä'*žoɯK»ê„- è½Ýä`oWO[Ci~sGo/“ÎÄoSV€—§wØ¥#ò¼óÁl<‡ÓçÏ:¶ÝbÓ#Mœ¤ÑZ³k¥UôÔV²°,17SÝ´UY àt¥ÕÜÜ|B`!$AOv­¦œàò¹³–‰ËI¨(Š)kËbðŠ¢’$,„@(íÖÛ£­iiFX:$mpù½ŸïEëët·îµ¶Ø¢¦$£("±FFp>ëRìÉÛiÏòËèµ¥Ÿ»óP€/Á7•–Q)I>[øU1¤rsU)µxdÚ*h”Ì29#ÉÊ5šj=ÊoÁ%Ž%+Ù±Ò8cMSY}´¢¸Šœ¦¶´šÃñ±°°ñâ¥Õ"h$CPWS‘"@1 Àšú0Љçÿ=káJ.>(?- Á@¢8y)Q9I¤ 7ˆ#¸bîl.œ¸²¾Êc%cGµõ{O™ÛÛ¨id~Ã~ÇzÄ’sùœN\ºãu?èe:‘J‹ˆ;qöÈY›ë¾™©•­CÅŸ…Ú»™Vš,fSbŸZý+ÆñOF  ¹. ¿a¨~βqêçtý»Ð¥Ó«"/üŠÚD+fðÙUJ£Å˜ /Õjª‡ðG"Þ_\ŽŒwПÜÛD"1‚Œ5­Ÿª±Æg[3Ê«#2îH‡¤&0äCQJn^" w7×Ñ(¹Åõ©fœâ9ãø¯ºßرñHìÑ’3P‚ŠJŠê*JÁ±²âŠšº’pžù³æ¬‚¡0(‡eÎ"Hˆ› æBªá%¤ PQ J#-©¨\º`HÒÜÌHOËTMEO]w¿–¾å%‹s‡6[n6ábeÅ´Þû𢭟÷ o÷Ȩ(rSqMáýí®·2²Jš™Š?n¸§¶µ8¼Tt°~hRËb<ÿd¡½A0yè•yÿ·ý·í*‘ùsg7½¯ó«$üÍø±b—^o-üñKyUÆÀÓ‘ë¡ ç:À …V HšÒ¶Î¶aRú»îèO[ªªkÊ::KËÎFÿ““šVqWÖ9,2.%ŸÑ¨.“HLo†ï*ZMÜ[w.vù+¢rGL6¦þ›™`µaã)eC= +')£ŠGKcDÅ•¥ Îyó¹…p²¸§­&.Œ@‚ÑhIE9==Y¤T`å¿YXWòpA!¼¼<€eË/®„‘ÄBñbxqq 5 x<–”¶­ß{îÈ>}³Mbâú š»uÖYXîÞå\ŒàW¹xêܵÓg¼/OJ {æï3(§º42¼ðMZVY£Ö—õ%£éÙ%°Õ&/;~DþŽçŸìþóÝ.C¯Ìû¿åwÛØ»IeT©¬„Éù2(v¿r]ܲ~Ú)T†A4@9 Ö|–Û:\yµ5×@"š:T7y¤ëŽàsrhhiÿð‘êÆ¸Á]‰/‚#ã“ÃãsKlFµqhjX›ÉC+÷êñôçº+¦föQ’!$ä”±âÂ$ ¹Œe6 ' +" #È£,DXLVääãâ@Âä5å–³ü½`¥ cñòB„x8y¹x„ñ0¤¸–€‘Q6’âg]0/-,©¯«zí’㑽[å%¤¤ðÆf‡×šˆ#YÌãÓÛêúÀÓ÷bècç;qa©uäÌc½Sù?8ÿ 6>«®„ÚÔÑÚ>ü|—;b²]Éd™ÿ䥭ý¼¡Wæýcù­sÿæ`Í5 ´¼2ZCÉæ“f3ÃÚe"¸j€>R4¹‘_•·êHÏ­¢tÑ;JêkÉwÔî'åëH_wÝAT§de¼þ”êÚÚ=PrXPÍ%+%%úevh\J)Cëî%UT—2TÍ>ÚÈÊ8¯óW_Œ>‚Lü¾;{ÈÐhÍ.×m´”œ”±¼<'ûV.Ħ5Z’€F%F&àd”LäåP`~!(dõò…ór ò ‚@B|pBˆ j@“Ûi´ÆÂT ¼hÖ.œŒ¼ê£õ‡w]ó su ¶Új "­·N^p)ו݆:Ö·$¦¥&§$‹2jiEN.¡¡.‰ù¡§ŸEø5÷t·•ÔT4 Ð?ù›"U5l˜sÒ¦Å?Ù¹ r~e3¿e–¢cj2ÐMJJ)§§Æék´ak·‹Di#3õ”ÆäŠ|ö7Žª¢•e&40r³Úüâ Û«3ˆY•ɧ»¾šè;ÐÝÝŸ^¾Î³qpîêxåmEèÓˆWéÔ¡ÔŸþ¶šÛè]W9n~¦‡ÚÚ:=%Žž‰ßú³{u×HÉ­UG °Š2`–Ù¬¼bh˜°¨¼º‘±²¬¸œJ—%àp0( Ê5oÖß x%Ä`A!!8 %Œ“BŠ#%ôŒõåµUˆ¥,³9‘â²"x¼8N]ÉÈÌÌ|ßÅŽÛíÕSä^2î2ÉK÷Ož·Ý±ÿjìÓËñ1¾A >kk-m¨Ë~ääãärþ1Â54ýU N,¿€Ã«ð+×~€ßõOZ“ŠÑ–”“‘FÌ&¦Q>Ó鯱ÛÞþ©‡ÞO®¯.® ÷~útR'©íóhg®<ް­, ²Ô'1¤šæ¾‡Âº…4jA}jþueÐu;Û˜ï1è6†h¢ã>¶ÜDšD¶”¾&¿/"Å<Ϩˆ"—–B¡›\Z ¼Å-_~úÓ@ct´ï­Ë®ž/F $&~‰ÁfFªkµ•åù²,^²-†Ââ1PAIÃPO› ‚¡Ä 8N ˽xÞÖÅ<Ü(TÁÈ‚ü&_³ÆD ¾ $*!)&+-+§®(‰•ÑÖ9jkoyÂéáõÕóØ1ë ,×t}ìëså샀Dg¯èpçç ±U€ RS–•ëpÅÁ'¤0êA1F§‡Y‚yuïNÇú’Ó7ÿ·—B.H}˜PS–’RQÓªˆÝ>Re¹»»´ôUnìûN¿ò*R3µºì‹&ý%<Ô_vß311©å¶‘‹¿/¥¦6Ó†_6´{(FËä5itçê0·´„;1NmÅÄØÄWõ¥´²ô€ rlbÖ§Aµ™–›{a[VEþPššèvùŒý™çãÙGôºÇÚâ8)xÎìùËðªba¨ZP„•UÕ‘Gˆñ@°A„€'ëßs®âZÍǰˆÀˆ›[ˆ„ƒÀHŸ åY4‹e•L- ‡á0Ò•´ÕT Le5,ÜΜ_«æ-I­µÜdnºíøñèÔ°´Ð¤‡O<Ï9_;ïrÑ6ðmYqatvdxîS¿  ÿ„˜ä”ÔH^Vá]©1ïÇ ÃM_O:Ýw ÍÇãw û‹ÁÚUJÉ'ÆE¾®¨ •]Dof — Fj›{É1!/îmâÖ*¡Uç VK¦3$óдNåÔ¬$¿Ý>™å‚¼/=pW:Feô[FŒv(Ke-þ ±u5×DŒ^¾%}$‘¸øg¿,¬'ç%¾-¤Õ3V2!Ñ 6°Cï3*ËÕÔV’"¯:jítyÔîfÒŸ‹¯"Ï¿t?ª&-†#ˆ€ù‘xœ¤–Ž â‡@ù—Λ½`%?' çåà€róDå0(a!låüyK8@Òª¢(Rв¤%5Öën=tr‡ãñS¶ÖRKæ/PÛävþØvçÓºíÝÒ3‹3à JsÒ\/x»^¿yþšsb*1"<>>¶0éef¹ìc ›e`ã@6™RC/W|jüòºÅ/ĤšÅogcsw7‰ZX74ö‘«SRƒÈ aÀLJ¼Úƒ+È4ÓßyG>UPõô}ÖP™3”K32­“ö*²·ñj³äœž8è­Â_Ï &íö”0†wV.A7ºãô¾0—KÒ"ý|SbvÓ*Ê"‹‹Ë Ú;o±ó^kîh®¡U—_&zÙ}òNð‹‘qn”ß®ÂKPòfªx¨"©"† £‘Xaôö·5·õw×7¼­k©<•uÙ5òWuIC ­æ}ìØªŸ=oSí7\zTéwH„ËðÁ“\b^6cÿ@Sµ¨jDÌ—S«Î¢ôcQ«¥–èNÁ·Ü}|}ò³jÞz>yx/ÀUKònA^eÅkRq³ë¡7¼¢o^ .ã™øÍô0[«kbF@ „„”u”ÅA¼PAAˆˆ°2^Œáì¿ç±¯¨‡bœ$F,”f„ŠB Ñl,,+ù°X .¦¨€#¨J)Ù­U²4]sÞõÜV<ë|v…ëÑ9Îî=r{üÜÃöÔ%K‡ë¡1é¾·ì¼C½_¼~ö¦æùó[ÏÒžÔ”efTä0 X72J{@%©§¹šQTz ¦,õ¦Ð–™ßÞ¢¸áY©/kÒˆ9åoª¢Þ”“{>œG ìÂÒ“2‰¯Šj«šéŸ›ê󉇼Ž8ò(ñE@qþû÷%×1&™ÌG­8\‘G*|º‰Sb¯×“¬ÇÉ/_÷Ó{{è=eq¤R@Z÷·º ùÏ—htFYÑÕ4Z|~LÝu÷§é™åoƒýýŸ:BÙà§“ÞÕÜW5„{»»ÞÍ{èìn»oŸ}ôˆ÷•‰ß,—ýzâJ*8ˆRTLT]ƒàBX!Nî…¬‹Vsóñòð AEÅàb’¼˜¢<Ž€€ˆŠÀ`.¶sç°s£äÖj›¨H)¬U’WÓÐ4=djsÒf£ |1áµcÞwƒn»¤¦ ö‹ˆH ½zÍk¿“—VBÈ ÇÓ1¤Òwͤ:JpHÖ«×yÕ…×5¤e·$+B‰1äÕ|ìÿÀ¨[:¦®_5—10©¦Ìü¶SS"SÓÒËÒ‰¯¨)yÄ‚ÔòöO7àêvy½Ì}ù$&«lplýPsìÜr\ú½Ë÷ÝSëhq&ûjè]í#O5#õ’ê}$Á[#óÒÂs‰!/oi”’÷ï2ùMéjvï!{àM→ä+ZHe¥á•áá>»mœ.¤ÕÆ'ÆÜݲâ˜^–ZI£UPýƒ/9ÇzÜ>o¼]4_z”ßÎÜËû7šª¨¡apa„ŒŽ‚ùΚµ‡EŠððñòóÂ8EaQ”˜–¦†Œ®‰á˜7kÖR~9) Œ8a§ÃŽ-ÊæjÍ7ê[¹xmàYÅÊ­ºájøsøè‹G¯ú\Œ ‰«Šu÷9síˆÍù¬‰Aׂ2‰Ãêl3™Zu‰g.Ÿ “3jÊí¸1‹‹)óëðלù&Õv ¿åÉÁñ‰EõqQ¹©ÁáyÄŒôcÐ=aQ./†§Ç‡)4ÊÇ|ëbTJ*‘ZYK"5¨¡ÏVÑ(MÔÊâa¿ÅÀ“ ¶~z¥µÆ bI1½¨¹+%äFHÊÛ膺°àÇ)´Œ‚˜î뎒?0oF©@ZSÿçæÒׯҼ.9}Å>(ÿÙ–­‚`»Sþ‰ÏïçD§5TGe<{zþÄùS—½vÃNy¼øbe1å_=¿¶IU.…A Á‘X,B`õ‚óØ—C0(0…ƒ„`P0RBR A€XMJ\ Y/âÁp8Y<^I^Üd÷)3=¥ÍgîÚ:íÙ(µ|«ÔI燎–vO‡<{tÕïú‹'¾¡ñërs¢ïÞ½~ÅçA¨×‹ç.3²ÈÃü–î„qK îe¬,I‰zÓ2¨/¦64P¿_7jêþ+ßÉ/qÊÄo×?ayIÿ¼©.My–éìK rÜßÿa´›O¬ïÃH·Ì¤ôü5"i^W¯øæPß$¼: ÞâëO,}“–B©%w“ ÛÔÿ†øÌDäR]e¸{BXJxvóÇäVÇ=3ÞDÞOJ °q"z6ƒXSSÜÁXÞœL¦4Ñ+âRbïE=<¢¨µæ°ÝæÅ ×\ xòìJ`FFfMi)5Áëæ•CNç/*pÉn>ïòEGcŠ/$ž•Å‚…`<Ö¿Y­cA¬° V +‚BÀ‘¢( A‚…W±Ì𷇓ÀcJr²ZJ8^~ÿés7ªo=b®‚âÀr e¶mÚrÄÿÔ/÷™Ä„ èg_>òI¢|h{W—â÷èaäãÔ¬‚Ìè#&ÚŸç„^ r´¸ø:Jó‹+Þ¹ÆOMŸú¾›;>e~ù'iû20Êo/¥²¬ ò3ýsymeQ@ZÄAQÔÉ ÇO\žÝ‹|x?2<ˆXzàBAîÙƒG¿xQYÐ:ëYâå'OSb“‰ùdJ_ªôº‚Ψ„ƒ ýTzÁS';Ï{!¥ÕÅO­Ž=ëUâUprÒ ¬ó4&3¸”VSXþ™™Ù±M½â}ìËÈ­‘ß*¶¹qÇŽ«~%ia7\‰Ît“”0Ï3§8 ¬õ±£#Ù £ü~vqZ‡†#yW³Íù{.;/7PŸÀP¸8I˜¤ ‡‚Âà\l,ó9a(1)‚¬Œ–žºš¾Ù6) ´˜Ô¶—všˆó-X°HíÒÕcë´ ŸÞyëö›! JZ2Kb^æ?KŽ)ÈþÐÙäðà]GKkLJ݉›¸ç¯õ ~¢´«¤¾<ŸÆÔË>P(ãMäa`Êüzç}ÿýFùm‘ œê3%5Ã÷¨9ádN®OЋ>I))ÄÊ”Ørêuõʆ„'Ä$ûƒ—;s Út߯&:Îû‚ƒk\j1ù=µ„Þ,8ñ*§›Þ•qóŽÝ® |B3ÂïÞ¸}êŒgfJ¸“oâ~”ʽ’ÄO3ËËS³s>ueEmSm@bÔù­”d$…–‚÷ØYX¹çSGL pòLÉ+.'§øùê¬Pµ÷8qLë–ÿHáQ~[}÷jˆ …V,˜ÍÊ!„Å@ø!8„ !Ȉ Ë0â2X4çÊ…,³X9Q UYu¬²˜’®š©åé‡U$e×ÚŸ¿BP°ò¹wÙãÖ®µ;]»ö*Éûò­ˆrÒ@×ë0ß°¬ŒŠÚ²xRI+½¯ ê‰Oƒ´7n‡Dø ^öÓ›©”A¹ÁX®°ž9zÚQF£U§>Ø”ù½ýCë;H$_6oFî #ã‹þO ³ƒýÂ^¼ˆMËO‹'?B*ù$SîåÆÞ9è´Yuµ¸ùÁcηބ¾ôô{PC<ŠxO§¿sBzdd—лS½ìmŽž°»èì~ÅñîUçø„»’0QŽÍIÍ^åósb^f§W÷´WÔ••ÕÄD<±²vPã™?ŸwíY‹Ý{/¾ô®N/Èlh¥”hbÑa.…s»¶ºÞ¼ùüÙH)ŽQ~?Þ¶ÆÜEÜH@΢°R²HF"*ŽÁÄðXaM@®b=W@ .‚FÈÉÈhK*H®ßnbrùìNk- ôªE‹8°ê†÷8{8{¸]»pr§Õ)¯”¸WÞ©ñ Õ÷mM] ¥¡¡>9£Šá£é~Ÿ–YYþˆ°p±NØ êÁX›p¨¨é ˆY£úø½ugé?ÀïªÛŸº¾É¿ú˜úoaVú£àÆnzàzä>§;=“bRž¹?ˆÈͪ ge¦o>*,xâ~Õ%ú‘¹øJ¬†®Æ¦=Gü^†]¶¶ºæv²§œžf‚vjê{û¶ ‡á£|sÌzÇ.+û]¶×ÜÏìs°»›—pèAJ5ås#)#ùUzj`d­´««>'=¥87%澕ýqA–Ujêgo[œµ»ž‘ÿ¹.4éaìkbú›¢OøÚ§1Ü;’ãìÏ=‰A1õßà3xU9y,Ì+„WSG …áL…E"Dàü\‹ç²-X%$«¢ ‰‘_«¬¼NFZb†ºº¬ä“Š+X¢·î=sÞr»¥¥•Óµ«A‰QWzݸ÷<ªl(Ð1è¡hy›ïBœÕqc1HæðH,èóàÝ •ª°xÇÔ5h/^ŸrL™_¶úoó£üöËb³Šk½õܲïÝ šÒPŸŸRÜÞ\Sé(ñ®›ãêzéI¢ÿQ‘mg6n0Ð48äãšZä}ÒõVp±æ4wèýƒUãÞÇúœ»qöõÇ‹Ç.Þºg÷ÀH`CÈó/ RŠ’_Sɾþá¯ÒÓ«êÉ‹‹CŠŠ2jÞ%)¨°qâô6ß,|™œñ2—ØH*+,ˉIŒ«ö™P’.ìs ÈŠŒ½C&ý*#Á÷æC?.¥l¤®¤®!Àb "ª|‹Yf³¬„a” u6¬_+¡¡#«½k·‘éÚf¦:jžÅ«Ù zçìnxx²?sÁÆ/>9>L* –…Ö”Å&4 -éÝ\C«'÷½+}RDêˆÃ-X¦å_S:Úz) ´š¡Qyø?Á@s µé;Ö”ùµßPÙþó»?FÞD¨…¥x™™Õ›{ãÊ64çö˜ˆÈë‡-jJ*®9i~FÜGïŸ5ŽüªR-ýEBÌ ·GϽ­½¶ /V?“ðô1+<%=ñy\pT¸OHTГüæ25ÂÇëå“WY™fœö9^ÇM ×¹•þ<Â-¯¡¼¢¡>åyÑMA.6YB'¶õ©›‹¯Ó#ç‡Q¯GES|á H]/¯ £ ¦ªŒ]ÅÆ2—_^_^B/‰ÁPâFkÕ´$ä±[NžÛ.Yºʉ—“W4]kꜗäí}ÑÿÞå»Oc_×”½è|›•_Vü©‹ÁMs­¦С 4ðnœF7ÐÖüaìmO¦ç×øÏæwï>óÄÍÖ×ÅóAü3ó'|®¸Q\m¤(+§fdåý8Ç„Kx÷gßO—ãZLØèr”ÇÕËæ•AÇ*)Ô‚Æ®ßÇ%?¿ärጄßÈÉÉ3.:¯þsAZfZR\ ‡›kHRdlsÛ?TÒýßçç°ë¡kïº>t;¦¨¬{Ê…ç{Âù•–]Y—ô4Ôu½’ö&¯‰ZüÀåÎ¥óÎ׎Ú9“_×I¹²^)€„rsòòñK!y°° `ø 0ii%)}ãõ J2pq¼ª¨(^AZC4wÎBìÖmz[44”×Þt/(%>úù~ó}ûNß rÍx•ÝJ®o(­üT]@ibÄêËï¯]½iv3…<ùµîþSæ×}“jËÄo¹!Úíä“Çw]B¬·´·¼¤Æ¡»ÍH]¯¡{ð¬6Ú±Ûnçr+cŸ·×%HH)ilà <:À½ÿ¶•B£d&”0ÛÝïÿ¯½óh"ëþþþžçÙæ®»ºº®]QQ:H‘¢ˆbWP,ØÑAQQQ¤(*¢"PT@‘*E”ÞKè)$´$À $ôJæI$’„D±ì»óùerg2Ìwn;÷Üs"‚ü"â3,gýWℵ¯4:OjéÇÕ’j ã#b_E䦥Wâ‚BíæÏ=((ÒËü¬¡îrý'oÊ“|î½xö–ü® µ¡ÍÙù/kqT¨úø=uw0¹ÿÂåqtòP_ÀÑÿ–Ù«)7Á̹b³'ý>nÒÏ3+k+È,VR_¹÷ÈísG–/QQVQX/§&·hòOSWïÚjztÏMÇ &çÖ™[œ÷yƒ¥2^6;yÜ4$Á# FÕꈸÌÌô<:1ÒÃûþå@tÜÐä’c|Õra¹Ìä&Ìœ2SLn›ÁÁK›×®SÑP^ºz—ÙË}Ë—ëlœõËÿ~–ݦ·}û6Ks+;kó­7o{»†'?<ípÜùyœ_¥ÀçÚQ“ÃFvÏ_¿Î¯"5µFf§%Yª­“‘:G§–TÕcHxN+`Ù@h>Nß®ÿ UlXßάć—îݳ¹Y„ñ¿¼kúo²Ú*« NkNúé¯ùËŒ¯G ss]\Ÿ?±ýÆîÀ’ñ¿Oüiö΋‘Ä÷U@ÌŠD“I¬¹½ j¶èžŠ¦_Âļ²55=nyòi\xx¨ý}oÿ§QØæ~jvlqv!¦ ç;k¾äýZf"±ö;«»öŽ[»^|áí}IÊÚL:ZÔÖ÷`êÊQ‘„ÊšÒÌ7.÷ížUððí-3þõ‡_%5WIKIªªê\´¼¢«¾ ,˯:zÖRÄä_¦Ÿ® ¼q…þÁ[6Ƹž0v°ºþÆËÝÂ.ðu\dmN~ð‡Nß~PZWSLëg” ô&Lв ðô§–+§¬/ùkéËpŸ"T¹a}ë²Ð©çoØŸ±}ùp¿¡Õ*iM9å­'tæÏ\ºmÕ®­^½yå—àéùÚ+à±¥ôä‰s´ví0pHèëhàÝ}´nZc3sÐAÇ‘kãΊ½ãJÂVe„»Ý´(ÈJxåàxêéiŸ¸˜æžòz ¾¤±'gƒœ;`á¤ÝpïáëvÂÍñæíœÒ47ió(y:ØQNL*!••BßMÅk>/Þ`yØ7º1MŽë,_¶LQ]o­Þ³fg6nÛ¤·aÛ‘†ÅÆýøÓ¢­[öoÖú{¿±ÉYã«–WÜÌŸ¤¾ -Åz„¾~ꉡ„–ÄGÞöŽzý€”•ÔñÕö)äÆFÖ·ÑiÔVæ{ÅhÆ4v€t,™Œ.~®@DÖ^üáÿî UvXß‚tÜß{X-›´hãfm1Ii©ñSuÎi®_§µÆÁ/ÉÛ;Ìõ®Ç­{»Í%~Ÿ§¼Ts‰¾QxýÌ7”T­Ú*\—IÊA°:]œîížšzÍÒúÎu¯2lèÉÛ7Ų8ø¦øºTöõºkðµ)§¨‡½:Jü_»ºÞK2ppÄß(J°Þ»aÅ6­eKWéí‹ËÆä§Uäû¼yë›]ŽÊ<2yÞÉ´¾®–ö‘Ë­ULðÞÖÖ1Wt}™«ûB6ÃúR#¢¯­Û¸r†˜Þa ¥e ‹&ý8mÍNƒ]*R ¥4Ï]¸vÑ?ÖÑÆvÃøÉâË·l•—ÐT×:dûÐÿï«·8Ú££©®‡gæëHl‰éhK-D'fyû;'Ê Ëß¹k|úòC—ˆLJ?–ì$&·)ì¯Î+Ì(&r[éÍ Åù¯Ð•(Ÿ»Öf$¤—¨GŽMa×r#éû[iwnœu -Êl 9û_¿sf{W©iªËJ¯9iò`ÏÚåbøáw«WÏùÛ&Ðù¢É¡ãlï&½öJHIŽ êæ÷2,(8,E©Ú3üý_¹¼ÄÄl˜:eêæGùÕ8>ÃãZBa‘N0_(J[Ò óu²Zjjšº»5•ä%~ùiª¬´Ö“*‹Ä¥å6¯ýûäžÃïòÛ÷ƒ†›å”–¯P]¡­¿wß ‡‚^èõÀSHTzÌ6Å˨×ÑÉD 1!Ò'==)ÐÞ= ›ãáêüØûˆ{¨{SÑ{/©oiàµ4ÂÇ?!%?-·ˆL.ÊÉ zž’vSAzßbæ¦%&=82KgÀ¡¨5ÏYz¦Ž\ÿû3NÛ¯­¨© -¿ôЋÛ&³~œ,±qóŠ=Æû]Üî> ¼êð÷^#£§Åo^¤yg$¸»»ù_·tõ|â…ª¨Â´6$xÞ2Xi¢?gñõü¾."ß hyy(¢pöA!øBùS1arãÅõÔ7nÞ¹VMlü¤Yb²Jj;-O¯R——TÓÖ2Ù¾êÏ?gìpLò´<´NYVS]y±î¦5L®ÝT ‚Í‘éØ¼Ó ¶í—ÁˆEPNNu~òÄüÄù›Ž9h 5íuAhLFjx|ÆóU‹å×¥Á>µÝ4:<)åžèð¢Ì°Ÿ53Ƥ„å„¡©½¹±™u¯åÅe.Ä;Ôùat1†Gý¥e^³<°g›Î*­õË¥ÿ\4ALÇl÷Þý[÷19í㕚ŽzvÁÜå‘kdxj$Ž€-¯s¼v.(Ľ¦='=´0JsË «¨e‘!‰Qáy…©1ØêH7¿=³·l¾êëê“Hf·¿ŒÖFj$-€)ƒ^šÜÊêèT×ç!V<â›1ÐñF*S&JM›¯epÔÜâøÖ ¦'íÌ t·=ÿ8ù}_GIj¼·WЫ؜Ҿæ \r)èä››I:3ýY“€¸â˜¨Ì2Ê{æx¹‡Šiú ŽÂ3"R++Ù{_[#u,¬W¿î£ò§4„ßß³a§ÌŸÚg,l V+¨.Y,¿\s§‘ÞjMÉ9¿þoîºíG÷?rÊο 5þˆ…Ñ m]Z¶;:¸…“ýÖ)Ú¥KÊ+|[PëékiêÈ ´|pl×aÃ#—ƒr0˜ÈÈB4岸ê<½¤Rh®S“ˆ!V4Ór½³Ê)™E%xL}QÌß6Dy=æãð,ÍÊ[Ô×M®ë°¥°}14§*m¦ÑšJÏÍ=—Ãc}¤Ùÿ:nòŠŽ—½âhqÅÄlû¡#v­·î5±~F¬¤‚]@|I¼ç³W¹á½X¨JË¡Pøpc±©rKŒ“Ð(RîûZRm¦¾žÀê\é$€÷ÊÀYºšZzÛ‰@=~,†ÏÑÿ~Tþ”ìd‡ås&¬»šæóØJ_Qk‰Öb-ý‡ôvhOùþ?¿J¨j­?÷Òù«6ü‹ã-ïîݹ{ë® f×n¥‡ÿ½`Ë‹,[™ûäܸWþ!-ƒ Ÿ¡·\?»O÷€¹…\™[„£8¨Ï1ŽDÕa ¥0%p¥¤¡* y˜øø¬ö£ÿ0y“ëþòñƒ3…E¹°¾]¸Êìrèe À ¯íXª0Œ@ÉMÉèÌ"ã«öìï\±0 yê‹Î:÷ÀÔxÓE3Óƒ» ÌÌܳ3r¡3šHua)¨¢ú‚:È­ŠòK¾-?c@#Ø…EG–`™ïÓ,Ålš•X./‰Ž è=c÷ ´zx_³ˆÊðDôøW¼ò§°"ç¸-’äÎÅ9¬/þ–Ø¥£‡¬R|oŸ0Ö[¥¶BYwµÖ*Õi?ý9yƼ¹òÚ;O_¸¬ÌææRÑõ³zº&Gvî¾xáþåÕR'ßFäc+{é]Ñ©L¯kf`£÷o}ŸZŸ=h}=0¡]øÖÈß`Îa¿°¢âÒÖ¶œ <¼Ïÿô“”™UPEz"µâ\.:6+ì™4--ÊÏêP»ŒM#•­4,µ ÷3ÀxU#R~j*;2~ˆ©Œ;súÚµ«®áy¹ïÒž›?zòÐÄø¤íÕ«ah4²u  [N$—'TÖf¯˜2{Ú²kù¬Kx€yç­$¶«ìnSÇ5 a´b0ƒ£zìtÏ»m•pLâ_±"çÔ.l«žÇÕ¨ ë[¬«!)® »ò¸ñ­³k—/’‘W”•ž;nÜOb³fÌž>_RIcç%óíGMÏ+D»œÛ~pã†=k7ÎR¶ñ¶RR#c¡Ú†ÏŒË»08j—àvhßÎ<Ã2CöÍ”›¹ãQBpTV-® $"‘„ë‚ô« ,%`"ÎLX‹{•RF( }ø ²¨¼lÇ`²kš8B%{ Ñ„õÓÔ'°ö ÕŽñ¶ôíµƒ–§mâ*;À®Ì»7]Ÿx>}nð²[l~f «âuâI±™®ûì­5fl]Ö×Ãñ8ú¨8Lgsƒ$ô[<‚™Ü’ [S…áµJØOÃaD|Iü+Vä÷s ¸‘Oüè=+—IÌ•U[vÞj¯„‚œäzÍ?Çý1núùEsæLŸ/«®¼Áôɳ /Ä…=oih(õçæ€àÄ=Z.ÐlŸÛ²ÐEm°— …H°)¥Î›Ö;ãVî¸rޑ䘻.^Q^¥%jÚÍíДKÄåÀõ_·‰¡´554ÒquÄ”ôò´Ø’n:š1•õè–NvUm‹Ñ]Î ÌÞÝÎsÿ/éágnäð2°Æi!¡!Î׃œ|_åá*jpìíQô¶}³çMßê™+ÐíDÂp¬4¨Çõöw´3ÿÞawHìÖ®je_{Ï)¼Ó±\”ŽyLâ_±"ç\¹‚ÇØ{ôM•`¦ Åω4X­>o®œ–ܶSÚŠJ’ÓÆOY´VCMk­š¼´¢¼´´òú=–O¼ÎÝÉs±¿h²cå„ú÷¢q©ù™pLEèù&¢p$œˆ¨*“ðO,íÏœ<ºÔóo±s!³¹{{…aúhÊ`ðîz_ËkM¹ÓÉI!x\iº0ØL @)o;ª¡±L&34 ÆïT åá£ÆÙÿ¾rr¾~Ò1Íú‹R£“B¢²Ã|“KªJhX üfäßX®rLJÛ* ÿÂÞrøFHŒª!K4ꪆÅ]Ãî6Írÿ<1\`¾ 7o%™J?‡Wü+Vä[HÍcìÈIÝM0æÃíóÙõ*ó),SÖÖ×›úÓ3'¯Û¸Us¡Ö"yEUm=S;×hÿ¨­¦@׺ß?½cŽ˜º¸EfAØó,¿þqq‘Ðx)O®|Xî)'d‘ò K»Ö²L¨Ú@êwr5u¨ÎPŒ¿€´¨n{Û¹Ö\9ã·—zºÜ´ŠÉ/kûÓP1!i]Œžr¹– 2@bCª’ä<£°¦Ò\|]K2*„T‘Ú¶à+ óbãŠê)^N;ÅX•VP!þ¡É±•¥¸ŽîÖNÖ“ Ÿòç3p€–ÏòÖR;‰)®¤Vº)/>¦žÝ¦R-ýT":Оáb6üpê[è—V {Ãa±¨„À¶¾Ž6b\bfgþ‘ÒÚâëìRša/GBr>40î‚î¢j%Cbô`+Êy:±öã¹ò„Ž­àhò…@´öùnàÿXpfEÎ!Kv7ÌåꘇõNlÒR_¤¬´pºî9i ­]ΦWÜv`†š¢Š¾ÉÉ'Iô#óˆ¤Ñ­ÓçŒtìÎ9}Ë3 Ô‘³ ¨ôOoWi} Uz}Ñ5m±39r (ËKËH~ÝÌèëªÒÐ[QU‰nÄ×Õ—·4ÑêÉ5¸’æƒìÆ‘ê(ÌjÞ~KÆ >‰ÑC‡¾¿¶ƒ#ü §¾M5xT^i ³~÷`J꺡A&Üë|±Ï޹«ÑT¨fzº*ÉihT-k`<@Ãa9&9ý=|4„zf2UHÑø]„¢é 5ýµ,¸³#縫¨p§Ö·Ìd£ò’YÓçêYÈ-\¿a“ÞÊö§¯6<¬¡ -¡°ò }^~Ø û87{>±R›¢cõÈèøì@]FÖû*†so+¼KŸì ½b™Ä%/߬¢ì¸`ßÜ,¹Ž#2C»Ý$1øWØÐ[Gëj¬Î ÇÕ£ óò˜oà`î,º›Ô­á¹é°3ÂÑrêKÇ‘q™À`u€w²Z3å¥ „§5pÏXÝA'Tgc€A_"á&3ùÆœ/´~„ÒW˜üãäMçÔ%ÜÐÕÝ´~ƒ¹É—«zªââÒŠëwÛ…åÂ>Îïû:h‘O×î·¾ïúð°ÙíçðZ}en-@i~P LPs~™ÜÝgîž‘Þþ„èð¬ô : :H¨7N:Wƒƒ3.!쨨Èˬª-HË*Ä2çw=ðKÒÔë¶È‚UÁ]½íV‹Ž¥¢ÑQ=0W~zkÛ° ®;lt笼VPÅš´B•ÀÓÁ&lª†"äóù|¡õ£ÂU¿ÿ1å/™U'îßpY®.«µÖÞÚüÒ5U¹… æ/Þnhn,±=žõ.‘:Nw¯_:ÿÄòÐ!‹«É™ðæôá+,ÚnÌ¢¥ú–øÜé±CpvdJahª8]˜E$0‡Ín ØcUhNT¶BÃ’Š¼Âòú*baBl sÔ†Å5ÈŸbOæ4hŠ“mW^œΙécDþ#æB4$h ‚ú‚•âkóŠ£E÷QñL¿zc ž:jLú/ÆZ? \*5ù‡ß–m8í{ñúV-õÕ»o\=ee²M™ÜqY©9§a5RÖÉps}æäïâsöìmç»ä¨y­É-C³AoI­M9tZnf6Ê/(.7¹,(.½ ··„õNΖ8S°5¬qw7µ±•1ÐH¢ ²°øæâè7Þ>ùÌZ8ðVÉdÈO£;aßSü=eÝ\ÓÎôèmª>$)i±lñÙ˜.°½‘Ú90Ü)ô³Ûƺ/2_hýè¥ÆofÎS\qìî «íZº+÷ܲzìvj˶µ²‹ÄÆÏÞŸˆŽ„[Åû.±~/û¹yûù^yöðéŽjE%¶±¼ Ï6Ü51ÏUö1N[Š2ò“=¢òñož%EÒ˜“ b¯øü£u`SyZvì°­ ‹ÍÀ—çP{Àwaþ1I^ð')Ëö'ì®×Wô¬#EÃÑ•¸­ Üú¶ú†çmUš¹ñI¤Gö5ùBëGšsfÍTX¶÷‰Ç…ý»t—ÿ}ýžwð­ä'ü,»×à¹w)|[?ØãüÜÇíYB\œ½Ï ¯D:Èèîêé¬áö ìECv®±Æ°àð·Qe¤ jÚÍìÿóÒWè—w4·•”*üÐ".Åq‰ùØzh¤Î?"·…èãg^ëG|Ö7mëºU2J,ÌžYÛ¶}ÓÙÇ—îéÎZki{áÐEû·É•.I°‡†ÍÌMª†ä UËðÄJ/$týô‘¢!s3trº m­{ºn­V:ÓõJKª‰ÃVfý%âpp<’J^ÂN¹À¡ËâT ¸2<§¾]$è+«3*ò+- Çifèï“ÅÚÏÀÇù· ɰ¾©§´Õä5µõ‰ºm¶{ÿgã.uݰö8»8 -­¶ºÑêH•ïª!…aÛ^õ¾±+7=3¯26$袣…Wj9—.•¹ÎÏ_g’»H§¤xôkx|!<ÿ ôˆV6 ß18Z®²8³™Ÿ=?~‰Ñ±*iÉ«Aiè|ãV°àZ_À’j0}Ìò•Øüâ"ÎÕÇ„Nø"ˆÜ>o} ýðÚ"TÙa}iA3§­0s²‰Î+/ì$-_Û\T^ƒOŠ xôô‘w÷Fæv¼g@ȳ-’×O*yñ^Wéië,=R ¦kéÃF(8†(¹‰ÞÆÛ¥"c¥þ`ö|ŽóÀ7î ®ñU_[;»p1ÆàÆl“ÁgDôø“ðæöw¿ UvXß~Ì>S³CGÏŸJÀ„Æm›êññù¨è´äDç7IéÕܧõæ?÷p3ܳ_Ñ‹ïÃ/ÕÓŠÊÕYÍ ${ÛŒØí1Lɰ±*iÍâðð,‡Ì·E‡±¾À¾Á’4t6ûÍVZDÖWÆ úñTV¨²û÷[ bιéðôKvS4·ÍJCçxx¤ú{¦—¢¹wZõÓ|W\¿¬´ X@ýˆ‰ŒØ¢bÿÒM„f+ü–äpúˆŒUñ»¹r#5èo|ôéØroÆ·‚Èú†ÿ°ÅBÊrèÛ‹ ¾uçm¢—άíe4¡!¢bnGÅ£¢s²±\.'‰ÚKÏ(K™‡”Sy Ìx³²,Ù«0f†]ËÛ€D6Rgç¨ìóa¨‚ã6V·}x”~ú‚ŒŽÖot@õ¢Ïp6‡.—׎^äÒ·­º"É/.céÆa¥FOw?•LŠÍñ~[žƒ©ç´àíÛ«ä 2Qõ$^üñЇ $ÜëŠá^ûýl-²Ã•<‘9=b?¦ ¸«,øêûAt}óbbbB& U”C_Z¡«ó‰7éQÎ>Ìð4}M…1 ‘ùäkß Ì@І޴õk"±ÉEiÞmg6B•Ô ðf§mç4V%]æ¹Ûv€CÝ>C¹¡¾Ö?þ1Yâ?—„+;¬o­ã¦Yû3«_‡øx¹‘é=°kEUZ\Hqy-4:b¯$„Ê{kèdâªðä:¨VWPÛ¥©`×Içæ¦N~ù¡»±l'‡gU£m>Ÿ’ Ððø‘Ž‰ÿB}§&–n]„*Ë¡/e“¡Çëð†Äà„Äj>¿¦·½ T“:é4ÖÒD¼—ª>ÞØ×2šF´/%ZûÜ¥í˜my/ßޝâ:h¬zF汦áÖ€»—`"@ß®æÖÏå7–ˆ¬ï¸†°sžPe9ô­p|›ÔÄf¦gW¦¤¢[+¡Qï;fÀ[¨ól¹¡Ú(oÀ‘Ò™{…ª¬”.F ŒíOÜôázw‰ƒå²½…’ÎDJÑ"ð×·@!ñLHó!²¾J÷² Õ¿ U–Cߪ‡]ï4@Cݲäâ¬ÒbtvyÛ{liF –eZv–ºí.kÄwY¹ÂHzöñªÕ£)ójñþæËQ¼WH;¤èõ·šrWþ†Ð"ë›0÷Ï©…*˱!*'&<Ò’^E1¹¨ªæ²²ôâÚz\gë;:Xü\þÿÀÒj!`Öªí­Bñ3–¯‹g¾5¸M«â…ºM˜Z¹Hý/†{7Ñ7‹èãçÎ^F¤¯p‹%ñÛsßÄÅ=meÚš(É/#°Ø÷亴<"€{«¯˜Wâߌ%ý 4NÂè¯Éf†ºå+acÕÙpbr„ºÉAzE?·kÉcçõs!º¾aÖT¼®(Gý͉ GAml¨ÈÆUcªèP—šWìSv¿¶è"ߥØXm]hl]c´4‰inlN2V ©Éº'}´–ÿ/ÇW/¦ß˜JžvG¨²ýoMBb|%<~iÆ‘átí•ɳ—a&n‹ç7Õmö–@C` Å@¶Ó¿4L†ŒUiòÆUBÝàhü çGª©àT0m®Pe9ôí.«f;×ôu`)BÈh~¢¬W{^òb~Y1Ï Lo(³h»%ãÖßA¥õtãkkqü§:ƒÆ*:¬­ç[J4þ…úþþÒ÷ýx¡ÊrÆoï¦Ñ퉭YÙHºÒ,¤œšK04@Ç].2ç B·Þê;õµ8:Ç%FÐb#óî[ì%9DŠÈ¿PßõÖ½SÁÛ+„*Ë;w?¶¨ šìSÒn}ÌVwäÄmm©Pv“¶…F‹'3d¬ •º7f¡ýÀ¥¾• ¦ÿ¨úúÃÃ×|£èpð¾ŒN¼Ñ³‡Xum¡1Ñh1sy—ר©ñËM2P΂5ð‚·­óK0¸ °®l[?䡾 =âAàˆª„úÑ…E‡.};0y ŽöâöZDlVb¯ìб$–kºUk&ã ¯b4ØöàÈ5>ÃÕ@ùSðž?ìAåjQÿ–Ñø7êË‹V vN8õ¥ãk‹RËR…;ØúVO9xÈ–ÐÛÖÆ­Ü]¦E1c…>‡«½­ÏdsгÊC3bìý)þmúšÁ}Ü ÆÆ…E‡Å…Õ0bÎÃEګСA!™d¼2t–ó›:³ªòÀø’Îz 2?“/Å?__U¦‘•Þñü“ëp€)éËŠ¢Ã:B«„1 .Ó…Œxê±÷n’Îj®lëœän\ÿ‹çÜ&–g#léŽ÷£þþùúî g*!‚söw#-‰: dþœvŸE‡ó8gûÌÀÙo¹çóp¥NÿK¿dZ)F üË ƒÓ_ÆôÀr;„­èÇòÏ×Wôþ—‡¾PýeEÑá<È©oš–ô¹3âÚÙ|®:´‰ÕÁR-¼„Ywc«z¼>SÍeè;¤/;ŠœúÞ°Y eŸAã9ƒ ‘7aZ;nI» cÖe«ÚïJY~Öm?ˆ¾áÔ7`Ñ~¿Ô× åž«âqÌ™l¦fÍ ö¬‚k»çÏì£úoÓ7â;Wø§PÅ9õõÅ’Ñ/oF`FDjk±WgGÑ ”µF¯N'ØXUg3VFfüÛô:„PŹìýMaè8tÏ=–»7hQŒgn%•ÞÇR7:Àšc /¾Àêë¿M_á¶Oàb: ùÔÛÍtY+BñKô+ÁÑ𖵄/,hsÃØè+N}{[ÛÈ@M>ÇxHƒý¿œU«GX´yÁ4Yfí¦ž ˆ¾áÌ‹%“J8þfËÂX/V€Iñ0LcU޶NÆØÞ¥}¡ï‡ËDÐlˆ½;d¤‘ ÌÅJô™Û“„ªèc¢¯@8ôåZæeDjîbÿ·á¤¢P±ÅacU¯×RÞ9Ý>ˆ¾áôÏÁ× ç£Þ{€'£ÅZFXcU<øFæ¬pÛÚÆD_pޝºØùäéág¹ƒ/ó6VõA#í/uÑW #ýs:¤·¦ _ l¬l¤Æ —µè ú d¤¾íØ}°P[‰@¶±ê±Œë׉†è+n}žÿ?^Õˆÿv”aà:N`€ _Ë“ÑW œúVŸÚõ¥­OàUþå-RwjŒ ðyAô§¾§íÅeú« „96V]^-\&€Ï¢¯@xù?×-MæÜôú¯úÁ¯¼ƒ ÑW #õ…· sf®Î*G•_=$+¢¯@>Ô—f!é&L„UÖÇÇf‹Ø'è+n};nñ &9²‘êùo$+¢¯@¸ÖYa|G¥ÑBn·¤Ý7ÙÑW œúêÛã{o½z,·ˆ}ˆ¾á½?NâÚ"e§þÜ ú D4}{ÝÄd¿ú\÷òQ ú D}áÍ ŽŸa‹Ø'è+ô—X@áü½·‰ÚöõÅFôˆÐú¦ËO^Ïe³À’ë«ÅRù2 ú DH}suV;â¸uWÀ9å¾zFôˆPú–(M¹´‡(0äþ—ÑW Bè[½tÜ^ëü j™ðÙ ú dT}SÅ›¼{ÙöVa\³>3ˆ¾ƒÀñsÜIFqE_âòŸ…Znøz ú²ãçÔ.l«žÇµ9P ¾ëÚñM«x€èË‚?ÇýnäJü,@ßwnÒ§¿ý3ˆ¾,˜ñs®ÜÁc~¬Wõa$ò)Ÿ¥2Þâ«8¼ŠÈ?__µ5L%â>é"¬ø9¶N¾l:r>Ìá Þå×ÿ¾ù lÎþùún÷c*ñi+r¬ø9nçAP—ËŽWûÌ(J×ÚVñI_÷åøçë;Vãg¨þ’%»ær9hŒÔ·ÏGb.;kà?DßA }Aw•®ƒ#õÝ$®‚úðØ7 ¢¯@¸õm v«ï7¢¯@8õ¥Ú.\5˜ ð¢¯@Üæ ó¿I“¦Ì©“D) ñ‹˜hågL½Ì\¾eƉöeŸçb£_B¢ft™Æ)Ë¿²ñU—#PÇDü.Dýs>Ë%zú]Œˆ¾c D_ úŽ)ˆ¾c D_ úŽ) "–¾&â "F Î8.âp!êŸóY.Ñ«òéw1VˆºØ+j`gQ¿€ñIî?c°¶ùm\á›Ä^r¦­hgÀ·" 8ÓI”òV³çº‰ôÃtÞy8‹~‰ù8Eõ@?í.ÆŽù.š¸P9É=nE u~}Û"r!eÈt7N> ש{ô@ÎÀ"_bd>N`=ÐO»‹1$øõá¦Ç­xŸ‚¦Ì"DíÈVìï˜òq¹±n@âŒtù#óqŠë~Ú]Œ-¸¹¢¤M`zÜŠÀõm23lD9áà”ßD)ÏA $§3ðG^‚3çÇ=ÐO¼‹1„ñp¿Ôt¼`yÜŠ€µÔ{ªD’ðåU0™ ˆ£—ã,§3ðG^‚3§è0è'ÞÅØÑ¿}¿H»µY·"œàd‚ÇEx#ÎA7r½/`qF:‹|‰‘ù8E€õ@?ñ.Æÿm"Ÿ"Zý%H¼??GøòÏÖvRŠ4àg¤3°È—™SXôïbì81~êÔ©¾""š¾à“ùb¢ÌúMçÎù”þw¤3°È—™SØôÓîa$vßÝåó ñÀhçÆ\ã›As¤ÄømÒÚ;êÉj_>¥8‚H ÿ›ø]%ÏOŠ4ùÃZQw7ÿ ·„0†\\.º ý›­4qÿ6W°jÃu/Ö''Á“Ç@°í§öÁDåqÓlÀ† qs@ÇÙã4ñ ø~Â7’h s=@+lžèñîÚw®½ ¬ß§Lc~"¢¦ €^òìƒãî6$ü˜×ðÃߘöK:eû&¨Ð¡2#|-²¾z2¾ÃƒÏÔ¡fw¦kÄô^¼±ùÑÏ8p`Z ¸þû`/ž1PúGLÃw8Œ÷¶§Φ¸„OU„oƒSßÁ\/í~YêúàÇ©kàOþ¯j£M¬gdÜ“•ß:ÒÞxî¦6Nv|Zïù5ïa¦>‡~ZI®K¡g»ªBÿYÑm'g‚`òt—µ û`äŸà¾Ðèªv8O¡ƒ ø7±û ßÃQÆ‹¾+mœìÓtë·–¿n7¦Oc9Œ¯…†TýS¦xƒìƒ¾Sk:]þÂÔ÷Ù´ªÃÄ>°ï{Qöd |iŽè0ÿ·³å'[/ ‹µ~íÈúÌé ôÃø—}°÷àx±[6 a}ûŽO§†‚>Qúj·Ž µp™Áy¨SêhÏ<ÍøÍç¼)„1£á§€Ö³¹'³žt–M¸ùƒºò³ÞÂØ¡8cýqå{Ÿ¦N> stream xœ­X T“WÚNŒ„Ï¥TÁT3z¾¯Uëh]þºÔª­Uk—jAkÙ!ì²Ç@²¼IÈBBØ «Ù±Š¢ŠK‹¶µZ—J.Úþé_kÿœÿì©]fNgþIN9ɹáÞ÷YÞç½\ÎØ1.—ë¾~›ßæÅÏ»ÞNO†‡YC9n0‘ÇÏlõDK&ßy²{Çõ˜µ.îÕøõ I6&§lÞ’²5#l[ø¾ˆHŸý;¢|cb®š»f‡3“ãÍ™ÅÙΙÍñáørü8s9;9»8Ïqæsvs^å,äìá¼ÆYÄÙÀù g#gg g3g)g ggç Žg:gçiÎxÎl²9ÎXŽƒë˽?fó˜^ž˜‡Æf¸­vkã¿Å¿â¾ƒzŠê÷Ú¸ÇLX:ᛉ¾ï=¡õØèñ¿OÞ˜”0yÍäVÏ:ÏO½fzeL™0%”U{ ‰Á‰ö8ÙMåܾ¡'xȹ ‚׫ökdZm&h)µ.ÇFWÃ!C 8¡A]ÝgíPf“ƒ\Ç(u‘zòy¾± ¿äCä9 ¥ómx•[Úi°L éÒ0Ð-Ðnh…&hV7º›  Ô.±¿ÚR£a‚‡øZ‡Ö ¡T ¥ŒŠÁ™ƒ]èà¢È~´­Ÿ‡2ÑzÑaª0:ì'AWr¨°ªëã«@Õ¦n Â$aLV”:R© ºÈãwÑ<£UŠ,ÐTÑò„„y>@¥j‹ «­5–*¦¼§…^ê–ŸcÏÊ7½Ó³hʼn¨ú`ˆ„´dqlzXÖvÐPÙV0Úu:‡‘.½\v T ÄÉÄêt•˜Y‹{4Jm.¨…2ËÁò‚s™™öò%å|ÏÚœžìàç1êu—°Ã‚üf3 çß¶nŒYþʳ˜Ïài|$Ê Ú+ŸÁ5êÃí0—Æøb)œÊœµ©JÂàéÃín^ßEÉ•òÓG¾Î‡b}ÊG3‘;r¿ÿé¦cëóü4¾.À“ø1`0› V‰¹ŒÝÐZþ]Ó ‰Ï½4 ai„# §Ê²ì©Éñ™oôF~€žkEÇî¬. ͧ½Ä›"-ªª¸QÛ’n£E*ydS2SfUIMAç±Ð¶Íx\è|Úë!¼rQR§$|)Lq"‰“}öe6¡}S¥Þz(» J-*cQ¤Áhva&Ï‚4™ Š ß%Z»¶BmÑ‚T ‘ǧ,ÑÈbãƒÃý¤û€Z°ò=$ì­BKo"Þ?cN?RÒTøÏhúÂýgÐ̯>:ÖrˆÉ?àˆ´ô&ƒò@ƒDIB'Z_Nó.ÙÙÙ‚A~‰P+ÄÌKü47¯ô`Vd³“²S‰ …ã¥nËù™?)ø=nתTb‡úîä#Ë’‚6CNg¼¶vP P]l†bs¡ÍáGòý¯~´¸ŸÇZÙé½Ige“¥Å*âäúUÜ•›šœ,az|\lP9G÷þ¢z€±T ¡ŒêŽv/Úç*G©£/Ì£-ÎÚ¯{²ÙÔ‰²$áLâ†ÄuàO-ë;ÝÓX__E—îìT–A TT9K[ z )F¶ªÕ¦(i‰oúÖ( ¡¶ð§­ À9Äurßa·óØ©,XLù—€ª°ŽˆOÅ„Aˆ:B!Øê˜œ9#Ë å‡ˆëi²´jÏîGçÈ7052df™i‡#†è€Nu»k‘Ù¥d9¤m³M¦¼"ò)ދ߲'÷Þ÷<¶‘x¯¹Îl骈@“¯4È"uÂ^Cë7\.1‚F¿û4³º˜¥’`j8bZúÚüÈN÷WË;ôZ=¡Õêh¬®I³§ª·Ã+O‡]¸÷ÕÇ_:¡ðYÜõ#Ñ ; ½,PÄkSABÉbVìÚWì§k®8oÑæ2cÑÄ"Ï€DH€(KT͆ø.u 1³&{ýÉ¢ˆö„>xŽtÔP?ІAÕ$uÆ%'%'g™&]•hA*„‰ff†¦ø‹Bß*@Üq$_We;ÊA/›Öv"{â „=£-bz¹Æá‰8hMÿT¯kèú¶=-©MþTýùEЍ\-íÕÕ™.*MÇ<</Às–Ûð1ãu­ŽV´Ÿ N#³`/ö‘‹¶­òá^y_}·+=ÂT÷ëî M¾Ú?D£ÍÕ(I•ÝG©uŽíã±O±÷ùM&ëM ¬£ò“rtÕoÈB a.Œ•Y¿×RåQ¤Ÿ’àñ“Ùµ|èt¦’«H4 ty6ÐQRPKµêt-ZŒ)üýÿ+aâÓÇÀYe·Sl°ÌZ¯w†€A»‘}B $ÕÒPb›¸²¶ÊÑz"¸åõŸ2ÁܾÍES>ý{‘Qn“«´Úl9½náU&P;“ºz{j¨9Î4_ìnê"êéÒ…R§ŒôÞ×y'³,ѾÅržh?$úe2x ?Ô ËÀw‡ÏMóe{5  ¶+ü½ô3e¸@â»O¨ÊeÚŒ“ÚÌÔC£ÁéÁ£ŽN2eB'evè55PâÅHÈÖMÓñû‡¿×g‚¢„v0šM6vÜ—|ŒŸ>ÿ8l``Z $ÕVèP·Œ¸‹+©* Í,ù:0¸Ëh~BG¸£êà±§‡ \MÂe/êl­VMÏ•Kµ2-¤ eV(<®Wd«ÕY ¥}pÖAgBm9éc"h>Zq¢ùã+2U1Û«HÊyã%? ~# TjKã­bk¤ƒZ«Ò(žà@/Ôù—Pn+É‘XP]o€‹`¦ŽE´½>Ïšƒ7,>¾üëßG|‹ìƒ¶Vk—¹–19hÅ÷+Pí• QÏà•Íx >â(»Á¦;ÑÂO*ܤÛèÉ7õ¤9Þâ—XÁ¿š_xÅPZtÙÒbëi&û­ÐØÅ±¹’F¥”fWW—7u†V†ÎKÂOE)èT<Æm³‹i¤˜EÌ9þ«Ãã¤Û²C•©ByT–$dCºAVTo,¬‚rÊ‘a'%¥íìLm¹ß"šI*gƒÉ® ®Ýs°âk=·¦zý€¾ì¤¾( P¦ÆG Ãö†ÏÏ‚H°•[ * „²ç”%fÄHÂÃZ2nÿpõ½«e4â²[òŠˆ­åØš4Y§¢½¾>$I¨ žŽÇbw<?³üíÄÖ~8 ÔET(Ä[ä¢7V[Û©¹j;^ÆU¼ÍTŸ>ÚEÂô»ù/ʉ£™ñ®{ŸT£'ì¡j.š;ø¹ ßæ±Z“­ü=¼m¤ÐŠgÿ{↳ñA<ÿÞÓhFS“Å\AËý5q¤ÁøUDô"ªùê͹F¥\£Thèä ñŠ4_Rx}¾àµÃÉ·àC¸PæŒÜûïž¹ÔW}«ð„¥AX‡_x–Ñ4(¯¬Ê/dÇ›bƒBŸË 96Á©H&J íÍ o= o%ÊAª•ÿRƒgKÉœvö_ž;|G«Ñæ€F(Ë?XVa/±è¼¢ô”¹ntÖËoÖéKÊ:Ï_þOÌz›öï!“ZlŠƒÌj=tÊÉe3·ñ W3!q¡Þ¢7“g”uá[X¨T-Ú¹“‰ HÞÔ>ò–ñ¨yà|D]_s O¦qÉ?˜Ù~í/­#“pñ—¶_ûKèó ™‹¨Ø qøGN‰×KÔ9_F¶W%tj]¿èüíú³Æ”•¥Í•ªéLßXQ P±êÚ†C•¡†1TBœÝdw)I§£“3ÞôDSξ}&äÖT/ÝF³U).a>©’\¢«­±¶·0Ðë!‚Z™ð̾ꈅQx^îÏÝ%ÿpÍݑ|@§HgbWdEKÉS(Ù§"ڤ«BOÝ;ŒžË£½>Ïe“ÕiIjBZ|R¹¼°¼®ì‘aŸ¯ã¢7PÐohü/'Å\­–Dð@ßð÷_Ó¥‡|sÉËÝß±«71©Ê"Õ É´S-ê’ ›Ä–‘Ôó«ÿ¼díÚæû•ÆZƒ½NO(gË¥Tã:¡?Þ§QhÕdüQU&³NoµÐ¶‚š«½eç…ƒ§È<î‰xèOÈó¢#±IrJ êÒ1ù¹ú¨¢Ìè n]û|ð^ÝÆu‰Z…*…ÖJÜ›<áýà÷Þ»ÿ"ã'WÎMƒƒÂ]ÍÇ[Ëk«ítISá’â]èä*!WM+’27¤‡ÄƒðgÏ÷êýù>ä~´ë—W"'@_Pq¨»³—¤ìc°û`‚"N“ÃlÁöß\S´£e£k„¿Yôïkë¶OùÞ AA±´ü’Y xÞ訷þw*hyŸå~†L<ôò”‘ÙP 7™„7®Y‹Æþü4Ѐ*K£ÌMwMÍ(%ËúàŠà‰ÜsÑ.LþNõú%8Äñ¢èØèÄÒÌšFçázÚ«ÿ&úDP).ŠÅ$§Õ5:œ®Q*ú’oA7Ua…€˜¿^aÝyK>—ÍècÝ‘êt=³Ê ”a÷Uxæ2Á›c°< Ûó·–Toêô)Ê”—ç xpÓ’n¢-$e‹wu’6Mõú °I©AQ°•Š.8ò~×U®Ë©V“¥¢%aûã‰æ3¥Åm¥…º™OÎw4\:ß?ØÛó*^ø"ŽN¬PÚk*+k 奱tó߯ܺEpm‹õymwhÜÆë!;<_P~°26&:.*©,£ú×ìæ±žl€úrÎgt'½Ü+J©R)5 1g3§WZ–ÃÀ3¶»c–H´ZPSŠ<µÉ†Üo¢™wh4mv"?ø‘ò Ç}±|â8˜8&N€‰žÎÿ†Xºendstream endobj 140 0 obj << /BitsPerComponent 8 /ColorSpace 28 0 R /Filter /FlateDecode /Height 320 /Subtype /Image /Width 480 /Length 28768 >> stream xœìw\SÉÚÇ÷}ß{×Þ•NzBH „$ôÞ¤ *MPĆ,ˆ€°‚( Ò¥¢€ôŽ´Ð… I ô–¸RTŠtò&€Š»ê.ÞݽŸüþ899™œœÉ÷œ™ç™yf†Éäˆ#Ž8âˆ#Ž8âˆ#Ž8âˆ#Ž8âˆ#Ž8âˆ#Ž8âˆ#Ž8âˆ#Ž8âˆ#ŽþŠzíÿ7—ïé?û þ] þD¾Ž‡ÿììý›º$ôg_Á¿+\ÕÏäûOþŸÿg_Á¿+S߈Ã÷‡Z\¾Íëø.ONíVȮ¾XÌsG‹ÈwÖ%Ïd$³òhÑÎÿý}øŽòïk±É—½ûfçÛ˜Õm‹xòïhñøÎºä™Œô®»Õéó¿5‹õßÑ߇oÁŠQ&ó’{7XŒµÙãüõç“Ëøc3Z<¾³.y&#© Ö>$àëd‹ž‰¿_Zks\‹½{ÈÚØìdï;Èdö-­y³6C0‹éο\¶vrùκ䙌 ЙÌßÖ±üÄLü}ø²•·æ9û¥ö×ÐÁŒUJìÝ|® æC4óͯ{¬£°ÝPk1oñøÎºd¶¦22€_í4õî'fâïÄ÷ã™ÑÓ{±€H[mgïMl}ÁÔð`¾ù…Êdf,><öq1qí«/—ü9#ãYç¹òÙïb&þF| &óÁÒ¥r¬7L›©£GŽv-¡³þv;?a¹lÚbþä¢úGìKžºú錼{Ç:¶sÿÔG?/¾£à3»{Xfxúä¹ÜÞj,óôÖ‘F2sÀ‹kdsñøÎºä™Œ\f¶æSŸþ¼Lü}øÆ®¥444t²w‡7Ÿn;Ç?mjŽsq…Íü5A[kºo¬[Äß\<¾³.y&#UËcz³ÖMÿC?/¾—~aKej¿µF³uæø¡3͘ ×rBþ"þäb–Ï_.ùSF’p+`ŸÜ£Ÿ–‰¿ßïéÌîŸwîÿXûäOËÄßïàëÙ?ïìÿ!¾?1?•ß?xz¹ÂO<û…ÿLÿàO̶ø'ò= oþ÷–ö?þì+øw%ô3ùþýû×þÙWðïêï^ÿþ\qøþP¾º8|$ߊÃ÷O‡ïÄáûCqøþéâðý‘8|(ß?]¾?Ò_†ïäØÄ¿Nô-qøþH¾#Ýu”þ}“Ã÷Gú«ðíî`0jÓÁáû#ýUøR FÓ‚‚î8|¤¿ _ÎóûsôWá;B¦Q?,蛾?Ò_…/srd|a_äðý‘þ2|,߉ÃwZYÞ;L&ïÚµk¿ª%8|ÿt- ß@zôí0ä÷Ç9|¿©‘‘ÉŸqÚojQø†g2G'ꔜÃ÷šì©£u/æ ‹jQøºmGò81ÓE¸¯|uœÃ÷l`0Úzÿ¼ßÖ¢ðuD¼í†åT3éB3SLXØÚxgNþgêgðýÐÆ`0ºÿ¼ß–/0éß:É“L¦÷«V9ä=û8çùý††h Fë»Å?ï·µ(Ï/ öö-°ôšåD¸böqßoé=•Ú³ÀÞ¾ùkqü#_ ÐæÐAÀï«Ã¾ßÔÄÛ¢"NûÆÄñ(ß?]¾?‡ïÅáû§‹Ã÷Gâðý¡8|ÿtqøþH%¾cC i´æðý‘þB|¨ Ô„ÈrøþH¾ìJÊü›½8|¤¿ßÑ:_Ú輿7o¾ã1RÞÌ--‡ï¢i’ÜÉè$Ï?.`ž|»O­]‹ÓÿS<~.©9|O#]Ô®D@ÏïeBÀ[öëhõ!ÅòœÃw1õ/*ßRÌF«é!1®=C3/óã;kÞÚÃ÷?§q¾ØzSá3äUÕC†3/ó·¯zØšSRß¹kô]￵ÔX¦“Y8áènÀd ̛̼ï¥_þ¹”¥9¥åð³Æ)m´¾ãA»˜ÌÞ%ì½+úLfÙÿŽO¿˜Ì—ïš¹;a¾sÖ`Ëÿéšy3ññã—?yr°§ï»-W“CƒSŸ ^µf2Ç~aÝ!­·~ïÙþKoåÊ2Ö‹Ñ|ù Ìcœ‡ïœ5›ï8¹±‘ü éDWen&é;ËæLv74QXŸõ×6»mg2+ÿÏ^¢rÖ½ù¿ã̇¬—y?¿AFoXšSZß9‹U>·ÓfÚ?´2mïg> “^’¿où±‘ÁèìaNRèÄ“!’ëc›™Ì¡^&³8ó2ïú÷îÔìã¿Ì)-‡ïÜ5ö¾÷Óîwí Fǧé¾Úr‰Òõí/õ·°žúŠ'gå“k#Æw]f™Tï:·Ðµ=˜Ó/óæ»ùnÿ0KsJËá» ÒŒú™7ïò«K_}Чûð~v#Gã­ƒ2BÊŽ±UTZCŒ¿ë³¥iÌ€-BΓÌé—yó]Ý9÷´¾ S™üÅ”h/*힉¸£4·R‡¦v»R.ª¥ö¸‡5Ž3'ÞTg—»Ÿ7_'“æ–æ”–Ã÷kM/$ðy¼‡Jéc}w’ÙSž›_Û3ç±!}Âï=‡BgÔ3‡XÅ4ù›ß7ßœúw¡šè¦5ÐIßÛÆh«¬«­ïîË{rÇA‰±¬cNPô|b£aˆ9ÔÈî<üæwçÍ·{ZsJËáû•šæ1²lü}Wïô½0ÑH~•›•_zß\œOn¯W#« `²{”ê)eéM¯ˆ½»ˆÔŽÆ÷ß<ÍüÛ'G»˜usÅáû•Ø#Ëèßúë&G>Mc߯6ô´2Úº§ú{ª_¦Ý¶R”óM®Hyx÷’ß]O—Äýc®^ö ðt¿î›’Wùøv¨›­wèÙƒí¹q÷ê5U8Fcïµû ÁÈö^"˜ý3]ÀÌ…ÍŸó‡6òéùsüÏ0™:_5|ü•žßï6ýHsãÛMgù¯ßîq™ø84ù7;Óž'_Ù)ίxüÖ3b±_yu=ïô§“n‘w¯^ ¸êâf;Ð;&ÄÎë‚Ãù‹nWýR¢bÄ߿p=d—‰*”k£ÊÑÇuo_$< õ%o‰xÿU0sQçÏiƒ½üªcø¯Äw¸–ÎhœoÛù2¾Çw”ÜØÐ=ñ‡7cäWA;¡‡Or¢m=žÞyZ^Ha4=îD^Þ}öàù+o\½iwÚþöa;»+×íÎí>uÈ鸷‹ÐÉC6î>g•…·ð‚%†±AP=Êu¯‘C²»€=¦:€¶:˱¶Ú‹83@B"í«Ã%¾ÌÁ.òûùŽï˜ß~ZÇwÊçÞO-SããSoØ ï³Oc&Ž¥¥DbNä3.®žÏK¢’Û¨ÃoÂC½÷Û‡ù‡…„\u ó¾uö¶³ƒûÝ‹Î66V»Ož»êxÿš¹Š›OÉá 1ßñä¹³6>^s>),Ï{¸9¨^å"ûGGÊÄF™¼óŒoŸ§þR|¢9ÚWƒ½ï¾=ò«‡>I5ÑCJ¬ ÓÛ›Šž‘„ª¢¼,ËÈ%—We…ž1ÛsõB.©$¡¥ÙùÔÉZÃúD€¯GPêSÇä¸K¶OÛúû:hdgà€´7Rfûžg¢?öUx¹Y>dcíâíáN"]‚0± O?¬XÊZÉÞáðý‘êõ}˜2Õû(´ÆÚ¡‰Îš¬jbc¡Ï~Ñ-êwª†ú©D±©úÃpwô£&»m'ûg–µ¼Œ±;in~ðø»q죃Ì,MLÅ;šk 7¯ÞŒ”3?pþàÓ'N{¥Pžœ8b½ßð‹ÃÅ37‚"sòìTiõ/~© ¢M™LêZñµ*óç› ©ÚðhnIÿ[ùŽôt÷ý¨¨¥´²J[æd_SnzFëxwUIôS E‹›^±Ï2Ré»’óê”ÉɉúsVÆ&gŸE&ä$Ú6Øn¤º÷¼×MÏË~·wïÖÀ¡D¸yàX5mm=kiýmz7 µ÷\ò÷ ½êº{›ÙÞ#‡,WÞ¿kjøò—–>R¬ÇÑZ$…É,ÝÖ0z\bÞ|C¹¯niÛê1§´ÿ¥|Ç(íŒït§O«¯•å‹õ2?4äUå·Ó>”{êñáŽ%>K~rÿì)/——ÔážúVÚ‡2•hoivÐÆáÑóˆ[>÷ï=:cmbb|ÜÎþN Óy;I¾•\|âc\íìLUd·[ˆˆkê)ÉÉÉðàþÝ‹4M·ë)èðóz–ÕÐpLÊñ æÿÄw:æÄ+Í\HëüãÛñyÌ-ÌÁ9¥ý/å;‹þíp§i}h¨oêèavÑóI…á‡0¢‡}*(Ôä^n§½ƒR‹ÛÞO~ì©m­ró>niát/÷i o€ë¥—³¦;Ï©â¹D5T%å”-lÜ]ÌTåu•”µeÅTµðŠX)1œÎí÷ãCÎ:ì5”Ö´²1ßa …€×î¿yE aªÓhGkS\ÀdÒÿoç¼Ç§¼eñ}»jNiÿKù²ÃÙè߉HžROj9±¼«§>ÓAJ@ÿJkqA~Le×ÛÆ¨;dzçýÓ[¦ü´×ù‘>OMâ+º]8cë`³/¸‘Öµ?rÈqÇ655‚Ží¹Ðsš8c5qiq9i”NQµ¾yùúQEY0×ê ü¢êÁ5¥÷6xeiÙQ&ŠÞ ¾YÑÈ:}uâ¬Æ¼Ëg ÇÑ-Ì› sJû_Êw¢»©­ö[þ.;Îfld‚In¡Rs=Í€8çØŒ×-¯*+Ò‰Éñµ™.÷<uÑú”®Ðæ-H g¹¢ä5 †‡Ìô öéª*Êkëï;àp@Íô˜¬$°z/Ž‘Ñ6’Üf¶ßèÌIuŒ”ŠŠEìËò¬rbtvγä^ö]×ÓÁ`´~n¨ãÄOþHóãÛEÉ‹9ˆ9P–—ö†B.|ÑT“ù¨$æIä³°›—ìl®œ¸âåäæàwT '“Зܴl?FK[YËPi ‡Š+`0‚¼ VE‰ˆÊ‹¬[¾j=7&V'ÈI*hH[›Zœ²–‚ cdµ}s’å—y\ó¶/ŒCl°ú8Dmk¥È²Û&Ù×ĉŸü‘~ÄwòãÀçNÁñÁÁqæÐ#€œe.£RXUY@'ÒÚ;ªÒ ˆåa4jvvCÎMw;»+QÞNáwœ\>v@Í·q)—\T–TÓØ­„ÅA H‚4VRD % á[»téê­"2ªrX1((ŠFHÈã0ŠŠf;ÕåŒ4ôp ~whayÎËÄÜÀ‰[zW˜#úƦÚ&ÙWƉŸü‘¾c_õõöONv74Sgjá1rS©‹Â* « ´¬¶»¡¼,9µ¢­˜Ñ–—õôÙKR<™^žQ^ŸæærÍöö=ûË.vV{LÄ×.]”Ù«ŽÅ Ãh‚¼¼ŠŠ, ‚![x×®\±‘G˜‚•—PÅcp° ƒF)¤T¶©ï7“RÐTWÕ‘AKïtòËn/¨Œ)yœç lz7Ÿ3Ý6É'~òGú6ßžrFý{–“Ô9UOMŒÙ¢'ò™¿½Î%ײê®ì‚”XRmfÙ˼ªÒ‡ S[J‰%î$úùyºœr|#ÐL^p-?§‚—0µÖRBÑ0œ¼:ZË¿qõ²_—sm•–“#HƒÑx I 4VD…b$Td ²ê{4%uvË[X1ضãðÅ›©-¤ÂGÉNНGz—Œ¶L·M²/Ž?ù#}“ïhµ‚”WÖ8=à~<Ù¬t4ôyz=“‘SZHœ`§—¤äÖ”Ô‘îß ö¹~!&»¦8-âþÑÃç®Ûž:âvhp-DÑìè¹íJjºf{´eQ",« ‹•¬\¶z=—†Ã$1J(‚8% ÓRÃÀa ˆŒAßATTÅêéVÑÐÚuÍÿ™¿w`‹ŠÐ 5Q}ì/Âûš§Û&Ù»8ñ“ßÑ)ßÚ|© ª ®½ùMœÄðAÑ+)3>oœÚÑH©`/2ù®670©,íÆ­s7Ü3ãŸÞv9|äè‰KÇU¸D÷›[Ýwä‚‹¾ÙÉÃ{ ”$ä´u k7BEÅÄ‘0 URÕ¶5ÔE‹â”ÕTd¤%QâUiƒF»Õ¥Ñ3%i¬ÄŽã§Îì7´:ráða a\}Ÿ>‹ÒùO ã­¿°£U%~ò{úoä;9ÎìÉ|YZNÍ="9žÔTÝÖšèöÀ7“6IaÔçÕ÷L2?Ô’ƒÎß¼wËuÏq«S×ܲ¢¼NØî—\?åljf¾ËÌÜŠ¥½µu”$ €U\umy) æ‘“QÖRÆÀ!¢IY5QqCey=Çœ5”@Ë×Kmß¡c¤n¢€ óòó c´0"(Q4LB_]%!ª¦¢$½cÛN yT‡Ëê•›xDðpœ¡þŽ~Ñ¡w‹ËÚKÄ6,Oßå<4q ¹üŸ g×/(~cûÓ=,Í)í¿Çw²‡Ö8ïˆÇÅÕøŽRÙQz]ÁšˆS9ÄŠú–˜šü¬©^w£hýÅÑ©´öÔdŸ[¾žá×=ìM·YìÒ°¶q ¿²F'ˆ"‘*ê t5EÁ$D c+ÖlV’Ɖ‰«í°V‚ðñññð ¢ @A~nA!˜¬š($ðn\·fÙÒ%ËÖnâËh(Ð( ’×0:ætþzPÀæ{d‰­üf”†œ_®ô+ÿÊe¸uAñËkæžößãû‘e¡vÌ7âqqõ¾¤«„›ƒu-/ j‹â¢òHEEEéd“zÒ3ž?ŒÎÏ¿yç–«ß-;+S½#Nž0‘äVºvÑÿØN<†ÄËïÑ’‡  €ßÚ%k@"B‹Â@°’;T·¡EA!°€ Aø °zí²eK×mBJ£ ))œêvEœ+‚ÅADôuö:D^ȹÂKaÄû› o%&óýÿ¼[`ü×:N~§ïÔä0?ê†ûÉêͽc°òwÇè7T…í¦‚ü?ö4Q³ŠHÏóJÒó=nyV„§G†ç¦?¸uûžWÒE»ÃG´ñ .¥3I¯¼ƒLÑ¢H\^‰@|›–¬á‘‡‚pˆ0.ˆBëÊè"Da@?@€‡‹kÕ’_—®]ÃäC ° )¬"-&ŽAä¥ÅåUÔ• Z0$‚203vzà›qObÔþÊŠXÿj’™ XhüFµÿ?3ÿÆH-ý'-Ä8ôaðGá“­÷lTøƒ÷#ÖÌ:>0Xn»ø†¥¿®â‡#D‘p0À/ÀÇ”BJa%ÅD¤Ô!B°°°Îaœ­¯ŒÅdä ¯Ý9¢ Ý(@ÿ²B>²ôÝ;cX!Ó‹=ÏÑâ7þ£óoü”u̧–2¨ûð8ÚNŒ»çh©!‚Do³ºU5kh›ï»w­%z.%l[¾¥ŒT]Ø4u–‘Ñ‘ÄܼØdr)Ã7öùýˆ'—/š}Íef!ß»ñáaSáx/,~ão_7ÞYwý°!—1>y+2¿~z¼û`KÃoÓUÁøûžŸ+ÊÊןúˆzë[iï‡KÃþ®+/tŒ‰‰ }àxÝ1$ÈãŒÝ¹SwŸÙé)¡7 ä,OžóÚ£¯*gd!¿ÍTÓÂÂJQ' X¿‚ Î2‰„xÀ`\/Š‘h¼iÅ*J]JB A)h«ã`„ÂÀà|‚p8Ÿ AP08¡#«(/§€Áâ 5«7m”ÒS59™UNûLÍ]/4Âìý%íÜTº¹vañÏøºIzé³;§vàáJ–NÞ³k¿ï7\RX’MgíŒ2ŠÊk›?WÎ_ü£1öÔå…¹ù!~É9E­,NyݼuÁÞáÂ}'c+s3ë{Ï}µDVq¡4÷?vÅ!è’Âv%)‚¬8AIZM™ Ç¿ö×µ|@ TH ÁA00 C  ÍK—m‚(cq’ÂhHUâÝÊzta¢h( #C„wé«áQüëW­XÅQ:rﮤˆ˜¦¼&+iëü<#êÍ${PØ k&³á{-ÄkÖo©ºîyóý{Å×}x•tßÁ\ŽT²pòKÌ)(Ê+ùVÞ•Ÿ˜S4:ÔUYóy°É¾£4£!³†”èíãÆékÆVf¶§=lï÷8`»ÅaCuËßQÔPÜ!g°ÇæRè•]jÒ¼ KÀKò.]%„‚P€0N”Uç.¸aÉ –uEÀ(ÊHÃEP`A !àçá£%¤U¤T¥ñ oóÚ+Wn䃀ŵT¶›=rJS^ZFš€Á«ìq¨$²m©‰Zk˜2Dñ£hS9\(ß¿E|ÝdgQäµÃÚ(8aç)¯øÊ·ÓGÇÊ^’H™c6ò®·9<''-ë7ZfxzphÊ‹ÊOô¾“ÝmŒšWõÅ‘>ž6ç|lwÙYì;ãzëÈq ‹c¦°Má•5¶)ièî“73=wþÊYuYEiQ8 ̳|• ñ ¡`@A”ˆ$-*$€†®_ºŠ€ÂRÊ8Im*$Âb B[ø„°Û, ÄÔEyV/Yµq#¿¬ºŠœ8.¦¥ºã€ƒ™ƒ™.^NJ+-©¨©s1²2/'ô¸ L×Ð>ÓþÌ\8ß¿N|ÝØØÄèïܧ±–/™ pe«Ë_4~] O$¼¬&eÿ>vl”ÒÖ^ò$‡Ö^ÿ(.$6·ùÓg³Ú¯Æzj›èTÏ{·÷Ý:¡g~l×…›îçììì´«¸¡²G,]v(ªJ‹(šZ11Û©,)%/*°qÙ’ ‚00RPLW’à 7-]Á/Œ‘†A`$Z\RWFRC äÄ ~n^>þ­ë6ðÁ•”ð0 (L[WI †!á2v6šê2xu]«½FU5-aA½+©¿±Lîøƒ‹ìñ¡ÌóÎú‹Ä×MöPIÅTÊôdªLzQ¸Û>%8Rãе §USñ¡“=µ”ÎYwÀpVø“ìŠß·h³´*È ô¼² ¸%¯>?â³øŽw×½.n¨‰ð¼om~ëœÎ‘sÞ·ÜÍäø¶J™8îW3ÜevÈÀR]Q^Ë`ÿñ;Í Mv —/Û¼•(ÀÏ˲ª0…”‘Ö–SÝ´låV©†S‘ʼnJaE qa¼‰™‚˜ºŠž†.FhÅ’•üU» ^NÆûv*H)Ý¡A†  z–vÖ‡¬·›[Ùïu=& ظb~£|fâè‰$Ï.ÆÔÁ æ;)øÛÜÿL¾ùe´¦çñ·n+Z¹„vNU<],ï§µ*E{^>éË„ž“ä6RæóÞÑ÷ï>ö÷öæÞÏâÛÙJ©ë¢t´få–S{>Wѳø¾kyM̬.ñp¿}FÏÂÜöÜ…½òð-hƒ—޵ÒÑ‘Ó×ÑÓÙ%ƒÓÛ¡sðˆ¶¦¹‰™âæe›„…A|ÜÜÜü -ª¨¢'£g* Y·F‹C‰ãe•ńвrâ¢0a°0Áø ‘jÓz„¼˜âN Ók>þþζÆÊÖ†‡ì,$°RJpœ–µ‰½ÝéÇt÷ª‚xÐRx-ùÏ_UÍܲÃõ¬¬S¿.Òæ]>gì­üÃüÞ¼k×®ý0³¥Eç;9öé¯ïJó²Ó ÕOûe6~U ³ãCÙmïÚhÕÔÖãS9ž«e0Úk)mm¥¯)/ë?ÅN°ÊçÚÁ‰áÑ>z}eÏàØØ¬>ÉY|»K¢‚¯¹¶ÒÞ§ŽÙ²¡}ÜõÄ™½Öf†‚ávó}Û¥”uµqj&z*Ü+Eô”ıp–­´…‡‡!pº2Zˆ5Ë!ººjzJxeq%-4VA”€C@€ 8\VífÄ.K} µ†79=¹j·§Ž¥µ…ª¢´ orØÖÂ@ŠgƒÈ>Ǭÿs'Ž[}ú"{fJî©5 ·†Ý¼ù®ýõí“Ã/ÛÙZl¾ɵdzIØSXTçð]¿LýKòPš§‡É÷7ÕV•ÓZ©Ô÷,CšRÛUCgÐ)ï[ùe%e9¯ØwÅhw-¥÷}ï«´¯|I§Säò¦/÷îû„/íÏ×o¹\׿æ]½–JÐÕÓ28|ø¬ö®Fâ0RE]UN ÃP0¾Õ+ÂXEe% ?/ïV>ž­Ü[xIàªå\[ ( # H‚‚¤Aðoݵl©€¼Ž*AWËÄTG^FÇÆ^WÛôØÕ»dTLÏê™ihIkKá ƒaåeT HAî5+ÖòÀp4NMUYA XÞ,ëÞ¼qÕÒ-¼n~ˆDD†Bƒá¢”œ¤¨¬<ŽoÕ?V¬UÑ266”VÒSÞf¤hä¢ºËÆÙÊþŒ©†¡Õm§ƒvÊÍ«ùäöºv/ðaÌó"‘œyîò©Ëö·BŠó?ÍZ:<ð{ëbQÆÿ¦ Šp_™ÙNkzþœõ‹3N[¦Ï1uf§ƒG1Õ21UÓ¼šè#·µR¾¿hêX7™ÌîdlûÀ®dänJSckrIItrfZ~6ÛʬÉ+¯ÈyË.ÔÉ w¯ÙoÇ náEª»ö0ýÛ©š)Ÿ{s½ö ó‘2û5dõ!¢QI˜˜Œ^ACG€$ 0Q¡Õ,g £(‚„ b¢jФ4  ò mZöU›¡(ˆ‡äF¨bñ’ˆ(*L@cׯXDÂø‘ò»·Y™êj«*ëªéÕÔ;pÍÚõÄd7ñbÍlm®žt;È/%5•Ò]ÛVýp¯ÏÝhbIý»ÝäÓóçæ´蔾Õ>Y̤ ½˜ÞÎ>þ¯Ÿß‰¡æøÐ÷‚4ÆnìÁ!Tzg´N~š^•ýlVw²öfÅýîâå½-­m ƒC¬¢í·²ü‚Ú’ªÔäüĔ̼JvIF‹ ºb³ÏP Áél?}ãòåë~WRË?ß1”µ O´áø>ùYÙ¶&¦ÎJº¨˜,AZ+"…•P’Çã¤Ðü\KWp(8FKU GEDPY]] æÛðÏeë¶ðr³öøxYž­€„"Eƒ`ÅÅa[–oF©áò8¸âž]6®§Žè™›‰KèÉkÒÞimk`©ز  ~69ÎÙÕãÂÅ kn¹9‰Q‰‰‘‘wbÊZëS’ª_”4ÐÙs`}™\ôóžWçâc¿Ñ>9ÁúÏyOogÿ—|GÈ 4¹¡î“šOÔ?s5Æ ´Î„”ÌH=@¥±¢ÉZMbEù‡Ïc©†;+iÔï¬Þ÷ñEBBý³·–ÖÕ•I"•¦çUÄ?‹ðs9±ÃTY&.etàf ù{hØo}ݤ8ÛK—üZ¿ØÏK4¢iS•[ÇMcs“£§ñ8^VIL‰C@h?×ê帜,!FŠËÈ B[ù¹· " r:X®%Ë·ð±l,>>0ˆw+ / EHÈ‹‰ lZ. ,‘`9Å""H‚žŽŠÇ5—S6–rxII¬‘ùq%ïFž kéó( äjB„ç½ÌÄè|br¥øÌÕ ¼ðÈGn2²J:êh݃>|ž\ôÓJ“cY+k§}òšåD¸bz;ûø¿äÛÓFgT40èu³ìqz†Ç^,BÇ!òåÇ?¤aÿ׬‡±#«¼…:̬ël§Œ sË(ßYü¸5¯„ø’õ¨ŽŽLöd‡¸Ûš(‹ð `Oøev޳G´ÖO¹»##̉žÌà@7÷ø/>À,ûùÍå†ÛúìÁ‰HÊJÉëãy¹Wþºr=Ôh›&AFBZ‡Äa¤wÈÉ xA\_±t=·â„Äá ~LÃ2ÅdÑ6 ñÛ,Äðxi9•mú†»NôNôñ޵µÔW–À!6®Fé:_±µ7жózò('¯&?'¶ *›RClgÔ¯{'$xçT&\xšü gt¤¯®- 193¹è§•&w#ÿ±¾ßjŸ:øÍlgë_ñ!çæÕgÑjó3¦ìµáŠ £ ¥cùeÔî,EÞßÂh(Φ³c³ú‹«ûºZ‰¤’æÚ?–Г##EÕ¤ÜÀG^gLd`ÂÒÛm.ß J.¬*¢M‡þLôýÖ3ðéÆ`Ô&œ?=Šô%8eßÎË6:Û$e·«Ááb Òâ€ÕË6ÀP¤¨œš¡‘’Œ„, ÁIÈŠâ0( ð@[×,ß rñ @0¨0#‰@!x]#=1ЪÕ@1I9)‚ ‹•À¨)š›[¹ºÏåêõ0k9¾Õ+ù¤4,ŽÝzèàv~ßQ÷Œ¨Yé!1ÙaaQ™}êé¥á׃¯{»’’}Š Û˜L2ƒqKkhf}É/+MnYßElŸì+OŽ)#JIe©žb"&7ÒûG™”ÎÖÚŽIæXÿ8s¨ïãïÌJCþãtr[s´±¬‘A«ê̯*­gÇ… õ }I6D½vÌDW=u?±º{ø]ýKÊÛrú3bS*¥¾±—}¦úZvÝ0Þß?6Ù•–âuÃ' þKa2‹/)ÖÜPe»–’ |ëú,?-,†ECà8Eu]-œ(Ãaq ÁÇÏ»iå?ÖóCá¼|Ü@(!$ ˆ#  V‚/ZZœå‰â â2R2²j 1i-íÓçöìRAnDÈèm³4;¼ÓÁ'"$øæåGÑ9žiIžÏ²£Ÿd´°L¶†’ÒŒK7/ÇU§>"’ ¬ëd´ž5œ^_rô„,}zoA|oüï•R•–M ±’‹îõ-d¯¬ØÜB©¯/,Ïx;Bii!÷ÐZÿK3Ñšø0 ''·w$?*2„ÚÖÞØ’“üfdºö³ïUâ½Ó;pÑm{.øÅ¿,È.g—ê}µ¤ŒœÂÎzFCQ4‘’‘SÒ?mŸÑ†Y¥tK å]}~Žï‹NŸMõæS’îÙéþŒ³êˆÐ’Ç7þº|íf‚Š8 ‰ ÄdT´åà(/X ,„AÑ8ÿ–¹¼~  ðð€p ˆ€ò ð¯YÂ%!ƒÇ C‘"Hƒ–2UÔRUÑ7–Q7;€çYÑ8ëãn³Ãø€™•ñž³gÓò ârøzz¸y_=ÿäuCmuZiJRyÔƒ¢wdvú‹¼rÖíøîU¡ƒÂÛÉßþÏÿ ‹îaöN c˜7ß&3dÉ¿ÅwräS9:\ÿ2è´¢jg^Gó´[Þ×Â/£¤ÇŇÝöHkb´–}K3¥ÁFZIndâ“âÆG1A×ÂªŠ‹ëß²žÛêû®û5àpüÎ3Þ‰ì6ä^ö:~]ÞöŒ~ “ß“)¼#KŸWwR*r^W3:Ù“Q’§gdÏMÙÖÞLNñ8qjÿÁGwKÃD Ny'S«>?¿¤S"\+xÀ@(?¢*%ŽÁ¡€B,† ©-. €!@ Žp­^¶a3¿  H,ÄÃ+„UE #…W-Y GËË«ˆÂ!i–•%EPߥcyÂa·‰(Ÿæ^»S.§¦ÅøºÙëyA縓oQqmqbU}YÏ• Ÿ[wÜ<d:KƒäŒ¶[¨`!‚@0AY ……bH,N`±ääÛ¼vÉ’•|H1åö‚@pŸˆ@ÊAÑ[—/åA‰ÀD²š’8¤0LÐBb•4v]8£âFkî=QsþÞ½{7Š#Î^;xöxP´±$åAViJj9)ß?ƒxû¢ëÕ;)i RQvsS[õ“'É-S®áxÕ£“¨ÖªsÓ“‹ŽóäL­4¹¾qòÈ §4¾£Í9鹕muÄ´`G °î•Ün2™J$×P˺ïÆ&úzú&Fj;é¯;z»^Soø¤< l­£·}ZhÖ™^çƒ<«².Ø&ãå“1µs¯þÀî£m¡Õ´ÌZ ¤—Jíe—ý ×&Äzù‡„dW–´Ó_<~ô$´òeÉjuÎs/},¿jûþÃW“ïÜŒŽ­ú”Ëâ;˜á …:Ù\ìo¾]g‡9”´•$|!!0 ©„g•¾ÜV.ùçÊuÜ 4! …€B@–Ñ óC„áØÖå˹„E¤ñbh4L\AƒS‘T0tÜ®x@%Â%a}÷öI{×[iežWBÃ}#žùŸw¾vàÒ­ä„ô¢/Ç „ çU/Ÿ¾j{ö,ÎëiÁ㶆bbSíÕëüu¤íÙ¢Œ=ÅåÄ;VÙø-ó·¯zØšSÒÙ|hyQu¨ƒ7ó iy¤ªüÆæ;Z®wDxàóòçÓKucì^Ÿ¶&%³(ôÆC¿üF‘FüÜ®ú¡,â’JÐ;ëûäAABaEAR9)9îùhƒZ÷öM1«þ¦÷TÕQ>ùÎì ù¦^rC}RsRRð¡óׯ_)xí}Þ Ø ‘ßo§*¿™UˆÓ"sb¯yføßu3:íéóyÐecfo¨üÆQSceU( —Æ#`hPܼfùšM>(£€×ÔP—Ö‘Ç!°’°ÍK–m•Ä£%pû/í³°ÖWR·R=neª¦‚Ú*fä|õ€¥{Ò3ÿ¬´«§YïR’Ò3[²2ü‚/zœ²w+y”sÉ#¦˜4cÎöPh­íïúÇHIÎ@ŒePÝäï þ£æÍ÷Ò/ÿ\ÊÒœÒÎâû1ñ dì^ÞÙ”™Zž›TA"Ö½í~•Ÿêý<',©(#6‘DePß÷öu‘RóòI´æv2Ëvf0òò:ÔnZ}ÆÓ[à¸Ý—C³Û'¦:’ޓꈤ¢šžá¼¸Ûqy¯Ó艱TFMMzNIÝëá÷ïØ–»÷žÑ=ñ±§þeÚc MEq^nu+ëãΑ9Ï–¥Ð[SK£ŸF¹ss¾xÖÆ#Â?þ“—5+þꙇ™ŠLÁbb0î-«W,aÈ`8‡ƒÀ (ˆÀd`8!¦¡nª%&È»tÅ`d°XE9‰‡œÍuµw_ô6—ßȧhui·ÁE¯p—ŽW/Ä= wp+þqtHBVXGyYÚýû·n?JŒæF,¡Ìðeß« UaÇðWž$¾šªz˜it:í;mw á»&dîC føNT\Wï¶Qñ$÷·W­õyO‹ÄF&¥= Kó Î Kñ+Î-ª¬!¿Ê,t¿ò¤Œö*›ô²¤‰ysŸ¬º×?Y@¯|õªk’99؜䗘—TÚóþÅmÛ³ÄìW)s ’’i -)©‰ù%¤¶¶ÚÁÁÖ‚€çYnÇ ‚ rX Zê°³ÏA{GókÑQqOo>!‹ÛêëiÙwnž¸îæuýŠén7Ÿ¸O6Ú¾#9—eÄB ¨àÖÍëVÿºdÙ:. .†C¡ÅApBT „€@˜˜^eåÁ1ñ‚sóòHÍy´¼²6zöcR®ÓñgO9¡,¼ $çèxå’Of~éÅô/¾Ë%‘He#Ìaâ{ޝ\ N &Ý¿}×ñÔ…;ŽÖÛd¥À@„„’†án‡Û‰EY¥eïXusS{w{tNª›å1Eii%™½{Î;Z8\“IÊ‹¾A­¨m¤ä=xtÑÞéÄiM¼XHDÙÂÑûyYç«ÏãŠ÷¡Ö-YÍÍ͇†Aà¢h°X óÁ(œ´(R‡–C +–l€âTdÔÄ”ÄuT\8vREž %%º€”Ñ2=t98ô†¿×ÁíûOxxæÝðJn$O¿L I,!6µ7d‘ë>0Ç«R§¡õ&;«À¶»'×4M/ÝÍ#Ø9»Íg°ÁhýÎ|¶óæ{w~ë;—¢¯³/ò]‰ô²–õ?Ëó#¯FyE>®.}ø<:>£ ² ‹Ò–Ÿ™›KÊ -=)‡Û²¡¤kvÆÓëUÂó '"¢Û¨yÅÓeTuiUiý$s$ß%Ðñ¨åN]Myˆ‹{ Xiûþ3W_Ϋë™|WXNª,K^ZÔT;:ÐÔQWÓЖžüØÖîÒ65-õ3ç/[²¹ú<¨µ¨ª2‘e ÓݯÚj¡¹7s!¥tL{…5~Ê»|zL ®£½Ç@‰A Xõ¬°˜¤ B-•€ âX1$@D/‘áY³t7 —•Ö—Ö"ÈvíݱãÆåývJh®5ˆA',Ô L{ú{úûz\qØo똗Y”ŸÅ6}_·u´QéôÎÄ«¬y[PÜÜÜEއŸˆj^›pzRÓ©F ÙÕû,2o¾›ïöÿ!þê{|c®‹O·TT—…Çv0I´’Ä[÷"rÓóžú=J./i¢”ç‘^çTWE» ·«h:ºs›ŽºÙáSž'Þ°³õ*¨k©›©Æ_W&=¾ë´G–kÃ:n¯cítÊæ’Ó£ŒÄ°ø„àð¼VêÇ.2ñEaQþ“”FýðpgYQ^my^úC['5¼¶Úå»Ö—ï+û+n^4ÑW„Ê[ž»ëwÕÍéª_~¦£‹kÔçÊÊSòp·Ô·Ì±anƲr(1„UUƒ‹ ap8$,†€£`,ˆŸ{ÍÒÕ¼<-·]Ii§´~›º¾šš aŸºìÖõ‚­£N®nö8`{ÝÃ=&'Õ=,ðö½ØÌg© ÓìAQ ½¯+ãÈS :“/ãT…´¯çÏx§Öèf›Tã䦿¯æ5`·ã´}g í¼ù®îœ{Ú³çßu”ÒQRÛIföÔ–…ÞOŠÊ£w–dåÇÕô´Ñ›ë~ɰÓñŠYø=yúòéK¦&úú'‚}òk‚|¼céÃý%qwÏ[¨ˆ D5ö^ðŽO ÷w½}ù„…ËÕ3W½ÆRËˈÏâã«òj^¼¤QB"“ ‹ŠZ:)ïkkãjjгÛÞ´„û›Jàtwߩ޽vd‡¦"£ðø½ÀÔÌÖWì¸Ã\׸¤ä’”¬/9¤¬H˜qFˆÙ!wŽ(ËCÀ0I%C5E5u)¸˜¥‹Þ´òŸ+ypÚ&»¶ãÕµe´24Þ¾ÏÜX[Í·j«œÃÑSýN8]¼bÿ ëEV…\Eª¯IhkÈȦO/éÝÓÆè¤Œ¿©ŠMx\CfÄÚ ¦· ë¿“+å}ÿË£(>;=Þ7üY] màÓÈ»ÙQ¡¤’¤¼¢œg™±©IÁq©1+{F)´äàÀçþWNïV„ „…Åä­®¤=Kö­ 76Ñ;óžIÉÙíŒæÎî·¢|½C®‡{†¥¾üR•Qfõ/$_RgÕºP>>!-/®¢ª,‚âÛ²l• ¬,^K@cq†ÛU5ñrb®Vè-«à8k-9ãíÆ×Ócsb2sƒ‚®F†Þ¸•ñ²­áíäÐë’ʆÚþa6›žF[×ÄX™‹¬€ìá°©Êh²¯çÝ×]Ú  =o¾ ßÝ_ùÔ÷|ˆwÀ£¬‹æVÇÎG;í#l dU mƒ"H×.¹yó É ð>« çÙ°j¿ºÅ>ûCîé }TZÕoC³Oü6óÅ“Øg×¼¯¸_¿{ÊÙýz@fZEçǪ‚â‚ÜÌ'þ¾>q¹)=ôÜûöªâ¼me¨&‹U×9~?ôé=·»¾®å O)W¬Ü©9†8''Ü­' 2¨ÅÙu³ýî·I1‘I™E.¶A]#ÂYÖyÎûqjGkÇË̤4ŸkN»•……ÐÛvtºšYý96&ùái;+¹¾ñu9áž¡AÏÛ~륋òs² ;;¨Ý¬Ç'20àÆáÛ¡Þ÷Ss?O!3«}ãµ­©, âäç^¿vÙ:~¤NI)&.©hj}ó”µN+!ª"`0 Þu(ç÷›\s?{øÌõ£‡ìÏ„ÇSFhEök`Í$…åáפGî¹ìxÑÞÍÞÙJ Ê-€Ú~æ~&©‰ÞœÏú¼‚Ýù[“›œUÎòj¢nøñ¸æî|Ò#Z™•75f”=V©iù±2§ 615;9ÄÛv‡¥¹Œ­sôFDA éKùœ®¼eŪMP$ Amßmé¼[WM]B +­²ëä#399ím”ÀªÕ‚J††ÛNŸwuv;»¶žotpØX§{—ö,’ž9w“¡™Ý½Û6W|óó"ãýììÜξŒ®ï(cÌbØþ.“x~Òn¨wÈ wq9åbëvvIz5[0°¬‹ó¼p\_u¦üÊ}ç¡N±œô2Üãù|¿¾¿¤Øn’յЮoÇ=¿k´aÙÒ¥ª‹¶¬ÙbpÞøÜ:ýõ[tõl;í°nÁo㤴7ïݤu`ï Ãó'¬Íí¬\.8¥„¼.!ø{¼öyíc¼.Ž‹¸í TœÑ˜{:¨‚D¯ ×Ö >Ãf5 ¶ÕÔãj[@žN'H 8#b}áÅÁoÿçþ°Êö뛟 UûIýâ‰Gw¯Û´bîL%™)S~þEq³†ÎZ­ÕvÞ‰^^¡Îw=lŸÜxXOkÑÍÛù€à§¯^ÓxwMW%æÅõ£k¥蟴 É[‘…-J‰Ž óòòMËJI }ÍüÊžAÙô¾‰x¿ = Gh‚C"1ɹ ei7ܺr30: 2ÇÜ-ö.•›³n¿™KtAv5ÀÄCÍK±O°³ó½¤¾ üw‡Ýý~Waü•ݺËõµ–.Y¹eǹ;Gêé@uýøÖÕ*äVìÞºþòóC›vq°|lcuNÓû"Þ5(3)ÙùÙÓØ,\^*%ïå›71Î11÷Ï-–Û{ŸÔ5 m Í—Ëùþà’ˆ½‰X_þêþ0Ž~}YoŒ&,XµN{£î®Ã‹Õ–ªÌüùû 2:;öíTW˜­ irñÚ%Ÿ{ »§ö±g·mÖS‘Ó\¤uÐò¡ÏƒWÞN×oœß³t¶Âêc7_¦Òëi£ŒÚÊmJ‹)À&dzú8&‘J JŸÜ¹{âìß…g0ºñt –=·îŠÜ‚ô")§‘S_S”燥b^ZÐÙ¼La†œÖ1ûÀ<¸»ƒ]wèµ8"® ìndçß±9ÿèuaF¯)'4¿Ñàmb¼{¥†æ"eÅÕgÌ‚ìZ»iþìé?OXlhuÂôÈ ÇK†O^´¼[쟜ææâû"4 04èšÓ}|ü,ö.—ÚäTDÄU’+C˜ÇUƒŽ`‘N<#“?…ë)µþÌú•ZšÿÒTš8æ×I2sµÎ.W—¥8gÓšgv>`|꺫ïþC›æ¨-[¾p‰ÚBé)&ªn· Ì+#2h¬î®VVqN96‰Bfã#^¦¥%úßtõMÃÇ缎öpv|âuÄõµkÈ¡Äâ©lË* 韜—šSH§†8˜m˜'=]i™î “Gùý d:t:žÃƒC=°*)Oýíš?K.¸þ v§ß»BUs®¢Ê’ƒÏîYjNýiÜœ Ú»Nìµär×)ÐßÚîÀîcÇÜü‹òß37X,=ñŸþóãÔÙJ×î?.Áúˆ4<£¨¨4“È…PFOq|ätá”é-ûl,’œÿ::=%,.ÛÒÞŒãûÔ¶SpXlX¤ûõ]kÕd–o6»û$“àõ(:94 õ =8õµõ°WVT ‚¼^;>Œ* RÙ×Ì véoX¡®¦8u¼ú†/þµ{¯Þž#†g_Úe&¿NÃ<½xáÑc爰” _F µ ô¿fäZÙœo±{¦ÒNCû'adþšÁÛÖµ:,&;….±°Œ#?%gÁñªÚ’@3ýå«w®’ùqÊbƒM‹ÕTÔWnÕÙH_[Q^~þ’Íf7.½lrh÷¹I“ÆOVR™£¹fÝV½c'l¼ÚÁö2 6¿(¤—E€ P÷Ê Ã'G{ݾgqÎÈÚ!Ò7Óžå‘SI!E@¶g+ÃÑhÓÜ?g/Ö·xìUDa3ÂýÂî¿ñöÉ&­¶´ÊIl E1I /¢œl¼cZ»èi>ög·jHõ¹„l§ÓëV-šôóx¹e›-ÝLNXœ:tè²Áaë×\¼°U¾0ëÎ… .™¸ÜwM­Y”j Ãý¹Ç%ûÌì„8ãÅRÝŒŒö~蘌$€ì"T´÷:¹.•RÛ ™ôUåïoÒþ>yþ”V3õ|lмwJõ¢)Ó7?»o—úu5¥Euí-·.WQRRÕÞ±m¹¬ôo¿MßûÔûÞ©Ë´é¬X:o•ŽÁEÇ@|mS3­,3ß7"/11¨~‡§W‘i±±®w._¾jrôšWH:6Å;>4>° æq`vDQeâýÓúó¤Ôw]´½û,!2,· %_á–äþüµã+Ÿ×/è=í/¯±–ÕI àJ¡/Mµü•Ó±¿6/˜3KYç°•G ®©¿þ’m·É›9oÝþ-«6î;zÁì¤ÞÅÓg®_Ø·Qÿ¨é“¤w]-Å)q^ž~1Ù%]õBR ãÿ,&à‰õÚé[ndfb3ŠãŠ¢#3Jïøör W÷^…GD´FA²÷®¦Z–$f¯>}þ”[x€Rv—öì߸^3³Ü·jîÂóT–iî8¶e•¦¼Ô”¿ÿ8NQÃà ÑuŸüƸ#fÇ–¯Ø¸a–îV{;—°*zé[2“ ‰›[’_Aèèj¨káfú›?8¾óð¡#dãpØ·ÙÑO®ìß¡!¥¸á¤éËlJ=§&Ç+³Œ‘QXLÄ1 “_=‰ñtúÒîiV·¨« \WãK€ùø¶ñvuY9Í]'/ÜöOYßßEXêÊêšZzØ:˜œ²¿z𨕽™•¡ñÖƒG®?¼¢·ÛðÊS2•¶qÅqÏžúå„uâ <5›A}xLe¾ÑëfŽ‘ŠÅÐrÞUѪjpL&IйrÞK>(´Õ5t6“&Q"¡ë?mþ}hüWYI–2¿.½z+õå“ËÛUµhÍÓÚ¾ã Îéþýýø™sµtLï^5µ¶xìSg~ïÐîéí¼h|Í6-#¼0=3³†@ªÎ‰õó jè]ø¬}}ûdWoÜchôÔîÔNmÅY Ëw^ N(d¸b¸wÃU1R1TR....“ŽÅæF績xòà\xAa¬oøÔúàÅYsלºôÈ¿¾p]<›QØg_ýô`â’sÞl ºÇÊÌ8Èí6ÓäÁéë/YŸÞ¿sŸ±±kVztF­:Ô#SÈ̯€ˆÛ¤·yìÐ6<6¢ÏÿNñ§¥ø35u$*^ÄK¢­÷:B²™Â9"?äñ¯ËŸ"ˆœã"+)rØdj@Ï«Bݱ³W=x9ùÕíS'¶¬ÔX>_KzÜc§HÍ–ž.5CeÅŽ³ÿÞ~ÜâÖ9Záó[6Ùñ×¥‹yi±Ø|m§-*??…¶×²ãÝï]ܬ­:}ü¯ã&)kí>rþÒÿÀĤ7¡…E%MÙéDxŸÿ[è!:1#3¿œA¯ -Âbc2CŸz@ÃÒ¼0Œ÷ÍcKäeæ¯5ºó<‰gu€\N7ߨêÌKI!ãûâ×yÓã¡€£Æž;{íšµsXnÎÛ4_÷;=4yÂöüše²ŠÓ~üiвš¦²ÔÔ?§M––W[¼ãê…­GO›/À:ï3Ùºî®öán~\Ýí-n˜ÔY8{úL5íUzÇͯ]»~ã†Õ_»v< ÍHÌ~ý8ÑÏ#>02³ŠP ЙL#´Aýjµ ‘RÎz•™\JJ¾q~ãbU靨x¾¡•±$jÏ:¯çOÂ{ûjŽÐú/¾$äÚ~ó³– Ô°-ãî-g§gnî7÷ÿmá“—Q,¨x­DZ ½žÌz§"&³ ´«Cèqt±¸Ö.þIè¯6Ø‚Æõ”9øÊrÜ`«„Ýl‘ñ%‘øW‚È9®& ¸nø¼ŠíÒ^*7CYc©éåÝrŠ|;Ukþrí•êëUd§OŸ,­¼h¾îi§sÆ_<ˆyá°EoýjÕÅs¤fNŸ:c–Ú²†fw¼#1A¡Yù…M°— ƒLðÉ%MOÞrÎ!´ŒŠM Ɉ¾ûÈ3Ò³`„CM©¾òàÉ„\(ôËÁ¾‰óµ9ºVYJCÿ€Å«À¨âv°%ÛÐÚSU› çMá‹ÔÞ<èþ_ ÂÃûÂ1»þlÈzäïx-,ÀáÕó€\¥’ ¨åx›% ÆÕ”V"@§`›kɤþXil:À$tv·4óÿÎ~wHìÆ÷÷8w5· :Dªƒ‡H:f‰Ä¿Dαº‚ǽGN«ÁL‚ãçPV~ Fì[µHjÆ­9úgæŽýa²¬ÖÖÅk×/ÑZ£¡¢¨ª¢¨8_g—¹ÓÝ˧HË(ÌQ™«³|³Á%ãôXBJ^zŽ ? C ±áÔè@x5@M$:™ßoxÒ;%[@ ªSSô…o€+3µ² ÀV¹Þ?{ôˆK 53;?Ô=ÓûOllDäéTfyªÏ=ãÍ*rÚ7‰eÉ v¥PµÔo'ô ‘m‰°áSÑv6‹¬¹ çÇ)yöèÖåè¼Òx±?”ÚÆë(£Ñ«X lôÛ-{0R¹­$‡XÝ!Œ[I}kB¬ê÷ª^ïÇó]'‰.1°‘MF2rú+…¯‚3A9ÇÅ7ŠLl] Æ.2â9öгgN—7Fy‡ž²²¼âÚÝ{÷n=´k½¢Š²¼ÌthxdxSÔI±æ—÷7µ<´×øî­ŒèÌF!—E"³ºÁ"¥ 7&¶Éðt°»až€)- ’â1ùA>AÁn>7NÔU”WYÌêi>‘ËÎ#æâk©­d€[\+]—ÍÞ—ØÍ‚7!7„ÅGV Ö—ãï›J…½áðxL¼SWK96!£µÚiŠYr ‰X{9’’ò ø­±•×µ¤>1:ð”²AX»‰ƒìqž"Ôädíóÿ¹€ÿ'@ä° r]¾½f†HÇl®· @ð 8µ^Ký·ïgmyê½kŽâ­Ž§­ï×7ИöÓ®>qÆé ÓÁãupÊ“59sÝÆäÈYÛg™©šÞkÌò Яζf5 SšäéõâMèsû+†[4•¤§I)m9yÅþUj¹ð-pYåTl-±šYÖPÇfÒ+ Å•üÙN U3DÚDè³y¼Œ,6ZhîWXߺJ"&·¤˜_¿;pÅÕí„‹-O»ª¡d‰ë õÐF¥CcÝ*aÌeðBƒœîŽ!4d²Çy(¸C]dé 5ýUD÷DÎqUW9~Π·Õ)5\5yÌdƒK—ÜÝÿÖÑ]¿EûÁͳº ¿Œ*+7W{ÿÍܼž’ ÏœlÌmo^~|줕ž[žù®ƒ…ÞÛÚœóòÞÑCº fL$=o½ÁSsëàx½šÐopv³ñµ}½Õì¶ÚŠì0BUa¦ 7—/ÿ๳º"°Xl²ìÂúrtBÐ[¹ðNVàÍa9-[Áe¡8¤Š¬"ÐëK4¼ÁLw}mÝðšgäŒÌú®0fмüvw+›×묵Y?}ÂrƒM gÍRTÕùëz(?'ØÕÂŽp»ùøïûÎßvO‡×ê©9U£ª23ÄÅú´þ%ù¹šÛŽ_6yîîäúÌ#¡–™P Tä YK°­ ?2~\BØB¡äf”Wå§fàù㻎2Q÷^[K'd9cr±ØH¡X$?œ÷\ø¿K?¯¸âbPÞÔû‘‘Öác1•Œa>Ÿ`$ÖÀ&[™ÙÓ&O˜¢´Òè¾Í£e‹”I_xðêµ} çÌ–‘ž·õЕàL¸3äà‰ïÞ¸jêd~ð ™uRlŽï#Ë#k5äf)è0wðNÆÃu«G,)bÝžØfE$¼NÄ¥a 2ɤ>Áp½¶*‡ÙÚPãIÉ-(c–“ âc’ù£ &Õ7vö.ÛËO\Œ6ë¯QVX¼v÷ÕDlÔ*v%š®Ÿ7uÒteí­ÇöXÛºÝiá²(T|mY9q@R °¡0=/ÉÃ72øæib›?ÈèÝ®SW–šÓ?Ïքǧ˲YàÛPŸèDÏ3pp7M‹z?úy}Þ½ŸEJቡÑWVL_{»|XÿþçÀ§^?öm¨€^åkÊMŸ:eîR}½Éj[vn\vàÆ=¯@=ƒ¥Š ¶Þçî•òÊx‰â–c·ÿvyéò4>6öæËçž ×ÞÖ rZæ§¡¡ßΪ ‰,¥QX-l8ÔÿUÁµœ×RßT0ʉ}1 à13½ ^;[ã¢ÎüÁë±åÙU=3J¬‚7Žç¶ªËiì9)¬oÝ3³ÕÓ4ÏfÐHŸOûû!>íúQ§’'ÿUñ ¹iNW“»ÞáÜÎU+2³ xxõ€ö]}Ãm»Õ¥u­"kÁúà€`GϤ’|—¼øÛv¯ÓDJÈ€íw)äᨹé)„Šž1e[`e×Säj¨.÷™I‚©^A”~ú›àD~ UÛÎÂÕ·á^¹Ý<±NYnÉs§ˆR¸3ímŸ¹¸§‡çªîvL%Æ&äᙥ>tD„Ï äöó`ëGC`*kÜÓ°¦ê­]);á—ÍÆnWŽëo]þÉÕ”D'[K“UÊãu¬0%p }ÏÈI¬€ÛÊrr)‘LõBª§ MñcA'¥bó Dgë`×w ¤¸‚Ü? À¯¿dA(,.#·”ð^cÏe¤¾¸~dµ¢ÂŠCÖž)ÂuÖ·)ÖZGv³¦þÈŠtJ…ÔÀcÂÓ Ým£›g|hþ™û0¹Ð<ÅhñÄïg8jù2ò¶ñ_{/º‡”•פš,¯|!·È/5• Ϻ±«iTÊÛ H¡Zxn¯BT_¾«cOmå4VT‘¥i©Ù}zp›ÚA?ydKK»ÐÓo"²áôcüË …°›í{ëøE…UGo¼L«l>ÿãi5ÕS½ûù[ð‘Ð׺@syOd<x*itÉ'Õ·üûJi¬Œê&½ãü]­/¿`b[â±aœæÎK¦Ñɱé)´F¨{,«¢Úñô*R“ÀMEäjCàyÁ}›Y\–‰­)èŒ^‹ˆ×@.¢šÀºòjÚû“AÝ–ðòA;.ÌÑxÓ9MËç)4q -þ‡¨þ ¨3·Z@¾N4è|uÒðBŒ4#¢/ÝHaß)½m{îùx>ò}ð àY¨Çf™CžÞ7¿îbó"925µ ¶‡ÚØu°³ž Õ´Vvýûm^{]]϶ƒÂÂLyXOê_«mÂe¥Òqð¶Ù†’ÁìÊ›kÒ_X±Cõ/<‰Ö*›ðø¨•ĤÅ@—!v B`Tö7ó8Á6¦Ï‘ЗujžÉ|×¾».<÷̌ɋO2Ÿ½Ù‰üüß4ws¿›ˆñÎéΚ›Ä>}<¡›++´VË*ÏÂæ‘_1çVÆÝ?ºVYNëÐMß$sKÂú²«€êD"ÀŸ›ê¢åã„öÖ –v\wä@¦ï‰>†UÖ·ÛIá9,·?rzóË6/ #ï¨©ÛærX4&!1Öù¬ù͇ÏRÒ„­¤n%?z!o8jza:Vt­MÇäg—¾%ˆ[ïd²IIaÍÉ;ÿ`·¥ÈúdÞQËñðÜ·–Rú¶_ßn6'wG‰ƒL_ ‹SÿZ}~ë÷·†UÒ7w‰üÌ‹ü.ï_¿êÄUÓó gÉ eÕu¾#åRc‚.Ù›y¦”‰èÒBÍqtÎÚ‡¿…H, ÉÕ‚#°[Ô¢Œú¾FHr¹°eŽüšS÷#Þ-gȸDÖð´Jœ Z+ŸWT(lQ}’Dò’qû¬÷úá¹yXe¯xió_±ìÍv[ýû:÷²‚VȘ­¨/,«$&Fø>v{ì/Zµš‰Ï|ƒ‚Ãß¿Á§£©Uè‰Âqéuœ&¾KKs¾õîù +NÜ ý‡)—M2ùÉ®¦æžÂ-ä ,GØ&ƒOòø“pšë·¿|°Ìù©¾=¯ºqw,vKÿ¶Â0ž`¿&1.•š”àø&1­Bô´Î©0•4TÛI²Û«8{Ýy‡‚!ì§iÛ‡„+T°k™¯Pß+ßý6Nî_W‡W6Œ[´¿¬rórɨzééBç´vÀËA婱AEeUu$²’ÐN('Ò«¡Z]ñ~ýmÉt>¹LvÕ9÷œZB9iˆˆš`;é.›Hè˜øê;1¡D|d7¬²W¬zÔAFÈSÏà°š„ Àø„ 1¯²³¹`TÐZ9\vO–“>ºÚ:ø¹O„ÛÎê›JªûïÅ÷XÕC®ØðpLA4 D4V¢½1ú¶ÕÌ<ü‚Xß15ܹ`«Ô°ÊžÕ*ë}É wôIlb2ÒÒ‹¨©ù)ØF*T½å¼´óì=Ê%¾2]=[ÛøyáðÖຸ÷ï_` h†Ö·‰Ä !þˆõU»ÇS®©øùÃA‘øfå:ß©yìÒ¤¢Ì’"lVYÓ;|Iz±Ø–”Kxyn™ìF«J7(¨¿Hí-¤õŽŒFýLhÄúÆ!Þ?qÿ°Êöëˉ̎K‡´ä”@atz¦¼¾´4­¨ŠIh4¯ÌËXSn“u³ÿ§±q8“øÿ°ÿ-CÔÿâDw}¶ ·Ÿ[;y¯†·XÒ¯oKΛØX·Fþ\#É÷E8ÿŽ^šKX8€ÈiµëÈn°D¯Æ! (98}é­щÈ~n"WÑ%çõS\ßPÝÕ”Ã+*TÓƒ¢Ã0PÿÖA(Y„ \9êñRrË€œ áI®R—}*ó!Ž Û/õ„¢B:œ¢™ ТKŒ>¯›ÚÓÅÊr‡j„ýsFˆ¯p|´0œ¦ÎVY!}ÛK+zœkºZð ©ä5àp œîö¢’Ò¢Žj£…óü‰  …Åîh'VUFÖ æ+Ô÷—w¾ï~VYáøíílvï*`cf£¯’¶c__Z9[÷F²8c¥…Ĭ"p„.1B|…úê\éœÞ^>¬²ƒçïîÆ3ÞX„'›eÖÝŒûó¡äâÉ ã+Ô—*3ù»…`ß?|íeo!ÞÓ—×ʆ]Ð;È‚ ÕþÇVÙ&UÃj‚7×" K !¾B}ANøÿU óÝ£ž(:ˆèÛ‚ËÏe0°“eGÖØfwóÝ^hø ·:ôJÜ(˜«_£¾ƒÑ¸ØðQOa„õå« SJù[3.,”3NèÉv65}X9NSÓh 6¿6}O÷!z|_´Å£ž(:.®‚™éØ_¤¹û: ˆF5’[u·ìK:‚ÿ úª/ä+1¼ÒÛ ¾Ùÿ9ì{„ôDÑaSaNõ—iÃú‡ÛïV“=ÿ¹nÕ„/_ßa|%8g307ì¥ñ“î ¢ènŸy {gÏÜãûyîâŠ/__äýï úB@õWEGø`¿¾Ën¿õÂ/}dçŸ>Tß^ }{¢èÑ£/áºÚ*çšâP¿@÷¬töÔ<£úŠÖ·Émñjw¼1—Ÿ_ÆøVÅ{ùÚôõ…øÆþ9¬âW‚óŽÉšõìžeÓ±/n…ã»VŒ"_›¾ûVq“é;cújkw](6›N'~žíåkÓ!—<…ÿâr'¤k#ª¯X„ÇGM5t 2ïóÜ=¨¾b΋§ÓJ¡MC_¨¾bÒwœk$ª¯X„ô…kúî úŠEØ?‡X-‘|Ô# ª¯X„í«6Éä“YP}Å2¸Îª¯XP}GT_q úŠÕwÔAõª¯XP}GT_q úŠÕwÔAõª¯XP}GT_q úŠÕwÔAõª¯XP}GÏUßÎ:–¸øÀ#ª¯Xþ¹¾\úbùçú¶Sàœr£^Q}ÅòÏõåÇp_{ÄAõË?×—Ç*§“ĆVP}Åòö·¹ñ3ðÆCõ펟ã"+)r:ÒŽŸS5»©BJds ªï¨#Áø9®& ¸N$ñ3ªï¨#}ùñs¬îƒàñžŒGÖÛaäJââ£È—¯¯Æj¾±uAüKHßžÈÁô<˜Ã¸ÃÑäË×w«7_‰¡s9AüSܘ |mŸGIÙÏPý¥Ë·×ÌÙÿ‰ê;êHP_ÐU]=Zä ªï¨ó¹Îo| úŠÕwÔù¤úºHõ3F GxÂ3‘•ÿó×—™1d¤ÿÎ'¹ÄÌ_BIê¨Aay?K„',D¸9ŽðD@úï|’KtÌûø»¨¾’¿ª¯P}% ª¯ä/ê+T_‰2aùÀkOXŒ02^úI„ Òç“\¢SýãïBR mÖ‰4!Òà}”ûBµ}—@AAAAAAAAù,¹)?ÅÙ°Ç-âU§8 )yÚ DÐO« 8ˆ30òK ÈljÁý¸»É*mìY)H΀=nÐ(Íl’}7üòéJíµc‡Ÿ FäÔ][ÀAœ_b`>NèÇÝ… | ‚G½œÀ÷¸E€—4dFy'Kµ»e‚ïƒ6û q:#¾ÄÀ|œ<л ÉB˜ (Í÷¸EÀ }¥?-œ°ÂÏvHÊ ‘ ‰#ì ü/!œóŸ=м Â{(“… ¸ÀãWÞ±ä‡_>A—!CFò ýÀâ;ÿÃKçãDÿ~ä]HŽî­{íÖxÜ"8ÁÁO"øF˜@?æüárƒ‹3Ðñ%æãD€à~ä]H}ħ «¿$¹w盧‡_þéšVÖlD_?°8_b`>NèGÞ…ä8õÓĉ_!:™¾ “ôL$ã£îÓ3¦Lÿ;Ðñ%æãD@Ïý¸»@AAAAAAAAAAAAAAAAAAAAAAAAÈõoîñÙàCçF[KøfP$ŽÂÌ¡6iý•óÁ“5X’½Iƒýß„o¨ƒ¾S¨9Ô9¼¾u× Ÿà–P$È¥Õ ì-èw–ÚØ½úÎ`¹î¯‹<ÏÁ¦ÿ÷L˜?f’XókìŒxÐ~ÚM"¾ûË&Ê(0ü<ëÇz¼½ös§Ì•wÉ“Cùï(„‚˜ \ÐS¥ç`똻5ñßåÖ|{SHcl]ú5toE<™ÿ:Ò¿!‚OAÍîçðÉ h£Ëë{È” êÜé9ØIäqK~‹®ù†‚±cB:ºÚ B ¾ôªÿå}c ^Ýý±ÄùÁw!VÃïpÿ§j£O×~Çì9È»§¬¢7ÒÞxî¢1Fv|Òy6šwò¸Ý¡Ÿ—@ç%ÐïiÎþ ¡_t ÿ½q ˜4ùѰç`ÄxHp9H_Ⱥ¢âÀÇ œõYìþA‚ø×A? ¿)©÷²Îö[—†?nצM8Œ¯Lªî ¼Àžƒ¯&V¶>úW_ß§“ŠYvc»À®#Ù“2ÒÙÀÿ5ËÌRweIX¤õã4{Á{ç '~h{vîÿi¦­Å¯°¾]''ŒÑÀ@ï¨Ú­£ ¡ ®³SÒ…µ*B­é>±§xó)o EbÔüÇ·ñÁ4ÑÁìc§ÖÒqb7°´?éM¡HŽpÕ?uŠDuº¥Œ=%ö¤œÜOxG((((((((((((((((((((((((((((((((=ü?³Øbóendstream endobj 141 0 obj << /Filter /FlateDecode /Length 142 >> stream xœUŽ» Ã0 D{MÁ ¢ÄŸ&Hd„´q‘*ë',™ ‚‡Þ{SSÝçØÏ­4È O©t+Æ åF®Æ£­ø¨YÁ«> stream xœ¥”oLSWÆo)°£Ô¢&w]îѨ1‹qtjÌæædŠ:' †,PhK[¤…¶÷miiZZ(-ÿÛ" ÈÄ!LætË63—ÌŒ%:Í2÷af™ç’ë‡Ý¢Ù'ã¶ì$çÃùrÞç}žßû ˆØB ,ÙŸºïäñ”7·F«Ë]سp(DBź^gå½7§–Ñ“ ­U^È/(,’”ÄQ"H'2ˆÄ>"™8@$Þ'R ÿ+Kô ö®Äl™– Œ={7® îk/PÚ0»*,`™ÇBü޶þ™_‡Âš£9\¢<—®—.B-JŸ:;ýÇ$^ÓÕ®†ÚšFPë)mEùi€롳«5à Òí#x)Ì¢ùc»«Rà@ U={ÔQÙ “¨«+òÕé G*'tô˜L~eî¼ä°i+kŒZ½’Næ.ékÁI¥=š.Û¸ùª“³ý܉¦eþùDÈ~Íî MS3XÅÐ^kÌPˤTÉðik n÷Fn·šKøéãï'F:[]ôn³AÅ0&IÍTH.ic“ÚM!ÜÄ_1„àŠhÍ ýn…é¢J &5‡[Èúâ²3UJÚg§C8±­þv­#!è»ÐV€Ä¬QÛ…»1êäí;ŒÅB|K6û&î|mÐÃx•9UL>ß°ÌS5x)84ñiFx_av]^¥,ðeýOWH>¸¸~Ï+ÀË~âkìZòn¼Û ý PÑÉñ­ãMÎfŸ-Ðvìȧ𔩠²5T·!nW¼\R¹:èÛñïrCz%è !éð¬d¿ò%¦Ýш/0ŒRKåoÊ’ó¾ÖkL³Ýâ¢Å Ä3bð¶ÇBö>›HZ:À V4xÞQ¥>Ý©¡pA½œÑ—•%©Ô2å9@™ÆH÷\ðçž/è¿Õn4sr8c]·¦*ÚµÇ N eôþ: ÈÚò*MiƒŠ.ÙV¶ÒÑÖ[Åó}cÖO&)Oñ„r"à:½1ç ŸTçy†‘é(íYù Îî{®“½¯ý™=“iYtB¡ÐªÕ/Bæóȧ‡þo…Ö»H£ Œ6/-¿¶ôe¸ôkÃØ†c»Ã‚'X€óݧXšÌ”39`@µöÒ±±Ðøä©ñ\ÚZn;÷êÎÈ6¼1pÃ즦»FGÁìÕ= zÐ騽;6@- ã¥ƒ³£}XÜ{•½}£c€'¯—ñT?¯–ÆÛù¤b0Í·„¸KÉ9œ˜šKïåör ÜkÜŽøê ^1x½É3E¿°Œ Pºtøºß6Ú¤[Âdû•Öþ¡¾àe阯¼d=÷¡£ƒšÆ»Âìòh‡DÔö8Òâ‚f0/Ú^^WW_OI{KZ‹xÛßÞÌíäȵ·?|04h÷iEòù-iÒ H*‡Ê&MS—Û'ò×t•IsSÐ~‡—=šº×M¥â~4å|èDãd÷µ^Ö¢‡ç§x¯`Hé8…Ä/†Wà%¼êQ Y´°š ÔtŸ;#‘—{«úG‚ÁÅ)ŸúÈ¥AûÎió›Ìô\ßìj²CGÒËVëdŒ‘ãI^ž<ä'ôáÂ&Òd57ƒއæÎÎDüA¯“ú´SKcåe¢% Z ¢­$ˆ¿ÒZÍendstream endobj 143 0 obj << /Type /XRef /Length 162 /Filter /FlateDecode /DecodeParms << /Columns 5 /Predictor 12 >> /W [ 1 3 1 ] /Info 3 0 R /Root 2 0 R /Size 144 /ID [] >> stream xœcb&F~0ù‰ $À8J’LþgàÛzÈf“…ä›”Ñ$?$e A!)X CæÝ R D2*Hv0û:ˆ”ÛV#"E À$X–kXå[É“ $3§€ØÜKÀzÀf6U.³7H¶¥ R¬—» ¬ÒLr€H&}Y<dšDØü8Y­ "OƒÄ "ÜÆšÎìu» endstream endobj startxref 200838 %%EOF HSAUR3/inst/doc/Ch_errata.pdf0000644000176200001440000002470414660150121015327 0ustar liggesusers%PDF-1.5 %¿÷¢þ 1 0 obj << /Type /ObjStm /Length 1312 /Filter /FlateDecode /N 21 /First 151 >> stream xœ­WÙrÛ6}ïWà-Îdj¬ÈNF3–—,¶×r·™<Ð$±•EI5Éß÷%Rô¢i3…íâ<÷\HF$ц(¢#C"b8j$V 1$a‰ g U¹¨®L„áFa ] Ã$‚3)"”4„GDè¥&ÂHØ"âHÉbô'DJLX]i”œHmàD‰üòú5¡ç¶J'i•!±ÉKB?®ªE¶´%öçÛé U7®~Ü[Ba¿Ègd0ð.VÕáßèzÆÖù7j€Ý6­²|y”V–ìý&˜P,æ†Ç’sùЉŒ½xìð{g镽!ß²jNæxߢ°S ŸÚßòbR’=4ÎóÉsî.Š|²[ø{sqFÞÌó²*ÇEv_!¼û _ØŒV·ÙqÕ@ç^ÕÁáŸ[lý*«v=Ê[¶@ÒYDW× <Ø<”I+0TüƒÿÆwè3ÁÞƒ+ƒÏP÷ó­ ý¢.ö(e†ÚI«MpüÜih2hØt˜¯–ÔBO3€ýÒpÌã5#ÿûµ!bÍÍõÄee—U mÔd=·“,æßá„á%Ѿˆ!:¾'ÎÇEZÀ¾¡ö¥-óU1†?çìΜ^j ùxd+ø¡G'XÜ~¯à`0hYQVзwq–nêõœµÎ¼#[ºê7¤7ü ™Ë}#qè$Ù瀜,W‹EkçA¡]– x䛈óA¤è'Ä£ÿÒ0-­ŸMG>¼:<âEéñrœO²åÌQÞ«ñpž$âõ‚ÀÉËJål®·á½UåtËòfõzµÏÙ¤š;V%òøÇDQ¨éP3±|Ð2òãF'xR±ö6J©ºÔgsÖÆQ"¦©EÑzg ½2QxZ« ãKÄ•ylëó·»A‚îh¾k³ÙäHb4Š Ê= Çô-ÑO4¥·tL'ÔR{7IË9ÒÍèßtA—4§-iE«ya-ýñÒóÒ»ÿU0E:sÙÀã9lxãÇ’$ñ{øZžd ‹T8êz>¤wv;àïI²ñÁr£yž•%ÂïÃä‘ £ÊÞ]C I;-Ð›ð¾ ØõØõî÷Ó“÷ÇXl4Þt*,–e¶éØP-}ª‰-ª9›˜f¸·C¥×N¨T;T—-ÔY9ˆ¨ã-Ø=¥ŸÝÅÜlcÞƒaGØq·xõÐÃϯO°Â%Ú e¥û(«mAã*³ÌÂð'Ýþ褖²Öº–¶TK[IÏ<êGÅÉÚNÉh]oïÄ;»Gû#Èh}whQ7×´_AÁN½sˆÖ 7”,ŸÝþÓQìZ°wÖW-¯Ó%P¼M nxw-“ÏŠ$\‚—IÈ2îÂË›ºr÷^W殺`þRØVÖz>_]ßœž|òHìzœD¬Oôxû8ù9‰Ë¥.ÿëó§ŽÛ} Ä5óu°í1ìl3Ñ7[¹äÐsñ‚^‚Õ·¼C:ñÔ‘å†Þc‡s’ms®‹ôΜ{,Qô"y6<»:¿rþã]Ù¿‚ˆí+ˆ³Ù-’÷ó‚Ž:yÁ7×°ûœü°¾†šûë‡óÒ…šoCÝbG¤xè¶žtnšºrÿK[zvyþ£l:µ°Sì—ú†Wß[6ÖÆðø/! /endstream endobj 23 0 obj << /Subtype /XML /Type /Metadata /Length 1484 >> stream GPL Ghostscript 10.00.0 2024-08-17T18:31:13+02:00 2024-08-17T18:31:13+02:00 LaTeX with hyperref A Handbook of Statistical Analyses Using R (3rd Edition)Torsten Hothorn and Brian S. EverittBook endstream endobj 24 0 obj << /Filter /FlateDecode /Length 357 >> stream xœu’11 …ûü —³ÅÇvb»<Ð DÅÓ! tšÛâgofÈhŠD/oò½¼ä+Ðø¶ññZ5àO!x_ºŠU°Ö+z‡kqîØ#å©|.A†]¬+¡pºÅk`o7W“œëdÚ…Ù£”‹mâµf¹ê¯x{*GkS¨M˜3uqÔS&¯†NuÎôÏ´ ¯<[¦ƒ¶GšhŠáYYUÉdY©£kzÕ<ÐôP†™àgy.õÖ:lÃãÞ®åÍ3Fçëòr#xðÈ [˽Ökù²¼; ™(Ô–wŸN„JÁÚ–uZ¸¤,¡Myy8Ekí óéëú1i σrm:p†$ìÎÒ²éLð=1—ÛÆZM–_cc‹pñœF¸ÛòmÈ•¨{,¿S6’üa–ì²–û2Ž6ÕÔ¹éËSØkÚ•QÓ+Ê61,ogªH(¥CE¶­"„¨†îË_•U–ñendstream endobj 25 0 obj << /Filter /FlateDecode /Length 625 >> stream xœuSÁn1 ½ç+rÌ&ر“ØG*U nm‡â@[ZÝ®Z*33;›E =Löåß³ýæÉCDí·>ov.EVÿÓã ×H}Í£¿s’J,ªòஜB…Å×Â)kC5–<³2Ù™;Òè9 v™;½œ«ÝʉÞÁ•¨Äš;S+Ð{*$‘‹vžkÀÞÓ‘´'œÕÓ¦v°Ô©¿wOçAúõq³óg“{ui­ZÂÌ~ºsË”Ñ#S¬„¾ˆÝùiç>„×ÃHIboˆP%‡OÃTµj †3· ϪR%\£M «hØÛ±F©aÿm)(a×NÕ®¬Y9ÔðÒJ$ÕD‹ 9¿9A.”Â÷†n/‚Í›EóÌ@CK¸é}¹‡E[€Z‡›ç¥á$±›bªVð×\:WÈ'âŸC )7¸5HF~ß, ”òb/IQ“Íñ~ø8½k»Iýn(QÄ,¶ŸéÖöqÙ^¨æ–deŸlrLhFrö#J4 ]Þúmž(EµÙÐóÜŒp‘¶."2} çs猕 íœnjó|×õç»ïh~Î'wá4j±oÕÒdŸ„¥‰-“lå*+€–Ñÿæ“=bÔœSŸÏ„³Í¢X“,²$tl‘ÐbÖŒ[ožg‡–Z^&Ÿ Yœ{@[t-¶±#üØV–£Š…|¿4$e¥g!_æÄƒæRmÿV:”Ñ5kk•*€œæ‘¯œ³9ÌÕjŒs ó2r@Nʭ̦Ó¿:ñæ«-ñØÓÁòÀ>’¾ÓyùDK 7[/Ç.^Žf¶^¸?`Ë&vendstream endobj 26 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 2372 >> stream xœu–yPgÆ{fº1ˆÑØQcª'¢Q7+*!šÄl6I¡(FYF@†Ã Ç È1FnfæCPÁáFa`dF¯˜ˆ’S­]’r“l*¥Æ5Çnù6~lj?PS›Ýl÷?]Õ_õ×ïïyŸç{eŒÇ$F&“)Cü–?Ͳí~îh˜¼äàåqðéÉÕÓqÊ´¿L=ñ83~Í\¥M J×éßÚ“½#6.^“¸!9|§ÁŸa|˜uL³€ÙÀld™ß1L ³•yƒ b‚™7™·˜æf ³‚ eLÌ fÝ—ñ` ÌuYˆ¬QvRÕ¤¿Ê7Ê/{¼êñb¡¢^!)7²^ì&nWë9Ý3Ø3Âó¦dô-çˆR¸]&ù¾À´ä[²!ò  $ŒÝUb0µÆ]&=€S³‡-nëQè…Ó¦fóI¯y"[5‹ÕV¥r¡\)J‘ÌQ¼¤V:mß‚\0NãøÂ,9+½Íß$u ²Vé-Q’;e7Q‰/¢R.eá0?¢û„È7Ç¬Ó æ”äõB…š®€XV³í–óÖúÅ!SûÄÖÁÇ¢ü ñäA{‰¿@ÚBÔ¬Ó2huA?œ7Ù,a½%c±[zÂ)kǸgÈ¥dLáq®ÿMòá—>Ož%óo­Ä'pÖõoð¤‘P>âóŽ:àtƒƒUÕ=G›ŽB8´UÉUIÛ@ ›òócãõà¼GçQŠÝ"VŸ‘Ñm|ÐS”²ØÆ«•™äÉ]Ï‘•ÀÍÇîF岨•ˆ]je@iÔ2!«ï*q)Ô¾|€xp¢r'+Æ:ԷƾöUKÇ)¤×@ú™oÐ[Žá˜É@Å5ÁlÎÎ-Ó¹ëðáÎ÷ûa­Û¶ëÞÊÌ7”d对u[ú­Ð=Tâ E(vJs:eŽËzYŽW¥WùCP•]¸+¯è]!§:¥2¸@ÿô¹[ÛÒjö¨:“{  Ü…ö@(iˆ ÔŠŸä¥ûͶ,àtP¬W›õV¨©ÊËöW•ÛÜ)½p8œÚsidhgÇîZU’CSS©®¯†Ü…K–CWËWgZ‹ÁZj®Ê›TÞÒSÅnœjÇT_³Ë¾BåuQŽ›¥¹‚Ù"«7¾:ˆƒ5Œ\ßRZd,.6™UDEf(¤·ÙÿL–“”ÈQ‹huR™ ÆY¬ÓQ›}Ì„âÙùzØ-ŒcûØÚ<>˜ ÙãJÒsÀd+¨¥§i5øýÃä¾tF>:CºÇC#Xšm¶¨Î.*ãÍj“†º(ª™ø7;Û ¦ s‹ÌÁ=Î’ß?ý2ù~AZõ›ñ¾„%Oÿ8pÉW÷p¦0ÑÒµ³Z ê¿‚s¼¼N:`ôÑA`ÀÔõhÀ¸oÀ*§ îçÊïçbïü9W3nƒ¼¾NôEEÏŸQåtÉzé³ }嘆_óWÊV½‹_OŠ­µ§«Žìu4Èõ'wDmOHݼòJ0*pþ•oÿ1ôÎßÈÔvá”}ä=¸Á}I/ŸÐ€ µCçìoé<ÚPлq¯Ðáp•Q9‡-¡‰E°Ñ£ÊŽÔ™âMé¦"3äpÙÕ@3R˜ìñ¢Ý˼&ƒ×cà5aþ ÿ7²endstream endobj 27 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 200 >> stream xœ½Bÿ CMSSBX10‹‹ù!ùJ‹ ‹ ›÷?¿¼R3oøˆùR‹ ÷¶Ó÷uáæ÷$÷Ÿ÷øw÷Ôʚ걋÷÷Yûm‹^û„g€füêg–°»±•˜®÷›÷÷8û³™s–‹¡‹ÆŸœ‹©ü6÷õ÷u÷÷ ]IP}Uû 7Ÿ ‹ ‹ ‹ ‚J&endstream endobj 28 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1769 >> stream xœ­•kTçÇg˜™*!3©¦œ™rŒ¦ÄÔ( ‚—˜ª¤‰£èr§°Üv¹$n¹¬Àî>»Âr_aY–ë° ×€å ZŒ ž9)m‚95Ml¢ô˜hšw¶/§§˜äKsò¥ói>¼ó¼Ïÿ÷žÿ„« A’$´ÿ-¾‹ok!Û¹×æî¸»Ö{±;=¿zìÚ£ï­"ŸÇ”i¯ff©öfGÇÆ%&ÛD¯ëˆßˆDNø‰@âUb7L„/~Ä£„§|áJèˆÿÑä.þ.ŸPÞÔe×]ÇÝv¸ÕÑ¿¤ÕÌzÆÌôJ:iDÉËF"bÅLSÒ먔ƒ/ CÕ¥8bN‚g .@›ÃîÓØ«ÀMÉü©òÄa·0Šá•L›i:@„qhÓº¯™ßæÃˆ€B™o®_šœ´¼Êãü={2ÁÐÉz8ƒAD×mhH$?‹nݦ†/qJ3s²0^Xè`âu…A|ŽRr§÷ù§wç?Æ+ë„;ÖëWáÏì­>Á?çñn|ƒC&¦ÛTq†Gžô½^¿ðàƒ˜~…?ã"õÝÑkÌÝQÿ]ÛC_ö<$M¡]òµ‘³¨s–’"Q2‡8Ÿû˜ÅîÏzcOüø½ˆF+æÿ‰¥5Åü{Y×# ÁaØŸ(t¥>q¶èbA®5Çz¼N ilTfÄóÁý÷Ô|©Œ£¾¬tÀ@Iž€½˜<(©.7›øò 0ªï?2 À~36ñÑxrWQ•àH7צš-ð>ëh:û9"Í›RL¼Q['­r«Üæ*Ùß'E`#ïO#/;…vJ8ä-bo´OM~°q³ŽÍùv0˜úPuaª{r†ÿ£:Œ RFÇî/xg¦ìߴ쟸äߨ%})=àúNVÏð6‘ÎÒo%¤Â6È2É€¾X\ˆÇP!ó§~kºÅtS^‹N¸ -AéªûdEcØúS§<¤ºÂ&é"i•T”ô,úŒ«²7 _5²"£Ôk ²á8]º™Ò—§BéKJò×ãš5Øõ”X åkÛúÁÊ‹L¦þ ¤C2è!tù“KP]Z›‚Öá¯)טJj¡̦Švq}lèíÆÖ›ïÛÈ37бéY;%=lœ¼ßƒ‘‰] K$°Ûö…‡(5Í- -ï&Àq¡yèœuس—ã¶1 >ª{Év±;ÿ‘yåÚÈà¹F¾ìˆ#aئ ËÇÂ%õæ,­&.œâCÎs>ÉQ‡õžCkЮÚ^/‡—<‰ÏÙPÒ Ù3‹¬Sº°9ƒÉ£zBåadŸöÁãÕw|Ëì™ÑF‹°›AÞÕn"³G[q^þÅ„,|ÈAè4ê¬ÄcÊCÀf`¢½9S;hïlŽAÇ(LB¢úÚ·e4y²ú=…v”Þˆ‚–òC;II«ÑqÎn‚Ư¿Ä`úù§ð*¼æëg…VŽ ¢É\RV¬•¹ë… ÿ½ªh`£7t —…FÆØÈU¢-·vÀ·`ÆÞÆ$ö»L^”õc±ì1!šÖ€¾¦±ðýî.4ý_sµÈ}°ƒhõ<‰Hn ´Àµe7§e¨³ÓS[r[Ö6;y*#¿ZU,#oý!;ÎÉk`N/× )-$WF—-:·´“ãhf‚B±’÷Vb®²\šú+ °ã­QfÞ”¥Õ7)˜Å|Ñ•ÂNðÉ¡“Áµ‘°SÛ}×G4DöÅ=±=E7òz´5–â÷TŽp8ÀþæÍWûk†ó¯•κ •ZÙ¸‡ £XJ³ÑT[Á—U6õUžê™Jº,r»ƒ\®¨FÒ»…øEMlµœáAt§ItmŽrz;·s ótÎr³Óä[Õ‹|Á*Ó«ÔÛtÆ|P± "“>AIw™îËÿ†x]K °œ$‘VSU}Y¥I„F T%X°¯í‹ÀçÉOç)´ï<×®jÊTæ¨2S[s›ÛíM¼¿ÂÕßæþ3p_î+ÁÝ“ þ ü> stream xœUŽ» Ã0 D{MÁ ¢ÄŸ&Hd„´q‘*ë',™ ‚‡Þ{SSÝçØÏ­4È O©t+Æ åF®Æ£­ø¨YÁ«> stream xœ…“mL[eÇï¥í½—ÙT¥¹aMð^S„F˜s®›šÍ8f6Œ@–lI³Á¶..…F›­µŒ—¾Z]м­@ÛMï H aÝ‹†ù£K0iŒ±[È^ÂF ç^L¼0ý`bÂs¾<ÎyþÿóËÿ¡)mEÓ4³c÷Þ¢Âå› ìÊ å ôÐk»r´íYSOõäøSÔòáÌ;ÞÜùîÞŠ•K=O­£^¢Š¨bª„2R™êC”–j¥3iWF^ƧšrÍ5m©ì5(§AÂ*IÞ¡/*fœ«¼Ã·|æ „“àmnqËÒݵŽJË©÷üœ•ío $A‚”ï¢BŸ'±U¶X<ØÚÖÇ0[‡À\!­ž@3xLÇ÷Á ÁÊ&ƒ?ÁŒÂ˜Ä·<â`÷€3äNp¤OnãQGftÄΔÃvI)²®ÏËÇm±lãìu¼Ë n"EXŽ¥PD® B.747ø…F’÷l¡+'•xY4>ľ?pét!YNðv×Á^Øn¹=ø¸Q¨2NVNäƒÉ8KöRLŠe‹ aRÂÄ9i¬Ža~,Ó`Î _ãsoê¬ò3‚a±‘ õÛÉ6àˆ‰Ùï %DŒÜfï‡mcØccJÜÖ—…"lbи€<ƒp¾¢‹ˆ\Œùíº¥Ik”™¸kÄÇä¿‘p@ZM¥5²"?â“𴕘Z¯©µ jƒ*7k”]#.’B»J×R”ýÇ83œRùÁÏ0è]æ_Çnõ…“"vbŠt®Öõ˜ÌP¿UM iŸ×à‡ø#¯1¨Gê—¹ëÿ ψdñß­Vöb7ýì Ÿ4ƒÅð\õ~ )VÅêí}ªÜ•>LIY(üŽ~Ô½>/žmüëq‘Çvú¡½/Øø"ÀÝF­‡¼ðVÝf²^œsñ÷£37`†»G˜ßÈ‹ùá<%ƒ7áKµnBò?0Î Ëÿê‚<2TVØ oƒeøÐp͵æ/€›éþõ«Ù;Ýä›ß¨uØ /;g]·Ö:¾«NTœãÔƒ$—õ¢ùŒáÙ4ži” J¿„ÌGÄ®‹1XÒ™À|è8´ùz=à†zNuwœ¹‚ÅÊ Á˜Zó0¼âÎÂæBÇ€(GYuÛŽžOÂópÔ:v5QÙ Ó¸°ðPÊšXÀw–ÿŒÆi~q Q˜¼ s&dŠnÑ™_Ù¸o‚݃íÃqG¼¶Ñ~¯ÐÿýÕK_wgtsÙ«U[*v‹¤‚u»Áu&ã‚Ì2p»ú–ãMN55î;pa¶4¢ÏýÐ?ú,Šú_Cendstream endobj 31 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 221 >> stream xœÒ-ÿCMR8‹vøzù-‹ ‹ ›÷T¾»¸3ˆøˆø§v©Ô÷÷±òÅ¥Õñ÷bó÷‘÷âÚ½Q"ûDfVT@ŸÀh¯¤¢¬«t¢kpozc,ñM÷÷èçïÞI×%¡Ú§ÆÏ‹ÛÛ1Ä# :Q?f¤{¥ªŸ¡¨°k™uŒµÂØŽ‹¥×ƒ$Ena}{mlt‰N‡xŠƒŠ‹~}”‹œ 7Ÿ ‹ ‹ ‹ aOU¡endstream endobj 32 0 obj << /Type /XRef /Length 63 /Filter /FlateDecode /DecodeParms << /Columns 4 /Predictor 12 >> /W [ 1 2 1 ] /Info 3 0 R /Root 2 0 R /Size 33 /ID [<86b685f29ce08bfcb1d375dfd5ecdd0b>] >> stream xœcb&F~ñ‰ Èc¤5ñŸuê&69 mLkóN Á9H0* g3® V?˜â endstream endobj startxref 10358 %%EOF HSAUR3/inst/doc/Ch_density_estimation.Rnw0000644000176200001440000004716314416236367020005 0ustar liggesusers \documentclass{chapman} %%% copy Sweave.sty definitions %%% keeps `sweave' from adding `\usepackage{Sweave}': DO NOT REMOVE %\usepackage{Sweave} \RequirePackage[T1]{fontenc} \RequirePackage{graphicx,ae,fancyvrb} \IfFileExists{upquote.sty}{\RequirePackage{upquote}}{} \usepackage{relsize} \DefineVerbatimEnvironment{Sinput}{Verbatim}{} \DefineVerbatimEnvironment{Soutput}{Verbatim}{fontfamily=courier, fontshape=it, fontsize=\relsize{-1}} \DefineVerbatimEnvironment{Scode}{Verbatim}{} \newenvironment{Schunk}{}{} %%% environment for raw output \newcommand{\SchunkRaw}{\renewenvironment{Schunk}{}{} \DefineVerbatimEnvironment{Soutput}{Verbatim}{fontfamily=courier, fontshape=it, fontsize=\small} \rawSinput } %%% environment for labeled output \newcommand{\nextcaption}{} \newcommand{\SchunkLabel}{ \renewenvironment{Schunk}{\begin{figure}[ht] }{\caption{\nextcaption} \end{figure} } \DefineVerbatimEnvironment{Sinput}{Verbatim}{frame = topline} \DefineVerbatimEnvironment{Soutput}{Verbatim}{frame = bottomline, samepage = true, fontfamily=courier, fontshape=it, fontsize=\relsize{-1}} } %%% S code with line numbers \DefineVerbatimEnvironment{Sinput} {Verbatim} { %% numbers=left } \newcommand{\numberSinput}{ \DefineVerbatimEnvironment{Sinput}{Verbatim}{numbers=left} } \newcommand{\rawSinput}{ \DefineVerbatimEnvironment{Sinput}{Verbatim}{} } %%% R / System symbols \newcommand{\R}{\textsf{R}} \newcommand{\rR}{{R}} \renewcommand{\S}{\textsf{S}} \newcommand{\SPLUS}{\textsf{S-PLUS}} \newcommand{\rSPLUS}{{S-PLUS}} \newcommand{\SPSS}{\textsf{SPSS}} \newcommand{\EXCEL}{\textsf{Excel}} \newcommand{\ACCESS}{\textsf{Access}} \newcommand{\SQL}{\textsf{SQL}} %%\newcommand{\Rpackage}[1]{\hbox{\rm\textit{#1}}} %%\newcommand{\Robject}[1]{\hbox{\rm\texttt{#1}}} %%\newcommand{\Rclass}[1]{\hbox{\rm\textit{#1}}} %%\newcommand{\Rcmd}[1]{\hbox{\rm\texttt{#1}}} \newcommand{\Rpackage}[1]{\index{#1 package@{\fontseries{b}\selectfont #1} package} {\fontseries{b}\selectfont #1}} \newcommand{\rpackage}[1]{{\fontseries{b}\selectfont #1}} \newcommand{\Robject}[1]{\texttt{#1}} \newcommand{\Rclass}[1]{\index{#1 class@\textit{#1} class}\textit{#1}} \newcommand{\Rcmd}[1]{\index{#1 function@\texttt{#1} function}\texttt{#1}} \newcommand{\Roperator}[1]{\texttt{#1}} \newcommand{\Rarg}[1]{\texttt{#1}} \newcommand{\Rlevel}[1]{\texttt{#1}} %%% other symbols \newcommand{\file}[1]{\hbox{\rm\texttt{#1}}} %%\newcommand{\stress}[1]{\index{#1}\textit{#1}} \newcommand{\stress}[1]{\textit{#1}} \newcommand{\booktitle}[1]{\textit{#1}} %%' %%% Math symbols \usepackage{amstext} \usepackage{amsmath} \newcommand{\E}{\mathsf{E}} \newcommand{\Var}{\mathsf{Var}} \newcommand{\Cov}{\mathsf{Cov}} \newcommand{\Cor}{\mathsf{Cor}} \newcommand{\x}{\mathbf{x}} \newcommand{\y}{\mathbf{y}} \renewcommand{\a}{\mathbf{a}} \newcommand{\W}{\mathbf{W}} \newcommand{\C}{\mathbf{C}} \renewcommand{\H}{\mathbf{H}} \newcommand{\X}{\mathbf{X}} \newcommand{\B}{\mathbf{B}} \newcommand{\V}{\mathbf{V}} \newcommand{\I}{\mathbf{I}} \newcommand{\D}{\mathbf{D}} \newcommand{\bS}{\mathbf{S}} \newcommand{\N}{\mathcal{N}} \renewcommand{\L}{L} \renewcommand{\P}{\mathsf{P}} \newcommand{\K}{\mathbf{K}} \newcommand{\m}{\mathbf{m}} \newcommand{\argmin}{\operatorname{argmin}\displaylimits} \newcommand{\argmax}{\operatorname{argmax}\displaylimits} \newcommand{\bx}{\mathbf{x}} \newcommand{\bbeta}{\mathbf{\beta}} %%% links \usepackage{hyperref} \hypersetup{% pdftitle = {A Handbook of Statistical Analyses Using R (3rd Edition)}, pdfsubject = {Book}, pdfauthor = {Torsten Hothorn and Brian S. Everitt}, colorlinks = {black}, linkcolor = {black}, citecolor = {black}, urlcolor = {black}, hyperindex = {true}, linktocpage = {true}, } %%% captions & tables %% : conflics with figure definition in chapman.cls %%\usepackage[format=hang,margin=10pt,labelfont=bf]{caption} %% \usepackage{longtable} \usepackage[figuresright]{rotating} %%% R symbol in chapter 1 \usepackage{wrapfig} %%% Bibliography \usepackage[round,comma]{natbib} \renewcommand{\refname}{References \addcontentsline{toc}{chapter}{References}} \citeindexfalse %%% texi2dvi complains that \newblock is undefined, hm... \def\newblock{\hskip .11em plus .33em minus .07em} %%% Example sections \newcounter{exercise}[chapter] \setcounter{exercise}{0} \newcommand{\exercise}{\stepcounter{exercise} \item{Ex.~\arabic{chapter}.\arabic{exercise} }} %% URLs \newcommand{\curl}[1]{\begin{center} \url{#1} \end{center}} %%% for manual corrections %\renewcommand{\baselinestretch}{2} %%% plot sizes \setkeys{Gin}{width=0.95\textwidth} %%% color \usepackage{color} %%% hyphenations \hyphenation{drop-out} \hyphenation{mar-gi-nal} %%% new bidirectional quotes need \usepackage[utf8]{inputenc} %\usepackage{setspace} \definecolor{sidebox_todo}{rgb}{1,1,0.2} \newcommand{\todo}[1]{ \hspace{0pt}% \marginpar{% \fcolorbox{black}{sidebox_todo}{% \parbox{\marginparwidth} { \raggedright\sffamily\footnotesize{TODO: #1}% } }% } } \begin{document} %% Title page \title{A Handbook of Statistical Analyses Using \R{} --- 3rd Edition} \author{Torsten Hothorn and Brian S. Everitt} \maketitle %%\VignetteIndexEntry{Chapter Density Estimation} %%\VignetteDepends{flexmix,KernSmooth,boot} \setcounter{chapter}{7} \SweaveOpts{prefix.string=figures/HSAUR,eps=FALSE,keep.source=TRUE} <>= rm(list = ls()) s <- search()[-1] s <- s[-match(c("package:base", "package:stats", "package:graphics", "package:grDevices", "package:utils", "package:datasets", "package:methods", "Autoloads"), s)] if (length(s) > 0) sapply(s, detach, character.only = TRUE) if (!file.exists("tables")) dir.create("tables") if (!file.exists("figures")) dir.create("figures") set.seed(290875) options(prompt = "R> ", continue = "+ ", width = 63, # digits = 4, show.signif.stars = FALSE, SweaveHooks = list(leftpar = function() par(mai = par("mai") * c(1, 1.05, 1, 1)), bigleftpar = function() par(mai = par("mai") * c(1, 1.7, 1, 1)))) HSAURpkg <- require("HSAUR3") if (!HSAURpkg) stop("cannot load package ", sQuote("HSAUR3")) rm(HSAURpkg) ### hm, R-2.4.0 --vanilla seems to need this a <- Sys.setlocale("LC_ALL", "C") ### book <- TRUE refs <- cbind(c("AItR", "DAGD", "SI", "CI", "ANOVA", "MLR", "GLM", "DE", "RP", "GAM", "SA", "ALDI", "ALDII", "SIMC", "MA", "PCA", "MDS", "CA"), 1:18) ch <- function(x) { ch <- refs[which(refs[,1] == x),] if (book) { return(paste("Chapter~\\\\ref{", ch[1], "}", sep = "")) } else { return(paste("Chapter~", ch[2], sep = "")) } } if (file.exists("deparse.R")) source("deparse.R") setHook(packageEvent("lattice", "attach"), function(...) { lattice.options(default.theme = function() standard.theme("pdf", color = FALSE)) }) @ \pagestyle{headings} <>= book <- FALSE @ %% lower png resolution for vignettes \SweaveOpts{resolution = 100} <>= x <- library("KernSmooth") x <- library("flexmix") x <- library("boot") @ \chapter[Density Estimation]{Density Estimation: Erupting Geysers and Star Clusters \label{DE}} \section{Introduction} \section{Density Estimation} The three kernel functions are implemented in \R{} as shown in lines 1--3 of Figure~\ref{DE-kernel-fig}. For some grid \Robject{x}, the kernel functions are plotted using the \R{} statements in lines 5--11 (Figure~\ref{DE-kernel-fig}). \numberSinput \begin{figure} \begin{center} <>= rec <- function(x) (abs(x) < 1) * 0.5 tri <- function(x) (abs(x) < 1) * (1 - abs(x)) gauss <- function(x) 1/sqrt(2*pi) * exp(-(x^2)/2) x <- seq(from = -3, to = 3, by = 0.001) plot(x, rec(x), type = "l", ylim = c(0,1), lty = 1, ylab = expression(K(x))) lines(x, tri(x), lty = 2) lines(x, gauss(x), lty = 3) legend(-3, 0.8, legend = c("Rectangular", "Triangular", "Gaussian"), lty = 1:3, title = "kernel functions", bty = "n") @ \caption{Three commonly used kernel functions. \label{DE-kernel-fig}} \end{center} \end{figure} \rawSinput <>= w <- options("width")$w options(width = 66) @ The kernel estimator $\hat{f}$ is a sum of `bumps' placed at the observations. %' The kernel function determines the shape of the bumps while the window width $h$ determines their width. \index{Windows, in kernel density estimation} Figure~\ref{DE-bumps} \citep[redrawn from a similar plot in][]{HSAUR:Silverman1986} shows the individual bumps $n^{-1}h^{-1} K((x - x_i) / h)$, as well as the estimate $\hat{f}$ obtained by adding them up for an artificial set of data points <>= x <- c(0, 1, 1.1, 1.5, 1.9, 2.8, 2.9, 3.5) n <- length(x) @ For a grid <>= xgrid <- seq(from = min(x) - 1, to = max(x) + 1, by = 0.01) @ on the real line, we can compute the contribution of each measurement in \Robject{x}, with $h = 0.4$, by the Gaussian kernel (defined in Figure~\ref{DE-kernel-fig}, line 3) as follows; <>= h <- 0.4 bumps <- sapply(x, function(a) gauss((xgrid - a)/h)/(n * h)) @ A plot of the individual bumps and their sum, the kernel density estimate $\hat{f}$, is shown in Figure~\ref{DE-bumps}. <>= options(width = w) @ \numberSinput \begin{figure} \begin{center} <>= plot(xgrid, rowSums(bumps), ylab = expression(hat(f)(x)), type = "l", xlab = "x", lwd = 2) rug(x, lwd = 2) out <- apply(bumps, 2, function(b) lines(xgrid, b)) @ \caption{Kernel estimate showing the contributions of Gaussian kernels evaluated for the individual observations with bandwidth $h = 0.4$. \label{DE-bumps}} \end{center} \end{figure} \rawSinput \begin{figure} \begin{center} <>= epa <- function(x, y) ((x^2 + y^2) < 1) * 2/pi * (1 - x^2 - y^2) x <- seq(from = -1.1, to = 1.1, by = 0.05) epavals <- sapply(x, function(a) epa(a, x)) persp(x = x, y = x, z = epavals, xlab = "x", ylab = "y", zlab = expression(K(x, y)), theta = -35, axes = TRUE, box = TRUE) @ \caption{Epanechnikov kernel for a grid between $(-1.1, -1.1)$ and $(1.1, 1.1)$. \label{DE-epakernel-fig}} \end{center} \end{figure} \section{Analysis Using \R{}} \numberSinput \begin{figure} \begin{center} <>= data("faithful", package = "datasets") x <- faithful$waiting layout(matrix(1:3, ncol = 3)) hist(x, xlab = "Waiting times (in min.)", ylab = "Frequency", probability = TRUE, main = "Gaussian kernel", border = "gray") lines(density(x, width = 12), lwd = 2) rug(x) hist(x, xlab = "Waiting times (in min.)", ylab = "Frequency", probability = TRUE, main = "Rectangular kernel", border = "gray") lines(density(x, width = 12, window = "rectangular"), lwd = 2) rug(x) hist(x, xlab = "Waiting times (in min.)", ylab = "Frequency", probability = TRUE, main = "Triangular kernel", border = "gray") lines(density(x, width = 12, window = "triangular"), lwd = 2) rug(x) @ \caption{Density estimates of the geyser eruption data imposed on a histogram of the data. \label{DE:faithfuldens}} \end{center} \end{figure} \rawSinput \begin{figure} \begin{center} <>= library("KernSmooth") data("CYGOB1", package = "HSAUR3") CYGOB1d <- bkde2D(CYGOB1, bandwidth = sapply(CYGOB1, dpik)) contour(x = CYGOB1d$x1, y = CYGOB1d$x2, z = CYGOB1d$fhat, xlab = "log surface temperature", ylab = "log light intensity") @ \caption{A contour plot of the bivariate density estimate of the \Robject{CYGOB1} data, i.e., a two-dimensional graphical display for a three-dimensional problem. \label{DE:CYGOB12Dcontour}} \end{center} \end{figure} \begin{figure} \begin{center} <>= persp(x = CYGOB1d$x1, y = CYGOB1d$x2, z = CYGOB1d$fhat, xlab = "log surface temperature", ylab = "log light intensity", zlab = "estimated density", theta = -35, axes = TRUE, box = TRUE) @ \caption{The bivariate density estimate of the \Robject{CYGOB1} data, here shown in a three-dimensional fashion using the \Rcmd{persp} function. \label{DE:CYGOB12Dpersp}} \end{center} \end{figure} \subsection{A Parametric Density Estimate for the Old Faithful Data \label{DE-waiting}} <>= logL <- function(param, x) { d1 <- dnorm(x, mean = param[2], sd = param[3]) d2 <- dnorm(x, mean = param[4], sd = param[5]) -sum(log(param[1] * d1 + (1 - param[1]) * d2)) } startparam <- c(p = 0.5, mu1 = 50, sd1 = 3, mu2 = 80, sd2 = 3) opp <- optim(startparam, logL, x = faithful$waiting, method = "L-BFGS-B", lower = c(0.01, rep(1, 4)), upper = c(0.99, rep(200, 4))) @ \newpage <>= opp @ <>= print(opp[names(opp) != "message"]) @ Of course, optimizing the appropriate likelihood `by hand' %' is not very convenient. In fact, (at least) two packages offer high-level functionality for estimating mixture models. The first one is package \Rpackage{mclust} \citep{PKG:mclust} implementing the methodology described in \cite{HSAUR:FraleyRaftery2002}. Here, a Bayesian information criterion (BIC) is applied to choose the form of the mixture model: \index{Bayesian Information Criterion (BIC)} <>= library("mclust") @ <>= library("mclust") mc <- Mclust(faithful$waiting) mc @ and the estimated means are <>= mc$parameters$mean @ with estimated standard deviation (found to be equal within both groups) <>= sqrt(mc$parameters$variance$sigmasq) @ The proportion is $\hat{p} = \Sexpr{round(mc$parameters$pro[1], 2)}$. The second package is called \Rpackage{flexmix} whose functionality is described by \cite{HSAUR:Leisch2004}. A mixture of two normals can be fitted using <>= library("flexmix") fl <- flexmix(waiting ~ 1, data = faithful, k = 2) @ with $\hat{p} = \Sexpr{round(fl@prior, 2)}$ and estimated parameters <>= parameters(fl, component = 1) parameters(fl, component = 2) @ \begin{figure} \begin{center} <>= opar <- as.list(opp$par) rx <- seq(from = 40, to = 110, by = 0.1) d1 <- dnorm(rx, mean = opar$mu1, sd = opar$sd1) d2 <- dnorm(rx, mean = opar$mu2, sd = opar$sd2) f <- opar$p * d1 + (1 - opar$p) * d2 hist(x, probability = TRUE, xlab = "Waiting times (in min.)", border = "gray", xlim = range(rx), ylim = c(0, 0.06), main = "") lines(rx, f, lwd = 2) lines(rx, dnorm(rx, mean = mean(x), sd = sd(x)), lty = 2, lwd = 2) legend(50, 0.06, lty = 1:2, bty = "n", legend = c("Fitted two-component mixture density", "Fitted single normal density")) @ \caption{Fitted normal density and two-component normal mixture for geyser eruption data. \label{DE:2Dplot}} \end{center} \end{figure} \index{Bootstrap approach|(} We can get standard errors for the five parameter estimates by using a bootstrap approach \citep[see][]{HSAUR:EfronTibshirani1993}. The original data are slightly perturbed by drawing $n$ out of $n$ observations \stress{with replacement} and those artificial replications of the original data are called \stress{bootstrap samples}. Now, we can fit the mixture for each bootstrap sample and assess the variability of the estimates, for example using confidence intervals. \index{Confidence interval!derived from bootstrap samples} Some suitable \R{} code based on the \Rcmd{Mclust} function follows. First, we define a function that, for a bootstrap sample \Robject{indx}, fits a two-component mixture model and returns $\hat{p}$ and the estimated means (note that we need to make sure that we always get an estimate of $p$, not $1 - p$): <>= library("boot") fit <- function(x, indx) { a <- Mclust(x[indx], minG = 2, maxG = 2, modelNames="E")$parameters if (a$pro[1] < 0.5) return(c(p = a$pro[1], mu1 = a$mean[1], mu2 = a$mean[2])) return(c(p = 1 - a$pro[1], mu1 = a$mean[2], mu2 = a$mean[1])) } @ The function \Rcmd{fit} can now be fed into the \Rcmd{boot} function \citep{PKG:boot} for bootstrapping (here $1000$ bootstrap samples are drawn) \begin{Schunk} \begin{Sinput} R> bootpara <- boot(faithful$waiting, fit, R = 1000) \end{Sinput} \end{Schunk} <>= bootparafile <- system.file("cache", "DE-bootpara.rda", package = "HSAUR3") if (file.exists(bootparafile)) { load(bootparafile) } else { bootpara <- boot(faithful$waiting, fit, R = 1000) } @ We assess the variability of our estimates $\hat{p}$ by means of adjusted bootstrap percentile (BCa) confidence intervals, which for $\hat{p}$ can be obtained from <>= boot.ci(bootpara, type = "bca", index = 1) @ We see that there is a reasonable variability in the mixture model; however, the means in the two components are rather stable, as can be seen from <>= boot.ci(bootpara, type = "bca", index = 2) @ for $\hat{\mu}_1$ and for $\hat{\mu}_2$ from <>= boot.ci(bootpara, type = "bca", index = 3) @ Finally, we show a graphical representation of both the bootstrap distribution of the mean estimates \stress{and} the corresponding confidence intervals. For convenience, we define a function for plotting, namely <>= bootplot <- function(b, index, main = "") { dens <- density(b$t[,index]) ci <- boot.ci(b, type = "bca", index = index)$bca[4:5] est <- b$t0[index] plot(dens, main = main) y <- max(dens$y) / 10 segments(ci[1], y, ci[2], y, lty = 2) points(ci[1], y, pch = "(") points(ci[2], y, pch = ")") points(est, y, pch = 19) } @ The element \Robject{t} of an object created by \Rcmd{boot} contains the bootstrap replications of our estimates, i.e., the values computed by \Rcmd{fit} for each of the $1000$ bootstrap samples of the geyser data. First, we plot a simple density estimate and then construct a line representing the confidence interval. We apply this function to the bootstrap distributions of our estimates $\hat{\mu}_1$ and $\hat{\mu}_2$ in Figure~\ref{DE-bootplot}. \begin{figure} \begin{center} <>= layout(matrix(1:2, ncol = 2)) bootplot(bootpara, 2, main = expression(mu[1])) bootplot(bootpara, 3, main = expression(mu[2])) @ \caption{Bootstrap distribution and confidence intervals for the mean estimates of a two-component mixture for the geyser data. \label{DE-bootplot}} \end{center} \end{figure} \index{Bootstrap approach|)} \bibliographystyle{LaTeXBibTeX/refstyle} \bibliography{LaTeXBibTeX/HSAUR} \end{document} HSAUR3/inst/doc/Ch_simple_inference.pdf0000644000176200001440000026146314660150122017366 0ustar liggesusers%PDF-1.5 %¿÷¢þ 1 0 obj << /Type /ObjStm /Length 4188 /Filter /FlateDecode /N 90 /First 750 >> stream xœÕ\[sÛ¸~ï¯à[³³ îmflçæØNlÙI¼ÛɃ"Ó¶YÊJr’í¯ïwRâE²)Ù™iG¡ ÀpîçL–ðD&Æ&*1Ú&:qœ'&ñR'6ñ^$.ÂøÄ'Br›žeé]"ŒÌ½…L2añR%™VxÖIf95J2ÏÑÞ&2“&.‘Êãî©¥K2Œn4:‰D NY¢´Ï’L&Ê[›d*уe:ÑÖâ½I 8¦+}’9ÌóÉ|b3à<±ÖˆDŠÄzôÃ0)—ˆT‰S˜–ç´¡ÁgI¤MœÇ`˜’çô+ƂŠ«1¹ÄkÀSYâq‰’‰w\%JIOi †k°6ž!+u`õ\À¹ $ îP‚„î4Ð(4¦%¡ï!G@Î8P¯9˜È„% 3í"@ÎЃZ HÄ”„Ì;€,%VhYjÌÁ2zã K‡–¨Š B% ËÅ …"¼ƒòB)üµDx > D¶€†á„rU€¬9&o‹êYgX‹d-,K,¡,²ÖŽÈƒ‚ñÄp(X²öà `FÑ$.- å8MêȤùP°Tdã<²ñ€ïÙ5ÁÆ`NÅÿöÛo ;Êçý‹þ¼ƒ÷{ {w; Çù lžûWxPñá쯯yÂöÐ~4¹Jž= vnçדiòÛe~y ª+Î î–È$qѳƕsŽW\¹¢žÞ»eÛ²ÞˆX6ªhŸõ~YGï5`g%LÀ·&ŽS¶%øV=Ãl§y>œŒŸ÷çyòäù?2žç’ª_yöwÎÿþKÑëxrØ?ËÏ“ïÃùurõN§ù%ªò¿¾O¦³ä Ž&÷;žN.n9à½:>L^]OfóÙ`:ü:Û§ÿÐæôöó¿óÁ¼D-•ЮϘúÙp>ʵ¢‚À ’L­WD*›%¢²Eq÷ÂReoPÀ/aïlÑ> W0‹rèOmmñ>‹÷ s”² †Zɨ%qBßË‚ þYÉM{“Ûñœ4&;Ûÿ"åJ¼I7þB…›ï"ëšxƒ’¢›MT|i#7›ØÁÆ&.ÞLdîO%{GŽ_Lg<ÏÇó_£übØßüĄ̀;¤/%IT"…¤}¢ÞS´/¦—Ï&·Óà°—FJ8 Öt28Íç€ÃŽŸ¿Äàù9<{VG+1œÎæI\;ì/˱ÏBzkýžÊ„=Ïg4VÄ;ÿýÒi©•°aÆûjˆ'ãÛшÖq•A/µAX]¡jü©K~¸}yäâ™@û’OªBZ(…ÀzAÿ;æ©L š/æù–Pæk3³+fVŽTB)-TÖqô:7vš‰Ò)ñ}& $Ù’Îù·—-„m"˜Z-…0,EvšjfS 뼘êŠÙùUH[§|5ð¬-?ê‘äG¸-äg·?ËCovtôêÅÑί{G»@{1L.†ã+2¥j`ý½ëþ”œ™0 pô6LƒK‘mœ$Òâó0 +ÊÑãh‡ókÒb™%„Ç¿ÀZ§+¶Ž?eImXø?6(DH-ÊÁñ·ð $œ-H2!dE/ãdèåá8¡5h` [ð A›?PÔPaíáN¾ ×qBäÆécP*9À ·e-ú£FbéãjÉ‹< ‹¦Ÿ~ÃlïàR|}¯®¡Z¼Ã#K´}ÂvØ.{Á^²Wì5ÛgoØ!;f=vÊÎØ{ö‘õÙg6`ƒÉh2Æß››>»`9 €X~sÑŸ]³Kv9ü–³K°»b×lȾ°»ac6†¢d6Á߯ v~8¹`ÞB’à,°)›±Yþ-³Ùð›³ùõ4ÏÙüû„ݲoì/öŸ|:ù%^XÄÓŒ“rõ¯Èq Äß-™<Ô ²Ù°üPûr8Êá5—\‡7oû7y“=÷áh ;ã+È%†³˜50U@;;ç7Èu¬²]…cÙyVr´daÿäàå›ìôt÷¼&`ÜñÎx6\¾X Ò–`è†`P›NraáÔ79‚ø´ÆªÊ½ ÚùçZÃK¯ãDD†Þuœ›&Î[hèˆvÜj¬·½ûñ݇ƒç¡‡±–•icÙ6°Œ˜¨³ú+ä}ÕÏø¨Œ1án¥ZÙNSÃíZ8ÊùE;%õ¢\I¨+ÚIG— wY[QÔØ">.Ø‚ÔÄë ¢ IC¼ Á&yž³o5‘]H¬€ëÎUKl)àËÂ8u²Mª“·«Ðry¯Ð‚ ô`{Dá9ö n¢4‚"¾PnY\÷p‹Û0²÷›×Þû“½W;5óZâlÁßB´Ö‰–y•ù[;YØ ÍdË$âeºÏRnh¬ë暌..î›… ô#}„2¢wª“†VK¡ºÉ4brÞòÐŽ¤.ZâÐ[GÛŒ(=!Ó/MðÂpãÞ4ÜáyéÖÁp‹h¼†ò OwºìUö[×ìw|¬Ùï=ö¼bÃ`ÃØÛšÿý±°å +>.­8ò†-Gx~ =dÿ^cÔ‰³Gùå<–¦biéaë'ó<Ô†R¬vÿf}ŠõÀwöƒ¼€¶ 6©®Pž*káù€¥ºRñM¥R—¤Îž€èj“zû'zÿl¿³éWº-´mŸ¸«í—š¸2šJ'6¯’ÃË6ÕŸ¥ ù´Ö±ÂE3ÑYTÎÇ>TºÌ—ý(WéÝ*ƒF MÃÃU–iäò¹œE†Q  dV™©¢œ-¥RÞk{E3¨Ãû¶1Óuc¦«RSJÌkx¼GAR>4¼]’¦k»‡( ×6ZÀ–[wbuɼ¾îÅ‚scµ ‡f[ã^`}ëìUåß§0^ë9˜ü¸ûÌbÖfç³wO^žÓxgÙZ°ÅÎMOVd¦« ¢´|è_2!_¼ëzñJ¿êßjýú¾ÍVwÍ„¯k›9osUÇ^éþï|+Y#« Š!—`µy!ãrÃRš•>ëÏÃá|8ºÈQ$ ?ûú<í¾äó ù‹rÔýÍHòb2õ§KSôçmÄòƒQÿ²wÅ®(cœOÛ†h”Ïfu¼Ã}ÝÎJktñy-ЈŒÞ›Ó´8Ðm…ÐJÝ09±VKÛƒ6E¶!BM“ÓÿQ¡H]|éM!¾TÜB|_쟾8ÄØGukäJ»¸ZíÚBÛŒº mÝiÛôç²U–Dç*¤yWÿ4/“/äÞýºß°Pêó*'ê¹Ò÷ÀdB­Ób'dMNhP£«ó‘­ ˆï¦}ï}oïôø×·Ã›Ï·³£Éøði/¿º}÷y4¬0‚/Ùu©½WD~kí½LšÕh|yÝõtßÕ†Zÿ[…×ö:è«gÞ Ê¦Wu¤ÃIZêpSOñiÈ\M‡ïAïWç-{wç¤Ðáäôœÿ$=¾ÖyÚ6’ ‘å÷$W«páL)¸VÔ%a¨¦T !µ!¹²åvÝ!KuLVTz PM¬M—˜b)Ör…XîžQã:úcº-Ѳ™ 6ÝÜ1¹B·šº3aj^w Õê Ѫü"USÆœ 4È¢šd©á¢£:µÙÝ¡ÜÚ”LpÆË²¥S$EÙÓ ’Xr2S–e’¹²¬éÔH%´3Oæ!Z‹Íel)£¦U‘<*òá§JöIð“~ð†*ª¶ÜðÙ9?}ùûiÈî>$Å-·NqµÆÇ}”·XéÛµrÜ ,tÍpß»“éE>-¦"ýiÇ><~ZlKÛôq_ÒËÔr:8eEÊyeÓù5fEô„.Y–rÄ Æé”¢M)Mê ›jC¹á%î‡ã/å4·¶2¡‚ÛGâE-¶áÅŸ…%ayê¥JŒEs( ËЙ&º Ñ IÝ&Wª(&ÇS! ã)õX=9xÁ)r“šví)')SüI£Rsê‘ð²Ù„v›ó±”­ÀR¦=Ö-×1ºt a–dB§J9`K‘ÒÖ©³#É?’ôÿ’ˆu ,¤´K¨T³–±0yRU-äÒÔØë•×]ªí`V™¦Çc»Ç;]-cüñ¥1ª»çÑi^:ËÑ/ÆUñr>n;9q·•%Fê0bÝ€•Gi–¬†Û®æk].¢E¹×ùè[>úÕÔCAñ;p¿ÎÓÝÉ袾òÍ쟼y³OKöÕi•¶ý®­4Í[pg¿ÙÇ\¹Óí¬û}¿ÌÁT£¿,`„g|æºmÍYK¹ú˜‘1Þ7j=DÏÚUut¤x8M‡‰ÑA¡6Þ- µx¦GÏÅ]Ñ®¬§÷ŠÓ—U¾³tl¹¸6ß{Ql}lmyÅ]®ËáºÍ­I·Ht¹“5_5©T‹”a3Qäc-"KÓÞ¤¢•3¬ñhçMª{är½®®èç¥f=­hkª(:m^”-iØ¢ìèÌùªrQŽõ`³i¶rÿÇó÷¯÷΂“î·T´jÈ~÷HÅüÌHÕŽTD+ƒQG£kúÞùùþÇ!µÙÇ!›ÜDrÓJwO9K»"1AyÊê.‡©%&jÉ¢{Ž­ÐV¥tDÕ­¬DQM ­ªßôŽ^‡ý„®¨¦#UML»¦ý;rA[;dwí‹­~jQŒŽú¬Ý¥¢Ê%ý¢v§K=^Hbßëî’[ìåȺf6±VCÿôi[çë¸ßj+Çn·{tpøá÷wdl×´o ašþ µéFsãW¤ýê:ÌÔtüÖîZLàþ ü·ò-5,tMømm7 a–¦õ }SV–éÐQYvxÄ2¹=5Ó¹H šØÕÄ^¦øÊ"Žcb—ZRP^"†‡u ߃ÄUŠÔZC›"Õ™XÅ{“fPºÊ¹”Rš‡Ôh›ê®‰˜NÝŠdªx¬ì‡Û*™ú³ð¦´J…³ ¼Y“Šxl­;ÞºeL%»– •Z¦Fh’µ6ë`@E ÏÒÚ”>ßSÖ§>ΕûlÓÔŒx´ÔÌVß?lŽ¤Ì¦*IJ¥Þ¯Í_PÐC·r(édJŸAfVãî“„¶–ƒt`EŸRBx- ¹J¥Ålp§c*S)‡šÍ„IµÕ›Ò°T¸§¡ß‚†?!ƒu‡)X¨ÿMb²š‘¹7ëb|Ú4Eƒm4áÆXøy¸~`Ì›=VÌkíÿ7ijq«uU¨ø_¥n|Æÿ`ïdçù¶»çœö¾å׺S[|Т霭ïòQ µl'5êᚯ \«})â]Lbûæ1€¬p·0÷ÐôFåû.¹Xc êiÂÞ÷öm@_µÅWO®çó¯ÿ`l¯·ó6í=ý:ÐGèédzžö_@ò~\üØ`½ç'ZÆ6spõ ý×*U\F¿‰H;M.`×m Å:~C‹WaÔ;8òùðò2‡4ûÿ+~Á?\~¾h¼D°ìå%Æ T.”¨dew Ö†Oç¶6Ähâ'42}p3ßÎ æŒÙëÿÑ Ò)ÃÊù®ÕPÿ ›–R7endstream endobj 92 0 obj << /Subtype /XML /Type /Metadata /Length 1484 >> stream GPL Ghostscript 10.00.0 2024-08-17T18:31:14+02:00 2024-08-17T18:31:14+02:00 LaTeX with hyperref A Handbook of Statistical Analyses Using R (3rd Edition)Torsten Hothorn and Brian S. EverittBook endstream endobj 93 0 obj << /Filter /FlateDecode /Length 3975 >> stream xœí[[[·~ò#„"@ë”÷KÑ´p‹ N‰½Aš•WÚKí]­W²ÿûÎð:<âY;@ÒEáÓ93Î|s9ôë%ù’áŸô÷ùÍBŒÊ/ß-ØòË…Qv”–/­6|tfy³pÂŒÆû2ójñ|á™rKk¥€UeÆq?Vi cEå ºF1øQ~Z[øÕ5ü²TλÑj"Tš 2éFe<‘Éq;:Æ©LuQšhÖ$™ ·,á¦Fï@e\I ÔÅ”‚µÊ:?ZUfp1[^.^/xÐú2ýu~³üóÙâwÏ„^úÑa–g‹x#|)œ™·Kc5В˳›Å߆¿¬ÖlŒye‡'¿]±Q1/”ÎÈ_À´ôJ+1<[­¥”#çf«¿Ÿ} ̸\Â9× ¹­¹ä#hb¹–4 lÍó@˜á†k$l½wÒ 70m¼°Æw8­aÚºáÕ Ys Ãò#|ø Wpï½öÃm §¸•ÃÙ¸CA™µÒ÷+\,œñHÙx®òFaµÎqZ=îÓFϵ~9:¦‡/GÛùá ®p°Z4ô+d®P0¬ô®w%œ Óìe$íÜ7S¡ò’c <•®Â¼eN6Ä% ¹~X9T6+aGϤÞ®ÀŒ9ò,,cÚX¼©µÂ€õ¬¹A3>^ÍA#RrLU)•ÓT•—ïWnßs¥ '…RHdä@Œª±p “‰˜‘‚±x¡°àI]@÷EvN+>l‰@ñ渔6‘ ̆êïÂ0ÂÉáÛUÑ35½xq ˆPA÷·Q<Ã9šzV_¸Ïd‘ô²:·b½Ž§a@Ð2K-.Ç0.|¸ð¦ÐSšûx¶ªZ«&²Y¸^i$j°œâ>Èå›UÊ1_9ë•zÝ_¤c•}M¸#QÀMߢAqoåœûD÷Þw£Ö3ŠxØ/Îß-”Ài‡P$ Àå¸9p¼97 û€¤æpg.‚›Q2†«¾Z+û|Á+œN©À¨†ìwÜ'ƒw\ÞíWkXÁ8ŹÑIQR‚Al3.)[ƒpÙÖpV…ÏdP %l˳ogŸµRŠ"åsÂ-’u gqe[‘¯«ÈYñJɸÓYétÈÁj€s4~`CJðU5á3ƒkƒ]qi¬ìPvè(d7=“,gzLÎÜÈYî' =;°ÿá} ÀÚò ž'e¼Ø3ñ÷( ·Z©¹Å•ßeŽ[4H:V˜ °ì„åöâbaÉâu^½W)♽^9>ŒÁ‹µˆçï΃EjÎáä0¸Þ$s ¾NšLõºbèMŒ.NT¤AÚG²Ãjn¸H¨ž¦1i320çDÛ)ðÛ+rqµ1ÐýDqA2¨Ò ¿Ú`¥"5€:MYp9ZlgÔ«Ñà†ö+pXÏ'馛õÓ»B£éÉUMO‚ð <Ú€”ÅÀ‚»!:$„à¨hÃ5ó2ž?æã§Ç`÷Žð¸ûÀi’«I ûn#;PstÉp'/"ŠB:UP`‚Ãݖĉ—(n6À?ÞdÜч„Bj‘7nîëEmlâ©;Ü.÷&6£"ˆs©_{€rXJmâò ’'"Ù$²H÷+ç!ÁØwF7eô®Œ®Ëh[FÇ2ºZu| JŽgžÔF““8&„o –"OtLÅàÞ/‚•0DóUy­W£æ ZéÜ šÉ²\K"ä61§pÇ÷7Q¡ÂÅ(ˆ_»}Ø`ÖE#AÜ‹ÌRRå¼MI7Ô¼Ä$†¥ï :> ˆÂÁmdïJHõwÕŸÎј4æ/«1]î"Cî½¹­´³SÔ‘Ýð6Oóá„X$ç¢Á"¢£Ë¢B¬šê9á™ÑeCH J{(·!´3È£Þç|ÙBÜ.»Uê1N€™ñ(Û^gµ¬9”kÈ䀑­óë“|NŒwÓ1ã:÷ãP†¿)£_ÞkNy<ª²Þuä:/£—_/ËhWÉ|^‡•Í“2z^FËèû2ªJ”a\õ¬4Ü‚â9™úª =àñ` ”&ÖP 'wÔ!CƒëŒøb®í*þNýöˆ cçÙ4¦»=&”Â4wÊxD¢ÉMuÝM\¾›ë€´õiK( ÷é|˜‚ÍáG>j šÑ" JfÐêu)wØVwhx$Îj ó,9Ê.„YHm¥@Ït_ñ¶ofÃåˆ'÷q)ƒ#]L°ÀA"l)|Æ;óÈО$sÊ—`u¦`…ö €Oa0$£D’tßõ“$–,¾%‹#Ȭ³-˜ïHm‘±Ï[“ÆV' g,\[Es(‡š]_«ŽSA `lÕ‰p‘!¦i­t ø¶÷…s,%"0ŽB(åM¬$p>yž0Àz“o…éXü9Œ½S†É('™Æ

˜Ö—íª‡“·i‘³ ÕzÖr]Š]ì„X¦-ÎLžÞ-­§š‰y[Ëc­÷:K [+Ü5AÝcišèæMþ÷(b¡´.6é%—°ÝL öEQÔ›¦/¸œõœÓþÄ6piK 7A1œÅBÿ2e‹LËI+W`4¹«f9{ô’Íùä¸õV4ösN¤Û%Žm~±³Þa“U :9“t„ŠÔ €¾¬Wÿ(޹»½¨0·'m ÿ¡!É5(›„²÷™°‰±9¨PMz%åp›èmÚ8K‘>HgÃ÷2‹H¯87±™•⛄qOÔL£=õ:ø ú=$ÒÕ ±¡1™Jßê™G4Ä´}>#a-|ehÃ<@Š¡­&Z@]×}TÚHßE"¯€š1\g¸Öù3bœfÇ2èõ“^|‚ÁP,Œ‘!d«ÃZ8eǶP’ €©-'ó$5耙û…nwÃFü"š¸0Õì‡Ê 9 dÕõûF#1×ÜÚé9ƒ>æUqìH-Uïl&i<½³ãi§\v¸Êj¤ÛNè×¥H¿Œ&¬æ+4s¼ª™ã)r„96sn-ÆC©WÞçª)¸V9¦Ÿã·I÷PVHðöOºÀ7Å\8¹sS(®è? —H*„™Ì"Lañ¤`‚}Ú…NZ:,t‚¨_˜øˆæG·@?Fºž=P0%¾­UjÆû|~XÅí¤ÅŽï\S¹·q3ãÐɸF,³Ãªf÷@°ÎÔZ˜{ ùº=ûô%*vw•U 6’4ö˜Úà#m^–z’›­¹º'µN§;{’.;Z·+yÞi'Þ–Ñ[ÒÕ;mE+™?”Éu¬-È‹WetèüJº ¿^ïóÓ2zÓ9üuï Ÿ—Éns³wÐ]G†nו÷&kós,#QFî Q¼÷w}ôj05'LWµeNÜäuM£hÆ™ŠüôH¾¾îI/-üjËûû8grB•jáü¹Ù=ÔÀ#XœÈµuou’Í¡F®7]l¦ôbÊ®jz¥‡jòPrÒMSõ¤7ªßq€´Þ´·ÙošØq3®i¸LT7ûüx†‹™Ê1=—ÂFÈüF=1k•hŠ{òT­SE¥é¤(+zŠâ3ÍÎØéä_x´xKKó“O@\ ®mø ßRY¨dÿš¾â:ÞøÂ£œ®¨i 3±ËIÏç ë&tHýj*E剳á»_L”€X(Ùû9l±êXÔJ‰)mm½¯ÒÏå§m™\Ñ}èãÍ>Y#öäS³Hrúyî¤'“ar_ÛHÚäg¥ U¼þ-iH\Wšo8…œ@À¡´ÏþsHWÃùIj—&ôì´'p$GnS ˜t}UÅÛ\ îtÖ4¾ø¤,Ôðæ[ᑘ¾{¿p~žî¶×+ŸOÒ>Ýá¿â>ˆ»÷Ûð¸GH¤à†§›ŸÆ (p„WÚî°Hi¦ •¨C×yI¶U´«jØAëÕ2ëJ˜šßLy3“"’鎅 qS’¶ÿÏ7âÞ÷À ˆÀå;Å´Ss$òæŽdb3ß*;²c®¡iÖÓÃûÓQä{§0£VReú°½¸ÁüÛv„ìÌ ¶í>áÁ×r¼ÃeòÚfO¾‹ÒÊ(6i¤¦Þ‚Lo«û\`)cG |¤#ßöHÓùŠ&jøáJÑ—€¨A$k™§}»öAblrÇ4ˆ¹§U[4¬PØM;[\û‘Mû÷áщhcÚ {Ûì÷¤„ñÌ…§ù»]}Z¸Ig\ÿÅÎ!²–n¸¼®]€þµ`4¡…Ö6Í&%tct>þW|uúóAµcì?ïUŸ£Nðÿò<ŽCüo4äIä¾<Üý©C} Ù£Ò<¾¦&÷Ü|Œjúáq…kš¬ñóë˜ \ú„/¤yÒ¾¥!ÝËGMÚ@ 5ÜL7½ Ù"ù%°µøÐ„/i•,–§Êÿ/ùnñ/tëþ¡endstream endobj 94 0 obj << /Filter /FlateDecode /Length 625 >> stream xœuSÁnÕ0¼û+|t1»Þµ½{¤RâÖ6œÚÒ‚èëSKBâãY'yy~”C¬Íxwfgòä!¢‡ö¬ï›K‘Õÿtà߸Â5RE_sÁ(Å‹êVypWN¡ÆÂâkaˆ” µU5–<£2Ù™;СÐcìcîæå\í«œÌ;°•XsGj-ôœ Iä¢'Á°çt­…ÌÊi›v ÔMïž΋ôëëfçÏ&÷êÉ[·„™ýtç–-£G¦X }ûæ§û^#%‰8¼ V@•> #DPÕª5ZFÿ›Ïê£æœú|&ä˜mÅD²È’Ði0#¡Å¬7mžg†–Z^6Ÿ Qœ5 ]‹9v,?6ËrT±ïA@RVxâðeN> stream xœ­WwXT×¶?ãÀœc‰ž(Æ{&–Dcì½%F {EŒŒ€ô¢t¦}fÖÌP„¡#m¤Šì Æò}1ÍrÕïy7ëÍ-{@“{or¿ï}ï{œæãì}ö^¿ßo­õ[2ƪ#“ÉËÖ,>Íòë5 ÛNë^o ƒä0Ȫ`Ô«ÚWp‡Ý¶CËßÌ%AKƒCÂ×G|¹"jåÕ1ž^Þ>ë}ý6úoÚè´s—ó¤)Ó¦ÇϘ9köœ¹óæ/XÌ0c˜uÌXf=³y“ÙÄŒg63'æ-f 3‘qfÞf–2˘ÉÌ6æ}Æqd–3Ó™˜ÌLf%3‹™Í¬fæ0k˜µÌå×K›î4ñ5Qr*–I3»gñ‰å úˆ5$†¿žg#Rãuš Ínmħb«õ͆#Ð 'µeºãƒÆŠl’äéõc޲ åÖ¬ÉkÖóT ³ñ[h†&¸feá–œ‘6òH¡5Y«°‘N‚(ÉͲG¨À¹¨KÑx‰¿~•È—mõX$èþ¬ ï%Y«ØKYà¥$—Ul•þ¢¡‘~ñ‚¶ª÷hGôfQþ¹x¼ 8u¦@*WªX³¾ÃÐípQ[Ü·„µév¡¶›±P”á0ŽQ8F^ß½”W=î¹?Y%M`qüõûO¿Úø)¯ü®èä%ø”»ïð%yC “ÉG<âëì¡k@ì–¯\ $ýÉ<¶ã$¶j¡Teò„Íî‰;÷F†¸zB,p6’&¥Yj–UÑóÖá0¹ˆÁ<ŽžùˆŒ$üÔä 2îñŠ#|¯ $”¬á}À»D}4©º DèÈ©Ýßx¤ô´A]PN`N¸ÀvPs‚‚—O„¯å“d‹ˆ£ÍÒfÙ×CgzšÈxÞ‡Ãö5‡~¸oãø)ÿM¬\wì òQ¶±ÄÁjC®¶HI°›ëÉü-¸ŽR;_^S_Þ܉æUÄ–¼î¼e›ÛÎêÃÑJ›î±Ñ÷Ÿ² :û‹òn+y•"мº{"YÜ8l(Që¹?7ã#h¡Ï£Òž@w—¥™¤!¢LZ. ä3 Œ™]À‰l˜6HàfØ£·lg³ŽêÔ:Ð¥%(g‘¨·Ñh}NTéViwA(8ü{]bqlOÿý¡¹Ú°/‡ôÜÌZe¨Í…ø–´Y”N~†£äÒzÅ›!9P4]a"xô ɶGÍN÷ Ü‘ ÏrӛЩ@O»—øx†9/ýÄù9Ú<8÷\°‘bSÌèVƒ“-²?ΰÔþÙxвä<± õÓÝ¢+kjM­µ‘…:½`JÏ6îb…Ër¥/KÆiÈpÃÍ{x««¥¡Ý$DÁ–‡B«¢8ÊŠ j½Re„`âˆâ4?{edGDK#öÃy¡ÃafÜpæ×ªéÔ½’ï+‹½„õ<í`;Ä’ðæ  `ƒŸ}ãqò„[Dæââ¯ÌÜÊ×µ5¬3ÏóÎ €M½µ-Þ;Þ? Ü| °8´‰b÷”êÔ³X’õéT.î­‘ÉËbÉT2¸Ò} *<4(Œž0ùŸ…)©-Ü•Y:/ÊŠ•KR>«ÐuùŸ ÞnØÛG°þìÓ¥ªA§œC‚¯¯Ã©I¥ög—ä)=£“"ÃWvñMŠ…ÐêÓôù™%ùPÏÕ…—ùE{©]Ï|vüºxˆ"¶žv3ÛfY bÚÉñ¤4‰OLRÇA÷’©«K*‘³§‘×É„§ é²Q5h•{p$ħéö¥ É»#W-_ØYÓÓ¤k‡îàG‡rµš‚!Årг%·ŽYZô‹ ZϺ6xÃ#Ç/$Ȥ¥é@U½ÒƒÅU¿æÓÿ°DÑó”ðõ v¥<•ïmT×ÃÚS›áT^C~s]y Ô€9¾Ò›òãCËÑê:\ð¢S?‘K1ˆ/ÏÒWÝ÷Åþ”$~úLÑšMmÃÈöL‡¢!5V›º'U¾vC”'½ Ýe•þ„Ù{À=26Biƒç)õÏE 1˾Cæ¾"GwZç‰~P`ÿ;ú\c:èÒ…„ä=±ʹ7DW®5µ´úµ/›:΃(„77¨Î“çÿ¡›Ñ6‰Ù-Øù¢ü¹ád9–âG(ÐöÏ7p Êæ~CÞRÒ§%ÅoKYŠtŸ¿§ÀÁ°vÖlXC+gÒv¦!ÛÍ8é»›fŒh‘UÐz$ \ŽÓ¿äC ¡%pJ³sõúÉæ˜ ´!Ùœ¿ùù‰†„\e^vnúÁtF› \XaLEEaQYi|ƒG¼¯Æß[ð¬ú0=˜"5x½Ã;îEžÕÊžê%Õ†›ãR6GÀFnÛ±wѧÜu§1@8!ë'Þ.?]ׯÚ·ÂZGe;qã?o‹uõ Ø:v¼÷±cB¡ò¥‘´ˆç·^ò}Ï­Á‚ï)þ9ÁÿßÍ$¨Ía"Ö˜±F|…Â? wáäáCã¥(ü#ÿ´ü̸É=Ÿø%yW ßü‚þ·½èûK‹©a‡v~£(†ÃPæ]á°VCZVdõ”'Pp¿Ï~œ[Js'&-9N§LsÛL½_ò¹¤ËšÒ”‘¯îò2o)åˆPÂ/Äš» | –¿ïäT|‡©@þ|æ>N“=AFŽþÒ_ù£¾õ;ÜýüÜÝüÚZÍõG²š,£ùuáßT£ï4´Ò+К{ƒ]#·t<µ(ý­Mvö)žÊ¥ÝÓ{-N¢N!„„xÕm/Ü@[¿ÃLbµÞäV lv1'Ý‹,MmJÈÔvF~ܶÝ˼OUãëÉ‚îdD¾´;+{íNŽ^_R*TUw»‘ÜD .F «Wî8ç•3ǜ埭N÷?ÔHJGÙ¹[8¾˜ŒöÎŒñ´W½ô<+© †›pÉyV[Áî¹|ÏgÔ’¦X‹Šì—õ®³ç6©Rt„Sôù:úßHévKdÍË!ò^wWÖ—ÂΖFAQìÄZþ§gò²³>{‘Ðì¢ÄyÃê—øPyZ²&%E«S%f-mdÿ]qGô¢ÁLó¨ãÂŽ8‚5׈y@†CŠ}Bì,4\1”Yæ&mIßxcIêî´ÆÄœM÷~JÈŸ^dþSòîaÒO<”€¾ÌXb4µZÅ´5ëTZ_Zþ\ ¾½w+fM`ÒféÊ5 ƒH®gKÞžè>Ÿ€|» -ù]w4…%£~‹KqÊÝŸp¸Ð«*éþ™>I¹ý[Ç´„WK³¥,Ç´õ¿d˧ÿ7¿ÌËÞÜì6üš›^Î!Bô½…Æ@X[=‚ÖqÿOCßÿ*•>”dêVˆ²ŸgI=Ô:²nY:k€ÖSA‡ß¹úC/¯•PUj2¦gá2^r´þÊâÎæP¨è ¸ç©@ÿ)òÑà”›ò$í upžÛ²¿ë2î‡ c3¤»é~°¦¥¹$ÏÚºgwïðKu’"-–Ñ>>PŽwËùÚTðV¬C×r*–n†S…\O.±R±Æ‡`QÍchìKDŽ29fü'ÿ9sxóßâ|YËwÑÏáX³(;Žã¨sä’†QG¥ OÞ¶/.5i•7G)*Ë>º\YV\tòhqQçq“'8ì7ý±½`ùÜõñeµÍ%Ç[BËý2…ÊÃt®ù:÷MMÑŽK¦*É ²-ah!Ú>F²²«n«¥3”uã'¨47ÉZéo™¥ã†â—üô%ï9Á¤÷¼‡)gÖ•‚ȵÖ¸íð ÙºàŽ#Zã¸;ßþxa×WĶJ8Q|ë4<ä¾ >wИ5KTuáæöòÚ#¦ÄÖÍ™BM]S:-f—ôkü“as¼‡2Æ5\ë£ Ó&ë –‹Ù+F±E™(9Ppë-}N‰ÓøÏÄÅÒ|E¹.+8.âr±g¥µŠN1²‰–)æ.͸M½ð.¦IÚÈ“6âÞÛGhãÌpH^±ìÁ)œgBÆJz¾ -SG]7ŽºƒVYÚÜ}-¤&)·GoOò€µàVœ—bÐ4ÀÅÃÞ8%iawÃÞÒÜtcV†[PÓz¸Ë°tª ÜÔ»”{½|ãvRòw…·‰†’ÃÐÀrÏwN\»¨kÅóÕgwp$ÚÍ¿KFïÐírëUk>7w ]¹ô? •rt”¬yÈ€®¬ŽChs;· LP–œ¢ÙMip“¹²´õtà‰3È{Ià ÑeOnâ8~òÕñ{]a[ˆð yÀ@TUBU’ º¨í½8ðó#¦é‚1”ê9‚Vömš]©>a>½šV›¤L´£á,j¥é Ÿ“ Èä*I«w}¨Ñ-C›­ÉçT ?’E[NF}FÓ‚ŒìÛpâ8Rá8U“FìÈ" Îö1ãªpŠ…[™8³ójï!mÒ4Øo0í9>•XþlãaZø¸'ïžzƒ ^;Ò¦²ç½…m»Ö¹Á4ŽX?\‡, 7Råïtú•dæs^µ«¹Såg>«qÚ¼!À7:^ ý&ðù 1¬>œíWlñû`¾Ç¹Oïv4ìCºm;Íø Ò£p,òðS¬æu¡ª M[—¢Ž ösDð×G˜ª3JK(…õU^¾!;V¶¯ÿîÎ>æ«€yÄc‘WH` àê¶g;¬àȸ?:þPpTßQ.¼³—÷‚èê´*M|Ð'3+ÓMEuÇè(U蟦×dÆÒÀ¦$L_þ¢œáˆ_JšÔï·5´XýNÛI7Þ0a>ÚÔ™egÑîØb™òtØÈõ†+w϶Uç´@%‡<™ D±aÕj—#qåµ5%-uQ¦,¡®ºÕ@9»»6oIVÇG)×ÍHy86RKË ³L8M§Ä ¬æêƒÀ 0è†ù‘½6Oendstream endobj 96 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 200 >> stream xœ½Bÿ CMSSBX10‹‹ù!ùJ‹ ‹ ›÷?¿¼R3oøˆùR‹ ÷¶Ó÷uáæ÷$÷Ÿ÷øw÷Ôʚ걋÷÷Yûm‹^û„g€füêg–°»±•˜®÷›÷÷8û³™s–‹¡‹ÆŸœ‹©ü6÷õ÷u÷÷ ]IP}Uû 7Ÿ ‹ ‹ ‹ ‚J&endstream endobj 97 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1769 >> stream xœ­•kTçÇg˜™*!3©¦œ™rŒ¦ÄÔ( ‚—˜ª¤‰£èr§°Üv¹$n¹¬Àî>»Âr_aY–ë° ×€å ZŒ ž9)m‚95Ml¢ô˜hšw¶/§§˜äKsò¥ói>¼ó¼Ïÿ÷žÿ„« A’$´ÿ-¾‹ok!Û¹×æî¸»Ö{±;=¿zìÚ£ï­"ŸÇ”i¯ff©öfGÇÆ%&ÛD¯ëˆßˆDNø‰@âUb7L„/~Ä£„§|áJèˆÿÑä.þ.ŸPÞÔe×]ÇÝv¸ÕÑ¿¤ÕÌzÆÌôJ:iDÉËF"bÅLSÒ먔ƒ/ CÕ¥8bN‚g .@›ÃîÓØ«ÀMÉü©òÄa·0Šá•L›i:@„qhÓº¯™ßæÃˆ€B™o®_šœ´¼Êãü={2ÁÐÉz8ƒAD×mhH$?‹nݦ†/qJ3s²0^Xè`âu…A|ŽRr§÷ù§wç?Æ+ë„;ÖëWáÏì­>Á?çñn|ƒC&¦ÛTq†Gžô½^¿ðàƒ˜~…?ã"õÝÑkÌÝQÿ]ÛC_ö<$M¡]òµ‘³¨s–’"Q2‡8Ÿû˜ÅîÏzcOüø½ˆF+æÿ‰¥5Åü{Y×# ÁaØŸ(t¥>q¶èbA®5Çz¼N ilTfÄóÁý÷Ô|©Œ£¾¬tÀ@Iž€½˜<(©.7›øò 0ªï?2 À~36ñÑxrWQ•àH7צš-ð>ëh:û9"Í›RL¼Q['­r«Üæ*Ùß'E`#ïO#/;…vJ8ä-bo´OM~°q³ŽÍùv0˜úPuaª{r†ÿ£:Œ RFÇî/xg¦ìߴ쟸äߨ%})=àúNVÏð6‘ÎÒo%¤Â6È2É€¾X\ˆÇP!ó§~kºÅtS^‹N¸ -AéªûdEcØúS§<¤ºÂ&é"i•T”ô,úŒ«²7 _5²"£Ôk ²á8]º™Ò—§BéKJò×ãš5Øõ”X åkÛúÁÊ‹L¦þ ¤C2è!tù“KP]Z›‚Öá¯)טJj¡̦Švq}lèíÆÖ›ïÛÈ37бéY;%=lœ¼ßƒ‘‰] K$°Ûö…‡(5Í- -ï&Àq¡yèœuس—ã¶1 >ª{Év±;ÿ‘yåÚÈà¹F¾ìˆ#aئ ËÇÂ%õæ,­&.œâCÎs>ÉQ‡õžCkЮÚ^/‡—<‰ÏÙPÒ Ù3‹¬Sº°9ƒÉ£zBåadŸöÁãÕw|Ëì™ÑF‹°›AÞÕn"³G[q^þÅ„,|ÈAè4ê¬ÄcÊCÀf`¢½9S;hïlŽAÇ(LB¢úÚ·e4y²ú=…v”Þˆ‚–òC;II«ÑqÎn‚Ư¿Ä`úù§ð*¼æëg…VŽ ¢É\RV¬•¹ë… ÿ½ªh`£7t —…FÆØÈU¢-·vÀ·`ÆÞÆ$ö»L^”õc±ì1!šÖ€¾¦±ðýî.4ý_sµÈ}°ƒhõ<‰Hn ´Àµe7§e¨³ÓS[r[Ö6;y*#¿ZU,#oý!;ÎÉk`N/× )-$WF—-:·´“ãhf‚B±’÷Vb®²\šú+ °ã­QfÞ”¥Õ7)˜Å|Ñ•ÂNðÉ¡“Áµ‘°SÛ}×G4DöÅ=±=E7òz´5–â÷TŽp8ÀþæÍWûk†ó¯•κ •ZÙ¸‡ £XJ³ÑT[Á—U6õUžê™Jº,r»ƒ\®¨FÒ»…øEMlµœáAt§ItmŽrz;·s ótÎr³Óä[Õ‹|Á*Ó«ÔÛtÆ|P± "“>AIw™îËÿ†x]K °œ$‘VSU}Y¥I„F T%X°¯í‹ÀçÉOç)´ï<×®jÊTæ¨2S[s›ÛíM¼¿ÂÕßæþ3p_î+ÁÝ“ þ ü> stream xœUŽ» Ã0 D{MÁ ¢ÄŸ&Hd„´q‘*ë',™ ‚‡Þ{SSÝçØÏ­4È O©t+Æ åF®Æ£­ø¨YÁ«> stream xœµyi@S×Öö‰‘œã„J<Ô{¢ÖÖ¡ÖŠ³­Vq¶ÎŠ32O2O‘I $+ ó SS@@ª¢UëT[µj­­ÓÛZm­tÜÜ÷ývXï÷Þ{ûý¸þ‘pÎÞ{­õ<ÏzÖŽ€êÝ‹¢…«ÖÛO6ÿo„Ö¾–w$YA!ôï]4bôu”;õxteþYä´ xëÂm‹B‡- _±Lº|W¤ÛŠ(÷•Ñ«bT_A_j1‰ŸêM©Ã…‚ÿî¥ö Û{ïèý½ÕF«3¢Y¢'´’þ†‰`®õ×G×w{ß×ýû‡öÇül½Þú—K^ä2èüàiƒ 6j±øÒ C~d—°­ï8½ssè;CïÛ–Ø-µK·3Ú¶ûnؘaúa?w!±ýoýÿVÌ 8Œ”$H¾9vd⨥¼Âº# Lh«‰_®Ôv8ùÑ+ÙÔeV,Ä‚Bž‡=:²Þâ±{£Š  ËÔ4 `‚6e­êhÿwMôÖ0c…V«ÖH£¡VDÇñ‡ê4Òì7@@7h/Ã>8‡U-Jó+ÑôˆË’Õ1ØÀç²È ß´ÂR‘5ß&ÞªEj°A½.!¯KCŇP/ôŒÅzÚYËÈBõêcšJ¨ {ïíÚ{™ IÐJú÷+'/œÏÛ¸žÃqÿòÙͪm á˜âŠýtë`8¹¯bÄ7^Ñx”Ì*€ºœ²Mbݱ…då¢5™lä:ýlÁ‹¡b…ñ½X¤¢ë4Y­$zV?cÓŠm3±Pò8‰}Vzé\c~øè.~‡ëìP.º¡‘ùH:Ëiñ+¥ìS.<€!Bvþ׳¯ca¾d¾ÅâÁ"'eVU µôó–IËmž=FbÍ+dF~²APuÕÜòþÈECƶãxð,Àƒ1ûû¨ðë/HÌáPìĺ‚‹>äpØA8 Ð'ÊVnÕp@ZáZá ëÀ |`£ÔEêì´Kå;&ºÿ@ÈÿÁßgÏ~™^ Œ‰Pz¨B ÖiBÕ${tsQT¤LŸ&—àÙX—£ÏSrAvzcú!ÎDû(€'¸Áµ›ÆüB ý dËŠB‘7þÉo¦»ã5h¯³5ÁhP˜ËAªÈm’ ´u‡·ÔÔñ¡ÉæäKÞ¿>Ì8Tüô$ú‰Åh¶G«ÑÌ_1¹/y¢ŠKÆïŽœÀ¬Æ[ö¢cñ¯¨ mÞ{ NÆïë8M(öSZ½%ÒÅ%KKƒ„dn«ƒwÖ£€ø)^ƒ§ã©Ø•¤» o2¡‰Þ®%ÌhÓ~ Ý*~†æóýÙ‹4cFÆ•,¹‹D|§Ó·b{Õm𠍄cÊú·á8‡Î¡3b[6~ ê÷û/ˆEâ Ïqo‰øÙ\ps‰”2Z\È¢pºúØ‘êcÀ\=;[á‹g:xxéšC$qzPƒŽ±æìåÿÛ$¸däW…üÁŽlVùSS$‡H®ÓQ$ÃR+£( YÕÜA³Èfö¢N»Nœ"$ÛÅd€žãÝDÅHg&JÆ’¨ñ*`ð,‘uGzwÙ¹¼ø…°¾cPN÷`µ©½DhâÐ8´­ÇÑ=ž'ÁCþ>’µ€•ß×E¢spIzlѵ9Óa.`aÔŸm‘!ë×½OàÅ—wçt‚1Rg³÷*"œ¾Ã:Ëâ¥ÿ>‡ü))í5ÙJü¬*Þýü'Ã13z~~ö>bH.CóC5£E,Eƒt°4<>Î?Ä ˜«"õ»|ïÚí–i›‹çŸ1¡º½4â!ÚfDµF!q“í‰óš¨å‘…áI ð|’"»nBêÑÏòügHŒ¨$L4]0³G)¢.ê³"ô!T:a c#©U百[óÃ{„¬ýbûƒ¡âèô=‹zÑXbÆ‘E_ćþ”µ&u«¦ öC+ì·pbí Ìk ID~—¥•†S¨" ” Öï6”ókkª]9ñà³,Εy$ ³Õ„w…éhDïÈÜê˜Ãv~#Cú7$¬×Þ$l†ÇÝ$ô£'BA½©Ð?çö<3Ñïn:Ê츿Mã†"Ì‘€­yNfàg”ÚÔÃ>GÑÆˆÏ‡Š"O´‰5¤Ý……Ì_¹3}N}Å) Té‰ÀÄCJ´ÛÒ1’—¡V—–r hJJºRé véÃ_{<°&!_âWë™í–MyCÞ²‚ÓÃê+š ^öN”C$‡)€ŒRɯB§*!!žS¤%&¥)¼ªÜa7©žµ×² ¾EÁ•R‰øamh•üÛ8’£Ô”¤Ca&þ=‹¾Ìxè[?T¼›tž-î÷È&² %hÝ”žñ‘3o•£2<`øhÍrVK?Òʼ%+hq+îÅIÁŸámõèQœ­ugþxlÇþ[Áñ¯ÝxbØáÕxž‚ݰš†§¢õñî«p»bï—„+¶2#«CÁ&4K'øýFPêÀaÑ»&ü.Z&RÍ9>‘~«i<ðiBÕª+¸SaŽ´C —÷2x\Ìuµòs&´×dÁAÛC!ßÁÿÆ6hònpå&‘¯Â´/˜¾–¨ºIãqЧÿâ©?¥àçièûà:Ô[ðNjl!jÃ…õ‘Z™AÚBò¦ÏGñÃo±ö4“ge¢'g!ô@ˆÆcßÐ/¡§m_º`fZk‡¾ïþËMPL‘à ô\˜Œ&r⨓p°ªúcþÞ­o# ‘Ô¿6ïWaŽl‰ËætGVAßÒvG¦ÍáBÍg¾ENÜ·ºÏJÏQXÎ\.ÓóÃL‚R>NÈOCØœ²âÕ¤SF(ƒT;41]²Q•Q¤LK“½‡³mqoT+/ ÀÕØU4A W jƒ2BÀChé•ôyH— 1ÙfÆiR  ÒsÒs n½»¶-1û²ÿAÙ’£¦‚zó¶R²­‚ÀYÕµmƒÊM~—ƒ25~2α‡jÓòUæ]Ù:²kj‹2!¨g×F(RæÆgÈ󳢦ãTÛ‰H—šOΙÞóF×9Ó`“ڧ룯È÷G6øÛŒ8m²ùœšÌŒ=¿¢ÛßpcºÌü‘]h-g'ÆcBþ†ŠGöOlZnl‚f^ºJ{àqôà;6Ý£Ò­ýÙ=w$'Ã6ÐëÂä2¿´Cr¢¡š|=›¶mfö§åº˜Šª]E~jݵ¤²þHñ)GNyN‘xÓâÇ·(+VÎß¶\˜Ÿ…çÈ&áðþÒV&ÍbÇÒîtÞæ^ô‹–{hv&¡JÉŸ áÇð3Y´ 9dg?vGmg¢Cþ¤@>°vZBïWeF@Ä&&&§à‹¸Í]ùf!âq—c}fRN<$Øz’ÖNÌ«Å1×þnÇLo„]éÍ-ÕÜZL‚|^-DûQ[³oß‘ò SCsa«¡Ê@U()ò&M|,ôÊìxâãcãS嫿ÚÎý5ÉlÛ2í °0GgyCµ\ »ÀIÒUäË Vµ®yŽYÛq¿íëÖ*w]]¡1©+ Z”å]}ZªM)€B0T×ýö»±¶Ù²‚X¾¤¤Ý!æ)¡F}Rc m½IUÓ@´&¢š±Ÿ`ú]òné±Y»‰ÍÀ¢ËÝ>ËBøÎ§FZ­ÎÞSÙʈD¶l½6¼ÇLŽED9ç‚«Sl41SE,r§¡ÔyEM'¿È.‡CÐZîUá®]îà­\ä¼+ÀËo#8ƒOyx#ñWZ(!ܲ"Zé¡ã¹.­üÞÜ0Q&’½Gìõ"‚».À×Ð{aÏO\I䣘L–ô$Nç_Tš/™m›¡ä>/%rq_ÈO%´­8L]oÔ"œ4Ò®ú˜TE1d0IT)SÞÇ*[,D†´\e:aaE#”r]Šy[->'±îñE:¶©ñq~òx©cð’ DvJLéÙ(b*¢Š""¥ñÎ->GÏ7Ÿ:UÎYókI‡©{Òh4;±ÍOâŒæq¦ bÑÌ»-ÇsΫ|ê9w…<â™Ð’Ȫ ]qÍ7óš>Ń?Âĉ_á!ÏǸ«EýssAAN®ä‚&}–à Œ˜ß4õš.±~=®›W#«øò;B$ïÏ&äp žûÆ‹(èpcÓŽhê Žôø¿1ÐZ)áÔ4’ÿ½WF|Á«]h³Óóªc€­ºóЍ‡UÚo,³Ä×Ðø6«øòfâ¹¢PUJ4î¤7í«;A„¢e·É9/†œ3ú­©nD?»JˆvwLa“òUê(²Ñ§Õ¢BЩ Ue µ ¢˜ÎÒ¿¨D1‘ªV¥Ëù‰ÏlsÔª,`ö@V©„?BWBëK‚P_Õ6¥øÁ6o¨_‚Sˆ¤sÝ…¹@=Z`°!slÒÅ0 èz£ 6¿oÜ ÌË\<ÜS‚“v±¨VdЂþùÆg„}ÌGcð` ÁܰWˆ¡·>„„¥¹ÉšÔ$¥u1xwIâwGû/#î   À˹&Æß<˜…Ï‘5êûû±›õqǶTq›ªÖÁj"n®¢öOße‚é1øûþ’cÇïk<¨•|)z€zÃô‹¶Ž—tÝÿX8$è2†BÔë;öÿßÕÏLpYãÅ —o“Òº#Bj õ=n@m&2!#²š÷ò犡â×(µ³(Ÿ†2È7hs5Õ æê†ß[þ1'yÏ>+¿yn2?cÑ}<–Ã_ÿüßW =f Ñ´øïEÄúÔïÜç° >f¯fŸ/ä5ÀÜ,¾[• yñ2HJQIä‹|£Ã`$‹{Û6ú¶:ÇR‚Ë艴Û\o_|q¨ø)Z̯fñHs€_åȉêzÒT«>¡)'ÚQß“¦åiMñ¯éü>¶6L 1„šªŒúZÒ>Ú¤¦ŽÉU6'+B/ o.l" ¹Š~ãmY<Ä´ªÐ󜶻|âìMô‰ÏrÎäÔrçuÏjh‡eJQ©R8ßõÕîÍSÈ0$œ9uÔ¬ã n†HòÒŽ%\ŽaÄO+SjRª¼õ¡¹DN˜E[Î š—qd·î„₪A•› ŠžIÒÉ2If©5yY¨µÚºã¦|ÑîsûÔK"¾ /–ß©3 iÇE?òá–¬x[ F”ýe…“:f³He¹¤Ùƒ¦Ö¡ „À2W©OD0;!n4ç jÖþ‡É¿—ÐlÁ„=öì5·2‚±=%éyÐ¥@(ôÛƒ§[&ð.'ˆB[í…íoˆRG´«j`¿j¿òO¢¼¤/|qcTˈ¶‹ŠI‹"ÏU©¿Ô艡«VUw=ç Rð:ŽÅh©­J“šILRú•3¹Ùçµhôf£¤ˆ‡`b‰WiâºT¾T•+ƒxˆŒK –x¶¶å#þ‘II1C»ÜU‡Éì®bY^•®Ì$dÍi¨°Üñ.µTÉUãÞõÎ)ÐC¾a±-–t:àé¼L¥%ö@û/Ÿ¿é©ùÞÈ©³ÃV›¤M,€= ÉJ/@³ù [ôqgfׇv]Ÿ2Ý_˜ úaƒù2 ­|bæîQtÃΊw—à²_J^Hc›¤Xù;ñ=•R qÃq_d%zþ`ÿ¹š†Äç®”C,ãW_ZVVTó¥c‹Ã$Üo pXô¶àŸonÐmx£~j¥·y€úH f—ã¢f/„7{øF‡„†‡4ågfçr•Z­Š[¼ÚÅI"—“S¥1)iù·n!š³FКӂMȧ¡lÖЙ&5ïí‚íBäxœýß‚„jx®}j‹ÔÙ|k¢þæó8òØŠ˜JŸÈ¸D¹œS)Í)a”°'½6ëÛóç$ùæÑ_Ëd¥¦§ÊfÍÃ}×”;¨/©¬ ʯ:l ‚¦{(ûžwEWY¸zÛ÷ÚŽŸg¹ÁXê>ÉIê\øæ§Û7Ï;ðñÕÈ#p¾Óü©öRÆM¸Å`|•õ„µÆèŸegà | àbö‰RÔïzŽ‘˜Î‹Ñ¥ãr7À36Ia¾áÄg:wÙAF‹"¤àûXYBG½~A+ hè=›£Ï·›PÔCâZùh‹úÍ~©í®±¾>ÚLëäu)µ¤w¼ü¸ S‘‘¢R‚"U™´-rxÀŽ,'}²VI2Í$Br¬¡£!yO–F›™Îå5ž¸m`Ü‘]ä­ñ„­Œø5ékÂÝÂ=½Cwq\<æK-‘&âGêŠåå1F¿8ß”Ó/M@½%â?óÛÏH,±˜]vïñ~R§GÈóÉg†Š;‘-ºÃ–ÓÄ j8VÞ"ßiàv{€s@ùnCQMNÓ—Ïgá!x8ßB%â×X‡˜EO‘ð§ÿ"üŒ…œ¸s)xo‰ÜΠ~ø:»ÏÈ £[á6”07k_<*: «L\‰7l!nn;lñ \³ƒ¸ vôüW7'?=ò!|;›c樞Ái"l Ê‚´R&Lä‡Ý‰¿Ðåœ/ÈÏʼ $"Yì,úÙãá~X9> ‡r¹c4|¡ý"ûDzÙžÏu}} “˜FD#Žš¿øšÉï`wÔ¤í…bæìW-W®^ؼp½çö5¾œa7ûmã‘6¸È<™rjòØ&Ekœ[œ¸¼„Æ0#ñp/×Mß0nبߖ½BV?Ýû£AvÈ«…‹ÒÇæ®ØÏŒucÑÀ¹UQ­°ÚÎaþæÙÓž»wºöÂ÷­™©jxr¿ŒcNÿgOç#3Z„è ëOãøww¬‹Ù¨ÙÂÌ®.6…Jc“<—pÿ±dèüIö‘ÓßLqÜíìʹ;G¸Á|þq<ê͉ÿ8 Í-e§<èS6v@ÀùèF8 f™jÕ7VÝWPOìWÝÎbç|ÿô•°ƒ™µsÂT®KØÑüvÜnó =Šû¯DH­ÿ·äŠŸFu Ybæ®pHI&PUXt=ïÛÛˆ©V^ÛØÓ24 VsYêýAÈ;š¿ö M¤M3¢‡Ÿ·ú§³{ƒïÞ k]¼ÒR¹ Æ !ÀLÄÌfLIþ{6òþËqךÇ=+úÙÝ–¯ŽTEšSÑ1ÊH³ –«Ã*“ˆN"ó2¦ik®oþ} _èßúÛPÔÿ›&endstream endobj 100 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 4766 >> stream xœ­XyX”×½žqtüL(‰À¨Sïý¾&±“˜Öƺ%&q!FS· jÙEÖadgfa¶o¾ßì+ 0ÃÈ&# È"ˆ— ¸Ô%±1Õ6{›4iÒÛf;ƒ}ž{´M[û<¦·ð<ðœ3缿÷ý½ïïp9S§p¸\îô5·­_ôãЯs Ø”»Á±íÓ ŒaSkÿK(Œ@«f~üØðãœÐW´(xmLÁk…E¯—lHI-OÛ(Iß“·7sKVî›yñ Ÿ_ô“ÿt‡ˉãÌãlæü3Ÿ³•ó4gg;gçMN<çYÎjÎÎNÎZÎóœ]œÎkœuœEœ×9ë9/p6p6r–r6q–qÂ9q"8‘œ(Ž€3‹3—³Ÿ•3•ÓÏ ãÒS^žÒųL ›úÞ´Ó~Á?>=kú"iw†ù‘U4=* ûiØçßÛþ½?„W<öß½ûx÷Ì×fD¼ùRTtTR”<Š ÍJžýÔìwæÌ ÒáÁ3 p¡Ÿ‹öŽ¢£<$Ak¿µÁâ¯>†º5ï]âˆ1±dcûhe%Ë¢« „HjÝ;ôû´ÀâTZú ©‹l¢„ñÔ49›í”ïD/š #Äo¶ùw.ß[&#ÕDzڒa/”IóÊÒdq '”N°T ~ YÕ{,D3ˆRºL'¥^eOè5Œh¡Â^ás×Ù¼62ôìâ}Ú ©Ðµ]&C9t#öÍznâVÁØK¼ß±QU®ŠNgˆ*9”©-ZÕL­p:è ‡=e­¯[ •;Àê´ÚšÍµÔ!4ß&iJ} „ø<¢h´à›Øc±;“÷f‰(ùH¢»à!P×€TO)Ø;ÎÝ8Ä€sKNŠ˜}Tô%/HŽÙÄfåm»É`2Ú©ð1ƸîØëðЫת,jR”ÉPK¡³|´mEY¨=µâϬ€b/ò'þko $4èu•ÔYŽN›¡ˆÏø¿¾‘ÈÎŽ±±Kž¦vnY›ò"óø¹`²YMNƒâ  ³ÔÞÁÛÐÅ{É£ÉÂ%ZÁ0EUäf–ÌÜÀ¾þ­µWPë´;üË6©XÍT¨Dèõ  ¹¬.“±ÞLžBâеÀ(tËA'ºDC–­-+^Ä þ(bìí¡C ÑL>â4å­ëet!Åh™ªÐ..0×ÌõFr?Š15k „ã{ù%”ËlàUj]Å~¼}&á_a ò}`0ØöŒíÑÄØ¾ÜÅCWЯð/:*Ä/Ò«ݽ«bÖz-€™ °CØËº\K–¯•`â¯ä_@îû€ÍàãÏ}­.£‹(F:íXíz¬\`¢z ÏÔƒp”‰ÀáÆ"¨)¥ä¯{µŒf|Náû&zþò°?âúmõiñöîk³#ï"@ ‚#Ê%l'rÄ/Î+Þl9.%[ Œ„WV]R”/IÜ4²÷ôL7 ¼³²>ÕAF~oÝkïÿ~cÃå›-]Êt™£S‰AI(¬’ƺfwÿ`êáõìŒÔgãÉÈ»ðòÅÊV Žnã%  5>¬Ä³ð£Q´h”tç ŒVÌHáRyJóÔ"•ž\ÍhËA_%–å‹ò’€H¬:Ò>Úþ»¦Ë”½ÁR^b8;ü|&­™TŒ±ÆLÚ-ŸŽárÑû •âÊtj_̾UO,<ÑÑÖÖHÖoï×x¡ š<ún÷fÐDm¦XCVn-ûYû ¥æ^m‚É÷ŽúãÑšÓhÑ1^P tÊ¢¢‚¢"™MmU“ûL9ØVów³fvúvÅpûÈÁ;-ï’–Z«ç!O™»¤4v?¾ :ƒ^DiÆÎâ/ö_ü~ï#?5iÔs}zâ\F¯ŒÎŽ|ýùŒÀµ³«¤ó¡±»Œš¾%•u––!#úËrjsæ²<öö9vþ’Á˜÷¨È÷Á‘†žcÄIdìf7«r6®ØÂݪ3mÃ4£¾jîÅQ¦)>EÏhõš¿ÖeôqÑô·‘ø[$˜4"„­dšŒVÉeB…j†Œj%MË€!£Ç)†V¦ÂáÒ¾u×ÐT4=ƒžÙ’œ,’d7¼wÄÑyñ)[#=¾=ÝݲÖð`9›â9qsМçSø#þx[4ê9=;òk4Ö,ØÃ._•”Ä®Ên‹»… XÜ-PK4H]åòtÍÖøÞ¬S_~ôÅ›Èσ¤ÁjÄ2~[G§EþA¤N‹›ûÿUh¬®&&ðCÝ7&ÃXÊm^p]ð{‚ ¦‡žº¤û[ýÝÇ’»Þ¸ŸÍ¢Ï¬ÿ-Šúà=•K¥c¥Š\µð': Û FN´|Õß)uŠ  hF§×ÜãªØ^Ädå_AÚnR!©  .™†¼7ÂE°ƒ‡ßx’}j>³hhɧ&êÅ;‡»¶Êêô£e_˜œ@ôìg=Á.‡l*aSüÞ›Á²Zø«?·à:‡Ã\οá×9ï±v%¿æ—¦zÏU{—ëÄ!|Þ}µ4O[Y¥Dq½²¶©É×ÙŸº?uA;+KM–°S¦­ѹƒé¡ÎñWÏoT¦jJ„ª,Yü^PB™Iái³Ô4‚ð—;¥¥™‰ý%]_ö¢ŒCxhšˆÎÝÍè<Îë³~ËC—ÐúE ¹F3n­»Àr)öăóïØ:–Ë€ÀqÈ8ÖÈ¿z|ߥ ö$Q™é e±8™Gðq90Lî÷?ñÃýØ!NÜ_žùúè„ d©áGo¸ÁrÄíø/8+äûmv£ />‡…ÝóÛ·Sy¢„"<´Íç£ØJ<1º|®7^¹ÂÎ$Ùº‡¦Cnu‡ÿ5.¢ÚiˆÃï{Kº¦’®ªÜJ)vë*¡ŒX5šsþVÛ×v›Þ*“1Z9MJ¶æåä‘G·l65šš)Ó~Ëh€Ó™};êq°ž|¬@Â_G ¨ÓGO¥üfvdÝBO ¾…’Hü,FIUihi®n¯î¢. WœpÕ¼ÂS{š2f± ´3:G{óï'ŒN[T¨©Ë¨¼e²l9þVîÑa½é©o}ÒŽž1“‘ÿ£  šJí•%âÒüŸªÆ×ê=@†#L”1A÷“³ß‘"3ÇqkÒ–B…ðÍCCݾ–¦j²®³æ°¡ëh5 ¥Iu$¦,%„k|8ê7Œ=à¢=cOóÆŠƒ—=—:]]&»ÁØÏz‡‚,1]ymMäuœëv°3T-Ó¨Æþ(S”êÔlßxéœÁ†im' ΚÐ|¢šÌ€4zdA¦);´TŠúøäÃÆª#uv|ÜXfÐÖ‚Ð ƒ eläo/H›FÑ›ÿˆt Œî†Ãý#W€„bµH_Em`«ÿéa§-ž\#ü§Eÿ¾4nmöíŽIHJÊ#UW⽉ ;³³~þx…º+¹Wƒô»Ñ¼»Šà%AǹÆÚ!³Ó`v€“0€SNÁ>ºr09÷g&…ƒ±QuL‡w5¹¶J£`­8SŒa¢‡AÕ{Ñ@ØÝàs¨Œ*Ò錉-rC[„dƒ5çì3k*Œ”AgÚ vg½FÉVŽ¿Š÷©d˜¦Káýb>p\ÌP¨Öñ¿JŒ:œgpαØ=¨5süãZChê@ˆùÎìÆPìiî‡ÈÊCo£Xp¸t­V?˜‰ÐDK²ñüRЃN¦×hËB/v¨ÇÂ8_sÑ4Äå¡‚ó¿´!?';/{_½¤¹#ÐÞzö‚@0?€¸>n0qLp_8vY£a˜ 9ùò¼µˆÖ†Ä#!än0{ŽY;’ì#ã"UŽJ¹„ªÉÙfªLýpé#]hòLJ©ø2d†b“Æ5`5: æPŠ)¾j …/t3wy ó£§Þá¡ç~)þðZo =ç£s€š¾òäJ6z9›¸¡Ôšf©"˜ ž¹FìöÖúCm8w¶–6IšËÅ=€?k­vÝË> stream xœX\TWö~ÃÀ›'¢(ã0ù¿·Ñ¨‰]£®c×,QÄ® (½ÉЙ@ªp"f¨C!+–ˆe°ÄÁ¶q£ITMb¢fÍžg.Ùýߡ͸q ?øÁ›w¹÷Üó}ç;ß½"ÊÜŒ‰D’Å+§N1üÉ'ãHáÀKG ••Y‰‘•yÑ›#ºl y(XZ6„2|Í[°(pñî%AKeË‚C> u ßá¶"rç®Uîž^NÞk}œ}×ùùÛ2~¶‰“&O™:í½è·fœóöÜæ½ó.E¤>¦FQ«©·©5ÔhʉC­¥ÆRÎÔ:ê]j=5ŽÚ@m¤Q›¨ÅÔDj3µ„ZJM¦–QRQÔ{”#5ZNÍ VP3©•Ô*j 5—²¢Qó¨Á”55„JÙPRjåJ™Qö”˜zƒ² þâ(ž@YRóÉŽ)s*’úU j6ãÌrÌ‹Äzó™æÕ ,JèQt}O2WrÙÎ<°~€Örše²e×@ÿ¬Æ’ R~{ðë ÖjkbÐ wÙ¸f¥Ê 9Šsǃº4vJ‚Sb÷ hÆ¿ sÏé’ T[Ž<ùò¿YÀLº|”…g8òó¯@%üsº¸ Õæ'íÙÇ'¦‡"bðb!”UÑW°ÞÛÑÝ‹B»ÎYgóDÎz[é0GÆÖ£ÂÜ"Z.#U¡þ(nw5>Á{t™·N†ä¼+,¥¥GŸÞj>u¦ ðc‡ï’t«6Œ›h:NA?Ûxx.'ýâ#äâÁô¬¦ÍwzPè·å˜.ga(ýMÙJ7_‡qüÛ4¬ d/—9Ú™›«îa1‡Ãheò÷«DE|u—’–¾Øm\* ;ïè·\™SÊ;à<K! 8ú›ÚE.›w­žÎ“…uð…NtN•z±à ~dÅI?csl>é<K˜f`öÃ`Ãáx»påíÇß]¹rýÆeÇ)“V.Xh˜"V'dëD-z¸vQ,DwØ"Té™´'!‰KIF)Ñ2í6õF’p–Ì;;âå@~Ãp`îw~ÛŒbãBP@ Ÿðîœ`7ÄL™ñ+ŒƒwüÚyñì¶9|zTš¼1H£6,†e:˜¬ƒk½@e’LÝ…9PÌ^8æÒ­ó‹¦_ê¸ô¯‡'8<ÆüÐŽÃqõˆÑ“@ ÖÓ~zk‹K¤Ÿ7/}R“Ràþ ¬]Úk5¥NtO%zñEØÞ‘…|Y—2”î7lŸ`LŸã°=%]ÇYAù£,Ú°=fð€5Ø‹Mvr«;uå$ûΟØRTæí…¢Ü¹Ý5nUN$gæ£'`)òý80»v¬©\ÃcßÍ…Œ`^A0‡÷éÂJh0 t3½ €uÚ<{öBÇŽou迼}tž×C®P¸v'ÌVT¿•$í·':Öß¹ÀÓ Y9õ|§¤'‚°pnVK¤] ¶7$o<€ÊJ¹Ç½¯ån¶WHYOG Ðp¸›’ºÄýÞ\×Za ¤aÖZÓ²‚‰zXöÀVzd°ŠýþÂ0ˆS‡W"¦L]T­ŽùtÖÆå‘+œyéz¦ÂftÿNïâö9Æ'(  !Ž«ø¾EÏõð&Ù£惖…7éׯþ&ø@úkbjÌHC—ÒÇÙIÆDo ûêÆæ†bt~:[é38ÙlHFxºl_@Ƈy親¾î‡¯ üƒÒ9UTZT]/…õCu'+R8W+Š ¿2Ûsò‹¨GJ^ú¸5þËèõ#<<|¦l]›{GÆ%•$ç!Æ€?N"G²Úœ"US×êy&EK¨=­þ«¼ôúf5¾û˜žÈ®é~Q‹ ùžFò hfÃdzîÑý ÏžÞ#R•dñ^zü5Ï›·îî,A/ŸÔ°(.u¥ÓžÄÌC§+y=Ѓá¬ѨJ“¹1ªÄ.Ø \^}+î]¬²K)3>Á@ã(Ñ(/&3AÛômOò ¤êSêø­žUùjP bnÒE•¨®6)y¸GwÃúŠ|{‘ž:'Æw.j¨ç \òÇ9ôx}ðMNqÚߤeúë"H:OT™2¡_³‘ï@u)1eòÜl2Ž2Dž|nëDÂn±°ˆàRk’œÆ ki,·±n[h_ÑŸ°Z$øqž·i})*G¹ †8“5°Pb¨Hˆ Û +hH6‚Q$Q":2˜Ì_ŽJùVz>e‘J'WE‹9yio®ÚC¨º7a'æ’ÙTzœ²híi©!(¢ÿß5¨–¿ˆ;3BÒ-Ⱦ¥ç”è*ª Ò˽oCŸU‚òPJ/Ê(cúàšª{ª³9«ßÞ + da‚Y=[æw"µ1Ú2¢ )vìÙ—σŸäúº¯ñÛÛG£EþyE¡6§IÅ¡l•JV ÊG9ˆùËi¿%¼ô8^º[o?bÙ%Ççœ4¬ µg¯cb‰¸üYBÜAØ®HÏ(˜•n>i½ß£3ø>="ÎÂ[ - c†w,Zè‚ê>œzq(CÕüÂ1óŸYTõ†×ý&¨·¡·Ð`‰ßÁCð ‹ÆOa@ZaÈ¿ÖØÚ"0´âŒkìì%±@ýLA‡ ŽädW&ŽÂˆŽ©+9iëŽC¤­½aÒÕx©b r‰ôöcð&ó›’?´B#ƒEzH$$^FHÜf²ç™Ff5u)=ŒO‚U__ L#’FúB¢Äо"tÂèðƒÿÂäÅØ;Ú#12ÁÏ>•N*Ó$”N‚»Ê×ÓºŽ†‘øeÆ”‚RíQŠlv´,ÀÙ3E‘ŠTû²Q>SY"Û´ãÀÎÖ§GÁ.7ƒë÷07õÜ)<@ÄjP¢|OJx—±u!bf.îøî„$ð†æÇ«¼J•ˆ©Ð×Ü…\ð‚ñ›ïa«ïGƒ ð~*æûH{­žƒ}ðüv’õDÊÎTd„Ì׈Ì4ZÚZããV´ý ,ßÝÀ¿÷+A© }Z­­aÀ×|‰d­Ë¬yK>¾ÞùcÇ•ŽË­k(=nƒ°618 7ؘEúnÄ|h"«áìúÕD…@ +ºöæ{¥V!ûÚ¼ôf^Ȭ”ôxËT~S{ÛØ›a˜NtVDÏçÂZVSŠš€^þŽŽKìÊàgc€»ãßV¿7"ݸ..-@ NÊï3ª‹lÁÍ g;q¦²œ·™¾*ƒ¡„r+ôOˆ!ÓÐ…› >ø8}çsTË%çìjT—i/¾äïÏÛ6[?ÖØ’žáö1&rZa”Ó1†èqäEXxîìEØvѦæ|„¡|r~Í [éßcA KØu;ŽŸ9wäÈéÏ>ݺÞÉÕu?Õ‹MOiiEÌ£›7:kãj¢´¼&¯"#_•¹»Qw“ óák86|d82p°ê5"¡ü'“ÿá\Bw{ùM½Fʆtxý½š0_Sˆ`Ü Y½e³Ëš)übœ}Ù«M¥:tˆ¹?ÿ¶äðÒÿ­¹ûÐÒ“wˆ©Eõea(í@ŽÈ¿Ô·Ø_+?€˜KW›ëÉ™€˜ÿT>>Å#*;s eÇ•s15!en?»î>µ÷§ËH|¡]ÁöxÆ‘&|±Àíx‰‰;aäÏHZúLH1׆–††–…jµeeZ®ï›S²#Ͻ·?Õzâ:XNôËäÒCsÕ½ìzÃ'J¤­‡Ž*/ˆrä°Rѧ·_ô_‡$_ô4·è]œâ@`‰b¤w}‘¿28Ô@Ðo5aÂbüøX_º®¶¹&Øáð«¶ÒÀQÈduÞêŽÕò4”u~IaqLNŠŠ—ØTÔ»¼¬ü,TÊd š²8­JuÕØç ä rH â0uI™“‚}xt¤""71?ÑjL­ŽIˆNDáöÉ( …ƒ!7R‚RP€}òih@ 95©WSª hÌÒ½EЬ?~9ˆ5fÚöIˆóå_.ñËÜs€&¼eÀá®>è€yä¬ÞAÀ„ FÒy¨±Ñ Åðx$Œ¢óP£—òŠáð(!ÀyV[l†ÍÇv_­zŽmÁ ÌŸÂ LôÂÙìŽ` ïÀýÏ·nv¼‹Çâw±å=mS¬{NI"y¸Ü{‘“ĹÏÜ‘"O KAŒ¬$©°ôPfó®kΉ±WeQžÒ{óCÄàôm¨Ñ‹??ÏÆÅ'&!%c¸pãàQO«z/"9G_8õãíÃ-—ÚŽ]F_2`5æ6Œ-çΞé¡-Ö”kó’ò㲸ÂcÇëÎ"æÞÛÞ[ºyƒsÏ=¤]4Üéü¸vëw9"ˆáÛvP{}ÆÜZô9–`«¥[–ùT*Õ†É ÷ïMçêꮎE×Nzºø+¼v‡ò¾A²Ï§dBŒôÜÜ1úçS­YµvÅ”órñûöee"5S¡–…„*|§=YC´Öö›G9ét}ë‡ZCý 1`åxÅæüb+ý†œöÿÂ)Šä±‰I‰ œ`\IÎñ9ÑyÑùáo´ÊC¢Â¡(’‘Ê‹r3÷efqµÚª¢´Ÿôðü˜ühuØT´EåÅêš2TÒÝÏŸ~­Þ"¨y=á=ã–ç–¼Þ{žœæÂ©ÜЮ47UPÊGQzvZKÚgª+ªÏT§3΢3LWÞ¿i䦃m$¡zgÛá®à B»håѶÓm'þzçÜ– N+]ñõc¿¬>ÚŠÎ1÷fÞÁ±ÕŸçÎq:¶é¯Aœô—aËW/1îñ{0l=|rÛñÂB 7׳³Úôºó—¾{tnŪekgu×Ò]8.ú'}‘úáÞâRwþI —ÙôãÞÙÑä„›îš]íTŠô0-ªDûJTÅ 8Áöÿ<¢§üÀÁX‚‚ùk_0}]^ÐÝúœ¿n×]PÛœ¿¼¼óÝÏ· ó»ŽA {5ú° Úˆ6ºl]ˬ9‹—L·2ũ̌ýÙ¨œÑ‡Çy&o›u~0±œ‡ÁçÔÕ¢Ê"®YƒKOÝG¨5ðg<ºš‘þã ì’4$ŸTmÜŸƒ¢b.ª5yM_8ßÀ–û¹¦nwã‡drÎ]‚Í¢—ÏG Qp&¦`®Óaî´ýAt 8ÑҾ߰ï6àªîQ§Õ‚œÍÍÊÏ&=¡<"O·75NÉá{xg\bt<аGÑÙ±ûà>v·+ˆKO%%QTšW^J>Íâq 8XàÙÐq¯CÔ,8‹…•ð”Ík bçAÎq¤K+=ˆØ5ÄùžÀ4‘7>üŽñ!ošHë{5'¨bs2 ñ üøÜ=Yø>¸Û)söªâ#ˆ ‰ Ÿ’nÔ‚0ù‰Mè2¤4¦(']•S`€f¶æe0aýBÃMÚ:&dDæá!_o{æèi3ð0⻢ܬ TÈd'©ƒðvl‡sðÀcS7qgÝ^KޱUûÔÙ¼q²ƒDø^ÀÁÀmßz\sA[0bd‰áñŠÜ„}{y˜…E…xqÝc=0ߘ¢ 8!Ÿ^YÛÁr¸Áœ¥yd Õde‰¬"+Šú'àjæendstream endobj 102 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 913 >> stream xœ-oLuÇï(+?YS6’&6&w*˦ÉY–H¦ÄEa S‰Ó¸fȈˆåO+t¸âúÛ^{…ÞÝsmiéѺ֦Øvd˜EpÙæLu›‘¹ðƳ¨[¢‰‹’ßÕ‹‰tñûêyóýäó|I¢ºŠ I²¦¥½ýØÁÆÊ©O1”+¿¼4*ÐTÏüÓX¿±û˺µ]D%ê“Ã#=ï>G‡‰×‰D ÑJÔ5Û ¢š¬'oU5W]VíS•9myŠe²HÊù]îä&ù0ˆzˆ$S«aI”DH¢¸8ªº¹wà ´‡ÎÀš†1Ø ¥ˆ÷ƒk•9¥_±¹™· §FOrz·à°#¼ êÌ‡Š°Ÿr‹•f$iÉ+ò´O Bf¦g≘xô—?þTØ0# Àëµ;Fð àDž)Sy¸ÊÃ,|ÍÍV(Ñ8¤â^`é6‘9WŒ÷ÚpãHé»ÛãsùBv9[ %Ä@ ‰ ¹©!0sƒÐ½¡þ‡ön°ù'¸¨@Ç„"§ÁŸYÒÊ ŠxF>!ågï¨.)Zkâýoò0`g'“t Û"ó°ÀÍUP HOyÁÕÑX|7Egé„%?pFx7Þ‹÷ÝãÛ#ýF3í½ÚýQtÝès8Lî×€C^ ‚’(f"TòûôÚ" ä9¶w„cNú&£‹ærùóÓŸ Ñ$ •ìÀñãf¥ÆÑK›Žvšûsÿ B0§µø_&#닸%MÞ¼¡Â=òÝ}uZzèæ ©ñ“iˆ ¤Grr§…eTí8 ¶yÁ4}WÝ¢,œà@'–{¯>¸Ž÷NJ,|ÇŒSÝ « ÐYob>Œ†“´V~‘©¬„ûVÉÏK˜¹£Âlùˆ®²õÈK,ÿ>Å Œ°ÍòÄ`z-è÷ú}¦ñ³ÔaåOG`ôû¯´oâZ\‡ŸÆ{~5l<ßÕc¢l/è"ƦÖo]šþÐbnè•ÿ?6·uõ™Ì¹Í¤fnl´2¼pw%C^ÜÄ–{*ùqy—n\àr~È;Á¬ç™T!—]Y?µÔª<¦è•剃_5ÿ…~ÚŠGÆ¢cã<ÏŽQÍO)$x½:¼^º˜þ}áºxýÚg×`–Ý熑_€-òç-~óŠ®`ÍZ,V«Å’µ ÙlÒRµÕMiÍ# ©ÍNÐÔÄ–¾¶endstream endobj 103 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 5404 >> stream xœ}Xy\SWöïñ*T[âƒD÷\«èt\ê‚û¾¡" Ô½Å\eGBBBndkT¨;‡  ußZw-¶ŽÚÚÖ±Ó™igjÕž×Ïeæó» b⌿ñÃÇ?nλ÷Üs¾ç{¾çúQ(??¿nQ‰[V§nŸ¿më¼wc×mH]°zs¢{]ÈÅQ¿-þ­/­öCÁþ(8 ºgσ!`¤]¯¿E¹ÿMš²uɶiIÉ3R¶ïH“™¾*cuæšùk£Ö-X½!&!6qá¢M›ßß²xÐò߯|÷C‡ /wÄÈQ£#ÆŒí'LNQ}¨Ô*šêGÅP±Ô;ÔBjG½O ¢Sƒ©%ÔTj)5ZFM§þ@Í †P3©¡Ô,j5›N͡ޣ"©ÔHj5ŸMEQT5žz“šHu¡ºRoS!”„êF}HqT(FI)ÕêAÑTÅSoP©É$T•êàgóû¦Sn§6ÿŒ€ €lzý3š‘3·Ø^ì‘7z¿aêܽsiÐA[‚î‡W¿É¼©ë2¡ËÕ®óºÚÞÚñÖWo/~ÛòöŸCŒ!¿H$É1É_»uîÞÍÙí[n!÷(4:ô`Øà°º°gÒ-Òg²?t§ûÔîòî­=úŠ?vD.à‚—Ÿ˜Ñ\ @ObÒåÊì<“¦\€¡ŒÓn-³«‹³„õÌ±ŠÆúüÌàÚ¶Tz³{)GîYÌT9^|0žùÐ`wqXÎÀDh¡Ë˜ö¹’\!¢îh˜ä&XÄ‘ÜdïžµÌtüˆ^Ù±P!@˜×…˜3`¤%õ÷ңUªée9–t”†H[¨ZŒ‘4ÑÇ??¯3‰äS“Þ¬7"«ìÆâ¦ñQk2æNã=äò¡àâ r‰/ÃþÞ½Z¼¯Ä°’>úŠEF‡E¡8«1¢³||ðq?’õ°‚ñFz¾…Ôëe–;@Ù.ÑÏåþbH£¿ØCœÆá~¸'ÅBß/§€ô‡žÀð|R+î$(Wsß=3Ø¿>ïÒ·@ƒÿsè,´ïdnØè N$Ôâ×b1·¾yQõ4E&Ç-[?37*+BªÍ)ÌAÙ,þ~t¾õùÓ—ù½Õ& ²±fµQ‘_P˜ŸÏÏš›<±ïLþòIiQ¹¡L(»]AðtB²ft2sÏvs~õz¤-X'5*K´Fä@V«¡²¤ú} *b%C-*£"W©Ì,pGG¹`ˆ þäÃqâá°“€á÷ÞМap§¶J:Î'Xq$œ–r¬LasŠÍ9±å.’A/À› $ÒŸg\ÃÔ¤…I3gó’%s–ûöÒ¢q½û†cfÔ‚s÷Ÿ=ý há?NF¿+î‡GܦkKLB,î»á`,ðù¬_ï~vàÚ§B.¦Ã}Pמ4IZ#þb%}Æ›êß3’%x~÷Ý¥Ec{÷„™‘ ÎÝûõéÀí%ízè|F²¼j8èÏ(>ÐÉé|“ÊRj±Tø}¦/&X-’™U¦S~@ãþL¬£¡…I ÅþtÛožaú“ºŒó.ˆï3µ0‚ä¡Ü{*wzöLÁA4¾þ²*7»B$§á1If™Ì\ÅNÏ·w<%9˜Ép/˜5eÜt_¾Ôž_’#àYÌ1H¦%½~†°†=Í=v£ EÕv£ªHgDl©Ãa7+í9¥BzE–)-Fï'á€Q,9/«1Å)6$pÆ6ƒ¶%L2:íåtZ ²ùf•¹Ôl©,æ 6Zrx}íñÌ«= ë“Û«wîK/’w%ؘ&šJ·¤Y²œ¨œmºÕp·¶^)¯â­*çvT Ý,-É/)h‡aqeéÍvXIO÷ýsyi¼äðÁ­«Êbz`¿ÑSRÛ+s…ꬽªÏóϪkT{vVÊKÓP3aÅàq1ôF½‰×!³7ˆžBƒ§.qúÁ˜FØGHj£ÈŒôíÑ~‘Aw´'{1t‡‰Å» º|¤ÅžZwïô²]Çùý›ÙY«Ê”¯Ñê4 >~Ǥ¬…ˆY÷QC±Þ¤7 çÁIC’—4<秸óý §&‰sC¿ðB1‘¹/Ó8Ió¼—š9gë¬ñ[4šQq‘Q¸géWª˜ióty(O¶ qݵë×÷ž½æC™ÓÄ*zuø‘)àV/‚àA îå³Ôêc*¼Äœü9tÄC—­úxq“ÁÛü2˜ñðˆ¾ÖaC¶ìµq1Ú‚évÂSÏnÏþî³Ý'>…;œ™„Ëž0aþ$[ŠVí^ݲB¥z;íIh¾;O›pø…Èc)Wì úåë]?¹ñŠœ ’£BañµêõM⃇[ÁL/fp/l.€VúôëM«˜bâòI†°¹½ÛéŽ$NwÔòC#<%œ”#Žý›÷û8†¤ÞÓÃ,²‹ ]c×½›‘³—kÔA¬Ò¤2 z} ߺÛe®EìÕÆ¤ÕjD $äL_X¾¥d%’a¾×”A‚D?÷ÄÚ¯n]ýè|+)k37f^ìö©ˆJø¨ùæw§ °¹Y­¬^&H ‚m,ƒa´Ñç.¼w9Îà18´7„Ò-¯¿¬É݇á<“Vúp¹Ì‹áY DC8tÅáôÜ×·FÓ¢'ž‰-$@K Fü™t ²œ\cA…»cø·Uù2ßߘªG´¤yæ¡S Ÿ÷ mB 2èýdÚí~Sæmš)@ìgÜÃODà@LõÂc£>}Ïj'jÒ$VC”Lxq2Ô…JvõÇýiâãáN/¨ç2¢» 8<1°©J²Ûƒô‚E‰gÙøá»ð>åcèEf¹û‚Y.Ñß•@HñMOÇ>.s õKªæ“–4KqøÅŒg7Z_;w9 S˜••FU Êç£WLMžŒØóÏ?8îw"F2b& ý:Á(R)ÀIðAÄS‚Hˆñ P ãøÔzòtí5$Ûƒ\Ú=Ú5BE¤÷Ûm¥&QY$l2Î1­EÃѤ÷s¦æFIßóÆê‘GY„ûï–7xxÆ‹ëIN#é¬!›#¤Ý€þá×»‘g‡XõŸ¹ð©}R΄ažù„|} 4ÁîÍ“ñ1†M½4ÃwÜæë+L#e†ßÆoáÐð›3l½xàú%aævΚ³hAëCÌ'ÈU~ôHý¡ªƒ+ø­8ð¿á´$îÁ¹¸ ˜8w·èìýgÿüǯ]9.ñ¾î$ea’ 8CnQƒa‚h¤ãŠjOb,ö»0âÛt¾o¤B­ÉGù2…Qe-*Öë‹ùcö›¶ý¨•kk¬Ä¡ØkÓ–÷¨Au¶C•V£‘(z«Ê¨,(Ði5ü†ôLUÊEª¢V’aKJ-ÞÒ# enR³0C|äÁ„¡vLŒ&˜úž %eC2ÓâËÃåÂÙv^é“ ©7î9Îìpܸr¨â,’5¢*2Ç•ç˜3ȧÑ)Û縕>\#õÅDôЬz éd޵bGÔÜö†õ.Èz”­PÌ‘þr#ápÜi<Š=ïÝ` ³ú¤ÕÅ5SñºË¶FžÍã¢öã^£‰¾%M†îÈ¢á]æÊ©ø¸ƒæõzY"¿<õßuËgCgÊñH)ôo¯?x]Äû\4“Ú—¾ØÞ¶;Å7är«ã•Í`j“ØÄSb)·ÉõaU4e`ß÷mslqf 5©µòò›r§Ú™]‘ëHA©ì˜aÓû­]é¨Lãs­ÛŽ cq‹TcÖ«IªŠ‚Ì8@ª+Щ‰Ì–Ìì!Šyã~ZrtÅÁ³É·z\F­{›ŽÔÖœFÇÑ¡¬º)•I–ÉŽ(kŠ…äÉž·9ÙÏï_}\×›UÁ[”»7’βêÅØgGV›¡b÷/Ò"áÒYº¼"•IœÚœÎ’–z¾vqnÞ‡±LÎT]!ÊC:™^E†Äí©iÛ &3dÚ‘Ô{-k¥aœ'M}|]ìmI¯pÖv˜Íý#ô!òc›yXGV³ ªpÄÃ|£yf‡Gbr^ëÝ ŽÇî‹AîAè©önREpGJ÷P„Üm o´›ÿ$x„¦¨#>ï =Ç@+iF;Þ,·äõ|èé=Ÿ ×/d"Hü¾ôÅ Ëmsð•ç– nE+ :§üçsËË7“²Ž7“}Ý=jHê/œ¨¯®ë±oOò&Ò]tja6¾Ißñ0ÎóÄ…«?F²»S6µ‹ÎYøsbäóþrêŠÌz2ÉN$|¼lÕú´¥Ëxùñ¤=ñhJ̈_Áz/ß%ô2+Ä~{ÛúÑW˜BÂPöºž\.üÁÃÛ’’Åžô|/nëÙ,&Ñõ½¦žÇ'‘#9ܵ1ß CH–+—窌*“N0èà­U}p€B^XH•¨i«ÉXlµòÏ à0æ´f$³;ì6C¡¹°XˆèÛXi4)EFùä<ä_›iབྷäö”Пx‰ Zu¡id¹V…£Ôl¬*ãa%TÒÞ¡4‚äƒ0ž!¿m¦ÉÆDwæxÖ~ôlh#§Ÿ÷Ry¶½ã 1È!£ëçÀr®Y¿jóž´Ã‚ij¨o<¸c×FÏÏ.ñ89mhÜoò/ÀSÎtÐpíg!`ñÕá¸ÓÒ'†oäÓ¨¶h· ­2p*ò1tú ü`X-¯ýs\9|£¡eÝ‘ÊFÄÞª[òN’v›f»1|çÜ3×~ Ûš°6s5bg$œüyŸaoIu{û‰‹E‘ÃKc2Õù*”+Ë7å› d¨¶ñЫûµ9ܦw¶kíÐ|Y/'Lñ0Ùd/éR§7<ÿl€ñ-M²sgœD§Ø/g_;7*iÙ2>%95å°*’J›ÉXjâ÷z»éb¯œZ»c+–ôŒˆ0)wTä™ò»Þéþ·©6Б U:€†ÜÃÃ'?E·Ù;Ñ'GDG¥mXɧe+ó’U˜Ô³¡ÈîàÔª:Øë-ëâ¦M_0r5Bj• Ö¨Šugˆ—|óµþÆû³»<¶_ìÒÊúÕ¼º¤ HØ<¹\žg—”#´lkÊý±Du} ÔùÇ¢öºc ®3$gákNIH:=uㆤìí(å—$Wç”"TP’^…ÖZ‘aNCѶœøµÛ’r2Rºù–ÙŸ;o7ïE¨BáL?ù~•ü :„WuÕì±Ø‘…5ç›”/¸½› ž“ó†’Á! w{å-y°—ê™}Ðè쪎RHdŠ<=šÁ—Û¤Š4rq8›É豇ñ„¸`<ÙÙ@ry™Ôh<…ÔΜuî§Ò@´¨P¦WÕfdD%EcË®cö‚·¦ø™kr>HY+¬^°qŠEK÷¬mR› Š4ˆ% Ïu¦JêSŽæ#!üAWèó(öüÈUk•i Û+N¸`–³”¸`".d€†³}YyòðÉ‹Áïú#T…*´wŸÕ• Ön³Û+6–®óÞºÙÓ…Ñã—à„9]˜ü=ü ³èÒÄéó׌‰æÕq\mSYeeyC}A%{®qù¼Ác‡\°þÐÕlA³[g(lp“£Î)ºÈé'ÄFïn³äj7¸“d3–”›yøH,/½J·½ÁdO"<­AZ™çÍb©*æMu44¿ˆ¤³´¤šû6tAj£•LóáW[Vn­*k¬«>ŽŽ±Š:ýz _¾kÓ™Íü»kãf¡ lÄ•RóOžÚæZ´Ï€ îzóªùS&ιÜuö‹­…(\ϵŸ3väÄ¡3–6_yøõ^D0ÑD?H&'6¿8mB:µrqjlÒªèaØoö{(e”îw;=ÉŒœ ;ëðÎ#_=:rý¶ððÞIAÀ±óÅPÐ 38xÔÙwo_nøêo<Ã%~˜“™™½fý‡ék»pÕñËðøÛKõ›"Ë…’4½¦h-ëa:±çkÉîè7Ù†3d}wýÈKóÄ…Àâ¢ÊRÉŸ{T@f«ð¼q“Ð8”ìHªÌÙ•½Wñ™üúβ‚Êey¶4”ÁÎ=dã‹#“ϵ$íCņCD©‹5n=–W•=¾CŽy_=‹Ë[?ÙÑR(KÆAºž>"Ð|Ãþðú‹ ÕäîÏ(K­J¶ÌtÄØ3ŒY¶V…U°—¾øôNM­RQÉ—*DQnwÏü&·2³*—^*³ÏK¨R‘¡á7ïK³ÆÛNIõ6Z²ÄâÛ½DŠ™tl¤ÙEi…ÝVcá¿£›îÈpö Áäc20y[K´·èÅa¸ßëqü袿x™lž‹²2ãâ<`%D8-+I(]ZãØP–bP—hIE9Hç-ÒtaëCùUtÁ;g¡')Ó‘6BbÈÄ—noáÚEøÄ½i®<¯P¯Õk…ý£í‘hÂc±€Cð(ZW€4î3«£²ò\#Ozù€DŠî'ÿ†Ï´F°KºSé„§Óɸ: BÁQ0ù?„¢þc± Âendstream endobj 104 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 221 >> stream xœÒ-ÿCMR8‹vøzù-‹ ‹ ›÷T¾»¸3ˆøˆø§v©Ô÷÷±òÅ¥Õñ÷bó÷‘÷âÚ½Q"ûDfVT@ŸÀh¯¤¢¬«t¢kpozc,ñM÷÷èçïÞI×%¡Ú§ÆÏ‹ÛÛ1Ä# :Q?f¤{¥ªŸ¡¨°k™uŒµÂØŽ‹¥×ƒ$Ena}{mlt‰N‡xŠƒŠ‹~}”‹œ 7Ÿ ‹ ‹ ‹ aOU¡endstream endobj 105 0 obj << /Filter /FlateDecode /Length 6081 >> stream xœå\Ks7vÞÓó#XY5§ÄNh¼*•¤2Ž'ãÔxjb3•…Å)SÌP¼’HIQR•ß>çÐIÛÉlR^¸Õľó>èw§Ë¬Nü/ýÿò͉ž×xúéd9ý§§Ôl•>õÖ©9¸Ó7'>.sXó‹Û“ïN‚W³êÔ»u™†AùMPqv–FYÌlW1*¿‘£Œ[ç5ˆ­]ÍŒs‰7²B ³·…ªôoI”3a^]Dåç°¨Š¨2j{SJDåå6šÄzËéõÉ»E¬v!ÑÇå=Ï|KLÓQ¯pðb,Ó<`xãÈ­ø#ý~蜢Bëö»kœLÏ(ÚkpX)À!p29\V¹cPŠ5ŽeºŠøm9^ÉUKdÖ*)–!'b¶{ñÙiƒ1ÉÇ¿)DaONlœÍj6H¿ìÅæ§·ùé¶3®+2 éõ 6µ­A[4þd¡©Á#(§Ð€û­`z1GÒÈ@0 oû»Äû%)ºhœ®42‚R¯0Þ4 \$õîpió–ìÊXgy[Tìñ' Ñ·T£*}è¼â¿¯‹‚·—b…·‰e*h½çÅ\P‚#b‰‹`bÌ$ÈiÍÊ3éy@QP€ÁOÈ8/äslèì»á]†Nyºëë}~z3ÐÊÖ-b÷ÛÌýA I˜³dÏqOß\¤ã€=+l#z´gïZÙnœº-oGŠ;£û¾LÐÑ+ÈŠk`ìaò°Î1î'X„Þ¤–4"°?†y‰¦Bï@œVÐÁ—nñèY*ŽÍ ¿= ¥D¼Ó‘s›ÖP¡•¼³ãËBþAí/(±×0?µÈÞ­ât…P6V„4càÏéÚdÜ–³0ÝÐU;‚ŒFÕ]k`0à‹ª!ó@ŠÀ‘‡ÂYÎÀÕ!yMÑ6ðÎ@pD²CYÆ¿Ãðö„|€—]íE–Dk½6°ÒÜÊU£«˜#¯^»aÛÆÅïX//¨ÅNj?«ËÒ:¦ØÖ“;ü©XônõÅ‘’käCÑ£³’Þ Yj£Œó†×F‚±˜µ¸žßˆ#šonÊ϶xë`¦‹…lclηŸÕ0dF­j›¥"Ë€öUGGÚ~0äÈfBmÒ:b åªÔËÝw°íËä:@ãu4Du À-ó#5ô‚g ¹úøðËÞ5ºú(0b¤IËÅÅíÓ¤éûᮈ¥'sSÔ~ã= ,mT QPù¼QnÆâ–øt—$hÝá4­ Pnœ=&ëû~¼°ê¸¡—%D¢ŸKjÖÊ™Ñ`Ï™޶¾Ó•iæ!H…¸¬C?¡˜ÁæÎMú#òR/ªV±3¥3)õÛ£TW¯yj§Ö‡–œæÆCÃÑ„BzØùtŽ/…oû’ÔðjÖ*ï1@˜t°™h;Ž]3ß3cœˆ¥%D™JÐlunå!í#‘A“ûxÃt?M$"YÕ‚ž5>½Øö*Ȱ§ìÄõuªe­‘ìò¢æÕåüb?ó†É%ÜÈ.TFrÒ/”çM jR”gëKŠwŸwÒ(L4   `ÓËÌSéÇ=ö%*ù2Ú`•¯r#µGÈ#j#(ôMnã`LÊ©Ÿá’ÿt_!­SeF^•­Éø_òþž#¶Âsú%Xêq8€¤˜h ¬vóûÀQ"ð’Њ ²hÆV±Fakl¼Ï|­Ý&ûe>g>µìU£¹ÃG;õV¼'þÄ Až›SËÂZœs±!AêgžÚÇQlôäb½³#gO¾–)aÊ©EðÔvþ)AÁ¤ƒÀYÕh×°óˆ9ýØIÑ­xî¤èV2]6w:•\û¾¿+:ü²’×t&[°¶R°&ÄA¢ð¼XùD†Ñ Çï2:+ÿ€ !ʺÊÊWù Í9§ƒH¥èØøàby±„=ÅŸŒN㑪R¯+÷àÀRñg‚ÒðKLi4þ)¿&\çCíÞÏe{Ã:L†é0›÷XÞÄÄÜß¿lÞäEâè¢[ã³e‹xO¬â( žÅ·.ÆG@ÿHjx aÉ©(ÎmÑ›)ÍC9_SG_ør]L¥m_¼4Àã ­YSÐùt)­,ÄŸÓèg¦ôÎÕªgèe¯ž™_²@SfÖr꤫šGZvеOÐ*Sr‚N“Ó:ÎÃ.-tcå4:.f°.²¾¸ã¯ÚâÄîU!\"ÔÍî[aÕ¬íéU~ºº< éåa2õƒRû 1ÚhŽ4S±JQ¶x°K.R[''’Ý FLe?¶ÍdjX‚¼”É4æÉL&€dIcQ"° ÔÊÃ=±D)Ý©`Va¢Å¬, Ï‘A!U(›\ð|U€N‹E²ox1£ª¨é>‘°TYÌ·²·# ÓeƒÜ¤~Õ5®WE”^fOE&Ú7”yYD[PZ¼DYò)Ž8uJ–q(ê"…õi¯Î6nßnÊïz¨†¯&£ú“çC-m½|F>º*EQ£0a´‡ùa©s½:d>©8½ZRqÓ×?LŸn®^Ÿ]üã³Öj¡ðhú5þÜYç£?ø~º<Þ}|õþ€N@ðô?éI‡éÃÝMWŠÏW5‡ÕÀvÖFižêÓó=—ŠEXÏ×9µ8"¸ô»ÅÆ©õ< õ.J¤…÷7ˆŸ^ì^j¾¸`¹?Ÿæ§¬ÑnòÓUG¾îq «Š}Á;ò1µµGŠ;¹«…RÃÜp%TËzÞÑYbÚX„ñ+ó̾â‰Ñ²:j:Ig` ¡ÄÏîÛÃ-Ž‹{MÓW**ŒÇ–øNî(•2’Z­' ŒÌà_ —¡±ræ¬J2À€H»&ÉЩx®õQ½±Zãuœáž0‡I½B¤Ïf1œðCgC<¤Âꪈ{¿ýTSUÆ¢S`¶ž&gÉ¢³¤¤÷Xe™îŠ7Wå)]Bš‹N”iÜY‘6@JCå‹àðJì5ï;VºIÄ®ÂÕ¼ÝÎp‡ÎÄuÁ™¶E¦ÿ“ªL—©@WF_ 9¿*Sp‚+¬c±¶ £"?}‰œ3¦. ˆÀ_ ©VÅ0I˜½žì ~ Ê>¢Št¤äÏÓ2Z;ÍéØúŠæ˜w²kyR½Á†"¹Lð‘'Û×7Ú«–*?š¸+?f¿#Cµ_”¸*‡ðˆí®{{Và¨N†eúmrc.l2ÍÅפ3‚Í=Vç݉¾±Ã®CŒËÕ²³¡CŸ]gP¢ÙZ}ètÝ<îÞëuV¶¸÷»64LExcžWËAÒ*ìÿ '.¨¬ŸŠarŠ”Œ£RÂΦ©7¯r±£8ªJõ°‹öóÛ~„Ç<ŒÑe¨PwŽåÐîZ$Ìdvòm--F'i©Œqš£mÁž×¡×± AX/šA…èÌ;ynºbÀSM 8†*@[ÀâzVc#íà½>;·#öýß(¥Øç‚dŽMµ1x˹ÖRòç+…EZNaË"Õó¬B ì¥w’aÌa=AæI<õûnþ˜Ÿn W.qØ},ËëédÏâŒF‘hÀjÕ .¹*$g쀪Žì©ØqcçShx*Fìc( øQˆ‹ð™Ž9þCÐ ÀQWckL×ve¤Ÿ½Î ÞªHÊâïÁâ¹·Spq`«¹_ã·wµÇœ\©\áR‰OSÝ·Û¨PìâìKjöJäA¤ÙP%¤ð(÷‹g I'Lq*׿ EäIîVêyÕk4A8fö‘KiéÿØÍÙp&Õ å€1ªÓ[ndõw oZ“]u&~è¼ûaÊ•ŸžOÕþ·/ o;Ó\æ§?uþz-ÉÓümy,Ëü.?}—Ÿþ!?ýk~*Ì1b!¦î™»d1mk ÑFá\´,i@i«èZ¦–qÖµÓKRbÿ¯Ò¦Òß°r‰Žº7Åð¯Ç€!ÖUlBŲ4½ €å`  YÈßÉüŠcl©}HŸ†Ë0êUŽÃßóܘøþ€MTC@eÔÖÅÔY¼Ìv_d…Ž—ZIÄ=¨­@²‰UÁ=¿E£}ÀGO·–Ùë*GµM&@‰ðãv¡#7äfüý…öCÙ“{Fq§k,û¿–µÓèlâì˜U£3Ç=è_C®dV¨ôI ×&šÙÄÝ0zleüdÊ4ïŽÇ’ ®>R"|!Jë­3¦®híÛ&üÉßX‹˜¾®¾ÛfžÎÃ^¾æt«§D7ööÓJB§g~úYÚ Õ^ˆÒµ¦´ÀïúCqÕˆT˜8µÅT¤ÒËT/ìw{?QïÛÖ²F·§àñc^Õ*ºç¯ŒA1v¶·Þ-ÖëFiåû~Þ5Ïcuv”u&µâ }¹§šnsr›BšYh<á¾çž/Ñõ¿v¿m•K¤´vm43_ÃÞÕ ð]·±‚¸/·zˆ@ëR¨´&ÿµ‹¨43=ȯ ÎwQò¥Ñ„é(¥A¾,šõP‡„Ú–&k’±:èŽ<6ݶÛ\õµéæURV0ÊjŒ6©-z‹n2ô¹=pB\˜©­4E}uàG„ÂÓw»GŸÍ+)·4[¨³öŸ¥kÓéB<Þ&âÕ¨õ°ß}V¹‘ÙR>I)(/ûØG®³¡–^6 ˜«•µ¡Ê÷­zÎþ’ê³X w¾¥“”}ŒƒËøÌ*ƒhÙ¢]cÅÇúä‘4ôy—Éšt×ù6sû ½}R©{€?b[·,Ù5êú[’|+zˤfŒ&-àäuyI‘ÿ jÿHñ$&4þc•ó+ÉŸúr_¶1WüC<¢Æõ[(½0†ÀÔ_ ß©ú’÷üS,ò³4Wgµ$—vÞ@ ûm[#[-Mm%Nnæç@í…Á Ö¬4ém‰÷SЏ°à±[„‘ñÜweÆ¢×û«ït—ú~0õ­êØÂ(K7t¥zÇ4¸.m£yÊY½-'1L¹ÑŠ…¢ üGT¡±Àô¶ýŠV¥”% )­íSO1såž©ÛÝôàÑ/ÒfÀÅ(<­Ó:õ‡ú¶›É ½ýAõä÷@ö_’IùÓt‚û»¥Yqïˆ_é}R溺¨P&9ìoˆó|u™ºï:ö{|$NyU»Ð «Î…§>ª‘…>‚kHïÔþÙwSÄd”¼&3xàG¬„ÿ”ïÍUŽ-Î ŽÉ®úMKD¹Ä°A¡›ÿ;^‹,§¼:óŒOÜð†”éÏÈ ï{¿ÆA3‚åe´[MÐcJƬ³Òâš]qM›4àW'ÿÿýoR%endstream endobj 106 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 166 >> stream xœ›dÿCMSS10‹‹øýùJ‹ ‹ ›÷À½ºR3Oøˆù‹ ÷¼È÷˜Ãëá÷ÚÜø7÷Úò©ÎÒ‹Üîûâû#û…ýJá÷Ñ÷2÷PûÑäüGø÷˜÷$÷ÍPDDKPû  7Ÿ ‹ ‹ ‹ ù> stream xœí}[¯]ÉqÞûù;F6“pgõuuI †yÆI#GCƒ‡#q8ûÅ¿=uûª«÷\È‘@0øÀ]µª«¾¯»Wß{?\Ž[ºüÏþñøou^¾}8.ûÐëy+gºœ­§Ûè—LJ‘û­Ïéš×Ÿ<Ìã¼õ:.g¯Ç­d²rÍHóÖ›XµB¿k0‚"ÚÔƒ¶¯µ“žŽ-P9ng  L1õ2nµÏ€i¤ó6Ž1-#Sl6†É£Rˆv\~÷ð‡‡$y±ÿ^<^þúÓ‡ÿþ¹]æmöÜ/Ÿ~ñ ™œ.©–ÛY(c T"‹O~uýÙ/~öÏF¾ÍÙ¯ÿ÷“guÖVóõïž=§â9Žz–ë'Ïž—Rn=åë?=59æ8rž×_ü-KçqŒ^~óé߆š†AdÛÈ„ãÓÏ)ê?Šñct5ÞçJÙ~T5¾¶gŸþ3Y´z©·9Ra‹ç¥¶['“ç©Þƨê5±×~ešÓs¡ÝJMc!H·ã˜½^ÿ׳ç-gv}}íÊÏü׿ú¯¯ü×7þëÿúõÕ>Þq³ ßú¯Wþë_î¹yqO™ü×ó_ùŽîž]YŸ…ÇNÿÍŒ‹ô·Ëð®Ÿùû½¸ãèõwôÛ;Åðã±ý?ÿ™ÿúÿõÉ3®%%QÍ,Õâç÷²ˆ~j…zRé †„ê`ºÍÖ’zÈ?µþö¿U?~²ñ}»»Õñïî)¿½S ?¿ãçË쿬Ÿ÷Šuúý×Ë;¥ö.æ«{ü·õó›;._ÝIêÉB~ïûìní¸WÖ¯ÇÈ©ì^uAÙïÕ¥|@uù¯ ¾ÌÛ‘Ãëp¯Íúí]ÂåÏW-ÿú‘Ww2á^¶¾ ÙáA>¢^…ZùÅç/ï¤/ç_}X¶OÍÊúqÙþÇ;òö#jʽâùÔŸ¯fáŸîÙÝvö³;e¶2îë»ïö/ÿ~•$€X‰ß,å-û,p{ÏÚÇøÿ¿ì¸WŽ÷ü¼½çñî(â§4ÕwßõwÁõãÝWø‡;Ýû¥Ûj§ûC¨Ýð¸òùŸ£+ùÏþë‡zÅð†Cy·íÿñ¯Ùg=5KÏŸšýpåîÐ\YùöN¦†ºþç(‡Oû«Îûß|T7>¬‰«'Íæü¡ÄývèÇçûü÷¨ý¯ïs‡È_tíÿ®b·3ÏóÉ.=;n5÷BUúøÞ±ÔÿÑ]ÿÓŸ¾eÚ‹&½W4ß¿F³Í_~#õ1ƒ¼j¸~¨X¾Õâ#ߘ¿À6ì§¼1V6?ÿôá—¼p;F¾•y©)—Ì«Á½]ÒQÏ[¾¼}yù?—7ÇmäzùÝCN™¦ •U½•Ë<ɦ 27š§õ•Q¿µ1ÊåÛ‡tùgYG÷T¼ÄÕÎËãC9ÎykÍ5¼Šü« Rf^ª>óå7TΟ?4r=kÿÛï¥K"Kz+Ÿ6U5-HQ(XçVªf¦4]óã[©2R¾qÇ—¸¼¹Ê¸Æð°/×uW£U­åvä­™*\%)C—Ïzð¦^rø„•ût+Ó¼þQ™C6' ½Ùõ,ó&ÛƒKÃ}ø”q4FYÏVnõâàU|Alòq;Úzž»–’CÖ’š|£Îh9ÈBpEP™S‚Y,Ðêá ‰‘·ÎÇFlŽÊYå^çävÈêˆá¹Áöä5@ 6»43ËA—н"¨ˆÁÂ!š‡'$"±vô~;Î@¬g¹µéÄ÷¿çô¸µe¡È—ÈcqkG“npyhTÇzˆ¡òâæŽÒ<<á±qKTÐ5Gn‰ŠzÖÅ-QQ§U!nnaÈÝd¸%Þ/‹[¢áë™B •7X8Jóð„s“AXËéFcä4¨#¢¶†F4j漡y;•ƒ ÄöfÆX>(JglEXÜÆCúÜŃC3ímÑÁäû¶ù©ÃáS û6.<Ƨòœ¨WÝæÿù×ï^=~öîå×—Wo._<Ë4¸ùúòå;šbññƒ#í&/ß½|ûõå××_ш¬©õ¸þñåÞqÔq}ù–Ò<®½¾{ùùåÝWä³°œ;#Ý0Î¥Á'7 Ð´ƒIG…÷¬hH̽i6«r·T±ÙTî¥6#ÓlV>ºp+ÓlVƒ:†TmÀfE~?ª¹ôžs1rÐ{çzp¼¾ÁE˜gÏu!·£\«þæútíA?ø÷AméÓq¬Rˆ•½ô~òð•=Fa¼²p…+4EÏ™ÇqËI*Üõ›7¯Þñ¹E©Sõà2ó˜üI­üüòí«Ïß}IÕM«Qjéi5úÉoëùV_ó-´f”ée½¥ÄÏ;whû¼ì;L`ÑPŒ¦Ê·!U šrtz%/iÒë-/h¥Ž9MfsB|AæÄÇYx^N°­Ô&›I`€’Bd®è+€Šl¯ññx‘zÇÏmdšT/OÒ¡™‰ÔÊ›ÉCÍÊ2•; 9jƒ[r™i#XÐø‡ZixX²àÐððâ2µe)„0™)ÓBI½—÷QЏ)Ô‚, ßÉÍAïOì MA'#¬RÓ 3Â&¹µ,¨·L3x€¬18…käÚò@\)ŸW •9PÀÂq›‡‡r£"O¥¨+ä^æ1h&¿z”ŠæŒ“ãRù²þà"0ƒ²ÙÓÿ-‡ä5€¤0 ;欀Ü@6G|<>$ß(«¡ëÀ ‡Õy±Àa'ª"£EbI–ƒÂÏåÁe'æCæ ¹ÇX܀©JpÛy·”èmÔ .»ôqwÛDf¥ñùÄeA½R L\¼LZHZà´, ¡çKd ¤èU¯ic P½š2·l´Z¨¥©'meòb PµPÉÜûâôkÇä;eE^zÙXAXúª,Ì©n”NÊ©,¤‡É!/VÐ<6b,b!ðwÊŠ:¹”)<«;6  ¢#-퀗Ť'z€¼hA\ð܈±h, ¤—ö¼=åÅ«ôúÖƒZáUg^”I<󦴕ƳY@L°A˜|`uYP£}›ËD @æ&—)뫞ºÙ4–“%ã[B÷°QPV£ñ4-°‚¬È×Ìs’Vk±¢övô`ÁëÀ•‰ÎJe`Bj`†ÿÀÊ,ÞŠÐYm”Õnyi¤5¡ Íczæ0õv2->‘ã™Täý5™qòD ÜMŽà²ÆàÐ/~×Ý—c1T–6fá(ÍÃÂ-ë 5áèº(´4U3‚j¯Æm?gíhL¤2‡X5ɈÈ=@ÖœšLCVÉ ó@ó¨c¨,ål(`”ð°óPndËcËÀ  £Þ„[bGNí.V7j“øÍv ú?&.f¦,$lXÄ€; %–§U?' pí&W‘h‡ˆµºk×ñ„{€¼¨Adð䈱¸…«¡„‡‡r³¤¶C¦³A¡Æ™¦;܋ԮÎ3 rÛtY€Vé–Üâ”)…;€ÈØÜä*·•š¯Ìà_e©†@eÅ#ïY¹Â@5}g3¯¿–ÕYy9oYÐ Ië®yp¼ ,8l„XÄ  %Fóry“)׎.Ì 9‹å§…¡îDæI€¡²-2%t ê™{  k NMÓvÂ=ÐXºÄPYê„¡€PÂÃÎC¹QNײqƒÈèé|ÈraäFÝÌ‘"·)#„ÅÍäÀÍ4@@Ž‹PÀ(áaç¡Üh s´4@FqZžxA&Pãõ¬¾È’S–ó4K¬êÄv3yƒÂ`Á`#Ä"^¦@m6JŒ‡Ú[‰Aá‰O%EbvF 2—u ÙxGrœ’Jàcéœy^|Û‹`Q‡#xåCIö…ó‚rÃù´¶¾×À^n‘‘‰Î ²aBj`†ÿÀÊ8ïc¯~ceI+SxåizRÁˠꙙŪËöý²  ;·Úî²ór…Á‚ÀFˆE œPƒXd¡ÄĉAáõG¶ÞBa$ÞâŽÄ€Ó‰ ­FNÌäE ŠÃªÄ`#Ä"^¦@šY(1JrnÄ ðj¤ H‹Ø”‰B$6ö7oè¤Ã=@vb®±±¿>±ˆ„—)P£2GJŒwŽ6bP8±óßž³km^¼æ™Ï"=¨;€ì¼\a¨à¨"ðR N˜Q•#£uò.<*üÿcÐÔ,CÊBm®uÊ&‡á‘¨ÉSG«°Kãs9pYCP ×ä*£ ÷@}±,h#†ÊR' €vÊìÔM›À 0Y& N†,)2cœ©Gfr˜&03903sn!1`€0‚ÙÎB™Ñ¬ïÜ|ÀP˜ACp–½‹)+_Ú.Ùã™CvlL6 RfQù{]\Öœšb#|x(:Â÷* 7C  4Ox·¡}àfpã­¶Ô7Þ®«Á"ë ¡sƒ¼¸Anð`È=ÆâÎÍP:·‡r£4’‹4@vx©P;´Q# ç©MmÈœšÉši@ @ÍB83ÇàåjÁlg!Ì8MM‘™k¼>²3µ˜MYYŠÔ†–,Šn©ºÈ‹4NÍ<85‹±¸…—«¡ô:½ñPn”FË$ñèù1hÎC†<5 Wó^‰.}ÉHHDÃÉï2ž×"«Ož²àÐ4>CsYj•©2ˆ(´ €=>$ß«SûÌÀÊ4€E¥²@—*KÕ‹a¬u=o‡Ê‘ò" PÁF'eñÁÉÐ9§ ¿rʺ=߸³½ ׌*]n¥É 4ÏÔ —©«^2¶SÙPž5Xðè<@Ö’Â4½ÝÆe9 ué!„ÊR ,Òì,”%‘1çb3›·‰MY5‰Ä%Y­Å¬¼ˆAbæÀ‰Yˆ@L1À-ýÎÁxiŠ@KÅŸ»i±4ºŽì-r^#ñS׺ÝäE ƒ@‹@8/ÅZ‘‚²B>Ñ¢­¡ó8o¶8&¿Ÿ/$ºÍc²`,òB»Å8d'é!jN ŸÇÖµIʶŽSìåYꃎ¨`„p°sP^¼$·ó‚Æpu=¶ä°i†Qwbã° vêLÄL ÄL\æÀq[ˆ@Ì@¸0ÂÃÎB™u{%3h Ø©#çÅlÊQd6xWÈ f“é!.bÐ81I¿xi€ÀË ¬"5„p°sP^çñ´&B^çVG—w E½}¬‰í(ÚLkz—kË8l ‰[MB¯ÊÇû5‘ÏøÕ—iP‘šlo¬âÐMºEŒqƒ–’ÎÄÅ ƒeéµ´ ÂâeׯAyQæä±ñ‚õ¨Èþï*ŽÌG#/¾[W"±¹Ä@lnÀ™ˆEšc‘ï,”ÙÔu'oMμ¹†OÆI†êIŠž¦ö3¼Ïß\f¤™Æ9XÐ8ˆ;(÷YcHŠÓ.ÌÙ΃‡F±b˜,ÕBQÀ(áá ½Hsd{kÀÍ5@–ôœÅâ6¥¹ŽÜ†øw‹Ò¤Ýs7Ó,nêaq›ÖI87Cá†Ò=ì<”Åçî±ó懬{¸&7M•äÚMîe- J‹¡² =e³Ô-xH—ƒÈƒS@ãsLõÐx‹¥®& 7Eá@ ;å–½.W$_£ÆÞ ª?òzÕ.9¼tót“i“³&nÑôj™{pYbp hh"&/(<ðaBD«Ã‚Áž"’ï$ŒØ”iL$ÁÚ‰ˆ¾±jM»;<¦¾¥Åä.;+h  uí‘ÒÆqsJ|¥D34^}è4;ô²4ýÔU&v^01Ø’C•¥.X!ì”Wzqnñ‚Æp5]-tØ]§ýâq·Iö§àâ" pÁp#Äb°FxØY(³&w]"3h Xï·HìlZ‘1ÃK=€ñGȈ‹4€€‹˜að25„p°sP^|KpÊ6ÔcÐ Û¨:»¤îÃ6²h$À#N“hÓü4 nqy} \Ö/–¦ÛV<4ÛÚB •¥Z X%<ì<”Åçr<ù8™Pƒ"kxîÒ9ìÉWw²Ž*¸ª˜,@»T&Xð;Ε \NzOp)Žj——ÕAŸŠ!L–z¡ Ü ÍÃÎB‰Í,d1(@Œú öå°]¿ Äx‘%˺&èÄ ;1(@Ì6BbbQ7 ¶±b<Ì;b‰¹Âó[ŽW,Ôzþ"ð*º:ä¶æ ;/(ÀË8/ ±x†EÜ z‰GJ‹òªK=“cdAÃÉ8ZîÒÁœü9YnÌh8Ä&“9* "r0hz Á@Öœš¤S9KÏk†-PY Ø À-ýÎAyé2~ä `ÕCŶí=^Ôñ«îÔ†ñÇ=@^Ä 1`pܱ˜„s7æ`g¡ÌÈ äæ·4‹Ðð¥H©M.åAÅ|nÞÞ2™ÃžÚñ¸ÅÐ)­{0Ùbp hÆ);2ðpžSö2ÃdÉ=EáÀ ;åFOx7Ó8²÷k—¸M¹ôƒóМ…È‹škL8n‹˜½ÇÝPÃÁÎB™QSÊÛK|WðÐúM=å`?¿´Üj Þöæœ$ÀÉEÆ™ªR‡½þRhæÀe Á) ÉR'-9·}ùWQ2ΘÌóò¿p’f„Ì"]äcÐÔj½Õ!~6=>)M_u™!òùÎ,ª~ÏÀ=@Öœš¬,ÝCÒ•CeÉC  „‡‡r«² Wn:•4d-ï8ŸNN$³wFÞå¶)dŽ{Êé’eqÊRúòYcH ]lŸSÏN™‡<©fñå*‹™S(Še¡(—‡‡rã-3ÆÅ—Íeªé~Ë‹Ö\š:Üðz2ÅzSoYdÙ^u.k N]ûrí”ÓCeæfá(ÍÃÂmÐoj)Kæ zYØq Ó¸úÓ˜…oŒg^·æ°còP2êóPæÀE@ \ÃëÖÌ šl™¬ [4À;‹?Íõõã˜vÖ\V>8kŸ˜F.±¿oåšÔ𵌜y¶¿Y¹&Xa7wY¹&XñGbÚfåš`õkD¿¬>ø.sâ{|<N|ɾ‘ÿîÖýO¹ïi);åN3ëw’Æ™ñURªnã}LRçiçýíâ½kìê|i‡]D—›õ¥ñÌ·]üæ}á¯Øy=/zxÈ“›ì7ã—Fïλ½ZïpóÞØsGlÉŸ0O¯ðâ°ÜÆ¥KÂÊ5E¾»T:5x‡œ¬7jü{²Ïˆø‚?J¤W#íq¶{”H Yý³=4IÎ×{z^ îEds„×çŽÎR?Á/œz•1fiC[ Wt¹ƒPz“Ûs¹œ,t½¾WdjD&‡~AžC  !«g17M•+<+yM·œ‹ÈömÏ RoÀ•  «hŠúùêˆijŽÿËi¸·>ΕÎe'ッԆ® Ûsà™¹~è'iç¹Ø¸ÆQ鯍BÎzöl¨NÆõ-&„¼è@:H®xÝ9øxh{dH¾cW>E—<h,½¢ÏB+v \ùt]‚Ñg]×g›}šAù "ê³¹WS—Ÿ¹WOnxáÜù 4ø2$ß±+ŸsØ`ç `.k†¹ÝÖË3¸5Eñð7“ŽP<.;×OnpÍ·³A`°5\`³#·Ïdé¥K>|xÚ·ÍL3uN7Âýaþ¢uç„(Ÿ¼Ê~㘟óLHm¢ºgsSðƯ|BKSów6óò®¢e˜ôoúÜÁYò'ð_è—©jù¸€ÄÇÛxäHˆçBÕ^q$‡¼(ANæœ,ÀâdœsÝrdƒ¯ŒìÒw gó¹qªú.N¸ÃiÏ»½×Hyq‚¨Ì0[€ÅÉ΂ϳdc ¬ª ¬ ¬¦G’u¶#—`uê—$ðœê·¼ìHy±‚°ÌP[€ÅÊ8kÇä;eÅש'Iõc®Ér!ŽäSoàò­oþ&œÎÆMä¨|h¿ðwYCp hhÌÏÃ>÷ÀÛò+‚HR¸†À Rï”îÎ.ZÐ.;j»»xÙ-8XL»5.;/×<p„pbÀÞu'¶“Pbã´Óköe¥¥áfR²»Éù >ö7v•ÓÌ&3Ljµr ùs<ðàrµ¯Í!CZ÷P2 ÒCˆ(Ygôù­ÉŸbó8´]vb®¬cèýhÀNºðˆe=.í4w‘äEÌ5F ŒB€˜cq€¶ä; %–JÌÍÇ ñüÖ›é ¶|í'ð*ö‰T|Á@^¼\cÀàÁp[§ ]Þ+î­B|¢y-Ysâó©®áæÅr[޹Ï.ëµ³êG¶Læ°8ê ‹6õˆ+<@>ñÕ¥9d â¨ýO#ÄPÙJXPÀÂq›‡‡r+CۣŠ «²«¾€7é×µ®ónAM÷9‚È‹šk <8b,jŽÚì,”¯{î¥ç¹}À»}S`Qãæ9–ÚÀ·ÌäEÍ5† €15 pòÀ½ÊýxZj]¿ŸÐ¸ùTnÐp*™~Øeì.+Þ“?Û\¤v,SwÝdÁ)\sÈZ3<ðÂb˜,ù§(ÜÂq›‡‡rãssã Ñ\S./9r;ænõ ÿs±'yÈî‹yX2â sŽÜbn†b±nã¶óPn¼{76nÐx®ëGZòº£æ)Õð˜z«–1È‹˜kŒ˜y0Ø °²øÎÊ£Ì7ÊjNý¢øbç·òj¾¦ß7^Ù> ¾V1‚È‹—kŒ—yp^éÄ*Q 6f; fFN䓸‹ÙÒýŸ{,¡ïÈ¢Fão9” Û=s5×5óàÔ,F f(yàF¡o<”›~I6rƒÆ3=Ù­s ׋Võ’g,ØvÚ Ióyqs!3ŽÜbn†b±nüÆC¹•®ŸSXÜ  ¹~ĉæ{Òå³ãË OYÜs5×0óàÀ5D`fÜÀQ£Ü7ÊŒòk¯¦ðﱌD‹%ÄQO](s‹aGÃáò"æÃe·ÅÌ Å*UC½ ýimìY~|êò1(&/œHæÊ[Dž{¤ùbO. Jýp­[L=âã\–œªa‰aÁC–UæCe+b}—ÍÂ@ÂÁFByÍnû91×.ÞÍŽÌæºþ«ÌÒ¡g `Áƒ¤K3×0÷܈±˜…s7” ¶óPn:¹ŽÜ\ƒ<×ã ¹^\ÔxI%OÙ*PsÙ©Ajð`Àb10F/õ…0K~M‚Z#&¶r+¢ÊWJåtâɳ?ù ¸žÜ<õ@åO~êÝ ³(úJ÷àò![KÁßàabpÐäÓ/+„Ê’y  %Ƴ¼‰¹Â`Qk*7ŠvÑCã‹Xµƒÿ°hÛŸ ƒ€€‹@8u  %V²^­wb®@~O»)f°«~ò(kÃî—šEoñNVA À‚ÀFˆE œº„‡…«ã 1W ¿õ8w„ý„ØYwb#íÄ\1( !1€pêc'¶±Pb–{GÚB̲HKQ‹Ý:¥IÔDé¡Óº™4õ—[Ì!ÝŽ{pù¸iãa >[~2¬‰›aUþÖB˜,yWìR‘Y Ìáac¡ÄF±sß æ ÀJv†Xag2ä1õ"–ý¸©[È÷å-¹ FI$ A: …çÀÇb/ÆŠÍùlà…O>ô¼½ÉÇ2–â”oüTþˆk‘Ãÿr”»æ¬_1™Aæ©7EaA#›˜(ØÜdý£"+5ÂHÁ¿Ê’ †@e…ó¾™ûìÇ (ò…ûʧAä|v‘“¿•Ï;p6™£ú!d³hú¾»ÈB˜"e-I88ä“•+„Ê’~JÙùÀ›n&ST>|Á³|X”¤õ\Öœ^¢â¿:|^0‡*K^ X¥yxÂC¸ñúhD]Rêz@ji²4µµèô¶HQI.2ìÌH«œ0]MÆ|Ëädß0Zâ4˜½y8¦œšö&s Cá@ ;åÆlª—’ùàKnÐ$ùj•?}Ä»9Ke¯E÷H sÜYyl伋 g̓˃R@ÃßP>™yHTòÜ¢"†ÉÃP¸…¡t;áÆ«Ô‚'A—F6vª|[sú9ÏZùìR 'Ak¥†·þ£B!=DÒ\=Æééõ”ç €s  ,€v’s …oŸñ$e¥¦L¿¾Î¾oµ4ë¼e9©¨x¹cY¹&XM*&ù̶[¹fYU>ƒÙ6\® VO°Fô?áhá-ËóÞ9ГGÄCŽ‚fžôEŽ‚R%¸éŸ·ÅÏp ÔO·­Ó¦AIꟇ{ߪèÆi6«µ‚+ÓlV¸‘*6ï~ÜÈ4›/ü·­L­V«+h6+Ý*äÇ-<þÝgIA%*Þr™m\SãßL'ÉŸPòßA_‚¾´•¶wÊðNŽ_é+þä'Gùïd9,øç89ʧø²üµ*Hp´÷ŽêŸ ûõ3NêFÚYNKË“¹S¹m“ƒùüˆê'Fïg5‚|·jñP7ß×¢4NÃJù›g4¬ÔÎë+ùÙ(ƒ®¿û†ÿr›óÈíú–õsœý¼¾|ö¼È"v»–Û2OøkË#„­ü5â£àÏ%ÿ5›Óôþlׯžñ}ê×á(õ  çõ÷¯É ÑÜ¥L2 Û£Ô>®ïä/2S»x^¿æƒÌ4”‰¿`ÿñÅÎØç×ÏøÏ8Ÿi–è€ ¶ƒªD»>Jä9ò¸~&Þ:Í2Èö¸ÑX¨çôÄ›>Úw„~ûýæ#«g! J8”;a‹vðßÇ~ÎK5³¥L08oD¼ùOhóߋ멗Qbü/5æA?£ýSýúE„¿Ó°Tቛƒy£‘¹'›Ï—ûGÉš†Œ'^øò{á¤QýÖ2£í__ùÁyä*¡øœßúm×/4ñQŠÄý¨üg­ }»¾`ªéùŒyú†kÆq$ù#{ü1`ª–/¥r1£óôÚô–K¸ j Ë–?â‹ R"Ìr:sêçHþœ:²ÉJŽ„ì¦RãïªRøžleNÔ|eþÖbÞÇ“,¦_“Z¾Áù+þF¶ŒOÇ æ9r}û¤ƒF€ãúšSò'¡æõ÷â/QK*5 a~ËÆ‰&Ýꮸûm ój½K¯Cî°º’“ÄU×êÈÍõ_- •Õï£ó>2ÇŠl÷×B˜Ï§¯¿é’í³ýŒ8?ôTÌó~èý…tƒG5h”ÍßýBrž÷Ö¦RµÚý%\r"õQ¾û”QCA|31Ô~­‡–l«‡!¨²ÈyKâð}ï7Ûœäþ³øê„°\ýj~ÚrˆçQ?â÷²»-ávÄÿÏCIendstream endobj 108 0 obj << /Filter /FlateDecode /Length 3663 >> stream xœíZKs·¾oþÄ”+‡ÙÄ;Æû¡JrPb§’rËfU¶4¹”èâr©åêõïó5€0ë¥8JâCŠN÷öhô3/1ÉAÐ_ù±[©ÉÄáõJ ^9)'+Õà­“SpÃn壘‚©ˆ›Õ7«àå䃼3bÒ DdœœMTV=YÓQULO¥™LèZkôD²:lVˆaò¶YUàÞ(§Ãd\ìŒ ÒOAÈ™QŠ13ªbTUÇ6uúÄðlõb%ÓRåßÅnx|¶úìke‡8E§ÜpvµÊË,‰eÞ ?IPœíVߎa½QÊY7~³ÞˆÉ ¡ãø—µ˜¢”Nêño„õB§Ç¯€6ÒÙèÇ/?_o´†Ù¡P äøä‹DCnüœ¨ŽfüšÐ"¡TÌxn|òGúAF' Ñã²£ŽßŸý•|ˆ½f Xî³/Wg¿ùå$DtfüÃzc•š"´ï*r¿ðt¨O×õé¶>=«O— tWÝSU÷»ŠÜ4äëŠ<¯O¯êÓ¶>Ý×§_×§Ýݱ>=_ð©Ù*› ¿kÔšv'&Z+ܳ› ß.È~¹`Ãwã‚±ç „K[ÿfIŒ¬O:_øéÓfv œ‹coáïÛcôݺ¤¥zçúü° ¾™~שü)Ý{Vê?yH–ìí‚­m³~X\²Oêïú@…ÛW¶ ®\,üzßw ödòõÂï;- )iéõÆR¨è'krõÙ%2s;•]À|Ò­-ñl˜i“[̼¿%tœ„Z<×KÆ..ü〟ô®<ð}HüTöRT¶Uìvíù¢[b)0oì}ûþü /*òÅ‚ÅKçm·äÅÿë/ó°6#Žíâa-srZÏ,C?ã$üwc¨øùùÙê)õ¦Q êl5rÒnˆÚL °”Æ¡ÕÛáÃí ´2hf•B—çô`b´ÔkP ? ;EÃh@½BÆ4†9ü˜æ²Ò´·è••uèB+‚zåofT~rÆ«á{ì×åÊNVEc“8ì¤øÕÆk1©$Š1Å$’Å8ë ó•U`qÖ˜5(-$ZÜ^¦!»lÅd™™ª“Y¨“¨Þ»@$ÉùÉ;¬9¦Š ’uŒ‰fòXíÝäÂ`œÐ.>ø˜2lGa01Xß$T8ëGÅxEcQ•`Æ(Ñt˜t+*[Éæ~\À·S&Ø 3Ž1Ÿ–Á`J”TzÒ’cj¾±+5 ½P4Mí*£^˜DÞàªcŒ«˜U€A!ôTÓSYáBž.™Š13*e‘tOU03*ƒscOU03ªâQGÕùøÐðhÝˌǸ‹É‹&Ç ÒG,0F[SÆGÌl¤±IkÄ”À›0i;Ò/5,m´QÑ{²ušæÁ,/gƒ­Â4ï²ÁM¡öx¿VмßÜÝì댯ûÛa·=n÷}æûxqúÎÄɧáÃ2쇥¿Sí-fU°8øq³¤^[©±<'êéúe5F ä-d8cé(èÛ àå;;“aeI ÃàÐnR¾£@¶L0K`8ë ÆhMÕ¡IP°]u:2LlS°•,aîe*‘ݰ0V"ï¥%l˜Hˆ¸ x #/RžÓ”ÓqІ^!Q2Ɖ´¢«„gÄÁ芨0,A"®: |±ªVT ¶2K8õ#ùæ¡E  %szl­&—öX) ‹€°ðˆ}OéIWz=v!ö0ò©J`8ë ÆHê†&•3v*HôlCùMdö¹ä˜ÑÈG¾/ c]ÊìXa2×:”\„„1RQ§Q@ìÂir=üI0 `8« ÆÀƒ>¡J@REe$¶¡T‹€/ò–Á5QK:—»cIÑ톥ÖõÆÐz!}YYaZÐT£öªI¨pÖŽŠA>A©oÐý&˜ud˜t°LÁV²„¹iׄÄcìðT‡Æ¢}Á)0 ˆº3¬4H =4ºÂtn¼$ÃE@‘1MƒY10v`—+?z÷: &¶)ØÄ"`îCN!H'Tµe¶ë0P§)…À¼gkP¸¨|…éxûœÌ*Ž» †³Ž’›”вPu:2LlS°•,aîGò- —@z±(­Ôäî: ¢XP4…@ e…A…Az (£ÁU˜ôâ${ß("u¾I¨pÖ‘8 GJ&Š"m®²Ž S³LÁV '~$ßP_éüµ†¿aì”4%ƒ[ºL­n¡ÖùzãJ@ÝsÇ_À¬€è þiúÙ©WÒM~‰ž `6Ì]HÇLÂe§ëŒ³ë0èØÑV"QáPb1‚-BŸDfKMm†q $¶ÊôVe˜%0œuch%àb•€¥H0ëÈ0q°LÁV²„¹É7Òs.ÚdêDã¡%>È””Q.èM’Qȱ®‚Ъ ¶#ÐÐb+;CY<‘R)ܮ̔Ie“žAê@X=°u™ÿÄü|ÂÐ4 æQqW1–š‡  27Ô4X:a*µ Sôë0ùžaá\'!ìƒ8ƒ,â‰"K0”E¼­:&ŽlE£`»YÂÜ䛥.6v#nÃäU[4u—V[“Hpµµ³ W[ÛñgÏŠÈÃie/Ã+˯Óm5 °,`îBÞ2“{†nË2¦-8z Ýíª!åênÇЮ©Ž–n*†û c /wÐv#kè÷+™ÐØfæŸû 4h¥ì†Û†AÀbuPNÑ9SÔ¾fÑ`:ÔµŸ1]PçW¹+œå9cQ$v¤ j«ô §jžÕ3[W¸OìÏ>QXR+ž2a¨QTÍÓÔ¡aLÍîQÔWâX¸ž€ÂGv ,sÚ¬ æ[AíIa—Þg8Ë/`𲕠XËüÍøœÚ©µ&ûi·)µ3&¦¾ÁH„q†# µ†®Ö¨Ç,0-9‰ji¥ÀIr±“ÀpÖAŒÁLiˆ‚%ØÔ74&¶‚)ØJ–0÷#wQ2çFÍ4©W J‹¦þD¥^³m鉨¤Ä Sß`èMwGaSö® ˜5¤Ž(#P=sTØ©2éNA†‰M` 6‘%Ìø(waHA!í2»ïò(ÒMó79מPUŒAo¤òÅdΔí©ÓSE”}9£bLG…qڥѽÙŘžêÄÖÎúŽêÃo¹ø*ISçCõF#I¨r´QëDëL9n$ž½0éº ø´ô¦”·ßé"¨ÞÔ›DÆôwq T(D4–÷÷•ªÞ7Vªî¾±Ê¯w7LÕßÝTªš’+UwßX©ê}c¥êîO=ê¨:ÿÅ»F ‡÷çÝ5¾ÿVН¯ò#U­}!‰v#±î.$Ç'ûÃîüfxºy:|Eבg?þÄ{ø‡¾!¢V!ÂàM¯‡Æ³çÛýa{¼¾ ö—ç·Çë›í=ñ·Õ’<?âíå¿u±×âËÓÑÄ©¢FÅêt±ÈׇËK*5%:ô+ ß.i¤vT˜\üb d@qãuz´ÒêñÙËü%QÊŽÂÓ-°·ôÉòh°£ž¹å›áЩ5ôå¼¼Ó{LäeÖŽû5ÒŸDmßÔReýxw ”[µÞ1†PÆãzc(Ä$½Ø®ØÛô9”!Jz³–H„ˆs|'å°KšbP!‰A»‚–…>3!NLã]ÏyØ' G½«m¿t6Ìð×Íø›´vøA¨„6QHX\£Å@iWôjÜ GD8×Ú3&Û±êÂö+pµo¶Š×Šü_4äW¼mþL,íâa  ðlÁ.B`SG¢)÷e•¤'ŸáEô1²D' ½ã¥‚æ#½*¦FJ(5û==+!MÚ¡¼Y\@†à”¤ šÛL‚„k!§Å(vY¡Õ>ƒÕ>¿.?oP"ÈQ¶>:#‰ìÚÏ¢#o“µÃÙ‚hi<{>½¬(ÊùöÜÓöt[~œÚöÔÄA5‘R]PÒQ5QRöÃù÷›¯˜‡ Âü«¿ÓÓOŸ´hOÿâ[óöÂ~zð%þý¯ÿë·æŸ} ×0x Pp^ë ‡p€gV„¿ÅZ*W(ßœïînF8nŽÛûü¦kS¹éÆ?îËóãù#t*21Œ»ýþp}ûì’*1Ñáº~±‡³ë@ßyð#‚óÓ!²/¯X½ë‰¤Ï4ãÝæÕùÍËj³›K2õ3šó”¡Ûóãõ«ŽöùÛ»ýñùöþúþQC$.ëÇFmÏot}߬¹ÝgûÇí‹—ç7¬û½o4¢º-1·£mwÛÃÅööØ´_ìo¯®/©˜¶e¿¾…ípóQ’†.ÝŸJˆÊ+O§'k¯’­#¥ó^-³ÜÏvÁ{¼Þc‡±Õ™6[Ý/2p·-oòט˜90ÍtP大^"`>¹èEnåøä2æ¡“»\·ƒÆP‡‘­@ †æ£ÕmWÎ ô½³n§QÁ”[¨ñôuÒZKÇ5¥¾ì“^—ègVQíèå\e¬á¡rA$˜pæÒ»RÝÅCŸ½‘š)¨² ®s-Ðg"¢.Ã1qaê7vaÐêª kYÚ¤ï¶U ™ «é}.¨T¤‚ZÛžc.1sÑIuO~Ë^Äsú]Fý¬ë{ƒ¬Èƒ^Ó÷åQŒVçíñU{ܶÇû¥fN¡eµ¾~ uùŽuÃ.º§«4óÎendstream endobj 109 0 obj << /Filter /FlateDecode /Length 5516 >> stream xœí\ÍGn¿¿üÆyƒx:]ßU@’Ãv’ÅÆHl9lö =É3{$EÑ%{~$‹Uìqëc$È!0 5ùX$‹d‘¬ªîùå¸.î¸ÒýßóÍÁ/±ßÖã?²sKrþXRvKÍÇ›CiëRã@\~8Ôâ–Rݱä¸.Áƒh`ªkKNL•| KІj`,UÈq‰ÕL)†…x‰ªVmu)ijÕa«Tu‰¹¥ª+K]ÝF©I¥˜ UWjˆSŒ¼õøüðËÁ±)ýŸóÍñ÷ý½OǶ´ìóñÑ1³;:˜ÁEÌ~-‹Å£›ÃŸNn½¸ôÞ¥|úáâr]òº†vú§‹uiÎeNÿLز®5‡Ó¿]N­œþøÍÅeлvêÕUwúî[¦nµÖ|ú†¨nñô=¡×VWï›àÁ¼åÓwO?¸–×HôxïÚŸý“€MâÒª 4‰K—–½?^º¸TXþÑSÒ~è,C|³óî#V¡ýþÂ-ëÚr<ýÝÅeòžXŸ^äù7y9‘×ùx<½O·ãéÍxz=žþã4ovØL»ñôb<ý×›óÒ§¯§ÞëÒí!Ãäy±÷û.û]ä“ ÝíØêíò·óñÑø}ºì߯Ó7ûZ~8dÜÒRrþ1óW—¥¦¶¬îw±ã.§]øpz€¥>Ý>áK×ÔÏùj'æxò‘÷x‡Ï2žæÊ}³ÃûÙ—Ô®Þ~peî1üÝxšÉávGÈ¿;#^>ÐaMœ;‡íÍã#iìvÇ0¯w¦~½3õI÷njóßóñj‡Ï”òtÇpÓM¯vžÌÒyúAï<ÞML¯÷Œ<ãjW̧¯ŸÏZßéKÃåñŽ{ÞÝóŠ ¡ë)ý„=4ÂLaxPä/‚뵞ïà^îXÓ¸ù«yN‡ÿ¼3ã;â®v¸|µç”ÏÑzÏQ{|þs7é^íÍþÿXÍ™ûx Å"ÁQÖNÅ‚þ½µ¤Ã¶Kúô±néÉŽIÞíŠüjÇ<_YÎê—®³«÷½Ú™ÉoU¿uB|±Ú—kºxFøÜ?}FŸó%¦üí+Ø=£~óèð¯tPc^’?+6äG—J9ºàü’ýñîÙñß/ -¦ãÛƒ;þÿÿć-a]=bÀ®u©tBVŸw ¡­‹§£]û’ŠÁ\~8øÕÓYÂ1´R°™ÇÀ‰©™N.ìæ·°´8ä%çŸ1"¦¥‚Ÿ …E PL®…ã`×¥ ¹jÐWuôv gL˵•bô ¥s×ðä0ý\æîjõKñ ^ñ˜ZÈ0f_¢ŒQLΤ€k-.9.˜i†ä5,p‘¤ªc?L è†àWçÃÄÀ笥"& χ©…`¦–Âáþ<Îìæà¬ØP[^{¹#Úš—•Ä„ÊÑÑ\ 3<¸¤,9˜–—Ò EŽ‹Ë†C‡E Pô©DÐTb0":L#ºƒBµV›Yˆ£c #ÁPá^LþÆ`F˜¾ki%†JoäÄÔx©t˜ Š@j† ä%$Ã@aAã`qw ÜJÇŒS‚À4@uP ÕQlg!3k• B§}o âEF¢Ä;&Šœ¸”<`Ž-Ì( ØÏ—É@A‘p>L BG·3€þHLS„À4B•ÌÔQ8ÜŸcAÄ`–!¶¶š™/H[Ùõl•+‚ÇÌ•õv ‰³ñv‹qñaz»%·ä:}ÑáéíAÐ}9(,"Œ·›G ûáíæ$I o ÕQlg!6)~Ad§êh™«Ë,ÐyñJ9ʰ]ƒÁpϘGÅ•²FfäJm©Öe-lLßÈ­#ÆÌ‰3*Ñâ³cœêØ6ž• ² ´«äT„x.†ÞÞ0èpq>LLåxÖÒ–<$Ķ ôgUYGo§ ©ÉY§ ¸*[ÒQm$ B ¢¯)•A‰`0W6,iN›°„®lÂR1<’ªÍJÕ—îh yÁ„Z˱µÒ‚ÁHõE!D‘.„–9-wDL¼@QðÐn…’ü‚60¬àL˯TŠâIšKR((h€b a¥« \£d7EÌi¼+¡]Ee°™{À왲ç2c0Ásb÷n´R¼‡>R=<,Y¼S`9ËAa‘A#ƒ…Ø›àÖŒ i„j¡ª¥rØÎc3·L‹±Ø¹eä´!ƒk¦’_§Ü›¹ Š®ùà0`–aæF`Ôb Aû4õ-”BµTÛyÐÜ‚«ð0<Ð:òVðèêA!As ’,]ÔÀ\™%#79fÉa¡RÊ2Kn`x øÑˆ¸Røò˜ÌiÍÏK p¥†ÎÓ]æ¥0fŠž—¼5)bãöhpPXdðˆŽ‘<<9P '#C`¡Z(…j©¶óàH©ÈM)SÒEôÐÔ¢yÊÆð¡'WFˆc±RKº–ClmŽ;ÛAäIðà 0‹àQ"¹g2@¤a•OÓUB)TIå°™…4&ÞQ=Œ”:‚4&ŠATDJû´ ¡¬¥Û …þU˜Ò:Z¿ÕŠ)õN ‹®©“¹”MtµŒ iDWB TGe°…ÌŒ’ ·†]6ˆ^DÙÙ’¬R¸oƒŒ4`Ö}7ø7dÃAaq>ÄJŸ :7#B`¡J(ÅкsØÌBb‘H ãÅcæzyº&Ñ’² ¥2×aŠ<¹f( v†ƒÂ"â|˜¬&O‘¥]ª•!0P-”¢+© 6“àŒ…ôÅÕÌ{ß·½2#¤`/MTHY´º) Œ¤¬µÉæ„ú.®QSeF+Ö4ƒUöaPª¤s³é&R@· ¼Qm™R’ýʘ÷“¢„¨ŽÊ`; ©PØfá7Îôžs*UÔ€WÊæHÆÈxÔˆÄÕf¿:Ïã&ÆS[3[}$A*Éc3 °Ýo(…n':E‚Ýo8z{Àì7P?ŠÝÒl÷‚1Z3‡û³Ø$,¬-Úpš„ÐRÒ\áÑÆz“L:lÖ èéh0èpa–CÕLÂrèd‘Ñá™°j­ ¶³`_Ó,9 ¢K|z30põÎgÉ›´iÀš"×$?`XÔa㣵Œ)PôÖ1…EPŒã†ÉÁ­F¢Uùü›*§·êŸ7-B¡´MKx!ÏbLo™jÍ múïZíu¸Â"Àöm¶X —Ù!A`Û(…ª¨¶“}‰ä =Dê²ø¤ONÑmU®¼ýIÎ`8WÅV8M$äŒÃ'LI;hTi>Àò±$^ãsÅù«‚v+‘·c”7(hÃ2¯ü@d Áö‹SH¥&ñÆ`P ‡Ò,µ™9#؃ spøL ¤,Î9ÊAa‘A#h¯7@e—Œi€*¡ªdg°§‚ŠNŠÃ1õ蚘ì¥!*Åo¡èqÍ%²gy•&q}ÿ j‡+œºç'&rlLÐÞW#A`¡*tŠ¡bçpo\ WD$m/ÃJÛ7:ÿÅv0`#JõZˆi70W›cR$«ì1iAûbOJæJ:Š*ûHÄdsÒÞ®Hò!îghËK+sµñ~Í`¹W½µÃÖJ¡V ³ë°Nq¸{ñF')*Báé‚A1”ì¶³àõÝÐßT?jØè«™ª3ÌK™ÎàÒLŒx¡°e#|Ë9Œ"hÝò©Ÿèðö"SS '–6`.‹NÚ_Ápcƒ²€óaÀH@rŽÝG#ó•ò˜ì¡(…j(îMálŽÓá~Gv¹1lål²W:¸²Ãó8}RÈa¹r˜°È˜ÇéH;ÚAtÈ&|¼®2žÇ銙ZæÞalç!E ÏtQ3»ÇéÍ_( Ú:z‹¶} Èê¦{„¯8+ƒîq`zó§ zo8$Œæqè ª£2ØÎbÓ+¡g£@7½z90•6%"»®fs×aÓ+ ŠÞ  ‹Ó+!|èkp-SK2dtxöJƒ@uTÛYlâ±D'7]Cg×&K*r‘Õc¥Ã&E¶ÎaÂ"ÃÄc lãɹª šhÄTQ†ßŸc‚èÈ.¡1ôœŠ³«œySâƒ-$ÚÎÓžp`äø…²÷züB>@†l¼WXÙ´'˜~êœ)í#”²,î‰)r”s”}-2ÝÒ©t >ÓYªï·=¢6Z “ƒÂ"ƒGt ÌOÄÁæV†À4BµP ÕR9lçÁöÌHà+ „~—:1ˆK:óÌpjä|œø’Î×S0ÉÅX9têh^Öb8(,2h„bÀ‹blmƒ32¦ª…R¨–Êa;³)5¼ÅnÕÔ첓SÉô¼ÍŽmÔ…g­QL/&Ê`€"a›P›z:f#@àYl&…ª(îO‚SãóE:ñì´AûGÙ.ÂÅr3”¸¥ŽYn†R?ŽèÌ)4£à4b`Vî@¸„ì† i„j¡CïÎa;{¨ßݤ§½Ä …È—3X¶©# ;‡,c|169À ´2¶©# ;‡í<ú-§xŸ®ß$QKE§@ ;}¾ªo…¯ÂÞœÐ[5'Ô¾Ö2oNèŠ-¸y­Ñass2(úÅÈà 0K07' Q™ó¼9i謽!°¹9]Ge`§ ™|¥G¾%–­o ŽJh ÛAω<Òi@0Ù!‚ŽXdŸ‡0ŠÜÆ·•FW>Cž˜+{ä?6zä?ºýqä¿íÿ â3ðÀ°È]](ðÅQ¤#rº¯Ä.-se‚™o:« fÔ/y㡇àÊW==ОÁ<)$T'…EÆ æè>qsHr8e<ƒyR¨–Êa;ò¿Ãk¢ í3j+4;¶<þýàk<ŽÊ1í/õóL7×¼ƒºO41Ô!2шÆA41“ÈÃûäÚI40“¨å¤QÄ$¡{RJƒ“f`&gÛh40ƒˆƒ-ZN3‰¶61F$ú¤ n¦cƒ{ŸT¡“hÔÁ!¢:;þ¤Š¾¨¢³­5œ<žh·zŠòœéíǬϠ©ôœè<¥žÜJ¿¬ñä¼á0|¼ó5Þø ;±›‰!¸îñ_SÑv~ 6Dô…[­†¨#6Dt•³!êKd^„"Elˆºž“È(þI. ó_’zÔ•j‚£”ÏÚ<[2–Ü'Pb(ßÈÊÕRbØž÷߬{ÏÚõή ýß¾v\ž^Ì¢"‹Tßhb§«ÇwO_>{õêâÑOƉÞ8âÝ+ºûþaßÍíÝÅ%ÝŒ@éÓëÇ×/^¿›û²×ÇHz ÃÓn/DL•Cnk\_”¨Èð46!´Ùº™ˆê%Y —É‘àžaPŠð M†‚,bt°ô3éÈAr§Or8¤~n}{÷ì—7Ï^žßÑ"ù•!>¯ÂöÏäõTJïsmÎE'ÕÄP{(Í9~µbMÌ$ ˜á~c0“(~aÌ Ì$ê—!˜IÔKª!˜AÈÖÅ'fÝ3‹5Ô úŒ2[ÑnÂËΩ—¹Ìò±gm ªÓi%¶$¨Î¿?˜¥e©ŽˆÈµAb'KkCDG_5¢±´>D4–Ö†ˆÏPÈ;ÑXZ"Z¹øN4—Ö†( צ¬³#K††þóÕ*žø3‰x¿«1££Ë}/Çñ[”ü+všdù½]Žo‡­uÐx1/’ÅÚ|ÅæOGHa1“?#0žÞs_¤,@É·yW¢1ê˜y”¬$ýE}&ÌùÖ»nØÑÉ@0?¡±ü˜FBó³ü»´á©ÑŽ+Æö¾{Tô^‹ÛtíƒjtíƒÊ´íƒj´íƒÊôíC‹Ñ·+•mÜïëj¨ŒöŸœÙGæôµ‡ûßhÞ?¾2Ô«»ê"! \dt‡;BƒZsÔQ÷Û Ñ‚åvzÁNÏßÈß³h«O§;·Zr9=£?œj:…e’Wm‹ªéë§Öô“'þ °†Gï÷’ÿ¤ÆJiL¯rkm޾'×5Ä\;UÇŸ÷®TÏJ …ž¢¡¤â°ÖÓ+#à#Ü=5*m,bÍðê‚>=+®2釄CŸéò7ñ#©OÀž ªÉ¨7½a“µêkŸKvÀÞ‘è`aÝhrÇä 2"ešæõ{¸’Nï.h]®üÙ"IHkfÅRõ¹Þsó-É9úFì‚…á6\IßuM1¢`œžsxyz[s|A÷äâИ7ë†×ò_èŒZäµ–Sâò.ûøK:’п>`"BÕÃêpçØ¶y—N?ûµÆˆÛjˆy¯° ¥{Ȳ޳¸ñ§ÂpÍŽLõ§È Ö/_ž³&«ÏóbíÞxùžÐ¹†‘]>)ì$Ø=²ÊZw–䉌-k‚Ô7–‘ñb­l4{ÕÕMß·È7z~-fEë}ÏîŒæ­Õdóô½l¶±ŠÀ^cKÕÚïö=Ú|=ì÷!—Ñ)¦t-1J·Î-hÞJ®ÍÙüu?-ôxeÖc½§}8é%„;ûM 1¶È²½ÇEÙðC*Ó™X›F¥÷-h¦ž¾M¥hG’.bÛûíülܘÝ6YßYà%e€V“¬p,§Ÿ-¿÷¦_“ÃwãORz¸B…LxW,“ŠÞ™RqC3‹ô¢6)e¬cN{(ÎÙo*Ì2%šÍÁÿ“(dendstream endobj 110 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1298 >> stream xœ%’yPSWÆß#sÊÄÂø¦ ³&zøÞz&âÿÂì`-ÑÚeKT¢u€•78áò2»<}ówr¯ö:ŒÀM¸vü‰ÑÛ%BkR—/×)À `ø$­‰›ýi’ aøBƒ¡œÆþÇ"~æ„ «Ï„hî‹ÕD{I-WÁ@Nß æU¦d¤:pBÅçŽ<€>¡À¹Œ³2GÉ6È'§á=”Þ2ÐÐk_Šø{Â*Å™ûÒüÓò„$`ˆB|õÌÍó[^íƒq§ëëÄ‘|à²Èu½!]WÛXÚÖW¾#‡«ëìÓÿÌ“»®ž«?[%'™D•–®íwö;yµd’P› ­‘k|Ž–Æ%(Æ£h)Â_q”}|)Èe–oˆ[*±‚…¼-¯¨ª™S±ÕÑ1;÷(Qº g ×ó§OF–þDÄ5Ê~hüÎ3#³.;2ÕeýüÍ-Êêë*š«ÔEäqÆ9ÀÜèÙ¾"P=oæ!y¬6C§M ’˜„(åÞE+¿®œæ]~ñ¯Ñ“5[ÞWR­Í‹Û«Õ&§r¯Ä¯6Y„â½EÐ4.2TÜ•== ôŠæ´fh¤Ä ä¿HÜùÙ,ùt½µzÍqQJÇhœcÀÖq*øÓ¬)¥ aΖ×誋; ’)NÍÎÔhàp*§NñKþ ‚`mÁºÒÔ#Г åÄ$I€”²Â¬ìÂ|®Å`ªÖ7FéöTEån…M Ìߺ%(3VÁÒºýí9:=T1»«câ£R¶¸ŽyáttÅ)ÏÐ-f¿ r_Ebt÷F'ourðEm }iìTúã]6˘5Üôi¿}îá‹îÆUƒ\¿=K ÁÂuŒ*6:rð›˜ÇWðƱ"!æy㢠þ ›ŸÙY¹L9,‰âtdη¹ÚM£«I¼E»8»¸p ¤0/÷Ϭb`0]¬Ü¾‘X‘9Iä#ðgÖ~¨ÔÝE\¹ðË4»x•yë~\p~ _^ñŸãköŸŽ&\`þ%’Ó„&6³–;ÏÞÖ³‹sض&¼"Cû`´ÃÑúJ‘vì^©çˆâ9V™R#ÄõÊHý;£á‹Ý‰x›V«…ÜtÎ} ‹s6ïëÞ!ö>N‘nóœ:=EÊØ¨{Ë¿ò嵓¼µ bûñéxߌÅQÑa> þU}âhqÔ?ZñuBDúf"Fg¨Å…茎¨ÂÃD:F8ç‘Q*ÎO‘²T¢èÝÜ¥4Æým0¤ë¹ÏÏ•¬ ÔG#:wžÒ¶A? åè[Z‹KôõC3g Þa^ œäS8©¹g¹ÌdRYÌŽ¢þIÜœendstream endobj 111 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 4066 >> stream xœWyXS×¶?1’sD *ž mobE­s«}ýÔVm•:Ïó€ ˆ J “@˜“¬ Œ! * ©­-¶¶Õz«Ö×j[û{µ¶®C7ï}o'Që}_kï»'ùòå³×Þk­ßúý~[ÄôïLjD"'參¦Ûþ¼¸è~«ìMw1¸ô/{i¨i¾=øº[Ç ÆöŒ™>'"R17*:&vWœü¶„€¥Û—­Ù±3T¶~ÂÄI¯Œ;ЕaF0Ë/f³’YÅŒfV3k˜µÌ:f=³™Ãld¼™MÌ»Ì$f.ó*3™ÏLf0 ™EÌbf ³”YÆLcžc\7†c0Î"gÑ@f,=)ÓŸÉyŠJE}ýÒú¡8X|®bÿ.§N¥É/l77›»0`ò€Ïœ×8Ÿ8e Ñ…u9ÿÜæçÚ\_tmqýÙ­}PÚ ŽAŸº7xÚà‚Áw†t¯T®½Å`E«0¿BÔØ»J,Lì]Ìg—¨ö$A¨³²’Hhß©;cBfi89Û”k†Cpª4§ÔÇ\¼¬ì*m¢Ê¡P§×é"ïÉ 2>/M«‚lϰՠÊÙ¶Ü÷¡Ú ¾QÙ%²KAY˜fáÈT\Ë¥ñk'Wá,X'k2­yÿ ta˜{.Cÿëßßïù°dÓr)Ib}•°F<ª+×v@”hŽ;ޱ¢@cåp ß@]ÄK`ÉF˜[ç%Gp‰ûÅ;,¥t’³Ÿfn’‘Š? ´P í2×ÞPZ”OLxÈ:½¾Ås·çþ4Ì]À8ùF]ÁQ)>/¹Û)Ö³ÁJS2-lËï|! Ç·ø){OËn=!ÅoY2ÞV¼‹ š"#ãXXþí!uqÍ™Gà}謮;͹Çk§IpL±“•Ÿ^Ð)C|´Æ^p Pe¥ð‚UT!¨Å¸‘Wå«ó¡€«=åR+»U£Ù!Á¹´ •” A8š G~ÒU!Â]Á^| ¯xTv0ÐrV6Låjˆ¹6Bg_U§Þ»¦Qç(½ˆÞõ7ñѶ½+Žƒñ;¾ê£æ¼JÛÚ•vB $C€cÇVMi$ÄAš:K•ù*ÉõæìJµ¹žµV]-=£¯j¥r9=c¨cEThŠ“ •% u¶4ÓI¬Ç,É2ÒÏó4¶çæKs  {…ÃÇ::kjÃäɯúÔÜ4#!¯8¯è>î÷ø™ìÏKËSÁÓ¹EyEœÁLq0ØTwó€iHë%ŸøÖ…ó–aî>J¼už×û×·gê1~-;±†UÂÆà`è(“¢7KI«Ñ¯9h¿q#pSçú/–W&ÖšË+j[·è52smGap]ݯËv²îµÌZõ;Ù B½Cb×C7ýNäY)Ýãh:YjáÒ?çǽ¶eó–ÆcŸvó¥´£öa• ÅbücùÌBÐÒîÒ­={¬5ÙÊ®Š¤‰RyTf£º$ƒ–9)]™µx†ÇÌŸ2 Õ:(ðC±¡Ú¶"P­ÐØÚº ¶;V|:uûŠŸ ï«X·06jãòUê]@5´Žjh4@ƒ¦ÁÁ\Q¹ª½PD{VjÜWc­­7Õ_íQKƒe2-%Ú&¼-ºm+mO7¶k(akáSP) 7aP å4QßOiü}7,¬¿ýMeß 1ªWŸå³JA:®¶*)ˆ6©ã4þfOªÒåjC$Néc=¢VÄ® Ÿ¿<£ ±D¥Û£µìF®6¾,&*!)Ò¯%èýOZ?8Y#Å…Â[ŵûšÏè<­l¨J)OÏN»‚!”9i9£Iº‡«°YiÁƒ?ÖÙeË ±ÀãwåÄ%C8§¨ˆ«­­ÜkýxnÓëdèøád0ጥöCրϔ R‚:1K3oµbp‹§¿c𵯞.9¡Ž¢ôúÛl°öЬ"e^÷úõJy­Æ©ïì‘?{–ÎE>\€{ŸbØYjJÌB{HW|QZm%3$» 2HLß#œÎ¨Ðè"Á“Ìx"?Ùl$øŒ¢4RWªí¤"gÔœp@et˜eB«Õ¢æ¿}J^º<‹A_˜WÈ=&ÄçíP É›ÎQ(žèb“CÕî]r?ßøØ 5ŠE«úCŠÁ£ùÇkT54[C Ùe4$â¹Üøì|¿ã3©N¸ Kx2ø£qà—m­•û(³8þ c ž†…ÝOÚK4Ü*¼c£²÷u>à‚xj†Ü"éS¦¸¾ƒ‘c +Ìì{¸'UOáäY{ÊeÂQÖ ÷)ªÖªwk|`¤hW;@p|"e}oS@úÒæ‡Ôà,»wR}fó |•*^}‹'—‰^döË+芮« ²óÓÓT™9ÙŽQSÔ»Á¶™cwvjNC §­á qÒõ2 œ„ÓþZ2”sE‡GEI„Nçnü Æãv݈Nìm­EEêœ"iZUô(NQž`2ï+¯m Ü¿fæô¯H ;C~™|õ"ŽX‡E9hÁZÈ×ñô}±à…gy~ÿ»Û?üŽÈd„üÅlË=Eý_;œ‚¶§Ñ‡©¬ 9¬ëm NÒÏÏþ7ed$õ'Ed›—ô|mÆL³¨îî¾ØxJŒƒq>oJ²înîÖùÏ.wF4¦”ÊŽ< ÈVedC§,ˆ¯.-+ª,O¶„û)ƒC¤‘UÛK©»œà=Ɔúà²Ý2µ:"|aGY°9aCR@læÞýiE·_Ž_lŽ/¨FºúÀJ˜@¹52táùñf Ë2½±°„»ŸÃO»Uf]ãÞ™±Âl´wÆÅÄÀ¸É²v2‹o@7Í›«fùM;ûèɲ¢O¯É—ûˆ®@Œ‹{ñOWÙ³-$.bÿýÇØ"_Mo®ØdCJ º 3ä22³é,ÞÀ%Â2žŒ´åLaõs•÷é*µïAÂN½/ÊÑ–¹ßËšøúèš0yLTxxu”µ¾¦¦^JQHiW¸è¾ýÆ)dÞ¥áÁp[ø×lῲg*cÃs^™¯R€!ZÚPȧôZž¹þƒˆîË=Ÿü—ÔýFï„þ¶-¢£ÃÂj¢ë[ØeRRŠÑÃsbjXÃxAÁþaßÓ™´-Ð &MÛSe¼Çž9q‡ +‹Ý“ ÉžiªT¹=Íía»øÕ9ÒÜ ÑÚà2×zܽÚ~ø³\ª¤!ÔâQuSh×:¦Û¨1dR Ÿ”’žÁÙ Û+j±ÍŸ—<«·ípöj:ÿébwçé;f°í;̽Ó~ÍDæÒ±Ó'÷mŸû¬®?FÈ¿ôòSù,;íª 0ø‚7lòX—úaÀÁ©ðlZ¿Ë—s¿¢¹+ùÿÜOkŽ­ì}Ù**ÿM'îMG–'Ó„TMžª€Ú7k7˜)Gú©6Ru_C¥f©Cy»¨ò'¦T,  ¯QQ³I^î›áA¦ »©aÔQÃøg+»¡JÑ¿¯ÏCŸ¬Ï2ÀjjóËq¦ï³úróu™¥ài}¾¾× _{Û̦m®H® ¥Ö3"´+½ìÑT‡A d«sÔ™¶^’µ•ø2"\d¢þ¡Œ§†súÛÞ9ÙTÒ5\v~fAñ•‹èü¹âÐöøÈÈÈòÈ&£QKGà.ýXTŒf16áRþcb^ÊÚ AC}Œ7œàë¢MÔQῃ›„¿=Ún)Ý.H¸ÊŸQ´ø?Ž\R’WX,Õé´Z*P:ÈJ_¶ÌÇR˜JÙöÃ]ý;ºÐáð"ºÊßVUˆîõˆñ&IçA¯ÊÍ* <:oÇ€Þ€¯Öã |_ÈËÓ傞+ÈÎËLìMDk¥>ã£GÞ…Dr’8HÜnÌ1W Ï+ýSiè.Ìãá?S±ßz¯@·I_Ò‹Xš:C•­SdÊ>XýÈK@š€x)ˆE^T«rrèQUºŒ"Ãõó(:!í¸]ó3  5·Ÿ(u‰;ÏÝüA,\´k— Õ®ëím¹È2þ_í:ܸ2Æ7+8@ºË°w5p^„]=BFœþIÉþxÚð+Üù¯¨iÆ—ù{ך>14j’ê¥éªè4 š´Ü¸jJ©aIûxxqð­ºGIЯXøaŸ¤¡¨5jz1âˆ+ö“<¸y »º)+Ú$Ýž“%§1Âj«Í•å–î5mo-_‘´IWP³¸ÑdÀš—ÿŒþô7Ø£ù)Ûd¤êÙo ýؾ/îò¿ÞÜÒТ ·Jý²é•#’ ãË38jºhÎRçþS+\€‹3¸ —! ó¿Ô¢ nendstream endobj 112 0 obj << /Filter /FlateDecode /Length 3664 >> stream xœí[[[·~Wû#ôЇ£Ôç„÷K€h »H‘½E $}¥³+%Zi­Ënœ‡þöÎ<äP>Z»†ÝAs©áp8üfæ#ózÊ:>eø_úwq;òÓ‡ ›þeb8ï4S« ÞN¬gS¹c3y9q–wÖñ©5ŠuR€PîqÜwF)-œì´"R¹‡JI£:åÈ„Z+Ù¡.2ã`–󮳺X•þ¦Fé:e<1ÊqÛ9Æ+£ŠÔÐSI%£òtƒMd>6½™¼žðàÊiúgq;ýóÕäóBO}ç0Ó«ëIt3ŸrpW°zf;W·“ï3k…0Ú4/g-ë cÒ7_ÎXç97\6Ã^˘3²ù;t+n´·ÍWÏf­”`¶KÒŒ;Þ|ýäÖ:·–#zVÅœÏJs‘ßåÖ6·îGlÜÙ8+ÿ]š§•ë‘áOÊbù|Dp^ÿPšû‘5”Öíxª†0‚°õZÙéÕW“«Ï¾k~?k•å+Oü3ñO7â½×¹u»]ßUþ½€ë¹õŒîšûù )§¦óV:D+D }ÚrP¦…œ^-¥W;ÐïÓÞ5/ç·w›>ýíDslýátµy´î ¨\½œç_ÌZÎÀæËõò¸ #Œè W:Ñ ø]àÜÕ×I㹚’¾k»í}¿?"€ otŒ7¯Þ –˜æ´]'; r©¦­…(̃ip计ÙÊ'emËë¢ÈpΟ 3ªæ®½ŸoNƒ|%‰Á„|Q:{T=̵\__÷û~» _o‹‘·ý|{¦WÍ«þøÐ÷Û¢íf¿;ݕ߯ûþX”Ï·ËðG-å@éqßÊ$kÒÞ¦}šoʘã®È°à\¶×¥÷®ß/úí±Ø›y½^ž¯ üîý"¨PwÊÚ°–I÷Ñ¥-J€­è¸Ž›N¥Ë®*¸BpŽëÛ9@6N0sÙjºuðSíðÊUæÌ¡t˜ºí§*VÁ_žiÐL’Œ§i`†ZúÁ Ĩ÷ÒIöÒŽÖž6oKó¡4×¥¹,Íci®f#΀0’X3ÓÜÕÆ’Ý"0#½]ˆ,gâíXWP'µ¤±žz>˜…݇™ù¯,ô—ÌB5ÿ¿±Ðçù÷?åÖW¹õòùh ¬oûÍbUjp`§HIÞ—™B†ú`v”˜¦þOÃKÅ»y©ö‘–¾‹’Š_)é'¡¤™®µÜtZ ”6Ùþb(i¦Ý捻  ,”©¡ç(i,SŠa Ó‘“ÊKœ\ý~œö‡[okNªЛâ¤3 7gœ{ý£”T ®õÿJJ…p$ðOjøG㤨PzÛ|;sª×sã8ÔK^ 5æfYE?0®©«.pÝbô9ãŒÞ–¹ûÎ) Ø:+jÎyN4?çTÁzö18çÙ%n+0@„Pˆ÷T¬Ú¹òÑCwÜèfŽ®•¶sÎæ‡ØVüL# É]X¡tÈý·D¢HòÒˆ¸mÒ{¥d“ôI‡N*×½Û ¨2Â"fqJ“ôIìNöá¦8+ˆ…³ p‡J$Dƒ•iÅÂCŽœoBqƫʒ#†à[6o’ Y–Ø“©Á$Á²ç8íÉG,Íý´ûIœÆÑšoË-ú2vjóŠš!$$/,ó¹“.Ùp«•¢ v7ÔÐùmòi ggsôX4‰_š&!R¸6ZfÂàq×"~puBÓ5ïË·€ÈâÒø6Ó[TSf™“q¼„dýž Ãrªî¨[‡ Özã! h«²qËT’¤õ2mA—§– rL≠üì]+5S¹`Uö4˜ '_Æ b¸0\3˜ìGŸ`\V8+®%î\¦O(Þt»éÂÑšá ±’âåU ÀSVGvŸÊîB´z¥•ˆi'ö§´cIÚ‘xÂòÉEÆ/9 ÀÞ… ¢Äߥ~`aQÂðë.‡1îuX¥d€m|—ü/7¼·ï„âE‡‚˜ß¦|¯ÀSx§!ÀÿjØ-­¼ˆkK1KsLZˆéð°Ö7>ŸY¼V“a¿³æu°ÔhðT(hPnÁ¤í~¦9˜*l~µŒýþÕ ~*>@²gçê5¦¶†—RoÈÒ q§ §&¿ŸiÄ4ЪT €•´1Îп)KÃ~Zw–¥O£¸Ã´ VLC9A´‹ ö_ Ï胀U”À/à "}çsAQº‰ÂUªÔ½*)‰ b™ÓD4æ9fqÀð§8Šäìø¡( “ 6H0èçz¾ö©iŠ©uETp¶Gw.Ê^hUðŒk–QåÈ7¨Cc1Ž3U¤Ä1…RáN;L“¾0¤!Á1'¸Ng63ŽÎØðe pÓ-â\îÞRw b#ØÁ-ͨ„õ†˜†Ù€$mI†K*Œs¤æµ¥ã©˜0­Œè'ƒkÌ}Â^_{ƒlÅ]Ó´]ror2˜“¤\¯5L-CY*a§†bJQ°£™ø ëál›¿„8NÌ`Y&¬‹Mò(Ø4aCí ²†èC™å0KJðDÉÀhÜN4ÃeAbSë¦~¦µx‰‡:B¸ €€Nà3¦"+u"Ké+VÚWt‡š¼ÉØ£9x{­óµËͺœÅîG)𹘨AFIXÄœ}.ÜŒP‚{‚2Á¨lÍlP-c¶>ýóïÇ2ªï1ª¡åÏy|XY¾1±3«|¼§ &Õêlàöâùpøý#‘‰1ƒ©+Kt”€='ö·ù] î~á 5‰%GÿÒ€6sÆZH£ F×ÁN{‰çAu|]ê ñxºñPHXÈ@²½”?£„‡“K NãáúzœÔÍï  Hö%ÅhG$(C `®àY7§ŸJ<œáíË ‚0*±Œª5ä×·¸dÐ|¢1“O¾Ý°+®¹Ši-®ÕhNM_‘8É H¢™Ñþ3{ïyºÎ³Œ|rò“𛩼*§â‡X> ©rP!™ž¶Õ˜‰zœ®©^Î%q"²¨W Å"ÈʳâpF¤ãX¼u¨o;2¨Ù8v;küeÊXnR0ë1î1ÎÓb’8/zIßSrª‹¬ÌÌßë‰W+5_½\~ðòM\  7â0Î\R †Iz~’”Ñ‹¤ñµ’xŸSr²‰ýîZÐ2$(ØÛAê oBšMƒ¯…Úò#¾LôÃ{¡Û»}8 ?Ã7#øbèëÝþ¸*Ï3žöÛã¾'ùæåî”^&áóLéy­ñ)4‰Á¢Šb(ÜVÅ-þBñ=LPàò‹ §‚êàJ¡LYeË o&ÿáŒhendstream endobj 113 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 165 >> stream xœšeÿCMSS9‹‹ùùJ‹ ‹ ›÷¿¼¹R3Oøˆù-‹ ÷ºÌ÷“Æìè÷ßâøF÷Ùñ§ÓÓ‹Ýòûßû#ûýJè÷Ï÷4÷RûÏëüRø÷“÷'÷ÏSCJNMû 7Ÿ ‹ ‹ ‹ à;¬endstream endobj 114 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 198 >> stream xœcd`ab`dddsöõõ´±$º¾?ûÉÆÚÍÃÜÍÃ2û»½Ð~Á=ü;@€±„!”‰‘‘¥èGßö†%?ÄV}wžÏxîó÷Ì*¢¯ØæNïž;£±»RÞˆmËw+ÖÙu3*³›ó;å’°ê²UÔwWÖMëž+ÿ„Íý÷’æÜîÎîZÉ€™û?û®2uBÇ¤ÆÆ®Žª¹çȨ¨nŽòúköMïŸ%Ï'ÇÅb>Ÿ‡³›‡«›‡»›GˆÉTE.endstream endobj 115 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1473 >> stream xœ¥TiPgÞ%Éf‹¨H»NuÚݶZGE¦=Ïó>ßû>$!õ H’¤¾ \¹r†ëëÃÝ8Y0 ‚ÌèE‚—¼¤eÈWø<qex»7áz†«5±ñ ÚĤð-[·©"·DL,#V+‰b5±†PóˆùÄBb@,%¼EBJh‰Sä2Ûc´G²‡S¢”Ü‘.”Zdá²ê3Š,à ð¨ƒ'Ÿ8Q°S"(P+ó|]ëŒÐ ©Q[Y{^ùfv6•¦è¨j(åNaÇ&÷ }I•Ø¡®> Ü&äOýÖs´­­$!˜Å Ñò4µXewUMTE‰|Ù<ºÌ“çœÈ$òE¢yû=Ç2,ó½±÷Ó‰HФOŸ!oGàÉŒ"èFïî‹ÝW/N¤Pp"ŽçѤײN Ráxf–Pªv{SÊ) ‘äÙS䃆|ñKCÃSÕ*®1}¿ú­–^UnÉSHa::Ú.tw,ø|jÀBÅÜ-·¿gûMrð$š(riÑæÅå{ˆ`ó•ö]Å@[ÍåvÓŽÖéË—$„¬çjåõY…‘,–R†~Ô2îì˜å>¡ ª¤F”ª¥b‰Û‘ë<:ÄKác¦ª£µÙ;vía·šÖA*ÐøÃdͪ EY\C¢=û¥¾*çV:¬¥cÔ*ߥæŽ$vWeÎa ÐJÐ&q“刭+-)°dϨÎC¥hÄLÛ㦶˜Ú„R.âHü~¿Òð‹Ã1ºªÎþèQ~¤ÎÈîÕTÃA ÕÄõkêà_V’È×Ù×µNð`Ð4÷Uâi·)X•.BvÖt¹>¢¢]ÞÅjÌuÕµ{ÝΣq¡OÊÎcs×Gè"ö‡­ÝŒ^ò¤Mˆ•sD઴WÏaOêÍèTQc1?ñ²ªAŽyº¬¡¾_¤´‚F™à5ÒoÀË„ ‰*‚ÛmP_×'y¨ú µŸ”åQ9Õú²¾5œÍ)SÂ6È1è—e(ÓCsâé> stream xœºEÿCMR7‹‹øù,‹ ‹ ›÷<¾»¸2pøˆøÍ‹à÷ìõè¯Êõ÷ƒìø÷JiˆuP~ƒ…>‹}‹ûLôè®§ÇºÕÆÐÉ‹ê÷ !Õûû74/X¶†•£¨œ¯„®WªÒÏ¡º‹ï¿=:4MFkgû…û‚‚‹‰‹oø0 7Ÿ ‹ ‹ ‹ aÍJhendstream endobj 117 0 obj << /Filter /FlateDecode /Length 4456 >> stream xœµ[[c·‘~ï_!ìK$¯uÂûeI0k8‰Ä@Æ {4ÝênÙj©-©ç‚ö·o‹‡,Q=#‹lЧX¬*‹_Ù¿ÎÄ gÿåÿß<^©ÁÄÙû+1ûË•3~Ð^μurnöx”\Œ¥g{õýU~p&̼3bÐ ¨JOqp6QY mÈÆNc|´l>k=| Í|£T!†Á[&Tîà29ã"“)H?!¹L•(w44Y¦2Û(›MÌî¯~½’ɳü¿›ÇÙ^_ýþ²³8D§Üìú,gÒèÁk0,%âúñêÇùëï^ÿmÔ£›ÿ×÷ ˜5kÔü›Å–GãõüûÅRk=8©æÿœ’ˆ„RqþÝ_ð—"8ýß×ß‚ F2(kƒ9®oaÖ7‰8†7+f†ˆç~qýóÕ××Wÿ¸2C à$ ¬…œ¹â pÁŒ‡–7¥ÍsÑ4ñÓ¸€æ5dš7 9™ÿq±´ läü}éܔֶ´nJk_ZJk(­Si­KëØùúÓ¼4¿éuö¤¹íðy¨ |Q›=iw¥õ®#ã¡'ã¢rüßÚ|î°Üt†Y‡TÉWÂU%üCm::ÔÖão°T ]SÊ!Zãg×»ºþâÇù¿/–^ktÄOX﮳ê›Ý©«Õuù^ðŸ¥õ5·=í­gnˆ^ôjØ«Æ5[Jàf•¦=÷Ãf{³ÿ°ß-–‚‹Ó­v¿Œ?ÀýžÓùi}<Õî÷›ÓCýu³ß6»çÍé#Èa}‡Ãúæ´Î(˲În‡¨aǦÙoW§Õ«ÅRÊ4jþÍOÀùXã§ï,Ž|WiÛÛ> ÚùègìÃ(Ä»õá„~—5y[ÄqóçÝæD‚x9H Qéa¿—Ñ?äQ* ÁǦ”Æ~9þtó§å»Õöy¹Bhd¤ð_&(lÉ5VÛÓú°[6ïØ¸‡OûÓÃú¸9¾ª§²mºÝ߬’õFmŽ›»qxͱ*·ÛÓ‡ùú×çÕ¶Òœö•F$áP¢hkïÓúp³Þª`Å»Íízw³®K¹Ù  ù«Ä 2àú¡ý¼€è˜ì·Œ°&ÕRÇ͸äôÕÞÇÕãÓ¶ÌÁäxÚ<®ÀÉ^9o7wwëÃT”*{±P²:[U/ELβ´ƒ 圂àÌ®ÄØóÒ!õ,€Î4„5†DN): þ g¡ R¸[›VZ=¿ÆÃ dÊBx‚þ¼óEak(8Äí\•Üä óÕiML&oŽË(¤Ê§¥ Œ6¢WF9Òî‘µÐÆ…yDH_1аQpJΟxÿ„h© ìF¡8Ÿ;ê…³syà×D¢„ƒ †.¡•ö`´п-tÐA⹓¼F€þ0 ƒ ç¤@ˆátäsïcˆUÐ%‚ë)ì«3ÿB3èˆý€œ”õ ’€a@!^ÅÄ_'€CKÞˆÚEˆáû4©1 ø!Û@¾d‚‘a^Q¾J°Ú€, B¿ˆQí’²MÓYAèÒ|_››Ú¼­ÍSm>,:b,`IYæ¾åR¯ª©™b¬w¨kXŽšÊz &‚³¥|ª Íð•ãŒÂ¡•-Á mÕxDˆ¦NQü „c4ýÊ4,Œt•¬¥ó•þwQƒ#ñ(L±”p8ÂIBÒ½^, D®ûCÒטaõ”÷¬tlˆ7(ò¶Ö>jrZð6ÁÐk”ÀÑ1@ˆlRƒ “®ïhÀàÍ4°öä#:Fc48ú; MÓtïÊÃ<ƧõBEˆï+jû!eS±óO ÄÁäû»¤høÐ¤Mð2N&¯í53ÂgQ%êÅtáÄh…AO’‘ŠÏ5+Xm“Ín cæ ‰³$ë½aœi`Ô6Úù¶Rs©oGma veö¼òžgà•Ê»ÑãW”Ì${ Ù¥ôNyj’Q÷ !ɇ ë$LGªÕ5 NØV€¿ŒO$Z‚gù ® d2f?ÈÝÛ²û>¿ž+ªhØ` ‰Ú| ƒúh%bZÌ Á{É7 ²J°í‘º@ñÁÞ¨õÖ¢\~¾ÚÔubæ^½e;­Èzä¦R;•½aHˆ^?å}YÍ&°U¬ vž;xû¦·í!Á²…‘×] )uä°»ê°ÜIr«½åªá.# Æoüý#Qh°ûSQyuƒv‡Mà”*v¿_S$‘!’G•b…Qøw ”ºóvêûMºпK´‡l±¬ÆßQ4¼Ws&Äü#MâÚÞ©„X€Å‚õ†0nXr4ê/3…0saz/A&”¨ aêÏOÕŸŸ¦ ù‚¬Y,Fï7bB^<#MÚ_Ø)¤£í@vtF^^1ð+4†ÝSô•ªqb6s:óûdHCäÝ7©WÒ»¦IÀËßVbÚ`NÇ%Úß:©‹{I㡞"=,aÐ{ô5ˆeš+ßÄ×ÄJ*¯šà~¿ç޼©;þ¦ÒàyGšhAÎR4ËZn) i|žxÀ•ül@Þˆ,êz´mªsÝ?W†‡Zf†èQZz€æeÇdlJ™SÒLÒúÜm›²?‘#×DS²†‹eI’ŸaŒ>¥ç½íB¥ïùd¶lz²æ-T%{®ÁdËŒ“æ•0R"8½ W»]˜øM¡Xçq°{@¡EÇ8ƒ+¢æR=œ"\؉–éÀÁËj N¸Ú×ÐíÁÎZ_ñ–÷–]õîÌIÈëˆÄcwñqµTŽâ PYãP)ŒãäB‹Ÿ<—2O-Ü ”®0zâ>É›Á¬cÌçÝLŠeZsCÉ93Ûìœñ%çÜUçäxtMZÓ¦,¨6gœFÛ0yòŠáQ~¥µ·Áº@IŒŒgÞx|Å0Ì´ Ú•`º ~©M¥nïc¢‰TxbG,ƒ£]äÌ7О‘É"˜¹µ^нk0—â*Žâ±ï“؜ŠPm„yc1†pMèÛ×íÝî×ÑrÂçýPû{èÏg/ÇTJSX6Ã訢U0û¥~¬/$›¿AXì„ÆÓ‚{Â1NXx–L –@H¡ 1¤z± cFN‡ï)ívðÝ´hÚ:è—#N× xênw°ó¿-﹂ðT–.Æ<¶vS0.œV’Š þyF[…é¡&¢ £Í®߇Š‹ƒœE7ˆM 'ß¾ät×xÓ¤R“3²—ìt ! dR@òŸ˜Œ¬ÝS\’E®œ—¾jô顆Ý,}2I+}æuœêÑø§Té >?庉‰%ÏJîð6ù€hÓ¬f÷¾h&†{XÑ8ÒÏ“#„öO ùÓ¢….&6|e)ñ¦ÈAÐ6°‘c®scô©[εοu.\Ö!‡ézJÇÎìæ©3I½çø¥óõžMܻɨÓüµ´¾/­×ÛjDÝ6ßx GÛµkø½í:0ðe¬ÝÑmÇèß>¿[ï6Û±Èéfÿ|È×u¼|¾y}û¼=Õ*9Ñ/¥§×›õêp¨÷2Àð»±â˜xüšËhÞ •Ùg4Qǧ›e€7Ò†ñ‡œ[i;%¸:…ªS@ˆ¦Åbi²|`k·W¥Á œïW/ŒÀ£ñ<Ï¢°³û`¿jít-¦þÿ,t£ „ %jõñꂨ£7”¿ÀT „jðõ1;ÃÔ€’]FóH@¶Áil¶Q¸ØÈ³®@Gu–Î3çx±¾y× ¬u>ž=vU?­ÇcÇt²Òû´'¾·l7-)e(u;‹×_8†g¨·hSªbÄ 4F«t{ÉSE3Ÿkî@…ýú3«Y¬kªÈA:ËO8»ÿ€-…¥dáXm)am¬tÆÿ`ùÎ1… —*§_?ãš@/VŒS<Ð`cØ<7$@%Š ¾bMFHØxÏt|¨¼™¤|Éq+x`†÷‰ ¹‡qÇ;3#hň±%èJK¹¶8*)‰X]V„¬7—ML+Ú¡¢NÆ­­=Ôê£î•'Ì€÷ò‚yRž¥ú÷Ô—KtœýåÈmYÞ% Ó¿r!H.±H޲ÛâÊ{4vñåÎ]7ÉœVדObОXiXbr¥€†Õy úŽUϘ$[æŠú画G~æRæÅrÂÉ¥ëÈc‚§¸xà§v"u7¯,“ÓU\¯dQŠ—\!83„Þ²Û[À) ËÔ¹²aÀ{NV@:’ RíÿØ dÉg.jÄwtO–ø2v¼¶2 ºcŠ›KĬ žï'9Z.55³¥ )hNzYLMXÊO%YUc¬»¤âf¦¥`öÖ«¶g7,ƒ=ÑÀ(b#s›ÿ±\ŸÇˆqÆ‹'(ž‘°²f­ó·õ†ÄÔÉ£6?³ cÏ À¸ä©76uÀórm>&Š]XÁm ÀoþÃ"¤»¬Èõl*Ë;êwÒò;–cSDÁeÀø}ùrˆ_‰4jÚ™Ï{<±˜&l{û“NëgVaôf‘›brÿý®õói.¨Ûà'nÿØÉ vúø"fýü7ƒ[8ÀÕÆœŒµW'Ò}D[ߨvÁÀídÞg,Ðvï‚OÄ‹Bmw=Ö.Te/‘·÷íI’ØÎùP×s_*|·îH(Ê'êF)Ý‘nà(Ôº‰Gí-»£ùj!Á/ É€ÖÌU6C4q^˜:5fŽWãߚļzÑ«ñ…\-™„˜§ 9Re\ÃîL&õDÄâ;‡**? èRßBœåEËûm5ÎdƒB¬øäíg­ï§ *Î0¾· ß.èæ†µwgÒ“š±‚Œ,à šÿqŽÑ_ÎÓÐð%,°O˜TH+Û3‘Áè>M(ïú1´³æÒ¡èeÍŸj¹«—qÒ¦‘xYQRªÐ) AŸ¿¶xîé7ywaé“÷÷™§ £Z*£½ä·Å}>’ás†PŒ‰™2(^ñ’öv$?»:Àn'_@ø :9TlnoŽß<è÷…BV¸sB~•„—\ª½ˆ¦êáôªúö,1ŒÚ)^ßà7Æ)ÙÐ)Ùè:î C®Âj¥¯7¿ë >ñL*Q"ä ”I%ƒ^ªK°ˆ—çˆ {e“Rd"ìÅM5Ê^SpÆvÏî½SÙ£¹„lšXV4%íeltzHSܹºµÙXVÛ7³c/¹ïTll?2¿Û³Ö/ùbœèÞ?`Uº}01fàÜ!WmÉCÌ×'»q,`¥n!cï²—ž`5A7WôJ_ÿf”Û-G±÷Ÿé¿I¢0=³šIÙ‰…i.g¸p¿&é–·p`´G åÍ ƒî’Ïžšð dŒÏ”KÞ¶£^›â!:“jŸ›rü ÛpÌOóÓ±Y0c¡Îºà’NÈr´>ýuÒ,` âËáX|¬Q——ÐHcoÜyµAš”–pˆf~Z,Æ«9„¾™èùë‘;Ùæs¼¶FG~*ižˆ:¦‡oÕ}/”©Ê뉳çc8¡¡°•Úþ_WAÝ£œ^e$ëÂ_÷0ùÞ6¡„¬j0t—=ÌNäáFáM{–˜æÂZZéètè@;|U:Êõ¶NØvÑxôåB¶?/àÇ8högt75“éNâøto}™#ÿÊ‹Ù)ØãéÅäþò3 ñYH½[,ÛµOPQ “v;ÛE õ™~žž¯ðÇ*}Å®ç “í¾_**£šçfš"½±›ïé/SþqõÇy¨Uendstream endobj 118 0 obj << /Filter /FlateDecode /Length 918 >> stream xœuUK7 ¾Ï¯˜£ˆ’’(2@y-ú²u{hÓƒãÝ8ÛÝ“t³AóëKÆ3r;…æP¿O}èÁcå7ýïï:òQûÏôßt³ûœ½p× ±gÕYsÛýÜ)dÏQúÌ| ³š5‚ê9V)˜£“¢µ‰`‡©ÁK)Û©œáX‰ŠÏ©!5)ZNÄGÖ†“`öØrZŒ&Å™ÍÄiF;QjТW±”a ÆÌÒQ¼D³YÔç8kŠ1ô‡îC‡cÖûéo×?Ûv/0ôM˜b¿}ÓÕ’`OL^s F½äÜoïºßݳaT)Cv×x‚HÝkƒª¢ºÛb’U%Èd!‹;>.»bƒ,êÞ›:å”ÜÛÁr!û{qòÇö»îëm÷²S¯ÜÄË”b­é)Þ“¦Äû±Rê‹â6Tsé³¹Læ'1×P,!Y¨šÝUacacF–+HgÊ14‰Äì ›Í÷b(Af¡ä|%mcðÛ”†˜ƒ¹Ï Ê%¯cð"–Ír‘)V‹$ŸYüU.bN1¶®ŸŽˆŠS«þ~t'¬Ñí*iΘÝî~¡ú¥ø¶ZFƒ<F|•¨ìŽŸÊ ­.©´kAZÈÌúàvïóËÊÀhºo#®F`uÉõÂ÷f‰yº_´¯ÜÈœ”¢+Íõj°o`#5æ —,¹t‘uºuÃR~´F*M°½´‚?kИÝ~H6ŒW¨ŸªÊm%¯zrñĈiôÔýZÊbgŒSµ„ÃX-DÊÄîÓÒ4»d¬xl“´Y[ 7$ÖyLýÑkJX1¯—2~Yª8bÚz²-S³ŒÖÈDî` -l@tÏËà¡abÅ/cÝ}“‡«!‘K°‹å–˜ñ±éÚZKN¨-Ëž1î]c{[ ÉšÀÃ|AF9;¿¯4Ç^› é”övpÕŠcËoÊzi¶Bcr¿\4¦«Ú\ `[ 犽©(Gƒÿ¯ô~–žÌÒãéù,]ÌÒÓYúi–üŠUÙÖ´ 5hgé8KÎÒÕ,íW8û•»‹¿Ã ûw·âùfåô°Âå«YzXñr9¬”ÕvB MÛqÝ"Ÿ(ü«ß­Â!"ŸŽ:*»}y:Rysn†”¬lîWÕÖÖËC]ÛêÞžö[³·ëM`;¥Ý®ÇwÅ…u­4úe…q8IÅžôçƒ:¾V/»™;Õ°endstream endobj 119 0 obj << /Filter /FlateDecode /Length 1631 >> stream xœ­XKoÛF¾óO”è¥Tmvvö1[ RÃ)Z$F èÁÉAµi'…e'²œ¢ÿ¾ßRär¥Rò%ðAÃÙá¼vf¾¡¿ÔZQ­Ó_ÿ{¹ªŒ²±þ§Òõ¯•'RŽLœ'%¾^U!j%63n«óJ© Toµb¡ÌŠÊ»NÊaål!•9¥{«¬³¬’®Ââà–DQÁ^õÏ¥SžEY §„‚M;NRgGªw*›|*ìéú¦úRQ—ʺÿ¹\Õ¿,ªç£ŠÞøzq]mÓL5! d½Š ±XU ™ÙÜr¾9ŸÍµòZsl~›i‰Í™á·ôÒš„š³Wtßœ&i°£mÞ%¶Ž¢‰[>”Gßœ¤Š^Û$º#Ç‹ßS± Â*A¾¯«ÅPHJëèmóólîŒQÖo3óS¦þÊÔ:SË Þ¿™zßdòûL}ÍÔe¦®&äÞÏfÉwKtŽŽz;zñ0AÝO,<û<êøòfBÍÝDП&No&ôõQ.ª·©â¬8…Ka©Ò¦f‹kÊ¿ë¶þ³¾«.Ps•(HýôUå”3Ñ:4:ÕÈQýw×ð$šUðµ‹:¢Pë&õ« ™Ó»”ûE¯‰Äe$KƒvöRS*† Õ/Õ„ûšWsð©ÑJ[YZ <Ÿy›ÚÙÕ6²b4ê!+û:W•e‡WyÒ [LhuŒôZÞÁEˆ‡ìÛƒFrÚ ‡2m=§4B‘ ˜Ï<‰Ò°b¡3À¡'–­äà&¬˜€ŠðãYšYN04‚·‡cÙ×Y$l ;D‘0Â} CÁèî:HÅóOeÌFíÒ{cÆÎNÆÞ!C’®ÌÔÞ³"oëè0åÉ„F†à¦Œ˜@>ݽ @ „ q úé ùš2ÂЮüxE¾¿ôt…Y#^Ų1În¾,úÒH’b´¤C¾ˆk‚R¯ÝÓ ËVrtVŒG,lkg1Mp+¸s‡2VˆžÎX¶’36a…-šÏP> „gƇŒÃ_j4µ (œ€Q¥ŠÑÞ *Ö&nnÛ›Ù"MBªçIŽRDe‡ÑÃ܉\Þ¯>¯Û‡‡ûu’„r_*Ÿ#ߎÅë€ïT¢‹+àú‰ÔÄh°44' Œ'Ô–÷Í ðÞb§ØœÐ­z÷ `ËÆœC½ˆl÷ƒ3X㊴v¦Ù|L/ã¢5”¶w›u‹glºÍùý#Ž3N¼=˜…'’£Ånâµ2X‚)öb·¶_aSÀZ¡}T%Ò‘ãææq»(DmÀ,í|hÚ´‘ ØÄ5¬FqÚ‰´Iaåc'ë]¶^BÞ–ìÍÓÞåtÚˆ0 H:7’–""CµeBç–£ÀØ™–ɤfëø›6©C/ 9ÀÕûQà®ZOkiAb{IQáI›­(ÂÒ.éâ„;åë×Ý븒d*9.ÞPó±ÔÖnEŒöMº¤œ¤‘Có<í]ÍÒÛ`еÍc©§ˆêvŒõa«ÝÂëä—›èuïskpe{)¾¼”®ö1‘úKùœöÊȾKcO>Œäf$ïGòn$×鋽†Ž¼É›‘|8P&c£wèê@fŠh ®œ» ’¤ý{± 2%”—4ŽÒ¼”9i\îã‘åž bBt 4¹x®&VËqÿk35ÊM-ÌjbÛlî¢ÅúºžxeÊȔܔê‘÷lŒórb >®ú²PÕ¼ÉWùüe¦^gê­¦’î ðŽûÆÀ†Z€XW[o.ÏÚÕrýZ ß`Ø«msòñÓüáËãrÝ^u³ì“íP9 Ø~8ý'è›aÂÛê?–ôØendstream endobj 120 0 obj << /Filter /FlateDecode /Length 1191 >> stream xœ½VMoã6½ëWèVªˆX~s ¶ÀvÑb`÷P$9ÈŽ²qaËŽ$gwÿ}‡ú é@YôTäàÉèiæÍÌãPÏ9£X±â&š?G3:-Ôü?W°YJ,’bfKF`±PuâDs”¦”¹¡ÎJðzÁc ¬yɱ šÁ(ç÷_«M_”-†¬·Ía¿­v“‡“¾îú!Zß×Ôá ^¨úê²(9w(L m]µ-¾ÑÝŠû¢j›t§ý]ÙÜágå_µŽÈ»â~bnQäΉ|õ1[ýxKšÓ~]·P©³m0æfSw]ÝÍ5(?éÑ"»˜y¨WqÄYœ¾Åª»ø, L_ ´<—cùRíNõÄÍ“f«±7Yíúºmª~û’ Ÿ¾ýSÝm»Ëèì[pfylëj½Ýmûo²Pr|¸íâÃæ0N“Ôϧ0FäÖ"†ÑÈÒéè?Öí¦núxsh·u³©cc¶ –…=¸B(ÊAâf+Ãȼ*üe£¨†µ;ŠhßUû㮎Fyl÷Jï2öý¿veÐÆ ê,‹gaÂ:ž÷°vÂRîáÙó½=ÌeÙ¨¥=¬ Þ®lÚÿáÃ3ãpçzSs-Éç“¿D9—úXcq{à)xYj"i„ã52žgLój…÷’äg÷8¼E`kHÀx‡1æ'ðÁgR Æ8îW£o6ÁÉ1õ¿•Â"K'Ò8Þ+q=Oã=åë 5~õ6~#m0sZ8'qbjnAØ4ÁK!€jàæ,FÛ%A|_5rcgtš1†[ é)ùs,IaÃÏ’_y?ŠÆúq`G9WÌàõà¢þaªÐpÇIûCá½?qp· QÜž Ywž¨“ø9”Vøèé1PŠáúÜéûOþáÄlŠ…ÚR“Ò †òµó€½¨ð„hí†*&³Šf»h&Ø.š}ê]—RÔŠú!ÕJ"‡D[Õ¨UÐÒ[AœóW &ÒnŒ3ÎÄqpé“AŒ e(Àþ¿¥ãtHM*(@a1ÿUh¤?˜ePPå(LÀøNc§ðÆ?4…ÅczÆÒCŒRð*:" Ód7FÇóýÙTãÄ¡-~’…x¾wÃ6û”ý þÏÅqendstream endobj 121 0 obj << /Filter /FlateDecode /Length 919 >> stream xœ}UÛŽÛ6}×Wð‘**–wr´@ ´A‹ @vÕEÒA–½jliWÖî&Ÿ¡.¸ ?x4:œ9s†3z œ ÂÃoù¯O™dÈsÆÉ›ÌjÇ”Ä+˜·ä”yi™ˆžcv›wÌjOœÕœ)‰¨èñ˜5Ê(´uZ)Fs|i’|Æ8|ë/ò­¬‘_Ëì§i0°Ò’rŸÍ" "´bN¡°HJ ¢È«ginrÁ8«é/ya$jä}ŽÎ6ZÇhÕÑê£õ%Z,Zc´šh¯¼ýD£yºz³†+´ºh¢µ»‚Û_±>åùÜ¥ˆeà”rá%ÐNKRÃp?7óC{¬û/}—o-ôܺf‡š*í%ªîóú«kÎãöôÜŽwÛSÝwcÛ=¶ã×ítÝCS-&”Š„a€—lâ°«ÆêU^1¢§¾Úî°k÷ûéÃŽHR¾ÍÊ>Ò¿—ŒÒÓŸ7Spøq¥"é}ñT›…NG‚ʆXÕql†®Û§{÷õ¾ïšs{~µ9Ç!„[K=öu5µªÖž×š-íúY"Ú<Q˜#N„‹;5ˆÙñÒ<E<ªcõÅ<`˜‡àÈã’’ó<üŽ£/¼àðòÓ£èá1Ì2‚¹4x ÑÞY‡;%qgªØw˽Â|[Z9®.¶`–å`|‚…Ð+¶¡¹ÒÖÓ‰߆âLâz‘‚Þ§þï@…Ò·–Lãìg/®²4Ê]z°™!’[úaZ”sÍA#œR€;!¨‚xŒ]OªpÔÓHÏ„°¸xX¨Ø 4u7ÅÅU€‡ñ Mˆ¹:LHî´ È”nS¯…ó8àS„¡B÷å——ØÏ3u%%Õ5IiöI!:\ýRkÔeX$/)Z®õÒð´‰4Ózíá3ÆÀ1hµ™O›Ùlæ9¿r'ðSl’¯Ë.%Rmê&\/ÛŽõ>û)Æßendstream endobj 122 0 obj << /Filter /FlateDecode /Length 1394 >> stream xœÍXÝoÜD÷ÿV_°!^öû#HѪª6¹J –ëìä wöÅvå…¿Y쮋så£B(Rò»ÙÙ™ÙÙÙùÍå6ÆˆÄØþL·‡ˆ"nâûÇÏ"ÉbŠÄJH‚´Œ‘¦Icœd]E+$¹Ž•ä1 ZN¢‰AR Z‚æÒ,u8†EøBÁª^ø›£ÒF#%‚ &A“dqi‚˜4QHcÆä•&ÁBgŠÉy›C ¼áø&ºÈÈxú³=Äßl¢//©ˆ 2’ÊxsI&1á )‰… hlÑ›äâÅÅóTSdŒL~¾JÁ«á‚Óä‡4ƒëÁ˜+–\¥c IB“×ï«`£1¥&yñÌ~RkÉ~Ùü1pÄ á°BSˆcS€×ËAÙh­å¨¼˜2‰4”BÒͯÑw›èUÄ‘ÑP%p¸ K£ ÂöƸ¤¸“Øü<šs"7RÛüò17—)AÉ“¯ÓLPH’&ÉÖ ‡Z‡C½C¥CÝÊêÛÄÁß½—ÃI/~wîÐÞ¡jEïÁ›þÂÃÝŠï¥p¨>yμébÅt¶SüÊÃû“{Ê•ߦéX?ŒÅÅ´½T¨U®83vÖcͽ,ó¶kêO»4“ðº0åɱmŠ»mŸšCY÷ˆÊP&Ù6m[îó¾jêÁ~æ- d °ƒEÞççiFˆÝ¥“CÓöù¾ê¼ý¼.†É.o‹ºìºÁš‚ê3†Æ›çÑæó7pÂI_Û\Ì0SgS<`º¸ž°–¡Ž0g£ùcö.ßß•ó†…)3¬¿ÖY¾ï˶†“½ ´wǦߕ]Õ{aßZƒƒÂq*Uçê›ñIy{—ï} úÆë`†^z,Û­Ï>˜Ý6õuU”õvQÓ¤ª!n8äù`‚#¢´‚ R©0›îö¥ç=Ü~æšî“owtùá¸/ý޲ë«CÞ—ÝèÊG@s^l²™°ý([]—Rׯ\£ÂÐré¢QM’SаXƒmÉJH$€6„bH(=6ª§Ð”‰&Xxü "Xrsg»,œ SoäF+©à!A=S`‘0äÕÍô”ÀŸwËÍpºEß6˜Ð©m è[o†Ìº5—:Áê}ÑQhü”$ÇPþžRÆ8>¡¡ëQ $“¼L©FâÌÇ-]¬9…¶³ràQ*ÔdCC —n:-I­’ÏFÛ‚(hñ!QšªÐ9<€ÀÓ8T&t‹ÜëôVò¥Ôp3¹ŒÔƒ—¥‡ Nb!p¨`ÍAž|2öõ K0››öB!xH‹UÖÃÕQ°€1D¤íº r1å„Éß…‰˜Ž&1çS„7Kñàv¾Ù{0Uˆñìì=,=lÓ•JÑIØâìa$‹lº`)òI°¦ ¸6H¹œ~¨i&‡3N°ó°÷°ñ°ö°õäXyX{xãa·ÆžP.Êþçࣱç«èZËÍáendstream endobj 123 0 obj << /Filter /FlateDecode /Length 142 >> stream xœUŽ» Ã0 D{MÁ ¢ÄŸ&Hd„´q‘*ë',™ ‚‡Þ{SSÝçØÏ­4È O©t+Æ åF®Æ£­ø¨YÁ«> stream xœíþ CMBXTI10‹ƒùùK‹ ‹ ›øoÈÁ¼vcdWDE}ë’øˆø¨ƒ¯ø¯÷6ñ÷/÷ø¿øÕ^™xhfggs™•ƒŸ}žv‹m‡aû†ûSƒ·ªÃ«à¤Í•¤–‹œÃX¬U#Zûv}˜‹šž‹˜“¥¦êÄ‹”‹yvl…}e&vQ‹XûìzÉ÷FÃ÷Õ¿ø¨ƒ¯÷’÷¡¯ö÷÷T÷ø_øYyŠ]‹ˆ|“lµµ©®¶¼_¶8ûR!û6û9º5÷'¥ÉŸÁÁ ²²‹—“w£ˆ‡‹„„A8&‹|‹TlªÄ²§÷¦¿²ÓÉš©‹–‹¦Šžwøãƒ¯ø¯÷OÃõöù ù(Œ‘‹‹žyŠ}Šû…€Šw‹‹ny‹”—ŠŠ—Vûmk§gt‹û<'û:ûû ßb×Ⱥ«ž£žh¸{²‹º‹¤­˜Ÿ¥µ˜Ã‹™~‹|sŠŠr„ƒjy@i‹„“¢ž“›$›‰„‹ˆŠƒ`Ra|l‹ti™ÄÁ®÷–§­ì𥋮‹§u–c yo ‹ ‹ ‹ {‡âïendstream endobj 125 0 obj << /Type /XRef /Length 148 /Filter /FlateDecode /DecodeParms << /Columns 5 /Predictor 12 >> /W [ 1 3 1 ] /Info 3 0 R /Root 2 0 R /Size 126 /ID [<624e23fd434cfdbe440b15477e7c06e7>] >> stream xœcb&F~0ù‰ $À8JŽ’(ä‹Ël69P ¸"™w‚Há ’QD²;ƒÙ×@¤t,Xö'ˆu« "ÅÊÁjÌA¤7˜Í"ÕÞ€Hþ™@’Ql[.Ø.[°ø,°Êÿ`R,+f˃H¡M ’å>X|%ˆdýyÙVyD21¦í endstream endobj startxref 90509 %%EOF HSAUR3/inst/doc/Ch_cluster_analysis.R0000644000176200001440000001636414660150037017076 0ustar liggesusers### R code from vignette source 'Ch_cluster_analysis.Rnw' ################################################### ### code chunk number 1: setup ################################################### rm(list = ls()) s <- search()[-1] s <- s[-match(c("package:base", "package:stats", "package:graphics", "package:grDevices", "package:utils", "package:datasets", "package:methods", "Autoloads"), s)] if (length(s) > 0) sapply(s, detach, character.only = TRUE) if (!file.exists("tables")) dir.create("tables") if (!file.exists("figures")) dir.create("figures") set.seed(290875) options(prompt = "R> ", continue = "+ ", width = 63, # digits = 4, show.signif.stars = FALSE, SweaveHooks = list(leftpar = function() par(mai = par("mai") * c(1, 1.05, 1, 1)), bigleftpar = function() par(mai = par("mai") * c(1, 1.7, 1, 1)))) HSAURpkg <- require("HSAUR3") if (!HSAURpkg) stop("cannot load package ", sQuote("HSAUR3")) rm(HSAURpkg) ### hm, R-2.4.0 --vanilla seems to need this a <- Sys.setlocale("LC_ALL", "C") ### book <- TRUE refs <- cbind(c("AItR", "DAGD", "SI", "CI", "ANOVA", "MLR", "GLM", "DE", "RP", "GAM", "SA", "ALDI", "ALDII", "SIMC", "MA", "PCA", "MDS", "CA"), 1:18) ch <- function(x) { ch <- refs[which(refs[,1] == x),] if (book) { return(paste("Chapter~\\\\ref{", ch[1], "}", sep = "")) } else { return(paste("Chapter~", ch[2], sep = "")) } } if (file.exists("deparse.R")) source("deparse.R") setHook(packageEvent("lattice", "attach"), function(...) { lattice.options(default.theme = function() standard.theme("pdf", color = FALSE)) }) ################################################### ### code chunk number 2: singlebook ################################################### book <- FALSE ################################################### ### code chunk number 3: thissetup ################################################### library("mclust") library("mvtnorm") mai <- par("mai") options(SweaveHooks = list(rmai = function() { par(mai = mai * c(1,1,1,2))})) data("pottery", package = "HSAUR3") ################################################### ### code chunk number 4: CA-pottery-dist ################################################### pottery_dist <- dist(pottery[, colnames(pottery) != "kiln"]) library("lattice") levelplot(as.matrix(pottery_dist), xlab = "Pot Number", ylab = "Pot Number") ################################################### ### code chunk number 5: CA-pottery-distplot ################################################### trellis.par.set(standard.theme(color = FALSE)) plot(levelplot(as.matrix(pottery_dist), xlab = "Pot Number", ylab = "Pot Number")) ################################################### ### code chunk number 6: CA-pottery-hclust ################################################### pottery_single <- hclust(pottery_dist, method = "single") pottery_complete <- hclust(pottery_dist, method = "complete") pottery_average <- hclust(pottery_dist, method = "average") layout(matrix(1:3, ncol = 3)) plot(pottery_single, main = "Single Linkage", sub = "", xlab = "") plot(pottery_complete, main = "Complete Linkage", sub = "", xlab = "") plot(pottery_average, main = "Average Linkage", sub = "", xlab = "") ################################################### ### code chunk number 7: pottery-cluster ################################################### pottery_cluster <- cutree(pottery_average, h = 4) xtabs(~ pottery_cluster + kiln, data = pottery) ################################################### ### code chunk number 8: CA-planets-scatter ################################################### getOption("SweaveHooks")[["rmai"]]() data("planets", package = "HSAUR3") library("scatterplot3d") scatterplot3d(log(planets$mass), log(planets$period), log(planets$eccen + ifelse(planets$eccen == 0, 0.001, 0)), type = "h", angle = 55, pch = 16, y.ticklabs = seq(0, 10, by = 2), y.margin.add = 0.1, scale.y = 0.7, xlab = "log(mass)", ylab = "log(period)", zlab = "log(eccen)") ################################################### ### code chunk number 9: CA-planet-ss ################################################### rge <- apply(planets, 2, max) - apply(planets, 2, min) planet.dat <- sweep(planets, 2, rge, FUN = "/") n <- nrow(planet.dat) wss <- rep(0, 10) wss[1] <- (n - 1) * sum(apply(planet.dat, 2, var)) for (i in 2:10) wss[i] <- sum(kmeans(planet.dat, centers = i)$withinss) plot(1:10, wss, type = "b", xlab = "Number of groups", ylab = "Within groups sum of squares") ################################################### ### code chunk number 10: CA-planets-kmeans3 ################################################### planet_kmeans3 <- kmeans(planet.dat, centers = 3) table(planet_kmeans3$cluster) ################################################### ### code chunk number 11: CA-planets-ccent ################################################### ccent <- function(cl) { f <- function(i) colMeans(planets[cl == i,]) x <- sapply(sort(unique(cl)), f) colnames(x) <- sort(unique(cl)) return(x) } ################################################### ### code chunk number 12: CA-planets--kmeans3-ccent ################################################### ccent(planet_kmeans3$cluster) ################################################### ### code chunk number 13: CA-planets-kmeans5 ################################################### planet_kmeans5 <- kmeans(planet.dat, centers = 5) table(planet_kmeans5$cluster) ccent(planet_kmeans5$cluster) ################################################### ### code chunk number 14: CA-planets-mclust ################################################### library("mclust") planet_mclust <- Mclust(planet.dat) ################################################### ### code chunk number 15: CA-planets-mclust-plot ################################################### plot(planet_mclust, planet.dat, what = "BIC", col = "black", ylab = "-BIC", ylim = c(0, 350)) ################################################### ### code chunk number 16: CA-planets-mclust-print ################################################### print(planet_mclust) ################################################### ### code chunk number 17: CA-planets-mclust-scatter ################################################### clPairs(planet.dat, classification = planet_mclust$classification, symbols = 1:3, col = "black") ################################################### ### code chunk number 18: CA-planets-mclust-scatterclust ################################################### getOption("SweaveHooks")[["rmai"]]() scatterplot3d(log(planets$mass), log(planets$period), log(planets$eccen + ifelse(planets$eccen == 0, 0.001, 0)), type = "h", angle = 55, scale.y = 0.7, pch = planet_mclust$classification, y.ticklabs = seq(0, 10, by = 2), y.margin.add = 0.1, xlab = "log(mass)", ylab = "log(period)", zlab = "log(eccen)") ################################################### ### code chunk number 19: CA-planets-mclust-mu ################################################### table(planet_mclust$classification) ccent(planet_mclust$classification) HSAUR3/inst/doc/Ch_gam.Rnw0000644000176200001440000006234514416236367014635 0ustar liggesusers \documentclass{chapman} %%% copy Sweave.sty definitions %%% keeps `sweave' from adding `\usepackage{Sweave}': DO NOT REMOVE %\usepackage{Sweave} \RequirePackage[T1]{fontenc} \RequirePackage{graphicx,ae,fancyvrb} \IfFileExists{upquote.sty}{\RequirePackage{upquote}}{} \usepackage{relsize} \DefineVerbatimEnvironment{Sinput}{Verbatim}{} \DefineVerbatimEnvironment{Soutput}{Verbatim}{fontfamily=courier, fontshape=it, fontsize=\relsize{-1}} \DefineVerbatimEnvironment{Scode}{Verbatim}{} \newenvironment{Schunk}{}{} %%% environment for raw output \newcommand{\SchunkRaw}{\renewenvironment{Schunk}{}{} \DefineVerbatimEnvironment{Soutput}{Verbatim}{fontfamily=courier, fontshape=it, fontsize=\small} \rawSinput } %%% environment for labeled output \newcommand{\nextcaption}{} \newcommand{\SchunkLabel}{ \renewenvironment{Schunk}{\begin{figure}[ht] }{\caption{\nextcaption} \end{figure} } \DefineVerbatimEnvironment{Sinput}{Verbatim}{frame = topline} \DefineVerbatimEnvironment{Soutput}{Verbatim}{frame = bottomline, samepage = true, fontfamily=courier, fontshape=it, fontsize=\relsize{-1}} } %%% S code with line numbers \DefineVerbatimEnvironment{Sinput} {Verbatim} { %% numbers=left } \newcommand{\numberSinput}{ \DefineVerbatimEnvironment{Sinput}{Verbatim}{numbers=left} } \newcommand{\rawSinput}{ \DefineVerbatimEnvironment{Sinput}{Verbatim}{} } %%% R / System symbols \newcommand{\R}{\textsf{R}} \newcommand{\rR}{{R}} \renewcommand{\S}{\textsf{S}} \newcommand{\SPLUS}{\textsf{S-PLUS}} \newcommand{\rSPLUS}{{S-PLUS}} \newcommand{\SPSS}{\textsf{SPSS}} \newcommand{\EXCEL}{\textsf{Excel}} \newcommand{\ACCESS}{\textsf{Access}} \newcommand{\SQL}{\textsf{SQL}} %%\newcommand{\Rpackage}[1]{\hbox{\rm\textit{#1}}} %%\newcommand{\Robject}[1]{\hbox{\rm\texttt{#1}}} %%\newcommand{\Rclass}[1]{\hbox{\rm\textit{#1}}} %%\newcommand{\Rcmd}[1]{\hbox{\rm\texttt{#1}}} \newcommand{\Rpackage}[1]{\index{#1 package@{\fontseries{b}\selectfont #1} package} {\fontseries{b}\selectfont #1}} \newcommand{\rpackage}[1]{{\fontseries{b}\selectfont #1}} \newcommand{\Robject}[1]{\texttt{#1}} \newcommand{\Rclass}[1]{\index{#1 class@\textit{#1} class}\textit{#1}} \newcommand{\Rcmd}[1]{\index{#1 function@\texttt{#1} function}\texttt{#1}} \newcommand{\Roperator}[1]{\texttt{#1}} \newcommand{\Rarg}[1]{\texttt{#1}} \newcommand{\Rlevel}[1]{\texttt{#1}} %%% other symbols \newcommand{\file}[1]{\hbox{\rm\texttt{#1}}} %%\newcommand{\stress}[1]{\index{#1}\textit{#1}} \newcommand{\stress}[1]{\textit{#1}} \newcommand{\booktitle}[1]{\textit{#1}} %%' %%% Math symbols \usepackage{amstext} \usepackage{amsmath} \newcommand{\E}{\mathsf{E}} \newcommand{\Var}{\mathsf{Var}} \newcommand{\Cov}{\mathsf{Cov}} \newcommand{\Cor}{\mathsf{Cor}} \newcommand{\x}{\mathbf{x}} \newcommand{\y}{\mathbf{y}} \renewcommand{\a}{\mathbf{a}} \newcommand{\W}{\mathbf{W}} \newcommand{\C}{\mathbf{C}} \renewcommand{\H}{\mathbf{H}} \newcommand{\X}{\mathbf{X}} \newcommand{\B}{\mathbf{B}} \newcommand{\V}{\mathbf{V}} \newcommand{\I}{\mathbf{I}} \newcommand{\D}{\mathbf{D}} \newcommand{\bS}{\mathbf{S}} \newcommand{\N}{\mathcal{N}} \renewcommand{\L}{L} \renewcommand{\P}{\mathsf{P}} \newcommand{\K}{\mathbf{K}} \newcommand{\m}{\mathbf{m}} \newcommand{\argmin}{\operatorname{argmin}\displaylimits} \newcommand{\argmax}{\operatorname{argmax}\displaylimits} \newcommand{\bx}{\mathbf{x}} \newcommand{\bbeta}{\mathbf{\beta}} %%% links \usepackage{hyperref} \hypersetup{% pdftitle = {A Handbook of Statistical Analyses Using R (3rd Edition)}, pdfsubject = {Book}, pdfauthor = {Torsten Hothorn and Brian S. Everitt}, colorlinks = {black}, linkcolor = {black}, citecolor = {black}, urlcolor = {black}, hyperindex = {true}, linktocpage = {true}, } %%% captions & tables %% : conflics with figure definition in chapman.cls %%\usepackage[format=hang,margin=10pt,labelfont=bf]{caption} %% \usepackage{longtable} \usepackage[figuresright]{rotating} %%% R symbol in chapter 1 \usepackage{wrapfig} %%% Bibliography \usepackage[round,comma]{natbib} \renewcommand{\refname}{References \addcontentsline{toc}{chapter}{References}} \citeindexfalse %%% texi2dvi complains that \newblock is undefined, hm... \def\newblock{\hskip .11em plus .33em minus .07em} %%% Example sections \newcounter{exercise}[chapter] \setcounter{exercise}{0} \newcommand{\exercise}{\stepcounter{exercise} \item{Ex.~\arabic{chapter}.\arabic{exercise} }} %% URLs \newcommand{\curl}[1]{\begin{center} \url{#1} \end{center}} %%% for manual corrections %\renewcommand{\baselinestretch}{2} %%% plot sizes \setkeys{Gin}{width=0.95\textwidth} %%% color \usepackage{color} %%% hyphenations \hyphenation{drop-out} \hyphenation{mar-gi-nal} %%% new bidirectional quotes need \usepackage[utf8]{inputenc} %\usepackage{setspace} \definecolor{sidebox_todo}{rgb}{1,1,0.2} \newcommand{\todo}[1]{ \hspace{0pt}% \marginpar{% \fcolorbox{black}{sidebox_todo}{% \parbox{\marginparwidth} { \raggedright\sffamily\footnotesize{TODO: #1}% } }% } } \begin{document} %% Title page \title{A Handbook of Statistical Analyses Using \R{} --- 3rd Edition} \author{Torsten Hothorn and Brian S. Everitt} \maketitle %%\VignetteIndexEntry{Chapter Generalized Additive Models} %%\VignetteDepends{mgcv,rpart,wordcloud,mboost} \setcounter{chapter}{9} \SweaveOpts{prefix.string=figures/HSAUR,eps=FALSE,keep.source=TRUE} <>= rm(list = ls()) s <- search()[-1] s <- s[-match(c("package:base", "package:stats", "package:graphics", "package:grDevices", "package:utils", "package:datasets", "package:methods", "Autoloads"), s)] if (length(s) > 0) sapply(s, detach, character.only = TRUE) if (!file.exists("tables")) dir.create("tables") if (!file.exists("figures")) dir.create("figures") set.seed(290875) options(prompt = "R> ", continue = "+ ", width = 63, # digits = 4, show.signif.stars = FALSE, SweaveHooks = list(leftpar = function() par(mai = par("mai") * c(1, 1.05, 1, 1)), bigleftpar = function() par(mai = par("mai") * c(1, 1.7, 1, 1)))) HSAURpkg <- require("HSAUR3") if (!HSAURpkg) stop("cannot load package ", sQuote("HSAUR3")) rm(HSAURpkg) ### hm, R-2.4.0 --vanilla seems to need this a <- Sys.setlocale("LC_ALL", "C") ### book <- TRUE refs <- cbind(c("AItR", "DAGD", "SI", "CI", "ANOVA", "MLR", "GLM", "DE", "RP", "GAM", "SA", "ALDI", "ALDII", "SIMC", "MA", "PCA", "MDS", "CA"), 1:18) ch <- function(x) { ch <- refs[which(refs[,1] == x),] if (book) { return(paste("Chapter~\\\\ref{", ch[1], "}", sep = "")) } else { return(paste("Chapter~", ch[2], sep = "")) } } if (file.exists("deparse.R")) source("deparse.R") setHook(packageEvent("lattice", "attach"), function(...) { lattice.options(default.theme = function() standard.theme("pdf", color = FALSE)) }) @ \pagestyle{headings} <>= book <- FALSE @ <>= library("mgcv") library("mboost") library("rpart") library("wordcloud") @ \chapter[Scatterplot Smoothers and Additive Models]{Scatterplot Smoothers and Generalized Additive Models: The Men's Olympic 1500m, Air Pollution in the US, Risk Factors for Kyphosis, and Women's Role in %' Society \label{GAM}} \section{Introduction} \section{Scatterplot Smoothers and Generalized Additive Models} \section{Analysis Using \R{}} \subsection{Olympic 1500m Times} To begin we will construct a scatterplot of winning time against the year the games were held. The \R{} code and the resulting plot are shown in Figure~\ref{GAM-men1500m-plot}. There is a very clear downward trend in the times over the years, and, in addition there is a very clear outlier namely the winning time for 1896. We shall remove this time from the data set and now concentrate on the remaining times. First we will fit a simple linear regression to the data and plot the fit onto the scatterplot. The code and the resulting plot are shown in Figure~\ref{GAM-men1500m-lm}. Clearly the linear regression model captures in general terms the downward trend in the times. Now we can add the fits given by the lowess smoother and by a cubic spline smoother; the resulting graph and the extra \R{} code needed are shown in Figure~\ref{GAM-men1500m-smooth}. Both non-parametric fits suggest some distinct departure from linearity, and clearly point to a quadratic model being more sensible than a linear model here. And fitting a parametric model that includes both a linear and a quadratic effect for the year gives a prediction curve very similar to the non-parametric curves; see Figure~\ref{GAM-men1500m-quad}. Here use of the non-parametric smoothers has effectively diagnosed our linear model and pointed the way to using a more suitable parametric model; this is often how such non-parametric models can be used most effectively. For these data, of course, it is clear that the simple linear model cannot be suitable if the investigator is interested in predicting future times since even the most basic knowledge of human physiology will tell us that times cannot continue to go down. There must be some lower limit to the time man can run 1500m. But in other situations use of the non-parametric smoothers may point to a parametric model that could not have been identified \emph{a priori}. \begin{figure} \begin{center} <>= plot(time ~ year, data = men1500m, xlab = "Year", ylab = "Winning time (sec)") @ \caption{Scatterplot of year and winning time. \label{GAM-men1500m-plot}} \end{center} \end{figure} \begin{figure} \begin{center} <>= men1500m1900 <- subset(men1500m, year >= 1900) men1500m_lm <- lm(time ~ year, data = men1500m1900) plot(time ~ year, data = men1500m1900, xlab = "Year", ylab = "Winning time (sec)") abline(men1500m_lm) @ \caption{Scatterplot of year and winning time with fitted values from a simple linear model. \label{GAM-men1500m-lm}} \end{center} \end{figure} \begin{figure} \begin{center} <>= x <- men1500m1900$year y <- men1500m1900$time men1500m_lowess <- lowess(x, y) plot(time ~ year, data = men1500m1900, xlab = "Year", ylab = "Winning time (sec)") lines(men1500m_lowess, lty = 2) men1500m_cubic <- gam(y ~ s(x, bs = "cr")) lines(x, predict(men1500m_cubic), lty = 3) @ \caption{Scatterplot of year and winning time with fitted values from a smooth non-parametric model. \label{GAM-men1500m-smooth}} \end{center} \end{figure} \begin{figure} \begin{center} <>= men1500m_lm2 <- lm(time ~ year + I(year^2), data = men1500m1900) plot(time ~ year, data = men1500m1900, xlab = "Year", ylab = "Winning time (sec)") lines(men1500m1900$year, predict(men1500m_lm2)) @ \caption{Scatterplot of year and winning time with fitted values from a quadratic model. \label{GAM-men1500m-quad}} \end{center} \end{figure} It is of some interest to look at the predictions of winning times in future Olympics from both the linear and quadratic models. For example, for 2008 and 2012 the predicted times and their $95\%$ confidence intervals can be found using the following code \newpage <>= predict(men1500m_lm, newdata = data.frame(year = c(2008, 2012)), interval = "confidence") predict(men1500m_lm2, newdata = data.frame(year = c(2008, 2012)), interval = "confidence") @ \newpage For predictions far into the future both the quadratic and the linear model fail; we leave readers to get some more predictions to see what happens. We can compare the first prediction with the time actually recorded by the winner of the men's 1500m in Beijing 2008, Rashid Ramzi from Brunei, who won the event in $212.94$ seconds. The confidence interval obtained from the simple linear model does not include this value but the confidence interval for the prediction derived from the quadratic model does. \subsection{Air Pollution in US Cities} Unfortunately, we cannot fit an additive model for describing the $\text{SO}_2$ concentration based on all six covariates because this leads to more parameters than cities, i.e., more parameters than observations when using the default parameterization of \Rpackage{mgcv}. Thus, before we can apply the \Rcmd{gam} function from package \Rpackage{mgcv}, we have to decide which covariates should enter the model and which subset of these covariates should be allowed to deviate from a linear regression relationship. As briefly discussed in Section~\ref{GAM:VS}, we can fit an additive model using the iterative boosting algorithm as described by \cite{HSAUR:BuehlmannHothorn2007}. The complexity of the model is determined by an AIC criterion, which can also be used to determine an appropriate number of boosting iterations to choose. The methodology is available from package \Rpackage{mboost} \citep{PKG:mboost}. We start with a small number of boosting iterations ($100$ by default) and compute the AIC of the corresponding $100$ models: <>= library("mboost") USair_boost <- gamboost(SO2 ~ ., data = USairpollution) USair_aic <- AIC(USair_boost) USair_aic @ The AIC suggests that the boosting algorithm should be stopped after $\Sexpr{mstop(USair_aic)}$ iterations. The partial contributions of each covariate to the predicted $\text{SO}_2$ concentration are given in Figure~\ref{GAM-USairpollution-boostplot}. The plot indicates that all six covariates enter the model and the selection of a subset of covariates for modeling isn't appropriate in this case. However, the number of manufacturing enterprises seems to add linearly to the $\text{SO}_2$ concentration, which simplifies the model. Moreover, the average annual precipitation contribution seems to deviate from zero only for some extreme observations and one might refrain from using the covariate at all. \begin{figure} \begin{center} <>= USair_gam <- USair_boost[mstop(USair_aic)] layout(matrix(1:6, ncol = 3)) plot(USair_gam, ask = FALSE) @ \caption{Partial contributions of six exploratory covariates to the predicted $\text{SO}_2$ concentration. \label{GAM-USairpollution-boostplot}} \end{center} \end{figure} As always, an inspection of the model fit via a residual plot is worth the effort. Here, we plot the fitted values against the residuals and label the points with the name of the corresponding city using the \Rcmd{textplot} function from package \Rpackage{wordcloud}. Figure~\ref{GAM-USairpollution-residplot} shows at least two extreme observations. Chicago has a very large observed and fitted $\text{SO}_2$ concentration, which is due to the huge number of inhabitants and manufacturing plants (see Figure~\ref{GAM-USairpollution-boostplot} also). One smaller city, Providence, is associated with a rather large positive residual indicating that the actual $\text{SO}_2$ concentration is underestimated by the model. In fact, this small town has a rather high $\text{SO}_2$ concentration which is hardly explained by our model. Overall, the model doesn't fit the data very well, so we should avoid overinterpreting the model structure too much. In addition, since each of the six covariates contributes to the model, we aren't able to select a smaller subset of the covariates for modeling and thus fitting a model using \Rcmd{gam} is still complicated (and will not add much knowledge anyway). \begin{figure} \begin{center} <>= SO2hat <- predict(USair_gam) SO2 <- USairpollution$SO2 plot(SO2hat, SO2 - SO2hat, type = "n", xlim = c(-20, max(SO2hat) * 1.1), ylim = range(SO2 - SO2hat) * c(2, 1)) textplot(SO2hat, SO2 - SO2hat, rownames(USairpollution), show.lines = FALSE, new = FALSE) abline(h = 0, lty = 2, col = "grey") @ \caption{Residual plot of $\text{SO}_2$ concentration. \label{GAM-USairpollution-residplot}} \end{center} \end{figure} \subsection{Risk Factors for Kyphosis} \index{Spinogram} Before modeling the relationship between kyphosis and the three exploratory variables age, starting vertebral level of the surgery, and number of vertebrae involved, we investigate the partial associations by so-called \stress{spinograms}, as introduced in \Sexpr{ch("DAGD")}. The numeric exploratory covariates are discretized and their empirical relative frequencies are plotted against the conditional frequency of kyphosis in the corresponding group. Figure~\ref{GAM-kyphosis-plot} shows that kyphosis is absent in very young or very old children, children with a small starting vertebral level, and high number of vertebrae involved. \begin{figure} \begin{center} <>= layout(matrix(1:3, nrow = 1)) spineplot(Kyphosis ~ Age, data = kyphosis, ylevels = c("present", "absent")) spineplot(Kyphosis ~ Number, data = kyphosis, ylevels = c("present", "absent")) spineplot(Kyphosis ~ Start, data = kyphosis, ylevels = c("present", "absent")) @ \caption{Spinograms of the three exploratory variables and response variable \Robject{kyphosis}. \label{GAM-kyphosis-plot}} \end{center} \end{figure} The logistic additive model needed to describe the conditional probability of kyphosis given the exploratory variables can be fitted using function \Rcmd{gam}. Here, the dimension of the basis ($k$) has to be modified for \Robject{Number} and \Robject{Start} since these variables are heavily tied. As for generalized linear models, the \Robject{family} argument determines the type of model to be fitted, a logistic model in our case: <>= (kyphosis_gam <- gam(Kyphosis ~ s(Age, bs = "cr") + s(Number, bs = "cr", k = 3) + s(Start, bs = "cr", k = 3), family = binomial, data = kyphosis)) @ The partial contributions of each covariate to the conditional probability of kyphosis with confidence bands are shown in Figure~\ref{GAM-kyphosis-gamplot}. In essence, the same conclusions as drawn from Figure~\ref{GAM-kyphosis-plot} can be stated here. The risk of kyphosis being present decreases with higher starting vertebral level and lower number of vertebrae involved. Children about $100$ months old are under higher risk compared to younger or older children. \begin{figure} \begin{center} <>= trans <- function(x) binomial()$linkinv(x) layout(matrix(1:3, nrow = 1)) plot(kyphosis_gam, select = 1, shade = TRUE, trans = trans) plot(kyphosis_gam, select = 2, shade = TRUE, trans = trans) plot(kyphosis_gam, select = 3, shade = TRUE, trans = trans) @ \caption{Partial contributions of three exploratory variables with confidence bands. \label{GAM-kyphosis-gamplot}} \end{center} \end{figure} \subsection{Women's Role in Society} %' In Chapter~\ref{GLM}, we saw that a logistic regression with an interaction between gender and level of education described the data better than a main-effects only model. Using an additive logistic regression model, we can fit separate, possibly nonlinear, functions of levels of education to both genders: <>= data("womensrole", package = "HSAUR3") fm1 <- cbind(agree, disagree) ~ s(education, by = gender) womensrole_gam <- gam(fm1, data = womensrole, family = binomial()) @ The resulting model is best inspected by a plot (Figure~\ref{GAM-womensrole-gamplot}). For males, the log-odds of agreement decreases linearly with each additional year of education. For females, the log-odds is more or less constant up to five years of education and only then begins to decrease. After 15 years, there seems to be no further impact on the log-odds. When we plot the resulting fitted probabilities in a way similar to Figure~\ref{GLM-role2plot}, we see that the interaction is even more pronounced in the additive compared to the linear model. The flat curve for women with less than five years of education can be explained by the rather large variability of the answers in this area but the plateau to the right is due to two groups of highly educated women with a rather large proportion of agreement. \begin{figure} \begin{center} <>= layout(matrix(1:2, nrow = 1)) plot(womensrole_gam, select = 1, shade = TRUE) plot(womensrole_gam, select = 1, shade = TRUE) @ \caption{Effects of level of education for males (right) and females (left) on the log-odds scale derived from an additive logistic regression model. The shaded area denotes confidence bands. \label{GAM-womensrole-gamplot}} \end{center} \end{figure} <>= myplot <- function(role.fitted) { f <- womensrole$gender == "Female" plot(womensrole$education, role.fitted, type = "n", ylab = "Probability of agreeing", xlab = "Education", ylim = c(0,1)) lines(womensrole$education[!f], role.fitted[!f], lty = 1) lines(womensrole$education[f], role.fitted[f], lty = 2) lgtxt <- c("Fitted (Males)", "Fitted (Females)") legend("topright", lgtxt, lty = 1:2, bty = "n") y <- womensrole$agree / (womensrole$agree + womensrole$disagree) size <- womensrole$agree + womensrole$disagree size <- size - min(size) size <- (size / max(size)) * 3 + 1 text(womensrole$education, y, ifelse(f, "\\VE", "\\MA"), family = "HersheySerif", cex = size) } @ \begin{figure} \begin{center} <>= myplot(predict(womensrole_gam, type = "response")) @ \caption{Effects of level of education for males (right) and females (left) on the log-odds scale derived from an additive logistic regression model. The shaded area denotes confidence bands. \label{GAM-womensrole-probplot}} \end{center} \end{figure} \section{Summary of Findings} \begin{description} \item[Olympic 1500m times] Here the use of a generalized additive model suggested that a quadratic model might best describe the data. When such a model was fitted it made reasonable predictions of the winner's times in the Olympic Games of 2008 and 2012. \item[Air pollution data] Finding a suitable model for these data was problematic because of the outliers in the data and the high correlations between some pairs of explanatory variables. Except for wind, the fitted partial contributions are well approximated by a linear function for most of the observations and it might be questioned if the more complex additive model is really needed. \item[Kyphosis] The risk of kyphosis being present decreases with higher starting vertebral level and lower number of vertebrae involved. Children about 100 months old are under higher risk compared to younger or older children. \item[Women's role in society] For males, the log-odds of agreement decreases linearly with each additional year of education. For females, the log-odds is more or less constant up to five years of education and only then begins to decrease. After $15$ years, there seems to be no further impact on the log-odds. \end{description} \section{Final Comments} Additive models offer flexible modeling tools for regression problems. They stand between generalized linear models, where the regression relationship is assumed to be linear, and more complex models like random forests (see \Sexpr{ch("RP")}) where the regression relationship remains unspecified. Smooth functions describing the influence of covariates on the response can be easily interpreted. Variable selection is a technically difficult problem in this class of models; boosting methods are one possibility to deal with this problem. \section*{Exercises} \begin{description} \exercise Consider the body fat data introduced in \Sexpr{ch("RP")}, Table~\ref{RP-bodyfat-tab}. First fit a generalized additive model assuming normal errors using function \Rcmd{gam}. Are all potential covariates informative? Check the results against a generalized additive model that underwent AIC-based variable selection (fitted using function \Rcmd{gamboost}). \exercise Again fit an additive model to the body fat data, but this time for a log-transformed response. Compare the two models, which one is more appropriate? \exercise Try to fit a logistic additive model to the glaucoma data discussed in \Sexpr{ch("RP")}. Which covariates should enter the model and how is their influence on the probability of suffering from glaucoma? \exercise Investigate the use of different types of scatterplot smoothers on the Hubble data in Table~\ref{MLR-hubble-tab} in Chapter~\ref{MLR-hubble-tab}. \end{description} \bibliographystyle{LaTeXBibTeX/refstyle} \bibliography{LaTeXBibTeX/HSAUR} \end{document} HSAUR3/inst/doc/Ch_multidimensional_scaling.Rnw0000644000176200001440000002740714416236367021146 0ustar liggesusers \documentclass{chapman} %%% copy Sweave.sty definitions %%% keeps `sweave' from adding `\usepackage{Sweave}': DO NOT REMOVE %\usepackage{Sweave} \RequirePackage[T1]{fontenc} \RequirePackage{graphicx,ae,fancyvrb} \IfFileExists{upquote.sty}{\RequirePackage{upquote}}{} \usepackage{relsize} \DefineVerbatimEnvironment{Sinput}{Verbatim}{} \DefineVerbatimEnvironment{Soutput}{Verbatim}{fontfamily=courier, fontshape=it, fontsize=\relsize{-1}} \DefineVerbatimEnvironment{Scode}{Verbatim}{} \newenvironment{Schunk}{}{} %%% environment for raw output \newcommand{\SchunkRaw}{\renewenvironment{Schunk}{}{} \DefineVerbatimEnvironment{Soutput}{Verbatim}{fontfamily=courier, fontshape=it, fontsize=\small} \rawSinput } %%% environment for labeled output \newcommand{\nextcaption}{} \newcommand{\SchunkLabel}{ \renewenvironment{Schunk}{\begin{figure}[ht] }{\caption{\nextcaption} \end{figure} } \DefineVerbatimEnvironment{Sinput}{Verbatim}{frame = topline} \DefineVerbatimEnvironment{Soutput}{Verbatim}{frame = bottomline, samepage = true, fontfamily=courier, fontshape=it, fontsize=\relsize{-1}} } %%% S code with line numbers \DefineVerbatimEnvironment{Sinput} {Verbatim} { %% numbers=left } \newcommand{\numberSinput}{ \DefineVerbatimEnvironment{Sinput}{Verbatim}{numbers=left} } \newcommand{\rawSinput}{ \DefineVerbatimEnvironment{Sinput}{Verbatim}{} } %%% R / System symbols \newcommand{\R}{\textsf{R}} \newcommand{\rR}{{R}} \renewcommand{\S}{\textsf{S}} \newcommand{\SPLUS}{\textsf{S-PLUS}} \newcommand{\rSPLUS}{{S-PLUS}} \newcommand{\SPSS}{\textsf{SPSS}} \newcommand{\EXCEL}{\textsf{Excel}} \newcommand{\ACCESS}{\textsf{Access}} \newcommand{\SQL}{\textsf{SQL}} %%\newcommand{\Rpackage}[1]{\hbox{\rm\textit{#1}}} %%\newcommand{\Robject}[1]{\hbox{\rm\texttt{#1}}} %%\newcommand{\Rclass}[1]{\hbox{\rm\textit{#1}}} %%\newcommand{\Rcmd}[1]{\hbox{\rm\texttt{#1}}} \newcommand{\Rpackage}[1]{\index{#1 package@{\fontseries{b}\selectfont #1} package} {\fontseries{b}\selectfont #1}} \newcommand{\rpackage}[1]{{\fontseries{b}\selectfont #1}} \newcommand{\Robject}[1]{\texttt{#1}} \newcommand{\Rclass}[1]{\index{#1 class@\textit{#1} class}\textit{#1}} \newcommand{\Rcmd}[1]{\index{#1 function@\texttt{#1} function}\texttt{#1}} \newcommand{\Roperator}[1]{\texttt{#1}} \newcommand{\Rarg}[1]{\texttt{#1}} \newcommand{\Rlevel}[1]{\texttt{#1}} %%% other symbols \newcommand{\file}[1]{\hbox{\rm\texttt{#1}}} %%\newcommand{\stress}[1]{\index{#1}\textit{#1}} \newcommand{\stress}[1]{\textit{#1}} \newcommand{\booktitle}[1]{\textit{#1}} %%' %%% Math symbols \usepackage{amstext} \usepackage{amsmath} \newcommand{\E}{\mathsf{E}} \newcommand{\Var}{\mathsf{Var}} \newcommand{\Cov}{\mathsf{Cov}} \newcommand{\Cor}{\mathsf{Cor}} \newcommand{\x}{\mathbf{x}} \newcommand{\y}{\mathbf{y}} \renewcommand{\a}{\mathbf{a}} \newcommand{\W}{\mathbf{W}} \newcommand{\C}{\mathbf{C}} \renewcommand{\H}{\mathbf{H}} \newcommand{\X}{\mathbf{X}} \newcommand{\B}{\mathbf{B}} \newcommand{\V}{\mathbf{V}} \newcommand{\I}{\mathbf{I}} \newcommand{\D}{\mathbf{D}} \newcommand{\bS}{\mathbf{S}} \newcommand{\N}{\mathcal{N}} \renewcommand{\L}{L} \renewcommand{\P}{\mathsf{P}} \newcommand{\K}{\mathbf{K}} \newcommand{\m}{\mathbf{m}} \newcommand{\argmin}{\operatorname{argmin}\displaylimits} \newcommand{\argmax}{\operatorname{argmax}\displaylimits} \newcommand{\bx}{\mathbf{x}} \newcommand{\bbeta}{\mathbf{\beta}} %%% links \usepackage{hyperref} \hypersetup{% pdftitle = {A Handbook of Statistical Analyses Using R (3rd Edition)}, pdfsubject = {Book}, pdfauthor = {Torsten Hothorn and Brian S. Everitt}, colorlinks = {black}, linkcolor = {black}, citecolor = {black}, urlcolor = {black}, hyperindex = {true}, linktocpage = {true}, } %%% captions & tables %% : conflics with figure definition in chapman.cls %%\usepackage[format=hang,margin=10pt,labelfont=bf]{caption} %% \usepackage{longtable} \usepackage[figuresright]{rotating} %%% R symbol in chapter 1 \usepackage{wrapfig} %%% Bibliography \usepackage[round,comma]{natbib} \renewcommand{\refname}{References \addcontentsline{toc}{chapter}{References}} \citeindexfalse %%% texi2dvi complains that \newblock is undefined, hm... \def\newblock{\hskip .11em plus .33em minus .07em} %%% Example sections \newcounter{exercise}[chapter] \setcounter{exercise}{0} \newcommand{\exercise}{\stepcounter{exercise} \item{Ex.~\arabic{chapter}.\arabic{exercise} }} %% URLs \newcommand{\curl}[1]{\begin{center} \url{#1} \end{center}} %%% for manual corrections %\renewcommand{\baselinestretch}{2} %%% plot sizes \setkeys{Gin}{width=0.95\textwidth} %%% color \usepackage{color} %%% hyphenations \hyphenation{drop-out} \hyphenation{mar-gi-nal} %%% new bidirectional quotes need \usepackage[utf8]{inputenc} %\usepackage{setspace} \definecolor{sidebox_todo}{rgb}{1,1,0.2} \newcommand{\todo}[1]{ \hspace{0pt}% \marginpar{% \fcolorbox{black}{sidebox_todo}{% \parbox{\marginparwidth} { \raggedright\sffamily\footnotesize{TODO: #1}% } }% } } \begin{document} %% Title page \title{A Handbook of Statistical Analyses Using \R{} --- 3rd Edition} \author{Torsten Hothorn and Brian S. Everitt} \maketitle %%\VignetteIndexEntry{Chapter Multidimensional Scaling} %%\VignetteDepends{ape,wordcloud,MASS} \setcounter{chapter}{19} \SweaveOpts{prefix.string=figures/HSAUR,eps=FALSE,keep.source=TRUE} <>= rm(list = ls()) s <- search()[-1] s <- s[-match(c("package:base", "package:stats", "package:graphics", "package:grDevices", "package:utils", "package:datasets", "package:methods", "Autoloads"), s)] if (length(s) > 0) sapply(s, detach, character.only = TRUE) if (!file.exists("tables")) dir.create("tables") if (!file.exists("figures")) dir.create("figures") set.seed(290875) options(prompt = "R> ", continue = "+ ", width = 63, # digits = 4, show.signif.stars = FALSE, SweaveHooks = list(leftpar = function() par(mai = par("mai") * c(1, 1.05, 1, 1)), bigleftpar = function() par(mai = par("mai") * c(1, 1.7, 1, 1)))) HSAURpkg <- require("HSAUR3") if (!HSAURpkg) stop("cannot load package ", sQuote("HSAUR3")) rm(HSAURpkg) ### hm, R-2.4.0 --vanilla seems to need this a <- Sys.setlocale("LC_ALL", "C") ### book <- TRUE refs <- cbind(c("AItR", "DAGD", "SI", "CI", "ANOVA", "MLR", "GLM", "DE", "RP", "GAM", "SA", "ALDI", "ALDII", "SIMC", "MA", "PCA", "MDS", "CA"), 1:18) ch <- function(x) { ch <- refs[which(refs[,1] == x),] if (book) { return(paste("Chapter~\\\\ref{", ch[1], "}", sep = "")) } else { return(paste("Chapter~", ch[2], sep = "")) } } if (file.exists("deparse.R")) source("deparse.R") setHook(packageEvent("lattice", "attach"), function(...) { lattice.options(default.theme = function() standard.theme("pdf", color = FALSE)) }) @ \pagestyle{headings} <>= book <- FALSE @ <>= x <- library("ape") library("wordcloud") @ \chapter[Multidimensional Scaling]{Multidimensional Scaling: British Water Voles and Voting in US Congress \label{MDS}} \section{Introduction} \section{Multidimensional Scaling} \section{Analysis Using \R{}} We can apply classical scaling to the distance matrix for populations of water voles using the \R{} function \Rcmd{cmdscale}. The following code finds the classical scaling solution and computes the two criteria for assessing the required number of dimensions as described above. <>= data("watervoles", package = "HSAUR3") voles_mds <- cmdscale(watervoles, k = 13, eig = TRUE) voles_mds$eig @ Note that some of the eigenvalues are negative. The criterion $P_2$ can be computed by <>= sum(abs(voles_mds$eig[1:2]))/sum(abs(voles_mds$eig)) @ and the criterion suggested by \cite{HSAUR:Mardiaetal1979} is <>= sum((voles_mds$eig[1:2])^2)/sum((voles_mds$eig)^2) @ The two criteria for judging number of dimensions differ considerably, but both values are reasonably large, suggesting that the original distances between the water vole populations can be represented adequately in two dimensions. The two-dimensional solution can be plotted by extracting the coordinates from the \Robject{points} element of the \Robject{voles\_mds} object; the plot is shown in Figure~\ref{MDS-watervoles-plot}. The \Rcmd{textplot} function from package \Rpackage{wordcloud} can be used to annotate the plot with non-overlapping text. \begin{figure} \begin{center} <>= x <- voles_mds$points[,1] y <- voles_mds$points[,2] plot(x, y, xlab = "Coordinate 1", ylab = "Coordinate 2", xlim = range(x)*1.2, type = "n") textplot(x, y, words = colnames(watervoles), new = FALSE) @ \caption{Two-dimensional solution from classical multidimensional scaling of distance matrix for water vole populations. \label{MDS-watervoles-plot}} \end{center} \end{figure} \begin{figure} \begin{center} <>= library("ape") st <- mst(watervoles) plot(x, y, xlab = "Coordinate 1", ylab = "Coordinate 2", xlim = range(x)*1.2, type = "n") for (i in 1:nrow(watervoles)) { w1 <- which(st[i, ] == 1) segments(x[i], y[i], x[w1], y[w1]) } textplot(x, y, words = colnames(watervoles), new = FALSE) @ \caption{Minimum spanning tree for the \Robject{watervoles} data. \label{MDS-watervoles-mst}} \end{center} \end{figure} We shall now apply non-metric scaling to the voting behavior shown in Table~\ref{MDS-voting-tab}. Non-metric scaling is available with function \Rcmd{isoMDS} from package \Rpackage{MASS} \citep{HSAUR:VenablesRipley2002}: <>= library("MASS") data("voting", package = "HSAUR3") voting_mds <- isoMDS(voting) @ and we again depict the two-dimensional solution (Figure~\ref{MDS-voting-plot}). The Figure suggests that voting behavior is essentially along party lines, although there is more variation among Republicans. The voting behavior of one of the Republicans (Rinaldo) seems to be closer to his democratic colleagues rather than to the voting behavior of other Republicans. \begin{figure} \begin{center} <>= x <- voting_mds$points[,1] y <- voting_mds$points[,2] plot(x, y, xlab = "Coordinate 1", ylab = "Coordinate 2", xlim = range(voting_mds$points[,1])*1.2, type = "n") textplot(x, y, words = colnames(voting), new = FALSE) voting_sh <- Shepard(voting[lower.tri(voting)], voting_mds$points) @ \caption{Two-dimensional solution from non-metric multidimensional scaling of distance matrix for voting matrix. \label{MDS-voting-plot}} \end{center} \end{figure} \begin{figure} \begin{center} <>= plot(voting_sh, pch = ".", xlab = "Dissimilarity", ylab = "Distance", xlim = range(voting_sh$x), ylim = range(voting_sh$x)) lines(voting_sh$x, voting_sh$yf, type = "S") @ \caption{The Shepard diagram for the \Robject{voting} data shows some discrepancies between the original dissimilarities and the multidimensional scaling solution. \label{MDS-voting-shepard}} \end{center} \end{figure} \bibliographystyle{LaTeXBibTeX/refstyle} \bibliography{LaTeXBibTeX/HSAUR} \end{document} HSAUR3/inst/doc/Ch_logistic_regression_glm.pdf0000644000176200001440000046241514660150121020772 0ustar liggesusers%PDF-1.5 %¿÷¢þ 1 0 obj << /Type /ObjStm /Length 3958 /Filter /FlateDecode /N 67 /First 552 >> stream xœ½[[sÛ¶~?¿om§¸“g:™‰í$Nçâ8vÚNd‰¶ÙÈR*ÉIÚ_¾@Š79ŒêžIh‚¸,€Åî~‹$Y³Žifc†¥Ú2ËD’æðB^Ê„²)˘0‰F™Ä[0©jJ&µC¦bÒ:ÔÕL% ò SÈ`¨¢T‚|Ç”–†‰”©Ì¦µÎ˜L˜NeR0#%ˆHfúAÒJKÄ™µf3mÐ sZ¢cΧ, êe,• Ä–ªL1%h*4–f ‚eý*Í2 úʰÌÒ`-Ëœ“L9–e)Ê1ÔDàKa µÐl¢Á-° ¥%™ÑL+ðAZš cň„0©d`£Ö <)zÒ ,“AYJÌ™Ø 58g@Ytm@Y:T6 ,SŒ ½0E  †£(+…¾°6Bi‹æ~‰0 t'0ÒŒYPÖSç„Vk ÊZ;p”µ} ÊÚ¦´ðH84q¡½€²Î2ɰîXu'þóË/Œçëñt¼c! 5'Œ¿º]ÏŠy¾‚Àøï×ã+|èðqú×§œñ}ÔŸ-®ØÃ‡žÄ£ÛõõbÉ~¹Ì//“ÄhH Þlq˜¤£oƒ'Oâ”Nc9å§›ºe¹!mu¬/cy¶)£|Ú²¤ úΆ~ʺDßé‡í2¯‹Åü`¼ÎÙÿ•‰ÔI*œH•êçDþ$?üëa?¾ŸæïÙ—b}Í®1ßå2¿DñQþ×—Årºb?âãx1ý¹×ËÅôv’ƒÞÓ×/ØÓëÅj½š,‹OkˆÙ(ÁÔy{{ñG>Y—¬£©;üs¡ŸëY^•ŠkL²V‘‰”¶Fyf‹øÎj CLU‘Þ$Ò/iÇ<ë{æªH3¦}{ªëb¾ o‰1*CoÉêÍâø¶—qA³‡¥4í/nçk²ü¨·‡©"ÑAÿ+ƒ¬ÊP…õ¯XC„WÈLƒàBêýW¨’…LÌ/¼EùVñÈ»XM†l§¡ðC© A?JU˜Ïk4,Y¬µ¿˜¯ó92Éþx%:ΧÅxoñÕ¨c“™<-F ý(.Ñ T¹“|µ¸]NÐuðÔXšDÕ\.&oó5èð×O0 üë>¬­ÉW°õI±\­YË‹ñ&ÚTúßh÷À0~¯¨¯°üý¯¿‘9öÙ, ›ßÎf4‡Ø‰¨÷âJƒâ§ÍKSÄ'Q$\¿˜–"æí‰‹âE±ÇR¤úl‰ÛØ¢ÊVD1÷ýcyYRqU(ЏžÆ¾JûFª¢jb\-{zOË.Ì˾7^å¾5ÿõpïìôÙÏûÇ{X0þx>YL‹ù‰§êWlÿz¼$ôb½½Á‚MŒâÒ×ÄyóµöR·¢ì=ôv^L××AœŸ/ý éð,ôÔÛkGz쀚®Šƒ[áoß–\¨·Ká%d¡ì#¯Ä§Så[N ±Ñy¸0RñÍ? BT ¾Lx£•˜0$|Ç  KJ¥ A¹e)ÚKò4à†d!ÇÈ0 zMê•?TVc5¡•‡p¶~:Ì‹«k(H–â̦µþ‘?â{|ŸðÇü Êù3þ‚ó×ü„¿åïø9ó >á“Ål1Çß››1Ÿòœ{R<¿™ŽW×ü’_Ÿs~ ÁâWüšü#Ÿñ>çsh<_ðþ~‼b1åÞBß›H,ÖÈ"BK¾â«üs>ç«â+_óõõ2ÏùúË‚ßòÏü/þ7ÿ;_.~ò¶ÂÏéLÈäÌÆWäPxÙØ+uÀ—Á/~æBé“b–ÙQÑ¡¬—㛼-¾Ïà“Gó+|«„Ù _þvßœAel],kÍßG6Ãmêêʳ7GOž?Fgoßî½o¨ {þh¾*6ŇØQÙRª3Hoüß¶„ÀYnJˆ®KÈIïIÅtcàï5u W­›L×I›é> ä;4°ŸíNï¿:;:@'`Õ06kÛe³nÛ'lI†Ú'ÑcúþÙ, l]üÛ)Ý[ÏÀ!q‰ÛJG{"ÔÓÊTéúH|Y¬§üÆú7Jà u-GC.Âg%{°‡°§<ØRü9´=ê9éôšn(m¥³Ø¢ÖR\fHßOK‚J0©$¨¹¾CÕ6QßT[HAd ¶¡Ñ\œÀuq 'eôè:˜¬å?Çä €ž½{ïYÑ`Õ`!ºžvX p“F|“öâ]÷ßt©…séTšú'Ùä(åßCÁ¼ô@ßU½8À´Ã~8@:lSJ6 iøïT¦à¥Fb%vùP߆¾Ó Œ³=(b«ï"q+Dkz%\W ¯uäý÷˜7äEú4­òhô.ÁÞô!½i }ø¼éŸó#ö/ù«ˆø§Àü3 þ¯ü7hõøº¼ϧwùsïäÞŽg<ÿ:™oÈ! ÿ÷ÿÉ5˜m¼ì}¯ôÿc‹›@º1Ë/×!ŒƒfXÚ–O³Ûÿ3x¾jÇ—¸)Âp7^ÅjFãlû_ø×~ÿÂTP×4StJákežÅ-SUª]eªšú9ØÃC¡îðé»ýósÐ?}Ö4ºmzt‰’óu•t(h£ãt1›HÞÁÅš_Q`8_v!q–¯VMµÞ‰m(œ^Ì‚ºo»Ûùx>Y,ó»Of¥P¦}¡Ô(×·Ë3mÐRÉ6ò¿ÖV³i('šJî`^=~s¾¾[ hxŲ³í£Ë #`AR©TZm¶k&íúÈØx¿³µ!4ýÀ>oºô¨Û¾1Ü埮格m7ÞQH]X¸Ö:@±²¥ l°ÑÔY_ª †I dzO×¼|=æ“ë"jP^i‡¹ñÍÅt •¨îjâüuc´on5Ó-þ0Ü—¦:õCiIq)•·$i¨ÿ&‡*={õüÉáÏ/‹›‹ÛÕñbþâÁI~uûêbV …1Ý•`»3ŒÙ$JaíÒej{Î]Oûkn«»Û´ôhð¿o&Û)„¿ð’uð²Íp¬âö‚×Ó-ðuÞ° V[wg~¾‰; ÔùG»± ‚¶DsAHm©¼YÖÔ^_L0âkK{][{ïR®¦Oªjäר¡ÚvÈÖlIjI‹%fAŸÜá#˜ÌÕáW´Þ [½e¿õòõwCоª‘)orcè)¤ü·w‡|¥ÜH&éÈW™%°øR¥# èÑ"Ñ{äÒa_?ÕÂ^^Dé„<ˆò„ ûþx9 iÇd„¦M!Þ2ҵɦ“”²>˜¬BýŽìývðîp?p;Ûý軡þUO¸>‘w6F_ø_Í€\Ê(ÖÕn(”ºø,e[ö:1ù¦pìƒ™Ž«Üúx<ÐpëM´*ÿØ­/ßçÖ²Ñåa^°ÑÉHÐ]%jÛ¶LÚQF×®]608±NøæI¸Øp?Fz›1¦ó*Q7À›UÈzVÁÞÓ*”.䎛«£×gû'Þß4CÍVÚ5[íÛ Ø „º0àéX½ÙØf0'Ä`6±—YÁS‹ŽT±‘nþ.À¡b«Œï±¥öHƒ·÷…8ÃôÇöù8ÆŒý ¤ßÇéHgt12ù;J óJd#ÚÀý3õ!5ìówê>Nݯ©|¤é·(ã'óv½êÝÍh†£¹KMÞ[ìÅí¢ƒƒVÒ¨-+i2½m%­ѯyT†7Y«TÂ{Ut^>¢ÞwF¨Ì}…ìN–êßâ’–(MÀ§F$ Z'#IŸê‘t¹4ltñG M4329·-Ȩl2ʰµ–©ÑõeåÌÈBE$v"61GWYùçÏž?%ç÷×úVß–&«2îݧ©ý² ¬2È´§Y÷«t ÷-|Vfû¦˜ß®ú<ÿvD%ñɨuÓ—¶1Á͉§ˆÁgHçÏöŸùCªcÓ6ce÷´³T¬]N;ïùÔñßûG?ã£Ó™úxlŸÈ׺s‡X;žü³å¶ûû­["q‰ö§Ý £íăšK;¾·]tÝ!k­Q€ZÖ’~­`Ë´díj"|‡»wP\^æ°çdÀ÷÷×67›B¼1üa󻩪í.`+´ÿžèÑÝ‚ËK<ž¥‹ö$àêlî1†ë·áJå= ¡ÕÝ=ÍKú9Ý“ü%æoÐOòüq¾·UA·Hà輟Ñ?%:ü'QŠáq"ì÷4¢ä~¥ 6^‚ÿ™ä#ýendstream endobj 69 0 obj << /Subtype /XML /Type /Metadata /Length 1484 >> stream GPL Ghostscript 10.00.0 2024-08-17T18:31:13+02:00 2024-08-17T18:31:13+02:00 LaTeX with hyperref A Handbook of Statistical Analyses Using R (3rd Edition)Torsten Hothorn and Brian S. EverittBook endstream endobj 70 0 obj << /Type /ObjStm /Length 2445 /Filter /FlateDecode /N 66 /First 560 >> stream xœÍZ]SÛH}ß_Ñ3µ5­¾ýÝ[ÙT™TR2ÃÎdvŠcxclÆ6›ì¿ßs¥–-d ˜$eTjI-õés¿» $”ZI"aùd…WA'‚·8D²hA*j¢ mðJÂ+Q ü‘KZDä“èBQyÐ䃈Vh«’ˆNhHD/tи„Žý£ÐÉâ;I•¢HJ‡‰„±Ö|Ú8ûF˜ qm…‰,9a•ÃÙ K€™‚°ÚáyÖî'aH¥„ ¨ ›ˆ§¡…SÞ£a„ÓdѰÂYËpù·/DñªœÍÅŸÂAsz¢øøÇ¿Y#ƒ! QVÓߌFâDïË/sÖ¯ªë‡þ´ã²¾:ÎG¥xq^žŸ+e†,• ‡F÷<·Φ¾ïS¾_¾/_Þ E{ òºPÌ:(¦å!Ÿu¸yÌPÚXÐT寫û„Ü®ú™6溯§ºÍsãkò»e~Oç>ƒ<^??oúçûMîËïTÏΖ¼UÏŒa+®”—Éø.Wn3WzWÍÜ2þ–„†+×⥬9«9\àÜ'ó²Öó(Às0Ïa'“G>,φýýÉôSø¹ä$«»% Wr²mëÞ½r6¹™Ê™à^ãk•å MG%SS|xõs⹟ šÿ».ùSe‡Ä`Û,*I:o‚’R—Ű™E³†Eg²ÖŸå#K˜Ù¬4ˆ%ì³Ä}‹I{›Õ–ä[ì™±çŸÀž_ÞKVÂÃ.Ù[G˜[§vm²êUä˜LVC¤k¹˜%9ûýYYM©x·ÿîøðøï‡½(ŠŸÇƒÉÙp|!Šß‡ã½ñl¸¼ñz8Í.ûS]Ñy ¦Ãëùdʱ‚ø®ßêsts:¯È`J¨a¦õ÷áÙü’ÕÝÁ'Ÿ,Œ`6àÉ{ï ¾þõ›rxqÙ\â«ÌøÅürZ–?V´V½ÒŒgÔ¿˜! qÔ¬†ØoäÌ-0å¤~öz8*C|4ßzß¿*;\¼÷GÃÁÞø¤+(Ïp6p¸Ü9š—W¿±ShͬÅIžS,³Óã`”ýmщ²”{à€š>†sˆ¦üÁ4mäYz–8%áöšA¶úpûcQ˜æ¾ãÄ£iã~ó.œ¤¥ö€Kýypôæà-8;ú>u©A=kzŠ£V8Ц£7œƒl§8.FWnæþ_زß÷ñãYuM¾±mõåÂ$NûÓbTÎfå_7ýQq5ßÌŠër:œœñËå´<»e/ürm0vÅXðŒ# c-®k-Éoi/œwÞi0‹HkOJ¬ÆÃ¬[Oöè)kþƒúþdzVNó˜T!ãÀ]]ž,ü}lûûO-U©ÀÂß¿qŒlÀ¯è¨¤çbÁcHj5æc¹t,““–e¼Ž?5Ð*ÂÖD½°+Žôꑇڦ|[¬ž; Wå-ÂS‹pCànË'ƒ7!Hc¹Š"éPmÙà¥Aõf–8¶£¼•ºÕ¸à¨Ï”Ï:ŸÍUŽ;—0»ÒåPËi¶B]‡:X¢ŒD´E² !k%·ÕåGµMáò1n!Õ´NhiW¶åv&³®ÿIíl=EI‘óMãe°~“ÿ!øÅ,á?PñK£HhePáæjy¥ìÆÓ*AíJ÷Õcüø“²¦ ²•oÖ¯Ú8à%Þ4Èj:öx+ö ®OÓ&ðAj^6‚H’Ì”$çhšãꪭ4âÙÐe¥NKtF{Ék[;@×µ&^Rk™“E¸ˆ¼Üb°ÃÆpNˆ.ÈÀÉñZICQ˳x`tQµþóz]}öùò9®±0Ú™…¥¯aaÛxpdQMŸû½yÑKZ¸[ÅÒ²vùíÝ/¿¾â öçÚ¥Ivµ Å•|•—R;ÕKÚ¶x1¾:ºi¾½•åÛ[Iþ5‹hTžÏO‡õÕ”»ñå­ôÞ@Õ6æ÷ü0ðòp7¿o·–ù}‡­ó{ww~ÿo`ƒâœbƒ¹YÄ6 N%æ¹Hæ ²j•ܳûª»Ñ‘çd=vžMb’ÁÙ ,m™=6¸ƒÉØ4y™Ø_}lNEdi“ÕZjëØ.y_ä»Àæ‚t ‘ê¤EÒóh½jƒBeÛûÜå²øZã:—Á(¯cÝ6;[g¥fïd÷i1ï`­æÅÚÀg¤MµŒFyhx»æ…© rU¯ÔS‹™g/`x?®J('”‡Œ÷âVeiw%K­¾+YZŠ’·=¡ E e [«C*‡jÖ>)J캀`ÀBâ­xÿX™`6™ôó1¬ôZo4tœw›µôÄ»ÙIƈkg%oÇ~ctÉÈHKt† RNžŽnU´ih­‚u˜Í‘Ì¢*hQ.ªÊC²ªhûÀå½fWhºÓÚù^wöƒÃ½££‡£×u>LÏFd ®Êœ4ï4$Í¥ÛnÁþüYÎæýùLN¾Èþ@Þ|*®oN n‹G(¢H…Käÿê«5‡µm ù 7:c oè qH¾˜~LEm›ÎôÈÅê_÷Qþ¶bÀÎþÕðü¼DÌä ùgµŠwkMtÒvsñ‰ÇŒ'Ví‹Î6<Òy±Ü©¯ÿÛá1fí¨ÿê½Üendstream endobj 137 0 obj << /Filter /FlateDecode /Length 3868 >> stream xœíZK$ž·CË¢ÚÞ.çûlK°,`k‘–ݱ8²zžŒ™™¦g€åàß|DÖTí‚„‘Ö¦”•ùEÄ‘õÝZŒr-ð/ÿ?¹^©ÑÄõ+±þd匵—koƒ[_¯‚r£‹±Ž\­^­¢ð£3aí£V0«ŽGgÓ,«áÙ°Ie€Ï1~´Lžµ~ ¼¢Uˆaô–)•¸NN‡Ñ¸Èt ÒAH®S›”º9Y§*­¨Ä¤™10™44s Æ``®ñ!ŽÞÔœ,Ö«ïV2Y}ÿ\¯?ýàÅFŒFDeìpÄ~xÃ:kÔðr³ÕZRºÁo¾>ú;“~ ûTÒ”¶•Ú Š[mÁРÀ)Hy¾¿¸ÜàrÖi5pic”q¸‡aMˆv¸ÄacÐa8A1 &”Ã^õÃ*"´ v¸¸K ãBVfðµÓ³Rk? x…ñûZÜI5ìpŠÂ…8ܤÍ+oípJ»tBŸ°(GE%5MÎbÎpàFš8Ü%1Ö Û-}•tU>º¬H„§Ÿ˜ª´ƒ(­'Ù ,ñœ›„$ztž-†$EĨ¼ð ½NÇ£™Òg!ÃUˆtŸí7[@z  ØiÚ³p*Ômо" AÅh£6Ñï“UXåC.–f6àÒ~ø"{d[z…/ZâñA pÑ»©àzsÒFM‰ÌàÍ„7lµ‹'$%H9|±¬{¡@¡ë ¢Ç;º•Ùa¿W—;ÐÐU ï¯:Ýp‚}H‰`arÒ ©¢G³›QYÀÀÄꯚ¥«eæÝ®”@äЮ¥0Üoà¤@œ^o¸]ôzxÒŽá)Ì `AQ͆•=m/‚w0kЋèT/6 Gº÷^7/¹Ýô~”Ÿ™‘?ÂRXoùñqÈ~Ÿ†½Tº;³ºØ-ˆ½#V{èÀ÷˜ëp‚VªáÛÞ ž…Òù(¢¦£xAFtp©—ÍG™Še¿‡æÀ«è–ç)h‚Vº›}›NÃÚØ™uêÜ9R-3:¼Þ–Õ±R ÇQ‡oÒjÁÖ&¾’­Ê­‡vzv´ú|…ƒeë‚ Ï>e³ÏRædð8óÀ’£Ç%AWï#e?¢j0c¹ÙšïÅáoy^)Ð@jÀ(àÛäàV„µYFG’Bá!¤‘ÎÉÆZKO†nY‚RåŠéHOé #tDS@* …õÑóÕÑz-UÕ²ä3iA\9%czEÉôRB2ÍéŒò'j`[98‹ž²™Ÿ± ‡ ½7ªB¢ƒÀµ\&+âŒ×CÛSõ `(—ATJ•ؼW|vU`Q24¤€s·ôUN; Ú&bú¥5$¤WS)“YbÁä\|Kži»;Œf æŠqR>+áÒû”®Ê{(C»¬PÖ‚Y Ïrz€ºà .M™…m¦¨œ2zéJâ€xú<3é­1K“›¼‹Â 8] À›– V/Ti2øQ›¼-³·„[zÇ÷6AcB™U´ÿÙqp?+%ì\Õk~Å|yŸu¨w ¸Ê ›ƒ‡mýˆîø‚–‘€Ü«ävug_Ķ”Þ)?\'Gq’ÕŽ–°î6VÂaÃIìÙ÷$9ÀÖÙF"@$Å;ÈC|ÿ†1ØttÈFì2>¡Ëo«ï£¿ „›³¾ïÄ“Ý ƒâìL÷›Ä­ ?àϸ„Þ©?ßÓ;‚0>BÄæ¦È"£¶qZšï2Ç;iÊÝMb‹ Zi—c ÙäŒ-xèžµÊe¤]nh 6„xT€÷(ì¶Èa£À¹Wy“P$ Ö01ªÄ Ë~Ùè7< 0¹ŸïhªÊrƒ=Ô ?ÃÉÞ*6åÞMv0Ͱ¡Pç‹7^$ Eg`åéz3ƒ)¨ÿ ”×Γ4d4O‘Ì[м¿ µ¶Ä"ÑÉ-„9dO9Fk%-I{1Èe''VÛ;ÇÌ >Ûƒh‘_yŒ.ôi(Š0Ö_¹§éP¤žPÒiÝåORÄj ß@DîŽÞCâñK‘ƒâ¤Ÿ?¬]Õ§j;í¶§«·^æåhYÝóZ"ÓëlÌèøÞÈo¬˜ªSW¸`K0Ós?ü±%¨Ûª&‹»™äà°œ6”Q.뇖³@»­E™¾œdšp™`ª¥=\îŽÙÒW¯°èñ$EN¡E3î±ÍëõØ<¯¾qYŸŽëÓÝ̯7õi_Ÿš¯±y3¾Þ å§.›‰ð3ç=Œ„!êaä*Ît`),ÃêŽe䙓0†E xDÖq°G-Cñ?Ì×Õ¹‡R‡kÕ‹dÎÅ–çèšœé‰klád€Q,øWÈõ k. h{ÌvõéÀÜã_ÿ9sLW3o´y² þsܶÁ7¯óÕPŸÕ§Wõée[çßíñ¿‰Ãòô¤‰;±Ó=«ÿòëœÁ“ä ÉóŒ/Ë7à‹XÕùÌ×3[nr_Ïjxü3Í4·önF ;ɯ6üq.‹"„¡~Ï{{ƒ?Kô“­ñc#õ ƒC§ßv-û¦ôH!6×ÑEDWäŽÆ\õ¶Ï ™dt4¬FÌ…äÈ"úk„\HGï´Ñ›nŸœ¼Ñž;å[þØ1Ò·cal'+—È4 øw´2ÔúkÒ¨\&où (åQBÛ·ì®HQä#F˜B¡àPĨeʨ“*fTsÂ:£õt̽ÊR¹m <’—”òD½UIÜ,=rFÖRçƒÏòRÅaŠ$^–×ÝVœð²3V,0I׬ÄØoÛ „zÖQvíŒË†SÎØNZ¡ùÐŒ|hÉ'ŸµÉ§(Å¥ª¥§,(»O;/cÔƒÚXh?ŽÊ;ZÅÁ)X»Çc­<—I:ïÍ»Û6»Yœv@½"%n¤å *zCpÀXš·$;ŸM»‹Lb Ãfs¾ôÀõ¬æ ÉÔžº!ÙØ¼ÜŸ7/Â9¡Uὃ)håQŒ9é–0„»!,æ·zÆ÷v›È†… ˜ºÃYó$@°ým'¢Ñ0e)Ú‰EÐÐMû:yÝS\:PÇXC%„M•4èCXæLo 9àb£t¦X¿<ÙÍämFF$y ½`>– àX®çñ9îÏaû„¶™ûÇhHlº3$¶dAÖå$^[ÔÙ:AÉh–'Öhdõ³*o t`.ZbÄã,¦3þŽù¡½Õ“Ò9JÂú ÌbHv<ž…žÄÀ4lÁû>nǶ}ÁÒnßðL/‚ÝÝÙ€Îfü®ý‚êæNò¦)a¹…¢\N_i–ðN}Y8øI?ˆYñ ·>d%ßEWÖÃàÁõwÉeJ=ËeÏæô9oÑ^©yDª8/°2ÔõHŽÒYfF¥P0°u•N:=‹…žäYÑB ö]|¶°5Åë=~ºß£y0·I§§žÅHËyXo¹¼™ö ÝÿÝ”áeU‘ÒÚ}Ë3O1…<ªB™"ÌJŒ*°ÃbD(ÝIKéÊ'04÷@ö2Jö]ËÖª¬aì­å¶e×Êß–zD.Ž*xˆšjÝÊ}Ï´ ÓÅŒB†éÃf[úŒf´¼’ozZ£¿vƽe¼…q¼CYbê08 ¬že”]½ÊX“©Sœf:”{^ÞJwz„³zVžjb_ÒïRt]eVà?ôÈAC\¼r¢Û ÌÐMZ¤ÜR°ej*Ïå0¢¤P¥RG'x¤˜l2“q`!îñUZ‚Õu+ªrŸ=Í µ2‹@û OsôK¿ò4?ÈÍÑ¿°p±¬ÄÀoü¤ª7Cï·p6SÕw>Vþté=ëŽ$² G }à†ˆ)}>"lßõ&ÇN·³,(ž.±ÎZ œôQ…ºÛ¡Çf)õºf?ô¯:lm'÷Ý]wÛÞD¥~Fwûd¦GÙú–s­áöëý\·ò·n—Ït˜og–¾cËÌõoÿÆ=ÿÚíð&­vtµ_‰p.}j@àüìhË÷ P?n¶€<ˆax7?‚G_ ~HínH(6–Ž0`PÇÍVªôò ñZf®°ß6¹êGyËEdúÄÆ‚ÏW§BÂî`3!!nj½ó“5àEüS[GYq¸Džœ0tæ/[˜ÀŽY²ëÒên¬C}Þ8OGÓ´ÉeÒ9‰À~kaïj9¤oôÕvæB+ð”Ä9ÙùÿžÄ‰”+ç¸Û2ׇ›mñs†J›s¯+àW¨7Ó¨V)bÏ—¸ ¥#©Ò]¾GNEe„ŸœnåZ²ú‰2'Á`%Iís,üñ akfwÜ¥Èè¹KwÞÑ„L5ùÃéÔÇX #•çðNô£n±°*ñ•†nN]y^-Ÿ>ué8}'›ÛûyêÍŽ·iNÙÕ±Kí´Iw•]Y<ÛE+ß—Ny§,å^vJ ÍšëVRq=ÞÒ³Ì)‹B×lÒj!õÇ™¼Ã’Ñ\v;›‰ôÿù‹Ýò}9“'~Û¬ôõ[òSIKÏWÃùåñÝå Ô¡7›÷€ü Pî˜óÐ;7*E ¯Ï5m.Ï5“[òYäR§¥|¡Àcrsb깕šòs™a¾F¬ëö<-{íÒmKí^@L4PY#2ÞLÓ&÷¶¿>ÔÿOä~S"÷ÈgŒ\û1z!ÓiCoñ5üKŠŒw]“‹©Ÿ˜¾úoêendstream endobj 138 0 obj << /Filter /FlateDecode /Length 626 >> stream xœuSÁnÕ0¼û+|t1»Þµ½{¤RâÖ6œÚÒ‚èëSKBâãY'yy~”C¬Íxwfgòä!¢‡ö¬ï›K‘Õÿtà߸Â5RE_sÁ(Å‹êVypWN¡ÆÂâkaˆ” µU5–<£2Ù™;СÐcìcîæå\í«œÌ;°•XsGj-ôœ Iä¢'Á°çt­…ÌÊi›v ÔMïž΋ôëëfçÏ&÷ê«·n 3ûéÎ-[FL±ú"öÍO;÷!¼FJ px;@¬€*9|Fˆ ªUkx´:qápÛêYUª„ëa´ d {;Ö 5ì¿- %ìïÚ©‚•µ k‡^Z‹¤šh™‚ENÊ_ œ Já{«nÁöÍ¢yF UK¸é}»‡e¶5…çEŠp’¿ÐmbªÖð×Ü:WÈ'Ã?7„Rnå& ü¾Q('à…^’¢6plL¶Çûáãô®y£½7”(bógº5?.Û…jlIVô‰“cB#’³Q¢ÐåÖoãD)ªí†žg1ÂEš]Ddó)œÏÊ+YµcºM›÷»ÚÜï¾ÐøœOîÂiÔbÿª¥É~ K[&Ù2ÊU4V>ZFÿ—ÏdaĨ9§>Ÿ 9fÛE1‘,²$tÌHh1kÄM›†ç™¡¥–—Í'hg hF×bŽËͲU,äûE”ž…8|™šKµ]ü{Ò¡®Y[»´P$à„4¯|ÅœÍé`®Öcœ%dÌËÊ9)·6Ûœ®ùÕ —x _ÍÄ£¦ƒå;ý$½ÒÙ|¢%…­—£Š—#™ÍÑ ÷Ò&‰endstream endobj 139 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 4941 >> stream xœ­XgXT׺ÞãÀìmCQ·J4{l±÷–  vÄȈTQ:HSéÌÌ734TÊPEÚHqc¯h4–{bo4EôØâIrÏÉ·qqιk5Þ$çyîsŸËü™gvYë{ß÷{¿w!c¬º12™L±ÈiáäIæoC€l~™Ö±ÚzÉ¡—ÕÁ¡ƒöÃm¶ës¢/cþ›± paТàÅ¡ŽaKÂ?ŽX¹ÅsEôV§/oŸÕ¾~ký×8oßá2n¤ÉqS¦N›>cæ¬Ùsìç3Ìf3’YÍŒbÖ0ï1£™uŒ=³žÃ83b60cf!³ˆÏlb3WÆqd–0“™™¥ÌTf3YÁÌ`œ˜•Ì,¦7Ó‡±eú1¦?3€á™Ì f0cǼà a8f3“ÅX1qÌC™‹ìD·©Ýêä2ùFy½gUb=Û:ÞºC±R¡S!}mú–ö½ß÷Ÿ¶Þ¶•¶'ûMëw¶ßþ5f(äòµü£#Hj›Ž4qˆ(9ɤ©ӸIJ]4DC<$†¿ÎƒSã´ê@õNM8ħb+uú#pNkJµ'{Ù$ÈÕéô†½Ê”[cB$C¬g©&Ã÷Ð pLjó3XrNZË?&ùÖd¥ÂF: ¢$7É£g¢B.EáþNØu"_´ÑsU  ýQA>J²V±W²ÀKI®8ªØCºËúzúÆKšC–¥Ñ›Eù—âɃE©SR±LÅšt­úhËš¢®[X›WZ`‹ óEÀA‰#äµ yÕ“Îöñ*i ‹ö7ÛŸ³ösÒã€òYáé+ð9×îpŸ¼'ñäSóq[pˆí‚ es”¤;ùšÇÇA5”¨Œ[a=$‚GâöÝÁn[!8IÒ(õ7ÉÑõVá¹€A<Ÿú˜¼Cø‰SÈ{dÔ“9Ø?ü‡ $„8ñ>à],©Ú DhÝ[½¯þHÉh†šÀ½{·+l¸$ø'xù„ûÒE:|âEé¥(;ãåã;&ó…°7:Q£INÖlØÜ¸±x)Ø‘d"@"I¾OáfœùýR”¬‹Ù1Ze2m~—R®Á#øž‰×NÞü2¯¾†oœŒd´>6 ò+×éË•”6²AÄá&©o£ì[J ­ÄžwDÅá°º=õÀaŸ¾Â÷Ñ~Â+·-»}”Í,q0sYE£)TCìä:3Ï©£Ô—UÕ–µwªq9éC†¹lØä¾½òp”Ò¦#‹*¦ÝÂâP<öo³È±8ßEC1Ž Ãîd–’ŒøG^jÿ+{®Ö¬,õÈ^D#’Ö…¹¬s \dq$ÕFˆûΘß:»‹ò+x•"’ Ü9–ÌnÖ+¥»/TŠX«R,LsŸ$Dྠœy³+NTlÇëÎ*º•ût+Ǩ¶çwiû[d¾E9:c$çZ· Zmt,ržÕ;++«çW—»nÞöq„ }¤ sþ§Üët-úãPOéj iTË,Ýo‰ˆÅ¯ö+åÒ©Žy|g~×âŠ:ÃÚtÇáh²Ûžá9¿kûóS=§1XüPã wæ~ÒnßFRLÒjYÍmtº-ÇÒ5%íŒOÞ-Äì ÊönÑÔÐá›*Br÷(«꓎'6&µí'nµ[œÛ¢@ñzŒ¶_kˆ. R•DÆFAbA–r „Œôý{3 AGáÕFŸú[w.m¯Ú•§ÜVã›å™­Úç¼Npm·t…2–Gê]œ>­¸RÈ(¡œWÄ‹è,J=,BÇ´w;&`4STø¨ÁVÚãÀÝ@KU¡íhvÞÒÝ®³òï¸ ^W5ßÀ 8 ?4^9sï^N3|ß­.&z[ÍÀ¾Ý5έk÷»Ð®Q‘qd '‘H»?ù¾å¨ñ€²2´-8 ¸ýw€vÁ;)اƒEœ_$»‡Š‡¢7JÃyì-’Þ¸N¥ÐÎ "ŠÑiœïURÁæëÈk_TÞ¸,œS9³Î±~np­P°é(¥t6ˆ˜+vÑ™j.oDGþ‰¨ðSO¦åm…Éàg)ï É%©˜ûDdwÅÜlá!e¾B…ùñØ€©¤á®°´‹)á²soÌÏJ+ù×Úsfù­\¾B[|FÀX²üWUîfí? z^~nÔ º% tÈ´Y§dhPJ }éðWýÙŸ–Å´Œ¢ÂW=<égøZ6û¢³} µiÃch¢ŸÇ¯¤=†>]šf”úŠ2i‰Ô“Ϭ/ˆŠ@írͽ¿å¦+,Žìì¾/$GsìÊ ='ó 5嘺Wáx³/wÇ)æ‘3ÏðO\$}¶‘AšÉîuQUÕÆ£ÕùZ`LÏÖîr¹ë¥/KF©É WÁÍzp§­©®Å(D†GÂQEQ.”%èãuJ•òÀÈÅY~ú²ˆ@Ïð¦z솃sËõBàL¸æÜ¯®éܱŒï²E ºÏ[ÙV±8¬1ðØaï_£=Žs‡È\½â‚ý•™ùšæ†ý5`‚Ãa¹Þ¹Û`Eþ›â¼ãü·…ù€…4ÐBŸSQm-’d]¢’Kg-†–¼(†ƒ±À-•Ú±‡¨ðT7ú†ño«HŠ7AT&é¢(+DV.9HÝù¬|}ÖÕ·ÙØ¬ßÝņîìѦƃV9ƒ„Ý\…“JìÎÿ!#:‡'E„-Ûiäê›  Ñ¥éd€Z®&¬Ô?(0ÊKUïvî‹“7ÅŠØj:Dû4Êjh=ÐVާ¥q|bR|,„s¯™º¾ |<}FÆ<ŸKoZ…V9ûwAB\švOš¼3bùð…íÅÑ Ñ Úhå®ö}\£Ql^.{=PÎH¹t )§ðd¤M,I5S#ð¦¨\V@hÃÔêHHn§JqD'êMpZ5&KÆØÉFB¤>YjsR­ŽÅðÎo3v§ï1‚]¤çeäbŒôã`]ç]‹Eߣó®î¿nG©ý‰H¼èKhä ¥ü­†FÉŠªT¢ð‘FóÙ¹`€Lθ ¢r]±‡,²™òZ‘ìêd’âA‰vyP(àŠt³V)’ÞO\Jú·^ñ¶üÌxº˜[þ¸yz¾jìÕ¬[§! 8ÒÓ~.CÆý0åM y‡j•ž,.ÿµÍÿÆEçs>Ü×'È*.°lw}|-\¢¡¥ÎäÖh¬)k‚*0ÅUxÓJ|¨K®¨Á9¯¢ÐS¹4ù²,Ý¡v_:£'~òTÊÝ{NsÙ;-? ¢ 5F“º+U¶rMäVº+@ÛKÊ+Ý)²€{ dd¸Ò/R‘ÿ,b°Iö ™ØOŽÔ~‹c~R`÷»ºC:hÓ…„ä]1ÂyÔE•®66õkY4q”'Q£×¨.’ŸÿÍ¥Ó³›ðÄ+Wv§ KðƒØçÇ[Øe3¿#RÒÕ5Šß;lŠÔÎ?P`oX9m:8‘ÞÊ©”5ÙlÂqÏn›0¼IVNmR@¹'ßçCô!ÅTP%Ù9:]^²)ú“6oy*¸.!G™›“¾?]«Ö¤Bš]^ž_XZWçç«ö÷¶ú$=ˆ"Õ{µÃ…[+Õ۷ª}hX×Ò›²>Ör›Žˆ8ù³¶›8ŒÂ Y¿ðŽpåä)h»yœ>Ù+•-Äÿ²9ÆÍkÛÆ‘öÞÇ_>ùÊ×IÝ,žß‡õÅ®[7 Z| xÛÊNþßÓ:Ä›BE¬2a•ØÏ’ôvàøAýã¤Hü ÿ¼ìÜ5¸Íý<ö>ùP ß½Aÿ{ úß¿™|Ulÿß)Šà0”z@8Á HËŠ¨œƒò îÙOrJ¨KD§%Çj•iî;Cƒh¸N¾tU]’Òª5pýãâÛ¼LJ8"ós±êž‡À’ÅŽà@Þ¥â;Lòã¹vœ${ŠŒý¥ðÇ|k·xøùyxÔù55ÕÈ ²ˆö×¥7q®JwB”néÔ+Ûp’ì̓˜¦ø6ËÎ?Gýs¹´ýuŽ×j#Â…à`¯šÍùk¨Ù:L%V«îÛ”®¦¤%© ™šùŸ€'·iç’9‹I¯J–,h #âu [fIa{uºâáС‹î·’èhøÙ3ìq9êxh­r˯½3ŒAYþÙñéþyõ4ˆµ–^¸ƒöEd¸w†`ˆË #ôU“J»ZÎÅ<ÂhÕ'°šÿåE^nvÖ§`'²áêhoXñz6”¥%«SR4Z%Q’ÖÒZö· ù­‘:â`ÖT“ý ‚»„pØ%˜a»¦/5$5Å]çÍh³´iHÔóh‚ßGüë«N½uFÞ1@ú…‡bЕŠ F ‰­ˆFE­JãKíÊUïkÙ[k£&K[¦-Dp}YòþXÙDä[iÁ†¬ ,úÓH\ˆîý‚ƒ‹ ¤ös]pÿÍ,7—WMÕÝLOpÇ5µoÔý9Åð_¯ûÈÒKú_{ÉË%Xˆz0׋`£gà*îÿéü¿j½—IÆ…({9Mê¤ LŸuÇ<ó·i¶jÃéhš© Ö[x­€Z8OFtÎLì%GëoÌ!o…Ê“¶™—¬;ìQÒw$¹úﯣÏ?ºeÄf$–€Ý~ÈÕg—àHiÞ`ÛæfƤ'–‚]1dîÍ ± “ F\@[­ çÊq]Ÿ:ÎyMhD íÂ%æÄgxÑŽCo\X³y»ŸÇÖ ïSe…û²³-Y›$Ç_ñÍ~u¯´¹®®™& u¼Izd’5PíÌ6Ó=ð?ø§€)ćøIû>Ý胾€»ž ôG‘眔§i§Y¨cð³¡9ûY›a”ƒ“9'Ý H7ðƒ¥0)Í5yÚÆ];-ÿ  :IÉèÜí)ÇÏ:ä|u*ø K— ÷r*–> gò¹Îb¥bë À¬š'Pßu‚ã(3q¸×$ƒ—±ò—±¸—7ý3Ö—5¿mñŽ4‰²“8ŠfZA.9c(Ízê°äM{bS“fPys¤—¢¢ôÓ«¥E…§ž8iá‡Ý&ß%6Ãç,™¹º5®´º±ødSH™_¦Pq¸>ƒ¾Íí¹.ÊqÁD%™B6%ì¡ñ"Ê.Z²2/ß\MbÖõF¥©Av”~—™'dÞçï¦/øÈÆ}´Í+¯(Ty8³¦D®% Ê}‹_ðÆ9wÑGÝýþ¿.íø†ô9$œ*ºsq_ÓÞk„ÓBUM˜©¥¬úˆ1ñèúL¡ª¦!šÏ“2¬óTF»…i|4¡šd-ÄpÑûÀ)¶(% n­y.)qÿ…8_š­(ÓfŦB\‚@.w.³VÑÃl¬ù0dN_Mp,ðΧFZË“fâÑUÛ§h‡£L±on‘ìáœe>ËŒ”tüÁ´L-=àлhUž¥ÉÙ£Ö@j’rsÔæ$OX îƒrSôj½¸8Ø«$MìNØ]’“nÈÊrV½ ÜUX8Qîñ;”»½|c·Sò·†5‹úâÃPÇñ8ç’¸r^Û$ŠçÀwñ´}ôŒÚ¢ÝánQk3þljEÛ23èrt”¬yÈ€¶¬Ö´ù*§ŒPš| :X½=Šÿ’ SEÉѳ·ÆN!­%uKìG_”=½ï¡ýøëö»Ý`S°ðgòß‘‡%¡òK€=¿´6\ì–nðûx¶ç…Ïïµ6æïïBºûœ0áßÍHÅ‘8TŽŸc%¯ MHÚª”¸àøè ?WH]¸±2£¤˜RX~ÈË78|˲–ÕÏàô‹hº˜K<çynî»6ÃRŽŒú‹ãOéZË„vó^U™vH]†ƒÐ §3+Ò…5Çé!/ß?;T§ÎŒ¡…MH˜¼ä•áà7–&uû½§‘&«ßûÆç¯-ôC9ºHçùÔÙž«¶úï‰ÿÕCz€ïÞô;ÿÆC늊t:ŠÅvºè-#@›“ì<ÚˆM泫ëy¸QwíÞùæÊ½MPÁ!O&BQ¬Y¾ÂõHlYuUqSM¤18K¨©<ª§|_ƒë7$ÇÇE*WMIù¶qžl¤–”Bf©p–8þ= =¬fõê½z@¯žÐ«Ãü7zÜêuendstream endobj 140 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 200 >> stream xœ½Bÿ CMSSBX10‹‹ù!ùJ‹ ‹ ›÷?¿¼R3oøˆùR‹ ÷¶Ó÷uáæ÷$÷Ÿ÷øw÷Ôʚ걋÷÷Yûm‹^û„g€füêg–°»±•˜®÷›÷÷8û³™s–‹¡‹ÆŸœ‹©ü6÷õ÷u÷÷ ]IP}Uû 7Ÿ ‹ ‹ ‹ ‚J&endstream endobj 141 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1769 >> stream xœ­•kTçÇg˜™*!3©¦œ™rŒ¦ÄÔ( ‚—˜ª¤‰£èr§°Üv¹$n¹¬Àî>»Âr_aY–ë° ×€å ZŒ ž9)m‚95Ml¢ô˜hšw¶/§§˜äKsò¥ói>¼ó¼Ïÿ÷žÿ„« A’$´ÿ-¾‹ok!Û¹×æî¸»Ö{±;=¿zìÚ£ï­"ŸÇ”i¯ff©öfGÇÆ%&ÛD¯ëˆßˆDNø‰@âUb7L„/~Ä£„§|áJèˆÿÑä.þ.ŸPÞÔe×]ÇÝv¸ÕÑ¿¤ÕÌzÆÌôJ:iDÉËF"bÅLSÒ먔ƒ/ CÕ¥8bN‚g .@›ÃîÓØ«ÀMÉü©òÄa·0Šá•L›i:@„qhÓº¯™ßæÃˆ€B™o®_šœ´¼Êãü={2ÁÐÉz8ƒAD×mhH$?‹nݦ†/qJ3s²0^Xè`âu…A|ŽRr§÷ù§wç?Æ+ë„;ÖëWáÏì­>Á?çñn|ƒC&¦ÛTq†Gžô½^¿ðàƒ˜~…?ã"õÝÑkÌÝQÿ]ÛC_ö<$M¡]òµ‘³¨s–’"Q2‡8Ÿû˜ÅîÏzcOüø½ˆF+æÿ‰¥5Åü{Y×# ÁaØŸ(t¥>q¶èbA®5Çz¼N ilTfÄóÁý÷Ô|©Œ£¾¬tÀ@Iž€½˜<(©.7›øò 0ªï?2 À~36ñÑxrWQ•àH7צš-ð>ëh:û9"Í›RL¼Q['­r«Üæ*Ùß'E`#ïO#/;…vJ8ä-bo´OM~°q³ŽÍùv0˜úPuaª{r†ÿ£:Œ RFÇî/xg¦ìߴ쟸äߨ%})=àúNVÏð6‘ÎÒo%¤Â6È2É€¾X\ˆÇP!ó§~kºÅtS^‹N¸ -AéªûdEcØúS§<¤ºÂ&é"i•T”ô,úŒ«²7 _5²"£Ôk ²á8]º™Ò—§BéKJò×ãš5Øõ”X åkÛúÁÊ‹L¦þ ¤C2è!tù“KP]Z›‚Öá¯)טJj¡̦Švq}lèíÆÖ›ïÛÈ37бéY;%=lœ¼ßƒ‘‰] K$°Ûö…‡(5Í- -ï&Àq¡yèœuس—ã¶1 >ª{Év±;ÿ‘yåÚÈà¹F¾ìˆ#aئ ËÇÂ%õæ,­&.œâCÎs>ÉQ‡õžCkЮÚ^/‡—<‰ÏÙPÒ Ù3‹¬Sº°9ƒÉ£zBåadŸöÁãÕw|Ëì™ÑF‹°›AÞÕn"³G[q^þÅ„,|ÈAè4ê¬ÄcÊCÀf`¢½9S;hïlŽAÇ(LB¢úÚ·e4y²ú=…v”Þˆ‚–òC;II«ÑqÎn‚Ư¿Ä`úù§ð*¼æëg…VŽ ¢É\RV¬•¹ë… ÿ½ªh`£7t —…FÆØÈU¢-·vÀ·`ÆÞÆ$ö»L^”õc±ì1!šÖ€¾¦±ðýî.4ý_sµÈ}°ƒhõ<‰Hn ´Àµe7§e¨³ÓS[r[Ö6;y*#¿ZU,#oý!;ÎÉk`N/× )-$WF—-:·´“ãhf‚B±’÷Vb®²\šú+ °ã­QfÞ”¥Õ7)˜Å|Ñ•ÂNðÉ¡“Áµ‘°SÛ}×G4DöÅ=±=E7òz´5–â÷TŽp8ÀþæÍWûk†ó¯•κ •ZÙ¸‡ £XJ³ÑT[Á—U6õUžê™Jº,r»ƒ\®¨FÒ»…øEMlµœáAt§ItmŽrz;·s ótÎr³Óä[Õ‹|Á*Ó«ÔÛtÆ|P± "“>AIw™îËÿ†x]K °œ$‘VSU}Y¥I„F T%X°¯í‹ÀçÉOç)´ï<×®jÊTæ¨2S[s›ÛíM¼¿ÂÕßæþ3p_î+ÁÝ“ þ ü> stream xœUŽ» Ã0 D{MÁ ¢ÄŸ&Hd„´q‘*ë',™ ‚‡Þ{SSÝçØÏ­4È O©t+Æ åF®Æ£­ø¨YÁ«> stream xœµ™tSg²Ç¯Ö½4Vîb{JB'ôNˆé½ÚT㊠.¸ w[.²%$÷^da¹ Û°B‡°”¡mJBB¾ë|Þ}ï“l“ì{Ù;sö™s8¶¤{ï73ÿ™ùÍH@uïF Ñ‚Uë'N0ý6Ø k‘·Å[@o!ôî^0xäa+ÔÔY÷=Ö2ý¬µÝ5ßË‚€­ -^²Tºl÷òP—a®+ÃÝVEìXí¾Æc­§×ú¼í|ì}7úmÓ{lŸq‘ã?qž0qÒä)S§M2cæ¬Ù} XêOÔÊšêFÙP©AÔ`JDÑG1Tª§ § µŽøˆêN©ù‚¿wS { „ïºoïþµ…½ÅYÑ ÑsZI_fB˜=FöÐõø¯žGzmíݯ÷Õ>Ûú4X®°¬ï»ªoy¿)ýZûîÝÿ¹•xžøô Üg³Ù¶?ù è;@=༵­MO›sÅ ²T:èð Kƒ¾<|pààWžñç}Üj®R²Eò×W˜;dèCC^ ]9Œötøˆá!Ã/4ê£7¿â–mñ`D[Œü2 ªÍVÈm[É&å*Ó#!ò¤hìÖþ­uøf·({ãKïQÔÔ‚Z•Uªc½‡é-A†2­:K­‘4¡DÇñ8u²FÉ6~ €ó¥kµWa?„&U£ÒtI8½¢ÓeÕ ÖóY,²À·-°TdÉ·‚‘·h”ê­P·+ÈýÊñaÔ ½dq í(ƒ¥äF5êM9”‘gïëxöR– •ô×N^¼m¿žÃÑÿô³› T{´†G`ô­.ôÖ­ƒùàà쿊ßú‰ÆCd¾´øðՌĭ˶ÍÄ+—ô¨Þh…$Ðé—óß ó(ˆïÆ"]­IoæP?ÑËšiWlŽ…’gñìËâ+áóø“ûøO\{7ßRÑ-ÌSÒ^J‹òTÊ>å‚}ùÁ"dóôÉ_ϼ‰…9’Uø‹û‹”éÕT†ÖÒ¯Ç/]¸iæp‰%¯ø zAÅ´÷÷AÞ,ú`Ä;Ü÷¸?fƒz >ß¿BbbÖœJš‚Á9¨…z8Qz¨¼©¹ä‚ƒÒ2ç2gXîà öR'©£Ó®-À˜#ß&0 ÐÃGBþgþ![wîLJ0FÚWé¦ _X§ TïùÒ a¡2yL²\‚gâ¼ IÌ ¤Ú”RsFÚS1v€ lW»hLÑ—!CVˆ<ð·ÖxÝi¿¨V{œ­®A­Â–úSEV½ÙÓ–mRcÛ8£ÕÉ·¼OMa€øÅIô-‹ÝÐ4<­FÓ_! b² =Fò8—€‡}8 €Y7ïC-ñ÷¨mÚw žLÀë8M4(ò€)m‰ÅÑ….KN†Øn‹­GíæccÀFü¯ÁSñdìLÜÝŠ7ÑX=oÓd°zw< ~‰>ã{³—h<ܤŒkér'‰ø^»W—Äö©[5eP-ÊšßÊqI§F6Ú êõã+Ä"ñè׸»Dür.¸8…J-ÎgQ0]Ùr´²˜ëç&c ÜgÑt[7w]C€$ºÔ c,yûø¿W ü*ƒ?Ô6˜MÏ&o¥3råÚíD2,µ0ˆÒ‘ÅÞ{hyØDQ»M;N” l"R¡„ã]D…Hg$JÀ’°qx0x†È²-¥3ìÜ#^üFXÓ6õ-¥»´Ú¥Ôn"4qh$Z‹ÖãAh"ž'ÁüíCÖ,V~G ¼‡+Ò–…×fN…¹€…ak<·†¬_÷1‘_ÚéÓцPÕ¾¨€äô=¾ß9/ù×>äOIi÷ â—1®fÂÌÐÑøO¸ÿËC"pê+-òeñ|Âý¥Á1Ñ>ÀÌ_ýѨ×Õ7î6NÙH²xÉâ³FT½O€?A[ hŒAk¢Á·Ù.;oˆQ6qQ2F\dÓ™º§ôËlŸi* M•ùŽæ&¢DQGê³"4Êí °„1ˆü‘Ô¢ýlW¾[òƒº Ù»Kï ßB³Ñ×,êFc‰IGæú">ükY«W7k*à4ÃsNì¦m•Ùµ4ž”ƒ'_¥k@¥áªÐXdüK¢ôE†œª*ßJgN|k>x.v&‰ü!1³Ùˆš:Ì´3 aD2wÚæ°íMïËPÉû$¬ÑÞ&)ØÏ:“Л ¹5¤zD—Õeðô8ï1ÜT”Öipo † ˜#[òœLÏO+¶ª6Aá†#ÄOд‘Õ'ß„Ìf/·¹Ó=O}Æ)rU)qÀÄ@b¸[Ó˜ªVs hŠŠ¹V•íÒMùò¸ßÞØ‰wÕŽ — R‘7d/Í==°¦¬áê–:ÑWéã3IÉar!µXò½9¡“”Ã)’ãâ“î®E¢gé¾tƒW¹T"~RX!ÿ2šøÇ 5ÆëP‘ÿÈ\_¦=ñª ŽâŸ^`s¥ܲɄŒ| šO×§¤~AÊ™‡ÊNén0 <µ¦rVE?ÕÊ<$+hq3îŽÅñþËñÖÔB*Ζê³??›ˆGüË‚ãSeb$ØàÕxž„]° š‚'£õqÔu¸[¶ï Ék™Ð!#š¡üx $*µå‡³h˜C+ƒDª™~ŽJf¤_ãJ÷}[{­âÚEîTmëçr­ü¼í3šuÐúDÈ·ñ?°µšì[\©Q䥰%-À>/³UIcp+Š¡ÿàS¿–¢Ÿ¤¡ï‡›PcÖO0ý©Y°ù¨çÿѧH©•é¥$AÞ÷ù0~Ðv"†g[éE éGIz DãïÓ/¦§l[2zrs+‡¾î|ç6(&Iðhz.L@c9qØI8TQyž±Dë¬oƒŸ‘Ôd¿6ûWf²l±kÌé´¬Œ¾£í´L!›ÃšÎ|‡œ¸îtž9ž£0Ÿ¹TVÂ4 Šùh!?=b3÷¼¤&2D¹KÁ°]ÑÑ)ëTÙ!ñÊädÙG8ÃwGUò\"\MY=qù©6(C ÜÔ~æ^I_€y®/Ž‘uZ´&)r!%3%‹¨"Kª?ºó»‚Ôz$DŸ£‘ì'[6l”/Óž\kÎÞ²Z¿tg´“íµ5O~¸~õf¶DA·á×Ò yp<ÑIé®r Ýy2¸› ¯¥_AŒ)f™¸ï¿Ð¶è˜1·Æd–”˜%…]ਠë0«V¥'ËA™3gZDUÉ9*”×ƒŽœÊ!¡Þ³nGý–‚mÀÌ\ì°ÌOQVQ¤+ËIªÞ®–”×Í&tôÔŽIZ|ðøfÅ"ÅJ¿Ïvm'fÖË  yÈ%h:PÜÌ$¢ìz삎[]kŽ}ÞøÍL#©Xô«ùáüt-E¶Ç[î©mŒt Â‡ÀÖÃNs@誴ˆ‡È¸¸„D| ·Z£kÿ„\@#†0ô2\’Ÿ±6~;:86y ìï$rÚv§ø2µlSë2 rxµ@±ìÞýû––kò›M²Tú©I7jb:dQ¢Ìˆ!sBd\L’|Õ\ë¹ßÇ›°0Íòó3uæ+TË”‘°ÔA¾ jUóš×˜µ‡{m[·V¹l|é2Q]•Ш,íà©61òA_Y}î˯FXgÈr#‰øâã£LSÈ^õIž`C½jo—ášJÆ\\ˆ¦‡é‘GcÆEŒëâ«g.(í/ ´Z‘WÞ̈†ä7n¹1¨ ÖF½Æ"R™ç‚³Cd8µ¹ÒP êì‚ú“Ÿg”Âa¨ ,u/sÕ®WðP®Ùå¸Û×ÝÛÁ³4¸Žð›ŠHϱ µØMÇsµøkSCFÙlHöQ4Á÷…DwœÁï¥÷AÞ·\µQ䩘@n¹ƒÔ?‰4_$2a•‹¾è!/%å衟LÒ¶ìB‹ºÞW£ppÐH;âcTDÁ'N¥LŠý«¬±铳”)$ Ëê ˜ëPÄo«ÑbkžÝ.°NЉö–ÇHíü¯€$ e­È˜’¡‡¦,¬ $TãçØèyìBéS¥œ%¿–t°êçuémzm0K=Ð.M¿ßx<ó‚ʳ†sUÈý † , ­(Óî½<¯þSÜÿLá~œø'üÁë‘D®«Pשּׁ8P *Wr»Æ/õFÌoœ|M•Xþ2²3¯>¬àKï ‘¼m¯WÃ1xî{ÖQÐà0Ü<ÕTC5íâËáÐ\.ákÕ4’ÿ­[jL*Ñ«M6h3R²‘ª­µºýš¨+«ê´—ͳÊ_ î·YÅ—ve&ž+ P%†cÿö³ÖÄ`à?Ð  è<‰ö@þ#63ÛTð˜ÜçðuBìS ±§ýP\‡ºè‰pU{Ÿx(!É&:„= À¾†Ðh<î¹Û 3Ĩž¢®Žicu'GGñý>g—Ñhį=ó(ÿão%Ž}é]µÎeö¦{ …Y,~5™”}ï3T1¨¤;v¡‰X”²¿mŽRg“€Ë‚÷6(N8¬Óœ­<\bÜ_}‚ŠÆ(£cv9gøo¦ÆÁüÌ !Šj›ÄÆç¨ÔaäAŸúVŠòA§ÊWíQ¨UÆ´ÿA$ éÔ$µ*EÎmi«V¥“éÅþ(]Ío‰B½T[•Þà [5^¢~ ’öyt‡æüJÐ|½™“ã/™E×¥²ihÔCÃ>`ÞfáA;$8~7‹ªDz-”¼¶I²ùd8î/!šøÓh20XFÂâ¬MR¼Rž ä¼†O„8Øn{CêüŽÀ%¨%VIËÚ¦— =:½¶¹£ç,rÆcÈpº/ÁãðìJ°n<ž€£åh šŒ9ü5þ†ƒ~ƒòPúøòƒÇhØBœ‰‹ðŸ§"±D§ÍÅMy˜¡ î—ž?¢ü1ô7GŽÒæCb>›ALHAhye¾®´Î£zã¢i‡p˜žã{ßú£â&éŽ1hº`úž æ·BŠ®°h®õFÔ½7¯F~ƒÿ,Áï~³²øƒÖ¢@…,ÚÓ1>¡É0d«DžlÚ\`×=hýé‡{챪h ½‰æß¬iu:=@ü³ ¡ÏØ)ðfO¹º*ß ÉÈÙSq˜Ç0"$@å$Iˆ ñw#Bbv°{ uõþ Šb`^\¹r«.².h¤v_mj‘iõZ•,9I±LDnlAVqúžÂت¡NrWÎ¥ÚE+füâÅŸ:éÝ »%1QáÞàňÛ(ðÍu7†®‰ðq7fÁk;d‰zþØr»&ºes·±b¬&õÒÕ>)»@Òd8¾Â~¼¸åxÓþºCZÉÑ#Ô¦Ú/Ü2JÒ±²2§¥ ƒe…¨ÛWìÿß¶j:8­‰pgÐÛßæ¹e[ˆTOâ{\ZVd¨G*d1ïíweÄ¿ ôŽE94ì½6KS :`ž¢îÉø£ÅÁ³ðHÉ›öeéísp›ù‹âþËïˆànmºø" Ñ´øo„¦jvî÷_X ËÁ­Á½Áósù^`nÞ¯HƒìÄ'ª$ò…^áA°Z¢_Äܵ¿¸µÚ®˜Ðú^ó´Œú¼³ºùnÑ¥âh¿šÅš ü"SN ™¾ËMUêšRRŽjºÜ´,9µ^"þ>…ßÏV•øûJôÆ CIéH­RcÛ„ «“eÑ勉C®£xk`\•¿ãœ¶¹zâÜm4[g8¦qj9ȳ;ÇK´Ý<¿%ªT±‰œ×z¿J׆Id~NŸRE~ÀFü@¥TBô ÜYˆ^?:p~om\ˆŽsUÊý!’ñ.‹)Þ³§`ï»FÛñ¸×f,à°èÈæ÷nÑ$a°}ÉnÔ:¤Äêê!Õ›ØÏIÍ^ npó  , ¨-ÈIËÈâ4 µZ½Âµ“ƒD.'§JfS“SsîÜAô{‹Q²Nf¶×“Xû’kÿèüßiO¹…ø^2¨ÔÉŸS§àð_ÿ>?)†t,¥,3>;/%+KË‘ÛòÜ»!¨5Tgõ¥^Šz›ÜlÇo`Ë"Ê=C£ãärN¥4EšQB^JUú—ÎKrL{-“ž”’$›1÷\Sêx°¦¨¼Ìt ©¾ÍZ/¨€2ygt…»Iw½nlÿnf ¬ù®ã}'Í…ÙðYÊĆyg]= 'à«’CßV]I½ w쉯³;`­!ü;ÙYxgà"\Ê8QŒzÝÌ4 ãRxñȬ 0V’ê¼D¶"jìz?GÓ÷ ç:ã!Ü¢æ¶ØRЄp«VL`|i¹UkÓžOò1v"çc¢ßǪÀãNúõ¡'*²ëLŒ ·ÐO?}o´:örzÖ1wˆo±ïÞ¢ ˆ;{ÞØ ÑÄ»Ø[Ø~2iÃ1ÐÖä4”…—y%(A¥àö|q¢î40ÏΚ9{Ë»Ul‡½e¦A0ØFüO‹*Ð|2&ù%:ÅE%&,#Ît~iÅ52!߃z~Þ`ÕˆºOûÍ~>ïí1¦ÐAô{¿üôUâ¡û“OŽùxÞšyÞú°J£N_yÌ¢8ãÑK¹µÀ4|.«\è$ñÛ¶S¤JP+!A•¨‚8FÜ.“¥C!wHt¿nÉ(Ö8£%Å›bu¡¡´4Âà핸}ê•Ѩ»Dü3b~ø‰%æóC÷Šý²îh+\bžO:5aÄ,ÛñáÇF.;¶.È@8ýíº]S7Œ8䇥?!‹oü\+;ìÞÈ…•Df­8ÀŒpaQß¹aÍ~°ÚÆö³M3§.8ÿàtÕů›;NRûüá~¸)ËŸ£OMº¢k¬c†m_a¯ÙÀʨ,4çK#ýâw,=áú5bÉ`9ù8"=¦/O²Ûîè̹:†¸Àg îÿÍ(Ôÿ|÷œfp¿OÙHؾÂëà˜ ^sI]ù±ý¹5±«w:æø¤¬„íÌŒ£'sfG#ÿÎbÏ[þoâÛ¿Ãüæ~‰>3]IFúå÷¿µøEX»%èKXD¯}¼ð<Ó´º—ùAFT 4>Ø 2 ³¶•¨«˜³ÂÛìaS‹Ïþ¦ã.7Ý©¿TRóÄÄÙJ{•œôÿé]‹î&CX1T¥Øv\â¼1&ŸLvBô‰³—¿"BmŠ|°p•­Ý—´5“¸ £·€½Í”û+_}æ`uweÍ™È#Äî §4˜vwÔÀÜUœ#óð@UÍY¦\6kJp ç<›Õ;äû\Uì_»©ÎcÅúU‰þÀÌyyâÞ¾Ú­d6(B6Ðø‚“mã„m Ð]6¿‹ Û¿ur`¾„ÿod;‰1JÒþWQT!š@b&-"Ô»ƒ´\ùGìÙàÃÎ]bÐåe¥‘!Z£V«Ñ@t²Oâ‚•«$±±¿êçÁW¨'É(ëNy}ZˆâDÖD!…¸?²òAë4?šú¢þ¹‘¬•ÇM\‚Åk¹Í¸[,¤Ÿ›û|Ž-Îâ¾–g“–¢M—üzkIî݈´,Ü–¡>vÈb ê;õ‹8`äÉÉrÂ7Åá’W#OáÉ€ÝÏóÀ q?lÓqTyJrZÖÓËH|†kAÝr’úy·ƒSõdvE—^<òv¦¯gi#[FôäHóáß]ØÕzíÛ°ÖÉ=9‰ÛU·!5˜±˜Ù„©—‘ÇîøÛ¿c‘ýò~ãG+Â@Í©èe¨iô•«ƒÊãɱ ¦éÎiÍÌöÏ«;Y·ï[düÿ¾ß¡ØšœÛ’mÄ©—ï'¯w‹ çBj\t[€‡{Øÿ·Ýàùo ô²N’~ó¸þLiM’9·C ¡ ͉,Jb,¹žÝ§ëz÷€Þ=¡w/èmEQÿ ãÏ endstream endobj 144 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 5944 >> stream xœ­Y xSUÚN Ä -"þ÷Žˆ 0 Ȧ(«, e/›¥;-iÓt_Òfi¶›û%iö¶é–t¥)ÝèB˾X(‚,Šâ€ âŒÛïÌ?ŠzRnÿÿùOZPt˜ypfš§Oû¤=çžó}ï÷¾ï÷…Ëò‡Ëå]¶vóêY3ý¿ŽOa#îúúÂ`F )yš:„vúöÉ£#9þ¯–ˆ—&-“,O^‘òZêÊ´Ué«32#"ßÈŽZ›»~OÜÆøM¢„­‰¡ÓgÌzaöœç-|žÃ™À á<ËYÏ™ÈÙÀy޳‘3‰³‰ó>ãaLRJA§Ö(ˆ–'¨do°1ü@ß…Ç7ÝÃE{zÑÚ^ÊAËfÅmöCé¾âª®®qЖ±v7ûx^%‹§ó!ƒØ]·çð—hŠÙ¡µ ô¹:R%‘LÙDã*®vÔØª¨ŠíhôoöìX°3$KFªÄׇÃÈL“&fEÉÖƒžP:À\d0xÌdÙ•ò#^ j@¬ÒY:)µ˜=¡×0Z … [nEa©µÜJömÂá|ǃxƒ|·þ”ðÙØà/}_¿ÀÞl…ý@ áü›Ž• s_yŽåSì8>å P`íûŸÂ‡Ä{ëϳ\’=Ï—*pàlPî­…ôº<Šßßü·x•FµrüÀŸíPB¡OøhІÞùdU÷2;Åþ޽.`GòÀdµ˜ u5 Åü/-/&O}éYö1*Ðg»ÑÇ® Â+<Ÿy_¯¿<‡É Ø ì¤‰o¯ýD¼ñó$ka+ѱÞ÷ŽÖ ^ÃIª¥÷pý ŽÔí^ž>QB‰7o ÛD`ßîtoßt/M½Íë;Ö·H`(0X €026¥^ Š|ò%á—7”l!ÉŠØtVÎÎÿq""Q(⢽‡JÐjÔ ¢©mì"vÔëó˜7û4šp®ͺ£.}ñE÷‡@üÐüû9ÉZД?-N“¡´€Ä7b·zÑ´[ùB.òþÌŽ¨Tt4CäcªÍZ+U‹á[ ÐH{ˆá[¨„¼m`qX¬5%T3šdÍ©Ž<B|žÇÑd4åÇ#!;Â÷Ä‹)yOXaÊ# BRuu&M`ká¡ÅWªxœZ ~ÎíY>Ú€6¡x”Žž]ø-+ Ø Æõ1ö&«ëþG×ÃØ±ëÅlÈÜç©—G¼ÄÄ è ÿ9Nˆs‰çË÷½(ðŒ„]e¤{â’¤¤|_rÓN X;œÆNšÛ½âƒö–šÚ:*š¥gt¯3B>E¾…¶R ÐdÚQÝL7ü:ªV£?S p*Ö½´ˆ]ª3õG½hXYUÝÛ}´lPÉ”%9¤1dÍèô £…¸xÎzÑþFnßš^ß«H.0Mv0N9ИÒòÉ ,·†ÏøÀõ.£º€ÛüKV©DÍäªÄèõ  ¹,N“±¬€<…$ƒ—ÊA':CCf-ÏJ_ÄB~/blûýq¢Q|Ä©N\.ÑËèTŠÑ2ùþ]œPPl((3’•h…©F ìßÃÏQB¶Ì = Êg@­Ë¥Ø§ú÷fRøS&}©ü 0¬."з@áF—¯»0P§Üä!'jÇ èB‚OÁ uP‘§ E %dö¬š2oñãkœ{_Û³=]J*ND—ïý‰©ÞºÏfÄÄô;ÛC^ÔcûJ ]F|¿`Ï•äè¤x‘^Íèî]V¹y `3˜…þØË:[Kf/—¦àÚ\Ä? ïlÿGOÂk©tF1Ò€‡Æjç#ÄÊ &ª :LmÐ ‡è.?¢ì…Qù ¥”ü¥`+*c yšÂóÖ 4ãÒQOе[êÓ(è­]WÇßE€¶ *»”°…I^š˜¾Á|LJ3CFx¹¬(#-)'l]ÏžwÑÔVØ}{QY¤ þ!ɲÇÖùT•ûÒÚe´“éTP KNUiMagwäÕì°È߇’Áwá• yu~œ§{Qž×÷Ü=Æ[…b–J£ã EN(³éÌùTÄãd†C˜)Ü• 2NpQ6~”2EŒ›¶1:Ы’Ò_Ð+“£7Ëc€˜¶à$ì©B³?B¼F|½H7ȲÂƲ/ÞyMøâjwË>ÊžêÙã+-&'ˆna!zѲ Lxgy¨È7Qp‹_ê¼ñ—ø-hrA1qþÝ9feŠ2kh4;;`.?ç>´oð—±mŒN'…<áöýQÇÿvìžâÊÉV‘Ù;£oBÕ%V(±ÖQƒfãœ5z¹çú¼¼>©Ï'°5Øloá¶C™SmTS1IGCDš¢ýÓÈ~ÍyëX}[Ë?‹4ƒK…¾Ô¯£¿Æ\+´›@´Óü‹¬~w¢†Ì `³ûWL]DÕ¨–¿š­ø K `Àêþ{rû‡^4«—çsøÆ Œ\U&©re&ªÅ*=¹”íÒfƒ>_&ÌJ'î",ÿàþÞý®¾DÙÜæb('Žîõ†Ïˆc'k«ÞX\@Ú¼µ_÷átÒÉ©JI^4•¼"y „szÄ'O4Ö×W‘e[:5åÐîj—·¬µ°WÁ@n&]CæmÊz#ˆd¨-¾—Ÿ`P‘Þò­çùÆúNŒÅ~'Æ1@ë:* "èHˆ„pS¤ÿ¶8ÉݸGWùbŸîoWíÍW­aF>d+¬zë@E·C;tÒm!òk„ 2ׂÕiË@ˆÂï…hfoñi4ëϧô4ɽⴔ´4™UmQ“UÉ&vuI»ØvèÅÑý= ·kß#Í%×#F'anfì"fžŸA/w£ÿ­ÁŒ8íÞƒgõ¢½H„Ÿ<½,P'1G(æo]ï¬yßû1i-7?ê“¶³OC2H Þ_“ÚÔE—bãÑTTÌÛ&9g¡£½þÝúKÐ 8A<ìš%š™*Š|ˆíÒö»¡Êyê@/[<Ž6\ï~äˆÕŒœA;7¾Bï Â’Ž^íü!úöŒÀ¹£%£é‘S U?Pé"u¼–!ƒ»:³D%¢ñ*øÃf8èn;BœDVÁ.vƒJ´váfþ¶«C#ôŒV¯ù)½(¶ƒ‹†¾…$yèt߬ŸŒ‡Æ¤¢• C““UrFÁ@–Pá€âÃFµ’¦eÀ“û)†VFBŒp^ÇÊ«h†¦¢çýæ,&>COÒý‚”½îÚ›ö!>e­£«b_[kcëà X`ßÐAŸóáùÆøîìMÇG@8™Oa»è71Ì#LQF""¿˜ïÁ"o)½†DãÀPàÄ–û ZÎÐYjRôB8K°3ýNãAC–ÍF¸NÜèöø&V(DÜâùVúžl×àhé ©SZY[åi=Þòúýnbò™ÕŸ¡ÑŸüˬrªt £T‘K¦¿ ËbKJWωÚïkSÍŽ6uºô®H"ðîèÁ½s÷eÞÝQ¿”Ü4æPìh~:РÈf¿ì?7n“¯GïÑC*V<áÃú¦Ñý…y›bäaz¡JÁd¸Özh4yý%y¯À¤]¨6È©F} ¸À„Y© }uã üÞþïŒ9 v°ÌV‹Ó7¬‹ßfŸéû×RÐp‹nùGR0MqÞéA…çy ¿I<Ô‡:gz_»¿85¸8årïF™V Ù tdÕÈKr*E@, Ÿž™oÕÛ ÆB3eóì«n (Sy”ûs±£€Üœ|…TÊÎgçÛ´yçì]”vìz FkYì®íjØe)%™®,ì¿9‰ÆT9±)ÓQÙÛwƇC&H­™öÄ"yA&hAZÆjsW×Õ÷Æú žïäo¨ß ¬,×+©À z€Išº´QÎR.Kµ¾ê7õX•xÐK¬üËHÛÊC*$ÔÃEÓáòë p¬Dwì×'°ÏNbWÌ:<÷ë‡uâÝ­Ž.k-eñ:ÑüïL Ú*%ñϰ `/ˆÎ°žò¾,/šþG·‡›rÃÞ¾Û©ù¥Ž{¨]Ä/~ßTæºbkqžhÆçu다‰Ú¼TÈ$ÒË”%ÕÕM‘•‘SRØ1ñj2ƒ},`µΙ8˜.êiÿ0ùZe¤&C¨Š—…î%d™®zsqTžl‡4%%3.¬3£åN;Šmö!üTk zw˜c>ã¡‹è²ý‚ÐøoѰ›+ϳ\Š=ñ& ¿Ù!áréº?áø”åXò뙹SbvSqÑÛ³Bp£Ä÷wŸžÂ¿òø=X­NÜ”\ü=úü„ cž|»&#)^µ+ rA qVØ ÝPJå—'g'äEGµdßüþÚ;×ÊIÄõ­)pa±*+yšJ¬#ƒ¿Þ—'© Ïa‡²“ÙgæZ‰ÅêûcÐÙ^XH\@Å‚0vJ´n«-úkÎÃõh˜ûU}ò`× ÎÚ穨_àüÖé²Þß&SìäþÛŒ7‹z¡Âž[î.*ušÈWc­XÙ› Ʋ†Š†Î·¯ü'V«ââpžÓ=8Ó'<踗ëËFÜÆ?ûu­_`­·­øÕå@œÿ L×èflÙB%Š·§­b…ä ЄæK·á*qýÕËì(’-}d8øÇyþ1. ’Äáw—.Ë£óó6QŠ]º<È"–ôŠÞ¾YÿƒÍª·ÈdŒVN“9›E @$Òµ 5¦*S eª47œŽëØV†{”Áñ~„FŸ>t*âã±Á>t=+x JbÉïq”Ty†Úš¢ýE-ÔyôªcÎZ¹ðTLuìôxvŠög¡³ï¯ùr@è´i© ±:‹Jœ/Û+Ç/a^Œ×]yü«ýhjü'­/MPiËËd&¥T¨Š+êÊ÷aËu&ÝÛ7³Ž‹v^B»/ñú†ÿrÜ¥e܈…mо¸Ü‰YïI–‹¿‡†z¶öH( íѸtGòÆϵѥÙÎóó¤¸öÊGEƒØ?tþÌ­ ûõÖ:»‘<†v·hÏgÀ!¨AGça*UceZv(¥å g¹“ô´÷â.èg—mËZ‰{‰¾²¢ÒZg0Sf7 .­¨}Ã^Yìv×zŸ9Ð}Úª00jm¨f%žº²Öšìư­áQñäÆÕRi\.è>A÷«³¿ñ:£ú±„h3!W¸µ9öpkEmuYÚT|þÞiµÐÒ¤:%gEVD(Üݦ»ûžñrQLßó¼¾tß%AÛÅ&g‹Éfpö]F½]A¦‚„NDØk¸K9d)l`c¨¦J}ŒL‘©S³ý™ã¶ùÜõ' ŽâAcJ“±EÇ@<Ä™öú—jýÆŸü¨1?ÅHíï7f´% ,³Á‰‹§¯ççÙùº^´õ—ãó#`,tï;ÚÙƒ;¼nØ–+Q‹õùÔ¶èïFÚmhÎàáß-ú×)ìæ†Š]+¶ïÞHª.‡–‡AìØÿæ`þ~7ç^¢ïNæÝUø. ÏU•.p ìà à“iL§‚Rtßá+쌕*e5X}äÚ|‚µôÇŽK÷)ÀÖ@©¥ü‚°B…]eÔP±MÇl‘àßÂOo˜š\#eЙÖƒ]”^£dóúã}ò7S}Ñ ¼ŸÌ‡n€“ÙªTU×ÿ¿† £ûNìGÍ6ªóÁ8O¿ÖšRb¼€ÃO}(ä4÷Sdá¡·Pˆ pPh´X<˜ŠüC’ åg‚t2½F›å,Ú ŒÄ¬ ?pQâòPÊÛÔ$Ú›¸7¹,§¦Ñ»¿ÞßS‚×—äEÜ ®/¬Op¿plš†aråä+W¨Å´Ö_<9„¼ \G,M‡Hvx¿X%R)P58#rBÕ ]¦N8ÝôÁŸJR*¾ r 2CºIc€b°í†¿ÛL¿bõ›dt#wA=áAϾËCÓÞýôj»· ͸ýù9@ ]tr;y¶&ÓÞu½h-Ëo’i´Zô=i‘È@NˆcŸY'Wšë.|€Ö£ÀöC’ùìssæM^O†I"R#BWÌS¬fg…F#Vm[]Ys=îê2«sj²½ém˜`‡v£¥Î{T%ÕQy‘Ñ«VADÛ¤{lÑöP@¾^Ï œßsçï=‡ÙÔÃýÚ{µþ¶çÊ{ž³þ}'ÈÁu¢´A)UÇ/ïÑ/ÌΟB%Å¿™Ûa{½þýN]Q ¸ˆEIÚ6}HöÊÃ!·0»}F”뮾ÚDÞiêù®·ÖYÄ>>iÂܸrqKKwÓÑr…Wî¿9mЛ4¤±Ê —ˆ%‰35åe×?ÿê›–ÃÙˤJv=»`ð7š]ï®÷]«àô-åùf¡PÁ€­25©:Q“œ£#ie ;•Ñ,­i—‰±ÎH9†“ŒA•ÈÔƒ®á×ïÁÄš4‰šÜËŽÚÍŽXÎ/³£_X¡£Õ´(¤„Î*³Y\…6'i·Ù­g  ·.MŠ"m•Ò£Še§ŒÓåúJd”jåEÎJ Ù‚&YX@Xw¡¨Ä¬)Ä’ÊV§ hˆ´†8×!âS´ÑƒÈkܽ¨ý=ê𘜸]Ñ:èru¥¾gï±Ï>qY5FšÖ1z-–¦Š†Ýí—hL:£oª×ЊWÙ·Æ14£ò“v(V£Éj%=eßD{EÜ–Íâ QÔî…ëÓc1E­«`¾11F\rDcù¾Ê YqZ¨f½hiçêOÑh,ÆãѴ뻯Íy32Gë7—én_µçÐ.šèKç¡©¾M?–x6ÿ(Ì€{µÐs_¸›±¼™Õ¥I%âm)”€« Ø:‰]Èè÷®žÉ®ÉúŽUz™¢ô€½¡ÑFzш܃FGCº/×uÚ‹À8ØDi´: udnfì–Ø¨Hâ–ÙE7êZuõ‘ ª ›+âÿ5þOÞ “§ä”ôCŸX.ÚÊâŸcƒÿöP’îýýQP)­HŠO%¤•dÖ5z¼þ=|”;oS„R«ü†í[ß"$fùê-2\?ø´Im-G#ÑãØ†k;£RâÄ¢J¥»´Ìîpäð!ó*F ƒÃaÄã0"ˆÃù¶¡endstream endobj 145 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 5835 >> stream xœX |Õöžt™ P¶†¡-ðfTAˆÈ"HË¢BY……Ò½¥éÞ$Ý·ä¤{K÷&ÝèJ)‚ÈR©@X”T–'AÊ=Á[ßûß´¥‰OÞ’_úk&ssï¹ßùÎw¾;ÆÎ†‘H$ÒyKÜÝ'M4ÓH´içc7{­ƒlÁÁ®t”8Ôk‡â°ÁŸ a̯…s‚‚çm{;d¾|AhØÂp׈ÈMQž‹£7/‰Ù²Ôkë{Þ>Ë|—û¹û¯X8×_ÿÊ„ ¯NTLR¾¦z=vò”©Ï>7ãù™oÎzñ%†yŽy—yyžyŸÃ,cÆ2Ë™wfó³’ǬbV3s™5Ì<æf-ó63ù€™Ï¼Ê,`Þa&1 WæuÆ™Ì,b¦0‹™©Ìæ¯ÌRf3“q`Þd2³˜AÌ`f63„ʬc™õŒŒñ`†1žÎ816Œ-3’±gþÂŒÈôcú3®ÆŽ‰f~‘L“ÔÚŒ´ ¶¹b»Êö°Ý+v§ìŸ·odG²[Øvéé.˜»ÖoB¿ýõo0d@Ê€_ÞuØ;pèÀmܰ÷Ç!)Cn õzʱŸ£¿Œ—},ûyجaÃöû™wæ§óëø|þÆp¿á‡ßpZìtÞy³ó—É.X<¢jÄo#'üiÔœQ‰£ÎÿeÔ_üL•ƒL•`øÙ€Æ«’&?[4š®ò‰»UÚ$z‘]zg„AŠ:>%%b¹ÀZ(²åÕÐÐ ÞbÕÏö8•­mï ÕP.>dËj¡¡(µ .[LÉ %pdž)œ×²çˆÑž8³Ý‹âiƒ»ÁñžÝN²/q†iß%›…¹¬BN'ª…bq?9½Ár…¯³ÅtÞF9(Ä 8Ÿ•í¿i÷‘cÅÁï $r‹´{Üó¸W¬Ç)Ù«÷Íd_.ߨ(Ž®bÀ/ ’OXc´5ycC'üHìˆÝ„ÉP"ûn<Ú Íwߣ£@6‘)üœ%—ïþýܹ/.œu›8aÉì9""Þ`Ê3Höñü)[S”é _ 5Ñ© É©‚: Ô±r¿ºõºÕtß¹G+jèo‘töåóÞ/]Ý×Yz?MDŒ Y²,! ¸Yp´Fì9€ÉM#úPκšò5Vs°ä¨†xôøã]Ehïb5]*¹å XFÉ1}H„Ü*ÛÖw{Àw7“ê‰`FáoM¼Ö_åÀ]dKk ±!T¢^c»Óúõ¥Z9iFœÿLhn°JúçùìËÆÐ‹‚,j/ì-h­ãúê£(œ‡éŽ‘±¢ßn ß‘éRÆêz·Õ8ÆyÚQ¼lT›¶ÙšæÒ¼4XÓϲá:–HÈe"ÁËöuÑX‹Rr·ÐWzp©€*ØÞlŽ3MsŒhk”šâmMëÍ+è)¡M•ˆ¥óWA…ØÆ®!Gì5lZm츽ÑgÒ·û@¥b|xzòf"¤Erv±oëélaÕ÷s=4ˆ§HgVX¦r¸ìÌürCÍ-mqf%§e³Wµ’~YI…1åP­YšUÉ=I×$Ã}ƒãqãÆN\BSa²iâ+ivWWIC”ƒrSBvf’ˆÒ/V\'ÏosõŠê’ºüV­yZ­.£X[ùÀýíhÀÛ¢ì ™ŸN¯yyÄ‚3nYD+œÎ=ØÈÅSqù«”6éˆ-ÑÞ1Ü϶ÝhÅ1Yâ=¢ Þ×÷ œG_´ßÃïx’§Þ®Y™¹ ¸w¬‹¹uô]ýbÕLÁZw¥ù”jjÁ¥¡0s·hÊ©‘öxÖºkzù¨S8Ì 9nÄj äL\Îë+ ÙE?ádÀË/PÃ6èÁXäÑùàí3µ¢“Ò£’ÅðÕ+ƒa6Ì>¬¸ÁiOñÅOpZžÿ|_zp(-ºÅÆ{7m1Ç܇Yñ~ÐAöÊçÐ ¤åoiÑU•ÖzoÌZ?YXù‚¥)? §ÇZ5”jKCÛk{0Ý ¡¢¦…=ÕÔÁ³È]¼}÷îœÛD*’0+?Ö¥²ò|È[& dM*»_Øï÷-X¹rã‚—)Pæ>…s>=~ ןr¬?en¶žxÿ‚“ì×xTáÛüŠM}úñÇG?ùhÝÊe6¬'ùð™êÝamÀݹx¡³!±>¦NÔVgis¶U%WVUX_Õ¸"~­Æw½¨ØîS±¸WÞž=uc™_I”(#L¼"1¼z‡›»©rpóÙ$ˆ…¤ %¤@\q|±F•QœUÀár†aö¾Ëó›štbMi>\®íaʆÙ_è-ïnjKº=„­é-<À›G Í#—>EƒUÿáüõ?œ¾Øî£Òš^ŸêH ”«q“QGËJ©_`ï|üÞk=ÞŸ(ÎcÑÝŸÿ¬µÂ{¹o]#ý2ÿóN~¬ìðêï )¸2Âa¸A`…Y`b'pgª?ÛÝD\ÔÓjÄ$õÖ˜`8pì ä%V qõazÕö>ê^½ïˆ^÷ÐøîâiӾǒ?gEF{rš ´âÓ! ŸžceLj»ºðÊààððààÊðººÊÊ:áÉqÑñè9,=çuΠ§LT¯.1Þܶèöžôº>o%Vä[ö×U«VºýUÀo¤tš§ú‘%ƒo¾zÿþÍ;8XøW¯þùsÕ]ºÃ©Iç­®¯Yiòps„Iz³³)7){âÛ¥ï]wLϲzhg‘“±+£ÞJÞhv5-ie‰­ãL.Î-¹‹Ò­«¬À«êÁeT@~k_Ñ3ñ±v`~›bHLcxuC$Dçoù99-õŽè•“[=HF€·ˆïHem{î­*ŽqˆJõDs.ÿaÐ’J²¯zÆn ”;ƒËý€“]õ‡@Uh¸9ÒÛúÓó…Îñ¼É™D~æ$ûîÇÞà»U×±i‡"ò€Ó•—”Å嫵¢¼ìæbdN:æåB—õ›2d^F­ö3¨wɇf??ðK Òºf„„9£ÊWC2¸DÆF+£¶§%‹(y0ïÅ%Ǧ@¤KípÈuˆÆ‚\Á¯¹šóë5Ÿ©kÍùžfx<šæ[NÙôîã¼%—®¬_r¢¿øû"i@NÂN]­ò<þñhs¦¯êñÍœEË‘”.XÍãsla ´´ø@œHžÃÑl!´øø€Oœ@F“ç¤qô£O ŠÔ§ŽfãÀ§….ìCÿ8L'9ao‹Ã¿Ê§$•…©Œ‰NÊJÈLñúïïd'äÅT‚‹®¤¬·T Ç•+Ë"Ó•±)ùú÷É @’KtIŒ®2·¤(§¯YHñCšÞ <ÁãÒ1èDlˆÝ Ý—>$Nhƒv÷qR’û<þM7ì/âXã—.v¼D^ /º‘þovaÀÃæ÷q(ã¡ödæ•ユÑ\Ž.§š²#z>‘ľ#jR` s“¤à Jo…·r& ¸”È”ÐÀjMX«AIzÆ ŽÌB x ú(ìxò!à艹±^®MɨLØN‘BMú^÷†jJšµ5½RÖ¥Ò8Îö>1J‰‹K¼¦®ŠR+4jº¶¼<µ¤boÎî…®¥–ŽŸeaòD¶Ý?É÷Qö÷·¤Ö…nå=zë¶ŸŸà“RRAÅÔ@©€wz8QÛ{ ˆ H"{òÈ÷—÷í9Ó~à,|Å¡ÃØËdé?súÔ­uñeúª²ºÂÔ¢Ä\¡äÀÁÆãÀ]ûrýëó×¾ïêþ4¨OòPûWÕP»8˸*E!iT|5…×#¤Í%þû–û«×AGHiõ&cÔ݈ÓËn~§»Z"jsà0Ôq·¥Û’]¥»Ji«{RתMCµÄ&CÝÎuS3N¡‡ÁñãÎw;q›q3mß÷L¶x“oßU÷)|Â]šû9‘‡ù,ð«QéÌû)N)HÏ¿0?e8ØÛ#Pé³-\ô‘«½ÕËÒ”Aœì's Ø,|éòÅ7ÏÚ~0DÌÎÎ¥ç(®:J' Wú¿vï}Ú[¾¹sW݃/Ötm0ÇdŠC·sŽ7ñ''Ù7&WÓßøRe©">%5%Y Q¨ ’òc c‹"õ¾° ‚a1‘Ê pˆæ%ŠÒí9Ù9¹BC]mi1PÏVW«‹Ø ; ®´ªLWR_ å½í…1˜úé$õ(o·Ýé|b,=SGr~ùÉff‰•\h¡Ód®X®ÞÄGlsrž¯̆Bª&6’#otq<Êñ¡=y(í¹ý: œB]çJ#j(È¿bƒÉ…÷ Éžá.ÃdËù‹Töh2©FCXSyVvAž°£ioù Úu~»¶®Ûo¿û×àEyǃ)¢y¹Ñú°Òe`â–i×ç£ýñ6Ú ²_Ìúšâž,·žÆé´•þª:WÍò9ÿÎã³ß^»;¡4>;•¾R(„¡å‘µ5º²†6ïOÆQõAAöˆ$ ÝÜQòÃut@öõNb#ÈL«`UŒ‡'‡Ï½¼li‹4¨s49ê@“ô¥Í8ì0Z“«.£ïô©Ã»zláœ)®Ëæu—ÚýëzÓ³´&}îÛâ9Óiþ˜gVb¢gÚJßlòj†‡ õ„-žÚZ(¢DÎÌËØ“ñ‰öœöíѬãpŒë*|ª9Ä«xPòO&öóݵïlÿÉ\ù'c:ËgôÍ‹…(ŠÏÜPD68k•™uTٲ˵efü7þç= ®•7ÙýYæÉI»§Iÿ4ýIÃ¥ëè~ý´á¤ÎñÄÙEß~¼dîb¿ëñÖóŸÅîó€Õ°ÚcÝ¢xn)*x¢”zäxV*ädäAWZ™è¶~Ú‰YÈÅ [Í&¿±jJ…ÝRTqät@[ðdÌNöc¸EÚœvXUº:!)5b9ê¬wè« [¿t¿@ú­ÝÖ>ä ÁKJlb½s 4‡083€ë°[V°rC‡öœ.0ï»]oÚ ëé]ï™üöÜ¢”VVUÐosE²]íÍéYÕq­C²ÛänkZ‚÷ùÂfÚ ·‚J¤Uµ•öÂf³oxDÆóÅ­ôŽŸ¹KþÆÆùÑ;­Ô•ý1žeXËçç˜ã¢¤í ¹äz9«òÓµ‰À)¢â¢è·Ô(í!®„þÅ'wVWšŸ©Í/6§fºþq(%àóSú<”$gE’!××£  Üß"Žø{éöÜ,(áòRu!Ad#q&ùdÀI-k„cs//§ÂZ›­Ë-“í¢bþ©˜ã€õ·}¯¼8»=8yJd’r{rvºˆÓˆ¤„L¡Gζ‘Œœ¨¤y%—”YSÑó…AB»è`‡~àЀƒ#Ãü?•`rendstream endobj 146 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 2754 >> stream xœuVypeŸf |@ *6›(Û­°QÀV­$,Y ág€ƒÜ7If’Ì}¿é™ž{&™df’ûâL¸&D°b@Qju]–]w]©b¿É~XlƒîñÇnUwUWWõë÷;Þï}”hü8EQã×®]½à—gäü±ÛcI R ‘ãkgL¹ò,žó 7õöÓ¢‰5~ÒSÓ¦?Ϥff¥äf¦ìI/MÉMÉÛ“–R˜™%\ ¤Â ‘H4­°¨´B’ž•“·dñ2vJ$ÍÌ~Z$J­mmm½#zO´Fôè)ÑTKé)e¤LPfŠ='ô$/:Mm¦†ÇUˆˆkÆ¿2aÜ„±ˆ¸ˆäˆö‰«&~º'MŸt`ò{Sž ¢Â@’ÚñÜPx^ˆ ¿9*î'Q´:˨ÙH®€ 5¯w°ÍÐjiNè2tÀ©ÈY¼n%To»Ós¿eob½ù-™§a„ŸÁ/ãÙ÷Ö_ŽÛº}oZ6«<»;˜ÉP‘¦’H²d `@Jp.³9dcüŸNôòûÔ饅^ÊŽ(h{ssK]Mw{«ÝèPcæºuÙd¢$ÍZ¹=;ÐjÙ—68‹‡ ¯ÿOç‡>‡·„ãi«Á¦Q¤¦æK™}gÓjs‘Éd*y…ÄÎ9¿öÚу==¬*3›¼`P© Ôú &$SB¹ ”^¶º-Bè1tþÆÊíF;gãœ,añ :AâSþ#lûõ3Gºä[¬Ñn$=[U°áý €¢ðŠP8¦Ç¨‘‹b¼'ü ú^DÀõ¤ „]уgò°!¿Ü%5˜2ULY4a^D¹*ä°·"âI¯^ ´é@úÙïñË—ô*“A¡cvÏJ*ÉT¦ôv6rv«_ â·Š÷6N¹í Q­wñ•»bü|޶ío¸{xh„ ¬@W^ %¨Ò]Ñê¨;tf/+13©TÎ_ÞäÊ4k=¡‹ ã°pNŽízp¹© P}·*1Wº*ƒ¼ÈV®ÍLÙZ(…2o B jÞç¨Ê+.ÊI>UÞw¹çªÍÂx2zÒ†ÝÄt“K•Q¯1²Ù/¾["(‘VÙѲ…Ü}BÃ2’:rëÈé°hÄ=,KÃÏÐVp`GuÕÎ*e¥¶JÅuê\½DS¤)Ôî$«¢õU»W®´EÑ×{Ì¡ë[{Øê†êÏéÝ:7ƒÄª~ôWË3Í÷µ ~È)Vi*ØÔ—$ëaZx1ïüÁ.K #Û,ß–šT”•žŸ Õ°Ó"=X ^ðy\N—êQ{¡UYš]¹mk_Æ…û÷ïà -LT8]Â…!¼$DÅþN1NÀ•t+\çN¯¶ñçÁ‡úÒ¿CÄäµWI|ìù¥Á³¾zà±iíZѨÖ2K_!Ƚ­úªÃcn¯ùˆµ…èƒxîýšý€Ž7çgÍ"¿‚=lþVñ˜<ý6usøè°÷ŽM Õµ¥……E…>icC[C÷0’ö´ ˆ›Þ'ôü˜‡yéÿ‡2M™^ɪ‹vT¹[Y$ˆ2´£+óĽ^ë|¬— U:F²&ûƒ-€¤WC“Í×ð‘ —_€=ü'„3ŽPøè•¡?Šñ¡±8Ú .Yé µ±ˆQ›&Á®r'Ôœà4JÆPNb^ÓWƒ´1¥Ó[ãôØÞÙ×Úšº ¿«„Õ ½Ai”å @륞ik®í 1M}îsÀ¡'ý˜ôÕ¦|Eé!*dÁZËZý`\ZÓú¦»½®££¡ñÄÀ±£'ÁfàL£ZÎ&θݠJùÛïo l+íÜY¬^Ïd¥§¥¦W¡¨Œ{Â356u¸fD|ëD=7õKÑEñ£qˉ—éO7^XœXPY”ÉlLÝøjEYôÃÔh“ž×:À‚ô–«¸5º>¡/ã\ƒO»ûûNëë0šqfoÓPçàEdYLËt c‰Ÿå&%ϹzŒn‚¼:„ŸÆ‰4¬Lßœ[è*çò„µÁœÍš ÎXê jÌmž{ù\s2—X²¼ -mÓª½ëÅ¥}₾žÁ¶Ð×£xŽ„˜¡îÜÓMYpl~€«Äx ÷Ó‡gž ójKk÷¹ P(Bp» ,`1r«Ò­­ÑÈîðå財MÞ€t2P¨F3Û)¤qӻߒ¦hÒJšår­d1RŸ¼¶Öév9„¿KR‚xE üzW¨“—ÂÌ%qxõØBZ8w¸UÌà”+M©žI$•d‘ŽÌ&1@fÄÀÜ«Kq”F«ÉQçÊw(ÓO¡ÝÄóŸ†ãlß<'¿ÁãXüàçዤ»„u!òÂÕt‚%¾¾ù5~Ïñ¢ýÓ?Ó&Ã" “ß\ôª\0ÚL’Ä áo†¨SûÞ1^F–Ñz™É(„Ö¾z­‹Y„áuðÍx¦Ód7 §(¼ÏÇ ðÂÏÓ†—“Ø’D6'°DØð!ŒBK7ü±Ã)L‡¬‚à –‘Ø×æ]^ñ÷bæ÷'iµàLµÉMf ç¿c©aÛñsŸÿYˆ›7m'M¢È|A›ÕÂ|ŽU f PÇÏá-MÎ1¾þŒ®“4@PÓ´7¥r©ŠBP±:‘Œâã¿#‡Ž×H Ù µHUÌÌ$²¬¥@^º“7ZÒ¦à UÔ®–waEZFQ¡§®ŒÑØLf½ ªN¯QM¸p|dð@EPí`¥õ¶u%Í•|I0å B=à×qŽÿÛYÔà¦kìuÂ’ï«©N§6(u» LØC ;Šb&+9 "'Cäˆ|V$ú'̤èâendstream endobj 147 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 5554 >> stream xœ•Yy\S×¶>ÎáT©¶ÄƒI±9jµŠÖ[µÎ­N8" ¨8TTPpæÈ’Ø!db¢BUT(– PëÎóPl­ÚÚÖk_ïm{¯ÖÚuú6÷ýÞ> ˜Øë»¿ßóüqØgŸµ¾ý­ï[k+¡<»Q‰¤wPÌ–µñ;Än?<4jCüµ›cÄç|úcéž´Þ[‚¼=·gU_Å;>°ïux³×µ×(ñߌ€­±Óãfl›¹}ÖŽÀ³ãç$$®IZ;?yÝ‚”È ¨õÁ¢Cc-Þ¶yÉ–¥ÃÞþ—Õ#F*G½—6zÌØqãL˜8èƒI“‡øSÔj!L ¤B¨AT(õ6µˆL-¦†Pa”?µ„J-¥–QÓ¨pj:5œZNÍ þB­ fRïR³¨@j$5›šC½GÍ¥FSc¨ùÔXj5Ž ¢ÆSÞÔ«TOª5•zò¡VQRª7µšâ(_ª%£ä”õåG1Ô›”‚â©W¨îÔLåIÅK<%A’Ÿ»mìv×c‰Çß<Ã=¿¦12ßxmõºÏdد^ÙôJG÷ÍÝOõÙ£Å{¼·Î[xuå«{N﹯×Ð^-¯Mx-ëõ5¯_ò™ásÔç©tºôqïÞ¶Þ­½¿ç$œ§ã.q‚ïFßÿO«lšì¬¼‡\-?úƤ7ýzù­ò+õû±ï¤¾záçžÂÏȃíÐb—ÑÌUãÁô&1]•šaÖ–ñ0‚±”iòSøõÌh¡’Æ«ÝþêÍàÚŽxz³øH™îx4Œ©,î|áæ;LC‘Ãé L†º”q~ð¡=Îî#äí#½Va 7Õµg-3?¤Wu=(ç¡+„™V0ÑÒú»wkÊ/ûÕ£ -±TiMD (érÔK1’ŸÅ'qC^5ë-z*__ÚôAк¤yÓ$œT» ±KÀ£Qðiôü„éˆûb_Ì¿õeH`ôøgSÚq7^µ–ûábðhÌ`¸Ç¨ùç¿<žAwÞ¹“¥a£Íº5’Ä„o„|n}óâª9h6š»-lEØÊˆYiA)ãe:eŽ¥²Øû‡w¡ûÍÏkN]Rì«2[Q!kј2³²s²²óB·ÍBìÛS¿|R’Wf(åKoUCðüº!y3:‘¼w‡%«j=ÒeGÉL*£Î„ŠQA¡¢ …m´´ßcèÓ°·Ùo*ϬÜaRçåš[R\\dQ)KøÄòó6´-‰ÃžcÙÿ.’ºAp­‹ÚâÁw®>‡ “GiŽ#+TSx¬sNiÜn¼bHA†6ƒ®¥t>tÛÇåêrÕ(‡ulm±Vä+ …´ôðúÚcÉWü ×“[ªvíO,ã·íŽ.\hžlA(Ñš`M±¡2¶éfÃÚzUz¥¢@mÛ²u›eÆ,c¶³ôò+Jn8+ÏÀJûŠg–™‘­>¸uMiˆ–Œˆ/ÞQ‘ÆW¥ìSžÕ¦©VïÝU‘^’€RØI+‡½rð¨AoÒ›ú6 Lhô€ý„wDœ»º_$éTWéÝfBñžœÌÜ,”)=u÷ÔíÒÝÇŠ ­¨ˆ-P›³´º\m¦"bç””Eˆ ‰ú¨!_oÖ›ù3`£‰–<×û.B‘,ÂÁå8õ¾ôïZ›LlET•jW}cow¦­ÆQ4Þë fëË×T;ØènZý\‘„1ŸA*íÀc»X†>0ˆ_œ0Ï÷ ×n1Ì=Á›Æ^L‚ ˆÅ¸„x]Ь9[ý"¶Ô4ZP~ž‰¿ mô ¢M–é2r3P†|acÔÕk×öµ9ÐïTÜéB%çŠ&™ÇíL’Gĸq?·GínKùçÒ!¿úB.‰Ðî€[7KT$‰ùÒW»Ö-†¹ÖØ™‡Þ"ȉ,ÈÆ’+Ývôp­>Îà7q{ Xè¥ î‡-ÙÐNŸzùÒJ&Ÿl|‚!V]T‡‹žC=Ã2»Ïð”‹Rçûw×ûa !Œ£°ÊÏ-²OŒž¤Ü H×jïX•Ym1ôz£¢}ÝR‹Ø+qk5ˆWÎXT¶Å¸Š””¢_ÀP^ªŸw<òë›W>:ÓN*½ ™›0?tÇ4ÄEÔ|ãû“àÕܬQÕñÏaz@,Ëa$mrË¥›+—c ž€}ûƒ/ÝòòdÍ øâ‘x;žE«ÜØ,wñ-`ð‡^ØŸžç¶BæZ‘ÉtAôÄ‘ÐBZÕÂcÒ*(ÓLÙåb;àÑQén3g*ÒÒæY‡NFîGzÈ¡ÿ“é·Ìß4c.¡¹ŽÇ^˜ê‡½&]¸^Ï€êrE‘ðáãOn©¥9>˜n"ŒÿÉÁF7ÆK™FXåU¢]>ƒGÓ¸šqºüZ¼‰±M…:_éîAx}ܲÞå¢ó/¶¿2 ú¬Úá§Em4™ŽîøÇ¬ ´ÐÙý3qzâg/´&é‹h\Ãrø‘~‘‹O°ÍtwP1ÑEÅpœs+üðTRx<éÍexÀÛ¿|y­öÖ%^š”4Š&Üt¦—Ê/fð xÂ}{.xÉMÈ{ãDDȤ‘3üù—öòøžÛ|meÍtRw}ðëø5ìëcÖÏíçj®çc1·+pÎâ@BÖM ¼˜Ï½ìè‘úC•­vV:ä;aÈ¿õôÓã¸û§Ã&ajÈÜíýÅm÷~ûç?~ïØÁOB’f‹»R–ñmN¥\喘̕˜8´ZŠ‹¯_>Tކ䨒 ­eJKZµ¹*çкʭre®²ûÌ\†¼½•¸ZßZ¹3hž“À°Þ)¨o…|Ž8ÀõèÃa§ðXöŒkƒ-Ì2PÖLý¹³èÛ>÷ô8Îs‰î¿ŸÉdwB“™û RhÎ\>6sèü~ÏùöëS‰0\”7Æ@weð·–âÜ:óÑ ôîqÁLü[ô9§¢î° ¯’¶Ö.6꫚ÁÜÜGZ(œJ¸MöÕ•Á䄽Þzohlñ[ __›~=ýFºMcK-O+ÞŽâÙ #g Œ\U\‘ H+ˆ=‚Lù-2­E›¯Ai(33;y'ö”åfçjHÇ/Õ5~ä+Lhéѕ۶Ýô»„Ú÷57©­>…Ž¡C)u;Ë·WÄY§l·’s*ÊØKÆÑÏï]yT×–R®°ªöl$:½¦sê.B…†ò=¿Êò̢±Ҟ/tí§[’íŸÄ nÀ7vçô:‘QNËÍA(W®W“ñ§Sì«€‘u¬d¶c†È©´Þli; ï;Ži€Ðù.AvÀl®í@„X·å}ºN5•° ‡X}èO£^±£Uã\«÷08¾'ôçÂÿÔ8o=4ä³}=„߉·»‹©¿«ôÅ)óQÒȱ3G!ùÔ¥'¾(Њø[ðˆþÂ%Üîê{X|A§ÌIE»ä¹2ÿ'ð|öèªNõ®$Ì#EˆG9ÞHãƒWœþî9šO!—„»Û÷4íDüvÝp¤ˆÍªãE1Þ» >NÏaÆ“ûÒu Ò¢¸æà ·YgÅŽV‘zøómÖóëŽÒ®+©N_‡iýÙãõUu~û÷nÛDÔh¨AXð\zeî6˜÷¨Š„Áê-º-h«{žœûºýY«ÀWÿÎ_>|½¡å@Ý‘ŠFÄÞ¬[övœ.V»ƒOµkÞÆY‘Ê·FG&¯EìÌè÷ö«œÕ+– ‡ÃC’5Yj”&Ï2gY dP.T@¿F,é(§4×xÙÞU4)Sš$Üæ:'vÇåƒ*3%[ßú×X§úÉE`‹­À’ :L>¹x‡ÌÎé Ͼ‚ ðAK“üt«ít’ýrö¥‰ó‚â–/Wlß”¬štw…fS‰Yqà­¦›ˆ½|rEHèέX:qˆ¶·ÚàNEä<1~ㆸÔH‰²ŒÛª”%e+ÒâË“, h#ŠUFDÆÆe¦“ñP„ÒlÊ·X§ÏYö¡rTžiK<±¤2ý :„WµWïµ!+kÉ2«:] ·ž‘ï {îýÂû0—DÅ0û¡7éG+»$)†y (èq ¾Ô!Ë\IÃ!;‡Sø˜´ü{t…ûvø€ìl gyI8ÏÖ!VNÅ«/SˆÕèô*“Æ‚LȘWljÙýiQagSĬuÊ·Gò‘Á 7¢P¾7²IcÎÎÓ"6@˜fK<Ï×o?šö)ðMè½`ÀÃÐ3cÖDªñÎŽÛ!Ð&Ö½™„Z®ðËŠ‡Oœ{’kQ%*×YEGÎ5"¶¨°¨¨|cIÔ„÷¢fÏàÇ}° û ̱¸ÇÙ©?€çïÀ€÷·‹ÏOž±`Ý„`…&Œ«m*­¨(k¨o"¬dO7®˜?lâÈ1 ׺’Êk÷ärDQ˵ vòõãB#‡÷tdgåh‰Vˆ‡Th2–Yð‘PVr…îx…IBôU‹tòÎ{ÅÊ|…¹Ž†æN$m  #µÿVãA;Ä7C[W¹ÚÒ²‚ÊÒÆºªcèSö« 3㱤ß0ÿ»7µnV D“Øñ—þˆB<ùíd¬}ñ~E”sך×,˜«0µr1«•ÉÉ©ëÖ¯NŒDì¢5Ç.ýtÿÑwçë7Í-ã zm^$ëV¡ïKÕõh¨®§ •9uâÄ)~ƒ0’›0mJ¨}ÍqáÙµö`^Å5ì]FFmu,lå! 's¥ùf‹ã?WÌj­.7W«èŠ{îÒf‰WŒY&µÅ`DyN¿éµœà•F1Ç€äFdÉÏ7åd†ü<#ÊG¦ƒÚˆ¯B¸Lèá…&“YäÈ€ô¹y¹YŽI›¯Fd$ËÑèD|È\ô+áå#2«¸Ü)Øívc$øò¿ˆzþ- ¥Ã”Zƒ6O‡äZ¤ÎÖjrt2ŽXa6ÒäéÌZ¸ŠÃeýqx†F£FYròñ}Ž^'Ë#2(ö£Æ<“ÁÊÃsÂ%³4”’±{âÁ«°¾h¹1º$¼,¤xCévƒ†¤Øââ¢B’N®ßú ý ºŽàí6èK L!‘Edf‰‹g:кzÎ>7MKÏ _ÕëøãŠæ¢@„‡„’)ÝÕjr³‘V¼O+(®¨8ݨOÜ^|ѽ8ðØpQg" "¶g¢Mc›ÍÆØ»í¼»#oòëCQÿ ÚåÃÿendstream endobj 148 0 obj << /Filter /FlateDecode /Length 2463 >> stream xœíZmoÇþNôGýÒc^÷ýÅ@¸¶8HŒFR?QQ¥£ÄöHÊ$¥TAßÞg_nw: v6Aa°—{³3³ÏÌÎ<{çwSRÓ)qâ¿—ë «…~?!Ó/'Jèšk:ÕRÑÚ¨ézb˜ª•µi¦›œM,ѵfª• 5gJ3†ÚZI/%9Æ¢ê'JAðPö¤Ôxjöz¯Œ5µ–…Sq¢ôIqS e Ÿ Õµ!´ô) ʼnLô)Yë]*¬‘éõäÝ„z §ñŸËõôÏç“?2;µµULMÏ—“2RÁkÍ,œ¢LNÏד流o_~=3¬¶VU;›ÁªR°êÍlŽð"4¯ÎfsÎy­(«þz,B¬!ŒÙêí—î—&Ä(þ÷ó¯àƒd…›•†Áó+X=õÂÖ£‚ðÀa&;A¸’³óNNÎ'ßNDm ’û@,èTYckâ&4FZ¤ÏSÐpþ 4Ê8xE€ætFkB¬Õç³¹dÀÈÐjŸ&ïÒh=2jÒh—FitQ¥ámu#‹÷ϪþG]hYÈÑìÂl çzªj«¹ñ€`—’`øõ¤zÕtÝ‹Ù&pYËÜÜù¿«®»õEµÜîÖw]\¬õ¹óÙl®³„™êäìÔÿ¨~ÊsËÕb·Úl¯ÛͧyͲY¯º‡øÛ°RÇÂëUÓ]ÀÏbÅUsh¢¥üm×ì×MÜ•µ4ìaÛ.—«ËU»9ìÝ^$©et:O›réx²?¬ÖÍ¡íUWg‡«:Û9Ùí¶»Þ–¨~Èfï›î®ÍOþ²»¨>ÿñ‡£óqk՛͡Ý]¶·Ωñ««¹ª8ja³«µ&áq5G}Ô³9Á=÷÷& XNûØd˜!l=¬ÎÓ½Zƒµ–ЬŠÕ„‡_N«à @nM¯õ¢z½Úß¶»ýj»É±¸mvͺÅFòþ—¦¾èq¨Í¿œýÂö¤ªE›Ç´¨ÂñDõ'ÏoïºdUWíýªÙ\¶/²ZNjc)eð)ù½œÆÉ«öz×¶û¼«í2K-ñèj»±L.8È)±±µûÕÕ]±Ñ/˜@`ɘäC½8:Š/ß¼z‘`vò IìíÝzáÂ4Šö/Vû›üŒUg—[dÐuve…7Dç'MJoÆå¾K÷ŒØ¢÷3ÏUcª§{Rb¬K4-u¨Æ_ ñPC‰²ÕÊ%•¼º¾s†“¨´˜·F+]µ®e1tLYé:‹³Xó¤)Ì ëÑ 7‹Vb‚°(…1#º—Ý:Õ„ e*ï¡ÄXTŒæš£¨ïÅü‘ÐÜu~´Ô³t³Eš;âk]ÝÌÜ:K$Npë[³ßgpP‘ÂA)AYdê´{,´–®`< ×£Ã&wyø0KDì%ZY;—òÇy‡În¥'¼ÇIgHcbqVÂV!‚ÊáDŒÄÀvD@=ƒ€“`¨š? ÅØ£`ˆD?L€® ‡FL–"D¥ÄeP­-Ò©:*Tnæ½FpAã†sǴ䧨°´­Œí&ox=ð;@µƒ$'H´£ˆpmÝ/¶ú݉V Ë…ÐèZ> E ¥B€a€>kX±žpG¾P$N|H±[8+MžøŽ„™ûv¶æ†Rãà z8ðsQþØ•€;`‰dGP=¾ñyÀ´ª³žÇõˆh^ƒÔõ(Îülv(,ˆ3îÿ·ì½;dÿEr˜ûÐ'ùñu·]Üu+ÇÑx_æ8 VRIö$•œ˜‡ï©WǬדß"­dÁ&¨f g2:ÊmU敌x%¨¢³ñ4™´” Ȥ.Öã©.ȤMÕó¥>CB4gsA{%TªR'\/ur’tRËÇÎG‚zDPsV¼Ae!Œ¼`ö—&¨Vÿj•KqB‹†ÐÏül‚Ê™ª™°¿ Aå êG‚ú‘ þOê"ìJûôNrÞ˜¥žÝ¹"T“jÎ'bñä *ƒ'”R37OÐÝ#Ðq©&Rtáö{òç#ú;ïë‹Ý7”1Þ›Iç&¶it?BNo@?ÍþÿZ4»pá&ÛÇ,øYþ>=•F7i´Ñó.òÚ’ë½Î}¹P‰¶½Ü4ÝÃ~µïYÍMÚ²êu$ùéy³èZ¯—9ΘÞ%~³½j»Üé鋬¤¿ =MºÐ’†zê è:öAêÇø$=Mì4šÒ ,ePŒ<¡ª3©y]À0|æPÉd9:—§ø¯nVéÚ1fMÄ—ÅŽ Æîýb"í,Ë8ö–dxí^6FÆM{BoÝÛa÷r˜1T =ù"ƒÂ®Ot­¥W¡¶ÜÏPDq¾±JÙïÎéc/¨”H®¥o‘Ühj«RCçéëÖƒi׸æ1½w•Ú¸ÖU}ïÌ”;'&£¤$–»’1¸‰­¯×õåê0Ón õ9Hì³ÃYYp—Y&†îÆÇ·in统 nsk…à(ÞNçŠFÈ5üº,$ @† ½ ¼ê~’×uÜzŸ¥çjP cJl–޴Тô ÄÜ àýʼaáéGö§õ¨j‰FXz¿Ýø/€à<…Ë*ÐN4ž.(äq­Ö—ðm.EOÆB¢ :ÑM±Ù¦ ¸l¯Yºk\B<`A]oÜbÇ6ÔŸ—ÞRçEÒL(¤d<õÖî„ÜÀ-¯ßUqx(e¾M âèÑ~:ÈsØ5Océ"ƒ ¦Ïžäƨeô÷a¡u5ª‹e™–'¥_ÈtXÌ$6lL¤0ñƒí!ö{ønН´cßZY WXMvéß9õŽcàs:,¶ƒ§Ç8ðΕ~Jã”>„}Á| È.Ðf#(§Ä›iæ¸wah§ñƒ\œ¹Â½ë7æf6†*ÇE¨RGå…ðÑbF0¥ŠÉ<ꊔõm›"°áFs£KÈm‹Y ”f+ôHLÜ5P¦w¦H´mhîÚ‰x”ìÅλr˜s:¤b¤Ž’Ú%ôãv"‡;Lˆ(%(2þ6£$ÄåðD…‹-UYÂ> stream xœÅ}k]ÉqØwFÈ_È €;Îòºßà ;´ã`£À$ÑÁp—;¢DάÉ]É›þí©Ww×9ÕCI‘’`?ì­š>§»«ëÕõ8üçwõ7ÿ“ÿýáY¸¦~óÛgîæïŸï¯Ù‡›š‹¿¶róáYíîÚÒD¼öêY«þZ›¿©%¹k 0hbšï×’iT-^sR£&FŠ%]SSæœâߥfËj½]k^«X/ªÄvM¥«E5_¯Íùâ֨9Œ’EÍéÆšÔ|îæþÙ??óDÊùß×nþæõ³¿xúM¿öÊÍëoŸ1™ý2ø»wõêC¾yýáÙ/.éö¹¯·Ë—ÿõôÔÂåïoŸ»kéVyùüíK5^^Áˆäk áòÑÁ¹ž*q½‡ÔüåooŸÇáOõò†wWª÷—ôFçb‡—Ã=¹ÒaÀz÷ z7üWaš9gŒ=åÆ,Í…Ð/¸Öà]Mýòsœ0\aµ—Ÿýü?2Ð`!´‰ê\+üryÍÏÕo=ÿϾêa !€]^¼zyûúW¼bZs=ˆÔ»é1]Þ§–d.ŒP€EçkÛ›ÁÛò7À[7¿"¯k¼!»Ü¯ÀD0Lj·=À°ÛˆÿGÆÀžè©t-ž0`==…ئ1þ c*ºUÙ%Z x&¸G—8 Œ‰à 6QSð<Ô’§ú5áì06&ôKÎt˜€qcÉ@O= /¼  ÐÈ€Ã_d (4Rï`Kù5ÈŒ•­>ë³€\„§ÈC(A §“X»×ÁM>'Ê<àü3>Ååˆ{%Á‰ tYÍ%爦¸ò‰¦¸,¶m •Q¦ö2¦“àÄÞÙÐæfü Ïž@©!M°ëŒJ µQ‚M°"N°ÁŽOÅùø¡(8x‘am”à´‘¦ ÎÆÉ˜NDM â…N4E òæ'‘3c2 NêAx.!Q³‚“@«!Q3F¾‘HÁ©£Ì¦Ü}ÄM|¯ÈðfñR&g'çB÷ ÂdÒF¹9Nxßç@wÈ ܽ‹œz­†D- Ïlq2NA>àVGÚ¨À†Ù&&´j0{µó®PÂTT*[ìTÉ8æ‚N¿èTð!PwlH. '_Œ_¥†4­nX“„®*¾&`gŽŒŠ.7K œ©!òÈxÉ`AQ u°¿Žßƒ·œžf«–y>o(ÌZ°C"(ÞkXª`eȈ}«(c*I ݪhLqä­eô­ø=Ø—(ÚóGpÁ{+”8 Á3ÓbB$Ã// #*=Ôå"XÀ§*øç{r@)Møš0^ Fu*b²Øü‡é¡qŸ, Ì<=Õ9¦P¶>ž{•£1ƒ• F9ð)`_rLCUzªŒ÷`”— êV†” ˆc°#=v,áÀâ¸8ŒpÐQܪ‚÷œ8f9ðbÜé5…ù¦€é$jbȃ)S “Øu@û@¡‡ºp@ÁGb ûbøì¬ð›ñnŠO°²kQðF›ʬ`„gOAœ„Ò*Ó3ÅÁâHŒa†8#ØY,â@Db¯¦ûdAЀŠñÀ>¥Š±ZoAÄ\X¨Œ‰´–ŠñÄ6oãòs ª×.Oñ%¬b|CžbC^1¾A³¡_ÅøFe S½b|#1†¯Ããò¿Siý€((-Œà÷bt#0Hkyˆ•_EÔ#¦¢?O6¶£ýˆ‰BÒ…)¨W˜Îò²0Ý8>…Ñ Ù'Û芆.0`7[?b"ˋ”IÓéøKc@—¥ãS-³Ð(L›D è'| ǧza©Q˜>©Ê4v51™• ‡¨Þ/¢ &-¢ õ€]æŽsc€ãøšO4m¡hІ¶WŒŽã\à8>…ŽãSà8>•ŠÈÍÂôM[ö'š6°eµo0Ý^Lß¹ÀÂq©Òªè8X( ïk‰ccôI·ÀÌq„ñH§3A:½%e Ž‚Ä Ê,`àh ƒÂ€ ,š4 $Ÿ Á³&ˆÑYÎH‚¸À¨I#¢‡Ót tZœ%Ñ·Àt g 'È©Äfͱ3)àÈV°hqžùÎzͱ3c:À¬Åyæ\IÙ-Î3­;@Éû 8ÃÌš83±,àÈ<°hqž¹ë:Mœ™ü`Ò;ÓçŽüúË8#C?@§9væø˜ÄUŽ2‚f­ëf!Â¥RAÀQÉ0@)u ?gÔJ 0kqžÕ ÎrŒMœYÐ1@¯9v–„ 0kâÌ¢GÑÉ‹æØY´2@§Åy–½ 0kŽ…3ŽÊš-γ6g€NgV÷ 0iqžõAŽ¢–qF Òg)bZ`:‡Ë &ÈuR ¤BªF­ë¤k‚\«µÀ¤9Vª½å` ÌJœGAÙ¹àlUgT¬-Ð+q%o ÌŠ8£hn‚\U·À¢8vÔå-Ð+q•} ä:Î ű£vpå@®>\ Sâ<ê˜Äá È r‰äË8\d¹@§Äù—ÏþæÙ3l ÀºÍñ·ûð™HÙ!Îj#¯&:k#¸›(¯›h±(o¢Î&2m£×›· ‚ŸÃä6’¾‰¶›ˆ¼Úo"û6úo26‹°É4œ³&aa3&çaÒ"›Ì‰Í®˜ ŒÍÒl29&Ûc3B›¬‘Í,“O6?µÉa™<—I…Se&•f²m6#·Éڙ̞Íþm2„6‹h2&¹ÉWšœ¦I{n2£6{zΰÚ,ì.Sk²¹6ã»É Û̱É.Û ô&Km2Ù&ٽɇ›œ¹Í«orï6?LàÛ ÿ¦ à\(`k 6õ¶&ÁÔ-ØÚ†Mýƒ©‘°u›Z [aj6l]ǹðã\b«G6&¶ÅÔ©ØZ–M½‹©‰±u3›ÚS~c*tlϦÒÇTÙŠ¡MU‘©<²ÕI› &[åt.„²µR›z*Sseë²6µ[¶¾ËÔ€Ù:±M-™©7³5i›º5[Ûv®³5r»::SkgëñlÉž­ê3•¶:pSAx.2´uˆ›ZE[Ïhjm]ä¦vÒÔWÚÌM¦©å´õž›šP[7jjKMùé¦BÕT±ÚJ×M5¬­˜5Uµ¶òvS{®àµU¾»J`[-l*ŠmÕñ¦2ÙT/Û çM´­”6ÕÔ¶âzS•m*·mu÷¦Ü‰›:r[k¾©G75ë¶®}SûnëãM ½­³ßÔâŸËõmEÿ¦êßtØîM‡íB8w*Øn†]ǃ銰›î Ûaº4l'‡mö8·ƒØŽ‘MW‰í<97§Øþ•M‹éƒ±½2›~ÛscúrlïΦ¿ÇôÙ>¡M/‘í72=I¦miÓÙtn~²ýQ›ªsŸ•íÅÚõkÙž.Ó÷e{Ã6ýc¦ÇÌ´¡ÙF5ÓÊfºÝlGܦkÎtÖÙî»M‡žíâ3~¶pÓ1hº mçá¦;Ñv0š.GÛ ¹é–4•¶ërÓ™i»7M‡§íÝtŠžºImÇé¶+Õt®šæÖMÿ«i‘5]´¦ÑvÓ‹kúumOï¦ï×ö›þaÛc¼éC6½Ê¦yÓñl»¢Mç´í®Þt`›.mÛɽéö¶ᇮq YîÚè£gÇçÔF¿ïF¸›èÅ@'ˆ vÎsXô•ùû±ö´ñ+6£pìÃõ8Âðä·þ#¸½xÛ ‚×P0cÈõ½rµ5äÿ: -UÙyþ°òíó@Þr½Dé/`ÌN_¨xñ„íVrOèñ¯^Þüô&8~ŒÀ¿Bp~áP„¹‹=¿2C:(ÖÔ©ÉßÁc&¿a ˜Ã(dœ’õ(ÁFeP`%Ô(ÁFaùeÔƒ¡Ç¨¸º Ò{ûýNh’8”EƒzûÜ£ãW,² é¿ùK´ñ—x5³äw|óÖŒbúŽéOÿ5‹ˆq?ô’ô×,îß?¾¹EENÐå‡÷ïNŸ²ˆHôÐ?û)‹ˆQª‘Ôámµ?ìSë 52›EŒ…QÁ„8‘Âe^yÖCj”;ÃÐR`Lf¿ vJ¾6`¸0·%V¾1G)†—›®¤€‘Ê…ÖYÕF ê_Ø=A¸°;ö»:‡ù‘د€'JR<Ð%D3Þ¯2›ÿÎsƒË3ư̂⤠™vÞAæ$^y/†&dÇ3OÙ°Ú2xYM´g†,]pÄ|.¶ÆEpœl{3Ï;­±˜Úˆ22vqcDE6$+êx?àVåÆ6Óñp¢jf›Ù˜rîd!e1½óe5Iè%b8œ¼…DÉ Â¶Æ`슌¡ˆ`²œdÁðašl¢ART×`Àp¸Ï•ÄÞA,h#7À°ÂA畜 ÀTöjd øw ž®ã§€ka«®ˆ© ˜&ûˆé Œ«¸&:bƃnØHKÁp4 ÞßÃ1<Àöq"fVJáàOŽW!Ü(Þ?cÈ0dïÊb)Ló.r~ 0™ã*NòdC°xÁÆë ËKÁ˜>b¼ÃÁ*äf)MCD+†«)ÆG|eoxÿDŸŽècà%ðÔ#U¨Ô<Þq„Iƒ¢”&L‹ÞA™Â»…>buä#sT“I¦ðèÓ8¬ÌÌ]=µ &²K ˜„f>ãM’nD€©³ðQ„±­¢ø«³•‚àóÆ„&E ªlSž(Uˆa6ƬhL ]P˜Nb¥0pG)‚¡› `8«CWaFpts5Óņ֗xL¦£± ­¹‘Tá®Y^+†Ì#S†O¡¢ìD¦^ç§Jå` P¸ò\•R€q²œJ94<‰FŠcYÅæ„NnD¾òŒª4>~æÅÚè2ŸñRžyâÆ)¼”Wž§KoMüâΗŒèu~O';šñžNñ–ØÐ8&2˜Hkáµb€!w™ƒ‚->Xœ _Ë"v„°8 ÚQljSÅ`K ‰ÓË6òÞD6TˆÀ ú•¤}ÈAÃŒ*"$î °aw/&Ê­(ÄŠ¥á½¶°ª©‚É|ºÊ{€iÈD±®G Þ7Æòrbj2û€©l£ðSœD-›j+”RËèËÈ›KaU%Š ˜Ž…bŒ@}‹0¿²v‚èl£0¨Å”jr!«^Mƒ+ )Œ¬2Á[c#³1©:…§ !çß%ÄZGÖCaXšÀ·!}…vƒ™±;Ž£#†í!:¡d£0ÅNТQ‘_ƒÁMÁð®º/b¢²ð4&9‹`XXzAŒUzfLã+H+«éÅð±ÑgÈ_0f ¢ØÞ˜¼Tút¾"†ª_3V»5ÃÅ]½]ž<ÓÅ’jˆ o3srƒªïxÉXô˜DÝaaŠD«¾À¤ùXü‚ ²ã°À¬ºN†ë1Á¨ÛâÄwYPTŒŒ~ÏüÍ^Ñ£fdq«&xøÁpÌè5#‹k·À¬Y|Êó¸@Ý7ÜÏ ²º@r`Hîjs>òõ§+†—=Aö˜4#‹?Avô˜Usθ*Lï ,š‘å62A¾®,P÷pŽ Ïbd¾/-(]Õ‚n÷±êﮌÝùÊ·À¬ùX.”[åu÷Ô¸—.P_@îµ JŠâT¹0/0]õšåJ¾@Ý{=îô̳%QFÍÇWX þ ňL,Ði>–Ëò“æc ŽL0èÏñŒðÊu›þÐ,0k>–ÏnÇA¢Œ—„™q¨&ÅÇ#5Á¦?£2Ba ô‹%’¶ |U³Tm¹F nºùrDú&È¡ÀÅÇ#˜¸@Ý:‘ LŠG@s‚QwÄŽèÃúÍáÔfÅÉ#;A¯?)1"º Ô†kÄ„'È1ãjÃ5¢Î”°ôuÏýlOß ÌŠ“Gè|‚U.‰½/H®¶_`Q|<ÿ tŠGê`IññH>L³ Ô¶kä7&uîÈ,0(>æË‚Šâãvèî œ zýý“‘Z 6\#‰´À¤ùXrP”$ÕuËíHsM°éÒŒDٵᙶÍÊ’¨[ Ó¬,™¾&ÍÊ’+œ '¨m×HGN0é/BŒ|æƒfeɈ.°hV–œêõW•$)» e»(¡;{m»F>xú»r#£¼À¬ùXrÒ”¤õµíiï 6m»Fâ|ñª!§ø˜Óò ÒXyý râÚpÒ fýM«Q|°À ùXª¨¿z3êè4KņKj0&†Kª8è5Kȳæc©$™ —š,Prb« PªYx°]R³@§ùX*j¨¿7Jr&H%; ÊŠsU¡Z  —M0ë¯hj¤FÍÆRÏ4Á¤¿–² ¢x0\³¢j€Ã5k² êcŠ«¦k€A3ò¬  þjÖ¡0íÔ›?þ¶jG„fÕn£86Òc¢A6bdƒJ&îdcS›ø•‰qÙ8Ø&VfÂi&âf‚r›¸Ý9¶g㻡‰#ž#6yVž‚™›h§‰ˆÚ¨é&²j£¯&Bk£¸›H¯‰Ûˆñ&ªl"Ï6:½‰`ŸƒÜ6¾‰•Ûxú9än£ò6pobû6þoSç,‚Í4ì²&ca³›Ì‡ÉŽ˜ŠM±Ø,ŒÉÔØlÎ&ãsN Ù¼Ñ&·dòO6GµÉc™\—͇ٔ™Iª“n6+gw&·gó›¡É#Ú\ã&yJYÚ¬æ.ói²£6ƒºÉ²ÚL¬ÉÖÚŒî&ëk2Ã&y¼É/›´ÍSorÙ&ßms⛼¹É­Ûüû&GoóøçT¿)°å¦¢ÀVl*Lõ‚­pØTAœ+%l5Å®âÂVe˜Êsm‡-þ8Ô†ØÚ‘M}ɹÅV©ØBSëbëa653¦®ÆÖÞlêsl ©ó±µ@¶\ÈTÙª£Me’©^²N›*(S)e«©6W¶*ëT¹e«»¶`ç"1[G¶©5;—£™‚5[Òv.z³uq›Ú¹sy­ÀÛTéÙJ>Síg+7Uƒ¦²ÐVn*%Œ¶ÆqSy.•´Õ”›ŠK[•i*7Mqç¦þó\#jëHwµ¦¦Õ”¬nªZM嫭޵´‡úZS~»©ÐµU¼¦Ò×Vo*†MU±­<ÞT'› f[弩„>K›rj[pmk²Mݶ­íÞÔ›q[G¾©5?£Ûjõ]E»©z·•ñ›êySaoŠð7uú§Bþs¡¿íØô ˜žÛw°éM0ý ¶ÇÁ¶A˜N ÛM±é¸°]¦sÃ4wØöc{ˆíÙô˜˜>Û«²ég9÷¼Ø¾˜]ïŒé¯±=8›>ÓÊsnö1í@›Ž!ÓUd;6ÝI¦ƒÉv9m:¡ÎÍR¶ŸjÓseû²Lï–íïÚô€™>1ÛK¶é73=i¶omÓÛfúßlܦîÜkgûñv={¶¯ÏôþÙþ@ÛBhº M#¢mU<¶2šVÇM7¤é˜´]•¶ñÒöfšþMÛãiÛ@Ï¢¶—tÓojzRMÛ꦳Õt¿ÚYÛD{è³ýS5ÿGü.âø2í ê6òÓß'¨zê#~ro„Ê?,P áûi˜³ PÑ3«…üQÍûÀPÀ=騼±1œü‘r‰™~£2¾¤‰—têâÇ_Ƭ~| ØfÓÆ²¹éä?î"կ̌˜²Ž`Ʋg'ÿ¢;ùç¨ÙÉ?G©Nþüs”ê䟣F'ÿ´:ùÏ;YƒþˆNþ„WžØþovòÿŽ–wéä߯Úãªáz–ˆHhŠ€ÇÐë=Dkþ»[@6ð&ûåýÌ>ÇËý·Ïñ#/îÌ—ˆ‡[f©—··Ï1>\Z¾ÔëîiÕ@¬¦¦¥Ë?x—îæõ70Ñßâ£ë—.·ø¥E¼ž]íÀDwŸ.ßh—“=¸Mýò=âá]µ2Ö”é-`·S9½ånáßÃz1PÜŽ¯~{‹ßÀJ¾žžü„ÜËCæ‰PVœý²ÞÃåG|ÜÖ@ð¾Ó¾'rä/ èå2<\ÐØ^|u¤¯`½îoy}^¡Æþò¸V|ÄŸó$>þãÁ`ƒa×äù%RÖw—{»||yGÝTãåk|;ì7TÜÃÜ$MÚ;ˆ'σ—2 ƒž“iÞA>Ÿô«Æ? ÝzQ›S§£°ïö|ú¸rùxGLðû^ήR¯P„úê²Ð/NtÀå•&ëK5áW·LÀêRÅ9žIžãwAÚhª{Zx‚«Þaµ¿¹E;ÚÏ;ŽNâò=ë |dË9×#>"ÐÁµ(2iñÝŸ˜^¯Iy#üóýAvä=,燧š—éà6yœæºÆ°øG­už'Œ‘ƒþ<Ô$*Òi0k‰´ù3ùéú} ð|#¦ƒ ¾Aƒ'UŠÿÀÐ<¯ØüÅK°.¨pÀ½ÀÉÑ)‰à%ã¸äó£¯qÁfK,(¼ŒDœOIOR’árËåñA4 /ηàEú- ï(‚zô× ½^ÍÊnÕ‘Å"÷IÜ —ýs†ûR$…Z `ês‹wÖ,u÷žß…ç¦^ö ±§iȉx÷]Fûàw¶ àó êå·ÄK¥Äȼ\{iÍáwn{IžWŽïõÈ%‡;‰~ñ×jÁw?@EV‚ŸÛÏz«DúViÛM/ªÝ1îvU¯è[’WçâØjƒ+3lŠ °¿Ç7´ üNÝyA‡ ÁÍ`•y (‘ʤpèKŠi(œÁ@û¾ˆïAªè{âîsÇÏ{Ü‘l5°a­²œ1õYóÈlÏ1KžKäIïÖvP¸ñzÌ3¾sÃ2`Ðd]Í&(;SìÀ¶¥ƒÒÿ-¿ ^Œ?•p¬=ÒèžSëðfR“ ƒhF|5ØðãѪƒ¡W'`×óÀ_Í_/ùÏ Iúø Î’4ÈØ°6TGŠKèM>œ±àBÜ™dq%-Ìà •ÓÁÓÒKO,ýîAF€ÐÀ¥Pˆ6ÿçBgßzêÃá)6>¿\”9–·ë#+¡ùæOÇß8{"=¼øæ{FwàõOäà‡î/yKÜ‹‰yÐ4ƒ{? Üƒ=Õ©IˆóÆHæ%ÀÏedöSâ©Qû*/èQ9 ¿”=õƒòý¢:\Ö³7%?Z˜ºö@˜Çƒù&!Ùó”’:’ Wë24pˆ±x •³øîó:xÈéùDç ž…’?Ó³Ã4x/¡{oŸ1ÿ$€ñ@{9lwÂovn \$¢òå±à§ævóúËg¯ÿü <^À[øéís Pv8‘ï&òýüu7}š¿>lþú?ç¯ûÍ[>lÆ…5ñ_Mäó…üü{àr:~¾˜¿^Í_/×{þuýüvþýÝüõfþú¸ùëÃüõ¸Ùà[5nNòàb…u"n¿…ÇÍÌ?lÆíÖð_èóQÂ|‘j†Ð«µó½ÂÍ5þõŸæÐ¿Ø‘önóÈ»Í$?n—óæ÷<„Ý»ï6³(>ùêVÿÜÜwO2r¾/µ*G_L{ט¼<þ°R#¿SzGÄèÙE@ŽO~ç%o#Ýxïo¡ áÓ†³>|ö$?ªcÙPÿ•*Œ!Lo9½õJj^¬Ô^… ]1Ð…àtAÒ¹v0¼õ*[Ý õõêAÞæúÉ÷õwËB©”嵑•èÉ•¥i†d—ñ‹'Ïä9æÛS;Y‘§C"øo•œÝ”A‘y‰$—àßJd×wvÚµéË¡…$ LðÓ dI–04ü‘§†Ýßñu¥9à7upw<Â{¯Ü?va™<̨ÊÚË Fû4yqõ|¢ø¹zçµÿ=c»ëâÚ`åÇádÖÔìpajA9j‡` Ç|ðšïôíäG!ŒkÊHêÅÿ›å=i¯ãBQ7Š7Õp¤8­†{ýÜã9y¸cü¯ÃmràGöì=n¬3,r]7ñì1cd¶uû×ÎÆ­T¦ÚÑ>ͺ ª!OÜï‘I)~ûÔå“"I¢øOx¹Zœqš€)¯DuƒäÈ\ÃàìnäoÔÙ½[«Õ´æ·¼ƒ„¬oùÝè3?éh (æÔ¦^.pW{TŒú ¿¹ø¨… EUV {í27[uN]G‘…}K¼nÉHÿ¡\ˆÅÄ󅪇Óç@þC;@¨e'ÖƒßÑ’sWQ[ò«iý”T·X=âžìñnáÖnìÏ\2¦Žñ5RaôSõ§M®C-£U„æDußó»:ŒýO‰–ló[T¸pW‰c½¸ðš90sÇKsçÐÉa9Ùù×Üg.0fíŸ`Q|Úâ/¦éd²áî ÆfŒmhÕhy í^ßbuŸá)aÕ÷ZMoÖמr%#÷ü˜óH™Í¾°$ûé]ü»Å¶<8»8¦ÆÎ¡Ðü öx KÂù:‡^½¯R`‰kï˜CÑÏé=¹jèÜ×YwÊB>+ÕÃÌóàrHûÌ}¿ä¿»ÖZX´»ÊfÁ üŽ™Oz ”oÐ÷@¬Žvehê—Ÿµ@ øïòŽÁ_¬ Ÿ¾áêT – ÆpâXÅM‡3ú5{Ü“ˆ¨‹ðßuG¦}ü ®XPŒ%W¹]O>ïùÊ£2‘Ëô´v±oy*:Šä{ß”p=ò_±öåáv§a™ÃjNÍwfÙÓõ=¨LZcÓ)zNÓÊórÔsCâ¶vL’¨ûÎñâ9U>_<#Pè©­œ¼•-Ý•¬¨u¿HødFðÀ?§Itøï“Ί—»Ï—~£"$»ºˆñ²#k.*h÷öa]Ì432ä+Ó Lô,aûÇgÿløpendstream endobj 150 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 4071 >> stream xœX TSç¶>1sT <ÛÞž¨ulÕ^ëÔZ•:kUœpB”0ƒ („)äd'L†)Ș@¡€ŠÖª·¶Wë­Zo[muYµ¶jë>¼ßûÖûvz¯¯}ï%¬µ8ÿ°÷þ¾oãÔ‡‘Édξ‹ü&;¾¼ÄÐ}¹;Ã\äàâTþò…Ît¿ívøyÆñ1#rf”oô;³bgÇÅ'lK LÚ´=(yspÈ’Ð0¿-Ë–«"\FyuÊÔá#f0³˜ña–0C˜¥ÌPf³Œy…Yά`V2«f&³šñeÖ0ï0k™YÌlf3Ž™ËÌc^gæ3e&0‹˜w™æ9Æ•qc^b^fú2ý˜‘ô²Œ“+$+“=íÑç‘|üœÓ'³óç<çÇŠ­ìhö4WÔ×£¯µ_Ÿ~kû}ÙzÿzÞåÆs[]ǸŠn“ÜÝî<¿×}±»è^éÞéŽ =¬žŒ¤uí.;®µKsªdMÝ~riL÷^SªÝ•) fg§ð§·½Ò¶Æ‡MÓq*v®öA3ÔèN‰G]|쬟>Ù•`4äò;÷ÂÅ 2*/]¯Í ˆe£T±m¹Ç Ú >×:%³‹@mL·qd"®à‰Zýð3gWéØ%gûN‹:]ÆË=Ûð],áüDZsï—®Y¬$)ìz5Ì£;v*õ‡á0”êŽ÷^ÃbAgçp9 ŸC}Ts¼-¸t5¼ gïŒât Ï+÷Y2Tí¬b?2f­HÕÿ¸Ñ<5´ ®Ýá4)³à>»ú|ïÍz0ÐSÂD ù&Ca‡_P|{è­ÅÓæÎ#q Õüƒª¿ŸƒËÜW£®/åSNU«¸bP‡OkØQ=M¯Rxþ QàKß|}çÖ_?!òø“kü:±°I@3.e‘;0âÝi‹ß"¸JEj›4Ò"«¿{oÈ¥$ÜÂã@ŸÇÄxó&ˆûãá膞ßnJ’HüùÕh‰?Ó¢;N3½º,‡:šöB ¯ÚR¨÷‡@¥±¢Ö¯O ε;9ÁÞ=Æ.ëz(i¬ré¡ô|¸ÝïÔ0àÈJ2‰L dN!ãq9Ny„Á¾E`Ü™ Y:!“Œ&.3†÷™w÷`#Î?þùƒ¦“7Ì‚!U¯)®ò«Lewƒ1-K«ÍÈVÒò’•vm‘^°'Û<ž\Æš=×á<üšo:}²ª¸«gƆ(æ¼>% ¸®9NH­Trsœêbš¶~öÇ>÷p zŒøŽô[±:aS°à¹çK†; {± {£ð4ìÏ [ön™]†ƒoJ>ä纽ùÿR&‰Sà ŒÃq úÇ‘wZNfüKÖ[,i/Û‚'ŠûpÆßúÞR“/ ‡M0xù¬Us|·-tdw1Ð;îi’¡÷-Ü`“KÝÝoòO/ýŒ‹ÊŸüRÑŠÅÎQŠXòZŒ/y›À[Ñ‹ŠÊ;ì·%ª ‚ +¢ÒT#”¯b¦¢/*p,ØV”oΦp•†ýÄ'Ÿ|å`ÎlÜÎ*ÆWP¡Ô±¢.% â¸èêäÚêZSCcDCÀâÀÀEñJ5³dðïP㸡Tß Á¬;דÁDv¦¶xMáxZ‡Û{C[CC»çíôMÑ–{–âñ ܆æ懳csJö (Þbï‡¿ÑØêð‘Êq˜ÿ,0Ž˲r¢ì l„Ú"­‘5ubj§ïKSx¦4"¤¥*E1##[£ªQl¡YóÚ:Ó?¼,¦6AhRíÏêÌèLß­­I.Ê´$A0÷ú0Ø94æËiJm‘® ¸¹] ØdÈ()Ðë++”yÅ¥ùù-›ÚµŠ5·ÖKÚ­ µÂ–=¡…3Êbòg–B×XÛr™ÂI±¥> ²)ÔË °’2Ö‡2ÖÓŽ“ªd?^Æmr¼* áíd(.ŒbuÆŒÔr±7I=Kœ®Ç¿Ð|þ¢²+j;C:¾ªPbK¢¶ì¤elùE%oœÊ_½Àw’¦õ„¿`É(G©®€v¼@F²0ÛÃêe„cp¤¶þ 癤Ÿ¤ÀáÅÎvvNFáñÙšžòºJÔÕÒ‹vY•$Êq."¯-  «Û •J;»QŒ×m€0ˆ„Ð\Z0Ê#*î¦FЫ e—ÖFØe(Ü/ãu¯êÎæ’f=gg#´ B¨ôQ†žUõâîé:1GíCò½¨Ú<;¶{©¼Ûoò5Ê«v¬ ÒŠ°‚a'õžØª+‹†DH³µY¯‘\¯ah¥Š’ ¹ƒêì†:zÇõÚM´7©èÃ{W4B•®x§Q]Z5jÐM& ^£±4ÛD$oõ@OlëilAô¬HØÒ»ŽªƒX²yò£W~Znº LWœWô÷x="{òÒóÔ&d‚Ü¢¼"Î!É–Äf µÔÓlñh½ºöN½|É6Ðs­ï^âóëC[³œ3}&œŠZΪauh(.W¢/KU¸)àPÈžµ¦ÕÀMœ¸@U\g­¬ªkݯ¬u‡õÀuv¿.le=ë˜âtÍÜpß°„UÄM¾}AIÏøöŸ,³qó#§GlX·¡éè‡]Ç1TWôP_V&Ëñ4&ðYFÐÓ·áêÝ]»ìMMæiŽÔFÓÀƒaûOi6‰¥™4Í)jMö‚7½Þze P8JŠKj+‚Å£¬~°¹wÅÇ`Û—<"¼WBÌÊy ±«û‰Û€š‚zj ê¡u½Z›«Ý E´fe¦ ³½®ÁÒpm˜WeÝ,Ôé©q'Ñb0ë[iyºà@4°A 6®—Õ’·CZ¨š¡…¶‰=´M\â)õÅåMíGÊ÷C+Œ« ¬ÛhXá°.{eLPBø&ÕJ€`sܾÕ4•\ÆrÞ¾áhÔ‰_Z‡ûðï‰ËœuaÑqí=žõŽj<½c£<@-å_Hñª_Êq>þÈg—A>¸º&¨¦ Z#&ê)Ì~ÎJTŠ%Ñ8þ)ë»$aeäœù0(’Kµ†]zÛ.hâê’Êãc·§D´„û[ëé“f%Γ¦×U:odgõ*Hý5wÚE…Pç¤çd#^®Ò:µ ÷Þ®·Éšnà†;r‰‘þÂoËIÜ ‘\LUb]]õnûÙYû_'FywÂ?Aý”ЈÏKÔ Uƒ˜œ­ŒŸ½,Ƹ“ÑÆ6ö³Ž3¥'ÄX*æÒ:°I®Y«?°Ë¥¡’o,v†3¥C²’üS¡&“œmŠ‚‡ûЙæÑIAšŸrtWêïRŒ@•ëŽb7úÑþ•Nä©þÄ*q_ÅOZöBOé½-i¥AèÂSjwlS¬O ‚dŽi‰iß§ðé(8^w°¦ñý8´ÀÁmÖà’ÐA—û¯)8þÝØÍ{á‰ûwðÿ'm­Õ´ˆ Xõ³ØI]QWi=Í\˜§õ8)íGriíŠ5ùPýhÙ]j£\ÆøçÉÀ^AWt=ò¤¶PS‘®ÍÊÑ [†ŽwÀZØdoÚzDwZ8½™7â«·ÊmpÎêÉÎ{+,2t¾xçk9ïýþèÌÞ>ÒÖZT$æ)Óshóåb*·[¬•uûƒ÷,kò’W”„}Su|ú'ý/³½nb¯ Ï9ŒË-<óP.ùà½Þ¼÷`ÈM"„üŽálË=E»o;œ‚¶ŠÅ³ÓDÇŽi¬öÙ{ œ ¤O@ý S2„V®ˆl²âÂsŸY1Ë*«?…;®4’£;Îá-)öíÀݽôѵ#QM©eÂÁ½Pm¦¶sê¤ڲò¢êÊö Èuh˜2ºfsõš£}ç¼éßZ¾CŨ0X[ÊC­ÛýS‚B`÷Î?€n?¿r(é½³rYóRM…)2 ‘IV Œò|“±”{˜Ã‡ok¬†¦ÝfÁTe5Ù€»#ããaä8¡LãÑM7ÅoZÀ˜3:N–}xCè)z0(ëm©r\Ð=Ÿÿ5ëËÿØ1â|öÿ?Ì…5aªetþpíÖ&X´vì´`')ßÄâï=üÖ>Ð3·ã‹X¨3+óŒ†F¨îz1aÃBò²€²ü]ëÕ÷á*÷€#S'hªâT4÷êªÌÝ5e·ežÍ¸@äÍìû`oAd<®!3ƒú.”ÞåÉG6ϳ©{¬þ)Cm†jý{PN™|¤WÞççä<¿Ï•öó qæU|lddm¬½ÁlnpÌtk“uÇëçåtÎzƒŸZsÞã.œ8ÿòÇF +Sæ&é5%=~‹Ž+Ø*Ø•–¥Ó¥e)S·•n]•\µêè‡øL;ô­Žµù¡mC…ûG]O2Š{¶èuM!°„›³fúØi„ªãäL¥Î©=N0Q +ØDÈ,)ÔëK •¥é©{Ž]|-ý•<×ëß=éÚö^\ƒ°ñd@ñ|“cv¢© ûdûìX| ‹ìòîéÝ“ù±ŠD’@Ų 'WÕãHÚ®ê¡H¬ÈѧSúÓRmƒ•›Uн¹Ø‡6°V ¿öödg3;Lt²¨¡0ЫòŠ V¨ºEUd™ìðÁŽìwËZ:#Ç…„ávè€Ýº#¿™zîÿz²uü ô<Ò3\#sõ虓›gýºbÂÿêá_Qá&ضîÛf*Y¾°&0jeÚûA{'ÂTX³jÛzÎóºî[Åÿe*ötÿ¦Á"£Î`+MÅ i6Ÿ¢£/u"5‘qÅ>ŠÇß4wÕîÏŽ³(7çd« ‹0'×Z«+m]ËÛ¦¾B\Vx+‰óoÔ÷÷3‡Ÿâ¶£ u“@jþøI©KkDVTãtdd8ßBÍC9OÝæä·}s4´Ÿë8MAVañõ+Øïã˜}›Ã’¢££+£›-&“^éŠwqÑYY1Zå¸ñg‰u‘c; [}…ŒýOðõq–ˆˆ¸ØÈs\C/izþŽá??#=×숸¸ˆHs,}ÈR¯$Ÿ:ýÞÂg÷ü“Å OxˆÓM]è›™A;qNOÆ\A \[ªJˆ‹pDPU—ï°¡>ÄPýï~U²ïÏÉñ’ÁC¾67»ðØo3Îô|­ÎÔÿ†/æår!Ÿ+Ôäe¥ó%²ʵ£â†é¾F¢8Iú½OÜî̤T/ÌÏ+~ÙÓèÖ˜ÇÃ?Ó°Ï*”/A·W?¡³\º˜©Õ´…YÂéU؇¼ d?Ÿ²– %/‰ÚœÐpZCfQÉ­K(;¡<|ÏüÐ…sUösšXåÒ\úKpñ`˜ÿµØÑéendstream endobj 151 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 278 >> stream xœ ôþCMR7‹‹øù,‹ ‹ ›÷Á¼¸12Q½øˆøÍ‹¯ø¤¯·Ÿ÷’Ü÷ãù¦‰ŒoKL0Šb‹g£‹Í‹Â§ü’j‹~'egŒ÷ް‹ª‹÷ˆ¡Š½ #¯e'‹˜¬øÍ‹à÷ìõè¯Êõ÷ƒìø÷JiˆuP~ƒ…>‹}‹ûLôè®§ÇºÕÆÐÉ‹ê÷ !Õûû74/X¶†•£¨œ¯„®WªÒÏ¡º‹ï¿=:4MFkgû…û‚‚‹‰‹oø0 7Ÿ ‹ ‹ ‹ àIpÆendstream endobj 152 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 234 >> stream xœß ÿCMSS10‹‹øýùJ‹ ‹ ›÷aþºPR13Døˆù‹ ÷ Å÷·Ãëá÷ÓÜ÷ô÷µ÷õæ÷ö(êûûýJä÷µ÷÷ñ÷ÏN6> stream xœšeÿCMSS9‹‹ùùJ‹ ‹ ›÷¿¼¹R3Oøˆù-‹ ÷ºÌ÷“Æìè÷ßâøF÷Ùñ§ÓÓ‹Ýòûßû#ûýJè÷Ï÷4÷RûÏëüRø÷“÷'÷ÏSCJNMû 7Ÿ ‹ ‹ ‹ à;¬endstream endobj 154 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 2434 >> stream xœ•VkTSW¾!ÉÍUÐ2Ú˲S{o§¶ŽÚ:õQmÕŽ|Ô:(ÚŠƒŠ „§$ĉ€€`²#/!`BˆTŠZlÚ©VÉ0XÖYÖZûp¬muÕsg?æ„ ÁéÌɺ?rÖ=wﳿïÛß>"J@‰D"zñʵkçyÿq;q¦PÿÏ©9HAb’ÔN ʇ&þæú§ƒ)ïïé4åbUÆ2µf¹V·yKx–<^‘ôNJêÖ˜™³(*‚ZM=O­¡Þ¡~O­¥"©©Ô:*Š £SÓ© Ôjõ&µœZA½B…S+©UÔ"j5žšHŽAI( uLô¬¨Bôc@LÀññÉ%}Ò¥Ò&éCºš~ —u0ÌùQ£„ÑóG_ý¯ÀÝ‚}¬`7:ã}ïA«=b! gïm8>/zSvr<ç4ÕmáÞ ·+!%¹ ,ü1ìŠñ¯Ð\ºÆ ­m*0ð1(”þáÊáS§jÔ«9¬N‘mO#»œÞ]ÓFì¢I¾"7ês‹>ò +É—„RY<ý–béô)8ß™†$Hrç. æ°Ï`Ã".Ýþº÷\ÿ…ó+gÍŒ ãIˆ<·nQ§¼"2…«¬šR´;s“ôœÆúnÓj`pã‰x9^Žð3h’~ýåC*ØQ´Ò|óœ1˜™ó¢çÑÔ/ïß´ßÈÇÁV¾4ã즬ÞD8Ã^z„Ù#F‰8ƒQt4ݲµ#ë0H|÷‡çü„%Ñ›³Óù#9eia7`‰Ýh!‹=sæÔ§ýgÞ|eÖŠåaK⮟æ|l¸Ü"4äÒ pö§¾›ˆâJÎÂj`êëœÖÜ㯽®ŽÜÈ·ÈÚ *“8,¡ ¾¨µüصÀ¿BûéšfrT%9*Ó¾àqÞGô£…xŽ’a¨‘E!t„UnåÝð 8¢ïp¡›uЖ&<ô<KëÓ‡â9pŽCQ¿5¨y„<Ç€Ví_¡±þ]j¤BqX¥öGzì-ý¨Æá–žb‰{¬‘ô« s“Bs ‡ì²_¿/¥§÷¥_=ÜYv°›+ÝjƒýÀ\ùÏF®G÷Ý¢Z!O,DhkDp =ÜýЛð{R]ܤÿ¸à áÃâZ$@±A¿&O‘]œÁ˜èõè=é#”:ÆW¶œü'øfE¼ÐüT7”ì­;ÛpÝl3×0fºDY·²\[Q’ÓENf‡Š£Œ¯ì™îoÝ¢=HK _ˆŽ°×"®ág7M†Eiö,GmKùûœ³d?Tóù‰äU<^`Ä¢a*óFÿÊ»û®@‡‹s$¹  ˜¡bô†mP‘ɇö³ mr]Bö»P Ìê-m§~:„‚ÍCŠêu£€ax]øë¯Zçk$÷?=—üwO´nÑ/”C¢/'Šúˆ¶ø˜ š™çWÉ‘m‚%Ñm•{ñß’–v9«3¹e8Gæu5[8àuŒâêÀ e»÷쮩;Óª„lÓt69yNùvK1_f$fð´ Ê9yIE:BYa³îtú…HÄO°À(ß]]VQ†–åýVOØÏÜ—_¹‹|ÛLøAÏàÌÆÒ\0Ióº!M+OËË0VX'gìÍF™•©’·Äž¾à:w³™6ŽÏ<(õ;± @"¶ÞP©ÍÙÚ|®Ð½y)0s—õÕÓò=YWc‚RÞf4›Ìù%IM;ji²Ùš.¿Ñ8t~z6ûÃôšÔrÏ2šíEcˆJ®¡½d|ÌGkX›Ž"fÅ?0‹Ç¾ôÄÁ¦ 'ÑoßvxoÏ!‰yõÛ‚È•¨êõõÀXkZÏÍÃÂù±/óë_ôÛÌ]ìšìïÔìïŒÉަÙ½hþ§=½h]¯ÈímðÖsb”pž-€((Ñuæy‘¯†j(…}e•M†–ü`¾÷\ºÕšïÌnäíû,»kÌåéõ5d¢X÷;š´-ë41;Ó¼rRU"0ÓCÃf+ªSö«ù|ýŽtH‡ÍõÊÝÆ77ïZfö/h<÷ðì-4 ‡C·ÉبØn—«»»§§;62266Š7ã%ìm$‚×äKc'O ëênoíê)å¡ôùÏ"”O@r Ÿ°NMƒR©Ñ(• §³¡ÁÉáÂú‡˜»ˆ/ú§ËÈsè*=ØhÃW‚ÓPÛ±°æÑ• ?gk!Ù¹º$ƒŒÑ¯Ï‰lVìÍå»b^ÎÞ»«__½:k$1Ž}'t‹¼²VÅmrw™¬¦Z“-qhì`vpîØ+«Vp'RÜy=¤y™‹·n·æw¦vðq'£«öl+ «Ë)}·*ácN<ù7$³ü!£”˜g©Ö?~|*‘•PgÅè=TÁ¢@$‘1føGx_“¤èžÏ¡ßò ãýíÆ2™áGeãeúê%ÛiŠšhªjxäŸJ;Š×%ÑéGn…玘7!Z2býÕˆó…ÐÃ÷”ž³ˆö>b!}ÄÚIfíØë·pÆÒÌ‘Ä3“ ÒÒ‹›u@š<Ù·yì’%j‡ô~ÛY ‰:/ñí°Ïǃ@»&×€B‚Aß^² òsvr©Kå*ù.ƒIk„­Œ®*×ÑÙQokà^ž%óÜ2? ³†Í#úû•{Ä}çØ‚ÂÂBÒ-^9tËgÄÍCw«m*kéO É×Ú\ìƒ{ œrÜ~G-X0WÞºÃbk¬;X_PQTÆÕ;ÖHäö…gÓœ¥‘òd~,7Z’¥ A£!(‚ÆQÔ¿ÜQ,~endstream endobj 155 0 obj << /Filter /FlateDecode /Length 5027 >> stream xœ½[[¹q~?È80òÐïtx¿IŒu²6¬7ðZA€ØA ¤ 43ë­×zÉo÷÷‘,’}Ôs´€ÁîòùT‡¡áÍÝCÜëŽ|¹3ç—ƒð/[lŒ~êOw;¿N¢ÿ|Ñ:w»¢O{Ëaö¸‡Ay5ýNAdÊÞkñŠŸÃõBˆ«ÒËÇŸ^%¿§œßùy£æŽ­‡œw»zü¬ÿ¾ö§ŸÍÜ9õgwÁXµ;ë7ðaÇBO{økœäoûÓÿónøi”þ©ÂÃŽ‚§Âa…ÓÛI}z€IÈe:"¿½xl¶»­/ª]7ѵ0º®Û)W~?'?›We&Ó¼žžö\÷Eÿ}øæô§¯Îø«‡ß2‘g£XØäÍjŽÆ›°Fw4F¥Õ¸ããÍñ?÷%é‹<ôÉ6°®‰«ZåþÿñæðD6B›£³Pã÷‰´AY“ÎE¿úð‘ö¨>Ã)Yû]tP÷3Ѝ£ I=CÁž–?W………»,% œà)W¿ÏÆ¢°³þèLŸvBn÷—´50Œ…QXøÏ©#lÎuqX_ŽŽ^HÏ-fUøòŠ£¶C¥pÙ8Þø"Í 4År …¼HB]ÌÑSâ³–‰n5ö’e,bÝÅ5ó^ô*ÔV(Y?Cd±SPÎ:mQ=çXÙ¡´ÝÌ[ˆdæ>åÕùç ÅÚê"~G„Hi…MŠÞåMªpv5ÁŒÖx™KV~µ—WIK#*ùÕìDa5‡ËšuŒ m*ƒU [CF…ËÔšB!Z ‡í<ÊÜ ”éï¾”+w“à[ü(¶5S–¦µG”ð‰®Ñ@ˆEªBé«ÀŠkÐt¸‰8:&”R¬3ð¶Jlx:t„@TlãÏæPæÅvŒY™½Ÿ ‚§šôh¥ÞŽpt—HÐ2t;„4·°|¤ñ„ÀMÂé00¾œwÁæ¢uÑ@FަC'h:·ñÛ)”YynTÝ£¡€Ù”:ºõ™WXh06ÔC>±ÿRtïN‘µ-»A8Ü¢¡€q Ä£ ‡Æ–SŸ¢B§…Ã<ƒ¶¹«‚É;&T;ÐÑu ¨†0Ü9ÛÓñQö5…#íÌA`q¡< ˹IF…ËæjZ…h)¶ó(ss¨RRÉF©V£‚ÈÁIØ3wpb¤]Ѫ!0]–Oƒ"±Ÿ8\Ep…‚¶°\¢Êá-¸‰øt%:…()¶³¨» ;6ÓŒcô½›0ÄØƒ=^­¸'ÛC¬ƒ§°ñ ”l“;‡WQ1%Ðx̽qp!Ýé.Cಉ‹¢iÙ9œÍ£:$°6x:UùçÁ¨â,ò Û‡è:Ì­t9 ÃÿvpxŽ E£Î!@6Ë‘ÑàâÂU‹N!z7gó¨ë¦jáì» £ËÛ%è¡W6ÀðrC¡ÜI¶ÃTÔÔüÙ)¦œ›\EpDÃhø“¸pÐÙ ŠŠøúSS­Û*_"&ì¼X‚‰ž™‘ME¢”ÉùÌý…Ö˜"ÉÔ¬[† 0–©cT.Õ¤ ÷hÂÃ$ Á ˆM¡è7g3¨"zrÇ èØb— Q0Ñò¸eª/¶ðÙ—¤ìxÚà;ÌÍRÞNo‡W!”ë4…p@¬”2¹Ê/¿uåÚÀ3õ«çe]ª©ã„LÏ\ijôLÙ²í[¹ÁÔ[™qL(¨]˜8t¸f.#9ý6<ºÀ#². Á%}·Þ(DEá0Ï  ÝXŒÌ%˜¨Ð2‹¨r.a-gY¾¦Ö\¸lâXBZ§@,6qâ ðÈ\‚AØ,…¤p`c&.…dÓB(DKá°GË\uŒtúÊœé ©4ð–Ûž™Ì¤â fZñªT7ŠÒ¾ƒÀE “?öñ†Õ«ÌM¡è:VÛ9Ô%K¥º÷\}S—¬a°|cŽ"­¼°÷>"þ²³ÊŽ'h lB™¢… (¾‰ n"ÆÐ¾æØ9hŸ;>—^²J/?‰j2îLù:!8«ÞÔ¹‚aªÑ\mìWVßצ…DÖ¦ BX3( "S0ƒƒÀS² ÚJæáÀTÄØ"2\ü¼jÑ)Doá°Gë“5#רž‘¢Ã¢u‰ºdXFÖΪtɃâÑÆRÌypü¿‚\0ŸZe]~Ïýp²ï°njvŒEñDÏy-Çi W˜+ÖT QQ8œM¢¦0$¯7•¯`4ØݪTvå,+ÔbºÂ¬!Xä‰"ÕÌÛ9Ü+ߎÁ懢Ê©Ò.Šˆ —f²)Ñ(º’•ÁÙ,Zøàí¹@ «8†œ€…Æ/ž ?µ5Ȇ«ð{Ë+èP„C‡{×1ŒÕhR„ƒË˜RÔ]†À 9U‹N!Z6çó8•7`Ù×:Ô$y(ÍäÌã¼€Q|AM8”75—äìË•Ph[ü©sè°‘³[Á0‚—*¶qÐ,­ÌÑ`&ç¦EÃt-‡óy”uËЇvl5ÁxØN…s=÷òånˆå‹ƒœ;|bÔi5h£`«õà pß cXï;VFŒ "¢Á<ønJ4LW²28ŸgöÛgßëi¾×Ë!¸½Ë»|¯}{?÷«r¡Tó&ímy„iíòöûz‰4+ã—Çr§7Å—›zs5$¿Äu»«zÓ”×»XǃkL±Ý«ú%É5ÖÏ/…¹Â3ïú¾j@ÊÚm÷E@Ê@0f¯¤-ß=GóP$ä¤üòz&ÄÁl+VYäËå ±fù›™Á^N)=?Þ”K½uίË( 0ËŸ®|€U¯ru®ï¯ø  sî+œgOU”*Ë*¤PܨËVÖÊòb))²13ÃòÈ–·EbÐY—…jO$p˜½E4Ô$ž(N•qRqyœUšø=ž©Ú9>]ñZqΚw }ßÔÎf¹£LœKT›E˜Ê¼Nû©I‚reåŠIR¸° åö5šu:@¹«çÍŠ¾F|êu塌ÝÐ> Iqƒ~GÃ^=³&Õuƒš\÷Zä\c«dS÷ï¢g™—5j/ÇãSy´èïŠ5Úã˽ÝÁšÇÇi"ÓoMƘ°ëX‹ÊysWÿ:±œŠÇk¹¶JxÕo–—•Ä^ÒººšNÑõÝo‘˜ Õð&#Lö ÉÈŠ•~xSŸƒ¢.å1cíêõ„¨µ´‹çðÏ[ñ†}RŽÜ4ž¦ŽËË*.…Ì«ž¢ÏM%“¦NÑáåc™zˆ®zS}AžW1«9/F‰¼%N¨Ã—‡F•ÛH|/s‰ËëqŸkæSB*ªNasvÎ.U¼3!ÌøÐöcª› Þv_>0ôö§6—ì±ïÈ×:À} Û0Â1…©T‚ ± §Iò]'ê¤0óïÆ]þj±*æCñ“MÛRÍ4¯Å2Ų̀×?x(öÈZ;ߌ­ÑÆbÃðõd‚"?ô}Á-OïâÑgD?Ü<õ¾¯ÛÛzëU~¯·^]¬dÛåèßPÜѳBj‘²ùJUϹDÁòFâÍiú)öP¨NŽœ6œœŸãä~1}Hò‹:ƒÍÞæ ¹ùÍLø‡«bIôØ™&£ì˜°F†å¢Éôèž“-6¨Ðz€ó* öÕØã{»ÑB:€’\ÝZѬæÏúÞåÆÀaÔÙSX´gÌÕð³7rêì8S–ÿ(zÄyÓ¼Si6‚SüÀ<›B°vé¦[¯a£¬C“ò[ ×’í³Âæš÷Í\PlöóíPxN¨Etû©Ü®øšv«‹V|­Õv©Š—¦RÚI‰P°¹î†,.Ã3„ U Ð1<[õ â›JlëX.mš|øOTÕ(mi­ù-Wö!Èg=ê|²­›kœokÞÈz®Îæ€:U}ŸwÁyA‘4À›×f]Yiª×™ã⻹â•é\0Su¬›áXOmjj®X] [»§Jüjì¶É ç NjSUßoú¢²Ž°Òyš+ýy°çt¸Û˽O §e¹™]Ýšè7óY^$ã¨a²ùŸ§æåƒœ(„™â¾oöj»·/ïJxÊ f,•¶ò1ø¹ò|»‰JÕ¦E½Ñ³ÌStÖ?µ>Š ½q¯Éëæ·c™²@ë6]´»ÔÙ]°endstream endobj 156 0 obj << /Filter /FlateDecode /Length 4762 >> stream xœÕ[m¹qþ¾¸1 \O¼ÓæûËÁv ;'çãlKk†­ÙÕØó²7³+#¿=U$›,ö²W²l+ ôA\6Y,V=¬*²j¾[°ž/þKÿ_ï/D¯üâÝ[üâÂ(ÛKËVÞ;³Ø_8azã}îÙ]¼¼ðÌöF¹…5ŠõRÀ¨Üã¸ï£´„¶"ƒÆ:F1ø¨ÉzZ[øêªõF®œw½Õ„©ÔAy2ÒõÊx“ã¶wŒSžÊ ÔQI<åÕF–Èjlq{ñÝ‚\¤ÿ®÷‹Ÿ]]üè…ð ß{#Ìâêæ" ™/¸’½• X`Š ½¸Ú_ü¡{öí³_.è½7Ýï_.aU¯´Ý7˨‡1ee÷r¹’Rö†‹î·Ó!Ì;&„ï¾ýþesFþÇÕ¿ZlV;|\­aÕa°wΙ8¸bX(;Sqpg—W„Àxü°^±Xм.’µ‘#/”ã]œ ¯…WœéË•æ¶)»ßA/sNfº#¾ÇáLJo»Í’÷Œ;Á»Ã’3äQv_âXãâ²;ƒœ´é³°AÍ{픎Ē wa0cÒ­0–qÛmqg,4Øk{!:”sPÐ ˆ‚ô¯€:˜S–ÝÀPï4´î¡’ÒvïóR s‡Âã‹«_^\ýóº_Á4+DN¦Ó Ž1ëÞ"‹Ü ‰‚þå¾veÚŽ †•¥×½uÈv{/M÷+RàaëÞôŠùn]2 óœknm7ÄŒEáp'­—A8Ðk˜î®² Ñ ¯ ‰À7L\qê•Jhä–î_8žÑø/8X0æ•¥í–à$œJíljï–`¬²;>„s!˜ç‘Èòº°ü†l§ny÷v)@Û,(1 v½†9T«²ÚQ‘„œ‘O ¬˜É$Žû°9ïËwAž)—øåŽtXDÆA§A v§«î8Ú`ã}\Å1Cý®œíŽHe[Vy»ÔeC8Ò:ixɤƒ­€„¤» äaiŽêXq%z¦%œ{Þ{ÔDÐÃM¥²ª;žŠ‚£ §‰÷`DxŒ½p¼ÓW>à3â:œLðGp×ìDCÀ¸žJz è²Bg @'×½Ÿ‚N0ã\ðqâ ÷—‘QÇy÷:xÈ­ûô0RÉ$ƒ/š%Œ¡¢Š+°™mQV’¿“ã- ç`1ß„m«£4Ž}(>„Ú´ Íc0ÚÃh¶¸>9 ½„y‚B"ž-ä1pêÁÞ&Û.o²¿t™«ò¸ZD,Ø-ýˆXuƒg܃öa3ÆUmp €²Ýmd[+ÜåCÜ¥çFÃ)F2\B5u§jÇk¹—C••uÄ¡L­©,ÅC‘ö·¦P1dÚ9NSÆÞŒ« ²DÔ>I¤4Ýôc@Í¢`ËÜUS©jÑQ[®µ±[‰ìƒã™a8”#ºŽÝàAÈáÙ{†¨…h¥Fž0e+>Òâ5‘'ÐIÂÄ“Mž\²gˆƒ†Ý61D”D!ÇS>9¤yãÀy÷¸6gN½€)ðßÔ_ÎáÁ\´cÐö•ìÒ!ò,„<§ÀMºëm‚·à¸ =y§û¤~Ø©SM\NƒI)+k Û•Ù(ÞbżQ1š ­Cn­_Oˆ©•ªWÖf=QyÕÜxØŒÊĦ±òCn]çÖ[÷¹µÍ­#ÙIƒW…6J©qÍ~ÔuTƉî‹"ûû8ÔÁÝ`(vä@Shôu"Œ’×Ô¢^G‚ˆñ yP¶©Ã‹¹SEô}&Ý!v戀±ÎÖ?À_€â­sø‡HÒ}Ài°ßRãNí(ìT Õ;(±cSIx|(Gözl2ß7q¾su{"{Šƒ‰¸kF{kœ©ƒŸ BF6Š©¥ EÉ8¸§t‡¢ÑÛHc—ÊcÓ{IšÔðµ di¦]ní[Ø{ˆÉÆy%^«üLöê×d‘M-mm¡¶q#6RìØ&vJ§IQû ”°6ÎR ×î°h7£¹­£ë “­¼‰[ßÅÑæ!¬·Äâ”GႼi;AmrBvÔû'Ï A~åY3ƒ'Hê¨âš<ø¶ê%í Ç5¾TæŽÜ„¾-Èèxˆ|j¯çƒé°Uߨ²º)ðR¨ Då&±ŠDr1@HŸëË olá¼púœ•©L¨öc(p3NsóàÈnÞ4§…wqz±êö—Év³+èúHÁáß-D'–¹‘€ â‰O:W¦) ¬A¯O¡% ÷D&?ugM ã“Ûg6)1ŽxØŽ^¯èÑlÄŒ¸µ°wzéNï6pÁ0T6c$*{©$y Áƒ¤0šHhü^Û2ê`¿/±ä]æ‰\”+Æó·-ãâ|%ÂÈRb c1´TH ™fCKr#/ ±}çøÜ©àZ÷®up™ðþ  ã4pÔ¿ƒoaàáÚxhyaˆë­tãóÝ‹ì{º\i@œ&÷©Ø±ô½êróŸrë]#´Ü?8ŸI¸üxî®1·¬vY¸¾kpX¢à?5¾Òx>“ùIi–eþ-·^æÖ³Üúmnqʳ¯–ÛÑO¨à¦!;^>ÿ8w®JgÙìëF ßº¨¶¤rjˆ~Óýº±Þùo ‚Ê´ÿ»4?åþ•'ÿ°4ÿ17§Y]~ŽñŸ ï«•qBÓÓtrÚP}%m³Ò:‚ŸCv—Y}€.dOCcÙmƒÜû&ûOÄÖ–¶•w-±Ã™Ø•¯¯.~sw,·xwÁ•„`›/4·¾gv±¿PÖùު܃iÀ¹`í1&)@Íàn¬S ° ø¢‚‡Æ÷žˆ{ý¿z‚& ÁÙÄgÁ¿Æ'uÍÚùîçÃn÷ÕòË _AøÉôßîö¯º›ãiÿ°Cø{R©€ðú=ãÝÍž_¦¿8œ´a¿Ý½O _oÇývؽ^. ©õp?”ùdü»ã~s8ŸŽ»Íè”tïá’™=nnn¶×ÛÍáþŒLCX$½á‹po¼1ûú|¿Ý÷›‘~÷ò~ݗž>ðý1.¨º?—µß»‡MùòëÓ«î§ùó_#«öj¯ºo÷›Óõæî½ƒAèá"§àoÿ±š‡cì"O\öFÇ?»‹ÍŠ›°H&ô°9¬7§ç›ý°Ƹœu˜È…p$î;Œ /Ä19«ðZÇc’(›’Íúáz¸ß†›Ëô„e¦¢ÇµŠ v˜Ö¦'Ü¢n¤Ï1Û«î_·ç»Í騪¾NÃ~"*’½I ÈèȪš"é~øÓæP&ÞÇO¦{½)m>‚nGXа ¨I±ù·»¼ÜO6o·ÃázóU¡ª0×"Ä(àxmI+–ä°ÞÜž6›sÙ^ÇQ7ði}ŒÏD«ÌE”›óvý@öJ8á<¢Ä(8¸6-H¹î¯åb‚¤gßüü«"Á\줂 ‡}û°šŠUEýùöü¦|ÝËëãi{¸-¬lAÉZp8s§*.`´ýÒ2¬ )¦?uÞ!}~ušÞ‚é÷e…ÙÓ(ó„p„`é_ƒH™ˆRÁ0 >5 tKF„Lk QqI[p"‚N ¶«þ˜»é.Ža«e|cUpëÒ–êöP6¼¯øŽ"‘6¾>ŽIë¦BÕ NU>¾õ4€Fštâ:$¸˜ˆ& …’øÊêÑÈDL­`A“SŸ>|ðÚ–W–Œ¢cq›Ò<”湉CBaG)4Щ_åE). Š:ÈÆIo_4ÓȬBŽÎ× ‚O!l\áy|”“‚%a º áy7W¼1>.5N”îT®œã¿%ÆmeÚà«d9×H‹‚È›Ð]³’_õ@Æ^Lžõ°Sƒsx^2 dÀ-Y¢~BÕh©C•Q ³w”DYx¸+ÄÚ)®qNk°§*a=çëì÷º¬òÐ~¶Èd|lcSo‡HÐp^åP†‘ÐT8’X%Ÿ<<ΪڶРÌXúòˆoŠ.I³/·$ÕAé…§`ÏœÉ ¢ðÒ9¤2Š`Tiƒ â{%ÑÌ#êÜ”´áö[i.Fy:6}"F¢Úyºl•n¥éÇFÂæÃi¹ú942ûŽÔ/½)xß´‰U¦¨a˜î xG™ð£”Qäê+ÖÇèPöEŸÈ#Cþu®.$¼Ä|I1½£ 04áG²1»5zLi¥R´iJ‹düÆE"X•%k%©TFÖòAŸuo~0ßÄÒ™IÚb¬n´jƒˆð#²2”TxP•ëÄž–IBú¹W+ÝwiYïgKÖ7óOïAzŽÝh€Ü±Y×A‘ÙL?~YNÄ9.­à~ZI2ão]%ƒ³ ÃL!E³öˆ@ø}]M³JTkSZdO4Û’Í¡e©H /‹$iC0;$!ÚªÐëT°ð$ðìœ*9=6W•v#ÜHX<¦‘z :þÔ%’Êè64È< ºQÑØ©¸¦޹rü]ü.°è‚d:‰$nÑoH¬(¨3Lô^Ní2¾¨L““uìÄ…Ä_~0¶ÏÒ}ÚŸ¥Óiñf sÌcë RÛyG?‚Pb%©§¿M˜{ ÔÓ kPÆYu}Ä‘d''9 ù‚«¥¶êqep®Ð•®cÉ‚M“r2©%©,-ˆ¢\ ‰î.hlþqE´$Ô¨ ƒ4ðEx6,!ag†=.yJ>û±‰”±·*;Ä7&¬¡$êð4nJ@<0VF½Ž×¿Æ8Ån)­ÒÈd ëÁ0k• +$#sñs35ÄôQ`x»Ÿ%ÿlC%8«ê ´ëe®5è¨]Åžü²mÔ•Wµpb Î(œ»]ìxrZ4juJ^Õ¥÷ªD¨yßv_¡ç8B'Î>2áÕXÊàrŠÝvR^v$ç`þÒ€HtücÀEƒƒ8ÞUc ¾“Ý'‹D×w¢´ê&IC‰ºì=íËU‡÷²¨¢©Ì™xñ ÒM¨‘‰Cl†—Á¸•P)ö°éz^™ÊÙ§fø‘å ÖöQáíHkŠÌæ5¤ª› /Í`f*ÏÅ¡“rξY e ú ±LÔ~j[¯3TÍé—j 3±À‰k´µ%.;Oñ"ú¸‰¶ëÛ׸·ã5`äDUAcõa´ØžsWE¤®›!®hYn_F>°”H¸'Aãm_ìÑeéÿÄ¢§Í÷‡’´¿o´Zå&ª¾¸k<¶è”•¯+ÿ?J¡“:‘Â)¸#Ë=]ªÕ’יЉo3àÿ´+Y£§vß*;Ë ÿú-z¤» €S¢ùh7ªC2¼.ñZý‚‰j©¨} v/Ì#vÞëꀉ8ù-½¸"m6ÔáÚ¸ÅÙ[)îd|+yò']Ų‘›Ì—ÅÒ±ÜF¯‹!žYå«úÕâG/,_` —1ÁW"ÅG¥ÊôsqžWhÛ›0%g0öfÿ$Êw#wÿ›QìÑCÐ-ûÐ.fkXÏk±ÀîO}ÿµ|Z'4L…N~ˆù;%C1Ääú9Lç¦óŠ’;›¶ñycv+UÕ®¹ýxEÈOSćàÿ¿äÖ~Ðèû{Ž6Üßç=k7¿[öB«³sQÊo.þ¡ë,endstream endobj 157 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1298 >> stream xœ%’yPSWÆß#sÊÄÂø¦ ³&zøÞz&âÿÂì`-ÑÚeKT¢u€•78áò2»<}ówr¯ö:ŒÀM¸vü‰ÑÛ%BkR—/×)À `ø$­‰›ýi’ aøBƒ¡œÆþÇ"~æ„ «Ï„hî‹ÕD{I-WÁ@Nß æU¦d¤:pBÅçŽ<€>¡À¹Œ³2GÉ6È'§á=”Þ2ÐÐk_Šø{Â*Å™ûÒüÓò„$`ˆB|õÌÍó[^íƒq§ëëÄ‘|à²Èu½!]WÛXÚÖW¾#‡«ëìÓÿÌ“»®ž«?[%'™D•–®íwö;yµd’P› ­‘k|Ž–Æ%(Æ£h)Â_q”}|)Èe–oˆ[*±‚…¼-¯¨ª™S±ÕÑ1;÷(Qº g ×ó§OF–þDÄ5Ê~hüÎ3#³.;2ÕeýüÍ-Êêë*š«ÔEäqÆ9ÀÜèÙ¾"P=oæ!y¬6C§M ’˜„(åÞE+¿®œæ]~ñ¯Ñ“5[ÞWR­Í‹Û«Õ&§r¯Ä¯6Y„â½EÐ4.2TÜ•== ôŠæ´fh¤Ä ä¿HÜùÙ,ùt½µzÍqQJÇhœcÀÖq*øÓ¬)¥ aΖ×誋; ’)NÍÎÔhàp*§NñKþ ‚`mÁºÒÔ#Г åÄ$I€”²Â¬ìÂ|®Å`ªÖ7FéöTEån…M Ìߺ%(3VÁÒºýí9:=T1»«câ£R¶¸ŽyáttÅ)ÏÐ-f¿ r_Ebt÷F'ourðEm }iìTúã]6˘5Üôi¿}îá‹îÆUƒ\¿=K ÁÂuŒ*6:rð›˜ÇWðƱ"!æy㢠þ ›ŸÙY¹L9,‰âtdη¹ÚM£«I¼E»8»¸p ¤0/÷Ϭb`0]¬Ü¾‘X‘9Iä#ðgÖ~¨ÔÝE\¹ðË4»x•yë~\p~ _^ñŸãköŸŽ&\`þ%’Ó„&6³–;ÏÞÖ³‹sض&¼"Cû`´ÃÑúJ‘vì^©çˆâ9V™R#ÄõÊHý;£á‹Ý‰x›V«…ÜtÎ} ‹s6ïëÞ!ö>N‘nóœ:=EÊØ¨{Ë¿ò嵓¼µ bûñéxߌÅQÑa> þU}âhqÔ?ZñuBDúf"Fg¨Å…茎¨ÂÃD:F8ç‘Q*ÎO‘²T¢èÝÜ¥4Æým0¤ë¹ÏÏ•¬ ÔG#:wžÒ¶A? åè[Z‹KôõC3g Þa^ œäS8©¹g¹ÌdRYÌŽ¢þIÜœendstream endobj 158 0 obj << /Filter /FlateDecode /Length 5357 >> stream xœí\ës$·qÏg–ÊãJ•wmrêud„è!í`DçÌñúÈú¾s:5Ü}~ä¬è¬ÇÖè¾S:¥'|g†ÐkNuƒf½R 樓î´cƒVÒb3Nl9ï:;d®âÏœ)£\§gL9a;׋‚©Ükj)zE¦ÒtOl¾þxuôå‘¢<Žÿ]¬qvôóϤ?ö7ÒŸ]‘˜Å±1 «ïm'äp|¶>zµpËSa%tv‹O~³„^;¹øÕò´ïŒ÷Àåâ_ð[ô½¶jñ9ôÐÂ:)gØ,ûÞkK]zï¥vbñËå©R ~eŸAwß+Äâ£@±ï•â0ÐëÞxèihÃ? Ó¤Î8£òzÐršÅõRúò*Eoµ_|ŠÊ¸]|øé?Ñ ‹°}ï d>eß|þ?)&øþã>Nà…]”ˆ.ì¹_|øÉ@ôfñklíµ2ð,œ‘Zœ9L´¥ÓbñIXùà­Wþ÷gÿ ;iű†Í wòT ÒRÞu^Iw|v {¨w4F)¾ûqHO}¶<¬Q]/KÑÁþ½¸K_cú:‡ŽRâÔ‹¿ÏŸ?N¿ÿmúz“¾¶lt‹âôuÛ˜9·=¤¯Ç)¦)éÓÖB [špÛ ¦Ö<ûÿš÷š÷Õ·wÒ²ʨ{àóiÒÔ²³ÿÞU2ðÀ+¨”̽¯’­œ~ÃÚ£—OŸòl&>~Y'ڌ⯪ÔÚev&– vNZæò¥xü¸Ñsý2|fð<í²_Èl­m&†½{Ÿ%—OæëØÜ6¦»iPinãázü^‡4[€¿M_²Eòü`’?nHôé‡OzUa€ÀðHå=øPû6?ŽÞÝüÇ™c. üÁß¿fåpß=qýóæ‘üÁ³ý³wÛeñ¼]Æû= #ƒÃmƒÞó£³w=òÝÄ}ƒýo[;Ø´Šÿ ôî/ÄëK©ÅÓº íŽ.¨¿„.<šY7Ædù3€{Šøûžžýé£ïHbÏX_ ÿ[>×7ï)<ö™æùiþTÍ“%¹Q;2ߟ3š•yËQmù?ÿƒÅf2Š5æÑ× nî«»j‰ëºE›¹l_´>—¾rZ¤M(‡@2BuìøŠkk;S©”í„ñó0¹?c¶£€SÒòº±ƒ- Ëò~Ê1þçÆ~¼iìÖM£_V„Ï÷RiéFs.d¾i.à»åýy¥]ï/úðŒ³@áË¡2¨ÎëxiÀ¯u6ËS9˜n€Ã; e½‚…¥ÏMºÚ¸Âaºïq ƒ0Ly»Pÿ3à¬P.¶×ô‹ÁY8ŽÔa Ý¡lò ̶‚µVÈÑ ìÀçÞnö‰ÂÃgoÝ$ŠuC7^7´2#ÌCKbJtJ&ùžÐÒ`ïãfZÚ@¢ˆ¬¯_+@*¦Kë|XJØg$ž"BK£øâLJ|%DŸÒKÔ¤&f ès¸”søx6„mØö˜ó½‹{0#¶`ô2 „… ¾!8‹ïç >n±‡ë•…Ün"Á ƒé’ Ó$Ôúk|r)—å5שÐo«ãù†]åmσö(%ìb<'B^˜¨3áú²­ÄÄŠÚóÖZ¡5*´G“€k÷^™†Ö™›÷“‚<ìÕº«g¤º8ÈNÂ1èLzQœ’ȺîU¡a(s#ì C–o÷6 –)+j¹…9Ï­ã}Ø5Ð}˧+47ˆÛ«ÁðñHóY/¹l±¡ ùDÞ†~Ú„„‘ÏbÜ G Ú¤¡:Ki¥œÚ&ëûM­A•¶oˆœñúÉé®ÙMí–-„ž-ÀÙv)uð뀯ÞôÚDÁ…‹_~vVKR~;,ç•ÿŽNaýðˆ)!­43úœ¡z~£Cn`/˜–3%Ì¢ÐdïKŒêˆŠ©ñ+ÿ› á3â>™ 2é,(Tƒ‰·9‹“Tð*ƒÓ=³á€Žo°À+À!5-! £ €å¶Ä5lh˜ÁÞv>Ÿ .…ÛPnà˜XÆY”pßËI7°õmä¦ ±L϶sÒ€÷ ’xøýQQ°Üõ,ÒºÍê;I0àŽa¡¿•' œ×´/¸Ë ÔÒëÎ%tRê‘)Ù%ŽQˆ-  †"ñÚ(€ Q¨ä5ÃOÕáÅV4‚î=ïÖ;çÌŽö¨ ÞÓp•¸Í§º@ƒÄêÚ }%ñ´®÷ÀÄc ®DÿÁY¾&°Žã°}dä.©±u»; .…iÉC‚o¾Ê¾k…cg ¶A\¦ôd’ì®vᬒ„)ÝAº3­£3]6]÷<ðºI FCîi<æçñXUÁ¢Ë|ž•jËÔ›i?õbÅ!°Ç€ȽU~–'Ðh¢#vQ7ˆbŒ„Æ ?¤)$€œRD{T*z¹è8“á% ~‚UGmž> îÛ®ø´¸IŸq$®¿r'qDÓKŽÙí#‘Œ~GãЉü8Ÿçöéˆ~c€”Âod€ '™VI@:{ æçMTÖZ€­ ߨ º·’y&ܯ`ÎÄ4<¸2TjÚ¼Ž;ÒÌ3 pë¨þ‹Ès¦Q÷9,âúÇŽ}u6c‡KÊ õ0:]õþd™‡A–t#ÐGÙ¼m«2×ß“ ÞAQã e&©@ݦ¾Q³Õ&DJ㉰Üg-` ¯Á\3M//þ2†.žùj;ÊMêÈÑŽi‹Dïinð^BÈŒßTd\ñh›p\õÊ*ÕÔ¹ÁjÔRk‰tƒ[@ èÞäĸÁ:&«ò×xöbêºeýëeaÑã)ª ôZÀICi#p?6€Ûuf`Ù–1‘.E½¥tÈ0€ö½fÇ<ã"/À•šÄÐûÚ-Âa±VÑaÆ+¾ r!¼µÀ}•të—¡¶ XO© —ÔnSùgè8gµ ͰÀ™Èከ ôç7S ÿ¡ιàJ²AÏÊ—Ð7Ç +;¹*§‘EüÍ|¯u@BT¡óì©n9ÔÞO+U`¯~׎F–2'{7FéUžãÙV9§Š:¢‚ŽÖó_oʰ" Ÿcàmr¿e­ñìãì¨Oè‰âYØ î`m…ÁÆ(ñgÅôeº XIÇgnÎL^r±!¡ë [Ô‘í£.m¾0ý ‚hËû"JÙ”¥n`«/ÝÈÊoÚ‹h’¥âéÉ56Ì\óÈ ™M«3ÅælYN‹¥´f-n2žóéФ‰iJWÖ´iÅ¢ƒÕ†“âDÊé]U@5ýº*žÃÙ²ä}öCœGEqÖxNmK´(s§dTKSVì33¡ zÁl)4[Á“N".‚Ù™' X…fÆÏÙÊÖ³Æ5 QeÁHsæšû‡ñéÌX—ÏîT¾YáÎÑ|žLK-AÈ xîLâ!‘\xUì4ñ pfxèÓ×îã ;Ilµ0ì°$ ÑPu›Ñ0çüËÌ È¤9m"i8>í˜aÅü†Ò-Kµän:Lãš,È*I8õy‚‚ù*[n¨?æ¤fA+ÒãÃÆbA_ÑŠÚbœ–ú2}íüÅ›¼ó¼baCùñÓxGÙö¶öE=^7¸=Æ {`¶*㉦Ó,™|èŠõ¾Í݉\qÄß…Dß!LíªP%ëÅÛâè6n¯Bü7·-øû”ÿ Ç…ÁÀ®cÏB tŽ;{ B¹¢¢\ ]éî|íû¡€§åTÛE›uÙ•ìäe±Ð9“!R}C­Žßê*~ªu˜LHᵜaF¡4Rå{³" 8&) Ñ÷QRòŸékÕè·nô­T7fm§ˆæUHÍ ˜ïò‹_Ð) ƒ·Ëôðð: œ=ó «Éy¥™7®imÀ¾¤ù ¶Ü×–1S[é€y>;{ܾ€mÎŒjMß8£PªÈ…—œÒ^L€tjF£F'Iš*õ°"aJ€ ËâÓÓ¸}¥y²Ovb6Í@´Ì-(žƒ^D膃:D„ LW7)Oô@}¯¹§ÍH ÍÄoS^Ïf·vf?CÓe]ÈŒK’f ˆ¾íK¹;‰víŽAóàžíÝ¥•Ðat0â§ WgìF¤0ÀLwbñÔKÀ´óü†ª¨§u¾·oœñ±ÒÁi̼3ö‡®hvÕqL.0 <¨Pdî¯o.ZÓê³kÇ«·¶û+ާ‘ÏUéIŒ%^‡Ä.Ö3 s•¿£Õ%w#¹ÃîÃÇ0†½-ˉp;ömÖ¼-7R”ï<ÆŽw“”\‘Û7ä±’‡H”J¢´W¬J<¼]Q–ÕFÍÛ®IIã['ǃë„Ñélü­o¾–ÄvV;—,„ªÇGEj'ÕãÛ±}cN·Ô–*M”÷·'0dHS*ƒ°ö¿i“gÏúÄNQ]Mæãx†h–\0Ï€©$åGSåË …XÑŸ%Ãóg™‹pe€‚6?È”p¦¼Û)Æ5y?]Ñ`¶ó1N×Ë¢Œgd—Ï;Žhð¼x“9üÚmd…A;Ñ@‚æW9Ÿf/“¹J@0 w/îñú®ö££¶My'W¦,V¸w9Oû»37Ût_úéÞ™¼–}å»yѹrƒ‚í¹Ê±ŸOð° Ð‚Ž¹……Óßhì Äô^¾Ý>ÀNXØ/™¢ðÞ‹ñ¯AíYὕ”¹ëˆúvAþ?F´¿Í·/q$ý Å@±×J댌·2A÷âSŰìYV¬Nñ©`U "Ä!¬ò;« -ˆØ|,¹Ço,j/Ê/Ø“'¾7 i.h$ȧ¨¿`¦¤(xç•]Àœî«ëbC`!¾ Ú‘é3a;€°\DN—JûLDì»%[Pò½lvø"g ª`…+®²Ý©‹%Èt<*_Ôƒ·Ùذ5<ê¡Ùzøb;§ônÙ9Kù/ÆŽd j]†Ónrl‹‘N°¶ìâ’6qð…GÀ.Ήœºtb™"ôSC„ünj°_î^öýDç`°ìí]uVÇû.Ü]ðô‰»’0 N0«=Ëã™ZˆƇ"ݲ`ÉbñÖAiü¦¿·Ë<:® ¾IΨÎLîýßÎpaQÜø"­ªGJí³Ïߢøx ^ŽöŸ<Ú¼Þ¦|}.x6%œö?FiPr±ûªaÜÎïTØÆy sðÔÁÜhõÃkütSÒãùål•…FrZÌeKøÜåa€#ކ‚să¥â{(e OÅB_ÔëªØ%´åØñ„‰†JÂp>*.)ý¤xP#í^ì^”uè»§-µ~…Š[æ“`zsXÕMëšìdâÈí<ŸVË5‡DÐ9SÊË‚òÇüö ƒ2ê3žZ¨¤7TZ êáB¬ykCý¬V`V‹lо¸WÏ+ù§‡dœr¦R”Ðʾ™F$ÙµòümDÒ©êÍ´Å‚e[…’p"»¾ç‰Ó‘Gâyw‰+Z9 au]¬®|H³Q¹ØêVš¼µâ)VêÍ «Hó5ÍÀ–‰¬›ïË?õ½ N!Œf9áU¡—Óþã½!DAÚ°bÛ(¤™7> stream xœ½Û¯eÇqÞó|×¼Ÿäi‡³µúÞÄd@’#ȆÄÃ(Ár†ÌØ\j8Á<øow}Õ·ªÚûPB ‚À=¿óíUµª«/«Wwï?>W÷xàã¿_œþÛãÇã¯r,×PÜcIÙ]k~<ªÏ×ÜÚ"_?¼|hG¹æXKŽÇ5xR-R]»æÄªès¢ ¤&ôÇ$ì¥Tè¯UÙ›^ÕV¯% §>åP¯17áSuåZ'}Ú¢”fø´¬M—„µãñ«‡?>8äãøÏçãß¾zøÙ§¾=¶kË>?¾úò¡Ù=º®%P`É)çÓã«óá³ËÏÿáç¿yªþÚZ¾üï—OdµÅýå=½ â9ŽXÂååÓ‹Â5;ùG+9Z=¼o—øþUŽ£æð‡W¿&’>TºÙT=ùñê Yý”Å­Öš»X9ì#…ýˆ]|iO¯þ…!ùs\}ö/\¼ÖçUÝõ8ZŽ—¿yz‘<ÝTu—sÁ×§o×§¯×§÷ëÓÇõé÷—õñÃáþòÛõéº>}¹>½»séw¾ûf}rÛ…§'Dè¯~‡ÒNÞ]]x 9¥k*ÁÕHAYÿýðöñŸ¿y ¿y*#ªPîñ×ôÿáŠåH,ѵr=Pb¨íšÚ"H«[Õ&”@-tUdÐIÕ"[ •ƒ›÷TG@5‰RåZ¨æJÕ R•(_®Ü LÕ$J•Êiq¥jT¯R”ªA¤jÞÑVÉ{üËŠEðeáЉ»jz9\)ätMtô/ÿùŽnþ‘å_êþU£;e3RÈ'jÃ)ŠÞõê#Õž¿Øí™=²'õ1Pó{}ùÅ›ï¿xýñÝûoÐpíû£¾$S k¦v5³ò·Þþúów_¿ûøããû/_õáíÛwß|…ï±Ã\åÿ¬ÓA•Ï.SµC-u9w@WA?â} Žâ)¯APƒ”(JŸ¨gjH O½ºÃY×S¥ÿ¢Çò%Q“S¡ËþRÍ• Õ£q™V“X›Ž‚WÊc ÔV\f¶É“ µ€„™äw„íuc¶R9TŸ®u"pí R(¹ÿ^ JÆåàMh”g4ˆ)‡^“âAn0¡\ÎÈôè׌HÝn—ˆ§(¡É¡?Qï2¡@wçúXá3*lú^¥BB÷_üã(ÞÈҨףêâ ÚåtyðE–ÝŒ)–Êòðmâ.G™¡ „ª‹S‚ä0%âûí­¡4¼Q—ÈÑ[Ý]"4¦HŽž1»Hèzµê"¡&£è"qº<Ü5d]ázd]‘sJGèw€âèá(jª¾Ù·Fãô3… ¡,òS…·¾íšÇ}‹oòÿÖÿP®Ž*Hæjí¸]øå»ß¾yüýåï_ýö;PƒàPj¯W¿yxõWŸmÉ/Ÿh(tPÿy{õjðæ“{±Qéý€¤´¢ÒË”)qïNeMCŠDãÔk½»aP¡½h ÔБB¬ ¨µ¨‘+/o˜RQôœU1“ö¨bÉìLúîjÏò—7ì÷L•¶ÎAŽD¬¡ÒuF#4³PŒ5ÍXEUÚ8®kh4L 4S*OÍ„=Q0’H¿e k&#Ð3C‡`g‹ÎŸ®*Ô¥¡eA³V”çhÏ·ªpKD$]ü?ÍøZuS{kq’{~mïKàáMÎ~f,“Í{P¼DÛ­!Ú^Q Ó³j™Kåš ‡Âh+¼£¦?b€„—.׈5eJ {+þò†±Ê!?r vª¸©RL©v&-¢“NÆbgÒw ‘³q¾³sß³§qJ±5Œ;<<¸•f¬ª×` * I®ÆwÍX5†ª2š)•ˆ©fÒ¢,̈́%1Ù¡b 2FçPWQO“Á(ú=ï——hÏ·Šz_W@2J­«4ãk9$¼rýÖà$÷ÜÚÎS7Üð5Ls‚¨`–Ua—f{4Dۣݕù1Ö¤?²IOC)ï†v4ᆱêÀXG•¡aP¥Š6‡Ë>,5L©B¾¼aÒ"åäxd³LzOùí‹ñ¾³sß2jJž5cUã©R *ýcP!hù™ïš±ŠÇjâ ™R‰˜j&-ÊòÑLø.‹Z!¤‡ ÁÌ‘>ü÷pÐÐ4õ\E¹Ü‰vy©Â1.÷Æ.SbŸo-.rãTw:`î.ôj4Cm˜ â®[[ujéQsh¸ËìÕþD€~® BÐ °Y A4bMÄ >ñ“Jž"Å”Êχ)ˤ=5–l v&=§‘Ùº–f§¸aä…l‚ЫøI˨;ñ F#7mP#Öôg7é»aP9~~Rq0L©vL “wéh$<ß…¬ˆŒ'†ÀÊ•<ý2”1õZŒÊéN´Ó[åûã+Æ[³NÆn§><~ßœäŽWÓóèùY”Ç€u™SLE2_mŸ¦húDϪh{Ðe¥ƒò€¯é~[W7Ìˤ>í*Äšˆn9…cZ c•»z"žþâf9k¦T4¼Q1}Ý}¼aÛw4«>)ß:× £­C£4ˆ†Ñ(Äš†t”¶4‚Æ÷Iéµa¬â‰ÔjGÓ0aQ–ŒaÛwYÆíŒÄ1ع¢“§kh¬Ž'b4ô½gœN¢ª@ɉôñi=âÆ×ò\½”ç·'¹ç×vžž= ®9KP3ÐýD¸UÛ¯©Z~Ñcj¡Z†:†§lž%Xm.Zè{KíGÅ5 *êi¹âÒç3¹a¬ÊhWy-æ©RL¨¶’ÓªÁ„ÅDCƒµÅÁ„÷©î¶É°sß5ÞÖÑƪ‚¤4*ÅøMNæg|eQ3¨¢Gä´÷š±Š§Eu$4*UÍ„EUBš ïUik&"!;kÃΛ\ê*ô©ÏÀð«›íi'Úû­Â„Aêý÷œ10Œ½oh‚´÷·'¹ç×ö>µ>í4¦\_Z$cê<ž?•h;µDË)8Ðc&wj%òD0åÕB¾h oˆsZÕ2¨0_O N©a5U†±ªOç ëT)¦TÔ—5«b&-f‡¦N[ìLzŸRŸ¼~yÃNq×Éãy «4cUï5µJ1¨R@Šk‹š±Š×,hï5ƒ*ó{ Í”JDU3iQ–fÒ{YÚšÉHô,ёؙ£s©«ªã‰Ãê¦ô…÷ƒ(ï…ªðÀ<Õc¼^zyÃØûŒ %íý­ÅAîù%¼/•Ç•ÆË¢b*ªy=ÃmÕök¨¶_irÜÉÕT8óÁ ék,xx â°r„¯j«:Vjzã\ÙbTG ¯´FK¥‘Ô¸Õ¸h$­•Ýé&<§áøêH ;÷SÛ5ß0[&V‚QiUá.E[ÔŒU½qVÞkUÅÔ”ŽƒBR#â©´&KF3á¹*eÍDFv¨(ˆŒÑ9ÔU­W,adþpté»Ð ;œ ±ç¡?ãIÏo­MrϧíyËœCÙ•]Êš©ˆÖù¸¶D­Ño·ðD O16 m¨'ž»–Æh /ºÇã¤aPááUœÉS¥«"7= oBýT)¦T{¢Î0a1Ö‚îLYLxË~ƒeع€çù®ÒŒU‘›j­R *²Ýª±¨TX¨R÷šá 2:‚Š„eJµ¢j™°¨JH3á½*mÍD$F–¨HˆÌѹÔýò<)—¨Õééö´íýVÑ/2ñs¼lߣ籤ðþžÅIîù5½'âù­?&Q‡J1UúËaU¯©Ú~ ¾ô’S‡?bâØóköƒšôÙ˜ -óf5ƒ oèBîÃkË ÊÂ<…f<ŽX&UµÍ¯– ‹X±5Ö’Z&¼÷Åõ•'/oعïÚãUÑô^3VEô:F¥Ø‰E¼RKY4 *ÛDí¼F¬á~GÅÁ0©15lÛ“Å£‘ð\–´a" #CTDÖè<ê× ¼~$a5kS¾¢|*_¹ïÄLùÅ[ÆÞW,ÑÞßZœäž_Ë{‡IÞ1Ír̘j&cš¯Áh¶WS³ÂºXŒ"ƒ§/bmOt½XåC-_r¡ìRÒ *zºÇ#“ G_ìõò†±ªœsmÎÙY¦T¼ Õ¨˜I‹” 1‹ ï±ì±5íý`çºé£ÍépMxêÁ#)Q¬UòÚ–a¬âצÊoà¢B+IÇÀ0¥Úñ4LZec˜ð^–³a"#?T vÎè$ê¢ÄSuÉam]UÎw¢ßªXx6/ÃGÒkÄ®'žÊQ®ßÚ›äžWÛõÄó½É¥<§-S!óûVm·¦h¹¯X×TQÑ0ɹÕ#ÓX rª–Xz@ ,ÿ ƒê<‰t``Ü«a0Mãc‡üë•’eRÚ.ͤE_泩eÒ{FÖûÎNqÓ.¯ÞÃ0Vñ:-’z°,ÆœBÐསõ\3¨Òꤢ`˜T‰ˆ&-ÊÒÑLø. Z!΂•/*ºÓ4¼ìÛõù¾íb'Úí­Ê¼º"u½K±ŒoÎs÷©ü¾µ8É·–ëx<ťôk¤BÙæ‹”-Ú. Ñv ¯Ô³ãq#ÞéQã[ª}"8Dj`©}!r¬qa¸*cæâÕ2ïA3Vy qcs¼ n¨“*¬¨oFÕ™°XñN*k‹ƒ ï+ÅqÌöYvî»ÆÓýˆ›FÐŒR£4˜ (ÆšfPaµmÕžV´:äJDÔ0aQ–ŽaÂ{UÒš‰8Œ QY£óˆU }%5„¼ub::‰t^¨ðÏgºTKsîÄ2\+',fVÎßìàŽSÂs<¶bkMÃf«<Í)&#w}\ªíÔTm§¨ZÓe¸®¥>g›?ú\KÀ ¿BmöèUàO”u N c•Gy²fŠ$R¿1Ä=LXÍÑ0á{¥{>’ö}°sßsÝKZ-ƒ*óòU­Ò *ºj1‚†ü«Îø®«°IÉÄA3¥ÚUHØSe£Ùö\³B"#;T DÆèb^âh)ú<=·ÜD¹¾U˜¼;|ß’×µcß3znåü­ÅEîùµ¼ÏüOJ¥¼.´Œ¦ósQÃlw–d¹C9ç)T¨b¹põŒ•3=uÆ~ 4þ~-I° ªÔóÈ­E±A+ÆÔ`…¹¼Ö2¡*4H\áÒlÛ+µ¬i!„çxÉQ³ö|°sß1^?•iO3VõæY«ƒªö]†Ê¢fPµ‚.K;¯©ÊáñFÅÁ0¡’15LXTÅ£™ð^•´f"#CT$DÖè<ê~yÞ+T·¸<íD{¿UØã‰`Íûˆ—a|+”÷w,Nrϯå=^áfÄÕsŠ$’1õ‡Ul—¦d»´Þ_¼¿ãV5Ç1ž(˜€ð nMŽ%öbVëÏÓ0VñBòf.3Hi‚Ue)„ù^Ñ2é5–1xãug§¸[ŠE˜÷¦«ðüaDØÀ•¯ÆœFÐ8ßûQá¹a¬J½÷/úûŠ¡FÒ’( ÄϢ`5÷ÞÓAÝûÎ3ýBØ ‰Ä§Çš ýîD;¾Ux:½WŸ3‚†±ç ïîµë·'¹ç×ò¾‡'km”µ€Ê0Ѻf=—jû5UÛ¯ý-´ƒ÷ƒÆZÐÀ{ÁÒûÒ–Z-~C0Uš±êÀr”˜ÄTªaR…WëÕ¨:iÄ»Ú6Ä÷x'5ÃÎ}Ó±ú5É`TŽßAj•fPõ-¬Ê¢aPÑÐI%½7ŒU¼à@EÂ0©Q5LX”%d˜ð^–¶a"=IT VÞèDêš°‹6â}Ÿ"]næ=‘jT‰×·`›é|Ùh»^{ŠH×o-NrÇ­åzâ7‘_¹M¯4“Å+7#ÚN-ÑvjudÓ\={\_Àù ²ð¦u,ñ·ŒU¼ö+â¡o¼l° *j€Ð'Åìç{BˤªïöӪΤEz¼¯–IïcœÍ”e§¸k,*C¥TÖjUšA±²ATˆ5£&Kß5cUゎƒfR%cª™´(ËG3á»,j…dz†è(ì¬ÑyÔU™×ÚF¬ðæÜö³íûVe^C$Ï‘¸e|-¼VѾßœäž[Ûyêå7ÚkîÖ2Ò4gŸ„j»5UË/jÿbhèÛ"6JVl5Ïc:â=Žx£ñQ÷ ûq"&eÇ hÄšÌêÝ\ h™T…z]Æ4“öüzt±LzíÜ\²ìwë¹Ô2VñL»Q)UâŽK[Ô *jH½õ^3Vñ{ ͤJFU3iQ”BÒ÷eL¼^VXvÞäNWU<ÑÄ€}UNw¢Þ*¬¢Á¥ÊÚ›d_‹lÂíkÜñh»%¸‘²V [¦ÂÆ!ÚMÑ\‚óŽpXôyôry¼¨‹>ñ ?Ô]Ö¹È2¨°=/=eŽÕí–±ŠçM1Ã7oA#©qóY i ¯1³±Ö™ô|¿È·ìwìwÇc«O]j•bP^L§-jƪÖÇÒ{Í ¢q(ŠMB3¥!ÕLZ”¥£™ô^–´f2y½Þµì¼É£®¢î„GŸ8fI9Ï@û¾4X]Â` ¯-c×s¿´týÆÜ÷|Úž÷s«m]J1Ñ„]FµÝšªåÖÞ-qp^OáüŠ4â½›ïE2Þñ u•žkÃZý`«-¬¹pƒ¤f h ’Ö¨ƒsÁXëLøí×|¹A§¸[WV÷dŸ+æyP¡TšAÕ¿·Q5cUáfå»f¬j=Ãe4S*PͤEY6šIïe1k&#ѳCGBdŒÊ!VEœQ„4 }1Év´íüRE¬¸G±–ÕkÄWŠhÄ”ë7æ&¸ãÒò;òá¨weM Sñl«..Õöiˆ¶OêÐÚw‰ù>EEž¢T!ö=ò´ÍNqÞ =ÂÎm܆)•8E3iQ&£ô=”ÙêXvŠ[–g×hvŠShÔ 7ŠòÌaQ3¨r²»Ð5bMA¹é(h¦T"¢šI{²t4“¾ÿôI8óžWÚtÚ$z. “Ì}÷¢9O,Z%\xõ¡8žˆÜéQa$·é{éŠcÜÌG•ä~àHKÀ÷h¬ù„‚¹Ðݰ³)Ã'¬eI_›$4’Öä1-šIŸqøj4nwvŠ{uy¾·ìܼ(‘Dg?”%cO3¨hœ\œñ]3VEèu4S*PͤEY6šIïW "Öã•AçMÞ<ËN|KkCâm0;PšÄMrÆbØcøÜÐMbÚdô= çìa ÇÝ=‘ä#•}އfPUÞÇEÄÏ™ËÎ~ÐuÃÄF'ph¦TnÕ3äE Ë›±Ø™ôK÷›ñ¾³Sܵk£­aç<üA‰4:û™ 9h{†±*£AT¾ƪŠá¿ŠƒaJµcj˜´(ÊÇ0é½(kÃDzЍ8ˆ¬QyôLDÁ×ãs!@hBå-2ùpá:ŽÏx€`<8¯ã%pt!*˜Áô#2&/f,4bç/Åx]'4rÎS2~œ•D*ö#’+>®ç o][;W5:÷-bÑÄÔ(tÎÓŒF¢s‰ iUýÄ4é¶f¬Êó`¡yû)Í ¢FÒš( …¤ß²H5艠"°sC%Ës‘dà÷™6ŒlÁ1Nšûìñ:#¹EôÓ§ç³?1*óxŽÜB¥±Q[û ƒŠª=Öªçצ]ÃÎ~JBæóhNÊ*Ŕʯ½g†I‹Jc±3é}(ýLÓ—7ìwâÚgØ)Î,P*ÅÎ~΀Æ¢fP%7ÎóÞkƪˆ7W:š)•ˆªfÒ¢,!ͤ÷²´5“‘(û`ÃΛ\z6ªƒPc?‡Nw¢ºÎ‹*œ¤‹œÀ~¶q,ÏöMª’úÖ®ZÛ¨g…:0êˆäõhhTaxuýhÛ—7ŒUþŠ‹¿dÑHh(|^K˜H[yï(5LúW£ÆmF§¸Û´7õvöð$\«;û~”»´§kø¥¬ö\3¨ ¯OW!PHjd(5“öd©h&=—%¬™ŒBÏ …-:žè ~Ÿðw'¢“H~v¢áäî6ŸÈ<ˆž¤·Ðû Ì»o&0ùÇÞt©ü^ÃX…­ÎyŽ*Á)6øÓ³ðÜœ­Ò$qXbËRÌW/ ñ¿¥·¡­# ;Å]bqðÈ+ÃNqD€TivîýÒ B¬;`…Û ±¦õÄòî5SªG…¤5Yš ¿e±*$#PÖË6ËΛœy.š“P;û·;ÑœDª0ÃûíÃÜê_7Liÿü@¤Pטy?ý•ê¨mœF…½ØÐ—º ƒŠìÇ(k/¶egß?ZVò~€6Lª¨PÖ.~ͤE=\ŒÅΤ÷Ô¿ã<£SÜ3¦FÏjع÷²k•bgßgkø5½ôÜ2¨rƒ„f‡Ó i­È]òŠI¿w)[&cP×ü®eçM=ÏN°à´<ÏE”*g>åºà4ÉÑ„ó'éírÁÏ`aÃNcOA+=h·vÉbO´bPÕÞ!ø¸Ž»· ªÒñCO1 I!©‰ëW\4’Ö|œEˤ箬}†óvÝN N±¿]IƒÊõ¡¥´eTÞßøm«Ï‹Ë¦T;˜†I‹¢\ “Þ‹26LF¢ç†ŽÄÊ™>÷ãIÿt5íÜs©:¨WÁ­9zú»Àé '®Ò[æµ<AÇt5^®÷ š'tàà,ʘ[r5ÃUo MØB¼¶íkÆ*ü: íØÇh&UxækFÕ™´ˆ_ÈpÆbgÂ{×ÖSeç¾kw]ç>gÍξ»9£Ò ªÀ³Ú¢fPEÞ2©¼7ìì{­ñ+ 2†I•ˆªaÒ¢(!Ä÷ª´5‘Y¢"!2GçÒsQ$¥U‰îDu©ÂO²•qlyÚx2HÏíØðëEØóúѰOVkC4vâW‹ÂÜS«T.ôßÀñ~í4 ªƒ'ïÇŸÛV5“*¬q·ªÎ„E×ö"}Ä÷¨ïs¢aç¾k¼BXe5;ûèz£R ªäúViQ3Vµ[ï5ƒ*ó ͤJFU3aQ•fÂ{UÚš‰HŒ,Q‘™£séÙ¨פö½¨N"Uã…\Ž}.ˆ<íG’ ¡gJÞl+ïÍŽyl’ ;ÎC8BZ›¤ ÃE©AÂíØ?Æ`T5ö-²Õíðj&UûœCË¶ÅØBÛ*Ͷ÷±¹}v€aç¼éˆßtœ3™A“¸·Ö"Í êèµ=ÍNìÊõ}³ðÝ0¨|èßq0LªDL ÛUù¶½×e­ÙŽÄÌ ™7*‘ž‰i? Wž é Juð«DÞøÒ7?㧤x]^o¶ÄžK< ã§2õ<ýªXžï~£ª¬ÞÕ0¨°¼“R%ûõ㜖±*\ÉtvûÐ+¤fûn°–Ú>ÂÂ0áy¢‚™-™aç¾ãTËj£ ;ÇßjTšAÕÇÚ¢fPQ‹œŒó ±¦`Œ©Ã ™R‰€j¶í©¢QHx®JY3…‘* "ct=ÑI0“ážè$R•|_£Uޱ×5UþñˆIzNû’ã}ÄtìOãó<ξ#4#3k]J†A•ù ‘c¾¬·ŒU®Ç;¯™Ë”jêh™´Hw¸¯¥˜ô/Ä‚ñ¾³SÜu<æ:Ëα§ÖY•b'öÁâ)µEÃXÅçk)ï ƒ £ª¨#a˜Rí¨&-Š2Lz/JÛ0‰ž%:;st.=ÕA޽mð6ª‹HUný›x#^»÷©«:és sn:`_õÁ9äFËm™ó¥®sd ƒªò™Ÿ\.³›3ŒUaøì÷ö^ͤŠ:d—Œª3iÑ·u¨€aÒ{Ï;È´÷â®ñKŠët;Ç®ÖbUŠ}3j略Eà¢1-ÿ ­ðÞ0VñAÕ*†I•ˆªaÒ¢(!ä÷¢´ “‘èY¢#±2ÇäÒ³QíòÏGu©Â1ÎX#Ë¿0bßpFê$½ÝžsÖ¡õ%a¼¿?wc$÷¥Ø˜8wj†«Rˆí¸x1¿ÊJ³³ïYååªøþR)¦Tnm\4LXŒhMª¶8˜ð>–†û®±-kÖwÃN±ÿUª4ƒ =w65ƒ*&|RÞU:x³ŠŒ„aJµ£j˜°(KÈ0á½*mÍD$F–¨HˆÌѹô\T'‰{ú¨N"Uˆö¦±fšîÇA?Io·÷>UºÞ:qôT¼á°2˜öà¿÷ÁÕ¹óO³±]419fçj™TÕyd™AÒöýsŒ„ÏjS¦fç¾Uêk×:tÃÄÖM)Rhn·´ö4ƒ çÎ9í¹B¬©Ü=É($52–šIk²\4žïÒ`ß}Ïyó;?TÂ<ÄI°ãÈ?ŵ›wihlQ8{óµû“øÌÚzî®ý2Xf +ü»lc+¿?XfZçæ:Íx“eÃûˆßÖ›û cÕøYøæçó°eRUÛxlÐhlŒÄ GJ#oúãÆ´5ÍxGc߬<׌U¼ZGA3©’ÕLXT¥£™ð^•´f"#CT DÖèþí«‡Ÿ}JwD zÎññÕ—®+Î&¦«Å3õ¥¯Î‡Ï.¿|¢'ÏêŽÜ.ïøcr)\¾úþé†qíðéò¼Už_Þ>½À¢\Ó¥\·„#8pÐQD†#?Ð×Z 5äËûýñÜßîßìßíî^áë»Wøçýñ«»Úó®ÖÝ‹(N#)+ ¿ê)®]^s(dÉe Ŷ6gì×=’Ï¥ä;E**ìþôD’™DϕƷò2\G¥DòÚÀëg #ÝÝOhŽÀÔH;ç(!ÓÐ:¶Žé‰€žA¦;ùˆì=ܡὼÁ/A3¼`ĵÕ ÀP|@Õ#µ¬.'3s2j”é«ë2(˜Ïr5=¾ÀOXR¯Ä%òeA*™¢ó| §ÂÃy™ØÿGF@ÄõNÚòI,¥þMÛûÕ¸Ò /ÞK±)mDúh?ém?´ãs-—…ÁÙkHR¯WZ“FdŠ"é<Ö 9•0?_5¾½{õÜ :zþÔ9ÈÊ#ézýZ9«‰ª¸¬/ï;®­ü¹ôCâsNŠT\÷G™ gO?á"¥¶¥æ^Ï“õ a££.í%•oìoñTw§i ‡ék\#¤‹Ó w‹&8¦”»¬$¿×âà]¿wM¼ð+X:œ¿¶· L¸z ÈLãnªu"ÇvýìÓv •P¹»¥¡y;ò#ª‹ó+ÿ©>ZqýæÅWèËç=¾ý/ýú•Ú;.áçl©Ñ||¡ ðw<=Ë”;×OT¼sÚ¥G‘;_¼¢§^ ‡ió<AA«sÅd£,€g—çž\tüÆ“KpÔÒ{º"åzJ¹?¹üÙ"skìô_º”]Ûh¯•£µåدè>ÈñáªHNœªçÆ—^qi Ko4{ Ò2bSlC}Ä>xG-é»Jˆæì-¤4&90\{‘$] = (uÚÔÍ¡çâ ÷rÀ” 7ÖèÔÜ¿ÿr÷WµàÆ6¥Dïö+{ê¹–C¢š¿ÂÏÎTúÖâ>Ç×µ˜¯Es3âìdœ±¬%¯*÷ÛU~¸¿Ý6½ã¡Pv>r9zfñ‘Õ48ˆ…Ý‹*€C³˜°ž­à!aÍZE†¸ÑP@ýu²û—':IcjÞôŒ¨±¬:xíAÁ¸íŸžj@×d~!ú™×+‚þòúÛÝÑ|»Û‰1Öàùq^:Üï¢EÆýv¸âMÿtöà®q<¹`ƒˆì{¾í;ùû%]Ë;ÆÑýSc‰‘Aæ@ãJõøê7¯þê³Ë§O> stream xœcd`ab`dddsö Ž4±Ä»».ù¾œµ›‡¹›‡eÊ[¡}‚»ùw0€#/c`bddÑúÑÁ÷Kà{ÙÆï ?-˜Ö|/½¸{ñ’’î*ù?/ت‹»‹‹uÏ‘çëæáêæáîæb`"¬endstream endobj 161 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 899 >> stream xœU’_LÇïhÁs«#Ö€1w!þ 1˜ø`²£/S^²9‹´1PÄB²[ÛëqíÝõ~íµ•¶×Bi× -e]ZA6¡aÙ£!óAæâqÑ8H4úpWo}òé÷K~É7ŸÏ7?Ñ6 (Š6½ÒÕõú‰Ã­TSM[;Õ: è´ ?Ö|ëøÞ±‡Œš?° ši?7l5 H7r9…¼‰rHS=Ñ"+èúgÃŽ¦CáõJFí-Ëí…( _ý Q"Ês†@(0áæfió°ÕÓ™‘Í7SQUÛÔ'Ÿ¹ñêÝÝ­r:Kü¨ÚÌ‘®Aè0ÊS¾0#JP ]‚K°Á­Â¶î‰h\L']@MÙ@!N¤,Xüîóƒ}FÛ `Cï/ï_[‘rëÄæ÷Wç €}“~™fý>#ôÊwª©Pº÷é¿?oj”kÊC†P‚Á2ç%Ò3ÃÎxpÞÇXYÇôÉŸ½ŽÅ{èþ%À^ƒ‹×s{ÅÛ„t1,A «Z*o=ý®ú8éN‚˜ „ã"¾ôãåµuÀRsûäìë&ÞQõôô Æ5ëêø›‡u(Ï—ŠîÙü¶mt`¤¼`„éÒõT!€]‹Ð#޾3Õ¡ý?äcwä㫸^i§©eÃo¨¬Ý_½©‘o× TöCÛØø™˜Î¯ä y\5Ý87K‰×ßûü÷+2>Ÿpï|Ÿ|±ßR/ÉÁ&²¹ÒÑ,ËÇóñåèÇå_C’%ˆa[Ÿô´÷ýOjùî•r°…(c›ô9'ºêMþEä{É‚l©¢òOw¾<ÐÈ_×:  ˜¨+„¹(å8Éø'pFp 0¹’ UÁËxý>ÿ,®¶ÝßcÏü­N‰Ìæ™l†.Ë¡ä¾wwN ¬ŸæœõéÁ:¿°VŠrGà?v†Å)“­ó,`6f)Ÿ‚`d™ˆ¡ÄáU—4‹+‹•Rjþju{k$Hðs´É;; Nl*åÌå‹Ù’½ÒÛ}Úb<ƒ›FF-$¦¯½@]¨=›Ao)›¥]^3l«M»êSqwÚ¾ €ešÒ1¼èTœÎqQ•W¾mñ.:>kƒÃ‡uQ1!,ø4¿Ô-UK-jUMS4ÃÙjÏÐÉ´”E\ÑžÈèÝÐ]3‚ü ˆ¾Wendstream endobj 162 0 obj << /Filter /FlateDecode /Length 4957 >> stream xœÕ\{oe·qÿ_͇¸Zä(µNù:‡d_Á&µ'ÝZ N`\KZI…t¯¢‡×úö¾†¼¤¬mì…aøˆ—g8g~ó8þóFÌr#ðŸøß³Û#5¿ùx$6_­R΋T»¬rvëæöÈz1;“nŽÞ9+gë䯮FÌZÁ¤<⤟ׅf-Êéy1lVá³ôjfãØ‚ËbôŒ´ØŠ‰-çÝl—ÂUü›3µj7›Õ3¦œ´³²bªÌJ#Õ¬ÈT^.ñÄ֛ˣ?Iå&þçìvóëÓ£¿{§üÆÏ~UëæôÃQ³ÜHƒ4°{ag©–ÍéíÑדtÇ'R)˜í¦·¿?†Þ85}y|"æÕ{`súW|–B«§÷0ÃH딚NqX á S„÷Ê89ýæøDk ?ÙéL÷bµRNŸE!´âð¢7bõ0¡ÐþœhÃ?–É“qEíÍbTZÅ àwB^•Öøé+\PÍÀíôæ« 8`„6a…pk É|ÅžùúoÞV üÿƒqðÒNõ .ºŸÞ¼ 2b~‡£ÂY«ˆgéVe4PÁuAK¢­œ‘Ó[Úùâ­×þO§ÿG©5?J;{­ÜæôíÑé/¿îå °šéŸOL‘øÓàoóÓùém~zŸŸ¾ÎO2?}–Ÿþt±Œ¬†Yg©½ÛœH3»EËÍé9(Ó»oî/.¯÷»ãÕ,”„‘íåÅñ‰Óž4ìÝ7çOÀ*ýµÂŸ×»³ýíŸu±½y¼¢5OÊ* F‹‹¨8[€Ä÷÷0ÿáñøD!¦ÅDÚ^Nï/v×ûû8WNW×—WéE5=œ]í÷7pFñW/ðôêôå~Nëêvi—G,il˜#Û»»ç´´™Þä)Îо`„í4-í;ì²·Œ*ÌÉuIÛpÓ{xíãÕö±ˆ,.®Ãê“´ŠÍþ!, „pÔµùXÀÐy•tn»£Û£Èø„ QwõtÏîÚÌXœ1«œî@¬&€^†Q­ô:!ûø"^ÒGºpëýt•ïÏR1pS`t•v1‡ñ5–å»ãÅÀýýÜÞЭr+Hþi@!¼&Õ´MÏ =û4tzSLHÞ–™® ‰]9“ŠÍl¿µŽ…QàóàäÀamÏfà›üt•Ÿ.òÓ6?Ýä§GöFG¯ èÕ¢ÒBá,”r~Úž!‡ô×›°©¬Z§=“êg8Å m¥;¤Á§)ºCîPºD®¢E^üZiâÙ±Zñ‡"B»¾ÊµRæ=Nðà?F“î-÷CxK;GÒhí"`Ê5QóTtºÜßÃõ<-n¦=cú"¬iPWó„G|σx$iŸ‘r¥M®L PiYÞÿw¸; äùàMµ½”EâôòEw´ËƒçeðóàÉã¸î;:y—Ÿþ8u=\‡Ç›ï:ceÞCo•OßÊ_ç§ëÊe¶Ž{­§{cì«ò§ãûe%ÙwŽü¼³JO!ÊEæË™}î¹Ï3é/;ä¿Ìý(Øé›ŽúœpÓa°‹ý ×;üo;\o»n³çïØ‚åõçß]’?ï̼ïìµxùâ‰NQK*‘n^ÏKV žå%&S†'FTÿqqÿ\2O»&óñÕþ±$÷ûòŸqÐ0‘&Ô …É*LÄ_u¶Ä¸jÁ¤4i@âÄlD™$pK¥@›-<ˆR²‡ÈT f™#¤1¾"iµâ$­)$ ¸BÒ©BSU4•ւӄжbs]d¦)Œè³©k6¾SHJå—ŠÍÅ6Å¢2vÃWo¢9¡Ešj¿N¼I­F‰£%qúE€YZÕÁ5X<ÔLø—û%²û˜6Z=Ù}˜1 ÊaÌ­«ÖxÅp¢š™T´ê Ààd¦ËàWœÔ1ÍufŒÈˆ/¬ï²³¸IqgdCŸ—×ÈÚ{P?„y ¹tÖX÷d!É sààÌ›UVaªPyš ÆLä`ŸÛ( àyŒnàw#L…™SRRƒë,ý¤¸²{J€#¹ % ¾}ÏÏ6`Tåͼ(“ìU-î W%U>mé”Å{„ǯ‹'ŽÁÄNrè‹ íjõ±ÎìP¶ •€ißuHHéQQ LËt“pdSìÙ)2§|É(*–h<œ¬õéîÃ(Âì1^þÅò—dƒÏs1µŠ÷“ÐM©尠Ήåa7Nm%ŽÙ­ÂÔu¦ñTâ¢vQ@R³sÝöQÖæ:PtªlÅ vU%ã¤g¨2èë2k“õõœé ³;;6L¢uZ§Ø‰nPsŽ“Óà¡B›M\Ô¡B›QŒ²üÀ¢UÂß(*ï_ÀßQÙ‚òŠå F­‘M2:ªD/®^u 8lêy°”Bç(µMíÞƒ>4ØðLwi{ éjiU± ŒZ!« ’œ)oæèwŒ%^³†¨ÓÛnØ„º‡×‹¥> ËAÈTÅ»DZŽà?@¾-Q7°Ì*ð¸¨5¶ÞÍÎèF/Yé‡[ Þ=ØCJókŒ~A¤üqTºê½ïYè{Öä·7Ò ãšÃ@"H³<ÇC9Œ®O—á5°óˆþ5‰U.cWÜPÉATž98J;3}uA)2„œ\¦o‹ÑâzõL«Ê“µ¥ª:S&Afª¹EAæå0Ï—L>l&@;ç ­´Ý$×âl^ÞaêÃÍë–ùG/B !(26WŽêÔ ö«,Jz«®UÕÇb Qkî@Ö6¦ì•gý‰ +t{È^à”èà^2šÖa¡iOÅVt*¥dh˸”Ÿ¸Ãfp¶e0TÒ.ëŠf11¬l׊–qµæì–NK7 ì0³Ã2×9ò Î7¦§RÌ|"¿àÀ-ëLÕX— ©H»óŒ‘)gÊ;¼²pm¦¨X>Xa£¬J؃`Õ>”aÇÉu¥p1«µeF,7ø†¶ø–Öò¼Wã(}6Hž6yÜØÊ3ðQpì½=­ÐU R¸9mfûœ®Ìo˜úF£ÆR28[_6ntøCZ^w~^s]üWlöÜÁ-ceŸqË\#¶fp±"p»$7ËUE+Åí+f6BþžicÀ¿Zƒ\¸ë»Em¾4žîIîtºgÁÊs”¨¨‹Ì_w|Ö ºèPFÜOÙÔŽ©wIçlȯñ×Ô2ÆQD1bì‘Uï™Áã!])½ ^@KeŒã;&.–%/·é²;-f¿rÚìÍ]Ù53U7ÅTò½Ì 6•Pص£Ðóâ¿4ûËëâ&øÍCŠ©õ¬^©h7ÌWŒŒö¡WQk8»|vðoÔ¼QÁÈ|E Sã<„ØUðiZ…Ç@ $U×–÷ÚÁ ÜEY~ÿ¡Â+,ŠqÅË!“ÄŠ€® |»råj€‡“½h¯Ž®r´ÿ¸†ÐWŠþñ“¬Èfô~É÷ž–†—‰ª>©ÞÊ<Ó…2•9Ô—0½Åâm®æAË–ÕÑ‘“Ô<ÙÞü"óõ|SEm¾ïbPâ/‹U•Z³;óÖ]¢W“‡*Mòû<•)æò>/gÇÞ+¢?  TÈy-ñÿ딲¨‘Bª•ˆœ05le~7 ÄêÐÒïçLyp®Ë7"Еtõpc_ÖòÊzp߅ɽNµˆ¡ÆâTm€¥´›Oç>¼fGvÛ(ØÊ¤Ä8FDð[žv*`ÞìDЉð®2$ì„=@ýqòYQðíS›ÌÉ皎a”K¿GT¨²a!Z·Ä»X[ð5*ÙpÇJ^|]à5d~æÈãꥪ )Û?;ÑÀºK•Ùܳ>¼à+JÛ~8XÜUy" iIýš©Þ„éhÞ‡ÉÊu¥Gžúã¦cèÍrtÀšPëôi Ðy627 \†ÅlÜ/·K7¾pÂÏÏŠi;ç— çžØÜ³2ʶXÙ—¤C´Ú;¶$O¯j{vÆ×ŽÎYÊ¢K¹¾ô;bVà©Ò’4(êbOÄ@o×aÛ,½; C«¨À`¯ªtÃÜnfPJÀ-ß@‘ŸÂËŽ‹Á±cõ9"™ª¡K•|ÄI2îUø 1BPQ† “®ŸþwKͧ˱Ä?¼HÎ@ðædÌv`‡û!½⾞½R^ÔËæç ¬¡ñ'¶G‹¯Fš ÏÓ%ó{Vªz*w¢_ªÚ…cÄãÀŸxªt”gÁñ=t`E'öaPȵʴ‰Ÿ`ÅÑ6¯Ÿ¤aµœ»QÑÿrmߥáq/{Ÿ]€Uça²ñ㎫:Ž@†ÔT¾Ha_Ô¼ ¿KiËÑ«¦´}ôð"Ý×%~ê› ¯Z1°óÛ(ÅàÓc,€ÍWŽœw¦Û~˜@¡ÔB…Ó\gìSë†&2$˜Ö8[Ö»¹¡66Nõ–PN‘DnG˜ªŸÿj’^ö£»i…dÖ±™ƒ:b sq€äöäž%ì1V4â½G‰[ÇÔXiy×`h£1‡Íø™"ÛÖ‚R’†sž\Ì"¹_å9Äð÷‚£´Å FˬU6rì¬~8Üte¦†°@-c¼¢ ¢Ÿ²¦K€ñPžWÞ¶—uݪ“½´!ƒm2ÁíF>XÞ¸ÉþÒ’vŒ$h†I;äHùŠ:Oý jdgmÛªÏo…¨A ;ßå®= ÁáyÙ\þ§"y6åSÚï~Q€ÈC €}UÛܘr˜BÓKè&þ¤ÔýEåp2XžÃ¶2ƒü,ÏtBš6ÓtÂê ¬[†Õ¤¹WB"†¾—éz³‘F÷ŒUê ^0†q£RúmÑ•€ê¿ë†*wÃtØvÉÆÔC;vcl^«có®»§L–¸!+”GÛh Gˆ_õ8=Ôú @ÜÄN:Ä//Eƾ¢\0úœª…–DàƒED6èq¤~^ÊpFÒM " Ë©I]u ¨­Ç·xßÖ*F¸*\qAÅR© þ…°-Åì|–m\Åpu±è©k…Чh9®Š¥ï)µÖñÎáºÏ)GCÛÃÔ&Ïp±C ‡mÙ¶£hmÊ(—ÖGÜ¿ ˯a©§¡’˜á& -qXB"wc<•¬¨µ¡WêÑs¾6ÃF´l¬É®,În[ÑáDíCúxÇ/ÃY²•Å“—m—¶¬U·»V‡Žœ·œê¬t]µø0ONgº¤¥éKÛh?åº;’©EˆˆÔ7˜¤ÖÙWÕsZè*“Ó8ÁHË]KÞÅ”¬–ªNð ¢q²^pYÉU#e/üÀ8Cb¹»ã³0Ù:ÃRç,WC ÓÑ~ûKKóx(c´Ý/\¢xÙ1Ã3¤«ªmœmâïYqxu±7kÓžEºIs]1 _×êTžseط؉K1µFTÎ'ÓfáÌ~‘ƒ‚Q#.SYwT_×2ˆœ)0~£ñY¤µÆ'Öß+üòò·±µeì6Ô0xÓô"¼*,ãìX‡ 8ÎS—üÚŸÅ0U9ÑÉ€hõK$v¨ËÏ>PýÆ &ï~_S8ìÖÑGà+Á6éé9ɹ¿.ìÖ! à‡¯ÊÒÚ?àŒÄyäÍáq·²ÙíR¹,[lÛC÷K?ÑU²¶,Á–¶Ú×%%îªøì°çÍ.œ öŸóãbnTÄ/°iÚ êk¯Q² 7)Çæi9+£Ê®Åf©¯¯ËMpWx’èÖaýiÐôk?@’=cdzw—±‰Ë«Ê*7hÌ€…,y˜ìbXAºRAlÞâÁйÙii4ŽÂ Ix%WMIâÆ}~zôïðÏÿøendstream endobj 163 0 obj << /Filter /FlateDecode /Length 2187 >> stream xœXËvÇÝ#ùd‘s>Á¤ß{%ÇŠYNd¬"e‘C$h‚–,ûç}«kfº.8lV׫oݪz0KM?ãï‹›…|Y¾_èå׋hÌŒ]¦Íãòf‘вŸv‹ï9™!e³LÑëÁYÍ+Ù”!†*lvCðBj^‘R.úÁga0ïÒ%,Nnå’‡šWãßÒ©èòàcNe“†¬MçT“šV:©Ñ©ÙÜä“°§—W‹Ÿ¦¦r9þº¸Y~¹Yüõ…-Ë2”hãróvÁi6Kƒ4èuŒ ËÍÍ⥲zµ6ÖB:«gß­ Q|¶êëÕZ±¸©þAßFkŸœúÞ¤l­ÚвպøÄ"ºë³Q[­søWR/ ^tLƨ§U£Ö®@96¯c@Óý´êÆO‚™Y˜,ºâƒ·“•¬á¯"_­ÑÉõœ ÚÞª'Ï¿â?2©A$­sd壚çâ[Úò¬3ðù‡ð~4PLRýÖ‹C/êÉ ÎÑQ}K«:§d«Ï&Gë´]$2LºmöF=«‘‡’Š+ÿÝüGi’<Ê4góról±ùìeU‚m6FuOû²ÖÆXu]ScJòê]³x]?4«ÛÙÑ«)uYmE*nÙ‹bbP—,rP¯Åò–ŽÖ˜hœºXÙ8DƒŒÿ8&¹¹k“šÙ··³ÚcVƒ\n7—@é“»vdBñ®âÕdt$àJñzû@ëÆ&¥ÈÆ­5pZíßÒ'â«;^vÖÅ*1™¹\Íú„Ž(šÂ®AélK¡}$lu1j»c+9Ú ãWט%çÕ¡Ú„HRÕWmQEJJ\°oè”éÀa2ª7"Ê«ºŽc1™×=Ü*ºå7Â16ÎA‡dr"(z)ð¿Bµ§Ã-9$õ)«bÚåu‘NËmÛ–:Þ5èÒcór "-!>WÞŒ’/ؤ¬]ÊiÆ+èQÑŠË%À¨?.Y”ÜQ§¤U‚ú–bL¡ËÑ4#;–ì1㬯mвþ.›ÅOê•“0Õ—×Ô&®=ipBœHÈöNð—j×WÏsñ] Ý«j¨T¿ñ§6ËcÆ?ž»SF ÁUȶ]ûÎ0@¦ïýŠ”ô§'ÚÿLeúÄ"³·õTس4T½9"î€~T ñôßëËšdÏU–¬ÈG—€’gSP\…¯w\í"¾õDñú¢jlsý´8wb®WFökEx°WxI¡†åÏt ÁÜ5ð¤¶÷¼/˜oZ\TRÄÌÎÊë‰Ø·ëÎØ—iÌ­rΊ¤~VÊè^¡s`?Õ°Ä‘¦Ã…öù‘Á##¹?ÕÍSŒô‰`1½ûöu0‘›ƒÈüÕãõÖï;Œ×A¬{½ºeí·•–Ô%µ™ÏÌ…\SõáýC‹÷LŠJפ"'ûþò¶Òê,}9yŸÕ¿ˆÏ0håײê*â¬æûóKöB§4¾UÊ·ñõ$:‚Oir‘€ºïd=ÐÈïœbù(Ÿ8\—Š‘¬¹o#”|A/süæÁ&ËÊ6;Òd0 …2ôLþt³ø7~~m¸Â]endstream endobj 164 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 221 >> stream xœÒ-ÿCMR8‹vøzù-‹ ‹ ›÷T¾»¸3ˆøˆø§v©Ô÷÷±òÅ¥Õñ÷bó÷‘÷âÚ½Q"ûDfVT@ŸÀh¯¤¢¬«t¢kpozc,ñM÷÷èçïÞI×%¡Ú§ÆÏ‹ÛÛ1Ä# :Q?f¤{¥ªŸ¡¨°k™uŒµÂØŽ‹¥×ƒ$Ena}{mlt‰N‡xŠƒŠ‹~}”‹œ 7Ÿ ‹ ‹ ‹ aOU¡endstream endobj 165 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 320 >> stream xœ5OKÂ`€ß·Í?é°’yh»Ý¢(ðt‹:ÙÅCA/!96„@­i?Šc)9^aëR„gÑ©kG¡Kß@Þ­H‘n<<± cÛ?Êåw¶g˜Àðüj88ö¾¥?W>–Þ—g2Q,Èr¡tyVD±ø­"tNÐ#ÖQcvã°4ö)úDóü5aè15xWv$I–%É‘]×q\aêcð“#˜&‡ ÝõOylEU~÷b*¨„€m )ߦÚ=Êø›Tãû6¢‚&†¯QME±¡/N£`}H·Þ3™§Yï›·ZÜÇ­šyuSÕ›ºŽ‚žVkÔ¡–j»Þ»öFAw­[¿â–iZ¦ÞÖ:bHèmÄk‡Ê|V†Š¾D+åÿ™`³„[.\¸4BÆv^endstream endobj 166 0 obj << /Filter /FlateDecode /Length 3619 >> stream xœÅZm$G þ>â7 ùFÉ4õþÒ.((p9 ‰B½»½{Cæeof–ÓF¿ÇUÕ]îÙÞD(h?lMµÛvÙOÙ®j¿_ŠV.ý•ÿ×»…jM\~XˆåïNÊÖJµôÖÉ6¸åná£hƒ'¶‹¯ÁËÖ¹ôΈV+3AÆÖÙDeUЭ5ŒjœáTÚ™Ö&ÐZ£[âÅ$j…Zo«Vå7WÊéЙRAú69QªR 3ª¢Ô(nЉÉË»Åû…L¦\–×»åoÞ,~ñZÅel£Snùæv‘Í,—f«¾•Ê.ßìß4R¬ÖR)P‡æ«?®@MPÍïVkѺ¡fó%¥ÆëækPéƒRÍšVBDã3‰ˆQ™ ›ÏWk­5ùæ5È£p^Êæeâ(„Ž`Ž£.‚ ò~™xãÏCÌHLu4Ö¨AJз!]•ÞÄæ T-´m^¼úmþ HZ„"¸Ì¼°yÅÆ\þ‹¯&þÊ0í‹€(}3}!ó…Ócóâu¶®ùÍŠà½J:Ëà”ÑàBraH;ðVÁÈæ«´r}Ôñoo~¿xùfñç…s°=à?ÙÂ.†Ø Bªñ¨ðã Áâ9HhýH¸@°2¯W²…[i~½Z[…¥Â–§qòaífFÝ8:Ž£Çqô¶‡ÆÑa†M?Žöãè4ú¾»y÷ïãèn†n7C§ªª«9†ƒ}ÛèuH†ƒ5¬Àð«Eóy·Ý~¶úÙÂì€>ͽùù7ÍÝv÷¶¹=wÛö‹1óW«5àÓÂËÍíN}Z~IÓÜv»Íö±bç1«Íþ°ÛtÛ·PæÓÊê¦;wõ}Fÿá°ë÷§ãaÛå¥m£‘YÙC{»¹Þôû󉔎®U:ÊåzÔþ®y:ovݹØ7_ŸoÚ*ëåñx8òLó]ýÏnûÐ×':¾m~ýýwß=ÖóÒÞ6_îÏýñº¿?ƒpL–©hG©ÕZÅd’û\[‹ßé¹jö‚–ÏO©úµtI ˜{¡åèˆ~Ó¿èwݪù DCÑÈxÎZ;!+k… _Y“6J$Öį¿y¸îΛê¦÷cCP10ŒôŠŠB*¤­)iDüyaLÕKý>cÌ¥™‹ Í„¹–²ò[«Ö©ü“ž‰G¯ë3¼m~»9Ý÷ÇSb>€è¾;v»Ö¯N»-¾q7¢à£çîÛ~__<†G®¹êëX0t­×>.×Éù¯¶£ÕÜôÿÜtûëþ³ÊÕXdOUlIZŒêƒµÅÆ7ýݱïOua‡ÛJu‹G7‡]Æà¨Åƒ¯ûÓææ­•i’‹|)tȵÐþ¿Õâ"V¼øòóϪ”@Ö¬WŒd¯vWä©ÌÑL¸±9½«ÏTóõõá¸ÙßUU6prBöý8iVcvÒ * E‘¥•aæciEú%ö£sf.­X*i@‘ÒÊ)ùIÊú›4´Òêæî!'¼( ©þÞyñ”e]°o+¹/AÙ&ÖÄdUˆÎ.%ŽØ¡¨•2±áÄ¡ J†0RFÉ›¤‰ØFug*/rµlîùüÑZËyðYSp‘ þN³ô0•PÞ7ïVôN`êSÅ‘™µs‚ig-*N«íNT?E´ƒàq¸›vux¬ÃÇÕŒ ´m=ŸE 1±Â3Ñn²,O»"bƒÐò0Ž£®úX¦}üÈÊÉZˆHÂät˜ãäˆYšœ¡ "€FÁu"bhe}r‹–šnëÌÚC§#_Bfè$Ԟ̓]m°Ffæ:ñ&É4ÑZë ,’&ûÌË¡¸ÚÙ"Ú“E*&z¼éÕÈ´Jƒ†ÅìOžÁýœ0†8R¢ràBx0Ú |ÂÖ6fŸ±¡‰68©óÃ0‡e â‘>TðfÖ×á¾O³ðc¶œÃ (-ôµƒ“vÕlÙl¶­~ÉŒ'ç„hpé–ˆ(pCõ‘·¾Ä ‚ŸeÞÕÓìflÀ¯˜B˜’Î&صS´×Çéî!½i `Û²n4ù„˜ÐyÍnêp?¾Í¤>R¡IãKÄÉG}Uí:ã6£“Q¤°Ú[Ζq³1¹Ôç´ÆêFniHHϤ¶0S8ÊMiAàq<“ÍŸVÊA5ÌC–\4Ã>JúœøW¢®¨KûH!@û¤°’æcÆy¬v` :åYœÂT@6qÛEðûªÏÃhÔ>‡-˘-4;T+@ó¦Z"‹–Ö>%ÀjaÖˆN Å„ ˆI1. >„“»\ƒT"Î ^¸º )ûZ#¦f_#º²ʹqêk¢VŸÛ,WHTTV§\¨ÉO{"P!†Ì‹ø¿¬‚¦¸“•NÖ9Z¤Ûçi&XçªI'ªžLT€˜ÔêNJ F)Í%ª2;ˆ „Èóà {T Hf¾8æhH¡*yŠˆÑ÷ÈÒ`f£žB"#Å(ç&Ôv¨FrYIÚ[ÄÏ«ÛeI‘!éûºMîòÚ„  •‡’ ˆÃmΈYÓ½œ—o](i%ó}¨Ÿ¥ÏJ&ãÕ¾^! FFû0¦×°wlK”ó®d±G¨àÌ¿§ã±„¢I£b×.ß¡$çžR2÷NùœŸËí˺ýÅ>ئû„1•ß-×O´2¬ -—¤£|›’’"ÎKŸãÕp uX!¡ԀÈNŒ`&QPµëëbéÈMEâ#Gõ;¶I3½òN„;‘lSˆµt¿H ØÖˆÄâ[Å=g|Êïž-ÃsŽðm½5“–­d§ÜíQ‘¯&ñ£’¤S •²0c:]¤¨üª€É-,C&K"Ûü-«"¾;Vÿð¸Ï£rÖ)ÝÁ=³ûOY; «Ç› úË´5à?ï@)%bb‚"6§íråöPCç¶F|½«¡2z N2|ÏpyºDНÝ$ oXŒÎ¡ÛÄQøP<£,ëIÅÉÊÑ~W“øËb0ÇÌÍ‹ÈÆ‚2g$o¸ÈdLX°½š GÈMjÒÔ–Ã*éá·ŸÃõ°ªgò:ƒø}B¡AN’_JŸå¡GZ±ašî%™¢Ý÷~Ý, ·™Å?°vtR?g›˜™†óÛVptwï2G„’+A {‚ÖĪßàUÞ`Zè0ÁäMÕ›o¥cÕ0Au`<´¼ôű R™€¬‡µ¹c5OÊx®“‹æ«•¼>ŒSÝC¼‚”—åÂÓrµcÒX|< âbB±sÂ>‹žAµ÷ÕÈ5iw—Y»ÈX×XD’B˜ œà[¾ú‘s$£e•r “t):˜y¨–î«ëîë{Ÿ0&p—’I9ãÜÃ"¯L¾;ìó¼M‘ž4´r‚˜àhKðåÍ"*§c /Œçv‹Æ×¹–´?-S29eÉyÃ`zÎõ§CÐÍ¡³0Èxtz¸æ˜-¬ÊjPpØ”QÊÇ¡‹ƒ‚"aê"ÕÖðZ⯱<þÒQBÉT8UU»J¤ËIÃyµ1ð<æ÷M3T"à(“ÉqÔt±œ>Ñ»á ž{vrµÏw+eš¥v|ãñ]¶3äpŠ*¼ÜGøë"Á³”LW.>¤D}Å· fcBU?õtÏ“þ™ö¦€ëÓÞ«0T%CÙpÌóþ2kr§$i8t]͎رäÊ8%†‹µ!ùm3 Ú¨³ÜMž¶!Òa§~¬x¹xš‡?˜”¦0÷ÿ(9âSG[–ˆô09莺8èæu Ò2÷µ†dâãÀùÙ¼“"¦Ân&Cܺ†ê3áÓ#ÑÓ £o)¤MäahBZö®V—,]d&ºhJ®RS^:ê©Áÿà–™KÎä0|¯6òEƒWZcÔt9ÃÝñ•N×åM5)Yjx¬¾ºç€I¯é ?àÿƒ àî¿Xé-Û¯l¡ÏŸ‚J1°nS2Txóú`¢XZ0PtÓ&Ïæ@Ô#„¯YÕ0Ô:V?½b ¼óG‹Úb+â„’qPa¦çàþ£ŸùkWÁýL‹Àùô? þå8¹®“çÃ:jÇÂ\«ÄÕLŸÂ±JùWžgúê;µÑâ\_ù¤»Ô·?­„7³,ëÜHø«ÿg>Í_8‡0—¿p~B_[­òØOµ©ÆÛÌJ›ÓðýŒºm63ºfžžfF•®ºœá§ª‹fZéÓ]óco¹®ö… §'â¤kfø˜5×4“?ˆë±·!µ|/?ÿ5ŽÎǾ;ׯ៌º»~è²A–:ÊÃÊøýCwÚÜ6§ÓaŸûlR¥n¿§ŸÜXߨ}:¨ÛîÛÇûÓÐë2¾‹A”>õ\´ß ";Ó"]†©„‹ö5é¿ÌÒ3,ö<®¢´ß rûÍyl¿™vÑ}34½€TÅIG‹ ²´È4™ªöEèÖ÷kFh'_Üî õg%K½:8Ã%5)EX=4° Òíð35°¨Ú÷¥Õ‰Ô£Cà\èDȸÐYåâT|å3]0À.»`„»`Ò £chžð—`*Ý0Ùøºvà AŽÝ0Ãö¾8d ‘ð¤!FuÙŒÂÚE@8i‰™…ùEGŒ’sºHª“Í3ºø KÒ Ì5ƀ˫µ]åÏ‹üð«endstream endobj 167 0 obj << /Filter /FlateDecode /Length 5931 >> stream xœÍ\[d·q~äG4üÔãh:$¯Aœ@IlÃâÄò"ÁhvµZ{fg½ÙʯÏ÷U±HžÞž•‚¼zØS5u%‹Åªêsô§ƒ;ùƒãýß»‡«pŠíðç+wøåUöþ”|8””ý©æÃÃUiîTã@Ü_ýöª*ÕJŽî´ Lõ픓P¥P·SŠ ÕÀ¬T[ާX…)ÅíDY‹F3«¶z*iZÕáÕ¨¼ÕSÌm1ªúrªÎT†ÙQu£†:³iÑç/¯þtåe)ýŸ»‡Ã?>»ú›/C;´SË!ž}s¥ËìËà#¼wåäC:<{¸úêèÃõÔõøÅ¿]ƒ¢ÅŽ¿¼¾q§ÜÌ<þŠÏÞ¹X¶ãoA}©!Ÿœk±(‰k-Äêÿt}³mþTŽ_‚¼¹\¼?þ\$:·5c‹.7LÙ?Ùø¯@Í ¦Æ­Åƒi©öikð®Ävü5†¬=~þëV Âq¢8W³ ïb~½<¯ú?ÿb§à?W`±¾+h¾÷ *›ÞŽŸ©kà]>þ+±®–Äf_sˆ¤P/2™ìP£?~!ž§VÚÖ~ÿì_°•Û¶ne„cñðì‹«g?ý ÆûÖ?Çãß_ߤ›àôÛ|1žÞÍ?ÿÝ@Þü=½OÏÇÓ‡ñt;žî/ðþî8ÿ<žÇÓÃů/ˆy{÷þï§—è.Ð…ñôÙ\÷ùýxz³¨„?›?¹°JÓ°ï.¬æí—ï.ðNÉ¿»¾fP µ”ü'ÃàÍÿçÚM— zsa¹_\ðêÕk/ üÿ¾ãXÎ ›ÿéÃð™ì—ý¯qÄs.'ç¹ zîî×ãégöôÖõý…§u'†­ß]P7MøðIO~rÉùïÀ“OGþ—ŸTøÉ#?9Û=ÍŽÀ²—<˜š.zðpÁй§KD_ÚÔ‹ÉîÓA´‡?w—„ÞŒ'¿,ÇǸ½ø›1.ùvi __pm1òÛ‹+ì.Û”¾&ÜKìáÜ¡Ÿ?»ú «Ÿk§­øzª‡B>•xÁÕSˆ‡·/ÿqx}•N åFB…éX‹Ã¤ÒÜj©à1øp*¨±&"l§Œ %qÝg€Ð°ƒwWÑ¡lZþŒŠÎ……Û`OrC8”…$Pvøp*mŠï0ºþŽ™ö©€3îPn ;·Cò[ã¿ &¡ ÁJqÅn ožÿ|ŽNÛJ‘ü åâ”`°ê ‡aŠÚt˜Pf§°èP˜f…Q˜•&aï‡øVC<å|H[ð\à‡ƒ ”Š’+UÀ‘Õ:àO© zkJ¬«'ëì²H0XuÃ0E)L7aQ! é͆þw3ÑØ÷NˆceCå_1†rÚıAÈp•˜O£ÄVR‘é0´–Œ¾`!(E@cï Ê'yGøÌÆhp#Þâ*^aÒwýF`æÿÞq*#&\DXC•§¦Ê9@ÂFí¼nEá‚f!jsEÞZ)Øt¥E‚Áªƒ†Éùä·Ã”ta†Žd+7¬0 ³Ò$ìýßbyLIæÃ‚ÉZ¾Ã–ÊÆSáÑÜR'Ÿ „ÖÔÒÉÏ¿gO®Lö§ž &[©À°×i‹…©ÂL0 3Ñ$ìÇ"œdpû´ž˜Ë`i¬™!‚WŒ­ÙÚ€©¹w› mí6ù T$ïôÊ•WnŸ‘øÓßaЛƒÂ ìÎ\·6D3n«Kò00É9t‘ØeäÒSÞ7.#Òƒãñ4˜zq`ÓJ±9fŒ!¡Ã¦ƒ†)Uòf—[Ö¼Úu|weV Šaw—pæ‡úæ6ú™hªúfPUúæƒÂ:;@ª“­0˜z·È§Iq…•E‚Áªƒ†AÑÕHaRåùš:&‡Yaf¥IØû!¾ĆC^©[:åJß it Œ`¦dԂЙO­ Jòa[RæQ˜Ü«|2išáj|RÐ4(L1ÀþlÖ÷Þ~ñÉ#*#cÆÅ$w ¬DR㕇€ŠçÓÃh^»¼å; >{¦¦I¤ÆÊÁ¨È`ÜMXêÁ3·ºhP˜ fƒQ˜‰]ÀÞñË!""Ö¢ÔÒoçATñnuH4¸ÛcÅ-"0’Ý– µ®@ÝJQ‘ÂÊ"Á`ÕAÔ̓3$”Ì n¨PôÝû»™hì{'èXh lV7œè×D@¸k‡ÐrR¹ÜyÀ†h3ø‡"aR4P,:( HÞa$jÏ?7yXÄ HrÓßÿnæûÎ~q©"¿4f7äL)8&YC¨<…ÌvÍ34Be&ð¦Vä½²P4äŦ„«áè˜,ãØ)7l\TúaCÿ»™ØÙÏœÇ ÂÁ“¥²¤cƒ‹¤« –v,U]¸"í¸8`ªõ/–I䢬:Èaì J‰!Áe)†ŽƒÃ¬0Šae—pæ‡ø–8l(,3èÂñÝ7‡óÏÒ]PÅŠ”g¾ ˜zQ ù•ùÌ­ VäèDK®!!вmêè09ºFaVš„3?Ô7„Fb'S’&ʼnÁuO&4G8fÐ9Eo trÂçŸcc„ ^U¸w (-ìÜHŸHvSºÂ¤ïÚÀlëì{ãÅ!6®ˆm)¶’âÀ0Á*¬9‚ˆü‘A`ôL9ZSB'±R âIq‘`°u7ÃÊ– ÚlLÖ|L+ŒÂ¬4 {?Ä·ˆÛ¬e¶[߬ÁuÃІH;8G‚Å¼Ú †Z¤>^“¢$…»U ƒªf?«Jîˆiè0º ƒÂLìö>ˆ_(6yq(›Þ`S¥’ ¨²O6A耡u«nù3º”nƒU¾w äâúéìPŠ"oJW˜ä]½˜uƽ·_|B0K'Ž£¦‡ƒ~‡) 0}Æ’"Û†Àü µKˆŒ>(6,¡S€£¥Ðá*S‡IÒÇM¡wzÓ £0+MÂÞúùKeSïXLC b™†’›Ñ»5Æy(aÀwàÀÎ+š&MB‡»r† ×a¨PäÅ¡¢ÃdèF 3» Ø{!ž$Õ*uäÝú°`jÒTHr.[‹}&•µ3PjY¹æ•‚e@X$¬:Èa”%,þ†„Ä47UHz³¡ÿÝL4ö½â˜Cƒ#õq`Íÿ0X„ÆI—«bÉi‘Ó!ªì0t²ò, êTš<ø VÂÐ1ÆÃÀ+9,&C7¡˜}ï€ŽÜØhWÐòÔ(#7à)ª 7”HQ\Ê`gîâÀ¬Ã2“Áͤà[ i‘`°¨ ƒ!à6ÇÔ&€W§IßM°¿›…ƾsAçmÌΑóE™Ò>,üˆðMA¦¸õƒÂ<9qÀœ3Å$VŠ6 «r†ï~ Œ†œ-.ÌС09Ì £0+MÂÞ>›’ùGb[²Î¦SQWfN´X(F*°—{×`™MUæ‰I±™Æ î:d6Õ1(Ò9p4 …=Wž::LŽn…Q »»„3?t~S¥‚¯È=ˆ ÊÃÁÙ3ÕÆ_ãüÇI ï°LŒ¼d¿AœÀ&aÀª€†)…Äœ«T§ŠszÓ0 µP¹WãurÃÒ¹p¤#c6q(PG¢ ¬K"Û%«^HæH¥i.7ŠàäÞ¬ hœa°ò»h2VÚ§©£Ã2çQ+…˜hì‹ù}bÃß-pxæã‚¬Ìà*5+ ¬Ah¨—[°LRœLÿ*i^ŠC‚ÁªC8:¹"E—€\!°éP˜f…Q˜•&aï‡Îkp»;ù1)Ÿ6×b+:žAûÖ*’Ž·òý¤b '|{lù{ »Á"Ÿô†ð‰«=ùK8zSÂ2é…Yhv.Œ†ËœŠ%v© †3þ¬ QÇÄaC’Õì° 42G-“ý÷cH0XuÈ@£cP¸'R˜D[Ž‹…û@C¬èÃÊ.áÌíÿq³{™äc·¥ý7þE€„ÄŸ°xiâßÊÆI?3uøN' m¡àBà.aÀ¢¢O)ª¡µÃÛ"? íP/3Û:ãÞxíùsè#cé ò™gËîE`FX³C‰,ú:ÌŽ¼]èN‘œÞó]ÀUm4Œ—b à€É/*–)A7Â(ÌF“°÷¢wýIåÌ9k×ß1œú$výÚA±BÖA”äóß-2Úš5ö¦K0XuHç¯)nIÑ%TžóÔÑaiþÕŠAÑ­ö~h÷[MÜ•Œhð¦gZõƒ¨g+*/$(È®<5í’Œáü"À`Q@C`ÁYC6$M‘Ü èîæój½øãq¡£H‰EÜÃDà´ãÌûŸD²Â(%'…>Ê~ðÇ]¿0X5Ã0YÚó)ͲÏS…‚d0Œ ›hü;è•—÷\28}X0IÒµC!À™+ûNËœçäÀ@ètA„O¾laÌò¬¢I*à&ƒËÁt®irƒÍ=‡bÅL»„ÿÜp:#/åD\ŸAŠ¢Â__P¨Ä^É¿Ÿ|+ëWä·N}£‡C¤Å´"î%Îh"cJP¢È·cÒBdˆ•ˆ?"ø…¦Ã ɶ&?XÍ@¬DÙKO3‰ ±µ*¯„ š/$gÎ.Þ/DŸzñÙŒìê×7¿ƒcëÆ†Yñúæ÷Ív}#¿‡¥íx䙳àãç»Ë‘¯ß«ã—íèå·j=†‰ÝæÛXã],ùuz“8VLÊ:Yº—hÿˆªæÂ»Ú0+Ud×!³=£2ÌŽjÌ“UǬT‰ûVÊBe˜U·u¡Z¬ÿqËÎ%¿áÚ{\¤›——¬Xsè²sõ.ª\u©+£L\êèYaT.µ>nXê×÷©wÝ~´}#,`º6J‚nß/^½ÿâùá»ë€ÃÊ÷üoï?¼x'fL¿Ò|•_ŒOµld<~ùâÝ«çnïß]?ûƒüã_Ðûê€^% OB‰…8ÿ=´<"E|¼íúÞSÝmûož\ ÏÅh¨Þ.}Á_©*¶L×BÞ×÷üPá•<&Ãòòƒ¾£ß?o哉Zrá{á|,×t,§IÞ®õE~~Î1Ô²-ȨµÜáÙs(úwJäÐ.•ã=X“¯Åùã£|$¯Úñ=bB0µc7Ô¸Ço뜼ŒÆÁ»Ú¼¼¢>Ìún‘M/ø‹máëžCÊë•õŽ@uH‰b¢üÞ—oW‘ï(¦¦è!K^`£%hháõ‡Uæ¢K½+ÛÖøU¥GÿÍ[u*ûÆ·qOâ)] ß¥ãË)îÕNÜðó=¿¹ÀÕòÎÂ;JF¶¸÷çåT~æçIŸQQ7¿¹˜õZ¥ó3”aÄñánݰÃwùòeùš­z ýµÒÐPk~}\9Ÿ÷ðô™qÆß$]ªXjSma•ðí†h f·ê ¼Á…ÖP ¨Ü?óÞ–|Çþø0_È#:ÌŒuïæãÛùø8ïçã‹Kç&9øÝ¹çOÄØâé‚=Í]SÁ»¤àžc©zƒNíS zê·Ò6î®ü âu/p,}lº’‰Q!§…ÑU “¶­Äâçò 2oá+Ïä«>¬úÞ)K¡Ñp=–ã-ŹÆQö†pÑVn¨}y$»¹¡2‹×GLvµ[Zˆ‘!³_ÏÏš†õˆé·úÌ϶¸¥Å¡»O‚æGaõÿ ç—&ˆfï²SþøF'›¥ò —îÆbºd‹U]ÇT°õ=­øÚxÄoø‰T‘鯏nÆûd¾ëy(#ŒEÊä' ŒÍ9•ï¢oÎò&r¸GH!º6î%rˇ±Bï–ey±®ÄÉRØ ºý1±…}Ia(~ß]'v&0ùö­Î\|Ñ4q š^= ¦53 }?¿X ܾW‚æ ö€µ ÛêÍ¢kẟ‰Q7K梎äÖµšXñz× typùc‡voû´ƒ­Èi—×—´­©˜ã•í¬`%‚4ƳwVyR'd†ãÛå›÷JݾÖúv^vkÄk>D·•‘ïÍÉ¢Éÿ– ¬È5În×Üù½„6?N9þ÷¼fΧê5ûûóuçÆâܪ#¨ËwK°jî©s t•ÁmjwmîùÉBøµ WÀGáwš-Ô˜ýÿæêGC»£endstream endobj 168 0 obj << /Filter /FlateDecode /Length 2316 >> stream xœÝYËr\·ÝÏWÌʹS¥ÐxCUYÐJü”Y6IÙ•Š³‘4©˜Ã¡ùˆ"½O÷Ñ]ÊRœÊ"å…@L_ §»Oÿ,µ¢¥æÿúO· £\^¾Yèåç‹à¢²‘–ÑR),·‹d‚ 9;W‹ãEÖQ—–18­¬Ô¸“(«à‹”·X;!4lH§ñ£÷yñkjî´J9©è…Rý†Ô)ؤ\ÈB§DQ%MR§I¨ßhdzÆÛ•ÄmNå—‘³Ð îÒ.©ä ëbÊ*ºq‡…õòbñË‚Š×—ý?§Ûå§'‹§G—¸ÚwË“Ÿ5$´4Á¨Ù˜¬RŒË“íâïݧ«µV:guì^¯´2ÚrÝ+,mΙrwÅ"1çdS/A6¦nwq;ý±aÒ:¤ÜÝ`Ûi½ï.Wð©ÓÖto§CþqòÕâ¯'‹ïYå ì Æ»ÓÁÞa‡í}ÌV“—|Ž ÒT©"Žô8LJPM}Î*­³‹Ýî JRÚ…®,“Ùvç,‚H…º{ÞÖ1ß/¹Ü=Y­Cö*Qêþ2 ¨i÷ÇnÆeöÇþÖÉŽ¿f/¤”{áétœ´ÏN´€'gÐ÷ÖP·[y­R"ÓõŽv‘µÕ@Lô‰CäI ®XƒËÉõáL!Rì®…íP~ÉÉ#úü¤É†HÈÉ‘mÄ7| 9(ÒÝ ‘·l2)Ÿ,AJëH©È¦”møŒ…l#: t5» RÊ$?˜-<übw]a蜭–x4wr[ˆ¿üz ê³~ÛÔ°÷»—õ  ºMÅiˆÙw[Þ·Ú¦ˆýëú)Üú o' €GÖ{Ml°vË5‘‚‘Tþb3¦§pGœ pch`å­5ŠkªMFgbS­µÊÃucøØØ ðº\Hälšl\Ý­wï®'aÕ‚nÍž×` r¯·bWN„´Ÿ  œW—˜G­S`X°Š€rÑÜ% Í]w" R“bEÂàbW‹ŒÕäLw[@òcj²õQ¬Vx}÷«ØÏ0Ýg5díc·l„ÍgU=ŸS÷à D'K_ÞíÝ=$ÁOÓ}T­>DT…áßòÉYqñ°Ùç Š£{þ“O"Œ!Ï ™°­Õˆ¾|#rU²Ú™ŠæHcdãéÊs¯q\*¦!¸©…¾˜9S{ÐXŒÏÃÍȇˆDݱˆîëÕ˜%Û ò!WEMcÐ B}×É! ¨Zè1vкÈóJœ‚§‹Òk`šv›_\¢w÷•‹rŽÆôÁÌWq²ž€@\jruê«ü ®4Eu@vi’¾e8Jçîóbº‹®?ÒM-Õ:G›ì ‚è›|ÖU=˧ؽųTñ<í7¨¹™Ñ@übÅÃâ¾ùVTßp'É„Þ,Í` %"‚Àålƒ¹›zÝd]œlÃ\U`C@÷TÕm‚b¨n/Ä/V=­øÖ’ áÛË»Œæv?³ºWÏÆÕÓ™Õóqu4®ÆÕá¸R3rkÎo¸ÂˆÛnÇÕn\ýs\«ÓÕª¢YÃföм›¹âbÆ I•ÍÌe?Ïüz1£ÞŸÇÕv\=Œ««åOg ß ­f[¼CjÀ€¶üÕN‡¶S T_zOW4›t€Þs¡A ¹8¯ÂøÿÎÔ³i"·Se”õ½$%ÒTÚ"ßPبtTbG».™•SŽÙï—è3Ê‚©×~éH²30ä‡L¬ñ¹¨$SY D,7%Ûé$•ì1»z;åæÏ\~2ðU¿ÏzG0íåµåù¢²^m\sçû é`²KÔÖÑÕér BÅšÈôÔ 7»Â÷Lajš%Ò@@5årÞ`ö&¸Aø0¸”w¾áúÒsPò”'êN5 LÇ«™´‡™AI2ÆPøx5ºY²¤áªÒà‘/y§ŒÈ¿¯ÇÌûŸ­b€~&5§1Ê*²j©/yz¿—Fã`:Ýq-Dîê%LíDˤc†nxàÈ5?&2°õZF™†löwc\mëd˜Ì’(qFw߯¢ç‘ÖˆÃÚéwúìUѳRµ1ɧÏÚtG"&úŒtý˜µÞ[\ji'üa@¹AÂ8k ÃL^hçü²ðlpè†Å¾Fÿ?‰ïød§8—Å“ÂÁ”á’â‹õLÑJzMc’Áž½?„Ô™Œ$rÿÏœîÝoÿ·î›‹Õ\ÊitïÔÖò+æÅµ%ô·ÿø1•c&mçëôa¤­'L ifÉël+ðûJ7’6 Yñ1Ò–Õô>ðž¦ò=7Q£Ãõ”M›WÍz¤ÁHnÉmÛ$€²ü0=J¨º›PêËÚ–Ágï‚Eúý4ºö²¿»otõd¸O<µô7£Z´}nmûœ6CìRR&¦ÿà¥ò¶y“­æ/‹›]ŠhÓÕö©ø ¥=¾Çgé${äcOr¿çtÈrÈÝ—è_=Ne±·!BÓܽ©1)´ìµ|œiXK·Ï)séˆÐ-ŸB’g RÐØ½<”P†2.8ÀÅu±¾«^÷¬èç¦`ú×µ` ^O>xV÷ùaôx¡ÏêiA”OŽÜ%[ÐôRnÞŒ×Pgrû‰øî|ÒŒIOªU1¥Î‰wù˪h לRgÔ<’ú5¥Muáw¦qÈï÷3‹j‡áý¿ÚÐÞ¼w5µ˜»™;63{wâÛ:'ôZ·¬dêXÿž¹l®;M¿>Ìt¬¹7ɽš‘û½Þ5¬œøv&rF¸c~÷¡áKÑÎ ª¼¬—‡µSwZ´À_üŸùXpLÞ#ôÞ0SþÇÖw‹ßÌ»Èendstream endobj 169 0 obj << /Filter /FlateDecode /Length 10429 >> stream xœ½k¯É‘ž¿þ þâ>‹eoå=Ó° hai±‚,¬D†! kjÈ¡¸f‘#’£ñü{GDÞÞˆî3üa!Ó|ÎÛQ‘‘תÌþóãquÿoü÷›óÁ_c{üááxü‡‡Ë5÷XRvךχêó5·¶È‡‡—í(×ëcÉñ¸OªEªkלD•}Ž š5ñ ?&°—R¡¿VeozU[½–N €>åP¯17ð©ºr­‡CŸ¶h¥>-kÓ%°v<¾{øóƒ“@>Žÿ|s>þý«‡¿û­oíڲϯ¾}èAv.†k XrÊùôøê|øÝåg¿þÙ¯žª¿¶–/ÿóåYm1EùǧT<ÇK¸¼|zB¸fç/ÿÝJŽVïÛå×ÿÀÿ*ÇQsøÃ«_’Ƀ•n6UO~¼zCV+âVkÍ]¬ö!_«â‹sO¯þ…$!€äEðéêëã ¯µÆyUw=Ž–ãå¿<½HžnªºËç?­OÖ§·ëÓu}úv}z¿>}½ói÷Íúä·áÿ´à‹ ¿[ðóO^g[þæŽåß_ÖÇîÜÞyçÒ×§/w\øéÐüóúôîŽî¼£óëÓßî{ßþÿ¸>}æ–ð?ïÿþ'ãõ®Ãyä[¹¦Tg–}úɻߗÙF~ÿ$×y1/ô¹kKÉýD~?yWî„øn9þk§©¹ãŸ¿zø ·&É»« !Q<ücp5R[ÿýüöñ<~|H×ä©  Û=þ’þÿ/Òpû#R-ñ(…š6jµb¨íšÚ"Ülݪ6ññjWå@ªÙªà©å,T›€ª‘ZaT-²UÖWô~«~ªÑå±^k,Îc«ëMÑ=js(½Õ=ž^ä#QÓU.‰R©Éà/ŽpŠÔÂWúœæçrñÇ.#×R¾Òå¢Kíê¹9IöG¸¶(nÞSÑ_© œD©R®WWQ5ˆR5òÒET ‚ª*eZœD©J£ÂD‹“ jÞÑVá=þuÅÀEð‚ËÂq'wpþP‚”8ÊáJ!>ððƒþáÇ?R Dù‡£aý#£¬nU£;e3RÈ'#”ðèýQ¯>Ríù«ÝžÙ({ÂQC¦+âõåço¾ÿæõ×÷Ÿ>r¿¸ïÆ*™F±Ä+UcQþÓçO|ýÇ÷ÞýññÓ·¯ß}~ûöýÇwü=qXªüÿÓé¿¢Ê'\#—§w9wâ[¯òÞ× ¤Òh‡þÉC›ÆåM&O4ðiœŽGTLFUO™*^æ‘/‰Fbñ1q«[DSsçªL¤Õ$Ä7ºà(x… »ÙúÌÖ!©¨¡ãö¢EÒ²©SàO±Òçà„ ©BhðÔ‡ƒ!×"„Ç•I¾5[””Ä‘æ9wc¤V¤°ƒñ !Ÿ Me UFŠ+Y4º£2#â‹—6'ê “Ù q*´&©ÿ;*mú^¥Râñeñ  x³Š#;âyÅ‘B¸Å‘. %ÒÈôQ°Dx´)µm•H¥ WU"™ºÊ€’(U«*H…æ–ˆÏé"–ˆ£øÅ¢K„î¡©9¨º5,‘Lÿ•H®áø§Œ%B¢köX"¡…>ˆ^%yŠâõƒª@|*Ü3BHãFô)þ^v\ Ür…B7Ê"?U|ëÛ\X¡â·ùÿë‚(WG©“i°L]4 ¿xÿõëÛ7¿¿ü·×Þ~¡Qµ ŽÚ9GMÈ«_=¼ú›ßmÉ/ž5”4¸¼=‡zµyóÎ)7c£êNƒ}MIf\Ôb{UÝÆ#ö>ÐŒUÔêPP‰„9Á±LT:D".ñ„q¨S*ʶlUÂÐ"å‰5(|玸ß;÷ Gjxü¼”f¢¢ÂuV¥«¨ZQk‹š‰*_ëHDÑ89u 4S*ˆ§f` ‹F!ð[•²fN €™+:ýï%ó#¥X¹D—;Ñ.oUá\f’zñò†Éµ"7(Úé[‹“Ü85œ¦º庫¶ ƒ˜¹£4¢íÐm(kMÚ©^9jR 1­ƒwÔÜGqÍ%c˜¨è.#hÊ\¦J1QQaјËQ{îòT)¦T±w|/oXt4ò M[ ¼wÕñ\Cy?عïÚ•Ú»ƒ—7Lº9½e£ÒLTõŒA…XÃe5¾k&ª>BUqÐL© ¦šEU>šmßUQ+Q¢¢Y£ó¨«šç”=e^ èû ÊwPQ·ë “ÌÍkWi&×’èjço-Nrϯí=õ¾¿çÔà ÑjÛ£¡væi Z·%²ž†QÞu}Ñ0LT7‡ª$ c >Ö3àf˜R‘/Ùª„EÎÌ1_³ ¼w4(^{?عïšëË1½×LTeŒpP¥«hèŒA…XÓ*pƒ©ã ™RAL5‹ª|4Û¾«¢V¢02DE²F瑨Í?kêy_=ú>ˆò}«Â1®å÷&¾Wžk+ço-.rϯå}8dÄ+õjFÞ0Ój%7aG§x€]¤å¹›«}nÀ_˜Niƪ"ͦŒ&*q¯aÜT)¦T¾O3_Þ0´HÁöÎXì ¼ç1Úº–fç¾ëØú|ã¥E¢éÓe¥AtòŒ¦Ú˜F¢é“8ôÛ0V9™I©¦T;ž†¡E(öïXÌA Fv¨ @Æèê—¢¬£ô•á[mÊ÷N´ï[åÇCÌ«z&¾§>\Eço-Nrϯå}ô2?¥ï…5d1LÅ”¦&ɪ¶_Sµü ÔãR‹ÄÝY:ê•þè(\}ôMº Pc‘¦e…D¹ÏN²nV§H1Q¹«gBÕ&-•bJåúâȈóîÿ ßiS´ëBÎ}»¼¾:îN#Ö8YòP…DÓ8+Á’"¬ð}U=6LT²4¡îÞ0¥Ú‘4 -B©žCùjèI¡"°òD'N×Ð0ž§È²:XÐñA”ã  4wõLR_çyyÃäZ^ê—òüÖâ ÷üçiZRä{þš§‘ çž&nÑöjª–W4k-T¿¸vñ"%[Þ-o¦±ÄÞ\çaÚ0VQ‡ËW•õÁ©ÒLT™¼9ø/C¥ª¨_jÙ¨:C‹¹]]3;Cïón— ;á®i°Æ8Ü0Q^ô2*ÅäÉNîk%hQ3VÑTÚ[ï5U’žYEB3TaT5C‹XBš¡÷XÚša$ Ë6ì¼É¥®ÊžfÔÏæþ(gy:ˆòT¼– ß k1Á0ñžÚ…`¼¿µ8È=¿ÀûÔdõ‚š‘0ÝRcÚÆz;Š–SK´œ¢Æ”fŸÒ•HD.gžÃÉEya>6&Ç\cµŒUüÊ579ÇÕP&ª¾¼—¹S¥˜R¹5¤5 -FYÅÕ;Cï)iœ3ÞwvÂ]Ó¢M‹š‰ª÷—Z¥«RàÇÚ¢f¢’wd´÷š±ŠÓÀ›Hh¦TUÍÐ"–fè=–¶f‰ž%:;st.uU•uý”)E£ö¾íýV•$S‡LMƒUÉ0ñ>ó íý­ÅIîùµ½/U•™gËË¢b*ªeÍã¶jû5TÛ/)͸ÎUòp>Fê(‰o…@"nNS4ã&žÞÄ+„C¤«‚Œ2ÈÖøh„¿šÐZZ¾Fè5 g'bØ wË«·£Œ cU–é¬ViÆ*Šg´5Uo˜Ñw…XC“71P5K…ЖŠfè7”¯Bž:;StîtUkëIKDÏ@ÏACS@™½ºJ…ÄoyX¨ü¾56È=—Àñ–{ö´² X3κfhS…n Õr‹çp±Èzcã:ÇÃ'Z’·4†G^kB†±Š¦œ¤ÊSvåý`ç¾ë@íž5U”Z«cU-<÷Ñ5c¿P÷šáàÇÌAEÂ2¥ZQµ -b iÞ«ÒÖ "1²DE2GçR÷Ë—þÈ2”Þ‡.OQÞƒÊU®0Dß;;ឩ–é»f¢âˆ¬J±“ßäˆRÑ¢a¬¢‚ÊuEDùÃPñ4 ¬AÑh„~C)†1èÙ¡c°3FçP¿Vn6yû:Äòså;¨(¹¹Ûä5ò1p·L¼¯×Ãïo-rϯí½ã•HYçXïfZ†1ÍsIw‹¶[C^ñ»±”(Uæzü|k«J•Ý–%¤5Ý6LTò@,ûE1Ë”*ìÛÐ -Ò\tp´L|¯’!èû­ÁIî¹µOòÈ òs·vÍ0 üÜ-Õvk©–[«/‹üè®gë'£<ä½´ýBR3 •—))Í(çSËXEmwI·–¡ÒL©ŽùÖ2´޹üjzßßÀÓÞwvÂ]Óè:ú¡ÒŒUAÖÀµJ3VE~»ATH4£&£ïš‰Jž“é8h¦TSÍÐ"–fà;µB…ž!: ;ktu>ÁŒP® О/ _@¶Ò—9·L®xC9~cm‚{.mÇs”CKx Ò/{Š©p¦¾-]©¶WSµÜ¢6™Z@îÔ"¼ß<Ž5èÈóxÅÔ‡2Ç0–±ŠwÖ¥¾O}¼f™¨²Œ­½ßªa¨¢–f4w–¡ÅcMa,Cï0×—,;á®iÀ§J3QÉÆ£RŒU}ï¾¶¨«¸#´Þk&*yµGGB3TaT5C‹XBš¡÷XÚša$âzxaÙy“K]ECÂÔþæv´íüV•:FHýHˆ—7L®%;´ó7¸ãÔö¼Ê“úÖzqØ2Ñ87€j;5UË)êH[–3è¢Ï£ß£žPž›Ð7I©msse¬Šrf‘0_v·LT²’Ê{xæmh„7§¡5~kÚk¡çû!¿e'Üñ±û"ÃD•d1S«cUágÿÆ¢f¢j}´Þkƪ*Ðt 4S*©fhKG3ôKZ3ŒDω5:ºªµ>&å÷_´÷hï·Š_>’çûZ–‰÷¹_½¿µ8É=¿¶÷<ÿäa0eKX×RLE5ïr\ªí×T-¿ö9ü†[ñ5B?x«ÈX‚‹e<÷1ˆ5YžÂGÙX7âf˜¨œ|Í­5rƒP3‡¹š ­#ÏeËÀëc­£tî{ ­¬þÊ09xÌ÷Ѫ4cUsò,GÔLTE¦ÐÊwÍDÕzŽCR¦fhËE3ô‹X3ˆÃÈ Ì•?¢Š|‚§`ìóÑíh'Úù¥â ‘4ÉÍ3Z,“kÉ:«rþÆàwœZžG9½’k]½†©A„ñ Ǫ‡K.MÕrIÈSû†Ñ©ß­à)*š±ŠzQÙ„'›hvÂa>ô—¹Ä0¥òV¢má)3š¡ßN^ÍÒ~wvÂýâ±6šp<:üF±Ã‹š±*§›m醉ªp¹A ¨¿C$5C[X*š¡ß?}Nμßð–7ùó\<‰mŸ*p/žó0#PñagO/â Ipçàнf>»&Œq´œh’ǹ$󚆉Ês‹-gÌ÷à ;û 4r Âz›À Ô„k0’p Êžé¢øí¸÷mÚïÁÎ}¿|ŽÅÜîgع²Q"Dg?¿%cO3VÑx¹8ã»f¢ŠÜ–« (¤4LÍЖ‹fà»*cÍvFj` [tþ<ÏAJZo:j’´Ír‚Iž7î×&1m3wB‰ÏKä—c$þÜR-K-Ô}Ò‡f¬ªb3Uº®ÒììGP4>ÛÏë˜"DJãfeÓ­ñØ<k¡çrìµñ¼³îøˆkó­aç:Eý‡´=ÃD%;á”JŽoÀ(h¤4+š¡5(ÃÐs(cà =5T [Tþ<ÍIjõk£ûm8;@ ŸZK=EâuÄ È¶‚AÆÜy5Á'rÕ ãx˜~„cEC#Ñxùo³OSƒèœ‡t®u<×™…Îyæ‚Ñ :×I Ú˜f¬âx:ã¶f¢Êë¢Ôj‡Ò0´ˆ…¢x¯ŠW³‡‘È•8ÏųƒWpÏPsŒƒ§æ^üäÔÖIôtÔçÐ7פ9Éí»òy“a:æ”Æ2VQKÀï¶ËIS¥ÙÙORÈrfMê‡Ý¾¼aJå×F5ÃÐ"?èòÆbgè=Ï>¼ñ¾³îÚŵΰsŸk UŠý,ŒEÍX•Ü8¼×LT‘qéHh¦TUÍÐ"–fè=–¶f‰½gnȽÕu¦¨¸gâœàWçÇÑ ²8‰¨Jê;ÁJ9Fm+Ññ}¤ÂÇJÏ4cïJLÜ:äÐ0Qñþä$ï¶)B%Ï~Z#´÷TÃÐóWgØ wÖ&`Î~d@pFƒèì›ü¹Ü•5ÍD%Ïoµçš±ª8¨ h†* §fhKF3ôKY3ŒCψ1:‡ž é¼MÍ^ê&î(âCáCÁ©õGTÐðÛçEz½# ïy'/jöc;×&ó”øÌ5¹ªa¢âá±­cfœp@h{/·fJ•áXÅ–-þ•˜„¶:@ý±o0ì„;¥¾o¶¥†°3Ušû$4¨hƦYt\3Qµ¾í# ™RA45C‹X,šïX¼ aÒz4gÙy“;ÏEtÐŽuŽÐˆ¢T¼(ÛôÃ2¼˜bÙÙwsóÁ/J¥«‚¼r¢-jƪd¡ ½7ììµùW0† £jXÄ2 ¼W¥­Dbd‰ŠdŽÎ¥ç¢:I%깨N‚*þÑ@fiôFž6‹ Òs;¶â›lýY®¢mm¥–ó7›Ã,ËXåÂøÍ–°¶ƪ£/9rS9§jøx £Ö8Wffžs]Ÿ› ;÷ó‹ií’Vììû¦ëJ1Vñƒ¬j,j&ªvë½f¬ÊòŠ‰ŠƒB¨x*ÖTÉhž«RÖ ¢0²CE2Fçгįåî{U㧈øÐ…Ú÷G÷Ÿè™„U|üÍ+egv¬²‘›t}K¯“gD±‘ƒs[•a|Ñ&Kš±¶ùÀÑ ÖÔØwÓf¿ƒ«ªöyˆ–¡=·–}-ßù·²fƒaعn¹Ôu¨•A¬I­o³B‘f¬j®ïB{š¼×÷ÍÎà»a¬òý4Œƒa¨‚˜†wéh¾«rÖ â0òCÅrF%Ñ3àðk„r' “ ê‹‘£ì»¤ù”8Ùs׳.Ø¡É?ÅÇ¿QÅ?͘{$960òZêìQ c¿üI‰’xÏ)$šÀÇÒðÏÕ¥A„¿·+¶x[úÜ_bø‹›-˜Fç¾[þÕ®Ù6vŽ­ÀÕ¨4cUMÜû){ ±†÷þÇü‚˜fJÁÔlÛÃBA^«ÒÕ "0²BE2EçÎsÑœ„[éç£9 ªh\!¯l%7vÄ&ÞÛSé¹ìKvNvóö§^u?û¾ÑÌ)™ÛšƪÜÏXâdž{Ñ U?)ŵ²c™R­³-C‹ü+€ÞXì ½÷ëÇ+-;á®ç/αçÖ©¿opòYÇ+ÊŠa¢’©•dž±ŠGNQß½aJµ#iZ„R1 ½‡6 cÐ3C‡ag‹ÎŸûÁLãg÷6BÏùO%É­_åˆcì\ŽÔ¿ÔI_ݘ+СQþ!ìÑJðÍ ÙQçkY–±ªÊ9 ‘Ÿ]Íý· ‰& wýÞð«ªø§ÌHZã•§hÌu†žÓ=Ÿz²ì„;¦YÆÚµ¨Ù9v¶«Rìì{R{G´-Æ*ºWùyZðÞ0QÉS\ŒƒF¨ˆ†övÙh„žC)†QèÙ¡£°2Æäгí„Ø5>ÑAPUhZ /ÆÒx$Œ¸7Þç5IoçJthü;ô±¿€ßgÒ¼RºKØAo_µÉkýý}Ú]Íξwõ}VûtÔÊï´š¡E>÷?‹÷!ï\4ìÜwÍóŠYÏ ;a,ª4cU(Ò*‹š±ŠÚÙ´÷†±*²I#a˜Rí¨†¡„ ïUik‘Y¢"™£s鹨NâµBw'ª“ êx‘çŒ]Äë½µÞ»Ué.ÜØy,Odßau=Fs_’a¢êãÞæ~AÍÆÞQ>ô 7ûTËP•×f–¡ÅT׫ÿ†¡÷¸KS³î:¶yÊ–e°—E Í ˜Öžf¬¢ËÎø®™¨$“t4CÆT3´ˆå£ze­Ä¡®‡•7yô\D'ñk¤|/¤k¯ïÒðf%Éé§Éýy~–?IÏêµq†_5e;rîêØÞ'OÍ#ÿc˜›5“ ˜§ò²1nîO6LTã'äùt®¹+O3TñøÉUgh‘‡7¡ïižbÐ wœÆ/q¿¼acÃ$Ÿ¤UŠÉ&À$»?ОB²Ç±o F¿¬Céh†*Œ¦fhKF3ôKY3ŒBÏ…1:‡žè |RÁóUQE~’sŒ¸Ë¨{Ví—û£/n,¨3u¢çCx¥'¯÷-“Ž…û"ëxqËDå|žšÖÖ Ë”j=×° -Æõ+o–¡÷|Ðk1ÞwvÂ]‡¸Z;ÃææDgUŠ …G35U‘îRy¯™lìg—¨Hh¦TUÍÐ"–fè=–¶f‰¼‰²ì¼É¥g£:ˆók§Ö¨N‚*j¢ï§úîü8ðS@Ïìù¢äW©]ëÞ”¾U®È»0r_mn¨ÓLT‘9D³ëÕH4rhE{o§5L©ØW©؃ÄÐ=óy…A'ÜoóÅtËdãÚ1" *ÍÆî=W´=…x3Ý!;ÆÑoDSd“.FÀ0¥ÚÑ4 ìA¹h„~c k†1Èë¥ËΛüy.ž“ð®E{­Û¨£ª”«$³ïËÒt7r‚õ$,úÍßÜñÈÿÿùæ|üûW÷[º#jÖsޝ¾}p]ñèb¸j×C~_¿»üâ‰&¥Õ¹]ÞËÇäR¸¼ûþéÅqM­>]>3o•Æî—·O/ú—Ó¥\·¼>ýáÕ/É*µÛ* ­Z9Y~õÆâ‹î8üå+á@£¿Tå#¿jæÛY6ßM>T¬ÅËï/[òíçO|Å#»æ.'ëc«¾vGòŽÈiáÈôµÖ%êåÓþxîo÷Çûã—ýñóÝ+|¸{…ÞßÝÕžwµþ^Dù`¸²úû§˜âÚ嵄"Ä\Ée Ŷ6gì×=’?¢ä‹„ŽŠ"öÏy¢qC&Ñs¥ñ^FJã¨4šH^xýŒaN·D÷…c'cj£s”„it[ÇéÈ1ÖéN>¢xÏîÐoð[¦T+[Áq¨(RCñ™‹¨©eu9ÌÌÈLƒ}G_]—á‚yáxvWÓã þÑ…Ôz‰|ÛcJ¦è|&¨¡;æõŸ0Ö;Yë¹ý.í_5kïäµÂG¤ñîpãÍ3% ÷ôºÃÙ/°YzÁo*5i¿à3®jQüõ÷çßRôòÁ–üå•fâEÊ‚_¼ÿò§ý·ËËo>}~ÿñÝü;•ß×·Ÿ_}ÿéã—ÿ8Eá’Æ}ùöÈ?æBƒ nËi.ðêW¯þæw—Wì©?Ž ¿LÆË€\D²Áª ŸçŒéåF5&Ó¾ë¸9iù§~‚—°¿àk´ƒúÌYì] ›úÈWæ÷Çëå|zzÁ¿Ó}P£ —ûwâ]«­t1/T´8®–rBíÇ'~¥ú&eâß¼T¶Fƒ|®Ç•_ l—OŸ;ÎMª&?^­t§Ÿ¤ÞQ¬’°¢pÊŸÿ#³U*pjØyP+üAšx^«¾¼þ¸Í¼þ*Õ⨹ŠMX.®\~ì¯G¼üå‰qmÅןå›Tw]]Råúôúw ½Õ‘–Ò¢DéVè2ú-ÝD8¨8)Mwô>öï‘HêKv>ÇiÛQ%¾¼ûØ»C28ºÉæh2|ù·’YÁe^5 ˆ¢ÀG,8?Ú2‰©´ã;/¸ÃO³ý;¬ÜžÏî—¦‘üM~§º6ß/R©ºfIÒèŽXœÊÇît‰ÔËrá¦Ìíçs™)åBÕŠ†ã‹Òsg[/:ò°x•oúµSKw.XOÙ‡ðæiI^CùÃU°»‚†ó‹ñæÅ—þÍH÷†|Û1]çÖ?q duÔˆÊß)Ïè&ùäYþó÷+êß0Ë3í‡gïôõ÷Hõ¢~À«[QwXÿþùÑ‹SåQ’éÜU >º,S*õœÏžLRIÀà¨1ó3¿ì ì¹6þ<’ÍuÕ;¨[á4õ‡ *—ÈOß§!f‡Ð(•å’ŽõÕkÅ»ïwMU­&_îsè(¦©ÿì(T(?ë¹÷ýÚ£ŸnMiLé êè¶ašTí"^îÓ¸5nìL+)¸¬T:ª Ùmê¾ÙW€Øôö%äÝwÒÔÓË™ü,_b(€O«\êM¹$º^x6«V»Ô/\RŒ£7˜¤Ý¯g©$²×<úͺw¾É%Ü3ùüú¦íë_×ùˆþëG 7Qß­+ò¨Ïw¢"þÚy­«%U·û@¢AHoz{¹}îß+ǘ²Œï£øÑrt½aÛáW›·’ur¨ï-#Röí ¿ßuC>ÿØo»´>( ò¢bÕ··j¸°þ„]ðŸî: ©û·ÓNT]ÒüôµÿyŽáwþMk_v:èz÷fºïd [4“Ë«zÁ­þ¯Ýcßúa¥bi¦â÷ÂâE¡Ivºñb\nù?ôŒ ¥–•£|]£ý:4Š¢ˆ¾Ã¦²×–’}¹­q"S×ÜcPì`\Js®ê¢›ãÒ"ãmé£Ý…›MªiÔ]Â3<ÒX˜O‘¥Và¿>9ª³Ôô6¥Ðç<ÚÌF®jÂHà* NÞï.îcŸ”´â=OzuDÜË4ŠÆñ±„)©±I+øìC’ü=vþ çºEU’&øÿ›Å¼.î/ÿô´"¿7|ç—Ù|aúw™<+MÔrsüc‰ÏŒØÿ,éD-ƒeõ&˜FVþ¦JyëjÈÆ¸/Ù•;Ìô7]œe¸s¯ÞA[ŒÌ»ã‹Ô0ëZÖ/—p˜†IýF†&mø=lìÞï‘ÄG=è¨2耯}éæxþ£&lÂå>y–Û¡+<7lÄQÕ½¬é&ùõ—Ý&£üEÃ;iÖ`ýÓ(´R±²KÐ}p'ða—Ú—ÞtÈK «éÀ±ë.Ö]f?öñ0f01èíÆ¸¨n7~¸?»TåCO~?™ËÓöµ(Õ#Tì.:Ù=Ë|fZ(_çù 0 Ûû7˜XK#¨g:Ãwý”AX÷pæÓɂąǕ~há`¤ …ˆÖî÷ÓöøŠg|ár˜yuï#3Í LñÒÝb %ÙÁVöès+wZIWIžã>üÝŒ„íÏP&cˆu¸kòk­o×SÝÞ™à(®—?eªÜñõþêá7ô¿ÿ Õ1§endstream endobj 170 0 obj << /Filter /FlateDecode /Length 5146 >> stream xœÍ\ëÇqÿ~ò7,òų1wÒï‡ÉP`¶ÈÀÌ Þí­ÎÜÇq÷Ž#{ªúY=;³w”$àÎõöTWWWýêÕ»ï¬ç †ÿÒÿ×»+Ñ+¿øpŸ2ÊöÒò…Õ†÷Î,vWN˜Þx_F¶W/¯<³½Qnab½0«Œ8î{£Ã,-áY‘Iy€ÎQ >Ôd=­-|êšõ2WλÞjÂT <éze<áÉqÛ;Æ)OuRhæ$žÊj™%²[l®Þ]ñ ÈEúïz·øý««þ^ø…ï½fñêö* ™/¸’½• X`Š ½xµ»úk÷åw_þqéDï½éþãåVõJ+Ñ}»\Áñ0¦¬ì^.WRÊÞpÑýûx óŽ á»ïþ€YÆœ‘ÿùê߀-6«>^ÝÀªß‡ÉÞ9gâä†a!MïDšÜq¹|õ·«¯_]ýùJõÞ–ÀFà0øÂxç{†'¦,s²‘ò‚lŒCùª(›ï—¼gÌÕýn¹Ò„äxw*ƒåi7ñ4”§cyúXž^wåñ¾<ÊÓvâ•:¯²ð_åi3ñînb¯,,—QöÒ.Lï­tA °KÍàñWÝWÃvûùò×WÄå½À±Wÿô×n³Ý½înÇÝãv¹x”ç·Ë•¥eÂuûÇÝ›õ1}äD÷ßõ£‡ãzxȪî7õ“a³~‘þ⪻vwÛ•¡~¸;û×°uÂÍð0Ô×›éÛ÷§´Y®{¯xÜÜa}{{w}·Þ?œp“šõ‚ ¾X•Ý¢¢~}z¸Û ëLº{ùpÓ×u¾>ǺŸê²ï‡íãº~ò§ãëîwÿéï‰Õôj¯»o÷ëãõúþ&®¸ˆkª^ ÏÄr%dØm–©Œ³0Ãúd½SñÏî_ÄzÅMXˆ[&y>¸ ü›ãã&Í\qÀϼAª²®»â¼×:¯Â)e$'òÇ7¤s²bL{SÙ[ØAüéX ÃËyHï2ƒ¯»½;ݯ§»Ã¾jÖýpvë‡5ôm’zV†:y¬8ÃÛõ¾¾øpÈ™îͺ>ó¬ ``~•5å»Çí6Ÿ9hÚúýݰ¿^^©Jëzc¢àºÂ ’õiðf½9®×§Êçá¶Îº…n»¨…ƒF3¾_Ÿîn‡ÂÆ\„VS\ØOåbdñ_~ûÕçUÂÊÞWsbeÚwÝ«†ú7w§(&¼¼>ïö›ÊÊððÖXuX&`}­Á[JO@?\}nödÔèk¡{ëlýoÀÁqÇ™ñÝ]xÔ\Ënóˆ ØbB Ã¸wÖØn®Q€gÖíëtζjGÖÕ œ ät\–‹“ìz”óÜÒf¬¾ œ0Μz€q^Tpðd|4i%4øo@Bç6Ž2&qÃ`ÆÚî‡%¾çÁ~n.o42hX»Î ƒ'xÏ{餵Ëãnòq¨Çúøq9!©{¬äUˆfF©†¹†0pêË<ØîC €ûrJ1k¦› Ç ëOK¶ šBEw”Ä pãI/N8 '´íÈzûÊÆ‘r½  N›ñDF#HÜ0ï¹iÖ ¬Àl¦)ñ]3#JAZ”BU…5¼iâÖAœ6©¹ì>i rByÔK‚£ê‰CÔB’EˆXÞBìÑûŠÃQjŠè%°"ÄÑ`"?KÏ`¯«¹¯s¨[ªGå‘Ì=Mjï…–éFRC=n²2ÚWqOİ >Y,yr% ÐÁ¹Ò ]¤õ2,À™âʃ\V’A¨OS2‘îœB°Þšîz ±Iœ‹êÁ¤ç ®\;‡»ˆp÷ÒYî»!®åŒÇh4œè€DM“ÌvЏ÷H+¬Æ¹æpLC$†*™‚kæpyxÄ)˜Þƒ„â¶\² °$oƒI@œëd³Y"¸m| Ì#[Z{òVuïñI0ÜajàŒô‰Ðê6­D—æY§Ï™"Çt¬)TwxVrd9+è°ŠJÓƒíIÜ‘R ŒÔ¼ÎÆ÷¦P û€ ŒƒÛŽ,[U[R=Ø`‰»q²Ç‡õ¥” hšœ¬Üÿu´]oÅ”@ÜÇ<ùEL$]«ðEKâÇh}„Ã}…€’žf2 È‹…|–I$÷DωNã €½|Þ@ö±ÎÝá ñ\ƒpY •#çM¬jBfZfC8åÖí„Ìd¯¤`òLf·APÊ*´®˜ûh Rj¹nC¬¼ªjWÈ”J¢èÎ`øoÁ1QÝÖ×…%b…§ÎlV{8 2Wf/¡€˜ýcźªãq1.•è†=¡Ï]œb„@OƒpÞ” V£Ï¡•O¸ ÛÑx– ø®F÷EÕVá5zØmÕ®²ÏI•,ŸÍ[øah);4}‹úñ&€ èšm~ŒGR³r<[k·³†ã8Å ùŠš€‘€C,, 'òGÔX¿E÷XsXÞÉj~Ÿ¶1Ò›ë𚆔“®ýY}ïºÚÚ@q{[Uàc\Ïq{úaú¥ ÔfhÅDTE˶•î]Õ­S®6( ¤HQcˆdïɰ¦Ì½îŠ{™Bѯ·@è”O%-HŸjYÐàú!V;µšÆ°³y˲Mˆo±ÈÑÑZÌX×¶¸Ž_jÄž´’éOâO÷DjZþ~s‘'|’¢ð „i ¸3ÀЉÝ狃+p»¨ïñ,!´^•aÌ«[¦%*•7  >…į ¢Iõé”fýœòN^º‡8—±¬'3‰è)„ x€[ÓÝß nϘT!ì»dwÕv& fÒÏ(H(U–/ê„ Az€b&Om‚@ðÀt¼no5À¦LN'M¸5qºÓ;ßM9ê‚È9Ð÷~ŒPÎ%@×=ñ—m”ƒ“Àú{U¸Fx£X…CªU„‡–†ŒÀañˆÙÕX,ùa”¬üûy˜¿¬‘us#$à³eò}ÊÖ\ëb0E<‰sEƒ›Ô@8`oÆê é¬1É£¤ç‡„¸@ãCH'‘² ™#GZZ}Y_6"„|ž¾b»„œÏo#b´ÎêþÆ®ü)¹Æ³MxÆ0Þ"† (RG«¬|p”‚ãw¡Xa¤»íAW©Ç5½4"x1¬F‡êÝö2У¸¢ÄGÔvèüT†¾yŠ )&©z"ל³Â7ˆ’.¬–qúÞ#ÕBµNè†9¬N"= Ü}˜äÔv #~–ÓŠÐT—¼—"Dc[ˆ™rñJôZ”¸ý]kŽgú) ]/XÓ‚WÉY$uÄ´ánMïê:ãLQ˜Åõ(SLA±ÀjÙ–ËQ3!ßZiYŽ%®ÿã¨ÊzûÉa•üõÿsX…ÝÙO « è˜órš–Ë$„¢#–x¬e1ÃÝ}€3€‘Kg`=^ƃGzj™‘6N8þËÊË;Wv¬,âɃýå;?[ælçØûÄs[  bfn,xC!naŽŽŽEÓè)͇PsÄó»øŠàjª¢yB,Í(qfªŸ¸Ä™d,[Í~st'd( Ÿ¡0-\WÔ£^•#`°2²MŽ>¬`çe7b *'MŒËaBàfk­ˆ4Ê`䨃ÃÀgˆhäÒø™âI>žR< np‘ U·¨ÎÜLò¥¤*qæ@’ƒ_G"ŠëPø¼bŸ#x3XÑ4þkaÍqL•^‰ÿ˜ hñµP±L屮ˆŒä(8„ëÄó†2"älã‰È² N/ŠªÍЮAÆ‹ I;ªPÑh:ž(@­¸@ t8Ï%cU÷Èt ¬ ’°$P]…ôÑż &€¦vçç•t¨Äÿoãd8ýZY®G¢·Âä0$„L/ò{âyé*N†À}>J[:Xñéxî_”ÀþLíCû²Þ&¾¢'çpx:v¹2ïÃ)ó©©Ï:âz:0C¤¢_¢A”ŽX^ªcƒË°rù_éŒgÝ ÑW“Ñ$¨’ÖÙØˆï·šHs¹C41^Î'¤‘Uå¡)ø5‚Ê}IuÃM…šÝ”8K c€Xˆ˜q.ÂtêKÏöˆT¨œ•}ƒ†RIRжìÛ¤D@O¶uˆ6y¨"&½£I6ÌÓC@‘¢bÚ¦ÇEïÐø–I–n²dhw &Êr` °ï¢ÛD d&[5•zH­8XBðfFhg['¥¦Ú¸ÚÇÂyI×7‘fÕs¶]°¤Vt£^&Jm6B40$¤ŒLG#K:5¶2˜"2õŸÛ+UØ”mÕ½êY`gßâóL`TˆP±9=z!å¶!å¾Xd säÈo†aô¸ÒÄ:Æa, Ô!@~@Oé‚G»šëAì«¸š¨ƒ˜[(zp­M[¦#ýÒu$‚æËG’ÈQ?©t)hvK^$ªùUS¸^›6hšj¬ÒÄ/÷~¨çþU¨é8Áu÷dy,Yj¸Ñ)Cé ÑÊߌ˞¶õ}=ÖM®nñ©aAÞ¤âËÜCùP¢á™6Õ¬b¤ËŒ™äuÇ~¾09d±¸ó"]ì_ÑÙ®Š¹‰ŠßJ"d$¶­Ù¢BO‰}ëBsn‹Æ?UüSxÕvC»úÅ™¾!P£råej—°gÆV /S\r”8AÍÞ‚h:‰x_r,÷«¬U…šÖrÞî(M W8æ€ Ugøñ ÂN Ù@=Ü®=§ëŠï[/8f!Q<®ç•üÿsޤ,$ç([µ98BµéH’µŠ—:«ÍbÓ™ÌìËt´ÃB—!X–aµQ‘ï‘:sœÌÚPw V¦p,5Ó(‚–oÉŒ¡¬~éOXÑÍ®8 æ¹ž«3ÿ4ra¶|f*Ð^̧"iƒm4Wø‡òºûK¼veJpŽað•4‰Ï ðÔ-¤F‡[€Ë˜¹ÍCòæ"-4לH]zp£ kd×EŸHX«–D(’Ì&nÁAÄž¦2R q±Ý+¼Â}“I\¸à“¨Ñ›a„Âpvõg|ó0Œ2ka·;G½’qAÈÞ+ó¿×Fi¡{k맸†[)6 ¢­­—G¢äqTå‹Ò3£€,] {NÕnÆða‡Ý:b‡ä4©wH7ŒñkÃYÏO$÷P2 ê©IZBt¶I|«al"9ü ĸuŠÑ·Mu´pÿƒöí6‡ôÍ À§Ü|Ò{–:}&ˆŠ7×½‹óã`€DÈS¥–Ù¹-ÇA÷q!Tó-¿Û8¸ÒZ$b¸FŠ#‡‰Y0üɹcŒ „½¼PK¨·q®i(ÌÄO™Æ¥1®Éß|ã´ópÏÙ$¯—UÊÿÀòW!÷Ñè°7›Æïêòd Kfd¼?Ie ãXl"Haâø—BˤÒoaØ;”›ãz¥ÒTZJÙø!ÒM:ªYýbx²©ô 'ô6½õX÷$¢º^¦ …DXÉŸÈ:ä•ÉþL’ð3’ïûXx4p&´# µ“m¸Å<ŽEB™}&Z¹‰/êTÄÐt  ÒÄ®‰G1YÌØÚ ëĉ¾¼ŠK‡ØàsB¦À¯!çŠRR˜¸9M û§H<]ùuhÈf>TÆM{ÙØ`b”év«ÿPÃ5:›ˆ¨ –ƒ÷° ÈÒdýÅrŸ êá£F0h2ª.­&Íiå-Ïm¹ÙNpyå‹Ô_ÄÌ]W^š®¾yü¢|~Æ[ãëaó[ÞÞE7¤y~§1¬Ü'-Ó_´5Œx¯ÖÉçžP¶GàFÕ7Ç”nÔ@`ùZõLÆ6ý} 5Ñ ,bBe` ‰×M\¿+ÔdĤ£Kü¾B'õÓM¦P £ñBÛjë]>&‰pA«n#RëÚ†k3G¢V]Ú¼d*险Ö)îÆn¤s$¹O<0¬YÏÔ]ãÒÍZs0=¦ऌl®:ÅøôEOc*šŸ•gåö†ã¸Î“t/VÞ@;ͨ7U†or9ÔÌÕFˆ 7Ú+b±Lëem±Üémãɶª=¹©/¯§Œ¿÷yÿŠxÀØ=ŠßZ™é‘ë—¥`úº«j”äë%Ž“BˆñÇ|«æÙµ aÕ§^xÔØkÐMs‡F‡ž×ø¬Âtz2î¢i„ j'§ºZ[ÀFºÞ€òoâjìÂw·F™]ó‹øÅQ§kyþ» ‡‰_m¸+OË©[kx±»~ëªvìÉÎöõP®§µaÜ|Eá¸æ‹{Dï±j€r€?iÕŸvJó•H"÷Ü6wZàõzÏ—zsrg>¬  ÚVjºÚ½‚ñ5glu½ÏEÇDýÚ?ß7$˜.<œ_ß‹nÜ¡z6áKe â4I]5Õ>hPLš/ÓøñMÜs¸> stream xœ½<ïo\7rÍW]Pmÿ!@qO÷õñ7×-Ü$wIáK{9·z.е$Ë:K»ŠVrâ~èßÞ9äò­Ã)üÁ—‡ÃùÍ÷Ãñ4Šã ÿ¥ÿO¯ä¨ÃñGÓño¬£òØ+Fo¯\˜F¯sÇÕÑ޼£óâØY=J ÜãE­‰£Œôj4šÊ=|”²zÔž-hŒV#Âb+ÎhùàGg VéoŽ”U~Ô60¤¼p£ŸD…T5÷T£Ry¹'¶Þt|qôш¤«øOþÃ>-„ê = O¿'ˆÉ¿ÃÞÉ;'#ÎÂ[©@Áuf†-½ó¸s\P῞ÿ3¥Rü(Ý”ôÇÏŸ=ÿÛ?öb„°zø‡“•‘€ìúeî\çÖin½É­›Î¸ËÜÚäÖçÖEn]åÖuYøïsçªtžvæl;ËÊw¹õbÈÍo{»Îœu§ïžÍȈ=ÉOJçgŠ­;ëçV™ñâ¤Àùß<<Á1ŸÖçÀ®ñ$†³<ë¶C·un ðÏKs×ÙãËNßmçײ¯Í°ï:pzt^÷©œÜWœTsóQYðìàìè~1fÌèÚÕTõ5r>H.ù^Yrç ¢\ t‚~2;AªM“µ¹ ÷ÿæd%íh|ÃvaÈ)ˆjH†—V‰’e½›{‘8(C$H]¸RЋ"(²’Ä ‡!´Î¿_E¤@À Û‹Ë(ð• ¨VV^_ÑpPGx”+⋞@2 aj˜çgGH™™E4ý[n}Ý£­Ô£›§¿ŠÛÔösK¸[ïkÌv0Äxc½#Ò¦~ì¶ÂM÷§P:kFÚ3ê6‘®P–ël¨‡•7ú!—£³ye@#g §Ä+ÂÃÙn¯1'Œ±e,ªD“v¤¥Ð ¯Ïj]±’µ®8^eÁC¨îq]P¶bÌÓHT„. {|Jàƒ°Fã˜'ª6=Ítj:Æßg´'ܵơ 夂å€CMð feµWÏA0 Ïo ãf€e†h€ÂœOÞL€ðõ}ð0éñõó£ßi`Z‚í#Ff—ãÍ.í XT.÷ IµdNÕ,ߘS7c™S]|Óa‘žðéj¾ÿou¾' Ðh Nù¸yØÚÁ ‡/×WW_œüúl'¦0KÇÓ++w/†o_ »»õÝ=êÜäƒs{ò$µ½>;]ïÎ?‹J3þjAi®€F0„†³ÛË·ç·ó`‰jiþiwÿòþö%\êÕow·ë»5,ýÕ‹“G¤‚í耙W€$˜³’®ÄŒšçKT'3€—ëÓ77ëËMÚ<²1n|% Ø]ÀHtM·ç¯æÙ ¢ºy»p+,…ó¦O ÿWOSó&_4`…kq‹[w¾+ã©OVZâj€« ×Ãο¨¸À ËpT\ ƒ¥s™ A ÉЊƒ&˜ƒà ¥%²=ô”A?»|s~uùz»=+G'q¹-¹;ßÝ=SYy»)¼À°?{õˆ–½y“ïídÃØH+ý¨åæþúe᢯ÊÈó·ç›»Ý“ÂoR¸“,'fa”÷£gò!up†0´º'à¶ŒMv¿‰2L çCâÌ£†‹û$i'ðn£JöÎ:’¤t ÜX† ‘n¦ñl]£QaÖ%ѱëF¬ùà€( 5ÞF9®4¨‚ˆÊ$&Ðud`H¦y–õ7ƒKÍááµ@:s ¯ù¼¨€h§„¡øv<ªù¼Ô!€þ¶‘@©yYš›Ò¼;éì„´4ÎÏð¢n ‡ŠÇZÁDŸ×‘½z 8¦LÉ„ˆ›ö~…{¼F5x;ïUÚ,IxR¶]hÇéµá£Ïø—‘9௉À«IããÞp Tç6YhÒ&0ª@` uE8j0&¯ÀˆÂd@äÁ v²à2;(Ð÷SÔ)v@ˆs²ŒÑ pq¼›ì7à=UÆa[`4DAu$£¸ f4`€0†Íg¤sD4¬ÖtN­>QÓ΃¸s¥%nŒ›Ÿ³&cÐh’ÀL°Íø´ºµ=\Ðæ9ÌäšAd¦|Yxx]š§¥ù¦4oºc« ѹ “¬‘ùÞWtb̶ÈzÇræSv%,xIʯ¤ÂÀŒœ=‚%_I‹fi2-•œ¹©J#F”*£´cTZœ%ˆfNŒRÛV¨ÚÔgÆf,Óõ†]I Çllž•¡;ª|rê@|[\yvŠ"rR¨ GNÀ]„A´´Ñõš»ûæ.·f7¶çõ] q§ç¬lóŒÍËF0÷ŠNyÊŽ¹kŽûrRl×·,žFè ¸ ç ZnAý{BÓÌ´Àãl´»ÐñffÓ·è/€øP³ÓqdÓ¢|P&ißx?}Oœœ`§Aê'âÂQp’Ã’ñ'wÆÙQg^ŠîΖz'ô1KsÃ<¦äÕÏ5Ÿ;á#\³ßašvK]í–í¨Wë͆Ü:æŸ`Ùdâ}Q;E­÷=:¼>óà Òf&;üÈn.Å „Ц¹P8ØNa&l}æo†ÀñœÁE@H¢oÙ¹jìNlJïiéegÁ²Á³R^Ž[MG¤¹–Ö¡ýD@ÝxEÀüD×U9ƒ.w,ÐשÍvN_?)çÝ}E2c†)œ<ÿS /¶|¶t„F\F™à©8txáNü ôÊñk˼û±žºRÂV»tÁ ç|ÉØdçÓ] Ã‚vàwˆá–ß<‰© ƒl¨m§J-„~¸ì#ùž¬¨FoJ7çÍsZ­¹‘@Ö–NQ]'œ H1®±Ö'Q¬1¼£~Z5¡úˆ¼]VP„ªÔC%rÜãMY9Y:ŒUň)vƒ Ðrñ{ñsõ‰ã!¨43f7vLNŸÎT4µæ‰‚~Ò£T¦À’qè†{˜á›Ð™™jÖ0yð9×3äZTRc%n"jhl†È5…iY¸¾‡DuR(·ÂM¶ÕØ‹[_ÏqY4îKTòކø•„Bø%ÉÛò+BžZ<3Pd1ÌQ‚™" Sˆy¯Ld2ö£(«|HcÚðDzù×›xNx#.P±°é¶œö¶ „=ƒÁÔŠkç1$È“Œ¤›ä̤Í5އ§èÌ@±LÚ¦Æã­ ¾Ñ¹;Eni‰š[×s^ÓçtÁöÎl—ArI„R3F@T²xÿ% t°Tä|ˆ¦1¿çÈîúWñà@v¸8‚s9ÛˆÌ@“½¹Þ­SH˜‰ðú€3Ô7„¹’F­w¡ÉgM’}‹:Ê(ªcÎÜí™MBÄdH¾1êl1#›Öð0ï†  «O°ðYSe+¸þ £@ÝSŽÒÁ”Lj FÂÉ«…~s²2pâà_ ßp¿†¿Ùû#¥«/‹xÚó'e<­€áZRI|ã ?w¹™§ °-žsﯫ5j×.ˆ „è%Ë0G­r°î?N¼B²˜€`åÅm#kÇó<;©ÔT6Öaž‡µÅrÂ!Á-é®5·/Ë…\³67®Šòbœ™Eò»‡J˜0á¼ïºRQ@Ÿã_f<ï ´¸9¸;ζ¦nÏød§hq/XC³ _jËiP©ò|ãÏì ¹Xc—â¦è…ZwvlvN‚! –V¥Écôî¶2³0Bër`Yº‹$rõÈlâ5AÃBsÂÉmÜÎÛ±¾eBqE|†’œ%¸µ û¾6©'&\ޤÁ;‹›?FODc<8ç}]õR(ŸBÀ’{Ìy_E€?ð¢x<ôQYoÙ {,K˘wS”û‚’Ø#-ÛF•`³ÀÖÉúݯ¹bµž[£€Ec„+©pM[’Á-ï¹Îƒ×Çr·ò´ÙwúÝÓ¸ŠöªË—2÷÷ò¿ «e‰Ç±lçéÉÌÏoŠËzOEG?5ãüï(cÁó°ünsó&I½èz_»™['Ìd§«‚á+ÕZ$u>Ž;fiY™·1HxÀ­¬.ÚßÇð‚÷0€½(ÓŸ.Ô5bl‹U_…X-ðÄ{ïŠ-XÑËÅ¿Cíï\›ç¦èÃèéf -“]±n,bG«©FFÞ†‰§mÑé~Mc1X+&/kÇ©/aHò%f*zÓªœÄ˜¼1XÌÖ ä„… Š‘oîÕ]Ń0µvñš¶ï*)rE®Ö†ì꽫¥Ójþ9ñ[˜ÔUX3ñÕ¯ aŒaÞ½A®'ô´a•Üh M²¹¦ fvÔV¾ö}*LŰkf3²qŸ²­M‚ÍÜë¹ø`Gübµ’W ™À#Î:õ™gÆÚ!0 QJ_FBL‰C…P‘tÕ•zõ§á%­b03¬5sÈc7ú¿ÀtÛ.Å/∶F zJè13„äq.×gEn¶R(ÐA|6¬òpŠˆsÅØt{‘t“M1™AþŸt*)øËÖ¢®ôº (\1NùרëjwÅó<û5\)lüIaãORZõT)(Þ[ïPê,QRt8IꨦÁd ¡{G9_e2·K ±¼D÷æá͇…^ˆu«Ezžx|XQÛNÆ®B;:…S¨Üi`“à–UùÄú …Œm2ðT´¾N‹Ã¹æÞu‚ªÁVã錅À†F[a†‡»yA¾ uc}“™E².‡Ôr;mšåÞ¬ lW¶ƒvis¬läuô0… –Ÿ@Øl±1«* /QG_‡ø(ц”ÌŠ®2wóÐ î Q̈p¿¯¨Í€k¿£N.»©æSY¤‘åŒÃ¼[î¸ý9‹FŠ+‹ÓЉMHÆÂõ–Yô\mVŠÃqi§ð”g¾"Ù@sаð æ,ãë:i‘A/8õx¬Vĸtß$ìã[†ºà—‹ùR–(ÌX¸*/»Pòœ^íjÎ)nj9 ŸŒðäR‚ñ*#½m<¯´«*ý2w]b¶ˆ ÎZ ý|*˜*$F5h.Vɶ™]í|&W¼h\þ¯fXu «Ê!” í\[2Õ¶ŸJ„ªñ÷ &Al°JÕ%’0­¢ –« ¼ü¤Ÿ]^³ŒUŒéP>ªIÒ0½çC§ Mö‚‡ *¶KH·–S›§§Tæ)Œ _]ÎuMÌ8$€œz×­ÅY³²•Ç4DïºÝûRú)`s'O?®d"\íËÙ{ˆ¥,t®2Ð(•"uÛj­\ñÆøUUrŽÜ3 5ð°/VÁ"³ ¿. ·#À:¾‹Ê~Ê‚¹ÐØQû…5àV6xÜô݋ޘi<©z‡m*¾HˆARþ¦†?5ºkX,<¯Er^î°X¹¡~ãíËU¸U®:Á{Å0%ë!VÑr½¥mª2,a<ŒEÔÑÄ-Æh[¥«#q¿“VZW@Vì…q¡ú´Ne$Ì”á¦H¤†ð“âCÖ7…w›0Wó%—Å"´l狇«ÖµjµÆø¡ {7 ÀÅm_ <6_ôÈþÊ‚0Ú3Šy¡«f4¥Pÿ›ZÛ‡ÓÈnME3×Pã›=O_¦â¤y”†û6À> C¯)"J†^}½Ò¼ªÒ é  pq5ÒE„²€lÿAäݬšmñkÞÔ®[û˜ËqœVË…’øØqŠà®œž\Œj÷Óu?]¢Xã†ó@ÎÑ3Ê ë]Ń×Ç ]¿ô—­R?ŸèE^—êHæ~¨¦Ü3á]YìÖŽý+9 |Sñ%¬àJïÖï=#ŒYüÌ ÒNj0ñEðó;|üºr× ãOÙÙå /Ï:ðJ¦àžm—,‚½Ç ƒ÷  1Q[dx|÷/ã[¡æ @ïWF o[]LÍn*‹®ÌÃ/?Å+€< ¢Á¡¥#ÉÃÆìC`âÖÄu[±lZÒ>>€¹fŒ NX[EšH[½`I´¥œ6MSóºü §\КÃÜ ÿÑ®*aÒˆ¬ß¥O€-²"ܳ.ÓÏMÙ,K .FŒ`Ü’N¦ZBFÖ- È—•bIé0æb÷‹×+wœÓ`SnéãZ¿ÔU²‹€?Xäžéþ·¹Õ·v•e¤­†{¥>Ž¡-æ\д4ø`̧f¤ŠâôvÆëè,G&nBMÎòç. M0M NwÙè•4?ÅvjBTxþ=ÞÉu"•øÈ‰ùôÛη î:ß‚*ã6 ß$óì£d2Š M^8Ì®ð^k%VùæKeè·oõ¹Ë½åå¡ÉO*opå”iÅ[¿Ü:£±åƒo¹°à†*9ÌR!  ‘3GèóÓš„î‡äâ A~¤¸Y‡Ÿ`Û ¯íizŠ‘uS ȆñRB°"<#Àt$Þ%¡Ð¥Ðv/V<{€ƒ²Å€`Ùâ2m;6pј±Dò÷Gÿ {Óendstream endobj 172 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 346 >> stream xœM¿KQÀßóŒN;¬Œ‚óþ94KàØ$(é%D…%(bÞñåNT´Á¬=‹7Z\jQPiÍ%|'ï†Ê©íóY>ŒÌ&„1^Þ;Ø?ônýá&³×yðe 88ó-ù°OÖÇ«Ã5dÂØ&œ‡ÑÓ“h,‰KÒBqéxa!“}á<–ƒ±9õ¥Ë¶yò7w'X¶ë˜™yP˜½ñPPTE‹=ú‚¨”wÉtH£I¦D$!ñŒFí¶¦ [º†LFtÚI'´ç1B`ˆ`8> 7)Òn=ùiI•¬ U`«E(¹þOõà˜ÑzɃîðênZ$Ý‹ûh+ÒÌVÈ›½‚\¾W×£Ôô)">Z~§0x  ‰N©H;;Ôã÷‡ÃŠ¬È ³¹¨TU¨ÕœdBzßzt‘µ9­æÔgÎ Ü pv„~Þ£Mendstream endobj 173 0 obj << /Filter /FlateDecode /Length 3273 >> stream xœÍZ[o[¹~ò#„¾ô¨XÞ/A[ u“MŠ4ÀÚÞŦXœXò¥ÕÅ+É ûÛ;¼rxD9»Û(ü`ŠÎå›áÃï§”°)õéÿÕz‰tÓÏ:ýj¢¥!°©Qš«§ë‰åšhçrÏjr1qÔ-íÔhI‰à0*÷XæˆVa”ЖhÐÐÇH ?*´žR~µÕzWÖYbb*u`ž´°Dj‡x²ÌKæ© JÕ˜ÄS^m` ­F§7“ï',(ršþ]­§¸œü朻©#Ns=½¼žD%³)“‚ЦWÓËõäÛîåû—ïf–çt÷·‹¬ê¤’¼{;›ƒy(•Ft³¹‚hÆ»oÆC¨³”s×½ÿÊJ­¿üð 8âÁ‚°Êràãr«ž‡ÁÎZ«ãàŠa.4±< ]þc2\n§sÐ’Ðt3ϤdÒu·ž1k˜ë–³9‡õ„µÝwRZÕÚvס×J¦»þ!ÈécÝʱ”2óÚΉğˆ? ¦0båjÆ¥NËn›[›Ü:äÖ.·È“¿.s«oŒ[7ÆáÕê´Œ0ÔÄïö¾ˆõÇ—Ý]1I·Ý+˜yu4Aý¦L]ÄnMAîts« 3¾›B'^å”(GLŒ˜C礅O6‘¤¾Š¦bÖÉÈ ã†ëj•="B`µKa¬ÖBæ~uãD„’"2Z ˆ(ËPc¹ê2dvÑÝf ¤0mQiÀ„YA³YïÙJ÷ »î[–› &‰Ð PψSŠEJŸfJæ´éú¨%Lðí?C)cV^6+€IÏ»„©ÄÀôÒS °|Ðr ˆ}f§ «0h*§HÀ2¢ý3øË|lŽ2aÓ};y4X±cD@F¦™sL3‹\ûÜYg"B¡J‹D=h#Íô#O€e$Qý™Ê"®®RW…Õ~“ºYEûisú€P¹÷óŒB1•H =oc'ècïî@a’q˜€§LTÄæY3]Dï&—¿úaC'j^;hu #¸Ãq)íÑï <Ï$§ÊASl¦Æ˜ß[äITeë¸÷Öº#,Dš]$k ²|öš±^uy­gyç(+ª›ZØwhEi')ØO±‰Þ£À‘£÷…€iÁ«V^ìY®~•´ "l ÐŽ†"í> ò…m€ ìÏ}0 #šRsPa¬iE2ðOá2pÎsÔúýl®8$ÖïžCç]n}llo}£ï1·>t¹ù‹Üúsn½Ì­‹F«Ì€M«ø&ß_ ËyàosçüÇÎ.šh¥û–Ô?=›è›ü®4¯žVøÿWJsÌßó`]oÒ_ÏæLû]î¿Ãümƒ•Õ“Œîždp8‚äIžåÎ7¹õ:·Þ5àþ]{ÛÛ»/`øK³P9o0Qt×7+­Ç²ò¥Ylð¼t.žÄMß„öO×#Z°L)Þ£VkÁˆV¾É­W͘¤Å“~FTùRñøêròõD+p$‡S#œ|Ù¶CC E¥±Ž9tø£è©ch½‰ŒŽ¡Êø#¥ÇЦ _ \7Àñ…-åéc#‚ðf »¯6)j½Õ»³~µz1û岆Q7 á~»Ú}è®·»õà   ;;P´i¡ÉmwþÝmïýǹp`ÿ¡üFž§nHZýa À$&pöæõ»‹=ŠjÝ+ø.+̤}Ë9e°5@NÛ1ÂEúäa)?’¡°T^ ycZâífÕo>­ªÝ¸EéFdsªøDæývw€ƒ¨´µnÎaTEGð#Δm:Ë %—‰–"V×Rš-¯C~Dë Œ·ÃÚûë²Òž&º¦+Ô]ÇÜ =CMQ^v‡,5ÌS^6ß& ­Ó„{¢ôp"…D .°Ž‹€è| ¨)€Þeâ%õ@ªKmÛ@ ¦:šÔ¥‰øñbi8?§Ï¢z*lÍÀÜ n$a# !S…‚ÓÖòKbÕ˜Sº¦ IE¥GB€B’m"»ÍÕv F±2ðQ ¦H¬Tjë8 ŠhòV‡[걑ˆ"FÕvK²š.ˆ5ÇT8¦’ÑŸ’’z,èŒg¨¡`9Ð…ž,fÃ>322l¾\L$(+Ù˜ #‚€+Í*1ïnnEá ]ËäwÄ#?Ð&Óx™i˜!n8p”4ÅÛÝEŸ5x©C$’+ À‘Dá§h9rjãF°ûX¢ BžôFîÃtM@ Š(˜s]£lM@VØ× ß9& ¤¨ ÔΓ=8ƒ# -´½<ò#]W#šè›ªò,¥Žöз›Ãrwµ¼O;(‡+U{býÏÙAÛt—»Çï6!ø×ûí¡¤‡í6ŒèRª!h¶¯•và‰w>9T97&Ü»¶ü ·‘øð¿µ~¾í‡AÆ ƒ+Ÿà4àJ¨!„RW@SˆEÓQì!éIô% |x$*VÑ·ªˆÍ ÑN\}¹¿[<ø4­õÇå§»~sµ|QlÃ…Qpšz{ö¢˜‚KîÐ@¬À(™Ýöã~¹ûÔ`ω[·X®–‡å¢Øp‘Ò/Ðw™º¾Ûïï67Hùp–?¤÷\ ¿¯£ü~èy*Ágfj]-[ >çÆ_Åÿu¸kbT»tᥘÝMºu”«pmÆœõ§ùe¼ÐÒV_•ጧÜZY´®’D*ÁªÚ’„9K<ØK‚—;y '¤¶ñj–2j‹—‘ÜZÍY¼:úGƒæ\Cá˜Ìuìt¶"r‹ç…+¸(hdPÓ‘4{þŠR4+t¸¶NÍu³Ù—æ®4g Ê\ò4ÕRZÌY¼ ÓÝÆûG7”}@>z½ 7¦RR_àIb›§ÄöC˜étÉ006ïâu)„‡•ºó4œ hªS)˜L“Þ_ªº &Ù—©«¸ªt¬«¥(£«}/ P Åø© ?ÆFS—¡à$™©z6B‰¯"qÙÄàŒ;5¨ZSðû7‘Û‹Žó)äÑpdt¥Î™t ¬ Á8bЉ¼™£ÊÙ/àË_$;½å¬`åMi¾.Íw¥yÑ“¯r(“«\‹v@ ^RŒÙ*9K||šÎ9·e".ñÒŸË|Ýbîse¢÷ÙV;¯Á!ˆ3PõÖ»‘¦ÆHŽ ¾°éÉX05žúÙW=ŒåîÏËMy Æ…“ÓóD€²“¥¡zѺT§Ú‹¯ÿ'— í çkùR_}(uTæ½:*Õ(ؼÆÅ /.däãš×Ð]½•Š*®-ƒŠøªºÈ6ô¢ÒÅ]©Q$+„Ù÷¨¦†*Øx@HËlm¦ª@ìGøÏP7ª ¢‰O€çLÁ±Ü¤r­4C€EXL5ÁO¼Mˆ û$À‹;Ÿ7ëSŠó!ÕÉP;}]æ!›Ý ç »- Z‰8QÀšfØ_ô'ñ¦¸ •$˜4GÕt"@\@EÅ­¬¢º%²¹B=”€ó-¢Y€S«ÕÁ‘ÿ"|£û4ÍÛà:²¡¼ß*ü:EúôHŽu@¯`Z^ Øâå¥ ë¿h‹£Bô1àÇ6҈蓖 S„Í/$×[½ßM4””ç­^ÒÂIBŽž \!ÈÞè%îAå£*×6ÔÐ?#P…y°§J…Ãò­ì+¦fÔòDnø>8áC¨R<÷›5µœ©‘/dF‡b­¿‚okǯW§êDÅ:¢ÒÁYeôh"K–„3ÖÑzÈÁM2ÿ‘d U}šDj–ùJ„õÕx ÆÚ'˜Ö¸œŸÂ5ó¬”f1{9re¿¬u'}ÈÛ\„Àãä¿øƒ#Ô!"[?@Á-±OÖç¬~ ù€˜êá’ïè]Qô²¸ ° >άszq9|>0_;AÉÒyHÊÔÎYI÷ 5R£-œË¿žü¸ŒU¦endstream endobj 174 0 obj << /Filter /FlateDecode /Length 4874 >> stream xœÝ\Ýo$7r×þ„C€´‚>~6É$H°q|v‚/±õçôJ³Ú…%,iw½ÿ}êƒM{Øã5ËCàÓ-²X¬*VýªŠãŸÏÕ¨Ïþ“ÿ}uwfF—Î?ž©óoÎ&­G¯Íyð“ãt~w’£+nÏ~8‹A!êó095Z“Ê—¨Ó8yšåM´£wbVù"gÙÉ.Š ½wvDZbÇ…­˜â|å*ÿ·dj²qtSLEƨtÃTµ|ife¦Êv Ob?u~söó™&Qžç]ÝÿÓåÙ¾7é× íàô*ŒÚøóË»³=]ì´10;¯þt3’‹føæb§Æ)%`søk¥\°Ã0Ãé.ñ³Q*¹ÀSTJÆE=|u±³ÖŸÂð=LOj Z_E¥lâ°095%˜PiM´áŸÛ”ɸ£MÎ;³ìð; ¯F«àÒðnhFàvxùÝ?óD`„”ŠÏd¾c¹ÿËWÍÿ)ÿCpŸ7H: í¦ JOÃËïYZMÿáWC0ijޓq¨à¾ H¿Ð6Ñéáܧlúóå¿‚*­•ª c²&ž_¾:»ü›{=‚&7üÃÅÎ` Nýmþ}ùû®~üX>¾+£ç2z[Fÿ5”áWeômý±Œ^•Ñeô¢îwU>Êè¾³ócnöet[Fw¿>v(‹“Ôs½îÞ÷Wqÿ÷IçÁ®„/6†¨yp8É{}RÕÑ~ìy>)²§ÞY¿•üœ6¨žÔ>œT\wÇßndõ—Ô ê`Sð=›®ÿ¯ÿÐÙç©s®®1ÿÿÔÚ2üQÈké2úsÏOý¾'â™ìÀ$3Z Š^^C̬bº)£ßK.pÍnY´+7×n¸ììëÃy_?9ôõÞŽ!Åë=8ýyýw‡ç‹¢Qé8Ü×ù¿”A¶ùÃüá¦NúãüîñW'}ó9”¾þåj{»¿_8P~5“Î]ù†Øï³ýï‡0¡UTjØi8¹MÕÒÑ8Ö19ÁL‚}`çì1%‚.HÆuh¯è!–‡Ö8]ÁìÄ3Œ ÐYÅ:Z%†Ö9–…X'd·×ªå$ipÙZ7 TA¼Ú#JrÓá&’Ð6y3ü5á à.ëÎ0Ç oR$=ypW;@s0¼‚É>Zc§á½˜±,ŒÓp¸çñ¤=ì²C(§ÁZßNÓÀ­ý2Ùƒ3*é¡Yja8¼®Ÿç׸P9ëzNoëP|}¾0"«iøÄ{To†"DíÌð1†¤*sn!Aë¾À±\6‘i@ºpŠ«Êù™aøÚìö¾²~_ã[q ‡‹²ïÃÈÕ)cB4€LÅq¡å†—<H“Až…­õÀ7Ê8Ïsņ|mqTkËRŸP”Ì9È 'Îç/£_˜€ædU ì&¦>±%é˜\3~Wá5šÄ¤»…{¶É2Ñ+a“ÂÌÄ^_’ž”ÒÉ7³y/’³ïQS6°~F0GÈ}À–Q§.@à}įƥE`àpTÏž—9m†/ºÆù$ì&ï‘@¦Wâ3œõª–›{™;Dà*“©"{l¹á %©Àl‡™ ?NÉ­Àë<`̰RLÖM$g†ù¾’{âÉvMb1üù™'$½1a¿HÃCùøÈÉä#/0Ϩ¤ùç±´×Ûz焽>£äð|â=ø –J$òš-Rï}Ç2)a€CŽ2˺6º6w¤Ø« ® ]o80§Ç÷ÛQ)¼1ƒï·¶V’þ 5‘,‰ÃéÊ+ø*4Hê6Ú­[ÊK!FÆ)ØO ÆG&ŒÉ2¬¢¬×ÕaéH#ßû®ÛƦ÷LаIðÀŸ' ø—ì‹óÝÜ/´œñQhv‚éåWx'ŽÄΤ&I¸Ð~1qëöÂS݈ý›Ûâ½],ðJÌ]ܘ·7†ì!þÉ .žH±QºpìùàÁMiËÕ¡œv©Ñ$¦Vù1ÆÔ†s´5ÍDP wö¨mõ"©Låž'côì{Lr°M—)€`U†/ütãåŽ×; åö"w>^ŠÏñ™Ð:ŸØ/ãØÂì Ïü܈ÐmwÌ0žOK|t÷øÐÏäñJ?ŠËüUXNWEœúÀ¤á(‹ªàÎ0ålLìäƒw˜BvjÂ8Þ # ­¥0"w¬åSã2Vò‹Î¼KF’““‘ûI3• …¨Dˆ‹ìK’p§ûZeM!xõ}™BT±©(¾e<•œ.SåxÁgkÐé‰#Ç‘I8v%ìÈ]9n­t•Ú´àOÍ3³£Y{Üqòq6Ê¢`$? O÷iÙ\âåj@ɾ %IXc¤Õâ®ê¹!Ò”)·°±j9ñS‚NµISm Z?ÝV‘³¥ŠS·e䦲ºìÖ–fQ¤ßóCRwªì\’z˜ Áa]vØ9•uËδq“ŒÙ±-fPØ;* oWÄ6 `ÔT Zãæ,X¹ðŽg›¥r‰gõ(d¡z#õu ðÀŽ;?à ;'Žhd6mÖ[É¡Í"ÅìßÕÛBÜ«œÙ S¢ò{µ¾ïðVEüŒñídÉ+PÉKFÁöªøˆôÀ1ÎM•™?«ÅšÉ1ÏBs`yK|ñ9ý­rUè"ôíèóÌÁÙ Ì|ú¿NTƒlzô!ahØ ¨Î÷ÐÕkóT¨ú¨‘é!˜ýS•ñVåFŠYžÖ­ø2•€„zâu†€è/*-N*æ%.øUecÞ¨–ÝñÅGk Sýbˆ }hž®Ðq±[q|SÄÏÖjJ®b\”‘•¿Ê–ºB“Eåw<ªÁ¬µ[*£9b*¢Ö(Õvª¬Åﺛӵ,Zíу‡üµ›f¯•ÐNQB¹99@#²±q±MaÒÁ@w¢ß4)òY6«h%±hj¤”IB ššgA-4XH÷X\°D⪔è½ànÉ[ÛB%OQz³N±l¼j$d˜yx„ó9 'WS]<‘›AÜM¯Ü%emÖß­Éz;V4ƒ¦â¼¬hm+¹”®h]l£}¦†ÇÏóDbê$DT‚#åsÿIºa`hH$èu_Ó‰Z’ X ÃÏ•X½Ds~âFªØKpÚB7Çß ¶)aépyà©m/¤Ñ>iªm´ì¯~£L§ÖñvÙ }ÂùU·5á„ý¬ÃbíÓ®*b6b;µ´vþQlCc 1Z vÙ¼*¹&,6ÏBl¼ä3Ý$žåïF!A—H]„a}Z¶›Úw§¥äšÝ¿MM1bÛJ„‰l°˜ÂlMƶ+[¹Ý†¨ ­2@äßG½ý:[xî]ïQâó €oØòÔša&ñµñŸœÈ.4dµEƒëên›‡¥[]†²ðÈ9»€w](8ªS¬³ù+¬ë^Ñ3ôUB\jÊ· 馸dÖü°|³~xÎ_cûamŸ0Cùõ›å"¶~žÒw©r*mÛ>C®Ž†3ºO< ZV’7{˜4YµB˜…w-Sâ*áÏÛ4¡Fàq˜bÈœç~yMHrM™3~™ÚïËo‚Œvmg‚z ø(©uü2½6ø€VD«w¥Ëf-¶¨Æ²nﯫYdÀ0sȹ‰2!Cý@×Xþ=¯Äº·âóküG¼Z£¤Úldâ«Ô÷)—°$K:#ï‰e-ÄòtA‘—~ôçjýGÝˆÛØu‘ ]ãÌÃæY„þÛÐ<«S·OIdœiªÃåðO¼ëËÍ{”Ÿ²ýZ ®õYà®÷„ð†i¤d¶Ç%öˆÚ6×XJ-9ûè£òmæ¡õʿѥŠDE¸í)!Ë:‚–‡®%Ï7`ÁgUVMÀé¯eÀ–BX=ëiú‘)z:gèÿÈ›”Ër½@hkß¶{ñ£k^2Ï…¡U‘páçÍêðÙÎôqK´:uÜLÙ ¨ÑvÁ¥ÒÖT’å:Ücª–²-rWûÈ¥ýü~ÎÀ|è¬ñ>qac gl<ÖÚH¿òOhàòaå\C€ârÀߟoþTe…šÖ…šö”D”HÙi¿ZÇû%z• ClË6[‹/›ó䉊ržìæ«Ò·•rûX­éwäR£ÐÅ,â¹àNtD¤›Ýá}ç°êè7eð5l4GmIê—ê kz'ó¿Y– „8¬~˜D þÀõC7g1çù}Ò~k‡º,kÍo^Ãü×ùnÑCXŒèŒõé¶/¾)I~eÅÔÚlžuŸz©(Ú¸@ÍoV‡ö™£Ïͺɜ¥âGÞ}y‰?ɌڢTñ§Ë‚§¦Ô^ˆÃ‹…DXùUŠ[¡íð-œIGÆ * “Á7(iûg1ËÛ g`–/“'!ìÍúBuŒ¹ –ŽÓ.6A°¡`;¿èý/OnYmEžÿ-qËÀö<ôE?x7ГºSIË"nƒè¿‚øêÍÒ;‘ðÆMº$ ese~E ·ö·ÕQ4__žýüó?ò“„hendstream endobj 175 0 obj << /Filter /FlateDecode /Length 1679 >> stream xœXYoÜ6~ú#„>i‹ˆå}m×°ãFÐx7(Šº¶^ÙÞbG«M‘ èoï”xȲ[øaGäð›oI,1"%¶ýïͶ ˆ›òï—¯ ÉbŠ”JH‚´,·…¦IcÂȦ˜+$¹.•ä1 ZaDƒ¤pZ‚Ì¥a Õá&EbO³:³7°ÒF#%Rý@ÊI2¸4 'MÒ˜¤œ¢R?éôœ‚µRb —wÅÇ‚¸@–ýÏͶüiQ|EMi‘T–‹Û™”„3¤H*ÊŶø½:y{r9Ó#«ßæ3°j¸à´z3«!=sŪù¬fŒ!Ihõ~¬‚Æ”šêíkû¥0Ö’ý±ø8špÐà¬Ðx,V`õÊ)­µôÊaÊ$Ò´W®ˆš-þ*ÎÅ»‚#£¡JÀH)¥Ña›1®@R<ŒØø<Æž‰Ô6¾ÜÇæjFÆFòêÕ¬‚¤Iµ ƒë ý¤6Hˉ±ÏAº®‚øm¶A:)šë‚t¤ýÄÚ‡ äëÙÌÆ™dWåâ²X|÷„üvÂt¤ÃÄlâÕi.‚t¤Ë ̓ôaƒýDÚ±WRUJdÓ6¥PR˜²&à ÌÜ|½=nºå®Ù³ZÂî¤Z4‡nø¢àï¾uÕëf×´Ë ÄÄ·1.×»fÙößšVŸöÝ}shŽ@L d”¨3y¾î^¦hõ°ß´×ÖðX?Öuuõá~ùðð9ý'ΡƒmY­–]XÏS€Ó‹óËù‹„ds8L*.®ÞŸ 1ö‘ûÉ?_:uC‚”µ‚hcØ.ÎѳC·Þ.»&x5ïV(Z>kÛ>°.Ê_"‘OËͱ‰3¿@€^}ýòµçV§Ö ÓÒ¾u|h›»õ~wº_º˜$VÁw´ZhFMɬ&rJeý§rÞY fúYhuR0g6ë÷HoîÍn³Ü­  ÌVHÍ‘d:7#tÝ3 cLŒCO!ßîÛî~Vsí£VSX‘a2úˆ±HBÆŠ`3fìàÊ{޳<(jd³´‰ÿäÈRÏæ´Ùumš‡_›,pJæ&™xdÒÐhú/Ì«$ZË;(‚©[-,!WKD-<óNVp`qÒQH߬Ž`ÙøŠ«lÃËÑ Ü³shQ’¢i&xŽk îƒ+ÈYO%"&G‡üaòG!X9K©¹úJs8³ýHOMò”t:‘£ñˆ¦ n|"𑙣J¨M$ŽöQŠŽ 9r¼£ÁQ¸)¥Ž®w7û-dTsOÎvsXÎÓ,`íGzr&Ë)_§ Ê}ÓÝCÊ”öØó¼Ú @HN–2p7Öß±?A¼Éµï-ÑÔÒx·Æü;/´ß»Ôª³i+)4‹ÐüÑ.…»Ê¨´àd§ò?œHáyÆœŒá鍸Ôöÿ…_ßÝw1»ïQqØËW¾cU¾cYÄ; xjè’pUf}-Ûò2¾Ÿ°|—‘P|Œ0šÀõ `¨dŽDÚÆ)¢|Ôœà Š•Œy²ÉNÆû_#©’m¡=öhÿG0w˜Œ%`P”8°òÑS2€q®ÕÔž8:AÜ»R$¸Ðã²Ø¤àN¬§vÀÉãž–ÇWè—§i÷åÛ“ˆË•ï9¢¯ˆdÖ°¨!±Ç\WïwëOËví.%Ã}êatñ8Ä«RÛ<ÀaÙ¬ú›‡{k N1÷oÇá‘1Œ<÷È ªÔ1ɧð~BTû7Æ9¼§ˆ&XxOXQÁª»£} =L\xaÜh%\¿á%gƒ¨Þûo.˜Þ\Œdo.mà…¤½2O•¡Z©6AyoÁ1ãRWŽ &fí]b ¯6Jl<ãøH©¦Z"ES˜[;(\¸ût]ãÞœÎSÏPâܘ oNPÍ$@±‹bÅCª0á<ƒ‚pï¡o3wi×P5»” µI‰ÒT¥>¬]®@÷ƒ XØ•6 ˜€ïvkα†lºapå¹8X(‹<È­‡!~jg¨ÝìÆ¤Qn-&#˜cþ ¯¹ŒK7Þ*7VÛacCªUª}|B°Üf–üZ¦rõ>¹s>˜„Uß> stream xœ­ZÛnÉ}'òƒ ÃÄœôý²¹öÊ—ÞÍ®Í ìE@[²¬…$j)­×‚|{NõÌt×p†¢V"ü f±¦ºªúTÕiŽªD#+Aÿº¿ï/fª1±úe&ªç3g|£½¬¼u² ®º˜åc–œÏ^Ï¢ð3¡òΈF+heI±q6iYµaJ½€ë/-ÛÏZoÃ`¿Þ«Cã-sªpŸœq‘ù¤o‚ܧ¢Ô :Oy·Þ%¶›¨Ng?ÍdJdÕýyQ=YÎþøJÅ*6Ñ)W-?ÌÚ$ËJÝxÄÂ)©lµ¼˜½©_ϱQð2Öÿüf¾<«¿!±ðÖøúñ«yPMÂÔÿž/´Æ:ºúP!¸hêg­þcIR§Œ®ÿFÖD B©X{4/†ß<§O^ˆà4œY(¡Bh\-ãü‡åߊÖ<Ó„`ªåËÙò÷oêWsÙ©ÿ:_XÇ‚¬Ï³ð,¯ÞåÕ&¯V²/yõ¶ÎËßæÕùÄÃ7«²ñû¼:™°÷vžb”²‰ÖÊ[£:*Ë?çïEXÌΫ« w/óê8¯š¼:ÈÉÙÄ,;ÅÛÿäÕlj¨WY¼aOäHþR–SÎþîà;÷«Gé0èþ0_DœH#ÔžMV¹.«/“A­'r|<áöfB6y/óêi^-'VO'2÷:¯Þä•Ì«¯òÊäÕ½“@Ž{€<>É©ðËÙ_ïþŠiŽ!ýiÂv©Ê‚ƒ©caIÞçâ=Jº4¥©VT|œ‚Ûf"‚_ámöáey ¤ÿ÷®ïS ÙôñÄÃ7L6UxGÌ«tën„d½ªÍ¿›4YZùÑžŒ»é ËÞx4°X??ȱw<³ ·O&¸žtv þO—³ï‰›X%©+-,¨¬´ £<ÿÝœTÿª.o%2ÆW¡ ÆKÅ™ŒŠÂXqV“©_¬®®Î.O®¯çËg¤´ mé@Û¤­ŒÅ! “4N.¯Ïn¾^rÔ6VEcA?e…Ò­~L4TBÔ¨J[áE4MF¡AÓzQ°^ǃ YÃt:Ó1‚¹É¢Ó ¸ŽÖ)/E§p‡Þ¢Óé¤sK‰½nÑAo›(‘D0ÛÚ$‚—µéSà­ ,I¨ŠPz× Í”¦#!D>€¥.¢k‚Ž–¾{S?ž/$¸%Øcý„–Ú5Ñ×_ÓR PN‚N—Yƒx`€ˆŸª¤ `Á&§¡c;Ýy€ØžÐÖÙ* ô FfOf3…ÝG*¸`Û«h‚ki9Äi‚鵈¡ 5Ò‚ÇH¼ë´~EYÜË]‰ Xþ ¨8ݬz5@WÞ)é›ç{ÍPH÷(_\¤‘0kd­½ˆ|7·@®õz½Ùö;„ÛoR“¥£‚¥ËOEå)¤lhñm;p{b Ü"ä·ð­¼£;Ѓ®*ßq)Ñ2à´–,o+Qî]ì!ŽF›±¥è‘÷¢¤£ÆaŽ÷Cà¢x(„ïMMñ^ï¡ßkçž §›:ºyýíú¦:]¯óè9X² oí\ãüÑ=€¶ÑÔî4›šÆhI£Í¬•çfÖbƒ³×*“³×â£3kåÙ™µØðÌZyzf-6>é4´õxJ>¨0µSm…¢« ÌÝ—SP‚Ln—“BÔ¾/:#$ê¸è¤t¥ÊB—qãY§ T8TiîMÎVZš{íܯ4uà%a8žÍMD£6¡^rþì¡p» sáv€ñ?+|h4ãš½€ëh Ì0•ö3×p)°L¥púñR0¦Ù η8†Ç£Î>ˆ£õ62ƒýDIm[ ·ÚHIDE¹2´m-­@J­>T‘ìKË0{6¢ 致]VîËÏ€Tã`ÕÀNš\Ï:µöyýºTM. íÐ˼ÔD¯UŠ¢×âU‘µú²ÈJ¥.²N.Œ¬Ä*#kåÒÈZ¬6î1oAÑ,ADÊé;ÞÄ”ºˆñ{؈m>¤T{¶9*U\¬iß!ÝÜÖrÆlÑÍqÕyýüþäüüäòæð\ó–²ý~§ã’Šo¤v6bz‡³±>KK+­®O¦÷D6F¡l½!y Þùú¤}ùä‚­}SÔ¥é^ÑË·¼/ÊÝXM»§_$¾#“FÀ¢¯7'x9Œ®>N理QÒïb´->ð¾OÛB'Ö7Xªœ¢W/‹ì Å,Â(Yéiúõ5oJV@ ¥rõ†oôòL´õÏÜÊM÷‚ÎûÖ @#±õš¼Ú¸P_Òö‘H;—~襑޳s«¢rÅåW;<¿ärõ5tœð¸Pt´—Á^ÈŒ–ò‚Ð>Îþ ééGãœlIb©5wœ%ù㮽Y w ó¼uÃ]ÿ2§_©„R|Ë”U4ªÐïá„1mZéT#£NHlGS†&‚î!•Ü8¹@.÷‡±å½@5Òú¡ ‹Ájßr¢‡qÓo«Š¶Zô{-$àAåB;R¤ÄàÜ eÇ€fÞrq²ƒü ;´ƒÃÕV7èÞ¬ÒáJÔÚËÁ£§í£t]ü°YÓ7QЙ]´rlœ0à›è#’–"p¼él@Êv\wR¥¸øLŽD ìˆ Q–1˜¤­Û*OËs1%ßÀ#9,çKI ð“É#Ú¨¼ «b´Ru‘'ì0ï>ö>›ÛÐLödHM¨lÎÀÈ ÌÏé’Î@XÌU§w*Ë<Çôç¶ú09ød4÷àz34®v ŠÉ¥7·@mm pÊÂçgŠ. ½¦dýiŽ¡„¬Úºh²9KG”xòŽ{ÂO’ðuo:’z-žbf{”³ôëø­‡ÛthÔý,0‚力\ŠÒK®Ë"¸n÷ÐnuÊ´õÝöÞ×ņg— ‡®cx„]³JÜlXcJCJGoµé{3µì;6˜Ý@쓚þˇ2Q¥ò%©º-ÞôJ•°þÙ½RýM§¡ ³Õ…ò1­Ó´‰†ú}’‚An•‰‡KvitŽ•–M8ÁØX»Ô>ö%ó5 í¨ƒvõ‹²|V–/Ëòõ;ÁQ -2;9ÞQl,M«6¨( ºj«â0 ¨«¶À„P7­:îFõ²Ì±¶"ý¸­x àF>äÐB†ò¼TÒu—é°MB’«½÷!!;šÞÈv.1Ú p€@ ÂzÛ€©ûNôˆÔ(ÓZ iœË0Ž ´7 {\Œ *ÔàÃf˜Mœ«Sƒ Weïfš\ºoë¢ñ8--(Eý)Ð æhAmY¾Rç%"x,sP´w<«ÂéÀä€Â£²ý“ŒtÀ=sj°Í€ô%/äpd0FBð÷ðλ0ðîk6Ã;÷L0¼«¯KÛÁ9ø¸CÿÓ0Þ™z§QŒ;µö™S~)£úO#í í4(<¢0ŒÄnpò;éè¡l»•ÇÁUÛ¬p$°´Ù·óy¹ºÕ]7ÿw‘Ôendstream endobj 177 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1499 >> stream xœTkSWÞ˜®@¡:“–ˆîÖZ/ÓÖŽujëml­¨µ^PA¯eÄÊM#wrBذï&Ä„˜„pr£PŒ(ZâX­~Ñ;ÓvœÎhÕúÁª­ž‡Ý?À=Ÿvæ¼ÏûœçyŸWDH¦"‘húº­ß¤§núlIä'pÚl‰7¼7 bÅ+ñÌ–:gþ9ã—øÑwˆÈ½Vq¼¸äÐÖ”ü£ñ±ØAì"Òˆ$âSâsb+±ˆ0 ÑLð¢žió§Ý¯’$JGí.âMqá—Dóƒ|z“(<+¼Ffò›,G¡*AS8.šP¡¬P®cI­ ޱ òÑ]Ðgé†3pÖ4cçÙ› £Q 6›«/¢ÿ@‰QH#uã÷Ë™¶ ä%“e-ô¸haš†#eŽF¡LZ'­58½™åjÝ$NæwË:qWÞ#ãïúù„~Ñ+$B­H$æ¡Ù‹¤›8ïYˆWáÞþÅ Œgh%šIá\/ËÞë½ð#IûeºãÆXÏ% û.¨’² °¤0>¶%%7H§=Ík_‰á÷dŒ†e©øêÆzú4t[: úM½¾6á™^W©U§£ÑšnE?Ó r´ú¡ù,ó幯¶íË+/¢Ëûx²`æèÊ 2u)ÀZ¸Û8®ÝFÙ{ïöé´ŠËk Œš~¡–™m`áìC¡Aw­½Ú»²q|…‚Îù(USÙ h©8+p– ZDÑÆ&zû™ýÄÏ•ý.õz'dÔÒIRÇÅu¢Õæoøìd«Ê§Ð6îÓSGð‚¨•R¥ð,¥ÜôézÜͨ¡Œò-¡œkè­[ˆöžÔ¦„eÕ*sÑeUz®Óg¶×yè¸01iZö\Ìßçãeun0ƒ•ì*r–게zjîe”,£PȵºBµ bFm°åZt}»Õ ^r,½g×¼=8±4¢„Ï ®:Êî?õ$¤µ”¥ú|£–Î[¦X)ä’›Ù÷NZÏP¾ìau‚ÐÞëjòºÆ ŽŒð,bÙÂjÊ«ü:H}µ½uŠ'ßaèG6$i™œ—T'æò´,CÉçvö ZŽwÎÅ_àwW—¡…þëæ¦+Ô•æ@œ¤½¬­ÒÄ@u5µvùЙšß œFq§FéÀëîNh€S¬¯ŒŒ{‚ ÿ (z=&E8Îg¾Î%LÙ¡¡ñi‘ m ~:Þœ°œ÷0~£ù8Èñ.©J9eE‹´ü¬“ÅñcŽ+jKM…@ª…+ŒEë¥à¬å `Ðtf"k¾I·«Ž€£ˆFsø`'}4~×Rj5´€¼N8n~ÿwÇbjü2£eY%+׳jVdÉDk]CM}F,A"iºÁ­ŸÂ¥K¤•k6  Sª`8zH„¿Bi/ÅáäðR™ÅÅ™ÁBºu`¬ÖPIí>ÈpŒEžÝsГ $^¿/^|Ä‘×|ŒîÊ<[9¢ï¬6CwU *¨‡ dz&&pÔ··ýç1»ëÜg:0GLÕ×By •÷±5l Ôʵ'¡ÎÁqözª«=+ÿúhwÞÕâ߀DëhZ3 ÿ0LçäÛ6{6zTu»]pƒ<î ÝËZXʉÒ8ÁÓj†&+‡F„Fc¢‡Bn†É8«ùXÁ§dµ,Ž7&T› Ž‘ÊF¨w6²¬“²qÏTH6_Ë ¶÷6¹¨7˜Á×I“Y <£«((³uŒ=~ä./dTßÓ™xµ±¨òTËóÛôÍ΀õ’‹ú±¶ŽÐã¿@¹—¼Ç+ÐU…&a“)—r¯ü;‚›#mËk@ÇP†‚ãŸì²¦ ›~W/}r`ECˆ¼·½sõªý™99TɯK T8›`Ó†²P²3ï÷Q>Ãh j&øÙ†Ì£.*ŽŠ–(±Ó!6bc v&Aü4?=endstream endobj 178 0 obj << /Type /XRef /Length 194 /Filter /FlateDecode /DecodeParms << /Columns 5 /Predictor 12 >> /W [ 1 3 1 ] /Info 3 0 R /Root 2 0 R /Size 179 /ID [<86b685f29ce08bfcb1d375dfd5ecdd0b>] >> stream xœcb&F~0ù‰ $À8J ò?ÿë}@6»(v^ÙŒÆÎà ÿ3ÈïÜd ¤b„y7ˆ^"•@$‡ ˜}DÊgH‰É R\ DrË‚H1^ÉõD¶IFA'°®0 1á?XÍ])òlËÉš 6ÁDª«<"Y *—ƒÝpD2Õ0Αü`]⥠’3 Djq€ìI»P¬~ ˆäÛ"Ùo‚Ý v?›$d  endstream endobj startxref 156472 %%EOF HSAUR3/inst/doc/Ch_principal_components_analysis.Rnw0000644000176200001440000004132714416236370022211 0ustar liggesusers \documentclass{chapman} %%% copy Sweave.sty definitions %%% keeps `sweave' from adding `\usepackage{Sweave}': DO NOT REMOVE %\usepackage{Sweave} \RequirePackage[T1]{fontenc} \RequirePackage{graphicx,ae,fancyvrb} \IfFileExists{upquote.sty}{\RequirePackage{upquote}}{} \usepackage{relsize} \DefineVerbatimEnvironment{Sinput}{Verbatim}{} \DefineVerbatimEnvironment{Soutput}{Verbatim}{fontfamily=courier, fontshape=it, fontsize=\relsize{-1}} \DefineVerbatimEnvironment{Scode}{Verbatim}{} \newenvironment{Schunk}{}{} %%% environment for raw output \newcommand{\SchunkRaw}{\renewenvironment{Schunk}{}{} \DefineVerbatimEnvironment{Soutput}{Verbatim}{fontfamily=courier, fontshape=it, fontsize=\small} \rawSinput } %%% environment for labeled output \newcommand{\nextcaption}{} \newcommand{\SchunkLabel}{ \renewenvironment{Schunk}{\begin{figure}[ht] }{\caption{\nextcaption} \end{figure} } \DefineVerbatimEnvironment{Sinput}{Verbatim}{frame = topline} \DefineVerbatimEnvironment{Soutput}{Verbatim}{frame = bottomline, samepage = true, fontfamily=courier, fontshape=it, fontsize=\relsize{-1}} } %%% S code with line numbers \DefineVerbatimEnvironment{Sinput} {Verbatim} { %% numbers=left } \newcommand{\numberSinput}{ \DefineVerbatimEnvironment{Sinput}{Verbatim}{numbers=left} } \newcommand{\rawSinput}{ \DefineVerbatimEnvironment{Sinput}{Verbatim}{} } %%% R / System symbols \newcommand{\R}{\textsf{R}} \newcommand{\rR}{{R}} \renewcommand{\S}{\textsf{S}} \newcommand{\SPLUS}{\textsf{S-PLUS}} \newcommand{\rSPLUS}{{S-PLUS}} \newcommand{\SPSS}{\textsf{SPSS}} \newcommand{\EXCEL}{\textsf{Excel}} \newcommand{\ACCESS}{\textsf{Access}} \newcommand{\SQL}{\textsf{SQL}} %%\newcommand{\Rpackage}[1]{\hbox{\rm\textit{#1}}} %%\newcommand{\Robject}[1]{\hbox{\rm\texttt{#1}}} %%\newcommand{\Rclass}[1]{\hbox{\rm\textit{#1}}} %%\newcommand{\Rcmd}[1]{\hbox{\rm\texttt{#1}}} \newcommand{\Rpackage}[1]{\index{#1 package@{\fontseries{b}\selectfont #1} package} {\fontseries{b}\selectfont #1}} \newcommand{\rpackage}[1]{{\fontseries{b}\selectfont #1}} \newcommand{\Robject}[1]{\texttt{#1}} \newcommand{\Rclass}[1]{\index{#1 class@\textit{#1} class}\textit{#1}} \newcommand{\Rcmd}[1]{\index{#1 function@\texttt{#1} function}\texttt{#1}} \newcommand{\Roperator}[1]{\texttt{#1}} \newcommand{\Rarg}[1]{\texttt{#1}} \newcommand{\Rlevel}[1]{\texttt{#1}} %%% other symbols \newcommand{\file}[1]{\hbox{\rm\texttt{#1}}} %%\newcommand{\stress}[1]{\index{#1}\textit{#1}} \newcommand{\stress}[1]{\textit{#1}} \newcommand{\booktitle}[1]{\textit{#1}} %%' %%% Math symbols \usepackage{amstext} \usepackage{amsmath} \newcommand{\E}{\mathsf{E}} \newcommand{\Var}{\mathsf{Var}} \newcommand{\Cov}{\mathsf{Cov}} \newcommand{\Cor}{\mathsf{Cor}} \newcommand{\x}{\mathbf{x}} \newcommand{\y}{\mathbf{y}} \renewcommand{\a}{\mathbf{a}} \newcommand{\W}{\mathbf{W}} \newcommand{\C}{\mathbf{C}} \renewcommand{\H}{\mathbf{H}} \newcommand{\X}{\mathbf{X}} \newcommand{\B}{\mathbf{B}} \newcommand{\V}{\mathbf{V}} \newcommand{\I}{\mathbf{I}} \newcommand{\D}{\mathbf{D}} \newcommand{\bS}{\mathbf{S}} \newcommand{\N}{\mathcal{N}} \renewcommand{\L}{L} \renewcommand{\P}{\mathsf{P}} \newcommand{\K}{\mathbf{K}} \newcommand{\m}{\mathbf{m}} \newcommand{\argmin}{\operatorname{argmin}\displaylimits} \newcommand{\argmax}{\operatorname{argmax}\displaylimits} \newcommand{\bx}{\mathbf{x}} \newcommand{\bbeta}{\mathbf{\beta}} %%% links \usepackage{hyperref} \hypersetup{% pdftitle = {A Handbook of Statistical Analyses Using R (3rd Edition)}, pdfsubject = {Book}, pdfauthor = {Torsten Hothorn and Brian S. Everitt}, colorlinks = {black}, linkcolor = {black}, citecolor = {black}, urlcolor = {black}, hyperindex = {true}, linktocpage = {true}, } %%% captions & tables %% : conflics with figure definition in chapman.cls %%\usepackage[format=hang,margin=10pt,labelfont=bf]{caption} %% \usepackage{longtable} \usepackage[figuresright]{rotating} %%% R symbol in chapter 1 \usepackage{wrapfig} %%% Bibliography \usepackage[round,comma]{natbib} \renewcommand{\refname}{References \addcontentsline{toc}{chapter}{References}} \citeindexfalse %%% texi2dvi complains that \newblock is undefined, hm... \def\newblock{\hskip .11em plus .33em minus .07em} %%% Example sections \newcounter{exercise}[chapter] \setcounter{exercise}{0} \newcommand{\exercise}{\stepcounter{exercise} \item{Ex.~\arabic{chapter}.\arabic{exercise} }} %% URLs \newcommand{\curl}[1]{\begin{center} \url{#1} \end{center}} %%% for manual corrections %\renewcommand{\baselinestretch}{2} %%% plot sizes \setkeys{Gin}{width=0.95\textwidth} %%% color \usepackage{color} %%% hyphenations \hyphenation{drop-out} \hyphenation{mar-gi-nal} %%% new bidirectional quotes need \usepackage[utf8]{inputenc} %\usepackage{setspace} \definecolor{sidebox_todo}{rgb}{1,1,0.2} \newcommand{\todo}[1]{ \hspace{0pt}% \marginpar{% \fcolorbox{black}{sidebox_todo}{% \parbox{\marginparwidth} { \raggedright\sffamily\footnotesize{TODO: #1}% } }% } } \begin{document} %% Title page \title{A Handbook of Statistical Analyses Using \R{} --- 3rd Edition} \author{Torsten Hothorn and Brian S. Everitt} \maketitle %%\VignetteIndexEntry{Chapter Principal Component Analysis} \setcounter{chapter}{18} \SweaveOpts{prefix.string=figures/HSAUR,eps=FALSE,keep.source=TRUE} <>= rm(list = ls()) s <- search()[-1] s <- s[-match(c("package:base", "package:stats", "package:graphics", "package:grDevices", "package:utils", "package:datasets", "package:methods", "Autoloads"), s)] if (length(s) > 0) sapply(s, detach, character.only = TRUE) if (!file.exists("tables")) dir.create("tables") if (!file.exists("figures")) dir.create("figures") set.seed(290875) options(prompt = "R> ", continue = "+ ", width = 63, # digits = 4, show.signif.stars = FALSE, SweaveHooks = list(leftpar = function() par(mai = par("mai") * c(1, 1.05, 1, 1)), bigleftpar = function() par(mai = par("mai") * c(1, 1.7, 1, 1)))) HSAURpkg <- require("HSAUR3") if (!HSAURpkg) stop("cannot load package ", sQuote("HSAUR3")) rm(HSAURpkg) ### hm, R-2.4.0 --vanilla seems to need this a <- Sys.setlocale("LC_ALL", "C") ### book <- TRUE refs <- cbind(c("AItR", "DAGD", "SI", "CI", "ANOVA", "MLR", "GLM", "DE", "RP", "GAM", "SA", "ALDI", "ALDII", "SIMC", "MA", "PCA", "MDS", "CA"), 1:18) ch <- function(x) { ch <- refs[which(refs[,1] == x),] if (book) { return(paste("Chapter~\\\\ref{", ch[1], "}", sep = "")) } else { return(paste("Chapter~", ch[2], sep = "")) } } if (file.exists("deparse.R")) source("deparse.R") setHook(packageEvent("lattice", "attach"), function(...) { lattice.options(default.theme = function() standard.theme("pdf", color = FALSE)) }) @ \pagestyle{headings} <>= book <- FALSE @ \chapter[Principal Component Analysis]{Principal Component Analysis: The Olympic Heptathlon \label{PCA}} \section{Introduction} \section{Principal Component Analysis} \section{Analysis Using \R{}} To begin it will help to score all seven events in the same direction, so that `large' values are `good'. We will recode the running events to achieve this; <>=a data("heptathlon", package = "HSAUR3") heptathlon$hurdles <- max(heptathlon$hurdles) - heptathlon$hurdles heptathlon$run200m <- max(heptathlon$run200m) - heptathlon$run200m heptathlon$run800m <- max(heptathlon$run800m) - heptathlon$run800m @ \begin{figure} \begin{center} <>= score <- which(colnames(heptathlon) == "score") plot(heptathlon[,-score]) @ \caption{Scatterplot matrix for the \Robject{heptathlon} data (all countries). \label{PCA-heptathlon-scatter}} \end{center} \end{figure} Figure~\ref{PCA-heptathlon-scatter} shows a scatterplot matrix of the results from all $25$ competitors for the seven events. Most of the scatterplots in the diagram suggest that there is a positive relationship between the results for each pairs of events. The exception are the plots involving the javelin event which give little evidence of any relationship between the result for this event and the results from the other six events; we will suggest possible reasons for this below, but first we will examine the numerical values of the between pairs events correlations by applying the \Rcmd{cor} function <>= w <- options("width") options(width = 65) @ <>= round(cor(heptathlon[,-score]), 2) @ <>= options(width = w$width) @ Examination of these numerical values confirms that most pairs of events are positively correlated, some moderately (for example, high jump and shot) and others relatively highly (for example, high jump and hurdles). And we see that the correlations involving the javelin event are all close to zero. One possible explanation for the latter finding is perhaps that training for the other six events does not help much in the javelin because it is essentially a `technical' event. An alternative explanation is found if we examine the scatterplot matrix in Figure~\ref{PCA-heptathlon-scatter} a little more closely. It is very clear in this diagram that for all events except the javelin there is an outlier, the competitor from Papua New Guinea (PNG), who is much poorer than the other athletes at these six events and who finished last in the competition in terms of points scored. But surprisingly in the scatterplots involving the javelin it is this competitor who again stands out but because she has the third highest value for the event. It might be sensible to look again at both the correlation matrix and the scatterplot matrix after removing the competitor from PNG; the relevant \R{} code is <>= heptathlon <- heptathlon[-grep("PNG", rownames(heptathlon)),] @ Now, we again look at the scatterplot and correlation matrix; \begin{figure} \begin{center} <>= score <- which(colnames(heptathlon) == "score") plot(heptathlon[,-score]) @ \caption{Scatterplot matrix for the \Robject{heptathlon} data after removing observations of the PNG competitor. \label{PCA-heptathlon-scatter2}} \end{center} \end{figure} <>= w <- options("width") options(width = 65) @ <>= round(cor(heptathlon[,-score]), 2) @ <>= options(width = w$width) @ The correlations change quite substantially and the new scatterplot matrix in Figure~\ref{PCA-heptathlon-scatter2} does not point us to any further extreme observations. In the remainder of this chapter we analyze the \Robject{heptathlon} data with the observations of the competitor from Papua New Guinea removed. <>= w <- options("digits") options(digits = 4) @ Because the results for the seven heptathlon events are on different scales we shall extract the principal components from the correlation matrix. A principal component analysis of the data can be applied using the \Rcmd{prcomp} function with the \Rcmd{scale} argument set to \Robject{TRUE} to ensure the analysis is carried out on the correlation matrix. The result is a list containing the coefficients defining each component (sometimes referred to as \stress{loadings}), \index{Loadings} the principal component scores, etc. The required code is (omitting the \Robject{score} variable) <>= heptathlon_pca <- prcomp(heptathlon[, -score], scale = TRUE) print(heptathlon_pca) @ The \Rcmd{summary} method can be used for further inspection of the details: <>= summary(heptathlon_pca) @ <>= options(digits = w$digits) @ The linear combination for the first principal component is <>= a1 <- heptathlon_pca$rotation[,1] a1 @ We see that the hurdles and long jump competitions receive the highest weight but the javelin result is less important. For computing the first principal component, the data need to be rescaled appropriately. The center and the scaling used by \Rcmd{prcomp} internally can be extracted from the \Robject{heptathlon\_pca} via <>= center <- heptathlon_pca$center scale <- heptathlon_pca$scale @ Now, we can apply the \Rcmd{scale} function to the data and multiply with the loadings matrix in order to compute the first principal component score for each competitor <>= hm <- as.matrix(heptathlon[,-score]) drop(scale(hm, center = center, scale = scale) %*% heptathlon_pca$rotation[,1]) @ or, more conveniently, by extracting the first from all precomputed principal components <>= predict(heptathlon_pca)[,1] @ \begin{figure} \begin{center} <>= plot(heptathlon_pca) @ \caption{Barplot of the variances explained by the principal components (with observations for PNG removed). \label{PCA-heptathlon-pca-plot}} \end{center} \end{figure} <>= sdev <- heptathlon_pca$sdev prop12 <- round(sum(sdev[1:2]^2)/sum(sdev^2)*100, 0) @ The first two components account for $\Sexpr{prop12}\%$ of the variance. A barplot of each component's variance (see %%' Figure~\ref{PCA-heptathlon-pca-plot}) shows how the first two components dominate. A plot of the data in the space of the first two principal components, with the points labeled by the name of the corresponding competitor, can be produced as shown with Figure~\ref{PCA-heptathlon-biplot}. In addition, the first two loadings for the events are given in a second coordinate system, also illustrating the special role of the javelin event. This graphical representation is known as \stress{biplot} \citep{HSAUR:Gabriel1971}. \index{Biplot} A biplot is a graphical representation of the information in an $n \times p$ data matrix. The `bi' is a reflection that the technique produces a diagram that gives variance and covariance information about the variables and information about generalized distances between individuals. The coordinates used to produce the biplot can all be obtained directly from the principal components analysis of the covariance matrix of the data and so the plots can be viewed as an alternative representation of the results of such an analysis. Full details of the technical details of the biplot are given in \cite{HSAUR:Gabriel1981} and in \cite{HSAUR:GowerHand1996}. Here we simply construct the biplot for the heptathlon data (without PNG); the result is shown in Figure~\ref{PCA-heptathlon-biplot}. The plot clearly shows that the winner of the gold medal, Jackie Joyner-Kersee, accumulates the majority of her points from the three events long jump, hurdles, and 200m. \begin{figure} \begin{center} <>= biplot(heptathlon_pca, col = c("gray", "black")) @ <>= tmp <- heptathlon[, -score] rownames(tmp) <- abbreviate(gsub(" \\(.*", "", rownames(tmp))) biplot(prcomp(tmp, scale = TRUE), col = c("black", "lightgray"), xlim = c(-0.5, 0.7)) @ \caption{Biplot of the (scaled) first two principal components (with observations for PNG removed). \label{PCA-heptathlon-biplot}} \end{center} \end{figure} The correlation between the score given to each athlete by the standard scoring system used for the heptathlon and the first principal component score can be found from <>= cor(heptathlon$score, heptathlon_pca$x[,1]) @ This implies that the first principal component is in good agreement with the score assigned to the athletes by official Olympic rules; a scatterplot of the official score and the first principal component is given in Figure~\ref{PCA-heptathlonscore}. \begin{figure} \begin{center} <>= plot(heptathlon$score, heptathlon_pca$x[,1]) @ \caption{Scatterplot of the score assigned to each athlete in 1988 and the first principal component. \label{PCA-heptathlonscore}} \end{center} \end{figure} %%\bibliographystyle{LaTeXBibTeX/refstyle} %%\bibliography{LaTeXBibTeX/HSAUR} \end{document} HSAUR3/inst/doc/Ch_survival_analysis.pdf0000644000176200001440000032713314660150123017633 0ustar liggesusers%PDF-1.5 %¿÷¢þ 1 0 obj << /Type /ObjStm /Length 4099 /Filter /FlateDecode /N 83 /First 690 >> stream xœÍ[Ys7~ß_·8•ò`pRYWé°eÅ’lKНT(j$qM‘2I9v~ý~ ÌsQ®Ý’éÁàl4úøÀH–2ŬcšYã˜aÎIf™×Ž9&ÒT±Œ ‘æ™PR!‹ í5ò˜°e’ —!_1),^4“Úãi˜´Ú¢“™A¹cJdh”1¥5žO´“ÞxÆL‹•%ÓÆ¥ Ci‚¤fFf“†g¨Sf¥Å»ÑZ¢sæ$èž9ã1HÊ\†FJ0ç3É”d™ Á1ée™FceXf0-eYFý(Dz t«ŒyY+ϼL Ó)žìÌ+«ªzš¯&V¤Ä7ð" T$è£Y§ÚeLm†FàSšah .¢,elÂ+fÀ ¡Áž¡ˈY¡²!.gà¦-dŠ™ô,%Xá„T๡P9èYPgѳtÚ¢g•:ÃhU”B?–– Üd˜‡PÖÒ’#‘÷=+XBÔbà±£P„ž5±ÌÑÒ0™B[¬ £õ¦Uc…ÎÀ§I< W˜4E=‘¡2z´>HX’ó”@… =cu3Fb2¬AFäÑŠD˦ŽV äýë·ßßσÓÁb€5„ü2þúz1Mò9D7¼¿œãEÇ—ãïW9ã[¨?žž³gÏB׋‹éŒýv–Ÿ¥©ÑXL<ÄOáGï ßæiЬTgE9åg«ºe¹1muQ_å~UFù}˲Oôïl§¬Ký;ý ÔÎòÁb4l9{²ý+Ö_§™p"S“_RùSšþôsQóx²78Î?°¿G‹ vùÎfùŠ_åßÿžÎNçì ^ö§§·u÷f6=½æèoçÍÛ¹˜Îóáltµ€')þ¡ÎÑõÉòá¢dM•Ø~' ýx´çËRQa`…I¶Öª`"¥íŠQÙ¢xúÊÂSUÑß°è¿ì»ÈsEýÀ\UôY¤C{ªëŠ|Ÿ4*U,†^-’Õ«Å mÏŠõÏJiÚš^Odù«¸ý'%Iö $ôˆRªbžŽb =Xf㛋U …¡AÌü«á(Õ¥O&Ó “*Ëøˆ½+S6ÝšNù5³B7öóÓÑ`sú M©¥ñ&MÈ´H oÑ(3Ô/•ç0ŸO¯gCŒKƒ¾@gd#£’ͦã|~ø›í 2ÿ¶@ÏžUémp]Œfó‹ä{ƒU:¶Yjr­ÝSÅøv>§± ÿðñLJœ‚%±Þ'ËË&×ã1Í!’UiiÂì ^Ôd5È\¡ŒA1}ñì#gá¹”‡h5V%⻤õ€ØækÔ¹êt!µÁD”Ú£#ÅV5¥³%+/Lƒ’£\¹Öù×’Ÿÿ ¦IÀ®Hí Îw1íÆ‘o3 õ.uÈ=’‰ûèÐæ`ž‡Öüøðí»ÙÚßsøóÉpz:šœ“G ½ñߺÌŒ„ÁÛ`Çá*„Z©E¨#€—Ȫ/€4¬(G£½..ÈÔ óM»ñ¯¬Uþ„ƒè$™(k’NÀ’ì¨Õކjy‚¾£”þ4ÚS- {žÀ0 ˆ-ÐBH1Pa0¥2ØRÊ-KÑžP FP>æPÍ´hAOHLV"ZÛù0Èò€$®^æ£ó XŸá<¤%|Â7ø&ßâÏù ¾Ã_ò]~Äù|ÀOø§ã鄟òœç—§ƒù?ãg£¯9?ƒdðs~ÁGü3óK>áS>äüŠÃ‹¦§|Æç|>úÆ|q1Ës¾ø{ʯùWþýç 2®§2%Ó:œ ˶YŠg(óÀØ.L(¾s âB)ç`p™7åjˆi4ܘœC¡ðº?šÏ!eA#ùÑ"¿|G ®*/Qã Fi0¸%Ä»o_½øý9;:ÚüP“cHÜdc2­2V hØ’hÓhªÓK ]*[kLbW[c]]ãà ×Ó%Ë^®³$]…Öužû&Ï[lèÉvèM7×[ŒÞ|ÿúÝ«mŒpˆp­—»ì†kpÑIo»!ÖhqóÏzŸÖFÛðL‡}@æÒ.ËQZ¿¬§Šé*%¡¬¨§2úÙðD ÂÖ¶ê×Ä"¾.Åbjÿ2(ü (9é3irE‡ükMc— +…-­¥ÐK†qjäÓ¦Õ—·¯Ò"ȽMi!á4„,¼ÔM”ž B!"–jºJ/î*Þñv¿¸õiïÛ÷U{’‰¦_$¨Þ˜·-¿¨zÊ7bÖ«dJõ”ô•¿ŒSÁ«`‘‹w¥J¶ÆÛ6T»î{Ì @Yéy3²I©L‡eiÆŽ¢~i°^6äÆz¤yÑ¿RÛÐíY¤Á9RÒ†§:‰Òµ.2žM‡Þ׸d²ˆNŒ(óˆzÒ/ôÝå—MÍ/Ç×µ~ùßãûü€¿á‡…~ÇßóüSÍW§——Q™C§<Ÿ”~›þxøWõàˆ»/ò ÿ?KW>A(³òç$éãülS³Ðka ¾ð/×ÓE~z2Ê—X'¼Ådùå(’8Ï¿bÀ.pð7ÿÆ¿óø?ùlZ³:fé´êç©Nc)p ¬[Ù´:uUë D_§u°ûöÃÁ!ú?Þí ´iku튞Z­ lôC†vÝŠ_U‹Ëò¥Æ¿„Œ$á^벨sN/cŠz™í¨­¤G\(C«µö#k›†_™¦ÑË÷H ½IŒ›Á0S+š5m±Â(…\ÛÑ ¶äM[¥`ª*^*µ](Õ.Ô©T¦&Ü=«ëÆ ·S†ë ×”Âëëp ’‹i»)ÐZ—^Õ”Þ†tUÅ÷)œÛ nÓßî6e[š_z¿·{@ã÷–f¥ÛÒÜDºBÚ¾>*´ÿ§Eê>¿´Ò>m•ôí¡þÞÕW÷X]uï7‹Ûs«cu _KAjÈ@Àa®ª»ŸwЙÁ|8-FãÓI2öóÏУ“ÁŒŸÌÃÏù"¸…"]AÓONÇcÔ‡»úr=7âËsÚ'Îgm/5ÎçóºBÞ८Æ×ó¥oоhL>±®¹×“Ó|6Ng9”x‚Á+4Y™†Š¥FêvðäuSzÕtCƒo•ªë4å:MÉ{èôû×owÞmÿr0º<¹žïO'{Oóóë×'ãQ_wmoY½ÜXŒžÍô}~Í·®Òúÿ]íÖ÷Zmw7Š6¯&Ý-Õ¦P~©Ú¶¾ãc\;åNPêþJýv©Öï¢ ª=͆חU5Ú½löÓáš÷›4ÅèŒp²‘]ʼJŠÌ.½±¯ë0¢ÅPL:±³®Ä¦©Ä7)RÝ3«ŠN‡•©é´í4W:­:túÍÖî»Ã}Ø“ý:êÌJË³Š ÛûPÒ7•Wô݈2v=ò{ø_;2ü±¸½RÇ“i Ožä‹A¡%&¬É¹Ûΰ‹JӡϺ¨Ù¦¨5Ö·gØ’­Ûà,åg:ƒË+v8D8u£3Àðú×ò`£8ÿ 'RªDd)Ax“(ÂâåÉÆKPEû Cj"2”B‰´ÓIÄMèR{â$1y%^{£Éç’Ìp8ØÞ’y¬Ó ]àé»^t2) lª0I­˜$”Hœ£øÆÊÄZ·ŽIÚ&tÍÄ%tãD¦>±ð¬ÒûÄ€u½X´Â™QP SÞ¼ßõŠG/>…#Ù‡œKkÛÐæÞçÒV¯Ùrz”siáÚ[+"míð7¸Ð÷XúgQÝ}½qDýº¾ûû¾Íã¬ÁcªÓ3äò^¹Îc[ã1"ëþ\ÖN…ö .·v¢k\èëÓ¾<þ}wÿãNŒwú2YP”ÝèפM¿$zŸÊv,H7À+lޝK6YùuŸ“‡àÎC´hòºµ[XçF_fß~»CÿèHª)ŒcÓ3C©U’’ ~ìƒàz“:S…ë^'ÆÓå%>]×5¨Ó J[¨Ò Ž®•ij}Oê*~À<–p÷ñý¸T¹§H±ð”^ØD»º¹¤d‚H†`JbŒÈ }ä EšXw×PÕFƒmãìmq8º›u8×Ǻÿký=˜ú XXA›2méÊ"‘¹¯`‡¡˜&r©@úí?^nWèïLs°?°? ÎêÀ®…;kLè Ö­´ï´~|þêÍN8ÊéËãp™¡Þ­mßâéAÉÛ¢žö™ämµºJÖŸf¶ëu¥ÒJNK( W7œKÊúµå ÛPHs¢˜¾4Ïñšñ2[ß©ú~¬¥áøNʦLµ/œÖý^Çw.»Ëé]/Ûn;= 1‰M×úg¯¨£œ„'D(*TBßH©LÁæë;{@ÿHÆÚ¥æûm:Â:»Î*ë[VrI;¼»»1é‡÷‘•IáóÆ,1ô¹¢£Æò1VñyO]¼4h“Ò¯=Èú,O*(¸ ™º$#Gšï*^åG/ýÿ°”‚ÒÑW¥B$ô§fT–˜Nözðè΢¶g¹DuÌâ}©Y¤}£yWÌÒS:z«¬ñcm¦8y5~Ьj¼kÎp…޾_žLÇÕ=ÖbÀÛwk‰éü®h«nò^>?ÞÙ ’›îp‡Ñ·÷8\s‰Ö¶ïу¬àeVÃ’…Žƒ‰aå0Þk¯‚ìæøÎendstream endobj 85 0 obj << /Subtype /XML /Type /Metadata /Length 1484 >> stream GPL Ghostscript 10.00.0 2024-08-17T18:31:15+02:00 2024-08-17T18:31:15+02:00 LaTeX with hyperref A Handbook of Statistical Analyses Using R (3rd Edition)Torsten Hothorn and Brian S. EverittBook endstream endobj 86 0 obj << /Filter /FlateDecode /Length 3888 >> stream xœí]oÇñÉ òÒc+^öûÀ 8†“¸šÆVûк-N"E y2IÉÖK~{gv÷ngwŽš¶o…ä´œ›™ïû0g5Ÿ3ü—þ¹‰ZùùÇ›73ÊÖÒò¹Õ†×ÎÌ·3'Lm¼ïOngogžÙÚ(7·F±Z €êO÷µÑJKxV¨; 0ŠÁšÐÓÚ¯® ×q弫­&L¥Ê“‘®VÆž·µcœò”ÒA“xê©u,jªöDÆ•Î@\L¹Ú)€UÖùÚªþÙ|3û0ãAêóô¿Ëíü›óÙ×o„žûÚaæçW³¨>HÙ¹±pÉùùvö·êåbÉjÁ˜W¶úþÅŸ¬VÌ ¥«sòÃ+8–^i%ª7‹¥”²æÜTœ/þ~þ Æå.*¸VHn)uí$¨&<`atÞÞs_Ý#fí½³®ÚÃ1÷J8[=„Gm™®n£÷µÂǪ#Ϙ¶º,8&«_ËxµËøÄÏ3Î#,«-Ð’®zì±È€°Î© •`¦z–ñŽKîÀ¶„ãƒÎÇK}WPBìŒIAØo·!B9ä ùf^‚p]( Èô×ðžð$]Üá4á½Õ @p ÀK|ö\y¸¼° ¥iH E± rVëj•¥n¦j XÄàfß ƒsËlR’åB% Ùÿ!\3Š¿gÁ€q1P“ñ¸Ép‰7b Ší‰€—ý`9¹–Sö€·u>ûi†žB¼N;ôI¼®;A¯›ò8ðS”ð Ô.©£Çq^&¥öºâ‹¥òð¢¯^.½·B$}r)£îÁ~àzñÆŽKðÂv±Æ™èõÉù ¨¤ääºD•3c A¹jà®3wçgЃ“õ( п‚¸vþÃìü·.EÏåÛqjÈš`Œ4*öˆ9`ž‹¨'Y TsÕlº²Îd²ÀטaÊ™Fgy*ÐCÇ!c¼ÛÉd£äF!ˆ8ËGèÆË=‰0Z¿b®ú3Š[ n9œémºPJ·éqˆö,ú䛬» ñ(/;èe§H|‡w~¬/ÿ¨ƒ'#uFy.¼„^ƒÔ8(í»¬‡‚H§\¼Š3, ¥8¶AbRú%¤SõÀ¾f1æQá®â{Ž 7™§–ÀÜĸ¨ANÛ BÀbª-1åûá€Þޤ­–âF'fNU×74ˆ' ðÆlB®qÎC‚®îèc´룿 ²,>IáJñìÅBQ#“ —ÕæžØ\pxâÿ—cku"´Su1ÇDkbQÍ*x"„Î`–„m¼1DP JBÿ1^œ^÷æ×S&\ncÚA¡Þ•ÿäé`gÜ,Šg´{a’­'tm†ö¼ä!ûú1ÞÔ¹H1yb¶Nè"z¡â´ÓơΡp“.)9!>DdÒ¹D=¦û™¤à Ò4è­V˦ú˜Í'…5i]'Íðâu$h¸>¹_4šNÊÒÓHÓ"ó`£B$š•ûa^wN¿Žqœ;ðÇÛ2,ÁÜj¦=˜¯ÁZSꎂs´‹lg13*É#jÅ@ÙÕ'˜_¶˜u,øKEís—£|[Þ¶Ó[¤gÚ¹XÍï wUÍ]¬J¬@Ï‘åWæ˜@œ€¢£x±È ½ý< 6Ábå#áÆPïP‡ Ù¬Ú¬Ý#±×³øÖV¼iö9Ô¬zÝŽ›]ióá†ñÚ«HG{7aè묀:¸Ïå,ת¬v±¡©8w4 Ý…:À0W˜s݉ۤª"ØELh m€ÆÀ=£Ùaó!³Ù!6(6lÕ1À\Q¢ ¦×’ òøvs4ë‚V*Jâ±³ÆÓœI~OÁ ]……aŽYtAö±«,Ú–Ä[áš®#þ²˜Ô*·@‰ls8Íg…Íõº¢¶u“Û\z‚º‰¨–JdpÌCÀ-£o ½hBP´€²›>Â<æWÆ-‡ºáUƒ²ª³–ç·©ºç*ö3b˜˜ÚÍ2Æ”ÆC¼åÒ`¾#¡ð}Wߣ]ûcºãѰwÈuÔ1‘©2C8nR%<­Œ:ÜK®kÕ…É7 ^C™`Tõ{(s Ñ©;¼ïŸöýÓCÿ´êŸnú§«‘§wUÿøö‰¨É+Ç*ÛþiÝ?å ¬G0æ³Ýêw‹üöÏùq3Âd;r…»1.²xšŠM|>FPRÞ¢>¡‡¶Ò…î J‹ê³êes{ûlñ›™­}èbS÷r¸ß?¬n®®ÞUWí~{ $ÁK«E’áQ¸ê-@½«Ž7Û5òŽídÇõÃzw BI?ç6ûöþŽÀ®šc‡ü`ÞÈĺb´¦ç¡¶÷Ç ùãÅa½X¯:4Õ«OwëË#9xWý¸|õnññõ«î5EÿqO¨— ?ÙîŽû" çñÊ@!â"vÅðQVR=üeâ_ª2ÿejf!@o9ó #7¯Ï;4ÇB »ÄƱÃeÏø0}`WE¼‹â‡p‹—×7‡Ï;±+L\Ä `Þ?,•;¹®Ö›ýz}H¿á(æ*Ã]ÁO«v{ÖËøîyþ#þ23gkgTÊuIÃq=š$.1þ¬>±D䢮†Ì†Ãý›Æâ/Ìt:ÎjRY»)‰+ bRÑ¢˜°¦èk˨‹¨Áé¦tXT¦Ôèzˆ:² xqÈè(Äun‚ó(€&•þ†jú±á¼XáÐqCÆ6LÉ’½¡A#{nÕY¤c}˜É'±·'!6D çŠèž+ñv7 M{€M$î]©Æ"9«”€UŒtÑàâ¯ÑÞ”@¹wON홎£HJ5jÙ«8¡Ôàôât2ç_aäy?jAÓ-¡FNOÝ2ZÄxF"€  1‹¾èñþ"AÜxg—"®Æå3Ó äÒ BY/*jÍÇtår^ì±Í¸·MË 2pÑaêW8 ™ú]ýqãM‰ŽñfÇpTÖu¡ÀYgkÙŒ&f~IJ[bRÍí +wxŸ6&¡ã·aðJÇ“z-ìSCú÷u<Æ#…&ÇMLna<86ú…îjÆ“t1¸+£«įó"~Ñ2®c)"rMA·H¢ôãÚf°éÌÓ¸í”þÔÀ?GZÛÜjȯ#Í®B ëƒZ¾ unŒA($ál§üØ/]=ù>WÜ›Adì$1õ@û×Q¼$é¼%^CôXI­Õpäü®Ê‰üû˜M%°¼kb²tò¶ }!QÌñ£GCcuæï,‚àlLƤ?¡Z¨Ðİo— Xƒ¿I0ovñî5,V"†ØõÉa½X.Æûm¢Éù$yÐÝÉgrÇ:"–®ä“Òþ”=²‰dÂdö¡QB');™Ê¯ÎÙa -O¢@?—ËÏÙïÂ*¹‹rqHДa©¿VhE7fªëˆ,k,&¯J¡› Î5ÙŠ‹4xõaÑw©Död_ñ„¤ƒâD|ziÊHU`áLKû™B@X³ŸI·ý²øõ]8C÷xB^¨™@Ï 9°í‹Aóά9ìã[ƆÇñÔ¹¢¹í–SÝf,мzdgk+úqðëà´¿ˆxÔåÚÔ’°·sz¥]¿–êStb¡ÌÙßâ—;ÜK/æ\¬Ì™(sß}:doIs2ñ5@.àh³³ŽèN©~qfVxÀŸˆ5µ­ò™–†xCý™EÂâÄhS$®ûH²’[*=¢ì>³°!´Žs –sð+‡F}¨\u79Ýýn¨Ú†¡+AwüÁqúпˆ"æM¬°¹ˆµ¥ÐÐOô&}›sQæÙ°pL/•F8÷®šŠ¸8±r;"°€ˆmGb ~Ä!hçôo—鈆òÅÀ7Ó™²×hNÇÓÓ¤úôrñxªü_gÞ®†!5ÔÇ -ŒÈ¨u˜•è!‰29äØ=ß㌄ꨨCzyÐ/bʃ’‡œïáþb3œG&^˹0ø¦ cá®ÅÑVäÑcC󵦿_([ï„j0ë¹XŒf{j‰q-è´UÃö ¬âdÊpñ?±Ï¸#]ßéöe6‹ÝxŠï‡ŠfÚÈ"‚öSNÕC‡‡@™¾é’Åw„È­éçqäc¤±–¢f¿ßLÀËìXñÛ;îl‘§îcåɳ€ ÓÚ±U*×Pº¸n“ê>³J½Y^^Œ4TÍÈÙãØ6ô«þérd#™‰ìFÞHÛ8,FÙŒqlÚŒPyÿ+:Âÿï‡ÿ+ûá³^«¿[,¡²ò¸ËÛÍÉ~?w1rƒ1)·DdcÌ~5"ÜO#—¾¡rbµƒõ7F¨¶Á»=8úà«OÍå±[šêüc»|Ûlïn×y[ýC»Ù7»÷y%z¾>Óg<=NºwÅõö³¼5~Úºüâ1¯RÃv˜.­Ó&ú,Ÿ½y}ž®‰›e&û¦ñ¯y—KëKÑцî–Ííý:_ˆâ^¹·Žæö¸Þïšã;~¼k×ëÃÍáY><î_·Ñ‡Ÿû?öM‡|µ]¥]­?Üc›ÕÁ[ºŽŽêS|.ÇCL7ºÖXÑ Yû°IGQË~Ú¬úïÒšý HŠ@endstream endobj 87 0 obj << /Filter /FlateDecode /Length 625 >> stream xœuSÁnÕ0¼û+|t1»Þµ½{¤RâÖ6œÚÒ‚èëSKBâãY'yy~”C¬Íxwfgòä!¢‡ö¬ï›K‘Õÿtà߸Â5RE_sÁ(Å‹êVypWN¡ÆÂâkaˆ” µU5–<£2Ù™;СÐcìcîæå\í«œÌ;°•XsGj-ôœ Iä¢'Á°çt­…ÌÊi›v ÔMïž΋ôëëfçÏ&÷êÉ[·„™ýtç–-£G¦X }ûæ§û^#%‰8¼ V@•> #DPÕª5ZFÿ›Ïê£æœú|&ä˜mÅD²È’Ði0#¡Å¬7mžg†–Z^6Ÿ Qœ5 ]‹9v,?6ËrT±ïA@RVxâðeN> stream xœ­Wytõ–®¦“® „°HÉ¢S%‹‘}UÔAˆ ²„MbtBV²'d#dOwßîÎBÈFHwvÈÒMVBP ¸±Eà‰:BPä=uŽ·â/óf~€úžþ1gÎëú§Ï©åwïý¾ûÝï*»ŒB¡P¹¸¯^¸Àöï Þ¿¤ l¶G%8Úzvüäñè2î?ÇœËØ~/¬ŠXéåã»&îÍøµ ;ý“v‡„¾µ-Ì#|ϼ…©‹/YºlÃLc61Ó™ÍÌ f 3“y‹qf¶1³ææmf6ãɬf\˜ÌŒ+ãÆ¬aÞdÖ2ë˜%ÌRf³Œqg62c˜ñŒ–yŠ™ÀðÌÓÌDæf6–±cR™~…§âäˆÅ#,J{¥²Ën“Ý=û¹ö öDõ²ªœÈfr\8÷Ãkå#·Œ<=ÊaT§£cÅè £ßÝïdïô¦“·Ó§cvŽ96vÃØ›ãÆË§<ðIö0)äÅKøÌº }$A:dF“ÁG“rSušÍ^m¤§fè; Ç  ÞÕÖêN9N—Ø,W(Õë Æb±•ö©’È3ö/©UVã7Ðíp¬ÛƒËXrNÞÊß'•öd£ÊI~$YiUÜG.G•RNÄKüõ؉Òe»ÿ¦A÷7y=Ë^Í^*‚‘\rS³ú‹†6úÅ ÚÆ¡£Ý0Eå éÔ!Sîb4¬S³V}¯¡zà¢Ö4üë4àEì±b¥¤À 8pš²u`5¯~0xw®ZžÅ¢ó•»¿ÚúY!~Wõî%øŒ»ëú%y^ sɇ…“ú¿ÆçMÜù ¬N?žÕ}` z‹›¶«9ÝÐQV¼¼ÀÔà™šLJ—ä_$Å{8W90w`!_ÅI™Zmv–°åmïŽíÕka2ÙNæ“ $Äâ‹d"zãò8ñgS¶>9-’ub6™4{ÃRx\›‚úB.ä|÷àCøNúèÔ•eÝð|ån&3 )EP \½ÞP/RØÈÛNµÊc;_S蔽\Aì8IŽ9öƒMý/)úÇ)Wñkd¾F'%z`½íï :]R DpþÍ{i6w¼·¹ÞË{gì›ñ‚¬øGnZô=†ÐFË7Ìö%”x,·FÂêÇñ*%¥|zàU~°røp•Åø€vÈ ø:‡Þ!#±¦’½[à¿r8ü•¹þ‹„d¬îWá(]^NFÐðd!Ç*?Ó¬h¹†î×”xG~mú¬½éÙiBòÁÈÀ¹,Ž™º£!ºt¿ØÖ–u"³#«o?¸s›}R}\"¤“…¼r1¸Xȉ‰‚M„ÌÃE(=,ä—;"» ‚9¦íêõ áMûÊÄÝ-ÁEþÔ=ÂI®ïª¾êNÁúƒ O5䙀«…‚ PCº„’ðQ•à4PKál—°T†3×–Þ´§ø’*D³¦· BÈPzH)ÉÅÒû‡;6Ña-Æ~Š|ôƒeù¹ØŽ¹¤ýÏî°´å(àŠs¿*%ž•7òO¸çÁº„l\¿AW}FÀïY²þ7V¦±ÎŸD>¬? —ÛýºÚK¬{6´‹2C?:•²þ.Må)šVÓ4Iª`Í<ð§×< öÑàÝYTS÷¡“^÷S{}»6Ï,•òy_xÈXØœÄÆh#t1¾†}zÛëlÑq]ºtyâ’ð"íß—TºõÚ= ž†Ð¡‡.±8}Ðá`t‰öL®ƒü’ÂCTA“s¬èÛ„sm"ꀋlóa)žá¿]užŒÙM&júZššÍ]Íñ•:½`Î?`8 ÜÅz¯5b0KfhÈD/˜Æ½ô ìz_§¥Ç,$ÀÛ÷„.•©jM†t½¨6B˜9¢:Ë/]á×Ù†#pRi½A.ø+n9÷›Äy ¬ã‡5l¨ºƒ{Ù^©:¶#âLÆÑ¾@gœ;ë:Qx¤F…Š…Ûù–îöò°ÂÑØÒÀÒÝðÖýw¤¦†îŽ ‚ 3E·ÓDk‰Ú*Ÿ—UÈ*eWÙ/ª4}ðûjzÒ†«©? ûu¹é —‘˜È+›p~VÍä÷þ´¢ó§fÅǮ۟09Ò+8+2@«ÏÓWVW@+×[‘ nó9÷ù©+Òašñf:±Æt(Z(³Gâ8%¾+Ïá3³ÒS Ž{RéWÕ¿J&-]@ž#³¾B{¶ íJÊ÷AFjžnž½7~ý*†ðê¤ö¤v]ôr—ÇÞ?\¢Õú‡¢ÚNñ´ù„m ?¦ëfÖÇâoŒŽŒr~…Ì"s¾_‰ÊÎö²ÆVÑŸÅõ¿‘÷¿X¢|ÈÇEúÐ:FÔ¥µ¥·Â:7;àL©¥¢£¥®šÀšÚHëD{C ®x<¿Uʳ1‚¯+Ò7Þ F:ù…‹iFÏÿu)µSz~0N„Üdmî¾\1vã–„]4;ÀqÄ;ýi#²w€ûÈô8Ñ ÏS=øQÂ(«â;d.ãx%úQQ¹/ÍúA…·ô%Æ|Ðå Ùû’!šó³$Öm6wv…ô¸ÌŸáOTÂÌ-êóäÇ?²†x[qÎw׬ש¨§M* R‰ ¿ä£ ÑÕp j”èõeÙÖ¤ T¥Î_»q:Ê’Q"–(É/Ï×i´¹ÁÅT&Õ×WVÕÖ¤ZüSƒ5¡Â®Æwò#iF£7»¾æWµëHœ¾KD}]ºáö°”œmq°•ÛqâßÑ~Òwç‘i@8¡ègÞ .: }W®€û;Ûa£›ØC|ùÝÉ>»·Ow£5üŸŽ'œâý€á7ÞxF ‰w^1† l÷ØÄý‹–›ÿk›ÐéÃJÜs“ï±ø=in‹¥› ³†&œ#7)¨(Râ'J¾9B…µë§Aˆmå«§É™Jn°„Ø©Ù6ã=°¥ÿÚ†űN¿¤b±U¿¤(IÁbÞú÷”`›†QÝÄ÷qºURœÂtŒ JÙc¨_×ÄfïØŸ’›µŒâÄGUCí‡4ÔšªÞ=nª:yÊ,ÁiG,¼Eœ¦®X³|sojmsGõ©ÎèºB¡áh[u„_—Ìô+ÑmÕ|‘,";2öƒ''Év¶cÓ»›©û´oûEk»¢‹þWÐ £ñKþVþª×=`Îë»ÊL1âÑ–¸ž°&ß!QÛWÜrC{œq뛟.ìùŠŒiN›®Ÿ…{ÜÔt8Ns_íªn‰µöÔ53gvm+šZÚóiW^Ò»‡föT1É'V¤Ñfë ™K:‡‡k‹ Iv¥Åmµ‰¡ˆ øÏ¥•ò˪:]QdJ.¤fäâà:{5õŠÙ6ÿw›’ .AûPyWÒiG·fÒMü†sû'ã k?Ž-5)úÏàK6û6]Öó‡ò uÔ᳷Ю¾H[²_£…Ü,Ñ;Ñ;Ë6‚ï¡È҃Ơ.ÒRDÒÉî…´š’|cQPr¨©ë pÀêùjðMß#¦§„SðwVÅvK†ê£`áÎøUĦzfn|µo­çÓná÷òm2*q§n¯0þhíÅqu¶¢ÿŠ(*ÑM¶ç¡úŠz£ÓÍ’Z0CmvER”&<‘*fhMd»µ¡¦ëlØÕÙ‹Èë[‰e-r FÅ·×ðytžû±sšìˆ>%ýünHhÌhÌ2Ó¹•»8êÆ1sTx¾`Œ†µG%j‡fOnPL\]އ8“~å½<âÄ'vla¤Ýr“£8ŽÇQà8žaþ;mùÅendstream endobj 89 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 200 >> stream xœ½Bÿ CMSSBX10‹‹ù!ùJ‹ ‹ ›÷?¿¼R3oøˆùR‹ ÷¶Ó÷uáæ÷$÷Ÿ÷øw÷Ôʚ걋÷÷Yûm‹^û„g€füêg–°»±•˜®÷›÷÷8û³™s–‹¡‹ÆŸœ‹©ü6÷õ÷u÷÷ ]IP}Uû 7Ÿ ‹ ‹ ‹ ‚J&endstream endobj 90 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1769 >> stream xœ­•kTçÇg˜™*!3©¦œ™rŒ¦ÄÔ( ‚—˜ª¤‰£èr§°Üv¹$n¹¬Àî>»Âr_aY–ë° ×€å ZŒ ž9)m‚95Ml¢ô˜hšw¶/§§˜äKsò¥ói>¼ó¼Ïÿ÷žÿ„« A’$´ÿ-¾‹ok!Û¹×æî¸»Ö{±;=¿zìÚ£ï­"ŸÇ”i¯ff©öfGÇÆ%&ÛD¯ëˆßˆDNø‰@âUb7L„/~Ä£„§|áJèˆÿÑä.þ.ŸPÞÔe×]ÇÝv¸ÕÑ¿¤ÕÌzÆÌôJ:iDÉËF"bÅLSÒ먔ƒ/ CÕ¥8bN‚g .@›ÃîÓØ«ÀMÉü©òÄa·0Šá•L›i:@„qhÓº¯™ßæÃˆ€B™o®_šœ´¼Êãü={2ÁÐÉz8ƒAD×mhH$?‹nݦ†/qJ3s²0^Xè`âu…A|ŽRr§÷ù§wç?Æ+ë„;ÖëWáÏì­>Á?çñn|ƒC&¦ÛTq†Gžô½^¿ðàƒ˜~…?ã"õÝÑkÌÝQÿ]ÛC_ö<$M¡]òµ‘³¨s–’"Q2‡8Ÿû˜ÅîÏzcOüø½ˆF+æÿ‰¥5Åü{Y×# ÁaØŸ(t¥>q¶èbA®5Çz¼N ilTfÄóÁý÷Ô|©Œ£¾¬tÀ@Iž€½˜<(©.7›øò 0ªï?2 À~36ñÑxrWQ•àH7צš-ð>ëh:û9"Í›RL¼Q['­r«Üæ*Ùß'E`#ïO#/;…vJ8ä-bo´OM~°q³ŽÍùv0˜úPuaª{r†ÿ£:Œ RFÇî/xg¦ìߴ쟸äߨ%})=àúNVÏð6‘ÎÒo%¤Â6È2É€¾X\ˆÇP!ó§~kºÅtS^‹N¸ -AéªûdEcØúS§<¤ºÂ&é"i•T”ô,úŒ«²7 _5²"£Ôk ²á8]º™Ò—§BéKJò×ãš5Øõ”X åkÛúÁÊ‹L¦þ ¤C2è!tù“KP]Z›‚Öá¯)טJj¡̦Švq}lèíÆÖ›ïÛÈ37бéY;%=lœ¼ßƒ‘‰] K$°Ûö…‡(5Í- -ï&Àq¡yèœuس—ã¶1 >ª{Év±;ÿ‘yåÚÈà¹F¾ìˆ#aئ ËÇÂ%õæ,­&.œâCÎs>ÉQ‡õžCkЮÚ^/‡—<‰ÏÙPÒ Ù3‹¬Sº°9ƒÉ£zBåadŸöÁãÕw|Ëì™ÑF‹°›AÞÕn"³G[q^þÅ„,|ÈAè4ê¬ÄcÊCÀf`¢½9S;hïlŽAÇ(LB¢úÚ·e4y²ú=…v”Þˆ‚–òC;II«ÑqÎn‚Ư¿Ä`úù§ð*¼æëg…VŽ ¢É\RV¬•¹ë… ÿ½ªh`£7t —…FÆØÈU¢-·vÀ·`ÆÞÆ$ö»L^”õc±ì1!šÖ€¾¦±ðýî.4ý_sµÈ}°ƒhõ<‰Hn ´Àµe7§e¨³ÓS[r[Ö6;y*#¿ZU,#oý!;ÎÉk`N/× )-$WF—-:·´“ãhf‚B±’÷Vb®²\šú+ °ã­QfÞ”¥Õ7)˜Å|Ñ•ÂNðÉ¡“Áµ‘°SÛ}×G4DöÅ=±=E7òz´5–â÷TŽp8ÀþæÍWûk†ó¯•κ •ZÙ¸‡ £XJ³ÑT[Á—U6õUžê™Jº,r»ƒ\®¨FÒ»…øEMlµœáAt§ItmŽrz;·s ótÎr³Óä[Õ‹|Á*Ó«ÔÛtÆ|P± "“>AIw™îËÿ†x]K °œ$‘VSU}Y¥I„F T%X°¯í‹ÀçÉOç)´ï<×®jÊTæ¨2S[s›ÛíM¼¿ÂÕßæþ3p_î+ÁÝ“ þ ü> stream xœUŽ» Ã0 D{MÁ ¢ÄŸ&Hd„´q‘*ë',™ ‚‡Þ{SSÝçØÏ­4È O©t+Æ åF®Æ£­ø¨YÁ«> stream xœµ™tSW¶÷¯Ö½4Vn°¹ %¡½$Zh¡…ÞŒ»qoÂÝ–‹¬²%¹á^$ÙrA6¶16ÅL¯aÀÐ^B !sÍñÌûŽ$›0ßËLæÍšgÖò2ö=÷œ³Ïÿ¿÷o ¨®](@ š»t帱–Ÿz`Ýky[²ôBÏ®E‡>w@¥}QïÞûP–¯³ƒæo˜²1t^Øü𠥋¶Eº-Žr_í±4Æs™—÷>¾+·®ò[í¿&`mພ£FÇŽ;nü„‰“Ož2uÚÇŸ s>¢‡=E ¦–SC¨/¨©¡Ô êj%õµŠF­¦†Sk¨ÔZj$µŽZOÍ¡FQ¨¹Ôhj#õ5†ÚDÍ£>¢æS ¨qÔBj5úœšH-¦&QK¨ÉÔRj µŒšJR½({*˜êMõ¥(1õÅRïR‘T?Ê‘r¢úS¨Cm¥ºQÝÝ=¨…$TWJ#è/(ü­‹FØMX$|Õ5ªëv®vD‰ô Ú‡éÉ2‡»MéöK÷¬ {vë™Ýói¯”^ßÛËíïôèú¸÷ùªï4‡¡f±¯øè;±ïÜaW²/ß }·®ßýž;îtZç¤wjr:ãô¸¿GÿºCÈ üúOëÿô„[Ê}+ ”½'xoÙ{×M¤¼jÈ ^iß– f´ÁÌ/Ò jÚf ùÁmKØ´|UV,Ä‚Rž=Ú¿wŒ^ï·FÍÐeš=Úz0C«ªF}°ç3½!ÌT¡Óäh´’ý¨ŸÑaKVË`#ŸÃ";|ÝKEö|+˜y»f©Ñu¹€¼.ôïC]ÐSh,$/ªÓÒVB™{§mî…2Ø'AKè_.;w6wÍJÇÿÃg×A¨w0h ÷ÀP_ì§_sÀyKðRF|í%Éìhñ¾‹Ù©%ömëITÎQ£ÙIî Oç<ï'æQß…EjºV›Õ¡>¢§u“×.Þ8 %’Ù§¥ÎÁæþG·ñ»\{—€rÑ5­ÌGÒ^N‹_ú¨dŸráü@rzøà¿îO»Š…y’¥ø‹ûŠœUYµT¾ Ÿ5YøÙºiC%ö¼RfâÇUwÐŽ;BÞù±èa¯p/Üw$྘ýåCÔ õúéG$æp(vf·€«!dØ^8 õÐGÊ÷Vîo1솽°GZ±¥b ¬/ð5RW©‹kÐ`¬'ß&0 ÐÝ{BþWþ.Ûpúdz 0f:@å¡X¡ ÕèÐMEQ‘2y‚B.ÁÓ°/B_¦æ€2œ ¦ô}œ™öQÎOpƒÍ7­e@ ý5dËŠB‘7þÞ¯£;ö/ª×]"kk„KP¯´Ký©2§Q‚ÖÐömÞRsÛh³Ã±¼]˜©ŸøÉ1ô=‹=Ðd<-CS~DÄä@V‚ äIj.yo³ ¯ß‰IÄ?¡V´nçi$x0 ç´ñ ,¦t J¢‹!K¦P@b ·a¶wýúƒ‚“ø ^Ž'á x w+^kF£Œ¼Ss˜ÉáÕTt§Ÿø)šÅ÷dÏÓx¨E—²ä®ñ­vßN‰íÔ´j+ ©êÞ–ãtz;Û¼æ[`P_~D,|†»JÄOg€›k¤”ÑáB…ÓÕ‡Tæòé Ø÷š7e¶‡—¾)Do è{ÁNþofÁ¿Ô$ä÷¶ d³rÉŸ²˜"9Drí«E2,µ3‰²ÝŽ[h*™lœ¨Ý©§Ê@ )N1`àx7Q1ÒÛ…‰R°$j4^ žJŒVޱב¦H½ÃÎ;¨ˆxíßç4‹üó½ñÇ¥´×X;ñÓª÷³Ÿ ÀÌà‘ø]Ü÷éˆ!‘¹M{ŒÕŒ°x þÑÁÒð„xÿg`æ,{€hÔãâ+7›'®%îšNÜuÊŒjw ÐÀh£ }hÒ™„hàu¶Ó)WDÍ(—,= ‰˜ƒg‘¥;uEÿ~šë?YbB%a¢I²€‘Ü8”*²Y’¡ÑP¹ºK“(IíÚOuúОЙ`^u¯Ÿøú}Ç¢.4–XÎ×ê{ñ¾ßÒM£¦E[»¡v[µºž­Ê­— 1Ħ¾ÍÒ‚ZË)Õ‘‰ÊâŒ%¦¼šš€ê-œøÚðY¿…ì=²Í3ÚoÛæjBŽòFÛt¶}ÿ›ô`xcŽ:Ýub&xÔa?zä×IúýCN熧$ù}ÈMB™î)B#Á´ªsdÃö<'3ò“KjMa_¢hSÄ—ýÄ'ZË·ca.³Þ×cÆŸãßEqÊ|uz0 -ÁŽt ¤æfh4¥¥œV Ú’Ò½nûÔ¢)zÿŸ¿9¸#1OâWã™í–M2åªÜ…ù'ú×U4ÝC]2Æh9Mòv’ ˜|È(•üd5Zš 8¥")Y¡ôªr‡8rzö^ WùWJ%â5¡UòoâI|LRs²…™ù÷­¾ŸüÀ·®Ÿ8Žx–Í—îöÈf;dJк1=ã+’f¼Õ«Uà“ÁGgI35ôCÌ[²˜·à®Xœü9ÞX‡‘L°¡öÔ¯Æáaÿ4ø×¬92œð2<ÇnØ MÄÐJ‰8î2ܬØy’¸ÐQfBÃô(ØŒ¦ê¿\@ý‰JgóCY4ÄŒ‡ %a"õ´À÷F(éw¸šÆ½Ÿ$Ö_ªºtŽ;¶šžèå½s¶{ÆŒvš­:h} äÛøŸÙzmî5®Ü,òUÎ&©Ù f¯uWå´U8·¢úž"åå7ý\!…v\…:«~ÂéO­‚-D­¸ðž")Pf”6ƒ¼©¿Qü€ì8 ͵3ÓóR²{ Dãaoì‚çÓ7-˜3EÑÒÊ¡ï:þr”ã%x$=Æ¢Qœ8êì­ª>ÃØ£¿v”›„HjÙ¿.÷WaÙÙt²/O˜Þ±³ ú†®cgJÙt.Ô²ædÅp£cÍ¡ôt¥uÍå2ßß,(åã…üDtÝ^V¼ç¼†T°U:Âa³6ÆVÁÔ¹É*…Bö>ÎvÄ]Q<ŸWëTÑ%D\êUªM µ†Ñg!]ž€†b䘯Mˇ|HßžžCtëm›¶ÄÂKÿ°%Íùu–i¥dZ)‹6Ê6m½ÚMþ/UZÂX¼Ýq8ªQä©-•³²ôdÖ õzU8BPç¬ P¤ÊIÈçfEMÂiŽ£>-¬3½s„m X«ñ±8yÊ<ä€üץXÖ©ÍÌ(ø Õ;þŒÒe–_9åƒÎºvÆ3ò7V<÷x¿Ñ¡ùÚ¦ÇhʅˤàF÷¾eÓ=*ÝZ€1œ.¸%9¶Š^&—ù)öepÈ™†fhôiðlÜP´ ˜ióêc*ªJôyiµ›5’ʺ¹„÷/ñ¦Å{¯WÎS. œµ5l¸2? ;Ë‘IÎÃþÝ¥-L*šÊ£GÍÝê²Ñ½îàÑæ;hZ&±JÉo"á‡òSX´ÍÎÎ>|è–ÆÉL‡*ýÉùÀJØjU ½[É›””’ŠÏãVGté?`˜¹4b{.†Ìäí èèIJ.J+ÉÖÁ®’¥×À¶ôÀ½$¨å–Òbäñ!ÚÙ»v(¯0×7¶Xdª T‡’C^«M°É ÊN |›”&_:ÃqÆOÉœÊt‚ÂÂízëõ"U,lgMˆí/‚FݲüfGã›V|¡ÚNt…Ö¬©€jhV•Ûê´T—š…`¬®=ýͷóeù±D|ÉÉq!zß¡9¦5’²Þ¨ÞѹhmD5c5?Ñô#ònîÄŸ8‚?½Xt±ƒ¬†ob¢5šì‚ÊF| ¢°yÕ3â‘Ì9¶8ÇFÈ)b‘; ¥ É-jåá „{tPB¼eGr¥‡žçl¹ò;KÁD¹l˜Hö~<ÁÞψîlÀï wBÁ÷\­Yä£K^é 3þÑIó%Vìq3–Üå¥$]Üòˆm+ÎÒÁ›l ÎZ©í|Ìê¢Ò0$©Ui‰`µ#"£"G•N\XÑ¥œí€bÞÎ_’½ø¢‘íÇ´„x?y‚tuðüÅ$픘ӳPÄTDEDJ]š}žm:~¼œ³ç¿ ¦öqƒÉBbëÇ›,mF7Ä¢)·›o?«ö©ãÜ•ò@H`BK"«*ôÅ;¾žÙø)îû¦pNü¿ól8‘kÿÔ3'' ”$ÃÉU\ИϽók'ìA“$ö¯‡wøê½*¾ü–ÉÛF°ÉF%Yƒg¼a%ÎC­íÓm-ÔÂNþ -•¾^C#ù_»d$d½:å‚.;=©Ûz9jÚ/‰:]Õ ûÚÊø††·]Å—w:Ï…¨S£qpû)G0ñïÍ&t†œvþ}v{®%á1ù)ÍáË„t'ÒÍü¹´u!P"ášö^É2PAšS|9t‡€îrB‹É¸û6WÌMuuV4'«¨;87Žïs”]D£a¿Õ´ü/oKÐAõ[*ÖXÞ1xf±øÇáÈ¢ìs°o§©†A†®Ø&bQÉb7¹H·X\¾+´IyœÀ[ƒöTõ>ƒyWí’(šãÌ.¹1dÑou[«øiUB×6žMÎSk¢ÈDŸT‹ A¯.T—)5jˆbÚKÿà$ŠéŒ4:]Îjê¸=Q£Î¦²J%üºZ^…úª7ªüÀ6j}m¢~Î!’ö™´Ms4Çè@úËäóaVÑuEl&q×´˜9x€§'ocQȨó5O‰û˜†â¾¢¹þ/G ·ß‡„¥9)Ú´d•·±vu)qÁkë‰z½r¸újÞù~â'h¿ŒÅïY6øÕv9É:ÆÎ0ÕhŽhËIî¨ë Ó"EF£DüS:¿‹­ 3HCBCŒ¡æ*“¡†”V©¹ml•ñŠÐsèëskI@.£ŸyG¿c^ZèyN8]Æ~Ú øf¥kš¹çãË‘à|kØû}Í…ŒëpƒÁ>ø2ë _˜¢‚ÇpÎÁùì#¥¨ÇÕí&§ç£K‡ç¬‚™°„¤‹²Åq£Vº€å¾œZƒy¯^€B®QKÛ;l9h#¸¥‹'€?žTO^ÕZÁ´$Žãü-8vŸPÞn¸ßcþô8enƒºàzùò'³ÃÁ—Èõ‘ZÅרW/ÐXÄ:ÏhÜMlíf4~ÕAÐ×å5UDWø¦¨@­äʾ:Òp˜G{>žöɆ髗Jðjì'³´áNâ—<-ªBsH‘˜êš—š²ˆd^Ëú¥U—H5´ uÿéŒÉ¡uü3úäñÌýĘB{ÐKöv剋$B·'ûðƒ™Ëgú£ªÍzcõAgˆãÌÎç×ÓtT:.Qµ"ÔU¸i«2L¢W¥BŠ:U IŒ¸]&Ë‚bn¯èvÂxàü ×-³ŠOúJêÒÌFØÅÔ‡èƒÂýã]Ç>Y„ÈþÑ£Ÿ925Ü^r}ˆÁ`ÔßÌ»‘·\#FÓØ‰ª™Ím³T°VB.Íp¸£‚u0óýçæaü&ûÌØd¥å2ŸjßJ22™Y¬!%ßÍκuÔåG´ÄˆúÝq8øl“E= €Ë¯A›YÔcÚsLmÚëëáu´^^›ZCÊ|ï‹ò3•©j(Ó$‘É#‚lÎr6¤èT$ÒL¤ÄJð:R ²´ºÌt.·¨áÈ-hÓæìè"o­'l`įIéXîî麙䳕‡cNêH6!èR[l*/1ùÅû¦nžta$ê*ÿŠ˜Ÿ@b‹@x‰Õw¯jQO©ñŠå[?ñßÐhþ{*|ß–N÷é r2 i5 0ZˆWø§Î]²T’˜HV¨´:0÷η¨;‡Ö¾ûï ³FŽ\vçÑn"˜‡Èóñçû‰Û‘#ºÅ–Ó„(ûÔ*o–o5rqàPg,Ú±½ñ”ë—Sñ;xi9C%â×X˜Ïž á÷ÿEƉÇÿ€…œ¸}x¯ÜÄ ø*»OÉ £[à&”0×kž?,ÚKÍ\‰7¬'º 6Äø.ßLÈÉ*bÿÕ5Á1Ó÷…|ÿŠÝn¹R40X!Âö ÊW”2a"?ìN˜HW´ýl~^VæuÈ'çé!’ÅNÇ©ß8<ÀKà}r€.û÷þî GuG³¤—ÜÛ{Ææôç㨘ìù`Ä^T±7â åC´)üfvóÅN(fNÕ|éò¹usWznZîËãØo´Âyæñøãc‡}<{L´Ö¥Ù™ËMl3î|±"hÒªáýý¼ð%²ûþίõ²}^Í\”!6gñnf˜‹zϨŠj „eN³g­›6iî™;'jÎ}×b ýã»eüPKø?Œ<Zd+D—X' Ù¼"fvg·7»ºØ^( Lö\xÄý;Ä’Fi ò'ÑGFL=~õÆh—-œ»K„Ìbpß¿Œ@]9ñ¯§¡©¹ìƒû|ÊÆÂf8ÝÁ’/[ •wå×d¬ÝZì’矾63S·ŽœÀYS4 îÈÒ¼ýÿLÓøúï0¬µ” Y–‘÷^E5ÿôû£ÅO¢Ú…,AÁ‹g§¦ü&Èon"¦ZueM§†3´ ÑpYš\mv–¥1yã˜{6³ðÈýß4‹Å~Ü«A¨5Rï€F¥¨çË7‹ÿLü*¶"¦Ò'2>I.çÔ*KýeTP^“õÍÙ3’<‹uLVZzšlêLÜ}y¹Ëžº’Ê ‹ÿþaö¼#Ö^¯Ò ž¢»8•%ج)Æ}‘ƒ?Zh4 9»ÐÔõÍïx‰B'O·‹¿àÖã.‰XHˆjF.îuÛ½ï}žLfº.KòÛ«Q,yw3Ò±p]†z­FvËQïI_%#W(äJP•FK~~Oìx¦7þ ÷Á ¶ ÉÓ™9¿Fâ“Ü!Ô% á.ñÏM[ëa$­ò>ÿä¾_mù¨‰6DaD¾lÙ÷»÷%õ¾;W}áê¥Hã‚Ve„3 3ë0%ùyyÿá ®±´ØvôÓÛÍ_¨Š §¦cT‘–ÎC® «L&=H2$2˜¦;`ÙJik­”æÓ j‡dü/ÿ RóTnT¤À&…“ø.õ¯’Ú„•qÑ\D›~0£q7‚mÿr|þ´[DÊ£YÄóû'ËëÒ‚+9OUr8D‚4/¶$±çºw¢ïÙ zv‡ž= §Eý?ˆª4tendstream endobj 93 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 5030 >> stream xœ­X T“WÚNŒÄOëPSMó}SµnU§ÖV«Ö¶V)jk7ÄZdSö=d#{Þì k ì„}µ(.­ÚÚMÛj™NÛfþ¶¶sƒÿ9ÿ àÔÎ8sìÌøùî}ÞçyÞ÷¹LÆÔ) &“9mËÎ=ÛW?íýu~yW4á3Y0sjɯÏñC³¿~t`Ãûµ|3ï•”-ü­i¯ LÏØž™™•½3æð‘àØ¸]ñ»÷$&%¯\µú™5ŒŒ ÆBF0c#„ñ$c1c7c cc)c/cc9#”±Ÿñ #Œ±…q€±•±ŠÀx•ÈXÍØÆØÎXÃØÁx–ñãuÆNÆ _Æ£ ?†?cc>ã)¼cÆT†‹¹›ygÊö)Ã,ëÏSßñÙÎögL ›ö.‘C|7=aƪWÑÏœ?ó_=í;Ã÷ô£Ëš2ëûÙõ~JÿùþßÌiå¨9wûvî’¹sÏÌ“q—r“þ߯˲Àùã¶A …>g£hšvçóm}[lýú:‡žÅNƒÅl(Й©«¨Ù½ÌþÊü\êò é)”¯Ç:‰è”«Èq•å1#7ç›à+ÏÒ³h½€^¼èÂÎÏÑ,ÄÁ¼„¤Ít9'æˆûýÄjýï5Jœ°ˆé-«AgÐ[)ßQ¸G™næè¶ÏYèåkY<.-?Õö… Ý(e …¾£9}éĸþ˜­Å¢ÃÄúûÓëáôÜ`´v u`×ÖÈ@,º ¾£03ϹQS3stGkô%$æèôè»ÔXíéùdMÆí ×AûÞ·ö ªó¹Í¾lðåÚ<FjB\f»A_f$O#¾÷X ç:Ä :SAfoÍÎØÄöÒZ›¼›ä¢ÙlĨNÞÊ׈ÔG)­R›ïý;‹tÆ2=Y‰ 5 ÈîX,;W 9" ”ƒ,_ rUE?>Ö4÷o0y޲ËA§³¾žõ’ tåz1fÁ²›,dG]¡q¾ÔA¹0N¢N%!²e×”¹‹:Nî°'¼–! %C1΄Sõ –z««þ7ÛãnÔ‡±}±…® O8Ÿ³/Ùòø¹*^¤‘kU“GŬušÆ3êL`âz±iÕ9J2g« û"rÜl:û¯®¤Wª³Õé”Vàó@¬Þ|¬ì` :¡ÛÐ }p\ÝëÍEJÊ~¬…FЋ±?¬¸Þ¾V]pù}tK~ù½}ðÚ\ÿ»P瘴W {‰DþÆE!¦A9h‚nÐNQafzJnøñï¡åíÈ·ïö¦²(éÿcŠ9ÖÚóxUÅåµmÒ;™¨’ñAJH̹U¥5Žž¾¨Žíôô¨§BIÿ»ðâ%a{IQ† Ýž''íd:Ì1Wê ŽQh‡2«Ê”O%A<.f„"¼G‘‰ Kb‡bÊÊ.„Rm¡¶BmÕ‚T ‘¥d<£‘$§DÄìbÅúww¸ ­ù±þ•«Œ Õ„…qÿ•…=wç ´à×úÚê)ÛQW¬, 7ì„/º…]–ëF[ʱ›œc¡BÏ"Î-v©}ñì6´ÔXz\ÿŠ\“4Mš‰T ½Æg-;÷µo°·ÐZ•JBnXSôÉo'Û™´922çÍè—wÁ‡ê ”Xêpéš&­ý·#hõËSà™ÏÑ›1É „]Vœ•,çÉ4ä+t¯24ù"nv /ùáùÇšFšþP}™²V˜ŠÀI $¸#VÅÑK"ÐI«»ö›a ìvuêQ)_C¥¤n†PâÙaÞ©¡æ††*²lo mPQ]ì.kw cRŒoU«ÍPÂÝٯǑ µE÷¶Ê™p¿·=Á,Ï\âXͶ+@TŒ³ŠŠ†HuDA„!Ê[`|æq‚7×cãÓ`¹Pô¯Çºd ù²mÀÍ̇‰Ec'xtAºÓ»Èâuydí‹]æqvGLBôôHÑ´ºŸå‘zfrZÄn^zZzºÈ"7ËɪTC"ž RÒFzÚ^É@ÓpãíÚ÷IS‰¹ø!ÑIZ›‰§/ò΢úÐÿÕ`ƒX1ùàÕ#hÕJÄOž…^àÈS´™ $$IÏï € OÕ|àþŒ´8Mû¤0ú× |ˆ·Æ×mLéU—â&×RØ0X|¤“ÎAwWÃ{ —;Ð*"tLˆN\•šõa‚®n›®Ê~ŒêF/˜]˜þ^æðä|Ìœ‰Ña~¹Æå‡—ÑK#sý?Fß娴e¶*>„’DiU’·;27ŽBnQƒÕV ÅDM¦Y”––™ÓÞw¢©½¡”,ßÕ/©âûAôxù$ %Å.,&ˆ,¾ãd•½ÇÚLÙ»‹Ï[›ŠNÖž>¨†!q›èH7M{ñße¡3£«9}•°) 2µT«U“Keb­D Ù\IÐË¥jµ´äÒ1J«–FÁaîºîÀkh*šŽ–£%Þ)æp|fb<©óå¤%T|xÌÖRØ”¥ ôÅåõíÍíšT|=9tdñÐ>—gQ¹Äå÷—[¼‘â3sýD£5œÃôú͇€xSØnÒáæ«£Ü&G-”{Ž8F±;´+þô/¿ÿK5ùg©3ë±qï· ã>þÿÓGÏÿOÝ·˜>pWNà‡Ú¯÷N̶‘·Xž@ϯ8a ì"B`TÖV¹Úû#Ú^»7ê.=»ýwhÎçÿ[l’Ùe*­V*#7¯|F• ÄÞ´Þá¡ÚjNP­—ZzÁ½šâ(Â÷îœ Ûzçî ¬»³=l[Vël[¶ñD“KÑsؘ"’ú«±óóv{†5. & —æ>h¨Ÿ3æî>,×pemN¾Ym¡ ÙàöjxrPÅQÉ!׉©]zM c®˜%ˆë©›§cŒ}¯Ïy1p Ád1Û=ÓG™ømú‰± ßùÛ °vèR·£7€É!+¬6XÆÑúùÆÅÍòœúä ¡Eyn~m$>é}n=VÑßI=¼?›«¨à*<¼¿±qÿ t+TjËR <ȵV¥QLïBqÕÙW²…dHÀi€w 'œ×áXˆ¾#¯- .¦VŸXû̓+¾Cò^G{A¯¥–2»8=èùï @tVò㟠×Cå‹ÎÒ‘.ç O¶­ü¤ÂÅL»‰Îã!³÷õÏØ¥“åßÄ.úÀPV|ÕÚfjÅû­Ð ’•£Ed”IKª«Ë[z¢*£–¥ÑÅËÉLz Îð¸HYÌbê<û•±éâÒ(E&W/ )d$Å ¦¢*('\9‚´´¬¸ðžÌ¶;]èH«7lzGúötçˆÇ~ÇBï¢+ô[6òCó¿CÓoâr’ˆéÙa,ÆmÂ8Þ&Äé2žŠôÿ¦^ȯ‹˜OO¥§ÑKé'ÖÄmâ‡Aèér8ˆK¨ˆNï%¾± ·‰½šì'ÐôŠãTõ©c½8´ž³­“ýœç·Î”ü2¥—ŽÝÖjpjÑp%¶ˆÁî>)Ø"Tç wS’ƒ*!d›G/ÜløÑjјE"­R¬&sw''&‘¬®m¬1Tj(C¥éTÀ™¸îýexXž¸äAÜOýМ3ÇOG~6×߃n¢…œûPâñŸÂ(É„ºÚšÂ¦Â6ê"z© WÍÉ=}¸úÈÊxz™ò§Žakªùj¼c(ÓJxòl*ùyQ‚¿¸ÂÃ*¬7"¦*êä×Mh¹‘ôÿ½Ò“Ωβ 3ùY)iå²¢ò:g=vÎf¸GŸ®c¢7/£C—Y£3~~©¡Ôjq"ßóîV]v½Gi&þžêÚ7̧Ìj—¢XÕ/œw2Ϫ.ͱ íK<½iÉ3/¿Üz§ÒTk°“ ×é1åìù k¼' ¥㔨ƹRaR™-:}•´;j Ûö^Ì; V5 =Žüêå]©Tš[lXQ—mJ²)õñŹÐE|öñïo}]¸9U+WeZ¡Ï}—$£‡Àí¡Û˜£’6–§Ü^æXuV}-”q§R¸S ÙÒ`J# n—"/”zC™l@:#NÐF®7¹cì,Üà9Átà<¥hüŸ%0`0z½NWPs=QW8@4³+A%—kòñl†is~\¾t ¦ØDÆq€‰„!à œ„SêÁÉHZn—B•Ç@’^ )¥ŠpÛÄ›4{^íÕO '|üâÙ[ÿ‘€,u6=9ˆµ)/fBä R q?㌺åxZÛ1W“ÓNºÚ‹Fpˆú©k‰ögâèÄ×T–WZêt&ÊT:(„˵¯Û*‹**jÝ'Ïvô `UZ$:m¤\²ñùÓUWÖ^“Ó¾/"2:žÜµ] ˆËÅ À®4Êéf~}îgöîƒÊ,Èãîk=r¢½¼¶º,m)º8¹[¥”jRž–™ÜŸº¬ïèðO«oŒ }?¿[í½£¢~ gG²>ØŸÇ—ó4ùÔºðî;;ѳk¸ÿ°èßw¾›!åÂJ&eWBáâßú/\΢Qt†ù2³ÐÛ(ˆãļ68ôf³ «zœÞt(¦·T"B™í½,²B^v~d"Äd¡´ — "%1!9!µ,·¦ÙÝÔà FX\)nÄ,gzÂG9÷ÊgU ­6OL¾¸(@ÎS+½%Ì%0ñÅýæ–ã$=cŒ'K”I7W6¡ ;©è5ôÀ1èSû[Š•‚€’±E«é2 Ö„YoÓ±&¬W-.äp¡\Íõ h¦ -|…V|ÀøâZ—» ­ºýåy@MÛtj½t=¾#ËÑ{½Íl/Ëo)”J–±NCšÅFˆ Þ‘'ÞKMu—>DÁÈ·ë8ÿyúÉg×- &Ãù‘G#CÖIpšòbïÐëq´Ö•µ6à™µ.«:·&dzšÖ‡^±ß @*J³m¤@ŒU`ŒµÆØ’@ùv|ÿ®;7Ð|÷y¬ió÷µ†Û®«ï»ÎyKô='sGj…RªŽíÖlÈÉ_D¥Ä¿•aÖ ù GU؆“X‰¤$}¿&('ðDÐ-l”~? ™NÕµ—ZÈ;-Ã_ÂGÄ­ý›èG/Xçäµµõµ 8%n±÷äjÆ  uZ‹òˆøÄ^–ÂYvý˯ÿÔv"g‹@JÓë'€R~ôór€f¢}4þ9×ÿÛ²ÁäSô §RPžŸ”˜”^’U×ìnt“¾äŒ©ëÊgN‡™3`æ#0ÓÁø¸žJ½endstream endobj 94 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 5283 >> stream xœXXTWÚ¾#pçª(ÊxÔÿÞí±Å¾ÆØ;(V,±€¨ô&Cgf¤ ‡Þû uh"Ø –HÔ±$¶O4–`âFcIÌ~ײ»gh3nÜ⃜¹gÎùÎû½ßû½çŠ(Ó^”H$/¶wp˜2Yÿ'Ãõ;;³$s27Aæ¦…Ã†í´„ÌÐßâó”þߢ…¾‹üï]²Tº,`yàŠ Û`çÐ]«ÂvÛ‡ïYíâºÖÍ}½ÇO/ïM>ã¶Ÿ°câ$§'O‘O1}ÆðÙ#çÌ7ö#ŠN­¡FPk©‘Ô:j5šÚ@¡¨±ÔFê#j5ŽÚL-¢>£S©­ÔjµZJ}L-£–SS¨”-5²£¦S+©Ô*Êžú3µšêK̩͡~Ô<ª?eA- P)Kj%¡QNK ¦L¨¡”õGñToªµ˜œž2¥Â¨_E¾¢¦^\¯¬^ÏL\M®›Î1½k¶Íì=>H âÍâ§ŒóMï ½÷1ïÓзßè¾oÍíÍõ³è÷¼¿³cá2`À€èº ÔXö¶<,Ù(I—ÜÄ úlPÄ Õ  ƒ~c—³¹ìÙÁ >c5Ò*ÅÚÂÚÍºÔÆÉ¦ÁæÕ9C†üE(í/”"í/ZÐÝU ž& î³QMŠ$oä‹d(Ê÷kW[+P ŠMˆŒÝ‡"ŸJTĽ¡‹ËQMmrãË~1ƒ™tÙ3·äíSŽŠù7tQ%ªÉ‹ËV¦ñ±)AH޼Xb“èëXg†­éŽMáŠÖAkùB:+É×0[ÄÖ¡‚ÝÜ"Z&% U¢|þ¾âdÁ4:Ÿ¬[+E2Þ –Ò’¯î4=Ÿï·†Ã!{Äóªôó&ϓӯ·›ÃI¾^=BC™Î½ƒµà¨µü^rÝ6²½Ó…S, ¤•Ú{îò²Ǥa£{­ôø9t…¹½ú6áp0­ðG>Þ¨¯jWÐ’·{‚K¤ÁìrÛ=ݶë³Kx[œËb G?ªYä¸uÏÚé<Ù8V _kE_è Bg"¸7ÙqÒKlŠM'űäÇ Ð zýø,9ìŒg° íï>ûþúõ›·®ÙMžd¿`¡~‰H­©ÖÁË&B¨p-D>aqûb⸄x”!õÔìPm!€³dÝ!دòó¸íi}ŠŒ D¾ |ÌG³v!fòŒ_a|ôä×¶ËvÌÎçS“e5ˆi@j•~3,ÕÂÇZ¸Ñ•¨t‚Ô}˜ E쥋ç¯Þ¹¸húø¥vKçºwšÃ£M8‹ªC ˆ^ü°˜úÓŸ¶9†y{ð’Õ ù.掠]óïÒÚI A¡=ÐA±Îä²l×̾´]D÷Œ` VßÁÿà ˜>Æa‹ÛO±‚â¹ÌZ° fpïuØ›ð)Ò‚SÇ1¬t'tÛÉQ~{¡e} ë <]Ÿ‘UÇ·‰KP©‡; á–a•XÒA`%Þ…d Pi ÷¬ë±l‡­À 6Ñ¡(è€266ÛƒkïMËõDѯZcLv˜¨ƒeO¬$'@ «Ù¿^zý¸¤€¢ Ä”ª «TÊ£³¶¬ [åÀK¾>йîEË¥d©r¹ûøÊlÃòé=lþHÎc“®]<õ?¢7:FÎhóAÃÂ0úƒ±OHù@ì ˆÔ·+<ðžDT Hž6ÓÝl¶¼¥¥Ö[k%y g!“ L I‘¦ù¦.ÏE‡˜ÊºÚ¿Í÷ñOá’“Ãk»ˆ¥ë9¯ˆIàœÔN(”°õÓÀOÜ>~þƒ‚—AC7µîÛÓ¼ä5ú³j¯4¦£H`šŽkEM:¨$¥¶\Øò2T[ÓV_ˆGi%6ݺ}bfÏ ÆÀÄo~¾×p5SE|rxº²²+dà;bŽ‹ôsî5» œIÌæ#ñPl‹Wý‚m ïGkÊT| éDºžÚŸU"}Ò§’dHš…Y ñ¬tÓ>™Þ©_èïð~zü ·Ûwîk+FjwÏÄàp.Ñ~ý¾@ÄÌCç*x# =Ñ;9¡-‘¯ £µÎX±;8¾ÿTеYE»BjA_Ã,)‘/w,5¢œñÓN8è™Ý-â¡ð[›ä¥Fň¹MVt®àáÝÁ­÷”݃è÷”ÙJ¯9¨¾Žƒ2ñgdÑãu·9Ièt$»QÃôH„8Ïè›2ª&CÑÕ®À”ѸÉh¥<þÜÕŠÊ…½&Â"’—#pz¬¡±ßÅ"¸k¦yoF`54ˆñ³\R#›T†rê™n`¦h_i-/èv¶='XèUÇ–zŸNlBŒ¦”@#Erç}i)Ñx,€g˜í6| ½;q FÞüc°hÃf~AÝdêmØcw]ÔZ0ëé&rÒö­Y°ûcöÛÓéLŠIUÁIšÞ2Ô¨µðù6äæáÍàÏLo‹ÿÐ \é –Ðe¡K‹Ñ™grØØ®p5Œóî6@rJŠ3$˜´X±¾†j…Zѱ'ÿ…3‹±G„klXŒ·M"W¥Ž)™1Ö&P- Ãñ»Ô}(%Ú é'R_·y"JJËDyLEX±tox˜¿óÝͯN€uN*×c$në  ÍDp«ñE±²} !1\lDèö…ˆ™¹¸õûÓÃPõ!Å'¹—(ÊS®.ª¾=9âkð°iØü¯£Àø?uÑd„j´¢Ö¨h1c‚«t‹òõeé}§¦AnBú¾r)R fCçyÕ¨ŽoWˆ½‚»ó › ^¼àŸ$ÎÙq ;¤Fd湤ŤGçÆä¢<”Ÿ™™Ÿ’þÒsÏ3Iíþô¿¬ש»8¸´¯xE”?ÓCäféõw¬Z•”‚Š˜A(”ÃÏhÏèhO~‡¸§§UB²_ÇÍÁ!‰ûQ¸G)*á º4©PsÑÐè]p©¸»lotô`7A;ú!ÅaÎXЄôÚTZÒ\í¹«pçP,?Kð€§ã~%C{¾4K¹Ð-G‘ÌŒ·«a z{åQcØ™-U\D†séÄ,¥£QŠN–£X¤ÌÌOT¡d”šœŸšÍ@_|•³àØñ⬺:_Q˜…n#¦ ÌÐ §;Çt•wµEÝÚD˜'YýÕh…þZÄÁêh°â?ܾþ‡»ÝaÅ>ë²¥–ĪØêœu*RV2˜LôøýÃñµÛ¶:®›Ì/¦ÁÁ‹ý²±D‹Ž0ç?À}8¼ôs)ž´äÌ=â¤jP_i0 BÎÈù”xùhdsµü˦:rï!îÉ'‘Np ÷C'Ï_E™Qeœ²:P­Èé¡îýW–àòj‰ï\†°|¸ÍðÜψO§ |NK^ ¦š R?¿  ?¿Ò ¦´TÃußÙ,Ï]‡Âë.×õ‹7C«‰ý6Mg6ï\;ÇokjÕnι*þhbqbQb±W—ÙÅÖn·4=¿.‹;죕]#n—¹õ]Û5·£Ê<~×á½s‹ÉëÙÅι. è”ÍÙæÓ7¡OÁDït.%('VÕí^­;w\¸O4·«ac®#q¯& æÌ\qÒöÛâ¸S_æïgzzâtXu@ñV0íb*ÝS¥0¸}"‘‹¿û^ob>|‘2YžLä8e0šÀ¢àÀ pßù?¡#0ê ˜_ã$Ï„Ÿ?ˆN§þUêÀFÖÝÆÎú7“¡ú¾È ïçÁ¦]±Yl0¨ ÿåŠÒ©H}‰"õjÑ›ŸL,@lÖ`d'ÏÄÌàmç†vÉmnWl5òÁF7¡­÷éoîêû¸óõG4} Ë{ÓÿêZ¿zËŽÒLì*k4~`¤™ƒõ+D«õΣX“¶Gà9¨îºËŒêä¦5ðóð¥ˆM¡ócvê]GC|QTã8Áƺá3:´e»¢jdS…JPV#ctE=ß}õ?ú›¾HÅ&Ô„ 0Äx¾Ž¯ˆÝ‚»Êý»Î“#7–‹%ÍmGN)Ë·ã°BÚ­ wß›ô_§ÄãôTŸ]{ü8ù¿bOÄHî{!E@>Ò§ê`a1~v,®ÞTYÞ¬qÈ—V’¿Ã Hgµ®ªVç*Y2ÊDŒ*¯¸ H™•ÄK‹–×ûçuÉ:7#/•0©¨z7‡,N®LúUÛd¡zOOäå›d›ìÏaêª"+Å ›ˆ0yhNl^ ¢µ˜Z«Œ‰ˆE!6ñÈ÷0n%ø'Ú"_›(äY_곪¿L¨Ô3z–öÝ’o)Ù5ïú±†\ÚÒž1Q^üï+ÅÞéûp`k”ç ïFè3}_ s[a¹6†´º@9 ÃéÜÔÐàŽ”<#è\ÔàîŽÜ•‡‹•äO÷”Ë9‚V"÷29WæÕÁP„ª-a;Œ^yMÿš«!…•Ûo—)ã÷í‹C!Œ¼ ¼¨îÍçÐK»çÓî@/—ji}zFRr†ÑA„¸Þý©‹¸¶F…0á÷x‚ÑØ¶Ó;“¯By«¨E˜l"|BŽ`ˆÿ&ݯžt0PDbh÷®°>•^.Roo×ÿº¦ŠÚZ}º™ðoט¥~¨]&˜Žï,ØŒÂ$„2™byQHPŒ<"–Ãßþ¾,F–ˆP´MXA¸ª4£ /½G”Egtpˆ¤É.²°zXá^ØtLÇ{³Õo°ôÓW0YÝq&;×úÀX­{yçvëGx k‡ûÌíì­Bí’´8Õµ®·r¡±Jeç2ssdh‚,18ù1Ò⸂’#éMǹöٓņ†–j ÂdºçPx7”íÉøïóÅÆ&Û#tî.TëL¾ºÈFEÇÆ!£AÉÁ©¨ì2¹¡~Ž¢/}~÷Øá«-'¯¡o0}÷Ç}æ|2ÓUY¤.+ÒäÆåEep'OÕ^@̃¯wL[ºu­Cç{GH¾¬gz¼mMìÕí&­á…`OØ–ƒš/ÐçÌE_a16_ºm™g…B¥_,?6{ W[{Sƒ½qÆÍÑGî¾7ˆ÷ò—&¸%¬—#äËH~Ö‡;I¿<»bÝê «&ïž—sÊŸOKË )UIƒä^S_¬#ºmõè‡gœäº¹ý’m^ %˜Û]·|?[I ¶Â_ØBy¡,26.6†óñó—)Ð>‘‘¢ö@{‘Ÿ,0&Óƒó£P\bDƒ?mgXÂ3üFÜrËCà´0ƒ¸…¶M:H$ ÿ jÖ9Åì b`=ļ=.íÔ\"CuÅ©iÙ™\UÝ‘â‹D1{pb‘ݧKÖüÙoeæ?‚hfA´:°0XîµgÖÃ¥` _>Nò·×ó~"†K_µ÷á”èTÄeêÇ?šüƒº÷J¸Æ¦œòÈŒ@¡È72Å);Y'ÉS‚5¨¥'éCÚùŸgt:ØŠ]0ýcµãK¦R€YêKÚ;Áááí%•åÅk+Ûi_ÞÑ‹Ùïj8 Õì—ÇÑ´ÅqûÊHf5ÈX,;¦ï*•ŸMOÍÎDeŒ& ($Ê-~Ǭ‹ó€‰ä\õžª¶UrMbè_rö1jEÍ~/ñ¨*Fò÷ó°G\FQ¸e_tœE0ÄÈT©Ës¿v¸…ûdsNÊIeœ‹÷ŠX9-D阂9ÞL«éúìMÑYtúôá+Ùús·¨'U§„­dlNF^&é>e¡¹²¨ý‰Q ?À»£b#¢Q¨ ŠÈŒÌŽÇØÅ:?*%‘”LaInY ù4ƒÇ‡ÁÖLŸžÍ­ZEM‚ƒ‰`¯ØÜz"‰®äBŠ_Ò W"‰õú6ðO`óÉO½XþF+=É“FÒdßg=T²YéúxP^tξ ü\¬Yû“¢# U†’OIß;Œm1ùÓd`‰²0+%)+_ŸšOÔïˆH-Ô¿~ÜÈ¢‚˜Ô°\<àá°A`Š^5C¾/ÌÉH%wíÌ8•¿/Þ‰­qî{rJÃgÜùEw7”#¦2M•É;Hôó-\bôÝñÔýÌ¦Û Z# ‰–çĤíçaàÄáqÅ<:YNò„äLtzHE5ìkÈâús}LÃüÌ{#ó>ȼ/2·¤¨Úendstream endobj 95 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 5620 >> stream xœ}Yw\TgÖ¾”{¹Q¢ ã…™`æZc‹_ì½aÃJST, *¨Ø•Þ‡™a˜w˜Jo£Bì ƒ@Œ {o˜uc²®Y¿Ý¸câ¹ù^òýö½3àŒ»ù­Ì—sß{ÊsžçœW7ÊÓrssë³m]ÂÎűÛ ‹Þ˜¼nkŒøœÏÄA¿-ÿm­óvCÞÈÛ³¦÷ûë|`÷»àßóÆ;”øofÀö™±³âVÆÏÙ±3pWÂüĤµÉ륬O ŠÞ²1tSXÌ’¥[¶.Û¶üÃáÿÏG#F¦9fì¸ñ&N8eê´ÁC(ªLõ§B¨T(5™ £> –PK©ÁT8µŒJ-§VP3©j5œZIͦVQs¨¨¹Ô*IÍ£FQó©ÑÔj 5–ZD-¦ÆSAÔêmª5êI½C½KùPk( Õ‹ú„â(_Ê’R2ê=ÊŸb¨÷)9ÅSoQݨY$”'•àæé¦sûÊ}—ûÏ =.z®ô¼B—2 ™«^½r¼î²ãØKoE¼u¹ÛûÝôÝ}»oèþ•÷$ïýÞ¯ÞŽ{ûnå=»õ,{GöÎúwÞ=ä3Àg­ÏQÉÇ’S’ï{¹÷ßkY/e¯ÿã¦p›¹G¾[}¿ñíg“Ž—fH_É2dÍï¿WõÞÿÁþþׄ{?" ²A«ÍMØ!\-DOg’²iÙfu#kIQy‰ÊÊo`ÆÕ4þÄå¯Þ ®ëH ·ŠÒ³ì†1Õ¥/La¾‡A4”Ø8œÅÀ4h¥ËÇŸØâl>‚ö˜Ÿä c¹Î3ë˜Ùø ½¦ëA%~N>f΀‰–4yá,¹Ã4D7Å6ùI~™ w‰è"óâù“g§7>¯–—<»ßÐpüò{·C“ãb§ÕFƒ£¹fˆ¦aóªÍµ¦T¦ïBIìÜK?”K~Âkq-÷%¤Ñ0„¹„+÷'צVÆ¢xvö¬E“D?Òl‚›Í <šŸ&Á_˜Åá¸7öÅ|ÿ¯À Boà€ÿuz;vçë¸.‡ŒÁ ö臻Ztñ{ ÁãWèÆ;N²4n¶ú€; ç–ð­`à6´,­™æ¡ñá«ÂWGÎÍ J դ秣4{ÿðt»}÷àé+ò}5æBTÌZT¦œÜ¼üÜ\yà°ø¹ˆý`Æ×/Ê *ôå|ùZèžÏÁÉZÐÉ”½;-¹5&/ZjR5&TŠŠŠôU5à)ÕuFTÀJF*M9™ EJž'²ÁG6øÆãÄÃgA ð¡³lgìÞQE‡»2œ` °‚2…ÊœÃáù'¶ÝG2èxd¼DúӜ똚¾$nî<¹d„¶qß_\:¹oÿ!˜|öá//ŸÍÛ«-$¨«|?‡:ƒNô¨@fQšs2rEÿ¶á¾4¾Éè Ât!²ä<_01xt~.Ò"LaV–VäµÐ†=ŒVÓ1µ#23„þ·°~!QÝÀnËõˆƒÓ‹ûâ^ØËÝ |uÿòÁë—øpl ‡¸€<ÜT%Aj8# B}Æ üÉ ¼8ŽûóÅ¥“úöŠ™±Ág¼zù#0|„[!ðÙ µ dr>Öfѹ«ôòýàG‚5u†ê(…âcdìˆme‡¼axº#ÀÝI›»4…°Œ©ƒ1¤À¤ÏTdØÏܻӸÆë&ßj󑜆§¤º˜eR2s2ìïÞ³wø0&Y|`Q—ópK ¾¬$טÎã@æ ˆ§%}~¿Æ½-þ{PeNõN“²@kBlYii‰EQ’^Æ'U¦šãÑr´,{ŽcÉ÷R›vX¯Æ‚ú°дúIû>N«Ñ*Q>›kQZÊ,…U¹¾˜–ÙPw<åš?ô|qçqMÆþ¤ >~÷¦â`ó4 BI…‰…©VTÁ6ßn¼_נȪ–)­;Qžf«Ô˜kÌsàÛPUvËo=+é-ÆŸ™“˜'—9´}my¨?vPº³*“¯Iݧ¼›Û¦ªUîͨÊ*KD©lèÔÕÃ&‡:¦×™tf¹®@Ä ëL¢½ƒa¡e+t·÷1Eðô‹p¢¹2ÆJ`R¬4¦òx™KðÌV7˜ØäûIÍ O8NuNØßcÂðžüm.Ê‘…Š~pú^ùîãò¥Å…¨„-RšsÕ­:G¹kzêĆFÚhЙufþXiˆs’»ýû;DÈùÀ@¢*qÂB߯œÝÃ<¼iìÅ$:?¼—! š;{ 䶃Md(0ñW¡~ƒ‰ˆ™&[›²eÁMÑ×oÜØ×v]YB5}ºüHáq;“ìR±ip—Gí.¦üë6qƒ¿ø‚–xhsºŒ]¼¸ÅàXÒ1ÉÌxB_ï²!G sÚØ˜'Þ"!+ij _GN¬v9ÑÃi}‚Áïãö°ÐËÜ[ò >ýǦՌ|’!úSRKè®TÏ¶Ôæó¬ ^p¦ ã}ÿæ|?œ!²km¡ìÂÛ¤èáÉéåYj©3KXÔ¢×ëtFyû›¥±×šâÖ©)4Ÿ>{IÅ6ãayŸ€¡¼D·ðDÔŸn_ûô\;鬢n⢰3´éÓ–[>^--*E=ÿ:Bwˆå`%Œ¤M.±¸;c9Îà‰Ø·/øÒ­¬™_<ïÀsi…KwÉœH d †@O<„^èb!uZä0])zaO‘ÐJ´j…ŸˆÆ(¤gšò*Eóè¨v¥Ô¿1ÕOhIËÜç6Ýõ'Â&ô}1ë΀€E[f/à!ì2÷øRðì…©>ØkRÐ¥Gàõ+P] â~ xü»Kh™öf™âÿnG£ b„åL¬qéÐ.…ŽÁch\Ë8m Þ„Äg@½¯d÷@<Æ>.Qg8á¼DÉ*µœðSš#ñ”O¢MÇÃcú”‹—“*ĦÚÛ&ÂwoÛç–ã‚7·©aEõb¢ŸC±ûá!ƒ¿šóËÍvëgø#ÖÝVÂE¡R­ÌSæÊCVÏŒŸØ1‹Ï=:n=s¤‰o:síÐmÔˆš³v§–(j·!5a=#QÌ„õ ¬GØ ²ÞˆNöMÖÈhº(êÖÏLâ0Q_ HI F¦£~–»‘º1»´oè`ÖdŸÑo‚ቬå·nv,$9±³cîD™AÏ“‰OŠû ¾ðüëuw®ð’ääQ4‡£¨iüR„ÜwB&ð’˜íÛ³ãC.|^¯~Æ…œò}ÉQM×¹àa¨+õéXW :º¯ƒ"H:ã2üuÎ%Ìsa=¬ìÐ9b‚™6js{i¸Fá¬âŒµúTÆþcêm솓zõÀrìñp:°WÛ«ž‘¬(*"5+T™ê¼|µB¾jË´„Eˆxù©YtE|¡køëwçŸ#ö‡«a“ò‘š‚c 5ÛÜ^4 3ÉdÎÁG2±ÁKí îè¢#ä“û›KmœNÿë7°¦´6ËΞ±~ŽN±_Ï»2iaPÜÊ•òñ ›P:«$9*6›ÊÌò—î4ßFìÕS«BÃvmÇ’ü I šž,äLÅ}ç’ÝÉKÊtW^}e“Ö>M‡À#îñ‘“—Ðö^ÈÉ1!A‰×ÈÓÙHÁæ˜U…}AI©ühý©êsˆ½Ñ>kvðØu©”¼J§DJV„Œ\òÝ·º›Ëæ½7vؤaU ëä*c^ ±ÙYYYÙ%YŸ¦ó­±Í™_"–Œ5=_unóAûÄŒÃ&Û’6ø–S‚MJؼ1.m'JG¹Æøšô2„òŒIÕiô •É–D´ŦGFÅÆåd‘QL¥Ùd°ÊÏž+±ìC•¨2ÇštrYuÖ!t©:f«Ý[X‚ YK®YÑÉ˽lð+ùÞ˜ÊÅá^o\jsÒT ³z‘¹º‹–b˜Ç‚œÏà+ÒœÕ4¶q8ÏàWz/cO+<²Ár²žÔòŠp‘µ°¬W/Þhò×è&•™± ÔÔºû‹’F‚ÎæÈ¹ëÓ?ÞÅG…oDa(boT³ÊœW Fl&Ia¦5épß°ãXæ$…ïCwè ýž„»6J‘¸„w8pÂÖ2â‚™¸ j®øëª“GN^x n7ž jT©)5RkDlIqIIåæ²è‰££çÍæÇOY}æXÜýüŒÀó0àýÝÒ‹Óf/^?1D® çêšË«ª*š *Ù³M« ›4rlð†Ã×Òxõ­>¿Q$6­U°‘¯Ÿš8¼§£(/×ÞÕb‘ŠMÆ ‹>*Ê®Ño1iÓ Çª‘Ff_ ìw§æzZ:3im éýþM‡lÐTD¦ûÅp«+¯(ª.oª¯9޾`¿ :7»õ6dÕî-g¶Ê‡G…¢©ì„«ÁÂ/~9k[º_ž •Ü–µ‹¦Í³`•­í«Gíù ÜÀµœ?iì´s"Z®>þö޳ΠƈItƒxòÅ&øÓ$"¤U)–'„Å­ ‰ÝæFÉ(U¯oüt¤2YÝ©G2ŽþéÉÑwøÇN‚Ž…î¡_Àž}0ƒ½Çµß¿s¥ñOçå¦3\Ì'é))ië7|’…Ø%k_ùû£§ß_lز ‚7&êÔQ¬E…ÞH¤ÇŠDzÎçÑÎçG_lÖQ˜q$â¯lýÜø9päǃ`=››0sÚ’¦µgÜkÿúºÆP^ÍÙöÇF-]±4*öÀç§Ož<ÍoFrÓfN³­='ž_g á•Ñ\ãþØõáÄ0z»Ýð Ñ8…+7˜-öÿ0+Õ­V-ïŠ{d¨sÅ[»\“Ò¢7¢;ÉÔq‚N7jŒùz$3"‹Á`*ÐKõ†#2 S¾^iÄ×!B*ô…ˆb“ÉŒ,2¤G:mV/Í7© JD–¾|•FÌY•~&({JÖ§z…¸\`ŒÄþø/";G\éð€tµ^] A2¢myjU¾FªÑ©ÌCªY ×q„´£/ŽÈV©”dó Ï×åë4ÒBjâ¼g,0éí®<¹à!\!P&JM‰\‚=ñ 5Ø a_´Ò¸©,¢"´tcù½Š„ØÒÒ’bŽVÏoœu ÝDðAô&m<¶˜2Û%Ñž­ë<àKñÐ̬lòU†?0¾d Dxpæ±§VióZ¼2+*­ª:Û$OÔ ^|ÑÃ8ðØxYc""¶G’Uk«ÕÊØº뎼»!oòëCQÿBÒvÏendstream endobj 96 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 612 >> stream xœŽïKqÇ¿ç&žvm*è“DA!%¤!‚>9› ±ûåe›:I-´-ÍýøÜ­s:7MÝŽ‰;¤ý 4$­HÈÄ:“ |Ø`ß‹#Ö|ö‚7¼Þ/©³A9•µµ5W.Ÿ`ñÅ$ïý5e¥JýR>,Ü-ø¦ý’2fß³tÝE©Û¯—QÐi¤%¼(;#Aj´N¨‰3ÄÙ§‘A1Íã‹¢|I$äk)Õª¢¡Zýƒ-@>uCÏ€àafA &a^ùà#uVˆBlÌ}¼Ç¥¡&êHÚ×Ä$.Àçðùßõ;åM63Ëx>߉[¡zÌÏz{[ûõà#=aàÃ'ë&÷bkË@NŽXº|nïcfÛM‡fg“SKóRhÈw {]«äôZ˜Öª&Ö dMÿá0|0ÂhðœÒÇÇ®U¸…£w:ßšÙîNg{¬c1}1ÖyŽã€ä¸@ßM»že·ü™„AÁ+Œýú‰su GÇ*lüDK®„Ãár9 —$%’N#o)¦8¾*â´8.bA$ÒYÚCô]•κ‘Fò}`Ü*38ŸtØuÆûÆ =åJÉ?mQÀ+<ȼw±T4­_±îÃ>,­®¬}X؆²nØf6¿nAŠTª•2ºÈíwAt<^öAF!:Dâ|l ¡ÊRy»­=ÜÍ?òÑ-ŽeÎ༆ n.òÆ&´qͼÁUá4›ªmõ@–[6÷Â0!L3ÛxX> stream xœíZÝoÇgûGŒ>q³ßA[ WER$6뢃‚²‰ EÊ%[/ýÛ;³w·;”&Û-ZzÐrnvvfvæ7³{÷²‘B5ÿúÿ/.FZØÔ¼ÉæñÈ+%œÒMp^‰è›‹QHRD[ËÑÓQ J„¨šà­FS¡D•„w™Ëéh„³„«P(—ñVØHtβȊƒZ1E\ÕªÿM•ò& ëQ*ª ¢T;JU®²ÃÕ+U–t"ëÉælôr¤²+›þß‹‹æóéè“'Ú5I$¯}3ýqÔ¹Y5 Ü ,X/ƒPÀ1½}ßÚñDk«|ût<‘ÂKiRû×'cöÆhÚgÇH–)J­Sû,Ó¥Tíg_'Æh‘bj?û üŠ0N¾ý{ãRH 'ÏUR'm[BÿaúgT1Q-¬f›é×£éGß·°<,’¼mÿ8ž8«¨ö´ge´ehÏÛ2|TFge´,£E­Ëè‚X¥Um.Æeô3ó´ª0¯bþP‡9kFÙ£Øóñ {“œS{ÝÈÙRFFñJ»Ýïä«2ºf&ß0 ß0Ë-Ù¾Œš1Ê®½¶œ)ÜîoSª¯91ªŒ>-#ÍQÝJnË—l˜hêvÿÓÞý¯ah*ñ÷…8©Dn;k¤Ô§óýN}›Ô#¾:g&_1+¯™åÖŒ2·Ô»‘MÇÇ{³ã”ñƒy»½ÜkëäCSïGÆ‹¬À§ $S¶Œì Æ;dSçŒÄJ[q*ŽëìqQ½a\VM¸ä´x¨²piHÓˆIÈ£‚WCô>¨™\„S\ß_Ã2ù¸é¨<®ßQQ\2î»eͪxGˆÅHu°{osªÂ'¸÷Û½tÂJ¼ï4ΑÔ{Ý÷ú­ 84cª¾Eôô|.Œl Ãx‘KèsÖ'Ìö.ÉÒ÷áœCš‚Y¸ÎxMž¬UÛ/´”‹+®Ù9âvwʈ©p¸5gü°SŽþÞ>aôâá#ñŠç¡ýýÐß¼aóy}óÐ&|è`þ:{0*ü;˜gï±où_íöâö{oÁ>ô-íçªØÁ{#9ßs1Î^J¼M™úÝ#$¹¸HŒYŽ‹³¾ê|9}‡·6:¡}c”7B:ø­H¾ÑJaT³™7kV#'œNÖ5¯FªŠÕü”¯–Ô-¡tc‚´xá|1ÒÑh¼N(x­zŸ«P¼SÂv´ZF ‹PY…riéð™p ÊeŒ:P®B¹¬óbGTO <.jˆ9Ê4P(^K¹ åºãâ-µïÚú&Šh¸ŽÞB'Ü9° „“º[h9ž¨”’ˆ¦Õ80*´–Œ½¬ ’–xen‚õ¸ý…b£ŒÂ«~'ïqEÈIë e‡+¹$t¢\=…rY”ðšp ”. tI”«§ìp¹äwW(;\½E„‹Øx˜ïÑïܤ ntÙ¡w¾@7K%®¤ÐøC&‘ü°ô‰§?beƒ\åö¦‹›d¬Ðð[)ð94ï›9¨Íå²rIã;;¹¼7ÂP„Ñj÷=’ЦqÒå-Ù>ÞÌNçÍññqóx¹X_ÌÆÓŸîyiâ ª#8Ä\£ÓSpÏÓë  9Z­S{³¸kc@³Ù²™..æÍbÕ|³^mϳª«]2ªÆæ·-1kñíf}2;Y,Û[T û+»âAŸeW|ß(øÁ4„·A7?ÀB§À] -!€R"T(Ǥ`~ÍQ¬³"¤@c8ŠA„”)@‚!@Ðà‹³e¦Jy v1ºkYû6O¨LðøROqÀŸyÍŽÖšPøX|£ºb “vÙj^¥eåÓ@ `jB/&Ê4P—•€´ò ÊsG¢Ó[·qZôÏ]ðŽÞŠè:ðv"ÞuàÝ)xÃ\ð±&°;4š"…4¾ÖÏ€;í9Jsã­Ág ¥ µñ!B»ÎQTL¸&R’I³”ÎÁ#{]†û!LÌ|õ¯ŠIIyñ }n;åÇDð5@>C!`1—ûΔ¨Î(øÙE¶®âû°®Ãx“ jBä(Õ‘ FðŒ¡( ¡‰°@RªRúÅf‘2Éc¦"Àù" œÚ#ÅWcˆŠ¨¤OpxáSδg×݇ Šœ»žbðÏÉø}‡PWJT~5î>ßÀSʺÐXgpõ.ëò7#JƤðTO~lnð—•°XÈZ8é­p¤w˜,Vé?1ÖG<Ó‹ŸÝ88w´Åè5žÚQ_(5=ñÈ¥(9Ïßštº_áD ''i˜¨BÔθEòEÖ"EÛˬ4j`i «oP= }WÔ†³N­wÔÚP:1| _)ö&ØePÒ@Y„¢Ó¬!]ng‰þñ ¤E)ÑY{/°jh-%œ‰èúÈЙ¡;Ïið\èíëå’õv<*‘êùàE/-ÞzR¥å½BˆYgð _v¢ÿ¤‡~u4š) ¨9'ã¯p’†ÚcC{>FYRºHn¤·WùN\bøª„7àÎUGu†JBÆ$2‰p^uœ€2SMJÖšvv…¦C¹‰¡3½§ãr€kq—{½ÊúÂfšö·õk©MöNR°ï9®tŠ)Ç ŠóºHr°È*å“ÇõP%d˜Œ'«ƒ‰°Ï0‚mÆœÿk© eíQ~Gá+2¾Î°ozŠ:å/±(¯ í”ß²68#¦Î{Sc¯x9&¼†ÂP‚2èvÈÐŽúι=¹Û,¯³1àZ¥¡.ÁDŒ,è8A3;À 6[u‹{¼gÄÊ*ó¥|aÀé“aþ$¿»°}opÙ;}Ø{@%y_õû±‡Få!ÿîn³ L.'µ‡Æ*霵ÆÀœ9ìÁzÓiP=ÖtA3Ë¢ íSº§9ÿ¬´áÎæáâƒfÒ¢úš0Ÿ÷ÁrÖ©ï@Âì´êÑÃ<Ê»ó¥_^£ïl‰BŠ€t¡5¢oP€…û¨Žp~‹Æ½Áâ^Ô›Øú‰Ý?™ÛÉzɽCûð–è­Þqï?O  '<^œ2â¶û î„1†s8½œßÿ~{ÏÏ}³YW¹÷Êó“'ÐÛ*hP!®1ÿòI:A£úºöåëÙ zÈ*8 øvúj=y:»¸\âû†9uûõúl3[ýÜ%¦ó«í¸C¨A¤ƒ3¢ê$žÎ¶³Oᜦòt<ÊÜJ¿¬M\ök€æßCs×ѵ„ž=ëÌPö;¥UnÖ»\5*â­eß‹ «¨D ïºÞ¨|7ú7Îy+tendstream endobj 98 0 obj << /Filter /FlateDecode /Length 1779 >> stream xœXÛr7}߯ØÊ“¦Šº_¨Êƒ!„\€Û$•„<,‹Y_l®•ŸÏiifÔ³¨$åËÚVw«uúœ^¿]*©—Š~úß›‹…‘./?.ÔòÁ"¸(mÔË胖),/ÉrwÎG‹¬¢ .-cpJZ«q'é,ƒ/VÞbí˜Ñ°ÁmœÂ‡žÅó>âÓ4‰7d•r’ѳ¤ú žS°IºYNIG™”æ95£~cbÓç4FRbÑœÌ %ÓÎ"3”K¹$“ƒ­‹)ËèÆ2VËíâíB—ª/û_›‹åÝãÅíCm—m´wËãW‹ú$zi‚‘9Òe²L1./ˆ»ÝJI•³‰*ŠÓNI£œÑN¼ÀÒæœuçdsN6õÚÆ$vÛ«öÇšl´R!eñÛN™è½xÝ¡¦NY#>7'ÿ´¸¼xºÈ2vß`¼«o:ÜwØ¡û~鮯/É üªp)#\zøñ!Ô«þ°{‡Ì´t 2ÃýRÄõvW%5¥R°â²\ÛZÅ­n…G“1yqLF©ì¢ä#kí<·øaWŠ‘ ¹:)¾Oë­SJAœÑA,²+é”?3‹y×:ï±¢X_ÖÝ ƒx9Æ8©›¦¿6<ò ¶}ò!E¼%%ac¶<Ä#r¦€ ƒÚ¹1MSB#°R6#tÍB%ñ{E,L.a‚ŠÑ™“>Ìù|"Ìâš,€5çZRYÈ=æ(ž ²V&'pÏ;:’•NšN(¤FÖíC`ªÂjˆ 8~ l:O-é´ØUÀ—”‹ÓÁ#ÒeW˜Èœ*¹Ñƒ“; /d¼²ÆHcÝr…XÙ{]­î§ðßÇ¢sÈ·Rç¡J¶Jk%gBï˜Íiy›`¿ægÍ?@Ám¢:ñc{´KáW-ÒI§¥Ò`=qÕy £—Û?„Ò‰K{Pè‘'å锯“—óà=4Tçñ"I:ƒ’¤DØV/{¦pÑŠ÷­gæÂ_×@©À…n’“ÓÔ£e@§‹Ûs`‹¥¢´c I^”®Êl­NdT0¶±åÔ×>¹jí5ÞÞ x)&—5ªQ̉ട¦ Ï9Ûò”*Y~O–F›DW%·žÒ'™`eq€×EaUŸÜP 4†øX:ÇøäÈåÔu6@—¢u }£Y¬‡„è$žòÞ}8Îìð ï!³{È~MY©®wsõf\ÝW·gV÷ÆÕá¸:WÇ•œ±[u+aÂ[´«qµW«“qµ™ÉYΜmþ¶3Ù·¸ëÏg3ŸngrùvælËàt\]Î=-0 wüi­£NXYº"ÅU%Ö’bO~Öe{RmA:‹šS“€ë”]ßF…*®Ùvá*탻Ë7h-t° ˆ\­j?Rta,“•™F!ù™z ÿõÿ]¡ñ[¦¯è³µ¤pºè3gQp˜M¥Ž&M =ê¶œ³ˆ{ M)ùÜ“{%ß“º‹´§=†>axÞŠ8^p*ÐÃ¥fóÙ×ê’OrÐj’L0¢ž„;máÎçb{R]ñ% C'§Z­´4“ðq|À…¤Àâùóƒê CrÌmwî„tuƒ|xŸKbÚ‚ò¯iöÐ^åÊëïò€dB­V¤C–^d¹è ²J×€7Ìó®"lnù;ž¶Ç{×MƇ¾l;VúõyõMã3iÃá+¢w\% ŽÓ“ÆúÌñ†v3"MžéV{¦oæ¦íˆÌíÀÇe>ÁOD§5m#¨úÕ1`cãð %{® |`–«sÕ|¨êeuKš}Äš•‹í¿áëRô˜Œ¿iQG¤Í˜ÏiMRŸ3ñ‘fŽSµG‘à Nµ"¨þškŒ“jOGÏ•‰Vº˜{Rsz(t»oá´ì|R6Ë6xpƒõûrÐÇPY/áë J9å=l›ÒZ]öÛ¨Ù ^À¶Çã>`Ö5H>¨ì‚#* ìŘï¾ †ÏÖUüT¿·ZO:,0·ÔÀ<_Hm4Ô>ipíØÎ5Á#OöˆËÃúrp¢œèSýfÒÛ`*Òa2ón1g(B³› ¶> stream xœÒ-ÿCMR8‹vøzù-‹ ‹ ›÷T¾»¸3ˆøˆø§v©Ô÷÷±òÅ¥Õñ÷bó÷‘÷âÚ½Q"ûDfVT@ŸÀh¯¤¢¬«t¢kpozc,ñM÷÷èçïÞI×%¡Ú§ÆÏ‹ÛÛ1Ä# :Q?f¤{¥ªŸ¡¨°k™uŒµÂØŽ‹¥×ƒ$Ena}{mlt‰N‡xŠƒŠ‹~}”‹œ 7Ÿ ‹ ‹ ‹ aOU¡endstream endobj 100 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 3197 >> stream xœ­WkTTç¹ÞãÀì­’!ˆ;BÚîá•x¯1M¼Æh¨¢¨Ñˆ(¢€€Ü‡;ÈM`¸ 3ûá&׿ƒ¢€€ˆˆ4D=1©OMÂJbÒd›4£ß¦Ÿíê7 ©]«'mÏ:{æÇþ±¿Ûó>Ïó>Ÿˆr˜A‰D"G¯]{×Ú_~8ôOÏMú9‚“œô?vÅ´ÀeÂùü³”ý‘Å'x%nINIM;–²#43l×ÑðˆÈ¨h_yœÓ²å+¤µ›ÚC- Þ¤<)_jåGí§PþÔëÔ2Ê‹  ~M­ ¶P[)ojµò¡~Eí¢Þ â¨g()å,šMyíPTõ½(Ltw†ÿŒËâXñ)WÞq§ãç=íFw2 cž¹t&̼?ëâìm³N¾NåÏxI_”n•F8*©p¬‚£5Ç89ÜB·æ¹ö£7P-ûà.^}«.`7‡³é@lçäô ¶QsÎC?¢¾à4ßJûC2ðVí£á#hKèJµ„ׄpdkNÃK\oEã… G9ýnUQ€ 7ý¯mWÀ€L*T+,£¨í:uG,d hÍ›;cWO<»Ü_„œ‘ë·ß"g§cö „SÏ$õò#0§aÌØÓ>|Aw Æ '¶)º%Dã!o&'¦‡#ÌJ³N.·ŠÆ¾”f±ðð6Öº÷²'0x?^ƒ_ÆA8­Ã«Ð>´î{ô 4³ªrr¡¨€—âeØió`^ÁÛGP'ê@>#ýñ‡Mø•V™6W£¬FåÊ¥OBU^‘JUPÌxñ~+Zfž³fYæ<¼…šïÌs=Œ¶£ß³¶ßŒ6õóþø‹˜Âï—Ö…›ºRd¹M …FÆÛÁ”d‹y4Íøš‡æ,þÏò;˜.sí¼JãEv`oT‘=Šú'ÀNî+·¢N›y|Ž‚-barrû覼Er[«ˆ=j¤#ÔŠ\ª\øDÒ‡j$Éø—I^ø5Œ‡ä°ºÒ&Cwé¯kå/Ë,¨!Aòrž|1·JlÚÊA=/A+Áâ§ÇŒE"<ŸpêᇟÙµe²=5è$áxZÍgçA “hÈj1´èÚ;âÚƒv‡„ìJå씹Oãÿü”ÑÖi†á,´òW§N–N¿®ª9M8³XaV6‹lÃ(wXŒ¾Ö±vô•jÈËåÔê‚‚b¥¼Y^MÎáóºl}RKšÌ&ï..Î?©jΪ.4f@8ó’'ä,LúäR§ªæ+ò€ÉÂLžKgAAm…FÓØÀ•UÔÔ•—÷†¨Œ¤*Î}7¯÷§›ÓZdÑ‘•›ë“Ê_¯ƒ1¦£¥÷ DU®IÖrš<(&¤¨‡ÊF²Ïù„Û®V´¦IôàzÞ"Fï X+^ˆv&Ðüê¨KTLò§¸Æ©#×»®ÝàÆüèÍòÈÈmðY‡ÚiÂ%…1‡Ûû7© h=»êà¯5ʾKú˜ÆKíàÝÕ*^Bƒ„ Dµ¥÷…‹0ÔÒ6θfhÖHТG+í]P9$Cèñ˜)À¥Â…AxÞ*jÔb´ !VU¡®€JÆt 9+}DÊCÄCd))a4‚.ybäV‘}BUUpB[yýM¸†»j»4Œ•ŽS@®IÐNjSŸ<IÏ«Kóq¹Ñåãe'ßOº OÙæ·{Ê ö±a*5Ä@8ä@ØôŠ}|}"¤C¾ºXUôK\êæ‰ÌD{¥Pên²jMdªPÈ9Ùcìôˆhâkrªua µRüZœæ¶ ÕëˆÔÊÜÍg¦ÎHÎFÖŠ‡èéqDGêÚhÄânåy¥ù:ÐAYMYõw¨Óí{ÜY–_¦Ð»J«Ëª»yÓ»P¤±íË.㜾÷ÝEëoÝ´Ìs=¤@÷n²å!m‘}À¯ê>”]NØG+à`d$œ×sÈ‹&~e ê‰è<¤;Ìê-!;ä†,“¹±ÉÔ\ÎË̦óUmÀ …¿$‹¡]M”Ÿz“r[¬WTÚcÖ~•x#k|Ý£õ¦à=vɦ¸àÃÁ¶ ïŒý-¯à¤“gÁ:)²Ú•/þ |Æ^}ëŠæ¤ÚxÕAÈ·;¤&hº,^— P¨*Tá;øm7ô}Z[s›k±J‚T¾H~¾4…N =íÍOœCÒ_z™Øð\†~•]¢©ôF5‘(zFRäˆvãÆŠªã p? ™DÒçJ/@?˜ˆ¨‡§¾§wBNUìÎEŸ¸MsÝ xQD/qd$¶ÙIló&K§©ÑÛ†ôÝÐgSL!¦#Ú= ‡‹÷'…¥Å†Ê÷C„·¦œÎ1€†8iÁ>Ö|!áÒ߬ÔeÑ·ØÉûpTbŠŒxñõÇ^:%€Gw-DhgpˆQÿ±Jù‰ù lq=”ƒ–1ÙÀ@¨ NçC™öÂÑiªôC£º6­zD»%ïIÛïíîÉU§ÒžÐXN€1eèS“3³ƒz#.þWßoF[9´]X_cj蹦u·Ò±*9ä>­5DB (JòK =qä°Â‚N}ÑfÙî à»b~Á+IÏx&©)Ýd2œ´^ÙÒýž»Ô»`öþb4 É:Ð3Uµ P)@UÌ¥nõMòfÇÚ‹hZùáàxÝ%u21Ñ?m~L‘…VáÔ„x2h’c5¼ã£ë?Öv¼ô:aÜ‚«O×Vh~¼Ar Š (§>ºæ†S…ñÂ&^›îxÃMFI'¡…¤ò£ÚzÍiS:þÒt›ZçÍ2¡ƒÖhÿgª<·¬ Ük ¼ª¬Šyb{ÏMQÞxƒPApGN,d‚êø1yP`F°Ö¤Þ¤>õ[Ѓ#¦³Í=Öè…³ÇÌáµÙÀCSú6«¬y•tgŘÅ.ßx¢ÙÿÝßgh LØA£¥?ú¢pÿiZH…@T+Ú8OT¤¥5—ƒá{ß{$›8-ŸŸÅó~xp]:ô°¥RYQ¯**áeÑ W©Ã!5§Úb†øqèe4­lZñ¹Þ£0¢Ás)šŽaHk!Çw/F#Sýa6r¤¿êï«®V—Tsù%¤s&3I™FsC£©;¼sß«k÷¼Àazƒüü»Ò,Ñ-BíjjF;¯~hFEfQÛetü¶í²¹ oÖ˜m=>̽›ï~0”`Ë­—=5µ $n™Œ¢2£¥^_mẖ†Å)"£¸Äæ£õ$S-óòÞàß©?.S«¢ˆCDë#Í™þÙap˜ùõ÷¢¹Èù‡‘Û=ç"Z9ß®7aqïX(ÔÆWd˜I­ô庪:æ»v|ÝlÖÚN¶ÊtMf˜ÏaIj*,yQ6€7²È™_·wcÐòÅ›GõÕïÜ‘MG×)Zˆ¦¢í˜ôaŸV³þ§“ò¡ÿï9wDÉ}IΕ¢n{ñz‘¢æ|€¨Í„ wÑNá /°oåZU1‰2†'Ó÷k šs 'Ìšö=Ÿ’ò32×oK…n¶=¥5Nžšß’lmomm·H’XWZDc×ÐÄ51J^a×7%]ƒsÌõK×>FìÅ¥žõ\i†FY;5Hþô£›àD^Ïçq¹™Õu1²š\XN8?sõÊ…¯*WÊúƒ”hvÂDF•º3ZÃÛ"`ã°iåFL,cm!DZçN… tö£Ó¡°¶R£©­äêòs;/^ÙýAþñSéÄ7ÇŽKi— ªñÑ1SPLŠzí$£?U„“üÐßåÔ¯ž¾‹DÚÿó\‡¦®#ˆzÿÂøhÃÑ-?U§'5ý—>~ª¨Ÿ‚%æô±Ö°Ú@ð‚€„ýyo…Z ë!àÀ±@Æu‚ÿZòoÝckÙåËv£ˆô®Åa+›Í“Ô¼š„KÑ Éý/»ÆZº‹SŒÜÑ’b9ä1q­Y-fC£el_ÿú°“Ÿ‡ÿNÚÿ9ô;ô2=X‘*ÃÍ?ý¥0ƒ&5Â~´ Q"äc$íMÏ’Ô³ö5¯%é8<£¬(ª¬™¸f½—túhTFbbbcb—Q§ÓpRtíº"ªAf1êF»Ø+ؼË>©>C”ù_bÛRŒqq)Éñq­)íÓ ~\Uär¯í1vD„¿üûˆìÞ“À¥·‡µîÆÏÜ÷²ž˜ÿWýököÁ—£µ½|¼• R’|ZÙU… i*q´”›å°ºÉi&8ͧÙà4‡¢þ G,æ`endstream endobj 101 0 obj << /Filter /FlateDecode /Length 5386 >> stream xœÍ\mo$¹qþ.òFzlM§ùNž“w‡øâäbÀ· ‚Äg-iv$¯4£ÕŒ´«Cßž*’MÙl­ölÃÁ}¸Þv±X,V=õB½?zv:àñÿ—w'¼—îôÃÉpú퉖¦†¥Yoõé݉åº×Î¥7·'oNÜ`z-í©Ñrè‡Qée®×ÊRž%4½ cä?*2ŸR~µÅ|WÖÙÞ(ÂT|AyÒÂöR;“e¦·£<åAñE1&ò”f›X"³ §Û“÷'Ì ò4þïòîôëó“¿ûž«S×;ÍõéùÛ“ dvʤèÁS Fœßü¾ûê·_}·²¼wNwÿùf³:©$ï~³ZÃö ƒ4¢{³Z !zÍx÷ïõÁÙs×ýö[ü—«ÅÎÿxP’ð`a±Êràãü fýÞvÖZ s bdÜ©ÕùO€¡çšŸ®AJNpèŒ;ÏëHS8'¥è>¬`w,ÓºÛÀeº{Àeà‘wÇ.N2éºküL9Ç´‚Á~„p¢{#¬æ@ìç°†9ü=MA§ 伬nüw‰ý.SÀÜ͇ÁI3&nfD”0*Œ˜Íù¥‹c¹ã²‹¿Ën‡éa®Û£ @ά{Zq0AErER“Lßû±nPÖÂô°Ë@ªÝxdaVÛ=O ]ú!²2xZL ™èÞ¯Ö@AYÏ]"Î!9ldZ¹îÞ’µù׺7@äèÁ€º+1–£ ãènû°BUƒè­Ó“"îÃöÃ4È2ò% €iâ”ÀC ë‰Äš±Þ)Å%¢RYaîüÚ†9…ìÂ3ãRZ$'\‚,©áš9Hx`ð%®Çr×=½õBçb¿Æ]½aJZ×^üžƒ¸M¤áûŒ'Ÿ3f»Öë\oà³søÝX­… Šà·Ã1&eþ2«2$”¥›± /…E éÌÃêà‘ öù>Ïq›ç :êeÈ óª"*9Ç“* IP]ºšøAíðê Â|žC P ŽI7YŽÞ:+šÅ` ÈØH:âÆo4˜KÕ^3”6¼†¹£4£žïˆeخ֬¶”›¸:‹;F@is‹Õ ‹TZÎÅŠõ ˆRz9ÃîÖƒ}PCçØÂVN?¿KO7™~‡–ÖÂØ6…ì…w†Ÿ†ñáÐpñVT‡†šE¢a¥yÆO5óö;qôCJ]ÚýhVœÐ“®€ŽáÚòó1´®ðûðÖ9KÕ©:ÈA ƒÙ–ÚÜGm˜éÆ«ú°èAj/¶@bûåL÷Ý-ÙãrNÏ¿;9ÿzHØ„ÁiÙýãj­8°§é6½Ü§§mzzHOczÚ¥§wéé¿ÓÓ1=mÒÓ¡ñë]z|“ž?µ>ÉtnÒÓ]cæ³¼ÐMƒâ¦±(Ââ*ý¿ù±%}c ÷ù“ÿÉ× Î[òÉ_Þ¡g²VTtžÿrµ6V98|`¼æ{y$ï‹ÿÐZëmƒï}CöcKöW¯\ôCcÜEC´­íÏÌìšKÉÆÌŸZ[ùñE%k 1ëÑU–ž†W>â‘Çp°dê2ÂzÃ(zi$"Wðµ`‚åûêþþaÿñæn<Þ<©»Ñ`qÎ?ì×oÆ»û[x>„Á»ïöÛ‡q÷.¾ÿr¾9WѪN´ bQñÕxÁØ0æ tož~èŽ7w›³Ltó´Ùý¡‰/.ž>Ç Îf (tdvû°¼Ÿ˜Ô ¯oö»ãÃþö,3þýoÎãòáK€P|RêÃñÖøöfsUÌŸuw}s8îo÷Û縢< ‚óÿ×4E%™×rZ,ò~ý4Þ>n²È@¶YÒ“G†ÆÛãæaå>¾~¾ß¯7‡›Ã—ùåñáqÚšs½9ŽyÁ7‡¼†`Nü¡Û¼oó˜ã>a-§É4¹dþ™:-ï[õ:#h–Ìá b÷AÀ¡9gàÓ]€)œÁÏÀòÂ^…Ñš1êëöá­7L01ç>ˆaÅ`áÜeT »ÕN€7XÎT7zhäµ±‰Q±nÄ…”¡ÑÇLx¼$ð†[@—‰î ¾Zà:â^‘GbÀ(ÈsO‚IÜEOšy ÙFÁEè6ÂDJdÆ‹(÷2!]‡¸ÅÊÅØ‰ëÄ=4îHÈr鵊[€z"E×›@@4¢ºøY’³,0õǼ¼ZÎQ^þŒNÓ•Xî*-ñ&`¿Á6†%X£…[Ê…•) ^K)ªñ²˜¤t^ËÈß @´D¯Æp˜ä Q%âwºR|‹\\’Ýàç‚{Kpa¡Û8›sŒÑƒðø|1îÇðô@rÌ©v…Ù8HÆnÇ@Â- ½O<ޓؘV²x"´ÅséùeÅ1ÚÕ;î£~¥Å…$,C¤ï•ÖöØIgc¤Œä<ë1>ñüÂ\!9“2h•QR†åÇ×!~V0xOIÐÙ0[TÙè×ÈZh¤æ‡ÿŠ`™juØ)íàñ*$Ç0Åp!©¸YîûkOÁH]ž‹ícÖb26ÖûÃ( ˜ïàùŰÕØÉ‹°—ƒ-„/þ$£ŒEýž;¤ãà±`n6ˆîëª)Ó¢½Pè%iš^¥LØë0îÂøJiÌ*tßHs…!”dB8kH ¸‡c “[_)ÌöøÌc:>™y¢ÅOé³›ÖK¢ß&vZžÓŠ"¡–¯‰:„ƒm6!œf)ž%xö‰ n¹Os|AlC²wÇ,ŸàpÌ`èùÙâ÷`¤AŽA@&&È/®>'ò>†v(R#{ù:°ÄSzX4¶6{Ól‹'"Ñ ZªÊtˆ¿MPøëFÀ˜å-,Äm²œHåEŒÄ ŒgÓ*d¢ôÇí|´OÄìÂʪ¡´óOHŽ£+(gIýë*å†TŠ^•ä¯hbzMLÛ¿e?´© W¤H_Wù5333•ã¥Ø®ínìÜp‹6ÎËã0£æžÂiPÑÕ‰ò¤8LÝ’÷!&í©ŸVJa’Äx×€äì iz÷1K0ê›I¼κÃBº»ÙJ)ó°èBß’OÏ"kL.&å“%©¸×€Ã±¡ ŽîÍ9®ò*>„4£O-¥)ÏnX¾.'S ÞtÜæ‰3¯€QÜ>%~Œ¢°ª4 )'Žä‚fJ3OïÕU”Ž#Éúbñ) ò®ÔïLNÒÝC SÌ5²ä]ÊÿÆìŸ«|nu#”¶¦xMDMë(åù4ea<÷vR[½óà Òå÷PA-Z`R‚É`k0¾ÂÂ)ÚÉIƒ 95û”ôT˜ì ¸/­`“!U!¿ÎË&‚ÝÒšIéKìâ-!ÿa•·¸/³Âhü±–´F‹ 5b"x÷s¼©4ˆªÌô¸èM¥AûTĬ{™þÈNÜNŸ•©ÛŒÙrÌÑ2=‡@Bx”›÷uOìÞ–¨A íþsæyɪá¢Cu)U߯²‚#œerrXC˜¯jž81Úýñ0MR„©4ÈŒËxH­Ö.Ð@!¾ÍþõÉ6IÎG EÔ[Yo ÆPÕ[—š4ÙŸ¢ü¶¢¡¹Íj‡kc>(ÃxË|Aé›UY#›,É–,T¥ièM‡GÐËuÉ àà™'+B4ä™Ú=šœ –ÍW)?!LPV$ƒh­ÎÚlðNSÝГákù§x[°º$œ£ÁêBq¢Qó”Bh™Q¬MØKXÕ±èG$>¹F)sx[–Óè“ÑŠS4&ƒž¡Ðœ Î#+oDaŸÇU#Ö“S“©Ìö&œ,g8œu]HÍ‹~Àˆqª‚_@Ô'8Šî•½ *³€»úèœ-mˆ_˜ã…Z²N/DÚ€É?O@ ç>Q »Æ©eˆè½ÚgºüÈÎz"¸O²|ÑÌÖ#š¸¤ØÃQùãZY5䱂?Ø —Sa14Þ4ÊŠ¯—ò¼„xùb-&×l®ótŸ^®óË×Óù«%/?çRd.‘-”"û—‹m¯¯ó}þv¥ÂT™ò(+Î4dÅöŃ2$‡‚«|EU¾H`æ9…‡@O`Èu˜h«nKýPÞ™dŸ-²oHÁ²Ÿ–ÓX§s¹ d®[w§±¡yÏÍF ׳œ«/@zÁ¹%7:9j8 û;¦Üv0ö› l`Û±v+fÙM4t…r&ÊüÏ0¦.}PXæg§¹‹@ôi;Þ$*=jÒ;ZtØäØ3&?À_K6ë !Y é3¡r‰’.xzD dôª¦‘”㥉ۑdyŠV*?»±¬椓íBÁ"ª½­O`þ¯ÂtÊPmÞj¶ìz'-ÔÈŠš ŠB“Z´ ‡—bwY:UŸÍ)WPï\„óTs½X嬈ͰÛṬ¬’©XfSž‘Ʋ¥$Ųƒ¨±û€LØ!ç3r[šÊE3««%o íåŠíq‚1 !¾À°ÓJé/Ùå²~2SE¿fÄig‘å²Ê>Uk¾Öƒ*ê¬Um,f4ÚÎM˜N8U[8’4gV'/Ä1w©”)ÙÆ”N¤^¬e!'Ö¼îeÌ6+žƒPYŸ6AbT‘ÕãÝ$uSû[/Á\ÕTD$ãUn<É/DSWD§£¾¥´È L™¶¢ºË–Ÿ`ØPdŸ54ïrhI‰lmÉle)SŠŽÀ`Ú¼¶ªJÇìÙ ‡ lã×ôÚ]€øùÐ5ã·  Ùl`ëî/‰Ç+pX©\S&›I’d..^\þÕËç%lòükJìÅðà¦5’<þ>=ý¬A=s‘äycÜsC8‡å³ôô‡×·§ñ^åÞªŸçV*¬,ä–¨Ÿ¯bmŒòÀ«¦-4…&w¡ÁI–Žþ T ¯%]_ª×pȇHm¡‘¢Š¯5Úu±hëD9­ªž ¡p& È÷Énõ˜rää‚#§é^Ÿ9ìZ¨ePì3­¼]@—±^ ×¤Dš±×¥#‘u¼Úòêó-_û /x,תr‡FÄirb¢™1¥ñT®p‘äÍÇ{ä#ÍÌÕªëD¨„nYÇJLÌ¿Ã6æ;õ*W/¦sªâê(ÐΧC §aá Á…û›EÍÂÖ[y e Âå¶*C#ºj³kÿqª<˜ˆ¿¾¤²s`EDçÌ,)Ô&Œ•lV(ÃŽÆgiÞ…T¤2c‡|ÖÔk%·=€ÖI+)¦$81è]ºðŽI¨ï³Õš××& ؃ çb×MdÎG1â¹qØ{ŽW©lYó c/‘!çù]‹‘¾Ìm ‹äX´kÂkë‹×ŸÙÛ‚ÔlªEùsRŽ(,æåÞ¢úQt iTÛ:rF1¹rß<Žû醛°1¶‹G¢ÝÖ½§a9š¸˲ígL¡ê!|‰±MHW+£çéêy\KŒãD´i,s{B[³ÜÜ¥RÚezrw,œ~ù‚cŠ—øª;Çsلۡʈm›uO«'°p™rL¿«Òy²ÊËd¤ê5oë¬ÅÕm¼˜éKl~º4F¤Fª¤0¤¦BÊz¢³xOÒÊ¥´l>¹×a¬ÆÚyºÉÛ2ÚÓÈ6-„ö7càËØ€‚zY+ãEl¬ª«f(‹"ÍvgtìJ s”]Ÿ´€@É‘*+i)©n33oñLmÝïñNª ¹î¢ñÉÛŸª=éU¤­*U!M¾]p¬‡B[òs¾#ŠáúÜ"Vלjv0uê_cá²ò§ØZ Á~vW$~'Ijšu¹¨a¶oØÔ\ÀñäÝEó,Ãïn‹:Ô¼MMžÇªa’û¨³ sÊÝï5·!_³=qF¤70jl˜¡4¯í6˜:êÈa‡0M2r÷á¶Ôí1Æ!i âBI§ fñ}“レ¨Í0ÁL‡($ðߣÂÐË:î»òh;½}2¥µ_êh¯\x ¹n§U”×~\¥[Ó~½Ê^9‰UzÃXè˜×>ð“>0°v¦ÎºN¯ËÕžAÓý%ðaq¦ì wùòï èõ4°Ô¸¢{)Ù‰ý» Ò9ÌgFûNfãÞ…rƒ®Y-f«¹o!b4þ¥wjvMä!3¬ˆ—ÿ¤´r‹JÌ¡šOÄ@"Eš93ÿ†&éÕkˆ °ÐK'Œ Ÿø.}ç—Ùy‰(ŒBñɯVkÀ™=^ÝÆ»~:(õ—ÕÛðø«<`Æœ%ÌÁ>|,™{>áLòF¾Æx‰ª’¹=±õ­ÒãCÐ íÎì¾÷á3ÐÞî?BÈ££!å2Íìñà©0Î#é:£´‰Q~ŽÓ€äFú)és£p…¤‡ÁP³ô'ÕT©jÔ²·I ß=)`?Ÿ¹xäà›hÖ¬¯¯½1hÅu÷‡ð¡°ú5¢dFköÒý= ýÅ&ˆ]h2#2¤%—*›æYê1 bð#þ–ºI?Ø ˜Qܱ–…iyž$†Ê†u±Ϝbˆ]‹Zó$^Ë0,•ªQ ÂÖþ>ˆ)ü9hCGæ„[ê!Xrpe=Iú,3VÑIê¿™ãÙ°Ý–Å=i¤{ÔQöJª"ÃÀÁsœÅ4jaø¨ìù¦%hú׉’B¦BŸŽq)÷ÙîYìå¯ ÈB?GR=xºÎ—õ¨&¶"“ySC¸¼`Îr~óàìoñø™ËæT.%åןÐB‰2Ö$8òr}+w¥ýجyµ˜¬Î R9¿BÖ¸ËäuWvÊ›yE'#M1BÆNFéþBŒíõÿ)]‹Ÿ’íÿ‡Bf.ýºK¿~ÉâÌÿt~ò;øïÿ¬D4endstream endobj 102 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 166 >> stream xœ›dÿCMSS10‹‹øýùJ‹ ‹ ›÷À½ºR3Oøˆù‹ ÷¼È÷˜Ãëá÷ÚÜø7÷Úò©ÎÒ‹Üîûâû#û…ýJá÷Ñ÷2÷PûÑäüGø÷˜÷$÷ÍPDDKPû  7Ÿ ‹ ‹ ‹ ù> stream xœcd`ab`ddduö 21$º»äþÔaíæaîæa™ý]VhŸànþ ÀhÈÀ ÄÀÄÈÈø£ƒïÇÙîõ?–¬ß>Ÿñû¤;Ìßÿ]ÖÙ“/çícЕÔ͑ξ¸ûl÷¡å&±guש˥¦³ÍíùÎß·¡{U÷w¡Ž…]{y”×§²«wÏX#Ï'ÇÅb>Ÿ‡³›‡«›‡»›GˆçŠ4”endstream endobj 104 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 255 >> stream xœô ÿCMMI7‹ûVø“øM‹ ‹ ›÷vÀ½ºqR¨øˆøŸûV¯÷(§ø§ÈÜø‘ø0ŒŒ‘‹‘‡“‚aikwŸj¹K‹ûûû!û$*ÌFáĺ¯ž¡Šˆlû‡z}TŠŠMŠ}‹u…ƒ•¬‹°­‹­‹µ‡ª‹½ #”–Žž™}‹up‹—Ž‹œz÷ކz‹‰~{d]\pd‹fg¥ÒÀ¨÷¢³¹Û¾š§‹Ñž>†‰…Ї 7Ÿ ‹ ‹ ‹ ½e£endstream endobj 105 0 obj << /Filter /FlateDecode /Length 4897 >> stream xœ¥œ[“ÉQÇ߇>à ¿pì4u¿»a{`[ƒ bí‡Yi$™‹v4+#øìüÿ™Õ—£“#ÉØ~Ø>¿©îªÊÊÌÊÌêÖ;7ùãÿÇ_Üž…)õÝÏÜîÛ³âý”}ØÕ\üÔÊîö¬v7µ´€›³çg­ú©6¿«%¹)4ZHó}*YZåÐâ”Ó¦ÕB¶­bISj›sNqâ³6=ÎÃj½M5¯£¿·ƒ*±M©ôÍ š¯SsþhPk«™µƒZº›Ç´éÏí^ŸýxæE”»ñŸ·»o.Îþö7!ïúÔK(»‹Wg*f¿óƒO˜½«“G‹‹Û³ï÷åpBòeÿüpî¦â\ìûÿÍÁc¾­Åýoÿ‘ØõæBèûß wÎï¿~v81L½õý×ÿŠ_ ×½ìÿS“{íxŽÜë]è!í7ü÷ÿÄ!öízK»‹ggýýÝ£“^Òþç9°¿¹ÀËåêÑ`¿Û/—?[®¾]®¾Y®ž ƽ_­cxkô÷b¹ú/㯯—««õ1¿^®Ý\,Wß-WÓrõ¥³_Ÿ÷»Ã‚Æzõœý'E»Nëf¹º7ºÙˆöÝrõÓrõ°\½_®^-Wן~àó/|àæ–GãÙ·y øÂøó1)o¹ç×Ë7†xÖA®+øÆêûsKh©ÇŸ®·ùÚ7€«þ70ÖRêý1úþ`öí—¿ÿÑÏfb·ÆÄV©¬V1}ñÊYÃùåò÷¯—«g†P~±¢wIfýÁÐðu°?|Æ4eLë~s·õÄÓ Þl»–çY-¸Ï¼YËÿþ³fõ¥wm°ËMÏË£/Œ[ÌU]ÿ|·ÂŸ_…òÎÏŸàán6ð\ó©/X­uãqVõÏË•³Lb…“qóWÞÀ¬e}a ÷g† ¯>)Ò¯,EYû¾·Wá“óúœ›1GnÊÊÛ}nœ\ª$z7ýËʶ2ÿ´‰|gÌ|5‘[㯫¬>c"oŒy0n~»ß'×ë‡/–¸µ²'Võ‹‹³_3¼L-OˆÑbnm*q}ƒ„Ë.”œLî®vÿ±»;ËS=eÄð~‹ÜýAbùà°~—|DYŦàãTûBÆž4š«k©mzsaÛh&ÛV­Üj&›Vÿ›zÚ´ZȶU­‘±ÿ¦ÕL6­>žÏf†›VŸ ÔSÙ5ä©Å6RG”Ÿ¶‹]ö¦‘ºƒão1zÞgÇ.”É÷½wüjBB_yüêSŒûpô·À¿-‹ë{pÌ;.¦1ø™äšò“ ÞhÕ°û¤²£VÙ…©µä¨UƒˆlZ ²m…t z6­frÔ*Å4Õm39j5f´iµ™ã—-æœ+ä+dëEƒ°èi¬ÎDA{tG÷?…ùGÆ$?¯WM³ It°`“@?"¤ÓƒX$4ÎD w&a½­(ÉS6ÛiJ íÄ$n¬N„M†f‡¶ ÍÖq¬_Ä&W {«ƒZ‡Eò°æ(^Ý$ˆäRžI7:T9Dõu©²’$'Ó"0#eRK³ÈlG1%^Y^P—Š—‹ Âðñ1ßU“ä>||„ÇÄßLKÓ»°É‡b¯áEˆ ›v4 .õή¤4›8JRˆè¦Eâˆ"CìuªÕ&Qf¤:$ @;Ôg&¨ÝSD4^œ°·I`]da/Yì$E›$FÛB²>× ž²‚X&›ÄUîŸ$Ø/ie‘ª¹&VoGÛ!aA;Z$Á?IÙ¤ÊÞeÖ5§ ‰‡·I¦‚¼*Û‘bWRĪ RÛ Q{´ˆ£mä"gRÓÞK+±HVÂ0Ï“À’’J VbƒLÏLÐÄ;šÄs'’xºb‘4B Ž&k€4vƒÔ µÜ$޶C‚ulÀªªJ]íÕ"04í»Ë*Z–6t²F~&ɳN"rÉ$Ðú¨k«n&@dÄßKÈ™•®©Ò) 9‘xöê,‡®eF¡Í"ô=ºÒI š5I~393‰ñ}Vµ ¼¥Ú+½ãSÄ ÈXGx$‹@›uwÂÈ®l‘ȸ’ûJî&åèÖÍDú‹@?Tb´¦h’\‡Ý#L”}Î"‘Þà)âæ"¦CTfz¯DmÚ"Hø ›ÐŒNAÆ(ç¥Õil œ›Mܰ"‰þ,€Ø_eU’lA&ÁÅÎ %bQWReǰH)¦ÄØÕ&n£”æƒI°Óê  ¢&§ ði$uhÉ }ÎT™9p¿°Hâz Q-1ö&ÝÝKKO’<ö‚Òw;“xúB!šã„}êÚtÙ]LGœ%Ù¦M 'Í;ªW}³+JÔ[Ä ïZ½ÆYÉeDH•ZÓl8?–œªI°=é$°•1ü1@ÒŸ‚êéÏØ5Q¨ó¿çÄ»ÕE‹øá+äÕ“I`?]4­VU,¦ª$ @zcÍd›¤QM ‘¾O ó8±ÂÊz³ –Yb? }YÄO¾()t ñ½Œü¨ÒŽL0g— ý“AšìÒ$Y#X‹Hþ*¤r³s ÒTZUÿd7nªÓ5lB£ò†¸*ñÃg´Vž"° ÝÓwîn?2ï^}´EÒ\ë°ú`‚0äY‘"r¯=!H}ãHGk“Á"ˆƒâÈ¥ï·HèêÅàì=½˜AöQ¹+Ñç!±YÉsëÐ(°:Áì†G>øÛšLh4¥Úi&4·äÿ÷Úl`þ¶K|C¥T}Áñ»û‡ÃyàKá1ìoïïø^㛫‡|yK.ï/ßêË®í?È»ˆíK‡îË{¼p%/ñ˜kú¼¿Ò7 áЇ&\<;ÛßÝþjóš£9^löŒRøÚåé÷x1Vì,AüË`ó®ôýµ\Â`âþõOúùòï¼ ï­–ÊØù^iy®íÃA?²ã'„K¿¬Pa Fß2§æ#ƒ“W?/|ç†Þ<îßÊÞ!ç»ëèÖ#ÿÕ6ÞÅT?ÛX›œë‡ƒ¾¦ºÿýƒ/x· ”sbb÷;Â|û4pÈs‘¶Ç¿&‡yÖý#pôч‚û9té°ŒS“ÞŒéQ†Ñ±vò¸æ'öN:€ñ·ý«{N²¥„µ–~‘H4~%³NåAîtîø=\¼cßïØ_CÄ>x[õqÿâÀ@²bFÛ¦*×ZƒnÛœL›S¯Ç²¶'CÉÁ3 ¹?zÈÝÓ‚@‹H‰ùà·³ýãÀBð«µM'÷:…Ö—…€ãKc}ªTí»:f"¸•çÄGSæ¢_<ÊÂŽ;+ÔÕj”O]§Ž=°ÆºY—ñý/àÔ˜Z¼<œóK„ÀçŸÏœ3þ̈¾¤Ÿy>ø«ßß‹ÐRÃZ?ÜŠî@(m¿Yë»'d|I$¾ ˜·"<ÖѪé­Åw~0‰¡Ãr*¿°à!x óHäÑJ!û»cÙoxéqZe¢F‹ˆm5Zê_lj»óÈm‹áÅ›ëw?Îù `oeÿòº”£áÑC÷Öfá ÙÝ?\¼á+ßÎñ-õØ!nøÕ΋^1ÝÈqvt}ýöìò5Ž´ {†F±á~¯Ýnï§WY>̹½º»÷xù¨]íá£]±»uPžå¶Çw×ÿsµ bb¨%¸u¨-Ìc}|ýpù÷û¶ ÛÅ:Üp4ÜTé¾½» ‡5”!4×ì!ÄÒÚ2ì·÷¯®^hÇ{ìfí©ÉƲÊèêÝ£Ü$]e˜g|â&Ÿ×›¾}öoßðCìyŠG~b?šb¬cS8ú8œg%,S¾›B‡3§ñG„õ)¨!`hE”›ª›ióäÈ~î}ÊÛ§Ý-Ã|­÷îFüÜ4RÅ|„_¨ô}ëIljֲ]Ÿ¯ôy͇£·Â}Ëi#Þø¨É Ý K«Û‘^ÞènPYØôónp³ÎêÃÜáþ•L*„y>(…Qª_97údWšã$d"'`«F4"EÄ?^øõƒnp®t&Ú€-÷cá¯y=é½ ÿµ^v¬ëkµƒR± Š\†üfýw®Wluêòf} >ß±æ¾]µñ‰”Ëâ!,(”pßêè¥^c?Ò°û;GqU´›GgùèÆ7[SáŸãÐíÜbˆåh‡õ߉°âR›d~ß²}Ê˹ëx2Ù¡ÇCÖXŽzÄU©kNiŽ_KÜ…¤ïhŠ[ø÷â\æ@¨Y‘ŸÜ„4+ï_ª¯âÜ7¼|žõë³ÿzàÎ endstream endobj 106 0 obj << /Filter /FlateDecode /Length 4351 >> stream xœ­ZYÇ~ç¯à[†vÒ÷‘X,!†íÝÀ¬À H.w#.¹&wu†{ªú¬Îè€ Vo³§ªººê«£ûç9ëùœáéßÕÝLôÊÏßÎØüÅÌ(ÛKËçVÞ;3¿›9azã}™ÙÍ.gžÙÞ(7·F±^ XUf÷½Ña•–0VdQž kƒ5á§µ…_]Ã/Kå¼ë­&B¥ *“‘®WÆ™·½cœÊT¥‰fM’©pË"nl¾ý<ãA‘óôÏênþìjö—ï…žûÞaæW׳¨d>çJöV‚bA(+®îf?v_}óÕ× 'zïM÷ŸËpõJ+ÑýsqÇØ²²»\\H){ÃE÷ïáæÂwß¼À¿,cÎÈÿ^ý dЊÈà`³Ú ãj \¿‹½sÎÄÅÀBÚ™Š‹;»¸úßìïW³ïfª÷ŒögÁçÆ;ß3<0eadU™AõLªÆ@5Æ¡zUTÍ÷ Þ3æê¾\\h:r¼;•ÉÇ2º-ËèXFïËèeW†/ÊèY]Žü*Êè§2Z•Ñ¡ŒÞ•Ñ}ÝTÆ‹ET8n¶÷Vº Ø›f0üzÖ=_îv]üifAIÞ œ»úóÝêðîþæew}8Þ=î–‹  ß=ÍC×]>ß¼ìnï6O@_´ìD·ÚìOÀ4-RÝou}_–™n½|ÈD¹¢D_<»|!’Ô®—Æs5¿àº÷ŠGSÚ?­TŒ3O2Ñíï^mŽU”Ãu]¹y³Ù?œò§`ûÂûÀÀVl;ò`"2Y6×U¼Í»û—a 7Æy Ù6uN²°²û¥îãÛãËîË_ù5måÂj0a{)zF>7‡ãÕÍûÍ©’?‘Êë*'t30V3"P‡.jt±»ô _°Às¹Ý„¥™؆Ҟ®÷ži§)X#¯À¢ýB2Ïeáp·ÙNˇoáÿ”ŠÐN)B—÷ÔÍNÜIe ]£xþKâïÚy]8=œnÝÄL‚Zë›ÏaÆ ÛnFzééï( €=ë+‹íq¹Þô_é˜LAkŽ&C(X©5kÐZ©:^Æ.LÂ)!0Ë™ÏΖ~ט`°‚S•CÄpÒµfÀ½Ñôð/b`i,s¤î}¿?¬Ñì”+*RPµQ£òÞ»VV)¢Xj©Ô½Ýï¢Æûãa{ܬ²“å ÁmkyÖ-i«ê¦dïlkÛŒpÙœ²øÝÛÖ Ú™°FiFgêÁáQÃeä¡Ä?ÃÑ@Bƺ0y‘g3 ío•ò"@ÞðG÷x?œHQN E´|a”ù¯QÙ€‚Å*OÿôDg\¡ãÑÌ*°»æC+ëŸ!®Lx}¶]ôq] ‚œV4™¢Ö£>ýÜŠLR J4ÓŠÅš?.G̾zvÖ"ú±¡t5BQ%Ä=ùSôš»!L|GÄqGU)„¤;7ªÙ9€Ru–䯔ý¢}’ýêv¿R7}îwñQYXŒµ‚¾AÿôgÞEÄb¬%ņß6§}Gz—áùa¿:×Ëýj“C?Ã=OBÌK±ÑSHz€Bèê4)º¢é0Èpù¯o_ov·7‡Ãºzáqùp{¨>ÀÆžÖ?9+Ä»Ã¾æ ¾²^_C®Á]Dˆû§_;SõÃr·®©’Û ;ñT~Î/£KÐÜ&/6 ¥œörÿšQd?’]A¼øìCRž³q%³#ÙxžùP6ÎåÜKÕdã.˜÷\1Ý éc6þTÎŒïnÃPs-»í#V 52m˜÷ÎÛm°dÁ$HƒŠûº^¦ô+¹ÂVAÖ'Ž-Õ&X¿•µuâËÚ’f¡¹.HX ¿‚Æa^@u#8¤ád~°èB*°-(ë8‹@¨ÜÐ7¡8 ;MÛ¡jÔ¦‡Ø]D<-Ð ¥“¸—áÝèpY‡Ç:|¿Q„Öp8‰ËФÀ³HïàœpÎ`@ñQzH*Á‘Áíx($3Ý:ìª ür%Øóq1²%(¾5”½‰×‹*Ú³:¼¬C²@ÔáOah´öP8•á¡ßÕá}ÞŒí^Cfåx©gû`…p9"7ɃP’.ˆl0#6õ zHRðàÀU<Õ§:Ùý°p#²Ïþ¶h@؆D—וIœu\Ú¨,D ‘Ô…µt˜eÜuWÑ””Ñ ,‚ºÑÄ*q4 $émù˜õb»eX)x2ý¤˜AdÏÒƒZŒî–w¨fËŒì^”ŒN ê×´ 5Ø6£`ÏQJí‚Écþ¢(¸«N5óË®œ 5+ƒv•ƒ‡¤ ˱¡—€¯G75¨¥Ñãù¨nWš®.ÛWTõãJ>P-“ã#R^…Ú Âw‘ã9ŽÐ¦&¾"c<(Сð Æz_v>ÁûíùÐo¨{Œ1%8+çÆ›F!xœ†[­T4fÙ7š9ÜWÓ!­ u<Æ8È!9?0ƒ+â½7µ¯ì•äñ’‚Hô+ðnâi9ΖÓÀ.˜Á[ç$n¿ªÇAv<Ä…è R^ÃÓz}]±ˆÂÁ7¦”MEEÅ L2b2„ZÐNEÐÞybbŸ^°« wŠâI8óå}ÝL”áJOyôòUøR(9ÀÑLº5Š,Ǫ>*t<oT«°Ã„ó¬ã5H=±‚R¹ž¡ ¦O¦ù‰+f'Ž&º0°–Zh”D c "ùh›¥Ù(ß, ±›ñ»ÈÍB<¢1xI¼•( ­Q8ŽYê)š$w^Îì¢ +¹.qgèCÞ†îD›¢íj¶GµŸ9†™l ÁÁQ=$¶ò"ŸÄ°ŒCïtÒ˜f4ÁôÞBÝ7¾MØÒsÛ}µC03l§@¤  Çñf…”qìgbhR… ¥{"¹Ñµ»Yý>ÓãY] ’Ûñ”ðm60íúÅɦbè`"%A@² §±!ÐÉ‚åⵞ-ÅÔ¦ZZ—͉óœ¼#mÊo{aÝ:’fD Md[}=Õ¹X&[ðþ†]Ôd¡‚Zè=Yq4 Èn²w†iL·¬Å;Ï#a#Ú”O\FÅƒß a;Ÿ×6Š ãÉä1ð“Î4:¡Fqéu’—A€LÚK†¸ùŽ&¿ûHâu’Ù¼ªi×–Jzx¬W“ÎS$']Ì-eC~o57šPТ²ˆL°¶tW¡¶¶L[<À‡d¦PÁªõÅÆànÕƒgQlú8r/9vIú°« %ó=W%]H5ô°žRÄQ4km­º`ðˆ¸ÒÀ¦kF³" ¹!£± l£^v_qÊ6)í¾<5/lÄXCU›sžP#žt¸‹ d‹áË&„Àl¼Ã-±á(<—ôN;}¦HO¬‹< ˆ­6©ƒË`Xr^Î~M¬øÃCÌ­I0;cê<(ì­]ôJà&mJÒ6ÅÊïΤ‘¾À™Õ×vx/<Ä—„à…µ¤Õû³.k•Gˆx¥#$¥Âpy=ôc(‰ºåtHlw´Ý–¶^#ퟜ6ñC™ÕîKL¬>lGÓƒ*¢@Oi"ú¶FJ«"5ÑàöÂ]*b\ìœ4Ç@r†¼–„©%©µCíé¡Ö y9õcüÐ *UR9Lt-VDRlÊYP«³úk’M„¦uK°`cB¶h „:y Ñ$HöÙp,ÇVƒ¥+½ÏšÓi'!=l/j«°ôÝT–‹À€Ÿ¯S/…™6ó+¶µ¤ênbíØêÁ0|Ê@ër# ÍA\¥ÊÅÎè ?æAÍÇP¿°û¢L^ÔÉO§3ò"¨ û8òñ›±O*—Û‘·H•Ë“1ëÏû2ªÏœÂÕuúæ·:ìÇh®G"û™+ Ÿþžã*o˜šèî±Û|@MŒ)h Žél@õRÖ„¼¦,»‘'W£)‹á5Fs?CC„ƽ˜È^sy€—o¸ ¬Áõçu†u| 1ìr£~7ãà:¸@ Š©OCs$¬8ÍLi®wDhKöq<"™ë)Ò•nBàÂ×¥¶_ìÃPµßVµô Á~1iż½ïE´!ŒvrËtÂzÛœÂYÆî¤ß<>þ€O´w€n«"¥ñm¦N÷+¡¯ÐÞ¯”ýÓ†vyµ@=ç ‡ïhðOüdúP‡˜*îI«-ÅtqÊZjÒîr€#ù¸ÒBÂÕ‡a[6íf¼ÏÐ\…eÉH'‰)ñCâD7I (öjõ>n¨íÝ2“'4•÷M„RáÁâšìGÐd=̧1„‘úÈ"UjܸyÛ´ 2úI§Éú¢Ý…C°af­g=kz¨§-’^1ÆEµ¨íQ@k²«[\€sCv@;wÄ“ Ô=ëôl" ì½QüÚÇiÃôâ†ïlH¹>à &=‰ßÙЈ/ÑÜW5-á±4§tNe¼>Ê2…ÜûÌ]gÂk–Aífýô^Û KÊ&l¡±TK-%߈bôÀ[¥´ø¢º Æ››[¬!Û}¤fô¥Âé :C#‚xͺIG±“í:‡ <µ=sªAWòáðÂTà³|&æ=šAÜÐÄœ]°œÂÞ¹‡j/¯VÅ%³ñÒŽÆ!å¨FÃóÆY¼ÀzNÀ8]ÁCþô®*äOmÈŽÔܧÝZæùݘl»û‹\0TLRdWÍý•tKB+jþ°} ±EÅ=0Õø@ PXì€`›[r>¼óHú3MùLÂë%YÙ$ <ÄY´ë#ã±4VRarñÚ^õ¶öÁè½Zº¢¿·­­Q‹kã7™R&ôAסÍþÉ!tø0ä (>†ŽÉžùì ŸAÐøÜŠ¢{5ÕÝ8DºxÁQ±¤¯`Îå®@s†§µcrÞÎßRøMä ”'|d'G?Ä¿´CT¤…¸C¢šÛøï#@+Šˆô»´ƒÐ¤¹Kf†WöåT’Å-²}T§PõÓ%TüµéÉ"ÉC\ꜚ( ¶Dƒ!ûH9vÛ²—Ò3'×B—CDZž’È`ËHŽA`¦Ý#¯·iƒ µÑ«óOÉsñûœçâXû?*ÏEá?’ç&¤BC9 ¤0ðÒÒã,·b1ÿDÔLŒ!Yvo°åÔYJk[k#ˆèƃ'1Áœoò…]|ãhHL'ƒ™Ozr—N˜á°;—2ì¯Ñؤ!NÔ¸OIŽ\Ÿa /ËG°mê)A¤'¬8»ÂGÒ˜¸ÃyEà,¿Ôb­ÎÈ]Us=LÓ¹ñËóü8 S±òŒø»ÙÿNtqáendstream endobj 107 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 165 >> stream xœšeÿCMSS9‹‹ùùJ‹ ‹ ›÷¿¼¹R3Oøˆù-‹ ÷ºÌ÷“Æìè÷ßâøF÷Ùñ§ÓÓ‹Ýòûßû#ûýJè÷Ï÷4÷RûÏëüRø÷“÷'÷ÏSCJNMû 7Ÿ ‹ ‹ ‹ à;¬endstream endobj 108 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1919 >> stream xœ••{PT÷Çïe—»7B ÅÜ)­í½íhŒÒèøˆš¨£²ñE|`1€—§û–çò„Ã[žË² òX\P(Š¥Ò†D¹C!fEMNê#ÆÇÆiζ?gÚ»,œä¯Þ¹Ü;¿ûûs>ç{¾—¦äMÓÌ»»öïÇõÄŸ$)Φ{x{Óà-oyÃ/Ùú"ýÓ¯^õ¡\—¯R«‹OØjˆHIU‹ŒÚwj?µ:@)©CTµ‰ÚBm£¶SoQÔFj5GŠEÉ)=ÕG/ s=~æQïñ_Y’ì?r³=ƒ&_±D1ªxʆ8›g;›ADˆEú¾²ëNäŒZˆi‡¡í…AÏ|ÿ†E 2#o¨Ç—µ “mgG`uÞ%2žø’zâlÅ]k`\¤n«¿ð¹È¡ç*îÚ6…Vï]-HÁòEéhqÈœÑÇ¡Ïâ§Ä“x.^H|ˆÏc”£üñôቊ,å”»?pôÚøÄõ]Ë—íV*]GxßqD¤¿v`±C†Q$ž«·Ag—ŒB†2öã=©—€EÙ“Çè‹^+ŸyhDš&J¸Y®á70î‚LÂ¥Ö°™7œåLåFF?ÙúÖòÛ”›>øëUÞMhX¤Ñ_Š•ˆ;¹gc_"Å—ªmyuÀži2Û,Y—ßÞ»3!ø°`WtåVEóD>í 2¼ö%„L}‡”ªVJ•Șï‰Ü±Z”9œ¿áLЛ˜Ÿ•wŠ?f 4`ɻƥÚ½ µ¹Â¹$[þ·émw2ᧉúm ªi$™Ï³ÔhUCb²°Ta]§©¾ÒvšÿcÔÇ`•@¬iùªg0Ξ`T­ñå‹MÛk ›më´=|Xm(æK´ípØn8cq!Ξ"Ü#ÒÝ4K Æ£\StuN¥íÍuR9mR9½Lîº(å6`7lxŽoà¢[ßN^_#”KR»¦DA1UÓI£6“O´¨[öK5yÏ'sÉv²ë9ñC¯{íf³ ¯ÎnwmàÝTÜ ’Â+?禸¾Ü:¢fV¯ÏŠ^v›?^/céoï-?ÛÏ—·B#°“ÌŒN¦Ù/¿éhâ¬Ç Üíݷɯ,€šæÔ–{Åx[i#T{g &P k ‰_(,b7ŒïzR; =Ã|Kô0H•ÚZ$<:H7&AeŠ0ÎA"$©’#ÓÞ‡`ƒŽvõ>;‡>ÅÂŒž~ñÒ8ß³—1µKié!] ^n¸-Ð*l[²å‘g‹û\ã÷+nìèIæ/²ÌSŤë!&vJ¿^îsA#ÜAö.a=õ ?XsÅP¹J'É¢³U¤û¥²7:=83Ø ¼ätI}%4³R›ÓxÂ0iÌÌŠ SP^(‰Bˆ¿Ÿvevt~2[Ääu$_ÕO£àg‚V¨(©+¯¬+åšêÚ›®Ø”ÚœªSÒÞ‰=þŠ<÷+.,Ë‚"(J\gÔTšìøÂJ‹_áùøêT`µ©):•=üêÄðµ/;f¬â3Æ=’9ÕHsMÆ*Cfrø!ˆ' ±Š I16×Wþ?ÃlÑ "}u»&dÎ=Î[ShÈÉ<žÇ÷•ÆKvAoX·2¸C]%ô…Í»™V}j<½F“-!šý]ø¾€£ªªÄVÐWd)j(²FMÛ!á¦ü°¹ªîl%?+fI~ÈÞ¸÷ 3§7®GøàJhMäé¤r¥9³ìýšÈ p‰¼rå/¨0-‰/“lÃ\Ô0c‹î¹ú×-s†áG\3 |ù‰Ãpè(_X–2,}L®F_Б ’¨cÜ3Û ç2¬ˆ2LOã÷0 JÀMŠ¿õ ôZë2vñ$M‘£™FùÙÿõ‰”œÿMúOÎ¥2çj®æ"t_TC–@Ƙìc >Ö µîüÙçGXá]ãróòò$͸þK<ÞcºªNŸ:8£VC’Ž'æÃ”ßo=Ó}áÆ> stream xœ•½[.Krö¾ü~ÚÇð´ªòR•õ`"@$e$a †CJÂ4)R´ ø×;c]"³ÚÙæ€8;¢##Öª/++¯‘ÿôq|žGüOÿýÝ×òÙžÿóÇññg?®óüìgù¸ûu~ŽëãëÇýŸ£¥â?þòǸÏÏ{œ÷ÕŽÏZ¦QjÆù|^V½ŒúÙÛf•šÝª^í³-`ï­~†¯-¢ag|Þ}¡’¼ƒºêøl׳çý9ŽójYYó²¨ gL[¼ããïüÓòCÿùÝ×ÇŸüúã_ýEéÏçs•ëã׿ûÁÇ|~œó1œm²?îÏsZüúõã¯~Ž_~SJ;¯ŸùËoŽÏë8êóóþ‹_ÎÉwŒúóßý¡>žq”òüüwÐÇùó_ÿÛ_~Skù|Æóó_ÿOSóßÏõó…›þÜÏôƒ²çQžÒ~nú¿ùõßÄg‡Øf´öñë¿ýñëóW?gøä¹ÚÏÿþ—ßôQΟÿ)•Èýcþë_ò_ý3ÿùgù¯?ÉýåùkÉýoù¯ÿ+ÿµÿûü×»pý©ümþëŸ×Ÿÿ»õÏÿúXþ}þë÷ù¯e÷׿üëOýñçñS·Ñ?çóªWêÔsÌÇVò¿ÿüûÿåã~´Ï»>µÎ÷éüø7óÿÿ#Þ«sôñYÛÇü©ëç5f•²fVíkAúcVg‰ŠnÍËjÖÊÏrïVÒ¼¬žÖ>Ÿs·’f·êµöϾIñ²¹Ëõy쨬٭ÌgYí ÿKoM»>îÏ>f}:¯ÌoâÝ9ï@;acÖR¾6ñ®Ì7à¼ïùK„Ô ]ó ©Li¾ÝŸõú9ßž)Ü×â_îÙ®ÌRQ(ÞõägÓtßå*3ÄõQj›!îùãNðÿ߀û}¯okõ£NõðŸ¿þ‡¯ßÿòëÜÈõùhÎ룳n5’û“ßÿËoÿúç¿üõ/÷KøküüÇþøíßÿ~á-çlEzÂýúÑÊüQ¥‰‡ýÿ0²â¸³šÌƧ~ÎÆ`3²f·ºÏ>ÛËÝʚͪçñŠgÅnS{ùì/#kv«øfô±[Y³[x#_¾¬Ù¬¾?™íYmVÿÿ~ÛrÌïC¿ñÓ£UåïVîYÕJµül ÂyÿìWükþß|~Þ°éWÿ¬ýçyS:ûDQËÏù}i6ïŸcþm°œ•¨—Ÿ¥N)|´Fÿ¯ö¿Ô=Uoý3ß­øè¦¦Mf“Øù´>[Í)Ïwø(Sž^Kñw³ÀüDÎOá2¸KÔ‡å@²BD kæo4?¸é!^'#P s!ðŸ Ù¥ß~MP4lçôXÚì_вf>­ù;Í èSôr]ÑœN çg9SÊùëfqÏ26–%¬™íËÇr0¿ÏýÚBPŽa‹„ModÖgCPgÓÝë'ZüTÌêvÆãîwÀmýFÔ{öRÌë³õÍb Ìò`!¢€O'nu>™¶…  ba ƒ´‡ ëø’Ì—G_©ÔŒÙm¬¦FÿtÊwÔT£çL@K|˜—ň®ÍæÁ2c „4ó·Á/`ظ¶”QÝ…ÂFioäšÙDŽg~Šðqµæ™¯uÔ¥øFÝSœÈv²nÝ%eŸgÝ,fƒså@¢"Dk‚ab‰öà’éúw?6 ¾«øünŒ±y§Œª®à¶H¸òð†OJw'ܯ_dP²æ™°˜Éã>j´¸ÇìBÜ)ƒØ=Ak&rÆ‘‡%3¸I„tp] eɨ‘)obö|–ù“ßíähfifCÄWÿú|jÈ#Âϰz’sV«T”cvæeKfˆ(`Ílãæ«ŸJ‹¾óŠ@Ä„ÁÆHßYÙüL²÷lVîĤ¸Ø>˜{þÜU«|F_K2Pη·l'‚ÈÁ¤™(ZвƒZ£‹»BPFj"|£@VóGǧ·àøµifŸÏbCã3»—Ñ™QÇçÑRÎètnaä EF{)f3Ó£¢ºøtüÔ-eÐjDzøNâMlþ¤ç›Ø|ýÙ‰=ÑÞˆA~“…€ÓÁ≱è~ÕØì½že @y'FÍF¾“bøÕ¯xMÛüo´K3_ù¡)Ñ®#ä'ô¨G³6XÐçól›Åü†Î±?Ìü A21¤…1ÚÁ›…˜hB{?'—¦ ½5˜ýìÂ|Ö£RDÎõño³ö Z¦ë0·æx0aÅcÙelÞ)ƒ’‚ÛÂàìá ÿE©LïìÔ§fv7ÑNËké…í¸âJÞˆ¥…§ËŒ±q+³)¨‹Z™À®íÁIÞ¨¥…AÊÁ›™.Ãõ',i®iãÓ³à¿í:Ãct ¼cöR‹>À¹”,×anÍüõ¤â}è§wÉ¨á ž†koø;%²¾7J&n¯óÑט>p\ˋز òåÁ2c,n=>Ühèíáx>÷³ü»!ºø›‰U,¸Ífå11kÎAX±'mãEس5ï%eÀĪû²˜/v6–#JHsÏŽÉÃ=[™z®’ñðˆ"-„2=¼yˆ—ÿÔ øÚ4³GÓë…¡àYÑÁ™8°¾(@±och}2Xfˆ(aÍl§£ÂʺŽ Ä! QåßÈ«5 ëúéǯM]PT­CØhµÑñ™]èð"0±Â·,f··m$ÞšòLÅÕÑ•Íâ󇋹ã @•Blaˆöð&AbÓÙN.ô-M±ø6åË¢óÿ0ZUjÊ.Q ãx¦þÆ#nüRRR~‘Òš7–#JXsœèÙØ úu­’Q߉"-ŒÒÞ<È­âó]LN½Y1û=Ê4>f‰&ov¥Ñi¥ fü$¥ÅìžÇ3O–̤‰½æñØÃû>Vˆ¨ ¿ ¡K¿ˆ¿ ±ÞX­‰‘B<îXÚù⮊2{€Ñc• ü"¥Å]¹òi–#JX3cÅdOzˆíe‹AÄ„ÂFioä6+jÃìó3ý_›¦¬%Gô»>0WQgÞ˜rs'kZÌžMÀfq ôsi&Fü¼.>‰þl(«ª‚-ŒÏÞ Èj~Å«fJº‰©™=ž˜yŠJ¢É˜‡‹EQËÊA`ZĦãss`™!¢Dj8·j'·e ɪëçf¨åàÍâŬaSÓF¬ÕƯ}Æ$<`*¨äXZv:°\ü¾X1ÛiÀ´öøWÊ‹W¢¼8ÖÅoÄìükûÔÒpá»jc˜~bƒqÁÎÞ'eàä‡)-æ¸"p¥‡”·ÞÒÌ&ìÌé Åq°¾BHƳÓÎ/[¤¼Yˆ™¾ë³&¶BÇp_tê7h\tºÞ±§˜,êQ LRÎ×,5ñ’DU²¿Dޱ^3£ÈÑ_6yxó ·»C×cG4†,©á®28~èñÜây=…s1”Ÿ¥´¨ÇÉ(”·Dÿ0§¢q+KϾUlJMÿ”Q)„À(ß(¼hÕY?s§{5вÊkmÜ^㸒7^¶p;°È‹X=¹»&‹÷ëÁIÞˆ¥…!ÊÃ7$6°µ¤= ìצáy„§¡«»×:`cÏrcaôElQNž1“‡”#JX[ ?–ƒ‚v{… Œê.²Htð™=X&ëèK²&ZƒF¦p Î[DTONáI/~˜Ò¢pZÐå-2hI“í#œÜ=š!$ã7$B9øÆA¼Ð’bÜ)ZThè[gÙÁ‘q,vÕ“3g’rím‚Eå¬`:°ÌQ }ÓCç÷6cP/‚!zìý¢V=¯ÞŸSSRĪ$@Ü0íe¡ÊΘe€äÖ¦´¨Ü”$+JH£e!{ˆ£Wç½bHF Š´j;x‘ ¯óäx›¿vÅÆûl†ï›¿FøPRJŒ-—ÁìÜœ×æ åƒkB©èj?í€3E°¢¼8ˆÖ U<ìç!/iÎX6(•öûU°ØQ¢•;Ï”³bÙ$-8Í’,2B¦ÏÚƒTâqÇn9‡ŒšNi!ŒéáÍ‚Ìp0x¾rÖ;¾–&ÞUüèõȆ8¾u~þŽ–2¨=<Óf‹ù‘déA²b€›4³&5ü¨ô=þ{… ˆJA þ»A»ø›„ˆ .Ï ¬Pmš¯ ×@®ùæÆþžªU*ÉÀˆ…¬4à 1•¶@çašƒmK÷Øî]—{É ¤E[$^9xã''n”œ­Gãfk¢‡wÄ+»Æ#î‰mñ¨DðB@ÏÏÝ`¾VGßHV° ì  .:‚dTbH‹D-odû¸c;ð-ÿÚ4ÛÁ¯Ó¯9ªÐó¤  7zi»ÓúæÁòp"5±cƒbñ œbH7¢H £´‡7qÃø©G†;Þ¬©‡ºF½aÝ:º@÷`õâ6Wïn®7fÑ—Å8¸…×$+F”°f°)Ñ)B÷J!$£¾DZ¶¼YY-»}:õkSD/ÍÁý·<ŸŠºÄ}Å:¯ZâÄ[¬è§Å«ørF7?¢1Ížå.Xž)£:(¶-ŒÍ^àÅgÄ0s¾óݵКÙ#‰35Öõã+;Çq¦"jÐ)%¦è—Å|^OÛUé!6!¶kÅŒê@i‘» äáÍcçÖ‚>WĬ‰'0jrk×ìxã§g\ˋ۲ òåA²b,n­›#Pyè:Âé’·eaÜöðæAnsLzãØç­=T©™Õ öhؾÿEƒþàô…å·ÍguÞË¢h»ÒCÊŒ%¬‰ãõ󩧇®ãõŽAµ^(la”òðÇ›Wãwn•ËAé•ëñ+nnHd²HäòrnHÍü¥ã©§‡ƒëAƒòÎÍF)ßxÛˆ£ÉsŒÝ™Ï'cÒEûé.Œa'ŠÎí&—qàèÝØ,Š6 ÊCÊ͇8RS1-º<ÌžÄØB@D þÝUúÍ€¤b,ƃ-°-Å/Å9Ð8‚oL;±¼ÐÎSÛý â{a–EÜg–%¤áøò0»eñ½È”Q%„B)oà J± -NüáíÒt=ˆy¼8¸Û¢Þˆ*8±µYÌNΨ›ËŒ%¬™Ü+˜ÉÃmÞu‹AÌ„ÂFio↠êíŽÊÊÌ&ÖhL=«Ø‘qÄöÝÓ_÷2VlìM ×[,3F”°&öòFU”‡ ?™\ú½Ÿ38|Ã'¥==džSÃý‚36š÷T3ôš,ƒÒƒ}Øi½›¶y°\¼ žš“ƒúôpr¹W”¶ ˜Ì?‘ÔÒCÊŒ%¬)hà—‡ üŠAÜ„B‰R¾ñxq‹Ä4ÜÅ—šÂ™@{E”–âÆÌlO™6b‘%Æ0é ÆP÷òFÌ Q¾‘؉Íþò~mšÎ\Iò:ûæÜR¦¸–µeAäé!eÆXÜfωsªéÁOÃ1(/ni‘(åápÊÏ£}OM$Æsñ#~óNg¢TËùU—AC_o9°ÜÝoHM‹LZY¾òN¨>¤“laˆ*ÿæ@^gçn+f´ýÚ4óãRðÄÑíê§CFU>[Ê€‰ýiÐxþ?XfæFBQ;ˆô‘BÇ$ã7&†´0F;x³ ³‚aL9nVIMaÇSA=&]Pqâ»ÛSΛ»9mÑ»ú r`™!¢„5GÁ7Ûb&zzŽ!Ô" ŒÑÞ,Ä ûþÚ Õ̤aGk†iØšÎmJ±÷ûÎ!%¶æß#]åØJ[¦ÿ(`Í…!árÐ9©š(£® ÐÞH«b?v–pÙ95<ŽVbÈ8b*é&Œƒ;C(ƒÙÃÍ&¶àa¯åÁ2c€š4 Ç©–¥iÉ™È%QØÂ(íáÍCÜn¢˜=hýdÖ öλWÉfOøâ® ˆÀÙ±Îè¿Çi¯±·ÌQÀšIýƯ*}óŒ@ÄÁ†ho$SJXÞ¬LaÅü8aE¨kái6èÇ /|NϦ÷鎫¸²àŠÁò ™!P@ŠÑØÂËA 9ñÎ(„dT ‚H £¶‡ ãî–Ù[(n>¬™ÎP1¸Ünx± œØ¾·,bON_,2B°¦2K:à1î‚2ˆ „-ŒÑÞ,ÄìÆ‰þ›!¿–bpçkŸï(Wè¸AÉŠ¯”³—-l@^,3D”°æŠí)ËÁůârÞ‚a aTù²ÂÂ9@òÓ¯¥xnvynfŽÑÿœ®¤NœÑôߣXÙŠ[¦P’†éUÓÁ­é G¬ŠÒBíàÅ@¤NªdúøÚ4O×Ër3…ÆQY§0—”LR«¿_Ì¢”ÅSN.’š˜¿‰/±äŒ^‹"HV5?îÍÂíáM‚ÄndåëgÁF’¯MÓߨ"Är[Mœl\’ô2[\‘¡/)3JHsbcM:8¸I)CÞÆ” latð™ ôebÿ·ÿZѹ~ÕäTbÚ˜ó´ýJ(oœƒ´Å•çeè!e†ˆÖÌ/~d9(‡hAY• l!Œ,ÿ¦ VèÇ´˜‹åQîÔÄ«[YO¢ sFq&+µÅwT2PòJZžP±‡”/îSÓ™ &=4ænÍÍÙ]…,¥<|ãAnÏ:x¡.°55:*Jœâ}Ì÷-Híª“E¹±…+=Xf ”°'B—‡èê^[ ʪïe,‹…›¾ñ7ôf¶õÔܘEGeaº<®—_1†ØÔ/Nj,ƒÈj{m,ç‚zj:Ss¦-—;D®§'$F9øÆÌ.dî‘~Œ?šÑ|Þ¬+‰°¡d‚ÀS³ ˜°Ò‚Ïmy°|;%rjbîýc9¸Ÿx…¸œ9AØBUþE¬´À[9ðµib­Á“»bmãÒ’±d L…m‹†”h˃eƈÖœ\˜N±d ´žÜ#7D“x ×ܰš†Oº}ÆU+|˜CKÊÝS¨ÒB¨íÀ"#l´®Â  tP8”!(oÄÒÂíáÍ‚ÌJdö˜½ÿS“Vt“›QÏ82e½ ±iîJ9¢væcK‹È±Q6–›§ÀSS™)8=ög3Fñx¢°…@ÚÁ‹„x9…~U*5ƒ+áWÅÁlDIò+òÙÔ”S ¶àQÌåÁ2cD k..‰§‡Îdwƒ2˜ …-ŒÒÞ<È-ÎæV68\ÆLÍuðc4?~wãþ¹˜²¾t*M2òäZZ܇FKò`™1¢„5Lé¸ûÚ4ó½Äi ‹áY4vÜ™þÖ2€öhïÓâ>‘!=¤\œ75's¦‡“Ç93eÔ`¡°…QÊÃ7;·6.¼'_›æn,E¯¸ö%¶v*®åÅ--„<=¤|ùíLMïúaå¡ñ VÆhëí [¥<|ãAnqÔ/Æ¥Ìâ©áÁÖ)8z0D,7OçXÒSaiQ¸ìh)3F”°æºùzÚƒ6aeŒÜ™(d‘(åáq»E×j|mšÉâfœ]õÅ%¶"~Þåq—ú¹TeIµ˾Ë#5õQËC±­ÌA2j1ØÂíà 0»#›PlnªþÕRÓ˜+ôŽA.³&ñ'9˜µçV0w´,êÍÌ­v`¹æfMÁƹtpê7sˆÓ¿™1ØÀUþÍA¼¸Žvããúµ)´{ùÖ:\äaâÓåJd ìLí$-ô¥ˈöVð¢°,_q?× @¬Á†h/¤»“:7ƒpAjæCkxE°ÕvÊHn[nŽ(-'óŸ¤Eã)òô`™1PB^ùdMW>9†eÔ‰Â}w¶0J{xó ·Â¹“˜zÕe†Ö ìu™2÷>Åôk̤ßÊÔ(H9c“<ô–$ÞÎnÅ…Ú«xW[ê”ALlaˆöð&!b7G¬×Ãký–&VI « Îú öÛ¢à‚©áž]Ô´c¶ˆ íuó`™1¢Dj¸ú”:³ eŒî´C‰Â‰[Þ<È‹à+nÖ .ÀFe9ñ#¢6—¸SéJÔ°ô² "w̵9°Ì &ÍÅØôйõË!(ªÊƒ ŒÑÞ,Äìù¼Ø>—AbTpRu¥"G/oŠ ƒ×•2`òO‹û#–Ë %¬ÑOéáÀ&¿ƒ²*|ñëצaf_TnEàzQÌõñÕª•VÝe¿,.¦ŒI–#JX£õ"{À Ô¹bHVuGwØFioâ6p.¹å,jj4u%ƺq ¬á7àÁsÉ@ÊÛ©Ó"F$mó`9gQS£9Ðô 9ÒŒ‘³¨‰ÂFioäÖØ‰«gÓ–ÆÔ”Æ&uV4ÂZŽôå˜C¯GóûÙ,¢³°9xztlÅ¡O ŠG&ÆÑVɪòؤn C´‡7 cÊ×6òîÔèæœ¨,˜tÖÍ:ƒ9d-è͉k[ ¤—Z,çÝ;©áÕ9é@7ëdˆ¼{'AØÂ åàÍBÌ4ÍÊ;Á¾6M´³ª)ñ |Q& ÍÜRLNíÚ@7h¹¼E{kâ^ë€Åò‘¤/–7@²«ûna„vðæ@^<çÚÏr*‹Ijæ%T žŒíqc ¾º‘)*Eð Ë`V˜rm,3˜Is~ìáhlê‚¢*;0ØÀíàÍBÌ%.ÃN´¯¥‰ÝjýbEÁ@’É÷‹NêZÐŽíʶÀyⱪo60F;x³3Šâ»Þ™i©k¦³ó¹kèìSpÓASE‰„°è|Ø‚çÆÒEE{)´¡ÓÅ Ï gɨì„mo$vr·kÌ&sËfj´{**Jãt2`òe8±eaYÄîå±9°\½›ÝO™âeÛB@TeoëÏèÒo ¤Å›€ùRÃ< Ewô¸J<¶’Š@Ù™·‹ž`º´eú{kâd{¼*?»X×ê9ØÂíàM´‡Õ‘?å`shMì!‰Rq•”ö¢ q­ß]:á÷ÌQ#WðdqsðŸ,3JHsóâ4{ˆd}±<ê’Q)ˆ"-ŒÒÞ<È­s$®øfŽÔÄ·•õd”µ ûðäeåñó´ˆ9èºX¼¼¿95çhÓAc Ñœâ#AØÂíáÍBÌv3=mhAj:“v<¯ ‹JC¸bÆ2FéeÀË –Ë ¬©Û9ˆ«ÚÎ-eTxa°…1ÚÁ›™]J‚ƒPKODUAZ,mez{â’ó䤜-ÞkR>¸©%›VÓòãeʪñ÷Ø, Ò^,ḢC¬ŒÖœ¬KÊ­êCÝSJÌ¡©)hê¡Ô‚,¿ÄCõ$5>Óm‘è5$êµDzWa:xs/V¾z'5oΉz/;’¨àùël:em<ßNM=tœ<,yè2‘¥¹q{Îòp!k~†¸t—HbÐß ‘Å¿“ ±˜V‰“™>QlÅíXxbèáyáû~"›×ãÅ5vþD5H‹7QÙCÊCÇ}—b`Og:(ÃQÀšØá¯%Ä«TÏA²^KlJ—E¢–ƒo,^Ì–ݘ=<#“^ž©É¸’³4ît`ùpk`M¬êÅÛ/±ˆwÝ+‚ä™-ŒÑ¾±³¨â²E\Lÿ±4Ìû>eÍfG^xÀÜÇD@é7-´í?=Xîº\ri¸+nyஸƒ2ª¼PØÂ(íáÍCÜ;2 wz~mšÎY—Sǽ"Õ@ ¯µóøí¥»Âk¬n¶YÌ’8]k–#JX3?äG4öPp[áŠA5C(la”öðæ±skÏ¥]µKsc¿½¶˜9ê+®åÅmYùò`ùÒž×¥é¸yyèØ5»btí«](la”öðæAnÝÍVyJãkÓŒ›¿~Å`­bWü„,L3z¸ùçYËVX"½‡µ®NËÂLÕ¸œ_Jê°¢ÛÂèìà_œ&îªøÚ4Üy1ã\ÜO{pÒåŒ hwÊÀÙ¹ n‹ù¾ÅªQz°<ª[Sk"xÔVyˆ=ø"*†dÔ ¢H £´‡7rkœ›Œ'…T]KÓA„›ÿã1ßQ´àÒòÔI£´¸1Ñ­âèæÖü,»xE~ä€2êƒ Ø"ËÛYõ¢‰öÉÆÃ n3˜a®ð<Ú”®ø|€Ïf1®øì.–;ó/Eô¼úÇrPõF:DÕ.¿¢®w–Kòðb!bÆ(SB/ ³ñL§¼=×ø ÇÜlŠÀÉ+ÕÓ@³Òe†ˆÖœøí–‡³° £ALl`ŒvðfAf\¯AÒèÂ—ÌšŠ‰ÿ¦i¯ & ^÷,@ oE“EÜ)Ž®“<¤\<’K /4[ ¬VŒÃ#¹Da £´‡7rSÒ¸0†ÕÑŠŠ/ã s([?§3ÎG;ÊÛåêˆ-ÕiPmI—ƒ”Ĭàt†ËŸ…UÍ(£Z‚-³¼8Öà~‹¸,—uÑ žs­q%"6=Ɔëhæ ˜ydW6aHRFˆ(`E ñËÁ1XI‚2ˆ „- RÞ,DŒ÷2éÆÁ¯M3¦ibëà†¦:)(O¼¦EciËCÊ·kojfC1ð,äáâ,CƸ\{…,¥<|ãAnOcL$}mŠl3Ìíh¤ü=ªš&—%èÔ2i¡ ëô`!P@Š ëãËAÌVµ-eÔ E‚”‡7 +:/ÒGÑÄpj"ïj„Õ“Øåó¾EGR$èÍ;sl¡3-éÁ2cD knÜì´<ð × ,¶0J{xó7&³ìüÈ~mšûRœÎE„Qù"ÍÆ€”´qÔg‹¦­’ö`9?í©A¢Ùå€Ú"?î Â)odËSg.4"©)®,gø ïô©Å3ë”óädº ¢Ówn,3 Xs°õ”ƒ£`–+#PF½[$j9x³Ø™Ízä9üÚfšÓéqàâË +yKÂ^,#ÂâÕb)ýæÕbÃ@ŒMÀòâµ, Ñ^H«0m}ZÀeCKsÇIä?CLIÇ¡‡”89i9¢vfjM‹Èù[—‹Œ¬é8ú·4®kdʨìa c´‡7 2›e" úˆÛé@Ì -Ú”9†{pú©³j̹Ֆ2€âP沸‘•ty°ŒQÀŠÙ¶?xtpó3–!$ã7&ˆ´0H{x± ±¸Fœ]ryYš K{EóäÑ‘#Š»—%ƒ˜¶ ÛBsóv`‘@ÌÜÛ³4®ìeʨa‹D-odÖytùœ¶|bGŇR·p5÷È])æÅ!‘-Fã;i–Þ iE{´œ"-öÜ-CX/¸ZÀ¸ìDJ“ûCݪTð$äŒÑñì&j Š‹V$ eé›…—ìÁòp·ÊŠ[½9ˆ«’Ð[ñÅån•A¤…AÚˉ]L‹uódÿצyýµÆ­ 1†LX#E晢pös3x9°<·¡©9Ø£”‡ÈÑ2%T"ðŸ²J¿)V4ž§x>bi:öÇÔØIÓD×Á/R”®)%W²l»¹1Ñ$)7¯}¥¦bV:(/¨C”îWØ larðf!fL9kkÆÉÆ`Òâc=?³cºço¡°…QÚÛ¹ ælˆ;€qëáÒ\~„º‘õò#¾‘З"€²sdƒøõî{9H™!¢„5L„¿<Ì:à AÌ„ÁÆ(ßXˆ™RÙpüצ9ñ>Î0ØÙ©­*~n|’ œ+iQÐx¤ƒ”"JHûì£+iǬ^Ñ$8†dT €°1ÚÁ7dæ$_WÑÓÔÜXè©5 Ç.µX]‹Ž2€V¶ù¶Ð¬Jz°ÌQšŽSmËC\»S¶”Q1„B‰R¾ñ·x@×ÍÃ7<±™šØ§Ú#Ž’FtœXð½éS§²ô÷Ê|YÜ2 €4‰‡—ƒØ1¶”Q/Á†ho$6ω)“‹éà–f MBAV ºHÉ<ø”#l;8Çbƒ6ô™•Ë ÒD“xÑì¡cü’!(¢Zƒ ŒÑÞ,^Ìâ¹q“ij‚ÿ½˜ÅΑṵ̂7fi ÜéÀ2ClÌ:nuYbʳ"P܈¥!ªü›yUž‰}®´¤fj ¢ n ç•O•bDí·ÚpD¢o,3D”FW>¥‡X²–BHDí%†4Ætðf!f¾ÿɾ–æbú…†ÙÎã6H4‘—¬¤  \EH‹»*-«5ƒ‡S"Ì©.:jØÀНeEvÛeÁKt—Ë··¤æâá”ôÐyx%ctoI¶0J{xó ·[ÛX¯î|mŠùuÅÏ>´o3ö†šHž1ã÷¿ïeqqÚ%‹§|i|•ŠŽ<:ËAëìm:eÖÜíφ§âoü¤¤:-r''kæ‡5FÝ®57tÏ¥é*Àw“ãl›-Λۯå!妋ú–&NÒãA8A$NÍ­E—.²H”òð¹=…ù4™úkib7gÌÅD\ć Ñ€›ú”0zâdßÜ/Ìé–Å%ŸNI½ip!A:8Yÿ2‚dÕ È“ÅMßH€Ø¥}¶'¯TøÚ4=ÄA&QŽÄ2‡RÐÁ}[¶ˆÌ½cs`Ù÷8,Í'âÔÞUW ɪu30F;x³ ³óà½u­éÛœšŽ[H)gyïeËÈqÿ%e½yã¥-¸ ©âš)ÆŒVÔB,X§[®‹W3¸- ÎÞðII·£Ç‰P®ô¥†É+'·ÞC8Î}“ÝÕ˜4/ "5ëµ9°ÌQ®„/È~™ ¡6þl€.ý¦ Z¼üì>Ó˜.MÁUç5î‹ÅÅÌò µ¦ ”8¿,.žÛH–O%MM¼ñÀíáàfƒŒqx;B¢°…QÚ۹ź-ŽqM X£¼¨ˆ£¼MG%Œxí%(·Y§'—É %¬™-ÙòôYãóî’U-Êf`ÔvðfAfH Ñžh_1©˜ vÐõ<Û3èøÂ_ÌÇa0¿‹¶XùYR>´½ÖšMxüòÀìÜ‚âªùw"ÌÒ/$ÕÑ©ë72…~m æE¦–|Mc1;E@Ć’e«Ù׿À2"D+˜N{9`ºíŒà|Ü ‚ Ñ^H‹×PtMÊ}mš ãPDÁÍ7?\¼˜Â2pVô½mqóúŒô2cÌ©‰3KËAåÙŠ Q}ú"AØÂ åàÍ‚Ìnöã;ÚÐGLÍÉCu—Nñ—Ân>=SNî.·EÜ…¯‹=¤ÌQBšø’àNçÃmߎ!YÕ"P¤…PÚÃ7ä6x´©ÜJ{¿4ã`‹Ã}rÈÌ‹Èã>SÒŠ¬ÒiÁyé!å[ié—&Î},½ñá8DWæûB ’¾± ³çâÕN÷©!Xjx ­ÞJJ¡K‰W= ï?ŽËZãK’qÚ³y°ÌQš yö–‡ÎEތѽ œ(d‘(åáp».tTß׸4LãYcoY}”-´î·÷…5vuľõ´hÇçî@bžUµ‚—-®â¼Œqðu ‚- ÑÞ$Hì¼4µyð‚öMƒ«Ejl’‹Yçñ€yÞ2€VìäJ‹Ù¯?7­ºZq glé­£®’Q+!- ÑÞ$Hl‚áÉÆK©/RÃŽ*âàŽ”†ƒÓ5nöäî=ÖŽÛ±µÓW.yÂÄâ£ÚVÌ&æqgªµôïTl @7>3 +&èrn¤¯MssOyÜðXV¦ŠW÷„L‘ô•—¦Êàæ§*X΄L©ÁÍBËoÊÍ{Ò‚ QåßÈ+¾ÚQÉâ®e¾_ÒÄQЂ‡‰ ”8>‡oÏ—QJÎÁ¤…æhÒd…ˆÖŒÇíád*áŒ! ÒÀ¨íàÍ‚Ì:3õçÖn{kt Q½/_’ÁÓ±q—"¯ÈèÚnweâÚBûHÒƒdňÖ n‚¶‡îvT1$£Zè [·=¼yÛõh4{) ‹5ñÐY¹Õ<~<°Áµ-ÉÊ l¶L4,+Ä,‘^̘N¦mÎ’Q3" ŒÚÞ,Èl íÜ%Ÿ2+”*¾OÜýZùË?ÚÛz+Ÿï„É·×qrë)ËCÊ %¬Ñiðô Óàƒ2ê…PØB åàM‚¼¦B‰kÑ[EiâPÑÀppç³Æl›8Á~h)öÂ`¦Å…_•t Y!¢„5짇ÆÅ„ŒÑrýB l¨åà 0Ëk<«4SÓ˜6òà„Æõʸ‚“=Í+šqånQ°…FHéÁrõŠfjµt98¹o#CPÆÓ[l÷“öï,Èì¼òf1³ææ"rDñ`k$zcÃ54xܵ,bŸù¹y°ÌQšÎEäôS}‹A?³PØÂ(íá̓ÜÊÐ…¡¯tjÚÍ¡rëhœop\ZÕzÊ@Ç–Aôv¶ò Ì¥(ì…¹´2`§{çÈ^la€vð¦@Zíä¾Û;k¾6Ílˆ£c;Ú£DЏ¡ÆZñNHÎÁU[ÜÄ‘,ßÞÏ“ígLÓÉ£{Â9QØÂ(íáܴ̓'rØ™šÁAcìRêh³9¨ŒROM9âjWNZÌ.ñól,ßv¦æÂ¨1t$Ì] ‚þn„*ý¦@Z÷Ýëë¼¼A'5wá;ÜxW¤–ˆQ׈¥û3åˆúàbÚ´xb¤q/)_Þ¡“l(_÷ßdˆæ : Â)od6´Øy-AÌŠ~’ȃ«)j<«+P²[$9PF*¯{³8žxƒ”¤¨L;’ ’د”ñèˆA QÞ@+fx¢Kó°›üµi*fããF›˜ž}Øï®1#g!%Ì‚”ËbvÈã0²Xd„(`Ít¤tpr2>CPÆ,¶0F{x³Ø™µ˜MÆý4KSØÑ”×óʱoUq-/j˂ȗËŒ±¸µXSŠw0=0sÅŠAyq[FioäÃudžÃ$Þצá<ß”yùå¥<üqÐõ¤q;f§Ó`ŽGbŽ7Xfˆ(`MÌþÆÃåFÊ”ñ,„ÁÆhodÆQísáüÕ×Rðš›ú¨ý¨ƒùÕb þÉ.xdy‹F+-¢Ò—̓e†ˆÖh*#=Lœc ONôw!té’º+3¢Žpjtðý¼¨êy°îö_b60F·»od½ý‡Ÿí³Â©á½£ @D¿bVúØ9=$ÂÂÕDþM쳜åªí KÃKéWq^J¿¼íÕÈØT,htð|šNy;ñ}è~µMÉZ¬ûsJIZäÆŽq¼äˆ©7ƒÎËÇ]>E¥¿KMÌvGB>•¿˜‰.\ÎL—ÒBÓÁ›yµ®Ôü'sÉ,ÍìHÆöþH†Í‡Yãˆ8RñSޏ7¯_I‹›×³¤ËŒÒÄ'~d{¨8Ù³bTÝñ°PØÂ(íá̓Üî“YîžÆÝé©Á…KBÖ°Žz;´/PrÄ}r6-Nm5´ËŠ1K¤f £žNŒ“3E= äêÓß ÚÅß$HìáÄpixáqi¥w¶HžºÄ@Y4ûbƒ¸@ëÚXöƒKƒÌzËï(̾ÄpAABdùoÀ+’grf]W .Rˆœê"æ!ng«È±!9Âv¢Y×qSz°|ë ÌÒ\Èg²<( IÆè:¦²PØÂ(íá̓Ü:Ó×v_â²4¼‚¥Å†Mìäâ- iSŒ°ûr—Áx´ëB,û~•¥á ,ËohɾÂea°1ÚÁ›™q×nçÃWlÓ`&¯Å Ω “³ª·â“\”gÜ`Ý,¸S,=,ùPN /è[˜†}Åp¢ö…B‰R¾ñ·ØzRÑ*ë8ÒÒœ8PÔ /œrœ7jE·¢S œº8Ý+ ëVÜò¡ÃB©ÁÈ4ˆør÷ÈZ»E%!-1=¼IØ8Ù 8Nýh©9>òñä.ËøšDR¼¦<ãVeѶEüÇÉmyHùp«cM¼œñe°‡ÂuÍŒ!9¸ EZ¥=|ãn:kŽ´,=ÆdKÓq#a‹®KW꘎<»Ø¬b9zo—-žg+¡i÷¡DÞ»¸ $ [®‹2”­à¶08{xÃJçÓ/ñÐÅ4åPõ™®Y©ÿ057¯¥‹úq‡âä6_¤¹‡Eá&Òikæïš‹mt<å rj"[.òcÎìи?x¢‡95­#&ÜψSûuP£P¨«\örOMÌ¢rwnBšû ˆó®<ØS3г÷ Õäx1†¹¼Ïäq‡ž $SþCÜ×£ä¥ð±Ôc¶Á»‰/iÎ*l±"R'/ßœ¤qÚ”ŒÏ @Œ”ÜQÜcShÆÅ\AG`á¤K/ðטÀE¯˜[£ÿÀ=‰-1z´¸QÐââÜÏÉd¬ˆå Aãî?üÀ¬'ë*2чføÎ $¿œš4¤Þ¼bDò‡èòN€±vÄW7¾Dåì¬ ó«F|­âò³Ð<"i\okvÓùß|›Õ:6n߯jõŽg¯Ö•“[½®ÜµUì¨c¯×ª]Y©yÉö^©oÄÛ+5_±U©WD¶JÝNŒO·J `[ÖéXq¯jݘ†t¯ÖÏŇ¼ª5.÷Ûk5?Ö{­¾ßUš÷*}ã‚ܽJ_z³U¥qcÂ^£y2e¯ÑLÖ»WêK¦{¥'ù¬J=p•é^«ý„Y«ÛÑù°³Vljo´2Y«gë5w«Õ8ÞyíµºÊè®Õ«{­Ž=ìx·³VÇýNh¾²VÇžz<¬¬Õ1!Ñ÷J­å¥­RÇÆ5°ZòÁ™’­öFr~ÈÚ{6l×ÜjotÅàz5Ë“Åùn–+r9m58²U^e¯Áå:ùÞe Ž´{Ž^(ЬÀ‘Ý«¾ZåÂ_×àøÚ¢!ÌŒîó³×àÂn[ Æåׯ†9B·½— L¶J\xÉçV‰#©a/{%.M¿+q,e¯Å…×ÞmµxÙ¸# dÝkq¯ZŒdim¯Å862öZ›‰X¯]‹Ë£wÕµ8²ì•½nºÛ*qaV¬­‡ßãU‰ËP³˜µ8~©óÕ4žiŒZüç?þéÇy|ÄÿôŸß}}üɯ?þÕ_̺›4'³_ÿîÇI‹È 6PŸœï_¿~üÕÏÿá—©sÀ÷üüøgFûù÷ÿû/¿™âyŽÒþsèŸq_÷Ïßÿò›Š#]ýç|O–}ûåo~ý73îü’¯¸±Aj¾Ì3ö¯;#ýi¸œl’ýùŸ‰ê6›Öçç¿ÌÎ'q•sˆ Ç9m~~…E)÷ŒôÛP?Ç™Ñø™c¸PÖßþòÜŒöÜ?ÿy×ÿ} <®9zxëÿó7(×ñ<çõŠÿQtšýç?„÷ÙŒ–òówa1Žc’ž¿‰ÍÌOËì59$?ÿ+¸~ÆÔþ.\Ü×3)ìžÃX.þá—Ø >›žI 1®qþü»}ŒÖŽ1=Ÿëýú=;î÷Ðcýí/13‹q «þþý qؤLW*ù·jbÏù~œÿ Ìžçyiÿ!`ó;ÜÎY4"Ͷ²¾¨Áäh÷l;f"¥çxø0Ú®á‡ùŒ÷?]œ÷ì:Íß}R°=‡ŸÉ9+Þü)åbþª›ÿGØÌÏDû#ð7‘ƵÌÏüo¢9{xxN³Ÿ>~þÉúç_®gúgëŸå=^œ`¸Ç}¼¿]O`üi?ïpý§¿Î·ûÏüß³Þendstream endobj 110 0 obj << /Filter /FlateDecode /Length 6715 >> stream xœÍœÛŽe·q†ïyˆ}¹;ðìð|V±¶&)li$ÅÐHòø?O^4ÿ_Erq÷ªyFº0 C½¿áZZ5~ï*±ÝRé[£š¯·æü]£ŽR“Ü•ZÕÍ6mõ¹Ëç¿{ð2”—ñŸO^_>xùð¿ ùÒo½„ryùÙƒ³¿x ƒO轫7/_?|tõîñEðÝ—ë‡/Ü­8ûõ?~ùèÑáÖâõWÿFìzs!ô믄;ç¯?úÙã‹í·~ýÑÏñ«áï^®ÿ%¯É½v¼Gžõ.ô®ÿï—?aûÞÆ„ÚÒååÏ^þýGWTJzI×>¾Èµøë7 ~¹þúzýõ‡õ×Ç×õç×_¬¿>4þ5¬¿þgýõ‰ñê7ë¯WÆ_?>²gÿòò᜘Ôò K)û[—èú.!¶v+þòæÕå?/_=$LI¡ðûËOðÿߊDWë­ÔKÉ|ÖcþC þê˜nEeò\*¶˜n®Ü•ò“Ðz¹•´¿¯;w $5ßPÿ—$°‚vÇ¢¤RKîAß:fßGˆaR’n5\Jqãg£ªágc…$hxG#‹T!ù– I¹U¯¤ß4§4* h5¨FUPn)“”Ùˆ³Ò©>Bâ5áÙñ–To34R;™Ý­'üKT’DKì´BBÚͳòäÕH„^¨È$¬@@¾¥H€ÑÓ×”~sì8ªLùÒ xìx#Ë2 ‹[ìBÐãÈN †V… ÒóÒ8w$=f·ª»Õ(dHBʼnIHÏ4[ïu~÷øˆ©){]>Ó*oÍñeŒÅj²oEgxvË$UÃ}:çcÆXÌAŽÙ¶y€ ܦ  éŒÏé„Rx‘ë5å Y§|JHÓ~OɉE¦|JH¹^ÒuʧÆÇÌLA©:ÃSØc€L?µ?“ÈõRÊ%åP©²NïR;ÌIXš Ðn‡šÛ@ ÝØßê¹ÌÜÕL.w­ƒº¶7?õNSµu1Aœ|Û‡!aìmªDñöûp¦v °yjk€Ç´¤Zg{ÆÔ%¯ÐöéMëñž!‰Ê7)I¥P'9JXAcÜE-•póu—ÆTܯ)±‰ºßw©N¹°¿6Ú‘Òå¡@)Ú‡MDzç]¤xèóÐÕ„¡u}×ç¹Nm×ù­Ì° Û{†í8êšöeµgÙ Õäe§V·L¢ön Ï2‰k—Ù\üL뚊e~×l-½&tZñ5çËÐ/¹X‹Á’¹^,ñZKÊÁµì,1]KÓåµ|-q_ëÛR‰c œjs¬“SµŽµÔ¯QžëíTѧkò—_<|ððV¯oÂ#1øln¦¾5– •­»~óÕן¾úýãËß>¼€¸`üÛåE¥³…Ž¿üÿ~ùGøßðãXDº ÑEµB›ã¥ÂIæó¿o^½_ !¼ô€`ë!æ^x_q µÆì— F[é©öØöŠ?{k½|»12TOHL ôŠ‚Tü¬øiC1Ù5cÁs28ñ~PbSÙÿ~Û)åå¾m?|—¶=õ_?xj$¥!º‘8— ’œê])™v º³•ôÜs$,_I<,Ï%rí`†U‡<¤×‘Àx§A=ŽâP³:T–! )ºy ¾ˆO\\ŽH¦ž‚äa<,‚Ò‡ù¨ƒX\£þ,¬?Å.“@ýáþ‚à‘A"Ý‹âr ™RolKÖ†Põù«ƒxËò@6Á£÷zŠY¶%8Oÿ„K¬Ý  W/8hŒòš·¡À! þᬱýuo€™n¬¼q£ utÖÅm„ô1@@¥×Ý׊|ã8õ¨«Ç”¤«VñNwc/“Çܯ©cNVU¥«ß›“ü‹Õä]îwÝ2V±öááš%³½†0¥1s”ü™ï5‰V÷˜)î´t²çl&øE!¯ÙæòÕwaàZ%}^ÕIf{ W&‘g•ºT£ÎõËTÇŒ,Ñå2$3»Ä;aÀBØU€ËóR“„§îªÄeHfv©[¢'éw•Ì.@žß¬g°ø¶¾½7w¸cB´îÜ11Ýo탣ŠÿÆ­ ðåÚÖÏÜ}åcuÛ1Ç+whD+Û€‚C,ƒ·YÉ­÷Ù™8€:œ„1± i¾C'D“!¹Á±‹y:Öí!a ‰ÖèBXš¶I*ˆx.‡4ç†À‡gˆjEfHxhNnezC»@œn*‡b#P§ª’‚ä±wžæœD÷¯ªë[‘a¶× “qÔ4¬ÊÖ˜ay¶ë´uÊ jå¶Á–pÀa,·Au›ˆat·ÉR»¼M¦ším¾‡eßdbXÿMlÆ 1åj¬›à5fαm<ÖªMÈÇz¶)ÂXó6eëâ¦PcíÜ”n­¯K1Ÿ¬ÁïïÒWÍÄÁɤwñÅ×o^~!.!ãRÛ‹'.á?Ñ%ŒùÞ3 m¥,Î÷÷åRÞƒ¥ŽûË" ÷5sW„`g@I‡©¹¾ƒÛõL½˜èÌ·â¥A]ѯ¾¾¯7a=Ñž{ÈoÇnè»VœàËkWÍ]ÿòè…÷|…³¾b‡l…GõT T¸cªŒE£QùÒ=#*ñ}[áiŒÑ™Œ·bß ýÿ9¶ —xùøú$–áãÇc<*¼S¨úlÅkǨÄ$â=žJdîˆPªq¡‹{©E¶RÜaÜJ-r”‚M)Tõ­]‹l¥¸ÓŽm/µÈVêIö>¥Þu˜¶šh3^Yë˜l÷ø"æ$Aõìð£Ë®^~U&¶–×À_‡(<;´95õþÜXÛèíij^6ê[©AîJõ&–|+5È^*û,&ð(5É]©è;×€­Ô w¥F¶R[ßq¸ÒŽHÀª«öÏ Û—cªõ°^À²@Ó]࿹'0Y°X°ZoöϪRÆj’±Öµ¹‡B¨çßZðùs<›7Ú†²bõ‚Ý>†r#‚]A² ìSURÅp¤ŽXޝU"?&‰êÀ‚tЇE°K°Ø×¦§)ºïÈf›ÀMÀ#ºb<À¨ŒI²Š±–m‚Þ)@ó¼àhíE|‹dFÛÉ&ðºŸè:/g"š HÜÀóÏD/–ÄË“&Q0 ãt&ðodÛRÄ­³<Uœ"8 u{9‡­&ÁÛš¶ÿ–’M¢A‚ŽÂ™À®Vm_Ô$…’#¤RºM$ ö>¦­‰ú™$ënÞ«3~zušùSôÆ òÐ'©Í&Iü|?z jRHB×Û"Q—!pïMânCÒ¢D3- OD¢Ç&‰‘Ù±tt üfnD-’ÕÿÞ$a¾™ñi 06>€n‚-"qa슷‰Ÿó_Šø”áé–J·ÅÞ&°Ë`N“ ´”­¦gIfI“€ºI¼nä<7g!šÎÂèì©HŠAFœIˆHŠAœzW^vyÞ$ÐàµÃ¢Š4$ÌñâAO´HÀ–3ÔI¸Ÿ·HzÔÙŽf7ìB÷º§6H;q.]‹øa}y”šIx¸1A‹&—©2)è§91´HG”„A‹$þ—ZƒMœ†$<÷³Üš$3M¢3cÏ–³IbÑ@ç9”ô ~x!$ J„ḦDdØ$°Á`þdHOÀ—acHž±Èz¨qµ8ý†\W‘ÇÞ‚Xq‹ø¡Ó:T,‚f=ë]}&‹@K%áœÎ ×D%¢)©Möà‚“˜Æùe`˜“^†A`-»Ä^@ÅNÏ"ôÏ´}YÎMâGLÚá¯ÖM‚uB^uÐû2Hœ‘§Ç‹K£á-æCÑ1³4Ä]¾·ˆëaÆ0ÏZUúÏ’³Mxö§±>fK•·’ß%?IB"#êø=#…ìÉF¤ŒðaF˜; Aç»EǾÄÝG(ŒR‹l‘€\%z·•Zd+Uj¦Tm¥ÙJqç“î"‹l¥d…¯{©E¶ROz´÷ñ}#Á-÷WE(Ò[#Ïí¾{·J1øîíiZŠUj‹P¬R+B±JmŠÕŠ¡˜¥öÅ*µ"«Ô¡xÚ£­Ô{G(¸^a ñ7¡x:GÏF(¾½àó <«§ÏÇPfLGLÛPnÄ©_2v)›D×`,>ܾ¶žda%“`=‘ä[26ógâg ™CÒL‚]€®]$=›„ù9zx[ûqã¸$óP$š$Äq擱~‡j’¹k)<‰°O?hN¸L Œs˜‚Õ$š„›Y=u-Aòa,ÒÆN!`ÝÐРAÜ8Ú,9ÊêoØR=j-ôŠIJ«v‘<“pMÔÚÛØ­ž #6R{uIäÒ"S.kÒc)ƒ`þ4‰Ñ5À+кkiÚÏ3ÁNDýŒÊ(›MàÃéa5£C²×:‘Ðú8…jN2°,R딹*Å$ÐC=\o˜›–M²²ÏZ‘¼6‹ÐÜ ¨’3z¾€ ¶eGžgÛÌrë’&ø6òN^¥ý$ÛúõCdŒ°ÝçÖœK%¤†rÊÀ‰”nƬŽ÷1§KñÆq,…g[JˆxžGÚHÕ슙Z™ì÷ô¤™3E¤iFÈLcˆ¥iîâJu‘ÈÆÈ…ÀÏ.y&3W"Œù …-?r.buN3†DHð3rx$mDÞOˆiKìˆÕ;M ™™ ‰køJh÷ù#0^,fŽIdt\HfŠERÔüŸ™Ï/—dŽ™ó±®{^L¬˜Ié÷̉ ³!I!3¿fÊÁ‘ƒOé®L³{¼§YYuñô:ïÍéaŒÅj2õ¡ÞuË"…g,Ûðp#/Ó½†°ç1s”;&)ìóÐyÐÒ÷¹ê,›öù”tZÞ!‹eÏÂÉÚë%5ÜË„/Éâ8¯Ü/ü,÷Éa cR–øvëˆwæ øM ·»"ÐSU@’¦ Mu“;U.9†Ì7­L,,§ýóÜÞ$úÐ<ìŸï=fÝGÒÀlß‘X0ûp$Ì~ s,Ž$†9^G¢ÃÐ#búÈ–˜³r¤SÌ™;R.æÔisúÌ)"GrÇ¢#ÿcÊÙ‘#2eñÈ#™òzäšL™>òQ,¢ºqäµ õ9R_¦†­ì˜©„GÍTÔ#Éfõ•‡3~+3ŒÂöža8Žª†mÙZ3ìÏÖàa£¶NYDlÝ68Ãn8Læ6Èìn1Lï6WÃv­Ô“í}|ßø#ž 6í;ÇÇžÚ=vd”’[Kö,­ðØ,´EÇV¡›…¶àØj ŽB{llZ±±Yh =íÌQè½#cÑóäÞÿ EÆžÎγ‘±o/ø–Ýd€+ÛÒ>’c}çªbfj™émÆ¥ø˜‚¬ñãTK¥Ä nøn‘7PyÓÅ"qÜ^I‚%'à4%@ãêqãË1i¦‘AÚȰŠL£ž¤Ž³1füySü)öÛ ø¯TÖ‹ZcåbÞ!åÙ ÌTÒŠyW½˜$¶ü᾿>CÂÔ t%Ù$ä)‰ðExÖg?ÏHhy-âg á¯èS'âæ×4è+p%=‘Ä £~#beç= ƒðBÖ •«›EêôX’|¥Á\+º‚HÃ$s¼’+f‘4¿Â3ÑÜLçg.èCæb“0<ë$Bc€0ãS©Tú6ñ#w*ò³Í&nd²ƒH&’AaÓ¸7Ìß0Hæ‘7AƒjrBÀ»5q<£"Ð)#¿*ò;ð ,’ç§;°ˆÑîYDOì$õåéϾÇÖƒ6Õ"\Cõ5R¾-‚V«_^‚ı R[ a´”;9ƒø6<ØŠb¥|yç\«YþžÃFÔ.^;;…ê •òm¹Vrа§G¥±iOBIO -p„b’,{ é [)^ùìwõ-²•âÖ'줃l¥hìòžŽu­Ô“þì=|ï@ÏxÛ;’ ñOIÏ ì]é\†'+æA¤Qf"2G i”ÙcH£ú#„¤eîBH£ÌAeöÒ}7Ž2ï@ÂhrÑúÛ‰ÝOËóá£o+÷–èQçÌ6Š OHŠóÆxuIäRïÙÖå¢'¤A.s™ÄßèÍŒ ëá'¶ 5ÛdhVn'—A ˆ ¤hJ—AF HGË ilš¹9´ˆÓmTâ™¶·¯â(@K]2 ¯éXMk7•@IuÆÏ¤;øÄsý\MâúͦWÛ-’æh6M¦>xôEzµIT‡/1A‚)g€—>E‡Ï›mwú?©d‚ ×Rï^Ë…Ž3á1_V’ä2„Eø! YvgÇ~NHï6ñ´ILßÖ€Õ‰@5{À{§Ÿà1ˆWó ’e{n¦»%UÒ÷,ânZ9äEbu'@IÓ÷=·6Êf}oÔC`‹Äù. WF éxé'øL2% y„´ž’éa pdl]’×/‚Yd^µ ÷×q‚5]C$Ái‹ˆ&DÄÓ"ã&F 0¶è +ûùgž¶Kfõ6qêê‚ÈVÞ")iúPâ§*J5Iá[!Ò6ƒ„¡«žÛ©l¿i™²`ß§”hšºI¢:‰1 &ÃD?«&D¿ƒb‘¥CÍéÕªá×Eš¶Á…hX0Íö!ab±E´ %˜¤æ)‘]¯q„Z©®‚^¶1H ‘Ä{B1X Ï•‹—$u&3Q5qÒ3Ä™ã½&g“˜Fæ“Ü}Š&áš/Ö5@_[0 ¯¿)ÁºË4‹Ìü¨@?Лąًñá•3aš×§š4¶aÔÞ4ÉÔ ˜?­VTL'RòX{x ´Y "Èín‹@#U¸z0 Ç a$“'†Šª¸º‹ȇëºA’dzéCÌ ³@Wå!!Y„)AºÆÉ—ã[ÉØ›n<œÕ—d}­š~S¨ºoú×G†½+ýú¿ò'C¶×Ïÿ¨Ÿ–î.äërì§J½¾Ò/T—–¯Ð™£|yÔPóûÚ«ÚLŸ¹]ÿ™¯ŒÎµÊL3á)äZòõ+ù6ÖýîÓõÓýe±_ÿðÈSŽV‚eÓPÆyä½¹'¯ù5¹Ã ·ë—h2ï„÷p÷äWlK5T4ÿ³WòUmíã›Wø§æ1Xåþ¥ŸðGs=–À[ƒ»kÚ›ý=R¤pp¯ŸIÜކє'{kû“_ìmoÑa­w³áU„5¬?ÆK°ÉÁŽæúÁñç‡ÇŸ[`MoãóÚÌxß§ÏŒãÖØ_.`€þÌÒ¡C’ƒN—ãgPQ˜>ï½Vö,ö$5¿£Ìå÷µ…:Ç–ÿú{‘‘Ž9I×?>ÎvÄë›?ñÝ­ùïfñOLt½±M4i Ží>åŸíoy2›LÛ•¼8„ãóÂóSªØ¾`2¿$óŽ"øƒÇò¡'ôj— éaƒ¹ê;ä¬î¢þZJôÚþâ»ßkß_÷©Ö‚~_ó3Üêõ/„ܘ¶ëO™)š©ÞÛ\~³7ôË­3¿~¦3/Ùè€qþwʼn'bw-ÙÇ„T›OÆãÚgô“—®ÞËû×l¹÷÷Òô•>!yª>ïµÿ‰¯(ª;úfDÙ+ÿã^ùoöŸcôF+õ°uáþ‰oF¼Î½ÿìh×7Ïj¥‹««~ªÛ¦4£åÅ¥„ÞC-{íwæeÓ‘Óù*•Ó¾½P%iªrHí~\ôíŒ]%µ%Ì„½þÝ3Öˆo”“1ßîÅû.8c' ÷|éK—öbhkœ»Jn‡$­PÝ/þ ’}endstream endobj 111 0 obj << /Filter /FlateDecode /Length 14017 >> stream xœí}[Ï%¹uÝ{ÿŠ=}¨OêBV '€$B Ë€5†e“évKÆÜ<3‚£—üöìÍ⾜"×>ߌì8BèËv‹ÜÜw®õÏ·é>ß&þ?í¿øêÍrOåö/o¦Û/ßli¿¯û|Ûó6ßíöÕ›cÙî[)úË—o>{S¦ý¾¥ã¶oiº¯ Ò_޹ܷ\Gå•þNnüàǤ‰þcvïËy§ÿz<¼Ofu”ã¾g7©öƒŸÓ¶÷´7§cÞïÇ4û9Ù öÃØ6'}›Lɽmº}zóÏo溷ö?_|uûÅû7ÿé×K¾•{Ù–íöþßœ‹<ßæ´Þ÷•–&5Óˆ÷_½ùû—¿øë¿ø«·Çr/e{ù»ÏÞÒ[KÊiyùïoßÑöLSÚ×—ÏÞ¾[×õ¾ÍËËÿ¸™Ê1-Kyùë_òÿoŸ¦c[ÿáý_Òrrs8ècó±Ð<Þ ·þº.Çqlçà‡ /‰–}Jçà—òöý?ñˆâFÐ|¦û²-·wsºG’§Î÷i*[zù/oßå…>ê˜_¾Ô?׿þ }£ý^ÿúAÿúÍ‹þùÕà16ð;ýëwú×ÿ=fÖ¿þLÿZõ¯ŸÛ´¿Ö¿LöKøŸíO{ÐoÞú?y‰çù^ržoïÿêÍûÿ–ʾâ£þõ½ýç?×ß=û7ýj|,ôçî{úëVí—ú×/ô¯ÏÿuÑ¿þg¸|¶5ßê_¿½®\¦oÓ¶g¥çÉÊþûÓÖäÓàß8ù0XÆÜo#ùñëè^ø‡ÁgÛþ~5|á£Åx7xÏ]ÿÊ£wÏá@'í?wÂ^DØÿ#é¯mÛï“ß;›Úo‡SÿÙà•?{íºØ–ü¯'ÿÕàß|7ØP[iÓ ŸÿÖæðÑ^÷k÷ã¿î!ý™ß„×ê¿:‘L}=˜¶“£ñ¾M£=úr°¢x®CÿýÔÀ·ƒEøf°O£ýü“’x•’øÿ]3tGëOçé§Ÿ§Ñ#?ùíàá£2zõþ[ÿtŸœF†u¦¸`-ÍÓÿ9{úïä·wjÅÙ·ÿÓIý~Rÿëû7Ãæ1ц¤ÛzP:åÛ¶ì÷%NîÇÐß}¼ýííëŽ.ëLaY¹¥cOwЍ9bžŠþïwßPp7ï ý·tlÛ}IhLYîóqËÓ¼Q˜Xÿcnÿï9`™H8èEeÍ4ùÁ€u-ü/ó´Ì$M¯iCæ²Ò fz…ßóèò’mIœ°6Ñe£EK·”飿<’hùö…§J˸Œf²,ût/4$M—é€2QøM_“hàm]8¡’gþâc<ÛöA™–÷aYÝÊÏ+Eê4•e£88[ÙämÉx2s^îu¦I¥ás¦)óÊ ˺'ÜfK ú¦ušî‰vqŸ—ûg³Ñ\èU$te¼"–û~? ẕÜW^>ÚôŒ‰ /”*7eY@ÚͶÝD´§”•Òx§¦œx‡H&¶û¼¢Ùœ;NžïÓx6S¢WÔc@Ï;ÆkCË_øÃ3-NêåSRæ,Ùø-[º³„—ÄŸ>xžï¤TR"aØŽxýwR<Ž9·:mi§m›|Kä8¶ ÓÒˆÉ<çÜpRõª¤ÁѤµÙåäa;L r ûleòe—z•hèŽüv ( Ø÷±éüƒ2 ÜX3 Õ† ?ˆäÿ¨êh¹.‹Ôœ¾Rñ ;‡ëŒ66Ze躟±-ÍqáQ ÖÈ(,×¥¹JùFO¶TTìN_½ƒ}”§”î¬èÚMë=ÓSÊÁ•bd )V™Êk„ñ')‘éj7.ÓD« $¼ 6h]ÄœÑgʤҗ± !áq‹{Jy2³¸ÍðDÒ&ÍlæR'Î7¹;ÀYqÙ&h™šÑN{íoËû:ŒHèÎ+OtÖÖ'®­î rÍO$k‘‚#+†›4 4)-þßy ‡›4—#³N­ñÿOd{N!G-IÔL*×øf fh> \Ã&}ôùèTÊ2ï<+ª;wrl€f[ÊahâÄ–Ò£vh8uUuzFÞ©9`´ëó0ÆiÞúN’7?ÕÏtv3L`µTÎFz3C×öiçgVp#9D*­)é¢ItêZ €|9ÖI¡£§¬@°Î]"·|Cz\—e;qOÉf$(èíIMy‚Ï…æ±×ù,WS©Cè˜,OÒï@ß4OxJ¤´Æ«'j¢¤ggw£÷A©P·’¾{þ•zž »Óšz`›»ô.A© Kä± Ô¹-yÓÃħf˶ùh¦@Ëõƒúœ\~L”äÇ3@v2“Ê¢>ö#¾&¯ÈTÓbókG´:¹R8 ÒO’­gl±¤k–ùš3í=Ûu ƒ•ü¶‰¬ ‹Ùäíq‹:w‡¦ž¡ÈµI祳)×ÔÿNNô8¢Ô!™„a”;u •­62Ž£†ãt‡‘¼ {f QÜ,ÁºhÐÚ½FâãùâTu „µq²ÓÜÕnÜ I6r–¸¤Í'Êy»šŠ.”´ÏàÄŸ'šÖ·\SÊuHâ°<•AØE‘Ù“t­ü²e-|¡“ÀÕÐu ›Ý?¿hf}~´mù:.ˆÀºŠì7Ù¾™çœ‘еË)?&1º\Ò|Üg˜K’ƒDgm¨Íäƒö¼õ’&z{RGk27Çu:ÿ‚&=šžx^´IÓxíÄ“<È9› z‘ÚÇû_–UÙ †=]²HJõ2áóÄÕ¬ôÅYaJEŒìFß_`Mß5á/Îd‘3ˆ[àD!Ü:V+ÉKaÃ2eø ³ ÅSäÒD”kÊáç´Ù±?f º#KR1¬y«ÑÊ*öiþ‚,vy–'Ùx]ljGù ®|À,§¼Œ‹˜ÇÓ”À‘׿«¡ÐV}'þC"r CuŸ|¸ Þ&xú5»sñ烻jôQ†]TEü ï­ÞóªÕÝÇ·¬g~”<ý, Càÿ­yœí’|"7k”giÔ’gä˜p¯Xê©ÓâÐ’TíC —ôÄ‚BÍÍô#?†@PúÑ“D/:×¢™98Ï Ô)*—¢ZèfŠf!Ý µv˜¬Š0Åÿ›gx^Å]eñlj‹fˆ×LVÓPe_ó ý{­O·}èÚZÁæýìÚä³Ý§¡Ú!:X•A‰:.Zà»’Z)dWgä€È‘çK8Ãh@uÔÑyˆ½túßy˜<»½ÛóÀd{-ž’›3Á˜L»‚j²“ë² ”e9(ìÞ†fOÚwèY+(æ·@N]¡7$+™Fœ/5t̨CN-_悸Ĵ$9 - ~ŸƒDŒtlí.Ékšj-’Š«™Dge“ióå¤h´Ò•!‹D‰õiÞ ;¢¹®Dª58Û¶0IŒ}-u?Xò„,½ QK¦‘GR§úïÔaÓt\Ͼ·œ£º0ÐÛ•Ÿ?= gkd[ f7\rWC¼¤Gía/7(sÒâ™Úä& rÂíÓ·’'±¹¼§åž˜¥Cbý¡9¡s§mÉø’͉©]©ðL‹_W&1\Ð%#}„´‡ sØÚB1æ„‚ •òý Hí‰s±Ü;Ñ"vUpPÄåZ»Æ¾NÝá“9²`ƒ£oZœ…ºmØèìèD©:Û"ó%OÊëóZMF>©åuÈjñVp‹Ì(ª Ó qu_Dç(°Ø é«å^lAKU•ÜMå’ª:Ž¿[ï ·rথ–Äæ~MÔ¾ÛòY;·O‡]¬µC Î\ÚmÜ9m& (T±êõÓ"Æ­Ï»#l¦©MBãVwxTdeé{p÷´‹ 2 Íš€—Õ§õœ¬](ÚÉ&9Ûå1ïã>»µËæ¬eP|— õÙlV|þUdòvŸÆ'EU…È[œØ·éšyè܈}z’4§30Žž¤ß`/œ¶„N*‚`Q\4ÒhÈõ—sË::MZx&ÙCïÓžòµÍ¨3-‰„Ÿ$¶)ö U™î,ùåÁ‹$û¾.ȈIoé4½îu«$¤¨·_Êí¦2?¸ëµ¶#ìé’½à6 ¨^[ã» ¹_f\øB 4*mƒœ–äˆ(Úу©Ë-°”–ÅOð’@“=:.°ÑP®,Ü9©¯ÎAí^ۮ镠×ÈÊûµFHo¹tï‹íaã4ll\i¹žÉ.7C~eŽÂ™}§“ WËûNëã.ŽÒº ¥Ú4Õv-Øô&/0p%]Â-}0cÛœ=NMN (–6ê:ÓÞé 3#&ãX:åÚ™r®V$ ÒnKj çZ ÆyÛ ÕÓØeüaMdZK¨%|i #¹ 5_ ®]’8/Iâût$jI‘ûå@³§¹Yò°ŽGþ¸ 'k\¸ þ¬jÎmMØF9˜²8W&;ÁßJÄví)DÎÏÊ7“ž¤æ‹ï­Ú'Í ¿f?žµjÖþóqÖ\Ô-ÛÒúȹžðÎI²DOåa*¨­\ûJ§í^FþŠ>cËà®l3zÏò+‰NnÐE$U.‰Smr£¤jãX¥5(]Zúi}¼³ØeìH9NãzM6BÚÁætq·VY’¨å‰å ™€×qõŠà\WP{Ê„#sÚ"0nMKcÏ^½Œœoºu.D½õˆ¾*«]ªÒB醵½dA,Ú¤S&ÔéªU.7¯þ鯷¸ávË}ÀmFy,é´âzÑâ§æýlä{{XõVZ`›ÄË"/!ã Wn\hf¾™ 6\®só€‹zÀ÷%Htµ»¬š'JýO®ÏŽíÁºU;Jþô„­%úaIGß}Þ>©í¹ëx35rœ®wÿ®¢——õ@ÙÄäi4«D3‚}~¢´ªgüä²ÌÞ‰MïÍmsÁƒäI¤iÅ­Á‚ž‚|Íc‰’ "ÉÛÚec»¬.#¼æÐØ8K†„½Ür¬¾ÓaƒHŸV 8]=‹GÒ{Á 0͇( ññd K¡Gƒ½à†ï¹]F‚vQlÓõTvÎ?¨%¸'&QÚ’®ê×)Oà:ƒÔ?¦n?Å-Õ^ù²ü¨jGŽT``àw*ÉEä‚®âh•!H ‚š»YØI.çãzÑ£s÷Bè4…Äš`ÒW{ÎÄ©B-,°ÂöÜêÑN 6š<Äb|×tÍ]õhÚó1ŽyÌ”ák¢Ö~s\ gùc¼ Ð%î29 †'úfé’ËÝ÷ä¼€F@µ–û4•ŸVÚ\Wí†%sÎDe*¾Ê1tpõv\F—A$:È˵½§«ïq 0l¡ÈÓ‘ŸuYl\{ŠÝ‡§uÄ:ßáoôúåJÄ1½¢0šgPn2½—ñýÆW|e½v”VÔBƆ^,ØOkÐú'.íC|ûy›ä°[>¿ /Üú */߆.§Ñ\ ŠàX5¬Ð`‹Ï>¢Y4ÃÄA+vð‘m2íÀ/Ëã½ð. š \‡6œÐ>Lq™—+¼Å!=ð5IüôÚ2_v‰[¹zu÷&¬¡§jCî(á5‚Z¢@Àt’ $õ€O¶4XLrG=ršrˆ”E úÎ¥%/Ôe¨—H‹# …ÖJ¢‡ÑžÄwå{Š@>€å1Ã`\Õ•Ú`…çè<Ý„†þÃÿ‹îÏŠD`´»Ñ]7í·‰1†Å5)\}þ¦¤Ï9ÖÚÏf.D ádWÔø¼ÔÛN+ÿï~[ç£^§«s ¿°Æ“7´Rlÿòf¾ý%ýߪ p3ƒ¼ìEç¿bF0ò³õ¦?ëÙ/¤2(r¬£ÊR{uÝ(ýÅFÑ.,)î…ú‹5Ï9ÂÒ_Ü( >Y ¸Qú‹µÎµ¤âFé/nÔãg»u°1 [0Ú¥ƒNŠçÛþñ¶2Î)×Ê·Loß‘ðGDü=½jájiË ¿?@ pÝì%­œÖo6¿x9NH‡“‚±S08ϱyvŠ«*.Ø>á¦(G­"ynŠ«e·'­;ÅÁ÷Ä×[ÀN±ÎŒ”Ø)º×LsÃÃàEò*ÏPÑ Zùà§ã£âqÂmaAE7Y–ˆ¢B9ŽŠ`ÆQ±S<²Ýާâºßò”€¥¢íeÄR!Oq,xÂ!O…¾Ìx*†‚ÓTˆ\„<º€ÆS1x’,a#B¬ó^¯¨zž 8Ÿ˜©¢½*bªÐceLãÕq<èÌS^?GVÒUè–G|zˆ¾Š¥^µ8B¾ S;¼4¼NÌCð@Xq9æçùôtèT„…C·|ó„ÝSš>1ÆŠ~²L‹K“PÒ ¸Àž¶ïB@\¡…‰+TnŒ¸=ÅQW ˆ¸+d¯î Ù&Ì]¡Š rWèl»>³WœûèS°ámcèx*G`¾ÙÑW ³ë,òp€ñW ·8úŠÁòóëå2ˆ.or—©ˆN„kE€*F`ˆã°ŒŽ±X™„+Gì{~à°VÒ3X æ’j3ZÌa¡jsX´ç:ewq÷òMäÞO(,VvwÄ ƒ ¹QDaa.BDZ¸ÑonwÓ!…šP#°È£Uñô¾ŒºäI!…l‚#°…E0'#±œLcñ\鮇,jlÅ‹—òXŒpÈba§<]{m¯âµâ£§Ê³XX˜€X,DÔ=‹Ed’!…ºqÆcœ™­oõ/#¼§ðÕ(6Ìa!‰9,ôØa Ÿ ÙGGaÑM¥YH`¡ë¦Á11 ´üŽÀ"8“¸¡É“qX"ƒY,Ô,c ]>Ìb¡_^ÊϺmSDaᜢÝý"ܧ¬CŒÅ"xWÀc¡×x,ðž•ðF"‹•ÍJZnžÈ¸ƒŽÉ"RÓÓØJ©gPYèÍ@8¢²°îîö ŒF@faj“Y¨„B2‹‡$,oè¤K€Q¬‹ÑYø-@s‰ÛÉ,ÌíP6 ø]ÊeØTc³€‡òYH|é,,£è,lªA7mS!›…i›5ŸŠïrYX`ß5øtzÄf!C6 =1›…F˜ÍB&±Y˜eˆØ,d>ŽÍbì9;.‹¡}÷L «<ƒ¹–ÆàkL9 ¸,ÖÚIx‹¨,DƒFLjåɽ*¤²X¹©iy ²@†’YHJ sY¨q È,Úyr\Ø^f˜Vmø,|dRú c´ÑóY`i.þÈ.†ŒòœÑÂg¸`Ÿªšxc´èf$AsÄia.&â´³í9-°z„¬æ“l¸1Æ"ZÄkaaVДÑÂkOm¼kî<­NJ#z "v \»ÅØŽ9n ìQqÈjYèړƳ…ÌÅ1[À æµ°DøŽU$p§„ÕbfÔ&¬C"f I¸¸›\ÁYÈaÐôš6v hQÛ}TÈn¡Ú-A4 ˆÛºˆÙÂÜ´€À*Y·…XÈÚBÆ`f 1[à!;v—UÃ'óàN¨½+ ƒ° Ȇ]L“dDo±.¥"GôâÞôšÈWæÀ>}}S³/ŽážÍ¥»qܧ[ Ë…eñ– Ó¾ëî«$H”µªf4¨"æH.ºÏOÕh.ƹð5i³Ç­zf!É…ìeÀr¡* ³\h(»v•ák¶ñ\˜ON½>ˆ.PäÐ\èâF4Z‚²ä94…FrÑMø—ˆçÂjüQA@fƒ™.D{N°WÝÇî(í#v9 º°Ö†'ÚD².Žè"Òœ˜êB½Hu¡’¹°Ö„Ù.^SÛÑöˆ€íBÎ[Èva†7ÀT´ôÚŽP¯u+ß…㻀9dc»@çÒ^€ä;¦»ÐB«Ñ]ÀÎLv!Oqdcåë¨. ÿjdøD:º 4݈ìBLŽãºÅ¥€éBc cºí4Ñ…V#¢ «pÍÒSFu1–9GtDAi. ê-ÁJó Ž{˜»ˆ.\ø€?X,(¦º°då˜êÂjS˜ê¾¹åÜæŸ„dÞä@0FHv!Á6&»Ðªº#»æÑ]øÖ@wa+„3VzƒtÚkatДΑ¦×$½ÐŒH/dP@z¡q%¾PåC ‚IÛh/pœ†y/t:ï…w_fxK°„¼&§ï…<(Á+xv&â o€`ÆPÞñ^¨?gÐ0è¸CÖ óHŒõbœZrœ¸1^¨¿bŒÑTç…õçBÎ õžÎ -]Fœ–Æ2Î PÂŒÖi±?ÍF]çòà„G¬–D¬j31ë…¦õJ0æ½Ðf Ä{a«k¼ȽY/de0ë…·€õBë„ôÂ5­hšŒÀ´šŒˆh/ô$@Ú ³õF{Ä“^¨CI/¬$àTj–ôΙ÷)/Ô…UÆ $¼ïÂtä»0g.à»PÑ4‹q—Ñ]\þ{sŸB² ]{#»@{Èu!/ ¸.¬_P:ÙÂÄý¶Ždj±1Ù…Z#»€]Z–Ùº]ø ¬Uu!Ñ…fÙ6ÜŽha£º´³‘]tGú4KÕ… Å5õÚi†ˆì Sûu7{7Ñ]hÄbtÐÃ/4Ç}Ÿ³uM/½ª 0¤¡ â¿P‡lƒˆh–¡OæAst+mÖ OpJïŸCþ 5#81¡~Î ÑŸ,¼„ôMôêy;ú‹NnÎô"¿°ð“_è.v½aÝtcö k\ƒˆN¶Òø/`ÞÜØ/‚cñ_˜Ù+¸ŸÜ›«'¹ÌH,${nüÁ«†e½ kdãm˜Üÿ^ãô¤é5²Tªd#êë…{Q‡WßI)f¿X—£vûÜGL~¡v ’_È ù˜üÂt@ðd6Cî Sù€ûB#Ç}6c¿ÀBåø/ÎÂìNòxBûâî sýÆ€´Úú`Ä?-Ÿ Vó^Ø‘ x/t…•÷{$Žùž„ˆ÷ÂŽ.æ½Ð€¼:ãã ÜE'˜ùÂJc;êë2o#཰çŽÃk똰ßb»¹/Ì€Cî K•Exõl0÷…ÕÑ r,@Žr¢”"æ kwÞî §;t‰YÛà4¶QÖ›žTbö »w–kù}Ys_¨p_XÏ?æ¾ÐCut×;g˳_ŒRÈ}¡Ÿ„¹/ôÆ}ƒZÌ|¡’wØ/¡BàԈۇó>æ½°ÚÆ{tDH{a5(4aˆšß¥Õô$ì(œ²ÂŽó"ðQ#Ö ³A'ݼ›€øÂÌâú” R_XQ_hwlðU*;Ö>À#ê »¹5L·O‚ä’Rˆ¸/4ŸbÜÈYØ/t+ýÛÇ! “ÑTÞc d“CY€fSP¯ÁX0~̸¯—à †­ &ÁÐÌÖ]; øÝѵ=ßʈ¯{ʤÃARñ &]Œ(éu±1V×E[èR$ƒp5p Ѽf(xb¹1†&é •;½2ŽJAÃË7wüˆjGHƒñ#–_Y0pŠ}p¶d±`*"jÕèÆ˜0`D6—ì&Ã+”VÄ„áúõWÄ6¬÷<”¶Œ•AåJ h0¸ÇÑ`à½pDÁ £Â¢‘aèÒ`6 ëÖ]î”U|—ñWq¶0Æ:§ÌjÓ³a ´@ë™0: ˜q52 ”íÇTv4×ë…>j9µ\‘ah #àÂð=„OžcÀIâ´ƒ2¶%n” ò˜ÃnE?¿g,Èx‡<Úçñ`¨ÂÁ<⦂ÛöшÃNñ`ŒƒBÇ‚ó˘C½9Ì¡áZ=aMÁ-DÓ˜Cïb A°X0¬}5`ÁІÇ‚1$b>£Û °`hZÂX0`ü¯Ú€·J5àh0Æí'Ž˜'åÀÀúÁ±` ç' Á0Ç< Áxב`oÍÓ` ça¨gÄwb™L…á»&@-ÀÒ€Oûp1ÆkjGÎG¯* ÈÝVÀ®€ ãášè“v~¿îy5ÌÑa³ 1œ«¢u]´6†aOA> Ÿ9~ví?äÃ0ûo|h}"F çw•‹¡0‚Òƒ!´.,°½]¢(ÌŒá;ƒ3†nE.1FMBÄ‹áoO^ óÖ"µßv˜‘Ó²`t_Ãmý‰x1ìˆbb ©~a^ m\4b ˜Á4ZŒÀéÀÄvã+`Æðíyw×%ÇÀg4¨ÅY’i™ôø5<ÄäƒÕá7áP¿ÅQcÀpÍÈ1†^¦ÆPTÞCj Zú™SF ±¦­¢Ž{nŒ~”ýâØ%8J_äFé/6j¯Lö‹µ¬n”þâFÑdYÙ¸Qú‹uù"ÿ ïÅrl¼?«§½˜Þ¾£¯!åÿ2ÓŸw,G%Ã8øZÞ±¿¬ò{I•C~ÏŽ CHŒçB~q´£A& ¢LçGƒ¡CŒá¸p`\ÞÝFütŒ…áËÙAþ‰#І!ÆÂXÆLàâ 0òO€Áy­<`|ûõ7>~ÏÊañJ*‰×rXô;µ¦ÂL‡ÅZhköü‹´pEòŽI £mn1=hãˆÝÓX<¨3zÊÎ ïŽÃâ¢2Ó\Ò©›!‹… d)b¢´ò¡^*.ú;1=ÉzÜBr‰´.µ};ä'¼i¥¹†¼i%ÿ?ÐF\Ön¯eMO1˜ïÄ9cÏÑ¿¦™-ãŒè†õvdŒH ý%fŒ -¨ ©!cDªú³Ü<ÄuéØxN)¦ƒH+_Ê·"1¾ ´ó"w&-Km½ñ„×-s…·øÇ•\×Uæƒ[Óü“ƒ‡É!-²ß9Œ>k9•Éo>¥R5$&;Öª†þ9õÆ| ÈèÃ*KCÈÖ@'}ªDê­Sq£=ã¨Î|ly a¸Èò¼œ H {i ý¡ÚªJ‚ô ´þ§œ0½Bb ­Ú¾ ô •s€É·INsD®@oií;»‚ÈA„ižø2~z¤W÷žÙ ó!–zàC^9)!¯©Ì©ºq¯™Ôå$Œx TCG¼‰©Tnž×`0qn¼»…¬ö6ÌZ X CÆVò ­|yrX äxcÒqçÒZãR9®iÁP‡”d¹ÒIY) ÈjWOYøŸúšY†Œ¯ÛÓ"¯µ%ÆÑ€yâ‚ÁŒH(JµudùÅÏ © RbÀƒü@M0:ëgé‘PÄQž‘q®ÅrON0:Zç¶;z‚NxÈ´¬û-"'¨No€ ï€I;äPŸÄñ v}­˜Pžy w²Rß…¼¤s—ÊxÁô«ÅÂ0ý²U§¿_ÀSNJ§r«Ê‰`úéhÕNß°š˜R–äçS„™çƒŸ¼“r6’àù¤šR½Æ`ç“TÔŸ,hÍÙyÌûÁ±¡“N²ñcVÚÐ9Ý<æýÕãÝÎÆ+ˆxOk\1ˆh/Ï[ãôÀDö¤á¦†'xÀ¤8)¥eŠ>p i~0ˆkMÛÖü`Ð\cpß­ÐÒŠߟˆC›ž>¬yì <íÆÌ\¾Ûôµ"3(ðâE‡0ðdBsuÑ"ø ¾Ï1<©¹Ä‡ãÀÓÝ+Œ,ÄW=è€à³!§ñÄÈBPðõ€²ÊÅXðd«j‚'À‚×ÕaÁ÷k,÷w|½D8ÏhðÝ~zž¾×¥Sm#´vø‹—rƬ¾ó]›·d(ð†œÊÉ^PsÉør¯ýhÛ°‹¡‚¿•ÿ›ÐAøw Žü{7q ü½“'zÑþÿÞ=åLmaðw Cðwò¯×ª"ðwS3ü]’h!ø»¹vú;™ÔÆu ÐßÅM‡èïôšZóޝ3ŸÆ÷ýëò9ì÷ÑòeNR{ô÷‘_W¦þýj£¦ÓÂ6p`!Ps}û]ÓQו¼)ºÉ žaýNÿÔBú½ûªÓ3ôèï#ÿ»fŠüûãêI@¿SÄPü<øû@$N½éáß»A$"xòÄ*t¯ZÏðß;­×bˆ·®._„·n zB/’  ã¨ë‡£>X½3Å€‘Ôõà’úø`;ˆô‹­8nŒ.’éñÑázðónõ[@AŸk&ÉaŸ$¯Z/ ~nî…ŸwÚ•tPN$Š F8}~·Lh~n†°t~ç%}áÐϯ“9SûÜDÁ°Ï/Ï81H<òy'•’®‚àçzˆøù@piX&w¹–þ8FèV‰²lkªñCž˜‘¾vc t+èbâô£æü€o~Ñf§ âs‹_Bo[¡i^K­¡«h‡»œ+Œ¼èïjš0ò¶UA y{~U‰ñØÛÝsšÜ8ôíQ2Õú.Æßn»íá·ûR“AÜš²vÜÇØl ƒßƇ!àÖŒŽCàî¦|&üwŸ¬ç– À”„ƒàîSçI ð·wÙÔcñ·µºëð·{˲·cŒÀM;½UslÜ£p;=SÃàî³"Õ¸an2óYü4îqâw†øÛª©0þv:Fn»ßäÓV8îÑ Ø¸ÆàV‰Š0¸µšap“X>pƒûê/&vnNŠÇðÛªZü6*¹`ðm)ÿ„àÛâôöö`ˆl8DßÖ­Úôízè÷ü€¾ ½äÛä âoÓ™«ý£¨™Ü¼4ßîâþ”®ÐÛ`äíÓ"¥y›D¢^¦à°¥”Âa“–o‡Ý9ä’/аmu ¶¶d i$ƒà°°;mE3‡†DDÛܰ»Üy+ͱĈØõÚGås ±ÝyÁˆØúí¹åûÒÔQ‹ì ¶9± v5•'Ôp5ˆ08lìÿ;@ìÁ»Øw]bHl2†ÇYpKÞBÏà¾L‡‡ÝKÖqÂÞ"ö(vZ+È•ÃÄî¾»©PˆˆMaò\C#‡ˆ â±Gòp´ JAsæ® {0èl½ˆ0±IOT«á1±GëSª_ˆP±é)çŽcTlòŽòYŒ®œhyÓáXu~ õ§Hë”òi¾¤uÀói[R×¥«C½.ŽºÓçó|¾'¤®¢55ÆñUzSiÇARS´ÁÜä‘úZõ­ «z0•Ó4‡ˆÔ‰©ìöý‘ŒG­-)z žÍqÁ\k6Ä0©¡äQ©;E‘ÓéwàtŸý?sîÜ´¥?fÌ%–µâ €ÓV9Ç€Ó‰¼$VÂpzäªV €0ÐY[Gàã¹:‡pº»Ú"±¤ÉDÕ.%=ê ¬¥=C’†qˆ#­5‚G:qü1G@Òtz7N.ai ¢<ŽtçBIQ Ý5oýfBø,@[ÔBZåÎAHwçI\5"-îQ"-ͳˆ´f?"i’ñå¬ Òd9æ³]%-Ã;N®•cH«*qÒƒù,-gDk)ËDcKæ ¢A×T-Òã¢;ÍÖ C>4íi‹< >ôY—KÚ|Ùš¾ºvWbxh“dƒ‡ì•d¼ @´äÍB€h±á@´^õˆ¢[Q×ãC÷Šk;5dM ð¬t;xèË·:•CR!<<ô8ÆÙC€èšÿ ñ¡5ôC‘³]™qëôC;íÒÚ` 4åèÐZºTpèN#î°C‡Hžäl€h×ðˆ¢i{ÖŠLå¢û^ãl „ðÐÚ¶åà¡oãÁ¡¡  ¡­¥Í ¡Gîa¾Ê0Ð!8´ßûÙ 6t¡TµºCmÅéx8üç‹ 7ߣ?צšÚßeèÏ#Kµœ‚aøÏƒAœTÈ·:åµ"ÐÒ§è! Gë9ƒ@[3•@ÄZòz¤ŽÏ6) ]›š9ób ÐC+B@kæ0€€®—Åk Ò  ýtï0ÀsmÚ=j+-†-°+BðÜy£S=ãy´ÆÒÉ£ã¥I2Äx¶<…Ý+ï=õªJ"„g:æ©.²Cxìx»¯a¹œIˆÙ,½²µ’8ÀæNËÐYÝËds·,­(€A›µ ºvÝ1ÞîOP›­5ôèêðê @™+/ø–1(³$Ç&ó`¾-ŒŠP™k®´F«a#Ô²Á>T=j;Ì“´ %¯¹bb2[£“a2wR# `K~Ü#2÷­±µ9Æã1£ê Fc®¡~=ý†Æ<øtÙÏ ž9MÇ_ÅGÊ7fŽ#†‘¹nÖœúûÌ♟DxÌVé ™íÖ7dÖX2‹Gãð˜Gyï­ÄhÌrå¡1hA€Æ¬ Bc®W¦¦åyäwŸ³ŠŸÃcî¦ÝŠ["³Ög0$³žÉ “è8:U~€ÇL®Üôpãd´—õ–ˆ¡,Ò}å ³ê4”†‰ècÚêGã~}Koy¦s²0#!Ux¡¬hÙº%fè®k…3H~(Ê‚~Wéo ð‘µËCD[Có mÅ«ðˆ¶—˜¢5Gx¶µ‰p“l!t [7g„h[Áoꀈ¶v+ #Újon„h«†Ü mGcÎfj zk+w½X[m—‰`mSâÁ%†µX? k[]¸)ÝBX[p°¶Ý”ë°­¸C÷Y­ÁÛŠÒõ¨µ½»½žzàÖjƒÀ¿%n-}Kb 7L×jÄi^·¶e¿òkEL%…㞥¿¸QK®ÂàFé/n÷ÍÙÒ_ܨË\ýìÿDÚµ0­Ò’¶ìDu©ò Í—ÔþLûË&ÊËa(«"jð²ò‹C~ :ÎÜ¿‡¡ÕQ C«£­Ž2|SåðM/“°A?veL¶‚?v·:Ä£]Ù&‘kû€GÛ üßöÄx´tâ<í—ß|úÍË·ß}óé»_üæí.í+áa_‹KÛï[íç®nþ#.íø›HÐèmKØÊýÒJqi!/ç–ü·· ]öiùÿydRE/Ÿ~ÿöy­Ó¼“(G¿Ó?MååãÛw|¿d;òË<ßmx®ûF+y¸·f.#­üî÷èE¿â'ÒSèëËçüo§•ôóËw?¼å›>SšÍ€ÆFž¦ååkúyš¸_‚çcãÝ?ýÒ ç©±tÐ?òïs9ömùžÿ&_sÉç¶áÎÙLG™ÓËïýÿ<ÿûóùkyùÇoxf¤R&zÿJžÿüòC]°BGþå·üßç2år¼¸©œK´?l ×ÀIXÚý’þa)ë±n/¿°??³?Ý€e´äÕ·ÚåqÀgñ‚Sx¾-³ÿõn«‡ðoÞü_03æóendstream endobj 112 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 579 >> stream xœ…ÝKSqƧ᧎9XhÂ9D‘7]ÔEa/½Œ@)·B-ég¾Žp[®…;ææ¾®l³œš:ÓÎÙÀ64s]X]Ô]7Ñ uÓ õ=ãTæÐs÷\<ÏóΈp—yìäÑ cñžÝë&”ôátIø!õµöyäf².¾©ù¼‰RRFô¤„düžL‘ß\#÷Cu‹iI‰©y1Nõ|ÕàS\Ðù"+ßMÀEki5˱“fwØ©a±~ù{ ‚°[»Àá’”Ö–]å@»œ0¼D幇˜)ú¦lúP[1/–,©ÒþËpÌ&‡¥µÖa½€ÁPOÏ„OòÏ ¿Ší÷)W¬ÝŠ«]Ö³.;tCW~CèzЗð.$Q}»1ñ'r8ŽœFý€sºoú,›U²ƒ,wÇZ fcå<€Z‰%YŸ®î̽µxù‰ÇräÙÊÌ"ÐÙGWõZo>-70ÔWÕˆCòcÕF5j*ë*mžjpS»¿a~~z6‘¬I±òmlÛ²a/†W½£ËÒr0‡~ê·„:Ü.è씎í;PcÃýT| ÅÉ%9þrupî¤gÄBEÄ/039ÌûBA£ÒôV]Ø:ÖxÉdªkm‹ÌE£³kÿ5®»ÑîVþË<à›èñÊïÐy{è¦óW*fNm¯bmë„Gz!pKò‡'?¥€ööÍÑiötË¢”ÅÛš…L²@ÈAKÈŠœÃendstream endobj 113 0 obj << /Type /XRef /Length 134 /Filter /FlateDecode /DecodeParms << /Columns 5 /Predictor 12 >> /W [ 1 3 1 ] /Info 3 0 R /Root 2 0 R /Size 114 /ID [<06d4df3a91084f267fe2d0efafdc529e><1377856edfa327015defe96de323fe11>] >> stream xœcb&F~0ù‰ $À8JŽò?ƒ@Å: ›Mï• ’i'ˆäÿ"A$‡3˜} DJÿ‘" Rô/ˆ÷‘Ì{A$÷Én6Ç DòÜ‘b!`ÀºÁº#ÁædƒHAO°È ÉÈq ÄJÛÕ "ÍyÀ¦ÍeïñU endstream endobj startxref 109762 %%EOF HSAUR3/inst/doc/Ch_recursive_partitioning.Rnw0000644000176200001440000005514114416236370020655 0ustar liggesusers \documentclass{chapman} %%% copy Sweave.sty definitions %%% keeps `sweave' from adding `\usepackage{Sweave}': DO NOT REMOVE %\usepackage{Sweave} \RequirePackage[T1]{fontenc} \RequirePackage{graphicx,ae,fancyvrb} \IfFileExists{upquote.sty}{\RequirePackage{upquote}}{} \usepackage{relsize} \DefineVerbatimEnvironment{Sinput}{Verbatim}{} \DefineVerbatimEnvironment{Soutput}{Verbatim}{fontfamily=courier, fontshape=it, fontsize=\relsize{-1}} \DefineVerbatimEnvironment{Scode}{Verbatim}{} \newenvironment{Schunk}{}{} %%% environment for raw output \newcommand{\SchunkRaw}{\renewenvironment{Schunk}{}{} \DefineVerbatimEnvironment{Soutput}{Verbatim}{fontfamily=courier, fontshape=it, fontsize=\small} \rawSinput } %%% environment for labeled output \newcommand{\nextcaption}{} \newcommand{\SchunkLabel}{ \renewenvironment{Schunk}{\begin{figure}[ht] }{\caption{\nextcaption} \end{figure} } \DefineVerbatimEnvironment{Sinput}{Verbatim}{frame = topline} \DefineVerbatimEnvironment{Soutput}{Verbatim}{frame = bottomline, samepage = true, fontfamily=courier, fontshape=it, fontsize=\relsize{-1}} } %%% S code with line numbers \DefineVerbatimEnvironment{Sinput} {Verbatim} { %% numbers=left } \newcommand{\numberSinput}{ \DefineVerbatimEnvironment{Sinput}{Verbatim}{numbers=left} } \newcommand{\rawSinput}{ \DefineVerbatimEnvironment{Sinput}{Verbatim}{} } %%% R / System symbols \newcommand{\R}{\textsf{R}} \newcommand{\rR}{{R}} \renewcommand{\S}{\textsf{S}} \newcommand{\SPLUS}{\textsf{S-PLUS}} \newcommand{\rSPLUS}{{S-PLUS}} \newcommand{\SPSS}{\textsf{SPSS}} \newcommand{\EXCEL}{\textsf{Excel}} \newcommand{\ACCESS}{\textsf{Access}} \newcommand{\SQL}{\textsf{SQL}} %%\newcommand{\Rpackage}[1]{\hbox{\rm\textit{#1}}} %%\newcommand{\Robject}[1]{\hbox{\rm\texttt{#1}}} %%\newcommand{\Rclass}[1]{\hbox{\rm\textit{#1}}} %%\newcommand{\Rcmd}[1]{\hbox{\rm\texttt{#1}}} \newcommand{\Rpackage}[1]{\index{#1 package@{\fontseries{b}\selectfont #1} package} {\fontseries{b}\selectfont #1}} \newcommand{\rpackage}[1]{{\fontseries{b}\selectfont #1}} \newcommand{\Robject}[1]{\texttt{#1}} \newcommand{\Rclass}[1]{\index{#1 class@\textit{#1} class}\textit{#1}} \newcommand{\Rcmd}[1]{\index{#1 function@\texttt{#1} function}\texttt{#1}} \newcommand{\Roperator}[1]{\texttt{#1}} \newcommand{\Rarg}[1]{\texttt{#1}} \newcommand{\Rlevel}[1]{\texttt{#1}} %%% other symbols \newcommand{\file}[1]{\hbox{\rm\texttt{#1}}} %%\newcommand{\stress}[1]{\index{#1}\textit{#1}} \newcommand{\stress}[1]{\textit{#1}} \newcommand{\booktitle}[1]{\textit{#1}} %%' %%% Math symbols \usepackage{amstext} \usepackage{amsmath} \newcommand{\E}{\mathsf{E}} \newcommand{\Var}{\mathsf{Var}} \newcommand{\Cov}{\mathsf{Cov}} \newcommand{\Cor}{\mathsf{Cor}} \newcommand{\x}{\mathbf{x}} \newcommand{\y}{\mathbf{y}} \renewcommand{\a}{\mathbf{a}} \newcommand{\W}{\mathbf{W}} \newcommand{\C}{\mathbf{C}} \renewcommand{\H}{\mathbf{H}} \newcommand{\X}{\mathbf{X}} \newcommand{\B}{\mathbf{B}} \newcommand{\V}{\mathbf{V}} \newcommand{\I}{\mathbf{I}} \newcommand{\D}{\mathbf{D}} \newcommand{\bS}{\mathbf{S}} \newcommand{\N}{\mathcal{N}} \renewcommand{\L}{L} \renewcommand{\P}{\mathsf{P}} \newcommand{\K}{\mathbf{K}} \newcommand{\m}{\mathbf{m}} \newcommand{\argmin}{\operatorname{argmin}\displaylimits} \newcommand{\argmax}{\operatorname{argmax}\displaylimits} \newcommand{\bx}{\mathbf{x}} \newcommand{\bbeta}{\mathbf{\beta}} %%% links \usepackage{hyperref} \hypersetup{% pdftitle = {A Handbook of Statistical Analyses Using R (3rd Edition)}, pdfsubject = {Book}, pdfauthor = {Torsten Hothorn and Brian S. Everitt}, colorlinks = {black}, linkcolor = {black}, citecolor = {black}, urlcolor = {black}, hyperindex = {true}, linktocpage = {true}, } %%% captions & tables %% : conflics with figure definition in chapman.cls %%\usepackage[format=hang,margin=10pt,labelfont=bf]{caption} %% \usepackage{longtable} \usepackage[figuresright]{rotating} %%% R symbol in chapter 1 \usepackage{wrapfig} %%% Bibliography \usepackage[round,comma]{natbib} \renewcommand{\refname}{References \addcontentsline{toc}{chapter}{References}} \citeindexfalse %%% texi2dvi complains that \newblock is undefined, hm... \def\newblock{\hskip .11em plus .33em minus .07em} %%% Example sections \newcounter{exercise}[chapter] \setcounter{exercise}{0} \newcommand{\exercise}{\stepcounter{exercise} \item{Ex.~\arabic{chapter}.\arabic{exercise} }} %% URLs \newcommand{\curl}[1]{\begin{center} \url{#1} \end{center}} %%% for manual corrections %\renewcommand{\baselinestretch}{2} %%% plot sizes \setkeys{Gin}{width=0.95\textwidth} %%% color \usepackage{color} %%% hyphenations \hyphenation{drop-out} \hyphenation{mar-gi-nal} %%% new bidirectional quotes need \usepackage[utf8]{inputenc} %\usepackage{setspace} \definecolor{sidebox_todo}{rgb}{1,1,0.2} \newcommand{\todo}[1]{ \hspace{0pt}% \marginpar{% \fcolorbox{black}{sidebox_todo}{% \parbox{\marginparwidth} { \raggedright\sffamily\footnotesize{TODO: #1}% } }% } } \begin{document} %% Title page \title{A Handbook of Statistical Analyses Using \R{} --- 3rd Edition} \author{Torsten Hothorn and Brian S. Everitt} \maketitle %%\VignetteIndexEntry{Chapter Recursive Partitioning} %%\VignetteDepends{vcd,lattice,randomForest,partykit} \setcounter{chapter}{8} \SweaveOpts{prefix.string=figures/HSAUR,eps=FALSE,keep.source=TRUE} <>= rm(list = ls()) s <- search()[-1] s <- s[-match(c("package:base", "package:stats", "package:graphics", "package:grDevices", "package:utils", "package:datasets", "package:methods", "Autoloads"), s)] if (length(s) > 0) sapply(s, detach, character.only = TRUE) if (!file.exists("tables")) dir.create("tables") if (!file.exists("figures")) dir.create("figures") set.seed(290875) options(prompt = "R> ", continue = "+ ", width = 63, # digits = 4, show.signif.stars = FALSE, SweaveHooks = list(leftpar = function() par(mai = par("mai") * c(1, 1.05, 1, 1)), bigleftpar = function() par(mai = par("mai") * c(1, 1.7, 1, 1)))) HSAURpkg <- require("HSAUR3") if (!HSAURpkg) stop("cannot load package ", sQuote("HSAUR3")) rm(HSAURpkg) ### hm, R-2.4.0 --vanilla seems to need this a <- Sys.setlocale("LC_ALL", "C") ### book <- TRUE refs <- cbind(c("AItR", "DAGD", "SI", "CI", "ANOVA", "MLR", "GLM", "DE", "RP", "GAM", "SA", "ALDI", "ALDII", "SIMC", "MA", "PCA", "MDS", "CA"), 1:18) ch <- function(x) { ch <- refs[which(refs[,1] == x),] if (book) { return(paste("Chapter~\\\\ref{", ch[1], "}", sep = "")) } else { return(paste("Chapter~", ch[2], sep = "")) } } if (file.exists("deparse.R")) source("deparse.R") setHook(packageEvent("lattice", "attach"), function(...) { lattice.options(default.theme = function() standard.theme("pdf", color = FALSE)) }) @ \pagestyle{headings} <>= book <- FALSE @ <>= library("vcd") library("lattice") library("randomForest") library("partykit") ltheme <- canonical.theme(color = FALSE) ## in-built B&W theme ltheme$strip.background$col <- "transparent" ## change strip bg lattice.options(default.theme = ltheme) mai <- par("mai") options(SweaveHooks = list(nullmai = function() { par(mai = rep(0, 4)) }, twomai = function() { par(mai = c(0, mai[2], 0, 0)) }, threemai = function() { par(mai = c(0, mai[2], 0.1, 0)) })) numbers <- c("zero", "one", "two", "three", "four", "five", "six", "seven", "eight", "nine") @ \chapter[Recursive Partitioning]{Recursive Partitioning: Predicting Body Fat, Glaucoma Diagnosis, and Happiness in China \label{RP}} \section{Introduction} \section{Recursive Partitioning} \section{Analysis Using \R{}} \subsection{Predicting Body Fat Content} The \Rcmd{rpart} function from \Rpackage{rpart} can be used to grow a regression tree. The response variable and the covariates are defined by a model formula in the same way as for \Rcmd{lm}, say. By default, a large initial tree is grown, we restrict the number of observations required to establish a potential binary split to at least ten: <>= library("rpart") data("bodyfat", package = "TH.data") bodyfat_rpart <- rpart(DEXfat ~ age + waistcirc + hipcirc + elbowbreadth + kneebreadth, data = bodyfat, control = rpart.control(minsplit = 10)) @ A \Rcmd{print} method for \Rclass{rpart} objects is available; however, a graphical representation \citep[here utilizing functionality offered from package \Rpackage{partykit},][]{PKG:partykit} shown in Figure~\ref{RP-bodyfat-plot} is more convenient. Observations that satisfy the condition shown for each node go to the left and observations that don't are an element of the right branch in each node. %' As expected, higher values for waist and hip circumferences and wider knees correspond to higher values of body fat content. The rightmost terminal node consists of only three rather extreme observations. \begin{figure} \begin{center} <>= library("partykit") plot(as.party(bodyfat_rpart), tp_args = list(id = FALSE)) @ \caption{Initial tree for the body fat data with the distribution of body fat in terminal nodes visualized via boxplots. \label{RP-bodyfat-plot}} \end{center} \end{figure} \index{Cross-validation} To determine if the tree is appropriate or if some of the branches need to be subjected to pruning we can use the \Robject{cptable} element of the \Rclass{rpart} object: <>= print(bodyfat_rpart$cptable) opt <- which.min(bodyfat_rpart$cptable[,"xerror"]) @ The \Robject{xerror} column contains estimates of cross-validated prediction error for different numbers of splits (\Robject{nsplit}). The best tree has \Sexpr{numbers[bodyfat_rpart$cptable[opt, "nsplit"] + 1]} splits. Now we can prune back the large initial tree using <>= cp <- bodyfat_rpart$cptable[opt, "CP"] bodyfat_prune <- prune(bodyfat_rpart, cp = cp) @ The result is shown in Figure~\ref{RP-bodyfat-pruneplot}. Note that the inner nodes three and six have been removed from the tree. Still, the rightmost terminal node might give very unreliable extreme predictions. \begin{figure} \begin{center} <>= plot(as.party(bodyfat_prune), tp_args = list(id = FALSE)) @ \caption{Pruned regression tree for body fat data. \label{RP-bodyfat-pruneplot}} \end{center} \end{figure} Given this model, one can predict the (unknown, in real circumstances) body fat content based on the covariate measurements. Here, using the known values of the response variable, we compare the model predictions with the actually measured body fat as shown in Figure~\ref{RP-bodyfat-predict}. The three observations with large body fat measurements in the rightmost terminal node can be identified easily. \begin{figure} \begin{center} <>= DEXfat_pred <- predict(bodyfat_prune, newdata = bodyfat) xlim <- range(bodyfat$DEXfat) plot(DEXfat_pred ~ DEXfat, data = bodyfat, xlab = "Observed", ylab = "Predicted", ylim = xlim, xlim = xlim) abline(a = 0, b = 1) @ \caption{Observed and predicted DXA measurements. \label{RP-bodyfat-predict}} \end{center} \end{figure} \subsection{Glaucoma Diagnosis} <>= set.seed(290875) @ <>= data("GlaucomaM", package = "TH.data") glaucoma_rpart <- rpart(Class ~ ., data = GlaucomaM, control = rpart.control(xval = 100)) glaucoma_rpart$cptable opt <- which.min(glaucoma_rpart$cptable[,"xerror"]) cp <- glaucoma_rpart$cptable[opt, "CP"] glaucoma_prune <- prune(glaucoma_rpart, cp = cp) @ \setkeys{Gin}{width = 0.65\textwidth} \begin{figure} \begin{center} <>= plot(as.party(glaucoma_prune), tp_args = list(id = FALSE)) @ \caption{Pruned classification tree of the glaucoma data with class distribution in the leaves. \label{RP:gl}} \end{center} \end{figure} \setkeys{Gin}{width=0.95\textwidth} \index{Classification tree!choice of tree size} \index{Tree size} As we discussed earlier, the choice of the appropriately sized tree is not a trivial problem. For the glaucoma data, the above choice of three leaves is very unstable across multiple runs of cross-validation. As an illustration of this problem we repeat the very same analysis as shown above and record the optimal number of splits as suggested by the cross-validation runs. <>= nsplitopt <- vector(mode = "integer", length = 25) for (i in 1:length(nsplitopt)) { cp <- rpart(Class ~ ., data = GlaucomaM)$cptable nsplitopt[i] <- cp[which.min(cp[,"xerror"]), "nsplit"] } @ \newpage <>= table(nsplitopt) @ Although for \Sexpr{sum(nsplitopt == 1)} runs of cross-validation a simple tree with one split only is suggested, larger trees would have been favored in \Sexpr{sum(nsplitopt > 1)} of the cases. This short analysis shows that we should not trust the tree in Figure~\ref{RP:gl} too much. \index{Bagging} \index{Bootstrap approach!glaucoma diagnosis data} One way out of this dilemma is the aggregation of multiple trees via bagging. In \R{}, the bagging idea can be implemented by three or four lines of code. Case count or weight vectors representing the bootstrap samples can be drawn from the multinominal distribution with parameters $n$ and $p_1 = 1/n, \dots, p_n = 1/n$ via the \Rcmd{rmultinom} function. For each weight vector, one large tree is constructed without pruning and the \Rclass{rpart} objects are stored in a list, here called \Robject{trees}: <>= trees <- vector(mode = "list", length = 25) n <- nrow(GlaucomaM) bootsamples <- rmultinom(length(trees), n, rep(1, n)/n) mod <- rpart(Class ~ ., data = GlaucomaM, control = rpart.control(xval = 0)) for (i in 1:length(trees)) trees[[i]] <- update(mod, weights = bootsamples[,i]) @ The \Rcmd{update} function re-evaluates the call of \Robject{mod}, however, with the weights being altered, i.e., fits a tree to a bootstrap sample specified by the weights. It is interesting to have a look at the structures of the multiple trees. For example, the variable selected for splitting in the root of the tree is not unique as can be seen by <>= table(sapply(trees, function(x) as.character(x$frame$var[1]))) @ Although \Robject{varg} is selected most of the time, other variables such as \Robject{vari} occur as well -- a further indication that the tree in Figure~\ref{RP:gl} is questionable and that hard decisions are not appropriate for the glaucoma data. In order to make use of the ensemble of trees in the list \Robject{trees} we estimate the conditional probability of suffering from glaucoma given the covariates for each observation in the original data set by <>= classprob <- matrix(0, nrow = n, ncol = length(trees)) for (i in 1:length(trees)) { classprob[,i] <- predict(trees[[i]], newdata = GlaucomaM)[,1] classprob[bootsamples[,i] > 0,i] <- NA } @ Thus, for each observation we get \Sexpr{length(trees)} estimates. However, each observation has been used for growing one of the trees with probability $0.632$ and thus was not used with probability $0.368$. Consequently, the estimate from a tree where an observation was not used for growing is better for judging the quality of the predictions and we label the other estimates with \Robject{NA}. Now, we can average the estimates and we vote for glaucoma when the average of the estimates of the conditional glaucoma probability exceeds $0.5$. The comparison between the observed and the predicted classes does not suffer from overfitting since the predictions are computed from those trees for which each single observation was \stress{not} used for growing. <>= avg <- rowMeans(classprob, na.rm = TRUE) predictions <- factor(ifelse(avg > 0.5, "glaucoma", "normal")) predtab <- table(predictions, GlaucomaM$Class) predtab @ Thus, an honest estimate of the probability of a glaucoma prediction when the patient is actually suffering from glaucoma is <>= round(predtab[1,1] / colSums(predtab)[1] * 100) @ per cent. For <>= round(predtab[2,2] / colSums(predtab)[2] * 100) @ percent of normal eyes, the ensemble does not predict glaucomateous damage. \begin{figure} \begin{center} <>= library("lattice") gdata <- data.frame(avg = rep(avg, 2), class = rep(as.numeric(GlaucomaM$Class), 2), obs = c(GlaucomaM[["varg"]], GlaucomaM[["vari"]]), var = factor(c(rep("varg", nrow(GlaucomaM)), rep("vari", nrow(GlaucomaM))))) panelf <- function(x, y) { panel.xyplot(x, y, pch = gdata$class) panel.abline(h = 0.5, lty = 2) } print(xyplot(avg ~ obs | var, data = gdata, panel = panelf, scales = "free", xlab = "", ylab = "Estimated Class Probability Glaucoma")) @ \caption{Estimated class probabilities depending on two important variables. The $0.5$ cut-off for the estimated glaucoma probability is depicted as a horizontal line. Glaucomateous eyes are plotted as circles and normal eyes are triangles. \label{RP:glplot}} \end{center} \end{figure} \index{Random forest} The bagging procedure is a special case of a more general approach called \stress{random forest} \citep{HSAUR:Breiman2001b}. The package \Rpackage{randomForest} \citep{PKG:randomForest} can be used to compute such ensembles via <>= library("randomForest") rf <- randomForest(Class ~ ., data = GlaucomaM) @ and we obtain out-of-bag estimates for the prediction error via <>= table(predict(rf), GlaucomaM$Class) @ \subsection{Trees Revisited} For the body fat data, such a \stress{conditional inference tree} can be computed using the \Rcmd{ctree} function \index{Conditional tree} <>= bodyfat_ctree <- ctree(DEXfat ~ age + waistcirc + hipcirc + elbowbreadth + kneebreadth, data = bodyfat) @ This tree doesn't require a pruning procedure because an internal stop criterion based on formal statistical tests prevents the procedure from overfitting the data. The tree structure is shown in Figure~\ref{RP-bodyfat-ctree-plot}. Although the structure of this tree and the tree depicted in Figure~\ref{RP-bodyfat-pruneplot} are rather different, the corresponding predictions don't vary too much. \begin{figure} \begin{center} <>= plot(bodyfat_ctree, tp_args = list(id = FALSE)) @ \caption{Conditional inference tree with the distribution of body fat content shown for each terminal leaf. \label{RP-bodyfat-ctree-plot}} \end{center} \end{figure} Very much the same code is needed to grow a tree on the glaucoma data: <>= glaucoma_ctree <- ctree(Class ~ ., data = GlaucomaM) @ and a graphical representation is depicted in Figure~\ref{RP-glaucoma-ctree-plot} showing both the cutpoints and the $p$-values of the associated independence tests for each node. The first split is performed using a cutpoint defined with respect to the volume of the optic nerve above some reference plane, but in the inferior part of the eye only (\Robject{vari}). \begin{figure} \begin{center} <>= plot(glaucoma_ctree, tp_args = list(id = FALSE)) @ \caption{Conditional inference tree with the distribution of glaucomateous eyes shown for each terminal leaf. \label{RP-glaucoma-ctree-plot}} \end{center} \end{figure} \subsection{Happiness in China} \index{Chinese Health and Family Life Survey} A conditional inference tree is a simple alternative to the proportional odds model for the regression analysis of the happiness variable from the Chinese Health and Family Life Survey. In each node, a linear association test introduced in Section~\ref{CI:Lanza} taking the ordering of the happiness levels into account is applied for selecting variables and split-points. Before we fit the tree with the \Rcmd{ctree} function, we recode the levels of the happiness variable to allow plotting of these symbols with restricted page space: \newpage <>= levels(CHFLS$R_happy) levels(CHFLS$R_happy) <- LETTERS[1:4] CHFLS_ctree <- ctree(R_happy ~ ., data = CHFLS) @ The resulting tree is depicted in Figure~\ref{RP-CHFLS-ctree-plot} and very nicely backs up the results obtained from the proportional odds model in Chapter~\ref{GLM}. The distribution of self-reported happiness is shifted from very unhappy to very happy with increasing values of self-reported health, i.e., women that reported excellent health (mind the $>$ sign in the right label of the root split!) were at least somewhat happy with only a few exceptions. Women with poor or not good health reported being not too happy much more often. There seems to be further differentiation with respect to geography and also income but the differences in the distributions depicted in the terminal leaves are negligible. \begin{figure} \begin{center} <>= plot(CHFLS_ctree, ep_args = list(justmin = 10), tp_args = list(id = FALSE)) @ \caption{Conditional inference tree with the distribution of self-reported happiness shown for each terminal leaf. The levels of happiness have been abbreviated (A: very unhappy, B: not too happy, C: somewhat happy; D: very happy). The \Rcmd{justmin} argument ensures that split descriptions longer than $10$ characters are displayed over two lines. \label{RP-CHFLS-ctree-plot}} \end{center} \end{figure} \bibliographystyle{LaTeXBibTeX/refstyle} \bibliography{LaTeXBibTeX/HSAUR} \end{document} HSAUR3/inst/doc/Ch_simple_inference.Rnw0000644000176200001440000005240414416236370017365 0ustar liggesusers \documentclass{chapman} %%% copy Sweave.sty definitions %%% keeps `sweave' from adding `\usepackage{Sweave}': DO NOT REMOVE %\usepackage{Sweave} \RequirePackage[T1]{fontenc} \RequirePackage{graphicx,ae,fancyvrb} \IfFileExists{upquote.sty}{\RequirePackage{upquote}}{} \usepackage{relsize} \DefineVerbatimEnvironment{Sinput}{Verbatim}{} \DefineVerbatimEnvironment{Soutput}{Verbatim}{fontfamily=courier, fontshape=it, fontsize=\relsize{-1}} \DefineVerbatimEnvironment{Scode}{Verbatim}{} \newenvironment{Schunk}{}{} %%% environment for raw output \newcommand{\SchunkRaw}{\renewenvironment{Schunk}{}{} \DefineVerbatimEnvironment{Soutput}{Verbatim}{fontfamily=courier, fontshape=it, fontsize=\small} \rawSinput } %%% environment for labeled output \newcommand{\nextcaption}{} \newcommand{\SchunkLabel}{ \renewenvironment{Schunk}{\begin{figure}[ht] }{\caption{\nextcaption} \end{figure} } \DefineVerbatimEnvironment{Sinput}{Verbatim}{frame = topline} \DefineVerbatimEnvironment{Soutput}{Verbatim}{frame = bottomline, samepage = true, fontfamily=courier, fontshape=it, fontsize=\relsize{-1}} } %%% S code with line numbers \DefineVerbatimEnvironment{Sinput} {Verbatim} { %% numbers=left } \newcommand{\numberSinput}{ \DefineVerbatimEnvironment{Sinput}{Verbatim}{numbers=left} } \newcommand{\rawSinput}{ \DefineVerbatimEnvironment{Sinput}{Verbatim}{} } %%% R / System symbols \newcommand{\R}{\textsf{R}} \newcommand{\rR}{{R}} \renewcommand{\S}{\textsf{S}} \newcommand{\SPLUS}{\textsf{S-PLUS}} \newcommand{\rSPLUS}{{S-PLUS}} \newcommand{\SPSS}{\textsf{SPSS}} \newcommand{\EXCEL}{\textsf{Excel}} \newcommand{\ACCESS}{\textsf{Access}} \newcommand{\SQL}{\textsf{SQL}} %%\newcommand{\Rpackage}[1]{\hbox{\rm\textit{#1}}} %%\newcommand{\Robject}[1]{\hbox{\rm\texttt{#1}}} %%\newcommand{\Rclass}[1]{\hbox{\rm\textit{#1}}} %%\newcommand{\Rcmd}[1]{\hbox{\rm\texttt{#1}}} \newcommand{\Rpackage}[1]{\index{#1 package@{\fontseries{b}\selectfont #1} package} {\fontseries{b}\selectfont #1}} \newcommand{\rpackage}[1]{{\fontseries{b}\selectfont #1}} \newcommand{\Robject}[1]{\texttt{#1}} \newcommand{\Rclass}[1]{\index{#1 class@\textit{#1} class}\textit{#1}} \newcommand{\Rcmd}[1]{\index{#1 function@\texttt{#1} function}\texttt{#1}} \newcommand{\Roperator}[1]{\texttt{#1}} \newcommand{\Rarg}[1]{\texttt{#1}} \newcommand{\Rlevel}[1]{\texttt{#1}} %%% other symbols \newcommand{\file}[1]{\hbox{\rm\texttt{#1}}} %%\newcommand{\stress}[1]{\index{#1}\textit{#1}} \newcommand{\stress}[1]{\textit{#1}} \newcommand{\booktitle}[1]{\textit{#1}} %%' %%% Math symbols \usepackage{amstext} \usepackage{amsmath} \newcommand{\E}{\mathsf{E}} \newcommand{\Var}{\mathsf{Var}} \newcommand{\Cov}{\mathsf{Cov}} \newcommand{\Cor}{\mathsf{Cor}} \newcommand{\x}{\mathbf{x}} \newcommand{\y}{\mathbf{y}} \renewcommand{\a}{\mathbf{a}} \newcommand{\W}{\mathbf{W}} \newcommand{\C}{\mathbf{C}} \renewcommand{\H}{\mathbf{H}} \newcommand{\X}{\mathbf{X}} \newcommand{\B}{\mathbf{B}} \newcommand{\V}{\mathbf{V}} \newcommand{\I}{\mathbf{I}} \newcommand{\D}{\mathbf{D}} \newcommand{\bS}{\mathbf{S}} \newcommand{\N}{\mathcal{N}} \renewcommand{\L}{L} \renewcommand{\P}{\mathsf{P}} \newcommand{\K}{\mathbf{K}} \newcommand{\m}{\mathbf{m}} \newcommand{\argmin}{\operatorname{argmin}\displaylimits} \newcommand{\argmax}{\operatorname{argmax}\displaylimits} \newcommand{\bx}{\mathbf{x}} \newcommand{\bbeta}{\mathbf{\beta}} %%% links \usepackage{hyperref} \hypersetup{% pdftitle = {A Handbook of Statistical Analyses Using R (3rd Edition)}, pdfsubject = {Book}, pdfauthor = {Torsten Hothorn and Brian S. Everitt}, colorlinks = {black}, linkcolor = {black}, citecolor = {black}, urlcolor = {black}, hyperindex = {true}, linktocpage = {true}, } %%% captions & tables %% : conflics with figure definition in chapman.cls %%\usepackage[format=hang,margin=10pt,labelfont=bf]{caption} %% \usepackage{longtable} \usepackage[figuresright]{rotating} %%% R symbol in chapter 1 \usepackage{wrapfig} %%% Bibliography \usepackage[round,comma]{natbib} \renewcommand{\refname}{References \addcontentsline{toc}{chapter}{References}} \citeindexfalse %%% texi2dvi complains that \newblock is undefined, hm... \def\newblock{\hskip .11em plus .33em minus .07em} %%% Example sections \newcounter{exercise}[chapter] \setcounter{exercise}{0} \newcommand{\exercise}{\stepcounter{exercise} \item{Ex.~\arabic{chapter}.\arabic{exercise} }} %% URLs \newcommand{\curl}[1]{\begin{center} \url{#1} \end{center}} %%% for manual corrections %\renewcommand{\baselinestretch}{2} %%% plot sizes \setkeys{Gin}{width=0.95\textwidth} %%% color \usepackage{color} %%% hyphenations \hyphenation{drop-out} \hyphenation{mar-gi-nal} %%% new bidirectional quotes need \usepackage[utf8]{inputenc} %\usepackage{setspace} \definecolor{sidebox_todo}{rgb}{1,1,0.2} \newcommand{\todo}[1]{ \hspace{0pt}% \marginpar{% \fcolorbox{black}{sidebox_todo}{% \parbox{\marginparwidth} { \raggedright\sffamily\footnotesize{TODO: #1}% } }% } } \begin{document} %% Title page \title{A Handbook of Statistical Analyses Using \R{} --- 3rd Edition} \author{Torsten Hothorn and Brian S. Everitt} \maketitle %%\VignetteIndexEntry{Chapter Simple Inference} %%\VignetteDepends{vcd} \setcounter{chapter}{2} \SweaveOpts{prefix.string=figures/HSAUR,eps=FALSE,keep.source=TRUE} <>= rm(list = ls()) s <- search()[-1] s <- s[-match(c("package:base", "package:stats", "package:graphics", "package:grDevices", "package:utils", "package:datasets", "package:methods", "Autoloads"), s)] if (length(s) > 0) sapply(s, detach, character.only = TRUE) if (!file.exists("tables")) dir.create("tables") if (!file.exists("figures")) dir.create("figures") set.seed(290875) options(prompt = "R> ", continue = "+ ", width = 63, # digits = 4, show.signif.stars = FALSE, SweaveHooks = list(leftpar = function() par(mai = par("mai") * c(1, 1.05, 1, 1)), bigleftpar = function() par(mai = par("mai") * c(1, 1.7, 1, 1)))) HSAURpkg <- require("HSAUR3") if (!HSAURpkg) stop("cannot load package ", sQuote("HSAUR3")) rm(HSAURpkg) ### hm, R-2.4.0 --vanilla seems to need this a <- Sys.setlocale("LC_ALL", "C") ### book <- TRUE refs <- cbind(c("AItR", "DAGD", "SI", "CI", "ANOVA", "MLR", "GLM", "DE", "RP", "GAM", "SA", "ALDI", "ALDII", "SIMC", "MA", "PCA", "MDS", "CA"), 1:18) ch <- function(x) { ch <- refs[which(refs[,1] == x),] if (book) { return(paste("Chapter~\\\\ref{", ch[1], "}", sep = "")) } else { return(paste("Chapter~", ch[2], sep = "")) } } if (file.exists("deparse.R")) source("deparse.R") setHook(packageEvent("lattice", "attach"), function(...) { lattice.options(default.theme = function() standard.theme("pdf", color = FALSE)) }) @ \pagestyle{headings} <>= book <- FALSE @ \chapter[Simple Inference]{Simple Inference: Guessing Lengths, Wave Energy, Water Hardness, Piston Rings, and Rearrests of Juveniles \label{SI}} \section{Introduction} <>= library("vcd") if (!interactive()) { print.htest <- function (x, digits = 4, quote = TRUE, prefix = "", ...) { cat("\n") cat(strwrap(x$method, prefix = "\t"), sep = "\n") cat("\n") cat("data: ", x$data.name, "\n") out <- character() if (!is.null(x$statistic)) out <- c(out, paste(names(x$statistic), "=", format(round(x$statistic, 4)))) if (!is.null(x$parameter)) out <- c(out, paste(names(x$parameter), "=", format(round(x$parameter, 3)))) if (!is.null(x$p.value)) { fp <- format.pval(x$p.value, digits = digits) out <- c(out, paste("p-value", if (substr(fp, 1, 1) == "<") fp else paste("=", fp))) } cat(strwrap(paste(out, collapse = ", ")), sep = "\n") if (!is.null(x$conf.int)) { cat(format(100 * attr(x$conf.int, "conf.level")), "percent confidence interval:\n", format(c(x$conf.int[1], x$conf.int[2])), "\n") } if (!is.null(x$estimate)) { cat("sample estimates:\n") print(x$estimate, ...) } cat("\n") invisible(x) } } @ \section{Statistical Tests} \section{Analysis Using \R{}} \subsection{Estimating the Width of a Room} The data shown in Table~\ref{SI-rw-tab} are available as \Robject{roomwidth} \Rclass{data.frame} from the \Rpackage{HSAUR3} package and can be attached by using <>= data("roomwidth", package = "HSAUR3") @ If we convert the estimates of the room width in meters into feet by multiplying each by $3.28$ then we would like to test the hypothesis that the mean of the population of `metre' estimates is equal to the mean %' of the population of `feet' estimates. We shall do this first %' by using an independent samples $t$-test, but first it is good practice to check, informally at least, the normality and equal variance assumptions. Here we can use a combination of numerical and graphical approaches. The first step should be to convert the meter estimates into feet by a factor <>= convert <- ifelse(roomwidth$unit == "feet", 1, 3.28) @ which equals one for all feet measurements and $3.28$ for the measurements in meters. Now, we get the usual summary statistics and standard deviations of each set of estimates using <>= tapply(roomwidth$width * convert, roomwidth$unit, summary) tapply(roomwidth$width * convert, roomwidth$unit, sd) @ where \Rcmd{tapply} applies \Rcmd{summary}, or \Rcmd{sd}, to the converted widths for both groups of measurements given by \Robject{roomwidth\$unit}. A boxplot of each set of estimates might be useful and is depicted in Figure~\ref{SI-rw-bxp}. The \Rcmd{layout} function (line 1 in Figure~\ref{SI-rw-bxp}) divides the plotting area into three parts. The \Rcmd{boxplot} function produces a boxplot in the upper part and the two \Rcmd{qqnorm} statements in lines 7 and 10 set up the normal probability plots that can be used to assess the normality assumption of the $t$-test. \index{Normal probability plot} \numberSinput \begin{figure} \begin{center} <>= layout(matrix(c(1,2,1,3), nrow = 2, ncol = 2, byrow = FALSE)) boxplot(I(width * convert) ~ unit, data = roomwidth, ylab = "Estimated width (feet)", varwidth = TRUE, names = c("Estimates in feet", "Estimates in meters (converted to feet)")) feet <- roomwidth$unit == "feet" qqnorm(roomwidth$width[feet], ylab = "Estimated width (feet)") qqline(roomwidth$width[feet]) qqnorm(roomwidth$width[!feet], ylab = "Estimated width (meters)") qqline(roomwidth$width[!feet]) @ \caption{Boxplots of estimates of room width in feet and meters (after conversion to feet) and normal probability plots of estimates of room width made in feet and in meters. \label{SI-rw-bxp}} \end{center} \end{figure} \rawSinput The boxplots indicate that both sets of estimates contain a number of outliers and also that the estimates made in meters are skewed and more variable than those made in feet, a point underlined by the numerical summary statistics above. Both normal probability plots depart from linearity, suggesting that the distributions of both sets of estimates are not normal. The presence of outliers, the apparently different variances and the evidence of non-normality all suggest caution in applying the $t$-test, but for the moment we shall apply the usual version of the test using the \Rcmd{t.test} function in \R{}. The two-sample test problem is specified by a \Rclass{formula}, here by <>= I(width * convert) ~ unit @ where the response, \Robject{width}, on the left-hand side needs to be converted first and, because the star has a special meaning in formulae as will be explained in \Sexpr{ch("ANOVA")}, the conversion needs to be embedded by \texttt{I}. The factor \Robject{unit} on the right-hand side specifies the two groups to be compared. <>= tt <- t.test(I(width * convert) ~ unit, data = roomwidth, var.equal = TRUE) @ \renewcommand{\nextcaption}{\R{} output of the independent samples $t$-test for the \Robject{roomwidth} data. \label{SI-roomwidth-tt-fig}} \SchunkLabel <>= t.test(I(width * convert) ~ unit, data = roomwidth, var.equal = TRUE) @ \SchunkRaw \renewcommand{\nextcaption}{\R{} output of the independent samples Welch test for the \Robject{roomwidth} data. \label{SI-roomwidth-welch-fig}} \SchunkLabel <>= t.test(I(width * convert) ~ unit, data = roomwidth, var.equal = FALSE) @ \SchunkRaw \renewcommand{\nextcaption}{\R{} output of the Wilcoxon rank sum test for the \Robject{roomwidth} data. \label{SI-roomwidth-wilcox-fig}} \SchunkLabel <>= wilcox.test(I(width * convert) ~ unit, data = roomwidth, conf.int = TRUE) @ \SchunkRaw <>= pwt <- round(wilcox.test(I(width * convert) ~ unit, data = roomwidth)$p.value, 3) @ \subsection{Wave Energy Device Mooring} The data from Table~\ref{SI-m-tab} are available as \Rclass{data.frame} \Robject{waves} <>= data("waves", package = "HSAUR3") @ and requires the use of a matched pairs $t$-test to answer the question of interest. This test assumes that the differences between the matched observations have a normal distribution so we can begin by checking this assumption by constructing a boxplot and a normal probability plot -- see Figure~\ref{SI-w-bxp}. \begin{figure} \begin{center} <>= mooringdiff <- waves$method1 - waves$method2 layout(matrix(1:2, ncol = 2)) boxplot(mooringdiff, ylab = "Differences (Newton meters)", main = "Boxplot") abline(h = 0, lty = 2) qqnorm(mooringdiff, ylab = "Differences (Newton meters)") qqline(mooringdiff) @ \caption{Boxplot and normal probability plot for differences between the two mooring methods. \label{SI-w-bxp}} \end{center} \end{figure} \renewcommand{\nextcaption}{\R{} output of the paired $t$-test for the \Robject{waves} data. \label{SI-waves-tt-fig}} \SchunkLabel <>= t.test(mooringdiff) @ \SchunkRaw <>= pwt <- round(wilcox.test(mooringdiff)$p.value, 3) @ \renewcommand{\nextcaption}{\R{} output of the Wilcoxon signed rank test for the \Robject{waves} data. \label{SI-waves-ws-fig}} \SchunkLabel <>= wilcox.test(mooringdiff) @ \SchunkRaw \subsection{Mortality and Water Hardness} There is a wide range of analyses we could apply to the data in Table~\ref{SI-w-tab} available from <>= data("water", package = "HSAUR3") @ But to begin we will construct a scatterplot of the data enhanced somewhat by the addition of information about the marginal distributions of water hardness (calcium concentration) and mortality, and by adding the estimated linear regression fit (see \Sexpr{ch("MLR")}) for mortality on hardness. The plot and the required \R{} code are given along with Figure~\ref{SI-water-sp}. In line 1 of Figure~\ref{SI-water-sp}, we divide the plotting region into four areas of different size. The scatterplot (line 3) uses a plotting symbol depending on the location of the city (by the \Rarg{pch} argument); a legend for the location is added in line 6. We add a least squares fit (see \Sexpr{ch("MLR")}) to the scatterplot and, finally, depict the marginal distributions by means of a boxplot and a histogram. The scatterplot shows that as hardness increases mortality decreases, and the histogram for the water hardness shows it has a rather skewed distribution. \numberSinput \begin{figure} \begin{center} <>= nf <- layout(matrix(c(2, 0, 1, 3), 2, 2, byrow = TRUE), c(2, 1), c(1, 2), TRUE) psymb <- as.numeric(water$location) plot(mortality ~ hardness, data = water, pch = psymb) abline(lm(mortality ~ hardness, data = water)) legend("topright", legend = levels(water$location), pch = c(1,2), bty = "n") hist(water$hardness) boxplot(water$mortality) @ \caption{Enhanced scatterplot of water hardness and mortality, showing both the joint and the marginal distributions and, in addition, the location of the city by different plotting symbols. \label{SI-water-sp}} \end{center} \end{figure} \rawSinput \renewcommand{\nextcaption}{\R{} output of Pearsons' correlation coefficient %' for the \Robject{water} data. \label{SI-water-c-fig}} \SchunkLabel <>= cor.test(~ mortality + hardness, data = water) @ \SchunkRaw <>= cr <- round(cor.test(~ mortality + hardness, data = water)$estimate, 3) @ \subsection{Piston-ring Failures} <>= chisqt <- chisq.test(pistonrings) @ \renewcommand{\nextcaption}{\R{} output of the chi-squared test for the \Robject{pistonrings} data. \label{SI-pr-x2-fig}} \SchunkLabel <>= data("pistonrings", package = "HSAUR3") chisq.test(pistonrings) @ \SchunkRaw Rather than looking at the simple differences of observed and expected values for each cell which would be unsatisfactory since a difference of fixed size is clearly more important for smaller samples, it is preferable to consider a \stress{standardized residual} \index{Standardized residual, for chi-squared tests} given by dividing the observed minus the expected difference by the square root of the appropriate expected value. The $X^2$ statistic for assessing independence is simply the sum, over all the cells in the table, of the squares of these terms. We can find these values extracting the \Robject{residuals} element of the object returned by the \Rcmd{chisq.test} function <>= chisq.test(pistonrings)$residuals @ A graphical representation of these residuals is called an \stress{association plot} \index{Association plot} and is available via the \Rcmd{assoc} function from package \Rpackage{vcd} \citep{PKG:vcd} applied to the contingency table of the two categorical variables. Figure~\ref{SI-assoc-plot} depicts the residuals for the piston ring data. The deviations from independence are largest for C1 and C4 compressors in the center and south leg. \begin{figure} \begin{center} <>= library("vcd") assoc(pistonrings) @ \caption{Association plot of the residuals for the \Robject{pistonrings} data. \label{SI-assoc-plot}} \end{center} \end{figure} \subsection{Rearrests of Juveniles} The data in Table~\ref{SI-r-tab} are available as \Rclass{table} object via <>= data("rearrests", package = "HSAUR3") rearrests @ <>= mcs <- round(mcnemar.test(rearrests, correct = FALSE)$statistic, 2) @ and in \Robject{rearrests} the counts in the four cells refer to the matched pairs of subjects; for example, in $\Sexpr{rearrests[1,1]}$ pairs both members of the pair were rearrested. Here we need to use McNemar's %' test to assess whether rearrest is associated with the type of court where the juvenile was tried. We can use the \R{} function \Rcmd{mcnemar.test}. The test statistic shown in Figure~\ref{SI-ra-mc-fig} is $\Sexpr{mcs}$ with a single degree of freedom -- the associated $p$-value is extremely small and there is strong evidence that type of court and the probability of rearrest are related. It appears that trial at a juvenile court is less likely to result in rearrest (see Exercise~3.4). % An exact version of McNemar's test %%' can be obtained by testing whether $b$ and $c$ are equal using a binomial test (see Figure~\ref{SI-ra-mcbin-fig}). \renewcommand{\nextcaption}{\R{} output of McNemar's test %' for the \Robject{rearrests} data. \label{SI-ra-mc-fig}} \SchunkLabel <>= mcnemar.test(rearrests, correct = FALSE) @ \SchunkRaw \renewcommand{\nextcaption}{\R{} output of an exact version of McNemar's test %' for the \Robject{rearrests} data computed via a binomial test. \label{SI-ra-mcbin-fig}} \SchunkLabel <>= binom.test(rearrests[2], n = sum(rearrests[c(2,3)])) @ \SchunkRaw \bibliographystyle{LaTeXBibTeX/refstyle} \bibliography{LaTeXBibTeX/HSAUR} \end{document} HSAUR3/inst/doc/Ch_bayesian_inference.R0000644000176200001440000002605514660150034017316 0ustar liggesusers### R code from vignette source 'Ch_bayesian_inference.Rnw' ################################################### ### code chunk number 1: setup ################################################### rm(list = ls()) s <- search()[-1] s <- s[-match(c("package:base", "package:stats", "package:graphics", "package:grDevices", "package:utils", "package:datasets", "package:methods", "Autoloads"), s)] if (length(s) > 0) sapply(s, detach, character.only = TRUE) if (!file.exists("tables")) dir.create("tables") if (!file.exists("figures")) dir.create("figures") set.seed(290875) options(prompt = "R> ", continue = "+ ", width = 63, # digits = 4, show.signif.stars = FALSE, SweaveHooks = list(leftpar = function() par(mai = par("mai") * c(1, 1.05, 1, 1)), bigleftpar = function() par(mai = par("mai") * c(1, 1.7, 1, 1)))) HSAURpkg <- require("HSAUR3") if (!HSAURpkg) stop("cannot load package ", sQuote("HSAUR3")) rm(HSAURpkg) ### hm, R-2.4.0 --vanilla seems to need this a <- Sys.setlocale("LC_ALL", "C") ### book <- TRUE refs <- cbind(c("AItR", "DAGD", "SI", "CI", "ANOVA", "MLR", "GLM", "DE", "RP", "GAM", "SA", "ALDI", "ALDII", "SIMC", "MA", "PCA", "MDS", "CA"), 1:18) ch <- function(x) { ch <- refs[which(refs[,1] == x),] if (book) { return(paste("Chapter~\\\\ref{", ch[1], "}", sep = "")) } else { return(paste("Chapter~", ch[2], sep = "")) } } if (file.exists("deparse.R")) source("deparse.R") setHook(packageEvent("lattice", "attach"), function(...) { lattice.options(default.theme = function() standard.theme("pdf", color = FALSE)) }) ################################################### ### code chunk number 2: singlebook ################################################### book <- FALSE ################################################### ### code chunk number 3: BI-Smoking_Mueller1940-tab ################################################### data("Smoking_Mueller1940", package = "HSAUR3") toLatex(HSAURtable(Smoking_Mueller1940), caption = paste("Smoking and lung cancer case-control study by M\\\"uller (1940).", "The smoking intensities were defined by the number of", "cigarettes smoked daily:", "1-15 (moderate), 16-25 (heavy), 26-35 (very heavy),", "and more than 35 (extreme)."), label = "BI-Smoking_Mueller1940-tab") ################################################### ### code chunk number 4: BI-Smoking_SchairerSchoeniger1944-tab ################################################### x <- as.table(Smoking_SchairerSchoeniger1944[, c("Lung cancer", "Healthy control")]) toLatex(HSAURtable(x, xname = "Smoking_SchairerSchoeniger1944"), caption = paste("Smoking and lung cancer case-control study by Schairer and Sch\\\"oniger (1944). Cancer other than lung cancer omitted.", "The smoking intensities were defined by the number of", "cigarettes smoked daily:", "1-5 (moderate), 6-10 (medium), 11-20 (heavy),", "and more than 20 (very heavy)."), label = "BI-Smoking_SchairerSchoeniger1944-tab") ################################################### ### code chunk number 5: BI-Smoking_Wassink1945-tab ################################################### data("Smoking_Wassink1945", package = "HSAUR3") toLatex(HSAURtable(Smoking_Wassink1945), caption = paste("Smoking and lung cancer case-control study by Wassink (1945).", "Smoking categories correspond to the categories used by M\\\"uller (1940)."), label = "BI-Smoking_Wassink1945-tab") ################################################### ### code chunk number 6: BI-Smoking_DollHill1950-tab ################################################### data("Smoking_DollHill1950", package = "HSAUR3") x <- as.table(Smoking_DollHill1950[,,"Male", drop = FALSE]) toLatex(HSAURtable(x, xname = "Smoking_DollHill1950"), caption = paste("Smoking and lung cancer case-control study (only males) by Doll and Hill (1950).", "The labels for the smoking categories give the number of cigarettes smoked every day."), label = "BI-Smoking_DollHill1950-tab") ################################################### ### code chunk number 7: BI-M-it ################################################### library("coin") set.seed(29) independence_test(Smoking_Mueller1940, teststat = "quad", distribution = approximate(100000)) ################################################### ### code chunk number 8: BI-M40-linit ################################################### ssc <- c(0, 1 + 14 / 2, 16 + 9 / 2, 26 + 9 / 2, 40) independence_test(Smoking_Mueller1940, teststat = "quad", scores = list(Smoking = ssc), distribution = approximate(100000)) ################################################### ### code chunk number 9: BI-expconfint ################################################### eci <- function(model) cbind("Odds (Ratio)" = exp(coef(model)), exp(confint(model))) ################################################### ### code chunk number 10: BI-M40-logreg ################################################### smoking <- ordered(rownames(Smoking_Mueller1940), levels = rownames(Smoking_Mueller1940)) contrasts(smoking) <- "contr.treatment" eci(glm(Smoking_Mueller1940 ~ smoking, family = binomial())) ################################################### ### code chunk number 11: BI-M40-logreg-split ################################################### K <- diag(nlevels(smoking) - 1) K[lower.tri(K)] <- 1 contrasts(smoking) <- rbind(0, K) eci(glm(Smoking_Mueller1940 ~ smoking, family = binomial())) ################################################### ### code chunk number 12: BI-SS44-it ################################################### xSS44 <- as.table(Smoking_SchairerSchoeniger1944[, c("Lung cancer", "Healthy control")]) ap <- approximate(100000) pvalue(independence_test(xSS44, teststat = "quad", distribution = ap)) pvalue(independence_test(Smoking_Wassink1945, teststat = "quad", distribution = ap)) xDH50 <- as.table(Smoking_DollHill1950[,, "Male"]) pvalue(independence_test(xDH50, teststat = "quad", distribution = ap)) ################################################### ### code chunk number 13: BI-data-M ################################################### (M <- rbind(Smoking_Mueller1940[1:2,], colSums(Smoking_Mueller1940[3:5,]))) ################################################### ### code chunk number 14: BI-data-SS ################################################### SS <- Smoking_SchairerSchoeniger1944[, c("Lung cancer", "Healthy control")] (SS <- rbind(SS[1,], colSums(SS[2:3,]), colSums(SS[4:5,]))) ################################################### ### code chunk number 15: BI-data-WDH ################################################### (W <- rbind(Smoking_Wassink1945[1:2,], colSums(Smoking_Wassink1945[3:4,]))) DH <- Smoking_DollHill1950[,, "Male"] (DH <- rbind(DH[1,], colSums(DH[2:3,]), colSums(DH[4:6,]))) ################################################### ### code chunk number 16: BI-data-all ################################################### smk <- c("Nonsmoker", "Moderate smoker", "Heavy smoker") x <- expand.grid(Smoking = ordered(smk, levels = smk), Diagnosis = factor(c("Lung cancer", "Control")), Study = c("Mueller1940", "SchairerSchoeniger1944", "Wassink1945", "DollHill1950")) x$weights <- c(as.vector(M), as.vector(SS), as.vector(W), as.vector(DH)) ################################################### ### code chunk number 17: BI-data-contrasts ################################################### contrasts(x$Smoking) <- "contr.treatment" x <- x[rep(1:nrow(x), x$weights),] ################################################### ### code chunk number 18: BI-models ################################################### models <- lapply(levels(x$Study), function(s) glm(Diagnosis ~ Smoking, data = x, family = binomial(), subset = Study == s)) names(models) <- levels(x$Study) ################################################### ### code chunk number 19: BI-M40 ################################################### eci(models[["Mueller1940"]]) ################################################### ### code chunk number 20: BI-SS44 ################################################### eci(models[["SchairerSchoeniger1944"]]) ################################################### ### code chunk number 21: BI-M40-SS44 ################################################### mM40_SS44 <- glm(Diagnosis ~ 0 + Study + Smoking, data = x, family = binomial(), subset = Study %in% c("Mueller1940", "SchairerSchoeniger1944")) eci(mM40_SS44) ################################################### ### code chunk number 22: BI-M40-SS44-W45-ML ################################################### eci(models[["Wassink1945"]]) ################################################### ### code chunk number 23: BI-M40-SS44-W45 ################################################### mM40_SS44_W45 <- glm(Diagnosis ~ 0 + Study + Smoking, data = x, family = binomial(), subset = Study %in% c("Mueller1940", "SchairerSchoeniger1944", "Wassink1945")) eci(mM40_SS44_W45) ################################################### ### code chunk number 24: BI-DH50 ################################################### eci(models[["DollHill1950"]]) ################################################### ### code chunk number 25: BI-all ################################################### m_all <- glm(Diagnosis ~ 0 + Study + Smoking, data = x, family = binomial()) eci(m_all) ################################################### ### code chunk number 26: BI-all-round ################################################### r <- eci(m_all) xM <- round(r["SmokingModerate smoker", 2:3], 1) xH <- round(r["SmokingHeavy smoker", 2:3], 1) ################################################### ### code chunk number 27: BI-results ################################################### K <- diag(nlevels(x$Smoking) - 1) K[lower.tri(K)] <- 1 contrasts(x$Smoking) <- rbind(0, K) eci(glm(Diagnosis ~ 0 + Study + Smoking, data = x, family = binomial())) ################################################### ### code chunk number 28: BI-meta-data ################################################### y <- xtabs(~ Study + Smoking + Diagnosis, data = x) ntrtM <- margin.table(y, 1:2)[,"Moderate smoker"] nctrl <- margin.table(y, 1:2)[,"Nonsmoker"] ptrtM <- y[,"Moderate smoker","Lung cancer"] pctrl <- y[,"Nonsmoker","Lung cancer"] ntrtH <- margin.table(y, 1:2)[,"Heavy smoker"] ptrtH <- y[,"Heavy smoker","Lung cancer"] ################################################### ### code chunk number 29: BI-meta-data ################################################### library("rmeta") meta.MH(ntrt = ntrtM, nctrl = nctrl, ptrt = ptrtM, pctrl = pctrl) meta.MH(ntrt = ntrtH, nctrl = nctrl, ptrt = ptrtH, pctrl = pctrl) HSAUR3/inst/doc/Ch_analysing_longitudinal_dataII.pdf0000644000176200001440000025123114660150120022016 0ustar liggesusers%PDF-1.5 %¿÷¢þ 1 0 obj << /Type /ObjStm /Length 4255 /Filter /FlateDecode /N 90 /First 754 >> stream xœÍ\YsÛ8~ß_Á·ÉÔTâ¦fSå#·ã8Ž“Éd+²DÛÚÈRF’s̯߯Râ!Y´¢¤¶d‰ 4¾ X$Y"c•m¸,KLâ­NlÂ3É—patâ®2‰G 7?<áN¢‰HD†.!$®*à¸N„S )ÛDJå.‘Ú¡O¤0‘%Š[\y¢‰’ÂH¢œò‰P‰–OèD[oaÃLXàë0˜K,Ïpõ‰F$2K¬< n *’¥~R&ÖkH•8d%f*_šÄ© õ6qZá¹Kœñ¸úÄùL'*ÃÕãʯœ’ A(ŠhÁjÑÉc˜]f &b@ž 4S —ž¦‚‚ñ˜ÈȭǤˆ„ΛDƒ6"š—4_æ YH‹*@@4 £½ˆòÈh@–ÖL²ä˜Žd)0(08ÆÐòhŠ2à¡ ¥€$ ˜Ÿdé±0´vJbú•XCKo‰€€¬<𱀬9‘µpX@Ö ¤°€¬M†6€¬-- kçÐM‚Z@6¡; ^ޏJ†µAAÑ¢â3¬6:rãÀyXl0 ­ [AU€l8 SãÖPGKk†J Öôòž6ãÙ¿þø#a/òyoЛ÷,I–œ&ìåÍ|4ç3°~¸?é]âFÅ›³oŸò„ ýhr™nñW¯ÍKª¿äz¶ê Uá„>U>/åÅÓwÁ_·Ìjµœß1‘Ú×fdWͨÀ$`WJc‰©lr{'L„J ·Ž ÏV¡r2Í?—kPGkPmEÓ´ !&Qjß@¨¼"ƒ‚¸¥v¬ tE‘,4´ˆÓn ¸•¦©TÉiL[¬¶ïÊ_r‰î&ý%{ÅmÔYJ?h)WÂ:&"he[¨)«¶P¥ MX'µÌ€ùj%©WP·ä·B^*×ÌØEä²…©0Å·"D.Z’XïˆÄ"Û‚Äû½Yz³Ã¿ÎöO÷~;x±²±‡ãþd0_’ UypÕ›Òr„±:Á€ËÁõR…Æ6pöÉ;˜‡iX^ŽGûs8˜_'j'Ã|¿ï#aÏ„¥µ×Y·ol?*€…on¯Y¸Ðw¡‰…kjE±=VK–…g±·…c­©5„Å¿C8ÔŠ<ëpÅàáˆî ì… %‡ùÐÓ²–ž+|%Æ ¦§gYÑ>ÔT´å?|Xˆû¬DÏàó~z’/¯Ê[¬1É=¶ÇöÙ!{ȱÇì {ÊŽØ vÌNÙkvÆÞ°;g}ÖŸŒ&c6`9 X~=èÍ®X>— v¿áçœ]€'Ù%»bð;¯ò1²lĮ٘a¬Ù„Mðû‰Á'Nìoö÷ $®-›²›åŸÑe6üÊæl~5Ís6ÿ2a7ì+ûÆþaÿäÓɯA%„9ÝG¨ ^õ.É·Lµ_ O¨óÞ‡™~ˆ•†£‘CaÏéÉqï:orýSÄÃþÞøê·/†³d ðj /{=ϯßRèTåæŠ ´¤êé«çž=üׯ÷ßÕ "0ÞφËKCÈÔ±Š+´hÓIÂ,B¸&K¯VX"Þ.Xâ´B謤2qdÒ„¸Ô»NfÛ$s‹ ) H ½ÿçË·Ï1Â)Ìm7*#¸oQÙ7wÉ,‚1íò1>ªcLT !h(‰a3»%1ÊvJêE¹ŠI¨+ÚIG_®¨áf…¦PuMQc‹}h‰'A/ô‚.¸‚|!Ô…8“ ÏÙçš.d”#¸ÌÚ‚ÊJ¥Ð8u*΂êËÛUN3¹†}Ø»bŠ LPÐàVŒ—æ•S†£,{ÊuQ¹e» vùÛÝ0×› õÛ££ƒÃÓ@Šš¡.p¹ÕP Ùäo<én¨ƒ)Â×É®F›Vƒ>±™6 B¯ÂÚhì¶3Þ±‡]˜qKF9spfÁPZÉ‘vBÙ©P' ÏFèÄcuCô7.Ja4С¿Žðx&lÚÏ œND¡´Î ›ŽkÓ¦‡û[¬ºônfÁ/˜ÌóÁù(´.ob‡p·|F÷áz§°Î‘øÌ¾¬s&t¶Ú™¸¯²X ÇÊ"×ôϲ¦¢ªKgWE¥yW;w|øìÏ}rXΞÖÄß—˜Ü*þm?½«aøNütMÍžæ¼ö­´*Z,?šÜ†(ÃØ¨:d0hÑ葟N x«>¹€OÒcËg-ÕÆT&–èJã–÷%‚Ô¬A+1¥6Š^s@ÝHÊ÷ËØÏ…+\êÚæU×Í«®›×Èëãš NxÕýŽØ’¸(m-÷:Zä•"Pw¥õî¿„ZÊDtÜÏ›ÜßàÎÎìŸueÿ‡GÇGŸÑg½i©Ú‚Ðô¦¹0]í`¢ø›¥m¾Yå·^*a·[¯»ýÛ„ÓµíúVÇ[ˆì}.yBÔÄsÒ4jdÒž@DŽ+†¬Çz³þp8Ž9ŠdfaÔÎ{Sv>íõ?æó`2Šr4M‹7˜ŒFhŸ/m]%¤½¤—+ù´mæFùlÖÝÖ­°qÕØwD¦¶.±7ãA>õ'Óü6ûuWH0\Œº‹µZÚvœ÷¦)À ùj pïke¡êâLO¢8»uÒ\ñºE[´_î={~bÄîrÖíf×9P6’L‹Qk¸tm¸|r§€™¯\Ù\ˆ5ºÆËbƒ"LÁN*<¤zà )ò‹„«¬&\%O­%£(ujÉU.®O€3ýØE¤áR.%s(NÿYL¥§Hs¹GÃñÇÍ‘n¥§]Œ”\tW\ ĪyiŠ%w“5u‹„ñ]²¦?ŒŒ6KiOÄ‚Œ^¤a‹Â]ȸ»è`U°Sì¼Jµ§ô€—(ð5Ø îSv€ÊßHO¯;)›4‹<½»Êî*ó­ÜÎÖ°E%S¥’K¹S©„µ´ó£¤’õ©§Ý"[RÉìŠJÛ¼]ªç£ý£³¤N]Gå¬Ûˆ¬¼k]´éævIÞV˦î.˜š?¬èêlÔ*ÕLÕ”¤'( åÜJgÖhÑQ5Û ªymú‰’¢,‡mT± ‚ˆ² eP Ҟ¶ʈqk _=<~y´ÿÛñðúüföb2>ºš_Þ¼< ·w¥ßÚ•6Y5£»ø¤,mûmÞui½Í¸«áüˆ9l±-®âX›ú+ míúlÑÓJ¦èÕŠ\QÅÕ¾£‡½È)ý {…{=üºÙÅ^í`sgJÝá}ÝÁ6”n×–¶Óšâjá«Åóˆ‰.prE«²íŸ*x‰„¨AKK;e‹/ÁÝ7NÖsl1×si+ßTO6h—˜T[—JSË@\´ TÒ+€v¹Ü¨RáÊ*ÛtM£Ñ¦‹ j~i›Eß?zû&ÆüyÔ·y´RëìÛ­LXíòÓL¡­J‡­«oc·2‘E¹>‘%ª\H<˜ƒûbâ6´v®¶b–¾Õ“=n]²ÇÄZ F !LÖÊÖÖ~«\uwÈõÔ\Ü.n-xJee9ìØeØ;U¶G«Ø~Ó(kæmFYhåö¾ïÐt±@w Ð~M+³ÝÕö`-w9Û®í"¥‹Í×Qµéè;˜Åvë Uv•Ž2ÛP¥[*CWR‚óTi6¥– ­Ne—:nQ¦2”K%ÑØ.•Áw•ð±?.áSì°¯§ÅTÆSmÖ&|´HU8?S&|DÊéÌÍ–TÚUÂÇn•ðéD¥âBä¥L¤†Nêl ’5 Î’J2ËR/·&’Ý‘\öãˆ$ª¬äÓÌñMD’B¥Ò.N*tÛ>wXl[Ú•vjš¾Û-}×'ùès>ö{·:®·x¡ë!ÞߟŒ;{ø×ÛWÏÁ×zÑØ·QzeË}íÛ´|kðGßÚü(Ÿš>Õ]Ô?ó£m{O+¦¬í®0UŸû<Ÿ÷Êڡ ÚÄT§­ °Ît+ÐXàŽ1啺%Þ½~wòö„"BÛ5HsmFj¾Õ÷é¿öÛŠ…l=‡ck9œeÖ"Ÿ°Mkõ´wyßž²'ƇêËSž…X.O|]Sö›¶yÇk@«R„hëlefSCfÀò”â6áT|ÑæDê-ÿž×€»ÀÎÁ+¤óËv’g)IÉÏÂÎ kM(§£gn‰‚Ÿñÿ‚›R©§Ÿ Ü`Ö}&î†]§Eë⡪Y…Q7‹²HŒ.Ë21e_§éôøªØÈ®x+_œqÝ뺻·ò·¾÷opEot5OE&×-V—¶hpëáØkú·)è÷tº£SvgghóJýœ˜¸Ê?ܱû9ñýÏpL¿}tö”¸ûï;uo}eÞöý\kË~æ»ÚlßõHÊwxbá@yü-|Bo¯ÔŠ7;õœ¨¯½­_¼±ëº nɨ£Ò[`5€Öζւt>ìµÎE«dÕ)ν Ã^'ìÍéÓ…èÓ·øèÞÕ|þéwÆN÷ŽÓÓûŸ¦ú édzÉ“>;ç_fì× àÖ[!ÞÒP\#÷:núß.RɔӿÑd:î¾ÚõO½þG(â®suwä…@k$|Q›jèS…{O'%\Zd± ò—´[äθÒ«ðO`€,© cÓð†ËÓ.¯®¦®€+õËÝò¹½s‹‚9^\ä0¹dcÃyjvqþÄãIq¢3Yü‰Eßïž>¾#*ÃΑÚIúÿ•3aëbõÜÖ\žö¨a»S,w ØSˆIùÃ"Ì\ ù‰¼ãßendstream endobj 92 0 obj << /Subtype /XML /Type /Metadata /Length 1484 >> stream GPL Ghostscript 10.00.0 2024-08-17T18:31:12+02:00 2024-08-17T18:31:12+02:00 LaTeX with hyperref A Handbook of Statistical Analyses Using R (3rd Edition)Torsten Hothorn and Brian S. EverittBook endstream endobj 93 0 obj << /Filter /FlateDecode /Length 3766 >> stream xœí[Y$Å~oûG´ªíírÞ>$À°À2Ëø Õsḭ̀==³sxKþ펌¼"«³šv‘,!ÈÍΊŒŒøâÌœK6ò% ÿ¥ÿŸ\-Ĩüòå‚-?YeGiùÒjÃGg–W 'Ìh¼/3ÛÅW Ïìh”[Z£Ø(¬*3ŽûÑh\¥%ŒY”'èÅàGMöÓÚ¯®Ù/så¼­&L¥ Ê“‘nTÆž·£cœòT¥‰fMâ©ì–Y"»©Ñ;W8q1åF§`­²ÎV•™°˜-Ï/¥¾Lÿ;¹Z~x´øýSa—~ôF˜åѳEÔ_а³Kc5Ð’Ë£«Å×ÃG«5c^ÙáÓþ±b£b^(=‘>†ié•VbxºZK)GÎÍÀÕêÛ£¿Án\/á ‚k¶[{òb¹–D ,œÂ> eËø° „µ÷κaÆœ1ãü°]…ý”àjx CîµezxVHï=÷Ã%®³»U™< œ>¿¦´Ïëò{<‹÷BÈ—Ò§+BXøN:¤V´ìá>މá/áCδÕÍ ²Ë&J‰y7|¶Z §±2  $þƒ¢[J˜¯¹½p>Êê“@ˆ!ËìpN ­ä´dR9=Ü¢´„3¾#OPºAÁq8©iÄIx®ƒ(_Ã$êZ1Åß;²ø¦WÎëFXW8-•µs¢¸¬j ê 0\À6õ,/p —0|¨:y½@Ä)x ¤¥O:Éâ‹ÚVëpH`–qám>ø'ḜÈþóËŠ½ySÆn3*üðEüÒr`òU%r†»Â‰”b†ó3AÅü+3ÐS.i;œó¤>ªG€¿¸<€»óÀ‘=ÁŒ @-ê¹[…(˜ÞÏœÓv C‘ üî sDô»*K°ÀˆeXåée”çÓx /}‘„Ó™1§nˆ”/+fPMp—0&xŒ¢‡Ïp5l©Ÿ²-60£ÖÈ’°ÎE0ÉQñfëJ{¹é;”m=Q=v0.p bª'qpÃWTÑ0cHi½ vÈŒi=ÕÜR=»šûøhñå"„ z´qfT4ôä™zæÂ‚ý°$GHó„”ÃW#²&5,_­•‡«î¬ nð› üpÁ œ$žÌBÑ5zVÆÁšN“0¹ÑÉ…HÉm´!ˆ»Æ¸äÀs"+Ç9g’1"”…ä;.–GŸ/Ž~;aS6¿@arilËÜa#Ù©ç.Ú©³ ½ ,æ†g8©¬ 8FðZ?ü=ãát7ˆ³…u½óÙŸa„ß±_„Pu…‚S«‚YÜm3i Q+"Ç™èD9ß+„½ášy™mËeàD1ǵÒ‚ã"«$eL Èg½†©F°pJÉ"侌e‘ñD–»"ÀölþœALœJÒ½¢À1 ë ’ÿ'žØj¥æ×ýÎsŠC*Rç…±ìâ œJ>T HÈïÒâä†ÁdS”‡„Bø”a!)2‚¼}$' ½-âþ³á”0s0aˆ ¨! ì9‰ÂÖÚ)M~þw¡¢œ±`à¨?Ž95Ið¦ÊúZᣈ,&¹R¢4™Ï Ä rF/#‘Dò,ÙŽ‹¾Îâéú±BýEY{VPÜ|aÝWùQÏ3<ÎÃ)™7*ž<:üBæ„‘¿«Þ䡚ݮÚè a8r©”Ô¶¯ãj áð$ÉA’SMïdM‡ˆö|ú;‡¤ï<;¯:臒ƒ;-Êñ¢ãtÚªœ8pñ½óÙÑV«ùf@ž@°©X6·cÅL’s:bHB xÖœ§}p’ÛêÇ*ròY¿YÅ/‚o«ÝÜÅUJd•#c)Çš „’ H’´Ñ©îZ(Eù!±l.‰AôiÛú!wŽzÙS¬ÁUbýºköZó(» QlÊ[ ›È¹Çò¨À–(¹‹à”sBÁŒ2„ƹèÈBíéiAóŸÁÛˆP¯q8Vž¼,£ã2º-£Mgîu6òð½2êÛÑþ:Pp|ÑT˜]TC:lÍ¡ê‡Úÿ‡[3ø=ãfŒ™Á~^ÙubjÍk!y€ ¾‹³Òiê'0óuRHÓXËi"™È„9V¹a’U’EÐì ³|JbKV€# »¼ ä3¡–Ęv\ML-ïLf'ˆ­ ÇTKFÁ~2‹»ÂðêZª¾ú­øÜ¢¥«˜úa¤>Ci ]žß»Ö}%|ƒæ\ÕÒ77Õ9Äݹ°Â é¤ë,yå\ÄNˆÀ¦œx—Äb†Ç¹Òm´[Kj€Ê\ ¿+p›ÓÆxÇÓ•^CRéDX¸ ®×Ï™ó-ŠÎâéB¦MfÃéA†6û?4¢? (8²-ÜEr*í¬Pe?zVÎÚ}AAØ÷Â9ûv¡—¥Ù=Çæ>Ùó&Û¹Á²Fûì+R(:©‚½ŒaªR›ø ä^Gj!"O–@š5æ[ìÆ¢šnIs½®ö’Zi’“ «lTM_èÇQX§a00à úõ¼‰x·5YC¦}¬Ù`±Ém܃º¾»ZeßÖ¤§-¬2 ¢ÏhµLX³§8ØYC¾9©!‘ŸyX‚-„‚2‚‡‡xƒ%·e\Q2‘Õ†¬8M\´ÞzÂEül&LÜTbÛêjÈù'*ŠB§ W4Á*ïü<.µ.WÞ¬<ÇWÚíNx°CQj»“IvÖDÚØ…˜äÍaØy³#¤SçP±š7ÙKÔ ;ƒzÀ§¼ÖiærþP7¸"ÍŠQì•@r`c«üwÓÔT:ˆ—vÞ˜ ¨ó¸¬I(q£¯#9WÜ}ÏûÀuÛ_èÚA-«fÜV]Ð@7má£OFÁÉyØ¥µ/Cf:LíÃTG>'`$½ÚXKÉ9&_ER”=&ÁåëR(¨OÍf!JÆ®¸!59À¦®ã¼{¯²’*|©±Æ¤ëŸ&cIÞ³lµf[g Ó°ŸEë•aI~Ý\€sƒ4‡_ùÝÇIr;8¯Ò>œ—ú€(k€œ8Ô³}°Ðéæ»6ЃSwn îé¤Î’#ÝMP—+0¶‡. ‚µÙ "o2ñ’(–zg®©ßGð³‹$BolSÆ^U¼bñf2±lj¢Åú° A'·$f¦so0å¡­í&0RÛE,rH­­ÉXlr¬Æˆ)F7)ÄØ¶ÑÖ™TeºŸytY&is‡ZɶaG ×6Õ‚ß³“€n6uœ™Ñ-F•âØÿiãq˜µ¼µ‚"Ä©/ˆ}ÌÆá(8×9ÉXw]³ éÉf;ucÑ8߬æê»À"8ç¹<€Z‰ªWµá›¼”ÖVÈi–‰7Þða„µÍ^h-DH 9Ð m”6®…Yv(©l»SM6.4¯]¦K~_F¾®ûW'¿.£iGt€¶N†ë߉ۭÈ"¹i¸P6÷Áb«&Ô$`︤Ñàµ5ö­¸¶iÂ….FOZqÖ6Í9bž’ÖÅ´Vsk'Å(ÒpŠQl»Á¿ &.>³¾óö„©~‰—JL5(¢aè>,``o˜ä.ñÚ¤¡†ùçݵMÄ4a¨¾“X.õƒ¤ï·o9åL'©Z ¾Rùâv'¹Cq·Mê°ïm…‹mëH‡nn“Æ àC\é¨n«‡{À^éeHó1²¡F1M þºÁ ¬¶x¹ß˜±XµðÃ~À¡²"„ñòÇtáex:ð–ËrHƒÍÇz Ô¯C~¨õ ñÄBwQê4PÌRWp]ºnÔèîªðcóSÕÇúÛæòŠ+72]âpº‘A"2¾§~2אּÙÿlEŠrÍÃUVKãŠØtV]£rð¾~dvŠøŸ9h=j!d›/¡)\§wMF§Ì7&gxÙ”ý¼w¦ !WÄ[Xy‘ì˜IéEc{å$oo]¢ÿÓÆ¥êµW›ÆƒÎ Îr2Lêá»ba³;”D”ýÞo}ßY'ë|…sÆÎFUó]=«Œ²ðerÝûº^kœv V%W›ÎÖcç>e×ÁóÁä#·{—f‘G¿ùiæÑw}O:üÎ'×<¥5xàRê]žô0~ÝYwXÚOÊè[”á¬àŽ;ìwXí×â9|GpZ7¬–tYéü·Ç.]¹oJ7à ìþ®ï;+ï»+·Cô´EqУsÚÙñ¡CçIÑ|,Ã,F?Þt6ÜÔ]þôóBôIÝî’è¨ÇÎÛñdÃg™ÔKÁËÎY^w;ïЩ,ÞuF—/v„Åâ¾ty£BtyÒ‘ímg ÑßïuøÙ%ì ô¦3wø‹]G¿šÇ˜,Êã±™Ç »±L™ m¤ÇfÞBþ´fZI=qÅ]“üÇìÍs ?—X,k­€æ³-Bœ|ùªÒ>œ =âÇOsûyÄ ï>”BgÏü þßbÁ;UN¯:»8ÈbÏZëºãŽè~`õæ#¯xûÖ“kUŠîr®:£þ3´‹á*R³òœ«iÒ„ Æ;¯ R×+Ý0‡áŒq¼%¢¡o‰a^Ic€…W¨fþ™jÓÆEÒÓGUaÖ;5iîvÞ‰ÝÐŽÝ›ãûH͹w²‰á™ ’Ù4ž¾i~å?Š‘b¦ïK¢)}pù‡Ä$ßËäÌ­yæAýÚŽ’ó&ßðO»¿Ø‹Õ~´ ütû”…*ó¢6GúM»ü—VÌOõ)Cú+ÎZešçÓ{Ìü´–^åwôÓ¿áÈ]œéƒäCMþ–bœæJ,íè-ãñ…ž5Ó˵xêÁÈòúA•¿[ùrñ?JtXendstream endobj 94 0 obj << /Filter /FlateDecode /Length 5364 >> stream xœí<Ë’$Çm÷¶>¢ƒáCµ¸]Î÷ƒa9biÓ 9¤õZ…ÃAê0Û3;ªç¡®–äÁßn 3D6«ç±\é +æ0•($¯D¨®úÓZÍz­ð¯ýß]­ÌìòúýJ­¹ .Î6êuôAÏ)¬¯VÉ„9äÌýêËUVq.­cpj¶°’tžƒ/XÞµH8NÁM/Öó>ÂÝ4¬G\¥œæèS y 6Í.dÁSÒqNJKž:R 8'^X«©õÅêO+]¹nÿvWëÏOVÿô[×yÎÁ„õÉÛUU²^kgçhA±À”6~}rµújzùêå¯7ÉÌ9‡é¾ÜÀªÙyg¦_m¶`¥\´Ó—›­µvÚL¿;DQ9)còôê—8ŠJ¥`òÀƒµ‚‡Âúd€“3Xõ·9§”BE³3>&Bþ —7sLuZcêå«V´V&†é?ñˆe7ý¦2µ›¾@^SÔyú÷r?gååH.(eóô¯xi”Ê.N'€†°6¢äðߤ9LyÓÄÒ‚ÓmvsJn½ÕõNÏ@)¸é_6[o@·IO{žòÕ÷|uÃWïøê[¾úzâË«2ñޝ.ùê»%2š¯>ã+ÃW/:Û× ´;³ï;â/úe'þõF^¢þ´ž³÷z}òëÕÉϨª«e¿ ÏUGügn;ðnAC]Š ¾:_ÒKÞ.,½ï~Á®ÿ¸p÷|ò ö¿[˜1/Ü]r„óC½Uöí‚tânâá›â~Aª7jdÑç?¶Q„{/mó5{µ€w-ðĆ  ØŸ,°ø!z§«NoØ_ùÁýu» t'y±ÀΛ½Ÿ ÿîê¯?º-ºk ?˜gïÛQŠNròÍjKÀ-Gã£ÇÖ’Ó}· àýÞ¢ÿÚq%ùߥ p¾@çrA”®`á5g.}ºx6~œmÿbé,ýW±yVfñ•´ÄY÷ÉW F¸ZàG*Ét&ß.E€ŸbôNå“MˆÿÝOÿõ¢€OóÉØóó™_<}ÎÂ2K©aŸrýd©?êytôú{`ùK–},n±GMC‘6«GíãŸzOÜ€Ëáð üÿ[úâdõ_Ø&É>ÌN¯NfŽëlÝl¼[kí šº;_ÿ÷úzu¿që‹•QÚÌ!¬ÁYf­#¬ ðOs ÖúêíJÃÌ”ìúýJ¯¿)«>-ÆÙèõÕÊèäç`‚}›¯Ö4Ó`s(šõï!=;[ùÙ›ì|¡‰›ÊyÖf?kìJuHe i1Ìe?'-±¬÷³Émź‚QKAÒÔÎ -‚Tš «Ó$¬©Xª‘bž]»à46ø®ÄÉ´6*%\Ø…kæ¾w°´V³ò|_ë\‡m:ëeBƒXZ^wF£¥û u 3˜ …!vƒ`@Ýr0t' Dʘ–­c)YÃ`Æ—%„dHYÓ%óYIÕÕ¡‹î7iú(B‘ʘ4gaR;+ëy½B/¥BNB=8W–!Ïpx«ýl“tN†‡'˜‹‚œÄZrx^©Gš>U·OX‚fÃjý“”ƒ8°A\›ˆdxh#*ÃXåê¢8q^‡`1kÂlÅ}[$êÓi Ô›† ^…·i¶‚“W’¯cœAë7 æ¯Qì‡pη£QC$t€Íç²YôžÂ10hðÃø!1Ð[=‡,ÍÇÊP1 Ál?÷Ëj;;º„ÃV´h‚‘S]‚°Í†Õ û§©Ùƒã8ÂDˆPuR‰ /ìLoÔa1—’föÛ ç!‰ A  ë ˆßäÇû4ݹ:¦ê' „A,…Qˆ ½'H¹À}f¨K™¨·`ì¾j ©è~ešg·a¡ÞeòÊã¤.SÆç0B¦:–2±Gþ¥H^HG!“WÀ•ö,“WÀ³Š¼,»T£ðÝ ´a]åò ¸2¾Ë•kº\m,äb b‘(ŒBÁÊñétZÇ´¸‡›÷p‚„©ìšgïáu@9x¿1D„u‚9|F5`Y\ÙŒ{8B ~ ™Ë¡9ìaÂ4VƒìÕ R°¯0÷ñíw% ÁG0töõ°P`–¥ŽÁbŽ“lFˆsr‚ë8ƒ À©F ¢PW±Fã â‚0ˆK¢0ʱ“²µãЇí¼!’í8¢5ù¸"¦è~ã™§Ó¸W%¸ÌÒ(å'­T7Ê’ÿkŸ[8øÿƒ ¢‡_F@n_ˆx¯ rƧ×ûÓÝù›|`r(0ä!€Š¶%áó±>?y½Ùøû‡éünƒ?Jnº¼9+Bt%ÁyÖ+±´ p­Wï®Þœß­oÞ®ïÏ/xww~Ë•ûYûþÑÎG .Ö»TÜ'uH n©/¤ÀÊèØuz·Ž™G?T¥ïÆó-Du/ÌÕÆÂ\ŒA6 £Eª¡Sô¨D÷Xƨ¼Týô)Tý@"áj—ô¹ÕÅ×éÕÃ@˜I ¬…†MPƒ‡‘&öÜ¥KÐlX ²šz)E˜O%1Æ” tHM:šNô(áè,±HF!vƒ`ÔÕèÚ“`ª­gÁërWƒ9c âœ(И:R{]¶Ú³è²QW£ËFÄ%QådË€ã£eÀò]´r •¶±1ãD€†u!Ö™¡ –!y Â-ÚXÆÄb#0Ê0ÈE½ñ¨Ýín²Òûîk½ñn°v¿ñÌÓiÜz×P›ÛÝ\µùÝÍEíñn. ‰Â Âîoz‹ˆÌµ%ÝäÔjÍC²âÕb¼Oáè —õ9Ò³£¯ujl%uHÎÅ0 G¦Õk)úb-1ü~æYù4­Ð$,A³a5ÈþiêAöŒ*®‰)W¬¤-áÛš\Z=ŒØoc°…¬AÕ1Qhã¶Î œ#˜ú¨.ÐÁXCeˆøºOLÓôQˆ,NJR°”uÍØѬTy¢D«¶±Œ1ÛLÆu !X yα –^Æm6¢1qIF9>JW™‹4já2_½«ü#œèm^N£‰‰w;¯Æ4r Yú)]e »:~pO™»k½hkÙo]Àj?¹J;Ââž2c‰ž2cqO™±DO™±¸§ÌX¢§Ì¼rO™°dOùP"õá=e …Æcý/ÔS¶x\ýñ{Ê6†ò~Ÿè)5½¾ÛÛ9ÅéæâôÍåÙy{©ìÀå šS6XwyÖá¯Ö_~´oLafQwÚƒà9@U´ð¢¢…ÿF5ÕÕ÷ö´ yº,—^{;]¼Ã÷|ÎÊøéá Üñ÷¹øÎ`H`r7wüÐîµX×c)h5½oø9½Wè§›Áît˜¾Ãeœ‚Uât»ß ‹Ek3 à ‰Ö…„/}(|#4ÆéV‡Ë&/Þ" ‘áé*¼*ü+­à À_/–ô.â/1á*ÇœQ–ꮆHv„ð½àSÎD•¹˜™~ØàÏÍb2kßIôûJ²¯2³ {ÝÖQi }  |À»¢¯<ý¡ã~‹R™œÍôoGå{˜µ½ ÓY/WïC­­€ËsÆä€Ïa©?6¾T˜n¨¨ðkL,º/(*ãOª™1Qè°(Îæèmy}µ`›ÞUá48’Aù»¾Îäাl¤ùÑUqM@Q_‡"7EÌ-¡n!rdü©.N¸~(¾¬`JÑ/û/¥`ô€\ä@€C~ßÞt£ÜË[ɳðb±Â®»‡TksÈ¢3 I èWL;T ò0PÝâ;µ ö`‘Á*8’ô­?×9”­ ì°±÷îÐã è¬%JÑ7”}&5÷ Yl´a{*|™9À²s×b Äë½¶øÀJ¿b¦P²õÙÿ…Ê43½l&Ö­@oŸŠW–QãF%Ø Ó÷ý-äæyQN—-hÑÕÓô»ÂoôÎCîë]´§å Õ”1ýèÛ׃Рi¶‘½X¾}†Ãe©®û[Ôg¸•Ák]šn®*ÿV—×°‚,ÌMÿP^³Î)Çb¢zµ2}Û„¨ ïˆoñQ‰6xèAÖ Áºrûò¾º§Å}Söª®,æ“5¶ErpE 1ôô ýD'ô[a¾}±\çê•ÞÍ[¢g t’Ÿ`‘2 ÁŸ—ðI-ò|[²;Hà`RƒÃ±90f´øò>¸Nàÿ5%†D̶ìR#uòõ¦¯ˆ×pÈÃÙeȘ3$)bÆÓXþ¼ËϘ^ÃõkØ#ѦRmÍÁºˆa’5ü-L™¢j"I]ZTK!?ÌøôaŽð ÊÒ§r›á€#ý GÂùëG–Dè..·Æ©8tDà-;Ò†Œ'¾ÆI"îX…9ØâY½Ÿnþ—Õ<*+”oGeti‹¿«ÃÓýÓG؇cÕ÷íѸ‡Hc?»ömÍü£ÖñûÚìKÅ–ƒøÝøq£­¶ ¢-ßý»ê§x$T¶Ÿ|¸•Üó=òô¢™¤‡ùÃ3ßdúð=ì÷¢C3ÈÜÿ¼§µrÙRE¨G·FùÈVú :Ï×ù›^üÝâɤ€ÓÚË~æ_Kßä;ºw°É¦8c­Í0(¿™-ßýH1Ç›LŸÊ _?îÕ¸U!$Y’ð’ %ÈsÌÀ ÇyqWâûȪ7ÝD •ïiODD†ö®WøÊ²Cxž¾9Èj:—èKŠ[™—t5ùµ†‚JCÅ(I\vÃõ,k7¦C5¯9(‹Û|Q‹†²¸{É®õ)ܔΣÃ#ÇÉf,„ÍŒï­U}ž5« G£·±­wâúh2Ňթ¬¾¯žŠN[È‚ðGªÔíá/ÀéÒ9bçÌ«I¬ƒ4àC ý£”¸hrù†ÃÒ=$Èîª`{fé\¦%8…/ßw‡Õ~µSN3? ù£üŒ=“áku_]t¬Õ‹…7é—¾kt·Y°É°ÕÓªZ7qµ T7”(½w±EÆ*ÂÖh/8$½²©€”Ì7¢òj¾Q;Ö?·=ï6¥t²iúãÒ$(¾b=Ç(64À,¸¤cQÖ³ >¤ÿç¾t‹ ’I<ÛêóJAc{´$ñÀu4‡6‡?¡?Q©}Ùåèf£ñ‹ú‚ÛwVm£ô‹eÜ‹º8QË‚•͵9>v¸·Ço&]õ»Õøb‚{èóSKŸxx³ðí‰ÓXÿP„øJÌ'Oôywü“6í±Ùÿ9a9èendstream endobj 95 0 obj << /Filter /FlateDecode /Length 625 >> stream xœuSÁnÕ0¼û+|t1»Þµ½{¤RâÖ6œÚÒ‚èëSKBâãY'yy~”C¬Íxwfgòä!¢‡ö¬ï›K‘Õÿtà߸Â5RE_sÁ(Å‹êVypWN¡ÆÂâkaˆ” µU5–<£2Ù™;СÐcìcîæå\í«œÌ;°•XsGj-ôœ Iä¢'Á°çt­…ÌÊi›v ÔMïž΋ôëëfçÏ&÷ê³·n 3ûéÎ-[FL±ú"öÍO;÷!¼FJ px;@¬€*9|Fˆ ªUkx´:qápÛêYUª„ëa´ d {;Ö 5ì¿- %ìïÚ©‚•µ k‡^Z‹¤šh™‚ENÊ_ œ Já{«nÁöÍ¢yF UK¸é}»‡e¶5…çEŠp’¿ÐmbªÖð×Ü:WÈ'Ã?7„Rnå& ü¾Q('à…^’¢6plL¶Çûáãô®yS{o(QÄ,æÏtk~\¶ ÕØ’¬è'Ç„F$g?¢D¡Ë­ßƉRTÛ =Ïb„‹4»ˆÈæS8Ÿ•3V²jÇt›6ïwµÿ¸ß}' ñ9ŸÜ…Ó¨ÅþUK“ý–&¶L²e”«h¬|(´Œþ7Ÿê£æœú|&ä˜mÅD²È’Ði0#¡Å¬7mžg†–Z^6Ÿ Qœ5 ]‹9v,?6ËrT±ïA@RVxâðeN> stream xœ­XiXTW¶½eAÝë¢Þ(jßr ¶q6Æ!&F g•™QfId¦ªv³€ˆPŒ2— "^PQ㘇NL´£1qh5Æî˜×Ù—:ï*4ÉK|ß÷^û§¾ªsÏ9{íµ×^cч‘ÉdŠ%«Ϙnú4ÈÖŸbº-a€X5|ç`ÜeóOëÎAŒéo΢€ÅAïÛ‡8„. û |ÙöH÷•Q;VE{¬öôòöYç»~ƒ¿ÓÎ]Sb¦NŸ;sÖ›³ßš3wÞü…ýf,³†Ç82k™ Ì:æuf=cÇl`&2NÌŸ™Ì$f1³™YÂLa¶0ï3SÆž™Æ80K™˜eÌ,f9ó&3›YɼŬbV3VL cÍØ0ƒ 3„ÊðÌkÌ0f8cËŒ`F2£eý˜¹4.Æ‚‰eÈœe}æôÑöé–;Êk,‹BË–‘–ß+Él6‡ý™{—;Ûwbßý÷S÷ÛOÿ›²ü<°làwVV¬ã¬¥A“]tgÐ6Cl¢mŽÛ\¼lð!†œºzh ÿš'¯E SJj«î4q¤(9•ȤYÝoò‰ º(ˆ‚xH &>=φ§ÆjÕêÝš0ˆNÅVëZô‡áœÔ”k'²Iö¯ÓéÓs•Í(·Ä@…HFZÎU)Œéß@ 4à 0ªM ßbÉiiÿˆY’Õ +é$ˆ’Ü({„ œƒ ¹‰ù¡—‰|É&÷5‚ö ò^’¥Š½˜ JrÑAÅÒ×7ÑÏi™v@Oå_ˆÇ”¤ÎHÕrkÔu蛡ÎkJz—°VÝ.4Àv#‰2ŠÃ0ÇʺóªÇ=÷§¨¤‰,Ú]½ÿô«uŸ‘~…Êo‹O^„ϸûöwÈL!ñX„£ÙƒW€Ø, \>_Iú’/ylÇÉl ÔA™Ê°6@"lKÜ亢³’Ô)-Ò£ì=o •KþÈã˜YÈÂO›I&ñçãþà.ŽH0YÅ{giüѤz¸ BGnݾ¦Ãe‡¡ êrýsýÀ¶‚ œ|<¼Â¼M‡œ$Ec”µÈîR éAh v¼Ú+jB÷6‡ý¾¿‰o ÝÔ¿ ×í{¼”m,±7Z %§)VCìæz²þ®ƒÔÎWÔ6T´w¢e±&£7nqÛY]©´êΦ©»o†sžD»ßÂɱø6þ Y ÁX2û’¹J2ö_CxéþßÙëp) ~uù¶œµ@ä06i}¨›ÿúUKLÑ”ÿM=Ýw Êå’Ÿ´‘wW8Ûµ¸×8‚-QŒ—¼A&?[ˆ}ZçוdÕ«XÁëxˆƒÝ~>þ)4%ÎWÐGŸê/^¬¢Œ£œhq_—)ˆ±ØW”w³XÅ«äµÝ“È|àÆcc©âa†Ûb¥ˆ *Åâ4·éB8î{¦ÀiP0¯Xp¢b'¦XöÔÒÈïÐÈRN/ìåô]d0‚¿Qˆ–÷­6*8÷ºÝÕÕu†–3Ž•.[·‡~.h*ÈüÿNóF]»þ4ÁG/ çMÊa–Þ·LÄÒ÷•‹réD÷¾§¨÷pEcúcZlÇà;h5¿CúaY{?Ó}aïõ¦ºÏ¢±ô'Cþœý¤½¾•$¤¥‘u²úë¸êºïIïðÅ•´;>9NˆÞ˜ã Ü’Y!c¶TçïUÖù7%KlIº°VqŽ®±®KÄËÑBÚ~mz$p¡¦$26fë!ÿ ™±?73½%ðR*Z7]»qng힥_½w¶{ŽjŸÓ>èä.\ÓßË\¡t±ú´àÊ!³Œ&¨*^D'Qê'ÊÎà¼Bk¶{*FñWE…—z ì õ0ÜÒi¨*´y]°,.ÀenÑ Áã’æ+¸§à»–‹]·oçµÁMøÚ±”üY“ EÀUêô•JôgMq&j4ÉIÂÚNëö;S~©Èdò #8 ÅÍß´1*«C.e· •VÒˆ”´.Á –Èn£â(ÇMÒŠd ®W)´s‰âõ4Îû©¢Dü2âãÏ«¯œN«œX§ŸWø¸X°ê.§él1_ìMgª)¼±ÝCøÇ¢ÂG=ƒ†·f€9¼Ç$Ÿ¤bþc‘ýÃ/¦‚cÓÐÌ·Àh4g~ 6c*i~Õ/, špÙé_DOI«ù—Üsb—ø¬^±R[Ú%àw,Yñ++ãX»OŸVž‚+M‚n©í³,EvU24+%†n:æ… ¡a`) 㙨ðVOwúLoóeŸõÜŸHå9ý´ÒçÑ jO¤oG§Ñ­§˜ô²/Î4µ‚ÙØÅ?Yt–Xû‘ašn‘Uµu†#uáEZ`ÈÈÑ×w¾Òe©Ò›%ãÕd˜ Œåæ>ö¿q¡µ±Ý DÀƇÂEI>”—$èãuJU:€#ŠSüìåáîa­M؇çWêª;4ÏéÝ?D=ÿ‡î+ÈÌþ+ØŠ¬¿Æ]!°Y¨3ÝŸÊ}žö@‚ý¤áï!cyLTh7k<ÀütÞzÓ‚+,%«Ç {"ý¨RÛªØ}§Ž^>Ôz;e€.M—ó%Z ¿K¬-·ª5ºKúJ¨†£šóŠ¥/24ÔˆkOÿªêNÝËù^Ù6§£çiÛ!–†¶œ[øìK´Ã)o™‹Gl¯2k_ßÖ¼¿ŒPšï™ïëÍõ²%Ö3Ö×/Ô ¼À¿$¸™jîSûŽIÖËB¹tʬ€ÉK¢É42 ¸eÒ}ì'*ÜÕÁ•î0å·´“âY“f«ŒÒYQVŒ¬\²—úòÙEúìKÀ‰lˆ&@þ°U׋žîìզƃVù ¼º§%•Ùž1¡¸B³ ‚ÁYïk^x‘Å©=c’ÂC—ï° tñNІÐèÒt…Y¥…ÐÀÕ‡–ûDz¨š\O~üªx¦Ð‘v[ëÞ¶ÑmäxRšÌ'&ÅÇ@÷’:—U. ÃgO'£ÉħoÓe£jÑ"oÿHˆMÓîM’w‡¯XÞ°³4ª9ªYÛÜEÀAæiÔ«Ÿ–¿lx]R>=B Ä™FKÿ®ë¹eÖôÛ´­5×õ+Ý,º õf!4ŽÐ"Yв‘(ü#¥×ùœ|H‡,ΰ¢rY±—,±Y :®KAöô0Iñ DÛð(ðsÅAtµT)’ÞH\F¬Û ø-ýLx:›4☩»¿PGÖµÑ==8Òßîm2‘Lþn!Ê[› 5(ÝY\ñ«.üK=Où0o¯@Wʸ€Š¸¦ø8GÝM tå7¶ÔW´B-c«<9³¾Äwn—kºgññ…jˆ çxü[Ðîc¥9=ŸæÆeÒÒ·­‚Ü2¥tƒ…RЕ§—¦€ z í$Z•Æ›^ÎEïm&_ kƒ&[[¡-„s=<å¸ü•õ8ÿ…›{"—&a_‘­;tß›º›i„Ÿ1‹²jÂßgSk9¢ý{ÃÁHHÖ¤îIU†®^±ƒF`hsNYo¡;‘Žì=àž¦´Â³féÁ £ì[d®à`9n£ä‘8ñ{ö½¥ËKÏm†¼'‚¹m‘•5u†Ö#>íK¦w' áõµª³äù«ý‚¤&[8ùÛëF k•URe¨¡Âwø`}p)Å­,'O§+H6F£­Ùêìõ/N5&ä)ósò2öghÕšTHàBŠ¢*+‹ŠËËbÝc½Õ¾žÂŽC›3iDíßÙV¼£:L¹s‡Ú‹ÎñúÍÍþ1)Â`·åØ»h3>¹p§’±@8!ûGÞ.?®^…U›7Áje;qã¿h‹võðÛ4ÎÎóرóG¡Hùr(0ÑïsÁû.;6 Z¼§ø­ÿ÷ˆ7†ˆXkÄZq°ÙËîÂ)ÆÄJø7þiÅéá:÷|Òò®@¾îU=Z’ߘ[ê7¿4ÛZvHç׊¨rÏ…U°Ҳëç£<‚û]Îã¼2ª3QiÉ1ZešÛî@Ú’?Lº¤.KéЦsCbã/x7–qD(å߯ÚÛ  Kßw{ò'J’J’œ¾ÓeO‘£¯ô/þ¨wÃöm>>Û¶5ú´16ÈJ²„Vè¹_d­®S„^éÄ‹êX%Ù™:K¼(ýÜ&;óõOåÒÎîf³—¨Õ†‡ AAõ[‹ÖR)³±ŸE, nU~ÊcÒ½ð²Ôæ„,MgxÑfpç¶ì^:ÿ}2 G' ÚƒþÒø-7¿\®´L8tè¬ÛµäfÚœ^ûä[ìw>òXHƒrû‡¹o³}sâ3| š¨÷ë(ÿðÚ•1ž™Bzl¦æÀ/îϤ·Ã ¸è¬ «MÞhP÷¾çsjÎS¨¢åbŸì¯p(p=7É•¢#ýè¢ÏÐÑë}GH7;h7†ì¹¹Dnö¹½]MM•¢ØI烟äçddêõaê]4qž°òe·:X‘–¬NIÑh•DI†ZJëØß3î÷úã€ÃYc}AÔ2 RlÂ``JÃÇúrÓ ¬)í5Q¦R¡>W“žX@UoMÈß_XÀk]òî¡ÒüÿU£±äIÛæo¤E¯ô‰SY2êûq¸§Þþ‡ fVI÷O÷RÊíwîÂ^­–6:|{aLLÕòÅð?[^Ö¥¹6»õ¿Ö¦‡syïítX›ÜÖpÿOüÿª”ñk\üT–‡å”/‹ù§äà$“b®QRš\JÃ\ÞØ“æÍšB§µt§Ëq×M¾Í§qÛËRjkll£nBo”eÍ4+óL³û6ü ÿ0…xo I“Þ‡^è ¸ç©@¿ùHpÊKy’v…z8 ÏÓÛr¾½¾*AŒÎšŸá ¤øÀ2˜žæ’üæ¦=»Íÿ" H–Èhí/ÇOºå|]*ø ËVŒ¥k9K_†®"®'X¨Ø¦ô‡`ÊÇchê¥8ÇZýkï§ùO1¦ð~Žñ6ÅL› 5³ãŒ¢ì8ާ†ZKNB}:4yËÞ˜Ô¤·(q82@QUþÑ¥ªò’â“GKŠ;D8ÁaŸ·ˆÕ˜ùKç8vÄ–×µ”o ®ðɪjš2éìt7ïu÷õ‘‹¦)ÉL²%a/µ‘¶Q’…騸¶::§Y6}ŠJc³ìý,Ã)r Æ;ü­ŒEï9Áä÷ü< JB”5Yõe ríþµnÛ}‚6Ϳ倖8þÖ7?œÛõ±>$œ(¹q r_Rû?`ìªÅöªúPc{EÝaCâ‘ YBm}s•‰‹ºU¾É°!Ö]åªñÒ„h’µÍEí“!¤Ø¢L”ì)¸ ¦¢ÄéüçâBiž¢B›“ ± 9ß³ÜRE'%Ù$Ó¤drZ­pšÍð.¤æEZÇ“6²­7¶ÐÇà üÙƒ.œktÆI:þ@Z––#8êZTfkòöª5š¤Ü¹5ÉVƒÛÀü½Z¯.âb”¤•Ý qeyéÙ™BÞÚ#W»‹§©À-~—2ÎÃ;f'MþöâÐ6Q_Z\×¶ÂÐXçÄÕ .L§x¾öìŽ@›y·IÿÈíÚ]nf¶¶áscÚT˜@ÿ*Q)GÉ’‡L¸Ýq­n敃Ê“ £‚Ô;#©„û–6«ÊŽœò¿6i&yoi\d?z£ìÉuœ€vS.ÛŹ– áSò€÷ƒˆC ‡’ pšïs€ý¿8lÚ™!¤S>‡QÍÜ¢Þ•êæeæt¼AÊBоirÉAÒ>7ôÔ“V‘6¶é‚ÓÝ259êBN¥ð!ÙTÌ32› dæÜ„ýÇ ‡iê4bCq¶}ÿ4d3/ ],ÜÈÂY—͇´I_Ò`¿Æ´¯åøTbù3M5TR¸'ïvM WÏ›¼¾|ÝYOaË®5n0#–× ‹Âõ‡@ù;>¥™õœÏÞU M\WgÅéÏk6¬õóŽŒHŸ‰ü??h igÛe}>˜çþág·;ZŠö÷"]†ÖFü§ éQ8GÉñ3¬æµÁ¬ N[“èã‰à« 3Tg–•Ò6„òð Û¾¼ÝñÛ{8û,/æ÷Aþþ‚«Ûž­°Œ#ãÿæðý£ºŽ á8Þ"«Ó©+áS8p2«*ÃP\ŒtE¾9!:uV4 ljÂŒ¥B¯œáð_$MêóGM#­¯Ð¹ôÅk,D«z£ì Ú[M³¦›x¸Òøñí3mÕ¹­PÅ!O¦?Q¬]±ÒåpLE]mik}„!([¨¯>¢§9ûvmؘ¡\33åðãÜÙpH-+‡¬ráqx•ÄþõãK»1.@æ/h-—|©ù},ÚQóËÝÔ¼Òü¶ø‰ïíZ›´CØQï ‘TÆÄưJ»—^ø Ÿã‚ÿÁ%“Fzâ3öZ뉇ûJ´IÅBbjX øBtvÄÁ½ÜÖJèg1§d@_Ðô‡ƒæ¿â30úendstream endobj 97 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 200 >> stream xœ½Bÿ CMSSBX10‹‹ù!ùJ‹ ‹ ›÷?¿¼R3oøˆùR‹ ÷¶Ó÷uáæ÷$÷Ÿ÷øw÷Ôʚ걋÷÷Yûm‹^û„g€füêg–°»±•˜®÷›÷÷8û³™s–‹¡‹ÆŸœ‹©ü6÷õ÷u÷÷ ]IP}Uû 7Ÿ ‹ ‹ ‹ ‚J&endstream endobj 98 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1769 >> stream xœ­•kTçÇg˜™*!3©¦œ™rŒ¦ÄÔ( ‚—˜ª¤‰£èr§°Üv¹$n¹¬Àî>»Âr_aY–ë° ×€å ZŒ ž9)m‚95Ml¢ô˜hšw¶/§§˜äKsò¥ói>¼ó¼Ïÿ÷žÿ„« A’$´ÿ-¾‹ok!Û¹×æî¸»Ö{±;=¿zìÚ£ï­"ŸÇ”i¯ff©öfGÇÆ%&ÛD¯ëˆßˆDNø‰@âUb7L„/~Ä£„§|áJèˆÿÑä.þ.ŸPÞÔe×]ÇÝv¸ÕÑ¿¤ÕÌzÆÌôJ:iDÉËF"bÅLSÒ먔ƒ/ CÕ¥8bN‚g .@›ÃîÓØ«ÀMÉü©òÄa·0Šá•L›i:@„qhÓº¯™ßæÃˆ€B™o®_šœ´¼Êãü={2ÁÐÉz8ƒAD×mhH$?‹nݦ†/qJ3s²0^Xè`âu…A|ŽRr§÷ù§wç?Æ+ë„;ÖëWáÏì­>Á?çñn|ƒC&¦ÛTq†Gžô½^¿ðàƒ˜~…?ã"õÝÑkÌÝQÿ]ÛC_ö<$M¡]òµ‘³¨s–’"Q2‡8Ÿû˜ÅîÏzcOüø½ˆF+æÿ‰¥5Åü{Y×# ÁaØŸ(t¥>q¶èbA®5Çz¼N ilTfÄóÁý÷Ô|©Œ£¾¬tÀ@Iž€½˜<(©.7›øò 0ªï?2 À~36ñÑxrWQ•àH7צš-ð>ëh:û9"Í›RL¼Q['­r«Üæ*Ùß'E`#ïO#/;…vJ8ä-bo´OM~°q³ŽÍùv0˜úPuaª{r†ÿ£:Œ RFÇî/xg¦ìߴ쟸äߨ%})=àúNVÏð6‘ÎÒo%¤Â6È2É€¾X\ˆÇP!ó§~kºÅtS^‹N¸ -AéªûdEcØúS§<¤ºÂ&é"i•T”ô,úŒ«²7 _5²"£Ôk ²á8]º™Ò—§BéKJò×ãš5Øõ”X åkÛúÁÊ‹L¦þ ¤C2è!tù“KP]Z›‚Öá¯)טJj¡̦Švq}lèíÆÖ›ïÛÈ37бéY;%=lœ¼ßƒ‘‰] K$°Ûö…‡(5Í- -ï&Àq¡yèœuس—ã¶1 >ª{Év±;ÿ‘yåÚÈà¹F¾ìˆ#aئ ËÇÂ%õæ,­&.œâCÎs>ÉQ‡õžCkЮÚ^/‡—<‰ÏÙPÒ Ù3‹¬Sº°9ƒÉ£zBåadŸöÁãÕw|Ëì™ÑF‹°›AÞÕn"³G[q^þÅ„,|ÈAè4ê¬ÄcÊCÀf`¢½9S;hïlŽAÇ(LB¢úÚ·e4y²ú=…v”Þˆ‚–òC;II«ÑqÎn‚Ư¿Ä`úù§ð*¼æëg…VŽ ¢É\RV¬•¹ë… ÿ½ªh`£7t —…FÆØÈU¢-·vÀ·`ÆÞÆ$ö»L^”õc±ì1!šÖ€¾¦±ðýî.4ý_sµÈ}°ƒhõ<‰Hn ´Àµe7§e¨³ÓS[r[Ö6;y*#¿ZU,#oý!;ÎÉk`N/× )-$WF—-:·´“ãhf‚B±’÷Vb®²\šú+ °ã­QfÞ”¥Õ7)˜Å|Ñ•ÂNðÉ¡“Áµ‘°SÛ}×G4DöÅ=±=E7òz´5–â÷TŽp8ÀþæÍWûk†ó¯•κ •ZÙ¸‡ £XJ³ÑT[Á—U6õUžê™Jº,r»ƒ\®¨FÒ»…øEMlµœáAt§ItmŽrz;·s ótÎr³Óä[Õ‹|Á*Ó«ÔÛtÆ|P± "“>AIw™îËÿ†x]K °œ$‘VSU}Y¥I„F T%X°¯í‹ÀçÉOç)´ï<×®jÊTæ¨2S[s›ÛíM¼¿ÂÕßæþ3p_î+ÁÝ“ þ ü> stream xœUŽ» Ã0 D{MÁ ¢ÄŸ&Hd„´q‘*ë',™ ‚‡Þ{SSÝçØÏ­4È O©t+Æ åF®Æ£­ø¨YÁ«> stream xœµ™ XS×Ö÷FrŽUÒSA½'uh­ÖÙÖZçYœGd12CIVæy0pÀªhÕ:Õ[µjªVët[[[«]‡nnßw'€í}ßÞÛûÝçýðyx$É9g¯µÿë¿~kÇŽéØ±³³“N_¸tÔHëÿú¸Ã/ªæx{è*® ú <èˆ{{à¯éÎXMÝ6-`ÍôÀµ3‚fÏ ™:G1wû¼°Má›D¸/ŒÜ²ÈÃÅs±—÷Ò­Ë|–û®ð[é¿jh×a݆GØ8rÔ»£ÇŒí7nü„‰“Þ{kò@×Aƒ»80L?Æ…éÏ,f&1˜%Ì{Ì[ÌRæmf3YÎ bV0ƒ™•Ìf3”YÍLcÖ0Ó™áÌZf3‚YÇÌdÞaf1#™ÙÌ(f3—ÍÌcÆ0ó™±Ìf³Ï,b&0]¦³q`˜×˜©LÆ‘‘1¯3<óÆôdœg¦Ó›éÃHᘭL'¦³]g».Œ ÍÓ‘ÑÙõ²Ë·ûµƒNÒIR yÙq}ǯìWØŸ–N>f5ìg\(wµÓ NÆNÿÕù£.k»öîZÞõ×nYÝZr~x-¶{§î¡ÝO÷Õ£ØQ#{Mváõ¯ÅOç¼±æk=e=Ái¹³£óú^l/—^ßõîлgï±½ã{ÿÚgnŸ£qûË!ÁGøIž òfp_¶ïä¾…ý<úUö{Ñ?¶ÿ£4¿…¢Ú¡9,¸Æ"Î5ÚU7O•ˆýšðI¹šô(ˆµ*)†¸·|ã±Ú=z…–ócKuûõu`&MµöH×þvM°¹Ü ËÒé凰§=‚ô®KÖ« ÙÙ ~láì†ýpHÛ ±^Áº@Lº²†#&1‹G{rÞ(¤bXDû…É;\D‹=e±>åI »A sèjuGõPNŸ½«õÙs”pPŽ ØŸ.Ÿ8.{ÅRÄüÓÏ®‚`Ðîäp ÷ÀâWSèc\ÓÀucÀBNvýKú*íýXÙÁK‰kåÍ«iV.˜pÅåwðÔÓiÏzÊD ;ð¨ekôév—>­·rþÚñD"Ï?-¾x®r÷ß¹MÞZ:ø•I¯ë•^ò–2VöÂK£ü@ñûHÑùჿݟxHrä ÉMžôºjÒkäXŽ‹ÙïFÌ™±j⹃¨VšÅ‘&»Ê;¸óŽDôE_ø’t#=†;Òƒð? ÅNØí‡ïP& âÊo·’ÀCÁà ÔÁ8^v âPcÉ^8ûåË7Âð/X¡pSlpÛ¶8ÛÎ7ÛYìðî=‰ø³x—¯?óIJ5pÖOã® ?X¢ÒÑìù±û ÂÔªØd•œL$%d.~”˜zHu.1§,¬—zlM°^·Io½ ˆý 2”AèI¾q"«Ø¶ø¥u†Ëtm{à2Ô©­ÛÊ~ ÎÚ#ǬC³§ÂÒ<Üâxâ¹è[lî){r¿á‰;Ž#£pŽÿåÈeAz¬T;´BéÿæDbÜ"²z•Ë~À&\µë Ú=IÞ6 úPçW†9î` !]™œ q š©žu« gÙâBÆ’Ñd#MwYiÁa&ѹ!Øìøò"Üé){ŠŠ]ù ,`UÆåt•›\öe‹w»ÄvéšôåPG5µ¿—ãûl&›Õ°â à°ËOß!²!ß“ŽrÙÓɰÉ-LÁH>!lÕÑÃUG»rf4±'ÝfŽŸêîaÜ()9a—ø«Åî¢Y\h–ˆšûðéÙô­t®@aBËr©’(ìÍÒt´ßù%N %mqn!‰JÐB‚sd*”â&i!탥 D>œ,ŽL:4§´m»pO”=“Ô6OáýÊØv­¶+µƒßGáb\Jzã(2EN^ÿû›¼M¬âîÖx&= Ggì_œ9&‘„»x­ \ºäm*/±¬-§CÌaFÇ]w°€Öô—b÷3<™ý¯s(žT°#íeO+c7Ÿ{¯7áú !oOßFŽîÀ%Ø·ßTÅÐ'}YðP„ÄÆøº7mÑd±Ë¥;Wo5ŒYI«ø}Zŧ-X³Ëû<Àµfj6˜%ØçßçUifÓ“¡Óȇ4EÎmi|È>Íö'7cQ°t¬Òoˆ0 ¥­¥ÏKq8T,/ rÎ, @…}Ëéözw{·ÙË /ïõ”]Ç÷ð+;°DnÕ‘Í_d³µ=ºF}%ì…FØk«‰íìTMvGP;xðEº´zA­ ‹ƒ . $ÚTdΩ®ö«Ú(È®O¯91i!¿IÃl´à¡Ö0—›±?•ÌÍæ÷ù–C¯l¨äUÖnÐÜڊЇ¹µrÔÞc¿ÍjxüŸ¡ÂXLk ¸«‡€yYhÀ¢ 4‰ãŠkÌÁa„9ô£ž²¸Wò¦äÛQ0[íí>y¼×ɯÂu®6ep±!'Nl$$f§êtÅÅ‚^ú¢â›jK¨vÙCýü˜ÿθ¹Oõ–ŒMÔ‘—eÏÉ=Õ«¶|ß=ì:ÊO/èâ3©åp¹Z,ÿÁVÐIˆ‹ÔÉ;â“Õ•›!šîžƒÇœeÞ ¹ìAuP¥êóš³ÂoÄ`‹ø–Í_Æ=ð®í)‹žãs{ݳ˄Œ|9Nc÷¤¤~JíÌS»\ãî0¼ V;«f”žòù¬¬‘t$²ø€ydm-¥Ž³¦æôÏF‘ÿÒp|«WÎdGÞ%›È&CFãR¹,ú Ü*ßõ ­'¥1À‚Œv?]Ä^T¥SÅ<ö·þ¸ XªèÿæàdNñ©bÉkOâê.W^>/œ ^ÎNõ÷𜠅ÖV~Ö‚»,64=ˆÍâ|>ûºPf‘z«§Òà‚·-ª¶¢'±¤ cÙ?ùÔoÖ@õs•6ôÝp jmú a?° 6›HþŸ}ŠZ­Ò¤h òªÏ‡‹½oò£Xmoag&¤¦åÈ’¯Ê…ÌbǬ›=m|rc“€_µ½sÔïÊÉv2ŒÄa‚,ü¨¬:Ë9àßÛü­Ï *¬ñ²o åÖÈÞ§qm÷Û"+goÚ"S+ß‚¬k¾IW¼n¶­9ˆ}_m[s™²Dìe±+c$â¼Çg–î¿ £2T³M !°^ÙÚ)ëµÙ¡ñšädå[$ÉtÄjU.®Þ¹|Qqùk—iB!Üuþ¶^ÉžƒU® 蔣OÊ…\HÉLÉ¢ªÈR˜NaGq»ÅnvÄÁ÷$ø1âßY³l¥j6œòšrv–×[cܦ^vyðã•K×²åº ú¸]œ¸˜Ý—çèÝ4ZWÚGƒ‡-ð:ö;ˆõ¦öèÙV‘•ûþ ðEG,¹µÖ°4,lƒ úðÖ°ê´¦ú· 4I±#I¦Ó ¬NÎÑZ  bé3¶iWkBÀ¶µGUš¬ØTU¶zøX’ä4 I9ta)íW´æ!Vê¼Z¯89ê_t$?;¥Æ¬yЧ¥æý€uN?’ú¥õ%ç\0´æF­4EZÐ×TþpÔãC&džëëãø‹W(8øÃ{_ð)î›+9“÷¥üDð2vI°Jé“|0U@W`Wý–=k Ö7q–ë\cdye‘±<'©f½N^Q{8›rÐá“[Þ•{²²ýÇV«gªø¸5x¸q“žŸèC.À¡½Å\"Nà²Ã¦oݰvsí‘îàÄ4*ÆÚ,v9¢N‚{1Žß¹{÷á²rKݾüFk‚ƒ4þÚ š®•úØÖ—h2b)qGíˆMR-œì4ù‡x+`¥9C~~¦Ñv…v®& ¶ƒ«.°5]—@§mtùžðNÃI—uKk¶ƒ³[®·èÊ¡ 4e­UaHÌ…|0UÕœùü‹NÊÜ(ºññÑVžß©;¡7ѼG»Óçì ˆÐ‡Vq¶2¥êèoBφv Ц@ÔÇKmDd+Í–'fV§ËÈ«häd‡CóÖ\íÝŽ=ƒ¿'Rêq“a£kTÅž7³P ºì‚='>Î(ƒƒPTæQ¾Ù°6ƒ§ÆeÛ†í~>+`x•…ÔS2@uo{êjîFQhuµ¯¬­ ³ù`©ò­ Â3è¶vlq'» ò¾j,R/õHzË-”Iþ‰‰‰ER+ l2Ý´°ïJÄÑ´ÊÏÕÀ«ºŽW½¢u,Ú‚H:BìÐj’âÞ&Z'"ASr–&…ê¹¼Š…Ö Šü}]DcÍóÆ!-vNI±1>ªXÅò€Yó! ¨AYR2LPÀ•‡„†)bý74x9·ïäÉ2*Å´Ô<®7[™iÕã³uðè„Ûx»áXæ9­W­°Y­ò‡X.¨(¬²ÜX¸ó³){> =Þ! é.È^׿„öªÆ®YY;@M½H¥¶˜ç œL\9z?Ž•;ü2¨Í&߬˾” ªy0oRÓÅqdò+jP³à:À6PÖ×@ n'µÐX!ët,ªþÞ!56•êÕ9 )Ù¨mîæ¤k¹,moõ†ÏlÔÿW¨ÿ}+ËÚ›™, Ð&F€–ÓN4`_7Ù5˜ñ,Ýí^â[|f¶Õ:¸ÜˆÈʾc)û¦ýX\(>H¥¤º¥[¼4ä“N·ïPôu¡\O:ow# ª³´½÷8ÛDÝF¤Ñb÷ù¹,ü­ûú½Ä‰»­ncù ë=ú &<‘}7­Ê>w™«9,éH6±T,e¤ÿº ŠV—‡ìÚ§>I1«^ºê`‰ewÍq¨…†hˆìHºÎˆßÍ_}*ʼn•Œn~—ÏÑêÂéƒ>ð«’æƒQ›¯-Uë´εÿÉN²©I:mŠJÖòÔ)3N§M.Ò‹åâa¶ŸS…zk×j|ÀÖê½[Eý\å-SØVÍù—à4“#8ã/ÛD×Sù4|×¼ ¸çY¤÷9‰ßÎcµÔd€’ïW<¥Õǽ3€ôSÍõz1„¢·ÃA”g%è“â5ªà=`ì€5à¾3´Þÿ#¸u4ê"Eyóør;ÊanÏ%Íø˜Çd(óæ‘Ùd8C6S@AFâ,œ‡Cq4nÈWäk~(éõ5æa¾ýÙûØÉ$Eä/ãß‘;à)›Ù☻&;ìxáñ} N§óȱ_ôÑC>$æ qɱ̅„UTåËê=kVη²¯@Ø÷ýn’ëFã×Pja[ŠÝåxÎ:>=ÀÆç ˪>¸T^·«.µÈ:ăA«LNRB™WUœ^ZW½%ÌMµy“°©f“A܈Y³>p3y˜·Ëc£#|À›“53à—ëa s‰ôÝîÜôï—£vþéèÚ˜£«+…••K`õ˨óMÙnZ&ÈEþíYGÚ]À ÿDz;ÂØ3Ö –·þØÊÒ®• %Øá þÿß¹Ïxps‰ôàðùïëÜ¡9Ta¢û{Ì„MG:£í§<ÿ¶¼§ì Å—<æ°P 9&C–¾ ŒÀ=ÄŽÉä­Y!“È ù³XþiÙ3pƒû–Hï’ùëˆàž´£s²¬ìï”Kj·îö?˜óÀ}ŸÇ>¯U;»Qx»2 ²c•Ÿ¨•«fxGÃZH8ó$ö–SÄùµ5Ë‹)÷î´ÍØí¥ãµ—3/ô”=Á™â"ž¼i ðÓL52S{šªuÇõeÔŽjÛÓ479u\öCЏ›¯. ðSš‚,•æ’jÚ‘š–æ‘•Ž'ʃÎãgçWÒ„\ÁE'ž¼nY˜¿å8œr¾tüÌ |ÏD&lHt*Pe· j¸Þ6 %jµq‰‚÷RÿªÍûÞ¥“dü辎M»(ÏN>w)’“=©HÜ™XéY”EŠ›±fúømSR¯–WŸ×Öi³@Ý>FºÚÆÈt>;]ÁPs̲õ¼×Ú:Ýú;ÈeWàÙÜÛã4%§h‡/øZ ±eÅýqÓ‹y¬›éiÍË0k^®gZæMvCüØùI¡$ä§ó ‚+0D„­:pòÚÙóh_mѱ*¤lÛ¶mÛÊBªªÊʪèÌåI³>±§ÖÛÕ™1ãf˜%Í#š'ò-( ·ÐäáØü ET–Yš’dPB(G5±bú î~Ò}†áý÷öÙ4áÎöƒ¼]ÖîH5–W”’M] ôù>yd¬mün…K j°{yAòòU¡ÔP廒°W»Wó[¡)rWÊåÓYçŽ6èK¬ì¹M à õ1­£X›¥„X‹‰KH$}‰ƒ“ú•Oӳؚ-V`‹âI¿!ï s%͸T{üé¼Ù%}‘#ôÈ>|‚ÒBÁ`„LØËá¶Zû™—vf+xÃ:½×ïú™­ší¨“H.Hpfó<þ÷¸ZȾJÖ1½Ì´ÖÿÎU¬+/iîK‰°y¤ÙN¼ÍçÕWT}¦k;µ"û«CÑ&mIÅ¥µJ£"ó[¶;‘e¢^•g›õªN‚Ùv.:‹†¶6¶¯ðS+z`tË/Néá©ê\(}jjm‹WÿñøÛ6þ¿<ÿ¿r͘ûS³7¼:9ÿòÕÉùáÖ­ÿ%§5E¿„H~éKXtrÖ+Sûkü´t@„ùí ü«ÖèCge•:&pHËf'2FŒÕ¦hÒèX¹ó”Û8Û¦Žúͭל„Èñ2Ít"ò–©d¬¨Ô(éþéç¯AJRŽ'º¶4;â ;rîOzJ.NSpRKZë‹Î­¯ZédB Ü‹‡Œv¢ý^‰8#­À“W Fc8ÄÈI5ÖHó 8, ÂcRCjؘp £»*Gú—4ÂF(ÎھаøíGöAõ0<¶Úϼ#à¥Çn–“Ò­FQÂÇø(-ýgÙ­F1½Ig´—~oïÙu;BÂf*¢8ŸòØâÒÒ‚Ÿ,o˜:‚tYMì"ý²ùãGàu– YQ²›ú–8ÞÃN “•ýÜtüù}îÞAA…u9iY‚^o¯Óicæ,rs•«TtUÉ\bjrjÎ͛ȾŠ“J[¼^4Ú§¢ŒFûg«e½Tö²/“A«KÖûæm¦&Éõ#vËúËÿÝ(ÐËšš'_ºšYñ•B|rÔ‚ˆŒèBm÷Ðå”]6I° ]øS¤h _5Rf1Y"&cojIVXó/íî½”àòcüÿv|Ü) /ûbS˜Ññs“»Z³µ\\Æ—GVx…ÅìP©­ÆºaœòRªÓ??wVžc=ø0péI)IÊ SHg—² ûk‹*ÊiÊÔ S³“ÉnÏ̸#7ân%Ýò¾ºþÛ‰›À¦má;+i2¼¦ŒÚ7eÿ¤+a‡á8|Qrà›ê‹©7à&G¼È~ ,6G|«< á82Žc—k™f:(\ˆ(”µ ¦Àj²³•ó£‡-õß`= WÓíª·0ÚaàU 66¿Î—>TX84øçÇ魚ʹ–|ZVq£_+ÄÞ§l¼î·A¬/;J]oEU¸Ž/^ü`q<òÝµŽ²ëüËç8…ÓÇá™3JGÝ"Ä~ê;ï.;†ÂÚœ}ååÞ Ъ…ÒOןîÑþIß[óþò…r²œø(­ó\ˆ³ì…ÈJ+qæ’üÝvD'&Ì¥ýʺ~Eåe:è(ÅÎ?œ5;6`Çq?â{§<ï)# îÇüíŠS—h†n>1ôí).S|LáU£©êˆ+D –Ãrë€Û÷±bTœfI›ÜÝVu°6A¢I„m¢vp²¥2 …ÒÛõ³“>³¶¹mü°ðoym’Å»¹º@ã¶ß·‘Oæ¢:6|œq<¥4ïÞ³­•‚=‰…4æ#¡°ü@èë÷›ãÅõüúÉ» ;óiÃå+çWM_ºe‹·`Šæ?¯?ܸÇïž9pÒÔú ®Bv\}°™Òúó%ÛÆ.Ô«ïs^ ý7w~®SôhÂK¢²æïånâñµÉ•áþ°Èyꇫ&Ž~öΩêó_5¶¦¿îñÝRq€5ýóã–‡VÙJð2ïË’Øþë—D®Ðï dTZBòQþñ[æßüòt¼ìƒ¾4ûh"ìgï._±a£°yCè&ø#=¾ŒÙÏg`_Cé)Žtÿ€‚õàw.¢Ž€Õ/Kê+Žìέ¥ ]³µpCŽoÊXÏMØ:d´`ó{ h³|Ñá{>¹ñäoëšø¡õJÇ{/éšøã«eOÂ[$<èÉó§&&ü&ÈÏo!W¥¹º¢]ézÐé„t]¶>#Ý „ËLHL`Bƒé¾ÉîÄY\jÆIÖß’æ©Í®|Z¦Þi\v|¦rGRb¢JX3{Nà4˜ Ͳ ·çS Ÿ2c<éDº}>éÚ•“°c4no’êy$©¾€£–´Ö©eÅßGÅÇBhœ•YñYYú”ì Á,ŽàÃææâ$|ïÓÜ’cG§ö#̪é«ä¢KËÀ?|ƒîÏlÙÅ÷gügÒ ©÷∽v'š‡Kš§ã->¿¦Z¾•¶ÑS¾\ü†¬äÛ8+ZÞò7it;WY;n»yÜkõ 7ÿ‡¾au¢ööìýûjkÿÍÿa§VôŸõ~'b(ùe™ÑîûS¼Ky:wé# ItôÅ%€Ã§íÆiøöÈm»I²AµcÔl"[,¬&∄"ùälÒícbš¼vo^pi)†tùo·Æ(zï4ðpC‰Ý–£½ ¾6öÓÀ©’“UjÐGÈ¿t’ŒâdŠ'™AºÇØÖ¤©R’Ó²~†²O„£Ø!%p—ZÉ­VÆK5ÑÙ=/<¹/—[¿¨d-L9éƒþá[÷®e‹Ý<’“„mõËRF¸U„ùwù=ÿôŒŽ²ùKíÙ§·>=\:AËFj¬£«J\O‡Øxˆã˶M[66\ÓÆªmx~T)þôÿÀç[Ôk“`]²³ì.óïòùè¥îÑBhí&ãà†“NÖÿí4xý(<·„ŸÝßóIYmR@…°Ea È‰*Jâ„ÎÇ»v‚®¡kèêÈ0ÿ Dâendstream endobj 101 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 5194 >> stream xœ­X T“gºNŒÆßeh£¦öüÿ­:ŽZuÜêRk[µŒVGqGÔ"› B@–ìy“=!@ ìdQd×Z«µ›Ž¶Å:3Ú;ÛÕv¾ÐŸ{îý¶uZïœvîà ‡œïÏ÷½ïó>ËÇdŒÅ`2™c×oÙõúâE¡?§gÓñ_Kw‰,˜8ºôÙgþ'm˜tÿ©ÓO3B?óøë2× ²"³lÈÉ}=/?^øë‚Ä-¢¤­‡’SïHݹ;=cÁÂÅK–.{qƒÅ˜ÉØÆ˜ÅØÎØÁ˜ÍØÉØÅ˜ÃØÍØÃ˜Çˆfìe¬cÄ00ö1^c,dìgD2~Éøcc#ãuÆRÆ&Æ2ÆrÆÆVFã)F8#‚1™ÁaLgŽg6¸è?:Þý}úï¦F|ä‡8ŽV4ƳœÒ—¿üsšMÑÓØˆWÄAau| ·ˆ÷¶]¡™$}…-–ƒPf_ D:Ðk%=}èø˜ˆ¿¥*ÕÊ Ó‡?v@)…>a£h,ûð“=ëýômý4;Ì6«Ùi´R7ÐÑ1èUöçֲ歞I¢Â‚öGu¹o°‚Và|±íú2úišCÏ gÏz{Ë'èiÄÁþI[é NRrà½ÓµˆÕtžjëïm<Ä©úƒÛârgñ¢(þ®½±û€<˜\`¢y÷Xƒg×pŒÅF+&ƒ]¡×€¼ˆüõÚ¸ëÛKc€K'Ð<:—–Ñ+ÿ> ‘(1QZ¯Sµ ”:j/½†ž´y%+–^@3.× ÅwÐ(êÚÿØs ˆ¯ZŸ_–¥áŽ µÅe6–“øDôžš?|ª`ÔoX 's”éJ]’(’PeÑØ¨:h0×CÕàôÄ™VøÜ ì«Ój«-.¥ZÑl›¨&á,pñ~& 9hîߣNEí‹KIåS²¾Xwö@…ĪLêbÇ~ôòí7èvîàÅ è üÍ”,;.r/Ûwíf£ÙdÇ}ˆûn׈q, ¾À }&¡4éä)‡3Ť¬!«e?4‹Oϧg/ï‰ü°£­¶®žJ¢Ëã ÚÍ®£¡Èª³QMÐbnÆkÕ5}ÿŒ6“ƒAŠqa¶®ÞÄåÅÆÓ4®üUÓßsºìPe(ÏtŠ|‚ΠիqS_ÄP¾@ÍG™ƒ›ÚXƒ¯ Çh2;ÀH¸d “ 9Eävš<¼‰^Š÷öú1÷Ø×lbÊP¨äS ×«AGÈœ`u™MåÅä›H0rX®[Z)èòÔ¤ð5aî‹@¼ÈîG{³ÍØŒ›1‰5¯ ôRÝÊ 1…žâ‚âcq¹‰¬B‘æZ5äw(…-R@Ô} ,2€J[HÑÏ 5+SñÈ÷Û™ aW€ÑhóaÁUòJtý¶Ãfî ¹Pn@7â| ¨‡ Éa¹ŽBêÖ–JŽÝäJûUJL®˜”ŸKò¥ý‹4Ñhk°›0hçËýoÝA ¯ö‡ß¼«º€Âß:ðþÔˆ¯ N—¢[» ž`õ¬Üí–3bòŒN`\ø¤ž¼œLQìÖ¾”wѼvÖsoMy‚ƒŒø*Óšbï|¦ºòÚº6E’‹äi•Pr«¨º¬ÖÝÙ“pìuz\ÂóÑdÄ×ðòUI}¨»%¹$ þhj7¢Ck•ÉÙ„Çåv­¥ˆJ‡T\‚8ˆ5Ç… ¥”B¾Ü^ÊÎö@™Ác¨ÔÙ -è•™¹KôòŒÌ¸¤]²C@Ì_õâöU£¥!Ö?Þ~¤a î?cŠ>‡füñýž¶Êqğ☬f†îb2ãÐú <´—XȜŹË.saä˜ZÍnCsŠKÀn¥È¢ÈVäaH¢—ŽYÎ}ˆ;ìõôqƒV+ 7¦9ñìßÎhƒÊo ¼Ý݇A1¼Uƒ!WMJv  DÔ•|³U™æ[Ám¬àÔ âØ›¬Žë@T:‡¹AK%B¼. Μj0>óðmÀ£—týìP‡2­H¹¸yEP ·émÔq8aî€èÔ-²…ˆF ù[Àæ2‚µØ"·G%ZÔ_r->Å *‚9-²?';'GjSYUdu–™‡…:ó]LÝ-?ÝÜ×t¯î=ÒRjõþÈê¤/ςĢ+ü‹è¥ôßµX}ç?úâÅýha?âáo~½ÄQeò@BÈÓW<çk?|LÚ|–ûM1ô³Hµ§ÖiÊìÖ•a-iñ4žñ&\„Kp¢£ñÝÆkÇÐB8G<é˜È›!JÈæ%¼DŒ¸ã„ÃXíê¢N —¬~çq ÿrø*FΈBO¯Ðûñ. Wú§FÜBÿu‘ãÚ×–×ò£[ Õ<|ž*Uc #º;…¼RÞôÇÕ„Š¸Õ ]•ÇOç‘s€Þ®ämyqp DWMt¼Þ Ñ«q{åþ’;(ëN‰Ÿyn`ùÁyœD$ƒá[¾<³ÝÍß•¶O¨ s/í³gñ‹ÝôÔœá*ƒ±ÔBÕ}zöØq |9‰GdûŠ’)y‚A+C¼)ouèàˆJíŽðµyVivv^ZÒ‰œžÞæöÆ2²bÇ)y-Πg*UA¬¡/Ä$Å‘/pŸ­vuÚR®ÞËöæ’³uož3Ô@©óÞØ‘™¸¼È N >ä8Z¬Î€pŽð†OE,н§"Þœ¸Zú$;öay•íÇÂb-»‰xÓÀXìÂ2‰µM'3è„*’·$Ž&èE!uûN%Ât¼÷ÜpV…Üþ—»ü~ï…©_¡ÁZÎ!zÕÚƒ1@ì—´[ŒX°ŒTÀ⮃R¢Rì*%©wFw¤¾ùð³©!ÿ$V& îãtrLÄòU‰QÛ¦ÿ¹ Lª=bx²Qûíî—Üü'F«¥'Ä.qU]µ¿ýT\Ûæoü䜋¯ÿMþä¯^‹Ò¥Ô %¹vÁ­ˆÝÙÝ}ç꾬í¥Z¯žnétë½ DØ×“GôÎ×/±¾ž bÒ²Û߯¤å€rD=™‹"/ ?ºœ‘޽QF®ºs~t6À  æÑ?„pˆck´›løÕ> ®ü¨µ wï¦2ø19€˜ÍFQšÑzí¼OÜ~å:=‰¤Ëþ;Šïsb;Çœx sâ±ïsb1˜ŠK¨«¨t b°Oœ¯—èŠ$;)ù­„ÄÚ~ÞÛ_Ùmz«TjÐÈt¤hg/ˆ ]]S­¹Ú\K™«,]P ŸØ[Ž£ÀÈMâ~Ž&_8ùfüÇS#‚hÍäèA+Õ«5ÂÐ]ŠÊñ²‹ðALÊ~›ãWfòÒ2Ò²ÊEµGÍ¡`f1+˜ÁØAÎ7í³«‹Õjƒ¡PF¾<+RÅ×iB-27{OY[N’ôø!¾’§T¬®r$àcA¥:¡ÛÜ ]Уëú6®*@L)ÙR¥Æ\³Ú%`59ŒÅ!³“{ÃòhèîæªF4Ñf¾ËBó?àœþôýŽ@9Zxï³Ë€8»æüzÎ*:vS¾5®ûö 4±½¼¨EªÖhÔzÐõ¤UV,ÁO~n«La©¿ú!Ú†Â:N VÒ?_¶bÎ62V$>:r…<ǦPíÝ&Ö{}yk#võù5¢Ú‚@.IhlZçú&éh)IBÒÆ IvqqŠ=É‘r<]zÃðþýï éËXŸüÌ/ï7ÞóßxÏ)ԢƎÂeT=Û×§± hNt•™úFv,Ä@L£þƒN­§ G®RyiÎ^}TÁ†Þ¨»˜3¿D}Ú÷_i!¶ô}7‰»›N­¡'Ìž±ü°ßÖÖÓrÚ'ÈB'×õf5i4ؤPH¤ò2ùùj_ùíÏîÿ©­·`½XAo£W\ÙV¢¥•Á›Ì®à:Vp1Šæ ‹µ™¨=bÔe¨³DZR§8DÏ3¨×ÕvHùÎd—» ÃIj@UÈ܇nâˆRv¾:G "ÓèI鉯ÑÄKôä%‘ZJǘÐÚ¤v«×mw‘»Ãvʱsn‘{4Õ ¿2™ž;M[(‘W¦qú<®*+Ù†f[ v°·þª§Ô¢vã‚VA¨²±§R4FbÃ(ó«ðŒi&ÚCã÷©{" #ú?B¿åT‰+2SÓyé9¥ùõGM\†Áïì×-ÿ°ýz~Í@³q¢~›°F2i­/³Ë4òòg—ëÌqìk¡´ G#Bö° «®õµv¬Š‹ÏH’y ªìÆZÂnF¯9Jí¥¶’¦ÆÓØv6è|…r¿Ò‡—ÕUù›NFW줟åÍ]'!ógaë&RÔ ¯ääòöö‰Û¯÷]ìð“5½ÞsÎsD9~ôŠŠ‰ã`âx˜8&†3ÿ ìÍ—¥endstream endobj 102 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 5382 >> stream xœXXT×¶>ÃÀ™£¢(ãмsîÕ¨IÔDzÕØ[–Å Ø2”˜@š {èH‡êÐ$K$êXÛ‹_4‰“K®É:f“{ß>´™¼x |°çlÖ^{­ýë_GBÙÛQ‰D¶p¹§ç¤‰âŸü-ì{îá w” G)r´/yé%­3äAN¦Ä¯óC„.ܶX±$<âÈ(åVÕ¶eÑÛcv¬ðÙ¹Ò×o•ÿêÏÀ5AÁ¯m7~ó„׽ߘ8I3ùÍØ)Sÿ6rÆÌ—gÍžóÊ«5’z—E­¤^¦Þ£VQc¨ÕÔXÊ“ZC½J­¥ÖQë©ÔûÔBjµZDm¤SoPK¨·©IÔ;”;õ&åAM¡–RS©eÔ4j9µ‚@Í¢©ÔjåDÍ£SC(gj3%§†RÞK £\))5œA9PÿCqOõ£úS Éí){*šúE"ÙoÇÙåÙýCª‘Þ³_eÿÐÁÝá =6ȦÊÚ˜¥ÌÑ~ýûíí÷Cþ§L ðÈqéÀ±Ë-Tá´ÌéÔàƒ+†H†,ò“s¦ó%ù0ùzy®üˆü–¼s蔡»‡¶Øí, ófvqw1¸€k’ëI7Û¥áŽÃß^;ü™P1H¨@æ¿›Ár[R+HÁ"ÜfökõA(©Q‚ØitÕ¢”¬‹ONÞb™àTÊ=¥ËªP}ƒùò•w€itå(_% ®BeüSº´Õ¦ìËâ“3"‘1x¡ÉêéËØâ€]é®Cá‚ÙÓìüОùç0SÊ6¢âíÜZ­ †jP_ð¶®àMºˆØmP 5ï ‹iù‘Ç7öŸ<]ú.‡•;d]ûjÅ}l÷iè'ëÍâ䟿ƒ¼üU*¦ûì(3x™¿µ€Æ²‘/Àá Cè¯+–l t™†5¡ì¥ŠÃ§ÐæúŠ;XÊá(Z†‚ƒªQ _Û©¥åÏvÙ8—FƒÃùŽ[–—g–óÅrˆŽþº~׆+§ðäàd3|n–|bj‹Tð… râë°=¶ý<Ëv`÷ÃàÌá­x*;ùÍß^¾|õÚ%‰¯/Ÿ7_4orÍ’¸r^*¨„[l ªŽNÙ”Âéö ]¬"À´Ù°žœ%v‡c¼ÈoÌÝŽûMá(>!…èø¤Wg†oCÌÄ©¿Àkðê½_:ΟÙ<³ˆÏˆIW×#¦ âaXa†7Ìp¥'QÙ$R·a&”²çΞ¾xãì‚)ã{,ží÷Íq±?¸õPB#b@òðƒÓäŸþºÑ+:ÈŸ—?¬Óùü!­¦•VÚzê®kV’Hy aËQ…¿ŠñávÕm«YEîg?z<–ãÁß¿vW޶Ty¸A¦QüT‘üÀ[tq51NŒn —°«6̘1ߣýþwí–/n™ãÎu!Ò Þ]—s±±l"üí¡™ îõ®˜xº)'¯‘ïu{¥ä–`ƒLÞ ‘à"Û†ÔÍûPE9÷ ç±z‡]ÀtkiŠÜ'’».kHÞëÏuö£5"|D«õ¶%,°äž‹ü(`ûý¹a §/UV#¦ÂPRkˆûhúú¥ÑËdj~ø²(8,ƒÓǤÇ4ôÀÍ"‘¾G›¤ã¼ÞHErüVÄ ß7žÅ|§ååZ¿ˆ];|ç΀‰›VçßRp)e{òÃ#f„M¦FŠú¼}K×ê{Zg"0œÜøåq^þý³ÆÀ,¦Û³+æŸ 1Þ“IÍÂt«ûxúº/É3¦tJ5¹ã78•wÅ÷úÛ‡:ÊÑ/ -*†K[¾jwbæ SÕ¼ §HîYÀ`ÖðIµíÖUc/ì^|ªï9¬ºS«°®`€u—‚ð‰ŽRØdÛöiwð=EPõ²ª ~kdõFT†˜ëtI5j¨CZÞ îÐ]iýÕúB43.pjjä Röçyô8KøuN®:ˆîm1‰1Ýs nš%UÂ.©°€„³ÞæNý¬~šh,Á7±n:˜þ°£ïžõ4Èðƒ2"·rT‰ò›ºÌa¾¤fI‰/6‹'É%ÂQ4ett8±_‰ÊùVú}|Ò!ÞS{4î`ôÅÔ|?´› (>25i;æö(™4zœthíîZHÕ÷ïFTÏŸÇ™šÈíÊÈ+3W£/ʨ`ôtÖºÜ/3± ¦  ”Q’YÁôFy’ù±ÙùŒeK,'‘ŽìÙŠ ãiûcª .*fëD‚dW×|…_Þ2-6ª«ŠMy-zåêõ†ô"}!ÊCÌÿž ZÄËáÅ©Øéýq×\ôxÊÉ£ZÐ…œc L<á„¿ÉHŽÚíã…³|Û¾[ï¶ÀèL¾—FHóö—ÂP°@Ã+è¢Ú^èÉCªåç™ûÄ¡¦Ç½®'a==ó ýñ+x0žê°Ýú)ôëÎV âï‚SvrìEf?ëÛ{°g0ƒC_¯Ð¦îʂǟ¡Ô™M+Q¡C5'oÝztŽ6ƒ—k6"¯hÿ ¿o]ö§nÓukAk–€Äɤ”—jk³¹ó4+²Z:µ;­+Á±—Î ÒH¥+£'ËÄ®£2 ûÌ’C÷þ’bÿØÉÑIAnitJy‚1©üuHr­~1¬h‰ŸgîF:”æ†tбŠO_& é³rQ!S]¦Ø¶ußöÖÇGÀ5?“ë“ ×-Þ!v‚„5… dõn2‰KŽUmš˜i Û¿=nŒ0~ˆx½_¹¶ 1UÆÒºë£ž÷.~éMìøýhp~ßO¥V˜´Zà a§5ðœ5ô¨”Ù‰T~@$&ð›e}Ì_é2|·F)ÓRQŒ›*ç'º"P1sÖÚ}p…¬·(®t¥ÿƒÞôÿv‚õEÚœ-÷Ù/àžÉ´¼µ.`[É–X2®«¯ßí‚‚6ôQ­©Ž@ûE²Õ^Óç,z÷jÇí—Û/µ®ö´¢àADµIa•pkÒdìBÌÛ6l+òißêÂBõ4,ëL-ô+I«Anõûy!»Zַ㯶¬šÖÓÝ^:CÍ’3¨"œ«Yc9jzéOx0n,vƒžŒ\ݯ˜ªJâ#ׯIEóм껌þ<[týÜ™vDÄ¥"ïe¦7=0„@z™åá=)d‹Íi ª£o}†ê¹=y;š •%¦óo!õ[s6OáÖŽµvª'øÂ«Ê€*«Ó£–™!Õ,!ª#e3t¢èæúýæßÇ2G؈”N­Öj,˜´ö¿Ð?Z²ví–%ãH ÄŠ>ó?9s6Ÿw®;«;Їgß»æ"ÿ5´°ˆ]³õØéO>õñG›Ö®òö^ÇOòc3tû#ZóÝõkõ u1&ÞXP•Y¨ÏÞU™´1¥•u•ª†5ñÒü7óê|¿ò͈™°hÞ´-¥Å*^Ž©xuBdðpäW¤È‹›ï…ÞFñÌÔg+`( }váë–èëk¹Øœ­“³˜ND±(1]ƒ’Q\Q|Qš¥£Ìô¢Ì½ ÀÙ±ó.Ëkl4ðÕ%yè:b:ÀMõž·elOñtA[ÒÕX¥Â\8ÊŠcÅ;âHÁÁŠ0œößL.ÿÅÜBwiý÷{Ä›3Qî–­)+5L$lwþîðʼޛÈ/¤Á3ý´¥ÜŒ2wçÞÁý9¼ø¿´üÄ-"zêQchEŠD[‘ ., 6©÷!æbÕ§ûÉÌ@„NpŸ¨ÛŠŽž¾ˆr*¹¸º£6¿º·;ƒÏã%Ä¿pAÎvëÔ‘6`tÀð@<·âi$-"èìM‘¡¡‘‘¡¡‘&SE…‰ëwœO]†’Ë>—Eã­PËš’¿T¢)̺-+g…nȬÝÎm­ÝóQZYZiZY`$Ä®]š°"»¨1;lV_"š¹öMÇ%ßâ ùmvåÌ.cäOf–m-ðiFÇÜN¶¿ ý‹'es‘ùɆY ®Ýº4%&8‘ÛÖ¼¦À‹èRé¼YÓÞ9êþe8Ñ¥™i#ŠR™¾Bq¼\ºBñL°ï Ådº¯JaXçÅ Ÿ0¿]>A¤µ‡ ¸tM:¡ãt”Ø"J£""cBæþ„ÂèÀñ' üüÂètó_Ü,àJ ú„8ź¾@¿èæ÷V~? nÚu6Óüÿ'ä»ia$»6QZä²à2‡f›ãu›6Kãix¼<ë>ÐÃJ¹­Ú 6’Õf^Øp›þ⩾7º_t…¦¿Õ|Pw „¯nZ ^l[äzõ½½„œÏÚþžþ‹ûºuk=NýÊÁ÷õ2bæE»ÑØéÞßûœlt„ª+xŸý1W]¥;¬SK,X×wl8y˜íwº ˆßâŒ,F³ºz%ŠFL`÷éFô/È|£zŠý›î{F!_Þ–É[;;XYãÁa­LÕË7ÿ°é?nI!¢èÉÁÛbw„rš}¡eˆ‘ßDÁÚðH ÷QÂBüà"8]¼jp¾"¸bå§.òÀÈfÍþ; í[kÕé(1†Â²âÒ¸<žW”¾ÝVÔ9ׂœÂTÎd¢ºí¼0½Fÿ)ªsËCM( !DïžÆaê¢6O‡’›26Z£ÊO.LâA²S+ã’b“‘Òm 9ÀÁàkº°4wâ–€ššPS^]Ú§º1ÓÍÏG‘l(H®ß}>µFÚHJä_* ÊÞ½w›,Œ>JÌÃm#Ìn‡9d¾S¶“dB #é‚fÔÜì‡âx<FѨÙÏùÅqx)‹#ú5£žh´Qtòk&› D70oŒ‚R<Äè ›`ÌÒKâ ¢æ V³|“:nÏîÔè¤d4Å1¥O?;󎽷GúÔ)š²sôé96ÑXyþ×X¹Û”ÁøßGáñ6k÷n]JþªÚ%mÂD©0ƒ\ÁêÿUºÏ_t0DB|"…[Ø–àš@EPÐÎú°ÆýÕ ¢ã{Œÿ—6¦ŸG$g…ñRÁë¹›S¢G(—)Ó”*#“4±Éþò÷%Iê4„Ý¢‹c 9Å…Ù}”,9aIšBà, +Fƒ ¶Ãöc»Þ8­xŠ]ÀìÃp `õùìlè¯ÀË£×Û_Åcñ+¸ÿìîÎ* 2?%IK!¡ºÔó>K•—ÂùL[¯Ò©Ó¢t(”Q”¥—ÌÞ˜ëœ9Qfmg™V L¤û.Õ ç#ؾŒÿ>Wf›aÔE+§nBEúÙY6!19iñÕßu§¢¦GâªB9œ@Ÿ;ùãÍC.¶½„¾`ÀqÌM<÷Ÿ5cÚNS|©±²ÔTR˜Ã=Öp1w>ßüæâ ï¹{v¿±ƒôóâÛÆÃïvÀ.ËvÒ R¸Ç¶}`ú}ÌÜXð–aÇÅ—Tk ¢±¢ä½©\CÃUq:¼rÂ×+Xã·+’ Sè|u«öh aä?‹ÀáŽÒN¾óÞŠÕË&nŸ“,ŒÏÊÊ! ©R‘šÀÉß#¬íòõw8ùCtuÓ9÷z‘ „8pô¸ì|~v‘-¸ ÿË–hJÔñÉ)ÉI\ph˜ZKÆçļ؂ØB¥ÑíB¡êˆ¥&$E3êbuI~vVvWoª))B{‰(Œ+Œ5DíCµÈTRYj(®«@e=Ê€2 ý ’ºvP´I÷C*›Kf!%—ÔÀA¦–ÛH“w¬¹\Ô-ëj6<£›’rý¹P:¥¤Å*üV'ž:à§²® ·}œ¦­Ð±Öi$È¿B½àÆú!ï¤m‘ ¬‚$«²ÇÝ|‚ËeÑ(¢±,3ko.WÛx°ì,aÌßîYàñÖ¢wÿº4÷L(‰hn‰h]DI”&8aÇô¯ƒ= yt¤œü×'s~"rKtÀ(´˜%‡-ŸšHÚž—ùã]Û1ZÐ\Zš_ÇeA L€æs†²ôtTĈ®*£“K¢Å±ÞEªø­=º¼«¿Ãm8&ù'{žúáÎÒR·þI —ØŒcþ¹±H…Bâ3¼ ±·«^“eBÕ(«L_*^tË¿ßÑÉ …4-˺ˆ½%"òe¨awãÁ³_‡¯>ª$3++› ˆUц0…2&8°lÖ®NC`'ÉXj¥c¦ã˜þf2؈B§JdðË™ì̵ŸÝ¸wµíÚ!S„²„¯ (XO¤·.M‡RPJ¦%0žkVM纹 Ü­|&Øÿ™Ðð9û‘Ütã9ó¯Àó« $¦Îg/-íøÚüè†È׿á(Ô±ŸÆòBëÑz¯MKã™ f±F敽­Bs2;so.ªdLá¥Êß=›§ŸL<·S õ¨º„Û/ƒAå'ï¢vÔú®eäÿ8 ;dM{NhKÖïNL‰C± QjµÆª‚–Ï=¯áþ{¹–.©„jÎG†íb—ÎEóQx6¦`VÓn¿jïÚÐItüø {Å$´oC7K¯Ôl~Na.i°•ªuBjZ‚–Ãwðö„äØD¤rC±¹ñ{“à.öq-JÈH#¬PR^PYN>Íáñpw±²®ýN»d¿à)–Ãc¶ ‰°þN2qÉ£ÝIX¿IìtÏðx¶¨…< ûÁot\yÒBtÄýYE°—-úƒ ówçà»àãªÍKÕ' F­Š‹P‘OIk?€Ý1ù‰Oêr2¢<®$/CŸW$¦f†ñy8ááùâ«Ð5,*NÊŒ.Àƒ¿Ú nìÑãýÀÃðoKòs2Q1“›b Á[°+ÎÃŽNj~Ÿ;½àæê*ÄÔdry«±H‹xçX6ß÷;±öú¼¶pÄ(’•‰šü¤¬T¦cI1žJF˜±;1GLÔ> stream xœß ÿCMSS10‹‹øýùJ‹ ‹ ›÷aþºPR13Døˆù‹ ÷ Å÷·Ãëá÷ÓÜ÷ô÷µ÷õæ÷ö(êûûýJä÷µ÷÷ñ÷ÏN6> stream xœíXKoE¾/bÄ©WÊvºªŸ‰ !R‘â8\0c›‰'vžðçùº{¦§w=ˆ€Ä-òÁåÚêz×Wµ~3MƒÉ?ãï“Ëk'Ç•­‚‹ÚF¢¤S.W‰ƒ"s±z¶upiˆÁmR“HtðEÊ[Юš½Œ3øÐwö¼ø4íØ›¼J’tôS#£÷)ؤ]ΧDQ'C½O³ÐÈØ‘}jÖ&—:kNKBÊÈYx†t—tru1‰Ž®q²°¶«7+*YÆ_'—ÃýÃÕÝòL3y7þ¶ª%¡k‰9Ñ)Æáðrõ³º¿ÞmD8š¨Î×F³qLNý ÒŠ‰ºÈ"Q$Ù4JI]m¯ç?޳ ’¨×`;ÃÑ{õbœ:cY}š•ürøxõðpõt%ZBo`ïjM§x'NŽ÷ïbå8d=úP¡RG¨ôÐãCèBµÆxuüvÃFت3Ð>Y¶AÝ笺³ÞXB»˜¤¾[çèbb¯ôĵêH¶#'ŠñGë¬4YTßå×”ä¼::ú> ‘ó%ƒ”l«Þ–ç,ìzò¼f*¥Ô«\…$Á‘ÚV»’i*:mU6¢`g]Ç×õ] .3Ÿ%ÉXiDÏ?ÝyxZßyIx‡LB?©«õ†£6p5 Œ±R(Ƨ45Kñþ¦ªpFvý¬©ƒ±g\̹nþ|½Î ‚ÂJWX¶¬ÆÇ ‡§(%žZ4MÖüd*»!H}(%EÅ|-©J4êíÆ:t€jÔÛJ”o4)ŽZ3ýͤždK<å‡Ñ]tÛ¬vÃ>hŒØ&WÌ{ªÚ_¬Iƒj¢Ü·©×º×¨» ÔƒF4êÛF=i”^Û¬7@ÜC³µëF]5ê÷F5êdÁg½ðvÖ·]ðþtáÅÉ‚Üìó«_>4ê¦{»P_JÀdk§úê¹;³ð†¾V,êì U©ÿŽ" °“$ôÈ¥¨ŽËl ¡<6Ž-ÔzÖ&6O)†I’#«^®½Ï¸2½B„Ž;õ]îè]4ª¦Ý„FCðÚí£Q8VõýJvZ–.ŠUÇa„ ‡áWÑs€7Ïîâ´j·&}÷à$vN¤„i™uT 3&… ^‰‚ÉV|F9ì‘㇟×Ë9k&XÌáùœž¥LÉ0K§â´S±ééá:ë HñW=|x´%[’p  ÕóÇh0sÉskÕ,QF#w)úFc¥Š’G5 zòIÓô|ž=2:€*Y²!˜l–·ëÚ­Á"I¼‡*ÏjJ%2ç²X ˜hð|Q2Üò5§yÝ»” ã!á’âJÖ–*SFænZ3/L– è]N;ȉü&—ÑqÎú"<2HT}zûû(4¿\øt»àË7ºhÔ傜[ÄJ€aŠöVE˦Ϋ¸Üv#däÛÎ磰IÐmÏfÀ(=‹3P³ÛïÙ÷k\ùtT£¼ !©ëwzx­·J",â«|<äS€H‘.7E €&Útí÷Q>‡ˆqQÞ><謭Àø®GŸÖÉ"2_à×ZŸ/XõS>q8`Õã27ÞF_wK‚ `ß™$¼úá]ÝÖqÝZAF°@ʦBÔa穞/ÉÎ¥½“Ù^v/¬îâ{½ £ºþøãÞ5r¿œ>†zܽÓxäî-#ûo–3tPœúpÛEˆÆW*½z[¹ ˆ<¾6ØnÿX/[ÂêQé_Ça(ÿjÇ¡ ±>X¼›6P‰â¢u~¿·þ(ʑøu„êé {@\,šVð›’ÄŒã²_+óMV]mÌ‘qaÇôf¯ŸÙÂõ4”Ô ßvkà|^‘W=àçé1m Õ±q`Þ èweö¼ƒÏ;;â–§ˆ]U;vVÑê²írÑŒ+¶—¸˜î}YŒ¢t讟\Êßá¬ë`‰£ƒ•ÏÛ3“/kæÿ[3KŸž-/«ƒ··ªÈ¤ÆÓ­´·%ÖÎÛ½•ñ9›ÇZ«KýãvA»áæ-_ ç«°mò®ß.v31¥è ß@Û¿2ž®þ¥6íûendstream endobj 105 0 obj << /Filter /FlateDecode /Length 3405 >> stream xœåZëoEÿ¾º?b…nöðNúýˆ$s1¹œCs'p"4Þoöaö‘`>ð·_õcºk6mcÜ—éé©©®úÕ£«jýãÔtHÜñßÉrÀja‡ïdøt (­%eC-­.Ú’Úˆ´±¼MkmèP+Aj΀(íjk%=•d†×R ª´ƒ©¸µ0è@)¯/tb'–±¦Ö2KŸ±PŠ›Z(‹„2T׆ОP™ªÛéQE¡ÒqLè<2œ ~På0þ3Y?¿<:gzhk«˜^\ÌtH*@{¢kÊäðb9¸¬ÄhL£´:>;>V[«ªo¾IM¬!ŒÙê™{ „Í«³§£1ç¬V–U§_Ž`ß*"”ß'µ&Ä(>è¾¾"m5¼úú‰{a¬å hº•;×ó´FTOFLÁY\VÇ#€…P©€¬´ö¡õg0 ‡e”Y&^_ükpr1x1À < T¦5¨¬¬±5qÆZ:í8$ïB‘Ó{PTÆYBÏG´&Ä*Q}6Kæt¡Õ6mîÓjYX5iµI«Û´zU¥åUZí {ߥÕ,­ÚÂêÕhä`zt.…Újnœz¢¦Fh=S^Ø›‚^OONƒƒ0öäðtvr~|úìÛ0¤´ÖûÊé³³“ãóølXõüË''§/óó_ÂKEHõää«“³''gþ±& ¬}|qì…ѳµlxq:¸øÛe5kÛîS½_ïW“Ý|½:ʧ¾m7[ØÉ ?Œ)€»žÎ¯çí´Û©¬yDè#¦ÓÆ«ŠóˆÅ8k/k+¨S¾z¾ž¶‹Ç£‹ï36IL‡Íé|õƒ‡:Õ³i»ÚÍw·žSáßÍfÞ¬&m:p·î0QÕó¶YeaÏÛEãÔ{œyÚì·[ø>±ûÇz³‰dYç—»Í~²ÛoZø’YÏ»z¶š¶7íʉSP[oØêÍ"¨Ñ~U]¯7Ëý¢ÉÌ?í¤1ÕÕtLøKo¯¾Ù´™þ“ün·Ùz´·hW³Ý›ìèÕt³ŸeÝçÓ b»¿ú¾ì޼VTÕšk{`‘i³k:XþöóÝ›öóïëÕ ¹Ðu³œ/n³Dˆ~áGRMÖ›ínS¤þhž0Ÿ´u.•DÌ.uY½Ü/—Íæ6 ±¾ÎÊž·Ûùtß,¶ïÑñù€GŸ¢/Bp‚CM·Œyà[ñÙ#ž7?HÔc8f®BÒE9­Æ.6 Ï&©s¼ü9þ¾ÚowÙ2ýïßþ°(‹ô Âg×n&íÍÌ8f<¨ ׳@8ñ'Vp£ˆ0ž¡z¡M8<1ee~ uƒf]’Ó”Ø.É¥:C\–ÿI%²¨+b:;jb©Ê稚KYJ¦Þÿ;Y5æ5ã:{…rÀª|Ò˜Á ™O‚"F üª"&Rj ‘ý™Zâ/„40Ê Á0“sp2¤o瘣I A—ÿ¬7?ÌW³œ,ð%àc b44uÁ‡/èëœ/XΡqy$^‡hè3â1Y]Ò£×Á,íÌéàŽe†K– Ò»xu¿ä¥¯îb¾¿òUAª»Q£]=Ÿ Än羑ʡ••(ˆŠim‡/¿p¥²¡DÙjî—’J^Íö®tó&¡øsÕ´ÑJC±Šl#+*êLO»ÊÍ¢s%t ’[8Û[í<ÖØÐ)bI18¬±PöFâµãM¸P¦ò¢JŒ¥®¾„ühŒb´ºÁûDc¯£•˜ÏµßÅÞàZ_¬{5£xë¢!ÕÓ‰·&Pìèöy¹,.›¼Üäåí¨‡\I%ëNY:‘\¤sÍ içöÀ—µñô–HÈ&kßuXȼÕÔéIᵓ#1\Îö Hl4~’$k^eUvy‰v¿ËËY^¶xyÂè4äÚiˆ…mœ†R.¨(]UÜ:jn!zP8vRJ Þî<¸@êvBé`ˆ@ v „jŒÒÑÞ†C <½e£s]a‘Æ9xbÛ]¥ ÊKÛ¾`:² ‚¾z lD•b=!›,$ 8õÁÔ5S‰¦Î\äÌ¢þqÜÅ)\‹µà<–4ôÊÖË'ðƒ‹{N¸Ñ´â‡ûÌJfE値Ôa%‚Ü:=j¼IppÿÉőà ‰ÍXòƒ”¯(ä-¸N¤ŒÕ—o猃³ -/ RàO^akA°›$â9q¼XºT./gdºRؘ\)¸¯ÞŽ@,FÝ*(M5öÖæ*»Ý"üÚÀBPê%í(¦a[Ú,½ ïÇIâðÎMýÀS9f‹Ü½qï-  â'ÙSúlePꬷкz*95ýï#•#lÌÝí3Ï\:pït‰Î} ©ž)7‹èœxŠæ§MžUö’¬»u °&:\#q’zíåƒ>Ow™ZŠç0F˜tÑ÷br±Î÷ü¦0ÌSÊqh 0¨áRŒî(b[q“Èæ…qeSˆÿuq¬Yˆy!¡xÊ%ò=ºo7(A¦š–ìàÊf·l¶îFƦšôˆÓ=†y„x¡L3Õá•‰Ç ç`ô€½q¹ÉÉI­«* U@Œè¾£¥ ². ’£¡ìõžKõs0€Ä¤ÈeáûÈo Æ]¬¶Bt%k@Ǭ8ïNzì½bϨ‚XcÆ]?mü”‹2Ë»¤0ŸÞë-y ¼?*¸PÉsÿ(ç|ÿÜ£,ÿMá$­~(¼Åsxt¦e>æŸiõ2­ŽÓêë´ÊÀò‚°qô˜â6ÔKEcüž‰ðï(=ÜûËÆUO[@™÷kTdÊ(a>+™Üm„F¾[}\@ö÷ûý6-É•¥AVû?4~±~}0«k)ÓüqAÕRÜ0Þ"eBÝyǺ16¼Ÿø©¢ü %”hÚ,­@»?ÏßWé~.EK]8¥ôël–5ËŸ=qR‚ñ·+ú!>ðPŸÌwϺ°ÊwñŸ™¸> Òœšþ¨“»Õe)2L›Ûâ¥~‘Þgó~’V¯KÅ—_Ë)Cúž‰‡ûÂʽŠ8¶Šï…f¨W–¢6/w]Yê9?¸,ÕîÏhd*ݹݙ…ˆÐB° zˆÞ¬Ã±ÜHÆ®Ü0ç\¸YõC×ïjý®õµ¼ñ¿ä."Gü ”Yã[}è9´^økÜBÄ‘±ê7/(³ÀÁ~0uqj)¤rÖÏÛá`è*41$bèÞ½á%;k»Q‚Ÿ;)ª¥…8˜ç±úO‡Âø'vœ·ýzßýÔ[ k†ïÜDáyCo愆\¿†Tu¶N]ý»°K}+Õhøö`síT½cê†>D“8‚Re{S4d½Ÿ¤ÚµãÅÌ©xX3}StqݸH.~Ц7·Õ_p» §u3–üçz&aÜÍ[î"—œdÅÌÞß÷³,ÌÜ;ÑZ°nxêG\kd˜ß:' >Áã()’DÛ@›Nƒ+j^sa\ñ©OgÚ‚4'ñ Çš GÈÔœjƒ4Îé8;œ"ÄœÐÕBÅY©£‘w ûÃYG¬hôP?7ý|Їœ Pà÷Ç—î3p)zÇw+1ܰà/ ³ Ó¬ÞLÎCA{¢áC~Ê㉉›°I—ªð. Ç<í 'kÄuÿÖpǤ—2}ûP'0ôpZ»Èé 稀#å`å5ÒR{>2]ÎC“±s)ΨûÝ¢‹Ç=r¾Ãš×v_Ìk·a$H/É/2²8pCê#¦çY‰òž¹K*~G‹ß­J7¸@•ÔýµYù›Byü»ŠÝ_òrRP«TÚaõÓÇŸäe‰rW¤,ý9e>qZx»)òù#‡vþ^ þ åﻋendstream endobj 106 0 obj << /Filter /FlateDecode /Length 2756 >> stream xœíZë·ÿ®öŒYŧ5ߣ pŽãŠó%¾SZ¤çC°'­tkëa¯VŽ/ò·wHî’\•VÆ ŠÂ0à›å’óøÍp8ÃÕÛ!Êñ™íßÙz@r¦‡?ÐðÙ@0™S‰‡’ œ+1\¹ÐÚ¬Wd.˜JÁPN Ìò# ë\p;‹S Y4©ˆç0/y$s oUO^§•Ò*—戰ìééôÔ*#p­Épz>˜~y-˲ ²«ñb¿™5Õvs¤¾+ëŒ„П¶Œ1À¼W‹ªœw#™V~D¤x™a`Þb1Öó\3lŒÏžoçåêñhú*`ãÕ4ØœW›× èdgórÓTͽegLø[QWÅfVzͶÃDdÏËb”½,W…1ïqæY±ßí`½g÷Ͷ®ÛiÁ櫦ÞÏš}]ÂJ¢-ïlò~vWl–eq»*¶Â÷M±r¶µp¿ÌÛz½_ûW:*»W·¿öÆò7uæ? qó£±U¹Y6w!.¢Wóz¿< ÆWó€T¤Änûªœ5'Ö*,`;Bjî»d^4E‡+‰×>iîÊ'?­¶›eC‹b]­îƒFÑüe‹¤Õl[ïš:9ûAþ ‹)¯bˆ©ëìj¿^õ}Pb»Æ^–»j¾/V»ÇÎF’s8'l|^APàâqDÍM¸ø0 ðŽ0·mŸï[’ DŽ£ÛåÙ84vlÆ8Ǽb9!Éݲ5Ë1²{´\,ªY›ŒøbÀ!wcr(q²kªuÑ„½qQTïÊõU>ÉÃö8xùKÀýr{»ß5Á%ýu‡oq ¤Uz™mš²ž•oð@ÒÂr¨ƒ¨ŒäŸ* G !ðÒ¹^H,c¼çŒuéMb¤»ôæ·“N 2Cÿ)#ÖŠA2Ę—”1Î#ESYv¡{XëWçXè%8—¸»ƒÜMˆÂÝcƒ¤w±o™æ>'¹ýµXÍMý`&@‘ŽÀ,Áh,€sÔ!jÞJ¬¼“~,w€iÙƒ?ŠÙ+(zúwÔ׋ ¿¤ÄAås¡ƒª‹Èy„³b…Ý÷E]¬K‘ö<ÌpK¡~±_ß–>O°Þ?ƒõ6‡ïü©ŠÛúÅ& ä¹ü}[¿®6Ë'âÀî:•š 6Œ¡¸sQ|}‚o½>!½'Ú{b7n?ôÑ6O]ã“›I±ƒÝa!L¸J I>&¹&1ÏÞ*Ñq„§eD0:X™äë±g”äë+Ï®ädP”æŠE%g7r¬äÄPõV‚¥JN •º€FÆ–œßB5Œ8Lg•%9æ4[îMe ¡‚‡rƵ’BBùg«h¡x†Yæ“®Ô‘\Î £SÜ+×ÔHZ¹ÉÇJ‚8ªýä­á(*³ª Œ”Ʀb5Å»goâñƒIcüÀ¤ˆÍ š0br¯+m»b-m5¤‘†ÐÆ!‚½†»‘aF Ü“ë$Y²äý(x Ñ 1<8$8¦båŒÆ<-evU }4ÎL™ƒLbkåH1–ÌäŒÿS«Ížƒ“¦Uè6¨ß2ý)Ë@–I§`æHa8 `t…lÝ™J¥15¶ú@Å04w+çeޏéxl3 G ±Þ©‚˜)ž£ y¦1VÛ6TîFDÁnÄ-Ð-‹Uðކäê"yL õÆÜf`×NñÂòc ÚÚÛXÙÞC{õ]бŠt´Œ` ˜¹0^87¾Æp®2lš1?'\Ún:îDÇÝþ„Ó G­ÞPFS“)à yšÐâhWx&Îýhù‰_²N° ]ï›”˜EBLh…+O­¢V8%úA¢«7žÚ•R$ä=8ì1†à€(i¯d¯ÿ±H||“îYÿÅŽÃàñÕÑÁ&¡N“°¿ ¼ ä,Á|“à›ïGQ˜šÙ$g¦ 牷u’ÏmÂÆ]buð{*zJ_ |Þ]ŸzwEj‡%ó¤:©›´ Ø«N³Ê')gÎ¶Ô ¸ã>ŽX §TܾIŒ_±I˜WGv—X’rK`“{j‘0é}Òø©’ãžš÷ÀoQñÝÑûhmJí¹ ýÝÒ;ùœÞÿwÒ»=ßíÎ÷Ï™þÿ$Ó[¿2™ðë§OúAŸ÷ Íî@hSU$¬O¥ÂÏIÿ7'ýƒÏ†¢Ä|$1]V×NMGF`ƒÎ=|-Mc+àɶ²\QÝñÎÌ¥Z3Fmㇴ&ÐN¶×4Tjêšc ªæYáæp. uÝa»vn˜ó\ w{‚¡m%ÌÞC…½É– ÆDá¸C«¥UK`C àhjÚÚÆ1VºÇá¦GŠ`ÞžYøPÒ­¹Æ±>Åëôö c°qS¹QÀK1i7‘¹ý€†ŸfÛµS‚bs» vK7¡>*ï-ŠJh:æ+<@á\¢$ð2Ÿ>:Kk½%‹Û0¼²×b«ð2°sCXiÖ:Í}Ù¶pƒËÏÚ«5xÐ-* ÓöªA#£†¹Ob m®‹ìݬ¹d¼» áâ¾ek,ü·l°8Ú‰°ÁzhðǾõW+mô˜«p  no¥3 a/V€u.w— Öas¯ÃÆrs§ %Z»ù‚çç^Ðã«àÌ8ŸƒøØs'Hì0s£»UøDŠÑö£)¬NÚ†Z‘YVg{5æwÁ6rí~ä㤿 Møp8ø¹°zhÒ^Çù¸±‚43׬s'ÞìÇ8 *ŒÑÓ*vg:2>8qLRqÐzo`À†æÚû¨t7aD€HwŸ† p@˜áŒ >€D»h°Sæ6,)6!ã¡ùŸ]Dm\ܵúq7‹ÂjëðâæëÞy{ûŒo³6·b›hx†K÷ËgÆ8KÙ{8ÌzÉ5†õ݈sˆ2+V‡?)éÿv£KåGnpv©s#Yœòßu|úî":â:òO‰w›X¼HPUbm•X›ê‚!׉ª%Ý9|ÜÛ¸öIÜÓ=4? Ò\Gó.–‡újŸÐ9êb®¥È$1ÄÝo*?Ö¿w¤ü÷üt÷rG/c"›Çž ¥ÛÉê9?úå¿ÙØÑû·‰ðMµë”r(ÚSÒSü°ê´ß _ þ z_ÅÇendstream endobj 107 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 221 >> stream xœÒ-ÿCMR8‹vøzù-‹ ‹ ›÷T¾»¸3ˆøˆø§v©Ô÷÷±òÅ¥Õñ÷bó÷‘÷âÚ½Q"ûDfVT@ŸÀh¯¤¢¬«t¢kpozc,ñM÷÷èçïÞI×%¡Ú§ÆÏ‹ÛÛ1Ä# :Q?f¤{¥ªŸ¡¨°k™uŒµÂØŽ‹¥×ƒ$Ena}{mlt‰N‡xŠƒŠ‹~}”‹œ 7Ÿ ‹ ‹ ‹ aOU¡endstream endobj 108 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 5827 >> stream xœ•YiXWÖ®ª¨(j¤-è¦Ê5ŠÆq‰û¾ï" ¨¸$¸ àÆ¢,B³5ÝMÃmzg_Z…¸£…÷5îLLtbÇŒ_g4ÆœÊsqžïv7ØíL¾yžÏþ(oWóž÷¼ï9W åÝŽ’H$]ƒc6¯NÜ:?v˼aQë¬Þãx.ãà?–ü1˜ÖùJ¯òõ®î&DûACèÙùÆÛ”ãÏìÉ[¦ÄFL[6mzÂŒ­3·%ÎNZ•²zÞö5óS×G-X²>4:,fá†EÃ7-Þ¼dù€÷WüËGƒQ ý cØð#Gõ=fÜø ý‚(ª'µ€êE…Pc¨ÞT(5–êC½G-¤úR‹¨~T8µ˜êO-¡¦PÔTj µŒšFý…ZNM§Q3¨ÁÔLj5‹Jͦ> æPè¹Ôpj5‚šO¤‚©QÔ8Ê—êHM :Q©IÔÛTÊZII©®ÔGGùS”Œ’S^Ô;T õ.ÅSõÕžšC𡼩D‰·D'ù²Ý´v?xEz5yyF¿O×1>C|ް»žmzkî[ÚÏk¿£C—¥¾2ßhß{ÇuÜ×Qì”Ðén爷}ß.ïØ%ÊoªŸÁO”&HÿÖµG×xŽç2¹ÃÜ+Á?Ø?Ö_ïoó¿05@P/ë#k÷”+ä¯ÞÉzçbàÄÀø@±ÛÐnYÝN¼ÛáÝÈw‹¿tAvèk‡&»DŒ†®÷¥'2əʴ,³¦\€ÁŒ­¸°¬XmHÖ1ÃÄ*äñ¯¾ ®mI¤79)20U%­?Ç|}i(¶s8“ ÐD—1®>²ÇÙýÄü£Ò[`‡s“Üï¬e¦áGôʶ¸Cø9&ZZ÷Í7û*®Ö¡Jµ-¹LaMFI(ióTK0’ÅxÄ'qC~jÖYt&T(¿¹äظà5)s§ò®pÒìEâ9ÐÛ }r;î‘Ñ%æùÓGONoødV }r¯®îøçïÜ=>‚ÇEîSg-ŽâŽA £˜Ã¨&Ƕ½"­hJfgLZô>/}†Wáî3H£!ˆ¹Œ¨ö¤Ô¤VÄ¢xvÚÔycq¤ÙE‰]^ ¢_ƒ—(NåpoÜ ûc¡×W“A} p ¼œØŒÛ ÊÕÜŸ‡ à öê‰; wé{ Áë%´œ‰‰¤œ¾`æ vл(”«ŒinÇ$µkgð2œÜ ’é#n„±—¾j:á⺧¦çá"µ1Uèɸâ¶Ôo°ùA;Þ-ñ[ÑÀ­k\T=ÍBsâׇ¯ˆœ‘œ:J¦Uä)P‹}ío±ïô~wµÙŠŠX‹Ú”“›—“ÃÏœ?±ïMúêyiA¹¾L(»SÀû)´CòFtrû®­–œêuH›%3)Z*A……úÊjð–éŒ:#*`¥ƒ­*Sv†R¹=×*¶Ã ;|í$ÜqáH'„{ßзk©¤Ã=R ')ZË Û…þÌi0˜}bó=$‡î …Ž ¤²gÓ¯cj⸳xéR=Ë}iÑØ½‚03bÁ¹û¿½x ´G%ÔþŸÀA§GzT ·¨ÌÙé9Žø6ã4¾Éè âD1²øŸ31øƒ¼”´r¥Ye-µZ« | ´§a'“¯mß™B»_|Üî´ó¤|‚.à½zŸ“ª ªvÊ7XÂã8ÏF nIäž‹‰4ôbΠCŠ£«7–¬F«PV^z^zÚÙ¶X4±mMòÐö!èV¨á “ýa~&㊱RÏï’ ©5=üÊi܇qöD“ôÆù} Ð-“=û§¶3µ0ŒÕ€ôŽw*ÓïLÀh|㵌l²ûIOÃcRQÌ2Û3²Ó¿½ëÔLŠãES&À-W äžÉ| ñ´´û3¨ßÕ¸UdWm5© òMˆ--))¶(‹¥BrEª9-A‹ã°÷ˆÿ'nz@p£‹ÊâÁbO"¾† µ–Nù*R‘Vü#çÔ†›èSCº-¬´MÒyÐn7—¯ÍW¡<Öùj‹µÒÀë‹héÁuµÇ·_ „ÎÏï<¬Nß“\.Äïˆ.Z`ž`A(ÙšdMµ¡röØíú{µuÊÌ*¾PeÛŠrµ›dÆc®«¯ •¥·\m¥g¥Ý5ÈÈÎJÊå¥÷oYUˆ%ÃB&'–l­ÌªSw«¾È9«®QíJ¯Ì,MB©lèøƆî?ª×™tf^Wàà>ë.¤S9`1tpêEºó7ñsˆâJÛë¼=ÙˆûÏ_—³Éq‡©—ŸUTlBys iKö)ø y=j̪N-SVÇæ«µëe&’Œ±5™ªe¤s$ãë&©6–6^·´rv î°Ó›pŸ´É2Mb^"J"rõÝ$x÷óÛ•µ×[C~a?›F7xÁÂ;¢O®·zßAÒIn»Ë„áyÙù9([v*ê›ÓwËvç÷–YQ1[¨2çh´ùšl>rÛÄÔ…ˆ ú¸Þ 3ëÌÂy°Ñ¤Ÿ_[˜óû ÚûAâqâ\ÿ/ÝÒÃÜ}iìãVø»Ì"\Jì2xÆì-3#7ïk° CI¸ gé7Ófåg¡,ù‚†¨ë7nì>{w«ÌT±Šƒîmqlp3“âQkqwGÍG…×­*¿ùC>‰Ðîá6QÜbp,éÚf<¢¯·!¯à>cgµøÒm8L³ƒÌî÷¤^æ(Ä‘þ?¹ßÎôœvo•_\h50E±žÏÔ¨IX"­½^§3òÍ;í–ZÄ^kˆ[­F¤ ‚bÚÂòÍÆ•„_|÷Éý©n½}íãóÍ„ö…Üèya[§ 68úãÆ[?œŸÆFµòð:G±Är° †Ð&,Û¹38ÎàÑØ¿øÓMnºfüñœ€gÐJêËÝ4˜É@AgDÏõ8!sŸÈfÚ zî„Hl"-…ñ1>R'E†)·Âa|^-UžšûSõˆ–6Î8p*ú‹@âv2CçSïôžKƒ‘iiŸä¬§ÅöÌŽ_œ£MÁ>¹ÆûÒOè7¹øœÛøG{'“ÝTŒÀY1w"N"'™W†{ö»;ùéW7jï\¤))CiÂMWziÂ"÷çÜwCF Ò½˜íѳ#C.~>¿¿ÆC¸òüÁ‹¬,µtìï)ËA-kð2QG÷p£tæÿ@©Xep ôT\ËZt®œ`ŠúÛ%/ì"Wï%^„圱F_JÙŒ¿%¸¡K'Ìc¯û½Ú\¹ï ¿¯¼°Pƪ6+5¹y%¿|ã„Äyˆí?óóÇdÑ V;W÷÷ï.sö¢™„y¬‡°ø0Ÿ!{ùÑ#uªö[í¬´ß÷b?úŒ¨÷éR<5Ž{p.|<¦úõÃíÆ.:{ÿ·þãwg >v…]¼ï ;)Y€4ÎLGaLG‚lÜc"£®"†aÉ…aß'ó½æd«59(GžmRt:ÿiñ­¢½¨•kk²YiIöî"my` :Tt ²¢Ðd"ËS¡Ê¤ÌÍÍ×jøõÉÛUI(© ¶YYiJQ\¢as`JËÛ¨faºøÈÉ ±NŒ$œüšÎ%mC*ÓäéåÂY—W¬ô¨…Ì] ÇZn))¹yõ@ÅY$o@Ud-/WXRÈZ®ÉWºÖò•Ú%s χd¿Òê¬Ä§ÉZ>6xŶ๭kù:;¤¶e 8â7£†ŸÆ#Øóîlf–BϤCáÇ€©»xÝc›çœÉã·íü'&x¶4ÙïÈ^žJÃ@æê©ÈðéýçuÝ"¿¾ˆ"èArhïd9î1ñüËcPF¶fñ>Â$ö¢/º3dÙlÒL]=š‰c~D__«zò“*õÎ)‚y‹-ÅöOb÷·à[»k9Ã(¦äç¡,”/שÈfÕjÕÀÈZV0 ˜!æ$­s'^ÖLÃXgÉ{zÍà¶Ë7ôo+ÌâÎ~=ɸëq< !i„¡xDÂ| ?un‘%Ω”sŸÞÉàHÜ÷¾ØÁ±rþ·éÊ%äjòÙnDÆ'“’§5¹•ϱÀ>N2búP$Ÿ´ää—…ºb}±pÓ_ºmÐÓË:~ U䥡tù_®Íû¼_>ººÕ «H…“†ÆC¿ÈtÄo¹ü/ƒ—´tkãèÿñØd‚ÜG7¡ømûïÚÌ/q¿x Ë3xЫM4ðîÏôwœ‡Rç†QÊÁl_Å%CtmmmK-‰WÒx6)O¶ÂU×YL$~}YáâoSBwÆz­:O4òŒÂì’R‹©ªŒ‡•PI»ãƒÒQ\æð úcMÂ$ÓµÂùìgxE$¼ÓPĽž¯[ÞsgL(ÈÞü°ÜGkÖ­Ú´+é PÄ«¯kØ¿mǧiv9!/Oâ^ÑÐŽНþèÈ™ˆ"#K²ËVªrÓ•|KÜ«yjež†„¬$Ci¡ÉPZèȇîqìàcpÿ˜—x^pæýú}h/ ÞK® ÅíúóºOê«Ú¬ÝŒ¶È±÷©9¡ÝSÀZ_ÿ‰+¹zðf}ÓÞCG*{ûÐÒ÷â´±š­BÊÐô¹f¬ýP¾%zíöÕˆ}òÙýncµKJ$âQäpDèvuŽ eÈsÌ9½é‹xèÞ€%-%ŽíØ}ÝÜÖÁ©­Û±,ÞåZo&œ—,ÊìÔ\÷z5Â%ërGÕJ¬­U#í||r71E™Óé_~ ëa\Ó1ù¹3¶OÐ)ö«YWÆÌ Ž[¶ŒOˆOŒF VE0*2›JÍüÞËwŽÝFìÕSËCömÁÒÞBß1£æô˜±@&òLù=÷=F«¼«ÖÓm¸ú‰ª†|çN¸‡O^FwØ»!'‡…'­_É'¥)³’Í6«­}Aq äЩªóˆ½Ñ>uÚ‚á«R«µ&W…T¬ƒ¼ô»ou7Ïzgø€1½Ã"*ëVójcn±Y™™™YÅ™+„¦ØcŸ!–L‡_u~çÁ»ˆC´ý Aà,|Ë)‰O%'nX—¶)PŽ1¾ZQŠP®1¹ !­>±"Å’„6 XEäÚØ¸ìL²ù; 4› +î|±e7ª@Ù¶ä“‹«2÷£è`åQ{Í.k1²²–³²u éj‡—ä{ƒÉ.‡»¾ñ¿#ÜzÃì®dÕ¨jëâæ¡ÈÓ#|¥E–½‚†v§1p˜ls»'¬ðÀãÈ›õ¤–Wˆ€Æ©.ù=ä¸4"¾§%Ð)Mj 2!cA‰©iǧÅõ„Ç"g¬Q|˜°VX²`ÃL†"v­=¦6çh›A ̰%HêŽf|J |:@gèù(ìüðUk•I W'ì0Óæ3 !4\ÑW•'ž¼ø$7¡*T¡µ:F|#b‹‹Š‹+6”Fþ jÖ4a严ØaŽÅ.Lú¼|¿[ti´ùkF‡ðêp®öXYeey}Ý1ÂJö\ÃòyÆ ¾`Ýki‚fg¾>¯Þ¡°ù6ÑN¾~BlàðΖÂÜgW;ŠTd2–[xøX,/½F·¼Å¤M$b¯AZyëýi•7¢¡±I[=hIï÷jØo‡Ä†Bâ®óá:W[V^XUÖp¨ú8ú”ý:øü(,é> hùŽg6ñ׆ÏDãÙQWü ˆB<ÿíT¬}Ñ>*¸«æOž0{Øœåö³_>h~(ã:®ùxäì1Ã' žÑxõá·wŸ8™¸›˜j26ÑÙ>iÖìÒÊ¢¢+ÿ˜èSþî§ÅmO]¡Æ8`—@<‰±^qÚ$„òÕÊ%‰aq«B†`ɬP JÕ+×°:RËLÒ©ÓüõÑ‘w„‡ßœ? B¿Œ½»cûŽ8»àÞ+õ½À›Îp1)¶oO[³î£äµˆ]¸êø•Ÿ<þþRÝÆ9å‚1I§)XË:…Xìö§Z|tŸC‹OÃò<ÊýüÈk†¨åD/¬0jyz$7"‹Á`*ÐËô†#2 Sž^eÄ×!B&ö€ˆ"“ÉŒ,r¤Gºü‚|½,Ϥ1¨ÙjóÔZGdü•Ôÿ1ÙÏÜžâqA4÷þóqèæw$”/Phôš-’k*W£ÎÓÊ´Zâg¹H] 5kà:޵ôÀYjµŠ¬Väãyº> stream xœšeÿCMSS9‹‹ùùJ‹ ‹ ›÷¿¼¹R3Oøˆù-‹ ÷ºÌ÷“Æìè÷ßâøF÷Ùñ§ÓÓ‹Ýòûßû#ûýJè÷Ï÷4÷RûÏëüRø÷“÷'÷ÏSCJNMû 7Ÿ ‹ ‹ ‹ à;¬endstream endobj 110 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 2962 >> stream xœWyTSg1÷D U|l›8E­{«Î9jmQª¸ï . ˆl–°‚HØór6Y²e‚AA ¢ˆhݪ­¶ZgÔÚÅZ{¬[­Vïs>Ï™ùÚ:çtÚ™ÉËùãÝûÝï÷ûÝß½‘0ý‰Dâè½pÙTûWèŸ\|’îÎRpv¨xÍ%lÊ^q=ø2cÿ¼93*:&6.~kB@â¦mI›ƒ‚CBÕãÆÅ0‹/f ³”Yά`V2«˜ÕŒ/3“YÃx3k™÷™uÌ,f6ãÃÌaæ2ó˜ÌBfã¸2ý'FN a˜<‰«$F‚ý6I¤‹¤­£n;fÊVÈ>cƒØ#Ü®šûgÿ§IN]<´øÑ¹ÃùŒóí—f½T-j\ij`­)¦Aèpƒ/º»íÇEXÊ?úÛáÓ'ÊÖ.–“dÖO såJö€¾JwB™¶G8äìee}!´VW°ð4D5ÇÕ•­ñ°qvJ§•¹]ºÃ’ájG%{®(s­‚TÿÇDsÕЩpyVüØ„{­ƒÐëk<{Ö=w7DämúÂr|Ev·í½ÅÓç̧ d(¨ù{ÕŸ†‹Üõ1W‰‡ü)§¬“]Ò«ƒOkÙ`A=]§”¹ý,“á«?|wóÆŸ?'ÒRñ%WøõB¡MF\Ê"×:jÑôŦp‹Õõâh“¤áî¹&1ŒGw¯‡Ä•¸J“G¢+ºÝ¿®r’@|ù5`ŠkUµk{ öÂ1S[c÷!Ã8máÕau:_€`X³!ÊÏ/!8Š6Yeű&ñkRý Ç±öš»Ûzœ‹ßñ¶ãG«Û»|raˆÌgÒ;þAææXÅŽjÐCçã`VÙ¶|À~·Ñú‘8­\¿)Há¶û4KFÚq>_µQñ4ôpG<§üñùÇ×í„ÏÆm|[ ¾‰2¹–´É©ËE×$ÕÕÔ›"ý,Œ“Û}È’7~ƒÑ}™®öQ{º÷¤v¦¦d/=j”Ú$¾]+±uãŽn)Þßá+¡(5[€ÔrAHOÏÊVÖ* €#[fú†—«êâ6eKfwzwZ¥¦6©8ÔAܤ2\õÍ‘T¹¦X[ \ dlSÁl¤—ètU»äy%eùùí›:5&Š’kÇ…³û,ñuаÝ!…3ÊUù3Ëà×T×þ=2…Sbôr]*d•W…U´N/J½›§TK]Ä!õR¼,ã­d8.ˆbµ“C‡Öp1ß’–8\ë9Û|æ¼üXÔJv†2$d\ß%ÇF–r«6¥P`Ûí$q(Nã'®™ï=%»ãˆ¿fÉ;x—@3QAF³0:CÚ2÷Áaèªk8ɹ%ê¦Èpd‰£•õI/ìR >‹éÜElU׈C¬’jQâD^S @!gÞUr+»QˆÓn€Pˆ„\JUT!Gô(HÞ©)‚"Ø©/¬Ä×ðªGMwsi³Ž³² ”º(}oTƒP¹T¦rÔ^$ßÃåIÒ³cŸ,•>ˆßòµ§Úòjì±¶@¤@`߉ÚòhH€4!K“ùÉõ–ì2È…\O³Uo¦5úi6A2(iá}MP­-I)R—‚„l5h§’x±X–e ÒÏó´´öÞÍÞ-ž a}qT×Biòä‘G~jnš W’Wüîöx@vç¥å© ài€Üâ¼bÎÞÛ¦„f 15üÐlÔqyÝMœvñB½»Û:5ÞºÀç4„tg:møBñaÔ V kBBà`…½YÚÎ6ÿ¶àÝë k€›<+`¾²&Él©ª6wlÈ×*,æƒE Àu š¤ØÂº™™•Â_³ç„{‡Æ¯†@nêè³rzÆWÐr´¼žKÿ”ý׈ ë7Ø}rì3W §Œö6£¤\,‘âqŒç3‹@Gýå[;wZm6ã);Ì‘šhzñ ØöfƒP–AaNNWggÍ×ã½{™E‚ =¡´¤´Î$¨´vZ—Á澈OA/t.y@xxÕª¹ñ1k/¶GÙε@4A“¶©Ï%br5•PL9+7ì2ZͦÆ+#<ªâi²,P§íˆÕÒ v½Q×Aé9­šÞ @ˆ€øz®¯ jÄ¡& n§þ‚&jp»©Á]à©u%¶Î®Šè€}±æóFý‡õY«Tñá›”«À‚Œ±{Sj(U\ú ÞºáPÔ‘_MoàÈûÄÙg}ht¬‚ºæÙg®×ÛOoÖÓl%¦Š¯Å8*Õo¤8ñYåzÎlƒ*¢µB‚6€ÊìTöC•PŸ²1KâWEúÌÏH*Óèwêêw‚3'VÄÅlKŽöo>üqÇñ£F9Χ•˜wµÑ{ZÙpv¼Ø;„@¨sÒr2Ftq½º÷|ßP/±]à 7¥"#¾ÎoÍIHHNU`6×TZ?šÕ2‰ 3” $üÃQ脊&|©¨T 5IYò¸ÙËU¾ÀÍŸzGâÛ_8YvDˆ±Ûëz¨]L’+ž²JÅá¢_TboÎIrò¥LM¦8ÖË ~Úµ)Ž2Òü”K§Y!Û3¹¨sÝ”Uâ2Ç(Y‘îð%©÷—=÷²WzY¤u›ÎSEOtæ©5Û·*ýýa#Uíªá•Ï‚ó¾Ú¦6k´Ã¾­– ÒdÐB"—{ŠÏ.ðïy&v:Šðdà#pÀçû;jvQç³8泾Ȩ‹èG‘ 5âôÞ‘¬9'‡Ñ9U›5–ߢóØyœy™¸ÿü&º K×ãºÂì‚ô4MfŽV6|¢°ÖÁ&KœmK—ö$´s:#_„ãoTÔÃQ8 #ƒ9ì[}Po’ ãù›ßI±§×ô #û}×þŽâb!§Xž–CÇa §ªÚf²ìª2·í^ñÞÔ%oÊ û®ò ùûL@¼HUYL6YpÁé/,˜i‘4|ˆÛ/Ù>”â@ôáMÉÖíÀݺpîJW”mG¹bßžP ÙšŒlØÆ© ëÊ+ŠkªR¬‘þêPytíærºGŒõöy×·1¤b»B¢BÁÂ*B,Û|“ƒa=÷þ½e8]î¹Ô–øA°Q¾¼y)Œ¥^úÈ‚D åª"ßPTÆý”ÃO„»µ½­Ò¨0T[ õÀÝ€Ñqq0z‚¢“Lç›ÐUûβéþãFÍ8p´¢ø“kоu±W’¾)'ÅùOæñ/6bÅï¯8ýÿwË9°6T¹œî–.Øb'¯‘t™T 7q¸ˆ'Ã쥜)Ê¢ûIÍóôûõ5º ‚*³«Ï®æåä·*ÜîçŠ-|c¬1BYcm4Ÿy²¬Uí’Çç¥t;ŠàEû›wü@oÒµC˜´û_¸ã}öÌ‘;Ľ"~g*¤x¦iR•½5u­½NÛÐWÈՅ$oàJ»ßt¶žË¥¶Jçi0µR•neŸŸ´¥™t^&&ïHÏàzoýDÒn׫üðp*µ]ÿ¶_ßyqÕ±Ýݺz·}d.:yt׿Y¿GÉsúþ«—_àï[¨ß²w«1°Ô¼am@ÔªÔ{&Ã4X»z«çvU{Wö¿üMÀ[¸ð#I Z¤Ø‚ ùˆe!kÉud¤è{„oˆ5EDÄÆDFcŸQêEô5ÿXV-¹ZŠ?tò5¹Y…„G§Í8Ðð­F\‚Â!yyú\Èç ³ó2S'xÉJùº1±Ã€ ï"";JœN×›3K+ÌÏ+TüšSiênÌãáËTì·¥KÐuüçtWM24ÙzMa¦âøjìG^ÒÄKEÖ‘áäUA““ÙœFŸQ\zãJŽÈÞ6>tæ\äN“«ûƒ³8çA ó/Ÿ«Rendstream endobj 111 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1697 >> stream xœ•T}PçÞ厽R£˜eh§Ùm›i&Ñ81P£•Œ¨5±âWÅÄòqzÞÜÜq܇€€Àñ»“ãD>Ná>ø8r‡Šà€N 䚊1¬ŒD¯~$™Œ±šh3cš¾ÛyN÷€ˆ3iÿèÎþ±ïî¾Ïïù=¿ç}HBC$I­IÛ¾ý·Ñ§çáÁû¯˜X{ qˆ“û¹ ÅÿcÞijÃs‰è5O[X¤7ääšöîSí/Èz-)™ ¶ ¶éÄ"•XCd¿#Þ$6iÄ&bOÌ'ž#âÅ:„”(&®’ûÈ 1 cü‰¤KòoéplBìÎØï©DJI]“)ßÁ‡ yô Fyò~Ù#¤Ä…LkB½Z°rY(“ ô›†€F’o x4{ÉC,ÍÌ1«•Ü©R§š]IÐ@~^7¸¹¡Çž¬™š%˜˜ÑÑó]]ÿ›¤ o¦®ÝóÙ+V…y-kéÑFæáømD°‡ª ýÞãö²³Ë¶m,JßÅe½•*K)ëê1îSN™Y¡6ªµG¤ª©b %‚Wóhœ'¯òè(/V ¿dÜЯ¯.«ªe÷¶g€h¼ÆºX³c ¨¹’;Q¨~d骹U ïÐûÕÊ…›äÞQ#[å©iÒ­½‘[,³‚6änuްï+/€GbyÇWýç÷‹Üœ¼³Ð¹ÈÓðVôÑ]¡À½{‡U;ëÐtàûÀßÎMqåyH´02ÙµAˆaP2õDdœüÕ~E´ ›²LfÑB^~TÂ/°•záªò“ÛW.FNê Üb´å×±¶]rƒ èÕîx‚Þ–ˆDH~ÊLjöôX°‚Zº¢Lµz‚,òÉ~ü½žZ4®»qrÀùî [_à6 ¯ÏÐËšÖõ5þ+žü ‚ bèssóMü‹Ý/Â*µÏÔq,Øð8Ü@ß:—·‰Ã)6œ˜ /Ó+¯¤}Ó|úÃl‡* ½@: 7¤‹µ\%Üê+ è¡XnÜgþ#Ô½%·wàüÃh®}º¹1Å<1çÂå÷÷(#èûD¹=ìÿ4+ž/ýofÄF^èäÉA±§UâXŽCœŽ#ŽVøèÌ,¦(³X©´á€»†sÚD×A^¨YR®ª6ÒuTUqD7‘ޏD7tBƒ£Åéj7-6hŠîµ¨!¿¤¹¢±VÜÛ# ‹žÇß%ÚmõePuú7¬jƒ\]^hsµ'ÚN5­1•håÁ쑉ð¥Û=Ó0cè'¢ô7ÑÑëa9ÚÊx|pÑþ†<ç•_ãÙxîw/¡çÐÏÎÞíðZ JÁPÁmû=”ÃVXzÂø€¶1íŸÜÿg˜€3»]«èhë%chùGÃchÇÉGíº$Aû>f*¡*[Äa”G‰·@ ÔC³³±Û¬}?ríN¨"`îâ|ÍnG«½Aç­lOn{[G·!¸CŸuH­à4mª&%ЋV§&+ZòÛŠ¸ ËAè Ç«qØÖçÔn+üýf4ÅÿóâôÞj6ɘكáðààðð`vzzvöNÎŽ×2w Ëäë²_|9õÌ`_èÌp=÷CŽÜú–D¢1xáÐû5½^£ñë¿?ÀâÍ8™ ‹XÆsž ¨ðLxü Ý &}5‰+Ä|mŽF~°~²jÅ}]Qœ„ÇœðÔúKÊÝ-âèÀ‰ïŸ$ÜðEDEo‰…þÄøI“î‚wrY[}ɹtÑôy•j]MÄ©çMÁùà$‡Ã2¥a:îN!@É¡µ²/Μð´Hc±YV¡žîâ“ÿë‘Ü‚¿ ‹%ÂÒLÓiè;­€2Så{A±·š§”(þ[1°ªD Æ…“!j®¬(=Äî_'×Êk­uÐÆ¦²Ž~¯ÇÏ>~5IfÑM³FÎA’¦ôÊyräkÔ‘Œ_b*«ªªÄùG‡Â¢;Toã‘\l*‹µ,6PœCÒ¿vúûN]‡¿ÓhöK7ñ\üLJÊëòÐA·§ëø»ÞJWµ“=>4Ô5 ô§‘ÝKÖ¥o–çE¹—ó¨†Goó䵯'é7£÷™GCëvnܶe‰neý{Jì;ØÁá8j·ƒêéN£WW¤·ª’ïoCóP—÷|žöa¦—½6⺠Ýô•—q,~ö­Œõ>Sg§×ÓÕXÛTíb{»yhzâ¬"WSš»§Ó™Mu™µ{lƨ:QíÙ9ì,©I÷ ÄÍ‚¸ÙOÿ¸ ï> stream xœíÙŽ[·õ]íGF‹\%Ö ÷ÅhR¸Ž“ºpÝÄž<´ž ½£¹RÔh‹'cýö’—䡆§®‘§Â€çˆËÙWJ?ŒIKÇÄýþÎÖ#Ö ;þqDÆ_Œ¥­¤l¬¥¢­QãõH[Ò‘V£#£i« k%HËJ+†ÚVIJ2Ã[)Щ´‚Oq%ZaA)o.D1²e¬iµÌ\ Ÿ1SŠ›V(‹˜2T·†Ð‚©|*®§¦¹È¢GÆ‹Ñ#êU9þÌÖã?]Œ>~ÎôضV15¾˜‚šé˜‚¨é‰n)“ã‹õèe£&S*¥ÍÃgŸN k­UÍßÿ1™’–XC³Í÷"4ož}1™rÎZeYóôoX·Šå×I« 1Ї ñöÒFPÛ¯?sÆZ®àL„]ÓÑ|6a hqÙ<œ€Z• 0¤­0°ZOƒi 'þ˜e⛋¿Œ_Œ¾ À"ÓDVÖØ–8ã -A‘:­8M¾I‹œÞ¡Eeœ%DÐâó m ±J4ŸN¦’9YhsH‹§­+P— }‚ntÙT¶ûe"»}› E‚V—“‰SØÇÏ裵š/(p/ €OGÍ£nµz0ù`¤A Ö2·vñáËf±Z_6óí~}Zu ¯µÞk>™LÃ3ÓŽÝñt¶ kþ·fýæ¸ïóÖGyë¸?úxmÑo®û}õøUwèWËM?¬P¼×-úû^8ªZ͵OAM‰_\ƒ½æÝz¹º‰XfýÞÕr³]/»Õ½ûY´ëîØE2Åé}Ø jœ&RT¶–ƒÿ©æÑ¶ŸÏ—³%H}x0¹ø×HŠ–[©C\Ì3ôøp\®»c–åÅñºÍï÷Û}¤*š×™WÝêÔç/÷—ͧ?¿þ9ò„© :j—͓ͱßÏúÝN) 4!Œ,!TCh °$M®•„}ã±7Sˆ{>Â&!Z{"Î#‚UÙd*X8Kà(UPq¯cX`Ž“¼À Û2· ‘4áWðÞ Ò´eÀ=+Ñ)#ò‚„Eáhi?%&á n´îV}.°H)䌧JãQ°¨ŒÌ"G÷[l·×‘°cÔFxTPfó‚rŒª–õà0krÑeàÃÞ°Ñ6„dHµF¶!2ÛFÜ?ºb@yÙ|¶<ìúýa¹ÝdïÞuûnÝ{äaóÁÝš É1ËÐaͱû¾ßä‹ÇmÜRÍUŸa:xd$‚ ùì´JXsÝ¿Zv›Yÿ £UÄ€ AmMâð Á³_÷‹}ß²dÛy>9‡­ëíú,V‹¸xÞ–×'$l…ÅÈ9âmN¸yNÎ2ëÃ'dE+[V³ã³Óú*gEQ`ÿ|yøg̳í~¹YdV–`éî )-wñµ3Méd‘͸rWѤr ¦RJES¹h·ca¡¸PŠæç®}0”(Û,=(©äÍâäÊ9°E˜„Šç: £•†’#*Ú|žÇf]H{BrG=ØuâSe*œ•µ.ÚtvëP.”i<'„Ødžu!Ç(TZ´~vhʃ>ˆa<ó° ‹±|‡/ö¾‡ñ’,r,Ž‚fP'€z ÍÓ)ƒë*ØepŸÁ›IE|Lr©¬K<Èw®‡;Ýø«ÖÀ¾ãÞ )më›1K,8¾—ò‡Û6B€ÌûA|úŽÒ+Þ hh¶}‘Jvü6ƒ *)-´B \×ô žBÎã”)‰"Èiœ{91ÿ¡ÇÕ;ï… p6éÏÊd¸³2c‡“S¨½¤ßÄø÷‡²åþ×Çe‡/[­rá¸pt!T­fâVH°‰×2 éõ¥((ÜúÀ‚ìÊ!°^M¤t½nº•0°ùàáÀUÒK* ´í P„{0 ì½]Á (t–›K·Ì tš´XŸyRíã¦cdqâ7†Æ‡y‚ åïåG]’køÐ-YŸŽOŠÊá„ ‚ ~ Yƒ€Px³]L½Æ`$Ѓ/C$ÁÆñž·6X…ÛDŽxÊ…P . QèKÕ‚gÒf%Â˺:ä†KDí¢ ™'ðVÁ(º ‚ÓXH¤K$í&ð!!ë_ya¡¸:‚α˜iʳà2Ô€(ÛuV’wm8—Ù äàTÞVK?é®ÁÈ.€ ¯QJ5Ó`X§T_†#¹)Œ×VÊ¡Þ%½¯B)\OYê4}&Lð€ 6«&ÍJa˜öºq‹ÜˆÂÿò×À§­Ó)ÌœÒ2§š¨_OÎJa¼``;"Œèˆð§/íÂM´Œ*qnÈ[“]oÁÄ6 se~Ñ#[‡u*Þ…VRܹÞ0*Ïcvm3aZ%–  eli… cdÁoSªA5à‚¶Õ÷2ÞºÀg FŒ:xŸuîçNŸm’ôE¨+þ…b0¦Ý°|ȲyŒÈ‚GBÂö8ËlŸWη¡ü,¡B{½]|¥0ƒö;Ú,Þÿ:UúkÆÕéùÐD_p_´5 U±øwU§ÛøšÁb9÷ËÊ߇ã² ¦µ W•{¡ùmöùë³"”DKõ#:=¬,Xoó¬¢ñ!8ñ£„*Z¾ðÀШHjÅ«o:ùáå§Êà z«™%h[yµ™¿ïç¾1üÐÁ— º— c……ã/ÜÍX¾ÉZú(Ì,>§§®ä#0ÎÅrøÓÑÝÏ8)–&­~X{në«û?¤ýMÅ6Y¶u9’ 6A6A:A²¦süΆf#M› Q=EãG[÷´á?Aêƒtcÿ§¶á{ž·¦ÓpÒ5 .SîÚ¾¦›M|“À®c!‡R*ÊZñ*'Ê¢(D‹€×µ³]ÿ™.&¡‡©óûA¸©wFgµ2Á¡—º`gÆHeñÞ„JC²¸‰dØÐ×Hb9îÐüEX£ NŸJ%B! ® ÉAê*ûwX‘¢÷sÆ”*«‚ñ¸ï6»ÛeØ— uSWQš¢Ñ9/(À7ò¾Ý³9ã*óYo‹ž:kyhªïè!R×CÎ2©-vkäɈ›22¼ÞÜW0ÛÍy­ö'Ê®.XÞ¬}c>)g¥ÐÕÍý>ƒ‰Åóé–5áwLiáÚnèð šSÝt•Ý­ŠÁ¾û^¡\8mÛ<Œ YÔ¢,:ØÁWÝ‹Íð #p(þàŸÂ Óðóuf%x¼[—àð€­y4BA_;|Üi—ShØÄðh'l(”sêS—14:Ø-|]v“Ô[«ºµÐíÄŠðWÏ©µ~¬uÀÀiÀMóLµÌcP™¢¥{¯‘aV”Ä»ý1ó°u«ŽMúfÂ~ðOÔžrwˆg*OÂ…r!Iªµ/’x+ÂRgÍmµHƒlîŠrµ¬|9V;—‹›Z²eJ²Hiž G7<{•í¾Ïtý(c.w¥N½G ¤èQ‰è¦¥‰ôþˆR‚+Œºˆr_ì Õå¸-W¼ ¤ ²À“}òoÑž7¯ÀÉi˜p;›'OY··ò¬t = ¥Ûß¼S‡„¥¼+k7³0<Š•Žª™/Ök§Å„¶É™ëŽ×j,Ë0ÒÇÁe`üV€îÍòÃYû˜6€Ñw”w˜¤ jæ)ï¯}ïf!–ëö܇ûÚ;"VÖ¸ô´…Ãïu~ÆCôŠg)\w¸vm Eñ±M´ ïX…UC%î+ªo0…©µ9k”|¡¦%9 ¼¡ôél¨WåcÀp­| x?Í çþî /9nPÚu-ÄóÛ^νÓð¾šÖ] uÑØ¾±×÷ùÀ;NÐוß=+khøºwgz~—4~3š4wnòÄú}eÏá Í'Ìdþœ  z˜ ¯”UÇ+ÌÆïRc^¼CÝËŠ’wyûhü®ÜÙTngÝîïTT¾‘ñm+˜‘¡ß·ywç#F_a?Ÿ[WÎÕÔq¿ö8ô¾ÙßUîîøtO©ÎßcÆíqñW!ñhYY«þS Í]ZUøÿU,{¨Ü͘_'èTQ\¾ÑVvk^‘oÜ[ŒUÖ|*SA!Q0‚Ì+­«ù—£á Ãݪ›õWÛ–Æ÷"Þ|¹ß.º«åuïã¯Wâ9ÏItŽÝ>¾W‡BfÜϦ@ÜÊa4‚ÉSÅŸæÐÆ@ÁŸÜo]ò'Áð'Þ± À·JÚkæ†ßæFÔ¸¿Y(p™á—¦¥<v?²ÈŸ 6ÓI¥ze®â»Úÿ£â׈ŠWÜ™Þ/Šú«Ä‚û °¥¥×B'Úšø³7Ú¸NKWk”ò õ¿°iÜïFu>ÈÀÉxþÍÍW£ÿ~¶lendstream endobj 113 0 obj << /Filter /FlateDecode /Length 3282 >> stream xœÍZm·þ.ôGF®iÃ÷£)àÆŠáâ|±ï. Ú³ìI+E‰¤½èÅÎåC~{gÈ]’+Sg MƒÂ€Mq‡Ã™gžwýÓ”tHðOûïl3`¥°Ã2|1PB—\Ó¡–Š–F 7ÃT©¬ 3ëÁõÀ]*a†Z RrRaÆP[*é¤$‡±H„º‰TFx(“ý¤ÔðÔôöë¬2Ö”Z&Fµ©MŠ›R(›Ød¨. ¡©MQ¨èÉ´6…Ý:“’ÝÈp9øi@ÃöŸÙfø·›ÁçWLmiSÛÅÀƒL‡TðRsŒ¢Lo6ƒÛâÙ峋‘a¥µªøçõvµB V¼M <„Í‹ëÑ„s^*ÊŠoNEˆ5„1[\¾À_𣸻›¿ƒ œ'6pVvÜÌa×+'l1Ê ÷ V¥`R›Nø)nÏJmа93JS]LQƒ"„[2b4-U¡G¨nz3x3¥5À(pG‡Ê[Œ®Ð0Ò"Ì –çp„…çqTc!<ŽW#Zb•(þ:šH€ZìÃä1Œ6™QF»0z£·EæqFq“û0ú.Œ–™qDã&£‘„ÐCUZÍ º,Jj8à8¡à$ÆäÅt 1¡ 8J8üºœ^=»xù¯ésðÜZG¥‹——ÓgWíoÊW_?Ÿ^\Çß_} !|ÅóéëéåóéåûY&ŠçÏnž9c4@o-Þ\ nþ|[,ëºÛÀדÅq;;¬ší8îú¾Þía&N€ý¼ULðf¾Z¬êy7SXó9¡Ÿ3&Þ”·XL¢÷²´‚¢óÅ«f^¯ŸŽn~ˆØ3›‹ÕöG‡:ÅE³\œ.´ÿÕnUmguØíÐt€¨âU]m£¥WõºBßžFTþ¶Ú6›Uµê¾lv»V,:|}Øg‡ã®†•Ì:ÝÅËí¼¾¯á¯í!ãб/«µ÷«…úm±hv›ãºŠÊ¿è¬1Åv¨Ѹ_ã“l³«c¤?‹;¿$[¢a»¬ø]µ¯×«mÄ+yV-ë±s†*ÈE¨Ëý(¬æÙÄêýñî‡zvóêPEÔÉ]½¿GÿÕfµ~ˆV&’OîÚÀ1©<(ì–cÞv&Á'Šu%‡ð—±ºÝ rÂÂ#8uÚ/-A7/€ÜM½X¬f+à&øò'8_áS§O÷‡Õ¦:DÂ]V«÷u„úºœ–‘-'‰_5wÇý!F¿¿îôé/‹Ô$O4é-dï¡ÞÍêûÄqBÛÂADÐiÆ=¤‚V2B4a¥Rj42¡ˆWPL(s•+±>yA¯Ð^8mA ~c8¹•:Z gP êÃŒ]‹îÄ¥1,T,ÈWdk4-¬¯\•ËRÕWN£r8…‰Ê}!Ù@2D¢ACO6°B%Ö*D¦Áã ®lØ +G˦êBuçxHz[ÊlÜ›:Ò÷Ä-$4•*lU x¢BŒ 5½Cw…x$1&¦1&˜6]Œ¹õí;½HˆqÇòyB왃­ûùºÚU›hמòÍqåò¸¹‹•[ô ÇKXìN¦ýÓh.ÖÐNÉ·ÍîÇÕvs==Õ\Óã'™z;¦ïºŒbð‹õ~ñw1ÛnÇâO°3šèøG‘P‹œf`¸eAA"zNWé[ž[uNAX%>±ª§ ´Â]Ì-ƒ6\$=p7óXLá.+‘ë¹Â[ó=ðWОSC‰²ÅÊ %•¼X±U‡ø&¡…yk´ÒÐ…º¶^YPQFyÑ5¢6Ùª£€{Rïþ` U³Æ Kš àÕ¬nP7áB™Â™B(œ@ƒ»MÅ(tÎÉü‰Ð..%^9= œÅBmS-ß§ kwr®¶&òÔ¸Ía‘oM܃k¹á vÃMvXÅá.F ¸Âœ ¨mÐ$gŽëàþeš÷(kµóÑzK$ÔèL™Æóz$&Ó! FR œ`ÿÀ)i¸&¾Ôq˜s‡ßÅá2»,Ò0BAuäà'QBx¿AŒRçwê â%(\B×a ÞÌ‚ç{‡’+¹ÄYÂ¥Éj ¢£­p "'؆`UÞ:‘}p±"Ì|Âð}Ãæ “VxÃ+ÇHaàþ}—ZÛû±KÂP¼‡ ²L±žeU´,±']8wäàŠ ŠwÅ SF-áþqžty;áxP¶f¿Þ5Ëên5¯KÒûu5«ïšR´µL‰r¾&@µ`ÂæAÐmK-/ñ€ÅSâÂâYKð”yÁ0‰šÀVÒîÕ†ÑÔËñ±ÒÕ)A!¾7Ʊ´žô€=Ö“ UAØXK ðxÕÎgˆ·¥rîý[÷6…ašÍ<,t ŽmÒHe4ÒŠ †v¡–ðú#lc{ ¯ò™w„tó¸'ÃÒL] ½—u"àU ¦ ¾ÜÅW+kW®X`ÜŽÎh7k8سiY{ÎRcñM…Wà™GŠYè,¾›»»ƒ²ÿÁ—½ã¸–߈`SÄÐæKZg†Kè`5à›,=ê„úÊ«‰Ô>¶Á¿ª‡´c'JÙ•qÔì2¸{<¡Ø}Ëöòô¥ ?²Â×ßöÕÚ*"<á‹Fˆ‚ùÄž?q Î;BáP•XW^ÀsA8$ŒÛ„pœ!8n¡‚º×£m8±è Ajo†ðÇ . ÐBàpyðOµÕ=Ž.Œ[,{üAã$œEPe~©¥ç¨RuiLzÔ{Ü›AÍ:Gô”Á¹Ô8dRÖ(YgrÌÉ¡¢E[Jp£êË{Ç]äh€0‰ã}°r×A¨E,œéÍ]dí$nå)׊ö)—do 8QÐÒ8žCï^ýû^Ó2D’Ѷs_öøIY¡Ùp·’:YEÿVÓeÿu0jÎü[GêÞD¢Ýߎ G®ùÒÝÔ^_üZ³\IÁ~ðݦ â) ?x,ÿC€õà' ”úÊ1§ÛôaÓ'XçiéKQû¦Ûš¶ìôI³tó`5çŠÕcdrnÉ4µGN ¶œ)éëÖ/Ú«ÀŸÅ‹Òùº‹àí; bØ!Hªu‡ª¨úõ$¦o’×ix·ˆ†CsŒ^FÔ}"R¨½]¦Ö;è9^Çܧ‰fÓuó‹|JóൖD¾¬i0;¡¼‚^À<&Ôòt€"CÓ’’oéBÕï2k?›¤Ÿ4¸š…F5¾Ì_'_2 t‹ÌŠp½X¸í„nï6>¤Ûxܤ-„·Rr-S—ÒÓ³ô.H¿oñÓ£ímÎY´ÎŸ7‚¤f$åtH—ùž!yÞûÔ=Ÿú ð«î㮂†¢º‡¦š:þ|WžæŠpÄ<)—‹m» ZÃ3ÄG$sÙ1 iìù ±Tšð³=}ŒÑç:ïõ£ÅÆ>¥ß,Nã{1ƒ¤íEý%Ü…‹œ¯]pì‘|–Åœ$„~™mi4qChûIÛ¯xáÆ· \€ÉQÏí8Ò†õÏí¹·˜fWšü$\d],¼@Z ~v(&ú}TÚ„vv-qY[ìÎ68çô_A“â »œÉ®(²2Ù$ ||2HˆKZAÝ«2m–á³é¹êÔ·1N†vA¡TtAq58 Ê$à°Š ¦Åv9Ê|÷tFõ¹íßßÀýвLõÂWSÌêΑ´û÷0–gê÷ÓSͽz:éTã§èmgNæãí}æ{é.>þK˜œÄÉÜ÷Ùû܇ÜX¿›Ì§ÚD¥_h»á8Œ¶™OÃQ㇜Ɯe«Œa9¹ø­ù!gWû©)„Ú¿!Í¢û[[ñÇŒ\g•iþ‰¨V™ËLrù·aö{迃æ$¶ga¨…aÿ{¸œpò6¨ÿ t_„Ù/âä“0yxô¿T¹œWÛŒ\ÜãÝ'R µÆ5–áÇøò6§Ü¿¹l%O€ …‰›³Ï8£ñK&#sЕ™§98ë¸ñ¯qx—Y³Ï­ù,WI–ŸÌý•ŒÉºÈŒrHEÝ Á¯ ŸÊþß:=rÿ)½ó> stream xœíZë·ÿ.ôü¥«VZsø¦Ñ¸Ä²áâ|ŽïäÍÙö¤•¼Ž=_>ôoÏÜ%)…>¤-ŠÚ…ÀÇ%‡óøÍpÈå§>)¡OìíßéªGKnú?÷HÿiO”h_ ¥–ýUORj&–½«žVP* }%9)E¢0£Á”R8*A5+O¨ÂLJÅ$/¹N ÁYiy%;µ´Ñ¥Q«ö;UJ2]ri¥4¨R8R*Ru3GT­RA\§S"ô½Ÿzà ì·¦«þדÞÃKªú¦4’ÊþdÞó0Càh=Q%PÑŸ¬z×…Œ€S€âìâì| iiŒ,þñý`DJb4¡ÔÏìÂ+.žFŒÑRZœ¿༑„K7OJEˆ–ÌoèvOHiš¯Ûm “HÓ¬\ÇÓh^<P‰²˜(Î !‘Ž”áç<¡q2¨B!HÙêG åo&ë'½—=ŽÜ0¢Ðd(Ñdi´)‰u.WTaÆ"ù1܃¢ÔÖÜ£x9€’#yñ×ÁHPk »0y£UfT…Ñ6ŒîÂèu‘Y®Ã( ¹ £Âh‘ÙG4  ,t/9"SÅ´5™— ¹Rý A‚àÜ m}:? ¡}Ìðëb|yvþìû1:WãâçüÙÅøì²ýÖ´xþâñøü*~?y‹’âñøÛñÅãñÅÄ}–„bœMΜ2 ¡7†ö'ç½ÉŸ®‹E]wtq5šÖÓ}³Y£Ô÷õv‡3qõg-c@À7³fÞÔ³n¦0ú!‡T…‰× ó‹Q´^”†ƒ5¾x¾™ÕËGƒÉ»ˆMPÓbsÞ¬´à0D§8ß,š½ãeõÿ®Ú6ÕzZiûMˆ,ž×Õ:jzY/+kÛ£ˆÊ×Íz³jªe`÷Íf»mÉ¢ÁWûíaº?lkÜIã]Œ?LßVëE]Ý,ëŒaÌ8·ßTKoX‹õëb¾Ù®Ë*rÿªSGëݾÚGíþW¦õz¿­£«ÿ—ö[¿%[ÔëY½Í’ßT»zÙ¬#`ÉZµ¨‡Î¥bÊœ¸¡™Eh­w‡›wõt? gվа'”Ûzw;ŒöÍ«U³¼‹Z&”nZÏ4gà¸SVbÍ<ÇàÞÔóy3m06Ñ–?ö/™§‡w¼Û7«jî¢jÞ×ê«r\Æh9Yü%B~¹¹9ìöÑûÇûNWñX¤*ù`°*½.ž­÷õvZßîÑ#ÐN„ƒˆX£=¤íæJ‹„¾Z4 F<ÀÅ%ñ›íš2—_ýÁEž\y7‘R*Ñmh#:%Ðר(¾8t*0>¡¼[Õš†l…Gß~Ác}!¢E¼Œô¢{ÉšD.fW޹e»¸l묦<±€TIDAèˆ7–7a\ê©BoLäûÍ"ZRÀ§w2B4â P)Ÿ¹µ‰Þ¤\Þ¦kWÔ8S[Yj–¯ö’hUÜ!,Š4VS‡8\e‡Unãðn‚I{>ƒËDɱK´³&âUaŒRÅÛ«ÊðÞÅ·•·Ü^ysk:Ñœ|Yµ¦ãÍ÷#l%Þ*•ØPÇaÈmþ‡‹ì¶dHs€p‰tÄF&ªi»³œ)kyjŒ/•.–®µ-ê‚í;Kމ[0Ž$x!„Â#™[mñBÓD Rxä•·Lhïìs¿íµН>´Lî¯\(råùM«,åX±Þ¤šoS'¿Ç—¤GŠUQ±Dtãlà®( l•hÊÈÅ}Tlº;ÂXQ¢;µ™"»ÎÔ¿M-3Uïm¦v¾û—kgˆ*ü%LŽâäý»“¢~žé #ŸY¦M°OæáWÿ=LuæuV÷ ¹Ëªø #z“á³KF6N°0(1¤cnî–×aô ÑÛnÏìãW´Ok¬&pÛbJÄÍ²Êæ97aô.ƒç4ã«ÅiÆæmÆæ}²z?ŠMˆYF±ÛÌÜý;Ö£ê,ؼâ–.¹ø+3Ç!šô!kü$¬ÇÄð*ŒÆ'Qà}¡‰÷ÿmßß»ãìÍY§ý7«Ù'•åè—,÷™f9øÌrQô‡Œo3^‹€åBµÊš œÏ&Ë}º©-ܽçŸ^–c_²Ü—,÷%Ëý³Ü“°~FçatõÑ|÷Y¼êN~Žg´¤±5{†å?ã´äж—„1 …ë`M ÀÑtµ´äö+PÅÏö·r¥)s½°–‡ïœ1eFÅ);¢´°Í*ªJI\r±³Œ2‰(¹.„áœÙŽŽe§tU½ÿi ´“ŠûƒkþÂ|' VíJDÌü6i‹µÛ¨ÑF¹Æ‰Dàu½‚ !h³tIŠÃ+¤ñ xÁ»(âÔzO°ðÛÐ)¾Yehpöpid*.ÓŒ €Œ¤ŒÍ¶ßFÂïÿY?8\u•<6µëº0ôØίh¤iÛN„– 7lýGïq³öºîEF!‰£v¾…Úp×OdšRm|—IfcÏ3Æà)uÛtG¥)œ¤èʉ҂£-®uËJÌVÞ_Z{èÐŒwæ½Á ‘R[/º./ÐßZ]ç›ÆŠ‡¦±#X$áánÛÊiXí> stream xœ¥Zk#Åýnþ„ÅÚѺSïÇ*AÚÀ‚ˆÈv'Š"&Šz<=^ {<ØžÝ,âÇçܪêªê{DHP®¾}Ÿç¾zøiÎZ>gôOúïj7­òó÷36ÿzf”m¥ås« o™ïfN˜ÖxŸo¶³73Ïlk”›[£X+¨òã¾5:Pi‰³ªˆ†‹šF1<Ô•<­-žº‘¼A+ç]ku¥Tº¨u2ÒµÊøJ'Çmë¯u*DébD“tÊÒ•*il¾žý4ãÁ‘óôŸÕnþ—«Ù_ ;÷­7Â̯îfÑÉ|Εl­„c¡z~µ›ýмxõâÛ…­÷¦ù×›¤z¥•h¾Y,Æ”•Í›ÅRJÙ.šLI˜wLß¼úš~YÆœ‘ÿ¾ú+t²ÒÁÁXíô¸º…Ôר;çL$)lZ%´uñs/ZëâkI©¯¾„*œ3aMów:‚™WÍߢ²–«æ%éê,÷ÍWá¹JÖÇ—ÄÎ0&}óc^Ùæ „”–,ç ך†ó©úòjöýLµÞ­p(@ÁçÆ;ß2B޲8Y•o(N—b„/ÇÈ8гŠ1z½à-T3ªù|±ÔÁr¼9æËÇ|Ú9uùtȧùtÝäcŸOù´É§íGéŽgXÿ'ŸÖg¸¯‹ˆeç¦õVºàX©ŽßΚ/ºíöùâ³™…»¼twõ‡šõvwÝÜí»Çm¿x@üçÅ!m™pÍÝîYøÑÜu»ÍöC¢q¢¦ùôa¿9÷÷Ÿ>+o»S—(€¢Š¸Ølû‡ã‡¤2×­W<ª¸ïïî6«M:’ªÚµš’y™u&$¿<ž6»îÔÌ›7§Û¶Hzy8ìƒ4Õü\¿ë¶}yòÝáºùü—ŸIz,ÏK»n¾¹?õ‡Uÿp!€eR If¸Á•ƒsè' ÇO@¾<•Rë Ì-“|pÿMwŒ*‘N ýK- Ü0¦YÅW©V9üäñ矊}¢_BBœ»516c«Ø˜±‚K2ÙhòÁ:ÙðÖôKæ2¯ÓáôÝa¿în6·ƒY°kaÏV¢¦8¦+È6¸$=ExrÈ¥wƒ®›/7LJþpÜìï ºC·ëáú±»Ø&Á­O±yê~ìïË‹§ýðÈ47}9óƒõ}i9€‘"ÿêq»`8÷ï6Ýýª^¸ -8êKEÖ¬…¬ÜöëCß‹¾û»By‡G·û]aÖdÂ×ýqsûØeujm xM­0Êœh"~‡&“2ñâ›/žgp ž9yY¦zõ¸»¡€E†jÄü«Íñmy&š7«ýas¿.šlëî ÷ó¥.ýbhZItq_5Šáæc‚c€IF…F­Äø¡áv'xl±·qf<*75ײY?RsƒZLh4Ü{gE!}Õ8ÝpÕz7Ôc_ÉÕÈ] *£îáÐÔ¿5¯h=å´Ï´{bͤ2® š0ÎðÐÆ½@Ó¤ºŸ-¥BóG%¨øÜÅ[JåŠËÛúÅ>Ì ÁÒ¤¢¬ÍÁŒÉ`Pñ&ÞK' ¤çãîì±+ÇC9~Xœq„Æ´ôƒ”©¤€ t¼i1¯}ŒæHk¡>iï™FJ ëpÌÖ†gmÊÊ0eQ& ±ðÂ䶸é†ìF«Àvô#×ãH¼Pñ —*9•b"cÚKF0 àÌ¥Á³ÞøÜ?Á‰´.¤îr`Œv‰j¢yUK$PãuÈ ò¶LÐ |‚1˜Œ Y!i±ðªdí_ÒDPçà•&kzK…^öu(3Æþe©zŸOp¹·Œ›q. oÕ(9¶J˜q»c@6.6)š¹ûø%^塲$yûõ2ltØÃl*¦ ˆu#¾x[6ÙcB@Šù!‘÷'¿jÕ9+‡-³KÞÂNSa Ös Öï³±w‡²*: ŒbÊW…VNJÆ€˜j««×pám«q,›u µI…D×5ÖçB,¼–ØÃOÓ`h}­a/Š LÁ»ª°¹ @•µ h€#ôÆ|F+ó4'ÀTÃ\˜Xsñº­*ut9Î~ eá5‚£'•¢œ£AáÓBµ]AQ¨ FX"E ³ÓH9¤`´‹’?uUÆm ð¾~¯›Z‰3;æëùIÑ®†Æ*8L˜lU}L*sU[u¹v$¿lãkŽ© šfâ,Ð4Ðcõh¿÷L€Æi‰½B¡UÍUœd SfpJnˆ ;ŽÓ"*–jm)/C¼ *ö§4Å:+-:ò X/L«¤¥+K¾µËxtó Ùq„`•¨q~ÓØÄvÍB»>”¯j)ð¡*ÖìbEH¡ºÓbu#)¡¢ z,å/Ëó£~_íúP—le(‹£Zž™ØjNà®R¦[U±X8?f‘[ã)²ðÓI¨Âmá#ÄsA?F…ŸÐô*ÆÓ %ë^¾…nâ@`5<©FÃÿ0j—PÂiÆ¿¯*é::8yÒOí…ÜóH+še‘áJðöyP9‹@=‹S~rtˆVP©«çšEUF+O•Â^#·R,ø]Uß_ßdö‘ò'ErÒÅã̹‹ÔÂûõ'4í1,Éã⿚D/}J>&‘þâ0:õ¯kцibFss¬ÿXe]ÿËX|”´eÞ©\Ò…’Íá׸JÇÛ‡4ÌHˆI¸™UUr *?TŒ³2V˜„qÉ©©újèÍ.MX²¢ñYÁo•%ÙZZ=jæô—12a<¯Þ¤,-}kxO¦"*2E9B7¤zÜUn£¢TR×ÕÇ®‘›»©·ÑY{ûq¨¬˜¯ Ã} ÊC%—K_wSFmé×}lø‚jnþ€ð¤ô.‚_Q"Ã8/e;|½hu\•¦V§æžÌ¦ÒL?LJúŽc~SÎŽ·½ÃEàâùh>ó}/„}2žÑß]bWFÓi7x²lÕõ¯ýŠþ…üG¦ïgÿë“¡Xendstream endobj 116 0 obj << /Filter /FlateDecode /Length 1691 >> stream xœWmo#·þ¾¿bq_BÃwÐn¬\ؾ;YiÑøŒ`-­t›H–³»ºÆùõî I¹ò( XÃÙá¼<3Ë…œù¿áw¹Ë8•.ÿOÆò÷™  xn”ju¾ËŒcÔÊÀØf·™5@…Ühɨà(8Õª“RÜ ªd"8©”Ð’J›TJ êu%G·¬³Ô¨èÕ°NÒÂR©]â”C-ƒ#§¢ÔÈ9’œ æFŸ{,ßd¿eÐA™?Ë]þ÷EövÎMî¨Ó\ç‹uÖà 9 1zf(p•/vÙ>™‚0äüæüjb9uN“ÿ4™2Êœeœ;réÀ˜4‚ܼŸL…àT;N®>Lï4“ºã3j³ZôÆÝ 2V‚äÇ ÿÁ:'4ÊŒ”·ÛétV’‹ ×hK(r>A\(2NZäõ‚®³Á AÉÁ?_ü#›-²O™DmXR3PŒY;ë(óÙ•F!’&p<”¯Á(à0jëS!{ç Œ9-Éß&SÅ},@šÀ<jw‚*Uê9PŸI Ë@=ª Ôö›rÍ Õ?jsbo¤ :3™xˆßÎ%"HÖC#)XiL> \1ä­“÷³Ù;,.ΰ®nfóó«ËŸfXʹ®Î®.ofçóam9¹þp1»ºë>àG͹˜}œÝ\ÌnÝ’2Ž•r¾8ïœ1˜"çx¾¸Ê¹#›² Xr;]—mµ<‹V¿–uƒœÈ@ÿÅ 01ûUµ®ÊÕÈ!ξeð–›ÀøL•XLcôŠ: >xr½_•Ûw“Å/›à¦ÇæªzüÕƒ#rµßuÕ~Ùuú| ÿÄuñ¸,ƒÅv?‚¢ÉuY…Õ*†|o¿”Ëö,„º*Ú"†—H–OÕ¶|jžÏb¤ëbWmŸc½$ÒožzÞœu¡€¦F÷" Ë}Ý´õ¸ÿÈÚ›*€±,ß„ê¤YÛ’®«ß£ɶÅüÇYâ`/üµØÊ“èÀXDÁ¿XDwäö°Ûõsܹ_G çeS­Ŷy×È©Rüe]W˜rÁ~ø”VЪò54æ]à7.ûsz]ü>xtR!–„ã¬?Ö¡¤¡Wƒ·3q)©µ*B¡}+Õn.¨Ã~íO,g¹^WË k#ù.S’ §^š5mµ+Úx nŠêk•ßÒEóâãïùþáд±`Ž÷½üúGÄi—>ãqiËzY>µ˜Ä)ØÎñW‘`:2ü' 7¶ÂNÄiáÇéD+PG:„²cs3ÀÜØÜŠÆ¦ÆxÚqø5cŠ%¦$ŽF§¦.£)°oÔS}´Ø %¯[’¬Sdz …ôµÖGÍ0†)cqàýZR[·kl{Õª<T4Ói‘Æ2•ˆœ8dàðGØY×Ô%kh•”?žãR“E]ìJLêpoáÅw˜›Ãî¡LšFz(/qs×h›põÁ %´Ð^Ë¿öõ¯Õã&ží´Kw‡«„Cß± CK¸;ƒû±`9®øÑJÜÇb¾;“÷}ýk2ƒ"8»ïO=ú7œ~Ìë+äXŠ}w<(HD_Ó5&þNœÚõš‚°Kþ]G Â8N´ñ#vœþFη¦?P¹õ-KžšþÎÿÚ×–Ÿþ~˜ti‡ã˜'ñ4 ²9ø¹Ó˸ÂÉÎÊÖhƒsU?A[E@Ò(ïÆÑÊ%v±÷H%Úî²6h|ô a‹ª°"Gá½×̈́Ԗt®0`Öae´ÈçÖj8&üBˆ¨E/mªgÝsS©–/鯲›Æ»PEðSãèaƒ:ðNµø 8Drw’,"YGòyr¡(€á£¯D1-ñ‘8ç#Ä:g ù²ï^Ž9œ?|ˆHczÖ>rf¥dm‘Ûÿ3r>™,c O‘¬"¹äiÙ&E!?GrsRCBÂ)ð´ ›Äcç1B1ì¶£4ìþg,úܤpŽÀgK÷ ä_ŠÞU5®¹ññ9É»h¥c^ã&ÖØ— šÁkjÈРbyöllìý˜rŽosœ0,åz¯‹N›´øü|\E¿ ,:¿ë´¾F«ÄÃNа£zO7®|‰€Ð Á¿Ž‚ ZB?ú”ý 0 endstream endobj 117 0 obj << /Filter /FlateDecode /Length 1727 >> stream xœWYo7~ׯXø¥T!1¼-àÆJàÂVIiÑÚF°–Vò&:œÝ•ç×w¸¹ÆÆ( =hÈÎ|spfø5"˜FÄýêÿånÀ°°Ñ?½(¡1×4ÒRQlT´¦°²¶ÝÙæK4VÂDZ ‚9®vÇP‹•,¹$ZLÍFÈ#|”>)5|5} *c Ö2Uo„˜7X(`2TcChˆÉ3ÕžS«­h#Ñfðu@KGFõßrý¶¼š1YlSÑb=¨œL#*8Ö  (“Ñb7¸FgӳˡaØZ…þšA«R0t1Cxš£ùpÌ9ÇŠ2ôñ9 ±†0fÑô­[iBŒâ·‹ßçÆJÃÇbZg%³5Æ¨Š¹XaÁ¤6 ó©Sϰ6Õ±ÔÙô PJ˜Vè#A˜èª«©@‡ÕhjÑ›ò»b‚‡äĉS„p‹^;’b…F à€@p®å”f°B”ÔÉbða °5­àPH )k,&.s„J‹vÇÅéG1‚ƒ?Ž‘2.΢ŠÑlH1@Sý:KÁ2åíæ±¥v=TÜRYK=µÔ jɤ¥Z*m©í‹|yèO-µé9ë)æÁ ‡U6)l57Î5ÂÅÁß l%1UR¼LN]pàž«édvvyñ÷äN€óc¼=&½Þ¡Mµø|]£ùq·‹³'ò°ö>œ%yº:ÆÛü´2a }ê™W)Äœp?ý¦Ð*uIÔžÃ7&ª‹z«õ „”°ŒT÷¹:M¦• ÝEû¥ÀÆHï åj©*e3Ž-´we!;“õ:]¦É¾K~‚Æ ÝK=W;É‹tþFLãô1ñÂçx‚}Ò<ûøÝû{v¸;æ…O˜î¹ç_¿Wžè‡tƒ.öE’-“‡‚8¦¦T\ÿãDù²k ÁšZX²(ɼû¡*IeG—¦©nšÛT·»8w†Éæ tvÝœ£nMˆ–Ü«â®ÿóP!” ¯Š ­»¯ÆФé5IhŰ£ëÂÆÉu¹VYM(ÆŒ7É ¤­IEV¼Ï îÝ¥«¤ã*½šRŠ&JÊ€…aªhhՔҎ *¯i jrh¤»žA匳x—@PëÆ…hŸc¦ÇÝ]ðR^Àá²Òæm”¶„VRþ¤ËœÆÊe¤ ®nï²ÉÎZeÓ5 evN©®Šd–‚ø ‚žì•Û ÿ]P¯Üv¢lFIA•Æ0÷ùQ²Ùyi”¤ðRpåOô’ܺ!—U£d5ýB¼,ÌvŽ„ÊÀÑæèÆ_HÂ$Œ‰°oV†´ròVF"*°ç§¤Ôl XÉïÌøSø’† )†nxN6áBTB!” %³€}s=£0lûϘÆ0ECw¡œµÛÕÀÄC)÷áÁ¤|N”¦ÖyQÁx"m æ ´á ´·ä®—Œ=™yòiØãxÂLÛ>ŒœI”&DçL$5º‡a ì²ÄÂ0SYN 0­éÄA è¬M—ÿÓt Ùi¤m@%Þ†O¦žÜz²â…¢jkÞ’Ì=ùäÉOžÜx2é%YŸó”{‚+ëç²L4^‚Gܪk8<< ðšÜzöº1`Ó0$V°¾îÃÞƒ¹;ƒ > stream xœ½Xmo7þ®_!äKW‰áûK€+à‹•À…ì$²z‡«ki%o«•ÜÕ*ýñ7äî’\ÝÖ׺½ƒ xÈg‡Ïøç!FdˆíOówY (âfø¯¾HB t¨„$HËa1P#ÍýÄvp=Њ ¥ÉPIŽ£ äg41H §%¨fHðHËÏÄZLrÄu´¡œ!k+Ú±uK”^5ãØ)É4âÒDNi¢Æ¤ãTÐjg:ZS~»Ö§h?<Ü ~å°ù³,†[ ^Ωd$•ÃÅzPÃL†` ¢Ç *†‹bp“>š¦IήÎf#M‘12ùç£ FØhL©I.ì€`ÌK®ÞŽ&ŒQ$ MfïF0o$æÒÍc¤0Ö’Õ ÚÕ PRšÍ’ïÏím “ ÓJv_gÓhžœ¨„½˜HÎF€ &B‚”áæjEãö  6ÍÆ?j(ÿ¸øn0] > 8Xƒ”‚˜ ‚˜¥Ña{º\ @Rù å¯ÁÈÈ0Jm‚×0ÎGal$O¾Mµ±äà'^*z¤ÔK¥—½t›x1óÒƒ—r/mŸÔ;ô˜þä¥MÏÚ ±àÌhd!~9ç€ 2Ši GDs¥† s+Àäítú ’‹bÈ£«éülvñÃ’@ãòlvq5=›7cM“ËwçÓÙu¿y%ÆÉùôýôê|zµpC„)dÊÙâÌ9£àˆŒ¡ÃÅl°øËM²É²v\OÖÇݲÊ÷»qØõsV`&L€ÿ¬1Là`ö«|g«v&1ú%&/©ò· ã “½@†|r¹_eÛW£Åï¦Åf–ï~²à0@'™í7i™W÷…³gcø;ŒÓÝ2ó;Vû™\fé.x;϶©ïU@æý>? ¾ÖÚë}Y6Z!æëª<.«c™ÁBjœédúeyŸî6Yz·ÍzbcÆlò:ÝÖ±5pß&ë}Y·i°þ×Ö¬‹q}†ù*Ä}?ï~Ì–ÕØÇºJ«4Äifù6{8<ŽC¨ë´È·!a"í5 /Æ."‘bÊœœÃr_ª²]ßÙíE¡ñ§KËt›¡uþ%¸-{s6»žŽƒGµöçt{Ìzá!myCÝ$×Ç¢HËǰr¿ γC¾:¦Ûë:BŠ„ §™v™Ã¡3 ø“q­r›EíÉ3øFy}S/Ó/G½!' ÅõÅN j2©ÍÀ{‡Ur¤µ(I[L¥³M2P±í…ôÌÖë|™g» "ùf 8bFœn;=Ty‘VáJ\¥ùç,¿FS²æäã×€÷|wF Ë\ qxÄà+Õ& ÔD ":Ë™ÐmeS›¶²Ý¥“hÂóªbCÕìBbÌœ|¤<ìB4(оú™n`E~u¼.¨óËZµsœŸPÖ&¼¾Ueõ¾„bw—¯²öe¨ña‹†¼Œ³è= ÀVH/mêHÜÍÁ>’6eVQ–ØÛØeò>-Ó"ƒ3lªD£èåêXÜeQˆ¯á¬wÅõàŸ;Æ;äªfmåûò§|· ·9®ÌîZà1¢.R ³¦ÜŒÉÇðÞŒigÄ:#þ±ÎØ®%Õ"ãm®C @Nà€¶)ê¶Ié\«cº¡±ÍÎ*ÙÝâ ›Î{ÂÐÉÊ^»Þÿí†zízÙ²GN¤²=°Çvæ)öHÄPÛ‚ÇûØ#ƒþAÚTµìñÍÈÕQ, Ð9+BA`Éæhy-¤ ¦˜¡¥ÚZI¼¬fàZ{GAŸ–›™hc"“ 6w)0·6 #k]Ab'¡ÉQ†µº{k3.uâ\ÁkE²Ù¦%%À/£ù¥ gxDlgmg•-"±•ûxaæØ¼ µq‘E.B_DlßÔ¸x#ð&kh#ŽA,zÅ4ˆeG=@@s&°Ç¬°qx€‚¸fΩ²sP!”ï­ón›†PmWb°S€¡D­-XsŽ5lÝ ž‰4•X @BybÄmÿCW a øÄOAÜ1ëY†R>:`©Œ%ç5F EÜb‡]7ŠJƒÏ6óá¦M5£ fi¨} Lûüüîˆ@](°=-eo“·ã¢b¢!!ïGà€}-ã#ˆö&ŒÃÕ‡’š†ä½‹½í ÊèÈ’Ï‘/ö¸†6Idž¢ä±Ak 4Ê0,¡huPNi²ä rTšÚ™g7¶LÀ+Èåÿ³±-{šÎCOû©§Ù-zÖ–ÿ¥au}jÍ>BÀ9Oµ7ù—ÀàÞ¬×С44û7ÒÓëjñÊiYîË^>Út¾w+o“oùúKÛü>æ tLðóTJÒ@×&Ôuº5Ó'–®1æßMK/·ù.Ûì÷;QMgÕÆà˜A“­ Œ‰È@@ cÈ&д6‹ý®ºG³Ñ„²G1±‹pQeä"øÜq‘KÕG†kË:–Ozb™t,[6¤—ëÕ–_w,ÃèTª±Ž,äø«·L±ˆI/üÂåi(1”´¨  Ð±¨F Ö6Ùn••…c±ÁešÇc)% m‹QlBPì9ª/e„Ÿè$¼j¦¥îFL-¡{+3‹«–ùc¦E'LNtp jõNa!N |s1;ÅŽ2(m,.ví̳yÅðM‹?•‡Ñ?Êà ¢Üvǃx?áa hKŸÇB„ý2û_Ó0iïʦa6þVð\DKæˆB‰XV„KDÎ>õ’³¢×BÙ‡ HHj:À4Ì¥œ©§È• ]PÒ¡P¿ƒèPxÒ ð€^ÒÏš„ÛRs7xl‰]îVoÆ551ü1‹Z¹ãd¸‘}ĽNú0ø7ÐBÂendstream endobj 119 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 530 >> stream xœøýCMMI10‹ûVøÒùV‹ ‹ ›ø‰ÎÇÂbetau: V‡´Ò¦øˆøÐ€¡ø-¡÷Ë–Ç÷òÖb®q¶‹®‹¢¢›«œ¯˜È‹•‚‹ˆŠ‡}ˆ}SxGa‹v˜¬¡—º“®§÷Žš•±š¢•±‹‘}”|†qŠiƒxB_ûCVЇc;B‹W¸°Ã§Ú¥Ð—©™‹ž¸k°Y,fû%‚•‹•Œ›¤â±°±‹”›Šks€n…|f(vM‹Z,ÐrÁͯ¸¡œ÷©‹õáõ÷TÀ¨s£nnssnn£s¨¨££¨øÉûV ÷5¡÷ÿ¡™¡÷¡ÿÞÊÿ>ÿøÍÖTÉ:Qo{qhTcT*x?û3ýЇ…“‹“‹ŽŒŽÑ÷¨žO·fÔ‹Ô‹Ö®¸·»¹«Ë‹Õ‹Óf¿g¤Å¬ÄÉ‹ÓûHû:~†€‰s‹}‹wŠ•¯‰–‹ ‹”‹˜†÷÷Q‹EeCWlp•wm‹vSŒjŠo¿Ž‹°‹šŒ©—±glŒ]Qs@oddUHgR‹?eÅÒ•‹šžË÷‘¡áÓ÷3÷ ‹Å®lO 7Ÿ ‹ ‹ ‹ Äkïdendstream endobj 120 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 925 >> stream xœ’mLSw‡ïí-Ü«V¬…;Y²ÜθˆY\„Yaƒ°…°l ‚pbQKÇ‹+ƒÔ:VÊK{9Ô8P0B×òÚµæÂÆ,“q`dÆe†!™ÊÎe>¬p>O¿óüžšR*(š¦ƒSÒbÖ—p0Ë«ÑA b@¥lúo¯fjûð¶;jj}ØÈ¨·÷ëDSÔvJC…RaO½Bí ¸@¥¤ŒÔ÷ôº_¡Q|ü/ÛCäI³g•óÐCOÑÿ”‘¯áCPaÍzPØŸr;8bÒ‘˜Ä…´ºj‰…LðYp¨Ó<_6 ó0 ¿À¯×Gܳîoa†ò©M鵉 ƒH°&›#?2.p $¹]êsÑX÷ƒ¬ªùN±Ö(Lެ9 œmƒIñpkul>X#½!ØY‹Û.uC ÆÞR3¨Ú%éÙ¸vS»ö—V$úÞ Ú–ÙI|^°ÝTyØZi»ð”Гƒ_.ø=cÓ£S?Á"‡[wN“0¢ŽÑíû¤·új›·Yrž÷º~¾ß2ÜòP|¬.åÖ\ U•U ‚ñU92xÝÑÈàN²ÏG¼ôãçhü—Á|ÂÏü˜þ:Q'榞Úß0š£p4Ü7w£¤µÐh,=ùÖ‹C¸µÏ–gÎE«ð²§çŒs³‘£„!Ltz\^Ë9_—«Õã5» ‚¿oª¡¸;÷Lºœ²¬Ï µùz£xÔ^,ŠP]É6±¢ì 4o”—0L’3*f¹ßá%ÂÈi¬êL塬R ¿¯2àÀ»l”Ç E†àAÇ„C‚n˜Åu•El,4ÞÒγñòn~MAšÙ¦ÿ,ã }Bã ëÜ'ð?X}ІÏüy½áü¥ê‘ý¢¶¤*ÜFÈp$µW^¡8+T|©%ß±¥PÞt¥ÖÑxUè¯÷Ãt»ls楇T8‡ÏdN”dB|,OöØ¿n‡N®7·Þ*ƒô¨ù(Ta*QƒA^uö‘ }¶°Á'óž¹E¿—þÏ|çx˜¯›î¿5<Ü=>¸ms‹gKá3®¸Ùäó9]Þ»9C{È$‚„“Òˆ!ñ¨À•Ü¡»ÿ"›â²3Ž›|ÜçÂiïÙ>‹Ï6cÜÒÝGsý]_ä¶ múÚœxä.ù´à\fàŸ…ÍÊ—j¨6ƒj ¨4õ?ÄIÌÇendstream endobj 121 0 obj << /Filter /FlateDecode /Length 3944 >> stream xœí[ëo$Çqÿ¾ ò7,Œ|&Þq¿A@ŽÁÆÁ‘%F"Ár¹äQ^’ç%Ï: ÿvÿªŸ5d“Ç“.Hp=µÕõêzÎ4ÿ°³\ ú¯ü»»^©ÙÄõ7+±þt夜­Tkoœƒ[_¯|s0 pX}± ^Î>ȵwFÌZ©A‚Œ³³ ˪ gkVƒp,íÌlch­Ñ3Ñb«X!†ÙÛ.UyæB9fã"*H?!Bu¬ Y`¡»*ã'Ö—«?¬d2åºü³»^ÿìtõ“Ï•_Ç9:åÖ§«lf¹–0ƒ4Ð^øY*»>½^}9Iq²‘ÚK9}òëO^5Çè¦ÿ“˜E B©8ý’¤Æëéןžl´V³‹jzõ¯'€G'ŒKp1{!‚ÓyCÝ} $Œ zú·ŸÓ!Fí€SWÄ7ÑŒÁL??Q¼´>9]„´°òÑÀ2bL<”`ùTTæw§¿‚úZrõÍpR§¯V§÷åôù‰œ…ˆÎLÿt²±Š˜ÊéЀ۶ú¶­nÛêm[Ý·ÕWS[^ÈtÄc[]µÕ»ÙVÿÐVª­~ÜžÐîÂ~ÓÚ—øW'|I†ƒGk峦êf9 ô¹îˆÿØ€›<,Ôµ¸l«ýÈ.‡’—#ľûÍ@ÆÃ³xwøÛÁ¯ûåïŽrì˜¿Ž†”?8=y©fáøIV°cÁP!YØÇ¥w8x8¶µ³6Kï(XœfÆZØûóE. H.tŠ:A–Ö'aq©4Åq© KíkºïI:Õf„ à)ºãT€&EÔ"u¤ àH-"+Rp¤¥L$†ôÜëNz1 WÄ.þ¾S d`‡È…U„—å}çÉF†€È”“JË0K?é¾4½÷ò[·B¬éß\[aç)qqhXYTŽU ¬ˆü»@ÊŽƒ€Ezäü*dU$eXLö—”Œ¹!«J0ª*Óð7“-*N6°´ž¥#ãÖ¥*K%ɸÊŒ;rdi£¢×ÞùÙ£W€ÌZÉÅ«n%B )"Äôª{úì°ÝíÏnizx¨ ‡lÎ’”m&>;±b¦ÚÓ 15Á k»=OJt£Ø0 Ð3–"¹¼Vu{¹FßýˆâéíõÙþ¸¾½Xßí¯¾{{Üß=o†Šç÷öˆ%ih+¡›Zâ…§zIm]©T( ±§"8˜‹ñ©V²í ô’>§½Q³Òðò\­ò£çU·A²DDª‚¬D¿€ÄÃ"|Ý-2µv2ù§ÕñŠÅIf¬ IXïµQBÝG·Y=êD©BÐnE¹ÖΠ€¡íE…œa¦NyÞašIçJjz®êsæA;*’ ¨PÎqúG~¦UŠŠQ¥¬–zP×ËÓÚÇHävTQo[j×qc¿Ç”¡©-„•KyHU+ãf³2 µtféAå2ÞiF¨OG\ ™fÆb4 V…^f"…~Q€§è’x‚ÈDÊÒÁa( ÔN¡ŒùuS¨<ãä}­ãŒ@yÌ¿(Ðïu»0ù¹2ÈÏ´¡ŠP1ªˆ•ÂR‰SŒ…YƒÀ5Ñ‹Vª†úÇô\Î¥3ÅŒÅH¬ 9¼Ì0@¢Šœ:í:ù””)l*W#ëÕ-Ízˆ¶TÁ>Øzþ»èЄ…f%¼;Í] kdAZ¼ë@Øy>|&š‹ÓÌXrx™q ÁàhÜ‚Ê)ct”Gü…FÒ:JŽî-4…ÊóÌ‘®`–Ž¡L~.ÚsæA;*²DÂ(tô”òŒUŠŠÑ¤,è±ûCMoÊѼ 5p€M=WT¤ `H-+³òÌQ–ü™@?h¤A1†#êï?Òô.°¥çácÁ‹†ø¸œjViiViRiš m¤©H|¤y()Ãúþ#ÖèBœúh#è.¼ùø#FR”8úHƒåx"aà§ÛËíÙÕyþ^òÈ{и ¿ßx£¥‡,ñj¼yïØRÓÇДÒÂÑѹ>¾…^ÁTŽü_è*SÂÅé*-áyzº|KW‹lŒBÙé˜n;ï<}™K— ‚`¸Žï‹ý­d|-eP˜_d»ÿŒÐ¥PÞN·'h(%œè±A!UÖOo@°8*@›´qaº'LÞOw'JFòß/˜oo’ÐB‚^Æ€ÔÂÒ'¡„ŒðpŸ¦oiÓ ‰ƒj6 ±¢¯£Ã¥/-¨ÑÇHhÆ8ytÔO¾#‚rÁ/6^19¿ŠB° ³d~䣫n¤›ÊhA| aÚ%3Èôº˜ =¡‹ŠQMßÐÏ^Å¥ß$sÃÆ3„ÂÀ còZ iâôûr §÷ÈF ù˜äEûèÔŠˆôµŠÎö1)r$)¤G-tŸoÚ)$PúuSÞ #Ýþ ¤cÖUÇ9²P·è9`¼®“FÌ8Ù¸JWÏÅ•-úØ®@v²œ8jØëâ¶ŸÂ1¨J½ápgÝvgÝu¾üT‹ &+R º]ð]hJB°ŸÕ{Z†à͹þ‘ÜÂ"ˆö™¾†k w„í£µ'ìq}BVTA›…à7DÆuœñ û¹ 1¸Ä¸©IdCÓ¸Vù‡·#žÿÔÚ¿Ðÿçà“äõð[éówú._LçÙ üjÁcØ[¶ctçál°{ô•zôõõ†á.\ten{ºŒ¯ùîñu,- ÝiÞ ½2݉ìÌG ŽC:Ý,—ïQwtk¤îñ=t7Zô¿F·úéösüz Æn »ùÔªjõ‹“\¢;É·Ãù£«ÝB·ÏÒÞ¸0K-´ùAWq^šÞwÙªï]±b¢_ ´}7âb´ùã'­E‹ª?ùkÏfí£KÝñŒî=äÔúÕôË›ûýq·sO׬œ ²¢§³íÝþpu³¿¼½¥êðt}{sÿz~µxúM¾·¤0*E½,ÌT$•ýDqRéúžQùaoü¤Ãc-ìò*Q" Þ¡ ^ʼþØ2o¾?Þãüˆ¸š.÷7çûãõö°O$†ÛË<$ )R_! wSmY£ºÈ¤²C©LºŸµÛßÜ÷о³ xL˜b@6}„Yü•ÕuGo= =ΡÞè:Í]–ˆèÃ^£rjŒ¹£FΠS æÒI+RSH^€VB÷›„ms£I:ŽYO]zéraCÔhs¶7¹ßØ”Á8”9›ÛÔÏJ° ©„ç¿7 ¤_÷í3‚‘¥eÑ1bªœþ*­Ñ'’Ô$ªr€îF&gµ·¹ÃC(°½Ëô06-èe}½5†Ë‘T÷hl1ÏQ â1Ê óÛftoÉšš=±üE2¬ä°ld¯» ª&Z1ÓñC;tÆçÜ툯°!ä~² ﺛðb¡p–øaŸè$‚‚áÞdÖNèé‹!ë'ü™‘¸½)„áehŽq6é<@MzÇ-òõbë]ÞIGÉý'Ÿ”£?â“Ñ"ÿ?tÚ‡NðÛLÐSÂ)9ÞU÷CYI£ó i›ÙàÀ©yÏ÷T%ó>è·£}›m¡¨÷˧sˆWe²G K,*C˜€ŠJÂÀÍòÈÈϯ`䬿"RsOŽA•+]J€–ÍxSŒ&lŽVú]#¸ÞöæùMÃf"æ®B›øü±›»ÀÛZw™ ÍÌçOd˜–×¹s%å\.ܯ¯Ò”‡0"—ËšÊeFcÑ•„ÈžŒÈÓnA‰6Õ¿ccz° Ýfk½ÒÈÌåäRü<üÿ—ØÓÝm÷@‰QÑ,±Ó0i„ZäéjPIž™^П(zWݱéÊœ®XSá)´ì™^Ø hË9ä"YP6=ç·…ÛÒu™2ûm¬P§°ÄDí)*é A–Çj‰3‹¡ºErãEü•aúm÷ qåb¤ÓŒOï“âÓîQ~ÿXÒ¨œgÚ”tQû1íz’º/ªÒ+‹¼v-Ô“ü<Ý3Ò¼¸³I~…+.¸Ü.üm^FìËÖG^tK¿8ï9ù–×éC~Á‡êÈŽ™»â6¥\†Í"Á´ê­M/ßË`(ûXÕg¯ÿ êxoZendstream endobj 122 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 846 >> stream xœ‘}LwÆïÚb~b-jr‘fË]–,f1‹s˲W· #Fb@N“*.ŒWËK‘r¼”Ò^{å¾”–+õZ*¥@Ñ"”Ófê †•ɲ,šlÙ–,‹l‘˜ìŸ-Kö;üí•=Ï_ßäÉóù&MtMÓ;?¬(={ªüÕÃÛ‡ˆåÙg[' À¨£!¶õpߣ½ëE«{¨mÔ7´^~¢ŽQÇ© ª’b¨ù Ê@ÙiÝ¢+Õmj>“–r«¸ZÅo¨4Öa û¿ÓãëØÊlàs€Ùµ„”]d?9D¨‡ÇñÞ›FãYn-‘É€‚BöÙ!Ÿ‚À–¼uÕX$åÌxšW™èjx>µp#}/–tg¦½åEò&Try$±¨øUÛ£Òÿ`J¯å´&ƒ1ð£™Þx[»Óér±Öë-á@äýƒäm¼ðÙ' 7Cñ4×[f;TmýÌíÐ5:8š¸&ÏA%{­ VKÅ/îñî?²¿M³¸œq5VÕ~è´weú«%¼;ºÄ->ÎNÌÁ<,ô) ¯¸U çèÍ?õxsë%f$èƒ Äyi@"Ežb§d°"~Æ•IIRXÂüû@ùÄFsn9™žŠ°sw"9 ¨úm’Ô)°îfþh A!4÷‡1Îô¬,*Vé­[éñ×x™‘S¹§›€îB}O§Øë¼ÈÕ‘#ÛЧ ˜[gJ&˜°ß`IN­?}æíÜÉZRÄ[8W§oúQM¶yíïü\bÛã‡Èº;Ú_®äuÁd"<IsÑ[_àBXG«æ¼[[×ÔÄ^ùù0tç]åÇìë'•8M{G£D4‰Ù‘‘¤Ì†'ÊϦÈa·ØÇ•‘Ûb? ƒ÷ÿÿä»þûÖ¤ýNN'ðÁåÀ²öí­uá˜Àøa ÝèŽÚÎ9/ZÖyIòñG«¦.‡Ï²ïÀ«xäKü9È(Óp}ì¼À{Ùzrà 1œ}ï5òü+•nQðµ> /W [ 1 3 1 ] /Info 3 0 R /Root 2 0 R /Size 124 /ID [<6171a3b1e2c735515f209c695e453828>] >> stream xœcb&F~0ù‰ $À8JŽ’(äA‘å@6›(…ðÿ‘¢¶ ’y'ˆ> "™A$»3ˆd¼"å$@¤ÈR)–w‘l¹ ’o:ˆäæ‹›ƒHq°ùŒ`óyÞ‚MûV¹ H2òÊ€Ø\À²GÀ²OÁ$'ˆäüvCˆdù"6]¸‚= A endstream endobj startxref 86262 %%EOF HSAUR3/inst/doc/Ch_analysing_longitudinal_dataII.Rnw0000644000176200001440000005336314416236367022042 0ustar liggesusers \documentclass{chapman} %%% copy Sweave.sty definitions %%% keeps `sweave' from adding `\usepackage{Sweave}': DO NOT REMOVE %\usepackage{Sweave} \RequirePackage[T1]{fontenc} \RequirePackage{graphicx,ae,fancyvrb} \IfFileExists{upquote.sty}{\RequirePackage{upquote}}{} \usepackage{relsize} \DefineVerbatimEnvironment{Sinput}{Verbatim}{} \DefineVerbatimEnvironment{Soutput}{Verbatim}{fontfamily=courier, fontshape=it, fontsize=\relsize{-1}} \DefineVerbatimEnvironment{Scode}{Verbatim}{} \newenvironment{Schunk}{}{} %%% environment for raw output \newcommand{\SchunkRaw}{\renewenvironment{Schunk}{}{} \DefineVerbatimEnvironment{Soutput}{Verbatim}{fontfamily=courier, fontshape=it, fontsize=\small} \rawSinput } %%% environment for labeled output \newcommand{\nextcaption}{} \newcommand{\SchunkLabel}{ \renewenvironment{Schunk}{\begin{figure}[ht] }{\caption{\nextcaption} \end{figure} } \DefineVerbatimEnvironment{Sinput}{Verbatim}{frame = topline} \DefineVerbatimEnvironment{Soutput}{Verbatim}{frame = bottomline, samepage = true, fontfamily=courier, fontshape=it, fontsize=\relsize{-1}} } %%% S code with line numbers \DefineVerbatimEnvironment{Sinput} {Verbatim} { %% numbers=left } \newcommand{\numberSinput}{ \DefineVerbatimEnvironment{Sinput}{Verbatim}{numbers=left} } \newcommand{\rawSinput}{ \DefineVerbatimEnvironment{Sinput}{Verbatim}{} } %%% R / System symbols \newcommand{\R}{\textsf{R}} \newcommand{\rR}{{R}} \renewcommand{\S}{\textsf{S}} \newcommand{\SPLUS}{\textsf{S-PLUS}} \newcommand{\rSPLUS}{{S-PLUS}} \newcommand{\SPSS}{\textsf{SPSS}} \newcommand{\EXCEL}{\textsf{Excel}} \newcommand{\ACCESS}{\textsf{Access}} \newcommand{\SQL}{\textsf{SQL}} %%\newcommand{\Rpackage}[1]{\hbox{\rm\textit{#1}}} %%\newcommand{\Robject}[1]{\hbox{\rm\texttt{#1}}} %%\newcommand{\Rclass}[1]{\hbox{\rm\textit{#1}}} %%\newcommand{\Rcmd}[1]{\hbox{\rm\texttt{#1}}} \newcommand{\Rpackage}[1]{\index{#1 package@{\fontseries{b}\selectfont #1} package} {\fontseries{b}\selectfont #1}} \newcommand{\rpackage}[1]{{\fontseries{b}\selectfont #1}} \newcommand{\Robject}[1]{\texttt{#1}} \newcommand{\Rclass}[1]{\index{#1 class@\textit{#1} class}\textit{#1}} \newcommand{\Rcmd}[1]{\index{#1 function@\texttt{#1} function}\texttt{#1}} \newcommand{\Roperator}[1]{\texttt{#1}} \newcommand{\Rarg}[1]{\texttt{#1}} \newcommand{\Rlevel}[1]{\texttt{#1}} %%% other symbols \newcommand{\file}[1]{\hbox{\rm\texttt{#1}}} %%\newcommand{\stress}[1]{\index{#1}\textit{#1}} \newcommand{\stress}[1]{\textit{#1}} \newcommand{\booktitle}[1]{\textit{#1}} %%' %%% Math symbols \usepackage{amstext} \usepackage{amsmath} \newcommand{\E}{\mathsf{E}} \newcommand{\Var}{\mathsf{Var}} \newcommand{\Cov}{\mathsf{Cov}} \newcommand{\Cor}{\mathsf{Cor}} \newcommand{\x}{\mathbf{x}} \newcommand{\y}{\mathbf{y}} \renewcommand{\a}{\mathbf{a}} \newcommand{\W}{\mathbf{W}} \newcommand{\C}{\mathbf{C}} \renewcommand{\H}{\mathbf{H}} \newcommand{\X}{\mathbf{X}} \newcommand{\B}{\mathbf{B}} \newcommand{\V}{\mathbf{V}} \newcommand{\I}{\mathbf{I}} \newcommand{\D}{\mathbf{D}} \newcommand{\bS}{\mathbf{S}} \newcommand{\N}{\mathcal{N}} \renewcommand{\L}{L} \renewcommand{\P}{\mathsf{P}} \newcommand{\K}{\mathbf{K}} \newcommand{\m}{\mathbf{m}} \newcommand{\argmin}{\operatorname{argmin}\displaylimits} \newcommand{\argmax}{\operatorname{argmax}\displaylimits} \newcommand{\bx}{\mathbf{x}} \newcommand{\bbeta}{\mathbf{\beta}} %%% links \usepackage{hyperref} \hypersetup{% pdftitle = {A Handbook of Statistical Analyses Using R (3rd Edition)}, pdfsubject = {Book}, pdfauthor = {Torsten Hothorn and Brian S. Everitt}, colorlinks = {black}, linkcolor = {black}, citecolor = {black}, urlcolor = {black}, hyperindex = {true}, linktocpage = {true}, } %%% captions & tables %% : conflics with figure definition in chapman.cls %%\usepackage[format=hang,margin=10pt,labelfont=bf]{caption} %% \usepackage{longtable} \usepackage[figuresright]{rotating} %%% R symbol in chapter 1 \usepackage{wrapfig} %%% Bibliography \usepackage[round,comma]{natbib} \renewcommand{\refname}{References \addcontentsline{toc}{chapter}{References}} \citeindexfalse %%% texi2dvi complains that \newblock is undefined, hm... \def\newblock{\hskip .11em plus .33em minus .07em} %%% Example sections \newcounter{exercise}[chapter] \setcounter{exercise}{0} \newcommand{\exercise}{\stepcounter{exercise} \item{Ex.~\arabic{chapter}.\arabic{exercise} }} %% URLs \newcommand{\curl}[1]{\begin{center} \url{#1} \end{center}} %%% for manual corrections %\renewcommand{\baselinestretch}{2} %%% plot sizes \setkeys{Gin}{width=0.95\textwidth} %%% color \usepackage{color} %%% hyphenations \hyphenation{drop-out} \hyphenation{mar-gi-nal} %%% new bidirectional quotes need \usepackage[utf8]{inputenc} %\usepackage{setspace} \definecolor{sidebox_todo}{rgb}{1,1,0.2} \newcommand{\todo}[1]{ \hspace{0pt}% \marginpar{% \fcolorbox{black}{sidebox_todo}{% \parbox{\marginparwidth} { \raggedright\sffamily\footnotesize{TODO: #1}% } }% } } \begin{document} %% Title page \title{A Handbook of Statistical Analyses Using \R{} --- 3rd Edition} \author{Torsten Hothorn and Brian S. Everitt} \maketitle %%\VignetteIndexEntry{Chapter Analyzing Longitudinal Data II} %%\VignetteDepends{gee,lme4} \setcounter{chapter}{13} \SweaveOpts{prefix.string=figures/HSAUR,eps=FALSE,keep.source=TRUE} <>= rm(list = ls()) s <- search()[-1] s <- s[-match(c("package:base", "package:stats", "package:graphics", "package:grDevices", "package:utils", "package:datasets", "package:methods", "Autoloads"), s)] if (length(s) > 0) sapply(s, detach, character.only = TRUE) if (!file.exists("tables")) dir.create("tables") if (!file.exists("figures")) dir.create("figures") set.seed(290875) options(prompt = "R> ", continue = "+ ", width = 63, # digits = 4, show.signif.stars = FALSE, SweaveHooks = list(leftpar = function() par(mai = par("mai") * c(1, 1.05, 1, 1)), bigleftpar = function() par(mai = par("mai") * c(1, 1.7, 1, 1)))) HSAURpkg <- require("HSAUR3") if (!HSAURpkg) stop("cannot load package ", sQuote("HSAUR3")) rm(HSAURpkg) ### hm, R-2.4.0 --vanilla seems to need this a <- Sys.setlocale("LC_ALL", "C") ### book <- TRUE refs <- cbind(c("AItR", "DAGD", "SI", "CI", "ANOVA", "MLR", "GLM", "DE", "RP", "GAM", "SA", "ALDI", "ALDII", "SIMC", "MA", "PCA", "MDS", "CA"), 1:18) ch <- function(x) { ch <- refs[which(refs[,1] == x),] if (book) { return(paste("Chapter~\\\\ref{", ch[1], "}", sep = "")) } else { return(paste("Chapter~", ch[2], sep = "")) } } if (file.exists("deparse.R")) source("deparse.R") setHook(packageEvent("lattice", "attach"), function(...) { lattice.options(default.theme = function() standard.theme("pdf", color = FALSE)) }) @ \pagestyle{headings} <>= book <- FALSE @ <>= options(digits = 3) if (!interactive()) { print.summary.gee <- function (x, digits = NULL, quote = FALSE, prefix = "", ...) { if (is.null(digits)) digits <- options()$digits else options(digits = digits) cat("...") cat("\nModel:\n") cat(" Link: ", x$model$link, "\n") cat(" Variance to Mean Relation:", x$model$varfun, "\n") if (!is.null(x$model$M)) cat(" Correlation Structure: ", x$model$corstr, ", M =", x$model$M, "\n") else cat(" Correlation Structure: ", x$model$corstr, "\n") cat("\n...") nas <- x$nas if (!is.null(nas) && any(nas)) cat("\n\nCoefficients: (", sum(nas), " not defined because of singularities)\n", sep = "") else cat("\n\nCoefficients:\n") print(x$coefficients, digits = digits) cat("\nEstimated Scale Parameter: ", format(round(x$scale, digits))) cat("\n...\n") invisible(x) } } @ \chapter[Analyzing Longitudinal Data II]{ Analyzing Longitudinal Data II -- Generalized Estimation Equations and Linear Mixed Effect Models: Treating Respiratory Illness and Epileptic Seizures \label{ALDII}} \section{Introduction} \section{Methods for Non-normal Distributions} \section{Analysis Using \R{}: GEE} \subsection{Beat the Blues Revisited} To use the \Rcmd{gee} function, package \Rpackage{gee} \citep{PKG:gee} has to be installed and attached: <>= library("gee") @ The \Rcmd{gee} function is used in a similar way to the \Rcmd{lme} function met in \Sexpr{ch("ALDI")} with the addition of the features of the \Rcmd{glm} function that specify the appropriate error distribution for the response and the implied link function, and an argument to specify the structure of the working correlation matrix. Here we will fit an independence structure and then an exchangeable structure. The \R{} code for fitting generalized estimation equations to the \Robject{BtheB\_long} data (as constructed in \Sexpr{ch("ALDI")}) with identity working correlation matrix is as follows (note that the \Rcmd{gee} function assumes the rows of the \Rclass{data.frame} \Robject{BtheB\_long} to be ordered with respect to subjects): <>= data("BtheB", package = "HSAUR3") BtheB$subject <- factor(rownames(BtheB)) nobs <- nrow(BtheB) BtheB_long <- reshape(BtheB, idvar = "subject", varying = c("bdi.2m", "bdi.3m", "bdi.5m", "bdi.8m"), direction = "long") BtheB_long$time <- rep(c(2, 3, 5, 8), rep(nobs, 4)) names(BtheB_long)[names(BtheB_long) == "treatment"] <- "trt" @ <>= osub <- order(as.integer(BtheB_long$subject)) BtheB_long <- BtheB_long[osub,] btb_gee <- gee(bdi ~ bdi.pre + trt + length + drug, data = BtheB_long, id = subject, family = gaussian, corstr = "independence") @ and with exchangeable correlation matrix: <>= btb_gee1 <- gee(bdi ~ bdi.pre + trt + length + drug, data = BtheB_long, id = subject, family = gaussian, corstr = "exchangeable") @ The \Rcmd{summary} method can be used to inspect the fitted models; the results are shown in Figures~\ref{ALDII-gee-summary} and \ref{ALDII-gee1-summary}. \renewcommand{\nextcaption}{\R{} output of the \Rcmd{summary} method for the \Robject{btb\_gee} model (slightly abbreviated). \label{ALDII-gee-summary}} \SchunkLabel <>= summary(btb_gee) @ \SchunkRaw \renewcommand{\nextcaption}{\R{} output of the \Rcmd{summary} method for the \Robject{btb\_gee1} model (slightly abbreviated). \label{ALDII-gee1-summary}} \SchunkLabel <>= summary(btb_gee1) @ \SchunkRaw \subsection{Respiratory Illness \label{ALDII:resp}} The baseline status, i.e., the status for \Robject{month == 0}, will enter the models as an explanatory variable and thus we have to rearrange the \Rclass{data.frame} \Robject{respiratory} in order to create a new variable \Robject{baseline}: <>= data("respiratory", package = "HSAUR3") resp <- subset(respiratory, month > "0") resp$baseline <- rep(subset(respiratory, month == "0")$status, rep(4, 111)) resp$nstat <- as.numeric(resp$status == "good") resp$month <- resp$month[, drop = TRUE] @ <>= names(resp)[names(resp) == "treatment"] <- "trt" levels(resp$trt)[2] <- "trt" @ The new variable \Robject{nstat} is simply a dummy coding for a poor respiratory status. Now we can use the data \Robject{resp} to fit a logistic regression model and GEE models with an independent and an exchangeable correlation structure as follows. <>= resp_glm <- glm(status ~ centre + trt + gender + baseline + age, data = resp, family = "binomial") resp_gee1 <- gee(nstat ~ centre + trt + gender + baseline + age, data = resp, family = "binomial", id = subject, corstr = "independence", scale.fix = TRUE, scale.value = 1) resp_gee2 <- gee(nstat ~ centre + trt + gender + baseline + age, data = resp, family = "binomial", id = subject, corstr = "exchangeable", scale.fix = TRUE, scale.value = 1) @ \renewcommand{\nextcaption}{\R{} output of the \Rcmd{summary} method for the \Robject{resp\_glm} model. \label{ALDII-resp-glm-summary}} \SchunkLabel <>= summary(resp_glm) @ \SchunkRaw \renewcommand{\nextcaption}{\R{} output of the \Rcmd{summary} method for the \Robject{resp\_gee1} model (slightly abbreviated). \label{ALDII-resp-gee1-summary}} \SchunkLabel <>= summary(resp_gee1) @ \SchunkRaw \renewcommand{\nextcaption}{\R{} output of the \Rcmd{summary} method for the \Robject{resp\_gee2} model (slightly abbreviated). \label{ALDII-resp-gee2-summary}} \SchunkLabel <>= summary(resp_gee2) @ \SchunkRaw The estimated treatment effect taken from the exchangeable structure GEE model is \Sexpr{round(coef(resp_gee2)["trttrt"], 3)} which, using the robust standard errors, has an associated $95\%$ confidence interval <>= se <- summary(resp_gee2)$coefficients["trttrt", "Robust S.E."] coef(resp_gee2)["trttrt"] + c(-1, 1) * se * qnorm(0.975) @ These values reflect effects on the log-odds scale. Interpretation becomes simpler if we exponentiate the values to get the effects in terms of odds. This gives a treatment effect of \Sexpr{round(exp(coef(resp_gee2)["trttrt"]), 3)} and a $95\%$ confidence interval of <>= exp(coef(resp_gee2)["trttrt"] + c(-1, 1) * se * qnorm(0.975)) @ The odds of achieving a `good' respiratory status with the active treatment is between %' about twice and seven times the corresponding odds for the placebo. \subsection{Epilepsy} Moving on to the count data in \Robject{epilepsy} from Table~\ref{ALDII-epilepsy-tab}, we begin by calculating the means and variances of the number of seizures for all interactions between treatment and period: <>= data("epilepsy", package = "HSAUR3") itp <- interaction(epilepsy$treatment, epilepsy$period) tapply(epilepsy$seizure.rate, itp, mean) tapply(epilepsy$seizure.rate, itp, var) @ Some of the variances are considerably larger than the corresponding means, which for a Poisson variable may suggest that overdispersion may be a problem, see \Sexpr{ch("GLM")}. \begin{figure} \begin{center} <>= layout(matrix(1:2, nrow = 1)) ylim <- range(epilepsy$seizure.rate) placebo <- subset(epilepsy, treatment == "placebo") progabide <- subset(epilepsy, treatment == "Progabide") boxplot(seizure.rate ~ period, data = placebo, ylab = "Number of seizures", xlab = "Period", ylim = ylim, main = "Placebo") boxplot(seizure.rate ~ period, data = progabide, main = "Progabide", ylab = "Number of seizures", xlab = "Period", ylim = ylim) @ \caption{Boxplots of numbers of seizures in each two-week period post randomization for placebo and active treatments. \label{ALDII-plot1}} \end{center} \end{figure} \begin{figure} \begin{center} <>= layout(matrix(1:2, nrow = 1)) ylim <- range(log(epilepsy$seizure.rate + 1)) boxplot(log(seizure.rate + 1) ~ period, data = placebo, main = "Placebo", ylab = "Log number of seizures", xlab = "Period", ylim = ylim) boxplot(log(seizure.rate + 1) ~ period, data = progabide, main = "Progabide", ylab = "Log number of seizures", xlab = "Period", ylim = ylim) @ \caption{Boxplots of log of numbers of seizures in each two-week period post randomization for placebo and active treatments. \label{ALDII-plot2}} \end{center} \end{figure} We can now fit a Poisson regression model to the data assuming independence using the \Rcmd{glm} function. We also use the GEE approach to fit an independence structure, followed by an exchangeable structure using the following \R{} code: <>= per <- rep(log(2),nrow(epilepsy)) epilepsy$period <- as.numeric(epilepsy$period) names(epilepsy)[names(epilepsy) == "treatment"] <- "trt" fm <- seizure.rate ~ base + age + trt + offset(per) epilepsy_glm <- glm(fm, data = epilepsy, family = "poisson") epilepsy_gee1 <- gee(fm, data = epilepsy, family = "poisson", id = subject, corstr = "independence", scale.fix = TRUE, scale.value = 1) epilepsy_gee2 <- gee(fm, data = epilepsy, family = "poisson", id = subject, corstr = "exchangeable", scale.fix = TRUE, scale.value = 1) epilepsy_gee3 <- gee(fm, data = epilepsy, family = "poisson", id = subject, corstr = "exchangeable", scale.fix = FALSE, scale.value = 1) @ As usual we inspect the fitted models using the \Rcmd{summary} method, the results are given in Figures~\ref{ALDII-epilepsy-glm-summary}, \ref{ALDII-epilepsy-gee1-summary}, \ref{ALDII-epilepsy-gee2-summary}, and \ref{ALDII-epilepsy-gee3-summary}. \renewcommand{\nextcaption}{\R{} output of the \Rcmd{summary} method for the \Robject{epilepsy\_glm} model. \label{ALDII-epilepsy-glm-summary}} \SchunkLabel <>= summary(epilepsy_glm) @ \SchunkRaw \renewcommand{\nextcaption}{\R{} output of the \Rcmd{summary} method for the \Robject{epilepsy\_gee1} model (slightly abbreviated). \label{ALDII-epilepsy-gee1-summary}} \SchunkLabel <>= summary(epilepsy_gee1) @ \SchunkRaw \renewcommand{\nextcaption}{\R{} output of the \Rcmd{summary} method for the \Robject{epilepsy\_gee2} model (slightly abbreviated). \label{ALDII-epilepsy-gee2-summary}} \SchunkLabel <>= summary(epilepsy_gee2) @ \SchunkRaw \renewcommand{\nextcaption}{\R{} output of the \Rcmd{summary} method for the \Robject{epilepsy\_gee3} model (slightly abbreviated). \label{ALDII-epilepsy-gee3-summary}} \SchunkLabel <>= summary(epilepsy_gee3) @ \SchunkRaw \section{Analysis Using \R{}: Random Effects} As an example of using generalized mixed models for the analysis of longitudinal data with a non-normal response, the following logistic model will be fitted to the respiratory illness data \begin{eqnarray*} \text{logit}(\P(\text{status} = \text{good})) & = & \beta_0 + \beta_1 \text{treatment} + \beta_2 \text{time} + \beta_3 \text{gender} \\% & & + \beta_4 \text{age} + \beta_5 \text{centre} + \beta_6 \text{baseline} + u \end{eqnarray*} where $u$ is a subject-specific random effect. The necessary \R{} code for fitting the model using the \Rcmd{glmer} function from package \Rpackage{lme4} \citep{PKG:lme4,HSAUR:Bates2005} is: <>= library("lme4") resp_lmer <- glmer(status ~ baseline + month + trt + gender + age + centre + (1 | subject), family = binomial(), data = resp) exp(fixef(resp_lmer)) @ The significance of the effects as estimated by this random effects model and by the GEE model described in Section~\ref{ALDII:resp} is generally similar. But as expected from our previous discussion the estimated coefficients are substantially larger. While the estimated effect of treatment on a randomly sampled individual, given the set of observed covariates, is estimated by the marginal model using GEE to increase the log-odds of being disease free by $\Sexpr{round(coef(resp_gee2)["trttrt"], 3)}$, the corresponding estimate from the random effects model is $\Sexpr{round(fixef(resp_lmer)["trttrt"], 3)}$. These are not inconsistent results but reflect the fact that the models are estimating different parameters. The random effects estimate is conditional upon the patient's random effect, a quantity that is rarely known in practice. Were we to examine the log-odds of the average predicted probabilities with and without treatment (averaged over the random effects) this would give an estimate comparable to that estimated within the marginal model. <>= su <- summary(resp_lmer) if (!interactive()) { summary <- function(x) { cat("\n...\n") cat("Fixed effects:\n") lme4V <- packageDescription("lme4")$Version if (compareVersion("0.999999-2", lme4V) >= 0) { printCoefmat(su@coefs) } else { printCoefmat(su$coefficients) } cat("\n...\n") } } @ \renewcommand{\nextcaption}{\R{} output of the \Rcmd{summary} method for the \Robject{resp\_lmer} model (abbreviated). \label{ALDII-resp-lmer-summary}} \SchunkLabel <>= summary(resp_lmer) @ \SchunkRaw \clearpage \bibliographystyle{LaTeXBibTeX/refstyle} \bibliography{LaTeXBibTeX/HSAUR} \end{document} HSAUR3/inst/doc/Ch_analysing_longitudinal_dataI.R0000644000176200001440000001237514660150024021344 0ustar liggesusers### R code from vignette source 'Ch_analysing_longitudinal_dataI.Rnw' ################################################### ### code chunk number 1: setup ################################################### rm(list = ls()) s <- search()[-1] s <- s[-match(c("package:base", "package:stats", "package:graphics", "package:grDevices", "package:utils", "package:datasets", "package:methods", "Autoloads"), s)] if (length(s) > 0) sapply(s, detach, character.only = TRUE) if (!file.exists("tables")) dir.create("tables") if (!file.exists("figures")) dir.create("figures") set.seed(290875) options(prompt = "R> ", continue = "+ ", width = 63, # digits = 4, show.signif.stars = FALSE, SweaveHooks = list(leftpar = function() par(mai = par("mai") * c(1, 1.05, 1, 1)), bigleftpar = function() par(mai = par("mai") * c(1, 1.7, 1, 1)))) HSAURpkg <- require("HSAUR3") if (!HSAURpkg) stop("cannot load package ", sQuote("HSAUR3")) rm(HSAURpkg) ### hm, R-2.4.0 --vanilla seems to need this a <- Sys.setlocale("LC_ALL", "C") ### book <- TRUE refs <- cbind(c("AItR", "DAGD", "SI", "CI", "ANOVA", "MLR", "GLM", "DE", "RP", "GAM", "SA", "ALDI", "ALDII", "SIMC", "MA", "PCA", "MDS", "CA"), 1:18) ch <- function(x) { ch <- refs[which(refs[,1] == x),] if (book) { return(paste("Chapter~\\\\ref{", ch[1], "}", sep = "")) } else { return(paste("Chapter~", ch[2], sep = "")) } } if (file.exists("deparse.R")) source("deparse.R") setHook(packageEvent("lattice", "attach"), function(...) { lattice.options(default.theme = function() standard.theme("pdf", color = FALSE)) }) ################################################### ### code chunk number 2: singlebook ################################################### book <- FALSE ################################################### ### code chunk number 3: ALDI-setup ################################################### library("lme4") library("multcomp") residuals <- function(object) { y <- getME(object, 'y') y - fitted(object) } ################################################### ### code chunk number 4: ALDI-plot-BtheB ################################################### data("BtheB", package = "HSAUR3") layout(matrix(1:2, nrow = 1)) ylim <- range(BtheB[,grep("bdi", names(BtheB))], na.rm = TRUE) tau <- subset(BtheB, treatment == "TAU")[, grep("bdi", names(BtheB))] boxplot(tau, main = "Treated as Usual", ylab = "BDI", xlab = "Time (in months)", names = c(0, 2, 3, 5, 8), ylim = ylim) btheb <- subset(BtheB, treatment == "BtheB")[, grep("bdi", names(BtheB))] boxplot(btheb, main = "Beat the Blues", ylab = "BDI", xlab = "Time (in months)", names = c(0, 2, 3, 5, 8), ylim = ylim) ################################################### ### code chunk number 5: ALDI-long-BtheB ################################################### data("BtheB", package = "HSAUR3") BtheB$subject <- factor(rownames(BtheB)) nobs <- nrow(BtheB) BtheB_long <- reshape(BtheB, idvar = "subject", varying = c("bdi.2m", "bdi.3m", "bdi.5m", "bdi.8m"), direction = "long") BtheB_long$time <- rep(c(2, 3, 5, 8), rep(nobs, 4)) ################################################### ### code chunk number 6: ALDI-showlong-BtheB ################################################### subset(BtheB_long, subject %in% c("1", "2", "3")) ################################################### ### code chunk number 7: ALDI-fit-BtheB ################################################### library("lme4") BtheB_lmer1 <- lmer(bdi ~ bdi.pre + time + treatment + drug + length + (1 | subject), data = BtheB_long, REML = FALSE, na.action = na.omit) BtheB_lmer2 <- lmer(bdi ~ bdi.pre + time + treatment + drug + length + (time | subject), data = BtheB_long, REML = FALSE, na.action = na.omit) anova(BtheB_lmer1, BtheB_lmer2) ################################################### ### code chunk number 8: ALDI-summary-BtheB ################################################### summary(BtheB_lmer1) ################################################### ### code chunk number 9: ALDI-summary-BtheB-p ################################################### cftest(BtheB_lmer1) ################################################### ### code chunk number 10: ALDI-qqnorm-BtheB ################################################### layout(matrix(1:2, ncol = 2)) qint <- ranef(BtheB_lmer1)$subject[["(Intercept)"]] qres <- residuals(BtheB_lmer1) qqnorm(qint, ylab = "Estimated random intercepts", xlim = c(-3, 3), ylim = c(-20, 20), main = "Random intercepts") qqline(qint) qqnorm(qres, xlim = c(-3, 3), ylim = c(-20, 20), ylab = "Estimated residuals", main = "Residuals") qqline(qres) ################################################### ### code chunk number 11: ALDI-dropout ################################################### bdi <- BtheB[, grep("bdi", names(BtheB))] plot(1:4, rep(-0.5, 4), type = "n", axes = FALSE, ylim = c(0, 50), xlab = "Months", ylab = "BDI") axis(1, at = 1:4, labels = c(0, 2, 3, 5)) axis(2) for (i in 1:4) { dropout <- is.na(bdi[,i + 1]) points(rep(i, nrow(bdi)) + ifelse(dropout, 0.05, -0.05), jitter(bdi[,i]), pch = ifelse(dropout, 20, 1)) } HSAUR3/inst/doc/Ch_cluster_analysis.Rnw0000644000176200001440000004355014416236367017452 0ustar liggesusers \documentclass{chapman} %%% copy Sweave.sty definitions %%% keeps `sweave' from adding `\usepackage{Sweave}': DO NOT REMOVE %\usepackage{Sweave} \RequirePackage[T1]{fontenc} \RequirePackage{graphicx,ae,fancyvrb} \IfFileExists{upquote.sty}{\RequirePackage{upquote}}{} \usepackage{relsize} \DefineVerbatimEnvironment{Sinput}{Verbatim}{} \DefineVerbatimEnvironment{Soutput}{Verbatim}{fontfamily=courier, fontshape=it, fontsize=\relsize{-1}} \DefineVerbatimEnvironment{Scode}{Verbatim}{} \newenvironment{Schunk}{}{} %%% environment for raw output \newcommand{\SchunkRaw}{\renewenvironment{Schunk}{}{} \DefineVerbatimEnvironment{Soutput}{Verbatim}{fontfamily=courier, fontshape=it, fontsize=\small} \rawSinput } %%% environment for labeled output \newcommand{\nextcaption}{} \newcommand{\SchunkLabel}{ \renewenvironment{Schunk}{\begin{figure}[ht] }{\caption{\nextcaption} \end{figure} } \DefineVerbatimEnvironment{Sinput}{Verbatim}{frame = topline} \DefineVerbatimEnvironment{Soutput}{Verbatim}{frame = bottomline, samepage = true, fontfamily=courier, fontshape=it, fontsize=\relsize{-1}} } %%% S code with line numbers \DefineVerbatimEnvironment{Sinput} {Verbatim} { %% numbers=left } \newcommand{\numberSinput}{ \DefineVerbatimEnvironment{Sinput}{Verbatim}{numbers=left} } \newcommand{\rawSinput}{ \DefineVerbatimEnvironment{Sinput}{Verbatim}{} } %%% R / System symbols \newcommand{\R}{\textsf{R}} \newcommand{\rR}{{R}} \renewcommand{\S}{\textsf{S}} \newcommand{\SPLUS}{\textsf{S-PLUS}} \newcommand{\rSPLUS}{{S-PLUS}} \newcommand{\SPSS}{\textsf{SPSS}} \newcommand{\EXCEL}{\textsf{Excel}} \newcommand{\ACCESS}{\textsf{Access}} \newcommand{\SQL}{\textsf{SQL}} %%\newcommand{\Rpackage}[1]{\hbox{\rm\textit{#1}}} %%\newcommand{\Robject}[1]{\hbox{\rm\texttt{#1}}} %%\newcommand{\Rclass}[1]{\hbox{\rm\textit{#1}}} %%\newcommand{\Rcmd}[1]{\hbox{\rm\texttt{#1}}} \newcommand{\Rpackage}[1]{\index{#1 package@{\fontseries{b}\selectfont #1} package} {\fontseries{b}\selectfont #1}} \newcommand{\rpackage}[1]{{\fontseries{b}\selectfont #1}} \newcommand{\Robject}[1]{\texttt{#1}} \newcommand{\Rclass}[1]{\index{#1 class@\textit{#1} class}\textit{#1}} \newcommand{\Rcmd}[1]{\index{#1 function@\texttt{#1} function}\texttt{#1}} \newcommand{\Roperator}[1]{\texttt{#1}} \newcommand{\Rarg}[1]{\texttt{#1}} \newcommand{\Rlevel}[1]{\texttt{#1}} %%% other symbols \newcommand{\file}[1]{\hbox{\rm\texttt{#1}}} %%\newcommand{\stress}[1]{\index{#1}\textit{#1}} \newcommand{\stress}[1]{\textit{#1}} \newcommand{\booktitle}[1]{\textit{#1}} %%' %%% Math symbols \usepackage{amstext} \usepackage{amsmath} \newcommand{\E}{\mathsf{E}} \newcommand{\Var}{\mathsf{Var}} \newcommand{\Cov}{\mathsf{Cov}} \newcommand{\Cor}{\mathsf{Cor}} \newcommand{\x}{\mathbf{x}} \newcommand{\y}{\mathbf{y}} \renewcommand{\a}{\mathbf{a}} \newcommand{\W}{\mathbf{W}} \newcommand{\C}{\mathbf{C}} \renewcommand{\H}{\mathbf{H}} \newcommand{\X}{\mathbf{X}} \newcommand{\B}{\mathbf{B}} \newcommand{\V}{\mathbf{V}} \newcommand{\I}{\mathbf{I}} \newcommand{\D}{\mathbf{D}} \newcommand{\bS}{\mathbf{S}} \newcommand{\N}{\mathcal{N}} \renewcommand{\L}{L} \renewcommand{\P}{\mathsf{P}} \newcommand{\K}{\mathbf{K}} \newcommand{\m}{\mathbf{m}} \newcommand{\argmin}{\operatorname{argmin}\displaylimits} \newcommand{\argmax}{\operatorname{argmax}\displaylimits} \newcommand{\bx}{\mathbf{x}} \newcommand{\bbeta}{\mathbf{\beta}} %%% links \usepackage{hyperref} \hypersetup{% pdftitle = {A Handbook of Statistical Analyses Using R (3rd Edition)}, pdfsubject = {Book}, pdfauthor = {Torsten Hothorn and Brian S. Everitt}, colorlinks = {black}, linkcolor = {black}, citecolor = {black}, urlcolor = {black}, hyperindex = {true}, linktocpage = {true}, } %%% captions & tables %% : conflics with figure definition in chapman.cls %%\usepackage[format=hang,margin=10pt,labelfont=bf]{caption} %% \usepackage{longtable} \usepackage[figuresright]{rotating} %%% R symbol in chapter 1 \usepackage{wrapfig} %%% Bibliography \usepackage[round,comma]{natbib} \renewcommand{\refname}{References \addcontentsline{toc}{chapter}{References}} \citeindexfalse %%% texi2dvi complains that \newblock is undefined, hm... \def\newblock{\hskip .11em plus .33em minus .07em} %%% Example sections \newcounter{exercise}[chapter] \setcounter{exercise}{0} \newcommand{\exercise}{\stepcounter{exercise} \item{Ex.~\arabic{chapter}.\arabic{exercise} }} %% URLs \newcommand{\curl}[1]{\begin{center} \url{#1} \end{center}} %%% for manual corrections %\renewcommand{\baselinestretch}{2} %%% plot sizes \setkeys{Gin}{width=0.95\textwidth} %%% color \usepackage{color} %%% hyphenations \hyphenation{drop-out} \hyphenation{mar-gi-nal} %%% new bidirectional quotes need \usepackage[utf8]{inputenc} %\usepackage{setspace} \definecolor{sidebox_todo}{rgb}{1,1,0.2} \newcommand{\todo}[1]{ \hspace{0pt}% \marginpar{% \fcolorbox{black}{sidebox_todo}{% \parbox{\marginparwidth} { \raggedright\sffamily\footnotesize{TODO: #1}% } }% } } \begin{document} %% Title page \title{A Handbook of Statistical Analyses Using \R{} --- 3rd Edition} \author{Torsten Hothorn and Brian S. Everitt} \maketitle %%\VignetteIndexEntry{Chapter Cluster Analysis} %%\VignetteDepends{scatterplot3d,mclust,mvtnorm,lattice} \setcounter{chapter}{20} \SweaveOpts{prefix.string=figures/HSAUR,eps=FALSE,keep.source=TRUE} <>= rm(list = ls()) s <- search()[-1] s <- s[-match(c("package:base", "package:stats", "package:graphics", "package:grDevices", "package:utils", "package:datasets", "package:methods", "Autoloads"), s)] if (length(s) > 0) sapply(s, detach, character.only = TRUE) if (!file.exists("tables")) dir.create("tables") if (!file.exists("figures")) dir.create("figures") set.seed(290875) options(prompt = "R> ", continue = "+ ", width = 63, # digits = 4, show.signif.stars = FALSE, SweaveHooks = list(leftpar = function() par(mai = par("mai") * c(1, 1.05, 1, 1)), bigleftpar = function() par(mai = par("mai") * c(1, 1.7, 1, 1)))) HSAURpkg <- require("HSAUR3") if (!HSAURpkg) stop("cannot load package ", sQuote("HSAUR3")) rm(HSAURpkg) ### hm, R-2.4.0 --vanilla seems to need this a <- Sys.setlocale("LC_ALL", "C") ### book <- TRUE refs <- cbind(c("AItR", "DAGD", "SI", "CI", "ANOVA", "MLR", "GLM", "DE", "RP", "GAM", "SA", "ALDI", "ALDII", "SIMC", "MA", "PCA", "MDS", "CA"), 1:18) ch <- function(x) { ch <- refs[which(refs[,1] == x),] if (book) { return(paste("Chapter~\\\\ref{", ch[1], "}", sep = "")) } else { return(paste("Chapter~", ch[2], sep = "")) } } if (file.exists("deparse.R")) source("deparse.R") setHook(packageEvent("lattice", "attach"), function(...) { lattice.options(default.theme = function() standard.theme("pdf", color = FALSE)) }) @ \pagestyle{headings} <>= book <- FALSE @ %% lower png resolution for vignettes \SweaveOpts{resolution = 100} <>= library("mclust") library("mvtnorm") mai <- par("mai") options(SweaveHooks = list(rmai = function() { par(mai = mai * c(1,1,1,2))})) data("pottery", package = "HSAUR3") @ \chapter[Cluster Analysis]{Cluster Analysis: Classifying Romano-British Pottery and Exoplanets \label{CA}} \section{Introduction} \section{Cluster Analysis} \section{Analysis Using \R{}} \subsection{Classifying Romano-British Pottery} We start our analysis with computing the dissimilarity matrix containing the Euclidean distance of the chemical measurements on all $\Sexpr{nrow(pottery)}$ pots. The resulting $\Sexpr{nrow(pottery)} \times \Sexpr{nrow(pottery)}$ matrix can be inspected by an \stress{image plot}, here obtained from \index{Image plot} function \Rcmd{levelplot} available in package \Rpackage{lattice} \citep{PKG:lattice, HSAUR:Sarkar2008}. Such a plot associates each cell of the dissimilarity matrix with a color or a gray value. We choose a very dark grey for cells with distance zero (i.e., the diagonal elements of the dissimilarity matrix) and pale values for cells with greater Euclidean distance. Figure~\ref{CA-pottery-distplot} leads to the impression that there are at least three distinct groups with small inter-cluster differences (the dark rectangles) whereas much larger distances can be observed for all other cells. \begin{figure} \begin{center} <>= pottery_dist <- dist(pottery[, colnames(pottery) != "kiln"]) library("lattice") levelplot(as.matrix(pottery_dist), xlab = "Pot Number", ylab = "Pot Number") @ <>= trellis.par.set(standard.theme(color = FALSE)) plot(levelplot(as.matrix(pottery_dist), xlab = "Pot Number", ylab = "Pot Number")) @ \caption{Image plot of the dissimilarity matrix of the \Robject{pottery} data. \label{CA-pottery-distplot}} \end{center} \end{figure} We now construct three series of partitions using single, complete, and average linkage hierarchical clustering as introduced in Subsections~\ref{CA:HC} and \ref{CA:diss}. The function \Rcmd{hclust} performs all three procedures based on the dissimilarity matrix of the data; its \Rcmd{method} argument is used to specify how the distance between two clusters is assessed. The corresponding \Rcmd{plot} method draws a dendrogram; the code and results are given in Figure~\ref{CA-pottery-hclust}. Again, all three dendrograms lead to the impression that three clusters fit the data best (although this judgement is very informal). \begin{figure} \begin{center} <>= pottery_single <- hclust(pottery_dist, method = "single") pottery_complete <- hclust(pottery_dist, method = "complete") pottery_average <- hclust(pottery_dist, method = "average") layout(matrix(1:3, ncol = 3)) plot(pottery_single, main = "Single Linkage", sub = "", xlab = "") plot(pottery_complete, main = "Complete Linkage", sub = "", xlab = "") plot(pottery_average, main = "Average Linkage", sub = "", xlab = "") @ \caption{Hierarchical clustering of \Robject{pottery} data and resulting dendrograms. \label{CA-pottery-hclust}} \end{center} \end{figure} From the \Robject{pottery\_average} object representing the average linkage hierarchical clustering, we derive the three-cluster solution by cutting the dendrogram at a height of four (which, based on the right display in Figure~\ref{CA-pottery-hclust} leads to a partition of the data into three groups). Our interest is now a comparison with the kiln sites at which the pottery was found. <>= pottery_cluster <- cutree(pottery_average, h = 4) xtabs(~ pottery_cluster + kiln, data = pottery) @ The contingency table shows that cluster 1 contains all pots found at kiln site number one, cluster 2 contains all pots from kiln sites number two and three, and cluster three collects the ten pots from kiln sites four and five. In fact, the five kiln sites are from three different regions defined by one, two and three, and four and five, so the clusters actually correspond to pots from three different regions. \subsection{Classifying Exoplanets} \begin{figure} \begin{center} <>= data("planets", package = "HSAUR3") library("scatterplot3d") scatterplot3d(log(planets$mass), log(planets$period), log(planets$eccen + ifelse(planets$eccen == 0, 0.001, 0)), type = "h", angle = 55, pch = 16, y.ticklabs = seq(0, 10, by = 2), y.margin.add = 0.1, scale.y = 0.7, xlab = "log(mass)", ylab = "log(period)", zlab = "log(eccen)") @ \caption{3D scatterplot of the logarithms of the three variables available for each of the exoplanets. \label{CA-planets-scatter}} \end{center} \end{figure} \begin{figure} \begin{center} <>= rge <- apply(planets, 2, max) - apply(planets, 2, min) planet.dat <- sweep(planets, 2, rge, FUN = "/") n <- nrow(planet.dat) wss <- rep(0, 10) wss[1] <- (n - 1) * sum(apply(planet.dat, 2, var)) for (i in 2:10) wss[i] <- sum(kmeans(planet.dat, centers = i)$withinss) plot(1:10, wss, type = "b", xlab = "Number of groups", ylab = "Within groups sum of squares") @ \caption{Within-cluster sum of squares for different numbers of clusters for the exoplanet data. \label{CA-planets-ss}} \end{center} \end{figure} Sadly Figure~\ref{CA-planets-ss} gives no completely convincing verdict on the number of groups we should consider, but using a little imagination `little elbows' can be spotted at the three and five group solutions. %%' We can find the number of planets in each group using <>= planet_kmeans3 <- kmeans(planet.dat, centers = 3) table(planet_kmeans3$cluster) @ The centers of the clusters for the untransformed data can be computed using a small convenience function <>= ccent <- function(cl) { f <- function(i) colMeans(planets[cl == i,]) x <- sapply(sort(unique(cl)), f) colnames(x) <- sort(unique(cl)) return(x) } @ which, applied to the three-cluster solution obtained by $k$-means gets <>= ccent(planet_kmeans3$cluster) @ @ for the three-cluster solution and, for the five cluster solution using <>= planet_kmeans5 <- kmeans(planet.dat, centers = 5) table(planet_kmeans5$cluster) ccent(planet_kmeans5$cluster) @ \subsection{Model-based Clustering in \R{}} We now proceed to apply model-based clustering to the \Robject{planets} data. \R{} functions for model-based clustering are available in package \Rpackage{mclust} \citep{PKG:mclust,HSAUR:FraleyRaftery2002}. Here we use the \Rcmd{Mclust} function since this selects both the most appropriate model for the data \stress{and} the optimal number of groups based on the values of the BIC computed over several models and a range of values for number of groups. The necessary code is: <>= library("mclust") planet_mclust <- Mclust(planet.dat) @ and we first examine a plot of BIC values using the \R{} code that is displayed on top of Figure~\ref{CA-mclust1}. In this diagram the different plotting symbols refer to different model assumptions about the shape of clusters: \begin{description} \item[EII] spherical, equal volume, \item[VII] spherical, unequal volume, \item[EEI] diagonal, equal volume and shape, \item[VEI] diagonal, varying volume, equal shape, \item[EVI] diagonal, equal volume, varying shape, \item[VVI] diagonal, varying volume and shape, \item[EEE] ellipsoidal, equal volume, shape, and orientation, \item[EEV] ellipsoidal, equal volume and equal shape, \item[VEV] ellipsoidal, equal shape, \item[VVV] ellipsoidal, varying volume, shape, and orientation \end{description} \begin{figure} \begin{center} <>= plot(planet_mclust, planet.dat, what = "BIC", col = "black", ylab = "-BIC", ylim = c(0, 350)) @ \caption{Plot of BIC values for a variety of models and a range of number of clusters. \label{CA-mclust1}} \end{center} \end{figure} The BIC selects model VVI (diagonal varying volume and varying shape) with three clusters as the best solution as can be seen from the \Rcmd{print} output: <>= print(planet_mclust) @ This solution can be shown graphically as a scatterplot matrix. The plot is shown in Figure~\ref{CA-planets-mclust-scatter}. Figure~\ref{CA-planets-mclust-scatterclust} depicts the clustering solution in the three-dimensional space. \begin{figure} \begin{center} <>= clPairs(planet.dat, classification = planet_mclust$classification, symbols = 1:3, col = "black") @ \caption{Scatterplot matrix of planets data showing a three-cluster solution from \Rcmd{Mclust}. \label{CA-planets-mclust-scatter}} \end{center} \end{figure} \begin{figure} \begin{center} <>= scatterplot3d(log(planets$mass), log(planets$period), log(planets$eccen + ifelse(planets$eccen == 0, 0.001, 0)), type = "h", angle = 55, scale.y = 0.7, pch = planet_mclust$classification, y.ticklabs = seq(0, 10, by = 2), y.margin.add = 0.1, xlab = "log(mass)", ylab = "log(period)", zlab = "log(eccen)") @ \caption{3D scatterplot of planets data showing a three-cluster solution from \Rcmd{Mclust}. \label{CA-planets-mclust-scatterclust}} \end{center} \end{figure} The number of planets in each cluster and the mean vectors of the three clusters for the untransformed data can now be inspected by using <>= table(planet_mclust$classification) ccent(planet_mclust$classification) @ Cluster 1 consists of planets about the same size as Jupiter with very short periods and eccentricities (similar to the first cluster of the $k$-means solution). Cluster 2 consists of slightly larger planets with moderate periods and large eccentricities, and cluster 3 contains the very large planets with very large periods. These two clusters do not match those found by the $k$-means approach. \bibliographystyle{LaTeXBibTeX/refstyle} \bibliography{LaTeXBibTeX/HSAUR} \end{document} HSAUR3/inst/doc/Ch_graphical_display.pdf0000644000176200001440000057330614660150121017537 0ustar liggesusers%PDF-1.5 %¿÷¢þ 1 0 obj << /Type /ObjStm /Length 4501 /Filter /FlateDecode /N 73 /First 603 >> stream xœÕ[[sÛF²~?¿oëTÊæŽÙÊq•%Y¶bù&9޳[yIPâš"²ýõçën€o¥(Ù=lA3=ž¾MÏ@'yb›x—6&>Q¹*’€S°I‘(cUe%ª:Q*ÑÚâF'ÚD‹:‰ö9Êm¢£A¹KŒŠ*Q>1Ú <$Æ7ðš¢Àó˜X›IžØ•´Jœ*iâ¼'¤‰×èLƒ0Og—„ÿ´O‚:$Áèt:§cê¡ë¢FçIAøÐuáPɘ¤ðˆÂ á"1.‰¹ÃsŸDÇÄ„$ b‹$:">&Ñ—àcvèBå¹5‰ÕÄò . ÚY¼}n#9\80ýCbXáÑ\Ô|#h*ñΡDàCà€Y{`sÀ¬i ñ5ÏMâ€Ù(³c †Œp4>¯ƒî” óÁK$¨¯,ú'q¡Ñ»fkÑ»fëAhS¶ˆÄeŒYX”Óh .)gI€Ùyp"и`mPt1Àì"¸† Ä@b”×ÎýÏ?$Ù«ª.e]bŒ hgIöæ¦&Õ2Æ÷oË ÜX¹yÿûu•d‡¨?ž^$Ož0Ч7õåt–ü0¬†Ã&_Fõer‰÷ͪ!¿¬~ÿ2 æÉ#ܼšnC÷v6Üô+à{þö4y~9×óþlt]CÞÒ¨s~ÓûWÕ¯[ÖÑ«;øèô÷£z\-žª;Lò+­&Òµ_2Š™­šsì 1Õ4øú þwSšúÌ\Óàl®¹=Õ M¹–³Æ4ƒa—ƒäírp¸í°Ðø¤•¦Ãéͤ&c“½Ûÿ„u#ÑS"Ž"¤ZÊ`1ø$ çt‚àSS_óÉK!Œ@s–§°r|«}sŽr6M5Ó4³º9KÍã_[}iµa2™ÖD·–Ê…\ø¶ÍátRWTQVºƒFåÁô+A.ºoXX•‘Z¼-ghÐêàY5ŸÞÌú葺;¶¤hAæúçU <ÙÛ£cW}­àÉ“.¥«ŒŸG³yµÙi¹¼–6 ƒ°Òî±K²£jN}5†ãã/ÿÀ+™4ycª %Éäf<¦wh:éöRèÖÂðë5öfUæ»r«n‘Ïx»|ÚÐÈ$áÌ´Mºz’K9·á²Ž¬¶CéòJåî1”å¼âÖÙOOŸ½>:úþðÕ!{6éO£ÉyÆÊ£pxYÎH?¸CŒ![%>•/‡ë(¸v²Q5wHݪ¶wéíçÑ ¾Y§Ó÷:¤¶€ $î3 ` .üœÇ½§jC˜(-`Òàüód ŽjÂ9“|+Xà Z–ü6ßäN¨Á}C»|UÃ¥íS´ÇŠŸLlK¤¶ÓBÄ"ç‘õŸ÷i€!4ä'¯_T£‹KÈv,p žÒ>ÊžfÙav”=ËŽ³çÙ‹ì$;Í^eçÙû짬ÌzY?ëOÇÓI6ȪŒdÕÕ œ_fÃl8ú\eCHMv‘]f£ìS6ή²I6ŠfÓlŠÿלÖh:È~»‚Âóe³lžÍ«ÏÕ$›¾fuV_Ϊ*«¿L³›ìkö{öïj6ýŽõ™‰¬s2 ãò‚¢ëƒV¦ùYŒ‘ßðWyx<W.\+d(z]^UëÒx‚¨aÔ:¹€~ãöÕh>‡l² 1»³óººú@LWÊ:š}lØi1 ¢òîåñÏÐÙùùÁÇ釜NžNæ£eÁR`„6ô@¯éÕÙK ÿnH çŠ$Ø®$œuØž/xî"»U¾CötRë5¦ëu¦oðaO¾CŶ³}ƒÓ?¿ùð’†õ ¬ÚÍÛÌ]77˜yìknÔe_œ½çs`ß½ s…‡xlõ¬q‹ë.%ü¬©g :<ŸñÑ˦…X‘ ¹]ÈÅlà ¶%[Rõ ô»ÑlRè:û¼¢³ •EØBκÞbº€Yõ³&Af]‚VÇw_µÅ$è6µ…4L8Gš å îÓq¦ifÄ×›.Öþq»æUo÷§/ß}xöâ ³bÅŸ¶Z·p¥6¼Øð§aOÇ®ñ5…1{Š:EÞ´A¼&ò|P9ßÃç}=uë­—»õ×4Õ, »T}Âuaù™¡‰°:0ÕL"†›ÛÐ}!Š(^™18Á¨rv©Á­¾P¾$¹ëÆq^wã|¿Ã‘;vãJ\9XÒ–­;gÜy—¡ZëVüºÜ~ïÿ˜½dßþ:{“½ÍÎÿ!û9ûš]^AŸçådÐñùýéÕéü`Tͪùh¾ &m@£ŒÿºÁ&«—pñ£ì_;¢RŒq5¬åjÆXA½Ø"dX ¿ÝLëjÐs‹öFñݲ\ %ȸÉk,Ãù˜È^ :>g_$ðØ =Ü ®š°Ç6—§ˆ·"3~ÍŒ¹u3¶ª»{Gj_7xx|rtøøßŸìnØ|¯Þ »÷7,T‘WãHÄÏ9¥G×H´Ï[–ÌKÀ¬#0Y‰ƒárS†p)t£ˆžK9<Ÿ&ÌÎknßâÚb˜@ƒõ9í5ÑÑÞ Mt§AC¡ã\Roáºè-A©‘vÞSü­ãg·é)ìÏŠž’–.ut©¡ïý°‡Wu¬Õ°Û”ké­·ÊÿÑ«á-d_o“}¿.ûk²ÙþǼ¾áÅãí^\oê«·g秇Ôßû½uÁØM]X½)5³§ËdI•ÿysõPÇ&¶ýð¯Ó‘Û’îÍÿKýîZòëæéçV\P£;£Ñæö¹íëŽ÷û™<ß¼?Õ£ñ Â%yù'è[¯œe½YÙÿTÕ¬J͵(Ó†ƒœŽÇ¨¿p¿Ý”ãµ ò¥t«Ù¦oWóùþ’tøz|3ßôk3ëm®îf2€ïOgÕ·¼ i£ú˜\¬º=yêh™esöÖM×½^ùµ3†«F€J#@—÷0ïNŽŽÎüþõèªw35œ>>«.nÞôÆ£ûÏõÆ,‘&:{YŸ·)£}ŽóÇ-5–xó-}ìSw[‹n/ÛéûvɆÎê®ÎúÕ|”C€ÜÑYÑÕÓŽ–²ÿÛ­‰ËÄÔz>jw6ê[I¨Ž’|Ùš‘R…_(ˆYUL5ø1Mßé¥×4¤X×oIé.uaö­¨‹ïúÌÛVf‹º<ýx~üË9'jþHºªY¼¸GºÊÛ¦þAÒUˆã¶¬¸>k\Ø7Y¥o‰Ò§3HTCŠâeÜH,üëbå¢YG’¥‹˜§JYš»Ú´(Ìré⨢DBŸšÀ𥴪m­O¡.¤y rÎ Õ_ðþt4ùÔ’ÉËBkDFâ(S€(Y•5"ßÌþðÂBlW[î·°ð¢®êQ¿ü¦ ~Cì6S+ÇoN_Ñô,v3+m6j&ÆAnÖåºNÁì›:¤1òÁ©Þq ù¼O–%Mæß78¨Ì„¶F´jå©£Vs­™e¸–E/gL䥷åL#Ý7tM½ö9Z`Z`sy3~BýápÍ!uï:I’$ä ··k‹U˜ĎüÃô–¨j-}P/§F+Ñ‘]DG«Ë!ü´ˆÅ–i‘ßXX‘¹½›Åíëæn†§Y¹n IC®hžkRì.ÃCÛ0çÖN¥"fµMmÇñ:µÅ]íŽ$Kbs%˜ŒÅ+¤Ê Ýg¥zA¶z½Ðë…^/ôú¸…ló@d‡ü>Æs?Qð[}Im,vˆ‚v1õ0”F‡TqFצœé5!Aï' .=@b]Ö®óû°i1ºVZ7›-¬Ù2žî(µö9×ÏOO¤˜å—Ðõ]vÝw©Í‡‰ë¾kÛ"ûô§ÉX+¼s»/bû:ÁfgýÊô\nV}z]MzªªÞÊ­¯Q<0Š5˺1ï\eÉž¦5ì œï¤AÍŽŸFƒ  >p‚1 är·j‚ÆPÖÌä1U´7²(Ò"Ð^DY³gבËâ¡äò^»?¶r)g>uìŒípÉ(0‡Ò°ELÚÉ%p6†d0¥Ä°. 1Ü+R§ö´3uÔ)ÌuZê ¤ºmÝUH ”j¤ú a¹nW$aŸµi¯‹D7#t†¨C·mïj•ëàh‡jgsŸN¶#Û0Û<óì!;œŽ§³óë²_%¶3?KÚ ëÒxré;lÎ' éÌ>¾‘팮%]Zà3ý¯Õ€þó¨_=?H4¤þ‡\~ŠA3ËàÀ¡bˆ8‹Ð‰hÈ ›…B² .äJ†CŸaÀP1 DQDœEèD4d…Í !YGù• =†>À¡bˆ Š¢ˆ8‹Ð‰hÈ ›…B² .å×cè3 *†!(·¨ (Šˆ³ˆ†  °Y˜!$ âžüú †ŠaH fC”[TPEÄY„NDCPØ,Ì’q_~†ŠaH Ĭ(·¨ ²ˆ› š°V d ²ü*†!˜71B¢Ê¢p¢"¼"2PÂNyi!­A&&²14bDôE€šafÉ+  ü{’üz—°meâÓÎ=|¿‹;Ã6“ÒV£Tjq¦Å ÛtJkÇû9}Ì”šÜ‹’˜¨ïå´ù»˜-QB'2ØíÀ›­VÍN¦fÇB³xÛ,å4ùê&OÚdÿV<~»—÷¦k;üûÌjÛm‰4¸º°©Õ˜Ì›¤p[»â¹SÎtJhÎxÁ!ýó#M÷«]©˜LLË¿í¬ÓºH#‚B –GoÿÃÔipÕU-u΃Ýú¯£c¤”ÛEלo©3 .ö¿„:sCß-¨Ã ÇÅ¿nd¸ãý®ÍT‡:Z{Ð.þ—PgmH ú®¯¥ÎG2ÝAݺ5ñ>å?é[/lÓÜî²&°ç)í ô9ˆÂ$±€uô´Kž#WwL—6éOLL¶˜ã‡JÒÚ?Ë߃:Ä4ÂéàRÊ÷èh9é¨ (pî÷ÞNÊìààÍ1} ðñÛåhOúZjÈonß{W-/°9^tëþ7ÍW:Âé[یׅ¨XÞÆMߣlYd«[aâJ®­ÌúY•]4«â×íÇê—z±®­7?µÐà@ÁhWóoacÏö÷]ݰ{|m±X¼~Êâzžd?,¼O[b¤èÑe]_ÿ=ËfãtRMçýÞr4¯çétvñ‹ðn{¤6e&†öÎ;J×iúÇ¥¾ ¬g‹=-̾$ùò%×e~)ç—àT=¤Õà&»êoæõ=h7zBâC-bŸtÞäEJñœI‹ÀëCö”œ•ï+hÓ}›Â¼}2Ó1Ýß°ÑG£á°‚G#öOùRP¾QKŸÅ.*ß #ŒøpˆcÄ $Cœi¿èÊ>tÞ°\BæM!Ý]ë´°¹Ü«.›dÅZ>Åh·Ø?ÉkÔt»{ ž€Ëõ›íHÿÜIÌendstream endobj 75 0 obj << /Subtype /XML /Type /Metadata /Length 1484 >> stream GPL Ghostscript 10.00.0 2024-08-17T18:31:13+02:00 2024-08-17T18:31:13+02:00 LaTeX with hyperref A Handbook of Statistical Analyses Using R (3rd Edition)Torsten Hothorn and Brian S. EverittBook endstream endobj 76 0 obj << /Type /ObjStm /Length 2936 /Filter /FlateDecode /N 72 /First 630 >> stream xœÍZÛŽÇ}ÏWôc#;_A€vÙB´Ž²Rb9Æ>ð2”˜¬–ò’2ä¿Ï©ª!9\rh®—+x‡3=gªNUWwOÎʨ\”õU媼˪jTŪl“*N•Šƒ^Yp4àTçU‰ÊÆ„¿“²™~ge ®,E9ãñ]•sÁ©j”ó1ªj•‹Ö«ê”KÙªê•Ë¡¨”«ÿGåѰª pnéý_”O&© n9áæÆ(_în¬ò5Ò§‚ ÄÏ«àpD±C…†C°trR!:9«=ýUT(•®ª*Z‹«¬Q)ÑUø‘ŠÇUÖ©TéÏ6약¡s"ví$ìÚÉ*XÑÚ¢rkaÒŒg·&®hÃ: ëâé­ƒUÃÉd:OFt6 `è`äŒg²Ö- 7%ŸTj÷ƒ­èHÅLjaéê".÷0i°´ƈ{y;ãá¬ØIhTk¤«™ÿËd¿DבM‚ ¬~·ÁÁ® É|Ì‘í@Û²É+f‰6,‚' d5oé¼DÖJh+)"¬kÙLÉå?=y¢Ï›ÅRý¤"ôw©ï~üµ¨³Ç‰°vp÷›Ï××êJ ¾o¾,I¥|êëámsƒŸòëílyݨ'Óf:5&TcRcÀ‡}K´ñíåxªíñæ©zúô7©¸¤ lu‡JÝGåõmó <~€Ý{ÍRNcc@Ó„ ¿sûÍÇl{M{^¦k}Û†?Š»Iº"z¶¹#®{¹—}Üò®1nŽñ¹¹=îÖ<ŸÝÜÌ— 0¥@¡»PœÈ·“¢D¾mûíÚoß~‡ö[žÏs>¿YâHAòß࢙̆gó/¸µkÔš¬FBºZ?t{öe³˜¾7 E _ 5¶Ö óñ›†L;xýülB¶»ÂÓ`÷×O 5õ¾¹ã„bº^06hëï*¨¸~/Ô=^ˆ¾Uñ¤ýXQ8yƒ,ÍŠN­rRÇaÛ+»ÊÙK9Xûb6¤÷ð\ i[-Ý{wî[Ž+þ±©NgÃEÃ~<;»¸øû«oÎ/.^Âvƒ¿ÝŒç“ÙÍ{N"|Û³ÛÅòüÃðVÅ"ÎÃogŸ–ó[ê¦ø¤WÃöRÕàÍçÑ’}G´+GÊý~˜M–HŸì8Š èØþÑC c°Ú$vc2~Jà|>üô]3{ÿaõG2ýó`<ÿøq8˜ >5·³ùdðeðë_ØÇ|é_ºÂÁ‹ëáûõ&'yî³U¬ð â§V¯äϳë9>·¹…}?üØìøæårx=?»yàçÅl±€§Ø ÈA8òfÙ|ü7éºcñ޳ïÚ' è\VB˜ßNšÛ6Œ™Ñ9åþyµÖ®+íVh—º,Ÿ‚.Åo´û(R°ùk‘#U)…*%iôZÎ"i"³\uTòjvó¿eN_NÎÇ‚|…þ²ZNÔgpDAƒ¢F×X$·¡Wg¯Þ^¼…›.K'€ ô›g7‹Ùæ@'’ìn$•;‘ ¤èí Çm Ç®„—n›fKµv%Úc*;šEœ v¢VîH6Ý•ì–-ެëlûL—¨·Ú\}i©´i÷©,lå%Øa8¬l;¨‚Aø=,‰ôeön6ß›P—°kõÝärßLÕ½áÁ¬uï†;ýÒátx”Ó’Ý8ÍEH*®…5 z$…`-Ž$„BÔ¼/:Rñ†Â¨d{B§ý¦£ÚÆ:Cζ0zøÓ´w¾×óÑTÒ¨·ò¶°¡é0ù–v¶àõáÖ8Ÿ_Ïoß|Žžh[÷*<ɶ×B/?Â"çí÷˵Åïþ1ú/)ˆ¦éäÑö™pÓ‹¿~uvþ÷߼yqy1«9²#÷u§³¢iÅ펜N:rÜYvúðl·F|òs݇ÿüy¾l¨3½îÍæPÉ q S;Ûøj`Ó‰ï˜äP?îÑU¶ý8†½E3ÜöòfÒ|i&D÷—Ù¸¹üö Õ#›e8†gFd$FfFe #Ƙ1a4Œ)A¶²9†gFd$FfFe #Ƙ1a4Œ)A(KÃN6ÏŒÈHŒÌ(ŒÊ2FŒ1cÂhS‚C(KÃ^¶ÀˆŒÄȌ¨Œ!cÄ3&Œ†1%ˆ™ÅBY²EFbdFaTÆ1bŒFØÄbf1†P–†£l‰‘…QCƈ1fL cJiˆÅÌb ¡, 'Ù2£0*cÈ1ÆŒ £aL ":‘†8PÌ,ÆÊÒp–­0*cÈ1ÆŒ £aL "gHC(fcei¸ÈVCƈ1fL cJ@9‹èDâ@1³C(KÃU¶!cÄ3&Œ†1%HJ ˆœEt" q ˜YŒ!”¥á¡l#Ƙ1a4Œ)A‚[BPEä,¢iˆÅÌb ¡, d3&Œ†1%HÚà–”@9‹èDâ@1³C(KÃcÙ&Œ†1%HB’´!Á-!("rщ4Äbf1†P–†'²5Œ)AR$$IÜ‚("gHC(fcei¸‘mÚðÔ®¤QIv’’$qHxKJ¨ˆ Ev"q¡ZÌ!¤¥iÚžª«N|Ô±·þw!¡””é>O3¼ICæ(p‹võñg8~ƒ\A}ãš2=.ó_ {©Ø_…c؇ÚqMÎMK·' wwˆ@ë´]ѶМiŽDŸíRÑ8Qj’ ©õ¾ã:gy%xk´ä0:l9ÖÇlå5ävÒïž%xgqäê(ï›0ðí›=³n#wEš‚†âA àw²çG×Öav$*Wã†]€¨¬ÿjì+ßE’|ݰ#[ÂëvÕÒZš*CZ«þjì"Ø¡œê²š“ÖìªÓCÝ?»šqš[³ ¶RÖøZä’±::ÛGŽNØ2,ªY&‡*“É÷ø³‡ÙÑ jŒeÃ. =çt v;ýëöë÷rЩ¸ÞþùÍÛÕšCçiï>kh›yÕ:ý ^,X½¾r’Yž½ÝÊÑíLõ´}½=´3µ³š6z¸ Vò÷2Á‘JñÝÙEÄK¥·Ði´tì=óé$•H¯»Qq¦¼#­TMÐáØÅàŽ¡NöJ°g¨ÕÌßÖûÔíÒ½ÇN(©Œ‘¢9¨`œÎˆsW²v2q¾+ÏØÊ3µßí+D¾}…È×=²'ó†9™7Žë¹0VÈ©¯×GIª3¨‡ä5•¨.A´ nAV¬åñ;‡Ãì\ÆàÀmÈ¡ÓO´løµÈÑP%õ®•Šlv¾¢Èt¼ìœ¢W!Zm¾ÂêÞavýhE‡·f—².!œ‚Ýn¶ìÒ[õ«ÁÓ;0}ž]-®è­–FïEïè®éwôa¡}O0´ï †=ï –t²¤Ð³$qŠܾª'¡ê‰½âÁ¿VJ¡8Z„Í—ÑûËYÓ‹Ñþe¥Þ¥aËop•2†^¶Ê<¬J‡í‘ËxFÎ9T†5¯ÉÁàÕÆû‘;Z®)æ‡KñŽøze7\4V´žÏ¦Ó7¡Vâ·)åB%ï is} Úý? Éùûendstream endobj 149 0 obj << /Filter /FlateDecode /Length 5011 >> stream xœµ\KsÉq¾#öGÌA‡§Õõ®Z9ìXÙ²dÇJ¶v±áƒ¤ÃAJăKê×;õÈ*tƒØ5<°ÙS•U••ùå³ù~3Oj3ãŸü÷Ùõ‰žlÚüx2o~wâm˜LP›à¼š¢ß\ŸDí'ŸR}suòýIšÃämÜoçÉhUßD•&ïh”3ðlÅ òBޱ3üèÄzÎø5vë•]ŧàĦò ¹'oâd}{Š*LqVrOmP~ÑÉ{ª«•-‰Õì”"°LY;vÍ6NÑÂXbš‚­opð¼¹Â¬¶78À¥C„ó”fÙ^áë¯MÜ~‚×*¥Íö~‡ƒuˆqûNŒ¸GÊ JmÀ×T‰FûÙ9§ºÑ7´¸2&l/ybŠiû;¡æÙÃóÝYã¼Ñ|šüú–&êàÜö­Øö;­ <ž‰Õù4Á«ˆ§Á“ÇÙF¥dižJÑY…¨ónù2´õ0¯Ž8ì@xÓìtf‡ ³ë¦}ÝNˆ×†7–Ìf¯â”tL|KèîFP筤䷗t!~VFÈÃßìt€ÓÕ=ði œæ;º^¸š«J¢ŸUYv¼¦ÝÂ{›,±ö ¿ô@ø^†® t¬¾àûBÁ‘ý=¿vIUéÓarõóv,d DÝìÙCº‚[q VÅ©ÑêØoPlcl쯡î0nŸe˜Ãƒm‚“Iî\‘äè¤Úà·LÂÏv•çmx& PɇK§Ãüû.Ëþ>®Û2ïšµ»ûÄkÇ9m¿Í:<ؾi*sAŒ„³Ú„kÿöôäO'ˆEל~²×Êĵ5L˜yŠi@r Hycšžp¿1zP"µÛÛóÒö?òí­³°Â~™¯ tpRRk•w{1«YWf*ﶤ{ƨÀª òî}$iô ^ ‰°úö˜ue6)«\2€Ì§ßžœþ²ß¥^Ù%®µÊha›J÷«! R“LÅe Ouµ÷ÝÒ¶)US a·ì—׎pJFŒ 3Ñkkª|[ËRV³’¯ñøã™M=ó7‚Ã_f]<h'€œGgíÚà¶Þe1gÒvF°aè#̬4ßµÛåÁfƒ÷eôž¯šçè‚86ªíDxè4Ÿñ=H¬S Nð™u  6ÊéÙøe~ÑQ"œ y§@bA\‡²eÀ‹³Ö‰ÈFaÚy¦x€Ó芀JeºUð'tw‘‰G ppï¯ $ŒEÙM?‚‚ð?ˆ>*yD |ÃÛº&P‡óJ¹¾|‹–Í ¤>àP‹FsûýäbÌ€“ñ’AK)‹’D£0J;¨2°š–ƒá<1KÄÇ&—‡Œ  Šëäò‚é@KðHàÉ€W”¼ H®*-yºÛCF%ØC=i”$.Hšªtñf7Í=;Ê‘ˆ™Ð•8«3”S!`fˆ= ÆîÀgE^Ó"zq¹b0‡&&Â¥™ê ¶«ÖI¡M*êó/BüÄó‚Œ(=i š˜'¾fç¬Ò'Þ\€sgVxdà6¶{†t¼-¤¼‡GðØ-h¥š8{LRⲄ5Q³og0ñõÊG¬WsˆÚ <«* N#\ª"18ԧꦨ*Ù·Ášz¼¤Àp$sÍ$5ªÜÓ €B ŽäÿE˜ oÛµ_5Å8>0…Ùp›hƒ%º6Ìâ¶)‡±M(2XGN±dTƒ7Þ©|0…‚ÐÉ·nÁ9 Ü®äã9ÅÆgÕ§‘Fe¥Wñ€œ6’³BçNÝ5˜<ˆ”pÏ£1H”v䢩2ö]ó.›bÜu8Êä@·²Õ£™jj›:e$Gγxød[=Õ)0%ÂʨÐ9Šó-Ávòî <ëÓÃná>ôŒ"PîãUó0u AA×ë[)¿«O÷ŸYÍ G]5:ƒ±í|šneöÀUC‚§§ûXŸ~ êf®ô›B<ÎìÙ ¯jv&tPp'#™Â9!䇪ªð ä(•DVPе[)ª‡ó†vŸx& ÁA€-GE¦dV›~â †8§—q²°:IíKÎ03åq`JFb^t#à`^Íÿ•LFÞ`a‰¨²T¶n,¦Ø^é ½<Õ  ­Š®u¯æ8yç‹^¤E9³š¢¼íxd€ÒS|iíåáF:`’Á[iî< 1^€,ó 0;ô<+7/DêŒ23pJîàÀÂÏ`7oÏЬé[Á0âRr–Óå2Òn4|Ûø#AÊÏÙŽæ)#ĹyF2öyß„¸ÙÑni;pÛÌ6Tèx!…à¶ üUÃ^)U½Ü•s2Gu§—½ÀV´7œµ¬¨v|®B/üÎØ‚5Mð]êÓ§ˆzü X[æÌ—«½Ñ`˜!®<Š{¸<‡JÞë?ˆÍ¯‡ñ6‘ \3Úß@Ñäø@!æü¥"Q.šNÜ.B™p–χ‹¨GŽboÀæ “³ªJUòëöSÏ!2eˆfa¤Í Y”äPpòÏE»P“hÍåøRqY„?–¿kÞÃÙëY„_õaéÞYNôô.Bïë¡]òÑK1ή#g'K6#”ØT1Ÿ˜î<ôï1ªØ[·íõñ ?»þJR Â}[Ø•–àã®å5&ž‡ ðÃåg¾u¬ÇMϳ[ö@¥¬WëmÖ ñU[â°|@ÄìïÚ¼Oe÷n-EÁa1ÄõnE’/ò>c|‚ÛY@$“Wp;ÃèûFö‘ÈÌÿ‚8b©¿lÛZ×-äê¼u±‡Š1–K²‰>oZöa²«âäS¸&eÙñI‘31"zÍ[)­"LfvXeSq°‘uÙ6ƒ³-ló=CK) «H(Ñ¿âÁ±·¥™ÄN ï*‹ÅEƒ_qz±³µèFèË_v83@ùÁÊ›¬Ê¾jT½ —‘}bßb¨+s'k”“Óî…h²w u)«À!¼[Yãm–H¼&[#‰>NLÃX ¬‚©¶2 *{¸üH“0k¿” €€(‰Mì…ü>’îš.=‹f¶„%2—[^ÇÔ˪€<3;ò‡¨Z¥–D]RˆG(=„­H×µZwöp:I—Âðn›Ú 9¸oˆ=1éÝšg4`(Ÿ»ãCÞŸ÷½W 憓ª­p–ÿÊ.'Ä;êuåHÀÉIîÛQ³è€B\DD#$ç’I§Ä%©Ù4ß<&@–"Þ²ˆ¯…ç@¢¬Ý¤tè*ÿ½1 (Z‚Ù2T‡.í”KKàý±Å¸£\âŠ\aŽ\ DŽÃ«\çQ®O5r06ë0cH-Ìz@*žï†;¦•…ªÆ’-r½˜D±˜Ö¯Õ/…P²ä;,J7 {Ç¡»¦¯›õ_Ê6iáÆ±¦a0’Œ¥RöùÏ»½ÓX"Wâ@wíå?Õ—ûöòn!º©O—õé¢>·Q¨Oß n=²sÝ,Ä\× ã~±ðëQ¯EiOç.Ýf×¢>´Ã…!¿lgKgžëÓTŸR}zÕf«…J.YJqŸ½Á, ~@0‘rqðk´%.þ³úën¯þÁyÙ¬ÝÞÓ?ôV;¬%Vnš}-þñXÝ ésÁq¬GµTi à®Zt’ Yª^<ÁÛz>Þz,=—÷€kYiü©ëÂ3P&ñïR¦_Ðf#ƒùü!)õÂÅWÒý Á„í.!åŒxfqØ¡ª„Ô•y&[‘IôÙ in÷…l/¡²- œ$jýLõÑ;rS×<¿gÒ–ð;~ñ¬¥A òe“–xFlãgJnPµÞ×ݹªê\Њ zy65½Li½¸¦¼…1U÷4ó#îòž‰š4±-%âæf~¥ŠÞB4Æ¡mEš’Bu‡GYïhÖÅ Ú*t“8G;Í(Å}f5QŠâ•–#i°M'=^köJuŸIÝs¶y…Áäâk¿ÈUŒ|h¨Š¬ˆÄ‹ÌW‰…‡ÈϵÄß®úCñŽ£Â ïåÀó,óËi¯—ŒOŒjU‘ÞQ!AlâõàxÆcþÑ{c~B,ãàÙÚÿϲ,x=fP’H†9+'Œâ½VUv- ÈÛçl¬Vd¡¥áÎx¬M²áuÄ9Oô*ˆhU6°Tx£¨‡Çb}wÈóžf²êà „ÿ/ý,ôŸ˜àÂ3ýA¥yèŒ;osN«.«¬8ó‘âgÇ.IVIZíç´8iÐ^d{>'EUæ^†mE!{Å kÔ”ÅZgŠðbµM“zÒÁô\H)ÊÑSHi’Äz23Šu¤ TKXüÔŒh6Ák QØ0jÌ[Š^†1kI¿¿Èù+м¼ì²«ùUóEo¤âÕÒä9SpqÈ@ÂZbLÚkñ/„ÝW•3“›kIåë¾x7Êï|H¹ñfkw§ÉáG#J»Bî×Ï’³“Õ¡øb¦/T‘]ý„ý©T'Lj”ãgƒíÿ%=‰.\#QM©·c{Ñ,RRV‚Çíò%¨»Ū±Rhf½Bo% õ(¡(T¸î‚¨£ŒsM$ñA@£±:<¾Í¢Ÿ;E!–QrÖJíï]í‡F[Å¡ >æV«ß–Jcµ|ع¹W–v›_ ÷ñk^$Äðyœ®â]Þ[´+*ö¦ù7†E”#Vk,ÚDÊñ†ÞÞ\I£‹S”Óêò×¢Cç²ò3”À—ºïŽw<[yW UTNõÜöË¡!XT§Ds$JÍgÛž†‚L¦‡ùoÈ ±¹C©zj㲇ÇP•]ÖD¹·¬\b³o¨Zr|ÒÀì]ê;îx4^æP&ªÇöNHAKu”rÏSÁVœÛƒ(ÖÈõE¸RΔû*Ÿ-a@a ˆy7üÚá'IÂ¥ÿÛb©¨ïÓ¥UúÒràß«s2a•Û¡¬Slß°Ž—£–±eáûÅmZ«’7%¡*w™s-Éô=̪Ÿ‹ÛúJ8g˜o³d"GùD0”¥«Ì%Âåœ%÷ }L÷f‘Ç …^–x¦iܾÖ&u»Æ¸[ÉN{ðj˼‰Ï‰ßÂ=×Öy¯m¯ÍëõGúµag®:ª]3·+8Óã)_R|âš{CM«'”yë)ÝúüXýeqÿ/Lãâ—ªëoÊ õ¶ ¸ÊÖ%û©\ƒë ^£“ ó`®Œ9[9‚†^œ¬µD¨;L¯¹ñ;Xߘò(tF4ë×g÷ÚÔ_>Þ;~ ÖCýobeÞ Ý^‡>ˆyÆ“pèH…®—Iz"B­~f@Tæ0 ­Îßv. UYýç’€KÄÔwÜ”s«¾û¾¸2½@— _§ÁEø|3¢ÈþI£Ñ·×”5îJ‹žÜÕ ‘s©×ŽÜ@ã»Ä¿ 7÷œx[–¨î³¥*ò÷½º[HLN€ã³¯É¦Ö9•åü‚G Å~Q¢]T—M‡n¬¢¼@j»4n[âu ÝZqŒ+Ú·™Un¦²´ýVô†ÿÞ¶Ü e]æ’gR{ÈC¦’Ö]rXm²œüs)vÙ6F¶dgOÕ™! ±Ôþ^㢷O±xRé}ÞÐ,oÞá­‘O a œ¼•øtzpzö륷L Hé”f±(,Jy{þ»žÄbc=¥.E¤•„Ç%þ?Ñ‚…ès ’Ì=KÁãvBú†tÙm¹bbqåû i¨ ù[w—l ZhkþÖ/‹Uݾ³gõ‚˜í¾ì¢°IõAíyµ˜D_·˜%;@9~Ü%~½Y[N˜ÑóØòÕH H»àI2H©ÿÉtíQRÂòÏ« ܱõ’ÄkE‹ø5œqôõÛ§b&}Ú©Wyür’ßÊ„ñJ#šTùU@zø•ÉI÷"1ìÛ{á×p‘«ÓCß8¼õÑÉ`{¥ÔuÈì æ«¾üR¸ÔÌ“,Xìwµ{©[¥K…ÔP‰— T‰½€³Œ'§Ìc„Lõà(ªææ¾oûãEð³Â\,²aÈ_}gíÆ„Yñ‡zÖ¡únö,ιf*Úú$üéäM»(xendstream endobj 150 0 obj << /Filter /FlateDecode /Length 625 >> stream xœuSÁnÕ0¼û+|t1»Þµ½{¤RâÖ6œÚÒ‚èëSKBâãY'yy~”C¬Éxgvwòä!¢‡ö¬ï›K‘Õÿtà߸Â5RE_sÁ(Å‹ê†<¸+§Pcañµ0DJÆÚA%ϬLvæŽtzƒ}Ì^ÎվʉÞÁ•¨Äš;S+Ð{*$‘‹vžkÀÞÓ‘´'œÕÓ¦v°Ô©¿wOçAúõu³óg“{u‰Å[µ„™ýtç–)£G¦X }ûæ§û^#%‰8¼ V@•> #DPÕª5<Î@\8Ü6<«J•p=Œ6¬¢aoǤ†ý·¥ „ý];UcP¸²dåPÃK+‘T-*Päþjä¹P ߺ]›7‹æ™†–pÓúr‹¶µ7ÏK+ÂIþb7ÅT­à¯¹t®OÄ?7†RnpkŒü¾Y('äÅ^’¢&86 &›ãýðqz×v#ýn(QÄ,¶ŸéÖöqÙ.TsK²²O69&4#9û%š„.·~›'JQm6ô<7#\¤­‹ˆLŸÂùÜ9c%C;§›Ú<ßuýÇùŸóÉ]8Zì_µ4Ù/aibË$[F¹ŠÆÊ eôùL†`ÔœSŸÏ„³Í¢X“,²$tl‘ÐbÖŒ[ožg‡–Z^&Ÿ Yœ{@[t-¶±#üØV–£Š…|¿4$e¥g!_æÄƒæRmÿV:”Ñ5kk•*€œæ‘¯œ³9ÌÕjŒs ó2r@Nʭ̦Ó¿:ñæ«-ñØÓÁòÀ~’¾ÓyùDK 7[/Ç.^Žf¶^¸?“&…endstream endobj 151 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 4570 >> stream xœ­WiXg¶®¶¡«$ ¢T\âT»Ǹã3F Üq£DVQvMd§»O7»€€Ðì;-«X ¢‰ŠF£ñNLt41q¹n1“d&§ÈÇ,_ƒ&¹“ü¸Ï}.ý§ú«úÎ9ï{Þóc6„‘Éd ;Çs瘾½d×OÑ}Ìa˜†™Žç¿‰ÎÖßZu`Ls—û¯° |Ï>Ø!deèûa«vG¸¯Üãèáéåíã»y‹ŸÓ¾ý³æÌ™7ÿÍo-\´xÉ2†™Ä¬g&3˜)ÌFf*ó:³™±e¶0Ó'æÌVf:³‚ÙÁØ13™Ì{Ì,Æžq`V2ï3«˜ÕÌ›Ìf-óãȬc¬kf$£aF16 ϼʌfÆ0c™qÌkÌfÍ‚1cb˜²m²î!ó‡4Éeòíòf3άÌ|±yœyŸbBÇZ°…œ‚sà® 3ô¼ÅR‹<‹^©6fØžá–Ã]†ÿÍÒß²Ìj™•«ÕùCG#[O²9|dÁÈ:`ci³Ò欤¶ìK_%§™4¿ïM>¡"^ ‘ Aħÿù˜”­Ú_}@ 1À©Ø]«þ´ÃiM¹öä°É"›hy:>-GÙ‚rs Pˆä5óE*…1íkh…¸Fµéà[,9+mâ‘"s²Na)Q’eP Q!—"ð"#ä ‘Ûmw_ï/hÿª ï&𫨋Yà¡$Tlµî‚¾™¾ñ¼¦zàjôdQþ¹x²°$e¾@ªV«X£®KßpAS2x„µìs¦ v±H”¡ ŽÆpœ$oì[Á«÷ߟ©’¦±h{íþ³/7}J, ”O‹O_„O¹ûö_©™I>â±'°G¯±^°z‰’ %·yìÄl ÔC™Ê°¶@¸%ì‹ tÙQÀYJêäVi”QVMï[6rÉxœ8ÿGøÙóÈT2åñ…cÜÅ  "޼x–ÆOl€^hºrê7+;ÐàŸã—³œa¨`[¼o¼‡W¨7½¤Ï+N”~eàLyß̾¹|1äD&h4I‰ÂÆ­»Z·—®‚±d;™MlH8 Á7ÈhÜ… ãèK’tQ± ¥U&‘1Ó×.€÷À¾Î«×ç|òexÁSñòÉkŸçwÀmøÒÑ@^×GgAp•:}¥’ÂF¶Š8Ñ(h•Ý¥Ðm£ù¡Øòh¯¨ i:Ô Z|wß@ÛY!f.»ú{);Xbo²J WS¬†D8ÀõgþS©“¯¨k¬èîTëbE&lÛºÓu_Mm„Ò²/‹2æþŠãñ4ÚþEŽÅ·ñÈb0Æ 8”,R’IÿÅK÷¿e¯Ã%ÿ†uånÙÈaRâæW¿ÍŽþv¦"N¦Ühñpé­“p¨(ïc±ŠW)ÂÉ«¦“%ÀMÁ¦RÅÃt×JUŠ©®s„0<ü\³!q1ãDÅ>L6ﯣ¡|AC9N¹½lÛw‘¹‹–rtÂpþFšß´ÚÈhðçÜëÔÔÔZ?ØPé¼kwÈûa‚ö¡‚,ùŸtoÒuêO@3Ed°Þ¤\fi¼e"–¾ˆW.Ê¥S}Kùþ¢ÁËMiiÓ€o màbeEìý ÷eƒá/KqŸ'Daé΀¼…GȾ¥$$¥×êe ×ÑñºïIï °)ñ@\R¬u8 Û8»ùÁwVåRÖû5'žHhMì=ŽÜ—;ñJ”zD›\$‡*‰Œ€„£YzÈ;*d¤ÉÉHk h‡Ê «æOnœßWw0_¹·Á;Ë=[uØé0ts½ŸèŠïe¬ × º}j påQF1¯ŠÑI”,ˆŽWiïöÍÂHþš¨ðRÛÁÚ3À5¦ªBë×Ù¥«býÝp<.i¾„«p¾i½ØsçNnÜ„¯6”’?þšÍèÇþºkœº6ÙF»FEfWI( GÚ=¸ãëÎvC²&¸70 ¸#_@»`\r+Z•` ˆËJdwPñ@”ãvi"ÃE27«Ú…Dñz*ç}‰T±„¹~ù³š«„³*'Ö)ÚÇß. –}åÎóÄA8SLéMêÅ?>ê¹4½=0|Ò{LòH æ=Ùßübê¶)íE¾@Óò3±SHËïýÂÒ.¦€ËÎþ,¾xFZÇ¿äžkç³nÍZmi€ß°dÍ/¬Œem?xVy®6 º• ´Ï4YÇ$hQJ }éÄý9Ц¥4ç¢Â[= Üégxû¼ÿþ4*Ói ~½ ö4útT²]ëp¦I7‡â<ÓHX€=ü“åçˆÕ^2Z3×µ)¢ª®ÞÐ^V¤Õ †ôl}-p*W*½Y2EMF;Ã$nÑc¿½mM!¶>Ú%yP^¯Ó)UiŽ(Îð V‡ù»‡¶5ã“W©,%ßÓØ?D=ÿmçgdýÆŠ¬ŸÆ] Á°C 3ÅOe?W[o?}̻ȘŸþÚð„½:o½éÀUmȺ‰dêÁˆ½T±ÇªØZ}·Žj ƒÓ_—ªÍ¾fcî+ó]*E­î’¾jฦqàÄÊÙqãÙ_dÖ©o5?¨£pô?ëb»ÄÒVÿó0‡?¿¶8sÚ "söˆ ôUfnç:ZŽ4€jCò<óöÂæ~Ùãã»7Ä ¼À¯$¨…Ž«g4÷=%’l…réÌ€&ÙEÑé1¸UÒ}´îêiàBß0ó×´“âh¨åDe”Ή²bdå’½4”Ï*Òg]Ndƒ5þÚ`ðƒ]úØÁêéNÁ!mJh•o‘à€këqvbÙØLU\£ÙA°Mï;pð"‹³ú'&†…¬>>6ÀÙ;1 âA£KÕd–@#×Rîàá¡jv9ûÙÉkâQ á:u­Ze 4 ´–ãiiŸ ¡ÜKê\Y^¹”ŒY0‡L Óž½M¯C³Ü#!>&U{(UH:¶f9xþÒÈ–Èm'tqG<:š«Q –?­~9z¤¨”‚T–«Óå'#ÏÓaeyîúç§›âs•yÙ¹éGÒµjM ÄsÁE‘••EÅåe1Mî1Þj_OaOõŽôšÑð öï¸ï© UîÛ£ö¢Ž9N¿£Å/:yK(lâvžøÚãÜ{¯á,2 'dýÈ;ÀÅ“§ ÷Ú5pܱÖ9(;‰+ÿyG”‹ÇÞí“m=Oœ¸pŠ”/í² äß:æ÷œ÷l´xOñky8ù¶ÌXKøëÙû8Gö9úJÿà{7îvóñqskòéh76ÈZbG9vþg¿R§ëÖ·C-œzAsGÉÖ¤cÔ¦þ³CöÁ3Ô?“Kû^U­6,T ôhØU´‘6޵ý|b¶ÁàZµWÙêlL¼V–ÒŸ©é+ÚîÜÎ+—¼G†Õà„$A{2Â^ÚŒÕ6#G§+-ª«Ï¹~’ÔB¥ðÕŸ¢Å…ˆÁÊÝzä¼eÈòÍŽK÷Í÷o¦N£«üÃh[B&zfi1šÂŸ½†©»Gpù9Ö˜&ñˆ¾…|ÿgÔ &›‹Š’õ%Ú×Ý“ŒS)ºÒ~€úùºÖ8éfÕ~ÈZ”Cä®jp¦à6“„Ó*vc=ÿãóü¼ì¬L“%T½BèàXûRV¤&©““5Z%QsiûŸhþ§8àÖØù€Œ†ä±ñ¡pP0ÁpY_nÚ¼4¥ƒã&ÒDCêª4i ùÔò¦€|ûÂp|Ò#ﳑ~ä¡tåi¥i §„z+­JãM%ÀYï=[ kƒ&K[¡-„qý#XòÆt·ÅDä;iùﺒY,ÿÝd\³îüˆ£…VI÷ÏRÊõ?f™)½zÊĺòœx1MËÛ§´†ÿj}ÉùÞ÷éá½Ç¶@!âÞÛi~`ÛÝý×sÿOkãÿ¶Mh‡ôâ9î¿Éwø4¹½lަ¦:‘ÔqFé¡QÖBk½Ø´ºáñO“‰ñ’8ý ±è…Þ€Ÿ ôŸ"N¹ÉORO²ÐÇáû´Žì§½i‡¡ĨÌ%é.@†€¬‚9©ÎIon?x``ݤuM—Ȩö¿"Çûä|} ø «ÖL¢géÎN†ž"®?—˜©Øæ´‡`ªòch$.ÇZþƒ9Fü-ÿ)sxã?£½MRI噢ÉFQv§PS&È%' ¦Þ@’´óPtJâ[”¦¨*ÿèRUyIñéã%ÅÝ' "œâpÈÜ[Ärâ’• 7tÅ”×·–žl ªðɪj›3¨ÿ¾›ûºûæ‡å³•dÙ416R23]×QO½¾yóŸQil‘µÓï2ºäb~ÁßJ_þ®Ìxw¯G~I°²6³¡ D®Ó¯Îu·Oàö%·Ð§Üúú‡óû¿$VÕ©’gà!w›ZÈa“WØ«BŒõÇ í[2…º†–tÚüu޾I°%Æ]é¢ñÒk’´ÅE“© µE™(ÙÓâ6š4W‰søÏÄeÒbE…6+ :bâr¡µ¹ŠºmÙt“Û6Më6¸-å]F‡ª´‰'Äm0·p,N1>Ày%²=¸Èd–'K:¾05SK -Ž¿…f•YšÜCj ¤$*wEìJt‡uàZ—¬WëÕÀÅ@l´’´± ¶,7=-+CÈ-¬k¿Ü%X1[®qû•±ÞÑû(ø»‹C:D}i-4q=n!1ÛÖ-íCëùêó[8­ß!¯DìÖîw`k~oìBë SÑÿ€JTÊÑA2ç!z³ºŽ¢åÍÜr0@yRAd z_fß²€cUYû¿O¦Ï#ïn"M«€Ao”=¹ŽSÑvæÛXØ(ü™<à÷Bxu|u¢z©;øÊçÇ ûÒ…´ ÊçPª„;ÕûS¼‚C½8g2ÑšÖß49­@é Ÿ“ zÈ䪈?nº 4× M¶º€S)|H•èŒÆŒ–üÂŒì›p„ÖqœÂa¶:•X“¥@¶}ï,dŠW„ndâüî+—tH·i²_aêWr|&±ü͵T(¸'ê™J†¯[]Q_WÚÖnÌjÚõ³Ë°ËÖ¤¸˜påúyÉïÀ^Î ƒ”²rÈ,·ߑXÁÂlaɰ¡0̆½ÃF2Ì¿Qìòendstream endobj 152 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 200 >> stream xœ½Bÿ CMSSBX10‹‹ù!ùJ‹ ‹ ›÷?¿¼R3oøˆùR‹ ÷¶Ó÷uáæ÷$÷Ÿ÷øw÷Ôʚ걋÷÷Yûm‹^û„g€füêg–°»±•˜®÷›÷÷8û³™s–‹¡‹ÆŸœ‹©ü6÷õ÷u÷÷ ]IP}Uû 7Ÿ ‹ ‹ ‹ ‚J&endstream endobj 153 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1769 >> stream xœ­•kTçÇg˜™*!3©¦œ™rŒ¦ÄÔ( ‚—˜ª¤‰£èr§°Üv¹$n¹¬Àî>»Âr_aY–ë° ×€å ZŒ ž9)m‚95Ml¢ô˜hšw¶/§§˜äKsò¥ói>¼ó¼Ïÿ÷žÿ„« A’$´ÿ-¾‹ok!Û¹×æî¸»Ö{±;=¿zìÚ£ï­"ŸÇ”i¯ff©öfGÇÆ%&ÛD¯ëˆßˆDNø‰@âUb7L„/~Ä£„§|áJèˆÿÑä.þ.ŸPÞÔe×]ÇÝv¸ÕÑ¿¤ÕÌzÆÌôJ:iDÉËF"bÅLSÒ먔ƒ/ CÕ¥8bN‚g .@›ÃîÓØ«ÀMÉü©òÄa·0Šá•L›i:@„qhÓº¯™ßæÃˆ€B™o®_šœ´¼Êãü={2ÁÐÉz8ƒAD×mhH$?‹nݦ†/qJ3s²0^Xè`âu…A|ŽRr§÷ù§wç?Æ+ë„;ÖëWáÏì­>Á?çñn|ƒC&¦ÛTq†Gžô½^¿ðàƒ˜~…?ã"õÝÑkÌÝQÿ]ÛC_ö<$M¡]òµ‘³¨s–’"Q2‡8Ÿû˜ÅîÏzcOüø½ˆF+æÿ‰¥5Åü{Y×# ÁaØŸ(t¥>q¶èbA®5Çz¼N ilTfÄóÁý÷Ô|©Œ£¾¬tÀ@Iž€½˜<(©.7›øò 0ªï?2 À~36ñÑxrWQ•àH7צš-ð>ëh:û9"Í›RL¼Q['­r«Üæ*Ùß'E`#ïO#/;…vJ8ä-bo´OM~°q³ŽÍùv0˜úPuaª{r†ÿ£:Œ RFÇî/xg¦ìߴ쟸äߨ%})=àúNVÏð6‘ÎÒo%¤Â6È2É€¾X\ˆÇP!ó§~kºÅtS^‹N¸ -AéªûdEcØúS§<¤ºÂ&é"i•T”ô,úŒ«²7 _5²"£Ôk ²á8]º™Ò—§BéKJò×ãš5Øõ”X åkÛúÁÊ‹L¦þ ¤C2è!tù“KP]Z›‚Öá¯)טJj¡̦Švq}lèíÆÖ›ïÛÈ37бéY;%=lœ¼ßƒ‘‰] K$°Ûö…‡(5Í- -ï&Àq¡yèœuس—ã¶1 >ª{Év±;ÿ‘yåÚÈà¹F¾ìˆ#aئ ËÇÂ%õæ,­&.œâCÎs>ÉQ‡õžCkЮÚ^/‡—<‰ÏÙPÒ Ù3‹¬Sº°9ƒÉ£zBåadŸöÁãÕw|Ëì™ÑF‹°›AÞÕn"³G[q^þÅ„,|ÈAè4ê¬ÄcÊCÀf`¢½9S;hïlŽAÇ(LB¢úÚ·e4y²ú=…v”Þˆ‚–òC;II«ÑqÎn‚Ư¿Ä`úù§ð*¼æëg…VŽ ¢É\RV¬•¹ë… ÿ½ªh`£7t —…FÆØÈU¢-·vÀ·`ÆÞÆ$ö»L^”õc±ì1!šÖ€¾¦±ðýî.4ý_sµÈ}°ƒhõ<‰Hn ´Àµe7§e¨³ÓS[r[Ö6;y*#¿ZU,#oý!;ÎÉk`N/× )-$WF—-:·´“ãhf‚B±’÷Vb®²\šú+ °ã­QfÞ”¥Õ7)˜Å|Ñ•ÂNðÉ¡“Áµ‘°SÛ}×G4DöÅ=±=E7òz´5–â÷TŽp8ÀþæÍWûk†ó¯•κ •ZÙ¸‡ £XJ³ÑT[Á—U6õUžê™Jº,r»ƒ\®¨FÒ»…øEMlµœáAt§ItmŽrz;·s ótÎr³Óä[Õ‹|Á*Ó«ÔÛtÆ|P± "“>AIw™îËÿ†x]K °œ$‘VSU}Y¥I„F T%X°¯í‹ÀçÉOç)´ï<×®jÊTæ¨2S[s›ÛíM¼¿ÂÕßæþ3p_î+ÁÝ“ þ ü> stream xœUŽ» Ã0 D{MÁ ¢ÄŸ&Hd„´q‘*ë',™ ‚‡Þ{SSÝçØÏ­4È O©t+Æ åF®Æ£­ø¨YÁ«> stream xœµ™XT×¶ÇÏ80çØˆ29Ô{Æ–XcìF£1Ø;6¬H‘*EêˆÀPffÍ ½×¡ ¨`! »ÆX¢ÆŠÑ`¹‰Ñh4ûà&÷½=˜Ü÷roî»ß}ø}|§ìµöý×oíPf=(@ š»|õ„ñÆŸ¹bíy{¬9ôB³¼A# –hdõΑ~”ñËÎvûÿsæÎZ¼0d‘tñŽ%¡.Kö. w]¾Óm…»ÇJO¯ÕÛÖx¯õ±÷]ç·>ºÏØ#Æ}ä<~ÂÄI“§ :íãé3>yÿƒ#gêmAQC);jµ’šA §VQïS«©¨5Ôj-5’²§FQë¨ÑÔzj µšC¥6Rs©©MÔ¡}}7õ}a±Áâçw–½s«Ÿ{¿Ký‡õ×ôcùPìóî¨wãØ™lÑ{â÷­&Zù[=¶®·Ùn£°b@æ€êG´´è6ðÛAcÿÅö/yÜ2îšÄ]rnðÚÁ"5tá0«anÞ _<üÔûƒßôA¯°hÚhà ªÛm…üÐöelB¶25"@!OˆÄ®ß[‡opÝe¯b|éõ~M EY­:Òg˜Þ¤/Óª3ÔÉ!deŽ@t¨NÔÈ!ÑÆo p¾tö2ìýpHÕ¨4ÞNÛAdª¬†Á:>ƒEæø¦9–Š,ø0ðæR%êq ¹_²D=ÐSÓŽ2XDT«nÖ”Cy÷îÎw/’ÁA ZFÿ|åøùs™ö«9ù¯]A ªbÐîƒÁ·.2ß»hÌgÿåŒøÆ+‘™ûÒ⃗Óâ7I,Ú7¬\С½DÄ’VtòéœçVbñ=X¤¢k4©Mê'zZ;uÝÒMÓ°Pò(–}Zxé<\c|t¿Çuôð-ÝÐÈ<%¥´ø•§Rö)ìË!›‡m}0ý:fI–ã[,î/rP¦ÖHPZI?k·hÞúéÃ%¼B¦çÇë­¨ªUÈû o½;â5î‹ûÆÜ³?A=Qߟ~DbbÖœŠ€3P{áXéòCMÅûàì—–9—9Ã*pO°—:I¶oÆ´óíƒÝ»/äáï±õgN%Uc }•®ªð…Uš@5Éž/Ý*“G%Ê%x:.Æ‹Ñçñ d›b}ÒAÎ@{*怸Àµ‹ÆxC}ÒdyÈo×Ó]ñ‹ê´WÈÚö¨S·%„þT‘±W‚ìi‹v©¡ýCƒåñ—¼OmÞJüä8úžÅ®h*ž€V i?" b2 5Jò‡‡ žŽÀ¬Àv£f‰ø'Ô‚Öï>ƒmãñEœ&9Àä¶X‚bè|H•%&Bt·ÑÖ£nÑ1`#~‚íð< ;“t·àu4VÇÛ4é-__By­Vâ§è3¾{ÆÃʸ’*w’ˆïtxuKl·ºESåЬ¬ý½gÒétrD£ý7À Þ?ÿˆX$ý ›IÄOg‹S¨”Ñâ\ӕ͇+›¹zf6Ç}çO³uu/jDƒŠÈæ$umwŸ?Ö¶Ïf}KénEu멇ÍD‰V¢Õx š€gKð»¿fM’â÷t õ¹è,\’6ÏÛ¿2} Ì, ³óܰzÕD|iWä£õ¡E–»[Q©¼;|¿3,^øÏ#åOHi÷ñæâ§Q[Ï}23CGã÷pÿ§ †äé24ì×U2ZäËâ!4ø„ûKƒ£"}€™³¢ Ѩ÷åÖk·'¯#µ6“ÔÚiªÙ-@ƒÚÐ&=£×ê…hÐM¶;Îk¢F”i$ ÂãBæàÏ€Á6]eSô~šé3U¢GA¢)2ßÑÜ/ê,PV„>„òµyXÂèEþHjÞqº»*-øÝvóúÂëûVâèô-‹zÐXbÜm“ ˆþf>{ÕMš ØM°Ï¤Ü´­2³N‚Æ‘¢mû&U* §P…FC ã_¼KW Ïª®ö­tæÄ7æ€ç¢Hg²£ƒI˜Mt¨3̵z4L/äoµÏd;½5‹â·¥R«½I ¥u•Š7=²k%HuŸþ!£;ài1Þc¸)(¥+à>"4ôkò0G¶à9™ŽŸZhY£ú…ëC>··!7´ŽÕ%Þ€¹Ì/×YÓ3Y­.,ä4Ðp9¨*&r¦}õõQ¿ªè,‰wµ[šKñÍ5™‹²O¨-k¸z$OðÕpêØtb L6$J~2•]‚¢£8EbLl¢Â½b+ì"»gá¾hWž¹T"n«¬Iò£—b‹PßäSÛ¼j­Ä»ø‡çØlé>×L`Ò!-W‚æÐ{“’¿$¦ã¡Z«ôW˜ žZ£éTÓµ2ÉRZ܄Ͱ8Ö ÞT‹š‰/l¬9ýË£ xÄ?µŸjûc#Á¯ÀSñDì‚]Ðd< ­–ˆw]…Ûe»O‘Z±–éш"äo@ ~¾„•ÚòÃY4Ì€‡¡eA"Õt¿Á£é·¸’Æï<‰®»RqåUJÄBDLL\<¾€[¬Ñ•ÿ@AÎ¥CHw1.N‰M‚h?75"¬‰›kaO7Óö°#Ée[—AÅ«…hŠf«öì9\Zf¨kÈm2Ê"Pé§ $›¼NÕ)‹beZ¡ùˆ˜¨ùòYÖ³~Š5Â[Р俦™îP-VFÀpPtnòeP«šìžaÖúCÜ{óª•Ê`ãK—i ê2¨„Fei'HµñÙ ºÊš3_3Â:M–AÄ»+À8+T©ktöªªºׄT2&s!š¦Cݰµ‹ÀV_]î¢-“¡t<ÑÓjuZNy#>’Û¸ñÚÀn¤õ ‹ˆ3Ïg‡ˆp‚Ty,ÚJC!¨3óöÿ"­B]`©{ÙVíjØ J»íŽ;|ݽíÁ'±æx¡Ñ넨Hoy”t­ÿ‚¥ÄÖ Ii:ÈcÊÂòBB¥Q~ŽžGÎ5œ8QÊYð+I«y\¯7’ÞúÇ‘zãPÓmgÑ´»GÓÏ©œ V%Éù±O­Ó£ÕªT`r µP¦ˡé%Q¨—j“Ò¼a“Æ«SÔ/Á!@Ò1›îÔœ_1š£³$Ólì… “èÌP2›‚FÝÓïæeè&Á±;XT-Òi¡ø™ýSR}ÌGÃq ÑÜ€W£ÉÀ`q 3â4 ±Jyœ’ó>b`#¸V…Ôû} ŽD] -kŸV& ôèôRØî޳È!#伈'ã­ëÆáñhZ‚Æ IÈ‘ÃßâïØ1xÀw(e¡.¶>@Ãæát\€ÿ2í#‰:i2[4ù^šN€Ì.<~ Dsù¹,bèï>ÿü€6âs¹èÄð(bBòBË+s‹Jë=jÖÍŸºn‡é™¾·ð?›!®#‘îƒö”¡sÆ¡¯ 5½¢Pt‰E³D¨¢î<ÿqäwø/üúw ÒZ(ŸE%C`›M‚!›€ò$ãùÞZ‚VŸ¼W‚ Ä²¢%ô:šs½¶Å餕ø BŸ±“áyI¹º:W/IË*©ØÌ òÙ$‰‹ñw%BbÜXH‚’ü¢½þ ŠB`ž\ºt£>¢>¨DR·».¹Àx@Z•,1AÑÌÎì輌ÂÔ’üèj·P'ùVÎ¥ÆE+fÜ‚Ÿ:éÜõ;$Q»Â½Á‹·Sà›ínµÛéã ®ÌÜgk‘êõsóÍÚÈæ ܺŠU°‚ø¥3Ä«}’v€”Ép|‰ý`AóÑC{êh%§D÷‘L±Ÿ·q”¤ó`ÉT–‚N–¢ß°ÿgJÓÀÉn§;ƒ^þ¾Î-ÚC¤:²¿Gu¨Å`I†z¤Bæ³_þPf%~ƒBÐkeÑPY:m†¦Š€yˆÌñû ‚gà‘’çQìÓÒ›gà&óÝÃ#8üÕˆàž­tóE ¢iñ¯y„¦j·íñ_XKÀµÁ½Áó y07óïV¤@f” bãUù<¯ð ØqÍ‘O¢n[‡ŸßT³¶Ðz•iZF}_[^=ÿ‚•ø šÏ¯`ñ`c€_¦Ë‰‘éºÓT­>¦)%vTۦʼnÉ{%⟒ø=luP±¿¯4 0@h¨ÐW“ŽÔ"5´¯°<^x]<¿Ž$ä*zÁ[³ø]Ãò\·cpÒæò±37Ñ':ü±c §–ƒ<³k¼D[Ló[¼JÏy­ö«ÜÚ0‘ÌoÂi“†||tÎÍIfbsôåŒøIy|U|…Gq`q(fÞÆ¹Ó¶ÏN>¼Ž[uLq^U§ÊˆE÷ðë`~SÕšÌTÔZmÍQöóžm¤ô¼ý#ê!_…ç‹ïN+")9I:|Þw|°)+®[^-¹`ÜLc^Æór#ÝÈ0ƒiÇØ)KB ;ËM*Êr¦,¼Èß?<4pýqÿ×ÏžDújû8³ÊàÒíÛƒƒ·o/ ®¬,-­$xêA²>½ÙÖ êô(­ ¥é…íãÚ§³H†¥¤Kå )¹5h Yf(‹A! ÑÄ6ˆʹúŠ´/àù÷Lšp¥‡BÎncw$Ë)HÊ$‚.ò€\ï<ÅthÐ —(°Qðú‚ðõÛB©!ÞU U°OµOù[¡¼¤ÏqcHã· Û™F®«PŸÒF¬TUv^çRp?ŠÅh¡µJ“B¸+éÊ錴sÍšb#{nWD?¡ìåšÈÎÆQ¨ÊA„FFÊ‚-¬ù¿¯¤X¢«N`k7-‚ÅCG2Ö÷Ò£ÕßÿO¡¼/‡ “G úá$Êç´Eût•®ƒÆ~æ©Ú¬Ü^°Yãù»~f*„vqá!šß¾„ý=®æÓo“uT£=i£õ¿sãʋۇ"lß,lðwÙœúòÊ‹ê®W#²¿=pmQ\ŠSÈ•r¼´c‡5^Ãkä9¦ µòèMg® Hh›Á¹{…_™Ðíêxc–¬È†|Ð$'ç¶xíïÖMóüáÿäéúÊ5#Øf:¾=•¿óöTþpçÖ¿ÉêL`Á›`á›!$'ögì52µŸÒWEÆZXÚÀ¯TEÞd—+âHGwlµÆ“ù(U’2… ÃU'¡Ì”À…&u8k¶vÞsŠ!ËS7ßK:lñ^¦ÒÒÑþÃë¯CRB–rèh·ÖÆjc²ìOjR6šÎ'[£)¿´éü­qæ/<¼|þä¹9ñÿÅ–†–ùùK¥þþ:iEUQY)‡ìß«êüýBƒƒ‹«*tº ®ësƒï~D·ÕO+ѲÇF§9‚Zùáì¡Ô¨­\òÏ…Ç il¡"_`#nU)•9÷Bæ¢g÷÷­ª‹ )â¶*åþÁx—E–”äUZÛh;÷Þ€ýÄüñ+Ð šÔ¶/ÞZ†[ÞG=¥:#æ9©ÙóÁ ®^áùuyY)iœFc®V«"—ú¯prÈådU‰L|rbrÖ­[ˆæ,Ð}dwR‰ „¨Ù±'qÁ*B‘ D øD!ŸˆÒX]G¢ÔøFx-¸ÿZˆÖeÿ·}ÆÑ¿YS$8Î[ ù%ílr6± “›.‹LŒ‰Qpø¯›“Eì_i#KÍÌIÊÈÐ’TñÜë!¨%´Èòkõ1²–_Öí,÷ Œ‘Ë9•Ò˜KF 9IÕ©_Ÿ;+É2šh™Ô„¤Ùdzq/»RÇýµåeÆUHuíÖ:ÁÞV”Ö*äÑUn'Üöº¶å‡éy.`s·ŽóY0 >Ï’&4ÌÞ?ãjèa8ßø¾úRòM¸Å`O|•uƒ•úðd§á1œ‚óp!íX!ê}=]OpýBxáÈŒ50–«[([ºkìj?Gãᾂh§Þp H€® QSû»l)hB¸åK'½ˆ<ª¥ŒéÈ%⎞ÀùQò!Ô}ð  %}è ŠÌz#0 ôêÕOË#¯Ó£Nˆß`_¿Dãwú<·A¢ ·±6·ýhâš# Í¯Íj( /óŠS‚JÁ•|y¬þ$0öϘþÉÆ™k—KðZì-3NUÁ6âW<-ª@sÈH•àï³+>n1éÆõK+®qsx êõÓY½e#2›ú}òxöK+1¦Ð~ôн[~ò2ÉÐÝIÇÇ|0Ûn¶·.¬ÒP¤«<â»8Ãá ÙuÀ4|!­\è$ñÛ¼M¤ŠS+ã!N¯‚FÜ!“¥B>w@t·~á(äï³§ƒ:w{@QNF 9Z­F‘‰>ñs—-—DG“*L>Ùú êÅ¡uïý;·™2Ç-i}´æ!r{¼ä¡•¸Y£;l)Mh¸_]si£|›ŽÛå Ž¾¥»tyUé{O;}þ1~$x Dü!fÞ$üþ¯ä>ñİw, ¡›Ô_g—ßiynx܆æfõó‡y‡`¹+ð€ „ž7ÃÆž~v[õ™D\ÌyCp\ÿýc!À¿fÓfQÌàD¶evb!$òÆ[ ÏióÒÏeg¥¦Ü„l²Ÿ®"YÄL,zOÀ½±Þ'èxèÌàšiøBûEÚ±¤’œûÎvV úêÊ'1 9€Ê„1~‚9ßÂn©JÜ ùÌ™/¯\=¿~îj·Ív^œnûuýá¸À<žxbüˆ¶ãÂ5Ž\ft}ž0óËUÛ§¬9`È‹E¯ù÷­¿Ôɺ7raÅK÷1#\XôÎ¬Š°&?XacûÙúéSæžm=Y}þÛ¦Îô×=¾WÂ7¦ÉcäöÐ([!ºÂúÐ8jØ–U;í5»¸i•ù†à\i„_¬Û¢c[¿E,ò!’}¤Ãôʼnk7…;:s[C\à3÷ÿn2ãÄ¿œ†Æ’“ î÷)[À÷\x=£_6×—Ù“]Kp·f[¾c–OÒ2ØÂ|¼mô$ÎÔ(W¯à-þw³À7ÿ€¿M }f¼Óòþë0¢æŸþønñ“°!K0vÖRÛø¸ßùõmÄT*¯Ùwk8Yj5—ªÎÔ¤¥±laèV÷@'8~­Ö£ÆïÂv[Ò­RÒ5ZH1u«˜„øx9·qᢀ90–ë×¶„åïÈ%>{Þ4Ü÷ýzÆõ«'ÚY4íh‘|éq$¡¾fCJ’ZeÝaÿë„Ø(H06¹ŒØŒ MRf§çDZ¡‹³Ñ ôÉ—ÙÅG›m‡bjýÜõÞ®cÄþìÏBÑ+Ìûï4£K ü@ÊÓ [÷œCõèt…°}êË*f.õv{Xßì³çÐÑ}ÝÚ{¡¸¶ÍȼJ{•œ ,ÓºéÂH *…díhÇ…Îë¢r ¡ÿÅ ÑÇN_ü†õPDë¼å¶k‡¸¤Ì­Èí¸%0ìm&ß]öìÛSûkê¹Kv§">'qŸ;¡¹Ït¸£6à¶â$˜{ûªkOÃ0åⓃ9çOXC®ßþå…þuëë=–®^ïÌÇ!OÝÙ]w¬Åùo­ì~§‹ñhë¿ébF_ì† 4ÖH×:‘âoHÿo"1ÆD¬»xèÙI!º‡ãY# íÌÇý‘¥ZèC@sö 9èÔ?»ë!‰ZyÌ„…X¼’Û€{Dc!ÁôY™¸ïØü4~çþ’ `R’´©Äü}áõbtéÑEåñÇů—蟶’¢‘†dùôJmYyQq42']oàQ˜Z¾pɶ’Èã§9] ’3=™ÛH,O ÝVF„‡‡KÏ•~+GÒ¬äYÙ^À‰݇§üçuÇ…"H`HËÂMê»™Û¡w¦|Œ<1QN¯0\òãÈx`wÀ³=ð<Ü[Fuî˜<)1%ãáE$>Å5£YH÷ˆ«ÞudFž<òkŸ÷Ò‚ÏŒ¨íó¦ƒxXçµ{ÍJ'÷Än{ýšä`Æbf=¦$ÿ"K#?=4ÄÕÆC#súéÝÆ/W„šSÑ;•¡ÆYZ®*%Su,D3˜¦»Æ?Óñ¸Æ4AxvÍ2þçÿÃá¦Ø”›mÄ÷¨uŠ˜´ÚuW8RëR´˜qO2RüËiðüÆŽÅš¼É"ž?Ø{ª´6Á¿œsSÆC(H³"  ®—Ù´¢>=¡O/èÓúXRÔ[³endstream endobj 156 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 5861 >> stream xœ­Y t“eÖN ‹UZ˜ïSD†EÙ±PhB)`÷º—Ò=ÍÖì¹Ù“&ÝÛtoºÓ…(±¥,â(Ê"•QgþQÔ7ñëÎÿ¦-3:ãÌÁ™iNO{Ò¾9ï½÷yžûÜû1ãÇ1˜Læ„MÛ¶,_æþuv ­ûIàÊõ€),˜2¾hù¹ ™ú퓽O1Ü_+6&&mJ~#åÍ#¾©›Ó¶¤oÍË ;+b[väö(¿hÿƒ;íŒÙ¿'aÉÒå+V®[¸ˆÁ˜Ëðcø3æ1v0žcìb,`02v31ö0žg2^`ìe¼Îblb,aìc¼ÁXÊØÏðaüžñ&c×±œ±™±‚±…±’±•ñ"ã%ÆÛŒmŒÕŒí OÆ“ /†7cc6c"cc%Ž„1žagîbÖ{nÜ-Ö6ÖùñfŽÇ'ìí^›ð5NÜš¸wÒœI§&ó¦Lœ’÷„ïOé“/?ù𩦩œ©©^“¼Š¼_ñvMkáh§Ïþ팮™z.“«Ÿ%›urÖíÙ{çÌœÓû;æïöþ®Å©ôtñÀö9œ›Ë˜®'X(ypB_ UR‰ÔêlPJM®•¬‚:]58 AY½Sž5äC©U %ÓÔâ÷-›¥øä5e²­ô:Œ#ÂP‘2…6Б­Ð®kƒfhQ6¹mP’/^ Ò\­¢B]lµ]­ã— ©LDÄÓ,N}˃Žb{:Dvç;DÛY(mâìÆrƒ=ÿhŠë *»?ºÄ1mpú¶z2?‚Ä(s!©=xâ«&´È'©T9 R’œ¼héꂪ¼js%UÖׯC?q'À¾oí~¿L)=S !#•—!ð!ÎC¾Fc7%×JO:€¨†DO™©àQè>•L-%WdÎ)³›JM¤§ÓEO!š‹´‘.ãDF;>è­F¬†3Tëà‰ú£@œ¬ ñM›çG%ì Þ„§+$ÍáZâ`¢çï±\§\ë9½ÆzB«6‹Urå’oo ½º£(¸t8G§ÑBzÍó‰ÅžÈƒ\&‰’ÚK¯§§¾µˆÕ+Ï¢¹ç«Ðò[huåË/{>⇖^<,%åÛªÓëÝÑ{hñHTN¿Ë¬/èiI¼D©&rq…¥¹‰ªÁð¨…hR:F*Œáa/óŒ¦j}Ղ曲«ÂOßg2ZˆýèwÒo_èÁ˜DJØlKyŒ¬Ë€'M¢R9æ¦ó7ߢ;og\X2=9ñ-J˜ê³ˆâ!³N£Óš)O—.¦ƒéÚü) m¸Î‘ÄÈ$¾@ðD“(¢Ð96Úv¡”†ž]÷-Í¡èKì‘¿š¡ÔQÙJP)øÔÍé–f“¦ˆoØ·oÓ3üi¿U ¨};ß{ˆyìxЙŒº<‘òt®•£«7 q–Ýe!+êàht݈ó Êø‡DÊ8Kfu‰£àèé­ÖØ7¥ñHQ_di쿉ºzSYKzºžÆ$>î@=ML׫­,t}Âù”}É’“œ­àáC*©ZJBh=®j©|%cÀÀµ A)P+³ädÖ¼ Œõì‹ÈfntGÍEÙ?Úãß<¢ÌT¦Rjž‡û 4ú-Y|tÕ2Hîð~v¶²&(ëI®¤ŠŠž5Ü8šrîHR­ £Ú¡S×=p\Ùí‰Å†A’ z¾ yöÜ[_n!½H24wͪ,¿r«¦Ui%ã’d"cveqµ­«'üèzbø ¤÷Oðê%~­ s­ ÍøçsctÛŒ¢8Æ mÞ1 ò­PbVr©xˆÁÅ …`]¨;‰2DV(¤Ìì|(Vç«Ë•f5ðA*IRÚ •(!)42@Äâµ@ÜþJ´ò6bý+Ö "Å(ŹÿŠâ/=|ÍýòzOke9b?hh:+ቆ° qhSfÛ9ÊwÎã ±‹­c™ÝŠê @‹ë_žm§ˆÓ±@FÒ+=V±³1ä{Ý®V(xÀç5FœþË©19‚:KBfíØ°ˆd¨*2A‘©–í$ç¨ÉÁ<ïr°\<§“cn0›/Qn«T+¥¢ \ ®‹t'N&ø{Âm§Ut û’å>þQzöpûßc® :tG¡:”G݇LîÖ#…Œ`¶¸W@]FU¨†½….û G5`Ájã˜Öÿ~-d9óœ³9Z#f•ްJ 3¤‰ù:Ý-ÏU®€›™”˜Dpî±ÆÁÆ/ª®PærC”½±ŽÐ¥‡è…²QÖk ô¤ÙQóu?V«òðq2?’:ìsx#/ö'žékª¯¯$KvwÉJ¡Ê« %m¶~Ì‚‘Ú¨Õi2’¿+óí CMÁXmœœQ9|ÏéÏrÎp"\£å*.LÞˆR+¨S†C8„êÂÝÑâ"0º©gW…õ¢ç wHbs%››ž Y"“Ê4Âèè€.eûHŠÜ²/Œm`²jÀ8’¢Ð±-,8‹–Ÿd9ÅÎ)œf¡#15%5U`’¥dåa]nÙIh==a·¨·±¿á^ͤ¡ÈXø˜Ù‰_•áˆeÐ+=èÿªqײ§Ù/ýÉÉw0|Çr69‡9¦Z“¹ˆBL‹L'¡°ä*c èBÜ—w÷²ÜÛØÅ€y®²»9œãæ°‚OÃÑ337ìô À):T%éЪµ˜lD›½©ª:#?]é¯úž‰¸øàËîÛ1E½|-Dq8ì§Ð+i’:ø„(~Íø0ÿLõ‡Ž;¤©Ôð¸aÑsà0$CŒ9¦úHCR·²·ÜæüúS…ÑíÉp:;ê߯¿r-…>â×r qs³ÃÓãÂß"ˆ×ÑiÑTZQè£=¯‹¶‰Òd ÛQ#3»Le÷BŒ+èµÁÞ£o8Ö}­éÍ»+¨êg2'‘«Iïî®Ì¸¢¸Ù4‹žD/¦ç¯êñùˆòþ¸Ž•·Ÿ$Î ç½C·m]pHê{hbI'U5ØÓÛ­^U`˜J-WÉ0¶"Dö‚[èð­;³ï.ê½Ër&:ŸçDˆ!ÛÖG}öÔ[b@ì¾L1™vnŸ9ˆ»é©#YM‘ªùìôÑv êJS#Ž÷åFS¢pµBôokúË~ „#]Po¶TA!Qn¤¤¤ÇFv¦öœhl«/&ËvžUñÝ)4«l, <9•üRPdɶӕÖ.seí,Ô•^3·ZûZp!ËUù¼9ÿdi%⢪ª²æ®ðŠðE)ôô)™NóØâ.AFY!užýúðDá6q¸,+‰1dêD…õ†‚J(#ìYy¼””ŒCÁ]é­;Pt‹ ë°wo«FðÄ<ý,t]å ß³‘šý-šx×÷"ͤè¾_“’ÇtcéæXZL€ëÏØ×N~+#gQTu(2(ÓÚ‹«ÓdûøÝéiǤïnò•Þߣû}œôÕ YzR 7â@ögˆ‡dk™ÙVÅD~néá¬x~dDkÖÝïoüáF)‰˜Î­úBlAô#D˜*ITÞ_×ñ“kCgÓãé ôBú™UÇ}±ùþtuØlÄ%TÀ ¦·J⶯Çd·ê†õD=šX~œª:s¬û(ç,«%n˜Ð{|R…ž´;ëª0X†>·£alAÔFZûzùò%~ 8ÍÍfS9) T%b3P݈´Kk’d•Lª"S}‚’¢!Žªîô& çÆÔ;ð\¬B/|„& ~5ôî‡@|9°Žž¼2„ÖÐ/=G©dn" lç~žNª•Sh¾•sD'ÂB)J€ö–†ãÇÎÀ;‡% TãËÿ\½†Î– þ6óA/¾§V©sAÅYrJËó‹­:R_Ø€¦›jG·s–¶¤¡¬¡ëµÿÆvnó¡C ñ¤ iv Ó>;:í`:³³é ·[ÁÖ¾Þ¬5áW”qñO°D¦Xº{7•”ê Ä|6òãsÐÜ–+÷à:qóµ«ôT’.~l,»w—Gÿ9–/¡"Ä`wžæmâ+sù»(Ñ2‰ƒqîÖÿ`6©ŒZ.T’Ù»ââHPÖ4Të*uÕ”®Âp Êáì¡Î½%na­ ÷¶švöø»awfx;Ñ]ô,çgYJL~gIÂ×ÔTç7æ·RÑkyu¸j¥Üw£ª¢—ÄЋä³/–Æê¯Fì‹<õˆ(QšI%¬Ä ñ‹ËR`± "+ÃO?hDÏëIïÏåÎTNU†™Ÿžœ‘”R&)(«-­ÃSÀ@šÃµ¬–‰ö_A!WX®I¿Ü=ÊÕjQ.¼+òòš Üž¤™ø{B }O2eTÚe…Š“ü™§sÌÊâ,+ßš‰eë¬Ø°¡åa…¡Fg%A«ÑbÈYsq£W¹# ¤£TRµ”\™Aa4i´yfÒj«nÈËoÝ}1ç4X’Xhòª“vn RBÝâÚLC¼E®)Ìn€âÎÇŸ=¨õÝxX-U¤‘j¾ÇÏv™®p8éV¦KÔÊržÄc°9fY[Å@<¬àoÃS ØŸR‰@…½›ÀJ­®DGÖ#_ XEÜ r8Ý–,ËŸö‰[¤ûŸE6Ðéõ Ó‘Z­F“W}=S[Ž8@4±+@!•ªrñÐBÏnÊ=”+^‰!6ºj±:}ºSpÎ(OmÆÊ¬bÈ¡rØ<ˆ×*!I'×Cnpc0±æÚíüQ¿80ô¸ÞTkÑ’§PH«üb:ìà‚J>î•Rlš6Oi=fo,µ’ö¶‚AÐýÌ‹öfú†‘¬ª(«0Õj ”¡4W|jÞ¶T”—×8NíéŬ4‰4ê0©üHF3{mI[uVSðžÐ°ˆrçïP6fV%§“ùàÜo gê0v7ò Èáîi‰>ÑVVS•O7\»­\r%)MÉöÉ Kîß¼vCiå®gLåZÀr¥9¯pÚ/7[[ufðH UYDäHV¦@ÄêGŒ‘ÌjªH])Å[ ÊPHéÎጙ{åõ}š¼‚Ñ™IIFC„2 ù!]ì#/%Ä7ïÕæ¦h©sÃÃÚL¼¸+VWÿßžvlD{~ùÀã$hmåu½]ýWè½9ÉÒDU.öùÿð¢½8z†û‡þ}¾»£ì€OPHH)¹X ~°/6æÿÂløýÎ2?CFzùqJ1Ët6­ÑhÇ3B6:“M J&ÏtoÐÍP‚ ÀLä˜,”rcç•'ÅÅ&Ä.É®nr4Ö»÷˜êIÄ,c:ƒ]œG`2Ëô2™Z#$_ç#MTÊÝ€Ê&0 õ…'ÍÇIzÒp¢$N"^\É(C±¥º [×Ç Gy쯛.1ð( [Ù&M'Ó`†µÞ=¤]3¹gtWsm=šbGϾÏB‹?äô~v½ÃQ‚–Þ»‡@ÖŸYO/\KoÍ0†vßìDSÚJr›2¹\†EE£"B½„Dbô3Û…bCí¥?òì8ž¼†~îÅÕ ýÉàä°#a>«E> ɽM«ÅíØ\[ÒRvmFUvu–#­+ç„ôºõÑžBAñÃ#7o†$ˆ4óôÍ‘–xa{¯RÜßþðší8ÆÎüÚq½þžýÚösî}ÇÉÆØ›¡˜ªe—ö«Öeå. ô£’bÞI † ªW}Ø¥Èo…B¢HT”ºWå—å{Âo˶×÷hJ©âúkÍäÃæþûpƒÚzr==yþÜU‡J[[{š{KE¡;r¥F¥“‘µI9DL\Rb†¬´äæýß´žÈÚÄÓþôÚQ ¤¼Ü ™hÎðþ˯¢Á{ð6ú„SÁ+KЉ‹O-ʨmr480HÓºòŸv•1Ñâ^ª¤¥ìµÒ¼Ýw$Cp Мç$E¡ “B'ÑÖÑs_$éqô–x:žËÛ%AU›»vaÔëÝ+Œ¿~ìP/Ëéå âÀ@ޔˡý| d …»¸&1uf­yø=Çx-¥Cù|µ”„T¯4ZÑ„Ûhî=C[(~$<ÉIãW—M™S&Á”É0Å‹Áø~–jendstream endobj 157 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 6089 >> stream xœY \TUû¾ãÀ«âÆt´ïÞÊÔr)÷ÔÌ}ÅLQÌÜdX˜vЙ3,þϰƒ(a˜+.‰Ë VãZ–V*••¥–õ^;ôÿþg`¦/¿…þàrÏœå}Ÿ÷yž÷(¢ìúP"‘H²ÀÝÃcâó¯ü.#žºÙkDÈAŒìJža„#ÔvЇƒ)ó—ë¼ù¡ v.\$[¾$bi¤k”|KôÖå1ÛÜc·¯ðÙ±Ò×o•ÿêÀ5AÁžc6Œ·iükÞ¯O˜¨œ49nÊÔioLiÆÌ—g½5û•9¯RÔKÔÛÔj%õ2õ5’E­¦FSÔ+ÔêUj-5†ò¤ÖQó©w©Ôxj=µzÚ@-¢^§SK¨‰ÔRÊ•šL¹QS¨eÔTj95r§VPÓ©þÔ,Ê@ͦRƒ¨¹Ô`jåHm¢¤Ôs”7ÅRC)'Ê™r¡ÄÔ0j8eOýƒâ(žêK½@õ£ÜHH(;*†úM"Ú߇ë“Ûç¾x‡ø’Ý,»öìÓ³é÷hAâ)ù‰Qô÷ ë{ºŸ{¿Êþ ûW;¸8hî X: f`â@T>®â2$rvÜàX&]"ýñ¹ôçÚÙçØµ¬Ž=È~Êþ1tÒÐø¡Ÿ ýÝi‹ÓoÎϹ,qùrØ”a ÃEÃ3†ŸO{þú?†þcÛ?š¹W9¹P1P¨@Æ_`º%ªÄ`n±IûUÚ ‚(Éè48«PJU'¤¦&¢8&¸•ré²*Ô°GŽ|ùÊ_ía]9ÂÞWŽ‚‚«Pÿ˜.­A …iyñY|jF$R"/"Y-} ›ì±3ݵ(´=ŒŽLàar’~3…çØFT¼›O+dd¢TÄÆíÞÖ'˜L‘y÷È‚÷†E´ôðÃëûOœ* }›Ãòí’®qµæqãmÇ)éGëÎ⤟-E^þÑÑŒeí(#x¿5Ò´,/Àá( Cè¯+ܶºŽá_¦aM({±âÐIÔÎ\[q‹9E«ÂPpP5*ák;U´ôÉN›Íih°?ßqÓ´áÒÌrÞ°X QÀÑ_7Ì÷Z¿}åž,œj„ÏŒ¢3&¨6‰_"+¾ö3¶Ãv¯½‚‡`éã ôùáGpäð<•ç~ãþ·—.]¹zÑmÂkîsç™§H0 9FQ‹ >9/¢…›l ªŽIKLIãÔ»:NP·I¿Žœ%óÃnxŸ0˜;ßì G I(Dͧ¼:3|+b&Lý ÆÀ«wë8zÓÌ">#6]Ñ€˜&dЛÃ2#¼n„Oº¥#‘º3¡”=wöÔ…ëgçO»ÈmÑ[~÷Žqx”Ý-“¢?€MúéÅ ^1Aþ¼ôA½ºÈç/ií¬ûwiµ@CPE·MPfŸ€íYÌWtª"éÞ'ØJƒÓ=x¦Â”©0»ðXÒy”T?JÀ¾ »`÷}ÂbÞ’òH#xwÃÉtØ´‘åF6Ø:ŸÀÓ{³sùI9ªð÷CQrn1ÖK¤ N’­HÑ´U”s÷»_+¶rØ ¼A½–ŽF‘ûÌ!ã®Iö¤æùs}i¥(æYlÁãM°ø®“ô0È`ûý¹a§ /•W#¦B_R«ÿ`úºe1Ë=xégû,Sá>´RF¦ª"˜»…ÛgZŸ ˆ.6‡- )y,î^%Àü-zl‚çÉÅ0êXxž~æÞŸ‡ÈxÆÞ‡X#²·S`ï×èâj²`8É“'݃fÇ«Fˆ7¤àä°™ò YVHæ’ô>SÓ¸ç‡/‹‚Ã28mlzìžn`™$f̆ïR¥¨9oƒ7Š&h}3b†ïëOb¿SñÒû­É_Ä­¶cGÀ„«óoʸ´²]ùaˆ1g„#Q YCn‰¶¹€kõ=¥®#€›Ôøå1^úýŠYC`ÓU$0Ù‡Œ¢ý&¨!¥¶|تJ´§¡+Xý­Aü€ŽÇvë7®EÌÌ9@ÁhÿÅ/7›.D`ª”OÕÅ×toø®=G¥%ø+9¿†mÅ[Èž^ÆÃ±+^þ+vþg>h¨Ôó‘Hn‰´%<ŸÑ‹ÌIŸD’!h¦[cˆ§ß¦{‘6cŠ…¿ªI ïáÝôØO|¯]¿u°£ ü4Q±œÆ}Ubbf£“Õ¼ …‰îšÀœÐ•ÐWµÍÜ6g¬Æ^ؼþúVÞ½Xu§Jf}‚þÖQ2B_~8Jf9Û·x˜‘ÝCâÑðG#« 4 2Ä\£Kª»®â½à6Ý…­¿0»?áï‰3ãg¡½TJþ>"—k ¿ÆI£ yÍuL/5@4 çq3aS65°ßZt@uª0eó¼ßfeÞù®“pÃ(ªvŠ…ù$/ 6Áék=pEøÁ ûº¿Œè X |¿À_ È¥U¢ü½æ}î2À<ˆ¢!A,l2¯` ÑG1„¤è˜p2%*ç[éwñ { ½«&îHü˜ »óýP"©‡„ÈÝ)Û0·KÎhhO8aßjQÛÝûqjàÏãŽÌˆ e riA¹eÆê{Ú¢Œ FKgy6㾙ɱe¨5£Œ’Ì ¦']ާM›;À¤,JèÓÈVÓìGL]Ù¢ )·$fe$ó$¹²æ+üòæ‘h~°AQU\—Û¬åPŽV«O/Ò¢\Ä|z2h!/=ŠíƃÞ;lñ·Çœ4ªµgÝÃ$†{CBŒCÔößX/”Œ÷­ûÞo½Ó #3ùR$¦Ã_ - c†Wì[è¢ÚžÌí0òB˜V’¿é"öȌˉ(ôÉJÑ%¤ BT”“S”¡ût§mgýÌ«$†n ®&¢ºK•Æô¹Õº¤æ)kÐk3P)³/Esø>œÀo’ô*m ¤Kð%Ü%×ìF±.þ¨œÑ:¤GÅÌY«ýðÁ’ž²ý¤  ïõôã¬/Rµp¶4+èžA³“hik}ÀÖ’Íñhì8,Ń¿óÁiú ¶®ž@»…’Õ^Óg/|ûJÇ—/]¾ØºÚÊÓûmEb¾J¸ÊÆïUfìDÌa1KGïÓo6Ú „jiXÞ¹»Ð¯DSƒ\ 2öó‚®ZÒ;âE[ Õt»‰çÏÃsFÑiT‘@΂լ¡5½ì'<÷;šx¹F ÎG¿©6C+&ywt ¹nMR(š‹æWÜa´çÙ¢kçN_FĶËr_îM !E·Üôà®tfhƒûG難nWîö&}eIÝù7‘âÍÙ›¦pkG[Eùne#(UVAÕí½–a·QD(DM {&¨Íí0×¾¹Þ7XÂãSØ©²1žÀZ' ¦•Ýoô¯]»yñX(s‰Çœ‡ygNŸ‡MçëÏF›Åöý³ï\u’þž*XÈ®ÙrôÔ™C‡N~øÁƵ«¼½=ù‰~l†zD+b¾»vµ£!©>¶Ž7Teju;+SòSZYP_½gMÂzÿ&^‘ïW¾ 1ãζ¹4 8š—b*A‘< ùÉrãçy¡%(™úd<Ï=iÿº9æøºZ..{KÅDÄ,¢“QJNW¢T_”P¤Ñ£t”™^”™Ç@|=÷à¡²ÜÆF=_]’‹®!¦ìÑTï¹›Gw—w´E]B,Ì#¬¹a[jnÖ8Xñ Vý‡žðèé.ƒøn·Yv$ÊմŤ'e¥€ „¯ÒßZ¹a½×;ø4x²5—ÑæÎœÛ¸‡ýoÞ)€–¿Iü]j ­ˆB‘h rCÁå¥ÁuŠ}ˆ¹PõÑþFÒO¬á“Õ;bCÑ‘SPNR%_aPå÷B÷ÖCGðy¸˜ìï>´ ÃXK_ð’ íq;`ƒ§cV<½DK j»ºÈŠÐÐÈÈÐЊȺºŠŠ:®§“tAÄ|„ øte:¡ãt”ÍÔE”FEDƆÌù €‘ïÃENz_øå™Ñ±ð_ \LàÜc7ŸÑ/ ·ðû|+¿Ÿ—N•§Äj›çýKãda¤þ„‘ú´™ÍO ƒ@bßdcR_³14ž†ÇÙÃË‚nVÊmíT­·qç6ýÙú[ô×Iõ½n¹”é M?ëôA–_Ý0A‚Y¶Èñz´„¬ÏÚþž~ÁÕÓs­ÛÉß9ø¾AB¦yÖ¨Ÿi<èîëÞýqÿêÕ?þk®ºJw(1é¬ÍómNjÛ6ŸjƒþæoóíƒHɪä(1–Õ è=·K|£º‹ýžåœQÈ—‡%ikÇ£*‹bÝ8¬’D÷0¿ ú¯CÒˆízRðÖ¸í¡œr_hYb¤·Q°*<Ò ÐdVs™Q”/hÄB( f~§›eô7¾“¼"ÅSJLXêŰ^£KªŒ@IÄõËQ"qýñÆ4wblP–¦<åCOá[‡6ËâpëP.¯¥¯vê³üªˆ¿wÉ%¾!OŸ‘ý!Äe¶÷Ÿéõ!ŽÑª³e5(›¼¯BYMæ=~cˆàû`Ð…+zÇOg,ÿÈIúpt¬Ñ‡þò–ZE:ÊAŒ¾°¬¸4>W­åe¥Kö†uι »0•3™¨~‡/H¯Ñ~„êÉÊ{P@RˆÖ5=ŒÃÔU®¥ y\Œ2:?µ0…ÑJL­ŒO‰KEr—](¤…ƒÁWÕaWâ’„öîE{së5©k̈™n|:‚ FFðøöÓ¬ ®t@JR ÿç2I.q®6H÷t„+· ðÖe˜MÚmùe8¨bá%º  55ù¡x¿#èÔäç‡üâ9<¿$‰'¿ú5¡ž8Ýt<òk"ƒ ÌÛÀ¼! Jñƒ#l„QË.š¯›2X¥ûFEü®ÄÝ1iHÎ(‹cK}ŒÛß÷ÞèS/Û«ËÖ¦gÛDE úé‹ÝÐwµ)ÕqŽÀãlž]-îž|ª.‹Ú„ ba9‚uÿWèÞýš †ˆÈÞ†ˆáf;Û\è# ÚÑÖ¸¿zÏóÆõL2îßÎ1Ýð4B/:+Œ ^O±Ù%Z„r˜2e©<2E—Êá/ÿ\œ¢Ð ”ìS«¯È..ÔõÊ†è¸ Þ'i ³,¬ N¸¶Ýu߸â1v‚>`÷†)(?œÃ¾åýàeúùúµË¯âÑø7Üï-‹ú IÒÒH¨.vßfF§ÆÇ§q>Ó<¢Õ M”…2²²´âòºý‡¸Î™$VÉÍ´aÝ{( žg{3þç‰m†Qõ¼õ&ñÇgÙ¤äÔ4¤bÌ»|gIEM· åp}îÄ7¶\h;r}Á€Ã¨x î7kÆ´u ¥†ÊÒº‚´Â¤l®øÈÑ=§sû³M“­ÇÕÃr_ éçÍw͇:ÞmD¼b¸Ë¶½Ww}È\Ÿÿ1–`‡ET«ôæÉŠRóvgp{ö\1÷ØŸ÷õ VúíŒäÃdj_õª]J„Bé/fàpGèŸO,}gÅêå¶ÍÎ?Ægee“.‚©ŠÖË""•“¼C”ÅéëïîsÒèÊÆs® f&âÁÁí’ã]øÅIúµà*|Ê–(K ©i©)\ph˜BEè(97® ®PnðG;Q¨""V® ‰D1Œ¢XQ’¯ËÒes u5%E(8–ÂøÂ8}Ô>T‹êJ*KõÅõ¨¬Û½PF¡¯^Tdmâý°›MŠ#¥œ ÈMÙÃA¦ÜmìÓRk.ݺi}z žÐ{Srü¹P:¥iâä ~³“aAíñcIWÛ¾ÎS‰ŸéXk òïÐ ¸°~È;ek$« ÅÚ}à ŸàrI Šh,ËÌÊËáj”%¬þÇíÃóÝÞ\øö¡ËrN‡’ˆæd“ˆÖG”D)ƒ“¶OÿjØÁŸ¿1'ýýÑ쟈%´d¹¹f©úTž]ÿ£0¾e‹àÅïoßCûPIBVùJ%! /“×TëKZ}?C*f€½8éœvóÑO_Г;pN*x"ÏX¯­ ¼€°nh{«Ü¨Öitjƒ&‘/m.BÇFh²Õ¥Äà´Ÿ?þé­SKçMu]µ k[¡Ù(:d:CJu%</÷Ç;îèP@Sii~=—Í0æÏéËÒÓQcŽ)~:µ$Æ|gã"£ù-Ýæ¦¼Û8Bº6H›Àà—3Ù™k?¾~÷JÛÕƒuò¾& `i•Ô5JCi™ ”Äx¬Y5³ð:¸Z¹]°û;¹ãsvÏ"üé†sÆë_ÇWí$‘Žg/.ëøÚøóu³výi€#PÏ~wÐ ­Cë¼6.K`V€‚ÅJ‰—nk…ò„.3/U2uá¥ò$ß]›¦Ÿ L·Ãlò÷4 ên¿–Ÿ¸ƒ.£ÖПñÈZFú§`»dï®ãª’u‰Éiñ(Ž!κÖPUÐü™ÇUÜ/kî²öAH¦à|$¸Oܲ9h ×a f1—íVå­}@ÇŽµ´ç™“Ðf¼õÅZ)(ØüìÂb6*£ I»5I*ßÆÛ’Rã’Q´ ŠËIÈK;ØÇ¹()CC²¤¼ ²œü5›Ç-àjoÆŠçåÛ—Eû±àÙ‚½Dw O,ªjQÀ½fÕ‚DZEÍäM€Yÿ ãÈ›fâûþºŸU ¹:ó~Par~b6¾>ΪÜÝÚ$Ä(¢ã#¢É_‰ÍiÁ®˜üKHéÚdDy|In†6·Èœš†§áD“æ™oé×°¨8%3¦þj¸ °C÷þ-ÉÏÎDÅLNš>,oÆÎ8÷?2±é]îÔü««S“¥Ïé̇_àW£c{Ç‘‡¿ø­‹çZ •EGKÎÜ?Q_Ò\N2Ͳ»Ø¿¸Þuu`•Ò`ѧ¼4W]w4û}Ä<~?0(,2>:‘Ç#ßD“Ð6f;ŠkiÈÓí#íPžÏ>«ê>Å{D§ŸÀ9AÿMßø_{mn[8bd©òde~JÖn¦cQ1žJzÝÑ;0‡OP€ %“¬“W×ÃfR4¹Ü@®Ÿ]L¨C_äÐ9ôGŽõÿ‘}endstream endobj 158 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 3906 >> stream xœ•WiTSW»>ÎáTp"Lj{NU ^çyÂG&ÅyTQI†ÈCfHTœÄˉ QTœq(V«¶ØzõvµÚO?µû¸6½ëî$`Ò~ߺkÝüȳöð>Ïû¼Ïûnáä@ˆD¢>~a›bv/ŽÜ¹hXPèÖÿMáaæïœòû¸ü£©vWGàêTñEŸqnpuoèÔ³µaþyš=w·ïž˜½ãÅoñ غ-(lÉÒðe«×þÇú#G3vÜø  Ÿ ‰¯ˆ%Äb)1”&–+ˆ™ÄJb±Š˜MÌ!†s‰‘Ä1šX@Œ!Æ‹‰ñ„1…˜Fô$|ˆÞ„!&ú áNô%$„”øœø£ œñƒhµèw‡u?;Ö8mvzN’<5—zèìí\F¢õ´ðYèg׺-êöÄeµËa×t×WÝ=»Ç÷øªÇ²Š‡z˜zz÷ŒèÙÞ+²×õÞ zßv»©ÅbáUáàás>ŠwTgúŠïB½0–ñ¡ö¦ÈSµÊR®Ššž“k»>”q°/e,Ì/)Tä&p먋PCŠk?>^v³_ (W÷–$é÷‚X2³äË„Ù΂"ÊPÔ¹5 oÕªuj È—ÞY^7ÅosÜÂY,'‘D¼:š7“£ÐO˜Å Aè 䎸g@ ¿€ ä>LoCœlóòzÀD!ÇÈeÔ¢«?A:~€Ý8|òãáp~o×`ê+þîÃྶt‘Båd°]ˆÁ¾‡ÏyQ`îÉù€z@1쥜XòfÎmDL_5w+^›™Ÿ®.Ü '¢Æù_zòþÝkHrVZùvã{Œe7<ÄÀÁTÚ:U ™®•ë‹õúòö(ì«ÎÅø³¥:¹6-Y&‹Ï`eëH4˜ªƒ¡$QЙ¾d‹Â äy b͘LÑFÁ¹6ÌèƒêaæÙ¾âEÐá£ÊTÉAm9Z§/Ïes Hqå–ª†ø[ý`Ï·÷Û+öÝ[ÊíÚ¿­À_;MÀ^}¬>ÁJéº{µªjd)6_nÜ 22Ã%yéyPòósË‹ïJpò@-þœƒä´ÔØ V\ybçÆ’À~H4&`FLÑîòd®"áˆüÛôfÅ!ùÁ}å)ű œºÆ{rà‰39jZ˪³AȦm‰´\ÄÃ!FèR»#"°¨ß ×a(SL?á¶#rÔäµx×–ôå@Š\f]{cÈ.Ï5r¥m‡°šé×ÐHkA}jEB‰¬"R¥ÈÜ*Ñ`0y` /%Ù: 6ƒqµ‰4s)n;µeEùü~¨?@RD†£Á‰3$ʘ¬K#×g>ðËë÷Ê«nw†üއnFœhr„G±îAë©vÂ7‹ÔÇf2¨ t +M•Ò¤AM¡/<(ÙßÀ+*ЃB:_®MWfª”iì†=Ó–:0ôpm®Z«Ör—¡‘„Q6—±Üm–½Œí-JXèþͿ¨'‚+‰œ©XÛÅKQ1v4¿¹ówúöÛqܤ¹Ùî&l&ÿbxYfª*¤JýM¡·[[4[Ð#x‘àçÇá“ ¶«£mw#…¾DmaPG.§ÒeÀ6ò¿_j r;\Éó¶½ÂjTHvšÍC ïö‹ ¾ÃHÆ»ÿjÛLa,Öª—¶,á'…‹KÚʦ(˜MZ¦•ërrÔê<¶í¯«ô-SÔ&ÀtrI³—”Fä­ÅBa=fxqbõÂÆîÝ:|¹ ë7¿ž™¸(h÷L@ûm;\÷ç&è\_¯Us]¾"\`$WÁ‘¤Æ‹ƒ K…&"÷þÐ<ûïÁj)èŽF¢h4—”ÙiXj˧/ 'ì‰<É…v+$¶iV£b°é¼ ÌovW%Sqf¯Ôà<ÿfqoÛÂrÊ×ZKë²ËÂТ¬Ýdô\±}úÀjwñþÁh0‰Üì¢Ø×E<·…r²Èr9®ÊD+f‹ÛN"jÛÉ&»Î6ù—Zœ‹ùm¸Ê»ãßWf[Í Ãb@#/$A}‘çÐïæ¼¿Óf<ÕÂU÷qeèdz¹Rž!OgÖÌÜåè1‹/?m0^¬4q¦‹·Nܵ .eB¡ìPPâZÏ“åejq­ë­µŽm'×\ë#:='.“íÒÛ[‹ÞÞâHê?vÞX›hR²&£ £Y‰RÃôÁÊáp£– CÌxý°µêþ N7Šü•2X“È-¥Ð`ø–yÖ0CtDhyÿø)öSò„,wè(È*»üyÙ„gÇf´JP“ý­ МTk;³uDèeM‰ïžA½6ÃUjk Á™<ôâEïx©uZàj&ïPN(¦Ÿz‰ÐPÌoÄ"Ç'Ó!}³­üøEöxi~>æX¯ÐÊ”YJ»zÇ´˜E€öò½þ"èÔùœžgjþûÙ•×€~y3hRP⢲–Gs0&vÀí0‘Á‚…} ùË4çüïìš:V•Ñ®£}ƒw_€9$ô¤îžß8uälÏ¿:ïq’ :ø3Þºæø,,—¾¨7ê…Ü=ïÎ}ÕÖr¼õ*‰˜}¾ó—úâ„Ñvv¦¾|é™Ó5' 'ô<-ú“0”¼hKÀ×”xšÅ<½<C‡"‡ÉK›Ÿ¼ÿÇït´¨§óæDó®{ýn€¶#õµ§«] àdBõž²èò(½O‘_~´ç©0õ 0Òß>¹õ¢º69¡ŒÕËlÇö²Q¢Áö¢… ¿ §ìÀ?%ÙZm¶—i0OÆ8ã?°¯Þ…?òÌ[!†„“¨¤™ª, TRµφU)IÇ*Qx,ר‚-i#ádKšØÛÅj¢5!‚«! ²¨>Ål_ð3«4ÿ|Xúº Âe¿û% ¶a[:ÑõLÀ ¼­ÍRyL¡FD5£xh{JtY—yÍ ÊþÑuÅlîp-ÖÈŒ¿?º>½œJº^N(aæöŽÑ_i¬©¨îwôà®ØgT nºK>°Ÿm.Acã•S§€ôøèÖŋì^a-°:[§Ö­´qÛ©U·Ä®\Ŧ4DÜ6‚°¸ kÌs<êÅüS·X¸Ê¼²ÎRhøŸá$dm·zQ¶õ°xãeG4KÁáÃI¼ wÂ$Ë·WæåIx6üÒÌúÍ[6†Œ­ä ¨ºÚÓ‰=û·[¼­w£H¸æÃüI®üHZÖóB>}D|Rç(\ï퉜ãà –ß…†`ÿµ"ÈŒ;¥È©iÁ èð?GV±èö¯LÑÍÊ;µgUŸ.7ú^õН¢2#•»¹¸QûnŸ²Nºs[Hü&@ÏÙvþÍÑœ#yVùˆ„å‚À •ñŠt9H–¦kÓu9xŒ-`¡‡ ‰:ŠHäa÷Nnëjz˜)®s*©Ä‡Áv$áu·ïáV8ålôÒEã‚&úἓúE­ZÅFïŠÙ’h9~h5ÅZöصûu÷}³iu`ОH<ˆ2i‚!Ó“ý%K•>²ÍÓ…%ßJv1å&ÈM*ËŸ2í•ç¯ûôƒ€ócüb·®ece©@F§iz]Nva{ººÉpЭgCƒgÍö» …œS(3ä@N›ÕÉŠŸý¨¾³lÞçc½' ZY^³‰Uäed+š’’’Z˜r8‰;Y—ü  q“ëù—·Ÿó;Òé‰}xø“0Ne¢Prº]ûñ¶]uöÁ½ßÐ¥µ0ª]`ÉñºÑ!I[C“<ƒ)x ~ Z5Ÿòp >9Ó{ *-JµÖpµù= %dIÕ2B4 /»Hsvÿ¹ÂZ,º s7'­‹áBü·û‚ °ò`HB›‘­t2F•lÜ{2†«‰>“|£úºÀžpÀó Ëc7†Èb—pÖyèk,Æ!hqqPÉ<,?_y¾åµ>P–©7û®*Ð………eÛ‹C'Ž7›?erˆ¡‘ËŸ—ÐéHA×gK¯N›½xóÄVÌTÕ•”——ÖÖÔa¡Ð—L«yO9ÖËÉ[‰œò€*'«Ö\¦*£ÀãÛƒtäg¤g)Rj6ÉM^©Ž…‡…Òâ[dÇgTâtìJ)í|ZrYm5 ë;™4ÖÂL\`M'xcÊ79 ‹ám¦ª¤4ßPbª®hçèïý.O@"oÏÕûw\ g‡…û‚©ô„›þÿq¾}ßÉ/=ÊÆÁ2¦µ~ãâÓæY°šoþîi[;ç‡j˜¶† ó'6bÎÊú›í?>ø¥“Á03‰"¸ ßh‚2™±¨²å1AQF"Ñ¼Ñ $äÈÌïm5ÎL \Bå¾Ó?> stream xœ›dÿCMSS10‹‹øýùJ‹ ‹ ›÷À½ºR3Oøˆù‹ ÷¼È÷˜Ãëá÷ÚÜø7÷Úò©ÎÒ‹Üîûâû#û…ýJá÷Ñ÷2÷PûÑäüGø÷˜÷$÷ÍPDDKPû  7Ÿ ‹ ‹ ‹ ù> stream xœåZ[o\·~ßöG,‚=›Z§¼_R´€ÓæÒÀ ÚXAP8º–dɉnÑJ±_ßoHr¸{Vrìö©ÈChj87~3œ™³?-Å(—‚þ+ÿ?ºX¨ÑÄå«…X~¶pRŽVª¥·NŽÁ-/>Š1˜ºq¾xº^Ž>È¥wFŒZ¨îGg•UAÖ0ªºÃ©´3£ L µFÄ‹IœÔ 1ŒÞ6­Ê¿¹RN‡Ñ¸È” ÒAÈN©F5ítTE©*nÒ‰ÉËÓÅO ™\¹,ÿ;ºX~|¸øã×*,ãrËËìf¹”pƒ4°^øQ*»<¼X<Ìê j熿­”EÐ~x¼‚>Bj9®‚‚P¥°w µctÃã¯?¡}Zÿëé žÆ5ü}u FƒP*O‰^Nêá›}4_}–™ºà‡Ïè^ˆàôð5­¥Æëáñ?èpˆÎÈáóîô_éJˆh ñ“I= ;è°ÊfiR¨¨Ì@J)”Î,½ŒÃ“lª–,±>êøýáp!Ã\hÆ€Û>|²8üð4”#$;3üeu`9œ×Íu]½©««ºº««Ûºún¨Ë‹6ð¦®^ÖÕë96²®>ª+UWšÚ—3¼›²¯áŸÛ²1únÅ—ä8ÄI´VÞëªëoÞÖ7³*½5Ë`¾Kê˜ÛòhŽ»¨«±®ÂœÛå;lî:{¯‡ŸÏÜeÃIsÖù Ý,,¿©«§3<™aØœz9#dÎù¿›ùk;q3£àzFî˺7sŽ}sïá‹Y˜½žQ‡±<»WïÆü—ºËì›Sç0¡@ 5zãíÒ>aÚÒ‘ƒéÌAŽ×˜þX눔È,»Òç³ê´˜ùòv]\Þg37ÿw(Ÿ»Ç÷DùûAãƒ9–sŽzÉ\ûË•Ž9 ÀüðÀ¼ìÔg©À%ÊÉÄ5«Ú=ofZÿþ¸®žÌ ç“9Kç²Î»8ï!ôÏ6³5CaþÉáâŸTbxÏ/­‚Ëœ\*å(ñoCµÓòædùíòrjXT¤Ê¡î‹–þFë—^âŸ(”T»|r ¿%¿\þÊ~…•¯Ç.ÚŽCBr>•¼Ï–ÓI…rQ»ü×}¼0¨k]Lì¾X(¡Í¨–Ö✤ڹªTvˆx¸QFF¥µñc4Õ³ÂbiBƒ&–“ŒQVö+Q“ѨÞÂ=O³ÓM€ùn©½¡Fa $£UK¥Á·PÜÞY^© õÆ Š†*"Ö¤ÊUÛA/2Q„xá9QÝ©D&5JɈÚN%ÚV+U‰îëiÐ"ºÑi+ ojuML*æ¦ÝÚѽ¨AZöÕþ…¿Tœs§›hèy¬N—2šQW§ÿz-µ@¬8Æn´¢´^_^¡–EO&З ·ëó—·oæÕy <´Ì2 ªG½E¥·c{^áÁ‚CÔHµK•-t4H¸ÒŽ‹Y=,Òv”a"²èʽÚaeS­2¤=#U |ž‰´ î|W$ +áÏø^R’·‰Ð@£sˆÐ…Žð̶¼Þ ÿ­°.—Õ¨lð ®4m‰àäA݈êF#j†¢¶Ñˆ¶4à*5¢wj©©ïÔ³‚¥[´÷ÎÌMH´EVä“ÜOi¢¤p(-­´z8½Ëƒ(”E™„ý¼ó(ÊPÃjlär•§ V0±† 1N…ûç rB DÌLVx««œ[ÚÆ ïQ2"q€Ôj?œ¦™‡6. 7ë´/!_Qu§QàA¢g¾½¥ôò*q)'¯ÓtE‚§Ì=/õÂëFsÉiމy$([£U)¡½&Z¬®ÏÉ鵎\ämæà…'ýÈøà”ì¹1âJ°Ç $D8cB§?ãñ¢¨,5ùêÅ B1ÐÉHCœª'¿‚ä`\0¸u.è\»…>[•E3!'y^%MÌB2ã}¾e:_0=Ö™u–{•°E‰>87éæ6Ô”‰EŒ4ÚFnáACpê 'R D)-!wÃ-Ù¨¥·¨b´¡\{ı›I— ÈÖÖÇalürDt£Êƒ)$è]´^‡¬Dò†w£M1¨¤ðpäé -‘{’`´4—ɸsðÝÕeš=Ú¬ñˆÑ°$""Éã&áJÀ5SDKgÁ…–†ÐXð OÊ0¼Z)7ú 4œ¿ª›Ñp’ñBè’(pÂØd»CºŠYl™G^ÞdW0®é6]Ð\6™!¹–êí’÷‰¦AeEV€jÈèc@Ð ºÉx% Æ%dA¡«Û6-åþ³\]œæié]3q‘}–upáuIqZ° UVÚVT^¯,=Ì2A¹NyoVx—5ªåi7¹ˆF¸„`<-§álîÎàØD€gûÔ7n.9¥rxݬ»îO&qâÛ6Pž¦3HHv2ãÑä3üœ¼é¼–B%íq )¶T Ñçq 4²·p—ß%¥” qXç .šòâ¤Ëú…;o{Ô9oÔžB/ DH[°f(ßœU{OòßqcàÙÐQ”Ô›=^U˜hÜ— T%¼ÒhJƒ7ù$ÐËðP € ¼ª)ü´pi |>‡º¤ÔN)iOF9J›/²€JÊ•©¹R”›)M(͹QÈyi­+©ªXÓQÎu¦enFHܸE}qnÍcøe»´õóÙhcÞgúWõ‘Ï˜ð«»ÆãšÁSF~ØÐrÂãz3±“— ‘?“ኞ»“ ¢™3}ê8˜˜õC’çÕiHöádrªI‘º<»ÎW£¼rTuzuþëd(PÊeØ#ØdæJMµ¤Hv„óÉ\Õûµ]NiéCÒ£‰]옜Ð6*!®Ýš‡“ÂnŒY~Ĉ¯.jtçÄŠeJf¼I’£G„gfµƒá¦)Ôƒb"8\.yv1=)6óáJ«>ÔÄõ~ßfò"І§°Ñ’ØÃìe»¶#†CöødÓ¥†›®õØ2j®PÐ>£˜ÚBê!ûxÖ2Ý9*“.';¼p]à)²s}—,Jf-á^àMf¬ƒ-Ùš».‰äTç­!Ÿ¤·Xà–qì%Eщ ý^¹e2vÍÄçmú»<3>Z³›áfQ<îuî2) U(~ »+ª¯K ã¶“3¦Ã|%`5 IŽ0f'•”„^Q7¦›o†¸/[ÈÏC½»úMƒ^ƒF„@K‘¯öÌì/Û×=|KÊžë=Œêȇº­rÎ%,±_¢}Ù‰/ܘ’ºàF¥jÅA[L A§éÆ”ËT)ëŸñ{°¨)š~Dš²4"½¬Ï*ãÑæ£oè×’„ñôH/N Y¨±èðy7÷™¼^åqGDÖKÐ8¡P¿§Ô³U@Ñ~šrä;E1ïyo‘v󨶛¯²„Þ·÷Äu*kÞw¡Õ–Dla{I Ù´ëâž-õßð«,Øã›]‹Ûñµû¡º©×€C·n4izßµÔÛúØ=Ó;–N›¢[¹>›œ Ÿ’tÙ|‰õºžç¬ÏªEà^+·ÌÎÄ–X@*k™xÿÌ£kÎpfg‚Õê‹>[Rª Þm¡|kP,ØoÏ!K(Ý3ˆŒÔ¤å9dZêÔ˜Åø¾»g®v'¥»OõØžçõO™µ'ê£ r`ɾÈÚ÷“~[Ù,Ò'u5|ÛB¹›’5n?ΖK­|áÈm^²ù£_¹\‰¬ðÝŠÒCÐÝF*ý“qø7¯Áî‡Cz#aN ßvñK=ÉìhøÊbê7-ïs&G‰õ‚šA"p™±:µ‹Êr¾GeŸ<賿¡›âgýð<ô£ö í˜žR9{Ùß<6f!¸Óû“r~6§¤œ°³fÏâ&³ÑyÞ^ü˼O÷« UÌY¼…ýkùÊ›c'ymÑÀ$²}ìÓÁž¹ïzç›Cê‘O³ pž½ÿðG 6$`s¢= ®|•ÌYu0]XÖdÙ¿ûíRnêÌ_·¼ìÜs&ƒ5¹`ù|µQo¶![dl ¨S?ÂjëÒ\ïŒrèj-u*'Ez+e_¢ÌA™½17™ƒë¿+±‡þš©FöÃÇ=õqÑr®²ùëæÞšŽ éö}c"Í¢´=Ú«’7ù¼—åɰôéªWç¼y¢T×i.¶¯JÙLþöÝø§6’{j æ­1s ¼û¸Ú_K¨¤HÜܘšm/K5£Ò¦çþ?“ž2ì>ëå<ÿL’`endstream endobj 161 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 3994 >> stream xœXiXSçºÝ1½‹ tWèxp¶¶=­¥Z[¥‡ZGEQD& CA ÌIÞ„IB„0Ñ0(P@œim±Õ­§V½­쵓Õ¾›~œç¹_’ÚzïÓÓÞ{³ó@~ä›Ö»ÞµÖã4†‰DÎþ+ÖøÙ><¶ƒè~yd$Ç\ÅàêTó¸×O\äñ¥û‘‡ÛkÚÂØEqñ‹“–$/Ýšº}OØŠá«"£¢×î\·+P3sVúì)S§1Ìf%3‘YŬf|™µÌ:&™Æ¬g¦3˜ f³‘ñg61¯0³™ÅÌ«Ló³„YÊ,cþÎ,gže^cžcV0¯32nLãÎpÌŒ 3n–qbŠD>¢*Ñè˜ì1wÄ›œœ–8Ýr^ãÜ,y\ò1›ÂpC=Ðí²ÆåñsÇ]]]/?úàQ7¹Ûy÷Eî×ZõÎcG‘G“GŸÇeÏñžiž*·‘ °`°E0Ь#kĬ‘å|A¥j_:¤ƒ:??ìýÒ;kgRÔ 'g»ŠZ Ú¡AsZ}Ôu¢…]£M³@”ëJt%È{£Ar’Ì(ÎÖª À'f-(¤r¶¯è8ôCÁÇ*Û 4v(˳Í™‹­±¾±ºí@L[ÈÊÐÐIRƒ~dÉ„?`Ð ]¥ö†&Ͱýd)ì"UE'-á4¥I˜Ó ²ÃÌcbüVxßåYjÈÊ”ªÕ99ùòyi4=‡÷ÎEA»ªÉ2«¼+ïXαìýª†4}®)¹g|!c²âúÉ,©J¯)Í.r÷ÈÈÃläJµÚºZiqiEeIIÏö~•‰VŽ÷â¹¾”–äFYôÁȲ…UŠ’E•0Ähìù™²çtRmäWWeutŸ)Õ¼,ø¼Qôó%|Ô,Æ„I¼…LÆ×âXÍܨIÓU\Âg¤•%N×’Nœk?{A:È.”GF.Ïk¥ØÆ:4ä Z-ö2ß Ë“aÌtê*.K-’ÕZØBŸµRDq’7²ÿ³?úŠNSòöÃiè³ËD»@M‘Ä*&Uõ-¡ý‹•(㕦 ZþžßõEóø§7.÷¾ ÷¤?aÉ [‰/ƒêi™ÎÂ2íjMéÎ; Ça°±õ 番}^‚S+œ-l@NÙ  ñ×1vZ¸ °Œˆì0ˆ1M¸Íwè W¥&‹d»*¶Ñ'¶Û7eb¯ê²"mÇTgÍ“&È%ÝEç¡—>ç¡Û~°vžÚÐA§<¤¬µˆŒ‚ZŒKyU©ºʸ樓ZØmê$ÍVˆ‚Xˆ´OÌP9®Ž@_‚Þ¥éûTåPûteûñq¼æ]¬ÝЮå,lŒ*ÔrmœÎ>ªU½/( [£.TN$%Þn#i¿.;²Z<âŸñ ow×ÛÆ†©Ô°Â!Â+öjªâ!²Õùª¼'I‘·/¶TRµ/òi¶èšé·¨¶S7‘Ó=îrŒ8FMEF¹²2 T .P‚Æ${ÏÄÊüjª1Å>-‡ìgÛBÏF׊…hÇ8* jC4òägï’¬¢ìj¨†âŠbý<èý9Xœ]¬¬Ÿj(Òë9›ˆšRÚ1ÒÔúU»É³÷£à›8ïÒEó8¯`%~}‘/ mìÎ4\}Uv:n«„‘‘p¤FŠþ,ÕMkHwÄÁàêÀÍ]º\^ŸÖÜRglîÝZ¢‘µ4)oîØPø3²¬W3¨~¹`É.ÿ¨ä Æù}NJ×øºNU™¹œ÷ùé/ÇlݼÕzô½¡à¬R)­¨]…DUB…ßÄd>¯´ôÑ}ôõ¾}«µém̱ªxzðpØsæjue.…9=GY¿|¾÷‹·òÊÕ:(óC…¡Ñ6"\­ÐØÊºv8F¼:uÿªï¬X¿49aãÊ5êÝ@m¼•Úx+€š9N(Rí=­YUum“¥¹ÍÔvÅ×».™N–ÊìÌD›÷÷èš´½´œØÚ¼M· vÁæüõаä]Ûåë!›;3ê)u\Î:Þ²õhÜÉßÝÅcêmâ°9*>QFíéܯöbï¶Ñ›f–‚IBM5ŸI”ª×Ÿ æó« t\³ê)‰6©S4¡”f¿¡ÒujC<>=Êz'¬J^° | ­R¥Û§5ï+לZ“”°'=>¤'âø»½ožj’âRa^Esm÷Y…Ý¥’Cæý½Ó¯†H(eava®/Éñv6+ÍØñe«Ydý·Þ Œð¿»0%b9…1¥¹¹~¿åÅ]χgŒ'„ÿqM@²ø`¹A *%¨Óò¥I¯®U·Üï8NÅ9WÎTžT'P_ùeᯠ3Ù"t\„ŒHy­ÆyôÜo y¦èí‹R¸Ã¬d¾d7äAÞ’4zÖ›$ gr]<øù¿ùnÁ“©¿ÒUi©sWkN:¨2Ž´È„¬V‹š1%™Å9ð©€’òârîžÆ>b§=¼é¥‚àƒ®<å±jïnyÈ–Ô0*ƒaMŠE¯ú-ÊÁÒ͇t[N@ÞÝnH ¤rEoó¥!'^¤é>~á‰Ç÷¾8öƒ¾ÞúZÊ„å,ÎøM„…ï§…›°…ÂÕ„ ìJu^,L¢.ßPõ?¬ýš¦'×YÉCdÜOSÐ Ýï6–”æd«ò 5²èÉO«÷B0loI²îÔœNÛÄ—ãì5f8gBµäaÎ Au&:_¸ù…OØ-s,:³_öõêõêB½4»†‰NQ·ÇÔR[×Ü~pÝ‹~«¦H ;_~…|øù/±ŽtÔaÆaZí 7ð̱0Ïñ8þÎgßÜšô‘Éùƒœùï|4‹UáQG~ýF‚~@Æ„„Ð?ä™D£‘žloÁ׆¯¶`^‹¨õ4î½l=-F àMé–½ýÀ}}ñü•Á8kf•ìpÇ @•[{8eYjcU¾¾.⌌’Æ7쨢s¦Àü ¶Èš½2µ:.ŠrtMdËž ô°ØÌ½rk >Œî?¸ÜúFD“tmûj˜IÕmäêbKS[(1jJªË+¹;…üÓð]C‹Îº¿IVml©6w¦'%Áô§dýdÝ5/¬Y2kÚÂS5ú÷>•9nvŠV/Æå#Ëøû¥£æÏ“).cÿÿ׎%°)J¾–^;Ü°ËÆ”tEÆó 2 i7ÜÄׄ×y2ɶ•³åù4JÖß›¾OW¯}jh :vYaÉ!™×í"¡‹oKlŠ‘'%ÄÆ6&XÚššÚ¨‹œK¶ŒÌ1‹†Îâµ³bz7yŽŸgTœ…7¸s'Ï~‚üñ¾UÒ¢TmÁõêeÈa_VžF“•'ÍÜ£¯Ü¹!͸áè,Ú`Ì3ùÅà’YßÖÚw-µ\}0Z«±FÀ*.`ÓËsªO~¹R U–L{M‘‘@6r eZ­¡LZY›yðø;+¯dRñv»öýÝ¡Ýo$¶É¶ ©XVmkªÓÂe;nžFæŠÆOkCcŽ í…‘±±…ST 0$JèÁ ¥Tñ±{Râ7¼7teøÝÿ”zÝ™édC$&11&¦)±ÍÈHE›tŠ:-XqõñÈË#~ü¿XI Iv6KªÐÏØŠÓ©'µ‚^][¨Í¦íIû&öNîK:ŠpŒ=Ñöì`'@µÕ¦œÐ¬-7ëu-P t clñ³_(lV.iCEèî1½MÄð‚‚ýC¢½¡3i{ Lš¾ûˆv›={ò[2®&y_død«²äv"4iÙ ºÕA„¨ø7”â”Oð‰ï¥8ʶÁÀj¢ê½š`ؙڵŽÅî@p¼Œ|ϒǧ=7e5qnÇ%R;ÝGD=6UãkÖqý0û5ƒÿí.øíý×ÿHÛ{œ× ýd>:zæTíŽÅÖ‹÷úöõåû÷30ïìÜÝfØþ°)4n}Ö[asalÚ°{ çuMóäÿòÓv‘Àz|.3Ñ>¾.¾ÝT]­¥è}+ÞU`‹»pÿiYAãËL"ôbÛ'Þ4ªO`m8Óù?GFŒA'ùÖDm„„Øß»„'~Ýà º‡á:VÑzo¹ÊÊâò ©N§ÕjÓA~ÎҘ׃C¨J«TP`ß¡þú?Ñ•JÌD¢«ÿeQt{XŒ_‘JTEùe„G—¸ÐðÉ6\…ÃG‹‹uEP•çe=åODÒà‰“€Œÿr"9E\Þ"î7Q)*+).“ý>3fÑ©a1ÿ‘…c6 xºÏþ€^s³Õ¹ªª,OöæCÒd¢‚“Éä1µª°nU¥ËÕn\DÑIé‘oš~tåܤ.Ns®€« ¸ŽWO†ù/ºP¯ðendstream endobj 162 0 obj << /Filter /FlateDecode /Length 4664 >> stream xœ­[[o\Éq~ç¯øÅÃdyrúÞ 6‹Ø±±^Ø ØõȤHÙäŒÌ‹Ö‚üö|ÕÕ—ê3gd kèA‡ÍêªêºWuó/›yR›™þ•ÿ¯ÎôdÓæÇ³yóË3oÃd‚ÚçÕýæá,j?ù”ÚÊýÙ›³4‡ÉÛ¸ ÞΓрj+Q¥É» å ¾­ª ÆÎø¥ôœ ømèU®bŠSp‚©² yò&NÖ'ÁSTaг’•š’sjsùíÙå?}¿ýgØ÷ašÕö¯Ÿ¥òv•ß³ÂÅ~åü] ·íëåµ*zDÚ¢”ÄOÐàÏ„ šO?I&¿ù‡ë1³?œgµþ×åÙï(äDÄB6 ðj³Ñ>©I…òÎOJmo6ÿ³ÙŸÍSÔ1JÏîl7N¹Þ7ˆ4S°~c‚CL¶?CŒB°s@ P›?å4жéd&üæáÌÌ>N.µ ‚ßoêN€b¬ÛüaãúÌNŠ‚+¡ûõ™v±,‚á”8œÖ•Ê¡jkI»)h 匌*™€6Ò±'å“ÚJÆY ÎUW2ÔߗЛ3c‚Ù8 ïBš¨@™‚ŽºãŒs·-ÞøI+P·ñù¨®¼Z„&*è–X4štýÐW ?„ª®yJZ (?ÊÆA„Æy?%#pÚÙ»IǶ’q¨Ž³BÕ•û×Iç ¯ƒF”ÙX&l ¬†ºÑ)Ê7ãßL²Ù~?^]‘vÔ¡ÚŠGööfÕ .õ¹‚ ˆq0/‘äµ3“Áñ\šœÒœã÷d*Xü&½¡exµÛÞ©ñ¿EÍÏÁ™Ìv#_áHbKã Ÿ(&oGÆÞçL‚ÒQ ±˜(…¤ü­ç ýú‰‘ÓLh]lo³á‘AYš%3‹ä/ßýÂásFìlµ[VX¤ÒUÆâªøÑÂ,*9ŽªÙUeô¦úÙYåðMu¤ÚKâ$¢u4¼e÷ÄßTdI ³Þ5 *ÉèfR7ÉÝ© Ù•±Ï¥¸tð‚™{¯íëo…K.ƒKf£¶9 ^´ïú[¢«Üð]gCꥪ‹îCV¡Ÿ£ªõŽj¨8šˆ>S‡d€YÖH%¢NbëaX&ÔN…îîqh²U¥DÉñk{x`äàcñçÔ~[m3N>´˜*q)"£ÐzÿP ’1Œù‹óhÔÎq•š¼ âP:f£q Žâ†ï-ì2b”)ÂÔNF÷BãOLÄ”´EØ(’²0Ýœ ×µpËzvd?Ü€ªS¹ý s1!‹ê¤B‡\ü¥Áªž¯‡Ú&66%hvÌïVãoÓG’üx5Á‹¿Yw°°],hžÂ" ?I=.Ì„ú£ÉJÐ+ÇFò] (p¸ivAT/߯e)Ò¢Ó`9ì s@(»½#`ÔÀ:·Á d*pM”¤|–â„#LE›m»\\È‚°MÜ"ÂþÌÛÕò°Ì‘C¨¬'“|±õÌP?Þwó>md™²—Z3ùh6‰ÆØ¶TpÝ·óz,¶ƒóy7¤£ûîòGÈ{Æú¬ìNC—Ð C†[éþ‡ÛÌ#;ȇž5îDñÿ¾w HçÖÌy¶°®½!ß‹)\27n†°—ÆÍ(.ƒy™Æ¯+ªòN3¥WfËŸr×½0:!i²ß͈`l†`Bäc–'ÒTWÀO¼sµµ®¦Ê¹âØ)ˆÞ¹aQöº‡Ž›®’Ý^ÔO×UÊCÓ)!n3n2•QQL»Ó¤zï4I}@›/Ňê½Ï CPås%ìŽ%è–—.uT‡}dT/<–­±†ôø¥•ùĘaÛÿ–žÈþaiê*ÿ=â¢,úÖ}á.|+ê ÿï·¤ØÁUÇ-‹4Va-Ý÷³Œ…ökÙ缪½5UkY»£¢·¸ÃB\\¶Δ°Ú܃LI·ya•¾Þ^®·¬G²Œm'ª:Ö†O©vË ˆ0·ònÊq¹WmFÃÃë„Ç•9|®Œ •¡Ê¬n“¼]õºEšãR¦­ª2mv"F ê»C,y²ApÛÖ*Ö)|.À…ѽ# @ÌQ¯Á­“ˆ?O ÚFÿ„ô÷Í®†[öåʬ±?Náz.aŠÎç1eÞO›qeèfÁPIºCe³*ñ›ÞG®&€»*+·2Š(ã¿/ëýí'>>yÇ"„gS·zvËa_?ðî©Ôª³È™¤‰$Ëç²eéý¬`G„á—óy¥ÊmôÜöo½´ŒfH!G•¿Dv]Û¸‚Œ5<6³‰e|TzØë–ÃJ¦s[YR'jðKzê•Öâx}=Z÷?lû¢JÑüpNù$£Àè¿öð¾rµVuv¡Üä¬aÝ]-ÅPüuÖJQ!Yfí”6I^q¶VÃ[¾åxQT¹‘—)‡qê†ëžèPTËâj7N|]dí9ÐÔwòqµsÅhÐ#“!ç±ô  Á©b¯{èø6¹È%t»àx¦¸Âl‘„KeÎPî Ÿ™¸hÆñLJ2¥/W/E@Ú˜í€ñê¼]ë ò‰¸“Ì<)”5ðdJtŒÚ ªÊŠà«ÆÂ,J‚“ׄ×_"«<´ (CÍ0Rf¤lB·{êf³J ý[Qh2%°g8ùVºåVîèR® [Ûœn.L4tý_®ù:ù¦T1$Aæ0¸•[Ê‘ ’žš¯^Ž¡·¼ D€—¥÷ à”–7’à é+m¾]$ŽU±_–Ö±v€cð? ›)šÎJà‰l‘Å%/-ñÍtÑ9ØÔŸš'ÞjÒhÜ_;£¼à1aá}´1d/£Ë[JçñB@•Ãm¤ MÓ- Ðdõiû̶L/sŒ«¶ÌÁ`F…ä|Zá­Ü]“UXÔÁ_uù ‘²8q‘=ÜIæ Ìd iþ¶#bÇ(‡C<¢ØKǸÎõö`æyzfGãßsa^ô\øO Øn™í°žSôØ.Lny„\ysaUÃÛ]iÈÖ)Ö¾@Ã>.m8Z_‡Å^² (+©ˆÜÂY`bò¡“ñ¥Ò«W…š$ñT«3.EÀ›UŸ‹õDZ«2ƒ.Qšj™¦Âò„‡yiñÜ…ˆ«¤OD…Á¶$váT÷ŒÄ©ÛÃö ØWV±ž–Ž’ÿÊó‹r9_ ‹úPÌlVòÍŽô·ì鉞._Œ–*G§\¦‹[ð)^/œBa×r^?z&d¹(Ï“7”Ol(É’±ƒûd?KôP表™a @å=ȉà(ÒÒÄl[”9JƒbPž[ÔØN¹“ºy÷ÈÊÏ–N¥hã¨B ­1û20+Lz‘¢¹l:íèÍaƒ|“‡g„³;é|c¦)4¹Jö²JÖùÕ­:l~Ò¶RR#Ù O—W~_ày‹ȲfÉ%µÎÓ§nç«wÅ*£\è¡GÕ¡‘Jxd§-mR·¯]·/¦Ê;*z¶HLcæÉí– ã³2ê¶æÙò’[ä$âÍB¤õ‰X?uܧ[›ô‰iÑ|V˜^}ºUæQ'ƒ7¡žÀ •‹/' ¯ Ãà½Ë‹Sâ4^ÿÔ°ZL‹]IÇ䢪^‰¨™ ލQ«ãˆZ^q’v#592¢.LUňfäµÞ経²ìFNR ”²Óà9诽,EÜŸ•ó}îYÖ0“`¥ÓäNyÓ·G÷•è•QŸý¼·ÿd`tyÏqàÙö•a·Î+z›rj”:¼îb`åO·ÄÍ5‚M¡ ‹9Vf.Ž(þñ3À†Cˆ#OÌgš¯ Céa¤"K2q Ñ_¶Íg®Èêiw·|¥ *É‹¡Ð“ó<³|c{€÷÷D …$ý}5#Û–0Ž^}hÊÔz1^;u.†c§eå§™My꧆eô§yEVȸ<_ŠùeeÕ…¸&È7:fñPá™Æè^usÔŒøå¼=Q^Tê_úìƒöÑ»K1ûÜíëò8jn4úm€0œáeO³ê—ÎÂ81n#àëÎÃ[´êòF€á`&wk–ƒÆÂÃì̺p$ãâ–·ýªX™F‡fû ºÌ82ÝÊÈ2Ûø`âçåRƒq,ß{О`ýð ëV>æäK*EMó <]?Çá‘xV²ýšý²½1ªçûª‚|æ NÕF¹&‘ xªÚ«ÖþŽïÓÊß齈¿¿[I ôÂYµb•ï†_ûuƒáC 7ü"ß?ã˜$¬Å‹m’ü½…ÇKáþM³:z›ƒºä]gƒÿJ˜ƒ´šÝú{§uOe½ fjÏ?o6™Þ¬ôÕß ³1˜“×O¹È÷u‚‹ÛþG/¿;û)B|endstream endobj 163 0 obj << /Filter /FlateDecode /Length 4351 >> stream xœÝ[K$5¾÷¯(qXeItâ÷c¤=4,ÌÀ, hÅ졦ßÐÝÕôƒÑÀaÿú~a;Óᬬîv¥¸ÅÕ^P®w1Ž3—{ßîEá{gÂÂ;#z­°jœ 2öΦUVclØ¢a‚¯1´l?k=þšý®B ½·Œ©2Áyr:ôÆEÆS¾Bržê¢2Ѭ)<» ,±ÝLD&g—0¡k±÷fœ¡Åbq¶÷ËžLR_”ÿ]->>Üûè•t l­¤5‹ÃÓ½|%r¡œê£§ÃÄ>x¿8¼Úû±ûx¹/z£òÂwKÑ+a”4Ý uŒQÆî’–øƒe…Ô>të³Ûú­‘B¸»L¡¼µÝù25B«î]%ò¯Ã/ö>=Üûf/öѱó:eM¾Óá¼Ã wÛYUXåøQA²÷ iAÇ:—zpœÎd¬QùLA)Uw‚i\Ä0(»—û.˜>t[ÒÁ|P¶ëi„ƒìV׉–QvÇy©¾û’f„«ºÚÁ ¡c¡¥ó]b!xHu½ÜW¾R¨îˆ¤ä$Èž~bÿ×]šVQ™W`^/ño4Ïз$ë‚#YCpÛLH»ùAC,·Kˆ=ÝÑwJˆh|¹t!‚Ó™†œ„êS#‰gÄNC§‹"¯Áú¾óJí»ïébQ²4º«G{H"2ʹQ•ˆÂebþLBLÝoõ;¾ø>c0Ñ¥Õ‹!žu^’Du…e€9Ùã¨Îàþ1‚ÜL÷ë8º¨ÇÇõXÙG+Ël÷-“Õ»¤ €Í´ßÞ¾„½ë ûÔ¬•Yt…éèUVDXˆ¡»Zîkë ¡f¸êDóUL7K I‰ë $o$öx-ºÑØ3é ýB‘´VP¸î»WLÐ/—E%ûTc;eÔðéù(Þû™ÑÍ8z6Ž>šÝŽ£³qt9ŽúqtÝ^f­ÇÑÝ8:G3_\Ïpz1Cå~f®ŸÙ—s?#li\/½Úö+é^J—°4Â*¡„%þyi-îp²:;Éka ¿.'ÇдÒ,T=&Ý„E8£“yo4p”àuLzª i¡žè©èÓ'€IÓEþµ¶ƒaôL:¢€Ú—ðh÷Láf1ç‰OhÎѹÐeP³.KÃ’ÇÀ‡8æ´îØNy¶ü"‰×*•‘§iÛîßËßö(0©s?v«ŒÈÎKBäb.Ó©¤4–‹qòC]Å¡!5¾`âhÚÂè¾»¦»1P…î-“ÂE%w]¹Ï¥ºƒ¾®`»0æ÷wu¶¯k[G!Â㎢y‚YŠ~¾¨ÎQ÷:ÝŽôðñÇlúMM@ÿzª5ûûÏp¸%€>ÍÓ^p€^±÷L~+Zé/›þÅw0‰ÜeUþ ÀVðrÁO ᢪÎÔQeàœï'wÌѰ†Aõ 4L…ð›È¢5 ý¶1œÛ´‹TJg%ΊyQ‡SýRI¿^$MŠÂ†P<^:}‰R z™wA hÌ@Ú)C×»ŸÐ÷ËWÜV)Ÿ=ö)Î2ï~S-?/ ¹-œžeö¬ 1 |Û'•Paƒ{G@Ì“ÛØ¸dÇZüZûtÅšDîUA*S®ø³ÄG,Ï¥ùU!ˆí~¼#dLxd¼Á^×D ZïRÌ6ÌNÀ¦-¾ãž5)TÊÄæ<ì>8~¼«(Ìød|¼H»kœ84@€Xཀ€,RŽQArFÀñÀÜ ±.n#Ë«sxå'Ù™“,£³2f,—¼ZR˜bŒmÉA,&8ñMÆ—ì2`ØÂëÑÈ+[ûŒ6÷EwGXÜ}½EpKP§¥• ÆQX¬$nF]œ0'ÐD'Åù*¸Ý°ûY™‘~ee–†2É8àUÌ·uÃQç–vÒÂ*†Ê te^½ pÑuz¡Q¦¢^®™× tÍ´ÿô ¬ü{Ra'Œëž$¶D «›JøŠ$‰TسJÔ,ÿ¥b΋Õe¥ÍÌ£Ÿ <’v8Í HF­yF¸ÚÈ#…P (‡ÔZ6h]xYÀm~uJBªDŸ¤Üî<›Ù QB Ý}:Æ‹m€R–®š»I³„?d¢® -ÎgXÎÖu…¥;6¶ €ø9 —>è?”½**­x3(ÞUö‚P‘”7ÛO_“ëGâ…$[@C*SÜ/g NSÙ*°¼f×#éæ™}6Ÿy̬ñd´òËzŸ,¤ ˆHÁ«·ñG$äŠ$›P@êt3ØÉšä._ºÀ$Ç£™G2N¤cÀ°3N8X —Nªs°T…÷MBÙàÄ%s†9ýEþ83,Nº{,å„P¬Ž’‰Š¤Ëv‡œSAþü¹9çÛGGý£ùàjf®Ÿ¡²š¡r>“s^³ r“òzf]Ý­æµÇãèaæ¼W3ÙñåÌü¼sÙ,²BiíÆ=ætV$ß)Ì9«°·½qr¢Â<ÕmƒàÑ(*å˜*H!S®KþÁ!ë0,¡Õ»e°s^áb¾xÍì#—nžû¡È=àôeŽ¢ƒTú2]s8#Â7àRZu²{ý:¡”Ô³æ2X]ÔÃeÂÙðêZñRü»› Œõ]]¤«}W3‚;" hÆ)OÓWén}›7sÀ¿+úÊÓf£ðè<û>«½åéÀ~}ÞÒ­û`\Ã@ž§s|¯sÂ-UIÆ¢ êj.^èeq]ÄW¹R€H•¼#6=‡^½©Íe-¨pzwÉR´Æ!‘Mc\ûÁœнr>ŽÙßÌÞ«ãx¨Y.Óû©ÐBR71ŸÇPªŽ4Éêiž÷Â4Þãœá3Õ¡`Æø€Ü‡ÁƒÈUÀNÆxšåNÌGä8„8).€*u2v öaŠRJÝfÙÇ*¯Üö`nó" ‡`’Eà‰ñ·«átMØév/SÇ–Ì!-D"›¡wˆcnœ¿ƒËiÂ+#¾5~î¾XŸVÅ¿b5†”²Ð2¡4Ú‡ŒK(ÇÌc½QþB’àpúÃåXÀcA%«=°^ «b•MÀ}ÆΕý6š ÂNqQÁî¼ÎëןgmÆ?Ù>>OYêSÁöŠƒÀ}U#†O+¢k0vÆt|uSeÂNÏ—×]>ìz‚¢DšÈýZ—qïŸ,Ü]]ήþ­¾¨+&æý  ®<îg-¡õ¤XÕaИâ0k·‹»Éû6H,‚äù!¥ZCwÌÔ./OMIàp¹óE¥7Uð5¡d Ð22ÑFHÍÔN+> Õ TÕmÊZ£üÇÙ7u¯ù²?Åy½·¶öSBÓXÁªh±7[¬çh^¥Ùæ,κ-”wùq ˆ‘Ó¡?°­.VC$£e1LKk°U«m ú¿^¤`á}äМ¡?R»ŠÄÅØcA(j}Ó=Ïl§Êo)‹Ýõ  îë.j”ÅËD%9pÃFñVÏp´RÑ•&•ÇSX£UÊdË=®òZ8ƒ¶j•ÞZ¯ô´¶2Ðþ¬‚?ïm¬'¸\‹W…M÷mUâƒgÃ|)Òç~ÎL—ÁÝUňTy OðT¥i WÐoéÌ$JÙVÀùˆWW^¥HPbE[syL‡‡pþëÜ”Ñm)}¨l·³ÜPSí)WwIPŠ.pK/ˆ8’ ¥Y©7*.˜¶1ð qãL¬A°C bãIÙ£€î´²‚i¸ØieE¿×»ÄoÖŒÙ4¯•ÜÔÝæêà æU“ Sç“zøT½à«mÚ³ §N¸YÁ~À›\¤ò9)—}œWPzÉ2§¿cX˜­€[qÙr¤ÂØI¼C£(è‰ñÈû6/q¸/”æ~<™iÛ®¢½“ yÅwRçMôvkx ósq¡sXÈ3ðÆÊ´B¢¦í¬Š,š’—?¹ÈòÉ8z5ŽÆÑW3区nŸ ãDÅv»eIÒ0úi¦r4ÃóS­ûMîoØMmRþyæ¯g3¼üu¦´r3[Z ¡7ZóÒ Lµ  EÜ©²BKw›å“·4åöR`Ԣы,:Ù³y‘r€l„èR’šl“âÛÊ/£8F܆½5¥Dr«}~{*ÄN„÷in…¦Õú’¬Ø“ Þ–²åŽ„/k’LþHhÀ.êhÀØ|Û1k[“Cü5ÍK) Ø¡_öd†y’y P>ã‹—aëbj¨KÁ…î{R¨-âõ-¹ôÖ'[CÚ¿û­~·CÆ>É…é Óo§U½|tŽçù¥Ã’s•¹î•0TÄàEú%»¯Nêw´ŸÊ¿îŸ¹Ïl]JƘºòæN«ö®Ü¸I7nMQãÊCë9TCæå ÁÂR·•®²Z¤÷q¬fö=…Ó1éAû&¨HšWõÎv ýß×rµ²)‡o-w˜m-÷ýZAðšˆ{ƨúr^!ïGµ'mË-š‹jzGôüÑGç2f=šë -ãø“GMP!éy]Š7T›cFkÞÅ|kÙ‰¬ÔÄž2ÿj^BuàÖ†{ÙéÁŸòAþ?ÇÙάÝ$nú_… —3_Ì übf·“¹à"FJÈgùüâlb‡Ö k¨C3žÖ3q99K›Ùê©k5œ²2«@µý”¦ìÊ#—«‹û2 kštaÚOÛ3ቜ« >,ÕúG;LÕVüç§µuåà~DØáõF’1Ô²‰„Ž…³-ÚtÙtpix„‰½+Ĥm<õ)M#åoê}o ®§ðÈÞËxÜõMOY^£¥A^8×çµbÉsÆÓñpÏxµŸbmKÇÞN™·~d#ô0µg=*]ÜVQiûI˜{kLVâ'X7Y&m>œ¨ajÕyo' Æk(¥¦TzTsȃ ÔPN’ù¢._‘ ¯éq/+¼ÖW?Ï™ê²'ï_?9ò»,H•keö~×~7Žw ƒêËÊ1¼Ê=_é<™ï¹4ogrÓ ¿Ô Õå©bºù~˜5“·~^L‰’>ØÍÆÈ>/$;àrl~ÈŠˆûÑvAó›ÙkY—ç›TL?ª—°båòó\…S V =+rò”ö±éqZ½¤¦Ã;WÆg‡a¦kr_:¨¦ûCí“ZJa›ýœñƒ±Úo¼ €éÏ”i:Öacá©5¬)rLŸ?h…?Ûi[¥fM2ŠøõwD[HTL]…ƒ÷zé4'­uÐj¤uÝú”Æ*½\­™Àš)IfÃ"T'{w¹ªžë¤¢׊7jý›A×|¿\ë½ÑO;Qãmzpþ> ê¹ âLj,dðU=à6oõP)§Ð^áN'µÀJØ7x{«o‘¤&†w†Iüˆ ÿ¶Ó^ÿ¾Ÿ×¸8ñ:„Çßà È~ÁîŽ?“LùqnØ5¦9œò®µh^玔‡¸îe_ÆP‹*ÿ’)¿ì G0^”fïóš ³n =z¾lBP3—y[zÄÈ»˜³»§_ÉT Î:AèÛtçô:xb£^ÿY/ ÆbøÓÊMmXªÉKXÕR8¥õ(…›ÖÖ‰ýfà¢A"Ø991þƲy ÙÀ{yôr4.˜ÔÒÞbuK×m4û}ßæOò a;-‰7}ˆ´‹í;™úŒ:çÙôÛ»§ÞKû^« 7Ó,ùaíuëß‘}·Nú¡ì7{ÿ¾ÒÊendstream endobj 164 0 obj << /Filter /FlateDecode /Length 11673 >> stream xœí}Û’ÇrÝ;¬˜8/Øœí®{•Ãr}$ÙA)l ‡ƒ>C)〢ø÷εVVwí=C˜’_>p&§».YYY+3W5þt³Â͆ÿüÿÏß<‰§{û÷ø%nÛÈ6â¯æð’Í/·‹z [1ßb9„jƒV“-ŒÛ¯4Õ¸ÌÄ.£4þøì¿˜ Í`æS·Õ~öÕ“gÿæa8YÏ5ßþǧw%ZÇ=ܾ؅¿ì?½Üúp<øváÝ!üyþ°ÿôqÿéûý§ÿy»ÿø÷ûO_ï?½¹Òõëý§ûý§·ûO﮼{<÷ŵù½¼Ò̇GÇÿ˵ñ¿¹2†÷W^¾¿2“Ç;ùæJËϯ ÕÇ>Ï?ß…~·ôóˆ£Jé¶­ž½°MôòŠŽWþxÌþéú#º›-Ý™ƒ¥5ø+¶.ßÿ·«ÿ'ìjÕÜ û—·¦¯LÿÝ•é/šý5weu__U袔ýÇpíõztÞ\mèxçýµ&¯™ã×ìÊ2ýîZ“¿ü†Q>¿¦àíZë‡ðtåÁCmýša|A»5Œy~ý[;.kµãþº‚½|û+Úø›ÿk[íwëdŽ)„Gàkûꚥ^5îkNì7™t¼œÄgŒüå«Gã‹ksøÝ•¡s¸¶ã¦¿»òîUkÿ-[úßï?ÅÇ›üüéö¦:&ñû+J9LóÕy­†»÷òõ£~¼2îUÓlæf¸rŒåÏ_]=C®LúŸ3†3÷°·øíg/ëµCë“ýú—Ïžü7„'Ý6n»Éˆ=j¿‰u„Sh7¡–z áæýË›ÿ~óöI¶¸¤" 7¶Óoþ‘`0Šé&Ç-Ÿ"3“ôÓ–%ÉÉ¢ `xý4$0ÿFÁ8µ*IG0úVN5BRðòk)'Ib‘¤â¤°áÓ)I¼8ÌcBR- ¡$YM’T)Ñ4)©z&Ww&1))îJÕpé˜% þ6¶ÛOA­T‹E’$UãkåÔ8âq ’ô€˜–’Ò$14€‹ƒÔ·©+EIªú2}ŒØtÙΞ(éÔ×°§ÑUˆ§¢ß+Ö4S§=Ì2ŠK†^‰]*6 oœå0eQÅ¡ ²…ñ(lÍ%=“‹yyHl9((Ú7AŸ‚&‡9íQ“7L„’qJ”ô‰) ³¶a& LWT¤JR¥áˆP’¥áXç4-ø.”4tùú‰ÅŸfˆ°MwtJLW #Np6Iª4l*- n6°AI‚eRÒ k“ û4šö ¶¬rê($¦­„gLLS˜­í˜wIƒ±šÄ<$5JÇyo¹v)9$-kËX{UÃéVÍ$yNÂF-ÛN.jÇÆ—ÆlØôÅSÍPaKÚ1fáÜg&±ýŠ!I…3j¹Y€Oӵܒ0˜¾"%õ”%1}ôÞ†vˆIº´Üõ«i€*Ƹ5˜²av&±Í$±¹˜Àv‰†bº¢† VG=aº‚†Ó\Át '8œ!ÉÀO&™+e[Y›œBšo™„†“YzÐh¬h8a²œ¶-9`Û˜fmÀ)!ƒA öO²5Øö€­»IL .©ToÊî1#̰P2\á°¨„ñÚÚF½eOC½É–’Ž-FÓ•-jF^J/&`›­I‚UÆpm³mzÉÖ N2H4ký½±ùœLE34E™:LÒäb´¿m6ܼEßaqTª7›zßJö7¨7ÃÙHйWÌúKö'3“T·èi^ÙÔ‹aSR©Þ ÃÑ[ð•9_¢d›%Û¶ ëŽ)'(Ú$Í-j…z³)*ht¦)¨7›=sÚÉ…v[ƒ—§ Ñåž”•´]©Ý<6×CjÚ͘½úî™Ú-›[k²‡±M ܽº¶‡U>-B‹ÐoßK’tê·À_IbFÚ)™kÍÙâ%³ŠM³È‚žÌ*´»Ì©ßÿ<$iÔoÅPã¦ØÓI³g%ètEÅæÆs8Z'<3à$sݨàbf ϵ±š¤ÏI™²’ ¸ÚÁÕ44hXŒéj+ &á¦ÏÕÝûö:Þ2O²QRl“[0mÛÐ.±Mj:¯vªk¥Ši }—¤9•@ïg£D²•’Èíi’꺆†+vC—„x!WÛ)r4Å\8T\q.IйYª9'm¦‚ýjnÛæ®X§ÐpÛ¦•—Zp"ÒL®Qh›¥!®gÌí45Ö9q3Dè¸ÙÞÈjÙÔ7Û{£˜ºÌÊrÃöàx*|}+Ó}UœQÃÞà²`= áfGöpI§†[s„«i »¥™g—À”_D4¨†±c$n°Ó„Ö‘ÛÈó™Ì ™û¶ùòb…°]º KÛ¹šw³†åYª) *”K¨¦,¨hPçUmÄqhP»£"In#v4H “ôh0«sT 4H ±h’üøÄ¢E ¹T×N3}ÈÉÇP‘¤ã׿Æ×lXPq‡»P#6¬JI÷õn) lk*M4ÓVB;П:Ê:N ¹Þ­pdÔHš¡Tl˜SI-ÛΆŽ\× Ëhn%¸ü–±@Ð añ„A1-8VÑà•Iæ–Â*BÅÃ|Š$@½íu“¹:búÁpoˆUÄ~pR.!À6I~‹XEhx”(ÛÂ"BÁ£T·a,"öËÀö¥à ¿'GTXBhxØ*fGzhx˜±xG…š5Iö=Öu˜¤ûœºé •†é©á>=& =5 ¯ñuöš‡ùzïþ#Öÿ)T±9ÿ@mÑSųx‰èëMÙ6‡È˜Þ6¶I’C,‘éØ$E >Ô›ŽMÒÝŠêMǨWG@}¤$8à°ùIRÌê­E“L´ Xß!¨n7Ð7ÆæÚÔgJ†c€ú„lj. Ê€fbpTÅm±ÍEÆTß]¢-C­`Äftv ¨¾4Iº$§£I²ÂŽ„¡Æ,‰°hý³M:>Þ±“…:¶vÙw¨¯ý¬os§yøø%¦­ä#Nz¦4é8:nJ›©‹:6]è¥ÊÓ‘êâ®JÀô-K¥E’¾IÇMn ÒKÇêÆTE‡,[Kô!i)¹ãýZn €ž Þü|IôT°žMÏ`àQ¦Å3<Ч.óã!™è©`3ÑæÛ­°â!ˆ‘‚‚“4Y@¤ç†±Ã‰N*ÒÓ%8®,7[(Ô'nÅ®3;ÔJŠôLWôI=͆{‘O²¿ðxKÀô-k g0PÌ0U阞‚¤B¦§O2w eA€L§T»µlžPû?¹D?JPÕ•é‹Z6IáÌð©åCRùú™¤2°´cø&—³®Zw-oJR%@|iYó¾?Ÿù„ž%a €ï›Úz€÷¥­ª!¼§$êW¢>jSN²˜¦¦~åEîG‘D­&†lT½dà¾F_¦&IgôO䤞MSRot ºç‚ªýr¼d¤·³†[sõFeºÀ}™#–LWÙG,íÜÇi#œ¹{æW !ÄNÀ÷ÒðæÊ¾ïnÒ9ð=7Ì6ܲ€ïKh¬z Ù ÂH¥?ð=•Œ‚Su¼á—xß)q¨”ïé•&à{$ú¨¾Å+é0d?µï¡å>¢ øZî¶Gµï€ï±_²5sà{D6½WAÀ|OØ­p‹’N-w;Tº$À Q€~S;æçà–e•€ø ml›È‹â£áÚg3¦0(¹×â¶„š‚ Ž) © W9! |†6ËÕ•S mÊ&x—ˆð«B@|äzž† Œ\@OsÑñ©fIoÙ±ŽmL.Ó•z7IÄÆG2 #­S%i̶ôPÜ ãSË@¸z ‘â¾2ÛMLP16”9äCÉm(¾H˜ ²-`y »ä#.íÓSMLí¬ jØÔ…Üo3÷ž%iÜ ñºmwÓtÜpªê‘Î4»…ÉÓ,€ññNQ’€ð¡á–=÷š€ð¡á†„ÛÅÖˆŒÏƒƒ#lTlš‹osœ6Ã#‚õ„“ n»sÀ™ ÃXuvâ#}1†{c@|x&d"6=“+ó-ÀjÆ´WÓü~UÎÃ;7ÌÊ|‹y1y`|è;Wà×Ýp.!¿b8Y& ŒÏŒ Òv´ `=f\pÈI:•\MœVÆÇ#¡+ŒÏ€øÌ%A3>.ö$£ïÌ(I.Ã)T©IºRZH½EJ ©0§Õ±d`üÆ,W•¯ÊÀøÈ”ê¹ê ŒÏ¤Vò·!d)^ÊÀøØ28*ºzGŒ³dS³Z¡âbö%6Å€m˜ š2 >.%zf?å£g³ƒé¸\6]r0 @Ã̇I5lO˜ ò‘ŸDRõ`Oþg`|di[ñ'³ 9×9! |(ØÖIé–LULÿ–êëˆÏôo‚¾Ÿéß ?3 > ˆÂè'âgJ‚¬8â3ÿ‹‚¨ ŒÏüo26“`x!ɉf|J¶.Ï›ðkUvš6à3½Ž‚ÒU,1½ÞÝ%±Tµ•%SΪ’Ȧó¬bý±Mjk³ÄüzuË2çí¹2>FS¼öÉr r©x¹,ÇʺTN¹Ì¾«NW:ÙYy±¥TÝ´€ð ‹syð¡âçîÂGl“bò]„ØÆ¢'1>.@ñÝ%—¼ªÅ?AÉ €CØ€ÐÆâgŸ>¶K„gäp€ð‘q‰Ã…Ix„š$*é‘ð¡äˆ]}e:,MF-#XbÉó¨`S_(^©¥•À‡–cs™ ð›ªZÄX¿¯•¯ „-³:¦®ÌŠ eal–†Mƒ*›´ kŒA…8 L_›×êJ”dPÉÑ_4ú®ŠßÐ;ØAUÁ®Ž–¡£\|7`QÇ9í’!ç “4ßC‚Äu|ß½n$¨ŒlbªBÌðž*¶£¦ê%ÓU¬ª$y“„9©¡’*­›†cK=ªª±rnEØ[FH¿²Î[|ê€øy¨ò+ß ”ŸŠªÃD…(Ÿ:žds²A5úYd΄ù]…hN ž¹eÕª]`ãR1[¿›²¨bd*Õ3 ~SI\g0~H*›7¥©8d· `ü^$!öåéCG"¿DñµÀÀø©KB´žñ£Wþ5ï ª¸LE°¤2œR@XË”;f›>Ÿ*Þ†ÒŸ*Þú|‹_$ÑräsËl]Ë$Ì+“Ѩ €|ªxóHšP¡­ôŠ\…p FÈÏa¡id€üØ*GÈi¡{d€ü1)!z ß%räùµ:µdHR¥æÍ‹ÄVT³Itä»D>¦™Æ&¯Ef O=oYIÜ /='?÷š’+”t—4'¶$Ô ”/bKbñ1äKÍivn “š“ƒ€üîb¡¯ÅåÉQ¡97V3̉3,°Ýñûcdžˆ½ §äD 7ðˆTþ” —OŸ:$Û6ïbD䢶¶>µKާ,Úc4{áV2Þºý‹—o?àÁgÿ ±~>Mq3ß¶l-s~\¹K °s.º«Ü-à›sEÚ Ò—÷nþhC|qlX²îpòØaÞ@âcºƒú@‹Ëˆ0B[ÜJ(Iá =O‘DÉ z'ªp©ióvh\¡øF†ßÉ®x%ÒY€”Ìsa²KM‹ƒµ_›˜?;°4'=í@œ™#-Î<”îGÛÎ,½ ¡íÀ‚ªs#¨™ÁR1%<ÂCu2 $ÄD‡()N[ó·ªÒ³â6Iœ×¶59 a¢Ÿ-B Û”t%ð^ÔLR˜C^P—¤‰;µyp¬Šš7éqÈ‘07“©¡zÇ|RË…¡)€\¸ÎÜŠfeJ&) ö¢™7gK?ÎYrÄ„à!éÑ ˆÅ×®vaç z¨@çM hÓÃÉ^Øù|¦mÎ ]ŒI\i‹BZú˜Æ±X/”~BxÍ%QÕu`ºîe€ûX1 @JG'¤¤\Ĭ:ª-ŽŒ:¼'+0à&ï-v·°"‹8CÕ %DŸ›lTGÎÙ—…~Öi‚]ü×VuT§6‡ÓƒPÊä š¤ 9˜s)ΚU¥ dѪrøEöØ ¶Ò…È h8°z~•¼ZBdLÔ0r(7 ž¼'kÈËô8$©AÁS“[=nlžö ¸´Ig›ž 9;b¨¦b ™¶$ì‡h4½Êiö¹Ë:b_†–NšEB™>³g̉iúÌ>ýÂ_!#QFÁòÖed\Á“8¹.aDEF\[1y {Ë(J4ñEF‘ .¼ÅM}yq¶ö8ù¸ wƨ vçžf ¨%ö¢øÝùÃU즜ïP·äKCÁH@±“TÁÖÛœ =Ǽ¬ÊlBÕ3ed²³&5ĶÆUÓè Ý¢TAª " X‰ä J¤HR(:Ãk¦ìÙArvËP„óŒ`&>ã¥ÜH–I’^=2‰J MVµ¬‘™¤9YmKž©NyÛ;KÊfgñ¦Úb´åWA9c+¤:šNήò:(KëÓ1s-=Ï™·Í³Lžü3‰’ÄiDç AWºåÖÉæ2”&Ëa6S\ªÆ˜@õi@µÉê•%‡6é­›§íf¼l'Ɇ_݃ۯ™GtNI[Ü$ŒM2Dâ Q¥Bð/XëA‘…ãNS IŠ\ºPND ‘9ºê¤ÙÉûͳän•;sŸô,ƒô™H^Jy¡(º¥¨.¡’?aÀ*ûP_‘] žœ&¸)¹êãkCôÅ´MærçM“ ·šÐY:Î^Ô©ÀÙé•c§ +zGÆ88˜™¾Ò†[ £mOE‹ê‚S—Éó-h{DœpšÀÎ6%3/ž}š1’_czq6äÁ‘r‰È€à8Š€Gfrð; gB$£±­D8üH£'"rX1«ü œw *Z —ˆóÜÒpºglÊF#´uÚs*u€œ­·:IƒbòÁ¥â”nàŠHƒN3ë!:[(…ü=6çäõÃm¢”%3%©»¨H&~'HݪÐM~³›(â çS#J®È̘¤Óm‚I eÀ‰ÁmŽ4ɺÈWv±Õ†s‹Ý&ê$òeðOÍy*âz¥’Ä(Ú‚sSa –< *éEW (`ün–=tÈÄ$fjW7ùËnP“µ¬Ï²üÕ°mÓ[Áæ–5¥ÁüSáΕ “b„¼¾Ì?oä[”P==NJ2He€œà|B3ÃËî&éðš…™ ñ‚Qø³v˜¢¡7’#Px‡BÏ â`Ü*uØTÑLu¶©( ç¸Þà(<1²“– /Âæ¤eÆ5Ìý" J5&H^+Œ(q€Ÿ•róíJw„fvž0ržæ3 ܾ÷ÝñkÏîL̰IáMÃG¡Ë´™·¶“˜Öè':e™[²@ò½H2ZO× ¬£ìiy“ðBJÁÜÔL$§äöX"à úýúN,‰aMA®V‹ 98„h‘$3¬)f “× ˹υôˆ‚Pt¸„qýaó-…J8z%zÙ4"ê;™YípD} ™‘]$Á(¦žÉ†îŒkLRÜG"èË|f:_} ÿaXÑ%ö MF} ¯aœ“ýÌe)û 8݈glÅ5+}]ÕÉ•DÐÑUúBÔ®+ƒœ¢¾Ðýµ“Û°&3¶a_SÂØ†ã‘ÞõmCcžÆ6yéîŒhÆ6& Šˆ"ï C§ÙKùäHƒÊÕF*ÔÌ_;_æ2ˆÅJR{ÔR B á1´š"œ×!>*V\ci"*‡Œk ê”ZðX‡(LûKÀ°¦ N)ÿÝ¢rW¶ÊZo°Þá0ó~qˆ5ôIí7ÙOÁ¶–ûfê–>K,&áä ÐJv 5³è¶Íª› b>xL\BiN¡fEÕUýlEЙŞ‡¤1B䶯;©.3õ‰rôÁÚP-ôÞu=‹’‘%5Õ NˆìDk6HXðAü!0¶ÎMD} a¼kˆú"ÜÝÖDˆ±{A¥Í_ŠAN³;›3vÝ­)±…)IŒl @@sI…×D|)ËBÔ¯‰p·8›MA„.hŒ¨^“% JC™Ø+#Ñzõ•êD†XMsn´°‚¢q؉؇”—˜#ù8ÖKHudôp°M˜Dê$a^nèƒ%›¶8éÒƒšL-8HJŽÞÖýNÖ®µ¹±—‰( ‰ ÔØ=¯ÑÈK®<ÓúœÔ6ìÏ@M\]ñ¥óæ|îภ9£cÓCÀWDruV8Q|Uí(Ä{iˆy* ŽxŒ®²ó°íi2lå—^ïìm2;…eÐG#Ó)ß(7t‘"ugÛ’*\¢¦‹Lƒh/’«œ†h—&ºßµ!—;ðŠ„SisÆ-nÙnÎÝVmä(çn;ϯ—âÜD{¤åÉÿA´ŒIâ“KÔôÔf;Y <ëA‰¢n=Sœv…À^ã)CŒ³à,FWXûÌ.QXÓ·6çÕÖô-N¾¹ø8æë<9d(&ë:ÐpžIÖx’’Á°,.±U·Áô¢IŠOƒ’¯Ü¢»"‚TèQÍyàºÓ𣕄˜O×¼”™ô‘S5ù‹@ŽÙo‰á…˜¼«:œ˜/'±¬œ„žy/µ­îÅ5­æ+®¸·‘¢ž)º8ÜlÕä=]Õ¯v$}‘±Ææ|OIÈ×Î!DÔǸ¦ôÉ9ï~U W½]BV/GIF\“$I;ÃCŸâaub50Š+&:¢¾ÍÙc¢^!êÛü™Jä5-ÐËÔHTLÓ”¹¡D1Mcµ‚’D'FIq~9c¼Ÿ¬˜±·s÷û^Åí8…4­øÕ„Œ^—@Ì»XÒ@Rô’AåV%‘• ×’|šBã• Jt'M’ˆ·NGe;qr¯MÀ‡Ýå¥5‘É7Ý&ù®í„s¸Ä–=MÉ m¢å„€/“¡7©öI,ò XЃÞÅÙËe2Å“¨Šàõ©óÄ &#£¬žÀ¸ÀÂäprºhψ†³ÐyÿiiQ"îÁk’êŒô¤t Ñ»¤ïlAõÜ’ÇÝÓ/ ÞƒOlÑY ññKë áo¢Q0TªA®½;g]·KÛ,$„{¼'”Kˆ]ï,zå#åÀ¨Æ$~9!±Ä[Œ ÕŠÞ­ë;0±ˆ#EZBý ;A=Òi¢’ÅOºf_YÄ£$낈ŠÞWæŽ4ɼõ‚tSãÎ1IõصȬÔ<ùè"î‘ ‹Ì~ù¹ÏÓ’ÅB2x ÃyííÄÌJRþÖWÕ úê’¦{ )LÞýÐnp½™ÑN~¹µ;±=ÒiV³Ô¶3Û• jr@Ìi7¿0WFöFЗx×/|%}pš¥ûè„ N³´¹ÄúésEôÁi"@Ù\"B h¯…¿È}00A_y›´tA´ŒÚ¢ˆÎèƒÔÄX|ç!èÛÈgœÜ碋Ö&™¢¾Ísy“¯kP¥Î¸²ß¿ÖðFã±'E9dÄò§g%#>‰Ð(ÇPYÎ6Að±T]Å&OJ~¡Ú!ßÉ^l“¦y Î$Û$œcñ‘ÕIwúañz!³T“yí…¿óx s±9>8Oq*·ú½¨¼Í{GµŠ–Ƽ¯Vý"Fê~»|y8ÌdË/w]Åj%OQ~ásçø ‡óå«rçuÚ9Â=åÎÛlgTÏÏ«ˆ÷2y‰ÊÍìzÐeip"Ì'?ƒ異ÁdËObž„uÝøf9B¾n0òc eRá Íà :;=«V“¶â"àÙùõ… žN‡gðÏൡ€#XOìÝÏUÄ{,Õ gBAÓâ~¯ áˉmâ€Ö7¸Q£Ò3Ý©omã¯ÀïY¥/Ý’¾c½±z€@g½qG2“pKóu‹žÅD1Õ()ú¾Ö‰”X³Š€R9øú¬n#$¦ 9¯1OËê:œH/>û·8ð•uý³=©ù},Ü9¨*~ŠÐ,ÎÚvòˆ6!Úc-q¿Æ dÎÛaˆ÷ü“-ÒCÓ­Ttõ€êGÑ7!Øc±1ú娄hOÁ8U5Š*‰ÑÑ„h/Eiqô»ªÖrîˆõ¢µ ëD/‡KˆõXHDä’âŸì™±‹ÛØð¢Û§¢J¢ô=²s%÷[`Cµ.qý(0ínNge~È‹š !ž˜ž+1‰qȧ\Å ßi} W ‡ýü™6ü«I~©9áÂswŸ"©Ñ‡3МD‘ÆÈ“y!óÅ5ÐvÆá#¥ßIb£nóã2[™ô|~"„¿ ²7¹"CÄìÄ }MÄã4 &¢Ìm"Àœ’ü‹ˆÊG“³¾×³³óègĈ‡@¯8³F¬oœ“Ã2´ ¹8o᪸Xë’Ç=ûÛäƒäõm—üFVêH!Àµ›±ƒÎôûw÷>Þ¿¾ùúãýÇ— 5LfV…/õÝ~uÿö…ÿå_/l§«]ÚœPªùÚ7‹(*É™a…oüškªãöþXBI·¯~Ò'|‡…ê·ï!â·Û—ó3Ãå6žŽÇÓS}ç·lK·Å«…îþÕÍ¿D‹fEæo?Ø«¥co?êkÅßHÆŠã¹ãC¨÷ØoïùbdÁÆwfº©#ÙGõÂFðõÓ;2ÙúøXRHv;¾CyÈ?,Ãø“´¿lÑ›.}t #Âg½|`/ön¿}Ç!ÙaÚo¿ƒ'Ȱ1ïÿ?x½t‚–q‡Îû bû1VßÖmbÖÍòêÛ§¸³…-%~f,¬½¬£[»Q›EGçs_†}6VÎk„¸J—gßC7ÈJlù3&ö¿Æ§ðÅ; ÚÜÂí{¼·õ`†ç’£â2§Pm‡KÁ¸ûsûí>qÿD0/aÿ€ës¬>i×Öa®ÚÚÍd]âWxdˆrûÓª–»ÃÖõáWïíëjðVž Êa¡Î|šà–lß0*JûçËiÒˆ?¢t¿°Nd]K) —Î×ït AûíìÓäwsÃÝ¡¤l°Rã~±¢û¥›~µ±ü#7ïan{5ÉÆs<±>ýÅÓ»Œ,öpc5e…Zl&¸XÓÍuüŒüÌY_©mnˆ]ÛON¦|ŒUd³¡½ïO÷ŒSÕm`CXûGË_¡“ˆ%^ÇüV]—.Ë ¡ÛhPè1A×óøœÊf¯,oÓgÔmã^ÇÄ6‹ÏdÑötƒ)âk _¦=Fuï²uÃg3ûëiÞ4œ7ÌæPoÜc™ù»ÇwÖ×ÖNz¯Ù€ž-_hÿþø¼·løîöþ½ÌÏ\Ý7ž©øˆû›c./©;¥#6 ]‘f‹6Ɔ%àfã—³Üo›íºø‚;Âûj޷㵯Ýþråó ?-_żb¿€±×¶¹Ýx.aøË6sÍÜŸ‰ŸN™f64ÁÞîªu³Ü`wHK™žáåÀà2\C/gñ6§4o‹~f·~Z·ÿô”ß—5à#ó°‹Ý~¯îŠu÷ŽÃ1¼9ºԿè‰vñÄK‰ `ó°ä¿ëóøö°«ŸCøèÃìí]€¿;µŸ/öõޏ .‡¨f©žPŠ9¢·‡ôÃ1ÄçÜÖ)¦ŠIÐŽZ_õp/šcÈ˲œïÙÙî+µ»ô½jrqZ³ßÃfÚÿü†“4$ Å ÙÛt]0×'‚7›Ì÷ÝRØíìb. MÊÐrÓ÷Ë@¼¦ÞmoýŒŸ:¢w'ü¥Öù(ð_bx+iÝνìýó§sßë‰b­-Ú~¹,žŒªÆýG*ö‹Ùߥ].¾h6qíŸf@ÐÞÃÔͯ}ÖüÊ&ÊÎøÙÂw\¨Üòj`o»]ÍQFÙu5•w®¬ÒÛ*þ Å[ð»*èþõâ£_{ôåñÈ‹C³ßCÂÝ.‰õrøèÕ¥êÔ¶³7.'êa‡Ï/N_šÃú_iÀ[ +š?.®ó0¯Z Ý/'²ŽØõÇ?·±šÅ»1{ 5~ô´^|ÏþÝwéC‚1P`júžÿƇYkæO§l˜Õˆ€¢ÞAEYåþÛHý¹ÇUû¼-³üW‹“øGbF(d5ñ·ÇÈÎÁ2àëãÂÄ·ÕÄi¡g{m mß¡œŸÅãô0G×?=GékêÇþZÛß»vª¡v‘vèz:ZÓ¢ ÊQáb,&3 ¤§¾^œ&–ÄðKˆ¾o섪—@ ìKóHk²§mÿ¿{OÔÒ•ëÉF;°Evµ¯Zý¨³&ðŒB{mÄõ0ZM’=Д‹-Iè–ÎvÃb‘ëâÊ„ÌRB¿8 ¯tþ€ã»ÓþÈ 5bÁÝÇÜä²H 5êÚÍbCï4/Øá2¤µ—eºË{‹o{qÎ\Klj°W¿õVâºÕ‡p þlGΙwË6«­õþÉ š][|õWÇþT÷ö:GŠ$4,hÅŸ«‘}ê‘hMËÖ^”Ùxƹè2Ëÿ Ëm6¸@U·ÞTÛ™¦Ï­wY 0×,a<~É61Þ9ÙûW÷—¡†Å¸)ç35|ô&}×ÿšULŸKgáÿLÒY vMÕ/ßÿãaL¾GðmŠm}Ù¿¨íffÿÝbñhƒm\Y±KXáÇ ,‘OÛ¶´Ÿ˜Pª+Óƒ½8ÿÇîæŸÏmn±â5b¼“ƒ {¼…®ŒE6GO_xôŸ/ˆúfv¶,~ÕʇCŸ€`üh0Ö8G¶{ïËêqE¶Öl¤÷/ÔPžŽKphÎVJ¶fSl…ýQNVa惈½má(¯?¶¥õÕˆ?\µ¤ Ýï^å—ÃtVõ~¡v‹”.À1zÎ`çX$œJHûC{Çi¼¨ãÝŠv^ê5üC 42^/ çчö¯.âW­É§i.àYX»‚ŸÙþÝþÏ·àáøqÎÊO°W_w¶Z ¬ã—ö¶sŸ!Õ2z}ƒE¬Ò·T…¡þà¡—ü#+Tãò%" Ðàç™e/šyáïöõ^-WûñÓý£úíÜ­¬8mMCð6Ô¥!ÎAÀœÌ¥•p(!^j|Ú~œÁOê‹ñ¬†­Ñ ôëpñ…w•³É[ôx[ç|y~ÔÆEL%?dËÖÖôƒ/ ”3‰{'¡^IU¼] ø+õm`LÉYÉ:ö]ÝÏ—±,È»ÅÊ•™ôޝ@xr%ÎmôØ ×ÎëW««]ü×5Ç£_~ãj~º·= z¾ÿdÚ@«~Ïbñ½—s?´ó™Ðþ,zÅ'|jú4z=þ)›ï¯Å¬¤„n{¡â 1ôÏ×íý9½Ô‹i<œÊ¸}^Fb ¾r°-éf|Ÿ5´kQÅ ßíÙ§zî d ñ!˜°ØÀYnðX¾·ÌyUgøý#ƒ«‹•]ÝyÂˈœÍÿ©¹ËÜʧYk>|äeµp×0ç‹íðgû«+òxyÀ]Öà£Â#/èéáâ‡Ò#n‰©4VgnŸ-w„›ßéçúHæësÁ'Ázý—°ŽÁœo³þšž;>ÖÛÎ’ב07l;_Ùãƒ*<€é0‚µÖ«sú®+ÒãzÎ>°’û*½û$¬ù$ÑòâPËI­µ^nÿ ÿÚ)’}4ZL¨ÇO&äÁeZÔÞq Xè!2JÄ é<Ô¿ðæk¬ORú?3<@#ÝÜñ—Ýݼ°›Ý*ÎÃÁ=lýÓEÂõÓâÌí¢¦çg0”Ä?´ÒÓç¦I*ô?Ÿ[Ûù¢æFjIf©æ“UU>õ"ávöAïÉ;^¤4xuã2Âá4|V›¾â Îò–ÏœæòÖŸ] ç<ðÈÜ7¿HØzxÐky-g üàVÍÙ1´dÁ>ˆÂûê ·ÇÒSk¶Oß`³ÔqHçñá ,™ÕÅsÝŸ¹®×ž s‡a«ž§ VtîÖÿïBÕÊendstream endobj 165 0 obj << /Filter /FlateDecode /Length 10351 >> stream xœå}MœIrÞÿ†‚NÕöv9¿ßÌ…m`eX‚Œ‘`k¸ ¯=$—C-É‘ÍÎÅ¿Ýñ‘ÅjάvlÀ6x`GTdDd¾‘™‘‘OÕûO§tɧ„ÿäÿïž•K[§ž¥Ó_?í¸Ô#ŸŽ>òeŽÓ»g³ŒËXË8oŸ}ýl¥ã2Ú<£¥K- eœ™×et’êþnAHQ¦%ø°{½ðéÜì©WsÍËуSˆ>:/m¬àÓÌÇe¦}r!al2â“YS—‚µtzý쟞eÈ“ü÷âÝé/Ÿ?û·_æi]Ö(ãôü÷Ïxó)·z9* ,8•K?=÷쿟ów¿ùên–ËZãüß¾¾««õVÎsw'¥vÔó×w÷µÖËÈåüÛk‘´f*eÿ:Rš£þçÿ|¨Ñ‡ í³€Ï_‚Õ¿'á5ç,¼9\ {j,|>îžÿ#ª+AüI—2Êé>·ËœMµæKJk´ó¸»ï:5óù­1ì¯í¯Gûë{ûë“ýõ»³ýùî†ü`½±¿þxKM¶¿~mûëWîö{c¾¸áì[ü÷þ§+úÝ]ü‡8çËê=Ÿžõìù¿~b¨¾ ú?·ùÃòxc0>Ý´·7†Êå~toþç­gèV|€^Q£?×—ö׫[#þò†³±·Fü·öù×7†äÕN?ÜèÀã¶ÁE|~øÐþ ÌÃ1ŽKÊ!‚o©þ榳aŸÿí/þÔô¯¿¸5²ü³œýêÛÃwÛ$Yÿ·O’[ñûÿðÔ¸ZÚþŸ%¿ÌÓÿlnü§çÏþ+æ¡~œÚq@º2!ñÀŒdœ ¡˜§¯Nÿpzÿ¬]2f6?@æOçô”Ö•Rú¥Ÿ:¦DS1cäqIãTJ-—Ò€†¾AŠS äl­ý´y#HôŽI’kPšM` áÌÙS;™†¹Êe.·!4¶/L‚4['^@VHAF>AFt\ uÌ8µCŠw*GÉ— V[+—Ü‘^—ÞŒ«G=.Ç$ZÖ®Ai¶-”¹#¤J®!—K &ˆDyõA>WµùÞ êæ|izO0hvÌ80à+Ÿ€^H¾z/ £›Š’`´öYš> j{h®4ÀÆç2O¦ -H]›[[ˆ &aN‹†½Ô± i=FÅHŸþ»ÀÁaOç˜p6郭ÌܘFƒYÈ9/½‰•/%J³ l!œóÌ4@ôBD™ &Qž]ÐÅAk½wºÕçqi0Baà¡Á9­ã •¾`j‚‘Ú˦k ‚á0¬Žœ(L%e¹£ÙµD\Ë'×€“´LC óB$ÌKÑpÕì[^°ê¯ºæ XX†V‡ù€¦a€d8(à|Uú48NY—8hsJ“j Œ„‡@WÀý#˜`[ˆ*`>‹‚­ôÈD)ì\ýèW°wƒøäAà€ ›%åNc#4Œf¹5ƒœŒp¼U’l(§áÑéä à@šk0Á4¶P'TB}T {/¸gð0'Xé£Ã¡“z¦œ£ÒìOu\:.3Ñ”I¨ÍH4Ûq“ }¡*W 4› ÂéÖ\C‡'àˆ¢‘äcuP[ï] neˆ¬Ë -öÆeð”K†øÂ-å€Óv‡™›aIÙh0›Ñ\`¯· Ai¶A-”“ðѸ† nLc õB%ÌoѰ÷ƒûVn}I™™qØFaÄó¨4¾s–KBÏH½£Ñ.<«<‚Ä„¥>(’-<3ú¤Ý֚Ã+A?‘(®ÈçêŸ6ß{ÀÛ3%$ =ÁzÊy‡q`‚cÚpŒ„{zšÄrÒÐ{'¬Í«‰Yi¸MÒl['QÚ`À4:j6˜Æâ„ ˜×¢`ïõ rzÆø¬S¦ŒJ9†§Ì|ÉÉyY˜¼ÌE9€Ð˜í,,•¨°táb. Œd ¸Ý*ò H7\æ3˜`M¨*¡>ª†½ܳ´(¾ó¸ ½ žØ5H!:úÚa鼬]Ži4%r•R“€DW_Ó 4Û Âhª˜ú©†žqrLc õB%ÔKÕ°÷ƒ³*ø¬×Ø7ãˆgÖ›r¸çÖ;Lõ¼oþŠ“̹¥­kÆÇTøm¬gæƒJ¨ª`ïõ¬uJ¹zƒ`§p4¤:¢«uJ.!Wƒ³ì# Œ´l4˜màí©*ëAmAƒÒd(w?èº)€Ýö`7Á4¶P'TBT [/xa„EŠò“Œ¶ÞÆ¢$)/Î1+,àC:`5ú‡/&{&‘9¯U N“ -âÀžÇÉ5`—ƒ ¦qmT/DB{'8±î ¼Ëì '朅;b-×Ñ> m§äºÑìãŠÞƒD[´>¨#É5¬ä•$DA´Q™ ¦±…:¡ê£jØ{Aéâ„0À°€“E#g¿äuÊ¢«'³U‘žíBC*7ŒVw‰•ꥸ%Îû„‚µÞÄtíL£vµ¯êŸjîK6•èÙ6LgS ŠIt‚QÂÅ©õI'Æ'G:)1ÙN#/MÄjAÒl‚TaÖ'í1cÈÁÓ”‰Š *¡.Jû½œÖÊ(;œ†.ü¨Œƒ¸0i®´¦ATÈ94¥˜BRΠǪîŸwÊ‚½¹Òl€('¡¦NÐxÂ1 Bc qÁ$ÌiѰw‚— X=FÑt’ã&cÅ|Hà æn¦Y`NeU¢à¬>\ƒÑ‡,0BrysŽ07 1è.¨„º¨Bxµ8¸2≔q$ªÇ¤t[ó¤ ¹|ÄLª.^ŽU¢Áá0$RJZe ΂¬¹dIfÀÒ(sA%ÌiѰw‚³ Ø\ðd>᜖èq9gbä–•ðÀÑgÁ=F67&(!:h¦Ï*œþÓaíœL2èÆÕONÚú€ŽåæÊ…¦ m›„º&®œç'':Ü›q奌u!7á˜0äSÇj а@U£i•æp2‰N›ˆk0:óñÚ9øOì»hÀ0JËmM•öÂ$ÄIU°u‚ú5&.$=å,¨ŒBšÊÀ¹²T :à\ZªÑ˜e§É¤pÖE¯UƒÑl[(Ö—…3ÖÐ,0”¨³ ¥± Â^˜„:) öNpâtÈHäãBñg È‘1-Ç\ÏZHfCËiœ'°÷cRcðœ0jLÒdƒÓ Wg¿™`šR3öAÔEU°õËl¹P&…¹ÀA›–q`Þ‚ö‚·ð8¸c5,Ε §Òf$Á`ëÀÛ [¨5(PšM` ãd<Û»†‹xvLbõAÌkQ°÷B¶­ÂÙ1$Ü—£”3©€I{¢é°ðÀr\Š‘¸©´Î¹ À‰6× @i6A—p0寖jÀ¢ÇtL¾xæ>¨€ú¨ ö^pÏ`O£=ßêlÊÐ2Ùä•Ñ`]Â"‰ÚJÂòW6$ªX]QFJÌi*’yk-¢©~¯²©*a.K™mëWFçüVÿFe6ã€ðEÊJ…†ºñx32Õá•ÆY]¶I@wà8k ”d Ô@8WØoS€µœL0-Ô ‘0EÃU/¶"ÎÓŠÄ Z¼«¸Ç/ï *ˆ&!BÓ 4Û%D\ôá|ëÚAg ³Át(!š„z©ö~pߺP™qq Q9¸Ù`†9é6性ØYRÉd“Ø%±î¢9M.”‰£ÙµNåÓ†i¨);%æé#uMÚ]9Ïë<ÏuNFèa9gÒnÞ`Ϩ”ÕuL¾J‡§´i,žCØ+Hàégº§“œŸŒëK\CãŒÙ`š6ñB$ÌKÑpÕNx!m®[ÒáΰhIBr ,%`HxÖA S€|;¯ ÀhM:Œ#9ƒ(ÐŒB-xΡ>˜„ú¨ ö^ðSƒ=‹Š~[d¹ìi5ÓˆêeP«‹&²_µ6ù:H%zò§)Ò.‹„¡·=Ú\.ƒT¿Ý©ú¹øgÍ÷ðæŒ«$æ|Ø”’ç,þ‰ë,.GÉáÖ‹ ñPŒ.ˆ<ÏÉç+'òA›;%¬Œ«®o¦ º[2 LÓ-›¸ ê¢h¸ê¯´X(ÉœJ¿sNÁd{ò­Žfád¼`ãy]hœØXž­AË×3hZl` ã$ÜsMCæôÜl-·è…I˜ß¢aïÇ–wàÏó¼ØNÓóŽÒé̪I!ï0É*LÒl"ä8ÈcxÞåP>¡³ &CÞaæµ(Ø{ÁË,»¸íãÝa03ñX2ýè¶hb• !@1Î4]yd¾AU ð‹f‰(P’-Pጎ«º+€eƒåj‚il¡N¨„ú¨ö^HrOÔmÂh´ÉÙ½p0Y§å•j¨@óýgƒd¢Yi\ÂSõ;d܇·V’Õ“03°€ˆË=µÅ,}ÕLSUŒ«„:'ͯÜßÊóföòüݹL‡ò¼I˜ß¢aï?®–hß^°Ç>Œ)¯:p-¦Ûé‰*•‹éÑ ‰:èÙÛç_‡kk%Yý‹g“é~DÚC²§Es2 4m&|?næ²hØ»À·`IjX“ê ï"gÒÖwÀ¯» ¬Âð?Ћ´M­­‰$øc F“ ‚µ3Ö|r x£šƒ ¦é¸-^¨„z©ö~6€w?ÊW ƒ”CµN 'ÝRU,žÑáj`ÍSi\³­U.qн‡k0:1>Æ9˜±bP5Àó*+Ø`š–^ñB%ÔKÕ°÷ƒw3H\±„aw*Æ‘µÂJ‚ È#Þ©$Xÿj¸SIT‡U JëŠ1äFÄȉ™°;sB%ÔIÕ°õ‚óØæŽlR#¥¼9aºà”–?ä„x¯ãÒ•+&¼.ç« ¤FKò¡¤”7­¹”?Í€HÍ‘0ECììaŒkñ”Ê9œå,ù §Lx%ŠÛ…¥Tx+¨ýOÐ-47ZS*ãHBd $a2 –R™ *¡.ª†½R T•L™.Þ–¾qõ†}eâ‰KåÖ5+Õ9…¦Ê'—ÙMhs&X;ÉN.XTÖ†‰î\5ÓT"ã"á+÷¹”XhÛƒaèR0N¡Ä2* žuñüÞè²Ui<¯7Y½Tf|kAƒÒl[('ÑIÞ5àé·Lc õB%ÔKÕ°÷ûF(M``ÒÖ*¬R°ÕUÌ2)Ý[tÎþP3¸±“ŽÇ\9oiÕ½–rN(ý–çÝ,]Æ RRöRÆ R𼏔q‚ÔX”i)ã©«Å>ºÔ—¾aÓÖ úÎÈÛWlàÀ’`ÀM¼A:E_±9ÒÝ}žÎÔã<ùï–¨ó¿l´ú9'$+±Î0G‰HØ"—äø[Cß.ð²ÓÕ&3àäG‡fz4Ÿ %‡ #Êt¬o´(¤œM KPµF)álR†€5)álRG>¢”p6)CÄ™”p6)éu ãðó>¶{|~Žp…’åy©Y¾Eϥ "ûœ›Ç<ç>)7ÒmˆôS4÷E)ÎÕýÓc!ʹ@ ¢µ`?Î_=¾ýæÓ÷/_áw©¼Ç¸-Ó‰œPµÔá¿}üpw $,žãüéáí›O?zÏÐïJÕ‡ù§ÀëQøFÑàÎaw=*ßI À»o- ¾×4 \QgР´´#nÓ o³apóÂ$ÄKÓ°÷×Ü:Ÿ m 8‡!ÜuÂnäðŠ×Ç ð:‹`›U¢6†‹ª¥¢íq»Âx» Á€› ò±:¨­÷.p·`k íwÃîŠkÙ¡ï:&<é4½ìóA'/o­´¢³‡`8¦@ðÝfÁàê ˜Ë¢`ïuk!6v…’žs¸"4ßéKÁ®.È\k %½º&—MMbqžb”Ö¢›q¤,g¸jg&´ªg>èçâ¢5ß;k©reÖ àÎawKmDÈwK0xÃ|—Ž!*1¸~l”Vx¶sÀíàí6î^¨„z©ö~Pß2$öÇð«)gðÍð©<­O s¦±ÂÕp&Jd*¢›£åê(0ènÉðÝ“›ÐÛ)wB$ÜkÖ°÷b{h¶å9‡0Ü6Zñ¶ñ4¸¸IÈQJ*@Û9 áv ñv w'TB}T {/¶žÜ9Œá6­‚ñ6»†7ÏLB<7 J+JÛ9Œãv óvwäsuQ›ï a…t»£0pç0ˆ»6,X4yW*ÒÕ‘ÂÀ+æ¸ÞšÄêvóD”VˆvàˆÛ50ÈÛm( ܽP ó[4ìý ¾Ùv§0pç0ŠÛ7Hyûª0pßdUB7aÕ ´µÃPn×@Ho7!Hp÷A>WµùÞ ŠFb9ÐLÎaüQÃ/ 1NàI°LdªÁ€©!|§¯ItÁú©¥_8T±r ŒPrŠar/TÂü {?x¦-‚“8Ü9ån˜¥Q¾ÏHoXŽ=yÂ7,n¯$`cÃhF*NÛ9ŒävŒôvŠw'DÂ| W½àe?Ô¤u?9na¢gI±tznAqà79*—3*P[A j@V£Æa¸³k`8´™P¼´û ê£*Ø{A=CÌÞȱgÆÇJHû]`À lo=ƒs2MÖr«¥­gÆÇLƒ8n6¬kê„ ¨ª`ïG#4é î ®96Ä[•Ãj’ A="Á~7' À"ÙZP ´TÁ%GkÏI7 5KwA%ÔEU°õÓÆƒ¿^b@ðÀ!7¤t•î çM)… Þèà@p $¦ -0mç0ŽÛ0ÊÛ-(Ü}P õ‘\÷‚z6ð2i$xà »âI+†ó®xMƒOÝàutJ]vÝÞ\‘‚Òvã¸]ã¼Ý„"ÁÝ •PUÃÞ ^ôá³lHp'¹J ôâÚ!W‘ÖûSD‚78‘pýQ%°zj͉ :©üÍÅaoÅÅc׫åe·¬ê™jŽoÉ”aÀÃnKdâm™ŽaÀ-2 I•LƒÒŠÑv¸]c¼Ý„¢ÀÝ •P'EÁÞ‹m!4¸sÆ­kƒ¼mR¸-bú¹¬qÖZihA¸M@¼Í‚ÀÕ0—EÁÞî~³©[è)±CÅ>¿ÒhôÕ©C¾\5BèÁ™¢æ}JK*)dÍ%Ầй ê¢j= .á©fÎSH¡Œ# P“ `û' Í2wjÎteù‹¶éWŒjÙÛŸ>ÇkÃlå/2ÿ píÛŽÀ&€%Ñn½¤ñOÏ‘þ¿ºƒ§4aÖ­óú³ç^ϯ¿Ç÷w@›J?@þšÇ8ίðE!xßÏåââíŽ_òÑS°Š?.v@"oùš^&’,\ùüÚâOVÍu~@5°KŒyþ„"2çþ„¥´mšýß‘–§øìüöÌQë:?nj°âæï™¹æ<¿C°ÿ—)Æxu½¡Îƒ¯©œ_£þäH?¿—Ì•[tûý>¯”`9؈þ“V¼)ŠƒÏ›£ì~ÀEò‘(û! ©†x©ã©^}B—k>:¾j×AÈΰm¡€_™)yëÀGöó7ÖmÓÑy¸Ø#i6 '!GYsŽ"›Åïâ(|‰7^ËNAÇ,Ø]…Ó $ÒøÞòoõ=8\âžÆ œ:Pé½h½ÇoÍá‹!\wˆN8 ¯oèÀÙ»ÇG°=Æ‹öàÜëä€é„cÏvã+yÀZêŠÌÊz¬Šƒ¼–ËYçgØðç,°Bð˜#¢ˆ"³“ “}“~ËJŽ5éCçr£BnJõüð’G(ÁÀ½dvŸäЬ4²â„Dk°h¼BGVMUÆb×±ª,«45ˆêÐÿ‘!±¯ì(7{q‡¿`œ`–Ë¢#åèÄwÔ½#/쑾kèüH&ÀÆ1ðÕ (“£âfÒœi.N˜>ß°5±Õc|ÀÚ½üL!YƒN \Œ0¬*œr dR¼öá f¿å§.. T&/qÚߺ$úîé•0/HíÛ¯x}ƒ÷>¼pâFÐãnÞ‡½"Šã³m OÚUam‚'âÁÌÝéÞãˆ?²4xœqÂáïÐ÷çØçÕ0xìuVoBœ|dixˆ×~pô½÷f/¶xA7`¹vƒ´Üâ¸?üƒg”-4‚éí!éóþÀë L\ ) ÊWÚ G‘×) ¦ÊFYsÔr@â¸Êù½ÅW°&ݯ}äp›t Võ(šEËaÞ›÷¯]žk+áó—!Y`”0ûh¡]£Yâ=mIÀãA –ñðjíæX^…û=^¦W‹o|¥ j‡¾e Ór[BÃRyýàW¢¥éñ÷úw‹Ò߆Ø~Åp&ß—Pëúë௄ =×—ªzlAŒÖ'ÂJûgÓ£8üYË%j;EÞNLY…;.(Aíf„e!ãüð"¸ÌÚÊQFìÕVwÀ¶u{9å‡hsxö˜ø’C°ÆÁ C÷ð <9Ü%j‰ã:ûQ† ÷«Ý¹HžUÅÌ6\9Œul¾Ç3­¾pÖnÅVß ?>ÇñƒÒŠc°Üø!,eø¸3~7k¤Ôø1®qÓ"Ogo0ã?ø«úd\Zùc[b~ñv6ë[Ñ^³ñK] )Ÿa¥²‡­íž¤ ¯8K\o~ Âï( €H Ïé‘íͱ¯¦0 üüî|{ ‘ñû87 óØ„yá1o!|ýD,ˆÄùox»/ä;2gÊûÞX‚Ÿšøì¬Ƕ÷ÿîîÎ߯xáÕKºyjJþHÊß³0¢˜ÐÅкµünOÊ¢œC¤哊g±½/¥O,¾ Ó—ZÙü½®"Ûá‹¶©Ž#Ÿ4  Ÿ- õ ÜòÙŸS¨èzþ½÷ý³0—¬à©0ÇÚRÞâÎ|ø#Û=Öq•Ÿc#è4NgM!?[’ 37Îï|n<„™WË—Þgˆx].odsx£Ü¦ÑñÍ—_4wó¥cïÃëÂndt ‡Ã P€JO/ú&dcл9F­×™(…æ"eÐVàÿ¶“'ÖVž*­ŒñÙjÄüIüXm_¾÷%ëï½_Ç2—FŽ6¶=ÿuÌVy#Ì#OîO¿4-ŒÐêÔ‘‰Ë¦CTvUrËãJâF }d½p¼{bçøÄóZb›“èn<Å…0DßCXo·œ&FÎ2#e®slr²o„M¢îè÷äK½J1ŽÞÚYú°>KzðW§rý‰ŽyÎùT¿næ‰1¦ÌÖžSP-çàç¹< |â²ÈªCŽ ¹ÁÓüÈÍ0½íBlɽ?°hÉ… T“ò‚ŸŒt®ô6é°ƒÍpx¡\rõqlùçÄ!uø‰ÐxxÏ#ÛÖr•z¡D.û YVúÀϲ|Ä<ŒÍ=üÕÈIB:ñø}Xý^£WòôÃzõS=xÅŸcM'ÆØOâ~Œ~}ä¹zãiì6[X©ïƒi1[gƒX92ï—q¦Ð¡üÂSíXã©#·MÆðôÉŒMë< 2ò_Zú“„Ÿ ¾P;··àëC9:š¶B "=sŽI…õêñïÖGÏ'£â°šÜ>ü¼de£W"èìܱÆ ¼øP9í0m^7ÚÛ±±m°²r°ÓWÃÈ3P®3ᆵxÒùé5íúèÍ*ö…ì‡7Ÿ=0=@Ó•ƒ¯Á)ãz’ƒÛçt‰˜tÊ ¦1Xx&ÓôãuXå'öÙ÷âLk‘éè'X :) ß7ïÄc´Òû¯ÈF‚aË·Ò*po§û­Í¯ØÒ170¨Rîø.\(ÀéÏ¿”Ê öìUµÞ* æÜa]‹*|qT^_x#ûǯ õìóãÊáÍ·*ÿŸyÁð/þzeSøïüÏjŸo¯p—q!\œ[Åi‚w‘R€}÷øA®þîá^Ö’õþ9à¾ý”É<¾xõÀ•Š{S Ûä-RõöñÛ—øzçŠßZ缈”Òïvð=˨ªžñWîîóR°Ï¾âUá ; {/óWß¿ùøæá=é³êK¢z×õáÏ|®•<õGX•îGg°Â¸‚Ì[]Í#ü«Lëá¸T©´üæíÍu&nl{ hk‡¬9=Û±ïj]oýt½ÍÌ„•Ö¾'¿ôÅÎÙ÷ýë£ïCXi@ŒKÚJ¼<õÓÁp¤·œ¯ë—/wslömëðoK‚‚ wm;ÅÒç˜-\•@ı-Å¿§E wàvx6xP”,J³X]çºÎªj9k`fxïÎãæ¿A*°!#Û3K¡_±L'ãιg\·rWܰå=Ñz[6X¢¾u÷ö²'·zUxU!îâëÜx²¥ ÷Dyð:!"GúUmFÝ{à?×ÚÊŸálÀ•ã†ÇÚ/m¿@¼ö µ·Ï‹¨þ8$Çù¬ˆ*1øÒχ:"{€=Jý:´ͪBb?êïy”4ÚCñ')ëÔ "öóà§'ü’Ì’ãþB±žS_{Lî©¿ÈRÕQCäóçê×aHEXâ<Ç}xãþÄúÕ¢$Vþ¥ëÚ+6Ýòq½nu¬b÷Mñ«xî0á°üБ(³ã³GX‡øØ*úà†Ÿ*ŸS——ÞñÇÃÅgÕ«Jº(þ¹W¿y„½²à mÇÍ Æw{µìj“Eœ-,Ÿû­.Uo$(±“áæúú¸[„G+1öÖ«Ì5¹…?ðt½äú áÒ…ç±:ϸ눆9ûð:)â%ð‹P°CÈÝM„ÿÂÅúºG´žïÆ“å¨më%Í0>tˆP‡„ B>ÿ¥o8ñ‰ý3» WUU Øœ`ÇÅŒ‚kþ³Ö¼¨4„Ú',ÿÀÅ §Ê}œO,x5È¥0Ü¿uGÅ·/¼4vPóÕ•Ûc„‡ÐCeÛ 0¶[Ð[&B-y,àŒ~t|îjæç®Ågqå{ˆøˆ³ë!fs/õäÖolxàÃ,Ÿ-~ŸÇ„ŸµB) «ãÃ÷œq1ŽIßr4ÃkþWæ÷v½Ö¾[¹ïW˜Ûµk­~}J‡è¶]vï–-÷zý œql~íòƒø¿S2e˜endstream endobj 166 0 obj << /Filter /FlateDecode /Length 160 >> stream xœ]O1à Ûy? ‰ÚNKºdhUµý1ä@„ ý}I:tðI>Û:ŸèúkO.qñˆ^¿¸ud"f¿D >`tÄꆧÓÎÊÔ“ Lt7ÞŸ¾`7~Wij©NeUo!í æ 4¢¢¬­*ÙZ+ÈüI{`°‡² 9ãRü‡’£¹Äq“ë%FP*MK“\À~ÏrН`_[2SÀendstream endobj 167 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 161 >> stream xœcd`ab`dddsö Ž4±$º»ôÿHeíæaîæa™ò]QèŒàIþc 9îü‚Ô¼¤ÒœœÔF>Æv&FF÷|?î®ßóýþÆ›{¾ßÛÃü£ÿ{Ÿèw^­—¿¹~óèhýæüÍûF÷;×wžWo¾sÊýÎþm)ªë|ýÉ‹«Wž¿¼lo¤çè¤/Ï×ÍÃÕÍÃÝÍ#ÄÀ¥9endstream endobj 168 0 obj << /Filter /FlateDecode /Length 4683 >> stream xœÕ[[o%Çq~?¿â@¡cŽû~1lkÙ–¬D¢`Š(îÕàE"¹õ’ßž¯ªºº{è!w5ld÷SuªëÖÕUÕ==ßÍj†þ·¿W·†züá`ŽŸ’µk´î˜c²kIÇ«C®f-¡#._J¶k.ö˜S0«w ê˜bëš"SEWüÃDÕ13•Oa ecð+ñš$ªZ¥–5Ç¡Uƒg¥’/kHuRªØ¼c7J *Ål¨šR]œê4É3Çׇï–]yl.®Ž¿>;üì WŽu­É¥ãÙ«ƒ¸Ù-Ü`¬7yµ.Ï®_/åä´ú”–ßœ¸¼šâóòìúëírvR„:Ü©÷n­5-Ïþøì9áéù¿¾èÉ0“C„ÀЕP UR<°â‚,+¸rŒÆØ5²¬c,š±Áp–|îJ„ÌÒaR-`©Eöëp…EL¨èM³?*‡€@Xd(L# ÂøYô÷UÞ‹ctð˜¥^ÙÛb(H¢ðDÅ´z‹FÒΚhïáròq3½š0°Ç#ê<…l {½Œ`*¹Ã`ÏLerž8(,2hDÃ$˜ˆ¢qH09º!£Á4¢iÑ)š–ÃÖvJB !Ø€‘ô€mè3WŠWhà”DŽî xDdÇx~É# ¾ÂF´¹4ÊS§>!fOF rš<-EFîžÄ~—º• O ñÓà °ÈžŒ†‚#wOF?áo—ÑàáÉAÑ´ì¶vð¢1H™l0Ö â̬ËÄg·:ÚŠÙŠ<' çN? žÌv“~à9DÊœ~þ¬Yvk¤ô30à€M©¯´"°Ò~Ìc‹AA­ðÅ!`£‚ISDÀÆiMµ°H бœ®:SÙõ]‚Àp¤ª ª¡ŒhGdð²Òñ@0¹Î1}ŽþŸ0k)DÉ †Ø@Ùc" 1ÓøŠ"oO;ªcí‚€Ê^`¢W”BT[Ä,¤Zœð!¥˜« ƒÀ5‘Ħµb)Â;« ¤fæß`’[ /ÖNQ3…ßà °È  㸖(Àv~Èh0»N´èMËÎak‡$H“mÓ4Ë&m4Ït`àgÛ2Lž)|X9(ÜmSŒj¦Ts•1lS-”BµTì`Û\ä9IC’ÇĈ}ùÑ»äØcèJ8µ»Ì³®0ä¢V±ÜNQ9.…EP ")…r@ÄQjï2¦ª…R¨–Êak‡TD$jòQq\ƒ¦uÔ[ô% WtŠàjKåÛ`’k 4u Zê””C‡Eh:¢bŠÆ!òª2ƈ®…R¨–Ã;8#õP_½¤$Vä5ú5:Pav‘X"C‰5˜,kÆ¡3B²¿:kاHSe%²`"§öŽ˜‹b¨èâ(ŠÎÒʨ‰æQ¥)¤5’4Ÿ1C”\üb=W`J6äaÔ‘Óœœ­]ML4Üë ‚–¶CDeñÔa±YíA•g ]Ê…EPŒw”G­ÕÁ Ñ«íwUQ‡o y Ô¥ÉVÖ¦•%›7FZ¶,Is]³P+¥‰‚ÔN…{aë˜VØ:)\C†V¶¡…R¨–ÊakÇdDžAn‹t8›{›Èrì½âê,{L†›1oæ,„” §,"oúúüÜ3Dƒ§,Ô)ZŽéS¢zfÒÈB´’°^† §,Ô)TKå°µƒgÜIõµpT §t}“‡ gÀuõ4'ÔetSá±<ÓD@ÝY²ƒA‡EP &+…rÀdÆ8Dˆ]%h*¶ñ[¤&Z/u“š6έƒ½)ô˜”.ОJ1ò²|A7' Aey)E P Ì¡º¢ \•:£"L#šBuT[+.æ&Þ£JV77ñØ?q>ÖöÙ;ÉÏÚ`7xjâ;EkÑ;…EÆÔÄ;¬¡:¶C‘fÆŒíÂSß)š–ÃÖ¶­Rm¢øE6œV«ç¼ŒŽÔ)zƒP& ¯Pí¤ÆF*RPÕy'¢åèßl¦úÞmþ´Õ‘š‘*[m$ÿD•¯oƒ<¶Úƒ¢m¤ûp…Kž÷Ù1'R¥tîY‡€ë>»ÿ¬ÊéðIwv OÀÄ 7ðqŠ/ÁpBäöŒË`.‰et »¡Òt <‡)Úቊ‘ç¤A@r,´š1\°yê-¥^Èä‚Ý1X)–Zw4ì™ê5V’å€çåÜ`ÊðCš)à'†•ƒÂ"ƒF(Óìx÷!,–g&£Á4¢iÑ)TKå°µc»m艿cZÚîÛ†–Öû¶¡'þ¾mP Ý&(…{â¶ÇÆCÒúØšhâ›—F¡Z*‡­rÌT¹D*®Nb_1(4˜¬Tzù˜á# FtR»[g Ï%kpPXdÐÅ TÁëƒæ ÕcȘF¨¢kÙ8<°C‰—Ó›H‰„ç­¢¤š¡EP8L@N!ÈLè’0-eõH-:EÓ²sØÚÁË¥RïD»o¤6 L°«§PN|þ¶'p¥«ÒŸ)L¡ŒeQg êðÂÄAa‘A#cÑùkT ¹ªÐ~W Ûè­ lV %…·MµŒ6€±Àm<ר’­nÀ²ÛÊrÐP½åLVh!Ð8{_œF´ W9kj0å,d#Ú(‚•ã+åÐaA‚úxOçAgŒÍCð$bÖžÕçðÌØèÉŒKqÀ„º=›w+þòô<±žüóv²ïž4F…tUˆŽQ‚³Ë-Ç:v¿+­üÆ€;!G;2K™|4aßÙ ï@FºÃœÛøŸ¹@¤‰í:í¯Rí¡´µܰcŒey7‹y1͆dBXÖ1xçzï)ÕV,ŸS>%Ffb‰ï¹8îèûX·;—Ën§;ZO^¨wÔ¾{ü²Öƒ[­ÿ<_=®ã?C±½{Àßí¨ýáÊþí×ïÆà_täé@>­ã{üýQw'ßw;}ïîàïúïÏvî|ŽÛÛ¿Ý8¢ãíŽèË]gý÷1_íˆi÷ð3ºØãŠ.ŒÏ§Ïî©-¢¬Z¹£Ía±Õ\n^ÉsBn¹à l š÷åæ¼¹ Mß(Üpö¶R–a.¦eÛ\ R(gìŒ*“|ê2XÛ[N±)[)víë„sT“D%H£w"`7Ü4J«2ؕ׼œ…A6ÈÎCm°H(êt¹Tl‰3‹7ý³‡I㉫†b’Ø_CµËÉ(vš–@œé Ä*&ü&Á¤EŒƒ ITkßa¼”Ü_C˜|1ïq-}Â=ÚEçiùë\&»ÁMÒŸó™V‰_L1)qéõd§U|´[ø¼#óÁýÀÝ“ýÀ^ÍÞm‚öz„Û_÷î}HóÖïëôé_v¾=c÷¾ùcw?û_E<òAÆN÷ñnG‰‹†nvFLùK[²Øù¬kZtÙã³§ñ!Øø²ã›Yó¶…ÕvAîÆØíŽ’?|„—'³þŸåÍ^Ú]{_Gíõ«?ì(v»gÕÿS‡q„ѵù:G؃Ài‡Aÿ rTendstream endobj 169 0 obj << /Filter /FlateDecode /Length 3819 >> stream xœZ[o\Ç ~ò#~én¡=™ûèiÒ$-Ü´‰eES´KZ©‘´±d;U~}Éá\8gçÈNáÏòÌp8Éœóz%&¹ø/ÿ}u{¢&W?ˆÕ'ÎøI{¹òÖÉ)¸ÕíIPnr1Ö‘›“'QøÉ™°òΈI+ª#AÆÉÙ$e5<&T¸Œð£eëYëá×ЭW´ 1LÞ2¥ò×Éé0™NAú)ÉujBy “É:ÕÕŠJl5±ÚŸ¼>‘É«üçÕíêg'£Â*NÑ)·:»êÓ›úôݺ>¾­OmBUŸNÛzÏêàí`îûÁ*»6×¹Çúôl´ð«ÁrmÂi ÂE}Ún³Ü±½×å~ÛG3¾qÿ¤eŸÞ·+âHE5ií ÊF:Èú$Oßmqú?ž|}òz¥e0€ÄäUJ*=OI«ä$õÊxðb¥0¤}üMˆ«ÏøÊ‚—J· 0‘3#/5VL|ôsð9¤pŽ­´z½‹NdcÊÂþa<ï<¼CA°°k55q·!O³‚-jÀ¥¼ÐÅ`I-ŒE€%m\ÙZ1 Éëèe @ îάäúŠæ!J<\  ™\¿L"à‰‰àŽ¬ôZG˜Æ!¦ú´‰º¡sZG€ð þ&G]a0Xí¹.|–šÅÀÎÆ{ø¤)x‹ï™T覸G]J.AXú pmšBj\ˆ;$Sˆ«‡H·þ W1Zˆ¤ißÂ3³Ç¾MwÛDv(a>ð‡Q%„SÜv{ÈèæcÇx‡z!ÑFi _$ïÕ ƒN†à‚I„"ë¦8¯ú¹™!oÉœˆ—O»¦þº-?o%lÆFb Ú.ïñµÔøÌ¶pÓv|Í4|ƒ;ÓÒ["[m€MÀéß*$x‚zõĦ6á )m‹¯lµ¤õ¤üWp¶¢ ® rRÏY¥\žpŒƒˆºÝ=ÌÖÒ0ì/Ä5 I/ÐÅÁ>wç)Ϻ5n …}piR@˜CÛ§™…ðWCÄõÀÂRHXãžÜ#@Ò¾.hùˆQ¼ÌkëÉ(ÎÏå½äã°))îÎ6Jsߤ ¬ôú?iZãM7í+Úž Ñ „w¸­àspÓö|‡kè â|Ë@ƒÀÚˆ¬²2W÷°Ý ÑZZ/ïnR|Ô6Ú¡¼ Wï<™K3}œ‘8 4£â:…!pÁh<ÄF›0níYUÔ: §DŒ:‘›tÂJ@lü[;ÀÃLÂç#Â¥³ ‘’¨;Ù;¦ÒCõ×°ÞöLk[v²•\ÐJÚÐg)ÕTHCñФ߰I»>ßxñæ¿ßXÀ<ä“^ZÁ9$H¼É"´•öè)‘ÐlA[ˆiü4 T,ú¬qvî¼þv4F¯f40øQ›Œ-J×Cæ #‰ÔÝ$mlŒ£dGÈU^9¾Ìn3Dnº™ö.xH,;AFJYB[v].’ ÅdÈhȉŠ`Px8aÆhc2fà_Á D“‚™4Ý]„&:2 „Þ §å5mÿßÓ¢#»Lú,ói€:»>Ü¢¸»ˆ‹Á©ú–¶ãëÝD€`–H؆ºÁy7ÃvUÒDN qâx¡W,tî™7Ó†q²ψ Îc0Ik¥²ŽÑh8rwíйY«®¶ƒó#qEÈ) €“‰¨¹YùÔ·4Àr•ø½B~Ájº5+ü‚9Íg*ü‚yo[t»ÏÃ!±¦l‚]Ÿeê8Pí ðŽ»6Éùüè2F*¸%™"0”•+îMðÛWKj xÉ `jÄÖ™é ò/ZKˆ+?âL&€KÈ^  „óÄ£. |él¢ j½?ܵüþ@åµ!DŠɰ‚ˆíÁJì^º#;@%ÜMKi%nubÁŠWÔ`õùÙó“³_/TÒ£X¶ŸS·mðvPçÝêÁ‹Q©Ö–iEð¿eóÃà×6vù¡Sïcƒ7XaÈÊï—uðÅ Ðæ¹¬× ìÃàÝ_®†·_xXê=‡5²è{Z rdŠgSüø¤™¯¿6C=›`Þàê°{Æ|èª-ô :ê¥Î#ÒÛ–©_d~xÍüš|¦sX†iõ5D¬”%-D'àíKŒ×¶.xx¾Á¬þKíÈ.q2íµŽß‘žÁ]‹]1ƒÖ‚@·þ¾E3´a@R¡àwDÈ¿ßÎÊ‘ˆ|9¹(j,ûØõt1”tâ+sa`Úè£ y¬¿uÁf&¯k@å²ûM†IôpëAc$_ ØíD{H4ÜÑN¡À7©@÷¼¨õ¥°\¿ZŽMÎ=g âƒ<ÿ¤Sƒ¡ŒÌ¾ï¹awUS9¯»`ô‰ŠÆ^ (vê¬8·Y7¤.ÖÅíNeº(™ôqÖsi ‹Þ0C f‹ádãª(uÈê=áàÝu^#|CµTõwó˜…E˜˜—f ]¹ 3¬]ºÆò*±·(éìµI\³¬sW*A¨£RgØŠ¥ž,^–@@(j"üöG­òòY; ô”.Px+6«ñd™ZàW–æ@»§a¼^šÁºê6ö®Œ4‰ŒG!†ƒ§±Ì›–™¦\v"RÌ8ÝW ÙÓ ó›š«¹º ¾‰—s6Äyð±2e¬Æ[sª¦ÊVrv;€ƒ†Ç«]}åõa¤frv³­3;1æ²cá‹ã†Ìàe܉éËZ¡0q@’Sj!Åg»Äì†éù˜z´ dE*ÇÞ5…¸žÌC‚r'ß Óíûg†&–_©˜ÐªSI@Q´Ëlw‰1HÕéÜñ©â T¼ÑÅ ”VÃOX,³!^Oî¾OsZ¼ Z`Sdœà]"$JÓ!~‹_r(I—À8¨ã"•F4öÅÙ›ïuå[µ-«Ïi‹‘¸oöá0¶šY—“Å'ÖdÇúÐô]øhô©yla(¢×zU“-”ô} oû¹e±]W£5RÝ÷e~NåÝ€¬å¸çÌéºEšüjj\b¤ô=NC›ôZÎ_· g¼$û³ ·§¶Á­Å6/³Å/lð›´š¢;ºÜ™R‘fÌ¥ƱÕ¨—B¯?mÇuÅ¥¯›5òEDôŠ2<é@9²Q& æÀîÒ—hR()%ÊBT„ÄÙ- #6í†S’u“¶“æ— ˜0­Gœ±..L×ZÀBwG“îeÀ¢°â#­(Z?g3óKÀjKGzÔ¶ PÈËJNþÚ°Ê9ÈE¾4‰<)ì8#¯/ñœ{O8N³­_7\Õ‰Œ,9æv'¨0§®ÓuÛJŸ¹óéÖeùúÇ¥Øði×}hÂuK wü½ÝbË}ɶÕUôì~úª˜ÎßGÐðçTBÜæ— ”z¬³Ü%é-tïçÌs¤Tx[w«éÎ0ï° ±õÕÁÇÅ+ ‚Ñr‚Ï)…VH]ÌÙ,ë@TЉÕâã³-àι«ˆˆxDÛýài.ð~—õ4·ÙÜsjS”kWúHT ?шLúÏ´ã€`Ù•ìé=d¶RÒŒ›œMÓñ~Z&†17«túàê5³Áb-1#.GþX¨e´£;ôIÐxmJÚ™[3C®».qÇ¡¢ô¨XJ˜D¡Y?õ¨íT4êiÕ†Fû=Õ¸ÔmûˆEW†Ÿî5 î¼áÈæè¹Gçüwýb3ìѰKÞ…º›Ã‘‘ÂǬ’Ð\QÖåuÖ­Vë+ɺøþ4,H~}x QüHø±†,ìpmü(…ÑŸl•Ú0ËœýížfÃ.Ìbk.[yÆÚk'©õÍ8¿Zì¶©2Sжö8/iÆýN9Áí› y‚³6Jé-Pñ¢´ŸG­Ÿw@eLŒgv£pê>03âÎN‚#‰U} @Qõ4‡G»SÒ¿¯Yl2”ž’n`h–lr>“eõÉ›¼ç§V«Ðɪù|µ€ÏXuðKöO¿g‘àWM»)o¤ûXÑԉ踔º–YxίêÔº}hóñ3åá4µæÃóR´LÜ£ô(.ùØê†,vµÉ‡û¸Ô²Ã÷c¹Àú¥a‰w5ËQïËuX˜ ÐUâògC寗uVw,&½!‰(‡_7.¸OǹÊüÆ(9¤—¸ÀµÚÖë5Ÿ\ðô×°¬CÔõ‰SËÂXfð¼ÓµŽçÉ>ë=Žq½‡$`n¬­,`jדgTå$î}5ã' €éÓù¯OþIendstream endobj 170 0 obj << /BitsPerComponent 8 /ColorSpace 47 0 R /Filter /FlateDecode /Height 400 /Subtype /Image /Width 600 /Length 16316 >> stream xœíy|U¾è§ª—$ÝY:¤³Bض€$!°$d"PD!Dpa„°¯â‚‚ QÙ$F4Rè`Ô“aòî¼wŸ÷Þ¹÷ÝmîþæÝ™þÿUUïݵªîªŽžïçÝ©NwU×ùæìçw\.@ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ „ÈðÿŠðóã_=©ÿû€c¿ xþš½Úçøyf3€Ñ¡3I<©Ÿd2û ýOÍèk­^íØ¡õ8°÷ÂdôEèÌoFyžŒªlÄö­§ ^ëZF_„ί¢ïz‹x}¯üÌx·ëz¼IëmXá ªà˜%Bu ûd†ç‡9³hsÏØêgÓºõ[ÅØ¹¯ØKÛöíß·uÛþýû÷íß»ßÍ«o¾ºÿÀ›,‡Þäy™r¼üf8oìäÀ+¿t( æýk]]]“~f,Cò+j’ÈÉÄ âžuЦ Tšú÷6B—ˆWQöª„+,x^¡¤ãÕ>°xõBû­Mqü-ÈÒzKcݽâ+W45Ï«ÔãÕ;%”a]ݰq”èðT/©Ÿv…Kw¯ø{Ѝ ,¯ gàxµ]°ôÐA¤üôì‰ÆA@i½±±Œ^AàŸ¦ç¯K«îöjíðê)¯ºZ[ϸŸlø)W¹ôñ*ðoÓ™e-ÇѪ&º½znxµKÒ+?WVr`?U·ôðÊ4w„P‰ï'VžWÓÜ^­^IçW¼Ÿh:´å½'ZïsL¡‡WI uSSøò!@}l1XN×axUMÇ«J½êzugçõÍSãP³Ë)Í6„(„SëíŽ ôð*žÿ ê²ò¼œôlnpŸeL5ŽWkN9x")‹gu2{7}ÒµaÄÔ!cFEQt£Ö{n8zxEÕ~`qªÛ¬i8^r{õâðªm±â ËÍŃ;?ÐÌîD?Z—.õöÌ ±j+ÓX­ò”kå÷êj Š˜;RhòjXñÄ âìc@k½åÆ£‡Wvp~â¶’E™1ŠA¿WÌ›v*bòH É«¶É˜–Î#Ë'ÀO£_ËïÕ‚fA’#Ð/jƒÀnжíc±ahà³L‘’Gm^m‡Qj¬º¾*mØäj½Ý±.^¹K½,°Ð€TæW S¢GI¨Í«¶áx5w7ÏgÕ§õ^Ç úx…R}ŽLGu"XãjUzU¡GÕ]£Wsð ÂKe"•õ8šB±Þ<Ì¥:Béãm©÷:2eŒœ‘ €3ðèÕ#!y$Ðè•ðT)ÞI§Ð½C`͆Xï2uB2Øø'&_†«W.˜ìuÄÆÍaÿ•ªôêxX"d8½ZŠëU[ªpf…²6~{ Ö{:`æ-¨b/™m`öÔÉ+û¯*ÅLQr0´ òŠÍ±¬°;BþˆA ÒôöE˜^‰hECÒg_=ãV±yƨ›Ý6¶-–V½úN“·5«“W._þ4ƒ4WÎUïÓ9&Úe!ªéíÍx^mMR§AÓåßÎöå± J½Â0g+}÷s.m^òL^ÑÍ+Çdψ â,“¥= ÷ê…@¯˜S¢\y§šÞþ<ŽWNÌ‘!û\mÌkEÑ ´yŠ+uô €vgYuc1Fp¼^Í ºvæÓLÕ¢NÑôöça¶b­v&7Ó£u‡öd_íïßF£Ëò'Ï0™üÁôêojCöýÙûð‡…)EòË¡y¯J‹Óµ„oþ• éQíÆ¢“5½ý¤Cp*²Pf5—Ï¬Ø gn’7×b«ŸÆÝëgYã°¢çÅ}03$e˜!*¼úcîÊ¿û…ó”çÁU¿è¯ÛÿMîܼWf(À›z„w¾¨ŸÇ²FH"4zÕ–H+ÓŠ6¥ƒ•*­âån¯šÁYPÞ´ÿלVý5¶iÇû¿Ý“!ÐÑÐÇMªÑª…fа¡)3L…W=¶?º\{k<¿§þÞåšrBîÜîùílAˆUWö*=ôê»Ì(Zc:t’¶÷›”<#𛨑U¸ævOÏv@­.W‚²ïû}ì:Ë?ôòÔ‡<Ëzskœ†÷kÑö ¡ ÃŒPáÕ_žcÿ[Wçy¸9Œ}X¿Zîä^¯FªÏ¯¼ë¼¸º75Á­ê;¨éí'mŠÊÁ´¶m劷¾êaéN' °NØûÛþpÞµxÄê£`díªí/xñìoûG>B*ÃÒ…©Ì«ÄÓÝ,=ö}ÖýäÏ<ç&³æËÜëV—U0Þu©ÁÜ­J–F¯Ú* N…/{¼|µéÔW{ M`°Š¥Õ=Ù–†Ô}¾ƒ#P#E·Ò­×E1ðdxª(̯,c'³”þ“ç×þk³í#ïÃÙböÙZ¹“{½Ê×_Ù½¢Ì‘Ñ( ­^­PÖ „Û=Á\š Â^õØzêûTv?ààÖ\s*@ 6Zmá©¢¦~åúqÜŒßù:G°O_\)wv¯WEËjä¢h!¯ŽG­ß]«WÇG)êÁ‚[!^õœc3%‘,‹ãDoðÏ_ýúÂ'})FMÌ…†îðTÉUÓÌ_ÿ'ÿÃßÒl.6ím¹Ó»½r×6“Ôõ5äWQëÕZooÛ Ò«žÃóóÍÔSân…‘oT³¦ ¥Ê௞|QG WŸ¤üîÇü{σ«få¿_Iú×ðãöŠk¶#H@#TdZeB^ÝrD­Kk?C[+ìSâÕça^±|qìñ¡ÜÒ]I™¾º÷ƒçÙƒt£f˜B}¤¼ÚËg:³=®}Ä1ùÙÓ{ÖÑCåÞ7Ÿ@” æÉi4wVeEEEùÔ©eS§N^1AÈ«îÄèy¥m§­í„Ù$kUؾòŠãÆ©Õ)l‘ˆÒD´:Äþ‘–­êì?ôÒ5æÛ‰Ë…¼ m*ñJn¯Ì°Î!Jª_7­²pb¦@h²ãß`jôÊÁø¹Ê©]ÀS[Í?TóÇfÈæWÅ'Ĵ⸹º|\^@ž×¥;÷ú|Õ¾r\enk’ AÊö"€8«A´`“W|±¬›W%°×ãe‘ªvÊ8~õ*Š i†íÿ- 5[õJe`¾d´rÂÔóRVyøìH&òhÕãX:§8á[·z•Nâï,²€«Äe¥‘!5w 6•"IúæW­è Ç;Vê™ZW_ædS-ˆ“Çgr0öãoð*D¯S_!µ™r^¡|VqL y¯–Âb€A“²&®ÊŠŒ›‹ZƒÌM /¹n^¹`…Ï÷¿ gr¼%)«bji®)ÑjdqŠ' –†|ƒw¡¦­ }Xtœ&­f&‚SZ+Ú~X¡W_œY\ëðJ2·.šFÿEÖ¦CÙZXØär=0Cò;BÅà5.Ä—®^=éó*1·`úC©€(ÚD!Š›˜ü&e’’Š/ CÇ—CÊD”ùh4¦%kôjŒlí ePèUOO;UÙßß—‹lG‚BS)o÷÷÷n¬iDíÊó. iÅ0¯°é©ŸW}0ÖkH)?tŠrÝ?Ñ¥rFyllùgòœçnŠBi¨Ñ«9‰rã8Ç”zužëƒß.ªtW¼~HÐ=ø**Ýì2#=½š­Ì¨Äë¡×ÿùâÚÛ ³4 ­B:^“W •f›)Ó”zµPozXWB‚’ßðbu^Æþ™ViM' â(ẛ㤧WÛ5y-"ßâhFs´zÕÀNÒE¡ÞVêÕ6 ×€‹B¶À»JA~Ýrß܇»ÏåEkB)ƒ›¨ƒâÆ­ÿLÔ«n¥ŸW°[‹VYð‘Ø·ù‚ û&JôŠJUªUOÏØ ´9h¹…`é·A=¥Æë4œΊ,,öWÎq#¡zye¥_Õâ*ýG#ßß@a…PãÊSîÕËT+XÀ?!†ë_»Ò¿ ´¦”"`Uÿ:ÁáZ?Ï¢Lß2Ûh{…ò´hEÃañ¯±×.4o”¦ü ïsß £îU±r¯zZÀ…Fdøó£,ˆ8¬Õ¯GlZ²ô-²ßëß*ãÓñ±o ê^MÔ”]’úÉBÁ‹ +ÛKÞhŽü¡£GÁ=ËÍ=nb±ŸBÀqEê[¼Žƒ;h &ÂýXö )½–N‚¹/'ù¬¡áhŸ¶†Nqø.-³(hí þXX¤x¯¿ÿ„¬WW“}^­Þ#È HyõŒz¯PžXcÐCÇ­Ì º;€©×J¯h˜ú…²kYhèýë¾J9•¸”Mù_œ _^1U{ý %¿ú©Ðä•ÒÛßÿ®´WÇã¦û¯Q÷êyõ^ÁV¹¿¦žÏ°v#n´Ÿm„¿W æ˜öªk6ŒkºªàRîçÒÇ{æù²+jX˜PFhͯ:ÀÚÈd½ZRžêï¿"àÕFO·õñ…ÏsÓ9h_?C´½Úª>»rKÖ«7ÀÁ}GÁÈ)CæM?{%ŒõŠŠ“öªk‚¬óòeõÃ˾ìi‡$ïݤò”âx`ÕÚ1ŠòºÃ?•—ƒðuÿ§á^‚ç˜Å 2š²íl³¢/ _4Ú^mTŸ]­•ÕŠ¹5Ì9î­-Ïúœ7Ú+KS26ˆN d½¿NŽfˆxõÖz{løXSb V6±Çî„yµmYÔòóάæfîÃôòª^‘HÌ«‘¡ó@n><óïªÁ^ÑB»†²­'+¹žå>gúŸ…iÒè• jz>×”hUúûܱž0¯VMA” ™]àíÕË+:QµVo"'£€Ë{e6+ðŠëwWÒ²É_½Êí_ð”‚¹Úæ4°Î5‚ŒòêVÇÝ'ïC£Cþ¨S¹í½¼Bê½zóM :q½º¨Å+”¢Ý+ù…«!óŒìåò^Ë…µÂÙÕmÞ¼Ü#*ÓÁìO?· ÎxÅxŽÚMÁ7{]X^©—W0C‹WhÑI¿Jý»‡‚«ƒJí¼ddŸtWÐ+:á;ƒÃ[PæPwº³xK±q^ÍÓäÕl¯Ú5•ƒºåW]\W–óÉ«¹ç+âÐH¡ÄÿM6À‘#0dÙWgF¨ëÄ:\ÿà¦?»jñ-ð{Õ±‘«¯‡5E1½ ¨†W ×â¬ÂöêšÑõ+Å^±íÂ1’ý ïûsƒ*êÄoç~â^: ͪĸ!èU?¼æÕÊlÿÜ{pâïq÷ŽÒ±ˆ‹G^µÃó*$ F\5ßêAu^]ÂöJ[{0YW¯fÃe©«éß\Ð<øF í¹ê íüóáêzGa¹°VýðŒ¯58Íw°š÷êV!äF0‡Äó*8 F\µ Ý¢œWâ“ÅÐÖÔ³ìêrP‚ ê½\·úáÀ\¡´¿Î¦nÂ*÷ó‡Õ„¨DÌ«ÞѤ.ßÁy¼WK¡*Wl©5žWÁÕ0âªÑ¶7töJ[{PÇz;_^”ºï•Ë_Å âå1Ôñ~-^™ÐTa­.uÞS»Zè?ÚÀyÕY&Ñc&ëU\)7ù¦ú¾wøªaÄUCS´h¥¿W©òâHBa®Ž¦¤®&`@™JNþ_vzŸ­TÑ=ê3zY$¿B°š×j)„Þzœój…ÔŽ²^¥ðñúîý·çת)«kõöJS½9åÕ‘öʼúµ×_?v"ˆSç/rž;ô.ûä܉z©‹=ÐÚ2[¿I/í²^ey¦‚ú*Û&(¼!ÔÕîVº‹ÁÀ$óY¯®O’Ê1ÛƒAÕ”ÇUM“EUyÕi¨WI°¥ƒ+9³zÓšd¼úRÚ+.#9{nõ¼9ãí@óë8Á²@êaƒ»ó*?àØÛ@_wÇŒWÁÕ”ÇUƒFݽêÒäUšF¯¬–¯ÚçK\mP¾`†[Ò^õB–Tb@Íû¿òüæK­SÖlk)yñ¶äÂ~wkpQàÁïbñjÃ!AœqÕ¼Õ”ÆUë€VݽúT“Wƒ4zÕ@›¯`huLâ\‡'¤½ê#Yq‡¿úµðXcˆW»Ý^e”'ÙY½ÚËW2}Õ”ÆUÓ2è¬Ö«M^a34Ä+d¿†áÕA©‹­ JA4^ƃ¥’ lT R°Wîü ž <ø`Ho¶‰ç•*vì€"ý½úX[{°®nF%Ù` ö Ã)/[$f·‡f Se<˜-™‘ ê-\¯Þà´²ÀÅÀƒåÉ2ݯzxE™4ƒú{…;Îýq-vOç‚™ÕjìÂñª½Râj/ ÍX¬Bøé‡hJ¸¸ù[âzõ _ ûX[Ù—It=¼*ÔZm}¯ØrwÀ²ç·ì8>‡mbYÑœb°½}ТsT`ÔÒ= ßJ§8 “p½âñ÷̓·-ˆ¯vPö?y¯æÒ9÷ã…ce€åÕå†8ñ¾Ñ š¸>–àtÆhÉo…G>Ãõj^Ë–¦ºêÊ’Ió%&–¿Ç¼!*W¯bª ¯ TxÀ‹µX^µ·ð˜¬Ü¹×_Êúžî Ž"*å+ f¦Iưes+%MÀ@¬qB÷þ€C&ÃÒÉ+mÝíÎ+f18ŽaŠÕ.>Êc ¸›³ Âée›ÿâÛåôýñûïMøzo'L¨\]¼êýËAmý c5zż-¸^Q0õòµ .¶_¹páÂ{'Nœã{>l¿zÞ8kÖ‹;ð­dg¥ÆÜõŠ-_ ÿrW’ W&Ñuʯ¶éîÕuM^Ñê‹q½jÏ‚…¿(KœØü;–»N‰ZO<‚Ç¿}«(OÁ‡áßíuùÀ“:yµXw¯>Ó4ÿJ*|2(ûUl±PÆz£ç¶xîƒEâlÍ­¸=Y¡ß*¶Ìøn¹Ž™é8úx…FÒÛ+MãÎT¾f¯L–£Ø^µ#X)p´ |‘´Ñ¨_‹;P%–ÖUEGEv “ }¹;wW²•¾,$ž=êãU 9mª S Ç.d~Ù T× 2\@ߊ_w‹&¯FjöŠçTˆU,pðƒÁ^aÌpI\ï† {eFPÜÖ};¸)p£¼OݘB¼€ûvMÈ…@<”›>^ñ— ‹’ß …*s3e²›)üOS'Ož¤É«<í^'UxU"tô o‡f‰kÕ3X`ÉD7€^á®gÕ’/ô=­_øÂŒl ¶ß¼~½ã`ë;ç?üðý¶óP¿g T³Ÿö>ÿáb­O¼‚• RÎc'žÅ$<»gÏžmš¼-jYÐ(l­¶Á£B‡½#„Îy’;ÏÊ“`@yxíÊ Zwj¸èÛÙžmS¼^½ô2ìdnØøMF?¡Ü*±’P¯ü*ùã¨xeõªUS{pö•„c¢ñÆrX`Ø)¡ÃòåMðfP XŠ…îgr¬•\`‹b¯˜ÛÕA9´½ Û¦Ø<8w0{Ê«XAè÷j»phàô­Km‰ŽW´˜W[tÇ 9ßÃöê„Èqn‹¥„…ç|s˜=LJP³ê—4?ûâ‹;ªìé€úòüå’ nð×çóv°WÁÝ Ðʼóp 0ÇÓMûJ‘i4-Ÿ_E×+äOQ¯6î•VàYEA¦Håõµ›> ?žë_wÜÙÙµn7›‚»å¦¤#~î~Ó«sXºÂ§A/²^•ššÌl å\¥ß*Öí®—W&º;^ÅQb^½d¸W r–jÂN±Å™cžX š„çRA'¼ÏìGYMô]Þ£¥x^1Ó¥xµÊCwƒ^ƒÖ;˜5ºÃLjÆÑË«V¸ ¯’P {ÅÀSJµ2Å.~æ¼èËb³s‚½bË_›—\µýó;ñw¦czuc%¹¯Ìñ¾ÃÝÌM -*`Õ¥ÙBÖÊMÁRÒÏårp¨|jªð*5¦½B9J½B%_ó*ƒ ?iGhÐL\¯&ƒg—VÚÆ¦3›Ö6·¤áB1xº¬¸Öê€:{GÅ«tˆi¯RìUÞ©—żrÒ ®Û+hî?‘ ç{nï¯ð´7é$—O#þ ˆêæ•‚x‡*¼Ê‰i¯è¥c„P-é•È ¶"¯ª0½B)_ö÷÷nrÝWLOu·Ðæ<å[ZèæÕ£Qñj4ìõ* ÓÓK>R=³<`“Ê™,å3}”¹PrÀšˆÜ RãMìkãzm/)ôªHz%Òu¯È«Z<¯ý4_þê; ¤4 ,´™âf´óyVÔ¼ú‹óì*l£.àÅ¿: ³W»g”•UÌöQUV–:”ˆ\À¾6xI©WP!ùêRáãÉJ¼zÏ+Ä¢SPÏËdOÊ œÞõ9¯þ¸¨Ååú9Ïþx‘þ%Fü+”ù¥Î^…3VË*½z]¡V(㬤W 3+¸ˆ˜^Uy´úÍxÖ©²åoìë뿳•ͷ䦴kñjo°^ý5ü­Ë5ñ-ŒøW°IIÚE׫њ¼zûÚØÖ*-Þu"ÎÓÒ/‹ô_™­ ®¢Ë+Êî](¸ u[ÿ­•rý xñÚ0½úÇ—³^ý)oó¿ÜŒÿAyü+”ó ã½¥É+i“ò@éæ],/¿þ:Pæ­×Ýìßųiãj–µ—¹NÑ=Ò^‰ÔÛ-ùk@€å*÷hµ3F?÷Úâ"à{¤W7«ð*•SôõŸ½oØÀzåúž­Åíu)k¥],{uûÚXÌ" !‚CÙê·ÉdgO·™ä¯ñ¼²4óZ1 `æ+¤&@2k$Ty?–›ÖTúO^ýCæ;ÿþíåñ¯à½ï•äFu¢À¬^9â¶ÈM|€eÂÇãÔ¯/¿bÐ(>V+—KQâ‹{´zÚä¼:;•}òZ=Fü+³bÜ«kØ×Æ‘÷dÅJ§ŒV¢^)©_áze…Bna߆Ê8 Ï©òê$·Pò`5Fü«¹¾~¥.¿b ð–¬XðœZ¯h›‚+ÀôŠyu/^]¤·W¿·û×çÇ¿r™ L~Ø9¶½úûÚx&B•œV™ÔEµ^¡Ù 0Û°æ‹rX=›±Ž‹ˆWÞ$SÀ+WÏöücÊã_¹\%P¯&êæÕ»Ø×æ&ºe¼²šd畊tC|eÏjæazÜÎÜâé*Ù´œWøðýíØ ¯^€:y5¶¨¨hjiG¹oˆ§®®nžçétö…iA1±ªØ%Eã X®Š‡d½ž!xšdïì˜ç sÝ[ÝiÙxN/¯\TR{¼b`›N^©¢ °¥þkI¯‘õJxQþexAîþ˜àÃ:,¯†Ãrw€­Ô€ðʃ™hxµ]'¯ŽÈ¥½(+`¤W’cƒ¼WϨõ ïUÞßÎ-Oþ¥»_ôšddšØñÊç"ïÕ!Ø¡“W‡U{Å-c~RÊ«x8 ç•Ð2hE^ÁÂÞz%³Ì­¼À$QÝÌÇÃÀdíÓšäúzå¢eÄ¢aI·¸DB^™õòJ¢@ t†¬W|*Ï|wxxÈÃyNn|† Éxeu““-Ç•ßãn zXô󝳨7›}ç æt±Ÿ6BsÃïÕë ’A¯\”½S:ùÌ0ós• òjŸF¯²”yµVP«¤°ÝÁæ³*ø¥^C5d¾žÄå\hœàgð]oou°U½“aÈÜ “ï0ܤØ÷â W.(<#~ƒ`ü'?E¯¨ÁJ´2 7;ŠÁÇ!øFÜds£×˜µÉÀ˜ãv }ö+Ô”ïoƒ5ø ÊçÖE^'€õ"o1Ì2MÓ|èìU ‚ÓÒ ¸†`,Õ/k^ÉׯX Jè½ÈÖN\ 2ù¥“m – ~öãKf@è ˜Ï¥ÍÜfëû©ù£ò2¢W.štG& Qê)Å^‰Çë gŒ¡å ’úrÅm„çCÑÀ PüÊ}¡Ï¾=„´‡zU“ dšÞ¶ñ]+EQHvËJEèîUL¼/'Vâ+J½ÂéoןArU ½“Ê =4âwš„?{±·³=øŒ\}ø–RöÁ%Üû ÄëVî^¹®ô´/Xô¾”X°I¡W8ãΚ¼Ú«Ñ«á ¼¢ì½0(`¹Îåú¤í{@ LŸÏ+á©©o%|ÎïØªä ä@çævŠšÕÍáàÕà»=œ‡$R‘‚Uʼ™'3A“WÒä½­À«^”¼9ì('`¹Î3+ÚÄs+Ö+á©©sàa–ûkó)à2Ì3‘©¶á•=ç⛩dƒT2ÒШ¨#K<d8…š¼ÂÛ<ÜŽ%^±åRõ!ï„Ýí×»ÚÞþî’úkÙl•h–š°n†ÓŸ{1Ñ$vÊç2¾¼ÀLCPP`Ç& ¶W|\µ?m’u+®šG²UfҌŽ,œqçIš¼Ú¡Ñ« мê5A~°ÁrÆ :qí[‰‰l}ý$ìæ…j‡S4»êí´OdŽÖ²:Q[}‡Œá¨ñŠ«æÚTúŸX¾Àˆ« ·{Â32 9&)ا=X¤É«í½š¨Ì«^‚—}¡8.¬ËD h`,J–Ä›¬C?ó›!âZõöžFÓî½Åì¡ì ×+w\µÿJzàrºŒW-DÑIRõ+Žu0L>&Nÿ•¶rP&’¬WE ½êí5ÃÒ€ 4wî sH&›òƒò¾ùÄÖÐn«`¶¢üW¹™10á1m“ÚÀôÊWí^ÿƒò¸j¡pῇË%å1H;#wqúÛµÕÛµzU¬Ø+6Ëò7RvÀ‘ѲÂzAÀ !ØÊ:ä?å®È†*õÊVÊ…}­þƒ÷ \|†KkRÒ¶ü·ò¸ja^j7™>•úò‚Bu£Á² E¶Ic@¬›ÝÏ3°ÎÎí¥„Ì¢›êª@•W®²5ÿøUÆåqÕÂ@™ â¬ñаDâ.⌯PÖe*qA:P°W+†´2½\£À(Sþd‹ÙÂ6›âw×®“¿WǺÉòêŸç§äĉ«*Ø(€Ç Ä»ÞqúÛK ðÊnµrS_¬áÕÛÏ27ZRíÛq½‚='â¹ß Crõ«ˆ zÀö A¯šaìü¥ò[]r˜¡æ®Øm‰Gr‹Ý‘âàIä~Šã~àÿq¯¸±¢ììì¬lCÇç.*–#Nq,!(¶x‰çŸÙ㥻B@4Ìg¿]çÛ¢_\L+çU\­z{ïd=¢™•Ë8¯\­lö;OY^3ïˆÜGMQÍÃ>P”ÿ'Š¢½¯Q÷3åÿIIT´ø£oò\¸zõÆ­ >ºÊã9zÕûSÿx=ôå×½þýl`yÕ;’JÅ4ŠÃ„à.¾V½½·JJHŠÌ€³üb¡2Bƒ Ld°Ð'|ÕBÌÇßÊb¶÷G†·ñ¼ê…Jü‹•ÇÔhÕÛ{~×ÛßœˆÛ£R †z5X¡W=“`b—pº'(÷ªAW ò 3¿êEÞõñ·÷¾áýÆ¥"W:œÍÿqúÈÂ)2´ÞŽ˜W–(õª§ &t ÝM³-º^Y¬xõ=ÅVÌöz®à€)уÕʾ`IL:Šeä¨Q•W7>µf;µÊ¾p͆ý»7®aYµ ¤ô™oŸ¿ôé{÷îÉE†pÓf‰dAh WP)7!9€u0JhŽÉ®Ü+¼}­ÜXÍWÏœ9súMGΜió>?å•UÁÞ‡|U¿—ŸÒ€`aËÊe-+žhi†qqfÚdåi074XM4W3ä§¢{Þ$@È ö$–Ôœœœ±cGåä Ë’ŸÃ“šÄcá~KsT?FæW£”kÕÓsò:¼JTî^\`7#%Z{¿ÆñŠJX²¤©®¦¶¦®º®vN‡ªYÜÿ³j¹ÿY¼dÉ’¹0®·×R 5TÓæfñ¼”&OÆÛtq7p¼ÊÆÇãn'‰^åÂ8bƒ!WýJVîæ~´<«DûÇà¬üʤhþkg&â&Vªr)€™)Ь˜¢9ìK³F²¯ÁÈz;Tʆt2Ã6k£S”{…»ïBD½ê‡ð? .Û¨^$iÕª6r¯rš›—Ùl¡©íæ™ø^eƒImVÕü˜âh°V,O‹`ïULxå²ÜÚçp±1©€ÑÇÀQe°W›œ`¾Vµ§Z«ææ¦Ñ|/C\$GcÃ+ÊtcfƒG¬×8ŒçṎz•ˆYoï‡JNe¸VU؂Ǘ»•MñŠÍš ˆFf­éD,xåBT!¦W=Á6<¯fD¶ÞNãzµ_‘Wãq½ (Ëï`N`1›Ý´œTS˸šU$—LðÄ„W.3…›a±b¥`–ƒ•õ*³ÿª^“?[ý®ÍŽ*+ªfÍšSSSS'ìÕPçB<\æý½yÕ³ A¶æ5 ‚ˆ‹…íÿŠå¯þ§ÊøWB(Ÿ‘ì‡ÊÁÓª«ÂÐþö~%»v²^Pf3[y7É>ã‹6ó$$Ø’y¹œÉ„RÓ‰qü\Rgñ¬ çêËò¡RÚ«eƒøJÛ6–aàzåŽårýGÞN—êøWaЉ7°½dys`y%¿Ë0Û.c±xþ¹Éö_u“É3Ï·¨ÈÿM³^M ÏÍê,”L†Õ4ÊBe[ ’‹&\Ø^¹ã_±¬°ît©ŠÉò9~†Ó–WçäNFÁ¢_…½­\ðªÊôt(*&ýÙ]B˜S KšŠV,+JÍ1ºtÇ¿r¹>~xÑN ñ¯Bi…|¯L°Î@¯vC¯€¶W+$¼‚ƒýý”† ¼2Ы áïú& ýî58v,ÅO4«.=D¬'3U«# v{óêèìÿøÏ…[þSCü«0ø( ¹ãÓ`Ì›"œ®†é*¼zZ"®•¼·fRöu…Zm™øÎ$Tc»%«=A(Ú(S¤XAb-Nl{ ª¼z’¯¦iˆ%Œ…BŒ=¥Ø«2‘c ×€¥yJ*^ ÿ·úKe^ƒL H?(ð¶D¼ÊÞrB¦[5H¬…¶ˆE© G•Wl9¨!þ•8G]yqˆà´r¯ÊTxõ¤\¤زî;%^eÊœ¯½í˜ˆW"¼”E¤÷Ô_Nôz5(â•õ4y¥!þ•0«M™UGìÅ(§©ðê ÙøZl¦•>%yçä†:¡ìÆO¼t˜lãß¶WÄ+!PV µ©ÞÁÄêH.oÃïÕyáÄ¢Ç8Nf€I‹ç>ù‘|n5¤ C«®‡UxµDIÜ6 !.NVÅ7R^Y¬RçÉAŽÛ‚o{QÄ1ß(s•´X5Én±æG:âU01è•Ë•Åm_6ZnÈЭ8Zu•ªðªIa<@:~ãßÏšs§ÿËþmó|á¶âÁ'KŽô6ä¾Ë>5'HA‹°ŽËD.úœØÞK0TÚ«†j;j~d~ÓÄŸ¡WGà-¹ìj –Vª¼Z„¿å:Ø—S Y0ŸZÚßÿ«-N ,€jX¯l’^Å›”Û$òy&È'-ÖLŠop ì:/NÌzå‚ʱM’"ÑÃx^MQáÕB ¯¦#Äõj¹WxBËé)\ðê=#M{ö˜ ì”¤WáR¤øœ vÑ9b{š!YR¬Šx@Iìß­Öd•&v½âÊÂñ·¤¼*ÀóªD…W 0¼âiÈAÀÅ”çÔrøŽš˜¤ÊA€¯2Å6ÜÏ}A¾„VÅÑ-ÿ¼Ä®W.®,´¿-áU1žWjÊÁ\¯XÜ;m¦ïXÀšõè¤Â]b^eÝÖê·‹È[‰onI™ Äs«èu…Ó^±™VêbZ%Ã<¯Ô´kUx%7Ë©HÌ«‘ñ oÆkÜl’Ø4•‚<­ê’tÉ­bÞ+¶4<,â`V¯Tõ_EÐ+T(æ,öꦨ=mR›ñšD!VæATkë~bÝ+V,áÅ:cáL¯ÔŒãDØ«ñ"§¡¨Â^]µ§šÄ/ûLô*AŸÊ•kxåBNÁ¹¤G`+¦WjÆ«#ëU¨¹Â^Ï•’ÅjôÈR.äÕàˆÆh—"ö½rÁ2ár7žŒšy2sôñІg„½Ú%îÕh©¯ó ( «³‰W~h»àrhÈkÆóJM98+²^…EöNT‡¯…½Z-îUµä×±yrˆUµcâ!«#Ä^¹à]¡ „à$–WjêíU‘õ*ã‰ùî@È5••%EEcGyH‘U®{d´HUÜY¬U½PôæÅ„2 ¼:"xe5pË+5ýW•ú”ƒ›ˆW}¹ûe¼z¦X5oÆX*KkJb0 ¼ZvU÷?= ¿Ë+5ã8Óõñê3±üj¤Øh Ãt%‹¿ÆÃ¼EE~M³Â+êe÷µ|õÙùC­+”uÒIå˜ñÔxU¦WL*{•,1kK.=ì×jn†¾ZxuIxÛ”\ã½Ê…¹{Ö4ÍœaòlÑh§ àY¥Î«‡õñªÛJ nÄ#²jÂÍvѾxW Þ5ùõI‘ ë!Ë@ðÊ屉²+؇W ªòªT§üª †ù\ªuw„ô:„Ìå ³rmVýÚ^„WBX¤/}ï§âÕ~“ Wç%ëæÏÊÔÜ”ÓPŠf¦jŽF H2`½rq¡I¡xë'? ¯˜ZxJÀ«ƒ’æ,–)3ÔÌ t®Y¹È^¹\‰µJ{bØ«ëÕ‚÷’^™a:ªk0ë41&„í Û2µ¡c€x%Ãý$[òê)¯º@î ÑæiÅ´nC7A x¯\®fIï¨ôê“¶Ó¶yùàÃÚ‚¯WÌPˆòj‘”9—äªW|<-Éh´ÊÁöŠ«ö75Ž!ûþ¹¸jZakZã7ÉÕ´½š"±q%¿iL$½2ÁKÂéÿGí–œ‚!¶Ô+€Û»#)F¸^ñqÕþ˜»òï~á<¹¸jÚ)à2­ø^M‹h†$g„’ë ‘îöñR^M’/׎䖂X`z厫Öcû#û´&rqÕ"›ih¹(ëÕöÄ@,–¸U:Šs…’8X„½š,¥Î8Y¯Î1J+\¯ÜqÕþòût]]äâªEˆVqåĺK=^µ@œ~ÇcpîÖÏ+”%ü›ÄF¥ËAù¸áÏÒÅÀ#ëUbél–ê øW÷“?‹\\µÈaFÝ|YÊ«§Cþ†ûài½*¸–ú·„Û‚’[Eí“«_ÝhˆèXÈz•ÅÇëû"8^Ÿë¿6Û>Š`\µHÒÇfZ•2-WËBËäÜ¡›WVX–üE³«þz)¯$WNpG†ƒøíAÞ«ÇÍøËɸj…Í´²ž>röø[Nžåž YÎׄÞìȘ§[Qˆ2o†&ÿ*Ýb@²Ÿa³ŒWw^0Ò%ʣʫ?æ¯çò¯ˆÇU‹}H¼ë ¬åÍþò ½¼¢Ñ¡É_#8„ó\Jf¯è¶øFU^}’ò»üñï£WÍhX¤“W 0áFpòŸ/û×H©#³?ÙÅ ½Ö ¡Ê«½üßýì(ÅU3Ê:M§¢Ð WƒÓ¿SlËV)¯žÅR^­42» ðêÚoóã8Ásõñjzèþ7l¡‹tü1@^q{Õµº%”Õë_|)ArØù2e\­xåƒJxV¯,ðQpúZ^äcZ%‹Ý_.z–¥«*JyuŽäW1²=¡‡W´õ¶” Ü4çûYÖœºÙ"Mð7Å;†#Š}Õ°Î+ñ*9ë¢ïÌ’ÖŠÙÐKú0·žb:œ‚UôN@´Y0J ‹;¯\Ä«@:í±hke³2^5xu ˜·mŽÛÌéTA±6ŽtZ}½'Üó ¯Ú?kiÌ„>Ä«@P|s”½Bb!°|ì 𪠘G®3Ì´ ª’}ñòµ»!Åè­ë¶½¶ëÅÓ‹ÆeÆyãö¤»ã ^Å ht”½‚…r^}–å®·ß:þÛ_3À”¯´t3Ý ¨ÐÖ=­N‹ÉÑ&ñæ›—N¾¼¹àu†sÑÀI¼ ‚JÚe¯$¢V1Ì»ã+ßcŽÀ…®µ‡§&CeâéD°ˆiËävRõ”x«äÌÜü4¯i¤Ÿ!f(™QöêI !n¤"HÝø©žÁ…R¦Øò qÑ{¡ÅÂÕŸ¸MûhñMù¾”W7™Í B¶ÆF;ñŠƒŽÛU¯¨x !€[ƒ;È`ó×ø Sà.¹Üªï§>“Ë´¦Ûá½uq ^…GÕ+4L„ Ýæl‘'_ý ßî`G+›sNðãFXq'^…Ë£êÔIxu¢,RóYk†›ÔEÒ`ºæÕŠó0iW·ÀÇÕÅÄ|âDµ ‹J¾.]xu2u0‡dfWA"?ëîs9àà2°9bm5°âN¼ å…ɰs¾¹ðÙgvìÞ±MµOë&´rqðâÇ'íßëë=V¶¢{}Ö‰£©+s™ÐÂtoÙ>„­ÖsAør…ú/GqßJ9ˆW!8`i°[Šmf¶h2¡””¸©ê¬š3Í[ØÇVSÜHw_Aé{\¿Ÿ@§%Ý âÈ6åL¨/Ø< 9ß ‹rDûn‰B¼ Šƒ¥¨`›ø.—5‹¢Ô©òŠ•)uÇîÍåqÞåÇ5¬YÃY]!9tdçˆ]¾£¹V"•pÙ¶wüg\‹x %Ûœh¥ZU ®µ8 ÀjJ·Ö™ÌÉ£B`eÏ—³3XEš­¡`{˜WcaÝħÿKa?7¯Ø$·­õ;1/0mœú¨ ¯ãwŽ ‰mÖH#ääžP£;½*´¦Ï¹¶NU‡&ržõê:«­A¯€œõ>'&—%ȼ^B ¶%§J¶ïœPÊiÀÕ³ZÖ^HT5% ¬ŠUjXAH¼ %LYàžï¾1t¶ Š[Œ«ÕŽb ¥›w¹ð!Ã\1O/øl›µYŸ} @Eˆ=(Y’Á¼ëè‰W°UôJn’ßîYae/áiµÓ ²*±¤»&YVή­Wzd˜Š,Ë ³×\ òêfŠQ]îÄ+ØZÏ”={ê&ÇÁp<¯ªÄ"n¦À q4¢ùZ˜ŠÊŠ"Œ½æ™ÁÖbããÉ(ôŠå |3ñ¯¢‚  ãþÞ[aŽV» !¬í&@.jå¢-¹{œ€VUrf¯ÊØj>F;¸^ññ¯¼¯b(þU4à&‡z ­ÖæªÉô·‹¾3d@ÇiPAˆé•;þ•'ðUŒÅ¿Ò dU:ùoë†ùqHIn¹k‹ë òê9ƒÆr0½rÇ¿ò¾Š¹øW:Ñ!¿ê¾jyñ””• HïÅ (%¸‚µÊ Õ²^åðqо ŠSä |‹ñ¯tFÈ-ºO`‹Ps pê|i”3Ø«ƒP¥ó¸‘õ*qìd–ò ¸jžÀW±ÿJ°PÒªÝ;Ò¶’g½’aé’x¥ sHOÃã½rQÈ-çè}]Ä+m !A^­4¾ä"-…ÇmÒûºˆWÚpš6zµË€.ÈpÐÈP¯–¯P”a¥ÝÏÀ‘eZâÕ#Æ•ƒÝÿ Èâ•$(9(òÝ/ʃÛ‚½*#^ 0Ì`Í Í=9*X¬XÁ^å×$^©Ä„ øo?VX6c F{åÔ;%^E ½Å#Öàèi`›„ÉÁ^Åé= @¼ŠÍ`©˜3½æÙ{V-âôAPÏèEÝ£Ê`zõ Â6ê‚Ò€j~^ñ{!±l^nôL7°9Ы#Ž*ñêÿå<ûãEú— ªyøyxÅc1*,C(aì*ß–_Ìî÷ê¯áo]®‰o) ¨æágäU A#¨òy56ƽúSÞæ¹ÿƒÂ€jˆWÆޠ߉×=•õ*¹t6Ë\Oü«ïÙjÄ^—€jˆW&x¼š«•OÖ«Áñúþ!óÿvH‡Â€jˆWQ‡x­îÆë?€WžÊþ÷Z½Â€jˆWFá©a½cèúA%^äv9;X­0 šâ•QÐ0xç•{s:]Áóê÷öcø2ã¼Â€jˆWF9™Ï¶ùüÊÕó°-ÿ˜Ò€jv<ÑM0d2›'fdëêÓ^¯†½þ‘“Wüϳ­UÝ+“ ÁØ 9õsžÔÿÿXV¡ÿyöÿÐê@ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ Üüâ² ¶endstream endobj 171 0 obj << /Filter /FlateDecode /Length 3630 >> stream xœÍZmGþ¾âGìÇYðýþÉØ!²¢$>‚P‚¢õÝúÎáîöbßáøí<Õ/ÓÕs;Æ ¥¯·¦ººê©×™Öb”kAÿÊÿO¯Vj4qýn%ÖÏVNÊÑJµöÖÉ1¸õÕÊG13m\®^¬‚—£rí£V šv‚Œ£³‰Êª Gkմé´3£ ì@k‰;±Šb½mR•¿¹PN‡Ñ¸È„ ÒAÈN¨FUw:ª"Ôt\•‰'Öç«V2©r]þwzµ~r²úåW*¬ãrë“W«¬f¹–Pƒ4¸½ð£Tv}rµúfb³ Á¹áwåG´o Z'› pªRØÛj­ÆÝðøóÇÏiŸÖ~±j£±F ØlÅ(bJÅáÑëÑI=üq‰æóg™© ~xF?x!‚ÓÃW´–B¯‡Ç_ÐÃ!:#‡O»§?¡?”Ñ@âçU<{ÐÃ>(›O“BEeÂHé tféežç«*aé& ¶ÑGÿròtÄ0š1ÀÜ'ÏW'?ÿÊ';3üv³µ 9¼œ6wÓêÍ´º™V—Óê0­n§Õ·Ã´üñÈÏu;îí±‡ÿÑkÒ~7­.Žp¼9²ºŸVó#s'Âß´å'ÓïŸN«§Óêù´zÑ.³áK²ÉïOV_ä#plŒ•cTk-¬£ÖJ‡Ä­ßì×Z_¯€'#á# w^äú3ü÷} 32íÖ¯Mðp4¹¶FŽ.Úµ"µ v¿¾»¾ØÝÜlTú‘Œ»ÕÎxýðùáv}{8¬Ûïø]Ä@xØ‹ÃÕ~ƒ £ û‹Ým¦$ÖÊêÄ JqJ9Ûšv¶‹8{Æy²§ôP_“b®¦gT²'»#TÖM¡œÊÊ­2¢²ÑјèFa9QÙ騂pcäçÕN…ìàGïUÝé¨Ê}»á‡™L¾%Û]£Òp\ÌF“íŽX®­×£ "#i_úÁ”•£m7mZ)ŒÂ¼ˆ¶¢™äËEa¤[ÄD×AbŒÆÂ6 "ù"ÊS Ã>"× ¯i¬NÎï(Ê:œCßl(€K‡}MvPc£ö›‰­`§‚F¬OÎpÎ"G\ׇ¢=pBžQHbÃé*–{){H¢4ím&ÆòÐv_bùÁ¾ßýA7¶Òk‡k¾¿O )ï<¢6Ö°²´}RëaLi•/ߥò-ò÷¨ˆà˜p[òwRÂÙ”Ñ^Óã0­”*qu‡EDg’ڮ߰L[,#Œ—‹»œ£t6?‡ ê]¡ÕÈ×R&@d7^ÕuÈWÒFƒ ñS*D2#A$i2ÑF9ümc-TEì’D.#«DÁEh:‰•õe;|Ïy›ù™|mžl›§Œòp^BþUªbˆ>Ý„ð(`)vÆ}fᣂœ´ë”Ñ\ 7Ý]6ñõßõ>›aÛÀlEu¦0!õsÖÄCAqÀ1ôœóȪV›vwÉ¢¡hË5^ùæßƒQ¨õn“c)!äêIIoÔvx—qê„q™C¶—qÛçkèhÉkHü ‡C·­çmQKGke>¶0µ;¥"ÔÑ.(”QpTÙŽ•"#Ryåº'Ïìú÷ùYøS~ª/š®ö™ÀÀ¹Áá¶•Ž°dá‘îAKQ8T÷ÉiµBäaЀ ‰‚”ŸÍ§ D¸BžN–…‘œÈŒE{žD„e±„Wùñ“,6y^R‘ˆÃa &ó''ƒ1ßcWæ>¿˜jö·t ²„˜{®C‚q­œ Er—~”Ãò†Q\6ŠÝå|€Å˜‚˜LЫ9*DB“V«¨{ xïinxI¿­ÏôD½ ÔP™Â‚`ñ”jÉ›Z½%Ô È«×´oñ¨Ãþ–C1¼=.&K]·–‡)¼§Às8Òsøöñ‹F%›pD.’ûÒ.ªd¤^$ß—ƒ`‰©Ge“f8Ý5$œvqŒ.d©w;Ë|)Œ½œ0}_t‚ÖjwÓ¸¥ƒ3‡^Þ z,\ORž7u]gÊ9Ò¼)ÀídÅÊOkÔŽdeCª˜Ø¿jùàŽáþš#´a¼s@º¹DÙQòƒ®Š‘œz]–Öa<£]jµÐ:ðy*åé=›ëX#Avžéö©§xCGØè–Ã*§V‘ð³3E@>aýûEÃXá¡C`YʾI<þù.b±ðÆä爥NòSV?ãB“:Õ/×ó šÎfìn Þ‚ï}æŠV|rò%hÖ Íkž® ËñAÍ“àÀ‚â1xÓL¨¢ï§5ûÇJÎÌ>Ï”‚³OÔÃê„ëä’Å4 QTÙdQ u\(.y*§p‚ŽÂF ^)ΩѰI¨žÒëEé¼ßÿ#žPhPŠŠ>|®rDhhq]Õ;»ñf¸kàaÉ“0ÃÃjÄÅ辦–OăªÚvE5Z·ú£ ×]ñž9œ6`³ãú:’,GéçÛ¡A÷xªbØî¸Mš'–í{z0Ji,Mt²ACW£í^Î+…LΙçºÂ[c†_&Â>ˆH…ÇÌs¶RÉQ;Yàìt¶bÂÆˆ‹|„>Ëó ±sŒŸ×Á¤ú·‹‹bæÛÌ!D;/¿´Nì9˘KEn¯åÌv‰…ó§G›œsVTõ…obt—f=íÇIÕÉeBœŽå¨Ÿ®óñÚ­#ýÂÌé²J$ù<(Kþ—w ïФÄâ]*ɃJG¿R·Üå•yKRökK⬌ïËIɺ³†˜àá¼ìS\IIaË 1±ÓÁõÝï]sHöäYC@ßnó²,Y‚ÚÂfcuá9_Ãw`àÁŒBûà—ËŸ yPQòÜOµz9sš’RK‰ÈqÁœ±´È2Ûwr]Ž®GtzÓ!jœi»€+o{ƒ–³<çc| Rñš"ºAV1ñ¦E°·™›>wyš¦Ðz9÷%âágoFnê»ÛÝ–Û¡/X‚[kdYK™#qL§½cžüºEêã•!#¸®÷yOI:Ç)ñ¾zß:ËâdùªX¹xL]pÒ&Í'H™©w’ÆÐ5‡/•mô‘‘7²<¶¶¹Ø¡'s£Yè±ÊQM®'I ñýUa®Í»ª° øò]ÄrÌüŠÇו·êŠovMÖôí4#‚e?½>xìeœ&¬ê(áÒJïÿå!³zHKDbix\bÀâ@¿iI‚Ïfؼ¥™aYç}ž¥€¢?h¬Yy,ml7dTë­»p.K6ݬÊ@¥wF²õrߤ0èn×åfMƒàe}åÝcômÃKžh£r1u”­JÅ]F¯2±¢æ¦#¿œÊâß¾e1#iøÖîXGHõÞ¥:MÁú)½±•Q«¥A6ëêÎŽ¦N>w@7Aá¯w3寴}z`0¤1² Ôìíw*áé%~LCîä´íèE:Î ÎiÝGº©Bgu;k=e$´f™Püíw_Gñª¯œÎTr[8F[=89ÁØrï¤Ogê‚> Ð2¦z»0Źb¦Å¡O¾Ô+E ¼7̱KU4ZȳcC’Ù(½N.ì³Ï- #Òy]_¿Kï” ÷7‰B—÷d˜†.3;* F³9¤‰ØÍ+ŠFöÍ cÍ™P r‡'ß}˜‹¬Ygxøk Ë‘®j•’lZ+žôø««b’ "œ ‡…Iï¡1feÞlÈ•QëGO[uÕ7% $¬ž›ŠRÞ“„±eˇ=Iì“9E lüŠÄ«Œ4Âwi„ϧ½%»[ÿ æªñOñ¼{¼Qïºìż„ÓãÔ[uÏ-YÈúü Å¥W(»öT&\²ló(™òUú(©Üšª2÷Q†ÇE…†K¶œ;ƒ’–íö¹3‰:Ÿ"Ì륒3˱²¼<ÉÊYTj^漌Àg¦ÒŽM*Ž3ËU¡ ôªzÖ/a… d»—ƒµíŸ%šÚÈ1PðVå²9SYm[”"Kæ¶‹/7%Ô!Åú¡ÄT&°äÂÄ`ÃŒ›&'{ÐuGÆø^j[[Ç×ï›Ñö®<|‘ÿÉ[dzÇúQ¦†*R'?êÔpÒê¯úÁËì[¥ P@o½Ì(éˉٜ˜}ÂöÿñÅÙÄæÊq„÷å‘»´'þ_³㸵£æ0q–¦¼Öñ!²ÍðÕwûÝåíÅæäûÕv¢ð#ÍQT±Þwô9TèÐç%ÃòO—þ0ô5Wúíñá¬m?ݽfDϺß~ÿãéþòr_p¡[FcÓ©A(ŸúõþÍ}}B ùc²ô Y–AQ嘗ž> ÈKÓ– LK5䯦;匟ÄFÆ…Ç"íz’ÈOª&p=ã6[YŽt¾­Í$Š”KGúˆ¾]«w¨l«|º°õÄŠÚŠ¼JLmÌ¿WéÛ^-…gÕ„l˘Œh’Qy‚ÔŠc±CÒ«i€;zØ„ ò˜°1ëè$Z±Ð’Ò­“;Ö¾¡P¦òJ{[¤­J5÷./#ª®s6‚:°x“I\I×4™å5ÇBõÍ+ž è*¥œîÍô>áQ>eλ~–RZý$‡^ú„帮hœÞö…PÿR_'èó*p)±Yú8­ÿ‚iŸ·0Ý– Ø;ÅËz×8+Éëý–§t†ôê5èõ0›„•Ï ÿ èH1×endstream endobj 172 0 obj << /Filter /FlateDecode /Length 3540 >> stream xœµZÛnÇ}߯Xäi6ÑNú~yHÛð%†cÄ#°ƒ`EÒ¤ ’+‰T(¾äÛsª{º»z8ÃPˆCàloMuuÕ©SU½~»£Ü úoú{z½Q£‰ÛûØ~¹qÆÚË­·NŽÁm¯7A¹ÑÅXW®6/7QøÑ™°õΈQ+HÕ• ãèl’²φ •.c¾´l?k=¾ Ý~ŪÃè-3jZà69Fã"³)H?!¹MMhZèd&›ênÅ$¶›Ø^lÞndrävúsz½ýôdóûïUØÆ1:å¶'?o²“åV=z ÇÂ(©ìöäzóãðÉ·Ÿ|³ jŒÑ ¹Ã®ÑX£†?íöÆëáån¯µTÃ_ç""¡T¾ý’>y!‚Óÿ8ù6hnCÀamP°ãä »~Ÿ„cÁeáÎ`¥ÝÔ$½\ÚðaÁƶõ«Å ³°áÓ~|]Ÿnüt»ðô›AIK=*'ì¼ èìËÚ^Ê1Z+3Z~T;çG!‡¿Ò‘>>MËO»dÿç'›ï(­ßÈ­¶9¦¶Z½ý}w¾ýa{ó$€PÁPÚ ÃI@ 9jã¶ÚYŒ&¾:?\Ý]’«HbO¢Û†è·V¨ÑZ“ÅoÞ¼¾9¿½%Édg²Ô;M”¤£u`ƒ­rQŽÒo•±ŠNP,5Žq±1£$Ö»‡A_ãß/‰òç:¤•õt¤À½;ß|º ‹L¿¨ÒFÑYª°×vôÒVa~gÂ…E´5FmªtLÖiAÆÑUiÅh@hE:ŸEÇ ÛÑÁIAÂ" ’†óffOÒF&ÎjÒâÆÏ힤-˜*A‘À0Y4³{’v*ôº•­š™­¤°#A`2Û›0ZI…ÍÕÌì"m¤ƒ˜­Ò2Pqœ»»H;¡±T…5v2rîí*¬*’d†€Ú›ÀÓ@‚"4jò>ÖÎAR¤Š«ÒA…››=I;¥ü¨š°wÈõ¹³«°¡¿Í3*ª™™­CDu—Õlk-…D ¿s«‹°…"*÷EXÆÔ¿ôFaM¼V…|mìÌè*lD@GKƒ¨+W +ó·®6—¤ôÿÊPÒã¬è™t ¼ÏmÊ_v´‹a8ßíö!Î EË 'ˆ>‡×XFf!—âðåñxFBR É>ÿpz~uu~s—¶Qœ£.ƒ±Ó>Û¡ÏŠÞ‚Ë¡ÂÅáa{ îÛ)úJ{ªñR8F^¯Aúdƒ Ãýåá.KÒ‹Êj’t­œ¾=ÞmïŽÇGŠL4ŒS6Žu_äö}3{¡ÖˆE"-,`[ŠòËE©+L]áRÆG¸jRe¥“šø•IM+\ m£§ŒoRe¥“šØ—IM+\Š#9Kñ3>s Æ‚?9@ž2…?¤¢Æ•> J|0囈ŽÚ;¨í-`ß­Ú$ݨu®K*n>n©ñÁdƒ¾@ó-QY„G„Ç`%@vñžºi'¤7~x‡u¼j$êÚXÄjlÒa—;n+ئ”E^èÒž¿L=²-JêÉØÚÖJ¯uD_ÆÖÏÓ¸ƒw/кvÒHt?X· ]7D `ßÁ6ƒóå5†$ ?ÓšBÂôG+ª¤:Äš«%wéü›§7“©Ñ«*<Èb°š–á+Œ JïùŽ·Y írhöuç=K"½¡LöÍÿä@²Ü cèiOã–·Ú csåÂÌF È64¹¨ómŽäýcªJÃ:EÅ g"ÖAaóQ§ÉG×p¼!Tâü"…!e˜i’MæÚ%(õâœ^ŒF¥þ<¡OàDI]6t›du**¸èU¦Êˆsºá¼™1–÷ìpB² ݱñÙÑü¨°IDèKpÎKŸ=¨AĆ Oõpü9‹ÛÈ ¹lvTu1'OAºNÛ)=!C4Y”x7nÒ,¬D”ÃE: °MVR“–»ï6oc„΀țçáS¤–øEî]›¦'³Ä¢OôŽl÷ÃUóö}RòkwÊèÙÙÉ>'e¿*(ú’BøJ³ÚÒ“o6'¿ýQ&žÒ{†ƒë/x¿šŒžG“jº¤^Š=#ÇWLENSëBÁìÌ ÿÚ𕤩ê‘+’k¹+nó.hÍ Q/¤Óæ+GN_#Ór°'#ÎYà3\©ÃÈyë1¿è£ÃÕÐÿ.N0Rsw¼hÒ-1ÙÞ+À€kiL…žU‹ß/f]ÒE­¶£ÐT(#E‰)bžŽ™[¼‚ÉAè¤|HÇNV„Ìßy“+·»,°PêYbÒI!ï ‘i§9½èTWGøSò÷Hp_$ûý–ƒ'"âT Gkoó5U¢m†ˆ³¼láôðÛ&À¼þºù†ƒ£qÛ?SEÿ8£É²Ý-ý˜ÀÅû¶u“¤¾V#Cns”$æòQ¾N7_jÄè³£>c\9¥Ã#{Éß Ép4A\8—P«ìƒY ¸dÉJ6bØ@›È¹’î2ó„W©ÆC6Íbô†=ªf„—<Ò—Õ&«æÔ«l/²èQ®Ó1ä,Mb AºÅì9Ÿ6Ë•Ž)ñyx‘é;-cSÞ°*Q_|‚v¦ ¥YŽãÑ*¤^£Ä‡ÉM1®b:s³h¶aâ‚ÈõtY†Œ×¦¤'ÂI ?¦û.=úâ>=ïêXêôà!¢«cæ£Ís§ YÂE_eÐ ™žIÚcÚá:nê 3i0“í]ÛºÌÝH;«ƒÅ¶ÄŠÁ¬[aå†ñímlRAà黕 ¯ó,AŒ|¿#¬:§{0æ\ŒÎÈGÆéD±™nÉÐ'ŠWÞb=)»Ö.)Ø·ªpMǘi%N¹“gÝÀ·Ã»¼ì`þM–çòendstream endobj 173 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1501 >> stream xœ¥TkLSW¿¥€W- &wŠš{g4jŒ1î>¹©Ì)êxM ¨@ ØbyöÉ£-…ûo¡´`Ë«…R ÓüþßXßû~B¿[þn¦,™fã†åeVxyŒê9ÿv9¡WÒôÀ•rÖ誩vèªpCx˳YM¤È! Ê8P…ËÕëî{W˜¥”‘é’ü8È„m?É;u—Š/C"NÃf–R'@[:i®°Ã¼/Ã"OŠãÞL{Ò~ÃÐ7F^êu\‡nhÖzRÝb§ÔWs¦ê¤zq|÷¬Æ ÙNŽ ¡ñ2~ÃèCüÎGãÌâÿ†p7ÊAE…û× VتœæÖsçÁ‚;åv‰:E—PH¦±ëýBýeœÁ²¨£nûÀvé ]ðÁIÑZð¢jՠ̥i…†LÞ/; xI¡¡Ãn´TÖS³˜f>2(ä)Ÿ™f‚ˆÊ:0‚ ï̶æ©O뎒ûY^Fë%’`•Zªàât¬|¸yÊósËuªÚe²B>q´;vm<»*oλ l•¤¥µí×IÀMÕ Ë+ÌÔ©¨ŒÉ>ˆÆ·ÞÞk0]!íÂ!E? ƒËcs´Ø& Ÿã™MÓR-©I—½/¼Pkq¾æÉL¿âùì9Ÿ™`ðW4+ç•Ë5j5™Ñ}ÚÄÆ†m`CÙ•ìâOÞ½:Üeo¡þкz¢\ e´æDT²2ðQíäX :×NyžŒ×µríiÏ=wŠË®[ãEfäÛìå=G<ÃÅ—9ÎPÄ1È¥GiÉèè9>¸ƒZÃncßÚ9‚6´^3:ÆÈ±¦þ~°â–ü–â2=hµäžëA xLfçd; l»Dõß¾V×ÁÕ ¶ç¿F‹ò¢mœS>CÆ›|Ô†ÄÄŠDNE{÷°{ØÅìrv ‹}ýZÚy¥Â>Jý-Œ ðhq÷—¹¿ÚCU{‰Ú‹5î®vÏùz®3άŒuìv8Ä)îf“¼(ÔË,™››“ݨ¬‡*0ÎËžUTTRBŠÛ2jÒ8Ùwobw²ÄšÛŸÎtuZìJž½%J ÁYSQXÑÔ`nî*hʦ‰“"¿×|‹>h&#QQ"<’øàq¥#Íã=( ¶‡ê¾7ÊiÝ] ëq<¡yóÑR´‡VƒÏ®$Z šÏ¤ŠDÂ,Gž»×ãé!YÅK'¡S”i@‰G¦ý9‚V5͹]P j=©9›µ9 ðÒh´™]#5ƒJªê+,PüÏVk¥t9ˆF8h‚÷kèÃÙ„Ád¬Øe´Šfƒt+Šè|1.k„jk#M[I–xYÿºŽ¦Ò'†]‡|ƒ´¿•öÙÞ§|ô%&Ìî‰G„”©^^t‚JfÃtÙŧ@;ÿ¥YûM£6ò*¢ÍîÉG3> stream xœÅ\[s7r~gåGðñ0eã~IRÊfm'‘]I[©ÔnŽHŠÒ®Ä#‹ÒÚ̯߾`€fpH{“JéÁã!¦Ñh4º¿¾àüx®öú\á¿òß«gfïòùOgêüÛ³ õÞks}ÐûÎ?œÅ¬öÉÕïÏ^ž¥¨÷1éóœÚ[ƒê›¤ó>xåM²{ïĨúF޲Áí]zïìi‰¶RNûèWåÿ%SÁ¦½ Y0•tÜ'¥;¦Ú¨åM7ª0U§[xó©óÛ³Ï4‰ò¼üçêÃù?¿:ûú…IçyŸƒ ç¯Þœ±˜õ¹1h«Wq¯?õáì;í..S a÷/&îU²q÷ìRÚêÝ«‹d`VcàÝ¥µfŸsØ=ûáÙs|ÏÿõòD›wf÷¯—j¯rRÆäÝKo÷AÛÝïgc~ø–‰†wßâ¢R)ØÝ |ÖJ¹hwÏ~‡§œÞ}×}ýü£TvÀñó…= ëÀc2žgÓÊdãvÈ„Ó:ÓL2ê¼{ÎK5ÊãJ`°Ï1Ûü߯þí 6#[ã«çg¯þþ»{ü«ÍÙ9»»ïƒŽÞ¹Ý'Áö_.¼ßk °;|&2}‡O T`ìxGr0*k$gA.vIã†ß;mv/.MØûCŽrvA‘§¡åõóÀè ”ÍĪÏÞ¥¼»fÒA;AÏ xåG¥C·F$½Hú<›¤ 9¼#fs•ÙݾE•qÚyNTRλ÷ÁÔ]•y]bÚý$¶ÆfÍÄê²Þ6¦%w8‡†”Þ9Ù$IO„ðUáF| ÉsÊ$_#h¨XÉÇʳܢãë¶ñüÇ$e#lسCî.Hô>{¯u:°L½Ë¦,ĘwҰÿohöäPêWøÞ)BBM[`íoø9(Ç˱ðif¥3p€"­L{[0*Q Ô-“Ë@º(sýä M!»Ý¹‹&: '7Yˆô#7øá£:-¶6†åŒÐ9”——¤w¯/`cm |(kVqª^Ãn+88t´K40.p“Ñ~wÄ· ñÊà¡ØøNÌq¿¬3íþ¸kzy¨ï-ÐB©¾oFâJ¼æ}w .³¯AÛ`¥ÈQP xb#Yc2‡sø„§•ÈdŒù«k0ÝUTa82‹ã]² 9žWZ^³ìµ‰ö(_.¤/«¢â miR3¯ˆÅõTw‹©ó1ÄNÕÐÜjxÀs¨=©¡7BÍñ,kðµ^g²‚ÅU+~Ã$œ’; ¶VJýKs"BGÙŽ+ä箪šä -Jƒ¢ûú@ ál]ÞÃÁ[öèŸ.@® fµ<}WŸ¾©OÏëÓË ¦Ú¹p«ÀèJõË= *& äÀ-æïK3LŸx@H¾“IÙ£Ó -ÿÍ`su ¦>’0—ù:ÚÉ´+vL'°%‡»Â8¡Nÿé­MnÑ(²¨×m=7‚Èy ÍÚÒÁºd«ˆÊAj¯÷*êAÍÿ®?ÁEyJ…ØèО'p‘X]ÜrsóoyÂ|в¾è><ê$ÊÝŖŦážÉÙäù8³ ¨¤9‘u†e€hìòIgÿÓ,Ç„ì‘#pÛtÍz Ńñv¾j’èlNçÝ™Ÿ‚s–ƒS¡;`39‰ޝÑ=T‘hñÙß´ 81V,(?º ŸèdZPçÃršŠ‘NKy¹ îõmX–µdÅúešMU½k )Á‘\›ö>DâÉ펟˜F,*[N×Q×·}ƒœÒa42àŽ_Òà'©,-$Éå±ÆÂ»^c‰ÅC[坯ºÁ t*ûÔàÌo«æÞ{MhÆdß°-nYß”—½Ë¼wß° ³†EQôº¸D:{Ç/Â`3 ŽTH+ƒr ™†„ý¯øU@ñž ÊÊû/€†)'Ô\ìc ÈÃ, *I„m<*P>âîZ<×oEÛቆláÏÏøú¬æAó6,»•ºÉ6 ¬|ìæûª™ç"5á&ı-[I„»³]¾„µîfÁ î@à”Þ ºTìÀxìJ„!PòpìŠÎl;i*êkW+ß“`mŒ.ä™ ßÞOxŽ˜£Ô:Çݾå6C‚gqáäÕöŽ~lØí3ÓËKpäâbègôH°€]*<%S"ÛR*œzo𥡟¶ ï;Ì¥ÇØáži@4„aX`kû£V•´×ÑÅ‹Ð_Ø!Á9€Ç¥‹÷1—ê§Þ‡å=zÎÅĨÏ$z]­f1`¼)ÙSç¢SêRA£”¯êlD[ƒ)#|DÉË£/ Çñ¨¾oPg¬4:ð%Ä~,}Âï5€ÆãñDZèÙzE©;Ã.¼óˆ•øC`âOõÃG-ß±Ì ÊÔ98Oëö†¿´9Ê8H(ƒ˜üºM.y.ÒrÝ3]·¨Y9aðºÃM#• "K°Xfð³|Ï`He8f5.Y›¢v”öu„ä ‰^¥Æ°.°ŸRêgc4žæÁ‰ ‰IM‘ù6þ0ž8£8±ïÔÍ2 -s xñ5JPBøÊé$;ö4Î¥©‹Q—ðøxÈRÖ…$N,Á³Oæzä®wcèlB¤ð zCœ»EíU…z7FsçTÎ Îvƒ‹Ê“Áf¦Áöt9ÓfQ³mµï›?zèñÝå2’5Ïŵæ‰<£eÉ{rÔ‰>x -³?x›. Y VHpš®ÀÓïc¬fuŸ2p}kYùÚ·Ò  ò2ën°<•Hœ½ªFá-ü*wµjç1¨ ¶8˜™‹¥!¿Æo2i?T ås5ýb“¸ µ\èÆmï.i8âÆM\WžÂ<ö-Œž|;Ž¡Ù²Ì´|ÎKÍh»J-k¢“¶kß¾”õÙ[‰tNÂô[ÒJ¬¥ÐèÚ‰2Ýj‹DLmuòÑÉÚ׬+ ÏÂ%G|FH4/YààVð‰µV ’µýEŰ¯ø³!—ö´ ¶0-æ uB½ÒCœ(ª–sšG‡Þª©Õ‹ƒV :¾óþB'BÔ¢î)7Cähäyú\Ò¹vŸ]­©]w]î+}fgù¾÷·'t“”ÚýŠx{ÉóPöÉrQ|]h©]Nüï¤vëë!Gúõ D™Êj a)r›}S eF·{)VËÆÂZ;ŽÆ>ŠàPl"(·ðI$¸X©„û‹<¾!m1žÞ>"ˆÞp+V»Qˆ£¶k–%þ~­&OÚÁW@AóÓ3qlnÚZ xô=ŒïeS$=É!È}?¼k{ÒÅ1u´@)2œN@8¨kž:hÝgg›ØNŠÓ dY€8Ì7Í|\áÜa1¦,×í°áǶ_6Õúž§ªI ¦ÀAbP.4aòZØg=h\hKc—Ô#Îжþ¾•Žt-õÆHænð3›Ëáüpu«'鱞ÔêßN0‡Àvê¾\$jó“”üug²ªAÚÖßkžÆS ®9¬»özŒô¾“M”{_otQ%rÞ‚Ò*mÚ©L©ÑK¬¬=^C¥ù!öê\Åf9U¬ëðzSƒÄÄ‚ß#¿ÅÞší„b/™KÇD@ƒ‚Ë‚®Ì›.Òû@òPä*XÝÞ»´¥‚‚è†Þñg}-llý)曫yØÁsœ”5²nφ<Û•ÚQ‰°ŠBrÓàÈ-‡‡½`Wr8’Q¿˜¨€ŠŠS‰½ŽQÖ(Ç>Þ´ò€5vÿxÒ7b¶pÏñý N¢íŒùáí ˆ4v¸`Ú™…)•ûȇ­5 ŸEªExÐU2¸¤ p»R^dƒï˦ò5Ùû=.@¥MŸ[ÐBBÃ~ÂZò3É`Ae°øø4‰Õ ÍAèÕÐ<D0 ž[úeòþœb?®Rób.å!51 PÛ9Õv »Òf!eJ•Ù=4D.tÒ—tÃ1 ýŸ™ZV®_eœòDõG@WBâ! êZÏu«×R„´£I¬š1ÅbQ‰27GXVlJmçõ¯™\èË wËÛyÀÎ\H×t\uÛ’{ÛhÉ$ú¨™ByyÕfRF ÎFªÊ%r®XZõ+Yx’½Óëô4ù«­+Jr.z6˜ÕV4ï ÞËG=x™öãàjR YöVlªj«·ë5íÂvCð­¦Ö¹Á¥Ïà‰v]Ê%ÀŠD)®é»¦í7m¶•L.mµ;,HH¹n´(Ü]·”B39r¬8iïš“» µJÿ-”£¾i~+WÀ–3‹ü'×q{TƒÈ¡k|?ˆ:ý]A‰Ä~0Bï1èB:B›M¹ I-$ ~sÒÝ$J…Âìn§.îy`ä¸aÝÑ:1ûÎl}+ØHÂSÖz‚2êÿBz|îÝÆž§ÆSÛö`hšªµ”1q–ÀN$Ÿ‡êëvŒ¹ôúiDÑ#?LM†Z¨¤c{ä·XFºá-ÂËGû×xìÒÝUFèÃǵ¡ÿCóFJªYëKƒÓf|{·¬(ÌÛ6GϬ¬£ª¿ç1d`Ypaè>ëæÝ Kšå5.¦(MÝî-{r[½I ÷3–½”;¿q£FªËÏ´ ÛõãL’n?P"TÊüXÁ"˜Q†K=uzÀð;O¶èqØ\ÙàhrØŸy}Gð5ˆ¿Õ®L+õ»‡ÂG×´¾0?[˜[ÐT]ïË’4gàh’SM®:‹êÄ/èçä²fÚƒ²Ö~º7m׿-yC;Sè±m×qK=©]]( ÆP<»Uj¡^©9¡jh"E}Ø o‡RGú ]5äèËœ]mX¸e(À¥’]]¶åKÓ©Ï<IŸœ[˜“xtÕ¯MMÏ‚ýi;ÜBm»2*ÎY]¦3_ozø®ÿ¼¡UÙÙÀ1_ Û…Ǻ½f÷xÇUÍÍѪÍt—uÓkÿÜÃØîÖP¢,QÒWK­d‚ck›ê/ìH+™6ÛeÚ&w:·½«ÈÖº¨hôQ&àc¹òÈR/÷¹¶í*„¹¥ð°½õ]cuWö$†»®¾¾ç¹îªD¹üv•.oÖ÷«l5 MB󡺾èæÉ°a©Ô¡ É:¯u:.¥ÍìJWðuðòböq,ë•öHïÙÓÂIÎ2kù‹ªp|¡›®Êv½Rd‘ÉÌ”¨µNª±· íË•-Ýý_Q‹oÕ»'ô/µ#_JYäΚ÷‰°6Ëg¾¼¯ Ñ!Ë1¹q²FÉæí¦»êÏ%C¿1ë¡,÷׫iF,jSç5 ™…W7ügK™ëÖ+{qé=B?¿ûSK]Õ¸§jÒ›,”c£K9'÷µ}Ù+½?N çj^ð“ÎÿëVªååB¯i^´ã³ÌÂIl¹Ô‡¦«4 Ùp‰à¤9ãAybMù•ü+½§»þOêÔÀј9Eš‡fƒ¶7vÖ¹éðB†2£Oð¤;vR•|] ÷ÝôL.u2šN©ãâÃá Tå™U®ûƒB‹Û ™´ï:íäMÌ[Q¿:HX*›d_7ÅÛî+å;­EžrŸcCiµÁ6©UÓÊ §ßd\ãmc©9þ‡’· x“ o m²ízIEb¨Ý wÆQ²õ)5cãè‡2®.g%;‹CNT öÓõ7ôñðÐ{=f ð­åzÒÌÇãD‰=`åIy¢*.X¶ðúox LŸv{½ä „£Äƒ Öè>¶<Ú.m_©>ÞñÄCeÿØV,òI×¥Nà¼óx{v£µ«pr>ŒSZ5À ÞèY-ÒPTñ¨/ݯHÅXB‰]ő󉶳‹÷̃]!JzÔ‰ë#–ÙÍŠ‡U\_®‚ÒB¢Zõå6&äÞ ÔDãnDWiže)Ú¯O?ˆ‚ЬrÁleÇÛì"{DL˜ÒÐ@Wab š„~ÿܨ­ªWøƒ µ|NÚ9xÁrv8Ä/süßt?`·°Ååôœsœ™ÏɾtÍò¥yÉw.Œ{º¤§’µºˆ Œ{Ù°¥Ô?c¬Á_:|âÁD>M3¢a!¯¹G áß\='*“œ¯pÂX|ͳ£›Óðˆ´é¨;J¯Y%Ô'ñä¼ù¡¸ã¡ç ìT´i ¡[dÞ)E¹mBÖq‚÷ºá,—¨°´Dúrñ?·mÿxÑßX—EÄißþõºF½Á©éŽZoh(uöGvUõmªå»irbpbMO­mç¾§˜ËÌ-d=IŘÝåîG~}£æÙïÊÞå•¥–fº,XñFʳ¬‚HWlg¯cæ0ùí”›v0ïx,²CY=-quCr ˆÊ‰õzŸLffH)Ô~Šm+ñQ¦3&÷dÇ#²”NÝa\¤ÑTúnÂZÚaï™.â2$#©wòÇ?ú_qÜÊä­~‹Žê/›Ô>-¸°~¦h@ ¨+ß•°ž›uZßï¿ ïÅ(»M1DüþœT‰-‘²/ (+ÐaçÍó`lüÅ·ed±A(ÖZDz Ûq×dY~­dа:±€~•ê•×”’ÿí«³ÿ€ü Õžendstream endobj 175 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 692 >> stream xœuÛK“qÆß×Ízµ5SXÔÍûáEPÝuщJ#+%MÅÓPÇÜtîÔÜɹÍéfßÌ™6ßmí-‡f…DËb…wW¥$BW‚ü&ó¢íè¹z®>ŸǘEŽã‡oÔÕÕž?W¨'!Ç͆÷Ï‹,f`ÿVE¦|µlåVH±RÕwù†µ`­Øì(V†Ê`Ll áE׋º²vö‡žöm!î–ÆãÛèû6ýF«œÉç¡íupBfuƒãCR2JÏÍ,~xàï«ç7ÉGHi¦Ñ-âtCŽ#5¸Á6e·¹lTr/Iñ앱¾_]ÃËURš:>·Æ@ _ÄIÏBŒˆ>žÒH%Âö÷CË™ùõI;éåÍ÷¤Øý„8·,Æ ³i‚TÞ– èÑÌ%éIÚ³L±³º—^Ú\¢³Õ4ްož4#«Î–s~°ÁSbfØ¥5hÆ´Frb|´ß¬2ILâ1qG®æ„YÛu³ˆfýrêÝôZr“ ¼vx H¼¦ZÎòrUÆ‚‚Ûj 8ÉèÎb"¯05 B©AbRRݧT ÐF\ø:ðy!9‹‘ºG#­ÝM’¾^Q; C‡]½ø½n—Ûψb‡A.д¶,óÖvwÿ âÉFõft| ßH¿I3Pj¿˜ÈÅb‰XéW‡C‰P‚¼rÀâxãyèTÐéÏOðª{ÿ‡§0)ÌjTÒ‘#4]‰N ¢-É_ÙI¡*WáFX´ã¤ê®à^3j“;™ô‡¾Pl”È5΢«{8ª¥¨ÓÊÉHzCÒAqPòÒës¸Ü¤ÝfµZ°ZŸ _ãß(½&ÀB˜œf§gã'*É;%`ÿµÇ@?râ²°H$“‰DaY<ÇI6Yʼd•«XG€Uaÿs7Lóendstream endobj 176 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 221 >> stream xœÒ-ÿCMR8‹vøzù-‹ ‹ ›÷T¾»¸3ˆøˆø§v©Ô÷÷±òÅ¥Õñ÷bó÷‘÷âÚ½Q"ûDfVT@ŸÀh¯¤¢¬«t¢kpozc,ñM÷÷èçïÞI×%¡Ú§ÆÏ‹ÛÛ1Ä# :Q?f¤{¥ªŸ¡¨°k™uŒµÂØŽ‹¥×ƒ$Ena}{mlt‰N‡xŠƒŠ‹~}”‹œ 7Ÿ ‹ ‹ ‹ aOU¡endstream endobj 177 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 466 >> stream xœÇ8þCMMI9‹ûaø®øN‹ ‹ ›øIþºxyYZ¾søˆøÚ€¤šã÷Y㚤©è÷Õéø€ø(f„€k‹|x™z¤§¦£®¹Y¢\OhVvx¼_¤[‹ Qûq‚’ˆ’”Ž‘ªîͪ±‹¨¥x\g`û4~[ƒlmMT‹w‹v’‘¦Ÿ¢‹¥¤x–xnqriZÁwµÅ­»¦š¤IÆ‚¦‹÷Ä÷£ˆ’€Š‡|†uCQYW‹np»¡™Â”±¦÷’—¯©À¾‹‹žˆšøŽûa¤±å´¤ø'¤÷ÏÌøŠøŒ‘‹‘˜‚›u~yƒxƒЇb…uYû\ƒn‹‰‰‚Їa> stream xœí}ke¹uÝ÷B~DÁ_rËV]¾É 9¶$CP"MÇF AMwOÏ8Õ]­î‘¥ñ‡üöìy6¹Y­¶ÈÂ`Ð÷®:÷n>67÷ZüÕíqu·þ'ÿ¾|{㯱Ýþææ¸ýáMvîšœ¿-)»kÍ·ooJ;®5àñæ‹›ZܵTw[r<®ÁÃE©®]s¢«’¯áš¢ºj úªã5VõÀ”b¸â½Ô{±j«×’ÎRÉw]¨ê5æ¦ U]¹ÖÃM…:¯êÈt•j<®—I=ï¸}só«GUy+ÿ¼|{ûƒ7ýs_oÛµeŸo_|uÃÕìnTƒ‹ðöG¹:Ÿn_¼½ùÅÅù»ûZs¾üç;_®G åòý;(Ðá‚»¼¸«žê=`÷!økkùòýŸ~ÿ'ˆãçÿþÅTm‹)úËïîëÑêá}»|ׇkváòßž»æ§?䛿Z.?Ä?”ã¨9\~ŽŸÝqÄ.ßÿ¯øãÚrt—M¿þüâ£E(ñOzñ¼þ¸TŸøiîðÍÇ ":—¡Ð|ËâÚå'üªþHø&pqj¥…öO/þêZŒªÃx­`î?¹yñ—¿€º+<9Ç˺»O\Ýåq€ãÓwãÓÓøôëñéÛñé——ññíæ6ç…ƧoƧßînãÆ§ÿ0>ùñé{g±ß ð妰ç…ÿñüxÞè—wú#Vt”–’ûdU½W÷·ÏÜVËyŸÿ1>}½©ª÷›OßOþ_;{~ó¹>kÿÓõwZóõùä¿:?º]M*ë¼údkxØZçoÆß4>ýÝøô“ñé õ@´š Šr†À©¶»kÙ_ný›GÚ6»Š|=>}Ü|ú‹]=ýö*ìg7…ÿ)Íþ<»RûdW:ŸþjS»î^ÿ÷t¯e`„RÆÓJkîiÿÇ{ÚÚ½ûÛ7?C+î ^Sô%‚ÛpëRw¼© ˜óÃëÛ¼}÷Io œÛ|Í!Q»cþˆ×TËm ¼Ä†îØåñéÍ//?~÷òéíëÛ¿ºuPºÿ|ƒßã¯\,×àn“KW_È»üèáýûoÞ½þø/¤S™ ørµÞÆ\ÁëIPtó-x}uø…Žàfô¾Ý-´ÑÛ&/|½AËàœ•[ïÁ¥Knqóƒ¸C—èÍyqƒ7rýZðº¯.„qmû¼6å\¯>Œ'p¯K7*Ú¸¸»^}¿ØU¨L^Ìï᪇úl£Èo ò8ÔÐûFäëéE–?¿Ýüàs¯§7þãÞ´M/ûGºé¾Áõ‡V`ŒJ«Åû•­Á&/°žÈã™~õLEõ?óã¬{°ã,-c÷þô¸ém-ò;ÞŸKÜßú»‡5WÈ0’Ô`뀯.°n‹a\í¸þpk»ï…))àh2®® Óð—¢ãëA)³1-²¾ðòzüƒþz%]›«0 šªy;¹¸ÂJÏ÷k+t=4ÊúnR’·:êtãìÍ«õbž—õtqH× K¹µO7x£âF‘C€Ûxã gѯeîW·£]]WWø7Ö¸–Z®N%´k.ãjWqÌ k±ûÕøo:KâŽk…¥íRnã,ŒQ£ÜP‹Ôˆ=6¶Öõ¸º¹Œ€~uƒuºnú\î~uÂÆìܸÚéêòÚQÆÕÍ·«?¯†/!†u …)®Àt0Ê ÍÂÇŠˆ¥Äýº†hX›a¾][}¿.ÕæÐØ g ¬Õ;. ÞW|Ÿ¨óY~µ4øþƒÑŸëQŽm­Á×µ?ÛÐÚ¸¸`“O~}±~1ôŒÇô«]¶ÔÚúvKÉñí|Bsè·³Èú¾ËÛñƃ”$ûf^LîŽ6_#i]K1¨¨ceSQ-²þëùýÿˆ7ÝùdÁÕˆÂâ“}–ksæô¾Ø\u"ñÀEW}Âçø=®šf5§NW̓ø[…¨«–qó­BΫÖQê­BÔU˘ðV!ꪥ¯½Uˆ¾jn³o2]5ÙC[è¼êßîp» f èûPãŸÇÝ}ÃÆ”a¥pßZÃÀç%ÁÚ,@Û%ßÝg|“œ/…–§7ž¢P¨rõ0lÓíþáF€VÚåõ‡»{˜#–/ßÝ~ núÇ¿„‚ëåPaQÒå§OßÞ~ûô´þ},?ž¯Š³Wì+,gݘ¦«Zð×Ãë«ÑW%WÁ×ÏꪎLWE˜¸ÁWW 2]•k¿A_%Èt•ä*õŽŸgêak…Ö°ÀÝ ÝÖW°¶Ç±¬y\=}Å\…/Qÿ%Ë_R„/õü ¸7§mö‹¬ÒYPfª|k&?þò1À›UX}þò1à^¤ÏY?†šo·¿÷úqÜ€—„ooBL𺹄ë‘ÈŒ$t5ñ…‘]‚èaˆd(éø’LndDg©2p³œ)r)XxrV€À㣡L10‚Û€À¿‘Ž©ÃGƒƒ^äWåJË\ªPq7‘€0!Ðf<¯`¿ú÷Ž‘Âåÿ§.Dªüªñò¹/‹õòŒÀÕ3£Î‚4ö~’ôÝ' ^sœÊÃŒ46Ô‰8Ï–RHdK)$³¥Ò®ó£<ø€ó£h4#Ý© Wu¾ Ìy~x &4!ùº —&‰nت#ósÀU]\þL̽³¡R¢Æ0!y±TB§q¶Tv‹¥ wç¹²`Lt^·Dq)¢‘#Tœ‘0,Õ\q ©ÝRÜD4ìn©Ž„a©âIÃRÙ1R‡¥¸Ä0Âe©®ÀO‚žÒ å #IÖü¡—†¶T>”) 9 #kó! »2õÎ\)b,t„ Å ú›‹Œx6ôIÏ@b[?™ùÆNÖ”ÜpdÑ¢ô›xϦ‚ÊÏ\<ðiÈT™º!…MCù/0zlªq: ^ ©‚D6t·"H¹\•ÃôƃA%õšˆƒ„0ð@]ó{Ã#ÐT¸vü+pà`ކŒnG-‚c³²ròd«íÎó;­º·Éœ Ùª@A=¿(¬­ÐV*åà§CÓ†…},P×| nmÃà F…ë Qq®ÓËoÚ5 ?ÓúL‹8¹¼íNý ¦¨Š×’Åé…yŽ+œ1@Ÿ-2X‘=^zBxÿÊkâÏ#Žo h•¹4³X)ü+hœ¹ŽÁD¡qi¸0øvTš‚ÍŒ—ǯÀ­Ö×ù5¹©˜´ÑTøDîy卨6#>1QùŠsXR@h%$ðúf ¾ ŒÏ0]C¥ìé\Ø’¥ÐÏ¡ÆUüÁ–BÇ] ¦*Ò$ 4íJA¯Þ«Š§úøH2LfV°QÀ#=?*2U)áhŒÀè­Äá¬A@Å P¡\ìêGô²¸–ÈCAGY®I0)Ú>¼a¾ !0B£±*a\9p M¶ÝèÎ}ˆ©¹²±`œ;øµÊÁÆ$²ùÀû cÂ?‚:¨X]­ÈôPÁù x.18E&+8ÞÏH¢•,! T6·MDpÚ/ühbðõÈT­7|™Ä€´ ø9™Š½@Œ—d*ôÃ<#žM…s‰-Õ‚Œ¸!K5/Ë–Ã%Y GqÇŒ#MÕäš$¦:¤›7ð=2Ål›øa ‰»š÷3nÒØ4íÖ[¿ƑҌ46UíS9†ÈTç}Bd[ÏBïƒvt ˜EŠÌ3F‹ì5 ’‰b+'ƒC‹ì5`õpóo0²%©0Ù[òÒ åkÄA2Ì!HSÉôÚp “¦U¸¸˜¾GO/É…Å" Ç4Z^zñDZ&‡×›<È“SGëØÜ[øäÜÁ4Ì­¼•LfB#ùUcçŒÌ~.º‰BüÝÏmЪÑLhv^r6èØh&Ü`§¢¡ÁÐuEz&ú·‹ ³77kòœÀÈ3™—Þþ.Õpõ¡(0Â’#ŽS¾c$pp‘ÌHfG\!•Ì„He]'ºmã¯Ì„Mx€$ì7„ùI%;!B½.þà%¼ß€£)½½% ‰M…ü?ýüŽ,åu\ð;œ\ùG¸Ï$/üpÉT0E8®p<ÈT^ú€x6:µ‚$6ûþ„ȸ·;09“©p^âk`r¦K"Oœ°Çк×HA7Ä-'àx°©-«ð¼ˆÇ*á7‡Á™-•xÒ¤ˆ¥·ìx”CîÁ7Á@GžS¢X*r龜¥€4±TèQÙ_ÀÊ’FÂ.±n´º"ÓqápüV]Ù,Ðï©%AËw|\VòÊ'²pÆ.%ŃnM xèvôw86oÿÙL¸“É’ª¸GÒȱ1¦èÐé@ ð”; 8NxþvQO´€4òìp¨üp¨²/_ ‰Xm„¹&KTìè÷á¨Ù!íÁaºòƒ¼ …‡ë#réhÍ @•˜˜¬¢‹ŽÍt¾$z­™+"ñmÀãp2Ô*Û ½¾1úF²ÁÊÎÑÙÜ{\"w‡£!Uìäû;B“¦å»åËc-.öw€6ÍC_oÁŽ ¤²ÐávÄ—”À†ÂM;¾MI¼|Ç A*j b<Ž,C@åâÔÀ†òž#{÷éÉP£3ã>qkÒ_ؼèuIŸ’mžmåe); ˆÈK@æ`‹/ŒŒ¬Ï}ªðôˆç` ®µ<#‰ÍT€þªÔ†w[Ë˲ OÖ˜Zf ±µ‘‡Ce’µIò£ÆÖBŸ^Ô{ö0Rq匆Ä.<Ç“¯€@’KÇZB¯w.Y Ú¸ü(D¶Vp2vø Íèž0Ð8Ú¼ 8>z6V2¦{p9(Úú°êcfcÁø_åšÆÆ‚°i0‰Œ*»Ê€ˆ»€KQ. ´n28 NxV -ÊÒKƒÄéÀˆbc„ç„»ä¸RÑ OÎ2úGžKr¾ÉF¸:9žõ ¡ù0¹èÅi00xÜÊ•èànλšÀ“ËS$áC‰¼pwà†‹é ˜XäÐö™$ðyà†@$¾HAߟÊÇ÷E¢JåWà÷ævFoÉSp€v†¯Ã+:2UkÒ´C:ØT˜É"ˆgSáhÈ…I’ì€qf®P((™*õy%@S$SÅ>]¨2•oÒ,§B¦ÂÉß!“שÉ2&T$ô9¥¶Àù ~-ˆÛR(´OXªB)¼GS] p>pßJoVèܯŠÄ&¡ùCuX`^©‡tŸyÜ­p7“oÓ(HA‘b®œ&nÃè W‘X]Ð긶ðOk‚WwÑR˜=ˆ8B}fÚu c—¤–Ï#¸0”à€î-ª#¸×ÂÖ帋Eº»¹0’0´É5FH8e:œ»¿ýWõ†ýx¸¸|Bï0!Qïž5¡©¬ ¡úœ®s°Y"¦ÓYWÜ4ÂD!Ò4ÂM#Q‚µ'ÂV!Ô®'€fD‰Ÿˆ—èò‰P7ÓwÅ I‹±¤KOu{ðÐ0!8zL€_ÅcFx˜š´‹‡» 9VcѨ94°NHXÅ´Fx Ÿç'$¬ÆâùB#<§LHZ­ÅsÓ„¸ÅZ2ÇMH^¬%s儸ÅZ2çNHž­Õgn¸ÅZÝÐ{ aOB#n±VwH4’suÇF#n1Ww4’suGK#n1WwØ4ÂNFâb®î*DH”Õ\â‡j„}U…ˆ?«‘²˜K¼bøÕ\â]k„=p¤Õ\ìÈkàX­%ëðšA#~µ–¬=N¤¯O4’kõuŽFŽÅZ}½¤^Si$,Öêk3…ÈúM#i±V_j„–Š Õ¤F’NçyH˜‹|„Å/' øTäÐêb-Üfœ­…ÛŒ³µóù4‚ü 0#y±î3ÎÖ‚¥Ãb-Ügœ­nîl-Üfœ­>Úâ<à6ãl-Ügœ]=ÜgœÃ0¸Ï8[ eæµ=î3Îæ‚ñt1î3Îæ‚ñ`Y.â>ãl.h»³«‡ûŒ‹µl1? |9 ƒûŒ‹µÀY¬Žy÷.)ËÚ>Ì´sBü²¶_(¯‹4Pÿs×-z;:cGÎK37¤ãk„BŽ¢„²{B#åA†~ D ͚ϱ*eÜ~Èj8KH‘/jÄKè—p꺌Š)6I½í#g >–+®”É )UDÞiÊù¨Uã‰Â•Uõ­I›bÂf=a4ÜL zRAä˜&žögìÿ7ØÉaì_;ûU¾uê«|í¼×Þ,NÞë@ïµ3×NÞkêLÓÁ{MB¯¼×$³“÷š„Á:h¯Iè 'í5 m㤽vòÓÉ{ÍÒ©NÞk×tÞ«pÒOÚkë¬C^…@§::‘W*€x!ÂÈj(c‡¬x0—¾ò’úêø /›îapÍÈÒ*á^Sdù•p“Eh’´Bƒ¾S…ÌÈk8:!XÖyœÆ'×ÐZ09×¹d²^L¸·É65erHjF+­;“©3Hym ½à_NN|c^â&ôHøxœp˜)¯”SJÔ,«ih}µW0¯¸F ‚漦Rh±´pOfå¬)¯‰‚€|$Œm Û—ƒÐz†88&ÕÅÁ†„Af¡0s@"a°Z*‡ƒ‰8BBq¥F–:#æ¤ØG—\zá‘„¼&W ¡¤zÖ:‡YÐx¼–P Çó«s¸&aˆû#:ôL­” OÂXµe)./ž¸þ$tÀ!|[ /%¢â1’CPP­s9Lå8Vª¼Á÷8b] CÅÌ‘xXBZ ×ŒW@P—…Ž«%”Þ>„ÍØP®S}%>—(2ÌtGŽá%Œ MyM®\BŽR£,F RƒPL¥õ~(AÇ„Qଯ ÅÆå­8x CW¬X pâ„$AЄñ[æqœ”Ú¬\AC^Â8,²mMø—No¥ˆlÂû –‚¶¤—å ì&|}¡¡rð7!±7hÆk*´­ÿ8bÈ yÇÞJqæ”Û`"S(Æù ¼D«¡c¡1JDf‡Î“¨7¸DÃOØÑ™b%Ñó”{Fp°'dx à |ʤLÎÅé*f±Û$±|@ú/ñþ”…¥Ó·b(oИ¢+[ J!gòöCÊ=¾oQ¤Ê6 YÌË;äù “7CIÒBeĪbâ»&áøá¼ñ’p@ã)›3PÉAÚŸlà(§—÷xÀ2Â>éÛ@€”N å­¢„›\¶“Òå¥.xË 6~EÛRÔ,x„”­«„£Œpˆiw €>˵.n²I–Õ^5ß5á "ÕΛmÔHy— ¹„ ½NʽÊeñ¸ec/‘Dœ0`ió/á¸R5á5¡‚PbqMÈsæ*m2&f„Ì‘4åp”ÍÊDTx~MÞÐ$„»Œlzrh¾+Ý™‡}Þ;¥gO|Wê®,„#[° E-…§È5™h„Õ„Wª¿þ+Úî¥ZçñŽpÊÃá‘]ã„“Fv–O)¨¾û ˆçN$ÔДªtWÙÄ$uF$ot«¡A6éIrד ó„ª ¼©HדwBØ£á½y:G–¶ïé6 Äî/Ð # €J#D_ΠA(›€:?(aç(Mí’Ž@ÝEÌ) )³ÌÝãHkH8K;ÍvÕÌé e!¸5J EB¾ %Y¤2ÜGÉäÍ|Wê bÎçH(ç oÍ9Ô²¢æ»&ÔjçÜ‘„3£XŽóK΄B€¥”„ ¬l!i* õXVƒ3Yj!h¶+éª ™˜óah*c‚äÌXcdî çÕ$œä˜s"¹74%VA*÷¨,#%ð$Bˆší HÒ‚dÎaÏJ(–й­Ôâ΃BJåŒ#@B/ g%Ñ ~0’—*,á¶’ë“pª,Âm l(6Æ™#®ÁÁµ×ó¨ÈYàWâT+B'Ír:VÂé4Ë5L\AŸƒ‰5’Ö•p‚2&§~%œ`=‡²ÃÈua6•$%œq¥4œdFÏÁâD4@:H’ÕNÂäuô„¶„“°þ+%½s%\zÊŠK8'3mKÒæÈ2§Ö‘Ç&´_N¿K¨‰#æ=òó˜À)i|ä :ÍvÄ÷פl@r £¦»&œ·™-'I…äv2¡ˆóNä«åÔDòU“¦»ÂDBÎo$÷6h²+é c’ó$É)>äšÆÞ7Î$| ùeTi±’‘™ÐÐ\Wr¶™·"‰€xi’ü H:±$ˆ&t:B'úðRy˜ešÐ`ú$g¡ЄØJ™ª€aUq2kBCh¬œïJK&IN,! Çy³°Àè\DÉ­Mè˜m•óo ÉB[ul¤(~ª¤ñ ‹&ôf:ûµ²‘bg6IÆ0­ná±RV1!ýšÄvŠŒ-ÙÉ„0£›˜S%ý\Û)b0îq¤A'ñ›Gªô¹ÖêéÔ´å')×€DáãIZ6 |ÎÛ†%ÝqÕ4ׄN¦’þMë@yGNOè" Ÿ—ÓÈ磧šR®šåšÐ%âQO2ÖiUê™8ÉYí eQx“ÌwZ$á½z² WB+åüyB„µÉ9ö€”^ÎÃ×çꟋäžÏOH„\„ÊQ¡ÇÁ  ò ‰”™ Ý:¨…]@o„Ô*2ɵÓ…¥p:“,ÕÅdZŽ S— TëQ³\ j  %l„ÍËä‹„ŽrgÂf¶UêíZHÔØ˜±-Dê0,õ dîß|g&ŒÐà„ÛØX¾óæ…x¢ÆK!§Ð@œÉaq2¹É…æ ¾„y04ÿgš¹2 Í„öJ$Wœú¸Š…ãZJíäYá¸âœaŽkáÕ ®x÷ÂNpÅI—‹Ö ®ã9ßZ8þxò[±°Næ·dD2ÛQø­àšêüÖ ÷ãÞÜù­XSU®a~ku»µ:Q%ìVœzXY£³[iÉ7av«„ÝŠòïN¸¬ÌnÅw.+; 8rÛëìÖzÔÎýz+½LoÅÉ]x©LoEá,Ó[)à1Ñ[Ñ«©B]õb¥®ˆÑé­èvI‰…ÞŠ Ço%ôÖ’»¼E§·lÛü+¡·¢Ÿ…ðÊn"rg¦·ž®¤0É•d¿AØ„‰&Bx%Æ!yЇ¦·’(DUšx¨iñP"äFª áÍÿ‘(¡Ö2E’|Ÿ¢Ù­ä³á®vG¡³L;½×ûLåîüVìÞ|çNp%}¬‰áŠ3;ÚâŠ×âŠRWNø«Dq­]oP\QP‰ Ø)®(qÁ-°S\q¡ÉÝlGzµÄXKž]ùµ–‚»¡é&ïÂõ5là _ØRŠWÖ±%&[î²¥7 ´¥Io¨Ô–nm(Ù†µ½!v[ò·%ˆ¹%šoÈè–°nHí–øn¹ñ–>¿2ì CÓ·T~C÷7ŠÑ+,`ÄŒ>ÁFÂÀÊ)+—°‘T°² «4ƒ•oØI£Ñgdü¬ÔßFÐJYA+=¸‘'´†FæÐ(!nÄ­ ¢]´ÂŒñF+ð8+@Z‰ÈŒ¤•š\ä(­dåVÖÒ(_qL+ ¹Ù´BœF¬Ó znD?­0¨5ú¢ ÒE£Ôˆ˜Z¡S«…jåRg=U+¸ºeµÂ­FÜÕ ÀZX+#k¤f­íF²ÖÊÚZé[#k%t72»VŠ×ÈõZIßì¯Q>ñ`+0¼Ñ ¶2ÅFÊØÊ[Ed+šl„•öòFžÙ(8‘g+½‹¶‚ÒFtÚ SoÄ«¾µ‘À¶2Ù)m+·m$¹­l·Uö¶âßF ÜŠˆo„Æ­¹,7šæÙs+näÓ­ÄúF†ÝJµ¯rîVò}' o”㸼 ßˆÔ[!{#voñ­f¾•Õ·ÒûFžßJø[•s€9*À'°9rÀœJp¬ØÃ 6 ØCÌA ö°{ƒ=²Áë`N~Øa0‡L؃(6‡U˜ó,Ì‘öXŒÍÑöxõ{LÇæ$sÖ‡9IJ9VÄ=bŽ'1'˜l9±¡˜ÃRì*öÌ{,Ëzr‹=ÜesŒ=$Æ$c›ÙHc­1ÛØÃoìù8ö{ÌŽ9ŠÇ׳9ÒÇû³ž dÎÚ/dN 2‡ÙƒŒ6‡Ù‘ÖC“ìÁJ»Ã—ìMæ'sÎÓæ(({\”9RÊœ:µ9˜Ê^e¸²‡`mʲ‡i­çmÙ#¹6ÇvYZƒ¡>XzĆB±|5$ KÔ°\K÷0”KÙPK,ýÄPT ‹eCt±dC˜±¤š ñÆ’sþŽ¥øìh@†)dÔ³‡îm泇÷ÙþÌ!€æœÀÍQ‚ö¸As$¡9µps°¡9ûðXNG´(nY´1®g5 UI‚b`öª ‰u@¸« H×:}g檘¸zÂ[UÓVÀ¬U0iõ˜³ª¾3eUA–`Âê _ULWU³UÀdÕt®ªò°‹ñ4 LT=á©* ÏVé,U¸Ù*£ª€ë„ÔÅRìùNHX-Åô„ÔÕRìˆOHX-Åý„ÔÅTVª¦•j„i¥)‹µ:³T#~±Vg–j¤,Öf©üb­N-ÕHY¬Õ©¥aj©Fâb­N-ÕSK"ÜRÄÅ\\ª‘¶˜«“K5suv©FÚj.a—j$®æv©F˜]ªa—j„٥ɫ¹˜]ªa—j„٥ɫ¹„]ªa—j„إȫµ„^z"_ªæ—j$kIDLø¥ Š©F°–Dè„bª‘:¬%aG¡˜žóZ§˜"â&Š)"ÜíSœ… )SD„%+SD²æ˜" W0Å'ñÂCŒ•eÞíÓFÛé'ÃsOš;Âo SÜÚ‘8LqÂæª0Lq¯G(§E,åÄ·èSJ"ёԄKž¢TM¸$5# ÓÆcÂãÉ0¥=gA˜bJ›‡úLÕ„;ƒ=bLSÚôã Š)î±Ò)¦mp¡:Å7ô¢ L1¥m}A˜bJÔö]„sJ SÜ Zª0Li¿I8§Ì0Å}+ ʳ߀y“܆)nýÈžŠ0Li£#1 SÜ ’a˜""ûQÒÜÏ}&˜Ö—‚)>I˜¢Ì/¥DxÞE~)OȆÂ/­œXðxòKñ-e÷Fø¥´‡&(Ì/Å­#Ù{`~)mIñn‰ðKk«cƒ‡ù¥Xåyâ—â–\Ðç©’¡„*üRZ-ËóK)3EóKqÝ7©˜_JéÂ8e~)í ôRL“éÔQ¦—bÓ’Óp…^ŠˆÐT…^J 8Âezis±Sm…^ŠˆlÕ½›17?á—" ¯)SÜð–K„`JB²YÈSÜ-•Z‚)"MïSJ‘ÍL&˜R§b qŸª½B…_ŠHß5e~)"²ß-üRJi’}T&Ð6¾>P•Ö.‡Þ¡%„7h…_Ú\×ÏèüRD¼\ÃüR…Á”ÙBöb«a‚)%ÂLSDâD0E$éMnBd«_¦ˆHæLÏY'˜ŽŒÁ0¥ü~¸0L)G„ñ0Ô¡w÷ ‰'Ãô\Äu†)¾l„¦ˆôk˜aÚüàý Ã+Ä Ÿ”©#TE 0ÁG符˜@Ç}¾3L±½ðI™aŠÃ¾¤ÔRüø•„aJ¹ƒ|0Liú`c Ô"û|ga˜â¤#¦Š)"r|*3LÑ^Ò´˜aŠ€0N™aÚÆ[g˜d0LûÁtÜvLéÉú8UBâI0ůNÊS|!áx ÁtÌ™ƒ`J-p"˜Òzœo+S¬NáG Á‘t;rˆè»ÓiFd&I§~ië,ôÁ/m^ç3‘­{¦³Káǹ”ò)…nÊéÖˆHN–Kò«K‡ûF–53I*KÝQ8/ar©ºKéQ’!ÆäRU!—""D[!—"ÂÙÌD.¥Qáš2¹tø(ƒ\ªjJÈ¥ÍwþT'—"" lB.%LäRD$oÉ¥ä I’^3 Ó ¹”Rhù&—R’­N$Dn#äRjE’yèFgâ¬G¡—žM¯ÓK ú,UBôYªpfn§—žmºóKG·üRBøÆÂ/m>5‘k²ÄZN¤Iw’R'Ë÷ ² ì]N¦`‚)"ÌêS0Á”r¨oÏW T ³¸ÎÄz©FÂ5«±jÐK áz©B„^JcWŒÐKÏQ¥ÓKÉõæ÷z)¥ó+0½ôœ:½‘~¸j’µ`Ò:¿”F=¾ðKI:ó™~Üj;…ñ+¦˜ŽåÃà˜âœ)Gù Ç”àùéÂ1íË’A1¥¬yºq§˜ââF Â1  Á1‹¤Á1¥uÿJ8¦´ÔbRsLi5¦SÙq Ç_ˈÉ]…`:‚ƒ`:‹ƒ`:”`ª6VíAgðOH«öŽ0Át¬ÁT!B0ÕHœ—íƒaª‘6ÇÄÃT#â&($ÏA±Á0Uˆ0L5 Sä9Ê2¦ †©Fb·Õ@òe S…ÅT#aŠuZ‹êdì„9È2X6©‹¹:[G#a1Wgýh¤²ÿ}"ÂÒHXÌÕYH©‹¹:™I#a1W'Ei„xS j•Fˆ²tD|…”9&6ˆ^ñsL¬óÅ4PkuÚ™Füb­N_ÓHY­%48øÕZB§Óˆ¸ i×¹€B6ÕHœcbƒlª‘6ÇÄÛT#qÄÄ:Rc ÛT!Â6ÕH\%äH4qÂ;Ò)–‰â†ŸH–؉0›S!LøÔ@\Œ5ئ ióÍ–j9ª–ǺR]-vص¬Ú•ykÙ¹;¯eù&°e [B±å^²¡.oØÍ–mXÒ†H½áZ[>¶ål^·å~oøá–Cnxæ–‹néê–Ѿ’Þ-/~÷üzÃÁ74ý “ß²ý"À"°Ñ°ºF›Àêl4¬Â"•`ÕvŠ ‹$ƒÑl°ºFùÁHCõ#0±Ñ °:FËÂê]l41¬n†ÑÖ°ú«ãa´>¬ÈF3ÄꊬÒ#Vd£`bUNŒŠUK±‚*VsÅè²Xí–¾‹Õ€121FIƪÍli¬jÍ"lcµovú8VCÇèì)žUªÇjù½« ´Ñ 2ÒB«øÕ'ÚhY#£…dõ’6šJFvÉ(3Yõ¦Â“U2JQÁ¨IYÁ)«Iet«f]«î•ÕÆ2úYVck£Ãe¤ºV1/«÷µÑ³ºa«¶Ø">¶S'3fFãÌê Y©4«¦f׬*ÛF¹Íª»Y¸Y"ÎjÈmtæ¬Ñ«³švÝ;#gÔó¬ÂÞF…Ï*õ5¿° þm4­n Ñ4òƒ…B«bh”­âF1Ѫ*β‹V—q£Ýhõ H«¹Õ’\Õ&¥Õ¬´²–VùÒ¨cZÍʦUâ4jFÐÓJ~ZUP£jÕE7 ¤V¥t–152§%T«–jU誕eµÊ­FÝÕ*ÀnTb­’¬U›5Š´F´v£kkµo>®‘ÐݨìZ%ÞU­×*únD­.°Ñ¶ú b«Sl´ŒWµc+‡l“ª²U^Þ¨3[g£òl• 7jÑFPÚhN[]êvµÕ·6ØÁèd[)m«¶m¹­j÷FÙÛª…p#"¾Ñ·ZäF¯ÜjšotÏ­6ú"ŸnÖw*ìF¨Ýh¹[½÷&¼Õ7ÚòVÞJÔ[{«t¿Šá[½ü¦¾ÕÝ_¥ù­zÿFá=Àœ`OØœ6`O$0§s²=üÀ`NP°§,lNb°§5˜ì©›“!ìé愉åŠÍö‹õ¬ sÆæÀ s¤†9uÞ̱9½ÃžðaN1…lαç˜3Iì¹%›³Mìù'æŒ{ŽÊæ¬s‹9±Åžê²9ùÅž³ cŽ˜ÙœBcOª±§Ù˜oì©8›“sìé:Ëù;ö„žÍ)>ö¤sÐr\Ðæ£Òg„ü¬ØßFЊ®º‚Vzp#Oh% y÷H!²{¤Þ=Òïi„w"»G¡Ý# ðî‘FY8 Dv4’eåt"¼{¤'K§ðî‘x÷H#¼{¤Þ=Rˆìi„w4Æ2·#¼{t"}÷H#ù´– q±Vß=Rˆìi$/Öê»Gq‹µúî‘Fòl­¾{¤ñNDv4RÄ'?Þ=Òˆ_¬Õw4RsõÝ#øÅ\}÷H#e1—ìiÀ¯Ö’Ý#ðî‘FÒj-Ù=Òï)Dv4’VkÉî‘FŽÙZ´{ô³›_Ý8jjñ–ˆS°L Žs‰ ›»Û¯oÿñöÝ ¦©Â ä77îöïáÿ¾9nˆ“Ÿ¹”ë!»N¾PújGo¾Ø\u"QÎú‚—Š˜Êp^5ó*è)”%q>°ꚥ ºTçUÇí|ûãÿ“^¾½ýÁ‹›¿þ9Ø i¤0ãܾø Þ–.¹…i¯»Å1·/ÞÞüââïî™™.q|Êô ó—/õîŸ^üý þúoƒ†‰˜‘‘‰ùÿp‡ ÕÒ.¯?àa¨:Òå»Û¯Þ¿¿Ãã"J(—ïà/˜ÿUÒå§OßÞ~ûô´þŸó·/À¤}›O½¾Ùøûb{Uâ¼eºq…N½¾J}UÂ,XnWudº Gu˜ÕU‚LWIž¶ºjdnaÞH]¥ÞñóÌ;ŒÑ«CQeÜÿ b_0ÇݽÇ>’3|ñô7$àKÔÉò—áK=ÿÓÊi›!!,uìðàO˜œ‡µü‡×PæŸ=[jpé`€õ˜n“Ð{¡cBÁ³¬à *óßÝXÝ‘Ûåú˜\ —7¿¾»G_ >]> ÞjÉåòšåꦋ¿ž—7*õ_ÿ<ê±H¸È­Á£_¼‚}w„æêcu—÷úË7ô,øvøË»;¨ƒ#—pyB´ÎçË|Ò‘]s—ðù¨Jà/oïî#òm[¼üòr‡gAÕìÝåQÝï5Àõ€®–._}‹8”¨”Ë/ïð§Zo—º;¸<žÎŪÍÅË+¼èîòoîJõŠõìÕçýFßÂÂ[ªTÁÉïõÛñmŽ …‡V¥y”׫a¾;¾S©¸Ë;á#~‰ðÌTèQ±A÷Zó80à C­ÃôÃG]®ñøoùêâüT»ôË¡e YÞûË×w¸kq¸B¯,WsEó]Ô½¿’º¥Ÿ©’¨·ŸJø~®]lmw×À]—æõn®¡{l²ùˆ£V|«ø‘*Êò\…ÞŸírߟr|iðéYP<‚´4ÏOòðÖ¾Að–ª?­ÍaÔïTÌ7Л`ÑV¡7ÍÍ |„©Ó_¡ ÂXÿæ¼ðþ®¿ØÜƒ°5áQAÐ1÷ ÷-U ´Ž*¯ÿzÞ‚û2¼4v`Ÿ±/ß÷Î|ÁEð„¸"¨nCkృé0žé’£ùW5SKpGt±±¡f]NXk·5ŽÀe P *áÝpÛs?|¤1Ê©1ãéG– \€@ojq ^ý,ÛÓ[|MW±qÒ³‘+=Ÿ®†E ,¯øvªøãæíÃ23°yå&üììáãW4’PŽêŽ“4¾@C T¯Hü YZK†AëòôzF.ÒI`„uÙô”Qìý]ÞŸ}>›Þ»9“zo}3~“’z7ø{RuPÎ'UÃ*­-«ñHâÝQÀo ‹g| hã×ÊTµßèH] Ißí½ºâáõÞÀÇHKç}PuËv×Üu]m‘»Ci8JRÇ”Ü;¤®õŽù%T5ž9V±¹c~y=êå·øK˜t{®Ç?–çP£yb[4²ý=ŠOsU|bô€ û—³¤ªÙéÚý5™Â{l`ª½~s¾Àå_©u€“Â3*.¶¡ý¨ñµ6gÿû«>óäoÇhÜ.ÜÒ "óôä/é-G'åÄÛ©ëkŸp$Âp-ŽO_Éç6s´Å×üwìVúïÎç}¢CÚ7Ô­ø½X5ÏýQÝúÕïèoNû/U ø4‘‹2¶Èm»05ÜoNÃ/MZèÚÙ¾róÃ})žQäqÒr?õÇ4cá¸M£ ®†¡_~ƒ­†ozó€¤K(Õop”ìUG3~†A ŽâúZ5–‘ûSáµ2™S‚ŠSUþ2Û7g»k3n`¨Ð­îõùÞªOMCäL>3TKñЉÅÈGÑíOÌ& æì(Û¦¨ž­ßä#×[„qàá#?%º¤»Ò<¸š&ÚÐËQ#ê\Mb”ºÎ;ü6RXn)uÅ˳°O2[âËÁ i E–xޤ£ÜUŒH#é;Õ_M#þh§§•x|•ûÎÍôý9Àê¶Ç¥=Àå®8¦y,948,;ÑÌq@+:"Œ¥¨áÓÐëå:N\*5¸=|y˜ÚºtY›ï{|·C”j 2øC{ZúŠØâ_È%†jœPÕƒÔm·£²nWùZxìÙ[Ÿ~}V²ê¯øÒTÁsÖ·òÈt€7ƒ?Pd|¹0·@Ýmú óPéå¹ù911º¿~¹‡oeIB+2œóƒçÑcéðdšès}~ª:¸û¼”‘ÕÁ=\ô'Û i”Uítš‰:ýðáÑ ¨ün©±ðÃ^Ͷ’ùŸ+–²“‡IŽ[%Xî…A•̕x‹_«FM¿ƒ2–ÉïÄ"Fʹ‹TQüùó\Ó1:¾æßhoÔ,­Ã­ÓßxÈŸÔQÄýj*ƒï‹KDÚMóLÅoz·¦Ñ\Áó¨¼i‹ÏôÊgJü Oš*h ;:5bn¯”"ÍUø¥'e|§–ûjïÜŸ£´´Pºï<”ªö·´£ÑÔ°©ã.®qô¸Ê×Ãç¶qÿàu`xáZ;Òtó/Õ=~}z¦өñ½Eãç?dÎ}®¹áá‚¥Ég´XÓãÝ(P›»Õ(Í”àÅCs]º•öưFq`ÿ/k9[L¼è aòKheSü¡®s)«;œê!ªtjÙ¢[Åd´ÁïøiSc|b F¬É•…¬©JQµ'*"FÒÔˆ§Wdì=@ÛŸzàÃLò|³¹eNKròØœ±²‹Žc±ãŒ´*ÕߟÔ%Ï °üÒ0j$}ó³)éÚ{BÇÃnYþàÏp¾Ô£*/¼¦&èùw¤Ýp¼#*Þá˜Trô0Ç(æ{å§“í[NNÂ:þ8ZÄ•gÂyVžo0˜é0ÆøáS ,œÔ ÞÎkÚ%æ‚é…e,K®ü¢èüèõÙΟñM¿×¯ŽÏOÕRÛÓdÄ£±óî™AátãÎÕãÓ}Mª5êj¥Ó Gãý-Ç¡ é”Íû#†Ç~±TÙqô&ô5=¨QþáKU¦ÇsöSï­®^ }ï+¦ÜÔ%¸ðR9¼Ür/~òÈÞ<™–Þp4þ×óí6£;˜ºÈ—7ªó¹Ÿ[Ú_ùg¥åË?ž¯¦¬ô;]VZ{‚§Fóðò®w_KÉpøªv϶¥gNüYhs›kîÄßðÊ»Ó7û.«îþ½³žoàöéó佫¾[‚¥Ú2ŽÁ ge~v„UîˆõhË«&ñ+µ#´×á ëóú µ›«ÆmÕRçxÃÜjû3æÁœ¦n”í¬þ2UUMáßCÕMO·ÒÍ:|O­sé~-ØõM Ÿ³¾EZ=H?Ï=–×þ’]LpM¿c°ÐªMFÎEÐË;z?XþÏím)<ë)<«ÊÎ¥lwÑèÙQ'nù>ªab²žb²KOíÏ{à V‰âlGÜ.êaNón>Ç0Å8æ6†JµœÁY¢B©grM¸©ÉsS›Ê諯fƒÚƒx<}Û),;¬…£2=.wGy¸JýÀδÓZhH9ª{×QM©kD¹n.üIc“´‘_yµÂÎÏ®ÏÚep)åòov}©üÐ>hoÓð”»_¡Ê=B«Ÿûì ’‡çe²å*Åçõ–¾–ö õ0©æùy·àl½*€9BXpãç)uqs¢°§…ìªÃ—f Ƚ$ÐJ;öðŽgú^ ñ› ôïUûüÈ¿Ã1ŸV"œüôN%Ínf  úŽoP#ú»#-üà°®þû+=;ŽáaÝPßEwÏ“Ø=ä™ !œ‰ñD°šÖ,à‘°¤Ê¶O¬TëÚk¯¡zùÁYž'ö¹ƒó®'uƒæg7ÿ{šžCendstream endobj 179 0 obj << /Filter /FlateDecode /Length 3632 >> stream xœÍÙn#ÇñùÂ/&qÒ÷ñ›ÃNÇ€½ ŒÀ$Ô½ŽDÊKÉ^A¾=U]=ÝÕÃÉ6 ÃØ‡5kê¾{¾^ŠA.þËÿŸß-Ô`âòÛ…X~¼pÆÚË¥·NÁ-ïA¹ÁÅXNn¯QøÁ™°ôΈA+€*'AÆÁÙe5<4p#àGËèYëá×Ðй 1 Þ2¦òçÉé0OAú!Éyª@ù É<j#KŒšX^/¾^ȤÈeþïünù»Óů?Wa‡è”[ž^-HÉr)¼ÅSRÙåéÝâËÕ«O_}²jˆÑ­þþz T£±F­þ¼Þ€y„0^¯^¯7ZëÁIµúÛDÄ ”Š«O?Æ¿¼ÁéœþxМ‡ÂÚ €Ó  úyŽ!GÀ ÃJ»!¨ ¼’z}úâS d£•à¥4CfÄ*!¢3«ß®7VPA®nËáÛòtVžÞ•§mçì©<½Y•ÇÊÓmçå‡ÎS%|^ž.;øÞ¬×¨ )‡h­\ž~²8ýåŒTï;<ÞwÛwØa²|Õá±'ÁeG9 MÞu°ÊòÏå]GOáã¦èáWõQ”߇òd¹nÙcyéIã¨fÀd[|½Ô2@ÿ Rƒ¤44).µIÐêÉ¥Ö Òaw C;ò‡=¾3Óq`qéu\Ú0}î¸>‚J)\éñÑJ«WרÙ…²>à<ï<Š«µ‚ÖÏ®ÔPÁ¥È–°‚цÃâKìÛ A“B™”¼Ä ¤ʃe±µÓÆÈÆm¬÷ð ÷ ‰ÞÝ',"HàÁƒ›—ÒkÁ:6’"ðÓ+:·I<`F¨DI ½l~ NÉ–(ÿã"£Q ³mÁ’ˆ°àç…æP€šSÜ­Qã•Ý1M0fïÜÄ BÒ9žúÂ|‹ *F 1šÐ g @¤÷°Í5¼ËFQš" ð|³V¤_=rˆCbx]Ÿ!×RhÍŸAXÿ8!ìÆÇç_}[Íú@¼2¥C/Sß<»ÕBÆãm夅Æ0T)ŽH7R@:Œ„š¹Ã G4«%ÜsÊ/ó!3ý_…ü̪u*Ä®4²5À\œÆÞö}°QÅPa:óÍfŒÓòCô2—ÊÚGMÈ HgC+ڹ䤼&Ú¤@„‚}³¶±¶ïê–pȳ4·)e áL'iDÇhŒNŠJøéÞ ¡Ñ“aÎ…AMàVÎFÊF:¬Jpê ;À)ò©axkÐîØaª§ °)úÿ}¥öX§Ë‡¤|•iÐ]tÛ])ZИlp<Êü.Íyé96¦æímCI-QJc¡óID‚ÔúŽXÊÒ™«–C–vÄl9fžCža ßahI"÷Î,£#W#ñâ¦8‘ñÏùA'}Öµ„<:¦P{ÌéÎ}I/ˆ•Þš”ÍŽöÿŠÄEðÐ$ì™ sŸÛôÆŠ=¥èš4RÜŠáÂ*&ô€9•¤†0‹©áw¿_ÔXOq¹Nc­L¢ÞVÇÌzELî¨z¡@12i©™ñjhÌÌ+í|ÃÏyã¬`x¬ný@`“ÄÒq ®(À`cfN*-QþvšÐèø‰ù ÛLX)j­ ž"w’™€xbÂmÿj$ô°ò¨hÑ{×ô.eƒc–c¿ÿ‚º !øã˜ÎÎkH=2·eÂeMÅä0%{îG/¬$ð”µO¥ ÛcÆM5æ9³`)è“5õ.™Åv”ûWcÜâÚ9N –û™œÊ¡)‘Jè°‹ÑƧ°ã{^=vKÆŒm¨ðÀ⊕YVêöô"ô;–Z¥òÛT×1Íß ;¯^²e¾z¨9ä’pªëco°'+qЃShѧ!9’¦¦5“s1ʺ–[F¯œÍ+Çò3Ûûšâ‡Šì="Ž™|ʼnËÇ|ødÞ‹¼2ÒO#¹qµ#É T™Ù¶æwO£X®«ã/%õs¤ìÐõÿ]_c¿ŽlOˉ‘‹Ö£¿JÑ`|NO9vfIðÆëЏÀ ÑXœdðÚÓ^„×ÞŸ±sr$¥š³"ë#ÔLÕ>!Ç®ã¬øÚBÚ¼hÚÆÑ…™§íJ¸¦—pÁ°­Tä­h[ÂímJŠÖ¡«-È,ÌÚž…wÂÜ8€5e0“fQ11ba®©þçë1oFÄNX&æaIì=éF Mç7i&±Ø×tÚ–ø4ˆ¹¸Wìi²¨ N,s=\‹Ý ûbûjùfí_Jœý颋Œó©j÷òÊ2ïþ¶ï)"ÝÞÁí²†!zZ/¯µ¶† ñlµoÒo•OÀCNFö‚¢ÙÇi¥n³óxE› È!rê £•Y‹ü@㋲$@^ä™O#3®í…+0k¹hªÉx)¥9ýÜTCŠöÆE^S[½t³OjlÜ—ܖƆ™Jú€8arÝÎNÐ ™nœƒùßM%Ç2Ò>YÆé™ña: ELYs|^ÏýLŸ{ .Ð5Ϋ$û~ÚëwæGÏKˆ[bÏCŽÜuÈg&•WnÖÉ0ÈmHyÝmOÇjC€õ͆…"{Ö™:÷²Þ 8ÍáMQDz@…5ÖÜ—ölp `\RM‡s‘=î*së˜v£™Ë~"£…òºÏDlIðŽBú|y)A-éê.9q_EÎûPFÊÞ7  q'Š7|?ML7W¸P£‚Æ¡qÅ–[/ía¸5Êíüñ0Ä’Aócž¬Û[¸¨¨©9”aÀµP»jó„Ñ ÁgÛ=™ÏbÛäÂ`× kiê®'i<ݬTµ»0x]nõxmOƦïUj~B† Q '›âÇæ˜Dšê;f† 6Ð߬ªÆjTÒÒ•p,*õ3ÌáOHX²á7“ÿôà 0é„7k€RHLÛ–ô‹uШ—8jÐÓîŠ{1k0­°ÓÿL»È¤å£:® pŽ3~›'`þ•òC¾Eé©Úb+Åö•¼%`¡Ã'ô£a,uUûÝÔ“#„Z˜ÞÁ^•1§ÙàZ6ÌßÙk1»÷¼6íWõ÷qÛòH9Xc×ËRå‹^ œÔ<Øôa¯š®–-(š¥H`kù–DfdšŽðæÓ/G¼äͬö›]ÅKéËcÀW®NÙÂà¦rÊØ»ª¢Ð6d•5ÝŒ·Í(Tz Î\SŒ¶,Q¦ü>j£<; snn°TßͽzªÔOUÜä°Q 8œ8,o]ßó®³'Ý)zl¾X.8°)š¬f¶/mb'à0Ÿ<@GÛ˜÷}fΛ\TRñýK™-õ~‰¶ž¡{`„ˆä“ø4í;‹Gž¿_è0p‰ênÒ"ÆØÇ;Öw\°ó·Õ¿yk‚ÇZ8®›ûXmwÌ>×½4ja6Ú,N¯³”l¬>¾L¹“{èIë•“r á1Fömçwýb¬×VASã숫Ý?h¥°åmnhXÆÎS`0e‘GC±æ›Æ7cœl‚„TÁOG igÖÈ—Û̽B÷žg©ùÕGTåÓJ:„ZѤ™Zrn:ò¹[ܼÑ¡Ý?bx©D(Ú- À.’7lê›Ùwòq!k÷Ž[zÍÎi…;5Jш:~'2—Y÷"LàÓ²r´…i—‘ÅVÓIMÂCÖNДýòÄ“¿}€±SØIéNïJ•“d™7èü¶w:8ŽÚϯ$j#;hó7*D¤ºhñÆÆ=W‚6ôM™ÍEâhjQi”>šßG»ÔŒ2ÅÜrlÿ4Y'öM³Ch®Þ'~CÍà02Ê](¥bºÀêï8Ø{óE “ھLu<ó2¾=&Žp{¼£÷œÔýº5iì"îhK!íÀ? ‚DC„žñRïÒUë…pém b¾)Â`­É=[–ïdøGl¤ûD=BŒÞ”šñ£¾²8ž|½PŒ²g™a’{ÓW Ÿ-þ–Jôendstream endobj 180 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 160 >> stream xœcd`ab`ddä v ò5400q$º»¿ûþŒfíæaîæa™ý]^èà~þ= À¨ÎÀÁÀÄÈÈîÿŸÑ×ï?£èV†¬eßÿ—3~þþAt[÷ô^ œxPbâñI'&ï™Ñ?«{Ç¢ú¥Y…¥Õ¹½=r“|&ù‚°Do}o]w=Ÿó4{În®nîn!~ä3ùendstream endobj 181 0 obj << /BitsPerComponent 8 /ColorSpace 109 0 R /Filter /FlateDecode /Height 600 /Subtype /Image /Width 800 /Length 30604 >> stream xœì|eÿÀá¯ï+¨ø¾@Ë(,PA† ‚ŠŠ¯ƒáˆ‚ 2•-« ÙX½WtÓMÛt/:Ó4M›®4Í^Ý#óþw—Ù4I/mÒ¦éóý|HÃå—Ë=w÷½{žçžÃlþ’Ó’ñV|úªÓa®u–á’ïrzG\Þ{ýÇÝÃõ³€ÅY¸´ü‚öã$#×TžŠg•õ.ûqDmŸExžÐn˜tø¯¥}Óðü.`ihÏ1aø­Kí&õ—À°Û§xÖùÓ 8ühz9†O{µWUÂð›îx~°4a£—­ëÛ¤ÞB^¶,À±J¿ÙKqøë€cUr—‚°gá ,Ë­éÈËÑ/ð'¼Ü~cdÉ÷8üð|}ÓÀA»dí>ëAní‡Vàæ äåèçxB›vöÔ~”â£0?.Cûjò†µ_@g9^¯KuòDZ}€Åy2yù} ŽÈÒ‰ó q„Ÿ_ß°dWC»q>hþjçûíÆÝ|y9¹Ç/§²/†ßù§ý@ÉØ­r<+\¡ j7.ï?HÞê¯öo\—g"/}‚ç§‹óéš:ï—…íÇ ,,--eâZ'žü6ðC ðC ðC ðC ðC ðC ðC ðC ðC ðC ðC ðC ðC ðC ðC ðC ðCKoòã“1ÆqjâCF Â7ú|qc^uÆ7d®°A£Œæàˆï§Fü_î4þg$¾8œa°‰]æˆ3N8Ó8æeœqÿq‡3¯w½ÃevÏËݽÖçÕàîÞë3×P—ö£¤ë³«y…ÔÝ[`}þÓ Éš ü° Àû GøQ²Êå…aËÉ?s42”™ëCš¥¦¿Ó–Q8Ë›j,âÇYˆc`©±·Ýfs·Û,ìǯ”gÌÓYˆ#±¸÷GGè ~”¾ìrÆûʉ†>\ld¤ ͹Þ*Àü0–â6؃8‹†$YtS´ô?~ú¯y­ñ?s¾dø\·?pc~àýî ‹nŠ–žàÇŒ÷±?ûæ¶^,5¬hTþµG?L§¸ =ÛÉU£—è^íÇ‚kû\„ÎyÉyo r*ŸZÙ÷_ïdÂð4÷yuÚ€É'ä0ìr颓2ÐuÇÉýg«ÎN²Â’i—b”,òÒ»è8?åå¹Ot¾£Y¡æM·ù1è,òÆji?ÅêT´Úfl»Õ;M³´K:ƒýÐMì’h×Ãäš­V&Z}ô·!J>ø2š ÏÞ¶èFõ?Ò@Söŋѷž}Vy|q²Ï ¼8ÌIy¶‚Ö{mï»Ùqóf=Tõsr17èêHge€Ûÿí{øÉÔõRéè±îW'¬†w÷Û}wQ_í§šjÞØ€í¥XŠVÛŒþÓì4ÍnÐ,éÖôC'±¾Ð3nyy·v«±DkŽRµlRi3 a^¿+ݨžà\±ojhÀ†X<8ÃJ„]‘¬;ÄF÷ÿÅ?¥§ú–À.šÛ®ëä툈‡aÙxÔõR2t†sÖ–0^@ÎAùÄùšO5+Ô®Ùüh'ÅêT´ÞfäŸf§ivƒv7v kú¡“ئH:!²v«±D«v½ÀòW¯ÿßÇ1t«ô?øžÿƒÞV G4Òç4ìºY1нå#ÿá@^°ËrͰ€HäC¢!*òŸ½¨ê¥(µ¯Ž½‚öÆôƒ¸Èk_ó©f…Ú5Û€í¤XŠÖÛŒüÓì4ÍnÐîÆNaM?t /ÃËÞÒ¦C™hõÑÓúqx ~ûk‹nSOð£6ˆ‹ýÝ ¥=”ü »n…5;ð„ÖoÁýNÁ.h¾åºÖøqªEþsõC½#éKó1é¹~zßѬP»æ®ö# íL+?ÚI±:­·ù§ÙišÝ ÝÂÒ~ôWþŽú¡“X8"7 ¸¤M‡*Ѫ£§õƒE”A®èí~° [Øßèi:¤~Hèº ÖìÀh=ù좭€Âê¢T~„A¥ÈöaåsXǤ’¹ºà‰·¥ šO5+Ô®¹«ýøl$òr*ý¸ˆúÑNŠÕ©h½ÍÈ?ÍNÓìínìöãTý²ªõá…Åù=/ЦC“hìèiý€ßXsä¿‹nSOðCáú:vE\߯ºn:ÜEˆ ¹Õäýk'òŸsÏóƒõÂ)$kþº¾#hȫӦ’¾è°æSÞÕ|ªY¡vÍ]íÇoý4ù* ; Sé|ªç‡¡«SÑz›‘š¦Ù ÚÝØ),ìG,týãÝÐó^=í[$Û¤Ýj,Ñ꣧ãÇÑÿŽÛdÑMê~À‰ƒ†î¼~~!tÍqüâ}àÕÿéíÀý}6?ÞÓolÌøÀ󇽌…­ý¨0ýîƒe}žÂ^8èñ5ä§ýT³BÍ›®ö#í¹÷=·@{‘IÿSOî§ç‡Á«SÑj›Ñš¦Ù š%ÂÒí¯~èóÅ…K?<÷¾LßHèt4ÍVc‰Ö=4dë`ró)† LÓ?a6=Á¸òçi/ÿ(}{oFçõú;ðòÔþo`OŒø¡81ÊéàÉþ°^þ*~îÀ—g#Vùñ×û¿é¥û©z…š7]^>žÞÿ57$³PùùKÐÐôý0”bu*Zm3¶Ýê¦Ù š%ÂÒ~ÈoÏ4pÆßhE~ëÄJ ƲMê­V&Z}ôÐì /f ‹^wµìõ?:Kó5 òºú­.üIK¶ßå˜~”ŒKï›k¿Û0gïSüô ?àñ³Hõþÿ~Ð…¿h“íÛ-¼lÌyÃþ~U–^iïðƒ<‚^>޳³E°I?,¼lÌí¶øJ»Ã—Gt9ÆvíïýË¡k'Ý ÿbÁ•užáƒ¬°Ïÿ¯&‚wôŒ·{úíî-°>ÿ÷gwoõÛ+òW]Ïÿ᣽'óBW躉ÞQþèz€öðÃ:?ìà‡u~ØÀëü°€Öøa?¬ðÃ>~Xà‡}ü°=ÀY@ØÔNŒTl¢5 ðÃ:?l9¯„^Yh²»\H*$~Xà‡-ÐPÌf³SÓŠWSYlÙè0YÀëü°jÊ?ØdSýµ9L$¢¼ÚØÇÀëü°¨ÈÉÏÌ7qÿPä³šÈØçÀëü°dÜrRk*D@Cü(j0ö1ðÃ:?l‰Ë«7Uü€Å\j)Eh4Ä.ýP´®°~X‡àd uÍÆ?µC?äÕœ|¾XgðÃ:؇¦±C?„T&›Æ•i?¬ð£'"'¡5TðÃ:?z"2Zç]¦Siü°Àžˆ"ŸøAÑiuü°ÀICA9­H Scüè0R±Ìø‡Àž€¢¥I¯ý€¸ZÔ [¡ üè ‰Bª1ú1ð£ åQŠ ŒCàG©-f±™£Ï–=A9›Í*4ñ„øÑaxUHIŽnt²;à‡í#ÏGk«ÊMÞ@€„‹ÖtÐÆ>~Ø>r"µRü° ¢RôI’Ñæ}ÀÛGN%dgÅgü•5ñŠJ)|£½O¶OcaAR2¡ÄdMàGGQ4Õ7ßµÀÛ§¶ŒUYA7ÙC øa%€¶ÖCŒeª‡˜?òÞë?îž7 ¶I?¤ õêVÍŠ–Fì­¬©©óšÙ´RôÁ¦´¹ÅØ™!—è|¢hnë!~(¤FÒ)ã–UÒ(æ=ÿÿµÔ£oš…6Í0¶çG‰ZRP‡½•ñ)T²P,*.&µ7üqlØ1¯€$Ô“Š(¼:!¿ºMöBQ“OÎ׌Z"®H{öÌpôá’šŽv –>W¨Iq5!‘Ö*ý²j.¯V·P©ïG9T Ãoº[g[UØœrn›Í,À.“¢´Oi½Œ„,ª"™hAbÛõCέd³Ë™$&›]œL£—qõï’u&›Q¨¾4”Äfg'¥¬ãé~`©!7iþGg”«ûwȸt6»Œ¯{¯P«ª¨ºµôý»ì„ýÛ:ˉʔ8Øšb [Óì_ù\CØ\„.*2Y÷g ÛõC™²L4Éää"P¦ŸÁà!g »Ru’4žò ­©Gø=Ç¥©Oyzt©ªÛIS±þ.-ý%“+ÏYÍÄŸÏú@›u6uÃ%ýr­³þ£löOmDßc~T •{ÊýhDK¥ì¬Bä…We  @«'Ÿ ¡¨Ž¡5õ?°1ŠÔ©‘‘дW¨²‹XùœMÑ)])÷îQÿï0å9;Aub9^¯Ku²î¤„6—¿Rð*}HÂ2ÕÈ.bQä轗εÃü•¤€Åf3ró‘ó&7×ÐøVÂr'ŸâÔt"17¤ÎКz„ Ý縭îb2 ÍCë7ÄèUƒU sÿÐÏ_Ý|y9¹Ðš[l{~À>¹«¼jÈä¢r«åR(Üß>lظ–\VZP_G*¦Ðˆt¤_;%åRË‹x곆›—F3XÔ#ü ©)Ö¤¦\I/Õü¯Ù¤FÝha1^¤;à—¾—g"/}b­­Å°=?`…X¬9ÄÊ>ò––NÌnÃ~À-µuˆÒ¦fyŸ+l[y+o¨iÔì y5ƒ.0¼#z„°¬¾¦A»ýMB~6S Ü:Èë‚zSý?h.ðãîXcC5Ø (hÝ^Mƒ@„d³Zê›d•YÚœGsÚ­Ûb´‚£0Ÿ¡ÚÛÍõM-uÈþEN§¹¬VT«[dË~hPÊ*k5gCíÓûžÈSZùìY…~ÆRÒ‚,‘´îÖ3ü44hŒ¸,1 -j+*SSKZà‘Èȳ5mž&Íî?ö‚Å7²¶é‡BP¨JõŒŠL¬RJ ƒ]8sJ]kÑréý>œ_Ó®øøÞÈ•cá”’¼Ä¢R²[\^Ìd•ÐJH:ùÖáùòƒ»‘,Õ/¬ÚðËÚ©,ïŸ Ý2Zå¨ä ©}ÑmÙ#ü¨'Q©š<”$pýÆ SaEÞ¡K—ÿ ç$GF&í¢€Ú—¨Ak¬ÊîùåӲШìŒ?îúû_WÝ*H/[»öÛÏ [ÂB „ØhmN}1›—Ja³ÒК®ì<´¤«“qí ~ð®Fþ‘ª+hæ’ƒGŽìøƒ#º}ÏßÿÑY¶n$ZiÁ|–öÓÉ®÷?¤èsÍs¬ÊmGÝÝìæ Ïyøû{ýíŸA$fŸø¡­Û+xü$“HôFüˆ8~Çßß÷´êrôîÚµkž)ºK ¼¨È"a%›ž”—˜„Ö¢‰ÈK•ÎS‚žàG‰'’˜XUÝTÈOGŽ9üS1ý_ÿ³…º‘X•o6Yç¹JOðCùŒƒ¢r s»»ûßk è—#i‚øñ脪ëéûkÖ®]ý^\ƒg rJÝ£!‹D46=1—„øÖ™ççéõ&ì ~”y ‰!ªüfѪU –på9¢ ~žèÕTÈd¨lzÍÌ˪bW‘uò=Á¡×“èhïLUIƒ±aÝÞÝ?Ü—JbÏ{û\ hõT{$’>\+Ö™Nª'øµ!©äªòÉ‚Ý{ÏÝ}BÔüÄÝËç’W6š¿Jý£ð¡¨hña…õµ$ )ÓÓíA3üBüóæ­Ë@2a¹wï¥ñ±EHP^I>™'®Í'ç×6p󹺃5ô?4ŸÇÞ™šžt|ÿGÈí¡–pí\PU«ò¹”WTRÈå•´ͽ'ø·p yšJªÂ£ë7\*F„O¹v™ ¬MŒŒLâ›ü:ð£5âêZ¤,'k‘ÀÍÜZsŸ›«Ì§K4—™X KÑ–àr zyjýŒ 'ø¶f­ÖÙì^5V*¯¯Ñ/³*šê[”/:ô?Z=ÚBnû4¬¥ˆ¢íÜ& M–ÎÖ¢gøÑ9z†øa€öðÃ:?ìà‡u~ØÀœ˜ìÅß–釺¬Ž3­=ÄY«š½¦–í%µ×û¡¨Ššáf¡°VÛöNÊ¥sŠ–Lž¶²L½äÙÊÙïF$±ž=cÂÍ•%åµ°¸©QÄáÖnÛj{~Èk¹¡D¦ˆB\Ë($S‹ö~üÙaM÷AQ°›{²š+Š8r=¿°î/6ïG‹+àùþ3NSçØX™ZŠUQ7p¸°¼†Ãš„£·û¡WVyd½ë @N‰úˆëW·.8œpïCGçÑcÆ9nWÜ™õÅ×Kω­J@[%]¿‹¶]ô1<° [÷ƒÕK#~lú¨\R‘Œ¦-P*xŠþ}’‰úQ¢ÓbmcTEóGi© MOÏÎ ªdT–\%<}äw55/ñÖ­«ë\ Fòƒ7+£v8Mš4ÉõµØ’m—.^¼¾îFäÓ(¯Ë•‰ˆ,ÃcÙœr´ÃyååtbBØÍ¸'©¿[?ÍwpíþìêŸÜÒ£‚c§Q è¡‘+¬íù7 …‚|r‚ÏÕ«aá·®Ú÷åú·^ÛªÉçÄg3ÞúæA£‚þ,9­RããE4Ý8IÇ–B¤tC3ÝÔ¯ë‹øÂô­ ?¿¨Þ°Æœôа,ä5”Ð'Å p“Hت·96¶ »PÇóîöCΦ³;1ÎmgaróˆiÉ©á{7þãÛïþ¸ìã/ß›8ÆÁaÈÇQ¡Ê¨Z¯S›7ŸñáW“ƒ=<“Ò“ž‰yá\cãҢؠr^eUÊéë7ÝÿYýó﫾ÿ䃥+îǪ:×fúݹ• QÏ.65<=†Žµeè—:>ܤuh²*Xì2í¢º‚UÅÄF¤–54ÊŠŠètªÐvÊŠ²ÈŒŒ¨òî˹rJã’³3r[òŽ=o_¹áÄâM™4fô¤x>|´Êþ¶gþvÛË=ŽŽˆË)HJ‰Ë«7µ^ÛôóÈq÷|Ÿ=·iÑWß,:÷Øé+¾LåG¢ô8BtXŠ\žÏÒ &i?êlÑzrYt<‘¦Ó-§ ‹Å1î½¢ŽÏ79þnW ãGcHr)1yªY•j*ƒVžŸ’ˆÜDö÷¼øËš£ßÿáŒ)#Ç988 urSF±öï?ò×_©‚«‘±ÑÁ+*Ñy#Læ¶m˹¦·¢¹êrÄ£3gùè‡ï—ÏúîŸwO« Püˆ"1¥Ù%ÅL ÏÈx:~ˆ ètz¹Éžx]‡AM'&—U05'|s!R"/5Ö¡¶¹¾í=¥›ýPV´™îâhUäB2…$"ǧFß;±i×óçL{oÖ£F 2dð`Ç eTåæÕ_}·å U–è—Î!QKɦÇÅ·)?¹”B>6¸Š¢&?3ôÎÉ}{·ÿôÁ/ýáЉK*DRb<%OŽ>UÎà)jë–Ï9!%íô¥èb¤lJ61=+.H;êJ-©ˆ,0¬¾BH))n3Xw7ûQš‹VDwßý¹ôµHaA½ŒrÃ#àÌ{s¾žê:cô¸Ñ.ƒ‡‹UÆ–¯ß¶eÙŸœÆ`䛕Ô,m¨kç²%?$èXôXµ¶ˆYà²÷ìÞß~_jÕ‰ðß4Õ¥ŽÊ¤WѹØ{| °tËçäÊJ:Ud"¸ëQp˜Èý#:&‹Ì,Ôd±¤ÍÆ\=ZwU®oéf?deÑ™™OMOg%íÍTÊ'æçÝ Þ5gÑÒwÞt=~ÂH¤ø1ÔÑY5SPÖÁU?ÿ¼þlÌOeY£.¶äG=:eƒò9?—Á.ö ºxèÀOÛŽ_^}6È?$CuÂȸ¥tݼzûèøQSÞNƾ;¨¥TâRâ+Zºb a¥¡$twý•„A¡0º£þª>Ÿœ_Vd%$•‰yI‰ñ^;>›:iÖ›S§;¹Ltvvâ8l̨kÊà”Ó;W®Øó°–3óó+MNX§ÂöüÀFígQ)YÑþùëúùë7N>zìFÕŒ_.TTˆÌ9ÃuüÀ ¾ì|ÛzB¨¨çU•É•¦æ©×"¢!)`êTßÝ~˜ÝpÜB4“lVrÂǹ~Í–šÿɸw\g>näèñ£‡­*d}ûíÚŸ?;U‹\’èŒ2Ó-ڔؒØ8åt.²£%qÙ‰'ö^Þÿûñ ÿ´ò€ÐôÔ\Méµ…TRÞjü…öÐñ£$fcås !Z³F58þ|kš²;‹ªß ¦ûýèжklf¸ùúû{í =ߘýáäaãGäìä2ÈÁÑaèxÕL%Ùß,]¹|åa®m¤Á.Æ‘ ±%?àÚj1-<7çÇ¥ÆnÙûìÑmB3òýbRS4ã‹ÂèH8lŠ,Ýò¹°)Üâ¹±v5Rn±©y¸u¨#Q „ú½Õun³ð¬¿¿¿ß¡Dâßæ/žõÆÈ)SæLZ4÷µ™#]'ŒÿàÝ8etâþ“nGÿÞ[¥~vÖþúmÊXÜЈUÚÔ•2JO]{pÇû̳¢ä’2zY«ŠQÎSnºZ®­Ú_µ¨ífؽPÞXׄ麗H£O?仜†žëô¦™D×µÇéfqêHÙéÙd!\qñÃ÷€‡÷½¿\ßš1äY“¦O{ÿíqsG¸L˜ðñ»ÊhÒŽK—®üs¸F‘OÉÎ.,йÆÊk‚»ß¶üP"mgùï;ïuõÖÁt*GH+HOËU×6(°ç‚¥8r"jl»ý®T˜ŸßNç'´ñcû,rÀó„ήÖ$:~´$Ò’‚M¶¢¶!÷ý¼Bpãã‹Þ^g¼nÝ»öõacœ‡8¾9Úñuçá£F uptù­ªo€èÔÆC»Œ“+Š®úúÇkëù*n¨‰¢ úÑ@¢R’¯úÿíòÑõwRC9„‡¡!·‰j»ET›Þf¶Ø´ ^‹ÕjòÍ¡ïGÓËy0|Ú«“k5ŽÌX"‘˜^dÕŸ3‘šžˆl/îÊÅäÇÿܼâ6iŠë¨γ'OóæÔ7Þt=ÆeÖgªêŒ†4ÿwÃØpCjJbBL–Ö‡f´\j¨‰»íù!%1ØU¾±‘wîݼà[Xžßì㢾}ËEùf͘eÓ~('¤t¶I±¾±\¡ V¿ªä¹Í¢²Tļ€®Ï¹R3ÎNFNlE‹´å†‡¿ÿ±©_¬ÿhÊ„?]ôÚ²%s?ó΂¾ÿ,OÕý±óå´o]n¶¶¶PYujà(ØžèøôeaAY)¾‰ÉÄø*6Yž—GŒÑŽ:/—šu¹µi?”·w|{%¯¾¤óæ[sgÿ¡*‰‹ Šs²s«áƼ¸¬ìXªV¿°° ÛÀÓ'ÛóCJ¢³é‘©éO ÒB2‹ÉµŠ²è¬ì¸âß¼mÚ¸º°¢¢°Ãî«ÑÏ_ù ù«ïwvµ&Ñ­¿d>xPÔ õ抬›Gï…UÃ’à +7ý™n岎.™1mÎGó/ݶfñ²ÅŸºŒ5;B^ìñ×ÑÛt\‘RªÛ ¯6-3'Ç@)Ðöü€›¹Jyfö³Œ„ð¨Û‰-°„ž˜PÑñF…¶íÜT]Ýñù‡Õèû‘÷$oõ×ç^¯)tûðÊ«Xå¼®†Îñyá‘(Íø~Ïá}?î<ïãå¹ò· §¿]u'ÊçVzJ@àâ¯V­]¹AÕñ¬Î#,:&(²¡Mû66¡6¥m.×ý€å-b¹´±šÌ®HÌ"±+Ñr‡¢3{ÞÆý°mêwçlâ$:x[õ7uëw-SË`6ŠdæWï¹þÈ‘#»>¼éïoÅÆ›§×o¼Hˆ¼ŸGɺóÁŠÍ[v,U•Ï«°Ñ n¶Í}`h‹~(©-cSÓÑòy§{3õJ?x_ t¹lÝßÔñÃBµ f#MñFÎøßz_?ö~xñcÙæ›gÖ­¾HˆºK,~výõ›¶ìþ,KθƒÎDv×f=F;ÛÙ®õ%ì’4b£ó­ {¥]€ŽX-Ó@ýµ© Šˆõ‰•$®Ú{ÄmÛqoÿ;k¶Ü¼°õ{‚_r^Y|àÂë~_ÿ£êùG­Ofà6'*f² u¶³]?$$:=>…¢Û-»ƒ?¬ƒnù¼¦°¼œÜ Lƒ<£øpýÕ­+Ví ¦_v;â~`ûo—n\O©iàdÅž]¾pñ·qªh#âÆõCÃsëlg»~ åtò³”² Ó%à‡uhÕ>±¹¦Íd^]B £¸m8UŸ·uœz™¨(Ÿ!b°e …B"EFÑ4ÑŠFŽÑÖ©‹¸6ì¬Êäb Ô?¬Cwµßm‰Õ'³‚ÃB.¡²Z° –ˆøÂ&¹ 'êîýÄÔ, –qJiÕšS_^'j†h[ö£IÀeq«;Uð~X‡nò£¦F£¨»H3<Ã}£Ù 9J¯$‹HåôЍÐ̄͛NïZ~7ñ[^™š¢îM¦ÓésšQÚºMdzQt$Õ¬4éü°Ýã‡Àœ¥•GH |R$ hƒZÆfWÞJ$z­ùãä»df¤q#ÐöYê±=Z 4#1Š­ûÁ§WÅåf³LRdà‡uè?”ZTc«6? EüŒc-«ØÉÈkéƒ8â­Í{Žì9üSJ^JY6‚±ªâ¶ª?nq{غùÌÊ$bva«±fÍøaºÇ1Yç—Åø#~x'ʱ3Ÿ‰úA¿Gô\ÿÇÉ]{v>ˉgcsªJ±J·Ìiìfë~èôDbz1›Ò‰&ÀëÐ=~(%,V™º)K•ßã`Ÿ,ã–3«(<A JúiÛÙ?¾¿›Y).LÊÍŠ*W—_¨*6ç­ûÑ\PAŒ'Tµ3{’i€Ö¡›Êç2‘Îlsrv\$6¬žDÈáÕ)ÄB® ™_JÍ}à~Ò#5)‡K蚇¬šË«5çT²u?à!»,7_Ø™j^à‡uè¶ñZµÆS<Ýåbi‹²Ì*ëLÛ=›÷Åð.À ðÃ:ØÂø%Ö¦GøÑI€Öøa?¬ðÃ>~Xà‡}ü°ÝW>Ç)kmfg"à‡}Ћüh¢¥˜ªQ*âò„ÕÂZ̧¦Ðø¼|ŽvZ’z‰cÖ$%Àû ÷øÑŸ‘j|@ 9¯”QšSYÂe…¤=‹ö,eWQÔJ42ØU…æ4Å~ؽÅEmÖÝÄlbr©Ñˆ¦"6›’Ç`S#2‰ÄdÏ|6»JÝ¡VˆmŽg Àû ·øQS”“`´ ‚…˜Ÿ›Dg—…å‰IþYèøîªÏxUl[ðü°z‰-T2!––nü§Ñ¡ÉYÈý£$ ¹¤> ²Ù•ê _Dè$+ehß‘¦j|ÝöAï𣅙ýðIHL°ñ)$ѡ؋Â)lzAeXZ&!©°²L3˜¹”K¥QѹME”Šr2ž‚:ðÃ>è~ðé¤âSßGS3€ÉkB;Ÿ×$㥥T4Ô k´÷du¢:™j¦2&ž£€öA¯ðCAd•Çg¤e°p´ÇÃBŒ5ÜSõ“ÂÑçøaô ?Ðò5½8·ªÓÓ( u\ª™`Ûøaô?ê)t–YS#AÎ¥±Y%x¦i~ؽøžKä[b˜-± ?_ˆ§© ðÃ>0äG™•ç;ë–çç–"^ŽoEÀûÀ€õ.û­û›6ß~×.?ì~üôBïôC"äò°u‰†FÔ5à‡}ÐÖ¿ÙK­äÇžéJžÏµÎú;‡”[ΠÖ£#²³ ÈnÀû`Èxå9;O=+cdÉ÷Vò£8ZÉ ªuÖß9êЩh£3z˜ðÃ>˜p^yÎ&©þ¯øèl-?ÔØfþJ9‡3©ÙØŒPJ1®Ò ðÃ>ÐÏ_Ÿ_ß°dWg¯ž¦±M?êÑgãU\E¾‘1$|r!OE1ðÃ>Ð÷c„2Ȫ¿i›~ȸ¥ôJrÜ@®¨,¾I(xl6OáøazþÑ;óW°´š/DG£m©ÖÉC‰ ±éqt$~ØÀs+ǀǑý~ؽ¤}‰…“ªØlfh¿‹ü°VöC^Ãã×u¤©®j*DÝiØôi"QK êp¬ øaØŸ µŠnÖ\*jÈåeäºÖÓ°µAÚPëÙ:ðÃ>°??°¹lXæÌe£D5{³î4løaØŸX¿"³çEj*ƾW]¤3 [Ç~ØöçVÛû‡r5J}¡¹S øaØŸ !•N/2>N‰1ä賿rž¼Õ4løaØŸ°¼–/¨ëÀù-òRX&ääk¦aë0ÀûÀýè82e­°ôÂðÃ:جøa?¬ðÃ>~Xà‡}ü°Àûøa€öðÃ:?ìà‡u~ØÀëü°€Öøa?¬ðÃ>~Xà‡}`?Äe)Y ÜÑÀûø‹†+Ÿ¼ˆšå°<_Ã>à‡}üÀøð+SwùgÓJÒn¯6.ÏW€öð“-м—EÎÛ‰ã+Àûøƒ2“ÿ5ðÃ>~àFñ×?Yxƒöð/"Eô÷¡>ÏA?ã” øaôJ?*>}Õé°9L¡³0üû wš¼ÿíŽïÀû 7ú!¹¦*~ðU3Ö€úñV,ß;ß7€öAoô#©¿†Ý>5c ¨ý=Ðwð}øaôF?¨·—- ÌXt†ßß¾ûuºéÈ[ë” È7o{"ÀûÀi±òœÝ®3àlÂ+¸ó©€ú¾öÉœç³añÉ™Ž ?©äJ‡6µGü°ÆlPž³W4s†5íìÿÈœ5$ÞùóÛi¯ÜƒÓ¡E þJðÃ>hSU:q^aÖ#ƒy©xcöAoôC2vkG¦–1 à‡}ÐýXXZZÊìк* ÚA~ؽÑ7l~çùZ×|_ðÃ>è~t†+ÛðÅ?ìà‡u~ØÀëü°€Öøa?¬ðÃ>~Xà‡}ü°Àûøa€öðà Fá~ØÀ3€p6.öðà €­~Øñ#ûìÙ³Ðvä_8ðÃ>~à$ðÓO?…æ /øÂöðà @þªÀûøa€öðÃ:?ì‹ùQЂ;øa?¬ðÃ>~Xà‡}ü°Àûøa€öðÃ:?ìànOïƒÉxƒöð'-  >ìòI=¾pà‡}üÀÉžþ(üäÕ]øÂöð'Nn0 ‚áý£ñ…?ìàNxc~xƒù£4?ìƒ6~ð— œf®3sVc~¬‰/øaôJ?.-¿8 Æ¼•„öYÿ*8áÜ_Àû 7úA{Ž Ão]2s-žÃ!zé Îhà‡}Ðý…¼l]oîjĤ'éuí%\W2ÿP'=à‡}à²KyÎÞWÍu ƒöèVù­ ß(yÌ_kô?† è~ÀŸ®©ó~YhÞJÆ„›ü°z¥ÂůNO1s%¿˜ü°z¥AâÍfSÛm7g àN\Õà ×ñ£â>@ˆõ2³=½aÆ!~}IÈy’Çd39éWüÜoý³ûÂû«Ö®úõË,eÕ+–@ˆŠh”æ!Ñ1œö×ks~Ȳ“ˆÄ”‡YYAÉl6¥¹w=Ø•f>ìÒü°:~”=Dýðé>?8ä„Ïó*f³‹2Ëi~Ú%ÿ;7/í<;ñcÃÿR•Q…>ÈfFFÕ5?AmŠc¶¿^›ó®H&Sï{efGR«zäV!~”uxç?pSâuÊ£o°Ž"H!0¬ûòWAψy±$äŒ)MÌg±éüÒ žžŽÝ{8ÿ›U¿,[Z¥Œb߈"ÄúÅ5É“S›BqœQ¶ç?4›˜zínV΃J6‹ŒÖ2ÔQªØt®úC?p"_×ê=·NŽ/\ÇE‰çÝ[¡8ò+V£ºðI`I‹ ˆV–L¬(%µHžÞ:yúF|á_K?úêÓU4ÑÇãÉc–¦ÄćÐpÔFØž zrdnzLRPVFa‹ê¹D>þq÷õ~àäxßS˜®ß)|á­êwk錎!K G+l ¢ê–†êZäF&áW6+`1Ñ?¢ ’rKÊD¨þlV5žÊ:ÛóV4 EMrq Ü(6ªÓ`VÅ£ÀœLÚýÙ=_8x>h?pÒß ûóŒï£øaXÄ©°?›¦ã ~ØÀœ\é³=_@ÚÙç ¾pà‡}üÀË¡!ú×~œÑÀûø~̽h^ûaJ€öð/¾óùpÂ{þ8£öð'OúL¬ƒËÿùà ~ØÀœ¼³{rþõT|ágÚ=}·u÷XŸ~¿v÷XŸQIðã¥{ØŸ‡8Ÿü»ßÿÙ=}úv÷XŸ^‘F¼…SLÞ‹ýÙ? _xoÈ_½Bêî-°>ÿÉêî-°>É_¹ÿß9.,¼ôüI|áÀûø—Ý/@ý ¾Ìo¿k·?ì =ÿ`øó*Åܾó!e±h!΃ðS Å·»D…ë£kµ§½ß1×7HÉ <+ï JUk:äÇYÈPoG7ÃÑš­m`" ¦?5×ZÈ6_0?&c£˜ïGrúÅ0¶ëǵ{(ÞfDI5Œmú±øŽáhÍÖ¶ èi~<¡ºúá ÇáÇ`"Û|?~¡~1ŒíúÑ€å:˜HªalÓcÞÚžæÇÛÃÝc0ð…ãðcþ¯ C‡´ë‡B(ƒ~Hµo{ Fº)ÕÆ6{D[óCj0J ûðãóæ+Äã륟`•¡s^rÞÛ/öu[1L®^»\ºè¤zd/>2éßÃV à·‘›X2ö¢‰r=µ²ï¿ÞÉDbvôUjƒú#í”’%C^zÝç§¼<÷ ºŸoLî?ù"|uÚ€É'ä:o¬ï‡fë-€†¬—¸¹¼¼¤Fw±*QʤªS¯Ü#_Fúìm+¤ª5öcÐYäÔ¢=6#Üt¶Cç¸j¶ 8;aÈ _H¦“+§Ð2~Húš— Æã|¶OªÒÏ>«¼¾¸ö…ž!×Ò—wkÀ.óf=d+¿°¾ïv—ÃUË&•6c/š(×Ás/s‚á/ûþ~ïëÿ 6h>Ò,A‘Žë~uòÀjxw¿Ýwõñ…]GÌ º:Ò†Aë½¶÷]§óÆ~Üò@IT®\»õ/¬[9¶ Ú¯»X•(,©šÔ+÷ a^¿+VHUk,à‡úØ §¿f;tŽ«fkÑ·ÿÛ÷ð“¨ê¥ÖN¡…î?ÌÅ1bš\~H&L“£~ˆ‡£“…ú@‰MÄBdÍØÅAó³Ë /ŒÓ毴Q®ŽH”;ÄN‡."KBñš4K°U¡û0œ³¶„ñrôäçîC/>€øüÿ@>>Õ·DóÆŠõWK±ƒ¨³õ3°lÈ ¿ö¥D)Ó«I½r¼þ# _|^h…TµÆ~¨“œþÚíÐ9®ê­EDŽÃ°l<ê‡z©µSh!?N v\±µCã'ñŽ® ~ G4Òç4¼|< /{KgËr¯´sÑú¡r]£+cüÝÍvAñš4K°Ô¾:öJ9ò×BK>u|å#!N „Î'ʼ4o¬ž¿ÒÙúMÈ’¹hB.4(uùC•zå9ðêÿ`4Í/Ã: ´û‘ýïyÁA _}é¼u0¡{ÑDiŽÁ×ývy®ó\¼vš%(U¦ß}°¬ÏSxà =¾†ü´GaŸÍ÷ô[kßX¯þʃ­¼õÖ«ý€Û& Mª6õª=R AêÊO˦ª5æú‘öÜûž[ ½È¤ÿ©§?÷ÓóC»Fü€<Ø{ÁXHÑÚk¦Ð~8.†ájð}¯pê|oFçõÈé ÁX®A½@g?†OyqòÅâ1cáì /f(_ÔQšc Þ5ö?‹˜ýâµ+Ð.A‰Ÿ;ðåÙH¶]~üõþozéøòÔþo`õèê7Ö«¿‚Ò•+oµõ?Ú& Kª&õê=òº¶$hÑTµÆìòyðôþ¯¹!‡°òó— ¡ÿèû¡Ùc~(NŒr:x²?¬—¿²b m5ÕóéÖö» NtÅÏt¦ý.ÇðssS4_CÇ{]ýVÇ´?¬C7ú!oØß¯ª+~¨«Û·ŸEª÷ÿw×vzï?³ìž—uÛO‡CÐ]òCvÉÏhx<‚úo|Ö¥¿9ÎýÏÍäÕ—íŸ_êÆßÐE¿Óåi|©Ë±¿%úŸ›IoÈ_ñ}ìPþ°ÀûÀ2~ˆJ`é…MÑ8£öð'I¯¬…BN}p6s~ØÀœÌ™’Ü ÿ¾pà‡}üÀÉ€kp” ß_8ðÃ>~àdðyøÊKRøÎ«øÂöð'_{àò L›þ¾pà‡}üÀIÉhèU~àœ…7_¥øa?p“xzLn?L ðÃ>~à¤eÔ‚]>©Çü°€8ÙÓÿ‚Ÿ¼º _8ðÃ>~àÄÉ ¦A0¼4¾pàG#«Œß€8àùásþZàG×"ã–ÒiM_/ð'sVc~¬‰/øÑµÔQÙl6ÛÁo‹šŒÌ+i?~ÈÅb…ê­T¢ÐýÄ"~„öYÿ*8áÜ_À®EDCü`çãœ=UÿËdjWbð#»ñ£‰K)ä‰ÑwRA™Û¬ó‘eêw=‡CôÒœÑÀ®¥¶уѱûG…ÅfW ~f/~HIUl6‡Þ7È®¢“t.ö#JˆÜ?Ť'éux¿üèZ$$“NÁYù®Gu…ñ{½øÑˆæ?ÙdÄ  }W¢³«:íǿȔŠtê¯Z(XM®± £@þÊ:?º–æ"ôÌ/n§‘™òIGQ³é(]:íǃ SŸæ½×Ü=ý…ÀûÀ–ücwJ;­”Åd›Í2p—1J§ý€ áß_6Ö¶G:ü×R¾izKö-ù¡àU°Ù<ì<”4kQ ‹(••”j$¼QXmp†·¡ F·üÞi?<¶¼ý \p"Ù€»åP% ¿é®·øaØ’°„O"ñ±C]µˆk¤ˆ¡h °‚žd ATS^ÊÕÄåIÖ•ÕŸƒ^x÷OýOä.;aÿÖŸ¦øaØ”0,SžÖbô‰?g2´>õ‘˜Bi{—áÑ‘\Õ’íKÔŽ ‚ 6KŸõ M­oäI%¯P,ô›6 𣻨/Q·647†ˆð¤Mi^ž~—¦óýµ ÊsörÇz(Qäû|ôÊâ ú°¯×¥:©§p»±NIÿüNüVøÑ](ý(094æG^jÛv‹\Ú>Qç1ŠÓbå9»ÅŒ:áÖ”^ÿvôÂÇÒ <–¼ù6òrr¡ÞR¿²lÓq-©›Œi Ì"æ%¥µ½ÇÔSèLšEûŒ„ž›¾û©‘zçËhÛ¿>Ñ[ ü°lÓ¸D¡ðÚ©Âå%E†§·ÇêÞ*:íG_hÄ_c¶Ò\àÇ9ÜÑ[ ü°äâVç‘LbFË ›õ–ÖÕëæe$Í:©’W×a% 1ŸkD—ηoÞ6¹OŸ7¶Š }š4»ÿØ6¥’žèG‹HXgNÍÊ~HE\^Y'³!ê’b£Ë4u9;5µm©$ ?ÐÃýÕð|RDXަ!¦xx>Óô_axnÙ„ü¯!çnpŽú]›˜U¤›²Hýß÷· ÐsSÿÅÞýh ÓèTž‚X×9¯”A/2sØü64> ¾©éÈ ËÈNJj†Å¤rz ‡ ¶ç‡‚_RUt-<Ò'UI"ß ò¿¯j X{vû‰c¿ùI$Þ1O½¢ÚÜAô«¾AÂ-Ù?J ëÈ Ôï¤úÁ©B[÷˜ÑGÕº~4¡­Xíõjh¶ÿSáéCUªÙD"‘À„…•ÈÊËpÈg{~ û¥ìÄ­á6S¹DzI#áA™òY?»»»ŸÙÊzDZ7Út›G… Ñ÷ʵK,â‡(òðçˆÎ+ð…÷zÎPÍĺ~4£­ñ˜ÑJ÷:rˆReÕ…Ï?žr`>ú ¹Â`q²5¶çzÿ ¿Cˆ¹®Î(19ãïДÿÉÿ鬻û‰?jj¼¢¯´I£Øö,Ö.±@ûľӷ˜®nÖ£çù×PªX4.žB« ëú¡àSétJÛÞ@æ!ͺ˜¨¾ ñS’Òc‹%p#™Îª,Àqo²=?Ðò=ÒÝ×ÿv®úÚA¿äx?BUM×tcÝÞ«bkÁu_ß뤶E7Â"|½uò öãÏHÜã^©é~(긭ëÅÛÃÊõWòZÚή“4‡G—hjkÕå%L4<¢Oå§íùÕ_Õ1ˆyešzk—]¢9ru 7ˆˆ:2f~ÓÀþ“–†‡çðu€þQÖ¡g<ÿ€å)âÛ i弫ŠTlÙñw7µªH?…ã+Àû §øÑ:íÇÍ᫞ªnÆ‚»LÎÀñà‡}üÀwÿàçg}·aí—ã¡)·q•`öðb¾¥s?úÁÔ~(ðÃ>~XàGW#nÒÔà´4«Šä ™–·˜1TAZù!«©ít}Z§6#iTˆÅš‡B’Ú:4©M·â±¡Þ¬* ‹ø!S‚wÿô6?u<®ÈŒg'–F!$“ØyÓB |’‚µÖ«ã8¥wýÛÎàæ&ÐõƒwîT,ŽgîVC”š’XRÏ'S¸ª k^¸§G\y-yë¼¹+4'y¹û÷«N¡ ÙùÄ*¹¬†/lgD ‹ø©èÿÖöÔÿ>‰#¼—ù¡Èg¡çg'à°´ÁHÚÄ¡)-—H$Æp±e•¾‹öžr?¹·ÁÍ£ã󘟿¿ßQ†%6·C𢑄åx £Q¥xû2˜· aþ§ïºN@Û—œÖþØîñcŧèÅQþù!Øïeá½Ìå¤+em Òq´~4`~ı‘ó©ŠN¸öÃî=ÇÏm(ëèzuü(;áp¢û,'IX¶7rÿ`¼ïyÅ'ÿ!Èç±Û~çq“¦Ns\õxƲå?|ûN<÷Ú>ñJrûc»[ÄÁØï‘pÔ¦Md[z™ÊÆEÏçw–ºbuþJœšN$æ† o…9OÜ÷|úóÏ¿îÚÝщmuýž~äïïy³ rƒÓ‚¤11?-ñƒö÷=ÿÇG¸möï:9rܨ‹Êàð·?ÿxþ‚¹ÕWQ?.¥¡­<9&‹ÍñcüìÛ82<ÕP+z™p]a%Êë¾Ú´|^¨,ŸóRb!•Ȧ°®Ÿ<¼eÞ¼%_~}Çå8ÛíâE÷œ®/cIK"â£Ñ‘Þ*Câ ©U\*5ãü#¿«[oûmYî4ÂeØGGG‡±±ÊhÒÂÉoÏt]Q-ËôЉ}ü„QΠSL7´ˆgþï8µ¶äÔó')³ÞÂÞÛü€Ù¬šNöeêÚúÝ6«VÒÐ$!ܾyàøÊåë7=ô×´Ú×­Ń® ú³ Z7ÔÑq¢|UJ²ÝÜ’Êz…Tįö½íï±÷— ¾]^wyÍa¨ÓHW—Hetñ® _|÷ÛUܘsÿnV­DÈå7Hk…5Æ/–yþá6‚ (®¹’qD÷6?ļÂB.®Ñº^Jˆ_Ò…½Ç7~ûÉâuç“#Õ­¹Å<2…kN ”®èÄ3ÂÎ|{·—ù!G'}¤s»õ¢CcJzv€÷íû~úeÎÊÃ'|«š‚GCçþ6ã ë‡Êd•›ÓAßBT% ~d¦J¸YyYáE4t’” ?^¹rüÀð!#œåºÉ1¯€$4}y”r+t²€D-)èdu¬®¸¦né*CoývÞ{Ó>ü~Ûê¯Ö¬ÙsüÏHU×SÕ ÔX˜ô4:O¥–ŽMñžÁ!^q֭î+(¡’ôv£‚—P)…óE>ðºöÀñ?/…Çß|sähç¡HÉñcšÁòUF‹¼Vý°bãC,å“)$¬à…MàYe´ÿ«Eü8Þ÷æŸë‡§óÜ]~ÈÐlN©éÈZt܃J2: 6ž¦&ÐñCFb°Ù s2.V£Î#ŒpéÍ¿ûpîÜßí<±ïœçÝÄbÕMË2 Ä’„L$GŸ„ãV ãGO8{½ÃUÅxÀ¦)¯jÓAÞ„{ˆ‚×Åã·n_]îIÜív ÐöÏŸ0jÔ´/?_lBs² ÅÍÜ¢b’vÊM!WˆÜ—¯G\¼´ûÏŸÏ;ÜÁyŒãPÄ4ƒ5xèkaÊ`Êú_¾_öÇî2y&))LU•ÓM=™²ˆS7`6MÇÞ=~`sÏU™'㯻w÷»¥dÆä”™Y‘c[jß^WÄb3 ÑŒ;yÎè)‡-xwÖüÅ_¬ß0÷·‹g/øê]$I©DbF‚yã—H2½¢£}#¬ÚF@FB2€4–O®Rž–‚JFeA \ïsÉãþ‰k«OÛ3ÖyÆ8G‡ÑŽƒ=F¢Å‡ª³œ¶âóU+?Ü^-IJ'Ÿ¥âÈCZÄ+}¶ç H;û\ió‰|—ÓÐsú »©|^]XVZ`ü6_öö÷9¿#”B#1É…f=0€-ùÁC¬D3La®o¾9iŒã„YŸ,^¶þ—ß}}Ñýòý;EMrXXŽÛ‡®-¤¬¸ ôë>äiæ’ybeu ººCHC'´Âü+AÁQGÎÜõó¨É³\‡986d¨Ãð¨ÎΕÑy¿®\´híBRrjBŽK eêw½Aпö·ý`û,rÀó½…ÝU¿Û\[gôª¨pùû{_<Fg5IŒNðˆ[òƒÃdUUÑІŠãߟóÎÔ1‹¯øýöû‰½–wéò£€6u›’ºZ\ÙA?š‹Ø,†Õëèb±n¡°**êŸÂܯâÁô{h‹ª3Aß“£fÍ8ÎiÂÌyÎ&½6yˆóôéïWÍ¡œ¾ïÚ鿯m®ª/aV”ÑMÏ1¥ÄBÏ?ø1÷¢ Ô‘5½œç½ô–ÚàóANFHÐá;÷­¾’K¬.I¢°:gH7ù!q¸5ú[.,LL`Ÿ6jܨi³Þ7fË㰃Ϝ8²ø“o¾ÜøX}«P4TãóB޲¼¬”äÌÜ®¨£“W<LW•ÐÕ÷áEäþqbéøá¯vîèèøšóÈ¡CG»:Žÿú´©)Êhêš —oÛ[åµé\EKµ°Ù[òzQ‘+§uûׯ:Zj{~/? ݳáä¡oöù\¡&'fg†u®/C÷ø¡à—2Týª§–4ÏÀ =#Ç;;;~ä[w/Ÿ Ý·þðº9³¿ünñ.ú»Å¥$srHºÏÏ nøÞ$vÅós1488” :ŸÅ¤Šª ’n 8}ç¦ÛÇ¡NŽƒ;8 2ÑÑÁiÈ`'D•Σ֩²Õ¼--ùâýS¸}”ÒÒXP^Iå+”ÓÊH†3Ôöc.úz¾¾ià ]êÊ8j´’AÔNþ¦Å!yWoø_tIOONGg§ËNèTƒîñC™7×Ï7Ô„¦§fdOwš4iâH§/¾Ú|36!¶¨ŒrçÇÝ;÷ùI5¬FZ=Ôμ¯­Ñ}>œ•žžÚ}\jCs33s#ÔãË‹…d¼òœg•¢•š¿Úù¾ÞRË_)`¸Èƒ@»ÁÎ È#ÆæF"àYr¼`m¨XúÏ@ëŸä!÷Ã#?œÞÈH ®TNñÍØzÂÝýÄ6UÿÁÚ²ö{ µF÷þþ1Ä졘 crZ’³ˆÄœ ½k6iIùìaãÆqp|ú¨‘ÓÇNq™>mÊÓ8²ÿÜ)ÕÙM:xýöí §U¹-eÇç’z¬Õ„‘”[·ü‘÷ä$ûës½¥Ý凬Å@!¬þÙãnS¨G ×ÉŒRÊ£À„§”¦¢¨¤ø'UõÈNwSù\XD§S4SÛ %î:Ô¹o97j¸ó°¿ù?:šPL«W°/ñýOkŸ¨rcbÍ,6cŠ]?~A>ÅéÖÂ'rMÍÇI&‚5Oêål2™)‡[ü6-øáô¬ÅÕ° ‡xgôˆ©cgÎ{Á¢ïV¤«‚nÜñÇ/šìKMƒUÉ•b)/2œr+5g'ÑÁ[oa7ùQG¢ùú7…š[»ýéVÕ@É"’S"BÈŒ*®ÆFEå‘JйoƒÕM~(ê…Âõ¹%ç—— eWꌡÇ9mþý1“¾½þøÑ…ûQW&§\صléú]ši[šy¤üsÎpÝòyՃǽ -Q>—*YU&{õÕsØÚÖ:Å>>>( ✱]Çîxs¨ãÐñ³'O|}ú‡3\'›4sî{“g}ôU°*Y²Ükç/ÜÕ¸¥¨åÈ1náåsŒ¤ÜÊ~ð¾èrYa÷øÑBf²Ù¥úu;Iûnݾ}ì‰ë¥]Å,C?oF"+¢ŠØìJ¾¡ážԡ¥šÞ0ÔuâDç×øyzî¸GLºè~ýñýìØ#·÷¹Ÿ:õ(MûÜ#˜)Ñ­ß @'g ÃÑh«]°|^;£Šh©GG"‰òªÞç2ç½÷&›µlé7z¹}úÕÞåKß]´lÉÓ¾Úµy—z >ÚÛ03E§þB•b££º÷žñkÊѼy~롸)±]vkVu`¢Ç-¯QÓÐÌ)©ÃD[ðË“³òå FLœ8qœãC‡³·n<¾ç)-òÀÕ£îî;ýÎw¸œ¥ãG}(ZhŽcY`«E4sê 87Ñç‚wË'¼÷Þ{3G¼»bÅ—Óg>ØÿÕ—›–¬z}骅?Nùߎ­‡~R=ÿÀzS奘QÖî=~T—Úïá!~\¸)UM ´¢=BÔ´8V›ÌÀüÀêe}7 ñcì°ýþþžûÝò’®^ºé{?;êÄ­Cîo”Ôáõëø!DËçQ–hŸˆÝõp×3 ®¡~Üàmø1}Ôœ+–¾ñÇ‘Kÿzå[K~üê—)‹vlq[‘¥Œæ 5÷¹‰f<í=~4QB…þ¤ìúûÚÅßуWf™gò:a5þŠ‘º/¯œjXzã7gl£y/›õÅßÁ¯xþ½kûƽ?¿|ÿÕ- Ÿ,RG×—$'2ÍÉ4w¿’–®¹@Ü ÓìPÎ!V`OyheˆD,ƒêjÅ–ú&¹¼Y÷¡¤¶Á¬²ˆMø!çR°Z}yé“Ä&X&ªª†›ÊKЪ! ’À–¯¡35²zótÓ_ŒØtìy'¿T‚^+¥õ´Ò•&¢–U–ód-ºÞ*̨Ûý ($ =V2‡æ[ŸÍùðº–DÎNMN*¢”ñ¤°¼–/@N™0?_ ¹Œ±C¯zdš1½³MøÑ|á½7fî©E ")aa‰f\dxÂÙ¿N]-Upž†xGúÝóð ´i͈[˜ÿCö×›£Ç­Cî‚g÷ò›Ê}N_õ?±q㎭¿ÿºù²ûÕ'ZÞ£GþšÚ°ZrÓœëqwû!BJcLk{aïÉÿûâÓ·.©ž4óžå$\GŠeBåÔÉ5 A)‹MSwv®»ÿ$6Ö'ÃŒ+¤-øqoüØ)®N{â´ÇSr¤_Äãïw_¿rì:-Ò/ðØás—Ý…>ɯnEF°?®;OœöƘ_$ á¾1OïE߸å{û‹Å»¶Ì|gÛ²VoÛsÁÿÒ¾ûž—=U‰”¦ÄegFT˜±þîöƒƒŽM[ÑñcÔAdkæ~óÍ7ó¿T–Û%iDbRPZ¿ÛŒ6ñc‘š±A¥‹TwæJ¬wÁ%3n 6à‡âëÑ3gΜ0UTŽV¾þ}‹@¸»rÛÍÛ7N¤Ü‹¹véÊÏwÎÜ|êSÐñ::[ðcùkH'½^Š¡§'Oûû_ùì«ýkfM[ùͪþü{Û“µ§üýýÏ•ÑB´íV^-ëºÙežÞj¥å‹?>ýXyãU$g‰É!OXlWÕM½N=Ú FÙCÔkfl¦ ø!~{rî¼éZ\¶'#žFÒpëç_¯Ý¾ý{ŒçÓë—/ýríüµ§È¦F¬0 øÑ4ËIã”Q$ªr€bþDd8?gÁÞ•³f~ÿݪwþtßùhÙYÄ+ªçº'ÂÌÈÏw÷ýCˆ>• týàGg|ýÍ7ïlTUgÑ Èý 6‹ZÓT„Ý?Ä$䯯"« ü«1Bhg’ øÿ<ê­™o›!” ú?{|‡@ðZýÛÛQ¯GÝ<~ÏõÞOïS;<ý‡-ø¡øÍyÚÌ™cß©c_Gü?wÄ×ÿî¼Å‡þ¿½3l¢ÊxVWA]õ>AÄŸ €¢€«.¬¢â,¢ââÒ䯍 Ë­`A¹,¥åh8ZZZ(-´…¶PÚN“4ÍÑ+M’4M›¦mîù½IÒ6I:iæ%eúýü¦3_æþÌÌ›yïûfy)lü¤ÑËÖsjöF.7v½+í­ŽÊ=‘—éGµ¡PûaQKŠ´ÁõAŒ~aäÐ/ºþj¤dž=sYÈ×Úìj©\V¬#õ‚Ò2aKÓ:ÁŽ˜ý‘þ|î ~$?ýèS?ö#*»¦Ÿ>}¡pìH²R-”«™ËŸh«S«tA©¤Ü°uä3Cß¿âúËRr2%)Û€N¾TÊ×W ¥"•]&D%"µcu̪b1Ÿ™úWözZ”.N,Üio[ÖÜjÅÌÚUh!mÊË—/•™«2’“Ò³K¤ç’³.*­rÞ1Aq\ZÚÉÊf'êyÂ"?«j?ôB¹Ræ»{D9;ò­' _íóêAõS¼=29…KÕ-–ëÌÝQ¥\¢ ÂmÒrø¹ácþ1p²kÕ•ÉDÁ¹+V U@‘Cåþ)Ó’:*›Ôa…¦\©¬ê|åPw?j…²JiPúÌ~û‹¥‹'­s2â]'NžÜ-!u9ÙyWRq—rsOÄWÄÍÎ=)HÈ#27¦Ä•,×ýÆÑÅN‰?­Cí‡#¯W‰?Ye:‰}Ã+S¦L™øOŸ 7©þÅ®ü™”šò;•7LX[Q7?,|ªŽ™ecá¾2fì?8þ´]ºHDÎe£³ãŒKbgG{ÍQ@¡3?Zg—çæ‡ÍQN„µ‘-]ºô«ÉÎ$$öœ¨ÈèȨD«œjYžÇ;z‚ûG|yfrâEâbr.Adm¦R2œqå‡sä~ð+^Èë'*›sïcÅ®×.ÿòcÒ+R_!TnÎ܈ÈS©gv9ülÜüpvì'ñ§õH§°I.M8ú•þc°3Ý“-—êû8ç’«G€±³5zµ¬Ù~§%¾Qº÷ÿ!lV´16잌üXð¡óAÙÆýËåî‰5W¤S~Ù“šš#;:!›È:P@Ù»¨ÌI®ƒéôƒçdzn¨ïjêh‰q72ócÍôÑ”O^ŸìógãU*EÛvœ9Ë=FT)«¬3éÑÿ ãþ»eˆù`üèÇ^~uÌп»ªª/çg*í¶*¾°XRÉ“;Úׄ ¥Â¹u­½ðu ûÕN¡÷ýÜ¿ã—Õo|¹tñÔp×óUöäGDº½úT>Q~,.)552Vqù07/ÿL&ºæEp "ó‚+º©Šr²6…Ú#¯´BŒý¹Uº;éìÑןyeÄKɾƒybñ©½{vŸQPm|äs/è„2™¸sùÃóÖÇaöøô°C®QÅ…“ÇKQ‰\ž“’œY[_XÄ«AkQW((t^è-š¢âoº—?êÐ6JpG{Ášý‡~ýüÍÆMknQ®ŒÛ±é@i+KL=sIš›užWx%!1-)K{ìlFrðøqQË6êøâb¿²þ…ÚÒ¤Óê±ë²ãSSScÖ®Ûž­³ÔÒÐ`®U(ÐêXnïî‡Ý ­Æ½&Ù§3f…Íy{úœµÙ-‹²7é©R^Lõ£&m&çVÙZÚ`ÛMMl¨Çû+Cµ¦ó;:«|Çֱܟ¶'žk)E6òˆìª3n«V¡6ÔŠJŠÅ"ÝfR)4&²IQ®²ØMF·ƒî‘ƒ€!÷#(\L@~œÌî81‚üýêÊfØ?Ÿ°®Gÿ2®Ñ'Èß?¬âsV¬ýƒûÛ ÷-Ñ£»¢®%£jµP"T3©i7ðÃf' £RSÏFq¡Aö£®¸|·_Î\ðþ‘ö&J›3ß1KýPŸÊû1|íÚÃ=»Çh¾+: î˜Œ>Èâ÷£¤Ø{LPý¨á'\mHص+)˜Y ‚ê‡2ií®óq¼ûÞ; <,0jUÕMTÆçò*YkÆg{£™wAö£"“HZ¼tÉšdßoNlµÎ„ÓÌÝú'ÚtÛL?t§ÆÅ¨4Ë$ò 6à ¦ª«6/\v6}{øQW3&Õ÷1ÄT­T×7_V-êb13-6ƒì‡" ÎØVp5"EU¹_íŸ:»ŸÝR?Š£RRS'+] Áô#uÅîÝ_o(x}bqô]ÙæÛs-þƒì‡þbV^nÒµ’ƒ:¿RŠ™Ìf€ÛØ—&†Ò[*•Ì“=Dðü°›Žnؽ{WÄ,µ÷ R#k§Üa¿ÊXƘàùáhùl×de]µ¹Ò™ ͪœ_)%U5µÆ™Ü¯¾L|ÙùC’É-~kœÜÔûòãDrЛ¸Í“º(rÑo»wÿt°Í¤š2gßÇž82Ž•3‘q,h~èxBÇ—scÛ²…'ó\\öB¹R©¸XX^rúXÆù‹Ê6Áþ3ø”óœÅóÛ>z'ÙêÇÇ'=ò°,¬]j£Ÿ<HæN,?ìê eÁÊy?n˜Ão3ÍÄ+“•µ©ûéÌXÉD*é`ùaV)«ŠÛ?C-<¤Desƒ ¬"?§JY²'• r3(©÷u³}±ôϹeL½aÂ ¾¿Ò$Ÿ­Fý`O‚凣GÎË«6þÜ^W>¦¶Í¦;23RQ*X~8z.’µ_+ÄY÷²¥òŽQ§•£ò•àðÑ‚Hd`+ñ>_Mq¸w§×Ø øaÓɵŽSÆfjiÓî]¤©NÏD·^ÅSU™œòC)ò«MSóƒå‡£Feeû¯›Š•^•Ûê¤è~r êN×yÍ·òaÿ÷É!)Ÿ›ówìÞ‘çqñlTª¶åt­°DÂcþËH0ü¨‹ßü¿ ñRô¸ÄÇ`xÇÅS5!-¨jn±Ò« É#S¹)`. ÎÞŸ_&¡®‡ÖšÂBMçŸØê‡xϙԔ}"·1M|™R&ð®~ÑD]e*ÆË'AðÖ¼á÷àGQù{Ýùv †To¶s}×1ª„BχŠÜ´Âܬô ©ã¦¢Syø;}Ãdký’œ8ªÆU¢ÛuÅñ5 M«'=U÷B)`üú?Œûör¹Ü]»k !¹{ÇGݘJY}£ïvŸ&ÏåfR¡Tëœ;ÅÂsäïtÅ{–úawø‘pÊíºÑî×Ò™®ÝŸ3ô†{(?~ßü—.‚á‡ÿu+o,Zš£9ÿ’vúõ,ýhPéìâ}gSÏF ÝÆêJœí¯=1ódõÃé Ü~P…ÎÜM‡¹1¿ñe¹ÁðÿÞl)¨vn­™÷mÔ'eQ§¿±ÐþöUߥê®ü²÷×\÷ÝbáI+¤m3A4©<-óÕOðúa׈2$únøº­¡){PÛZ"+£Ý›­ƒFžD*hiÞfà—– ;ýcŸ²QÜ#Óm™Æó´·ÔikÛy j7㨜…×M|ö•Œc‹BªJNö Êû+k¶ÆÏ'Hs½ÞíÂhªÕ5tþõ ûüÈÙ†žÊý¢2k3xý(¾DÄyúñÆäOÄ^?.üŠü8ü.?=Àê‡ý\>ò#+ÔiZÁ<àõ£xM,—»#9D½q7ƒ÷þ!ÎF~¤Vâ\ À<àõÖöýOëé|¯zÌ€×݉ÌKi!¾E‚˜ÀüþÊVAˆ‚ß᧘ßïÖ•Š*°Ô(õð¸ü071ø©ŒJ¸@ÂL~4UJ*Bî~3à0ù¡ã ̺î>7¡¬2€¤ÒxühLOËJÏÀm’.àðøAµ¢QŠ™hGáJ ÚéG|<~TPÕ¶3CýÞªðxüÐV0™å)ФÒxüPï­®´m)À<`ôCÁÔ{«®yÿ(Í@~d‹q̺€xÀô|Eµ$“2‘—Ã#©tW+ÔÅe]¹ïOþqœ€xÀã‡]+ 5ŒÕ¥²×Wkj;_ÚÇôþª&33ßʬX?ð€ëý®©Áâ¯æ­àúþa·t™M?0ý;³ðà;?ð~°ðà;?ðÀ ¶6Ÿ»& úQwµ:èéçiÁœv“)]§w‚ëÚ[M!_êZÞíØ6éɳ§I—Ë8Œùa¢rX=…8-®k?¨Ü_2^ˆ[Ò¶c~¨ ‚Èè’O¤Lùasæ@ì’7ÉëÙgw(’®RÕÆü(½€ü(HëŠLùatÔu+î’׳>µ_K쩌ùQž‰üÈã147FaÖQ—|†¼žý ©û²RØ%÷+c~èâ󈂔2†æÆ(Lùa¥2ºÉy]òU f?ÊÆÞþà÷Þ5"ó£‰'-2ÒÕ$ã0÷þªêXâ I—…é-PãâÞ‡š‡µ%Nîû+è~æ6­×Hðƒ€£}÷ö¡¼G‚ìüÀøÁÀ<€ìüÀøÁÀ<€!ÆÞÎP'èº~xl–Íæ{Z‡„Üzµ²Úüu ISƒs±–ÆF+i7­¤^©j454¹v ÉÐÀÙãᇩV«·ù £Å®ŠÔUÙüS;ÿˆ;q>›»9ò¢¹eºÕhòk‹Ýý°Êr.J;c™ÁV§VÕ4h”jCÛiм<%i­©RÎmß“r2™'d_Ì#6N´½º9H»}Þü]uh I«©µÚµZ‹¡®Ám³Ñaw?T¡ö£^(«ªà_»V .ªF{¢'©ôê"a¡(î왤‹b¡Úâšîêî~4ñJ*ÄêP b¯á 3~=øGøÁ”ÙÌ7~Þ²)o¼=ýƒèæ“ÃÀiüÙb7?lÄæˆm?d]ã¶Ôˆ*åÂôò*YQAòVnùiãåÒÄÔ¤5oN™ò›«NÛôÕ´/§ŽzøÑþýg¸ÂóŸþü •Ò ¨IUeñéé'ˆâ’âÖƒS#«Ü<µªJ¥RYâ]?zZ®¸–´ðäJ¥LX¢T ¹D䊗)K¨ï5!š^êýå†>î~¨eÔ²ô¯t@è‹«”Ä÷ñ©±k·ENœ;5lê¸FLúbÞòI%Îé&>Ú¥Õמ‰n~¨÷Fr¹ÑT0»ÊÞXøUJ¥(¥1µ×¤êåÑ ¬<–Oœýá’飆,X0ï£ÙKgM{è©aÞïwÒ•4pì»ïŽ–O^¥N;ÞÁ|‚8÷{:8u®Ù4ÑÊÜvBˆý°h=•?;K5uÎVªÉFÊ“Êø ¥’8Ed$&”(«®¢+j :ΡÎáæ‡½ÚÆòFÖ»óP[œõóñÔÛVlþtÑøYÓ^]4òã/§­œœîœ®—R«É³ÒŸ£›ûs¹ÜM|†×Ù uÑf ­ò®â*]–ÏË%ˆã¯N_ôјÿ^ºìå…_O|ïožnÔ€-ΨˆAï"ž>aåQÛšKDZt1Ò­Ù]5¡°õ^êû‡ãÚ*©óŒ ?d'‘…û³ˆÌÄ“åJe…cG)®vzþî÷•œºG=Ñ -ÎÝz,õðk¼à“°icW ™öÅÌåSóœÓëJ¨SƒïÇ–›Uûp¹G~ÁüâÅÊCWwñér·º™Ê5HØEÇ â츩‹¦¾6löÒ¥c-›:é^äÇKýÿpFˆôxçé ò*uH b â|¤Äí][J] [/‹¡ö£‰_&“¨ü¸h1õ´AÝV­ÈàÀv~àü`àÀv~àü`àÀv~àü`àÀv?¯óÉœ…¾§¹óÝçôâÖ~D/nÝ”Õôâf_cåݸaªïisçÓ[ÔòÓ‹[;™^ܺi«èÅÍYD+¬×‡¾§ÍŸGoQ+?£·îËòàÓpzqsÐ »/~D,õÍÐW®1Ñ÷§7çFzqKïøŒ^Ü 1´ÂÆÎ÷=mø(z‹šð0½¸¯zÒ‹[z×TzqC^£öÖW¾§|‘Þ¢>|€^ÜBÎz÷~L/î…—i…- ~Õòk2w-½¸#ouCqõVš îŸO/n†w¶;ÿY²’^\Ühzqºi.xP½¸/6М¡oV,£wz$½¸&ͪ/ÏŸ£·p½¸.øÑ øÑ øáühühüp~´~´~8?Z?Z?œ€­€­€N殣2?"hÎÐ7KÂéÅŇÌ4gèº~œaÜóô⮦×Å(”Ò‹ÓÐünc;AsÁ§hv •xÍþ³jhjûqš >ÝÐq QJs†¾).¢W›Js†t·1…f%¾˜æ  P4ú¡õa£lìí~O/__I1 Û’ïÝL#®àï½ûØî Ý ÇÑ/ÆM,èC£3óC3*ÏݵƒÎ,ëŸøŽFÔÂá‚£7vü©Êrÿ¥Q=i~…îÎп­ãÀŒÞf’ KgžŸÝDc¿6ÞV@’¢;Œ+åTä³?ÑYn·†î„ãè  ŸyaŠw¡Ÿ¹oÓ˜eìKiì׳÷ИÂöÄâê„›séwcèH8Ž~±k(úYý½àó¡QµJþd2ýzàé9}ï\B£›…K=8šµ »3þH8Ž´ù}úYM«fnãâÞ‡:޲ÞIÒÙ¯Û9ßÖÜ×qÁ®êo¿é/>È¥±~ÝúŽ£Ä=†~æÏ )ø* ¢[ÆÔ&,i§3`/R÷åůt÷û‹ègÝ8KîÞÐ>pý¡¢§Š$GÐh€dî7Vs€)Š;;Œ+¸Ý“×t|½ÛþúYóEwkèH8Žþ1v†>æ6‡Žö-’J¥ Zó¤s_&Gιš~OL‡aå}¶jÒîÙCk¹ÝšŽ£hß½}èqáŽëÉZó¤µ_Õïõ}b;¸Œ—z÷ÛJk±ÝšŽ#\<⣻±sHrº«Ýè³í´’s’®=c)§m{Ã’™£d° ÇlÀ§ªû•û!x6ÁsÜ»Œ6=ïhã×—$îÏ-ë~|7 Ü\NT`+wmöôܸiÓ¦’ä÷í8t†öý0ÝušìŒ–ÖA䇜“Òî2-펥0úœÒß<Þ<ôÜ/þü? ÃCú ZKå³ÙôÔÝSŽp¬dÚÔ™êîÇ›Ð@ÇHJ&Ü}ëË™Èc3ï¿j5riÕÿÝ|ßt40`ýÔžqYÒïÎ2Pùã^]s¸“ÂÝ¢È-ƒoç¶ô?¼Í¹;ÌþÄm¨Ò'GÞúð×n»âµê“ZÒà,¹þâ×”+9aÑ {Î$Éð?}»ÿ>Èo‡SÓ¦÷‰rð›–Gûý´cP_œsï?÷¬ì=ÀB†õ\µ¼ïÇèü¾kÔ±ˆû$É÷{Îß7þäG>Ùî\˜Ã樥½–î}§Ç‘Ö¥¸iJÂLÎÃï%|ÅùŽ$ô˜½â· ¸c7y­úQ¯ôybõhŽJèš[ õ=%5}þG’Ö'‘?¤¦Mç¸póCÀùƒ$ó>—È9/ K~gùñr4eAt~ÿ­$â(³9¨L@Žs¼¿jw.Ìá‡+J~š£mà˜–¥“†ÙIëÝ™Iòñ÷IÓýT郜ô–5mãÇ_n\²á¯ÚIò §ûŽº%ÈN!¸Ê‰>Ầÿù1j5­½ç«ºÛûýRJRåG6§f££èDÿ'Й? §pä?ö¤žŠŽ;ühwâðÃËQ¡½¦eéä€9h`º‘ãÆ‘<Ρòòra -ÿÙÛë>êkçI–sèä&¿A~ìãTSC½ÖïæÔ¡· ?FNi·üQ8ñVÎÃ?XäœãÔ¤ãÉÜoøëˆa”óHÇ™¿È‘ËŸp~ÿp…;gäðõ¹—s\ËÒÉ_¡GM'~Ĺn]ß8‚ø®¿h³þ†kHR¹îz®g8<4 áD%p¤hà[äÇ'ïSÓÚøÁ¡î –Ëó8[]÷‡çëÿüQ9úO”ÔùÎü­ŽûGjó÷AG¸sÐá‡+*šSƒ¤ç[–îéG6Gà¶–F>Ÿ?r!ŸïÞ“™:›*t4Þð3Ifqä8ö ?Ô^Œ6ß ªºi=*<üøñIjš»÷P9ÏÇrŒÇ@6Αs^DþÉœciŽg›wÜü¸ìPgºÃæpçŒÜýô¤¢¿Ü²tO?ô}¨bMü­–x?_]ä¬#©ÊeôE³÷ðêýÕw=¾<¼¬×L’\~ã÷1o÷ãØÉÂT gw?Þì½þô¿{qŒ•}†îü¨Çi9çOoîÿ¡Ï»òæWOwû­—ZÎ|r|¯%¦=våGs¸sFî~³nZ5žÛºt?ÈœÿÄ,¿ýõÖ5u÷ã—1eÈÉ[føö–ÏП3?Æ¿£€n‰ãûÇöçz?C}°¯}äÁëz£1ƒö’ž~T¼u+çÞŸÑóÕ¹Q}o{é8*ŸŸz÷®‡gH2qð-ƒ"Dõk=óMKúÝñŽ¢—ãùÊîÄÃÛÿžîýl´ÛÒ=ý ÷ ëýð¢úÖ5u÷ã+ÐW é3x3ú¶û±î# húUˆ~§?~v½ÖvòUßß½CKr?z1@@<9œWϽ9 Yå„zeèóÚñŽc `Ã8œÛþçè8)g}¨W†6%‹C½@wASê5€PðÿM–Õendstream endobj 182 0 obj << /Filter /FlateDecode /Length 2428 >> stream xœ½XÙn\Ç}Ÿä#æñNà¹î}É[8¶é'Ã#®HEJ–ý÷>ÕkõðŽ(“@€Øèé[Û©:UÝïÖb–kAÿÊßó»•šM\\‰õ?VÎøY{¹öÖÉ9¸õÝ*(7»ÛÎíêûU~v&¬½3bÖ §ÚNqv6²kÃÕ ~Æüh™>k=~ ƒ¾jUˆaö–U6¸MN‡Ù¸Èl ÒÏAHnS?T6†3Ŧ¦­šÄ´‰õõêÝJ¦@®ËŸó»õ_ÏV_~§Â:ÎÑ)·>»Zå ˵4zö…QRÙõÙÝêÇéï <,™þµÙb-„ñzúæ/_o¶Z«9Æ0ý~PBDã§ÿÒùè„qÓ°Ô"Æè±Ä /Dpzú ÛF:‹íoÎØ—ßo¶JKá&i7?ývf§œ£µr½E ¢† g0ðf#gpfÚ·Õ‡¶zj«·mußV×EÍ#g«ŒBHŠ|x¼ŒÓþYë„ÐrÅlCÚC0ùC¢é0DËéú‹  -ŽPµ'šŒs’ÄL·LƇ.ã¢é>¦¤ƒp•v'ËA…ÖzÓ.}•ˆ¤ }ï¤LÈö:eôt}³Q~6«é=í •™¾è‡€ÚÖn¥ž­Î‘¼Z@ª¯.–°Põ¥bÅ¢û¸G²øYÀ¾¼ ³lŒÈ®‚RrÃYlþr/ä!uÂ{£¦‚šÇB~NÛ:FƒàÜö8}hP]t)ŽQJc‹úa¶Ë‚‹f»OIAXßö<Ú±ì©Ð ÃýÛ¿é'v盞jLø àÕ˜gðJ•]¿€]¯·5~ ¦‚¸Ïæ"+Ym]2 «®°úμµÒîÿ ÝYÅ9y÷‚4ÆWý,wù=ŸsL7è'«sMgwX«à¼ôÙûOÔ7ó-9Eº?¦ÝŒÔÓîMÿ0»$5Ž\fÁæ8Õ¡'f„ ±0DÚ¿”d%% Aøœ¬/Ûê±­~^ òsöÅËTþÄ0£(:é­1C ~îP2Ò>ï!ç‰ÊåµäÓ#ÛרÍ=VÐ •å~Ѳo`´œÀÊ ÈsÛ–/Âü=wö}É¿hŸ'Æy‡pepèuËy}ÄAö7i9ˆuŒÔÛ3^|:¸éÑÆ8J´i÷6§X^Mwy_‹0í¯òÚÂ5+fy‘ƒ]™ ” ‘–‡¡Ÿý5‹ðˆS¯ÎÝSµN¼L»T0q7õVEyÐŒd‰„Rƒ„ë]R"•WŽæ†ó D#ÒV¦ß%èëÅ ,Sáryp;i[Áذ¿¯ (ˆ6Qa/ŽL~Ɉä¦'æþ¶“Jíõô)eP&¯Wgú±JÎ…é—d)Ê&ÖJøžŸÈÉéÔ #ÄÛþaŽ—‘&²vñȦZbI[ Æ7\Ióé=ÁS²¤IÞÙÄ}¾'a’¾<TÒ&Ÿ‰™œ}XïÝÝ6C¿°¹ êÖ¡ôÜ=fclmŒ·É6Av$²ª'·õF’>8Ö )1›xâPè„MÑPÁÈP†»’z´oСY„N#i§?ö0ßwj¼È(0“÷y;€Õ>êHt­Ç|j÷„c ×vkm„êRqOÃ’›î–!ÉíÎZ¯4ïG®Í¦ƒŽ‹]AQ¸ç‡ÛÅÔÃíƒlsѽ\ Q'~z·8ß~7xÊ{šº÷÷Ckldm;ÐÌ1‰;Æ?,¾­cyåŽùk›qjWNDÔ.cŠOÁ{ÎUùÃ(Lá·ŒùØ;Æña±¸†Ã/¿“Ž?Á;0*’½:è:+ºçªÝ†Xæ¤Nܬ¼íÍœº§uhŽ~R3³X.Þ!𙎲–éŸ?yyÆì$]èOGŸ÷4Õo;K_Ü~ú‰ÄÂC›ÎÎ{œOwsvÙcýÏÒž]aØ•ˆ)pùEï¢Nª¡dò€•^1R…:1öÝáÙbé–³üB“ èù ™'~<àåä•ÔCä³n¸lóÙ±$Ow½·Pp2í+÷üˆ:ÚCÞ=rmê̲OýB¢»¸c#ÎA¶u¶úve0°¯?® ½êZ- •Þ‚AqÖ®íÐCïç:ö<>±–§`/½ES¨ÌOÁ¿ï¥‹Ƽø Ø~þ›Sûä÷½ ,h¾\ðåbQIîÁ!=.w–ÃQvÐ>yêUï÷ Ù§ñ¡q–ô>\•™>Wô¡t}JžÐ?t¦/Ò_ÒVÖ¼• דåm·ŽÅÖÙ–·2tgµU'Ì[jeE·±L·©º£¶¬fNh#˜³Ñ÷@kÝmüi*%°LJ‚³‡b`…E7yHIšÙWhƾz¨Íp…[šp©;˜Qh®b4,Ký(c˜ !ž0¥z:ƒw<ƒ¸r¡³Œ qù;îÑýú,c ÏfAõ^Ëû߉,8((OU[Ðg½×òÞ«OÉÌ&Ú¡ÙWÞ²½œ¼9]9á®ËË×ÄÒ‚…¶—ïI“›:}Nî”Tœ¬Ss¼ÙúÙ°œ`&Ö·9½J9ž‰Gð÷ެ)ÝS–ºžŽE,®Ö]¬Š%³¯ëSµ)JMÄSå:Ç:Œ-ƒÛk̪˜¸¹*°.­ã«Ì=„¼ÄÕš³<§Qz¢qehâQ¡‚nRb„dÆgé[Î0okMyÇŠØ(/£Ãkã¥Cå—G¨¥¬¡>ø:±¸¿W|ìb=–p~­XeªµÙÕB,Juby]*ÃÖÑY±5aÂÖ™Ô·Š*%œ~%¶éföíê7• ‰endstream endobj 183 0 obj << /Filter /FlateDecode /Length 3262 >> stream xœÝZIod·¾wþD_¼Ü/,îLN“Ä11¼(;‡¶¶ ©Ç£Ù}ª¸ŸØ-Ép.Á†bóÉZ¾úŠä/k1ÃZпüÿéÍJÎ:¬?¬ÄúùÊÌäÚ ³·ë›• böºv\¯~Xy³ó°vV‹YIT{<„Ùš8ÊH¯f£Ù¨ÚÃG)«gíÙ„Æh5“,6cY–~v¦­*ÿÍe•Ÿµ lQÜìt‹j£JO7*/ªNWÖÄæëËÕ/+ˆª\çÿNoÖ9Yýñ{é×aVÚõÉÅ*©Ö€j»niÖ'7«'°›­÷ÖNÛH7 ¯Üôlƒ  `:Ùx‰³J‰}[¥ä‚ž}óì%õSûß?lPµA-§›­˜EðBÊ0ý@ãÕlAMÿ<4æ›çI¨õnzN?8!¼UÓ÷Ô!´SÓ³oéc¬†é«îë¿ÒRˆ qÅ/Ëòîƒ>v^š4¤žhÀ⢓Haz™¶*…¡à`\Pá?'_£Á2zœK¿Þ‚• °>9CåEý kÈi‡2ƒÐÒÂô3 ²B¨0]ÓZ€6ÓyÞk˜ä÷<ª}‚Mš¬3˜ ³A¢Ñâ,jãÓ`ôå6ØÎÂÙ`ÊàW˜Q)VOûÚzW[wµu^[£/®kël´@ƒ u}gUŸ»·Mù»b?ý4Ñ‚Ó醔ã:Ãþv#-}é§ô]4Ô5Ñ Ñ”·ä’ZH…;¨:=ß™„ñ'®½?mè3áì4÷úúòdõÝJÏÁ#ÂH!1¤åÚ:‹ "HЀnjjÖ£мÎ6%ò¤ð3˜°¶÷ãtмÇZꪶnkër³@(aºˆÙ3óÕ— l3×OFîò¦¶Þ–xʾÌ|>ØËÙp’j¹j «ÈY˜5rGg²cƒž–RêÙ9·¶Æ @@Kð·%D@jµÙJ…‰wè¬'w·qsò@¿È ¦›ˆQÁ7í $¡€1h­h—äšǨ®9«RPY8“Ù¬×(Χ‰B(óÈI ý”y¢xíÖ'/W'øq’Få ´”m08OÑþ)òI¨µ…:šPmÕàŸ$uÛ«ÇdäEÏJ3’ï-)ËK1öqÞ´ж&}\Å£wNÛ&<ýAÂ¥µ’ 7AÿáÞš&<¾£pÉÎY¸³î‰ÂŠ IQRùlÃÍ,C3³3¿…A€\3…†¦…†´ÐBCé'¹lÔ—‘šéËêbéìaY_ÄõÕ¡ Ò+3{¥ƒ£ËÑAO¤b)˜]ë`‘Vf*öeÌ£^ƒ>ÒR½D-0!á@"©‰:PrDwÇ6uKÄK4¤Q¡Wl§Èœgè,ᮩ†« órœ; »£Ä F`^~ÕòîžR8¦Z˜>à¢¼[aûled{Wîî±%+´MK\ôt)m:’ã•Tö‰Ø]5EÝÖÍß…8Ì]ˆë8Yv=ÂÓÙ^¯y³y^a¥îÔÅÀ‘Å.åDb—o»h©>¥o•üûdL´±CõcÞÜ¿n°ó®z=_gœj[¶«ýmû0•¿išl5 €—³\ Ì2×Ö—µõqc磽˜tnCãz…jv5´˜E™F.‰¦O[Ø00“óÐJö4Ê!Ú3]ó!{LgéO}¼—PÎÀBO¸¢ñʱÖÖ+zè¬÷ÕQ¨ç­ïì8¤i;;­¡.åHqU)öé"äðêÐ<ÆSglª7åôPFÜG-ÖC¦”X6ÕÃÕó£àÓôônðëÂî† …DÍ¢Ýî§ãëkfàM›7t^z[ÓGz–E"S͹²YËå«Bý€“ªSlI‰ÌÖQÿg™ö×ûÌtÉ(ÐX à ]œã¦ãÞÿ\e…uÿ÷©Î­Ï¢=ìðsø}KqíO.o¨ÓbÅOGÄÇ:YŒÃiS[̧[•“úG0‡ñÄ<Ùä‚NI,èRºBë2`Ó^ÇÐʰËÅ-‹G¢Ê2ù_íðü±‰¥Iu`Û÷vÌ1s­EKÃèé ã »è´Fk1Éçu…'¸|rLÛ]Bä|\ ….ˆ€ñ‰ó%í ’_˜€ÙÀär6(+cÁmýLœk—šøe'. ƒ3ZwÀÙ1˜¡2ºÏî%öeFOJw0¡¼}¿^Š–ø˜?HîŠmt¬#…ÐÂ9ŒÈ»åHqX%9ìØÅš´n=< Ù@ÅeWu²{—Ä*oõGÖCÂQi{F‰Û$¢ó0+CAF¯£·)q'Ü¢–o[ÚÅ„«„€ÐÒ¤ð%QFßoüñ@YÖk(W,ºß5㋚}<Àð`f­DÝø(W~d™tÊ+:dÞEg»K,f¡tŸ/äÿ8dµEM"«ÛQ“îNE[¬bÐPÛô.Ïkã î°$Yƒçqð±ùëoEgiE1ò˜ýÏòBQ¿,9Lˈþœ¯ÞÏ&q¼æçco¶Ó´lä8zw]vh:‰ñ~»%„€tQòVÄß HéCI»i¿G¡ Ѿî ZQ¯F×Ó?è;ŒœsŸtbtEßt’xµSL¼%½ø¤qŽcÕAwgå‘úÀ¤³O¬2¬ 2°“9eg*ÿó’‰öÄpÖÒ¹ŠAXqäÍ ÃN\y®$;Ð ÙßHÄØËá'Á8]fthpÚ8VwRvè̇‹ZG•¨èPÙt-ÕµüqC}Nă¶Þ“³3UQ6eCDL¥èòÝ”„xÞÀ¯7/™ì9°¦H@’öà}Xg©Û"•Ø¥&ªõ×3nüÞAfÜQ¬î`‡IKS$—­y€õÅNÝ}žûÑ;.Ù1ô¸Î¸m«[œ·gUœÐK¡âð•J\ô!<§~:{©1ç¨Éo:RjLgц¸4[óœÓnp’í-§F ²Ï¨'•Ŷm¢:$ppsýs5õ'†PÛF^ŸþÂ8Úwï}…z¢¶Æ"¥SÉïÉíÙ‘Ü]< 5 !PG1Ð"ðæó.  ` `,ýÉe0lýÏõáMï…ì.¨Q^”k¥”¤FÊÂIxÅ¿g\‘‘»&ï‹¢E“ÙDÍޱߊþ"ï¦}ºY®S,Œ¸Lãä!Æ—HTãÅãºìÇ­Ž¬ðSÏ 5mv[ߤñ ÍS8:ç/ý¡Zìºñ!Æ÷XýÞÑ÷Ò¹+ª|‡Fe/Þ.q×.]½µ`‹÷n€QNÅa.³{î–èH}¢G×fùe]m¦‚;Ð Æ0~ïæ@ôïÝRTª ºp7A—Áwƒs¹ÇŸxÞm%¼wÃ`¯Ìa*Ðèï>³!ïœ,l(Æ 'tìÚ™»ÑÛô ÒÙ2jÐ#r=’A;ç:2âü!:$é‰ÅãÙÙ³! >K6”#(‚.@!ðP_>Ð`ÔA¢ßßir)Uß;eü> stream xœ•VKo7 ¾Ï¯˜£¦Àª"EQTon›:-Œ ‰7‡¢èaãØ®»Î³üúRÒîŒ&Ñ.|X ÍÇÇéÝè,Œ.ÿí/ƿ7ž `àƒœš·Ãù l#“³Ui–$Ë¡ho5Z³¤ÕòL–¤ y›}5°$‰aAµÿnA±KœPÑŠƒ¨Eë YiíAÍᘚxn¼Þ P¨÷?wã÷ÛáÛ—(c²‰‘ÇíÕPi†” ÍÞE ÆíÝð›™6"ÌæÇ £uâ£9™f; jTD•m¼G››“g'gYžÏ¿žOJm¢@h~ž6κ$1™ó¬ï-ƒ7¯Žé<;­NY¢9ÍÿˆÎ {ó2ŸÁ9ŠÞœ<ÏÆ’˜À<]Yÿ?йDŠøìÏkÙ8 † &$“A+èê2B2g5Ut!g¢Ê!ÅäÓïÛ_”Cà†ÃÌß&‰JbÐÊ`á*‰…'m4»ûë%äm¥Ü*¾Ë}ÒÉ -RáD§tU8Ÿ¬$ÊQ·o4Êw…£$jQ•µ§e¶.ª³ƒò« ¬’Ã9óÃéÃ|ú8ŸvÙecÑEAC…C 73›» õ;[Ó…úªq?mr“iIÌEN†h‚æ¦ðÀHÞÜo²Ü»¬_\°%³6«ß•Ê'Qñýõ{ÕAå•5æÛÒhè˜?–j¶î/**íÄ¿¦,$ŽfW\¡ÁM6磶äîuqǹ©jýÀ«a‹äCuç…ÍUIQ4Ë÷Uœ3®””l ÿ̺QæñX5Þ&)ù”» l *Ë -)‘&‘}¦ åüRA÷Ýý|z;Ÿ>ͧÛ»÷¦ãEùÐÕ™’.…Ex8]tLîšqèßvN7ÎÒûê%ð¿K³ŽÃ«ŽC;ŸžÌ§:Ä]vÂõ@ÖÓIºé/²7=2Ojrgzä²R÷‹e×±þÔÝß[s”Ÿ:¸ìœ>w`/Œ\Oóì`ÔkÛi¨‚ÕÈÁ ¬™®³aûâñÔàñ.I§ÔRZ÷©ák()¤[h Múö:Ô1Ušôåw@• ¡@‡¥x¤Šè–ü1–âºv3K‘j{•9ôE{éuçÃÒ^¸L`®‰#X€åUcjüú4 ¥§‚oip!ušjîz}C´MÅ®ƒŠ44tQK.t±ë×è¡aÍÏ5l¥Î0º#l‘_Øâ†-hØrÇØâ‚«_Dhz 8þ t²-Y±é-\o®¥·êS;Ŧ¿}r= |¤¿™ áë¡ûº¿¡ÁÀ²\'>inÐ\{A{U> stream xœ­Z[s9~Ÿ_ÑoôPL£û¨,„e!6ž}b©bâ8ŽË—qÖö†ðëùŽÔÝ:«'vm*Vi$Oç|:·ÎÇN ²ôoü{z½Rƒ‰Ý§•è¾]9ãíeç­“CpÝõ*(7¸癫ÕÉ* ?8:ªy&È88›VY±a‹¦ ¾Æüh™g˜?µá°¦ÔÕIÄa¼ÅM™'â‚x^òbòD9›/êK‘!'Dç¹÷á6KÒ!9¥”d«ÈÝ,R‘( Oc‡[Âàä=¡Lðï¤x‹Ä˜Ù ¢¹(%Ö]’bEÌ¡%J` ©úMÃÔs™¥á³ÒÒ‚=«˜røµ‡qŸ´(¶ÖÃçjM .õ@¾ŠÐG„È*£Oû¨R†b@¡z< $J;Æ$îBß–ÑOûP¶`'lÃSÝ_  a†yºNOBègfæ9cX£=ÈÀ¸ÙO“1TK.ã.•_x²¿/[(°*?•xãsOÜáùf©«ytVj<ø%e%Ì'+_pOÓ° %l#¯‹“—øH´”&x"h€ßÿ~:U“uiˆ|›Óq—´’ó¿ÛTGaÂA5®¬¢°ÓïßgQTRRxŸSK‚|¦"÷ÌÁË||^Ïf÷,{㗿˧/vÇYPgÙ1¿“oÌy˜©/ØâËXÆPÂO"²9(ž¸·Q@düÔ««.ÜònMÚC:Jš*¬Ë‚1ÎÏUQD‘àùšf¡ â£{b#ÄŽt\üv. wóèf]6æöóèžµD°AS|h¶?*¯ƒ¬‘ÇÉÛB zøžžª{ÆÃw¿™ùM2ŠWï¾<¡‡ÏëuÚØ¸å$JÍ—Ë}•ŒȦÃõ¾œ¤ÞÕ|§}ê-SÁM)L.óŠ€óªà0k3±†®¿˜%0—D0RŸ2tˆƒj€ââiê‹–™”>iÕ³º=”@ i;íad5&‚¯¶Â¾óûåÃ)÷in~Ï¶Ì –7ß9;±±å›£Oà¾ñ+¨'AE¶mü|[ÎþSήlßPIYwµ~lS¯ý€GȬ5ÎT6=ºêYɽÂ}Õ¢ù ½Ë6UÒ$'–S£îS½‰øY~@V%QÕÌ?”'J5²7ú%2wH\>‰OSý„€ÒK3žžÒ0Ñ*akdŽ!S‘ýà2ú¡ óY`d™m"ó­~Õ²Î~2ßFæfdŠ!S­fÖ/Fæ 2_+g>I ¥š2Mhb.Œ•´$jâqÇ4¥,"Ë¡ÔIOþ‹Ü WŽáTìÉ©.êMª{v’d0g<:>O\Âcñ¨I9\ªX@c›hl«YõD`z˜\æ÷QEÑ&8w K„ª ™Eh®mø@ðØ„¦lè—ð¨cœzlÃð%4• GEúº—)•“Ÿƒ\˜M٨̃_Sq‡€ãèóAëÐ'žaýW8ÈhT¤A~…“}¢Ž_á «/[J*ÙܼëèT•(M•üÓ Ïޝz^ói¼ ®“¨… çüàžSÍ|j|:heLíÊqlíŒE ¼´þ)çEìÏY_cÇÊŒ%Åf•æ)Äê;Ÿ«ö“ZŽ âÒscE.Ëù?&N™¥ïµw£ð?Ïe-uÜh*¨|-¥:¸Ì»”yÐÕÉ:•"n‹"RÓÂÁ±ìÛR³®%ÓÕ®jŒð+Uíó, U—âS×­]Àç^…·ÆÔß¾ÓcvÚL%Øù^!n¦µuße™©¹þèËÒÔ­lYÚƒ\VCÎVfY®Ô3ú²‡cšiN„ñ ^¥/s`·ÿ0§~[ÊV^âUô<üÖ‘¾€vü*Ë Ôi¯áiƒP*rË3Þž–Û1ÉlûÈÒºòMž³ˆ_;õ¼g¹ 5©ÿeQDÍÓû|ú/õʲd¿gýž;F¸³B8Þ¶û93Ž>:71îÉÆŸ—›ÓûkrhüË$ã_Âs }H;/ÿ£g¡íͧoËô‚g»(Þhÿp “qÉÊ3™ãÇ÷«ÿDÝ£endstream endobj 186 0 obj << /Filter /FlateDecode /Length 2915 >> stream xœ­ZYs·~_ÿ‰}ËlÊã>ò’²%唢ø`%vª²$%RɱDÙ²òëó5€³3”\¥Òƒ†˜žF__À¾Þ‹Qîý+ÿ_ÞíÔhâþÝNìÿºsÆÚ˽·NŽÁíïvA¹ÑÅXWnwßí¢ð£3aï£V ª+AÆÑÙDe5ž #š8xiÙ~Öz¼ Ý~³T!†Ñ[&TYà29Fã"“)H?!¹L¨,t4E¦ºÛ,ÛMì¯w¯w2r_þ»¼Û?9ß}ñ­ û8F§Üþüå.Yî¥Ñ£×0,„’ÊîÏïvß9À ÁC’á«Ãž…0^Ï¿|v8ÓZ1†áOôB þAôÑ ã†¿ãQ‹£Ç#(¼Áéá)–tËÏÏÙ—ßΔ–p„d<üûüo;3Æ@‚œAó¨!óù$¢ïu`1üJŸ!¤TØå Rjdëv–sà›Ý“h¬Qà "0#ž®g/ãp|Kj”Žù½ax•Œ¡}ÔÃ=­êÑF¾öUj8^$¶JD9Ü6Ú¶$£Õà¢É‚e¾ï*ùÖ)qˆÆèá hU0Ê9Æaʫ΃˜‰sýª1¾'N =n›;˜@ï³ð.h:olÍ6ù…ÄTBêŽöj¶„^¶™˜Ó]¦Ð’ÛòN*ÙØ**3üLW͘LàÄïÍR0ÃÖ?=n´A2QCÛÛ„$­ÀJÀ3´Ñ/ã1 e8“žÖè½ØïëâÄ…fûuŸ­eC¶Û—÷-¸®€³R†ގcþeõ:!ⵦðkß9á´»¼¬‚eö_¨ÚRfe¢k~%LU$=Ûÿþ{ªJp|@|¡ µ,ÌŒDnšhUÈd‹äQÂzÝíY0o iQ³XJy)'žäŽ´sˆÌ9I†¤C•3‰ ö[ÞŸ?oIíçúú.©Hæ¿(õ#,kpúÞ…œb¨í"øsϖʃŠÔ}y’8¢”Æ.Òh6ªãùœñÅ·hF[ƒ» µ9‰ Ïç?.[8;*Ô‹8§*$j± ¡º£)˜Æ~½Ô· y$¢dî½)30ÍËd\¥°õÄÑV,éÑ&MÛWö`<';TåàÝ"Ùýr°–º_’P)ù¬o7dµg8‚y>om㊌¡F¸ÚøËé¾=d꾩Öc”ZW ,Á±ÞˆÛžš#ÐPÈ„5zvxîR:÷e #¦Ù‘59¾ç,Nì‚\¦Î¼‰^ž‰Õ凄[”(¿µÇCæ¦K¦šÅç¡òº•¹ƒ]y‘?4H“ÿåIœ‹Úd´gÔ}Þ̱â/ôEˆŠÚó=­þz¶é/%×üÅÉâƒE2€hPTݲxUm§ÙÔ"ô=¢¦£PºÖô˜ea÷†ìég^±kóHQ‡ R&L™Ì(YÞu´ÔË¡©²-†M¤ß ®¶}QŸ.׬Œ6\x»fä6‡l€œw €—©ÜZr®OÎIÈxÓõ}4ˆÞú=]²H›þÈ Mí±ö'3`6cèÁÊ-š(9Gæì¹_@S±–ï¥C¶³îÔºÏëÓW›ÖÕá#Ì„öÁ?jÞ"éeëÑXd´búAw·HÊ} =‚5ªÃ,ãÓ{¬´9°POÕœ*­‰jÑCð äL#nðé'K•ŠÎ©Ò—mO·Ø‹')sY?O«së›;MØX_ÔÎéýÌAæ>bÆan9]ŒK´!Œö–c/ÄRXííBÁÙ×ys6óØ<ÈR çÆ{5†¡¾˜×ö¹ · †ÓÛ2+!‰6ø&ëð¼Ì»d ?`¹ô×>aÍÜzt¦Ê¤I³IMÈÓã äˆ|‚A‰]LU;~Ö0A8ÆŒé!\_âjÝh-)3cvZMÖ|q¨gØêgu>v\-ì‰GÈuLEDjÇËÃÜ=ßÌž:ãšM￾ßLÔðÛýZ¤nå8ë6RØgiàD'ç¶0Ç—ËlâUÊØ8ª,eÉv¬¼PjáFikwâ§e‡Gò9Rù®‡7üûö}C”çcÈt›Ï¡®/êi,œfbOx:õG9˸™)ü:`×S`˜˜û ?Ò}YÄ~ؽa3Õ깈ÚP~M’¦·=É{‘†Ð›5M¶2âtÐÛEÇ»Â%ÓÅ2ÚïÈOkØd=¥3#O·Š>ò8‡æíO2ÎPí1.Õž5#³s†ãÛB\ŸÈïó:.¼'§›yÈ«q³].²IѼUŸît$±3ò±³bºJNYŒ³ÄL÷X½mjO³®„óù8“޲Cܘ{Qòcè_/·¤ÕIz¤Ët* âý¦k^%í¨Ð™ •GÐ…¬8¿Âí.ØVólŽqëÒIÓ$´KšGÒ\°{N­Ûºdë ô [ŽH6é[ïJé ÍÚaô³#Ï&_ç>)àøSKåD¢”±$ŒXÆŠua¤'¯Òz”6YšAj&JœEù®F]woUãèÈ.Gþ‰ŒÒ$‘o;w)J}ЏHÂ5‘¬ÑE¤ ×¬Ó® ËURâÀ¼ÇÅKw°bÐvÝD1®›( &•E¥kúº6ð›wB<=°ªÈò8uTÒú´¹\Pèõuà †¬]4¶ ÈA^:7оl‹9”†i ”ì\׃fe]0KAíLfÍRÌ1˦䞜’Ö¶,£ÔúºgÅkøƒÉÄSÆŒU¼'bM;;d 8ÑQÜðŠ4Ýzó¿OQF¸—*PèzU v‚·Ó§ð>.€LwC·ƒ°-²¸HN2sD;#9¶­Ÿ·~’O!ä|3+vžÇâ¬÷&"‡’7-"üúºc ¦Ÿå² Àù5V?ük Öu“¥Tú­i¹Ýa#1v S:_„ÒvÌ–éÇN&£¢#ߘ älØÉ[.RPE$ßDjúXŽX|ß±$CJí¼îº[v£uœ¡ƒ‚6üµ‘£—J‡Sùx¬±ûâ“ã—úû$G3RÈFÊÞB”å–ÒAôÎëšm柒•þb^àMÈ£Dßìþä·]Jendstream endobj 187 0 obj << /Filter /FlateDecode /Length 142 >> stream xœUŽ» Ã0 D{MÁ ¢ÄŸ&Hd„´q‘*ë',™ ‚‡Þ{SSÝçØÏ­4È O©t+Æ åF®Æ£­ø¨YÁ«> /W [ 1 3 1 ] /Info 3 0 R /Root 2 0 R /Size 189 /ID [<9767b1000c8b1ccc743150b5a25c4ce0><86b685f29ce08bfcb1d375dfd5ecdd0b>] >> stream xœcb&F~0ù‰ $À8Jò?ƒ× ›Mƒ/”GcpèÿTöî²…ï‚byˆ2‘ŒJ ’Ã̾"åÿ€Hq)¡"æ‚e@$Xä+Ø„&0é $õž€Ø`“_‚Éß Rx*XØ.‡P0»DòÉH6 °]«À®âë2‘L: 3=2Á*«Àâ¿@d…ˆä:"y9@$« ˆä¾"yÖ‚Óäu‡i endstream endobj startxref 193783 %%EOF HSAUR3/inst/doc/Ch_survival_analysis.R0000644000176200001440000001371414660150117017263 0ustar liggesusers### R code from vignette source 'Ch_survival_analysis.Rnw' ################################################### ### code chunk number 1: setup ################################################### rm(list = ls()) s <- search()[-1] s <- s[-match(c("package:base", "package:stats", "package:graphics", "package:grDevices", "package:utils", "package:datasets", "package:methods", "Autoloads"), s)] if (length(s) > 0) sapply(s, detach, character.only = TRUE) if (!file.exists("tables")) dir.create("tables") if (!file.exists("figures")) dir.create("figures") set.seed(290875) options(prompt = "R> ", continue = "+ ", width = 63, # digits = 4, show.signif.stars = FALSE, SweaveHooks = list(leftpar = function() par(mai = par("mai") * c(1, 1.05, 1, 1)), bigleftpar = function() par(mai = par("mai") * c(1, 1.7, 1, 1)))) HSAURpkg <- require("HSAUR3") if (!HSAURpkg) stop("cannot load package ", sQuote("HSAUR3")) rm(HSAURpkg) ### hm, R-2.4.0 --vanilla seems to need this a <- Sys.setlocale("LC_ALL", "C") ### book <- TRUE refs <- cbind(c("AItR", "DAGD", "SI", "CI", "ANOVA", "MLR", "GLM", "DE", "RP", "GAM", "SA", "ALDI", "ALDII", "SIMC", "MA", "PCA", "MDS", "CA"), 1:18) ch <- function(x) { ch <- refs[which(refs[,1] == x),] if (book) { return(paste("Chapter~\\\\ref{", ch[1], "}", sep = "")) } else { return(paste("Chapter~", ch[2], sep = "")) } } if (file.exists("deparse.R")) source("deparse.R") setHook(packageEvent("lattice", "attach"), function(...) { lattice.options(default.theme = function() standard.theme("pdf", color = FALSE)) }) ################################################### ### code chunk number 2: singlebook ################################################### book <- FALSE ################################################### ### code chunk number 3: SA-setup ################################################### x <- library("survival") x <- library("coin") x <- library("partykit") ################################################### ### code chunk number 4: SA-glioma-KM ################################################### data("glioma", package = "coin") library("survival") layout(matrix(1:2, ncol = 2)) g3 <- subset(glioma, histology == "Grade3") plot(survfit(Surv(time, event) ~ group, data = g3), main = "Grade III Glioma", lty = c(2, 1), ylab = "Probability", xlab = "Survival Time in Month", legend.text = c("Control", "Treated"), legend.bty = "n") g4 <- subset(glioma, histology == "GBM") plot(survfit(Surv(time, event) ~ group, data = g4), main = "Grade IV Glioma", ylab = "Probability", lty = c(2, 1), xlab = "Survival Time in Month", xlim = c(0, max(glioma$time) * 1.05)) ################################################### ### code chunk number 5: SA-glioma-logrank ################################################### survdiff(Surv(time, event) ~ group, data = g3) ################################################### ### code chunk number 6: SA-glioma-exact ################################################### library("coin") logrank_test(Surv(time, event) ~ group, data = g3, distribution = "exact") ################################################### ### code chunk number 7: SA-glioma-g4 ################################################### logrank_test(Surv(time, event) ~ group, data = g4, distribution = "exact") ################################################### ### code chunk number 8: SA-glioma-hist ################################################### logrank_test(Surv(time, event) ~ group | histology, data = glioma, distribution = approximate(10000)) ################################################### ### code chunk number 9: SA-GBSG2-plot ################################################### data("GBSG2", package = "TH.data") plot(survfit(Surv(time, cens) ~ horTh, data = GBSG2), lty = 1:2, mark.time = FALSE, ylab = "Probability", xlab = "Survival Time in Days") legend(250, 0.2, legend = c("yes", "no"), lty = c(2, 1), title = "Hormonal Therapy", bty = "n") ################################################### ### code chunk number 10: SA-GBSG2-coxph ################################################### GBSG2_coxph <- coxph(Surv(time, cens) ~ ., data = GBSG2) ################################################### ### code chunk number 11: SA-GBSG2-coxph-ci ################################################### ci <- confint(GBSG2_coxph) exp(cbind(coef(GBSG2_coxph), ci))["horThyes",] ################################################### ### code chunk number 12: GBSG2-coxph-summary ################################################### summary(GBSG2_coxph) ################################################### ### code chunk number 13: SA-GBSG2-zph ################################################### GBSG2_zph <- cox.zph(GBSG2_coxph) GBSG2_zph ################################################### ### code chunk number 14: SA-GBSG2-zph-plot ################################################### plot(GBSG2_zph, var = "age") ################################################### ### code chunk number 15: SA-GBSG2-Martingal ################################################### layout(matrix(1:3, ncol = 3)) res <- residuals(GBSG2_coxph) plot(res ~ age, data = GBSG2, ylim = c(-2.5, 1.5), pch = ".", ylab = "Martingale Residuals") abline(h = 0, lty = 3) plot(res ~ pnodes, data = GBSG2, ylim = c(-2.5, 1.5), pch = ".", ylab = "") abline(h = 0, lty = 3) plot(res ~ log(progrec), data = GBSG2, ylim = c(-2.5, 1.5), pch = ".", ylab = "") abline(h = 0, lty = 3) ################################################### ### code chunk number 16: SA-GBSG2-ctree ################################################### GBSG2_ctree <- ctree(Surv(time, cens) ~ ., data = GBSG2) ################################################### ### code chunk number 17: SA-GBSG2-ctree-plot ################################################### plot(GBSG2_ctree) HSAUR3/inst/doc/Ch_multiple_linear_regression.Rnw0000644000176200001440000005606514416236367021520 0ustar liggesusers \documentclass{chapman} %%% copy Sweave.sty definitions %%% keeps `sweave' from adding `\usepackage{Sweave}': DO NOT REMOVE %\usepackage{Sweave} \RequirePackage[T1]{fontenc} \RequirePackage{graphicx,ae,fancyvrb} \IfFileExists{upquote.sty}{\RequirePackage{upquote}}{} \usepackage{relsize} \DefineVerbatimEnvironment{Sinput}{Verbatim}{} \DefineVerbatimEnvironment{Soutput}{Verbatim}{fontfamily=courier, fontshape=it, fontsize=\relsize{-1}} \DefineVerbatimEnvironment{Scode}{Verbatim}{} \newenvironment{Schunk}{}{} %%% environment for raw output \newcommand{\SchunkRaw}{\renewenvironment{Schunk}{}{} \DefineVerbatimEnvironment{Soutput}{Verbatim}{fontfamily=courier, fontshape=it, fontsize=\small} \rawSinput } %%% environment for labeled output \newcommand{\nextcaption}{} \newcommand{\SchunkLabel}{ \renewenvironment{Schunk}{\begin{figure}[ht] }{\caption{\nextcaption} \end{figure} } \DefineVerbatimEnvironment{Sinput}{Verbatim}{frame = topline} \DefineVerbatimEnvironment{Soutput}{Verbatim}{frame = bottomline, samepage = true, fontfamily=courier, fontshape=it, fontsize=\relsize{-1}} } %%% S code with line numbers \DefineVerbatimEnvironment{Sinput} {Verbatim} { %% numbers=left } \newcommand{\numberSinput}{ \DefineVerbatimEnvironment{Sinput}{Verbatim}{numbers=left} } \newcommand{\rawSinput}{ \DefineVerbatimEnvironment{Sinput}{Verbatim}{} } %%% R / System symbols \newcommand{\R}{\textsf{R}} \newcommand{\rR}{{R}} \renewcommand{\S}{\textsf{S}} \newcommand{\SPLUS}{\textsf{S-PLUS}} \newcommand{\rSPLUS}{{S-PLUS}} \newcommand{\SPSS}{\textsf{SPSS}} \newcommand{\EXCEL}{\textsf{Excel}} \newcommand{\ACCESS}{\textsf{Access}} \newcommand{\SQL}{\textsf{SQL}} %%\newcommand{\Rpackage}[1]{\hbox{\rm\textit{#1}}} %%\newcommand{\Robject}[1]{\hbox{\rm\texttt{#1}}} %%\newcommand{\Rclass}[1]{\hbox{\rm\textit{#1}}} %%\newcommand{\Rcmd}[1]{\hbox{\rm\texttt{#1}}} \newcommand{\Rpackage}[1]{\index{#1 package@{\fontseries{b}\selectfont #1} package} {\fontseries{b}\selectfont #1}} \newcommand{\rpackage}[1]{{\fontseries{b}\selectfont #1}} \newcommand{\Robject}[1]{\texttt{#1}} \newcommand{\Rclass}[1]{\index{#1 class@\textit{#1} class}\textit{#1}} \newcommand{\Rcmd}[1]{\index{#1 function@\texttt{#1} function}\texttt{#1}} \newcommand{\Roperator}[1]{\texttt{#1}} \newcommand{\Rarg}[1]{\texttt{#1}} \newcommand{\Rlevel}[1]{\texttt{#1}} %%% other symbols \newcommand{\file}[1]{\hbox{\rm\texttt{#1}}} %%\newcommand{\stress}[1]{\index{#1}\textit{#1}} \newcommand{\stress}[1]{\textit{#1}} \newcommand{\booktitle}[1]{\textit{#1}} %%' %%% Math symbols \usepackage{amstext} \usepackage{amsmath} \newcommand{\E}{\mathsf{E}} \newcommand{\Var}{\mathsf{Var}} \newcommand{\Cov}{\mathsf{Cov}} \newcommand{\Cor}{\mathsf{Cor}} \newcommand{\x}{\mathbf{x}} \newcommand{\y}{\mathbf{y}} \renewcommand{\a}{\mathbf{a}} \newcommand{\W}{\mathbf{W}} \newcommand{\C}{\mathbf{C}} \renewcommand{\H}{\mathbf{H}} \newcommand{\X}{\mathbf{X}} \newcommand{\B}{\mathbf{B}} \newcommand{\V}{\mathbf{V}} \newcommand{\I}{\mathbf{I}} \newcommand{\D}{\mathbf{D}} \newcommand{\bS}{\mathbf{S}} \newcommand{\N}{\mathcal{N}} \renewcommand{\L}{L} \renewcommand{\P}{\mathsf{P}} \newcommand{\K}{\mathbf{K}} \newcommand{\m}{\mathbf{m}} \newcommand{\argmin}{\operatorname{argmin}\displaylimits} \newcommand{\argmax}{\operatorname{argmax}\displaylimits} \newcommand{\bx}{\mathbf{x}} \newcommand{\bbeta}{\mathbf{\beta}} %%% links \usepackage{hyperref} \hypersetup{% pdftitle = {A Handbook of Statistical Analyses Using R (3rd Edition)}, pdfsubject = {Book}, pdfauthor = {Torsten Hothorn and Brian S. Everitt}, colorlinks = {black}, linkcolor = {black}, citecolor = {black}, urlcolor = {black}, hyperindex = {true}, linktocpage = {true}, } %%% captions & tables %% : conflics with figure definition in chapman.cls %%\usepackage[format=hang,margin=10pt,labelfont=bf]{caption} %% \usepackage{longtable} \usepackage[figuresright]{rotating} %%% R symbol in chapter 1 \usepackage{wrapfig} %%% Bibliography \usepackage[round,comma]{natbib} \renewcommand{\refname}{References \addcontentsline{toc}{chapter}{References}} \citeindexfalse %%% texi2dvi complains that \newblock is undefined, hm... \def\newblock{\hskip .11em plus .33em minus .07em} %%% Example sections \newcounter{exercise}[chapter] \setcounter{exercise}{0} \newcommand{\exercise}{\stepcounter{exercise} \item{Ex.~\arabic{chapter}.\arabic{exercise} }} %% URLs \newcommand{\curl}[1]{\begin{center} \url{#1} \end{center}} %%% for manual corrections %\renewcommand{\baselinestretch}{2} %%% plot sizes \setkeys{Gin}{width=0.95\textwidth} %%% color \usepackage{color} %%% hyphenations \hyphenation{drop-out} \hyphenation{mar-gi-nal} %%% new bidirectional quotes need \usepackage[utf8]{inputenc} %\usepackage{setspace} \definecolor{sidebox_todo}{rgb}{1,1,0.2} \newcommand{\todo}[1]{ \hspace{0pt}% \marginpar{% \fcolorbox{black}{sidebox_todo}{% \parbox{\marginparwidth} { \raggedright\sffamily\footnotesize{TODO: #1}% } }% } } \begin{document} %% Title page \title{A Handbook of Statistical Analyses Using \R{} --- 3rd Edition} \author{Torsten Hothorn and Brian S. Everitt} \maketitle %%\VignetteIndexEntry{Multiple Linear Regression} %%\VignetteDepends{wordcloud} \setcounter{chapter}{5} \SweaveOpts{prefix.string=figures/HSAUR,eps=FALSE,keep.source=TRUE} <>= rm(list = ls()) s <- search()[-1] s <- s[-match(c("package:base", "package:stats", "package:graphics", "package:grDevices", "package:utils", "package:datasets", "package:methods", "Autoloads"), s)] if (length(s) > 0) sapply(s, detach, character.only = TRUE) if (!file.exists("tables")) dir.create("tables") if (!file.exists("figures")) dir.create("figures") set.seed(290875) options(prompt = "R> ", continue = "+ ", width = 63, # digits = 4, show.signif.stars = FALSE, SweaveHooks = list(leftpar = function() par(mai = par("mai") * c(1, 1.05, 1, 1)), bigleftpar = function() par(mai = par("mai") * c(1, 1.7, 1, 1)))) HSAURpkg <- require("HSAUR3") if (!HSAURpkg) stop("cannot load package ", sQuote("HSAUR3")) rm(HSAURpkg) ### hm, R-2.4.0 --vanilla seems to need this a <- Sys.setlocale("LC_ALL", "C") ### book <- TRUE refs <- cbind(c("AItR", "DAGD", "SI", "CI", "ANOVA", "MLR", "GLM", "DE", "RP", "GAM", "SA", "ALDI", "ALDII", "SIMC", "MA", "PCA", "MDS", "CA"), 1:18) ch <- function(x) { ch <- refs[which(refs[,1] == x),] if (book) { return(paste("Chapter~\\\\ref{", ch[1], "}", sep = "")) } else { return(paste("Chapter~", ch[2], sep = "")) } } if (file.exists("deparse.R")) source("deparse.R") setHook(packageEvent("lattice", "attach"), function(...) { lattice.options(default.theme = function() standard.theme("pdf", color = FALSE)) }) @ \pagestyle{headings} <>= book <- FALSE @ <>= library("wordcloud") @ \chapter[Simple and Multiple Linear Regression]{Simple and Multiple Linear Regression: \\ How Old is the Universe and Cloud Seeding \label{MLR}} \section{Introduction} \index{Age of the Universe} \cite{HSAUR:Freedmanetal2001} give the relative velocity and the distance of $24$ galaxies, according to measurements made using the Hubble Space Telescope -- the data are contained in the \Rpackage{gamair} package accompanying \cite{HSAUR:Wood2006}, see Table~\ref{MLR-hubble-tab}. Velocities are assessed by measuring the Doppler red shift in the spectrum of light observed from the galaxies concerned, although some correction for `local' velocity components is required. Distances are measured using the known relationship between the period of Cepheid variable stars and their luminosity. How can these data be used to estimate the age of the universe? Here we shall show how this can be done using simple linear regression. <>= data("hubble", package = "gamair") names(hubble) <- c("galaxy", "velocity", "distance") toLatex(HSAURtable(hubble, package = "gamair"), pcol = 2, caption = paste("Distance and velocity for 24 galaxies."), label = "MLR-hubble-tab") @ \vspace*{-1cm} \textit{Source}: From Freedman W. L., et al., \textit{The Astrophysical Journal}, 553, 47--72, 2001. With permission. \vspace*{1cm} \index{Cloud seeding} {\tabcolsep3.5pt <>= data("clouds", package = "HSAUR3") names(clouds) <- c("seeding", "time", "sne", "cloudc", "prewet", "EM", "rain") toLatex(HSAURtable(clouds), pcol = 1, caption = paste("Cloud seeding experiments in Florida -- see text for", "explanations of the variables. Note that the \\Robject{clouds} data set has slightly different variable names."), label = "MLR-clouds-tab") @ } Weather modification, or cloud seeding, is the treatment of individual clouds or storm systems with various inorganic and organic materials in the hope of achieving an increase in rainfall. Introduction of such material into a cloud that contains supercooled water, that is, liquid water colder than zero degrees Celsius, has the aim of inducing freezing, with the consequent ice particles growing at the expense of liquid droplets and becoming heavy enough to fall as rain from clouds that otherwise would produce none. The data shown in Table~\ref{MLR-clouds-tab} were collected in the summer of 1975 from an experiment to investigate the use of massive amounts of silver iodide ($100$ to $1000$ grams per cloud) in cloud seeding to increase rainfall \citep{HSAUR:Woodleyetal1977}. In the experiment, which was conducted in an area of Florida, 24 days were judged suitable for seeding on the basis that a measured suitability criterion, denoted \stress{S-Ne}, was not less than $1.5$. Here \stress{S} is the `seedability', %' the difference between the maximum height of a cloud if seeded and the same cloud if not seeded predicted by a suitable cloud model, and \stress{Ne} is the number of hours between $1300$ and $1600$ G.M.T. with $10$ centimeter echoes in the target; this quantity biases the decision for experimentation against naturally rainy days. Consequently, optimal days for seeding are those on which seedability is large and the natural rainfall early in the day is small. On suitable days, a decision was taken at random as to whether to seed or not. For each day the following variables were measured: \begin{description} \item[\Robject{seeding}] a factor indicating whether seeding action occurred (yes or no), \item[\Robject{time}] number of days after the first day of the experiment, \item[\Robject{cloudc}] the percentage cloud cover in the experimental area, measured using radar, \item[\Robject{prewet}] the total rainfall in the target area one hour before seeding (in cubic meters $\times 10^{7}$), \item[\Robject{EM}] a factor showing whether the radar echo was moving or stationary, \item[\Robject{rain}] the amount of rain in cubic meters $\times 10^{7}$, \item[\Robject{sne}] suitability criterion, see above. \end{description} The objective in analyzing these data is to see how rainfall is related to the explanatory variables and, in particular, to determine the effectiveness of seeding. The method to be used is \stress{multiple linear regression}. \section{Simple Linear Regression} \section{Multiple Linear Regression \label{MLR-MLR}} \subsection{Regression Diagnostics} \section{Analysis Using \R{}} \subsection{Estimating the Age of the Universe} Prior to applying a simple regression to the data it will be useful to look at a plot to assess their major features. The \R{} code given in Figure~\ref{MLR-hubble-plot} produces a scatterplot of velocity and distance. \begin{figure} \begin{center} <>= plot(velocity ~ distance, data = hubble) @ \caption{Scatterplot of velocity and distance. \label{MLR-hubble-plot}} \end{center} \end{figure} The diagram shows a clear, strong relationship between velocity and distance. The next step is to fit a simple linear regression model to the data, but in this case the nature of the data requires a model without intercept because if distance is zero so is relative speed. So the model to be fitted to these data is \begin{eqnarray*} \text{velocity} = \beta_1 \text{distance} + \varepsilon. \end{eqnarray*} This is essentially what astronomers call Hubble's Law and $\beta_1$ is known as Hubble's constant; $\beta_1^{-1}$ gives an approximate age of the universe. To fit this model we are estimating $\beta_1$ using formula (\ref{MLR:beta1}). Although this operation is rather easy <>= sum(hubble$distance * hubble$velocity) / sum(hubble$distance^2) @ it is more convenient to apply \R's linear modeling function <>= hmod <- lm(velocity ~ distance - 1, data = hubble) @ Note that the model formula specifies a model without intercept. We can now extract the estimated model coefficients via <>= coef(hmod) @ and add this estimated regression line to the scatterplot; the result is shown in Figure~\ref{MLR-hubble-lmplot}. In addition, we produce a scatterplot of the residuals $y_i - \hat{y}_i$ against fitted values $\hat{y}_i$ to assess the quality of the model fit. It seems that for higher distance values the variance of velocity increases; however, we are interested in only the estimated parameter $\hat{\beta}_1$ which remains valid under variance heterogeneity (in contrast to $t$-tests and associated $p$-values). Now we can use the estimated value of $\beta_1$ to find an approximate value for the age of the universe. The Hubble constant itself has units of $\text{km} \times \text{sec}^{-1} \times \text{Mpc}^{-1}$. A mega-parsec (Mpc) is $3.09 \times 10^{19}$km, so we need to divide the estimated value of $\beta_1$ by this amount in order to obtain Hubble's constant with units of $\text{sec}^{-1}$. The approximate age of the universe in seconds will then be the inverse of this calculation. Carrying out the necessary computations <>= Mpc <- 3.09 * 10^19 ysec <- 60^2 * 24 * 365.25 Mpcyear <- Mpc / ysec 1 / (coef(hmod) / Mpcyear) @ gives an estimated age of roughly $12.8$ billion years. \begin{figure} \begin{center} <>= layout(matrix(1:2, ncol = 2)) plot(velocity ~ distance, data = hubble) abline(hmod) plot(hmod, which = 1) @ \caption{Scatterplot of velocity and distance with estimated regression line (left) and plot of residuals against fitted values (right). \label{MLR-hubble-lmplot}} \end{center} \end{figure} \subsection{Cloud Seeding} Again, a graphical display highlighting the most important aspects of the data will be helpful. Here we will construct boxplots of the rainfall in each category of the dichotomous explanatory variables and scatterplots of rainfall against each of the continuous explanatory variables. \begin{figure} \begin{center} <>= data("clouds", package = "HSAUR3") layout(matrix(1:2, nrow = 2)) bxpseeding <- boxplot(rain ~ seeding, data = clouds, ylab = "Rainfall", xlab = "Seeding") bxpecho <- boxplot(rain ~ EM, data = clouds, ylab = "Rainfall", xlab = "Echo Motion") @ <>= layout(matrix(1:2, nrow = 2)) bxpseeding <- boxplot(rain ~ seeding, data = clouds, ylab = "Rainfall", xlab = "Seeding") bxpecho <- boxplot(rain ~ EM, data = clouds, ylab = "Rainfall", xlab = "Echo Motion") @ \caption{Boxplots of \Robject{rain}. \label{MLR-rainfall-boxplot}} \end{center} \end{figure} \begin{figure} \begin{center} <>= layout(matrix(1:4, nrow = 2)) plot(rain ~ time, data = clouds) plot(rain ~ cloudc, data = clouds) plot(rain ~ sne, data = clouds, xlab="S-Ne criterion") plot(rain ~ prewet, data = clouds) @ \caption{Scatterplots of \Robject{rain} against the continuous covariates. \label{MLR-rainfall-scplot}} \end{center} \end{figure} Both the boxplots (Figure~\ref{MLR-rainfall-boxplot}) and the scatterplots (Figure~\ref{MLR-rainfall-scplot}) show some evidence of outliers. The row names of the extreme observations in the \Robject{clouds} \Rclass{data.frame} can be identified via <>= rownames(clouds)[clouds$rain %in% c(bxpseeding$out, bxpecho$out)] @ where \Robject{bxpseeding} and \Robject{bxpecho} are variables created by \Rcmd{boxplot} in Figure~\ref{MLR-rainfall-boxplot}. Now we shall not remove these observations but bear in mind during the modeling process that they may cause problems. In this example it is sensible to assume that the effect of some of the other explanatory variables is modified by seeding and therefore consider a model that includes seeding as covariate and, furthermore, allows interaction terms \index{Interaction} for \Robject{seeding} with each of the covariates except \Robject{time}. This model can be described by the \Rclass{formula} <>= clouds_formula <- rain ~ seeding + seeding:(sne + cloudc + prewet + EM) + time @ and the design matrix $\X^\star$ can be computed via <>= Xstar <- model.matrix(clouds_formula, data = clouds) @ By default, treatment contrasts have been applied to the dummy codings of the factors \Robject{seeding} and \Robject{EM} as can be seen from the inspection of the \Robject{contrasts} attribute of the model matrix <>= attr(Xstar, "contrasts") @ The default contrasts can be changed via the \Rarg{contrasts.arg} argument to \Rcmd{model.matrix} or the \Robject{contrasts} argument to the fitting function, for example \Rcmd{lm} or \Rcmd{aov} as shown in \Sexpr{ch("ANOVA")}. However, such internals are hidden and performed by high-level model-fitting functions such as \Rcmd{lm} which will be used to fit the linear model defined by the \Rclass{formula} \Robject{clouds\_formula}: <>= clouds_lm <- lm(clouds_formula, data = clouds) class(clouds_lm) @ The result of the model fitting is an object of class \Rclass{lm} for which a \Rcmd{summary} method showing the conventional regression analysis output is available. The output in Figure~\ref{MLR-clouds-summary} shows the estimates $\hat{\beta}^\star$ with corresponding standard errors and $t$-statistics as well as the $F$-statistic with associated $p$-value. \renewcommand{\nextcaption}{\R{} output of the linear model fit for the \Robject{clouds} data. \label{MLR-clouds-summary}} \SchunkLabel <>= summary(clouds_lm) @ \SchunkRaw Many methods are available for extracting components of the fitted model. The estimates $\hat{\beta}^\star$ can be assessed via \newpage <>= betastar <- coef(clouds_lm) betastar @ and the corresponding covariance matrix $\Cov(\hat{\beta}^\star)$ is available from the \Rcmd{vcov} method <>= Vbetastar <- vcov(clouds_lm) @ where the square roots of the diagonal elements are the standard errors as shown in Figure~\ref{MLR-clouds-summary} <>= sqrt(diag(Vbetastar)) @ \begin{figure} \begin{center} <>= psymb <- as.numeric(clouds$seeding) plot(rain ~ sne, data = clouds, pch = psymb, xlab = "S-Ne criterion") abline(lm(rain ~ sne, data = clouds, subset = seeding == "no")) abline(lm(rain ~ sne, data = clouds, subset = seeding == "yes"), lty = 2) legend("topright", legend = c("No seeding", "Seeding"), pch = 1:2, lty = 1:2, bty = "n") @ \caption{Regression relationship between S-Ne criterion and rainfall with and without seeding. \label{MLR-clouds-lmplot}} \end{center} \end{figure} In order to investigate the quality of the model fit, we need access to the residuals and the fitted values. The residuals can be found by the \Rcmd{residuals} method and the fitted values of the response from the \Rcmd{fitted} (or \Rcmd{predict}) method <>= clouds_resid <- residuals(clouds_lm) clouds_fitted <- fitted(clouds_lm) @ Now the residuals and the fitted values can be used to construct diagnostic plots; for example the residual plot in Figure~\ref{MLR-resid} where each observation is labelled by its number (using \Rcmd{textplot} from package \Rpackage{wordclouds}). Observations $1$ and $15$ give rather large residual values and the data should perhaps be reanalysed after these two observations are removed. The normal probability plot of the residuals shown in Figure~\ref{MLR-qqplot} shows a reasonable agreement between theoretical and sample quantiles, however, observations $1$ and $15$ are extreme again. \begin{figure} \begin{center} <>= plot(clouds_fitted, clouds_resid, xlab = "Fitted values", ylab = "Residuals", type = "n", ylim = max(abs(clouds_resid)) * c(-1, 1)) abline(h = 0, lty = 2) textplot(clouds_fitted, clouds_resid, words = rownames(clouds), new = FALSE) @ \caption{Plot of residuals against fitted values for \Robject{clouds} seeding data. \label{MLR-resid}} \end{center} \end{figure} \begin{figure} \begin{center} <>= qqnorm(clouds_resid, ylab = "Residuals") qqline(clouds_resid) @ \caption{Normal probability plot of residuals from cloud seeding model \Robject{clouds\_lm}. \label{MLR-qqplot}} \end{center} \end{figure} An index plot of the Cook's distances for each observation %' (and many other plots including those constructed above from using the basic functions) can be found from applying the \Rcmd{plot} method to the object that results from the application of the \Rcmd{lm} function. \begin{figure} \begin{center} <>= plot(clouds_lm) @ <>= plot(clouds_lm, which = 4, sub.caption = NULL) @ \caption{Index plot of Cook's distances for cloud seeding data. %' \label{MLR-cook}} \end{center} \end{figure} Figure~\ref{MLR-cook} suggests that observations 2 and 18 have undue influence on the estimated regression coefficients, but the two outliers identified previously do not. Again it may be useful to look at the results after these two observations have been removed (see Exercise 6.2). %% \ref{MLR-ex2}) \index{Regression diagnostics|)} %%\bibliographystyle{LaTeXBibTeX/refstyle} %%\bibliography{LaTeXBibTeX/HSAUR} \end{document} HSAUR3/inst/doc/Ch_errata.Rnw0000644000176200001440000001672314416236367015346 0ustar liggesusers \documentclass{chapman} %%% copy Sweave.sty definitions %%% keeps `sweave' from adding `\usepackage{Sweave}': DO NOT REMOVE %\usepackage{Sweave} \RequirePackage[T1]{fontenc} \RequirePackage{graphicx,ae,fancyvrb} \IfFileExists{upquote.sty}{\RequirePackage{upquote}}{} \usepackage{relsize} \DefineVerbatimEnvironment{Sinput}{Verbatim}{} \DefineVerbatimEnvironment{Soutput}{Verbatim}{fontfamily=courier, fontshape=it, fontsize=\relsize{-1}} \DefineVerbatimEnvironment{Scode}{Verbatim}{} \newenvironment{Schunk}{}{} %%% environment for raw output \newcommand{\SchunkRaw}{\renewenvironment{Schunk}{}{} \DefineVerbatimEnvironment{Soutput}{Verbatim}{fontfamily=courier, fontshape=it, fontsize=\small} \rawSinput } %%% environment for labeled output \newcommand{\nextcaption}{} \newcommand{\SchunkLabel}{ \renewenvironment{Schunk}{\begin{figure}[ht] }{\caption{\nextcaption} \end{figure} } \DefineVerbatimEnvironment{Sinput}{Verbatim}{frame = topline} \DefineVerbatimEnvironment{Soutput}{Verbatim}{frame = bottomline, samepage = true, fontfamily=courier, fontshape=it, fontsize=\relsize{-1}} } %%% S code with line numbers \DefineVerbatimEnvironment{Sinput} {Verbatim} { %% numbers=left } \newcommand{\numberSinput}{ \DefineVerbatimEnvironment{Sinput}{Verbatim}{numbers=left} } \newcommand{\rawSinput}{ \DefineVerbatimEnvironment{Sinput}{Verbatim}{} } %%% R / System symbols \newcommand{\R}{\textsf{R}} \newcommand{\rR}{{R}} \renewcommand{\S}{\textsf{S}} \newcommand{\SPLUS}{\textsf{S-PLUS}} \newcommand{\rSPLUS}{{S-PLUS}} \newcommand{\SPSS}{\textsf{SPSS}} \newcommand{\EXCEL}{\textsf{Excel}} \newcommand{\ACCESS}{\textsf{Access}} \newcommand{\SQL}{\textsf{SQL}} %%\newcommand{\Rpackage}[1]{\hbox{\rm\textit{#1}}} %%\newcommand{\Robject}[1]{\hbox{\rm\texttt{#1}}} %%\newcommand{\Rclass}[1]{\hbox{\rm\textit{#1}}} %%\newcommand{\Rcmd}[1]{\hbox{\rm\texttt{#1}}} \newcommand{\Rpackage}[1]{\index{#1 package@{\fontseries{b}\selectfont #1} package} {\fontseries{b}\selectfont #1}} \newcommand{\rpackage}[1]{{\fontseries{b}\selectfont #1}} \newcommand{\Robject}[1]{\texttt{#1}} \newcommand{\Rclass}[1]{\index{#1 class@\textit{#1} class}\textit{#1}} \newcommand{\Rcmd}[1]{\index{#1 function@\texttt{#1} function}\texttt{#1}} \newcommand{\Roperator}[1]{\texttt{#1}} \newcommand{\Rarg}[1]{\texttt{#1}} \newcommand{\Rlevel}[1]{\texttt{#1}} %%% other symbols \newcommand{\file}[1]{\hbox{\rm\texttt{#1}}} %%\newcommand{\stress}[1]{\index{#1}\textit{#1}} \newcommand{\stress}[1]{\textit{#1}} \newcommand{\booktitle}[1]{\textit{#1}} %%' %%% Math symbols \usepackage{amstext} \usepackage{amsmath} \newcommand{\E}{\mathsf{E}} \newcommand{\Var}{\mathsf{Var}} \newcommand{\Cov}{\mathsf{Cov}} \newcommand{\Cor}{\mathsf{Cor}} \newcommand{\x}{\mathbf{x}} \newcommand{\y}{\mathbf{y}} \renewcommand{\a}{\mathbf{a}} \newcommand{\W}{\mathbf{W}} \newcommand{\C}{\mathbf{C}} \renewcommand{\H}{\mathbf{H}} \newcommand{\X}{\mathbf{X}} \newcommand{\B}{\mathbf{B}} \newcommand{\V}{\mathbf{V}} \newcommand{\I}{\mathbf{I}} \newcommand{\D}{\mathbf{D}} \newcommand{\bS}{\mathbf{S}} \newcommand{\N}{\mathcal{N}} \renewcommand{\L}{L} \renewcommand{\P}{\mathsf{P}} \newcommand{\K}{\mathbf{K}} \newcommand{\m}{\mathbf{m}} \newcommand{\argmin}{\operatorname{argmin}\displaylimits} \newcommand{\argmax}{\operatorname{argmax}\displaylimits} \newcommand{\bx}{\mathbf{x}} \newcommand{\bbeta}{\mathbf{\beta}} %%% links \usepackage{hyperref} \hypersetup{% pdftitle = {A Handbook of Statistical Analyses Using R (3rd Edition)}, pdfsubject = {Book}, pdfauthor = {Torsten Hothorn and Brian S. Everitt}, colorlinks = {black}, linkcolor = {black}, citecolor = {black}, urlcolor = {black}, hyperindex = {true}, linktocpage = {true}, } %%% captions & tables %% : conflics with figure definition in chapman.cls %%\usepackage[format=hang,margin=10pt,labelfont=bf]{caption} %% \usepackage{longtable} \usepackage[figuresright]{rotating} %%% R symbol in chapter 1 \usepackage{wrapfig} %%% Bibliography \usepackage[round,comma]{natbib} \renewcommand{\refname}{References \addcontentsline{toc}{chapter}{References}} \citeindexfalse %%% texi2dvi complains that \newblock is undefined, hm... \def\newblock{\hskip .11em plus .33em minus .07em} %%% Example sections \newcounter{exercise}[chapter] \setcounter{exercise}{0} \newcommand{\exercise}{\stepcounter{exercise} \item{Ex.~\arabic{chapter}.\arabic{exercise} }} %% URLs \newcommand{\curl}[1]{\begin{center} \url{#1} \end{center}} %%% for manual corrections %\renewcommand{\baselinestretch}{2} %%% plot sizes \setkeys{Gin}{width=0.95\textwidth} %%% color \usepackage{color} %%% hyphenations \hyphenation{drop-out} \hyphenation{mar-gi-nal} %%% new bidirectional quotes need \usepackage[utf8]{inputenc} %\usepackage{setspace} \definecolor{sidebox_todo}{rgb}{1,1,0.2} \newcommand{\todo}[1]{ \hspace{0pt}% \marginpar{% \fcolorbox{black}{sidebox_todo}{% \parbox{\marginparwidth} { \raggedright\sffamily\footnotesize{TODO: #1}% } }% } } \begin{document} %% Title page \title{A Handbook of Statistical Analyses Using \R{} --- 3rd Edition} \author{Torsten Hothorn and Brian S. Everitt} \maketitle %%\VignetteIndexEntry{Errata} \setcounter{chapter}{21} \SweaveOpts{prefix.string=figures/HSAUR,eps=FALSE,keep.source=TRUE} <>= rm(list = ls()) s <- search()[-1] s <- s[-match(c("package:base", "package:stats", "package:graphics", "package:grDevices", "package:utils", "package:datasets", "package:methods", "Autoloads"), s)] if (length(s) > 0) sapply(s, detach, character.only = TRUE) if (!file.exists("tables")) dir.create("tables") if (!file.exists("figures")) dir.create("figures") set.seed(290875) options(prompt = "R> ", continue = "+ ", width = 63, # digits = 4, show.signif.stars = FALSE, SweaveHooks = list(leftpar = function() par(mai = par("mai") * c(1, 1.05, 1, 1)), bigleftpar = function() par(mai = par("mai") * c(1, 1.7, 1, 1)))) HSAURpkg <- require("HSAUR3") if (!HSAURpkg) stop("cannot load package ", sQuote("HSAUR3")) rm(HSAURpkg) ### hm, R-2.4.0 --vanilla seems to need this a <- Sys.setlocale("LC_ALL", "C") ### book <- TRUE refs <- cbind(c("AItR", "DAGD", "SI", "CI", "ANOVA", "MLR", "GLM", "DE", "RP", "GAM", "SA", "ALDI", "ALDII", "SIMC", "MA", "PCA", "MDS", "CA"), 1:18) ch <- function(x) { ch <- refs[which(refs[,1] == x),] if (book) { return(paste("Chapter~\\\\ref{", ch[1], "}", sep = "")) } else { return(paste("Chapter~", ch[2], sep = "")) } } if (file.exists("deparse.R")) source("deparse.R") setHook(packageEvent("lattice", "attach"), function(...) { lattice.options(default.theme = function() standard.theme("pdf", color = FALSE)) }) @ \pagestyle{headings} <>= book <- FALSE @ \chapter[Errata]{Errata} %\bibliographystyle{LaTeXBibTeX/refstyle} %\bibliography{LaTeXBibTeX/HSAUR} \end{document} HSAUR3/inst/doc/Ch_simultaneous_inference.pdf0000644000176200001440000027577014660150123020634 0ustar liggesusers%PDF-1.5 %¿÷¢þ 1 0 obj << /Type /ObjStm /Length 3473 /Filter /FlateDecode /N 55 /First 439 >> stream xœÍZYsÛF~ß_1oëTÊÌ L*ë*>dK¶BÙ±“T(’S¤L‚²“_¿_ÏÄEɬì¦(˜«§§§»¿žC²˜)f¦™5 3,If™³Š%Lı” %%sLhƒï˜‰T#!˜”±dB2©ŒE&Õ¨Ädêo˜F1añvÈO˜Rh$R¦R…rÇ´Ò1“1Ó‰1ÁŒ@=CÄ3‰Ã[3ã´qf…A=ˬE%™°DX¤S– &K´A§1K¬‘è”% ¡«T€ŽR,µÎ1¥YšÍ”a.ó c0•0'AO¥ÌiÐSŽ9“X]"Z0—:0 ÖãX§àžÄIh .ÖEcÕGœ¦ #ƒœâÄ0ÔBZT&ÉiÈõ…°èc"¥á“0ãØ2’šŒ”¥ÀŒKHé ¥rÉ¿~ü‘ñ£¬OÇÅ‚Â$޳.fù<[aþ|úx|Ž„‰·^eŒï¡þlqΞ<ñ$vÖÅÅbÉ~<ËÎÎâØhtw6…‡ÒOÇȨËrÊOëºU¹áÛê²¾,Ë]]Fù´eEôú©êýD?·Ël\ä‹ùþ¸ÈØ£ý p:NE"R¨’þ>–ÿŽãWÖÃ8ŽßfØç¼¸`ïr™¡øUöççÅrºb8ZL¿Fîx¹˜®'è=?>dÏ/«b5YæW¦5Šñ‡:'ëÓ?²IQ‰Ž†JâðÏ)X›³lS*lɶZ•B¤o[ Ê [”oטª*éMJúí2/)ë{᪒fùíÛSݤ̗á-Á£Rådèz’¬®'Ç·=+'Ô=©´io±žä ø«Òþ ®ƒTOu4þ¿ y0Gÿ E°+ÿ )+Ã+(®ˆeù-aèôú½Òè ä•>Ïç‹‚z–Á$’@1)SiÕto1/²9jbÞƒyeÓ|¼»ø‚¶ÄŒq&«©Qê¨Åñx‰•1²Õb½œ cêõ¨ÁË”F·\LN²tøñþ3p™})@àÉ“&ÉD¾\¬´ãÃqýÚl,»Õî±a|?[Q_A¸üÃ/¿Â«.1fpw‘Àt³ùz6£1„NŒkôbMå*üðJÇÑR^S)Ë“oJÅÒ E6¥'h(™®”«iÙ¥'±¥BnõÝ>Háâ®ÚhU*ß´, Ï¡jÅLTC17Ómhº+BwšîÝñ*ó­ùè×Ñ»ãï÷Žv1Qüé|²˜æósrýžªŸ©½‹ñ’ÐÅwˆyö.^NÄõú: I©ðR·¢ê=ôö>ŸÁ,†•ûqÇý§úUuè§2Â8”ÃàobÄH[âÔâƺª…35P5$¬Ä:oýi´§:Zëðm›ÀÒƒžè+ÿ”[•&cTÀ]å6}Q\#GP‘ØÏJð« M.”‡ñêE–Ÿ_@÷]Š$äIÓùˆïð]¾Ç÷ùSþŒ?ç/ø?â'üóS>á“Ål1ÇÿËË1ŸòŒg—Óñꂟñ³ü:ãgÐ~Î/8@è"›óœä3~Éç|ÁóŒ_q`S¾˜òOk˜/Ž/ùм¸Xf/>/øšæ_øŸßy÷Ü>–1ù‰ÙøœðÝOìn¥À¾Ì!ºIü0}á³|–)Š1JBÖëñeÖU½Äùdg~ƒGò(_­ ˆ^a¼„ùI‘]þ u·M•jh#ÿPÊ¢¯žžüôêÙ˧èìäd÷CKÕ¡”óù*¯3j¥Oe_éeGé©Î O Ý©§(­5õº9õ£†Øã̱iGîð±°XjÝzÒzOå‹Ú.öž¤wß¿ùùÕ>zATÃĬm_̺ë[°õ-âûîþ¬Sám­'Jo­gc'qr#ºM=­Ìæ»É‰/+ë©”ëß(iô]BK/Br£»p/àÞò`ô0l2éÒ˜ƒ _·lvc²!f¬{v+ éûéhPÚÕ öü5ÛX}Õl¡¥FÐÛ28 ¿Ä ßàR`êã©ûv<í@è×ÁóÙ냧Ͻ(Zà©»à)D_ÁÓxª nRUÂKªÔ@U¯5´ðð›¦þÚ'I·Áñ¶G–-žñ Jð ¿”’Âwª}™²¢la±0vPß‚Òi0Ãþ½ ô}'%iëõ! ¨V…Á䯻‹Ü>}vÜ" 7„Rå5ñÛÓÞߦß!y |¿â‡€ð×ü ?æ#oÅïøÏü=ÿ…ÿZz¾œ¬/ÏfÙ—>¾S<›{”Ï>­Ç3Âzú˹ÿÛŠúlpŽè½2†YvV„¯¥§ 'BêœÉÕl½âŸêáÓzQdÓÓ™oV%BKŸ Ÿä‚VÙeØ_e×`c•é„×!¸àñ¿²å¢å¯Ìïھ걎C)")çeÝöW2îú«¶‘3ÄP¼ÛÛ½Ú'úoÚ^À ð» / z+†Úþm?eÈ0ü!zϦ^Y§ú%ñ`ýAá¸M‚'Q¾D¥d>$ ËS¬§)7.kÑö‘,iÜà­|ÏÚ†/zSÿUºâE¢ßPAÔj~5$¨á}”B® ­¬¥Í0`Ó7_øŸ¦ùúäó Æû²4Þã2¯"p²Í`ˆÛ-pkÔݶ¯·…ÛæS€€})mêx¾;¦ º¦ÐQÕÁ¶µ…—;o^¾ÜAG[¨‚ÿ[m¡YßÁ”CÐ9ÑX*n–yÖïÜ”šÕ i‰gÜЀ1üjÔû»~ P£7ÖgK¨ëZ E»mëɶFÇ-Ï®.3Y1.a%»Zå¤ÂçcJX\®¡«-]åçÈ/.¨…ÿ/z*J6³UEaƒ¾”¦€øèh¨ìjhG†.N+è·“g¿œøåÏ·,ewu2xhuß=Ü"êß_JÕ•rG C¥,‡JùèýÓãÑù™·ƒ¥¬úûKÒö‚"{ð ÿãòë¾O³}|cɶü~Ëx •šËxK­oã}ø»9[•tçºR Ôhª,­]¶æ í¾nDºc>^Mò¼ÈgÓ Ÿ0®>"ê=/ùér<É|`é¿B(IŸ³b“ïPÐÝüš.f3Éê°¸Åçt2“-ûAñ,[­†GÆ­ˆ8ľ!ÖEl»šQLÞÆóõ|š-W“Å2«ƒÝn¨+]eÕX”´cÝPjÔV³Ö]³î˜]׬Ç_s×6rÊ FžÞäJët¹±øÅÃ+ðçHØú}s$Pž´„3§#ãÂöG”ÊÆ™À 0L ò 5©‰RD–Z%‘t ʉ|$¨ÓHiÚF«ÝÀa>ÿXñì]ú›ò¡6ÛÓê@ó.›í›³ ØÐˆ{s:HG‡ý ¿]=¢³ØÞQå ¿yFÞcµs‘Í®³"ŸŒŽ]T»¢·8硟Ÿ¾|qòýëüòt½:Z̲óõ›ÓY~ÈPýr(dظm…w÷;¤›©¯=Û(ÝF禞۹կIí®œmïýö’vŸ=ˆMˆ°íS ƒ€¹{-ZSóŸÊ-Í@Ô¸06û#wA€{m‹´½ÿ-û}‡/ÒM´ì\ÛácIï‹éø„¤Ùñø½ÝüÛL¨éþ‰p ~fZ`‡ì|Ô dÏ·)½Åc¥ä±Ô½Î8ÿ.pÒ p’©Œè¬I'I$é’S‘ 0ýup׫әí»V{ÜZ°*`"*èYºÇÄ{ßµèU^h@¢èm@ò[å~Zô½€dë´Ä~bÓâÓ¢D”$kug#'Ô Ó¢Ri¬Q ¦Á@rZ¤]вˆh?hдümÜi©"Úßp§Ñ$ÿ;æLÅÆÝ¨ÑqdkÖ ýN‚·®µ•×lÚÖ&•”¸ÑÚ$q•"Ö‘’tË VF;ñ °î!¹»—/P‘C;‘8pC¾Ó Ç-]Ðê Ç]M·Ð2Ú­¾í7tÝ%–¥U[:ãH›î¢Ž»°FØ= ]ÀÝ-ëÛ‚-ÓßÑý3ÚdèúüŽ[nwý†ÿõO:Ëœçšú¯y íj+·4®½ÊõÉM3áelA!ÄqCÁ×-œ§s¹°“ÝW*tIêi¶Q¾šæå{6tãV¸+QC¹wì'Œ¿lÔtBg>!ëÑEQ\ýÀùÞhçu4z|µ\нÃh±ÿ¯ü þ¡‡„`´Ï &¦bâ«põ°#øüùsôǪ«ÅYÀµ<1¿;ãÚ V¡»Ñ¢¦Éë4&$þçò½8"É”ªã(5P›FÎ<°ÆlãÛò4ÎñýžóÄŸ¦Õ×Â¥•páa¹|8bþ¼‹ù/θèîM8É¢3G~¹¦[Úá˜ËK¤<+ë P@õ°ìga§a;wÿy’9ºendstream endobj 57 0 obj << /Subtype /XML /Type /Metadata /Length 1484 >> stream GPL Ghostscript 10.00.0 2024-08-17T18:31:14+02:00 2024-08-17T18:31:14+02:00 LaTeX with hyperref A Handbook of Statistical Analyses Using R (3rd Edition)Torsten Hothorn and Brian S. EverittBook endstream endobj 58 0 obj << /Type /ObjStm /Length 2506 /Filter /FlateDecode /N 55 /First 446 >> stream xœÅZÙnÛH}Ÿ¯¨Ç ÂbíU@Àk’i'0lwb÷ÀŠLÛœ–%C’ÓIýœ[\ÄE’éØé†-¨HÖrêÞs—º” ,e6eBfÓJ0+™ ¸RÌìfAYf ©SÌZ&¤D'‡!Î3ë™0߉ s)“2Ì & Æ9ɤO%ÃPŒfN3%°3Li¬é,SŽÆ9¦Bj¦Ô)-˜ÆḐÀ„I=°/þµÓŠyÅŒ@'¯™1)® 36 ŸøÔ2ï°+ç€&è’{Án,Є`Ab ßX25Ž¡‹“°(  ¶`¤d-@ˆ Ï=ÜRÂ& lÚK¬(°[¯RºXÚÓ \ؤÀ½OI”„‚†L%Žòh8ºp’F‰”$y¦6!€ÃzjàüãõkÆ÷³Å’ý—èñ„ñó‹ß˜Ð*q ÃÖhè”M&vÉøÇìÛ’´»æÙtÉ\qu–/'{}]_§©ij³4u‰6îYj|«â¾ åýì {óæQ(’ „.±Êñ<û -®ÁeT¹îU‰e\b^k LôÌ¡/ ×{±¶x÷cÊ{ªhS¿z]Žë®y\Z\Wc´*epU>åü¡X¿µÉ(•‰'µ·e¤6ʨÒd[wÕ>D‰½ÂV21fu/öuå}YãÜ™NgˆB€³7›.aË/õö!»ÊG»³oèFPL0‰ô ½H@à˳.zŸd‹ÙÃ|œ--pˆÙ¢ù”û™O3’ ?Þ?Ä–hë—ƒæ÷ûŒ¦ºÉ:2„ýô…(ˆ¦]Wˆf³Å¢Eå_•ŸR±$ÌH–ë‚P‘¶!HÝjCñ éÉ“žx†ôtSzi"4…t"QV®¤·N`jëšB(™×µø1 ϲÎîh‘Å-ñß.ÿ½÷áÃ{ÇøÁt<»Ê§7ŒΧ;ÓE¾ºq˜Ï˽ÛÑ<ºÕ(ìl<Ïï—³9ŧòhTw²ŒŸ>|YFyTD%œbáÏùÕò–¯á®5<ñem ‹1ÉÀbã|otÿ.Ëon«KLM‚ÿ'Ïùÿþeû¾’˜„NF7 uÇ%v+ULJühŠËâáa>ɨQÊ–n}Ýe]y¼_Ž&ùxgzɧ`P¾X@:Üîœ.³»OD÷ÆÞbé‰ûôh÷ݯ4ýéŒg%o :’ZÌi_È¡'d5PÈιHúáOA ËÓGÑŸ—OA  O—8ÉNƒ8ÅeMœüË|4Î&Ùõ²hÍ©Ç; æwùôaÁù]>Í[ 3iÅ0Ý"Ø+ЧÉ-Ö¡˜îR¬ÃÚ%ÙþîÁÛãÏXàd¨IkߛՉ.Ù†#2ÃúócdhC˜Í(W@bY¹ò])I¦ /[Aù¢OÙ_C˜ÚÈøM÷Kò®!“E†ÚôBH d:ã#~Å3~Ãoá‘~ç~ǧ|ÆgÓŒÏù‚/ùòàßùŸÙ|ÖvXf›ÃB⊘ï°ÉtÙÔRöP.”ë¹ÄÏËj$é=b]ìÚ¿økíž·¼×6j¹~°pªC-ê3ˆY¸§!o[ò- ýÒzmÀÖë;BÑŒŒ£;·]‰w¤0TæÒ µß·¿ìŸ>Çç ‘²N¶/]Ó‘.bs_º³_§9¦ÍèXYô_oÊ`!}žeÀ@äÝf#nö©>]%“ó]é8^Õ*¾§œ‰üùn~³ºø²\µ³o«öò¾hG·_ˆWÕxQ‰Ëû¦í ç6Ä‚´|èµ$&ù.“:Š̤Ç"Ál~•ÍKV‹x”ˆäÑ/ë„T–ÙDLH•HœÃùÆ(“8ëW é;À¢dxLCp`N4LPX°‚’kÖ&tb¾lí(Ÿþ^ÁŒ‡›ŸŽN*—çkt&$²úËÐY™Xë6¡³*T‚¨Ðy“PÕâIàjq´{töጼ¾è‡áÏ»tñiÇS˜Á^­ñÃÖ´óõVÚµ¼gY+ŠmÞ˜købš¥cE¡kE-Y ´!œ7¶šÐ‰p¬\è„ÊEe2tÅ‹Ò_ž@¢êƒƒ„¬ú F[[µ•ìÊv r]ÑÖ‚IUµÁ)Û†Jve›(\¶¡µ{Tøpôéìâ#m?´bEu´YÅ Ùg@7 )‡RÀýhºì«aŠJèú~Ì”}Ù«zŠþ)’Hdk´Ÿø=i=S~hÞÞù¤Ìœh%,;|Ÿà”rÌOøiL0¿ðqL2¯ùu3ÍÛï÷·Ù´—pÞ¯‚\#tñ{œpfWe:úÀ¿ò?ø7JH[Æ¨ÃÆ€FϼRvÛu•ŽÔ¦Øââàp6 Uk’ѽӃS¬uö> ô¶Ÿ‹ún¶äÓ¡GêXsñ|·†¨ñ© kÔ/ìVõï‘ò[Ê‘Û=¥dþ†æé¨GtÕÓÙ`ý„á¾²å>±åã~ aSU>ÑRE¿jS-¿jüÄzß÷.›|Í–ùxôjw6¹ÚÊ‚-:íMûéÓþñG:S ¥"zZ½rì\e;]^]·[½Œ@Åw¾VJ”íˆLWLÁ“Lø}›i5Õ ¼Ï$½VˆÓtˆ&»Dk °K´Ñ·¾6íèN¡ý£^µW=/Z(¸Ó*¢ë2Ö=» ªâöSªÀÔíóþûÿ¼åŸfy†^D=Z ²C©¡Îʇ~U¶ëd²]'‹…°u‡çn€ `¬ãè+z…¯ö·ºñعùÇ3v›ŠÄH±)cOmbÁ‹î!¥Œ]%Y›¥wðÃ?û<ñ:ïËW:•œ>ôÓÐmtÝ›RÛJgW.ŸxzÛtï+cvk¬Ø¼”û±âµÚñr¥Í`Ú 8"3ËD³I›§Bä"ʤñ”(1LyÁ”I‹^?C›C*ë'‰¦õ¬ î^‡M¢1*IYzŸ¤ð2ÒÉÄao2ø$ýLÑlGSú)‰Ð€äÇÅßS¬³záC÷é'Å·)¿íS±/d*"­ßG>ÛV^ ’¢à—é·+°—ÄÑÙ „΃.1ÖþÍuå|¦D§SX4΋ºí52¯"‘uˆô› ú™À–yÝßNPÒø}Ážn“ ®?€ô~+ Ýóm¦c%Û2Â-G‹ýüú:Ã"4+(2Z»˜ªîù#ÓÑ™³Y6gíšx|ب˜³V)œœx³ÎÎZ%tÖ,»³VAý…Àײ ÂAù¦6¾(ßáÆŸ„­Þò²ÆkÞB€(ð²êÞë|ýdÿ6%sWendstream endobj 114 0 obj << /Filter /FlateDecode /Length 5142 >> stream xœÕ\I“\Çqöyì“GøÒ!øÚB?×¾PÁC²,Ñ’hŠÛÇæìä z8¤~½3³¶¬·ô Òaè~]KV._.•o¾ÝˆQnþËÿŸÝ¨ÑÄÍ»±ù͉3~Ô^n¼ur nsw”]ŒõÉíÉ—'QøÑ™°ñΈQ+UŸGgi”ÕðÙ°AåcühÙ~Özø5tûªB £·Œ¨ü€Óät‹Œ¦ ý„ä4µAùA7&ÓTw+$±Ý̰L ”»„ c00ÖøGoê,6W'ßžHâú&ÿwv·ùåéÉ?~¡â&ŽÑ)·9½¥‰Êyƒüspt­€Œ8d,f:ýžoB¦³¢ÓéXEubáÈnÏØÛ—˜@¡,"‹z®ö E@_n¥ÀÏy:±š@)ÀØÍÏyÞöo2íù‡Äüúôä'ˆ¸ ½­ @!GïòÑ{ ¹KçÈ KŽ—DË@DEä–v$Š´vÛ‰01V¬óª˜ÔºJL<™zÐü–äAøB%ö’*Û!qKkéÑp»@ºà€³N !4#:’` pý§¿?9ý‡ ™ª’ù%ÛŽ8²‰ ? »oÙ€Û6€¤à—,GEÑÁ€î’$¥vð°ø ¬¸P™Ä¢ìÚ²,=Bã% 6êyHjHU4#K“fÊ9ñôÈü =˜Ù”<N´'ëÂĈÑ!:#ó5R1¦%¥s@÷¾%y)Á–ýbçÉ âãøÁï8AM(7mçGv’Ãë:‘=n–‹ÖUÂ/™_/ÒpÛ8ûÑà”éi à]fàý輻Ò[ˆV·ý®JŒÂ#¢@'!Œ 4¾hÊœƒ©µÁ»2zW5'ÉS&ÈÁò/còq°=r£®¢U ^0ÙJ |ÐÉi&±¢ÒEB}Â×Zxx±•`¡Aå0!›ö mâ4˜ˆjdaiÚC§Ÿ»:‚6^¢"ù6EaÁÛ€Ïàk\¦Çõr« Ø@´És&ŠÎ¶V•ÎÀ,$!B<\³:’ÙD,éò#žCø ìp7Zóö ôŸÛ ÑŽR¼hŠñׄ¶$'p@dñkEt0üìýŽÙ×M3À7D’AgqÖ¶ špÈj¸JË9hºgF|½í47[ Ç’ýmÞ]„âý ;òæüÉÎD/Köà ?$ê<£\ØI•釠Ã$YU¤Y|ç= –Vz8ʘ‰,ä¹Â5T:y4"GÒ6h¥cÇž Þ§@aøY.Øi kο"'æD9 ÂÓ~ߥà-ó|¤ÐN„-F5È>àš CS V´Þ%‹ lÎPg h²LÚ‘ƒšgÈ`b~h1,ÿ/ôÔC☼j6û«ä„­§5"Ë÷àÓgÞWÒwŽùuó.ç•|À Å’³zÓLë"-g&£Ùr\KqF9× hÿØï^$~U¨îæ}ßDÏ´#m¾ÄsMâê?÷½*Ÿåš"}‡‡¸æ ß²c?¦%4æ——e9ÝéhÓ0fBû4–” ý•°3óscëê”égLýnIýT˜mõc4fe Úì˜)ɵ±É¯<ýìå6%:yÁ¬š2­{YçÃCŽcà,KÑ@T"Êáê‚…9} N/8OcG Ì-䯢7ð|XóZŸ×¸eÔU„è9TSܵç æER±âw=|^+S˜1;¡jnI-Šÿ¢©1W±±w?;g0ÃÀV ѽJ$~Ú»X¥$@£"¦%ÓLÁö„¯8Ý0s1‡ôý ñ”C¨˜¡OЧéz¼o ÀC@¥æ½Ùè$Îê«:ÌQã¦Sw#ÿt=7æÃšñ¼H[CF નtF<Á‡Ë;©öžyØ7ù¤0ü¯ê ëi^7)\K-`¬Þ·+qæ$ÌIã'HS¨çtÁ윩ñ»dòòGU£Ó΃'þ¸áågÿF¸¢ù­”’øjáðCðçsÇLo]_²ò¾@¢4‚\ óð³ }¨Ã¦áÏðe¸dÑgòæÒÉÀ˜”B3›f Þ©rؕҨ<Ön€P¯ V"tòS¼jŠŠ-pþëdW#/…q;7ÝôOfÁ¿î§„¨+äüM—éN–£wAW¨þùñ…Á*À&ÊàWså'µA­|p¬ 3®?ì3h2²Ðô³©ÜzY8ƒ¼üYXßSÇ é€ZGf°˜Ö­Å§m¬ˆùàœÖ]<“¶Ú[D¦¤ãzØä¢H£:d<™óà…óe“ÏåIOùn…c»XH•Í–²Iî¹ÈÒ¥Ã+3ñ彩+µ òÀœIj?ѱB°ªÓˆ„!O©puE%¨~Ræû^ý´×›nöߦx×Ó(v0X­[Œ €1¦Úé«¡!¾Ø.Áά ÕV±^Â6 Ô¿›1$²3ƹø ${yE†Ë°@™£ú|7çÕ¶Qøâ)«ùÇBê׳Á¾;—ÀZ¨¨„÷ÀK\n—Œ/œD5xîä®[6yèÝk¦zI[]!0¦ÉÐ-[TÕêÌ®ÆÌô™=°*\Švƒ’¶ QÎ[ªÂÞ³8àâ¨Þ[ ŽéýÓ'ñ¾2½šY¶³¤òaT¶0†œ~=_<ŒçűNî%Ý{O4|Z‹¥Ž²qú˜9¼fhùÆ'Åþ<„ÐKʉnÆÆ©IãG”¦Oìaúø‹úûëV=X@€ ‘âU²sÒÙE‰Hàší¡d,¬sÃ)9„(‚éÊ ¢s/GÑ ¼²z*ã÷¤Š²Ä¬]ѼåÕKÀ|‚­!ùxf‚Ósgµ<€ÄI‚K÷RÀØÞ äR@(¦:¹ô˜ðÎi#† ;ŒP6.É MA«^dÇÑ_C|>k‚zΨc¡Ù”3%4ëˆT³×Èr$¦B”†+c‚³Ä‚3@ïLRHc¼Ä +²`/¼gl¦¥= ¢ã—L#€“Avä>JPõƒÿiXþÊxËXƒæÌ™×L1¯Ž:jlÙ€Ô£gMW¤2Ú #ñS kǧF”à‘ ŒÏòb;¤,9ÛŒs¡Çç™T†Ç x)+9ÁËxbÏS8µQªG.öé \c,(º*Ù÷¬\yߪ+eƒ¾X‡1åúÚ÷¡lë=£Z·X‘xLK€óŸ–[ia¤Þ 0¤8k<ðPƒEA³£ÐeËE-Õ^Y5õŠøß]” kœÏÊ ¶1Q v0¼¬‡–¥,I¼à*ÆÄ¶?g>oTŠ|ùãÎQ*ƒ ©Z±Ð³vê·lÑçƒÖ¶«¤_´Ñl“äcóº½íEg¬¥J9¿áloUp+¼Nbú=)¦á"XL³/Òç WRK.¤Ç4k¿ïYnK[¸•LiVJéŒLþ)¿Ê»©Ý$­ßn-²ÉÞ¬ØÆÓð&kÿ,¼au¸œD¯,ÈýÁêª,» ç°šEcìà‚‰lßgÚIKf[µtÆÈ@¬´.]ÎÝ7ãÚµü:ëcZa-æã6uØŸQ»‚ Ë"Re'䤘J N÷lÉ-#¬¤§¢üII3f¸W/Á—µé!­çÅ´´è—xÛ²9FçåWM©&N÷Z™~a×P}W v¼Ê+²{f9sŸF¥ñ•ä®Óœ_]͹©{fu)މîéï&ëv²®éaGü˜™^ÅÖ‚5»Eœ8cêãðê£ñ!k&ʾ¢úOEÝ^´ê=ºÁf€=9-¬ë³ÂÜ䡲X $øü?')˜VhÀþqu-¯®ëcñÑ,;K4¥ê¦±q«‹cÐ5u1bBmºÙË7?Øÿ0ìß67Æ òMZ z-.ºbe!bWê§.¿Lã“’ó0Tžæ(Ú$»·çÚ»i¬#˜¥Î ¡ú›æÅ4ç®yÕ´5,¦”Ô$¤ųkí4®ËuyébèVi^iáHêfø…¿Ÿá]øYkݤØhšKD¥¤†‰i[»/X55÷ÁàýÏ}ËÄ<é˜å˜¤†_-'9LQo¸Î‚ã“2õNå2è¤VRäËfÍ2q,ÀÆ©smüv[û[›N1Ž·µïzM×uÒÝ9±ø€©cçî­ý-ÛÝ^§–z™y8oLënÈËbëÉ4µÚê.œ[iÜá7ù,È\éSb;.7,Æ NÿŸ)uâ»1NjŸ`ñóy3ˆis Æ•ÞúÜ\{KŒÄÞ’ˆÙ}_Ë›7Y3Řñ0~‘DAt­É,'"©ã‚j½­âZØNÖ7öÑcl_â‘öù ž=«a™(LÌŽAãKý} m/°–µ‰?dªÖ:eVš±æŠ謌Së$´ ü€DwÁ {Ã2C0õ@kÄ{ª¶3ëÕïpnê6QÏ´šf°SüÎr.·Rf?ƒß­öò»£A:ª¤nAúJÖÉà` 3YÚpM¹#è²ä·t ´A!Zçöïz¨]ò¬´ÖÍãÉF²á³^±(…R²s¼7M—»~§ì°¦Êžœt\S«Åìºvbúiu°îwŸ[ÿ„î UÚ¹œ}ãj` æYïBéÖ®}“*nñÇ„¯µ¾ù#óÕȾ¦ˆi…¯Ò«ž¯é½à×€½Ç÷“çÁdÁÞ¥÷" c´’:%ºBPCXº€£Âd~ÝÔ€­æ›ÿ,(6w©Gr Œ3:’YÃæOô¸«*O>ž2°÷åTÁØüB©ÕÈw+Uà>ÉÇ–¿WÑ^Ñ]áÃÓ—µ¾™‘½WDÛVº¾¢¶#HçAÍʧëúéÍRG)†7'±>ÜêôûWŒðLøÇ&®xRÂ.@WBžSñ0ãO­BÔ÷ÒFNt %‹U­îݵB ·eç5Ïà}ŒÍ׋k±@¦¯kÖÇTXŒI,Ì·¹Á©¼QhOµÅ?ýðÍÖZ¼°õÃþj’ÔLþž€ÂVó–ãÞá`c†%m}žd޳[r¬S(ùþÉÒ’ÊX¬.©‰ÊPìúÛÄ^é°jÎ;>øë%ø^•¥[øIc=QvJ36Ù¿È#K ¤3ù+þVP*ø=Êþ¢ü›têÔ4-ÆÁF©‰Òáº÷’ØÕË®µ&×X{ÖŒ';‚Ç«ñ³¾{“ú»ÅÖoꑪ†zøj»³+4:wé·—ÒÏÙ oûrx‘Ä>3¯!§WF¼„ź‰xÏjê÷K<ã‰ý5ƒ¤ãZ»<æX¹XF7¤4¾·ž!W×¼‡¬…þŠÇOþTéÙ`endstream endobj 115 0 obj << /Filter /FlateDecode /Length 626 >> stream xœuSÁnÕ0¼û+|t1»Þµ½{¤RâÖ6œÚÒ‚èëSKBâãY'yy~”C¬Íxwfgòä!¢‡ö¬ï›K‘Õÿtà߸Â5RE_sÁ(Å‹êVypWN¡ÆÂâkaˆ” µU5–<£2Ù™;СÐcìcîæå\í«œÌ;°•XsGj-ôœ Iä¢'Á°çt­…ÌÊi›v ÔMïž΋ôëëfçÏ&÷ê«·n 3ûéÎ-[FL±ú"öÍO;÷!¼FJ px;@¬€*9|Fˆ ªUkx´:qápÛêYUª„ëa´ d {;Ö 5ì¿- %ìïÚ©‚•µ k‡^Z‹¤šh™‚ENÊ_ œ Já{«nÁöÍ¢yF UK¸é}»‡e¶5…çEŠp’¿ÐmbªÖð×Ü:WÈ'Ã?7„Rnå& ü¾Q('à…^’¢6plL¶Çûáãô®y£½7”(bógº5?.Û…jlIVô‰“cB#’³Q¢ÐåÖoãD)ªí†žg1ÂEš]Ddó)œÏÊ+YµcºM›÷»ÚÜï¾ÐøœOîÂiÔbÿª¥É~ K[&Ù2ÊU4V>ZFÿ—ÏdaĨ9§>Ÿ 9fÛE1‘,²$tÌHh1kÄM›†ç™¡¥–—Í'hg hF×bŽËͲU,äûE”ž…8|™šKµ]ü{Ò¡®Y[»´P$à„4¯|ÅœÍé`®Öcœ%dÌËÊ9)·6Ûœ®ùÕ —x _ÍÄ£¦ƒå;ý$½ÒÙ|¢%…­—£Š—#™ÍÑ ÷Ò&‰endstream endobj 116 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 4098 >> stream xœ­WiTT×–¾eAÝ+Apºû–SÔgc4š´Q&*Î(J!ˆÌÈ Å "3Uµ«eŠQæ’Q¼Î&Ž1Q³:&ñiâ‹èÒhLò^¯ì‹‡—îS…&v’½zuÕŸZ«Î½çìý û;2Æj#“ÉN®+æÍ5ÿzˆçÓÄõÖ`+[«ƒãÇ\ëF=²?>’1f-[îñ¾s¤‹zeÔÑÆîŒó‰ßåêëç´)ÄmwèÌY³ç%Í_ðæÂ%Ëf³Ž™Ì¬g¦0˜×˜©Ì&f³™™Î¸1¯3[˜Œ;³‚ÙÆ81Û™÷™ÙŒ3ã¬d>`>dV1o2k˜·Wf-3‚±cì™ÑŒ–ÃŒexæeæUf3›žœ±b’˜{²­²ãà k—Ëäîò+ΪÆúmëëÅZ…žÎ6p‹¸šá¯×ÛL²)µùçKëlYÛ(ÛS#‚í»»vûÕöYöíÙÿ:rÌHݨq£üG½tt¯¤±È_%·*™´`àM>­.Uñi{Hàà‡¬$&L«‚$àTl£¾Ëpzà”¶VwÂv²È¦;C‰^oÈÙ¯ìD¹5†+Dòªõb•”ótA'ܓƼð-–œ•6òH¹5Y«°“N(ÉM²¨ÀE¨Kqx‰¿¡þ”ÈÜ}Ö… ºŸä½tk{©|•ä’‹Š=¤¿`è o<¯=dÙÚýX”%ž8X•µ@ «T¬IÌÐ }pA[5´„µð ö™°\”áX‡18IÞ6°‚W=쟥’¦³8íZÿão7~AlÊ”*O]‚/¸~çoÈk™E>á±'°WŒZ¾j‰’ '·xìÙl´@ʸ 6Cx§íNŽŽØ± €³“4™]Ò“ìÝoŽ•K!ÎãÄÈ+„Ÿ3Ÿ¼F¦<\‚cÐáÞœ =Ä•÷¿ê”#é­pÚA„cû[Š:׆^h Û²?<ÀT°55(Õ×?*€n2àŸ"JOEÙG8K>0k`_ ûãÓ´ÚŒtaÃÏ.÷êÁ‘¸“9d,‰!j|ƒŒCO\ôÇýR•¡OHNƒ2ƒ8ÌX³Þçfÿ‹ç3¯À}ø‰WN\ûª´nÁ·®F2ÕXåÀÕë õJ Ù"âD“4²Kv‡B·•Ö‡F2wAgE“º}_phóó×øN›ý7bµcçÞ0e/KœÍXVBk+5±Ü`þŸ1u‘úøºæ¶º>àNv­&ödÂÖ-Û½v76Å)í (cú-(ŽÇS8íE9—â¿!‹‘˜D&àp²XI&ýk /õÿÈ~—ÃZ×Özn"‡Ié›Ô^!›\ÜÌMœL¹Ñ.bÑió['ápQ>Àb¯RÄ—cg%ÀMÁöjÅý\¯JÛTŠÙ^s…h,z¢À9Púv±âDÅnÌ´l¦Gù†ååö²!nßAæÚÉÑ cøehÝ/ètñ‰Æù´Ä66¶»>Z_ïá¹SýA´ »¯ Kþ'ÝÛõ}†£ÐAЛ”Ë,=oˆÕÏÎ+åÒÉwøÁò¡Íí9©èŽÂÐmy†Ø`M9ÛŸç³lèøË²|æ X}O3¡dÑ2ŒßN2MÒ«-²ÖÏÑõs9Þ•Þµ°)=6%#YH( /ôÎiAäÄí {Jö)[B:Ò¦u¥_Ü®ÜúI;œÂÄO„캜8àÔ¥$26Ò* PR!äåØŸ—ÓÞe”ö×oœßݼ·TÜPàS¨*r+‚ãÜÅëúÊ»y«c ‚>É]\-äÕPÌRDt% Ññ*ÕîÀlŒç¯‰ 좺˜ ^9´TŽšÊ¾óar˜Çâò‚ïeí·pÎÀ]—Nß¾]Ü _Ãß×W“×_d3†°/ªÆíØÆ[©jTd&y™D‘¤êÁmßõõË”‘# €;¥eT¯dv¡}Fˆ¸¬Jv÷D9ºKy!’¸I¥Ð- 'Š©Ù\ÀeÒÀæVÌ•/¯^ΪÜX·ÄÀ°p¥R°¨¥pvŠX"Á™e.oÒÀþ¡¨ÔÌ£åí‚yh)ï!)!YXòPdÿôYl{Î=Š|܃v ò³°³Hç_ýÃRSÀeg3_<#­åŸsÏu \»z®ú´€?°dõï¬Lf§}þ¸þ \íô+èœo-²®Щ”úÒ‰Ïô9†–Õ´Œ'¢"@3|èw6Xûd°:µéœÐM¿žQ{:¥¶¶Q)Êì$>ÿ ¡àp"«Ö†éÔÞµÞü8[F¨NÍNrXDRç`™õyQªsÓ†C(„êC æ5GÙr‚XЂN“¦Óº‘9‹1ÕºGT„ë6Ð)Û a–—cqÜ M~Bnj-8ÖAnQ^ÙmÜçp›$ª‹µÁñ åÖPCOÈ4¡W3Î2{úpœoW ñ4ÿýòsÄ>˜ŒÓÎójkhn1ö´D—ëô‚1·ÐÐÜ…z•Ê–LÑq0‰[ü0äÆÅîö>£[î =Šª¨­J5¤è•ª(#Ggø…«¢Ã|¢º;p:”Ô;ÉÌ’о~Œþ!Ž-*Í+ø8ŠlˆÖG‘°Í>Ôj®ºƒ©Î3ÞCÆú¨¨ÓmÓú‚ë,¹ÊâX²v"ymo\0&Ž*¶Ép\OkCÓ>Æ«Õ]açÁG<¹…ÓpÖôDæá›¤Ìwç[{;´‚ šÔ%~%Á°É¢åíI~IAÁjð‡ª=´óµDe’Ή²Jdå’³4œ/(7\6S#’R#BÀÓ-=%¢¸çк¼þâ°p.™@¦?^J—oF«â{!5)[·/[Ȉ^½`wu|g|§®Žq—G>¨(Öj vOW=Ÿn§¥º…Žóy²IÒ¥ÕdåDPWò£B¿ €hЩ5ÑšÈ.V¥8¬ &8 Ç´& <±l Ä2ô‘9 ‡jNjÓ³5x'/9wŸ« ·4¯¤Ÿôƒ7-óâ6¾ðÍsoúŠÄ—¾„æ¿HîE¨Íµo5{ÅQóØ}æëÙí>9jàÈKÓ–’édæËPÞÝYz¨MéÃâêßýá?Y¢|ÌGø‡ï è†Õ%w¤´ÁyšvºàtI{YWk]74ƒ)©ÁîêOíuM+.y–¡¾—K30Œ¯+Ðê Ã}áç- }~íÇ…4нÒ÷³±"²´Y{³”êµbvÑóXŽ:¯lµÒŸÌAö.pß™¥´Ãs1a„Iö™«8ZŽÞÔ·ˆÓVàð›úâœ\Ðå ©{`çÝWßÔbìî ìsš3Ň(„©TçÈ?þz:Kâi™>7aT·¬žú €r9Îû†ßcØSMAª),ÖëK3Lñçé ´;÷ùW'#ÚS‹•%…Źrum¤r‘åñõõ啵5Ií>Iš ?aסm¹á´¢ëßõ®ÜեܽKãOÓxŠa[gHbææ(ØÈm?úïèŒó>»x g“I@8¡àÞ.8 ¯]×mî°ÖEÙG¼ø¯zvø»Ožæwôè…#P®|ÅÍ ÿ9¿ï±Ë=\Ðá]Å‹ò>ñŽãØDøél?Ε}Œƒ¤ñGÚvzz{·öö˜ÚŽd q¢;ÿ[jÖ7ô@œ|FsWišÙ‡hþµWöÑc4<–K»Ÿ‡`.:Jˆˆðmõ,ß@…3Êy±ZoôjVvy˜ÒïF×du¦ækG—on{ìÊ%ïÛFœ!è* /úy„Ye‰0ûõúêáСs^×3:©•½üÙ#´¹w4²M¹ócßýoà ‚ SrƒJÃ:hŠ9Vûñ œVE&úå 9Iyt†<Ë1Ï<·š-“V}[ø_ž”–|bvò(M(¨©Q¯yîeuÙšÌL­NI”d¬µ´‘ýc÷ÿ(|t`M­¥ñ÷È8ÈtL‚½‚¹mW µæ[˜¶zÈÞãÍ´¡ K›“VJãomàÏÂÇõÓò±Ò/k¦Û†ÈèT.!“K+N),{Ò㯆|¼Ásw ÷®¿“u•E……´ÇeÅX!ÇF\Á?&3,2±¼k®C¿æ{Û½Ÿ ¤·½½—N$ m`¦x¤JFMù%9~6 ç[² Høpõ$4_Ôëé=òt97XL¬TlGÎ}0·ó!t Ý 8Öîiî7Éài¢üi"îçM¿&˜=Œú&M“M¢ìN¡iGKnI¯DuÆö}‰YéoQÜ9b«h¨ýärCmUå©#U•ÇOE8Éá°y7‰ÝÄ%+­?–TÛÒU}¢{O]`¾ÐÐÔ‘GC÷â©>›â\–ÏQ’ùd{ê>šÑâã%+ó¶)½-4à[wü*M²ú[Fo¶¸¿áoæ.Ï f¾ì[Z©lÊo­‘ë iöÚá¾ä¦ Zã”›ßýó|è·Äþp²êƸÏÝ¢ÙÌv’ë gU«ÚÔW×rֳؘ9_hníÌ¥ª¼¤w Ê€ÍI>Êøj­¿6R›¡ƒ.¾*†z‹2Qr¦Ím3›¡çò_ŠË¤·uº‚ðÄ,HJÈ…ÁUÖ*±e3ÌÛØÜs ¸Ë°bŽ ¼RB•ɾ‰»)ø;+Õ½¢¡º Ú¹ÓÞe꤭ikß¹8—öóå'7ñõömòRÜN]¨—0D3tøjÒ°?st[ýÿvÓ¯± íZMôn6ªBì6ç@vðpµýÊíz÷wC‡<™!D±aõÉu-ÍÕÝ­1ƈ¡µ±Çp¸+ºyKFJRŒrÝüÌw!˜óa£!«¦òk…3Äå/¨/ØX-ª²¶6`ûØŽf˜ÿ8îÒÂendstream endobj 117 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 200 >> stream xœ½Bÿ CMSSBX10‹‹ù!ùJ‹ ‹ ›÷?¿¼R3oøˆùR‹ ÷¶Ó÷uáæ÷$÷Ÿ÷øw÷Ôʚ걋÷÷Yûm‹^û„g€füêg–°»±•˜®÷›÷÷8û³™s–‹¡‹ÆŸœ‹©ü6÷õ÷u÷÷ ]IP}Uû 7Ÿ ‹ ‹ ‹ ‚J&endstream endobj 118 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1769 >> stream xœ­•kTçÇg˜™*!3©¦œ™rŒ¦ÄÔ( ‚—˜ª¤‰£èr§°Üv¹$n¹¬Àî>»Âr_aY–ë° ×€å ZŒ ž9)m‚95Ml¢ô˜hšw¶/§§˜äKsò¥ói>¼ó¼Ïÿ÷žÿ„« A’$´ÿ-¾‹ok!Û¹×æî¸»Ö{±;=¿zìÚ£ï­"ŸÇ”i¯ff©öfGÇÆ%&ÛD¯ëˆßˆDNø‰@âUb7L„/~Ä£„§|áJèˆÿÑä.þ.ŸPÞÔe×]ÇÝv¸ÕÑ¿¤ÕÌzÆÌôJ:iDÉËF"bÅLSÒ먔ƒ/ CÕ¥8bN‚g .@›ÃîÓØ«ÀMÉü©òÄa·0Šá•L›i:@„qhÓº¯™ßæÃˆ€B™o®_šœ´¼Êãü={2ÁÐÉz8ƒAD×mhH$?‹nݦ†/qJ3s²0^Xè`âu…A|ŽRr§÷ù§wç?Æ+ë„;ÖëWáÏì­>Á?çñn|ƒC&¦ÛTq†Gžô½^¿ðàƒ˜~…?ã"õÝÑkÌÝQÿ]ÛC_ö<$M¡]òµ‘³¨s–’"Q2‡8Ÿû˜ÅîÏzcOüø½ˆF+æÿ‰¥5Åü{Y×# ÁaØŸ(t¥>q¶èbA®5Çz¼N ilTfÄóÁý÷Ô|©Œ£¾¬tÀ@Iž€½˜<(©.7›øò 0ªï?2 À~36ñÑxrWQ•àH7צš-ð>ëh:û9"Í›RL¼Q['­r«Üæ*Ùß'E`#ïO#/;…vJ8ä-bo´OM~°q³ŽÍùv0˜úPuaª{r†ÿ£:Œ RFÇî/xg¦ìߴ쟸äߨ%})=àúNVÏð6‘ÎÒo%¤Â6È2É€¾X\ˆÇP!ó§~kºÅtS^‹N¸ -AéªûdEcØúS§<¤ºÂ&é"i•T”ô,úŒ«²7 _5²"£Ôk ²á8]º™Ò—§BéKJò×ãš5Øõ”X åkÛúÁÊ‹L¦þ ¤C2è!tù“KP]Z›‚Öá¯)טJj¡̦Švq}lèíÆÖ›ïÛÈ37бéY;%=lœ¼ßƒ‘‰] K$°Ûö…‡(5Í- -ï&Àq¡yèœuس—ã¶1 >ª{Év±;ÿ‘yåÚÈà¹F¾ìˆ#aئ ËÇÂ%õæ,­&.œâCÎs>ÉQ‡õžCkЮÚ^/‡—<‰ÏÙPÒ Ù3‹¬Sº°9ƒÉ£zBåadŸöÁãÕw|Ëì™ÑF‹°›AÞÕn"³G[q^þÅ„,|ÈAè4ê¬ÄcÊCÀf`¢½9S;hïlŽAÇ(LB¢úÚ·e4y²ú=…v”Þˆ‚–òC;II«ÑqÎn‚Ư¿Ä`úù§ð*¼æëg…VŽ ¢É\RV¬•¹ë… ÿ½ªh`£7t —…FÆØÈU¢-·vÀ·`ÆÞÆ$ö»L^”õc±ì1!šÖ€¾¦±ðýî.4ý_sµÈ}°ƒhõ<‰Hn ´Àµe7§e¨³ÓS[r[Ö6;y*#¿ZU,#oý!;ÎÉk`N/× )-$WF—-:·´“ãhf‚B±’÷Vb®²\šú+ °ã­QfÞ”¥Õ7)˜Å|Ñ•ÂNðÉ¡“Áµ‘°SÛ}×G4DöÅ=±=E7òz´5–â÷TŽp8ÀþæÍWûk†ó¯•κ •ZÙ¸‡ £XJ³ÑT[Á—U6õUžê™Jº,r»ƒ\®¨FÒ»…øEMlµœáAt§ItmŽrz;·s ótÎr³Óä[Õ‹|Á*Ó«ÔÛtÆ|P± "“>AIw™îËÿ†x]K °œ$‘VSU}Y¥I„F T%X°¯í‹ÀçÉOç)´ï<×®jÊTæ¨2S[s›ÛíM¼¿ÂÕßæþ3p_î+ÁÝ“ þ ü> stream xœUŽ» Ã0 D{MÁ ¢ÄŸ&Hd„´q‘*ë',™ ‚‡Þ{SSÝçØÏ­4È O©t+Æ åF®Æ£­ø¨YÁ«> stream xœµ™ XS×Ö÷OŒä'ZIOõžÔ¡u¨Z­³ÕZçyž'@@™eˆ@ ÉJÂ<I p *ZµNõj­Zg«uº­ÕÖj×ÁMï÷í°½ïÛ{{¿ûÜŸ‡G '{ïµþë¿~kG´mÃH$Ù¤9 ‡ ¶ý¯»1¼R5Æ9@G)tl›ß½ÏgN¸»3¾ýÆ¡7Û×Ü ›'ú¯˜°rrà” ©ÁÓB¦‡Îض~Vø†Ùns"Ýçnœç1ßÓká¦EÞ‹}–ø.õ[ö~Ç£ òáÐaÃ{Ž9jô˜Þu×gußñý:82LOfÓ‹™ÏŒaz3 ˜˜w™…Ì{Ì"¦³˜éË,aú1K™þÌ2f93‘À¬`&1™•Ìdf³Š™Â|ÀLe3Ó˜!Ìtf3”™É cf1ÙÙÌf3’™ËŒb:2~L'Æ‘ñgÞ`:3NŒœy‹á™·™0¦ ã̸0]™nLwFÆÄ0Ã1›˜vÌ;L{I{IfÓ–ÑIºJò$o£“¶“æK_¶]Óö‡%'e£dX {ž á.·ëÛÎØ~UûWj;v$wúÞq¡ãoL}ãÒ›kß<Óù/“:¿pº#ßøV¯·¢ù|îÛÞ®é2 Ë¦.w­.^.»»®éZÚµ¾ëù®?tÛÔmO÷~ÝÏü¥÷_. ®ÂSÅ"Å­w‚Þ©èÁö¸ÐãyÏa=·õêÐË£×·½Ç½+}O"ªãÀŠ+¬â £¤²q‚TìÙ8›OÌѤEA¨U‰ÑÄ­é;çˆån[—h9_¶X·W_VhÐTjuìeeWYJ ºL^q»8 ÈŽº$½ ’\üA€àËÖ¾„°hë4¶G"Øy¦¬âˆYÌäÑ\s ¡2G±¬¢C]¨Ù Û\ÀºÈ÷c|Â몄éôªu‡õePJ×ÞѼöt%ìWàlöç‹ÇΞÉZ²P ÑÿôµË ´Û9\ÄÂ]°úÖDxÀDX½Î'¿ú‚%=”¾¬|ÿ—é +ŽËiTΙq—Õ ·ñÄ“‰ÏºÈE Ûð¨e«ôiõ¾){R=b鬕#‰Tñ0ŽRtá,\æî}p‹¼-4µñ-‘]Õ+=M%¬ü…§Fù±ì+v—¡Ëƒû»7ú ‘f+æë<é,[­I«R`)ÎgŸÖ š>yÙèÞ GQ­´ˆƒÍ’òÛ¸ý¶TôAoßêó’t"û éLøŸßÇvØéÇP.@²š_kM‚öÁ)¨]p´d_ÙzÓnØ{CKו®ƒ°PG£çËîÉSªb’T 2š˜È ü4!ôâb²$שּׁ§z"¸ÃzX£[¯·=PÈž‡te~ zïœÉ2¶åü²ÃEº·]pjÔ¶´„°«3w)p ëØèjmhu:ö\ô©²t‘?>†ßñÄ G!8Gþ€ ä2!-F ªmZ!žôzg4‘7—,߇ò±—í8…’ûƒÉ{FA ê\àòÁ`Rà6¶Ò”II/¬˜àQ³üÐûà"Læ‘ád(YGÃÝ@–Zq€Yt© ²8½¼€ù·»ÈŸà'bGþKzÛ”q1MµV!¿ÙäÕ*±º})”ÁaMõïå8–Í`S¢ê–| vøùäQÞÿ)i«?ë׆…r’Çc0[qø`Åaà.JH§)#'¸m4î PD›@FÎQDØ!þÝ*¹`çX¤â¾Æî|ZýS—¯‚0¡i±LIB,²4tØ~GÑņȚ\šH‚´ï™&A\/+@£C,ž(Â’9À‘Q2ÇÆä–´ wEù3iuãxÞ·„mÕj«RÛÈp, ØçãBÒ ‡ñ òÖ¯ïðv±Š;›Kà™ì4\=êF¸žýÉÛ¤ó“÷£øöì5WpôåI|"üCƒc¢}V7qî}d±Ã—·/ߨ¶”VñXZÅ'­XµC‚ÝïãJ ¾o1X¤ØýßzÎ˲:Ì¢! "ƒB&’Ohˆ\Z Òø€}’å3BaÁ Ùp¥oa&ÈšKŸ—á@([œOœEæ¡M'[ëÝQìÖjd/Ͻ¼ÛE~?ÂoxlÃ…MGv‘ïÿÍÖvéêõå°êa·½&¶°4Y5 Díàþ×izÐêµ6,9ÓVs¡%»²Ò·b ¿:<§G¯£…ü=f½4s±{QÉ\oË7xmC¦×EXm¸FKp³õÀ#·y¿/ ÇÔ–w”a°,Ê'=°£((Íâˆ"§*KЧa ù´‹ü>ºãRÞœt+ &qË½ÜÆô<þM¸ ÎÑ&o."Ä™„„¬®¨HÐëA_X´oý~­‰j—=ðם޸mÍVxWº§¯O§Ž¼(kzΉ®Õ¥{îb›”!¾zA—A-‡Ë”"Åö‚NÔ@lŒ NÚ—¤ÞX¾¶Òì9nœ¾È+ß¿,T!¿_X®ú*šÆÇj3bU|×î/#î{Uw‘oœásBw»e—éy œÈîJNù‚Ú™‡v±ÆÜ`xlvVÉ>0(=³Xy=iKäqþ3ÉÊj¼yÙ­9‚þ¬MbÌ`’áÜ+“²µ¶]¶ ŒtÕÍÚåš`ðƒÍ­«ÖB¾&3&E•å—>œ$:@cb6ÝgrëÍûL‚¥:Ïæ'A¶:ÛÈ/Î)цxÛ>õ©)¹?bóO¤6Yiû•Kì{§cŽ´¢¹ôÁGÌNuWW=‘.ÑÆîwï~Í'»•­¯Ît*÷¦âXÐ"vAJé´?EÀÕ,ÔÁ.ÏZ÷]+òW7zêê~ÆÈÒòBcivbÕ¢¬ú`唃ÇÝ?Tx°ò½G–«§¨gû}²)h¬åÆ< :#ÐEÎÁÝEõ\Žâû°&mr]¹¡úÐgu·qt*-•ÂßD"öGò8'¤§9|SçbeÕ>4Až°6Ù•ÂîÖ¦†@DmÛŸ@Αg¼ø_(˜I,r”qgSj\F ĺø¹ÓÖNáÕNÌÕ°³…˜Ù%°%ÙoŸ­¥ÚZ‹U’-ꤸcùí;w,)µÖìÉ«·É"Pã§ ¤I^ªi–…I“C9>j[L¢jÎ8çq?ÆÙ°-Õòò2Œö'´34Q°Vëš“ü%è´õóžÞy é°jÁ|ÍpñeKõV])T@¦¤¹O‡r ÌU§¾úºsº2'ŠŠ/.nk€mJØ®;¦7Ó¶¾K»½õú Î^üTÓ½ÌèQ׊Y[)fuâñËβ|Óc «Ó¥ç–Õsòƒ!yu+.wk…©~O‰Œ:ç8X·:*‚ÂT>X(]Vþ®cŸ¥—À~¨ ,ÙXºÁ°6€‡fÞf×-¾½—€+x–×R¾2@!­-ê•nFQhöÊol ³ø ™òÝhŠ×“©îš9@ÜÎî€Üï„*«ÌS=˜¾¥;%’i±PfÞõæÂ;b(µ‹;Rq(-ÛÒ3‡uùðÚ-"`µ>´9?Vm~$L¶i5‰±ï­3‘¢9)S“L«°´Š„æEþÞ->¥gÍõÂþMçĘhoULèbÿ©³ ¨íZ“ÓÍÏ•†ç‡„…Æø¹Öy:³çøñÁQœO;LÕ£Z‹Ä–=Š¶ØÆ™v¸™Ç‘·êŽdœÑzV Ô*?ˆá ÃÊKÛÏßõ1éüaÈ›‚üyëi_*×®•Ø13s¨©Ã©4ÂæA3c=€“‹K‡îÅá ÇW}[êêr±ä¦Uýø8³šnŽ#ã^³ˆš €Õ½ícÚA}TÁÁVþë õe ±FÇ¢ê×6)1)T¯.Y`HOÎBmc'g]ÓEYkUÕÎÛg‰¿Bíï«J,i­L2N Mˆ þM'iÀ"¾e–ÔYð4ÍvWñ]>#Ëfx\NèM:+¨æº¾èOÞq?J‹2ãõ‰qU¼Fðê=¶Á pÛRë÷)œƒzêÂÐÒÆ‘¥JwkŸK7â#ב÷éð8“L#É0²b× 2§âL|‡¢«@¾!ßòï“®ßb.fã{çoßÃ^“I)$ùÂOØÍ‡ÝI7K°í¹G÷¤8IœÄ#Ç~ûé§û y'Ä&EÄ@’VV‘g,©õ¨Z:eÄÒaÇú^'WÿŒñ¯ ÌÊ6);KñŒm(»õÏ¥†x'ÃŽÈÜ|öCßoÉ_äåï®þ¤µ¨±€Çâæ!í¾ ‡B•«òPÛÍÙPŒ OÜ)F(v*o»‚¯T7¬=ÑEþ‹ƒð~<+.ÓUæYéÙÅå»»}B´>[ƒñ±!þnTHœ;ÉP\`Üå¿G]Üã ®ÖFÕ+jvÔ¤Ú®À U&%*!–‹Ì‰ÍÏ,J+.ˆ­t[«Ú°^X_µÞ Ü ©S?^kÞhÙ¢ˆÙá ^œ¼‘ߜְy‘>ëÀ›ôt1:bûŸ_«Ž>¼¼\XZ¾æR¿\ :Ÿä-V eÒ›\àß›zøÈµû ŠÏew±- _2yE?Eó•’½,%ͬ)Å6_óÿÿn“FÂÚy‘9|þû:wl 5Óü1cƒÕ‰ݨE‡ñÏ¿/í"…!ø’ÇlŠ!ÛlÈÔW€¸Ø6‰¼;5x é«xÃ?)¹v ®qßÙÒG ýüÏ[•V¾HE–•ÿšOiªzÓNOð…é0ÜölÜãù™j;p× n•§BVŒâ´ Õd¯ˆ X ñ‡£ÇÜpŽ8»²jq¥éíöi;½tºòrʹ.òÇ8EœË“wlü"CEÌܦJÝQ} µ£êÖ0ÍHJÙ¥ÿ˜,îä+ƒLþ¾¡æ@k¹ÅTI;RC¨µqp¹Ó±ÒÀ³xþìRKø“èÌ“·¬sòÜ —/žº†™É(×TA§UVËø‡kìóU‚V› x-ô«Ø°çC:_IGí1êÈÄkЬ¤Ã±_FròÇe ÛÊ=L™Ô¡¸É+&Ü<>åàRaÁQõYm63Ô­Ãéjûpš¦Óg¥  3ªŽX7õ¼Oû@»?`…ü<›qk¤‘†äíðùߊÁö¨¸=jx1óœ-™¶¸ °Ååj†aÞa]ã†ÏJ œ@!/Ù˜ e\i„Ñß?",pÙ1ÿãWNŸ}Hûjã ¶Á%›7oÞ\\QQRRAñÔƒF}´ 'ÔJj,˜~Ó-ÒÆA£ù&”…Ûï}rqx^¾…T–™S(!„£šØÑ=7_ÙÃOp€þ{{ìšpc{Bî[w¤Ë-L΢‚.úyÞ¹d¸}¨o†K ¬“¼<'}ùºPª¨wUÀvØ­Ý­ù­Pž³g?»Ú£nD¸„G&…Óוë>×›(#Vh+š_ç¡°ñ‘ã4g­>1•rWòÅ“™ég×éM6öܬŽJÙsôÑÍ£H›©„‹Ž¥”݃8:‹!ÿXIqT1]š­Ñj¶(žôìÿÑ€Õ¤½ bç?…òN,é¡oìƒÇ(+ FÈ€Ý^b«`¿­ŸyjWi6¬Ò{þ®ŸÙ ¡QBDzNŠSgò¿ÇÕöu°Žè-`¡m´öw®bÛ¹©±%ÂÆUÒF‰x‹Ï­-«8¯k¹jµ!ûë«Ö­)âR¼Z¥Q‘YM[œÉ"Q¯ÊµOÇÁb¿mJ¶ Öµîð nÄ­M¯œÓÂSÔ9Pú””\Ú/ÿ㥺}Þ>øß¼Wÿo¹fô½ Y®¯ïão¾¾?ØœúWÙÍ,|,}Õƒ°ðøÞÌ]6¦öÓøjéX ³ZøW­Ñ›Nà*u< `ÿ¦ Îd˜£MÖ¤Òaxû (µpš]ëôšŸ9&Èö4Oq&Ц d¸¨Ô(éþéë¯@rb¶®njt6ĶåÍOZrŽSœqLSjó/]šk£“Q&Ü¿%¢Ãn©8#mÀ“[Fc8D+H%VÉr¡(, £REªØèp £YU ýI áF#å -“X}÷"{¿Ævň³ÙìçÞ{óÒb6(Hñ¿V£(e‰S\”–~‹ü¶V£èn¤=:ÈžÞÝ}z{Ͷ£°A£ò‡(λ4¦¨¸8ûç‹ë& "–‰@dÿ@6¼^eiÁ%¦-ØÐÃätÛ…šmì·VÇŸ ÞãæXP“Ÿšž)èõ:6z–ÿܵ«*ÝU—’”’}ý:²‚#ÞÅy'$YX(Å œÇŸ … (Zª‘RˆIR1 ÓysSR¨mEx)¹ûRŠ‹ðÿÛSEu¨¹ÑÙ,ÙuÓoKÅux‰‡‰7¼.¯ù~tþz˜7 ò™š8>‚O’‡ì¿wÌ¥°ƒp¾6íû®òBÊ5¸ÎOr‰w‡ù–ˆï•'á|gá\úÑ"ìp%ÃBéù\DQßÌE0fS癦œµuÀB?WÛ]¸šf­ÖºÏ(Á€ËR¬o|‹/}ˆ0gÖPð:1é[5”rMyTk±CÙÝ£À¸îµ;DUkã7¸Š/^ühu:ô×>lfjùUþåsŒÂÉ£ðÌeCnGâ0áƒCAuöžÒˆR¯x hÕBñGkO÷pï˜Ñ­»xŽ‚,&ÞJÛì"!²²rœH'œD¿„µÛ¶&ÄÏ &nÛhùE:ýõ.Æö?ž¶8ÕaÛ?áGÆ?ï"' îÅü­²_ÒÝzìý÷ÆÏïm¯°Í‡VÃVÁzð\N p{> «Y¸Vá·j“:H¯ Ö$@¼6A Û8y“R™Â>Ù­ÚiýH÷©›×®û¤às/Eu¢Õ ;¹šãæ`ŸèµƒÏ@ :>|ø“@—†[³¯õ25»ZÅõ4ÂõWi„q4?ÌH„-¶fØ@!¨Ž´4Ãü¾÷ÌÚG\EcŸ§¶]Õ’“M›¨é Åʵ Õb;ûѱÍ8ÛŒ]n;zºÊŠá÷)+‹Kp F?#̪uQ^ž.cªª„JJ o|ù0'U’ Õ€:Q·2l:¸Áš´Õ¦xƒ†FšÛñQ r€øÜ4½!5YÈʯ=zÀ²&="ßCï+8ù+Ú…æ¯v÷\C­qá‘ÈÏ Ô˜(UXJJ"-ÞÑ^ k†_èmò_ûé{”Û"*ìu÷Ò© ;†š/Û¾u‘ÿŠwù“Áû×µVŸ173•r•^§Ó§‡è$Ÿ„I³ç(bcéÕö ̺ý5¶péÛÿÉcöȉ=‹o?ÜMóÝÍ|ÐEÞ„Îx“/a)œ¾Ys¸¤NµÉ,luWß’­æüí»N®ýty‹t£q BþŠ‘›ü¥ßý>'ÿð{"äMÓÀcyØ*;+ülð;©Ê‹¨‡PÈ]«|ö ÿ̱ …°œÂì*Xéé7o …0»ˆMâW%Ç,ß=’ŠâK>ÃváiâH’Œ8‚&'©ˆ ’y“ ¯ ùgr²ÓR¯Aͧ›L5–HB½‡nÞDïÒº8û3…Ã,|fø,ýhrqîÝ}§›+ÿz è™…ìÃÒ}!‡l%Ž×ðk¶'í€îÔu/]6i¡ûªy^‚y+ÿUíÁ8Ç=úðøà>c& ŠÐ»Ö­²bkƒ,aŸ/Ø<|Qß®=~šþ¾»ýKrÿÆ:!Ü•9k7×g=oŒ+¯÷ƒ¹.>Y6zø¤Ó·OTžý¦¾9ü5máŸùÝØd+Å‹¼Kbz­Y¹D¿#@Ø—^Q` Î ò‹sŸ~tÃ7ÈÓ™«;úÐ裙°ç?\¼2Âu°Á5d=|‘Îßöö‚ü—S°§®øGÞü˜‚5à{&¢Í/ëMµe‡væTSú¬ÚTàší“<Öp£6õ*Ø-ý[\Ztüß6M®ýÛ[ ~b{ÒéîËpªæÿøiùãð&)O©rܬ ñ¿ ò«ÈUh./iÕpŠt:!M—¥OO³QÒ"33˜Ñ`¾g–; -8Æö]Ú8¡q5Ÿš¡7@*——¡Ü–˜ VL›0¦ÀËâ†ð‚-yÔÂÇOIÚ‘N_¹réø}l› õ[_xJ¬¯á°55Y§unZòë¸H‹23.3SŸœ•.XÄA|ØŒƒ}‘c:rxBOÂ,›´L!Îkêó‡ ù™Æ#;ÿÞäÿ±¦-åb­éfƒ„:µQФv%Ý #¨5 ûna¡%tÙƒvKŽ5”6NÂ|^+„4}/kŽ<…øYÊ·àÉVEÓßd[[q„æâµ½Ümv7ü‡ÎbÛ°ð²6„p€9;^¶}³™•E\Ä—F–y†EoS©­Æ+œr“+Ó¾:sZ‘m«\—–˜œ¨5ž´ŸW⺷º°¬ÔfVÿÉcŽ¢31˜^-2Jžžâ’ÀÓqEY@:£“.8q'NÄ7°sNË›$TÛ†L#òùÂrÒ&–H)ÉŽË">#'Éwgf—šlH£†ì /ošðÂÃóf§cL/gZžÜ¦mcQÏ:=¹X]Zf4Õ@wÂí*éG˜9Ófn*Ž.¶}à±=D Ö#'òê¨ I`šûü¨ˆˆÅŒI¡À\Ε6Uvd ò_w“áD=­çÂ(z°:4ðpM‰£Ã<|cøÛ€S%%©Ô )ŠPüÐ÷8 d#ñd2y“8Å4gL•œ”šùà<Ê?c›l”Âêt7šçÅ3ÑãÜã{Rq±í#KÖJa’“Ýÿ´~ÿ^’ÕxíX4íÆ¤Dasí¢”ànaÿ&Y¢ÇŸÞ«Qž~É£ûäVÝËÃA'hÙHM˜mÜTé‚Êâèà±aÙ– ÉÎÓªì<íÙŠÔ‡•âÏÿLí®^™«’\äw˜—©‡.tÛ!„T¯7®n iGû߃ç¿á3(ÈxÓM<»·ëó’êDÿ2Á] ašU˜È9 íÛŽ4vlÛCÇÐщaþ/ñª‹endstream endobj 121 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 5414 >> stream xœ­X tSeºM ìTi 4â:ç ˆ€€¢ˆ‚¢ˆtx(´XŠØ7-mJš¾i^Íû|IšwÚ´Mš¾›>h¡”(O EPÀ¨Qñ:sgDçO=½kÝ?-Ž8ãÌÒ¹Ó®®v¥ë?ë|ß·÷·÷þ٬ɓXl6{Ê‹›·o\öXðÏÙ¹LÒ÷ÒÑÄå@èäê°…£˜é_ß;x+øµäáÚìEë¢róÖço(ØX¸©(©øå’”Í©[ö¤Å¤ïÍØ¶#kß’¥Ëbù“«îa±æ°¢YsY1¬y¬­¬‡XóYÛXÛY X;X Y¯²±bY°v²Ö²âXKX»XëXKYQ¬GY¿e­g-cm`mdmb-g­`mfma…±îe…³"X3X<ÖLÖlö4ÖRüê¬É,{ûö¤“†8bÎ'¿²1ä·bÊä)ßuS#§Z¦…M{çžüÐe¡ƒ¿ÉþÍ;a÷¦ÞGÞ§™þÀôÎð-“#ªfìåMç)g–ÌìžyyÖË‘¡‘=üüûçÞŸ>»(  ƒíò6xÙgGÃAÛQ/ñùDí^½œ¦K&t†r'Ù­¦&ðC»® Cçš+ÁãT‚Ò@© éFü¹Ýì²×¼‹Â#Q1×ɬ )Ê“%ÊeP,s‰ì†ƒ¦è‚ýºÎàa‹ j+• ŽÕÙšôTâ(—öÑ&1ðÅ U©åDÃáÕ3×C˜=ܰÀY¹/°ÄÇFéÃhó0•¢yfŸ¥Îì«<†šÖª†þ®qØ_¸9¹G’BI3tåPH$´¤ý²-4;” ’‚¾LK*E¢…[(¤ÝUŽ&[å=Ù‹&Ãññvß®•¯EKIÕ±Œ¶DH‡¢|ñ¾âi è …Ì•ƒÏLÖ^ñóÑB¹XW¬Sk˜“z5­_n+óºj¬+6º ·ó-:àÜø}Ög³"¾ ðc<û~+t¦qGë³V<÷Ã¥˜H.”óPXóû7áCâݘ ›d.pÅrÜ8xüÍPª½VB1³Ç†Dü9C©V®Ÿ=þo;TSè.šƒ¦ )·?Ù0ð¢bþ‹¹ÆcîãfÉj19 ê ê Ak¸_ZžÌYôÌ\f°Ýéè¤+Èu…° ?齃ËË™û3‡™?ïÍÍŸ û?øa’±0^^jšÿÝÁ&Äi?Eum;ı–„˜Ä‚y‚hJ¸}gü. ÂF ü£Kül´èSÎèñÑÕ]]›l'#¾Ë¶¤Ûúîo¨»t½¹[‘ê$Z¥„ÜRÚPÓäêH>°‘™šüH,ñ=?ê猊ž­Ýf{ˆ:;Ô:UFµ’u©ɦÔ`ãÔÒ¿§áFÂ4sÏ!õÄQþ/?\íw£Ú &ªzMà ôêYƒ‚©‚¢­`³W€±¢Šz5† fîFÆû+ŽÀZáÆ ÐqGFˆ9G`6Ïh1˜ÁD8•î¢}*¡RO®eú5% /—ò‹³…û€ˆ/?Ü1Üñ‡ÆK”­Î\b0ÓŸ¸t/³@=ÁcUió75„Ó©ËÉSˆ$©TNTÎ K,ž:ÙÙÖÖ@ÖîèS{ êÝþÚ×fÁølhº@MJ¶¿œD4WÝ™M€7±$ßÄp³Æb¿ŒãßßZ*’tÉ ‰¦ä`µxÈã;£³wW/¥uóÀX¯2³\¹ø…åP"·ê­ÔA8dê…^èÓoQP ”P´¬NXÆ[”x§E WAËŽqŠ@(¯KææçæçK­*‹ŠlÈ1 °ÑÈÞÍT0SvÈ;†Ú?m~—4W[Ü¿°;Y+Š¢a7ñØáYôìúß&¼G|¾‹ Hüì[ßpØ7X[¬¶~ ܘvµIIáE¥Ë€xØmJ¾|PáÆqïâÖæ¹ÞäpYÃZ CŒ¥E¯y%j;nÑÞFe¯‘6b²=¾ÎƦ¢ÊB] <·þTÊ…[_|ð¹3añª— £¥ÃH€Ë¾=ËSeÓ… !äYO¿ïWžjzßÿ1iõ˜i™qÌ"Ȱe4åµg÷ëj°wU¶w§…sp¨·í¶KÐR8Iü\!E0§4¹ Vü:qâÞCvCƒó0u=kñ9âe„­P%°°7³½z_8b]BÏÏŠøýå,Ϲ«»°ëãîj¼kÍTšŒèï+T f3f³˜™¿b ê*âÃýp¸îà1â²òv3[•‚Í«¶·òlÛ M­=D5 öbƒÚ›¤§5z5ÆVŠÜWuå\¯ò±OŽ ÁN@XÄKQ@6Û?¨Óñ­.áöÌ]Å ²àÜ.[.ï`fåw Õfªùæ‰hõä§äÉv•§QòdZ+]¼©ð™hÐA”VµÙìà&š -ÒÜÜÂÌÔCùG;zÚjHï+ÇäM@|sÝï½Ó±†=—šD‘Èu¢ÁÙg뤜‡ÜçmU'šO4Bµ«Ì” Bžœåfnóì]ÇG@8&¶´SCS÷:Æ[’)å—-¼q_Ãõa·Ô\E‚H0T8±)ÁNB'£uÅ*Rðx"C0½Ä]~&PÂ$¹O^ðæyå¾ð?Ý»ÏÌŠø6ñö0+_Hˆâ5IÙ€íò›]ÍPMÔ‰%²Tõ¶ØÞŒÓ·?ÿæOä¤ÁbÄÛ÷ö;ñßBUJtÌìÿïâÃr>þ†ÊJb|­ žkýî;é'°>ð^œwKOˆâúæ_ϱÄî—~0ã Înü ÍøäÜf¥S©¥i…’|aÉãÚR väölþ¶é(µÿâ`W?¦~¿ÞL„}?cb@o}ÿ,çûé?•2œ¹J)f·D^Â|9v>r[`HïÓc¸ðþÏÅŽc.ɶ=²x=_)§KÊ-:+Õ&Áw¬4—Ê £^1ê›À‘b©¨Fü@K¤;<ö±TnàW‚Ùjq¦Ž²ñÇ̃coþ½luñxéºÿ™lM”vˆ=AmNàÔè2Þ„í$‚»Q§ i¹@)£å4óå¨:jT)t:)ÐØØJËü¢æ$\é] Þ¸îØAê—o·¥ŠiÀñbË3ÛøžÛ ž®ÍvˆB(­Õ™øe‚æ"?ð¯úÂS«0¹ 5w\Y&veÈ0eK×`ÂÈí´:¡·áåW®Wé•̤±—"™è@ºš6`ÌLÿÛ´¬§@Iƒ^§Àqr¬Y²=Múú¯/àŠD‚±[æ2ƒ¾ øØÌž;pùÐ3¯ÜËHÓÃAJ$æµÁÛ¦£žkíp¬Ä@Ú—æ0sç3QËŽ®øê籺IþÎG¿µ™²øx}èéoL Ö‹2dVB&†Î2I>Ïõ@±-ù];‚Îc߆ÝßÇÜÇà®æV½oªu_±u;OîÇ®ÓWŠ÷i$yPDÔ*ª½]}ÉõÉ s™™*²™²1Ø£" 7už»vlªl³"Y]ÈWfHcÓAÅ&¹»Í\Õ^ÂWâçæíï+ì¾Ý‹Òöƒ|0.õ4¡7qF›ù½.óУ\ŽfÿMY³:Åœü'YýW:̘þînr¯Ïy©¨lážjoj\q4Ncá\<Ü&ׇ·|0Ö·“#¢K³"¾EŸŸä>%‹SfgðSv§`í—Bˆœ^›«jˆÊrONI–$5¥»däÛ«o]õˆØTáÆòV1.o²|¥PKF|Õ*µ$Îf&3S˜̃+ެÇòöíqèëu¹ˆ‹¨ŠÏlR ¶¬Æò¶CÕy´ M­;B5ž:܈sö§”?eè3µÃtæW”Y0ö)­Ç‰PÏ—ÛËöýcm»·½ïÍ+ÿ‰+Ÿ {÷îË"1ú&ÞšÿQ8šqæÈé¤gEК˻ë9BÑ#ø9J‰¡¹©²£²›º€žw´âº<üÓ{Ó–d0 5?ª½£éËq5ÐäçÉ…ªbjßÓÒLþæKöh1"‰Ô†ä·:Т 2â÷š@>¯±È&)eçz•UÞO+¶1g ü£µ°Ñk—PÂ%Îè´Ÿ^©hh'«øm©o¯3ámp/ÃÆ?Sb}¯‰(‹Î§vkI"O”Ùt5%N‰³Ò‰ÇV?üøš5ûo×››MNŒ#гÔ2}°ÂXf^EëpªU›µ«Áè°‘NWS»£²{Ç…²@`ÜsÐý(¼UÕ›ÓNåúe¦Å-Åæ,»Æ˜á.m‡^âããVËúrh•¶€¤%!w]ÑŒŠq9³p2ÿàçwà>¼³ðÌü;ðq&)`x>¶ˆØíŸûÌífõ?ù¿:r=26S)€Pð™Ð‘õ·P.m&šÔŒÁ€!<Ê;ľuîW‚wú^÷š"(㿺?íh·¹±’¬éªº€CUF5ht¤*·4ª8)ø?ŠIØèÐ7œ[†Ñ«?½ä<FW]ë`ß=°³L¤êË©MLå?\<DË'ÎðÿáпO“‘­ÞÝQq ûHååXO‡«ÄMÇV3÷ÌŸ³b¯GØÝ=Ð5è‘ûeÁÊu½IMh«ʈ A¶°Hí©½öù­¯»–¼(V01Ìʉ»Þ:ôD[][ગ}8°–X†byãrf"šò º}êœR-©SìaÑêµM½R¡#ÍYŠÉ.Ãp’Ò¨™†ÐU/‚Ú'Tç‹Td&3= ]ÇÏ23ÒêT:A)ˆ ­Uj³¸]6'i·Ù­g¡¼Ð%¯Ô4(|Ê4fa¤¶,P¢°FãðT:ë-d7šo¡m`~ËÅÊj³Ú… ZU¢ÊÅ6H…3¹Æ0ÞçDÜD¯øy•ýW?ê}—ƒNóLNœTÀ€+qè<ªz½OoÒgŸ¸­j£N§¥õ*¾(^™ êV«MZ£?T¯ÖÉŸgÞˆ¤u´2HD«Þb5š¬Vòø¹ÓöV z½{wlÎ)L¡VŤaÚnñÒ_›hœnèô´Ö{¥Uù±êÁÚ¾7Ñ ¼âg£Å×®.=¹T˜FSedÃF¯2ø÷¬ˆ?ÿ,ÿ"†?B¿ãÕ‹½ÙY‚¬üꢖN»OmôGƒ÷¡oÜà=2‚ ù8ü¾ƒmÞGñ1H®ç¸5#yíˆã°óøAìO› º$_S\ ¹ã6¯¡É³¿/¡>1)i_Z1Y˜¬JÇ~`$Ü´Î^m«¶Vµ· bcÛªó”ÉuÂ2È?Ö\ïk?ëÝÆ< X¸VBÍÃæ°Tq'|Íá4éi¬VÂWçIb÷B0IkÿÎî>\ÜucÍB¶‘ÃèÝ$á®g¾‘¼Pú’<¯Q¤oÙ EPTQVUoöx qüœ(¿@°sHÜsyèl¯l<ê>é8I„‘Ó&?å ¡Ó ô g±þC\‘endstream endobj 122 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 2306 >> stream xœ}•kP\åÇÏa“ð&"Il%£žcŒ‰·icM«¨™”$&á’+",˲ÀÂ.—åº ËÞž½ßö²,wRÈÅÜL„bKˆÚÖQGÓÑLk'¾kšžgú¡Ó~9sæ|xŸßû~çyHbQ A’dìÖÝ»wl|þîëÃE¬(z뻋!Žq‹Ú^zéüäJ»ü«D,I.Y¶üÁ‡]—# rÞÊ—æäçä‹%…¢ÒIaAqŽTÀ}]xl$bE‰¸ZV(üÍ–ï‹»ÿ±‡XCÉD*‘Nd;‰7ˆû‰å„›T“RKêH õ¤XÉ!‹ˆc¤$æñ˜yE¼[‹~¹(m1¹Ø¶¤`Éç±Í±×Ю¥+¢šøèWò@ôÙ‰ÿ5Ù:ûz‘ÒÔµHA…dž¦VW»Íg¥õ×qK(ðE‚%` ˜ƒ&¯-¢7µöž¹þ7@v¾pwûóÚl¦Iªk9:<(8~s¯³9š@£MŠ®JîÍT£tCöN{€é83†cà`¡½—}'†ùœ ÂJ¼á ö@/^¿Ý<Ï›`ã©æB­òM@r¨n6«mL"Ænè‡M¼·ÆìŸSõé`µ»Æð‹Öã.霄^‰×á'n¦Í&¦gä ÅÙl?¦I&+lHÍÓx=ÍùR\]ÃÌÈ)k8ÜÝÞ:رzv RR„l¬,Ÿ)Ü–)äÚÑð‰Å£‹#ÿ£<྆s®¹dä~ïŽÏQ–®à90C'øJUUå AµÎêp ¯}ôtЧ0Up@ÚH—Ïîw”Z“ÆRåwylFƒÝÀ Üž êlJÕlç³2µ»9oB H¡Ò2üжºâò²¢¬wªÆg‡æ,FÚÅÊ›ôÍyL…I«Vjá£I’"@yµ}\³ãp›»:vObÆ9É‹ÖDWR&ÀŠÚëíuŠÚ–º&Z«j©eÊ2¥¸E|„Ýž ®ËÞ¶Ð!ùøð1ïôÀU¦ím“|h¢h8}=Ÿ]Ût/RC›™ßíá®`óBQ¹¢LYÍä®–¥ÁaôÂ¥â‹G¼ÝÝtÃÁÆŒÜe…ù%YPGŒ5GÛÀ —ÃîpCê›RamFú8ú›o®ãÅÝt<¾'6~ðùÑäï'yxø»Å”¯¾M*—‰«=5Áž`ø}åŠp a›ÏìᎺ‹÷lþÿ«TVªLsÙÕf+Ê„P‰NpƯµÿÇxÙ.ážC?oñ§¸Ÿãbt|5.5ÜÀ%—xÑÕQG½W"-–WyjƒápW˜f³~x‘ªNÌLÛ˵°dökk—[›¼C\^RY;ZqbîË3·BôhŒÙ0®:Ÿ3˜¾6í'h»^ßa£CSǦÎò´«sîi{Øý~üêmïðð›zj¶ühž°ª¼Tì+ëw¹Mvm4èõz@z½®þ5A²PÈÈå åìWšÕfçGÆK¹X{à6ùÙmÞw†ŠH:KJ$’’’NI$Ò١㣷X‘ï DŸó‘¸ÿ“2û#`FÞFG¦T'h¢ÙÇ¿ÿPÓȪ]Uçlôú]íFm²»Oà }â µæàèDg·ýÈpé8 B0ØÖçrO-ä«S×kèš²”·‰5]¾€ë¸m鯄±Õ1bj]er- ^ªÊt…Íôa6¹1]ž£Q¬Ò©2Ÿß(]Ò6bí¶v3ñßýìÞð{û}|ü=^´ Ë)¼qÃÉרGØv »zÃdâ?.ͧ>¤ÝúE€Îôžk³¶[”RÃÈ2 ¸‹ ü¥ÓÏÉâbnâe~Œ@ :›œSA¶ Bâá´ýUjÓ+¯Ès%OÌœìÂDß)æø•³ƒ€nû‹—ùjàšføñ¯øNÀÀæy'fù'Ä%Þ˜WîÑYêƒ}Ó[RKkËô¾Ü}OW'²›~Xž S›[l`®}Æ9IèHç_+ðÁàÄø‰c}3ð>ÌóO„.ôŸŸ†yÄng·P *¹VÂýKU:…ÙàÒ:Ávp«^S)Ø–¿õ Hì¨2ªÜ«2ºÒÓÆv†V}k¤À,ÒgR%¯–æåíß^(1ÿÂe´š;˜l |67á8XuaP”ÌÝÉÃù£Só$þ1Ä{[©£8“z'7zŸq²[»GU£¬b*^/f”!¹YisÛ#N:ø©ã¼©×à6¸Mî¾[3ø©Ñ¿Z]®˜CZM (5ôÁõ¹Oä®Óõê>ÌûJ2•{òw€Ø•ÛØõ"…\i~Å1œz7ʇ‘á®Pˆ‡Wã*ª¿>ÂZÔuz;ÆüJ¶†ÏH]5FS_}Ñ6¥£´³Ù µr{ÜžŽ=#Il,KlOÌ*7i˜aÑ^ÈB;Ïï¹Þ½ÚjQ™ZTµFK×K%|6Оͭ—ºÏLõ0ýn*hó뽓®]U§Ôêò¡¡ÚŒöþñ92»gxÑÖèRÊ=• cØê%ì3,}‰½oÓÅm×ñ2¼ ß7xá„hœaKÙ©ŒÜ¡ù×ǃ™±?Mz¸õ©m‡èpÕK…‡˜¼”ýeyÀ(ä \éÃWäØ,˜åE3£jV†™µ,Ãn`YÙ³–wËe=ÅRšd¡¼3¾F/‡O¿ËIÒòFZFó!É“LS%Ϫܜ¿U”Ÿ‘ HXùrÌr¡ëk.é«÷ÆmK€üvæï!ü:·'l8Jù>…³àBÃ-xóc¿ÞùØËOßÌœ“ÒkS…I ¥™O¦Jj9é²õ™ƒŒ%d X{\'Ì^³ZÑ䑾¬¬ê£®i*TU4·”C Z?Wõ‡ÛßâpÊ)Ú¡(-€L£Ý¦Ô×™§º¨ ï3Gá:š>ýõ\(\·fWmRCO/[ô¢/n)Ä-ƒ¸û î‚ø7øà endstream endobj 123 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 166 >> stream xœ›dÿCMSS10‹‹øýùJ‹ ‹ ›÷À½ºR3Oøˆù‹ ÷¼È÷˜Ãëá÷ÚÜø7÷Úò©ÎÒ‹Üîûâû#û…ýJá÷Ñ÷2÷PûÑäüGø÷˜÷$÷ÍPDDKPû  7Ÿ ‹ ‹ ‹ ù> stream xœX XS×Ö½!psUœˆW@ûîm[§:?µj+8VQAQ% ’2''Ì(3 c˜T,Ö:àP©ÔÖàôê_­U±µ­uè³Ý±‡¾þ'HúÕ7ðÅONîá k¯½öÚW@ÙÚP@´p…›Û¤‰¦_ùe<ðÊÕNm/@öBdo[ôÆßî9@Á@ÐÿÓ”égÑü Á ÷, Y, [!ݾ,ÒkyÔŽ+½w­öñ]³{­Ÿ›ÿº€À1›ÇŽÛ:~‚ç»e“ä“Sb¦N›>l欳çÌ}ûŠF­¢†S«©Ô‡ÔHj 5ŠZK¹Që¨w¨õ”;µZ@£6R ©ñÔ&jµ˜z—ZB}@M¢–R.ÔÊ•šJ-£¦QË©éÔ j%Õ‡šMÙS}©¹T?ª?5@ ¤¶PÔVJLyPƒ(OŠ¥SŽ”B ¥ì¨¿QÅS½¨ÞÔb‚eKEQ¿‚‡m8›\›ÇÂ5Bƒít[ƒÝx»&z ré˜ ÌÑ^#z…÷¦z¯ë}©Ï{}rû¼²_ßwrßš~«ú5ôwïiÀ¨ í®ht(t¸%~K¼C\*n· zšeYoVÍÂàhÇ~ŽáŽ÷œ¶9ó*ç;C¹1tøÐCý×ËeýŒeHÿO=îª~B0ï°ñ‡ê„d(Þ÷íÐ:)PJRÆ%%íE1L`*æ^Ð%¨¶NŠ|øòÚÁtº|¸V þ]\…jó“÷ÅfòIéáH޼ÐΪé+Ø`‡èÎM¡Uï¦wxb7ƒ£øK˜eÄÖ£ÂÜZ&! U¡þnõ´Œ` ]@Ö­“ ï ‹iñ±g7Ÿ>[¼ŠÃÒ¢ÎyÕ¦yã­çÉéçŽÎæÄ_.E»##óÞzðÐ;|k¹a3ÙÞS'XHS¶ÂÏËße ?‚†uÁìå²OΠVæÆÊ»XÈáZ‚*Q_Ý¡ Å/÷XNEƒÝÅöÛ†ÍWf•ò.8ÅbˆŽþ¦vǦ«§òdã$=|©|f€JƒÐèdÇ O±-¶ð6ˆÅ?Œ°ùáGpàðv<¿âÖão¯\¹vý²ëÄ +æÍ7-§7æèM¸zQhŒ4Þf‹Pe`TòÞÄdN™‚”1?ÝVÍ8KÖ‚]ñ2 ÿÃ``î·?jEqña(HÉ'¾3+Ô 1§ýcà¿´_<·uVŸ&«EÌA¤Õ˜6Ã=¼«‡«]Ê"HÝYPÌ^8öÒÍó ¦Ž]ìºxŽïÓe{dûÑøzÄ€àÉ †þ“zk³GTÀn^ü¤FYàý§°vèþ]XÍÔ0*ô‚»(1/íšYÈ—u(ÂéžxÑàøÞ„i0uŒÁÎ<uœ`ŠE`ׂ1ƒ{}ˆûc¡ÕMnvBWNÐw3¾É–¢²Ý¾(Ú›ÛSãUµ†`f;rãß›«Ç˵<öß$’KHÌ+HÌá=º°’4”t½€]³iæÌù®m¾k3|uëØ\ÎL®p=xvæh8fØB@û퉞 ´œÜÈÓ Ù¹õ|»È|‚)·kDâG‘’<€ÊJ¹Ç]e^vOP®§#QøSp¸¢º¤}»¹Ž^´ÜDIÓªµÖiã °ä£øH`%ûý…¡/§-–V"¦LST­‰ýxƆeQËÝxñ—ÌKaºç¦wpë,Ë èBS€BœÇBº›Ç×õ«Ð;ŠŸÃiÈaÃ2¤é’Ì ŒòÐGLU}Ý_†¤sêè´èº.JD&¶†¦(•œ§ÖEÌß ›éóîËèï¼øqsÂW1ë‡ìÚå7qËÚý·%\rIÊþĘâLjdHR›[¤nÌãš}Î*u„j“ë¿>É‹Ÿ£bVëŸÉ˜OvUÿ³F`ºÿdƒ$Fš…–¸áwéÐgN5‹F%Aï!N¥Ç^õ¹qóÎÑö¤õõSEDsªkö†!f.:SÉ[é†à| ‡\ˆfTZ­ÝÇ‚Y%öÀ¾àñ秲ЮÍ*;ËúXfIˆføâ‰úÖOÍà»™‚Ü­œ‘ð[=«ö×¢ÄÜ ‹*Q]mRðp—îŒëŸät7ÍI³býg£†zÊE‘K5„ÞàÄ‘GБ}:¦)gà–^PaÜ#4. pÖZÝ©—åœ: ð-,€[vº?Íè¹g- "ü8o·i‘s)*Gû:—×Â|õ‚"cœÐ¸Õ´ƒ–\"E‘„¦£BÉú娔o¦7âÓv*:¥*æx쑨K©û}Ñ^ ¸ðÔĘK‘2*ÚNÛ5›+SŠìùs-ªå/âöŒ°tyrnBé¹%úʇê‚ô2FMgº7â^ yÑ%(5¢ô¢Œ2¦åIúgz‡s†mí°‚ a´©gËNª#FWFŽ(Aòí{3Óx][wØ6-ÔÊ* u¹jå¨Õš´u>ÊEÌ?Î,âÅ'ðâTÜãØ!K.¹¾àĨ5ûDGrôï"Rd#vFùD{ Ĭð:ðQóýF™Á÷Hb{‹jà7Æ›Ý!H{H¤§˜$À\ù°.µƒÒ2Qa· Ž6냩duªgÏèÝ3'œéÇÐ ÞÄév=î–ù9)¼2#%K•Æt« ñ »…Ðhx›8–‚ênqè¢Cªæçzÿ¹]UJOºÙDCoü6€§Ùí°| ½Ì¤‰@ü}èߎûÛ‡w'H/Ë;ºR@  »ž²$'þÁ‰׿2º#‹–¢¢¨šJNܼý)RC­j/–oFQ»¼Ñö†è/…­| ‰(Ê’ô-Vwžn!xc‡b—ed´ïVyBx"8Ò¢òI"S1ŠÔèGü—„ZˆwÇìJŠJ pVÑÉ¥ñÚÄÒ èTùú쪣a~•±)‘Ê)%3c$An>J¹ ©3sP>SU"Ù²ýÀŽægÇÀi×ãHn ´]hÜV„’d{•ÒD.)&rË|ÄL_ØöíIˆ`¨ö#Ï«}Kˆ©Ð×ÜŽ<ð¼Uø)Øþû‘àüŸŠùîܹÚžCÝáùíëƒMœµD³^#Q“iqsŸWѶ¡X0¶³?ó ‰R ú¸ZWÀ¿í"ÑZs­ºÖþcÛ•¶ËÍkÝ,QzÜ$KÖ¯³± òô=ˆùÀJ”M²Û3úÅJWÁj–w¤æû©ªsm^úaÞ˜U)ê™ñ–µx«ºŠàa^pΤ̆µ¬¶5½ì'<÷;š˜~ÏG N'Uš€JHLäÃ7¬‹FóмS²ûŒú"[pã¹6D|¦$wDO–Á@B¹å†'„eªaý¬¢Þï}û TË¥äî<¨)/Ò]|ÉÞ›»u*·~´¥ =Ç­£,æ*,5|T—QX®‡T½€$’Ðz(Mþ˜?žÿ‹xfå-:VþXËb´Qaû ýãÑ%ë×o[2–e"xÔE˜ÿÙ¹‹°õ¢CÍùHS¡úèü‡×ſƱ붟8ûÙ'Ÿœùôã-ë×xzºó“|Ùtåá°fÄ|wãz{m|M´Ž×æUd䫳ö”'îCLqy^Mydݺ¸MªÝ[yÙ~ßÒ­ˆ¿hÞômÅ~…‘¼Sq²øðÀ!È·@’;ß}€â˜i/W ô²õ›Æ¨Sª¹˜ìíe“³˜N@1(!MŽ’PlA\JƒÒPFZAÆ>úàKìèyG?)É­¯×ð•E¹èbÚÁMóœ·mt— 褶 ³þ ïÃqÖÔa,5u¬|)þCó?´0t§íߨ?ÓǘÃvƒ†¤• &5ºN÷ÉêÍ›<>œÈ/¤ÁÍŸý¼±TŽ0÷ß¿‹{sxñÿæ;ühñ©ÛÄÕ¢úà²޶#WXê_¨“@Ì¥ŠÏדöø¡@Ÿ ÜŒŽŸ½„râ˹ؚ0­buï´ði-~nTÚêÂË‚ƒÃÃËÂuº²2×Ýú8œ¹EW¼¯˜o†jV—ôµMeÜ·­ž¼)£z·½:åcU‰ªXUâßå±S§u,Ë*¨Ïåšõ²ËÄ:2×¶_öù86Ÿ÷jÚ“=§„?ŸU²=Ïû :á|ºùä5è]8> ‹Kߟ¤ér¯àd¶¯ÉÑ œ×Áuyľ çÍž¾ô¸Ëסľf¨ž„¤2= O€8ÙŽP¼4Úö@1™îÉRÜ1žFÑÈ;ÄwwqA(6Mž¦N'”ÌftaÅaáÑAïÿ„ŽÀÈC`™?6þüZtÌúWeg8‘„>ejh^Ó2 ¥ýüø¢ž'gÁ¹CánÕèÌ·ý§«€>D‘lZL¥?‡…þ ²;hÕL°*ƒ4žŽÇÙÁKó†®ÉmîPl²r¶¬ú©;ôW7Iö½k~‹Ð MoËòæ0½ºe€8’vëÈõj»k ÙŸµ+ü=ý¦‹»ûz×3¿rð}­É ½nÖS÷ðî³g¾ƒþVu>²¼/þ«ÎÔÜ¡ +XÆw­4y°u÷u¶ú˜>¦vY`É*k¥( 1þæÝµè[E>]ÉþÐ|ÏäÃÃ"qsû‘GÊ ¢]9¬Ev+­?Mú¯S’‰ézr WÌÎ`N~ ¸Ä1â;þ(Pn"è#m„q!~| ú_º¦q¸jtÂÒÏÅÿ‚cÅêwïÒ´m¯–¥¡ÄhòK ‹cs•j^RüACHPœò²ó³Q)“jvpxÀ´*õç¨Æ95øù!¿ø µKZ‡©KŠ\%JDÎÒ˜(yäþ¤üD«1µ:61& ISPP®+CT.(È9ù54 †ÜÕçÊ*S4fè_ 'ÑX¯zÕ—µ íBû%Æûó¿/dí=À‹UƽnŠÃ-Ìiƒ¹¤ ”¶‘`B Ã較èàA_Ëãa0œÎC}}‘o,‡‡ãa¢Xò«ïA”Ç5œŽE¾Éä<Ó10¯€b"a ‚ó,¬ ŽØÛŽî|ù´òv°}C€Õç°s\¡7¼ £ OoÞh{Æo»âÞs:¡‡S¦Ow ³¨5¥ç”~˜v1Yš¬ å¨ÅX3%šW%¡(˜™$B>Hî#ó‘oT‘V=IšX¡ÚÇW©@š¶ŽÁ³D(yœ ú8ì\âIÄæ°®F¢Žçñéèªc`šU¦q«ý¸²°A]i®bÆ~ú„=Éä—»Þ±E&ÅÆ&sÞÓÝã"•2U„’ì-)I.,=’uø®cÖD‘¥®fX9‘îA×ÌÅWCÙêýþ¾Èšj¨SßÎÜ‚ƒð‹ól|BR2R0¦nŒƒïÌœ¨êz%ÌáxúÂéomºÔrü2úŠûQ·p?Ü{öÌé»tqÅÚòb]^r~|6WxüDÝ9ÄÜýrë”Å›>tq{ÔX¤CÇÜk6W-ÏðEL4‘”Ò"qœ’ÀëÇ`ÒŽBÿ£aký•[P ƒ—ˆH¥òÁ#•ˆ“3?øAs§Wg¡SHÇ<l *<©®0‡®6T½—Uc›4e ÓIH»hz ûIûªvØcØAŠä£°-‡tŸ¡O™› ¾À"l¿xó¿J…ÆtŸ‚¤}©é\]Ý5SC}õ”G ÜwO8ï"Qú(פÈ bÄ?›’ˆ;N?=½ôÕk—OÜ1wÿ‰>33; i˜ŠH$,\î?ùɇ¤‚9~óÝcNü]ÛrÁ¥Öt&c,Ø»^qx?;Š¿1ºÿÁÉ‹dqIÉI‰\`pˆLö¢„ܘ¼˜|©v7Úƒ‚eaÑRyP8Šbd…²¢ýY™YÙ\­®ª¨í#Î(?6?FqU#]Qy±¦°¦ •t¹$Joì¥Ô´¤ExRÙøÒ·I¿ÜÄ:21µÂʦ-µÐiP·-£9ð’nHÌÙÍÓ¡(Y#eð{ xa‡_ˆ:An¹œ¦ßÔ¾Þ*ò¯Pktf}‘g¢W8k ÑÒåà2³¶âRQ «/ÉÈÜ—ÃU×)9OªÇow-p}oѪ¿/Ë9LÍÉ&ˆÖ„EÈãwθ·laàÓG äÄ¿>Ÿû±žæ(7¶ÂLRÿíî¯ÚÀ·l¼õý݇è*ŠËL&?IÂÐiU¥¦¸¶ÙçÓ1D=†à¾Øƒ¿Ä{ÁvÁSütìžÒŽm8±Ñ¹G{x1ð&>º¢ÍR½2K•¥ÌbRe ò£ÎEè”ýpU¶²˜©Ö‹§þqçìÒùÓ\Ö,4 îÀ ÁTÌEꇻ?ÿ nÿA/³é'vçÄ H—î™=ÔòôÑ Ìu± ©mÿy†ùº3[¡‘\×àÞ1·M”Uì^<`ÎÛcQ<òQGedff¡b¦"J"‘Fú—,"]Šáã@ØDî IXh‡…£f臓Ü÷Ét¦øØÈ`g­ÿâæƒk-×ê¤E|•_ÞÒÇ(UJ”Œ’3d(žq[·fg. àb)FÛ¿V|Áöuc†ö‚þæ=p»×ª¿ q8yYû7ú§7MÅïw-‡öó˜£hÚà±eY³d,–‹<²¼Êä§³2öå rFZ,÷IÙ:ãü\`â¸]&^W‹*‹¸Ã"èWzú>jCÍÁOñÈjFü¯³°SÔrJQ´aoBr,Šaˆí­ÖVä5~év÷ÞÇ5vúî$‘qÞ"l³ì}4…fa f0m¶kö­?„N£“'›Z÷™‚Т5zjÌ%oµQÆîÏÎÏ!n¥<2OŸªŠWpø.ÞŸ“€"QLNܾD¸½ âÓUDVŠJóÊKÉ·Ù[ùžZc^K(b$IÒùþÄÌTf`A!žFúÁÑ»0‡N”“8!9“%­¬m„»¹\?®·mT°}/dßÙ÷AöõÿÌ;×Vendstream endobj 125 0 obj << /Filter /FlateDecode /Length 3685 >> stream xœå[YoÇ~ßäG ”™M¼“¾# ÈtâD‘e™F$'X“+‘6¹¤IêzÉoÏW}Ϫ¹¢-?ƒ3µÕuWuU÷ø‡M|`ô/ý=:_ˆIùáõ‚ ]Î'ÍÅ`µá“3ÃùÂz69Ug‹¯ÎòÉ:>X£Ø$ Äq?°´prÒªÁ*K5)×0ÔZɉh5³XλÉê*Uzo…2ÒMÊøF(ÇíäŸ U±2d†•„*ì²L ?6¼Xü°àÁ”Cúst>üåpñÇ'Â~òF˜áðù"š™fà Ú3;q¡‡ÃóÅÓQ-WBq9y7~µ\±I{Ï?§gΘ²rüçæcŒ{=~ýp añ(ÆÃ¥Hˆñþ£`(ÆWãxäÎ<~ ‚RB7ç#=æÂ>’à|h¥„üø¤áèqü³ã£Œy¼d‚ÄôSzŽ' µ"K(˜†„uåŒÿã@ÞhoLJ‘Ša~l95¼aÊ€8À–1g$V‚¸t’÷Ÿ´“¹„ f$c s}A`ǤuP$˜×0áÿæðïp’²­“4QÃáÃÅáïŸÂ|‚ F^®´p·õñOå÷UÞàº<}[žÎÊÓ¦<=;K*âey:éàývïÚÊd[ž^”§›ågË%Ù‰æµæ{-Ñcóª«x׿X÷û´çÉútµ×§ao:+‹ü Kñ а·¨`‡Ç¨W?ÉÆùñ£jXµw«ÌhU"øuãï²£ßEGˆÆ$=Û½ÏÆ…ß{ñ!q×âxo”¬+â'û…Øï߆á«ÎÏ5_wÂ÷¸«KO°Ãò{õÛ×åé §–ŸKͰc±½o; ¶©Øã}¯ÃçMÇ<½¤½îHýGåé~yzPž7eî]gtðxer¿#X/ZØ^‹Ý5aªv©\ܺ7U;U+VWvË¥ì¥I›={óòûÇû õ]¸¿¦÷^vè\wŒÖÝXî5ß=µ O§†'û.¾¤ö×i7I5(%)šaš,ƒ^WÚÉŠáj3ükØ.Ð… …~M'ŸŒ4ór@ ˆ®‘Ö˜‰I ÜEèÃwFøð]HÊþœ[ôâB#K¼+jÆŸi¡“ñàlXÇ 5Yé¥ ä°•Ií!È€¾_£E%R ä!: 8#ùúËdâÉ ¡5 AeÐË@ ™’)Ò{ C’)1YK;= $˯ГCuM}õ 4&¢nz? ã14Ö`Ïm(ä÷ȃVdˆÕ4ÿ ʸ‰›Ê#½ÓŠ$EÁÈRf s=ŽÝ4Mu ~ÞB0)Õ´Ãì„H*NIïUµŠ/ÊkàP5ÓÖ!:eÑL[+1žUé½jV1²Œ™Â\‹™f>ÅÚF3'4ѯªa²ÂHRU‹ï­j#I^(ä÷ȣьATtƒ1dc¾ôÞê–1²”™Â\ ›SzârОÖv0 ¨Qd-•€y:3Ê¿¼@b˜6d ©<‘ÈSYOä‹rÔß!Y"U`†q‹„è¤àk“#¶¡Ô­¥„MTŠ©L8 pv'³`”îH#‚<ç D:ªx÷“ ÒjVEáô~„6`V þV ù=ò ÂíJÞ•G|§YŠŒ‘¥Ìæzµºim0÷ºi£é¤¥PÕH¤@%ñMïn#I^(ä÷È£ÑMóÖVÝ´ôäÊ#¾7ºŒ,e¦0×cG7:šëÆ&/Ý¢÷+ßøÞê–1Šn‰BÑ-ð˜é&¨¤6º©Iµö‹ï3ÝFÑ-Q˜ëtsÛ>R[vÂÓùÊÀýsÙ»ù\V(*tt§8è³ ¹{>{dÑÁ¬èÄ­@’8!û2Ì0FÇs vÜIšyB;lÂØ *MÅ`ë $ÐÌX…fÁJ³»ç«Ø…m öhRœ#oªP¤…¥¦Ü͵/½NÙMc7Uõ˶G©X"ª³™Õ¾†V†´X;ôŽ Ö¾£NÃK'‚^´gö¡óZ%°!àÂYçõÉf?yšjϹ›ºóí àžªÏ.¶/j‡YúKÃC!8/íPWe,¹=,øËUÈ Ë Ou V‚´XZ ²ÏheÈ KK7§•!3¬$kƒÕH7Ë’UWd^Ž@ò\QmDK.£iW–(ÊÞŽ js7Šð(&©é 9>Ž&NŸÙS–ãgDCp ›äÝ_BWÆ¥<^=9ẋûgg›³Íðp³}qs(T‰P -œ¬(bòÁöÁ›Ë«ÍõõéÅk–‚¼.=&dé=3ãæ¬ãå[§ˆ¶5wHu3Kþ9ëbˆçšš YcPieH‹µC¿áØ`ýØÄ@Á ââ©<$so‡O†AÀCýÖdã»véÝèàºZìË[ÙÂ…•ʨÞÕƒ¤Ü$®Ÿ…«ΌǀLšk9¾x™®!˜ÐãU8†wÖXäÃA½Ó#t¯ø|OÓ±›T¾švéó¡á§D_ópAqMäu‹"À’ 3^¶Œã:á è³Lk1¾Œ/Ì!èà áœ|l\<”é0ß"ЧE(“DÆç ÊiÎ&Y¬D4nµAÔ‘‰þŒ)>ƒ²ò S9H`‹»…p»î 1ñÈ+¹½‘ÿªEjMq½¤Ë ºü™Ñ9&ò.H¦gê—Ó­°pÆ ^@ƒsN!˜ó2ÐF gÇ· ËíMƒWæ&> —C:ßfªÖòÅÜ~<'lf0ØÅˤ„ñˆœ,¸ðz¼µ±ðÍ;4HIßú÷dÇná0sAT£WéšHÅ#äôó ƒµ§ƒEBz즈ã9Ža?r»q5süBã*"Ù¿Â7Xm‚mÆ_·ðíiæ="Ä`âoƒ±Óä‚@]ð[µmh¤ä’Mraº„•]6£°¡>01¶QÆ4„{0áÝø8\¬yòßÉU„=Gtdr«²¬uâA7C89.)ù¡ G!Ó·…gL DÙn^U”M$"Ø;à‚ž,¬Pdrhàt›ÛÌš*ͨýìrvÅ-¼Ø2`еÑHk…ÍÒˆ®|äîg7ñwÅx{D4l¿¾ ÷ØèL¨œéJ4Wi‘‰oâ…$Ì‘dQ²‘Å U²'þ• ªÙœò…±SÈ!µþ¶ ŇÁGƒ.==‚V†ðÕ4tÈ—±_SÀ ÛeÕÉÆÜ@û+}*aUƒÍî[O*np™D{§d犱D­ÏŸ—#ţ放£)Ê‹µ¼l&ÏÕµ²ª•rK@Oã ¨!’˜Û^ë…‹mTD{×*r¡Áª1§Ã¸V'jZƒÙ€ñ²\œ_¦Paò«`“÷Ñ,ÑnJ5F+)\ò ¶ ñ‚]Fš,)G‘ x‰~R5$Ág}PŒ€LgõŽ;Ô@ŽE2µsvYÄ]ŸÖŒ\‘1H±×Íí{ÛˆÒ1“’úÐU; ÝZez-¹_…Tp‚ëh6d 1I7‡QÀ̬|æàv>óY SM»Õ514䨯ëWQ Û1x CB½ho3´Åp/"Ý#”é[yÎâ22vc®(¼±¨Üë†Ú¦&g’"|9ÑäX›z×Ùrj\·mâŒÄ£Ë6àÓêéuäƒ\Õ3¹#qs› çF ¨0Ýóú9ĸ>Ší âr–WËN¯xNÇ»í¤»4“Ve‹ÿxÞ;²„–T9Šv…Aí»4®âvîa®:·+övÿJ-e/;ָ麋ÎÚËåñQƺC²²9¾ó‡uÍ«žÖÿçé3‡ørH~úOG׳Ž7ïqáûVwœyW»×™5ª·žwb½Úßþ÷ÊøSeÿegý^¡&î÷.5ÿg©¹»}K.I1FÚÏáNj»²‰ßÔ©Ü„ïüRk`¬·&mŸLû»w’=ƒ³F²mËæbÒU )íUä†þc¾Y¯Ãž ¼0OîkóVFOMÅ]jòÏŸ"ùé·¼»l“ô€†ÁJLJS1§Ï“Ð8¶A©gãçÛ›ÍÕÑæò&|Jæé˜Ë ? §dñ`sXÎ7W…¢È®‰d\DGÏ Õ*=¢C¼>¹B&™@ÎÑ!ŸÁ/4…¿,Ð,”bÈ^w§Uiæ/,n%¤¬ðWI úŒ%ÒA0ß\=?ºwóörsfú] ý”“mãÆ{‡/¿ß¼½×Í"´ØßŸE¹Ýìµ,ð¬rîÝ–å犺ŽÜð®s¶¤Õ}µƒ|@úŽßµ­jš¥íÎܲ’[ s©K¦VôbúWÀ^ÓÏ"LÌGµáÄXàΚ¸õiý"xÛŽuþk«Jƒn/.š¸iS‘ÒÚ ¹;^múLxýmhkÑpŠñâe%™ä··ðA<7Àb¿lµRíºf`ºu¾jûõã*ßY]ÚPÙΆ·â¡õUý9d°…Òì~²¸3 ¦ƒ8¡bNžN³QÓÓï˜0¯$NŠN½0þѸF|Æ/¿CÐI9;Í€Ÿ´G?Ü`>³›³Hõ0)ã¦dǶº‰,e%™»©7=5ƒÊU\e°‘µáYÂ÷ÕRk:¶ËMCR¨­ óÙ0P¦¨=¯³f;½K0o—ÒÒ÷ò³!©ÒOëçGt sÓyjÖ¿Qd½MP§é¤Z!>l•MÝ’QÍIÊeÊ ÇÛ‰ñ–“‹Ýеt@­v1øióû:bxg÷ø¬=UšWJlÞ “c¡7°lš½³w &±íK#v’b'ªÚàÞýßÓ}TáUgƒnG”ŽBÁ“¾9hªÕ&ð?PìžìE'¥1œö¸zJÐŽìa µÞ!P›Û˜ÿii£°endstream endobj 126 0 obj << /Filter /FlateDecode /Length 2458 >> stream xœÝYÛnÇ}ßüÄ"O½€vÜ÷î2IQìvK4$ÌÃzÅ›LriŠ´œøçsª»g¦f8TIA‚@j6{ªªërêTóǵîÌZó¿öÿþje;Oëw+½þb}ê\2ë¢ér\_­²]$v.W¯V¤S}^§èuç,N ;ÙPC9Ö^ê7ä¯ñË ô…ðÛ<Ñ×[•)w)£Ú†´)ºÜùH¦lR—µ‘6‡ÚÆäL³iÐÖ›$´ùŽ2\f¼ƒep—ö¹Ëg}ÊÔ%?ìða½>[ý¸2ÅëëößþjýìhõÙK“ÖPmMðë£ÓU ‰YÛh;J|êrJ룫Õ_Õ³ÍVwšÈ&ÔÅFwV{k¼úKGD†Ô%IDÙåv¸”ÕáìvüaÇgŒÖ1“ºÁ¶×6… Î7ð©×Ϊ¿BþvôÕêÅÑêÛuÅ}£ ¾Æ´¿o¿Ã÷}ì®–Ö,ÇFyUˆìDÈ 1Š«:­ µ»ÛðµëÔ Ö!;ë¢z[ÎyïÔ“ÍÖ[‹’ú-og"œèÚ®Ijw]œd5õš·ÄõŠws‚çv·ü]¤ìS?lB`wEÞ†ãrLñ¤~—r€vaÊ6 J´WǪl[²^ák¼a˳CŠyþš½šsŽìUDÞdéŽ=9zû_­Þƨ®ø;¯M†Œ“:ØHQùFŸ\•Žâø~0«—÷9ŒD*%“Õ×BÆE±Iëbe5k éôØ:üãQÈœ5ß°×ttÖÔ$«îù¹„)kkIˆx-DlG¨–áâ_ñ®¥L‰?³®êÔ~c°@‰«»òk­É'9_ƒ ­Ú€Ú°ê°ïrʹWVÀ™B9 š¥(%r4HÐV}ÇÑÑÔT"(®rÆÅÄ5ŸmØÉ[œd×[ƒë…`ªw_U—R²–Ãâ\„#œz^2JkG%ž^ìP}ÊUì3+Ƈi벦ÔI¹|¶Í°’Ì5Æ“ ò¹ksc$˜3ðoöê»—Âë_oê·>ÉüÀQï¿=g𢇻®n†ÕçÃê³…ÕóaõrX=VVÝÂ9䓲Ún‡ÕaX½V'Ãj¿`s·ðí(ïlÁúQïnAò ¿=[°å7ÃêrX]-œó›…ˆ¢,‘ÈþAD#…¥éŒ-Ý kÏë `Šº³“0JÎÝ;ëÝ,gÚØT:‚jçuŒYÝŽ¸#áµT9ªCu¸æ·]4F™ŽsÕ h2[Ù¡›‚Ý–¯ˆr† hœè!Õ†/wcþŸ÷:ÜÎ`É ´â/ú6F‰Ò,F1¨-qâÙ†E„ƒ’È.úÇÝÖÿ˜µÈ@ÿS¿+׋p^U’0D*™wlÊêÏ›ì8T}ÛsG“‚÷Ó*Þœ d¸Ýy¹¨ïO,ú¨t¶9í::ϻРçœ:>~5ÒEqО 2!Â;ê~ XÍ©ÂO»ëñDñ$Œ?ÜÏ63«¨J²qÞÖ0–èžV–ÖhàDR2æ"H×Bò~<}RªÇ!ýaA_.uÃg%ÿœÁIš×À™LýJ$Lz¬"Ÿ’úÙY…Òòݧ“L“ØW—B;ûö[ûá¾ÊöèÐWcC·2óÿ>Üʰ Û˜¯Aߎç‘\šãV‘a[åƹǴÈB~]Í›×"Ͼ‰r:ЍÈEx0G®vñ)rµÍáËÖšžé£*YòýA£ï:ˆŒäYð3ÍïQÀM¥håš ÅžbIjMEo*lÑ-% ÙŒR: kïE†\3­ÍSŽ»–“ó•Î=)'ؤ¼Æ#éŠy6âÉô˜GÕÜß—¼Dñ6~Ûhk &ãFR\0È@(µ÷”T~µ/|]g¦¬[¯=ŽLEIó¡á(Ìh_”«ûä–H¶]¸;%—]o‚˜[[Á³¬˜Î3Œ1˜¹¸ÞÌù@Ãö ¿,£n܆ߚÕ7vfdíÚfBãì¾}”¿-¡¶¸}𺴅iûˆóöQ /ó;Ê |¾4É7‚ÔŽ´Ÿ÷Àm[ž§ Û·±±•æÅØh¥”knâ ØI"š<ðšïQkÞu¨»ìï<¤ÝÝH\X2`^Ÿöë r:MÊiRåÕ2òÛ×y/-=˜7…ÇäÃDk2­O”éj7žÉ=‚¼¦ÉyRß‹@–CO­åGoæH¾øuÁçY_š!zÿz?‡tù—­ËÓÇ~À'´ãš4sZ÷ù3ü÷¨–Xcúâ¼#¦ŽÓ{£>ÓyT2Ñ”‰§ø¤#úò‰ÛSâö©L,?D™eDíwü¢Dgùpõ#cP" ZþAÿ à]û ] ~Öo>Ïã{ñ|Dqz?žGÌÞÓ#x^þrüíꟳ©Äendstream endobj 127 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 5099 >> stream xœ•XyTS×ö¾îåV©Vâ…¤ôÝkêô|U뀳8ሀâL@eŽ ! !'„L@B¨# –­(8´uÀ¡ØI_ÕçÓ×Õ§ïiÕžÛuè[¿“&öu½µ~ù#œìœ³Ï·¿ýí½ˆðìEˆD¢Á1;7'îY·kÉè°¨m‰Ë6ïˆq¬s(ø×_=I­·x{oϪ÷Þ}àuý!Ó¯ýÂñ™¸+nNü¼„ù{‚ö.H\˜”¼ió’Ô-K#£¶†l ŽY»bûŽëþ1ú/cÆÊÆ}”1~ÂÄIƒ&O:}Æð1ˆXF„CˆPâb91ŒXA '‰ÄJb$±ŠXMÌ&棉µÄ\â/ÄDŒ%㈅Ä"b<±˜˜@,!–ÁÄ4âmbÑ—èGô'|ˆBL 6 áKøBJxïþE°G¼Eô&¦ã‹žD¢ÈS,zÒ+¶×o;=ž{ž%ÈŸ)9õÌ+ÀKãõ”ΤÿýÖœ·øÞÓzŸî3ªÅÛÇ;Ñû×·kúNí«ì·¥ßñw$ïß¹Þ_Ö¿¦{ÿß|XŸé> >¯ÄƒÅ…†0xÂìdžùNô=îûÀ/Ú¯R2E’,¹(}W#<é+<<ÆÃf^$Dæ #gRÉ™òô,£ªŒƒc([qai±² ÛJ*H´ÁíWo Õv&’;K²LçÒ(ªÂÒý‡iÔ8Œ„Å<ƒ2)86“¥T×ùxÞGМô߀fa3˵g-5=$#zÊ9èçrácªHqý÷ß)¿â_¬J[r©Ìœ ’@6Pç)V! ‰qóOär&ÿÕ¨5i  Pz}Uã´à-)‹ç°Øt^ñ"èa|ì‚¿0‡ACÐ{Èqƒ¿ „"8¾ȽšÙzqòÍÌã/CÆ# y B}Æ-ùü$¡Ç+Ø›ëÚÉÔkó½ìøbÂB³µiEÕB°,Ú¾.|ýÆùÁiµ,OÒiäýøCØûæWGÎ]fVÍ ˆ6) Ù9¹y99lÐâ°ÝóýÁ¬ož—ä—éJ¹Ò[Õ°ô| {ihI­ÜcÊ©Ú Ô¹Qƒ\¯6 (,ÔY« §D«×êA>-cV²3äòÔ\Ç=Q0?äáwNèOc„û0ôvÁÕJ¡^V2Ü ÀpŒ½¹ ˜Ê¤ÎÁ‚c ÏìüHá@(†oC)'–<›w 3—ÇÏ_ÀŠWÃÐ6æÁç+¦¾?x¢&.;ç勧亂žÎß³½ÄHïÕ Je¬É$sŒ s‰ÙlÕ±‡ Ÿ¶G'_jR»½–L¢¡T#Œ"a3•4â û##;]Äk¥†b&†»„•T-±(:Çžò}Î=Pµ¿æáÞG|>Â@ šJÍÈÞçüïm' GQ)Ž“ª”ƒ7L*)ÎÑË8D‚»IñÀgЯ¡²Éÿ(Ï®ØcPäk €.±XŠMòbY —\žfÜ V•ñÈs"ýÿƒÀ87Ú»!0)Ln¬tßkºÃ—áä‘BŸÆ!Öqç4{‚MðjˆÁ$ k‚êf?ñØë £Qk vnm2[ X])®ÙZ{:õª?ì÷üÖ½ª}‡’˸Ýû£‹–g˜H6'™Ól Œn¼Ùðmm½<³‚-TØö€\õ‰>GŸÛEÇkÉ.6êhñ{Žddg%å²âš£»6•†ú#ÑøÀDËkW•vPñUN›²ZQ¹ÏšY’ÒèÐéëGM =zR§5h¬6è0©]t&\‚ÕËû8ÓŽÀ¤~)| £˜ÊöúÞnAŽÚŽF.ݽ5g¢>s¾xV‘o-°qeÕ˜ÍôSè¤  )«*­T^§Qª·I ø2úîËT<–䛀ÖqoIÕûHqÇñ­«­ ýÑûI¹ M”¨óAÎòû³àŸ¾¼i­½Öíò úØDp²Ý¼Ãiݵ«ñ$å’ÀÛT:—­ÉÙÒ°³Qߟ»]ºÿ4{ØRdÅt¡Â˜£RkTÙìÆ½3Ó–:4꓆­Qkä.@ ã]ØCB…Õ>sp-Jƒ/ï÷ئb©}.$’Õ.íEÞîLÛ€¢HTé$fëÛT;Ùè.ä]ž„SŸÁtÒ‰G‚# }àP\ â…ž_»v‹¡îÞ$ò¢’\@¬@%Xÿƒç/Üä¿qç» ä¸+°|CȰ™:K“²¤ËìQ×ÚÛ¶9Ѽˆ¯>G¨`\Þ¤r¨ƒJqãˆÃo4Ðm©ÃÍ”{-"øw_¨Áòn¸yqƒBqXER¨ið!y­Ço1ÊeÃS;½8°gÁ¾p"Þ±ÂmG—õ ý uÄ@¹ŠB‘)vçþØ´‚*À·P¸|סâ×PÏå¡„÷ùÑ_àd‘ “|rý?œÂ„q–H³ôÒr~JÔèÙ66S¥Ä¼£åF…I§ÓjõlÇÞT è«öøÍJ€‰ÇÉæ./Û©À)Å ɉµ‹ÏDþõæÕO.tàL/lb&/ Û3ÐÁÑŸ4ÝøÛYèÕÔ¤”×q==wz$4cVÃjá®HyY†!·ÜQ‘<:+ÜUý'ªâ!)nšìlôWþ¸ I ¾ÿ|έ!K¶Ï]ÄÁ°/™{_, @^ˆˆ¼¦qz½‚¤¸×á‡qøÿé[†óÀL&Ø?Áw °Š²Ãˆ. à Ú#Ë1h<‰ª©®²º Þ¸ŽÌ‚u¾âýCÑPù¸%Õ>{S‚‡`%-Îñ<¥s¨¶ì®:ø¶éèÞhx<ëfàåÊ 2§„ó‚åîmg—qZðf¢ëWW,4‰$Èþõ¼—×;lÇ/q5¶ý6,&¹Y¡Rä*rØõ³wÏôø¥îž¶µÖØ9{ëÕ£7AhÌÜŸV,¯Þ TXôô¸¡0bÑ3w‰Ö߇èéßµ+—ààtÊà+Òä„nV–΋è©>é8•§&Ã(”‚žÀgäð®à:Ðï’Œ·nr¤«€:·0Q÷Ð+òMî<Ç@4ýÚÛIduÖ ¬˜[kjfa^r¸“ AÃo>ý¦½öÖeNœ’2ŽÄ\êr'[A¡¡ð9sÿRH'>Œè÷"zRÈ¥ûÐë—WêîÙ<É‹^ðÓà!\‚ë}µ® ”Ðÿš~‰Ðp }_Ä";3!}¥Ãz¤•=RVXˆá7+rUnžJήÛ>#q  G}ù¨˜´…œ™gêÿqÿâS@?¾6%¨p:õè üÃû‡†º‘5”²|QØr®öV^]©nVâ¢£Ê Ïç¶#Á80s¥lvF°ä#œmÍ7|ovqSáØy^·²…ñP‡¥ÈŽëS,Lg „‚ ùã/ß.jûC W¸þ«åÂT·¹õXâ™sPGb"ÜhÙ:}ìÜÜïÑ—8tß &ø7fGûú#s0‡ýPôòqcþ“ŽKGÚ?çâ³/hአFÚ-«¼¨Ï_vòDý±Š£fž w/E¦Ä«Ñœxæîùðéˆ>õšº¢íÎËÿë§^¼Œî8¸#ÌÆ>¤ÀV|Ó=çBCÉ´GXCд…!ÑÅñ’ÙÁ‹²•ª#Í6( ó ´ÚöTñ¢Ã ”©«³i±%û`‘ºÌ¿Ô³– ¸¥/Tä¹¹µŠÝ–œªH@‘¿×L‹SŠâ vú'ô¼íJÎ2ÿhŸŠy4·c7fÁ]Ø NÂò6²ÝœpÒ]$äáÈ4» e×Ö%”n±¸bá›LËõ+ÇÊÛ€Ô*ðØT&3¥à±I¥‘wMn‰+qeÝǸë×åj͸&à±ijðú½Á‹ÙŠþüB$ŒvôÎn$ƒ½,CÜ èÜúÐñì+ÜaB¨ÄÁä¥.AÛcÞÆMïhK#š ±ÉO\$œJ˜íü†ŠL ¯ÁŒ³ì´¥qÕ‰µ™×3odÚ”¶ôò KH¤';$2ÂbMb3 ãNCA³DeR(1ÔÙÙ¹©{‘§D“«QâþV<¿§Ù.` ‡IñÉõGÛvßô¿ :65œ¨­>Nƒciu{ˬñæY–àÂ3Æ©8«Øè¯î\}TבVΚåb±Lnêž»ŠAa‘®üÀÏ’|#ÎC,“}ßèQ1Û«(%Nå Ã÷…¬]ˆÉ<ÀÌ õ|wµâÇŸ„P ªuõ;ð$Ôº!…1ï´¥ØþkÍ øÏ8N¡d³5y h¤Zºu» R’ÎõT¢ðÌ ®w]¼´ƒ„S™;È-h.­~CöÀLÛ§pšOƹ™ûõèF:f €áRèGžrIg“ø¬Ph#vGè㘨þWiïª*˜âá˜Þhœ¡L‡5|«Ëü°Êýeᢣ4ÂÌÌÀß¿,¼~(íyè.PŽfY\ñL}Uÿ¡ÊÝÛ±k”Ütƒ¼íÞ’ž‡¶3WÒ#¶w5@Aè+läöÔp Öå›´F`”ž‰>¾vÓÖ¤5kÙÌÓñ•Á&“²q½cDï𿾋¯ºTøœyÒ3f;u}øÛ²®SG:.åp(ƒú!Z™§*iFa¶¥Äd¨(ea´’®aI3Ò :–‚þºƒÄãNCæ\{âܰŸ~1¯{Î\hažR¾‚4³aËÖM;*“j¸"ª±¡Þ~tïþXçϼpŸ6¦Þiô.ÂŒñ¨î8LCÏUWÇ¡^ð˜‹e“†)vªw‚]RäyvÑ#Øë)Á±µ,ºöc¹Rs½¡ùpÝ «Ð7ëV¯ŽSíáRÆí[;?òcé®èÈÔÍ€žÝòìî ¾ª‹š"a• 0hMhª2G2¤9Æ“ÏOE,hG¢N‹£ywM=U>­»y‚…ÛL÷ çœIåÙi¹,üÛÄ.™:rÅâÌ•.BÖà#bÍ•ðŒV÷ê;¸ Nkn”žoµ} ÎÒß,¸‚®q6x!ð.s¯¦å p‹¾Ò2>$8i[›”.Ïr:Û¨4›tùÅöDÝÙŠ €noŽ Ÿ3wÙ„Í(œR•« ÚOV|ÿíõ• Þ0jʰ5ÖúͬRŸ›¯tVfffVqæ'2®9®1ã3@ãjßï$.Äž >è@Fó­6ø#Ǻ—œ»->}ýî*Y ¹úä ÔºÄòSˆq²‘qñÙ™xjp@i4˜Ììù Ŧƒ ”gÛ’[VVdÇ@õ$_]i.fÚ”c”w—•<|…σËx4à×ÈQ®Œ¡Ád-nwâÄP÷–œD¡Ë’ìõ$<Æ3(‚ÇqkZI9a…wy8 ï¬Ã±¼Œ³ªœi×% uŽë¨@+7(MÀôùCóþSÅ ˜ço‘}œÉE†,‹ a`Med£Ò˜›¯t†0Ö|,‘«O8™q Cø'Øöƒƒ†]˜°)Rž´¼+_àÙJ° FìB T1EßX[jZ.=‚¢ö‡ ”«ÍŽÒ¥Ñº¸¨¸¸<¶$jòGQ ær“¦­F>14êsqÖcèù ¤ ÷ýŸÏ˜»tËäVÎÔ6–Z­e õ˜•ôyûº%£¦Œ°l뱫éœê€F—×àÐMàñég;ƒtææä©°’8‚TdЗ™Xø‰PVr•ì|‹JŸ‰åOÔÒî禊ÖXG¦n$m Ps°ý(í…va)¼ÆÔ––V”ÚëªNƒSôwÁhà¨ëöooÝÁŽŽ Óé€+Ëþ±B<y6Ž_qˆMåL{Ó¦¥3Ž_´ŽoûúnÇ=.Õ3§7.œ2aƘykš®ÜûáöN&Äe!Èl¯tsv‰µ¨¨ÚÌþ ȳ¾®ÕòâžÕ.Wc°‹ànì£þƨ“Ð(å«Ãâ7…ŒE¢¦“;^­´8–™8ÒjöøëÃí·¸{ß·@ö ýz òˆ(ä=±mÙ··.7üõ"kheb6ÈRSÓ·lÝ èå›N_þçÝG>¯ß¾¨ŒÓ'iUù‘´SI…÷þPLOqˆé9؊ף\ë'^‹læ 8ë;¾EpǧúO!ƒ¿„SD1 ‡â¶„cè]NÃVF¡T¦´Àhr¾C*µF£b;G¢¾ûT9Ž—§ƒÂ¤Óƒ|§,â)ág̤G¸sw•·¹y,òÇ¿8ø>¬e:= L¥Så«T¹*ežZ¢VãÒ– ”ùj£ ^Ck$ï£5YJ¥7Ý äió´jI>.G«¥Ï7èà‡—<„˘ -uãr䉆E /€|ÁZ}tÉš²P˶ÒR¯ÆYe±åkt·ë^æUpÀÚà{8U'a!FÚ¬0f;ïwí’ü̱iFf>U«æO*^‚†çI4Q¥Ôä•ãa¤Ðbµž·³Ðk†^ú‚;ñÐcÛ—j¾  û&Û„ 6èc³Ù(¾÷É>À»7ðÆß>ñ0»2Îendstream endobj 128 0 obj << /Filter /FlateDecode /Length 2764 >> stream xœåZmÛÆþ®öG P­Åîû‹Qp ÇiáM¬~(⢠O¼;%’¨HÔúÛ;³Kîy¼;;i4…?xµ\Îë3³3Ãû~ÎJ>gø¯ûÿb7¥òóÛ›¿žeKiùÜjÃKgæ»™¦4Þ§íìíÌ3[åæÖ(VJ§ÒŽã¾4:œÒÖŠê7èÅà¡&ü´¶ðÔ øõR9ïJ«‰PÝ•ÉHW*ã‰LŽÛÒ1NeʇºÁ™N¦Ä­‰pcó«Ù÷3 9ïþ»ØÍ?]Íþðµðs_z#Ì|u9‹Fæs®di%„âBÏW»Ù7ÅË/_¾Y8QzoŠ¿¿]W¯´ÅŸKpcÊÊâíb)¥, Å߯G˜wL_|ùYÆœ‘ÿXýdPœÈà@YíȱZׯÃaïœ3ñð@`¡ÀìLÅÃ…^¬¾Er–œyX)Œ˜/Áh^ דå%cÞ¨â“ÅR ÐÊñâ"m6iU§ÕeZ½+Ò²J«ÝÄËë´úgZ]¥Õ6­®ÓªÍL‹¨0€Ï”ÞJ<$À©`Õ›Ùêwß›}{\, @€É—ÝR¸ât}lóƒm³¿ê©‡Ž©‡6(Ðài4&Ø -¢1Y©¤Z,•`¬à%wÖ܃<<²ZwŠ ý’HqSZxØ/7isÊC7?¿h´Aù¨ õÎ1ûÇzg™¤¸ç Èø\Å•Ñp3ðªdñ1F°’<0Jä# ©d3`ŠSÂÂO©*cýG‰Fu¢X<‰ÕQ \Œ¥T¸m1‘;î¢+L4@Ã+ ~O©«ÆmȱƸ ãÝ ì“Õ)¡ä<¿Ý:iu7%£ô%“ª'_íƒ\ ƒ\`é§Är¥–Ì÷ïMEÍ~"¯m&ž¶O‹µ –óÎ[°Å÷^D /0ŒzYA€¥°@ü¸FeœåÌÙ­,@TVj'…4¨mØÖÎïai`åEØ÷€‘ ÜòJÉN«Æy¤ö"â  ³“vù½fG,‡‹Õ‡,ñ9cÐ RT™Ü)°¨‘‚öÖ‰H d¢­$C©‹êˆ¤¹4pqÞEz$%DÃ*®­üD“ÌqÊÚ.3í 8 \@i‹ÒkÝeØHGqå,´ÑxQJȶdw•ðÜèÎ3^¸Nò‰39ê¥û=@ã*rÁ€®ÖËߎ­v©OQè¾~¨3DÆA %©·.Åæ!—)ˆÖ ·©êXfHß,´†¬ ¦®¢ÞÎ  W1O½Í8VqÛpÓ¹K30Ì&W6 ˆ ã çl‹ÀÎs®ô„0åÝDÓ™ˆÃN7Dø>ùuæ³e»ît8ì p•õ@ð”¼3Œ j¨0Ï= a0(÷&Ôˆhºtøðîâ{ÀÀCÉÑÓ‡AnHÛQfÇ¥½L”º HœÄÅ :F0.éEЀ…¢7©ð<†%ILådU:®ÓùÁè‡'êŸA$ÅPý ª ·›ÝyÛVûº9Ÿú ½øS³¿Ü¬ëý˜5ÞÔÐ%ìÛúxSmO±˜I´4Ôí¾«Û¿R›Ã¶&„v‡ê¸95ûSG Ú“æ²§jŠ/êjzž¹¬ÎßÕw}5¡PöXÚÈTÈÒs¸8;'}¶iŸç¤jnÞ—ÍÔ©2¯¹2©·õM½Í¬þ•UÛzÕ^?Kr¯«¶ÊÕÜ zòp]uÖEÕáVìÅùê\íÛ Qž¼& çœªÍ¼þm/«+.«Ýf{·¼Ýœê¬ÀÅ„+¢"Ù"‰Ü›Í¾†{«;¨ŠÏïM{]Ÿj0qàõ¿”ãáÕ©Ýìª6 ¾½íJ¸â|èj×é7?°Áyñ";œ- °ûî(i9v&¾VÛø …à¥TŠõF³ÄïO´OpÅȹ̕)Í3WQ*!ÌG•ÑC#<¨+&s…{XR]b“X(ƒå£ié§•µÿKiiUc&HÉ‚=ü(^×ûúXmsÐ ã@8¸Ÿ¼Bÿ&¯·ÿ£™ãm».3ëWÇcsÌöh³$pœëüä¯ÇwÅ'?´?t² ²e’ÿ”l#Tßφ1Hî<¥Sù)2Œ¿ð ?¢‘~‚7zÉüµ OÔ_‰?3üCí'•Æaª´£"˜ aÓwÅËõ·çS[¯³#ï2õ¡9æÃÐö/³4§Íþj[/Ø!#{W·×Í:¥ƒA±+œGOŸÆ*šW{Hæ°H½ u_klmµœP[8¥BôâZ{9lI¿Îb¬ ±Àt«cc‡­ô/îs“ÞÒÎ:´EžAÉ{¯ïÞ#5xsEKeäÓ-éùM.m[,ƒ9wا"o ¼'µ«ÚxÀs5îå£Uxèå-Z—g[4ï§û>Ò˃ª9ø°*§Í`da:É9ÜýÅ>ï~F.¢Ûé9‡íF” òé·ù³á@z™ÁD»ìfØ¥)¥ÐÂqÀ äû›…âêõQ»1ƒÞ¥M<ú÷‰I›}ö}؆VÆù‡¾ŸÊ:r ·düµ™l<¯£ú!×בtÚ¤g&ÐγÚ”.Â8i9@TR?Â7š§ê­&á=lI=öƒ®?m 1£>ŽNp¶4’ §Nc/ )V Ç6•‰öUHQr”èý¢Åèñ ©âÜ‚«¼«Œî¥;Ù•R#¸@‹*8êžS܅б› …7qNbîK/ýj4dÖ‚¦4lI°ÞoÀ#‘æý¨«Oƒ "·è_°ë€ìp~ˆið¤ 0fE@–AdéñðÉá´àý”rDÞèR®¹dëf)ˆâ€ÙŽ÷ƒ˜íž“Fyn†êב“O¶$AÕyî±Í€# »zÌÁ5mzè‘ÌuEÐ{M ‹Q¢­“R$7FHvÄ"$Œ4_{fBÝGÓ{•ѵ&cÂ[Ì’^X3È’aFÆDHD RºST“Ð%6%"sê*ƨÖðƒ$4NÑ3ø¦å!ŒºøiãYÏì8EÃ.Ü…† xɉê-|˜tyCNDEse‡B†V"´‡íÍ4‰ÁQ¼#¨|¨{¢gƒñy}’tD­Eï¾g‘²õã裢ՓjŸãb­üÔGÁ©¯Å÷d"Ü•]Šq,2þȇ °.‰(¼ÿ–œ™$‘ðÅöñó÷è‹…Ç7Íà‹EÓ_wy£‰FO7øô£¼kmÜ =]f ÝEx¹â· }šÓô)ˆ¦óôt|5I}Kï¯ ½gÛ$êNY ¬Ñ‡–ÎxäÃHC¿£Ô‘-^ÃÍ„1B„†^¤Ä£·pEN“‹šÖ!¿õ–{´Iè (žÈ¤›@mXá>°x¸•U¬=!ÍS¹ïó8ñ¡ šÝû‹êÔÑfˆ‰ÞôÍ–¤òÝ!Q´>> stream xœí\[o$·•~ò#~ªN¦ky¿xלõx³Y¯“µXÚRëbKêI«5ã‚ýíû’Ežj±5ãñ{‰10Ìbž?Vóè¯ 1Ê… åÿg·'j4qñúD,þåÄI9Z©Þ:9·¸=ñQŒÁÔŽ›“¯O‚—£rá£V ª=AÆÑÙDeUУ5Œªöp*íÌhh­Ñ#ñb'µB £·M«òÌ•r:ŒÆE¦T~ BΔjTSÏŒª(UÅM:1ybqyò×™\¹(ÿ;»]üîôä¾RqÇè”[œ^œd7Ë…„¤õÂRÙÅéíÉ7ƒ[®”‘zŒaøz¹£Q:;ü+µ¥Æëáß—pŸ2ÚáÏ_,¡,šj8]”>ýò9(Œ!šáhÊšC­a[ˆ™ŸˆA(‡/?‘’rh¤†Ÿâð“˜øIüó×ÿLýJˆˆ‡çCú=@… ‹†Á{5i¨„…†mäLþŸ{g£¾xž¹8.)™0ÌÑí…Nc$˜ë åðéWœcq—ŠÊÀä çá®?RwÚ’Üë„ F~{úLèÆèu I‚YÁëÅé'§¿þføüzÿñrå$H5¬·¯^ ÛÝíÃÍz¹Â 1ºá“B Â°¹Ù¼ÚÜ”WpεWë›ÍÝåþêÙÄm8_ï×ÓƒáLÖ7/¯Ö/–KRNÚ1ê&u¾¸¾Û¬w3üþÍËíþjs¿¹ÿ8‘çR›ÅÊs1ªÅé9õü~}»Þoªä¯÷çc“ü|·Ûî&éfØ7E^­o6íÍŸv/†ßþmÿ·¢Úª+ìún¿k[5f÷W»}{ñÉ'“n„ü¬&L!¿¢GeÚ[ Fù o¬ÙdÌœÐròÐÍöîòýåâgònoÎPå ¥“ü'…νqÔho-ªeàBµoB­¨B_ Ÿžÿp¿ßœ·)zy0y÷ Š»ÍËí®ËaµjÚÜ_ß]ÞlV`ö²áúv³¿Úž—Ù>eЦ¦-“¿ÐrÄ2ðb"ª0ÃC )÷´âtŒðf&ðx5Z«ˆ.q¸b!oCmØë\È’g’­´G Mx»_":3¬kë®¶Îkëum]×ÖYm]õl4Ž„EÒE2Çx2,¡#D‘aÆnÍÈl™ÕÞBÅaí£¶wÙv'-¸U; ÂÁyé‡ímv,Ä\Nî[Ÿ-•C°Õaøai-9ÚëËâ'ŠöY{Éý„ ˆØª›Ÿšvkp1jõ«çÍ’×,þ&õ£”ÆI 'æ¯ê°žÛôèbiübXÖˆüŸ›¬k–Ú4ŸeÄ=3â­Ìê®sÌR"ÊIP‚!äk‰˜¡²A%Ñ,!‹òŽaÍé á#ñ@® WœÎV3óº%t÷Y"t)œ1nÊ (oÍ,èÞ´˜´Ï,®cÌ&gKBYד±äl6î.÷ÚÀã_rÉu;†äŽÄËù<Æá´Ñ…–¨È[ÆmEA_Z‹åþ²õæ•q¬A›a{Ó¼\â< 'Ï`‹˜mGÂ_vÖÒᦗ–ëï=⿘g@™›u¶ŠªþCÛa®ø2kj¦ÅCÈ|?Ž´ªü±qGãkÂ1Îí:º ÇÿÖ6œ¤(†6Œ°c}ÐÚòäëæ‰¨[$¼Æ,¨eÈ뛆ž;óyãtéxmDà°›ç 4ßÁ»Y=æqaø”³bg“Ô¨‚GAu$2Ó‰çÚËrÛ<òõ´Žš/=HoiÇw” ‹ë•/߯8RJDÄÑ3|Ø«±ôÎŒùrJQ*<ï.YF{Öz‹%æ`€ò8áøwÈ¥^q̰$6빺œà,U‹0"L`e[Ç_Ú¢ ¯_Äç Ä —³yý®åq§´ŠµóòeÍ0 ¶|âôFv·<þ<Ú¦·‡Â7å“pºžQÊ7"3?Ï´ÚÒÒw9ÄdS ƒc\úÆt~*ß#Žt;HFÊb¾dÇ+‘RϤWÿ>ÊKÊâûœ-*Á%ƒÛ?ëd¨AÚ‘AF Î3¶Ò”QÕÓýWõœüÛåÊ*¤[)Åx|ðÞÕN}Só¶CxÝø|ò,?z óÇttœÄüº5ÏzÜem=k”ªvŽOv;Eg´åʱfúì7mOLÀMÇô7µµ­­‡ÚÚ¿ëôì;îo^ýñi§}\[ªçŠöq欣ìMê­®’Oºê¬c…l¯ÿ©v®zcšvM÷‹Ç»§}ÉŒlßžÒfä¶£ÍyϽ7O*vÑqþ¾ëòÛå˧ul¢7Ñ—S¯º¢Ûª=í€ø‡Ž”ûʾéÇÛ'¨h𳚈çß…ÞGêýâèY;SNõ›å*Dáð»üSÑîUWïõIû8æʦÚoõ†Q>ž×]ǹ÷ÖuÇ)ÍT†Ž^jÐØì;âºé»¡Êøl;öwl¹ë(»ëñnб•÷]GÞMGSìëÞ\ÓÑçÛktÕW€ÔãÓílÁ33˜/€.¶Útý‚­ÇØúP‹þÿ/¶âØzÙ±¦YØÝû9aÇg?vx·!·ÝÞ=W¬j«wp=Ù½S‡ëùìYoÇí‰îºúò¸?ŸEÚ*~Cj ]7é:£‰ùî-ûðg….:­¶Xz‹½w‚ho»¸ÓQû½æð郓¨Ÿ$ü [ò‚v÷,ö÷m¾íüíÿ h??=ùº g‚•[(ãèGª…´‘>.¤¦ßAÜb·Yüeq÷äm:'~ôF„À¯Ó)eGíÝB;þ!_§Ãn¬ÄððÃR h£RR‘îºèáÍâŰÝ_ßÑM*E»ò¢\#&Ú1Êòk¶ÂÓï³v´Šn<`”Îúª [¬K· 0!cy£Ô‚ÂC Lê¹HË`Æ ]dFI7_ÃÀß§ûšŠÜ ÕBèBä퉊:b­=tW±CU{à Q¨´1£šQÕFeœ¦ëœŒªö0*è$§ª=ŒÊ ŸrªÚèfÓyNU{ÕÝÜê-8s£Ó¤gt“ãÕh­Î0£ïÞË•Œ"ŒvHm¥Ò¬AÖŒhKAI/’61¸¤^éÐFèQ#i‘ÄçN£eŒ£òŒhê™QÉûi®þŒÊxÂ"ù"]‚[¬éÊ@½Rô›„„ÛèË4]£ì­Ý_Ñ·rZz–~âJé"€£…“3NîÍD^×LuT™í `Sô çÄ€Ÿ£k Ëкyìž Öjw:˜«'ªŽ«Û¤"6iß,è’…¡NÐj„ŽoáÒ󼆮;x3ú Pp¦¸£ËÊj®xú!.ÌW‚æŠ+‡À#™âkÔ®ø{,Š˜5VÜB(Á†pH1*ëÜbÅf»¼Z9úÙGÆòNöŽ  : -ª(YE sFͦW+©Çà¼:`Ø"¯2ÚÎqG¶ž0zb Ðlð ^ŠñZMg ·ˆî±½·³áõ9 HrtM€™P W±I(Ï4¢¨P)ŠŠ•Ã܈³“ßÒ'@´ÉŸz”0i~Í=ÆäDž.%·‰ÈÐ-ÂKº]hDª·;K¥8¸gj‰0áÂœã¯øÃù1YtRHí¤‘œ)ùÉH$=†[z·T©´ôÜ$º†0\Åa÷jI“.ÙY”J×W-d 5Y@ww/˜•»,M”;Ð*óMÓŽÎ%]Ÿ!yhp$=F´KÓPš/[óª5×½™§ÀØû÷¯‘¬|ï37Cûãڶ\mó.µm“/xm[+»-* ójægµæóBL¬—µ@æ§ßóü}çžÓgÝ?`©ê¸Ö?²\y,<qy•+ƒ¼J…©Ž¶6…OÑ1¢×”\°TErÜßÏÛD­)‚ó’àÂ3WþÇ ¾¼´7¯”TxÞJxsܘÔNÇ?Yâÿß°$endstream endobj 130 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1236 >> stream xœT]L“WþJ ;%é5ߣQc–M—ù3uó¹1 †"S6þ¤Bùè/´¥ð½-ԶЖ–JòSê:‹®ŽÁd·%šl3Þ¸©ÙÍÔ%žâÙÅ>ÄË]xÎÕINžç9Ïó¼G@‰b(@°äÀ‘ý¹Ùé[6/VÉyþåü¡XHB¢È¹:¶0åî²ÉSK©…µDrî|íé⊳ïRÔ1êSê8•C¥Q©#T%¦âyƒÁg¦-£Ý¿ÙÌšóõ­½Œy*ÍÐf°ŒÏ†»†yŠÌã%$Y-aJ7eË« $½êoxÍbÞ‹ØþÈ#À¯?âï£kĿǹ\àïn“×1Þf¿à5÷w^ ò6¸%Êb]ŠþЬÝÇòÏb]ÐÅ܉ûŒèe ]êáÙÒ9üÚO˜q9” ¯å8™†.Ú˜ÏVjR†ÜFK»“Iš§CÀ[Ÿ£÷£Éâö.0‚ רê”gty*ú èYN/‘¤*”Õ2ÞļÖHï\ྛŒÕg² ÍäŽ_›OVÕ-8á6½¶ôü5 Èd¶NU¡S0å[% m¾Uro0lúv‚v—\‘… ¾€ÝÓ¶Ï@;ZÐYÃqÕZZSÆî-¤ÒZ¼/uFýš 6cQïb_²q’0ZeÄy,wZÜROŽï ™kÈ6òÆ{‘­xCÿ £gšžî …À†,Ò¾Æ=hµô¾ëA(»bx64ˆ“®1¡;7º† 8·-²eñ6Þ˜Laã-!À•â9œ˜žË î#ûøš.'oêçñ²áëmî)æi€²*G¯ûÌ!k€±ÅŽÉŽ!ÿÈ`ಓoJØ{®|ÙLžàƒÀ3‚|úæ7Š &ã0›åIÖ­PsR€JÄvƒÕÖÍq6šˆÿu¾ŒúÐ\ÙLÄðØéWpòyÚbâóŸñ8"6ûg=4ÅõÕúõ)¦ˆìÖÕ4žmjEŸªÇ2MÙé1göÏ>úRî=A’Ù“LSuK#ÈQÖTÙô?xUÏm}3(õ´¦êÜ›™€š› »§£ß`¯àx˜E÷Ž íÞu¢¨´”®ým3Ôñ;ÒJgÚÊ_yªÒÈ×z9´Bó }æqã5;ýbê{ð¦H{$zÓ#ˆžÇ{«| Ö9jòÕ§*µ´ú ®…Ý{Ìs¶£4ObÃU| Ì(TÒÞ”§.d›éb²þ3"Ê}ÿ²úí ^ÛR¡élu6S›±ÃA;¬æ_`\Í·kØý+tUª“ EµN©ÂvÙÉÄ1mò¡±»½&u¯RÏq­ZFÒTÅ)ùŸ‰Ž±’Ä%‰ ˜BQÿs¡ endstream endobj 131 0 obj << /Filter /FlateDecode /Length 4921 >> stream xœík$7ñû&â¿`"ÑCv:~?$"9ÄeB—€ævo7Ýî\nv“¬üvªl·]ö¸gç^ HÑ}¸^»\U®·ËýÍ‚|Áð_úÿôòHŒÊ/¾;b‹OŽŒ²£´|aµá£3‹Ë#'Ìh¼Ï#OŽ>?òÌŽF¹…5ŠRÀ¬<⸳´„gE&MtŽbð£&ëimáWW­7aå¼­&H¥Š“‘nTÆœ·£cœâT&¥jNÂ)¯6¡DVc‹‹£oŽx`ä"ýwz¹øèäèÝûÂ/üè0‹“ó£Èd¾àJŽVc).ôâäòèÁðùr–ûᯟ-W ĬÏp˜Y­ìðáý¥£gL _®¤„go†?Ãîœñjø}üáGPrøBcÞ1!üpï·ËòGýË'ø—eÌ Ȭ³ÎfðË/Oþx,ñR¸ÅÉŸŽN~ñ`øç Æ< õbè•Vbx„ÃÀ1cÜð †…SÂV ‹9xvË:!éà:ÎÕÊ :ü8Ð ­—ÃÕRXƒ×®q ϸã0¸Ä¬……#4é½Ò·äù¡ï¬ /j'…4ÃY\ÎO«åòè:>MÃ)¶¹ TÃ&ÉáͰ]ŒIàj^¤Ùa²óFq’×&¤>, Örx`w@(«†Í³8j™ND /T܆ ?îÓ7²Èscú§ ~ϹÒ¥q Ø2=÷¸fô°~Œ/:&­³áÐy! /h®@NÎ@à×OŠŒ>!ï#hBbÒ–p ìÉŒˆŒ[Î3ŽË \m5-·â|ôZó¸j$GqåkŽ Ðg K~»ÔØ\Z'¤çb¸ Äh¸W„œ® ¦I/€+Èg\nøÇòäk°R+°â£âÞ‹ÅŠÌ|@¤!Á;~aFo¥Ãwôh¤æfïz@>¾Âð ˜pß©¬½óÌ,ªWÞ Jְ¤³þµá¬¬mpæ{qV£² ,cõÊvG“ @,­®Éê\ŽÎî¬äsÚYÝ€‚XÞ¬^+ЉqhY€p®÷æ2C`¶Í‚Æxó0ˆŒ`žWP»€ª#¹ÓœÈÑ8b“ÀâdUÝâ2hù 2‡ùôø¹˜#Sð{ÕcÄÃqüb(¦èÞ¦²Ò W_[«bð®ã ÏÕÎ ít_`ðIû¸oÉ3y“X°5’¡–G¾Foç¨)#P‚Jp3‚‘|I•ÏÇÖ‰ Çʃèõ>TÖÊ`È´ô.™Ï«"_g‘W`Ü58ÿe)8ÄÁ»(µ[žÕjz¥ñùRÊ1¹Çtð‚Sn÷2N•œ*L|ÍXˆ{ˆÂ¬‰S ®Æƒ·jãÔb®Tr$áÅ/–Yzƒ#R!É!ÿ¿-DÑÝjp·Ñk&Ç€øã¨wU[c]bLc@WoZ<ƒ^WŽ7-Ñ× ô³ÜŸfŸFB¢ÍÝœ¸L ÀÕ­·i5&Bô£å¬ˆ/FU‘ñ¡ÚúYa`s«¨)ÒŒ*MP"GW[Áì´‚TšÃ«nØœ'&CL,úujìMa R¨¹¨¢"jY²`P#ƒ˜ ®H´ÆÑ<!AqǹŽ6¨HlÀˆY $«@ê'ÑB1îuˆ ‡G1<&±Gœm<<^aø &ÞÓ80”Ba€ \~¿ƒ (hs#§o2{ÉnV–³0úi‰YÉäÛ³ÑÉ$À½À…5JþG|c²¿@ I¥“HÓ÷utòî}Eí×^)>ÅŸÖv»Íµì”Ï“ ‘› Á‹g1Ù{= vÈ¥Î"ÿ@‚˜ÁTØmM²´U¡ìÞ£´°q`–¬lÔßh7µšÿ7΢ûÌò¢‚䳈‘¿x\xO¤/2\A.¨“¥ µ4⃰‚nŒÖT² 6|×CT‡ jbâ{E(;‡ŒÄXo§ÉzJQ•ÕMUËä_èŠÀf0î9Vä>¯x<忺 ‹ÖhtלJ/ù€ 0­É‘‚#!žf.ÉŠ>‹(Qkô:aåu+…{æàS»J2&²Vfé 93D¢UÜ…IÍÄ#’Fê¶®àå0—iCØ”æ7ÉP»³4HåÍúi;¹ ©ÓäÐt: #¨¢tᨄYéïŽÅvC™X¬Qù’®C™÷— P€1èèþ!ÛbFÊ^ð4ýuW$JT‘Y›ãf §z°´ØÎÙ­rµÚß½UÌ’ªViº= ³Àq vŤÀ”¡Ùá`Ø¥ÂâÒðÑò瘹ZˆßóßyÐx=; üžÕ6T¨†ßÀß­?hä „¸91Þ{˜á4<ö„ …•-¢ŒÞ±E&Ù­Aª0p„Xg2³þu¯ju\•a9Fˆ&DNÕèÆHD¶"Õóš_;C·¡[Ü:Oäòk{‡@$ÁÞ„J„/]Ïðâ|º³¯}Õ(­€ä+a ¤^ˆâx‰|Ü7þ' èM¢ðaЀšPb˜¿€ÈÈiñBª°:Ä3ÑXáç)í/l¬Àˆ½u­£ðäüÁí–Úî,[¥ ¯ÌÆS‘.M9ºÉâ´®É9·ŸÄà‡`­>Ó³g¼ƒé‚Éaz´¨3ý=|4`4Ó#ï— {ÙÆ5ž{ƒ„ã/¿C…KÕí ^;Íóμ'ä)¯÷Ÿò¸íÀyÔãÕYø5Ë?èÉÙáf©³ô‹ìv—‘¼ïFvö}?#ÿ™Ÿ.:Ûú˜pb¿¤ôü¦'3çe ë/»üáù÷1?éÞ†\=@êP@…û·]@¬Ht@ÒÝéjå§wðµHêÃήP›×á5ï‘öªä¡!ñ¥î”À>”û}C;×=î‹øjÿ+}Úaò“½èœwÈï[†O)›÷süé^›Ö%çGûýÿ·ßÇt/! {ù}‡¾5ÝCâ­üûçD}¦§{‰{*~ÝÁ»7¯§ŽoõØ}WTÓ£êÐHè`6–—û¾¦§e™‹OˆB½Œ\¾Ýë©1Ç3®¢ÿö‡Iÿ«2Kó¦3g¹;þ˜jÙ>æuwæPGÑ7à‡.³í-øª½ú  §€ow~}÷ý€ 8=•¸ëËúO:`úA]ôã½Ê ’¯{ƒ8SØr4ü»W;Â’ãbÒõR¿¨ïÒL·8J*Ä‚­”ÜV…Ü}Ýã¥E¸)‡6:Î:E²—«zôŽ„ôhËé )·%Ô„8­!­û¥ Ûra„œ…>M6Tùq‚ô†^ç© ²ÝVÆ–VbB mØÔ‰u(¹SîÌ-[¹Ò8S.¦Å¾^%SË‘›ÜÝDK!=)S£R¥ßªn=›x@ØAO,nJaöatš@ º×‘BŸréâJX<žª¸Êî¯â‚ܪ:sˆ]À\sk‡õqlFv|êÏ }iú²¿Mà˜%|c¿ðÌÍ©€Ã+m[•°m*nÞѶ*GÍÊäu&CPšÉÑHªƒ‚T’óU¡»àa†vÒ‘šé·øÄÝD²Ä‹íI FKÐTMNË©ÂL‡âí´]&v¦2cÓÛ¯Ð0ÐtÆWwoeìŠ+3e›„rÅ€ N§<ÝïBž;kfu6ô£‡èrăS%JUÃkcÑ'ìéï‡ Íñí«:Ž õž;ˆÓð';Ø£{TîŠÿ:.3ú¤^ÿmœ+ž=HÈ£AÚÅKI‘l[5J“cÁ"²ñ[ÀEi.¥&ð¬LŽÇ­iêìášàBÔ76 &ÓeOÜ uþõ©«2ð±À¢'%–á\_Ý`£zÒAøM5L´6xB÷OEëUIäò1Ù¢ rÏ…´ïÜTãµÏ3#Ëᯉ¨‘ç¾½%ç“Dâó©í\t}ófζᵠä®q4Xg£KºÏÉ>³MoÏ6†›Of#‰åYdz³ ƒéZ¹&е“*ÚuoB¸€m²uË* /#¬2~êS™n )¼Ï;—Ó›Q¹ãÕ}µ„nè©;œo-i^¤±"¦7ÅúÕ§Ê…ö†‚ïDª1Bt0œ³‹¸‹0f¹ØcŽ­‘y› >Û4•×Ç”Ä îÙ¢|}  X_:}´Ëäd‰2ý5ã&pÇ ^ÛoÓ;«oîðJ¦ GüÛÈXÅtÕ[< S‚8 Õ±˜ÑJ¦Ÿk+Y¢µù.“ÞGhcíÈŠŸàÁ#Å03T_]ÇG Û!ªum´QIAÈÏ*¯M„î¦;÷µô˜ pl`™ @zˆ4÷òrÕŒQ¤HåËÿ; åwrì½Á©|²]¨yû„ ¯g YRØìÊéÇ’Í AÓŽ×NjyœñT £Ò1gÌÛ“ø^`GvuúácbÈuO oM¢QÚzqmÌ>Žà\¾Uçâ#Á#Ü2sáz`;aÕšmì¥_Yh6ÁŽéÿôUŽÛ8ˆ· go3xE%ô¢6<>ã%½P7{Ï7»¡™¥j³ FÀQ”ã¿HÓ]èÇ»´90¤ó ØÇ)ˆ†d¾ECèØ)Ñ[º!í ÓžM$åOjÔ;-qXzݹ¯Vd.†1·›raÍO‰[Ìʼn‰"SóB Ïæ…•K[á‰h;‰¿›K#MXžCCr9•Ðj§¶¯txüŠMÆ>®ªeÉS…+·hø ¨¢ÄVÉUn!|VÀÝFô­OAl” @“˜ËõMíÝž¸¹/Ç1{ñùà‚òE2gmÝz†ãç#® M1º±àijÖu¯'åÀÓèÿ‚o’ӶЛ„¹.²úÀt%”‹¡ 9á=µ1Z½ˆSJP”S§«­[J…p»4÷UÍ’°VHµ¿[FKY›±:´™æþ>9„Ëé'-¤ÑÚ1}¡©DFÄsŬ"úbLªPãõàæ‹;ˆ… Jž1ÉHcóLv1SLÅÒcËTÜ>ÐÞ@bÂõ\lG‡¯Š³¥2M.ɇ¯£¨í7 †QØ„j¿¾_æ¾õî·æö6f¡}¶)Cà*xm¼5´éÅoQ®ÀrÔqÞ“Š­úí·g°›±²3(?JÀœžj\ñv31À$à›–vÑÖ /CÖIé®JÃ+GR_gDéâ¤FHp&ôQ9&uz“ _E_jÕè´›©½ žÚ»úë8è˜j„>+Q]«®åxZ¸Ž g|(Í‹H°gzêžÃ@Ï^ä»mI$øîÇ’üÓÛdíãm.œ·wøšjSõ:¶-æ¢pm¬ ¼«ªµpÿ³boïQÒnP7¥#™žÓß¿/›6÷•³çM£pÃøš»+<ÛD¿È9È” ƒrŽ\ûª$•@|UtjSe´™î¶îS²$ȳ2º©R4ü>Ôéª/œÅ\DÈêóptBca¢¯hÕ˜Ô^®ãXF<›iiûœÒ5móm\?ÁU|3M9¨¾EXéA2ZhÌѵ• Þ9ß¶R|-†Ò;kMLˆ_Ÿ)¢O3Ó≶ØÖöƒOH$Dmû>™ØÀë° {›)ʧ†lbëûDø¨msÇé¬É»R’’Îì„fל¦EêúâùÔ†V¹> stream xœí\YoeÇq~gô#.‚¸ Ä“Þ àÄr8r"‘É’3›‹LJ–'¿>_UõR}y/µMÞ=èT³º¶®­ëœ;Ú™Íî ý×þuwæ¶Pwߙݿœ%k·hÝ.Çd·’vwg¹š­„±p{öùYÉvËÅîr fóHc¥Øº¥ÈXѿŠ°ÆŠÆò)l¡(†1¿-ű‹UjÙrœR5X •|ÙBªJ¨bóVŒ]„šX}eÁjB v]&ÅÏìÞžýé̲)wíWw»zuö÷Ÿ¹º«[M.í^½93Û…l€ö&oÖÅÝ«»³/öÖœ_ØjýVËþóó ³ÅZmŠû£gkLÈ~ÿç°Ÿ1¶Æýï~siñèö¯Î‹ƒHÎíùé'ÀÆ–ö¿Å£-%áñw è=”+Uè™ZŒsuÿé¯älÚéa¨ºÿLqdzÿåý§ÿLëΘ à“N˜þŠˆPl“°ä캄ÎDH8w.üÿ“ɧXóþ7Ÿ•dê^sb5j2!8–³1%yìq_¼Ýÿò3M±™ËU`F2FÊ0×oi¹Ÿ aó&ãJ°¿õï8¥õ)hv¯~söêï¾€1ìARØÿãùEtÇc÷·cñr<½OãéÛñôÍxúr?ˆãéÝxúË12v<ýb<¹ñôñû~,^öv"þÃ|œ„¾<×d8„bѾhªcœ¦oÆÓë#¶˜x×Çô¾R¢¿dû¹ùi<ýÍ‘µ›#O×GaŠõV›¬/*ãýõ‘=SÂùWuFÇ|B³>vF“ЧŠÍøóÏÓð¹´íôÿÿÈ_>ò÷Gh?1ç;üÏÿoÎù“WgÿEõ­:CÕ1¢æl1lmH¨U»Ç›ÝïîÏâ] M„Ý!CìþÀÍŠ€ÝPk­ó[*(£cTRÚ9“ ƒj @lo||Ô8Ó‰Q- —"Ðaá@;úŠu[&ŒNÁø-gÅC`ÚÑ„èMľQá …ßajÐ.¢)ØPÏïÔJŠ›;‡Úºy€9l>tiseÀàémè+ Ç~GU~2ð»¡É×¶/â“F¶úHîM.h Ò\)ugk Á"Ú<Lj¾L€+à%¼ÿ)G´4}O„$¡ö•„3A£×·ÆBV˜„¦ mGè"õý«Ð|4i„-4§Žt.xnUú6é|-à‚õ<`/ÔH'?0¢ 쀙6ŒØÇ2 /pg!0±èBtŒ.d§°hÁŠy(KD(²%ÍÆJ‰[‚ÛxX+`S¬A`Ø“=W`°õ0¸×8†N¡Ãƒvôxj†ë ðÔ¢X0Hø]†ö÷.bß¾*ÁŠ%ʘȜºZÎ~cǹºäŠÅPM¾R(vlS4”&F¬w ¼£­Àâ–1œˆËЇÀ´£KÑ1º”ª‡è†€#*¸"§Þ©)ÔS@Úôâ[piˆá(Ñu˜ØÂt^cd$ê8 tP8І¾9aò¾ßãÌýd ¡7 úß»|m÷ªÀb>dº«óTïpo@õ*¬b¬côê,†ù˜æcÁ£A;”2M#œÚ©›ß‰¶±:î'×~ÉqѲ4#¶ËÀÔa ù0Ñ]/“^ûOvO77×ïîßž¿úÃ3‹\à—P.ì‚i·_]ß_|z³»z$ïÜŒµuÿî››…¼÷pÏZOƒ¢V#W¢9 Ä¢çu«¹D¿¿|wÿæÜ\—3€ÛÛi²Ÿ}až‰£‘P.h83RZLd-r/v¨ð*dnÔ‰Ýî÷úzfºJ %:¹ê¢¦ªi·3ÏYdiO£nÜ U$y°=²œ…cf çà‘j_âš{;sœ%§u´°?qE…áÉg†C.²Ì+RÝ£pFŽà쬲Yiòd膚ªÁÍÏóJËeðnÉéÛKÔªÂ*ÄT©Jc}º«š#—[¥j¦ÛŠÕª¦dš9ºªÉs!Sª&8ˆØUM+§UM®¨§ò„{;䚪FêØ]VªÆD-_eUÉ¥<º¹_j—*?Ì¥|AGå¸áGÁVsòCkOï4,å<‡¬½ó•ÜÆ^yòI£þ™8·˜é3¾,„ê·Ä²ŸYÜ݃cG— ct ;…UêpIÀ9º€U:„;µR8„×Wš— avø ;`nŸµ_§ÐaáA;ú ¹at yMÓŽ.EÇèRv «¢Ƀˆ4¿¹›0µÝ–Ä*äe.ۇ=qï0˜zÇ/Ü&N„áFaÀÌ7´xþ? P×­80Èvh"Èß»€m÷"?i„škäÈ!P¦B;WPŽL€+åHµ$ÁË2΀H`8 ½ñ«£ÒËE¡Ãƒw´J¡ŒÑ(@°iG—¢ct);…U>-lFÃÄ3¥—;µ‚ÂÒ£¢p™ì0™Nb²!…ûØßaá@úJâÌ> #{MÓ†&BGèöý«|fUœ[(X‰§œs…äÄ.ƒ†CÆA‚Íp§ÐaáA;ÚŠ… †0[¸;<L;š£I9(¬zH©¦qM£ZŽ pwJx\5Ü4…¥JIoÌ B¡AáÄ g²ŠB‡}O‘cºÂèp]â6¦ó˜vt):F²X”ø £¤Êóõ1“ø­ºe6ó«¯èÉ2Aá éÄj+ V‰™ç¤«­,Xµ$ž@N¬¶¢±‚µœ ”ômeÁr£Waµ•ë@ïi‰Ÿ7¡Ë{¦<1q?t:3o}îÒWôLâVˆ{z:3°Ætf`©éÌÀÓ™¥¦3kLg–šÎ ¬1Xj:3°Ætf`©éÌ¡ÞëgLg<¬ƒkà‡žÎ|ÿ°_Mæ{üŸÎxЭÈ;j<óù ³4˜UãGŒf:ÍxºÍ»úÓF3?ï=\ÈGy¨ër<;Érí?=›™ŽºTqyz•ù]¹7y®u²´RÙ9£‡BÓŸ‘å u·tÝv|‹ñÁÈ8bä8ºÅEÚÈ}iBèP¥=ጠGŸË+…%‹–ºRÒfæ·Êï>±Ò/‚†úƹÌq荒zâ‚¡uM7°àµ®µf™ü ]+}—൮…Ú­j–Z®TM‰ß/+UÑGÒ•F©JWnžª U£ç‰ReW†UCUš9Ô¤TÅŠ¡zÛ§3ÇcÆæu íÈ (á4bçý5¯iM‚·ó#ÜÉïß~Û¾E›ÿ¦o!KF ¸i_K–¸‡V?œË'èò&[ú°-&Xs¬}FßE–’#QßbÕ”€Voÿ¨×Ÿè=‹ôLNÒ‡©‘ä2hÝþøÝDúH‰Þ^Á/V*·@‰4®sûKZ®¸¿¥ý7ôùiµ>Ö.ç}rƇTˆ¤²h?mX$ùФµ®Ô¤w~MÜé³X»}~È«¸úCK¸d¡n é…›àþ»s8^6Á-FÐÏC• äv1.äóQ›é£XR ”ä,m%t$ÇýU›‹ËûGm'V· u­–|7³êÞ•¹? pËáÜÓº¡IFòû7ËÊ™ˆán…P(†¡okÖ‰iM ¡4ÙYÓ¯ØÇh¦Ts÷©$¤ïÉí¸h[.xœ_e#³óÆ”N²Sô¦ó| ”Z½µ„}áÐÞ¤ê'YO–œ &çI¦I𹩬3EÞÔhò¡ñŠ"þoä+‡$âôÙŸòã ´PQîGë( Áj¢7" ÈÅçÖ`‰ Ú시Ž:‚´ÿ3EG̈)2¢…Á©CQ2)1–ø¿”ŠZþÝ4áapxj,+qÞ÷Žù¹;¢t×»?*‘®O˜‰=Åc-Šï‡L8t߯bñ_±cÅ]qÿmcäB±ûG6&”\OU2h¶Pa›ÊKζú3ô‹ž´/МTêN˜Ý¯XoÔ$dÛçð7l¼„֌΋*}õþZýŽà‘å ¸$ÒyC‘oþN}hO’¡§Á±Õb/¾ÔH¼mµeùQ½°‰nä_Ówùô«„’#ÐGP‘Ÿ+랬BÃ<±V2çzǦª6¶¬¡X¥&O#…3{xCh̪8LûÒŸ•Cw`›Uàà!ðIòçZXf»ãj •¾>ÊãJíý“ ~!'42R)}´K” úr%ÆWS¥ÁÚv?”Uyúا ÷ÛñÓ‹ÛixEöò^Ó¥ãˆîö ,øÔÙyQ¤ýä’ˆ¯‰"æ£ÁåZÎ\½R¬Ïý¨yùj.߈ÅÑa5» \Kªj’À à(‰‰9"JúÏÈ/D`C“"C'ÊÓÿ|N_GVÊ·ó§+PŒš$§ýfP'È·èë°TÈNRŠå †Áç/Ù†¤õõTyÉÃëi»Ë×ü;‘лvê,8MåZ ’tð¿/B …²[²@¶ee¡, ;ùÇÇœPx+tQqj]Ë;)Ñ¥ÂVooÅC íi_1ºsä(š7™ÅÁýŽ»íå7B­¬ñõÕà}£¼Kž²·r’§&Z¥ô3“Õ¥P†áâIÊG~_¢rÍ|mk²ÝóÙ±DŠR]¬BÎlésç²¼S~£Ò݃:>mq’Þ@°ì¼&‚XcÚ‰ªLÏcÞQ˜{úœ•Pªñû×GÝò„—MMSê·D^‰c}ÁKˆsp¢¢œ6çh¬fn t‚<âÁ3K]=7(èê,uÝLa’:µ%{è $lSºýØK)ººªØ¸Ê‘HÞ‘£òh–²×~4¨v'RYFt‹¸±J€Øi†Ó\–ªõ é a·t€<‰tàp?F×tèE¼žr=]*!@§¹ãòz®_Pgæ 50J$]¦.ßAª‘ñC—½M(œëRèi¥ ’þñ|œàÇÝ Køí æT%ŸbãÙ½i͇÷ªù ×˜&Ž‹í/fž>Ò©ÐÏ8ò¼±Øð·ÂÂp§gDìɼwDÔ版ªSÙÓêŽ.ú M÷AyÔÎx#¿­ Ïb¹ýô“ƒyœÎõÌ.Û¡úkCÙ#áÂt©­ŸÔ?µdªÖ†¸$­ëö[ϺtQ'ºÏkî3J¤ n:ÑD&¾ö£ÑBµ†uýHgZ ±ß߆äÄš‚=ÌRŽë óîåý¢£j¥7t´šíéºØwˆÕ¨ph .Ùˆ ²bqÔ%+ŒÞç0SNv‰Û¿š¥½íjîSb6•|ñkÞ¡$eÐæÑõ48”'‚ãß +BZé<~­õB´?»ç:£R—fVnMÞ Ùb5­ËQßÏŒtG‘~/ÛL]6¿:p‘ç-çˆ4Õ.G*•o–Üï:è‰8mëþÝìhïI;¨_¥vÐøâ}û5nÜ9Ð䨗¥Áÿ¦ÿƺè~a¥;ßLÇÖ½ôm»–¥¡}’UGUP.9µ¥Z(fÞŠ«P±]šé„ä‡×?4ùÐä©´©]VOµ*¢[¤u*Bé^ÙÊ"ån*ëQ#OyQ5ZÇ-´œh‚´ÌÖŽàG‘/÷ªG'ÓÏÓ¨º®£éqúKJ”û#ç–'aè‹Ýr¾9NcmÔÈ¿³'æWª3Y÷iç>«î¿‹OŠÏZœä(ßOýÀóÁˆ‹ä!O»úé0̉Yêá@½³[KºieÖÿQùUçÚ^Uª]'YGf zwyôotÕ¼¤ë—ÊF¢ý¸UÇ5/Šë™ŒðR-À:äÕú'çÓïâG&g©¹Ï‡©dª ÿ„ë.=ú‰×WJku9V~ÙTÉ_yéÃëgŽÜQ¼—¿‡5ý½ŒctñœX»øç‰\uÀºùx¶ºÍw™Ùš{µƒ)m”ÑxÎhA(ïÿU€ôN9Ñ’ßÞ½¤ç ÆU¯³NÜ“Tú;L¸UÚ@ýÆèiÒ;80þaP"$S¬å…4ûA_vAuQ7kúÏK²P*˜xâµÚK96âÚ¯/…ßÎþåÄõ©±³ýÞħÜøèD¬Iÿ|Ý|¯ü|ìÒn±ÓO¼DÙ–XÌgéZVxü¥Ë¾ªÞJlÝÀê³ÿšSL²¦qÎTí:íà÷µ2í8LäTëMQ'zù,›FnJ¦#¼ŸÕB÷ïfU_›tú!‘¯é”¯è3ìTÝ2šR‘­è}¹_zmÖ¥¬Ei™2¬ã¦Þ"ä#]¹†š2(ñô1‹ê¤{ÄõwíNwïc&¥ÄR³È/Ï»$iyÝ~y/ŠÒ?‹Øçx%·®ÁÓ?+eR÷Ýã£SebÕK,ƒ«23{ng°zîtdÔŽzú^i½,%þÐô®òkágEº>Ø—ïªË4œ]쥛(‚àá]ÒnpLÉVÖ¼ŸNM0/»Æ)ôï×à§Åô ·n`ýh®£m îZe¾õ@ÁÌñÅL{z8¥ÊäåmT½ì°ºQiõVQ=˜Ü·¯°ÿ碌Zendstream endobj 133 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 376 >> stream xœm’þCMMI7‹û`øKù+‹ ‹ ›÷ïþºijJK“øˆø(§ø§÷è÷ÒªÓ÷Øù›¡opnqnz˜v¦¨¦§¦û`ü‡~†‹z\³eÂï·÷š˜~‹ˆ}Š…€‡t;_bd‹w†˜¡¢’ž”¡•¦–¦–¥”£¯æ—ޕޗ‹•ºc±T(]ûz~™‹Ž™Œ–Ž¥á·¯°‹›”ƒpt…|rMølû`§‘ãøƒ§÷è‹ë÷zÖøKùœ~ pnpop{—u§¦¨¥¨ûhý6zFVQP‹~‹€¥—“£‹š£x˜wlqpke²rÇÇ÷ ¯÷ªå÷úŽ–”‹šÂ\²OûKû}~™‹Ž—ŒŽš’¤Å¿ÉÅ‹¤”zk€‰}І 7Ÿ ‹ ‹ ‹ j ¤¿endstream endobj 134 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 758 >> stream xœUÎmHSaðçÙl»Ù˜%-*bþHô¶$ˆ(z¥BÒ(’|YE·¹6ge9]/Î-ݼçºeº›2õ΢ ‰ZÖpX •XDõ!èê[ÐsoOA7GQŸÎóçü¥)ÆX½3ÿ`ñ:ãïu‰‹†¾[¥èÐ(A“•Æ3ß-xž13)0f2,NKµÅu¢Ö^mw–G©öYm(g1BkÑaTŠ®â"µü¥¡1œ‹_+°¢R1!µÒTñGI÷“â3]oaÿ¶;4cšnÈŸZÕ]DZР±‹|GwÇñɇ$ú’\\›0L2Ú®ïô3Ñf8“]Z~¶Q_c«Ýa¦›ªèB]䤺‚·ÎW&¢;D–;¾}ß,°œZÁ ®Ú&ëc½5´o551þÓ nh‚ÊóÇ.·„[æT]q­sÊ=ðh‚d%¢†Ç$w¬èûÆhÅ ÅDëeÑ.`â|¢$CâOŒ^yDð…ó\8 í ïo¶±h;«§õj¨GÅ‘*—¥õ$ÛÂÐ Míagã6¾$ä•E6†–¨¡ã–‘êï0|ð9ÈòÂ%ñ³ÁNhƒ!†XÕð÷8âu1W¤¦ãÍ¥¡ÜÿCªŠ‰öXŠä¤suPql/ÅçR•Œ—‡Î/Ÿ’/9=‘I#½~ãÚp[?—"ÃlYnØ4äMùT—LºqÓpÅà¼³pÃt éè* ùRr™dîðıºkMþ'lf8Àh¥^âÅoE¢”²‰G×Ó ‚ÐÃa•§Üî^è1h¥5£rl6yS)Þù/¸Yu‘,%êÏ$ bTý=ÐÝJ—ÑEt=]OäI¶HÎ?w£ŠfUn$KgK&‰vOJ«•’•¼Óõ7Gü-þsõ¬>°2·`äi¬d¬(Q˜Ø Åû©ÂèèŽ !C˜(^Üž‚i/K–M˜ïšŸÊü€(>´úô´ ‚f.hÒA34™ýÃo•endstream endobj 135 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 2040 >> stream xœµUyTT×~ÃÀ¼‡%,êkôØó‘´ɱhÍÁ(ƈ-‚J”Ee©¬#ë è8¬ƒ3(ÌÌo@v™a›Y†EQ”5Z4.ÅX£±ÖCmš¶±÷áÅÓ¾Áh<=iÏé9í»ÿ¼?îýýî÷Ýïû~ÂÑNë6lö³ÿ,÷”ž v!¸86üÈùÞl$ôwr'ìßÜLIö®Ý²¸ÜÄ$ñΔ°´ô ߥËbJl!ˆp"‚ ¶¿ ‰ â"˜x‡!6 b61‡ ùn„#QH< î;üÄ!_è(¬wœë˜ã´Éé7¢…¢*r ™FyR@Ýrþ9§všVî5“Ñ(gBÈÕ 1úþŽÓžïFÄFJícöÞë$&/UîÛÎâr‡‚1yÆËA/\QWiO¹xYÉ`% ²(ˆüæwÃǫ¶28ç?ïuå.*;9O“ ÿ!:÷Pȵ£yx"3˜ñÄöÀîÈaZÀ/‡¯;ƒ5x á5©ÃÒ£ê8 ƒº³=ƒmæcÆÓpŽIŒé¦Ä²mQêˆÌxiRŒ|;P®Üæoñ¹ß@Î…( åÐwû¿ždTûŠO¥¶+·,Ýi–èmaék2íßEØë{0„ËåGaŽk5vrr-êælUš¸E­‚£èà¨sãVÐPUX¢"£Ñ*UûK2 IÉ@a¯”÷·¥ÕeµÊÙ¾Ô¾}Ÿ*O©>/„ *Qãã³óüå\F]«-/*öÉYìF檮ê°ÁØÌ?£i ýphüj_ž%«•MꉩÜY±ª.¸>¦:;ú'upeæF··Êjýaþn›y’­hE³¹N Ïn!ŠáXùZ±/ Ii—Æ/òQS’G¸…ÄŽww]:ù« f4%œ\Ÿ–œw›^!<>Û … g\ý‚œ5äÏ6o\ã[:xšAwH¼ÄNÛ P/cñb2– UÆÏàî£ó¡ÅÕNV2¨X?Ì¢¿ö×7¡lSç£6“`ô._÷z·ÛŒ 4| }1½ñÝQ ¡@½$Þ˜fÌkïhnîh,6H+YkÛ'PÔØ¹d?6 Ó| .M•„A,õÎß²¯Þ¶è70åñI':ð&Y;%D%'ƒ­–ñ¢}ü¤±[£º‡G‡n¡ =ãÊ=Æ;L5÷¸ «Àr_Èe {´éÜi]PVR¢ÉÑd‚’uÒ2þÅÅd—¦RùPT¢*Ub!VÎÃn¨Q]¡®ýü–nhd¬dvZ¨Ë|~f ©ëÓ?žž§’+sTrYTZàzȆâƒJ=¥3Uwµå6egåæfEÛvžùbø¥Ž}Î9kBñ6ÁɇÈvCˆ¸©5/YO “­Q†0^Pó±£7ž=žx£9w†75²H´ä%ÓÜW¤ÿô=:+zkB0l„.¹Yn)€ Ð7ŽÚN W™ae&qM>h!‡÷K¹²Å·£3Î4Œ ¹Þ1=¿ÜΛó-üº·vÃsðÇh>Zp ÆrMuB³_©fÓW®)C4Ä2ú’mÚsÐOéÚéCèß·ôrƒrÌê²ùqœ^ºeA ‹àæmy»÷œ½‰éz•Uö P½qå·ý¹Gvµ³':ûuPZZRÊ›U^_ÔX×TÝÒ’cJ(Wïˆf2Œqu¿êÍ÷W'6‹MYl±J– ‰ (‹îÏŒ-ˆL…H*9„ñ)2Í:uÛRt&Ì„ …Å 1ëÒô¹0C›¾²¢’BZú-ø£¡šÛٺƎ&+PŸ=ù Ïb ó¤¹bžöÇÈü#üc.ô·ôt^б/¢Ôþhÿš¦Ë¶G$É-âãtñËh™®úÆ)º VôÔ†f!R€^ç#æžÑæ]¦” é®T±YfêloëbðÛx/£óUûyÕ¾ZrzÀªíQÏ”üH ÇXôÒujŒ‡ôõ MO § §VÐÏVˆöà<§nQZk6 %ÐÌsW­5–Â^ØMM7© ðbâÄ¢áòG0¯?Àp©½féµ],×@òÚ;d,¯Ö™ù³c|žöÈOHõêJªVÏëñ~ä;"›=¯…è&j¥‘ÛdWÇ•¼÷h²4{ t Ï­U«9X ÅŸ“S¤Â‹°h'!¿—ßÞ²^]/ÏY¯¶Wýg“äµ1$À )j @1??W£ä÷Öê®–™yPfy&æÉd•eöP3 ÏÜÌÎnüT0ýoŸrúøV}¯´r}úÞ«cÖ®©óßjÃ?|Ç6)#¿n €w!"VIýÿÆî9¢å¦)Ê$yˆzø]‹®Ñ€1ãé'7 ¬âP¸}Ý:Àͨj¾Æâ|Žò;…gá\‡Ïàfý¨aâ‚á(œ‘Ô¦Âuë`9¬…µŠ¹ïzY‚}L_äùi³çç”þs!úrÊîÐè$̇!¾Úx Äd+\„Q5­·+Ì›I‹štÈ­¬Žš­6Î\;‰ô¶kÌ^ì ôøÉ#«àüTüXÈ@ÁtŠH-S†*”Åûß~ÄâÑ7zL¿¶]?{åS˜¤Ðko\Çs±»ßòŸn,©n57Z›öõD2G®^6Ú€úóÈê•Ë7¦‰Y¼«”*Ѐd>ç+ref9ú5»8ƒË,pù¸Ì&ˆ”Ò³endstream endobj 136 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 246 >> stream xœcd`ab`dddwöuŠ041%º»¾øéÄÚÍÃÜÍÃ2û{¹ÐÁ½ü»@€Ñ›A‡‰‘‘eå¾_’Ý»~<ÙÅø]ý»óÊ–¢ß[¾Ç,œ»µ{e·äœ]lÉAÝmÝ©ÝÎÝé}{y”cØgtÏï^Ò6»½¾gJǶß'%¾_ùΰ‹=µC³;5»SÁê¾3üyò›!†}cßÛîm@ø¶{cP|×o†ïiìïï}Oú½xBkwg_«desywF7G û–¾§Ý;º7w_èÞVšÇÖÝÑ_?›ƒOŽ‹Å|>g7W7w7ü£f9endstream endobj 137 0 obj << /Filter /FlateDecode /Length 197 >> stream xœ]1ƒ E{NÁ cŒ…Cc‹d2I.€°8ƒZäöY@S¤øÌ¼ý»³û)úá:X³Òâœ|ÁJµ±*Àâ¶ Ž0KXE•‘ëN镳ð¤èo¿?(6€Î|3Ovf©Äòt /$a' ]YòNkNÀª?«É£Þ;OØ¥[9"ãIºÕ bN]:»mÄŠ'¡+#žxº—´úX¯ˆyŽó©ÜB»¦Ð)TÌb,üþÅ;§(Š|ä5eendstream endobj 138 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 743 >> stream xœQ]HSaþ¾Íæ—-Sca±v jÝ)TdvQŠ?AÑ‚ºˆj©«š6%S§››Û9ï9³å¬Öж‹¼¢(¨+¡‰º)è"úº«’.zÏ|u´au×Ýóò=<g&Æ9/¬ÛS°ªrÚÁž]‘_V3X R³ëËpW)V/Ã%Lp¾tÕúÊšÆýG¼Ç:ZN·µ´újOzæqÇIω…cîÁí[€-ç Ïû‡gÌãƒhb4ý~ƒŽŠê5$5ç(•ûh3Ð6 ÀJcõŽ5ßuƒ2ÚŸì ‰Ü?î›~|µÞoÂ):„}©Ö{gÓ¡¸ ~ "ÃM–nŸxìzJ&däºO‚\Yé:5ÑnY–£Œ^Ñ`$áøüþ;J/ÐóWgp àfQœýùÛô£aúÍf|9në‚0(¢¹rˆœfo9ŸSšÉ5ä¾Ú=> stream xœÒ-ÿCMR8‹vøzù-‹ ‹ ›÷T¾»¸3ˆøˆø§v©Ô÷÷±òÅ¥Õñ÷bó÷‘÷âÚ½Q"ûDfVT@ŸÀh¯¤¢¬«t¢kpozc,ñM÷÷èçïÞI×%¡Ú§ÆÏ‹ÛÛ1Ä# :Q?f¤{¥ªŸ¡¨°k™uŒµÂØŽ‹¥×ƒ$Ena}{mlt‰N‡xŠƒŠ‹~}”‹œ 7Ÿ ‹ ‹ ‹ aOU¡endstream endobj 140 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 3933 >> stream xœW{XSW¶?1’sªŠôŒÐé$\ÔGµZ§c©Õ©E‹ÏjQEAD^Þ È3¼“¬„÷3È;$ ˆòEiiõÖÎÕñ޶N[míg­mµN]'w3ß½;A;öû:{o’ï$d¯½×Z¿õûý¶ˆ™:…‰Dvž›½=¬?~ Dk¹bɶ{1ØO­}Þyé ôpúÂqèÆúr_³fm\|B⡤Àäý‡ƒR¼²54Ì;|Ûöy¤ý¢ÅKçÍg˜YÌf+ó3—qg¶1Ûf³“ñeÞdv1žÌnf ãǬe^bÞb¼˜¥Ì:f=³ŒÙÀüžy…ÙÄlfÞf"Æ‘™Á<ÅLc^ gd¦2…"WQÚÑ”ð)×ÄkÄw§.™Zn7ÝîCIûöçŵpOe=õßÓ¦Oÿ½=c¯zzÓÓm;Î;plz&̉súÓJ§|§Ïg¼&(,•`B?“àÕ 2[¼ÅÂ"ËF>¿ZY– © ÊËK%_¹dL[¥æälw¡ŽA'4©Ï©NÙÏ6±ÞšÔC¹¶X[<ˆ¼ VIFÉ¢,ò]#·A¬TÎöž†è‡BøTi]”ÂnEy–‘#Ëч' NÃOì„‹`ìLéú8õ †\™éÜocÿãž>ÿ^õî-R’ÊîUÀzqP[¯‚!¨VŸ™<†/ÄÚÄáv>…¶èÎcpõ.X ûÞJæÔç«wY2Wa'g?*ÏÝ-# ÿ4Ðz È„ …QX µÝÀ®b!Ãyœ9ûq$ÎînäYâô`:¢ó½{è(%IÄ—ßú„ã±½ê34Óc0¦ïi9¥ë‚1è‰hoÔøB „À;qÑ{÷&G³%;Lø¢^ø)Å8ãálº1Óy®Ç/yó»gz»6¾”0Dâµì5ÿàÖÎxYFh¡žóšÚk>ø!p8§|ƒ3qÆüïÉ4Ÿ]‰ûƒeÎGϳdž5ÏK%yûdaÿ"OK+˜,"“gÝf'>oqã¯j!²‰&6D¥X%M œWã,œ‡[Ñ›Èp)Y#›àäÌþ»ˆß£*5Ë„.Ö¬-”>”Ü…q_CèÉwtž0öìíkwzyÚD“µl¡ 7áQ³Ýna€Q,X,¯ó—åÍ’É ëÚðsIVÚEKâÈK±žäÀ7‰m#¬¿Í~[%EfĺhÉ+™òùÒŘ#±mŽÏIp }j‰g”8î¡ôðÒÃ/¬@z ó=•øJ¤jV¥NÍ„x.¦1¥¹±Y×ÞÙî¿%0ps‚ÔŠ”,™õ H9£­ÖŒÀ hQŸ·U0‰}SYyŒBe¾B/,i™G0cDŒw…×ø#Pž™¯‚Ì ©J•—/o’—„Ó<\¾éQÛœ(3Ë»sG²G²Ž(›R*rôÉÌ-s‡ô¹±ŸfJ•ê’LàÒ!ç°Œ<˦@vU‰FS_'-*©¬..îÝ? ÔÓî;ö]¾ØŸdHl–… -]][üf5Œqͽ_!SújœVªÉ„¼jàj ´žžs6…´³ _mýxŸ3Šñš0‡7‘¹¸)šU/›³@ÉÅÝ$m,™z=áÌÅÎ —¤cÑ>ìjyhè:ø¢NŠí,ŬBŸN Ûû Üpÿò®ž¯æ÷Jñ3–,´ï*(_–‘,l€À°¶¤žÜp†›ÛÆ9çdÍ«œWigb½²K‡eˆÖØ î W4 Ï™D ‚JŒëye‰ªJ¹Ö.¨—šØ}ªu„A„Ò6PdSöÑ… ;A—’Ô2e9”C™¶ô>×]G:«:5œ‰Túƒ ¢A®‰ÖÚVµ©Ž¤A,d©UŠÙ¤ØÅÁ’òh[Ë;b‹Þä›Þï)j´® Rªà C:MîØ§®‰$ÈRå)s_"….îhȯ¦äVèÚjÒ¶Ò3îUî§ä)§gŒ˜\Ñ êÊôrEu(A•¯µIty«ótt¤‹\ Çm¹í¥¹ѽ¢ |rWUU8òäG—âÌÂ,è ¨²¨â>uù-Ê*RèÀU…Eœ•³ôIªoûºS?£ïšßm\qå²q¦³Ÿï\æ‹ÛBû€ÓŸ×}";½UÀ®ÐPª•¢'KiÊìßrÔO· ¸åk7ÊSZ õ ­}Åj™¡u¨¼ ¸‘±àe²ƒ¬s+ã£z#]„gXâNâ<îÆ\”Ò=>…î³5F.ûOü‚7"ö˜O}8ö¸¨DJ;jFQP)Æw1‘Ï- }k¯Ý)+3™Í-ï[Ë¥Œ¡‰ÃáÇeÖ©ªsh™S³ùy_wYù]n¹J ¥®PUYÕl]¬ŠU[Ûê &Wü ´ª­?Þ%1vÇúĸ][¼U‡€ªVU­6è€uÇ$ûÅ*@íY®®ÅÔÚ®oÿØÝ¥>‘ËEVF¼Uêzµ-š>Úž18nS-6"!ÑÈMNA£à¦Ç^Ê/¨§Ä}”÷ežBQSYk®í†>8ßغO»"`OގؠĈýòàÁ-ñÇÒiê¹ìí¼)àTôè?ÈÜiÞ=bïµ',&^FÕàâ#6·ÆÄm#Áã$P_û™@¡ú¹7à|^ ƒ–k5C#ÑnU’:Â짪ôC½ª*_ž`]â¶&îˆòÚ®qR­Ô–iŒe`æZ“kâ§Æø÷†œþ÷¾w϶Hq½°¢²µ®ç‚ÖÕÄF(åñäì ¨  @QUãN²]„= #v}Õf™o`Àm±À¿ã$¥CÛÔÚÚxÄôÁÚîeäÙ…nĉðæSÁ—uàÓåU P*@•’'Mxk[¬/p=NS©YòÉàxõ¨*ÎJ¯{À(8èE}&|ß$æ ³ùòJëÐpº,H‘’¿JäU;£¤ä~Ý1´£uœ*!\6J Hj9Pæº-9‚ÞTQ²ˆ8×8Q&~Jò˜Ë~cë"=·þí¢àŠö<… 2íÜor샠–ØÞØ>Õ{>ƒ%gZO4uô˜Î@/œ8d®J5$s…ïóù%þgVÒÀŽnó Oœ¾wÇéîïk¬£MÜÈâŸÈNxðdGmæË¦¿n&á “–e|N•’i¨×åFÉès5ÀMt±1à7—ªÐYmf˜ê¸N=:‰ä¹0d Õ¬°râaYf1E‚k-”ÕË„AÖC÷) |Tij?Ø šm“ý»~1²‰?R,í¥} kÁU6££üH,Ì¡*ÙT ?l»C]Žý¢Ùä2óo/ : ?l.Í/ÉÎRæ¨eás_V¥ì7$˜«Ç¡—Ó´ð司V­ÎÂx †<Ë9डC­^„v—n)Æ36É™ŽvìWÃý}ª‚ iVã8.¶þ°ÞPWßÚ|tûJ­/H ûºücò—¡¿x…t]FÈk22‡â¦‚ì7à¦óŸ0× j;‡iWÍçÄè„^¼>Õ”6ÜË}<mΨ‘è„*ÈWæäÃaNQšÜ\S[ÑXŸn ŠòW„†IcšÔP+ø¢§×ë¾í¡µi2•*: öBxm¨á°ojPìáÖ|çÏ¢ãßÎ\íI>Ò"ÝÖù¼Hi1r´Q%É ËÚb]y5w¿€¾m2hÍGZdºƒÎÜ-X –ÊÈ*¾Õ¯y¯ò_4õàÙÚŠoÈ&·mD“‚.Æ– ü“œSûë7°ÿ{¾v‡É·Q{î`Q&ê•&Ñãˆi5£Xùýæûßšf:§àa|Èc ­Úòú¢rm4wÌ%`y^†¢4þŽáÚ{pûŽ<}Pà\þ…fžë‘èógÍ.dÍh/¹ ÁEí!k蹆‚CÆ¡¸Ït7[J *=²sÔ²üMòx9­½¢!çHvSöGyý9d_$âN ön+Ø{Ñ™#³šÒÉmÜ$¼Í“9Öj^(Ï£n²ñq…úµš“PKydxR\6—9ß+ºùöø–HyB\TTsœ©½¥¥*èÅD“e‰Q4v¯_c’ð~ECì8É]½ðò§º×H “5ùU6·×(C¶Ê2sÕêÌ\iÆáŠêƒ;SvžZd¥¾åKæ®ô+ΗõÔåãôèëÉ媣áµ9¶r^»ßX²ŠPnöÈ‘ªuP’aó¡I2âÃ&ANU©FSU*­®ËÊ8zúƒ-g SÂu¸þýñC'ãÛeûÎúWnÐQ·ŸBKAމޙ°òV˜Ä–7,üßYII¤T]ƒ m¸€ŠeT¨ê 4Ytüi«Â!m–ô€\ÒUˆS¨|öýê²Uç; tô¦ÑDa )o(ªÐ hˆ†¨âa3üV!iÇØ^ÑÃKbêö#y!–ýE ŸÔê5½Ðzuÿ@¾Ç^½KfÖ&–eBºk–2SnëR‹æ¸Í9´Mvé ÄkB‡È,ôqùöóãRFýaµ±ŸI~Õ©«r©ÿKNÍÈΙąEÔke@1núµé€A8¢þÙýìî“WâPëg¦ó°íVŒÌµSãgë¬ýµ¹{<£ÿ«??1¤7ÁxðØ¡– ª½à »£wd¾ÔµVÀî‡örÎ×ÕßJþO×éGBàôu»žöÒRÜÞâSÕô*µŠškŽ8àɃ¯;Çš»óâõÒyrÈä"[Rš õƱíý+^ ö>nRb÷3]øåÊá_ðv°$c¿Œ4ýú?…)¬ÞÁ͈*Ñ ÆnÜÌ@ ›Ykã}Œ}Gù¶x}dd|\TdK|û£¡¬ I£’“tUŒcg^¯ÖÆI7o|‰:jëá}må&jØeæbi„×_RØõÀ­G¨Ž`+«¬g6Ñ6þ—wƒèÞy1~M²y(Væ•§Àu€ž€/µÓë÷¿ásEEÚB(æJó‹r3—z‘Ôoaü ÓÁ³œHÎ’iïÇÛoR(-.*}"2fÒÐ#XÄÃ_3qÊNoEÇŦ—Ì,UŽ2_«,Í•½»§çt™KüÈ\ò[•² ò9¥6§¢êÖeJ‡¾iùОsN›º¼Áþ)°ŸöÓÁ~Ãü½Ð\ÿendstream endobj 141 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 678 >> stream xœM’}HqÇïÜ\§«¬ÁŽ`'b„X!…PQ˜Yd¡Ø‹HŠýSf"ŒÐé¶ÛnÛížín/¶éæ°ÔšæË#{§*Ȱÿ’( üËÂߎßþèV==ðð<|¾ßïCÚ‚$I]åÉÓÇ+²ÌÊšÒ’ ´hm\©.x»éÙ†‡‰liWžª%ˆ"b;QFì&rÕ]BKÜ& É/9­iA¯HDMÉtÕ‰Pž¡ùÀW‡×.r"X(>à ™d•CÆ…;ð„Þ&@"j÷ l‡¿ç:Ü€¨ŒÞ’óŸ‡ç(äÐõãƒàäÍõ"cµB—[rFÙIHIS0SÂø¿ýv°õ†F¼l£B‰ !`ÆدQ¸-Se@õhi/åê•NsR)M’hçwòQÙoðɾ¨ˆ \¦Cå- 5ñ`ð%|›q/Þó kPÉÊêóÕOìø\ü„¨(<σS0ÕáZ\Øt¨½e/Qñ‡Tþm]Xþ9³Ô꣊¢Ë ¸X[‚>9&›þx£IRáÒ‹†ø»TdÖO…¢¾Á€æØvh®@´JíYUnU­-"ö±sÞH˜Á%º½<ÖfÎqCzˆOˆ>³ÊIëºíÐeU} >§^c±13l9qÞuQd<6±Ûp÷±wáž4c0!$ÿóœgÏøÝ7!2å8Ú’Qgf9ØÞ01ðIò ¥WjÔD'GÑ{¼ø‡- y*Õ¡´iùµz¯cñ«¿$ˆ¿žó€×ÓËâ­™”£ÕÅÆ¢!O˜†ûR R0#LgIÙð8°ÔA0"ƒ_ޱˆI?0ôM†Õ¡VtóoÌGœüŽÆÓ¬ÝÚܲ (Ìèô¦|í¾!:è| ×]@¿ãžSËendstream endobj 142 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 461 >> stream xœcd`ab`dddsö ±±dºýXðã;kc7s7ËìBgóï`–‚ÄŒ†@'O_V ~†2†·ŒÉŒK,äû±ðwÑ™ï:g¾;Ãøòê÷ž«Ìß3~‰Î\Þ½zMAw|ü÷¶U¹›*·ws|g~óê»ÐwnÓ¿Yb«ò2ä××MÈ“³g«ÍïÎÎZÖ=K~ûŸùñÞw®•¢ÇŽí9qᘻ‰‘—‡“KÊýr@ÛÎ|7<óü ã«ßK¯2ÿ°û¾^ô¦ÿÍß ±jÝy +Ï^5q·Üò¾¹ÝSº9níÌò“ÿmÝù["¦[“Ãþ‚ï›é×»7”[œy°{M7ÇòÅÝkVtW×”uOªw¼ Ú]Ò]–\ž^×ÝÞÍ´fóžk¿ ôÈ­íyò;ØŸ@{¾ï}µÃ2&¶*+Uî»7ûšæ)™¨Þ)EöŽR¨8²½½¾nÏž™År¿‹³Ùk󀪖ƒTi!©bÛú£ô #È£ß÷ÿ8+ ¶ã·[MPÃÒîÙòßÅþ”þCâ?b›µ h@awµ> stream xœÅ\ë$·q÷ç…>8ù ²?ô$;-¾Vòe#–¡ÀÒApR€Ù÷E»;«=Îò·§ŠÅ&‹=ìÝÕIpp¶‡Í.‹¿z’¼oWb”+ÿòß³Û#5š¸z{$V99úè WqŒN¹ÕÉå Y®¤Ñ£× X`J*»:¹=z5üöóßþyÔ£þóË5Œ5jø·õ–Gãõðåz£µTÃ_ç]D B©8|þGüå…N}ò'àÁHÆC€ÉÚ €“sõ‹Ô9†unVÄ. uüúä¿¡‡æä€1*§VZÔ*YIEe‚,ÿ1"ÛB/=oWѪhµÞX)aÎzøýZŽ0#‡‹µ• OÐ&ƒ’ÈúÑK3|‚´BŒÚA+ôÔÒ;&¹·@ÞFaCöklõAÙá5öpèëáŸ•ÑøájÝMpuò磓z5$ñÃ," BHX•»´( z7œa3 Ç¹,oŒ1ð&#W\S£"j¸.ĶøV2 ßá“õ˜¾60÷ÇÄ»‘áìŒq¼eûÍZy˜‚Sœ6ëP‡aï÷ȧŽÑ=ܧJ`ä‘‹ ƒöQÛú2€|QNZÍl&Ó7eÀ36 u¶Ú[Öá×?À|gnwIÏ–ø¹‰œóÆ2Ø-ƒ 1±†‚tѧlàÊï®HÿmÂNtDŒó´>h=IBj£/6‚P"à%q!€ËÊHQ¤E£ “ÂmiÙB°jF(Ý®.~»™>Þ€>Dët¦Á±u–´†Ýâ)Jg3Y©'²Fš8ÃèÚZÕ ˆÐh@ß8á-LkV'Ìu÷ˆÝQ6ØÁ)`Pz›T)†è¢`d JuSMÍð.Ó~xSI'A­4a@ƒ¡:ILã²H Q€¸»J"ŒÚFÛð³l!îYd µòáUjÙÉдï›g„¼ry¾/wÄ­ƒ5¸]£ñë”ì,€T”I^TKtSWc»Ÿ&žÅFâÆu‡Cd<&µŠJÀ1ü_ Á ?áñ|b=,€›pHß §OÇ,æuõFÛ{†ÂĶ´Ò{š8­.èœ ¨ujð#N!¢›þ=1°zÇ•ûj°I@0 ’óÃn¿°B †UÇÙZqR³S 5 G Bx7±ãøWûÌ º5Á؈ᤋÈïëb'ÀF)å„·õ;¦*Ĺð ¦ßWÆ8Ïé;'ÚiLªPŒU1ÊÐ<&(N¢ ¨ŒÉ##ZÓÇVçê°Pá;Š $¬`öÚã²ÜuTÊ4µìêwiå’e=O „)c•AÈôM•ÓWC•uõ{Ö™df“¹ãæ86A µ’†º¯öùlФÃðÍÚZ ¶WÕR = 4¢D”ð‰¤<]‰MB˦J(^ÁŽ1ª3<}BD$ª2ˆ7•žÛ#쮃LtBÝ96{c±É–ló`ha’„åLÓÊW0îWkúá÷[¦ß¯+?\ÆdFuÆUq·DZÅUëWüwä„ù|‰²Q)¦âb¶à|3÷ÅE&”äà#y²Éç£m¬ëLUl0¡«L¸Ë#íÚP{c=è¤R3È1ÿÛ.“Y{:W1À&{ù]…-WÙ×ÕŒ.DqIMÊR¦k²*K!ÖÄéÜ :Q2Ö…Ö\LF¤“¾×¸80.ÞÃg¦r2'ºú 8¸uÜg{'\'0æ8æÿÍÉÔ˸½©2\°’[ílÛ=ô>­>Š[5fF‹ìcžùÞ}6yžlÄYÉféXhºoF«ÏÅi,E¯ÙVÒp-r”‡×ÝB†;H=â—Vÿ˜â*ŒU¨ì`³öh•!°2×Dà É4¼q|™pômÀÐ ¼)dŒž×A^b/³q—gÑÖ¨2¹#¾h¸H£ ä{[°*Ê ñµ•ë‡;¦ÝûÜ’Ð3ïLé9(²åóêÀèVÔk. šŸãóQ2 *С ™™=bH؈¾¡B‡â}¥˜×m’L6`@Èì§h \2©ò%èß$ 5DæI(YF©¼r¡<Á5IÉ'<»6ñîØ·Œ[–7í«àx8«ó‘È…’L¡gŠ~†ËÒéV‹Õb9I‹ÛdX]ª®4Q&Š}ÃiñÍï¨ÑcÐA ‰–4kXV?ÃQ xóµ™+.>ÌÐÏOòz°Ù}[dn·L9nª±{×¹6ÓÙØEiÉ ·…œ’l£†=æ<®T€8®JÛL”†f}É$‚nbÕÌ1w¶M×XOìbÒÚÔ€™ðœ;ÜÆXÃW^êÖ”Kù5D‹¥û1qçaI qIˆD/……8-!gèL&ÊøÅ…Ý„ÁÍ.xžZØç±£_*íœUµeˆâ ›;Zm{MAŠž 2á‡EŸh\Œ”€NN"£–Fh]4O;¢ 7š7.¦ˆ,Pè0|šú‚¥pÃRV}±.uy¼>‡7˜~·†ÉbºxŒcüºd4—ÃIüí`׃â¥Eˆc·mÌ–Ú±”ÄqrSMÈŽl³@ëv‘‡ažéC+Hñ‰`{@Þ¸åëuÏd?K8­™&Oc³yõÕ†qíeë#ïÁSôo2\‘¦cp%…å4ÜÜ'7š¦Êƒ`6Õ³ð’†[Æ.!,¶y¼Bz×__LÕð6 >§v,™±ú‡Ük.ÌN!™õ=«­¸ÒQ—3ÁwJÊ +Í ³”šf’‹!ÆÊç`4š<Ù®é+0/2ü4„³¸,e×qVâŦs @‰6na}Zµ²Ëh Ê`V6øÅ`’q?…£Š»­,ƶvœ×y¬çôýb%“›ÆmŠöeÒ7ð;´Ô©™­6fËšRxvˉö =_•á.>­ ¦ñÄ;¶ñ²PlYÀÀ®ïÙDf¦Ð*ÐCßq5JÍó”½ïî8ׯgk7[6åëÖò%Ñâ®Ïi̓íTíYˆEÙ ”µB‚uŽW7Ìî˜UFTaŠþ„H&nžOfˆUïË¡D[ ióc1i{˜‘ëâŽA(%" ‡äðq&"â" ûî©6_–λ…Mã67üè £ùž?Àà0iîgmH>? GoʞƯ‘ûÀ>/óQœ|ø(q¿ÅÂ;ö"βlm<µÅÙôž‡+-Ø:þ ŠÖ|.k¶mØ÷(]@Ó¦OHƒ¼«l(˜õXšBÜiq2¿ »œE"I„÷ðž…ÜLrïÝÏ[ç†2˜0ÛNŸ‹+ûå_Õ¬>#ƒo–ðuS±ë‹tP%:3üëzc•JÛÕ·¥±>íÊÓyíø/¥qS¯JãM‡ÎEyz(O¨J|zÚv>®mWŒ`ùëã¾¼¿ï }Vž^wÞî+6-Yÿ¹>2ÖY‡ÿ©7æ;O¯;̱©}Tï;òÝu(‚fNÇëNf0¹ì‰ü‘µ•];«xÑåôd™œ¦'Í,¤/ŸDÀëÎäßuY<í|s×Xö¶3 [i&YxœœRW•>{FYΟýª7úMGÎwOê]÷È\vFþ¾Cú²÷ñs¢/©— —³+ˆË¼yï9*¥Áb9Ì |u,¿^oÀÞCæ«à—j~éòËÀ/Óü²_çÍö‰¬q£Ueºòz+ðù¨Öø>ÄóH³P"={¥ -Öõd'½Ò=/ •™ñRÄÂŒy†ÖÙÞÄìËi5d{1º¥Xl?_ièn\Ì*‡i"Ûûxb«{ŠdŽó”âr@IÕ`ÅãJ¨”0îà\R32e>x&ÕXTóÔê–·Œ¦!ÎL2Q°Î?Qj2»çGãTñœ¶ž­)Ao[’žâ¥ ަ~h^\™†h3Úå,¯=O’QGÓŒ1mqð“P&²-/ÐБÄ(LÖ‹i5ÕRÅío‹uiú06 _“ಔü~n§Í˜…RLZ™¶„¾«kÊK—Ûu76+P‘ÇŽC<ízÁÞI%7²ãNét0„;¶EEh×XÐf%*–“/LëàÈë,s~TÚ4ùäéÙ>PmÀ@9iË´92ÉÎøâ{%¯Îòcku<‚å#×ÌšÐì5ÈPÏŽGv÷¨ùañtKaýl)¹¬u£d„'-¥kO UÚiÓ^£V/žãbà¿¡Î>´[äM]¦Øßwt Á/¥¤¬ëŽ¦A`j³=¢D.p}eŸV%Y¨Ì÷‚;ÕÑêq mè§œLMË2ÑY)dÖß;–-?daÓ‘yÓ1·ì“;Ÿ¼O’}He>ýúG üÿ7óisò¼–Nú°[VèÎÿå¾±3…Ÿ:yÿåO ˆFHD°÷]áì;Ôï»5‚ÊÞ+9uà„œUmrº¿xs†5œˆgæ,”u—OPä)e3eW§ÒG±ýžHÊ9I¤“D“¦ ÍE<™3Õ#Ó0;‘¹Þ>œ¿ÝíΧI"©(‘äUó9.J­¿ ‹´ßg«È'ÖÖFŠXœº- ¢£ÒW]”Šñ‚hç„—EW·T¨åéOø5E²ÎÊvºäÓþ¡ Ü˜Q m£rŒË:œ ¶Eà—ð –”í ´)¯ü G¶Ç ˆ„Ÿ?&Çê$Ö<¯ºM{0ðf1%;]ȯ]²ô”g99@ÌÉC°½ ¹cWìêÄèžÉ{ÖXš=~¢"]JþÄ…‡.”Ásªa1[ÓzÿøäÖZ-FíR»ÃŠÛ,ì`2†»°^$cÏF¾dÍ;v°õ½$¤!g tߘê#Âø¦Ó&+é;¬-<{ÂqG}c°ýê‹É•)ÚÕ5Ú4äâ·ÞæÝ½‹‘ØÀSzŸïš#þ4•tzoÓ9µ¸­Í!¶¹øQvQ¸˜ÎÝþ<Õ(Œ±wÝB¸žëÒË© ï‚{Œø”RéÞŸÇ÷”4I­³-ÈéÛpÍ€l®v¹QY]¬ÚÏæà [qd€½Dp¤ûñÿ•ïÇs”o$ ëùjøÅ“&/×*yÕeY¤:Cð¤‘þCÍøé‹XE"U£pf ±~F#h%'U<*•r±ä¤ér¿Fú®d¼­6 à¯”Ð楱œþÖ ú‚¸ÈNå|Ë Ìòíía=|£q”›ž:¬uèÜš~¸‘QwüÃj'¿! F¯TwÞFØjϨT†wSj>Á±S¬¹>ÄkéÐçª?GÔ-ô²òw:ÐgMGÉ]ºóó‚Û0óƒltcvÿ°¹0|:Å Tu(;v¨…pá¦y6ú²P>ù»ùpŸþŽàÖ‡Wc³pó Ô^Í&\¤kÇSkŠN쳃ƒŠ ¿›jxþØÍãOå¸=U¸ðàÝì?ÈõD?»â–zÿ°û/ìÈ ?ûÅÀÇòžO%·Y±˜*y1,ï³$Æ~zŒÖ‹âÈþ\¯ØE½æÌäu¯÷3Ë)ØÃÉu¦ÑÙ̘*Ô´\Ãi4Ÿx?Â?^oœ?=9ú üû?L[FÚendstream endobj 144 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 114 >> stream xœcd`ab`dddsö Ž4±Ä»».ù¾œµ›‡¹›‡eÊ[¡}‚»ùw0€#/c`bddÑúÑÁ÷Kà{ÙÆï ?-˜Ö|/½¸{ñ’’î*ù?/ت‹»‹‹uÏ‘çëæáêæáîæb`"¬endstream endobj 145 0 obj << /Filter /FlateDecode /Length 4675 >> stream xœÅ[Ys$·‘ös[?¢Bá‡âzº÷±±Þ$_«•e‰?ŒõÐ<†¤†dS<<¦½¿P@¢YÝM8Ö1¡P:‘ÈûBñ‡ALrô¯üÿôf¥&‡÷+1üv夜¬Tƒ·NNÁ 7+ÅL]¸^}» ^N>ÈÁ;#&­TW‚Œ“³ ʪ 'kT]áPÚ™Év µFO„‹8“b˜¼mT•wN”Óa2.2¢‚ôS²#ªAÍ+T!ª7ÓÄÎÃÅꇕL¢ÊÿNo†×Ç«ÿüFÅ!NÑ)7¿]e1ËAB Ò€{á'©ìp|³z3†£µ2RO1Œß­Ådc”ÎŽ¿§g)„ñzü¿#ˆOíøç/@,Õx|(RjüõW_¢ÿˆG‚ÃãŸPkðbÆ'bJÅñ«ßHI‹sh§†œâø ;1á“øçǯ>£u%DÄË3B:ôsz A ƒ÷j¦P ÛÎîü¯zg£¿ü"cq"Žü¤ÄFtÂ8 Dz"8@®ƒ–㯿ዸTTb$a8qý‘–ƒÐ>€‘$^'T0ò»ã?@IÆs%pb†ã/WÇÿñÂqfüŸ£µU ê‘ã]]¼®OÛúôXŸþ:ÖÇÓútUŸ^5Œ_À¸©O' ðWíñÓúû×õé~ž“EŒ/ɹ^Xk¼<·ƒê·mñó…SnÖ.êÓyÛüÙàS}z`[æ§³¶ùd‰Æ×Eò~wcú–K¢á•JF¸îñµÉýUúy=ÿ¾FhŠÖÊ öKسs>º¨Ý+&¥%í6ƒaV$–l§-NõɶÝGK{–4ÃpØÞ>]Bùü¯gr‰v¢ýPÆñHŠúâxõ' Ô&Ø ¾nœ§6hàòjPˆx“ŽÃýùð—áve&¯£ÖȆrøþû>eE¥„›â`¥ö“£et”““u…  yAD5Éã(p˜²À`Ið<ª+Ê"_y͡歙œáPó ƒÚå†ñÇ %<'Oy!*žñc&£!a$ò”ð´ÖF#5;‡™^0^Ty1/šƒþ‹mzU•|Ϫh&›ZVœD…C–úK(á |´®tPV†ÉiUV:(oé„A••*:˜€äPe…CÍ´6(NýO“¹4fMœ9ƒÊB¿ÜÜŸ½?B¶óF»q»=þ:Ê(‹‡H@í8JOlÜnÞŒ²@Ç߯ÖÁÎ CˆL@'çç§—SÎe(7i Í@¨ÐÝÕí9`‚ÒS˜,ô*ùqoƇ»û£5Ìy^O§´Âá.LN\ÅZ Ui©v•JÂzô'†L 9ò ‰ãã²±TÕ%%½5È KP)ƒ,YRµÊ ÂLò Ô ¹0:90|Ÿ-‡¤²à4âYˆe{†W$©¹iÈ¿;ÆFÅ-³Y-4ÅÆŽwª˜ý£›Ôû…²eÜk§¡è`£fÜ#~a¿éð11'Ig¨²E û§4Ó [A2knå'üFÝÀš»@þɸÉ*DÕu6üÀ~Z+Ä"ÝÒ¶´„ ŠŽÑ–H¤Ÿ²F)v I¿YH D»ƒ1ýäS±*wÉAbq[“Ф?)òX˜”ç”PSŠЗÐõý;´#57#'Ã̯é‚/ Üq¨Û%q²PÞiC!¡BÌ$Îz&NW¯WD•ž:›楧c’½á=Ðñ Š*ýúNÇZÒ>ƒ° ”c˜ßóiǼ"Rª¬¥N²‘ß“ì 3ÄLuAÐ1‘3ÔGYîgm%’äð²'"£K‹wø ÒíüŽc­þÐ ¬°STC{Og¤eE“• ƒ&e¶#ÒëéªÑP~ŸI,Ûw˜Hœ¡p“6<8Ôe(vi‰¢È«%‘ô§–õý; Èè„CÙ†ù=ŸA;ê Ì—ê¿ÚqÔ…íŒüN;f*fˆJwÁÐó‘Õ†¼39^i”tð4@ÀkHÇháp&‘QÞ!ÒkB.k°6m†ò^ŽH;Ê ”‘6d4Ø Ü1QÞiC!¢B¢ËþŽ…ÄÖO¨ ?"dƒüˆˆ‚ìG³‹\²|}¿=Ùœ\]_=>Û·Ãç››ÍÅùðÙæéáül89BèÊÏÃë{4xT7h4xW·­bØSËÿh ¼ó§½, "bTÐ £ƒl +sð›4Š‘ÂEtDôh¥ÕãÅSóeÑ¥Ò˜#xç©/Nƒ`G°ÓàõQžV ¶sáÎÆêÚ›~M(F?BM0Fš wˆ€š -H´q;ëD:­#Z8" ?•–MRÊññHÁ.„TÔj+ã m5`ñ;”ð6¯ ©A_<ñ&Qƒ eA\¢Ñ®ç‡Rèi8åƒòÁGüÀø=O£Ÿ,óBˆˆ`4 !=§²Y+TGÁkv`G3GÇŸïô€’ŠFïÓü*Âû(DØ„ú ² õ–twQž,P"qÇ8¾eÒ¼ÏË1úñ~Òßè ‹ê “N¹)B582ÔãýyžŸ!ŽUæ¤Í²ÒšñËE*çØèƒœ!p²0åüíŠIqª‹œ0&1f½WF¡ý® i 2cXâÏ·…dYôiàÿÜ îˆ¶ïaƒÕÉ%7P׿cƒrÁw”ý#ù€7uÊz 1Zrº/øàXÜò8¾,ã:l·y›aG—éÌŽEl’7dÌ@(Žyw˳>:.úÇ4“„ª}±è5î vgR¹žmeð´8²äóǺøßuq½¹e¡6ñ;4/[}^, †.o¹YxjÔœ- ƒ–†NKdŸ²“—FRÿ{`€”æ{PÁ¡ÙðÒ ÷ §Œp+N¶ÇõÒtt çvAÐ ®Í¯—´Äô‹È¥óÞüõo:9ÿW tG¿ÿ¥ÎOo˜UÏOª>ýW}Òõé»öäÿ_ªõÕŠQCY3†²]q,~_tI7JÑX“²Ôò†T.©€pŸã3*‡ÈZ2ª\2î³ÐHÙ”HdÐ>jò!BRö¨«±tsºX½Ì×Dq©…)]p½O!Û9­)ìÓ.$CŽ‹­æ²Ï)PÃrÙ—ñ&6¢¡Â1Wª¾ˆrÔŽz*$ =¾¦Ã…õŽêÅ”/<ôLv2ê¸,®R!…Tyóá ñ9Üä& öØ•hq\®•f*ß&oŠ2€ßem”ShŒeÊy‰:к5ÕI-®"r$ò,åe½Üܳ[À³r?ƒÒýQ)XÞZ¤U?æ"jþx–Ën0ËõMÞ^®oJ¹rROœËtº%BSk¾cwd4(b*¬ÐL ëgNƒVÚÁ×pfÐo®›ˆ®ó %ÊìT\Ó)Çp5Þ$õkMu÷0Éàhk§Y-=ÓõµIa¹ Ý£¡L¡¥Zê!ïƒÇ„ ÚùT¦e”(%ç‰aoM*F),r~¹u²eæˆÏ…N⥠Uu;ì^ùŽ1>ÍŒ«îÊx{{T)ÝCõ KŠQ‰¦Ôt~Keš^qA^7ë|¦hº5³Bvœìí¹qj¶Çf»Lš×ìBºØ¦@'pÚ„µa ÙN ÚþšqÃÈOE$ºì¾L7ëh0dö_¬‰³g® 5 WÌö²º\L­ Î ©_ê\u‡Ln¤æfÊ7» (ëg· ’‹÷’Ç Ð4Á³8ñTEy“œœO¨Ã¢à;Û¾Ï8åÛ·•ó}ܬ1¡œf„ÍááE¬êQ“®7Ýgò0´©º ¦E"°¯>æLÍHs~§Z#E¹0W2S³iùË”¾P!á£NÙYW‘F]´né÷³f ×ékÛ<ñ˜7>µNz°°¨˜›ÝŽÎ,M" vz– ³‡L&ÜÑr¯ÚÞrt…ä’Ú‹-ÎË1~`YYÃÿ«¼“lis;³€xÂJéâgɈXb2½*Å:ëtqËlïeÅS`w*N<³†=yÏj³¹T |Ù7"ZÔP!ëJƒÑZ+Ë`öI¿“8™v^V°)PlNZ™Æ´ÆåÍRè#šD~.ô pßKOg©‰ 5~R©d ìq7Ó¥¤ÔûЏ‹—ësÜÙQDú •Û\ z„]„}ÌV¸3¦ï®ëªïKÒÙ/wY,µü})z@¢1¬è©­5x,ø¥eL`D^L™r†ßåDDõÄÈûR&»W;6=Ñw›}†6U¢V¸³e^­ÎÝþ|^#ÈÁš’JõÂ*p ÔûâŸV yzz„åu ”;ô'›…+·Šõá%M%:ctt%ýS;½©ŒAsÖ·lÈ1ŸX.D~¤øfa86å•zYåCiŸ•\¼\oÆmTxoÔl¹{¼-q•ZÈZÑóþr¿¯̯šc–¸›qõq—1=íTsÅÚ¦–ÿRÁI‚´d(ô(¤éæ ÅP,]¬|ŠÔl)HG¾Ã¡!·k)„ÜH½oÈq‘èÎÃ4ŠF1òY‹¡W-é’O:Š—´+¤ÈÛ™zî„lêÜx'³Ø'Ò¹(÷Çîćˆ{æ6O‹°|JÕ"~}tl‘Uïš<š9ìtu¥y¨â²{¥Ëºµ> ¦ˆëÃd¬Ÿ’[sžIÒ_p¥°>³ïdYÙ[.÷õŸ»f£¾™žÞ°ïª¸nOš!nN˜f¡xÉæYÝ`%%ï˜æxb…Ôf9ͱ¼UĉZ©¼rãnÑHæÒü&=SSÆBÆžQùP‡.¸tÊÝß7(<ÛY%?ë]°šÁŠAjPùy‹´ ½©£“¬•ÝT¨Ýß|<æõ(ÃnbOEØþÆ’Y oÁ..sõ–.Q«æ[;¶åùá=é&@ò}Ú8+Ò–/Æ8Êó™Ü¶i|ši…Œº¾Œ•çÌ!Fô™‘”UwGÛSg»úR4×é<²ç÷¾+f¿ܰÔµVÑÒX¿8ƒ)ŸßîÑ,›V_Èö˜€{æ‚Õ_Ý¡ŠíPáÒµÂ]7CAÉ~wVŸÃ\ ƒô‰Gì««y ¾›z½Óò²7‰9—å¶)З›wyrW¾^)ÛXk²{åSãåœ®Ç …ÙÛ‚4 ­e¨2º+©îû}a"Ú±›ÙW÷êÂà}Þè¢å!¹Ä÷H€V—?eñ}›U,•|‘Ð`öy‰ÂzÍ~H܇ïr\¾{W§’áÕûîV‚â¡°"ÌLü=1aÈ~ÁkH÷ðºøÅ˜¦]w½ô‡L]ží¹kSí–¹»ÛË*È Kè¹ ±–¾]rt/>’!hM_Ðå £rgDÃ2¡ë{ÎvÜïç½Ò)²æ¿:d”WËi÷…@ÒxpSÉò‡»Û­½Ë-º‘§†yžMsaå&ÔMÂ…®Ng¥·R†æ`}Qî¼SªO}Í¿o[WÕÍ{ËïÒ»@˜×! ÍÓÌŒ¦{0øòizùàKFJ ‹Y^ÃÐmùÕÁ*BÒw\5H´¦°€FFš4M°=E"ùƒ ‹¹áôýòGꚘþàãI’I2ôÅÒô$q»Ï…·R¡ó¡IšÀûŸ¤"tíšþ¬ø' DúzeùiõÅ’èÆ\êTþP矿G endstream endobj 146 0 obj << /Filter /FlateDecode /Length 2403 >> stream xœÅYKs#·¾³Rù <‚©pŒ÷ã”Jb'NâØ/«r°sàJ\jmI”-É^û×ûk`h ‡’}JíaQ¦Ñ¯¿î¿[ËA­%ýÿ¿º[éÁ¦õ+¹þûÊÛ0˜ ÖÁy5D¿¾[EíŸRݹ]½Y%oã:x+£qªîD•ïò)g°¶ìдÁÏX‰?:vŸsÝ}“V1Å!8¦Ô¸Áuò&Ö'¦STaˆRqÚ¡q£;3êTo›Tb·ÉõqõÝJeG®Çÿ®îÖÙ­>úR§u’×~½{·*NVkeÍ  ¥”vëÝÝê+ñ· ¢4ÿØl±–Ò#>ÿóg›­1zH)Š¿Ò´”ÉñO^Z/þ¥‘)¥€%N)£7âl[å¶?ß±/ßl¶Ú( ¥6ÿÛýsƒ“Ñq½ûlµûÃWbO“–I‰ëÍÖ*;x©ÅÉ0RªäÄé{:¢´µQÊ+=–rpÑhãÅ:qZi±¿Ã~Ppj´ï¥4IÜf”²ŽdЕÉZ#Iž!ÄÛ†Vù—Œx %¨ÉjH+ A½D#¾)™u/½Sžbg T“QœÞàze'5³¸QM—@MG çj~ô¥ ,uðc“Fú쮑,w„?PtŸkn›úY7"Ït"zF)Ãr[—¨ÂIÓmYðÎV™08iÖ[O©è @çðl<äÔy’•–Q§T¶ó>ŽHÈ\ôH.SNB»ã–Çf×’ÿ†‰Ø¶…Xš6&F0R§Í0zE¡\öE2 £–i/Ç0hÐ^äT²gî?ŒìÓg‚IýkÉigQ*g­x^¤*&u†öP–HYÀAÛ PÇ`ê¶®nêêi³àRmqK€a¼psBù Óg»zÉs]}[W‡ºú©®>­«7uõñ’‚Ö¬²æÌ©&:£±âÒÃBÞFÒ²ŠÛ/xìaÁwûEß¡ªÃy“¬ëŠ…}Ñ,D Z (Mˆd •Z ÎÖªWQl#P¬zkì;¤±r@1€½7&;grÃc.™€@ÚÕ$•„IªCç÷垀ë/z•à³[&í}cù{ž ­¸N‚e*u¾°ç)×Ù„ŠÎP6 ­éc® âwU0ÓŒ-ùu×å¶l'ð¾¢ÛH˜T—36`Îê·Í¶ÓóRVä4?¼û¢NJ^ìÇÃå÷±•¤±ÎhÓÔ‘î«‘‚hYÜ­ŒÕâç H£‰rkþZ̯[Ϩ3Ôùèr™‰¼oVŒ‘¹¶°Žñ=ƒâ±8Á”ÕÂqÒÁ.ô¾P@@Oh%k†ü‰.[/¤9ÊÉ8}8íÐÕƒ.–pF5é˜Täìú0ðíËNï|KÁ’pHÐ9p6!»žåüDZà qPÈÈIÑÍ»¾Q׃¶’m×C”(+_¯ 0ljÉN‹Œ] (…¥eæ±8=Ï„Ss Kš›Üå+Ÿ|)m$C‰#k0Noy“x[EÔ¬{jÄtÓuQ•srkJîˆ[ÀÀBi¨éöкð˦¾U­Hß¶´ÉH§š‚Ÿ >ò+k,²o4l!PVzÒÑðô†·•OåHÄÞ^ÝŽÛ`à.&{:†ªÓ ÇÖj;ͤåb‡ÕÅð+äåM4z,ß¡Iƒ3§ð³L÷Ì¡AŒ[R,M~N^¾\‡é51—˜)“«_õÈ|e<:‹ ”ø¹éÞ—0:Œq‹ÓЄì6‘º@ë›x.1óÞ²´*Ý’)cú˜°7lîìhÙ¿¿î‘¸”Bi0ÝšHÅœòbL¡Y^4õX^,ù‘YÈ¢F3°¡’u6âb7› F}"JÖoÎÓ³ŠÞìŸÊé¥Déÿ ÒÝ*f|8í²4¡ñ’Œ5DZÕ]ÔžOë¦jœ0}ýþUD1EÛ Åü‚§©20ê ýœ3¬S ¤™Ò.ˆî9£º–žñµÿeí^FZòÎùÙ1¾ÔŒü™ËLÑ>ë —Ú6–º“…9K_·°ƒFµWøBöÎSÜyçF¨¢±Aôì¡‚C'¿ˆµ^tö‚D*»NŒôz×í‹VgoÁbÏÚ5ñMð3ÛÎ }ÀÜÞŠ¼i…çød• Åc¦õÁøÚ§ŒS%œ®(Õ* Æ^±œíyk|ÑáÒÛHÅïsùIíùáÙ(=G(‡béÐÀA:ÍÊÏŸcn% [ÊÚõ% ¢– ¯MX–:zà–¡}ƒ®(¡!F Ñ*“R>ìûª/ztÀö¬p:21ı~+ã´>™ÐÕ`‡ ø>ž—òÜE<ž±#Ô×].æä†îò°tm¸goqW Y*O/Ih?h¹g5õ›VØÐõؤ½ç!¸\ûúô/æ£ÉÐ¥ïây››þR§pdÍĬ÷˜VûþÁšßÙµ'¹áÒu­ôï[Fñ2ÖJ;»Ø<–Û$Ýã0Ö‡†{7~â!>àFÃæÓ§">ÎÈO™ÐÚù»Ok_ºžv’[PêÍÂKBoØKíG±ÀZ¯øC/Lý°AY›d˜ýPÓMvõ=ªúÚFŒý¬ã¢ó1t“Ít³ªø¸5µðˆr Ãeæ'刴Y\ø‹\ÞNÎÆ®n.gÎŒ²Iiël~:Ê·¤À›[F*ûM&r ]?2F»/Ÿ”gÌJ»pB÷~Ó®Û?4feµªü0‚¥U$C\h.êX¸oËÆ^}YAiœ¬ïÈL£ÚOMì%ŽuЭPÍøú“Ýê?ø÷ ™{ endstream endobj 147 0 obj << /Filter /FlateDecode /Length 142 >> stream xœUŽ» Ã0 D{MÁ ¢ÄŸ&Hd„´q‘*ë',™ ‚‡Þ{SSÝçØÏ­4È O©t+Æ åF®Æ£­ø¨YÁ«> /W [ 1 3 1 ] /Info 3 0 R /Root 2 0 R /Size 149 /ID [<625c916677c076bc0957ef69957d678b><1377856edfa327015defe96de323fe11>] >> stream xœcb&F~0ù‰ $À8JRDþgàc;d³ÉBõèh¨R'TådA¡*’ OæÝ R D2*H0û:ˆ”s‘¢ ’ ¢†DŠM‘üëÁâO@¤ˆˆä‘Â[@$«>di±%Ó@$Ó%°`[‚Á"`6#XÜÌ6»gXl“:ØL°;Ï€H¡^°½k¡îºué endstream endobj startxref 96834 %%EOF HSAUR3/inst/doc/Ch_meta_analysis.Rnw0000644000176200001440000003654214416236367016722 0ustar liggesusers \documentclass{chapman} %%% copy Sweave.sty definitions %%% keeps `sweave' from adding `\usepackage{Sweave}': DO NOT REMOVE %\usepackage{Sweave} \RequirePackage[T1]{fontenc} \RequirePackage{graphicx,ae,fancyvrb} \IfFileExists{upquote.sty}{\RequirePackage{upquote}}{} \usepackage{relsize} \DefineVerbatimEnvironment{Sinput}{Verbatim}{} \DefineVerbatimEnvironment{Soutput}{Verbatim}{fontfamily=courier, fontshape=it, fontsize=\relsize{-1}} \DefineVerbatimEnvironment{Scode}{Verbatim}{} \newenvironment{Schunk}{}{} %%% environment for raw output \newcommand{\SchunkRaw}{\renewenvironment{Schunk}{}{} \DefineVerbatimEnvironment{Soutput}{Verbatim}{fontfamily=courier, fontshape=it, fontsize=\small} \rawSinput } %%% environment for labeled output \newcommand{\nextcaption}{} \newcommand{\SchunkLabel}{ \renewenvironment{Schunk}{\begin{figure}[ht] }{\caption{\nextcaption} \end{figure} } \DefineVerbatimEnvironment{Sinput}{Verbatim}{frame = topline} \DefineVerbatimEnvironment{Soutput}{Verbatim}{frame = bottomline, samepage = true, fontfamily=courier, fontshape=it, fontsize=\relsize{-1}} } %%% S code with line numbers \DefineVerbatimEnvironment{Sinput} {Verbatim} { %% numbers=left } \newcommand{\numberSinput}{ \DefineVerbatimEnvironment{Sinput}{Verbatim}{numbers=left} } \newcommand{\rawSinput}{ \DefineVerbatimEnvironment{Sinput}{Verbatim}{} } %%% R / System symbols \newcommand{\R}{\textsf{R}} \newcommand{\rR}{{R}} \renewcommand{\S}{\textsf{S}} \newcommand{\SPLUS}{\textsf{S-PLUS}} \newcommand{\rSPLUS}{{S-PLUS}} \newcommand{\SPSS}{\textsf{SPSS}} \newcommand{\EXCEL}{\textsf{Excel}} \newcommand{\ACCESS}{\textsf{Access}} \newcommand{\SQL}{\textsf{SQL}} %%\newcommand{\Rpackage}[1]{\hbox{\rm\textit{#1}}} %%\newcommand{\Robject}[1]{\hbox{\rm\texttt{#1}}} %%\newcommand{\Rclass}[1]{\hbox{\rm\textit{#1}}} %%\newcommand{\Rcmd}[1]{\hbox{\rm\texttt{#1}}} \newcommand{\Rpackage}[1]{\index{#1 package@{\fontseries{b}\selectfont #1} package} {\fontseries{b}\selectfont #1}} \newcommand{\rpackage}[1]{{\fontseries{b}\selectfont #1}} \newcommand{\Robject}[1]{\texttt{#1}} \newcommand{\Rclass}[1]{\index{#1 class@\textit{#1} class}\textit{#1}} \newcommand{\Rcmd}[1]{\index{#1 function@\texttt{#1} function}\texttt{#1}} \newcommand{\Roperator}[1]{\texttt{#1}} \newcommand{\Rarg}[1]{\texttt{#1}} \newcommand{\Rlevel}[1]{\texttt{#1}} %%% other symbols \newcommand{\file}[1]{\hbox{\rm\texttt{#1}}} %%\newcommand{\stress}[1]{\index{#1}\textit{#1}} \newcommand{\stress}[1]{\textit{#1}} \newcommand{\booktitle}[1]{\textit{#1}} %%' %%% Math symbols \usepackage{amstext} \usepackage{amsmath} \newcommand{\E}{\mathsf{E}} \newcommand{\Var}{\mathsf{Var}} \newcommand{\Cov}{\mathsf{Cov}} \newcommand{\Cor}{\mathsf{Cor}} \newcommand{\x}{\mathbf{x}} \newcommand{\y}{\mathbf{y}} \renewcommand{\a}{\mathbf{a}} \newcommand{\W}{\mathbf{W}} \newcommand{\C}{\mathbf{C}} \renewcommand{\H}{\mathbf{H}} \newcommand{\X}{\mathbf{X}} \newcommand{\B}{\mathbf{B}} \newcommand{\V}{\mathbf{V}} \newcommand{\I}{\mathbf{I}} \newcommand{\D}{\mathbf{D}} \newcommand{\bS}{\mathbf{S}} \newcommand{\N}{\mathcal{N}} \renewcommand{\L}{L} \renewcommand{\P}{\mathsf{P}} \newcommand{\K}{\mathbf{K}} \newcommand{\m}{\mathbf{m}} \newcommand{\argmin}{\operatorname{argmin}\displaylimits} \newcommand{\argmax}{\operatorname{argmax}\displaylimits} \newcommand{\bx}{\mathbf{x}} \newcommand{\bbeta}{\mathbf{\beta}} %%% links \usepackage{hyperref} \hypersetup{% pdftitle = {A Handbook of Statistical Analyses Using R (3rd Edition)}, pdfsubject = {Book}, pdfauthor = {Torsten Hothorn and Brian S. Everitt}, colorlinks = {black}, linkcolor = {black}, citecolor = {black}, urlcolor = {black}, hyperindex = {true}, linktocpage = {true}, } %%% captions & tables %% : conflics with figure definition in chapman.cls %%\usepackage[format=hang,margin=10pt,labelfont=bf]{caption} %% \usepackage{longtable} \usepackage[figuresright]{rotating} %%% R symbol in chapter 1 \usepackage{wrapfig} %%% Bibliography \usepackage[round,comma]{natbib} \renewcommand{\refname}{References \addcontentsline{toc}{chapter}{References}} \citeindexfalse %%% texi2dvi complains that \newblock is undefined, hm... \def\newblock{\hskip .11em plus .33em minus .07em} %%% Example sections \newcounter{exercise}[chapter] \setcounter{exercise}{0} \newcommand{\exercise}{\stepcounter{exercise} \item{Ex.~\arabic{chapter}.\arabic{exercise} }} %% URLs \newcommand{\curl}[1]{\begin{center} \url{#1} \end{center}} %%% for manual corrections %\renewcommand{\baselinestretch}{2} %%% plot sizes \setkeys{Gin}{width=0.95\textwidth} %%% color \usepackage{color} %%% hyphenations \hyphenation{drop-out} \hyphenation{mar-gi-nal} %%% new bidirectional quotes need \usepackage[utf8]{inputenc} %\usepackage{setspace} \definecolor{sidebox_todo}{rgb}{1,1,0.2} \newcommand{\todo}[1]{ \hspace{0pt}% \marginpar{% \fcolorbox{black}{sidebox_todo}{% \parbox{\marginparwidth} { \raggedright\sffamily\footnotesize{TODO: #1}% } }% } } \begin{document} %% Title page \title{A Handbook of Statistical Analyses Using \R{} --- 3rd Edition} \author{Torsten Hothorn and Brian S. Everitt} \maketitle %%\VignetteIndexEntry{Chapter Meta-Analysis} %%\VignetteDepends{rmeta} \setcounter{chapter}{16} \SweaveOpts{prefix.string=figures/HSAUR,eps=FALSE,keep.source=TRUE} <>= rm(list = ls()) s <- search()[-1] s <- s[-match(c("package:base", "package:stats", "package:graphics", "package:grDevices", "package:utils", "package:datasets", "package:methods", "Autoloads"), s)] if (length(s) > 0) sapply(s, detach, character.only = TRUE) if (!file.exists("tables")) dir.create("tables") if (!file.exists("figures")) dir.create("figures") set.seed(290875) options(prompt = "R> ", continue = "+ ", width = 63, # digits = 4, show.signif.stars = FALSE, SweaveHooks = list(leftpar = function() par(mai = par("mai") * c(1, 1.05, 1, 1)), bigleftpar = function() par(mai = par("mai") * c(1, 1.7, 1, 1)))) HSAURpkg <- require("HSAUR3") if (!HSAURpkg) stop("cannot load package ", sQuote("HSAUR3")) rm(HSAURpkg) ### hm, R-2.4.0 --vanilla seems to need this a <- Sys.setlocale("LC_ALL", "C") ### book <- TRUE refs <- cbind(c("AItR", "DAGD", "SI", "CI", "ANOVA", "MLR", "GLM", "DE", "RP", "GAM", "SA", "ALDI", "ALDII", "SIMC", "MA", "PCA", "MDS", "CA"), 1:18) ch <- function(x) { ch <- refs[which(refs[,1] == x),] if (book) { return(paste("Chapter~\\\\ref{", ch[1], "}", sep = "")) } else { return(paste("Chapter~", ch[2], sep = "")) } } if (file.exists("deparse.R")) source("deparse.R") setHook(packageEvent("lattice", "attach"), function(...) { lattice.options(default.theme = function() standard.theme("pdf", color = FALSE)) }) @ \pagestyle{headings} <>= book <- FALSE @ \chapter[Meta-Analysis]{Meta-Analysis: Nicotine Gum and Smoking Cessation and the Efficacy of BCG Vaccine in the Treatment of Tuberculosis \label{MA}} \section{Introduction} \section{Systematic Reviews and Meta-Analysis} \section{Analysis Using \R{}} The aim in collecting the results from the randomized trials of using nicotine gum to help smokers quit was to estimate the overall \stress{odds ratio}, the odds of quitting smoking for those given the gum, divided by the odds of quitting for those not receiving the gum. Following formula (\ref{MA:barY}), we can compute the pooled odds ratio as follows: <>= data("smoking", package = "HSAUR3") odds <- function(x) (x[1] * (x[4] - x[3])) / ((x[2] - x[1]) * x[3]) weight <- function(x) ((x[2] - x[1]) * x[3]) / sum(x) W <- apply(smoking, 1, weight) Y <- apply(smoking, 1, odds) sum(W * Y) / sum(W) @ Of course, the computations are more conveniently done using the functionality provided in package \Rpackage{rmeta}. The odds ratios and corresponding confidence intervals are computed by means of the \Rcmd{meta.MH} function for fixed effects meta-analysis as shown here <>= library("rmeta") smokingOR <- meta.MH(smoking[["tt"]], smoking[["tc"]], smoking[["qt"]], smoking[["qc"]], names = rownames(smoking)) @ and the results can be inspected via a \Rcmd{summary} method -- see Figure~\ref{MA-smoking-summary}. \renewcommand{\nextcaption}{\R{} output of the \Rcmd{summary} method for \Robject{smokingOR}. \label{MA-smoking-summary}} \SchunkLabel <>= summary(smokingOR) @ \SchunkRaw \begin{figure} \begin{center} <>= plot(smokingOR, ylab = "") @ \caption{Forest plot of observed effect sizes and $95\%$ confidence intervals for the nicotine gum studies. \label{MA:smokingplot}} \end{center} \end{figure} We shall use both the fixed effects and random effects approaches here so that we can compare results. For the fixed effects model (see Figure~\ref{MA-smoking-summary}) the estimated overall log-odds ratio is \Sexpr{round(smokingOR$logMH, 3)} with a standard error of \Sexpr{round(smokingOR$selogMH, 3)}. This leads to an estimate of the overall odds ratio of \Sexpr{round(exp(smokingOR$logMH), 3)}, with a 95\% confidence interval as given above. For the random effects model, which is fitted by applying function \Rcmd{meta.DSL} to the \Robject{smoking} data as follows \vspace{1cm} <>= (smokingDSL <- meta.DSL(smoking[["tt"]], smoking[["tc"]], smoking[["qt"]], smoking[["qc"]], names = rownames(smoking))) @ the corresponding estimate is \Sexpr{round(exp(smokingDSL$logDSL), 3)}. Both models suggest that there is clear evidence that nicotine gum increases the odds of quitting. The random effects confidence interval is considerably wider than that from the fixed effects model; here the test of homogeneity of the studies is not significant implying that we might use the fixed effects results. But the test is not particularly powerful and it is more sensible to assume a priori that heterogeneity is present and so we use the results from the random effects model. \section{Meta-Regression} The examination of heterogeneity of the effect sizes from the studies in a meta-analysis begins with the formal test for its presence, although in most meta-analyses such heterogeneity can almost be assumed to be present. There will be many possible sources of such heterogeneity and estimating how these various factors affect the observed effect sizes in the studies chosen is often of considerable interest and importance, indeed usually more important than the relatively simplistic use of meta-analysis to determine a single summary estimate of overall effect size. We can illustrate the process using the BCG vaccine data. We first find the estimate of the overall effect size from applying the fixed effects and the random effects models described previously: <>= data("BCG", package = "HSAUR3") BCG_OR <- meta.MH(BCG[["BCGVacc"]], BCG[["NoVacc"]], BCG[["BCGTB"]], BCG[["NoVaccTB"]], names = BCG$Study) BCG_DSL <- meta.DSL(BCG[["BCGVacc"]], BCG[["NoVacc"]], BCG[["BCGTB"]], BCG[["NoVaccTB"]], names = BCG$Study) @ The results are inspected using the \Rcmd{summary} method as shown in Figures~\ref{MA-BCGOR-summary} and \ref{MA-BCGDSL-summary}. \renewcommand{\nextcaption}{\R{} output of the \Rcmd{summary} method for \Robject{BCG\_OR}. \label{MA-BCGOR-summary}} \SchunkLabel <>= summary(BCG_OR) @ \SchunkRaw \renewcommand{\nextcaption}{\R{} output of the \Rcmd{summary} method for \Robject{BCG\_DSL}. \label{MA-BCGDSL-summary}} \SchunkLabel <>= summary(BCG_DSL) @ \SchunkRaw To assess how the two covariates, latitude and year, relate to the observed effect sizes we shall use multiple linear regression but will weight each observation by $W_i = (\hat{\sigma}^2 + V_i^2)^{-1}, i = 1, \dots, 13$, where $\hat{\sigma}^2$ is the estimated between-study variance and $V_i^2$ is the estimated variance from the $i$th study. The required \R{} code to fit the linear model via weighted least squares is: \index{Meta-Analysis!weighted least squares regression} <>= studyweights <- 1 / (BCG_DSL$tau2 + BCG_DSL$selogs^2) y <- BCG_DSL$logs BCG_mod <- lm(y ~ Latitude + Year, data = BCG, weights = studyweights) @ and the results of the \Rcmd{summary} method are shown in Figure~\ref{MA-mod-summary}. There is some evidence that latitude is associated with observed effect size, the log-odds ratio becoming increasingly negative as latitude increases, as we can see from a scatterplot of the two variables with the added weighted regression fit seen in Figure~\ref{MA-BCG}. \renewcommand{\nextcaption}{\R{} output of the \Rcmd{summary} method for \Robject{BCG\_mod}. \label{MA-mod-summary}} \SchunkLabel <>= summary(BCG_mod) @ \SchunkRaw \begin{figure} \begin{center} <>= plot(y ~ Latitude, data = BCG, ylab = "Estimated log-OR") abline(lm(y ~ Latitude, data = BCG, weights = studyweights)) @ \caption{Plot of observed effect size for the \Robject{BCG} vaccine data against latitude, with a weighted least squares regression fit shown in addition. \label{MA-BCG}} \end{center} \end{figure} \section{Publication Bias} \begin{figure} \begin{center} <>= set.seed(290875) sigma <- seq(from = 1/10, to = 1, length.out = 35) y <- rnorm(35) * sigma gr <- (y > -0.5) layout(matrix(1:2, ncol = 1)) plot(y, 1/sigma, xlab = "Effect size", ylab = "1 / standard error") plot(y[gr], 1/(sigma[gr]), xlim = range(y), xlab = "Effect size", ylab = "1 / standard error") @ \caption{Example funnel plots from simulated data. The asymmetry in the lower plot is a hint that a publication bias might be a problem. \label{MA-funnel}} \end{center} \end{figure} We can construct a funnel plot for the nicotine gum data using the \R{} code depicted with Figure~\ref{MA:funnel}. There does not appear to be any strong evidence of publication bias here. \begin{figure} \begin{center} <>= funnelplot(smokingDSL$logs, smokingDSL$selogs, summ = smokingDSL$logDSL, xlim = c(-1.7, 1.7)) abline(v = 0, lty = 2) @ \caption{Funnel plot for nicotine gum data. \label{MA:funnel}} \end{center} \end{figure} \index{Meta-analysis!funnel plots|)} %%\bibliographystyle{LaTeXBibTeX/refstyle} %%\bibliography{LaTeXBibTeX/HSAUR} \end{document} HSAUR3/inst/doc/Ch_multidimensional_scaling.R0000644000176200001440000001066714660150074020570 0ustar liggesusers### R code from vignette source 'Ch_multidimensional_scaling.Rnw' ################################################### ### code chunk number 1: setup ################################################### rm(list = ls()) s <- search()[-1] s <- s[-match(c("package:base", "package:stats", "package:graphics", "package:grDevices", "package:utils", "package:datasets", "package:methods", "Autoloads"), s)] if (length(s) > 0) sapply(s, detach, character.only = TRUE) if (!file.exists("tables")) dir.create("tables") if (!file.exists("figures")) dir.create("figures") set.seed(290875) options(prompt = "R> ", continue = "+ ", width = 63, # digits = 4, show.signif.stars = FALSE, SweaveHooks = list(leftpar = function() par(mai = par("mai") * c(1, 1.05, 1, 1)), bigleftpar = function() par(mai = par("mai") * c(1, 1.7, 1, 1)))) HSAURpkg <- require("HSAUR3") if (!HSAURpkg) stop("cannot load package ", sQuote("HSAUR3")) rm(HSAURpkg) ### hm, R-2.4.0 --vanilla seems to need this a <- Sys.setlocale("LC_ALL", "C") ### book <- TRUE refs <- cbind(c("AItR", "DAGD", "SI", "CI", "ANOVA", "MLR", "GLM", "DE", "RP", "GAM", "SA", "ALDI", "ALDII", "SIMC", "MA", "PCA", "MDS", "CA"), 1:18) ch <- function(x) { ch <- refs[which(refs[,1] == x),] if (book) { return(paste("Chapter~\\\\ref{", ch[1], "}", sep = "")) } else { return(paste("Chapter~", ch[2], sep = "")) } } if (file.exists("deparse.R")) source("deparse.R") setHook(packageEvent("lattice", "attach"), function(...) { lattice.options(default.theme = function() standard.theme("pdf", color = FALSE)) }) ################################################### ### code chunk number 2: singlebook ################################################### book <- FALSE ################################################### ### code chunk number 3: MDS-setup ################################################### x <- library("ape") library("wordcloud") ################################################### ### code chunk number 4: MDS-voles-cmdscale ################################################### data("watervoles", package = "HSAUR3") voles_mds <- cmdscale(watervoles, k = 13, eig = TRUE) voles_mds$eig ################################################### ### code chunk number 5: MDS-voles-criterion1 ################################################### sum(abs(voles_mds$eig[1:2]))/sum(abs(voles_mds$eig)) ################################################### ### code chunk number 6: MDS-voles-criterion2 ################################################### sum((voles_mds$eig[1:2])^2)/sum((voles_mds$eig)^2) ################################################### ### code chunk number 7: MDS-watervoles-plot ################################################### x <- voles_mds$points[,1] y <- voles_mds$points[,2] plot(x, y, xlab = "Coordinate 1", ylab = "Coordinate 2", xlim = range(x)*1.2, type = "n") textplot(x, y, words = colnames(watervoles), new = FALSE) ################################################### ### code chunk number 8: MDS-watervoles-mst ################################################### library("ape") st <- mst(watervoles) plot(x, y, xlab = "Coordinate 1", ylab = "Coordinate 2", xlim = range(x)*1.2, type = "n") for (i in 1:nrow(watervoles)) { w1 <- which(st[i, ] == 1) segments(x[i], y[i], x[w1], y[w1]) } textplot(x, y, words = colnames(watervoles), new = FALSE) ################################################### ### code chunk number 9: MDS-voting ################################################### library("MASS") data("voting", package = "HSAUR3") voting_mds <- isoMDS(voting) ################################################### ### code chunk number 10: MDS-voting-plot ################################################### x <- voting_mds$points[,1] y <- voting_mds$points[,2] plot(x, y, xlab = "Coordinate 1", ylab = "Coordinate 2", xlim = range(voting_mds$points[,1])*1.2, type = "n") textplot(x, y, words = colnames(voting), new = FALSE) voting_sh <- Shepard(voting[lower.tri(voting)], voting_mds$points) ################################################### ### code chunk number 11: MDS-voting-Shepard ################################################### plot(voting_sh, pch = ".", xlab = "Dissimilarity", ylab = "Distance", xlim = range(voting_sh$x), ylim = range(voting_sh$x)) lines(voting_sh$x, voting_sh$yf, type = "S") HSAUR3/inst/doc/Ch_gam.R0000644000176200001440000001710714660150047014253 0ustar liggesusers### R code from vignette source 'Ch_gam.Rnw' ################################################### ### code chunk number 1: setup ################################################### rm(list = ls()) s <- search()[-1] s <- s[-match(c("package:base", "package:stats", "package:graphics", "package:grDevices", "package:utils", "package:datasets", "package:methods", "Autoloads"), s)] if (length(s) > 0) sapply(s, detach, character.only = TRUE) if (!file.exists("tables")) dir.create("tables") if (!file.exists("figures")) dir.create("figures") set.seed(290875) options(prompt = "R> ", continue = "+ ", width = 63, # digits = 4, show.signif.stars = FALSE, SweaveHooks = list(leftpar = function() par(mai = par("mai") * c(1, 1.05, 1, 1)), bigleftpar = function() par(mai = par("mai") * c(1, 1.7, 1, 1)))) HSAURpkg <- require("HSAUR3") if (!HSAURpkg) stop("cannot load package ", sQuote("HSAUR3")) rm(HSAURpkg) ### hm, R-2.4.0 --vanilla seems to need this a <- Sys.setlocale("LC_ALL", "C") ### book <- TRUE refs <- cbind(c("AItR", "DAGD", "SI", "CI", "ANOVA", "MLR", "GLM", "DE", "RP", "GAM", "SA", "ALDI", "ALDII", "SIMC", "MA", "PCA", "MDS", "CA"), 1:18) ch <- function(x) { ch <- refs[which(refs[,1] == x),] if (book) { return(paste("Chapter~\\\\ref{", ch[1], "}", sep = "")) } else { return(paste("Chapter~", ch[2], sep = "")) } } if (file.exists("deparse.R")) source("deparse.R") setHook(packageEvent("lattice", "attach"), function(...) { lattice.options(default.theme = function() standard.theme("pdf", color = FALSE)) }) ################################################### ### code chunk number 2: singlebook ################################################### book <- FALSE ################################################### ### code chunk number 3: packages ################################################### library("mgcv") library("mboost") library("rpart") library("wordcloud") ################################################### ### code chunk number 4: GAM-men1500m-plot ################################################### plot(time ~ year, data = men1500m, xlab = "Year", ylab = "Winning time (sec)") ################################################### ### code chunk number 5: GAM-men1500m-lm ################################################### men1500m1900 <- subset(men1500m, year >= 1900) men1500m_lm <- lm(time ~ year, data = men1500m1900) plot(time ~ year, data = men1500m1900, xlab = "Year", ylab = "Winning time (sec)") abline(men1500m_lm) ################################################### ### code chunk number 6: GAM-men1500m-smooth ################################################### x <- men1500m1900$year y <- men1500m1900$time men1500m_lowess <- lowess(x, y) plot(time ~ year, data = men1500m1900, xlab = "Year", ylab = "Winning time (sec)") lines(men1500m_lowess, lty = 2) men1500m_cubic <- gam(y ~ s(x, bs = "cr")) lines(x, predict(men1500m_cubic), lty = 3) ################################################### ### code chunk number 7: GAM-men1500m-quad ################################################### men1500m_lm2 <- lm(time ~ year + I(year^2), data = men1500m1900) plot(time ~ year, data = men1500m1900, xlab = "Year", ylab = "Winning time (sec)") lines(men1500m1900$year, predict(men1500m_lm2)) ################################################### ### code chunk number 8: GAM-men1500m-pred ################################################### predict(men1500m_lm, newdata = data.frame(year = c(2008, 2012)), interval = "confidence") predict(men1500m_lm2, newdata = data.frame(year = c(2008, 2012)), interval = "confidence") ################################################### ### code chunk number 9: GAM-USairpollution-boost ################################################### library("mboost") USair_boost <- gamboost(SO2 ~ ., data = USairpollution) USair_aic <- AIC(USair_boost) USair_aic ################################################### ### code chunk number 10: GAM-USairpollution-boostplot ################################################### USair_gam <- USair_boost[mstop(USair_aic)] layout(matrix(1:6, ncol = 3)) plot(USair_gam, ask = FALSE) ################################################### ### code chunk number 11: GAM-USairpollution-residplot ################################################### SO2hat <- predict(USair_gam) SO2 <- USairpollution$SO2 plot(SO2hat, SO2 - SO2hat, type = "n", xlim = c(-20, max(SO2hat) * 1.1), ylim = range(SO2 - SO2hat) * c(2, 1)) textplot(SO2hat, SO2 - SO2hat, rownames(USairpollution), show.lines = FALSE, new = FALSE) abline(h = 0, lty = 2, col = "grey") ################################################### ### code chunk number 12: GAM-kyphosis-plot ################################################### layout(matrix(1:3, nrow = 1)) spineplot(Kyphosis ~ Age, data = kyphosis, ylevels = c("present", "absent")) spineplot(Kyphosis ~ Number, data = kyphosis, ylevels = c("present", "absent")) spineplot(Kyphosis ~ Start, data = kyphosis, ylevels = c("present", "absent")) ################################################### ### code chunk number 13: GAM-kyphosis-gam ################################################### (kyphosis_gam <- gam(Kyphosis ~ s(Age, bs = "cr") + s(Number, bs = "cr", k = 3) + s(Start, bs = "cr", k = 3), family = binomial, data = kyphosis)) ################################################### ### code chunk number 14: GAM-kyphosis-gamplot ################################################### trans <- function(x) binomial()$linkinv(x) layout(matrix(1:3, nrow = 1)) plot(kyphosis_gam, select = 1, shade = TRUE, trans = trans) plot(kyphosis_gam, select = 2, shade = TRUE, trans = trans) plot(kyphosis_gam, select = 3, shade = TRUE, trans = trans) ################################################### ### code chunk number 15: GAM-womensrole-gam ################################################### data("womensrole", package = "HSAUR3") fm1 <- cbind(agree, disagree) ~ s(education, by = gender) womensrole_gam <- gam(fm1, data = womensrole, family = binomial()) ################################################### ### code chunk number 16: GAM-womensrole-gamplot ################################################### layout(matrix(1:2, nrow = 1)) plot(womensrole_gam, select = 1, shade = TRUE) plot(womensrole_gam, select = 1, shade = TRUE) ################################################### ### code chunk number 17: GAM-plot-setup ################################################### myplot <- function(role.fitted) { f <- womensrole$gender == "Female" plot(womensrole$education, role.fitted, type = "n", ylab = "Probability of agreeing", xlab = "Education", ylim = c(0,1)) lines(womensrole$education[!f], role.fitted[!f], lty = 1) lines(womensrole$education[f], role.fitted[f], lty = 2) lgtxt <- c("Fitted (Males)", "Fitted (Females)") legend("topright", lgtxt, lty = 1:2, bty = "n") y <- womensrole$agree / (womensrole$agree + womensrole$disagree) size <- womensrole$agree + womensrole$disagree size <- size - min(size) size <- (size / max(size)) * 3 + 1 text(womensrole$education, y, ifelse(f, "\\VE", "\\MA"), family = "HersheySerif", cex = size) } ################################################### ### code chunk number 18: GAM-womensrole-probplot ################################################### myplot(predict(womensrole_gam, type = "response")) HSAUR3/inst/doc/Ch_recursive_partitioning.R0000644000176200001440000002332214660150106020275 0ustar liggesusers### R code from vignette source 'Ch_recursive_partitioning.Rnw' ################################################### ### code chunk number 1: setup ################################################### rm(list = ls()) s <- search()[-1] s <- s[-match(c("package:base", "package:stats", "package:graphics", "package:grDevices", "package:utils", "package:datasets", "package:methods", "Autoloads"), s)] if (length(s) > 0) sapply(s, detach, character.only = TRUE) if (!file.exists("tables")) dir.create("tables") if (!file.exists("figures")) dir.create("figures") set.seed(290875) options(prompt = "R> ", continue = "+ ", width = 63, # digits = 4, show.signif.stars = FALSE, SweaveHooks = list(leftpar = function() par(mai = par("mai") * c(1, 1.05, 1, 1)), bigleftpar = function() par(mai = par("mai") * c(1, 1.7, 1, 1)))) HSAURpkg <- require("HSAUR3") if (!HSAURpkg) stop("cannot load package ", sQuote("HSAUR3")) rm(HSAURpkg) ### hm, R-2.4.0 --vanilla seems to need this a <- Sys.setlocale("LC_ALL", "C") ### book <- TRUE refs <- cbind(c("AItR", "DAGD", "SI", "CI", "ANOVA", "MLR", "GLM", "DE", "RP", "GAM", "SA", "ALDI", "ALDII", "SIMC", "MA", "PCA", "MDS", "CA"), 1:18) ch <- function(x) { ch <- refs[which(refs[,1] == x),] if (book) { return(paste("Chapter~\\\\ref{", ch[1], "}", sep = "")) } else { return(paste("Chapter~", ch[2], sep = "")) } } if (file.exists("deparse.R")) source("deparse.R") setHook(packageEvent("lattice", "attach"), function(...) { lattice.options(default.theme = function() standard.theme("pdf", color = FALSE)) }) ################################################### ### code chunk number 2: singlebook ################################################### book <- FALSE ################################################### ### code chunk number 3: RP-setup ################################################### library("vcd") library("lattice") library("randomForest") library("partykit") ltheme <- canonical.theme(color = FALSE) ## in-built B&W theme ltheme$strip.background$col <- "transparent" ## change strip bg lattice.options(default.theme = ltheme) mai <- par("mai") options(SweaveHooks = list(nullmai = function() { par(mai = rep(0, 4)) }, twomai = function() { par(mai = c(0, mai[2], 0, 0)) }, threemai = function() { par(mai = c(0, mai[2], 0.1, 0)) })) numbers <- c("zero", "one", "two", "three", "four", "five", "six", "seven", "eight", "nine") ################################################### ### code chunk number 4: RP-bodyfat-rpart ################################################### library("rpart") data("bodyfat", package = "TH.data") bodyfat_rpart <- rpart(DEXfat ~ age + waistcirc + hipcirc + elbowbreadth + kneebreadth, data = bodyfat, control = rpart.control(minsplit = 10)) ################################################### ### code chunk number 5: RP-bodyfat-plot ################################################### getOption("SweaveHooks")[["nullmai"]]() library("partykit") plot(as.party(bodyfat_rpart), tp_args = list(id = FALSE)) ################################################### ### code chunk number 6: RP-bodyfat-cp ################################################### print(bodyfat_rpart$cptable) opt <- which.min(bodyfat_rpart$cptable[,"xerror"]) ################################################### ### code chunk number 7: RP-bodyfat-prune ################################################### cp <- bodyfat_rpart$cptable[opt, "CP"] bodyfat_prune <- prune(bodyfat_rpart, cp = cp) ################################################### ### code chunk number 8: RP-bodyfat-pruneplot ################################################### getOption("SweaveHooks")[["twomai"]]() plot(as.party(bodyfat_prune), tp_args = list(id = FALSE)) ################################################### ### code chunk number 9: RP-bodyfat-predict ################################################### DEXfat_pred <- predict(bodyfat_prune, newdata = bodyfat) xlim <- range(bodyfat$DEXfat) plot(DEXfat_pred ~ DEXfat, data = bodyfat, xlab = "Observed", ylab = "Predicted", ylim = xlim, xlim = xlim) abline(a = 0, b = 1) ################################################### ### code chunk number 10: RP-seed-again ################################################### set.seed(290875) ################################################### ### code chunk number 11: RP-glaucoma-rpart ################################################### data("GlaucomaM", package = "TH.data") glaucoma_rpart <- rpart(Class ~ ., data = GlaucomaM, control = rpart.control(xval = 100)) glaucoma_rpart$cptable opt <- which.min(glaucoma_rpart$cptable[,"xerror"]) cp <- glaucoma_rpart$cptable[opt, "CP"] glaucoma_prune <- prune(glaucoma_rpart, cp = cp) ################################################### ### code chunk number 12: RP-glaucoma-plot ################################################### getOption("SweaveHooks")[["nullmai"]]() plot(as.party(glaucoma_prune), tp_args = list(id = FALSE)) ################################################### ### code chunk number 13: RP-glaucoma-cp ################################################### nsplitopt <- vector(mode = "integer", length = 25) for (i in 1:length(nsplitopt)) { cp <- rpart(Class ~ ., data = GlaucomaM)$cptable nsplitopt[i] <- cp[which.min(cp[,"xerror"]), "nsplit"] } ################################################### ### code chunk number 14: RP-glaucoma-cp-print ################################################### table(nsplitopt) ################################################### ### code chunk number 15: RP-glaucoma-bagg ################################################### trees <- vector(mode = "list", length = 25) n <- nrow(GlaucomaM) bootsamples <- rmultinom(length(trees), n, rep(1, n)/n) mod <- rpart(Class ~ ., data = GlaucomaM, control = rpart.control(xval = 0)) for (i in 1:length(trees)) trees[[i]] <- update(mod, weights = bootsamples[,i]) ################################################### ### code chunk number 16: RP-glaucoma-splits ################################################### table(sapply(trees, function(x) as.character(x$frame$var[1]))) ################################################### ### code chunk number 17: RP-glaucoma-baggpred ################################################### classprob <- matrix(0, nrow = n, ncol = length(trees)) for (i in 1:length(trees)) { classprob[,i] <- predict(trees[[i]], newdata = GlaucomaM)[,1] classprob[bootsamples[,i] > 0,i] <- NA } ################################################### ### code chunk number 18: RP-glaucoma-avg ################################################### avg <- rowMeans(classprob, na.rm = TRUE) predictions <- factor(ifelse(avg > 0.5, "glaucoma", "normal")) predtab <- table(predictions, GlaucomaM$Class) predtab ################################################### ### code chunk number 19: RP-glaucoma-sens ################################################### round(predtab[1,1] / colSums(predtab)[1] * 100) ################################################### ### code chunk number 20: RP-glaucoma-spez ################################################### round(predtab[2,2] / colSums(predtab)[2] * 100) ################################################### ### code chunk number 21: RP-glaucoma-baggplot ################################################### library("lattice") gdata <- data.frame(avg = rep(avg, 2), class = rep(as.numeric(GlaucomaM$Class), 2), obs = c(GlaucomaM[["varg"]], GlaucomaM[["vari"]]), var = factor(c(rep("varg", nrow(GlaucomaM)), rep("vari", nrow(GlaucomaM))))) panelf <- function(x, y) { panel.xyplot(x, y, pch = gdata$class) panel.abline(h = 0.5, lty = 2) } print(xyplot(avg ~ obs | var, data = gdata, panel = panelf, scales = "free", xlab = "", ylab = "Estimated Class Probability Glaucoma")) ################################################### ### code chunk number 22: RP-glaucoma-rf ################################################### library("randomForest") rf <- randomForest(Class ~ ., data = GlaucomaM) ################################################### ### code chunk number 23: RP-glaucoma-rf-oob ################################################### table(predict(rf), GlaucomaM$Class) ################################################### ### code chunk number 24: RP-bodyfat-ctree ################################################### bodyfat_ctree <- ctree(DEXfat ~ age + waistcirc + hipcirc + elbowbreadth + kneebreadth, data = bodyfat) ################################################### ### code chunk number 25: RP-bodyfat-ctree-plot ################################################### plot(bodyfat_ctree, tp_args = list(id = FALSE)) ################################################### ### code chunk number 26: RP-glaucoma-ctree ################################################### glaucoma_ctree <- ctree(Class ~ ., data = GlaucomaM) ################################################### ### code chunk number 27: RP-glaucoma-ctree-plot ################################################### plot(glaucoma_ctree, tp_args = list(id = FALSE)) ################################################### ### code chunk number 28: RP-CHFLS-ctree ################################################### levels(CHFLS$R_happy) levels(CHFLS$R_happy) <- LETTERS[1:4] CHFLS_ctree <- ctree(R_happy ~ ., data = CHFLS) ################################################### ### code chunk number 29: RP-CHFLS-ctree-plot ################################################### plot(CHFLS_ctree, ep_args = list(justmin = 10), tp_args = list(id = FALSE)) HSAUR3/inst/doc/Ch_logistic_regression_glm.Rnw0000644000176200001440000011117014416236367020774 0ustar liggesusers \documentclass{chapman} %%% copy Sweave.sty definitions %%% keeps `sweave' from adding `\usepackage{Sweave}': DO NOT REMOVE %\usepackage{Sweave} \RequirePackage[T1]{fontenc} \RequirePackage{graphicx,ae,fancyvrb} \IfFileExists{upquote.sty}{\RequirePackage{upquote}}{} \usepackage{relsize} \DefineVerbatimEnvironment{Sinput}{Verbatim}{} \DefineVerbatimEnvironment{Soutput}{Verbatim}{fontfamily=courier, fontshape=it, fontsize=\relsize{-1}} \DefineVerbatimEnvironment{Scode}{Verbatim}{} \newenvironment{Schunk}{}{} %%% environment for raw output \newcommand{\SchunkRaw}{\renewenvironment{Schunk}{}{} \DefineVerbatimEnvironment{Soutput}{Verbatim}{fontfamily=courier, fontshape=it, fontsize=\small} \rawSinput } %%% environment for labeled output \newcommand{\nextcaption}{} \newcommand{\SchunkLabel}{ \renewenvironment{Schunk}{\begin{figure}[ht] }{\caption{\nextcaption} \end{figure} } \DefineVerbatimEnvironment{Sinput}{Verbatim}{frame = topline} \DefineVerbatimEnvironment{Soutput}{Verbatim}{frame = bottomline, samepage = true, fontfamily=courier, fontshape=it, fontsize=\relsize{-1}} } %%% S code with line numbers \DefineVerbatimEnvironment{Sinput} {Verbatim} { %% numbers=left } \newcommand{\numberSinput}{ \DefineVerbatimEnvironment{Sinput}{Verbatim}{numbers=left} } \newcommand{\rawSinput}{ \DefineVerbatimEnvironment{Sinput}{Verbatim}{} } %%% R / System symbols \newcommand{\R}{\textsf{R}} \newcommand{\rR}{{R}} \renewcommand{\S}{\textsf{S}} \newcommand{\SPLUS}{\textsf{S-PLUS}} \newcommand{\rSPLUS}{{S-PLUS}} \newcommand{\SPSS}{\textsf{SPSS}} \newcommand{\EXCEL}{\textsf{Excel}} \newcommand{\ACCESS}{\textsf{Access}} \newcommand{\SQL}{\textsf{SQL}} %%\newcommand{\Rpackage}[1]{\hbox{\rm\textit{#1}}} %%\newcommand{\Robject}[1]{\hbox{\rm\texttt{#1}}} %%\newcommand{\Rclass}[1]{\hbox{\rm\textit{#1}}} %%\newcommand{\Rcmd}[1]{\hbox{\rm\texttt{#1}}} \newcommand{\Rpackage}[1]{\index{#1 package@{\fontseries{b}\selectfont #1} package} {\fontseries{b}\selectfont #1}} \newcommand{\rpackage}[1]{{\fontseries{b}\selectfont #1}} \newcommand{\Robject}[1]{\texttt{#1}} \newcommand{\Rclass}[1]{\index{#1 class@\textit{#1} class}\textit{#1}} \newcommand{\Rcmd}[1]{\index{#1 function@\texttt{#1} function}\texttt{#1}} \newcommand{\Roperator}[1]{\texttt{#1}} \newcommand{\Rarg}[1]{\texttt{#1}} \newcommand{\Rlevel}[1]{\texttt{#1}} %%% other symbols \newcommand{\file}[1]{\hbox{\rm\texttt{#1}}} %%\newcommand{\stress}[1]{\index{#1}\textit{#1}} \newcommand{\stress}[1]{\textit{#1}} \newcommand{\booktitle}[1]{\textit{#1}} %%' %%% Math symbols \usepackage{amstext} \usepackage{amsmath} \newcommand{\E}{\mathsf{E}} \newcommand{\Var}{\mathsf{Var}} \newcommand{\Cov}{\mathsf{Cov}} \newcommand{\Cor}{\mathsf{Cor}} \newcommand{\x}{\mathbf{x}} \newcommand{\y}{\mathbf{y}} \renewcommand{\a}{\mathbf{a}} \newcommand{\W}{\mathbf{W}} \newcommand{\C}{\mathbf{C}} \renewcommand{\H}{\mathbf{H}} \newcommand{\X}{\mathbf{X}} \newcommand{\B}{\mathbf{B}} \newcommand{\V}{\mathbf{V}} \newcommand{\I}{\mathbf{I}} \newcommand{\D}{\mathbf{D}} \newcommand{\bS}{\mathbf{S}} \newcommand{\N}{\mathcal{N}} \renewcommand{\L}{L} \renewcommand{\P}{\mathsf{P}} \newcommand{\K}{\mathbf{K}} \newcommand{\m}{\mathbf{m}} \newcommand{\argmin}{\operatorname{argmin}\displaylimits} \newcommand{\argmax}{\operatorname{argmax}\displaylimits} \newcommand{\bx}{\mathbf{x}} \newcommand{\bbeta}{\mathbf{\beta}} %%% links \usepackage{hyperref} \hypersetup{% pdftitle = {A Handbook of Statistical Analyses Using R (3rd Edition)}, pdfsubject = {Book}, pdfauthor = {Torsten Hothorn and Brian S. Everitt}, colorlinks = {black}, linkcolor = {black}, citecolor = {black}, urlcolor = {black}, hyperindex = {true}, linktocpage = {true}, } %%% captions & tables %% : conflics with figure definition in chapman.cls %%\usepackage[format=hang,margin=10pt,labelfont=bf]{caption} %% \usepackage{longtable} \usepackage[figuresright]{rotating} %%% R symbol in chapter 1 \usepackage{wrapfig} %%% Bibliography \usepackage[round,comma]{natbib} \renewcommand{\refname}{References \addcontentsline{toc}{chapter}{References}} \citeindexfalse %%% texi2dvi complains that \newblock is undefined, hm... \def\newblock{\hskip .11em plus .33em minus .07em} %%% Example sections \newcounter{exercise}[chapter] \setcounter{exercise}{0} \newcommand{\exercise}{\stepcounter{exercise} \item{Ex.~\arabic{chapter}.\arabic{exercise} }} %% URLs \newcommand{\curl}[1]{\begin{center} \url{#1} \end{center}} %%% for manual corrections %\renewcommand{\baselinestretch}{2} %%% plot sizes \setkeys{Gin}{width=0.95\textwidth} %%% color \usepackage{color} %%% hyphenations \hyphenation{drop-out} \hyphenation{mar-gi-nal} %%% new bidirectional quotes need \usepackage[utf8]{inputenc} %\usepackage{setspace} \definecolor{sidebox_todo}{rgb}{1,1,0.2} \newcommand{\todo}[1]{ \hspace{0pt}% \marginpar{% \fcolorbox{black}{sidebox_todo}{% \parbox{\marginparwidth} { \raggedright\sffamily\footnotesize{TODO: #1}% } }% } } \begin{document} %% Title page \title{A Handbook of Statistical Analyses Using \R{} --- 3rd Edition} \author{Torsten Hothorn and Brian S. Everitt} \maketitle %%\VignetteIndexEntry{Chapter Logistic Regression and Generalized Linear Models} %%\VignetteDepends{survival,MASS,multcomp,lattice} \setcounter{chapter}{6} \SweaveOpts{prefix.string=figures/HSAUR,eps=FALSE,keep.source=TRUE} <>= rm(list = ls()) s <- search()[-1] s <- s[-match(c("package:base", "package:stats", "package:graphics", "package:grDevices", "package:utils", "package:datasets", "package:methods", "Autoloads"), s)] if (length(s) > 0) sapply(s, detach, character.only = TRUE) if (!file.exists("tables")) dir.create("tables") if (!file.exists("figures")) dir.create("figures") set.seed(290875) options(prompt = "R> ", continue = "+ ", width = 63, # digits = 4, show.signif.stars = FALSE, SweaveHooks = list(leftpar = function() par(mai = par("mai") * c(1, 1.05, 1, 1)), bigleftpar = function() par(mai = par("mai") * c(1, 1.7, 1, 1)))) HSAURpkg <- require("HSAUR3") if (!HSAURpkg) stop("cannot load package ", sQuote("HSAUR3")) rm(HSAURpkg) ### hm, R-2.4.0 --vanilla seems to need this a <- Sys.setlocale("LC_ALL", "C") ### book <- TRUE refs <- cbind(c("AItR", "DAGD", "SI", "CI", "ANOVA", "MLR", "GLM", "DE", "RP", "GAM", "SA", "ALDI", "ALDII", "SIMC", "MA", "PCA", "MDS", "CA"), 1:18) ch <- function(x) { ch <- refs[which(refs[,1] == x),] if (book) { return(paste("Chapter~\\\\ref{", ch[1], "}", sep = "")) } else { return(paste("Chapter~", ch[2], sep = "")) } } if (file.exists("deparse.R")) source("deparse.R") setHook(packageEvent("lattice", "attach"), function(...) { lattice.options(default.theme = function() standard.theme("pdf", color = FALSE)) }) @ \pagestyle{headings} <>= book <- FALSE @ \chapter[Logistic Regression and Generalized Linear Models]{Logistic Regression and Generalized Linear Models: Blood Screening, Women's Role in %' Society, Colonic Polyps, Driving and Back Pain, and Happiness in China \label{GLM}} \section{Introduction} \section{Logistic Regression and Generalized Linear Models} \section{Analysis Using \R{}} \subsection{ESR and Plasma Proteins} \begin{figure} \begin{center} <>= data("plasma", package = "HSAUR3") layout(matrix(1:2, ncol = 2)) cdplot(ESR ~ fibrinogen, data = plasma) cdplot(ESR ~ globulin, data = plasma) @ \caption{Conditional density plots of the erythrocyte sedimentation rate (ESR) given fibrinogen and globulin. \label{GLM:plasma1}} \end{center} \end{figure} We can now fit a logistic regression model to the data using the \Rcmd{glm} function. We start with a model that includes only a single explanatory variable, \Robject{fibrinogen}. The code to fit the model is <>= plasma_glm_1 <- glm(ESR ~ fibrinogen, data = plasma, family = binomial()) @ The formula implicitly defines a parameter for the global mean (the intercept term) as discussed in \Sexpr{ch("ANOVA")} and \Sexpr{ch("MLR")}. The distribution of the response is defined by the \Robject{family} argument, a binomial distribution in our case. \index{family argument@\Rcmd{family} argument} \index{Binomial distribution} (The default link function when the binomial family is requested is the logistic function.) \renewcommand{\nextcaption}{\R{} output of the \Robject{summary} method for the logistic regression model fitted to ESR and fibrigonen. \label{GLM-plasma-summary-1}} \SchunkLabel <>= summary(plasma_glm_1) @ \SchunkRaw From the results in Figure~\ref{GLM-plasma-summary-1} we see that the regression coefficient for fibrinogen is significant at the $5\%$ level. An increase of one unit in this variable increases the log-odds in favor of an ESR value greater than $20$ by an estimated $\Sexpr{round(coef(plasma_glm_1)["fibrinogen"], 2)}$ with 95\% confidence interval <>= ci <- confint(plasma_glm_1)["fibrinogen",] @ <>= confint(plasma_glm_1, parm = "fibrinogen") @ <>= print(ci) @ These values are more helpful if converted to the corresponding values for the odds themselves by exponentiating the estimate <>= exp(coef(plasma_glm_1)["fibrinogen"]) @ and the confidence interval <>= ci <- exp(confint(plasma_glm_1, parm = "fibrinogen")) @ <>= exp(confint(plasma_glm_1, parm = "fibrinogen")) @ <>= print(ci) @ The confidence interval is very wide because there are few observations overall and very few where the ESR value is greater than $20$. Nevertheless it seems likely that increased values of fibrinogen lead to a greater probability of an ESR value greater than $20$. We can now fit a logistic regression model that includes both explanatory variables using the code <>= plasma_glm_2 <- glm(ESR ~ fibrinogen + globulin, data = plasma, family = binomial()) @ and the output of the \Rcmd{summary} method is shown in Figure \ref{GLM-plasma-summary-2}. \renewcommand{\nextcaption}{\R{} output of the \Robject{summary} method for the logistic regression model fitted to ESR and both globulin and fibrinogen. \label{GLM-plasma-summary-2}} \SchunkLabel <>= summary(plasma_glm_2) @ \SchunkRaw <>= plasma_anova <- anova(plasma_glm_1, plasma_glm_2, test = "Chisq") @ The coefficient for gamma globulin is not significantly different from zero. Subtracting the residual deviance of the second model from the corresponding value for the first model we get a value of $\Sexpr{round(plasma_anova$Deviance[2], 2)}$. Tested using a $\chi^2$-distribution with a single degree of freedom this is not significant at the 5\% level and so we conclude that gamma globulin is not associated with ESR level. In \R{}, the task of comparing the two nested models can be performed using the \Rcmd{anova} function <>= anova(plasma_glm_1, plasma_glm_2, test = "Chisq") @ Nevertheless we shall use the predicted values from the second model and plot them against the values of \stress{both} explanatory variables using a \stress{bubbleplot} to illustrate the use of the \Rcmd{symbols} function. \index{Bubbleplot} The estimated conditional probability of a ESR value larger $20$ for all observations can be computed, following formula (\ref{GLM:logitexp}), by <>= prob <- predict(plasma_glm_2, type = "response") @ and now we can assign a larger circle to observations with larger probability as shown in Figure~\ref{GLM:bubble}. The plot clearly shows the increasing probability of an ESR value above $20$ (larger circles) as the values of fibrinogen, and to a lesser extent, gamma globulin, increase. \begin{figure} \begin{center} <>= plot(globulin ~ fibrinogen, data = plasma, xlim = c(2, 6), ylim = c(25, 55), pch = ".") symbols(plasma$fibrinogen, plasma$globulin, circles = prob, add = TRUE) @ \caption{Bubbleplot of fitted values for a logistic regression model fitted to the \Robject{plasma} data. \label{GLM:bubble}} \end{center} \end{figure} \subsection{Women's Role in Society} %' Originally the data in Table~\ref{GLM-womensrole-tab} would have been in a completely equivalent form to the data in Table~\ref{GLM-plasma-tab} data, but here the individual observations have been grouped into counts of numbers of agreements and disagreements for the two explanatory variables, \Robject{gender} and \Robject{education}. To fit a logistic regression model to such grouped data using the \Rcmd{glm} function we need to specify the number of agreements and disagreements as a two-column matrix on the left-hand side of the model formula. We first fit a model that includes the two explanatory variables using the code <>= data("womensrole", package = "HSAUR3") fm1 <- cbind(agree, disagree) ~ gender + education womensrole_glm_1 <- glm(fm1, data = womensrole, family = binomial()) @ \renewcommand{\nextcaption}{\R{} output of the \Robject{summary} method for the logistic regression model fitted to the \Robject{womensrole} data. \label{GLM-womensrole-summary-1}} \SchunkLabel <>= summary(womensrole_glm_1) @ \SchunkRaw From the \Rcmd{summary} output in Figure~\ref{GLM-womensrole-summary-1} it appears that education has a highly significant part to play in predicting whether a respondent will agree with the statement read to them, but the respondent's %' gender is apparently unimportant. As years of education increase the probability of agreeing with the statement declines. We now are going to construct a plot comparing the observed proportions of agreeing with those fitted by our fitted model. Because we will reuse this plot for another fitted object later on, we define a function which plots years of education against some fitted probabilities, e.g., <>= role.fitted1 <- predict(womensrole_glm_1, type = "response") @ and labels each observation with the person's gender: %%' \numberSinput <>= myplot <- function(role.fitted) { f <- womensrole$gender == "Female" plot(womensrole$education, role.fitted, type = "n", ylab = "Probability of agreeing", xlab = "Education", ylim = c(0,1)) lines(womensrole$education[!f], role.fitted[!f], lty = 1) lines(womensrole$education[f], role.fitted[f], lty = 2) lgtxt <- c("Fitted (Males)", "Fitted (Females)") legend("topright", lgtxt, lty = 1:2, bty = "n") y <- womensrole$agree / (womensrole$agree + womensrole$disagree) size <- womensrole$agree + womensrole$disagree size <- size - min(size) size <- (size / max(size)) * 3 + 1 text(womensrole$education, y, ifelse(f, "\\VE", "\\MA"), family = "HersheySerif", cex = size) } @ \rawSinput \begin{figure} \begin{center} <>= myplot(role.fitted1) @ \caption{Fitted (from \Robject{womensrole\_glm\_1}) and observed probabilities of agreeing for the \Robject{womensrole} data. The size of the symbols is proportional to the sample size. \label{GLM-role1plot}} \end{center} \end{figure} In lines 3--5 of function \Rcmd{myplot}, an empty scatterplot of education and fitted probabilities (\Rcmd{type = "n"}) is set up, basically to set the scene for the following plotting actions. Then, two lines are drawn (using function \Rcmd{lines} in lines 6 and 7), one for males (with line type 1) and one for females (with line type 2, i.e., a dashed line), where the logical vector \Robject{f} describes both genders. In line 9 a legend is added. Finally, in lines 12 onwards we plot `observed' values, i.e., the frequencies of agreeing in each of the groups (\Robject{y} as computed in lines 10 and 11) and use the Venus and Mars symbols to indicate gender. The size of the plotted symbol is proportional to the numbers of observations in the corresponding group of gender and years of education. The two curves for males and females in Figure~\ref{GLM-role1plot} are almost the same reflecting the non-significant value of the regression coefficient for gender in \Robject{womensrole\_glm\_1}. But the observed values plotted on Figure~\ref{GLM-role1plot} suggest that there might be an interaction of education and gender, a possibility that can be investigated by applying a further logistic regression model using \index{Interaction} <>= fm2 <- cbind(agree,disagree) ~ gender * education womensrole_glm_2 <- glm(fm2, data = womensrole, family = binomial()) @ The \Robject{gender} and \Robject{education} interaction term is seen to be highly significant, as can be seen from the \Rcmd{summary} output in Figure~\ref{GLM-womensrole-summary-2}. \renewcommand{\nextcaption}{\R{} output of the \Robject{summary} method for the logistic regression model fitted to the \Robject{womensrole} data. \label{GLM-womensrole-summary-2}} \SchunkLabel <>= summary(womensrole_glm_2) @ \SchunkRaw \begin{figure} \begin{center} <>= role.fitted2 <- predict(womensrole_glm_2, type = "response") myplot(role.fitted2) @ \caption{Fitted (from \Robject{womensrole\_glm\_2}) and observed probabilities of agreeing for the \Robject{womensrole} data. \label{GLM-role2plot}} \end{center} \end{figure} We can obtain a plot of deviance residuals plotted against fitted values using the following code above Figure~\ref{GLM:devplot}. \begin{figure} \begin{center} <>= res <- residuals(womensrole_glm_2, type = "deviance") plot(predict(womensrole_glm_2), res, xlab="Fitted values", ylab = "Residuals", ylim = max(abs(res)) * c(-1,1)) abline(h = 0, lty = 2) @ \caption{Plot of deviance residuals from logistic regression model fitted to the \Robject{womensrole} data. \label{GLM:devplot}} \end{center} \end{figure} The residuals fall into a horizontal band between $-2$ and $2$. This pattern does not suggest a poor fit for any particular observation or subset of observations. \subsection{Colonic Polyps} The data on colonic polyps in Table~\ref{GLM-polyps-tab} involves \stress{count} data. We could try to model this using multiple regression but there are two problems. The first is that a response that is a count can take only positive values, and secondly such a variable is unlikely to have a normal distribution. Instead we will apply a GLM with a log link function, ensuring that fitted values are positive, and a Poisson error distribution, i.e., \index{Poisson error distribution} \index{Poisson regression} \begin{eqnarray*} \P(y) = \frac{e^{-\lambda}\lambda^y}{y!}. \end{eqnarray*} This type of GLM is often known as \stress{Poisson regression}. We can apply the model using <>= data("polyps", package = "HSAUR3") polyps_glm_1 <- glm(number ~ treat + age, data = polyps, family = poisson()) @ (The default link function when the Poisson family is requested is the log function.) \renewcommand{\nextcaption}{\R{} output of the \Robject{summary} method for the Poisson regression model fitted to the \Robject{polyps} data. \label{GLM-polyps-summary-1}} \SchunkLabel <>= summary(polyps_glm_1) @ \SchunkRaw We can deal with overdispersion by using a procedure known as \stress{quasi-likelihood}, \index{Quasi-likelihood} which allows the estimation of model parameters without fully knowing the error distribution of the response variable. \cite{HSAUR:McCullaghNelder1989} give full details of the quasi-likelihood approach. In many respects it simply allows for the estimation of $\phi$ from the data rather than defining it to be unity for the binomial and Poisson distributions. We can apply quasi-likelihood estimation to the colonic polyps data using the following \R{} code <>= polyps_glm_2 <- glm(number ~ treat + age, data = polyps, family = quasipoisson()) summary(polyps_glm_2) @ The regression coefficients for both explanatory variables remain significant but their estimated standard errors are now much greater than the values given in Figure~\ref{GLM-polyps-summary-1}. A possible reason for overdispersion in these data is that polyps do not occur independently of one another, but instead may `cluster' together. %' \index{Overdispersion|)} \subsection{Driving and Back Pain} A frequently used design in medicine is the matched case-control study in which each patient suffering from a particular condition of interest included in the study is matched to one or more people without the condition. The most commonly used matching variables are age, ethnic group, mental status, etc. A design with $m$ controls per case is known as a $1:m$ matched study. In many cases $m$ will be one, and it is the $1:1$ matched study that we shall concentrate on here where we analyze the data on low back pain given in Table~\ref{GLM-backpain-tab}. To begin we shall describe the form of the logistic model appropriate for case-control studies in the simplest case where there is only one binary explanatory variable. With matched pairs data the form of the logistic model involves the probability, $\varphi$, that in matched pair number $i$, for a given value of the explanatory variable the member of the pair is a case. Specifically the model is \begin{eqnarray*} \text{logit}(\varphi_i) = \alpha_i + \beta x. \end{eqnarray*} The odds that a subject with $x=1$ is a case equals $\exp(\beta)$ times the odds that a subject with $x=0$ is a case. The model generalizes to the situation where there are $q$ explanatory variables as \begin{eqnarray*} \text{logit}(\varphi_i) = \alpha_i + \beta_1 x_1 + \beta_2 x_2 + \dots \beta_q x_q. \end{eqnarray*} Typically one $x$ is an explanatory variable of real interest, such as past exposure to a risk factor, with the others being used as a form of statistical control in addition to the variables already controlled by virtue of using them to form matched pairs. This is the case in our back pain example where it is the effect of car driving on lower back pain that is of most interest. The problem with the model above is that the number of parameters increases at the same rate as the sample size with the consequence that maximum likelihood estimation is no longer viable. We can overcome this problem if we regard the parameters $\alpha_i$ as of little interest and so are willing to forgo their estimation. If we do, we can then create a \stress{conditional likelihood function} that will yield maximum likelihood estimators of the coefficients, $\beta_1, \dots, \beta_q$, that are consistent and asymptotically normally distributed. The mathematics behind this are described in \cite{HSAUR:Collett2003}. The model can be fitted using the \Rcmd{clogit} function from package \Rpackage{survival}; the results are shown in Figure~\ref{GLM-backpain-print}. <>= library("survival") backpain_glm <- clogit(I(status == "case") ~ driver + suburban + strata(ID), data = backpain) @ The response has to be a logical (\Rcmd{TRUE} for cases) and the \Rcmd{strata} command specifies the matched pairs. \renewcommand{\nextcaption}{\R{} output of the \Robject{print} method for the conditional logistic regression model fitted to the \Robject{backpain} data. \label{GLM-backpain-print}} \SchunkLabel <>= print(backpain_glm) @ \SchunkRaw The estimate of the odds ratio of a herniated disc occurring in a driver relative to a nondriver is $\Sexpr{round(exp(coef(backpain_glm)[1]),2)}$ with a $95\%$ confidence interval of $\Sexpr{paste("(", paste(round(exp(confint(backpain_glm)[1,]), 2), collapse = ","),")", sep = "")}$. Conditional on residence we can say that the risk of a herniated disc occurring in a driver is about twice that of a nondriver. There is no evidence that where a person lives affects the risk of lower back pain. \subsection{Happiness in China} We model the probability distribution of reported happiness using a proportional odds model. In \R{}, the function \Rcmd{polr} from the \Rpackage{MASS} package \citep{HSAUR:VenablesRipley2002, PKG:MASS} implements such models, but in a slightly different form as explained in Section~\ref{GLM:polr}. The model we are going to fit reads \begin{eqnarray*} \log\left(\frac{\P(y \le k | x_1, \dots, x_q)}{\P(y > k | x_1, \dots, x_q)}\right) & = & \zeta_k - (\beta_1 x_1 + \dots + \beta_q x_q) \end{eqnarray*} and we have to take care when interpreting the signs of the estimated regression coefficients. Another issue needs our attention before we start. Three of the explanatory variables are itself ordered (\Robject{R\_edu}, the level of education of the responding woman; \Robject{R\_health}, the health status of the responding woman in the last year; and \Robject{A\_edu}, the level of education of the woman's partner). For unordered factors, the default treatment contrasts, see Chapters~\ref{ANOVA}, \ref{MLR}, and \ref{SIMC}, compares the effect of each level to the first level. This coding does not take the ordinal nature of an ordered factor into account. One more appropriate coding is called \stress{Helmert} contrasts. \index{Helmert constrast} Here, we compare each level $k$ to the average of the preceding levels, i.e., the second level to the first, the third to the average of the first and the second, and so on (these contrasts are also sometimes called \stress{reverse Helmert contrasts}). The \Rcmd{option} function can be used to specify the default contrasts for unordered (we don't change the default \Robject{contr.treatment} option) and ordered factors. The returned \Robject{opts} variable stores the options before manipulation and can be used to conveniently restore them after we fitted the proportional odds model: <>= library("MASS") opts <- options(contrasts = c("contr.treatment", "contr.helmert")) CHFLS_polr <- polr(R_happy ~ ., data = CHFLS, Hess = TRUE) options(opts) @ \renewcommand{\nextcaption}{\R{} output of the \Robject{summary} method for the proportional odds model fitted to the \Robject{CHFLS} data. \label{GLM-CHFLS-polr-summary}} \SchunkLabel <>= summary(CHFLS_polr) @ \SchunkRaw As (almost) always, the \Rcmd{summary} function can be used to display the fitted model, see Figure~\ref{GLM-CHFLS-polr-summary}. The largest absolute values of the $t$-statistics are associated with the self-reported health variable. To interpret the results correctly, we first make sure to understand the definition of the Helmert contrasts. <>= H <- with(CHFLS, contr.helmert(table(R_health))) rownames(H) <- levels(CHFLS$R_health) colnames(H) <- paste(levels(CHFLS$R_health)[-1], "- avg") H @ Let's focus on the probability of being very unhappy. A positive regression coefficient for the first contrast of health means that the probability of being very unhappy is smaller (because of the sign switch in the regression coefficients) for women that reported their health as not good compared to women that reported a poor health. Thus, the results given in Figure~\ref{GLM-CHFLS-polr-summary} indicate that better health leads to happier women, a finding that sits well with our expectations. The other effects are less clear to interpret, also because formal inference is difficult and no $p$-values are displayed in the summary output of Figure~\ref{GLM-CHFLS-polr-summary}. As a remedy, making use of the asymptotic distribution of maximum-likelihood-based estimators, we use the \Rcmd{cftest} function from the \Rpackage{multcomp} package \citep{PKG:multcomp} to compute normal $p$-values assuming that the estimated regression coefficients follow a normal limiting distribution (which is, for \Sexpr{nrow(CHFLS) - 3} observations, not completely unrealistic); the results are given in Figure~\ref{GLM-CHFLS-polr-cftest}. %% mess with the output function <>= library("multcomp") op <- options(digits = 2) cf <- cftest(CHFLS_polr) cftest <- function(x, digits = max(3, getOption("digits") - 3)) { x <- cf cat("\n\t", "Simultaneous Tests for General Linear Hypotheses\n\n") if (!is.null(x$type)) cat("Multiple Comparisons of Means:", x$type, "Contrasts\n\n\n") call <- if (isS4(x$model)) x$model@call else x$model$call if (!is.null(call)) { cat("Fit: ") print(call) cat("\n") } pq <- x$test mtests <- cbind(pq$coefficients, pq$sigma, pq$tstat, pq$pvalues) error <- attr(pq$pvalues, "error") pname <- switch(x$alternativ, less = paste("Pr(<", ifelse(x$df == 0, "z", "t"), ")", sep = ""), greater = paste("Pr(>", ifelse(x$df == 0, "z", "t"), ")", sep = ""), two.sided = paste("Pr(>|", ifelse(x$df == 0, "z", "t"), "|)", sep = "")) colnames(mtests) <- c("Estimate", "Std. Error", ifelse(x$df == 0, "z value", "t value"), pname) type <- pq$type if (!is.null(error) && error > .Machine$double.eps) { sig <- which.min(abs(1/error - (10^(1:10)))) sig <- 1/(10^sig) } else { sig <- .Machine$double.eps } cat("Linear Hypotheses:\n") alt <- switch(x$alternative, two.sided = "==", less = ">=", greater = "<=") rownames(mtests) <- rownames(mtests) printCoefmat(mtests, digits = digits, has.Pvalue = TRUE, P.values = TRUE, eps.Pvalue = sig) switch(type, univariate = cat("(Univariate p values reported)"), `single-step` = cat("(Adjusted p values reported -- single-step method)"), Shaffer = cat("(Adjusted p values reported -- Shaffer method)"), Westfall = cat("(Adjusted p values reported -- Westfall method)"), cat("(Adjusted p values reported --", type, "method)")) cat("\n\n") invisible(x) } @ \renewcommand{\nextcaption}{\R{} output of the \Robject{cftest} function for the proportional odds model fitted to the \Robject{CHFLS} data. \label{GLM-CHFLS-polr-cftest}} \SchunkLabel <>= library("multcomp") cftest(CHFLS_polr) @ \SchunkRaw <>= options(op) @ There seem to be geographical differences and also older and larger women seem to be happier. Other than that, education and income don't seem to contribute much in this model. One remarkable thing about the proportional odds model is that, similar to the quantile regression models presented in Chapter~\ref{QR}, it directly formulates a regression problem in terms of conditional distributions, not only conditional means (the same is trivially true for the binary case in logistic regression). Consequently, the model allows making distributional predictions, in other words, we can infer the predicted distribution or density of happiness in a woman with certain values for the explanatory variables that entered the model. To do so, we focus on the woman corresponding to the first row of the data set: \clearpage <>= CHFLS[1,] @ and repeat these values as often as there are levels in the \Robject{R\_health} factor, and each row is assigned one of these levels <>= nd <- CHFLS[rep(1, nlevels(CHFLS$R_health)),] nd$R_health <- ordered(levels(nd$R_health), labels = levels(nd$R_health)) @ We can now use the \Rcmd{predict} function to compute the density of the response variable \Rcmd{R\_happy} for each of these five hypothetical women: <>= (dens <- predict(CHFLS_polr, newdata = nd, type = "probs")) @ From each row, we get the predicted probability that the self-reported happiness will correspond to the levels shown in the column name. These densities, one for each row in \Robject{nd} and therefore for each level of health, can now be plotted, for example using a conditional barchart, see Figure~\ref{GLM-CHFLS-pred-plot}. We clearly see that better health is associated with greater happiness. \begin{figure} \begin{center} <>= library("lattice") D <- expand.grid(R_health = nd$R_health, R_happy = ordered(LETTERS[1:4])) D$dens <- as.vector(dens) barchart(dens ~ R_happy | R_health, data = D, ylab = "Density", xlab = "Happiness",) @ \caption{Predicted distribution of happiness for hypothetical women with health conditions rating from poor to excellent, with the remaining explanatory variables being the same as for the woman corresponding to the first row in the \Robject{CHFLS} data frame. The levels of happiness have been abbreviated (A: very unhappy, B: not too happy, C: somewhat happy; D: very happy). \label{GLM-CHFLS-pred-plot}} \end{center} \end{figure} We'll present an alternative and maybe simpler model in Chapter~\ref{RP}. \section{Summary of Findings} <>= ci <- round(exp(confint(plasma_glm_1, parm = "fibrinogen")), 2) ci <- paste("(", paste(ci, collapse = ","), ")", sep = "") @ \begin{description} \item[Blood screening] Application of logistic regression shows that an increase of one unit in the fibrinogen value produces approximately a six fold increase in the odds of an ESR value greater than $20$. However, because the number of observations is small the corresponding $95\%$ confidence interval for the odds is rather wide namely, $\Sexpr{ci}$. Gamma globulin values do not help in the prediction of ESR values greater than $20$ over and above the fibrinogen values. \item[Women's role in society] Modeling the probability of agreeing with the statement about women's role in society using logistic regression demonstrates that it is the interaction of education and gender which is of most importance; for fewer years of education women have a higher probability of agreeing with the statement than men, but when the years of education exceed about ten then this situation reverses. \item[Colonic polyps] Fitting a Poisson regression allowing for overdispersion shows that the drug treatment is effective in reducing the number of polyps with age having only a marginal effect. \item[Driving and back pain] Application of conditional logistic regression shows that the odds ratio of a herniated disc occurring in a driver relative to a nondriver is $\Sexpr{round(exp(coef(backpain_glm)[1]),2)}$ with a $95\%$ confidence interval of $\Sexpr{paste("(", paste(round(exp(confint(backpain_glm)[1,]), 2), collapse = ","),")", sep = "")}$. There is no evidence that where a person lives affects the risk of suffering lower back pain. \item[Happiness in China] Better health is associated with greater happiness -- what a surprise! \end{description} \section{Final Comments} Generalized linear models provide a very powerful and flexible framework for the application of regression models to a variety of non-normal response variables, for example, logistic regression to binary responses and Poisson regression to count data. \bibliographystyle{LaTeXBibTeX/refstyle} \bibliography{LaTeXBibTeX/HSAUR} \end{document} HSAUR3/inst/doc/Ch_analysing_longitudinal_dataI.pdf0000644000176200001440000031335014660150120021706 0ustar liggesusers%PDF-1.5 %¿÷¢þ 1 0 obj << /Type /ObjStm /Length 3792 /Filter /FlateDecode /N 74 /First 607 >> stream xœÍ[Ys7~ß_·8•ò`pRYWé°,Å’-K²-;•ŠIÜP¤ÂÃvö×ï×À 9)'[5F£o€’¥L1ë˜fÖ8f˜Ã˼QÌ1‘¦žeLHå™gB9ªbÂd¨L8-ÑÆDFõŠIiñ¢™´)Ú “ŽÞ-“Þb°cJzô˘2˜Bx<½gÓ;ê,˜–x‘’ië2&3B£]3c31Ìd õ–ÙTc2`©-&Ë€<•ž9BS¥Ì9ŒW‚9¯ &eYê-SŠeÒh¦4Ë4FSf&·,s¢˲ ý3æ >­XxÅtʼN5Ó4I-dÞâ]¼Ã¢µf>KS¦ H#µ¶(¬D±2ZQKPAÈT2" …) ¨(4Èi@)a=š ™± ¸¢o&˜dP-í„Eg@–3´7@–>5  v"µ‚áO(…Ó(…e[@VëÕ„2}YY aYyP| ´z˜Eh¶NP´Bb Ð6Cv›öزöX»d“‚ZÎP!ÿúåÆòYï¼7ë1gÁlGŒ¿Ï†ƒQ>eÅûaï/:¾œüu“3¾…þÃñ%{ñ"€Ø˜Ï®ÆöËE~q‘¦F§©ÅÓI|¾ôŽymž¦¨JuV´S}¶ì[¶[ËVýeÑî—mTo[–0ßÙ8OÙ—à;ýØNòÞl0m÷f9{¶ý3öXcõNd þS*HÓ~,úaÏö{'ù)û:˜]±+¬w2É/Ðü:ÿëëxr>eÏðr0>¿ Üád|>ïç€÷êpŸ½ºOgÓþdp3ã%)þÐçx~öŸ¼?+IGK%r„ïP?̆ù¢UTX!’­*ˆHe»$T ¶(ž¾²1DTUÀëðKØE+úâªfQ㩯+êe|Jà¨T±z¹IV/7'Œ½(6Ô¿(¹ik<Í Ðøëˆýé2b=¨$z˜ð_Ç:]ÔÅJHWx¨ðP±Ëï%ÏF6.9v4ϸŠc ‡Â£™]E°*ʤ­€·5Íò†»X:ô6ÇßÀoè,(²$ó4à°7AÿR„Žòéx>éÂdgL-i!j“qÿ8Ÿ?ÜÞæù·¼xQ]DN “錸ì÷–å8f!ϵqÏãÛù”æŠËä§Ÿ>“VIœ‚±Þ'›ÌFóáÖ'É*“ˆ鸺B[´8¶ÅI½6×èþ’¨n!¾Ž©Â cª]JÆ’‹nY›±*±`úÅÚÞ™}m5nÕj ,f¥Ì•Xª&OwÂD›ÄH×À¤AXWòFþ¥¤ÿ?DäNK’&Ñ&[.iÅ*|×U¨¥²º]éT”G)›ÙɦÈ ››½iFó—G;¯>mÿ´u° âð—£þø|0º${ ±ÚºêMÈ3 ‚¶ÁJÀ µ·ÐGÀß"›1 Ò´¢œ=Îöqp>»"½&ƒnÂzÓö·ü”}è£i@Mê oü"·ÃâÝJêå2rºb[æ ^n…õ,]ùÑp©—†?ž€­àŒŒ)0$„R5Lµe+Æ£Eaåc‘Åêð 0Ñ|“†ýˆ ~Ú\‡:x+7»ùàò :Êgx%i#Ÿñ ¾É·ø6Éwø.ßãûü˜Ÿð÷¼ÇÏxŸ÷ÇÃñˆŸóœç×ç½éÏGáqÁ/_r~Fá—üŠø|ȯùˆùx”ó—a0>çÎ!&ð;ø„OùŒÏ®&yÎg_Ç|οð¿ø ‚ð|.SRäÃÞ%¹]a37K¦ mθ ;ƒa‡®$ªyӻΛܶ/mÐß]BÌðz0˜NÁ{GÉøñ,¿þ_ÐV¹¨Â€ü´ œÑ[¬½÷îõί/1Ùññæi»Á‡£Ñt°¬Xò9\ÓŸ›ŸSŸNlîà®7÷œX±¶çººçGª§ ’D1 ²ƒÏáíÓèͳ´Ió:’Ò´šê-Bo~|ûá5íê‚€nT^¥M\ƒÊˆd:k±F²›ëU|Zž.øRíA„æR·ŽÎü¢ŸŽX,W1 mE?•Ñ׆'Z×¶UA-âë‚-6¡vƒø÷‚È“X“@¢%øKMb‹HN´†Ô"‚£x,m2h2P}{» mªîZ0AAƒ#˜! q¥½Sˆè¹5 h&o@6ónkypðöÕ‡·5k)›ÖRˆÖº¥hYKÕ‘¿MVXc:òyÛ’ª, ßÅ»R¥][aƒÛ6¹jƒäÀùviVØbh¢Œ4Ê™mÊ ð9I›•†yìb(6‹’mno"<‘FcN)„V-AÓ—wa¦ñlšéð¾ÖP+/¢¡¦¤Ia¨ zF£mVYiS³Òñu¥•~ìô¯°Ôü ËùQa³?ðüÿ\³Ýýñõuç¸bÀɆf|¸´äö¯ò$ÿ?m“N\>Ì/f±4 ðv~<ËÏφ¡¹|‰=ÂÛ²>V’2™æ_0Ótð­å|åßÈ9È'ãš¶1 cU×4Ïu[C6HW×6ª©mê"ÖÙE]ÕöË×§[€rÒÙ'Pº-Ímß×v•fi‚ohŠRµ\–º|ˑ銱é-°VÏ]¾·ÇUtJc¶ûáûÐo{–•.ÕÆ—’/Уê`‘š½Í©&Q=Z¸Ö½i0˜ †ç9$õ¬7ág“^?ÊH(E¡âùlQrlhÊöùx8…ˆÿ9ï .ú%åõòI[À‡ùtÚIʉ¥´ß çSþçBΣ4I¯Ô%y>:Ï'Óþx’¯jéK¡†‹S—êØjBŽ·éAè¦L7d®)Ô½o•«‹8Õ"NÅ» Ù–÷ÓãOÇÁý}L X½†aŸ$«6À47 A„®€ìªTÞ~Þ~G¼WwŒJV¸Õ1j9þ2íJ[¡:;Dë?Êß`«ŠNTŠz[áþ„ Ðº¬VKɈÌÃÕÑjÑêHNlH_èuØÆù´%zÒœÚVg—ðW2á,êUŒ¡£/¸a*¤ˆ)°Ñ§V„¦^˜*ÇmAFE=R„Õ CtI ?¤TR¥rSB K꙳Æ3€H…VJŽ„êLl›LÜ`²Î®AÚ•‹·Ž?ýôfp}6ŸŒGûÏòËùÛ³á ÊÒ¥p-½ƒ,íì4³WaSÓ2«U–Ö×Üöm¾uuŸ9Ëöuÿ¿ÇwÕ[üßR¼²ê)ØzúÍ f¸Õ±/Eä]Å­ÿ´Îgèä<Î/ àt ªNIÉ0¿Õ˯ùÁ3hù"³¥X;Q—k~¡™ò'DïºX»¦Xß&uU]¿ôÂÖÕdÞv –¾‚Zú ã –[TNР©×߇ Åy]ô{U·¹àõ[øb=œç›ãáù­ z°û»‡¯7i§}Á2y[¨ª›Y!;óºGè¢b4}‹7-Á]Ï\qB¾ì¯Zx8¿îl|¢ª€¿¦Û…በ ]Ö—øÐ3+ú”møê”¾&¬¢¬‹ÿé{¿”û&¼ò=xá1™¾ Põ4y%@½-=^Ä­óèëÖ”‹ö«c×4¶ÑC+¥í[h5†ë¶R Ò-l}¿½½û~/d×|×ãWßfíöñëýÚw°O‡>ÝÆÖSße©Úg™4n‡ò–D1 |•É蘕xˆâ« qÈ",ª2 “WZ‰R:Ð/Í]g”òÔpÁ(õ|PšÔ­;µ¯D>~¥}Zg“ªv|£Ëzð½VeYÐUæ¢n1¯´OE÷GÛ'S4=Ð>}Þ~¿»u²¡]fEFØ4Ïs»g„í÷ÌÓífFØ·RòutM¯KÁ·H¼sr¼Î{³îB¬ r똭»VJËl+E·5­Ù*½oø¬–ì Ý(Bd]¾ñšµO:Ù[‰ø]ºú™îRÈ{ uGsµP£ìé'±L‡ü²*ì‹|…‰`Lt´«ù oŸH Xñ(5ðæÕöñöVØ‹®j`%‹¶ gWE`D[ÐNV3¾.s [®¸ãó{ºò¼tÓø´òpurtåÌ{Ê­ŒŠãIË2*6Õk»^'Ægt-C'~mT¬5ºÁz[+E6Êê„~óbJ„TÌÞÄ®¸Ä_`—%"ÓäOËÄh·.f·.¡{'™MÝÃq‰M-ÝV޾nKÙy²\Ÿ|€ìüCªåðû¥Šš¹7&ô\üS‘ý!žK§ÅÖ¸XTûúËþ˧oèîéIwÓlÚjÏÚ¦Ú3w …»^×|øÇç¡åGÂêx­Wø]õÀ×ÒMÅY ‚€îz7¼Ë´šÖiÚT»­ é ê·¢ªw#°à1BŒ£½…†éÓíïXõìj6»ù™ó­£7ÉÑó›É˜~÷•Œ'—ü|ÜçG£üë”ÿøs}nS´³äF&DÊ¥køcJS¾ý®Dt<y8ê7½þ£¯s}ä¥ôIj¢ —ú'Þ=Ý(Ì’"–»ù{GX"¬iŠî-2º=¸¸È¡tHËü¯”Æk„¬øYÀòf‹A¬!׃Ñ|úDð(Ö¾¸Àw€ï0ܰ«]M¤¬råRb¸‹R½ÈH^äòúbmáOŽà“|`tç rš»êÿÄendstream endobj 76 0 obj << /Subtype /XML /Type /Metadata /Length 1484 >> stream GPL Ghostscript 10.00.0 2024-08-17T18:31:12+02:00 2024-08-17T18:31:12+02:00 LaTeX with hyperref A Handbook of Statistical Analyses Using R (3rd Edition)Torsten Hothorn and Brian S. EverittBook endstream endobj 77 0 obj << /Filter /FlateDecode /Length 3665 >> stream xœÕ[mo·þ~í8 º×ú6| ÒV4)Œ qES´'ÝYR"é.ÒÉ®Û?ß’KWܳT+ 0ÍãÎ çå™áþiÎz>gø'ý}z5½òó736ÿÓÌ(ÛKËçVÞ;3¿š9azã}ž¹œ};óÌöF¹¹5ŠõRÀª<ã¸ï«´„±"‹† ºF1øQ~Z[øÕUü©œw½ÕD¨4Ae2ÒõÊx"“ã¶wŒS™Ê¢4Q­I2enƒH„›ê½•q%A2PS®w Ö*ë|oUžÁÅl~6ûiƃÖçé¯Ó«ùÑñìã—BÏ}ï0óãW³h>ÈÙ¹±hÉùñÕìoÝg‹%ëc^Ùî‹ç_/X¯˜JwÇä‡ÏaZz¥•è^.–RÊžsÓq¹øûñŸ—sبàZ!»¥30~¾”T "¬Ïó@Ù2Þ]#aí½³®[á˜3fœï.ÈO ®º·0ä^[¦»ã é½ç¾»+pöz‘'ÏP ŠóÝ‹-¥}V–ïÃ^¼²» rp)m·^T”9 Íé°f÷GüŽ3muµ‚0YE%1ïº/à ï´âÝ'8vL«PqK†÷LÌqà…óQSŸÅ/¼×¾Û^/㥲¶ÛÉÈ.Û Æ¤rº» ÎàÞ`…ï¤m9f­Jd‡*” Æ +Ç|÷ŸâÓƒü²A~#{º›¤¾p^>IøHjÞc#>qÙCHíuÇKåáC?„•·B@È‚ l5î_2&Œà¸ÌÚ.–°‚q0Ô:™‚Hz)¹íNqÚ˜èw<ÓˆÁsà×QGL]€“qiD_ÌŽ;Sd1ŸvÁÍl§ÀE¢-¢ž3BɈzIžàˆÎBb!$Ô„yA$‹ Ç´>{ƒ›Æ­z¤×eqtqÎÕ´p)|uÀᔀ ¡+2 º§ùÞZÜ·Pì x|Ý_°|‡¶ãV+5µ˜ª0e/š+=4‡Ë"z¼,W‰ué`5xk€›Œýeá A&Œ•\¿Zœó ƒŒêV—a{€Ó*hV['»_g)÷qÒDwnlzí+¶è¤œY'4"®0°8ÈÉyEœb]¬ %¬^vÄU®A$ßEÂJ€°é»›bþSj'…4ÕŠ]ÙÀè,³D1p…`ž‡,óÿ&èm Dî‚}Ћ48ív—L`Nl|á 0’Ч\gcnFÔ²_‡†Ž%…oâ½G· Þ÷©0MM°gÌÑÙsJ^z»àέÂb®¹ A*ÁÇ1³TZÍ&Jó ¼lHúýîŠÒÊv(<^—gc1ƒ‘šbžÆ«Û`.@l[™‹è©-ñ@ÎazÊ@[ñ*È—IØóë…Öš¶ ¼;J,oÿvÓußw¸Âƒáx‚K`||%cÆnÁaï  ðÅa´É£>NòhG‹ÌHð4(×ùïE§ÏîÁ•‹ÃV€üèX«<*ë®ë®Éº†¨Ñi1ð<#Ѹ½‹. Öó1!Á’ÏbQ Uˆmìa)á¸^ e#áuc3wytÖM hY2à*…é(ò‡°iÚ 7 $.ªç¬¡Ðó¦uÁ!…Èæ]ÝFÉ$dÌ’þE"mSâd×¢·ÒùUXUMG<ÔÆ…C~è¡>%+¶¡vÚÒ@‰64–[€+’(šçzä‚ Uu/ªZ£nÀ'È„íU©*bêfV¡2PŽëÈŽ5#%0Þ„²@˜ „Ád Ië ÒìÿŽâ™ÄŠø=YPÞ \"G(O~FöP\9’htØ¡†„‰û5ÔÆïb幞:œ4Ácª²ÆAÌEÃ#7v8Òâ“P^ƒÈᄜ1hî²¼“uV©Iñ3lm˜É|0Ph¶=Tùò~Ôµàé¦ù pÙ«ÀXÙ ÷¯K‡ƒD”WK«©®±à&pU‘±Mʼn­òÞê¢$š¶çOt˜}˜Öê3”$ÌꢵL—ÄV<éqسšÐ›$È´+•úéb¨~~,8q¶‰K88BÂÌ"‘#î„yÉ·UÝŽ‚D8JJ3I*¬GH­À«5dçoi­"†¼’í&õ œ ¿´p²‡Ó¯ ÿ´áÿõ;ŽFçMóÑ*ˆæ»ÈÆ;>%÷QÔRŒÖ6µq’KÑàJr;8¹ ÆØ° 'hÙóX΄Ò¡ `ÎÁ^uIHõ„ä뻲}úÚ…š9mFެYŸÂÒô¦L7Ëø‹rb_]ÖUAÆÊxÚ.hI Ù™NM <™×*ŒZ^°=¢å]\­½ŠÆŒÈ¦Aúqeãšžb¨®©Ö¬Ä+@E›É9ünIâ¡Æ]1  náü¤ñŸvšìËÛ~ƒ¾ä+2ìüNóèÇÆ¯g„I&óû2,l¾È£oóèy}—GE9²!,”þÃUMS‹WćytÛhÌ•–ç *§„[áÓ<¹,“¯j¶Èºm´ ‰Åo ß4zy…I«çpÛ"ýxÍ-j–ë†Ü'DžÃÊ»~àþßw7OìYÿȣˆشñzxû­î÷mC†bô]ã‹÷RÁˆ‹Æ%Àë† 7ïÀƒ÷‹¶Œ æû]¸ß’€Û‚ £·yT6Õ4 ÙÀiK¡4v°n/W)¢ MH~Ûàh|*çD·¿Ù¬öW›ë}Z¾~²¾èw7›´Æ›îöîä‡Íé¾Lì/®6ɰ>>0ÊìñJ•ÉÔä½”à60ì¾ÂS:>Ug²ûƒ”ˆÿ8~þÞïšðÃeÆ8>|äŽ1øùã½àYD>‰Ü_7.BF¦ÄëŽöç›#¼¹ˆ?HQøˆšo ¹É•ªœfðéôNtá ›Ëx/ŸJU²RUÔ|*ýH"½"ú™dðhý_='úÑO¥}:-g¾¸“~*u^ܶ\WNóz´æîo,jÎ=•æ\“ˆ žB]®ršÁ£ut ãÊÏâ»úÁ<í_ìƒk_úàŽé|G^VǪÂYã»;RâÅ®gxËOŠÀª,¿!®:åFÂQ¤<5 ½Îô®9µ»"=ïáPàx“zæàßvè™»XÕ‘–t虓ÿ–‚cËjWZæÕëÞ+'»Gß/>¾ h=4½µ&k¢zj–^틪3=ñXoH´ÃOà ›î×ùayÈs…e©Åë{ò\º.r-Ppø/)8Æ×éôÕysFkºà.ÌÚp³@ïMhß; 'îß…&ùèæ¨ýúåã—JÎCŠæ¡XÄýhLÛ‹s•)ó=œÊÿ7ã›Ù¹-±endstream endobj 78 0 obj << /Filter /FlateDecode /Length 625 >> stream xœuSÁnÕ0¼û+|t1»Þµ½{¤RâÖ6œÚÒ‚èëSKBâãY'yy~”C¬Íxwfgòä!¢‡ö¬ï›K‘Õÿtà߸Â5RE_sÁ(Å‹êVypWN¡ÆÂâkaˆ” µU5–<£2Ù™;СÐcìcîæå\í«œÌ;°•XsGj-ôœ Iä¢'Á°çt­…ÌÊi›v ÔMïž΋ôëëfçÏ&÷êÉ[·„™ýtç–-£G¦X }ûæ§û^#%‰8¼ V@•> #DPÕª5ZFÿ›Ïê£æœú|&ä˜mÅD²È’Ði0#¡Å¬7mžg†–Z^6Ÿ Qœ5 ]‹9v,?6ËrT±ïA@RVxâðeN> stream xœ­WiTTך½eÁ½EÐèSú–SÄVqŒ11É3JÀ8àEQJ@deJe¦ª¾ªB¨bTªd/ΉSbµ;&±câz¢KŒ1//Ýù.9¼×} 4ñ½ø£W¯®û§ÖºÃùÎÞûÛß> Æa£P(Xï%sfÛÿ²å×´Þ5Žà¬g‡Ã¯¼”ö®þÈõÔ0Æþ›±8jI´GÌ{žq^ñ ï'.KÚ´2e[jpHhXxĺõ‘>;v¦Íœ£™;ïµù 1ÌDf53‰YÃLfÖ2¯2S˜uŒ³žñaþ•ÙÀLc62KÆÙÌ¼Çø1žŒ³”yŸYÆ,g^cæ3+™×of͸2/1:f3’˜—™qÌxÆ–Í80æ¾b£âÔ yƒ¬J…ÒWÙìÀ;T9ô89žpü/Ö‡ý7îOÜÞ‘çO9Íu2:õ ®â2d“³ƒózçGCƒ‡–ºÌwYî²Ý¥Éå‚ë›®—† Ú‡="k]zó@Âq’ìcVÈóz_2k2 )éKÂûžŒÎÕèµQÚ]ºЯæŽZÇ¡Îêªõ§'I\–'” FS‘ª•ŽÍJdœãjÖfú3´B Ü›Öþàë¹  <$eŽdë"ŸIVÚ‘ÅÈ*åd¼*ÜŠÿ”(=|ƒVG‰ú¿°äÝ,G5wµ‚U䪗š;b¸ll¦_¼¤;Ò¿´†p¨üJ:}Øœ;O$uËÕœÍÐelN¸¬3<¹ôúÑ vÚ°LRàH…I8QÙÔ»DP÷ôu»«å©º]ï~üÝ_Á‡TßWœ½ _ðÝžß’WEâN>° Çs埾8zùBq"ß؉3834@•Ú² ÖC&fîØ“ã¿ Rw‘µ9­ò›â]o5ŽTÊ‘-à„yÉX"ÌšK^%“{â}ÿ.ŽI,ñB!¤2ýDV#\+HÐUÔp ùxÕqè€Æ¨¢È¢íà[@ 3"2‚CÂè"½¡é’ü«¤øÝ•½î½s„ (JÉÔ鲳ĵ¶´úV.ƒ1Ä—Ì"#I‰ÇédnÁ=8ês¶!uO&¤êUÙdô´•óá=ð¬½~)ç<€Oà{éÚéë_•vÀ7ð·…L1¦Bðµc­ŠÒF6H8Á&kUÜ¥Ôm¤ûC q¼Ð“=oÝÛ <þékœŽn3ÿƒ8øoݪêàˆ§Ë 0C±®B Y°‹ï+ø#§^r§PSßTÓ ü™ÖÄ•Œß¸asÀŽ£Ç’U.½…T1Ýý,¾‚gÑíyyßÂAãPCÆ£yCE&þm„ wÿÈÝ„£WUî_ D ³ÖÅD®óŽò°ƒ8‰jÃ*ásö¯ND'IÙËa f“ÈË»¦‘…ÀOFk%û ?`‰JÂ&5»$/`¶˜ˆž°8 Jߘ$Ü:„ŽÝ¢^Ÿ’Q|Pî£G,­®©õÛ²5þýDQÿ€% ÿQîVC§ñ$4SFè5ªeŽÖ[%aåÓz•’R>Óû¶ÐW6°8k5õЦ; ?@[ÿ;d0V•qÝû‚ ”¿(7h®˜Š•÷Yœ% ’A´|Y̱Éã7Ñû¦ïÉïô«)kWzö1õ@ôþà=æÅMØ\[²WÕÙœu2³5ëÊ^ðæ×økü=¢¤OSżƒzS2ðñ“ " .2Ë PR.îË?X´ÏÔ݇¨6\›oܺ´£~w©j{cXaÐ~õŸpŠ¿rÃPqoߊ$£hÐóÌÀWþ**·±9­èjÆ ™w½/)ÑWž àP‰ ÅujV¿ š°Sòø°IG˜o’®}yôóËâµç“å×*D—ÞjŠ[‹„%Òn¹Ôz'öŽz$6\;¶Ñk„›(dêRBr±¤GâþpÇ.5ÎjºO!n…û`í‡Ø[0—´¼èGÛ…"«¸ð›Ëáyy•ðŒdÎ#|ÕŠ•úÊs"þÀ‘¿Ó¿‡sû,úqíyø¼Y4,eѳÀQâ¼³¡E%3ô£ž6º ¬¤Ûx"±aÚ™D¯™Ö_쓾î©ÔM¡^Ÿjh*}»:Ï"“òRyˆPpØTpx‰‹ÓEéã Œ» ö×¹Âút=èó2T¯‘¤éhrüHb£ô+t;!6#úºÊá¤>§±ÅºÃ0¦ò‹ S÷Kͱa@=ºÛ Ð çÚ½}>ž-¾H\·“Qº9ÖäºúK{Cb™Þ Zò÷¹Öo©*Œ#“µd”Läß艼u¥ÍÚi“`ñ5—@µ9ØnP©MP ž°ç…ùË£‚ÚšqŽ.©5Š€´áÚ ¿Û“OïraÀúÑí{ÜÅuI•ñ­Q—` }ò º¡ûÔ[Dᬉ‰Pø -ÁÇâKBJ¶Ã:ª?ج ÑDl…Pˆ4ǶÐ>¦¢Úf–¢RÊçû#Û#•ºî4à—ÉÝ8Xbƒ´SÁŸ~ÁýyÉév"ˆÚ&_”È)eOÙI(,3~ü<[Œ{Ø0œ½úÜtЫ^'qÑ×W㬬ª1¾‘™}²ã—ïMí–•  3äT‚&¾1¾:":*9XÝìáËÓ×¥rŠØ:­\[tƒq¸ÏÊ3„̬ô4HàŸ1õéâÚ·Éèù³Éx2õñ[ô±WêÑ¡øànÈÐäé÷æ‰Ù»W,†0ØQ™Ò’Ò¢ï„.þ*à°‡åÅ:íaûÐ*;P=Èt£ãä)Âþ0AoÙ )"ù”ÝK<%¶àAi2ÀŸcÉî>&+t9&±*Dü’-GG5›5=sq~=û<ÑöÊ7Ú›ë¤} »rg’‰@x±ðÁ ®ž>W®_ïM¾°ÊKÕI„¯:Rýƒ·ûNr 9yòò (S= ‰v’ÿ˜ßóÛæ-êñû|sŸþ?E|ŒÆÇJydzx¦×'&ˆ11Á[ÊÖÒx6ÜsqXc ¨Û®jõ³eÝK¬ÊmÉ(ÐJ,ÛAüæ]K¾GœâølQ_ûŸ ×åýõÈ`¨¬¹p#»…ÙËŸ}ƒ/'ŸŒkRmý(¸èuKtaÄþôüˆÒ¨f:_»ª?º…nf2!dŸhÒ죆ýtÂö.§²àâ‹ zâ¹[<%h]²×âY*2—lÎØKRò˜ÙÁ¾lzGº£có¿£ÊÖ¢h§ÿô †±ø­p;ñ»>0ãÝíÁ¥æ8Õ±‚Æ*øÎÈú€­á1¾ o{¡#N¾ýçŸ/íüޏϘo‡ü749Oô^â©nŒ·uÖ4·d¶¯/ë[òi«^5xGdÃzM*Å?^ª‹Óeë!•O9娢B’=)¸Mv‡TáláKi‘ü&[£/ŒNËM†H.÷-wTÓ ª˜fªw¨2Úà*´ôûˆŽ@z4'$p`oŸàœl»ÃJÌŠûçð {Μ$„ÃyzšÕð•ÛèP[¨+Þ«ÕAn–jKò–¬ X‡£KrŒZ£x ìIS‘6nì©*Î7î‹×·_þcX2K é;U{‚ÃÒvPò·VÄwHÆÊc`åÏŠ×lÌ\õö•ÙÏ—ŸÜƱ8üÍ;dHòVýÎq@f8ú7©Éƒþ¨5Òæðýí /Þ°à!ti´Ñ3óðr©Í õØ,ÀçÖkw>ì8ZÔu< dDv튕~ÇÓjê+Û“,1…bãÑvãAà¯ÁÎõ²Ó5IªÕssÞí|—¹UÕPP-ž'^/¾8ØaÙÙ œƒóp~‰aþ£"µendstream endobj 80 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 200 >> stream xœ½Bÿ CMSSBX10‹‹ù!ùJ‹ ‹ ›÷?¿¼R3oøˆùR‹ ÷¶Ó÷uáæ÷$÷Ÿ÷øw÷Ôʚ걋÷÷Yûm‹^û„g€füêg–°»±•˜®÷›÷÷8û³™s–‹¡‹ÆŸœ‹©ü6÷õ÷u÷÷ ]IP}Uû 7Ÿ ‹ ‹ ‹ ‚J&endstream endobj 81 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1769 >> stream xœ­•kTçÇg˜™*!3©¦œ™rŒ¦ÄÔ( ‚—˜ª¤‰£èr§°Üv¹$n¹¬Àî>»Âr_aY–ë° ×€å ZŒ ž9)m‚95Ml¢ô˜hšw¶/§§˜äKsò¥ói>¼ó¼Ïÿ÷žÿ„« A’$´ÿ-¾‹ok!Û¹×æî¸»Ö{±;=¿zìÚ£ï­"ŸÇ”i¯ff©öfGÇÆ%&ÛD¯ëˆßˆDNø‰@âUb7L„/~Ä£„§|áJèˆÿÑä.þ.ŸPÞÔe×]ÇÝv¸ÕÑ¿¤ÕÌzÆÌôJ:iDÉËF"bÅLSÒ먔ƒ/ CÕ¥8bN‚g .@›ÃîÓØ«ÀMÉü©òÄa·0Šá•L›i:@„qhÓº¯™ßæÃˆ€B™o®_šœ´¼Êãü={2ÁÐÉz8ƒAD×mhH$?‹nݦ†/qJ3s²0^Xè`âu…A|ŽRr§÷ù§wç?Æ+ë„;ÖëWáÏì­>Á?çñn|ƒC&¦ÛTq†Gžô½^¿ðàƒ˜~…?ã"õÝÑkÌÝQÿ]ÛC_ö<$M¡]òµ‘³¨s–’"Q2‡8Ÿû˜ÅîÏzcOüø½ˆF+æÿ‰¥5Åü{Y×# ÁaØŸ(t¥>q¶èbA®5Çz¼N ilTfÄóÁý÷Ô|©Œ£¾¬tÀ@Iž€½˜<(©.7›øò 0ªï?2 À~36ñÑxrWQ•àH7צš-ð>ëh:û9"Í›RL¼Q['­r«Üæ*Ùß'E`#ïO#/;…vJ8ä-bo´OM~°q³ŽÍùv0˜úPuaª{r†ÿ£:Œ RFÇî/xg¦ìߴ쟸äߨ%})=àúNVÏð6‘ÎÒo%¤Â6È2É€¾X\ˆÇP!ó§~kºÅtS^‹N¸ -AéªûdEcØúS§<¤ºÂ&é"i•T”ô,úŒ«²7 _5²"£Ôk ²á8]º™Ò—§BéKJò×ãš5Øõ”X åkÛúÁÊ‹L¦þ ¤C2è!tù“KP]Z›‚Öá¯)טJj¡̦Švq}lèíÆÖ›ïÛÈ37бéY;%=lœ¼ßƒ‘‰] K$°Ûö…‡(5Í- -ï&Àq¡yèœuس—ã¶1 >ª{Év±;ÿ‘yåÚÈà¹F¾ìˆ#aئ ËÇÂ%õæ,­&.œâCÎs>ÉQ‡õžCkЮÚ^/‡—<‰ÏÙPÒ Ù3‹¬Sº°9ƒÉ£zBåadŸöÁãÕw|Ëì™ÑF‹°›AÞÕn"³G[q^þÅ„,|ÈAè4ê¬ÄcÊCÀf`¢½9S;hïlŽAÇ(LB¢úÚ·e4y²ú=…v”Þˆ‚–òC;II«ÑqÎn‚Ư¿Ä`úù§ð*¼æëg…VŽ ¢É\RV¬•¹ë… ÿ½ªh`£7t —…FÆØÈU¢-·vÀ·`ÆÞÆ$ö»L^”õc±ì1!šÖ€¾¦±ðýî.4ý_sµÈ}°ƒhõ<‰Hn ´Àµe7§e¨³ÓS[r[Ö6;y*#¿ZU,#oý!;ÎÉk`N/× )-$WF—-:·´“ãhf‚B±’÷Vb®²\šú+ °ã­QfÞ”¥Õ7)˜Å|Ñ•ÂNðÉ¡“Áµ‘°SÛ}×G4DöÅ=±=E7òz´5–â÷TŽp8ÀþæÍWûk†ó¯•κ •ZÙ¸‡ £XJ³ÑT[Á—U6õUžê™Jº,r»ƒ\®¨FÒ»…øEMlµœáAt§ItmŽrz;·s ótÎr³Óä[Õ‹|Á*Ó«ÔÛtÆ|P± "“>AIw™îËÿ†x]K °œ$‘VSU}Y¥I„F T%X°¯í‹ÀçÉOç)´ï<×®jÊTæ¨2S[s›ÛíM¼¿ÂÕßæþ3p_î+ÁÝ“ þ ü> stream xœUŽ» Ã0 D{MÁ ¢ÄŸ&Hd„´q‘*ë',™ ‚‡Þ{SSÝçØÏ­4È O©t+Æ åF®Æ£­ø¨YÁ«> stream xœµy XS׺öŽì­U¬Ä]A=;uh­ÔmµÖy®΢L2ˆÌ™! !ׄIæ!†€€TÅÙVkk­³U«uº­ÕjµkãâôÿW°ž{Ϲ½Ïyî ÏÃÉÞ{­ïýÞïýÞoE@Ùu£hÖ’.ã, ôÁºWòöT{è)„žv%‡9¢’>È¡÷¡·)Ëk¡ëf…­Ÿ='bn伨ùÒÛF{Åx/ŽõY²ù3ߥ~ËüVlq \¹uUÐêà5=G÷?ÖsœË‡ã'L<ÉuòGÃ܇x‹¢SK©!Ô2ê#j(µœú˜zzŸr£†Q+©áÔ*jµšI­¡FQk©™Ô:j5†ZOͦÆRs¨¨¹Ô8jåBͧPã©…Ôj5‘ZLM¢–P®ÔgÔd*˜êE…PT(Õ›šAõ¡)1Õ—b©w¨hªåD9S(†ÚBu§zzPó ”¥ô þè¦v–_Úm´»`?Û¾E´™Ñ‹égÌ ÆÔ}`÷„“{\y«°çàžñ½{Å:ôu¨ì=¦waïŸß^õö±>;Ç;>/êk×׿ï 6‘}õŽë;Mýbœ&9ýà<Üù”ó ç_û;ôßÐÿÊ€Á N˜ó·YûŠsçŽJIR$_¿»öÝ݃z úŽW:´§‚­3ó ô‚úöB~pûb6£P•ñ ”g$bŸŽŸœb×ú$¬R3At¥f¯¶ ÌЦªWê9ÄL¯‹0štšˆïÿ67}½Ä¡}-Aåœí2;"É-tòņ̃ýÄ<Šà»±HM7hsZ9ô¶èqã¤Õ‹Ö»b¡äA*û¸üüY¸ÄÜýà&~‡ëèT%ºª•ùK:ªhñ •ì.2ˆ(BÎ÷ïýÇÝ)—±°@²_gq‘»*§A‚Lhý¤eìüÙk¦ •8ðJ™‘gÔÜBu·„üVÈ¢¾Ã^â^¸ÏH,À}0ûÛ(Ôõúõ$æp8vg=Á£"ì@Ä>øš`­ÚW} µb7샽R“§É–ƒ/øÃ*©‡t“GÈ:`¬™o˜èö!ÿ;›mþâTf=0f:H壃 X® ×ô‚è=%1Ñ2y’B.ÁSp^€>OÏ-d9W3÷sfÚ_96ƒlÔxi-7”Ñß@®¬$ùៜðº3~Q“îÙÛ.¸MJKZ¢èO”y»$híÐî'5·1;ÎomŒ0ö?:Ž~b±š„]ÐgÈõ$ALä$É@ž¢æÒðw§`0Ÿáµ;Ða‰øWÔ†Öìø îÃïë9m"(‹€)]…¥Ð¥#S( 9[7ïií¡Qà,~„—â‰x<ö$p·áÕf4ÚÀ;·D_žG%·ú‰£Oùžì9µ0ãBŽÜC"þ¾# ‹b;4mZTÃaUã›tœJo§³â[V]½õÛ/ˆEâ‘O°DüxxyDK.fQ$]{ø`ía`.~1Ûã^s\gøøê÷„I+@zÆG°ƒÿÃ,8oä—…ü¾ölN>ù(‡)‘C4×±R$ÃR{£(Ù×}&“Å\DÎ8]jHsŽË‚ Ž÷•"½}„( KbÆà%ÀàÉ"‡öÌδswxñSacût6¨ŠîâjS»‰ÐTÄ¡áhZ <]‚ûþý]ÖJV~§­žŠ¾„óÒó÷.Û>¦Æ,õ_¶bùûzM%%tÚŒvÐÀ{h½2êŒB4ðÛµÈ%Q Ê'û‹Àc£fâOÉþœ;«AŸ~œ¿u’ĈÊ"DeA#9”.²Õ+Bc ze –0FQ(’Úwœî*6~@—м<÷òN?ñUô1úEÝh,±$ÑZÜâýjÊ.M«¶vC+ì¶r=C•ß$AcI-Þ»’£µ–Sª£“!œ ­H0” êëƒj=9ñÕ™à??Ñ“„ù. ³ÕŒØÂ\iDCH¾®·Oe;¼Ö€Š×Ш»Fø¿tV@ = %H}‡þ9¯+`×”ÀQÜD”ÝpO F·Ì‘€xNfà'•;6#>G±Æ¨Ïû‰ï¡Íh5kPÜŒ‡YÌÚŸi®þ'~ˆá”…êÌ`’ =V‚è8HÏÏÒhÊË9­´eåû¼ö«+qè_w$¸.¹@X¿9×+—È¡[þü“ýM{î nY.AZN“ºÔ;SYå’_­Õ”¡‚ä$N©HIU(}k¼!dÏÁw¾[@IhµT"¾W^#ÿ.‘àc”šSõ(ÂÌ¿g-îI÷û‰øûgØBénŸ|`¶Cn±ͤwef}E´ÄO½R >0 üu-©§ïëd~’E´¸ÛaqjèB¼¾&å¾®áôï\ð°ÿ¶Ú·Ö¯::œñgxþ{a/4G+$â„‹pôã)5'™ Ó£P3š¬üvõ',ÁeÑ3‚GˆÔS‚ß¡`¤?àZ÷~”Üt¡æÂYîDÄJzF°¯ß|xPÊÙúè—f´ÃlåAÛ=!ßÎ?c›´ùW¹*³(@9ƒè¯/| Ö¨:+'á6”DÿÅUÖ%áÏ%ÒMwÂeh´ò'’þÄJØbÔ†‹ÿê*¢s2ƒ´…Èë&øκÐhh¾½™ž“–s”B4öº\ð\z†y3]­mú¡ó“k üP‚GÒÓ`͉cŽÃ¾šÚ/ô÷NqxOˆ¤–øuù×9“%²©$®Í0µ32}]×™R6• ·ìù:Ùñ.¸Þ¹çpzªÒºç*Yßß,(ç…üt‡Ý^Yº÷œ†´©(Uˆ: "a£6ÎÖ¦šÕùQ©*…BöÎuÂv¨^^Hˆ«u6í‚2B®`µ›* ÂÀGlmTôÈ”¡¡9e'j3 ¡2·gæVäI '‘¿Í,؃ìЈ;Bt g?Xç¶Z>Núsmu¦¦P}¨tK¢ÇŒ Kï=»øíå|‰&—,·ƒá—Ñ{Šà YÑCå«v'­q<øZo¢¤â0üla•YL×ÿC÷زCæÂFKXR–B`“6ÆV“ÚKþ—ƒ*#iÞî4Õ+ Ô–ö[½ ôdõZU$CHWTÍP¢ÊKÊ’ççÄLÄN£‘>£€l,³ë X­ñ·Ýq ”[‘#þÝ)+Q—fÁA›Uô+jrz†›3e–·œ AgÃF)3Ä™ÑVƒé¾ËÃÇ–«"×óI×>‚î\a3}ª½Z©ø¢è{Éñ7zy„\¨ØŸÅ!wZ`—óæ]ëJ63e®û‚`}œ©¦Lo*Èhب‘T7Ì'&äà‰ÍJühñÞ#k•s”‹ƒ?ݱ<˜GœáÈ"çàÀîòV&Mf‡Ñ£gmÙ´Þ»ñб–[hJ6GcifA¯¢Ý(™­Û¹ó`•ÉÜ´§¸Õp¸*XNàZ­M²\¡ÊM"v7>%)C¾dšÓ´_S-î&ÛŠ‹·ë­w¨¨âa¸kÂlp} uëÒ'˜uƒßÚ°|™j8Ñ&­Yc‚ZhQUÙ,T—^Å`¨møâ»+Üre…ñ$©© a3]§9®5±K]guÆô*ˆÕFÕ2Ö2%ìb@~-]n$¸‘^,ú¶ÓŽXK³ã‘‘Öhr‹ª[ñÁ¨â–u—tyŽO°ˆhÜ4ðt%ž£„EÞ4”ƒ&¿d×ñc¹U°šÂ«|MÞºà ~ª¥!›¶ù®‚Mà_ÙLlˆʈzÛUóÑóœMÕ~°´6”ÏFˆdï%:›dÐÖ±ù:zýÄ5˜EþÊqä‘›‰!ø"Æ—‘.V…½ e·y))ìÛB~<)әÚx]ױகÚòcV—Äÿž¢Ve$¿ÕNXˆ Šèr3󑺽—“¦ã‚¨«4ë¾±ZùÍVÀWu5uQÍÁŸÃ9h"Q—IMí®&±KÏ…í¾è!‹<ñ(2 -Äóð<{3CsÑB4 G›8üþ‘…ûÿˆŠPzÿ›[wÑÙx;.Ãsý@â€NZ5M¸k »sï Ñ,~‹úÇÏ?ß§+†ôb.Y›LTItum±¾ªÙ¯aõœI«q˜žt_ý+Ó|‰Ì´Í÷ï4¡3–ãj}.DÑè<‹¦‰POD}ÿô—á?â¿IðË7ä¿°-JTÊ¢JÛÈqO„ÆÃ õî@êm¼eNÆÞ•hÅÉÛ•*kÚ¢/£™—Û„HÌf2¡²T¿+t²˜GçÏ_mŽoލ”4íhÊ*³ º SË2Hfâ “KòÊs*K“ë7G{Ƚ½8¯/˜±sç~âað5n“$%ÄB#n§ ¨Ð×½4n«'ø0³ž¬D¨Ço‡¯5&^[í®YŸYó„tÍÖÌmf e2Ÿgߟ{øÈÍût’S¢;È&®š½n„Äv@b-Kͼ Q·+ìÿÝÙˆ+x,óeÐó7ëÜ¡=Jj ù=b@mfG2B"5²ŸþügS?ñ+…^²¨€†J(0èò´µ æ>²Sà÷æF~„‡Kž&±«®}טŸ±è6Æá¯ÿ þóA—ÃÍF4-þ{ ±[vúĊ…à³Çwÿ1y0×JoÖdC~’ RÓÕùì€ØXi‡%ÝpŠ=»¾ae9±§uÖñõzéxùåœsýÄÐþ3¿k ð«ír"d†.˜ê5GµUDŽ»`Z ÈÚ%ÿšÉïdë#*Bƒ¤aáa†ps±¢ž4Ž6©¹}\ãqSøYôÍÙÕ‹èïÄâ¾æ%Å›ÂIço~q }lÀ“7es9Èó;ç)´Ñ:°¤«ÕÉé\ÀŠàZï=’Eè:~Ðä#3¯…Iò‡“¿cĪÓëÒkü*ÂóˆB1³×Ír ™žup5·ü¨ò¬ºI—Ê®iÏÝ:íåh´ù9htº†#æ-gýï‘i¯û_P7‰ø"<]pÓUO 9IqÉ|¤Ÿ‡m/ž³$ÓÏ‚Ëh .W·[¬Æ»ô¦Ô‰‹2¢ 0œ+ÎÔA5cŠÕ‡†ÆF‡¯9zâò—gö×>Ö®6²*$$22$¤*²¶¶ªª–ŒF~õ)hF³ Éˆrï¡\£°}lû¶‰b¬§Ehbqe„–yª È Š!œØ‰ƒ9Ÿ ÑÝ38@~žÃ+'|èÁP´ÃÒÄÇŠÊ2ó ¡Ë< 8°O´NÉ6ˆÂ[/Ï _¾.”¢]µP»Õ»UÊsú챫ƒZÜ Ö9&NC®«ÑœÒV+W«®µ]çRð=‚Åhž“Z›‘MìQæ…Óy¹g·h+,1D™¡àK´‰¶ÆQ®Î“AD'&§¥ãAØÁ‰úÇJJ%ŒégóUíf‹¯Šgñà‘vÇ=ŒhÇ÷ù˱°!“G úþ#$*åtzØ»t‘n€ý–~æ¯Þ Ú°AëÿF?³B»€(‰ðœÍi_Ⱦé*Ké×`ÑÁHÚhóªbÙyEû bÜÚ7ÛüM¶¨¹ºöMçÁ¡ÅY¿>8lSW„W“¦”«äxQÇ6'ìÆkåEÖ‘¬ö­g‡sIhÀ³k‡_Y¬›/Jèx唓¥,„RÐfe‘¶x鈭ìÁÿÍSâÿ-ÕL¼;#ÓëÓåï_Ÿ.´¥þU À²W‘ÂWƒ€e'öæí²Xß`UšÌq°¨ À¯Õú@2ÒÊ•iÀ‘ÞNxŸ¤ÎTe“é¯î$˜¬Î³²ÃSëm»çT@¿aŽ–tÌÀy™ZGœŽî_^23 ü{G»“.U—R$?9™…h Ÿå„>êȶ½él{—é<©7íEô½&ËAZüТ‡Ð-~({ 'É[‚+ÿ{ ñB;¦Æ«É œÅ·Ô*$À=½èÉÝ_Ö5¥Dé9o•<â™@SRyeeIÝ©•-3Æâ·Öb‡Eÿ`Gþùè*MXŽWUlCmƒ*ï îRƒÅ°yhس‘{|bÃÂÃKÚJ ²só8­Ö^£Q'. ýÌÃ]"—“])˜ô,EVÁõëˆæº"F ½Ì¯?‰ö1/&ÑþÕ.ø?h¹½ø{¨5 íÖ"o¢lÌ`,p"ùŸFüÍ,$Ð<ºràÒöjH­áRñ)±¹ ¥r¢àwÐÒ“‚|T&Dµh){—-'nU‰ˆÑ^!ä(—5t(¤<à¥àÎK!Zy„ý¯2êxîå Ô­wüÎ E=-h­äÝXS\µtbŠ\ΩU–„1*(ʬÏùîÌ—’Ë¡‚ŽÉÉÈÌMžŽ{,­Ú´·±¬ÚD SJ íNÁ®[(÷–÷DY¸‘q#àÒÆŸ§”xÁR˜î=vëÜŒið1|šé²gúÞ.F„£p¥bßOõç³®Áuûã‹ìfXfŒýYvÂ)8 çr–£·.o7w.¶|xžL‡ÅDçÉ%Œ^¼ ,Ç$]Íæ}z »$D­í}Ù*ÐFqK‡­@o=yT›‰é(&µìÂmµ8Ï»ÄÐÎs+í¢Ìo¶øK¸Š^¼øÕìxèòx`óüâ«ìËçhâN…§ÎHär;`û|èvt¥{L±¦€4¨•\åWG›Oó`ïGS>^7uå ^‰e22ÜD:‹_ð´¨Í´e§{¤$¤§- MƲiÍ2D­D=~ýÒèØ‚ì&=C?œþ¼ŸSh/zÁÞ¬>ù-Aèæøã£ÞŸ¾tz !¦Ö¬7Ôr‡Î|ð\a0{ŽI]’UËÃ=$Á¶(#ÔiêHU:¤©ÓÕˆ;d²(åö‰n6ÏÎ ñðü´ôT€¤1Ãl€LS˜>$rk¢Ç¸G 9°)¨*ÁPR·}×iÏ'ã¾xØÃ%âWX˜Ùð§ÿ ÷‰?ü 9qÇ<ð[½AoáËìb>-/Žm…PÆ\«z¿ä,1se~°–˜í °.Î?xéFb­$®à¿º*8nüé¡ã_²Û-bQÁ`…;€ªPQÎDˆ±7±º’íg r²¯A!ɧH? ¤.x@ –À{$›€ýyÜaŽéŽåͬ,º³ïK[¥ ¯O Ró¡¨}È´/êå‹;W~#»±N±J™/¾j¹pñìšY+6oXÀØïš¶Á9æá‡'Æ ûhÆØXí¦w.?¹9ÂH,öóå!݆÷ôlþ dÿÓ­ß›dû}[¸˜Šø¼E»™a^,ê=­&¦5>sžñéš)g}yëdýÙZ9«´¢ÐNuåþ«¼âkÿÄÉíbÏqxäýoÇBÅ.ýF£-~ɦâ ã¿©â„‹ÿžø;a]Å+7½àÉI!ºÓYâ–µq¥¸rÜŠ–hæN4õF} ;¢ÐÉS\æañ2n-î–Œ…ÄHMËǽŽaûÓ¸÷…yÀdgêr$>Å“g·  ×d¨×Jd¿õžøU 0r…B®Uy¬ä—á'ðxÀ¾€§ûáÙømì˜dMž©Èλÿ Ÿâ£nH· —nØš|–L ÈïÜ£»B~¥å[ ÚLœ #º÷yëþzLÒ°Ãm™‡¯"ƒ ivË f4fÖ`êÚà‘ß_ž¬àzËdmO?¾ÙòÕÁšÐpj:Nm8䚈êT2z¤B2ƒiÚëaçªïÙzö€žoAOGŠúÿ U{Zendstream endobj 84 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 5578 >> stream xœX\TÇö¾ËÂÝ«Ö+ ¾{ó4jbŒ±?56l (VìŠR¤ÊÒv—Þg¥÷ºÔ¥(B4ĉº¨IÛ‹/FcLÔÄä¬òÿYÚn^|Åßò“Ë9óo¾óP¦&”@ -qtrš:Eÿ+Ÿ„Ãu^9˜)ÍÈ\ˆÌM‹Gÿ¥Ø -a˜Å§Ã(ý¿¥vþ‹–ì]¸L²<(ø£ûаR·•á»w¯r÷ðôZ·g½·“Ï_¿mïNr~o²ëûSdSåÓÓ#gÌœ=fî[ãæÍ_ðö;5†ZM¥ÖPoQk©qÔ:j<µžš@9Q¨w¨ÔDjµ™ZLm¡–PïQ[©¥Ôdjõ>µœúúˆ²§¦SÔ j5“ZIÍ¢©UÔ<ÊœzƒZ@ ¥,¨EÔ0Ê’ÚNYQΔ˜r¡†S®K l)!5Š2£hê/GñÔ j0µŒ`@™RáÔ/A‹ g’còX¸N¨5eZk¶È¬”KçзEóDW˜ÌãA©Oœ4ä!eææ^柿Q?”zÞb¬ÅÃ솕Z޵Œ³.¾5|øðß°sÙìå«G<°v°>l3Ó¦ÁÖÄvžío#3FÞõæ(¿Q­£]ÅP]Òü¬í-A­Î[ZÝ-6¶E¡ôEþH†bÝñÝ* F )Ñ 1(’ñ«A%Ü º´ Õ7„!O¾òg3˜EWŽ5ó C¾~U¨”A—Ô ú‚Äܨ >!-Ƀ—èBX%}kͰ ݳ(thœ4VOµà¤µsuÃÙFT´‹[LË$d¢TÈî†'˜N’y$HÆ»Â2Z|ìÙõ–Sg Vs8l·¨g\­~Ü{ÆãäôóÍGæqâ¯>B.{¤R¦wíP ¸h¬¾Õ‚\»,¯ƒºV,黎Þn>öù·hØÀ^ª8zu0×VÝÆB‡ÒŠ@äç[ŠùÚn-~¹×(¸TÌ.tÝÔn»<·Œ·Çù,C(pôÝúÅ.[w¯™Á“…4ð•F𙪵B'ø’'ÿˆM±éä·±%?™&`òä{°âðN<“µs¼ñøÛË—¯\½ä0e²ã";ýÑ]¶FpH _^ꤺ›l1ªö OŒ‰OäR’PJ¤Ä[í\¾™Î’yGb¼Èÿ0˜{]÷¡èØ`äŸÂÇ¿37È 1Sfþáû¿t]8ë<·O‹Ø'«GLR•ëà ¼¯/û•Iºs¡„=îÌÅëçÏxw™Ã²ù^Npx¼éáGb‚§O@ Ó~øë6—pß=¼øi]J¡ûÒÚ­þwií¥†N¡ÜÖB©VxAlßÈ"¾¢[B< ÖàM˜ 3fÂDlËcQw+«S|/³vl‹AHÎcaß*Þúà…F“= a!¨YM¿6öÑà i¯‰ÝÒ€Èþn…·Qf'€ÞD÷Ÿ««ˆÒøj¬ÅÏád³Áéai’ ÿôóÑÇLMcÓo ýÓ8eľˆ†> kEúÓ”¤ˆOá\U®HJrüAðÏ÷_Fž}›Hòœ½"UMöø'Óï~éyíú­#]¥HååÁ¥:®‹ FÌtºš7Ò)Á}-xÎÚª6š{ˆ!GÕØ{ËßÊ‚ú«îVH O0Ä0JB4Ê ‡JŒ²mü¶|'=©ú•Z ¿5²J*EÌ5º¸5Ô"ï·éž´þA¾÷‘ž:7ÊgÚßÈA¥èÏ#rèwµA×8±ô0:œÛ¬fÎ?H œ'õªLѯÅÀw º˜2zn1Gé#O: 74‚*Ý^¡n1ÉK½8ƒ VÓX€o`Ü0SÿaÄ`õ4ˆðãü=åH…lËP%ÊÛ¯3IvZjźh¡ÎY¿‚Š „‰ÑáAdþJTÆ·Ñ[ð)³T:©&òxÔáð‹Éy^(†P1:$9~æ’˜Tzœ2kë-©ÁH:ðuªç/à®ôà4ù!d{¥å”jª( Ó*%±©JË(Eù¨¥§W0ý險y¦±:«ÝÑŽ$e¡:“F¶Â÷Dj bÔ$D ’ïŒÉH‹ãÁWteÃüÖŽqh±ŸJVU¤ÎiVr([©,ßW¨,@9ˆùûiߥ¼¸/KÆ[Þ¹ü¢Ã NÚŒ:²Z˜h".wº;Ü3ÂÅ!ÆÑíÀÇm÷ša\:߯GÄYìÂ!°@ÃÛf‡èÂÚþ<õå¡Õòvã>7«é ¯çM`_A?DÃ`ü6†gší2üõf+ùò÷À¢ [˜„ôS|a]}$VhÀl É‰ã°aÁáÏœìΤÃP(ѱòjNܶó0)k£Œª/–oC.á{|¼ÅôšèO¥ÐÀ`‰—·íy–YÍÝ Óμ¿.¦É %u!A¤/_Rî€Fpäþaò¼'Ò#!<Þ×6•N,‹UÅ—M†x›ê×Óº†1øUz JA©¶(E2'Râïä™"OEÊŒlTÀT‡—JöF„î<°«íÙ1°ÉKç<Ì5-u u `Õþ(A“Ï%DJ·Û!fÖ’ÎoO¨A£T£X^éU¦¨BL•ª¤îÚXä‚­Æ£§cóïÆð~(é£ÉX-ÔkíPÝ.„#:36Ê3Ö?ÁŸŽ˜Ö韒S%A Ĭïݯ 5òÝ ‘Ohßfn÷“Á‡×*EyΗ°Szdvp{F|f\~|>*@…ÙÙ…i™w!3ÿ £ì¤_ûe…¨QÕÇÁõ¤ž%)bŽÕ—=:ØO ßN²žHqˆ3–A]ækdp-n«óv+Þ1 Þí±'þBxÔŽ>©U×1àcºT´Þeö‚¥«¯t}ßy¹óRÛz'·C(Ádî*µ_ž¶1 ¿^Úž~1Òn]€’†•ÝÉ^Å©5ȶ>?­…×eV‹FüÕ¸@¤öÚÑ`¸FpV U¤ẫõ¬ª 5½â<yw1TCŸlZVëS—,çC6oˆ @‹Ð¢“²{Œò[xíüÙND¼³$ç-¦_À’Š•Ú§÷…©¯“Cx9´•¾ùªç’rv7•W«/|€d,pžÁmœ`(šÏqÇx#Á¯2þx}ô8üØ}vö8_°ª;'Õ׫ϭ½j-þ5°”ݰ³õÌgGžþô“í×¹ºnâ§z±i)-ÁmˆytíjW}l]„šWåW¥(3÷VÆç"¦¤2¿®RÚ°!zkêg^–çU挘÷–.šµ£Ä»HÊ‹1-‹ ñ‰¼ %9Qv.èCÍÌ|¹ †Ãð—w›ÃOn®å"³vVLEÌ2:E¢¸}r”€¢ £ SËÑ>”¾¯0=—!ø";aÑ‘£¥9å|uqº†˜.0C3]í˜ÐwBzØ'è)ÃBÝB8Îê›ôM «^#cŠÿÐ;ýÝÓmlé³zVăØkwjË óe0…HÚUúÑÑ5Û¶º¬Â/¡Áɇý¼¹Lƒ3÷ÞÆƒ9¼ì³Þ´øäMb‘êQc@E( A;‘ò+ó)ñSË æbÕç-¤k!¶È/•Kñˆ@ÇÏ\DÙ±•\T]°J‘7À®[ϬÀýÙrßcèÐd{]í#¾˜áü†‘ÍI-M-I-õé3ئÇAVd6æp‡ü4²KÄA2Wt]òü$ª€w;´7k~)#~>·tg¾{jµ=Õvâ .zÏ7“K ÉK(ï3±`Óëb#üâ8·¦ ù.ÄÅ Í›õÑqûo‚ˆ‹MO}\˜Ì ” ĉ.°îâ¥ÎtŠiôÀA‚ÝïÑ(¹zíu÷%õÛEí“ïS¦Jf1êà’Ðàÿ…? Ã0î ˜_âÄu?½^‰ªÑ‚­lú›ÍkÜþ(Ú;.Λ_,xsl»›Œú+»±ý½¢1„ˆ†I»Þ?d³`"³&#Ÿ7Ù¨–Òxžd/{t0¨b[·b«‘Á5ê.¶Þ¢¿¾NNßû½—=Ð 6LïÛ{tÉÁ -D“c·l¯¾_îÉú¬Qÿ…¿£ß´ß´i£Ãé_9ø®^D¦yݨilqÿýgÏî? î_íîÌUÏÑA|.kô|ÛH6G7}gÚaˆþ£ïÒºqlJ} GŒOïê*tÇ"ÏоÃþ wŸ¡È“‡Eⶮí‡+ #8¬IûáÆý×!‰Ä¹=ÍÏ-rw'?Pêñ-ä§ Ñt¶æÕX²W Arõ«7XÃ>ìiïøXþ÷"ß̘ØíqÒ«±ú]ÞRÁüNX@z­°NT±0†ÎoBMM^(ŠÇc`,š¼¼W‡Çâ1¢(ò«WÊç‰ÍKG!¯&28_9æU¡P‚-UV°Ư¸¤¿jJcåŽÛeQI1Éá‰(Œ‘E”4¾øL4»?vÝìçã^'ÙŸ™¥Ü—Å6¢ I;ûê¯}I³7"Ù¤ßÇâIFÏö½ÖŽ|ª:íº)BݲCüWèxõ)K‰ÍR7;Øf¿w‰¯¯G}`cKuCƒ>€Iý“Lú·sÌV½ .œÓMê\^Y°YÅJ„²™RyIXH¼<2Ãßü¾<^–ŠPœmxQDyEVQAæ€à Njác’&8Ǫq`M°é„ž¥U/°5˜€é3 „ ^8›ïƒám¯ýñúµÎwðü¶<¿' œÔú ^¢jt(-»´åÁ¾&Äd–gV‘,‡/ÂÈé|jÚ‚˜©"ä‰äž2Où–TÒ'„%ùU¥æò5© HÞ·ÁsEȹœöÿ$ølü ÄÆ©¡N¢Œåñè4t500S„ª“;ÕR]´_YÝ×UÕ¼ ìI$q\ê»8“&DE%rî³6EKSd©¡)dmIibQÙáÌ–£\÷Ü)"CÕJ70r =€n/_b¨÷ûB‘1ÕPzœ¾uZáçØØ¸„D¤`ôwˆ<êåDMß]‰4€Ã±ôùSßß8rèbûñKèkÌÇßÀCñàysfy¨£KT•%êüÄ‚Ø,®èxkÃYÄÜþÊyú²­kí^õy©Ñ±MuÛjV¦{!&‚ØÀ²$" \ ×›Á¤]E>G‚×û¤lGI ^."uÀKéAœÄXrÿIù­"^™‰N"5óPD°-:X|°è„²ª7uõAÊ>H‰Mö¥´3=Ô}ô7«G»VwÁ^í.R‚žê„pŸm?¨þ }Ê\_üaóeÛ–{W+Êõû)LÈMNã®è›Í/OzºøÉ½ö†ð>’Ï”uIr„üñOúCħ<õÑÚUëWNÙµ ¯5ÏÈÈÊDåL•´\"÷™öt-©Öw=æÄOÑ•íçíëõ1é¢ÀÜá²Õ}øÉZ|Wg¯û;[,/–E'$&Äs~2éÆãr"ó# ÂT{Ð^ Ž“û‡ pFV$+ÎËÌÈÌâêÕ5Å…(—øŽ‚¨‚ÈòШ©‹+KÊ‹ê*PiŸ¡4ºA傺N´ [ ™$­UãßÀA¦LÐG:9uÓð4^Òûã³÷ptJL cðÝ xa†_ˆz@n¿œfWÒµQ ©ä_¡^gËz!×x·ÖA¼ÁæãŠ^mÅe¢pÜXšž‘›ÍÕ6.=G´ù·ÛÇ;|°tõßVdŸ ˆfgDë‚‹Cå~±»gßY¦`ùãCrâ_Ÿ/ø»¾,kÀ™dY뤿MÕ_ =…"èf;k?Ý~â7?Û¶i£ëbþ¾ì×µÇÚÐgÌíY7ñlþ·ys×ßò@NüÓ¢Ðkœøx:X‚Õ£Oo8œ·Sqóp#;Û¾]«9wñÛGŸ­\µÜ~ýìÙ¼­‚R‘¨'·ŸÿIÝü'¥»Ä¦µîÉŽDRäæZ€]m”ò´P5Q˜ŒRe‰‡ÿyD¯Ò‚½Amu¦–[|Þôu<[u^sý8ÝéМ/·:wiE×]Í×õÕäw‡:öóÈ#.h3Úì²}E4³ d,–‹\2Ý*ä§2Ós³Q%£* ‹õLrž}n0Ñœ‡Þ06Ô£êb®ECËNÝC¨-àG<®–ÿߨ-ÚŸtRQ¼9&.1 E2Ä¥Õªªò›¿rºŠçrÍ=6ÑIdœ»›D®XˆìPP&¦`ž/Óiº.wãAt 8q¨#·§wÀ˜H‚¦öŽö_ÈP·ä•%›ž»/ƒ¸@}¡Š—}Ä5¿/KŠIIDñ¶ÒbYYUVi^:wf¯{œß²Åc]óš“'›Ï_çf,e£¤µG–Õæç—íuu•î%UiÛ›»Û·mu_»hþÇëO´µœ»Ñ;R}ôpi}AA©Ÿ›«4 JŸåv•ε¼·²­ÑÉØ¼¬‚lTÆTJóe±É©± ߯»b"ãÔEfGçÆÃ=ìnS›–JÔ£¸,¿²Œü5‹Ç‡ÀÞLOšM·;-:'¡Îž±ùûI¥ô m:1a R)÷ëÝÁK<‰-l&o¼õ5ô7:Ê›¼i&Îæñ¬ƒ6'S*ˆË‹ÉÂ÷ÀÝF‘“¬ŒEŒL,%çá¶Çä':¾'Èನâœ4eN¡ž0sT¯‚HɰÓ_ån`QQ|zx>vÇl˜¢g-ÀÃÈo‹ó²ÒQ“Xèw`œƒ‡ŸÚ´…;³øÆz"»5åÙ¼a²ƒDê_‘zâüÐëäÆk‹Úƒ#I‹“çÅg$ó0 ŠðLÒTMðÀ<5EN؃äL\fXuìÈá†rƒMÃÌ!óÁÈ|2·¢¨ÿ£Vµ³endstream endobj 85 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 166 >> stream xœ›dÿCMSS10‹‹øýùJ‹ ‹ ›÷À½ºR3Oøˆù‹ ÷¼È÷˜Ãëá÷ÚÜø7÷Úò©ÎÒ‹Üîûâû#û…ýJá÷Ñ÷2÷PûÑäüGø÷˜÷$÷ÍPDDKPû  7Ÿ ‹ ‹ ‹ ù> stream xœ­W TSgÚNŒÆ«2TÁTS{îýÛz¬ÚjkÛén«UÇ©VÑ*"Ö"› „%ìl7y“…$ !@€”±¬ÖBq™B;ÓêÔ¶ØÎV{ΜÎt™/x™sæ Øéúÿ§3ç'‡‡Ãwï}Ÿû¼ÏÂf-\Àb³Ù‹wì;üâ–‡C¿®ÉenIg¢AÂVßÙÖ­øèŽ¡å¬Ð••½C¸+7/¿(AôRÒ¾äý'S¤¾œv(:#sÓæÇž^ÆbE±°Ö²²Ö±±³¢YGY/°bY›X;Y›Y»X±~ÅÚÍÚÂú5ëQÖÖc¬ÇYûXûYá¬;X<ÖöRÖÿàb-dõ±ÃØô‚ç8$ǵðî…–EÑ‹·gñ¶Å „dÉ/—|¾4fé_—Iè°þžpÇÒ;J—ç.÷/¿¸Â°b*âFŽË½ÁM^6J@û&8¨íà™½–:³·r 5-U ýï]â¬1®pß f™$‰’¦ÑePHœhNøô4Ú`¶+A%]©–T …Q¨wU5Ú}¶Ê3ÚƒÂñáaï±§^‰IIÕ`š?R¡(_œ)J’¡°ƒ¹Ò`ðšÉڷ݃ |%Ó"­˜ÚÆŒêÔz Ð|¹­Ô㬱º­dxÐvû‰¼œos‚à}v`ê1f9ÃcîeÖ­½´ï#´ñнè~’±0^rJà·C>Äi=OuL ø»€l>q ¾`­ ŠÊ:|4îá3' 3›l´ñÎÌðÌVž¡Ü`r¨·)t—‘/mŸ:X |&‘0ŒŒyòk‰b¥Ø Q«@ISG™­ÌнOñÄ£нÑ–ëh5ù—¿œ»Ä×í<–£M…Æv˜ 5塉˜#ôàÜTÁ¨·8bVò”J:YO”É@¤2k¬T´˜š¡NÓ »ÏR n§$GÁb·X}åÕT;Zg-iL>~žeh=Úð¨Á¨cñ©iY”l,Ιû3PWƒX•Mçól§/¾ÿ:ýö— BfYÖ^J–¿ë(7l&ƒÉh£Âgž†z3€ÚN³götpfžG2žÁhªá-×ëóËȃ yjó(L87LV‹Én°PS¨yÑ'ÜI«X¨Ò—*³(ÐéÔ@2;X&cm9ù:†nF¾SZ)Ð…jR´STð4Os'ÞÖf5´áIWp«1s§P'¥ó(½F_ºŠÊ« åµF²í2ùÔPüÙTn‰Š¥VðŒ²L*m)ÅÜ5Û¦LS+w_,‘¬ª©`׃ÕE„Ÿ’ס©÷]øl˜æ êáLýˆ÷1˜¡<’SrZBZ!òÕªºFö8Ò•[ &å£Éîôÿ’ã~k‹Íˆñ ÜûÆu´yrÈqõ†êŠxãøïVEÞB€bygý ˆ&ÂgÖ4‹Éa3ô‚‘pK+ ó³Kâö¥¾ƒ6v¢ðsŸl­M¬ #¿Î¶¤Úúîj¨›¼ÞÔ¡Hv­R Bn)i¨ñ9ûÎ%v½È,I| †Œ¼Ï]‘4«‰pto?€vx0›Þä ÊàZÞ nÓ® ÄÔ3Ü´¾¼ Œ`æ×•˜¹ŠB,ÉÌ£‹ç–|æuî¦[¯ÕŠAÂmKùÛðm¹¾XI¿’´íe „ÐXm…jk3¦Ôƒ·W{ËÚ<ƒœàrô,O•­/ !ÏxòÈ.x·ò¼ïÝÀ‡¤Õmv›JÄo>ŬWÏCl¬*'m¦ÏÆ€p8èœ<…P’LÅ2wC!Í–æËkÍî§kð"©ô»Rº…ãð&ôöøßñOv¡Í0Jœ‘²òsóó¥V•EE6䘘@I‚{K b‰¯+îé­048ÎR½èY‹×Þ å|‡ÒU”¥*u·åiGç@¬IôüĪÈkèïã<DZŽÂ3Ðu®@m§s ¿¯9$ôú5)9$z) ˆhªšGb5~\*M£'#ûûD‚jÁ†Ã,edÖ=~n×{Täµv8[×=HœGVÞqæ R°ïéÃÀ?®÷Ð’Ú^ªqâÜPðƘ^£SSáÁ$¹·ê:ʹ^åeN£¡iN0+¸‘—¤€Ðÿ›ÏÃY‡Ó‰dÁ›Çl¹@ÜͬʟC Õfªéã‘®n ZÜùIy²ce)”ߪXx0^îEï÷Ï{Q Npwð¼X5¾·Ž;ÄõM ÞÎÁøŽ½ßXÓúñÿ€V~ô¹Ë¬t(µz½BInßôˆ¶ˆèÜþ±Ñ¦¯|Tû•¡3ýà€~+‘¿µr~ÜßÜz–skE0ȳµÚl—€¨«€ÚJ%”PÌJn†[^Ì|:{qõ¡à˜Î«Ãàó>wn¶ï¾rÖ)9tR§ã+åúâ2 m¥üpÚíÃmcqB­SeQ/u>paÜ-åÕˆl^màNÌ~a,• ø•`¶ZÁ%3lügæžÙKß…Ó&ªºLÐ =tGèªV|ÕJ[…¬å.êG)½ìùEáÏÏláÍË>Q¡6)i…^O“ë•2½\"¾ÜUF•‚¦¥ ÇÆ"- ›ð¤ßÙ‡ö³uƒÝÔÏß5—¥:ЀÍvÿ3‡øÑÖØ ^_›mÛ³@´^«ÃÂ8#¾MÀ™g&?ø¯úòS‹09 56­¹ŒÊ€tl H3e„F×`úÉ+ôÔˆÎV„¥¤L§Ò)™³{W3QÁuµÞ€ý‰Yñï·e=J=èhŬžm’N‘¾úŸ¾-^й fošK º*àc?4˜ÝÄ<]…^ô æ+w i:9H‰ÄE¢º¯L“Ƥ‚D&¹Ëo®já-¶‹ss‹NÅõv|ÙƒRÚqlœ‹+>t)Àž¹óôšâ¡‡¸(­ù;Z2½û2æ˜ÑŸZš¨EˆÞ˜Ø¦.èÆôîú!½ËÁX^EáéçU´[¡ ˆ¹oçì-*Ýpòu*9V…ÓP¿ “óÚMo0Ü‹ÝbtZ8¹*ò+ôçQ^á²Xuav?éx”‚2@èðØœuPCT–¹sŠ3$ÉIÅÓ_]ýÍU7‰ØÁ=å.låsf!ËWfiÉÈÏZ$Âæø5ÌBf1³ž¹çñ×vc³øjúzœNâ ªâÅ1{”‚ý[±YDë®:ühIÝkTãù³ý8¿Yñ„»qfc6êE#v°±Oÿ)$¹³<«ßf´âO+¸¸üWؤÖnŽŽ¦2³bów±Ž‹¢$8}·O~¿#Þ~ŠYA25?Øn¬]ÿ;°WPõ"ÄâöŽˆwHè2É!J~\+±}BpiÚÿµÍª³H¥zŒ&Ke 2€È¤›Z}¦“2Õ›ÏB\8Õ{´œùâƒøD •^{=áÃU‘A4îã}§Ðd À…F)14ù*Û*;¨Ëèy{ (7ÿõ“)›Ò˜ šosGE›ïӹܡÉÏ“g©DTæ“Òtþð%'µ˜¹DrCâÈÍ6´±œŒü£&˜Ïk,²I …EÙ¹e•§ÙÝ‚ÃÃ8n!7³Ñ+“èÄ$gfé÷‹ˆF¯ÇE$îPò[; EX5î`Øø{qŒ÷Ș²Ð^µK;(Y=Rj£kŠG¤o½ÿ‘mÛÚ¿¬77™$ F¬†Ž2PËt¡ c˜“:•žÆéSmÖZ¬£ÝF:œ¾V{eGôåÒ ð~pÐ](¢EÕ“ÓJåd¦›EæŒ 1ÍUÒ =ć×þxãfóîí9z•¶€ÔK}§ØÌˆñ8«p©Š{ï§µ2keÖÊôÿC+a‚« 7søôŸ½æV³—ú<¸nÞ ù!+t¨Œ*ê$$Òɉ¦äŸöýfïT  |&lz÷M‰G»-h"Ã6£^/û&NºþbVÌb[ÐA)ÿH{Ê@§§©±’¬9SuLs–£Qƒ†&U¹%»D ÙÀÿÖtÂgƾíÝû'БïWïA0:ëZ†úƦ€8GK…ª,]µ‡©üQîFÍŸáÿèÐß×§zŽïŠ=q"“TNŸ㠎¥§½úÿÐÝÑ ŠºÀþY8è Åsã*er-/&x¨WL ·t¸òéÔQ¨]Ù ‡¯ÙhbsPî%žW\—-HÏLÏ©-ñ´ùç tzÔ_ç^õ°Ï_à· Þœ*š_žÎTç”hIZq’Ù¨W¿àë‘fÙS%˜ 2|7©Õ#ÓºŠ3_HB³ÔùB™Î¬8Á„ídˆg™•ìÒÒ*ZPbBk•Ú,.§ÍAVØ*¬ãP 8#¯Ô4(¼ÊfÃjmièù‰ÂÝ]騷hEo ð›¯TV›ÕÎ2þU¬ÊÅnª-h Ä܈(ûëˆÐ” aðÏU‘ûÉy#'>@¿çÕ‹=Ùi‚Œüê¢æÓÖ†aæ[ã½æ3Þ¦ÑÆi´Güw°ý~0’¸À=Ç­™ÖÈk§ígÃÝ87ø º8_#Aîœý6øÜí}'êã2SDda¢*û0ÁH¸mhgEµ­ÚZÕꣅv—Êé¬RȘ;ÖTïm}-Æsˆ¹[°á Y´›6.Þó;dÚK¥¿–Æh%|už$æ„’ª´ö¦}ü¬èÌshzÈON ß.Bînæ Éö’½ò<¾F‘ºÿ(AQyiU½Ùí†Æ¹sÂüÁÑ1qçÔØx—lpÚG‰préÂ'> stream xœ•YiXWÖ®ª¨(Ñ„¶ ;˜*—EãD{Œ»‚Š(*.Ü@”½Ùšî¦á6½³/­@TTC#âîû†ÆD'&qÌø$qFcÌ­|—Ì|·°ËL¾yžÏþ(oWóž÷¼ï9W áÚ‹H$ý¢¶­Û¹(z»ÿ¨àˆMq‹×ožs(à·å¿¹’:w pwî®U¸·=àá7áÀ~Wß „?¾3·ÏŠ3gÇÜØy;}wùÅÍ_—¸Þ?iâäð€ˆ›‚"ƒ£–l^º%dë²m«F¾·fÔ_ÖŽ£ûAÚ¸ñ&Nš1˜XL !‰)Ä;D1”&Þ%–È¥Äp"„ð!–#ˆåÄ,"”˜MŒ"Vsˆ¿«ˆ¹ÄûÄ<—Cøc‰ùÄÄb±OøˆEÄD"€˜J¸¯Óˆ¾D?bñ&áA¬!¤Db-Áž„!#äÄ[„7ñ6I°G¼Fô&ü02„+'q•è$wzÍéõK˜ËuW×äbòµÇm©[Nß|í­×¶¾ö¯Þ†ÞÿÏiw÷K¯{¿^ÿgßÕ}ïô›ÜïØ1oüûÍô7/xìóx.]-½Ó߯¿ºÿmFÉ|êIxö òŒõ4yVzɼVzi½þG–+ƒò ùÍ·BÞ*õîï]ê}{ÀÓ(\|›{{;ÿS_þ'`‡Ãì°Å.á#a S†‘Ó©„teJ†YSÊÁÑ”­0¿¤PmHæ6Rãø ­ý«;…j;ãÈ­Â#EºãÑHª¢¨ûS©oá0Ú”NÁi°…,¡º>øÐc÷àszI¯C+?ž™á|g-5=$×ô<(ã —3„©6h"¥õ_}USvÉ»”«m % kˆ™@›£ZŽ€,JŸÄLþ©YgÑ™@¾üÚò¦©Îf»ÂI±ÃÏÁÆèF/éS(·3!¢ŒÎQÏž<||ró§~ÕœôñÝúúÖ oÝjÀ¢ç©6J‹"˜&AÂIÔaPeK*K)Øèy3–¾ÇJŸ¢u¨šù¦Ð‡:ªö%V'—EƒôœÙþS„8Rì¼Ä..¼G£ ïÍÏfÐ;hòDÜ/fB  @r/¦w ^œr=óý…ÀqˆB.ƒQŸ±þç¾…$ty{sŽŒø8\Nwhf`ÜMV (ªŒ)êEÅ÷k§ÐJ”0&Gœ#'|Uì‹vŒ¢ÈÁ"L ŽÃjc27˜êŠÛÒ°Ùæ{að®ó_ófcóÒªùÀ,ز*duؼ´€äI2­"GRhäþýû°÷[5'/²{«ÌVP@[Ԧ̬윬,ÖwaðŽy€~wÆÏŠóJõ%\ÉÍjغ>½€¼OªÜiɪÚ´Ù2“Ò¨5"Ÿ¯/¯‚®2Qgy´t´UeÊLS*“²TQ€¾o‡_:׊#| S1áÞs&ÔF¡^ådˆ(Åœ¢µã‘Ä NBÃÁùǶÝr8JáëPÎIeOç^AÄô%1óüXé ÔÎ|{n釃†ø jÂâS÷~yþ’¢J´Ú] igÄÌŒ¡ à›Ðµ.<%3TäU éY_! ‹bÄýÐÇ<ããH8„juŠO"«¶­ë@FNjNjÊ,Ù®AHâ3ÐÈöœì]~?|Èl¹Z3ÐhêÜ‘|Ø-ß_ï^¨¹rž AÒGÔi!]í¢Â<¡¤Ã¡ _N¶9¹ñ%]Å0ß[:eÐàˆ¿øÔW¿>ÿ R\O=°ý‚9¼V3p(•ùqn:™eVY‹­Ör=»zé ¸ÿò䕹»BÊI4”r´M ïóÊùÈ‘3Å-6k¨3ùeT-‡ënzáÊTÇ;cQ]}©4[íÒ“ð.:¢©¤´ÌTÇoo;df$•(<°hJ8x½«K²Œ ùRŸÁ¤tàSèÕPÙì½”eVì4©òrM€..**´( Å\BY²yX–Å × ôÿ'IE\í†À¢²ˆ X&æêKºy”æ(Y w#b…œ“cm¼[CnÈàf¨mñ’úÃ^{™\m® äÐŽW[¬åV_@Jm¬mMºì û=»ù *u_B)·cwdÁbó4 Öxk² ”ÒM7îÖÖ+Ó+Ø|•m'ÈÖn•³ŒÙ]­g(/¾ÞÕyzZ:@¨AZfF|6+=t`ûº’ o$83®hgyW•¼Wu+«]]­ªL-O/ŽÉtÐG«G~tà¨^gÒ™Y]ÐãvÒ!.Ðû“ öqH 9ý F0Å”íeÞ"€ GmA#íØ˜µÈQŸÙçŸVä•l\iG5î\ú tòМQ•\¢¬ŠÎUk7ÉL8cw2ßËò,@'$ãî$©6•”vÞ¸¢|¾7‘[ÑД™2M\NˆÇŠöÍ øö…åµWºC~n‡6 œÜè÷aÞa ëz«ˆøIg8[ï6ŒöädæfLyð‰ˆ¯NÞ.ÙÝÊî/*°‚B:_eÎÒhs5™lØ®éÉKñIƒAgÖ™¹ÓÐFb-yér"?“ðY˜ƒ+QÊ+|Ôs6 ›© *Õ"íw3m-Š Q¥ƒ˜m~¦ÚÁF±UtFB fçÀ#VhC8Û} ¿ÐóŽómQÔ=ÞDnNSºM-EÅØáæÍßîë¶­¦Ñ y&îl'_m|L›‘›2ä‹#®\½º·ý ëTÜÙ|ãŒ&‰CT¢ˆ#BÜh èQ‡è(÷R:$ðož0Gh Šâ:…¢±Š$RSáCòJÏüŠ‘Î3vêa§ûKæØ¡Ìîñ¸>ÇLVð=p¾9„ÂÕtL(VùÙ%ö)£›Øt“‚VšU½^§3²{ì–Z@_nŒY¯˜œbÎ’ÒmÆ5˜ïìÀ™#8©ná±ð¿Þ¸üÉé܆ùÍÌdÿà³ùIóõïN@·æfµ²Ž{™#ßF3p%CšDYörfÐJ¡ÉÈsô$[þ|N0SÐA±h©QMî$ƒ/¡ì‡|È…¢2ç‰Lª¢gˆø Ð XÍ?Å^ë¤H3e— ^íÒY!ö€¨Š‡¤´yÞÁ‘·¼±Aãqz6ûæ;3ý·ÌYÀÁà ̃ó‹'!7D DnSÎ߇n/ ÑcYYà÷˜,?ŠRKs|0Ý„éø£ƒ*¢ròË©F¸¦Kñp;÷ˆxG¢jªË‚×Ã޻ΠXç)Ý= %‘‡(ëT'×R¼à±E]#U÷€–ÞíQ8Ûô`|@žpsö[©Cðí¼‹=‹ãëŽù«•wg"ëWT,†?Éò~gî/×:l‡Ïr‡l»mXP,J«J£ÊVe±«gí˜èq‹NßoµµjäÛ.¸@SúîäBeõ6 ÁiÄ£–K¤µK"±Z‰Ý-Õ‰ZgçÁÁ¨€/H‹º]X:÷éñªÜøОaJDO'Á§äð®â èw L”há´»™ŽWX¨èé$ó9Áç¦âGöø¨Ãì ÛIh¤:{£ÇY›H¾7µû'lÃØl^™Ò—¨†Âíð˜|•‹Ï0°Í¿õvP1ÁIÅP”u3ôÐ ÜxÓehððÛ3Ÿ|qµöæENš˜8–ÄÜìJ/…[J¡¡ðóÍÙÀIœt?¢ DôÄÀ³ß@·__@J$\9žxêª kEt!¶ ŸÎ h%¯#9Qjû?PrÌq3©'ü¸²Sוœe‡#ì’çvžipáÏÂUŒ±Z_Šé|tIÐpL—¾ˆE.÷¦CúRGyMšŸ)cU›•šì’]µeZœ? Gø^xd]>gµ3õÿæÌ@)xJÐ`Mê)|Sâ9¦$ eDÏ?~²ö W»¶RÛ¢¸tqaA±YcRæq[LóÍá`,˜¾L1+-@ö3¹‡ŽÁÍG”í g¶hn·vÛ¡£Ùˆx3La°ÒÀþ|üëÝíïsHõGðÄë^ªh²`cNB½°µ]?ôј9>ÜŸÚø³õêêšÙ¸ï¼Ð›è äés}ÞOgk®žã¢“ê;©/¦ -R7ês`/=z¤þ`Å«–ÿ–þ÷ìæþ©1|8êõáÒö{¿üó¿:bp³+ìü=Ÿü,C"lÙN2‘p.€4”M}„uoüP0’œ÷m;dA¦Z“²ä™&U~žA§3°Ÿ^/تA©¶:“–eî-ЖzWƒº‚ƒåeù&^ÐòU&evv®VÃnJHRŃ4 ÊÛe¥¥‰1q†mÞñ %g‹š†sù‡Ì߯~ˆy4I£7Úï>ì'bI ÙnN8Z óW¦E,î¥\{—¸¯ÕB欅°ú[ŠŠ®]:XÖä ¯þ¥ K"^ý5¹Ê®ÕHldN¥øïpú¼|+^ý? X½+`a÷ê¿Ñ“»‰²lZ×"…œDèÓÎl£VÀÁñu!Mª?{Ü¥;œšÈ¢<§Oü'¦‰{ïx÷O&á(êÒ‰°¹#ü¾l‘ŸŸKøQ‚j‰H{;XŽÆ‹F”‰&ýqx3çï1TÜòl— ì´ñ¯ã1Ù. þkš¡¹ÙKZÀŸà‹™-öµ˜”nC>]´Í–ÌUÇÕ¦_K¿žnSÛRÊÒŠbA=yÌœwÂוdziùÑG€ÉÐ"ÓX45.uffvÒ.ä*ËÍÎUã B:¯g1°¦ý¤ôèêí;nx_{›ŽÔVŸ­à`rÝ®²Øò댢€üX+®SaF%^ooÝ»ü¨®!-¹Œµ*÷lÆÖ²®{‹/ùú²=?ËòÌ‚(ÓÒ¾¯l¸ÛørPj,%ã;‡§ú®œ›©¿¨™ê{ðååŠÇ?ðA2Tëœ(áQ¨!…1ï´%Úþ‰ýù:üÚÞµYO¡³rs@È•ëTx5ëöº*HÉ:WS±ˆÂn"­w&^ÒAÂ%,*šÁéo¯èßNèÇ´ ãù(ZtÜ«‡!)˜¡h ƒ‹ ù™c -rŒ‘Œóô …¡a÷ø>ÂÎú߯¡®5þì€FþW<Úˆ½ÄÇ©|Âü(qÌ„¹c|Æòãwòu…úBî&|DÞqú–Ø| ?Ð*rR@ªü/—ý„®/B²ªÛ¼*p…à†Fc¿H⃯uø_x,üØÆçâpw{ž¢`ö¾=·/ÉÂ íø¡ïW:†Ï¡&áŠ}ἡé Q8sà•ûÅ3Â@×àÞšùÇûÅ—W1%=—„Ýc‰°PIëÏ«¯ªóÞW¹c 6³\5燮“·ÅkË)h;væpÕa ¯Ù»¥k÷E·ð!Ñ…ãYX—gÑ™Y~,òðÊuãCW²é­1•a`ˆJ [í¸±yÃþÛ[ºEü9æ'Qâ,…Þÿ}+ YçWGÉÁbÇÄ^ÌÀù"Ûó£Žâ¡´€´vw– CkH4£—©è‚Ý C//#C‘ð6%Ê ~H¯Uç¨Fž–ŸYTl1U”°p ,'ñÁâIÌQaY ¾ÿÛV‡‰§U…ãÙOŽð px'aór^í|׉=> À{ñ-H3k7l\·µ2þW@55Ô7ص{³ÃÓÞ<&áÏÏ`~'C#…b‡kÅŸÝï5¹ðgàsÆ|@_öÓÐuù屨×0ì6c7³ñÃTÛ´ÛÀv9r=±àìõJà˜Z]ù)ºtèZCËþº#倾Q·âÝm´f'—86uáæyáË·G†'­ôÜÈãO÷é÷«ºzWÂ/çy…%©³T Mžeβèñ _ÀÂHÒY$ìÎÅ·£§e’»÷G>€¿Ítß%8®E”™ÉÙ,òû„.• u(²v×÷Ï!üɽ؅dvF§ñ%ܧ¶4ÉOµÙ>'è/ü.NY³r%»#.(hm ̦b3»ÿüͦ€¾tbUPð®íHú7lʤæ§-–ñ,Uz×yóЭ§ªMd®¼ª1×±5Âû̃CÇσ›ôíÀããâ7­aãS”@IgšÕV‹>¯°ˆ=Rw¢â4 ¯¶D„Ìž³xüzÔ*N­ÉV-˜•~óµîÚ2¿·ÆœòNphyýzVmÌÎS:#===£0ý×Ý”ö9 ñ8Öï9$Noþ,`¯€8Œ´·aÚá׌CBÜæM1);dwT)ŠÈ6&T ÕÇ•%ZâÁf­ ŽÉLÇ»±¥Ùd°XÙS§ -{A(Ë´%_V‘~‡ÊÚ«+­…ÀJ[²ÌÊnßïo‡/ð÷Fãm%õå¿?òRC¡¬ex¤0j9z 7‹Á`ÊÓËô†<#0SŽ^eDW`¨ŒC L&3°Èèrórõ²“Æ x‹ËQk…8x›z2‘™n)ÖÌâ²Â‚j+û4 "‚׬Ÿq¥áÕÇ©÷¢Ë’1è?ÿáÅßà0;] B£×äi\TÙuŽV¦Õb/Êê<­Y¯ PYç š¡V«ðÖ‚ËÑåè´²<,,¬hÌ3é…0áó.üEjHN [‚\Ѱ5È O°ÒYZT´©$V¯Æº¨¨°§š«ç¶?H¿ ®øn;€[i|`¦±f:ìñÊYø¹ðÒ´ô üU–Û?±pðhx0^ú=Ð:7h„ë¹ü¢òòS,t…ÃZ €žà^ tÙtAk ºo‚oƒ6›²÷>Ú¸÷îøo‚ø_†X8Üendstream endobj 88 0 obj << /Filter /FlateDecode /Length 1485 >> stream xœíWKoE¾bÄ©GʶûÝU‘8$"ˆˆí !Ìa±ÍÆÄŽ'ÂAüy¾êžGïf‚"ÎÈ×ÖTW×ó«ê·½Ñ¶7ò7þ?¿éœÜßw¦ÿ®K!kŸmŸc²šRÓ‘K:1Ïœëî¤c“u ÔçŒöR3‡,ë‹Tô C#41Z™`ð16÷Řñ•ö"&ccÔÈhmJžtHÜØD6k2¶µi{2£Móm“IÍmA3!d6xX†p™@šdC&Ö9Ì6ý®{ÛÙõ~üw~Ó?>펎­ïqµ³1ô§¿w5%¶wÉiÎâ kʹ?½é~Q‡Ñ†Ùe“ÕÕ`´3ÁÙ ~é™Ù²º‘ÌLžF ë3©ÛÝÝòc+2Ö˜D¬Þ€ŒË1ª—bŒwê¯Eɯ§O»'§ÝóŽ5§Æßäb¨9ü8âï§|u±=.µ®B¥ÎP¡'¦Ô¸ê±Õöý n# ΫKБ¼óI½+2Ì!xõ`Øx‹r1¤¾Ä»L.*=q½:S…l`匉gƒ(%ì9m)A.ª³³oE­ ±DÐ’ÏìÕûrܱ -yU#EDI½–,§`Õ®ÞËäYE£­Êf$ì²qb{WÏ%NêFøŽ‰ÇLÃ#Xþ¡¨H.ø½ƒõ\dÂ9dõ¤n‡ËÚÀT0:ã¹M$šŠ¥Xÿ®ª†÷í¬©ã±fB–XÏö|9H#}Kbw:¡}LzTâ¨Gшæg‹Sb3,²ê¾¤‹5¥l,Ùªw¯`|@¨F½sÊ“Š3m•Ë{3ývV½8–›lŠh”ïGs]nÔn\L-¶‘ŒÅh«ö—ƒÕÆ ›H÷ÇÔ›™z8SG+Ô×3uëÊj7"Ö¹¬vQv‚W–pnw¹F©YlڅÚýsÀ!›£åMJ¤îÜiѵ®*d1‡oewMÀZeuY)(šì¦Aìxòâ"Úyù0Úðcq€;"á4<¬H PJ¨Ë½…j´²n2‹þh°‰¬n±óc~ZZ)ú\Á¹0#ª³„2yßrçØE8ÎÜgQȇƒÁRY?´jîÞÆüû¸ØÃwÙk}š—±=D^ÆØ‡¡ÃuD„‹¨ò8 >‘Ç Rð+6VÔÆ†ŠÈÊO"2r‰Ýó¤@ ýj)¾×•‹$ ¸ÊãÄaÜ6Êʸ‚µÕ!‘°n' dojÐfyÅ©xªÁ¥l¿oN—é}lá}¥gÑF0so}E{  Ÿµ%{/lɨ~È#’Øo›ÝâÕòXT¼8YFÈ£‡#›s³µ¼Yª2¬Äù`ÕŸvõMÂhéTãT³ýÓ@xŸ"­í+¤Á„æÕ³ÝôxyN>ïþ*.i endstream endobj 89 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 221 >> stream xœÒ-ÿCMR8‹vøzù-‹ ‹ ›÷T¾»¸3ˆøˆø§v©Ô÷÷±òÅ¥Õñ÷bó÷‘÷âÚ½Q"ûDfVT@ŸÀh¯¤¢¬«t¢kpozc,ñM÷÷èçïÞI×%¡Ú§ÆÏ‹ÛÛ1Ä# :Q?f¤{¥ªŸ¡¨°k™uŒµÂØŽ‹¥×ƒ$Ena}{mlt‰N‡xŠƒŠ‹~}”‹œ 7Ÿ ‹ ‹ ‹ aOU¡endstream endobj 90 0 obj << /Filter /FlateDecode /Length 4146 >> stream xœí[[[Gr~'ò#ˆ<&æÙ¾_‚l)ÞÝxal{ŒE"ûš¡.Î\´3£Èú÷ùª¯u8=GöbèAÍšêꪯ®}xø—µ˜åZпòÿùÕJÍ&®?¬Äú+'ål¥Z{ëäÜúj壘ƒi„ËÕ·«àåìƒ\{gĬ˜%È8;›¸¬ z¶†q5 çÒÎÌ&°­5z&YìĪVˆaö¶kU>s¥œ³q‘)¤Ÿƒ ¥:W¥,¸ŠRí¸ª;O¬_¯þ²’ Êuùïüjýülõ›o”]Ç9:åÖg¯Vf¹–€AX/ü,Áqvµz1™ÍVãôìOϾÞ5Çè¦ÿøÏÍVÌ"¡Tœ¾¢Rãõô§?l¶Z«ÙE5}ýoУÆ%º˜½Á鼡î>“F=}÷%ý!Ĩxh墈œ„Æ`¦/7Êá0m§gà"¤u•&€–£®Z©¨Ìg$›=·ÙÌî9ûzuöw/¦o6r":3ýÓfk$§‹FܵÕý€öýÔ–ÛVÏ[Þ´Õ~À×÷~Ñux78ï¼­þkð××ì&æ·}Ùù×¶ú¶­žµÕwmÕÁÑe¿ßl^„´Vôr îǶºi«÷ìÈWGýrÛVoÛê§‘ÙVÿÐVjäƒëì®ì‡!Ê’ãsÕ£øt,.F\uÆlÄm'Þ`éªó°€ñôp}Á zxÈí`ï»ÑÁ=^¶ÕÅÀúav\L¾œ|÷˘¼te]þÀ4ë™k&üýf4jÛH×y€×Õ0žÎÙØ3ôwŸ“£Röþ1vÇ8úín€Þ0ƒŸý#½GA6* £¸f| ðJÌî„Q™\”ÄQ–ÔÜGDhi¨uýM˜£U°›Õ‹ìOL.|ÃhúQcé€^¢öè85.û_/ºÀsB#~LjMØ 0ºÔ`úæ—Ÿ0°ûõ˶újx ‹t«tœ…büœ£ÏþàqÛ¶0·=×7ݰ?‹k– ›ãèžž\#cûTÇl£s†CŠíˆF }vò<òÛã!6òÙ¢QÅ£êåQÿt\_þÚ¼2ñÙûô É‘†v0iüÚÛþw{Ûé¹1@ìçõ»çƒcxbžkÖþü|`õûìî·_{Û¯½íÿ@oûÝÙêßé\T‚ßi/ =ÆŒÚÌ Ÿ¥4nFë»Ý¯ÿ¼¾^‰9(³~ v¯fcÖFx?¿–:̸?®U³±ì«W+‰Ä+¹þ1=mÛ”ð³óë«•’’d6 =|±®;hÆ«õk±¾XÙÙªhl’÷Ç•FÒ‚Ÿ%=‚¬”ªÉj4̸´õsÔåÄ|‚ÐB¨…LïD£d™™‹ËÌ\•B\'@QÒXzBª#LUª1ioDsˆ£ »Ë#'Ïàtzô\£<C›ŽóðrtIV¡…’½…f¼³eLF” —JØ'ìB¤‰³ ’D.&23ÂåiØ€IË„xõ1‹¨0`Òq`ÙbÀÐue¬›Cl”'¨C [ílKΨ0…)B¡séþ µÅh¹L°ÍÊ4J–™¹˜ÌÂU)—§Á&%mÐâÚ6 ‘“³ CË#¡¾MàTÌ1˜)O€ÐŸžÇK!m’™Ä®FðYåÐFû ™¹xð8gfÌ–Õ9§¤pÙb¨è¤b*G`¦<>¯õì7·QX´š±&ÌJ2®eÑ(ºsv™VÉ%„…‹ËÌ\•ry<ßædð‡ÚÒéä? ¥¤Ò$´t ¥õµ±´fPÚG!Sx3`\•â,-åŽqU çj™ß¸*…sÕànL…Ày4eº3®cß“aS˜ƒñRñ/Ê”³' !D#×Óeb³•~ ô5BZbpi$Û—¡O}6¨áP)ÆÃÑV—~÷€+8”S·šÆvÊs®Bá\½ÇU.®Kƒ¶`Ê„O ÒÆÄ‚ôÐÆÅ,< ~‚~K>>"n ”em:þF£z¸IÒZZ5K7©ºV“fdÃÖVtŒòEÚ¨¨]ä˱¸±D™µ’Ë/X#šºk+4Î-zŸm` }ay»ßÝï/Ö»»õwwïw—›ü­åÔda4Pð¤™_Ÿ]¬¦³·Wûõ÷ÓÛëõÕÍõý›;ŒŸg?2°l˜F ª¬F8:tzþåWÄó¨ÅOªŸpKBºè4.Ãc“°¶¨oà¨Üµ¾!Ã-ŽC?2 ·m#‡£¸ÄyÉŠJ9½h¥eC¥T¥HV£µ¡Q4b=ÚE Ðe`)µÝëEW)L\bfâ#È ÉkO®äsÊ‘û5Ѷ%"^5å,¤ºY›Fy‚Ôߥdµ«QØWi½–4Št$}‰ GÞ/ê¡h6Þ/êaåâ23¯O'À¦ˆdŽtyAõ¡Íz 1¬[Z56s¸‹j|"†ÊH>w5JQ(YRhFCV°Œ YŠ{…?[>"ŠLC†aáê2+W¥\ž1¡=Ó p ÉiÙ(ô² pqUá–+Ú—ÏçØ€™QtŒtùª“ôù„óU£x„­_·ýs¨—ý„ò™N(:4Ž¢b°´áv+b´ƒ,.¥MÅmmKÄE2¦m•ó+SN Ô4ô’ÀýX)lʯ´ÞõWDÜ/Ç|#ejÌ\$˜ürܨ\\dæâƒÄ è( et?èQÖ(àé4ð<}x»næ”Ïð4Úiš˜‡Ïw¸& ~ÎGÐŽJÌ‘¢*š¦ÏõŒü™v%*CÕ± XZq¾°¬ÌQ€®LM¹ÊD†vfúÈÍ*¯:×ÝõsÏÒÐI2£—®7'ý©á]ö-ôN¦`¾¦îtxa“ž„¹£8¯[Êc˜¯qÔ~ñ äÄ8×ôÚ¯ùÂã¼ÐúS°Æµè\%ÐêÁ²ÒÝiy­L\dbâÏÕN縊õi¤^g:*ý*ö«QØ¥§÷åÆU)œ«užÆU)Œ«× ¦W¥p®]™ö?ë2FÞˆT®~îe¬§­Í ¿ª ¸ŒT³rµö߸Xûoò[ ­\¼†6®ZDS¿Œ5ž>ìT&>ìØÃ¸>ÿ2FÖ:õ׺ŒizÈëÍ/ӎ΋ü26=Çl}ÿf¿~~ù~GW¤C³L’¨QO¹iÏUüëÝÀ>}±ªågˆÔ°0:ÂàáËÀŠ*6JYrëïé…Þ …‹ÓÛ´´Hôéõ{zÕ7¡ìt›ÞùÅ}ÁÓwWéUà`'è×ùe¹ÚZÉε†æíˆ³è‹é9±K¡¼n6÷$Bã':3²~zw  'èzÑWèkGj½§¯¢@‚înzE"L#ÐoKi#x©8§äô&½,Eˆ2}åF–·ûôq6çÝf EÊþÄÉ».›IäY`W¤µpÆ„ÇdÜ1#ßYªi‚¦#,–wÙŒ[ÓK‚Fàú7}ìÖ2-nëd”œå*1ROûô&6|{ÝÄÞg±ž¾Îo ßÞОÍ\QÑið!^| à®—§!^^/¯j[‘@bV1ðȈÑY“¼²|Ó—û¾|>Š´m¸¥k ½|Bb/ŠBʤ—°ÈXÜ3"×y×!˜Să]¨òr9¡~[ƒyKãTÔù„Ý5öcòQ¦4öÈ’HÚGzGT;;³Þ•œ’ÎYÚ<~Ù¹?¦—åá&©Šp“óØX½ÎâbÐÉŠü.|FÞ ¡cÆÐ=xEžž¹Ú–—G¿÷½Ý `@åŠZÈ*áUR fzßUȘ I©é¼kSôµéÏð¹)Q¨ ‹Ô8\ÌC4]OÎP„…°Øv—©˜Õ°@Ž‹ˆÞasˆeˆÈ¿hÒ˜…â:½öc|vlÖ #KÌ®(QKªàÚ¢á‹Td4B5f Œ7wÑÈN‚CeÇ”ÀÎñ!à±Î.PAœþ{ƒ C?7Ó.{UˤZ”Ú/§mFÆeÌTÞÝ}Ö“~i²ãÝ—"¦¦¦ps ÑTÍ=J*”»¡Ÿ¥`6Ðî6" ùþ‹%¨¿ùíý07¶}Mšä…$3~ºá?›¹ï¤îæNè–zﺵÜÂᔲŒçáÛžLÆ5‹uàˆœuPŸÆ™eì.‡n·.»Ì,v]öØÝ³ßݱŒý†Õ[ÆŸ™~RU˜Þ^#ž¤¼l· § ¥×E  ‚ÔRWóAÊ3DP:aMõ2 ô?c x™ÅùjnºA&P &¢˜Â‘öt× ÁvòÛ~2k»—Ý—ýGZLØ÷[‹’1¤`äößÕm‘¥à²ülÞšô¦3ñÚ_¡c‡)–¼„îS>$‹5W—']A/€ü7¼´–ÑrÑDÚðZìíáŸ{ÂÕž®%ÃHŸæ‡ÃrLÚ¸sðX´¶عº˜~ ·m¾xóhð´émÕdÍŸÓ¯Qydx¤]—Í9¥q¥©v¢ü…G*Iê׸?Œ9/’ô¼ã%xàKí g¡"œp)&±Œ-?g0î*’‡ Ëkž·ù‡IàU¡@³oϧùÏ>x17ýàÇ‚öÈt•¾ÃĽv0^ê¹³ÿ…'©â™ÔŦK»(«÷Ù¼ƒ¡¡ísÓ¿¤Q ½ÙÔ¶ŸÆ‡]„RÈ3\¸èÛ,Ú£`¸díVÑÃä1ü5¿·½(.ç c ½¤2Ðß MÔ,Œ/úDÍP—Â*¢¦›WuŠ!–|6Ø]wwä’ n®ò&-åD Kb&‰Æì‚ã3+)ö=wJoVñk^u?’LúÕð‘û1Pæ©uÓ«<Ÿ&Î \aïˆùGÓ¤ò& ¤[Fb§uXöý\È•Wt …‘VóX«É=*SÕ?oÛ¯Ûþ¾÷÷·øÀàò3挺1N>&äÐ):¹`Ì‚†~Š,å¸pðÀ8^OÐ,MäÅöã?vøqÐúKº÷£ „›¬5ºÕ«¹(ŽügúU8†ñtÙÁm‚¬àÁ@YAdLhÃÕÈûLŒÂ=EÖ=•d‰Tý@p¢Éè”Ò”G*OÚ8{WäÇôRr­²áRóÒK_…˜TÿÌj[‹TÛ þý¦@‹vü¾u‘éÉy\­fa>W+Â)šPê#ÞdN$ òƒªÌByÏF€<ïòåUÓ[wqQÂùå0—s¯<½N/6ÒSŠ7´O§ëýÁ¸ iø ¼UÝð4*¶æSoáµå,Š£üžÎ«;O¼ûrø#“-›2øÔ8ì÷³¥Ð'ý>þí gG¿ïî´þnúð÷4ǧA3þÍ{ÿ?!¶Üeendstream endobj 91 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 3215 >> stream xœWiTgÖ®¶¡«DQ¬@L¦Šˆ jL¢&£ÆÄ/ŠŠû‚ˆˆB£4[³ƒH³w÷¥Zv­›­µAˆ D'&щ†—,cŒ9hŒcBâ-çõ;ç«3qæÌçd¦ßþѧO½·Þû<Ï}î}%”Õ8J"‘X»mðXlùñÝá‡Ö`+[«ÊŸ•M™¿°?õ,eù8G,ŒZ­Œ‰[˜´'8D¾%t¯"Üvî+®³&PÔ&Ê…ÚLm¡¦SÔVÊ“ÚFyQ³©íÔrjåFùP+¨•Ô*ÊZMͧÖPk© ÔF*œ²£ì©ñ”ĆzI<eE”ØK”ç?nHúŽtØêe««›Ö>Ö#²³ô;ôgÌkLçxv|ªÍaBú„/l§ØÞx&ý™’gºìžµÛg?WPÛ À$X›R“ÐjC†NâF,eþÓ{ç?(óÙÄ‘ÚWk8Ý£«Î;§ LÛ¯9mëb¢½A Zƒž4| Í‘­±MÁe;àؽ*5’ÑʮܥÉt•µ‚¾X”åÓšÿ7ÐtóvÃÀ„ñ˜iº|…—¾[yÏÑAÀY³NßÃás²ï;ÞÞ´tõª¹<™'CнWóéybnÎùœ8qE½ìŠNÂ?ª£C4ª¥\¬Bæð“0M†/ÜþføÖëŸi)O¼É5v—FoæÑ€[hdŽÏÚ¸tÓÿLãí„bU“0Û(i¾m7¤B"îeÑÑe„؇Îd2™8âŠöèpÿ>Ús$x³; À{<ºSÛÝp -}§+Ú`:ÂjöÖäyC„À¥¤¯oB0"ÚÄË„/…çLÉM“ aÝ G‡]¸¿aÍïÔtsõÜŽ7+Ú³ú2úÒ«ÔuÉÅ™ÆDfÌ€ÔéÑ9“Æ©‹µ…iÀ¤BfO&ÓÉQZ˜—W}˜;XXRVPÐØ­6аïº|ádBc\=¿÷¨\¿¬<º`y 2Gê;¿EJ¿H©ãòÒ » ˜rÐW‹çt…í`ÂE5’Ÿ‡pJ“¯ ÓX™Žë#iíÂÐi³ÕŒòkÒL«Ïcû/´~t‰ŒÜF/SÈå«áæa[hQ¹*cªlç¯>!8ãvþŽun‹rºÎpøMæXÀ»êù<™MÃZèmNèÈ:ïAo}ó9Æ!1o‘ ]K¬M´{†¾—G|¼gp;AöX˜Î·¤˜,ÜgÛt¥×9£I¨v‡Ýâr‡À|‘…‘¾®K“[+פ-á” YGþEè×EèP[(RÒK4¥mbÈãªZaŠIR#h¤¸‘Uj AÏ4´A5g¢wkbµþ   L÷@5T„à ‚N…)‡ÔEP‡tú*|?wªík-mÍcLt¸Ú4 мHÝè®fMÕ~ˆ†t­&WåB œ,VbLhE¹±ùv«qR×Õødèr“£ÃNÞ¹Ì4Ë»€1ž¯¸ÎŸô¤U°C.‡S•ºÑ¢{˜ý:BŽî¬ØÌ•ëµÉ Õ5 ]þZ¾±áTQ30}ƒÁ ø}´CµMóNÎê0·Ð¸íÄ,¾ußñ%´”71dg¿î¿Ëß|ú“ÁOqn!'â1Z’r¡DŠïc›UyâÒ]½sèÉl6üÁ’`„:J„$X¬³ 1X*4e™)ªœìuo9½}/«H£ýóPZRZoÙ¬‰ÖZ@ñ€=c;þ:M÷æ ëíµ&N¹c“‡&«üFh†#pD{d¬´•ùê*(†|(¯8l05´[®ÍpªŽƒeƒ*ý@ŒVÜÔ©3äu‰F8ÇG饃 ⚘1YÖ ÎF é ¢Ÿýô2+™WRiîî­luq"¦! a·n3„Á®l¯è ¸°@…øA°!æXj­@5“áÉšüOGžùÕc'ºÞ'¶î»B£bxѤ/<6ÙQ­>n¢-`¬üJˆõõ)®ÅŸÙìr(Ó`†ZQ^>šm¨Eå$TkJ£pþ#ÚI¹9Î+Â}-<¯„ä2µîP^Ó!03 ‰•±Ê¤”(¿Î÷>îzÀÀáaIIÃáŽtÏ›è0µ<©¼n È!T¹é¹™3H†¨¼]ª&lû¶yÔrý‡¥%üŽÏMH…&º&¡¡¡¶ÊôáÊödòg2‘°#³Ðù#øLQ© Ô*Ð$gs±«¶F{³nñ{bxízϹ²3¥ÅïÆ<à¹Q°ÅðÆK"ØÂóhkqdõþx…ŸobX¦A†èÎè.Í"Ë=…ý 'êŽt˜ú¡NÄ7—¦€™ü?°9…~ýo‹Öhï<‹°dâ_gà„ÏNvÕ±^G㜿›„0ò$ðv‚¯˜`¨—Ž6jõEKSIbë  öÇ­wÄ.m;×…êùöâÍ39B¿¥¸Fþüo:‰â)&¸þüõFÌj”4ŸÅýWÌg¥8ÝYcŠi70w._¼Öi>PΟhëRÈQgæ@£Ò'Ö—W×V§š‚"üTòP.ªnO¹8]¼ìæþ–w‹¼r?¯ÑD†‚/ì­”7&y§…À.fÅ=œŒö?õ_éH|7ÄÀmmÝ/‹%™ºˆÂÄF‘«Ê‚Š¢2æ‡\v>|_ר3WøŠšÆŠ&`nÁìØX˜=ï&KÙ#h¯}Óc©ßÜYËz*‹?¹!N'ˆ×Ÿ6¡Q06Iïá#Ü“ ÍzöÁ»? =àbw“Wñ÷d“¸^% ‰?ñÇ×È|ÜØÚ®×¸Ã®¯3R‹SúŠ ô@VnvŽ–Ï|Ý=;¶A|WìY†”±³-ûÐÁ<äoŒ ?ŸèˆSÐKoláN+ήÆG¾Ç7¦$1OËãz6bÿÞìhñÏôÎÊ–º–ãýµžeüØÌ;ªbÉX3“⺇kÙ'Ë»òé“®¥ÿûy5ø„*¶Š²¶[´Ö‰¶HMº†Ô2±ž†q½°‘%Ó,Gù¨([Cj RW›÷.TŠ…Ô;f‚ks Žó÷ó…v¶%Æ®ˆUFDÔ+M-C 7û¡¤Ó"b)®ZzÝÐUÚÞï>y+[¾Ž½£¤®ž>7pxÏʧ%þ H¿éá'Púšö‹7•ú‚øDz¥}Ô¶–€Ïöx_Æásí÷²ÿäFñørƒo·%bwØ'BqCXŦhÅh´H ÈÇÉFn·Ö·gǹ=¹Ù Hc ÉõµÕMƒž'—Ì$¶Ûœ9bý¥ý¯‘Ã?ãtOá@žÔ=ýIam‡wpÇ’l”b;n`?$h qHIn"%Eï3lsŒ1<> stream xœ•’kHQÇïìlw6Û¬¤éCÁ̇ˆb *íAô~šR¦PY,$n¶kº›;l隦Y鑊è¡V®«éö”¬ ©¬X¡&éÁf/‰¢‚Š¢Ç‡3u šm$ýÚå~¸çò¿ÿsÎï\Ž˜M„ã8º(9-mVô4®Ü¦Uÿ4 ©²r`åÁj>ñkyÜóQ]#:F’èºp»7+;g›}:!ãÉZ’N–’$™¤ù$ŽÄènÄL<¤››Â•sÌ4×ôÜô›OÖ‚±ZTt«¸NåÞFÐáïj(úóÀål†rSŸâ¡ÿ"¬¤HÃ¦Ÿ–{šÎ†¡ÃIée¼ÄâXˆë0Vè ¤älq/³ÉY«ˆn'ô†Û3©‰²‘¬SåÐáÑ‹«Ä¯Ý¯‘H¡=Õ`i¨?ª+n›™º*?=C>'\(;²Ubæü/XçœAÕœ¢5gàü…<ðËŒ§ºù^Ãê÷‡“#3(šIÄ´&¤«ÜQÕŒ—´ðú¤93…B78]ÍP+¿b~:þqö£×º"-()ôU¸*¥ŠŒLe+X@g£l¸‹÷p¸ÊÝ|†G{xm6®AhEËÊOLd±S&°aläI8Ƕ½k¬÷QŠvR*ç§&A ¬Ä‹¾–ª{b]ïÝËwà!\Ýtx¾Å`VѤr"¸:Âk ±Mü²¡mÖÆMÎ, “ óh‘Ñy­|­O±D˜0СÐÏ=-5ù«%–ïŠruU(ª² RÑ¿Y5EŸ„¢sº¡Ý Ø ÔïÖ4EñŽéSؘAñZÛ¬x PÖïÿÍòzÒèæ5;Þƒ€æøÝ°~³TqpG{:xÁY–ëÙwÆ;Áâ4ì‚Ð"³N![éÇÿÎpV [ÆÅ««íWÕEÉ+Jsû›|ô_½8Ûî¶6×mâ±V¸Ôê€b™uÓ’,pd]‚ãÆ_Ô¨úMÿ.{tÝÚS±š]e¥»Ê¥œ%™îÌýþJ¥¶Y|ÇŠ¯\®4H}Sã…BOÕxhH<•bÌ;ó¬CÁÖa`#ä¢"Æ\endstream endobj 93 0 obj << /Filter /FlateDecode /Length 2598 >> stream xœíZ[o·~ßö?dß2[{Þ/FkÀò l£¶ÔA#íHZg/òìJq€ ¿½ç’³¢£-’0ü ÷ð\¿ó‘œñ‡)%lJñ_ü{¶žp"Ýôç >Ÿhiˆ0lj”fÄêézb¹&Ú¹4³šO5DK;5ZR"8H¥ËÑÊK)cY ¥Œ¤ð£*ì)eàW;²7xe%FNʼnÒ'-,‘Ú>Yfˆ¥¬ô) ʼn‘Lô)Y\*¬ÑéÅäÄùDN㟳õôèdòÍ[®¦Ž8Íõôä|’̦L b$œb q²ž|ß䘞œ{“óÒfÀÚ,à“ Úì7³Ö•Í1ÇàöŸçN(¸ƒu¬3k,¨Ô°¡Ì:h“Ò7DPüÀ@±€¼‡ð¡çn¥—Qçwì¿÷>7Pܼk å„n…ÀGXƒ—hí¼µ§'“7 ¾LžÀæbÔS1îˆÅw ÒXGŒL3øá“/Ì/åÄ ^T©¸¶Í¯+£¶BV¿üñôü –„ØXòårÓa“„âƒîåÇn‘YsÔ˜¡¾ ½Ýœþ’·n?.××ëÌ«åOÝjy¹Ý."ˆ¾ÿ ‹ 4ûÕù†&ò}¶í×׫v`_OFA‘ýŸ$¤ÏáZH±RâîÞ,Ú1 G_Eœpñ5§-|Œ´å»VÜA[QzqNún·\²*]Ê9QPÊ ÏŒŠßÍE¨BÃMà‡ùÈ{µŸµ+Ó€-ïÎu‹[­Ï’†64‡YzµÜäˆÙ›ˆ Wݢˆś9lóªýc¬*œs¢Q9sJ õõh‚jaó– ȸŒ¦±œŠàñPšx|k7‹í:Çןbt’0‹²ã„?ï·×W»œÐ×-BWÂSó϶ðx¿ Oºrx^AÓoÙåw͋;ëϺ+a MZblØQJ£Ÿùë1››èW„É,®°3BnËprn__¯O»‚=¶ç¹;¶§»íŒ7ÜÒû¹Ù.|d÷cuðn¨Z~E`1ü}¿_,ùÙÝu~L(uÔ–×Lyò!>0Â$æ#v¿öe=Qžp4Ƀ0f eÌÞ®há5¢8O¢i3z¦œžµ ³Ásy NŽ—'À¡k”—ž2eò‘q8+r<¦‹£bœ¸ë¤ÈÄÔBvµ [Û)s w„pR|6³–Qíà¦CÅ”h.®ñ;8M¹‚ÂÖmðý‘°YÕÀõ4Ëóx4ƒûj¶«$½}ZrÀžñË’b…¬CšrIv‹ª©Ú6ÞÊ(üŠ”ù´VsÖ\•óBs!å — =ça¯ˆ…–ËraD8…Cˆ(f„À´ø-–A­šÍ k& 7tç¿Ä…Ä´øƒ•´÷у“-.ÔRÚ‘’8m•d# ÔÀ„f0?‡±¤0QJü©ÐÑ„¥ °†³=¨ƒLPà'8¡ ´À‰%$ ÏB>æp}rÔ¿´GžÌ¬âJ×üùY=ßÖ¢½#«¨[S)cáKpB²Œn(ü(ŽVÊy}qx™‡]Í*@âN†ÆúFQ¶ …³Å,É®|ý΀sÜ>æÐ܈`á×@7;i¼Ÿñ¬ö­mTU^Þ8”Ld¸ÿg7³Š«YL¥¬zœœñùÓŒÂ5Úç€ʸ ƒà Bý•jkPš³ÒÀ™¨÷¢p{Üù~²L˜Ð °±J)bxJå›Á`<âV¤A»FÙ¤bãÃæÀLÍ×…ÿØ ¼d‘…‚ºÞC ®&2©0U"Aâ9ðŸe!R]æ %‹H¯òGþJZð ‹ŸÖ£ðäFŒ‚C|q)ÍóRë•8N )ÊZÒÃæŒ ¼Ýà)pþxÀ¥&B ñ¨à¨ÊÕ½ïvÒ²°v0ŽZO­6­TEr¨-lZL«XQ'4GBó Éàྠ*\Áa¤7&؈%? 䬭9w—1†‡)A^;¨È1šÀÇ‹: :àºA_‚·t#ú D‚'¼µ+Úð¶ ÞRÅ E@M×A‡};蓘œOú?訕s8°êÄ\û⿚Tªa[WƒlhÀÿØÏóšå(,¹ orPe¯§œÇ¨QÛ2”](åγžQR–1{€P­F§é¹sr÷ B%a[Ç£x(ŽnÚC—CW¤óܛɿ§ã&Àendstream endobj 94 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 165 >> stream xœšeÿCMSS9‹‹ùùJ‹ ‹ ›÷¿¼¹R3Oøˆù-‹ ÷ºÌ÷“Æìè÷ßâøF÷Ùñ§ÓÓ‹Ýòûßû#ûýJè÷Ï÷4÷RûÏëüRø÷“÷'÷ÏSCJNMû 7Ÿ ‹ ‹ ‹ à;¬endstream endobj 95 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 398 >> stream xœƒ|þCMMI10kûVø~ù‹ ‹ ›øÄ¿»ptQU¾.øˆø‹ûVª÷,¡ø-¡ø6Ó¸ûƒi‰„_‹€‹xƒ‡“¦‹¨Ž§‹¬‹­ˆ«‹½ #˜‹Ÿ–‹}Y‹’”—µ÷7’¤˜n§h¾‹÷÷÷&÷'éRÍ?Y[gdjÁ` f‹]‹xd‚yyi~O‹ˆ•‹•ŒŒ¡‘œÒŸ»¯‹œ™ƒetˆ€‡zË€’¦¦§š®ª¨’œ‹³£hPPjûyeiE[jf‹I~Þ‘‹Ž—÷ý€¡øª÷CŸËÊ÷bø$韕‹Ÿ–‹y3¯÷"Ÿ‹‘œ•zˆoŠh‚dû3-w‹x“‹ŸãCû°‡z‹yU±eÁñÄ÷&“•ƒ‹‡‚Šˆ€†`#Vsi‹v˜¬£’œ 7Ÿ ‹ ‹ ‹ þs¥%endstream endobj 96 0 obj << /Filter /FlateDecode /Length 3541 >> stream xœ½Z[#Å~7ü?¶“uS÷ D¬X.ц„ÝAa#ä÷ÌN˜±Û³°å·ç;UÕ]§íöò!±5åªs¿Wÿ8­œ ú¯ü{y7S­‰óŸfbþùÌIÙZ©æÞ:Ù7¿›ù(Ú`†ÛÙËYð²õAν3¢Õ ‡† cël:eUЭ5ìÔ°ÃOigZBkn ÃØ“bh½­T•¿9QN‡Ö¸Èˆ Ò·AÈQõT¿3:UˆÐõ41|b~=ûq&“(çåŸË»ùÓ‹Ù/”Ç6:åæW³,f9—ƒ4à^øVâÄÅÝì»Æ-–ÒØ›O¾úäù"¨6F×|ûÅR´"¡Tl¾¤?¤Æëæ«ÏK­Uë¢jžÿuýè„qi_´^ˆàt¾Ðß¾À!Œ ºùæSú!ĨÎÐÊEBœ€Æ`šOÊ™¶Í' ÈEHë+MÀ^>uO•ŠÊüóâÏ3/jæÏgø®Ù¼†üc³=à´¥o¶¯Ê·FxÕ¼M¤!¥jnˆE§èbT"ÊfOGtŒÆè¦% ÄHl¾Ø‰1ÙüD+”n:vö-!QB‡Ñî€U0ʹæI¦(Ýl7_—·0Í%»¸Úä} ¤¾Mô;…廞NI Ë=Û½¬š7tÑ ¡cPG߬ö8aƒðÁ @ƒÁ5w¤=‰S®¹¯8ÀóŽÄK ![ä¨=´sYyÙÔ{ÛÄ@4ÂE@^Ò:òÛB5„°¦m#x‰/"ÏIå°<Љ( …$-HÏå¬ÔF5¯Ý?0`'t¦³\HW 2$ •Âûà1køH ›~^ö¿/ɦ¬•ùXR˜¹Ðl³Ð¬u> î%m²ii CÌÄi"Ú†¾]ÆÀÒ{&Ò`÷Þ.¬%G„$µŽ$u9\4ÍŠqÏ,‡úà…“,XDÓõ=÷÷ÕõóÙQ`±pOéUxY5š(R2$ÝT g`èÀxh›kT²Z;p+ºwÕlSìAIû»î#^í}ëuÐÿo·&NE ¨DyËyé«®Yx*S޽vSJ iŽ‚$°p¨ÏªØ˜%^³άËàpBê6U.•Oƒuª´ž„ñìböõ P¢bBC±f)—IÔaÆ[Ôa~Ø¡Bìlæ)¨&…Lsöbp×K«¨’ÿ“¯÷«WͰ|:ñó› 0õÜ÷ÃêvXÝMÜØ +Y/J¼ÑzŽ" F—â ¼N²”à̪lV/oîn«M·}€©À|`uÍE·?ô!L^QÀÍçݦÛQ™€Èbéó›MGÉ.ýTóÅ»ûíáM·ïö‹œ¥{Œ¶E¹QP~vsø°G¥šÛ»n÷ŠP€ŽÕ@ÁG=öм^ßdìÿíµ÷»®òÇúÛáæ®ëá˜Ñ»nu¸ë6‡Êûu½{¸ž¼vÛm®oz U*tÎàó% ^caít0üµÂØ?¼þWwyxµxRq¯W‡UEÈ~ >ýþv»¹~R|ñì/Ï'OöÉó—ÏžTlVíêòpC‰ ÇÄNã×íÝÍ¡ØÇrà‚¤ál‰‹±V Óê‡éÚ‡0rÄû³=$¿: ²o^Öm%ùÙnWÌ(ÑôK¥éíêö¡«¿ü æðñ¯¿üÚÓ8íUóåæÐí.»{bfÓGUù DA@u“ŠKü~läŒ2]WHhê}ËŸM2L—°§—"öý̉Ýá³&CC ÖÑ…Š»]KÅÀUeô¨êè‘fF3RnÐê£#ÏHÑÕx4‘Ê$ú¥qÄ­TYKƒ¦ÕTAÌ ÝRdl EïÉöúƒ'¸ŠÂ– }|¡ “­Cfw 53ƒl%Ñã´‘§}‹qNˆ¦\š L´¯\0#4.¡­h„Œšì·»;æGˆTVô‚©Š ¢–¬ªÂ %ÓˆÂèÇ«æ›ÍÍÛÕî&Ù}ÏÏý‘mï«äwÝývwèÖŸS–ëÓ›Eê…æXzëwKo¨ºì­ÐDz3QSêËé-çiI]_ÎÓVZMy:—z•Ì.%äàïó´C'Zu>¯KfAX¯xQ«‡úëE0„XJCÔõpDýPnS!¥ Z¶DŠ"D™ \…ÂD•Ú¯ß?:´ÔŽæ ùʻ¨¬re oò¹þÿ&æ®%½¨nëµÜFÀÈ|n¾auÊúT Z鵎cBhÂÍ`µçtßÔ›—eЖÂÐs½ ÓZkG…a7!?Ó¢˜‘¾†D)*Cª 4‰ÒŠ1u›Ô šaÉT’Q¹©`_©H¤‰ÏE"äEc‚«ÌŠ¡‚q׋ѠW?Šò —G*‹õ¬Ž h*L²$…3&ä>­ü9ÉÝ9±&R£î”ŒÇr crçXà7AP9Ê$t¡bȈGFÆ~p+ú‘Ç/ Ím¹‰¶õýý{Ä•¨r2•ú`$SØÜ#wZYžÖSšiE±ŠÉ›32,šçî­D(]Í?%ƒŽV¹©-Ë7uÙÕåÓÅ„%¡'³v0¤‘˜1ZWeè£\ÓVN4/Ön¾T’êÏŒáï4A„TËØÀC\!5ú¥yO36lÛ@ÅØtPéEóÜ BtÀ¡+A‰þÝrHqMØp†4ê÷øú¡6ßl$vOv4žCfmЖÕö=l_FâÑܤï}ÿulÂ`¥Yñ„Åè!s¥¡§VÉ=Xl9ˆ¢Âe°åÉd†¤9"wK»†¿g™èÇ3åifbª±þÖhœ`ø¶¶÷•õ›B®žŒ;È¥FÞ‚¥>˜òÚºdÃŒ²í Ì4ˆ ¤æ³Â±ñ»f45,V ëÌÚC*£Ííº’Öf²t<56yjL$©¿öØ4éø—} óÕ®â{—Aøpü6Uøx9‰ø²ÆÌQ[W«EÖ×M—c‡”*¨©FºÉÐ胾}Sý\ödž<'*N‹‹‘öš. ¡«š6ÿB¹ê¼ïLÕ2]a@V÷ë}š¬Ày¨ê›>]š|'!<²YÚ‹ÁŽk·Qø^öÆ=û4®ÿš® kËçp+–x¯Ë{=*é‘ F6ú^ƒ5)ŒXVo1ÈãÞ:B¢¹:>œ¾Èˆ€ y&ÏOG)Nй¢€z²èO¾0 ïÆ%5 ç#CÜõoêLŽâåF;ŽqéiæëÙž½Bcendstream endobj 97 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 289 >> stream xœéþCMMI9nûVøŠøN‹ ‹ ›÷˜À½ºpQÊøˆø—ûVª÷,¤ø'¤ø@Õ¹û„n‰‚`‹€‹y‡‚–¶‘Œ¢‹™‹œ‹œŠœ‹½ #›‹œ‰š‹‘˜‹˜‹z\‹’”‘’¦›°÷)•v§bÄ‹÷ ÷÷!÷*ñLÇ@vY†GN|Ã]œi‹a‹vl}pzh}R‹‡‚’ˆ’–ŸžÚ °­‹©‹k|ƒŠ|‰ƒÌlŸ‹˜š¦­¸±¸‹ºž\\^oûlViRamf‹J{Ú’‘Œ 7Ÿ ‹ ‹ ‹ „ƒtBendstream endobj 98 0 obj << /Filter /FlateDecode /Length 27166 >> stream xœì½k¯-IröýüŠÁîµ}*ßU†m@hA„ €Ã6ƒ"ŒÑž&9Dï²§’þ½3b­™µyÔ‘4lF£qOÄŽŒˆ¬GVf<ÿîýøHï‡ýÇÏ·üQ¯÷ÿôv¼ÿë·^ÇGé}´ž>Îþþ|;sÿèטÞþìí:ÆG¯çûèõø(yRæL×GoNÕÊü»nDBì4õ˜?¶M^kcþzÞäI«ó:?FÛ”"bש—ó£ökÓéLãã<Ò®Ó""âFCBšTÚ¤ïõöwoÉ/ä;ÿy<ßÿè»·ù‹ÜÞ¯«çþþÝ_¾á"§÷TËÇ(óÂN¥Ò¤øîùöç_þÕ¿ûWÿöë™?®«ù?þìë”zÕVó—óõÛ¼=ÇQGùòg_¿•R>zÊ_þ÷W’ã:œ¯/ÿî_4Žãìå/¾ûÓáÚt8çdÛ™§ßýjJý…_çyvï ç:/ûQAüe|ýîoŒblSŸã#÷üþ-Õó¬âš>ŽãêõËÿúõ[ËsRgúòC ý—øë·ñ×ï㯟â¯ÿð%þ|~Âfþý:þúÏŸ±Iñ×ÿåøë\jÿ&O”ýaþ/ëÏÅè?|Ýÿ´KœÒÇÕZzÿîß¾}÷ßÿW.Õß}2‹ßl³ Âÿ9ßòÇO®Ðý}üõ—Ÿ]—?úä¢þõ'ƒÝÿ¹]Œ¿“¾ÿäÖ¤Ï.Ïýî“Gá?Æ_ó ëÇ'Jÿù'ý‹Ïfüo>½Ä?§ÿã“_ÿö³§öë'’ÿbûËž‡?à!øñy¿ûƒ‚ï?¹°ë±úÕ'{=6?|2öÿɇe½@×ø­¿ÖÝýí'bžŸÍïz?Y.þË'\×ó?~º\¬‡ã?¹Þ?}¢ÄÏ/‚ë2þê]~õÉÅy®Á??ýÊ;²æù/¶ËùÉBù?|ýVÇüÈ\×¶ ÿðéµùì/}¶ûû-þ*ŸÝË…ÜÞäà^ÿõX_Žã3‰Ÿý|ÓM+Êvµ>{VöûùóOä/>ýÿÒdžëÃÓ¢ðÙûì[ùXþ1êü“Ö¨Ÿ_ò·§èÿþ[ÞŸÿ¬èÿÜŸøÏ—âë“¥øŸkqù¿oÿ¨m÷?ÓñówˆšýñwojçÇóª9½×|^éœÉ|~äú~Í3á¨ýýÇïßÿýûoÞê<9^¥Ì#zzŸ³zÿ?ªçcRMl­ÇiÇÕ熙§Ùy\ÎÇ5ψu¹}T‡¯y~ øñ–Ó{.‚”ú<*.C„ ¦Ì³ðUßÅ \écž9Cá9@:uƒ—Y<æá:Û™<÷:²O+ÀR?JÏežþçq¶Žš?Ž1áÒ?r x -µ}´s£hÅ„/‚³O*À4‡Mcø<¬›Ž!° ¢Šâ°ÍÀ§”Ïùüný*ÃŒ!GùH“Ež¿Çd‡óÉáÈóаɴç¹oÉ­Á@0E<ÞæœÓ¶Ë@}ôÞ— Âs•AhM/³ð™Í9~Lžg;lV]þ@Õóø˜îìããè^ÆWðXç3ïPP´£ç`°àÃȬÇGŸsŽáe¾ÎeØPP?_Êc2ó)½ Ä—OH˜nVHœ#ë9/Qr…¯LÁtšÞëçù } l„0ÕoÖâ`Ïn‘¼`.Ÿ?‡~þ2ŸUŸ´öÒ^mØsüÜ0½Û“ž{;LÝzêoiŸ£[xÊísÆ7(†\C†¦{W‡yíç»±d¶ÒBÒRîóÀkõƒ—£ž~ÈhéãœzÖž?RÂõh~ÇÓGíó 9Ïâ<]¯à "|1e¾yå}qà22b -DA%Åà6 ŸW:»ÝßÚç‚›üI ÌäÑmq¶—ÐàÉd.39ÏuÀžÂö6§üÑ6‚³v[éë5WÕ’lf™ënŸ÷½]Í_‰k®ËÅž­£ú+AØž”T>βQädW.8 6B˜ùºÙã+s‰´k"Û{)%HJ‚ÁË,ðÝšwÙ¾~#Þ³Àð-)Ãìîuð%*ãòzÄkVæ£uŽâêþ¨Áñš†/IpàK2â5“"ŽbpŸÞ²šÌ†?Øö‘‡¿fÂÔúÑí®§[ÎæßóùHŸvgû;0üY Š1ß…ºq 6B˜ùÀžöù‡¹Dæ´Él#¤…(¤¥8Üç»6o´s™ßr¬ù±ÍŽ­öÜ;—j¯G®óµ€^›Üùtk£È—½8Á€ $8½#Æ5üqÕða›¥²¶TARQ^&%¤ÏËg/çüj_¾6ƨíõÅ?ŸÝ¸ûëê¾ Áþ‚'{‘Å|Ñ[Û8† AŒ-ÿã=84[þó’AØFP‹ –âpŸöSsM+¶•)§íœŸf>ÆÍ+{{k¶¡Îó+úQsÀ¶ÔÍÕ~Œb>[¶>ÄpÁ`#„™›ôa›#q˜7/åM`á*ègé§á÷àQÌÅ·/c>É—ÆÀ¸Çʶ¢ÉvbóeíxyçK„GÛD¶RBR’ î³Àý²—Þ.^O­ûýf®Fó®ÎË{àó5În׫_þ¶Ë9ÿ:ûF1?.mc@Œžˆ)ÈÖ‚>×›¶ñwÐï/àïÒOÃï3à²x™è¹œÌc¶‹ÂÌÇúá[ðs>fv©l ;jÀ¾ÈáDs¯6!Á7@ÌÇ;XŸŸnßàJ` D!Åá> <ˆs»Üü1³óÀsCÌ«ÐøPØÉuÌ‹–ý9¼lìOÕélƒ¢›Ïvã ØEØ!æ‹áç1˜\?ßH`?æQ QHIq¸Í›L³?»{al•q½šoSÇ\•l_æG(Ÿû7zžÈ7‚+ÛR¸†ÿD3_IÛ£‹A¹°–K`¿ÔAÒQ î³À¶jæìÈyŽƒ3[ûØØA»Ô¹s±oT³M Ø"§9æ…{¯Å ÀCgaæ=õ}1˜Û2?»H`?ÀQ QHGq¸ÏÇ—¹Ž`;ØìøÜ0çÒ>õv6™ë‘íméËûÉbÞ›¢[tÁáçblGù¾ØKÒ7€muTäøû|^Çܬؗ±šÁWûÀ¤¹õš£Žyí[Zç¶âšjö\hÖ•ùèØ~&,š o CÄã-0f™÷T ÊÜWœ-$4zªTQãïsÀª8÷ í‚S|­_˜ËíJ5%ûèú’3?™sÿsà¹l‹V™÷?mÅ-R‹CÀ.ÃG“7ɇ)»l"4zéÀߥ¢†ß'Åc®@nõ™_Ȇý}`æÚðqµ“ߘ«°Ûæšvžûæ›¶$QœÅä-» _nˆ™{×ägr˜«\› Àü »¢–âpŸ6‹_¿6l¨3W+Û¥:xÖ˾cJÍW Á¶‘ëý£mÖÍ` "|çGÌ|êlO$sy³-SHl¤ƒ(¤£Üg»vø•»“a‹êsÃäá›Ø’ü^¸yð²{’G¾Ýé¾S‹ŸçáÛpÁà&bŽÓw°Áá8üÜNGùúYúiø}xÉæãîg’©Ô‰­‡0S¸X««ìöd™‘á8öYñuPŒdßÑÅA0døf…³c˜µI,~ªl2û‰ŒZˆBZŠÃ}´éœøHT³Î=7„µç„F.³SÚAñjû.©}ìWÁb ‚]‚›Õˆ0‹Œ}0~j «ökGD!Åà6ìçê&ÝùØ 37Òöb湨憴Å?Ý æ£âç@Qäê/„8 nªÆl¶¶¡‡>g8–€n†ü]*jøË$°õþÜÖ+ÛRúÜsf«uö±p»ž™ßÍvrå€ÝØ2l“f޹ÎÅ àÌÕ;©ø ‡/ŽK`AD Åà6Ü¯Ž g~‰žæôSö,÷sÿe‡Ùvrƒˆ¹xw?„'{ŽçÁÛ÷4¯O«ûâ}Á› Š9%{2‚ƒà“ü@̳m%Ä ulß%‚°P DPHIq¸Í«ýü¤Ø†d ržæ¤3ˆˆqúù=›gjnkIx I`®)w¼AÀá#ˆéÜKÁÜìõ¶$ôO:UTÄø—9p^^ìy)° ŒmáÜÐkØ8 ç9`Tìç|OEQçKtöÅ!`Èð‰3w~Ô!3³µM`ßÞP QHI2¸Ï33mÜzjW%ÌdºÑópK˸à]³Ý”v=/_ƒb.ré\† ßþÓÝH±8t·Ý/€ýêQ R„–äð2]L -×§ïª3oµ­C}.ϧŸU°ïìó;èçÀ¶ÔUìDƒ¢aãC†Ÿvˆ™ßÞê‡r(~ÉìÖqj! i)÷yà+m«}ÙçQhÀ&,̼ÙîÖ˜»ß LüYá'ñÝ`ÿL_ö"/Šù€µAHðÏ4sÓPèOôá:H`nX\QHEq¸O‚îç ϬYeOx ‰)Éõ*9`è§7ˆõ°ï“¯ÚA1ßwÖŠƒ`ÈðÄÌ/¹¿Îâ0_Á‘7€ýËN-D!-Åá>|ªço—û'‡³Ÿæt?Â<Ã.ÇcìC™iì§~8ùƒ¢Òä$‚!ÃFc|·$ÃübÙ«2»)‚ZˆBZŠÃ}ø¦‡ßp™ #—Y*þªôˆ¥ «z —Y*°òÁApøÌ#—9¹Ä(£,§µ i)÷yà¾Õ ¯l’ $0&Œ6ß™ó–ÉLöÍÌ-`ß5·ËÅ\°JÚ8N2‚æp#†œlAØP‰ ’dpŸ–‘ù-ô#Å\Z°Ù¢gìÕí3L³öò—Å(t›ÒéϹÚ¼n¹/»wÒQ}\ æê×ê’Ë”« ©H÷9àaœ_"ß?;À…ñô—œçÚ]+s)2WŸ9[}ã ØÝ±é£os`Iƒ€¾™Iî!26 €m€t EèH/³`À‡{ý,u$}Ó.Ë•¯ó‰}Æ÷6@¿cØãŠ %:ÌÉ `ˆð[FÌ\íJá.ê<ÛJHG2x™^²ù"˜YõĶæ¹alãcæÉ‚èŠëðÚ| =ªI°¿‡›EÐ<¬i1 >€Û9ù{ì ìayI ìË/# ŸÙ¸\È|ð[¢Ÿ;æ2wq>mѹ&<¯‹9šÏä‘ ‚§\ómÎߢ˜ËH‡€]†f^ã¹vƒ¹1Cyˆl¤)BI0x™žF[¼üeMtrf^9·"èÉdÜ¿b.à3`w`SóŽÔº„„ÇÛÂ̰{®ÅÀ$Ë&°'©„(¤£8ÜgÁ™~H°«g``*÷¨f~‡ÞöòÖŠè,ÂÄÂ\c£èø ‚!‚*Ž™Š÷Å Ñ9%)ÜWÔAR‘ãïsÀ³hÞ™yç ûK&ÄÜÍ!f¤Ä=ïn]3#åO‘æQš[óEÑ=p!„@Œm3Êûb`¨¼‰l#¤„(¨¢ܦ@£÷ð×6»ø¹!.ìlñ°Ã }⎰_IìʃÂ2ñòÆ!àCFraæâèë¬8ë°döSµ•ƒÛ$°&Ú)÷‰‘)‡"Ür[Íé·£YÄ] Ø·—/ÖA1ú1  ´ÂÂmÓðíÅKàÇÛRARQî“À ›¿ ÉâÂ!LiþÞ§‹q_}°gùû;±6‹¢Âm'³b#37 þÚ‹Áȇq(6"”…t‡û,Ð’p.0“]E@ 0§}îýïÜÜÙÑ`Ð(E Çþuåo×9\0x< 1ó«{ðü=ü,Ü=>Kûi*ˆ"”&‡—IÐʼnŒs¸ùä¹a΄ÏmÂ~å<=Å¿…­ì_Ï‚•XÕ·HÁ€ $øÑˆ“I o“²ö U…T‡û$`&@¨d;Œ›O,0ó•>ÌzzÜKÑ<*D:ù6žxÊçWÃ?퉱¹€Ì%?7ŠùøûŠ+‚!— `l¸<ìáÌiÉ ìŸ~hP2Ü&5>q ¿J`àÉ >üN¯I¶¼¦°ïLOÿ`Åü”lã …WEºDb4]&Á?œ*¡(¤ 8ܧÀŒF‡?7LEÒCµ”R?ñד.’Sàîž’ÍßççvÔm¸`ðÄä/ XˆÃ.°Û¨‚(¤¢8Ü']”¥‚ ¸Öáá ŒÙ*Œàƒ1•îB¾­ì‡ZOÍYs É‚àvz dši¸ÕI¬} üx ‚B*ŠÃ}Œðˆ"÷<2 ļ¾Ô?ÜàÞ„]t[lñ”<ýžR‰àž aªç-Õ­ÑKB•¯"T ôãð]w†ßœ~;- wI˜+C‚å2ù%º Ai00v‹tE,²(jˆAHðó<ón¸½›£;2bƒ?àÇÛÒ@Ò îS`لif´¸päןrÂ.µÀÁ/Š‚ÝA0 ôƒ#³¿»^bPOªM€=ê: TÄø—9p¼°÷* ß LEð®}/Ö3ÈéŸæ²æ«(ìå¾6‚‹Â÷“|‚óBFRø^h! i)÷yÀ {xò\;ì¶ú—+0¼vNœªY [O-ý €Í‡Ý µ(lçV7‚!ÃFÓá© ¸ !ÂA÷jPþ.5ü> DÞÐ%ÓaóÜ0c¸ñÛB´rCbJ÷¬÷ñ|X0tòclÌWØv<Á@p¤õ¦LŽ!¤Ø„ˆÈê D Åà> º,37;ý_)¾«–³N7î‘<î®j;Z+’ûƒ¢i'þ H0M'7—sôÜ(Ô²ñì›4j )(÷)Ø´ÒeŽ¥÷Zº•z.xxº=]N,Gƒ« O™G:<…!(Nvd°`àˆh^a1˜7Í‚ôCàÇ[èDhˆñ÷ `á8í[…±ïĉ͉[Bø©°ÒðçœÚäaEAšvp >‚n‰ƒCò(î%ðãmi! i)÷yàVP¥ÅìÁ'ìóÄX”Ÿ½™zœn×Îd៹üÀÞÄ?¢è•qTä@˜2|ë@Ì<|˜#F,êÉ¿å”AØ¿Ð"(¤·8ÜçÁ| ÇÔ】Mú-=Ãcûaè·³xô@L®–øs¾˜ÏÑ‚ÁßÓ¯†Ý>X‚ˆÛ_ €àã-ƒ—)à”<÷We »ÞÀÌ3œ½—öØzuÍͨ9jzFba7˜ù_‹¢žO#!Áè‰(ðïÇpK›Àî‚¡ ¢ŠâpŸs†ßÃqzÄûsÃ\-sæåP,v )îÐu‡_7—ñ÷Œp; o 3XH :cA%°”©)BErx™>bÃwÄ^gçJaÌ i6ãtzPNÅJñäðÁ½.Š<—¹|-‚)×bN߇ƕT2ÛgŒZ…ô&‡—y0¯ ›hsv焼*bTÙa^wÖÌW5»;ÛrÂdι«Góö¥½z„`Èx¼-Ì\´}©‡–QM2»“žZˆBZŠÃ}LŠQÿÄ„i¬cAÔ~a©˜³aŸÚ£˜ŒÂeAà)ñi1¸ªšL` ËÉ(– I(a#’¢ŽbpŸ—}æúÃfð\˜ë€×¢U$*_sŠƒ *œöEN¸ (™SÆãmÃæ vLð]>eö㴊Лîó`5ës¿>i™§|®ï’u%pk2N „ÝÜÜÝçà 2üù"ábÁ ãt"ûQ‚JˆBJ’Á}63¯2ÉCm±±ô^ÒÜ­œscm®Ÿ¯1™ÌPVÊyaN+Øóƒoà^©fÞŒ*¯ióY¼³QåŠïᢠÌF¥x²E˜ªÙ¦n‘Ü~7£¼¬I`6ª—ï×`Qý\Cˆ¹Ïµˆé<Ÿ¶½#Ä9·uf²kóûæ!¾•¯ß.+Ró—o×ëË·ôõÛ<˜ÿéË1ÿ´­MI_’ÿié/™6«Ë%F£Àh±,eûŒ3OËnbñû÷ •…Ò.ÌÊ^9 *bnTã<쀱Q³SµcÞ5ßg‰J˜uݨ6íÿ°«nWü›]údÙy¶Í0+‡q|ËvUmguõy± 8íåLvµQ•à °æßL_&ùß¿ÆÿÕ"®Ÿ¿‡Éòdkzyî9jÇ»%“õQ÷ç([Ñ€yBô°ŒÎçè¿üͯ~û|ÿõo~úþǯs×£y|ÿ·?ýî+z~ܯŽ}hÒ\¿%÷òÞû㻿þþ·?~ÿÓ¯¿üáýOÿËßüôë¾ÿõY×Ò‚Ç,˜Ê.ù÷Ó¯Ÿ¿üéû_½ÿøÕìS#×/›2K¿xÿä*¸ëÙí% Á©»}yHܼü¥žnjøG‰™GÉÆJ÷,¥…8=“µŒ û[›ìó&H "üx+d­â©N‘<0L º'Ü=¾bF•ÊÅ_u,—¤ Éá>û:Û^Ü%]˜–0ã²#ò„áMö|õbL.|³»XÔ+Åy 2Ž8 6³Àø‚°8ÌÅîÚD8h¤¥9ü> ›X=<£æHˆÜ!˜<æ`îϱ©µ–z´ŒíàÇ$· ß´QX†oÞ8†q1#9¹%A,ÓÚ|Ð’AØFP‹ ðˆU ßÔÇ|ì–¿q›Ö˜=ÆÊ.#¡­;S«Êì.ÀS\²©”b®ApS\îFÏûZÃíc•7€m>RKcpx™Ï*Ù¼ AŒ¨¡NVÔÂÓíÆO¥’ž|0æÉë@;/'­_.ü}1f}²i‰ÁœžNB`¿nTAÔP n3ðwêôše¥¡Ö ÁêÉÅÌþ)lóEñ$È`>åæe©C¿¸™c `ð5ra²ÛAÖð䑇‹;`!á¤8U\­ îfü‹grš³Ý}ë Óý¹œ§ÚCC÷óz¹`àl»×^ËöKÁሩn Å#Å–À6@:ˆB:ŠÁ}x—æ•9Y] —„¹¦|ä‚d”çëÈdcÀ|{ÝC' «¡76‚!ÃGcåñÆðcIÈ l#¨EPHKq¸Ïß(¬™—p´^˜â\Š%:x0Zq.óÆ+¦÷ÄÑz>'p“à’› †@Œå¢¼ÇøÃ¯KÀÁóíRARã_æ€Õ™àày cFߌ¯FW™›ÊuìŸnRX V!‡€!Ã?Á*½â1å‹Ãü–¶ÉlŸ*i! iI/óðç±à{ÝŽùo²ðÂÌסùÞfØ‚ÖÄFU«ÖSÀóY1Ó÷Õ7 ÛcŒƒ`ȰÂTx§ƒC5ÃåQaØ\:ðw©¨á÷IàE›[h&;•Óß3"²ðªy‰TsÉ?«óIñ³|aÊÏ\^ø‹IaŸš‡€ÓŠfî1ì³*ãòÝHÈ l¯µ *I÷Ið³uRÏFÇ…©2]­KÊMy¹}M])ý;ä¹+ñ;ê~¯á‚!Àc bþi#ƒìÝ–Àþᢠ¢ŠâpŸWH“\&¶0f½µws>%hµàƳb»o¯\؃º~¶ü;Ä"bxÀ`äÂ$OSâðÃË¥-î€}é |QH?™f•Y·÷òüŠçÂ0b®ØçÛ#ÕRÅ–µÖ°ùûCR,±ØHÑÝ R‚ÑqzUÄÞO ˜þœ èwi¬á÷øCh¦ZºXº¿\Bdï 0Áñáá«x?s ^ux> æEnc£¨°[Á`#„1„™RÈÁ(V«C2Û(TQãoSÀ’q2.WmÝ…‰E~S‹·pëÉü<€þà'–Á#A:Ù‚kˆ`ˆàÞ¸39ÛvßÁ!Öˆè{]ê 5B:’ÁË,°Ÿšoð`~NÃ~J˜î°¾»A1xß„NØâVúîè‚iEs>ûÆ@0DØaª»Õ‡â1°!  "ŽbpŸff•°Mñ~- áv»bÞÑ‹û”b¯øU±¶ëiñu)0sg“€| û`a,úÔö_â€xï%°ÍLZˆ‚J‚ÁË$0¯ÖP%$Ï ªâ1>ÊS/ŠU—õH¾ÁäŒbÆ8‹Ha¥uã 2|1-a ‡ê’–ŒÊJK QHKq¸ÏkbEu oG{úš(Lê°/XÔçrUØzFR`[´Øå"(æÝJ‚àôްElØö‹Ã- å%€°/º™ÕôHAƒÃ}¸ivNãÁ)û',0öÈúA nDË'Ívç•eØ y%¢°œ¶q þÚSÜ•¼8ä¯döÓµ…´‡û<°ï`áWúxn+õaÇróÆqEöãéUÂîñU=QØõHòCÆãma:ÂzƒÃüÄí"´ÕT:ðw©Èá/“ÀªßN´ÀILGÚ0¾­¬V–å~Ý–U­l±[`òЊpâüWF›8Ìd¡…9P×M,ãÜ’AØ­<,ƒqƒs àã$Š‹›8îIg8ašÇm,Õ­¥KF­:ÄI QHKq¸Ïƒß´ê†{1΂o1kÂÕPùžî)„…û ¡7AaSLÁá#ˆ© Ë›8¬ !°¿PBÒQ î³à>äDœgîÜ^¦xZÅ|zÚžI\­hWªû¶¢²Z ),‘c1 nsËJ¶sH ?.ß<…ÀþSR„Šäð2 ,ü匔•0Éù³zŠ[“‹Qü¾g‚ DùcRŒÌ4=2|0N#0ýòCTpè' C’AØF@‰  ŽÁà> ܲcà6žúÜ0ö2ø¶¢zÁqÀB‰ï–`» ¥ V±(¬ LÚ†·êcÞ"[eÈÁê[ºa–2ûÎÅ•é(÷Y`f5³HEê¤ 㪥ìòøg›;…·°/]'¢[E1:àä 2l1VRÓ¾Óâà%5ó’AØFP‹  –Áá>vº¢.<>ð¹aºG³z›Ë™4k¿=*ÎN&ÍSüÝMÚ6\0¸Ã‚˜êŸ¼ÅÀ ùM`!D!Åá> ¬ˆžFã&lD„Ûõ X°­8‘H˜«x©……,\Áá#ˆi^qq¨—Ý‚%°/§ÔBÒRîóàŽ¿Å÷G[~aæRdbhºŒ-?›Û–ŸæOmù™GÁÆŽ_ä›-±ã§ˆmÇO%bÇOÁáuxÕ:gz1ž&^t<£c.²…Ñå;±}E[ !ÊÁ àpEøÄ ^J ì¯&tX¯&uƒû,¸<ô@yÑ熹R,= ”3×ÎÁ’¯„Ý Ý±áE©hr)‚!ÂTbrƒÃüºÃ¤M€o¡„¤£Ügmqx¬1ÎsCØÁ(Ãä«¡%ºyÑM€íÌ‡Ý ‰¢7Ö+%Á.Â1÷Vç(ØÿC`ºž\ QHIq¸Í‚NÌîÆ[s¦?&1^—i.¨ÈHf·³¹—p_e¼f=³à)Æ„´€±{ê6Ú®E©bÛÓ´hUÚ[¤DPPÇàpŸ-¨ª;ça±Ï SqzHvêðËá4&|E3ƒ†[/æa‘¢°Ð…8.¬Ù±0±ØvéÚDö•…”$ƒû,0³t`SQX`a*òÙê4¸í÷t5gÊ0䥧(æFÅBr\ê¼0qk¦^_`ÉȬ@°´…´‡û ܵ>“i¡8Ï 1¼ùã<µ¢E“ÅŽ»Iðd:“L‚éRBò|Ú½ôìü .ÂPƒACEVIh¤‚Bg2¸ÍgÏÄæ‘‡ÝÔçŽq£¯ŠL{Ÿù‹Î€0æ]e£8ÃÉ!àoÍÂ4/Ê·8X%ª²Éì4j! i)÷yø-³:QV¯,'v]˜Œ*Å–E9,T¬ ¢³5tJÏ+j‰˜ók´(N?¶/‚[|.Œ~߃µ<´›,„mt©Èñ÷90Ò£ðå>ñ¸a¬»ž[£ÑØÄù›ê àû»íñÉ‹b¾ý--°/, :Ä- eC`ß²P R„Žäð2 ­ñááÁäøN/Î:ÅÂX»Ç£ûW¸t³¢¥€çƒb±´¶ŠžmN‚>¢ ÑÝO¿4ÿ /ß饄(¤¤8ÜfÕƒ¡Veõ„]N«ýå;kœå®Ãû†ì °|²AHpúS}¬«ï?8¼d~2(°T¨‚(Bir¸Ok°¢Û6¨ÃÑ)Œ{_;ý·ó­0³X0Êv[ ý·¢8OÖ>,îNNLá4†Wäú„À¾£ ¢~âpŸVE™^ç7}¢uZk‘ˆb~•Ó F…Ά‚Kãö^ØŒIakðµqì" Siƒ*4)à ÌUT"äž[JˆBJŠÃmô·û;ë) OæV;D Ãò5ì…9‹¡¾›q2)ì¥OeqXY§ c-Ç{p°/­É– Âþ1‡Aê´¾«ÏH*Ž/<Œ-Lõ³”‡š¸A¶úY«\I½Oy+Ö½Ù]½¢È´¯ˆƒà’u„&€Å!5%#5¡¥)BKrx™m:'í-ÌYô ®–ñZXGÐ"Ж ¼Æ^]FpRX$ëØ8VOàÀ°kðfâö<ÍÀÍL‘Ð"(¨ep¸ÏƒûÄ„àÁ57a’÷w;7¹MíĦpÍì¤=K3kü a¼Àmb´R\è'kb'vk^ìŠ-j îs€Ë;GË€»àsf /Öª·ÙîÏjºØG"swJض}V ¢lÜÞÁ‰ñ ÓYªgX-•yëK QHKq¸Ïƒ[Ń5`ðÛ0žÉ;aôW´ ™y¯Îb)C†5ó6×s£8å ‡€eX L;à*‡Z "€}奢–âpŸC²2waÌGÅå÷`èâE_ Ð×ïD* úECnÌ“]˜šá¬‡â™¶!¢0wé é(÷YÐ\u¡{ :½<7LfXñP{=„ß'W Ë‹p-ŠtVp/Œ~ œt¹0âlÅÁÞ»{’AØßgv­…´‡ûŠ U¶· ~ÆÁomðsb ³6øzYˆCÀk‡OLFÆUpˆ>el;ü|;„–äð2ì/t9¸õÜ0 ;u:B]•|\Ìùe¼VÍ ½‚"Ö)+&,0§ð°£69X…ï²Dô£:í<ø]*jøË$°éhcà%™°&{v9‡·A0÷}gœ\k›Gkžï½E).Ä àÄvç sxÐÎâp$FòRÆ¡ç]Jˆ@:ŠÁ}4å,ÐÈHÐR¤.<ïË1gÜ|;¸´:Hgƒ¯ÖŽ€ëj _0¸Ó¸ë˜æÍ+ƒæžø%°¿ÁTAc>vî¾Î äj²q “a¯=N(·C[°­³@˜i ؃"YÉËs18)Æ-0G‡‰šÌJî&lÊ ì›Dµ‹@:ŠÁ}t“U÷UØyŸçÀ 7s³7dݤ²³ëT,¨ ^ÁÁÌž‹ÒÝÃÉ¡î‘Í0I¼ÿ$Õ4î®<Þ(«ër!û‰{{a¬Ö²¹‘­”‡zÂùåå°[À5项APY9A ŸòŽMÃÄ ãS{8t é(÷YÐ̦,îÁx.„Å€úb]ØÉ ýÜ’uë3Ø·¢ÉN‚«¼&)ˆÙÛå…ˆŒJ°KþN 5ú6né/NØóiaÐ+d~Â+:0÷ñПúÎÓ æ©'T2œØiaïh,üæj!‚ ›~+$ŽbpŸ7¬7ßäñ L§Ã®°@}§Cϲ~sÀ~ùYGý@v”8náò¦Âc 9P$(2ÏŽ']I‚!Ã^7;ÂóġѴmGŽ®€kÌÒ^ç«@÷ .±›7õ y³n]Œy²Ã·wZí,5_­uú¹’bÀ–ã,`Á6+†o»6]*ˆB*ŠÃ6¾a¨Œd}³2L¤Âø’ë.“^`?þžƒ‘?U!‹£‡€™×º2Ú×ì!Áß0bÚ`lK/’Ç#J`z¦Î±QHGq¸Ï‚‡JÆxÎkÍ(|aFå(æUžà°QYð|È¥3gä©ò¤°ó‘‡#‚A€Íai—Ì‚‹…Â&‚Ju ÷Y` ŒŠFl5IÐ2|l'ÊcºH¯Ó3ö½/N¢¨XËÄ@ z@.ÌüÄ™1N :ºH†ˆ®>“¡DP܆߸ûÈ/ ½ààúì"^Þ T|SûOO±(2=Éà°`ÈðgPÞgXB‚C»°Ì¬ÏöБ5u!–Šþ: FÌvXн:"f‰IÑ¨Š€ÉÈk¶}zK{È,£hDa)½cã ø(ª‘@Œ=z=½;i\KÀÇ[è ß©b ¿Owì¸H}Ð&Dó ÛåJ´Úµ‹døÉ†l–Êk…ÜXâ ØEÐÈ鈒àŊĈr÷rå"?˜”…”‡Û,˜‡×ÕLF©qDd/ŒT­-®×¢+ÀäuŒúóˆBÈNP‘r '^ˆÃ=úÁÀ —ºÑ *TƒÛh9DO!sÐ!â!03E4‚K ¥†RX€¨ëàÙ¢ð 5 G[a°@;)¾¯q mÂ3`šAZY¡¼(OG,ÛGÕÆ500(*X|Ç⟘Ìç ©å=‡Ñüâ„ÕÕÅ@0DЀ.%V^¼,ý§"ŽbpŸnU¾ZÙFJ cŸ=*Î Þ¶²ÊÃqÊŠ"µö;…Å–œÂá§_blµôhÀÆÍÉðkŸÇ©8R(ÒZ î³€!ª Ø€š§:>7L÷ø?·ö؉ÏìJv½l_TJÀ±]PÏXWBZ½8† Ú®P3¹¡*8X½º´Éüx[ZˆBZŠÃ}ÌÓÎÌà žÆÂ+²²ü隟øŽ‘RxÒP³ñû”u¤m´`ðg¦™cБ}1@Gö%ðã-4ƒûèjféŠ *Û³fi.‹Üó™2s¹Ì ‚´sü.‡3G <ª‚´ÃŸ\ÈDëÓ3ôBáÇ[h^5GÃ7ÍñôÚã*K;/LóÊÌÅü‚v²gÉüvünWÀþdÐ(ŠÎ¬â ¸²ðò U~q(^ºyÉ(,î¼´…´‡û U,8Å«°=7ŒB ÆÔpî±cìK¶àVS£lÕ~ s¥ƒƒµqÞD$ ð{¨¨Tëû$`=¬~…̲FÞÿăáܨ<je†@0fÐ&?Ì­á‚!ÀÄX1sTˆAõª‘KàÇÛRARQî“àÄ`¥_áQf ƒ×²/Nìôt 9fð´o·Eq2„ACÓ˜35s»8Ø6oá SH޼~—Š~ŸÎ)a·—%žzœT`æ·É˧Ú6¶¡_”»¶;Ú©vk`ñW;(X[)8† '"¦Ân BðC`!-D!-Åá>îí±˜U_ÅFd…Ð Ô¬‘0)ÑÔº·Â D ˇ87‚U|aÐ!cqȬ@&*:¾´…´‡ûØ 5+ 8æôºÛ1ÜÌMíZ»Ñ¦ÑhC ”•áðMqæ= ˆä‰ç¶¡©{]Ïz²rdhe¬.©°ë¾\ŽF1Ì g †çÞ`˜ÿ&Ëu( )(›þÌÛÎþˆZS0¼R)Ë~›ýË?~×ÅÈ鋯T:.¦¾€ÂÜ¡Þ1‡†ŒÇÛ¤Â@Xr8Py#dv×&µ…´$‡—y0ŒMå]Ø‘ka"ŒÍ«Ú~õðäûBß;ry ºŠ–TT‹ˆäëU¤CA|1,sÙ­}‰%©Jô:E?y GRM-bú•¼¦˜‡ÒKfQa_jK’‚1pbp›£*/Ù #Æ:a3‹×í†6Øý{¬ªLê£qV™^\X!† ÿðsx|ìâ`ÅÆ&03…U q”Ô’^æÁÇÉWý@´Þ†¹X9©»?Ev7¯zöµö˜åöƒ ŽÂ¾áOÈnsêm"ôõ *ðg)ˆÑ¯S`Ifw5å¦ÃŸS™YÇM‹¦ð¡G~ýE¡¨2Ø"+ ‚š³ 6àQ”JˆB:ŠÃ}xÅN~KKB倅qà|ÏiB¯^ù¶˜Cmä€Ý„Þ™TBŠŒ¦¤d $<Þ&{…ºÅ Uº )"ñq_J"t$‡—Y0‡V»­P˜ìxž½ÎzwQ(ŒfÀ­PXa… …Áoo…ˆ™ ÅÉÊ-Î! …QÆV(ŒZD¡0j)÷yÀ| ®FÏò¬f.àv¶Çé[³›}7!  gñvé÷‚dø.8˵˜ù²y18à9 ‡\+¡‚(¤¢8Ü'Aû¯¼pEµÄ³üt…EQÙ­â*…¾u#ü@eðvmm 1¤·þaMÝc‚ჟf ìn¾ƒ+)¤´8Ü'ÝÇéåvšTÀƒk6m»=Ë<'\¼*b-‡÷<å–äA‹"»/8 6B«(þ¾ÈQ€}»B%HJ‚ÁË,Jogï¡Ì c9x^ª3–‚åžÎ×Á¡®Êh PX3Žv.wå­Æláï‹™ÂÛ&°ÔS QHI2¸Ï+ˆN¬fæÇ ²“OÕ¡F†«AG`Àþmâ6If€B£ÆÜ€àMLÖpëyü~;bsçL±ôÃð×ð[†¼7 /EqÈÀ˜¥² Úý¢1× 4H­#èŸ&ã só‚`ˆ á Í„2ªÄÁš’ç% cö]HG1¸Ï‚áÙy$|n˜+qïp¸·÷º¸µ¸°ç̼26Š¢D;2¬èÅ…~†ZL¸d(¸0”A¸Éà> ö•ÇÞ‡ ?­0Hq>úÈ\ì“aÙìo &EaÖ rÁ!`ÈðÄô‚B„âмÖé’Ñš>ÒBÒ’^æÁÒ¹œïÁÒ c%×mÝpÁ±d5®û®ýÚ£œ¼jù‘7‚®ì1bX<8ØÅéyÉ ì¦ãã£oÔ1ÜgA¬ž'L1ß"µbó¼Gï¼_;`?â@ˆ”^C†{0ˆ©ø‡ÂvM’؃­¨…(¤¥8ÜçÁȧ9¼Ï ƒ7²x¿ f)yC †·~ ÒÅo‚(:#MÅA0d0 Å1ÅÛ=,K´‰pÐ7-Ô¿KE ¿O‚§éJé ûG òÀQx0ѸáÓt*™K¬7èðã‡(ª '.â8¼•Àbp$œZ%âH:×RHE1¸Í÷+7\Ñøà¹a*Åž¢ÝU…Ëtkˆe”u£`fBp >‚˜R#'¹áH`¿cÔBÒRîó õ”néÆMãÂà-qË$Š.±Ào£ã{pÓè™ñc#àB /g¼0xI‚\ãKÂòÅKQHG1¸ÏÁÚ´$[È„W¬[Ï4ó=´_O.ƒ•ö û>ÿÀÂ& f‹i¼@ðÄÏ ¨P´Dl: 4$ƒ—9Лyùó[½Més!šWGó¸-Ôè8VÕ9ì*ŠEØI¡¢íâEÜ/ÅÆÜP{÷’Ñ—G23ü HA%Åà6 †æ ÐSGÕ·ç†1Oi±Éã!­ØÓàqu€=Цû“ í{‚ƒ`Èð·LÆã‹ú/êd¼´EèM÷y0‚¥#¯lž‡R=ÃR§©Dô²¨›U=ìW4³„()*LKÁ!`—áo 1…/¦8d¾˜’ØÍ%B BZŠÃ}L´GºÁu û LBtkÜnµ ÎÌsOŠyn5j¨,Âó¬Çï¢8Ó©&bó•:ÛFÑ;¼¢d@üE•÷5ܪ:ž›À¼Ç®‚(¤¢8Ü'AO`b5¥(¿* ã‹­Z·Wë)¬®Ê~Մ݈:hQ…aÃQ çÈ$ÆÊ;˜O–W•Œ#ê¯J QHKrx™û0, )m‘« ëD ê¹ØCOa—ºìåyNô|eRäÄä0D¸g‰;q¿/êܪ²¥„(¨#Æß§€;6gì8¬t¾ß0!®ŠƒÐ\|¼¤–uâìné ÀZ2?óç ót ìüÝDÄ€ýW ì9¦%)€Ç[ˆŸ¥ž†ßôgAY¦fð•-DÊÈ{­´áæžàÆäÏ|ÈWÜ™*ŠÁìQq|Æá9=·dŽÒåLÊ<é+ %‚B©Nâp›“;ãhߘÓ3Ü-»ðd(»?Æ ÙÔ„°Ûõ¼QX~IY ŽS5ª„é'*F‰AGiÄÑÕ™(”f騙YpŸ›Wì’âíž c~¨n›é¼ºïe RK¬Ä~&VxR4µÕ"”á‡GbÎJ58¬Â AØ=ÒÐ"(¤·8ÜçÝ¿•ÝÎsØã Ó.lÞ*W­˜»‡ù²Ì2a?auôˆŨѢÏ9† 7¬ s`/!Vñ#o2û‡Zˆ"ô&‡û<è4K(L¸*3 •™Ô—J•™Ô`bUf{­¦Õ"*3Þ*3©G„*3½SÈØ+3±“‚(¤¥8Üçûfé~¯/ì>­•Ýòâ¡ÔWÇÝO8!fr¡?A¢ÈˆÔ ‚¹a?iDT.а\Zbé /ó`xðÅŽuMΦâ„gÛ•B÷œí’h»Äx›Çô‰ ”!t‚!·™ÄdÏy^<êŸüYÔ^Ò“¼©ǽ(Ï ÑÉŒ ‘ç†AŽˆ:¸©õœ)¶P$̼³n¹±L8 ~ ˆ¡?>8˜}8o2?Þ–¤-ã›w‹¢ª›×4}nkÝä L@é uί r .•ò´¾áu£ìô'‚+©.L-ì˜@¥á('€}ÃH-D!-Åá>Æë ï—…¾$•æbfv ³ò“^ óBøaßV!¹FVgØ·$ä0dø¶Š˜7 8XYZ{U$ƒ°ï« EPHKrx™ÌØñ×fŸ_@ÃVvL­îzöÐbÁ–q@… `XC0 6@¶²vº Ñ /t…tƒû,èÄÍÑ¥¢!F30â!­ò‹ÛßÞõB‘óîq†pÚ’ÂR£6u !¢¡&r ¯Þ»` ì0(Ñ!áñs‹yÍv2° Ÿ¯%‚°ŸÌa+ êî³`Q#˜Ð-nˆ5ˆ™ÕÍxœ;±‹NVb5@òá U(Á.a¯Ô¼Îçb` ÐuIøØÊ,‰@*ŠÁm´.²¢Ãüt0 £ª-‰5ZÇi/©5ƒ]Ý ‹Œ9RÈ~+aϽPµxaò…"’â`½…Æ&ðãmi! i)÷y0ºR¢H$aZ¦ÜôÁ„÷k`.%ašÈTéÅ)˜ CÝ ðByiºÅÁÊo"dÞX?KA¾OÁŸÄR¼Áw³ø4 Œe«¾×R^2`¡)Í3ü[|Š5ÃÚæÇãS8^`ãba*l4_½ÅPÙ×b© i(÷9`7Õ¼U{mÛ‘Æv(ÝÛ"x×êj;Û 4©h;sƒ_ë÷ Umc8a °œpà‰A;=l4$¶T!(¤´8Ü'ÁE1³óÞpæòl3©eOF(”:ú°#Ýíeì÷Sz øàJ Œ•GîíÉ5n>I L3ŸwüU ÷I0ð£âwfÕêæb–Ò\´ýE¾Pcé°˜³0ƒºFß(ÊÉî¥ä øÌÊ9f0ÇH:BTBFoª®#-D!-Åá>¼eÈéjI¹< ÃLœ‚ –˜©Sa»<åVD-Šì‰Á!àÈå ’q‡v¸!+d¶7MZ"´$‡—y°V$OC(ÄùÜ0L‹²ÆK8?Ñ$ožú°kc™^â 2o ƒÄª``‰Tmøñ¶”…”$ƒû,V«Bj¢xŸG”mÇ1ùP-‹®ƒ´õ+-EÎìz»_Á…8øÁ$KXj›ÀŒáG«RP,­Áá> N,3ñº«z“0Ìð<™Šg~m.–Ð`…—ÊmQ\L÷‹QÁ¹«í·0ÉÓ kb¸‰8.Vo’ü]*røË$01Ë\†!ˆUc÷×û²Â)jjV£ù{gùrs·ô²(.V ‡€ën˜‘Jâ€nŒKÆÁzK Q„ÞäpŸ7 Ô2‡ZaobZbžƒÕ5/á¹èNM ƒTDab®ƒà*M3WlïÕ.Ù “.™¥K—¢–âpŸCã®o©[á§Âœîr+áþ–¼e^üÁtÂn×l´¦‚âd><U˜ÞðhˆCsOÃ’Ñ"¬‚Jˆ@:’ÁË,˜‰u Œ¸{éÑç† –Ð>ˆ|²—ý`¨ò©^ö'ï(.¤£ˆÁÎr§h™9ƒº©L•€i¢RARQî“à^°ÊJ‘ˆˆBiðd¯Biu/‹æOcegJKìÏ­Bi„W¡4"¢PD¡´ºNó5‡JD¡4*…ÒöY0v¬Ã…˜N†åfºOO‹Âõµº¾0ÖhйŒÞ6 ð^8çb0DøBŒÕå÷„ r8Ô(°/!‘“äÒQ î³ ó6¡6>ßžfŠóæ8 _62;2SÑðÖÅa–:üŠA†•m˜QY™Çc$¿…ŒÙvT"¤£ÜgÁðS–K6Ë,¢O‰H'S¾ü0bk’»EÌ:öËÙ’BŠ“)Ýb ø`T¢ÝŒ¿þP€åŒ¹Û"»ÿÐuª ns`'<¶R!Û10s›à¥§YbÓ Uš±á¬ì[=}X¦SÖ¤Îmbä0d<Þ怓Zl=¼–€¬o…n“ø]*jø}ªÍèâ``ª SP<>´Ú´rXÃ@†»z þÞÐÛ3† †¯×ALòJÿ‹Á|œl—Û© ©(÷Iк(Ó/‰ˆ‡|E¦ù9p$Q&:ºØÙ±V=í¢±ÈŠ84u–Q»ÀÌgÒS ÉaM@á=D^Ò[îó gúb\x¦$0¨É_Ìf3h ”Ù+utÅï™<õpŠY6ÁApÓw=0Å ƒƒb!%cEKJ QHKq¸Ïƒ÷­²„{µMËsaü1>qdE3/„åMîû°ß…„j†¢@ãâ@˜2x\Ê.·_&6væÉ=1‰Q'wê ß¥´†ß'Á1ó&íaņ˜Á}CÄäE—"ó0?`ÃËeQؾý<‡€]­(¨ë$Êš‡ˆƒ p—¢’äpŸ&Æú;¶enøLæb5²pò@Ñ—‘¹æ«„6Á HŠ“ùèb°JØƲÞò{p°ðØ:– Â7)ÒQ î³`ÜKg_¶ ?â¼Øî»#÷ ±[–]„WµóllõÐ@Š‚bÁ@0$ðÁJÇ}_ Pch‰P¢ÐAEˆ¤ò\Ý}ìÿQ‘àW»ß¦8'”BÅÞz×½¸â©½·çÅz`™æ‡¦–/°j«˜‚–ÛÁ Ã÷" Y;•PAÒP îsàf ¡ìPz¡bµ0Õ“£Š±U%j8€^%`>T¥nvÛ΃`Èðý%1lj­„8ÞhvÉüxÛj)“BZŠÃ},1†šWÖ°ƒM[„13MB——õ'œ ´Æ©XKt‚‚G¤à ¸'um¦¡ŠQp F"je×éÀߥ¢†ß'ÁÝâàæúäI:0i0;©¢ô\n¨¤Ð+’›ûE&~Pœª]G‚!ƒ«Mò€²“ͱÀÁöƒÈ^ª,Vžx’–AA-ƒÃ} ãzãÏÒ3V5ÓÍG^¥Ðø3=R4Ä‹A à¶Ö1èp ,èíº–Â6‚JuƒÛxØdù$·š=¢žHÃ` ®}ú3]1r3eZ>TĉEÕHÈA0DÐVÒéòªxœ ™±­K QPGŽ¿M»à12ö½d1a`÷ñ€^3™YÉG/Ube•ô=*î ¨Hô‚!âñ¶a6%öQ¾B †{$þ*sô} Ür\hZ‘ýðÜ0–TÜ$‰#·w…»:#¯#šsl– €’˜00]À1©Âæ$Ñ6€ýmÜ–~þ2öæÊÌwN¬D{=ÍÀt wÞÞN÷„_HnÌ`½ëÚ( ºyˆ@Hx¼-ÌÈJƒŽÌåØmZTBÒQî³`¯8r½ }C»b,ôjàld' ³yˆTu_1A?\Á™Œg‚!ÂS"‰1Îûb;:¾RBfªÐRAR‘ãïsð;Öv×ÍK„<7„µ ˜¼Áœ×ðm,íB.aóÏÑ"( Ë´±‚¬¢$¨Þ¢w1 -9D„µY:ˆ@*’Á}¬§C_Úq ˆvÃøKè+î ¥ÜûÈ?—TÜKnrð‰AÀ‡^bô¨b|G9Ð@øñ*UŒGý6~¹.o#`ɸü*Ãt\°öS‚ ˆDw”iˆŽ |«”á#Ƽ$üÜ!äö€YAÞŠ¼-‚Bz‹Ã}8^Î/¹ŸàOäm" –‡)Á¢i¼mÓ`ûÍÌ’§˜¸¡G'xŠƒ`ˆð}®lìDiã­å(ƒ°ûyÙ[SP2Ü&/ûü‚ÛÅ›ß6Ï„ExÛ4ˆ´ê 曲@w¿v€=ï°àj‘ÂÂñQ‘º2‰0DØbì]rW94#’Œ¦bD¡EP@I1¸O‚‰I,±i¾%Ö($¦tv~¨„;ï{0“0ë_z¶(2ëþ’CÀñx[æXh ËT$-d*’–äð2,÷ßJ ‰dÃnaN7Êx1\O>ŸÜ==Ž8Â^a¾:Q¦P‰CÀažåÀxA¦ÅKé’øñ¶´EèM÷y0 '¬H]B¦œ0Ñîø Í>9«‘‚ö—r^d„Š`^JôÍKÈý ·…Ñi™ PwIìþê•©£NÓ÷Y0òQ“Väº"dŒ˜k>ÿ¶×I¬"æJ–Ù š¬C²47)áñ3k¬ŠØŠ;áÇ[È2·Òؽíwõðq²‘QAXðÂxÜÜ|ú ãP y°ˆ/aI¦¼QÔ¬vyp5ÚfT¦P±/CïxYT¨¸w5¡ A!ýÄá>Z;+wS˜Ð ‰Hm53!RÞ V’j‹4¤ÇEWõ|0èªL_¹™ :10;!ìÁ…öàÁí”” i-÷Y0¿Ö·­õÒ±yal1p0¹ÅþÐØ‚véØ<©æ DPTÀ‚u¤ ÌIYâpâP2N›C QHKqx™b¬ëy(ÞyUú„å"sgíвÕùÌ xÎÜwïÁAð¡€ga<ôÁ^2r°ÃÖ^K”°¿ÂÐ"(T,Tîó í E½l+ã]ðÆ.“u1ºkãÝÈY#ŒðfŸ±˜W¸j´0§A}Ö‘3­Ñ™m`Å>G£X) i'wýPe'3*,´'f.¢†X<5¦ÃɵT/)Ø>I¨½·(šÇZ/‚!ÃGSÝ›¼8/Q³d¶ÒBÒRîó`]Ö*³®<0 ƒw€8ùÁ@òÔ5¶2ážÞ_XoŒ¾1 žNŒûû5ܲˮÅ ÇxPHA}ן6ôbÞzÅ “OTÿ‹r¦j¯b¦«Y<|¸Ñ+ž‘ÙdðÖ+ž¼ Á ZÅSÂÖ*ž:ˆB:ŠÁ}ôCÖ=<ÌÂÿÜ1òCHó27C7 f8ÚÞ7ØGŽÁ‡Ü ÂÈ@îgHKáÇ[hÒ2<·y0‡Ýs½ÜeF÷ aN´³4k­‚Oæwž½‘N>*¾-ð2ï¤Èf«‹CÀáë71=ùÆ>84tó €i3v-D!-Åá>VPC1^óÀÀS빜C˜RïÛïè’¹ý¶ü4!…•=7‚!Ã5%†uJ‚CÁ9?döÅ—ZˆBZŠÃ} ÉÌþU÷ ÚlßML»P6çF“œdæ•0Ý'çF`éic ¸^2õ† d`µ>Ú&°GdRQ„ÖdpŸß¶yÝ þLaùºUzBûT‹“I#`:[Ù(®Ä~ä 2o s$†X–7ãSˆøXÕ¦ô»TÔðû$êŒíùð‘L†SØ>S~}½ –îõJ,“åg=|Xñ;}D1\pJÚ> s Q ¼ù$öHzD!Åá> Öu⮺JG¦ŸÌ¬+  nˆ‘íÚ§7EѪ÷¯(†ZÏÈîCªèé¨J&½ç݃+ QF•!"´…´‡û<˜q%+cñ7Ì»×1ØrhC€àÐ/v.Ïiý<÷ºî*Ñè€&¿0j?+½ ì‹zX$ A(H/S`Šn³/«Ï…qn Zñ-YjlP‡RD„ý £Ç]áäЫ b‘9ñü’»ýù¥ ÝGmRHm2¸Ï‚o™ÒÁ2jV-LF¬ÅÁÈÛE“Üj¶Àš”à½#Áubêb Xušæ€!CìOA9h©mÒQ î³ õ´}Ð-Çú‹@XDE‚ÁÕ#'$>ÏÂy»é”:DÑ.î}À€ øbß :\½!¢ËJuƒÛ¸fqª²’i¨ 饤޽ěÇwV¤ˆö÷:1_–í GàQ6¸ª¬d` ªB‡Œª‘!#«¬¤”tƒû,`9=ÑÒÖ ¬¡„I`Ìvw¢äšDÐeÖíœè”™yXìVùgHaºâð¡OŸ0–PäeÈÈ¡]Hr– ·ÐBÒR^æÁmcáÆ©¡ÔÂÀ„&v†õóäu°®QÖ“‹’(ò:,QÀÝ7ŒÄô9ÿƒÁ#~ ”Àž ID!ýÄá>~Ȇºdã+FÐ*sòˆå¡Y^e ‚ûâ4¢ž…ùûÇFqª¼!FpR€¶ûiïk¸=}u˜G¸s#‚b°éÏ0ˆƒî•ÆÖII^—wÂ'd³ ›m\ÜouÚNvºŠÎÁA0d0nÙ‹<_¨ (–b|å%ƒ°G$@‹  –Áá>‚+ÎvƒæÒ…9 ŽÀ—}a =ææÌ‹—Ì¥Vâ÷ìE‚Ó 2— áŸ4¶ÁÜÛPÉféç÷ê®>ëzœlDî ôsÃtTÔ›öªï^•[Ô¹ËßÍ'\·á‚›¾ ©…õÉ@GpIˆ3z¨ ©(÷IpÕÙ|Ãë†?wŒvQžo»$/aœjÔýMÑúÇë[Š¢$·½¯”`+Ll¤È¥Ã—Œ­X9” Aè©Û,xÆd‹³6˜«˜Þq橬=`eœª<ÚÂA?a¢Í,< Ñ‚ÛPÒ¶054¾(:'þõP³:) )(÷)0©1vÆß„ç†1#‚ÛƒÔRíð*öD{Žå 惒Q€Cê8.‚!ÃGS*ºêŠƒuKI› À·¥…(¤¥8Üçâ…drÛ«$ö“'¦¢àF:`Ï´pý¨À”¦eÒIQPƒ).Yåb„ÉuÑÅ!yÔ’‘J t$ƒ—YÐ(pàQè+ˆæÁĉ]µíìê=ÔØu›ðS‘ÖIІÔD1·…)žƒ²d‡ˆÂ²K QPE1¸M©Œ õûüÜ0Å ª–“Å¢©=;N’ÊÓ7)Š‹gq2˜V䘄óà`ÿöM`7:P QHKrx™?b \GB߯…1_¾ï˜BiŸÆ-òàµ#fEò‚Á‚G7Ùb}=Ð@ZÅ‹J­êM–"Ž`ð: æ x"KR“WaªWî¹øfÆë-Û¦¯Â²GØCŽ ›n‘Â:«ä࢙&g¸?Å!Uvp¥Œ¤²-RBÒQ î³@ÐQFð…Ið¹aNÔÎjqõDé¢V¼s¶`‹ âÚVˆ¿n˹0µ³‚Œ‚K†Œ„K QHKq¸Ïƒïkz!eë¹a&¤ « XCãX¯F)1’hãÞ Ãl1¨hƈ›K‚‚ŠÁmœjÝZɽÂ"ÖÄÌå§{ŽfÆ~Mϼª±ïÇÕÍû‰yÓVQXAÞ8† fu:f V•Ë™ò¥‡2ûÌ2#ÍH!-Åá>˜+b4Ú|rq–¦ˆÄíj~™P= wdž6“ß@O (SSÆãma؈Z»KF‹>ÇÒ"(¤·8ÜçÁêÁǯ[ôܹ³XpãyÂÃø=qE`”piÇ&”—EJ)â#½˜°`ÕJ Ä1P5F P¸h‰XÅ’¤„(¤$9Üg`–ä5‡š=ÊÝÅÀ¯û:a·6aó0’½`ßM û:/Šê%¦Á™[±…IÞÊuq82î“–¢–âpŸ“†é mûÚ.Ì…Þ$ ¨º[q‹™@YŽÁ\«·ý¢¨A>Ø×60Õí¼‹CA>iÈìIÃÔBÒRîó`]SÖæ ã¹aðʺ›ÑwSxe½z]¯ðCϺQÌ… ÕÈAð²œÓ-ˆC¥aS2–åDZˆBZŠÃ} cZò#fLyvmô?[¶µÛ,è~ìV eò‘‚M‚ƒ`A"¤ÅÀ²~Ë&°¿žr‚“"´&‡Û,°Õg]³mâä)ĉ¯£Å›éÖεæ#È,ô@Ø£Ÿ!MåÀ_L¢ „®ìà( [Àøñ¶”…”‡Û,pÇŽƒÖ•¢ö'ÂX½?·\¡¾´¥Ìž~uP\”0í/h`KŠSOp\X\va2¢îƒCâM—Œ…´…´‡û<°Š4È·”}TÑ Œ¯Í÷Õ¸ºG¼®€}M°g`œ¨ C„W ÆrŠ|™ƒÒP±TÛé é(÷Yp3rxâ­$ Q‘eà %YàÅÙK²0î&J²Ð1%Yo%Yä›RIpX%YäÚZ%Y ÅªÉ%£$Ë> l‡âùÍ?Èt9a¬¶¬ÙáÒ§DO• ­°üWaÅpþ^éàh‚`ï^" ,™ƒÉt'ïÿ‹=a?½@~PH?q¸Ï€!ëíƒ>¤ÌÞ”@\¨ºz¤‚ §Ã+|¢hX%ÒFQdC‚Ï¢haꮊƒÝ‹¼Dô{ô;5ÔèÛ ˜œ¤¦á'B“Ðÿì`j²m“Š´•3ãDçÄ ¸ÔL&‚À( w­!ÀYãC§²«3:ÄŸQPÅàpŸ=fr­¾IĨíQAhÆê›„¦{ߤ MÐ7‰ž£qá­s’ZA«u9Dë$ÊX­“¤E´N¢–Ñ:é6Ú†Ñù}wpÎÂ+$çºÆrpò<Nöä 'áÍÅ}Pß×ððqRÀæã¤ á㤊ðqÞfÀYѼ5ë±zù™˜=‚W³Þ ÃÇÖ¬·àt¯^½ µX63à­[/1½ÑFêÖK«[/5P·^*ˆÑ¯S Ãl ÿ¢Ö[ ŒE[ˆHO°ƒ–Ê—<©ÞbÝ:éä-*ECÆùR*nr°d°M„ƒ-´†¿KE ¿O‚}4˜W]D»es7¸œ—ÏýÈ^™ÚM¶k³¦GŸ‡§¥'ÉAp‘í:0Íõ‚CbÛÀÈ?åÈ–¤-Éáe´/6?k2U “ðXоG‰p÷éù“cߟz5ñmj!•£lC†`îî…N×â` ˜¢2+ëž‘--‚‚Z‡û<¸ëP)¢õ7 ×S\?¶z¾cAæ2á®F.E£I2VdÁ‡2넱Ë{0ˆžÉAøñJ…”$ƒû,x×èîk|n˜„–º–ÆŠ+W9û²\û=`».QX(NÛ8>èiŒ5 Ú€Y¡/•”AøñZµ ÷yàè’ˆ…‚ƒ`ˆx¼-L8:Š”Ëq ²¼ð¤ ’bp›Ž-Ç`ΊÒÈ T1÷¯1PˆÞ¼¿h$ªRõ¶ú¢)ìßsc "l„0 Å'ƒ PK`#„"ŽbpŸEø›Å5a LBrk6³‡NŸ¯eÝÓeå©EQ’;1ƒCÀá(¸9¯¹a9û»8T —2§ eö$â£(è÷‡—yÐi¦ÎÍ–…IÝS'VªÜqtè'3ºc æª(Ì*¸1  t²9ÂÛÆh´Õ²µ­’øf7`‰"tƒûXÎ)#Èdî\™A˜ ÄuÛL|õœ +üPc4ká ‹¢}ŒÄ!àƒ;ÆÀ4´L Ö7€ýŤ¢–âpŸ«ì+#Q÷¹aFCƒ ¡¾žª{ dÇ «DŶ‚ÂWzðÔ—¸ãvj„+€= ŽZˆBZŠÃ}Œf®]½ÔxB˜†8j_Ì F¡¯De·®®Î%‚IÐ3c:È@p½ÔxB˜r¡b-àì¹$&¦.D!Åà> ,'º[l k„‰†5¹ÖÈ º:Ö¨M£:ÖÐKkokrX†#ýœ:Ö4™•|e”|Ô¦¤rjYsWŸgiæçƒy©IÞP÷`x«Y»’ï Þ¬%ëL ʼn~b |ó¡6 X ÅÀ¶E^–"ûæƒq¼¢ ŽÁá> V%̈zŸÜÑß00jIz°ƒ–Z’Z5™0ð³‘"¾”ä 2|HLgÚˆ8˜é¿o2ûKI-€YZ‚Ãë<87yÝõÜ0g³íÁÌ'oh‘äɬjy‘YÁYùÄ!E˶0«}p°îUm“Øç¦÷öb¸µ‡×y0™§Ð0r¨ß•0‰~Åšh²¥_Ñ**Ö€ýy¹Øv‰Öþac@ð8¢ÝÕøØ§Û‹]ûY‚ÕòDQ^l÷I°‡ÓBÑ»ø¹an%WzÒAB0![®~ÉéDÐoP\ìë)‚WÃdaš¯ƒA‘G€øÚ¡Lê ©Èñ÷9ؼþôíïÞ’E_©ÿÖ\i¬åÇœvòçûß¿ÿû÷ß¼Ù>üš«ùzKï2ÿÿ›·ãý_[`6è=Cçe™‡¿+Äü€0µª…©^­ö$©”º ±ÑXšw£¢À,*+½ubh˜Ê[Nå*0•¹!Íн¨³Q½Ìz¿‹êxÿ+»ÜÇ»ýÇÏ÷?úîí_þbn}-&Ͻòw9¯¯“¼—Êò£–8s¾÷|ûó/ßÊ×oVé¬^_¾eüÙjþò-}ý–Tøå˜ZËÄ’¾$ÿ³u^–¯ñÝŸ¼ýñwóþOàL˃0ÍN[s_àþªŠŠ9Äܨ¬€¾±¢"æFekÔ1;•ûºQ s£¢®Õ¦ývÑ킳+o¾éá‡I‹‘k¼ìÙ®j1÷@ŸÛq“]íl‘ïí °Öà7}™äÿóñH¶çún.¼1wf?~ÏW±¤TFè¯â|½¢ÂýUü¹Ç¨ïÖµ¡z{Œ†Å†÷ùœÌߟ£/¿øþw¿þÕïùÃï¾~÷7ïR|3‹QžûÒo^×6Ï!¿zûòÝ_ÿÛ¿ÿé×_þðþ§¿ÿåo~úõßûðu嬄ˆ‡†Îñ¦ÃôÇ¿ûé×Ï_þôý¯¦þ›H¿0>çðâüÜOœ-(n¦h?ë‘‰Þ õ­rŸ^¯ù Ø‘­ß.W2ϵ<[ד¯ÝÿöÕç±ûúòkÿ³Í—éË_ýþë7k^t¹}ùÑð×9¿_¾ÿú­X†À9Šò±è«?ó>¥M®9Ä[1éó*ÿù—?5–öõmãËïçÐãÕ"=¿üÒøeî6¿üæ«Õ¡8ÒøòÓWs>Ÿ='׫ÍB¹¾üàjͳí‘M—ÐëÛ×`ýw»˜˜õâ÷ƒñ¸æ~!ëê[ðòåobœWª7ñ¿5ÖSüÑv†¿ÃÈy¾dÿ%°ÇÄÞøý¸ÏáWþË1w¨çÿÕÙ$7 ÂÀô!íÁ €Ñ5é¡MLJfÒÉLÿß]›„%CzÈMf@Z­$,;v èâôÕû¹BÇœl6ϯwK±}ïÌ,º¼) ðYŒ}ê€;UȦ6‡l©ÉËŠ*¸”ºáZ÷[ÍVºˆôèVŠ\®¬°e\ÉÏÕÍiIØ’–kRuNýêÒ°‰Bj›ª:ì|è9lSúu^9Œ¸(@òO{4lÎEuhQK, ÞÔ´òû\œ¼uɸñX<Å?*> stream xœÝ½]¯.»qx¿ÅB®ÖNæ¼i~7ƒÌ䜶O0˜Ø¾°$K†ŽdKòØA0ÿ}X¬zŠOõZQdû&öÅ^Õo±XÕ$‹õEöß¾]¯ôvÉ?ûÿ»ï¿äWoÿåzû÷_zJ¯–òÛh=½îþöý—1¯×]ýÁÏ¿üÉ—{¤×¸ÓÛèõz•¼üÉæ«·Õò]^­–?a¬Òë«ÞÔakµ¼„õ¶îy¿F;\ÌLõr¿jŸÄÔÆë¾R`ê`áIÀ2¦¼;ðDý]oõåo¿¤ý*ßì¿ï¾ûÁ·_þõçö6_³çþöíO¾èkNoi½†T—ô×x¥…ñí÷_þôýþúMªmÎ÷ßûO¿÷‡_ïüš³¿ÿ?ÿõë7×ëš÷•ó|ÿÒuÕQÞÿÓ¿ÿúM)ùÕg~ÿÃÿüu=Ÿýª}?¿^ãºî^´Z»Æ]Ó]ÞÿËå‡{ÎÒŽüÕç5ߥãMtÞõý‡_s_•öþ{_×{¹Rë‹ÄúkÌz¯gŠ8 ¸Ê3×?ÿö?ˆÌƒe®¯{ Ï·øåÛù§ïü5½®köúþ}ý¦eé)½ÿ¥?ü‘ÿõ³óó¿õ‡ßœ‡?ð‡¿ñ¿~êýØÿ:xêý‡Ì_ùÃ_}Òøoü¯?{÷?ÿ…ÿõ9ßñ¨¿_øÃ¿ð¿¾ÿ¤ç_Öó?^æ?ûúÙŸþUÆi­£ÙZú­#s^ÀÏý¯_~Â1™ü¯ãÕÏ^Åïü¿ñ¿.ÿëåµÏh×ÏĦßçÿ퓾|ÿÏóçÏ3ˆŸŽñÙøtd?#þïü÷ßó¿þÐÿúÿë÷©CD¹µ–bïc­P’æŒ×™‘ßÚõwŸ½óë3ÁÚ'?þ~ÿá>ÎkùËÿÉûýŸÌµóÎ?›û¿þí#òÙkùÝÙ9Ëé‡þ×|Òázg]Íߺ®>›"?ûDšO×Õ§Sí7Ÿ ñ;/ÆÏßËÇÙûsbòŸ7™ògËoŸvQý®JìŸð²ó³Ÿÿ!ñŸ|2Wu~&š´£Þñ»ŽÕâÃ1ÿ{Xú©ÊæL[Я>aéo>yöwŸMžO7ÛÏÞÖ‹dø8wHîß¾Kò®üÉ›úWŸ½Ÿ?ÿltèU|&ìÏ>a÷7ŸˆEŒÿÎÔÏH†OvúÏÆãïÿño*NþÏÞÐÁýÉ'¬ÿüiüÿ¼™ôÉ«ølÛ>Ï>ÝÀûžÿYc› %—WïËÊþöG_ÁoÿúË7öè×?ú²§K¿Óµ Ø÷¿þäeÿæ“¿~üÉ{ùgÎóOgô'¯ã¼ô£`ú©þ_uúén>{Ÿo¨käÒò€d¡ÿû÷ßÿöˉÿUïöZ>Gn³¼j{+é®Ë ñÿõã·ÿûí¿ÕY[¾ï½|ɱÜKòÖʵ¾{¾åQ–×ÖÅ[{ÿ¿üÅo~úk™^‚ñ ¦v¿®åÖÔ_-Ïöƒþàl›<]|ýý"¼„zûëíeçk9H«T–Ÿ$Nh-m¹XÙŸˆƒù Vâ‹nœ±Äžƒ‘ð„°J[B,wì`ùÂzò@\Ö?î-¦å/¯a|[ïàUnuy¯¯ßÜy½¶9ÖüÐ?Ó½Œùs¾®¼–·pšùç¼äõ~»Dð¤åž^elž>Áº—i¼F OVÏíÕcÙƪ×z mž¬º6ŸÊ=âIÀº[~UîO ,–ñw{ïg^ŽùZ;ãÌùÊ)ù›/ã^¯»½'ù»]óÕç{Þ/µXç{¡¿+á´ë Ê^wx™6Yòâõ5ê[Î×ýÊëîóéŸÖ”x¥¹ÞÕ•_CGOR‘KZš`ÍŠ/U±Æ/ÍÑ^×tø»ÕâîkåÆlÔ|J]p,sMbùÍ–;KxÉI,èÖ¹csN!²ÿÝD{ÖÒRƒEjyÍõûˆÔÊêýL"9†°íÍ7 Ô!R»†48ïb-·ÄoKaÉ1À(DöƒH¹6Ñ$RnkUÕ#Rîký”Ó¯Á$’cÛÞ|J"å5ŸF="åµ4ïL¤&‘ÌBd?ˆtòéZûÅfШ^K²H“HŽ!l{ó (uˆtõ5MÊéZZ•E2˜Dr 0 ‘ý8Jk²¶Fi1HK©¬ÙZ©[ƒI"ÇØa­÷ßJÛÇh¤W§!ZÜõÄ£¿a"`€3#YgqŠLÔ6Iœ­‰Ž8EfêR~èðç`,ž½µüm´MœRïAâ”:îW¿aƒ8¼Èzg¦üJ<:e.5qfÉkï;½Lâ8†ðŒÖûo¥ qæ•^ùˆsϼv€CØ`Ç1À™ˆ¬ÇõSJ ë§fU,>…SPEóúÆ^#h¾¥îëgm5yÐúY¶aiDZa^?Às Ù#´ÔÄhi©1i„– ô" æÆ4ßÀ&î#¤{æi·4Ídi€ð;CóÀùc|¦( Ÿv‰Ê ñ™ªƒ}|6Æg-íÍu|6õ3>·j+ŸùºYu*ÆÇ0||î¨ïЉ´¶®W‰¶B·QÅÞÖ§¸g÷S˜m`lóÍ7 Ô!ÒÚúÅð"#cŠwAfȆyc˜…È>‹ÔòRP…uÜrŒ¦ØÉ Ú²Pñn <ùï‹çÓvJÚäiymóõ Mìòztà#ÏÁg y[ÐÚ–J°}òÚ iÙTòé0 ÀÐ}ǚ뮳©û&´ö”Ê»P+ ƒ´Â¼ ÌBd?κeŠ¥f]…f]/Úüä9g¿ë,³¶:Ç6iŸrË€ÎlË¥ñÊ“+ÌSà "ïAž´d¾*Ë“–Ô>éÏûôk0Iä¶7߀R‡HI4<>I”<éƒI$Çs ÙŠû#®¢r/‡VÑÚà«LšÛ1D={ó (u¨î»w^Hånƒ`Þ][X8‡Bdÿ1ë–‘ã¬[ê¥ð¬»ƒ1gp˜w÷1æ¼9”[Ë4ñÆ«žxw0ç ïæœSˆì‡QuˆïD£4š8®g”ÆrzÇYÀ€i”CF›o@©c”Fé¯yœˆ2ƒ4§Ó(9˜…È~¥±¶åv$iUhGkg.¤“ ¦Qr  o¾¥ŽQ©¾*íHãZ¾5-Sƒi”ÌBd?ˆÔkyØu½Uñçjï%Øu“HŽ!l{ó (uˆÔ—A[ÈÕë˦e»Î`É1À(Dö®^c=¸zMìsrõªÂîêU¸îꆺz¥~\½å˜‘%´¤äê<=ÃpOO DæŽ^·&8z¦bÜÓ[§WƒŸ§¿«›gmu¿íð¡tÇ]’Ò–”—êâeppô ÷T£yÊN<³°%U‰-±²û[_OûLš5× Ð¦~‚@·úéŠf°Á!d2 ‘ý‡ù]^}F÷h $iñðÜS8˜ß…¦š«ù½©ó;¿Ò%10²± æ·a¸ù#Œ8®µ¬å”][NüÅq­û’Ðщk)Ìq-`ìØšo@©{\kmW‰Djõ –½Á$’c€9PˆìGOüÞèÄ^%(»+åèÄ*Ì£”ØoEóíä)u÷ù–ÑDʮ̑YÙf¯`"ûq—Mº?O$:Fq†!Î#í„ä=Ö~ßÛ(Ún@Iû»déÈÓ—ŠœdcLò88…È{ð’X-W6¶³ó p Äøc¾µÇ†šÖûà 5­ÎxC58Ì·v6To®ó­ñ†šj j*-VE(æ[ ªSˆìÇÁ‘„A0NÛr99pڤίò{,°MüMÆ4߀R÷˜Ï̬ÜJ])N æÈ0ì™1êð–ºÚÄĬ¬ÜÊ}Å(–Á\ŒqQË›o`÷ÄȬÜÊ `ý8¿OÑÑÓ0ð&Û]ŸÊínQ¹I>/Wƒi²9†L(o¾”Û]¢r»sTnÓds 0W¢róBéO•¤A(ýi óÒŸÒ]óúÆ^#h®‹©"I¡Ë©„šMY ¼÷Ìë¾^J¨Ùôx²M©TåÊŸ+Ëÿg²¥$µ«g²)Ì“ 2£¼¹Î…gFÛGgZ\°9{¨Ê3˜ïKË@ ²þP××ó …´~Wð êú:Þ‚7×ùuó`9`œÖOåz˜×óàŠæ(Döc¥Ùz£ÁK-w1/ ó­š…ù¦0Ï7`ìù†æPê˜p÷z§×‰õ¬¹9B Í`šrŽæ@!²w ÅA85°ö]«ó ßà˜)`Þ€¡FÁM€Rw#!w¶xÖn5‚we0 Às9X@§ƒG"†)ZƒÙ{Æ‚ ¹Kj8úÕJÈ{-s9ä½ æ 0< RâQ0tÀið¥Br8TTòà¶–µåÐ ˜ÓàÀÐÌ÷ðÔO¼ñ[óÚtøPÙI üÎÐ<òþHëg)· iýŸZjÖJ+Oëo8¤õó©Åòæ*\FyŸŠ—Ba–¯ ¯¯ÇCPˆìGÝ0×b …µýJAÝõté4‚NR˜óàÀØ‘*4ßÊ@©»nS“P*kƒæ@³Á¬ÁvA!²ïÖcE÷6¥ ß#L Ùô¶ß·u¶j†w*ç^vrÓìÚ•Î%€Ùò†[ÚF!òKúŒ9¢Òï+ìû=9G˜‡{ˆÐ|Jý”*Üœ#*¥ß^z3{Çs Ù³î–ÜaGšóuSè´_·Â^—³a :Ñ&Jý̺=‰_œôT˜g0|ÖàñyÁsm¯=×ÎuÂ˾j/šë ¿µyAŒ·UßA(·µJu%¹­íEÂ(\×F%Á§y`;j¹Õ²Ó»,â…Lïr30k9`lM†æPê®åäT /­m†­zƒYËÌBdÿaz?3áb;÷‡éÍ™pƒ¦·'¿½¹šÞ!~§¦ymØN&LoÃpÓ»…̸wü½õR£»×u£ˆRNLÃvIQ)e{suøÚëĵÓUE)…º*Þ´"Õ~RsN!0ÿpø–ý¢ÃWµXȾl¾l<ÍÕáÛÔO|.Ä«\C^U}=Ü=ý݃s!Øx¨s|éP`V¯¥vÉB]ð uzs&;ßæPêž —Ó,|F|éd~UóÌBdÿCUc 1HY"í«R²È!ƒƒõsZÏæ´179Ä ‹b08Ø>W1€@dýþiCÕ²/r^e²[dpˆÿ´ãysUáU }‘1††@<Ô^!xŠß]M×à9õPGÛ$ êh;_‡±4cÓ» |3ß0oªÀضšo@©» åÖl'¬Ýk² 0Û Às ÙT™=¯Ã%q…*³|"ƒyM*òñæá:ŒkYz)T™Ý3èÏë0Ã͈ðøpFÕ çZZÓ&Ñ©]QŽT8øˆt0f£æ³9u©É½t*´IÙÎ>" ° ‘ýGMú>¸jÒ«V"ÉšŠ˜éT“^àxMºaÌFÍ5ãZ`ÌjÎ5«1á¹ÌRjsf`"û²E¥>³E\Þ(ák²¹?²E~xÍ›#[tŠdNìšöe²¹?²EdsýnŠdzˈªµãˆªï³íepHçQõæš8ÎQí5…ˆªµãˆªÁ!œCDÕ)Dö%û"è2¹Â=,â/ò9GƒCIÉô…Ó\c$›ú©)¹ÃÕ2Mnà\®Â¡¦d†«dœBd?¶DAÅó†—{ò*¶›ÊfŒ­Õ®sj Ô=°µôS:i–]ÉEš0)qÇ» ÙÿÎn¸ÎrÃ2+ÊÝ‹^…}žÈ®ö–¯}ýÄ>ǼöÎ,çÖ’ƒß-ü~½*ýÞ÷!×Ó°v°Ø“åJסÚ%…)Þ‚‚o àwð‡æQ‚ï¾üàË›*ëðqÒº‡bÇÚZp• ¦ÑrŒÕGó (uÏøç ×*ËÕ`ÎøÌBdÿY-â„Èj}‘Q4åt Í‘ †°ªþ®QÕzþVÂ'¨šÃAœ{iar*‡ ja'âPˆœ?–SEÉÒHMW£>J2®%•dœæºœ:³.'{ݾœ:à°œ:СÙ\XÐb t¹o-iö÷d=þ&ŽÞù»>%?Þzÿ­´Ý“íìÆ6+gY…y€€¾:û° D©ôÑ}7.˜YœÖ>28ÈROÆÈ›«0•ÓG7¶+—§†ô‘ÁAžÒGN!²ÿݾmQÕD-.$=W‹\ æêò$ˆ`Z «¹ó»*1o pS?Jn=¸Þ¼­x¡åÐVÐ5ÜùÝY½Þ|í¶ÏGà1ñÍm»¨Ë& f‡³QóÙœú <Î5‘3P7; ³CÑbRÅ)Dö£Ï×l:O5ÎQB¢ÁœÝÆöëÐ|­àŒÃkÖ !O –P*n0{}Às Ù3nŽ®U›çɽ¨ Ÿs²'/"˜ž9ç¿Ûœòæ€G÷IjO¤â{øÄ›k]œy§Ð™vøÌ¡mdϼ<ÊNY¹b`ƒÎ“eeä±ÌÜ ÈVËRO6^}J´S^½cH¥ã攺 Û“,îô›·–{R:ô –Æc{ ùßã„gûæéÖbO§)ЏP¯“TŽal;À]¯j8ÚÞà‰aR$±ð;8Dó –J¾Á2$Œté!øó`ˆ9o9’9ì‚Eâ–xõy×}ÖÁX}çJ¶¤Ðy"´6†Qâó›úPXZ€ `“ „ˆSPŽRì‹?Î9ÛÏxÍ<%HïoÓ`/ǰáp €µ0ùBÌ “àà915…G³Æ00F åàAKrðªÐ I¨ôªgФpfM_¡Ó 9† ‰S¬]Рí£óõ ZÒ‹nOÕ.Ü:\Ø D´œ÷nCƒ–åàt;ƒ–õTõYÚ8w}?0 @p¶=î<¹¶w(\{ã9}\¶.€.A!Êô‡Üµæ£\P9Ò­iUŸwÛP÷çŒ9†1îï.H²¥­¥NÁ ÈU•7MyƒI2Ç0&B‚ÛËogÕÏ“–d›Ñ*ûL?«ð‘ì`(ã‡`í㈶T”dù¡°^ù†Ñ‡ÂG´ƒ.A!ÊM.ha#r{m9£&ýwÚË ¦Qs §¸6Œ3ž”ªÓ ô&ŽÓ‡Â4lŽ.A!Êd«{!’hµ\¢jÎ\¢8š,$Áð;&šÞôy6^·a9›üœ à P˜Är p A„0eMìTáy"ZüXû¨P£™b0ÍFǰ¹æk4eYô£÷÷EËãìÔ€i6:¸…(ëý^‡Þ\îö± W¸}-¢›öQƒIí;†)uX­ž\büyû²Ó§‡b‰ãÃ0À²¶_—-&°5ìâú«ZJI¢£þ2 ¦s §8Ûµ0çIÚÕهšY´¯¦s p QŽ0åÈS “qW-Ý$ÛÕÄ$§~›ÞBIœ†qîßv‘Ûy2öç뜂ܾÝèýL²9¸…(ÇC5^ZPNªq_­@ªq_­@ªÑna"Õh®‚«F»éé<Éê~ÕxñÜT£a€KPˆrDÙZÕû_μ!P•ØÙ!³lÀç à²V½¤…¤-Áq%Ž>fÙ>¨ùìïƒæd­’µ¥)¹Ô›¸·G3õ³Õl€&£þfóÌÞ”i"ÊŽŽÂ¯5'…A\aÖŠÀo ˜v•ø<Ѱjƒ~izçæ1¬fà 0¤@°öAcÕJc…¿K“ÉÄLcåࢱšþlÓ|À3l†áÃvG}ð»Šæ³Î“´ƒegáî0/1``€Úš\_EƒÖåË–dWLƒæÆ"Dh“.Uî¿Ìg“.u¹Zâ„Û¹à]"ˆ=ðÙ¥†n‡`íâlÓErw~;Öû¾õ¡ðÙ§†1 Aˆ‡G-ŸHíÑ£¾7÷¨åÐ%-ƒÙ£†{ÔF°öAC6¯¾}}÷¨¥€6ƒÙ£†{ÐF!ÊZJ;4L -åºóG˜â©ì25_ÓBs [FN°öA -]Y·ø0úM‰ãÃà«LJ¸…(GñŒ¬·QžS"ù'¸²6÷Iž¼Áâ8 àpÖ#Ï“Þl #H4u {ij€M†aL‚@B'¤G=.›þ`—sPdã 0ˆô 0ˆaxÄ(8 'òFÊÞNdßIBa»µ„ †¸‡BÄ•&‡ÔÇUãõbËJ¾ Lž“Á¬áªQ ¸"œz+èyr¯•Hªqì‚Ü£fÕ 0m¢ ¬¥ rÒ€•»ìC}®”öK=î`RŽaŠÏ)Ö.H5îM÷£ï´o7=}¤‚¹ .€aL‚@"ú0ý®ZºužÌB R3H}LêÃ1L98ÀÚ©)Œ¹I}t©˜$õa0©Ç— åˆa‚f“8OÆWuìëO `LDØ)" ¸MX¶xRï¹*Sa FÜlƒ p QއíxKuT°§œn;î;ûÉv¼µ¤‚lGÃpÛÑ(¸íxk­#ÙŽûºy²oöÛÑ0Üv4 QŽG¼1?¶ë–vvЍæ°]7œ/!ÎrØ®‚óc»–Ã`¼]×[Cõ'â˜õäq•Eü:“0i}Ç@ì_ úFãâŒêt7gÀ0½­Âó˜®À€‘ Q6‡8äÅìËïÄð„U3Öª%›QA²¬ð»™MÞ°Ò'Ãjô}&õhûøòéAa2¬, A4¬ä\N+LNMg²¬äÔ4m3 r ×~G¾ÍafiÔY/¿a%o¢Þ0˜ƒ:ÀÓ …ªc¦ªEEä›5¡O¾Y ©ƒƒofî›÷ÍìNoòͪN^÷ÍÂt|3Ãp߬F}„ljÅõy’wÈŽ6²7é<Ÿ›40 ù@Á7²‰EãÙ-…Ô´‘ͰI6²6i§å~gÉ•_˚(k_ª338¿ Ãß9d+¬ü¶L‡˜“„†>=ajÃðà÷áüÔûûÊ“ÂÙŠ»ïϬúú•ÐFé ƒI‰8†é§X» -r·}ÌýP¨MóÚèCaÒ"Ž®@"ê})Ƀ&—s¾3_aÌ æ|'0ÍL¼s£^j·æÚ°Vï‹G 0ÍFÇÀÊ2Q†8ån´ WMûTΉóÉ÷d\ r¬Ñ~G Í1ï´ž‰ú±¥3åõ<Ûæ™ 0 QˆÉ]¿3{êGªîˆ=ÔK·D'æ0¼„Å(Îv&ðH{È÷Ð'—þµÂ)AÀœ6¸…(ÇÃílQ3–5Ò¬—ÙX3ngcÍx(¸ÛÙ¢f\NcS=çnggÍ8¸5ã¡åxÔîl½jwªrêµ;–ðÚbäS»SBêÖ)P5Ëä¥VF ãVFÖ¢ã“à¯æœ€ÊZþPˆr„9)y“›Í:.Ûà‘‹‘ë9(Ob0çb€a3Î)Pnæf3™““‹‘ãRTGc0çb€s/O9ÂŽVï•“´}ϼ£¥48ìh†á;˜Qðýë~æ¤ä†]j9tÈ9ƒÃŽÖ80炼£ Y 2¯–*:¶U©‡‚Ýc0ÙVŽa–“6°i“]µ¯8?fUIZ+èäêaœ`sÖžYÊËÇöu”ŸØ74Îô+Ìj^=9?>X-¢:¤:œ¼uƒY-\‚B”#VJôò~H %îBI ¹LÂ~G8ÛZìå¬J-s’b+ $`Žw ‚B!nÐzck{ùÚ)ûŽÞ(ȪÞ~wÍ>4ò¬èïr/RôùƒYÑ,ƒB!*z¹B.2.ìÓ&6J >™Á¬èá%˜9$s­VôW°©JŸ)øds² ^XlªÓÇñÉfÝ7Þ¥!_¤KÇ .smòä’)HZ¿›Zðæ€•>)ŽY÷´‡€X±zP˜4‡c€e#$ˆ!ªÛ([н…*«:jHÛÒí5¤m‚§Ûë3m«)¥Ûk¨²28¤ÛkØŠB”#šT÷ý8“%÷¾ñ™,¹®qVUaÎÛ kœå#œÉ’„}H{+ÌYÎÏ`9…(GÌÀ,%s _NÒi ù +Ì ` ækj^ó‰ê¦ÌCê`ƒ¶ßÁŸµŽ<§wyNSp4/Zb>¦‰ËÊK ôQÓÆŽ¦Ô³±£©ð#jÚÈÑ ApŸkmú¸cEe-~ô袞29ÑÅÛÎ¥œè¢a¸eÜfj~JñÆ[¾2JVÔþ|/YQ§$ÝŠ2 „@â¡;z¶ñ:¥:EÏQ±—”̺^ªc\—d³£M’²î§æpº×`ÖÀp]‘Ø>}„Rè=è=çøí²l‡Ô¬R%ô°*ÙS m^¿~‡l…ö@¦‡„péŒH̓ø&ËÃ1À¢ˆ25Y‹Ñ]¥W újÃl{Ã+=r,g×>X'–Kµ¨;ªIµ¨»² 'œÜÙ5 p QŽPù±†µ°Y¿?Â4¨ò£×mIxå‡Â\ù Tz€‚à 1P<©ûãCa­²¤-¿‡h$ˆÖ½\wª3÷]ûƒbør?çS f#^+l¼V¸ÇúÌ}çþM'ÌäNþ;V:Â$z1 p QŽÇÝ%îvè¡5ö¾Cë½:g‡îÈ6øݹîùPðº#Ûà;tS “Žc°MjpØ¡;×A QŽ(ÛÌ[X>ºÉ¶pO92̲¥hû:—5?lávÛIV¯ÑÒ`ë)âr}êU^†á²$>)xúà‚8ù$]Ƚtù(å^ú26/ê×`– ^7#¬}l=]>ͶYæª;…Ùθ…(GÐ"rÁç^dloʽÈû¸i…ouˆý怕>«5™"2Ùò`5Õ­Xä(2ÃËF HðÔ"MJ̓é[÷-²Ÿ“ÙpÐ"†áZÄ(¸i8pçZ¤ê;×"mG‹43CŽ1 ×"F!Ê÷ê{Jš„ÏàÊúT'µ0T^˜ds ãÜ)`oÖ>x·ûÚ´³]Kß¶k…y»ø…(dz†}ðl” tº{aW¨ÓÝ €i>:Õ°ÓÝ è‚&¤tEw/ì õJÒ`šŽqjØÏÝ §‡P·Œ†˜¾•o8ê>r (Ì¡‚‘c¨ÏÚ§}8ˆâÝC‹Ý<Þm5¥ï¶/Q¼;V:wwÔôxwÓÒww­H÷x·Bz¼»sÍú¡åˆá+©T y ¹e=Ñ–}§ÊJ0›cxɦQð’ͪw™RÉæ¾P4œäÍœ Q˜ç$0À7(D9Bø*µWEKBûÇí«g.Zâsø ˆN€›>G¯®]vãÍåä…½ æà0ŒAkÏì?oo©¯Çå-»—¼þçò rõ‡ýŽÒ4¼ésíG*|нäµ7QÝ`®ý8… Âã,x~ÔX‰V£3¸[땇^,ôbyèE:ƒ‹>z±‘S-Z/†-9žÁ=¤¹ìÊû ÙŠ|!8ŸRN7)ØX–ñN5`’Í1Œs§Xû Ù䮺‹ò€Ë$ kØ`’Í1À%(D9w/dé-ܽPôö/rÊ|ÿ`Ò‹Žj|P¬}^Ì#©™âw/ä]1rî^È0[üî× åøpæ½ÄÜt‹uì°HÙ…Ê A¥ëNÁƒ]ï–¦ A,e—íì ‚†áAƒXÊî}ðœ¼k¼3cͰ¦k½N¡jÁ›2Tpê••K⟣5Þ™±fPÑ‚7ÌÉ^¹Ô0ÏI`ø,\2wú`7míï9º ËåýLNU&vA‡}<œÌäýË)Ö>ØM«·îN PfÐW³› p QŽx?ÞØ÷[ð^}wMaRñ?σy¯öjP<üæ<é5„äÊ;vá &Ù\‚B”ãq<|ëg­èIJwÖ2×KÎZu-NÁµ¬ $gMO´p¥ ÕKÎZ¬Šs QŽÇ5Pí±¿ÉÇà ›äóy¾Ìë ^ŠÔ#œÚc“Zy½Íö7ƒy½\‚B”CdS[] €Yô£Áþ¤èç­ö× šô{í˜ðìÜÕáï¾”ž÷º:K&ùß)l}ìöäÞŸMw ùÞ¡RïÃ`ia\Ãù6 9¶¹¥§áªÛº´Jú<Ñ,éþ(ð½Ÿíû —ÚÝ¥%€WÇ­îÃÅc½ö ƒ`íCZØ“¤·:…´Xß°õa°´0.øt Q8}v”Éy"W)w— ªýeΆr~(ÆB?OD¥÷·CAUÅéÊäp p QŽ [NæÔœ'ò‰É3nËðÝŮޯÁ$›cçNp2‡ã<¹ŠÅÇ•‚Ì$›Á$›c€KPˆrÙìÌÉ&qœÒŽlr¯™Æå«Í‚[ çÌ1Œs§`°õA²É¥…{¤‚Äqê™÷€I6Çß å`Ùö­û¸çy2÷õU>Ó¯9íc›º ¦õæ¶šœàa'×ΓnoÚä÷˜Ö›c€KPˆr„q¢p¸ ¹(}Ðz»zx§óz»âúr €µ7ùHN;²-·¨Kå¬÷a0›c€KPˆrÄ9™ì»½çIfÀÚl(ÝÎ?Û|Q˜ds Ì8Pœìãºç‰\!LºDܤDëÍ`’Í1À%(D9œ”5¹ïÞ¤= J&‰ö€ý‰JÚІh0 ߌ‚ïV²{ö€™u-û°Ëgi°rZÚ {(D9xó^ûù­ßóD®PK¾yW©´®gc|6[ó¡¸Y†‚ž\’‹>ô0ÃéCá³y;Æá[)<䈛·D¿Z8‰Õû ÜXä+ œÁ4pŽaÃâk4p]Šíæ¸Þ‘Õ> ¦s p QލLê.U`e"wbÐ7äΌ ýÖ¯Y“*¸Ã†æk¬LäNŒBÊ$§lG9À— å²•Ò\©ûóg/“ “¢4˜ds ãÜ).í±Á½JêPHÑø1˜• 0À%(D9‚“úÿ}SÔy"õêó,¸}h©ŸÅ`0-8ǰåä_vS=Ér Ó)™ÅÇ"L ‡o¥ð#,¸ÙŸÑ2YÃ0ià¤Öà¦3˜-`À2ÀÕªäÎØi [°ì ¦s p Qް Hš *I°2‘Š5V&“2q SN°öAÊd_’HÊD.¡aoÃ`R&Ž.A!Ê\_Öà5yÜzžgÐz9Rm€†K³‘ÐV”( T//Ñ@-p*¥00À(Dƃ0SVCbafÞ‡ê\†ÆMZË`’Ê1Œs§Xû Ù¦œÉoä‘ý}OÖ÷ö˜CÃÈ~p±å^›\lYØ\lù2X'Û`r±Ãh§Xû [h]äbKÍÉE.¶Áäbãð­r˜Ò°‡£í/cÏO†èM'+‘ürÌÀ$œcëNÁaû÷yR÷­K‡‚œ$žÔ‡Â$0œK£ð#hÄ&WÍÜl·,UHÇ.^ÿu×bwuøLƃ¡SíP¬}œÉØä²²[šÝõœôað™’\‚B”ãácO "Ÿ'å’pùØûÔ4ùØ›®û؆ÜÇžð€ÜǾ5lã>öTØ}쉈ƒû؆á>öaôÁþLlYaÑŸƒíqÀìÏÞ (n㱓Ií"ïdRÊ;™Áìc\‚B”#Æ}¤^7h{ùRóÙÈöNéeƒÙ ‚:F öÀQŸe*ml»±“6ƒYG,(CÜÅ–ùu‡M¬ì ùÏ>¶¶õAzß`ÞÍ€ |ƒ«¯;lirY©ý~Õ½9I,üîû—5"Dc¸¶Ç*[&ÒþxŸ›¡½…Uf0ÃÀ€© n·Ç*[4® ¹…Uf0ÃÀpã×(D9b´GêBSˆöÈùÛcRÉ­+sÇ`ö¡#P{àXÏÒžgÀöñ,î`ƒè±ßÁŸµŽ<„šÑ{Y<î+Z>>†—ž(0 .ÖŒÞË>ü½M1—kr( plrxîPˆr„ÉØäžÕ ü} 5ø#xM„±Sph%ø»• ü¡°øvÅø†á~0úàr;[VhnÜøÌuȧŠ;…(ÇÃÖ/ø¾Tq]!Ÿ–C|ßà`ëç`ÿ:·õË#¾Ÿ¯¬#ë¶~ ñ}ƒƒ­_B|ß)D9X¶&ÏR>Ú>¡B>Z±ÒøhÅÜÉ㣆ûhFÁ}´‚‘v-K7ùhEÞ:ùh#í>ša¸f¢Á‘¢¸;#R6ÉÀ˜æÆ">32Ãö§xdÄðð¤'Þª”ÅM2F &cÄ1À%(D9†ݮªÇ9Oä†? 4ý|ïªÓ¶í¶/;ÀÚíÜr\ƒ¯J¡.­7É.0˜vn`€KPxÈ¢"5mQœX¾Ôï'Îsó®Á'v ‹;ÀÚʼn¥.î¢8±|³HâmÞ‡Â'Æá[)<äˆfI•ÿÃî]³Ùî×Ö`5TܤJ¾±ax¶°EXûÙ¢ãàÙ¦kÔ³…MË)[hž-4 QŽ0+‡h ð/WvßCéó9\̘“åÅœr ›sNÁ+íƒÃY·Jïá,ùzÅ æp–a8ßFá!Gœ•<®™g¥ ùÌJ9HEf2`š•ŽasÎ)Ö>hVÊÑËtŒåº7üF}(L³‡o¥ð#ÎÊ»ÇÍ[?Æ}¶Íe–NŠÌ›70h³ž%éqç^ÿ_©íÅô7Èû¶ýþМØÿçõçä¬I'ÔÞ(üô°é(Ò3ž-š›öl™ËlGüõ°é¢ÒŸ5È&ÉK®‘äf!{ÄàGú“k^œ¥?kM’—•ê $¹ÙèýüH6²GœB”#Ʊú>Ë,9ÜF:ù H#Íe0²€8(Ö>8’Õ†V(x(ìf»0Dz€.A!ÊíȵSŒf¥‹m­}ÙZ€Ù·†û6ÛZèƒíÈõ6ÈÖÚ÷±’­˜}`€oPˆr<ÒÖ·d?BÚú*¤H4–v5ƒCÚz•á<.w£ÚÉÓÖãE9µ’ö—2èõÝ(vòlžµ¬V¼ÚÓî!A0ÞÒ¤"v´¹ÏÆŸmÚéù³£;š8,ìv\/ÚÎný¦Êé_]9,ÆayˆD}/_‡¨!Q(ß§(œølW(o0˜×0°Š@ÁÈ—^EIãù"7[¾`A3QA^dö»ŒgAž Iº…ђGïÙfÎu)Ìù4`À¼‡³Åaý‰|Y'S²P?½z’…ø8ëI†sirÄd¡ØÎe›_N‡²ù¯©yMØü—}(çØüÀpß(…_F°ùï} ìØü·;&ÿÙâ×ßikþ"+]wÑc çɬÊ/ê»®àý&OÍ1¼ò±FXûà°ñȪçî“D*ÇÃæ°10À%(D9bHH¶5Ôê>‚BiA6ƒI6Ç— åˆëíº[6v¦õ†+Ÿ5‹XM øºŸ[¶Ys’WŒë‡õölû›4šG!âb“3 !.^×TНV9êF~”Á¼Ø€¥ ^Põ¸U õN|¹VÕ©¾ «U%o^_P‚ã}pÌÿj|†ÜãÈù ©Çc?Ô`Žù}P|µG>C>.Åù ¹Éñï¯=üPÇ€, åøP'Ï™H•ÇÅJrŒXáð£N„Ï™8ª‰çLjµ¬€ÇÂF8gbp¨á\‰SˆrÄÅÖr¬xÔ#Õä‡JT–*ób(øf—cÅ£©¦¨ˆ¹¦ŠGÀ¼¹Ã7³Ä§V’¹=,’"UV¤#k㥘u$0 @íUdª/ÒþòÍyªBÌ`ÑDByñ®ôõüeì‹YOaï¸ù ` Ð9†…ßœ`íƒtûè8Õóùhy¥>¦0œK£ðã6–Ãf¡p©I ”‚-5u¿üàSÓOÛÐÁ§4§àj£éuçÉR«#¢VMzƒy±|ƒB”ãC™O ;›édÚÙä•dÚÙ ~”ù°åè¨Ì§„MŠtØ’Ôk—C•O<>c¿{¬ fI½ìîϨÈQCJ,¿P…YClƒà»?£"k8â#LâX¿Â,0À%(D9gùQI×KáJº^s¨¤3˜Àð€AáJ:ë!ÄWÒõ+‡—g0[#ÀðB %hèwì{¾‚1Ò¯K³Ê>g:,kB‚FiÏÉódê;¼÷íSµKBÔÄÜ·Ð^ý®%gì;p0…gÍ"'—Î0P“Ç÷8},²Ž./dS‚;„EsÒ¤þIÒ dø_ »áiâ„ ÃpÃ?EXû†ÿ¥{»þI¢½dø'þ’á¯ÇðW 9†×3døëx¤Z0üíkJdø÷` ;7üí–2üÛ‹D+zá>m2v?mCŠqìþÆö²÷@’IõH [À}ï“ûäÝÞ¢\Éÿ½¡ÐÝC6 ãÛ)7, <éC†‡B³}4;û¸0 çÒ(<äˆÛ›ð’lò ¬‹|lÉ‹\d$L²96/PŒ²áó¤í3‡BÝ¡ËÓGµàæáÂ0œK£ðãa“\{KΤ°½%µcüN 6Éì+§à6Éõ°·¤vlД”¯}³½ep°J®`oÂCޏu_ûí¼uçK­'lšY>5zvÕ¬Ÿ"=Û®ýŽ]Í_öYøc$Ï[õ.Œd™Âä´ÌF²a¸QlBÄAkCï8Oú°»cñºzT‘ ³Š†kx©-µEk¤ãb’ë©Ó³ p.õ,``!‚['YOŠû¤SRÎ1±Ïk0/5Ã`룳¾D!vÜôæ ŠwK¼"vÜÄi Øqƒ£â±cÃðرQðØqƒ&÷Øq•KDi½6)K¥Ý´p•V¼bœð±RxÈu¿\O“ƒî_«‡Ý¶ÚºÂPþ ³öÔ=(Ö>ØmSN½©æô›k†qv¨Ý8ôqÌÿ"7´›Ìÿ’+TÃ{º÷;VÓð1ÿÃŒ{§à°öqÌÿ5Ãv:éP¸,>.U€ `€K£ð#˜ÿ-UKž'Í„ÓWÖ’|–Íß©gØüw“Óp͈›âII’þ;äò°I=(|FÍ1œE£ð"ÌÈ1’žè:OîÌ~M3…¯Á4#Ãæ›S¬}ÐŒ”S‚´iïS„íÓŒ†sirD¿æ®,”]“|lÓåúqÊ`¶+kì׌²Pr:ç3zaûÝY´æ! íK~BôG&-©È*WÞ’ŠLƒæ6$NðõP‘U®¼%YÓT$`4`€KPxÈe+M/’=O´äéÈÖšœŸ:²)̲²€`íƒd“c¿™&dNMaô¡0É çÒ(<ä*rÔfA²¦uiGE޶¿ÿíêË`R‘À€‡«]šwž”ô=–ZØž6úP˜T¤c€K£ðCU$Â&¡Ýþçɽ?乸{Ûš1˜Â?À@pÖ>(ü“»ïN¡ËGUO]?ºzx°ßÁ¢5$[s¢ëýç‰|$›†-÷©Z»ŽÂ¼³†ï[FÁaíƒw¶zë—º@¡fÝÐGÍЪààÒ(<äx¶ú.ÂcSr&qwH©fSîH÷â2œs÷ã’ÛÁlJ*̦¤a/-E}°™\íëx„32,•ûU˜e†Ë3ÖËVn °ŒšN¦¤Á,›acþ¶“âAŽ '%Ð7BJ{ÛÇÛÞ×ÕSˆ0ëÉB"‡‚küÝïkARˆd_!|S–Á`Þ Ãù6 9b¶¾•GæföªÎŠçÊKÈÜÌ¥1#¤À­<27sÍ0ÎÜLqˆØuS˜]7Ãp.ÂCŽ˜JœM¿ºp‚{—¥ù L-¬ƒ9$ A©Díƒdr5É&WƒOr¡ &Ù€á|…‡1$™¶Ê!É\BH¾ÛLÆ$`6¸€€#(Nnöâ‰|ǃ­E¾óÁ‘d…Ùä2 çÒ(<äˆë­ï+h½¥ÑTݺµSÙÕLëÍ1°š@po0{ñDΊS¹EªM-ôQí"šÃ…a8—Fá!G”mQëÁžLÙÊ}AuñCeb€Y6`€sP¬}°lr|ìI9ôÆ®¯Á2 çÒ(<äx”’ÜÑÁ)­Î0'å3ž“‡Z’;ÌI§à¹Ã;:8;7ÈQIÉ#óœ48T“Ì0Aá!G”M2¸¡Mª¤9 $×!µÅ|ŒÛÁð w‹°öÁëm–Ú9Üf¨úIJD(ÆÉh—ò>8u£7Á±ž,wí®û ˜£'«]sô$0 'A0îŸ;OR²Ýײ̩Ãp.ÂCŽGø.Åìý¾b‰Â@kÇO1´¦pߥPNâ(¹8¢]’.ÎÞ—|¥˜ÞP8„ïRLo…‡1|'IÎÂw5i¿œ5ã¡5…9| ç@ÁÃy—^ŠBá»éG+6IsÒ¸Ìá;Ã8á»ö;ï#d8’Þí¬ÎL‰R¹E'“.18d8 ƒlãk!Ãqi1g8RH2)¤@á!GôM“|^’]S¹‰.‘kš-« ·QavM ÃO£àpÒOZžRF–È3]óíªÔ…Âì™L…(EôpÖv.וq¨å(-˦gkÈ`N&APðtwÒ†SÂûÒ#6 “&NчÂl•ÆIh+…‡Š·¢–”Ò+Ö’RšÅZÒà(-AK:*ÞŠZRü½X¶6kIƒC¢´- 9‰€ù*Q‘\a±õµ sîÙà0 W$WXlÝS«®Gî°Öºæ9) à¹UO̰¶@!JëIïRºÚðn#?FWº—$m’—PjæaþécÂIz¾z|-?^øã^NûýþaamŽdÔ™Óï¾f9Ø–ÊâÎÓˆ§Çûy»áoÆ®t¯tz’ù¼<¬Þ[``?^óyL–ôu^½ ãï»ÔÛ}ùÿy»í9endstream endobj 100 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 697 >> stream xœP]HSq½WgüÕ1S)Ž/!QQAVj"‰ø 3SÓÂh~ϯySçtw»óþœ››z7—:uæL×l¤ÆRCf!=ÔKD‰EÿÙí¡Ù9OÎáIH"’$£¯çfßÌ>›r ’@,úó`?' ¤‘ •8÷¯&ìÄãÖTÕÖ'ˆ,"—È#äDT8OH5ñ\‰¸2ÊBúð‰#0M;‘ø ®—oãÀԶ—.¦‹±âñ´H¼¿ãŸn Œ¯Ó.¿dSO÷9`Y*ýR2tRÔ/l¹­þ!/=ä“;Ö†ç<ó³Þ§ÐÒTcÍqñ"äÑ2¼ªó…pÜý‰w÷OÈû-¦A°À8Ãwñbœ>QË«ê3CÂÏ ”(ÿëä:€}RÎvu0àöNØ©™%{ÌÈ¡Îfžob)]5“¦ÔÍÚ¦ÆM6³“–ýÉ %úÈýÅ_‘ø È­žàÞ. e¨joâi+èJ1UßÜsؤÚén—à·¬Û©·˜·z6÷~@Ò/¿LŒcÊéÞ&ct"ÅzõÆïU|ÔuPÛn GéT§ zaÌ5ç:¡ ÿ÷Y—M¯í”,ô],rá“s ôn‚ µàkró(˜`Ͷ9šK´õ,¥½Ç™´‚‰ºáR@êCx ÷¿Â/ÀŠüͽ·µwU%&ß%ÅWΉÇÎäé8ÖXÛ Ò m‚eÀ4ì C#Ö° ›™ŒD½ª»XÔêT{V…§™²Í;6,nôìËȤE;©áx¾¥zU¼ŒŠ‘0 ÒhÆ€4¤ ñ‘ÑJendstream endobj 101 0 obj << /Type /XRef /Length 122 /Filter /FlateDecode /DecodeParms << /Columns 5 /Predictor 12 >> /W [ 1 3 1 ] /Info 3 0 R /Root 2 0 R /Size 102 /ID [<78d4bc98a57262e6b6b7b33ca13966ec><6171a3b1e2c735515f209c695e453828>] >> stream xœcb&F~0ù‰ $À8J1ò?¿ëv ›Mƒ|³@$óNÉo "™A$»3ˆd¼"¥õA¤˜ Xä?ˆØ 9V)7‹WƒHÞ— ’¥DråƒeÿM~¶l/SdÌʱ½ïÝ Ì•¿ endstream endobj startxref 103771 %%EOF HSAUR3/inst/doc/Ch_cluster_analysis.pdf0000644000176200001440000037333214660150120017440 0ustar liggesusers%PDF-1.5 %¿÷¢þ 1 0 obj << /Type /ObjStm /Length 4857 /Filter /FlateDecode /N 92 /First 771 >> stream xœÍisÓHöûþ }[¦¦Ôw÷Ö,UI˜@ & C`‹>äÄ‹cgm˜ýõûÉÖåD Ù©ñCQKÝzýúõ»úBFi¤"ë"Yã"9o#©H¤JD>2 Qˆ„Òø*FèHˆHX‹y‘ð©‚ÌHŠ:’F[(I—BaÉÂw.RR()à"e”‹$To |$"-, ‘‘¶ >R‘I% Ñ‘Q@$p·‘q)ä»È /"éxx!ršH¥‘³ŠÈ¹€•F.X)yÈ”Ž¼ô*¼Ær6òèR¼O!ßG>à{hq tB2H w thcB¤¡ÉB5ya $ Q‹°õR@›‘]R9ÈB>¨Z¥u)´ ÞGøŒÎKLxh&`–è®% "˜•ŽB-B©T °7€·0+ßìàHdSLèDÀ¬<ö&öJ ö -¡F ˜¡ñØå°Ð‡À!¡’ t@®f“âç€ÙHh¦Ã®×P»ÌÐbà4`6ºÌfã½0›üùø½ `¶êr€ÙÄP†€ rb$Pª<ô!`€Tá3°Ä0;Ÿ‹„3)¼Ì΂Ìy/ïŸÂà†$•úÐQQÌ8¡Œzü€Ùk•þí—_¢ä$ËãA>€N…8’·ë|6g+Ðz~7¸„‡"óü›,J ülq={F(öÖùÕbý2É&“4F¥îNÂ¥àÂgW–¦ð*Õ¾ÈÇ÷~[¶Ì·‚Ó Ë\^ùa›‡ï à–%NÀï,×S–EüN?j—Ù Ÿ.æÏy=yþ™JzဠÇ?§òïiú÷ŸŠrÐŽ'ǃóì"ú6ͯ¢+hïr™M ûuöÇ·År¼ŠžÀÃÉb|ºwËÅx=Êß‹wÇÑ‹«Å*_–Ó›,IœÂ?(s¶þ;å%방Ⱥ†@úù4Ÿe›\Qa`…I¶öUÁDLÛ-£ˆÙ¢¸‡JÇ SUoTà/qï\Qž˜« œEš¾Ç²®x/ù.F¥ŠÎÐÛN²zÛ9ôí¤èÐ𬔦ƒÅzž£UM^OÛÿBƒ‹²vo†þªâæøßÀØà toŽ?s,¹Ž¥Ùsžâ¼Ï¥@³Œ—â<Ÿ/r¬X…%ßߟb|Ê—ˆó<›ÃwIÅOû‹ï€ñ˜`b0.^‹tô3Ö¹„ò¥bf«Åz9*„ÃæˆB—‹ÑY–žäÝóC 9ûž‚gϪÔ7¸(¦ËU1c’ãÁ6Íßl´¼öÝSàúól…u­¸øø Ì¢ŠÁ‰ !û—Fóõl†màJ|¥‘–VƒZWغ«B®LÝ@8y‡üÑ}#'·Ð 96Ané|ƒ, 5Ê\e…4“é(µJ3¥V5¥¶%VÅÞ4)i0É•ýœ}-yùg3 àH¶dvPº(»µæ»LEEåKݱ¤;Â?@wö«Œ¾NÞ¼:úðüõÏ'ûÀœä×ùh1žÎ/ÑËVûƒ«ÁCªxK¶܇P[u 2|¡¥Ï©B¬V”µsm¦ãüŠ Øé·9Ý}!”å´Cå Zr`,1,]…'ˆ>ð=D*lK#@¨A_±P š ïÓÐn`) ‘Ý1¨L ScLA‰ÁPR^)z[æÂ÷£ ºP¡|Ã¥dš@vRê¶¾«I¼ƒ8ãæe6½¼;<<7±3Ÿ${É~rüš&/“£ä]ršœ%ï“ß“A2LFÉh1[Ì“q’%Ùõx°ºJ&Édú5K& %Éer•€W¿ÊæÉ4ù’Ì’ëdž,’Å‘²W7Íf`Õ¥×Ýøj¸7}5=ïðÖ†|µ`“4Å;$ ôÙ„»Ëe›šËæÇ†Ë~NNû¹íWÉqr’¼IÞüœ\ø‡äcÍ×׬ф6Éæ¥KG¯¾Ë±ÿ{ãÚç0ÊÙúw”ôY6É9µ$Œ¥Ó·¿È³ñpFÊ.COÛ÷ü’£ƒë)º+Nøš|ÃX!ùoòßl¹¨ ³ñ_uãóT§œ *ˆ‘5$RÑ´@u­ë6ˆ¾ìãÉû—G/ÿùQï8¡#6–íØ¸o €S¡*eŸd„Ø\U•.ó7êG> .0˜ÝZ‡êí{8# )hAàïŠ| Q±• ÆjÖ6¥«LcíåsI‰„Z=˜hÄ·¥Xãœ/˜¥à­â¯¬Õ8ÿ þÐP^K»À8Tµ‹;´ëE¡W¬SíxRW”Îø—e§×C^SÊo¨Ç¼ ¼œSVDkC€eS€V•à§àën‘áôn/*ÛýâÃÇ“ó}¬û©Rµ6bÜŽve3Úíì‚Åmö«†+ýÊ›~½^ÏòéÍ쮘·°à4wJÌVMf7ß7ÜÕ}­ÅááùáÉ+ìÌóÞÖQ‹Ï­xWھᮚP?ñßRßäÚÚŒ®·»KµK4ó»(mÿý³®mm³½¯¥h@‰ê0 cµ¦Eâ:ûùr˜þlÒ`5šNóélœAýéê Ø©ár0b/K)ö²˜ü’å›×æŒf„0^Ìfƒ% ÿYfIö}4\7Æþ—8ÇŸ-Û¡Â,[­ê¦ð–Páf¶^Uâ…Æ4Áj†JÝ~®çãl¹-–Ùmñ8žB·•iœ‹ë†­-] ÞPÀ¦‚¾Wz°®îø¦°¬˜|€eýíÝÅo¯Ž~3½®W'‹ùñÓÓìrýv8›VÍli“¶úß1ŽlÛ´êµñ©ž³ýÛ÷ê·}_ÅÚ¬±þ]×÷§¦›Â]t—é–^˪^ÛúÔ›q‘Æ ÐjÔiŽ/z«hÄ7'ä°—êG ”áYvëŒ]M »Px[* u„e㔲«¡¦ߢõàFU’X_SHÛ'\ß*¤Ú*äb ­- èã›Ï›Å€b!ŒW”ˆÃ 6Ø8µ] x 4ãÄÀˆ? 1†ÅÚØX[”†gÜ»àãTRE =žÎ¿”$ÓªZk‰Í³éòÌ?ÏŸk“µ$à7‹÷Yø¿qÑè8·å¢³±ÄÍ(÷aãPg¤Šýnê|ã ¨¤N§JëÇ ŽGlê*ëQRèØzÚÃâAÆü꤀¾‡I@¥‡Q¥Žƒ÷‘FÉTîž"¨]‡Ð¹º°|˳ˆcpóËÆ<ྗN9<º¹;(îG¹L.ÞòÃ3h÷‘Ó¯]…שˆ•Å9( A;$AÇ·, ó® RmpKS”îÇë cý#i³±Ý\|€6?—´²q \’Fƨ5&Æ)iu¬mOeÙÄOÇûÇç'ç8•ã{L;tÒi#tÂ2ýFNJ´ã[ôéq‹ížXïZ–Ál\RD, /ÚšX¯ñ¢ç0|Ñ­ÃÔ3é¸ç.-Ó.’eCeY˜#m™V¸Ó8Í ýüÈâ„ß³12åët”¾Ø§© _Rþ I 4!°ŽÀ‚Á`D0&È&ŒXðO(M`,#ð`@0$Œ 2‚ “̈%ÿ&0–Àx‚@0 ŒÆÁ™Á$3bÅ?M`,#ð`@0$Œ 2‚ ³™™Á$3bÍ?C` '‚!Áˆ`LL¸™ÍÌ &™þYGà Á€`H0"d î@f33ƒIfÄ–ŽÀ‚Á`D0&È&,t,ÜÌff“̈ÿ8ú—ÚÅ!ìý§.ö(ï0ʘ˜ã™ aa î="-‡?>"-÷ßgDzŠS@LAù—ý‹=¤]#–]£”êÈ{Z•iœ©«bÛjêÞÅÙáÇ3Ú÷ö#›ÿLsQ¿÷æ?«w¬1=Êæ?ѵV"Zk% .ô] ½c”YqðÙìk–OGƒêòGÑk·pi7ž§û‹ÙøÖîºíN‘Ú5Àí©ä÷5”x¬Æ“[EÚD¦&v{¬æ!›¼{µ¼ÚÚm«Œ¡“GÍyHËl±ŒÁò$”-Ž´°mq\SmªR<Öü¸“àfe‡Ðû_߀ôß!„ó¬Mý±²éø±POÇß±´u«9ùR[ý¹c?(nßI}—Miíân0£ïÌÕ®]Üíó çŸ^\ì‘ÍêÏíÓm›#ˆ¿†éÆ}òlnmÜn²¡÷ÎÛ»‚ÙXW±2¶xε{ž"-Ð|:(&ÂÙXy\W ±ù3V}n¥N¨ ˆÈ´61$”ö!µÆöÈþ¿QñUfK÷±1êO£Î¦ûhuA‚½ ê$ô,žâþkP']ˆÊ[A‚ÒÖ=JÏ6#zW¥®Œè•VÐwaçzžŽ%ž`7ãþH*\µéß{=ϱÛu¦ÃW†Çò•YK¾w_¿ª1ne:àáöjx߯—tµ—tlp¸¥@˜hùu窫ÂcóAÄÆyR™8:d*ãÔùûŽ»ÊÖÿx_<è¨_?.ٮѩqHwŽN] ü¿ J.ù{ü_È%ñX\zÐèôGF ·F½7þ¨Œ9¶zñÐHýî‘M»‡kþÀ?ä¸w­U­öoƃï>íáBêþÅ=vð‡vxî[;øEïðœöV:NÏi¹8´#ƒ‚®ž5Ót O±v…õõYµP›ŠЬO³ÒœZ5Ì÷·GùZí a=ú”­]Ô-žö ?uÓš›}\{$!gQòþôhc,Fx:•_=¹Êó›$É·oßâU>ÈãoƒÕT›/æq6^'×£Ùz•ÿDò³;¾mC†æ=øÐÄg©TJÁ¡Ñƒ´žN¹'ñ§{oâÓ§7Ënu‰ËËäf0ú‚þÏ٠ϧ£ìþ PMây k‡¡vˆAžuP1»øË“/p+ n¸¡ƒ»4*öÔhŸâ¶²~ 8Å 7~³Ùá^ñGņÜb,žO'“ ,š²ñQw>tmþsMáak2™<.²d2ÅÿÆ£~Ä ÷oTwÑ_õ@qÙ㓉|푈ƒúÊÓ„`]OçëÕ#áÃ-Ú•½¶ÝXÿÞ¯`endstream endobj 94 0 obj << /Subtype /XML /Type /Metadata /Length 1484 >> stream GPL Ghostscript 10.00.0 2024-08-17T18:31:12+02:00 2024-08-17T18:31:12+02:00 LaTeX with hyperref A Handbook of Statistical Analyses Using R (3rd Edition)Torsten Hothorn and Brian S. EverittBook endstream endobj 95 0 obj << /Filter /FlateDecode /Length 5021 >> stream xœÍ\Is9vŽð‘ö¨c–­ÊÁ¾x¼„Æ1í%á5>Ì8&J$Ub‹di¸ŒZ>ø·û-ÈÄ*“¤Â:Lô¡“($ððð–ï}@ê5êÂÿÊÿ/nÏÌèòæË™ÚüóYpq´Qo¢zLas{–LCÎsËÍÙgYÅ1¸´‰Á©Ñè5·$Çà©—·ðìD§©Aöq ~ôb>ï#üššù&©RNcôB¨Ò e 6.d!SÒqLJK™j§ÒÐô)2ͳM"‰Ùܘ¨L; ’º”KcrÐ×Å”Çèæì¬6‡³?žiÒú¦üïâvó«ó³_¼3~“ÇLØœ8ãÑƒó©¸ ÑÃXvs~{ö»áŸ¶;5¥²‹Ã¿¼ýÍVNeãüp.~ø54Ûì¼3ûíÎZ;j£·ÿ}þo0›¶X¨ÑÞát»F«¼Þì¬Uƒ—Ó<:çìóp³Å‘“ ix¢‘sÖyxÀåù‘ž•EWØ;gc‡{œÛŒ ‹á-vð9§˜†;:9“†=Íï¥iXt¾nqn•of¹¦fx/6ÍËÓ$­×¤–Ó²b(æ7[ð•¨`ÑG¹WðbÈÁj Û¶Ãç¬].ó‘þ¿åªÜh‘÷ÐDï‡K¶° ,Ù]ÑÜÏuˆãgÞ|Ø Ú  U ´B1ÚÏ,^U, 5þëó³ßž¡Ïÿ *øQáS úßšï7œú 9F0:ðvò=£Gß‚ý z»s^Ìÿ£‹ÆÀ:L¶v–”ÀúLÚ‚?·;è¡´2¨8ò |ñ+ku.°‚OÓþxö˜L1¥†ãméŒ.ZˆDçÿ~vþטfSFÞ­Î\¥ ßH`IºŸ<:y&:¹4´¾e(6uµ&PL”:ÏÙy+v ŠQZ6OKrzqEv^Ñ[!ú÷ BÓðŸ¨w½skë|‡)ªÊžÄ#üjŠóæqgˆµónê½£eƒ½ÒKfr—4š[ýc$ÁéQm»ÉÞd‡ý½Ö ËÏuSóÅ^¾ˆ)¦æG“ñ¼Ü¢Æ˜ÈÑR&iÒ&aNö¸æuMú0*…ùÇãä ¼£Ø—[ÚŸ\j¶ëŽ=)9oGè‚;«Ý@aò²µâ"Jêuä¨X&r<Š1®IOÁšb_fm °ˆÒ% a‘¬\³c¢>’2&7ƒ<Š…]m5¬*''ÿÚ8c—ÌÑ|ÿk› gˆyd­Ac=íU¶äåÂ&DÞý=YŠR)P±b/ý‘„QY“BsH°‰wµy#"Ä×ê/b"Cx0¢á‹Xáu ,– !•á”:qx*þ0eµyì3Y…‹Ž# Û cDÞ l̶ñÔG7ÓôòO zP9½Ñ.á%/òq«ŠŽ½ ˆ²ïŒ¨4?bºc”ÿp`j4ÚÁDƒÞ«—ܳk$ˆúrˆŸë‹%¢ë~y,Âh¹êýuNwO¬p  ¯æ÷´çW°ú¦Y ¢L#î ,dï"LP1ð¡É” À[ÌpÃÞI¡ 4‹-¹ rgBÆlßoZ‚7-ÅÔŒÆsƒ„‰†x«‡ã9¨Î2…Sß Ô1ˆ`[sÂa!褳–΄³%2¢y߯dΖ>€ “gƒ%Ʀ7 ¢AG¡ifk€àÇa&ÃvQ¬Â¹-›KYµA™Pû€Ü0‰§çù |A&è(,ôAØß8½˜¸b€°¤\`5rz¤µ€1Æ>¹¡Û±â(y2ЧšŠÁƒâº‚ >yî¦ÁØ6¡1qeç?a<Í A°-Ÿê|‡.ƒu¥ZÖ`ÃqY&õÞ9Ôs11¸•H8ÛUMå :² A?¼ßu“¬Æ€";ˆ-r-f¼a DP TZ®ü™ð/•~¿…Ž€L­æX=õüqÖÕScr†b€!€Fj¸zHè¸ÙBÃ2&#`Sß5˜ÄjnØ1Æ7(*C?4îìQƯ©šõº¨‘„ˆ(AÚm`•Zµl‹ŠDÏÜW1² 7Ýpçáa¿hWa‚EÞOç ÌËå1V¸-¿E.—ÍB uX'fUPà(±)Ka@5S´ƒ„zTY^|j/:Üóª•nsØñ¦Ö Ç{î°øÏâÕƒˆŽ5DˆÅˆh!´ñÄ€A+¢‹ÿç&C/#4µR‹_ËûÅ ÇF5Õ-ËQn'e ‹©yÏO uÐIg qxàíœS݈~SÍEnï§Úá š¥¥~åÙ`<â¹JBã‹w^cáÒ@ñ= ûU&€}#þе³õq, Ë‹^…+†á–…– ´jYFK1ý(ÜçªÆá±öxSÔ›Ÿý¨ŒÓjƒbÝþpdj1 eF‰¦d2ÄÛ`—,Q¨\6÷è½4ôpQ÷ÐÙí4[E1NT½µ¬ÿ›•áïÈF½"NõÕ/¤„ qeùõmA %@³ýÖÒwžò xQ¥¦Æ»äf¤¦?‹äySá§XÿIT! ò´Êk QëkØ•ûf_ãÑüë| ×ä¡;HçªC©ÐÉ/Â,P5A› kSR^^t¥<šäß·9inžGNEd:Ò& ¿A«)½³Ze›î‹}B7i)²^ñN§Æ@±Åjû±'Ht·å®„%6ìâ"…K€QRï…Y…Ø–†ÏâÕî¶øJ¤¥L¥%Ý*¡DhßA”ë £Ê-–übwu`\aPÞ䯄Kµ»8QLWôZŒŽtP½°ÐËúšXç_ÖÙÚ×–ìþ„Ç#­‹Ð¬XB³D„> $1*tžеɝÃ/ìU"æU2…Ò€²´²2.‡&µÞ\ Sm`fÃXdÐDd—^)«C E¨6ß–cÛ(²D¼å|7t”vµîÃUÊåì.$Û=вþÛÑà¬ZqxÖ“d4©êI2êÝÐ7ÝÈ…Ú—†ö't<éîÉ0Öƒër>KçØ3§|)¡¡H—yâYc¦Á-`d?iqÃÜ[`\Üiä,…2(+–³¾öˆÈ)ªOe$;r¹Èè°b1yT|ä="fm…‡<-úé#r^ÉH »-”ug”áo%x‰P݇G›Ç5¼£dРC†M@×–w«‰Vª†§‰+A²Ï$ÜáÀ¯!©²z \;/‘7E¹/¢}1+7’¢YB|*HTšÃè6®]*ßp{sîí®Éa´±/Z$®“TÀáŠ%ׂ2 y &…žâ#–°©ßW,DÎ(2À°Âïá©1_*4[ÐpÓkNÔЋõO{B—UÀñIGÚ¾œ÷…£öFØÄžªE¯äËʶ&B@ï)E÷ýv1ˆˆp|Ñ©åôtGÒÜå°¨£nÁ¾ñšÔd´ÿ(ð•x^ `µOF¤î9{P¹0£ÎÔì·O˜-çÙ½ÆJ-0.…ìàR¦*¯â}¬ % n•di*]y5‹—€-ÓNEvX8Lð v’ûãÌþ_,œ <ÍOÏŸXÀïÑÌjüÜ$ô%?ýP-ëÈÑ[ãñJ†a¿ÏÒ «˜VXܬWT쌠¾—}i-Ÿ_ÖýzC¬Õx´¡`}ï+8íý¦t¾äÎùÉ;^´ŸãùÒá=©%?S-U¡*,~x[cz{ûAÐc"Ÿ‹7%$±Ë.ÛÑG5Ù{°J¥‰è®Xá°CÌQÒ¨…2jP¢ÇÛ)µ$Xõ‰+̣ð5 ý/Ë€)¯`înYç)¼Çç˜r»p´ö8?}\8P»\t¤êi‘LX’ð bÍ(¼¤ºz-—utÐò"A…•„%öeÑq–õß‘•ŠÍk/ŸGËÔõažúkÝSIÃO@ã ‹kTZç[¢:¹é3Û£´õgë’Ê5L dY$öôÁû.|ÍácèÄÆê+Ûaݹ+ø±ó¨¯Ùeàé >%<.9âÏxV×ÑÆrþðÀ;;«˜Z yYïÙÅÌ]ˆ†7òZð’õzzÃÙ±ëQÆÎ†‹Z¤Ê„º¸ÜKø|Á³ ~åš®¾ùXÜxÈ%¾††P…–VBxI6Ê“QyP5Ñ|ñ4Mr ü²ûm¡ ì¨Ì:gÛZç ¹e½/6áÈ'V4¥º ã¿DB:Ò=ß5Åß1,7µŒ\óBß°a3Òå+Ù\ÆÓŒ˜DÑÆxšSP›®Ëäv8¦c™H¸«g2­™M‚þP]Wƒ€ãíZ¦…·w²Ç¢]ßo{¾½Oî$‘ó›zü²oϺygրѮ;xQk¢›fëáûÕßß~敟aéKîï™yx/gób¦x3ÿ¢U ʹƒÖ8ËêUCbÏ#Ý~zfN£þ{—ŸüÕ<†ÏàL‚W¹‰L_™høüFVPÄ¿'÷Šdæûéó&%n†ÌiºLÝžýJK>%ùi°6´-žeÕt˜hÐ5É;;}³4±”?‰lWä»BœÒ-Ta^'§¿àõ¬g ?Ÿ¦Z6"úOÙè¾VŸ¤ùPÃæQøßòÝ!*ú~–| ‰uü“ÖÀެ~‡Ÿ­Có)V,$_‡‰JÅÓä{\€Õ  û~~ú:?ýa~Ú?{î~¡ßAô[º,ª¡’¯—Ž`ëÏæ qüT7Bœ§¶D(+«Ž/XÌeµ»¦ÒðÜÉuŠexîâ“Î|ú'(ÀL“):4„l%'ÙÜæ­ƒ¸=¯{±çöNhÍSn¯tÉiÄ@t!b™œU$©"c Ã7Rû“³¥Ï¡fX!AW6åM™P””"é¥K¼Ï’åÍVá˜N?÷åvXË_ëéi–¡h^Á8_ÿ?ŽAž¨ÛªãØ W“Ö’¡sNFlæðÆ3Òh†ëNÔnsýpùû“zöç|÷YÅÉt4?sè>©åªE˼ϡ»9v>aÜ‹d­m—+eôí,À½Ÿßc-@p¹Yé¡»PŒT|´¹’T騇ÀïNéÓ ¼%Ö2vâúÉ=÷@è,Ó¹<¥`ã}§Îù†‹™ÅÌé¯Ç8T…Ó ——M°|î-޲Dü~ÍHZQêo"°´©-f›;È˼í‡#ø"˜ •¯3üƒÒ~õÖ³QÖjHÝa™Þš^ÅZXÈ%¼ºG÷‰§Gqc»ýNM-|åµ|;ƒ¶† lu Õ³ŽõñwƦzÏl¸¬ÑúÚºbêú|2¾†—@2hJ×ø¼;†£ ¡üÇv.A›kOÔ!*ûâBVàÿ ”x,3çž=¤UéæºF¡ë<Ý,FÅ#ô)*V*6 C†ÿ°‘.TŒ7Ÿ^î›V X|²× ±›Fk/ø>{ùf¤Ó5ñ-î­ƒÄÕ”ÛŸz/$uÜH•SO¼1Ý|6¹Ä8ô‡×ö=׆–¿Úü½#Ô϶ùM¬bñ.ÇzNÇÓ&Í$Y)Ã䆗­DÔ•Û¤ƒIkʹÔbô¯¹±eÛoš[VÝÑ«ù›ôw3øþÀÕj¥¤¿{Mðú³­¥‘g±þnnÜÕÆ‹…äºZx‚ŒyúiΟC4=½©ëüXÿ¾>ºº–ív&ðüç™íýya]UŽ÷ #õ¿öfò7õñÓüûõÂØwKz¾\P‰TÓÒ.|E”µ<± ý5˜1ßú8 cüæ§ë›;üs7ÿGŒåÒÒçãããÕý×?\Ü<=ÀÃv§!N#Õð¨ùßh0õÑÖGW=Iãñò¤ÒÝ0NÀ ¨<ü ê«k8à> stream xœuSÁnÕ0¼û+|t1»Þµ½{¤RâÖ6œÚÒ‚èëSKBâãY'yy~”C¬Íxwfgòä!¢‡ö¬ï›K‘Õÿtà߸Â5RE_sÁ(Å‹êVypWN¡ÆÂâkaˆ” µU5–<£2Ù™;СÐcìcîæå\í«œÌ;°•XsGj-ôœ Iä¢'Á°çt­…ÌÊi›v ÔMïž΋ôëëfçÏ&÷êÉ[·„™ýtç–-£G¦X }ûæ§û^#%‰8¼ V@•> #DPÕª5ZFÿ›Ïê£æœú|&ä˜mÅD²È’Ði0#¡Å¬7mžg†–Z^6Ÿ Qœ5 ]‹9v,?6ËrT±ïA@RVxâðeN> stream xœ­XiTTך½eAÝ«"ˆz#Ƽ[N >#*â˜ä08Å™™AfIe¦ª¾ªbP*æ™’Q¼ÎÇhÖ‹IŒ&&í_’î•ï’Ã{ݧ@Íë—ôZ½z5÷O­U§îùÎþö·÷>È«AŒL&S,r_è<Ãòi,­¿&õ®¶9ØXxcäù¸Êþ©ÝÑáŒåÏiAØÂðE®QnÑ1Å.Ýï“°Ý×Ïu@àÚ CÖ‡nØá4Í9y¦Ë¬ÙsæÎ›Ï0˜UÌDf53‰YüÅ|Ì82ë˜õÌŸ™ Ìf!³™YÄla3®Œ³„qf>b–2.Ì2f³‚™Ã¸3s™•Œ-cÇŒ`4ÌHfÃ3¯1£f,3Ž™F+g¬˜dæl£ìè —A­rk¹§¼Ëj•U‘µµ¯u¥bœ¢}ƒ­â\2÷Å`—Á0dуC× 5Ú,³¹;lË0ðlµ¶FÛvƒìFÛ†l¯°/°—F8h–Ô¶½Ù âXQZo”I.½³ø´êT]$@ ¤E’À¾çYÉZu˜z§&’S±õºýA肚*í1›‰"›î Å:ÞP¨lG¹5†+D2Öú•Âlø: n‚YmY8‡%§¥µü#RjMV*l¥ Jr³ì*p.*äR<^äoF_!òE›|V… ÚäÃtk{1|•䢛ЭÓ×·Ñ7žÓÔõoí†~,Ê¿0f¹¤v™Š5ëŽèÛ¡ÎkŒKXÛ^zÀ3–Š2…£1'È[zòªÇ}÷TÒd¯ÝöíÚÏÉýʧå'.ÂçÜ}×oÈ›q"ŸòXŠãز«@ì„/›§$ƒÉm{p*k„&¨T™¶Ã:Hï´ÐݱžÛ!8[IÙ!4Ëêè~«p”\ ÁpÇ»<"¯~úLò&™ôxŽD‡wqœ@"‰;ï~)‡Ò›á´‚G ›ö¶¬<ÝÐVR °T°15(Õ×?&€nÒëŸ"J¿Š²3è$ïuêuæË¡0!M£ÉHÖlØÚ±©b)Œ!›Èt2ŠÄ‘h|›ŒÆ­8÷1ŽþŘ¡K܉Zeq˜²b6,×Fÿ ç2/ÃCøžŠ—]û²¤n÷î&ò–>)J«Ñék”´mdƒˆãÍÒðÙ]Úºô|h"޼º*¢[÷´‡C~ú ßFÇi_+Ïm»Âü•Ý,qµô²ŒP¤)WC:ìäúò~ßS7©‡¯nl©îîxÇrbGÆmܰÅ+´¾!^iÛ;‘6²UĽ'-œ€ƒEy/‹µ¼JG^Û9…Ìn¶V(æx-TŠØ¢R,Ìöš!ÄâÞç œ%ïî'Vœ¨ÅLë¾FÚýoh÷Q"Î â]d×cs?Zß´Ú„$ã|švÖ×7™:ά®ñغ-ú£XAûPAæýwn¶êzô‡¡Â7ÀöY”x,­·RÄŠõÊE¹t¼÷}¾¯t`sE«á1Ãðtöÿ† ÁÊRö~®Ïüòçgù̱â§BñÜ}d-ßV2ÍÒØ&Yó t¿!Ç{Òý­Oß™’±[HÜ^àÜ"—¨ñ[j#‹÷(›BÚÒ§u¤_ØîÜjÏdÏEaâ•D!{ŸÖ\4dÆ(‰Œ‡´²|=— ¹9û s á]°Ÿ6Ò®íúÍs¡»J”ÁÍù>ª½ë÷ÂQîÂu]ù½ÜåqzA—¬Ï6W¹•”¯gv #Dœo”ÝAÅQŽ›¤ñ<É0üX¥ÐÎ 'Š·²¹€K¤–%Ìí¸Ë_Ô_=/œV­g×'†yÂårÁ¶·ŠâÖ.b±8€[ØÞ ½#ùÇ¢"Pí Ûéã  ™ê1)&YXüXd÷eºÙVà q<€Ö~ˆ°³Hû}ÃRnSde§_Iž’Vò/›¼ž]¸rù mÅI`ÉòßÚ¿›uü,üYÍ)¸Ú&è–(Ð5ÏZdÝ3 ])1ô¥ã)½îÓ£Œ¤ÇÀ zŒç¢"@= |è3 ú‹}Þw2/Ã#è¤Ï£šL˜iF¯Ft²¨É`œiÊÙx’²à,± &£5Î^­ñµM¦®¦ØR­N0åè€;_ã±DÀ’Ij2Ú&pï<¹y¡³µÇ$ÄÁ†‡B—ÂX UÆT}ŠN©2@ ˜8¢8ÅÏ^æÓÙ†ƒÐ¡¸F/ØJ–NüLkÿõücµ·$7ÿk#²!mDÁf}¸ÎR?Ã"íT×)"c}XT„i7k|Á‚uzË‚«,Ž"+Ç“7wÅS£bôGu´øDcð‘0]¶~wÁm´r¸K쬷ª ºKú¨‡Cš–þK^th”לþM|Ö÷.ãÔ¥¿}ÏŽ°GĊ莰s0‡=¿Žè4ù&‘yø&G)ó6ñÍÝíûšÁ ÑÅ~ÅÁð1%lIöK Žö1F¶S¯"*³tV”•#+—\¥Á|~©>ÿp"¥ ÓFAlÕï8½î8ìÑf¥€V9‡D…_[…ÓÓ+Çœ± °\³"a£>¨áE§õO^¶'nL¸G@z"¤‚F—­ÛŸW±Z¸æèª ð°x_U›çé/Ž]Ëh VS/±ë5ÓQ‚örùD.MÁ0¾:_Ww?Sãâ]è‰ÞüÛljÚ¯÷üd*‹‡¬DMÖ®,eôÊ5qÛi=V€öç”ÍVºãdï÷ÈÄ¥-ží§-F˜eO‘¹Š#äèMUè‘8ù'¾¥+2ä€6GHÍØ•‘œwk|MC“©³+°gÑôI>D!¼µFu–üü?ˆ:u ,èÄ£/ÄÉ‹Ú/Vâih÷ãuв¹ß‘?+  Åï…&SºÏßSà0X9k6¸“aJªêj²ÕŒSŸÞ0cL§¬†ª…€r9:ÃGê#+à Tét%æ„sT—mÏÞøòxDkj‘²¸ (g_ŽV­É‚T.ª4¡¦¦´¼ª2¹Õ'9@ä'l¯ÛœN‘¶Úõïòíõ1ÊÐíjšäRô›ÛC’2×ÅÀZnËá¿ +:váN#€pBþ/¼\I¿¤®Ì<¢5p#“S.øš7TrD¨àßÃÆ;  K»+ù%_%ȧïã Ùdä$ý?вÍ;0ÐÛ»5°»ËÜrH +È":_ç^ŇFÝQ}-鏯ÜXwÉÑ¢v4âý£[væêŸÉ¥Ð—!O«""|›·–®¡!ÏÞÕ…X­6yÕ+;<Ìé÷b+³ÚSó4GcK7ƒ·eç’y‹‰M=ŽË´eûÒõ—õ»~¡NWQ)ÔÕõºžÑNóµÏžâóñ‡£Z”Û>ñ-œc Ï*HÉ * k£Æ¤ê“›èh$ãýrCr®æÀ+ëp Ühfzê£ØÄÿò¼¤¸ ÿS‹_ĨwP ý`ÅKÅ,«ÎÎPgfj´J¢$£¬¥µì¿2ä NÔ›)ï¼@Ä XssIÂ22ǤÆÀ.ÁÛe}•å–¡©0‘ µi(ÑÒJhFÞKüÛ‹I½~RÞ;Jú…‡ ÐU* &ÈÎ(*üµ*M•+}@mFÖ&M¾¶Z Zˆåú†³äí)Þï落5¦±äŸ&âBœvç-ô³@ºz€^ÿâP–ã5QvwÓxø…¹YØnêUˆ²^©Ïb6y_[Ì&FëMËóƒM/­¶ Z :•|зÆ,<¬ïXâÄlZ/,z'n³˜ú÷Ay‰9éµ0¦ ù¥ŒÏi‹þ³ãå˜öj¯þ·QõÝ!Äß{ÏB_³É'l÷ÿtû_M6~‡ ŸÉаLŽõ¸Fʦ°é]ÀrÜñߨêýrˆº[[»©q©)È™â!£ŒšÖP9~Ö+盲 HXº|Z.«5ô.u²”ë+"V*¶Íð,?†¶¸Í±¶¿&c¡Y¿&ÉMÂBÞü¤Öò^´§™g¢Y”ÃI4w ri=FÑ›†::cËž¤¬ô9”±QÔV}z©¶ÊX~â±üè1“Ç9ä|‹ØŽŸ·dîê#ÉUMÇ:#«ó„Ú†¶\zº[ô–ÏÇñn ¦+ÉL²%uh ~L‚deÙ6¥» Ðºí¯¨4·Ëºèg™Å^"ñþV΂×ÃÔƒ}KŒQʆ¼æJ¹žF¯m›æÝrCkœtëû?·ã[bW'7Þ<¹Û4%ÚLp_èªjŽ6÷T74¥u­Ë›Ûsèä^Ô¹eÀºde‚g´Æ_¥ÉÐB"—°Ê°E™(¹Rp[,¢®Äüâ|é]Eµ6?<) ’Sr¾o™µŠjÙK ¾C™Ñ ¡½Þù4 Ðû>é&ÞgûÇà$ó^l”=8‰ïXòðDIÇÈÎÓÒÌŠoÜB«š|Mѵ²Ò•[ã·¦ûÀJð:^œ©WëÕÀ%Ãî$%édwÂîÊ¢C~®Pt ±ëp—`átx¥ìPîö H ¥ÍßVÝ-ê+ •;é½?:ycÚÊ÷/Ì x¾öü¾ŽöïÞ!Cã·iwx ýµáÏæ#h_mýO¨D¥Ý$kráBþ‘2´ýª¨ LP•±?!BOU5¨2¼Ý\[Ùu*äú”™äõ¤u)}€²'7ðMttºâ¸Û¶D%ø`ˆ«K­K7ÑË} wpè—M¡9‚!–B í-êYþQ1þýÿ;H1IyhO1ÂY4ïIÒ¾°ôÇÕ’06¼u‘¯\Mz?§R’|kQ‘Û’Û^r ·à+ØGq|]á6]MìÉû@6ŽY|òˆ¹W„“,ÜÌC—£W¸ÁB‡WÃ% úýt‘N«?˜¸PúÃë&ܶÍfÙ´/;-\‹m<\m½|çLw}a'ÔrÈ“éBk–¯ð8˜TÝÔXÑÙgŠÈšë»ô´È˰c݆Œ”ä8媙™@0çÃÆBVeäU §ˆÛ »0Äj®Ñf0Ø ›¡`3‚aþ XÐ\endstream endobj 98 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 200 >> stream xœ½Bÿ CMSSBX10‹‹ù!ùJ‹ ‹ ›÷?¿¼R3oøˆùR‹ ÷¶Ó÷uáæ÷$÷Ÿ÷øw÷Ôʚ걋÷÷Yûm‹^û„g€füêg–°»±•˜®÷›÷÷8û³™s–‹¡‹ÆŸœ‹©ü6÷õ÷u÷÷ ]IP}Uû 7Ÿ ‹ ‹ ‹ ‚J&endstream endobj 99 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1769 >> stream xœ­•kTçÇg˜™*!3©¦œ™rŒ¦ÄÔ( ‚—˜ª¤‰£èr§°Üv¹$n¹¬Àî>»Âr_aY–ë° ×€å ZŒ ž9)m‚95Ml¢ô˜hšw¶/§§˜äKsò¥ói>¼ó¼Ïÿ÷žÿ„« A’$´ÿ-¾‹ok!Û¹×æî¸»Ö{±;=¿zìÚ£ï­"ŸÇ”i¯ff©öfGÇÆ%&ÛD¯ëˆßˆDNø‰@âUb7L„/~Ä£„§|áJèˆÿÑä.þ.ŸPÞÔe×]ÇÝv¸ÕÑ¿¤ÕÌzÆÌôJ:iDÉËF"bÅLSÒ먔ƒ/ CÕ¥8bN‚g .@›ÃîÓØ«ÀMÉü©òÄa·0Šá•L›i:@„qhÓº¯™ßæÃˆ€B™o®_šœ´¼Êãü={2ÁÐÉz8ƒAD×mhH$?‹nݦ†/qJ3s²0^Xè`âu…A|ŽRr§÷ù§wç?Æ+ë„;ÖëWáÏì­>Á?çñn|ƒC&¦ÛTq†Gžô½^¿ðàƒ˜~…?ã"õÝÑkÌÝQÿ]ÛC_ö<$M¡]òµ‘³¨s–’"Q2‡8Ÿû˜ÅîÏzcOüø½ˆF+æÿ‰¥5Åü{Y×# ÁaØŸ(t¥>q¶èbA®5Çz¼N ilTfÄóÁý÷Ô|©Œ£¾¬tÀ@Iž€½˜<(©.7›øò 0ªï?2 À~36ñÑxrWQ•àH7צš-ð>ëh:û9"Í›RL¼Q['­r«Üæ*Ùß'E`#ïO#/;…vJ8ä-bo´OM~°q³ŽÍùv0˜úPuaª{r†ÿ£:Œ RFÇî/xg¦ìߴ쟸äߨ%})=àúNVÏð6‘ÎÒo%¤Â6È2É€¾X\ˆÇP!ó§~kºÅtS^‹N¸ -AéªûdEcØúS§<¤ºÂ&é"i•T”ô,úŒ«²7 _5²"£Ôk ²á8]º™Ò—§BéKJò×ãš5Øõ”X åkÛúÁÊ‹L¦þ ¤C2è!tù“KP]Z›‚Öá¯)טJj¡̦Švq}lèíÆÖ›ïÛÈ37бéY;%=lœ¼ßƒ‘‰] K$°Ûö…‡(5Í- -ï&Àq¡yèœuس—ã¶1 >ª{Év±;ÿ‘yåÚÈà¹F¾ìˆ#aئ ËÇÂ%õæ,­&.œâCÎs>ÉQ‡õžCkЮÚ^/‡—<‰ÏÙPÒ Ù3‹¬Sº°9ƒÉ£zBåadŸöÁãÕw|Ëì™ÑF‹°›AÞÕn"³G[q^þÅ„,|ÈAè4ê¬ÄcÊCÀf`¢½9S;hïlŽAÇ(LB¢úÚ·e4y²ú=…v”Þˆ‚–òC;II«ÑqÎn‚Ư¿Ä`úù§ð*¼æëg…VŽ ¢É\RV¬•¹ë… ÿ½ªh`£7t —…FÆØÈU¢-·vÀ·`ÆÞÆ$ö»L^”õc±ì1!šÖ€¾¦±ðýî.4ý_sµÈ}°ƒhõ<‰Hn ´Àµe7§e¨³ÓS[r[Ö6;y*#¿ZU,#oý!;ÎÉk`N/× )-$WF—-:·´“ãhf‚B±’÷Vb®²\šú+ °ã­QfÞ”¥Õ7)˜Å|Ñ•ÂNðÉ¡“Áµ‘°SÛ}×G4DöÅ=±=E7òz´5–â÷TŽp8ÀþæÍWûk†ó¯•κ •ZÙ¸‡ £XJ³ÑT[Á—U6õUžê™Jº,r»ƒ\®¨FÒ»…øEMlµœáAt§ItmŽrz;·s ótÎr³Óä[Õ‹|Á*Ó«ÔÛtÆ|P± "“>AIw™îËÿ†x]K °œ$‘VSU}Y¥I„F T%X°¯í‹ÀçÉOç)´ï<×®jÊTæ¨2S[s›ÛíM¼¿ÂÕßæþ3p_î+ÁÝ“ þ ü> stream xœUŽ» Ã0 D{MÁ ¢ÄŸ&Hd„´q‘*ë',™ ‚‡Þ{SSÝçØÏ­4È O©t+Æ åF®Æ£­ø¨YÁ«> stream xœµy TS׺ÿÁ@ΩUÒSA½'µµu¨µZ§ÚjçyždAÆÈ$@’/ “Ìc  ¨à@U´jµZ[µjÕV­­Ómmm­ö;¸¹÷ýw°½ÿwïí[w½‡k¹0žaßþMߎãØqppN_¸lÔHëo|ˆá™ª=Ù zJ §cñ€A‹\ÐØ{¿x¸7cý™3u˴еÓÃf„ÏŒ˜9;jŽbîÖyÑc¼Äú,ŒÛ´Èw±ßÿ€e›—®Z¼*duÏáoÅð9êÑcƾ:nü»Þ{°û¡=æUf1ó³„yÄ,e^g–1o0Ë™ÁÌ f³’ʬb†1«™7™5Ì4f-3y‹YÇÌ`F0ë™™ÌÛÌ,f$3›ÅÌaæ2£™yÌf>3–YÀŒc2ã™EÌ»LÓ‹qfB™™©LÆ…‘1/1<ó2Íôe\7¦ÓŸÀpÌf榻Cwf.íãÈèú99ü½›Nò‚¤ØQâ˜æHœBœnJõìÛ¬‚ëÇÅsŸ½0ós÷=˜ÇzÎïiêõ~¯JçIÎy/z±±w¿Þ!½¿ì3Ãåm—Y¤ìÜKi/ý•ßÀÿ×ËÛ^>ØwTßg®ܼÝ,nmn—Ü÷›ÜïÃþÒþñ Øú—Ái¦fùÛòòg¯¬}¥zàÈ0ðî«u¢Ú¹=,¸Ö"Î-w¨kŸ*_m_À§h²ã!Ôª´âÓñ½kìŸm+µ\0[©Û§o ´iê´‡{¾fa×F˜Ì]®N/?ˆ}¤GÉ[ºt½ ÒÝB–C˜Ì6.Ànص-ë-±ìbHÈVÖsÄ(æòèD®9…ÔYl‹èÔ¢0º`·óè{¾¯ìvÇ<©`=”0‡>¨AwD_ fúî]öwÏQÂ9.`½xü왼•Ë’ð/¯]  ÝÉárnƒ%¸1¡$°|)Lw¯Ð…œìê– T:³²rR×ÉÛ×Юœ3â‹ ÊoâɇÓõ•‰!vãQËÖë³[ì-}Ø0nÕüuã‰D~/™Xvþ,\æ¾}ûyYèè\%½ªWúË;ªXÙò!2X E·»wþúí„+D’/_H®ó¤Ô]“]/G3.aj1gÆê ƒä΢ZiGjnâΛ1y|iðSÒ‹ôFHÂÿú&¾€½~þe 'î¼xV„ŒØ§¡öÀ±ªýÕ[+öÂ~ا0{™½`)ø‚?¬Tx*<<·¬ζóí¼u["þ&Þâ›NœQœ… Öøhà –êÃu´{ÁlsqL´R•˜®’“ ¤‚ÌÅSsA™n¦Œ‚…õWOƒM°6è6ê­7”²ŸC޲8ýÈ÷®d5ÛY¿´Ñp‘®m\„Fµu[¢ØÔ¹{丒un÷SXÚß²¸,5D˜úÊÇïyâƒãÈ(\„ãD9r¹¨Õv­B^{eqnY³ Èe?c®ÞuîŒ$o” úPW † 9ngK [™žI)ÂÚ©~k¿ n²d1KF/Úî6²Ê‚â[K„Éåéy,¾ÙWö§ˆ=ùs,dEÆÅl•§\öuG@ÄvéÚôf¨†#š†?Âq"»ƒÍŒoYù%pØãבGÙ°Ÿˆ£\öplôŒVpRÄc$[{äPíà.MœH¯™ã§úø–7‡É*@åts2:7G¸-ÊIÚ'óÁUl¢ºðÔMŠQÀ!¸—‘þ8ŠL–“—þö oƒ”¸ÛÔGÒOà¼âÈŒ}KvŒ…I@$1‹ý×E‡-[úXÕYù0St¹Ë®›XL™÷µØû4OfÿûJÅ Öw¤“ìaM¢÷™÷ûîÕaäeÒçáÈÑ>]€æ}ÆZ΀Á<ÈBPl¨"21!(̸i‹î ‹=.ܼüU˘U”k)×NY°~—¸ƒëLø¦É`’à€k|W—¥-˜ç! #¢¦‘)À·NÚ”ßeæ“›°4B:V~Ãc7–È­»mSÙßÅg®U_{¡öÚ»•ªÉk”ãJÚ;_fëA«ÔÚè$çB+¶KMùuuÁµ^‚ìê4ðŸ“àEwôZf«ÚË\aÂ×LñzûD¾ãàs±¨xN•Ã5J”f¸×I•@v84ÈQ{›ý!·«àñÛ߯bVgÁ=¥8 LË‹‰@ v¥QWæRoŠøcMQö•ÝÁM¸Š7¦ßˆ‡éÜšŸIãýO|#¨ ´ÛK„ÔX9qeã 5/S§++ôzЗ–íßx@[AáÌüì‹£!;“òåu›r6æPÝ\ž7§àd¿sómì–9*X/è’wPaà ³Lþ³viHJÔéÛ“ÓÕ¾5Þ°îž³ïœåÅ¡Õ ¹ìN]xê‹Ú“Â’\Žñu› Œ»ÐÐW¶M¼{†/PìõÉnäÉq»'#óS*:~Úšðqào°ŠN{× ô“Ïge­Ä‘È’Cç‘u x„êÂÚúS¿ÝEÿ[Yª[yl¸‘Edy‡l$q Ëä²m—à+ó®)W\•&\Ž¡|·Üá×óØ¢tª8ˆÇ×,ä5\!ÕNyeh:§ø†Ô²äÅIk.žND¬`§†øúÍ{%‚Ýp?±à.‹ mw$b»ø ߨϻ*TY¤ê©T¨}a تê$=I$m˜ÈþÉU¿KÅÏej»»á 4ØðÉ~`l¶‘¢?»Š ¢Ò¨h¡yîÆ1bÿëü(å9YØ™)Ù‡(=Y2ø9]È,vÌúÙÓÆ§·¶ øMçÿ\õ;r2Œ#q¸ ‹9ûkj?áœñoú6àŽÖú y׳µ²‰´®M0±³23{ÝÐY™Z9Q·®ù:]ñ¸Þ¹æpv¢Ú¶æ*e…ØÏâP&&HÄ1x›ßQY²ïœŽúY”f‹6 "aƒ>ÎîgMÚ¼(ˆdMzºòu’ãJ±NU@«w3ïR ®írM„.ÄæhìÈPã ‚®Y ú´(€Œ¹¹ ãIt·ZšÑ‡Þ–àG8„{íòUªÙpÒ_hËßin -UlNðœzqñ_.]¸’'×åÐ×íâÄ%ls!œ¡oôÔøjÝ©‡Ž_[áì@åÑÏ^V©5ýÞáK[ ¬e)hY Øú{YZc,ý· 4i‰#É×!X—ž¯µútõ(§ïØ¢]£‰„ØÒUUkr3Uy!Ù1cIšëp,O˧ ËèºÃÞ‡tX¥ó·ßqòÕùAèB~sÍL0¤Xû ÏÊ,ü]!MJëGn`°÷F­4ÆY0Èh¾;êþA£KËÕõ÷qüùKÔÞCŽâí/ù Ÿê­ÀUœ.üZ~¤ˆRKFŽŠ9sLqT´"1Ä£Åÿð™æ'ª(t–P/¨¿ßd²f¦Õ÷LÖñàÜÂãø-GwœÑú7ÞjU$rá¥Ñ5æò’ŸOÞóéó6aHoAö„¼ôÓä°_öÌÍÝjªE*°eļ$?àdâªÑûp¬ÜùÙN™|¥F¬úZ‚ªö¡|²QMÇ‘IÏSƒš ÷A¶±ç¾êáPWR­Õr±QÇ¢êoÝ23)^ÝòÀ“‘‡Úö^®ºŽ‹Ò.+h2|nËæŸAÓ­@¬ê22I M%¡§\iÀ$¾dth1á't·û‰¯ó;ò¬ÒÁ¤@¬@.I•d¬“IšõKYv£ñA*%u½’• 4·„lºxSZ‚‹i®K&Ý·zŽÕ]Úå=n6Pw&Òmbïø¹,þÝ}‰¿þâ$˜ÝÒèe^i}Æ«C Od?A+²ÏÂ]¦:+ÉF–‚E£Œ Yï¡ð²Ø¹;¼Y}‚Ƭ&ý©Ú–ÝõÇ Z¶Y<òâè:cÿ0% ¨'ÔHp[û;|r¾VC_ôAp­´ʵEÚJµN 1\GÙŸìD ›™¦Óf¨Äá]w$é´ÙÀBv™\<ÄVCëcŠÐí:M Â:}€ÔÁ=LÞ1™µc.¤§]è\˜|.Â:GÌä³pè-Ó.àç’þ›ä$y+uR£*~Zù²{{é#§˜ë÷dÞÎPR–›¢OKÖ¨R4BÀ Q°Ö‚ÏΨ¦á4ÒªKæöñfšÃ<KÚ}ñ>^äM:ŒÍ#³É[d ñ¦i‰³p¾‰£ÑC ßïø7I¿ï°óñÏo~‹¯Í ;H)ùËø·åÎxÒ&¶8æVŽÑÏÝÿV‚ÓÅéþ#ÏÛ£Fº¿GØfq¡ã1jÑiòãÌ}eÏ0 Ÿò˜ÏB%ä ¹úZ(î.:¦“×gE¾G†È%ò«®†kÜDz‹ Ègÿÿÿ)EWtÎB–•ý­˜æ’†Í»ý!æÀ<ðiömöÿHµ¸k%7j² /Q É©Z¹jF@l¬ƒ”# ¿r=»®~Eͽ;ms'özêråéÌs}ep¦¸ˆ'¯X üt‡Š ™±«Muºcú**G ]mš›ž¹G.û9CÜÍ×ET„+ÂÂÃŒá–SEu¤6…¥}dËqsøYüüì*ÚKø‹èÊ“—, ‹6ƒ“n޾†ïÉ»Y‚Nª¼ÎA 7Ø&¡T­6)UXRëÝü„$ãG|÷è´kaò¼ô#Iâ8ÙƒêÔ©5~á¹T¡¸k§ß29óÐ*aé1õYm£67Ô]c¤»mŒÌÖéó²Ð õG-›Ïúß¡>ðÂW?b7¹ì<š{c|9mÉIêðÅ߉‘¶®øÜo{2ïœu3ý¬}níËÕÖ ó ë‘ì«P¸ËêŽc…¥yÐe@PXHÆÚÆo{¸Äð‡§ç$OŸ¥žjW-섽ڽšß‰ò˜=ûÑÕ-Ë!Ö-&.=†^W£ûX_A3b­¶Ö~(À÷(‘álW­>-‹æ®Œ‹§rsÎiÑWX³çu"„‚?,Ô'Ø£L›«„DˆNHJI%‰³«õLJ¦ˆéklík`‹çÉ«ÃÞîNº›p™ öùÓy³K"Gè#½û¥%‚¡vÀ^/±õpÀêgþÚõšÍëõþð3Ú¨’HÎIpfû<þqµ„}Þ¬£z˜¨6ýAU¬+¯hHaûzI»ƒxƒ/lª®ý\×ytiìÏ.Û´á4.¥¨U™ß±Õ•,õªBÛ¬W{L¶ÓËY´´õàÕµÂO­™Ð·u±aáá%aÅùY9¹‚^ï¤Óiæ‡.òt—«TtUé\jfzfþõëÈ ÎxŸtÈÃR Öâbþ$)]Jó i”1]"¦coìHWXßOn?•àŠ£üBÜ) Ob[t¹ËFö´®g…¸œ7ÇUûG'lW©­ÆÚN…uÙ_œùDžo=0pÙiiÊw'“î‹«<ö5”V›©ã¨ÆvW£Ãž›˜sS"zá%¾Jû*àò†&o„Å0-Ü{DЬ´Ið>LÉÕ[6$w9L†T{f+ço¾,ÄÃzn­¦h²ì/wÀ°Ëlm‰¯}”°pþh:3—ÓGµ™¹Ž"ж¤QB5Û}K#ã^ø¶3Û±£ÔyMÖWñÉ“Ÿ-.‡Ÿ ç={ª–]åŸ>Æ‘(œ:ÜP:ê+âLœ¦¾ýÎòÃ`(iÈo6ÇšR4 U •Ÿk: ܽ}ïMxíÄ åd TZÇœH7Ù‘•Öà4:㤅¤znß–š2—ʸuýŠš‹tþT‰ÝþÄäÒ‚Žã~Á÷ïO~ÜWF܇OøÕ'/ÐÝ}üÍ7&/žhŒ©µ”k»Ã6Árè\A#pÍ)F%i–†{ÊCÖoVGhS´‘šTHѦja;'ëP*³¡DØ/½Ñ4{(0k‹§×”’ä i#ìæÃÊ·D%xŽ|0ÐùÞ½_új¸±àÚköc?‹¸‘v¸õ*í0NàÇX#ÒTa«ÕÛh j£vØÀ¿}d,®§½ÏŠOV[UÉ©ŽÍTvÐdá‰ZŠjñ'[éØíG\`ľ7]ÿ´Þ‚1whZWâ{LxD˜õ^ñþ®fËUõ©u43¼xá^A–:3U«uš<:y]ôð Ùî) í4·Râåä )…ÙzCV†WÜtìkhÓ†œØb?ý&XËÉžQZ¹1r“_ø*ŽËŽÆ}l ÒDsP}‰©ª*Θºaìùaè(—ý†Ü/? Ì Qn#ñS—zì©0^¶þÕWöw|K¼ÍŸŠ<àÕEåòÂÜ,š¬ô:8=$¤¥N_°Pž”DW¨¶Ñ9ïæ—Ø]ÀU/ÿ'·Ù:'¾ZyóÞ^ ˜»¸éþ¼»}eèŠ_óU,§½Tµ¨6…m>à\µÍX¼sÇžSž¾K^"ýéH.—=#åÈÍx€’ïÿJ󑲎Ùà·&z=‡=È~„œRŶÂWPÊ]«{t·ø ,´¥~°†ÆÙõ°6Î?dñÃl ®?½êpÜôý}‰&>åwXÅ¢‚#éRâ š‚ô2.BH¼iÀ2ï8SŸu è~úH•ñ‰ƒ"péHäð:Ý@ƒá@®p„… å˨,¼½ÿ;Sð³XBk>µÍû£[¿œ/nà7ìLß%ÜéO[.^:»zú²MëÆmüM‡Úàwÿ#¿7uD¬Þ£Å]ÈKjŠ0Ñûx閱ˇôøËœ'èôýÍß•|[„˜ŠøÜù{¹Áy|qRMLk,r›:eõ„±Ó?¹y²îì7­öö7Þ¿U)²¶Þ}Üt× [ ^äƒX’øÚ†¥q+õ»Â„ý9µ%–È"E|Hò¦9Ǽ¿AžN]0ˆv„ýüëb=¼o¨0…#}¾ŠŽ‚ì·ÓÐÜRy’#½?àãaŸ‰m‚Ã`ÕËÖŠ¦êû hþ¬ß\â‘”±6pïn6Z°é=†vJ¾èüß5Ÿ\û'ØæK8Åz§Ëí§1Í?ÿó»eb:$<Í•“æOMMù_|…\­æòÊ. gêA§²uyúœlë”óœ1·ídÑû?$‹•~]ž…í¦uÙî\GÓè\”ÿ™á¹Cųåå?”à-’ÊÓ ®+!}Ð%—¾8m7NñOAçCÒ ªí£fÙa é–D$4žMÊ#½>"N§È‹·çå—•aÈ–ÿþhŒ§ÏnA×”Øk:-ÆÇ~º8UzºJ š²XùCNÑ@|Lö#3Hoâ’hoš*#=+÷îç(ûX8‚ÝòQ·(¾²Ï!™F:‡ ß¹ßJÄÖ/­X Í;œô·­þéáKcÀ®åK<}ÓÓ„-MË3ÀN¸Õ„‘ÿÃúýéy ©³ÎëNìÃ-Ÿª‰ eã4ÑÖ1F¥‹¨N¦M2$q„e…îŽãË{¾=»CÏÐÓ…aþÜyêyendstream endobj 102 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 5008 >> stream xœ­˜ T“gºÇ#ñsª`ÔÔ9ßw«ÖªU§¶×Új-ãÒ±¸#j‘UKÙÈž'{Ba–°+ ¨(Ö¢¸´hkkGÛj™¶öNçNk{ߤ÷œûôÖ™:s:s‡N8á|9ïû<¿çù?ÿ‡É?ŽÁd2'lغkó²ç‚ÎΦã~bC` ¦Œ/ÿ%÷‹0´qÚ½'ú§2‚?‹Öó_ÍÜ x-"ûðƜܼ-¸üøß$l-LL:´-9eogúžŒ%K—=ÿÂjc#’1—±1±ñ4c>c'ccc7c#Šñ,c/ãUF4cc cã5ÆRÆ~Fã7ŒŒeŒMŒÍŒ[/2¶2V0Þ`„2ž`„1ÂÓ³Ïâ3Æ3<ÌÌûã6d‰X_'dsÈe¶yÂø íÄÂ;‘7iò¤¡É{&ß☂~q-Tûĺ'§¾ÿ¦jæùÀ/Xh áľ«IÑÉôúBÐZC±“¬ƒF“|Ьm‚þ)s-¥PåT€Â@© ÉFü¹ÃârT¼Âf¡|¶“^"<,•I!_êÙÇLÐíÚÖàÃVT–*@¥µ{uTl€­÷èM"àŠ@£TɈtšÅ9Bß ¡“Ø¡þó2‰‡‰’‡ÐÖ!*D8µÆâ)= †ŠÆ²ÚÞoqÜ“·õ =Yœ@IxÚbÈ#6$Ÿü²-´”(@)]‘†T ·‘§w—Õ•xíµTõ@ƒÄ'»<ûVíÌ—ÊS¼¦XHaŽ(#?A² t„¼,¥ƒÇBV^«:å |™H›¯QëèJ¯-Wf/ªvUتldh`'ç;tÔæ¿ó‡ôßÏ ÿÒÏñpí6hMbß.Ù˜¾üå§i6EÏb£´b ­ÿà3øˆxÛešIÒ—Ù"œª|õP¨FLѳGŽ…„ÿ…§P)6Îý·Ê)ô)ÍAЄûŸnêÛà èÿ orè©ìt0Ù¬¦ƒ•º†ZCÐ:ö—Ö_g-Z3—G…úí":îr]cù­ÈÇùjÛÕé©4‡žCÏŸwië§h*âà/~†¤­t5'ñïý~/b5Ÿ¥:†N6âTÃÁm±¹óÒ")þ®½1û€ Ìõ–ø˜hÑ]Vàt`-Ç`6XÁLõv¹N ²bò·ëc¯n/.O§Ñ¹´”^ùß󉢥ž,‘ƒZ¥…–ÚK¯¥§½¾ˆ/œCs.Ö¡e·Ð8jø‹/ú>âûög_ÌR§– ¦Åi2T˜I|#z-½•?ò]ÖééEºB›¨'Š1J‹ÚFÕc| Zµ¾Q1¾.9ˆ÷‚µÄjóšË©v4ßVX¸ø<“Ñ´ð¿#OEî‹Mæñ)é`Œ+ûgP¡‘2“:ŸÃ±·^¼ù½%;Òâôdþë”4;6b/Ûåwì&ƒÉh§Bð˜>f`Ó§,´î:GÁéâÇÜ^`£íh'â¡\4wõ74‡¢¯<Œ›3m6ëOìoÆÐ3·ñéÈåÏPûv¼·ˆy XɼàC-­ÌÀ–Và$åŒ&§´¸ÚsŠÉí4™²…~:ô‘g¯¢†»ìa›H Ô)øèt*ÐÒ°:MÆJ3ù¯F®K  hóTdþkù¹«XÍBz{Kð\4u¯ tíaJ¯Ö¿Å æ2ƒ¹ÒHA&¯ ò€;’Ì.”CÄÕƒ (ÖƒRSDÑOŽ´Œ…‰ûaòfWƒÁ`s¡þU²tõ¦S°ð6 9QÇ`êEœÏÀ P-N‘iÓ@MHùÞJ_ÙÑ3[œ©¿IŽÎ‘²ÄªÔ±ê›lv#fp±Ìóö-´t¸ßvãŽò {ûÀõ™á? @Ñœãò^9ì&Òkæån·œ‘§-Ð F¢JRš—“YóÆ`ò{hQ' í»»¶2ÞA†ŸiM¶÷~NvNŽÄ¦´*ÉÚ,SÖ¿Ì´™ž°[Öß2Ø|·þ}ÒRnuÿÌS¦/FÂâ¹Ëüóè¥>ô?^Œ·'×såk¿ØÇ¼÷-ËߊåÌÖ`³÷áÆ¹q¨L ×–1pÀt0ˆV°ñަÃÅ®ŒŸÎD«(ˆ–FL#‡få¯Û± â!¥NÑeÔ1D§§µÎ+,ÍÓnƒ—7žM¸|ï‹?÷ྵøÁ­— ¡¥C( _{*z‰£ÌÔ瘥¯Ü”žõ~àû„´UY~î5£é_B€gçy7göj+°>´•6v:&8 »«é½¦á£h) ‹1$¤Í)ŒÏJ‹ˆhQW·ÃPë<îhkDlÊV Fwuã±ÎÖÎlj|h`˜´_ôŸgùgøïsmÖ’(ke2ÐP¸P´obúãL ÁrQI7ðýDëÖ±=Xë¬7PÚ,0˜X¹±Üj¥zm¾’L{>–&èç‚‚ûˆèû è8÷À­>^µÌöç;ü!÷¹™áߣ€—“D¯Z0ˆýâN‹k¨òY\õPNÔˆœÒDÕΨ.Þ[÷?ÿöÏuä×~Ò`5âžÈ}´'ž ÿO¾2!rÛìÿo;Äš×¾ÚÒÒ±\¢Î›½c#jÜ–£ÿœhŽ–Ž9EGêk=§b;^8±.8¿ù÷hú§ÿå¶(œ ^/Wë—<¯)bwvïà@ýwÞ“Tû•þ¶^܈zuîx"ô‡éc z燗X?Lóû9öf»ý5ŽQcRHÑÓÙ¹WYýåÈÅY;ýƒ:ÃË¥¹›Í§¸Ä;“¤1:®B¦/(¶jmT´š|Á~ò`ÞÄŽÇ¥4H©Fܘ[«¹qý ³ ì¡‘o… t·,6«Ó?1ÀÄÓO\z'˜¨8Š}T'ti;‚ßj ú(%·ƒÝa›ÙMçËNryœ—1~óY(€º9çOÞG°³¨pMIUdê‰Z /É÷JË ¤±>v‰°Ø¦³» F—…²{ë: *yK ¨°X&Ñ+é³vîÚ¿#rþ F›™,«©ïíØe•ÙåBw>—þtͨ-cS¢¡ ¢÷óbA"›Ð‘Q*5 A Pëmöšº†â¡)­ßÑþÈòŸý'êw;-)ò êãp‚iƒíÇkN£~~‹u[k©mµØ:¼±f?i–v8¢¯Ì,•ð!´zNõ€U­Á°²¯"u' )ˆÓïšNVÝl†+`#ú}}=w>±ìäò¯êÙ{G;Kzmõ”ÕÃéA+¿5•q숀÷½ R©PtžŽóTÝòçûÐ’ßÕx˜Ù·ÑE<â6áùèvEÉjײË>0Uº¯Ù;œíø¼5ºRQ†Z|„Dn¥¼¼®®º­'þHüÂlzOIæÑãB6qâ`º©‹ìWG&J·ÊãUy\O• rÈ7ÉÜM–²Z¨&<%¢ìlaJLO^Çý.t¨=huƒ†¢Ó‹.a3ã÷,ô.ºÊA¿b£04û4ñöFìf)zàï¸Ù¿eSm: Ç0ÛGÿ–m3Íe.—Þ‡.ú3öµÓY¯ ‹&¤R£ó#±_ cãtà0¹>ºçñ‡z°ÔÜ Ï ÿ}>ÀÉ[!Våeò¸ ð"t8«í®¨ J‹«² Òʼn ·¿»ñÎ*1ý[Ìn¬´æQ¥•æ(ø2ü«F± !v6=žž@/ ŸZ~b#VÚïNCO—ËE\Aeœz‹"íµXiwën8O6¡‰5'¨º³Ç{±e¾àX¡ þŠó;ç*‡þ9™¢ŒÜÕë°gÒqeŽ¢ªšÒ §‰4»›Ñ [ÃØRÄÑn0V6W7÷\ºöïXŠlJIÉHÇyÎÈõàLxÐÓ_€˜­ ê›ìF~5C—¿†%*ÍÒÝ»© ~t¶²óÙ(RÌAsÚ‡ïÂuâæ+Wéi$]ñ³q®ŒŽþ}® òÄ`wŸmk‹Å;)Ùò‰õCi—n7}o·é¬‰^-Õ’…;3ÒÒÈÐÖ7{Mµ&/e:b95p.¥{o%6c+&Äý8 M?wâ­¸Of†ûÑm4—óH”ø‚gq”bC½·´¥´ƒºŒ^)iÄY«â¾•Twh ^¨þQè-Þ/G…NsXÆWæS+%©Rü⊓4¸ÞˆÄÚø3÷ZÐ"3þµ?‡S'´‹óÂÌìjEYuCU#žÏçúÏ50Ñþatp˜˜ô×+µ^UÌÎÄw_3q×{‚fâß Qž=ƒʪõ¨ÜšSâYgŠìÚŠ§Ø™ ÉÄskŸy~ݺöûG,õ&' Fƒ#ç,Æ’  Þ0ŠNÒ)õZìjUÕf0–ØI§ËÛ\RÚ±ûrÑ pU³Ð“(¬QÙ•ÕLeû¤¦Å ù–t‡ÚÈs6CñÉG¸s¯aãú,½R“KêÅ!¬hæ>ÀéfÞ»ðO?mwZµЏ{Ú쬮¯+%+ÚÊ.csÌŽZj-©Ì.ŒÈËî}<4 Ê­ <…½pRàV ×?Ì9ön›³Ãd78'FCF62 Õİg‘ÙÁ®§ÊõµJ,÷™P£¤»G„³öúkBš %ecó›–< Ú$àAŠ)5ø¨:8¿á“÷‹³Ô…‘c¾A]\X NÌX`ðÇ5æChÏ_o2OÑUÓØß3xˆ>Ø[$PòuÅÔºô'ÛÅcèűg¸?yè_¯ôÛÛ«DD<˜A*®FUÅ@$ìKå½ùoX…âá#òó3de¡·Q$§ ðüè2Z­LqÐГt[:ÐHt*u~p5c‡JüØyøž‰B“…²/q<¢šÌ´ÔŒÔ¬ÊBo«¯¥)è¥ÀçÏô!f5Óà<„É®2«Tz}‘”|y^„’¯U*$¤.0»OYÛNô¤¾"M!_ \ÅØ¾À fªzM=pú´ÇGÍØfPD)Ø(4H ¹&•ÊÀjtÌÁA%÷š-8_¡£8›«šÐšû -þ€ÓÿÙõ._%Zz÷ó‹€8š°öìZzÁ*:f‹ÐÛ{³Mé¬,n“¨Ôj•ti•š% %ø‡žzC*·4\ùmC¡]'+é§_\±`#ˆ;±B X0ö.£7|{Ce{-„u…Þ_.¶[hBzÕùÐ3i(q|â¦M ‰v‘9ÙžèHëtúÑó{îßB³}±y˜_ù®7Ýõ\{ßs!˜¢o9…˜¹*¨vÕ nuAñ‚¨H*“÷fv DCt“îƒMi6oå²òœ½ºÈ‚'#ïàÆöšR¥¹þJy¿mðs¸AÜÙrj-=yþœå)UüŽŽ¾¶þ*™O¼¹Ö 3©HƒÞ&"‚—–ɪª*o~~ïO' 6ˆäô6zÕ(óû° 4í¡ñûÌð¿<–†ð¡Ñï8GDÕ™¼ô´ôœraC«¯ÙG†’“Ư¨ž2¦L‚)“aJƒñ¿œ`!endstream endobj 103 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 213 >> stream xœcd`ab`dddwö Ž441%º»rý¨gíæaîæa™ý=@è€à^þ] ÀÈÄÀ°‚‰‘‘¥éGßϹSüðÏø]ýG9óÉï«DÇ|®ŸÞÙÛÜ-ÙØØÔÐÒÛ9­Aþ{ÌïØß@ÜÐÐÙÙÝ"Ù0µiêäÞÞéÓå¾GaòïäÞ®Im»%§Ož2­·»¿c‚|Wïoãû¾{÷–˜0qÖŒ {zûû»'qLkžRßÜÞÞÐ Ç'ÇÅb>Ÿ‡³›‡«›‡»›GˆE¨Tendstream endobj 104 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 5834 >> stream xœX X×Úž°LFEQâ(Xÿ™V«¶nu¿j­u¯àR«(®¨(²ƒ„%@ö-ùÂ@vHØWŠ»¸WKkp»õ¯ÖªØÚÖºôÚž±‡öþ'¬é_ï’'¢&SK)Gj*åDM£–QË©Ô j%5“êGÍ¡l¨þÔ\jeKÍ£Rƒ¨Í”%¡\©ÁÔVŠ¥†PC){Ê‚²¤Þ ¬©ÿ¡8ЧúP}©%$ ”Ný"ò5YpYXî´¼aåouÙúë3t?Ú[L‰S™!Lúºô=Ôo|¿¢~¿Úl²9Ü?k@ßM¶l ?ðÓAvƒœýaW*Y$‰–\ÜðÒÁ~ƒS7 þžÁžb;$bÈïCµC{7û‡Æa£‡E;üFèç†ÓÃ× ×*” JÀð2ÞU Þ–È(Üac›”_ð9ĺãþíz{%C‚*:!!"¿ (ä^ÐEePS+¾ôÖh]:ÒÚC¾~ePÄ¿  + &7qOT:Ÿ `ðB!„ÕÐW°ÑÛÓ‹¢‹gƒÝ#r6•|‰f ƒÙ:ÈßÁ- åR2Qäñ‡ñÅ­½Wh*Gæ­•‚œßŠÓ’ÃÏn68•ð1‡e;Åã*Mã&˜SÐÏלÃI¾\ ®^aaLçÚ¡äj°ûÖˆÆMdyM޲hýMÉ o7DZüÛ4ZÀ^.9t.27VÞÅ–¥•àç[|e»’–¼ÜmœšFÖÚn7]™]Ì;âKP(âèoj¸nܹjON0 / ¢ÏŒ¨Üh)x _²âÄ§Ø [M|Â’Æ# dñÃÈŽÃÛñtvþŠ[¿½råÚõËN“&®˜7ß4E´AÈ4ˆšèêK!L¸Í@¹_xbL|"§JU¤Ô»j‹n=I8Kæ†ð2Dþ£!ˆ¹ßö¨>¢cƒÁ_ÅÇ¿;;È ˜IÓAcÑ»~i»pfËì<>5"E^Lèu¦Å°Ô€Þ3 «]…Ò’LÝA³Q!{þÜ©K7Ï-˜6n±Óâ<ãðh«ýÛÆÖƒDO~@d;å§·6¹†ûzñ’'Õª<÷?•µ½ê_••î]õfÇ6KI¦œ…7Ùb(ñò„wnwµ[Åj²?«Qã±ü~,²¸z¤±TÏcŸb…”Ô§ŒÔ½Oç—“IƒÈ¤é%±«7Κ5ß©õÑw­Æ¯nžëÈ™M0¢%†J#)ZÉ~þGÔŸÓÊÊ)ÑTê¢Ì\¿,|¹3/ùr¯¸6a‡-èžµîà‹³{¯PoÚN (xlÙuoÓ[ôˆ†-ч¨ŠEÃi77ì…’bs{r7GÞ(u!{Meànt.Ø>¨;cù|}»Ò»÷ Mìݪ Ý2»ëeð5 •iq9EZVÂt—k²á™ÁîŒq[ZAJ*XÔ±%¾ÇÔMÀT•¥ Ø“žÇ#_ñµµ÷ðÛÛFÁ?½¼,¿*«QÃA¦F£KÉÓäB0?黈—Å‹“±í†qÖ\rzÁIBábÆÑZ&šËßÄDKCw†{D¸B0+Üö~Úr¿Jã»ùˆè°—%jFRÑèëf:¯²»N]u(J~þèŸ[Wt…×q'°KþšiÔ¿ƒâéÖ;z¿E}:« ¾ü}dÛ†m­Bº!Þ§w] Ö#d@Ö=´¯ úlÏ"§¿b²]KË ”𘮜“´lßODà 3 à%ŠMàîåËà V7ÄŽ^‹Œ(€x ñY³=ÏèEVc»rWï•`C×gdÕñmb‚4B²Pn N›$Ì ì5ˆ>øH^ˆ½"w%„Çû:¨éÄâX}|ñDo_þzX×Òh~•*P;€J:+Rêïì¡R¨A“ž ¹Lyx‘twDxàö½;ZžFöÙi\âß0¢ 6Ka±Uþ QÉ⹄ȰÍó™±°õÛcUHŒÞÐ ±¼Æ³XYL™¾°úÆHpÅó>ÆÃ§b›ïG!;Äïý©° &#¨Æ j=‹ÊÏZ¢ƒ‚5åëŸàOš#æèT”£ÒÆ”IA ÌšÎýꡎoWŠ}B»6s· >¼¨go¹ŒÓ"3ƒsÝÓãµq9ñ9 y™™y©Úo6ç£i¤_ûc¥¸Nß…Á5DÏ’”±L[Œh?!âµè«×iR¡Ùa~L{ÇÅyó[Ä="WRÄø n •©“!ÂÁ«Š9Á–.Ñ‚ò™sâQpÇ%âî¶½ÚÐ}Ýýí8ëÊfΜfíkhv -i©öv+Øöë0ÆþBpzTVU3ÈÇj‘xë̹‹>¾Ööcë•ÖË-kœ{qúø, %9_-\g£ê©»ùÈLXLÒÑsõ‹™6-oOÎõ,PW€CMNj/hËÅ=#Þ2 u—¿€DgŒ¨Œ$rZÃê‹¡ÑË~ÂCp¿qc°-ð|4b‘ýÑGå&h…Ç%‡Åó!ëׯÀ<˜w\~ŸÑ\`ónœ?Ó ÄÉJ³Þî)Dšn¹ñÉK¤5éð3Ü8Jßþj¸¤¬ ºÒ‚ª ïƒüý¹[¦qëÆôŠòs|q´™ ”õ Êè.۳܀’ "B!*ÒØ³‘Êä°sãÑãÇóa1ƒ{^Ó®ô3ó4lïd~´ ´ú…þñà’uë¶-Gejñð hþgg. -ìªÏ…™ÄöÓsŸ\*ù5)Ñ"víö£§>;tèäé›×­ÞºÕ…Ÿìɦªš‚[€ùîÆõ¶šØêˆ*^ŸS––«Ñî.ßLaiNuiXíÚèj¯-¼<Û³x 0Í›±­Ð;?Œ—`*Zâ7 <ó¤YQó]á#ˆf¦¿\‰£Á//~Ó~|}%™±½d20‹é8ˆ„¸$@T^tžZ)–’—¶‡Aýð%v̼ƒ‡Š²êêt|yAܦ YÃô­ó¶éjïh‹:<„¥ð!:šÎ0KMç­| +ÿÍ1é¿8$Ñ‹ ]>ÕŽ(Gãv£Ž´•M"||þîЪM]?™Ä/¤‘³ûyc±ö3÷?¼‹ûrxñç¼iÉñÛÄßÕ@]@I(„Àvp¿bŸB¿*ù^`.•}ÞTG(ÄÓù©ù8Õ®ˆ8rêdÆ–rQÕÁzevtï<³CîÏ–ø£‹Â0¶Ó’0£5¾ˆû›áéX/žFÐ’ç‚ʪ*¤$ $$  $¤ªª¤¤Šë>\Ù¼‚ ®¸_1MÞ‚*Ùª„¯e0qÙ¶jNÀÆ´ÊÜöʤê"u¡ºÈ§Ëýbûû[¢Í«Ëâšý òËÄþ2×¶]ö8•Ë»5ïÎø ˆ‘<Ÿ]´=ǽŽ:œh9v õÍŸà«åRC²t]ÙwZðÄ¿8έamŽ+±à–óæÌXzÄñë bÁÓÔO‚ó’™#‰8Ö††v¤â¥`Õ“Š)tO—¢!íhˆ÷@ÏÝî¾Ä|øCTŠ"…Ðq d0UÁ…¡Á!þþûѨ}Èæ2'y,üüÚìt²F?ÂgM%“E¶HlÝ`f$'š‰5gàñÖèe'\zi±¥]¹ÑÌA›_6Þ¡¿ºI:ä½Îg á÷íÞ·§á”[Fm’Κn¾'ë³f„‚¿§ßttqYçtòW}_#&Ó¼nÔSÛ>xïÙ³ß![îÿûé/þœÏŽöBŒ4kv}׌7‡˜?Ú8uõ3½M‡f‘0ŠUÕÈ ŸÎÕõ°ÇÅ¡] ù°sŸ¡àÁ£Ä’–¶ýG÷—æE8qX)ëîÚ[ô‡$k„è)~n‘;8ÅÞ€"o`$w|ÀObQœ5Ñ2ƒ([P[ $™ÙݾkŽYOÓ[ñý¸•ñ.êb”.oFÕÚØÒ`ˆ%Î\1Ä™oÆ›WóéêâøÓ.›æ.jN§ ­‚,^C_o×¥{–îE´}.5ã4ŠLk&=Íõ4ר2¤Aî—Azƒ)ÆGúPa!~| Ù^º¦³»*ØcÙçC% ÃH˼véZ·WÊS ]nQ~aT–JÃK ?ªÌCÔyûœŒÜ (fÒ z‡.L©Ð|ÕdåzooðŽõ×8¦r˜º¤ÌRA<8È"ÃaÙ ¹ñ<­ÂÔª¨øÈ9$3‡^WªÁß!¼ëë¡>«Zý¹ªÂ„˜™†W# b¤¿êÏö¢Á‘öŽõá_&öÕÆìå£RÆ¿iÂÊ=ú Í%GbY+*cÑ:§:Qu+’žµlBÉll$9ÚÊï¬øZ¥cj…™[Ú‹“ˆºÝ{õzI×Çgzqt$ª#e ~¿a‘½°Æ/ÄI>{q4«¶uF¤&IþÕ¬'lw aÐjß{ Â%¤‰‹Åá\W”–¾'“«¬Û_tŽH×ow/pzÑÇ X–y&€d43ƒd´:¸ Tá»sæ½ÅÈ zúYr’_ŸÏý‰xÓÎ*7^D³ˆÿ/R¶¹t<툾eóÐ[ßß}{¡ :=‘¼H ƒŠdåºÂšÓc - Ãý±+'y‰cÕ‚§HôÓ=dƒè©mØ‚“.àáêÆ 7ñ~Ö v¶È *­Z«Ò2ê4 /MÀq›‘ê U!qZ/ÿûSKçOw\½°#,½Ðh2~Fø¨?Q^</÷»[0Jðn(,Ì®æÒQ#š€ÎëŠRR 1eˆ0Pnzxä!aüö®Stq§G{vO/¼EÁó™%º"\dO¹¥Åƺ%­óJÇ兩r7ؙ⦠¬ ü}š™ÒœrZsEsZs2í œbÚs^ëüÐtTôO*òõÃÝ,ÿIÝþ'%\fSzeFBøG§nÍÅ[í5ŠÔÐ*B„éEšBSU·ýû‚€{EA°ú«*àóV¯SŠ™úó†›÷ó½‹$9vç./kûÆðô¦Iô~×£#¨šý<ò +¬‡õ®›—E3+‘œÅ ±«Ö­DqB›¶'J™ª BY¬GÒ–™çæ"&šÛerðµ5P^À5‰Ñ€â÷¡ZžâQ•ŒäSh§¸>鸲`}L\bD2Ä6WêËr¿t¾Žûîá;|»/H圻[D.ûæCShŽ/ÓjµzϺ}pŽk¾¸Ç´ï³za«®SêV r6;#7“¸”Ò°yl²:VÉá»xGlBd„9@dfôžxt»ÛçŦª ë甓o3xÜŒ­Måqi½Û*jœ-…è›SO¤s(yâm•»ˆtÖ›ìÂK<žÍk$w¼M¢úåMî4ÃøçxV£ 6KkŠrã²c2ð}än¯ÌJÖÄ#‹ #ßÔŒ1ù‹Žï2¸8ª +U“•g*Í,ý« Àù¦GðkYÈO ÏÁïmA€¬àYâѰo ²3Ò ŸÉLÔúãmØgá~G&7làN-¸µ†ÐuEº.“ïl‘ˆ—ˆHê·å‘çñu7æ Fš ‹Sdǧ'óh&åãéä<9fæñ“¤N `â´²òj´ Ù£,n××*<À¦Øô›~`cGQÿaÉ3’endstream endobj 105 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 4236 >> stream xœ}XyXS×¶?ÎᨕxTo޵µ ¶·ÖŠ¢µŠ¢ *£âl늂ó’Ø!™PP,‰€ÔTœQ«­¶ØR}~}zŸVí>~›ö{; ˜x¿÷®øÇvgµÖoXkË#ìl7:0zû¦øÝ±;–~±%>hSL´ñœ DoV¾±#åN<àd œìjÇ1·áîQÐid÷{„ñÏóvÌõ‰ÛµÛoO¼ÂÆMÉ›RÂ#"·DEoݳbûÚOÖÿó›)ŸOýbšçô^fÎbÝ'Ä"ˆø&>"BˆeÄrÂ#VÄJb>áC¬!ÿ$Ö ‰Ï_ÂXDø‹‰%ÄR"€˜A³‰áÄb$áMŒ"œ >1š`b áJ[â}b,E #ˆi¸:ÂŽˆçÙñä¼ïmöØüa»ÉnŠ]?¹™ì¡Ô6ê/ûíö?Ó‘ô£ažÃö; sHpxî¸ÇÉÖ)À©|8xððš#ÒGèFtx6âï‘{FžxÏý½ÖQΣÔÎ.Îëœïðíù þ%þo£gŽ–qOGpOºéa›žÇEÁ`¦¹‘s©ÄLQj–JZÉÂ)”®´¸¢TR˜ÂFRÓ¸j}cõ¯Njˆ'cŒGi™¦£ÉTuÙàfS¿@7–ê”IÁ9°¬ Ìì×Çé¹ücø7¡†ód¼-1©¨Ÿ\?tPÅÂ1–¾¦: ’ä7ýøc}ÕÕ±M@+Ñ%V¤iAȲ<ñJ\£­òãY’‰Æ?UÉÕr%(ÜXÙ2;psÒ¡9T=ŒÀù1ÄÆðŸCž ³ªè"õâYÿ“³[¿]TÇòŸÜkjj¿ü~OHût!*±Üê d(‚i$ô¢Žº]rUjÉHûz/ÿDÈŽ6¢:æ;˜JÂIÔ%pD|0©.¥*ì¤ø,eÌ#UÏñôå¥9Ei,ò£NÂ$üs8¦y_ëØ½ *»z·R\¯tyYY©ZTšVÎ&V¥¨v‚•`E²›Nãï¥vé8ûæhŒFh+”µá/…6˜|Y¾äÑ9j±º\­Ñ %$¿!²±=ùÚX8òÅ­¾Úôƒ‰•ìΚ¨’ Õ5‰šMŠTÒ-=Í÷›D™ÕÂb±n7ȕŸååšû^¨-¿in»‚æS‹U¢Œì¬„\!¿áðŽ!coZð¼ø²ÝÚ ¶6倸vN§¤N¼/]›YžRè¯ÖMþ2äð …\)W å@Ñ3I e)¶ t4ñ‹Àè½â.æœÒa¡•ˆ‹RX´Â 7–Ú†<vFæ¬äèséyu¶PÇVöÖaØègКAkVmJ…¨66_"ÛâªÄÅ Sýص@ äÆbœpƒ’¥“üÞc‘«´þcÑ ƒ&¦Îs•ÆçŃLç‡Þð—{´×S~©‡Î:œi°…1昿æ¨KÌ]È‘ô¶xÎ*íÍËÎÏÙ‚Ð3?ž½SQÓ. ët¸i´sNLTÓªê@#äŠÆ Iîß/|u£Ww¬‹mÐÕè0·Õ"X*Îçƒ×Íßé èiç´ë: ¬¡ãÚáÐ Z2kRJEuÛ«µ[¾ «UcV+6ŽB£Z§ ºF’ÌBJø7üŠið5©6ÐÛÔhóˆd*ÜTE4õ‚‹'ë,¼p£Pzîf ”¸¾:Sˆh«)í1"…g ¡¦úÐkò-—¹‹F»ÿƒJ˜œŸIZ|·´“„EÔ€z’³…䨚§òB9ö=³; :_æ2ÕSœ#|B¾Ë›¸±­oL´I´Ðf5ÊŠ¾µºÁs’ÅÜMp¿3ïÙÝîÆ[WX~RÒTóÈ\^*»œBá æaW°Ë?„èÆ#zFp×ChÿçkHYi:ÏÚâý«ÑJ‹ÖŽ5i`3ZÃÉÉ,]êøºT*.4vé·®›k‚óõÐCÏ{©ç˜f[® ®eŠêµ œþ×W=ˆ‡Ü1]F !²½?ÒW{µõÂúÊâbLD%’ææIEÂµÛæÄ/´‡ßåG…@-/f5z¦é¿^xèÇWCgå)–ë ðcL‰—˜’0Ī¢ªìRñé³×`ÐËöÉÚ$ƒA——–”«¤JQ»Mé¯ SÁÜió3]¿°×ošß“¬ªí±T‹Rÿ¶{¼ÂØÝãÔðW&¦{]½Å4 ½‡\&Ýô}ÚÛUß}‘ELºŸÿr?Œ#m%S{ê; ¯¡ø«Oóà\ØWˆpwG6_.ï¼ÿêþõç`õ&ò`Dñ@j³¶œJ¶Ól9ë­ŠpµŒVãú«.+»qõHU'@5^+ÓÔIxý•æ‹Ìëïz+Y¹Z4ñ5ÞšÅr vW¼þ~¸nOàá¼äqŸõaÕNè`ê'ò´š[¢iÁÝg‚©øÉ®ÁærZS( †ÕsÀ=Ý/x?îÝh«Þ1Ôcðõê'¿s!®¨Ñ2øà (·Še¡Èn¸ˆéüN@¾d¬Urc† MÅ¥!/¸À1äIÓÂVfBŒåö^ m@n÷9Gãv÷ŸÜݬ¶jŒMÆM5%ži¼ ‡™¯ÿ‡v¬ãòqÎ5.ç(Ø‹ÅzxhmM1EÓºü‘B§°0ó(/ìSw-«í w¿óTº`tp¸C4ïߟJoß;CïA5.#ü¦ §šjŽ=¸oç6¬¾| »Ý$ïX¯ ç îÔ…cµÇ€ ~ï®mæ™ê‡nãKVo§.x´@-W•àTÔ±5#V¯f¶ÇíÛ6‚è¤ ëŒ«.zOÿæ}ܺî"óÔªp!…>û+†„BËW=ŒÅAœÈ ‘H!“äI€TQœ]V®VVWáz¨%-a¹ãa…‚Ÿ½‰!q`<ÓLgOÓð’wÒÌ7›#7ÆìKh`K¨–æ&Ãá=5[MówÔ)wÉ›ù‹\ý†4Ý×sí8ú”x¿Å–»_2ªÃŠzpˆ†v+¯ME6nØ÷¦n&¸‰·Ë¶ƒdwfñ#hó ?Æ>o¢ë¿3eWn4·:z\ktÏÑUÇÉb¥»Ù¤©éK¶ú†-Øž¼ Ð £N??¨8PTkÖ?[Éq Z’,Ƀ AŽ*G­Àûh‰Ž7 Þ@™q9³¼{‡†EÊÛåŒkÀA`ûpÕ3rÅëà8»­Ep®C÷-8Cß]teÖ’À¸5k„»vÆG4ZŒÇ]‰JY®ºt«¥ÐWϬ ݳñ?bÝfy-v››äÊ ©Ê{–Åxpô‰·CræÄ†|Ó& 0} §/[ôàÓÓ‚¶¬&¤Š²€ˆÎVI4jEAi™ðøÑ3ÕçÝÝæ³ Ès1+‘折6òWÈø³üÆŠEï{NžõQèjmÓ&¡¤(·@è¬ÌÌ̬ÒÌýil[lKÆw€†£áÈ—8¿õdàA­‡¯q¦à¥"~çÿ,&[dM„£ñ̬bc4ÕÇ Éº2àš½Ž„Gô J¥à1¼–ì3s>ÐÃÙ8²·÷ ¦2”š¸lVùQãà ?È@ž@.RJÔ@ Š Ê”m5'K›1Z6ønNûzW8´Õ„‚ÕûÂ[$ªÜ) 3pUºÄ#ñlÓ®'qUÿÀ/é‘pBèyÏᢄe¬9Szè§+Ç)¨p IPÊ”ÜÕžn8ÝõòºûA5¨’i¤jia~ KKJK«¶–GÌü"bÑvÆìUÈ †F޼C»?!.¿8gAÀæ™ÁBIÓØR¡ÕV67µ`¢Ðç k—Nžõ¹gPä‘k©¬to¾"¯Ù(ä|§Ç_?Å´w 87'OŠå™£kJ”E•j!ÜÏU–_#†Q©s±§HL`Z¨4šêB¡ê( [;©k†2,° ‡õ0ÞPl°åàu¦±¢²¸ºÂp´¶œ¤<ï…xã'OZ[³­#Føix˜øŠöºôÄ2|ñêL¬~ùAa¬bº[7Ì›ã?mñZ}ç÷zûØ@ÔÄô¶oðŸå9gÊÂÕ­Wû~¾óÄØAx{w"R’Ùö©šìrmIIFø+T’g\,§U¥C§æT£mçÁ8Gü‹‘%/­ŒÛü9â-ú$…ÈøÔ–c,31ESÒÿÔ¼ûÛ÷ãiè CCÇï§ »ñˆBNÓ;ƒîݺÒüÓ¡²ƒ‰þ&-99usä7‰á€^¶±ýÊ?xôËŦm‹+Ù¢¹´ œ6ù7îÿ´°õF ; ;ðy„åüø[kãˆwJ~§8ØßeË]ÁÿžR’7,CvÈm=²È¬)Š*_]R¶¥b—BR$Ãt*++-)ÈWä+Ø}™×À ?î„ã0G=KÊ*Zƒ_ÌÆ­^ﲅ߃fdfåÉer{hFébà{(^zÑt©$?H/·â2­öœAí [~ñCp?Ún¹,SJ¸—#uœ§?Ñu:JïpÂ89'ü·3Aü/§Ô«ûendstream endobj 106 0 obj << /Filter /FlateDecode /Length 1944 >> stream xœ­XÛn7}Ÿ¯ìˆ¯Åyp. Ȉ­d±Xça2ËÚèâØrŒd~O‘ì&{Ôò:AàSTu]Ï©*ê—­Ñ´5ò¯ý¸ÙXíóöÝÆl¿ÚDŸ´K´M!’渽ٰ:æ<ß\ožm²I:zÞ¦èvRó SÖ1©àpöƒÐt1Êxƒ_†Á^ ¿å…½É+άSœj£Oѱö1>1%͆FŸºP»XÈ4Ÿfk“Kƒ5¯3#eäqÖÉÏ7"l¶—›_6T²¾mÿn¶Ÿo>~Jn Ó–‚ßž¿ØÔ’ÐÖF«s’`²æ”¶ç7›«ÏvgF›œm2I]팶Æ[òê']Ι²º‘”3;nä«»Ë×ý‡½È1‘³z…kol A½Ü!§Þ8«~ëJ~<ÿzóåùæ»MÖ9ñF|­éït#ñ>« [Ñcã*Tê•zBŒ5Ô¿ïØiÊp¦8Î&dµ/Á±1DVq219¸[d­úhwæ­‡„WŸ‹¨5&û¤t½N9©ýmI•5™ÔE½Ž†ÔÓ–ŸœÚ¿¢1.«ûÝ|]ì±³.Â#Èì±ý¤tR_veƒÏUQl³õ NÚç;ülØŠ^4ÙŒª› ž?ÿ‡øK.ƒ;Ü'mð\Ç-'Ôû(úQ{ïj¥-Žg%ṵ̈õS©0,µ3H ™8¬ë{;UHzLfcíÒ‘Z2oc,$v);u+!ã˜ÕåG=EÃýU7Y yCŒ”p)ï«nÈÆá@:©\'2±˜Ð: øÄaçÀÓPw`yô&Y 6H>9sß·=#Ò9ªŸŽ˜Y@ð7q6{¶ðUü Q^ õšSÌRT'<É¢n†ÄE½àðzI‹iÎÑÓ"ñ…Ùð»—`ˆXH[,0/4¼é©ëѶÖÀÀYÍŽ|T¼'¶-¹)3sTw5>xÁù\п•DƒÕidu í|˜òþõŽ4X½Àw&“ÀÉfo˜‘Lb¦Õs?H#ç0ÀJ^ÔëD¾ÍÛ¹„.v6pŒFíÔ“ ¦ÄÛ zd¤b6&jµ;„Ù¼pè¶ZF;Uφ>s?œ›xaøxÕùü¦'û„(4ë™ÕÍé@§é4/Ú(E›*ùk„ÖSI–°ÌßíòÇ@ìAÊEØ„ý4v$Oƒ‰d[u'™‚pÊ9YÛ2ö}L4Š6Of8 ܪœÚ*"Ñ£#]Ù$•-¡x|k… ¿˜DUß6f1µâ8še8™èJѯÚt(5y¤û­X“áPŽÆa8Lœ×U]ô¤SÈmÈAý³*ylá/»hµŸ)¦i%Ŷšq6/¨³VäO‡Õˆ5¬3†‡Z[Ù­°´ZßœôôFöº´Ãqš4„Æ-Ë$^é5NöVž”"s“±¦9U¦¦ÁÞd¶¥+^ *Äç@uȵz¼ÁÔ +.˜7pì8Só¢šEB*’¢Añ©é¥ˆ¼¾í€HwÊRëaì Kï;•Z·âhXº¦Ã¶&Ði-¥‘vKÎ^× H„2´\Ãytf`{gLØî")Áe¸;­*ßèù¦U [Ý€À)ƹ\/çÉp¿rz5Ÿ>™O¯œÞ½÷¤çÓ›û•;½¢e¿¢¥{5ŸnçÓåŠæ»¹ní8Ÿ.æÓÛ•xoæÓa>]¯|1Æ»RGtKM!<¨#Kp¦ ¾¼ j{ÚämäQñó.é> —ÇNç áð¨¢áèªò_eC‘§‡jòØÒxì’l6Ø:Ê4À(P¾6HŽhN÷Ö^ÌJX†âÉTxÖ½=ô—â¿GåZ\¾õgtUIÀÒÙ—•ª5AO>ËÆÎïo‚‹.Å4iJõ7ÒÐVíb£h4gv!c%e ®-am9jË@´+è,YZžC®SkxÑapÝæz|Étuà ,s¿ÎšFgJ^r ”l+î«Ò_Ð%âG…÷"Œ>‡Œþ ‹ivóy ³öX›ì¢o.×A),¦Êâ»ßûwK〠•·E—÷ÈÛ€Åõ»S$ÖÐÇçe mc8»‚áe.­x$˜à‹Ô·ÇþسuwQÿ’©n(`Ç]Âu\H¦‰ÙØæµõñd`|ÿ¬ïêO¯k ¼Ó¡Óz4T_^dn›‚Œ o°ÀºÇãóò‡[åcäë¾Ùì/õÉÌ[2×ÓŸc®ÃÄŽxÂÜévÉÜ?¶¾0`ìüˆ¼^äý ûûy­¸êÔqË~kÿ«8ZÛfà–üIª¯3ë®t¼éKz7úöç˱jƒCê«á½ýZœÜŽš_Õå¡>ìÇÕðz9Ì­ã½ Cb|Ài\ö[]þÿÂàä¥Ïô×. ŸÏ§§óéÉ|úve4w9ÀÞËsÒÖ^¯ øÿ¬ŒõÊÏzW‰Œ×²×ˆìÛüº[1q¹Pwe¿bìç•ß^®¸÷éÊ6±¶õÓÕŠµãÚ®ÅXyï=­Ý Kò­" Èž¬]°N˜a°fèfP½|q–¿}~·ùæîÕbendstream endobj 107 0 obj << /Filter /FlateDecode /Length 2211 >> stream xœÍYY·~ŸèGLôÔãxioI'± ‚aK›‡@6‚Õ^ZdgVÚCÇ¿O‹MÇ=@¢8Å:¿ºZo×ZÁZÓŸú÷éve”Ëë÷+½þn”³Ž>€Ja½]ŬUríâzõb•"¨˜`ƒÓÊ$j7 ² ¾Py“¬òNPµIeƒS. Þ;«ˆ—8«•rRÑw­ê¿¥RÁ&åBJ%ˆ*i”êTóÍ@U•jâf„<½¾\½]Aqåºþuº]ÿåxõÕsã×Yå`ÂúøbÅn†5 À¡õ:*@Šãíêåä6GÆ„Ó_7GZ­³‹Ó³¼ØhåtˆÙOÇâ‡oèìsÌ6OÏ7GÖ¥“™¾þáëg›dTÎaúç Aó=A›lÜ$î9þ;*iA*éTB?[ñyƒB‰ÁMÞyƒœQÃ7íò¦îNçítÛNÛé_ítÖNWít'ø5Ál—Gýò¿½žO?Oíøy xÙN_vmNX_·Ó®NÚi» îî·ÓúçMWö÷íöOýòi»ü÷†ðarTÞ'DîñâôêQ³úã_¤Dâs43:ÂÎÞó[DXgÝŽZ0ëäqS§½®/y± >]ðìÓ}ëšMäÍõ£w wîÍÂÝRð…¥Ýª"µ¶%ëo¬ÿðÛAñÓ+€pöBÎ}XðR7ïU'\Dù‹¶4ÂÚåÂ_-šÊic”µqN›§Bñš ü{͆ÌdØ“¢pÒÿ‰IÿÍñê§ÕÛµ…„Ô7ŸÁ%¯°«XÊ|iÀøê¹×ë¿ÝГì:a3 nè˜;¶)‹3¦Ìó[l@‡Œ¨¡£o§ËnoYzã}N1D4¦tÉüd@uzØpÄÜír=6}oaÞ÷[âér2 £@4@†é²­ ©pw€Ý™ri5蔢GÊà¿´ÁX 9j£=ƒÈ#ß1‹ ºÃ6®ý¬UÈ9Æéõ†˜eíó äL ¹Bî6Íø»¢4^ú8l‰DÛˆ$òúš&¬ ÚX´º•$÷“”ÉžðYTq§eßÜãѤ Œ,>ðC‹0ü_mŸCYã5à$Â`Îñzƒs¶É†"¤ïË1`®Éãy?ÞöãÇ%TX™jó,eˆp™0]ܪîf=Œ†X@‡åÇQíjo”9Ãfç!_8çч{Ç8 „›ÝÆD ‰fûÙ¸95,N{ئ93 øéò¼Å™Ò¾ûýi¹Ö>%Š1‰I*¿2=ž¼*ŠÑsBcY)‡¿dœ³¬v2&e … X0Æï…]wÝ!åuAÖ8ºžÜ3çŒv Î×Ű`ðøP„DE;òŒá(ûd Âà–†D¹_Žˆ±óìHƒáWÂÚ]F3UeRÈ%óIk\$¨" ¿  óÌ0&ÎÏòy!¼ô ÆvƒÙ` mEmˆÝ#pFk^àH& 'ŒaÝU蔯»qî?š;ô q4TbA"ŠÊPÆ È#Šzg-ÝEm"u)<"’"go…é-?Λ]3ãÑ;tÁ—L‘ x{w×#+‚u.Þ †ÃO x‹æN œÍß ·ÍžšS wµ{/ÜDas¬ávÑ•’c0Ã0’7[&0˜A¿ŠjÉßë!•‰Ö#ɼÎv’eÉÞF/Á/”`›µ©Þ¬ˆÛÒmH!”ðUÔŽÙC Èä{™¶Ê†6ç¼/áGÛ0Ý‹Ÿ¨¦ŸèqÙ Ú$ ÃÊ`\ Þ^‹òÄþ ¢TJ‹ÀãqJȆĶRuÆ×>5“]]ÈŸTDFPy´ü²Åš¢ÒqxwÎz g¸Ô²7²’2€"wº§TíósÚÐc˜ò¡üر)á±B5ËÈ-}£hº$D/¤ ]Y;k(Fè6Új6-@h1TË:x—¡ÓÍ€<‚'-ÚﱘC“P3ŠÒðéd¿„βFìvõN$ÖŠ]`¢ R“L©ÐgÎùw Úþw”œF—”nƒÃ‘6iœáŒ¬–;&öÉô8¾Ãѯ¦zÐ1rc+2°VœÈh7Ùîp!£Oivºu‚v/5˜oÄ@Í´²¤ýo£Nü^*;œd¬K}ÃJtÏŒi€8 ú²8#[l@Ô `„ Îö[U™‘žô[1HÖg³ó-VÔ¹â~œãH¯‹¹ÔÊh­h²ë`¡¢ŽÒXfÑ liqê#R+ÿÏWeM¤Ï¤~_*]¬‚ßM©­¸7`1¼e’¿ªÏóKáÓ ø4ÖÐ&ÓPÑ@w73Ž-ßKÜD¾ Ö<4ä ] ýc·Iö™wCTd]$DïÜP¿—}+¬þ:<±°a™£ÉM»}ßÀ>´¹$=Û2CµrBîw!VM ~@w5…fÜö•øŽ@Ý+µÆí„6aŽ¡^ׂÊömJ9s‹8£[¡î6ÂK1úÝìöq3vä}Ž SÝç¢Øç,(Òvþhʪ˜Ñíèÿ /8!ñd÷ïqÓ6¨>öè Ü#ùÿX•²®k$Æ ”ï ê‚«ßj(¯:v.ê‚,­xmï;±ž]òp@«{ù?«ÁÑœ‘"&‚IÁ:kë§:-]wžš]]ä]õS„ºõ×Û2~aplXX”Ë)ÑÒ’iÿat¼hè89e‡3ÍáfIŸ+L*«ì·?W}Òº|èꎠ(/¾¤ÏF½9þê®DK­XÜ&‡Ù·-ß®éJ²¥/iHùò=Åä„=çMÉž¬]’¥B2¦üŪ&L?°ò¼V +Ϭ¨|w%ÇŠ™à²["í—KC«b2“›IãpË gÞÉo4°íO·uækñ m£àÆm´,.€§öÿ·, + ¨uíçO«ÿíÒ&šendstream endobj 108 0 obj << /Filter /FlateDecode /Length 6986 >> stream xœí]k¹qý>ð|'Ùéðý’› ±l ÄR`¶áŒµZ­lõHIö.‚ü÷œSd“¼·©‘æzboÛÔs.Y$«ŠUÅbuïo/Õ¢/ÿ_ÿ}¶^˜ÅåËß_¨Ë^õeôA/)\®É„%äÜWO.²ŠKpé2§kЪ!Iç%xiå-žÝÐhÆ6NáG?Œç}įéh¼mV)§%úaRçlZ\ÈÜ’ŽKRzœSoT£6uNm´mJÃhêòÅÅo/´0ò²þól½ü‡§ýã/ó’ƒ —O¿º(LÖ—ÚÙ%Z0“Òhñt½øÙáóþÅU2KÎáðŸO®0jvޙÿ\]CÌãé—õ'Ò8§”Bi|4aãÀvåJヿzúk´ÀÄ{ ÌG-#\k·¤ä6ªzQ*wøû«ko°¨¤oøº=½›<=oOwíéÛöôËöô¶=½lO·íéE{z5Pn“ùÛ^wðë>›ô~?¹Ïúç‡öøØ ýr²ÐÙ>ë+Y'ƒô†_O&øeïüwýñûgp›zdr\¼O›–õIt‚?¿’–×[Ók­—ì½þ#jг ½Î¹7ÚîãæŸµê|­šK`¢AŸ.Œï¤¦Ý´§ßÝÛ··{1´û³~«_ãûDÓæ"ød­Ê÷hիɼ¾¬êýdõƒ¤Ö ™w©t¾3#£ÛÓß´';K7ó³íúj*;òé„emû}qñô/?º_MÆü£(ð9ñŽJ}3%x¿?9cÌ÷vþÍG¬Î^å?ñQf…@4„¸(=°©«í¯>²ªïÏõÍd17g¬Zö]V­Ç <]Ýþñ‘&ögü®«à‘<ºâ}þMçÿXÝšgÿâÿ‹æýÓÓ‹gN½h{iS0‹²—Z½à°®³VKÖ—wÏ/zy{o#¸K»x›¢áqŸÙ‹k¦1t´‹J—ÿ$™Á88ÅüÀµIø!E4[Bò:HêÀYù}LÒ'¿I^áZÇÅêêoÞ—ß´ü†Ÿöýlào­õhm®~P–nI èï/ô%äwùkIhé˜ÕâÃ¥3.1‡³vÄF³¤ËW:©¸¸Pû0áóP^%»èl@€RfÙÔ&Ïå`ò6o“×É8Ìí³e6n툗$[¦“ƒdà ©½8Q,/CM·Õ¬@«%FéfÍçÈFš„ hbk@è¶vŰ+ý´g’n†l´Iɨ °ì7T$èÌ_q–ÓÝ2é8ué¼ ÛtøgðªÈ³ÃÈvŠlDÏ#Ãðœ…ÆÒEŽñTŽÎu9zìÈÝ[(™9V$x·„ ,ŠXYœ!µWeZä~Ý–³v¤îdö aqf†4Ú¤d Œ`¶¨µª@¶zñ¦HÍ@_§ÈFú Þå%[ð.’fÙeoûŨ€^G{[—ß ˆÁ[lt±3ÃähOú™SqhÛÄ‘Y ´È„Ìu­±Ø2EK²Ï‹v3¤ö&fãGEP¾nÐ ñÐô K?ˆ*ÏFûá\Ìi±4NP@è2™˜ 3–Rô'ÌY×íÏ™{Œ2㊀¿\ç—a$Ü ©½Î˜±Qz‰eË“eƱˆ&ZÙ\fœ]­ÙYôMxFq§CMu Èò†XehÂ_q°| ö9kúa‰Üf¯ö¾¨­˜îkÜ>ÑM·Ó?ß—ã¢I œ7F–P «,4 º‘à ©½¸ÌJ-†K7 žQ(Uÿ#SØ/yaÏi´IÉv®õO‡‘Bnƒ«Ÿ Õ‡³ÑT‡ ÿá“°´pTñ^§kqe©­ÜÎ>ù|¬àF,6•axpÜÍ÷}aÃI7Ýö…шh"Í4‘kGl@hC~ª‰3¤öNjr„Ëò°§B¨B6¥LH2Sd#MB&Šc5ØákÿÓñ²(J'/O¤&ìÙ$d Â¢mÂÝœDšöϹ)²Ñ~¸|¡“†[ÛÓ¦²åuÙóÅYw"¨ðaAéÜEµÉ4Þ*-rY× /!wƒÆ ö¤‹ß#µWa ][UÆTÄ1É¥Ÿl¬ Òh‹¤¤}kG<¦ÕÒŒ$7öH£Ím¥É¶m´µ#>ëbŒ¡+®ž"mRRµA‹£*@€Q÷EĘ-ÍÀi”éâ’E¨Î`íH  µ£ÑÑfŠl´IÉ&9*TG¸v$êP"Ør8â0CmR‚qØÀ¡Ã0ŠZ;’ÀKÅe%%¡Êi´A)a¥½‹Á•(hR‚ì†íK_;A6Ògì ¿Xù@‰t±}V× àR°'áŒ)†V&)}jÅü©³4íaLï,d¦ÅŒlˆÇLÑè ŸìfHíuÎ)š&(Ru÷ƶpÍj{¼÷Í.\3ÝãƒQ0ú˜srvi€ ‰¶+Ò(]d?`Ì…6J f¹A9†~ìÃûÿ ШžÁO9®Ñu1›fçfyr’ÝÅ=Öv6`æ^VK¬Ù€•„²ìE3÷HíUXäW¸/¼¨H` ]ÖždÑ3d£MJÐãèÏÖŽDœø¢(“°ÿ Q“"ÜTpíHÄו•p©§nD.ø7-ç-VO˜"šê`èB<Ùe¶&5â’’Ê'‘É.س=؃)_äÌÏ#†â ±<•qw듦Hí%Lr8†qO1—£ ¥Šç‹!2ô%vŠ4Ú¤¤ø ÚT)fiHÄΗƒ¡ÎŠeÜ!¶ìª,AR•ËÚpi)Këåùb4ÊT€`h“]L¦x™†dDÞ¦HçaØÊ ²‘&!'Ùmfæ¿Ä3Y]ŽNd£KL¹fô׆ÀŸZò“V:ù³Så ^9ôãóÚïa–t‰û”¢› ð“i“vL_œdð>ï 8;x9½ÀKÚ "8£ÿdÚ ‚#Ù†µÂñbZUä¨U0â+‡V9j•°ï£[Uä¨UÆ¿%ÙZUdlå5b_?4ªÀQË2²86ªÈQ«Ê›¡ÕÀ­sr¥ØÔ–Z…Ê©”{AÚW×8¶èÅZüáåuÐ擯 Œ9˜›ÖÔŽ0nOü>VêœÆž†·k×À¤ˆØ3^ÂûŸž¼¼}ñêùå/osseHÐáÅÕõöøüªV¢}€AP³DÏ)ü’úÑó—/¾~×â.Éø$vëñ³Ù Ž` EB8gq  è»O[æ[Ñ €ã\aÙ]Í_l-´¨ AHÈ }‚Ô^bê",@ä¹ýe»6Í褟*qØi´î:1Š‘¸ª;½w`ái.NÕœ¶ØGÌÓÕˆ§çép`Í2Uœ¹¸¬µ#f½„ª)y9í‘ÚKX•¼GA§RÂà aˆ+Y9¡÷Ùh“’eäÎ܉£_;;³È‰%ÑwÛ Ð(SxˆËœn‚Y;•%=öó¬ÇÝá‡K‡%Çú¡²¿êÑ›Ø#ú:QïXƒŽ¦y@„êr8½‘q»8¶DZK#ˆ#‹,6ÄÚXƒ»ËQmÔ^ÂCèS‘2 mÖŽ«%hÁÜ0ÃÒh“‹)!æÖ ¥Š8H%–¸’ÿ mRÂ\¢ÜPHdºvÄãQĘm9?î‘Fû Ñ"좡ּrE´÷ s¢È‹k¢€ba}5¦Uм<jŸ3¦IQ%É\ã4oâxð…1Ñ»Ôu=-aMÊzsvïŒo?-Yå]¹­ƒ5H4Ž qˆ,œ–ÕD].ÓvHíÅZÅÍ"WgšR^;â`\áK¨ÙÐ=²Ñ&%£äldsZ ¡ xü+×Y˜dIßî‘FšJ–½„?U0kG|¢“~0KÜ d£-Š_ò&U׎$ ¾Ì@ËåÆi´i™ÆµÍZ­áÖ•-‹­åÒq4ÚghT^¼•˜®5§w!»Tb¿ ± Á½\” µ×ŽXÊ_䨕—‹º=R{3e Ýð$Aÿ‡Ëüm>ݼ ±Ú&9’i¥™ÞÃD¥u Ý÷@ísÖüqbÞ®\Õ—!0­Žä„ç;wÐ/C,/­¸ë5Dr8Ü„–·/â¬wHí%ÛKGq<3 ™ú§ejO:é\®d#L2®æÐ…aëäüc†^ò–d#MBFŽ0uŽvuíoÁ$i5¢0ígH£MÃAQ馄kG`ò©°ìÇSž"®å;*hT‚Ü‚.ò[»¬eƒ'á–Ý_’j7z›ôì>‚Àf÷­ñAœ³Á&³tÄ ±L½ˆ›ÈßR{ Ïx%“rÉ H. !’l‚/w¼;`£|ǘ¢•ëI̺–x´¥;uš»UÃÒ³*gíru°vÄ–8„ƒZì¨}Ι°Å šg&A¬ná F(ãI†rv›¶‹ý6ÍZ9CiÉάõO‹Ø,Џ¬R ²Gj · 7SÉR4Ñëų!´÷ÈF›ª›:× õÔ²}šeÒñòR\Õ—µŽG€Ò‹¯ŒÙÒ(“÷GX–Tt³">Ê[fÔEìuZ¸=Òh‹‘×è¶]¿v$jSò}˜%ìOž!öj“(—R¦”ÌGK`,Sur™™cÕî Á®-2·ÇgHíuÎDf숵âTèŽ Ô ˜Ì*jÉæ4ͻէÁÇé]z8íN<-ÔÆñ1•+KSï–b½©ÙÕª¤=R{³v„ŽŠ+Ip–:¥ZH‡æÁ‡Ó€:ìØ é<ã,9¶…r°i¤TrÔ–UXârwHí%:ë²$þìÙŽB•È¥…3G6Ú¤„èÑu¦­‚ãP6zú7E6Ú¤äL¹ f P(UÄqߊ?EZ®ƒN€F™tŒ—‚çR9Ü6ÄãøàJ7Ärß¶CiRâÁÙvá ¡ DH5Êî`íO–{¤‘¦eÕah»jíH†{À+úÉß. ‡Ýª¬à F’Š>Ì/~NF—§„,¶k;¬ épËÛÇ£œxCéGȉ@EäP±Hâ=v^­ðšµ²®ä  rÔŠJZ.y¶V9jMUŽÖª"G­²S j†V[yð`1C£ µ‘¢’06ªÈQ«ºê¡ÕÀ‡³r©Jª\YóécM««k/;"àXÓ<"Zuˆšð¨%ve ñÚ1ùX›ã÷cdƒg n*×ú8Áý¯×7¯ž¿RÜÁ؇¤¸™TR»poŠçÉ/J?BŠ›gG‡•‹ñãŽ{ºylr¡TÁ :¥iˆ‹RXŒ]› dÆÎÚë—–8kOü«õQ½9ïÍ܉_®îÁŠ@Snøúüióž²l›m©ßd%¸x `ЍD}5ŠoÜ!¥Ó9KÏbyÍS+*ÜV8 ç~Z1roQ|NZrJ¬Š’€†ÀÍ2å|%Iµjq 9Èéªdh©×ŽÐôKª”s©Ú!4)Á««ÎÁµ#QF.ýbœüÙRꈭ” H»øð a‰¹œ mfÝuœ"aPJ¼™¦?†i”ð|<nâi3‚pÞTí‘Fš„’’E‰>…REb” öChÄSÞi´IÉ—;„º™ÖŽðv¡dgù) gH£ý`­s î„Õ‹–Vv¼2 ÏJ'!ärÞ.ÄÚ¾ÕÑ¥çZEn4ÄaŠA€<“T¢ì‘Úë¬50O%I¼E)?Özð:)äÓJÓVXnZ‘â'Ül@ƒ2«.«»‚•õU¡b eœ†lË Ö)R{q}õL)Ú€rJµRCX¿œôã—L¦H£MJA|¸¤’oˆÄˆZ8œKFs4Ú¤„èÃtY­áËÆJ?´g »GmRâŽèw.qIC"´ÍÊZ¶:æ=Òh?\4qNò®|a¸Ý…mÎÙTeÎåó%÷Þî‚V–PÛÀÚh‰†ðj0Šƒš%—WLL1Pƒ9½ˆ Ú_âÞW¶ÛU {¤òŠÖ—\<í‘ÒIødøýZ¢,!vC<ëw³tãš"49žlÉÚäTJcCd/ý˜¢Ÿ"6)¹’J¯rY;Âz¨T¶7Mp˜!6·¯”𶝠HÞ’ìÅë§ Ðè>\ ³Éâš™Œ×ø‘Ñðiv·XŰ¥ýé­Ê=¯Û8Ö IäÉ ~툅Td-R°ÿ»ö(òGÎí–kÕÑ0Ußw5Ú!]’õ׎ÿÜô6Äçš1ÄôÔ2ᇳš9Ì,W¾Øøc"ÝÂ"Dwº¡îɲöŒ1v‡ûË¢©jh‹;$,’Ôˆ 3¤ö:k5ÌÆÑÑÑ#‡!gÌwÉËü´”±ÜmÄXnt$+Ôæd²È“ÁˆTÊìÚKDlY¯+l©uæ ad(É5±›åE‰²Ñ&%g˽KaÞ: pÇR ާ’¢œ í‡3F9Ê ÝøêÎíV¹xÌÇáՉݻ_ýrÅñu1¹jÓªÜw6¤½Ì€×–«¶R{ c81'õ4©T÷5Ä"J“{R·å¢&Hu0å2§°oí÷J‰!¸{¶×2Ž‘Fû ³Ò‰´úC·Æ[$0Ü‹±Wõí2ãeíaH,óKòJÇ©½Î™1#p)ÞaF ·ÆðÊùÔ_ïŽôÍóþŸ n—Æ Ùîˆ!òXnžNó/Åôe!±ôxilzsZ5vÏ¥±D“r7´åÈÂÌ–º9ŸR5þ§ˆéy4œðœ\ áÈÅêTÀ¦š·“(5Ì€.©˜\t¢Þ7 +‡,?”ãái”IHÙrÛÉ—LŤosäªÈ•w‡'ÈF›[”G¾ÔTpíˆ×µ³,¯eï‘F›[t{… l¿µ#•‹…'ª¼¼GmRª•ÖïI•Í^‘È×@s1òŠøi´% ¤ÍG¯áá·l9–ÛI ÷i´Ã)'585°Zâ™à-ŠÃ‹G–ºîN›GôXÞC­Çïµ!=“-œi4ÊÙ†ÿ©—è¬nŒE|Pª¼ûdÖ*f_òZ9j¶—äZ«Šµb98ÊÖª"c+/¯™ú¡Õ†œ™iæ %A^ÃLÍCË4'~ì3fš_Ë–™fA“…Ó¼”G¯=¦ùž_Å)Z¸#ž¡þ‘e±ò¦G¸·ôö¦®Åëa\–èyH²~‚íGhŽaá†1©+­”!ÉFìc=sbþp÷ì *`T ‡¯åS¨,×N¦é5v}><#ž”ÂìªùZ çÇËxSLôÕ1™H´ úžã ò2“K‚ ÑO<¼c›säRù^­Ó&îÆùÞ–¹D彡89R?^s|…€3¾Ú¸q$¨ŽõoÐZ€àDzÖÇwÓÇçýñ®?~;㹤-½ÞFùrdÜMŸá;‘6‡Ú–pÃÖYi°JGëDÖ™ÃÝ(¨·|v`‡…—8Dê”Áã&›•"1œ¡K·ã„îM´Ž”s2‘‚ÛãFwd›‚J"‡¶´¢C_Á1'míaéðäû¸×,$˼|àWy³-¬|qWôÎôðzÛ:x‘¤Í {•láÇ#l‡ß_ØÇd¸Ï¯i6œJ…m6g„¼Ði&1Œ× ¹À:+á ,=p¹’W®(zíøúV ´!#Á—¢êØÊ=I;ê\XY”À·~£HîsUäWˆ¶±ß÷¿« R: “+,´Ú÷²bXdĬºÓ)ûe 7ýQ•à l52òø®ª[Ò¢*ê¨ñÀºq¼-"Lrób7‘²Ø›w¢€ÇóDD¼ù¯h‚$a²qãã«btlL±OÐN;¬&»J.ÌãWík”¡Ÿù5•¦*AM®›¼ß~Pù¯‹è+zs[ô“Ëí3•AÒöãÇO!R~E#• J#Lá¨+oJ‹LëS––a7ËSŸÛjÀãbõ0’«× •³Ê#K¾õmïè÷¦BE ±qâ‘n>/t-¸^YZס=|Æ÷Ú¿»2‘y+;ŽV·gˆ:í§7…pÐÇ»ïõ ñ÷ò ‘²›T29oΨ¬h,…t:üôJ¾Ž–?nY.‰M=¯Ïí¶ï·ÇZ”¯·Wò “‡‰¯bm”v'²ošsWÙ€Ç×_•Àèö´`·ï ½iD«¢+­ WÀ¹úâ‘n »ìm‰ lJãº-7Gh/n¬Z›gW2K›¨Rè@ŠÏÀÄ,…ØÌÜ›N¤¯ù¶ï¶5xQäѧÍ5½pþLéÍäËs³¯$þrò]ºÙpgôúwçìG¾ü‡Ðž~~ðá ]ÚÓ—“¾Ó/?›¼t™}"ðíÇ?Hû©_¡}7™ï¯îýæ#±ì±tc{ú‹öôðoDÏx\yˆc/áŸ"óR_]°ˆñÍ%k+””iÐÇè+øIßóD¶=ÚòõäÖq6°)],+ƒØžZÏÞ^M¢0^¤²¨±Jò)w;?{âb1‹ÅnÂ~ ®ôÙ`–Š© 8í æòȽ5St×ÿà T2¡¦‹•4|_<™Ñ-ph^òŠ9†nä^ áÈûÆJ‚úßu8H5~m"‡ qSº+hTîƒNb›ÑûÑËðÍxìT¼%VŽüm‹‘ãᫎ¾–ÖðÙp¢Qœ`Ë )Àäfq_™¡j=o¾Ý” ã ÌâЄ¡ â¸Ì rÿg_ËÐV‘¸x)¦[r]j‰‰FwTŽ×–vå‡óÐ6ϱ›,;&k·XQóÄ3[Õ—\oäJ¼Å äòqqqa9Ǧ*`E 7RàPœÙñÚª–ÆtÝ´ßɳÖÎPC >FõÀîtú¾4Ý]>;QQ¬ÓÆ]ð\I|ȳ&s¯é}6±Xs_p¿ÿûjbåf4ïö®9öõ¤Ç`àg¦†± ýß3?ÃÇò Å©ýɦþr:áùçÝ·§ûSÅàϦ¼ÜýŽ¿/õ³öô‹SGv"™o>"™·“5¼¹w­ßΘòvÂï» †.3Mè+üí¤Ý46ù€êN?›éãœk÷«Ïí„g³fª>ߌCªl¾{L0ínBóÝdÄ»É?Ä aD1ò¡êÿ³Þÿ ßÈoendstream endobj 109 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 221 >> stream xœÒ-ÿCMR8‹vøzù-‹ ‹ ›÷T¾»¸3ˆøˆø§v©Ô÷÷±òÅ¥Õñ÷bó÷‘÷âÚ½Q"ûDfVT@ŸÀh¯¤¢¬«t¢kpozc,ñM÷÷èçïÞI×%¡Ú§ÆÏ‹ÛÛ1Ä# :Q?f¤{¥ªŸ¡¨°k™uŒµÂØŽ‹¥×ƒ$Ena}{mlt‰N‡xŠƒŠ‹~}”‹œ 7Ÿ ‹ ‹ ‹ aOU¡endstream endobj 110 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 3694 >> stream xœWyXSgº?i$稪x*vf+h]{­Î­[uj©âZw(›‚(öœ¼ ›@ HD"¢€ ¨¨´VlmÇÖ;nO[µö±›Õ.¾‡~NŸû%ØŽÓ§ËÜ›“'Oþ8ßöþÞßòI˜!O0‰ÄÅgåÚ9Ž?òƒi`ƒ ¸JÁuHÕŸGFÄé#>v?öãøxžç³ãÕxUBâ’¤¥;“ƒSBv…¾¾:"2j2fã´çgg˜UŒ³šñfÖ0㙵Ì:f=³™Äø1“™Œ?ó Àø0›˜W™EÌbÆ—yYÂ,e–1eV2¯1³7Æ%ÆxÓ­1C˜B‰»D%¹õDäïIKÛ† ÙçâãÒèòƒ,žÉ¾ÍU3Ô>lè°‚aw‡û ?ãZø¤ç“‰n^nÛÜŸsÿú©!Oy?Õ;"[Ô¸‰À&ºØÒÌ#qÈ% ¿4Ú£ _Cÿýÿœì³bÓ*9Ùͪa©\ÉÕ×èŽÁ1¨Ðö Ç]½l¬?¨@kãp= BSÜÄÆ°Šx¶-N‹ã´2Ë_²d¼ÚEɾ[š³IAjs¢¥jèV¸ Dƒ ß6ãAÛHôú/~±èîh“Eäíú’£r|ZöUûüU –,ž¦ /ÈPPówkÿÞ—¸[S®OùCNY/»¬W‡+Ö±á‚zûäÎí¿~@¤ñ'Wù-B‰] ¸†EîФ׬ú›·ÂM,S7Š“Í’¦ØzC*¦`£½¾%îÄcÂX2ŠŒøv"º£Ç½{è.'ÉÄŸ€`sâ¡øm/tÃAè3·7Ÿ8nl…>h®ªÖùC0„ÃÕÖ¸ÀÀä`àÜR“lÓl’¾ûbžU*Þä£mkÏLŽø‘Ùä¿I Á¹d®Ç¹ßà_ph”¦¥CN–V‘M¦×…ÞÀ½H–öb îÇe½ÞýîeòbƒBŸ®Ë«® ŠL Lg«¡4#G£ÉÊ•Sx‰Ÿ §šÅ§m©#\º£=¶àRü„·¿qº¶¸+g_ ‘ùΜf9 H¯=Ôp¾C,ñöíï‡Ãñ‰/p4Žœô5¶! )$LáÑÒÏ’‰`/çnS<Œü#`-`Ø$8î¦èuWÚ?0–ÿL"'Ã…8'âj\KøyUAá”aÖ?%ƒ`‰­¬³ Ⱦ„³þÖˆ#kŒ>0B`ÜúE}}v® Õ=:¬w£Ä~ë.IEo|Ào¹º¶4’Vx‘L!£‰Çý‰8´ã„ñt§‚¼úû;ϨØ@ÒÇÃ.Èß³Cµ-8Ú¸…+n¡ r?¼|¥{özÚ6~bЃ‹n9ø³wñíåøÊäZVÐî΀n‡)µÞTolÞÓ´*8xe¢ÜAoY2îWÒ«¯Ð€ÃРíwî&™}ES~.5Im§×Iì'0ý„¿çò¬óÈH— BVVnž²NYEë¹ýÿèÊøú$…]Ù–s"ëDfµ¦.µ,ÛœaÜÌ 6>þãSrM™¶8¸4ÈÞ¥ £ØTÈ2ët5ûä…ÅåEE!Ý3í÷Î÷/t%[“êQ-% +ã‹^©€>n}ǧȔÌVéåº È¥-X %5tŸ^”I6œ]+ùþ>Ó(Å+¢7o#ãqE«é=Yén’&– ¹žØ{áÀù‹ò¾¸ ìBeDĸµOŽÍ¬Û@9Uƒs6´Ó¾{ûoKŃ"Ë“~L“Ô—_–×ÛdAšuHŸuT@뤬gIÿ®‚3”›Ýpº4ŽJ&² ZI¬Ä~RùGo‰uì¬Dù¥6§Qø;þ%ŸâXœÇÏXî3;¯ó”?bÉÄ—A3CA&³° ‚»#›’ÛsÃIè©o:Ëy¤èfËpb¹‹õÍ*éQ >ãl 7Qöˆ>coK1U¼Ç·ê ×äf›,Dã Ûèã !ÎM™ÙkúŒÇñ#„Œyr•RÖ^ð.tÒç]hwLÅÎ ­tÊCj“øŒMR+ R\‚ÈkŠ…b(á,­P#·±Û„DíVˆ„XˆpNÌ…0†ã‚žÅ»÷jJ¡öêKªñÏxÝÓtâ€á€Ž³±1š  ”º8½sT“P½â!S+䫽H‘'•¿Gˬ‘ŒÀ›|Ý[í…&ÇØPÛ! Ò tpÅNmåH†L!W“ó_¤ÀsZ©Ä@Á‹Mo¡{ Ô„ÀnPÒ=FŽØµÚò´RuE(h@ÈSƒvIòœŠ¹Fªh…c¬‡œg ¤g ¥kÅBÔà8JzÁ…<ùÞ³(£ ÓF(,/,»-žß–ÂÌBµÆ¡ ¬°Œsx„9ùF˜›>;`ÙyeóœwéýÆÑ›Õøùû|QpSD'pæ~ã5Å™¸õ¬""àX•}Xj ö öð–ÍÆàf- ^®4¥Z¬5µ–έEZ…Õr¬´ ¸}a3ÛY ³Ax9oI´OdÒFåæ|¹ã‚œ®ñ!´®lä²Þã'¿³uËVûñwúþŽÓŠ©Ðrª¤R,—â˜Ä甂Ž>ú+ŸïÝk³ÛÞr”9V³ƒ<ŒêÙ£2…ŠlZæÝYê¼Üå/yο›S*è¡d Ê õŽaB¼ÖëZx}pÄ{ ºWCxϤx¿¥Iª€Uk…ÀQ´ ¬Ðûa¿vÿ „ª 4ÕPF1«4îk°YšÍÍW'xÖ$ÑÉrA™ž ¥ƒ:ô ºN Or6( 1ÔÈ Ë$Ž5cxV4Sßj¡¾õ>O[QW^eïî©j£}8ÁlÙ¦_ Ѱ%×/>4):DéAÖp0ÍD PÃe­çm[Çú——˜x¸ún‰Ü‘  fxá‘™9ÙöðN#ë0’`sÕGb"mÕ¥¸ ¿çs+¡ôœÅ&ÚD›„dm0m³Ÿ«Ò5‚aÎxÈzªV'ùÅú.ƒ1*H­Ðè÷ê÷‚³¤T%ªvíÞÔ~òíÎ7N7Èq©8¯Ü²¯ý¼~ŒÖ(!ýqît ù ÎÏÌÏž@²<ÝÄ-êFlý´Éim[ïHEFü ¿3?9 b¹øÚd‹ÅTm;·¨m&5e,Aøo'á0TìÇ'K jШAHÍ•'.^ïÜò9'©ÓN¿vôlÅ)Auðg{ÚYl:½ù"-¶8]ΧٳS˜J…&´!¾#¾Sx“¢|´¸×r¸n»­:àðNk˜a7h!…+x‹Ï+êO-È}ì$“_OÀátušöÑZ/gqÊÏ2'~ûxáÝÄ@zÀÈ\àL`šw潋¯+Ó7ë>§ñËušyŠŒþî9tC·žõ%yÅY™šœ|­"jü al†k¢}{ö,tpº¾Ÿ¿]Õ§ál°ŽŒâÜp0é¢Þ,A—‹w>‘b¯Ó”†£ ûiOWgY™_&Ï̧v­ââkv™­ûj,ma-ëçÏYýœœ°/)¯’üCã%j\«¨qµ6b¿#ðÜÆ³÷¥¢^àqìý›_Üõ¾I B~%¨þ–Se°<>€¿á OÑ2WA¼eTHˆWô_³bŽUÒt÷\¶Ÿ‘âôåÍ»m{ºûüýw¯öÄÙÓ+‡[‚ò4Ùy°‹S—¤ÔWV•™jÒl¡±AêˆHùŽº×+iFêãû’sDÕ… ÄERË‹ªŠ°îòß[¸Wï®ÅQèþ]ïåö”#á òuÖÀTªÑ­-N±Òƨ*2–Vp÷óùðUUo¯nPk­ÆFànÃäÄD˜ü‚¢›,à÷£»vîÚAÓ&-°R?ÒPÏY9°rÐNP?(O-M¯]BUQ«¡ˆ<ûð%O2KÜCcŒžÆ˜ßÙµP†Áz¥å`/ZÅ58_,öÄ ŠSõ9•0ÆEÅE•è'^ó4vYÍo:¼Z©‰¦(âtkM¤_[‰'ä 9ËÏqå9I9Z¥Ø†+ùsĺ’uŒŒä2Rô?Å7%˜cbT±1 Íúµ,©‘rÇYpØ×çhäA ÜYx´Ç4f|Çß9päx»üâY/¯ù«ÿ¶½.¥©Édj:`Œ’[:Þª¥mõaÕÒ-1¹›Ua eP¤+¨²óøg–6[«~&}/TËÊn¶-šJFùFø§L.º¤hÍk4SÛlQ™bU1{‚gÜYŒޏsû¾ÜãG¸¹øÒÍ_ü¬è4!l¿øÙ'Rñ²SÓ]©¦ß>ÖÝU`€\ã/5ý`„}Mb`nD¨|§9´zp^„]7NA\þMá½§ñ¸ý?qÒŽÏò÷n´½m°kw7˳4 ™šÌ‚äúLMdAGXúɇ ™Uë:\‡ëppÉ0ÿ M]endstream endobj 111 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1152 >> stream xœmS}Lg¿£åzƒŠñH7Ç]cBP&ócº8A§“‰Š“©‹sÕBmi ¥«…R>D´<* [>¤--:‡‹ºÌÉX6˜pSÐuîC³h¦Û˜3F“½—¼ü±+$`²½Ýó^žçù}½$!"H’¤6dfg¿ùJlZ픓 —€\ÚþRô¢÷ž›EADN¬ÁXh*2[U™u±ƒÈ"Þ%²‰b±›ØH¼Bl"2 ¹8•›‰ÏÈx2EGé% ‰V:Oª–„®8¡«šG×xò«0ò„%‚é¤H~„£qtr"V`Åd’"éäC¤`± §0éÛ¿¿ÿÛØÕñ‰ÑÌå¯nOOçĸGËx4Ì“†‘3,Ay¸ióC¨ß6nÚKó¬F’‡“hŠ]ñK÷î/ÖçqÛ]zöMªÔÚC>ps§¼ûæ*#X™ááËߎo~myÆÛéÜdÅÀ£!žDIâ®"´•y|í."Ø:µ¿ªèîο§ìÒê[M9{¸ ¬ÿH“†ÅRÊ63µû­«Ð)ª- B5ˆP±„šUä&Nò!Mx™qƒO[T]Vuœ=èÙ Å@ã ¶îó¦–#Ü™üÕOJzýl‡÷h>oé6Uç°…­òk6­†" —"³1änkð7²_ä}^Qˆ5=¿\ÖMnNuºÐ•ìÞbK3œ£{Cþê4f'[kðA#Ðç ÛÃÍ`æŸxI´4<ÍÚ,D1(•š§Þ¦<ЭŽ,d×®–•á6"á¯ØF-¾™wãîøHøl”—XÚÖ±GeÖC=³Ó#æí3.¼ÀLkö¬-XM­ZW¦Y ‹ºdÿý_O%_+øñìyWß¶>ß §€¾5o_DWlá…ÓÆ¹¢;°') +Ê5Õº†ª X &r§tÃi8QÛêjh72‚5Ò[¢íá–ʦãbo@€ðS¥ÓQ_5PSô†MoVéË  ¥ãláI+Ðëa£*øÁàÄÐÕ»nÖùa¤ûC"¨ÉtÚšÌöR0W²U¶âýo½rÓø½+ÁÐÂŽ¶¨ç¼g³²Nã«hÚçõú~X{qÚ6¼(Çýˆæ£ÅÁGnn:±‚™'¯ Î ú\H`ì*û‡Gu"«£Š`yÚ£¬T6å5Îèã¦Ì²|“è¤_ÔøåŽÈi‚|NÈuÊ\¦&}“þ:> ¬/k,èƒ>hì­oE9JpvßtõÐΩ\ê›Í²¾èEŸEåAÅ‘Š|z†<3†æñä—?¡“·$”Åx»àDgü…·l ŽÅЧ‰h!zñÒýžˆ4¥vQδó(‡,XuÆ2I;ÇÏѯa>}¿a==K™ÅØ ßÍd ¯¤lF‘doäÆO™qü3õ=ÊíÁ@ 'ÞDZ1R«AþÈc@ òñ/Þa{-endstream endobj 112 0 obj << /Filter /FlateDecode /Length 2381 >> stream xœÕYÙn\Ç}ŸüDÃÈÃ¥c¶{_‚$€Ćƒ€,Bàø‘ % ÅHþûœêýRÍ!>°«îéÚ{©é·LpÉý•ÿÛÝFqÙû`ßlœñ\{ɼu’Çv› w16ΫÍÓMž;˜wFp­€jœ #w6¡¬ÆØ  Ê1Fà£ôYëñ5¬ôU«B ÜÛÁ¨Âmr:pãâ`Sž!G›:¨0V˜bSÓVM´ v¹y»‘)¬üÛîØŸO7_~¯,‹<:åØéÅ&Y2i4÷…QˆÓÝæÇå«“¯¾; ŠÇè–¿==‚Öh¬QË·GÇHÆëåéѱ֚;©–îBD B©¸œ|C”"8ýÓé_aƒSƒ ÎÚ `Çé hý>cÁeðÊ`eva2xñG§?Ã;ö® áX‚©R%":³üéèØ*8ä²oÌË6:ïŸÿИÇyÖ˜o&£WmôKý}9ì¯#êè]Ý´ÑÝ5cî&²?tsŽ:òÿÕ¯«‰løEõ"%ÖJvúÝæôó{òþ)æò6z1™ûîêéξŸh9ŸôWò|QL€_7æmtÒ?ÿ±?kß¿l£Î+‰»7[×Ä´;ÞM=‰ó)’À´ãÁz|?IÓÍ^ï'FN«FÌr''Ÿÿ47¸Ž~l£®æ§Ü ¾žîOr´³q?Ÿ-­Û6ÚÍò?Ûé[9­ÐNfïÇð|ø=o£ÏfÂ?L|=&~r°âŸFNVzéEg^Èc; ÀÍÔÁÉ)Hkß9Okÿ—OòúÙPŸäà;Ìáˆö9o'³g›ùùÁØ–Õó—ÓÍj÷¢uÜH¦¥À0eцzÍ”+Ãöçì»ÞXnš4tÔ’!1ìçÔY+á WÌÊ踦F›åÞ3£ÑèúÚJ¥µã訌˜ÚS…^GÏt”šþ'ËcÐÅ:j¬•–£ÁÓ^a»W¼F§ÉP m0PZÓ˜¶:’ „–20m¢âè•R1rIj³,m„Ê<´ÉÖ =1W¥£F'QŽD„G{ËSs­©­6°TCs4Ñp#hZçÿ»h¯-ÓÊ¡EN#$AŸÒž¬B¹„$…B·%X}¨pÌ*ãɯÝÀ±hy‘O…¥h)r•ÞRV΀p‘?H¨tÖ‘fRe ë”§lt™¦ÕŠŠ¨VV k?¶ä›Š‚2i´èýs¹ŠÏ¡æ&!Ab2&)- V7jµ”ŽŽP0\7ÌÒ„Ì!Ñžµù¤ØË®¡ÐÛM³¡"ª‰EÀ’_–¢ƒÌ¨¢vU€ +‹È§ê‹šâ µ6Ê@G¨‹ƒ„JgiFáPÕ&D‘`°pà#Ó4£ZQÕÊ*aíGò-äi‡5‘ª¶q¼0´âT!ÓXÁ –Џi4ô¬Ç´’+z¼$ºèH3 '(ZkM‚ÃúOtÑQhšQ¬hˆjw•°öƒ|Ó©êA‹­ÎÚ´›TÖ±ZøiE?7FÌC#·Øj„HI¨)¨JÚüJf Ÿ&ÒÏx¬M7È:ÑE~!¯4@1° ¸ãBr+•> stream xœíÝy€Õ¹÷ñf *à £€à€Š; ¸E’ˆHÔ(úåõeq —+½Fâ’ˆ! FDƒ *¢Ä˜¨Q–`6D@„AE…Ë¢€€ŠÔ[Ýuªú<ÕU‡š¦§—éïïé~útWî>¦fæ¡Ú²!„B!„B!„B!„B!„B!„B!„B!„B!„B!„B!„B!„B!„B!„B!„B!„B!„B!„B!„B!„B!„B!„B!$rvî¯v}^í–Õv±QY}KXmß^}·+¼Ú±3¼úþûðÊøVÞøZy« %cÿG¯îÿ¥^M¬WÒ«gúéÕ‹}õê¯?Õ«Ù?Ñ«œ¦W zèÕÒcôªº‹^}~°^­?P¯6·Ò«oÊôêû¦bm•Š÷³ÅV½ªüB¯:¬Ö«C>Ö«£?ЫãÞÓ«Sþ­W=çêÕ9¯éÕ/ëÕÏŸÓ«ÓôêšGôjèzuã½zuÛoõêÎÑzez«ú/½zì ½’oõ éÕ_ÎÕ+Ó[ýî V!æŽazu1a ^M¾L¯"¦÷Ñ«ç¬W¯œªWoo­WïªW‹;èUu½ú¬¹^­/Ñ«- ô께ø7´Þ6½Ú÷K½*"*>Ò«vBDçzuä?õªû½:å¯zuæ‹zÕ{†^ýì ½úù½ê?Q¯®þ½^ ½K¯FŒÔ«[…Ó[=^üã÷ !ßê§Å?~"Loõ|ñ_Á^ðá^ðánðá^ðá^ðánðá^ðáVõÛN_ú¶–¡éÕˆsõêWgëÕè3õê7?Ô«±=ôj|W½úÃzõHg½zâ ½z¦R¯žo¡W.Õ«×öÓ«¹õõê±ée½yzÕè ½júŠ^5Q¯Z?«WížÔ«ª©zÕe²^s¿^ÿ{½:ùn½úÑízuÖ­zõÓõê‚_êÕÏÿK¯.¿J¯® W¦·zøyzuso½’oõ]§êÕïNЫHoõ;»Ì+óïÿI>è%íúŸ÷ð¸Ì¦íÝ9¸}7-UíôªS[½ê| ^r€^V©W]ÚèÕá­õêˆ ½:²¥^ÕB¯ŽÕ1û‹ª¹^[®W]Ëôª›¯êªWå²:V¯š£Wû­W-ŽÒ«–GêU«#ôªâp½jÝE¯Ú¦W•‡êÕõªm'½jW¥WíÖ«ƒ:êU‡z•™·úPñVý­n¥®4þ§ye–u>ÊËþ]’×÷c~\fS¹"›{#Äͱ7w~mM`:.0?.³©\1Oä¥ZÏ«YŽq÷ѧýCäKø¡È{†|hˆéž¦mš2Ld’È0CFŠD¿ç£"?ÁGHð¼ó±r™e ˆÙyøÀ‡/[«n±¬SïY¼xñWøÀ>|°í£ò€|D >ê®gOì{‹õu¬wÓª øÀ>d>o·â’[¬EõÇ­žQâþï‚áê·Ðà#Rð‘a-qVàIßäØÇî3'[¶+þÌ®=_Ýø™úkdK¾D >2ìãð‡¸(dÙfÍÇ}=·n»p„Óp4©‡o㫈ÁG]=¾êÿ½n¬Å´Kíë×_æÄGÄ࣮úˆÇ>¾ú á]«_*|à#À‡5»G“#Ÿóà#bðQ—}„ƒ|à#<øÀ‡é"r‰L7ÄtO9ö¨!ò-3Ý3úÌÌ\ I÷ Ö«áqrL¾I¦=˜^ “96FDÎe’!òqR„|ñ|ŠxÿnòQ‚¢ñ‘èßõ.ð)ø(‰þ]ï‘‚‚ð±$~Râ{•·½;p;’èßõ.ð-ø(;ú^ai7è³Ù-ÙÒžâôïºNn éßÅG¤'½öÑJõïž¾Wý»£ZÄlóJvØW{¥ÇCõïºm¼N–¿æ¤År|„µê£Ë}Î üWȲæcmuÛÇòøiô®='=ªWoãM†ã«Ðà#/¯ÚÜò ‡½ë¹N}HÉœf/¤çCõïª |D >òÒGù/²sùFéã›á%ÓÓ㑈:°º„ŸÏM+4ú“ÀGÎ|ø•ðQÝåô¥{Áø¨Ë>vtZKgåÅGhðQ0>f–-­®®^¼!|à£È}ŒJülݳV|ÈVíèonº÷ÜÓ²Œ¶|¢g^ôµUƒÍ"{ÊM}ñÑ}›¦™IÑ»ÖåÊ6ÝSŠZäþòª¿$<øHo3ø¨S>â»ovmÜù1|df3ø¨K>â»ËÇ®žXß¶!|¤·|Ô%ñÆÝWªâ;ŒŒluÈG¢qwÛËZ×<õü>øHg3ø¨;>ÜÆÝm=J½¿ŽìédŸøHg3øØ[ÝØ;_οkí|ýæVsÕ˼þ]|¤³|ì­ÃTÿîÜe›íóïnÚd_¿øJß ÇWém{ë#oޝTãîèx{ü°~¾A|¤·|ÔñØÇW ÏØøzùL|dd3ø¨u³>L‡Ú:ÿîËÇ—êÿõ.>ÒÜ >ê”Ðà#½ÍàþàÅî£6VvôužiÇ4íè>乤Më ÅG¼7ðsøÝ=>ŠÆG¼7øsøÝ=>ŠÆG¼7øsøÝ=>ŠÅG¢7øsøÝ=>ŠÄGòÄ»ÉsÌýZõïî»!»ÇG­úh­úwû|›c^ÿ®~޹…Ï8iî{ñìø8ävg¾ò±Yóážx7ðs_…îµê#oޝTÿnð9æðº{|‡xìã«àsÌá#t÷ø(*Áç˜ÃGèîñQ<>BƒÐÝãøß=>ð‘1¦{ff, ÉŒèëÕdGŽ™|D߃\Ù²ß\ŽÉµ,}H¦Çáø¨ >âý»ê£¢ñ|©xÿ®ú¨h|„Eê#Þ¿«>*áÁGqúHô慠ÆGxðQ”>¼þÝë’>î¹ÈÉ~¾—øÈŽÊ9+ðÒ¼éßÕ}¼áþ]Ó=33–…à#‹>ÜþÝò¥WøpÃñUèîñQÇWª{ >ŠÑG<)ÇWø>ððà£X}„¡»Ç>ð¾{|à£Fç§Ž¾˜L3--9ÓXômw}Úï"§&?ÎE®ìà·|ïòaäÈu>]dŒ!R„éžòLÖòÕ•ñ|Šxÿî† Ëº¦Ì øÀG¢·Oß&4ÙŒ|à×xÿî'õW[Öq÷ãøIôïÎ:Ⱦ6ôj|à"Nÿî”nöÕÛÏS· éßÅ>²ãÃíßí—'ý»uûè­n|ëA'åËð\øè4ÂYÓò¤÷ÅŽöõaƒ|ƒ_á#O¯ž~ÕRÿîªë,ë¤ñøÀ>ü‰÷'ö´å©Ò/ñ|ùøòÜònóýøÀ>ƒ|à#<øÀ>ÂS¹B.ù¢É'8Ý“–|‚Ñ šì˜bz\ômšæ½¿Ý$Bö©Gi;>ò;ø(ovmÜù1Ëzû‡M»ÏÆGäà£8|l,»zbýEkË¿~Fé§øˆ|‡Wªâ{›üð±öEÿ[ñ5ø(ÛÖXÖºæóÇl_|1>¢ÅáÃÒ£ôkY£©_¿Úô uÓ8Õ¿Ûx>B‚Zõq€ê߸=ç>v¾~s«¹ÖÌŽ OxºiŽêß-[†à£V}T©þÝGwåØÇ¦Mö—‹¯´¿ì²ö r||ÇñÕèsì/Ãú­ìo#ë4Qƒâð± ñŒ¯—ÏÜ^qç7µóìá#4ø(ÖËÇ—:Ù²æÕììUþ1|„EâÃ|„øÀGxð¹^”á‘‹Ð4VƒDß½iÝÉD_Ëï’î=M1ù"ä=å:hˆ4°wç§ÆG‚|ÔŽÕ¿»ðÔ’ÎSñ|ˆ¨þÝ︦ú‰ÿÀ>ð¡Gõï~[eYÇÜ‹|àCêßÝU5ü‹Yû½|àÃ'$Þ¿ký»^,6ʽéÁ«œ”øúw3»¦3|Ô-žë¬ÀÿΓþÝ5­ÜòVÛçÔMo„ôïfvMg2ø¨[>ÜþÝ?æIÿîC'Ø¿íãäø*bðQW¯TÿîÄãí‹;ÏÂ>ð¡Gõï~Òd܆7+Á>ð!¢úwçXÒiœ ƒ:ëÃ|D >ððàó2Õß}ìÑȉÞOŸ¡Îût7#_ÐèVM“ëܤÓ43¹Î¥ˆ‘†ÈWBŽÉmÊ1“|àYð±$þ+§ –uÝÃöÂãôïNq>f QƒBð±£ïö×>}?šÐdsz²ècmuÛǬƒì«CýÿöGŒêß_=ëqÿ >2¾|dÆÇ3Á¿®k=æ;3¿wïwícJ7ûÊíç¥çÃíßµ¬¹‡x½`STÿn“Z9ÿ.>ð±'mUÿîõßÕÌG³ÇÏÚû¾Ð}<Ô=î£wº>œóïZÖÉî’?ÿÖI³ð‘áÍà#’Ž¿pVà¤5óÑÞ÷û«¸;ÚW† JO‡wþÝêÆ[R9¾ÊøfðÉGºÇWA>V5XgY'Oχêßµ¬Û.JÄGÆ7ƒ¬û°z ÚòTé—éùPý»–uÜ$|Ô ø(_ž[Þm~z<¼þݯüeß >²ê£vƒŒoøÀGxðQ§|È—>íÕ”fä20ÕJ¢OÔ´&eäŸ{åËü–ï9r›¦{þÇ)B®lS×zô{šDÈ1|D >ðœìùPçßÝ5¢m›±øÀ>DTÿ®u}%3½|àCêßý¦t¡eyøÀ‡Õ¿û·Š A|D >êªÕ¿;íð!e-F¸Í`OÜè¤éûøˆ|dØGûËœxk ûwkÁG¢wbìW›Vº? ¿¤úwK—â#Rð‘anÿî½{Ù¿»×Qý»Oǯ†Ÿæäø*bðQW¯TÿîÂæ6Ô;ýÿ‡ƒºêÃíß=yÈÚ¹OáøQý»ëÏ+«šèÃGÄà£Îú0ƒ|à#<øÀGŠè«W.Ù-ïiêo—/¨©ÛÝ´”å|«×´êM’ÆDNôþoSL+Íô8¹^¥Ó[-Ç¢‹7=N¾r™ãø(ªw@üü»ÏâøÐãöïžzÏâÅ‹¿Â>ð¡Ç=ÿnå;ƒøÀG‘ûPý»_Çz7­š€|àÃ/$Þ¿»¨þ¸Õ3JžS7=íöï.Æ>ráÃíß¹#ç>œóïÆû$¯=_ÝôŒëc >ð‘ )w|¼h³Ý¿›¸>©‡oã+|äÆGÞ_©þÝi—Ú×_†|àCêßý á]«_*õŸ¤ø(rnÿîìMŽ|Î?†|»Sð|„øÀGxjLJéžuЇiõÊ{ÊU݇|ò¦=HR >j|à£Ø}¨þ];+—áøqûw-kkÕ-øÀGø˜¼‹vµÕ¿kYöÁ>ð!£úw-ëÙûâøHïßµ>o·âÏÇ îùEk¥?øØ“êü¢cÃú³ç#Ñ¿»ûÌÉVÒÇ“µÚߎ|ìɇÛß~[X{¶|¨þÝûznÝváˆm¾Aޝð‘ys|¥úwûÅOÏk|àC{þ];—ðó9>ðá‹êßÅ>ðQÃàø>ððT®0­^Óº‹nÀ´“S¦"ïùªij¦dLk9ú:7ý`Zõ¦mJ¦ÇÉ*ײiÕ›|ÈmÊ1ùêâø(@ª7ÙÆ‹|àÃêßM¶ñâøð¢úw“m¼øÀ>¼¨þ]¯øÀ‡’èßu/yÉíß]Š|äÂGGÕ¿{ïΜûpοë^$ò„Û¿û>>ð‘ nÿî-ß娇êßÕOÛ ÇWø(òã+Õ¿«.ð|èQý»Z/>ð/ª7ÙÆ‹|à#Rð|„øÀGx*WÈ—É´êMcÑ·bZ˦Uo2gèó!ï*§ýª!c"G®^Óª—ZL“‘"¢?ÎäôÎ?yÏ|àu̇jÜý¸WyÛÑ»ñ|èQ»;Ú úlvËð|èQ»óJvXÖ¨^øÀ>ô¨ÆÝåSìëמƒ|àÃ'ÄmÜÓìuÓ_Tÿn³ð\ø8XõïNÜ•sªq÷›á%ÓÝ›&_å¤d>ð‘ mÏuVàµyÒ¿kUw9}iÊ ÇWøÈ¼9¾R»;: øN†|¹Õ¸;³liuuõj|à"Nãî¨ÄùÛ{âøˆ|àáÁ>ð¿Ó1%]eµŸLÛtOÓÊ–‘÷”+ÔôÏiR„ɀ܃ÜJô>uéãCCLå=÷ìã‘yi‹|à#‹>¼ï.yøÀ‡ŒwâÝ}¯À>ð!ãžxwT‹>ð_Üï®­î|à#Uˆêß½.éãÍ”-Ã>rá£j„³§†õïfχ{â]ÍÇBúwñìø8PõïÙžcÉï^Çñ>òÅGÞ_%O¼‹|àßä‰wñ|¤Ä;ñ.>ðø(d O-é<øÀG︦ú‰ÿ¨MòeJwùÈ­È*·"Å£‘#gš‹iï¾'!§mº§É€“ýæòž¦^t9&EÈ=ÈÇ™ö #W¯é•‘>L®LË@Þ33>>Š­²¬cîÅ>ðàcWÕð/fí÷öÞPý».,ëš2'|ࣰ|´þÃkvÞPŸzûïz±Ø¨½ãáöïöéûÑ„&›ñ‚öÑ´GO;gmHÜiMë·¼Õö¹½ò¡úw?©¿Ú²Ž»ø(hâøê¡ì/¿í³W>TÿìëC¯Æ>ꎉÇÛ_îµ7ý»Ÿ4·áÍŠÔÿ[³$úwê÷Ñ[ÝtïEN/Â>rá£òGÎ ¸Wý»óN,é4nït¨þÝ;ÚÃù9¾ÂGn|äM‰êß]Õ`e4øÀ‡··× -O•~‰|àCDõï~yny·ùþ1|à£Ø}˜‚|à#<øÀ>“¾9}+òE›žf²àCfRä 9RDºÊL‘+T>¿÷ ‘>L÷4-ƒýÿQøÀGqûø¸WyÛÑ»­·Ø´ûl|à";Ú úlvËÖ–ÿ~ýŒÒOñ|è™W²Ã²FõzøXûzÿ[ñ|èY>Åþrí9ã¶/_Œ|àß9Í^XÖhêׯ6=CÝðŸgœ4ÿÐô”ðÚòÑùvg>¿;ç>¾^2ݲfvlxòÀ ÔM¿Sý»ûŸ>ðQ[>ÜþÝ˾͵ê.§/M\Ùe ìãø ¹ñ‘7ÇW;: ÿ”•ý·[V§™øÀ>ôÌ,[Z]]½z{Å ŸÞÔÎÿŸQð"÷1*OOkþQÍÎ^åÄ>ŠÜ‡1øÀGžúx øÝ=øÀGÞøÓ6­zÓ˜é¥7½hr-ËŽö— 1-e¹‡÷LS3½»2’§©õ^®eyO¹^¥ù8yO¹éÑ´“ÓË$Ÿ»ôazãå˜|Ëð| Õ¿øQ øÀG‘ûPý»Á•€|¹Õ¿üQ øÀG‘ûPý»Á•€|¹xæ4{A~TÂ;^ÿ.>ð‘ ‡¨þÝÃúw³ç#Ñ¿+?*᎞Nö]ˆ|äÂGëîÎ üYXÿnÖ|8ý»Á•Àñ>rã#oޝTÿnðG%àEîCõïT>ðQä>ÜþÝÀJÀ>ŠÜ‡1øÀ>ƒ|à#<þþvÓ*”crÖÑïiZh¦7>º¹‡y¦©™`Éȩɵ,Çäš”cR„¼§Ü¦ìa—OÞ´wSï»É‡éß†Ìø÷Ä>ðQ>œþÝ)‰Ó[àøÐ£úw7.¶sùž>ÿø(2ª7~uy‡ÍøÀ>ô¨þÝøÕ³÷âEî#žxÿ®eÍ=d—{Ã"·w9>ð‘ ‡ªþÝ?çÞ‡sþ]Ë:#Ù]2Zõïî³øÈ… Õ¿{NžôïÚ—·¤Œq|…ÜøÈ›ã+Õ¿kY·]”:ˆ|¹Õ¿kYÇMÂ>ðá‹Û¿ûUƒ€-ãEîÃ|àáÁ>ðžÊ¦µ=r+òíÌŒˆtcÄýÉ›ÖiLŠ0=Ý1†Œ4DîÝ´¹z£ûé¦{šö€|à£}¨óïîѶÍX|à"ª׺¾Ç’™ÞÀ>ð¡Gõï~SºÐ²Æ<‰|£mO¯ Qý»«Ä>ŠÂÇî¶OFç4{aÚáCÊZŒØ©nXöš“Ëñ\ø8ì>gÎÍŽk|¯Ã†ý»c¿Ú¼°Òý}¤Û¿»øÈ…·÷ìo²ããþÓ*.ýå vRFœþݧãÇWÃOóq|…ÜøÈöÏçUnüªwasûØêÎÞøÀGQúÛ¿{òµs+žÂ> ÃǸ—s@Ú>æŽù•µ$õf·wýyeUýƒøÀGqøØ~N¬^̪:kk…|‡›J¦³^,|à#%mGYŸÄ,ë–5ôazJÑÛ¿£7‘gÆ£i.¦½ûž„|ò¦{šÖ\õR„ieË­ 1­z“GSä:—Ïö=CÖˆÈ1¹M9&_AyϬûhòTÂÇSMð|¤ääþ WŸ2¢úwÄLø(J/×»ú™Øâ[cùÜþÝSïY¼xñWøÀGQú°¦`hzOÊíîùw+ß x>ðQ$>¬ïÞñŸ©g€sûw¿ŽõnZ5ø(Rßÿñ?ö§Ýcsš½°¨þ¸Õ3JžS7T{ý»øÀG.|tQý»ÿÌ’/xRûØIÛR‡œóïÆ[Û¯=_Ý4¢›“F ð\øhyˆ³OëßͰ~%³ì¯i28eÄ=ÿ®I=|c_á#7>²}|U9*qñ딿ªþÝi—Ú_®¿ ø(Jü1qñXKÿ€êßý á]«_*|¥+ÿ.±«×ùþ·wv&G>çÄ>꾿ØùS›ã'>?ñ„ü¥FÄ>꾘|à"Ÿë©¡¹îä[mêEO÷žÑZô{š÷¨ijѧmZ½R„|œ¼§3½ôÑŸ 4`ºgôÄ¢ÿ+bŠi9øûy:Á>ŠÃÇæ[Îï“Hʈêßµ³r>Òœ6> ÜDZƒƒ}¸ý»–µµê|¤9m|¸¦ÃBÜþ]˰>Ò6> ÜGǰZWý»–õì‰}ñ‘î´ñQà>n;oGøàœf/XŸ·[q‰çãó·´Ä>râãð‡ø~–|ìhßñÒþñ¤%úwwŸ9ÙJú¸ÁëßÅ>ráÃíß=1Ký»WÅZ’Hʈӿ{_Ï­Û.áï~çø ¹ñ‘íã«–Wí Pý»ý\oô¦¼ôø¡Aù6öó¹{þ];—ðóyºÓÆG^úüÐÀÀœÝ/ø¿Özý»øÀG]óü¡¹cŸîC®‹'ÊñQÓiã#}h``uƒ|ß³Nø¨øCü¬óœƒ%ù¡µÿù©£/9]™éÍ5‰H×ÇtÓÔ䨣†˜DȱèOÐôòšžnº/aôÕ+#»Ö£û¯®T–¶’Ãâ¿î±.q'ù¡Ælwƒ|x©>ÄñUð‡&üÿG©þÝ7»6îœròQ|ࣀ}h``žˆgB¯†ãýªwcùØÕë/Â>êŽà 4e`¥ÿ§Õ¿ûJüƒ;;OÆ>êÀ 4åÕØzß-ªwÛËZ×<õü>øÀGáú¨q~Ó4èÖxÿ®µ­G©÷÷Á5ª·>ð‘G¨þÝåYòñ»D6>'uÈ9ÿ®µóõ›[ÍU7 éèäïâ¹ð±¥³ëß½{z`Ú¤é£E"g¯Jqúw7m²¯^|¥oŒã+|äéñU†}„FõcÖøÀ‡Õ¿» ñŒ¯—ÏÄ>ŠÎÇ)züƒnÿîËÇ—êÿõ.>ðQ>úxiWãó‹âu݇› WÖëô >Dðá¥È}ìšT^r×w5{Lúýí™ñ}˜îizœo§ëÃ$Bö¾ËÝË{šöý)й‡\ûxëØØEŸÕôAøÀGQøX7 ^—¿©þÝäixñâò±s|³¦¿ 9?œêßMž†ø(.sŠ]¶&lPõï&OË|—X¬UO/þAÕ¿ë†ø(2=õÝ!Ñ¿ë]ØÙ¸ÒI>ð‘G=ã¬À°_)e­¿ÄëßU‰ Vý» Ó>ÿ.>ð±7>ÜþÝòԿ§×½áø uÿøÊÕ¿«.ð|èQý»Úixñ|¸Qý»Úixñ|D >ðQ>þþmâbÓ¿ð|¤$V¸ø[ãú/¯é>fº§éíŒ.É´?Ó32FNTŠ0Ù‘kYžÛY¾¹ÑÏûüjäÈUýžrf¦1ÓVL{7í!»>žïÞ=vD÷xZtÁ>ð!ó÷k®‰ýüšx†¾“2è5î.yø(FvNûC½×¸»£ïøÀG‘ú°¬OÞýć©7»»£ZÄðbõ±ëª±†±úW¥ü‘ÜmÜ][Ýø(Vw5¸{­µalûƒÆÝë’>6yý»øÀG.|¸ý»ŸgÉÇ7$.n<*uÈmÜÕ| *wÒà]|à#>Ê›:+°}–úwKœO¹}¦Iʈ׸{ÇWøÈÙ>¾:ö‰‹!ÝüÉÆ]|à£h}Lªwý¢/Þ^o’ Ù¸‹|­kdãX,¶ï-)·'wñâõamx}êkþWÛSðbð±~þÒïÓy>ðQ÷}lëgAux+o|Èmš|È¥eZvYð!EÈiG÷!×yº>¢kI×Gô¤ëÃtϬú¸1vÉG—µÙŠ|à#5UØ_^ˆ½<ªúw7\XÖ5eNøÀGÝ÷Ñ þKݯcSÝþÝ>}?šÐd3>ðQt>!>Tÿî'õW[Öq÷ãøÐ£úwgd_ ½ø( ·¿Ø­Óñ1i³ç«ÿ*‘9Í^˜o<¹ýöäÃíßýßløÐ“:œèß}¨{ÜGouSÕ¿[¿Vúwñ=ùpûw+Ãúw3èã=)£Nÿî‹í«ÃùÆ8¾ÂGn|dóøÊÕ¿»ªÁ:Ë:i<>ð=nÿn¯A[ž*ýøÀ‡·÷ËsË»Í÷âEîÃ|àáÁ>ð¿è+ۤŴ–å˜|îr1™–¤iÖrMOBŠ0Ù™nˆœš\õrUÈU/ÏûüC¢Û1Ý3]&ézÄ>ðQ >'Þ}û‡M»ÏÆ>ðáKâÄ»kË¿~Fé§øÀ>Dœï>|¬}µÿ­øÀ>DœïŽ?ؾ:øb|à¾ÄO쳬ÑÔ¯_mz†ºeûF'mðœø8úgnÉÖÌŽ Oxºå2Õì[ïÝà5†|Ô®2µ˲пɇeí²öp|…ÜøÈ·ã«•ý·[V§™øÀ>|l¯¸áÓ›ÚmÇ>ðàÚT³³WùGð|„øÀGxð|„§r…i5™ŒŒÉŽ)r年v“\Ó¬}x¤ˆèÓž9rHI&-é®;ÓL+;úXfæ)Çð|ˆDÿîÂSK:§œAø(z‰þÝ︦ú‰ÿÀ>ð!âôï~[eYÇÜ‹|àCÄéßÝU5ü‹Yû½|à×Äßÿ]/åÞ²ÃëßÅ>ráãÕ¿Òž˜ukZ?¸å­¶Ï©[.ñúwñ\øh¦V`“<éß}èûÊoûøF8¾ÂGn|äÛñÕÄãí+wž…|à#ÀÇ'MÆmx³â|à>¬y'–tçÁ>ð|àáÁ>ðžÚéo7mÅ$B¾Õòu‘÷4{ø©IDôädL•«É´ÒdûðQ>nþñ®U-õ·o\lçò«ñ|ˆ8ýíñ,ï°øÀ‡ˆÓßÏYûÇð÷±rÙ^ Qç{È.÷¯w>ð‘ {ìßèckÕ-™òq†¿ûŠïø(ôïöÉ”êÆ©ç’Ç> Údz'öÍ”Û.JÁ> ËÇþO¾mg‰º×çíV\’)ÇMÂ> ÝǾv´sÄÚÄvŸ9ÙÊ”¯üf ø(,âøê¾ž[·]8bÛ^ >ðQÀ>ú6…àøp“ã«ðT®ˆ¾î¢¯IÓ=MKRnÅ´wS$ˆ1¦©™vhz‚¦Èu`reZ?¦˜tN7Dî/ú\ÒµjÚ>ðløÈ@ç§Þ5¢m›±øÀ>|IôïZ×÷X2³ÑøÀ>DœþÝoJZÖ˜'ñ|ˆ8ý»«Ã>ŠÝ‡ó÷Ái‡)k1b§ºåçª{²þ»øÀG.|¸ý»Í÷²7S>&Æ~µya¥ûúwÞùÛñ\øpÏßþmȚͶ§ãÇWÃOóp|…ÜøÈ·ã«…Ííc«;{ãøðaððàø>ððÔäüí¦±tײ|œ|%L‹WÎEŠ0í¡-û2ÁoVPä:«7Ýu]‹éž¦mâ#0øÀ>ý»â­|øÀ‡ŒÓ¿{ê=‹/þ øÀ‡ˆ:ÿnå;cøÀG±ûpúw¿ŽõnZ5øÀ‡?ñ¿.ª?nõŒ’çÔ-ýËÔ_€|äÂGySgVæIÿ®om¿ö|uË·^ÿ.>ð‘ G«þÝÔsÞæÈG<“zøF8¾ÂGn|äÛñÕ´Kí+×_†|à#ÀÇ ïZýRé||à>¬Ù=šùœøÀGxð|„øÈS× LË,û0-ŸÚ÷!Ÿ»É‡Œaš™/øˆ²MÓã¢Ç´|àâc‰ú`ÎÔÂÅ>ŠÞ‡Ó¿øQ¸øÀG±ûPý»…‹|»§7ø£pñb÷¡þ>(> w€Û¿û.>ð‘ {ìßͲùQ¸_­tÒšïøÈ‰£žqVàÚ5›mÁ…Ëñ>rã#ߎ¯‚? øÀ‡ûÿ?R?êøÀ>ðt‚|à#<øÀ>ÂS¹B¾rÁÈ7^Ž™V¶éžÑ—«“"ä6MË|’ijòÉ›@F\¯bZç¦U}2r…Ê­˜VöD¢û0íøÀGøHôï¾ÙµqçÇð|ø’èßÝX>võÄú‹ð|ˆ8ý»¯TÅw:øÀ‡ˆÓ¿»me­kžz~|ࣸ}¸ÜÖ£ÔûûષÁ»øÀG.|4Wý»íò¤ײv¾~s«¹ê–Mª·‚ïøÈ‰·÷³5›m›6ÙW.¾Ò7Âñ>rã#ߎ¯FŸc_ÖøÀG€gl|½|&>ðÖËÇ—êÿõ.>ðCð|„øÀGx*WÈ—)]Ñ•E÷!EÈ{š¨‰€Ï€“Í­tï݇i2éöá›öŽ|à#|ïyå#Ñ¿ûq¯ò¶£wãøIôïîh7è³Ù-À>ð!âôïÎ+Ùa_í…|àCÄéß]>žzí9øÀ>|qÏï3§Ù ê–Á4|^ð‘EûW:+°KÞôï~3¼dº{˺·´âûG2øÈ¢#vV`ÊG6åÊGu—Ó—¦Œp|¥Yô‘oÇW;: Ý•:‚-ø(b3Ë–VWW¯Æ>ðàcTâüí=ñÂðqõÈÀìO >ð|àÃ|ñ!Ÿ’\"¦å#Çä[fº§\LR‹üú™3-ì馩E_i¦]Dßfô—дz£ïAÆ´zM>d»éž¦Å„|ìi›Ñ_B|dÑG¢×»ÀG¤µŒbñ‘èßõ.ðm-ã£H|8ý»î>"®e|‰§×½ÀGĵŒ"ñáõï^—ôñߪ÷ïâ¹ðáöïÖ¿›S«UÿnK¾à#'>ÜþÝÅ!k6·>Üp|…ÜøÈïã+|ìq-ãøÀ>ðxðQãàø>ððdêüÔÑ·b!Ç"÷.÷'·bÄÝ€i‡&&ÑW½ieG\¡Ñ}u{ô•|ÔM‰ÆÝ –uM™>´à£à|žTº¦qwûôýhB“ÍøÀGÝñ|RéÆiÜý¤þjË:î~|à£îø>©t ã4îÎ:Ⱦ:ôj|à£îø>©tÿÃà”nö•ÛÏS·ÜÐÍI£ÑW6>ð‘9-qVà‰5ìßmþÒJ;«’wLžTz¯|<Ô=ºå3¯7úÊÆ>2çãpÕ¿»(d͆ùhTZn§r­º›~Ré½òñbGûʰA¾ޝ´à#‹>2óû«À“J§åcUƒu–uÒx|à£îø>©tZ>¬^ƒ¶ðQw|ŸT:=_ž[Þm¾ZðQh>‚O*ÁàC > ÍG­Zð_*W˜V¯iÝ™–ˆéž&¦­DI’o£¦Uoz‚¦˜Öˆ4`Z[òž¦±è‰¾“9†|à£|¼ýæÝgãøÊÚò߯ŸQú)>ð€<|¬ý¥ÿ­øÀ>2þ`ûËà‹ñ|dY£©_¿Úô UÝèõïâ¹ðÑJõïžžçßMdfdž'¼@Ë_sÒb9>ð‘ ]îsVà¿B–k~¿»Ë<ØwÇWøÈ=_õ ~wËkÉÇÊþÛ-«ÓL|„ïEìc{Å ŸÞÔn;>Âwˆ"öaÍ?ªÙÙ«ü7âø>ððàøOå “¹ÒLc2&rLê”/¨‹nGîÁ7µè°d5DNT®&“yÞçy†¼jˆi½šî=éîÝ´M|à…äcá©%§âøÊ÷\SýDƒàøÈG±U–u̽øÀ>²«jø³ö{øÀGPþ]/å#{:Ùg>ð‘ ÝØ;¬7Ë>Ö´~pË[mŸSÕ2¯øÈ…ÃTÿîÜõšm`ùmß­_á#7>òíøjâñö—;ÏÂ>ðOšŒÛðfÅ#øÀ>‚2ïÄ’Nãü7âø>ððàøOúýí¦{šD˜'ç2ÒÓ\L{ð=P¢3ÝsRäÈu %É1“è«W Ì̘LmÌ øˆâcJâ£DZàC>ð¡²q±ËS?ÿøÀ‡“å6ûnÁ>ðáæ¬Çý·àøP™{ˆ÷a¸¿Vý»û.Ä>rᣵêßíómÞø8#Ù]òÞ3Nšˆ|äÂÇ¡·;+ð•Åš}Õ·¤ÜÆñ>rã#ÿޝn»(õ6|àNŽ›”z>ðD¾j°e|àáÁ>ð|àáñ÷·Ë˜ºÖå¬M"äVä’”ËG¾ r,º¹cë}ôÞ÷é†È‰ÊU/W…{Oä?†Ì3D®^Ó=£¯lSLZ¢KÂ>ðQH>vhÛf,>ðÀ\ßcÉÌFoàøÈ7¥ -kÌ“øÀ>ò·Š [ñ|Ä3íð!e-FìTÕ]^ÿ.>ð‘ nÿîùaý»ç L³Ú:bìW›Vº? ¿ãõïâ¹ðqˆêß}aw~øx:~|5ü4ß­_á#7>öx|•e ›ÛÇVwöÆ>𔓇¬[ñ>ð ¬?¯¬j¢ÿF|àáÁ>ð|àáIÿüÔR„ii™¨IËCLû3=#c‚ß'"éÊ5"%É1“W#Ç´BM÷”3‹>ÝŽi+øÀ> ÉÇ€øùwŸÅ>ð”SïY¼xñWøÀ>‚RùNÐøÀ>ì|ëÝ´j>ð ,ª?nõŒ’çT5ö"'û½‡|äÂGåœØ/Oúw­xkûµç«â­”/Ã>rá£ÓgNË“þÝD&õðÝÀñ>rã#ߎ¯¦]j¹þ2|àù á]«_*|à#(³{49ò9ÿøÀ>ƒ|à#<øÀ>ÂS¹B®»tE¤»&åãäBiˆi)›ö`<=¶i¢“"'úÉŒˆt×rt¦½§»|àæcå2ÿ-øÀ>T¶VÝâ¿ øÀ‡Ê€}ð|„äÙûâøÎçíV\âù§úw/Â>ráãÕ¿;p{~øØ}æd+écŽêß-[†|ä‡ۿûè®üðq_Ï­Û.±Íw+ÇWøÈ|;¾ê?=C¬>ð\ÂÏçøÀGhð|Ô$øÀ>ƒ|² –uÝÆöÒ‡i‰˜D˜V¨i-›D˜ÚÆe¢›3â1= S»Œ\õrÈ1S{t;rÝE¿gôD—}òѧïGšlÆ>ðàã“ú«-ë¸û3BáÍ®;?†|Ô!³²¿ ½:<6–]=±þ"|࣠}”ÎÙhGRMéf¹ý¼Løx¥*¾ÓÉøÀGaø8í§iPZn§ÅÚÄê÷áÿÐÙ´²me­k^³óûàùæ£D?¾z±£ýeØ Lø°…ô(õþ>øàUNJá¹ðqà¹Î Ö¿ÅǪë,ë¤ñ™ñ±óõ›[ÍU×ßôúwñ\ø¨Rý» ëßâÃê5hËS¥_fBǦMö—‹¯ôÝÊñ>rã##ÇWÖ—ç–wóÿÌ^FŸcÖø¨C>2—gl|½|&>ð ¼||É¡þ_ïâø0øÀGxð|„Çßß]„iMšV¯éqÒÀHCLKÙ´#VÓDMXeä‘>ä‰nÀ´îL{0Åô89}ÕGîøÀ> ÉÇǽÊÛŽö">ðxv´ôÙì–àøȼ’–5ª>ð€,Ÿb¹ö|à!™ÓìumŠêßm²øÈ…¶ª÷úïòÅÇ7ÃK¦»×ÿü['Í>À>rá£ã/œ8igžø¨îrúÒ”9¾ÂGn|äÛñÕŽNC:íñ|Ä3³liuuõj|à•8{O|à‘ƒ|à#<øÀ>ÂS¹Bî]j‘ËÇ4}Ë1Ùnz“ä=M33*‹þ$d¢¯&Ùµ.ï)Ç>ù!ó ‘kÒ´•èÛ”‰¾Íè{À>âÁGáøXòHÊMøÀ>œìè{EÊmøÀ>Õ"†|DÚf1úX[Ýøˆ´ÍbôaY×%}ÜþÝ{ó¥WøpÃñ>rã#¿¯ÜàøPÁ>¢m*øÀ>ƒ|à#<øÀ>ÂSùÆÊD–-Y©eÙb½Zþ¾¡Z¤W+ÞÓ«jY-Ô«•²ZPÇ+ßs¯Ö«÷Dµh…^½¿<¼Zü¡^-Y¦WK?ÕR½2½Õfï­î²÷8ÓËiÉ«g6Ϊ³::Ù¿¬£–ý›éUËRQ5Õ«VMôª¢D¯Z7Ö«6ûéUå¾zuÀ>zu`#½jû½j×P¯Ú7ЫƒDÕ¡¾¨êéUÇzôªþAzÕ ½^5l§W?U£¶zµÏzµïzµ_¥^5n£W%­õªI…^5m¥W¥-õªY ½*Û_¯Ê›‹ª\¯Lou‹ì½Õh^™j/uí-iòNvdÈÜ1L¯î¬WêÕäËôêѾz5½^=ÿc½zåT½z£‡^½u´^½s¨^-î WÕmôê³æzµ¾D¯¶4Ыïbßëe½mzµ¯ø€Ç2ñô+>Ò«vèUgñOÙ‘ÿÔ«îsôꔿêÕ™/êUïzõ³'ôêçSôªÿD½ºú÷z5ô.½1R¯ný½2½ÕãÅG%?(>O¾ÕOÿT¯þô½2½Õó± 1øð‚7øð‚/øpƒ/øð‚7øð‚/øpƒ/øð‚7øð‚/øpƒ//Š·å/Ô«¿=¨Wóî׫Þ«WïÞ­Wïß¡WËFêUõÍzõép½Zs^­¢W›®Ö«­âíüöÿéÕ÷âÍÝu©ød¹Ë„–Ë·ëÕ@açªÍz5ø ½ú¿zuýgzu“pu«øeÿ¯ëÕo„²±ÿÖ«ñâh¼©W¿ªW½¬WOÿI¯ž{F¯Œoõd½š+<Ê·ú1zµ(ò[½J¼Õ„B!„B!„BHíF?wõǽÊÛŽöþ^ðfׯÓïºr™wu@ü3©žu«]#Ú¶ëSŸWÕÂ-žZÒyª÷¸·Ø´ûl}Ï.,ëúwmú…7DåMDZ3DåM'QyÓ‰WÚtƒÞ|•šÚ“šŒÜ¯ªä…šLò‹OFUj2ªR“q*w2jLÍEUj.jÓj.òYËݪJ^¨¹¨JÍEUj.NåÎE©¹¨*ù>Å7æ½Iúk.Ÿ´Ümr±hrÍHôsWïh7è³Ù-PÕÆò±«'Ö_”¼ëÖª[¼ë§Þ³xñâ¯ÜêúKf6zÃ}œ=²ør÷ÏyßpMõ þ¡ªµå¿_?£ôSmÏ}ú~4¡Éfoú…7DåMDZ3§r§ãTîtœÇyÓI”Þ|•š»'g2r¿ª’j2É,>·r&ãVÎdÜÇ9“Q•š‹ªÔ\ÜçéÌE>k¹[UÉ 5·ræâVÎ\Ü8sQ•š‹ª’ïSâUvß$ñšË'-wë-ýB®™Âˆ8wõ¼’ö-½TõJ•ý¥³öwÕû$}Têÿ™ë›Ò…–5æIí–åÜ¿>[eYǸ}øXûKÿ[“{þ¤þjË:î~wâÂŽS¹Óñfœ˜ŽªÔtœÊNò¹%¦ã”î|œJÍGíIMFîWUòBM&ù‚Å'ãVÎdT¥&£½´ödT¥æ¢*5µi5ù¬ånU%/Ô\ÜÊ™‹ªÔ\´7Öž‹ªÔ\T•|Ÿâsß$ùšË'-wë-ý¢2'ÿpï"Î]½<Þôsí9ªÚ¶Æ²Ö5Ÿï>{b_ÏÇ×±ÞM«&¸Õß*ü›=ëq÷Ú®ªá_ÌÚïmU?Øþ2øâäžgd_zµ;qáNÇ©Üé¸3v¦ãTîtœÊNò¹%¦ã”î|œJÍGíIMFîWUòBMÆ{Á“Q•šŒªÔd´—ÖžŒªÔ\T¥æ¢6­æ"ŸµÜ­ªä…š‹ªÔ\T¥æ¢½±ö\T¥æ¢*ï}JlÌ}“Äk.Ÿ´Ü­·Xô ¹f &¾scÍiö‚w}[ÒäwŒÏÛ­¸Ä«Õ·zFÉsªšvø²#´Ó©Î=$ù‰ëÿ®‹r‹e¦~ýjÓ3’{žÒ;rûyÉyÈ 5§r§“¨¼éÄ«ätâUr:j+ît¥7Ÿx¥ÍÇÞSr2b¿Þ‹¢_x¯M¼J¾6v¥½6v¥½6ÎÃÝÉÄ«äkcWÞ\›öæ"žµÜ­[‰ w.‰Ê›K¢òæânÅ™‹S¹sITî\œ¹s¯¹|Òr·n%.äš)˜ß /™ž¬v¾~s«¹êúî3'[IVü ¿ö|ULŒýjóÂʱÉž‘ü™Më·¼ÕÖ{UfvlxòÀ ’{~¨»}åöÞV°w:NåN'^%§“󦯒ÓQs§/“óI ºóIìÉ›ŒÜ¯ªä…šL¢ò&㌹“ITÞdÜm:“ITÞ\œ1w.‰M{sÑŸµÜ­WéÞ\œݹ$*o.î6¹$*o.Θ3µ15ùšË'-w«*y!×LÁD÷QÝåô¥^±i“ýåâ+Uu_Ï­Û.!:\'¹ýËOÇ¿o?-¹™Æ[¼ë`ù­Öþ¾Ë<8¹ç;ÚW† ²}xÓ‰WÉéÄ«ät¼ù'¦¯’ÓqƼé$@zóQLÌÇÙ“;±_·îdœÊŒöòÙ“q*w2î˜3§rçâ=.>µi5ù¬ånU%/Ô\ô7oRU©¹xc‰¹¨JÍ%ù¸ø\ÔÆÔ\äk.Ÿ´Ü­ªä…\3ÍÇŽNC“ÇEÖèøÑò0·Y¼Ÿø­í´Kí/×»ÿ!dasûŸ†;{{¼í¢äV&o¹ó,U­ì¿Ý²:ÍLîyUƒu–uÒx+ÈGr:ñ*9x•œNâˆÊ›N¼JNÇÙ˜7Ä7o>ñJÍGíIMFîWUòBMFUj2ªR“Q•šŒ·ÍÄdT¥æ¢*5µi5ù¬ånU%/Ô\T¥æ¢*5o›‰¹¨JÍEUj.jcj.ò5—OZîVUòB®™‚‰æcfÙÒêêj÷ -hhx×ê—J½ŸÝO²vnÅSÞýŽ›”|Ì'MÆmx³Â=ÞÚ^qç7µÛ®í¹× -O•~iùHN'^%§ãÎ8ù½>9Ę7çžÞtâer>ñJÍÇÝ“3¹_UÉ 5í³'£*5wÌ™ŒwÏÄdT¥æ¢*5÷y:s‘ÏZîVUòBÍEUj.î˜3¹¨JÍEUÚû•½7I?¦OZîV[,É ßš)”h>F% ÷tË—/9Tü·íçÙ=š™üQkýyeUÉÿRóUý?þÌ;±¤Ó8¯šT³³Wé{þòÜònóµyhÉé$nô¦“ê#9DåM'Q%§“(½ù$*g>îžœÉÈýªJ^¨Éh/˜=·r&ãVÎdÜÊ™Œ[9sq+õÚ¨ç©^ù¬ånÕ˜¼P/ŒªÔ £*õ¨J½0ªR¯‹ª’ïS|cÞ›”êC¾¾IÈ ¹f!„B!„B!„B!„B!„B!„B!ÌñÿèÓ°óM_ŽöŒÍK\ö9%ìñŸÇþR;#$rGlÒÔ©Ó?žíïÏ»×zÆŽJœ¤¤8sG,qÎÇKbë“·]Óݽֳe,~ |"òñǘv ÍGÏËš­³R}$?á3ØÇîàÃ5B ,ÊÇèØRËz k“£~³Ë:Áþ‰äïÎhÏžkš°-~g_y"¶Ý:ôŽsb­®Þ1ªªôÂͶ?]uÀÿ7þA·/ŸÜ´ýÿØrªîŸÐöéœ=!B2˜„o^*ë°Ã»úÉë\e}öó#ª¿uF{ö´~Wï-¿}úͺ*Öþ¼Y×Ån±}´ùñ##KýÞšVïò'ok|Žíãôÿ¯q§„H¿¿ŠÅZÏ·64þ¥]ßÝ`…8¾²vÖu—ÏG÷ÝÖÎVwXÖÁçÛ>ŽßeY³bS¿; þi OÇæZU]‘:’Äﯦ¾ºÅ²^Å?ÁbmìIéþ}’ÏÇûÊ)ñóöécûHœsëÀÁïǦòÉ'ÔcU]š›§BHÆ£~þ°35ÿ!Âjx·Ï‡uQùéã:ûÊ)ý-å#ñËà“.xÑùF»Ùªúe–Ÿ!µ•¤×bïÛ_7Äžðûø´äJÏÇ„T‰ïí‡ý3¶D=¨ê†,ΟÚLÒÇú}‡Û_ÇÖÿÐïú«~{ÛGEü|ó½R}œ°Û²þûÓ–&ñ^z©j >HÝIÒ‡uK½ÿ~榆WYÖЖolrnr||×)fû8»äîW6Lõñƒ³¿£ÉI»­{bW>ukùOøþAêP4ÖÄcKŽüÍ.Ëzç°Æÿrnq|X¯Ä}¬êÝ4Öf|ªWÎmÙþñϹ˜Ú½¤ý [ñAŠ5k¿Ïõ !„B!„B!„B!„B!„B!„B!„B!„B!„B!„B!„B!„B!„B!„B!„B!„B!„låÿ\2endstream endobj 114 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 166 >> stream xœ›dÿCMSS10‹‹øýùJ‹ ‹ ›÷À½ºR3Oøˆù‹ ÷¼È÷˜Ãëá÷ÚÜø7÷Úò©ÎÒ‹Üîûâû#û…ýJá÷Ñ÷2÷PûÑäüGø÷˜÷$÷ÍPDDKPû  7Ÿ ‹ ‹ ‹ ù> stream xœÍ}]³u·mÞýù{:½8oÓwgñk‘¼HgÜ6mÚñt&¶2NÜ {K–•èØŠä¶q}ñà@®£-YIœ¸ÒÅ»⃟ òüÝí¸§ÛÿíßÇÛK¾×yû?/Çí?¿œ)Ý[Ê·ÞÎtçíí¥Ïã>j ¾|ùéËèéÞGºõ³÷’…(0#ÍûÙ”ªåQî­nTÙ©ÊYïul[«å^›DWkÌqïmieð®ÔYƽžsSj¤~Gº(µ¨s¡2¥Bœë´É;nŸ¿üÝKÒª¼Ù?·Û¿ÿäåO’ÛmÞç™ÏÛ'¿|a5§[’jHU¬?ú= Å'o/ýz~ø˜ó9Òëøðñ¸ç㘵¿þø¯~úá¸×ãì³½~²}øsün³Ï2_òác)ù~Œüú£ÿö£ù>çùú?~ºÑüüNGž¹¾nøÿùÉ%KÚ•¬÷!õùÉ_>ù7-¼Ó]$žõõß}øØ²p ? äÏã×oŸà~ö?ÿUüú*~}ù¤È¯ã×gOXó„ß¿]z}õ„á#~ý퓯Ÿoâ‚ÍŸ­ŸKÌ_įŸÆ¯ů¿Š_«ÂÊeöáª\úðl-}o%¯Úù"~ý"~}ýĘ…ûÝ÷7Á7OjçYKþv«o yÖ¿yRvÕçß]#ßY |]·*|Vøóg„˜Nþ¯ã×Û.ß<ù%µùd\üÑÔþêI‰Õ(_lj¡ä~ÞÏÞeŠüäS™?}n(?:éGޤÉ"a’éùø#š¼èO~}¶qŽæù“õsUÉ/Ÿ”ùò‰äÏþ?5êϹM§Ç»vĨëSÏsÿx_Ç“_éY_Ÿ·Îò­~cò¼“,£÷¤ê~ߊð«'³Ù¦Ñ³úþüI»<Óâ{{Æü«'Íð«§ŒVmß_¿{Rý«‚¾x"ðoŸX³¬^kÕ7O{Ö…ÿîYg>žU@úþÏ¿ØZö™ðüƒûȳjy6ý¤‘W¥ýú —UöÓí×3mŸŒ§£àûË/ŸÔøý÷TÔ3ÑýûkìïO·øþQõƒ'îÄ’øtœþî_Fݾ~»W|‡ Ë“œîInÍðÿeìúáKÃ÷ZcnàŸòò—ØK Ù…”~+) A½å–Ï{—ó1î¹Þ¾þìößo¿~i÷–gm²aM7©ŠÛß¼B•dóš¦l­f¹•|äûm[.IöQ·"¬{áNR˜•ûY7šó8e?v%ªsâ÷"š‡ìEË•Hvg‹¢¤Ùïµ_(Ê!»Ôž7¢:Ë=Í+Qç½nJ—>Æ{Yò[¶z}ÕcTìZw¢o™ÿ®i„y…ù²“m*íÌ÷6¡†ç¸Ã¶2ë=w ô®¥JuÊúVêm¤RÍ,UÖvž÷!Ûh÷óTÅŠÆuŒR]›é¹uˆN”SöåeìJCº[Xz•½lÞ-ǽ´ÝÂ2rCHb·ð”¦ºZXæÑ´!6 kºçy1±Li¿R/&Jÿ e//]yì&ʶü.[ð§ ˜F¿'Ø·š4‰îéÚƒƒjõéÊ»ð¢ŠN½Qi^$ìÒë{ôà Y}z£ò.¼¨¢SoTÞUôÏE•†ðÏÛøLSÚêÚ‡¤ÊüÐÎÆ¢³Yôɉ q!]:eÚˆ ±ÕCFxï‹È"±Eæ§È¢VÛ=oâq!ê…»8C€H§Ë*ý+Ÿ2Möy׆®÷¹þµÙòûÂTÒeºL¸ïÂTÒrmJÇ”IwfF©>–óèéõcöIÖœ#ëšs;°þôþzKþ#ëvŸóõVtŽëõÎŒ.uJÛÐe?0dèIçö»Ù~¬¾l¿³þ.²–©Zù¨ÃÔŠÅå°¼üƒ+Læ™otY(þ`=L*§vY_·“%÷~Œq“žt?Ç©5öåo>ÿÙëÛÏ¿ùF|×þŸæèzñ–ÍK£·×*5°†œRã6œÔÖ¯>ûZú­°Ò‡¿øÍ§»/ôO6ü[-숖Iä™áé,²RËRÙEnÍ«?{<>ûõ²‘÷`D-K{èôìDŽyê@=ñßWäÛ{ÖOš'4ïµ|®Ri²Zµqâè¨;c˜r¦âg¥‹kSç­âÒ:‘Ĉrâ$C©R“ùžîq –ß­_mÅ/:D=Ås›SW|b”è(FÕ3Öw8áN¾F¨:Ô£ZðqDùY { ŒP•{îŒ%¬ÚâS‰¿TÔ#F¨¬Aæc$8fµ‹Êù¤¡¥²eXÌçj‰õ‰õPÕ“êËÆ ž—øeuJ'Sq†¢vOƨɚ›”’ZVN†ª#Z†¬ÕÓtÇH+M?¼£Û½¢ Gá—c„êĦ!Ü#i»:›©e!j±@AuœRCÝYuXQ{J•“xz¨ªŽÖ}s„Ð$ X âr‡zJK$V1¥É\%#—Õ S4ð™Ts"”Æ„Áw)Sô•2{(1‡fͬSç-“²5Ÿa„*£s°+`B͇ôÚ¤Ï0JU}[%U&*I?cÿĶ«•Nmš8øûÁÎé¡ÑUªp<ê{°¾ ¡D>dj‘F?1ü¼ #T=jIú†,h˜ìë=i?7ŒRU ç)V¼Æ‹Þ!4'¶Vß ƒºÎ¤:¼F¨ÌÈl_)ÎÙKµqe+NˆÑS¿Ö!ÕÀÊ4LÁô:œJöYÜTD1DMõ)!'ñz¤é0v»S×î$³WTk *ñ†ŠöÈÆî›;FSXm´ #Ts«›FT§ÌƒÕIŒPI¶êDÕŠâsž^SŠ(âAù€:±+Šj*FHj NñŸ”ø²•¤¡Gé.£õ+Æ»¸a„êÀ†ÐæÄ£¤U:·%Ž!UZcs¢G‰ÛEÇÈ€h1\°þŽÎqÎ ªa„ª¢—ÚLV°“’á’ÐúoÑ@ƒí=e\K3Ýj’Ù§Ú@BhrÌÔÒ0é±LŒP¥5s].Um:0ŒPéºcÖÒ´3†ÑmóÙ}g©QŽ:ê„o*éû¾üÉWiÏZe²¶ #T=&„Š©=ÓœNx†ªc k–d«JSêµwé!sïÅËšu‡"ý'ùTÝ0BµúHS'X(Uµ #¾ -lM®èÑâ?5ë놪~@ Ti…ÃÈx…b”Ê›ëú©+ˆO †¹P©áQOéZ-­!êèE¬™GPïÓµÖBÔ¢²ÐQYˆ™°ˆ*é1YiTš8P #TÙgã<¥áHiŒ¸)BhR 0ùKê±SubJ§ÀU?dR„8ÙZÄB2½× )ÎÄ ÿó™ÞW%`ÂCw ’ä±&¸DCë ×>b„Hj>\—Žn)s£ìw&]ÅH71Ïa¾DÉæx¦T¬¶¶5q*ZÃR]KÃYXbÂjânvÑ«çÝVE‘Æ^Xå _Åœ:•B£‘)›;†úN'»'1¥Ì¢ICŠÿ/#þÀõ¡êÑñ™+Šú.‡ubÃUr Ëg„u&šMãVÄH¥i7£îÌ)’Åø€ùбÜä.’° ÛG«Ô1²—nÈç!Õ¡ó`=«5c ¸»ÿ™曈 uÎŽ‘öÁàgSË0­k–qÃIÆ0ÒS+x•ˆù+E*Úh¡J^÷yd]¥êy®»Ž*±šDgÆÏŠe´$ g+Bøô¨†!K¤0Ð@'QÇa|4Ÿ§Æse¦-6º #ÒªÏWRÍ]Š*ëu®¬xÅÈ}Ú°Èð‘¤Õ«ô(b!4 ÁC[x~×*ýÝ<b„êÀ,Â`'¾b?';ÍÂHC—bMXÄžçyg )GTÕT'ZÕ“ue˜ž¢7ÀBˆ^êˆËåÂÈ$jkIî2ñÀ!AòXW^9c*ÊMx‰T:zFƇyòsè$’Ä|Ý›:F©|Å~Z ΦÐÛ šâ-}—•ì3›ZŽÉ²«°®œGÒ•EÌîØ#¾m¡òN*­‡¬LqõÙˆ†È²Ù§£C=_Ìœ¡DieÊ©ûzÖË>Ö1CSùèÁc5‘*Â;_ÂL*I{hPÀgm‡)%#µ0Aáĉ˜m“A%\ §p-ÃÕŽÇË/Ň7¯ËîÛ1E½ÊÒe¾—•¿ÁmTØ÷ë„Eî8ÔK ´H™‹CÀ”Ž‘ù–à “×ì› Â—¥…S¸–Æáj[*Ú÷˜cdIÑÓј0k,¢ Éë4aÆÏ=£#®âSÈ £cê²CºˆX~¼„ü 0ý¢øÕµêHºŸÝƒŽ‘eD£ß¢nÆ:‹~p[QØ$Ä â»t$‚VÜa @Ç$ÎÁ@»—¥‚S¸ŠÎáj “}g»ÆeSy v`4À“°Gr?bU^2™>®0e „c°k=o‹ƒtI, !ƒ0J¸NáZ:‡«jâ!µîѤÀ`¶GšJ«˜$qÈñ'ÂI£G‹Bºzn‹CÀ”ŽÉêÐ-‰+vÈ üxYZEhiÞÙ¡¶ î÷˜a¦¸pˆJ iíç^ü Ô˜GÍ Æ„PÔÁ^Òð§ › ”pŒxVXxÃè°Gæë¤C-‚ÂõvW;Ô6êîî‘;ÇœêѬ°¨±ŽXT¿­Xa‘[¦†‚¢Šì|CÀ”!%Sq Ø2œ› ÂáZ8…ké®vØÔ_1uîGÇÈBRtê/X-N¥¸43BIPgþ÷1ñRØL—…¯ÝƒçÛ!@!õMûìú±ð;8‰HÕ ”HQtG/ã=®XõW@UALÉ©0òbßea'ìÅVþ w„ô\¸4Qþ ‡ëŒcEhh®&¨UíÐÞÑ5Ìÿ!D©ÖTÀ£è8õ°Áêœÿ0ŠÚMÂãeaʽEù!½x,/¡w­ôÕ5 sL-—´aÆ¡uIzHÅ`CækƒÈià rM 8Q[”ïU1qÂ(}x…+m ®6Ø\¯sØ2ŒtïŽcüéÑMÝ®DÝ`ëO« £@ÒG[¦ ë Óyw]\mø*È'¬s=µpŠÐÒ8¼³ƒ¶Y0+ÐkvÉ)Û‘‰á ›—œnëd€°Š-t ,B}.7a°Ð|0Y7 B€«`ß]C/~1!ZLãyq2˜ÎÝ4êJá¡«Î:Ë l-Öw iÌÎ!`ʰSŒxW8 5v„­ÅÆFZ‡wvÐ ž:o*9÷s2¹b‹Ýûiù:˜±8Óú^l³Ò’½n ÓuQòã-J;ºu6]T UîS7â4Ÿ0¤Jg8vŠÖxîå>Ýû LSç5` Ü$(rWÁ¾»†Vúj·ËœºödÇ zè8p€:™J鄱•åùÛ¢€;76S†n~ #%z¢¨Â.ƒ0J¸NáZ:‡«\¾¹ÝS ‘pÜŠ ÕÚõ±DD×R& „÷–]ƒ kÚG0pØ$h ÃØIµs8á[B„XL'p‡wÌ×hPfKÚLæ¾ñ%zw¤yD÷׌·²QHG:ÛÆÁaÊÐ%Ö0‡n䮨·±D¬þ•pŠP’ ÞY¡–åtªºòL  nhÖþ¤ÝYoxb aø¥µó Õ)Äu8ÒÆÁaŠ@ Çà6GTå^fË“rŒL,EGHa W†)B›‘YEB»9ÏN1Üå7SJ8æì…ΡÙm —ц[×Â)\KçpµƒN®L$ã’ÜeéO@cs® cþ‘ 6ýT #=o#À|ÞÊ;L(à˜“'ÇÎ@z”‚.°EÆF` zñ‹\™U±ç¢9§ÕXç’&W¤Ïœ{öa])5-bQÔ©î[pp˜2´„aŠ&ê-b–½A%\ §p-ÃÕ®ÆÖ›W'úñ*–”Œá•N[ƒ0÷8¨áÍá¿Z'ì »Ý{fx®é ,þV·Hê#hëbÎ@+1ÁÂkš;¾§ý#j©·Uήñ‚†Ù*kÐNÓÖ ‘fvE?NÂÆÁ`—¡6à ‡Š4¦Zo+±ûÊhZ, ×Û9\íàºU7§+[Ñ1ECÐ8£S°-¹Q!Ý@eõFýsO¬}+ì ¹ë2gÙÊ]­¼Lìc.þõXÔä;«ç ®Ø&2kÒJ®4Â;u•i]ΕIØË´Sœz$¼88Ü<¢œiÖÛâ€àuÛd~¬Š SÒ\Œ°³X&¸lù Ž‘^ñqœœŸ”ÓSOÏ %¬~ÃÔ}RPÌAÇÁ98L—…Á]8P8‡ÄÉ'd$ŸžB §p-ÃÕ.c8Lo—,VÇ$=ËÑ€$&¤n¹ü‘÷JØB¢c§(š2¿88|xìÖ1'„~ H”ëmÉ0ØÂ¢s§0-ƒÃÕ:§Þ}ÙsoÓµû—Ô5ÚϼÛq[Ùº„²„3½QäCÏ‚CÀ”¡š¦éZjâÕ—AXó$L §p-ÃÕ;Ú+L|ŒŒáÀLf7â,?ë©qÒȴ笧{U7~Ak€cq˜2ô|Ï0Ȥ…qPÍ–‚–O{|­ø;#,–­¯˜íYÎŽ‘ù¾i’‹x,.ËbÄZZ´^†);Á©C:ÊHÈ&¢3uÀ‹ãæS+Áß@ cS pÁÕs?ô Åž—íl5Ôýà™=âM‡º–ÉM®A©<pŠZ;‡)CÝb°ˆq+Oˆ7åºd¬îG¶°¿Q˜–Ááj‡³¢›…-›Ü1²¡Cˆ5ãëSÖ[i–NXÇ™ÞÓ ÄÎ4nj¦ g†A+C†qÀmÒÚ– ƒ-)í®¥s¸ÚsH½æÀ;¦h ƒWÏe«×xÒ|õLy£À‘ƒ)ÁfäâPn•?ô²FPЦ²}wý¬ôÕN]¯ï)ûŽ9¦ñŒnQæËÓ¦-hIüбQ¤4¶0S†N7†»õÚ»s@:bÝdÖEÓ´p ×Ò8¼³ÃV&£Uë¢cNfíãZÆYr8Âð« „Õ¹5Û)Á?6S†¬ŒðÊÏ~[ÊॗAX£>¦…S¸–ÎájãSðZËm¿á+f˜§Æ£'…ýBa ÏžºP2êÆÁaÊÐЪaŽÁ,vãÐ'c.Ã`”0-‚µtW;Ø'‘õxÛ/u¢jV{AB6èX§ºm¼BÐ=Ö´H•+ì ¦-a¤ºž·Å!%M@t5®b:8©èå/&\¢ëŠ#Rc–±mÏ{ÖëqmEÁ-DàßmÿÅVþ[€Ç¸s®Žq6o‚ ¨ë¨x‡]³eök3†°¤?ÄœUgúºqÍ&»7\Bp\…Ê[y‡) sNº²Æà¶7 [à|lT0Š_ `ÐMúª&¼ù-Ÿ…±c]ͻڎuã^á/ØjÚSÈ¿„ƒÃ”¡% sp¦q9 › ƒQ´0ÌÒ’ÞÛa¹¿•#tÝMr ‚ÍzV_—ƹÙo3¶Óþc§0§588L›[‹Ž3ò-8œ“¯±¸ ƒQ´ ×Ò9\í`Â¥P×*Ç ½'¤èàê¤VÂ~‹0NL1Hv û:‡)%S8H‚CÖC¥%ƒ0J¸NáZ:‡«vÊ¢¢·{`9íÞ11"ôàÇVpîÎÂNMœAÀÍÃöÁ¥_½žn ƒò!£xØÞ•0‚ÐѼ³ÂÜáS×ÃuwÍâ£z¡Eg#ÝïaFð»n ª/¬w›ã{ÕùpwXù«'lˆfÏyùš»Âê ›Ná:‡‹ ¶™<4ŒËvŽ`x]ÃÎ ¦ºÇí<¶3æÀ3ŠÊ³ñàà°Š°sE iÁ8ª,Rn" ~¼„AáJ:‡‹l.D}® ƒœUî$w½ÜÆ•Bƒm/rî-ÛÄe 6—…ñÛeÆ©®šÇë×»ï\‹ p½ÃÕ;;4kÝj4ÜêÉX—}dÂ~ ’°6AⱕSà†@Ú88|ÆiƒcZÂñJ0¨01„/K §0­üÅ.gxE‹Õº‡i˜yðÌFH=¸‡Ó2o~oÓ@œñ 2»LM{òℌ½ YÖ•¸«·(ŒÝŒÇ¸Jä&>\_+Uß:a‰³9»5ꩯ®[æÌPÑëÉëž)aí„•{)§@&ÚÎÁaÊÐNhC7Ýä€õ—WøŠ%£NK>u-‚µtW;ìKÕ°åvÙÕ1m2j'tšh¨¾oÇTo¶ñ¸Õ ôÒK+@æg­ f 5[Aœ‘õÅ™àv8®š3¸*oɼ;±]ÌuŒ^Û¬–ÍlW„â/auà,›Ù):¯Ù°¸äniбKDQÜ. …Âv˜ÃÎb®Ÿs¸Z`'³¼Ë‹Ä ìúÄ@Æi¡úHxÃý¶®+¨û‡Œ»gñ]f«Y¢ø‚¹¬ˆŒ ½6d¥í ¿`OXÇ É'féGõé`4Ý€íמ 3â)é–ç´·cr XÓ,»³os2÷Ý9l2´„aÆÁëÆ¡#Û©.Ûö:ï®·s¸Úa·UºFé¶ËÚŽƒƒ¿Ÿ¸xZçÔ̱u½{zžZ™¼Ñé¸u­‡XÆ!`ÊÀÖ×18ô çкÞP „µçšNáZ:‡«v4f™ö늹c¤é5óüà¬Ôôz꺓NXOÆ,Ûß(tõ¯Á @JЃ1Ãd½ e¥“„Âz*f8…+¨Å¯úëØjG²Hc\ˆ7 rÞEXFF'#¦:Öã ½Á2ZɼꈨσÁ&%÷%ƒòæË¹dŒ¦EP¸ÞÎáj‡%ÚŠküH|5É©HòÑäŸÛºö¯ žž&Ýøw»¼êÅVþu'Wsô9–Ç|}ÆÓüx œÂ5tW8ÌŸÝpLÖûðyâT×ÎÚ–u{©€ f¬2ã0N *b¢«¼zCzy:Šã…Éß@ЛAà :ƒ« vÁ8äöT‚cxëXðκâ­äõ¸B÷”ðÔô£,Šs°þƒÃ”¡ûkÃðÞòâÀ–\2ë1„iᮥs¸ÚÁ ߎC·ÃЧ¥t:—åQ_Zò'!£ou½!°(ð6_Ù88LºA4ÌÁr‚Ãqv„5kZ8…ké®vЇ—²^Ÿ¥pLç½h\_Õ%÷ÌÇm=dAX¬Ì?4 œhÑ !‡€)ãñ²0U/ï.2±}“Aøñ²´p ×Ò9\íС&»LfŸ®Ç4ƒ£Òz“m`#ŒV—‘Ïo~àÙØÎͦQ´ã\Å ;&¹C7ˆCñó‚'/bkƒÁÚ„…)®êsöÈš¶¿üá˜SgÎŒ”Éjij î•¿BÃ[ºIÙ¤Æ4-Í8Lºí0 "tý d)裀ëண3¸Z¡–u Œëk%ŽÑKæoðÌ@¯ZÏ›±ptÚN1{Ú„ ¤pŒ(±Jã‚ùØø¹kà®`Þç.6áb™²ˆ·UÓÔÊXï>ÕWZ¯±œæMe¸m§È¶Ö‡€«y: SôÕåÅ!wÂ.#›7µ´0ŠÐÒ8¼³ƒ€S“Žöa3¶(zÁ- }¶Úß!Œ :~õEè^Ï0SÆãeaΓYΡunñ]áu°(\Kçpµƒ¶ÍS·ë›Àd^ô’Í á’ø¾¿|CX7´§n<‚¢4¢‡)C£s†ÁÝmP‡$ËpªK†ÁZÔÂ)BKãðÎí“È*@>ËöúŽc²ÞÒÌH4@k§’ û{=„x@G- äB(l¦ŒÇËÂz³28 ‘sŸË02L‹ p-ÃÕÚv0çc{3È1He“Ñ3RaDS4UØ_" ¹Ò ½o•™)ÁÁaÊ@ ô©‘¬à€§„j_2 F Ó"(LËàpµƒs ßÚÛß:rLÑçÍ2rù®°=ŽDüø£FP- æ ¦”pLÒíÖâpèö*DD×Á \Ggpµ‚­ÖõÐý&Ç <†ú¼a‡Ü×ø“NkÿÒ«¿A1‘õ>‡€)C\à ø ã€|†Þ– ƒÑj¦EP¸–ÆáÜsV>¨³=+åÎa‹×gãCã´ñ•ÁØ>ãCWÑÅÁááw¿#šñÝ}rh§ŽÏõØÕéw¿]‹ p-ÃÕóE:ïõ–c¤Ç£CáþtSg[¨ÖóY„ÕªYPœ°sp˜2Ô1 ÒÊË-8™'6ëv‰Z…ké®vÐuäK Û^†@*B¯ª œ „GªâÍ/‚pîpóxûŽ¡ÊVÜ`ò½#ødc”Ï=öGź½™…«ì.&XíÐä‘íÑ1Ç çIoVtŸ!ž)#¬ù’SOƒÂ2*ƒƒÃ”ñX/ƒVD@á鸉PPc²¦ƒ}w½øÕm®ìI“ë4Ãàéi™JsFi„«’æŽÇ;jã""Ó¾E˃MJ8fhžJpù›°¿ÕF%L‹ p½ÃÕ:Æ™§sëu7GôN7·èiþ‡ÔËz Ž0Bœ¢n§fÚ­ò«Ð;¢áoÜ¢<–ªàΕÌeWóDU//vQÜ1¾d»=Bg Ù¿å3 }èã"¤Î`[“úN¯|n 6ZÂ022d"™+láef6„Aáz;‡«j[±ÄÓíé<ÃYôpÅW}pVˆÛ¸ëOë,r s:‚¼‚&ô†èúv^ÏH¹*·íí¾iwg]… p¥ÃÕvÀÄHûöÚŸc°YË[ Ȭ;'MÄ ‚ÆgÝ¢¼Ã”`]V1]Iuxõo´Ûå¹A}‡ÎU×ÐË_m`ìTê ]ß't ¼†Œ? 0XýìYþ|¡Áêî[Çãß ‰Ò“¿’½!ª `=ŽX˜"àâƒÀµ³Òïô·64.¾½¦è˜S[Tº6cé©ë;ÃëýEÂê&òØ4(ªf­.S†0ÃTÞÀH9L› Â:ÀL §p-ÃÕK +¸V¶½iˆ3Ùóú°óìŒ~Å›‘Ýãc¹óÅ'@"uÚÊ;Lšf˜zðiƒÂL¶P<×ÍUpSЋ_ `{}xj²Ò0ƒÞ^ƞϙ%:™þ¢¥Á¨ÊSßq‚®Îü*o°I@ÇŒÄÝ=è£=ç’`°6¯ª®³—¿ÚÀ9C°ãòÈf`°·Ç‡éغי½ÁIîv擉AQlN6ús ƒým•çÛ+ŸZ Œ"T$ƒw6Ð/<ÔwÙžu„ð@G®È×åš§ ?#JXÃCWL'€c·ò×ÓCG}ç,ÊãûæCÈ·Ï®¾¨o'H|™q½aê<ˆ=䜸Äc²2ݬGO ëÒ¡I?AQ˜Çn|!m!ª¾¬²d_/ …ï+-ì»kèÅ/&Àªoÿÿc8ûŸ€yûŽ?BòþÏèàuÃ|Žþúø€\š>rý¹Òâ õ×ßB“sŠß(?qIzÈöŠ„R_à8F½úë—à˜d±ž¯¿¹°HÙ¤îØ_š"“Ìe”Ÿ9á¼ ¿tŒ™ôÏÆê+íóüΟ¯Ÿ›Ú_¡5(\Žl¼ñç¹®¼ßà"óÀßn…&2†þ1úá区WÕ¯>€bmŠ*Ÿ 0äç¹ó¿?à¨Yó;­¡PkíÒ¿Ø~¹F·ô€I%qE?© Lr¥íÌöŠùRÅ)áÏø zÌÑJ/Oÿf5ŽãFüÍêÍê_þÔSz´t§¯íÏVõG}ñvF©ÂãHÒ¡Ï1ð—½ðW4¡îÕ¤bK}ß‚Açú¾I>ÎK¯ü{t–‰ ‰WS0åóÕ»ªð9/]u« _¿ã,Ùÿ ø|£=GªPê¾*tûsVÿ J‚Ãendstream endobj 116 0 obj << /Filter /FlateDecode /Length 3734 >> stream xœÝ[[o\·~ßöG,‚>œ-´'¼_‚¶@8©‹¤@ÕE‘űnvcieËŽëß^‡G<+É–4ðƒ).9‡3ßÌð¼X³‘¯þKÿ¯Ä¨üúÍŠ­¿^ÎGÍÅÚjÃGgÖç+ëÙèTéx¾únå,­ãkk¥€A¥Çq?Fiáä¨Uzè(iÔ¨YPk%G¤EVÌl9ïF«+WéoÊ”‘nTƦ·£c¼aªŽÊ=ͨÄTY.óDÖcë³Õ‹¢\§ÿŽÎ×_®>}$ôÚÞ³><]E1ó51p»gvä0âð|õýà6[!Œã×›-c^Ù᛿·a£bÆz=’`[{ë¥m¶RŠ‘91|þ×Ï¿Ù81zo†~GÆ<Ä6g 5þþe»õR¸õá7«Ãß?¼!«<…Å¥WZ‰á4¹“0i8Ú3¬†ßA¸~8@@0ÃtææùpY~~ŽDcœgJd>œ@S;)¤Ž# Œ¿ÚVwqkÞ;Ú[—=‰³Tÿ×—¸ªñNqI—:Áné½Rr؆6ã°Ã#a8ã^»e³¯ Æ@†W•YŽR{Ùŵ¯H÷®O/*ÖPéî."Pôa÷d>Zsk‡)wÆ«á‚Ê¢¬xœi¨á ž–tÂoq€õ&â¹úÈZ¢œBéQj zx êøcY9ŽmY: Þy;œ£=g†7¼LEo_<²gA—x`©y6‘ÕDŸmº6- 6MË=6íç7Kº2ó‡Ò¹­ïCûžìïXZǹuÜAÏWì÷=szUÉü±6õÜÜnõZÙlQºÇûªÃ$Nî[d÷¥×e)¸˜Êf—%dqYœW.+7emªÚÔÑ—B/“,;!3H]Û½zB•†I:· ÁwgHÔ©;ÏóŽº=[T Äœþ1¢¿cèñðÚ~á50ý "grø6iö ឆ@ßY‘EžˆnÜ;«]Œ#aÿÀâ$Ö¤ ÓÀ‡8‰a.SV7ÏAÎÂ<#m2„Ùàµ9ü³‘j„1èÖøz æ3ë„EE²pn£GJ £àWàAj^Èù ×ÜÊĈyj-”ô° fáZP·yô6ÆïqÎ?6 ±¡õVy>bè[ñÇcAÀF£|üYÐ bS¼†§!,¦s‚£Z9â?Ž´¶¡;öBÈ?Ë Y(ç9WCSåq·LP (‘ äW¢>ôÂ\#j–2D¼e‰éª²9‹q=íì2¸¼ÆÆ#VÂ4‘üE%q–„ÁÔ‚ˆ–Ðq^¢ã\„­Éêò>®àª)Щ2ùzÓ«z1¦1&v¤uI£ ,¢ Ù[*´¬'zsDJÚÇI5˜xMî~ŒAà´m#ÎZØ^Ô­<ˆ\‚±>%ôB ‚ ÈÔ»+`™ö$äìà,5*`=KwQKïµhÄÁéð[†7%ÕÕ¨` =Â=É6/ú^‹uøiѽà¨A$ÕD"ÆéI)eºPs³‹7[­ÍÒˆÀ¾ü¡5Z-;L4-•„ËF¡ÀθYÇì]p51}'L9.!{Mr á['e2èá°:š¢e—×´U®æWÑ¼ŠÆTND ȉ̲m.0aâ³z'àrÒhï ø?‘i±Ui3DÈ*ü韉3)’-bÚ7D¨Ò¾ÍTø<˜GjÀ~¼©ÉN§ÁQÝÆð æïm•EâÎ:d– €s ¹ }öT6òç 3ÏÀJ϶aˆ‚!oPSàV§Nd¢ÿ<+˜Tèö,ç©¡Ëxs“M£ÛÈgÿí;@ÚžBÁeòU£¢IÂùF=ÉQÍs£Ô¦½ÆTnO¥M@ÀQpLd%}4ó‚õ~—×£Ön¦–MÉÈ´ƒÐ•ÐÈ0ͧPuŽÚ7Ïó/˜kBîI0ºÀ.Ø_2âi¡ÝÌY‹ˆGà³ og‚ý ˜$ª2lf’ 敺“´§C"Ü2çqpK“eDåŸÇib‚6o†½f¾Yâƒòbc.?u¼ÓëIÁ2ŮǵVÔQfª®d¦qw»K¢†$ÍOT™ñéùÌj‚Y驤ž˜>‰5–AÈœ3Á@¨D…¨F‚T…Ys3ìNcÛðá,ž¹†¸nØØ?èÍ6@FߞĽìÚq°N ð sËJ‹- ÓÍ^î×]­! ‘ܸĵÚõ0XH|Éq§(Ù‘kt,¨gÊ-T°@ IëÒät>‘«ê¿ii(Í3¢é%Ui8®UÊØ Ö>—AÂÍç(±ÆórăÏêOÛ<«µ3¿™+—S-W7|Atôì$É'—«tq5‡ßWq:ÁÓz»’èx?RͯRH·FÎoÇõBåìŒÚ¾]Ì‘‡Z^…rô"Œ‰ŠkëÕ¤’\ÒúýÒ%õ}­Æ”JmƒeßÖUã™ NÆ(×±Ôƒ˜DÛj¥†Ïæ±M›Û Èý¹½Šžuò¹/;qZí{ÛË÷}ÒÉÔÝ=ÛöÉ<ÇVt{Ï^î'Õø.lï/8¼ Fû™ %£Ù–[Eš›p hIß Èî,v"ΩU³jnfxG‚]iØ«­›ˆŸÇâ:p>ºŽ)‘òºyÖQƒì´–C/zÛà’öx!˜lý^·77~Xzvb!ˆq`f œÆ˜]ö’m\Ð&2¦mÅí2Ђ+iš`Êi5-Û„B27×xK¶jÊÂu–"§" K¨-3ŠÃˆ»«1ÿÛÖA' L,fÄcv§øÌ†Â(xoüån¢_ÕÀ€`é3 å‚:C‹;*€ž8ÞK Z¨Ç$õÕJ¼hß§dÉ"?EÁyÓ’ÓaoKÐYg–cËÌêì<’Nÿ¦ ñ3íN(WÙ¡Ü-»xùÚ\ud-\XÎûY"(]d¸‘¸=…˜H¼òü\ C¤¬vó˜.§ZsÚzöÚ`>0)L–f›ÃÝ8üà­Ô×*Ø5õ/Éæâ,0¿gêNâ ‡`‚÷0”Ð{’}% Mð¶؟ˆ‘`ãr­¥ñåò›¯šm.¸dÊH K# 쎌¸›^ÅQ.ŸÖ¬ľ…nK1ß=çÄ)ŸÍMg“ßCø/“œ‡W‹Á(Ÿñ£÷VˆžÅÚ”.¥ºàeÝ÷Óî±ö“÷4O!y(5dxÛìõE7^›²Â€ù«áÏ®Üu¡”¢ºs)mG\Û¼o|:âÊs¸ÇaŸœ丵0â„û˜$»¿è;ûF®%î~žžòÀ]k z À¡–è`¯n³,’TS%‚èåƒÊù RŲc-éõÍØt*ŠiÝÆþIÙâý_i‰q#h)YøáNêšÅ±¨®·,‚ÿNqêŽr%a7©ég¸X΋q> Œ,ì9ÛVáÑñè½]µëߤçQˆñ4ðyÅLÍDö°óî8>šMÍ~œÄm"¡@ÀÅbZÊó|¸Év‡\;ˆ´Ûÿ» _‡Ëc’ŒZkÔ7óµÙ6DÚºYfq^!xí’iUßìHÝõ˜ IŽÔ0ensoî×gf‹uçS(°¹ª»Ù{š$š¥X¨ÀÍ©©méså'nºqéèn£äöõ”ëhÒÿ*•`ñVb¸`îh¶ï÷'©/šÌÛŸDšýò/ñ‡Àië-Xð;÷ZB;jü˜îgâû;ôŸ0ýÁVAn¾¥Q¾ûeÚÆ^¦!äó¸ÅOPfŸì)ÜX†@ _lÊ7*éËÂPEþ2Žhp«Gu ±\£köpÉAìz·7Y0Ë‚º?Œm‚¤ïx–²} 7e:ξ þYHrßÉÞZ_dbDZíí\ÉÓC¤kJ’Ä­’#;¼y1r³õøaƒÃCJ1èL¸îÎÏjòô»Q"Ôö%‰ð!í´ô¾„·}k&J';_D]ºë§@Å0\%Òxà¹íüžJ: PÜÓÔ(¡<«½à`Â샣ž\N " “2Žñ=Tó$w"CžÒVì0¥ê­‰4è§[MÕ÷<þz…¢©ž`]¸÷ªÊªðóµ—ªµÚù¬Sjë¾¥~d5Ñ—êÑÁhÎh±£?bmw+™Ä×·ùÌôö»ù`ßo¼O-8Õ$®þÿþ?¦”Äendstream endobj 117 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 309 >> stream xœ*ÕþCMMI10‹€øùJ‹ ‹ ›÷¬À½ºkLÞøˆøœ€¡÷Çå—¡÷fµ÷¶ÎÅè÷³ù?Œ‹•~tBƒ‰qƒŠ€Š‹y”‹š»„ˆwû%üÔ‡}‹‰‹…tŸ†”˜š”—‘”¸÷M‘¤­ˆÝ{‹I‹„‹‡ˆ‰‰‹€P³c¿©¦›°¡¤·–‹•‚‹ˆŠ‡}ˆwBtX_‹x~–¯œ¢›œ‹‹•‹ÌL¨6–ª««¢£»À¹¶¼‹‘‹Œ‹Š—‰Œ‹“…ЋЉ[ˆ‚d‹{–x¦¥¨¡²©t¬^o]ƒ;Ciedce| 7Ÿ ‹ ‹ ‹ yï„Æendstream endobj 118 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 171 >> stream xœcd`ab`ddäpö ö44±%º»üôbíæaîæa™ý]Eè à>þÝ ÀÄÀ`ÌÀÄÈÈú£ƒï§d÷‚ï{N|Ÿq˜ñÇÿ;Ì?j¾ßý®¸éÒËîOŒ/ü–ûÝÊö[ã¯ëC¶sß/²~7fûÎóû"ë¶ßû ‰~Wfûκ#,ÄÝÅü·¢üoU6>9.óù<œÝ<\Ý<ÜÝ> stream xœå}m¯\¹‘Þ÷û'¶1_Òw³êð< $€Ç˜³ØÉZ™ °àNëj®¼ÝÒ¬¤±3ûë·ÞY<ê+ãù´ Üfu±Xä!«‹§ÿåNñðŸü=_ïÒ©l‡?݅ïîZé§Üã¡×O£®w#µSÛ6£\î~s·…~jez+á”peÄíÔ*qÕ Ÿ‹cR‚ç)¾¬®½Z;|;–öT«±S¯N)!xZ§Ò6§Óˆý4Bô:M&!,<¢“µ¦*¹ÖÂá»»¹‹4ùs¾¾|y÷Ÿþ)ÕÃvÚZj‡—¯ïxã!–|ꔊÀñòz÷Ûã/~ý‹¼é´míø¿s­n¥–tüúþ<žJÏÇßÜ¿È9ŸZLÇÿ¹g Û)mÇ_ÿ K=„Ñòï_þèÐ’Óa@gëH ÇËWÐê?ó6Æh̼(œ {(Ì|Üî_þ8@ñÉú„S‚^Är£¨Ôx akåø_î_Ôñø½/öé}úhŸ~w´·ª<ا·öéñ†˜ÿcŸ®öé|CÞöéà )÷yýª2'ûôêFÝ›ÍýɈO7«ãž¿°ï¿´O_Û§_Ú§/n58çëéç›ùöæ˜àLÊ0··mè<›Âÿù¦Xå…Öyãi«5rÕÿ“¾µ~ ñøãgÁ·FÙÍèÜjú›b·šžvs:Ü’žXo0þîÞÄ¡úêåÝÿ@›³Õv*ñPBï`é‚-ìùR§Tïÿëðö®žjKf=þþÿÌ{‹K÷Pz“¦ ¬G9Åz(#&XËdÛRÞ é4h)eäª>ׯa®´¢¶O`ekth¹PáÚ@ËX@V§€Æ4Ǧ)¡6¶¸9-v¤uü¸JK§>€2²ê•k˧ÚæõʽæSÎ@ÉÛ‰ sµž:Ї Ãt½+¡4êN¯ýT7â*< Œaoá„^ d€‚ü-fâS( ,(Ös‚ÅN†ÞN ö>t`L†29˜Ð\À¥¢­žÊO:˜°ƒèmP~ʱžš#@µ– ŽHÙà™$«ÔÀ¶ŽãÞyRƒ± žõ¶îHø‡ÄV ú€îe¬¶K«žòš¦!†¿Ô·œ`¤KÏÜpމ–Q ^…©B“Ô8‰r…Ñç Òû©ã#Í0wh’êWÌÓjP{#ÓÔ x(¬×;ukR^ÃóÛÐe¢åð±—C¾UœÅ,†€SnR ^†iÏ›¦^Æá,%6üT°]œ%ã,s„×¼ÄjЧ˜Ð/š99x0Íþ~v‰ÙúŒuãÕ£”–BÆÁÄÉu‹ ¾˜¤”…«ÀË —P®£,\Bñ\5äŠSar)eáÊ8 —P®†SháʵÁR —P<—ŽÎäòãõ9¼J ÖaŽ:A°õQWD`…³2Âz#Äî_À$‡u’Ž>GT$·#`-(4ÄYP¨®ü7É“í›~Ìð…Ùè?o¡¡C?­3Š€3T{†}9þú‡ë·ïï^Îï®ß¿{ûøöãDksÐx@Ç+¬¥H+}ùõ/‘‡ôü¼ ¬,˜^0ÍšXž ƒ½a“€§e¤ÜÉÕê)Wƒ›`bTàMÝ |»­'s'WX}P©‹;ˆ€VI¹ø 0£Ô›ô(ÁàGö& T­ÐÈÖÕ›ØC­áêè€ŸI›º“Ž^®‚5a£ÃÝA®»s'dî`çÞª“CO™aÑD®¬Öÿ‹/y¢ñcoRã–ÑGMoRÑ‹…1½É$PEñ'½7­eõ'ÅÁžþdR¨&{”ÚÀÞ‘©PRqãC1 <{¨—Ø÷ªG¶Š–sz”I¡šâS*ÎŒÐOÇÓÐÙOŸ2)TS¼JÓjzx@ô8§W™¬©~¥ôGÃù•ZÐûdçW&…jŠg“(W=KÅ…JI]ˤÐÀ†-:é0b¤g"Q¶Tq¤€Uô~g߀¡ƒ¯?—N’ ñ𣢸 óØd€lÕ >/Y/¸õEÙg“Á¯€¦vø…`–Vjsµ 6`º`/x€¨SMrlµTD0ÐȈºZ¡asÁV‹hÞpë«ð -U€¾”îàì4ÂU˜Þ‘—ŒRàQ‚ÊPÞW¢ª\¶EFå3Ô@Í=tvt'AËÜÕJ Io<˜>Ö†”±†haª¥JXûq&û€J#³áš¼: Lº:)ãDÆiÐaºõƒÁJ)C»ñ¯ç€ÍÅIÐ2·5”RŽø”=è͵Áe¬¡Z(‡j©Ö~PßZ¤ÍBôËE0!ÀÞpá„#‹EżT„æ˜Òá¾ÇZiÖÖ"ËF~¥€UA³~"O4à2ÖP ”ƒ´ÓêNsê F‘87\6×IØ0&uH®|\°¡²€q.BsXÈäÀF§èh™[ÀJõ\C$àz„ý•6!E¬ :ƒ¨¨õ—.`¯À ó‡ý%n¼®Ž•À…dÕÙv R>ƒÕÈä@'/â)AËÜÕ LºH"ŒšÙ—±†j!¦¥HØõƒú–¦ø3C;N#€u`-Ò&‡‹Ê²¡‘24[ajDϳƒvÉ*AËÔVPBiÀi&Œ xŠÙ—±†*!¦¤HX{Aë0Ðä*PÑÊ(ƒl[îFy‰eÝrIšcÙÚà2Ô0-”Cµ »~Pß®‘wŒÚ¨oFiZJF/ E®¸cU|!ehCÒu2€b³·úV樂P×b0`̱h-p*¨ Ê Jý]È4†Îñ˜ŽZ°‹¸yÐëDö°ÿ#{˜ÑbAXBXµãfÁà?ÆV»p ˜)!%O4ð–yí`! xüGŒÛÓvR4Ó)Hâiâ¢×´.4§x&¡›¨è>š ÿÂHWÆPþ]£m’à²d£d”D6ÇàiÍ©,RÊ#‡@Q“ enÃd˜ Ø'“P6 mCÊ$‡j©Ö~l)4™Ü\‹²Í˜hK¨ãŒ‰jy"ÛÉÁ@rJÐ270‘m‹¨ãŒ‰Ò¢3&ªå‰l'ªhÕúº5ܝމG[ wŠiÅu‹5jqâÑÉÀÈo 270áhC£1’Áц&p³¸4Á¨}-êje¯½GY ½ŸLã2ÑdÃíV˜RËANÆiS‚–¹‰ nŠRÈ}9tÕ·#bÀ³ÎGœÐGÊ])‡¢•`ená«Þçqrí UuŽ£Z;Ű€ T‚Ðäy„Œ‘óì@”'RZßÊÜ‚AmË”1&$)ÐZòAÆ jý]8D“¤S"~Æm.]H@¯_FŸ`ã„ ^Ààp^¼ +YÈH)™ï#H>å²–ŽIwºîtB F¹i€ q©°/UL"À|zÔs¹Ð·®1):C¦K9K"<ž!ã`RnB—ÂjmÕH;åªã2hCÑ PSÞû°Xa“Œ‘ö |Ø10¦‘ý}ÿèóʰ÷uЗxálejœ½Ò±wžÿ2‡$ aÐBÝâ±ìÌ÷ÌÏ1i"KG{P¥'“¦„ ŒíôÛ’,·¢ÎʹÉ$³Œî¤v»9M¼ÅV+ç-pú,z´]ÚBIãOàÀÎg@Ÿinz%E£Ó8õäïÀTL‚mM .ÞA ×`IÙœëäj…“>)mð:Œ`*s¢$ÄS€!ï†r§ÀQIÅoMyœٲãbÚŸI!E«,蛲¾1F(kn3Ì_ʹ˜”†C½Äpwõ¸œcÞhÚq1ÍsÅ®p?ab5¦@ÃsÂüVäÂc#,QÓ„–¬ú¨) <\Î3lŠÇiÛXNŸ1m~s,Bp,R‰Y`vt9rã€Ö(—Y)K¼²5j.^Ùã638²×Zá;SóÌóËw'âLrLR˜¬PÊÛ™w` “¡J7Š6Ì“Ú\°È0½Ò*ç5»@ZÐYw¡D¡9.©'\dV+šñƲ ]üRÊ”«0Ú"KóËÙJ.A¹ 뮬‡Ÿ8EÆîð“iŽKê1)mœ”™ ¶Ý”sΔ%V[“;v„›lï;OÓj@›²œ“]7îÌ-ÈÞÖ¸¸s‹¢¼ôøºMSÆyéLYÂ)æ8ŸÌùsÁ]4}*­ysó%~[¸„渤žpEDxµDA¥DŠ*e‰`äAGf.‚QJ¶”w $ÐU4.Á”8O†›.h˜8µpt‹ÓcðFÇÀp?Lúgf|Å“‹ž ¨€ÇÔ5øF9“ª˜‘xËÒù2!&6(»WiW ÀÉññdÜ©tõ!icÛãz*”…›%5sÈÀ/&=æ¡ÌxÌïëc0*ïeà]ÌF©ùÏXä­ýÔDï ´^-+pôòr¬ZášV³*Ç{(»¤¢æ¯Èµå &Áâ ÃU3ˆÂsq‡5x É´R£…ÑxÎ+ÔC Ì˦Ë<è/Ü<9CCé›ëÊHœå§¦Gy.ŽÙ°‹&bà޹ìi|¤3Êsq<˜ë¨÷krü p ›¤_[-zsºî2À@ážCx.îå˜wXØ2JïÊnÍP¥Ä3µÊsq‘¤ôŠ<‘“$3›™š5Lž`çG)žx×§3°ßdWÙ Ø“G‡ÍQ2ÚöQªÒÐyXÏ®e!d§a=œòz Ì@žå·Øv «AϪûLv½X—äÐŒ“\QSÃF9…ÂkGq&T¼·¨vígCO?ÿªG=9ãN¹ìèPNVg¸0šæ7Dí¹>¾½³ ¸6FõJ( €ÂGϧžJ¡ž‚z€Oeí¹>•¾—½³F´NA1Á(Ì8Å(´ m…bSÎŽçÁ;±«M£)LnÞÀ“PVð„/ÿˆ xÂÌô¼1'kÏõ©ô½ìÕ>ÒB’DOBYÁ› žJµ÷ܵçúTú^öjkiBòHˆeUÊrb‡³”b .÷lÃ}ôåY{®O¥ïe¯¦ÀY—;£꘲‚:0Þ=zPWù¼ár[Ö'\ŸJßËVÓïz +ÿ“©‰Ñ‰3Œo³wDTÄt›%y+’¹ x“JWk'Sƒí0ÑqdtÜøQ˽‘ò4­ô(‰ü?bÍmÝãŒMÅnÜrTKÞJti4NË¢€Ì ƒ}»pN¨ÑaÅÀq°ðõx·5ÝÏÑF¯†à^£Ýhcd¡¢Uón©ïf•-Aþ–}·í¸RnmÇŸîøt¡åžÄLSŠæ 'F‹âPŒÒ£Y$“Å\7â)–„“äöóLÂaÊš„£¬I)3ŽÀ‚˜åvS²£Åcš²äC Å›Z$%³?Éýœ!Ê2³½9K÷L>®¸í”Ûr‡Gj¸`!½ÂésS8|¬þœ&x®´„· Aógí¥ð,WC ÉDòGf˜«í‚{ñÍçm¦0-À|Ê«$&-ñ?ªµØ°R(eêæÙ39›‰³[‚^“‹iž«Ì|,K×öLÿvLþÀè¼Oö\Ló\\o‰ëåLGW·ÍØŽÉÿÐ’„]ˆPhž‹ë­;ø.m·ÍØžÉÿj—hÖd"’çáZ®ÛøP§ë«ª2¿¹£l­ÛuMyxýÀ`ßÞcoóG(t|cߨ7?‘Kæ0¿õ…ª5ˆìC¼{@]ÎôDk) ­›ÓÃ`²Þœ¥—d¼½Š—P,¦Œ×>ñ¥V;GU8A€Þ é{1>„ä3L4†ãC‰7 ôÌnEz·,ØÞ*ÿIxPqæTgµ`<3G ç”òäŒRŸ1fÚ1Ì·÷-Ü!#¯LÐâ“8%=c»$\ãz­ v'Q‚ƒri„§iΔx{!+JÃý Çcç« xgíÞvÀ„'g»„x[¶a4Ø“o‹½AŒùE5–,”'o©„z¹YˆoK¼ë°ë÷?¦0ê<+UÊ“³KJ}Æâè}öZdbÛ ø(Qöyƒ])O— õ\&ø ßΔýá좲ÄoåÉ£0¡>¿ËƒŠEcЏ)Ä7zé±XÆTHòRüÆ£@[»ºÍ]"YÌ_ÊC.œ Á˜…{=‹'&Ú.ãK øõP±ó^¡’‰'â;ô(eÛÒ‘Ì'V>C¯éç é],†&õ¨Å9â·â`^ìF'»]ñ8½¸$†NCTÖéeDI/³ýe[I ´ÏmÿZH”uW ÀÀ€úoóÌÛ™œ7óùM®ò wî—ÞäõgkoÏZ ósiжþfsõÛÍüËûÕÜ&D(‹“0®IIvðhïæ™\Fq\ú›ÉeÇ%ï™LJ˜9u\Fq\jØ&—Q&—Ù§9ZFq\»ôc:¹~úí%{xfy%`^`aò ãý‹„/ë ñ˜äã¨Ç¬ã±L†:Údè“aL†m¾/ð¯~_î…ÞƒEAH<¶Ï0-4•õ…ƒ8àLª¼5K& fKQâ<~z×WÆ5šáõ¬Ö›=<©†§-”8®ÕŒ /gãÌ­–ƒÅK…‚GO sÿhWZð2•¥))c¶`nœ ­¥rY%h™ÛÀJÁw«"‡J@óîš "e0Šò½ª¨Õ×Nœù]¦L«˜f_|Ç0u„™ÐZè»Öª”]ÇŒCÔ6 Zæ6\Ç𽉘ÛdÏ6¸ìºfª¥JXûqöMê\]»¬éeábšç vTm\%ê}r£¤ÁÄEî÷ÔÚ)»q2iÇ$h9Ú­r¥€k Û§¼6°6¤ìÆÉ8TK•°öãüLßVMxÖ¶®wû.ã”cädÕIáÀÊÔÓyÝB‘²'ãmL‚–¹ 7N9Ð[MBÚ((imHÙ“q¨–*aíÇ2NqÐ¥‚Ûi{V3e;&Í–€“酃ɲe”‰Iž‰«É¶,ÓùžÁK²Ìà‹õBa®ù¤_Ä7””ÒÃ'²znzÙ]¸ð¦ Ýw3éÂsq<Á™,³…VS(‹^xôÌ÷}Œ‚ÈU-'jÇô©ì½dÕŠ‡Ôì˜ ©P¥Ì"LÊ´&JLÍMÐ%<ºÌ~SÉ-e’c’j‹Þ²"—Ìß‹ 2‚åŸSóùYý—¾ä7c@®ÓKÂÁæðûz¿úúk|_oÄw}à;Œÿñîø þ|óýù†ÿ|õ —¾‘ツ?ø^Ðs´eü­ŒD¿çð |ò€ÿ+æÿŠù¿aYß°,.ÑŸ‰Pnöp1áºñ[9Óy!á¨ÿz`CÛŽoèc5¿û‹6g!Õã{¤o@Æñô+×#à‰É_ïù+`C6›ÅˆNÍQvà¿£È@b?^îñ]'!´t|‡RB.mà)R„AY¨¯‘ VkëÇ/‘cËíøõ/™9íøÇ{zƒ<{˜Õ.ÔØ9†tüÈø«©ƒ®ô#ÜŸ,»Äz|M†že@Q6H£&@›-¼ãšðR?Þ'<³ê,vóÏôèŠZ)„ž¶°Åã+ú‘ìêɾS¢;¬+¯Ô[_õ•4c4ûòþ: Ó¶¦•ý»)æ‘ÙãÖ>Q+AÿBˆýøƒ¯~Erþøö¤o›*ßB)2ªÀ¾“‰S'âÍ» ×ÑË¿Å_¨À låóñŽÜÀ˜Î¼`´uœ à$À¤íøþƒ›p§)†gj·*¦9E§ê |[ L)ž±óßΗ>|ü›û”×w¯/RJЋoÿðxþø÷÷/`¡ÐoÅüúßeùa¼'ÖNýâo.ß^U@9΄ÿ=Õ›=2þ茞š†ß¯MŒãç‡Ëå !*}ñêáãƒ/“Ž¿~¸>~A"M+ñÛâe½…Š£¨ _øצ*ÝWùòë__OÂwy÷ÝåÍ?¥š˜×\õ…ïLaÓ΄ßëx¦ãß¾9{qoÎ_|úñû?¾»8Ubö•¿xýüøøþTÊA*ý«ïÇùòðáÛ×oÎß¼{ë%5/釷çÇ÷Þ¼ýøã÷7~|qcèCGñ%Î&Pr+ýø4û‡ (^Šâʼn¯ iGš†yÛÀ'ß]& Îæ<:¬—´0³áH&eÀÚ­Þ½E!˜QWaEL!F/²Ô,g^²0Á~ù&I?Àa°–ÞÝ'Ì£†?¹¼eUÁ¿CSŸFë°´¾§Ž%´GO´ÀBÈâ$¶K¥UZGN`.ó·‹È¸ ˬ ÍムIdcT@•utP`‹°ËñǤÒ•áŸ/¶P¸YמôøýÔÏ5þ>2þ( pƒ!ì,š¡i°x­ÊÓ‹äÿu½9Í.¼4cÖä±Óè> stream xœí}[¯f¹qÝ{#?â ðÃi'}¼yÛ$Ä€c8A %H¤ ‚À Œqk¤–Ý=#Ïhâ8¿>u[UÅoޤÑó0g¯&¹y)‹äÚëûû§ë¥<]üŸýÿý§7õ¥ï§xs=ý»7w)/£Ô§9îò²î§Ooæ¾^Vwà㛽Y³¼ÌUžæÝ¯—V)‘#«ì—{HªQW{=¥r$§jwé+½pŒÞ^¸¬ôFTkíõ2GÔÊžs¥î¶^ú½S¥V™/ë*G¥"#•UÊ_‡:¥÷]O?{ó÷oŠtå“ýïý§§óÙ›?ùaOûeßõ~úì§o´›ËS¡n(ZÍ—B)>ûô毞Ëõö]­e•ç?ûîz©×µû|þÁùÑÛë¥_÷Üãù³ôÁ=wÛÏ?|û®µúr­úügÿñÏ~ðvÕ—½ïçÿö£”æßóß媻öç„ÿ÷Ïþ’jÙJ®eYÔ¡ŸýàÍgüWTvy¡7ÞýùOß¾•J¦¾wð£ÿõŸü¯Ïý¯Ÿû__û_ßø_?~ö?ñJQÌ—þ×þ×/ý¯ÿë'¯ätÿò-7–ÌgQмA]WhD¯×õù+Õþæ•æýôìý¯­M¤û*µÓ{ø_ÇŸ¿Oßüµÿõé•zEyß¾Òº(å~mÞÿÓ}tŽçà Ƌÿñ•¦ÿÍ+~L•~­û‹ÿû¿ò¿ZªÄ+“"þZ‘ÿü• ½ÖŸQâßù_‘÷Ço¥þâ³7ÿ™ÝO_ã…&pëå&öÔÊê4¥ýÿ_ñô_Ÿ¾|3^FÝ}/O4žþV|}™³¾Œù4úh/í~Z÷ÅÎÍþ÷õäää¯$[µûÿí¿ÎÞ”šÜõ$žb½öˤÊu¿\wc‡øüéóo¾yûÙßjûþ`-ìc®—Ñr µæÔDOs—‹l‰œ}4øºÉ¥Š·-U›¼F9RÍ{¿ô#•!Gª]©Wr"ršq­õRSŽ4µOrì9‘!G*kMJ•Ú÷Fo¼ÐÊw-=¹w<„åæ1Ô¹TÊUu=£®xû®´B!Å¢‡šº=ŒAwþ—dçaàÙüò¾b~¿Ê6-ä6l²’'d¾ìùTÖu±U÷»Ò /ÏÒux~ÿ†gZkJQ©¬JðgyçrQhQŸ¼Z}©õñ{æV ¤ðZZ íx/»Íúnm×Ò*-~!e³6Lyy)ÍŸ¥MË[-)j¡˜$ ðg.^šd•ÜÖ“Àîñ}”I 쟵r–5Õ[ÚÁy'÷o›ÜUe¦Pò›ÃÆ:dWMÈÍV_ 7¡Sö‚œ‹*ðêÈ©ÝfÈí¸í3wOí< <¹¨òã…-û¦F_ûI^u/–þÛÚÁ– Ò ‰ìx’â¥ó ˜ÒY}3g”nÏÒyú~¤ðêY Ð^$ ¢èR°.–Èäò険¯ë˜y/ýÿöçl·HQom7Jðgy‡ä0„jV[Ì®ykñ{–¶i-<j‰ÎvXÛº;_´ ˆÕŒÿåÎm#|Ÿm£õ¢¤íâˆ>Jðgoo›–À5¯#ÞaÏbZ OZzÛŽvhۨǺX?ÅòÚ6Ú›yoáùò‘[[u†Ñ pQ: rŒŸ22ÙKˆß¹–¶ùæçJùýQ:E|j$h4_Z*ÀŸåÒ)†ðd~òàôá¬øgÔÏ2Ÿ 0g` ¿€y&ŠNÏÕÜ_›oø!E»ÙAD þ ß¾Í Z¯x…=K»îð~ÙüÜ;æVxÃv9FËŒÖýr õÝ9Z­p(”Fk²Y¥ÑÂsŒ–!ÖáV€Ï={EšZ‡˜¾VE˶ÁìתÙÏ#n;d{éeökžˆ9pÊqz,G0«÷Ëç,y›ÕŽYMæxåyßxK›g5žcV‚9i%DŸè;rŸh-²O»³Ç:Ûa½2mM#Ÿ¡£Ý‡-kÇ࣎¿.k†|€?¸°òj:Bñ†®.{X8Âõo/eâ‘«Û©ñϺ~Ff”Ò%¹!ÔšÎF¤Ù=T±âS¨bï÷¨ 8àN®ÎÃø1Û¥nG3n{oÛ‡õSÅîšRPÅÇN%ø³[?³^+ÎÈÞÎʪà¾ÌjOw4Áæ4­÷·o¥YcÈêeˆàì^8,Ù“ìGEÆU$<±TS|s“hW‹R¿ÕXl* ¶B¶\èm“vfSm…‚ñÅuR)’‘\2ÇŽhÎ^9”ê÷-À9oÙÆHfÕœ];ˆÙg“Ù½iÿu䤶ù˜Ëß÷ÍÞá“#ã¢î,;RM ád&XYyÑÞ° ­ÅÐä¼ï³hO°­úåe G¬ø&C6¹P­*¶]ïøâÁ”¹!GàD&{õp2zx¡Q|‡ †Í~àÏî…€À‡X îcôÉ Y<êènìhÅû³e)?´lÛJ‡– î—h™<-³Þ+ÀŸåGËÈóÕܲÍc-“Ç£e–À[fœ­Ð–ué2Í›ÿ/ã?Ì™Ž—[Ý+íî–9ç¤ÒmÊ"çì4sFÎ|dKåÈ7)ù¨9£#ž“§ä½.ÌlÊ9é[„De$äÌyo='ðŒ4ïk92±Œä—hFÎ"Ѹå”mU¢"£øFlVm „ø˜{wÍwóžÈÇ\úZ²gýÈ&{Ój¨Ãâ£{MåÈâZIœ`›,™$Tˆ„ úü^éÎ)lŽ{þ,¯x^€mGfÉÀZµ8jõwØóû7¨„'@QÀÙ 5¾qénºÛÑ̺§Nn¾š¹Ll½FØ ™éiF‰:ÉÌŠº:¼ ˆçš\ý¿7˦¥×ÊÛú Èš äžÂN˜Oýßl¶` ¢5Ä•nMshqš|/ô ÷\Xnñù X9‹—·>×bð)Ùþ®H%.ŸRÝ(I<>ù­GC"ȇ##­¬µ9ï®ÎêJ¤g†XΩkânünÎIkœ Ú-a‘äܾ’–xç¬)ó^N2îË kò(~Të®5!0lÁ²ÙÔ^ÜU*aˆöâ[èXJ­p‰ºt?»kæ¢äöKkOñ‚®ñ†XíoYö µ»LðûðX4°|“Y(£l ,£Ljv›]3Ê:ˆç'O9/õu4β9rÖa9åtˆ®øÜÅÖ*§ì½ ±®Xl4õ¶ÏCÈÇ^ˆh7{tZ¢´W7E[×tDS­ú"ñÔp›Pà®1>k蜥ºì[KÒñ¹ïi«Ì½tÊ YKÏ«h¾ Ívë!m•—æ›Oñ@<£Ú[Ñ»VÉ©w!ž#·Q3¢9ɶyÌ&Å`[ßÉ«FÓÕ£jÏÏ!û7G,çКÜ0ÂM;!Ùö²#Sû¢n¾fBôŽºG¢TžÁ¶ÇiþøG>|,2Ù ù²% ÔTÔ¿²k¸åߤ ]Ï)ºŸêUç¶>5Dª°¹4NGïœâÒvÅyâ­åS§ÞÚ@ ÖìÍ“cRojè¹ùø ©Ø.z´Á‘¹†žŽìËCOÇ8¦žZ–¸Jñ8²Ào>K€Uþ’1ãԗ壾^8OíÍ'Ud4\¿K«å„`Gs6»]êSr—Z…®Q‡Z2´µÕ|oµpr„Q4›Q25–ñÖ Ù­V3씊h[Æõ2 É@Gž§êˆñ_r<0yqþ¨­ÑpÕÍÉ+(¿’¦NÑîšSÊ<û¨µºvVÕ)St’oÕÛ&—Êo4D{ü¸D}£Ã’€ìâ›ÀMŽV&ÂÀ2»gSëâ6›œp[ ñvßb^Ãö'¼‘äVbåo9ŸŸC¶O Ùr@£©î®'HÔ³—Žö*c]U½%½ïÖca Z š'ôPz½ÿÚd‘Ò×Ú¢:âã€hN2=<¿uÅçàCÂZ´^…š›Ó #]–KÕõø‡7¤\ûzQÅ&èÿEœÜ&{”z±:ÜÜ£ëZ+9ebÉåFÎtiOÒ©ª¸ãÛB+á8gsÈ eIp DSm½Ða§ Ãmz E wœNIQÛBÉ+†–̨ʑLaßð)›âuZ¾ãò©Ì.E•!1¬¤)çRjêÕΫ>eûÒÙáÞZ«¢§ü†XYÙP›o¸ ø| z‡n9Éž´ì:`Ô‘<¬†p*j³ì’ûlU]} 4aÍÉP‹Ñ«9s*vTó0p*¿ˆwñÉâˆÜ²¤’ØCbÉ[‡pè鋚¨-ÝÈÒlÓZ0‹×q"æ-qƒ’d €nÔš‚Yfh¯ T ´¼Š¦HµKâ©ñ~¤;¢©¦^oqßiQ–ÜÅY¢Klñ¦&ÞÒMå’q1@­íÓæÒ^‚}$¥*|i6´îšªÈŽ€&Âf¹Ê*û)!4çðÂR5ŽâCPñ~µ¨¢©šÐÂ:Äi78¢‘™•Uu='²P‡eu«üµ4L „Þ¸ÑĪnª+C-| V±²ºDs»5½gd^àƒQ]‡¾/]Øj¡™'K"šj4»Tº8¦ø”^ÂQ/òÁìøðDüa¥-˜¤2DSÝúFÛm~JȽ͵ʘ±AðÞhiI·ÌSy¶r¦NxºŸÂÁ5RM[m9R:QÕu¥ˆ¦¢=ƒ®µ £cÖUµÞJ“`*œTªÞzªhˆ¦b×?b«è€…Þ–èâɸîËl¦òVb8¢©ÈÚïii›'§7L;V”Trm×7Ÿ7hY|ì€&"ÏÂ~ˆãëK‹‡‹(Š &ÕX)Uc?T‘Tïõì¦D£QcÕ²¶žÊpp'¡VmMOe ѲJœÁÈ* Lª™_kb°²T-êvK€ DSñž¶éâUeæáÕËh,µS«]®Wi#¢w™Šh*šœKV¯j¾»Œeõ|nÎ/[Ú%}sDSQøÅS˜O`ªødGÖdSÔT´“ÐÔýÖ+‰ä¸ø ]Ý—#á¸þ` ¤6/‰öŽH|½K1 ÒHã7Û)¯¦rä¦.º±xÓR2ŽT@R*ò{Çøé@rªº„¸›RÉ©z“myJ$§zhQjcJõýYHNªå°”–òƧÎÊ!û~$$yPͽïÉAÊ£ø[sÚäÙª\. äŽVw=/%ˆ(?ÏÁAŠʳˆð¬ï.Gãc¶Ÿ¢„ʧñ y þÝ«hÙᤣU+7‰ù?Q_å-Zg›•`”ZdÏ©E†x‹V®±¿"Z¤U@ƒVnÍ:›ÒÕåd0ÑøTYACr$ÓÚÞ·zTÐo:ÊœÜyŽdR“ƒ % ¡ÚÜÍyHmé12˜BxvR$¢Qä·G}‘_•"Rã}j]Q¼=ÉS ‚(à¡ ™ˆÔ&EPz¶à¾ô‚G-éùv‚“Ò09‚nV¶G&!åaRêP¤P†I”€ç)C|¨¬„+}G+«…§°Zz g;ò/ev¨nä#ŽJíPÝÈGŽdòQšþŽ`+÷'Mpæe Ü¡H Ô¢(Ïá€À óöw¨\žU¹Ï&dúQnoÖýà·Ú£¯ÆÐy»„^”ÚeÏ©]† f(íj¾u€ç³*ºc<‘éGïÇW%ŸÅ6°ÄzfPƒðì£H¡Ü¢(Ïò† 5Ž"õ²Ù  MJ_éúìì£Hàu.ΪŠ6ì#fR\vÅ/Õk{5;–œw$³í×Ì>jr61}ÔøºûÏÁ>ŠÊ-Šð¬ïöQc ¶^v[ Mâýx‡>û(R –(álGfQ‹—ÆÉ`µM5Ú+Ê> $³’óà>XnTÍA+9È·P‡ìŸ”Vùðì¾<¯e†cFÑáºñf¤@Í’óªgÚQžÍ@<ʸõ5>W…“g³²†"…’Š¢<Çl‚éˆl¶â>›QÌv«¢;¹£™xÔØãL<’‰Gäñ5.Á#ˆ† aeCã´µ¾+QÞQ㻌nd%áQçï½2RÚ‘ë¨R“,Ê2ÖQ¡Ý§®6F:ppŽê(¸/2Α!ç¨ò9âÓ§Ì+nŒ”rÔäÎÞéKdáü”£@2åèbæËA92ä ]—߀iS/3‚˜“툯BŠIVǬ™l–J«‰J»‰ðf v…Ììì n•¨¬Ö*èKÔÑ„÷G³ø¢¨Íâ=ÞHÍ¢mûH/ÕÇÜ,$@¥Q€?8€ð)ÇÓÑ/íè·v´Êþõ³Ìg2Õ¨ñÚT…Þ“¾Û F ùpäìk“åä°¯99r¦=…åŒ=rž{ P†®UOÊÐ5ä¬ Q†ù}3ê)Se^_ENæRðñç8ÈFŽl#>‚ºÛȃmÄÇyú±†#|áò‰Rg_Ìu d YÂþ0¢Oãû ]n„ „ç`E ÞQžõÁ6âýD”pË)I¼CŸm PGp¶â`]ãvª£^ÿñ]J³þUº‘#‰nÔäöS;ŽcÌÍ{DývÆ>TC]`$—Ï÷S"rŒäöÙXAŠðÖÆ2Œü<#2¿ˆ‡–d–°,ã1ë¦+H F† #fØ  CxŸæ\%e›pï#+)ÃÈÄ0’c»áı¢eÏŠU†“B†–d #C†Qá!ëQC(„+`èLçêÃȃaTô;1ŒÊQÇèE­7 ô"zQ«Ü( ·³¬À/‹œ:€J1’YF4^ó%“ŒŸ€;3HIFr^¦Ì#É$#Úç57»9‹ÅXF8 å§Ë@f5>½Ù™eÔxãô@2jmaËHF$#f4¬ƒdÔbCà$#&Ï Me$#C’Q¡~ßJærËú|Œ|oê$£´7uJ‘ïM‰½©“Œ.š©U)8F22ä ñzeEÀŽdã•}ñc#CŽQ™&©åK®xw)ÇÈPŒÒ¢>Q,:Ä¢ã£ëêÖÀ12 “Œh:OãïdtÑûÀùÉ(¦HFyî€RsÇ‘4wÀ2bÅ”"ÕËȃeÄ»?5e 広 ¡4#Úlˆ÷šL3¢ÁXf5@* œs‘”eTï¥|a°Œ 8XFuØ÷¬ ê±³ŒüLÒYFéLÒ9E~&HœI:Ëèây¡œcr°ŒxiÊEÂsÌL ,£k4U]q–‘!Ë袾Qò#lÔÖÆ2jÇHYÆ2’YFc¢’YFmï(ËXF²=P&•±Œ€d–Qãí…ö½#Ì;cÉXFåêàËȃet-ûBØ‘B^ѸH¿7˨Þz`øšD¤œêÍ›PÖÇ£5A¦CëdR4i€||5U =¨¡|K\TޤT¼ôß9€HÓ ÍÐT%}LÿÞŠ„ñ)‰#)ÕCKrÛ"ÕoÏ.A“ŽY±¼eü]ØE¦wôëèE¿nø~#½¨Êç7Ìmçͼµ#Êf¦ÔO¯™ÞgYÂðüžrèö3Rl £<ë;8‡#…×/ûÌØßaÏœÃjá)¼ÞVÂÙŽ÷bVs5@9u@. ¤LšîTïÁyk÷GkÍïH°%>‰üYÞ` „Þž¼v:Ë_ OÖ(®þÙªgyÚkƒ–¬f´éhzâR™RvIGV½®òIÍJÈÉÉ_ÆmÍ©seÉÄ%D‚ÚÅù€N0 $ÌS2øK0íÅ!Ý&—ÒHµy¶nÜ;¥Øâü¼{´7X/ Bkò:G¼Âž­'¹žµF g+Ü< Îî¶ S¯mгùÉ{ëðgkZ_)¯ëœ ülï°¶ ²då÷ÜíölmãZdS—z£„³Þ¶K&ñ²@Ûò,©mL"*©múœÛ†Þ6+ÁÛ¶ÐŽ¤Þ¶Á5Kmè o›¥ðzŸæ©6 .ÞÉQ‹í³o—%×e³ røȇ丰“C—‹ë|äJ¤º­ù³u‰ø>¤ ÷‘ ðçªR_Žðà,óÃüÔžñ{†SH à,ÿÑ„ps2.]Omñ±5GDzðCö˜˜ËC/ÏúŠìèxƒ~'O‡3W§Ù×¥‘­+p¶â˜¡Œíc‚–jÛL>üJ¶T" ˜¥À¡0~Ã1^“W¨/>bIÃ%i´ìŸ}*Zî£f½Uçaú­-½rsœ%C,»Ê_7ÒläÃÙvïÝ!11§«Dn1§«éþÅœF Ìi”às\Þ‘æô“ì˜ÒTµô}ÌÚþÝ묹Ï&X‡Èw#T¥¥bG´4 ›\&=µ¡îˆwHZy¹º¤JØ/µÑ0#Óv<#vI 80IùíQ_€ÀEW²Už<÷%zÒQ¼>[wèŠa)PAp6!‡-C?K^ª[…Ôè«\Æ„Ñës6z¤€‘£Ÿ“Ó§ÜŠE —ÜQÆ;ô9ìÞÀ-Yþ£ ܪÆ;¼RÔÅÈB»–p[€H(~ñ|k„%;xGí'íÒBV€ÍÕ£mèX*+*`­Þ8ž¯LG½Øš»©Tæ(i¸²õ³ :—œ“"9g)š®7ýžˆuZ$¹9ƧJÈýi ¤IM¿*¡ÄMÒO½hÃõSoñ¢qH—‹@k¸ðgëöqÊÔ‰$°kÆ]/3Úî*z¥]ñVfKH,©ˆn̺Ƅ¼ÂëɈ#|al{WŸÄìÁN·Ìgæ5ù!Ÿü>g?„ð2(ÏúŽì‡ø*j>¥è¤ÚTGüRU}(E8–½¥•p¶Ãæž\[m3ÄÛ&º€Qól‹Ö6)?µÍÌÂÛfÏ©m0´ÍJ@ÍñŽÔ6«…·Íjém;ÚaŽVè4–KoIÈx*â€=°y¸jBÔô‡MÔÈ8åÈ2åd’ÆX9åså#çÒöœ“å>¾““™bÒdÚëyóäÇ®M”Ã)™’u$Ä&êÒ`'rê]eΩw•9ÇÖn犯Qù*sÙ¸È×mT‰â]?£ò¥b‘ecÛ™_áʦY=РÎÒ€K‹w O?>âÐÕŠŽðííP³Õ))ÆÁÁ‚=‹N ¤àMÏJ%àYß!„&ÙSÀ§Ié òhÖ§3IÿÝ묹Ï&¨í± —8Š}Ø)ßAODns\K‡ HgìÖl{˼§ºz±½h>Z™VÑŒzk3ÉÓór­!3¢Ô„¨Ãî²»§î2/H+Õ-Ÿ‰b+ÕÔÙD}°Õ­ɣީsÛ8êÚ"GDSñý¥6\|¿cúòlr­>Æ}Y°Ãœ§Û†Q]?·Pê D{‚W¬zä¼åœ7çdzt}ÌÉ>uqOÜÅú%id³ÏlüV ±wVíÃÛä6drIYÍÄ5è]ƒŽ–ä6¯ó%¶:©n³²©V½õ£Î@Ô×Ì¡¯vYwa{ =½á½‡}fíÈÄ•fevYç’¨D¶0)»w_ë5hwÄšÝù.ƒr?¸²®Ïms\N©ÙS½VOüàʼôÂmâ+ u>ãV;‡w œåe$À2.íEʨŸFrF‘¾^ì2h>N/6¶íËÚE›ZñvŠhW°ñÖ DÛ@ëi‰: vCPÕŠvª"Úõ §½Ð¾à·à‚½|ì¶‹¾*¿d\o39^î‘3œ©îc¡AóºúPƒ®ØHÖ næœl_/F.Q¥‚ÅÕô¨ý·¶zøm_€T&Ç\Öh°Yt[ Ä([‡÷m ¬]!¡Çdê 7ʺ(N¶rدÎä–Û= ÄÉÙÄèú!ò§@ÆÕücèYØÜ+×5«ÃžÞ(^Lê04bb ³¢"Œ¨9»E³åR{ãðš«|Õt­ ¿n:bµ¿tnóšc!¨"¢†‹›êtn¿º’ÐÅn–^ï‹{”‰D—êe}±í7SU%ÝößXhL¿©°.½¦wD”pч](LC„;ÕW¥`jtS«:i f·Ø4+éè²0›\.ÑÍÑ=/ÍHˆålb¬÷pûÀMiýÏǦéˆ-ˆB±7¤ØÿòùËW}£ÒòñxŠ÷‚·ÞIò:T¹êµkwI0ÅFèˆ ·ü0Ò`‘MåCµu;bÃ]ÕšÊ4>„#klíXЯêXõ"¤óÚdG¬ "6D V 'oÌ{1C¬ 2)¯ ü2ˆÇ••‹x·''Ç6ô±HóZØròÑ›0b£ƒ•`ºŽu‘…ÁÊ`s ’•®b~é– ž¥³l·G£ÏA€!Ö?ƒƒø»C+ÀÜ® Âµç>]7®å¶.¡÷0(©|O€„B}ÈÖ\Z-ñ{“sÈâˆÝŸÉÖ|ðE”ôs ´l™ÆÜr‰Jb-G•†X¸´xm Z˜Žq kûõö­é!¼-ãªÈGxuE\y8²/'0ï–ziÜÎÄÝ¥úï|Ì…l“~°o°Ä«ð ¥>Ë®i…¼Ü± Oê1¸öM½7¦Ãÿ]Eg³’kínTJ_+RUÕ-mW}£!ì{a°cÞæ)­ŒI«¼Ð¢©0'V3þ‰&|ˆi -·ñö ˆ&Ò>v€÷)!Ԉ˗žÉñØà¸´5D²¼·7Äâ]þØ|°“šÃwqp,Z¼¸LhŠƒm^ ñ»fŽx‘º¼?ak€Eñž‚sNŒÍd-±âˆÍ"1‚Áh*÷‘ãÌS‹76òmEÍ9•!±ÈY–«Ã«1²*fkøÂC«ËËV-m j |iM— GTwáí“{ðwuË·_lg†|Ä&M‹j&ÉâH÷š7&º±?cïj'UMok ÑTUOøóÙ­Ç}@zâ ð¯q½4sä<«:ò‘Çãü•ÝÛ!šÃø*u5ÑðÊTÕ¬·„À8øWu ŽÜÝ£^L_þGÍa“çÀÑ+KÜÈ/‘ô…@îÛÍ;!vwC×]>LuÀ&Î¥«Qþ¸o|kYù+a*†©ûªé„¨Û‹‹äã©Á(ÃËù”MIü!4 ànVïÆ,ž8†h*Þ½O.Þv #õÁ!ì±õÛ æ¢÷†•Cn]ˆ:lGø:6Ze ƦÝl™†˜ÊÉü`šð¶uX[ÈŸ¨ÖÒŸ½í@†¬Oh­@Ì’õ —ɼj¢ ÜLÑÇ ›>µç¾øûµŠ…‹É*†øÂE‹-å,Æ$u„?サËáÑÍ¿åx÷tl ķɱÞL"Ôó+GFbÇÙ’º+¯=Ú¥C>¢©šè´P€zÛ]‚#¼öÔÃcÝäO-•y, ÙcÝLk±ÈÓ¦—P2Ò¯þÁ.{ËoNø»þ°‡Oü9 Ù¹Ðv~ñÅ×oß•ñüó¯~ò îó‡hìkÊ@.ð”û;Iá’)>­ D¿÷»ßƒ_ ƒ¡)”Á%à_ô¢ßüF òIp¼Â>Ž:Ø¿£ŠÈ~6"Ý”=´«žÍ*ëlVlÕÝÎVz¶jÔÇVz¶ênG«úC£Ê:UÏ6Õ‡&)Å'¤„@ñ á P|N)!P|â³_P|â#_P|ÎÏ~AŽ š@Taô(Ѐ€5 èD ¥ðD x†~Œ#¦0ã%˜¿Ã5j¼žÂjé%œíÈ‚ø„Á•–À-‘èN`‡`’8‹´Ó ¨ÈˆgSŒ@%%"·JND᥈w#ꆎÊgbÏÃX ’ÆêjçXÕñ8V}cÕÖ9Vm=ŽU[çXõuŽUcŒ•èk¤±JíÈĞб'Ôƒ@ì9õ„¾Ÿ#8ý@ËjB¸ð>AÏχ#èÙ?¡„p-É y¾·#P>Ìc›ÖÓ?qï¶Zµ¾Û¬â:?y>ª÷“êE?BI(:)0(Ϧ󓀢t BAñ ( yÀëlmȬžPÂAèÕs* ¥9sä˜õÂõŽ©¤:A1Ù $Ó)Ü5Y î™Lå'ÕJ¾J–’¯2%¡ä«,j‰ÎvdjOÄ€ÚŠ0 öœ1±Úg·ÝBIÄšpÛÝ•„Œ•^û>¶Ðæ|žÃe‡lP”{xìäÃS ;êýýƒ”ÿ«|¸SöwÔ„D&¨Ú/’Íþ«Ô„úoú±²×ÆqÑúð½˜F?«VáS Dµ€èù¶OŒE ¥ÉÇrÅŸßSŽ[yœžâ È(ÏPúIˆ¤x ¦äïp5!¯…§ðz[ g;äÒ+ZbrB ÑãÆh›È¥¶™ Pj›¥ð¶Y þl¢?©m¢sMcÅ Ô2UJ Ó÷vhî³ Ò¬…® )Ô˜ «š,¦ Ôø—’îþ )Ôx-[O!)ÔøÀFÒ’H°”E¡v_[Š (äˆ µ»Øw[ªÔøG/—?R+ïvé×QHÐìëEËo.öˆÊy&„7¸žWÁ Î(àlƒˆ}üãzBŽ„)Kൠ6fÑ¡¡'Ô˜Ì(_a!Åêú)J°g×ú DÕ€¼7e{‡ë y-<êÎv¼?ÇÌô„Ò˜‰P šJÆø AN( |Ь5“úIˆþôSŒšˆŨ™šP5K൶ÎVHËö²ÏÒ &Ô˜"¼KÒjL6†Î—« ùlr9¡„¨Ì¾;• ‡A¡pHaÓÝKðgÓûI.B¶¯áôX6\…Â' …{+álÇû³m¦)ˆ _´mžŽ¢B©mópä^‚·ÍRÛD%ÚfãçmƒªP´ )¼mVÂÙmÛ²ûLU(jüé´ÏþùW>ÔÜþ̆vÉ…§à\—¯w­6ÝLÈ PÝ d…¼ øw«!²ŸMP?N½º¡˜!Ë“üÆËL*Bâ±ë~Ðj"w`â-:QU &Ê—ö:_› |Ô ]!BDæ7RÌ¡Ÿ£Ø×Är¼Ð‡#²1áãø ù¾&PjLÇ›¢b CI|= 5ù!ì¬9ôAÐ~1- íW¾ ÙP’òiQƒjk8 CÉ$M…'ÕÐ óP0 ¨ð„‰!L%¸ÑšBN2[%ïÄúUuÊú g*› áÊü„ÀP[úã!'¤lÊ,9¤¤¿ù CäØ!Ôàê[7©°$1Ô–êõ„ÄPëö‚Byª¢KqH û"8$†bÒ‡ÄP8H 9C¿Ø—΃ÄPc–å>%†Ú=»‡púÕ®#!2© ²³a¡ž ‰ù«¦b’ jü0»9U=!åä‹fCENþ†]ʃÈP“/²Èµ±¨ÓÈ"CAdH_±H Q5Ý–f‘!áI‰û3‘¡Î§äÓÖÞ¡K-ï~GBÔX®©‘!á»ËÀ…Ê\]]Ye(WRò× *Cò=8 h )·j%Dûú2f¨ É}‰ô4…„€ j8YeHÎÌeæ@eHNÖUeÐ\„œVKU³Ì8´aº?S—÷UÔ›ªPcšŠ …ÌPç£ÑËwä«Ñ^XÇ£?e™¡^hÞÈ\5™¡Bf(ú2CÑ÷!3= ™¡@Bf(aøq\lÈ'NRòi¢jCñjC´lLՂܹСA!7äë¼Ë ârCœ‘GÔå†ú5„ùšå†„ÃÖárC„ÜE¹z ërC 3­)« y¸ìjC¸ÚN+]lÈO+“ØŸMºØ,6Ôx`9\ ±!Xá“$±!ܳ»ØYl¨±u;‰ ³¢,6$aXéIl(’Ow’´ŒQ€yh QÔ]yÓZC„Ö|òÝgÒR†;´†(vS¡$× $´†ÿHoÝIk¨15—Œ'k ɺ´î¤5äÈRk\—,!ÎÒ¡5ôZÂßšÓùP×–@¦ÝÈêïrp¿â¤Ïqš)ô¬:Jð縑3ä’ÅÇK[¶6þ{ŽÓìHZ¢„³ù:I°û±i«žM›õlÚ¬M›õlÚªgÓîÇ–éõS´¬Ÿ ëíêg³ÚzzhBæÄô[¿21BLç‹!–H:Šî¼ë™%Ž¢;‡¿J$°£è@2!Fj°3!†þ5Sð:ïz.'Äà1¸‘@™žß/ã8ÂÛô ÄHñçö{ jE$@ QÀÙ†LˆÌ¢bG¦q¹äSÆ~L¿ãÄsÜ£F ½%üYÞ÷¨R³„©y B žã5R –(álÇûÇ1Ó¶¢5‹AÓšû ¡i1h–ÀGÉ H£¦MË£ÆË£VÇ1ju<ŽZç¨Ig+2!¦s˜¬7€Fˆéüã“v’«„˜@><:ƒÑ½\-$opÓÜãÑHŠä æ8½Áhßq¿Ÿ7xzlÂ?M·šµ¾Ó®õ½Üœ±Hòx9b½­4” 婤ñ2"‹§0¢‹—Ï/G´ÇQ€O>{EšžV OJÚ­Èd˜Îg^vt¥dÉté¹§’aÉd˜ì³1£L”ðHö‘pòYÊeI^M¨.Q‚?»Ïc%x“í©S¬žµD g;2#¦ó™ÑÁˆé2rúo¤†@>N'.±Irâ½$'®ñM8ñžŸñŽÿw–ò`úÞFøHæÁô=' ìfƒ5¬pö&c‡dÉdhŠ£@fÁtÖ~˜ÆÕ¯’&()`Á’Y0?olºõVŒÔA×Aƒ $Ó`ú^öU#h0@2 ¦³bÉuÐ`ø3árÒ`ºÞ*Ai0—̦|¥Á’h0ïYöNK ycÙùÜÈÎi°ùN7ÅØöïl›>BwØsÐ`"j‰ÎvdLçË9{ï°[V£Á’/;kf`êN]·fiénѼó`sÒ¯~mç1•!‘vŽd*Kç/•lz+•… ««•%3'Ož#cÛ¸‚FF ™ÓùtÚ9±~0Ì•ºÆLéüžäžØw@v™~‚iÙ† éÑϬ€"*™&ÊPÁsp`<…1\¼„x–wFL§ ¦ó•doñ{L¤@-QÂÙŽL„éìjº´“¯·ÌviH¾{SÛË<1µ2Òõ[ ™ÓåöCã åÁt6V9Ô&̃¡…iábóÍ̃é|tÖŒ«<Ñ¿€ËVLg] tJƒ1 ³`úÔ{Ú`Át>I^' ¦ó%ˆQ) ¦ódTb†‘`É$˜Îô×L‚é¬ý(n$˜@2 ¦³£è™Cc}éE:H0dLg¨©¶¬$YA‹¼ÓH0d ½séBI0ýV¢E`É$ê³n_BH¦Xt>o™ÓSjž2 F܈^–AAj%Q ä;æ.Wc3]2w^»Íué%s ™Óùjn•tÐùrE¯§H¾^•œvҫ׫]®ìVº^ $Ó`:Kßt=uW Lƒéü íÎ<˜. ˆÉ¬û¹Ó­c­û 9ºŸéjŽÐfâqøRp߸œÞ¹uÖ€ãÀ±PñÿDZN]`2úBue&£‘`ÄÐ[fÁ¨Y‹ÿ7L ™ÓY¹egŒ,%ò ;X0|8Ì-ÑlèO22C2 ¦³~öd, ™ÓùkoõbŽl×5 F&¾’Œ#»ÔihȦ!Ì‚é,/2ížÉ"*¾gÒ}›°`È,˜>UªÒY02¿EBuEÙ—Ç¢ŽU” FÆóJ‚q s`úfΉNpåÀɘÎKºò!ÍoVÓùÊ_›c˜._h?ÆÌ€ ¾ÕȕüZcÀ02dw&•Êíy,¦@Nï4@MtïTAMtïT5Ñ—a‘ºšÇ2,s-¯ÂdLç{ÝÏÙe$|ÙY¾ÃL G~K/6T{[pAƒ‘ÐZ'ŒÑ`É4˜Î Ý(κ¨’i0]TÒôÈî~qê+Ô³ö}Ò`ºð”ÄÃÛ| §Ÿf±µrúé ß´ºŸ¾âÓÐ`º{ž‚c@&Áˆc“½a }@EÂH0ºEÕ©'$©iQÒ˜’` L¿LHÐI0+p"Á´%n‰ÓÙc£kk7«ké‡èÆ‚’Y0â”`€¨‚Ò $˜¼U L‚éÇê!‘mU#ÁtžI6¥„c@&Ât¾ÕPÔr'ۯ̅ÓYBþ¶ÛY!ÂÉD˜Î'ö]Š!K#±L„题­!ÂÈD˜Îroêçay_Ðe”S"ÌaÜF{‰‰âoÝpXa÷ùPÞù>H¾ÏïÌú*éF¿ÏÒýJÕx0쟂#™#û]žYÔŸoì“tP €Ì€‘¾Ó/ °ò±ÕÇ0d—QG$`dŽØçH@š_Pƒ#uWòš`€dŒX£’×QújæÀtö,HæÀtQôÓèÈÝ<ºÂžõÖ%/íY 9·ºä¥=+û“í„!ÁЂXm]0 L‚¡Åµ™2·#zÚ–I0²W½û+’I0†]FV4²ÔiÝYì3÷ȱî¬V)â;XLháÀPGmÔ(083÷9¾[3ÆTÒŒ)˜4cš-p1e.ìMŒÓ9Þ.FB ÌI›E,ð>80,Ò4uÁ3Œ!æêN¡2íˆ180 e0)@æÀô}9 H“Ur¤Þó'{@޳J>Í[ù“=¹è¾ÜÍN×Ú°ËH0@2 FcldtèÚ€#ëÔÒaV Ì‚‘•«gŒðÒåìj¥Áȉ1Ì„ Ó`:ÍÜöNpQ ™Û²%Ýh0@2 †¬ÿqÈš.Ri4˜ðX ÁdÒKx¬@ÂcýÁh0ùÇ¥BºÇh08rA¢ˆz€||5•#,²«"ö#œŠ‡“a#”Цˆ~Ÿõ’Sšü÷‘ HNõÐ¢ÔÆ”êûk÷àŸ¦ÇË4G¾#Ý#š<îY¿“rT‡BñHVž|%•ie]lOÅZvבʜJ™l‘ È‘ªrÓŽT†©ËMgÍ$ G*W×ôT©¿£ª‡ùý×=ô¬·tg½¥ï£ªtþ~Ûwd¿ýÕ5>*çÀ˜÷g—Ôÿù‹÷ï¿øòíg›~¤îÕi5àPœ N2;°°z¶¨[íû–7ñåº÷óÏåÏQF{þÙ·oßÑbIÁDÏ_3¾)–ŸÏ_¼}ÇÛ( Ÿky‰ô·ôÉŸü¶ ñ^ú¥àøzúì'ô¦q‘W¹*…ÁÏïß² ÝeíçϹ˜«Ñ*ûüKNBÛõ9éO¦JÓÞ òK½_ÿBJ¹V¡:Ìç”j”ÙÚ~þê(†¿_¿÷ýü‰“wÚº.{íi‹^׺kyþúçÒRª×UŸÿ§f$ÎÅý”QòtWþ…µaíÒéå‘S §:^ãùËœ&×]›Dvt?c/¢œ?ÉÉ_ï‹Ï55MQÊÈrd,¸øü!güêmeÕÁûù­{RŸsÓ´VÔü›ìêùgV"Äçñgê–£ð¯s+¾ D´áÚÏï’‰èpNŠŽ^ùö-¿“6´KÈUO/²¢ï«Ó{´*{nî þpkŽÖe(tÀ •ΆVYµUXÖ·¹²Òo“¬lW±h Ã:ÍÛ4žÔ4‹¯Ê%½CQï˜ÜFaµøÓ¯¿ c 2Ïs‹fÁ¼/·ñÿð–•©‡oéûócüùmüùMüùËצ(y5ýýª‰[y¢½þM¡%~'²€\Ðü¤xbhž¾å†î»?ÿ)umå;e€Ÿû_ã}ô¿¾ð¿~üìþâ•„QÌ—¯dŽ×ýµÿõÉÿzÿJyßú_ß¼RÊýÚ¼Ÿ¿’7þú¹ÿõÓW°÷¯”òËWÒ}õJ{üÖ†öª´˜MÖ"¥ –Œ‹ç1•BöW˜w·ŸküÙ¤€wž…É¿ÿF©d¡µ‰ï÷ºŸ{þ»½}Åäîlèo>ûã_aï_iõ¯´+Úÿÿàw4Ù,5‚1Üz½.ÚÒ°óÂø{j¾´Ù´©•ôŸ>ÿ†2 Žš¾|Ë¿±êÎ}­U¢ÖÜy0Þ?Øw¡X«c$õŸ{Q–ß:Sqäðóxm¾|Ò`síiè5»Í­Çç_ky“ââôò¯¥†Ÿæí&öº®<ÿ37úÔÔÓ#HÚ%Ív[I•H¦ûM$øÕöªž2ÙÙRК¬F ‹&ï.RFõr´p‡—«Ìã½=6ü;¯Æ+‘ox-Ý»èTžÎd‡ÂTĴ͚ȵ·°uXÿWÚþÒz}¶½uÅγíç‘â«dž´ˆyǼÄ<Õ`™è©EçdùƒùïÉø•Å6ù²«äýêËcjùdIVÿÝ÷¬«Vy›jMâÀY•ElÝÝb²–<1~öÝMàÃ\RâÔÒæ£Ñ³¡Þ³ÌçŸåqûZSß²x srÆ/ó àÆŽ¾öãRd-ù‡Ôë?^?ç“6uç‰ú•¸¶MJž(­'i¸“û<™ËZZ£z>zÇïf̶%+ïûáÅ¿ÑÿÜHõ=΃›Dí“-ž^’û6ÉüoÏ{&endstream endobj 121 0 obj << /Filter /FlateDecode /Length 6289 >> stream xœÍ\ÛŽÇu}Ÿ¯80ü0Œ3'u¿<8€ƒ$FÇ€mABQ9I¦$8Î×g­}©®Ñr| øÀîÕ»«vUíÚ—U}æW—p—Àöÿ«§»t-óòë»pùñ]+ýš{¼ôÚâu´ËÓÝHíÚæ\ÈÛ»_ÜÍЯ­ŒKo%\s‚ÔBFœ×VEªf\—MÈ]¦<¬[µv<§þ\«1ǵ×M)vZ×Òæ¦Óˆý:BÜu:„ 8ɘN«7Wië-\ÞÜýê.ÊD^ì¿WO—¿yy÷W?Oõ2¯³¥vyùéNr¼Ä’¯=cb¡T„Ä˧»»ÿÑOô“#]çl÷ÿú‹èu–ZÒý?¼xÀò„Pz¾ÿÅ‹‡œóµÅtÿÏÏEÂ!¥yÿÓó®‡0Zþ÷—ÿZÚtl z¼ü½þ\„磩ðIá”Ûu$¾ñÅË_Bš"9Õk—‡X®co5^C˜­Üÿõ‹‡š0¨ï¿Zà«uõñºúúÆÕëuõn]}¹®Þ®«/n¼›×Õ'ëê£û¾üæ–à­þ­?¿¡ë¡Ã1âﯫ§­|uãê£ëò/9ü³©ýå7ŽEùlS‹f”:¶dïndŸÜ%\ô!Æë¬5ê?€¡s—„?ã¹W7®^o-¯åùÁqyLɧ7Þy{£ç×ÿOõÃþðóu\«÷“»—!ë{š»Üu]…Wñ–µ7»yÏ„´ë¹uí¦sLÅonò6Äuù½õüq]}ï–r·VáÍÕºÝM]ÏëÞx„›§æö•oo,Øuë­o-Dÿ­‹è3ùå }oöóûìÜð’¯n´÷Í ?Zùþßý°×½µk?ûàZ|}Cî‹ãÕ~6­‡Y^?ØàÑñ}pHÿ¹ éÖâÜr6¿ºåvöí½ÞŽ~|t~ÛÓí-¼žßšŒ[Ñò;onLÕç7Z9Þýd»ú®»dwM7Öð¿ËŠ|ØÉ|çèöÈnº­ßüiÔýîùÂûKó-C¸1÷ÿó§Ìwš@Žáï^ÞýŒõ¨ášÊ%ç†ü¾^REÓË%¥0ˆ¿{}ù—ËçwõZ²|”dñ}ùåòõQžÅ‰I—\ ÜvDi’ri×Ô/y¦p-]j“”òD »TãÕïR3÷볦F×Ñ7¡œPŒär’ÊÃ@4Þ¤0€khg©‚ÕØûË#•gý¡ÈëˆG›P‰|ORïÍÂó×Dõ€ÖQ¶äŠQ5•š,„"Rˆ¾(w.¹qXC´ê•ÎBTjÔk†îéY'ÕqDç½ÕkÇ›2®NåVú8"RÏVìöY‹gt×TOãÄš¡ÞÇ™û,N·qŽˆÒiœy šŽó4Ή,üÙ3¥ß{àï­±/rkرµëD2PB¼Žš5~ýêÕëÏÿ‹üÝ —ªe4õÒ.åÈÍÌêV~ùl.ŸÞkûvšsK깦·µÊ×%i³I~©H5ù!Aq¤]0w’ì>-.ª2zkl‡†ßųɩ~ÚØ@µt)`ù`Pb2=-D¤b±¶ Of‡xQ›@°fZud=HÆjÄ€­<-RHL«lÛ£FhÜEÊH…k°y(ØÎè»Ì™,‰3$0=gf4ÈÆ Vg–ô´H æîª;´¨ì¹C‘©Bv_g9õJL“Ÿ‚dz®õ™è)1jg‹íŽHÊ==·‡Qe®"«².3¡¤°>Ã3&9d©qº^†@ªuÞDj[cš 9©Ì©T+³WÌ—¬ÝÓB ˆ˜EÄká¬b=RV‹©µ-bÅþ¤i…1ÕLˆ¨if™¯×äÙÓB •xS#¦!¹õc"B–Ðå“gGŠ@*,bªEØç!è—ä†~»g4¨¡ã¤›l:ï@¨)T”d^ÝyÁÆì¢Á>,7‚Ëèüh£LîMÉ7 Al™ËiUZ'YÄc*”04ÒÖl… U::H[†d©Å} ìŽm5ئmWE2?/ñ}Ù(V‡¿ô¨ˆØ¡Û_ŒS2(z7µeC |"«YÃ2L/Crôe“¢³Å– ½²p\†`VèIYü~!Ý)™¾(AàNlR™ª ]0†#+Í䙣f{Úx¦À¬Ñ¼iäua=Í› "qjºîXY,bFô MT2Áç=&~¿Œ’4;‚ÜtyšÔj“ð4›T O AÑÖ,LDøv‰]WZHÕµ¥{¨ ¤t‡ëÉîµÒÄ>*´(Ÿ%Õ2D¼izIÊÄÕA¤2ñ†@*0êéC® ·PžY*¢ˆ0ëÉþ6T‹<Õj$×>1ÄuIpeA—ºÎ iK-¢ã’a>m\ÎÒžmpeájí7µíÓ¹Áùb’|ôiCà0’/Pâ×C*%Žù@‚‹pבÄŽ‘šÕˆDÖëêJQ‰ ý*BÝiV$#ñ_+Ý0” œwŸ"jË‹ FZ#›˜–púËH K&,Ol Ô±wh@L…ù¦D GD*­ÊbH5p”¶R\È^Ãy[xZ1ü®×1ƒ¡êTþ6Kö9ɈN#oE2ì*85’#7TÚ‹dæ±L£ 9—Ò4y*¥Yþ­¬º3±ÜKiŒÿ¨­Ïõ6rÀY¶z» ¬}Zyiè´Üô¡s!§ªœŸΣ*ÇÛ²™Îªºžªrffc!çÚ½xž¸Ôµ^n'1²½tÌÀ8×÷¡éî:ɱ-ø-eŽò¾°üsàÌ`'h†kvMàž4[HbDCëm!g¦€ÙxÛ˜ÌÕ:Q@$ ’³mLAcÅéÀ™NÈž,/‰—§¥Ui„N@¢ò†œID" ¬ Ñÿ5ý³T#¸ÓÆBÎÔ7GÞ¨ ¤â>Ì2­z§&`œ¬ˆ Ù ,GÑ}P5®mذê<H-fZÈ™æh>_ޤ”72$ÓQï4=i_ȉ =Ùb/z$‘›ô¤k@<È„§œr¦LZ·™0¤Êyª-6jɵc’ã·œh•Áô¼o´Šz¦:ñ*š9³/ÍónGbìIÈ*¼ïì ëx:ICNMd.97ŽšŒµ1ÌÂŬs¨Ã5NÛÊòè)–”w)›©”hÞ´7]_ùè!ïÈ£ÓÂ1çlå'¹5Žf‰E¤{H/~òrðãØ/’§)á=Ûgò%qÙó8J˜óp©é!X”D QÑ“‘Ì<¸ïˆêûy'Ñ[²ý£È™jg†ªÙµ#cûhéöì¾=Ûª kÚ.päñn§ß‘³¡#k² ¸‰©D"Ù—6@ÞsB¾¥`9F™–U„úÖ[¦¬ëBäM'ég˜Æ‡ÖšƒäYÒTM¸Õ¶#ú¦1÷äÏ{S¶ M?zTׇB@;D·¬Óù^Â'½\ Õ1M#@ °ìÄ~EÔì¤Ë9f)üjY·:sþ]IñÑ^Ö!$ÇÆÞXç!³vé—uL ·¯0}@4¸%`¸ð{íâÕa¢tÏÞB–ƒ÷Õ…Þò×Á–ŽÖÀ³Q¼ºÛ*ºÔ}ÙfÉYøA"vnˆLÉ:½@£Z}7þN˜î¡ý`!5ž/o€Ú?**§ Gø+bh”õe¹ÝdªìDï9Ò¢QIð[„ºµà÷ÚßpÕ)á-ù<ëèCïeÁL —p-½…ó8^‰åÇèýt êNg5üZHò:½©ÑËõ㬆˜ž¯ ¬Ò2³ó J¸Ú‘ .šðïç7Ž`ºèSáG|üºÊÅqâ£÷|á>Y¹ªë]¹Ñ¦)(·zbooñ{[›rKIïÔž»NþîYk™N?câ±´fU1iÙ!ÖW´ÂëRX-Dæ@Êìó¹“#U¾ÌAmßåó(oÀçRz…I‘é9›IŒa÷Ö‚ßk|Ñ$¿#8ZˆSï×Ù—Üó ×Â%\Koá<Ù²ü<§žOËí%~TDV‡ì²çãpMïÑi’+sè½¼î7Ú:Å !9 kð·£æ|«}»ç ¦Á’0õ¼³þ2&RQý|¶çˆžl$ž¤wYŸÈƳ?½G·M³³Ctm[ ~¯}ð G’œ`-hØÙÎåžo¸.áZz çqÈØ¤>H.„¿É—$i‹Låqb©÷Ü<Èçæ.Á¥ëG ë^ûàŽ(}´€zcÜNEåo,-Lbii-<‡Ú"ï8¤:Âož†®vïº ]Ìs®uU×,?j›„~­p´à÷Ú‡° Q2ù£ø ¤?§ÃÜ)ë¶´p ×Ò[8Cm’œÐùø×‘,ÅKjZ)æÇÃzO{a1¶K åîskÁïµ¾áH¢èhe@¹ìGмç®…K¸–ÞÂy¶ß ³ÀíØZdmaçR"žÜѾüœÛîe·UñïKbÈ·WG vo]Èn3dÈ.[-dÍžŽ>ì^v›j±$Lkoà4ˆWN&3m=NÚIn0¶r>·ßnIB­3º|b¼Æ;B3`–ŒD¡Üûñ½ÞÓè‚p4K¢G!V ë^ûàŽXP\-DÉë>ô^&Õ´p ×ÒZx6Íù²|°}Bà¿âƒ‡,ðäçyMïý›½Å´±ê—1.ÑÍ/z ~/]ð0¢Fk ÈÙÐöo)o*øs×Ð_? AFÅ“hòSÛ7ްÄ£HºD6Sîí+ »§ÓD(»Ä®ähÁïµI” é2€Õ‰ >ìžo˜KµôÎã±qšYo_jÂÃ,¼Tµ”/ü^&AQÿ´ÃîÑmmiì!Áï˜ÛÑ€ÝZ|ÁR²—õ~érD||<¢÷|ÁtX®´5pÇõÞï4üç@û¯`žcßò Œ÷~Ht«­Ÿ}ëdb¾ðÌnåÆŸDJ<Ô/öS¸¿Á4<†6ï?“KžÞ¿ù†³¨ÎR½G|äAüC,ÇiÜ#u=äû ýËFØ,G¿•ßhæè¡&S< ©ž÷ûâ¡äÄ? €‘ôÑï_|,‚µÂý׸DÚÿЄê3Ñb ¿ûò?Q)¥û·¢4 ‹î¿`# •o~Œ†¢Úô§Š†ÈÒóo;Å0fä/ÖÑFD¡3¡ðbjü[- üN2 (3l|ìj}¥-æÁÚó cÞ‘Ñ̈E%Z„5‰§Yx|AEPÚ6¨Ê¤9¶û_ó9œzI–ˆäg¦‘)ýæhîcÕb̼ÏÞã.ýnŸÀýúï #,YÖ4ªäÓ´~CCéHA24'‡§ÝuPØ”™dvF„$˜Î‹ØÇ.¼­ÂûmcßÕvÒý3ý{G…¿ÊnMÛú~n+Úý§ï¶¶ŸŽ¶Í:÷]ñà >ðk*þm6ûO²püÜHf`Î> stream xœmTËnÛ@ ¼ë+t\õ†Ü'yL‹ hh¢Š 7/óNƒþ}I­+#ðÁkzDÎÌõЂÅô3|Ÿïg·¯ ´Ÿš„h#º6Ç„–R»k2ƒ¥0nšÓ†2ÚLØæÀz' ©BÈ6ÅyC…š*5ʧ`Uc Þj¯jâH‹˜lŽ3«áwM*y²!qEŠ0[\šQceHMãFNÕ™d&¢d^¤ì‰SÀE?LàDÀåüäcé—/G–Uë»Aw¦A@oì¦(g‚©Ø=•àmÏ(£žþÿ«m%ûl¤S@oþÄ…¼M±œ1es=õóæ~²@ßj™C ®8]¹}ŽgŒæµŠ]/C\Jѹ¬Ž‰xw!)YÃé2‘Ä–Â3¸”Š]5•¢¾¡>› Q”tU%k±&åE¿uOމ³RXÖòšà±P©ó(p@‰îtÌV2%?£Mu8¬X".Vo»gÞ1UÞ¬¼õÆe¢$óUï6“óýdÖLŲÃSÅ…ääøò&¡eZçzeÙÓ0Y¬™EõóX¤j,§âs2 ÙM.šMcvº³N·Jìß°$ryñSÈïžúÀÊ%æY~2W¢ʼne¿÷vWÀ ƒù¥ã¸s}Ãî«VfT¯÷~p’sõ¢uÑËíû1‰¦a»x)GGÜœ%1D7!á"mÃâô&§eŸî«7íý é7P’;ßôf&7ü¶‚Û’HŸ©OðQ×|“Ï,t™cendstream endobj 123 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1174 >> stream xœ•“kLSgÇÏ¡…½@-ƒäl¢æœ˜õƒYÜ™s,ÂÜœ×%0E)”[‘K/¡­…ó´PZ åÖB/P°¥ÐÔeH'èØ¾˜Ì%&n‹Ó˜3‹¾VÀË.ïóéMÞ<ÿßûþI£’$c3Ž8sèƒ=k—dм*^= "ˆ„ýÛ¢s’&.%Ü|›X;±5—j ‹$Òr‚È!N§ˆD&qø’8J#â"í!ÑIÆ‘Á¨Œ¨)AŠÀ'¤„+\«˜Sh^,ÄI+®ù3Þ„?p©Ü6ªH¡ÉìJ·{Ò1{;Û—öII•JN—VÖŸ)¤þ¢×Í5Ý ùˆ…Ý<£Îƒ‘RÚÜ>m‡hªÌ¢(.©È=²|qeô[ÃÔ<=7é¸>Öú‹½N™éTwyçy L"üø¢;5NZÌQšŸ;H¼é¾Ím§Æ €wPLfL÷L»­Óiöô\ r*ì•ê"]^}‘ß½?F®€ ùô1÷c>ã¯ê• ]ò‘°d¿õfzÕ ªeY¥†.Ø•+¯ÔÒd³-ýŒx•ˆoxïs÷˜K :úÀ&4^c­S_Ði¢ò~½œÕWV&7ªeÊr@gÚBËþ_]÷˜.·É há´ïä{¹üÖºFôÙM`ë -ž‘߀L] ¯k’꙲½•ö,—<6ݘ¥í%וAÛosx¦m ÐÖ8kXV¦¥5¥òO%€š´çNîñç‹—nC˜ëN(µš.ó]0E¾Æ§íä÷ó[øøŸÎ?X ]µ»˜ÿ'”ÒOµi¡•ÕœË*PI]’ô†ç'pBÏ(ã_¹Ýç ­í)DbΫ `3È—˜Ä9X,àÎr uFÎæGÒ£²H§§Ç&ffÏÎìã³¶ó©ü;…öâž»FÇ<=? ‚Yê]Í­zÐjéô};@(G:Žbñȼ·o z`„µ×¿QË àÔȤ¢0Ë<‚+¨Eœ ˜^̤óé|<ÿ.ÿ>O|ÿN¿Ón¿Åü­L# ì ß·9ØågºTïÍî1ïÕQÿµ~? igUY ÿ!cį;Žq,‰7ÿîÂ"‡V·Pž†áòb‰¤¤ÊQçôû'h^ùÚIé”­P¡ì[¥óÎâ­Ck7\µžÖTWíÎt¥mf·ÁÈ<Á-ýíèKþçਵ2¶-Â1áÀ äÓÈZ<]ÝELÆN0]Î6²|‚nóe¶ É¡Ë:ȲVš§^÷¿ÙË¥ !·ßa£ÿCÄ^enDluò¹ƒC”Ù»ðì) (jé—Ï1|𮦹´ÉRWÓ5hºe£—0kö†Ÿ=äµwÇóùùWL‹¬µù_ÝêöØüLïäuaôèÄXÚÇù ]û`ÔEê:X>n-ƒ> /W [ 1 3 1 ] /Info 3 0 R /Root 2 0 R /Size 125 /ID [<1e9874d79b600aded5a61064b9417931><6171a3b1e2c735515f209c695e453828>] >> stream xœcb&F~0ù‰ $À8JŽ’8Éÿ ÂyKl69Pjy"™w‚H ɨ"ÙÁìë R†¬ò5XDDJ¨‚Õ?‘@$ç[°Ê)`5æ ’ÿ$ˆd½ –$ f‚MSï«y"™úÁ⬠R¹DzLÛÖË6ç#]/ endstream endobj startxref 128317 %%EOF HSAUR3/inst/doc/Ch_recursive_partitioning.pdf0000644000176200001440000036414514660150122020656 0ustar liggesusers%PDF-1.5 %¿÷¢þ 1 0 obj << /Type /ObjStm /Length 4476 /Filter /FlateDecode /N 92 /First 770 >> stream xœÍ\kSÜ8Öþþþ }ÛLMŲîÖÖTª€„\ Ì„dk>4` 7Mw¶Û䲿~Ÿ#Ùn_ºÁ4dß 1–%ùèèèÜ%#YʳŽifc†¹Ì2˼Ì1‘ Ç2&¤ðÌ3¡ U1a4ê.•hc"S¨WLJ¥™ÐLÚ”:1é ž-“ €”Ì$cÊhÜ=î^0‰á]š1)˜–è$%Ó–ê3ð¤fN2i˜ñõÀN;àÌfƒdÌ)Œ'=sø©”9KÀ?þaPæ¼2L)–¥^1€Ì¤Á³a™Nq·,³„&êRÜ3ܧò,ËLÆtʼÂdµM,!É|øZ1ïGk¢u0(Hk> Ê @Ô2˜‘+u  Í;Í@¥ÞÑAI™‘Tð((´MO8Ð £‘YY¦d)AC‹£Ír ;^ÒeXR@–h[@V©Ï˜d% -hÅâJ´…²€ci% ²òDe@Ö¨c5 êY+o^šš¨çˆ2ààY{êÈ3Äj  Á.Â@XEa ðɈ]2Ì4dãñ \Øl€‰«6#V²à‚ mFËi‰±¾™£‚§cD0¼ÈNbâ>ž8POÈ`p8 ;pÞÿýöãoóbt>*FÌkÈÃ!ãïoŠÉxš/ áù`t‰‡²ñøÇ—œñôŸÌ.Ù³gÄÖMq5›³ß.ò‹‹45:M-îNâ:z6¸ò4EUª³²ê³eߪ݊X¶ºì/Ëv¿l£zز‚ øÎÆqª¾ßégÀvžŠñlú|TäìÉó¿ËTj°"ÈîÖ¿¦òoiú·_Ê~˜Ç“ýÑq~¾‹+v…ùÎçùš÷òßfóó{‚‡·³ó»ÀÌgç7g9à½<Øg/¯f‹bq6)ÀÿIŠÿèstsúÏü¬¨HGS%r„먋I^·ŠD²­·J"RÙ. ˆ-Ê»o, U•ðÎJøì²Î•ýqU ³,‡÷©¯+ëe¼Kà¨T¹z¹HV/'¼{Q.¨VqÓÎìfZRå{cPû¤o‰÷ yèfÂoÝ ’Â-r'„8ÜbGù×ÅJ»@é&c—¿*†Ž<^±ót:+h`(Ø0V„ "JV¯î̦E>EOq‚(GÛ³ïx•^ÒN"Ó"TþE£ÌÑ¿¥Ã|1»™Ÿa\tÀH#G‘›ÏÎŽòpøÁó] ™/àÙ³&¾zÄx¾(Xœ ß-ËñZ®[ï=Ÿç «œÅÉÇO¤ä§ º¬÷ 4Uʦ7“ Í!’5i¥'ÂìÊ)´8—¸"¨â³T J± ÜSŠh_Ã)KŽ«9æüU‰Å°5þ¾…±[±.G J¤’/±·ª‹Õ L´IDæ;˜tˆçªõÏ¿V4þ_!¤Ô‰ËäýûU„\§LüeÒP •¬ÙG’5‘m kÛ£EÞæ'o^¾?Þúuçí6ˆÃ_LÏfçãé%ä5ˆÉÎÕhNº) Úí#ÔR|B82Áa@VT£ÇÑ>ŒÏ‹« ’‚‹¿1ëôî«êK?Ú‘òr𪔪ƒÃé %-ž-97p+È}R~ùýÀåoÁA3ÄÎúVûòþOè£1éptO3àbL‰‹ÁXT"O†j«V¼?DùXC=Óò ºƒ‡Ò°6QO/΢ɗWùøò úî'ªÒ¢>á[|›ïðçüßå/ù+þšðC~Äÿà#~ÊÏøÙl2›â÷õõˆŸóœ <¿>-®ø¿Íùx‡_ò+>æŸù„_ó)ŸB“òŸá÷a<;çÿºøÀÏàs¾à‹ük>å‹ñw^ðâjžç¼ø6ã7ü+ÿñK´€ûS™’➌.ÉÝ ‹½]1uhóðí\˜thÜOr8r“¡æÝè:ïrãkxgã³­é%ÄoÇ‹x3ðP 6?*òë?áoÚ&—5”Ÿ”ÄÔX„ë¿þ}o÷Í vt´}Òâ~ðétkº/+–r¿¶'¦#ÔgPøÕå ÆiñnòÁaƒêiMr¸àY‡ìàwÄ!ôv›æY—æ=2 $;Vo5Õ{„ÞþðþϽçá±Ã0*kÛ§²ëPÕ`m#ÖHz÷ÇzïÁ낎Pze?ƒà‘¢¥uptæë~Z™ºÜÄ$´•ýTF— w´ ¸é«‡[ÄÇš-¶¡^Aó(þ$ãSv)Ò$ÉÿÚ’ØZ`üýT÷¤a'"-§Í@¾Ë@íå*´©ºShÁ% aj„,m  À´*;JOP¹k`¡cna;FõnsúæõÁÑ‹Ã@‹¦Bñ¢kN…èM\Šž9UÜdª4=Ã~Èl™´ý¬{ÓU?+Uºæ¹2Ññ WkxwŒ’Cd¤É“Z¢‚-ÊFq ¬€ÇB†ÞÎ…~$|Ñ o",‘JEªæ4* \ÛmÜ»v;<¯±Ü&Ømmw–Õu„Ýé °W™oÓ2ßñ±c¾—Æ{Ÿ¿åïøû҈ÌÿÉ?ðüÓíæ|Ìyþ¯›Ñ„çßÏ&£k²ídÞ;ñþìö˜ÿs©'¦ŸäE,ÍøÊþØùùé$t¨bŸð‹Ñ=¸G\×; ßøwþƒÿ›ÿ;ŸÏZÈÔ¬­}žê4¶B†} dK‰´’¦ZµÅn°ß †Z°Ã½×d#_·åZöäºïȾ›,†Êµ•ƒeºù£RÛ| IÕXc 4Í«”ÛoAÈ‚‘Ãë‚v ²ëTh) &D"óñ=ëH{¸”pb½6Šã†)e]mÄ·zŽXÐ%y3hx¢Â_Myfh¥P«â{Ñäš¾PB§4…2<ö|ê(”$’$ŽdB+$Ñ‹ÒÕ¬Û=è–Üá9›ÚkûpØLù²€{G *æ«Å Ã¦M9x “y‹$¤wcÙ‹ý?>ü¾»GãöŸU?Ž”]ÿYH;T@»ñwZ–†^i£´|;íôYUÛí±ºµ_›6pmb~û÷ŸÏð+ƒ­¯‹ G3!¤)>Í€´oÑN H£ÅÙx\Œ'ç9Š$‹Ï°o§£9?Îò``B)J ?çE]rlèZÄóÙd yi Ûî%%Àóyß NòÅ"í3øer³¨_4v²¾E)Ç7Óó|¾8›Íó¥ëZ8¨ÂR¶ái´M\l5R÷c4ò;’Ý‘´®…}o,X[Ê©&J9´ó&BþþäÓ»7»¿¾_ŸÞ,ÞΦûOóË›÷§“ñ$¾Ë 6‰6]gVbKÜA»ûZ÷þmpWÝû=VaÒ{5NwaÝ“WÙ”WÛN!¸¸ yÝ|@6ÿ$s½ -ÝÍnÒèƒW‹É]ž`GJDf×I ¾ÐL¡6Mµ#&º+&·ñê:™ DkÉŒm†©wç–ÔRhfsè„2Ðao%<ÛòW–.7mb^Z‰Ä9ò|”I…=U^ú0¦pôŒ^шVæ¯ÐËjÏ´ó‰‡S§]bÒÅÖ²³?ž~®P;@½í ,’-‹V÷¯VÌüX;@Ù&;@?|BËÄÑ ©Êð/Ú¾&r£‡Ñïçaê¸ÐvR`UÁù€]ôï—Ø•Û;Ÿ&Bhʦ‹„65Wc'½Mt;%D"ÉM¿v5ïéºiµ‚÷kGD›MxoéÔnï¿=¦X2hàL?—£º.­ò)Ñ×ò¶í‡…ÇZ¯»:µ·*1LÍ´ÁAP:ú´—oÑb`XíäíQõÚ\<™VåpŒ¨,{:BË**Ëž©Xß[ÃWùäk^ŒÏF·®à-ëуxôãút6i†þ%ª÷òòÓ»½½DNß„Ty{·%uÚó˜†n2:’ä6I#„ä÷ᢲ„ÍPðe°¤£Œ¨ËRìûÔ©G‰:]DÉ?Cûñ¨Í‚Ì«n-ÖW;sNË„~"A…™icË;t:ø©ª¯p {Vö©ÚÐt8?VÒÇn¸LyÔM²|½ä¯C,t¢ U½VÞ®•Y˜ QÚ¸âöl›®c‘~®m” ]‘jëmµxxh¦¼Ô[3mƒ¬WyJ&X/id"2Ai™¤©^g½,¯¢d‘J¤çÂèi#ÁÅ:AÓ°^ åËFm´k?ŒJºA%&Ѝ¤R—X±ŽJʨ$œà´"1¶Ýf‰†~‘N&÷¶ðõ‘¤%ÙªÓ!&›­ep†Ú5pUÙÐyÒ²léLéJƒ³ur´ûñ(l¢>d'YwãâÁ;ÉV¯Iæ<ÊN²p+²¢—†ïPaèFò}†Öú­q î^?~Nu´Örp•GóJš¤Fó]´ÎVàr:MA‡ ‹ã“ B"S‘x30vkˆ’|,QÚD=l)n%-J·>ì¼½mïµdÕÆóÒïÎz,cz{-b¨-w/‰7[¿¹ÿ8?1ácRuO'#ºUŽsºL„ôäš 6غԵOæ…»6\£Ò9vz¿Có~B«I…¡غ͜~P³óqçðCXÑ¡D&[Þ£rÿdN:øTßÇÖZ4Ék2O[©Ã&ƒ¯8ÄB'é -º”6]J·i1Ôt H©‹ýÍm?´´¿S•}‰R–=}ƒÒP¼µãf#:6Zu_¶Q X½Â©{¬|Ý(_óÓ̵S@\3›ÙDbú*Ë›RLê”õÏÍZøFŠuñLš%‚=a2 ,µKRb%]Èÿoä …z‰H>üú/ag°d†ò«sè ¨°ƒ NhOá;¡|"è+³L$tpY Ké›.`+¡`a÷ ³Ô}§Ó=–¨W_,l–š}±÷ê÷7ÛAG7hY•¤¸Í3´o=ê>ÃÃK(1Ò°Qñ±¶QÑ![ã è´ç oˆŽêå^Úóh£húÁáÕÝ~Òý྆¢OJÂy$ 1tገ1ˆåÀÐjè|Ÿ^Ìæ—yrøôË|Fu Á#/Ë Ú%-~|üþÓ€.Hè,»A¤NYY˜,úÜCx:¾3X?8Ú¶¹C?¬4Ç y¿E°Ÿ/.rØN2–ÿˆ{«ñ;OVÿ€ºó&)0ŠÌãŒÙkJ2Åtõ#UʯÇÓ›ý©Îù†ƒÁLÀ|W¹òXó8Ò ‹ \ãp¼µõ iòÆ'a«ùEMü®+~ËóXèȈJ{àGŸêJ€ÿÖ‹Ókendstream endobj 94 0 obj << /Subtype /XML /Type /Metadata /Length 1484 >> stream GPL Ghostscript 10.00.0 2024-08-17T18:31:14+02:00 2024-08-17T18:31:14+02:00 LaTeX with hyperref A Handbook of Statistical Analyses Using R (3rd Edition)Torsten Hothorn and Brian S. EverittBook endstream endobj 95 0 obj << /Filter /FlateDecode /Length 4187 >> stream xœÅ[Yo$I~oø-„D5Œ‹¼åfÏ!±; Á"ÔvûÚmw{íž1üv"òŒ¬Î²g„öaËÕY‘‘‘_|qdÎ7K6ò%ÃÿÒÿÏobT~ùvÁ–Ÿ-Œ²£´|iµá£3ËÛ…f4Þ—7ÛÅ_žÙÑ(·´F±Q UÞ8îG£Ã(-áY‘Aù£ü¨É|Z[øÕ5óe­œw£ÕD©ô‚êd¤•ñD'Çíè§:ÕAéE3&éTfË*‘ÙÔ蘌+ š¹˜r£S0VYçG«ÊÌ–W‹oÆøÇ2k™ö«0c°m›`]Æ…·Ãcwê„sXƒánôÂù¸5Ÿ®œ ­2½…³2¸e/Ò:>£ónÑ,ÎÞZüM@‘°ZÃêNŠöûÛðŒQÇ17|Œ äL[MìLå]Ehcô°À˜FÚh%Î%lí™èEÝ*fWÕÚÄÙ €æUØ}€’nß;Þ…5À0)è´â in³dR9Mûg±ýÏpS¸DïW“= ^‰†Ð~¸³;%Ü ‰Ú(ñ“ÓÅ ô~Â$Ú¡ÏKÂ$ù 2É‹€c³ˆ„ï@¤æ£‰âÇ„@9_€ßŽÞHk°B€º€O{aŒžé¸ZIæLDÃÒ8ìö›°ñRr‘jLôX¶1"»’ƒÙÑcƒm™ †‹* ÖÓ?-NÙ*)Š’¯ÃÆ >x xÀ’`ñÂK¨Î}À›R¢âM©ä¬°pÀK踙—Œç‰—¸«¨VV&^’Ú^rÞ¦-6 ê¿M´$˜O°rÒz9Ô¥K”ÕK×[¾,ËIä:Ë}£å6‘":A FÀŠgVŸNý×`A@¶š\ç»Ê„F-Ñ£3ˤìs,,|’GŸ„e+?ò™¬”ãèX‹h€î{¯F’ ±„â°T°©ðä=h¿¡"nªˆó;Áãö%üߤ˜BX·…À΀|®5ð¹>GqŽ D¹ÒltŽ'_H;ñˆƒíˆxùte ˜Q¸f«qìðø ‡ÿBl(#vQ%§¼‰QÏy Xê êÅ)èêàdqº=ˆ)š"\×á¢zjúГ˜Ò ™÷õç†ø¯€eóÓº<Õ_«ŽS@k³¬Ë€(ØþÆi‰¿œ$âú!èÈu¢!…@ćo üÞlM bÁ+KöS2 â¼.®8Ï]õÏ5¼õ@qSƒYrw£¹ï,ætY2]É:è Ñ âÝYàQÔñ­t:š#N““B&ÂK26yÙ.F²;ø>®¢ Œå©  àìm„‡HÌcï#Ú 4Xæ£"F¸ó‰Ê3Òð±L»£Ù¢^»›Lå¥už%8w0úãiÄs ÑëŠ òeL’ ¾1ŽLžAŽì¤cÚSt'm5a³á)CSî è÷%4#Ô£`­rna¸>«"¶$Âe.îzÞÔM| ™45Ïu!Øð™À¦NÚGmQ!¶±Y¡°IT¡(×:¡Ü<$ɼù°¨ir>ÊBâ>É4dF?­owâ €äh]À4&L ÄÙ€%#ÜD€ÛmÈà`‹õQq4ñ6еP8\Æ`:ì£òÀÄ…*‚«˜}n+ÉÄ¡»øòºÄTRhpæBsÍ^4xË[¼Qܬ㑟1©°!®‡j:°Êº¸ãcüÙjÖy(%²=qÍ7[5rHH²ÒÛ¾·=öå°U¸îEž[&·ÐÌ·ºA™Áæcøa ² TLj¤fvî’hL ƒƒo+F ô‰2ë("5»¦u•Í “7)UÞ³›î$4õ\oã4ŽMªË„d‰è´c€ ¤ÊúauÓ·5f§Àæò çþO¨P–Î1Ó”wû¬J~Þ †gH‚v@Ì„€S*¬‡ìKfBHÚ§¦±úßbùÕıb·ûø½8ì/ñYã‡Ãž°eK¸%¥ö$dGXm’Ôx¦irÊSßÔ´šDÙ˜¯s®ôÜw›ª~pñ-TìtÙtM’'B”(3nk…ÐBª|yeÊ< Æ-!îg8>mUH ø«/mã¶8ŽûÖúL"ÇRYÜ“"ë1j͆‡À/üŒZ–çŽ@|[k"ø%8§gŒ¸ž@5ÏÐ’-áÝ×1WRÊ„d>´|êÒÀCðãлѼäˆâbVY„è,49U ³×…dÕ‡Àî'Ì{SžÎ:Yq/S~,O_åñgÏ%ÜÇß~¹Š¥e6Þ+Øt„:ïº:Ö¥îËÓ¦³ÀË''©ò^T½z‹>/O_w~½*OUÌïêcæ´<½*OcgO[¤on#Ÿ4÷c±}”~[^žÔ—ßm—§OÊÓßžYJ™ù?õñ™½üU}|Û‘Y=ð¡£îygÜ=ùµ7Ëuç›»÷–²KlsÈ”¨èÓ¯ ‘Lï"·)¹ ¦•±¤‰e~R饇›·_ï‰áŽM´é溻ôê`»ŽÄ‹iæŽß?ç}=ÏþqœêE3ɶœwfÙuäÜwÆm»zw§«,õôé8ñmÎUàCGÕ^ð;tÊËæ„?§e Æ_-p'†—«_…gØ((&kr¼âÞBæúSZÖ¦M>ÿÀžbÌMDMª\º|¦#\¨…•ÆTöéRŽvDµ„4¹–r¤8¿+ÝÅi7:6Ÿžiüa}¡J] ©÷‰VX¦Ëá«IÝsH;×s{ˆk’ÎOòÕü¶VŽ$_§%×¶æØm»¤MæÒÔ¿‰’!'õmdåjšäÝßâKî¸ŸÔ ¥’xBU8ö€*=.% dÙwU«k’ËÞÔ\ö¼ÊÅ,:k8S°y4&ÊD„áêb3 »%GµÙL´ÃåJ'Ö¼Aë7(í¥ð!„›éy,NƒgÆtš‡8ZMÚ§] MíKXמu’nAqÄ›U—Š»ý„1Ά̀?WíÏm†j¬.õ‘W%Â}ª±SΈ¼b°Ü²…¸hÜqËvÚEÈŸhÙmÂ[ÁÇ%aÊÐñ¸5´¹ÎýA† g’jhŽÁ)AmHã…ºïÜ!ÊCÊy²å´2}¥á-iÆîï£öÆ· ®LPÎÆÎŒ ôÛ¤7´?˜ÖyµÏÞ70ÙGQØÛiN:Hæ>SÜ´n]LT?$a¸Åíi ¾ÆÈ°? 9:ë0ŸëÌt*c%WŽ/§ JÓ¡ÛIW ¸§m¨_„I¹Ð'SÌ‚ Ó8á1 ƒ¢‘Ùx†ˆ7Û¸£ÆjÏžðµ6Îõ ”æ±4HóÙЧÅgDÍìÙTR‚=Jx×…qˆÜÚh$_­›øŽ‘‹3t¤¤š2mVŒ¬˜ÄUòÝ{·ŒŸY§‡—ñY:×@æ]M]Iÿ•Ž8¯ 4±±©Hz‘fôsiæUsÞ`'ù()J¬K?· Gø•¤C´Or>¤W,µ8o¸.ÐW#V"äë¦Êk»Ýa0dGÁÇæyÝÛ»øámýALBPCG¼©Ñ‹€ü2P1ŸRñü™HEÿ!¶™jÍl“)ÄþÑØ}‡7¿®+ÜuÑ99ÂùJXÉDZä&T"Ý,zt”ì¥iãkYÏñ•AŽÉT)£ÖP¿l)ãNКÿ0´)†°Œ…Ïj”3r:Ò¿¡öˆƒ¡Íå!½õ¾µlº'ø‘W?“¡BX§Î_¹ ê3×’hõdQ”ÜÞ  ߇L€YÏU„ÎÏéI OdÄŒšYåé™Ï6«O19wRì&ŸÚ­øß&ÓFeæZ¦ì«#ûªš8LÎöSHÆ{©¾–kÐéÖßG‡ûIT[×r˜T׳¥s¸R‡×›É<ï&UWÌCŠ:¶í:¥©òqhÚ•7V¢IBEèÐ"bdF$‹œ®Þ×á"¨´X¯ðÆÍˆEHjM«µ)"ÓŠ» gã‘®O”m,½æ2ü]¶·fÎwËà£~ðBl ÌÇ®ñªXõ“‘3°É•œ¬Z°6ž¢÷GwgߤrQ;c8]·±:­ég*IrÌ3žu½bÝÜ»ÃY‘%݃ÉvÁRl×@ú‰›ä£fTRt|t¿J5šÁ+㓘pÖd[ÁsÄð/D¼É<&_áÐx.Ž.$Ó“óôz“îs1­að?¬ö®5]òµn¿ŠdôælE;˜ie´»¸‹/qÿ«øÉí4%™¯¬òàÞ©¶Å[ ²ÞO<îë÷;Ï:]ÿ‹n+ÝCÉÍʆSW#w¦´wÜ„ ¢¦ÏGú>‚=ØFÍ:~ÛTk:íFB©I§=ðPì´ã¿HöJÑ›5š÷:í«ÄSöpumÚjo.ôD¦ëÀx¶³qᮄdxá1Œø|ߺsÊüþ‡!ƒ ÿßu~úyç”ëûÀóè|Iò%„¬pÛ>lTø¯läè…IWÑ?ú̈—î±ò|¸ÛÞòßã/ E'.î æ³€”wéoîðÞ="û”9 †¬(ÍÁó§nx@p\£X¬§¢TÁßP‡pW§ÀX¦ÂEl<­T0óÒ%Á¼ _‘–'Á€BÁ¨`@8 ‚Qšl¤YË’4A¥7Ë*«FšóºHS4¥y’&©4nL•¤ÐH3Viº‘ÆJÒT#MpQ¥)ÞHƒˆQ¤™‰4‘¤éFü\¥I6+ͶÒX¶›¡Ò˜S¦Jcv"MgÄú%ì±·Gî Ó b¥x1]F4É’E©òÏŠ¾Xü°‰>ïendstream endobj 96 0 obj << /Filter /FlateDecode /Length 625 >> stream xœuSÁnÕ0¼û+|t1»Þµ½{¤RâÖ6œÚÒ‚èëSKBâãY'yy~”C¬Íxwfgòä!¢‡ö¬ï›K‘Õÿtà߸Â5RE_sÁ(Å‹êVypWN¡ÆÂâkaˆ” µU5–<£2Ù™;СÐcìcîæå\í«œÌ;°•XsGj-ôœ Iä¢'Á°çt­…ÌÊi›v ÔMïž΋ôëëfçÏ&÷êÉ[·„™ýtç–-£G¦X }ûæ§û^#%‰8¼ V@•> #DPÕª5ZFÿ›Ïê£æœú|&ä˜mÅD²È’Ði0#¡Å¬7mžg†–Z^6Ÿ Qœ5 ]‹9v,?6ËrT±ïA@RVxâðeN> stream xœ­XiT׺­¶¡«œ@ÄŠš˜j§cœpˆQ“kÀ8àŒi‘Qdh•™îþºš™ZF±@Eã€Fã°“øb&ѫƘὛ¯ÈáÞwOƒ&¹7yk½õÖ£ÿôZ]§Îùö·÷þöAÆX ad2™b…Órû9æo/ÙñK\ßFK!‡…xïÑèjóÔºkcþ›³,hyðŠ•aŽá«"Þ\µË3f·—·ÏF_¿Íþ[œ÷Θe¯ž;oþ‚7¾¹hñR†™Ìl`¦0™©Ì&ææUf cÇle¦1ÎÌkÌ6f:ãÂ,gV0Û™•ŒãȬbì™w™ÕÌÂZõ¹Ñ;LX$Êp ŽÅ(œ,oè[Ϋõ÷ÎTIÓX´»ÑûäËÍ“aÊo‹Ï\†¹^‡/È+™I>à±'²G¯±Y¼f±’ %ŸóØ3بƒ2•q7l…DðH <²s7Äg%iRZ$[“¬šî·ÇÈ¥ æqÒ¼‡äEÂÏžK^!S-F[wÿ+œ(PâÄû€wiü‰¤zèF¡óPÝá¦ãeÇ¡êƒÚn°Tà’àŸàåáK7éó‰¥_DÙû8SÞ7³Ïž/†C1‰Zmr’°iÛŽ×ÒÕ0ž¸’Ùd ‰"áø:‹;pá#ûsI²>ö@"Äê”ÉdÜôu `%8Ôúôø]L¹ àøV¼zêÆ§ùíð9|éd$¯ⲡ¸J½¡RIÛF¶‰8É$j‘}E[çBëC#±ãÑAq,¼ñ`p8ìÇÏðu´›õÄbç®ýA>Êv–8˜{Y %«-Ö@ìãú³þØSG©ƒ¯¨m¨èîtËZbM&ºlÛîXs,ZiÕ—MÓ;ÐÅ xí~ßEŽÅ%ø2²†j2‡’7•dòßmy©÷{ö\ ª__ ˆ&'m wØâ´Â âÊFw›ß:‡Šò>«x•"м°o:Y ÜTl,U<Èp_®±A¥Xžæ>GˆÄÃO8ò NTbŠe-=Êô('(·—rû+d¾B+9:c»-{.&‚8Ϻ}55uÆ–÷7VºíØþn¤ {  ‹ÿ•îúÃIh¢Ð|Êe–ž·LÄÒgç•‹rétß[|ÑàæŠÆôGTt'á;hXC†aYÛ›é¹tðøKS=ç ±Xz_3 oá2„ßJRLÒKu²ú[ètKŽ÷¤·Ø”´/>ù€{88ǸóÂ&m¯ Í;¨¬ hJ:™Ø’Ôsœ¸;Õ;W‰×b…´#ºôhàÂ!%BIdl4$Í6@ÞQ!3ãÈ¡Ìô–à6( Ü°nºyûb`íþ|åžzßlÏÕaçÃÐÅõÜÔßË\eôjCZ påYF{^/¢³(  :^§Úí›…1ü Qá£Y»©.f€{:-U…6¯²o­>äöfÑm7ÁëŠöK¸gá»–ËÝwïæ¶ÃgðõÆRòÚïÙŒìïUãܹùˆ UŠÌ /…T=øÞ7mÆeMXOH6pG ¿€ªàÅ”´.Á—–Èî¢â¾(GWi#E2·¨º…ÁDñjç{…T±„ù<êê'5×/ çTάsœ_ÐN¸Z,Xõ•Óv6‹˜'¶3Õ\Þä>[þ‘¨ðÓØÓòvƒ=ø ”÷ˆä‘TÌ{$²øÅ¬¶1ý>í| ܇ÆÎÏÄfL%Íö KUL.;÷«ùâYi=ÿœ{Îì ¿õk×éJ»üŽ%kcåÖîÃà'•gáz“ _¥@‡,K‘uJ†f¥ÄЗNz¦O[Z–Ò2žŠ _Í,ð¤ŸYà;pاý½Ó¨M§?„VúyøŒÚÓèêò4£4J”I«¤á|VazVp"¦ Ò…A¸öëÍËÙìºxèÒ”óIÔë˜ny^TéÖj÷B(¸üºÌâ”þ¡‡Csµ…0¾2r³ ©)Ǧ˜Ð½gš}y(Î5œØÍ?^vXï!cµöîÑUµuƶºÈ"^0fäŽw©Òm•Ò—%S5d¬LæÞ|p»§µ±Ã(DÁ¶B›¢$ÊK ñz¥*òÁÈÅY~ÁšÈ ψÖ&‚ãò*  àcL¸éÜo®éÜ·†´ÅtûŸt²bixKÐE#Ÿ~Žv8sÚm"sóR‡ø+³\ùúöæ#õ`‚cáyÞy{`Ëý·«½Õþ{Â}ÀJB›i¡åDe’.ˆ²bdå’ƒ4”Ï.2d_ù=š; ÑÔŸ†ƒºÔxÐ)ß aÁ76à줲ñïÿ)¢³ú'%E†¯95>ØÍ7)@«OÓd•@W^îí¥jÚyî“S7Ä£´âtZ·Èê)³‡¡ÏH3øÄ¤ø8ˆàž#}mYå[dÜ‚9d"™öd }lB-ZäÙ ê4ÝÁ4!y_äÚeà ¥1Í1ͺèä.Žzx4W«)üPÍ»¸˜‰|Ò<žÑu#»³Ñ3=82Ün ™Ff|·å­ÍùÕ JO×þFÞÿb‰¢ÿ á뼓âTq )¾.ÒQÜÝy-õ­P &u•7Åׇj]=.~6àË¥éÄWdë«{}éä™Mxûy´¢W¾_@ÓÆ‹?FCj¬6uª2|ý¦¨Ýô<€6•õúÓéÈÞî1)J+¼@ýà'CL²o‘¹Ž£åèAMå¡8íG½£ÏMÏ]†¼?B9ÆèÊcuÆÖ6¿Ž³§z…ðê&ÕòÓÿ0:èLœVìzæ5î47`žãqœ­¸‰ÃQ¶ðkòš’AGQüÑ7R¤^þžGÂúù À‰ŒTΣ³CCv˜pÆ··LÑ*«¤âP.Gû/øPCh)‡²œ\½>?Ùs‘º¿Õ…[ŸžiLÈUæåäfÉÐi´©À…ÅTV——©=Õ¾oawõ{Á©‘Þö(Þ]¡ Ü­ñ¡4Þð^s@\ÊÖØÌm?ùt@û{nà,2'dÿÌ;ÂåS§¡çÆ pzÏÖ;*;ˆ;ÿi{ìN¯=®Sì¼Ož¼tŠ”Ïó§™<Œ +Ýv» :¼§ø½@Oýß3(Ä›ÂD¬5a­8z ¿ìÅ™cmÕRþ•Rqî*Üâ~šþù‹@¾þýoÐÿæW?¯em»¾V”À1(÷. €pp‚u–Y³å Üïrå–QíĤ%Çé”iîû‚idL>ŸtES–Ò©KçlÕñ=^¦meJù%X{W/Áª•Žà@^¦ä;F òù^œ#{ŒŒý¥¿ó'|vyøùyx4úµ·™NdYAõuñ×R«ï2´Ñ#ÖšŠu’ìÌã…fÓ´ËÞ‚†'r)ðy:Õé"#„¯úE›èœµq˜G,6Ý«ö([ÜLI÷"ËR›²´]‘Eï'·}ߪÅ+Ɉœ˜,èŽBfäól±f [ÒëKË„êê î7“›©a¾ðá·8ìRôɰå®ó^‡Þ0gûçÄgøç5ÑxÑY~þ6Ú•IÞ™Bº:“†gC*”œ‹Ù˜iÕ]XÇÿü4?/'û/²š½hoX÷Ü1V¤%kRR´:%Q’1–Òfößr\/L”÷ÏqÄq¬©>?æ> )ã"`¿`†íª¡Ü|=Ò–Þ¢bÌÔ¦ÑG›ž˜Oséa à÷Ï”z³[Þ7Fú™‡RЗ§—¦æ€t*­/µ+7ƒïÀÙJX#µÙº è ’ëÅ’×§{," ß!HËþ4:ÌbÉ„§àrœu÷g+ °@ê=7H÷›Pæòê(»Ûé½ä¤¶áWvL1üï–ç:ÐRŸá7-y¹„Ñ÷–¤À põ ÚÀý?ÝíþWÒÃcd›—QV÷à9n9ʧÎpÞ™@S¤p‰¹ñ9O{qÂõ€ó›vúyì®ò>]Q|8'g‹esä¸÷3¾Ý¯Ñã¹ÚÛéüÑP¬RÄ%2:{†ËñÃ>9_— þÂ굓ÁÏ|Y®¤w¹î"®?—X¨Ø¦ô`Fî4 fs޵úE‡L2ø%NþKâMÿˆóeÍïEB¥©YÖF¿ËÌS"¿àïd,{Çf¼³Ç+¿$Ly,«¾ D®# Ö}—_ˆëâ;Žh‰Sï|óŸ÷~I¬«…Ó%·ÏÂîsš­FLvZî ª7uTÔ7&¶mÍjë›3¨/ëü“a«ÚS³3\ë£ Ó&ë –‹9 G±E™(9PpÌÞ¬Ä9ü'âRi‘¢B—— ê\ê_c©¢1W6ÝsïRþ´Âeh€w)êÒfž´ÁÚ>Àñ8ÕtGå•Èîwã›æ”:EÒó…iY:šôp´¨ÌÖæÔh!5I¹#zG’'¬÷Â༃ƠN ┤•ÝÊr3Ò³3…ÜÂÚ¶À]å³Uà¿WyÀË7.6Wqx»h(=\·GA¸Ú%qý[=s(ž/<½ƒ/¢Í¢»dxô.Ý^waàlø“©m*Ì ¿ŒJTÊÑQ²ä!z²;¢Õg¹å`„ò䂘M`45Gÿ²àfSUYÛÙ€›Óç’w6“ÆÕ@Ž /ÊßÂWÐnæ5»;a{ˆð¹Ïï¨ê„ê$#ôШvpø§Ç!Bz(¬†ênÛ5{S}Â"|þwo”²Ð†b„óil“B¤Çü¡\0@WE‚ØxðЇ¦»gjs4œJáG²-EEfCfs~afÎgp„âø¢Âq¶&Ø·€¸Œ_y² ÅÌkB7 ·³p^×µMÚ¥Ïi±_cÚ×r|"±üûMǨø¹Çé~…Œ\¿hÆ–òͼ…í{7¸ÃŽX>Ø@ïö­@ùÛ]~¥™÷Ÿ½·š¸î®ŠsŸÔ:oÝ´Ç7Z-!Óø¿½ÛÖ .ãWoó{w‘çùïv¶Dº ­»Lø73Òp NãÇXÃëB!Tš¶!%Tìç‰à¯0Öd–•Ò6DT{ù†DìZÓ±ñÛ{¸àš®æÏ·¼B„îûwÀjŽLý«ã…'ôÂÛx/ˆ®I«ÖTÂGPp&«*ÃX\’Æ÷"ÿœ0½&+–6+Á~Õ3ŸÁq¿z4äfCZ-þÄ€é›F,@«z½ Û[Í7 6ñp½ñêÝ÷ÛkµB‡<™ D±ií:·ãquµ¥­õQÆl¡¾¦Í@{vönÝ–¯ŽRn˜›ò6ìá<ÙHH-+‡¬rá,qüï†Y,,1F ƒÃaÄh†ù'w…¦œendstream endobj 98 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 200 >> stream xœ½Bÿ CMSSBX10‹‹ù!ùJ‹ ‹ ›÷?¿¼R3oøˆùR‹ ÷¶Ó÷uáæ÷$÷Ÿ÷øw÷Ôʚ걋÷÷Yûm‹^û„g€füêg–°»±•˜®÷›÷÷8û³™s–‹¡‹ÆŸœ‹©ü6÷õ÷u÷÷ ]IP}Uû 7Ÿ ‹ ‹ ‹ ‚J&endstream endobj 99 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1769 >> stream xœ­•kTçÇg˜™*!3©¦œ™rŒ¦ÄÔ( ‚—˜ª¤‰£èr§°Üv¹$n¹¬Àî>»Âr_aY–ë° ×€å ZŒ ž9)m‚95Ml¢ô˜hšw¶/§§˜äKsò¥ói>¼ó¼Ïÿ÷žÿ„« A’$´ÿ-¾‹ok!Û¹×æî¸»Ö{±;=¿zìÚ£ï­"ŸÇ”i¯ff©öfGÇÆ%&ÛD¯ëˆßˆDNø‰@âUb7L„/~Ä£„§|áJèˆÿÑä.þ.ŸPÞÔe×]ÇÝv¸ÕÑ¿¤ÕÌzÆÌôJ:iDÉËF"bÅLSÒ먔ƒ/ CÕ¥8bN‚g .@›ÃîÓØ«ÀMÉü©òÄa·0Šá•L›i:@„qhÓº¯™ßæÃˆ€B™o®_šœ´¼Êãü={2ÁÐÉz8ƒAD×mhH$?‹nݦ†/qJ3s²0^Xè`âu…A|ŽRr§÷ù§wç?Æ+ë„;ÖëWáÏì­>Á?çñn|ƒC&¦ÛTq†Gžô½^¿ðàƒ˜~…?ã"õÝÑkÌÝQÿ]ÛC_ö<$M¡]òµ‘³¨s–’"Q2‡8Ÿû˜ÅîÏzcOüø½ˆF+æÿ‰¥5Åü{Y×# ÁaØŸ(t¥>q¶èbA®5Çz¼N ilTfÄóÁý÷Ô|©Œ£¾¬tÀ@Iž€½˜<(©.7›øò 0ªï?2 À~36ñÑxrWQ•àH7צš-ð>ëh:û9"Í›RL¼Q['­r«Üæ*Ùß'E`#ïO#/;…vJ8ä-bo´OM~°q³ŽÍùv0˜úPuaª{r†ÿ£:Œ RFÇî/xg¦ìߴ쟸äߨ%})=àúNVÏð6‘ÎÒo%¤Â6È2É€¾X\ˆÇP!ó§~kºÅtS^‹N¸ -AéªûdEcØúS§<¤ºÂ&é"i•T”ô,úŒ«²7 _5²"£Ôk ²á8]º™Ò—§BéKJò×ãš5Øõ”X åkÛúÁÊ‹L¦þ ¤C2è!tù“KP]Z›‚Öá¯)טJj¡̦Švq}lèíÆÖ›ïÛÈ37бéY;%=lœ¼ßƒ‘‰] K$°Ûö…‡(5Í- -ï&Àq¡yèœuس—ã¶1 >ª{Év±;ÿ‘yåÚÈà¹F¾ìˆ#aئ ËÇÂ%õæ,­&.œâCÎs>ÉQ‡õžCkЮÚ^/‡—<‰ÏÙPÒ Ù3‹¬Sº°9ƒÉ£zBåadŸöÁãÕw|Ëì™ÑF‹°›AÞÕn"³G[q^þÅ„,|ÈAè4ê¬ÄcÊCÀf`¢½9S;hïlŽAÇ(LB¢úÚ·e4y²ú=…v”Þˆ‚–òC;II«ÑqÎn‚Ư¿Ä`úù§ð*¼æëg…VŽ ¢É\RV¬•¹ë… ÿ½ªh`£7t —…FÆØÈU¢-·vÀ·`ÆÞÆ$ö»L^”õc±ì1!šÖ€¾¦±ðýî.4ý_sµÈ}°ƒhõ<‰Hn ´Àµe7§e¨³ÓS[r[Ö6;y*#¿ZU,#oý!;ÎÉk`N/× )-$WF—-:·´“ãhf‚B±’÷Vb®²\šú+ °ã­QfÞ”¥Õ7)˜Å|Ñ•ÂNðÉ¡“Áµ‘°SÛ}×G4DöÅ=±=E7òz´5–â÷TŽp8ÀþæÍWûk†ó¯•κ •ZÙ¸‡ £XJ³ÑT[Á—U6õUžê™Jº,r»ƒ\®¨FÒ»…øEMlµœáAt§ItmŽrz;·s ótÎr³Óä[Õ‹|Á*Ó«ÔÛtÆ|P± "“>AIw™îËÿ†x]K °œ$‘VSU}Y¥I„F T%X°¯í‹ÀçÉOç)´ï<×®jÊTæ¨2S[s›ÛíM¼¿ÂÕßæþ3p_î+ÁÝ“ þ ü> stream xœUŽ» Ã0 D{MÁ ¢ÄŸ&Hd„´q‘*ë',™ ‚‡Þ{SSÝçØÏ­4È O©t+Æ åF®Æ£­ø¨YÁ«> stream xœµY XS×¶>1’sœP‰§‚zOêÐ:T­óÐjê½ô¡Ì_‹æÎ Ú8/xSÈüÐa ÃIop‹t_å±õ!µ€G-¤ÆS‹¨ÅÔDj 5‰ZJM¦–QS¨åÔTj5  zQ¶TÕ›êKÙQbªÅRïPTÊžêB9P¨Ô Š£jÕê.èN-&¹ ºRjÁAàï]ÔÂnÂBak×È®?Ù¸Ø\%Ѓio¦'Àë6µÛ¯Ý3{8ö¸ÝsJÏó½&õúÆv„í¾Þsz×öþGŸm}®ö=n·Pl#végß/¦ß 6ãÛw–¾s¢¿Ú~‰ý+‡«¼’P–86Ðmà¡AþƒZÿ"ÿËSnwTâ(QJž¼;ê݈Á‚ÁNƒ÷ ‰å¶m‰`BMüb ¦mŽÒ¶ŒMÉSfÆ@ (ä)qØ£ý©}Ôص*ÆŸ.UïÓÔƒ Z”5ª#=‡šè¡Ær­:[­‘DýmˆŽá1êTR!˜ó§ëµa7샃ª&¥yI½â2eµ 6ðÙ,²Á×m°TdË·€‰·i’ìP— ÈóBñÔ=c±žv–Á"ò¢:õQM”“½wY÷^$ƒ´ŒþõÒ‰sgsÖ®æpÜ¿|v=„‚ªšAŽ4Ü“}\‘¯nÌ'× åŒøÚ+–ÙøÓâ³’7IlÛ6¬œ7 F“’ÜA§žÍ}Ñ_Ì£P¾ ‹Tt­&³™C}DÏꦬ[ºi*J%²ÏJ.œƒ+Ìýoãw¸ö.þe¢k™·¤½Œ¿òVÊ>áÂüùA"äððÁ_ïO¿Š…¹’åø‹ûŠœ”™µTŽ>£Ÿ7]ôéúéÃ$¶¼BfäÇ•wPõ!ï‡|YÔox+î…ûŽÂܳ¿~€º¡^?ÿ„ÄÁN¬+¸èƒ†î‡3Pp¼lÅÁfýØû¤å®å®° <ÁÖJ]¤Î.±T¾M` »÷„üoü]¶áÌi5À˜h¥‡*üa•&DM²çOï-ŒŒÉãSå<ëñbt(94î 7¦àL´·b.l7Ø¢vÓ˜Óß@–¬0yá§öx=Ý¿¨^{‰œ­.A½Â\–púEv£­¥mÛ¼¤¦¶1&»/y¿ºPcñ“è)‹=Ð<­@SBÄdCf¼ ä;T\úît,fÞ° •ˆF-hý®3Hð`~_Çiâ@‘L!hõ´ƒ.‚LYj*$$qçxÕo8ò8ˆŸà•x2žˆ]Iº[ð:màšBv­Páþâgh6ß“=Oãafd\Ê”»HÄ·Ú}:!¶KÝ¢)‡ 8ª¬{Ž3ètzLÓÚï€A=~ý ±H<ê9î*?› n.RF‹ XFW=\u˜Ëg&bÜkþÔ9žº½Á’8=¨AÇØòvñ7 .ùåF!¿¿m›™C>Êd åÁµ¯É°ÔÆ(ÊD6Õ·Ð4²ÙxQ»C;N– ’¢ÓAÏñn¢"¤³ %aIä¼<­¬#ÖQÆÝ®;¨píßç ‹þûØø“RÚsœøYe¼ûÙbfÈ(üîûì}ÄÌ\„½û UŒù³x0 ~QAÒ°ø8¿`'`æ®x€hÔãâ+7›&­#ìšAØuÚ„jw Рh“}`Ô…hÐu¶“)WDM(‡= Ÿ‹g“£;tE÷~–ã7EbDÅ¡¢É2ÿQÜx”,²R’¡1P±¦K£(ImÚOwòЖØ)0­ç[ïõ_C£ïYÔ…Æs}-¼ø]nÕÍšJØͰǂÕíôeN½%4}ð]¦TN¡ŠH€&Hk(6æÖÔøW¹râksÁ{Qœ+!Ø»$Ìf:h s %¥¼Ñ6ƒm?øFôoÈQ§½N¨±u× yu¤ºGÿ˜ÝðÔ¾p“QFGÀ=Eh 1G¶å9™ŸRbWk =„¢Œá‡ú‹ ­hkH½ó˜ >3§zŸü>’Sä©ÒvÉQlOGCrNºZ]RÂi4 ).Ùïv@¥'˜¢~ýí±€ê„\‰oÍÖ,·,¢”Ž9‹òN ¨+ß{uIï¯áÔ‰;‰0y^"ùÙB´%$ÄsŠÔ‰© ÏJwˆ%Õ³õ\äèST!•ˆÔ„TÊ¿#ù1JM‰:jâß³ð~ÊŸºþâXþáY6OºÇ#˜U As鯴ô¯ˆÌx©Ö(À¦€·Ö,35ôC­ÌK²”7ã®Xœ´oªCG‰l¬=ýÛ£ñxø¿¿šµÇG€^§à Ø »¡Ix"Z-Ç^†›å»¾ ,´—Ñp 2¡i:Á¯ЂÒ9ü0 5á¡hY¨H5=àÝ‘©Œô{\EãÞOê/U^:Ç ]CÏ ðôZŠ8k‹ýÒ„v™,8hy äÛø_ØzMÎ5®Ì$òQÌ!Òì ³ÁÇUmAŽÇ-(žþ“§H{ù?WH£Ý W¡Î‚Ÿ0ú ` P .ø³§ˆÊ Ò&B7ý7’xƒO£a96&z~RæaB„h<ü ]ðzÒæ…s§¦6·pèûŽO®ƒb‚¢gÂ84šGž€ý•U_2¶èoífÐ!’šã׿ÜàÊÍ‘Í qm…‘•Ó7´‘)d3¸ó™o7ÂŽ3‡Ð3–3—Éôü“ „ò“Ð=vgiѾójÒÁ•ªpƒ-šhkkPå„C$$*SSeïá,{ÜÕÈóp5åPLÀ rT†C0x¨,=Œ> iò<4 #ûŒ8MJäAÚδl‚[/ë¶Åf¿ôô€->bÊ«3o+%ÛJ!œ5‘ÖmëU†(ò9(SâÇáö#PMj®ÊÜ9+AGv TmP†AvîÚ…ÊìøtyN@fädœb?éRrÉ9Ó:WXÏ™ ëÔÞÖG W‘ë‡ìðoöéqÚ$ó95éù?£zû_pCšÌü+‡<ÐZÎNŒ…!Ú„ü åÇ?>h°kº¶ù1šzá2i¸ÇнïØ4 ·f`ôgòoIN„:Ò«Bå2ßÔér¢¡ ½¶6n,Ü ÌôN‹tÑå•źòÜ”Ú-jIEÝáâŸÜ:AâE‹÷Û ˜¯X0{[èzpa>zz–#›œ‡ƒ{Jš™d4Nž·Íy“{ݑϛî é©¨Y¤M‚\^-D{P[½{÷á²rSýÞ‚fs‚C”ª’®ušxk‚õʬxâTcvħȗϴŸùs¢Ù˜d8@AÁNe…j±2¶ƒ“:Øš®‹ V5¯|ŽYû1¸ÇæUŸ)·ƒƒ?]®1©Ë¡ š”eÖŽ'Õ&çAªjÏ|ûÝpû,Y^ )cbbl°ÙW«Oh ¤A6ªª-¦–^ Qšð*ÆB#‚Ž¡äÕÔi$b‰‘èÅ¢‹NÂBö'FZ­Îʯhfćà š6^ØiF>Ç"¢A3ÁÕ)&ŠØ…B¹ÓPêœÂÆŸg•Á¨)ó,w×®wðR® tÞîï黜Á»,¬8-”ÚÕñÐñœUu¾7·”ÆŠdïÅù)© µ£òÕô.ÈÊÕšDÞŠqä•[a濾Øb Ü Åwy)!Þ]!?‘ üìQu!¼á]8i¤Öú˜T…ÑÄzïP)SÞÇ*{,D†ÔleÁsy”pÖE¿Í»C$Ö|4ª]`Ÿç+—® Z°R€¸Ø”–e€B¦<²0#Z]û¸Áhö4ëÇ͆½ dÑÔÛMÇvžUy×qî yÄ3!Å•庢êof5~‚û~ˆ)܇¿Âýž@ PƒzfgïÑ ¹’ »$Á 1¿nâ>4YbûzD‡Œ½[É—Ý"yÛH6Ñ  ‡cðÌ7]]AƒÓ0Ë rXS µp¸ÓI ƒæ _¯¦‘üo]ÒãÓ ^r@›•–ƒTm½ìÕí—DRÝ ýÆâ–¿††·¥š/ël x¦(@•…ƒÚOÛ“ €‘ïg4Ñ—¤Úø÷Ø9fé`ò’ ŠÃ—‰gœLgÓhøïÝá0ÿëÛÇþt`½kùZó;†ŒÄ,ÿ4™‘}ì2Ö0Hß»Ñ,JYtÀfg©«Àåa»Cö*NÔ 9]u@oÚ]{ê )ÖäœMÎõÖÜ2¨’Ÿ^)D±mØÄ\•:’lô‰•¨tªU©B­‚H¦½äO*QD§§¨Uir~tû3û jU&0ùY"áÓÐü’ ÔGµIé ¾°IãcõKp –´Ï¢­˜ У¹;2©%žµ€®+Jg3ÐÈ»Æ]À¼ÌÆ·JpâvÕˆ ZÐ?_ûŒ°ùpî+!˜ðj±Æ¶°$;I“’¨”')9Ÿaãalêð†€CpêIÔÅÒò¶©åâ“\^ Û<Ñc¹âÈx´/Äcð$ìN ÌX<-@KÐh"ræð÷øö<à”rÑûßܹ†~Šwâbü—©JlÑ)‹Ø¢Iw³ ÔõüãûB4ŸÇ"†þáСýÚH.àR£â!” /Œ¨¨*Е5xÕ®›?eÝ`Ó3üoàkæ–¯"‘‰¶þÝåè,©÷5¿¢tE3E¨'¢n½øiÄø/ÜúÖÐü'~EŠXTjĈÐD¼É ‘'šggì^ŠVŸº[Š Ô®²%â*š{µ®ÅåTño2Šf³“àEi…º¦À(ÉÊ-­ÜÌ}¬ò‹ •$%„y 1[YHƒÒ"]cÐ^E 0O.\¸ÖÓZ*©ßUŸ^l~A«’¥¦È ‰ÎK(Ì.É,-J¨Ùá"wwãÜjÝ´R`Æ.Xð‰‹ÁÓ¸]å >Œ¸ÿ÷ùµÁMŽåIž«T¡ÑX¥ª²>çRð<†Åh¡½J“’A|WÚ¥ÓÙYg6iôf行‡ ð†åš8kã(QeË "â’’ñ`lkχÿ3“ bú[ [›ÉlØbXi‹WþùÚØ2¹þ¿¼9þ¿R͸ûsrœßÜ8ßzsã|ØZú×¹Ö¿¾LX|r_v£ÙS(ýUd@„¥ üZ¥ó%³¬\‘D8ªÝÝOâãUiÊ 2VVŸ‚rKZÐáªq·®9 zÈõ6Ì·Ç’ö9x2/Si‰ÓÑþËç¯BZJ®rjo³×&jwä©OfZšÎ§Û£Ú3¬¿t°þ–鸽7ùïCôƒzó ZöجGÐ~{03Þ]‚Kÿ=„x!ícTä ÄwTJ%Ä ÄÝ‘èù½=_V×ï×qîJyÄ0¾åñ%¥¥…Õ_¬iš3÷Ø€ý“ùã-Ð5š ¯ÕoG-ƒõv÷P7©ÁlØ\Ôì¹°½>QÁ!!EÁõ…¹YÙœFc£V«â–­pq’ÈåäT©LrzjzîˆælÑ=´ò”  QZÉžÂÅ«ˆT b¥€Oò©(‹5´§JÍ;B«à^«­9ÆþO!äRC›½AÐxeÝò®è2 7Snú\ÙòãôB7X sCÜÇú-H™ Ãì´ñ{gíûèrÄa8ßé÷?­¹~n0Ø_f·Âgƨe§á1|çà|ÖñÔãêN#±¼ç£JFd;Â,XFäb¡liìèÕÎ`¾ Uk0í× Pð!jnëÇ–&œ[¾t"øsuäU-åL{HÂxÎÏlÇî—·îwØ1?z¼"§Álºàzõêg“Ý‘WÈå‘Õ‹¯±­/Ñ8Ä>/hüMl‹mæ|8Áñh‹êr÷–G•û$)A¥àJ¿:Þp ˜Gû>šþñÆk–Kðì+3O&aâW<-ªDsÉX’ì²#69i1Q^óù¥•—ÈÈ6¬uÿùK£]ê:åôñãY/û‹1…ö¡WìíŠSI†nO<ñÁû³VÎò5DV™t†ª#NË™ŸÏ«fïçÒñ ÊU!.’€ÍÛ¡ª$U˜2’TÉ*ØÁˆÛe²L(âö‹n7,‰-tq]ô…¤.Åd€ÝL}°.0Ì/ÎeÜ“ÅH€l=ú…#[Ãíe×‡ê­ FL¼Épó5’a4dv5s¸íæÖBœKëè`žùþ Óp~3É}FL¢Â|S‰O·o#JŒ&+DHÁw³±„Žºü„–Pÿ;vGžo6¡ÈÄàòkÑõ˜þS›]c|¼9´žÖÉk“kH›ï}ñQ^†"=Y¥EŠ$"qSÄ"ð€-™Nú$­’dšÙI1|˜Ž‚¤üL6#Ë)l8~ ZÀ¸%+ªÐK³62âפu¬ s Ûê²…èÙêcÑ_h‰šëR[d,+‹6úÆù$o™|aê*ÿ†˜_~Db3@x‰…w­vµ¨§ÔpÅü­¿øïh =vÀµ“}ºüì b†4jµ Ä¥ú%Ï[¶\’@N¨°00çÎw¨;‡Ö½óŸ,³dŽRzçј‡hëã%û‹Û‘=ºÅ–ÑÄQö©?ZÖ$ßfàb=ÀÙ¿,ÖPX½³ñ´Ë¡i¸H¦Ø‰ø5Ö!æÓ'Høô¯dxÂXȉÛ‚׆ˆÍ ê¯²Ë à´¼ ªnB1s½æÅðÜÄ{Áâ@7ÃÆh[ˆs²€XÏuMpÂøô±æ[Ùæû>=ƒSEØ”y©%L¨È»O¤-Üy6/73ã:ä‘zzˆd13°@ê;ôÅxÐùàA8Í¥ásíçYÇÓJóïíÿÒbr[oéùXݽօÕfnŽAžl#ïdS\åË5¶oVǪ“rÁ!´éê"¦ûc½ªD_ŸDE${GÂ÷£òýáGÌ+›Êoa·T§î‚"æÌWM—.Ÿ[?oõÖÍ+}8C,ûmÃá8Ï<žprÜðæŒÒ879q9 ¡Fâ`_® œì8bÀà_½B6OïüV/;àÙÄEêc²—îa†»±¨÷ÌÊÈæXá0göúé“ç}yçT͹'©|·”f.ä’ÇhëC3„èëGãø¡[VE¯Õì æögU™Â ¤1‰[wÿ±dä„üH‘ÓßLX³)ÊÙ•swwƒÙ îûÃHÔ•ÿvö6•žbpŸOØØþg£à˜•·YßPqdw^1ŸµÛŠœsýÒ–ÁfÚ¶Q9K¢QP‡Þó¶ÿ3øú¸aKSB³Í+I" /~þãÕâ'‘íB–˜Ê™Kç$'ýíoo"¦Jyem'Ò5 Vs™êMV¦ùî9ìAc÷N´¶ÍC7Ù‚Ðé"!NÒþ£(.""J @Â?ÅëØ|ë'±’ö¿Šb­Ÿä›½áöÞ³—Gîÿ!qÍRÀµF-:;4Ú E=¯˜¿™µÀÈ;²åÑÞq;ärN¥4{F ùi5™ßžýR’k&†–ÉLIK‘M›…»¯,sÞWW\QnÖ‚ÿd™-oµú׎:ÁóSBt'³ÄÂk¢‹p_dç‡Vhîn4õF}ó:^’ª•ï¿‹?ã6à. XHÜÝÌÜësls÷¾·$˜Œ4m¦ä÷W£òî&¤eẠõZƒlV¢Þ“¿ÚŒ<5U®eI”ä§'ñDÀž€gyáOqloMš<-5#ûá7HüwuÉEB¸Kã¦uŒI71yr_ȯ1ÿMŠ6»Äˆj>ð‡w7õ>»?sñLMáÓƒ™õ˜’ü/½òúÓë\c÷mèg·›¾:\ jNEG+#ÌS\Z‘Hæ¡DH`0MÛrÝ»NÕõì=»CÏÐÓŽ¢þ jè×Iendstream endobj 102 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 4911 >> stream xœ­Xy|“UºN P«´|@äÞïT•¥Ph‘¥€L7 mi›.tO›¥ÙófO›¤KÒ¤+ ´´,]€²ˆ-eQ@Q`qtPgSÔ“zz¿{ÒÖë:sqfš?š_Úóåœ÷}žç}žÃåŒÅár¹c–¯Ý¸zÞS·S³qü7⸠æAðèªÿzxv(Š˜ðɃ=q?-.ËXž¹"{垈œU¹yñ/îX›¸sWTRò+)SÓÒƒç>9ïéùÏ,Zü(‡3É™Á‰âÌä¬ç<ÂÙÀy”³‘3›³‰3‡³™ÍYÆ™ËÙÆYÁy’ÎYɉàÌã¬â¬æÌç¬áü†ó2g-g'ÂyÊ ãLäМ‡9S9çq²cÎhŽ—»{oÔêQ½<ï/£S‚æáòÿ:æ¥ËÛ0nÞ¸ǯ þUð{¼øÀ»!IRžx¨z¼ _‡^ [:q!ý ½’ÞEß™T;9bʸ)¶)×SýšøÐ6ŸU ·oàÚˆ‚è¸âÔÉZ©NW:J£/µ3õ°×Ø>اi†žàf'¸írëY¥>É@>/3;ʪßF¡SPߎåï‘ÄI%P q€‘iƒCÆvh…š–Àb‹\N9ˆ¢5¶-7À×yuFD V(¥TæÑµøFÞÉñ÷I½þ¹^.JêGkûy¨-§Í^‹Çìuž}õÞŠº®w¯ÕiˆÉ[‹Ç—ì`Å)šRÈ£b›’ŽÝmAsÌårPˆA[¬fä™™sÖ•§«¬¨/o°Õ±5§£ÑÐKýa£wÛ¢W# ÄŒâxJs$A~Ž(½`‡8 ´”¬ÌN½Þkf\WÜÇ}@5€P*Ò¨Eì‹ø”V©SF µ×8ª­n+2°”ó /:è õßþcÚ‡“Ãîúiÿ ]vÀ ûBãø·Ê#Ò<ÿæ³x ¥–Ò(¤ñà=êí¨ ˜Ëà |‘”În_#i@«.añÔÁCAaO‘+åS‡þ\U,zŸ¦£1h̽÷Wu//cñ¯ðu?ÄO£Õb,×[Ø+¨%½È¿kùMÖcÏÍÀ£Ø¿m¤¢£® Çžß‚|ô§Q—ŸÁaOdzfž_û>zÑäÁ2Ø‚kèÄ]¾·{oßi¶­ÿXóA Ž7ÅFÅåÎLd…·Äl*d 6×70×ÇEÝá œXBëMz ˜(ƒÎ&Óª@Zʼ¼4îòúª­ À 8çb ~ö뙈Aш‹v+—J©¹†Ý‚—à /= ÔÂùgÐôsõhÞ 4нô§?u¿ÔW&K• 6лQ_mbȉðfzbèTþÈ7yቴhÑø†HàëAɰ”[¬ ¦*öše-ªO8 ²Ÿñh6šóuäñÈmqI)BVÒãȾT(A¤È`ûrh[˹ë¯ÕUþJj|&/|‰•dÇ…oj½ì¶Í¨7llÈ€|\w`Õû<ôâUZžBZ Ôw½=ËGëÑ”‚rьşcšÅ×'•µZõXæß¼ƒ'G qä‚GÙm¯¬ˆ¨™ßƒBˆ‘Ôƒ._¯$Ušs‹‡ìè0­7v!ú0CÔ”$K5© ¢Äe ._ÅÁ“kì»W&mÍ1ÒS‰îÝÿ"+š­{mŠ_Võ¡îîÀóm›íW»£—°`¨7:]®’)ÙPðr PYÐX1ÒÜÈVŸê¯8ƒæçùeþ`ºUâædç䈭 ‹‚©Ë2¦’Ñž±›ð˜MÒžý½ûî4¾Í˜«,•÷¹Ë´ù‘°zê‚°ý¶ýO3<§Öh½¡ˆs ½Ð?9ì=ôymßÖ–×zßÛ¿„꿇ÖTEŠJÇ„uu¤V¥NÅ<<?g-è— {ïtz§N#+½¯—§®]¼Ûå}Í=>4Öu„­ïïî9LM}t¼V§Ò* lÇ OŠsþ>ž’ÿ]Öj)¿ Tù0_¤ fc`»æwñÆ÷½ü/ò½ ×[ª¯¡Ô) 7ÙAO9ˆØJtš“út¦ðS@-þÁ )Äñ•§nt{ý3k¤ÞпÞöWž™öh wâEKc·õjI»Y¯×[õ¬Ïìh„*Ê#²J•¢§¼vïã/þZÏüÅÏè-‚CÁ÷qx4(ì3¡bGdÔÔ‚DX»ÁWçtRCÀBí×»†Oümž?Âÿ½UIª¥¥DvQmc·ýx\ÛKß Ù}«?Dßÿ[¥Yn—«u:™œY:÷iuP›²»zO5~ÙpŒ=p±§µ ìÐ¥­L B¾™8Ü 7¾ù-ï› ?âs‹X<‘Ÿ ⻃ç¦lð÷j½ZØCtRðsVoâ £dÃNIŒV —ê K-+Û -F⽡uľª;z ûŠAÛ•`‹© üMSôüþÁ/ E ¨ÌV‹Ý?v€K>ÆÓÏÿX@Úà ±åDF4mÿH@†Í"Úu„;ÌžÿôÀ<:à`!Ê”F¹F¦Ói˜Ùr‰Nªƒ´*Ž2F :f=û2ãÉI¿G‚žã‡Øû'X¥¥Žª#–nÝsú UlP«se”‹Ê…PZ«iz¦=GºÎ¿ŒTí<$G"ºÞ4s_ßÁJuï:øÒt4÷÷/7û:G¬U3™fàW—´ ¿â£«òŠ­Í~êÙ¯G륫Jö@>•ë’UÕ××´v$Ô&ÌÉÆ“RL´:€‹|RÌJöÙàXÉZY‚2O OG' ŒÒÊfsEÔPÞÂrQvv~rLG^Û½Ãh×@YLæ\{:OÜå¤yèMt™F¿æ£P4õs4öVI,>õRÆ/Pw]ߦ›øWNd½”_Ä­áúcèoaiSš”J®XÂ|0;˜Øè2v@'tk:‡xø*KÄÊùb(Ò‹õ¹F¥žpÝb(Ó›×m¹W¬^ä𢃥‹šQ°Íx‹‡žx‡îùàêaŸ =yçãs€h Yrz ž½ǬɷÄu]?‚‚Û]¥­b¥J¥$ò¤×2‰I J¸kÚ:‰ÌÜtñ]…BÍ|?òÌÂÙQLLfüžøèð…ÒpÒ¢¦™„¶&×fb^›òë‹ }¹‡€|W7ZfA‚HÍ–$$®Zh™’l‰ei …R­V7´ï½hªïÑ*/÷SßÕæ;Þ+o{ÏZô]D8!³A5ÛÄw÷j–ÎŽŽd3R~—[ak³öµ³ *©*iUÎmdaıÈÛÄ…~‰‚Ýê«/´2÷Z{?†kÔí5Ç—àñ³¦/Hv ÛÚº[{ÜRŸ$pr^kT2zU ÅTJj†0_év]ÿø“?·+\.’á(¼høÒƒæ7{šý×j¸þe<ÿ<MY#Õ°G¯IWf©l'~L§\ÖpX,,ße/‚\8‰u¨{Ñ5À¾F¨ÌÉT0»ñ„X¼S¿ÅŸWkšÔ"Qj«Øf©tØìL™­ÌÚ.¨V©SU'óÊwá9SÔÅ€RyÕªr·Ó^kaÚÐ,‹ÎB¡‹Î*³ÒA j[¨ÈRh5¨ôCunj»ñÉuõÜ{­ o#ÓEžÿeÔGgMËŽŒÝ—õjôZÒ «xï1“ñ˜© ¹++¥P˜´¹;óÜg·n¾y”ùšV¡“jô8ž„'ã0¨fÇÔãÑhÌÙÎCG} ž²†^W+Ú›ÑÔ¦Öáí¸ôP'ª^[‡eø¿Ù!2¡Œ¯B|Â\´“ß“Ãþþ³Ì 뿉~O׊j2RÒRÓrªò›Z|û|BúYO:9<Ɖ‚öÔœÃç$9K#w®X½IL@GJ¤1*¬nôOü êHÜŽìdaj­ÌSí*+/gB˜q£Ö…àq<‚C9œÿYÚ-%endstream endobj 103 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 5463 >> stream xœX\TWÖ#ðæ©(Êø4ûÞ®FMb‰%ºÆ{ *¦ˆ5 6z“a¨Ã0ôv†Žt˜¡Wc‰ËJÔ±d3DãÆ/šDÅi–ÄìsÉ·ßÚŒ_ÜÂoøÁ{ß¹çžó?ÿó¿OÂXb$‰t©‹«ëŒé¦ÅiÔ=]e£±•€­ØZ—¾ð‡¹öX0íìþ2‚1ý,]¸)héžeËå+BV*Þ ß±sMä.—Ýk=Þö|ÇËû=Ÿu¾®~ëý^yò”mS§¹¿:]9#z¦*æµÙãæ½8ÿÍ/½Ì0㘷™×™w˜™w™ ÌDf3‰qe^bÖ3/3˜Ì&f ³™YÊLe¶0˘iÌræUf3YÉÌ`Þbœ™YÌ*æ5f53›YÃÌa\˜µÌPf>cË c0Ã;f3‚Éleì™mŒŒqcÜžÍX1cæŒÀˆÌ`f³Œ€±f"™_$JÉ©A“UúÅ*Äꆵ³õ]o›sìj¶]:Vz€[È]<{pò‘C<‡rCUCØ®´mf7Ìø[ÃOÙyØ0âë‘óGžµg¿[6\Ö&ûaÔŸGEŽ:4êÆ¨_ù?ðëùªÑ“G+GW9 sÈv@ÇŽwœæ9)ÆÌ7æìX»±[Ç6+‡+Aÿ³ 7%uF_+4oòñT%Ä{aÝ:G( )-6))b¸€Z(³åÕÐØ^bÕÏ68‡­oãþÕP.>fËj¡±(y¯:[LÊ …hàÈRc(¯a¯ƒ qd{6Å‹zW½ýt58È>ÇyÆQ|3”ì–°J95T ÅâQrÑÝ<ÂYl1µÛ$¥èŽËYÙчŸ8u¦8èm„ï–ö¬«3­›j¹.š}´éÈ|Aöù[àæÁõìmTé%ŒnVø!þ6¨°©dKLÏC´8ž–C€T‰ËÈÄ8ÑF[MòÞ©`:U %b‹¶$”8‘2›PVB÷®¡ßþÜk&â7¸áÙ`£}vÊ´ƒÂ$=~®—|dÀƒ•Ñ ýy9í±&ÖÓ^"#‰ì»)8}÷=Ú d™Í/v¹~ÿïW®|zõòªéÓ\-©‰X½1O/9hÀO.X#Œ7øR¨ ˆLŽKLÒR -Fî[¿M»‰FŸ§vÇUd5Ò¿8¹Û]÷ZB 6^ibâËóBv7}ö/ø ¾|ç—® g·Í+3£2”Àµ‚NkÚŒÈõøª?éËZÍÚMœ‡eüùsg.}vnÉk“—¯Zþ¦÷Ý™h}hÇ‘øfàPòÃw(C»™?þé}·HQöCCZ±Ç39î®ÿW9fruË€å« FäûV–ˆ•ݪPv`„;Yt¸‹ÄÙøÚl|…8‰DÚ}œ7ª¾—¢MÍG¿K숕؋½P=º÷ÃÁpÔ°•å×ô|€ÙžQd[ró›Å.iTúxCX¸°‚h¥²n EéNP¶îƒÊ á~ß´r§@ÐÓ6°ºÏ2áš´)i¯Ð=ØŒ™FKäãT®¸ã ;Šr\Ë{þ{&hBÊÂk€«Ô–ÖiÕ‡çnZ¹ÆU”}¾¯×Ô‹Ìj(o’‹óÌ#,6ƒ‹XõíâkúHðzF+\ˆõ<¾À>×÷Ð3ŸãûHsDZºU¾ñžÆ–Ôô])n@³ýU=ªõþzÙ#<…y¼"+àj››¾û²8 8SÐDeD5õË 5a6$E•˜&¸ëÜ!‚¢õ Åë^¯>‰úF%Êî·'|³aŒ§§ïô­ë nÈ…äò”‚`àL_‘*AÞ˜_ªi+ڽΤÕSÀÍlþò„({?^ç—Íõ ÎÒㇴà XKKm=zðÕ¦‚î ÖPs³jb½eëàæ-D'áÔ/~ºÑzIA˜21#*G]Ûç2Š=>‡%ÇúD Þ»JvPŸm_$c‰3Yó3q¡n¬ÒŠ¡ÞéÞð|¢ÿI+1%}&M†ÜÈò8×C2÷;€´×_ë%3kÜ%©ìäO¼®}vóHW9è¼}Óâ„t—÷âÀ-€Ó5}xÓ£›^rÇ€Þô„ÎÆã|…m‹3Ö7ânÏΰWM·JnáPó*9†¡7 “[@Îr¶®&d÷3zþÚÌkütPÜ5¶´¦'à*Ñ o±=Øz†æ}(™Ï˜§ö›-ÍVI¿"Ÿl¹&È"Á¡½mõ¦Ä¦œÆëzIµq•q g£Å™›ý¬g‰„\'¼nSÿÌŠs6²(%÷ }´ § ¨‚‚–ó:\l@+½¤ÔkeÜfÚAG‘”[ØÈžQ!¶³›É)›t6¥6æ˜úPä¥Ôoˆ£0Ž MMÜE„”p.݈§lÚ{;¦"×A£xte)2£‚ÓAÈÌ/××ÜÕgVr6{cœ•PU…Й¥Y•\”gèêí϶w¡ t˜qP3_é"ýpõ•½jG\vf‚ˆþÒO×E^Ü>–è”Õ%õùmò4mF±¦òûÛiÿe¢ì8YžJì6O³âҪǂ,¬ .æoâb)1ýYJ›ØîH¯(7HÎeç¾Úo·á„,±ŸË¨pð±Âƒ(ç‘Å—l²ÅuýTÔ—‡J¨O\øÈ¦¶Ï½ž™à¾~}Å!ä%2‚̶Ùeþ÷f+ üÅÛh×Eìl‚ú[)ØcWötˆz´hMÑTP8ò¸ê÷PêÎaÃ!ŒV¦¶Fµï8DÕX‹>%ʢ߷HŽl¶¾&ý]sèI(1`-å´Ú:,Î<ÇŒ¬¶n•§yd´íï)i´ÒÃÃhOI’šZk„Þ¸O/9rç? y)ñ‰ñLŠLôwJg“+âu‰Ó0ѱæù°nbqyšiîiò×cä®^iÑé É΃"®&²\¾'*2xǾ]í¢cA–0 J®0¤ËÊ艾>’”qiá‰BRLÄÖÅÀÍYÚù÷õ(űº ^ÔxW¨ª«Ö•5\ndÑÛä…YÄöÛ hâ¾Ëú`2Þ€zIgÖtXᣠ¯öŠL ¤Åw|¦åÄUËAܺÞóê YìVIýÂús« ~¢1X#-Øv™¸fÅä)Š<²s  ¡ŠóòŠ3s¾ÆœÂ3œ¦;˜}îÃ*i³®ƒëh/LQÅ”Õ'=Úß _Oò^ :(X²—1ç9ì5“•µ7øî,Ý>–H&O!22âÞ+¿PuÀáºúý¬—I×¹Í]°ìíO»¾ï¼Òy¹}«G÷;0ŒÆä=ãU^ݹ¸•|mbäÑ/”k Ò°¸¦;µÈ»4½œ 3ˆÆœéÀŠ?YòzPz_“~áŽÒKΰš6Šù¸Ž×U@²«$£ÉÐÉ“¨Dþh"òèxü^)õ‘ ©‰bè¦õñA°TÞæ4øâkçÏvÂi¸(Ï‘¢¬£V½ñ‡Ãê‰ q ÛCŽÃº=è‚k*ëð°@v’<~Èuê“êSpÎÂEø¤àXÑù¦Â[pZãK\ ·ÒÖ‚ ,‹]».8l&pýTƒ#iÝ­1üpÇ sLt¸ô‡goü…”üÝ­ÚªÒú o€òÛ^6L2·ÓGäâD³Ãj³lšØ§šÖè1U/¡,’Fk{¦QYÎ"wíÞýû‹ï©Hr®[e!‘7 `*ë_Øï¬Ø°aûŠÉ4¦*¼€‹?:{·]°o8aj“œ{÷ªƒì±¨ÂeüúÇÏ|ôᇧÿrxë†÷ÜÝ7Š3¼ùÌ´Švྐྵvµ«1¾!ª^ÔVgiröT%ª°¡*¢i}ì–tŸm¢²À»bpS—-š³½Ì·$B”&V0¼‹åùêÅn°b¹ÙOÖâ(õäâ×m‘'7Õ 1¹;*g·œM€HȈ†$Pǧk!²2гör8”\â'-:òay~s³V¬)͇kÀu¡ Ìv_´}R_…÷T¤§û[â1ÞtïzËtçpíshXõo®vÿÅÅŽíÝæ>™kO¥³a‡AK+W‰Ó)%_e¿ùð÷·¸½;]\Ê¢«ÿq[…q·Þ"C²ü¿S=¾¬ìä ªÌ¡9¨2 Ba¬‚€ ¿²€zå>à.U| ™Þ£¨ HÒ<£‚àØ™K_%¨:UÁto>´G‡+¨÷ñ¢q ß«èÇY€Ñ†\$Ã,ðtÂŒ§q¬ì‘1ͺ>´2((44(¨2´¾¾²²^è/=ûÓW°ôŠÇ“ñv¬ã듾 ‡×¸Ûß™´%«n—°£.åpzyzYz¹_Ÿx&Ž=ê¹2§¸9_8 W^¦ê™»z·ë²×au‘¸óàžÜ7Ë9Ù£yå; =Zá¸Ó©öŸâ’©þ9BfhA’¶_ ;ö*øä¨€agëúB7ª†­ÍŸóÖ1ç/C¨‚ÏJÿAQœÊ ´9ˆ]èЊ'FëPÌdªGwOe! <‚½÷xøSýêŒè M&…d.W¯( S„F.üá„ýh{YÝ7þôÜèôRl­ èH ú$E:>ç¦3–õMHð—HfΠS·j£Ô,xÿ¿+O/# ¥Œ4¨Ã¤òx´C©M«ÅUlš…`É2ÅŸôn¸ÊÌêíݪ-ºÚâfµå&ûÅg´ú^í}·Òš!fóþ½5`¤|uÝ€±¦» =^c»¢ûódE¾eÿè¼qã†U§ÿ!à·Rjæy«°ÄîΫÞùí,ÄNDOðþúl®zJwt·ŠZ0oYpòhË ï™jú˜ÞHŒø´ÆpˆίwwìÉE©WX_±ßí=gx‰¸R*kï:tüPUqÔ*¨¤ýŒpý™EÿqI2U^ÈΠس;HˆÞTî œì¦¨BBM½§ 3.%÷/¡Ý¥OµöŸIøÇ²ÿÅ£˜Ãë}<µ;ꔜ¶¨¼¤LŸ¦åe+[‚‹‘9ïX˜[” \4ìȈ¥µš¡Á)Z|}Á7>Pãœ,æ’*? Á)<&2:¢ ©(QDÉ;„yG“áN)xPÀWÓ‚Ó!Ð)|[Z %¿!ýã´ZS6æêŸŽ§ÙÓ\¿ýtoŽ´3ë›ï'þ¶ZꟷO@g‹,Ly:Þ”‡›:|³ÐKhx'M&Vó8Ž-l…ÖVoP‹dŽg ¡ÕÛ¼ÕOÆIÕô_ïV(©ϪÁ»•..4¹AD]–‘‘:{ÜŠW_v±5“vÙªT§Ä¥F&C8]UÖüø/8H¿û÷]Š?yKN®&#×â * «³OÿÔ+g‹2˜òÛx2ÅbìÜ+žé£XÝ)é0N·2¾N`öÿSvÀ_èp¤„ú6Ò o\äÛjý<äþþžÁÍjššLLé72å_Ú˜«{ªÐJΧXÝžÚñ¹¥€<®<º,<41:&I _þ¶"Q™àY¥­Ì-)Ê dÉI~@ÓhRCk' D¬'õ¼…[û˜8à ´~ˆc‚Õ›*¢7Wá| '|v­óe2‰¼´Š y³Ç =ž4}úK°Œ‡8˜™W~ànF+p9ÚœjšåÈåD3+JLO‚ÍÄÍ‚D{)½¢7§+€K O ¨Nß+Ö¦£$5c=GæI!ÜNVœM<½š65È5ñ"y!öC‡³¥P“zȵñpMI‹¦¦ï­épýcŠždêÇå¾—Iju²à1gclDš2=,î-/O.©8”sàC¡{Þt©¹¯f™9ˆn/ŸŽå ÷ÛB©%Ô ‡ßN_ǃÕ_Ïññ IÉ âük TÀoz1QÛ÷&+"H ñìùSß_?rðRDZËð‡¶¯“ádÈü×çxÖÇ–éªÊê “‹âs…’cÇ›Îwëóm³–oy×Ùõy¡>ÏC=ÝØð~íš,oà¢(¥W¤PŠÒhx}9Bƒ´«Äïˆb_ÚVHáÈ )íT^dBZOÄ©ew¾ÓÞ,59pê¹{RÛ’ý¥ûKNhª{S×¢‰C4dPFZ‡)ÈF5Ú®ºbr}mt6þ/.UÆ&%'% AÁJÄAB~LaLQ¸Îö@R ‘œ²DYZ““+4Ö×–Ã^ªBŠÔE1Ú°}Põ¥UeÚ’†J(ïS$ŒÞ8X+ièDy‡ÕLåãcèE1œóÍOl0›0.’è-sê\¹a½‰OØ–Ä<!ˆ äô˜p޼ÑÍñ(ÇÇ6ä±´§:¾BA³©FéÚ`ÀtÚõÿF'ÞÜw†rø&š/-¤²—ÇH…4ÍåYÙ{ó„ºæCåç(Sÿzëè’Uo,{ûÏA«óΉÙÙy¹ å¥aÑñ»ç~µ­qäƒ{h%ÈþñhÁTæ™Øâ&—ü“‰¹À|wë;«27þÉ/ó™Ç}òb c3Ý‹ˆ»£&:3¬žVv¹¦ÌäÒö¿¢—`ÐÙL2Fëß³ 9oý<晫;¯ÿì+týê¢þ¼ÖþÜåÕ]_ë|f"Ñßtx øcޏÁ&Øä¶uu,·•<‰–ºå쬌>•“µ7ª¸ú²ðx¯”msÏ-@.Vð4)¹¦F¨)HqxÅ©ÛÐ íAÈ„:Nö¿gp·´%太tS\B²b8*ŸêtÕ…mŸ»^%Cö m=úÍäJÁCJŬ^‹!$‡08ߟë´~oï†ýp Nœ8xq¯éÜ:£»¶—:ß1*ù‚Ü¢<Úõª" •ñ©éñ*Ü"»â“b  bòb÷&âmâáXŸ™ž\iEaUý6W$ÑÙÆ”ž·:%Œ®VF|ȶP*ö¤7mªCTž”Š[Líç ™Â·Ñ_Iÿʪ}éLmîÏúóÖòù9& (¡ .—ÜFGU~ª&8e„ZA¿¥ýö q&ô76±ÇIE…º4?S“_lJÍ뺧!”“›^¢®ç¡$1+²Œøj:ZÃÃ(☿—äfA ——¬ $Û‰#É'CÍhÝ,œYr}­ëÚlmžh6¶Ÿrɤ\‚C·Ýó>¹áÚ¢ŽàäIá щ٩"Î%’2›Þ+&y‘ŒMóÑ\BNxMnGĞ C¬#ƒlƒí° ¶ö óʧƒÊendstream endobj 104 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 3659 >> stream xœ}WiXSW¾îå*(–x1©í½ÖeT¬ã¾Öµ*¸†E©{+ *в(û’9!…WÄáFP (n3.¸aµj«­£Ó§£3u\Îõ9tž9I Éô™gò#?îsÎwÎ÷~ïû~ßn.„H$(‹Øµ9nÏŠ¨ÝËLJo‹ ØaýÎ¥#ÙûÕïÝH§xºO·ê¼?õ†@«saýܵ :vÏÞ¸ø„ÐĤ-a²ðÀmÛ#VF~±kýÆ?ŽŸ0qÒä)S§M:ƒ ˆ@b8D¬$V!ÄÄjb ñ9±–XG,$ã?b±˜XB,%&+ˆi„Œ˜EÌ!¼ˆoBL $‡DH)áJ|HŒÂ7'Üñ(EôÞ%Âušk“Û··d$ù+µ›zç¾Õý =.ïÃö©ëûÞõðöØìéå9×s·g~?×~‹ú5õ÷ï¿ßk¨×!¯¿PüÁÇ‹þ Àç|4ï-¨O ß„Fa 3JȧdêU\µ=%7ö~¨äà Ê\RT^¢,H澤ÎA)nxðàXåÕÁ  JiN(O5&€xró«D8bAe*íÙ·ê5Io¬nš%Û’¸l‹¯“ "^]-‚·ÅU,,`ÐpôòAܰ{ó¡Ž€Aroçv!N¾™yþ—ÀɈB®C‘ÇÄå—€$t} ûröH†ÆfoèbÁ‰ ß ÌÖæUÕKÀb°4&d}ȆM~é²äé’ÜÔ¼TB#Ïçã`ß[w޽®ÖA1mPê²²sò²³YÿeÁ1~€þü{¯Êò+´å\ùíƒÐº½„.@Ú Ú’ì1dWo¹9á¼0WJAQ‘¶ªºI4…šBO‹Çº¬t¹<)Çš'’ñp¿µAß‚oøLÃÐê€ë…\º«È'C0öÆ `çK…Ç—´îº¤pÃ~Pʉ%¿,ºŽˆ¹+£ý³â50¨ƒùáòªÏ>6QSÎ?|óú%$¹Þ¢GòÞâ³ð>ÑTRzVZ†õ»¶Š¡­ ªrÞ´–­¬$»0•CþÔCЇü5h¼Tf™öèùj ËJKK ò’Ô2.¡2YVƒ/¢‘ÛTŸ—l‰5 î¸ÁÍ0÷ô ñrèr˜Qçª Î6( ecU«-&ŵ[ëZ’® †^¯n?®N;’PÁÅìÛ^ Ÿc ÁoL6ƒ ºéVãýºy†‰-R˜÷€œÜHIavaŽ÷‚ª²›vص´ø#ƒB/OÏÊŒÏaŵ5»C˃#ÑäÀùq¥{ªÒ¹êäÊ;ÙʃŠiUeñ ™š½aÌgA5§´FÏjòWÏ$­·v)<|ÍCo³ΰ¸Â#@L†|Э/ì)r,ò ç9„s— Fûó²ÔÙ KÜþàìÝò}-ìÑÒb#(¡‹úlU®Z•ÅnÚ;7y% ƒÂ5hô=wšIíPŽíüXký¼á,Ùha™Ï7MFPO¹SñŽƒW¡2¬R™ß’Ýþƒ7í:f1€‚|wvÿE7¼,7S 2¥–ðë‡;®³½\Á¿ú@5ŽÌ;ŽBN»oR( Ó&‘šŸ’×{×$qhŒc O=íö$­ÍPàE‚ÌNÅMN]«[)ô1ꊀr5…† Cì"Ïþï¥&ªn£°9”Ô£²¢…<”ðÞ?Yàk¬¯TašÏÏŽý!Öf@F饕üÌð±‰©ÛØ •ׇ–ë­V£)d»öó†:@_³DoV\ .uáÊŠ]…±CæûrbͲְïn];t¡ Ó«¨™™±&Û¸;È_a=0™\ùíØúÙ ¹Eðd¶7¬1­4òE4õÍ¢77ºÌ'.qµæ}f¬ ƒÜ¨P)rÙlà†ÏcæzòŠ ZÌçj-œåܵš[ 4eìK.‘ÜT¹Û$…Ø{õØŒØLÏ%XÁVß#ßÄ\¶—¯lÜx…oÒü¾¯ð‹ÝxSÓu9•8›µ(3âöÚÚy¸Ên=4tÔÝù/ïuÖݾ‰'’?S&{mR¸U_1O.NçÄGýÉDO ¼ôº¿{ )»€„8\ù<è*˜È:§²ú:ÛÃèî-h !?±Ý$C§²ÞdDwaÿ`+‰¯½$ ¼{>õRØ×ukì|‡ŸóЗ½æ¦ÑU¸×3…µÕ ŒþÇì[H„Fa|û#¹>œ é«]UÇαÇ*ŠŠ0ÆF¥^®ÊÉSÉÙõ;çÄ-´¯ÿ_žƒ¦ˆ3òLÃßž\| èçWƒgæ€ÊÁ<Ôâœ,ØÿvÀ“ „äOïî/íÇ!ÅïSqJ!2—Ú(‚`©¯ñî³PKÂÑÔͶMA³',Íý®=¾ÁEº/àLdç†c 0]¡Ðä3ú¦ß‹®KÇ:/sQˆIó_²ÊŒv"°;õ5à+Nl8nª1ò´xÔÂ(òœ£ŸRâ5hA4óè|ÈlDŒ…\>[ÕñðÍ?ÿñ®'MKpépš§m$I´“¤‚ëÀ3G·É>õ$&q$fŒ ¥¥7®¯ìR 0áɨ"Õˆ'#•ZnŸŒ6Ú‚e8i³g+†#¿HcÄÆ„'£ÏdöÊ–ýæÃÿz-ÆZ;ö$§ƒûÚZ6šb Ø“ù¿Ñd ö2TÜ0ò’]ˆ{ÌB?3ôà­ yc3Ô7 íB³“ÿʈv6É7ªt—9™;W—q#ãf†YiN©L/qôŒ ‡‡m,­ŠgÓ‹¢N]Ái‰Ê *P‚t••“´¹IÔ9j%îìb¿l½ÂXf´övÝQR|jCMGÌ­ÁW@×áæÆ“uÏ‚p<¹~oelU´q^©¬(Öˆq*É<Ìô‡×žÕ7¦'W²FùþXÞ¡=£U (*ÖVîÿ—$_ò­òîÿ_ÝËÍ„k‚ë…&ÚÈaU5ìc¯ØÿÉÖš5nvû|ÎS° «µ¦wâJ¶¶2ÛF+«P¨Ó:š.Ä‘÷SY¯¢­kj(çéú¢ÕóàF\ºù¿Ÿ®‘Ë{Gd›FX;îÛ[ªë9³ËO­ä£›ä]熚[/ž¨>¤ÇöÇî´·)t/r·/Áú|ƒFôÒÖí'Ö…n_»ŽÍh‰>° „‚ˆÄM¬SÀ¿ÿC·B¸Ì¼pJœ¥Ð¸_#IÈ:Nõ¥ëaÙtÆ× h–‚ãÞG’xn©¶o/¬ËSñÀtÒÌW[¶†Fˆ¯åŠ©¦ÆKÍÞ};¬rKå…l||Øä*\„¯}ö8JC·Õ×&"—‘ØÅ&î`ãG*våȭ}é3èò? &Ô±èúÏLéÕÚ§ÖŸ¬²úVýš?DçF©öp‰Ó–íð ûRº{{XÒf@/ÚÞöËíáÂj»ÈEÂjA`ÐÚ $e¶¤K³õÙ-åŠY8Ä‚DÝ¥$âôþéêµ~ g/±P‹ƒÆ!áöí·pœuºIzþœùO ¾·øÊÌe²èuëØØ˜¸í •Vàq·X¯+Ó³Gÿ|»é ¯¶¯ Þ»‰‡s#gN_:rnz€D`©ŠûŽ™²‡ÞŠmd/Rނ¢¶5Ò@øˆy\Ûögp›¾Ø69P¿m#Ÿ"Ïr:K¯4´ù%¥ìÉúvÓ@wžY°0`Êf” N©ÊQm%#+~ò½æÆ‹?œ2fæðàµU ›YeaN¾Й™%‡R¹ÓQMé_[½×kH\ØqFv¸Ç(òð-a<œÍD£ä\'ãÐXuÄÐÔK­ê±À’Ó(t¥[’µ„Çy¥Pð|K°Q†‡x8 GÖbx¯`^B•˜vÉÖ[gjuÈyR\§4(Ì/ÕÞw¦¤S i“ß–Ô/cø°À€þ ¬=Ö¤Ôç䫎³J7'ãbO¥ŸÁY}Œ_t^pèÓà SBÃäñ+í¤„­<ô7—á+èñ¡Š)¾WÕVÛvéu>&P™k´ºŸºÐ%Å%%•;ÊÂgL _¼›6k òˆ¡‘ÇÅyÏ¡Û;HAÏ'«.ÏY¸bËŒ@VÂÔ5•WUU464a¢Ðç-ë—™9aJÀÖã×R8Õ~µ6¯ÑªJµYàñé­‚…Aû»‹r²óT@%µúj±®°ÂÀÂCBEÙ5²»•2„ äJm*£ÑTÀêëIØÜƒ¤¹æb ³Ôð0ÎR„Ÿ×+àu¦®¼¢ÈTn©¯ngèoe¦#Ñ1£×ïÛy.’âfÓÓ¯üb¾zÓů:Â&ÂJ¦³9tÅü9K&/]Ïw|ó¨ë1'C LW˦%3§Ì¿hmóÕÇßßýÉŠ <Œ8éÈ,÷cVYUqñA#û#Ô‘í>ޝ•%½_íW°Â.‚1øŽø+“€Z)_8‰O‰ Y+·>ù4¸–˜¢Éµi'¿{z²ó6÷øAô¡¡GÐ7ã‘ÛD!Ï©÷o_iüî"«;ÇD|•š””²eëW a€^Úråïžýp¹açÒ ®0^£Ê£û'˜…)füÆ3›)¾ï)àÙxâo‚øÝ¢ßÐendstream endobj 105 0 obj << /Filter /FlateDecode /Length 1672 >> stream xœ­XÛnE}ñ#^葲¾_ò– BF"f˜‡×vŒ½^gí$ŠøyNuÏL÷®;!Èn×ÔT×åT¿î—½ Ÿñ÷é¦SÜÄþ]'úï;g<×^öÞ:Ƀë7]PŽ»gÉu÷K…ç΄Þ;#¸VК%AFîlÒ²gS)M‚ZÇ<´Õ}Öz< {÷M^…¸·•S£ öÉéÀ‹•OAz„¬}*J£`Ogôi¾mr©ºÍð2i4(»çûèO„—ç•Çû֒Н3q] ];Ÿ.‘Ê+Wß—Ædp^zöUÕy§ƒU’ÁKci›YR´W¿ÊÅö:«€“f‚“  ÿ8ù<)ê‹”!‚îŽê¡1{Ƭ‘¬ŠâA@ Û¶9½ÃBPÆôÞ,&´[¥G´Ÿµ~­ùòhê¡X79­Qs½"ÇEtÔpO·óéÉ|zÜ8Ý5Þ]5d $9`¢* ÔIÖ:ñùôr>ͧÝ|ºj<½nÈÞ7,—§ëùô¦Û›F”-_îï¾lè•w/çÓ¦‘µ›†½ãê•8¶ ËÏ«§ ßÎaç3eØ?t°UÖ»ÖFš$&ù$¤Nsù8¯mRº´çenuJ”kiu¾,ÆitÅgãŠÙÛAù´Dçýb\Ùv¥½¨éœ´"ê<ÙG¾ÝÞäÍÆ‰ÈL^0‚͸EjÁ°xx¾O ³ð`ßùa›W|R)ôϼ‡î ±¼€Éòº€Ý.H˖ռᣔ½ªhÅŽý^ó)q¤Þƒ/.ËŽs]Å——낯5ö×Úd~´¶Ì—ì æsöI6‚žê~KœŽe¨±°ìÓ.­jàyï}Ù]®ö¶Ø9MþÇ#j\ñ?0†”Gö”ŽXk1Y–DpØ=,pn‰1ôk.¨ˆè*ù£œ5ãܶðUw^¤üFIJ.q:“AEÿy¡`æíœ³lŸbøy˜Ÿ×ÌUc²ŠóGã¸/°,ƒ¥¥zj˜S8rgôJÕŸÛƒåg_G|„ŸZr|WVC!­ è³ç(ôº°_š¤Êð,4tÞ™e^4f"ÿ¨½Û†•bù¯†½ÓFDü½zÜÈÁÿ¹·EaÅòªqGy·Pl!åˆÞã&Ç1°Øq53•HÜú*ùïü1~Ÿ~ˆŠ?BÅâ€?Ò?m^tÿs%ßendstream endobj 106 0 obj << /Filter /FlateDecode /Length 9182 >> stream xœÝ=ÛnÉqïL>‚òp˜HÇ}¿vÛY¯8{¥$kÃàJ”´^‰\ë²—<ä§òƒ©êêºôá’’¬èAÃ:5ÝÕu¯êž™¿œº½?uøoþÿäÕIا~ú݉;ýô¤x¿Ï>œÖ\ü¾•ÓW'µ»}Kxyòè¤U¿¯ÍŸÖ’Ü>@Hó}_òÀÊ¡Å}NK +–´OÍL˜sŠ{ËÌÈdµÞö5+UóoKT‰mŸJ7D5_÷Íù…(ÅbÈ‚5‰’é˜&3Ÿ;}~ò—?Xy:ÿ{òêôO~òyȧ}ßK(§Ÿ›ý©6ø«wuïãñ«“/véì¡o=”ÝçgágçR»OÎÜ>yøWw¿Dpp®Ãõ¿[œGx{í±ï~øÝûâãî?>9{#,¨õÝïÎ`e±‡¾ûùçg-ì» m÷xŒÑ‹Kîã…ÒQø¿áü¹¥¶ûlÀ]o.À˜Ÿ}Š•ža|ü/¸ênWö ôø·'ÿá XßÃ"JÚýÓÙÀ–æw/ø•\})W¯åê|öƒ\ýa'—'WßÜxóÛa¾Þ æíÆÈ8;ÃÕ‚>öœýëS"t¥Wƒ›(µoäjÿ«2C¹AÃÓ[žmL¢Cÿicâ»’¬ãËÊ¥·ãüéÆŸ&É0?»Y¯ÞlѳÛ@|º9ä¯ä÷ŸËÕoåêÑP‰Ðë>ç¶þø)Xö'[ëžÚóÉã“ߣóH-ïÁ\Ró`Wõ4úV“O}÷hЧ¯/NÿóôòŒØ×œÁCûSмÓ?OC/xSg…ƒ€O@-ú6_ʾ…᥮c%_Àù®X|Yô.íƒÅHO d6ÀŒõ¾¤Ä½ ÉûŠw•FÎ 0>ÞUã¾NˆàlR÷=¤Ò\Í#-‰žæj™þLû>€4¤¶dpüsŒhžî®¤ìÞ„k&Zò=iû8!iÌS¸O'×1UqÀ½: xN‚¨C¼/!Ç>æ*À#G$Ãz㸠ÖOôÀz=â×ÍëuˆãþnÀ×Ï{úäp€«ˆàb¼ À‹Œ7Ó7ÀªGHŸRµ  •|%ŠY2„ +BP”\OÁsLÖ©b  9±“R(É ì‹YՀ䫬I¾M¦3ûP‰éÌâ Ĉ!E7™Î¢J°†1•ˆ3»Ü"ò”FfaÔ"%ð¢:)õÁdU¯¼ˆÅª`Ê$`ÑÒTHœS‹¤cQóf‚‚RSHÀϼ˜KÑyĤRƒ ì­Ù%ðn1ÍÔ Qó=™wA®Ò22p=/“»ˆÌ7&Ì}º]Dê‰Y3š0-k–HÄÌd‘¼e(ø?g2=ÕÆì™‚AºR¶ÂK­€$|½Y%€â´U ÝjR'èmÃ¥¤b52Ðøhµ7¹>;åNÎtÂöËÍÖ„Rj{"‡Í Wëº5Ŕ”›+®1è‰eõÖèeú…}‡ÎÄþE©a$³—Ò5m@¦³SÞ°CTþ±ÓT³cU9°ó‚b﬒d®Òf/¯Á‘@µ†£…jGÕ>:ª¡•T‹9r©¦stSkà¨#QR¬J")ž[±Íƒ€üòäÅÉ/Nn¬; ºÈûèšk¶ðˆ¹qhP†N…Çwg@’ƒ:dwþÕ›·O¾zýD3“‘Qþo0<äú‘þïr“$&À2cBÏ‹KHÌΟ=þ³Î J\Ðߤ"o`ªQ)€™ŸÝp€BZ:0¡"xèaÓÀÓHs‡® •æJqòR? }²b' ÎsoXqPÚ`ÔãnJ"¹¡\YI$³2pÑ# :J_pàþÁB6$*s%X(h¥’“AJ)ZŠsœ•Um@`rº‹¹“aaá`NSÆÂåœÃä;K"çBÜie ¾D+Ñ\XÆ,uÌ·Æ\¢´ÇG«=¹N‹†ÝÐ\¢…¹EšK45CøHÍjs†œ`ÌÅ ŸAy†´Ä&09»Á”¶vk[˜ZNì¯@éˆS©HZb4õÞ&dÞ•êd¼Œ ŒÉ·Î^ xK¡‡r!f» ˆ+‰e¡>x* „Ø3…3æ)½2LõÀf31ÞC¼œlžÂñ`.Î[bà¬Þ Ù»¡çF<Þ*‹ƒÕLáL…‚’º}¢tÖç‚UL×±Çf•×ÁЉó¬àr…ØŽ@¦¡8Lͳµ%W;•FboxP²µI)É‚íÖaÓ³XÛFH¨Öþ‡}„ŽÃ~DçbW£ô°;RšÙe麶 q®ùÃîQyÈ.TùÌnVeÁ®XåÅîZeÊ.]åÎn_uƒCƒê‡Õ11ª‡†TW9T©>s4S爧vÁQQmG"§Ø—DW±A‰Àb§Qúƒ“Ä1rÀ?ut§w/¾úf$†Kv»£³—¼òŸ›‹PJðôè›pú°NìÁGAÝ.Æa¸ ÄËtZˆUUÁa¡î…„üƼP3/À> /ƒHÀ±¬ä}|ÖšÁŦ¸w41Ô´u%ï „Ä°–Šž §0Û6°FïW,X¯`¯=.ãÁÔ7¹ùB–ì›ó2sÃ@ ’ÑÒÉrÒÑ3Ú%òPUŽð ŽÖ1 ±së>Ë·àh.° Ê=άo`eÃrÒ°þË <ù°ßbÀ( ´§É![ðx¶%A:Mùp"îú 9eöoBRn(WªjL…•,-4g,G2\à€t¬Ò±7€H¸Æ\Õíi²_ò*el=mCZ§»š#ÿä»M8€$¬/‚®üf&œ4ä–6²3:Ìž$Çm@%C´¡ƒðÝÙq@a"I”ç :ØÃô@‚35ƒiè·iís]›4×>ù°`N†…4ñ}r eò}J"`iÞ­´–ï$ã)Ñ€%þ˜Š¥° ƒÑ €L³ödÊx*Xð)’$Xv%Z5z°sQ¬.ìnŒ©XßÒHZlÁO½µ›€ÞÌŶ°Õ2æbû žŒj£[6Ù–‡›º«ÖÆ|Ÿ#WÔFog¯c‡¥°ú·«¨`Õ.´‚ýôn™Q±-Ã*¤ 9Z¦Öæ0“íUb$‹¦b®U­øjÌ3bW,¬T¬ªÕ” ,¢™ÚTáæh®BT§ì›u²Âp=[½­M®OÝ®àÇzÚ†°TˆÆÄc¶£êúŒülk2uÒ&¶Ç ™Ém¶B½µë þ¹EkûgúG|ˆÌ%~Fè_$4‹¿’umA¦ßþˆkŠû>‹‹eQˆi‰§‰Š7g¡‹Ã½  º#qCôKb « „ÑR Q¢ÉÆDÛ%Ô±AH4›‘ˆ)v%QUlO"¯ØçatþàŒÔüsÆ¡ASüH=Ο_,Y‡Ôkîá+±}OÙ Úð kÅØ(í‰ë̵‘úç†îÿžÒ-Ü>£ ¡£—qÇ.!`ç5tn”c÷Kæc2ÔÝ!¼F¸Þ†Á8upå ÙZ_1UÅ]ÈÛ•Œœv¡6óîòôg§Þ´w§eçÆÿ¯û¬Âmb_ X‘ ,MÅ"`AÂèÓ,Ò,HXn;Ý,HÑWlê(Ò¬H´ƒ¤«{Ož‚]UÈÔq+ b´Ë2ÔbRÞñŒ È8lÀ¢ÂFå‚°´—7ðŠ»&4ÖÜúéítì%Âÿ ,è4Ãmx7fÇÖ°íÜ8ö úˆ= AÎ}Ç‹2”äÀˆðëGOÑG{ÌŒìÝ Á­mª\0Ä&Ðé/ø® ‘ãÞÄÁ¶ADD[ð©Mת¡ÊýΠgO§Ù ˜Y 7‘hV-¤•†ÿ[b›£HõH‰d¾ÐO–/ŠüGIÈgS pÏÖÕâ¾á2Ì¿ˆ"m‹2LÊÄÚb¬f +ŠÂ:Åb§ XêK¼‚`· XâËø¥•ý‚`Çp¸"‹õ¡ž!`rÕùèxY‹Åƒr^s ·#ÞàBH£‹?,&Sc¢öCn²¼ ökËÍФ×]C˜ŒFÁa×€ù‡’õÀ5(:È”†èÇÎ÷ÜÍ10]äê‹!;„®/nAX23,1Ø}Äì`gfÁ£¼XO˜ŽÐ5¤è a„Jú°m ¬'/£U9«©HK‹7Uk©Ý–µ´–mé[ ·Bï¥åqAVØ º@&;æ‘*»ô–µ¯k¥^Ac.æG™cËýêã˜D:Ì=Û5¨Áï—ÆÖ/˜hó¡†áoLƒ¢Æ°·"P”‘6†Ùd!\ÉÒ+¹’í¸TÌs³íÊ`eQ³íÜ`Ó³íî4<Ál@SôÚ#jP…¤¼ €´Ë2Ji·e¦>ø&¤t<Ód©í5keA[’¨p¥·@Ìf¾aØë–³½‘L…÷wÑùt >FÌëC6RÈ*k@Ú˜ˆu%:<õf´ S¦¬pÑ*+dÄZ>XHÜgµŽ˜¸t£øÈ4@ #2ö±iŒ} Ò2m cÑ.[“vØâ´ ÄV)ñÙÜbÓ6ÓúÍ(ÓCèLìE”šéh”ÚéŠt=’©p…ž2núDå-»Má>{V•Ït¾*BöÏ"äéÁµ)8}¼ö 9 ho±.½ÇE´;ÉF;˜3i““ÕôA9¢i«t„<í¥rLÔ~+ÇMíÉ®¡õÃ7+nõÛò¹ý¤¨J%§¿= ±«›ãÒ*k—¥ä‚Žné²|üŽ ö·Kº[ÈœÅVêp~¾çP+tñn= ›¨›Çî» ÄÊ®]oi÷.?Ž{˜RŽ!¶à»Ž…§¨k[ >Á’‚O°LÁÇXZð1–-øK >ƲŸÐ*cÙ‚ï`Eëƒ ><ƒÒÚZðÍeÝÖ º廉£´q>$ã)•4j›áæ³@n,÷ª¡ÇÞÍÈIÛ‘‚¯àƒ H+$UÊõzobãfOMcŠŒÏŠ䎆%Xœ!Õç±Å¶”|Ì–ù›a‹Á~ÏVÐÌîÙD<:Ö6Áî–Vdš“µy«ÙÂò£”°žA±Ø3(–zÁÏ XÆ3–xÁ2žAieÏ XÆ3®Èb}°gèXü¨Mb^ÖmžáV¼›žxÃV˜ç/>¡VƳ ¹Ñð|òxÍÞ-NõëuÏñ$¦š]Cáš þÀ5(zƼ瀰ßùï»9¥+“’–Òøùc¡P¸B¿Y®(öx’÷qÏ:Ä%Šíàˆ|i£ƒ°nÕ9éï'ôTE«#Î¹Ž 9ð†¸qzOGpcWUç ¿ñ¦‚1˜Ja]Ç»¶QgòK ãi5à³I盵 Ƥ\F¿ÇfmÁ5]XÀCŽÑL@›… “èÌ*eô{èÞ>è lÁBª­Gý¯c¥ØÀÄký;pO'7ãu<¦Íaãˆep6ç‘#ÖÉ1›3Ëké`Ž5 šsÏ 8NÃG£b¨æðtÂ’>›óÕ «~œDÎ`'l sL;aëÀes”½ÍÃǽRÇD|"OØ 3ñu€:AχØzÁjι ÑL|~ ‚Gq²9SŸ0_1¤qLÕœËO¨WÁžÝOèˆR6çûEä€äAšEA5cà“ïv<Í:À”àÁÙlŸXHXÎU»œ @›+f®``‹ ãð™·`yÝ”«ðÏ·EDx¹ÚÇ9Rô,X5>]íáÿ„ø„Ec"hÌòxI“ÐöìŠxwÑM|oy’  êF¿#üÍÖ"îÆFÒéø;›QÂG«55€ÌƒÈlÏy:͇ƒ· |)Ö‘¹í¡³óÑd¡PŽ/Ë*äˆ3¯SNA +䤴°KNS3GåÀµ0]e‹`äà¶Ow‹€å¸(E‘ƒä¢LrØœõMΣ‹JÊ™uQ[9×Κ-Gß7Ó<ä½Xœ²+““ød†rTŸÍTNó‹%ˉ±vƒ3=‚†œ†N3½ŠRÂŽG©eç¤+Ú‚8Z4³…Ý ²Ž]¥²wzS;\;eäôÛ*kvíªìþUgf„Pµâ ¢ª7ãŒ*çŒDª¿«DÇ)˜‰ p°3ÑxȦ$!S:ÖUÙ"#ï÷÷&U®-‡ü¿¾¼¸øòõÅùÓ·/–hJQà~ÏùƒJ‚“«öœ_°lôÄï=¤­-ç;ó׳Søz‚C¶`wà¾ÉKøÔ/ö}ïrÎ_Ûz y‡é$hÙ§Ñš5©ÜV‡L6”ë >Ñ„':Ìx)Ñq?Ù-£d5Ú%|z*7»é„OXa2¬ûRø¶Fuï ŸÔ¾¡noeÜþîv,£³çü#>6æ’4|rl472à=ƈÖ¹®»;cc*Þ¨HAÙËÜ‚@v3îâ=ш­ïñøo›FÜ'ˆÑì«FÜŽHÍì½FÜó(ÍìÏŠ6Èn¬È˸àTO,ÔqÈË›¹ðôê`ЃçdëB3É¥µóº6 Ùϵ3ð¬ï™Y8ä-—QJÄw–^ öˆ´ðö¾H´ÕDS‰Ôq£l<Ý!šÑZ Šö´V–I"r…$alx·Y=Å=¹1•èrÇ¢Ñê{Ç=ÍÚž±»éxhØ>CqÿoÌ%ö×ñ V´6Úù€²ìànAè.ÝÓå‘uS—g×]]¦Pwuy²­Ë Õ}]f†îë2Ãtc—™*»ÌvÝØeÑèÎ.‹OwvYļé'Z û‚¢)²u(ÚÄ»‹¢p²):){”¢·²)º-[[i#²a*v${ªbk²ï*ö({³b³²«^ž·xÅö‡ýƒŽÃ>Dçb?£ô°/RšÙ_麶 óTºð‡]£òݧò™]¬ˆ‚½°J‹=µJ”½¹¾êÕŽª_[D9ü¨–rˆRMæ0¦ÚΡN ‚£¡Ú GLµ+Žªj{yÕ>¢ó‡¿]äx¸CÏùo=ù©á„öyǵÅtFa1®û¼f«€2xIÞJÕLøè”Í\îxØ‚#ç\ÄÕ<Þ]c‰i~,qã ø»žõ?NÜ|IÐ}oñ`wªŽoóŽ×Oùb·ib7s6°ðÙ¿næ–læ–ÙÌa,ÝÌa,»™ÃXº™ÃXv3Gh•ÍƲ›9+²Xº™ABP€ü¨›9sY·žë½ñ¦í|wYÂñWèîÉsOÈÛ%¡ÏönàÃÿÔݾ¶“!,bœ8¼Ó°ÕÑâµíFE…a¼ÀiĈ¡Í[R±Ç“ý鲟Ãl™¿¶ì8Þu ÜûMcÈ (#‚G|;FÅQʈÛ:#ýý„bà8îÀã%v:Àü“&ø0ލéíôj€þƘÆ`’çË Þs˃/å8‹o«íÚ Ê9Ì][¾m÷ºJqÔ•1Ä:¼ëXXh¹õ\‹b‰Ã,ãðKcY‡ÇXêðË:<¡UcY‡w°"‹õÁëÃ~T‡7—u»Ã»ñ&‡×ûØ7Å=FÜgs˜ÔÐ_79’äü|ìdÞÆ‚‚ñrH2›PÄÉy°»®99ÁÇÓó˜·z¢@îææ”°Òèa%…à‘Ô°º9aýfø¡Èïé¸~ÏÉNÂGÌq!Þâ`úñn5ucÙÂÂã­}qŠÅA±Ô!–8Á2A°Ä!–qJ+;Á2ápEëCB«ýG=èÆËºí8Ë­x7íÏ'ÜjD¦÷ñJ*`¾À2ÜèR¦jÔÜ=!¸7W¶=CJTØ3gÁ—1úví¡GAǃ:t Tƒî蘲ä*åj ññð™GáËüÍðÅ`ÿþ¨RùxŠOmØxù>¾8ËQ‘ùÅîWg·Rúî«q VwÏßÑ«õ» y÷á½ÕRwøf}Ló®ïÝŸÑÛï>÷K ¬a¾ ü7—ãÍùÞðb0޹°{ E—znƒ„ìkŒ}wŽÃ;|ÏîîåÙC|-` ÜÐZ ~÷ú‚^×Ï„!Šoa÷ìê ×rk@úCÜU×oï|1)iÝ'½_ÿ»ÿµ÷Ý]ºîñmèŠý 6´{v®ó¼¥A€ÖÛ¬ÁL>‰ru÷Ýø´AïÙZ»ÃWÐâpø‚)ˆªHkMȾBq’î2ÐqAÃáÒ—É-‹ßàu‚«\'%¹Á­¯qN`kð—öÞwö3/Ñ+hÅ•®í’Vï`múLyWÆ‚ŒØÉXZ扳x´ 4^1©˜íT+˜_,?>¿ð{ˆa1wÂ0œ¿˜_’ð¡ï^¿<é-Ú¥ N`wyD| ‚¸¹º¹¢[Ξi(oÈ{¼Õä[#†1gK¥äE:ï†dCëe^ìŠõ¿†e‚ô5†§4£ó8#6ÏB9¸ñ1ÀMƒÚ-²ÁÇ|Ù}oúÆÌ}µ©Ï–ü½N²ñAŒ‡ìFìÕ²„6¿qµñM„·úóOøPß ðÅÆg žlüª–xµqÇå_çG$þ~cIßlàoЬ†¸«/Ì7)®íãû;^o\]mÀt”?~ÿáð 1yvÉyl¾ù‚Î*Òœi9¨Z)mC½*j‘¯O|á”ÅÎ/yõ‰’°»z9 Ðû”‡áÆV}ß½"§Þúðx(ƒ|‚fÔbˆewuy°ÿ]ÉŒæWfÎ)þ6˜ îãÁÞÐð-j†”"€Ñ®kNÓ=w0v?|Jp  .}ÞŒ‹éÆ2òÕ3ºÆ¯ç:_“ã7wWoÜÕ6ýÕ$ä¡.öÛ3|NÏǶ;©K¡UE¨=ÈCç0º…{ð+uÐ4g|ÊtdPhf%cÅ•¯ÿÐ$xŽŽåã[O“»µA¸" ~Ù?g±Ãa–`°’iÂê G‚u¿FäŠñ#Ò€’g¤{ÆÚ¸6ú,ÎtmOeÃý6Ðqð¹£Â1M$´JYÀ -® J:úñ #†…¸ãLÍá¯P¯``Џ˜‰¨™á Õ<‰®A¡Ù’£ÝK•âXÔ& ÞÉàk¶ã³d…Ûú*¾T,6 à׿O³õÕ ûI¢-+Å÷xÉ6ÁɈaí‰2Ç7¸|]AréãV{#)$k½ÄY|ÇÕrß!'Î:§ö3³j_>ì³q!˜ˆösîì:JDÆ0®Çè¶¡è1f¤)Ÿ]¡’@f_0ûDh𘈢æ´T™âØÒbJç—jnCß=˜y(_B¶í´!r`5ewi´uÉ'J>'øü êví¾&Œæë\àvbäáS4ÑËs ÔÝsÁɋòÖGZäó—LJ¸£Ônj̓$öF™ðRžŸm˜ËÑOkÙØsZôÿ9cÙN7¾±¥©È/åêw›‰Ê]¿mvßlýfƒ…ï6rÑ‹[Ä}÷qþ*³Û·¨øÏ¶¿Czy‡ì2áÛ\ž† •Õ‰ÉCÕ—°KÁ®;•«}cãoéRÜÄ ¯ä”ÔˆßÚ.‰ ¼¦Q—4Z†‚ÿWš÷„çÆéŒ…ô„ý³¼Ù¼ ZØÓx~vµ¤eD´„ùáñl›‹m«Û|!1ÀL¸Ï¿×71¨dõlðÝ‘®Tª³±{dRª5@O{›¿_‘ô¥/ùÝ…‰k²J¿„8Ì.^<Æ_T¨ˆ½‰’`P¨Î0Ú÷&F`dÄ52*WÎEÔßâIœÂ ¦]O@¦êQ¦Z°b¿$äÜŽhéHý=\£Vv.›BÏ‘ž òRMkÒÿŠÂMžtß)*Ú„¿FUA0d´íJƤžæòÍ\Ûí”rlHþ‚rè¾è·)ÞFÉS\­#¯Ãu·L·”Ê6S{]O8† ¼¤å7Hô¬Ò]Í(fÜÒu‡„YÒ 2:„OMt2#^R †—Ô£1W|n*ÎoñÎàüL^ ^A[EÊšžYw8ÖÙcð¶‚’k’žóèù—‡Éíø«c˜ý½º½Eí6ëD#QËÇ%SÝÔÖ§›éáƒaŠƒqe¼e|™ÏƘz‰™;‰TI ŸRjOÁޏiºèJ¡aI·ÊMôøÉ†õަÃp¶07ŽøÀÚ Ö ׇØò¼ 0vÃ-cÎ/iBŸ­XLN~XÆÂWZÒ¬|£µ^Ž›ú¤A0AðRcüת:FPÓOŽ¢ ¿rÛƒIƒo&M &ѾaêƒuKkÅ”l¶R2ïŒ_0ÝVuo§» ¯‰Mqnäc ¸©Û¥wªf3¸Î˜1]ZEÄMö:³DÔ¥%«Ñÿ€à<<šÆÌÆ÷ø\º±ÿ5twQîñ{!a Ûñž6‡Z5 'ƒ(9Œï+ÎI^.!¹Õ¦§"äÙÍT¹˜,Õ×µ&¤dÉÁ¤2œ?p7Z?Sî8:o‡éÛ„’anÁ³ë“êµ:"ì'» ¤þµ}Íý ­šö¥Õ0Ír4x=§›hOm+Óº | Ÿ2Sµ\ìN³º%ëÿRÛlS%i¤5xù˜n£C¤ñ‘t¸m—G³ ¯só»ãM…ÝÂa»Þ úf˜Cq¸ca,oUÑ9y<ªT·AÑò4ZmÒ´ :ÅAŸÙè¢ñÃvjsãQß:?:¶²ñ—Ldþ¨@{kW<ä¥ó;´Ö]K#2‹œ%>ÛD)_°*¤£«g"Héî5hŸÛr ¡†b,Ê*èK—ÇžgÚ7NçœïkCx: ÐH:HñÁBøkîé‘RnN?*vDWgP°çábñäòþ«Ç³ô×+V"m©XM2þNcíª'DFÅ’UÑãžX©ÒA1¯*1ïMþˆpl3åÕ—‹†Y”Õ³R:lŒ{ÑXÕÁé!f Þè3YVšlhõS 8[ê¢s›C`¿QâT„#q›TéÂÝÐ|í¯[ö‘¬Ñ.1øú½#6>Ü&‹t³m˜·á çöj-ûh8§5×µÜӞȋ­=·ª=\ÿª:G6R̦;(öÇý°Øâ ÆÃuôëÝ÷±þƒT!Ô›ÃM¶ëð×C™Ìm{èô†z:ÏûøpÝ/ׄÜw)4La÷ÃY‹ ¾á°ðùÉç¡Ú-[”icõïˆëzG„ö#gɶìâx8{˜ñSÓÄ}ºÆÍä!çlxÎAo|§IГ³ñl’þQ1PÙƒ‹D‰'$2~€c÷Ï£µX9óŸg€dRÆ„> stream xœÒ-ÿCMR8‹vøzù-‹ ‹ ›÷T¾»¸3ˆøˆø§v©Ô÷÷±òÅ¥Õñ÷bó÷‘÷âÚ½Q"ûDfVT@ŸÀh¯¤¢¬«t¢kpozc,ñM÷÷èçïÞI×%¡Ú§ÆÏ‹ÛÛ1Ä# :Q?f¤{¥ªŸ¡¨°k™uŒµÂØŽ‹¥×ƒ$Ena}{mlt‰N‡xŠƒŠ‹~}”‹œ 7Ÿ ‹ ‹ ‹ aOU¡endstream endobj 108 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 4515 >> stream xœXy\S׺=1sTO…¶7Ç+j§^ëX'ª(Î3€€J˜AÆ$_Â$32Q& ÎSµµ­¶Z[§[«ÕÖù:´~‡·½ïww‚µÞûúÚ¾—Ãøƒýí}¾µ¾µÖFÂXuc$‰µËÂe“Ì¿¼Dßy±3Ñl¤`cUüöÁ}p©ý}»½ógÔÌ`÷Y!.¡ÌpŒš·5Ú;Æg›oìÆM‹ý–øl^¡²1rÔ˜±ã'O2´'à `3“gf 3YÊ b3Ë™Ìf%³ŠƬfÜ™YÌÆ…YË|À¬cf3s˜1Œ+3–™ËÌcܘñÌBfÄôbl;ÆžéüÁ¼Å¼ÍtgzHz0£éÙ+&]â$ù±›·3Ò)Ò£VC¬ ¬¥Ö»eÓeI²ÙÉl3Ñݦûµkz<ì9¯g¥Í;6i6WzÍêÕhgge·ÁîBïÞ½¿±¶o¶?eÿCß>{Ü’.õ×WÇ/Õ¶y`Âu&ѵLRß¹L*ŽìœÏ§¨wÆAhRRâHà‹¶DLÓr ¶9½š *´'4‡lœMì2]¬ J!GŸ©Ïܼ#æËŽ‘á*R‚–C˜\Á¶§h‡tøVm^Ë.eŽÊÈ‘ ¸’'JöÀ«Ö¶âY0‰Ö¦†>huý.öshÇE˜Ïÿüõ‘3§ Ö.–“8ÖC óhÅýúRÝ8Ú£]Çp‡pК8\Á·PÒiÜT°FÁ†9;B8­ÌáÒ– RZ+Øs9ÉkRö¿š§„ÁÒ”N‰IRÝé#ˆ×ùöO¯êÊ£©ý 6BŒÎUO(ØVmI8Ä@¢:9IIz’©ŽäM\©ÎH͆,'È-)m×ÑU>êE°¼@ÒÍ«v±_À΄²`\J ŽdIõp{_ N öpú^¨€fÚàϺä¡ßa„"ÈËÌÎÌÆ¡èïˆïåN-¥v‚„¨X_3,íéGi‡?=\Ùáuž±ÕDBñ‚£mg …ø36™ú óu<ö£~"F‹È×ë³÷Ëñ ÙÖ÷O›;g¤@ÆÊP£ä•}y.rß¿Få/8E¥ì’^é'¼¨`ý4ÊiòH…Ìá'q  ߺ{ëÎí¿}E¤ùq'Wøõšìz«p)‹ÜÞ¡‹¦-ž>P°s•Fq˜AR{oHÅÜÌc?çgÄŽ8 îOúûgCÐ?F;9‰&îüð6Dî k՚ߪ NZê*j„“ÐX¶¹Ò[çÞàKýB<<¢½³íŒ2uŽ4IN>Sk¤âñ¿ù@Ó²ƒ#«ÈD2žxœLÆá œüÿ‚Ýs!gG<$'j…$2‚ØÌÜ{dÞQ܃»Ñíè·~šAÞ«ôñºÔàŠ!³\Àxvä$$«Õ‰)rJV²Ê„# â¦XcŸç±âF?‡õ8oñõ/kîò鱄!2×w'{nªnˆâË(<¥œ«UuXý–ÏÞØí>öÃ>CÿAz¬\å³IpØs†%CÌ4=Ÿ•²AxðG4­î¢)¸):?’žéìÏÿL"'Ù8‡à\FK>(œ2Lü§¤ ,±‘µà¹ìœv¯ñÿpi‘ °böjW—­ ÌÝ]L tÚ„{ê%Øÿ6z¥bgçTþÅ…W¼(}µáw²6̳‘…“Ña.d: ¿¬‹¥w؇ùŠñ‚KBdãCå£0IÖÅÀ7e8Œ+‹IÎ(³ÿ¢ÏÏ?ÿÞ¬spß’‡ï L®e5Ú¸ˆàBËc+Ë+‹êvÕy.öö^)7ú3– øA?ª/І}P¥=cé`4;K×D¹9TiÇTHêcüa)>'óf”S5/×hSRЬÍô=·Ìr, «ŒêÍɇ«v©+bs“ 1°‰{w0ìöݱ¹:W›•ÜHÚ&¾l,$ægét¥%òŒ¬¼‚ÌÌVŸµ¢o×vál{tMT¥°yö̰ÌYp’Û]Ùú2ÙÃõr]¤PòBv)…z” ãMâ@ Ç]oK;gtNá%¤ûŒ.¾;½âûœ@þ†îw/44 »Br˃œbg°û22ÏÊM¬›Z «¨˜‡‹,ífï¤'ø XbKF@ü$²ä 6½>ò×ÂVt¦sí`‰e’Ÿ/â›F)^ò&2„°Ú ‡©¹ð›¤–%V×"žmøô¼üdÈJv¦Âß.|_"Ç:–ΑҰƒ‚Ýú«è‹ýq ?nÍ|—‰©mÇäx%ÃÍ€^õ8 cÁ ¼;j£[’÷Á8XY{šsˆÑM”á–÷7°Wõ þæññ×$L‘‡+d-éç >ç Å"¬áìM~#-¹WY.¾i’”‰)ÎEäÕYš,Èæª¡”6vƒ&Rë þ–Âì~ê‘E~8˜ cVÜNuäÀN}ö.|¯9–nÈo0»DÚ“Êz(t!]ÞR«ÙµÂ@¥Õ¤)I&UòØ—Ûv.•vÚãM¾âã–ŒróZ_µ¶À&ؾ];¶i C!Tšuòh’î8k(réîTmÒWÓ3z¨}¨Å+è»Vì†2mÞŽe/¨A“ªí$å8 RЍre8Õìµ¼›}7_ºW0lîZGeI“¿yò³cfBºªˆºUF^FîÜãø”ìÉPe(‹À©Òs3r9³¢ÐßP{·ÁЧíòº;8åâc?‡uJ¼wÏô®õoÎp¦èªp"d«„5þþp XŽ.,•ÿzÏ¿=ëŠÖ7a¶÷|EyluMiYu›W¦V¨©>S Üá“›Þ¶°ÕÌJ͌Թ.Q«Á—›ô ô¬œîñ-4/4r‰_ðÃfy­÷ª?ôùÉ/qdô½Í‘ŠyRü£øäÐÑGùÞΦúúªÍmV‡ÒßÛ~is‘¦ ‰¶9.Q™š2ªãû’s4zÈv‚ü¼üJóŠMš0­Öe°±kÅ ×t,yJxǨ°Uó¢Â×,^¦Ù ÔÄki¶ª…ݰ[»»KäÃÓÕ» —bVXTReª®3Ô]ìXE‹¥€RavþV}•®ÂsöZÊúBD¹®Á*ûЯ•Ê(¨?í¡þt§TÔå×w,n¦ÌÞQí]½A¿a}ʪ0ߨ@Å*ð„MUM;ÊiJ¹Ä¼ÉëPȱ_=Ë~Ècbãº> 4B ¦wö¥iY¦íÅ#ê½ÄÛP|]Œ¤TýNŠnø3ŸR™ çªë¡œ’h­&ZëMiöª+íPªÉÅq/XÇð%Q«‚]ÝÀ)b Ôú:ãN¨çªcŠ#÷Ņz¶úù¬í£ãUrœ'NÉ«.iùTïdbÕ ˆ}v:4ài LS¥% &‰Ž¶âz¥¨5Jêo ×©Èˆá·¦Eï€`.¬,ººº|—é“ÙÍï’¾Ãû{Â?Jc©°{åä+ ¥&6E9gy˜;pó'¡Ž:æêþÓÇ4áfYFÑÖ i3áÇ&©8HtæsòÌCé VNþ.S’‰ÖFYÖ“’&´¦}´’‘†\"­Jcr\P1¼#ۅ˨qªˆ4ÞØSÃé.ûEß° HÏm8OQІ§Toߪðôˆñ¥ æ[ÖÖ¦9Eé³?ëhõ¾ŠÝ-¦£Ð û¶ÖlÊ-Äpéó©YžGß§…íú%<±ÿÇ`ìùU{[y q>‹Ã_é§øìuDmEÚ¹€*œf‰pêsRq µãŠL(ºüÍo6#IoÒï§wÐm>¯ÌNÍJT©“Ó´ÂæAã4ÛaøÔDÖo9¨= ­œ®ŠÏÁQ·‹pN{ëH_/öEÕvŽ­5[äiç6ü‘Ç d4 º‹é3šL ^Ä ÇÐô¶ˆ>cpzÉÉ=rL„ï1Õè|åÁtžJÔ$ïl±ë.zƒ­Ïß¹%Å£kê‰ÖìÛÛrs5i¹rU á\Xé6CMIiuó¦=+ÞŸ´ä9a§*®oþ ;àE¶+5ñŒ9„ÝÆÓO¤¢3žå±ÿ“›÷ ¼IßÏíé'h²í€Ðn™ÚHvšÆ\1Uã¡®P~_†“€tóô¤ßÈd ¤dÈ%>5¸àÌÕL®‘ÔžÀí—êOHÑ]yCœi{p÷.œ»r0¤>¾PØ×¸ò!U” Û8evLeaqnyé“o°§Ò?@Z±±ææ.®SÝëü‹· MHxÀæbÿšmîq¾~°žûàÑ2ì‹v?½Ôó¡_•|yÃRAµ.’ôÁY15”kÅ™E9Ü“4~<¬¨Ñ×慠ÊjŠŒÀ݆a‘‘0l¬ÐA¦ñ»ÑN;yÙ4Ï‘Cgî?^œûù ¡ë²g¡µ¤Ëø¥8¿Ó]HŠ?ý¢ûÿ¿Î…µŠåôfh‹Íf¦´¢ 2}® 3“Ø\ .âÉ@óQ>ÍI¡1²ü—òíúr݇PL'ë`—ܺ¥eî§‹Í|]DU"2<8¸2ÜTWUU'§vMk“&I“ ónc®ÉÚ&ñÿdeÑ$ŠªA!N*«ÅaTk!WS’¦SQ2R–l†í䲯tìfIôG£e»ì(¢™½‚…j]NYF®¾J€–( .$“ÌÑÙü:’V3른à÷:Úûa—öà¿Ý'¼~÷7õs8h¹„#sùÐéã%gÿ^¯ÁåOýñkÀÜã–¦­U¾ùàk½CV%œòmœS`íê­œÃ5íCÙÿåöþò h·Î ¡Ö·…¶â†8‡ÓÒh´š’8b‹ÝdÏî6œ¬lN‰0È7¦¥( ªŠ­¬)/5ž\Ñ>åb³²¿œXÿ›üvçðÏîÏŠ÷HÅïÿ¥Ø¥‘•å8 º¨;ó4NMšî’–J KË¥f%gç]»„=¾kÚZÚ`(*ÒÉmñ.üD’‡5RlÆ…ü'¤f¡¹ÐRß##E÷c|m„!(("<8¨*¢®‹…bn”¡³A²ïÒëw~ÅÃYõ€¯½îN¯Z ‹az„×ðÀ9©“a:¸é‡µMÝÿÞ司 .[¬;›õ5\刂|ÉKa Z«NÁ š7ÎÁ•üãe·>-©‡f8]:*o¼ `!LP-ÙJd3Uá`Î{‹&ªŽÑ—¤x²Ó7hõáò…óGÓäIãK)| Ǫ¹…¬Ÿ:a”<ÐLú[ÐBŸÛ/)ÈŽRç›-67ʈ’‡´cØï[ÉᆪnKŸáC~( w¦gädÉëZTî9Qþ Xâ)„z{Çl„%0·)⢲4ÙÀ•Õ4š¢JB·†$øŽùf4J±×Ó‡Ø{D$ëÖÆù¸†­K4¥šÌ×´ · rR2R5Ô¨…õ1IÞÔn=wz”ª25ÔW¹PÅ ]`à+Ä^9Šˆ ® §@jåä«ÿ Î+.üÁâ¨VZÝÈÛ@š8‡‘udyK£NKƒTN­OÊÍ¿}%ÇäîW=´¡D¹ÿʱ-#{÷–T¼dñlêÙ·t´§çCJÑzv“ýÒH_ùVƒï®åÀ9vùáÏNí–?ãò¤ÿÊ?¾ÑüY~½6®Nž¨ŽPQöªÒ£+UêH¤²AXÄÚÊ{XM(³é6=À¦'Øôa˜:7$endstream endobj 109 0 obj << /Filter /FlateDecode /Length 8212 >> stream xœå]ëŽd·qþ?OÑò£'Ñtïd` Ljá¶wƒ Pc4;»ZgoÞ‹d%H^*/˜úЬbž³=³ã± 0äí©®Ã*Ö•U$Oÿa·ÜnÁÿÆ¿W/Ïü!¶ÝwgËîçg9–C(nWRv‡šw/ϪχܚB^œ=:kK9äXw%Çå3BÒa~„Ê®z+ú%’_a9rèà(R9‹à¶gr.ÄV$L‚|Ê™ü6U†$Gq¢í;$!¤æÜÂ\‡!í€CŠý©˜VYÜ¡?”3“*K<¤Ì²0)ÄŒ< ‘âAH:±\*“*އ„©âÒ!÷‘išŽqÊ¡ Hë´<‚CˆU¦Eê&}0¤tZ>–ˆ'Vãxj‡¤NË®ëÖi‘>}bq¶' êtH>Tà¯87 !§ê³'¡ú@R OÔ“0Š$¸ŽB“H iCÁyÍ%-ƒe±†BZ ,Ô@ŸX‡ï×ãÀ\&­¸Tä„ÉNôÝ0&Ç‘L¥ÏAfµICÇ* ïCîMqê»H9fÃ5šˆyèXµiËJ£”N€m´K¡¬d-#Ö¡cµžXS³ZX$a°&Ô c:VKmhT­9QVeZbð _Uë‰dV~“H 5}+‘©,Õú_¢ ^W>š|`R÷!òZ] Lr_ÒŠ8=ìýŠAW±B°“ \è’g†t‚•E&é Ý yå%ˆ9 ™æÅ©”»ÜS«"å¡›Dã-Îê/ÑxÅY§F¸ÉÚA" ÉY[I•Âu±ö”ˆfYÙ\¢x¼k— ñ¥YÛMu‚ûÆ‚)Ô@†Ÿ$â´ËY\)å wK9ö•¢ºd"N».ÄmS&ygëÚ€øbÝâHˆ˜ãH™´$ÒL~$Mž%bÍymA¼ÈG¢ã”¡DÐ)g‰²S‰§¾$ZOJDŸz—¨?mC2ôÉÓÆ$ÃL;”,4mU2Õ´gIfÓæ5á©_hRTßÑÄ©þ¥ÉU}P°¸éQŽ~qöÍÙOÎN®ÇcÜ‘Œ—JÎmä¤ÓÃ’1ð"_wNQo¡åùþòù»÷WÏß^͵ /‘“"_ã=ÛRÐß^ß“2Üâ² ŽxÙ;,¼•°§ÚäЈP œ ÛDB4„Ÿž¦›¶èz2ºÏ‹dð-3áõÿšQÒaŒD§ˆÅ+öIꩇfJ>K^±÷?coñ›ì¯i¸Ð’“ByJ†L±úÛÀª-\Ya±&<^azr<–ÔÚ#¤€ï )“ õà€CÆÏNä=óˆ=8$!H¤"l0¤1-¶Ìrf𢕑R:-Zv°ù×ÅSTɱ$Rõ…‚¨-g³ƒHɤbíɘ ¹“¢(Ÿû0´n€±'pÍ€Ø)!5„)R¢‡yà½2N…<’°H H;ôaÈj˜Uü¡SŠXñâñð6„>ÁÄr2$Q—¼¨±´PÈW†„T@°ôÁ0¤sÃ& =Í¡Km^y¤Ù”W8BK²ã$ ¬O¥• #gùI$§`YF>é3—YmAJH„“ˆ —Œü;ºÐEĉ| Z-¤æ‡ÌESHÉ*3£ëᬾ3™ËÖ&2HÓh²º»Ên¨VM/#RZëD°çРœÉf˜ŒZyf>Ô h¸®Fuôo˜ŽºSŽ™Ð¸\&6C¶n™if¶êÛŒg|.½8ÐqI^}í­´I¿‡R,žäÔœNÀÇØ¯Î ÉÌHÁ‡2ô1E†N¡ÓÊÒC,VÚ^’cWE¤¾*P}yrK_¬N=j£u7(Ö0[³Nå({gÏߥZçt´ò Þ:°käþÁ:¹ÁÀŒ3‚Ť%eò3bÎdYÂÒœÕd„7ŽÀ)> ’SÄH§$ØNMx<•)![Õ-Q}Z„Dþi5’¦YIQË“3Sòд_ÉUÓÆ%ŸM?œ7Eòât&ÉÓá$¿N§<ÊÁ÷^’†0idîÍb}ñÍó7¼î[­¾"„•zh$Ió²¦Íåß}—}LÈÛ4¦ï×”]Ì\à-±~µ®"î»ì# ªX¶¢š¥eìÉeß’e]EžwÄ]ªî`™s2sp±5o]óÍ%銷ãÞË3WÉcÉ©)ä”^è<ÚÀòž<•Ò‰ÅÂ<©nÂípèÈ;<™=˜ üHj#ºJ)0àïÖ—HÈL©QØ€ O!%P.®À@5î;$w:9õ,MB^:ªMK'Duk­–ÙaR;¥îJ€?É–:eZ®3!Z½,ÒPöQØ›3®²jéo’[Ç â“ÉW»Æ ¦ŽŸé|PÜ\¡ÂdR;ŠÃì¸}'Ó\ÉA(l–@<Zm#¿A¥½ ÷ÂÜ6’ÁK$«éÃv¾©Š]FÄZˆtdˆñièŸ ~,o–ÈM8‹CQ¨¥Õ8…oJŠâ|åJW¹¡8?la0ì]ÈcÚcJ[¢Ý§=DC¡XAêø±wd2]è}4+Jò¨Ã»b‡"=ju&4TM€‚Ò´ïÊЬX A†rŤ4SK€0(8“ˆ±À¸|v½ZØ‘4T#YÆ«>__ÚÜoÁG%F¦……t’u_p†5eœ ¥²pРN†Y¨I¤¦¸”»6úÈ8ÒzÅ·.¶˜=rwÒ©_±w‡Eß öJU²÷´ †-»H¡§G`=WÚ]ØÛ6™‚½¬ +ÕLÜ+Þ¿ÚýxçL“¶¹“e$çØ¡^Nö•¸Òz´‰y¿N k,2“ů°:d……*®ÆV ׯ«±d…I½~5Ö€¬°ÆŒ –™ã'Š–bKÀœÖWKê¢u ĺì`­/Ùû ãN/`a/nॠ¼¼ÜTÝ0‡"µî"6dè_²™Gý¨Âmx'N*PÄãÄ‘œoCÀõrTD÷%Ù$ŸÓ⬔‹¾"!=A$΂öi` ®W*ôòÚ3EžòÜ­œ†ºÜû|‚2ûbÐCr`WÑ oƒ‘†…ñ„œbÑL[Y£Ä•W¼¶ÖÖ#ãȥgå2±?á HRcð°Q=”€yE¬–´­{6eîéô 1n³åú¶¡ KBÃÄš¡A±44(– Š¥¡A±LhP, ŠeBÃñŒ Ö½Cƒ_°¨?dhÐiÝnÅ;¼'A!5“åÃÀ_¢¯—H”rÊï|@+²®žÈ/…ÍÐà=Ù°WDZTbh¬#ƒbcÝž™DämlÜ-0LÆ<÷-«XÛÆUdP±ŒïŒX öŸ|„ìx›Èd½mÝ*ºU“4Úq«È—… z3ÎÄxokÓâ\u–¯…RÚ ·8ª¡½)‚qŠ'S&ϽOSIãÒj»„žžgE^Èg™’Ví%ºNI+ûBëõTlõsPLK;%…NKš%•NJû …ʇæm/¢P‰Q‚6+J®Žv3Jñ8åc:…xðÅvEJ]:!íœl@(zÓ1ò•ăíÑ âÈÞ´qPÛTo;=¨`Z±Ý a¦cÔHsÁ[œF…KZCn OR~-–Lo1 <Íò•9mB†vE6)]ä"¿€TX¬Œ 2´[û ¾u‘‹–È'Cžh2`Ñ*o¦#ö@ØéˆÍ¤BÀӮ’†vÅö2´+ö2gm˜ Z˜vNÒi W 4ÎB€„JsúS@?) —£l:!ñJ‚äNH ÌMHJ«RX+W%®Õ­ò§°NA‹d¦Ò* -¶U\Z«HµhW±ka¯ªÑâ_Õ§ÝÕ°vÔ ´Ë –¢5%mV¨¹iCCMRzjµÚQË–ÎÉ €ºÇì 2£áe¦c4<ÑtŒ†·šŽ‘öÙ1^oqzd0ãŒàahcø‘4y–8¥Óº ÑnvÓ$"jÃM‚æìÉIT};‰¼³·'Ñyöÿ$€Ï¡ùÙG”D0{’,f?RÊìYJÒ™}MIL³÷)ÉköG%¿Íª¤ÀÙg•49{±’Ig¿V²íìéeäûoò¹¾`G·Ÿó•ü:ø‡ï$ÕÑ$Ÿ¤¼îÔdll»ïÔ`?¹»5’æÖ!j5{ škÎöîѹ½K#é{ãÁC—T '4±I³ è3r–-ÀÖŠ7q(Êæ´.I+EE2•â@š…¢ ÙBq Í:Ql8f™(H¶L\ÏÅ Ý¿JDüB«ö¬ǬlñGYáf•xÞ©:'ô¹O«PVäÀäd‘X(Áĺzz@P¸F¿]$æ9©IK¦úë¸JTt_½ð¡%%e±¸c‘¨ŒE>nYEX·D*ã+#ƒü©Ý#Y<¬ë¬iÎŽ]¹¥}Ä«PʬÓÛbœf «a·Š K‚ÂÄšAA±4*(–‰ Š¥aA±LXP, ŠeâÂñŒ ÖýC£%FúA;Ë:­[ÚG·âºç‘ɧØÛ¶ªÄÜ€œtŽb#ýo< ,ÆàPXÍàÊL —†‡À§xuÄÃ$ˆ?ÌtúwW}Nþäqç\pR1å9¾XÑÌÐýo3ÅŒÉ+Ư¢½w|Ó“¤j}¬ÿ&RŒÄa»ÑÜ‹‹ã«4å-_‘CÆ%p(æ rD™ì½9¬QJó9B9Зà¹%¤‡ž ’¹k¤§¢#ÊöTÌÉéˆÒžiÉéêˆòŸiÉìˆÓŒƒêrŒ;âh“’sÞXwRr<¢c½9/ÑÕðÅ)è|0)9vNzàƒ’r2=.•=_¯GÄ>&%çÛãBñ„IÉø ˆ[·ïô(}t¾öå´}Äe¢fOÿGXŸ4—Sûuúwz²_AOÿGô«sYá,Y[:ŽÏý6Ѥåi¢Þžþ8VË÷ ”gàís—ymAâxJäñV„! «”a"]î¢ B.+mÁ øÆ‡j4Dѱhw옔ZFHãRƒZ¨ÚË%¼3)µÁ€óºÞÚ)®ó­î±$vRjï¡ðAgã¬{€ ©ß@PßÂÕA¦¥þäÎŒúhh¥ŸÑ–óÛqÂYNëÈz2Y©ëéeåPO8ë,ô´ÎTOJ«4ô4µJLO\«TåP¶Ê]Ïm«nôl·êOÏ«Žåˆ¸šž"WSуæjNz]MN¬«Uê¡vµ\9÷®Æ­Gã· ÃIôˆ½:’žÂWgÓ“úêzš_VOü«cë­uþ‰#bŽ#AdÒ’@3ù‘`4y–€5çµOÅ#¡qJPÂ甲„Ø© ÃS[ª§F%œ«Ò%âO»¬0mGÇ´/I.j‚’¦•JŽš–,ylZ»äºé’§×HΜž%yuzŸäÞé¡GùùÞ­¾ˆc 8ök.üû«ëë¯ß^_>yÿͪU] ==˜Ëp'4:È$®.´õ­Ë:n?èù{Ľ„[¹w¹0Ïb‘û#¹PÃ}š½º€k;wgîr=`^ ]qw´¤5aJü†"»Þ»‰Ô*wÁ…Tìöã-f¸ºôÓƒº·„siÙì>%~%Ý Â=,¬–u 7µœÙäB«­Ã¹† ÙLF÷Êp!;;»Ÿ†;cLH÷Üp­,Øm9\#N÷’\9]ð(ŸÞÿ´îð|¯côߺݩF2¶h9ÌåÕ:ê~ôQøûÕ­iö¥CEÝE,¯î•Þk—ñ™ð©‡ýÝ1w…ô¹ä玂C¨w=ëßüǸ/ûyèmrî7ŽúÏZ~—ÂèÜjˆÝ¹‰q·§®7dK7dËlÈÖÜ,»!#XsCF°ì†Œ`Í Á²2G32X÷Þ /¬²À ™Öm2·áÚÁ˜<«†“ÜKDrŽÛpr³¯KZüêáÁ«‡ÜöqÞ€U!ñ Ùñ|m%ÜØQô^RƒHâU•@¬!{–³q¼ÊlȈ\ÆwS.9à|99„qPùJ^@á—ðEu J“bÿûª§Àd|?X§ÈßLø àx­ÏSú Lýo< ,†ò<XÍá÷1zäí+›mx‹˜o7C[ºmº¡[Ôl(ˆ xXx‡ÅúTÊÄÒ€§X&à Ö x‚ež`Í€'X6à Ö x‚eÞÑŒ Öýeº‚3N?`À“iÝðnÃ;µÇ¶ ?Ï{ˆa»b…û9Nâ’¸kŸHÎ}ey3âŽ|§8ñðNÏp#âMt «É1PÀÝÞ䬖~[I!Ñ•¾òÈð8ä2¾3r1ØŸ¤‹ýÀ±!Fô»ãØn ‘Jj.ÔébÜf ‡Vó*4L, k†ÅÒРX&4(–†Å2¡A±44(– Ç32X÷ xfÀEà.4è´n ·â 1ó›±ÈàÔ‘$:Ì8…œ ï»löi…Àí·C¶¼TÅ‘Ð@E‘wõƵGEÇ{®ù-õT…~©ÕÖÔbƒ°FfØWnüñ½GÌøÎÆ`ÿæ£VEÁ›9®/Ìa£ŒŒ‹*«%ŽWZþÃ9*íV–²Ž5¹öÏ>àðyq%–ý[‚ûÅŶ¿Æ»æ±œöí0±ýyO|̆jÄ á[Ûw}ÿRœõ‰üpŽ—k-µ¹°Å/ªç?ð&ôqÆ•Š·ŒSÈß¿½æwÝ·ZrÙ?Íûqkø;3ø»s0ÞšË4!'{ñû×x”ЗŠù=¦UköGƒ]ó×4ã¸Ч–ãRI ^Üþëó ¤þÒÊbè‰Ç÷@ÆFeÛ?½œc¼ïcâg…~Éó 1WË•æLº¨±C,Ž(™#}¦ÑÉs—øOIäÜ•©yÿêÝ›ÏßËßê‹ó‹¼,ûë·o_¿å@ãþãoWpû?¾{ÿ„•{á$ïw…Õê; 'Ö=Z‹þv¡|öx¯;ýéøxUÝãˆD›éÿsìö‘:Z=þåÙã¿þ’ŒÊ ½ÇÐnMËšþ¬u5tÊI†î<÷¡ÃjhòÚÛ¡}ÉwãÅõx˜.—Vã…dÇ‹mYK&8~mÁþ–÷¸’ eóG^oü<Àûùõx1ß)ð›7ü_m|;cá寝¶~2`þ Á‹_+ø°Aîõ‘ùÄü̓·S>ýƒµAíÍÞåë îç/5|i~¨A>}¦Ÿþ¸ñÄÛO¯7`s”¯ŽûK´¨8i vz§màÿ‡z¶½cãW6¦ÜªŸ~½©•©ŠÓŽùçðÝYä´ ÜãJþoº÷ç·8À·¿?ò¯£ŸºÁ§à)­rΡç¼/hµ²0´@a'@ª¼j@NíØ”Íi¬©èsë —¸ë•L©k¡P‰ ×—1¡µÃêó5?ésä±¹$­¼SŒK^£EWI ¨Úë  þK>tîúïßÄCrQÖÄÃâ2VÁØT§É¾~?˜«°z^}ᬑªŠ ;±ôçû4#Væ]@Kj]ç´|sÎï¿ÖgÅC‚@ýZ]Ù¿QM¾?µý5Ë8PñbÍéÚ˜íK¬ÔiE˜3§ŽÄMÕÆ#+Ä*’¡®­µ.ô®û÷¡RµñbÑ凩õ+ˆ’¦K²~ý`ßj+$z²’ç¢Há¬Î/?Ÿü¨Å!:BÆrE[ ¦aá Fñ->áe[–ÏOt¦àÙþñ¾yÌÍÐx×^ô9™æIûP‚CÙrmìò²óKUñ[P¤;À»1YB·?ì‰ïýÉPÝÊÆ×ºÎ–zêß°ü=È´„õÁ„¾WÓ†¬‹ATžùHærùõôåµE\ꢉ_^™éš ÷ú(V‚äKŽÇа1#¹9“•¿qˆé/V“Gâ#Î|PäWúé0ܺ¶±óßr·ß® ;Âëw '[M+É\œ+Ê·ç)’!íß0,¯ _ÃP_lîÕì¡ÏîùÅ;#ÙW¨ÄN6¯›?ceîK a%N>ˆ%¶6¼>³¨µ"¯ m š"cr#ÖõÇ.t‰uë¦óÙX‡`ºàWjÚŸÔx 3G™^kÑøÙî䥮¢?ƒÛ‰¬‡·OºzìbÃÖ.\’º]F\š (\üjaóñ´È‰…Á¤³?Z]˜œ÷ПÃ!r†T’†ÿ,¹˜D×&çÀyŒ_ÚCƒ}4°Î©v «¹>é<$t)Àé(§UÔa–*ú€4£+óä0@nN p•{Öo ®Ÿ]ió³Fg² ²*®&•†Ð‡&ßâm´¡É—½È¥–#uss“ÊÓ>VjÑ ÿÍfL3QÁÚ»>ÔǪ žS˜U|ç /fß?{f|®i¦Å¯RÓá/Óld®ßw2'³.à=WÛv~ÖuæÓÐ)4â¤= ogà~2WÔvU`䄸ÓùwÖÈlhߌw‡®z5ÛêÕÄñ}º:Ÿ%Õ»2dëgßoTOwïó|»QÂ]{VW¦Ô{¹øÄ ½Ug}¶1™W¤'cÏ6`[}‘Ï·~ÈòzƒÈ³ rßl2ëõûtŸ¦ËÓMAê׫ŸÑT¨‹ÿîdƒã¶In(ñámÏHÊ|Ô¹ü§vHÿ†ü ¿Ôµ|JêÓ»f²?ݘØÖOÇšßGýïùq6;­=ÙÈv¦¶ìêçÜ#ù§-™?TólC[>›ùrãÙ¯n±ˆ­éÍqþ"=íÓ,ü…zÁÆùÙÛŸ®²ÏúºÉñK2úÁʯ°#|1@ëÙ ­‰ ìä¿æk~sö¿¶ýendstream endobj 110 0 obj << /Filter /FlateDecode /Length 6649 >> stream xœÝ\[Ém~Ÿ_qÈ™ÄÓ®ûˆ8öÚpxíµ’p‚`V—Ù5¤Y+û’߲Ћ5{$oìE=¨‹‡ÍúXE²HvOÿáärüOþúê*©Ÿ>\¹ÓϯŠ÷GöáTsñG+§WWµ»£%%¼¼úÍU«þ¨ÍŸjI”Ò|?J\9´xäd¸”b¹bIGjfœSwº»úÕKy’ÿž¾:ýã“«~ò©½„rzòâj.³?yZŸH{WOO^]ýî\®o|로¿¸¾¡ŸK5ž?»vGòô¯žÂäà\§ë±<¿áëÜkýü âïÞÏÿúÙõMŒ¤Pëç_]“f±‡~þñ×-Ý…v~2dôâR¡û†¼ÐCú(ýókž?·Ôοt×› $ó—?çQé™ôü'ÿÄZw«u:mГ¾zò·¿#íüAJ”tþ‡ë›KóçŸ*ñ3½ú­^½Ð«[½z§Wÿ©W¯õê^=׫gkº¿WâÍ"þ©»qõµ^=½€æßÏzù¥^=\óÍ÷¢Þ{½º¿úK»K?¸ë„Û%æGëòÏQ­#ôzäÜÈž<#³7Kw=~¿à yzÏÙO¾‹vó_J|ya^ý‰sAëµNwVì{ßݿ֫¿Ädåt½>ái¯/¬ØÃ%‘çïÙŸáœÿýý„cûÿWÖýI—LuÝòåE¥¿~ÁîÞ^Xǵ¶&}<‚ïp¶Kñì¯ Úá¸Gü¯Ï[ÿŽN“Rêá¼ÑþÏQåWßKœýSšèÄ—À^ ?úîaå;nï÷5¸÷G}Ú®ý§$^:ŒŸ_vwIÛË{ì#þìÉÕ¯93êÁq^k |§Bå¨é‚kGH§7ÏOÿvº¿ÊG=eJ?ý‰‚Ùé÷# ‘ŽƒpÊ®–£pR¨„FÇD=Åä e+4îåÈ…Æ”½y>½Š)4JU Cd+60ž3ð ”|怄\8çÓ)æoaD¹Wá)¥Œ1QF‹UK)€Õ(ݲ°»?BµŠex9•#“ÃŽ±Hб*¦¦ æXš8€K³ë1tó´­”2§Zë‘*릔ƹö)zZÀ1¦…‰Æ´À±ëø)Ç­ÎW‹#‡ Ã9ó ¡Ì¥ÐÛó\ `Žù@ B®+FvK×ù”"Ië‘[šrÜ@åÂ+ N‹4N•—ã§tGn¼Ä‹ƒbj(FÆs¾BÜ™\?\0sÌ1ßàJHØõ˜›–3Û¼Ý4P°æ%™ý¨‰ mÇZ>ºaè”ös7ÆkË@ÁŠ‹lfX[6àg ÃÝ;þ¹_­žV&óÚ–±_ dwÔJ+AUœk<îG-§PxŪŽi- ¨ÝrðšÕ%AÇs¾ú¿1$ðÿÙÌ1Ǽ_@!ŠR$<ÒcèÖ2ÕÁÙê¦AÖʈºŠœ‹àT¬nJÁd9úpæ%cÕM)‚L%rCuSàJHØõ˜¶HekË›-‚¢þá²¶9fWÚ^fßjáM9i·û†ñÚ7P°ê€]Ák߀BwVPB®ÇЭ´òÈ&•"ÈJÏÇR%TJ⌉Ҵ•–.å+å­c,t¬ª)E€©®s¨j! ŠQ<Òbh–ÚÈu–b ¬Äéf0;Âi¶ßöŒ‚±·dÞ›=Ãxí(XqHÀŽ`ULQ@Š€]‰y¤±{ëiJ?i”Ï¢ã'[¿id8ºË$èX=M)â'*AüHçPOSàJHØõ˜GZ¢ã¯oG(8(­3?ýØSbJÅ›e ¬ÀæÔ2\ç™4½’ÛqX‰üušvÆ–U ¹{F¬YðJA:šã¬òâmq¥¶q¥¼0˜MǺeJ‘W ²!:‡n™¢PBÂ®ÇØ²’<Ÿ÷¦DSŠX…ò¤²J²XŠç‡¦D+5ðÕâh~Ž!c-Ñ”"–JLçÐMQ€(!a×c–Ÿ>ðzØò”ŸÁϱVÍÁ–£\Òñj ÒH)ÝV—ËpUÕB@åˆÛQYb‚U{‚–Ýv%†AƘÙhLpTŠÄ6š˜ÍLc_¤Â¡&ij9jæ%_0Öè¨ n*AbŸÎ¡ÑQQ€(!a×cl”GÝJ4¥H 4o‰+D'e«Ò(œ9n¶›2MÇF”"a@%H˜Ð94( p%$ìzÌ30lû¦œjäÂ\aW9¹Ïvß…g9(L¸lÏEë¾)E%‘€3 s¬S (À”°ë¡ý—÷CÅôCœ­®©@ï{9G`2ýÊå’)ˆdl:"BÑbD$hKDæØZ"ΖØ@iZ"FyfS ”¬M.ÊD6 ¼¸ÓéH^km’ÎÓ8N\å ¢2#cÌ»(Ù’0‘¯9 ÛB „„]™AÒçj7¥ Ö¢]Oæp+yX…9ܸen¿RËCÆ«\EŽ&• G—Ρ‡›¢PB®ÇЭ'Ǽ¦} )þ;!î¦9Ðé¶ŸÕ>èuÅb àæ G àçVW}1ï¢LdKÂD¾æ€n 8€R$<ÒC’‘8Û&Š&#ak2–m+d$#i4iV2BÉl´ÉˆŒM2"MFD‚&#Ñ6KF2¶F¥¢ÔddÓC’È2÷z$(°§<ž ©µ±ìö8›ÖÊÀŽd ãe ÀžDÌ 3,ƒ`BÜ¿ë ŽÖG·Ï:šPÔÑÚhQ/G룅m£Ã+[ Äió4WŠ" êk2‡ñ5A¡¾&(Õ×6=f€ä§w~  àñ³‹Çöt:ñ‘cŸ_n}.†˜øÈZ÷c¼_ƒ‚Ç×"@bŸÎ Ñôñ¶ DpÜu˜‡5é·v¿RÐ¢Õ Ùô«h=G«~u´øýNËA;âM»_Ç«£ úQ€~æX- PBÂ®ÇØ3G¾×·çjJ‘2Ò‘÷6ó\Í‘·b QGÀ>ysu$3O)Ò£øÁO)½á¨d[Þ컎U3¥`× »†9Ö®…>éH6~ìJŒ˜ê8LÌWŠDlJvFÁ„ˆúx#ÃÆ|ÂY‹‰ù~k;¬ñŠù~+ù—‰è:‡Æ|E  ô˜ñƒj„Ü·ø âe/Ù*ˆÒA¨01‘Ñ…<ßCÁxEPADŽa̰"ˆ@@ BÄ]‡™_‘÷ú­ñ¨43Èßi+Ö·5+y‰mMVò¢n:^íPÐ΀mwÈ«àJHØõ˜Í9Ê÷¶ 4çhüz•'¤ÒŽ­7G{5ÞsPÚ*gzs:ÖÄQ)ÚZ è¼É«5 `ˆ¸Sa>v"û[Ö¨<4â7Æ)†F}k;Å<òYåHi¼â¡0^@ÁC#HÀC%̱;8€v=¦nÑÏøª¡Q)ÙÿÉš‰é$lmž@¶,G•—h!cJ‘Ц$òé8€v=fÖ˜÷%lÚŠf}ãÏÊ ëx$dóÆ6Úï¦7*- ¯¼¤} Í7™cå@ ÔÌsÓCóŽõHÎ,õ•¡x?ìš]†ÚQÖIþAÖ3ùŒÇS^Ï–® Õ ¿Ðû1ž3Œ‡¼ƒ{¯¾ˆ’d@†Ì>èÏÞºyW`¶xºŸ¯â­((‰»Ú—)lÙÞ ¬a¾á¦dæíb Wá)T¸U%&Xu'  ¿ˆèïìJ̸èÂx ¼vK)²Ú‰ç1Û5²˜d·+ñŸ2šý™Q60ÖýŠ.¹HÀŽÈkÃþ>!®Ûw%¤ âx¹¶&ˆPòõ>ÇÚá¿ÕÜ» ~<ƒXmǧ¬iƒÈØ´A„¢m‘ }™c%@¡A©M™€Äñǰ6 -p¶5 ª)™°:ÿñ¬å D'Z ë“]¥ …€¤˜cå @ „„]Ù˜£’!í9PÐVãwOlÇ1ŽwM¶Æ\E9r1Z–2^9P´1'Ðvë1àJHØõÐ7`bßC£PÚèhÝÆÆlB¥¼,UÈÜõ]±QÆ&6ЉÅDC™ÁÄÆ‰`Ç,CÇMQ«1ïj EÕšo-µÊø» «W¯‰.½ÊÈ!–^26z ŠÑkHXz)¬bÃRl@4ŠmJ Åø­ ~¾SŠÀâ÷2š ŽüÇ,u Žüç.ÕrPô/fit¬Š E‘‰—)–b‚AŸ×í»S1~U¦nŠX5ÌõìGÏÁ(Æ/èŽàÂè²C‚ŽU1¡,dS‚ŸSÅ&ý}B\·ïJ Å8íÛŽ)°Òl1)ì<ßæZŠñ;RvO©"\ 0^ŠMŠ" .S,Ńþ>!®Ûw%X1Ï圷¡cQ–s‘ÿ`La;Ÿ¸¼Xzq é,C4Ë2ªÜ¸SðÒF&páîÇÈÿÿiCêFÏÛx(ð¦ØçÞDQÛâŸçÏh$ÃQÇQeüQÆ+LLŠqo¬ Sošô÷ ÑD™M‰™Æ:b“©šAAÕ›äý%TÅ|Òo¯s•›,Ÿõ&íÕñª›AAÝ (‹1Ç*œ@ »óТ¿'«›RYœ_6Qä‘ÂQËV·Øæãåèã ”%cÕM)‚L%rCuSàJHØõ˜ºù±‡ö@Ç)e-ÎÖ`qüod*kmœŒüŠy°GºŒ×<)ëDl™å¬§ ý}B\·ïJ°bã/–ù¦ “ÈÇ¢çgEÿÿä_,ûN+嬸sgnK–‘_ƒòr„§Ç\J)Üzïƒ‹Š’Æ{µ¸”b¹Zíœ5.P Wd‹agV.¥X®FKÁª/.P ×cŒŽ†ëSÆ¡$žS†J»`¿ŒÓùû5«ž£¸:¿ŒãÝõMr=žÃ¼ ,úAK ùrÎ ·þþ|ýõ9 s¡'%×:žÌíøW+#D€b¹’/ §ÅÊÆÅ’å6.¡l\~£ÿ —P,WŽüç– ”K42\FÇï¶¼ 7¼žMÈó’xö ÝŠ˜8‹-c7æµÛzš×dyìx.oÊÇ> ðñÂtÕ¸žCWQU>ªôù—oŸ¿!r9ÿñšÏe—âùù³f)ËM&~ÁëÍ4 ïü«7ÏŸ}ýô±>ùý„ýÍàñÍä74Ûhþõ8þjè%BÐEÕ}$Õ{)é±Ó$Ï+@Õ{ÍvM­yWúùëq™}Žç»÷ãSMÎ×TÏoÆ|êççü©(îüäs?w¼žŸs";Z³r.]?)ò9 ¤ør=I·:WSv±žßÒ ·PZeñÜ:kµÐ¤´•à¯Pp+)ùÚøû/1…ó-ÏM‰Tiçûñ…)ª+ºOøùµ¥½±RŸ_hI…J ó±ˆÑ…óSÙ]îýüŽõm­~t/?”w¾zÍ_zpÕŸ;xsëíücþÝÕEþŽ·^Zh›†íZ¥ì¦Yµßî&‡¡—Iå1»¯„”~¯.¤†ÀB»QÂùXz]øÎÖç8ëé†_ ºæN²Ÿ¿ùÔÇC.~(d}Gd}‚æÒw…Ö—GÖtîøÖ‡Œ~øEô§rôÛ°s~Z›×è|ÿöõ˯ß=¼~wý7W”$S }ë°HÑ×_ßxÊ Úð°.óü¶½¥z'ß¶ñ))?'{¯,ñö·BŽô K?~9ŒËû”‡qy—Ø›¾šdë¾äóÃ{¢SºA…çùŽ~àÜŒÜïüÂò¼™ôêÒ€Â×½Å韜¸œÅm]ì´ú,0åĦA¼üa·v~xÙü½œfé)AÎåüðÖÐŪø°¼–£Œ¨R|ÌÜÇ!Û½ª‘³ô$ñ#Vâ}¶pÜ}öµZއû¥ä-ta·Xs3wàØä§#̹_¯Oݽ\âžCEYàñ%:³0Ï\ðÒt†W•ã •0´"22gÝ‹ÂYFpÝ›ùÞÎÀæ[O[l!´.Ø<‡£¯×å»)~¸7Ÿã3öñp8^­ñi¦èéT,ˆ£fºù&ùyÿ š]Æ÷ ÔÝÝs Ã¥ uŽÆ*-dz¡°£â¯úðKKÍ'»ì·s‰3 È+Á¦Z(7kußñ@Šåq´Ü"ÕÛæ¼óÐZ}¸æ³QÀç ÿr3²ñ•÷´K¬cõdn|eñí<:·æ†³LJ4¾¼¾!j¡àcîE*Ix1¤¦š.J}˜º—êë&àÙ`ìý~-órÈx1׉?¾8‚y§å›êÐI]z±ØŸ.À·ÖêìºO­9%>æŽÕó“yx¸–t†ÙMx%ŒeÇgÀ\öËÖXX(ô»½M§˜T hý& Ø­ñÖ8 ºƒJï;Û}jÁÆ™¯ ÃÛ™pÐ&l&ýÕ2éÝ™æÃ—oç7-“5>c#ï¦ØÖ³±²ç¸Ç`ùjÅ11Â1ÿ##ä'´U÷:Áƒ™àr<2úíÚV¹íS¶ðX«OĸȪö-#°?[{oíÎ:ÅÎûVœL‚·{ éaø¥/'C£ÎŽÇÖøÞØÒÓAu1žÓ9½Ô¯>ÓbmuÚ—£ãŽÚi_œÏÜRÏ {s^hþóËHè>ð4S¦åÉßÌŸ+ÝeÌ»IîäpìÜÿ,þ#bVîí¼-¹4£æ°{¦¼\ n"9ØÌåíæ|ÿÈ›Y«%Aar‹Û»»a½dß7˸“¹–ð­™ïέYÅ_ ÿ`éïU­——J#ìµáµgôÜ6†GWbøvDÖ˜&zо¬ÖÏr€ØâÒ(-ÄÉïîËü@­=mä|­õGÁê擹ƚf–—·,Ïór+lõ‹·.¤„„?P`óØGå=#z^+ª«“ë—Tj©‹Jsãï÷ž€Iº÷¼Pü^%6ù»½ŸhÊãrPã&ø»db*x0GÚ—0öV‚ê=›…ï-W3{ÿlê^£áO9ŠÎß`Áêå˜þñÔëÈéóÐ’¬vì&ƒ¡nf»ÅÏmU}Žu’ˆA×™æxjX$$’Ÿ<Þa8–z?1ßU¾}«Q1­¨hn”?ÙQòS“ÈI€Ë\TÞëšr¨ãŽ.E½±8ÜšêÛ‰¨ëhψ¯æþQ9®âžm©Ì”%?Jìf½28ÁùÈY6ƒ Õ}Ï$Egsƒç+ºhh·ón‚˜ÙGŽÞ‰2X±'Ýœ‚Ö-op˜Œ`ýn_Otômì·ÿ+ÿÒµ«ßög¢s3ã‘?‹ÏL84¥¾¼Ü)âkøÁØãýBýbå`of‚ê:FÄçy]µ÷ë«ÿ‡³½fendstream endobj 111 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 166 >> stream xœ›dÿCMSS10‹‹øýùJ‹ ‹ ›÷À½ºR3Oøˆù‹ ÷¼È÷˜Ãëá÷ÚÜø7÷Úò©ÎÒ‹Üîûâû#û…ýJá÷Ñ÷2÷PûÑäüGø÷˜÷$÷ÍPDDKPû  7Ÿ ‹ ‹ ‹ ù> stream xœÍ[[od·‘~oäG4y8½«>æýâÄ 8‹ØHàxƒ@£é‘äÕÍ’f&yÙ?•?¸_‘‡d±Å :]]$‹uùªX<ýãZÌr-èßò÷üf¥f×ïWbýõÊ?k/×Þ:9·¾Yåfc¥\¯¾[EággÂÚ;#f­ÀU)AÆÙÙÄe5ž c*Îc¾´l=k=¾ ÝzEªÃì-j!p™œ³q‘ɤŸƒ\¦Æ´:žE¦ºZ‰­&Ö«W2)r½ü9¿YÿêtõÙ·Ê®ãrëÓ7«¬d¹–FÏ^C±J‚ãôfõýôåï¿üfÔ£›þüÝ«Fcš~³ÙÂÍõé~À÷0˜ð/Ò´iÞÖ§ó¬7ƒˆõ0˜ï¶>íšX›úxÒôõ4˜ñ¯G·|ÁÔU§ù¢=¶^ ;´@c|=œò«úý—õé› ¹’Š~¶6Gû®~ýëѾñHƒ~}ºúbI eÖÆ!è_+‰ˆ¶þ}Ø­ÿ´¾]!„‚X%׿Åÿfi)õlõ±ŽP¦€UNØ|ÖGŽêç\Ú)9GßqIĵ‚p3Â…Íàaí¬”³4`ÄFB‰iŠDÑÎ4éLq„Îj5Ë)ÀGWF!úÁí,¢Ne‚E¬;ÈK!|-Mcð7Šr¶4E¨f‚™­!BQ¬ièDæQ*}Š™c¥ÌL'%É1AGílÐsЉ‚ý Ò1 ³¬äÂHš¨IN¢€Û“4ÑÍ2& `Û‘4ÐIHkW°ø&’*ä}6¶Š|iÃ,=_KzÍ…‘ð£Ð §ž½ã›Qìœæ©ªQyFrõ)8^r¥ªbìM®TÍ€XÉÛ¬¦RJd_ªæT Üä îš|©ºÊâLÅuØ*æ^ ØìL‹‚(n›“jÊ#Æ2GÅÌF5_ÁgW*á •Ù•JÈ€¢“W”¨Á‘ -ò@‰³²,:5’Ó¬Z¨)Ë(uyÇgF®œ£a‹«ŠFùŒqd3¶ƒMÅn›Fcb® ƒ4<×–A"Õ†+Ô(”’+Ý ,Dà†1ˆ%å¸ñ âmÑÎb`#ᵎ;ÏÃÅSuÎdíÖr‡3(WläNiÈ]w\)Ž›ÛொcJ í²¯E†±‡™I%,5À2/]ÂUI€ÀBZ1[õ¥ C›¦ G[ª L§ P“wª¶¥!£]ÓLAĦ½‚šMÃY› ú6K„nÖ,(Þ,^¾zEÍÕsjƨÞU“JõÀšxª—ÖäT=¹æ¯âì5ÅÕx¨i°ÆLM•5®j:­¡W2nÎý¤|½º\ýju´'=Á˜**^ˆÃÄØ9MqàЩ·Q°®Ò¨±.ZUBÕ€x*3f œƒhÃÎ׿»•ƒ•0É1Iª¶ëÊÊ%”+áXE$ÖpŒ´2ô†•ß_ØŽV®èáp*„­ûË\å÷‚8ªÄ†óAÙAÄN¼tÀúO,žÊ)”‚L¼|ŒxøìLz ûIA°KއŚMÒŠF„”ÔY¾Ûõ8åÒêı%V…è¦&VŸ3ÙËnï6[\ôvº9»Þl!@ }ööüîæ¬ùŠ:EO‘ý¦RlD’ ©T1ÏÓ …sY" 0¦…Ðñ(ŠxË™JÇEyVs¦Lèx¼N8ʘJÇ•7ØÚî~j0òà‹p$¼d‘ ‚C‹Ø,NÂhÍL4#¢ŒÏ[Ħ3 ¥D«¼¢Pð9À5ꭣǘ¦¾¼I‘w`Fr2PšcÏä1´™P˜šBáEË¿ô –ðaIÉŸ85`pÏP*ÑE ÊŠ¥ÄGFà“fÄâA³+æ¹#&äMiº¸¬K\&—•§ÆeebqY¹J\V¦—•§Æeebq¹·Æô±qI%‘D¨üÇ%Š`5›ðqqùáÁ,.1œ$ ¥>0 7q8©ÊMg“€Ú$…È‹ÖÿÃAà€@Må ÝHƒÃ™RKp|µ¨t¥pqºJVZ=]¼¥v¡ØNDÁ;?í¨/‰TìçÆn6¹§;´e Õ„.}¡§À„~zx‹±¨|CtÓmêiJ¢¤V•„Fú@m(¤Ü™"õT`MP~ºNr]¨éŒ€`ÂNx´A¹à©#VסT«>N?ã˜Ӈ „ç³<Ñ:!8%ÓH‹3ŠŽÓ1m\ Y‹LŒ÷a—:·MC¨µdè¾!*¬©Ûf‡âÜO—I QØò8ŸÆ]´q×MŒ3¡47%ãA½\¬È´ÃV¼¡‘õw ‘Ij™z{M g›í†q¿'nœ¬TY!y¾n˾܋Œ´¥N¶·:õ-iœhz™˜Þ9ûSî4"ž|lñ¨‡+¶Î«<‹ÓÚËEAË”/±*u'-±-k IàóJl¹rbvÒnÅ“X\¿ÌÓä¾hžç·‘£ýïdÇçÚ>9ª÷ÅÎÏ›©¦ÌrÊŽi—íÈ~¼ç@(êN.ÕìÇØo ˜¦wÌBø¤]…­Æ‰Ù;õG¡Ú@Øæ–xˆý‰çÝÆZÌbÌr†ÁEÃNžg¬[¹KOå Fê‚ã8äÁ“%}O2œ³&Æ5ë£^g‘=ïÞì5;¤¨m=˜±óèI9Q›'ËzP×eSóuP ÅŠJ/Õ÷íÒ¥U¢Ã¡n)›ö}>õ:aïÁôm[R ¤ú Ú–ÖŽñ܈W­›WZ;Ru&Øo’¤wå –¾Á‘;u“‚ï‰YhoÜÒqXÚrÔ]p"wžuÛ¥òÊqÚËý Ù'ù4éÌIì.r'ž÷N®‹®ç¦É2.Úég¬Î7¯=5é‘z\ûý¦ ë½Å²Ä.Ï«cÇ|צ`³1Õ`ŸîX˜¤ º[Þku±Þü}^Ц[? *+bjÙ×e¡þDŸíºôÄL2EÝo+Gž¥»E~‘U‡°‘÷ë"SÄSÓPééïEãºÜdòÊŒK÷ßÇ&œìœ·aÍ¡¾äÈyóýk\—…{Gæ?=¡§¡û¿3U÷¾v[w˜ bÖ©ÜYéXWÇÇ~;i{xÕt±HãžOUÈÈA謂P×™Ír§‹Í2óî}ÿ™9ùVR¦Ã.zäiµÄLŽÈœ90m^ §•Üï‰>OBá@Þaú'˜§g'͇E[®útì®újŸí™úõž¹ãuó¶ÝrÐC c|krõ±ÙAVû.»õ›³pFjÛk껥®=ÿIÓ¶,¶­-Z“;Óß’|ÄXîêðI–-$œ¼n,|ä YÞ¥Ìyø"EÑ%µÐK‚Η~|jzòk™W{P“X™Br'áxÑéw:LÃ{@C3;×*Ÿô¦¨^8¾à> æÆ7“ž­q("ë i‰½/³(Gb%+RñܱüdŒ(lòï²³Cé}ÑéKœ/ù,½Ÿ¬ë-\ßhÎsÕ\¼¾Ê3½eTvWæø±Yðmã} ±ÈÐ#ïÙcþ¥ù/ñn3™n¦û*#1?s¦Å¥óÆ]”¹Ûž&p}Úû ¯žpŸµù«£gvÊaîa†?ãûé§Í“Ñ}ôû¼QßújPߎäjmœžê‚ÇÏØ¼(ça@‰¸Œ öóúôæè"7KiB—ißwƒiF •6a;m¶~FwÆ<Üaøì[-Ùõ}†2©ÓoNýô7§œj¤D8n Ó;zw ˜¡×èÓU÷)ß­„Y#(Ìz‹ôŸ.÷Ë» 5ø$-½JcôäË#5öGoÜH5[«éª%Ì¢†ñ— V$“»”€cP2PÝvì 'µVÇ•}1¼;JGXÕÃ])ã”—€»¾ Ûµ´ÌÏ–»–„Ô- i_ç©ð+Àïrï}*6¥çŒñÄ}øN5 *$$¶/0RRO ¯wÎ]."Í àéôñä*Ÿß«^ªr-ÇgÖŒ8' vøpÙ”u¶wÖÜoЯw„z™7\ô†ú¦KºüM…óvOÌ“Ø^=¶¼[ûß7çYäendstream endobj 113 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 686 >> stream xœeÏ[HSqÀñs6Ë£­y¡‘¾œóØKA¾$Ý(“¡e¼¡„Úv‚eNÒ©›gÇ]Žþζ³û¥Ùvœè2µH/$†QbD=BDô$ÿ3DÓ×~ðƒßÓ—ÏÇrŽã¹•ZmUù©½³ô¾ìÎ\˰@¥UÎãÌÕâEkË…ØÞ4tž=sî<†Õ`×±ÃXVˆQXn¶å`‹¸_Ä?+ ͧ–~3¢tRÄÑλغòû[ 7`ïaв±ð¨?á#yWxÉ;.þ(ñŠ^QóÄýiÞ›Zýù ˆ…@­mô·Rl÷È 0DÓ¬nië*óYà¬À 8Èž+t]}¶àØx ©'«óHoˆ÷­s•å ÕÝ}¤cíîT34Co›ÕÔ¯7ׂ“°ÁäyÑKÆ?&–Ÿ‘YèGc¹C©%oO¡ûpéô'å‚¬Ö é‡m-@ 2Ð;$8ýԤݓ0 3Ü3x¥:&D ²‚¹|ð<ªðSänD "T†ŽoÝØ¸Pßx¯¦¬¯[“ûÖdÒ[j€û_µwsŒ³Zg4¾‰‰ÉÑØìTÚb.¥«­¥å\S;¥¿ÜHwQeÙôºÀåSjôT¾•D·qT%*Q ¯ÙèzÙF÷t=èL<œG< évñ<Ϙ/éjhšbÎl‚S}ý‚òÈl¶ñoÛJtsU“6¦ £Ñ`HÓéT*Mª%Nv'wêøštT)Ugš4Ùç=À!6ÀØlœ#å?µ 8a¤” °¡ˆÛ÷’êÌh[RšIà›Rf*P¯&$øCxH`„Ý-±ø² –eXÁµQ’(ó»Ù5Ûv`÷cnø"¤šÌÏ©H¨ò@•ªC *ư2±Lendstream endobj 114 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 163 >> stream xœcd`ab`ddduö 21$º»äþÔaíæaîæa™ý]VhŸànþ ÀhÈÀ ÄÀÄÈÈø£ƒïÇÙîõ?–¬ß>Ÿñû¤;Ìßÿ]ÖÙ“/çícЕÔ͑ξ¸ûl÷¡å&±guש˥¦³ÍíùÎß·¡{U÷w¡Ž…]{y”×§²«wÏX#Ï'ÇÅb>Ÿ‡³›‡«›‡»›GˆçŠ4”endstream endobj 115 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 281 >> stream xœñþCMMI7‹ù&øM‹ ‹ ›÷¿¼¹nOÃøˆùV§ø§ø7ÓÕ÷ʇ~…r‹ˆu››˜””“« ž–¹‘¤‘¡‘¡¢–´“¨´§³º¿Ö‹ÅŒXxO`û{a€o‡‚‹zV·j¾ï·÷š˜~‹ˆ}Š…€‡t;`bc‹v‡™ ¢˜¸—ª´õ‹Ãì>œV8SXcm„ÐP¡b‹`‹tl~tuf}R‹†~™‹Ž™ŒŽ¦’šÆž¼²‹¥’upx‚f„p„pb†u 7Ÿ ‹ ‹ ‹ ;¾q4endstream endobj 116 0 obj << /Filter /FlateDecode /Length 4317 >> stream xœÕÛn\·ñ]éGFœM­“Ã;´’ÀIS´në(}qó°–Vk%’ÖÖ%Ž´ßÞ^‡\žÕú’´LqÉáÌp8÷óòpÙá„ÿâÿ'—|”îðÕÁtøåflTŒ¥ÙhõáåqÓhež¸8øúÀ6Ë–Ó(8,Ê3–¹Q+¿Jq+F%ɪøø W‡ntšëÃ㳃ÀfvÈ€ Lõ“¬8¾9..ÀÀýG Àh § p[áE¹À÷(Kþj‡«±0ŸdaäJI ÿ4>'âÓ¼`h›´¶ "H²v¬eUœæ@°-Pná&-™ÂéUçy²zC0]¾(ä¿ÈHQ²"ç£ØÂã†NâÂÒ€ÎJØ1âb; c Þ©W¥Ö5WúQ†(ýÜÂa£ DN  D€ï„`¦º³ë°Üp*œtEôûU T­üo^òï2ÊôŽó=lÎtÍä<ß"°t‘Ó’5Ì()5T£ÈÙgعÒU8X2‘pÈþZ¥dYX5g(«´õÏ6 g[íâ¡™{I"j}æ=ÜâØf`x¹`,1–\ÊÑ–Þÿí‚ Sõ4ZuF7‹‹^ÀH€îH°¢’&1 ~LbáÕT«²"™Dcyá$6h5KÁx-Ä­'³§‚ÍÜØÎ£6ñz>iG¿$²5B¹Jà‡'3¸Z 2|€šsºâYÑK2¦Êâ¢kSnýó”^§3”<k8ïÆ‹®š\4A+|Pت,˜ÑRäQ¬`³g~VšJ QÅpk´i5R¦‰ÚóF%!lPÃú¼lý%€;j¯rËšg+ïS„£Hmš³Ê\¥Ð×2ÉÔH®5•3ª WÁ.2Njå›x\_ÔØƒUº/ð«–Bª —'x‡]çÅÒQ‘˜ÑETËFrLÖâàrm¹H`IÀ‰o.7NïP”ÞÀl—´=N¬‰«V\9yo*™¢n]4xŠ™h‚À!v– éªVR¬x†,‚Ç)PÎÓÙÕÅ@sI¤¢ü$+§?.އÓ, `š¼È£%ÑbÛ£ ¸É£gôïóäQ™¼ìœÒÓ©çyôcýkÈÃ)ØW;1{Uþ¡·§ è¤è¢ è¢c œu‡Øç=Âö·/yó‚}à“׎{?ëv]~&—ÙsBYždyò“Ž,ýO™‘qüÉó™ñ;xF Bçéçý4zJ„j[ ¿½ç‰ôN)´žv žt8öNl|ÚQ¶G‰äeÌfÞF_uN{Õ!©§–ÝçöåÎË»Ûù€{:è¯=êÝ##ÄwÛ/,_Ï:ë6&Þt0¸ìœÛ{¸=±¸G®‰¢™öÝÓ} óä§ô ƒiÅÿîyÙÙ;& «çÁr‚GqG|ÙïKqpUÑpíF¯ “K‡N Nš©r»ÐSÑøFê°Àb¢=PçäµäÄÃ"~W Bb|.B>"UÊÊ£#ÝõªŠüb€1pÖ@0Z}Sü¥­xÂ{FÔ á„R†‹9 cfן¢3 Ãnríä<°X̱¢p~pÖl{ƒ‘•7€ ¸]à±v¢è'¶ÉúÐNñ¾-*„KÎí’¼Øø{íÆ>C0xáulOÇp8ဤžÛóâÓ°XUñ £œ@Â!°_/4²â…WDÞ»îè:@À¸eCòV«06ÆLáè B\€ë^ B"|— !é´” ,+M]‘ÒAÆxGšÅã>[ÖY^NKN•:ž`ƒ-ë¸éó‰ÏPêA—Åiò ˆY;%+0v)ÃæMø–ÑdŒ ¬O)¦H¹¯WH”BÅ ¤Ÿˆº\âíbÂLðº–J%;4I Tx)Nž'Þz\ë±ÆÂKå·j§.¨½;é «÷ó" ½T½P£9½ÞÆm˜¤Êœ×k“q‚š`=}L½Ü‚+(n‰­µïëç°öAr訷pZƒÆ]f—­›Ö¥ê`¹NàZÛ@ÞŒÔÜ¿÷÷uE ÂÆZRëÄ )LöÉ.Tmªìq^Ðxµ0k˜º§xçŸÿ¦*{즉íciÿçøX™Ÿ¦Ôç¢ù¡WGãš\ÏËöÌ_è+»P“ø®y­‚¨êõÎ5o„Ämuœ8Yî°HˆÉoË™ª"É`¸ŽÏLŠR¬°è(àˆEU —¯3í ý ’™}.\rThoS¦ÅÌÊ$çM 4z©Ør4“Ý(Ž¦ÇŽÕÞÌ…Dò˜‡ð¦Rï2¨÷®ã*8Vëè¢Ô™w;®ª©JCXjF5ñFgÕùl›ÑA“øue±ÒÓš˜S1è ^8mA ¥½ ™ÖhâhÉ|ˆž¬RÎgû\é‹^Õ7ò¥þÆ<1í4EÿMS.½DÄiBݵ*no4ú2Ùú ;;zˆKVïKHÐÅ$®]Þl銭úÑM€‚;éPÁ&ޱ“j4> wr´& '†|8 à0€¹)J†úh Jb TõCi+‚éZhiAµÔõB4bFQ%òQîê\•LÜÕ»'×i$ábÕàŠõvÜËйUëH9ô“’ ¡ám,´÷÷:µhšJïJôPµ ×¥+ÁÀ?n|zZž‰ó%6D_l%Äöé†3míoÙÚsï:–¢hÍ·0Q»í`i3*ÍVý¬ŒõǽŽÖMǦ|Ý!ê²g]Þ7Qݶ².-õz+§Î(ZÀ®mÂ;.åî0³ä¼Å1“ð!ë`Üâø»-û—VöáE¿»…”†h1¼^ÿ}½Y/Œ¹>õE(c·S“úµ /ï/ï]ø¯Tx»´¼?ážÍ‡ †Å:Kƒµ=ÑÍK½èZqèæ¤ð¢{Ä öÖ…æ(cSé yJ_a`tøÜV£@3¯Cºé&!ÎÑôoþ[R¿@„TÑ;µE /Àu¾'¤| ÓÄ€ÅVRqpªm5òÌš+ÔÔ)žŒ/±cuV<‚Ûû3侯˜ÏÔÂ6MU ~üw¿q±è~æ>À5­òlU_&;2¡šF•ùê‹PÎ'eË%,×kZZAŽÊ <[ïC(à€›­|•ë9i.=TH&ù® Q~—0j\+åü—CË‚¬ø¸\ÓçG=M’‚óå?€bë;[6 @\‚ý­¾R©ð;?z<ñ€6ÁýÚJAÕKª–35¡€•ñƒ¡ùOYS"åv}<Ñ«]kÚžR}0ÜöޤŒr“mm«Î1Á|½P èF„CÎ4‚ÏÆy7ÝÎÜôÆþ^¦ƒwï?^'9S²ÄÓâÁB0ˆÝ¼FŠQÂm9§VjôJÏ,˜ ¬´> %EŠ1µ çkYÔ½õ/€±¨…Q¾E^ëx[!ðcXt&Œ™âðÜ&ŒJ5xÅíçìÊ·˜÷ï‘Aøù}IšSÑ d2A½¡[.4x! %x'ùóßg’‡G]wïö€”ñø-‹ý;Q–·>Oõ»zl—^̲=œØîÛ%VíÃ$lOW_*ÕµKƒ9N£\’êãX$üa£9H‡(Ç:Úc¬¾â×9>.jÇeªN´EäôAø ˆåÜ”8lÎZÙ :²nŽ %™™Ñw«kƒÇ¡JmTÛwÛ££m53g›ë¾)Œz±Å½×â¼\ÌyÑÂìô¢‹ÃyÞñ¯;žb™{ÝsBìÜÜsË{ Ä/:¿öœÚ›ŽSû õ;÷ùF®?Û» óË’Ex¼5cýŸ2,U’÷ý¿û. /îÑñÁ?àßyWºendstream endobj 117 0 obj << /Filter /FlateDecode /Length 18572 >> stream xœÕ}[¯-9nÞûΟØ0ü°Oâ³R%©ª¤ `“AÇp<퇞5·6út»{fܹýöüø‘ÒšÕÏ ŒçálrQ¥Ò•¢ôýÃëvÛ_7ýçÿß?¼”[¯¿yÙ^ør¶ëV¯ýõ:ÎýÖÏ×/½œ·sŒà|úò£—±]·³õ×ëlÛ­‘ NßÇíúObÃ1ÛÐ¥°G/bÇG?‘\ÿÚ„Gïý„ðbpiRí[ƒðÛx÷Ñ߫Ę$ÄžíVÎòú~o·Þµî·mg{û÷ïÞE Õ÷·OƒùIüõãøë‹øëã'¼¯ã¯¿}‹?ÿ(þúôI⯞ü•ß㯟>Ñ÷·ïÞimìûmÇþúÑ_¼|ô/¿¡T?æO¾Õˆ3É¿ æûd~Wjþu‹¿~ö­u÷áI§ºKÁ_Ç_?Okþ]þùÅE¿üþ*ùן¤Æ2×sþ®5®Õü¯¤‘kÙöé+=ûÂ_Ný,ÿòI=ýê[k7³{Ö̦ì~ø­¥úÕ“ÄŸ?É8Süçøëã¯?ÿÞ5÷ô[|Ÿo…Þ1Ø;¦Ï–æþxÊèÙ'úg®Ÿ¿yòWöú_?I›õçORüÝ“¿¦Êû³ Ÿ|Ï‚|Ãߟ|ðç>ûà?{"™ÅÿêIE¤áSyÚn¾wÿ}>ùôy?{’$íþÍ?oÓž¾Ö7ª»¬"ê¾–žµ§ÿ¿jéÿdå=ùù$§ÏžTn–ágß±øÙ“2~ö¤´Ï4Ÿ?I1Ué?>û4_Ïe îÿœÛÌÙ÷M–¤¿CaoOòÎ ù$ÅçO øý‹ð'ϾLÖÙ/žGßõÆ¿þø‰îÂû®ÚLñã'rŸ|«¾©jŸWÎö$ÃãY}ú¤Æ¾~ª²<ÖÅo/"Ú%; ©–ÿý½—àYϥϞ÷´Uý^ó;ÖÓÿ'ÿüŽÅÑÿÊ?¿}Øêÿ{ï<~¯–¿Ì%üJß¿ñ>3âwB¿Õœìk÷'ª?}¢úùºôždølâ|¶yœ>Ì?>Ézî²ßžõ}{Y¿þ½”ÿàÉøôl^y6Ÿ~õ¤ü?ÉL¾ÿÞ#’üÕ“Z~ÖQžwŸ<Éî“'¶N#Òz±xF¸|ôò_Ô=t”ý¶×׺Ÿ²d>äÿ._ñ|-{©·º¿~ñÓ×ÿöúÙ·ú’Z{í·.Ÿ¿¨çEIïÕ£´Ÿ—(‡(>Í›ôöƒ/¿úäÃÇ_ýô'¯þéÇ_~ùúW_|þãüɧŸ|õõë?ýøW÷Ï?|¬Þ3î¸e´ãõ7/û«Œ¸¯oÞ¿½ãvž¢Vnýõƒp$‡žõ}…T¯¢fc–iZÔ³NBä,RMÆü^f)ç,Rç·Ñf)ç,R£w©“YÊ9*õ-õ¬.F8¸²šû~+ú¯~kå‚Ón»•wï˱wù«Ù_C÷CÛí v÷¿¤Yd{ØÇ¹ÝöKªrï·jÅ §]çí@•”ÚÏ[„Șeú^nbñ$DÎ$õ½ŠîÉ!VɦöÛÞYÐMFž*¿Xñk¡¬™G«9{¹öÛu½Jó7i¤ÞÌŸ7¹rníÖ$ñÙ7íR–³ê/®gk·}HYÊÑëM Éù…ÕÔ6nÇ! JšŠÔ¢VU•OR^Ûv·]¹¥È§?Çı”Òºn§Ô»TÂí°úkgÑ¿ê)¥m–²©‘}âXÊ"– IÙ¥¨ÇayŠý½i)š·æ)½]ê09–r?š~¡fVkó,»ØT_¥]UýAîêçmÆŠ!õ’"HFŒó‹|«!£À°,«ôƒcb ¡´®†Š57viÚœ/T£õÀ"ôvî{ÊwÔê>8î¥ Ž[‘ Niëø$ÒÒä{NKyhƒV¹K²Ö^/ŸNÚ‹ÊÕv³,ɲŒd ôTcŠÖ é.ùÔÚ,äãžHWnGÒ(áòVÍ®aÑ^w»L»||ÇëÒΟ| éÑÚÆôŒàÂ×VÚ¥ñ¢röã²–´)¢¶€kìúu?h›ØÑ´ºÌÖÒ6mmÉAJYûK[®U‰¦¬»¶¢ª³{·j•¾¤Ã^rðA´oh9%ÏÃR¶M>%¾P³,ë1níš8HXO«ýK~=1š§5ëKFámg?¬¦ƒã ý¸]ÚzÚðbÖíDÙ«¶GkèêÿŸ8s·KlHÊn)r§VzvËäøGi:MÊ Ñ´5ØG‘ s—¶/ò}ä°Î•X[­ÔmkÂíVµRNi±ROE[¤æ)UzN $Ül¼«ç)Ó!b›}ßS/TÐÞ/ŒG丱—¸½·½ÀØ®µnñ¶ ¶žzΕ·õô^(¿¢HCÛ­f7=‰3[t’ƒ”—N¯2® Lp¥ŒSÛ—|Þ¢ý@Ö’ƒ„ò‡ª;º=E:è¥å.ÅQfk”à ‡Iñ‘㣠"b’É>Þ5éYW™8–r“ôÓ2ZÅnÃf…v”K«Zn‡u“丱_®[çùશ)Fqcw]$YÊòJŒl—tÈݦ’}³zlWÓå³å©æyŠéZA—ÉVÌ¢#‘vs®Ðf¥ýomâ ¥ A:‚^2&Öòd•wk:ükÞhy2)[§&c^«Úp䣰µkUÙg ;½R|ÜuŽ¥<÷K–%è›¶*:¸mÞ» {‡4V'ŽO|‡ì­u0Ô5…Í{ÎÍV"6ï·mLœyÔ“Þ#¿ÖyÔ2’ŽyÐ#Ã3,Úâd<;ýc6)d=0-ác6ù˜6ƒaDº«´ªV„»û0rèÞD©jšåÂ)uÙ¡ŸN\½M­®zøzb¸Ü¬¯]ZjGú©¬l¹®íG†©ávÈ 3­MûÄñ”ÕÚc•IíB¦eiEÆ„£#aõä è¬³S³²}Àj« £«ùøººŽ S·¬H¼ÉÊ2̦€fÍÃFkìÉA7‘wé²Xƈnõ£«#5Ú¯t¡kÊRD~KŽ]¦ ºÆÉ¡kØ ¶ik°¡ë´©<8Þd¥ËH¸UŸßµÅU%K4uéHº¨!ÊT)…lUZqÃð|ýKÖH—[3”Ùåjgò:÷ 1äui€½ÌC^p¼áº„¶ÁÒWàÚ[†F¯X™—쳑ã OÆ]kÚ®OJë¯:çHËÝ:ÚÝfK¼àø”¹ÙÚã’ék`U)ª6ë7…Æ^ÃÖÁñù«jËo».ÇvÌ_ørº*®¾¦(úÕ’ãCÞa y—ù]º¦ÚÔ¶áã]ÓŽê$ZΰⶡëLÐòa4n°ÑÒë<8¾ú:ùîÕûšP§­éXpï:Ô‰ãÓlµŽ´éš¸pM°©\½|" ¬ÉA×’iR÷nC‡K©hè¯>²Ò-çÄñJÅг‰EU#•uhÕlEuZ¥V`“ƒ)#½|6™ÑdQ`ßqØ0Ѥ:tü´…Ú¡ß:9èÒúu&?¥Ác5qI)¶hâÔuŠò6&RÊxqé8 #–ùg·©Hg÷•ì)£L?&ª¶°µ˜VJ™Ÿté3¤Lh®:Œa™\ææ*e× ]ÕV£ÍV —´‹†v.볂3çØöÓ60™¥´BùeÊ1˜ED¿n+F±áúƒÏRÖ½wò?…QZƒÁñ5·y\dÞj>ðèR±WLS'²”µO _9câêë‚Íåa-PþÍWuß±F ÇGËF¨M愆A³‘DÚÊå]K븯žÍVë}ÄBIõl¶Âî²’¼|ý;lμŒmºÉÜi+¾ûdéËØäÌkni—÷_sË7ß}5êkîä é~A'40Â2 ë,¨Kc Z‡´î‚£)wõÇ€tŸiótLiõ2®ÍèSõŒ\:V%gY:«c3;—ο…™Kçàø2 mýÚ+7B;ûy]¾SÔµ´‰+«ðíàDâ[Ú뛥Չ1O–2žmÚwr²l›˜?Ži²L¾É80\1w©œ¹D8wéw³Á ÍsWS'CZ¢E¦v›ŽÕ·0°\·*HZ­¬ÞŠŽg2Y\º¤“nj›L XÂX¨\8s{·u±ï÷ÐÞeuenÎlïÉÁtrZW•…È¡ƒ¤6u™è#9u,DÄ®³Ooï§}dͳ£nÅŠÒ‘Ãu¢½Ú¢“ã˦Ýjò‚“Æ–M6¶Éþ÷Òž`˦ Û*rü{6›ʰ}ÏÃ\:ºéêÞøªÖ^r4¥¬5‡•keàØ`…Ìf›TP×(9Þ†-Ìv©Q_ÿ”íf>¯¢“ó§ðd\×ÄACÐq×>UÓ-‡6™$­©mÝ7áMŒ8ΉãÂiYê|×.s“4µ¦³GsÏÈa+ÈàxOéhXÒw1•nn)0鮪Ï÷5XmÙˆ‰íi•Îf3°ŒÈR÷€cLÿ&:\ŠÅ?ˆÏ:ƒXÙáæL1cت»»÷ç<;VÊR‹>gêÇÇ—•§­Î»ÔÖx#UímÚÒ}ãF.5ºï—;ÅX£›Œ$è ¬ÑàøºðÂÊÿì¾Þ®ÅI²+:‹™+åšÈHf[yù„3F7kúÁÜQ û—½O_¸ÔiæûàjŸ°Y£·e¡Ozä`2®ùH¤‰cSŠë?Ô†OgÇs|3rØrq誛rd§%C»tõbMY²; Ç‚Ów]r[K†D?1yPiä¡)ÈÑhÜý55l›ÓžhMA+(A+©a-ÇeÓ«ò#€ÔUÁ©¥²ŒŒ}èËV ¤ï ·6ItÌè¡42°Î)¶÷O »vÃÌÂH+“Ûà¿›}L;Ùn…Ùe*¯; ˆa>8²á[èa Œ!K&iREÛû5‚¾ëø´-EHÈTú¤4ò¸¿$G|ÙÕ„ÛÖ™‡ÓšÂ­ ZI k9î¶ ‘鲚ôÉÐããUú뉢5Û¶É ¦élDú.)†mÃÉ‘%ÍæE5 I[ZùÁ°*•ªÑÌ´fA#(Vï4²øÆ[;ŠÐ î‹~-ãæ¡7‡¡m=[‰ÊpVp4ú>͘”¸¬D©4ò°Α'½,5”4ó}I+(A+©a-Ç=ŽbàRð%€3ö;õHËü±Ãi«Ò÷^)¡.'Ðe¥‘Åý%8×°“‘Ðpõ;=§µdnEHÀH*X qDZ̀;¬rCéù²F+zÈwšçp­Ûª+軌Tó¸hFN{¿ÜI"ŒÞhÏC ¦çñÞ‹àJ ŽŒV;‰8ù—Úkð Öl[ñÅ%d”Ó<* ‰,sdUyiÕQÎ22 К‚FP‚6RÃZ ô3 D°r˜WýÃÌêÌ)êh3Z‡iíh!§mu{à+R¢Á]‚Þ}9±+æ#ÚÁا<@k ZA ZI k9¼lvLhvøA<9‡ÅKØiÖ0^³ÚÝßà´•m`è¢Dƒ'<4FV6r6ûСAÏ¢¦,Œ¼¿¤ þ{íÉ×BxÁÌ«+FÐÓݸZõ ÛšëbZöNÅŽGZÐV0s¤D«N»ÒÈãþ’ß„œÚf í£¹” •Ô°–Èf­Á0p‡GÓÓ6O»ÓCçÿ] =8yÇ Œºˆø»d¦ý9’“F÷—äœX¢„‚£ã0ÐöÍÜJÐDjX Å•.Äd)94H ^_r4lH'¤‚0‹§Ó ®:Òw¸1ÌÍM ]?ž“ÒÈãþ’õ9ëÚ”¤LF3Ð÷—´‚´’Örà£aylñiîm#GöhNèŸ>aÍípG-h­S­Ë}’81&„ÒÈãþ’œóBs¢†ÓU2Ðö¥Ý JÐJjX˱_¿©,Üz»<Œ,8Ç¡Û8™1ŠiíêÍ9¤Í8>ùïã´Á/’“F6 :§jÔì4‰ÕÝiÏ´-NÝJÐDjX ákGxe»†.îX<:g·!IÖm§õOÝYö¡+;|9mkA i$G¦˜ív†‚ ‘ƒÊƒ¡ûFõœ0¹n+…Ž œ¶¥#L 7Ñ5<_¬ÙÆÜü3;œqÁéú¿Í­§;>Œ>:–% Í©¤KѸ*B ¨ h˾€sôœÖj ôÄnŸríóû9KÐF*XK’Õ†&Y«À[œÝœý’jwúrÚN¬´• qÓÆâT@YпfKªj›}jèð>2 '­d°!ÜÆP°–#Èi!M·/=qކãê{mŸÖ}‰Ž±—O¤ï8<Ç$1hj <î/G÷j¡àËY8­ ܈³¡`-¾Ù@૞è^øfÎQ'¬í°Æåô»eMÛ ï˜Û$ qc5ö,|‚2N‡§Ä¨¿ßÌöœ¶!6P"¬v¥X—!åôH¾àT aË@ÛAs‰z^†P‚‹ j <æeÈn盩AÏæeèyB ZI k9|ÿ9lîÐsv¬BÈhæR’¦s"4ê€RF[8íÛÉrME¾V* Y}ëCº˜C*Sï4õï±õ¡.º†µ¾ÁáߨÃçéà´Ž þ±µüa³ðV7lAÛÆ°Çq§IhÌW›4®áØŽlPCiN{ m'ãVP"ìÞè‘Î+uÄhuè‘(ÖWäh {µÐ¾Ã]çGÓVƒ¾ãhÛG)qb[H#ûKrŒâ¡A·yû”èûKZA ZI k90UchÈä…;ä¬Ê4¬^OEN=iÐ130é©NCBO=Û¤4ò°ÎѸ†žmãÜ Æ-æ±Åž•V€“VBÃc9|äïÊ=ü°.8Õ‚óí†qk°ëaÃt³8ÖŠæ¹À# H—ØýÇ"“SÃn;‘ÈbÍm @Xí ÖR,^ƒ®Ñemöôb‘g±c׳ߣäžÞéÉmî ¤‘Çä7ÐÑq¦ßà’º7·¢çáôä7 ZI k9ðÕt;^ÝÉ8àUÑ q î=áUÑ€¨³}¸”è›»ÿÛJ#‹ûKr*+CCÅn(ò¨Ü/…”p#©`)ı{ WÚ‡‰#ýÕÆžauÿÔÈÍ⌰™Fæü§RíoOF²òËcÃvÇ“– ’ŠK|Wæëiéö@{Jn1¾EgŽ$‡]Ÿ±cÖÍh›³=G$ݳ¦ó¨ÿ®=•eò ¡ýþ’ ¥‚óò%„çÚOzÍJ˜}ž|¶Ý»SÑ.Æóð§–›Í ÃIÛØøUFÐîÔìm’hæ $K8 ÉÙ±±[Í,@ÛÇ m¤†µþ™ ö ¼6D‡fºIuèÞÓÉé´}¬Óž”ЀÖsÒôNdp|p Ü™Gî´‚n$g‡¥$4^CƒD·ƒ7ÈÙmãgn%5h¼FºÓÖƒwó¹‡ÄÑýbe]idá~åh̪ԮA/é7 ÷ÎVáF„€Û ÖRøÞ¹Ú>@oZl~ðâ½äg/¶¶cszX÷túŽ)ü,Á±ÉÓ¶¶Ð4òðéÕ8§-yS®·d mûìVP‚VRÃZ÷â£%œºÅ>áÅçÚšŸua›sI·ó¨vÚÚãfý†:œ]©ÀIÏÁäÁ X³Æˆäz—Â<§­1úN‹4Ú5<Âã#à]ÐM}E|„3pÃVj£€Ö`ä‘ßÐi«OÔpHŒÓ'×@Ú²°ìŒj—gRAN{ -> ¤†¥Ôâ.fu÷CÎ‘Ñæ˜]†Í]pÓÌiï8æs Œ:& ¤‘‡mÄÀÑys…»†.£z¯™‡Ó>=ª!áV††µøhÚõºLØÅ.Vƒ”¢ëÍÜ'Pë†o_}‚¼¿Ä•¿ï$’' í>x_éz?¬ÿ#Ðö}ÝpÜ>$_l÷ÿÓÎy\› ¶ÊøÝüÈÕ†Ák:®=6„?QB¯wî“Òq\Kk©‡±™kÓJÐHjXJác†Å¾6½ ‰¸Ûà¸3F§‡nñE·5v®éë›ÞS@'$£éÍ!,|Ò3ŽÚU_SöÃNϤǢ™  T°–"£ßúÅ{ƒ »ÅGä™¶ç­¼FhšÓSô[Hxl[h ¦è·~ZD{j8.ÐÌôÿf"“Oæßy•@oñõÓî |˜8—ºÙ­D£e¤6êͤ¤`t  íO}R@YØž—œMãMSƒ†ä×Ìäý%m @X½=О…u.œiërÞCÉ9°/¤£A·{莧m½gá²)q`L ¤‘Çý%9º×|MûÂÈ´õ.7‚4Ò¬¥ðíÿ‘¹Øýq’‹˜â´¯ÅvœO9=/K)QìâEj mYÜ_’¡÷ª×e] ƒgÚV'n£:h$4<”×°ʦ'n~‹n›<æB¯„XØ’Çd8}Ï»1!¡Mg¤† ‘—q°s Å.èf ï/i…K¤Ý¾y[Ëá;ÉÓÃuN?È Nm>Ý1ØrÇÉ$ !m{Ä ±”¥h8‰î/ÁÀ<“ïl¸cxÜà%CêuôÜÂzDqlq3xY·Uô_›DÙÜ}­4£—“±y¸…+Øl\É,@ûé ái54¬¥ðs£zãiš"ݽH8)µã.%»G³å+SK¹òw½|MɃÎ8s稛ê|M{ó·çúþ’&PÂ-¤‚¥~0‹Gõ°¸?€œã€Žç7Ó`ôuáÊ0è;"èK›$îi†ÒÈÃjß9,;5è]sÊ´Õňë¦&A+£ö–røˆßíÊ­^øèîð§ãŠ‚Œ¶v#JèZoÈ· m/!§DñrjpÚó¸¿$§ãt‹ô… zNÛ˜+œ“vCÃc9|·Rõ C:¿zë>$C -xÂæx¡=èËCœöaNÃB¢6§]idá»ã¨×Å÷øFëSFZ7vüw·©— 1n—‹ÃôäÄY¸ï%xTîÞôé0½ H/$dÇÚ5ÎãtçÄyºkðÓòÈ#ÎÓÊp+óD~)ÇWu©Î®Šð{r4ÿЍ}`@ÝeÝ‚| n¾O//Pâ´ñ05F÷—äxmäÛ 4óíÑ1f%h%5¬åxˆÛüæyrºÖåÿv€Žø7£ïsü›KD¼[ Kœño;nwLñoÛÔ<3šxŽÛ|*?û¤a-‡o]ÜM£g¶õ N׃cz6§/ìô|¨rÚÂ0œ…DljyhpÚó°!Õ91IÔp]'hÏÃi aEHÐnjX˱ÌhêsîóŒ¦Óif´ra!Ï ô<§Q"¦,×@YÌ“šF­äœÖÕO˜9€œf4þîzâÅ~t³á—¼ýé’áßuêÕ/d—ªê´ ïx²E·¯!Q° ¤ ÄIêñøñšÉõ8¼L€Ö4Á%ÂD×0—àΛòx±Dwâf†‡†ŽïgìÕ›âG úŽ;ácLör‡'wB•Û"Q¯ „2ÝÙ0JÍNÛ¢yS‚¶QÃj¼»9ì™ÛÎãRKp0Îm6?Å8åi+î]ÿC`ßì!•P4²°äl˜‹  _ç8ÈÁIvÀ2 „Ñ–þ¡ hzzÑWt¶«ÄÃSÎév±¤À˜¸W}†DLœ¾ãº”¹É)ÑqÁ!4Fš‚œÓ"_C¾ 0¦,@Û”àFP‚Fº‚µ>¾Ã—¥o’à*ypôºEî‘.}±Ñ#£’´Áî3þÞHOMêmh'gÃ9ÓWÛie §M^H„É®a-‚¯íq ¬–‡d +ê<¾»ß¹šG ¡Ù¾Ã9R&ŠO(z»…ß»½é·$3}IÀI¡à¡ ^¬_ÖŠw–’Ó<°Ñ#uníî¡Ý[ÐV® x”Ð×6ê¤4ò°Αå¹B\‚éô) Ð÷ŒztNi KáóÕa[_=+8Œ%G:þe®^?éß1¸#âj‹ˆÁc j‹úêÕ1i <î/ÇO — æÏö<œžâ B"ìv k9ÜEïáhåÀõþäT{"ŸÊÀ‘Õ9“@O çX¥ãì¶®4òð•lñÛcÚ <“y€¾OvP‚VBÃc9Ü%àª2µá~9}³[úwØw΋sz§ýpë8RBƒñ@CiÏãþ’œ~øA 4\ö(Ydòþ6ðwíÉ aÓw`ìõ›ëô糂Óq«¨ê²¬àÑ!êiÑNêrà²R #þ"Fš‚œÓGJ ênÝ3 š€6P€6RÁZ 4Ç£û-ç oÙM;|³#´b×@Ìd§ }ÚšŠ7.JôáÍÓ5íÑ~É©v|—ì&Sfá7Òÿ&2ùZˆuÍ{ùóZ±æõËî\óêùÍìd=¯y)kÞs¥‘ŲæU|±T°Ùûe™èÙC .{‘~)B¸íGÃ!/ƒ£+ìvhrÙø\ñ~ HwÚüùÀc›‘š4ô»ËÞ8gÅŒàéõúRôƒö©Ï   ¤‚µó½n{`¾×­keܨV‡|›îu;}Ï{Ý”à­mjYÜó^·= 0ÝëV|›îu;}Ï{Ý!áFº‚µù°{|xÅÓ!ÉÙí•»]_ ÝA{¿Ó~hjGØàØÉBv÷•ÞxDŽ^Ú;útA½¼ÇtS´£ÃŠp+CÃZŽ;Ÿ¡³aöîAèÁÑwylñ!`\ƒè\†)-è;^ð¹Ê$Qá© ¤‘ÇýeâØk:©a³×„3жÑq+(v»†µ~!“.2/ v2þGŸõ5zwÏhX³˜JTñ ÒÈÂÖÎÎ)vž œ‘è)މ4Ò¬…ðác‹ç@ð,MpÔåŽõ^ã+ ;V0ã ÚÆ¿üJ )`k©€$r°„b¨`³q ³íKÌÖ'‰°Ú5¬¥p?)bË4Vq8Á¹ìѬ¿^@³~AÛp.%ª½€H#ûKr̰¡áØš3µ‚æGÙR¼ãVRÃZŽe[ÖÎ=Ünä w³aWÔìÖ¥ošÛöTøÍ7\‘0è=¼mÎ9Š{Û)xZÊ/ðg ¤•>±tá3éNÛ,‹†¸6ÐÔôÆ Bäh¨¨-g\ƒ>ÿ}Ny€¶æîVP‚VRÃZŽå’›ÆEô1_rœ>M–GÍÉ´u^_t ¿ÂH#KAΆNW«w¢3ºw3ZÎd·ix,‡¯wmÚôž_ìG¢´²Òœî)«¶/%}ÏÇ B¢Ùî958íyX çh ¦]‚í~xîy8m _X´›ÖrhÙþæu×wtµ*P½,Ãþîu{ýI"YéA¾=xQï놢;ýðž ëë›P›˜‹ êíi#õ”B+žËþúó'9íSN߬àåÏ^þ (hĬ*6š Ñ«£çhÕ¯ßé9¿ ùoñóœª?Du}K!~ôRk³ë቟V5Jn;ü´"~Z%~e?B3~ZH~ZHMøi!øi!5á§…Tà§…Ô„Ÿö_é †ZÕÈbY¿?†ZmzÉ¢LÈgÁ™ÏìÖ¢Þ^L)rf©n“Î$äŒI¦©ÃBž ¡àÌRº6:gUÁ™¥ôtu?g)r~WÔ6ƒѳúµm{÷^÷@ã8•:” P(Ô¾-Ôò[Y~+ÇÚ{²mÿ(o­!v;QÞZ;6`wÓ­µÍ/•N ouøaU€¼UuÁëN@ºÙ“ÿ 웦lz©µÏ oMãìñdBº5upl oÑXäÍ`6ÕEH7€±Ì°o–Rp4Œ,@Þªº ÔϘn²Ø;0?Í(oM³ºf”·¦×ít/ nMìeþæ­êûÀöÒ2qÞê¸Q¨nö$!õâ1ëjs}ŸpÞ$e>óißÀjû·pÞláeÄy“¥ÝŽ×Ö­©ËüzÀykº­0œ"â¼á5õ–¸nMïýÛÍã è­i˜—YJ ·¶ß+aÝšý• 7ÉÉŽeè­ž2úŸ}‚u³÷0Çñô&ƒñi/_ç­v<€›¨nÒ@GÛšpÞ„BB¼ÙkÚÕîÈ;¨›-ÇmŸ?üÙW²'Ç óVí!¸sBu³ó†RpÞZAtâ¼I5v€ÒÕMV;—áM-8oU]JûóVûéYÔ ï«ÏÀoH¨W‚&”7Û|&1ÝDÕŽ.>£¼U;¼@ÞD?.Ô¤[U/‹GœAÞ¬2¼É·é€#¦›ÕýUPÞ,C¹"Ê›Ûo¼ÓÍžàÝQÞª¯ŒQÞ¬‹_×êf'líæÍ>±ÞæÍl+}u³ÏÖ˜7±ÄFyã/Œc„t“ßN½X@Þì3Yë!È›ÝýW‡t«ŒX@Þr È[Ž„tËq`y«Çe@.òV}gLnõ8 ·€¼y³KŒ76»Dtc³[1Þ¼s%Ä;Wº±s­oÖWÛ ñf¼ÌoäbxŒ3Ä›M/å5ÞlN2p&â¹Éȱ9âÅ„ðÖ~«\Â[Sˆ‘½NxnMßämoMÝ„À}ÁÖôÝÿÞ&8·Vº=Ű¼µ Ï8ÝÍúÃË­éêµ<€»Ùˆ8&l7™J,5 ÜìÝèm{C^íÄ Cl7{ ®ÏØnM=+r7c»U½4`“"±ÝªzÆÎÉ­jÔÑ(ØnuÚ-F@r‹QgÁv³†YË„íf§÷ôÉÍZ³N,ØnU_CTW8±ÝCÙ'$7ÃgУŸÛ­ÖíV5\ÆÚܤÝ4`jÎÐn>B&²GÈÄqã¹"»ÕÖÍ­“ÈnõÐÍׄq«zð2fŽÏu(1vÃýAó+;Œ[U¯©¡˜ÌÀnM¡™l/Cd·¦ÐL„±&^ñˆñ‚ìfCŸ%²›uÛ2#»É<Ègˆ&d7³£ÌÈnf½Ž™ãVõeí ²[ÓËf!}™Ž›?‰ã&«F‡§‘Ýlô«²› ™îC7 qeFvã–"€Ý¬u3°›½>ßݤ²Ì#¸nöÅkBqøM{Àu³žÔ'X7[Qª78nÒ÷*bù§>.¿zå°nvšPÇk‚¸ÕÓŸX`Ý,·O°n²¸(æI 7ëù”6ú٧­e‚u³aÀ®q“,‹îŠVX·VÀk¬[«–ââ&]õÂo†u³¾²• ÖMú­…!&ˆ›Moö]gX·jo%&ª[Sì†vNnuà=ÓÕ­é¾nAukÍQÃMöAp§ÉªU}’æš@ÝìÙ‹±&„›[_Î[1Ý¢#Ó-úq ¸E?^0ݤÝoÀdpL·¦ØçmFpkzÀÝ_WH7k)æ)#¤p &H7k^z!v†tã¾.!ݸ¯K7îëVH·Òr"¸q@^1Ýl®Ðe``ºU;=g·ªÏöm3ÊÛ²\!¤[.Wà–Ë•ÒkÖ„tãš5ܸf]!ݤPç„ç\¨1¡·YôýÞðܪ©2á¹ÞÎ5&ô6éA OÛÎxnM_B-œ[Óøx3‚àmæû°û½3œ[mO{έ¶k{Mä¶ÚôÖÐ1q|Ñi—øËÍzY;&ä6+„ÕÌŒå@`¹ÅÈm1,Xn±,·Øt[ì0·ØØ˜[lìº-6ö ˜›YR&,7Û&Œ>!·YVï=c¹5=Áác¹áq|ÇU17°½`Ø_W(7YTtŒÁ„r³©ðØÜf{YÛœ¡Üš^SXœC¹µ ×ÿ¸­*H-f(7ºLÊ.“n£Ëd…r³ ñš¡ÜlgPhn³Yt²ºYÏ7àEºU½4Òfü6/ðJä„èÖGøê‰èf±³Møm­È x3¢›41ÂT9¢[rðr›5s‹àÆ£¤æË7Jï>šŒI@_“Ò[KÎæ»bj\[dA<·´´‘ ÖRÜ­;íÕ¯ñ3˜lõ(h`¶Uó××Du«–¦)Ñ Æ;5æÃÉA¨yj°W 2 ´ mðßi"“¯…@Áâ$¶[r€Ì&´¹Â‰ÜVõáÁ­­Ù^‡¿,ë½Äq°i Mܵä™-48r[äØnaEHÐJjXËae“u2¢ÂÛ-@f“å Ð'[¡¶£âÙ'b»Ùž¹Iâ´`§Pà¤Ã®%m‹þL ضÔO`·´€aòþ@Ø­ê«YzpÀnÉ,›¹ ‡9 ᵦ;›¸n¶ô×$pìîCv¤‰¹– ²¥ ¶E„uK(@©`-Å{­‚3qÝ’X6›åAÐ}Fu«z}é8‚ÓôÎYë‘"5 ÚR=ÁÜÒJ„É®`-‚w¯‚ÁÜ’46[³mþJÉî+ºéŠ£äzÚ)W̹1%'M µ‰cO‚‡‡j‹Ì-L‰0z ÌM´4+ÙÁÜ’cXlÖ…qçܼ èâ Ýæ+¸kP ¢LîQÖ‚¸ýHŒ£‹ÔN·ÌŸ4 Ö k©Ô–ðŽã6q4&Æ/½Úì§èõ5qÜlz´+q”¨ð±‡† c-9@aK @iË<ˆã–VP‚VRÃZ|0éëx„ËqÜ’6;Ã3^æ°ƒÁ«¼&Ž›åkW)±ÛR€ Hd-bm˜Ü@ÚR¿ƒ¸¥ø=-Fò‡x©O â–>ô¡7£ S€NÑq³íŸ…šRBwÅ©€$áÕ‚á;€H|¶Ì€ni‚K„‰®á¡¾ X¤Á-9€`“áËCh³“­sÁ Ÿž¿_'19i¢«%çô`P*ÀyFæ@·44‘ÖBÜá=­¶‘ ·äͼ¤>›yÉÏ ÀÍ"¶„t“Õ|í ‚&¸Zr¿–ÏY¿-m mt¥@Éô¾Ô>á·%èkæ×4gÐÙì(pŸàÛÑpM²˜Õmp( Mhµä|-5œ-² z[Ú@ÚHk)|]½t ·%ðk´²ËÜ8®öã5¢·Ù*ü¸òw.™R;I\µ`Tt`j³¥zB·eþ” }Ô°–À—‡ÕorøksÉA¸º¬Î6§íí³8Ýˆ×ædE‡2Câôgƒ¨4_‚ Ž¿ü-¹È#^› +B­ k90|Œêo£9zÛÄéˆØ6OípÚ}GDo³y¯¡¹D¡;ª?ÐŽ­– ¯¥ ³eÄoK+\"¬t åÀwS¿¿¬ ¯@p¿¦‡N3<›Ð=£c@ßW2`JŒæ—é·•&ºZp-48>[änaEH¸•¡a-zÚŽ[´à–௙ƒµŸñ¢wœ%‚ÂÇ$Ñhj M|µ‰ƒcdWàøl‘E ¸…!fCÁZ ´È« ~ˆà`ÚŸ\@›Ì?Ý¿#¸ÙDzŒ”8ù„k øjÉ[hp„¶È#0ÜŠ ÝÔ°–ekW<ð‹@½àÍvÕWdFŸ%^)>°¿öx¥Ø$¤=Õ}Ò@šøjÉ[jB[æA ·´‚´’Ör¬ÛMÇpK ئ͞ÇÇvÙæ†ÜOº’ް4Ø25ÚR?1ÜÒJÐBjXŠ€1D/[Ù÷q ·äÍöîí„6ëͶà †›õøY ûó“T@šðjGT|¶Ìni%Âêý9Wëy|›Ü’ü5‹èíã¸Çß‚By®”¸¶®'&T@’ØjÁøZ&o~€Å ß–&P‚&º†‡B,Ã~À·%ïjÇ€ëàl1$|[ Ú!áƒzh Mhµä '5¿'ó ÂOZA ZI k9|QlË’„oKÐ׃¢èlŒ ø6DBôI`ï~~ïQ'¤‰­6q,â85-² |[Úài5<”Â÷1Ç ­öaâ|͆)Ðî§ñ8â€o³!€o.ÑO ùRiB«%àk¡ÁÁÙ"€o +B‚VRÃZt5uäÎømÉ9üpò€·ÒáÙì¸wO@·;B Ž>Ià•±Ô@šðjÉ©~:I Õï~0¸¥” •Ô°–cÒá–@äd²Ìg“Ù2s1aÌlùÉ1$€L”¶Ô^â3sJ„¹Û8nÒ1wÛù”[rÇf´FÌY_Oð6 옿›îDò ‰·–À±¥`µeDsK(A©a- 6O˜nÉ1H6Dþ^¯Dl«Ç^ü4Gﲃâ> è=ƒLîTI‡!»oó=1ÀÚR;áÜ2—ó\ÁCîkè€_šB0B*h†8žÛ:à:p®4Ñ֦ЌÕ:€±päÏz£`Jì$QׂL¶H ¼¶TND·Ì´Ž Vû}~Æ+kÉài«Îyóq­Î»-h †?Ö }ÀŽ\CÐ<° Ï[©€ç±Ì"Oli%h$5,¥@Áz÷ÇuKŽ»ht]PÏ€m³ Ó0Ôì†IuLúÆ]* I̵`øÑHж̀°ni‚K„‰®á¡(X°Q »%Ðlvâ]¼õo</¯ îfÛ¥: \HOï$±×‚d¶H Ô¶TO\·4€4 Ö"  ª^+º[rÎfÑNº›E§Îèn¥i/$Qà´'^SiB¯M{!<5¼-² º[Ú@°z{ ÝM>2 3Ý-9Àf³ Ã•c·ICéæm t7iJçíœô>Z¦'Iàµ` ˆ˜‰Û–Ú ì–ù»D؇ôð±°TÓÝ’A‡Ó¾—ѫՠ½S>IèÕ}Ò@ÚQ×’X¶T£€gA`·4‚4’–R,g€ì–n¥üÎaÛâˆ.€Ýâ/$ü/4&èÚÄñ­5¶-ó °[ZA‰°Û5¬åø-—©ŸoN.S;Žž\¦çX]¦çxt™šÄä25 “ËÔ8'—)Ž4ÓeŠ„t™2H!]¦&1¹L:±Ýê9€ØnÉ1h6»¬Ï«8r[^€$¶›ÝÓÛh!Qà¡§’Ä] Ž#³…Gn‹,Û-Œ m¤†‡R¬QŽí6EUàшº@DqÆed³nP€a×BF3iÜÍdb€¶¥vºeþ”ƒ]ÁR€eÓ¸n—J¸]p[Þ¬u`·Øpð÷1ù7ÆL3à<8ÀeKþ@ä@`·44‘ÖBx«ŽêàÐnÉ0›Õßî¡ ;Öä„v³¸k;'£ÄåçbÔ@š°kÉñÒ‡·e„vK+(A+©a-‡/©6GÜrh·à80›Ð'Âp ®—=h÷J ‡yr#pÍIà±EBÇk Õ虇Íu æÃŒ7´Ò-9@d³ÛÖöžÛâ¾e`ºájÓ˜$jsÚ5&èZr€Ê– ³-³pL·´Á§‰L¾b9k™ÎÙɉSrœsÄ)ºŸ„Lçì8* ?I ¤ó˜Ý9qHq†î9L§ìnCH¸yN¿”b‰wL·ä‘-b±-¢‘Ó-â•CÂã™Ciâ­%Ç+#4±-ó ¦[ZA ZI k9Ö š˜n Pé>@‡Ø1Ý&7°K„'¸?ÐJS8`¥Ò ©ôg(1=Á.Ë×°–c9eL·à8"[p;b[¦[’‡„Ÿ¡‡§o-9@d ŽØy¦[X´›Ör,žuK0Ùboî˜m±{T7nïC›ÿHï$Qׂa lá0À¶t 8 [züwç‰Wëí¾„B •nI UóBvÛ,ø=ÝšO”c@ø{* ]\ÜIà±er൅~º¥ T0Ù‘¾í¸Vì€n1¢W»ð?àÚâ)â¹á)¢> \~‡ ‚êZ0–-8ls\·0!ÜÄP°”a‰9 \·äð¥Fû¶-ãì–C”ðˆ¢Ð@š¸kw«]ã¶EìFP"Í6¥ð(S ÇKd·ä—MèË&|ÇmCœI™Ý$Û#>÷Äts‚pkNž"{P[ê$”[æJ Zuzíb6†>à> Ü’c`l^a¤AµÅõhB¹é[€MÂï×^#)þ&ÀÉ +1ðÙR/Ü2cJ„¥Ðð`9>ÌFü ¸M ÜþV¿Έ  ÍŽªõínü a—@„gjkÉ[*B[fA ·4‚4’–R¬£81Ü’¶Åýq·ʼná£8|”fz' ¯–£¼>t‰Î–Ú ß–ùS"f¤_ °|­€oKÀ×¢¦œ-ê2àÛ¢¶C¿Fh Mhµ‰co"†g‹<¾-¬‰°Û5¬åpW¨ãÛ¾-9_³Í/8}\~"âðmVÉû$põ’é$®Z0¼©Ë–ê‰Ü–P‚RÁZ„eÈmÁqܵX9.[¬Ð¹-Öp!ák¼Ðàt«%Ðk¡Èl‘‘ÛÂþN£™|-ÅnÉ$r[r¼fóþæï ØÃ‚~e? Ûìµí˜$¼¥HW-9@^K @fË<ˆÝ–VP‚VRÃZ´Åâã ±Û&ŽªÕVËŒÝfGkW ÚË„ÝVuŠ)û¤!hFùàk©—" ^l üwšÈäk!Ö¶Þ6:¸Ñ£°ÙrÜ"z[ là¨w.$¡Õrm«Ç)‘°l©Àm™?%by‹ôkÖ)B·%àk!eØl åÐmå¿3ø‰ÉIX-9€^K€fËÞ–&P‚&RÃZ£tøU½-9_³Wñj·ţLßfOCÕs’؇¿i A\-9@_K gË<ß–V¸DXéʱž˜À-9€_ËÓjxPò<›nyâM žˆSi‚«åmÀ¯åíÀ³åý¸å Jð®5¬åX–ˆà–À¯ÅRÍáÙb1n±Ü£„­™aÕHšC&•-U·-3§D˜ æ/ŽšnKNó"¸‹ÄqÙ‰Èmáf wÄÒÄUK€×RCqó r[ZA ZI k9–°¶ÀnKŽA¯EH™#³EÐY`·EX%¶æ ‚$®ÚÄÁ €Ì–Y»- DXíÖR¬nb·%Èké 2[ºPˆÝ–NJÐ C ¤‰«– ¯¥ ³eÄnK+(A+©a-‡{{/àr»mâ Çjo /çìÄn³w–ô°¿U@ÃE W-9@^Ëä@fKíÄnËÌ)Aã¨a5 C ø¶ä-âŸ-"Á¡„!€@ÃHï$Ö‚·²"5 ÙR=ÁÛÒ—w—-EX.ÎÂmb[\[u„¶¸×nqñ5$p/– ‚¾ZÐÀ_ËÔÀgKýDpK \",t kö+â6íW …-· @iË qÜbÇAîW<=÷+´–û ÏÊí ‚Ðs»ânÓvÅ%b»‚ôkü•ŽÃ_$lEpðð¿­ön³°Î„m»ãáu¸D=ASi‚¬%0l©0m™ÜÒ JÐJjX˱¬}È-9§‡ØùÚÓqÚbu@n\¾†Ö¶‘ÞI"­Pl‘Ú€ÚR»¹eöþ;­cêÕ~ߨ수$[p‡ÍÞ‹40m²^1tŒr“vàp‡”j+“§g-9@b ÜÞ3Àr +B‚vSÃZŽù6pb¹%Hl¼‰K¤6¿ª›Pn¼Ë›¸ë› Hf-9b ÔÆ,É-lÚHk)–§:É-9Àa‹—2§-ÞÒ$7>¶xŠ#Ò;Iˆ52ƒ©¢-Ôˆ[n`(X‹€íʆë‘â6qB±v¤vˆ¶xB4@ÜìÝBCw „Tff¤#¬l™ÜÚR¿#¸¥þ;ícòµ¾ò=ìØ2Ü’6[ß |6{¬SFÁÍîè¬ç9!¸I„µ`‚-“B[êw·4À§}L¾–` ù ·‰3<Ððð§°€a@V ¸EÈVHxHWh:BÓÉþZj>[æA·´‚´’Ör lÛ‚®öaâ­¶ÝÞê">› ?ÁÍ|+m¨ÃŸ±»VšàjoåRÐÙ2â·¥ ”ظÇR,o&~[p}-Þ+tt¶xÐ0ðÛâÅÃðCƒÓ­– ¯…Gg‹<¿-¬ ÚM k9¾ ¿-´¿ÍîýéJç àöÝ€Lž g·ïVð»¸U}ñ¢ €Û»÷ú*zoíí“? ”Û÷(Žž§e‘lõýVœŠ¢`M²Ãzµ'õ¤EXQþÃ;½{'j‡Ø¯ûQß~þ«wïuk3¶r¼}¡üѯózûé»÷Õ"hŽ·qKqÀpIžS¶ú®Ð%ØöúÑO$£¨F}³þ¸Þ¾|§¾SEMyûJþ,½Ÿe—ü5Ïm™·*¡ˆ¯ÇÛÇÊÛ^N]xµ$¬úÉ»÷z…z+åí®»lª¯·O'u«­"½žw9»šaéÚ¾¿ýR…E¶½½}ñù;}A{—b–·Ï¿L¶€¿u±]Lк;vY›%_ekD¾äð Ëö4-RæúSIzÉéêj§ú>®1–”Ÿ©Á»>п¯Iç¬LhSŸ~aÍ«ÝÄü7-í¾éq""\™v¤ž¾z§A7RÔ·ß¼“,/­ÝÏ3Ñ7|¬É¾IíZøºoòÅQ…}tî$;]Ànû%¹™fi/Ò¹tq(»)|5׀Υïû^²˜÷65ëZ¾Ó§ù9¼šÎM~{ýãz»¡ªåû~¤¿—1dSþö Óaí§Ï 5ë÷Ìû½…lX°Á‚!F  ô6wÉíê;Íý7YgOú‹ŽÙÛ~Rø®¦cÀ¨s£þÕ\Ê©I½×†¶•¡_3šè¿P2õöö34é&ÓŸôgco¦á½îÇuIÙU±ìð†]%DïÚ<µö®],šÒYËßdzH;Ð.>´òðéÎ}, ÿ¡Ój£ïÒã;OnúúK©§Ú˜šØ’·iÖVú½»uèùñÚ{¾»W«tŒòö5r•ÅñœìK|ÅïèÒÏûëÝÆ]ù ãIZ{Ž:\Šð%ºŠéÕ:u«ù ¿˜3œ{éûôÑâ/cÛ×?tu>ÏvîÕaöÇó7–ID û7ÕêgkUe£¹i)ôþ`û¡ :Ûv–oé¿W«Ñ„gk}6pjÝsæ(¢ì6ƪúK”§=Œæ_k5œÒÇx-A½–þÅO¡cöÒæ¢MUü¿’œEendstream endobj 118 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 116 >> stream xœcd`ab`dddsöõõ´±Ä»»¿G|g`íæaîæa™ý\hŸànþ ÀhÅÀÀÏÀÄÈÈ¢ò£ƒïûÆîï Œ¿308(º¢dINNIQ^Þ¢¢U«-Y!Ç'ÇÅb>Ÿ‡³›‡«›‡»›Gˆz%endstream endobj 119 0 obj << /Filter /FlateDecode /Length 7680 >> stream xœÍ]ko^¹qþ®æGèC¾jW'‡w²H$ínÐ M›µ›Ø…V¾&–åÈöû¥¦´ó Éáðè¼’Öv±EøhÞ9äpî3äáþåt]ÌéŠÿµ/¯NìâË釓õô×'ј%{šB4KާW'©¬Köxuòè$'³¤lNSôëâ,! $›²ÄÀXÁf·¯°¢±\ô‹Ïj¼[0–𱓕K^RTµ¿5QÑåÅÇ¢ˆÊ&-y5Q«C&¬F”L×iRó­§ÏOþrb˜•§íŸË«Ó_=>ùé×6œ–¥DO?;©l6§†Ø`<­~M‹!ŒÇW'ßÌzvn²·ñðõÙ9ý¾®>¹Ã—gëâ ý/þ`»®…žÿMã<Âs(©¸rø'Â/ÆDãøòìÜ9ZQ.‡=£¥¹bËá—_Ÿe»”ÕæÃc£ÄÕGzdzÅú£ð9Ãü!û|øÃ×’WKcþî×ø+–@ ýããß`ÙE/Û/™$ôø·'ÿöZYhÑ~qv,Ñ’Íá_ÉÓµ<½“§ÿ<Èã·;ˆOäé{yz&O;þ—<]îüz#OOwž¾ôWÞì }±3àsyz;†ùùx|x©0ïäÈKŇ½!¿’ß)O¿•§GòôåüL?B´_>>ù=”Ýç°t=©ÔÝ©#Í]r85Å@ÿNožžþûéëÒ9“B bNCÿÿ{çH½;1„%ÃXIÍÃi´9..³UÝÆr¥ø¥Ø Ëí9šD(LS¬6Æäá^RÒÊIûÞuvu‹Á[™€­HŒ"HqÀ„–“SÆcˆç¹Òj–ú’ÉioayÓÀÄ“5L“["ÇN’­º0-‚ÌÙ½Îî8Í‹HÜi²iüŠä:ª:užFâNãrã{ i\n²¡ð¸¬FË/Ã’Ñ2äÊBÐz@á›­+!óŠ•>òÆiÒ9ŠÒøWée Æ»¢u7äµ1¾ëw€-ä#f'!¹ÆçnJ¼€uÚÜ™o Ú$C´MÝl½¢6m@lÒæ¯pš‹ãt72æêžfÐӽѠ¹{¬±®=ˆoœïüéÞqð°{ÐÁçîe‡,º'òêÞzÈ´{ô!÷îõ‡nôÈ0ô§G¡c= =ìQhèjTCŸ{0:/OìB‚¢ØŽN±/ ®bƒ€»™nbô«“'¿:¹3u¦™¸µf»ÊIÊKL°÷ˆ’€RçË—o._Þ\ž=þÓÉ9iR¢Dôôœ2ú×>~rrxsú3*rÖÕ…3NÈXàŠÈ’4(­p ¿Ñÿ½yú±‚²ˆØ5…óĤq‘•Ù;Õ ?»{Þ°7¯M–L R2[*kþo õ(>(l¬Ì³æ™-P*Ò&ê¢ýTê`Ò´NS÷‹£ÔÑ<·©Ûf‰W'&¿¤SªÉRµƒG;H6Ñ ÍQ i²“´‘*œ Ï¡†+ÄB¸5T3'ýD€C U<° ‚äjUA I¦BB"L¼¬ÍÄ™êÌx¨ü«€Û"H®Eež«ó`‹"HŸäø/Ø)ÿÎÞ!`rÊÈ< ¥G±ŽÀ ø@²Ýd]+£ÄÅû qu¢S§&…‰SùoÏ®‹,ÝTAP'"gÍô!¥²Ö® d7|"_D… e9ȉ ÷Ç´Pe ¥ÞT&â„S#k;ú ‡ÜfÖÃX“õ4pÁf¢îÞMÔZÊL¸{ +Úƒ4± gÐa°ŠwPëÄ][š`E¶TÁŠ,bó$G·r\R²F,´Zœi’…Rç¢tŠjµ%y­sÎ6ÑŠ^"êòL]w Rªºz[4Vm.±(+±i“6#‚>ej–iWÆh±^«‹Ä=H}ÉRRè¢×Ë9 —¹°SRäYz·½K/'£Wi‘áÍ Ž×Ns‹f@þ 8jÁÍsÛ¥È<$%:KMZº–µ_)€EA”Ž ÂW©t5"{ \«b~ÈJɪ–´¾Zc–IÉíZàA÷!Í4Twó™qmTí )5ÊþLAÀÒ&Š$ÁYmƦp>¢L]áTo †©þbLÔ]Ê ¤»AmwMcE{&ÙΘæ뺛Üí®tH yÛ!¤î‡›ÏI7§>t¡ûý¡.†>õÀÑUNb‹he?¢¸¡D¹%ЉÔ0'"qPŒ¨‡J±³LÅ·ñö£S@K¡’<²`kûôÃU¾«±ápñòí;Îѯ:Gÿ*“¨ !E„ã !I“¬^”ƒíÂ/|j>È*1‰¿¥¬vš˜°‚‹qˆ †ø8nT>6$M°¨ŒW$îöî|pµ=ã"1†™-.±–fêPøÀ6uGóÁ;¨3¨Ò)H‡5“S¡ÕÂD‰,¤„©<$]Ýú™Ž„(0‡Ä-úÃëÓŸS6íHÚ^’@î4=l£¸<½Ý!ØÛL»ÎÁ­¨€Œà°w ·-rÊí6Þa SÆlqjÚÁ¾CÈüà ­pš©ˆÅ~œK“wÆ´ßc¶3Ž·ƒó©zœ ä,¨€Ì-䑌9ëß— ‚óC‰z„þwoÄT‡ÔGÀ^™QsÔ¿ñF§¢cÝm„y—Ÿ£w¶=aK̉¹TÃ]±ÛXÞQzã­Þ™Ë¨ ¦ñ2*‡¤¶uŠ:l~ÈÎ/AüÂ'Núî0A2*†±ƒì²åæÁØd&H=%Ñ¥ÏÕ7«]FÕdÕ†6ARÍ×û¦·Ë¼31öÅ 3žªo„Í`l¯;]º`Ʋ̂Y–u_/í~Ä»Š>¶‚‚¹`³“x—ðåRì€;kQì¡Nï6¾CH~¿ZŽÈWEŽb þòæV±Ü±)­Ê”I´|„§BX+ a”tǨI¥«fžªVî'H•=˜ÚÛÉw˜§>œQaL2rÝW®¿m¾ÂÄÀŠg Ùñ¢ú“‹gÂo˜x¸f½‹dWEcŸÃxVçHA®Ÿ Œój=¹@yq KY‰£Ïëx¥¸ÊG¤=Þ‘Pé=r¸Þסë)•J®Üáj wñޱÜná±]ŽEÈõM'cõØ/Fçˆq‡7zÖH¼I,žu±ÚFE`êŠ1>Ê *êdAÓ-Œ4ÍuocläÒc£µi:|ǃDKÈj¼‹³½»bp_ÍÝwż۹We\ójç¢uGÊ›;ïvy²s—ÊÞ½0jÀ1̳½kSÔ1¿Þ¡q¬àý΄ãb›«7þYžþZžþáÎ9Þî<µ{]~úµ3§è¹Zí£Ó†n 'ù”m²a>uñþòúêâìœÔîçõõÍÕÅ«ú¡ úWøÎ&±EÛí‰2…„TÈK—úl,¿*oT¡·AσkXêÜ£½MÚàÈ{¦Úàœü'•j®N^êEd*Äý…Cýèî8œÝêÏîc`_ >XF\ 8Ì^—¸Gµ³a{Eó<Õ×gØXþù;~¢Å±ÞãÐ#Å’·l]äÈ‚†¾k.Ùž Þ}-ÕVë5O;î·8´Û*ã¾Â%O¦8ËÆgySÙ4c¦àW8Ö¸œ û þnÌycN-€ÒÄ–&î¨ßWÔTHÁóžÈ÷/…yñn¬ìâ‹öZÎÍ3JºÊÿrŒŠkਡ — ¥kХ춅ÝKf¾Vw`½VìSLkfç¤9 °[£#åBÁI)£¡EL‚|­.äªÞšÞ4®ù¼×”'å¦ÐýÖ% z¥ŒöiaíéP#‚pȞʲŸží© 5æÁ¤áŸ)œ²°¢µR€Ëš»™L&pd ™(d¼Q׊½Y §êÍ'm’ÕWdÖˆ· gÅé×jàçÕyð'£TužãÐ}ˆÍ€'Õq¾M»Æ˜÷"F epâ¡×zíp –m¬aï95[¡ì!=0ˆ6 Ø¡ýœü.öЉ-bÚÝ(øã]&$üL€çøÃ¯QSÁôwî û{–"3ÿ÷x¿?ß#üïÆã‡1ï¾pírïFýº7Ë‹wÞìüº'³Á¢';Œy±»ô?Ëï¯ïÔ‚O›y'Ýz²ó²N÷nÈûõªÒ•×8sKqlÀ·õE²¸£Uúxñ;(†]]Ö#¿FgôÌjØãÝ|H·1–¡é“µÈdššêVÈ»m¦3é<‡‰-M²ôC$Q†rKF±œº[Ü*FõÕw5¼­lSkí¶šþD©½å­v +òkYiË1ûÍ1)ß%üí§¬Tß,Ô}ãËoáJÒ$ñ©2a>ª>û®’F$Q¡¥f9.$Lb&oý¶CÃ4õ‹!Æ!®j­¯ë{¡lC#YÇWÕ PbŸt«é¹ª&fn8| [z{ŸLTŒþå«1Ⱦ¦_ס™þç/:%ævS"az˜J•[L'd’çˆu='Ã킦+­ÒÈ÷jŽ9ö9ªF¶æ-Hœ×CÏs·x×ÞõmÅõë³|ðXò­+O—ïp¶fÓc[ƒæ0ðfx­„*”nC¸ aËFÝõ_í¶ŸoMû²(м“ºY€‘£µßŒR_a«u_p©^H †ÅC΄¾iŽÒ‹Ø´2Gú®5Bü<»ÔÓæ7ïsÿ_Ôw¯F?+ã®Â³tÒ\ö+¡þ® M7go'9sÊD!’kmY¥DÏeòÖ­½ž{‚qgaˆN³ŽâS<®ï­Ã{ÓþOɨÍcl²cG+`s/:”~_Ïs«^Øë±¾+ÞÑ ´¹‚Å®Q¶ ;ó¹¦ÈÛºïèþ‘¯5”÷ÊRŸØ¦#ˆÉ6:ÞÚmп¸Òº\726Âh| qÌÞ;~[ýðFHÖYÿÓëŽ$'[‡Áëh=µj¨×u6âÔá¹Rª)ÄûCVó|ܶ̕Jà•6¡çÖ’Ÿ¿NëBÅÅMSn¤¹úÕk¼þ}.å´×aÊs_‡i´N>Ï~Åÿ³^Ó÷Jö:LËçj9üßí Ýц²Ù²Ip<#ðÞ=b·#t# ¾ØÃ…öȵm‘-éûÖõ6çƒJ àRš k‰h÷îVÎu¢n]#qË> stream xœÅ\kÇý>Øq?ö,2½õ~,Ö^ØAž08Ò"¼‹Åx4’œÑ()†~Oþ貪Xì;}%y,À]Ñì*yxHÖí«¿Ìj†þ×ÿ¼º=sk¨‡ÏÌáwg)äÕg{È1Ùµ¤ÃíYqiMµŠäæìÉY5yM¡r fõZ")¶®)²Vôø”Òh`ð£Ú/ÆŒÿZ6û «J-kŽÊ¨.Ð6%_Öª²©Ø¼cµMS© 6:Ý&Ùm˜¤v3‡g?³ìÈCÿãêöðõÓ³û³‹‡ºÖäÒáéó³æd{°Á¯Ùñ0ÊBãéíÙwËWúê›óâÖZÓò×'çØµ†Üò‡ó „ǘýòäüÂ{¿&ë–ÿ:V1µçêò§ßÑß²1%ùÿyúGص ‡ÅÁŽ§Ï°ëŸY¹–RRSÞì|Z‹ëÊ‹µçOÿF*U©\xWW6¬¥„±ª]©),_ž_D‡C»¼á|º“OoåÓ/òñÅÎ#—òé|ºÚYðvç‰ÿÝybnüF>]ï|úÕ<É|äõÎÒ—; ΃ÜÏe¾˜çñ~PšôÍT|¶»äoå¿%Ÿ¾‘OOäÓoæâçú#Áá7OϾ%hGgWë¡:`ß¼-v<ØjÍZíáÍõá/‡Wg~õ6l?èÄÿÿÆ,â­õ+¤)<B·ºÚzH© ÈP=Ôò%絺–E¦¹šy^¯W³EN@âÊšˆ% k$84A¦TOÁ­® Q":±¶IüJ‚hWßþžV“IW㚤 =IRV_XRÁK¤~ ]O$ pG“d² ’„¬ÄpJ,$Ý„&ñà Hp’Ü%‰ö€Ä“‹YRWGÊq­‘%Ö­–vÇáJmØÊ:uÍMiÓ” ô,q†Ü ‰§ã±tÄ:ÜÈ’Dq†$‰ÎI&hêÖf1üÄQÀycIsÁ¥ £µ°;ÐÁ3ŽëÚCµ‚¹HšÁÙÄÕòCQ5N« ˆܹЉ#Yø1jSl‰ÍÃZÕõö$ž¸_9Æ!*.kç9D…Ý vˆŠI*ÔXƒ“£ “t(¢Â –p;D%E ‡0¨6à{°¹†–ó®ÁzÀ’H^š…¤pXÆÞ!–&(¨CÂvH6@®G¾@‚óY•S¨®áºg‘Ã0ò‚ÒPÝr÷„„ŠÕ¬ÉéeQ¶PbôÖ5A›3§„:ALÈ€¬Oáµ'b2#2Ý[(ókÑ1 w§G˜Õ]ÜaVñ:xÞŠ^8†ˆöEƒ ÂPï5P" íéXо®qƒ·è3Q°Âd„×Õ¸> ¿wlGO·' q–¢sˆê‰‰:Ë¢-ô¬ÊÄhSÃHÖh9ÓUB“ÄTóSgðÂ\gPÇÜkÐË´g0Ð4y°”œjGиnºfðátßàÌéâA«3 ƒzg¨=Ïp Ÿ!4?a1J@GÊ…ÀKJŠ@PÊÎ@©T&²T/û¨o’R%gF•”´’:*©'µVÒó¸ßœ½<ûúìƒM1È 1ÅÝ{ꆹxŸ¸ÖÿãÜáÐÙ¸åòÍ9õ˜µÔˆÞ‡º“ „½¢FàOÀq“úúðgŒá^•ûj°™md~õÔócd ƒõ?ß\?Öf„-}êÊÉæe»³K®%£dîÁÄ}m;ÃfìüüÃǽ?ZZ6AоÿlÝùÖЀ 1È€ÖÁÃ1±nƒ6‹óyÍó †6ïË“æ¹}óŽÛÄÛ3[] f‘K´ç–ð¡–ÃhEù¦µ8 äJÓrÄöÞäñÒ9t´Ùgü.ð\4,’…ë;$)‰1» PîBv`k`³Õ·ö’À<„4ʃ$»ÚÊÓ$ <6€Çœ§Ú&rHÉ$$Z/9f›¤Q)U…Ú$ð<\”¨r´¾Ö…@‘MT]l×!ÚHk&  Y‘¨$uâOç~Ÿ‰º‡DGs͘XW N²–¶%n&I ?÷%ušÖÁiÛ2 2¢M*¼}¦§É6¥ª:ô n L8tÔFvTó[cî Ài£“ GV­ƒ^‚Ò7 Ä?A[pؤl ð¿µú8{0qÑn ذZíº€ˆ°ĽÉÊÿ‰Y‡( "Q1 ">ë@DÄmÀà>³&$T²¢AR«vwµd¯°Àš9jøÄ1e ñ€v—ê¼dA@Í @Kžú°I¥€²E±•l µ•ô™Åð,Sத?…æ£û|, Ÿ›¼ÙÙëüÆ>¤¼Ï›# pÛ¼9&œ¢vEob”»LTƒ•K œ3œÜÜnP5»“{h ,5^‡ÏÀÒìuˆ *wL TÍ¢×@1dzQP2¨á9k´™Ü›+A¤ÛƒÕ¨5hÊëõ>ì Zv:ZÖ dЄ´–cd˜‰ìF•…½L ÃÈTƒ~'Í$qUg¼Ò鬠Öé´1÷Ô2íì3m %§z(è<7]3¸pº¯Óåôð Ô…ι3Nƒ–g,uÏpzŸ%`¦W‰‰¬QH&úz­™åh‚XJ–]ªš$ƒ>I)Ž’TR?%ñ¤ÆJrÕáG7Œ4ˆùBFS“ñ°a¼ÑÚDÌ |ÓÚD¸út›è0ô0K8ËAù\m"Å(pq‡w}kÝvgÄà¡XjsÔ‡µÕ&Ò´XhÙJõá6Q÷a)m̓ÕT¼>·y@ÚSmÞ§µ‰GæÙH’þ)-0eºýÀ³§š–>Á¼Ý°Yj ±L›‡2Û÷êðÅ!s“J¤já…˜íŽSä†ÃWw˜WŠ¡,·—7ç‘nMM^^Ü\¾»º»½œ7¬Žjfbþí”dLx©¶N÷¡emÁF‰úv;Ú•º`£ä‰É”NûûF%TNè©Ó%šqªWJ]°QêG™Jêl?5ñ!LäðDWÝÓC2ÌÉuœ8-L]ö4Óžfy¨9ù‚/ÆSa*ˆ†îÚ8X܇ïÅ?ú,}³„³;Â÷ ] ïÝ ¥µn•-æ 7×uTµJË…OÙü'Üü7îleû3ç CrU”Ðã,›DïÒiŸ‚û1r5ò5ªJ¹!щ¹£æÀ™7™9´ff-šCKRs(©Ü:37‡’NΡ5“shéì<:ÒztzzcùûÓ_<=[ë땞}V¥ç)݈b‰ï(?E;e¾Úèú’‰ò)Ûÿü¯æŽ¾b»=CÇfÛ¼;y¨\¢7Ž/X|F›côU $‘.ç<Iá¶wŒ|>cÉYM…nžÇàA¦†XFKŸ#ëÎé1© ’D=éœb!AE5élø¶Z¦aO¬U£š˜!Éäñ9UûŒ/5yCâùRT¦sH`GP<$•¦™ñ1 {«[HâêÔEíû ¹Lð¹êۆ㿜#Úycáéí ò¿Üiø‚QŠ/røÒ×PÚyÇ­ˆ/ ÜÕ͉Ä_nW|Á\G7ÛS§šÔ.™dŠSø$UXP’¶¤"ˆ|þal…ïé&~žgOÒ®+§GÐë·[ñZE4Ø âØŠh¯|_ ¯£S ¾e’VCߣyºc7 ÔjÚ¡,€¤‰dªVz;Eƒ® ­f04t^H"]Ä ¾!(ô–…¤@@µc0$ ð…¿ä$‰c;R ‚Ê1lDSíÊ2ŠíIÆSc€› !on>ÁißçÆ@)§3§8BæRq–Ì®âPoÅé2K`dJ–àÉ$=â+ö@@ò™ÙG2Ö Ödô<Êí€`Vn×ã’aGГCn*$ä6C2Ln<$ åVD2UnN$›åvE2^étVPëtÚ˜{ j™ö ö™6çª.ŒŽÿÖ¹mz¥ÓßtÜ`ÈéÜA¢3ƒhgÏ8ž±¤>á0ˆBf‡ «Q@&ôF‘™ð…hBXŠÕ€ù¬g#fÉÙ2ËâȨY9GÖÍê:2ó¸?þ»8òT»ˆW+ËÛÛ{ê®è[·݃û”/è>%}»TBûò3ß§²hhÂæ>%nw¦oB ¹° w¼ý¹žÀ°ønù'† OßÇ.çíº­Ñ@j 0öÔå…¯¨¢Ù™¶©•ÞôsS¿l¦æú![ØÓ¶öoó?óçéúÙÇC^Š›)Ï!äŸ1åe[(Ïæ¤&5íìiÑ5»ÛÌs¢%óœh©yN´Æ<'Jsž™çDIÍs¢%óœh©yîø!ë𠤥  ]^6e¦V{I6Újb-z¿#Í3ÝŸKÄÔÒo´Ê÷íÙlbtË;½zB?À†3 ǩۨÜþœ„ôb? CUc]‚Ó©´tè:›ý”/Õr·jëöä±q׌4êEmZ §bJ»Ýå¾ÙìWM ØryN_aZ䤰8‹ †Èïf=ç#½Ž‚2D¿˜QÉûj ã™6Šõ±6ûšÆÎ”è>æ¿oΞþëwËWØ‚~AU Ã>ï|Zî^uе Ágü«©âlé,ì1ð0î-˜:T-Ý¥‘½”d;%Ä0èMòœ”²뢠V§Í¹+°ãØu$S ¡’Ê égbpEl¡næÜp ²6DmÎ%‹Á 5hÓȺ‹A½áHC¸9Ü%{Ö¢¸dmæ?ˆœaŸÈ1ZÀ‡4çÕ—ÚÁÍ2´éÍD T1½”_|Yîš<¸”´ííb¬ŒÆ½ Áq<+zv+/¦’AŽ^=E ?“ˆ?kðÀê 5[jh¬Ö×½@ÊÕm[þV%Þ[B×K^·e0v·Šš*× ÕqH6‰S)¶/• ×0Z¦è¨(ì¼xˆJ«ÊCÐÀPÊÚ<‚ç/u˜  ÄŠ”~Ïa¦/ Nï¾Ùß.wÏÛg€hjå>‹ÕÂKô×ç›-$-·ÉØòëè|͈ 4ÆHÅ)Ó;æÂW?Ì_F.—ßÏ[ÞÌ]”qÏÙ¸CËøöóËåî¶i`Éï×R"[Éë(l0¥›8wÀT¡ôz98¡ÃA‹cŽÇ^f¯ñÖr¼ûY>%¬Û#.DÊbü -2Ø‚‡—ËÛÖ•š{À#To”'ß·Ç(§¾ùaRÍty$eœ.Ò¯]GßMÿ+HohD"û¾™ƒU×¶V†kþ@•Ê€Z¿iÎë]^ÑjtkÜŽÜ4&¿ïR€^àWýhÖ2÷b|0v—ݲ±1áM["@n V ,&¯Í¸:J¯žus[)f4ñ€yKÞD_2k0žÐÛæƒ1ÀßÔ&½êh¤·ÊdàP‹mÀÑØŽÎÙ1ØÛrâtæ;¯V¿«OnÉÏZ¹ˆ%e{“–åÉ.•^©Ï­"Á™öa­g°µ6ƒÝl3è-`´9ãÀÿÉ(ot§>ïõ'ôý],;žºü¿‰þ}âz1ºÿ¡*è¹é¾SÄõl—û4åï‘· ôû߯ÊìÐÐV¯ÚÊžKÅůEWóhÛ­¦°M=»û±rÝÐF+R11[o’¾#÷fSuh L[ä:ú5–«;}6»¼R‹õÄÂ8`õ“¨ï{E[Ó‹ˆª`dÓnîØGmY¯xÝIÌÝÓI7-OµÃèRÕ5ûY/”Vq¥ôÕmjÛõôç¶Z‰†>mKãr: Œl˜Ì6•òOÜöJÉÇ;±÷}3šB¬{ˆgý,6kºÛïL´îÍ‹Y|Zû—0Ò/w[rë×Úuëhºêò5÷Ç|u¢Í>+¶j§*³©£×ÌÝÂ1ÿ¢šÅ·M\Mݦ7¤%Ó”9C­p‚ff‚ÞMü¨º Uމ¤Ô:Ö¾ñÄ›F`‡Z;çé¢ðU;ðéÿÐÂ}zú64È?V1‘¯K…j†tEl–GŸãÏ‹6 vp•.+(düo~ðôø½ò°mžuîmzÍËÁ¨çÓÄ=NäH'9_6Ò-ÉÑͱ5™L™sŠ­Ç‘6=´â!1Mõdû=Ê–«yÝê¶ÐË—Gßžý?^Êâendstream endobj 121 0 obj << /Filter /FlateDecode /Length 8891 >> stream xœÝ][sÇq~‡ÿĉ+‰°žûűœ’eÙqÊ¥Äc?(.H‚„€ ÒŠ^ògòGÓßô\zöì!@‰])=hÙèK_¾¾Ìîž?íÔ¢w ÿÕÿ?»>1‹Ë»ïNÔî—'AëÅk³‹>è%…ÝõIÌjI®®N¾>IQ/1é] N-ÖS§$—à —7É.Þ ®N‘\6¸Å%1¡÷Î.KÌØ–•rZ¢«ªÿ–‹ 6-.d±¨¤ã’”ž5¸e⪋êÓµ5‰ùÔîåÉŸNtå®þïÙõîgON~ô•ñ»¼ä`ÂîÉ‹³Þiƒv´{MO®O¾Ùksz¦“3aÿÕéý])íþ‹Sµ8MÿÅýç ¥2]ÿ›äù×>ÇlóþWÄŸµÚîûÅ陵´£”÷ÿzJ[³Ùäýg_&³deÒþI#åÝWÆ3Ù¸£ô9Åü>¹´ÿ²ÐUNÊИ_þÿ ÙÓFÿ䟱í,·í–Dzòë“'÷ íN/´‰àö?==ó†Ö’ôþu'^õ«›~õ¦_ýû¾_~Þ¯þ©_ý¢_ýº_}ݯþЯžm }Û¯.6®>kÄ×CŸo ø²_Ýa>—cÏß Îwîþýêí;o¹ÞúÕæ"tÿ»ž @³ä|Ù{Ýtù÷da!ÄEi1å_P*ƒñùæÃ>>{§¥|±%º„¾xrò¸»K~!ûv)Xr–%ß]âN'—èv·»ßí^žæyBT½#áíþXÕiE² >’ÛSÈ©ôâìŽü%/1P9`r6xº!R3˜4!ÍäÚZ N¢xÂH¢¤@NOœD‰¤8¢d³$_(¹ŒFZ¯fŠÁä!(Í‹ Š_t¡ÐV+%.>€’ @vJ)ú'Ù…®ÿ4˜’(–á‘(äþ”€eJ\L¡$DƒB)Q C‹J…¢Í¢ …ÆcBÁa"¸…G¡ñR!ø¥Þ’«A ùð°FcoDIKæQp7í:Xš(2%”(,ñVâÆ® ;C³Øµu‹qG(l3dŠg-ú‹ç‘Is¸ÉÑ”âIÇ>I?rŒ„Â×\v§ú£#­³þšÏ:rok…[;Úp…¦êùƒ¥¡Ã¦Ș©aÌXMá±â†UcW”ŠyC: ‡v)7|šh<´Õ`zh´!ùÐzûa- ëiAcXX ,à [ð–Z¢S·ä¾ºµ÷×=¢‡Áî5#T6Ïá´yß¹ÕA×Qùêäòäg'ï,¨ ÁšS” j4ØS¢R•Âþ«?\^œ_½¹<}òÇJ»u1„Ý™_¬BóäùÉþõî'TÕ)¥ÁSd dP Áv,eK¹£ýÿöâ‘KÌd€r²Q €Ð’7»J(áÆr*„s¥üBqȤHBÖ](°U(Ù(žÑ“(=¢DNŠˆAD!pa]`n£9K¢¢×À͈bÙù‰âð7¢xÎwˆŠó[BÈÀ“P–PTûB‰%' Jn›ˆ®%Afž¢M€(ŒL½ «#¹º°õO ªPƒ]V%–LÆ( ,C2¬<¦nš„XpÓ(vMà•S¡T3°”Q_žy")7N㤪–1WÎ%Œõh]åÐ׬I²E-m_›”PpªK†(½³žÑ¶J£I˜(¶jªj(~ÉZhŠ(©jªjÓ Ð8QHªÒ*ˆR÷^ Ǹë†e4™£¶g$$iŸD©Ši6L_vnJì®@S‚y÷ƒ„$eáQD‰%Aê^GVC÷LJ M±^_nQÚ]mÙL#“Ê]œf'¹@Crõ^nÂì•—5Í) Cº«šª3È:¢)Ra£»Ì)– A\¥P•f(…˜K+j#Tå#/®Š­‚¼8MFD–˱¾Yw[~5FòN±ºÁ"w6Y5yRÓÊ!¥:’ç$ý‡…ó îcÈ”'7ÔY77¬®ŠÔ™UÐÜosyÁSaAŒS¡cLUÑ¥¯¦#P[0#TßÐá?àºT:vÉu ìÒí`Ú5зk©ƒr×dî®íîÝ":þw«é1‚ͪ‘nt=Ðt»ìÁ¨Ûn‹Wݼ[DëЃ^÷’«#ØÙ|mÄ׿ëüØ”ú4(ÍÈŒ•;’SRºþ œÒ *H‡K…û‘rJ²XrL€9¡riïÍ4/•…‘€JöbÚeOÐï‘—mŠ&Á³1* CzǼ?ùt÷åÍ›ÝË››çóΡ¼U‘yÚÊo²¬\€)À†A#úéœnϯ=ÙC C@ÉEÎéÈ¢hÌGîŸü3*ô)¨FNå_í>Ýi—ÇÜÑ:Äò6/RAUŠ“F)Iã!W§ÀÁ}åBik&®F\É—c#ÁÕ)‚kµ ¹®Áõžâ —&7EI®I,åœæ³Ó3tÌBŒûŸÑ%J_cq8ã“#ªßÿ\Tg”kª\+:^ùͬÜ,Ñv'ì-ÁÕ(—¶%Í\•2qˆdbÂÌKo@21eâªû\b‡ï'õ©S‘”ÙU%ª¾RÆé#¹Wñ ‚$ª‡ð7Uˆd^•èqp†-ÎâÖÈäVÊ@ÊÅlÊ ¡7ík>¸—±œÝR4z¹}2@çŠ×1œ¦Œ¼2QéßM)R8 @$I§tÀ­ÑF¡ª²qÇà bš¸i}9î\–GH‘VLÜš`Î’S¦ÆÜÎãOKÖ%éõ‰ñþ} ŠásÚC.ëÑKœ˜¸áKæ,†C¦`A¡5¥’Ðg2ÁˆBŽÏù2]([]Y ú¤Š’!Î/ˈ ËM+ƒìÆJÀ™q¡ØÒ´* ®J)K@Ló\hU:P\ÍÖr*.ÐL‹<;Zž”Ä}+ƒTÅ(v»Òu± ˜6L‘H@È6Ìlañ|¾n HdVÈ9ÿEÏ !-²‹£}¨(щ))b@c±d/Dñ%WTÂ…t„‚Ž5Öc#uä¥ç™[æqè ©“r®ñøºs¸4µ*øÒÕSޱ«ÙB!^2d,M{/GѺœë‹™4I%ËÅA‘ˆŽ£J)Šé›Ú¢PVé¤p4ÒÎ(ˆ©ˆ¢ Y“QF¡‹R ÉwוE5æ­Ð'QŠm•[TuEWÍ*,‚ZÙy³‹¨_4Ӭˢî“°@¢ärNЭԢÅ^4Ó,Ù¢ Ÿœ°v¢¬lx„-–^cQP½0<Ë¢qÒû¬®)N÷P¢$ümô©6)õ._2i92i=äivRr•¯Ð#Eçcк ¢¸z ZwJzfHÃgR BbDñ\>5©År n’'Š^ŒÚñ™ÒÚ* Ö Qâ¬e¢ø6[QlÓ2[ QJ]Ô Šª©‹mŽ`2·M°]%.Òt‰øˆ°™7Qüb· ì$DP\wU?ò‰¬´p5¢ØÆÂîHé®>Ñÿc.](,ßêõ’‡‘¡ÂÐ!f©ð"VR!H,¶ÂÔØÏ¡€JÄ.·†™C´ W‡øö UxJ¬>ôÜ0~ØB‹Ã^Z¬6Õâɰ»s†m¶¸4ì·Å®aã-¾ ?h1pøÊˆ“ÍŸF,m>7âmóËuL~leK{ÇÃO;_Äïî;-¡õ/l-º(*2–!>Naka4À?K"äÚÛÍeetE騃TØ•N—±xÞ€„Ý’¨}"C%õ<ä¨ä8oˆŽÊ†¼?ç#ßÒ¥µ!d³¿J¬!MÛü‘—ŽþnÀ(bé÷•”¥’ ÷/}MRBˆ–l^•r%ácõ<ŽqŽƒÃàtŽH ð¥Š“:d&HNÑ+pàØÜˆâkâåHp„\½ ijH”+…c^DÏ)¡Î%¡¡Z(øâ£.pX(Q(¶z­ ŒÙ‘†Ûý.–'*ˆ’j×Eœ%J®-x}A‘hZÑU”ަµò]âðÑpÏL1ØQÂRY8êÄÒbJD±@Ú:JìŠVUÁ‘8Â[DÓMoS¼âà œJ–epâ SЍf Á”§Dˆà‹«ûv­kì1¹«jî¦ ËØÇÒ”<È"‚‡l5ÓçBïˆÒ—ƒ]R+6°bú®¶(¥»!¤œfU5ùWEÑEŒƒXSU Áe©¥€²“š dŽÉJm“‡•à9,§Ôe×ÝjBЬ–nYå˜8Kë dy²P¸Ž¬8ÄÒû–(bi/½!Äò€‰ð˜Ù‘‡S…TTŽG(±$雥ª¨·|‹7ühÄÕù¦”6³ÓMmu¶>öÐw€&§Ër—åÁ©,%Ǥ|–ÒÂcRJK‰â±¨0IÏE9'5Sž‹JR{x.jÖp ¬?i°Ô<ÌÏIÙÉŒ%:UQÕÔÊ“S“5¢§ÉG3Íbñ,Ÿ 6«¦b«ÍlPªwP]PO›Q&¿N†ç­˜§9"ºœ5gõ|âÓ¼Œ,áæñ¡B‚¡Â†˜¥"ËXICŸ±Ú†PcGº!˜…Cx .‡€¢%4ÔŠjÈ<4ÙÐ{h»!ü°ˆ†Õ´H1,«E“a}-â mQiXq‹\ÃÒ[tÞÐ`w˜#»Sõ8Ú¯ÇÚxüèä’vHêI)…š\~ûêÙÍõEé-ÒB´Ên}jò)’Kcç$ÏóùOSˆá#šà\µDd4ÙøôÀÏ[_‘òŽkkñFý¡³à\+8yÕùïJ/Í®¸ÇJeÓ¼8˜4 p^Üû©l.ŽüÛÆ8-îÝ äÆÊê‘êÇÕbyÄa jv49¶ÕÞ[“n‰.ÓÊ+™:E`SÂñ×ÄÕ)’ YàÄT ‚g^‚XÓc1.’½è{1îøy²A9'ôª” ã¹pNgÌJšõÎq•k¸Æ50®qIŒk\ã“À¸ÎÓ1®3 Œ[íGp=ãÈÌC9Týk8O^+ç8ÊÝËø”‹IÏd/IÃA‡%lQæ»ZÆÜÀ0æò’À Ë“´„&_Ϋ’3Š}·C4¿Ã!7^ºÀKº *Ã9vž¯O¬µÜÚý¾C¦äÊ#ö/é¡’R²}hQm9#DqåªÞ›°ŽØý ¢”CüÑã°¨þT}‹ ±t¬Z¯„(09ú)…¦- LŠV´e,Þ2ÑV´nˆÊ‘Koï%•ƒŽÞ²xï¤4[›ˆ(¶œ—ôV’Å{'ðèÞn²xï$˜Ñ޲^—ot¬,“󣩅GÔÊí½ïeñþHiHµÞØÅòYMï±YïX­ gñ‡×¢Sg}¨oÝ<ëq¦âEǯ™Bo Ú€s¢ YPj'/‡ ´ß,gÂÛè9‹Å S¨}½h÷½ô=mQ|9²ÁkºYôT-zME]Â!šª¨ª´¬´l Z´µXOM—h})#õîXQT·‰ÀǶÂnB* Û 8ò‹ÒþB.(  xïIZqà§ …¥Ã/¬•Þöð˜¨Ø‘‡Wá~?y怆wF~u´¶(í®Ö|#·Ř½51Æ [££ï¢÷BúN{¿¤ £·Tº¼zۥ˴·fºÜ{û¦ë¦·xºþz¨ë¸·ŠºôvR·•ÞrêæÔÛRÝäzëª[eoouËí-°nݽK¶E©^Ò»mÝ‘zG®ùZoÚuwì½î²Üùk.Ý;ƒÝëÛß+,ŒtŒIºŒu4km(5ö³Ea´ri€8d×@sÈ·áêÐAÃÞ¡§†ÏC— ǾΛh±`ØM‹öZLöWÃÎ0Ñ™†·è5,½E¸á = v鑲{U¦ÝózÄíÞ¹ŠÊm Z_¾…±j Þ^¼üöæU=w¶ÚR"³Ý óÁ³¯Gè·7H¶K§Þ`š'Æsƒ°K]zG€ŠÒløç™iLîÙ™ÄÏç7çwoίv_ß¼}sùÉ®ýó úß'»/onOÏÊ µ.ìß\®N˜-^@ÙM"Â3LøtKy§íƒÖˆéʨå}ž²Æ_½º:õüîT£ìWz_æ .chaeµŸ_¼zs{ŠW¨uÚÓ~wjñ$ANû‹»7«µ×'X>f o:««m;ê KÙ¼Èÿ­£]Ú¼ÁXó§Šxø³;D<ãõ»Œ6R8Sòä äîÅS¹:E Xrå'ÁÕ)‚‹¤ÚKÎØ(’k^…\×c©õ?I±ÑAÊ“˜2!âªÂ•@ë™iÂÃÆ4ð°2I8lL+@ÃÎÒѰñ0\me0= ñšli—ý5œ¢¬Õr ïe|FÒ¢;„”ä«S›ð ú!7eU)`\BÖï1ŽÒzàÚ ã2w:ä&L£¡cÜCeópŒ«ßqù˜ç(¹2[G(æÝçð–¸–PB¹••GKå»b‡\2Ç¡\È3W£.Gi@œglÉ5¯B®ë‘ç >tåŽ@œî)”•oC…D‹Ž‘XS¥HØâ²x d–h»³c\ã’ ×¹:Èu.r«¡\g07xÌ ¦sëý®Ç£úÐÛM û $}kå°3ûCg¾Ÿñ~ s†ï&0J>tqµEYݵJúœµQ¾ÁÛF¡Z°+@tŸ*:ä.oŒ‘Í€èœ/ Ðn<"¤Ø>X†ÛVBã¡-„'í?nŠçÂl®5ÿ/ðvÒ*äò6©övÿò-¹”–ì÷· çCÜ_àÃ¥x}Êïó2ØÓ)\Ô1-^ý.I%@KÑ•Oã( 6á“—(ÒUʺ|rüËñ:Z›÷oø+¦9ò£â^Qfàù;ʺ°å|ЯðL¼.)G›˜_\ð7UËönå?˜Æq*çý3|bUÇdXÈ,´¥…5¥`ô|oa AÃþ;þ:Pö”Õ}[¤JS+÷f|8lÉ*䀗r™bÎcBº_Úò± cµÕ&ìoå¤OùÞ¨¼7û·r 1±sq[ä nÌ £¿à*5Ï/eq…åÆlÌþÅ™´ª ¢Ç”ƒ±û×§gø0[Ì™Ç&p!8Ûßò6”S®ˆ—ëç” ^›2ýÕ‚Ë#&ðZÒ_‘X†>kcŸQ5ž}æšÝW¾5ËßüÕ;'ëTQg !82|§|¡údBŠóÚnNñ€ ]|‡Û²Jch<0™3I´8åhd;·<šR³DÏdzS|S'Ñ>/ÇB—“u_ßÉ„K“%¾ÂpÊEÉ•gçÁˆ^㋯ƒ}½"Fç÷/fw´ß'ÂæyïÆxØÈóu|È?cG”^å• î»:‘š àE“•û0S˜ÐAZ]µo“S[Íq=´¡6ׯCÝ1a¶²ä|Ålñé‚h›Ù²à#ˆÓd´ |ÝÖ°5Ö[&kä}¹Dö÷TæS¹ ÛY²xÃÍÛ0QHãóeÇ ‡ÇF|ç_ôퟕKO¾ºÿ13PRÞvNV(vvû}eÐ+Ô™„ý@µáT” lÿý)²GE ŸŒéV6£©´‹z5û_ù ³D=mý†Ñˆ—eçX›§µ¥imŸ ¯h‹# ’¸É¾µ%_ao dh“eÈxry>ï¥|(ÊÁä«Ëóׯ¿ÿ!e)ÄðåÍ›úw ÊÍMùǾ³Qª¼ÿá×7×ß]ž7FãÚß±*öÙÝñÙÅMë´À³8T ¿ë-þ?i±oê'z6ˆcãgžl\}±±°±ìoúÕø!Š÷+ׯ~?~‡ÂÅwjàÿæBÞ-›÷ÿ¡¡ûÓ__ÃËeë÷Lžo ùFж~HãýeÛÁ`þExRì¿'òDüÄ âž'v¥p3(w‘`”¯(•‚-ÈSt ÀÙ9[’+› …“Mt²1s… í2—%‰RÍU©Í4\ Ø[f¡@$™o9ðQ nâ¤T.© s¢lë0(9ìá»7™ï¢8j ÊÔÒËT {2’±xžÙÛèålÏy¶ k÷¬ìèU'rw-º_ü»k<Ûmke¹òÚ\£ìÏí“)ÓÜŸ³P J“1s)¹¨¤¶ëzËÀøÕ"„éšJÀ„ ¢Îr=r›¼7 ïJˆï{Êò§cñçÏ0uÐ*ìÿcìô®W*º–ýÖ†bù)¤×uéµâ¬?btÙ—6Yx'L÷¼9GYEvÜqÑÑ;7 |5!¾7öJ+;ë¿™ƒÞ<²}ÃM(švþmIµðT!¼º(§Bº“ñcNvÿ¢0¸X×M%5e¦×ø»[¬9ºYüÙé’l1ïÖH—n¸7†¯Vío˜¢Žr,¡É›WB9h~â“ùÙÔ’¹¬´ÿçÑïx–‚í5U)Çr¾ÂeÍ·¹âÛb^™? $L¿Œ%`ã\¸[Ùˆ¦Ì2J¿Î] 8+À ÝpL³­³ˆë T+9ÕK²¥/_þ²Öå0„‹&Þ5³o¥­sZ,Ž{aèÉ*è²òjdþO»~¥Í²")•÷’—É,µ#‰§:ãÚhÑõ³ u!^e;'{Dt/Ã8K·ÓÌf_—ŠÏL÷½.š' €Ñ `ge)à Ë"”v-u\,›ñe¶“ “’ãŽv3\uª“»¾ÜDð±iá0&ÛÚ|—½ïšÿl[Oï˜oR-ÒA b“³t{}J’¶èã•,jK¹ÚÍ?ƒ•–\¥êGŒ0i&d•^LèÇרÕŠZ®û»RÚRÔu-ã1i£—+»l£žõă¯µŒ/Æ_ÊV|õ+˜cé¹Tÿ4JÛÍKÆKº“Äáñh;úÐW"sx;å'Ҙؗ}q†(7ÙÛÅ+2ø½è“Ÿ l>.giŽCÛ:×+ëkë¸Üô†ó«‘Lá£3R1,)¯e\Êù–\ŸtìûVE÷Ûbîmõ o¯8š\ª÷lÉ…¬éFøÌ$—’6àW…T·Ò. =Åÿÿ\åh•̆D+ð,½–,8^u¿ÈÍP[—0Cí±;N²~²±Q¦¦å,Æ,h•Žy%_ Üå´‚Ò,lûù¸ïX®ÐÊÁ-Èà–øçBËj:Ìw+¹7‹ö&6æµÏëýËr*¥üdåìÐ÷-wÊH[éï%K>–Ö"fÈÊÈŠàüéÈyÐ]13,½Ä½²ˆã)äÆ"DtS§N­ßíTÔ(DÈóýÍ02ãm+Õ¡\œlVX½XݹX‡°Y±ís‘¿®Mµ¼ÌbzVõyƒ†u¤òb¶Ûï8ßÉÑÔ˜˜eGÆ›?*„òŠáSÜo,=»‘‰è;£˜=UD³ª1p–œ:Œ¥qŒŠoÄe 'ßñp:MNÁ¸Àhy¤¨9ÈxÅSQ¿‹›¶X Îà7 ų>+¸¦WgÓ“Æ2ê„ W]Ëp"a,½ùLÙ:ôuÇ¿êÇrVÝütQ³ËþîÚ¶hi¸½ý°÷vf%Zs¢º¿UtÇõ9í?~{´m~-¶­íz⢭ÇH¡$^SR=7Âh¸¤¢Ì2åpç§¥ÏåñC©B‚*ß¶éÔ %ŸÏ–ÂZ<èóy5¤&º> stream xœ•‘[Ha†gÜuf²ÅJX!ˆ*ƒPQ¨,0Ôn*<\¨ –¢íAw\w¶MwÍò˜~š–‡t-·]cjb¥¤ÁêÍ`¡,ŠÒEVyóMͨ©nú™‹ÿg^ž÷{ßÇÔ~ŽãD|BJJ´r;P%ÙÄvQô¯×à QFÝù=$È·ofÏÔ^L9¤ÉÂYõ† KÂR°T, ;‡Ç1JajŒÃ)<üBüZU‘¢;Ptƒ€fü“%ûTb×~ɾp±ÄKóu÷³éÓD) FC8™ç’7kû…Ž< ‚ƒÉB±ÄçÅáÉÉK2-YŒd©IVñŠ*t‡Šýª4'à jTb¬xPë„>#W]Vy‹ÎíÊ€ ¤xG›6f¹WÁ<¾ÊW¯Ù{k–¯C:•oÒ…%æ<œ±Ñ•®š6¨<àlLé€ÂAgÇ]¾™žÒMƒ (t²ûÃèdþ€ÅÉäô5…;/ß9Û#Tï ¿ºz[o­§Ø>hj<]ÌÆL3š Ga>êS!«è§EQÛƒKQo‰.ðä)†ô©¤½ F¥ƒÉA^ÐÍ¿{3ë6à »­ÖXG×fæXõ@Å‚·{‹¾Õ°¸_;TÑ¢ÿ½×<âxL™>úhä&ÿþßH„Ï™—†Çš=£ \ð¨Å?z•÷è–¿á¨\ ˆÓZžó°,DZ¬‡ãy‡§¥$)XëØ€v2È_òJ;Öé%:úe +¡%b}™+Ù±G¿øˆ"ää?Ñ—t¡ŒêUÐÁ?Ž`‡\ó³Þ”B8êí uõÐ\7jh)ÊZd7Æ|…1tä x͈qä/Ãõ øËYD(ŸJÌB¯´n@êÈ›™žM×6^›H•™† “¹¦ßÅ@ˆuk7 3’—ÔY7—óžpöɬ cÐråéĘ«½4–JÈrÓfèùÿ’ÒêbV³ 4 Ù š û Á_·oendstream endobj 123 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1755 >> stream xœ½UmL[罎{XЬÆiu¯ªDM4U[ú£é”ÒnIH:2œ°Ô%óiƒÁ×_€?îccã/0l æÃØAK ¤t éÔL+•&µÚ´Õ’iY§æ5½™¶KˆúgÒV©ÓîûëþxŸç<ç¼ç<Œ·ãp8[¼~øÌ©Üç÷oüìæÜ×Ö§€ ^ïÓ[yYww¼›¹ð=lã˨­«—S4–¨ÊÊ¥² ËÇNb?ÇÄØ^ìv;ŒI°£Ø1ì5,;e²å16‚ý“sqËþ-ÿàÒ<.¯;íå´Où¿àôÄ8Þž²d¬†Djg‚“¢ÿÆE×ѼÐ[úâ3Àg¡¼%ÿ,“©:G¶Ë-m ÁÅ UWÿ~=5ЦÅ:3ah¨®pS;ô x¢þ8HΡm°Œxr4[™ Çr‰æå|Ÿ Š@.Õ57”èÄ`Ƶ~è‰ØlC.Â=Ñ÷~pŸËÐØb5˜Õd3eÖ€L¢êˆ~À5k¿â'2RŸlB|€8(Œ8ÜÔç()ü2g•Ig${™—˜{n¿†ÒÑ÷ÑA”E0—™naå›ÁÛÓQÄZ$c7–&Ÿü •SÖÀðä…dmž¸ê àl]¦p‘›ãkp?gžš54]¸†‚Z½§£›qG &!a‰Ã[‚Ý®~ˆ)[›V 69ƒ^¯K˜Ã BÙe›ïBé/þê''Šd- ²eò\oÙ·žûKµÐî‡Í=»<Ó3x8®-8]Éd¶Ö‘ÒœÒ4@%Ô ¶^d1[ há},ä<”ÁE7ÑmaWxîý÷À º_}VI—°½ä!åØT||nñtâpyQkq1A•†%ßMˆuÌ£ð<\䤾ÞÎñ¯{ôõm–f“š‹Õ\Õž  "]ÄRÚ]68D}*hk²XZL„ê(%ϼ‚ õìIˆ²Ì¥Ý„Ý”UaU‘l+Xñ¶DÔæ Ù‰0’XƒjЂ衕O±’¨‚ ù˜°vóÌÃ;ÍZšVÑzZMëoâS*¨ÕyM^r pV,˺ùBcahÉ ~ÛDá`™¤ ‰⡬{‘çc´_㦤ž–SPÁN"©‡†’ý—¯‰'²_®¬×¨ˆªºæB¨†¢Æ:®´-¶ÁYœ†çRWÃU„Ë1‚_ãS27u¡²V’·Zqoä¦mê*q%Ù&`п« Ë…žš®ónHâ6øà+Oaö‰ Ù'ž6^íç í÷¹èZêáùÁ ‹šbQçð=³WØõ^7¦BuºòŽ"=QÁ<›v¯Ú¤¦‡ü=ÿ(3nVƒ:DyËÒôÄ-D7üÚDÓjQ²O¢j¼]o Ùݽä7Þúê7µ”Â…=`‡ÎG(Ê Ó²‰2'{…ÉÞËdv1é_{g~<!C•sêi˜‡¡¸¿?:ã_bom4RдÜHªT?•®7ºÃ›öô ­F°Ð†â‚M5àÒÀòÕI”é!ã÷®õDY‹4yKYY®3罈;öØòÛ½w¹©OR™›Èœø˜Â§ìø%]¨#Ž0Ó½YS#Œ Š­ù†u~p%þiäÙ=äôA_:3qz·„yJ¹ñÐCNðwîèðŸ—wvƒJ©¯îÐ’²ꎀß¿ZùáÅXÀÓC´<ÿú^vh´5z\£0…OU»U¥²ªâÂEéPâþå^ä›TBùKä­ Ö÷ mN{8!¤¢µ4“Ù±³•n¨ÝðD·¯¦}D!S#©èlÑÿϘ! è@‚ƒ¶ ÙW¹hÕ W±"Nb±Aú$óC{÷ghÇØÛŽÐyu`z|¸»9Òf1ƒÑHúñ³¬qqíÄÛC®éî8ÙÞòŒÆÆGâ—zÙè˜ ×Ëö0/ 2¡Mfv ­´ón ¸)|}—0Ú2XsA*­¬ïWÆ’ñø$Á¨†…j‹á¿n¿kÈf'ï ö®^‡zDÿYYQN[ÉÍѽ< Ý~@™\ôÙ·ŠÙóðƒÇù'©††ý#^ÂÞ5xgàãQÓoÕP&0YZ­í´ ZñüÅ’Õû“hŸû±` FBs²ùÍ Öi:û¸úÜã¤Ýc÷€Ö^q'¢ñ¤Ýö»µÙ¡)p€úó¦)T=JíØ¥[£ÚËbI٫ljÒJ«Ðà_çlút=ùïkZn¦Z‹É&»CÑV ÆG‰í›v.ø‰wíŠ-qDß}¿t¶D*%šÖöƒ’=¹{ì°Ú‰m> /W [ 1 3 1 ] /Info 3 0 R /Root 2 0 R /Size 125 /ID [<105208be6fa27241a4914c067268a342>] >> stream xœcb&F~0ù‰ $À8JŽ’8Éÿ ‚—Ùìr Ô"°D2ï‘B‡@$£"ˆdw³¯ƒH&)Ü"Å6Hþe`5—@¤ŠX¥9Ø„ R!H2JCL`‘‚À¶p€Eþ‚H¦b°¸:ˆôÛÂpDÊ{HQA©Ì Öe¶ËŒL±© endstream endobj startxref 124614 %%EOF HSAUR3/inst/doc/Ch_simultaneous_inference.R0000644000176200001440000001514114660150115020245 0ustar liggesusers### R code from vignette source 'Ch_simultaneous_inference.Rnw' ################################################### ### code chunk number 1: setup ################################################### rm(list = ls()) s <- search()[-1] s <- s[-match(c("package:base", "package:stats", "package:graphics", "package:grDevices", "package:utils", "package:datasets", "package:methods", "Autoloads"), s)] if (length(s) > 0) sapply(s, detach, character.only = TRUE) if (!file.exists("tables")) dir.create("tables") if (!file.exists("figures")) dir.create("figures") set.seed(290875) options(prompt = "R> ", continue = "+ ", width = 63, # digits = 4, show.signif.stars = FALSE, SweaveHooks = list(leftpar = function() par(mai = par("mai") * c(1, 1.05, 1, 1)), bigleftpar = function() par(mai = par("mai") * c(1, 1.7, 1, 1)))) HSAURpkg <- require("HSAUR3") if (!HSAURpkg) stop("cannot load package ", sQuote("HSAUR3")) rm(HSAURpkg) ### hm, R-2.4.0 --vanilla seems to need this a <- Sys.setlocale("LC_ALL", "C") ### book <- TRUE refs <- cbind(c("AItR", "DAGD", "SI", "CI", "ANOVA", "MLR", "GLM", "DE", "RP", "GAM", "SA", "ALDI", "ALDII", "SIMC", "MA", "PCA", "MDS", "CA"), 1:18) ch <- function(x) { ch <- refs[which(refs[,1] == x),] if (book) { return(paste("Chapter~\\\\ref{", ch[1], "}", sep = "")) } else { return(paste("Chapter~", ch[2], sep = "")) } } if (file.exists("deparse.R")) source("deparse.R") setHook(packageEvent("lattice", "attach"), function(...) { lattice.options(default.theme = function() standard.theme("pdf", color = FALSE)) }) ################################################### ### code chunk number 2: singlebook ################################################### book <- FALSE ################################################### ### code chunk number 3: SIMC-setup ################################################### library("multcomp") library("coin") library("sandwich") library("lme4") ################################################### ### code chunk number 4: SIMC-alpha-data-figure ################################################### n <- table(alpha$alength) levels(alpha$alength) <- abbreviate(levels(alpha$alength), 4) plot(elevel ~ alength, data = alpha, varwidth = TRUE, ylab = "Expression Level", xlab = "NACP-REP1 Allele Length") axis(3, at = 1:3, labels = paste("n = ", n)) ################################################### ### code chunk number 5: SIMC-alpha-aov-tukey ################################################### library("multcomp") amod <- aov(elevel ~ alength, data = alpha) amod_glht <- glht(amod, linfct = mcp(alength = "Tukey")) ################################################### ### code chunk number 6: SIMC-alpha-aov-tukey-K ################################################### amod_glht$linfct ################################################### ### code chunk number 7: SIMC-alpha-aov-coefvcov ################################################### coef(amod_glht) vcov(amod_glht) ################################################### ### code chunk number 8: SIMC-alpha-aov-results ################################################### confint(amod_glht) summary(amod_glht) ################################################### ### code chunk number 9: SIMC-aov-tukey-sandwich ################################################### amod_glht_sw <- glht(amod, linfct = mcp(alength = "Tukey"), vcov = sandwich) summary(amod_glht_sw) ################################################### ### code chunk number 10: SIMC-alpha-confint-plot ################################################### par(mai = par("mai") * c(1, 2.1, 1, 0.5)) layout(matrix(1:2, ncol = 2)) ci1 <- confint(glht(amod, linfct = mcp(alength = "Tukey"))) ci2 <- confint(glht(amod, linfct = mcp(alength = "Tukey"), vcov = sandwich)) ox <- expression(paste("Tukey (ordinary ", bold(S)[n], ")")) sx <- expression(paste("Tukey (sandwich ", bold(S)[n], ")")) plot(ci1, xlim = c(-0.6, 2.6), main = ox, xlab = "Difference", ylim = c(0.5, 3.5)) plot(ci2, xlim = c(-0.6, 2.6), main = sx, xlab = "Difference", ylim = c(0.5, 3.5)) ################################################### ### code chunk number 11: SIMC-trees-setup ################################################### trees513 <- subset(trees513, !species %in% c("fir", "ash/maple/elm/lime", "softwood (other)")) trees513$species <- trees513$species[,drop = TRUE] levels(trees513$species)[nlevels(trees513$species)] <- "hardwood" ################################################### ### code chunk number 12: SIMC-trees-lmer ################################################### mmod <- glmer(damage ~ species - 1 + (1 | lattice / plot), data = trees513, family = binomial()) K <- diag(length(fixef(mmod))) K ################################################### ### code chunk number 13: SIMC-trees-K ################################################### colnames(K) <- rownames(K) <- paste(gsub("species", "", names(fixef(mmod))), " (", table(trees513$species), ")", sep = "") K ################################################### ### code chunk number 14: SIMC-trees-ci ################################################### ci <- confint(glht(mmod, linfct = K)) ci$confint <- 1 - binomial()$linkinv(ci$confint) ci$confint[,2:3] <- ci$confint[,3:2] ################################################### ### code chunk number 15: SIMC-trees-plot ################################################### getOption("SweaveHooks")[["bigleftpar"]]() plot(ci, xlab = "Probability of Damage Caused by Browsing", xlim = c(0, 0.5), main = "", ylim = c(0.5, 5.5)) ################################################### ### code chunk number 16: SIMC-clouds-confband ################################################### confband <- function(subset, main) { mod <- lm(rainfall ~ sne, data = clouds, subset = subset) sne_grid <- seq(from = 1.5, to = 4.5, by = 0.25) K <- cbind(1, sne_grid) sne_ci <- confint(glht(mod, linfct = K)) plot(rainfall ~ sne, data = clouds, subset = subset, xlab = "S-Ne criterion", main = main, xlim = range(clouds$sne), ylim = range(clouds$rainfall)) abline(mod) lines(sne_grid, sne_ci$confint[,2], lty = 2) lines(sne_grid, sne_ci$confint[,3], lty = 2) } ################################################### ### code chunk number 17: SIMC-clouds-lmplot ################################################### layout(matrix(1:2, ncol = 2)) confband(clouds$seeding == "no", main = "No seeding") confband(clouds$seeding == "yes", main = "Seeding") HSAUR3/inst/doc/Ch_missing_values.R0000644000176200001440000001625414660150072016537 0ustar liggesusers### R code from vignette source 'Ch_missing_values.Rnw' ################################################### ### code chunk number 1: setup ################################################### rm(list = ls()) s <- search()[-1] s <- s[-match(c("package:base", "package:stats", "package:graphics", "package:grDevices", "package:utils", "package:datasets", "package:methods", "Autoloads"), s)] if (length(s) > 0) sapply(s, detach, character.only = TRUE) if (!file.exists("tables")) dir.create("tables") if (!file.exists("figures")) dir.create("figures") set.seed(290875) options(prompt = "R> ", continue = "+ ", width = 63, # digits = 4, show.signif.stars = FALSE, SweaveHooks = list(leftpar = function() par(mai = par("mai") * c(1, 1.05, 1, 1)), bigleftpar = function() par(mai = par("mai") * c(1, 1.7, 1, 1)))) HSAURpkg <- require("HSAUR3") if (!HSAURpkg) stop("cannot load package ", sQuote("HSAUR3")) rm(HSAURpkg) ### hm, R-2.4.0 --vanilla seems to need this a <- Sys.setlocale("LC_ALL", "C") ### book <- TRUE refs <- cbind(c("AItR", "DAGD", "SI", "CI", "ANOVA", "MLR", "GLM", "DE", "RP", "GAM", "SA", "ALDI", "ALDII", "SIMC", "MA", "PCA", "MDS", "CA"), 1:18) ch <- function(x) { ch <- refs[which(refs[,1] == x),] if (book) { return(paste("Chapter~\\\\ref{", ch[1], "}", sep = "")) } else { return(paste("Chapter~", ch[2], sep = "")) } } if (file.exists("deparse.R")) source("deparse.R") setHook(packageEvent("lattice", "attach"), function(...) { lattice.options(default.theme = function() standard.theme("pdf", color = FALSE)) }) ################################################### ### code chunk number 2: singlebook ################################################### book <- FALSE ################################################### ### code chunk number 3: MV-bp-tab ################################################### data("bp", package = "HSAUR3") toLatex(HSAURtable(bp), pcol = 2, caption = paste("Blood pressure data."), label = "MV-bp-tab") ################################################### ### code chunk number 4: MV-bp-NA ################################################### sapply(bp, function(x) sum(is.na(x))) ################################################### ### code chunk number 5: MV-bp-msd-cc ################################################### summary(bp$recovtime, na.rm = TRUE) ################################################### ### code chunk number 6: MV-bp-sd-cc ################################################### sd(bp$recovtime, na.rm = TRUE) ################################################### ### code chunk number 7: MV-bp-cor-cc ################################################### with(bp, cor(bloodp, recovtime, use = "complete.obs")) with(bp, cor(logdose, recovtime, use = "complete.obs")) ################################################### ### code chunk number 8: MV-bp-pairs-cc ################################################### layout(matrix(1:3, nrow = 1)) plot(bloodp ~ logdose, data = bp) plot(recovtime ~ bloodp, data = bp) plot(recovtime ~ logdose, data = bp) ################################################### ### code chunk number 9: MV-bp-lm-cc ################################################### summary(lm(recovtime ~ bloodp + logdose, data = bp)) ################################################### ### code chunk number 10: MV-bp-mice-pkg ################################################### library("mice") ################################################### ### code chunk number 11: MV-bp-mice ################################################### imp <- mice(bp, method = "mean", m = 1, maxit = 1) ################################################### ### code chunk number 12: MV-bp-imp-summary ################################################### with(imp, summary(recovtime)) ################################################### ### code chunk number 13: MV-bp-imp-sd ################################################### with(imp, sd(recovtime)) ################################################### ### code chunk number 14: MV-bp-imp-cor ################################################### with(imp, cor(bloodp, recovtime)) with(imp, cor(logdose, recovtime)) ################################################### ### code chunk number 15: MV-bp-pairs-imp ################################################### layout(matrix(1:2, nrow = 1)) plot(recovtime ~ bloodp, data = complete(imp), pch = is.na(bp$recovtime) + 1) plot(recovtime ~ logdose, data = complete(imp), pch = is.na(bp$recovtime) + 1) legend("topleft", pch = 1:2, bty = "n", legend = c("original", "imputed")) ################################################### ### code chunk number 16: MV-bp-lm-imp ################################################### with(imp, summary(lm(recovtime ~ bloodp + logdose))) ################################################### ### code chunk number 17: MV-bp-mice ################################################### imp_ppm <- mice(bp, m = 10, method = "pmm", print = FALSE, seed = 1) ################################################### ### code chunk number 18: MV-bp-pairs-mice ################################################### layout(matrix(1:2, nrow = 1)) plot(recovtime ~ bloodp, data = complete(imp_ppm), pch = is.na(bp$recovtime) + 1) plot(recovtime ~ logdose, data = complete(imp_ppm), pch = is.na(bp$recovtime) + 1) legend("topleft", pch = 1:2, bty = "n", legend = c("original", "imputed")) ################################################### ### code chunk number 19: MV-bp-mice-out ################################################### summary(unlist(with(imp_ppm, mean(recovtime))$analyses)) summary(unlist(with(imp_ppm, sd(recovtime))$analyses)) ################################################### ### code chunk number 20: MV-bp-mice-cor ################################################### summary(unlist(with(imp_ppm, cor(bloodp, recovtime))$analyses)) summary(unlist(with(imp_ppm, cor(logdose, recovtime))$analyses)) ################################################### ### code chunk number 21: MV-bp-mice-lm ################################################### fit <- with(imp_ppm, lm(recovtime ~ bloodp + logdose)) ################################################### ### code chunk number 22: MV-bp-lm-mice ################################################### summary(pool(fit)) ################################################### ### code chunk number 23: MI-bp-t ################################################### with(bp, t.test(recovtime, mu = 27)) with(imp, t.test(recovtime, mu = 27))$analyses[[1]] ################################################### ### code chunk number 24: MI-mice-t ################################################### fit <- with(imp_ppm, lm(I(recovtime - 27) ~ 1)) summary(pool(fit)) ################################################### ### code chunk number 25: MI-UStemp-tab ################################################### data("UStemp", package = "HSAUR3") toLatex(HSAURtable(UStemp), caption = "Lowest temperatures in Fahrenheit recorded in various months for cities in the US.", label = "MI-UStemp-tab", rownames = TRUE) HSAUR3/inst/doc/Ch_analysing_longitudinal_dataI.Rnw0000644000176200001440000003373214416236367021727 0ustar liggesusers \documentclass{chapman} %%% copy Sweave.sty definitions %%% keeps `sweave' from adding `\usepackage{Sweave}': DO NOT REMOVE %\usepackage{Sweave} \RequirePackage[T1]{fontenc} \RequirePackage{graphicx,ae,fancyvrb} \IfFileExists{upquote.sty}{\RequirePackage{upquote}}{} \usepackage{relsize} \DefineVerbatimEnvironment{Sinput}{Verbatim}{} \DefineVerbatimEnvironment{Soutput}{Verbatim}{fontfamily=courier, fontshape=it, fontsize=\relsize{-1}} \DefineVerbatimEnvironment{Scode}{Verbatim}{} \newenvironment{Schunk}{}{} %%% environment for raw output \newcommand{\SchunkRaw}{\renewenvironment{Schunk}{}{} \DefineVerbatimEnvironment{Soutput}{Verbatim}{fontfamily=courier, fontshape=it, fontsize=\small} \rawSinput } %%% environment for labeled output \newcommand{\nextcaption}{} \newcommand{\SchunkLabel}{ \renewenvironment{Schunk}{\begin{figure}[ht] }{\caption{\nextcaption} \end{figure} } \DefineVerbatimEnvironment{Sinput}{Verbatim}{frame = topline} \DefineVerbatimEnvironment{Soutput}{Verbatim}{frame = bottomline, samepage = true, fontfamily=courier, fontshape=it, fontsize=\relsize{-1}} } %%% S code with line numbers \DefineVerbatimEnvironment{Sinput} {Verbatim} { %% numbers=left } \newcommand{\numberSinput}{ \DefineVerbatimEnvironment{Sinput}{Verbatim}{numbers=left} } \newcommand{\rawSinput}{ \DefineVerbatimEnvironment{Sinput}{Verbatim}{} } %%% R / System symbols \newcommand{\R}{\textsf{R}} \newcommand{\rR}{{R}} \renewcommand{\S}{\textsf{S}} \newcommand{\SPLUS}{\textsf{S-PLUS}} \newcommand{\rSPLUS}{{S-PLUS}} \newcommand{\SPSS}{\textsf{SPSS}} \newcommand{\EXCEL}{\textsf{Excel}} \newcommand{\ACCESS}{\textsf{Access}} \newcommand{\SQL}{\textsf{SQL}} %%\newcommand{\Rpackage}[1]{\hbox{\rm\textit{#1}}} %%\newcommand{\Robject}[1]{\hbox{\rm\texttt{#1}}} %%\newcommand{\Rclass}[1]{\hbox{\rm\textit{#1}}} %%\newcommand{\Rcmd}[1]{\hbox{\rm\texttt{#1}}} \newcommand{\Rpackage}[1]{\index{#1 package@{\fontseries{b}\selectfont #1} package} {\fontseries{b}\selectfont #1}} \newcommand{\rpackage}[1]{{\fontseries{b}\selectfont #1}} \newcommand{\Robject}[1]{\texttt{#1}} \newcommand{\Rclass}[1]{\index{#1 class@\textit{#1} class}\textit{#1}} \newcommand{\Rcmd}[1]{\index{#1 function@\texttt{#1} function}\texttt{#1}} \newcommand{\Roperator}[1]{\texttt{#1}} \newcommand{\Rarg}[1]{\texttt{#1}} \newcommand{\Rlevel}[1]{\texttt{#1}} %%% other symbols \newcommand{\file}[1]{\hbox{\rm\texttt{#1}}} %%\newcommand{\stress}[1]{\index{#1}\textit{#1}} \newcommand{\stress}[1]{\textit{#1}} \newcommand{\booktitle}[1]{\textit{#1}} %%' %%% Math symbols \usepackage{amstext} \usepackage{amsmath} \newcommand{\E}{\mathsf{E}} \newcommand{\Var}{\mathsf{Var}} \newcommand{\Cov}{\mathsf{Cov}} \newcommand{\Cor}{\mathsf{Cor}} \newcommand{\x}{\mathbf{x}} \newcommand{\y}{\mathbf{y}} \renewcommand{\a}{\mathbf{a}} \newcommand{\W}{\mathbf{W}} \newcommand{\C}{\mathbf{C}} \renewcommand{\H}{\mathbf{H}} \newcommand{\X}{\mathbf{X}} \newcommand{\B}{\mathbf{B}} \newcommand{\V}{\mathbf{V}} \newcommand{\I}{\mathbf{I}} \newcommand{\D}{\mathbf{D}} \newcommand{\bS}{\mathbf{S}} \newcommand{\N}{\mathcal{N}} \renewcommand{\L}{L} \renewcommand{\P}{\mathsf{P}} \newcommand{\K}{\mathbf{K}} \newcommand{\m}{\mathbf{m}} \newcommand{\argmin}{\operatorname{argmin}\displaylimits} \newcommand{\argmax}{\operatorname{argmax}\displaylimits} \newcommand{\bx}{\mathbf{x}} \newcommand{\bbeta}{\mathbf{\beta}} %%% links \usepackage{hyperref} \hypersetup{% pdftitle = {A Handbook of Statistical Analyses Using R (3rd Edition)}, pdfsubject = {Book}, pdfauthor = {Torsten Hothorn and Brian S. Everitt}, colorlinks = {black}, linkcolor = {black}, citecolor = {black}, urlcolor = {black}, hyperindex = {true}, linktocpage = {true}, } %%% captions & tables %% : conflics with figure definition in chapman.cls %%\usepackage[format=hang,margin=10pt,labelfont=bf]{caption} %% \usepackage{longtable} \usepackage[figuresright]{rotating} %%% R symbol in chapter 1 \usepackage{wrapfig} %%% Bibliography \usepackage[round,comma]{natbib} \renewcommand{\refname}{References \addcontentsline{toc}{chapter}{References}} \citeindexfalse %%% texi2dvi complains that \newblock is undefined, hm... \def\newblock{\hskip .11em plus .33em minus .07em} %%% Example sections \newcounter{exercise}[chapter] \setcounter{exercise}{0} \newcommand{\exercise}{\stepcounter{exercise} \item{Ex.~\arabic{chapter}.\arabic{exercise} }} %% URLs \newcommand{\curl}[1]{\begin{center} \url{#1} \end{center}} %%% for manual corrections %\renewcommand{\baselinestretch}{2} %%% plot sizes \setkeys{Gin}{width=0.95\textwidth} %%% color \usepackage{color} %%% hyphenations \hyphenation{drop-out} \hyphenation{mar-gi-nal} %%% new bidirectional quotes need \usepackage[utf8]{inputenc} %\usepackage{setspace} \definecolor{sidebox_todo}{rgb}{1,1,0.2} \newcommand{\todo}[1]{ \hspace{0pt}% \marginpar{% \fcolorbox{black}{sidebox_todo}{% \parbox{\marginparwidth} { \raggedright\sffamily\footnotesize{TODO: #1}% } }% } } \begin{document} %% Title page \title{A Handbook of Statistical Analyses Using \R{} --- 3rd Edition} \author{Torsten Hothorn and Brian S. Everitt} \maketitle %%\VignetteIndexEntry{Chapter Analyzing Longitudinal Data I} %%\VignetteDepends{lme4,multcomp} \setcounter{chapter}{12} \SweaveOpts{prefix.string=figures/HSAUR,eps=FALSE,keep.source=TRUE} <>= rm(list = ls()) s <- search()[-1] s <- s[-match(c("package:base", "package:stats", "package:graphics", "package:grDevices", "package:utils", "package:datasets", "package:methods", "Autoloads"), s)] if (length(s) > 0) sapply(s, detach, character.only = TRUE) if (!file.exists("tables")) dir.create("tables") if (!file.exists("figures")) dir.create("figures") set.seed(290875) options(prompt = "R> ", continue = "+ ", width = 63, # digits = 4, show.signif.stars = FALSE, SweaveHooks = list(leftpar = function() par(mai = par("mai") * c(1, 1.05, 1, 1)), bigleftpar = function() par(mai = par("mai") * c(1, 1.7, 1, 1)))) HSAURpkg <- require("HSAUR3") if (!HSAURpkg) stop("cannot load package ", sQuote("HSAUR3")) rm(HSAURpkg) ### hm, R-2.4.0 --vanilla seems to need this a <- Sys.setlocale("LC_ALL", "C") ### book <- TRUE refs <- cbind(c("AItR", "DAGD", "SI", "CI", "ANOVA", "MLR", "GLM", "DE", "RP", "GAM", "SA", "ALDI", "ALDII", "SIMC", "MA", "PCA", "MDS", "CA"), 1:18) ch <- function(x) { ch <- refs[which(refs[,1] == x),] if (book) { return(paste("Chapter~\\\\ref{", ch[1], "}", sep = "")) } else { return(paste("Chapter~", ch[2], sep = "")) } } if (file.exists("deparse.R")) source("deparse.R") setHook(packageEvent("lattice", "attach"), function(...) { lattice.options(default.theme = function() standard.theme("pdf", color = FALSE)) }) @ \pagestyle{headings} <>= book <- FALSE @ <>= library("lme4") library("multcomp") residuals <- function(object) { y <- getME(object, 'y') y - fitted(object) } @ \chapter[Analyzing Longitudinal Data I]{Analyzing Longitudinal Data I: Computerized Delivery of Cognitive Behavioral Therapy -- Beat the Blues \label{ALDI}} \section{Introduction} \section{Analyzing Longitudinal Data} \section{Analysis Using \R{}} \begin{figure} \begin{center} <>= data("BtheB", package = "HSAUR3") layout(matrix(1:2, nrow = 1)) ylim <- range(BtheB[,grep("bdi", names(BtheB))], na.rm = TRUE) tau <- subset(BtheB, treatment == "TAU")[, grep("bdi", names(BtheB))] boxplot(tau, main = "Treated as Usual", ylab = "BDI", xlab = "Time (in months)", names = c(0, 2, 3, 5, 8), ylim = ylim) btheb <- subset(BtheB, treatment == "BtheB")[, grep("bdi", names(BtheB))] boxplot(btheb, main = "Beat the Blues", ylab = "BDI", xlab = "Time (in months)", names = c(0, 2, 3, 5, 8), ylim = ylim) @ \caption{Boxplots for the repeated measures by treatment group for the \Robject{BtheB} data. \label{ALDI:boxplots}} \end{center} \end{figure} We shall fit both random intercept and random intercept and slope models to the data including the baseline BDI values (\Robject{pre.bdi}), \Robject{treatment} group, \Robject{drug}, and \Robject{length} as fixed effect covariates. Linear mixed effects models are fitted in \R{} by using the \Rcmd{lmer} function contained in the \Rpackage{lme4} package \citep{PKG:lme4,HSAUR:PinheiroBates2000,HSAUR:Bates2005}, but an essential first step is to rearrange the data from the `wide form' in which they appear in the \Robject{BtheB} data frame %%' into the `long form' in which each separate repeated measurement %%' and associated covariate values appear as a separate row in a \Rclass{data.frame}. This rearrangement can be made using the following code: <>= data("BtheB", package = "HSAUR3") BtheB$subject <- factor(rownames(BtheB)) nobs <- nrow(BtheB) BtheB_long <- reshape(BtheB, idvar = "subject", varying = c("bdi.2m", "bdi.3m", "bdi.5m", "bdi.8m"), direction = "long") BtheB_long$time <- rep(c(2, 3, 5, 8), rep(nobs, 4)) @ such that the data are now in the form (here shown for the first three subjects) <>= subset(BtheB_long, subject %in% c("1", "2", "3")) @ The resulting \Rclass{data.frame} \Robject{BtheB\_long} contains a number of missing values \index{Missing values} and in applying the \Rcmd{lmer} function these will be dropped. But notice it is only the missing values that are removed, \stress{not} participants that have at least one missing value. All the available data is used in the model fitting process. The \Rcmd{lmer} function is used in a similar way to the \Rcmd{lm} function met in \Sexpr{ch("MLR")} with the addition of a random term to identify the source of the repeated measurements, here \Robject{subject}. We can fit the two models (\ref{ALDI:ModelA}) and (\ref{ALDI:ModelB}) and test which is most appropriate using <>= library("lme4") BtheB_lmer1 <- lmer(bdi ~ bdi.pre + time + treatment + drug + length + (1 | subject), data = BtheB_long, REML = FALSE, na.action = na.omit) BtheB_lmer2 <- lmer(bdi ~ bdi.pre + time + treatment + drug + length + (time | subject), data = BtheB_long, REML = FALSE, na.action = na.omit) anova(BtheB_lmer1, BtheB_lmer2) @ \renewcommand{\nextcaption}{\R{} output of the linear mixed-effects model fit for the \Robject{BtheB} data. \label{ALDI-BtheB-summary}} \SchunkLabel <>= summary(BtheB_lmer1) @ \SchunkRaw The \Rcmd{summary} method for \Rclass{lmer} objects doesn't print $p$-values for Gaussian mixed models because the degrees of freedom of the $t$ reference distribution are not obvious. However, one can rely on the asymptotic normal distribution for computing univariate $p$-values for the fixed effects using the \Rcmd{cftest} function from package \Rpackage{multcomp}. The asymptotic $p$-values are given in Figure~\ref{ALDI-BtheB-summary-p}. \renewcommand{\nextcaption}{\R{} output of the asymptotic $p$-values for linear mixed-effects model fit for the \Robject{BtheB} data. \label{ALDI-BtheB-summary-p}} \SchunkLabel <>= cftest(BtheB_lmer1) @ \SchunkRaw We can check the assumptions of the final model fitted to the \Robject{BtheB} data, i.e., the normality of the random effect terms and the residuals, by first using the \Rcmd{ranef} method to \stress{predict} the former and the \Rcmd{residuals} method to calculate the differences between the observed data values and the fitted values, and then using normal probability plots on each. How the random effects are predicted is explained briefly in Section~\ref{ALDI:predictrandom}. The necessary \R{} code to obtain the effects, residuals, and plots is shown with Figure~\ref{ALDI:qqplots}. There appear to be no large departures from linearity in either plot. \begin{figure} \begin{center} <>= layout(matrix(1:2, ncol = 2)) qint <- ranef(BtheB_lmer1)$subject[["(Intercept)"]] qres <- residuals(BtheB_lmer1) qqnorm(qint, ylab = "Estimated random intercepts", xlim = c(-3, 3), ylim = c(-20, 20), main = "Random intercepts") qqline(qint) qqnorm(qres, xlim = c(-3, 3), ylim = c(-20, 20), ylab = "Estimated residuals", main = "Residuals") qqline(qres) @ \caption{Quantile-quantile plots of predicted random intercepts and residuals for the random intercept model \Robject{BtheB\_lmer1} fitted to the \Robject{BtheB} data. \label{ALDI:qqplots}} \end{center} \end{figure} \begin{figure} \begin{center} <>= bdi <- BtheB[, grep("bdi", names(BtheB))] plot(1:4, rep(-0.5, 4), type = "n", axes = FALSE, ylim = c(0, 50), xlab = "Months", ylab = "BDI") axis(1, at = 1:4, labels = c(0, 2, 3, 5)) axis(2) for (i in 1:4) { dropout <- is.na(bdi[,i + 1]) points(rep(i, nrow(bdi)) + ifelse(dropout, 0.05, -0.05), jitter(bdi[,i]), pch = ifelse(dropout, 20, 1)) } @ \caption{Distribution of BDI values for patients that do (circles) and do not (bullets) attend the next scheduled visit. \label{ALDI-dropout}} \end{center} \end{figure} \bibliographystyle{LaTeXBibTeX/refstyle} \bibliography{LaTeXBibTeX/HSAUR} \end{document} HSAUR3/inst/doc/Ch_graphical_display.Rnw0000644000176200001440000010244414416236367017543 0ustar liggesusers \documentclass{chapman} %%% copy Sweave.sty definitions %%% keeps `sweave' from adding `\usepackage{Sweave}': DO NOT REMOVE %\usepackage{Sweave} \RequirePackage[T1]{fontenc} \RequirePackage{graphicx,ae,fancyvrb} \IfFileExists{upquote.sty}{\RequirePackage{upquote}}{} \usepackage{relsize} \DefineVerbatimEnvironment{Sinput}{Verbatim}{} \DefineVerbatimEnvironment{Soutput}{Verbatim}{fontfamily=courier, fontshape=it, fontsize=\relsize{-1}} \DefineVerbatimEnvironment{Scode}{Verbatim}{} \newenvironment{Schunk}{}{} %%% environment for raw output \newcommand{\SchunkRaw}{\renewenvironment{Schunk}{}{} \DefineVerbatimEnvironment{Soutput}{Verbatim}{fontfamily=courier, fontshape=it, fontsize=\small} \rawSinput } %%% environment for labeled output \newcommand{\nextcaption}{} \newcommand{\SchunkLabel}{ \renewenvironment{Schunk}{\begin{figure}[ht] }{\caption{\nextcaption} \end{figure} } \DefineVerbatimEnvironment{Sinput}{Verbatim}{frame = topline} \DefineVerbatimEnvironment{Soutput}{Verbatim}{frame = bottomline, samepage = true, fontfamily=courier, fontshape=it, fontsize=\relsize{-1}} } %%% S code with line numbers \DefineVerbatimEnvironment{Sinput} {Verbatim} { %% numbers=left } \newcommand{\numberSinput}{ \DefineVerbatimEnvironment{Sinput}{Verbatim}{numbers=left} } \newcommand{\rawSinput}{ \DefineVerbatimEnvironment{Sinput}{Verbatim}{} } %%% R / System symbols \newcommand{\R}{\textsf{R}} \newcommand{\rR}{{R}} \renewcommand{\S}{\textsf{S}} \newcommand{\SPLUS}{\textsf{S-PLUS}} \newcommand{\rSPLUS}{{S-PLUS}} \newcommand{\SPSS}{\textsf{SPSS}} \newcommand{\EXCEL}{\textsf{Excel}} \newcommand{\ACCESS}{\textsf{Access}} \newcommand{\SQL}{\textsf{SQL}} %%\newcommand{\Rpackage}[1]{\hbox{\rm\textit{#1}}} %%\newcommand{\Robject}[1]{\hbox{\rm\texttt{#1}}} %%\newcommand{\Rclass}[1]{\hbox{\rm\textit{#1}}} %%\newcommand{\Rcmd}[1]{\hbox{\rm\texttt{#1}}} \newcommand{\Rpackage}[1]{\index{#1 package@{\fontseries{b}\selectfont #1} package} {\fontseries{b}\selectfont #1}} \newcommand{\rpackage}[1]{{\fontseries{b}\selectfont #1}} \newcommand{\Robject}[1]{\texttt{#1}} \newcommand{\Rclass}[1]{\index{#1 class@\textit{#1} class}\textit{#1}} \newcommand{\Rcmd}[1]{\index{#1 function@\texttt{#1} function}\texttt{#1}} \newcommand{\Roperator}[1]{\texttt{#1}} \newcommand{\Rarg}[1]{\texttt{#1}} \newcommand{\Rlevel}[1]{\texttt{#1}} %%% other symbols \newcommand{\file}[1]{\hbox{\rm\texttt{#1}}} %%\newcommand{\stress}[1]{\index{#1}\textit{#1}} \newcommand{\stress}[1]{\textit{#1}} \newcommand{\booktitle}[1]{\textit{#1}} %%' %%% Math symbols \usepackage{amstext} \usepackage{amsmath} \newcommand{\E}{\mathsf{E}} \newcommand{\Var}{\mathsf{Var}} \newcommand{\Cov}{\mathsf{Cov}} \newcommand{\Cor}{\mathsf{Cor}} \newcommand{\x}{\mathbf{x}} \newcommand{\y}{\mathbf{y}} \renewcommand{\a}{\mathbf{a}} \newcommand{\W}{\mathbf{W}} \newcommand{\C}{\mathbf{C}} \renewcommand{\H}{\mathbf{H}} \newcommand{\X}{\mathbf{X}} \newcommand{\B}{\mathbf{B}} \newcommand{\V}{\mathbf{V}} \newcommand{\I}{\mathbf{I}} \newcommand{\D}{\mathbf{D}} \newcommand{\bS}{\mathbf{S}} \newcommand{\N}{\mathcal{N}} \renewcommand{\L}{L} \renewcommand{\P}{\mathsf{P}} \newcommand{\K}{\mathbf{K}} \newcommand{\m}{\mathbf{m}} \newcommand{\argmin}{\operatorname{argmin}\displaylimits} \newcommand{\argmax}{\operatorname{argmax}\displaylimits} \newcommand{\bx}{\mathbf{x}} \newcommand{\bbeta}{\mathbf{\beta}} %%% links \usepackage{hyperref} \hypersetup{% pdftitle = {A Handbook of Statistical Analyses Using R (3rd Edition)}, pdfsubject = {Book}, pdfauthor = {Torsten Hothorn and Brian S. Everitt}, colorlinks = {black}, linkcolor = {black}, citecolor = {black}, urlcolor = {black}, hyperindex = {true}, linktocpage = {true}, } %%% captions & tables %% : conflics with figure definition in chapman.cls %%\usepackage[format=hang,margin=10pt,labelfont=bf]{caption} %% \usepackage{longtable} \usepackage[figuresright]{rotating} %%% R symbol in chapter 1 \usepackage{wrapfig} %%% Bibliography \usepackage[round,comma]{natbib} \renewcommand{\refname}{References \addcontentsline{toc}{chapter}{References}} \citeindexfalse %%% texi2dvi complains that \newblock is undefined, hm... \def\newblock{\hskip .11em plus .33em minus .07em} %%% Example sections \newcounter{exercise}[chapter] \setcounter{exercise}{0} \newcommand{\exercise}{\stepcounter{exercise} \item{Ex.~\arabic{chapter}.\arabic{exercise} }} %% URLs \newcommand{\curl}[1]{\begin{center} \url{#1} \end{center}} %%% for manual corrections %\renewcommand{\baselinestretch}{2} %%% plot sizes \setkeys{Gin}{width=0.95\textwidth} %%% color \usepackage{color} %%% hyphenations \hyphenation{drop-out} \hyphenation{mar-gi-nal} %%% new bidirectional quotes need \usepackage[utf8]{inputenc} %\usepackage{setspace} \definecolor{sidebox_todo}{rgb}{1,1,0.2} \newcommand{\todo}[1]{ \hspace{0pt}% \marginpar{% \fcolorbox{black}{sidebox_todo}{% \parbox{\marginparwidth} { \raggedright\sffamily\footnotesize{TODO: #1}% } }% } } \begin{document} %% Title page \title{A Handbook of Statistical Analyses Using \R{} --- 3rd Edition} \author{Torsten Hothorn and Brian S. Everitt} \maketitle %%\VignetteIndexEntry{Chapter Data Analysis using Graphical Displays} %%\VignetteDepends{lattice, maps, sf, sp} \setcounter{chapter}{1} \SweaveOpts{prefix.string=figures/HSAUR,eps=FALSE,keep.source=TRUE} <>= rm(list = ls()) s <- search()[-1] s <- s[-match(c("package:base", "package:stats", "package:graphics", "package:grDevices", "package:utils", "package:datasets", "package:methods", "Autoloads"), s)] if (length(s) > 0) sapply(s, detach, character.only = TRUE) if (!file.exists("tables")) dir.create("tables") if (!file.exists("figures")) dir.create("figures") set.seed(290875) options(prompt = "R> ", continue = "+ ", width = 63, # digits = 4, show.signif.stars = FALSE, SweaveHooks = list(leftpar = function() par(mai = par("mai") * c(1, 1.05, 1, 1)), bigleftpar = function() par(mai = par("mai") * c(1, 1.7, 1, 1)))) HSAURpkg <- require("HSAUR3") if (!HSAURpkg) stop("cannot load package ", sQuote("HSAUR3")) rm(HSAURpkg) ### hm, R-2.4.0 --vanilla seems to need this a <- Sys.setlocale("LC_ALL", "C") ### book <- TRUE refs <- cbind(c("AItR", "DAGD", "SI", "CI", "ANOVA", "MLR", "GLM", "DE", "RP", "GAM", "SA", "ALDI", "ALDII", "SIMC", "MA", "PCA", "MDS", "CA"), 1:18) ch <- function(x) { ch <- refs[which(refs[,1] == x),] if (book) { return(paste("Chapter~\\\\ref{", ch[1], "}", sep = "")) } else { return(paste("Chapter~", ch[2], sep = "")) } } if (file.exists("deparse.R")) source("deparse.R") setHook(packageEvent("lattice", "attach"), function(...) { lattice.options(default.theme = function() standard.theme("pdf", color = FALSE)) }) @ \pagestyle{headings} <>= book <- FALSE @ %% lower png resolution for vignettes \SweaveOpts{resolution = 100} \chapter[Data Analysis Using Graphical Displays]{Data Analysis Using Graphical Displays: Malignant Melanoma in the US and Chinese Health and \\ Family Life \label{DAGD}} \section{Introduction} \section{Initial Data Analysis} \section{Analysis Using \R{}} \subsection{Malignant Melanoma} \index{Boxplot|(} \index{Histogram|(} \index{Scatterplot|(} We might begin to examine the malignant melanoma data in Table~\ref{DAGD-USmelanoma-tab} by constructing a histogram or boxplot for \stress{all} the mortality rates in Figure~\ref{DAGD-USmelanoma-histbox}. The \Rcmd{plot}, \Rcmd{hist} and \Rcmd{boxplot} functions have already been introduced in \Sexpr{ch("AItR")} and we want to produce a plot where both techniques are applied at once. The \Rcmd{layout} function organizes two independent plots on one plotting device, for example on top of each other. Using this relatively simple technique (more advanced methods will be introduced later) we have to make sure that the $x$-axis is the same in both graphs. This can be done by computing a plausible range of the data, later to be specified in a plot via the \Rcmd{xlim} argument: <>= xr <- range(USmelanoma$mortality) * c(0.9, 1.1) xr @ Now, plotting both the histogram and the boxplot requires setting up the plotting device with equal space for two independent plots on top of each other. Calling the \Rcmd{layout} function on a matrix with two cells in two rows, containing the numbers one and two, leads to such a partitioning. The \Rcmd{boxplot} function is called first on the mortality data and then the \Rcmd{hist} function, where the range of the $x$-axis in both plots is defined by $(\Sexpr{xr[1]}, \Sexpr{xr[2]})$. One tiny problem to solve is the size of the margins; their defaults are too large for such a plot. As with many other graphical parameters, one can adjust their value for a specific plot using function \Rcmd{par}. The \R{} code and the resulting display are given in Figure~\ref{DAGD-USmelanoma-histbox}. \begin{figure} \begin{center} <>= layout(matrix(1:2, nrow = 2)) par(mar = par("mar") * c(0.8, 1, 1, 1)) boxplot(USmelanoma$mortality, ylim = xr, horizontal = TRUE, xlab = "Mortality") hist(USmelanoma$mortality, xlim = xr, xlab = "", main = "", axes = FALSE, ylab = "") axis(1) @ \caption{Histogram (top) and boxplot (bottom) of malignant melanoma mortality rates. \label{DAGD-USmelanoma-histbox}} \end{center} \end{figure} Both the histogram and the boxplot in Figure~\ref{DAGD-USmelanoma-histbox} indicate a certain skewness of the mortality distribution. Looking at the characteristics of all the mortality rates is a useful beginning but for these data we might be more interested in comparing mortality rates for ocean and non-ocean states. So we might construct two histograms or two boxplots. Such a \stress{parallel boxplot}, visualizing the conditional distribution of a numeric variable in groups as given by a categorical variable, are easily computed using the \Rcmd{boxplot} function. The continuous response variable and the categorical independent variable are specified via a \Rclass{formula} as described in \Sexpr{ch("AItR")}. Figure~\ref{DAGD-USmelanoma-boxocean} shows such parallel boxplots, as by default produced the \Rcmd{plot} function for such data, for the mortality in ocean and non-ocean states and leads to the impression that the mortality is increased in east or west coast states compared to the rest of the country. \begin{figure} \begin{center} <>= plot(mortality ~ ocean, data = USmelanoma, xlab = "Contiguity to an ocean", ylab = "Mortality") @ \caption{Parallel boxplots of malignant melanoma mortality rates by contiguity to an ocean. \label{DAGD-USmelanoma-boxocean}} \end{center} \end{figure} Histograms are generally used for two purposes: counting and displaying the distribution of a variable; according to \cite{HSAUR:Wilkinson1992}, `they are effective for neither'. Histograms can often be misleading for displaying distributions because of their dependence on the number of classes chosen. An alternative is to formally estimate the density function of a variable and then plot the resulting estimate; details of density estimation are given in \Sexpr{ch("DE")} but for the ocean and non-ocean states the two density estimates can be produced and plotted as shown in Figure~\ref{DAGD-USmelanoma-dens} which supports the impression from Figure~\ref{DAGD-USmelanoma-boxocean}. For more details on such density estimates we refer to \Sexpr{ch("DE")}. \begin{figure} \begin{center} <>= dyes <- with(USmelanoma, density(mortality[ocean == "yes"])) dno <- with(USmelanoma, density(mortality[ocean == "no"])) plot(dyes, lty = 1, xlim = xr, main = "", ylim = c(0, 0.018), xlab = "Mortality") lines(dno, lty = 2) legend("topleft", lty = 1:2, legend = c("Coastal State", "Land State"), bty = "n") @ \caption{Estimated densities of malignant melanoma mortality rates by contiguity to an ocean. \label{DAGD-USmelanoma-dens}} \end{center} \end{figure} Now we might move on to look at how mortality rates are related to the geographic location of a state as represented by the latitude and longitude of the center of the state. Here the main graphic will be the scatterplot. The simple $xy$ scatterplot has been in use since at least the eighteenth century and has many virtues -- indeed according to \cite{HSAUR:Tufte1983}: \begin{quote} The relational graphic -- in its barest form the scatterplot and its variants -- is the greatest of all graphical designs. It links at least two variables, encouraging and even imploring the viewer to assess the possible causal relationship between the plotted variables. It confronts causal theories that $x$ causes $y$ with empirical evidence as to the actual relationship between $x$ and $y$. \end{quote} Let's begin with simple scatterplots of mortality rate against longitude %%' and mortality rate against latitude which can be produced by the code preceding Figure~\ref{DAGD-USmelanoma-xy}. Again, the \Rcmd{layout} function is used for partitioning the plotting device, now resulting in two side-by-side plots. The argument to \Rcmd{layout} is now a matrix with only one row but two columns containing the numbers one and two. In each cell, the \Rcmd{plot} function is called for producing a scatterplot of the variables given in the \Rclass{formula}. \begin{figure} \begin{center} <>= layout(matrix(1:2, ncol = 2)) plot(mortality ~ longitude, data = USmelanoma, ylab = "Mortality", xlab = "Longitude") plot(mortality ~ latitude, data = USmelanoma, ylab = "Mortality", xlab = "Latitude") @ \caption{Scatterplot of malignant melanoma mortality rates by geographical location. \label{DAGD-USmelanoma-xy}} \end{center} \end{figure} Since mortality rate is clearly related only to latitude we can now produce scatterplots of mortality rate against latitude separately for ocean and non-ocean states. Instead of producing two displays, one can choose different plotting symbols for either states. This can be achieved by specifying a vector of integers or characters to the \Rcmd{pch}, where the $i$th element of this vector defines the plot symbol of the $i$th observation in the data to be plotted. For the sake of simplicity, we convert the \Robject{ocean} factor to an \Rclass{integer} vector containing the numbers one for land states and two for ocean states. As a consequence, land states can be identified by the dot symbol and ocean states by triangles. It is useful to add a legend to such a plot, most conveniently by using the \Rcmd{legend} function. This function takes three arguments: a string indicating the position of the legend in the plot, a character vector of labels to be printed and the corresponding plotting symbols (referred to by integers). In addition, the display of a bounding box is anticipated (\Rcmd{bty = "n"}). \begin{figure} \begin{center} <>= plot(mortality ~ latitude, data = USmelanoma, pch = (1:2)[ocean], ylab = "Mortality", xlab = "Latitude") legend("topright", legend = c("Land state", "Coast state"), pch = 1:2, bty = "n") @ \caption{Scatterplot of malignant melanoma mortality rates against latitude. \label{DAGD-USmelanoma-lat}} \end{center} \end{figure} The scatterplot in Figure~\ref{DAGD-USmelanoma-lat} highlights that the mortality is lowest in the northern land states. Coastal states show a higher mortality than land states at roughly the same latitude. The highest mortalities can be observed for the south coastal states with latitude less than $32^\circ$, say, that is <>= subset(USmelanoma, latitude < 32) @ Alternatively, we also may simply want to look at a color-coded map of the United States, where each state is plotted in a color that corresponds to its mortality rate. It is fairly simple to set-up such a plot using the \Rpackage{sp} family of packages \citep{PKG:sp}. We start with loading a map of the mainland states, basically a number of polygons: <>= library("sp") library("sf") library("maps") states <- map("state", plot = FALSE, fill = TRUE) @ It is of course important to match the mortality rates to the corresponding state. We therefore create unique names of the states in lower-case letters for both the polygons and the mortality data <>= IDs <- sapply(strsplit(states$names, ":"), function(x) x[1]) rownames(USmelanoma) <- tolower(rownames(USmelanoma)) @ Now we are ready to merge these two objects into a so-called \Rclass{SpatialPolygonsDataFrame} object. We first create a \Rclass{SpatialPolygons} object from the map in the correct reference system (WGS84, in our case) and then merge the polygons with the data <>= us1 <- merge(st_as_sf(states), USmelanoma) us2 <- as(us1, "Spatial") @ The resulting object \Robject{us2} can now be plotted using the \Rcmd{spplot} function, see Figure~\ref{DAGD-USmelanoma-long-lat}. The colors correspond to the mortality rate, as shown in the color legend to the right of the map. We see that darker grey values corresponding to higher mortality rates appear in the southern costal states, both on the east and the west coast in good agreement with our earlier results. \begin{figure} \begin{center} <>= spplot(us2, "mortality", col.regions = rev(grey.colors(100))) @ \caption{Map of the United States of America showing malignant melanoma mortality rates. \label{DAGD-USmelanoma-long-lat}} \end{center} \end{figure} Up to now we have primarily focused on the visualization of continuous variables. We now extend our focus to the visualization of categorical variables. \index{Boxplot|)} \index{Histogram|)} \index{Scatterplot|)} \subsection{Chinese Health and Family Life} \index{Barchart|(} \index{Spineplot|(} \index{Spinogram|(} One part of the questionnaire the Chinese Health and Family Life Survey focuses on is the self-reported health status. Two questions are interesting for us. The first one is `Generally speaking, do you consider the condition of your health to be excellent, good, fair, not good, or poor?'. The second question is `Generally speaking, in the past twelve months, how happy were you?'. The distribution of such variables is commonly visualized using barcharts where for each category the total or relative number of observations is displayed. Such a barchart can conveniently be produced by applying the \Rcmd{barplot} function to a tabulation of the data. The empirical density of the variable \Robject{R\_happy} is computed by the \Rcmd{xtabs} function for producing (contingency) tables; the resulting barchart is given in Figure~\ref{DAGD-CHFLS-happy}. \begin{figure} <>= barplot(xtabs(~ R_happy, data = CHFLS)) @ \caption{Bar chart of happiness. \label{DAGD-CHFLS-happy}} \end{figure} The visualization of two categorical variables could be done by conditional barcharts, i.e., barcharts of the first variable within the categories of the second variable. An attractive alternative for displaying such two-way tables are \stress{spineplots} \citep{HSAUR:Friendly1994,HSAUR:HofmannTheus2005,HSAUR:Chenetal2008}; the meaning of the name will become clear when looking at such a plot in Figure~\ref{DAGD-CHFLS-health_happy}. Before constructing such a plot, we produce a two-way table of the health status and self-reported happiness using the \Rcmd{xtabs} function: <>= xtabs(~ R_happy + R_health, data = CHFLS) @ <>= hh <- xtabs(~ R_health + R_happy, data = CHFLS) @ A \stress{spineplot} is a group of rectangles, each representing one cell in the two-way contingency table. The area of the rectangle is proportional with the number of observations in the cell. Here, we produce a mosaic plot of health status and happiness in Figure~\ref{DAGD-CHFLS-health_happy}. \begin{figure} <>= plot(R_happy ~ R_health, data = CHFLS, ylab = "Happiness", xlab = "Health") @ \caption{Spineplot of health status and happiness. \label{DAGD-CHFLS-health_happy}} \end{figure} Consider the right upper cell in Figure~\ref{DAGD-CHFLS-health_happy}, i.e., the $\Sexpr{hh["Excellent", "Very happy"]}$ very happy women with excellent health status. The width of the right-most bar corresponds to the frequency of women with excellent health status. The length of the top-right rectangle corresponds to the conditional frequency of very happy women given their health status is excellent. Multiplying these two quantities gives the area of this cell which corresponds to the frequency of women who are both very happy and enjoy an excellent health status. The conditional frequency of very happy women increases with increasing health status, whereas the conditional frequency of very unhappy or not too happy women decreases. When the association of a categorical and a continuous variable is of interest, say the monthly income and self-reported happiness, one might use parallel boxplots to visualize the distribution of the income depending on happiness. If we were studying self-reported happiness as response and income as independent variable, however, this would give a representation of the conditional distribution of income given happiness, but we are interested in the conditional distribution of happiness given income. One possibility to produce a more appropriate plot is called \stress{spinogram}. Here, the continuous $x$-variable is categorized first. Within each of these categories, the conditional frequencies of the response variable are given by stacked barcharts, in a way similar to spineplots. For happiness depending on log-income (since income is naturally skewed we use a log-transformation of the income) it seems that the proportion of unhappy and not too happy women decreases with increasing income whereas the proportion of very happy women stays rather constant. In contrast to spinograms, where bins, as in a histogram, are given on the $x$-axis, a \stress{conditional density plot} uses the original $x$-axis for a display of the conditional density of the categorical response given the independent variable. \begin{figure} <>= layout(matrix(1:2, ncol = 2)) plot(R_happy ~ log(R_income + 1), data = CHFLS, ylab = "Happiness", xlab = "log(Income + 1)") cdplot(R_happy ~ log(R_income + 1), data = CHFLS, ylab = "Happiness", xlab = "log(Income + 1)") @ \caption{Spinogram (left) and conditional density plot (right) of happiness depending on log-income. \label{DAGD-CHFLS-happy_income}} \end{figure} \index{Barchart|)} \index{Spineplot|)} \index{Spinogram|)} \index{Trellis plot|(} For our last example we return to scatterplots for inspecting the association between a woman's monthly income and the income of her partner. Both income variables have been computed and partially imputed from other self-reported variables and are only rough assessments of the real income. Moreover, the data itself is numeric but heavily tied, making it difficult to produce `correct' scatterplots because points will overlap. A relatively easy trick is to jitter the observation by adding a small random noise to each point in order to avoid overlapping plotting symbols. In addition, we want to study the relationship between both monthly incomes conditional on the woman's education. Such conditioning plots are called \stress{trellis} plots and are implemented in the package \Rpackage{lattice} \citep{PKG:lattice, HSAUR:Sarkar2008}. We utilize the \Rcmd{xyplot} function from package \Rpackage{lattice} to produce a scatterplot. The formula reads as already explained with the exception that a third \stress{conditioning} variable, \Robject{R\_edu} in our case, is present. For each level of education, a separate scatterplot will be produced. The plots are directly comparable since the axes remain the same for all plots. \begin{figure} <>= library("lattice") xyplot(jitter(log(R_income + 0.5)) ~ jitter(log(A_income + 0.5)) | R_edu, data = CHFLS, pch = 19, col = rgb(.1, .1, .1, .1), ylab = "log(Wife's income + .5)", xlab = "log(Husband's income + .5)") @ <>= library("lattice") trellis.par.set(list(plot.symbol = list(col=1,pch=20, cex=0.7), box.rectangle = list(col=1), plot.line = list(col = 1, lwd = 1), box.umbrella = list(lty=1, col=1), strip.background = list(col = "white"))) ltheme <- canonical.theme(color = FALSE) ## in-built B&W theme ltheme$strip.background$col <- "transparent" ## change strip bg lattice.options(default.theme = ltheme) xyplot(jitter(log(R_income + 0.5)) ~ jitter(log(A_income + 0.5)) | R_edu, data = CHFLS, pch = 19, col = rgb(.1, .1, .1, .1), ylab = "log(Wife's income + .5)", xlab = "log(Husband's income + .5)") @ \caption{Scatterplot of jittered log-income of wife and husband, conditional on the wife's education. \label{DAGD-CHFLS-RAincome3}} \end{figure} The plot shown in Figure~\ref{DAGD-CHFLS-RAincome3} reveals several interesting issues. Some observations are positioned on a straight line with slope one, most probably an artifact of missing value imputation by linear models (as described in the data dictionary, see the documentation \texttt{?CHFLS}). Four constellations can be identified: both partners have zero income, the partner has no income, the woman has no income or both partners have a positive income. For couples where the woman has a university degree, the income of both partners is relatively high (except for two couples where only the woman has income). A small number of former junior college students live in relationships where only the man has income, the income of both partners seems only slightly positively correlated for the remaining couples. For lower levels of education, all four constellations are present. The frequency of couples where only the man has some income seems larger than the other way around. Ignoring the observations on the straight line, there is almost no association between the income of both partners. \index{Trellis plot|)} \section{Summary of Findings} Using relatively straightforward graphical techniques only on the two sets of data considered in this chapter we have been able to uncover a number of important features of each data set; \begin{description} \item[Melanoma mortality] Mortality is related only to the latitude of a state not to its longitude, mortality is higher for costal states than for land states, and the highest mortality is observed in the south costal states with latitude less than 32 degrees. \item[Health and family life] We saw that happiness depends on health status. Women reported to be very happy more often when they also reported a good or excellent health status. The dependency of happiness on the income of the women seems to be less clear, but we conclude that, conditional on education, the income of wives and their husbands is highly correlated. \end{description} \section{Final Comments} Producing publication-quality graphics is one of the major strengths of the \R{} system and almost anything is possible since graphics are programmable in \R{}. Naturally, this chapter can be only a very brief introduction to some commonly used displays and the reader is referred to specialized books, most important \cite{HSAUR:Murrell2005}, \cite{HSAUR:Sarkar2008}, and \cite{HSAUR:Chenetal2008}. Interactive 3D-graphics are available from package \Rpackage{rgl} \citep{PKG:rgl}. \section*{Exercises} \begin{description} \exercise The data in Table~\ref{DAGD-household-tab} are part of a data set collected from a survey of household expenditure and give the expenditure of $20$ single men and $20$ single women on four commodity groups. The units of expenditure are Hong Kong dollars, and the four commodity groups are \begin{description} \item[\Robject{housing}] housing, including fuel and light, \item[\Robject{food}] foodstuffs, including alcohol and tobacco, \item[\Robject{goods}] other goods, including clothing, footwear, and durable goods, \item[\Robject{service}] services, including transport and vehicles. \end{description} The aim of the survey was to investigate how the division of household expenditure between the four commodity groups depends on total expenditure and to find out whether this relationship differs for men and women. Use appropriate graphical methods to answer these questions and state your conclusions. <>= data("household", package = "HSAUR3") toLatex(HSAURtable(household), caption = paste("Household expenditure for single men and women."), label = "DAGD-household-tab") @ \exercise The data set shown in Table~\ref{DAGD-USstates-tab} contains values of seven variables for ten states in the US. The seven variables are \begin{description} \item[\Robject{Population}] population size divided by $1000$, \item[\Robject{Income}] average per capita income, \item[\Robject{Illiteracy}] illiteracy rate (\% population), \item[\Robject{Life.Expectancy}] life expectancy (years), \item[\Robject{Homicide}] homicide rate (per $1000$), \item[\Robject{Graduates}] percentage of high school graduates, \item[\Robject{Freezing}] average number of days per below freezing. \end{description} With these data \begin{enumerate} \item Construct a scatterplot matrix of the data labeling the points by state name (using function \Rcmd{text}). \item Construct a plot of life expectancy and homicide rate conditional on average per capita income. \end{enumerate} \begin{sidewaystable} \vspace*{12.5cm} \begin{center} <>= data("USstates", package = "HSAUR3") toLatex(HSAURtable(USstates), caption = paste("Socio-demographic variables for ten US states."), label = "DAGD-USstates-tab") @ \end{center} \end{sidewaystable} \exercise Mortality rates per $100,000$ from male suicides for a number of age groups and a number of countries are given in Table~\ref{DAGD-suicides2-tab}. Construct side-by-side box plots for the data from different age groups, and comment on what the graphic tells us about the data. <>= data("suicides2", package = "HSAUR3") toLatex(HSAURtable(suicides2), caption = paste("Mortality rates per $100,000$ from male suicides."), label = "DAGD-suicides2-tab", rownames = TRUE) @ \exercise \cite{HSAUR:FluryRiedwyl1988} report data that give various length measurements on $200$ Swiss bank notes. The data are available from package \Rpackage{mclust} \citep{PKG:mclust}; a sample of ten bank notes is given in Table~\ref{DAGD-banknote-tab}. <>= data("banknote", package = "mclust") banknote$Status <- NULL banknote <- banknote[c(1:5, 101:200),] toLatex(HSAURtable(banknote, pkg = "mclust", nrow = 10), caption = paste("Swiss bank note data."), label = "DAGD-banknote-tab", rownames = FALSE) @ Use whatever graphical techniques you think are appropriate to investigate whether there is any `pattern' or structure in the data. Do you observe something suspicious? \exercise The data in Table~\ref{DAGD-birds-tab} were originally derived from a study reported in \cite{HSAUR:Vuilleumier1970} which investigated numbers of bird species in isolated `islands' of paramo vegetation in the northern Andes. The aim of the study was to investigate how the number of species (\Robject{N}) is related to four other variables, \Robject{AR} (area of `island' in thousands of square km), \Robject{EL} (elevation in thousands of m), \Robject{Dec} (distance from Ecuador in km) and \Robject{DNI} (distance to the nearest `island' in km). Begin by constructing a scatterplot matrix of the data differentiating the islands on each panel by a different plotting symbol and on each diagonal panel showing the histogram of the associated variable. What can you conclude from this plot about how N is related to the other four variables? <>= data("birds", package = "HSAUR3") toLatex(HSAURtable(birds), caption = paste("Birds in paramo vegetation."), label = "DAGD-birds-tab", rownames = TRUE) @ \end{description} \bibliographystyle{LaTeXBibTeX/refstyle} \bibliography{LaTeXBibTeX/HSAUR} \end{document} HSAUR3/inst/doc/Ch_missing_values.Rnw0000644000176200001440000006351314416236367017117 0ustar liggesusers \documentclass{chapman} %%% copy Sweave.sty definitions %%% keeps `sweave' from adding `\usepackage{Sweave}': DO NOT REMOVE %\usepackage{Sweave} \RequirePackage[T1]{fontenc} \RequirePackage{graphicx,ae,fancyvrb} \IfFileExists{upquote.sty}{\RequirePackage{upquote}}{} \usepackage{relsize} \DefineVerbatimEnvironment{Sinput}{Verbatim}{} \DefineVerbatimEnvironment{Soutput}{Verbatim}{fontfamily=courier, fontshape=it, fontsize=\relsize{-1}} \DefineVerbatimEnvironment{Scode}{Verbatim}{} \newenvironment{Schunk}{}{} %%% environment for raw output \newcommand{\SchunkRaw}{\renewenvironment{Schunk}{}{} \DefineVerbatimEnvironment{Soutput}{Verbatim}{fontfamily=courier, fontshape=it, fontsize=\small} \rawSinput } %%% environment for labeled output \newcommand{\nextcaption}{} \newcommand{\SchunkLabel}{ \renewenvironment{Schunk}{\begin{figure}[ht] }{\caption{\nextcaption} \end{figure} } \DefineVerbatimEnvironment{Sinput}{Verbatim}{frame = topline} \DefineVerbatimEnvironment{Soutput}{Verbatim}{frame = bottomline, samepage = true, fontfamily=courier, fontshape=it, fontsize=\relsize{-1}} } %%% S code with line numbers \DefineVerbatimEnvironment{Sinput} {Verbatim} { %% numbers=left } \newcommand{\numberSinput}{ \DefineVerbatimEnvironment{Sinput}{Verbatim}{numbers=left} } \newcommand{\rawSinput}{ \DefineVerbatimEnvironment{Sinput}{Verbatim}{} } %%% R / System symbols \newcommand{\R}{\textsf{R}} \newcommand{\rR}{{R}} \renewcommand{\S}{\textsf{S}} \newcommand{\SPLUS}{\textsf{S-PLUS}} \newcommand{\rSPLUS}{{S-PLUS}} \newcommand{\SPSS}{\textsf{SPSS}} \newcommand{\EXCEL}{\textsf{Excel}} \newcommand{\ACCESS}{\textsf{Access}} \newcommand{\SQL}{\textsf{SQL}} %%\newcommand{\Rpackage}[1]{\hbox{\rm\textit{#1}}} %%\newcommand{\Robject}[1]{\hbox{\rm\texttt{#1}}} %%\newcommand{\Rclass}[1]{\hbox{\rm\textit{#1}}} %%\newcommand{\Rcmd}[1]{\hbox{\rm\texttt{#1}}} \newcommand{\Rpackage}[1]{\index{#1 package@{\fontseries{b}\selectfont #1} package} {\fontseries{b}\selectfont #1}} \newcommand{\rpackage}[1]{{\fontseries{b}\selectfont #1}} \newcommand{\Robject}[1]{\texttt{#1}} \newcommand{\Rclass}[1]{\index{#1 class@\textit{#1} class}\textit{#1}} \newcommand{\Rcmd}[1]{\index{#1 function@\texttt{#1} function}\texttt{#1}} \newcommand{\Roperator}[1]{\texttt{#1}} \newcommand{\Rarg}[1]{\texttt{#1}} \newcommand{\Rlevel}[1]{\texttt{#1}} %%% other symbols \newcommand{\file}[1]{\hbox{\rm\texttt{#1}}} %%\newcommand{\stress}[1]{\index{#1}\textit{#1}} \newcommand{\stress}[1]{\textit{#1}} \newcommand{\booktitle}[1]{\textit{#1}} %%' %%% Math symbols \usepackage{amstext} \usepackage{amsmath} \newcommand{\E}{\mathsf{E}} \newcommand{\Var}{\mathsf{Var}} \newcommand{\Cov}{\mathsf{Cov}} \newcommand{\Cor}{\mathsf{Cor}} \newcommand{\x}{\mathbf{x}} \newcommand{\y}{\mathbf{y}} \renewcommand{\a}{\mathbf{a}} \newcommand{\W}{\mathbf{W}} \newcommand{\C}{\mathbf{C}} \renewcommand{\H}{\mathbf{H}} \newcommand{\X}{\mathbf{X}} \newcommand{\B}{\mathbf{B}} \newcommand{\V}{\mathbf{V}} \newcommand{\I}{\mathbf{I}} \newcommand{\D}{\mathbf{D}} \newcommand{\bS}{\mathbf{S}} \newcommand{\N}{\mathcal{N}} \renewcommand{\L}{L} \renewcommand{\P}{\mathsf{P}} \newcommand{\K}{\mathbf{K}} \newcommand{\m}{\mathbf{m}} \newcommand{\argmin}{\operatorname{argmin}\displaylimits} \newcommand{\argmax}{\operatorname{argmax}\displaylimits} \newcommand{\bx}{\mathbf{x}} \newcommand{\bbeta}{\mathbf{\beta}} %%% links \usepackage{hyperref} \hypersetup{% pdftitle = {A Handbook of Statistical Analyses Using R (3rd Edition)}, pdfsubject = {Book}, pdfauthor = {Torsten Hothorn and Brian S. Everitt}, colorlinks = {black}, linkcolor = {black}, citecolor = {black}, urlcolor = {black}, hyperindex = {true}, linktocpage = {true}, } %%% captions & tables %% : conflics with figure definition in chapman.cls %%\usepackage[format=hang,margin=10pt,labelfont=bf]{caption} %% \usepackage{longtable} \usepackage[figuresright]{rotating} %%% R symbol in chapter 1 \usepackage{wrapfig} %%% Bibliography \usepackage[round,comma]{natbib} \renewcommand{\refname}{References \addcontentsline{toc}{chapter}{References}} \citeindexfalse %%% texi2dvi complains that \newblock is undefined, hm... \def\newblock{\hskip .11em plus .33em minus .07em} %%% Example sections \newcounter{exercise}[chapter] \setcounter{exercise}{0} \newcommand{\exercise}{\stepcounter{exercise} \item{Ex.~\arabic{chapter}.\arabic{exercise} }} %% URLs \newcommand{\curl}[1]{\begin{center} \url{#1} \end{center}} %%% for manual corrections %\renewcommand{\baselinestretch}{2} %%% plot sizes \setkeys{Gin}{width=0.95\textwidth} %%% color \usepackage{color} %%% hyphenations \hyphenation{drop-out} \hyphenation{mar-gi-nal} %%% new bidirectional quotes need \usepackage[utf8]{inputenc} %\usepackage{setspace} \definecolor{sidebox_todo}{rgb}{1,1,0.2} \newcommand{\todo}[1]{ \hspace{0pt}% \marginpar{% \fcolorbox{black}{sidebox_todo}{% \parbox{\marginparwidth} { \raggedright\sffamily\footnotesize{TODO: #1}% } }% } } \begin{document} %% Title page \title{A Handbook of Statistical Analyses Using \R{} --- 3rd Edition} \author{Torsten Hothorn and Brian S. Everitt} \maketitle %%\VignetteIndexEntry{Chapter Missing Values} %%\VignetteDepends{mice} \setcounter{chapter}{15} \SweaveOpts{prefix.string=figures/HSAUR,eps=FALSE,keep.source=TRUE} <>= rm(list = ls()) s <- search()[-1] s <- s[-match(c("package:base", "package:stats", "package:graphics", "package:grDevices", "package:utils", "package:datasets", "package:methods", "Autoloads"), s)] if (length(s) > 0) sapply(s, detach, character.only = TRUE) if (!file.exists("tables")) dir.create("tables") if (!file.exists("figures")) dir.create("figures") set.seed(290875) options(prompt = "R> ", continue = "+ ", width = 63, # digits = 4, show.signif.stars = FALSE, SweaveHooks = list(leftpar = function() par(mai = par("mai") * c(1, 1.05, 1, 1)), bigleftpar = function() par(mai = par("mai") * c(1, 1.7, 1, 1)))) HSAURpkg <- require("HSAUR3") if (!HSAURpkg) stop("cannot load package ", sQuote("HSAUR3")) rm(HSAURpkg) ### hm, R-2.4.0 --vanilla seems to need this a <- Sys.setlocale("LC_ALL", "C") ### book <- TRUE refs <- cbind(c("AItR", "DAGD", "SI", "CI", "ANOVA", "MLR", "GLM", "DE", "RP", "GAM", "SA", "ALDI", "ALDII", "SIMC", "MA", "PCA", "MDS", "CA"), 1:18) ch <- function(x) { ch <- refs[which(refs[,1] == x),] if (book) { return(paste("Chapter~\\\\ref{", ch[1], "}", sep = "")) } else { return(paste("Chapter~", ch[2], sep = "")) } } if (file.exists("deparse.R")) source("deparse.R") setHook(packageEvent("lattice", "attach"), function(...) { lattice.options(default.theme = function() standard.theme("pdf", color = FALSE)) }) @ \pagestyle{headings} <>= book <- FALSE @ \chapter[Missing Values]{Missing Values: Lowering Blood Pressure During Surgery \label{MV}} \section{Introduction} \index{Blood pressure} It is sometimes necessary to lower a patient's blood pressure during surgery, using a hypotensive drug. Such drugs are administered continuously during the relevant phase of the operation; because the duration of this phase varies so does the total amount of drug administered. Patients also vary in the extent to which the drugs succeed in lowering blood pressure. The sooner the blood pressure rises again to normal after the drug is discontinued, the better. The data in Table~\ref{MV-bp-tab} \citep[a missing-value version of the data presented by][]{HSAUR:RobertsonArmitage1959} relate to a particular hypotensive drug and give the time in minutes before the patient's systolic blood pressure returned to 100mm of mercury (the recovery time), the logarithm (base 10) of the dose of drug in milligrams, and the average systolic blood pressure achieved while the drug was being administered. The question of interest is how is the recovery time related to the other two variables? For some patients the recovery time was not recorded and the missing values are indicated as NA in Table~\ref{MV-bp-tab}. <>= data("bp", package = "HSAUR3") toLatex(HSAURtable(bp), pcol = 2, caption = paste("Blood pressure data."), label = "MV-bp-tab") @ \section{Analyzing Multiply Imputed Data} \label{MI:ana} From the analysis of each data set we need to look at the estimates of the quantity of interest, say $Q$, and the variance of the estimates. We let $\hat{Q}_i$ be the estimate from the $i$th data set and $S_i$ its corresponding variance. The combined estimate of the quantity of interest is \begin{eqnarray*} \bar{Q} = \frac{1}{m}\sum_{i = 1}^m \hat{Q}_i. \end{eqnarray*} To find the combined variance involves first calculating the within-imputation variance, \begin{eqnarray*} \bar{S} = \frac{1}{m}\sum_{i = 1}^m S_i \end{eqnarray*} followed by the between-imputation variance, \begin{eqnarray*} B = \frac{1}{m - 1} \sum_{i = 1}^m (\hat{Q}_i - \bar{Q})^2 \end{eqnarray*} then the required total variance can now be found from \begin{eqnarray*} T = \bar{S} + (1 + m^{-1}) B \end{eqnarray*} This total variance is made up of two components; the first which preserves the natural variability, $\bar{S}$, is simply the average of the variance estimates for each imputed data set and is analogous to the variance that would be suitable if we did not need to account for missing data; the second component, $B$, estimates uncertainty caused by missing data by measuring how the point estimates vary from data set to data set. More explanation of how the formula for $T$ arises is given in \cite{HSAUR:vanBuuren2012}. The overall standard error is simply the square root of $T$. A significance test for $Q$ and a confidence interval is found from the usual test statistic, ($Q-$ hypothesized value of $Q$)/$\sqrt{T}$, the value of which is referred to a Student's $t$-distribution. The question arises however as to what is the appropriate value for the degrees of freedom of the test, say $v_0$? \cite{HSAUR:Rubin1987} suggests that the answer to this question is given by; \begin{eqnarray*} v_0 = (m - 1) (1 + 1/r^2) \end{eqnarray*} where \begin{eqnarray*} r = \frac{B + B / m}{\bar{S}} \end{eqnarray*} But \cite{HSAUR:BarnardRubin1999} noted that using this value of $v_0$ can produce values that are larger than the degrees of freedom in the complete data, a result which they considered `clearly inappropriate'. Consequently they developed an adapted version that does not lead to the same problem. Barnard and Rubin's revised value for the degrees of freedom of the $t$-test in which we are interested is $v_1$ given by; \begin{eqnarray*} v_1 = \frac{v_0 v_2}{v_0 + v_2} \end{eqnarray*} where \begin{eqnarray*} v_2 = \frac{n(n-1)(1 - \lambda)}{n + 2} \end{eqnarray*} and \begin{eqnarray*} \lambda = \frac{r}{\sqrt{r^2 + 1}}. \end{eqnarray*} The quantity $v_1$ is always less than or equal to the degrees of freedom of the test applied to the hypothetically complete data. \citep[For more details see][]{HSAUR:vanBuuren2012}. \index{Imputation|)} \section{Analysis Using \R{}} To begin we shall analyze the blood pressure data in Table~\ref{MV-bp-tab} using the complete-case approach, i.e., by simply removing the data for patients where the recovery time is missing. To begin we might simply count the number of missing values using the sapply function as follows: <>= sapply(bp, function(x) sum(is.na(x))) @ So there are ten missing values of recovery time but no missing values amongst the other two variables. Now we use the \Rcmd{summary} function to look at some basic statistics of the complete data for recovery time: <>= summary(bp$recovtime, na.rm = TRUE) @ And next we can calculate the complete data estimate of the standard deviation of recover time <>= sd(bp$recovtime, na.rm = TRUE) @ The final numerical results we might be interested in are the correlations of recovery time with blood pressure and of recovery time with logdose. These can be found as follows: <>= with(bp, cor(bloodp, recovtime, use = "complete.obs")) with(bp, cor(logdose, recovtime, use = "complete.obs")) @ And a useful graphic of the data is a scatterplot matrix which we can construct using \Rcmd{pairs}. The scatterplot matrix is given in Figure~\ref{MV-bp-pairs-cc}. \begin{figure} \begin{center} <>= layout(matrix(1:3, nrow = 1)) plot(bloodp ~ logdose, data = bp) plot(recovtime ~ bloodp, data = bp) plot(recovtime ~ logdose, data = bp) @ \caption{Scatterplots of the complete cases of the \Robject{bp} data. \label{MV-bp-pairs-cc}} \end{center} \end{figure} To investigate how recovery time is related to blood pressure and logdose we might begin by fitting a multiple linear regression model (see Chapter~\ref{MLR}). The relevant command and the summary of the results is shown in Figure~\ref{MV-bp-lm-cc}. Note that this summary output reports that ten observations with missing values were removed prior to the analysis; this is default for many models in \R. \renewcommand{\nextcaption}{\R{} output of the complete-case linear model for the \Robject{bp} data. \label{MV-bp-lm-cc}} \SchunkLabel <>= summary(lm(recovtime ~ bloodp + logdose, data = bp)) @ \SchunkRaw Now let us see what happens when we impute the missing values of the recovery time variable simply by the mean of the complete case; for this we will use the \Rpackage{mice} \citep{PKG:mice} package; <>= library("mice") @ We begin by creating a new data set, \Robject{imp}, which will contain the three variables log-dose, blood pressure, and recovery time with the missing values in the latter replaced by the mean recovery time of the complete cases; <>= imp <- mice(bp, method = "mean", m = 1, maxit = 1) @ So now we can find the summary statistics of recovery time to compare with those given previously <>= with(imp, summary(recovtime)) @ Making the comparison we see that only the values of the first and third quantile and the median have changed. The minimum and maximum values are the same and so, of course, is the mean. But of more interest is what happens to the sample standard deviation; its value for the imputed data can be found using: <>= with(imp, sd(recovtime)) @ The value for the imputed data, $\Sexpr{round(with(imp, sd(recovtime))[["analyses"]][[1]], 2)}$ is, as we would expect, lower than that for the complete data, $\Sexpr{round(with(bp, sd(recovtime, na.rm = TRUE)), 2)}$. What about the correlations? <>= with(imp, cor(bloodp, recovtime)) with(imp, cor(logdose, recovtime)) @ The correlations of blood pression and recovery time are very similar before ($\Sexpr{round(with(bp, cor(bloodp, recovtime, use = "complete.obs")), 2)}$) after ($\Sexpr{round(with(imp, cor(bloodp, recovtime))[["analyses"]][[1]], 2)}$) imputation. For log-dose, imputation changes the correlation from $\Sexpr{round(with(bp, cor(logdose, recovtime, use = "complete.obs")), 2)}$ to $\Sexpr{round(with(imp, cor(logdose, recovtime))[["analyses"]][[1]], 2)}$. The scatterplot of the imputed data is found as given by the code displayed with Figure~\ref{MV-bp-pairs-imp}. For mean imputation, the imputed value of the recovery time is constant for all observations and so they appear as a series of points along the value of the mean value of the observed recovery times namely, $\Sexpr{round(with(bp, mean(recovtime, na.rm = TRUE)), 2)}$. \begin{figure} \begin{center} <>= layout(matrix(1:2, nrow = 1)) plot(recovtime ~ bloodp, data = complete(imp), pch = is.na(bp$recovtime) + 1) plot(recovtime ~ logdose, data = complete(imp), pch = is.na(bp$recovtime) + 1) legend("topleft", pch = 1:2, bty = "n", legend = c("original", "imputed")) @ \caption{Scatterplots of the imputed \Robject{bp} data. Imputed observations are depicted as triangles. \label{MV-bp-pairs-imp}} \end{center} \end{figure} \renewcommand{\nextcaption}{\R{} output of the mean imputation linear model for the \Robject{bp} data. \label{MV-bp-lm-imp}} \SchunkLabel <>= with(imp, summary(lm(recovtime ~ bloodp + logdose))) @ \SchunkRaw Comparison of the multiple linear regression results in Figure~\ref{MV-bp-lm-imp} with those in Figure~\ref{MV-bp-lm-cc} show some interesting differences, for example, the standard errors of the regression coefficients are somewhat lower for the mean imputed data but the conclusions drawn from the results in each table would be broadly similar. \index{Predictive mean matching} The single imputation of a sample mean is not to be recommended and so we will move on to using a more sophisticated multiple imputation procedure know as \stress{predictive mean matching}. The method is described in detail in \cite{HSAUR:vanBuuren2012} who considers it both easy-to-use and versatile. And imputations outside the observed data range will not occur so that problems with meaningless imputations, for example, a negative recovery time, will not occur. The method is labeled \Robject{pmm} in the \Rpackage{mice} package and here we will apply it to the blood pressure data with $m = 10$ (we need to fix the seed in order to make the result reproducible): <>= imp_ppm <- mice(bp, m = 10, method = "pmm", print = FALSE, seed = 1) @ The scatterplot of the imputed data is found as given by the code displayed with Figure~\ref{MV-bp-pairs-imp-mice}. We only show the imputed recovery times from the first iteration ($m = 1$).The imputed recovery times now take different values. \begin{figure} \begin{center} <>= layout(matrix(1:2, nrow = 1)) plot(recovtime ~ bloodp, data = complete(imp_ppm), pch = is.na(bp$recovtime) + 1) plot(recovtime ~ logdose, data = complete(imp_ppm), pch = is.na(bp$recovtime) + 1) legend("topleft", pch = 1:2, bty = "n", legend = c("original", "imputed")) @ \caption{Scatterplots of the multiple imputed \Robject{bp} data (first iteration). Imputed observations are depicted as triangles. \label{MV-bp-pairs-imp-mice}} \end{center} \end{figure} From the resulting object we can compute the mean and standard deviations of recovery time for each of the $m = 10$ iterations. We first extract these numbers from the \Robject{analyses} element of the returned object, convert this list to a vector, and use the \Rcmd{summary} function to compute the usual summary statistics: <>= summary(unlist(with(imp_ppm, mean(recovtime))$analyses)) summary(unlist(with(imp_ppm, sd(recovtime))$analyses)) @ We do the same with the correlations as follows <>= summary(unlist(with(imp_ppm, cor(bloodp, recovtime))$analyses)) summary(unlist(with(imp_ppm, cor(logdose, recovtime))$analyses)) @ The estimate of the mean of the blood pressure data from the multiply imputed results is $\Sexpr{round(mean(unlist(with(imp_ppm, mean(recovtime))$analyses)) , 2)}$, very similar to the values found previously. Similarly the estimate of the standard deviation of the data is $\Sexpr{round(mean(unlist(with(imp_ppm, sd(recovtime))$analyses)) , 2)}$ which lies between the complete data estimate and the \emph{mean-imputed} value. The two correlation estimates are also very close to the previous values. The variation in the estimates of mean, standard deviation, and correlations across the ten imputation is relatively small apart from that for the correlation between log-dose and recovery time -- here there is considerable variation in the values for the ten imputations. Finally, we will fit a linear model to each of the imputed samples and then find the summary statistics for the ten sets of regression coefficients: the results are given in Figure~\ref{MV-bp-lm-cc-mice}: <>= fit <- with(imp_ppm, lm(recovtime ~ bloodp + logdose)) @ \renewcommand{\nextcaption}{\R{} output of the multiple imputed linear model for the \Robject{bp} data. \label{MV-bp-lm-cc-mice}} \SchunkLabel <>= summary(pool(fit)) @ \SchunkRaw The result for blood pressure is similar to the previous complete data and mean-imputed results with the regression coefficient for this variable being highly significant $(p = \Sexpr{round(summary(pool(fit))["bloodp", 5], 3)})$. But the result for log dose differs from those found previously; for the multiply imputed data the regression coefficient for log dose is not significant at the $5\%$ level $(p = \Sexpr{round(summary(pool(fit))["logdose", 5], 3)})$ whereas in both of the previous two analyses it was significant. This finding reflects the greater variation of the value of the correlation between log dose and recovery time in the ten imputations noted above. (Remember that the standard errors in Figure~\ref{MV-bp-lm-cc-mice} computed by \Rcmd{pool} arise from the formulae given in Section~\ref{MI:ana}.) Now suppose we wish to test the hypothesis that in the population from which the sample data in Table~\ref{MV-bp-tab} arises a mean recovery time of $27$ minutes. We will test this hypothesis in the usual way using Student's t-test applied to the complete-data, the singly imputed data, and the multiply imputed data: <>= with(bp, t.test(recovtime, mu = 27)) with(imp, t.test(recovtime, mu = 27))$analyses[[1]] @ For the multiply imputed data we need to use the \Rcmd{lm} function to get the equivalent of the $t$-test by modeling recovery time minus $27$ with an intercept only and testing for zero intercept. So the code needed is: <>= fit <- with(imp_ppm, lm(I(recovtime - 27) ~ 1)) summary(pool(fit)) @ Looking at the results of the three analyses we see that the complete-case analysis fails to reject the hypothesis at the $5\%$ level whereas the other two analyses lead to results that are statistically significant at the level. This simple (and perhaps rather artificial) example demonstrates that different conclusions can be reached by the different approaches. \section{Summary of Findings} The estimated standard deviation of the blood pressure is lower when computed from the mean-imputed data than from the complete data. The corresponding value from the multiply imputed data lies between these two values. The estimate of the mean from the multiply imputed data is very similar to the value obtained in the complete data analysis. (The value from the singly imputed data is, of course, the same as from the complete data.) The estimates of the correlations between blood pressure and recovery time and log dose and recovery time are very similar in all three analyses but the variation in the latter across the ten multiple imputations is considerable and this results in the regression coefficient for log dose being less significant than in the other two analyses. Testing the hypothesis that the population mean of recovery time is $27$ minutes using complete-case analysis leads to a different conclusion than is arrived at by the two multiple imputations approaches. \section{Final Comments} Missing values are an ever-present possibility in all types of studies although everything possible should be done to avoid them. But when data contain missing values multiple imputation can be used to provide valid inferences for parameter estimates from the incomplete data. If carefully handled, multiple imputation can cope with missing data in all types of variables. In this chapter we have given only a brief account of dealing with missing values; a detailed account is available in the issue of \stress{Statistical Methods in Medical Research entitled Multiple Imputation: Current Perspectives} (Volume 16, Number 3, 2007) and in \cite{HSAUR:vanBuuren2012}. \section*{Exercises} \begin{description} \exercise The data in Table~\ref{MI-UStemp-tab} give the lowest temperatures (in Fahrenheit) recorded in various months for cities in the US; missing values are indicated by NA. Calculate the correlation matrix of the data using \begin{enumerate} \item the complete-case approach, \item the available-data approach, and \item a multiple-imputation approach. \end{enumerate} Find the principal components of the data using each of three correlation matrices and plot the cities in the space of the first two components of each solution. <>= data("UStemp", package = "HSAUR3") toLatex(HSAURtable(UStemp), caption = "Lowest temperatures in Fahrenheit recorded in various months for cities in the US.", label = "MI-UStemp-tab", rownames = TRUE) @ \exercise Find $95\%$ confidence intervals for the population means of the lowest temperature in each month using \begin{enumerate} \item the complete-case approach, \item the mean value imputation, and \item a multiple-imputation approach. \end{enumerate} \exercise Find the correlation matrix for the four months in Table~\ref{MI-UStemp-tab} using complete-case analysis, listwise deletion, and multiple imputation. \end{description} %%\bibliographystyle{LaTeXBibTeX/refstyle} %%\bibliography{LaTeXBibTeX/HSAUR} \end{document} HSAUR3/inst/doc/Ch_introduction_to_R.R0000644000176200001440000005170714660150064017216 0ustar liggesusers### R code from vignette source 'Ch_introduction_to_R.Rnw' ################################################### ### code chunk number 1: setup ################################################### rm(list = ls()) s <- search()[-1] s <- s[-match(c("package:base", "package:stats", "package:graphics", "package:grDevices", "package:utils", "package:datasets", "package:methods", "Autoloads"), s)] if (length(s) > 0) sapply(s, detach, character.only = TRUE) if (!file.exists("tables")) dir.create("tables") if (!file.exists("figures")) dir.create("figures") set.seed(290875) options(prompt = "R> ", continue = "+ ", width = 63, # digits = 4, show.signif.stars = FALSE, SweaveHooks = list(leftpar = function() par(mai = par("mai") * c(1, 1.05, 1, 1)), bigleftpar = function() par(mai = par("mai") * c(1, 1.7, 1, 1)))) HSAURpkg <- require("HSAUR3") if (!HSAURpkg) stop("cannot load package ", sQuote("HSAUR3")) rm(HSAURpkg) ### hm, R-2.4.0 --vanilla seems to need this a <- Sys.setlocale("LC_ALL", "C") ### book <- TRUE refs <- cbind(c("AItR", "DAGD", "SI", "CI", "ANOVA", "MLR", "GLM", "DE", "RP", "GAM", "SA", "ALDI", "ALDII", "SIMC", "MA", "PCA", "MDS", "CA"), 1:18) ch <- function(x) { ch <- refs[which(refs[,1] == x),] if (book) { return(paste("Chapter~\\\\ref{", ch[1], "}", sep = "")) } else { return(paste("Chapter~", ch[2], sep = "")) } } if (file.exists("deparse.R")) source("deparse.R") setHook(packageEvent("lattice", "attach"), function(...) { lattice.options(default.theme = function() standard.theme("pdf", color = FALSE)) }) ################################################### ### code chunk number 2: singlebook ################################################### book <- FALSE ################################################### ### code chunk number 3: AItR-welcome ################################################### HSAUR3:::Rwelcome() ################################################### ### code chunk number 4: AItR-promt ################################################### options(prompt = "> ") ################################################### ### code chunk number 5: AItR-welcome ################################################### options(prompt = "R> ") ################################################### ### code chunk number 6: AItR-firstex ################################################### x <- sqrt(25) + 2 ################################################### ### code chunk number 7: AItR-firstex-print ################################################### x ################################################### ### code chunk number 8: AItR-firstex-print ################################################### print(x) ################################################### ### code chunk number 9: AItR-recommended ################################################### colwidth <- 4 ip <- installed.packages(priority = "high") pkgs <- unique(ip[,"Package"]) pkgs <- paste("\\Rpackage{", pkgs, "}", sep = "") nrows <- ceiling(length(pkgs) / colwidth) pkgs <- c(pkgs, rep("", colwidth * nrows - length(pkgs))) cat(paste(c("\\begin{tabular}{", paste(rep("l", colwidth), collapse=""), "}"), collapse = ""), "\n", file = "tables/rec.tex", append = FALSE) for (i in 1:nrows) { cat(paste(pkgs[(1:colwidth) + (i-1)*colwidth], collapse = " & "), file = "tables/rec.tex", append = TRUE) cat("\\\\ \n", file = "tables/rec.tex", append = TRUE) } cat("\\end{tabular}\n", file = "tables/rec.tex", append = TRUE) rm(ip, nrows) ################################################### ### code chunk number 10: AItR-CRAN ################################################### cp <- available.packages(contriburl = "http://CRAN.r-project.org/src/contrib") ncp <- sum(!rownames(cp) %in% pkgs) rm(cp, pkgs) ################################################### ### code chunk number 11: AItR-rm ################################################### rm(ncp, colwidth, i) ################################################### ### code chunk number 12: AItR-install-packages (eval = FALSE) ################################################### ## install.packages("sandwich") ################################################### ### code chunk number 13: AItR-library (eval = FALSE) ################################################### ## library("sandwich") ################################################### ### code chunk number 14: AItR-help (eval = FALSE) ################################################### ## help("mean") ################################################### ### code chunk number 15: AItR-help-lib (eval = FALSE) ################################################### ## help(package = "sandwich") ################################################### ### code chunk number 16: AItR-help-lib (eval = FALSE) ################################################### ## vignette("sandwich", package = "sandwich") ################################################### ### code chunk number 17: AItR-Forbes2000 ################################################### data("Forbes2000", package = "HSAUR3") ls() ################################################### ### code chunk number 18: AItR-Forbes2000-ls ################################################### x <- c("x", "Forbes2000") print(x) ################################################### ### code chunk number 19: AItR-Forbes2000-print (eval = FALSE) ################################################### ## print(Forbes2000) ################################################### ### code chunk number 20: AItR-Forbes2000-print ################################################### print(Forbes2000[1:3,]) cat("...\n") ################################################### ### code chunk number 21: AItR-Forbes2000-str (eval = FALSE) ################################################### ## str(Forbes2000) ################################################### ### code chunk number 22: AItR-Forbes2000-str ################################################### str(Forbes2000, vec.len = 2, strict.width = "cut", width = 60) ################################################### ### code chunk number 23: AItR-Forbes2000-help (eval = FALSE) ################################################### ## help("Forbes2000") ################################################### ### code chunk number 24: AItR-Forbes2000-df ################################################### class(Forbes2000) ################################################### ### code chunk number 25: AItR-Forbes2000-dim ################################################### dim(Forbes2000) ################################################### ### code chunk number 26: AItR-Forbes2000-nrow-ncol ################################################### nrow(Forbes2000) ncol(Forbes2000) ################################################### ### code chunk number 27: AItR-Forbes2000-names ################################################### names(Forbes2000) ################################################### ### code chunk number 28: AItR-Forbes2000-rank ################################################### class(Forbes2000[,"rank"]) ################################################### ### code chunk number 29: AItR-Forbes2000-length ################################################### length(Forbes2000[,"rank"]) ################################################### ### code chunk number 30: AItR-Forbes2000-one-to-three ################################################### 1:3 c(1,2,3) seq(from = 1, to = 3, by = 1) ################################################### ### code chunk number 31: AItR-Forbes2000-name ################################################### class(Forbes2000[,"name"]) length(Forbes2000[,"name"]) ################################################### ### code chunk number 32: AItR-Forbes2000-first ################################################### Forbes2000[,"name"][1] ################################################### ### code chunk number 33: AItR-Forbes2000-category ################################################### class(Forbes2000[,"category"]) ################################################### ### code chunk number 34: AItR-Forbes2000-nlevels ################################################### nlevels(Forbes2000[,"category"]) ################################################### ### code chunk number 35: AItR-Forbes2000-levels (eval = FALSE) ################################################### ## levels(Forbes2000[,"category"]) ################################################### ### code chunk number 36: AItR-Forbes2000-levels ################################################### levels(Forbes2000[,"category"])[1:3] cat("...\n") ################################################### ### code chunk number 37: AItR-Forbes2000-table (eval = FALSE) ################################################### ## table(Forbes2000[,"category"]) ################################################### ### code chunk number 38: AItR-Forbes2000-table ################################################### table(Forbes2000[,"category"])[1:3] cat("...\n") ################################################### ### code chunk number 39: AItR-Forbes2000-sales ################################################### class(Forbes2000[,"sales"]) ################################################### ### code chunk number 40: AItR-Forbes2000-numsum ################################################### median(Forbes2000[,"sales"]) mean(Forbes2000[,"sales"]) range(Forbes2000[,"sales"]) ################################################### ### code chunk number 41: AItR-Forbes2000-summary ################################################### summary(Forbes2000[,"sales"]) ################################################### ### code chunk number 42: AItR-Forbes2000-files ################################################### pkgpath <- system.file(package = "HSAUR2") mywd <- getwd() filep <- file.path(pkgpath, "rawdata") setwd(filep) ################################################### ### code chunk number 43: AItR-Forbes2000-read.table ################################################### csvForbes2000 <- read.table("Forbes2000.csv", header = TRUE, sep = ",", row.names = 1) ################################################### ### code chunk number 44: AItR-Forbes2000-csv-names ################################################### class(csvForbes2000[,"name"]) ################################################### ### code chunk number 45: AItR-Forbes2000-read.table2 ################################################### csvForbes2000 <- read.table("Forbes2000.csv", header = TRUE, sep = ",", row.names = 1, colClasses = c("character", "integer", "character", "factor", "factor", "numeric", "numeric", "numeric", "numeric")) class(csvForbes2000[,"name"]) ################################################### ### code chunk number 46: AItR-Forbes2000-all.equal ################################################### all.equal(csvForbes2000, Forbes2000) ################################################### ### code chunk number 47: AItR-Forbes2000-classes ################################################### classes <- c("character", "integer", "character", "factor", "factor", "numeric", "numeric", "numeric", "numeric") length(classes) class(classes) ################################################### ### code chunk number 48: AItR-Forbes2000-RODBC (eval = FALSE) ################################################### ## library("RODBC") ## cnct <- odbcConnectExcel("Forbes2000.xls") ## sqlQuery(cnct, "select * from \"Forbes2000\\$\"") ################################################### ### code chunk number 49: AItR-Forbes2000-RODBC ################################################### setwd(mywd) ################################################### ### code chunk number 50: AItR-Forbes2000-write.table ################################################### write.table(Forbes2000, file = "Forbes2000.csv", sep = ",", col.names = NA) ################################################### ### code chunk number 51: AItR-Forbes2000-save ################################################### save(Forbes2000, file = "Forbes2000.rda") ################################################### ### code chunk number 52: AItR-Forbes2000-list ################################################### list.files(pattern = "\\.rda") ################################################### ### code chunk number 53: AItR-Forbes2000-load ################################################### load("Forbes2000.rda") ################################################### ### code chunk number 54: AItR-Forbes2000-vector-companies ################################################### companies <- Forbes2000[,"name"] ################################################### ### code chunk number 55: AItR-Forbes2000-vector-indexing ################################################### companies[1] ################################################### ### code chunk number 56: AItR-Forbes2000-vector-indexing ################################################### 1:3 companies[1:3] ################################################### ### code chunk number 57: AItR-Forbes2000-vector-negative-indexing ################################################### companies[-(4:2000)] ################################################### ### code chunk number 58: AItR-Forbes2000-top-three ################################################### Forbes2000[1:3, c("name", "sales", "profits", "assets")] ################################################### ### code chunk number 59: AItR-Forbes2000-list-extract ################################################### companies <- Forbes2000$name ################################################### ### code chunk number 60: AItR-Forbes2000-vector-companies ################################################### companies <- Forbes2000[,"name"] ################################################### ### code chunk number 61: AItR-Forbes2000-sales ################################################### order_sales <- order(Forbes2000$sales) ################################################### ### code chunk number 62: AItR-Forbes2000-sales-small ################################################### companies[order_sales[1:3]] ################################################### ### code chunk number 63: AItR-Forbes2000-order ################################################### Forbes2000[order_sales[c(2000, 1999, 1998)], c("name", "sales", "profits", "assets")] ################################################### ### code chunk number 64: AItR-Forbes2000-logical ################################################### Forbes2000[Forbes2000$assets > 1000, c("name", "sales", "profits", "assets")] ################################################### ### code chunk number 65: AItR-Forbes2000-logical2 ################################################### table(Forbes2000$assets > 1000) ################################################### ### code chunk number 66: AItR-Forbes2000-NA ################################################### na_profits <- is.na(Forbes2000$profits) table(na_profits) Forbes2000[na_profits, c("name", "sales", "profits", "assets")] ################################################### ### code chunk number 67: AItR-Forbes2000-complete-cases ################################################### table(complete.cases(Forbes2000)) ################################################### ### code chunk number 68: AItR-Forbes2000-UK ################################################### UKcomp <- subset(Forbes2000, country == "United Kingdom") dim(UKcomp) ################################################### ### code chunk number 69: AItR-Forbes2000-summary ################################################### summary(Forbes2000) ################################################### ### code chunk number 70: AItR-Forbes2000-summary-output ################################################### summary(Forbes2000) ################################################### ### code chunk number 71: AItR-Forbes2000-lapply (eval = FALSE) ################################################### ## lapply(Forbes2000, summary) ################################################### ### code chunk number 72: AItR-Forbes2000-tapply-category ################################################### mprofits <- tapply(Forbes2000$profits, Forbes2000$category, median, na.rm = TRUE) ################################################### ### code chunk number 73: AItR-Forbes2000-medianNA ################################################### median(Forbes2000$profits) ################################################### ### code chunk number 74: AItR-Forbes2000-mprofits ################################################### rev(sort(mprofits))[1:3] ################################################### ### code chunk number 75: AItR-Forbes2000-medianNA ################################################### median(Forbes2000$profits, na.rm = TRUE) ################################################### ### code chunk number 76: AItR-iqr ################################################### iqr <- function(x) { q <- quantile(x, prob = c(0.25, 0.75), names = FALSE) return(diff(q)) } ################################################### ### code chunk number 77: AItR-iqr-test ################################################### xdata <- rnorm(100) iqr(xdata) IQR(xdata) ################################################### ### code chunk number 78: AItR-iqr-test (eval = FALSE) ################################################### ## xdata[1] <- NA ## iqr(xdata) ################################################### ### code chunk number 79: AItR-iqr-test-results ################################################### xdata[1] <- NA cat(try(iqr(xdata))) ################################################### ### code chunk number 80: AItR-iqr ################################################### iqr <- function(x, ...) { q <- quantile(x, prob = c(0.25, 0.75), names = FALSE, ...) return(diff(q)) } iqr(xdata, na.rm = TRUE) IQR(xdata, na.rm = TRUE) ################################################### ### code chunk number 81: AItR-Forbes2000-iqr ################################################### iqr(Forbes2000$profits, na.rm = TRUE) ################################################### ### code chunk number 82: AItR-Forbes2000-tapply-category-iqr ################################################### iqr_profits <- tapply(Forbes2000$profits, Forbes2000$category, iqr, na.rm = TRUE) ################################################### ### code chunk number 83: AItR-Forbes2000-variability ################################################### levels(Forbes2000$category)[which.min(iqr_profits)] levels(Forbes2000$category)[which.max(iqr_profits)] ################################################### ### code chunk number 84: AItR-Forbes2000-for ################################################### bcat <- Forbes2000$category iqr_profits2 <- numeric(nlevels(bcat)) names(iqr_profits2) <- levels(bcat) for (cat in levels(bcat)) { catprofit <- subset(Forbes2000, category == cat)$profit this_iqr <- iqr(catprofit, na.rm = TRUE) iqr_profits2[levels(bcat) == cat] <- this_iqr } ################################################### ### code chunk number 85: AItR-Forbes2000-marketvalue ################################################### layout(matrix(1:2, nrow = 2)) hist(Forbes2000$marketvalue) hist(log(Forbes2000$marketvalue)) ################################################### ### code chunk number 86: AItR-Forbes2000-formula ################################################### fm <- marketvalue ~ sales class(fm) ################################################### ### code chunk number 87: AItR-Forbes2000-marketvalue-sales ################################################### plot(log(marketvalue) ~ log(sales), data = Forbes2000, pch = ".") ################################################### ### code chunk number 88: AItR-Forbes2000-marketvalue-sales-shading ################################################### plot(log(marketvalue) ~ log(sales), data = Forbes2000, col = rgb(0,0,0,0.1), pch = 16) ################################################### ### code chunk number 89: AItR-Forbes2000-country-plot ################################################### tmp <- subset(Forbes2000, country %in% c("United Kingdom", "Germany", "India", "Turkey")) tmp$country <- tmp$country[,drop = TRUE] plot(log(marketvalue) ~ country, data = tmp, ylab = "log(marketvalue)", varwidth = TRUE) ################################################### ### code chunk number 90: AItR-analysis1 ################################################### file.create("analysis.R") ################################################### ### code chunk number 91: AItR-analysis2 (eval = FALSE) ################################################### ## source("analysis.R", echo = TRUE) ################################################### ### code chunk number 92: AItR-analysis3 ################################################### file.remove("analysis.R") HSAUR3/inst/doc/Ch_bayesian_inference.pdf0000644000176200001440000024230414660150120017657 0ustar liggesusers%PDF-1.5 %¿÷¢þ 1 0 obj << /Type /ObjStm /Length 3098 /Filter /FlateDecode /N 62 /First 495 >> stream xœÅZYsÛ8~ß_·ÉÔTâ&¶¦Rå#·xmOìÌT‰¶9#K9æ×ï×)ñ’Ã8ÊnÙq6}7@ɦ˜uL3k3Ì¥†Yæ•gŽyoXÊ„HóL(™0m Ú˜° É„ó£˜ð ?šIa˜”–Iå1éRËDÊ”P˜ï™’©g©´Ç ÁT*1Y2¤x+¦…D»fZjɤaÚYÁÐd$*¨Úí)³p¥gViÅ€’Õo=%‹àm°(öè1Yiæ>PpWYæðWŽ9­L $†aû©ÀfÑ” g K6)©s@F1/±¾ÖÌÓ†yg=Ó ]ªAM"õƒ4‰ÀªLÀ"¢Æ$L 0 S‚]0ú%¿LRЈ(xT¥ !°=CŒ‘ ›ñTH³€,4(:¡`ÁQ@8Y@Ö¥ÿúõWƳåp<\A)0ÿ”ñ׫å$Ÿf ð=ÔO†×¨ç_>dŒ`üdvÍ= öV˛ٜýz•]]%´‰Äâí$…‡êO–$hJtZôS{º[ö[ËVãeÑï7}Ôn[–0ßÙ¸N9–à;ýØÎ³á2ŸM‡ËŒ=8ü·L$¤J8A<”¿$ò§$ùéçböñàhxž]²Oùò†Ý`¿óyv…î—Ù—O³ùxÁ r< ÜÉ|6^2À{zrÄžÞÌËÅhžX‚wƒÿs¶zÿg6Z–¤£­9Âó¨ŸçËI¶îVˆdk³ "RÙnˆ-Š·¯0†ˆª x£~ »hsÅø@\UÀ,Êa>uE»Œo •*˜¡7L²zÜ0÷ª`¨TJÓÁl5]’ á/sPû²${0ôŠh2½|ø…Ö„WXk&Ž0QpMìEcœ÷®”ç(â¥4O§³%­ kRŒ:˜M—Ù6®¥çÃýÙgŒ¢ÕŒ7ŒNµÀн#€sŒ/•æ4[ÌVó– øOŒ,RT®ùlt–-‡Ÿ>>Ùç%” yùÉðš¢ðÀÓýRvCŸ÷>ìç]ì|’O2Ji YBË«ámÖºçÚóÑÞôZ†êq¾X@ƒ¨úò³evûá–­ SEùeA;ÊùZþü?/Ÿ¼xŒÅÎÎö/kBqœîMù¦a#îÈŠZâîâNczI»Kd‹í$‹5¶ë*ÛO+TOÖ$7È&d'%Pavæ.iÒ¼E†žd‡RuS½Eèý‹×o^b…S˜Ü~Tî0*R4 rξFElQíæŸõÑ(Ø4ÁT(Ý9Îh"¥Û G§~=N+³.W1 }Å8•ÒcÃ=ÂvXƒšXÄêZ,öa ží¿b“JÊuøcMc× ‹t\´†Ö :rëÔ¨tkª³·¯Ò&ê«J !(hp "Š0öê& 'y ,e”è¦uòûýhÃu~Ýiî¿Ý;Ø? ¤¨9MÙtšB´åÛ´œ¦ë)ß&U…³!÷ÓOÒã_OŽK¥ix ó.º2¥TéÜ:œq×#‹™øˆÜèÄ*8«Y ³v`uëóP'±a‘¬[ Õ²@5µë6ˆ¾ìòé³ãÓ À??ï'(ÝÖðvXlûjx°ôKÕrYêûlŸ½ëZ½9g;¬êè¤?ùL¿}?ÛvÐXí},%#ªa4¼¢¦¤¢ÏBTU“ó 9\Œò|™OÆtóý|8ú+[½(ÊQ3ZJ;›L†sRÙ¿WÃI#¿¦SÜl^UXR×I¶X|¿ÎŽßO¢žB/ ÿëÚ¹šŽ³ùb4›gEmª©ô¥šÂZÖõ4öå:MÝÔÒ†5Õtø¹Â˜ºÒRKTZ8…¯F r­À³9vW8~ÎE)íÕwwžÕ)£‰¯œ<¾Œh†v ~QÆ |»Rf`‘à(ëtñ®¢ÔGùô¯åpPÛ¶.GûGçÇçd½Òž¶Å´£•4l égZ”h«Š­+G¨®•#Pw,Ù•‰P7¥Ð¥."¦)"5Rô´ãôî4ãµØÒ*ËPO…û¸¢¬é®G®ÕUô6*ÎRåê»ÛÙñjyõM6½d\uuY¥*Ù&亠ݽ¥M™‹Ußj? «Ã~B~ìTê>•Û°é˜ P“ÀŠniÓÒø9ðÆî»®£àÖÝC9%R!K±n@ ŠO—Æ.$Ú÷í‡Ô¶ ÉÉùéÁ“ßÈÀ>呂f-SR¹B)”¾¶–(¦ÎFˆõ³vË¢ˆ»JSbijí¥;O=ÁsEB~÷Á×6 OYÞÔJÌ$¢úTм¬`¨ÉL%t׎֠‹6Ü0ë´J8°¦ã‡j#ÆÐáuÃoájyçÁ[û¼íSó¬Í¬²l¶Ñ{"NukëšÖ¶!/½ãæoñÁÛ3÷-–I¿rUùÞÚ]ŒksC»V³‹‹ß_þöË«üöýjq<›=<Í®W¯ßOò¾©k‘NË–Îõ=C´ÅÉ8½c¹,mo¹ë©–ÊÚ×f|½­»÷nwc÷íû±Ùº•Õ¤ÀÖÜ t¦¦×õ̽šœ‡œý²LFù|´ºý–a}Jß‘"ì:5ˆ™û¶|½;[§Ï” «ã}= *vÓ(ѳnvZ‡üwéOÕÜMZXS³I¶O.¿±IJv©òáÉ›=XÀãºÇ´åÃ&äNÛ:«›:+úêlýìGÿxצܓ‰®Hz¬®%½tF5 ôy}bœ¸ú=ÏC7 Ñ> ÐjB&m!¨Q¾o¬ßãиÛõ|ÝÝðS#éC¹¢¬é#¹.7”Š]¹¡û|N±‘ݽ˳'oϽÍ÷\^éf´×ûòÊê-g,;¹¼g ©lŠQƒ}¯®v‘2V¥…BÎî %U;’sŸ°~” è]mJý¨Mõäή>3÷ ){ ßBxW‡ ÆýÿÄ©ƒ#ß¹E¢]}e“C¢Š%¿ÃhæWW0$”þˆÐÄ86_®ß "ÌúÕžœ>É¢$ú¾¯r¿Ãwo.~âmdyû´#(¨ŠF7Àÿ!£]•endstream endobj 64 0 obj << /Subtype /XML /Type /Metadata /Length 1484 >> stream GPL Ghostscript 10.00.0 2024-08-17T18:31:12+02:00 2024-08-17T18:31:12+02:00 LaTeX with hyperref A Handbook of Statistical Analyses Using R (3rd Edition)Torsten Hothorn and Brian S. EverittBook endstream endobj 65 0 obj << /Filter /FlateDecode /Length 4616 >> stream xœ­[Ks·¾3þ{ËlJ;ÁûáKÊvœ8‰²-&;•¬Dj¥ˆäÊ")[¹ä¯§ 1;CIvÊåÒ‹A7º¿~óÃFz£ð¿òïÓë33º¼ùñLmþx\mÔ›èƒSØ\Ÿ%Æs¹:{|–UƒK›œ­Yu$é<O³¼…g'&MrŽSð£ô¼ðkêèM\¥œÆèSe@òl]È‚§¤ã˜”–<µIe ›SxªÔ&–57æ"ÓÎg .åÒ˜Ìu1å1º:‚“ÕæpöÙ&©oÊ?O¯7ŸžŸýö[“7yÌÁ„Íù³3ÖˆÞ¤§â&DkÙÍùõÙwÃgÛRÙÅá‹O¾ÞªÑ©lœÎşðÍÎ;3|»ÝYkG­Ã Óöçj:n`£F{‡ävÚú1ŰÙá¿X¸:ÂåtÎÙçᆨ8íð‡- ë<_oqŠ3)¯¶;T†Ò8 SbÎɦa3RŠ1ØáŽøËÙØáÅ9Õ6&XF=L†ç¬‘蔾n“™ˆI!Ó{ÈR "&»Zis™Q½Ž[à'ƒ †ÅN®ˆrr! —8 èÑ.í½Ã%s‡7DÍGåá}á1ûáS\@ݨ"Œ#9•†·[a.ˆê• `o¸R{Ñö³—+$@€&GÔ’q£JÚnv:0;?¨•gBŠL6X£¥èxÔ¨;‘?Ý"ÍiF“ÇǦ`†ÇÛÊù5í‚wt|I’ô@GHg¦Mž Ñ>5¼˜²TÑS à/ïÅ›7D2yÓ§dxñ3±õ™à`zJ>º¼ã¬}"Q´ŸŸŸ}s†æ&L„àGe„éN#hºkf †tj¶°äaI@ÎèÁöÉlA‹$%ë9z»s^ÌUŸÑØ Çi[L ècÀ”€½­\qéà‡{—µ:òþÁoÀ÷ª„PA´ÿ”XNÁ™²™Aïzp“Òæü˳óß|7|B¨N c`É$pw o\Xî'Ïh7É£n‡'ä <>£ªpt(з“΢Î2¸ýLf'&x]@Æp|Æ\ød \sA;jLèÁ(š¢M4§ð‹¾bÄ9;q§QDñ+@±Xú¾-Š;Ô`Ao·ÉâF†GL.©Ôó3ñ^ÙIäbê`e`?çÑ5';^5¡\ñ.bJ fì¾9{AO.Á£ \¡"ÞK98½,mô toÁë-Å ôh<[eS'¿×\ÀóŒ`8`ä¯~D¡&¬ío oÚ òrøÒnzk§õ˜½×ür4!=ðcðG(Q>3ÀŒ6àkA0âY7wÏNÅ€C ¿à Eë$x1¯²íÕF¤ ](>0QT U´bØ!³z0TÑpž¢$ÆñV¬'Ÿ)8Ârá'•%ÌÇÄ„òža¼_î’v½s8LoÂŒ¹…–ɇ=»gRèÈ|ƒ€‡?l“¦`·Ón"lR0ußÛ3ïüÀô”Ž¥BÄOª…\"{’äDPN¸c jˆQ`Ây‚´èȈq&„á%1 ìzÇî—c4–÷ K蕞L¬#ÞÀBNñ£ƒÛ‹&¦)‚¢cß_át)LèÖþ©Ùû+røòRcàkÔ -©[,[%Èê:•·æ"G•¬©·LÚΰÂ&`ÀË•ô [Ÿé-à‚WÊ®xbðl4#ë¸êQZ0U²pÜÑ6 š¹ÞW-|öÆÐ³äQJÿڌǕ 4Ô´’„³›èV,%ØB+e£ðâU Ö÷E“Ò¨¢™ (P!Þºñ¢ÁòVV¼ŸXüºÙ¡x"ÝûÔ¦M\ÇB¼GG"ý'ó¨ 1kJÏ0J³-gL‡Û ^ldDH"% B©W$¦î{½8'€ J0TÀ—À> ©¡O‚J ÓO (>RT—»+&‹¨ëÞòZþ„w:е®kusIBæX©IEü$bì«Æº@í¾Ktˆ íº™ —ª3öê†UJ‰Õýmc®w§«t¿7%œc.›'ü² `B”S%~/ÛŒ?ϳû™DSLõœ±$ñõ8Syà¹h"‹ˆô™qïÉáUƒuO—%ßð0k¥ºMÔŠƒJ:“|‘¤M\1Š,²FáËeÍ ßÇWÑ&d>  r‚A­¡Ž]7:{d¶#¤¦²ð¼Ë”–Nuk,'§2tTdŠ·>j„Ÿ6ç¹ã\ʇãͤÎÐTkfù,“µ¾ó|¼„èUž®š›š()(þ¥jø@•ë¾lÚf–·z>#Á8(-÷óÚªdí%§ð.ÓúÖ`‚5w³8üíñ–Oz1í»T1ÆÝ´œa‡ ;°ótÓ`ºéº7_µ7;Å/Å¿k‹øU„ù(‹‡ãá-ÓMž$×hP:uq%¦ Ÿ0&¯ymº˜"µœýˆYIPœ>i)ÓQyÞ¸jX_AÆÓk¥·R?%¦>˜P§Æ×Ò÷´ªÈç×¢ ™’tlß${š?0ЄõÜÌ}…w‰Ó s<áǯX­òq&ÀP…«[^Ŧt‚IJ-HÕm#;ö¶íkŠUÒýuÿi-xEv~%þ° ,±WÍMÉ•ä£Ì¼‰sb|2½¿áp 2G¹áü*vU¾È¯Žïv$ÓÊöÿï%*íãAÆT¡wª}€|ÌnÕì[¨äß–÷°B©ÂÑë™6øu—ýªqMIµŠÔúTØQ[† CÕ¤é"X ‹j„–ý¢”Ÿn„Esþj`‚B‹%ãÁýdÈ1ß+ß™KEuKÐ3$nžêØ N'„§ŒRÒ2¯ä.}œ©-ë™LµÂæØEÙ¢‚3  ÷–“ ØTà.𬠄´þS8Syøâ¤ôʬIæÎ…ÎÊQŠ>QþŠHª¢z ýDÑÃ\(P9Ñá¿ÛóŸáJ”®7ò·ï„ düëYš#á¨gr­^Èò®H¡üŒUUæÔR](y¹üî6ïgà¦Áª¢¼lM5Êãd²¥2SÙj£ã<÷´Q‘¤©à™Aæ-âæ¶#r†¿Ý4—*Ö{ƒ¸Ô©·X•>Ù¹èDè x*D2%ÖbwfvUÝñЧëÄvóX„«hŒ!yä¿Ðm=Ê*‚oiNr÷5@ ›Îì–W4Š.ÖJBP~%0tß jÞN, LKqn $ EMwÁ΢­XöpÕ¢õLc=Èè4 ú:O´'; ØçéÊbÞ9D—S¿åÉo}?TLÖ“Ìvxáà1ÚÉïþ®)há <0vá¦ÉßobGf.ß™y”eï‘ìvÅ{L¿ý ïRÑzÍ8ojc厅’Éã¬ýÇ¢àôz(Ö•» o'O‹*´[Ïa/§ˆs±—[öhðÿì$ÂÒ o| ³ƒ xˆ´b>Bt+uÄ›sÍìhå)ªç@^kóŠ]•jœÕ°ÊŸ›Ž•É‘_éÂ`"Œ³±1Ô,Ï^ág(mÒ{fáTŒhØ*âÍAÆu}, ÈW“TôtŸ&ì+Á/þQ Ø7‹.Ú„qb"r]ušV]j)MÇÆN§’¤ÿk xj¹Œê"éâX¬E2"¥Ky:ØqÒÝ*ºÉî=™jÆöšßŒ*ËVÀr zçùË-/æNÆ»'Ï¥-Ð{§Ü:3¸$º?»×(x›yƒÂÚG•µ.àÒK*,ç«]îO$-¸{³.3º©™›ÿÀ. Y~å=`•YwÚ +/-Áì©¿mšãuë» ¦{ ­7¯×Oòµ²Øê¨c¹ ™ûL¾/BWc£œ+&:‡‘&@nmÒý ܶc*šO®Ÿˆø4³75¹Hڗ܃wåîÃd9Ùª]7Ëûëð9ÞB‚ºÆ`è\:W¯ÔúÛ–³vÿ¬k€rÁBQoò¨Mœºÿ ibV°ÅÃLИž É1\5©—s¸ Ñm¬ëíRãïïÕ !ÏY³ZÌ…ú>†Ö¤x¼Å@Šº®OÇúô²>½¨O7õéPŸþYŸ¾ªO÷õé²>]-<µ__×']Ÿr}rõI-Él ³Ëi_Íì¥SÜcÆàáP—x>¸D3h1víˆòô>$—ºÓ­ÐW$'Un­Tvu¼$2x9…l[{;êÈpKL…¿´X¾E·\VâÝtÜN>‘¯~c\·[¡ë«"Ä“ ¸Íƒý§Iì}Û¾ Î{bÊÀõjO,Eÿ [bH·óÉ:;E ;•ÀO•›ŠÄ]z¨- 3@8»ÆÌ‹æ=z,8¾ÎØWÑEF">®Ù/ßk8¹\A•½Œ·Ì=wZ¸wɵԇÔ>¹Ì8KÙ ª(<óÕ/Yü3%ºð…iFÄ{Ô±¿äe¢¥ìmýV66Ä’'oü;çn™nŽ­änø>zXºNô÷ÅQÉAÞνœaÄa£ïu%›–&zºQ±ZYQTï5|ÑX®L¼®;Wùü˜_‹yлFB{–&~N!Aß%T8R…°r÷JTóÒ§JP•–7?j-Î)!Öa'’ã)´N-]˜òÌ¥N—Øu!K{zTo#˜ D`{b4u9géÔ[^+éØ#¯µjUõFX:qÆ­ŠeÎäÍ…úÁŠë@Á©¨ Qd ‹åÚ¾&3ºl’ƒ“ܨÜÞOMl+U²¯ˆŒEì)ËÙÝØ+z–o€|G—¤BÔ–-aê÷ ‰Å~!±¸YHJnÞåÜyþu a~áê—å8K¹†ÃOZê©Ð—âk‰Y¦@ÊЧ§ê'·Vzÿ9ã‘owH½ç/Í(­õÀ&¼¾_¹ÅÖ|¼ê5¸ @ÒÍÝþZ:~'ާ¾,幫ÅÒ÷cá1ƒƒ‚˜©ë xKø-ZL¾¢´#Åxú‰Òƒ·[fž‰®ô˜f×{f×ĉß48N½5Æ?¿ZÚë‰?´½·ªªy 2Bw4]n`n<ìoжqcL‘žÆ0:ïsþ¯A€cÓïåÙ>Àå®lbY¢Ë›HÛ]t?ƒüÔ_‹5n®|^¹’WŸ…rWÚò$P ™Gh~óCâ®àãÓÄiÁjö}‚Û9;Ú©®+wNø´¨e8˜`8ìР´® ì¥ÏÅ,œ ¸×‡¯8³€&&!îr£ø_†Ûòç “e±Jè¾ÊR®f™·<X;[›}†3‰e/suqŸ ÞeÀ¯áÑâòÄ1ß±·r—AZœBÙ:Õ^ö¤ÛçLKgäÒÃÈîþúíi’uù4rz^í¼»Ì½·•ëÊ“ô] ‘—,ä'òpöM„f·‰xß@S+  ):„fH µ. µ5EsõÃÖoÎþœF˜þendstream endobj 66 0 obj << /Filter /FlateDecode /Length 4804 >> stream xœ­\ms¹qþÎøG°üåfcíï/®Š]ºøÎ¾”s®Ü1•JÙ){¥¥(•H.¤NÇûõéFc€C­b—>h„Å~}º£ÎÅ,ÏþÉ¿¾9S³‰çÏÄùïÏœñ³öòÜ['çàÎo΂r³‹±Œ\Ÿ}…Ÿ çÞ1k³ÊHqv6Ͳž ›´ ð9FÀ–íg­‡_C³ßBUˆaö–•8MN‡Ù¸Èh ÒÏAHNS”š9™¦²ÛBÛMœ_ýp&#Ïó_¯oο¼8û—ïTÀ% ŸãûûÂÚ(¨H3K§– òǤ4ÑX0ÌVé‘}Â¥g3Òp´&Ä^±¤Œq¹þ©ú"æxÑ6”.ºFOú0àà£;f|{ x²XQyn µ)DÙ©:a$KE€c…³MÊ'™„VdÞÌd1Ëífk-¼–¥õòR˜,!%TH‹SMQVÀEsTÔ$TüB¾ö’¿᡾(#!š§š´KÔØüª—ËFFéÐ3ÌŠ_¥C€—V“Võ2Ó'­šÁ™ŸoMŠÓùµ—×524nµB¼éM×9]ÁZ $tkÓ/i†I”9çQÀã.ñêvYÚ$GEϱõŠl=p) Q³gS?ð0XÔ~ÝKãn:"¶]\ìSï.¸ '™¸Å¶~[‘öÀ=(£~™Ü!¯Lçh“8 ðI›@Êü‚ÎäCã7¹%ÝQ¼ˆÚ5ÌààÁ†]ƒ7 Ÿ–môzø"uYRʽøðë ÙÊIc‚ЈuEcdÕ@ykÓ‹v<¤X"Ô3˜´™ÅRÔ ÂF˜V%”~EÃÖ@ø9|`FrWMŠ‹ä¾ ù°lã3:cw)Æ!áaÜFVÕÀèb0Rsmo8XFW0ÀÏl˜tÇ:`÷ž6„#r¬øÐMΖÍ4j¤Øq¢õ+6ñH:,j†ð©s˜ÙÐŒL{ †evï†jÍg/熄§.ǸøÐOáó@c|WñègX) À#s”¥‘zSc U"Dnk½WÌ“÷uáÎÕm4å}bÖd$h„BJ5. –Ú?/Ü0kˆ ËÜ ÌØb‡>Ùi4ÊXh»‰à)„pç§«6·Ô4¥Ä¥ÎüÑ„p=Ü:DÁŒls«±ÝÓj.š“òȪ55Þ1Ëz ­!¨÷òÆato7)áa“¦¿\¸ô¹š>¤cŸyeCi")Ì”]>V x"O‚{LÙRá.)¸ðàŒÿ‡SdÁ“BÄäÆYÕÁ¶"1QEÊórÔzÇT‡8 ôº„y €}Ö”½üÛ:¹¦?VÉì9¡-*ƒîØ¢h€¢WU¨ìÀ;âΤ oO+X‚%ÕöpÐ7ªÉ¨iµ£ø×RÀ0EŒCÅIQš+­ô~ 'QäÆÓz3lSé…Ê>E,fƒÆ Y¢ky9ÔÆ¬zÙÉD¾<Θ«$Ö/ˆ/#n†É@vÁT9„Qr:0ß³Ö]5ëÀäN›Ô4¯ÝúÍ»"&n2Ò*µ¢T9g­0#€kªÑ´NAòZAЈZ Ç3}úVdO‹€µˆ»hó‡j¾§8<\ ¦w“F…ãùéᑆ±\Þ»÷TpŠ«ùí Øy°ª¸µx—×ìØä–’SŸTԬŗL†ç.&®¦ *șŹ6Ëä9o¹Î¾—‹Œo«OáØö)Ë)65,¦µãêÍ€æ-WQ%£§Ås ÿ¶ÎfD¡êi­~Wôœ^óÆ%›Á×¼\s4èàcLз֙LpL¦‹ QEC ¤ës‹¬1¹ü²ÆH‚OåÕWu VMy$ÃBÜ×£WO(oµ@ü@Á4é÷LÖ ÆA oQÏä:Ǹ~a%d.¿(s›zñ(Q楢‡ecv[êÀ<'cµÒ·Ä6ÛUŠAËrñ9çˆñaÑž¶ºØ"ë¼K+xýq®Ô%'­aGȪ;'Í›lOBòqÐÍr=®³qGÿ~c-Ø „Žƒ-Ë NwîI;¬Ëé.ÇjžŒ<½ù$ @˜sheôLùÁ€‘){:7Jýj’öÓ7ÁÒ×Ì‹Ÿ*ºm< ƒ|lP”O½Š2 ê‰DdÓÖÙ§À… <‡¨ðŸ+c–X®pe¬½ZáJ²µ l`”ÝÕZÀ«’)— Ø‘îÕýä\ÎÎuœ&0]¿®ÆÆTÚ»:гÀd€E"y.æƒÃÞäSxMššiŸªøyìùª×½Zv÷Gూ%ر#2U6¶8Àæ(;ãJû¶nÍ (¿O¢s^úféÝ/ºøžOõžèCüŸ}VZå c䫲û2XxWRÿ4`lúº2‰ÍnPsƒq0¤­Öõõ²Oã‹_IÆ ëøǰGFìPBÔàÄ)N¸£(•‹kojî– #q·mŦE°lÉèqÏèmŒhê“‘–E¨Kz w÷ç~#;°Èþ@/b”ùˆ&šPÀ.COÖòªý“Ø\M+¿‹%i·Õ³•C°0›¨–/mì¥ÿ¿¯Pùi‘¢j’gȸ•ij̶YÜ†Ç )òAqåÜÿ õiUîd]HÅØœÞ¥+99½s>úF¥|¬:b})È®¦†»JÆ![(ƒß!Ȭ’;¬/„¡œM“O§ÏL™ó{豚¢1uvÒœg*›ð¦ƒÌâouÏWq?d'S­ Sðü¾¯‘üEì<‹g½¦–ŒR_ºâ*õE=À ¢4´9àFEs9±ŽªRIØa6ÓFæ 0[‡Å59:;QCc@s¦ õÚ.û´5,ÎÖmiyHÒ󦪛—4CdWHÊÐô#MP6²rOºXàú¯×÷ŒëLs¥Yi½ñ˜ÇÕ†ùÇO·#–mÀ(WâðŠ3¥Ìáv™AÒöÚ£xjœî°,±)ºÞÕK-œIÝ=,Áö½9‘çäU¤û|Rq’5¡.i "R%É^i íÇÊKIP^”Ñé­ÕŽ¢t˜’@Dòá›ÐÈòÏ;î:³# &:îùV:!˜gAì cÂå`gÆÃÄ#Í ž†gòÄkH˜€÷ƒþÆØüå¦TÖyü‡' '®õNÁç~A$ªk-á›-K?C˜æôVfŽÊ_ήuZ£+ÊşΦðKו@~,þ &e„ÓóçìÖ婽 \ØÊ"ˆ äöÛÃÙ`NjÉܤnÜQªH‡%YÒM¹q“tXÿí+U°Ÿ}®§L×½eíϦ ÃnF² YšÎÚMo– ”"ëøLºT.eñ}×jHZ! ÇżZÒ”rh@1lŒÉ>ÉËlË"5ž¹R1bºuM+xp¸ÔhJטY1ïuv"iÑ8°ònÒç—·ZØøÉRä ]ÄÖ²W¼4õ‰k0©Äm¨Š—‡Y¼XÏV.X¬à¥ø¥_–ˆÕ YXïÍ){Í\“ZûQ¥|¯qåfs“[{#&t¥]DPHìc%'Ÿ« ä™1aÕo¶ù2;ß –Diµå¡øM•1­¬Ï½.: Sõ·‚ ×u’®]-×ÜçÔåœ/™è겜tªC@ Œ'7EÄ0ýW•øÊd^´È‚jÊ-gj­ô»9h²q ùö¬&ÓW`râ¤tײç7bµN–‡†MÓ6±(Q8· —N:ÒæC‡•Ñi4 ÿö¢Eÿ9¡ÁÏHôŸïÊ—z¿´Yá­Cɾ¯Ÿô½*O÷ƒ/ëØSyá-¿,O¯_޾¬o rÒ]¿l¼,Oåi|y9xÚN ŸÎgÊVÉk?Øðn0öü·~Ö_ÿ:8üåàð£ƒþ£ÿƒÿ(OÄŒþ—‚úkÕªÑÿ\`Øÿ\°<½¨Ü?õ죱+ þk}¬ÚùCmÕJ_ ¿Ç U1þ’Q[°ß-=¯_m¶jøÈÞ|÷,Ñ÷ƒy¯ÜÌ«¾¸žãnðt?Xç§Á.7C‹‰©c¼øì'°ÏÎT¿º8ûOøóÃvù•endstream endobj 67 0 obj << /Filter /FlateDecode /Length 5723 >> stream xœÕ\ío&·qÿ®äЗ¢«VÚ\’Kp‹³Ç)j½q‹îIÏé.'=|’|VÿúÎpø2ä.ÉI[ ðïíÇóò›áP?œŠQž ü/þÿòöDÚŸ~>§¿=±RŽFªÓÙX9:{z{2{1:_ÜœüáÄÍrœ<­ã¤`P~㤭 £ŒrÓh4•ßðQ“Õ£vlBcô4"-6cbËy7ΦpÿÍ™²“µõŒ)'çÑ Y1UF¥7Õ¨ÈTž.ñÄæ§×'?œÈ ÊÓø¿ËÛÓ/ßœüêµò§~ôVÙÓ7ïNHÌòT‚¤†Õ‹y”Êœ¾¹=ùÓ ÕÙ…³Q×g &!µ^¹iø·ßœÁ¿½6ðâø›bòÃïðQx'”òëïÎ.¦IÞ;øAŒ^H'‡ï¾Æ1³wÎÙ©hxíõðšÞKi½¾û Þ ãáÙøÙOþßßü¬Å¨S;úyra-óè'ÿ|òæïþ4|ýá§ÝÕÙp6 e‡Ý»w»Ë‡û³ ãaù@ùû!ýè†o—ýÃîæâ›e·¿ÿ¯ÝM4 ߟ±A»‡åâÕ~¹yºÿp† À„Ö{•füj¹¹ùu™ñÆß~óý°øô_Ëá‹Bß{'sjØ_>|ºI?ëj$þÂFÞ1ŠÕÀ»†ä]—dø–‡ë@æ;"ÐÃï_'rvø̓RhZ‹7_ý®ŒárU£œÎËô3ìpa›MþfwŸ×£†w‡Oiz7¼ß=ì>®wû݇‡§_Ç÷³þõ?Tž ˆMeR¾glÁzœg69ãòîâÇåæqWTÎù¹H1rú«×“ä¶cFcæ´ù¯Ïä(„·zøøPÞƒ¶ßæ—»üôŸ–ü4æ§oóÓ7ù xMû 2ŸØ»<óåñ¹oÖžo}|y”ÌÍ3S?÷u™% Õ#“lÿ(ÎvB•»û ðÜ7Gp÷W àå_çÍNºVû61³ôÿ¿|Û7ÿó¾í›ÿEß&ŨLrnêyçæï™s“nt+çRœ¥Èûöáç Òúû9'´Úðs5F¨üÜ×ÿ!Oj@غtKAHo†È4×Á+„ u<ø¿ ŒõÂZj’vZY;,ð Gh'!î›á>Pƒ ÒHà‚˜&XËá㙚G%¬"rq#Ç?<'îÜ@S({ôžó“fÛÁKÜNvø~¯<8ÿÄp'—0ÂJeêQõð݆dîé5úô@WÈ lãÈh†æGÆ {¼a´vDk‚ÁŸÏ@’³Sgrùˆo¥I²·y3f`·Háp[–tV¯gà’dfgY/ôŠˆàâ3Ã]ľUzª…– ð·'bT&`†L€2ß\¦ ƒl%÷ Rü¿¹H]ä@€ßòÝ} Ó(å<—3ñ¡¥ö8xr€£eÒ7aj-¼ jjœAEÆF{Å)ðÁWHm†Ñ …ûô\«!ÉÔK 3V[ÏwWl¬›q»Úβ/:ÎcAÛßåÝ:¤ÁΡÐÓØ@ ,Þ.gÁâ„~,[õD_Íð{mPY!È `çe£I¨GNƒßÍ7Â{ ä|³ÝŒŸ0xæsìp (Û‹”,4V]- ‚#¥{*+¹g*Šº¨¤±†vxÆ÷QAå¤Ñåä!i ð£žç¤{”¨ŽçË`~Ùú¬0-c44­5—5¡ãu\rL§‚lg!œP‘‚•O`„×µ€$Ô¯}St±|tíœðCu£<ÀšúûziIqIyÌÜ*Åå+YëŽ×/ñÅ#Q¾cjû#ùs9õhô-S¸Ù¶.>÷}QÀóÈÆ†Ÿ§à“¤¸ýþ"Ä"§¤é1Ì_‡íu€é$yä¨IÄ&貉º„9>`ª¤Ÿo£_rµk~@Y ð))(è™kº§u˜ìÎÖ±¯ÒåÄ鲞‰0¡D±•(¡}ÂAàúŠSe1|5GÖgø ¢x+Wê @èçÊU¡ÕÃúˆ°³„àæ•ðºó– pÊ °ËåYì¶!Ü9-| '©‚_Ûo~wM^k2ÞðHMÏΖ¼-,Ñ`)µ!Ê8¡^ü®]C—EŒBx [YGÇÇ2à¾|Ç<º$‹éA’„¢¢q‡Ç"æÚÁi^‘§¨h…Lš\8æñ©2yîQãǵG][CP)þ¼§:“ž{ÚZ\Ó4êÊ+,„+a¥­‘Ö$§i&$,g†„•ä(§¥€øËÆk@CVSA µ„õX\<‡È89¨Å Ö¼œpž(:D›x¢U¡Ë<¼‹+„­øõà0x`¦j•òäÊÜö€k&†-´ªhi‰$´o 0ë '¹Ì¸À¸³0 ÚÙ4”‹œÀl´n·GÜÛÖö…ÁÄô„³§Ì›K¦)0çB| °‚櫘gùV8º/l3êKf[¡ïÉS‘bî Ø¶ï‰Î|½â«â?I Âó eÞÛ8pÐFYªYY¾w™ G! ù„„ÏjøX@áã­˜'7dúX­ÒÉôW€>þÛÓ¨aã%Àâ+Xr-¸3?ÐP!Â֦Ǘ¥£Q¤7e­çD²â¾çEà'†¡ÞÀFöŠ+eŠö+܈{ÆF< „c¦b F.{s]Ï1ÑcÁ «± ?–íøQäð!ògµ¼—û‚Ò˜4_’m¬äÍ8—ÔŒ)oÃE„B-ñõÂ\F“ÿò†‹4]ƒò+õzÌP{SAA”*à½PðÙŠyªµ!½q2'5+_6"‡GÃï ÀH¤ÁUîâ±ôN^Çwç<Ò†è~`öŸÑÈöP¶Fó·ÙZ$ø¡,‡ bË3¹£±ÈiSe¡×/HžÊR: 5•Ø- ‡[Ͼ(–e±´±@ Ë‚ëωOx¶Â/¤Án9e-,s­õ3É‚#ÿÂÕZO9ݳ˜cˆ5r]ä˜7ÌÛ@ #qp ¾÷\¾‡ä[fo#wÁmZá$7®Uýâê%÷N|-Ë'2‡Rá_šœ†¹¥ªjl=÷•øÜÎ,:h¡Ÿ³`ˆq¦1ð´èç/pðH¿äà%kEIÞ–˜±XPg®SÍœ|©Ùµ^1ýÜæ‹Leв¡úΘ¬'Yʸàï€ÍU¼-¿·¸1jÁ3ˆxöéY LK ÅÚ¨ô½ŠÖEÃóv×ï‰2&1PˆÙ™˶[dÙ)\w5§ñ10„µôqG¢—,È<æŸoÃv#ïmºTwX‘¯¦:b^Y#È?£Öt*×M‘ŒØ´UÉŽ$A5/^».ª¦Ž«šjÛÝvRˆ«œ LIËU-ƒÖ'ÊeBÇá¾×.2û ÃJÎO6ñK|1z! ‹£¢œ‹K¤d¦yUaÛ>„gY!ö‡zí R$¡å<üEÞ@cj]Ršƒ…k^ mì2Ê¥[Z l ÿVTÁ»ªí† ˆí´M6ÓÊ Ô˜v@E°^ò@Ì”âšëôy‰ü±LSÔŠŠ¯Þˆv™h1€€ Qp¨â2Mæ”ܨØ€øünâ”X!øŒc!´Î  m8ÖùÞá 8@Qè-þÜ€6B-—•¾‡e¡Y²œý@s`fRÁ²®Ðàh/B¼©:æº(*Ó:[ë,ÒÇÀQ}†¥?çÄÑìB"¥¥ji%±ðõ-¬Îw× [ÈA`nõt•+¢c*>iŒ4HÕµIŠú-nõ ¦lhæaÇéä‘Ól©ÁÚ°SÎß8»˜pí.¡·¾öe®InBÖþ—‚ñ÷ õ|¢¸—T;¸@+×ȵØ yqllcýº¤ôhÌê¬,Å?<<2œÚt$-Ç:ž–®«ŠÉÞ´Fàfmk/ϼ!ÅãI%4ìážf£ËŸéßðCÛª-½T7ÌÆV3;ËšÌp©º‘ó*wF XljËT‘ fh„@½<߃w, îE˜y¨Î°â~È • ½lëL/¦³!Ü ™ÌYÊŽ°M*Ûe–X‹âS—GØ1÷!u=ˆýh^hL¾}[ÿÒ!tGV‡´Ð&kˆ¯srÎÎØ—j/³žâñá["Ú™0·«¶ý§ââ–U¥ÒñªÉ«©¡‡J< ®L?zÉ<Ÿ¢[Ñó{‰¤¹ƒ½"¦a½áð7î]­âyò÷<5:œ¦Ä†P–<´'Ü0ÊäDùKìÚð¶‘}©~VL8Ê`vS' B")™>”Ò¡(1A"ØÆÂˆ~&I?÷ K“3)ÜTãAèž žq=㈠NtzÙét­¼óèKö:OCGþCºT•£]zÓÑAå.x;G ˆõÒ’ŸaœÂ·ZôZe¸ê¿þl5Í㳎4Ë {YÝ Š<áÊjpšWYå1,_bµØê!Ø#p`k»pÖvïè&œãLÔóɨQÞÕ^8CR;1Wšýîcc™¼ó%~EºdOCQÆíå–¬ª#ƒZR)´¾ˆÆ­òc…ÐÃXeúá÷ÙÏ­²œ± =4ªø.Ö=R|‚aÀ×7òdšaÙnrؼx³äEO/(T–÷—g)3<Öo«;Èm6™ÜDý;JΪê€c£áÑ $¾b²åMÝ”®”Þ¹h,‡df϶ñ²ÊVykÙ'b>¡m¡uœìªÛ#XÛÆèÂ’þ\œ×ꔂüdbJ®Ö>óiNµ¡[îv ¼• ŽG»pï3Q°‡:ˆÎb¿*ÍRÇîmµ#Ζuæak¶vl`ûN¯ÜJSRw ô"ÆÌjbVeß@ïJtŽè8FÅ£Ô”ÊO'ŠZŠ€i,tñSâz»öÚÓ¡–À|. ñt ï}(ç÷¬”ÌÔ´jØHœmÃöU8@Á³ì­z¾œ@yÚý¶±Xótj´*'?ÞŽ¶/8¢g§TUe^뜳=:J,¼Šæ|§ÝL­ «ÔйCpßRñà¸×MKÉ…9^AÝUóå5ƒ çô™«®tzq b(~ØIo!ä°ä‘‘_ê6z"!Z§Žo±S–ir§æÐ;–g* ÿ’»ËÈ|S”HÅ—íÖ$ÖÒVK z2¸æÍÜê: Çד¦Úø«}Ôeà@ñ³t`\ßCtúäÒÞ,ÛísQki²:éÿ’9Èå@ÝžÚ¦ïà4I"n¶•A/\OC-BÄÞ'GÊ Á+ œ¿ñ?ÒWX·í6‡¾Wc 4ŽY€g$!u§ës;^3.ë.°<Ý;"ltA—܆ÝB¹Ž¢ªNC9²a˜é˳\±áÛšÝV—¨–¹l ×´]d_ ù|ƤօüÍsÓ{’„ó°]‹5)¢ÙíˆãjvYœêa}Vj¼•«h_igõáB%ž#Ž÷"“z;ßä}Ü„ƒ¾nÊ€RBšåW—»IÞ÷/·ááÏìÎí¶ÒÓõàÇ­?¯‰öÕµ†—׉#}\aÙuu¿\çÆÑË€v’†vôò>‰¾éõн.D¢öë%:pBÑ’±8Æ‚o\˜ã!€1?ïz,>½cøí1—¶67™M¸JˆÑ%prìjŸ¶|15àÇKÀ}³æá»KØi2`™$öµ"ñrQîxI”–RÝcb;öÌz˜^u LH}ƒN ÞMÁ¸¹²qÉ´ŒùùÒ²S%Ö•SÚÀÁ¢Œ‚5hü+øgŽ Šc« ÞÍoÀš—f± “ê’-/™½-JYœsÈ|ìwŸzën-OpêÙœ ›w&W]^é$…{Œ})McŽ—k÷²-‘0›GÓ ÞVâE?vÑ®Ûí…Þ9àA‰f;Tmf )/Âßoé™+ψB”žÝèf]ý= rž¡ ÆNÒ§CùPõê „‹íó;|Ì[Lœ¦®µ—GY:ôô^ú~uf¦Ó`XCâP…žª %íiÁe~u=1:Žº”)žÍÈpg§½Â†äðùmuÑßN®wýŽ%÷Ì\š>$aVfÈêóB¸Ïõ=¦MlÍ“®ÍY Iws¤V(xoÕÌ{0Ç(B [³=Ðûæ¢É}”EÈ‹ŽÒhìax»©BØH˜Õì1Æs7BÌ,ų-Äþz*1#sú¾VÈæ’ýFÅ–m]ç/=, ÐUrg¸br‰H^Un›œ˜Ö¶Íå {ÕŒ 9f}ë–ÜI¿Ýߨð7_8 ùYÝ?¥µø*ÿÊÚDÇ,ÆØnÏw'G ½–²î˜"ËÆûµ•äZCï|¸ê5t1™£¼ÿ<ËÝêYbƒjÝæj.x¬|þP€²«|çß–í\Ь€|:Ú¨ÃK¤QŠ%¹Š‹S×MØÛ< }ýÇWÍ,Šû} "¨Ñþº…«‚ÜgšÈºß?2> stream xœuSÁnÕ0¼û+|t1»Þµ½{¤RâÖ6œÚÒ‚èëSKBâãY'yy~”C¬Íxwfgòä!¢‡ö¬ï›K‘Õÿtà߸Â5RE_sÁ(Å‹êVypWN¡ÆÂâkaˆ” µU5–<£2Ù™;СÐcìcîæå\í«œÌ;°•XsGj-ôœ Iä¢'Á°çt­…ÌÊi›v ÔMïž΋ôëëfçÏ&÷ê«·n 3ûéÎ-[FL±ú"öÍO;÷!¼FJ px;@¬€*9|Fˆ ªUkx´:qápÛêYUª„ëa´ d {;Ö 5ì¿- %ìïÚ©‚•µ k‡^Z‹¤šh™‚ENÊ_ œ Já{«nÁöÍ¢yF UK¸é}»‡e¶5…çEŠp’¿ÐmbªÖð×Ü:WÈ'Ã?7„Rnå& ü¾Q('à…^’¢6plL¶Çûáãô®y£½7”(bógº5?.Û…jlIVô‰“cB#’³Q¢ÐåÖoãD)ªí†žg1ÂEš]Ddó)œÏÊ+YµcºM›÷»ÚÜï¾ÐøœOîÂiÔbÿª¥É~ K[&Ù2ÊU4V>ZFÿ—ÏdaĨ9§>Ÿ 9fÛE1‘,²$tÌHh1kÄM›†ç™¡¥–—Í'hg hF×bŽËͲU,äûE”ž…8|™šKµ]ü{Ò¡®Y[»´P$à„4¯|ÅœÍé`®Öcœ%dÌËÊ9)·6Ûœ®ùÕ —x _ÍÄ£¦ƒå;ý$½ÒÙ|¢%…­—£Š—#™ÍÑ ÷Ò&‰endstream endobj 69 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 4235 >> stream xœ­WiTTW¶¾eAÝ+*8Ý&ë–S¢mœ‡8$iƒLDœq€R™ŠDfªjWó "3(cÉ(^Ðଉ‰šÕ1‰­‰iÑ¥‰±3¼ç¾äÐéwªÐ$ÝÉ[ëõZ¯îŸZëž{ÎÞûûöþ¾#c¬†12™L±Êuåüyæ/ÙùSÂÀk)‡‘V‡_Ÿ;7yl×;š1ÿæ8†® [µÏ)ÂYùNÔ»Ñ1»]b½×ÆíñYçë·Á?pó–`·½!sæ'.X¸hñÒå+f ³ž™Êl`¦1™W˜ÍÌtf ãÆü‰ÙÊÌd¶1Û™•Ì,f³Š™Í¸3o3NÌ\Æ™YÍÌgÞaÖ0‹˜ÅÌZæ5Æ•YÇØ1c-3ŽÏðÌ Œó"3‰™Kƒg¬˜Dæ¾l›¬wØÂa-rkù.y§Õz«"k;kë*Å0Eû+r.\÷tøþáwm¶Ú|7ÂeÄÑÿybÔ°QÍ£þa›o7ÊÎÑî »ŸG;ŽÞ:úÃ1îcêÇ:=5öé¸pIc;"¾(Jnå2iáÀ">µ&Eq ©á$`ð‰}f¢Nª‰ÑFB"p*ö˜¾Ýp:á=mµîÔÈ©"›æÅz½ÁX lC¹5†)Dò¢õR•Âdü´CÜ“Ƽð5–œ•6ñI©5Y§°•ÞQ’›dQKP!—bñ Sý!‘¯Úî½>TÐ}§ o¥Y«Ø+yà£$WœUìQý%C+Ýñ¢ö¨åhgôeQþ™xêpyæBÔ­Q±&}¡ ºá’¶|h k;àAì6a©(Ãñ8£qмy`%¯z4Ø?[%Í`qúõþÇ_nú„ØR~SöÞø„ëwú‚¼,ÙäKq{ä1Žak–+Épr›ÇnœÅ–C#T©*öÀH¯Ô½IQûvíxàl%MF»4Î$;JÏ[ãåR0†ñ8yáC2‘ðs—É´GËqÚß¿‹“N\y?ð­L>‘Ö—¡Dè)h,l=^uº )´ ¸ <`'¨`[J`Š_¤?=dÀ/Y”~eçp¶|`öÀ|¾ âRµÚô4aãÖíÛ+ß²Ì%ãI4Qã«dîÄ%pÂÓòt}|R*Äë”éÄ~æÚÅð685ø]¸˜qÀðxõÔõÏJºà6|éZA^1$äA)pµzC­’ÂF¶Š8Ù$n—Ý¥Ðm£ùa™Î;£“¢^Ýr 8´ùþs|§Ïù+±Úµ{¨Ÿ²‹%Nf,Ë Š´eHƒn0÷÷˜:KÝ|MCsM7p§Û]ˆ™´m«»çÞcõ±JÛ©È ûÌ@NÁá¢|€Å:^¥ˆ&/ÄÌ$Ë›†-•ŠÙž+•"6«+³<ç QXøDs¡dÙ!bʼnн˜a=Ø@Ñÿ‚¢‚qÅï"småè†ÑüÍChÝ/ètq Êy7Æ;ÖXÑ~nC­ÇÎÝêw¢ÝYþ¯ÜlÑwNB+-ßÛQâ±4Þ*+ŸÅ+åÒé7øÁÒ¡Ã-ÆG´CN·Ðaù†Ø`U)ÛŸã½b(ü™Þ „x¬¼¯ÀYP¼ä F÷•„ “ôb£¬éctýXŽ÷¤7-ЧÅ$§' ñ…aù¾À­Z1Ù½.¼ø€²1¸5ídj{ÚåàÊmØ•¸kU¨øa¼uPgŒN ‘J"cc!õHžŠ9Ù rŒíapˆi×zãæÅ½ ûK”AMþyÞùªB·Bèå.ßЗÝËq‰6úDCV9pÕSE¹11£íÊqŸˆ+ÊewPq_”ãvi2£D2 7«º%aDñJçÿ>©c s;úê§Ç®]ΪÜX·„€Ð]pµL°¨¦uk±Xª[&mØ)ãøG¢"@3öÐg>iÉTH1ÉÄâG"û»7æîf[Œ÷i‰Ûá>´XJ<Û0“´ýÑ–r›VVvö—‘„g¤uüsÝØUë\Öê*ûü–%.¿ÂŸÄNÿ(ìqí¸Ö*èW+Ð)×Zd]Ó¡M)1tÓÉ”^ý4•q4 ¬¤i<þš9àMŸ9ào öÉ`ÿ :¼Œ¡ƒ>Ÿqhýº:«B-ʤÕÒ>÷°1÷2p"¡ ÕE@0xöëÍŸ³y'tÉ:Ðe¥(‘èWÑh}^T„ê\´!Û –EWXœ:8¼0¼H{j »(÷°yŠ í?`+ÙÐý yÌû«éþj/ƒzhÿ#P•)Y‰öKHÊ\Äž 8ÛþkÇ Ä.ˆLÐÎ÷l‰­kh¬èlŒ*Õé…Šì|C=p—j=V+ýY2MC&xÀné£à›—;Zº+„hØú@èT”CuyŠ!Y¯T¡*8¢8Ã/^êÙÑŠÃо¸Ö0ÄB n”‚rÉQzÇ èz´Î˜} D6D¬ _:üý,²¥P 5)š,Ðfd’.Òf—þV†±×>Â7Hinš¹‚É^-˜×Ý¥£± z Ë².’uMNêAZsü@£;þŽ/,ÉÉû«9®`­·."`‡!l::pu‡SœfÚ¿…ŒõI3-vh}hàAz n×XOÖM&/ï ¢ ã bë ½zZ"8¯­RøP}–!)ÿ6ZÙß%vÖ;UŠzýû†Z8'´Í–«ŸõÎxn<û«,¸ ¬á‡æ¾¥Q÷°=b¥º=ô"8à¨'·q:Ξq“È<|÷*s·óM]m›Àõêbßâ ØL ç‰Aj?ðƒàòð6šûcšûžrIöœ3H_OÕn&pïJýh#*¼53`ÝaöoK/%›{ЍLÒQV†¬\r’†óy¥†¼÷ÛX; ICÕÓŸ†ºÌdÐ)_#a××ãÜ´*‡sØ\s'§E©×ˆvóðO‹‡Ðê³ô‡r+A3פ® õQµî:ûé©ëâÁVÚ@]‚]»¬‰&aƒcäøž4‹OMKN€Hî9±?t¬}ƒØ/žG&‘_§Ë^j@«¢ƒû!%1Kw KH‰rqØ[×צë†î àè‡GŠ´šÃÂoA1Ÿ²Í<ÓNš­Ï³ÉµÝÕâmTGFLÌ ³¾]ò޶’£ÍJo]~cÿÅÅàc>Òß/lÅ!´&©5¹.R¯Ò}Å-‡Ú›j: L‰u¾Üo:§OZÚ'Çú…|ò! DÓs|( —:µ&J éÀŨÇõ¢ÁÇ¡Gk²ð)††hCº>Âz¨ä¤BVZ2ø—‚¤Ú®uPP¥”n²´ßôÕÆJcäW.*üt*­? ÎÃào¤œ­€ mž®F:ˆâyм¨µM¸ü™7ûZ.ÍÄP¾&O´ß‡SúðóÒZ¿ü÷ÅÔ(Nìþ¾âH,dÆk3÷g*Õë6Fï¡X޹¨l²ÒŸ6"{¸¯LTÚâKCâ>“ìd®áX9zQå{(Îø^Ão鋌٠ËRÒ÷ÇC8çÕ[[ßXÑÑнjî4o¢^Ù¨º@~ø_Œu(˜ß½ÏÑ“Z>¬Â³<Ú+Ðî»8eK¾"R2ÄrÅïÅ-Cêçï)p¬[´\É(åBê$4d§ g}ó± #;dµT¡”Ëqþ|¸!¼’âQ•_¤×—¤›â.R/`{áãÏNïkI)RçeÌÖi´™ÂE”ÆÕÖ––UW%¶x'úk}…=Gwd‡ÑJÚàô¦WÙžc‘ʽ{4~ôölØÑœ±%6qî'ÿŒN8ÿ£Ë×q™„òžòÎpåÔi¸|ý:¸îØ뜕ÝÄ“ÿ¬+~—OÐö©Ó}Ož¼tJi­ëi=¾;Ûód_##Ç@éü ÿæÝ^^^-]¦æYKVQ¢_üÅ¡5è{ P§Ÿ‘ÌUšn[ÔEÿÜ%;÷ åÒÞç>Z§‹ŠöíóiÚYº‘úè1N ‰Õ† Ϻ e»‡)í^TUf[J®¶7ªtxsî1«—¿MFÃIé‚îäD=7Vk,ƪ@¯¯¬Ž½ày#½N¾>úm.ÅžŒhVî>ïSðZEX^`~rv`Ih+õV=Õçoâôr2Ù7G0&æPA|æ®ÖжšPŽdxÌl‰F,á?¥æ7ÃZTà°¼/q Ôd¥k22´:%Q’ñÖÒ&ö·³ý­ð¿·±3Ú³¦¦’¸ûdd8¤DÂ~Á ÃUCµùb¨­R—833¨ÔSKèð(¤€üýÑoôÉÆKOùÿ´ÕG³äÕ™^ˈÈw ’ã ñ–¼ôýT\‰sî<Å ‚…URÿÙ!Jyþ›t™Ók¤wË.ªÆ'Ÿ©žùnù ­á?ÛŸ;F‹k0<¿È¾íá³mŸ{ïuc0¬‚íÞ¡ë¹ÿ§[íÿéâK¢rçÉ1äs¾+ Åëyƒtµ´tQuÐЄ3Äå2ª #äøÑ€œoÌ„@á]—)`¾ë×Ò«h_)7XD¬Tl«ñ˜Ó­CŒâXÛŸ±À$ƒŸä?%`oú9ÁŸ5ï‹c¨1™je§pµn‚\rêÑuºû„Ì´×(N©¨«þàýºêò²÷N”—õžªá4‡Ãæß"¶“—¯^²¡'±º±½òTGxM@®PWßšCo¡w‹^ñÞëì8WI÷”Ô.Å:ÄIVæc“»q6Z·þ•¦6Y'ý/3OÊpü‚¿•íø–Ìz+ȧ¤> stream xœ½Bÿ CMSSBX10‹‹ù!ùJ‹ ‹ ›÷?¿¼R3oøˆùR‹ ÷¶Ó÷uáæ÷$÷Ÿ÷øw÷Ôʚ걋÷÷Yûm‹^û„g€füêg–°»±•˜®÷›÷÷8û³™s–‹¡‹ÆŸœ‹©ü6÷õ÷u÷÷ ]IP}Uû 7Ÿ ‹ ‹ ‹ ‚J&endstream endobj 71 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1769 >> stream xœ­•kTçÇg˜™*!3©¦œ™rŒ¦ÄÔ( ‚—˜ª¤‰£èr§°Üv¹$n¹¬Àî>»Âr_aY–ë° ×€å ZŒ ž9)m‚95Ml¢ô˜hšw¶/§§˜äKsò¥ói>¼ó¼Ïÿ÷žÿ„« A’$´ÿ-¾‹ok!Û¹×æî¸»Ö{±;=¿zìÚ£ï­"ŸÇ”i¯ff©öfGÇÆ%&ÛD¯ëˆßˆDNø‰@âUb7L„/~Ä£„§|áJèˆÿÑä.þ.ŸPÞÔe×]ÇÝv¸ÕÑ¿¤ÕÌzÆÌôJ:iDÉËF"bÅLSÒ먔ƒ/ CÕ¥8bN‚g .@›ÃîÓØ«ÀMÉü©òÄa·0Šá•L›i:@„qhÓº¯™ßæÃˆ€B™o®_šœ´¼Êãü={2ÁÐÉz8ƒAD×mhH$?‹nݦ†/qJ3s²0^Xè`âu…A|ŽRr§÷ù§wç?Æ+ë„;ÖëWáÏì­>Á?çñn|ƒC&¦ÛTq†Gžô½^¿ðàƒ˜~…?ã"õÝÑkÌÝQÿ]ÛC_ö<$M¡]òµ‘³¨s–’"Q2‡8Ÿû˜ÅîÏzcOüø½ˆF+æÿ‰¥5Åü{Y×# ÁaØŸ(t¥>q¶èbA®5Çz¼N ilTfÄóÁý÷Ô|©Œ£¾¬tÀ@Iž€½˜<(©.7›øò 0ªï?2 À~36ñÑxrWQ•àH7צš-ð>ëh:û9"Í›RL¼Q['­r«Üæ*Ùß'E`#ïO#/;…vJ8ä-bo´OM~°q³ŽÍùv0˜úPuaª{r†ÿ£:Œ RFÇî/xg¦ìߴ쟸äߨ%})=àúNVÏð6‘ÎÒo%¤Â6È2É€¾X\ˆÇP!ó§~kºÅtS^‹N¸ -AéªûdEcØúS§<¤ºÂ&é"i•T”ô,úŒ«²7 _5²"£Ôk ²á8]º™Ò—§BéKJò×ãš5Øõ”X åkÛúÁÊ‹L¦þ ¤C2è!tù“KP]Z›‚Öá¯)טJj¡̦Švq}lèíÆÖ›ïÛÈ37бéY;%=lœ¼ßƒ‘‰] K$°Ûö…‡(5Í- -ï&Àq¡yèœuس—ã¶1 >ª{Év±;ÿ‘yåÚÈà¹F¾ìˆ#aئ ËÇÂ%õæ,­&.œâCÎs>ÉQ‡õžCkЮÚ^/‡—<‰ÏÙPÒ Ù3‹¬Sº°9ƒÉ£zBåadŸöÁãÕw|Ëì™ÑF‹°›AÞÕn"³G[q^þÅ„,|ÈAè4ê¬ÄcÊCÀf`¢½9S;hïlŽAÇ(LB¢úÚ·e4y²ú=…v”Þˆ‚–òC;II«ÑqÎn‚Ư¿Ä`úù§ð*¼æëg…VŽ ¢É\RV¬•¹ë… ÿ½ªh`£7t —…FÆØÈU¢-·vÀ·`ÆÞÆ$ö»L^”õc±ì1!šÖ€¾¦±ðýî.4ý_sµÈ}°ƒhõ<‰Hn ´Àµe7§e¨³ÓS[r[Ö6;y*#¿ZU,#oý!;ÎÉk`N/× )-$WF—-:·´“ãhf‚B±’÷Vb®²\šú+ °ã­QfÞ”¥Õ7)˜Å|Ñ•ÂNðÉ¡“Áµ‘°SÛ}×G4DöÅ=±=E7òz´5–â÷TŽp8ÀþæÍWûk†ó¯•κ •ZÙ¸‡ £XJ³ÑT[Á—U6õUžê™Jº,r»ƒ\®¨FÒ»…øEMlµœáAt§ItmŽrz;·s ótÎr³Óä[Õ‹|Á*Ó«ÔÛtÆ|P± "“>AIw™îËÿ†x]K °œ$‘VSU}Y¥I„F T%X°¯í‹ÀçÉOç)´ï<×®jÊTæ¨2S[s›ÛíM¼¿ÂÕßæþ3p_î+ÁÝ“ þ ü> stream xœUŽ» Ã0 D{MÁ ¢ÄŸ&Hd„´q‘*ë',™ ‚‡Þ{SSÝçØÏ­4È O©t+Æ åF®Æ£­ø¨YÁ«> stream xœµ™XT×Ö÷Ï80çØˆ2žê=Kb7öbïØ+Ò›©#F``fÖÌÐ{f(*XˆŠ5¶˜¨1Æ5ÛMŒ&F³nòÞoÏ&÷}soî÷<ï‹ÏãC9e¯µÿë¿~k€²êF Ñü•k'Œ77ÈkßÈÛ­¡—zY z?Ìú¢¾ïíC™¿–:윴e~ð‚…¡‹Â‡/‘.ݵ,Â-Ò}E”ÇÊhÏU^ŽÞ«}|×îXç·ÞCÀÆÀM£z;Îuü„‰“&O™:múŒ™½?|ÄÈž65„r¤†R«©™Ô0j õ>µ–ú€ZG §ÖS#¨ ÔHj#5ŠÚD¦6Só¨-Ô|j,µ•Z@£¶Q ©©EÔxj15ZB-¥&Q˨ÉÔrj µ‚šJ­¤¦Q«¨éT/*‰ ¤zS6Ô;”Õ—²¥ÄT?Š¥Þ¥úSv”=5€H ¢DCu§zzzRËH:(+J- (üW7µ°»°ÈJh•b…­­ïŠ4ô‡´”ÀÄ0Ÿw_ØÝØÃ­'ÕóD¯å½ ½?ê]n3Û&÷aï4ôÐ'°Ï×}Ø~hÛ,_ê—ÒïïìvöïÆ¾{¸ÿ„þoìÙ ígØ7`ô€¹œÔ>0tà“AŠAþ–Å å[I•äÎ{³[^;xÏzÈ¥¡y…M["˜Ð¿T'¨msòCÚV°)ùÊ̈…<%{´oµÙ#vƒŠ  ËÕ4 `‚Ve­êh¯¡&zK¨Á¨Uç¨5’è¿5ÑqzÎAìƒ+·”퇃p@jt5ºÂðØ u‘:»ìÜŒeçÛ&ºw_ÈÿÊßcÏ}šV Œ‰Pz¨‚!ÖhBÔ${tSQd„LŸ*—ภ/EŸ$ç€ÒíË i‡8í£˜žàÛÕnó %ô%+ AÞø{;¼‰îŒ_Ô ½JÖ¶®BƒÂ¼-áôÇŠœ}´¶ió–šÚÆšlO½äýëC ýÅOO¡ïYì¦â hšö#’ &2ãe ß­â’ðÐ÷f`0«ðæ=è˜DüjE›öœC‚‡ãñ:NŠ`Š@[&A»ébÈ”¥¦BB·ÅÁ»aóÑÑ`/~Šñ< »’t·â&4FÏÛ7‡l__FEwû‹Ÿ¡¹|/ö‡™•q5Sî"ÓîÛ%±=êV*ᘲþrœEgÓé1;õüåGÄ"ñ¨çØJ"~6Ü\"¤Œ²(Œ®>v¤ú0×ÎMÂÖ¸÷Âi^º¦`I\¨AG6'­ss¸û¼ø…°¾mPAw)ªKOÝDhâд­ÅÑÊ¡³Ýs‘Êû†ïsŽÅ‹ÿ}¤üi)í5ÞZü¬*ÞýÂG13d~÷}öbHž®@Ó}5£E,LƒT4,>Î?Ø ˜y«"õ¼r÷«ÛÍ“7’Z›Ejí¬ Õí AÑVmЄhÐM¶+ίDÍ(×:TŠÇ…ÏÃsÁöe£{D?ËõŸ*1 ’PÑYÀ(nJu(+Bc¡r}–0Q’Z·ŸíªJ~`—ݼ¾ôú~ñ ôú–EÝh,1ï¶Åć~7Ÿ}êMì‡ØoQî.ÚA™Û AãHÑ>ü:S* §PE$@T«/1äÕÖT»râóÀgIœ+ÙÑ÷H˜-&t¸#Ìõ4Ô äoµÍbÛ¿5‹²·¥R¯½I ¥ w–Š=òë%HuŸþ!§+ài»ýFsSPFgÀ½DhÖaŽlÃs2=?µÔ¶Îú Š2„Ò_üy¢¬>õN Ìg6ûzÌžæsúÛHN‘¯JÛ L<$GI° ɹéjui)§Ñ€¦¤ô Û!U‘3}øó/Ö$äIüj=³Ü²ˆo®Ë]’f@½±é>ê–>!@鳉10ù^*ùÉRv)JHˆç©»S^UîKvÏÆkÉ:ߢ J©Dü°6¤JþeÉAjJÔ¡Pÿ¾Å¦>ô­ï/Žå]`ó¥û=rɆ¬B šGïKKÿŒ˜Ž·j½2<`*øhͦSK?Òʼ%Ëiq ¶ÂâÄ exk=:F|aKÝÙ_OÀÃÿ­-ø×n81ìñ*<OÄnØ MÆ“ÐZ‰8öÜ6îù”ÔŠÌ€†ëP M× ~¹Œ•:ðÃX4Ô„‡¢¡"ÕŒÀ÷F¦2Òoq5ßyšÐpµêêEîtèzÚ!ÐË{ <.æ:îyÚc²è õ¡oãf4¹7¸ “ÈWá@ŒÚ 悯%ªÎ¢Çñ¸ÅÓqÕïÖ@ôói»{á:Ô[ôFll!jÅ…u1D™^ÚL äm7ŽäÞb'ÐhX®µ‰^˜”y„”B4þ¶\ð"zò¶Å󦥶´rèÛοÜÅD Eφñh 'Ž<«ªÏ36è·NôPˆ¤æøµ¹·8£9²Y$.O˜Õ™‘¾¥íŒL!›Å…˜×|‹¬xÜê\s=KaYs…¬Œ`”òqB~2ºÏf—¸¤&ý,\¹Sa°]ÝÑÏU¹á ‰ÊÔTÙû8Ë[¡Zy>®ÆÞ¸Jˆ¸Uë”á ê@KG£/@š]ž˜9§ØAº”<²°´®;:ò Õ>w…¥Ñ“¼OUcAhzDi«K™u Õ#ïæ.l‰%ØÒ›EW:¹ÅRšíO ´ZUPÙˆ„6oùj`œŒ|ŽEÄãfƒ«SL“"¹ÓP êÜ¢}§NfUÀ!h©ð2ºkׂ;x+w:ï ðòÛÎàSÖHxE %Ľ­‰«yèx®ÃÕ¾5·6”ˆŠdïÇ\]@v°£có5ô(øž«3‰|ãÉ#= “ü ãKDf@qÓ—Ü㥤°ï ùI¤ŒŽ©‹àm]G“FÚ±?&UQ4ýÝ*eJÂXe‡…HŸš£L#z66B)×±AѬëOH¬¾hT»À.%>ÎO/]´h9¤1ˆSZ–ŠcdQx„4>йÙçè…¦Ó§+ˆtV“^P÷¤Ñ`f¦MOâ æñ ;ÚÉ¢iwšg_PùÔsî y Ä3!%UF]qÍsö}Œû~ˆ)܇¿Âýž@ P‹zåäìñ"¹’Û9nY‚70b~ã¤hŠÄæÍˆN›|¯Š¯øFˆäm#ÙD½‚,ŽÁ³ßRƒ‚§a–±çˆ¦êàH© ƒ–J ß ¦‘ü·néñéD¯ö¹ ÍJËEª¶Þvêö«¢®VШýÂÂæŸCã[_ÑÕtðlQ€*9 µŸµ#ßO/h6 ód·ðï³Ù¹fë`ò“ ŠÃ×D2<ÅÚ Êø¹´u#ø áÚöÞ‰2PBŠ}\&ÙtWTŒ ×%â»\0C‚ê!êê=öQwi,ßç$»”FÃï>Gø_þ(q@ïlp5n0?cÈHÌbñ#YÙáÐC-ƒÊ¬°MÄ¢”Ens–ºšl ÛÒ¤8M0«Qs¶úP™ioÝ ¨‡æX“sn4YgÔ¦¤AUüŒ*!Šm›È&æ©Ô‘äET‹ A§*T•+Ô*ˆdÚKÿb'Šéôµ*MÎif— VeS™¥þ] -/‰B}U[•~à[5¾¢~ NÁ’ö9t‡æËÐ<½-™ /…ZDg…ÒÙ 4òža0/sð@O NÜÅ¢Z‘^ eÏ7<#ÕÇ|8 ÷•Í x5Š ·Í!$,ÍIÒ¤$*åIJÎwØØ [À£&¼1ð¸ $ꩱmšQ@8Ìå¥°Í =a‘+M†±ex1‹'cwHãðx´-C£Ñ$äÌáoñwìh<à;T€òÐ_Ü}€†.ÀÙ¸ÿmÚ‡tÆb¶hò½,½Y]zò@ˆæóóYÄÐß}òÉAm!$r ©QñÊ„ETVê*½ë6.œºq0‡éY·ð¿¢ñëHd¢;нFtÁ<>=D-/…(]fÑlê…¨o^ü8â;ü7 ~ý‡ý/xHŠYTÞ1N=¡I0x«BždžÔ±{9Z{æ^9‚rÛªÖˆëhÞõúV—3ýÅ¿ÊP(šËN†å•êÚBƒ$+¯¼j?0`xx°Ê?6T’”äA„Äx²åź}AMŠR`ž^¾|£1¦1´\Ò°§!½ÄK`x4y5ùœ”×s³øNUäÆË 1Y%‘/ð …­t,îiüm»¨‹[ëÖ—̨÷kÛë¯^ê/~Šò«Xüž9ÀϲåÄÈô]iªUŸÐT;ªïJÓÒÔô}ñOiü^¶6´,(@¬1UÊjIGj•šÚÆWÙž2†\D_\ÜHr ýÌÛ±¸Ÿie¡ç 8cåĹ›è#=žîœÁ©å ÏíÔÐvË$”¬R%$s¾k«Ý›&’IH8mÒàéÇçÝ –ä¦K¸͈ŸV&×$Wy—…ä‡bl™?mçœô#¹5'U ªœ$Pt‘N–12S­ÉÍä@­ÕÖ7í¸èóôî·DÝ$âkðbéi:’’3¤Ã}LJY²âñ¤õÕ²KæÍô6çeŒ9/7²Í óíœ8eyJ8ä‡p…iº¨dŒQº  ¨ˆM§‚N_?ñ1é«m㬪Ã*vî Û¹³"¬ºº¢¢šÌ\Þ$ë3ÊC£ Á€²¢,ƒ°m\Û ¶‰"±”t©4¥°†"ËeY*È œ!šØqC8Q“ög8Lþ½„&‹&<è!P°ÇÜ‰Æ JÒr‰ K< Ð¯O±Œßp‰Bš¯/ _¿-”:â]ÕPûUû•¿ÊKúâɃ›×A”}dtj$¹®Jý©¦Œ0bµªºã:o‚×q,F‹íTš” Â]iWÏæd]8Ö¬)3³çNE<¬ÔÄu4ŽRUŽ â!".!)Æ6v|ø?WR"QLÿ`k3™-†ÅCF}4Æ ÷0 µß÷/çÍÞ4ŒLèGO‘¨˜Óê ö3è]‡ÌýÌGµM¹|a›ÆçýÌRmâ$ÂKB´°mûG\-¦ß&ë¸ÆÒFÿà*æ•—µ &DضMØ&àï°•Õ_¨;.ÍÈþöè²UUBp)I!WÊñòö]vx¯‘Xf½êÓ`°œ^."¡m×®~ffB/ÛþÆ.32]‘Å IO/ mñ«>¤¶LÆGþ7Ï©ÿ·\3îC®óÛóíoÞžoéØú7y ,y&|3˜$°äôœ}f¦T¨È€Ë»ø¹JçGfe¹"‰$pT»»žÌǫҔd¬¬9FK[Ôáªqï¸ç4”Až~¡–´;à)¼L¥%¤£ý—×_‡´”q»årN¥4GÏ(¡ ­6óË ç%yæ³-“™’–"›>÷p¬p>P_Ri4ï“Tßf§컋²î yWt…Û)·}¿ÚþÃŒ"7p„y!îãü¥Ì†`nÚ„¦9f^‹8'à벃ß×^N¿ ·샯±ž°Úõƒì,#WÝn4Ô PðWBÔÒÖ­M8·rù$ð2ŸëÈ£ZL{!QvÂÎßÌ‘žî‡éOOPä6šin W¯~2Ù}…\w¼øûú%¸³'à…=M¸m°µÃ‡×mq}^“1Ê蛤•‚+ÿìDã`˜9ã£-³Ö¯”àõØOf©ÂìůxZT…æ‘y*%0ÙewlrÒRÒ2Ìë—V]%³æ°rÔã§óÛfd5õgôÑ“9/û‹1… WìÊ3WH†îL:5úƒ9Žsüô‘Õ&¾ú¨Är¦#—ò€i:) \â" ܶCªJR…)“!I•¬‚ÝŒ¸]&Ë„bî èNãâ‘xТ.®s‹?õ•Ô§˜ô°—iÖí ósÿt) ›ÇæÈ«áΊ›CË:Œ˜x7’á–$Ãh;ÙŒcÜ.sëm%ÈÕ Ç;[o'ì?xaÎo#¹ÏˆIT˜pñÙöÄâÁÄb…)øîÖ–ÐQ·Ñ =ê×öèóm&ù9¿mgQÏ/0µÍ5Æ×‡C›h¼.¹–ðÉ;Wçg(Ò“UJP¤H"·F,ØžéT–¤U’L3»!)F‚ÐQT©Ñf¤q¹E'¾V0lÏŠ*òÖxÂFü†ô<Ç0·0OïíĈ×þTKl0W]±¡¢"Úà盼}ÊåQÈJ"þ1?ÿ€ÄË‚ù!åwï'ûôy>Yö¨¿¸Ù¡oØ šhŸ†cÍòz.Öœ*bõE5Ùûκ|2÷ÃÉÔ"¿Á:Ä,xŠ„ßÿÜ'žørâöÅà½9bƒzâëì <+/ŒjÛPÂܬ}ñ¨è0¬4q%Þ°™ë6Øí踖E;eüg7§ ß?òÁük6Û\£e NaPæ§–2¡"?ìNJ[”}!?/3ã&ä“4zˆd1³°@ê7ôÃxŸäÍùða8”ãá¤ödÖ‰´ò‚ûÏw}~“˜†DƃáGÍŸ¿Mã·³ÛkR÷@1sî³æ«×.nš¿Ös›£/§e¿l<Ò —˜'O>Óa\”ƹىËMh 5N}¹fç”u# þyÉ+dýýÝ_d‡¼š¹È²˜œåû™án,zgvUdK ¬²w˜»iÆ”ùçïž©½øm‹ÅfªžÜ+燙ӿì ò|dV‹]eýi?tûšè š=ÁÜÁ¬êbSX¡4&0ÑsÉ ÷oK«AÈŸdé1ýÅÄõ[£œ]9wçp7˜Ëà¾ßDVœø×sÐÔ\~†Á}>fc`;\ˆj„£`¶©–²ÆÊ£{óë bÖí(vÎóO[Û™é;FMâ,6‹‚:–·ùŸV‹oþ óZœÍ5ßi{ÿu$qþŸþünñÓÈv!KÐqör‡ä$"p…Åøs¿¼˜jåWºúDºÔj.S«ÉÊ4£Ð:=ÂzÐ#­þ^pê{6ìkW躂œ 22iÔj50ˆKõOž¿b¥$!á÷lÝýõ ú±ÃÚ²7ët‚çg„èNf ¥k¢‹q_dëÖ hÞ^4½ƒúæwöºT­|÷„ÅX¼šÛŒ»%`!¸Ù¹¸÷Il}¿sY0iÚLÉïF1äÙÍHËÂMê½Y;¢w¦|¶yjª\ÊÒ(É#NãI€½ÏñÆ plß±TyZjFΣ/øSîê–‡„p”ßíŽI%]O&ä}éé!¿Þü±m"@ˆ~ÒrèOg|÷¬[í╚Âíl\— ÌÌl”ä?¤äý—':„äÈDoM?»ÓüÙ‘ªHPs*:ZatäêÐÊD2ò$Bƒiº“Í-Lö¤ÎÂd>]XvLÆÿòÿÁežŠ­©I°-Õ^|úO¹lÒZØ(.¼ÞM·˜±¸;´ÿ8 >ÿÈ-%MÍ,âŃ}ŸVÔ§UržÊÄ0ˆi^LI cÃõ°š¦ëÕzõ€^=¡—-Eý?»žendstream endobj 74 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 5255 >> stream xœX XS×¶>1prT {ß9­Ö¡u(ŽW­Zç ŠVÅYAQÂa S6a  a ƒRœ'©Ô[ƒÓ­¯Z«bk­UÛkïŠÝöõí0%ýÚ;äƒvöÎ>{¯õ¯ÿÿW”MJ ˆº¹»Or6ÿ˧áhÓ¾×®¶™vd'Dv6š¿¼5ÑöÐwйÁ”ù5gwðÂE¡’°ð¥‘QÛ—I½–GïpÛ¹Â{¥¯ßê]kƒÖo7~넉ž8Oš<%nê´é#fÎzwÔì9sǾGQ+©O¨w©UÔ(j5µ†r§ÖRïQë¨õÔj5žÚH-¤&P›¨EÔDj1õµ„r¦>¦–R.ÔÊ•šJ-§Ü¨Ô j6eG  æR©AÔ/rcú2ùÌw}Q?ª_h¿Ëý'ôϵÛm×1 x20oӠ̓m×~lïl/±ßgÝþCV8h¾¯?²jÈIv6{c踡džþ4¬Ùq‰cãm§‘N!N§MMÈmwƒÃ3#¸‡‰¿€Y¦!l#*ÙÁ- eTƒŠùc¸ÍÓ2‚)tq ªo ï ‹iñ±·öŸ>[¼’ÃQ;EëjÍë&X¯‹¥_n82›±yì’Jòì|a|f„j£Ðä ,ØO|Žm°ÍıØ‹ŸŽ‡>Ðçé÷àÀáíx;ßíö“o®^½~㊫óD·yóy²E‚Á”g4µKB“Ôt‡Õ ê èÔDE*—‘†2â$þú­Ú ˆÁ,Ùw8vÅË€ü…¡À<èx¼7 %$…£Ý¼â½Ya^ˆqžö3¼ï=ü¹ãÒù­³Šù¬˜=²zÄ4!Öü0,1À¸Ö/‰×]˜¥ìÅ g/ߺ°`ê¸Å®‹çø=:ÉáÑ6‡¶IjD ž=1 šüÃ;›=¢wñâguÅÞ¿‹îý¿Š.Ý™!“Ü ¸g„2£ð’ Øî•%|ÅyÝ;/†=‚·aLïc'‹Þœ`MòïE`ÛŠ0ƒû®Âƒ°Ðê&·:CWI¢ïnz›-G»üPŒ7RçU³šÄÌfÔx,ƃ¿{ú\;Þ\©ãqÀ&Q¬V! Ò%Õä aä ›è%ìêM3gÎwmüm»ñËÛÇæºpVø‚ FXòp˜øH`ûÝÅïa—VU˜ ­¦VxƆeÑËÝyñûD )»8܇î}Ö]Ü6Ë2‚bºÄ¢PËc!݃$‡ˆ7†‰_ÂiÈcó£²$9»³?V£LMcÃÓ¯ŠƒB³¸Ì˜=1 ÝI5ŠÌx K“+28O'’’[>Ó÷ƒW1ßÊyñ“–ä/ãÖ ÷ññwÞ²¦ðŽ„K-K+ EŒŠŒâßɤ>_“Ù¬æZ|ÏfèI²'7~u’¿DÿÀ¬. §ã× ?iæûO6 Ab¢Y˜a‰žqî |d7sjWõT“|>Âéô¸k¾7oÝ=ÒQ†t~þÊÈNé¶:11sÑ™j¾+¸‘ð0ÁdÑÅt‚­¶Ú»¿%fÕØûÇïgeaÝ«~#—XFÐß²J‘à‡#%VÑ·ží ¾»9É="…_ÙÌ*CÌMZSêC‘œ÷€{tg^Ç+»{Lš0ímä RôÇùô8cØMN,=„4ëÍ1M;· ‚*SˆÐ´€„³ÞêN}-çÔÓX€ocܶÕÿnEï=ëiá'ê]Z¤CNå¨îíÜ^ó 44¦¡i«ù :r‰0MJŠŽ#ûW¢r¾…ÞˆOÛ*é´š¸ãñ‡¢/§ú¡D‚ „ˆtÅÌ¥E1Jz=œ¶m¡ËªÈÃÑ´÷ã:TÏ_ÂÙáY±‘ÓA”•_f¨~”YœUÁdÒ9ë›qßìduLR£f”¥É®`z¢<ÉðÂàpÞ¸­ÜH¤#M}ÙŠÀ“ÊýˆÑW#JPìöÄœ¬dE××ÞÇïn…édU%úüæLåefj÷g¡|ÄüýLà"^|/Nǃ6޾ä²ëœ8²µåžh`HþU„ÂQäÎhß”Œ7¯}Z4èl¾—”:Z…P¿°0Üm?5)„dz Ú-Ø—ÛBy…¨¤‡ÒƘ'ƒ«I‚:ù«wô‚î]Nôè oã,[yÏüí®yB×|FvšJ¹‡éaA­i—‚„ÆÚ¤‹k{È¡¨–Ÿ?ú£—¶5ÝQêœé9äAúá±x0žf»Ãò.ôíM$ äÀ <È68¢§@úZž±£»t°í†X"¤Ž,¸þÑoTtŠlÚ‡´Õœ¸eû!"oY©/ŽÝŒ<¢w2x£ÍMѤ¥7ø 0B a”%¤è[­î<Ýðæ7rËÈdGïÍÍoä;Dð„p¢"¹%8Ed–©Á´Ï 8òð?ÔB¼+Î'%Z褤SË“tŠò‰ p¬þóêj a~ˆ2Ò eHfÆIv»ûfÄ*QfN*bª£Ë$!1Ñ¡Û÷íhyq  ³¹^OpÓaB“Xýn”"K̈Rp)qÒ-ó3}aû7'õ ‚·tPŸéW.¯BL•®´îæHäç­Ä™‚í¾Àïû¡´›'G¡Þ ho…j‚Ù#&[6Þ7iwÊnR£‰'¦€:C•X%ArĬ麯5òo䢀ÈîËÜëCo Ín½‚ݳãò‹¼sªdµBŠPq^^q–êkP©Ï2™oBé?ý°\Ô¨ëÆàÚ ¥É“B{«ûZ'€>íÐ/§X_$?ÈY“¨Iõ'$:™·Ôù{i¶½…ã:%ûñû?µ¢Ãµú:l‰Öx̘»håõŽïÛ¯¶_iYãnÁÑ“Vˆ$1YmºÁÆïÍ AÌÇV²a†ÞÑÏVÌo Τaù›ô"?²9Õ«³öó&Uµ¨wÅ;Öò¬ì–é¿\‚!Áy#T½š kX]9jzÙx(î?n 1(_ŽO<®6§>:9]ªà#6¬M FóмS²Læ%¶øæÅóíè j“ä¿ËôÚÀV#Ô’]ýà ‡#õØ »E†à#ø°.Ü`yE-æ°Îc§ ‰.þTüiôGmèZáñ¢‹ ê{è6jJ*qWo!OZÜТ„µ kB#'£^ª{RwËÏ AeòVÐx‚¾ó9ªçÒòw6i+5úK"Ù‡s·NåÖ±¨úKÜ6º‹ó:=[•ÅÈŒ6G_‚ùŸ¿[/9Ô]šõÀ…U7†‰ÿ™rXÄ®Ý~âìgGž9wx˺՞žëùI~lVÆþðÄ|{óFG}R]Œž×©«²‹2U!•ŠÄ”Vªë*¥ k6)wmåe…~å[3aѼéÛJýK¤¼S ²¤ˆ áȯX’?ß}Œ˜i¯VÀòªíëæèSj¹¸Ü퓳˜NFq(yO,JAñÅ ÅJ-Úƒ²÷g0Ð_fÇÌ;r´,¿±QËWkòÑMÄt€-šæ9oÛ˜î"츠Ó'MÁqÖÜ,5·¬ø¦”ÿ›®ã¿è9èNdl4€¿ùǘ$ãv£–— œ kÞ ¿=úÉæM«œù…4¸°k.7 C̃îá~^üßù#Z|êñpõ¨1¸"E íÈ•”éeûs¹êoûI£A|[’OÎð‰ FÇÏ^FyI•\|]¸N^Ø‹®»/ÀûÅr¾'ÐfÎvÙàVx±Åmx€•ç?iÁÏZüÒ”a£¨Žˆ®ˆÐë+*ô\Ou8œ¹ š«ÞWÍ›·@-«Où* MeÖoûdvð¦ìÚÜöÚ´ÃÊ2e©², ÛábÇN‹[¡*nÌçdWˆÅen<ê¸â{8¾ˆ÷:’;§Œ¿œU¶]íÝ„N8n9yú•LTqY…)Ún— Ž]6;5&(™ójZ«ö 6[8oöô¥Ç]¾ #6;[ù,¼8ÝReýI•õi5kz ƒ@dÛdeø'Zé§ãñ¶ðª ;®¦jy#ßdeY'Zµ*wé/o¸~`ëÕ“Ï~–í--H‰ºž2}Þ‡ÉVXúFŽY«ñ=+J[µ=g[¡¿ùÇÜ) L£ØŒú(˜€®œêЧ\¬ò0þõHs&îê`N;Ì%XT;I'T±0‚V7¡¦&?Ïã0’V£&??äÏá‘x„(žüëׄÔ<±/#éxä×D«Íu„y]$”b{lÑË® › )‹uÛ"‹OKLNEQLlILiãç açÏáAÞu’½ªÜÌ=¹œå"r¬ó¯ßé–‹PÇÿ:·»tY6òQ¨j´šœ…¦™ä –ó_§{Ïk†Ø ÈÙì…p§mª ð–úÔ‡6î¯nh0`|Ï&ãÿå3t¯Ãµ‚ ¦ñB“ÇëAl®&¡<¦,¶4*B—Âá¯~]¢)JvŠ.‰ÑVä–©zYFpÊHšv›5xÅ(†û`›1ß¼¬øƒ>`ó†«Ñá9®ÐÆÂhãó[7ÛßÃcðXWÜoNw1Ðð#IZ* Õ•îïu¤)ññ©œ÷ôõ Ò ™223’²Ô’òCªýG¹7³œE†Î¶Á¹»¢Ó ‚3·¡Î(üü›”œ’ŠäŒ¹±ààÛ®׈ºúpi0‡“è‹§¿¿}äàåÖãWЗ ؾâ~³gN÷Ñ'”ê*KõêÔ¢¤\®äø‰†óˆ¹÷ÅÖ)‹7­rqïúJ ö\"M¹ÃÑŽ•bÜAøü™IÙÖOõŸ¡sÌ­Ÿc¶[¼y‰µ\kÞ¬8¥ =‹kh¸nnÌ®òõŠõ ‰àB%¾«ÓbÚ͈2#‚;N??½tÕŠ5ËwÌ-<Êçä䪖©’j%᱓Ÿ­"„9ìëoŸpâgèú–‹.õæ2ŃëU‡‡ðÓ0ñ×&ÓßYM¬F–’š¢à‚‚CerRÅÉùq긢(Ý.‚‚eá1Q±»#P4#+‘i U9ª\®^_£)FD¹Šâ‹â´‘ûP-Òk*Kµ%u¨¬›½)ƒ©¯VP×’Vá~Hg“âˆÿbüó ä`ÊÍJF—Z’äÔËh¼¢÷*òvqÁtJUÆE1øÃ7 øÑÿ(ê rë}à 0èZÇ:#(Iÿ õ&'Öy*¼"X ‹Å]DËEÑ(¼±,;§ «mf‡ÔPª5Ü~ ,?ýµ£–àçxT-#þ¿³°S´7í”\³!195Å1ᥑµº*uóî7p¿®¹Ó"‰Œóá>qË>BóQ˜ S0;i·Y]°îStD¥öš•ùÏ7“³~ýBÇû“™fâ|~žÕ¡ù*óyPQrab.~ÞŽòüôÌ$ÄȤñáRò®‚‡ƒØ“ßEç!ÃËã5ùY™ùÅfÀÌÔ½#*4ßüåêZ•(²£Õxðý­à„À½Ø< ÿFS˜›J˜¼Tmèn¼ ;â|Üÿø¤¦ÜÙ·×T!¦&G›Ç[6û”HÚ+¸È"è¿õ±ß©u7絆!F’•[¨ÈIça”ài¤‹ãƒyü–s,AŠe’UQÕu°TT>7ëgl×ÙõCvý‘Eý?¶‰eendstream endobj 75 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 221 >> stream xœÒ-ÿCMR8‹vøzù-‹ ‹ ›÷T¾»¸3ˆøˆø§v©Ô÷÷±òÅ¥Õñ÷bó÷‘÷âÚ½Q"ûDfVT@ŸÀh¯¤¢¬«t¢kpozc,ñM÷÷èçïÞI×%¡Ú§ÆÏ‹ÛÛ1Ä# :Q?f¤{¥ªŸ¡¨°k™uŒµÂØŽ‹¥×ƒ$Ena}{mlt‰N‡xŠƒŠ‹~}”‹œ 7Ÿ ‹ ‹ ‹ aOU¡endstream endobj 76 0 obj << /Filter /FlateDecode /Length 4009 >> stream xœí[KoǾ/ü#ö8hÇý~8‡@~ÄŽa ˆÄØì X‘ɘäÊ¢$ƒ§üõTuõ£zvfEɆáC ƒš3=ÝÕÕU_}UÝûóZŒr-ð_þÿôf¥F׿¬ÄúË•“r´R­½ur n}³òQŒÁÔ׫g«àåèƒ\{gĨtªO‚Œ£³©—UAÖ°^õ ï¥M`Zkôˆc±‹X!†ÑÛ&Uþ› åt‹L¨ ý„ì„j½Ê“®WªNWdbó‰õÅêç•Lª\çÿNoÖŸž¬>~ªâ:ŽÑ)·>y±"5˵5H«~”Ê®OnV? f³Uð‡>ÝlAKB5<Þ=üó‹ ü…ÏðBÇáoØ1¥âðøÉf«µc ðBŒQÈ ‡'Å>>†Ü€£xÍ𔚞K颞|†/dtÂ`hÛ裎ÿ:ùz:‰Z…õÉ7«“?ý0<iÝhCðÃ9v4B8†×åG´~ÙÀ{”îÞŸÃd6¸(Õp  ©á.­8Fcôp=¼P"Äaÿ>BHè~µAÉLÀ¡3ìh.p;‚:†]z•ˆr8k#_ãW NÔÛ¦ºÛ¦P6Ä)“"çb쟓üÖÁ²_Ñ,ØœL^¦yD=Àœ@/ ‡PQ™a‘‰ZèÀŸ_¶©ƒíòY~ÁJˆh|Ö†”ÆN†ÀÅ8!¡Y”tÕTpGƒijÖE½I}••¿„mõ0-U+íPÜœަᜂïhd©MÞÁl]û*3‰ñ|ƒV¤…ÁÁ NÎÀæÏÙg¯ « F9Gª ÓvôÇ\zGº‚hk9(s‹¿E01Â+®WŽÚhà°¸ 6ЕlB˜a[›[b¬"öCŽλ‹ÛM…äýÔ¤²ÊÐ^€Z0££ñ1£ví¼gB^&äÀYT ½1 ¼HŸ‚â¶óÔ™ÕÝQ_^•Ìg ñ(EEÈG4ŠÇ4á6y ;²2`S½gí±‹Û ‹ÚÁ2ã½ØÀ,˜†GH› ìí¾ÈÑK½§í–JAÈòá v{Œ/›JÆÒÝ'Œ…^¶¥Ÿ÷¶T-ˆé7ÚžIZ£É"a !²etDnq9RÇÈ-ì–†°àq=žà€ïdvä ¢¦5´Ùd™¾ÕHsK­ý Ì+‰Í¸Ne•'_I³A¸1¸6T¼0^Uϰ¹ L iFšÒ€)ƒÚÌ +>ÄâåŸôêã§Z²ÎàÅ@½t~¶‘ càॵ¯­Ÿj몶nk뢶þ][m¼ÓÚº¬­ÝÌx¯jë|æÙññö3ßÞÎÌqqtY[±¶ kͨ\Ú0FUÙpgÂÐwcÞŨµ=ˆxJ€3üÔЄ¡ÆæKŒ©Ä$Ù+¸¦$6 iS62f™'ÐøZÂøF`Hu´3pYï<sÅ/ÑDgˆ[BEÞ}ÛrãÓF ŽÐµïá4Ý8Tbï’7^ÌR¸û,¤ÕÏ9$Ò`–çã§›D%¬ïøÃUƒ&Ï‚&@o —³Á,$4eŽD_KY£æuNã¾ ÿÝœüg…Õö,1Û:ÅÃ"ž”‰‰ˆR˜„ìÛ}¬†96[#ãÉB$Û)ó}Æ‚r^^Z57VÀ© ¨V½g>ÐÎNsÆ~*¢¥ã{0£2œXÈ Ú$2ÅT¼€¸S.Ë_˜¨=‹)2yQ0á ÓÝeõœ&Ô‰^}0¦ÕN: gä(Ñwá½QGŽäŸ>hÝ1N¶:ŽD´Rèâ§„#7¯Í–0Œ9 ñ­¦iÊG¨ÔËS–F,:2‚…JÞƒ˜d<·w‡cºaös“\S©ùDâ}_’ƒ"7¤«–V\CUÈÐɾd><™Êò3µ4@hƒ6«†™ÂÄîP@d‚,ø\5^Ééá}{üIVØd¹´MÃ!hT)Iˆy)á/äpãà›ž‘E*†’£"0×®ZÃ1 :‚`vpyÌ~)0_°jF¼ ¤XK­¡p?~Ó3wKóƒTH.€äªQ‚^é:P½lÄ óN&,ï¼oͼæ´6%O Ïè±ë-LKí|&‡1¥îËøI#áaŒN{ï¬lÝÑtWÓc[ž üüíÔÔ(}ã+Dœ 'AFÌz d “ @ŸÏ¹Ý ¥»¡ƒw3ßÞ%"·&=:çs´3þ·àÁs Ñ$í…!~ó¦…IE#ÿåûW¤ŒbÖðÏåSj™#Og 9qF,m³T6ë8$§ Ç„o>Ù3¢ÐãqX ˜‡×ÂúÈ ¡=Ò8M›Â)N?Ý·8™Þ«ˆš+Ç× “ô–â=D^ ¬Åh8*‹¼aˆ!ÉkQZYµÄ}oÈÂD£Á"o@£™ªd$•2­O2†ÑZí𸉴-“z¬¬tu+šÏ¦¢¼£¨ñys•–g1Œèü(g§²—ܼëâæ”m§‹Ø³rÙþ‚ûÈ] G¯³ô°¾…tíe>øtTü­ëîÀ #Xÿòt\‘V¦¸f8`óz,„Q¡ÂSBB58`§¶‡ÛF¢`Í©~ ÞûX¢È¯:°(cõ T´¦iÕÅ^X-»Ý0–vÞRzL5€ ¸EŸÂ”§»êkýn 3A˜Íình<- 'e3µ8©°Äâ~ä¢Úa¹íal5%hø¯^´§û7-ãœé,åÒqá¼Õ3$@7ÅÕÂÐKÆMŠLg5,Ía‡ƒýᎆnj¥)ìbEïU;ÔÌYŒ}z;|Ùe|¼Q³d‚—±ˆ)ÀÐ)“8¬õ€`AMk=Ù,ÉРÝÕù&Ä?rÄuNAÖôUáêM}q–zv¥Y=öþv´&¬åaMmì\Òén^Ù5_ðc<Û®Õè\üÖ³Eaƒ™ùCk´šÙÿÖ5áïgèûÝQª~;3Ûñ*­åàˆpï®Ò‚¹€vܱ*í»Î%•JLizâƒ>óqFìú 1ª׈}M+X5¾´@’} ‹|ÉêQ:7InºÊ.ÅLcœìÛ<”w/§E©Ð²-‡3)¥°– ´hlѽ6}''ZCUÛïÑ5š¥ói¡M‘?áXà]Â ÜØRº€¤FCÕ:,K^ ¦2 µ.o{½YѶÝÒ¸ ¹JC«pt±çˆÈÎ9{ÈÂu”Ý–ó°Ë’²ù‹¥èÂU•£|¤T¯³Ð|BÆHã¾ÝH[ „_t¦ZW .ûE§ñ€è6KY@i&qg5…ÎÛTœŽ-ª¡úºÇü¢Ö×Q].J#×üÝLî´×-yè³@”ÆOjS`_bjlÇàWB*„\ƒ‘¿cù£°Àÿ—?þ8å×Ê(ÿñË¡åÁÚ%y¥]Ú©¸¿KiA»Ã¬¼/-” ø.-xÃ!æJ ¥¶®ç›·tTlÑllªûÊdw¼&±£[‚j:˜€Ñ`—OX´L|m=€.H8mbI8¼óÊïæ°¬ÝlšüˆfF ?¯âðÚ½Ý5V°Ï²àIåÁý¡RÃ/ëù¨~ƽ†UÞæ…9¨Þyên/²ðž×iâ‘r@’/ñZÃË*­û"^Áð"´£‚Ëìnè¾ZsºŽ•¾'‡9Ûò}ïÚSZœí á¬XÊú° ƒö½Ûù¬yr«åÔu™ˆ§ »;ÓŠQ¦?Qg0ƒtñËëT왇Ϸt×ç—,%Ü¿lŸ±‹=¿O˜.ûíò~~ïÃÐÓé?» ºpœ}™—|ìº& fðŠ.;ï.ñ›d¤Ër™ò`äýsöÝŽ®îj<]W[ì<‚@¯ôè‘{ùGó¥ÕÁYBeDvtj ‘. lai(Ã!;ÿeÐ0)Îh ü]CŸJ¤Ç˜ ~Ùp¡Âƒ—ãPz<´f?4yÕHÀÂNóSáÛ&HŸt)ü™¦ß—äxÂjQ³×ñf³õ±zñ¾'ÐY÷þ ”–T ‡Ç¬~¶„qìÆ[ʧ VYfºcµÐí¦dE݅аgôðKÍ®Y™åšºx:JÝ.ßò†´ÒÿýÐ[Þ5ó„ – ŸÓCÍC®åsÝuˆX!è´ëƆ¥sdê`†Î¿cþ¢ø4W×éÆWÖ´]þá [V]-“Œ½œ9µÒût{4÷س"çU¢ÒÓëì9$ðï+zìÊaE±µ”wHë[\Ø\ÞKƒÈCð­çì[~Ùfk"îþòíëéÍY§Ó£~2 õ9_º¥ïðÞÚ京3ÉAO1{õÈuY§Ó úû²&‹¤ú›Èìì¶Ü×0‚pƒÃiŒÐSkq&ýÂd9Ô¡ØýÔ>;ÝŸzM=zй/ÐU[¾­‰'âñ4÷¦[éOå±€ZÛ‡a´fútßzRÞåžçÂÏy–yJ!†T"lìØÚ‹ ýYF ý¥œ7ÙùÂÎû&Sü7Z8îîü]¯Þ½ù=.ªrñß8Ôe,”§&Ä?ÀKn ¾Î•®Žô÷Ó¿+•7¹I\dîL†‡äçת¹Û=_œ¬þÿþ¯!âÛendstream endobj 77 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 3640 >> stream xœ­WiXSçºÝ1·JQÁ}4Ç>{סŠã©ÕëP«Õz9NU°ˆµÌŠ ™Ã’¼IÈ Dæ “ ‚€E-ŠSÕ:^½UjO­z{¼çª=_âÇ»ƒö¶çi´çžäOžäÙ_Þo­õ®w½ÂcÁápF®Ù´mý‚wÜ'™å ó/.xy”¼é³ÇÍolï8ÂýbV ?Œ_#J8˜˜´!%<"-rSÔž€è}1qûçÍ_ðîÂ¥1• ¦Ätb ±•ØFl'vsˆÄ‡ÄbñïÄ|Ÿø3ñ±ŽXOl 6› ob,áCø>ñ[áAØ9[9ÏG¬ÑÏs‘GšÇSÏbÞxwFf£ÉžQÌ(×èÖ1ü1©^|¯ËoD½qÓûâXîØicËÇ…Ž÷ŸïTz»Äà@»Îuåœ3®7¸hò¤Â>ËÛ§’¨Õé &•š3]uºjp@ƒ²z½¦é‹Àf–LÃ(4ÑZöû½¥ ôò™„RyfüžgÊÁì0I6¤f[@G·@›®š YÙè~Ø`²"ˆƒ”¦jæâ©íjøbÈ“+$dæR‡ð]O¼‡çí<#±;çÙ9(zmà¢t´†ÒÛ z{Ñ Ð”ÖWvÞ¼ä1mHò¦P<&3’ÉŠQæ@2ZÝý¨ÍÒÊ@žªŒÎÁ¿Ä}3Ñ÷‘“rQÍF8 $Í»_¸6nñÊ·1Á“xHC!ïš_ÃmòZàÌ¡ñžXÂg›£Ò• ÊËdðä¡6Oß¿ÅȲµ“‡.€Ýã¡©h$ùüÞº®5 ~ ß¡ð8^èŒ]¡ÆÀ\Ežhï‘áßÌ^> `¼¦×ˆŽ¸Š,W¹NrPO¯,Âã0…§âÓÏoº‡Æ!Š=x& ¸œŠÚë¸Ö[¸ '™–îú#@öÔ††%M0Âm;Cvéí Mr¸æ98hö®ë„k¥É× ŸÔªMRU.HrèV‡]ÙR |8 g㥟Žh„8(¶»P ¹ 9È”ÌN¼߸È% O£©çªÐ‚»hsù»ïºnùCóœEr dÜ´˜ušÒ|š½Þá@s‡oå ø‚û-ž@ÉâdÊ(5™Ã*P®Ï525¬|k¡•Ža²òµH!s' Æêü¦Í0¦WE||¶ž1ÈÍú{@OÀ®°è!“ÝbIø ªP€XÏœI¤Lç³ðcA¸nd²Âüw¹E:hÒitZËÃ2IºrÇÊÖ<ë>™Q;¥Ñu"êkÐC-”gî“(Kf¤V—9Š|¶Áûçèà$1-鋲Åþ“­7Ö™´,bs%öÏï¢ù—{í>·å§‘Ï绯Oô}‰SǤRØN D˧'mÑŸÓ'ôp´¤-«(91>=dsô—hv+òîz°¢,¢€öý!ÞmêøceÅå»5-Ò(3-È“‰@JJ é•¥Õ–Ž®ˆ#ëñ¨ˆ9A´ïKXy1³VAz£AV…|ZS΢}–‹ŠœÓ©A^©™¥%ÄÌr^ òË/-èùézi‚4™mà(¼Ðs1/ýGõßå­Ámê¼<1dòƒG~ö·¯Û=Ôi2:í“ÈU)‚ª#”kYÈ¿–þŸЂ®³Ð9™Ò4zБf™5e¿\(SÑâÎÜ4PådñSã…ûC É9vxàð·U—S…¾ldo¬#lþ>ì§x»¶8Ÿ69jžôi6+”Š2£˜þVC¹¨_x²¯±¾¾’.ÛÞ¡°A TTYe­–~ÐáRÕê$¹5õ£ @Mñ¥Ú“ìÿêÌtp?ã:Yÿ0ÖM@ZYˆ :ÃJ@!°[êV´[éèXx¥`†2•]iRCä¹í“C{'¥®úØDÀ¾*Y»V­#­öƪꔢde ¬\{2òÂãïn>´3Þ®¹¯qZ0€æ A×9½OÉãÕÉIJâ–îð‡E'«o8¾¢6½õ7bŒß„ ‚SLõÁ†øNe)ÛMEõ'¬{ÛDgà,m¯ÿ²þò4úȦl‡01!11Ë(7ÈéÊ:$C¤`jzDR âS ƒÅíG 4•æcÌQô¾Á^Øù|7‹B¹ˆeñ•ÍM.WÙ}q}00Ñ÷6úŸ3”yWKrÓo¦á2ªú™ò˜\5íÛÙ‘*(LÆ\<ÏÅ3wùßd|o7Ã±Š¶ò$2R»ñ™`Ó{Û€¿[v¦¾×F•eªºzÛÙAU®Rçª,ÅaÃ(£½G9häçHôv- ÜîÀVåæX)U«•´Ÿ,[-QC*_RÅÝZ¹T©Ì5í7Ĩ•ÒØÃ_rtíuäF¡Ùh¦Û´öÄ$ bhå7•[qóXASâ1ÆJÐZËëÚZ[͘¼i8ÜÚw·Ëîœ^.±û<XOOôý¹ª©=xÙêÐ` ?ÉlÕk4£†qè-5PBVˆÍiÙQŠ­Aí1§ž?|ö´Šþ«“Ö´lGñÞQÇ=}ÿK( œüÿm&ÖmºÀQYTDã‡Zït¾eáƒ\çZçT°‚•¸Š›Å‡j*í­=a-œl~gÖƒ&Üûo«^f–å©ÕR½zÞ»yé@nOèìï«yQÝÍ4_ìmêdû§Se ½_N‡‹ãà\zù>÷åx§“25˜Lç¬(0é žÀK%HÒð£¡s“¶:ûUvdgÿ×fø„!KæÖ=Ù!*¾L¢NË1(L=4êî6x=—Ødd‘k²™µªj°‚ ù%ˆï¬¤á =Ó¦ƒÜ ü"Ð fç(‡ýO:/‹ac›ŸÜiÓGØ¼Õ íÊ÷©FwÞ’CÊ0hÀ˜oý¿0,¾áþà:OþñmÁYQM8{ÓŸµA󱊞6æ··˜ÕPÉV²³zóòm@þ¢YLpH]_(.B*(Õy*ÅkÒEv´œewå¶r‘ ‰©zøB×m»ÓÁHví=²q*ž6û/è^üä×ß ùòHka§±†1Ø©´ô™®ȶC¢˜)xIJhLªv-©æ ¿o{¹®:g …–¾ý=öÁá8Kqžóø-ô&Úö¢$¤ ‡f}D½³õ+4¦«½uy3}^ä\ À\ù;Þa6`Ü݆Ãí–ÛíNo;kQ}÷E—'ú¾@û¨ä%ÙÁŠäø~äîHÖ¾³ Dær“¥JÉ¢Û´¸Ì¨È–´û/n]ºe£ǹ!ßÊ:Tþ°Ce'Ê„y´ï“ºLQmØdìGb?ŒfçÓ¾Éu&RU)¦ÌdQJ|B¹¬¸¼ÖVÇÅB颎rŸý ŽbEŸ›üÍ{»[ËkªŠèÒ¦â l\q_'W¹JZžîŸüŸZÊÛÕÿÓÒ´yíøÇ½©´–ŠºÞŽþ+@vÁÎ ‘\¨Êa¥Yô‹]¦ -zõ ÿýótÝßR¾Û?84t?-»d Øóé¿`ñB.pšó52pÑç(€²±9ZgÑ vv q‡JñR@yY*Enª;Z› Ì­øƒ<‡‹ÎSvqE¼ vì²ôêFÇázw‡3Þ8ågˆ‹ú‘>“"_¡P«3²é•ÓýåBe®›Ât’]wó­=†¦ã4=$” dÒÀ—½Ê¬fÈg: S×Ç KylØ™_í!bFÆË‚tM–&I§Ð@1´š|Ö&LIWvda·I–ÍeõÈËŽ¦}ÉEsoP½__ow”¡ùžD‘h䊓+°ß2²!ÅÖyç(òj-ËiÊRäæ*T Ò¨hCv~d“½S6gKõµo¢@äÝ~\´¿½h‰_ " ?ä¿DâÏ®ünì-Z-Ûµ¦Ú²æzv@Õ¦T¥W§9’ÚØvdúÐüÚÓÅyLfDÔºuQ&q~´)ª $£R©‡ë·?¿‹&;αNbç/—-ïúMôó¦þ‡p‹Üг™1uñ>›°¥¥«©×&qd»o®Ô¨t Z£6fA#ˆ¦(lew>þ¾¥;mXŠñ27ÁIµ®±Uœï{ÏŸB+ÏX;¹Î)hˆzÚÝ n·6õÇ#fNŸ]_˜Edug$^ù~ê,!—\Ýá.ˆt¯à 9 )5´ÂÕ˜XNNû†J³JíPI^ºyévß‘Ø-Sñøµ¬^4l˜-Ó¨ª¤C©ìË.ÿÓÆÐŽ ×Ï|óô8íMöXRî5 ¼Fƒ×ðò!ˆÿ_–;endstream endobj 78 0 obj << /Filter /FlateDecode /Length 5725 >> stream xœµÜ,Q¨Œ†îF‚@R "j n¾CÉ%m23äq%DÏ :½¶:£ŠÜýØëj3òð9Þ†e@+# &#Èk÷X^¼Í{³Ã¹R¿ŸŒixˆÐímzÔ,œr%®tÑÇ&K5w:»•Þ {{8î½1¥mÄáat“ÐeïÃ*…Å Ÿ€7ÜY§ˆ9œå=I|A ý_ÛOcèïß$†ôµ#€ŒÕÄÑIÍ诂Š/¸U\/tá(~ÆŒªÛfì¸ßÎÉ]R{mýë÷•ÓÆ½YÐŒ=ºDç¸pVlp)¢èÆÓ§¹ì€–טò¼ˆ?3óHVÌ,¦{U~¿#ÇwT¨Q. QIú‘œ5}ôY`…QÛÙ݈H•ÝŸ–>à&}@3=¡¡Gnô¤,ú`K^ø¦h7ÚÙhÞe$„“áD 1¾*áÔn-Eš!ˆë`§A¢½âc¬&Ïò±Fª]øãÄÅ™^Çxâzx#é” i¸»Üñ*‘C|_ ᣔYéA'§ S$è´ {…§DÂo©MÓR› U ±4(Íã bÇSr¦r3#šÿÀáÃk(?Ì/¿*8ïåì)Æ£LÇ™îCÙ©¯Ë„Ú…UÑàd)‚üÃRÃÉEÏû_–«Á9à]ò`y:/?ÿ&®ÊàyÓ˜U~zSfêòøÏ|4MíËà¯Ë£iƒJƒc¨=(óå@õ úc½&˯òàm~Úä§m~ºkŒ=ÿÆ-ÛÂã_ÿ7?=4~=4~eÛûc~ºÉOûüôs~j·k ð×üôØ@æºñT~½ÏOE(<“©gEòµ´·ÆÖl,ümyü*ÿþŽDÀ8б:kŸÇ ²_1lIM¦·¥š9oÌRn³±Ýû—8¡-´ ¯ž%ÿ‹‰C ‰¶"bgJr‡x2Ú”*`\Ù¼’šûƼ· ©|hÌÛ3²ZÄ”ý½k<Ý7à|l¬RX»n`Sv•íK9ꓟ£ ›+ôÀç¿cÅ@ÿ½ qаo9ý>S:hÎmš3_QNHïü½/]\0þ³‹ gíгèZ«L¡ÇÎݶ²¹iÄw %‚7 Ï”}ìÑ‘WFø~—,©ƒ®ºwà'}`XÊÒsþ*vþ™)B€°‰9v<»µ&5˜‡Æˆ–Y Y¤¸Î¨ÇÐVÛ¾™1y(¢Ï½Îï÷)³I‹m8¾9YÂvÜÝ$9R¡pâ™'Æ·MúYå}HákQAèúž±ÚãeÌÁk²í_D#Ô¨]zî´¦ÙÒÞ‘ÿ«!âœlCD±òQeù(G›ÑNFlÒ}Ï"º² 9Ï]gjB €´³W›Ó‹*Ýú›0‚ºù,,«zeÁùXö‘I‹¥c®r¦ÇÀ–bhÌ\¸ªÚ—%§Ô™ >je¦±! 9h5óAhÎŽ±Äh ßëã”Pæµ¹@•Õ†2J0Ö)•Êu­d_9j ôÛ&7ÎcL«;;™$HGE—œó«CY’šJfËQÂÀ±ÇÀ1žâ(WWE÷U?)àä3L`Q  ~<’RÚ/¹G9ˆDKŒx`ér}8Ú%Z @ÈÃ(2dz˰•VAá­w—†Ý\.ì]p† ”g•]»ß$ ‘KÄc±Sq‚•Œöh$XÍ/¢nÂŒQ ñÛ])š:+"¤5D pÜ-×–G]š@4‘X,sœ@¤Î ¦Å¥ WiP«à!ï{^•¥,8@Ú ièts\à ÃÛÛÊjW]R9Ò1Œ›"?'*cVM” c:Í/cËÌÌzYQ–_M0– a]! uÝ™4Ýúmá"Ë2¢K¾vÍO/áÌÀžOÅÝÚ07‚åC¯Y6œípÞ¸ZÞ~:Êß]¶¥±í¯× 6€êË+ÞcÁ÷¶Þ ÏSü0NìÜB§'kD™ƒm¡È´#ˆÁ×¥TkGJ>2éÙïd8Ù›²T û9 ¼“úºY b%ýÚ ¬eõ™Ò÷@ÕQe>BcÎé!"§&²NH­uvÆïåWÒoÁNN‚î¶ÍßF3Åy›“6jtItOûç•ë“…ˆ»â ÔÚ©´è<_Л&5_ЛÍRƒ;3t²UÎg«{ bCQОߑÜÌïaÃl¶¡ÏƒŠ°ŠƒbÛu`S/6ØÌÃÄ—)šÛb£±¹ËyôéE[Æ-×J¸̪T-2é£x Ðü3Ѣ鸹fïÿªˆ³0Í$ši™lf›µÔrvƒ›c*Ùd”öð™*_‘GR“³v Œ¶q\|KKÓ8ɼˆm_ ?}vyk]W5{…¹ÏÔ {PÂÈNrð>€ëèØ³^&_o›¶\ÚÆ,–qœ}Q#ê=௩Çpö}h" 0Á"pëÇ#*D&Td¯ †Ì–²MYá¼¢=jøº{ y«=ÆÎî]1ŒîªµiÁ¶²gçeàBü,mž°)§/ñTYÑó {kšÚHÅùR!5„XX9ΑÉeó®ðµxa1Ö ïK+_»NQ€\§,L²Ãë¸MŒËïOK wð”™âZˆzk}3§ ¹œŽšÚœ˜û8V\`EµRPFÔ?_DeUz• ì6¬€“9üðvÂm9>/zÍG¬…eÀÑ:n[&/; ™›ÍR2¤É–÷ØKØYa^EØwS‰¹¸þz/ü.õðAÇNQëd[øIáfÀŸkN eùéÍ ¡¸\²‘¼Íï&L°Ô`“êÛ•‹™MÓ±Zçgñ1m×ÏEë»™Ž¶q|•Ð â´ÒÑÇÄpûû˜ÏWÌs¡ü/óuÛRp9gÅšçKå‚R«JûR‘©QêiÞZEá뺪SuÙ²ÒYÁçmŸVí™áSê—ÿÞ˜XžX ’½]8Þªuµ˜ÂÊU_5‹p…¥¸v×¼U=-/_|1æÏ3ã6Œ†šü?ëÛÖ­ lÖt¿M¹x(‹Iò„‰Ðãw þ>5Zãî§ WÜv¶fÏÒ2¼!»Ý±%r†Ø;Jì), ƒÔjè`’¤·Š”tKCñ¶k†ƒˆ ùrë"©4÷Ó/*%#87;Vôhã[Èfæ?Ü2¢+ilæ¯Àž:I:•ÅXklÕ¡OÆzæfÌ%ÛUVzËl>êPe'8÷ʸ_‰M³#¶» àŠä’;±Œp”IÙ(”bbr~t`Õíb¶‰ïgVB/̘`é’O׿¾v…00HŸÏ"nV‰ôïú0#D«eî}º!ǪH%Šª×uâpu3, ×c®¦ \¥¯k˜qãh­Hä—Š2gU˜ªrùÅ0CGzð,p7’¬Î7äÆyÒÁŒÎ?i´ú¨G÷1d A]Hrª«væøº„7ýBF=+€ œ7 ÞŸ¾f¢#øÚÌuˆÚ@ëëH‰–УTÍE#]Spš5x"„ÉÏ R ʪ¯gí¥',â;9ê ù‹V}8‹iôOË3ðr»ñÖ„ÁO[IwBäŸnC°;Ê> '­·Gþe©¸S †±ìþ]ŠdEÏêlÃXœÚöÖ¯úë8ÜÁ ÝlëçËÕ¾úc)DsýQ£˜±ˆèÈ&ÑUÍÐ`>æäÄk\VÆ•˜A.nê¾  òì¸sutìÖ(¥‡BgU¶O‰&ËëØúl€€’Ve9®˜  ?¿ö;?E6 *?ž3úBÌŽ5„T7^q Þå®2>Ù{œ)¾x¾›xÐÍíASÛl'㇠ŠaýÒ(˜i·›Ý‡÷'¯‰u¯ÊáãT¥QIý\5‚gPع;JëÞ߸%óÙÐð¢,Jì¾)ßd)÷Aêè(þ*í8ËŸR—Æ÷݈*žÂ•¡;Ê0&%ޱUlžR˜Ox'Uc3M˜D*‰—ÏgŒ]Rý ·D,Wðär¿» t`6ß7Æ,"÷ÙrÊi€`ð%5Žb€¼×¸Œ¼eÔÊ_Öæ®dåˆý¢%*~ ƒb‘à¦ôMa¶ô ±1Ëa E‘©º)§|šgcš´¤TÓ e RþÝ”¦ÈÓ|”Ç™Ÿ÷ŒX|!u‘r¨†¾3çøh»™Ëæ¨é†>&Ú ‰êûa/—\ø§vd>?yaKëץəëÊŒ7V< "#cèÛwG]ž/Uçë?ÒQ’ 3NCfÑ3y ÄÌÉÆúè•kkãgIúŒ¿à;IzMÆp¡+AS$y&ìÙÕ±ÛqW?åƒ1{fÿC ‘Mѳ¿â2Šâ™ÄóÙa©¾7bv³?éÚt0¿¾ÎíGö5íÂá5ù±œgºädaØg “R2Z™:‹TU–ŠÞ,9ñÃ.ãçäB•~î;i•ÚòÆavé ör#-/á…ç:Y˜òµ ,¾;;ùøóÿ/¨ø{endstream endobj 79 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 5343 >> stream xœ•YiXg¶®ª¨(jB[Э¦KÁq¢Æ}Ç \XWPpQMÖî¦ákš^Ø·V1**C#ã‚û¾btÔ‰f3ÞDg4jNå~Ì}î×Ý@·3Þyžë~TŸúê,ïyÏ{>E”c7J$õñ‹Ú¼&n›oô–Ã"ÖÇù¯Ùe~Χb¿ßÿîH«EÈÙ9;V÷ÿô.Pù ôí}ýcÊüÏËkË’è™1³¶Î޳Í{»OÜÜøÕ k$®õM ÷‹ð_·>2(jaðÆM‹6/^6ìaÃWüqÄÈQ_Ž3vÜø ‡Lž2Ôƒ¢QþÔ*€LRC¨ êsj!åNSC©ʃZDyR‹©T(5“N-¥fQ¤–Q³©/¨9ÔÊ›ò¡æR_Ró¨ÑÔjåK£ü¨ñÔdÊ™êIM¥zQÓ¨ÞÔ'” %¦úPåJ¹QJJõ¥úQ õ)%£>¢ºS3H(G*Nä(*=é–Ú­Ýa“ÃsÇdÇ_èhf óÊ)†¥Ø-ìÑØÊºë^Þý=Võxî¼Þ¹©§{OÔSèåÝ«µ÷ìÞm\õIÊ'Ï\VºT¸¼—Šÿ»gŸ„>e}.õù™ã¹©œ‰ûÍ5ÒUp r»#Y$©rÒ é÷}·ôý®ïïýüúU /z / ÜMÐb ‘ÀíÅîô4fGZfrº^YÎÃÆX\XV¬ÈOâ×1£…*¯´ûÕ™Áµíqô&ó£”4Ë£aLUIÇ “™Á†b‡Ó˜ -tcýàSSŒÉEÈ=ê&¾ ÂnºíÌZf~J‡u>¨àÁÍæÂ ¦t´¸þÁƒšŠ+ýêQ¥Â¸£,¥`ŠGH•#_Œ‘$ÊÎ?‘Í™(òª^mPëP¡ôÆâ¦É~kæÏ”YÜâHð®`â R‰]ŸÃ¶³ZŠÃ°#„ÑGß³Hè´(cÀ§bFt’vîÏc`lg¼öµ³Ø¼L2'(Ù$ˆL"ph\„~ÂLÆý±+æ?»ç"ýþÝ´6ÜÏ\Ãýt)`4f°Ã ÜcÔ‚ ? ï ;o=ÉаÁèÝIª…„|n]spõ\äƒæm Y²|ÕœT¿¤ñUJN Jf±óO_@÷[wjN]–í«Ö "Ö ÐedeçdeɼçmƒØÏ§ß{]šW®)ãËnï…àøº!i3:‘¸g›!«zReGHt™Z•• ÂBMe58JÔZµå±âr]Fjffb¶9óØÏ_˜àO0#>‡ °¥¦•ÁÝÚ+é»d…t”“d%òžÌ)È?4÷øæûH @ =AÊ‹%¯f_ÃÔ´…1s|dâ%xšûñBð¤Ÿy`f¬ÿ™‡oß¼š·Õý˜Éhgš8Ÿ€c *>#ɯʫBFذH†cì±ê×ǽâhøŒiEu)_EVo,YƒV£ôœ9;“gH¶Ä"aˆý—hß’`ï à)·ñZhÍ4Äâ¸vÆR÷;Þ¿Ý¿Tsí"‚ói».±‚DN@ˆ‡‚ƒPI·Ú õF¼ûÆp¹é<©A®ï¨Pæ a𠂆&Þã=ûàév/[Û·2C„Ø‹˜ZMêž4æ33wZÎŒÅ=h|½‹6™\ħà):f™ÄÔŒ–wïZ(`“`~`P–ñpÓ|iq–6…ÇÞÌ·°•xn {šûíFUÛtò¼\bKKJŠ ™Å)¥üŽŠ$ýV´-ŠÁŽcÙÿ_ l µKÁõŽä»,²ÇjW :p”j)Y‘\KxBfŽ9©1Ö(85D‘† jU‹›xtÛÇåªrå(‡µm(¨Ì—iŠhñáuµÇ¯öƒÞ¯o?®Þ¹G9¿uWd‘¿~ª¡ñIFTÎ6Ýj¸_[Ÿ™V%+”·¡lÕ&‰6K›mm½üÊÒ›ÖÎÓ°âþæ¤f¤ÇgËćnY]Ø‹FxÅ•l«Lå«“öÉïdVì•ïÙY™V’ØÀ)ˇM ,[ôfQ2Çâ9t¦Ô¤60x3Ð{Ðó?,J2˜Î½¶¤Hh! Z{…WdV“:¥¤ê²+̳ڡ½Ê~üÌT=¥ÅÍsŒ¼Ó h Haàë™·{-Ø8kA—¸ÇýÇc'L ÀNý.>§w@uŽ,3Xà'–_ìBKµ|0MGàø‹*vå3fe<ÒÎ$…GÓx/cÁkÀOp&Sg:Ô¹Šw ÁChìbõNÖæ3‚yÆ–X>NÈ,ÙšøŽE¢MƇÃcú¤“­ßÊ-„oL‘„{Zô×1Á™‹¬_RåK¾'–`7ì1ôûÙoo´¿>Ï6î2B1dÈ•òly–,`ùŒ­Ó;Ú÷ì£cÆÖÃ|cëÕƒ·PjJÛ•Tœ¹w3RŠÔ©¥'Y`¥HÂÖùfŠÑAÕ *[çÁÿÀRàm°¤nº5—–À=:gU2iüáw'àWãá=ÔZ\sö­e§ü=mãÎËr„yŒßÑ60_0Ïù_™øasÔ2ìŠOÓ eÚ»ãçYëi¡;³ëÃdؼ§ÒÒ¸†!íðœ~‹¯Ib›ïnâCqzÔíÐÃÓIãñD8Kð ¡w½^Þ»^{û2/NHElZÃKæƒ<^sOÎŒçÅ0;pfÇœN¿½ÆŽ¸r\‰êª¢kíàèi?&<Ú×⥂šhËRëÿ‘%‹Žób^ kai»ÚÌ0§IôÆ$p ÂyXÆi÷jªQ)û÷)·°%pé…eØáá4`¯´UÖ´ÊjÊ d úLevŽ2S¶lãÔ¸ˆõô¾ô,Ô…|‰«ÿÛ“s/ûÓ• ‰9HI8ɺèM¢× ²`LÚ8<À>8KŒ'˜_€„7éfxùîo×'ánÄHJÌø> Œ%Ý<d]dŸ„½!‡@»2% Oœª½†¤{IµGÕ¢@¤¶liqQ©^©ËÌã7êæêÃÑ(4mQÊŒT?É—¶\=µè@»äݲ%Ïf>(ª ðnÓõå53I¹áOðÇØÕãæœmçk®_à£1·Ó{n°7k×õNÌwÈT~ôHý¡ªƒ&V<ôGa迉ë™1Ü£3!S05t(î6)øô÷ÿøûoÑ[°HBDE‹=+–ó§­¬f„Ä&Ìû¬¡¤äÆ•C§‘´U‘}¶<Å@öYen¦uŸ ³ëR‰­ÅVåG“W¨. ‰ì³“ü–o÷›o+¬3Aq§‘¸³ò9Âö7"‡œÂcÙ³¶63K`P|]H0õçÏ¡ûlÛ¼3ãd8ÏF°ÿ&êaª=xÉòÅ}I4 g®œ\2ÛsÁ€.0üúF$ 7·»]9¡»¥žxŒÝlÿ;‰<š^ÂC.€‰ûŒ>oeÏmF¡'Ñ—&³bk}³›¸H8)”rM+«H…>ûÒ3ºd³1‰ßW›v#ífšQaL®H-‰Eqì„‘³‡‡•TÆËR £ ]~‹DiPæ+P*ÊÈÈNÜŽ%¹Ù¹ "½Ås:÷€|™î->ºüàé­·ú]FmûšŽÔî=…Ž¡CIuÛ+b+c ¦—øÆ:§ï!{á‡WŸÕ5¤&UÈ 2wo œ¼ºcý-F…EšŠÝ¿Jòôf6cŽޓÏ$OíÆã?È0º ?˜¬käD&eFnJG¹Rµœì!Ä^ Œ¤}9‹Bâz›³em4L²”i]¢ómdþ^wnîô70ˆˆh;s·Îª&Táñ° |ÁþÖ²s•X4g³ÞÍàUØý¡Ðü ý§ÙoåÍ*‚ÃÒx”¥ßÒÌÖð‘Õü? Áü²QÈ%>ïr=Ã@¡Ýƒ‹’YÃY^4ƒôƒ“ðs˜ñ$÷l—Ôl¶9øÞµÓ9ó,†0‚N¯½vêº(ë¼;ꘈf-/®?w¼¾º®ßþ=[7ÍUð>ø&}×^1Ÿãñs_W¤5»c7Z% 7¾CŒìî¡ÎC]žA­Gzéñȯ—®^ºT–v,fÏ*´E%¬ZÎÚ‚ïåz™åÂà}íƒé+ x‘4”}hú”1„GµÇlúÓ¾ ^ÜÞ¿Yˆ¡ÿËNõzØL-—pøcÓï}Im|… Ü »ÌÊüÅ?7Ñ ³}ÆÓl¥5ZÊÁ\;öaŽÁUDt[%[…Ãh<—”'#ÅZWfîZ´-ß|Z& ápo¬Q)rH)M-Ì()5èªÊd•´Í?(ÏyÚ!GÆÀ¿o¢‰›D‰¥Xž½°¸WDÜ;E\—kÿÜ11f˜Ãqx[F†J‰äR¢Ù ZMa¡ üÀ÷7ì«ËÈW´¸¤¸X“£SiÍ/¥Eñ°ÜʵëVoÚ˜/bšênßµÁò³I8F\Ñ›„sð†ÓÔÔ ,8.¾: ws'S{ÔY¼»|³j3Ú"ÅŽ'ç=ƒn/A#keøÚÏ\É•Ã7ZÔ©lDì­º%ŸÇ¨¢•Ûø„Q;ço˜¾Bº%2Ë !+l‘ 4bQ{‰y²-~mR'©k“Cö‘ñ 1qjÍ»?Áz˜ÜÒ$=Ójüdïù\ž8ß/féRYìÖ¸H”ÂʉX+ÒëJõ²o7ÝB앓˃¶oÁâÁ¼ûÄñóܧ¥úKS~ß¶Kw|=Ý™)AÞ˜kÑÁðˆ{|øÄEt›½pbt€_üú0Y|rf:Êd3ôŠƒ&¯¸Dv¤îdÕYÄ^o‰™9ËÌ„r^¡Ì–#9k.«LüäõE>}Ç ›88(´²~L¡ÍÎS 6=---½8í«¾%º)õ;ÄBèý¨³¾õÛ×A‰}LðŽ$a‘Ä1¸Ï{wÞÃlTÅì‡>DñUu6HóXÑã|¹]’±œ†C&'3ð5Õ{K¤ðÈ“ÉÉ’Þˤ»@ii/+³Õ™ïÁ«PŽT©SióJt-»¾-n hZ5gmÊŠØp><Àƒ7 B¡{›úì<%bSIT©Æ‡âøúØ£©ß’¨>…Ð= :;fuxfüB+(Ḡ¼æ~Õ@ÉÝ«³øq“—`„9÷87ý'pü p~|aê,ßµdŠ®¶©¬²²¼¡¾‰…=Ó¸lÁ°‰#Çø¯;t5™WîÎÕä4˜É+×(˜È× ÞÝ^˜•£$=n&€"¶Ü ƒ¯„òÒ«tûGLò4£J¤’v\«UåËôu44wdÒØ*Ò`Ÿ54A\c!Ѫ¾p«-+/¬*k¬«>†¾eÿäwv< æ±lׯÖM²áá!Þh ;þŠÿ_´áë·'£MÁûe PÁ]o^íë5uîèyËL§¿Ôö˜÷Ãõ\Û±Us'Ž™:bvhó•Ç?Ü}Þ‘Á(sE°•|±þÉ©âÊUd.Ž ŠY0‹|¾D (I“i¾kS“ʤÀ%ÞyäÏO\¿Í?~p\p,ôü~v€ì<ö´ÿýÛ—þ|N¦kå¢V¦$&&¯]·rG8b®>vù—GÏ~¼P¿q^9¯W+óÂY ùý?È?GkÌüs ZÉóÛó#]¼”v¦±ù¯6}£ý8òÇ`=›â5cêÂÆÕgÜm»w~MC ŸÁ™öG‡/ >ðÍ©'Nñë…‘ÜT¯Ó‚L«Ïš Ï­1ðò®aôÚb±ÅbØÊCNäÊòõËÿèåJUn®RÖî‰{íTf™ï˲trƒF‹ò¬¬ïµœà€S´*mŽIµÈŸ¯ËÓH4ùyZ”t9¹_ƒP‰0B‹t:=2H‘©sór5’2_ŽÈ “£P™óA¦_ Êž½o#ý»Û€‘xð‡1¿üô¼ƒp™è’T””¸j!vÄîaØ aW´TYZX²¾,V£ Ž"¶¤¤¸ˆ8«á·45-=G­R«øãŠç!o„‡‘=ÔU*r³‘Ò|cTXRYy¦QŽàÞN\ÑÃpXI¥Sj¤zí0 cŒàb4S÷£=swäLþºPÔÿAŸCöendstream endobj 80 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 312 >> stream xœ-ÒþCMMI10kûVø~øN‹ ‹ ›÷¯Ä¿»p:Q¾Üøˆø‹ûVª÷,¡ø-¡ø6Ó¸ûƒi‰„_‹€‹xƒ‡“¦‹¨Ž§‹¬‹­ˆ«‹½ #˜‹Ÿ–‹}Y‹’”—µ÷7’¤˜n§h¾‹÷÷÷&÷'éRÍ?Y[gdjÁ` f‹]‹xd‚yyi~O‹ˆ•‹•ŒŒ¡‘œÒŸ»¯‹œ™ƒetˆ€‡zË€’¦¦§š®ª¨’œ‹³£hPPjûyeiE[jf‹I~Þ‘‹Ž—÷©‹õáõ÷TÀ¨s£nnssnn£s¨¨££¨ 7Ÿ ‹ ‹ ‹ M²Éendstream endobj 81 0 obj << /Filter /FlateDecode /Length 3600 >> stream xœí[[o\·~Wó#œm¼§¼_‚´E ¤IšKQ[mP8A°Ò®.±´«HkÙîC{gHrxij’c'@æ(r83œ¿9úiÆz>cø/ý|y zåg/Øì³£l/-ŸYmxïÌìòÀ ÓïóÌÅÁ“Ïlo”›Y£X/¬Ê3ŽûÞè°JK+²h˜ kƒ_jržÖ~ëªó®œw½Õ„©4Ay2ÒõÊx“ã¶wŒSžÊ¢4Q­I<åÓ–ÈilvzðÓŠœ¥ÿŽ/g9<øÃcág¾÷F˜ÙáÉAT2Ÿq%{+A±Àzvxyð´ûä›O¾š;Ñ{oº?™Ã©^i%º/æ ¸Æ”•Ý“ùBJÙ.ºŽ—0ûæ3üÉ2æŒüþðoÀƒa„Âj'€Ãœú8,öÎ9W jg*.îìüðGXŒ—Àë…³(ÍKá²¼gÌÕýi¾Ð¤r¼»É“—y´Í£gytžG›<:-d>Γ‹2Yè\çÑ*Öß®ë¾ë é Æ– ¡ é›é'o¤‡aôC}GÏ,\4F-}ð<òy¤òˆAæyøhŽ6Ãyïµæ³Ã¯ÿ´ûp¾à`®²yÜí^oÊ}þ± ßÝÄý7C¼ ÔÓõŽâQv &– ÍíökóÍü›ˆ²ßÕßÏ“¯/U¿÷·ë†ô»†Pë½§½¿ÿ*Ö öÏ[ê,*¹hððoÅY!ÿ}[¢„¥Lðdot8oˆòªƒŽö½mÒF+ÞöZ»!Û.’‹¬zäÛx¬ÅÌôÞJ/÷Àš†¼«z… 8ð÷Õ ‚¨š…q$ýx¹;ߢGqæ:Ñëðûî Ó¹ïDzéƒpÚ‚3Õæf HëP]%úßu_lvëëãõÕ.RERPp•¸Úž)?sdPß™@4“Š™âærûì|súõvµ¾^îÖ íÀ ¿X_‡Ÿƒ²gVÒ ø2Q¦ÄJd—K4?_/o_¥Ìe‚Ö"AZ°ÚQ‚VX1”(÷˜à¿ÖׯMwFÈÃþ¼JJæª&––;ü;¡†¡nLéúrw½¾tàî¨@øžš^YáÊÏ lTÌE‡Š3?hýÛ¹“=‡‹¯]Ø&Ç̋դWJÂ4Ü·Z©¸‚÷ŠyˆoX…*®|w†•§³ÜwË]$á!Ý//pÔ‘­;L[ |”?Ï£¼ËwÛM(cóœò³=‰cíd:YxPô² Z—„yî·ôΔrë²ô¦Ð½†ßƒDŽäéZ¸pVd]Z°½í°Ú ˜ÎÅqøtà˜L‹²"Ap@ôü ´k}æã_à4W6žé9Wz$a”ÛÜ/÷òVXÎ ¾}ŽK´<ð úP\ðJÓ'MÒÛ£rË ™bÜyÌNHO2é@Á:Ša‚áÍ=ÃÃ3YEjÀŸÃëPN\íWB2°…Rxºƒˆ û\ˆÁ—aŸwÞvË—¨v¸Fp6rw—sx ZÔR±µËHK£"º²VBxK¥Úų×dq«‡ñI¹Œíuœ¶\Òëhi úy¨c23Rpº–¾Ž¬‚ @¹èƒš¡ wA·Ü«¨Ú»&xÙAÛ…´’ï8À›´YFmHce>§2¶ìÞ›Aa²“%d“{Ú·ð~îN—ˆ^VwO\2Ѱ-ñ™ û®ÀH Ì;[‘=ƒ àÝ­©c/ñ¾Á=9dí¬qÈKY”·yƺ;$VwVžÎë¸B1ƒA+{ûy¡—ì™ËJée1À¢:“ªðN30¤A$Aƒ¹ï½"Þªb3¯žˆDY’Š£ ˜¨Âè„õÜÎ5$SŽÅñŽ›D/ØË-UÜu`Ù»°„\vÑÆ:CÖASC1t)X¸œó,˜S1æ:&-XÀªÎ 鸉tÏ›+hx‹ÕÌpô"1ä ™ÓÖcQ銃«|‰qÓ†a•¯ » {RŠØÐȲ$N}5.ÏÁ.ɉ™  h:úOðm?I„Åó\M¼Ù¤vé÷^Žï¸c<_ðÍ ÐÒÏ6:"TZ/Bv¢Š‡×q dˆ}Jê¨t˜õµ=gYb‚b+* œNÃU¼A¿÷gäh»º‡;l÷†$Ê*º> ìk3Ô\‚÷n²òNûbÞÑ0î¹»=”ãÉ.?)%gÁlè5MqárRrDÐOe7·1šAR_Ç3¤S)};à{¬JÑ‘U}·YØvSV…<˜/à0®²»‹¢Ú©º+ˬãͦ+$Óg eWq­v¼0‹)A o︠gÊaˆ£¦y Ó©¯œ ʤ!GÅæçDaî”Üã–¶«ï‚É`e@kŒeÊF›yPU%´¾GÅ| î9p¸Ž+€³áÐ0]GýlvQ™Æóq¥—ÓSÛoOñÌ)!}Gä¸úQäÉ:=Ž^ •ÛE¹]ZÔoðþÒ|móí®5YJðªiËD@ÂÜÄÙÛPÚx0?òLÙ£"x-;UÕq£ÊÙ4c½äÄnâZà#øSΞ«ÚàýoshÛNdð"Èp´wäƒÐÁ´¼#_2úrò)ñ—” #u‚ž~–æß»ÜÒ÷®éá!Âyþ\£ñ8Vø^àYøT<Ïø(†jƹˆëƇÀ˜*°ñ¡{k€ètããË{ÍU]Z6€-mHÒÃaö_¼%ò1˜5‰Ž~™'Ÿ68o5ZØã~˜·‰¶~IY†ßßsqü·ƒº÷c¡ÍfZéY‰ªm‰šò&ž¡áJoq¸{ñ’ÆË«Aàã÷Åð¾Žh’¶@*£¬d×’Üíª<ù_“j„ñQclŒ.‹Ö𓈵(ãâ˜wÞîÅËÉ‹‡™ú13 áQ}‚c[ψ%†óThëÛ;9ŽèDª¶Í{Òz6T)zËÕL0IDõ™®LüeAjÇm¬¤3 —â “­:Ç«MkoH³¤µÉ”;àëË„™C!õº¨.Pp©cŒ¬Û QZÚ€ÂÆ–E›·åX*orX,*àÙfÐq‡Ðp¡=)«=Q‹e)¦p³¼^ R„×]ú8õ¯ñ  P4…åÊäe¯ã ésÍm ¢€NyC›”ïØÉ=jà 8£¯„6|hnOã™°Tñ —žhum$Õ®+5æ–w>lˆ^? F*Ì;†ÆKÂÜóf!Ä(7Æ{ ;®ëc佦ÐA•p!Áá,~¸Ã'ªŽ;ÅiØâ;'š­ç°ÂSÔix—äÔš¾4àªúª%k¤îqd“ MŽ Ë^£Û¦0eäÞ%wÖT>Ö!^€Âì¨!ƒ³˜n'»œaW}éûãL[É›æõ?4ƒ W$߇±v¯ëû´‘á×^ã"èšÍßÓD&äð&tõ“p :êUdWsbÛù*(lOÊ)Ó >œ"Ç­¯¼„|s×8ñÏËõñã9…”‹¶amïýÁàRÒÖFÚ‘NøP~¤n3í¬mâ[™^Ôƒ°·h<‡w &¦G‘hȈ$£-é×ÄD)ÁÊ’FYžaû=hãËJXFŠŒöƒ§-X·…Q—uG ¬kÝB½Þ6|Yè€õ¬Á`¡×ú~úúô¶½›Æ§{ÏØ––Qi)Lýå‚Ä?Ía¹'ª.žÕÀx›«rÜÐܦ¡‘–Tïn¿ÞØÜBHw µ¿z“ŶqHa«êžŒ@ØI?+|_=Ø“®£“Ň‹9]64¶kè“\~±1öÚ£ûÄ/Ü6+Zn5‹ûÛ1놾ZN×Ú±ßdØ«ÃV#‹0ýð[ûnrXï4ü>ú¡'·æ¨ ´ÚŸj\Ų¡¹¦ë¶º¼-vZÊ£ÆÁ»Æ:êÃ-QZîso³$¶HÜ&Ÿòï‡/á]÷1_/Ò×죅÷þÕ96=6»òýñvsr¾ZoŽ×¥Ip޽‘ÛåÅGšÂüïÇïþõ‡ùÓz ¤{™wè3 îzá9Ý¡ÿ-{àÛ® ¾mhð¦1jÑ+§íÏéz îfòwáW ”^ÞžÀ@ÿìç-†ØI¼70|zxðø÷?3sbendstream endobj 82 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 166 >> stream xœ›dÿCMSS10‹‹øýùJ‹ ‹ ›÷À½ºR3Oøˆù‹ ÷¼È÷˜Ãëá÷ÚÜø7÷Úò©ÎÒ‹Üîûâû#û…ýJá÷Ñ÷2÷PûÑäüGø÷˜÷$÷ÍPDDKPû  7Ÿ ‹ ‹ ‹ ù> stream xœÝ[ëoÇ ÿ~èqȧ½Æ·™÷ÃH[$mÒ4ˆ]4ªQ¬OgYt+ŸÎvôߗ󿬿Vj£6äƒGs‡Ã!ä2o—¤§Kâþ‹ÿn®¬vùaA–^(J{IÙRKE{£–W mIoDž¸\¼XM{mèR+Az΀(Ïj{%=•d†÷R ª<ƒ©¸½0hC)ï/´cËXÓkY¤Šc¡7½P e¨î ¡•P…*ÍTTQ¨¼]’ íG–ç‹· êU¹Œÿl®–ŸŸ,>ù–Ù¥í­bjyòzÔL—Ô@œžèž2¹<¹Zœvfµfðë>_­AK„ Ö}¶2¼ûû+øÛ /ÜoŠn»¿¸!±†0f»Ïž¯Öœ³ÞZ?Þjh÷üKG£­1FuŽ‹€i+ºoñR?O©²ª{þG÷µŠGciµåöåÉ×pNñQto93Ë“o'¿=Ž´'Ä*Ñý~µ– íȓʣ¯òHæ)K>Í“ë29äÉ›<êóèG…îU]æÑ6þÑåá‹<ºÊ£1¾Ï£‹<ÚåÑyý³qб!ÂeC ³t4lSqitšGOÐ(kð£<ù¬¡­–ŽÊŠ—Eo«•³x€VJ:{õ×yòýì†ï毧¥ö³Æ’ëÆÜüŠòë¦ñk¹ÐCãכƯH臛}¹)§W§ÌWk¡©€wüà[sšËwò»–=¼m\ÅÐÐÜGHØÌ¦ü|1+ξA÷ª±ñ¡AWÞÑ®y”"l10Ô‰Í~ò­dKÕ[Í÷^Nd2àSúØYëç§t»&Ò¯§¬e‰ÌÚH¾ôz»ßlw‡´Lu›q÷úâl»Ûlë.v‡íþýpùÔs=5BëåØjJìòä œ>¸áíÇ„F²çY€IôXgTö†Ã<‹Ï.WÎgS*$<,ðÙ†JY<µÀ>[Bdüºkïë š76“=¡ÌØD¼1‰P+áEKÙ3jt7ø­!¸Xw‹@qÖ‚¹®]¤!J°†53.zq¸RGË!žÀM&Ú³Ï.Ê16~7k…àÝppó”i¦g¦-ðv¯Ã Ï,ݛˆ=…¥úEfÁðÞqI5*²0¦ö0ÍŒÒÀnOb,Œû#»+¦œ~yP@?hH±<ô ðêdÖX R8e”²ZwƒÆ ‘†hØ$±]¾Jlb( QõægA:E8P7ïo£ÈDÕ*B×—®Œr»‚¼ÈÜ2biºk*®£ÜÀ´3)f,QɆveÙÙÔX<D°AÓñD𽡮9Gb)<ˆ„ܯ…Ž^k8»»“7Ëp`‰É“ =f{ €/ù€( <ÁônâvêøtžYÉà ^9ˆLá6¾Fî _â]@bV3æ|8—Úýذ·¡<`¸TwL¡c°4gƒ КòŒ9å (ñªc¬Ü«¤ÉD¯ (ÏïÌ@:¡qÚï²ÈÛòtnŠ ]”×Rönø– vü@.È—5î!ü ðRÔŸN ý]ë°bÔ¦$ì#F(Ÿ8 ®UYìl†ç–ÈÜ8›v^·å•â‡ç€ÐjúI”^õèÝ$<±î7Ùæö^OÖÊ£t’€H‡@ =˜mð[O'eÕºóÈYPuܧŽÌ=¸4pL&]¾.Kc¯ÂrtRœÊe˜‡÷+“yïŠ÷A±šÈx8¦Ç2¾k; äVðó¿ITµãIŽëà ç ¹Á©Àó9ùx„8·ÎÐÔy„]6ìÃ0¸Û9 BY v4ñûœQ)^#’ )Á”êìc¶å:ûÀT]'e»0.ÝËxQÌnW.ä<ÐBЭLm|¤†µ­¥Ó`+®¦ÓÈÚÄŠº÷Å'œG†b6‘ïLâMçñ{ÿVà7ã¼?l„íî]9ýõ*yxÇßoeÙ$ü¸YxÝøž¢F¼£òŸç𥡶}b~ÜHfê÷ NW¸+Û!{hK€&n…‹Åˆ}ä½Q´—X5E¯}ëc=èJ…eÆézª·lÖרûM¸Á8ƒ×y¿¢îiX¥Sô &ŠÎñë vD±ÄGÜÝ“¤(S±8¤ãvøå!g†Ô‚ö¸+›¥ò޽Gv7h: çœùP!? ܃§^,lÒ™œwG6µ  ã¼Gþó¶Œn‰¤µ—ª #½Ü!œù(S+ØH[-ë¢SþOPð~SÊFHžWnÃJî-¬Ü]41ÿ¯óÝ8,¯µwS`ì§´Þ%Ü(NãMQ¾Ý]ØZQ!Y4=ÆÞRy–ÕC÷§6Ç ~HTïlâ(Ò ’ïœäð9¥+7©œ9x Cb¦Öî–kJ»ñuû ™Ë€’šËâÍèè^r5 .§öÚ12ÞžS9tºI@Mãh€aU œ‘¿v7Ì´À›r·½k_-´DøìÈÝܤÃ+o2àÒ Ï™) fú]€|*Ü ðz?69Z[û‘Ø8‹™TÐÐÚ&JêlMjxÖùfnƒèÌ9Žpïê1½ë¿n­ü±[ 3œ…ii6ËÐkBneŽÛ©Ë¡p?!»vÏ€ çâåûÌœ’·>›1¬ï¸“uÒ xªxÂSŒˆwH¨ÆõŽ´O°WÅÃv(.®U—ð›­M¢Rݳ{*ÏûF¹j¾&ù?¬-?kTÌJi°U=.¿–ƒ´*Êb¶¢\V<Í#Ö¨7¿DsZ廸xµÖœ Ð+*¹¶ªä/ç,,õÅ_¡ªyCÕ©µY“pÕSÁPãß“+º×ôÍ»`sð'zˆn3ì6Û})a~µ.on«:ça?^zîëÌ/WJÇçãîæjüÞ±ŸKˆ«‡îvT¤Êª&<ƒîgãÙv?¶IŽ.­‡]ݶÓÀ¢H'h°,"\4žl,U¤â´Y>Í«Bù4V`' ƒËR€j®ë`£ÜèèÇGãðØs“¾T†A–ÒÎÇ0ŸãèŠÀÊ®€=Ÿki,!~¢¿™‚m/¬&URóã‹U3­ˆÐIT‚ß$qí1ý ƒ!»‚Ë™h/½˜ÖVEâ1HAÅËPÈceœ;ÌuS”’"@+PÃé Ç»'0qžóÿî¤ÊìÀD%¤Ù‰xšÓÎßy ߈+4«™üa „+þ9ƒá¼Ç s]ól„ÐùO»/ë¡íš ¿EÞ4>]]4rËIÏókw=Îg÷˜e„¿â6ŠA9ÜyÈ"+Š‚åÝ7ø…ÕšogÓÐÜü§Ñ}c»æ—毋[Ÿ€ µß¶$¶¾1¶0E EÉ—ù³ë}8ñáæþHˆ±ŒZ8¬¹fUöHðª%WÁ‚´ðYYÑütb $¶ÿZeYÏyÎjvd ®zw±ÿw1Ò[FíþœÒ'/c`A—àtÑ’2ONœ¬ Ð¹Ž M6¿Ÿòj‰`K³ØÊ_¨ÃÚ)€Èäªâ%ãÇÖ¡”XÖ¹ NÆc³v9&ÕÆÐwŽÑÏÛP3pƒ =ޱ|Èl„TÃB51ɶQqAŒSP…gR†sgsu—Zv?­);^ÁH<0…ZÓ ö@˜bÀÝe“&*Ž67é¹ÔÿÕÕ·ª\‘V H²f wã*W ›8÷yíï~IÙýw yÓµø•Ýæ‘Fñi•ÝÓ_bvÿS©º•Ý ¤Öf~¢ì^¡ìÞ¶ͽÙ=M¡„«˜ÝCÚÃÄdcJI s,„lz‰¼²jjº Üš÷ÿM`~•-¢í E¯úá7ð£üt«ó瀩çåúÙbêy±ïÁÔêÑœÝSóTý×ÃøóÁ 1‹þ†éVÝ2@h™h `njܼã€Sr€s"ãJ2¦ÅQô,ræøG]¡…ûNá¡ ÂNÛ bá2@S!ÅËvÓZ“¯[~Ô˜{ú5R£¢£DL¿ ßÝę´‡åu³'ªÿicpæ5ïÅÝ3±cáNçdïÜAþ¹ê§O;¼`mècu,D]à΃ \¨+®\ ú"…síCÝ–™¿²5Üñº¢¿ëX²þîçtýLw;,Rƒel±³i‡EQ&sÿÿŽë˜|½TÌwX|pÜ ‰Í*tÿÔ ’CKáÚ……÷]ZŽ¯Ã¤4¾o)_#;Ú ç¤TóH?ÜP÷K9¾GÆ!ÉBªjû[Ö´Áˆªï ÷TÜÝ úDíÔaä´E!ÞyèQ0JÍô(8%ƒéù…¨¤Ôªkêæ‚ñ:v@¦–ÛvQߊt ¬¿ÏVý_9ÕG2 ›Uê~2\EƒxX´ÝYξ‘ð#6d«H†WE›¨Q>3{XgUÈÎé±ì7á]ÆéºÑÆ(µ³mw¿oïœÉþӺ苓Åßà¿«òÌæendstream endobj 84 0 obj << /Filter /FlateDecode /Length 4795 >> stream xœåÙnÇñÎG,Œ™M¼“¾ œÓ ,±ì‡IQ´H-Róüzªú¬žíYÒ”`ôàaoOUuUuÝãoWlä+†ÿÒ.ĨüêÍ[ýåÀ(;JËWV>:³º8pÂŒÆû²r~ðøÀ3;åVÖ(6J»ÊŠã~4:ìÒžÙ”èÅàGMðimáW×àËT9ïF« QiÒd¤•ñ„&Çíè§4ÕMi¡Ù“h*Ø2I[|{À#Wé?G«ßüò áW~ôF˜Õ᳃Èd¾âJŽVc(.ôêðâàÉðÉçŸ|¶vbôÞ ÿz¼¬^i%†¿®7 Æ”•ÃãõFJ9.†η0ï˜~øü/ø—eÌùõá߀à «:ëa³wΙ¸¹!X(`;SqóàׇßÀ ¼îzØ(ŒXm€i^ —Áò‘1oÔðÛõF 8•ãÃuY¼(O/êÏ¿.‹›ºxT¿Êã‡åéóò4•§ËòÔC8Ôùé¤<½ìàø¸RSuï¸-O7dß^æ¼'Z?í¼\©y]žnß5¨I’‰ÑZ—Tç«5êÎ&/n8½Ö|²¼½C1*æ·åéªs¼ËŽxÆòtÚ¡ÿ¬óQ¾Ç÷dÍY‡„ÓJÿoêãÔ!b¿.ì'±Ñ::rÞøº³vN@÷N°!¿âFÝ(ÒÿìàðçO†_¬7‚y–oøc‡}[¾]–NSŸÝAî³ìjhn:°_öØ|‡mú¬<½Ú¯ Gr.;Xpõÿ°×>ÞtÖ}ç$D”;R‰òqMeDÕÛÛ®ˆîàí£Èžºö¼ž•—'_žTyb÷er=i¥úyG¦gzdí‡7uÞ½ìà8}‡£«îщ­” dG~þ²sàëÎSÏ,¾¸'Yú¾ùc‡[=¥ø´CVo_¬JLOQÚ‹RžÏFoÁéåÅŸ–§79ö¤\5¤Þ·ë‡DW=ùUÙs°zœ"²ü^ˆxÜyº‡³rž´pß _þUïÓ§=r’†Ï³Hr8dJ‰q¿ÇLC2ƽbØh˜óÆ‚/†eí=7z˜^ºpðl14ÆŽŠs¸áY'$]ü yï&.;‡w’%'­—Ãtz†x©ãuÀî½R¶×lé¬î?ªÀ#Üqƒ(Ë‹§aPr׬_7Ï ó3öt& DÚ ç-°VAŒR€CÜ O˜ô;Ú3í=Î5îuˆ| s–û3¢@3ã`Zó†Óˆ^ÂSs&¼@S‘>É@9·q+p\ƒzå÷“pŒåv8Ý^Vr^Pe‡#åp™ø¦w}9|ä —µ–ØxŒ´9N€€Db&@­ÏëóúZ%.©ˆÂµÀQæ °pÄ/ð¶0Hc¥uám2À˜…á6Z€"”tfŒÝC¦C‚m†K¢†ù=f³W¾e¶’$tTªˆa‡£""¸ënÚrÉôp‰‡² ¥V-s­Ä‰v%*U£=k,HÉÆ‹po8WäUêI«àÂsT+jZ̸• Ç J˜ö2G†iBþöˆhB Ÿ +Ls¬m ÃCœÉ+×(ÜÛz€«ªÖIVp™|~Q{·x1²¬–.FÇ9Ȥr` $ª)>ba§*ÕÓð³ãªU›ªX€7nqÑt&Íf øÃáîŒhÎTp¼Áß=ðÍ•ÁD Ú‚Í‹öÌj…éõFàÅÔµ•AÖ­ëH†] \êùé{'‘& "¸ v ž]ÒªªS5ocæƒYvèy­QNä`©¤®# ñr=»îA›âe£e›åëæ¹Xý-¡ú6‚¶à€žÎŽX`ÇÑèl⶯ˆ¦^wmj4déµhÈ”o/Ùžl¾¢«nªxXðñ¿[ÈÙ ÌF9u%¯ªú$˜2­{iÑ^¡Rm“£oÛ„« ð›Å»œauÎnõè mõt5ü¿è†7X.¿Wm9ÐeÕã#®¥ÕóOg8rí‚èûúÀ1¢O<%þ€žé®‚馴Íõªšeܬ^`ñŽK zü“z¯›K„o)qx[zqæ*Í5`ѳ!uÍÌYôê <Äpú<¨gžj?eدêîžþc¨êö¦fGXy%¥™ßtÖHœÝËÿÞ­ÞHBôý©`M]¿ûIǽ¿öŠÎ7CõÊu߇=û Êqeò“½ÔÖj2‘P­üªCn¯Œö¦¦ÒÐÏêÞ! ‹/?}Ý3pø„ M¾x¿ŒAµ‰©ƒóárÓ 8Åcò°ìùpD‚ç)Xy®5$yWÕ½ª¦’Ø‚d"†.-Kð«ï˜ð%à/lïolÌ)qTHø8pe1áëËçñ5×DÅýâªeªÙŒ` ÈžÇfÕÓ“WOrL‹[|#(SqHÒ€ ¥C‡4åü)…À1('ŒÊr>ОÊztlSµŠZx¥¿¬íËÄPP,ŸØ¬YâmÑ·èÆŒ/ðÎ6¾g`{˜n;¤kkêÎmÇ®\u ÞöÌÅCú4ßÙ½ÜU¦ßo±žuÞî51*–j»z~¦ÛÎjJ©´$'±¥ÎøBô¶·¢õÞMÿ©ïÇw.wˆ½!k½VÊÛ ^ ì¢CUÌð§{Ï0í…½í`!"Zj0i!ýÈCÕ¸§!NõŽð FU^ì6AwK£‹&çr¯N:Ç!zˆ½"„Ý×tý8lÎR…Ù©lè¤ º_ïB}ÿ1þi!‡0ãèêÁ …LXÙr±B§Î‡4ü7Œ+àd‹ç˜’ßžGzNrˆXeüÜ1zt£ŽÖ~®ã*fdÏ©ç#•´ëœ×ZÖm|Ͷõ‹Ëx6¬®.Vüð5Å›BË4¯'pÆ<žÁƒì”v·‡l±©+‘礞µ2î*‰NòCgŒ”M­†äÈÏë±âëáö³T!Òbᵄ[’×N´â·}º.›Îkºgb4šv“")YO$8 ÑŒ2£ÃQ±¶3+ÇZ£…âÞIÜ¡XŒ-¸1F£Ãã&؉{¹N2ÝV%©ÄÂf,a΋$:Dtp´~†ÝÖ`f¬ºÇJ±\·÷ú4®¦tæCsIXÔ/ÙäJ©¶`~ðtFÀâm|)˜ÝÒ@ûžû6`n Š@B|K›Çq´€Ô1hÕ’/.bK 7„¼UÇcIÆL½[ €aŠ.OKMqX*­-×B6R`ú‡mThƒU(¯ d¡Œ@DåßÖ½ýƒ/tZ]/ÂŽ¿äØ¿¸ÁuyêQAöó¹%oŽQ³RŒ¦xƒ®ÁRìH –1ûùfžRV©ÕÚnöÌÜ£î¼x¼@´ä‹Ç|&¢“Û·ëÒ¡#F%Õú¸"B*ðµU䥸w¼q6ÍÖXW–@qíœ~‹;¿ÃѦúrx}SFBñ–èÄ–:ÀÛਔTi•..; ò©š{sµ^?ûì}IO:O?üÒ×§ i±ki¥ %3 ¬ë£ÕI‚?>†ûwdD¥ûjøb{s6a<ÈEXÀþ…߇Ò6ápÀº¾ôQJæ3| ¤þWÃ_/oN^\ݨ\(Ô|•ÁÁ¹F¦¼Š(á£M€p,“%³{|1½8»<}4Ÿ¼ÜÞà´,8=øá.¤rÞÉŸ•ºóΤí \B‰‰'°Ÿžl_ߦ—˜+0M<ä“d&0…{_aJ°7ŠwÃR=‚LʤϟcÉ ŒÞôŠør4eÝÞb K¡lK¦!®ãà7–ªHÁ+yTpµ³³Ø©#´‹† áî7SY¯%q_Ǧ1!‹¼ô¢=Y)r?Nö’ˆ5Ù$Ô»Ö<áa 7Kõ:jæÉ¡mÖ?O<žV›Fvlw|^,PÎÛØ(5ûpPÏÜm{üò n騽gd¶Û¿«Í޶9`^½´y_·z>»/<†²­ðþX­íÿÇ”åƒm;ÿal;sÁ~3¸‹Õ4"ã‹q‡ 8÷è¾Æ=‘,!Ç’Äòòâ7Eþ†Ðeÿq†bÁÐÃûˆpð£Öšx ΂Ûú·‚èÕêEKoeF×´9bô©-XobŽÃ±ÀÌÑl§Î‚4a1nÄ©„…ì-Ú=m¦*jc±K¢F-Ä«L}¼M/ÛÜ@âÓ8¤$BññÝæÐB 3üH{×qE&5Îè<¡ƒóÐô ššò¾LƒÐZcŒí¼@BÛÔ‰ÕÕz’Xûƒ¦˜Ñ¤v’9kuA´äÐŽd94·ÌÊø‘ ‰â§Óu Äãæ¶ÌpŸrâ±ÿþ¦?3ͲÁ¸Ý4Pκ¹%Iê"#Œö=-$‘¡ƒØ=bšyq 1cÖÝæ(¸a2‚õ䆿;»#·ü~·Ö$—„Þ;z‘;ëP ›žEâ—‡O2‘ä>nÉ„ 2.BC ›±˜€²±6ë]¹fÑfƒuCÔ9áùIm“Æ<) cb6÷T&Âæ™=ÓN9,"ç²HÐÞŒ¶-d¤âI˜ÞFñëmLòØ\Û ËBõlK4²¿,u§ã˿ϳQÛ”2–k%Ï»hÉ^N$±íBLþ³VÃ2Ö/ÅmcâÜŒOÖ¹u|Ôµ45³ëêÈîíUeè].ám7H§¦9 Mk+Ã{:ƒˆ`œÌêžäã7±X؉“ófrÁ}Uƒû*¢ó±"ˆp\ù®s¿Nt&d;5áâtr‰×³bÑUxO´0[y\ËhÔ<¥ËO“`Ñ:y®á†’(‡õy­®NÏѹŠ^µëõZkœî°³Šâ]¥ÒÅÜ2ÕxéähÔLPo}‚º|¾Ï@EÆül®å¡½‚ª„;„3;=“ä»KYÞ à<&Äð]3º¥6¹ù–¡5¤aµŠ9qÆÆ Ó !øÑ;ƒÙÚ4Ä^µ£­ò,·G;ÆVtíÉnq7ÓE;Šn&)°ã´çóü1ÛFˆ24Ûl§X˜´2 äùh`Ï´yÁR¯,¹ïÏ#J×Z6dB¹¥AÌÉÎ¥ §ë¸Yq³SÊÜç§I§ŽÚ‘çÚ#‹Q†ñ9R!½)Œ®ÆsŒô8°0ÍüU ’yÚY *L1ÀNÿì|‘Õ§)ùÒ@¡N”“>D1‘)ÐKvû°`A /º5/ú|÷âÕ¬Ûi!Tlã©v±PB¿3Š‚;@Ù—¿lÒï ¶Ëè;BÂÑ©g™Dµ0䕸$Ý’Ûœ®èÕìí4î8u Õö·Î¼lÞ–!¯pó7‹–uFúj[EùcpsÙ6’fl¯Yfšày:êžà¶v² ö~MàD;ŽˆÆ@nt²,šd¥Ì¬‰ï°€Œí6ÄK׈ xS!ïá¼>£hRŠ%{‡¨ñÞΆUœ±›Hk«,·2 <%|·U³u½™ïÁeÃ÷Ýd’[N­ñwª£5'†‰ßÏ.q¯âÜxÓdy•qQ”!Ë.Çкm×ùêÞ¦<ÈŽ` ³’¾ž›¢¹2U Ák¯ïv>3¨U«·³ƒ$Ýû Ú³Ö|B$º©M6÷6y²7›ü #P`Tþ)üÅÑIªªGMê€Ð\›OqÕû¡Ï?¹±,|¤¶p‹HÌŽúa­4^¦c%T<ÑB¦½P9Ÿ#Í£±íŸ@Ÿ¿p‡Ç€ü0?ÅN;ÃÀ'õš[/‰HŽzY&ÂEbÌIî”6 ÈúÉ¢"‹UãÚ‰á’ý¬*(aùh2 Ä "¨¿ k«¿DáP4–i5½¿$à'÷„ÖG£6„q©jãÈ÷RÛ ÷^u?|“•Y&­.&(š…¯Õháf¢O׆¤Ö¤à5æÃÙáï5¹j¾–ÉßÃ-~&y3»‹‰Mý,ý*˜Oøg—jñn€Pæ?ä«+Äì¹]j°5éîÕ8‰Õ§Ù êÞ©ÉÅi®ÙœPÙ~š9àòYƒBÏ#…Œpñ£8ò9"µŒ±ÞfÍ©ž’±¾ú2¿Ä6›ðꈵղÝË¿¨eÝ‘¬«0 Ý î"Äi‘œÞ¬)ï`{2ût$2n3‘¯/ŸIû.ƒcçõ²,”®û¥BÚv§,½eóU,®¦r¥!˜ëˤ¸®©ß­ÙÎM^ȼvSÌziÔÙ~=1×Ûˆo1«LªOõJ IeBxÛ¦T,¸~“&¼Ÿÿ/ÒX¾OM°·­ñsÞgµû½¾à>¥,wÁªî|ÎWÿ·u:<øüû\ù'¡endstream endobj 85 0 obj << /Filter /FlateDecode /Length 3746 >> stream xœí[mo·þ~Í8º×ú6| ÚI“6)µ…gÝYV¥»st’õCû×;CrÉáŠ{–·)Ð Lñ¸Ã™á3ÃáÌä»9ëùœáéß³íLôÊÏ¿Ÿ±ùg†ó^s1·ÚðÞ™ùvf=ëÊW³“™³¼·ŽÏ­Q¬—åÇ}otX¥…“½VdUž¡«¤Q½rdC­•ì‘Ùq`Ëy×[]¸JS¦Œt½2ž0å¸íãSeÕ0S­JLåížÈ~l~>ûnƃ*ç音íü“ÓÙ‡O„ŸûÞaæ§ÏgQÍ|ÎA \ôÌö\èùévö´ãl±ÌjÑ}²X‚šW¢ûxád÷·Ïð·W&Nð7ØôÝ8dÞ1!|÷ñãÅRJÑ{ïàÖ{Æïÿ×Xïœ3RQ0íU÷„~æ97Þt?po˜Âõ0ÖÞzé¿9ýÈ"9•Åö^ 7?ýóìôWO"ïóFu¿[,µF`ûmžü2T±<ú6N#EF™ôoòä²LžçÉ«<*<|Ýåá§yt‘G«<*dvy´Ï£CãÛCááŸeÈÊð×eX»É£ÛÑbnzo¥ ®|=7|¾ä`F¯á¾úËz n®"0dïÉêæb–\„¹Nô:üŽ@ Ë„ë¼M“á£ÂnËL®㽈ôOnn×w_Þn®®6×Ü+p¦œ9 †÷“"ÚÃeäüͬq[øCI¨fZÑ'j'g/V×›køw¿Ù]œÂp©¨Àq$¥eEZ8•Iscò žl÷—»ó/÷ëÍõêf“¾«õ?l®K›hBD!¸(4!zQŠ'š¾×‰]BóóÍêÕ]Rs™ gáÆ/Ô$8^K¨ ‚K‡XǶgªèã+,ð¢÷»¥t#€nÿ,‚yt{„€DJˆ9¸ÆÁ0 ¾Œì^-„í&Ò°°œƒsƒIνè¾_Q—`|a Àôè$c %¼ó¶{ ¡°Xï—@ 3 ¡»Õé*fºWÜÌs¼¼r4ÜÒÝ/ áÀ9³"§k QQ`7˶C‘€½(y™£¥C‘î0jb0WˆŽœÒ 2;"òf¤>í´qv š–’p tSȃåÕal¨h'8ÿCî‚Dt[Ü×8cÀ¯gEl#· ?øs˜uLZØ9*Þàç2ž¯¥¼* âZ.Ak/–ÀK2 Ák0Í}Ðîép]d[í Öu¹h-CÔ l$™b^¶ ¾I2£á.qÊŒ‹ptÖTp‚=Dðš`¢BiÔ¾R¦ÆômйÎ'Ér(‡HNÁ±>/ÚE|â´eròãgœÆêgᤘ¶°2O®"fC°=ΰèÔñ†×q º:ÉŸ!ö Fýe‹œYzóeð°*¼û×âôï3|ú•98WrlgçA‡žiçºA~Ž>ì½¢–úQ\ᘮŸ(é|À^«9òJ`°ö>ãÌc‚[ŠŠÆù]Ž©€Õüèì£bKñÒÔšƒ_Ô`Lqåã)€_æ@Íž `ÔmP8⇠î+N|ì#³ˆkŒõÖTö°ŽÔ5œTeŽƒbË=™ˆ{ 8zzdï}\Ì8†ñHAYð›Oý÷>øob‘ÍjãnJ˜z·A/Ã9¦Õ”rpVp•Ã¥—Ä!Ò€c¢Ì“YêÖÉéïÇ7\¡¬`J”1é¸á÷Ⱥ'aT>>\‘quUpº þU2Ý Sò¯™¼cµFa+äÞŸJ!s U“^í7ÊÞƒ°«vî­J7a>¹.׉!ˆ‡É4xÃ-þêà¬<Ä¢Ùç†ø ‚Z ÝŽgF·ƒ‡ —¡žÓŸž&Œû_ßC¤žÀ/«SGfÜ™•sZ ‘U\Àõ•CÍHxW8¸Å( QfÉ¥±Áû„M 6{'ÑLFÙºÂXf3nꂨ¨=Ëj!¼S}“8!‡5wcšºØ$ƒ¨.BꚉÑŒà vä@óq¹nE P2ˈö.Ûk1a pª;uAp6ÑW!Â~¼—¨â7ª_$eÜø®0ƒé@tÀä®ÙÄi ÓôÖ? Óbä`02bL%¢5‘3†gàZª£»‘q_à ,Q‚Oñ¼Ä¢v›£+)ÞÝdÉY‘Šh#©4ÿ=ò1©”]_8ýx—´ÈÕ(f¬õ9¼=ÂÞTÇtÿž 8$šËº"Äɹ/+t祿ìù=Ï™~¯='Ò”RÂBÙá+4fYåø²‘"\ïôÖpƒ!wCæ#g0öhYø¥ã–žúž8jPQ~¦À ½hÙ19óQ>†d…>ÎnËÏ$^Ç•Új ?ã}Ù| UŠÂÁKdt“¦DõÄ33Y‹6°ó2‹Nc˜³±ž¸°ÂŒ€Ûz’õu`^Ì.9cS2"²Iõð,€ä’¼¢WTr”ãÓI¸D|®¯\Ã:‘†àúY¸D â¶GÞ’¸ãéâ&ʹ&gg,p)¼s»ýóá3ñ 0»)ÏèÍö“®c"º|˜§iíÿ(îiƒµ‘e~–Àm¼—#pª{AB©¤Fx¥½¢J—{†> p Ù›èq¸îÁ,C÷j98­Ñ%÷² `?ÖXzgÐ`\¢4Çx’—N‘°èèYćH ô.¢‘@ø+R2&E#$Æ !%\J€íý.í ŠÀC?m¦ƒ\ŠÁ@±p âÕë½â‘'C å½(68ô·`àéÊf½¹ê¦m^_ä‰L©FáL(Õƒ+0ñ䟂¡5ù}±Ê ‰qH*[†ç=$Å«–\Ç)™Â0?º2)È nHÚ†À—^ðq' ÇJâÔ[â6£c‡˜¯Æ7z!!Âåðœ¬Fnq¬¿•pÆ+šø±×—*„TpuU‰®qCÅ+hDÈ5ïºêã×4á)ýX,ð¢¿èoô(8 Ñcè–2€Ái·ÀÅDdÙôñ÷2€A»ÅÇN¦ýaíR¬ ß„ŒGæH¶ZeÝJrò&e!V4n@iV¦p¥§:Ž‚H#Ï:Â芾‡­R·ÛB|¤ÔýÅ›R’*Å¿VU®”Ÿ6F¥ÔôU£xvhŒZµÄR8>^âÒ}¿iŒÚ…$oz>ç¡…¤XR1/$eúU!éëî‹ÝÍæúlóò&”§¸ ÕÉÍ@NuÁ>ñ·à áO«l³Œôº²r±ìƒé8Iékí }Tõë>& ÙYà‰Š A­ÊŸh(‚O~\nÔx“À¿˜W 0«È(†éôÕ? þ–>´"y°^fêGÁ[ÚÝ®úmð¨!üÜŠrÔ§=¼åxÉíOÉ“?·¢üÜŠòÝŠrT?Uðp¿?&¿ßm´õß¾FRm©þ§n©B3Ú÷Â÷ÒR#rKe’¿iK³®j©QÒ–Y ¤÷Õêp¸Ø]M¸3¬êÊáÒîœÈÜÛŽÔ†Ñ[mmÐQZM?º‡Ã9ëÕq=ÄS¤QIõšÒ»ÃM­émØjú¡(­ µÓ’§IÉ6Ïô¨þŒ¯1xàˆX[”=vû’4eUg¦…ÊPÕ„wÕѤ}àç cqêµåÃÀ½•&sH¸¢»Jîüb]Gþ°å„&vJæ'dv`…p’¦¨P©å™¨ñ s<ƒfÞ+ H~b\»Ïñýê2àë^r¬¤ C}@6N:7!b½CõÊèá=]ê`—u‚j9,¬[r¦^ÈKeàýk]£¢†Ç¬á®Ð UÜ6qZqK8Ù“Ä5ül­mÒüÅþPæG=2HØòÑ‹"̲0;qð?‰nB­îº‚!gæ~/!hK@ {˜º(9¨Qá½ i˜ªýbŒm\!œ«QCsâ Rê/¥C ¹±l†_ûQEe9jœ ê~ÕN#Ñä¡\ÞXЮk*±\òÆ´.)‡ºX>‚Û)ÔGme`«s›F«éF„~Ȫ‹‚$”é¡®žSUÆó®êdhüwÑE¨ÊÂn° V!ѤÀž“s~Õ̺íA0³Ö uA!ðÿ39‚Þ(\]ïWÑ3–rÊžGIr˜•Ȥ1Žô9«ì.s>á÷ê^€º¥%('âGW_NT'¥:&G ¾¨^?4p5Ù0B½côó±¤Lrž4!ñÛÙÊ$FµÂ¥ÐÀ®Š…ÆE®Óbx¹»áCNͽG`1-%¯õAŽ¡*ý# w¤ùÞŠè+Þ¨;ëj ËÇ­Ž8=ê„•lx¼Ä?-Žp_·ïd¡GÖ‹ŒbÝðó6ö®â ëd7Ñg){'¦:`H…zO̾îñ úò“1K}SPþC$@û 2ÊÏÓY`=k¢+¯P>¤ü%­=çLu3º£…•}ê?P@•Ž(¶v‘C~´jPzÄ[_VëžTDÞ[Œ|ÌZÓíÕH¯¦Ú‹Lt½Æ‹¼‘ᣣe¸\´ÿë9ýO”[I’Ï&²Ê¨õ@/oÕVâäm³ûoõ¦ùqÿúì~|‡¶²ûéÉÈB²œ¼:4üê➀¢·ÌïË8Ñq¸“-þ¿!C‘BöB‡7+>ë•TLðk‹áÿ¨T²ÔX£ ognÌ$ýìtöWøïßeìÁÁendstream endobj 86 0 obj << /Filter /FlateDecode /Length 3654 >> stream xœí[mo·þ®æG‚Øk­-ß_‚¶“q›8AmA‘ÅY§ÈŠuwŠN¶£/ùí!¹äp{ººBâ >ˆâ’3Ùápæ!õýŒõ|Æð'ý>]‰^ùÙë#6ûäÈ(ÛKËgVÞ;3[9azã}î¹1B@à"!Maì vtò '¼g œ½ûëüX ˆfŽƒ&†ÎÿäÖ"·.I+Oùsî<.ç9…6„’¡ùqn]42ëÜÚäÖ¶1w[dø±4Yiþ±4ŸæY7¹õ2·–¹u{ÇìUC¶ ÙÖu=(— ܾ<ð/¥ù!„&»È6q­Óüp—úª!äekÙ„ã³½ Ûì¥Ýò$â ÍI³,g¿ËžåÎÓKBþpßIñ§'ZÌà”³Ò…}§)D_YФO§êË%øìTP6²}²¸¹ØàùÄEèëD¯Ã÷î½4L¸ÎÛÔ&½¸gúph[&SH|zóryûøåÙååÙ5÷ <š3Ô X+@vºÆu8ýÛ8¨-8bÐd öôôùââúì~oÎÖç°š« q eŒ®HKå3iÎ] é}¹Øn/Ö/€ˆ.Ò LIpnX‘γšÄÇ›ËËG——Üë°ÂÄÉ_‰á¬Ê4„…Æjóâb}þx³<»^Üœ¥9%·ðá ‚­MKS½æ’š`ˉ41íâcšÎ¯n“­ Ûz&8o 5È‚„wåoY/ÓóFÖ_f•Ñ*4\ƒ<ïµ3*ãAüs7S£gŽPÌÆ³/6ñè“2¸êìñnt~¼*'9aÚçàºôž–Þ „zÅV,¶uV“seÃ0…i]nÓá19¬ qÀeDZ@{9j§°SCz ß–T†’Æ% {s‰€XÁ@.àŒ‘8 'ÜIéZZ½Ë=­`”9¤N…̹hÕ½5ÖÛa°AÚ¶‡©L±XêεXJÐÔ–Ëé2XBI—Æê±¤Œ˜Œ!C WH ö"d¡› ;*™ðhRdP›œE 7=ñž˜3J q{óõ/˜£Ôé)a N 4ø¤fžï1,hÙr7hNÈÓ 6Tºã‡jãl4¬ž¨[Z†N•7Ð2ßc×È‘›¦aa»&F¾$­³w²4cÆP,ë†ÐöXTì úP¾"»÷¶^-ƒ—éQÕ±k^Áëȼi'Ì«TØØ§Åx›à|6ÄÞ+èWÜ3å°€+å1õ©1à´ØÄ^ŠVÝ$ún êíAh8Š÷¸dî~€Ä¹M”B§Dyˆ˜”Å&ʆyÿ9 Ø7q&dSNJ7jÌ)À‰låþUÄÌ/KÊz;-¨2" èŒå_ J¯sЪ·M‹õÓhqÞͶ¨æup&Ý­É~ú|’s' 8̪=𔜥›pÜr­8nªi(Ö9ÞØiÈy„Ø ¶Ãˉv:œ´MåMV*ÌrÜŽbB¤å&Ç6€OÕQâˆØž¢qù<¡Ã|𺄽! µ1Z £¥¯Ùž—¸låFCE!Ý”ÿðï´«ø"¦@\å ó~ð1Ѫš¦púz^´³“dV"†¤Ò‡Ä/€¡~¸YiàJŸÞq.÷\ç-jÝÀ˜ |õªÑWÆm[ ü÷ûܺ½#r5¬”,š¿ B÷iîüª±°"Û놮s«o€¢×Õõ|J¥šßÜaׂü4sÚ|½W´âÛÆ¸ŸÑ®Íå¹÷#½Ë–ܬ…kWVثۃ¡Üß®4÷=_/¤;-¤Gõw§ð°ÿ öQ[œå;áñ¨ Z?Êë)RŽLì{O¢"z rEQ†¦<*3‘E㱆<œÚÑ?zL¦Ž÷ ¯dЯá4åLvñîªÈÁ? ¸¤6óÐ2fÁ$^¯_Í5Ö xõLîbæl4÷1§OÅÉ6! é•Û†À1âßÚ1¬‘.J‰*V$¼‰ÏCÀ“y÷8¬ÊH‘B7 WCyèù@Ü.ÜB` ûPÙ(ðP¼aΙ*ˆÛ°jø±Q`R›äuÐgã[|î"³­¿(U­°¼—”hJ_ ¬ÛøÙºúþâv«ÞÑ)Ëv¨½0Ip߆ OÂOm±Ì!L[ÕàJØ@¸}nÑš«R‹µ_Âl§ób~>Lt™ m35ñœTaµXù ÈfuHq›”\J÷«…—zkâ–¤Æ;-ðÂ)Ä.[Üí IÉñŽ[I-:HJÑÝE!ð2¤¾nAøÆ©P•Qd˜ºaÄoçb(¾ñ¶%-Ýã[¤‰úpT˜©p“à&YÑyQ&MQ‚¹ü®xætiª ’’NTOuJÙ¹Š„ ™…r2Üž¶ Ú_¤¼%ʦ3—qÖ)ZOŸ…‰`AÍ¿ˆ‚0.ö\&Ã:)õ„ ËÕc ¹ Ù §Ì@†€µi€{íKŸÁ– &EcvP•D¶FU>"Ñõy{U‰@”†ôbg¥o¹¥w9!´|—óaóA øÞŠÖ¡G,å‹—ìaM¾û2âr&ÞXÀïw.™Ý©†û`¬ë=W‡ Ãq3„Ë£ÅW¤ˆ Â`°^ã ¨‚q8ÍÊÎìÕNšf!æ\Cªy«8BrO7ÂËæ6¥^þ¬¸öèr ¬ÓÙñk5ì6ŽWÁoê®%2,Àµa^/hä»É¦ÌÎe{¢mªgˆ-„F¡‰”<¡¹½£”ý¡Yçì–·ÍüÇ·£kQ¼ÿ¢öÞËÅ»*ýýˆIé{|‡‰W )¯ªh)·(µÜ£…ÕG¹mi¯àdïç–hU¢_‘ÙCë]²ü] .â´À¦2.ËUL½ß[¤‹XßjÜÓ†4×D±¿jã~Þ°@YÀOb©«{Ú†·.ù-õç–¨Ÿ5B}30Ÿ6dmí€C 5zKp‡Íþ¿Ýu¨Í~ 7}Ë °ÿ:ãгëѯ;¼=j°."¾"2ü´§Ó¡1ï.óº~6=¼5›jŒÎÕÿ‡2~RèÆ½rnÝë¯ãXÃý!îH EÞa`}äåÁo¦‘Ÿgvê™ÅÐÚÆ‘°ÔoJs©«!(D7ÛAŸJªá¥VèF €BéVø×¡wšïº(`³.%’­ªÎi¥ªz1ÿ¼š‡ÿô3vüdfX÷¸ÚôøØŽ˜YÀÁ‡gÌM€*“Ï*†—(‚å§Ç#'Úy~‚Cóéšß®L=êºýX¤~"Z<-=æpžO@*ñ5‡–®¶(A°®2&@_÷Œÿÿˆ àÛ~¶B\(ùÊ€nË Tαg Ñ:Kˆ%gÖ»«F> stream xœ­ZKoǾ/‚ü†E.é ¼£~?N(YI$9Ȳ|ˆ¢Erd®(›¾ä¯§ª«§»z8#F@ ƒ3=ÕÕU_}õXþ´•ƒÚJüWþ?»ÙèÁ¦íϹýËÆÛ0˜ ¶Áy5D¿½ÙDíŸR}r½y½I2 ÞÆmðVFîú$ª4x—w9kË6Mø+á¥cç9àmìΛ´Š)Á1¥Ê®“7q°>1¢ C”ŠëÔ6•Ýž¢S=mR‰&·—›Ÿ6*r[þ;»Ù~s²yöJ§m’×~{òvCFV[eÍ ”RÚmOn6oÄŸwà…@ñínk)m0âå×/v{côRÂZÊdƒøîO^Z/¾ƒ¥‘)¥KؤŒÞˆçðØ*ïàñËöåëÝ^ŽðB™Ý'ÝÀ…“Ñq{òbsò‡7∛MJÖqB´ŠJ*q³CÑ`jñ7¸”@¸¸ÎzÃ:‰ ÐÔ9ø2ˆo²)Urâ°Óaö>àJKe`+ˆF¿vÚá–¤¹ÅáÞ0i™í¥4IÜáîZ1Îv€ØÄ;Ü)TEQœ…ZÜ7ǦÇU6]Š1zq›E$o•¸¤ï\„kúvÈ¥Ö U­ê7Ù‡¬_²`2|œ/“L>Ò+'a9¾m»?f+áá?ã P¾OÑV“Ee‚HZH^ük â ³>;â];a¼Ïj‚Mñš2VsÕôØk²ÀG‚k­óñž¹¯½¼È24Q¾OÎ͚ЫvÔ-á&$“ð›ýôÑ^©!9§èÛ†„ 6Ÿ [Qã¨22Ð JZïß1P>â9 *W¶\øP%s{“Þ& ŸîH\Iœ1dŒ‚¯¢8…¨*œD'=˜ÏBT•tÒ¶ƒ(áÙjïWTbQ³"¢šÆ‹ÃqRCÌ‘C´ð2*.í–¡öºKƤ‚Ë=¨E·Ó†+ÑÝtûÍß%(ZÅÅøAVëà¬}t©‚0fŽÊ¯ŠR)G`¡NCPváùnåõ:ÜÙG&VàÊViˆCû9›Mx#£Ù¨9l~%e¥÷ Ï•ÚwȺÅc `ÆrKþÏ,W4a•JãáHâà½s–ö® ëm>Ú›aÏvd¸bóõIX0ŠOœhcÈñ1Ýî{Ñôß6~]ò-™¿3Vö”NŽeëLÎ;Î4g 'WÔØaßAO¾{¼m,y»ë2IÙqV/‚?Í„5’¢îÔ3}ÕCQR­±9ÛwÄÅ£ Þƒì§SlC%„ M0{fúa^)L:â[æÓz õPÎTƸŠå)n¼jdÑŒuÙîÀ2³=Ò3°˜S†7ze+'г RçcèRñ@ªEé (j»«Æªãlž9¾Ùñ‡_‘”˜û±Ýû¾Ej_&9§ÔÍd#¥¬¹Hñxí÷ ”Ì#‹6ìQ\8DWsmƒç[Fšw´9ÔÄ8coæš Øé¬°ÿn*7àŒt¤³ÀüìzG2Š•óÉÐÙ×UE©ßSá"·“vÞ”fùë2çVÂMŠðÙ€Þ]kÇgÕO—£”Kûß2x‰YFAåÅ‹¯«¼…ôh •(­&‡óÎ,“û&.$BVLóUðïûsØôA9]Pv©‘žÂµòìd!.Xw²Â›7$CcÔıXÊ8‰M Ù'©(#([0>¥Ø¸ë¡kZºù Ž$Ä€N§;b´<(êò´ì p^!´\™wÏy<äú¹éeHY^n—”(]Ç&¿mYî,Ûø­Mv5]Œ9ôHÇ=Ž*xˆ%ᓳ&~Ø}‡eÙÊx ëÊÚ´•UÖììXu]û²^¥/Ηf\é› 6뙳ZÖÉób²k3nŠÛ Çœ™d‘Ò¹7‰2Ô”~P¾šXªìTmP¿žÑÛ$€ ‹,‡å‡ñòªU\ku( 7@œñ!7$üv"k½—ÿCt\†bž/{(H¤Y-Ï–v݇á³WFñ&AAŒÔÁðÍNA$oÅ›…Õïê껺º¯«‹ºº^Xµ·wu¥ê*Õ•­+¹pîlµ@é ¦N¡RúqòGGØÜ‚oþQébæ`ŽäÅ;ʶÒÒ ÖŽZ_ã#fV׌ì;Nɇ™oöÐ 2@Ú0ýdÔ 8 ¨vô¢š-áìÖ¶ç6ëK€Ìœ~Å›<©Üã÷uuýð’~ÛSøËÏ ‘¬ð|ÆwB«®ef£¦ù IŸ“‚˜¢û´;]~µ/×z]¶‘$^µ n¥B½#YHâóœP[>¢fÞ<È è5·Eä]Æœ+Åv'?nðÚ³7ÓX>Â9ò’(‘Öt²|6È0~˜W~U.WóÇÈ[‚.ºê¬ÍŠ%ýúȾ¼_AC  ²fðÓÏ'…P1O)…®ëeÙgªúó Ø)\OéÐX—ѧ:X5ÁÑ ­Úë–§SºKì+©úS+(w{`>¸±åÇéD ûÁÃûùˆ|Áî ýÄH_c«°8ýcY†ý‘ÀžÑÚ ã=t‘¦¦7>w?e’¢n¾”œË¿M½+7“Ÿ\MlM@.Zô@~ôw…1Y94Ö_{~iª<.­éW&¢KçõcyØôÿÀ4\§Me^2FêfÝ$¦4‚}ˆ´6y©Fe“4¦Eþ™:¯îï'ø4þiPÏÆaÏO6ÿ€ÿ%øyendstream endobj 88 0 obj << /Type /XRef /Length 117 /Filter /FlateDecode /DecodeParms << /Columns 5 /Predictor 12 >> /W [ 1 3 1 ] /Info 3 0 R /Root 2 0 R /Size 89 /ID [<6171a3b1e2c735515f209c695e453828>] >> stream xœcb&F~0ù‰ $À8JÒ‰üÏÀÓÈf“…¼P ˆá‘bK@$ó.)øD2*‚Hvg0ûˆ”U‘¢Á"f Rƒü“À&,“–`Ù‰`ñH0û?däm±…YÀâ¯Ád?ˆäÖbáa7 endstream endobj startxref 82751 %%EOF HSAUR3/inst/doc/Ch_analysis_of_variance.Rnw0000644000176200001440000004721114416236367020243 0ustar liggesusers \documentclass{chapman} %%% copy Sweave.sty definitions %%% keeps `sweave' from adding `\usepackage{Sweave}': DO NOT REMOVE %\usepackage{Sweave} \RequirePackage[T1]{fontenc} \RequirePackage{graphicx,ae,fancyvrb} \IfFileExists{upquote.sty}{\RequirePackage{upquote}}{} \usepackage{relsize} \DefineVerbatimEnvironment{Sinput}{Verbatim}{} \DefineVerbatimEnvironment{Soutput}{Verbatim}{fontfamily=courier, fontshape=it, fontsize=\relsize{-1}} \DefineVerbatimEnvironment{Scode}{Verbatim}{} \newenvironment{Schunk}{}{} %%% environment for raw output \newcommand{\SchunkRaw}{\renewenvironment{Schunk}{}{} \DefineVerbatimEnvironment{Soutput}{Verbatim}{fontfamily=courier, fontshape=it, fontsize=\small} \rawSinput } %%% environment for labeled output \newcommand{\nextcaption}{} \newcommand{\SchunkLabel}{ \renewenvironment{Schunk}{\begin{figure}[ht] }{\caption{\nextcaption} \end{figure} } \DefineVerbatimEnvironment{Sinput}{Verbatim}{frame = topline} \DefineVerbatimEnvironment{Soutput}{Verbatim}{frame = bottomline, samepage = true, fontfamily=courier, fontshape=it, fontsize=\relsize{-1}} } %%% S code with line numbers \DefineVerbatimEnvironment{Sinput} {Verbatim} { %% numbers=left } \newcommand{\numberSinput}{ \DefineVerbatimEnvironment{Sinput}{Verbatim}{numbers=left} } \newcommand{\rawSinput}{ \DefineVerbatimEnvironment{Sinput}{Verbatim}{} } %%% R / System symbols \newcommand{\R}{\textsf{R}} \newcommand{\rR}{{R}} \renewcommand{\S}{\textsf{S}} \newcommand{\SPLUS}{\textsf{S-PLUS}} \newcommand{\rSPLUS}{{S-PLUS}} \newcommand{\SPSS}{\textsf{SPSS}} \newcommand{\EXCEL}{\textsf{Excel}} \newcommand{\ACCESS}{\textsf{Access}} \newcommand{\SQL}{\textsf{SQL}} %%\newcommand{\Rpackage}[1]{\hbox{\rm\textit{#1}}} %%\newcommand{\Robject}[1]{\hbox{\rm\texttt{#1}}} %%\newcommand{\Rclass}[1]{\hbox{\rm\textit{#1}}} %%\newcommand{\Rcmd}[1]{\hbox{\rm\texttt{#1}}} \newcommand{\Rpackage}[1]{\index{#1 package@{\fontseries{b}\selectfont #1} package} {\fontseries{b}\selectfont #1}} \newcommand{\rpackage}[1]{{\fontseries{b}\selectfont #1}} \newcommand{\Robject}[1]{\texttt{#1}} \newcommand{\Rclass}[1]{\index{#1 class@\textit{#1} class}\textit{#1}} \newcommand{\Rcmd}[1]{\index{#1 function@\texttt{#1} function}\texttt{#1}} \newcommand{\Roperator}[1]{\texttt{#1}} \newcommand{\Rarg}[1]{\texttt{#1}} \newcommand{\Rlevel}[1]{\texttt{#1}} %%% other symbols \newcommand{\file}[1]{\hbox{\rm\texttt{#1}}} %%\newcommand{\stress}[1]{\index{#1}\textit{#1}} \newcommand{\stress}[1]{\textit{#1}} \newcommand{\booktitle}[1]{\textit{#1}} %%' %%% Math symbols \usepackage{amstext} \usepackage{amsmath} \newcommand{\E}{\mathsf{E}} \newcommand{\Var}{\mathsf{Var}} \newcommand{\Cov}{\mathsf{Cov}} \newcommand{\Cor}{\mathsf{Cor}} \newcommand{\x}{\mathbf{x}} \newcommand{\y}{\mathbf{y}} \renewcommand{\a}{\mathbf{a}} \newcommand{\W}{\mathbf{W}} \newcommand{\C}{\mathbf{C}} \renewcommand{\H}{\mathbf{H}} \newcommand{\X}{\mathbf{X}} \newcommand{\B}{\mathbf{B}} \newcommand{\V}{\mathbf{V}} \newcommand{\I}{\mathbf{I}} \newcommand{\D}{\mathbf{D}} \newcommand{\bS}{\mathbf{S}} \newcommand{\N}{\mathcal{N}} \renewcommand{\L}{L} \renewcommand{\P}{\mathsf{P}} \newcommand{\K}{\mathbf{K}} \newcommand{\m}{\mathbf{m}} \newcommand{\argmin}{\operatorname{argmin}\displaylimits} \newcommand{\argmax}{\operatorname{argmax}\displaylimits} \newcommand{\bx}{\mathbf{x}} \newcommand{\bbeta}{\mathbf{\beta}} %%% links \usepackage{hyperref} \hypersetup{% pdftitle = {A Handbook of Statistical Analyses Using R (3rd Edition)}, pdfsubject = {Book}, pdfauthor = {Torsten Hothorn and Brian S. Everitt}, colorlinks = {black}, linkcolor = {black}, citecolor = {black}, urlcolor = {black}, hyperindex = {true}, linktocpage = {true}, } %%% captions & tables %% : conflics with figure definition in chapman.cls %%\usepackage[format=hang,margin=10pt,labelfont=bf]{caption} %% \usepackage{longtable} \usepackage[figuresright]{rotating} %%% R symbol in chapter 1 \usepackage{wrapfig} %%% Bibliography \usepackage[round,comma]{natbib} \renewcommand{\refname}{References \addcontentsline{toc}{chapter}{References}} \citeindexfalse %%% texi2dvi complains that \newblock is undefined, hm... \def\newblock{\hskip .11em plus .33em minus .07em} %%% Example sections \newcounter{exercise}[chapter] \setcounter{exercise}{0} \newcommand{\exercise}{\stepcounter{exercise} \item{Ex.~\arabic{chapter}.\arabic{exercise} }} %% URLs \newcommand{\curl}[1]{\begin{center} \url{#1} \end{center}} %%% for manual corrections %\renewcommand{\baselinestretch}{2} %%% plot sizes \setkeys{Gin}{width=0.95\textwidth} %%% color \usepackage{color} %%% hyphenations \hyphenation{drop-out} \hyphenation{mar-gi-nal} %%% new bidirectional quotes need \usepackage[utf8]{inputenc} %\usepackage{setspace} \definecolor{sidebox_todo}{rgb}{1,1,0.2} \newcommand{\todo}[1]{ \hspace{0pt}% \marginpar{% \fcolorbox{black}{sidebox_todo}{% \parbox{\marginparwidth} { \raggedright\sffamily\footnotesize{TODO: #1}% } }% } } \begin{document} %% Title page \title{A Handbook of Statistical Analyses Using \R{} --- 3rd Edition} \author{Torsten Hothorn and Brian S. Everitt} \maketitle %%\VignetteIndexEntry{Chapter Analysis of Variance} %%\VignetteDepends{wordcloud} \setcounter{chapter}{4} \SweaveOpts{prefix.string=figures/HSAUR,eps=FALSE,keep.source=TRUE} <>= rm(list = ls()) s <- search()[-1] s <- s[-match(c("package:base", "package:stats", "package:graphics", "package:grDevices", "package:utils", "package:datasets", "package:methods", "Autoloads"), s)] if (length(s) > 0) sapply(s, detach, character.only = TRUE) if (!file.exists("tables")) dir.create("tables") if (!file.exists("figures")) dir.create("figures") set.seed(290875) options(prompt = "R> ", continue = "+ ", width = 63, # digits = 4, show.signif.stars = FALSE, SweaveHooks = list(leftpar = function() par(mai = par("mai") * c(1, 1.05, 1, 1)), bigleftpar = function() par(mai = par("mai") * c(1, 1.7, 1, 1)))) HSAURpkg <- require("HSAUR3") if (!HSAURpkg) stop("cannot load package ", sQuote("HSAUR3")) rm(HSAURpkg) ### hm, R-2.4.0 --vanilla seems to need this a <- Sys.setlocale("LC_ALL", "C") ### book <- TRUE refs <- cbind(c("AItR", "DAGD", "SI", "CI", "ANOVA", "MLR", "GLM", "DE", "RP", "GAM", "SA", "ALDI", "ALDII", "SIMC", "MA", "PCA", "MDS", "CA"), 1:18) ch <- function(x) { ch <- refs[which(refs[,1] == x),] if (book) { return(paste("Chapter~\\\\ref{", ch[1], "}", sep = "")) } else { return(paste("Chapter~", ch[2], sep = "")) } } if (file.exists("deparse.R")) source("deparse.R") setHook(packageEvent("lattice", "attach"), function(...) { lattice.options(default.theme = function() standard.theme("pdf", color = FALSE)) }) @ \pagestyle{headings} <>= book <- FALSE @ <>= library("wordcloud") @ \chapter[Analysis of Variance]{Analysis of Variance: Weight Gain, Foster Feeding in Rats, Water Hardness, and Male Egyptian Skulls \label{ANOVA}} \section{Introduction} \section{Analysis of Variance} \section{Analysis Using \R{}} \subsection{Weight Gain in Rats \label{ANOVA:rats}} Before applying analysis of variance to the data in Table~\ref{ANOVA-weightgain-tab} we should try to summarize the main features of the data by calculating means and standard deviations and by producing some hopefully informative graphs. The data is available in the \Rclass{data.frame} \Robject{weightgain}. The following \R{} code produces the required summary statistics <>= data("weightgain", package = "HSAUR3") tapply(weightgain$weightgain, list(weightgain$source, weightgain$type), mean) tapply(weightgain$weightgain, list(weightgain$source, weightgain$type), sd) @ \begin{figure} \begin{center} <>= plot.design(weightgain) @ \caption{Plot of mean weight gain for each level of the two factors. \label{ANOVA-weightgain-fig}} \end{center} \end{figure} To apply analysis of variance to the data we can use the \Rcmd{aov} function in \R{} and then the \Rcmd{summary} method to give us the usual analysis of variance table. The model \Rclass{formula} specifies a two-way layout with interaction terms, where the first factor is \Robject{source}, and the second factor is \Robject{type}. <>= wg_aov <- aov(weightgain ~ source * type, data = weightgain) @ \renewcommand{\nextcaption}{\R{} output of the ANOVA fit for the \Robject{weightgain} data. \label{ANOVA-weightgain-output}} \SchunkLabel <>= summary(wg_aov) @ \SchunkRaw \begin{figure} \begin{center} <>= interaction.plot(weightgain$type, weightgain$source, weightgain$weightgain) @ <>= interaction.plot(weightgain$type, weightgain$source, weightgain$weightgain, legend = FALSE) legend(1.5, 95, legend = levels(weightgain$source), title = "weightgain$source", lty = c(2,1), bty = "n") @ \caption{Interaction plot of type and source. \label{ANOVA-weightgain-fig2}} \end{center} \end{figure} The estimates of the intercept and the main and interaction effects can be extracted from the model fit by <>= coef(wg_aov) @ Note that the model was fitted with the restrictions $\gamma_1 = 0$ (corresponding to \Rlevel{Beef}) and $\beta_1 = 0$ (corresponding to \Rlevel{High}) because treatment contrasts were used as default as can be seen from <>= options("contrasts") @ Thus, the coefficient for \Robject{source} of $\Sexpr{coef(wg_aov)[2]}$ can be interpreted as an estimate of the difference $\gamma_2 - \gamma_1$. Alternatively, we can use the restriction $\sum_i \gamma_i = 0$ by <>= coef(aov(weightgain ~ source + type + source:type, data = weightgain, contrasts = list(source = contr.sum))) @ \subsection{Foster Feeding of Rats of Different Genotype} As in the previous subsection we will begin the analysis of the foster feeding data in Table~\ref{ANOVA-foster-tab} with a plot of the mean litter weight for the different genotypes of mother and litter (see Figure~\ref{ANOVA-foster-fig}). The data are in the \Rclass{data.frame} \Robject{foster} <>= data("foster", package = "HSAUR3") @ \begin{figure} \begin{center} <>= plot.design(foster) @ \caption{Plot of mean litter weight for each level of the two factors for the \Robject{foster} data. \label{ANOVA-foster-fig}} \end{center} \end{figure} We can derive the two analyses of variance tables for the foster feeding example by applying the \R{} code <>= summary(aov(weight ~ litgen * motgen, data = foster)) @ to give <>= summary(aov(weight ~ litgen * motgen, data = foster)) @ and then the code <>= summary(aov(weight ~ motgen * litgen, data = foster)) @ to give <>= summary(aov(weight ~ motgen * litgen, data = foster)) @ There are (small) differences in the sum of squares for the two main effects and, consequently, in the associated $F$-tests and $p$-values. \index{F-tests@$F$-tests} This would not be true if in the previous example in Subsection~\ref{ANOVA:rats} we had used the code <>= summary(aov(weightgain ~ type * source, data = weightgain)) @ instead of the code which produced Figure~\ref{ANOVA-weightgain-output} (readers should confirm that this is the case). We can investigate the effect of genotype B on litter weight in more detail by the use of \stress{multiple comparison procedures} \index{Multiple comparison procedures|(} \citep[see][and \Sexpr{ch("SIMC")}]{HSAUR:Everitt1996}. Such procedures allow a comparison of all pairs of levels of a factor whilst maintaining the nominal significance level at its specified value and producing adjusted confidence intervals for mean differences. One such procedure is called \stress{Tukey honest significant differences} \index{Tukey honest significant differences} suggested by \cite{HSAUR:Tukey1953}; see \cite{HSAUR:HochbergTamhane1987} also. Here, we are interested in simultaneous confidence intervals for the weight differences between all four genotypes of the mother. First, an ANOVA model is fitted <>= foster_aov <- aov(weight ~ litgen * motgen, data = foster) @ which serves as the basis of the multiple comparisons, here with all pair-wise differences by <>= foster_hsd <- TukeyHSD(foster_aov, "motgen") foster_hsd @ A convenient \Rcmd{plot} method exists for this object and we can get a graphical representation of the multiple confidence intervals as shown in Figure~\ref{ANOVA-foster-mc}. It appears that there is only evidence for a difference in the B and J genotypes. Note that the particular method implemented in \Rcmd{TukeyHSD} is applicable only to balanced and mildly unbalanced designs (which is the case here). Alternative approaches, applicable to unbalanced designs and more general research questions, will be introduced and discussed in \Sexpr{ch("SIMC")}. \begin{figure} \begin{center} <>= plot(foster_hsd) @ \caption{Graphical presentation of multiple comparison results for the \Robject{foster} feeding data. \label{ANOVA-foster-mc}} \end{center} \end{figure} \index{Multiple comparison procedures|)} \subsection{Water Hardness and Mortality} The water hardness and mortality data for $61$ large towns in England and Wales (see Table~2.3) was analyzed in \Sexpr{ch("SI")} and here we will extend the analysis by an assessment of the differences of both hardness and mortality in the North or South. The hypothesis that the two-dimensional mean-vector of water hardness and mortality is the same for cities in the North and the South can be tested by \stress{Hotelling-Lawley} test in a multivariate analysis of variance framework. The \R{} function \Rcmd{manova} can be used to fit such a model and the corresponding \Rcmd{summary} method performs the test specified by the \Rcmd{test} argument <>= data("water", package = "HSAUR3") summary(manova(cbind(hardness, mortality) ~ location, data = water), test = "Hotelling-Lawley") @ The \Rcmd{cbind} statement in the left-hand side of the formula indicates that a \stress{multivariate} response variable is to be modeled. \index{cbind function in formula@\texttt{cbind} function in \textit{formula}} The $p$-value associated with the \stress{Hotelling-Lawley} statistic is very small and there is strong evidence that the mean vectors of the two variables are not the same in the two regions. Looking at the sample means <>= tapply(water$hardness, water$location, mean) tapply(water$mortality, water$location, mean) @ we see large differences in the two regions both in water hardness and mortality, where low mortality is associated with hard water in the South and high mortality with soft water in the North (see Figure~\ref{SI-water-sp} also). \subsection{Male Egyptian Skulls} \index{Multivariate analysis of variance (MANOVA)|(} We can begin by looking at a table of mean values for the four measurements within each of the five epochs. The measurements are available in the \Rclass{data.frame} \Robject{skulls} and we can compute the means over all epochs by <>= data("skulls", package = "HSAUR3") means <- aggregate(skulls[,c("mb", "bh", "bl", "nh")], list(epoch = skulls$epoch), mean) means @ It may also be useful to look at these means graphically and this could be done in a variety of ways. Here we construct a scatterplot matrix of the means using the code attached to Figure~\ref{ANOVA-skulls-fig}. %% %% now uses wordcloud::textplot but xlim/ylim needs to be increased %% \begin{figure} \begin{center} <>= pairs(means[,-1], panel = function(x, y) { textplot(x, y, levels(skulls$epoch), new = FALSE, cex = 0.8) }) @ \caption{Scatterplot matrix of epoch means for Egyptian \Robject{skulls} data. \label{ANOVA-skulls-fig}} \end{center} \end{figure} There appear to be quite large differences between the epoch means, at least on some of the four measurements. We can now test for a difference more formally by using MANOVA with the following \R{} code to apply each of the four possible test criteria mentioned earlier; <>= skulls_manova <- manova(cbind(mb, bh, bl, nh) ~ epoch, data = skulls) summary(skulls_manova, test = "Pillai") summary(skulls_manova, test = "Wilks") summary(skulls_manova, test = "Hotelling-Lawley") summary(skulls_manova, test = "Roy") @ The $p$-value associated with each four test criteria is very small and there is strong evidence that the skull measurements differ between the five epochs. We might now move on to investigate which epochs differ and on which variables. We can look at the univariate $F$-tests \index{F-tests@$F$-tests} for each of the four variables by using the code <>= summary.aov(skulls_manova) @ We see that the results for the maximum breadths (\Robject{mb}) and basialiveolar length (\Robject{bl}) are highly significant, with those for the other two variables, in particular for nasal heights (\Robject{nh}), suggesting little evidence of a difference. To look at the pairwise multivariate tests (any of the four test criteria are equivalent in the case of a one-way layout with two levels only) we can use the \Rcmd{summary} method and \Rcmd{manova} function as follows: <>= summary(manova(cbind(mb, bh, bl, nh) ~ epoch, data = skulls, subset = epoch %in% c("c4000BC", "c3300BC"))) summary(manova(cbind(mb, bh, bl, nh) ~ epoch, data = skulls, subset = epoch %in% c("c4000BC", "c1850BC"))) summary(manova(cbind(mb, bh, bl, nh) ~ epoch, data = skulls, subset = epoch %in% c("c4000BC", "c200BC"))) summary(manova(cbind(mb, bh, bl, nh) ~ epoch, data = skulls, subset = epoch %in% c("c4000BC", "cAD150"))) @ To keep the overall significance level for the set of all pairwise multivariate tests under some control (and still maintain a reasonable power), \cite{HSAUR:Stevens2001} recommends setting the nominal level $\alpha = 0.15$ and carrying out each test at the $\alpha / m$ level where $m$ is the number of tests performed. The results of the four pairwise tests suggest that as the epochs become further separated in time the four skull measurements become increasingly distinct. \index{Multivariate analysis of variance (MANOVA)|)} \bibliographystyle{LaTeXBibTeX/refstyle} \bibliography{LaTeXBibTeX/HSAUR} \end{document} HSAUR3/inst/doc/Ch_meta_analysis.pdf0000644000176200001440000021336414660150121016704 0ustar liggesusers%PDF-1.5 %¿÷¢þ 1 0 obj << /Type /ObjStm /Length 3774 /Filter /FlateDecode /N 75 /First 617 >> stream xœµ[YSÛÈ~¿¿¢ß&SSQïÛ­©T! $ ’pkŒ-ƒ&ÆN¼d™_Ïé–lµdA ŒQKÝ:}úë³K„IŒ%Šm‰&Öhbˆ†Xâ Žp®ñ„ gg„k)áá–Á‰ Ü8‘D0¸‡+"¸W0ˆ©¡ß¡œ†ÁDx Ñ’YÂ=‘ î0»1n"Ò{,ˆŽŽ®+¢ÕDyœÄ-5UãÑÖOŒÐ@œÁZ¬&’+,L"ˆu'%Ö{¸®ˆã0Hj℃ë†8…ý–8£`¼#ÎJ8zâœgD1â¬Gqâ52!` `„î7ùÏï“é`FžÀÉÑdp¹ãéd°èç@ïåñ!yy=™Ígýiñe˜1øƒ1§‹Ëòþ¼‚—Šp„ï%°~VÌGù²—׬d’»J±mV@°yyôµAPeI¯_Ò¯h—×l9>€+Kše;Ücmy]Ä£¥,7C­6ɍտ„{‡å†úg•4íNcÄ/íÿ¡ÝBÙEÂC<‘ñDÅ3ÐÃpˆA¹ÂÁÅCòw%»Qœ+É'sœCÆ{¤ªïNÆó| }6’=½ÉÌࣽÎÀÐ9Å3çñ†ãÞÆWzr’Ï&‹ifÂiöš³¨OÓIÿ4Ÿz¼·lå?æ@àÙ³:‡ 0€D1ÍIIâ°·jÇ{–J›Ü÷Tº—Ïp®ˆýøé-Ff%l¼Ï8ì$/F#\CœÄÕ&áª2au¥IHÅrPŠF)bb°E„Âq¹Õ[xÓFf$sÉÛ[„É'ÜØuÜ”´¿R lë(è©àuâDéLc#ᄳu¬Oóo~ [A}à R4r¥C¦2h¾lÛ•îµ äãl€Ð™ÒX¶Ø¸l¿n7¶²q›)yÖRS±Õ¾­¦þÔÔ°{¨i‰ci‡J Y.y–E ÕF +ѺUË*AAÄl%4²†f*ãKMdÓ”æ²mó{(0Í/€)×H¥d"3º&•ëðë•6@DI¬;¾–3*£Ž*â¨)Ì "þ@ qˆvz³<ÜMÏÏw?ý±{´ƒóŸ?ã+ Õ`Ñw¯{S¸0! ¢txÍÄ1ŽÆq‘Slá*v7j欄®Alýå /®®«SØ‹'ô9Ý¡»ôݧ/é}Eè[zLOè)=£ïé9íÑKÚ§ýÉh2¦šÓ@„æ7ƒÞìšépXÐañ-§C@zE¯)Ķ×ù˜ô3Ñ:¦:çÞb2 _ †5Ó)ÑYþ FΊtNç×Ó<§óﺠßèwúó÷ ²aOÃXeԻŒ!ÍN¥¡ÏCêeÃÒCç~1Ê%d}¥°Â•·½›¼)Õ¯ Û(úÏÇW ÎpzTÌf ãAäôtžßœcNS—Öš ·´æÕ_oö_¿ú§§;Å?ÏŠÕ…• Ÿ-ò Â14È2єʚÄÓ¥œÔ€fÊ úè¦H£BÈpw ³lÂÜ‚¡#Ò ^ÞùðîüÍÌpV¹Ê«7É Þ4TÜu„YXÞÑ$Mš N LEHÚ­$lžÝHG9¿§¤^¶ëœ„¾rœtø5á=ܬ± *µ ‰Xì€M8V ôþ4u¹ÔcTß9ý–(éRG9¤¬¬­¨ÀažT€TS€Òííª§Lnú±\¢!(18/ÅË0âÔ—áõ‰•*l·|sÏþŠon¸ãÛñÅé›Ãω#®”nåˆy[¾uS¾!Ùí&ßÚE×sW\9p‰7‡˜ZÙÊ5¯ð6÷,Êû"…HÝ¢Ûe®rÏ-VýTè‘&j‚u{ØÛ0‹a.ê]t½x/ö ³ ^3ž” ÄVÇÄOñ›Ÿ®ü²ô<új¡î«ñˆß@y³Ö©³Ö[õap×ïjûýT¹ìbÚ_Ü GùÒ{÷'77½ºž]ôFÁ“ÓÛ}ù¸W^:tú}”ç±5 TÁ>àB*;ñe´˜Ñ¯¥·¿)"'m¿}þú“þKÿͧ“Ä®h¶ÙùëôøTjULÓª¤ªÔÕªhÞÙûŸ¿{ñ 蟽êìûÑå5µ¶>ƒ,wÔZ5 :Md¦îeÊfN1,–ß5\@ *@‚¨o¿Åü‡ª6[?ØæF5€ì¸S`n5ÿ¢½kïÞŸ¼Ç`åì¬ó®ÉvÒ#šw-ØéøŸ•­»~YB­íkßSѳÖúߦºßû¬2å7ÒX+½Ï¿Uò#게°iN÷À ¢9­Œé*÷‰Æ´7ëE´¦±=/Fƒšs0q³Ï`l/§½þç|Laَư¿4ºƒÉhÔ›¢í­Ìm´±Wøt Ÿ6mí(ŸÍêÉÓF[[³±_“y>¸ÕS«Zø4¹ZŒùtÖŸLó•ÍmZ\æR—ÁµÕõø©Š½ZÚ5šìššÜP®¦&÷~Ôv)Õk¼Rê5»—^¿=¸¸øpþÇÛâær1;šŒŸžäW‹w—£âþJ.[ Cg%7!²Àÿ¦Œ1Víªµùʶï&ºõíÒóónŸ5þo)?DZ+å7iáCC¨¶Vù«hê5}S‹¨þ* š`.6›° Û[­@=[Ù‚‡U¡z­1 ÿür¶Î@¬­½¬Ã¸3•Uð>µ \ÆnL`qR³à›fa›nÖmÒ]Y‰°‰•0]â´•™+31™‚,8ŠÔX§/KŲV*Òdš[ˆ§¼€tÏ­JÅÀ3¦y}¼E)™a¹S“Y|1ÀˆÌ ¸ÛfÎ\–Öâ°®X5ôVÂéÙ¯'œÁ ©ê©ÀŠÁ†‘6™‚]0ɲ&ã\ ®2i]7V†þpçðìè Ãz×Ѳëvª,Mòã˜nÑ›äm3dÒ¨#œ. Oжõ…“ue7ìÆº±1 ½ò¼©W Ãf+¶ç7› %_Ù‰mÀ@Tc0ϯÆH¯éĶ ¯âÔ +µ"ÇÞûƒÝ³P0ô÷/šÊ{M#´U4Ùj…J¾U›N1èZ1Õ]“Ó݃Ýýý:¶¡me$ÕŽzº«ÁQh{×"#N›ä\„Ú[ü_Ofe«ÕüàÀ¬å{ʲ’9Aʸ0ZåÑB¨–×+žðèÊ1U¾/¥~5¾ò¶¼†óéò‹tïVÂxå8”e/kùEžVp®B½6 ¾4£‚¯e·æóÓg.Kw¿æ™‹ U¯VÕÅ·$‚×µè"6åòmÓñîäøÓ›at5¦ý$@É–ˆw¶ÿ·dáÍc½¿!jI =nζëTÓ\¾eÑPm7gÆ"­þchüÂᘣˆ]…Ü4&¥(9I*™>®nSþhb¯†Æ)Sái=Hw÷^é#ÝÓÇÄÙ%n“SÓøiÙ¶øiÙöDEß êà)B ꪷ–î÷„ÿùÇÓýO§ÁßüÊ“JÕ¬Vvwºê1._SŸð­’p„®^÷–iòA>ú–Ï‹~¯îsË-ÝÒ]¤±.uႪmñeäµáÖ‹wçøxí(-TÛR4W.ÚåiÝŠ˜îj*;?4]ÿY=ºûhyµþÑkú‘JµåÒÉD.]RFÄ AôÃEå[gÅÕM/Iž½ÜèM±3Ø-¤›Jl«6ÞØ»ÎO1:?Z?Ü=}ýú,L`;š… M1iyÔÎb¢Øš 0é˜dŠé¥iØðóH¤X·ª—)¡ÖÃÞùûÝ=tn']V¾só/‹Ý´ÑøðmCÚ`“Ø`,:Í¿Oº[b?,0MKÜ* %`tM];g?‡ö^½~‰vþSk[9„%¬ pÓÁuÅ×ùö£5a“ +ž.±½)Æ‹Ù:d›2ÌÂ3o¼;A•3Öádá]­¿ÍZt* Õ_[JfÚ€£Bf¬þv«4dx.Í3ÐÞP’°T,£ å;–†ºqW/\)•9&ð%á—ÞÀ×.CqV¤Ià’[—áÛgJ³LÄ`ãvî!Ĥ'†]]¿0*Û[T¶-Ñ& :áTþì¡Ä‰g‚ÃLZê _{ݰ‹ÜàÛ´D »»'a'‰xiqÇ*(gõN¬¹ÏO%îŽ÷*ÓÞ¬3—).6 $˜Íð•É=  6Ã߀I Ò¤:¢Ô‘»Ú›øÂÈÌ;|]ÆÉ ßÿßÀ´À•!BûÌáOû´.- {{×=´‡–ÝcEçêÁöíú÷¨œ4Cýîò¡tç>ÙæÆÕ&IK“û»§=ëR-Õ^1æ°^\`pSt8„o±ú5×rì½*$XÄ*V|Qú¡(¯XÅÌxõ†W|³/¾Ðõ@sàÅ€äèa*²"üµM™&‘˜6=Ð l+Ãÿøçó|endstream endobj 77 0 obj << /Subtype /XML /Type /Metadata /Length 1484 >> stream GPL Ghostscript 10.00.0 2024-08-17T18:31:13+02:00 2024-08-17T18:31:13+02:00 LaTeX with hyperref A Handbook of Statistical Analyses Using R (3rd Edition)Torsten Hothorn and Brian S. EverittBook endstream endobj 78 0 obj << /Filter /FlateDecode /Length 4008 >> stream xœÕ[[s\Å~_¨ü†-ªRu–hs¿P¹”I0$!Ø".Êð°–lÉ…¤•½–“?Ÿî¹öœ# aRP_>ƒ•Äð*öÞK?lpÌ`l½Öä‡{È ç¨á"lï=OË9cÆùá )2Ê oqÚzï¤v0­÷šÏaÈáC“ëBãcAŒŽóáŸiC!ÃÚDíˆ,Þ¾‚y˘6–Ô].‚¦¸”vxéY&‡Ï{W8Ö°Úºá<. .È’ã¸Ä0><¬òžV`µrÃö‡À¢e: æ´â‘|ºN‚A8|,QkîF/œ†Feh? -$ó`œF1¨9*ª5 µWT“ÔÀÄö"± &½…T¯ª®O'Ê“ <P¦˜âV¿#b­ 5º 5ÒÛdPïöYÞÑ Ÿ$!„e¶‘ÿ³bØôß+'aW+ŠÈa5¥ÐÔ2E@Zñ4L ÷VÛ‰þ….âîðBÀuJ´VÅá:Æ /Ã÷™l>Áà+ª¢às´¤7’ËÈx5®Ð2¢Š®E$ð@5Vv»ªÂ=Y­Ñ/2nZ‘h¤Êº FDÎÏÊáÛREyç,ŪíÓÃÅ× t[Äj‡ÎJ˜gÐι?pHûîHÂw@RóÑ€ß îüV`S‚¾Z+úáï ,Vˆ¤4kT0 ÄŽâ;.Á%nAAvdœ „{0"7:©PJžÐþ¶ &7B#2šœs&&<ÇL]tÀ.¿X~8áR.’ÝÞFxH›N±f¾e8ø_ð^§‚Ó@ÊÊ çm²’C‡uá}?òîT€.5,ú:¨ŽGt¢ÜIë îÂâ7s àhsžb®Ùú"z{Àltä2ñÒŒ¢ÌÑ×ñ9#áÆÈŒgÓYraàÚ³*ÔÛÊsF¡Jü 0+À—L£AöÌ ‹î3¼›³†¾ ¦´ìÌâºßI¾ŒéÕï\s/°èƒTÀÅÅMœ°Î«×}ø Nk€.*8>l¢ÕÁ3©pÑ <¹é¶t€2.‚ËC'X ga}çoœM “dM˹ó*ÇÌ 4ªØÅÁIôq)ÉD¦Ãï„ç—á4€M³Õr8¿NYEY#tw™šžUäEÂÆ‚¶EüüÔÓ²‰7 8I‡!/ÞžON'×€·ÿ†ŸUg…Óé&D›³j?"T¸`¬aÃ«ÂÆŽlR٘œËè­Í¸«??¯n“ZvM+¬0tIŠ$,D:Üa·Xs>z­lÜéäªê¦ \ÿ‘” ðÞÚ⬠i,Q@µa!.ãZÃMƒŒóàsÀ³+ŒÉ@Ep‹GJÄ iH¸ _Oø|Ná{@Ä$ìðÖÝÉ ÂÏŽGA 8 5pñÄôd‚£ ®`2àw™ µ@;-@ôlW.ïÀE½Žòs9'?E×ÙÔÿÀu\ýd£Ó&ƒf»Òà?0_8&®ô8FiŽ À¨ ŸÏ ;j¼* è߬ð3ËY\£ïzžb4¼)¶‘ Øñƒ'Ã|æã Šmœ=ÅYoM$?& ÞM@ Ñá¨y±æIrŽÌk8´OðH¸ÒCò“´r“û‘b@Åqõ»¸X:QvSóž#8[®F ã•0Ñ8€pK &÷Kt×ëL¢ÅáÔÈ7‡l° ® ¹ocÌBi ¶Å”C!@essµ4š{&E ýX³…¨ b3oŒÄÚäªÈg`ŒlZ˜½Ùà<*Ù‰•}«|ÓxšÂn—±F­%Z8GZá[Ï9ñ—O"_xø¾Ê9+âFV¡Šý ጌ;~σ¾5sùÃïVUÉv%E>hÌLïòÍE\lrf˜ïx¢äË "pJ¥%#¤§wÑL8™ÏT2‚SÒ}rWÉ&9{Û3šüy 8hæ1ãÉI”côhB¦}¼MáÚqB·©]L 0ÞìâXÂeB`@íLBâ>¼võÀ|¼wŸJšøê‘c™/æV|F ^­µ~†—yrSF¯:s€¸<ü Œvet^FÛ2ú¡Œž—ÑEtèT¾.;<uHo:ŸV2ªÃºÍçeô°Œî•Ñ7eT&;ÌÂéyzö—×(¹êä¸3ÚÕ…,“ë:ù¬L^uôX•òª£ïmç bÊ©4eÃî‚ÇeÄËèûú͇·þ\õ>'âö¾‘äÂqùV9Yÿà \–2toâ¼ñ>o=ÍüѲ]<½!Pß·y=§¿^ŒýflB0V†»ŽâÎoTCuþZÇñè³UïwÙ•ÑÛGïÆ{ŸÍ{“wÁê\ì·¿}MÝtKÜÖ;Ü’ºâÛwùGS–!<ÑKh¬t!<‘á *Ûõ1Ç*ªnÀ ýª¢â3£WåÔ|U£rH–„ÇPOÇ÷š mó#ÖfC¤#î†6[)“ƒHÄ:ÓÏržÆßášM&­âž)7„”.Û ±fµüÌ ¯!¸æ͔Ê<ÍÙQ,É¥±²å¯J¸MO‚Ï”k.jº;­à—ñåÈÒ¿)kÞS´d W0ÄÐJ+’'UÅë«Û¾wúš„é*ÁSd=É..RaRŒF”'Zb;—+oc²l|-”†ìsßPv*GFÂmÝj@ƒœ{ ‚‡×ÊËÂÞ˦<â~1“íS]–²åq¤ŠOMfœfÙks´ Y‘tà½4d _O&)Õô©l5÷²Úž€1¾LrUÞø'Ï5#-Àª¢/0û óËÉÃCchIúÛ$i°PMªë30¯†¬µ-À6GŠ8“Ù·„âW.£†¡›oi©žWSO4x›E<¾ß¯!ÑÒ ÙRI|"•€^.øj=Þ‹Rî"Ž‘”n(|_GLY?}YP6<ð£W+o‘X=µh$sg—JØ8Ž›hà¸)ÐᤠÏSÈ¥\7¦Ú¥>±Éñ™Ò&!ÒKÀ­-•˜zKÖX¨—leôe}Þ» œ¶L¿ˆž¢dáÉŽâ7ZQK»w £N«8SÌýXK“·§L„˜æ½ÖKfíäˆ̽:9ØÜܤºCß±ã-Îп„nÖdÉæ¢"iCK@ñí\…×éòvNŸ/KÕF¥ –~$]MžI’÷Áoõ`¹W†í=;í?™Ü€ª›Ë:g˜ôI½ì`®ÎuCà: o ç;ÕLÞMÌýU=¸!AøygóKwFt|ÕùõûÎèà]kø¶ uD4‡aQy*¦¼¦'²ø{{5auG0ýÿãů]Ï/nÐsAZ' š¬Ûn:,×cA –¤¾ú²#Ü›ŽH7ÑþÅŽR[0ìå–Á¯–|t¦‡¹¼0Ü ä1€†æñžpÖÔ¦PÌGcpšâUò´@¢ÍEf§†¼ð¨Q6î>†Ñ¬*½„àãpÛ^ƒ[hãìäù¥yó Mž »úLAz~6ù}[ºz–q£:Ÿðë ç¤ÐË©c8éGGÞë'éHL[RÁDíT…@ô¿U ™BAÑûýi†úVN®H”1'æÊd!vâcÍ7c4îä±é56”;P®GØ© ©Z„›U¡ƒòwZ#¶&¼9‹Ë17ïgÜ…ž£ØÚ’xì4®Àèe¶7$`)BŒ³1@ írmž‰Q ½C5®DÒ´0¹ÿk?hÝEØt±!¥“D[–HV¶™æ\Éøç‰È$¸3#—•öeM(#€8ñÛœy;»ß|bà]5EA&Øcš> stream xœí[ë\µïçÿ _FˆªwÊÎÅïGZ*%)*"ÙB«ðÐdvöÑÎî,;³ ›¿¾çؾöñ{7KH«V$ðzlŸ‡çaûܧ¬åS†ÿ¦ÿ/Ï'¢U~úr¦&†óVs1µÚðÖ™éùÄzÖ:•;Ö“§gykŸZ£X+ Ê=ŽûÖè0J '[­È¨ÜCGI£ZåA­•lq-B±cËy×Z]¸JS¦Œt­2ž0å¸mãSeT×SJLerO„›žL~œð Êiúßò|úàpòáá§¾õF˜éáñ$ª™O9¨+žÙ– ==<ŸžÍYk“¾9œ920ÙÜŸÃË™1¦¹ÿÅýÏñïMó§8Z{ëaøgØæLx¡ÒÿÝá_)n)S¶õR¸éáç“Ã? Bxïm³Â&GÙš“+º•2õG9·¸ ×ÌKhâ"Þ+%›3èÜqÆ›ÍEVE”¡R¬ù€"Épˆcc^Ùæ©x¥•‚seüemí¤¦ù)²Ä8Íâ<¨´8w´Ö\Dzn@`žsÍm5ùSÖ‡¶ÙGBÚùHàç›,¬Á´´ºê¾By°±›“À¢—Lº¦È÷L;ÔqG¼s€™ÝLØ–9.››È‡i"È“ONéja€b®âãÔs‚×ì-±­w^Áz‘ ðA6²ô*¨XNªE¶q¢t¼9.ŒDɽoÎÓ61]sMÙmc$-LVizMìà(l¿`ž§Ýâ2"!KB:›!¶$¸$¦Í¦‡G`—dcá÷y7`®ÈkÍã¸s‚þUà š"ñ¥¸ò͂ȂlêbXsع M#‚ªjÅ&Ã`y •nžƒÏ@Ö€w‚èº ÿa¢iwÍKb!A/žsÕÓw ‚@ÅNX)ØHÜeU³!"¼†Õ€'ºZÄ<ÂhÏ{K‚Ljxd9"ßeFKdöÝôÈ¡n­V5A[ÎÅ#ÚS7ÅËAÅ©jßúJJøÛ\ý¬žœF Œ uªå–w¨KhBšÍ¶6<@,È|cœ÷_cÒ 4þ¹€ø#{ž;H털œ dE½àXp 5޲GFÏ-]àn¥&V¸~‘ n"m A7Ç~¬œ`w$gÖ*Ô_ º¦gÐ<‚{ÃÌAAïbÌYqDdi*ËQRN éM\šóéTzÁÑSíàj¨gå ôüVPzmÄ"ó­µ¶Ãb§Ü¦L §ÁŸÒņIG€¦Å"@•kŽ8 u1lt\;«Ü\è—Pa|¤?çq§ã<ŽÊéæmF6†¤ϳÏXÿ™*Á«yÑ®ûfÌgl ×”± ;r'‹Á±Úý¢<âM ¦Sãâ¢lúv˶ʠ¶=Ž˜wLO½4eˆ«Ý`'áI¤ÁÀMV®4a˜*~òedS€6G§À¨V«NnónÝ:Ø—"áXô_À¶‰v«­±c>ïhV¹•4‘@bñœœ}‚wöÊ…)‚üMl†˜¢ìBùH6¶‹+ƒQôÝŽD§iF¼ÊeˆŽˆQš‚.hг )‡V®ö¦‘4&©î f†’–ž©tqÝ7¼°¡¤7¦1ª’°wS˜ I NÑX¹§{Ǥu˜nç[÷ˆÆkmDœ:He‡Ó û`Y#&¶Ød\ î$Í<%ðAÆ­eš†:Óˆw¥ ·;‹“ ÛÑóQ ±QV™ÿŠõc˜¯Pƒ¢Á¿–nEt…̬>ÂÏsz\EŒlùª †êpŒ©ÓÀ^‚·hNbæ]òóAa·‘¢t½¬;ƒý¿YN¸Ä˜…Í.¦B„^Ħ÷ô´¾wü°eœg$ž¬KNHÖ¢N·ŸR§ÃšñÚQ‡ì›²©¹ÁÚ•ÖGd×Yã) éIœ˜\D+ý…8Ä5*"ÞÀÀ ¢=ƈBlPvO=É!4û\Çùè ~vì…yÎzþ:øæ°×FæñœôÍ Nà <•hY¸@Pb·©/ËÖƒÍaÛ @£ ÎgQÜìåwå €$ñ,Dï“ÀëØp„²€uÈ&—Ã2S m;z¾ºF <['¥®|nÂ.œé9÷»q ïú÷)$%D`”­|HŽD‚(Æ­‰DV’ҸÚW…ÖNÁL<@úpïwD4½Û\´q $N5º‰ïj»wV€í7{†*œ ÏRB7œÆâïÒUأÆÖVHÊ<&¶ ã㸠ƒkËHi²Ô3Ý ý¨áæ[…å€ÎÆ©¯ªÐÒiè¸xÃÀè6ïRÈfq™¾’91¥·ëKHX©u|2Ëá—«ayKø‡ú#vR÷OÁÓ‹ô $ ‰”„!fO}ùV«¼XÁ¥½kàv勒qé1Ø…i•GªçwAõ¢HÂÕH|òpÓœ}ò²‡Ütp'l†xï݉׎ÑjÛÈ&VÃ)”ÈAò*z8Tç²ú¦©Nn1W#ž–ìÔ Â¹]è–säZG?êy ˆèÀIPx¯øÜøú#%yý™wçÜâÛ óŸÌx ÞÔ¨æÏ³¹Œw¯ë\äÖn ïÛ&7ßË­¹õ0· Œ;(ô.Ö^æÖ¿~=É­UYæ£Ò,d>Í­§¹u?·þ–[Er€ÙogAùÙ‚ãÚ òn—ÿ‡Üú’Γÿ”;ç¥óœ{Ûv´¹õx@|²Y·³øl u×íýúÖ\¬÷Ý@ëà®Ú¼Õ/rkóÖD4 >˜ÍÁ“Â9ê?§ÓÃqÿóú{¦÷tz1@lȶƒ>àvÑßð Ũ®s«øÂ›aoàߊ7øË;Ÿ¿u¿0LåWñK=D<àà›@~ê{Þý^§¿ú·ë?zúÿÅ•ôk 0E¬¼¶TògH»«¦ë+êý§3Hè«÷ÃÞIWƒ4wA^]‘½Š‰X@Þ-.K-Frú~ÚÌp?r 2Bû$rÇØ~mA>¡vD’b®eë½ëlv;°iç­¡+²¥û(}«•tU½Âm×™„ñt¶aÂuÊÑNàÓyÚŽzwOËɶÅéóñEœ‡—îõi{±Öâ“Áãì 9‹ì_Gww 7:—Å…IÝ÷X.Ø?ýŽœ5뺺¶ÜËàRN¾šà•Ñôå„+$©¦Jàiz>Q¶ÒÙ®+Ǫ kôª ñ®Îs« #ú/ÉÏŽµÃ†=÷!õvÝÖP(àT³\­øÉÙO+P2àªeøtv|¼ZîÐÑ…ªEƒ¼¤]óxq±[­çŸ.VÛW«u7H"¥<è|µ[Ì‹õÍöl°@›³œ =\¬×÷ Eß>þôÛæbwµKÝÁ¿v >xøèÙ³÷à¿_/–Ë÷¾ûî û‰7ËÝÕºûSíOúbÓ›ÃlsIÈ Lÿ>3BÄ0­_8ƒ Æ{‘.}(Y3F6-•„Qfq¾ÚŽ1ûþÓÝõÑMÚ±9%k™ vÑÌïðÏìðŸXÊéïóüå“ĉÃ=]o^®Àd98€ÆëßVšëËËÕUÇÂð*æðXÏŠ&Š·0¬Cà…lX¾á­0ݾǙqßËË\æÊ\ˆN&§ú’NºL°t‚çy‚ª&ÈÂ]EA– šNp,OÐ|X cS©Âå¹RTâØ!UØŠQ6¢ Í2£®Lëæy‚ó”Q®óO)Q¸«&°B³‚JÛ\Uòˆ2ƒÓ¶0¥«ýó Qf@¸1…+2ôºˆÁ%¥á‹–µ£r˜¸Cw3‘ß÷wrÄ­©Êf>Šjì¬7ÍÃϨ]›F5`‘w™“L«‡…ÃÕ6û#Ñc‘f¤ïšÓÕnuµ9Y]¬Îv7÷Š'ùû÷"“FÕJ=1ñ0Ü@.£ºa¢âôrþb±¾^—ÏÊo‰å]»°* 4·Z’¸ÚõÜX!au ¸QU`uø„ȧ‚dš1°Ædƒ3Ó=IhÈÄ0Ùé·°„”abš®ÄË F.SèSšÕªUZæÊ§'é‘L˜4–²èQ~ŸÇnB&$ÎÆ™ÃêÚ]H†!5âñJ·ëï šC¾é‘ ëÇ^È™è*§tbHP¹wÖ¤[[å©8¦U®raB ÁØ…"‰Ü<l.Jóª4»4µR„Ô15Ëi*:&ƒß"îbµÀÚÂ!$f§¾Kߢ‘œÂÌôj6 Š‚3-¹ðƒÂÓÃÒ|Tš?„¦Ñp¦ù²4Ÿ ñ/ðÈòƒMÈ5(˜‰œG1 #•˜-@:™ê7ÀDxøW 6È„t»W3PÜ›_À·q&>1Ð7”‘À—q¾]Œ>«(ÕÆ7šTcøg['$eŒ©ÒòÚÖ…x¹¾‡~Q1±À¿Þ¡ÇD:o¸¬œœÚŽêj’§ŸñC7>’Ü >FöAy0ñ vÜÖeêùByÒã,6Ö”€ øèMÞÊ7±×÷^[°y>ü³J¯„`›:ß÷ÄÚ#ص_}ÓÕ.×UAî‹(°ú˜äw¼9©”œ+¥Ããñm itÔ™ñ±FD)Ž‘_«®“-÷Ê.8+\ëÅFÎQ%køÈPR¾2\6t98–°YÕ#Õ_"í=ïa¡ Î3ÞUozô›b5cæ±WŸS¾l‚Å5ÀŠT“^SØÅpß­¬çÍQÕ»!-®89M—’-MjÔ:bdÞ"ÔhÂX)صÊç¥F(ÝYÆekRu¬z¥é~ y"HdHÍO__Î…ÏžÇzH‘ÊÊÿÃ'†Ç­=°&²Á}Sl+ –äŒ G€óVyÕmÎb8Ã"¼ÈàZ³å´š‚·€ÒÁ„„ “!xþ~6À Gò.—¸ü¶õdèÝ´LO%ú@§âxç7Àœ…ôòˆZtÎuÁVŸ!Fo·¾Î·Oì8È…´u¯á¨Rñ+Ê3Ó¹4».Þ®c°?ã¿áP<‘Á„6¹çDÆ2˜~ö4õ›€ÈD2NjÍ aÊE<ß‚ªHág­! þG+ï> T"ù8\‚LGª`…┠ΥMˆÜÃ&Ø;KMÒ›ìïsýe'¤Ö²$²\ uá÷¹²r6{ÿ±¼·ö†s­ð~Qcü¹ç¥hûõg¯U% ظ”¥z?ˆçØFÇ¡n|IᘳáK£^Á<ù>¬nÂe'­¬>À¨knh§¦¯&ÿ»K eendstream endobj 80 0 obj << /Filter /FlateDecode /Length 3231 >> stream xœÅZé[·ÿ®ö‚}j­Þ‡QÈÚ‰‘ÂÈáݦ-œ²ôV«BÇZÒÚØ~èßÞ’ÊO1ЈŠCÎ=¿™ç7cÖò1ÃÓŸóÍH´ÊߨøùÈ(ÛJËÇVÞ:3ÞŒœ0­ñ>ï¬G—#Ïlk”[£X+œÊ;ŽûÖèpJKX+r¨ß gƒ5yOk ¿ºê½ž+ç]k5a*mPžŒt­2žðä¸mã”§r(mTgOùµž%ò/GoF<(rœþ˜oÆW£Ï^ ?ö­7ÂŒ¯®GQÉ|Ì•l­ÅS\èñÕfôªùv9§¸iþ~1™Âÿ0ƽn^|…ÿÃSV6Oq-óÊ6ŸOœla[7Wd÷+¸Æs&m¾Ámës¦ùz2•R´ÞùæNX¦­ÑM¸šyÇ„ðÍç—“©€C¬5üxõ·ÑW£ïF ˆÀ!€gÐ;¸¢eheaeUÞAUœSƒ”¨Á8T¥Šjx9á ”7ªùëdª²Ì›C޼˫ÍÀj–Wû¼ºÏ«š¼¼È«§yõ<¯~Ϋgyu™W/Ê…“ &OMë­tA<àY3X¾]ý šm» ÈâAN5Ýõu7?Ò†7ÈÖÔ€—1ášgÝþrµÙmW³íôÅlµ_ô?q|,ÛtÇÙt¶­ï«CàÁ‚v½ý£Ogëõãþ¼ çÛg—/~h¶Çý±ßWÍ“råÅÓç¯^}ÿý~6ŸòãÊËÛùq¿~€èëÝ ³Ímy‡¿su(ynÀ ¤§ …å̯à ·ôYsîÙtMÔ¦õÍv¶éç˜ýôòx·¸Of›Òg£ò£fúÿL®þ=‚0ñBÈŠøUóÍËÞÐh×õî]·ŸL9„fãõ+ÍÝím·ïY¾… ÞÑ@ð–…`ÉÅdªÂ®á­0á4· ¼0W$¹L )Ð…ÀRÏ3ªda©zAM ËšŸ‘ÁTB»L E%ƒíÝ=:Jtw[qÇÎȯÙP¨¸B qÍ3­ó”Q®3£ž>fDa´"`,pVœ¢Ò6W•h¢PpJa Sº²°˜)D¡à­6…+BaZ]Äà’¾á‹Âµ£r˜h¡‹‹?†›/ï6›Ùþþ›—OúD´\ˆ„–É O¿¢ñRbÍþ´ëK$§9±üUwÈyF4×»}ŸW]sÓ»ýnÙm»ÕñþqÉÿüIä§ 7QÍÑK27²å¦C9½¾­ïº’ÎYù­°Lî‹Ãqµ™»E‘m_Õñ~x;ÛCI˜w M0m®Ò}yÖLƒ_(Ržû‡Ê3·cLU•gOdR&–ç/'óœ߬ÂRs-›å ø²Ÿ` rå›.‚ãtªW©l*MžÕªUZzx:äÀ—x££št–²èQ½ž÷gwx5“ʸ&0Â8ƒ_UsDNý@ »¥û'‡¦R @D‚Þswsô–JØ\æ56±è©8¦UÎÈžÅÂ2/4ðz^n—³²Ü—åýd@RÖ€ô ^¢™QÊQîPDŒ%oms³ƒ8{2Ï›E‚f‚™R)u?·¶Jô\žž–åó²ü9,ÖðS^^–å‹AQDëˆM[äYƒ®™ˆ‡+$=ûާ™Ná5IÎø òCB3-"3'món¿['$üŽ™N à—Ý" ÷ÌÓL ?„µ÷JÉàÌ @Û"Ø 6÷¨L¸Ð{°úý‚tüv~-8bÓÎXnSèHëe3‹/ 4Èœ¼‚±½¶p$D“ù ôQ-†Sd- ˆ d“¿}Àóä †ÂT1¤Ç²5ܰ„;DÔ93Ü%I¦‘ÆŽ§âúŸH´ŠŽ†n8`(Ž˜B»±¦…·=IÿÅÄvå¢OxÈm7Eà¬NMöž=RCnÞdá›Y<­[0|!]ÄË ”0”1 ZÎ*35GN@bGøó˜3úä ÌëxB€OEŒ†ì;¯†Œª!…êãAßʃ§ é[¶ :¸œv꣬ɛã{•ö¨7÷«û‰C»s#Ò1iØÕCŠ‚œCÒ<¾H{Ñ›àÚJC „RÌ%Í0í«°{ô 2Q&ˆò÷¡•…llúÈUÊptQZ]h_¥à—¥PÖJtÐt˜†bL™ŒiIô’"*Þ¥&ÀÇïóÁcÚ|À¿ágÅe³.ò®H넃~“W¾ n(-8/ñõ]H¤f6Ó­#™×|4BÉÊÑ‹4]–V…lyƒ©U1+¨x§!† &‘¯¤æÈ]ȹ!2 ì¾)/Þ‘¸I‘ æ·4†BRK$(oUœ6]hµRÍãÚ—OSã[ˆh˸j= «ÞM†‹1Ä»¼êòj•W˼º¸ùPþKÞœ–M^–Ÿ•åG||:ÀÚl@|QxøsY~l ]çÕn@µ…â'ÂëÉX'§µ4Dzþý/Øãc‹úKbõÍÝ ³ÊÌfà‘Å/º &nGôôß²,ç)µØЬnÐÉþ5àCãÁG…dñ ;³rðɇêôQ6pæ¬àòÿK@ï ?k¼f~Rt .„M*€ËT+öˆ7´H…&ÖÉ3 Ö‰ˆ4ô´¬tH·ùfwKh  >¦®Òñð0 Jã ­FÕ€3¥X”Nî·Ì¢T¦pãJ —Kyêôâ vè‰pQ¹(c¨Š¡Ýsˆ)º¸/}­¾¨uµ. xaµ/ÐmÛ‹Sh°-¯|I±C+Ë»‚ù¢A׆Ú6M<çJ7º7ºˆ3ez…S ôÇr_ƒÀ@§XG8¶²ØÆ /´ðÆŸ Tª‡Ý&| Þ8Ü(ZÓFãm ŒÊZz­Þoçd» ó48ÿ~íýI8á|gñ4à/M@!ÅÚ½$u§¸ð'ˆ«RGt(®ylq¢VK9€º‚ÏñníDåD«bè*ðâa«¯Kz |Pxˆ^$¹ÓV1€;Áø{MÞgNpîï‚eàºÂ†Q.p—0ABÏꎹ*È,ÿ!»]]ᡛתÖGQÓŽt¯4¥%K¬‹—î–i´€‡R+¯MŽêû±V´£PžÎçr ×Ó¶*y¯­¿‹GÁ‘Ã"›¹ª£ž×Q‘“PІ`=©A&–å¶3ÊüÄ‚˘SܯkãìIŽé}z”sÎT ¸XÇ鉘´YFÁ¹°ÂT\%¯‘!£¾bà}Ø#¬Éát Öœ¹Ê¥‹ƒ›¥7µ(ýÑ_©Žº™É]Ë£ø ˜9ñ²ä.MÙ䤒\^W­lº ‡H¦!ñ“þª«=ð)1Ãi[D¯ƒhʪ*+‡Y‡PaÖ1‹K(_UhÏ‹8ÄS   •¨ê¶({]ÒÊûE![ƒ–ëø"N8Î÷Ú8! S_p œj”wW>7 "~òºäÛ3}í!Þ‡£­³I±šÎÞÏg’x™hf‹ S „¢\ö[:øäù¶TÑANSçÔeÕ‡×CºìÅÑ3¡iYFY˜i™«ï¶å•jv’ªFrÅH~¾žwŻ꜆â$ÓàqaD3V™jê´¼#É6È+îòÌF0SœÂ¤—2¸%@/ŒªmþtÕ!©½ÆÏ¥*~Sü–ŒïJB}MXY B¸¥cFþΚÕ8.tuz—¥Ç&¦œ&®A/!JBýø…Hæ/\ÿÀ¿™á äÌRP`ÂmÄ‘d{·­jîÏEô7}‰u“äaš\±¦3È ?£„G@!$[Ä´-<\QÖñ. ËóÙ'¾&Éø ¶LŸGI)¥BÐä2/•`7Œ+†ˆ.—DºM|Dr‚( $Ú)š†A[2r[ödü¬lõ(»šÈJiÕ˜›Èr¸Hs1TÆÎMd+ðurÁI¶Fî·¹¯âŸS'¬P˜cªaà)«;ˆÎ1ÉBîW·Oø ®*k¸6þà˜`ð~yô7ÀyZÈÂYOü5T^|Ü궤ۓ/ptX ¢gi+°‹» ûɧ»ž7Ȱ /ºá,tâg¿_ò´#ƒ‡e¼Ïûê«ßÛ ¤!1)®´Ämcý¡•rÉ÷`S:½O¥rÀ(i~K²]4»”P±e¢¯@ïIv¡]’Á³<$—5DÊé¯#d½µuІ¿}ðÝèÛýZendstream endobj 81 0 obj << /Filter /FlateDecode /Length 626 >> stream xœuSÁnÕ0¼û+|t1»Þµ½{¤RâÖ6œÚÒ‚èëSKBâãY'yy~”C¬Íxwfgòä!¢‡ö¬ï›K‘Õÿtà߸Â5RE_sÁ(Å‹êVypWN¡ÆÂâkaˆ” µU5–<£2Ù™;СÐcìcîæå\í«œÌ;°•XsGj-ôœ Iä¢'Á°çt­…ÌÊi›v ÔMïž΋ôëëfçÏ&÷ê«·n 3ûéÎ-[FL±ú"öÍO;÷!¼FJ px;@¬€*9|Fˆ ªUkx´:qápÛêYUª„ëa´ d {;Ö 5ì¿- %ìïÚ©‚•µ k‡^Z‹¤šh™‚ENÊ_ œ Já{«nÁöÍ¢yF UK¸é}»‡e¶5…çEŠp’¿ÐmbªÖð×Ü:WÈ'Ã?7„Rnå& ü¾Q('à…^’¢6plL¶Çûáãô®y£½7”(bógº5?.Û…jlIVô‰“cB#’³Q¢ÐåÖoãD)ªí†žg1ÂEš]Ddó)œÏÊ+YµcºM›÷»ÚÜï¾ÐøœOîÂiÔbÿª¥É~ K[&Ù2ÊU4V>ZFÿ—ÏdaĨ9§>Ÿ 9fÛE1‘,²$tÌHh1kÄM›†ç™¡¥–—Í'hg hF×bŽËͲU,äûE”ž…8|™šKµ]ü{Ò¡®Y[»´P$à„4¯|ÅœÍé`®Öcœ%dÌËÊ9)·6Ûœ®ùÕ —x _ÍÄ£¦ƒå;ý$½ÒÙ|¢%…­—£Š—#™ÍÑ ÷Ò&‰endstream endobj 82 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 4712 >> stream xœ­X Tg¶®¶¡«ÜPÔŠ`2ÕqItŒ;—Ä1jиàŽi‘M‘}_‚ìt÷ín YE°›ET¶–U,ÐàŽ‰‰ËILâÓ$ÆeÔ'qæåþÌòw£NÞ$sÎ{su8§Ï©ªÿÿï½ß÷Ýï–Œ±ëÇÈd2Åb·EÓ§Y½ dëÓ„ž5ö0Hƒìö½2rþ0ÜîøÓΡŒõÏeað¢Å®áK"–F¾µ,:f»wÜ7ŸU¾~küÖí\¿!Ð}÷Æ ÉS¦'Îp™9ëÍÙsæ-p`˜1Ìjf,³†ǼάgÆ3˜ Œ;ó{f#3‘ÙÄlf1‹™-Ì»ÌÆ•™Ê,a–2Ó™÷˜eŒ ³œ™ÉÌbV2o2nÌlfãÀ a†1f83‚á™—˜‘Œã̼̼*È̤±0vL"sW¶IÖÙÏ¥Ÿ¶ßmù<ùgvvMöoØ'ÛŸP ‘ÃVr9}ÿ±ý÷p`ðpà¢Où8x£ƒÌa­Ã‡lR0ä/Cs‡V=çØßQp,6fXØðÁÃK†ÿ}D̈#ü/ÙIj‡ž,ñeQr7É$—ž™|jUŠ.â RÃH@ïc§ÌD­:X£‰„DàTì!]³þ´Â‡šJíñAcE6ÍŠt:½!_Ù„r{ Qˆäeû9*…Åð4C\‹Úúà›,9%­ãï“R{²Já }¢$·Èî£g£B.ÅâþZÄ'D¾x³÷ê`Aû£‚¼“f¯b/ÁGI.,Q±uçõtÅsšƒ¶­— /‹ò/ÅãûL™.©^®b-º}´Ãy©ï֡ǃØnÁRQ†#p$Fãy}Ï"^õ ÷Îd•4Åñ—ï<úfÝçd@‰òûý^€Ï¹;®_“×2™|Ìc)¾Ê–]â¸0dù<%éOnðØŽ“XÔB…ʼ6@*x¥îNŠ Ý¶âsÔÍÒp‹ì Ýo5ŽKÂãh—ûdá§Î ¯‘qæáptºû-¾*0âÆûoyòÑ´:膡#¿¶ ñHÅhƒºàüÀü]à[A›Rv¦øøEúÓMzü’Eé©(;“å=“{¦óû!?.U£IOÖnÜÚ¼¹|8“Íd*A¢I¾AFâVœýGþlJ×Å'¥B¼V™Nœ&®œï‚k_wÀ¹Œ‹p>†ïÅ‹Ç/YÜ7à73y]Ÿ`„Ràèô”=ci6D,è²fs öå=,Vó*E4y)f"™Ü8l(WÜËö\¤±^¥X”å9MˆÂ‚Ç œ ÅsKˆ'*vc†}o -Á×´G)ô¡á[d¾E9ºc4­íïZm\sÞµ1‡Õš›O¯9à±u{Ä{Q‚öž‚ÌûŸiеëA#¡r3iõYzÞ ËŸW.Ê¥=oó½¥}›+ (LÁÐb{‡ ÀŠRöNŽ÷‚¾ã/Èôž!Äcù]N‚¢Ù{I?z|IȰH/×ÊꮢÛU9Þ–æÛòŸ“œž$Ä„äù·Ø%|ô–ê°¢=ÊÚÀÆ´c©ÍiÝ{À[³-qÛâ`ñ“x!k¯Ö \dD*‰Œ…Ô2£ŠÊ„œì½ù9†æV(‡4^¹vnwÍÅÊ]uþFïi¾Kp~h¾Ðuófa|·Ö”“ßÿ²þÈþgîëön¢8S‘Iä%I¢‘â ßÿ®½Õ\¢<Þjn/—(¤QÍ8Ä„¡".0Én¢â®(ÇÍÒh‹d0®W)´³Cˆâõ,Îÿ#RÍæFôÅ/]:/œR¹³î ÁÛàâ~Á¡§’–³IÄ"±¯œ™ÖðÆô 爊õtÞ˜¶ð"’‰EDöWw¬Ìg wiå›á.4Ø*?›0“4ýÖ–Ê-¸ìÔ ¹Â“Ò*þ9öÜÙÅ«V¬Ô–w øKVü•IìøOC8 —ÝRºæÚ‹¬[:4)%†.:š¢þ e8 ËiE…¿z xÓk øÛû¸÷Î*l†ûÐB¯ûÏ =¾]™e–†Š2i©4ÏÝgÈíNdÃ5ÁÚpOý:ëë¬ñ¨6Y Ú¬åLýìψŠ`í M„Á&ýNÛCXÛÛ¿ ¬P³œ« »0wŸUaúÖïqÐõõƳÖõ#èú ^úˆ¾õËÀ å)Y‰N³IÊT,±?'*‚´îš‚ ]ÞúÌ1¶ÔÃЪSµw2Õi¦Ø·ŠŠíZÚWB`‹>ضØYGöÈÏN©´£ §ä&îqºI’ò"lgÛ†¼ *±ñô¬ÁÉV•í3¬ dvñž%Cv‘‘šéž ±Õ5µæÖÚ¨R­N0gçéwþ€ÇR¥?KÆ©ÉHÃÍyx­»¥¡Ý,DÃÆ{B«ÂT•¦}²N©2@1˜9¢8ÉÏZìÙÒˆýЩè€^èà ®=EK›¨Æ£{Ïrž¸¾¨|C,h>Î8øñ “'\#2ŸÄÐÊÜÍ|][ÓÞ:°Àáˆ"ߢ]°ÞFÍ-‰¾‰;wEøšÂšh •De‘Ί²ýÈÊ%W©?o,Õ?úe¥·ê“ú*¡;{´™É U¾IÂC.¯Æ©iΧ³ÚSzG§EE,ßíâáŸ) ÑeéJrËK ž«‹¨Üë£jÜvê‹ã—Å2ñÚÒ†4Ëê(ë £?”&ñ©iÉ É=Ïô' ¼MœfM#¯’ Þ¢½Rƒv…{?€”Ä,íž,!=&jÅBð‡ÝåqMqMÚvèà.½_V¨Qïž.F†]RÝB Á@M¶ZpÒ÷W-Ù";@…\@¹§͇éÃÊi=*ò uºâtKÜ9ÚÉÎ^ýòDhCJ¡²(¯0{o¶V­É„.¼4îÀÒý•‰ Þ‰þê¾ÂŽƒïg‡ÐL ^ã:ßkÿŽC‘ÊÝ;Ô~Ô€'ëßo LÈØ ë¸-Çþ€®8ýÓîË8…Œ Ɵù%páø è¾|ÜÞß «–(Û‰'ÿe[ü6Ÿ]›ÇŽ÷=vìüQ(U>wßVXÿÚ€¿ë±csˆ ÅÛŠ_ ÚñÿÜC²%\Ä ÖˆÃhú_Á œöXx½rûŸü7Í!ÆyÉÙ;‹ƒ©Uì¨ö3~ƒ#€ëìýŠŒR): †.zý:ú¬ò(é«–>`œ“Oä6[\ÙGáMÖÆH³Ø‰µüÏ‹‹òŒƒ³ÈFªƒhá|aåóŽUV••®ÎÈÐh•DIFØKëØEÜ¿êÚtb-uÅqwÉHÈpN‰„k.ê+­Ã¦¦¼o&³R…Úb!µ˜ªi-ÈŸž1ÿJ—¼g„ô3ÿÕ¾¡,yc¢×\"òí‚´ð7må–¼òÓX\„SnþŒ#ª¤;§ú åù/Á^-eKòŽiê_°%+ÍÜ£ ¶ËIêµ6ûÜÿ²6ûH­=ž/lÖ‡<·]õP•Bæ÷®u" %û›Vç8‹žÆ?sŽ7XLùk?ê¦ÒªÁù òŒ¥4ŸÓý½ù9ímÔïÑÿ“ú>›B…ØÛoé2›½ƒWsÿOƒøÿJ)ð.z$+Ä29…ã"þ)›ÈZ“HYÙÓäôßÐàõœ”m mÔ›¨i’3Ä£&mÏåøiœ¯Í„²c ÀúÍâ©»J¹ÞBb§b ÷ÀšòÐØ‡bŽuxšˆùŦpåáܺ ¹öÀÏí¡›ç]_‚ö8îúw>ô rP8aºvîq7¨)4Æm‘«ª.ÂÒ^U{Ĝں!W¨©kʦJpAç¶36$z+ã¶Ehü4ášt-ÄsqPÖ—[”‰’+Mn½µI(qÿ…¸@š«¨ÒC2!1E ç{—Û«èì$›h¬†ª.@“-½ ¨ï‘Öñ¤xõÅö1:ã8Ë]Zd’ÝíÂ9ÖÑg¬¤ã÷eåj©EÇW®£Ý£¦pZ™iÊ­±[Ó¼axî )ÊЫõjà!)AIZØHª(Ì6s„Â}5­—ûMUgr2ÉÇ?a7-þöým¢¾ü04p]^%‰›RW½Ý=æó¥Ç×q:νIÆn×y ¶³áK:VY“þ;T¢RŽK${r ÛØQ†_VÒa§2½$.T½;–ªôΊ&KuEëÉÀ+gwÖ‘†e@ö¢?Ê^Å×püäOÆ'mƒ-¡Âgä.¿ ¢¦L3C7õØç~yĺ;[0„Á2ˆ¤ÜÞ¢Êô ô³}BJ6K¹èHs„3­f8TzÈç‚r¹jÌ&ƒ—.Ìà™£ÉS—p*E1R½Î©Ïi*Þ—“÷ì¥y¥X2UEÉÛ@69¿{ ŒûÄœO„.®å¢Kç'¶MÚ¤4Ø[˜uKŽ$–?Ýx˜Òš{ø‡®×ÈàUs'­¯\wÖWØ´Ú¦qÄþÞjdQ¸z&P>¿3 \ .OødcÐ~häº:«N}Qã¾aí.ÿØDô›Àÿ÷{áõQ°ÉyÙÆ€÷æzŸùüfGsé^¡Ðèô‚ÔR¿_³š´ØýÓwÓ¯˜±ê,²ÓèX&¶Xg/-6òp©áâÍÓm‡ò[ šCžL…@¢X»b¥Ç‘„ªÚšò–ºhs¨Q¨;Ôª§É¹A6¦''F+WÏȘ»8o6 2+*!·R8I–ü†ÈØdó‰ø9ò¥¶¯T8¿ï_.]’6ðZ:`ƒ†ýXñ剣ߚM™{ö 1™!±°ƒó9fi¨)o}.MðrÍ p¶7{B,• –8zV9þ¹mýU/À'8ÿßÞQ²•¹ $—~ë¾ôÛ{&…ÌB)m¬±ìÔ€ ʲLI;ö¤B $‚ÇssYa€ÝlÓ þ0h ƒ†1Ì?¡”Aendstream endobj 83 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 200 >> stream xœ½Bÿ CMSSBX10‹‹ù!ùJ‹ ‹ ›÷?¿¼R3oøˆùR‹ ÷¶Ó÷uáæ÷$÷Ÿ÷øw÷Ôʚ걋÷÷Yûm‹^û„g€füêg–°»±•˜®÷›÷÷8û³™s–‹¡‹ÆŸœ‹©ü6÷õ÷u÷÷ ]IP}Uû 7Ÿ ‹ ‹ ‹ ‚J&endstream endobj 84 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1769 >> stream xœ­•kTçÇg˜™*!3©¦œ™rŒ¦ÄÔ( ‚—˜ª¤‰£èr§°Üv¹$n¹¬Àî>»Âr_aY–ë° ×€å ZŒ ž9)m‚95Ml¢ô˜hšw¶/§§˜äKsò¥ói>¼ó¼Ïÿ÷žÿ„« A’$´ÿ-¾‹ok!Û¹×æî¸»Ö{±;=¿zìÚ£ï­"ŸÇ”i¯ff©öfGÇÆ%&ÛD¯ëˆßˆDNø‰@âUb7L„/~Ä£„§|áJèˆÿÑä.þ.ŸPÞÔe×]ÇÝv¸ÕÑ¿¤ÕÌzÆÌôJ:iDÉËF"bÅLSÒ먔ƒ/ CÕ¥8bN‚g .@›ÃîÓØ«ÀMÉü©òÄa·0Šá•L›i:@„qhÓº¯™ßæÃˆ€B™o®_šœ´¼Êãü={2ÁÐÉz8ƒAD×mhH$?‹nݦ†/qJ3s²0^Xè`âu…A|ŽRr§÷ù§wç?Æ+ë„;ÖëWáÏì­>Á?çñn|ƒC&¦ÛTq†Gžô½^¿ðàƒ˜~…?ã"õÝÑkÌÝQÿ]ÛC_ö<$M¡]òµ‘³¨s–’"Q2‡8Ÿû˜ÅîÏzcOüø½ˆF+æÿ‰¥5Åü{Y×# ÁaØŸ(t¥>q¶èbA®5Çz¼N ilTfÄóÁý÷Ô|©Œ£¾¬tÀ@Iž€½˜<(©.7›øò 0ªï?2 À~36ñÑxrWQ•àH7צš-ð>ëh:û9"Í›RL¼Q['­r«Üæ*Ùß'E`#ïO#/;…vJ8ä-bo´OM~°q³ŽÍùv0˜úPuaª{r†ÿ£:Œ RFÇî/xg¦ìߴ쟸äߨ%})=àúNVÏð6‘ÎÒo%¤Â6È2É€¾X\ˆÇP!ó§~kºÅtS^‹N¸ -AéªûdEcØúS§<¤ºÂ&é"i•T”ô,úŒ«²7 _5²"£Ôk ²á8]º™Ò—§BéKJò×ãš5Øõ”X åkÛúÁÊ‹L¦þ ¤C2è!tù“KP]Z›‚Öá¯)טJj¡̦Švq}lèíÆÖ›ïÛÈ37бéY;%=lœ¼ßƒ‘‰] K$°Ûö…‡(5Í- -ï&Àq¡yèœuس—ã¶1 >ª{Év±;ÿ‘yåÚÈà¹F¾ìˆ#aئ ËÇÂ%õæ,­&.œâCÎs>ÉQ‡õžCkЮÚ^/‡—<‰ÏÙPÒ Ù3‹¬Sº°9ƒÉ£zBåadŸöÁãÕw|Ëì™ÑF‹°›AÞÕn"³G[q^þÅ„,|ÈAè4ê¬ÄcÊCÀf`¢½9S;hïlŽAÇ(LB¢úÚ·e4y²ú=…v”Þˆ‚–òC;II«ÑqÎn‚Ư¿Ä`úù§ð*¼æëg…VŽ ¢É\RV¬•¹ë… ÿ½ªh`£7t —…FÆØÈU¢-·vÀ·`ÆÞÆ$ö»L^”õc±ì1!šÖ€¾¦±ðýî.4ý_sµÈ}°ƒhõ<‰Hn ´Àµe7§e¨³ÓS[r[Ö6;y*#¿ZU,#oý!;ÎÉk`N/× )-$WF—-:·´“ãhf‚B±’÷Vb®²\šú+ °ã­QfÞ”¥Õ7)˜Å|Ñ•ÂNðÉ¡“Áµ‘°SÛ}×G4DöÅ=±=E7òz´5–â÷TŽp8ÀþæÍWûk†ó¯•κ •ZÙ¸‡ £XJ³ÑT[Á—U6õUžê™Jº,r»ƒ\®¨FÒ»…øEMlµœáAt§ItmŽrz;·s ótÎr³Óä[Õ‹|Á*Ó«ÔÛtÆ|P± "“>AIw™îËÿ†x]K °œ$‘VSU}Y¥I„F T%X°¯í‹ÀçÉOç)´ï<×®jÊTæ¨2S[s›ÛíM¼¿ÂÕßæþ3p_î+ÁÝ“ þ ü> stream xœUŽ» Ã0 D{MÁ ¢ÄŸ&Hd„´q‘*ë',™ ‚‡Þ{SSÝçØÏ­4È O©t+Æ åF®Æ£­ø¨YÁ«> stream xœµyy\S×Öö‰‘œã„Jz*¨÷¤V[g«u¶µÎcê'b®rÞ¶HÏ(¯ÑÞ c6-òYìû‘ŸÿÒÍË–¬ Z5´ë°á±#FŽ=fì¸ñ&Nzï-Ƀwa˜7™ÅLæ#f3€YÂ,eÞf–1™åÌ f3˜YÉ aV1«™éÌf3œYËÌdF0ë˜YÌ;Ìlf$3‡ÅÌeæ1£™ùÌf,³€Ç,d1˜®LÓqf¶2Ý™žŒ óÃ3¯3½WÆéÍôaú22&˜NLgIgf& žéÈè%½%’ÿÓA/í$-ì(tÌrrrÚ&{Kv†íÆÖsrΗ»Ó)¿ó„ÎÍ]vt¹Ý5¼ëÍnÊn_8»;?î¾´{yî=âzúõüÑ¥Jî$?öÚ»¯]á—ðÆ×Wõâ{mtíìºÔÕÏ5εÀíu7ÏÞz»÷éÖ§¸o‡¾ú¿õûÛª¿‹ð­âEޢƹ9 l¸Æ&Î3Iªš§IÅ7›ð)yÚÌXˆ:%žx·|ï½Ú;n…Ž dKõ µ`ƒ&m•îh×þ6vM˜µÜ¨ÏÖ‡±—‚ì8®O5¨!Õ-h„l­ñì…pX× µ/‰fC|¦ªš#1›G'rÉ(eÎbØD§¥Å;\DŸ‹½ä‡°>剙õPÁ\ú¢ý1Ã.(§{ïiÝ{® )pûëå“çÏå¬X*øûì*Ýn—±plµñE[LK`:¸oܺ“_ÿ%ýTN¬üÐ¥¬äµ çæÕ4+,XosAÅ]<ýtúO½ä"†‰xÔ±Õ†ÌF{ÈžÖŒ[ùáÚñDªø.‰Zrñ<\å¼s‡¼.´t,“]7¨ü-e¬ü7?­ê!k1w檉΢FeGZ$wq÷]©€[x|mà ÒôB$¤'áаÛÏ?¢\ ¡ÄßÌ!‡ÃÂY¨…z8Qvp×áFó>8”åË7Âð?X¡Ü ôؼ8Gå›%6 Þ»/ïñug?M«ÎÆj½u!K ¡zš½@vaT¤JªV‰ÄLæáÇÉÙ`€t7³5í`cý4ÓaxÂz½§Á¾ ˜ý²T…¡èK¾w%«Ø¶øeµÆËôlõpj5ö²D°h²ë¸‚unöUÚš‡Û\N>j¬½äONâ÷<ñÆqd.Âñ?¢¹lÈLPz»NØAú¿1‘H€[DVïÁc ùÏØ„«öœEÉÑäm“`ˆM>p…`4+p;[™ªÔTHÜ!¬™æ[»úèPp“?!‹ÉX2šl¤én"+m8Ì"º5„Y]^\Ä»½äOqªØ•¿À’vd\ÎToPÈo·ø·Cl¾ÉP»à˜¶æU8¾ÏîdÓcV| vùõGäQ>äé¨? ž"•œ‘ðÎV;Ry ¸+gG'ÒmÖøiÞ>¦ý!Šx3èÁÄ9‹em'b4¹ì¹‹…´#n‹=ÎòdÎ>xJÉúŒt’?­Hð:÷^½9„¼Nz>}9zþK°ÿ€¥’3b Oú±½UžâÜôE‘Å.—î^½Õ0f%í÷iœ±aõ ö}ˆk­8Ôj´J±ï ¾ÏWe ˜ã& ##"¦“©À·68›±OsÆ)¬X&« "ŒÂdYkãð2»–g•mE¥SË™önqû´ÓÀ‹ /î÷’_Ç÷ð;°Da¯‚£;å‡þI õúFCìƒFØç@Ô6vš6§V#h3=ü:Ó:ƒ ÑE&B(·Õg)¶æVUVnä×§ƒßÜø´ Þ a6Úðpk˜Ë­Øß*o6¿Ï·~ÙÄæ—®1Þ ÞßµAx ; òj¨»ÏþÝðøí[† c1£-à®2Öe…D ;‹‚Ê"Ž+q©¶†}ŒÑÖˆ{Éâ&\É[RïÄ nµ¿÷äñ~§¾‰4yº´íÀ%@r´‚¸²1œ“®×—”ŠKzÒ™)ÌØÃ_|uvHhôI;iÃry^¢øÙÑ)ZHL4©Û“R5>^G«çì3w™áÖ]J…üaUh…ú«xš«Ò–dÂ0›ø–£;Ç=ô¯é%ãó”û¼s€Û Y œÎÖ§¥NÉÀW·\Þ0üŒv2¨bU¾ŠYy#éHäI[瓵5xŒöëšê3¿7Š üíPµâÄ p#‹È8ò.ñ$ž8†ŒÆ¥ yܸU¾çSÚ+®*+4áVN0I~½ˆ½)J§‰xìo#ýqA˜L71èÁ©œòRÉ’îOk/W\>/œ [ÎN òñ ß ­Bø™ ÷Ø8hz(›Å_øZCÎu¡Ì&ó×L£êSÁßUë@I M˜ÀþÅSTþ‰Ÿ«T÷Â5¨qà'œýÀØl"õ%*•EÙ@ä¥JF‰}nò£XãdcgíÈk¼ßY9{ÓØ™Fõ¾j?óMzâz¸ÙvæPö}ãÌe*³ØÛ&)ã¥â¼Ïï,-:pAOu&B¬‹€pXoˆiÕ™:]NDA’65UõÉr%±JGkp+¯‡b ® Ý2m„€·>È¡4ì9HSçâ‚®ñ†”<ȃ´iÙ·¾­ÛÛ]ÍáC¾ø¨-¯Æ¾­’n«„`ð0Dµn[«³DÓŸÕ MIIvºªÔ\]ßvÕƒ‰î¬[­ ‡ nßµ µÙ é꜠̨±$ÅušRré9ÓÚW´ž3VêýZW…\Mnºß]Óã;ìç4d¤çÿŒµ®¿º4•ý#·<0:ÎNåßcÃKù£Q[\®¯{Œã/^¡²tïͧyïòlÎ|6ÿ¶âdØ2vI˜Zµ%õPº€î,4@½_ݦú5…뀛8Û}^)¦¼¢ØTž›R½^¯ØUs$‡ªü‘S›ÞUø²òÇWkfiMݶ 6p“ž†è&àð¾’F.'ðÙa36{¬õª9úIÃ]œ˜!ЊÚIÚ&ÉõR܇‰üî½{”•Ûj÷4Úª Ò…Òt­4$´&جÍJ ~2v{BŠzád×É?'ÙíC†ì49Vèæica¸ëCZÓu ôºÆÅÏï:œtY·ä#í6p dË 6}9TBƒ¶¬Uñ”Æä<(KeõÙ¯¾蚥ʋ¥eLJŠ ±»ÕÝú“ ÈzÝn‡õdW@´!¢’s´EG ú6´Ë}•ûn<^jÓ{Gë´<±²z}Vþ®FN~$¢ aÍÕ>í¢>ø‘Qš Ýc£©¨òèÅB ès ëO~’U‡ 6´Ì§Ü˸¼ÀW»8Øc[ Ï–à~eáuTçPLQêDYÇÛ$ ­¬ó]z0‡“©ÞЧ6o&­`«¢Š»Ù=ÿ½Pm“ùiFÒWn‚ÉÿŽdÄb™Ý@xZŠï‰JÚx÷¤âhÚåçŽé áeßEƒ»AÙZ›®0†äí:mJâÛDçJ¤hIÍÖ¦Q<—×A‰ÐZ ˜Wûîck¾?i‘¸¦$ÄoQ'(—oý!¤màb[Z– ¹ò¨ÂˆHeBGƒßÑsûO*£Ðùˆruõã:«ÝÓ¬zoµÛêNÌãø; ÇwžÓùÕ^u$p¡Å‘妢Ý_N©ÿ€ô|‡0¤‡ ÿ¼ölrØ» »fgo å µV1?Ñ8¹¸rô«pþcP½Q!–Ý–¢ºy0ŸdÑÐÃqdòKU×°!à>À1.1TC5iwR q—B¬Õ³¨þG‡ô„tŠW·0f¥å ®¹›«¾å²¬ªëŒ_:<íP÷*U‹eí¢@&ËBtÉÑdkËWš°Š¯Y$ VüŒV»·ø¿3ÇN\ÞˆÈ™ŠŒu²Ê2~)©ÃTÞe2RÕÒ-IZHq‹Ï¤åÀ»²"\L}Wé¼máhPeíÚàæu›cŒ{|ÂÏcqà?Õáˆøë«'lpíÆòöw¼9˜ðDþã ´#û<Úc­âÐÜ‘x²,ZULÐ:åF;€ËÃ÷†îל¢6¨Îp¦òÙ¶·úÔ@CœÍ#'†ž3ú•é¢o…8±BŠqÍïòI¹:}ÝèƒÀJY˜tºR^Q\KÉ_T¢ˆMOÑëÒÔâ°–§®;õºLàò!³D!awAãsŠPÝZíØk þ­ ~î!Š–)l+æ‚Ì8ÝâB穤 aÐuÄt>ß³îîy6é³IA’¶ñX%³ÁülÅSÚ}Ü;HOÅ\ï߆Pkì|¥%Ù; )IZõ­à?`l‡5à½;¢.èc¸µ4êbeyóør õIžK›}ð1ÉP:ÄÌ'sÈp2†xQ3‚ŒÄÙ8‡âhôÈ7ä[~(éý-æc.¾ýåÝØ&ÙIŠÉ߯¿£pÆÓ²Å1÷²,ìxáñ)Îgðȱß~üñAc$‰©Ñ ÆEFîª,0•ÕùV¯œ5ne?°ïÞ$×ÿÊ-_C™m5ü{Ëñ­šðŸK1/ò8Y†]‘¹ýÓƒ¾%S¯Œ¶áW4XÄcië¼üP†£¡ßZw <Ú>á¯R\zú^)B©KESä5œ~­¦iÃé^òßU†Sù1ðSé.}UU‘•[Z±¸00"D¦Ø‘±Õ›‰ÛÄC”™ê·î×”÷äâÅëu±ua¥ŠÚ=µéÅöŒ:UjŠ ¹˜¼ÄÂì’ÌҢĪM‘Ô^ž‚gµ§Q ܈ٳ?Ø`ñ±nS$ÄEoNÞÌ@`ž-rqLÀFðæf<[ŽÎØù×c7jâ­®VV,E”/7B²> m› h› ù·g;~xoÝA£âSÙ}ìcWÌ\3XÑzµáhKI«k“b‡¯ùÿ·ãaÃ⟿ÚçÎÍJ ­ïq 6Ù\P¸:tšòü‡ò^ò?0_ð˜ËB)äZŒÙ†J0÷;¦’·f‡O"ƒ?%ðOËnœ…ÜDv È‚ÿ>Ý·[Û dYù? ©/©Ù¼×a.Ìïý>ûý>QïîFÑŠ È¡ƒ}R²N¡žékaDZø' ·\£Ï¯­^^B}énÇ\ˆÝ^¸\{1ëB/ùœ%.âÉö?ß©¦DfiOS•þ„¡ŒÒQM{𿥦×+ä?§‰{ùª0óÖ@eHhˆ%ÔVa5WQEjRÚšGV¸œ,=_ž_Ir]yòšmaÁ¦pÚíÒ‰³7ð= ™à‘!èÕ Îi¤p½cRIÖé“ÿ¥A•^ûߥ“Štüè~ŽO¿¢ÈI=–x)†“?Ù•¼;¹ÂךMŠ›¹fÆøà)éGV KNhÎëjuÙ;@Ó>æ¹;ƼL½!'S½ÑX}ܶù¼ßCªnýˆò+ðÓ¼;ãMvƒKS2ÑŒÓê$µVÌzˆYVióˆæ‰| Ê¢ˆ’JH>Ž-¨Æ¡PL1“­5§‚ "8Z°Íÿ¦à(ÛoüÓÏa¿£`Þ웿Ç.]ùÅi9m%@_P°%ŸŒuÌ®­ÎC$/.H_¼Dq5%–JØ ûtû´ÿDñsöü'×û5,ƒh·¨˜Ô(ú\…þSƒ™¸J]eës¾ ŸãDŽs\u†” jŠÒ.ŸÉÎ:w¬Á`¶Ã`Ml?Xhˆoeõ]¶  2>qG2éGœ]ň…y-g¯V7Õl³»©Xž¼9ä½a— bϿֺ±¤r„¾ÙGOPV$M°öqx…­†Cv±ñÓ­ÓnXgð{El(m–Ð6—^â¬æùü«^²ˆ}™¬ã+X©ÆÕ½ÒòÎÍWÿõÔ1Þùß¼ýߢ–øÓr<^^žÞ~yyz¤µä*ÍÍýèäõG¸ô~â¾øÔìz»ñ Òêè¶_,~¡3m¡ŸZ³C«&CZ¼\É1A—¦Í ³×îÓPî¸[œã¨ÒFƒWëšS`†\?Ë,W¢h™FÆŠ*‘Úã¿}þ¤¥äú¢{K³«1ɸ=òÁ™–‡ÅtWœÔ’Ñú¡[ë§v Ÿ`ÆCûð°I":퓊Ã1Æî òKÀdŠ‚x©ÂjY>”DFBT¼@ªI5‘‘Ô+þ$‹‡(“ Jò…¶;m[àdÖÚo´pÁãù”»Žâ]q83ÁKAJÿ3*D)K\’buô ÜäwuZ-Ä÷!ÑIöìþ¾Ïv×n0 ^ZõVˆå¶”'””–îþtyô¤Ëj"ˆì_äÿÏ·Àë,.YaÞ†MýÌ.÷±“Òb7HôüùðýÞþÑ!¡¡E!µ…¹YÙ‚Áà¤×ëâ?ܺhƒ»B­¦§Jå’ÓSÓsoÞDVpÆû¸ø´$‹¥X‰‹ùÓ¤x õ_¤ÖÄT©˜ŠY¼¥%Uiß^Hî¿âòã|exYppxxppYxeeYY%ÍœFiivµHêïbÖ]©¸¯ðp+å–ÿÕõ?L,ô„Å0=ÔkDÀì”ÉðLMµÊIW"À øÚ|ðûª‹é7à&GüÈ~|dþAuçp.d(Á.×vZ©Å¼]2({L”æ¨>Œ¶4ÈìÃ7­Zí I‚!W¥ØØü_†aᇣ!èXi¢¯j*çZ (ÖG vû󀺪}ð Íþ°£49uv“£¬¸L§•¥ØùçϬ. ØqÜ/øÞã)Ï{É ƒð7þήӗèaïŒ>9ôí)‹§l±DUÚL–Ê£î'ØŽ\È«nÿ'ÊQ‰Ú%¡Aë6kÂt;táÚdØ¡KÖÁvNÞ¢ReB‘pPv§nÎ`Òwvð†S‹>õWÔ¤Ø,°—« 1‡ÄoùdJÐù»ï~èÖpgÁþæÖX±·Mô¤Á6^§ÁâD~Œ]Ч ÛìúÐDE»Ž·éC›]|ð“m ¸Ž¦!#6Ic¿¤#gZ6ÓþG«'jÄNNŽÐ±Ã¸À‚½îº}¶Î†Q©·Wàz»Lü‰0ë6Æúû ¸Š5©«“«¨Âu¿ô]^†&=Y§MŠ"2imä\ð†õ™îæF-+¸í°#VAŽ°Ñ°#?Ó`ÌHr ëN܆&°®ÏŠ.ô5l‚5œüJÌ‹Ã=Ã7ù†®§,µôx̧FÊTµ«‹¬ee1Ö-ñþÉëÇ^‚òß‘ûå”·ÖJ|³ôîwûhá¦Çóõ’· +ÞæËXêazÔ+kPo¶qÞàXg)ܽ³þ̆'×H:7…*är3Ÿ ôû¿Óuòw RAÞ2|WG®ã° ¹Æ/€ 3ê‚èF¸E‡ÿU?=*< mB±/¬¦žg¬‰ñ Z¼>%ÂC¥Yüüºä¤õûÇR1D|Áï´ß0™9’*#ΠÍK-áÂd[ˆzcáÎsy¹™7 ¦Ñ[¦Š}ŸH”[F‘>[ˆÞ¢yó8|e ÇXøÄøIÖ‰´Òüû?ãZ«ôÅ),¢18ˆå#ŽÚÿò1^\ϯߺЏ³Ÿ7\¾r~ÕŒ¥›Ö-ö,qüWuGšà÷øÝS#Nš6"ÚàÑà.ä$Ö…Y©Óy¾$xì²A½ûý2÷7túþîﵪC> B”96ûÃ}Ü@O»O®ˆj ‚EnÓ¦®š8vÆgwOWÿ¦ÑÑñµï•ŠìéŸÿ7=²£EŠ—ù–$ô_¿$f…aOˆp0«²È^ Œ JÚ4÷„×7ÈSkÞhöÑBØ/ß]¾6Úc£àåá S9ÒóÛÁØQÿ~ö7”žæHøXXç¢ëà(Ø£Ñ\·ëèÞ¼ꃪ7yä¤-€õÜ„ÍCF ’­m<%:ÿO¢"7:þOòr)Nµ¯t¹ÿ"Š’éϾZþ$ªEÊS3ùÃiÉ;(À5.Íùêr•Ú«+Ú©7Ýz½©Ï1deRººÌ‚Ä4ZX$'?Ã¥Vœdÿ_Ú<­ÙÏØi0B—“´Sµ=%9Y-¬™37d:Ì‚…ÖåMQEÛ (‰M™9žt"ݾštíÊ©‡Ø1·5)>÷=šR _Ã1[Fš^çڲ⣒ ´nªì¤ìlCZN–`Gð‘óòp¾÷yžùø±iofÕŒU qqËÀ?ý­ÏÙÌüo{ÚK.Ö™o7I(Aš¤h´Û¥Þ¤oq4íHdß*.v¢ZŒnûpÄ>ÉÉæáÒæx‹/h—á–dm²[ ¿'+ù6ŽS´ü]×.È΢+1šÿXf’<;-Å{$™§ÓSDz¢K.8}/NÇîØ3ÏÞ^F.3Õ¨Þ>j‘$¬&‰”šžÉ9¤Û'Äé é~~6piÆÌW^±ôÝ häᆠ»-G§ÅØ}ìçÛS§¦ª5 -‰Vü8è ÄÈ_2“ô . ‰Žz«ÓR3²}‰òO…cØ!¥pvå­V—n¡.}/½Óðù‘Š(Ð :6Fi7éj}Ø®$jדè¬MXÖYèÜq¼©k'èÚºv®. óØs½õendstream endobj 87 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 971 >> stream xœ’kL[uÆO)cÖTl=Áºäœd’mìb\4óBt‹dÁ±l02:êhe\:JË©§×óÒÑÒ ”®7i)tdë`ܶc\$^˜f.¢ÔOúÁüÏ8_,“%~ñýy?=ÿßó>KOÃÁö‚¢Òã‡^Ü\Ÿš[x\¸ DB¥û6®Jî?=ÿÔ­lls¶+/6UÊë0¬;‰•b§°·°cX!†§T°t¬{ 8#ø*M)Ü#Lr1ç¤ÃÜÁ°¥­¢žU!ç@qâ÷â{/óÙ<Áïâwç~^ô#ÊFÚ…ö¼ƒòšø×ÓQ$¼:G%–ožŒ½_üAs®â]ª¡ô̹rÀÅÜktÝû®/,àò ‘Ý$:/O"â'°C ‚Úi‹L¸Î¥ŽúãÞ‘ÙBOýÛµeÍ’¾#ÔC-´6i.¨«uÅ`Åõn°÷vv†í¤5Œ…ZcQ›5ÔQþŽÕÈšÀ"£íÁ¡îA§sèðÂzae:,ùvÝ0$ ßäH7 2bB?©‡S¸B•ŸÛ\bŸÑ3vÐõ¶4)ÛÎX¬½öÝ@⩟ßðW¹Hé_JG­sü¹þÐÊÚ@B/÷ 3£=N;Úú¯D{ƧªFŽó™UûO“Ò xóKm̈‹Ñzꦲ8* ÐŽÏ„¨—Ë%Ö3®x Ðó h¨üŒÚÛåØe¡6»¾QßÒn&åüKÛg´Ñ îpZË(àGY³YZYÙpõì3(ÏîfÀÐì%†¼t¶úè{€« âë_wŒÚ rgЖ lYΑ>D.žòDË5H@(Ò÷ßèYLyýG…e›¤ö¤ú:À?†ï–Ê Š<¦0Ô™XR:9®Vø;y!ŸÅàwž:ö€’>¼¡Ñ$>‡º‰ ¾„Q½^ ² fih:Ž2ýcTdyjú&à‘Ó•VÖd5RÿV ÕŒ ¶…ÜÜãC©bØœ)*—ñ2cѳ¬…ÜËt°4 jíïm›Ao±è€%Kx]{\5P ²'I®O„’£ÔÿwÙçè§Šû æ£ù¥€ÿ‡× Ÿ²~¥[ãn5XX³u3Î¥-nÙ÷ôÌü­»•?äH9ô=Olþ¡k*=¦Aµ¿pFÛ9íîMP_ #îÁ”±€ìîùHÍÁ:>Ï´Ud›·‹t G]Üã15]¤ j꫺úŽÔ“iÏ›ihÅåýU³¿ £}]¤ô×DDZÚU«²1Èxƒ±À )&³Ò_ Š2A”¢ ’`ØßÔ?‚endstream endobj 88 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 5531 >> stream xœX XTåú?ÃÀ™£âÆx´{NWSËÔÌíª™¹(jŠK¦ (²ƒ ÛÀÌ00ì|þ û û*a¸¤â’¸ŒK9¸Ý|ÒJ£²ò¦–Ý÷ØGÿûÿ†m¦§î⃜9ß|ß»üÞßû{?ekC‰D"É 7w÷×f™ÿäSqŒ°ÿ™«Ö^„ìÅÈÞ¶ìù¿ˆ ,ŒýÑÊüoù²å¡ï®Ø·2l•,ü­ˆ·#£¢½äÞkcv»íYç³~¯¯ßFÿM¶oöÞ+ÓwÎð˜éùê¬×fω›û·‰/.~cÉK/SÔDj=5‰Ú@-¢^¤Þ¡&S©)Ô&Êz‰ÚL½Lm¡¶RÛ¨åÔ»Ô jµZIͤVQ¯R«©YÔ[ÔÛ” 5‡r¥æRó¨µÔ|ÊúµŽZ@ SöÔHj 5Šz“M-¥ÆPc)JJ£<)–r¢Ä”õŠ£xj5œZA¼§l©êQˆè€Íó6é6ÿoŸ°}ݶÊîu»Óô_èÉ8I83ŒÑ ã‡eû|¸ÿð“#v¸i¿Ú^?Òf¤ï¨£ŽŽÞ5úÄ¿1gǺŽmûÐaƒ -·d\ì¸s¬„]Îú²-ìöÑsSŸ‹xî¬ã«Ž]NÓœ œ¾w^>ž¿~|Îø»¦M U£„*düÙ¦;¢z!@ &á«9 Ò¡¤@<²×à¤B(9=>99Å1Áu¨œ{BWÔ ¦æhäËWÿlóéêIv¾Ñ((¸UðOèò:ÔTœR¨Îᓳ"‘1x…Éjé+Ød‡è¾Cá¢ÑÝèðÐî&Gé§°HǶ ÒÝÜrZ!#Õ¡þC|ÑÓòsè²o³ )xOXEK?|tóÀÉÓ%¡ë9½GÒ·®Þ¼n†õ:%ýxÛáÅœôÓ·‘‡¿\ÎôŸe£Ã7&PšÞ#Ç 0W8ÆÂXúË*·ï@—iü‹4le/W9….27ÖÝÅbGѪ0T‹Êøú^-}ºÏʸ ì.ôÜ6½weQ%ï‚u,–Bpô—MË=¶ïÙ0—''áS£è¬ jMbÁ‚ȉ3ĶØvæKx,–~?lÀæûÀÃ^x»ÌíÖƒo®\¹vý²ë¬™nK—ñ}¶ *£ädƒ Äd]ZK\ '®N¢•2b]ªá'âxÕÉE° Áà\S…š›dH9øº†o á%|Þ¯‘I†>ƒ–d°Æœ¢x£ou˜àê± n³e¨68&%!)…KOEéq²€†úm$·,qaéåEáÞˆ™5ï˜/ßÿ¥ç™‹Jø¬ØLEbÚAoö ËŒðª®`"—$å,‚röü¹Ó—nž[>÷•U®«Þðûê8‡§Øô:¬iA ˆ~R=û}Ï#&ÈŸ—>lL/ñù‚zþ‚è¡hÞ5A…I|Av`e)_իФ‡žÀ›ǯà˜sçÁ4ìÌcIï1VPý ».ìŒ<ì<‹­<¹Ùºj’'wá¶Uùû¡Xn_£wÝF3ÛÉÓ±ùnØ\=Ú^màqàv«l¼nÉÆvz5»qûÂ…Ë\»¿þ¶ÛôÙ­—¸pý8Ž4‚g_ÀMšv ýúÐÈ[,xº5¯ …ï‘ô[Í­Æz‰´"ÁQâmûQU%÷`àµÂ›ÃŽà é[h9ŠÜoNwCÒœ\èÏõ£•fô›wm²®`˜a‚Õ÷¥‚ Ö±ßÿFrÚðòèZÄTéËêõêC ¶­‰YëÎK?Ýß¿¶±`ñ¾¸Èò%t©9Aa°XL–ŒÃu#¨AFGéc8 ùlDvt–,'$û-ú€©kiþþó’à°,N›Û<)“ÄŒÖðTUR:çiðDró×#ú¾ú4ö[/}ЙøYÜ–ñ{÷ÌÚ±©è¶ŒK©H- CŒ9Bü4‰Éš Ê´í:®Ó÷tzÚì–ÏóÒÇègÌs˜¾ò€9F8b0AIófðakªIµõ?ÂâÔ!Zm·ïØ‚˜EoSaÆg?Ýn»©r>36W]7`2ð}6G¥Äû+9¿¦Ý¥^Äfûñì‚×þŒaÄÙCMÕz>E÷g­?pý®}ø“&ñÚ"uàbÔÚÂAµä+ èWLá78©ü :XØÞ`Nlê)¸eÕûÄÂrÎ&+Ÿ†Yìl ±ßÂ"¸e×ð»C~6Ñ Átþzd@Ε¨µömo€e&EeB¼XØi>Á@œG1„Uè˜p²5ªä;éwñI» :µ.î¨ú`Ì¥´"?”@`™–´s©ÑL½NÚuöwâ$úº5ñpOvD–²9w ¬‚ cíWÚ’¬*FKçlmÇòu±H‡ÚQVYv3å׌ŒgL»zÀD:J°ia«‚Žg@LÃ@ñJÈÉJä!HrmóøÅ]“Ñò`ƒ¢¦´¡ ]Ë¡|­VŸY¢-Fˆùû© •¼ô^•†G¿ûÊøÕ—\ŸpÒ¨vt1ïX3Oˆâo"*¢öÄøÆz Dĸyïÿ ó^;LÎæ¹…1t€ŒÒ°ì:è’úAj6ØëêùeSÞ|lW7ØåpKõ뀆ã—ð<Ïn·åSÖŸ­(Ä߃Ñ=x´]hä 2‡YÎØ=€=€솚’’'\ÿ¥Þ\:E‘ÊÔ×rÒN¯ƒ¤EM°êP¼Tùòˆñbð»¶7$hk–Þ.2A2)åÕ¤Úº¬|žoAV{¯j¯åI°äx‚4RéÑQ„ã“%æV$7 û¢Ã÷ÿ ’W`ÿ¸½É1IAÎtJ¥ÆT9’œjÿÖÍ4LÄϲP:ÊpFé²…q²wßteÒæä£b¦6¦B¶/6&ÌkÿîÎG‚SQ67$}n˜ ¼G,ìÛ‚’ éÑI\rœ|Ç2ÄÌ_ÑýÍñÀÃHÃký*U5ˆ©1”7Þ˜„<ðÒõøù9Øþ»Éàüþ”Àd’ šŒ¢î.¨íÃaÁŽUûjB’CHq$›ºôÜ„R!fS¿¿ÔÂ÷ª$QÎÜC /„i%E;/c÷ì¸üˆbŸœ¤ÜD]’£’üü’¬Ü/!WwšÑö†Ñúe•¤Å0€ÁM´7JUi†Êêj€ÞЯ'X_¤êà¬ÙKÈýöšMK;¼ËvMÀ¢WúäÂ×Ó~!8êB‡ê´])Ùä±`ÉÊõ×z~è¾Ò}¹s“»Gº ŠÄd£pU·*³ö!æ-+¾63òÐÓ/V”+„jiXÛ›VìW–Q‡œ›tYx!·V2´â¯Ö¼š1ФŸ¿ãŒ¢3&¨!b1lb •¨è5ÿÀÏá¯L%âhÔã)À‚Ó±¯kÍ©IL“'ñ‘Û6kBÑR´ô„⣽À–Ü8¦É-+x‘’ ]&¨'»úÁ9E5`7ìµƇ ûÀ ÖVÕÃ!{ã|v’Ô'Ô'Ñ}t]DW‹ŽŸoÖÝE·P›¦Ô]·ƒœ´¹¡•ñ›ã7…EÍFÌ ÕÀXRwkMï‹!×ÜAGYAÔ1úö'¨‰K-ØÓ¦¯.k¸ð:R¼¾dç\nËTK;}Œ/N±è#¨±È˜)æá˜ °ìì™ °ó‚Cã9¹¹“}pîëŽÒƃ V²›½Ž>{äÈ©íØ²ÑÓs+ÿš›•~ ¢1ßÞ¸ÞÓ¤iŒmà ºšìbmî¾ê¤BÄ”Wë«åÍ›ã·gøïäE~•;3cåÒù»ÊJå¼Sñ MdðxäW"+P/ó@o¡xfÞÓu0Æ=½øe{̉mõ\\žWÕkˆYE'¢8”˜©DÉH]_’¡G™(;³$»ø;uéá#--z¾¶¬Ý@LØ¡yžKwM(Â>€‹ú´Xx޲æ‘ëmó¸ÅÁº?aJÕ˜êþ‡™®8y׿¢N\L^&=).Ì"¬yþöȆ÷¶{¼3‹_Aƒ{ ûq{¥dî½yçðªÿM˜ÐÒ·‰xjB-¡UQ(y!W\XܠؘK5h!CLÁ|búÞØPtôô%”¯©æÔUѺîõPFEFyFEà€¾ÅN}·*·¤¥€ë6*.Ë\ÿªç²ï!u1ïݱ/ï FúxQ…—Χ s>Ùyü /”ËeE%ë«S¿ÈN‰ Nä¼Û6ë<ˆ`/]<ÿí£.Ÿ‡‘ñ0¢$¢¤:8›À‰4·æqÛéO¦Œ t@bb¿\2ôæ48÷ª¶ZÍFË,YÚ:4ˆÀRÁ6]f½ÏÂhصY3­z'çãévð´ÿ@W vöª¶[éЙV#Øú³›¤^í¿ãèÃÊpËöAÓršQtËñæY€¸×4Hïä|ÖjvÂßÑ/¸lݺÅõÔ?9ø®IB¶ù³U?ÒxôýW=ºÿ-Œ¶ò¾à}2€¡ÙVuô\¯Šì`y¾kÅaÏ™-L4˜Å@… ì·ï}ÃÀ¹“û5 6~ >·EþfÒ.³hK-×´OœÚþ°ò}’ûÞòBŸ2ÔˆœëQ%*hg¬FÂÓ]0ÂücžáEÂd6½)Å &Ðòu|Qâ5PÛ_õG2 ùòð–DÚÙsðØÁê’XW«$òA¸õ»EÿuI ÑB@ÏöŽÛÊ)÷‡V Fz'«Â#™¾XÛÖEEB†X%á(Z‹­èöÄ÷×%mÍ%I¾¼¶gäjª#†Hñh”@¤ø¼#Ũ ”“Q™ôÑVákÙ´¸_v6 ^K_ïÕçøÕÑí\€ô¨PŸ•÷ÄewIžíñŽÑ¦çÉêPy_ƒrÚÌ6~mˆVà—`ô¥kz‡«‚ŽþØQúð!ä²Fÿ½ún¯zE&ÊGŒ¾¸¢´\]®åeåoµ†•uÞI—Wœ‡*™lÔ¸›ÃcVdÖi?FääÖ€  Ѻd†q˜º¤*HGIÈ9:.F)/J.NâA´SÔIqÉ(Ú9…tp0æzzX† qÖ €ÖVÔZИñqz“ ŒÏ&LÊâ×?ÉZðæB$iùßÖH‚rösàb…ÅéÏ&™ÑxÇotÃ2ºFwHC i]jkóCjO„I´µùù!?5‡'á‰5ùÓ¯ éx"?'Ñjä×FëÌf`Þåx¬ÁvÀ”5—Í÷ymY¬Òm‡Bš“‚¢eilyË“ÀƸçÏÝÁ>²ÖÜS¡,ŽLRÆ%søóßV')2JtŽ)ÕWå•çuÑ |@RbÖaë&ƒ#¶Á¶SûnþÖ=ÁŽ`¶`<¢ô#Zì W/ÁÓ7ot¿Œ§â—\ñð7®0GŸÄ§p_¸W”'«Õ)œÏü­ñòtEFT: ed)¥•sázÍ’Xºt¶L³.ñóžº&ñ'çXMbr R1ækZ¾íÏSÝÀý–<”ÃúüÉnî¸Ôuô2úŒû)·ð(<|ñÂù{âË Õå º”bMWzôXóÄÜýtçœUÛßqqçûï|2/˜oŽô¬ï}¦Ý¤§?ÄpŸíz¿á,úˆ¹¹ü,Áö«Þ[P«Ò›7+I.LËâš›¯™§â«'|=‚•~û"ùÀ0YºoúÆT%B!Œô'3ª¸£ô'ß~gݦµ³v/):Æçääå"=S#×Ë""•³¾C›ã—ß>à¤ѵç]šÌ4!¨ÁÞõŠÃ}øÉQú¥à"ü-S–)â“S’“¸àÐ0…ŠpUbAœ.®8Úàö¡PEDl´2$Å0ŠREYQnNn×ÔPWV‚ ‰z)VÇé£ö£zÔPV]®/m¬BÜN…azQc7ȺÄ ÕÄ‘0š (Hjæ SnVRêmK’Ü€ºmyzžÒ­Iùþ\(ŽR2â¢üz/ žØá'æ©5Þ ´EGLg ÖFfÆËðZ¼aF…ÚÊË‹¹h‡°Üx^_‘™‰JóÖ½trYŒù6ÁEÊy¯ QÙ'–àý‹Š»@}÷{ñ¿¨Ûÿ¢„ËlÖ1ÿü8$G!ñYžÅØÓI«ÌŠj@µ(§B[ÎÀFØõŸWô•ÔyãÍ/Àý‹‹Ä‡s—×ô|iüñ¦™„~3ÀQhd?Ž;ì¶¡m;ÖÄ3ë@Áb¥Ä#×»Jy27»0U3 áåÑßÔ Î-&žÛkgÍM¨¶Œ; Q•'ï¡nÔú#ž\ÏHÿï4ì‘´¦žP•mKHLQ£8&¢<ªÞP£kÿÔý:^ȵ÷I² $Sp>l·æM´ …çb 1ݶ ·¼N¢ãÇ;.š­ï2žú~ÚØ (Ø¢¼â|Ò5ªå:…&-C£âð]¼[“—ˆäÎ(.?¾0 îa§MVAsY¥®º’|šÇãp±3yk÷ÝnÑÁ],¸Á#V×Jhh/™o‰šQí%4Ôj¦ï§x:[ÒNÞ˜ êWZ@Þ´“þ{{6B[k¶'%äá{àã¤*HÓj£«#ääSÒ¯:° &ÿã“úŒŒ¨T—di JÌ)_hxNhf™ùêr3‹J“²ctxÌ;Á-ztxÿMYQ^6*eòSôa!xvÂxÄÑ×ÚÞåN/¿µ©1u9ú|Þ²Ùû„³žÂyÁˆ_ûØrciW8bdÉщʢ¤œ4`Q)žGF…©{1'ÌR’> stream xœ•YyXSgÖ¿îåV©¶Ä‹Iµ÷ºVÑ:.ußwq¥î-*(¸*ûš„À²@Ø£BݱX‚B© îûVl­vj[ǎߌÎhm{nŸ—™ç{“€‰ýœyžÏÇ'Üœ¼÷¼¿ó;çüÎAByw¢$I÷à˜-k¶Ån]84,jC¢µ›cÏ…LüûÒßûÑ:_ òõB¾ÞÕ½ú öƒ³oÃÀn×ߢÿ‚§o]6#vù̸³âgo›³}îŽÀ„y‰ó“Ö,H^»0e]PjdpÔ¢õ!B£Ãbo\²ió‡[–®òþê¡ýiøˆô‘dŽ=f츾ã'ô0yÊ ŠêK-¢ÆSý¨jÕŸ ¥&R¨0ê=j15ZB ¢Â©êCj0µ”B-£fPïSË©™ÔPj5‹úµ’šM £æPé¹Ô*IÍ£> æS£¨Ôhj!D¥‚©qÔ$Ê—z“šBu¥¦Rݨ·)?j5%¥ºSSåOõ d”œò¢Þ¡zR4ÅP<%PoP©E.Ê›JxKŠ;ñ¢;}åµÃëgïÞÍôXú239á£c§²'ßXôÆñÎtç¥téÞeïŸ|O¾9ìÍœ7éšÞw[Эù-á-Ý[÷ß»Ño’ß?¥™ÒwäÞã¶q÷ýÃýMþ?ö0ôx&ë-Û*+””}/çä£ääOÞyç]Ï^=óz>ìÙë¯ï}wÏ»wùùRÁØ; ÷úÞö>oôY&>é*>Avh‡&»DŒ†®¤§2IYÊ´l“¦\€áŒÍZTfUR…õÌ(±ŠÆ{|ëËàÚ¶z³ãQz–óѦª¤ý“˜` V;‡³˜MtãzáC{œÝOÌ?ÚCz,âhnšûÌZf~H¯îxP!@· 1-`¤¥u÷îí¯¸Ò³UªmIeé–$”ˆH›§ZŠ‘,ÆÃ?‰Û™òS“ά3¢"ù¥Ç&¯K^0“wº#&ËûƒƒÈ$>¾|örŸÕÄàåx5ö†ÕôÑW,’;,ÊðÇ™XêჇûóXÁo¤ƒ<,dn/SÛJ³CAè`ClCé3Û¹pŒ/0ÏŸ>||jãg5‚ôñݺºæKïÜ mÃãb·U £ÅQÜ1ˆ¢aó)ªÉ±¥T¤ï@IìœiKÞç¥Ïð\Ã}i40ÑAÕÞäšÔŠXÏΚ¹p‚™4»(±KÀ«Aôkð{Š39Ü÷ÂþXè÷õtÀè¿NmÅåZî§K!£0ƒ½úâ.#^øhðú: nŒ}ÁÄA&ì¤w;n\jU¦ ¸“Øj;ƒWà¤~Dy}ªèŠw~„cè¾øœÆÅêÂT¡/ãòÛ\¿Ñæx7ÅïD·¾qIõ<ˆæÇ‡¯ _1'38uœL›ž—ŽÒXìûÓ0è|ëËý§.ó{ªMTÌšÕFENn^N?wAXüľ7íëç¥åú2¡ìv tï§Ð Éщ”ÝÛÍ9Õë‘67JfTj¨é+«Á[¦+Ô¢V:Ü¢2*2•Ê”\ª8ØÃìð3š‰‡!ƒ¤Àûî µ0¸S[%îqÅprEK9Á#EÌœÃÁyÇ·ÜErè Rxä‚Tölö5LM]7'—.ƒÐÓÜ–LìÓ/3c¹ÿË‹§@{DBíÿÌ×tz¤Gr³Ê¤ÈÈqø·÷¡ñ Fg§ŠÖs4~ÎÄàòrP>ÒÊ•&•¥Ôb©2ð5Й†]L¾¶mr[Dfí>¸Ùî´óLÂ88oƒ÷~èk=#3TT! ìŒ{XÂã8ÏÔnKàž‹ 4ôcZÐáôO¢«7•¬EkPv^F^FÚ ÙŽ>X0±€ñ‚â]q<ä6][¾*bqÜûbùÀ/çþv÷Òþk…pl <ŠJ¸+çT„`áŒtx‰•t‹›tï3Òe8(ŽûñÂ’ }úÆÌèEgîýöâ 0BG‚>°ýB’c;Ôp0€Q|”ŸEç¸ð©Ôó{¡ר­+ôÊh<€qæc“ðŠý~è¶éž¹;€”U”?dja!”ég*3œgnÃ]h|ýeQÝl÷“ž‚G„M˜eR2ÎßÞqVÔ!L²ãYS&ÀMWúå¦ x.ó9ÄÓÒÞÏ GýîÆž»P…¢j»QUoDliI‰Õ¬´¦— I©¦x´}‡½Ç°ÿ?Üì÷€àz;f•Ù‚=“à%í<Êt†¬XEÒóŽ;§6l³‰>õ1$ÓÃAÛÔCº:íáòµù*”Ç:6[* ¼¾˜–Z_Ûœrµ't{~ûAuÆÞ¤r!~gtñ"Ó3BI–DKª •³ÇnÕß­­SfUñE*Ûv”«Ý,+Ì)Ìuå´¡²ô¦+¥õ¬´—#™ŠìÄ\^zèÀÖ5e¡=±dTÈô„’í•™BuêÕ—9§Õ5ªÝ•Y¥‰(• ¼jÈÄÐGõ:£ÎÄë yǺé¬Z°´btqÖ.ŠpúñDq¥Œíå½=Ù„ůÏYŠä¸Ë̋Ϫ * 6¡¼µ†”ö)ø y=jÌ®N-SVÇæ«µdFr™ÂöËTý$+0#ã2¾n’j3hië§ë—UÎë‰û ,Çôf< mºL“—€I©ü~¼{éVeíµv—_ØÁÏ&ñ ^°—ðŽÔFשÄwtš;õî0axWž"?)äa'£îºS¶³™ßWRlAV¶HeÊÑhó5 >bÇÔÔň ú¤Þ 3éLÂY°Ñ¤–¼l•R"æ®Ài¯ð¥O‡m Ñ ŽªRãÑT|=™ö1Ž¢ñn'1[^oSãd£§*éíö$œqtQ'Ûi舲‰øå>-†¹/úÒØÇÝíî0Kp)3ÁsæmÛ3bËþ32…+pš~¥3mv~6Ê–/jˆºvýúžÓ×<„ËL±Šs{“"àV·$!qø{{±ÁÑŸ4Þüñ$ø46ª•‡Ý=¢!ž{Òúpó8BþCG5L31°$îÄõP+dÁéâF¼‘Á?à‚SP@åa0ù¿ô˜â.¸ÓÝD»@,+`môÀ´“ÓfÇþ}ÀŸnz=è&‡P·á9´Ò#_åË@@7@/x½PV0¡zî •ØDµ jÄgDI²§gs+JÊ«­ÊóRcªÒÒÆ9OFÙ“È'È¡Ïó™·ûO_¸iÖ|Â.q..‡}0ÕûL¾ø-øü TGßwâ§?ð:ÓùÂ,#AùïN=rB\Ê4ÀjWÛ 5±£ÆàQ4®a\:f-‹¾¤uOƒÃþÒðûyÜ:ð Ñ!TJ\‚·]>'eµ7zrÛ4ü`(< Ozø¸9PîìšvÑËM:Ì›NuÜ,úrÑu˪‚ˆjŒe¸ôÕì_n´Ú>=/²í´‘ªlVZTU®*‡Y5#~bGý¶ÙÖr¨Ahh¹zàªGDzv¦Z•5[†ô™B"„M¤ÏX\}†´<ƒ£Ï oïwÉZwù‚ÃdÒáWÚì„nš KçÅÜùcÈàdül<£¹‚ë@ßU¥c<(<ؓŽ#ÌÌü+í&ó‡Xú™IÒ!FœŠÁzš†B¦­3~œ³;3;Ÿ8µrÁ+â+k1÷3$Ó¯rñ9¶ñ÷ÎN*&¹©¸gÇÜ^~h)¢d¸ï ;ÓŸ~}½ööeAšœ<’&Üt]/MXÂàðœûþ|È8Aº³}zcvlÈùïÁç·_ñ¨þyþDºVѵtìÙkÚÖᢎîãF©å? äÃÓ™§â:XѦsÝ fØa°]òÂ.rõ^âyXÉÖè«Q)ûÉ·°"téŠyìu*°WZ+÷·ðûË‹Še,j“R“›§Qò+7MIXˆØÁs/=2 ³®H°Ø¹º¿~î)bº6!iHmt5 “]ò¼AœA†Í b+‡Çáá8‡bù½àãaB8paFP­åþz}"îDŒäÄLø-t‚1$›G/tÄÞ# {A¡…2%‹Nœª½†ä»‘]»[Û¤F$¶l©µ¸Ô¤1* „MÆy¦H4Mý0}Ff°ì7Vb:À¼[nððìö2f= NQE!#… ºýø·»óO°ê±ð,ºjw îè#úÍ¡“GÌ ^;ü˜áGnóõUûg’4î߯oaÿ€›sž´žßý‚‹¹Œ¹ó–Ì%Ìc= ‹ó²—=Rw°ê€ÅÎJý ú?CÐÌ8îÛ3á“15hî4qÉéû¿üó¿9}ð±§ÛÅûº“õ&C ¹é¸B³„° ›ôˆ”QWðäܨ’ø~ójMÊ‘+Œª¢ƒNgà?·Þ,Þ‡jP¹¶FÁJK{еå=kÐá⃕EF#™Æ‹TFenn¾VÃoHJQ%¢L¤*Øaa¥ÉÅq †-=QZÞ&5 ³Å‡NNHHûñàÄX‰á/9áÌP’6$2Mž½¢\8íê«=b!sDZy2—”ܸr°â4’7 *µ-©<ÝœŒ •®ÍÓjÚ%sžÈÀ®/(ÒYˆ^¸±ôØÄàU;‚¸RÖÛ!µ([ÁÀ‘x#úPø)<†=ë>` ³ ú&?LÝùsè.Û:ÿÌX¸ÛÎêÝí)}Šý¤Ò0”¹r2"|öà…½_¦ÈÏ/$âPGô 9tv²öÿö˜¾F1ÐU¼Ï…0 ýè󮞲Ý&¾IF»c[ݦÆÒbñ¤XÊm²\BHéÓïƒÁ±%[l©BMBmÖ¬›Y6µ-­"³dJ`ǘÕ?ruIe"ŸY{ M2YcP“P+¹);°·,?7_M¦:霎ÓÀ÷ÑÒ£«œŽ¿Õó2jÝÓX¤¶æjFSï¨ØVg™V\´ÍBâdÍÞlì—÷¯>:\Ÿ™ZÁ[”»6’Nµ¦}ecEEÅúŠ]?Ë LŽÏJ»¾2™‘l+@©I)Ý6(cnÈŠy$™º{$Çü„¾¹Zõøob¨ ׺U>Ró6[²íŸ¤Ýß„ïì®mÇ&}F~ÊFùrŠŒËí­³YÛ*ffHs’Ö¹/^ÖJÃDgÈûzÍàn—¯Ô¿íÈþ ú¹ëaÞ£ƒ!i„¡xD@ô ?w®Jœâs[ïbpx_ìâØ#ü7uåêLU„Óá$½ðH'BYkxÃeþ_Xåøb>ñy§ÿZIc;бøJuŒÎ:ÁÇÉõó˜q¿¯ÝË±Žæç°9ðʲùœCíÀjÂôé\6¿\V•ulŒÛ5‡cä”Ö;^W}¸çÞÝñ›H§ÊW ø&}Çs°;¶ãç>­þÉ÷ïÚ¶É%öçâ/‰‘Çöù<.0ëLÈ$?ýéŠ5뗯೚ãvG 5(&9bë¾|WÿË ¬ûïiëO_a`:¡ìuý½œÈM<²-.^ìE1xi[¯F1Žþyà6u®Þñ[ößß!± /pO<å<ì_›iàݯì°‡R§Þ/å`žG— dŽI[L[Ú“DËGàÕ4žG£HwÅ5‰À/÷ANIå8M 8Ü ëµê<5ÒÈ3‹%¥fcU«¡’vû¥ã¸ÁÌáöûfš¸I´nºóÙ§{ÅĽSP̽T»mï¹oL Ä"æpÞ®Ph5HåÜ`š õEE<CÐo8Ȩ0hÍHn-±ZõyFm¡ãGé6 | ,÷ñºõk6ïN<$3ÇêëìØ¹Ñùµ]l&.?÷y‰çàg: ßö±à½ôêHÜi i@#7ò‰U[´[ÐV9ö>9ÿtz QËãkãJ®ºQß´ïð‘ÊÄÞ:¼ì½8m¬f»<2cÁÆ9‘É·FG¦¬EììèÏöê÷V»ÒY".E/MQç¨P¦<Ç”cÖ뾘‡Þ XÒVâóÝvk‡˜LmóÅ`ñ×¾òqn¯”ŠÔ\÷û×Wi•;bUbiIâCä•{Hc’Ù9þ×o`Lj:&?Óbû d¿¼MfÇ]Yô âù/'cíKöòÉPÁ]o\4}ʼQóWÚOõmë!×q­Íó&Œž2|öòÆ+¾»óØÉÄ=¤•&a#­ðI³(J+‹‹k,ü`¤Oú»ŸVX;žº\qÀ.xâcü‹Ó&"”¯V.M‹[2K?@É(U¯tì·u$–Y$ReùóÃ#×o î? ]B¿޽{cûŽ9½èîíËõ>Ç[¸˜ÓSRÒÖ­ÿ8)±‹×4_þû·~¸P·i~¹P˜¨ÓD²ÎJ*özm1=ºßQLOA yå~~äe‘ ÅÅÀbo"'ÈÇŒ3 …Ù§¢‰(¾$®2}gÚÅ¥¬ëe¹•eÙʼn(™31dØÆu–’>Ó·ô‰T4!™›š6©CGºg}C¹më;šòäñ¸K~6­|Ù±>!d~Ãúàú«ÕdîK.K¨Š·Ì) µ&S‹3Š6TÁ^øêâšZ¥¢’/UÚÈ(·Ý±üÈ59$e‘¾²äÂKI9®½æ&køÍ{‹" Å'e¤‡J—Y^.<ɽ³ŽÀ´# u|J`óg…ŸG>¼HUÈæ&OŸ1eqÚ3÷î´~}~m}¨ Œâì{c#—,[¾$2vßg§Nœ8%lGpS¦Ï˜f_sÖaxn­=DPEqõ{c×…è­Nâp Wf0™î4©4Úü| ß6wÍÐä8vó9F•Y_ˆ \­;Ìþ3É GdÊt÷Ú5×Üÿõß8:Ï÷P˵yAºF¯)Ð"9éĹužV¦Õ‹ÔZ“®áå²¶>xy¶Z­""ÊCyº> stream xœÍZiÇýÎøG‚ qÒ÷áÄ,²ɇ´’H 0æÎ®h‘‰äJÞüúTõYÃÊB±>¨ÕÓutÕ«ê×M¿ž³–ÏþI¯¶3Ñ*?;có3Ãy«¹˜[mxëÌ|;³žµN•‰ÍìÉÌYÞZÇçÖ(ÖJ‹ÊŒã¾5:¬ÒÂÉV+²ªÌÐUÒ¨V9bPk%[ÔE,f·œw­ÕÕ«ôoꔑ®UƧ·­c|äT]•gF«’SÅ\ö‰ØcóëÙ로§¿VÛùý‹Ùï ?÷­7ÂÌ/®f1Ì|Î! \Áî™m¹Ðó‹íìi£K¡”3Í£‰9kEóùbÉZØôÍÅ Ø“Í'KX`93Æ4Ÿ|óÉCüà½iþöWko=,ÿ Çœ /TCæŸ_|=ûüböýLµÞA¢ÁÞ‚'Æ;ß2Œ¹²ögË nðÜæ¤|ÇæŒÃ©¸¹Ç Þ2æjþ´Xj;ÞÊäMm'F]íËè¶Œž5ex˜Êèe­ËhWF×eômU¯Ÿ-:زž›Ö[é–ašÁðáìâ·O›/Ö?õ—‹%ä«eÂ4ýÕU¿:`¿Þ‡§é£ku»c¿Y~Ùõ»Ã?ûM^$ÑRY´íݲÛu›ÛÃú°nïE¶øi·Ù|T-âúöÑ—ÏšÝqLÓ¼ù¸*~/}a¶Ù­ŽûM^¨ÎȬÆ2¯ˆ•3"¯£t›ÖJëçKØ ×Ï/.¯¨]sFɉÝ]·í“¾î‡·áã³,ýl‘2·¤æc/gÍò=þ[\ü83Pzº~Ú|û8¥Ían7ÃÛ~¿XrÁXãõ¯ƒSÍÍ«Wý>»0­åþfØ]vç±þcÆ Ùéø¯†(KŃ™FB§ ºbò·¯~è7ÏÁª‹’°ÜIͪ$o½(’_t×ýþpÜ['rXq‰5EÖ1jœ+²}BÊeWµ,BÖR!¦‹Ðƒn¿Zw¸EÉ¢VN’ƒãUεFP¹7ý-cTNù"§d•S­T¹D"¼b‰<؇ڒ&kÅ2ÑáSEö%æC‰¬€‘-»ª@·¢Æ)HY*åªY)©”KyS¥ ¶ØR†æÓ¨*õc·ÙvûðsªæS´Ü‹œÑP Weo~è÷ÎÕø˜ãÄD«mþ ®0QYîkHÍú€{Ê©‘a[y‡–¦”U{_CÃëwˆÙ,ó˜q§ªäºîñÏëͦû«r²Ê¡Àõ¢ Ϩ QUx9Þ,<ê6«a³u¬+PQÝ×£xéêÿ£ÕƒáM¿ßA–jå5C€¤qµVÉoº—Ýöfß¡ãYRR4qjTdÑu‡‚ã ©bRj C^aøÝz¿îÑÓ “ì Fsäj¹~wsxÙYOÅ”™,ð²v‡'«»~} 0Ô±FQØGéd‚:šÄIv/†Ý®h!–s˜ Äd~ÐÉ©üþ ÒùÑHSÔ£x‘ü{õRK@]匣}‘G¹÷;|~“`7ÉÔèú@kë±XΠO¿¢ÇT=,ÁE{VˆB:§B0ûC9ÚEs5ì³I×¼èý~¸î!eÇÛÒ¼õÍ_ÿ!Šv B«„ÓÓZªj\\{µ|ÓmnúJ`š.Ž"›¬bNÁDlžyƒåvîF,jSÒAµ ö ÝÜëö@q¨¹–ÍõMäÖž ìæ½³Æ6ດpÒ8ÝÀe¢®ç‰F*Mìj¸ah‰Ö!xŒ*=ÄݤµÔGññe퀪™TÆ5ÁÆ|UÍæ…sFðæ?Y´” *‘ ªç*Îâ B´¼ ‚}¸\„&=ÝŽ “-.Èa¤“¬—ávrØÕá¾opnj鳕-º¤¼ðôx=r§c¸=yo-¸Þ{¦ÀÔ%”=ó¼¹ {|ãg§1`wbKÊÂI¨'vD|êðe®ëp†Fk—2ü¶OíR!àz›L·n&Ò}„^Á–ÂYLç|)CÙø ¨‰Ë×ýÚôY=)£‡ÕÞËä²NV{}'î}íÏXùÅî‚O'FN¸zœøú|btoêöûK:ˆ(ATpèt C«÷ö5ÜZ²ô’ÃY¡5J~•ÕÄc㱑×ÿï‘®¾x‹ƒÕ\7áj-Cù¸÷›z;±•ŸÓýÞE„°Üá©› õ¾1„ƒ{zXWjã[&جj.õ²nw9l+59yd!4‚7Ÿõû'ëí°[w»åÃn½o3•ð‰ÝXû“÷•ÈcT|_ùìÉÃüÀç ¥áçÞW¸Éï+…«M‰¬Æ"åyer5yYø"ê=Thrž<¬d׳ æÏ=¬ “ña宓ïxW™4þäf ÷Ñ[ÊS‹²ðЀw¾ž>®ê9Í$0b¥pÐwUcw¡fÎöF\ cWñdwL;ÞI£¤­¯mùâ­˜®(Ó¤áÇ8 }®ê® ?"eüAõ~U‹*к]“4{¦¨X-ƒ¥ã»Yê£4·uHÎ{Út¯S£Å_OÊ¥› ‘¡87ÞDÚ‘ö÷S㘮©µFUcPϸ×)Ì®®_Äfh±æ—Š!§±$=4Œ}\€ÜårÃw(&ÏPÝ^j¯)u¹Œk¡£°Š›9‘k>MSRLèlÀ@tHÓ¾y†Ëâ°©½’ ˜PÄ6…‚¸éMÈü±5Vçû\ù~–eeã“%onŒð¸VâJc&-˜ '¤‚é=å[7Ó@íH‹Ú¤w @š)³·9&ëP‘2,rÿ|‹#ë”õO¢õ*ø+®}8i«Éì¾Ýø^ƒU Ý ]Jzçö‘º­€p½’ÿÚpÇh/ "öPI¬Ü9©¶îtò‚!vl¸¿ ûQÎ2¾©¡"Ÿ¬†]URa°ØN)Ê@бÎ}\½ãb“:ÌÉIFº8gZÚQ9SÓÃuä3xÄÒЖCy8cÒªÛt–11™Áq=%ô o¤¬2;ÐøHFñ޶»ÜÑÏ€‹pÖôŒµÌÚÆàLÐ2ÿšEe¤4‚qy×s*àêìµÿ&Êfšrzm8$cÌ¥âÃ¥£Tm£9áßq”wäHn°Òœ¶ÑžäÿYOG‹PòoÞùÛ ®ò³ß÷³œÙß”endstream endobj 91 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 221 >> stream xœÒ-ÿCMR8‹vøzù-‹ ‹ ›÷T¾»¸3ˆøˆø§v©Ô÷÷±òÅ¥Õñ÷bó÷‘÷âÚ½Q"ûDfVT@ŸÀh¯¤¢¬«t¢kpozc,ñM÷÷èçïÞI×%¡Ú§ÆÏ‹ÛÛ1Ä# :Q?f¤{¥ªŸ¡¨°k™uŒµÂØŽ‹¥×ƒ$Ena}{mlt‰N‡xŠƒŠ‹~}”‹œ 7Ÿ ‹ ‹ ‹ aOU¡endstream endobj 92 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 165 >> stream xœšeÿCMSS9‹‹ùùJ‹ ‹ ›÷¿¼¹R3Oøˆù-‹ ÷ºÌ÷“Æìè÷ßâøF÷Ùñ§ÓÓ‹Ýòûßû#ûýJè÷Ï÷4÷RûÏëüRø÷“÷'÷ÏSCJNMû 7Ÿ ‹ ‹ ‹ à;¬endstream endobj 93 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 3695 >> stream xœWy\Sw¶¿1{U„*ÞŠ}ón¬¸oUû±JmmÝ׺kEdQ²©dÉÍIØ× {B  ŠˆJ«µU;:NÕv¬ÚêØºŒËè¹¼Ÿý|Þ/`;μ>§ï%|þÈ9÷wÎù.ç'cìú02™Ì~îG«Ýlÿü-Ý—º“íÁAv%2'¼îtä5Æör Ÿ± 2*zGŒOì–8ßø­~þ+·­U;L˜4Ímd†YÁ¬dV1«™QÌf4³–YǬg>fÜ™9Ìf.ãÁÌc62ó™ÌBf ³ˆYÌ,a¦11Ë™`fãļμÁ(dý˜ôhŒ“É<–ÅÈî÷ñêsZþŽüšÝp»4»Ÿí)ÜÙ1¬‰sãò¹}#û^ì7³_mÿ¨þ?;lpør@ß_9†9ZÏ8:=íäÀ4Iã(‹doÙe„v—ÐÿÒçV\Ž…üÓ?;óY‘Ç $°^jX,¨ØÃú2Ý8EÚNñ¨ƒ«…u‡ÐZ8\ËÂ5¨ ­2ûm€I°yÁ®PN«p¾|%#Õö*ö|^Ї’”ÿ¯‰«¡Mé(å«ÍÒ8£¬ö6ÜK±¸Ç!®Oˆq5Œ &ŸŒA't~øCÜù àcŒ:Þ¬í„6h„.ã¡ºŽ£†è‚CAåÛª|tîàþ°*bS¨—WŒp´Z²Þ‚ŒÒë–xó g—°òÆgO\Œ?ðÖOO”7wåÔÂÅ·ßõö3ÕG*w—ƒʸ…v¦pëö³Àaìs‡à ±#ýÖmˆÞâ§tÞ†%clu^ÈNݬ|øïê<ðâ#Ì2ë ¬¼$—Fà3Þóêê¼@àH?"O†çGc°os‡áD‹’Ì{uFédëEºxˆƒôa›}‚Ö7{Ù÷hÜ…k—¯´ÍX«tì^Šl¸yÂ’á¿›N}‘®BµöLOõ1ìMA#-m*-í°ÛzKó ¥Ýµ•öéÿ,MÑšñ9ËA¸ õ[Ž vrza£Å[콂 wz {G4N˜‚Y/ ¤À‰`\SB„žÂƪÒäJ™µwwÈñžô.¿òÓDHÜ-ˆbrrjšªR•½vÍeû÷ âðªh¥UÕ”Ò‘Ü‘´WSŸ¿Ç ~ÜÛ£`×ÈðëÇM¾6;¸]°'NI³ñ\˜­Ó•• ™ÙEYYÍ[Ú4FŠ<§–‹çZcj¢«”ÛöäÌ.ÏšS]ܾªæÛÈä̈РºDH-®rÊ(Ì\)œ-8£\öô¾a–ãio!#qY(«8bœ†‹¸IjYb÷mTç¹ú/.]¡ëØÙª€€Eð}©€u,å‹Ú¸‹Ž±ùê ÙüÔ KçÎHk9.àw,oÕeÐLU’q,,Ÿ¶ÀÚ˜C)á´WÕžâœcu38¦ÀÞÂ.LÎiW"¾ˆé/¥ƒºBzÃ"+—D9.Bä5Ùb6äp¦(,ìf1J» !2èÀ(  þ8Š KvB®&ò WŸ³ÿ€ßºTtÔÖë8 ¬ñBA¥ Õ÷DÕŠ{wB8$iÅtµ+ÉrqìŽñØîUòîx“¯<}(³Âë«a;øÁ.ðí}b‹¶8 b ILÕ¤¼E2\FaMZd@ÆP“Eo¢gôÒlPÑ3õFìƒrmÁ®Ø§Ý׫“š½OgVl(­¶˜êŒuWG¹”EÓd© NÚ©¥AÍúj] Oè‘Ö‚!ÚÌõ² BfDÿfªfh¤¦±ŸšÆEžBQWPbmk/i‚8iò1mÖ¯„ ðL]î´Eµ¼Á¯:²qWm@—¼–·l:züF2pÌCâ°Ð30,RIèÜ '顯ó;fÖæ>Æ’ï¤( Õër\‚OùÔbÈ=g²B‘‡£õ¡0ûµ+­P&†áÔç¬KÄÊèõ! —ÀЈ/Òèsuæ\°r¦Ø’¨ˆ¸„0ïfÿc_¶|z¢ZÀÅÒÌSé¡/ôC-lF»_æN›êô¤ô=£H²‹£ä©6cÃíÚÿÚtG.1Òò;ÒcvA^c2Uìµ|>¿ém2xü02ðOÆb?TîÃy…jШAŒO¢¬ wn©Û1ƒ“¿9|ªè¸AÅ\ò³äh”µXð´E.”\ù¼i8CÄ ä/ 5™aoVd?*mD{ÚG;©Î%Ó¬64!¨rÝQìÅÕÔ¿’ˆ|·;H•¸¯â-{½gŠôÜÆ tŠÒPt°ù¦fç•·W¬/lßêðæðñ3 ŸÃÙ¦ƒ•ûY:¡î¨ñ+L-Är§ù´lïÎ÷ib§ac OþmöÿSkKE)âRÇÿ*vÒ“—'ê(yÑÎV㬞5GsÞfýq|eT<^óÝq&º’×È¿FGtlV•“–œ¤II×*·œ*î„°¥&ʺ½]{ š9]5Ÿ‡“n•˜áœòÑ‘Áœ#ö®s¨7ÊÐþÂäØÙ#úýÑž½ÝÞÚ’Ÿ/¦ç IéÔ|#¸ð²8cMi™©ÉoÿÚ÷ÝVŽûžê*ùúßø-^b{·‰3ž±Èpø-<õH.¹â9‡=ºy÷Áˆ›D©$äW÷­|É}OR÷mƒ“ÐÚC±(v–h˘Èjð(ßã¶w褷7ý ï*É:¹|²¥—ù¦Sjdµ'qçeëI9Ä…¼1Á²³ ¸Ÿ.ž¿ÚjÝ]¬<Øp !M³' â8uNlUqI~EÙ.‹oˆ·: P«ÜZLÁ s¾ç^P²S)Š¡àÛJjâÜ|ýÁ“›÷`5F§¿w^>û‰µ°¦~L Â{ô!Ù±5%Y†¼"îQ:?îWÖè­{«•†òƒ¸[0.* ÆMQ¶‘Yü>tÒ¾»z–÷ı³Ÿ(É?{CÙ»o÷`PÖk©r\Ú½„™õ%¯Þöp ûÿ_ÎG j ]αɆ”ft@fÐUdfS6ÜÁeÒržŒ°勼TºzUü’¾U_¡ûJ( Ú{µqIzÖ¥óà ©‰¯‹¬VEE„„TEXꪫëê­47i”5Z°àæ[äÝv»ñ?³ŠM©[Œnåµ8ŽŠg-ä‹¥éº$ FŠ’m°s¸°U¥hÈÀ>TN[€~5ô¡ë?óm˜3Áãã^œó·ÚûŠÿÓêùþXg”QŸÚN[qCZÀ'hé D­HWŽ8bÅ“뻪šR#ÂÖôT$rÁÕñU5e段­3G‡uÃbÿOZðÛïq{8{÷%©|õ/¥>,YW"#Ã%Fje%<Ý}Ü>˜›žFÝEË¥e§ä|{û}Þ¸506,,¬,¬Þh0èÛtiÔ÷ÈÈÑý8_i ŽŒ ®Ž¬ëœ”mFÙ}š‡\“uÔ—Z0é–ü Þçã@]œ›‘™—-Ô5©>Ü3 “TðQ¨·2ÌÇ'v+¬„E‘—t-æW^[Ô`‰. Ûšè;ùë·PŽßÇ×pÀ´D¶Ñ#! P‰غdKšÅ¶‘_ü¡(/53M¤Ö“¬ôŒõÚãC Ä;׫,)K¤NÁ%BR¼²çtýÎ(½I×´ÛKî`ðí!ÎÏ$'<ÏG³DCä›WG¹gî2¹â\8È™âÊCCcã‚wn¾…<}»`¨àü_XMÎN!ìÈI¶ â_Ç£½àüìOp°³´…#ü<>< èóØ&h<ŽV4Õu(j€óP³ 3©Ø?s9læælwH)zoŸÁˆéÆëFY×Y\cÆlŸòîµÝ|VNF&]‹smëXrª°tútµŒƒ¥G÷‡U‡gÅ7kö z[uüzæŸ/¢—M´Æ´+?<™RŸ@[~s•NëòÜóç±ZqR†îÎO.,ÈÊÍͪ¤ÉüŽÅE8ÝÎVtvÌùæúyîJé:‰á±ïòësþ%³@\ȼߊp”îþêw=€ÿñ¹t¹Çñ¨ãÝ:ÒÖšQ©†u¼Æëª(¯Ô_a‡Ñwïà\ »f¸ò÷b~ûïñHrßäÞhú²ÐªM¨’5‘IôŠ”S•¤I„dJ:Â’`ÖQèg7½Ü¡/8ô‡þà0ˆaþÑ ~endstream endobj 94 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 2124 >> stream xœ•VkPWîa†žVYC´ÚMÒ¨›(J £®Ñ¸*H|¤xE…QAÀá)3À ÏP„Ã[Þa—(BÄØÑWé5°:‚ZF]_+k¹ZÉ™­ËmÀeÈfÿlWÿè[sï9÷|ßw¾3JfEI$z³Û®]k'¾¸#$Þ\÷/+ë ØHÁFVõîl—y8ûÍ›o ØRé¬Üì³U³ß5!È#xGèÎðƒ~åA-¢<©ÅÔ¨Ô.j åM9SÔnêsÊ‘ÚF­¤¾ VQ®”;µ‰Z &¥d”šz Y,ɕܷú“Õˆt§´Wæ(Kµ^hký‚î”ûÈ;æ‡YI³tfý\³$?šÐÓ$5;ã9öùîsk÷ìM ;À²«¸ô!%„‡5A%ÿ 1úYVøGºÂ­m*Ðò~èDÿc´£¯¯"Æ“#1áòC‘â.ÃÄ.û»è©|*}É#ªMÒ«fdµS!«øÆqM=½ÂléÁ'cƒŠá'øÑÆ“ƒÐǘÜï)Gæ‘ }p®ün­{D°j«=ÿ9Í¢ ß‘ß5¸øù*v¬áÅdG¼&H.˜P'Š,Ú:<'ÖÄÚa ±%¶ÏìQ†²g?¡-G‰#ëìqãñ£¡+Ã#WÝ>Yááì<"U0ƒ é2áùQ©9Þ<ÆVBS¸æHJh§Öíkò†, Rò.ÙF¶¡yíÐúÑýgí*8|ô Deñéäw ³RY±ö\ŒKï¿| ¿—Flu|~ô 8L'ÔëøI`ÌArÇ„%&éàLTêÆ5±3P ¤ñ­‡ø®ÂU«Ñž¼ÍÙxkÖ<‘#=@~/Þ…ù’ؼ?‚íMRT£+ûâÚ¤¸<…!£˜úºjƒ.åܧ;\c¼|ùy[zq(Gd–Dwˆñ³ikèŠf‘G¥È#‘ÒÓØ^°DšÌL£>š’qŒ; Û ‰"0›µŽJﮘ²t¾=ÖpôeRcæídøš‰ˆ YæX7ÇeÔf–*Q€:Žw”kAÕZYQd8Î}r jÁu OÏôE´ÄTò'¢ *÷n/…N¦±ÕðäI^¨&‡ËU6ÍÄ0UÀåž$&¬)÷¶®ÚZ'¯mCkUb9b9]túúçmÀlÜø ?Â¥c/G½¾Jù\mnBÛë€ÈË'k:¢U&‹d+v‰5Ù,&ïíÄí±Ã9—ºZª«ù¨’Ô¦‰Ü*3ÚÉü6;‰ë¯šHA¯Ùºš[8ÔËû{>íp-j¬£«àd—°j€ý¯&³¬ž ’?›P#æÙ€§Ø[·Èû{?„M‘ú„†ª–Âo9C^ s»7Ì'Ÿe»=°”Ù8ìöSÙ(œ1r ¡F+54ˆð¨ I Eñ¼Ó0 jˆ Œ NÜ™Àx´uõ½hGÛ‹D6a²¨¨mæö]9u¯$ž¬µ {j\lY™mè¶âãíüS¹ ˆ‰ç¶d¹Ä 悤G,a“ÙŠ­äÏ­(=#R–ÈšNI.'\Àzí[·i‹ç÷$\»qù»¯¼¸i£¹8%ܼÄbw¬¸·Xé!Ýu*tCW}vs$€ä³«A­OíM€;p®Âõ²såýÍe·` ZRʽJ÷‚ xÀVØ’â}Ø7F³˜ ¼ã‡pÝ_ú‡Ð{H"LH´õŠƒ¯²é éyI"á©h•C9äCYAq“¶%­˜M7¶¦y}YenENaT]z…è ºš†&M‹·ÚïH¤‚WÖ„–†ãàä¼RQ^ç%Ž‚(Ø_§ÌÍÚºÿØ eVþìóqÞ/—â"â ‘Ün”³>þ=FcOO¿——¿¿ŸC\ØÇ(O?÷ÿp©óÙžÎÖ³ýùSíí%`ÐÄ;ïž Mݦ·æ'ã+¼È´ì‡ ̃ ?YÙj_ø&Ʋ¹te“ÈD”(Ø ¢ç÷ߤ !»9J/ê>Ü!¬&\ÞœÔÌ•¦«=íJHËËædk£á|ߦ5pó““Û"ë3óbÛÁnÁ aúi—ç>¿ §}÷ö?%˜&ö‰`¾ÄÔõJ¥Z­TÖ« †úzG<ȋã51’¹3F«Ñb¶ qŒžTÜ´DF°mDjþò?³(-ù`çÕå™- P²qýj¯fEI ÖïdÆÍÄ’cÃIy0§óPæ+ÿNÅU*n¯!ól¶.»*»6äµývÒõÅå'‹¸Þp!µ_ô_æúÃÇ­i]gø ó{JƒÇ8W'çï+ >ß0}çÏòÊ£óE›ªÎ®š9ÊÄúQ.Žê²»±ˆÅ9(³î°€O-£¥&ËÉ"k|>å…Ûéé?ߎk|-+t´ â{“»!¶Ä:<›¡‚GKøzzúõ_Fz╚ýð«”}rؾà²òã{½DÒÃÒ#£2›ã@lÿ°)¥è¡ƒ'FyˆFŒ> stream xœXm· þ¾í(‚kÓV¯Åß-Ë_µß—Õ·Ó$þq½ú‹¤“QÆÄɪDƒ5ѵÁ‘CºÒpÜÿ1w8 QE õÉC)©È0¬2ÉJòŒ___Ÿ†ç›»›[Ù¢Œ€²GÙ Oñÿ]>ÒcP€Æ²²rÄœ#¨.Iè×j ¥˜µ¬HßÔi5I¯E! N«Jz-‡î{¥YÐëxf¥Ï,UI¯ÂÀO¯U%–Ó¨C½Rô:då4öJUÒk=à¯c´Óú·8âÄ­vÊõ\´rzº D£4’txrIàFRlò“¤Æè••'C`GÃ-™™s3±WÎ4ÌÄ(¡Á–< ¤š›/Ô|@sN¦ïïzeàœcêSKErH¯Oo6ê>l”ôz9ÛAáy˳ ¨Öñ&)²6Ĥ`±JrR¦Ѧ¼FA«PBé““U%y÷M€8Á]®é6¢¼³o’¢%íÄŠÉþ,H«ÏsÚ:ÁËÁ€*'ÛjIh‚’µ&ÊYf³3ð­´…*)¦¢‘³ÃLALJ²y¯tl’SÄÆìcœ‘'h…&ÈJVx³¸O¡<ŠP[ŸLh0.æ‚—R%ň‘Î1°qsO³Ô žYRN6”hvÊdÐŒÓ$…MÊÄÁ%N’òÂ’ô6Ó$%´$I>¸è±›ùÜ šX:ò´º ù’¡Gˆ‹¤P‰SêhpÛ¨(þfIÑ©@eDŸC¦ìà VIAE褰èÿ%¡¼´ö*)dQ¦ÄÙ„ ͬK¶®IJÁ¤”±"Ieô‰‘¾IŠ-ЫEÖ|F´â«dN‹ã48£¡m3]h!ÀS%…/´¤rhBö˜HN•&l’q P£œ0ѲFv¯JJ!ÇØÃn°8ÄR¾³-+¤J .xgØ ˆ• zIß$ÿmúD± Yì5Ž`йŸ=ÞÝ®7»˜¤Á‡q(>ë/Wã6û¯¶»]2Ó£B31äÖ¿y9>™æ’äâ¸y³=žîŽ·ûH¹ðI¾³x­Š$Š–ÇívÖø5Ùìãrs¼ºÙÀ÷#¸öLÕñ 0ŒZsÖÊ<Æ2;n'ð—ØøŠruH¦@¾<ÞžN‰ ^Œ»ÅÉ›Ý.!’R®ÂP„Þ;Ó„É0õ°ßmvûÍñt{ˆ?‰?Ê/÷¯¶ÇÏø§ r%ˆL€·ã7§ÆÀ‚ãéöpÚ2ÇãŸov»mñÒ£*â¤ç’-o~µÙ]Ýîö±ÈÙ ÕÿWW—Ý„2ÌJy‚FÖa<¤ ¥ñ$/>Û¼ßì'aØcòº?NˆF̸Iú!ô¬³©J“\rYI~ùæÎ0§b¯03n›»%¬oîOï7!ÍèkF¼¸z{ØÞ\ƒ×º!4xëɱdÆÛÃa Þ@þC³[›”õÏ-öP‚~ôpd“Q ëe`ô2F`GCÑ5 dy¯e€\=^ᄳ´Q´7ìqµnÉX’Nð¬åPqÂAK„ålÀQ+MÓBµ€ Üpc[äˆÄ.\MK j -óÅ`Ç-Wx•Ö¬åa M™=î8.d<Ù*úaÓB‹óè2,ÕHL Ø×/£qi™u`"·+WjªhpCħYBdˆ„Ѹå/l°\êÀšÅÕ©±¥Mi‡8ÅØBÄ[’ é˜Vlc‹1cAÉØ Yî„BÈ[W”PfÌJ¬“6‚Ìö„giÉ.µí hb,ÝP¦K¹"Éix§Ò"ƒ´GÔ/„0#æG…KD%ƒ 6ú͹ϺÊYUÂÜ…êîò%&Á‘ì Æ½‚(é虌žéäràèK0Irîª-Êyçú¯GFaHA]\.—œ‰2ì–ðŒ-Ô8]È;éA®‘•çLè†FÀ'¹Ubw„Â.³ocß1UåO¹úbÐÝ›-º†]›yÑùƒ"Ó’ñºtC-¹.ž Z¹àÂî4-åZ“09kÉ)Ùm+dTIiH(Ir#Ä‹Œ¨ËÁÉ@ñ6Ò+ë"e!Mˆ–ã¥e,±hf2fÈð‚=Å ô€.ôOËò-‚šÊnQa$‰‘ûVlý-8efÈ׉÷û}mg˜#q >¿"|Ô¼óIR÷#_3H°Ï—•'ØFû„»¹,Ù°ßÜË×NIG‘§ˆëè² aòêýRŸ?{îz·˜>[S?`<™xD:Ž·ò"J¾ãq›?šë'Y#ˆÃx‡f‹§ù£ †šdäæ\&X›`ò„ï«v0½í×"´r넯zc½Ã-t¤LE;ÑôÉ=¼ëâgâ_àE‡ƒJgÒ«…´ŽÎ ݨöÒø³ˆ£ÖàrÆ‘—§€£q³p踞C„é´°ÁËò׳‰d2"2{>ÎÌýòíå¡í0‰ÜzãÎŒn‹+2’I’=xÜd†Ãß»ò±‹p¨«5Š,d3Z@Ø.Ê]gᔓ‹$œ«ÙôZbÐw16ãqÞPÙ»y;åv_ÑU—bí¢š»:ˆF›V2Èa~¹Y2íªÛŸÌ˜Ð _r¸A>ˆXNªLTló‰q(×Z¾sµðî{n÷¢B¸fIBêLE %b -ʸ§x¾+ÄO#µëÊÆ¿ª”endstream endobj 96 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 166 >> stream xœ›dÿCMSS10‹‹øýùJ‹ ‹ ›÷À½ºR3Oøˆù‹ ÷¼È÷˜Ãëá÷ÚÜø7÷Úò©ÎÒ‹Üîûâû#û…ýJá÷Ñ÷2÷PûÑäüGø÷˜÷$÷ÍPDDKPû  7Ÿ ‹ ‹ ‹ ù> stream xœM’]HSqÆÏqjG]«„…#:‡/"Š¢‹²¢*ÂÈò"û"úÒÊÍš›³¹™››Ûqïÿœ}·¹ár+Û"ueeBi%QPЇDÝÚÿ̳¢Y]tóòò><Ï^’ÈÏ#H’œ·£ªªríš¹URÍìÌÖË@žÉ —¾[4µàñÂ9±Ð >wáA…ꃇ6m\B{ˆõÄb>±€tórYD>á#—’?ò6çÍYþnW àÅ_ÈéÉ»“2œÎ(cí‘fN¯3…[ñT±H¡„ÌŒd*”VJ2©B*Y7±ë+.Æ*<¯ŽÂØùQFj”~)ÖŽ¼N?O0w^M†s?õÉ_yþXK…ú0SW]£¯JAç¯É‹@^ ò—Äo„ƒ/endstream endobj 98 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 233 >> stream xœÞ!ÿCMMI7‹÷òù+‹ ‹ ›÷`¿¼¹iJ“øˆø(§ø§÷è÷ÒªÓ÷Øù›¡opnqnz˜v¦¨¦§¦û`ü‡~†‹z\³eÂï·÷š˜~‹ˆ}Š…€‡t;_bd‹w†˜¡¢’ž”¡•¦–¦–¥”£¯æ—ޕޗ‹•ºc±T(]ûz~™‹Ž™Œ–Ž¥á·¯°‹›”ƒpt…|rM 7Ÿ ‹ ‹ ‹ 5î[|endstream endobj 99 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 278 >> stream xœ ôþCMR7‹‹øù,‹ ‹ ›÷Á¼¸12Q½øˆøÍ‹¯ø¤¯·Ÿ÷’Ü÷ãù¦‰ŒoKL0Šb‹g£‹Í‹Â§ü’j‹~'egŒ÷ް‹ª‹÷ˆ¡Š½ #¯e'‹˜¬øÍ‹à÷ìõè¯Êõ÷ƒìø÷JiˆuP~ƒ…>‹}‹ûLôè®§ÇºÕÆÐÉ‹ê÷ !Õûû74/X¶†•£¨œ¯„®WªÒÏ¡º‹ï¿=:4MFkgû…û‚‚‹‰‹oø0 7Ÿ ‹ ‹ ‹ àIpÆendstream endobj 100 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 114 >> stream xœcd`ab`dddsö Ž4±Ä»».ù¾œµ›‡¹›‡eÊ[¡}‚»ùw0€#/c`bddÑúÑÁ÷Kà{ÙÆï ?-˜Ö|/½¸{ñ’’î*ù?/ت‹»‹‹uÏ‘çëæáêæáîæb`"¬endstream endobj 101 0 obj << /Filter /FlateDecode /Length 3011 >> stream xœÝZ[o[Ç~gû#úÒÃÖ<ÝûÅ@Ø®m$°›Äq0"%3 %›¤¬ºòÛûÍÞu¬¦iŸ âÎììÜvfvvßwlà£é÷|7ƒòÝíŒuÏg†óAsÑYmøàL·›Yϧ b;{=s–ÖñÎÅ)@T0ŽûÁè@¥…“ƒV UÁ´TÒ¨A¹F ÖJÄ«‘˜ÕrÞ VW­Ü*e¤”ñRŽÛÁ1>RªRë*)UÄey¬»œ½ŸñàÊ.ýœïºÇg³¿¼¾óƒ7Âtg³èfÞq¸+XÏìÀ…îÎv³ï{7_¥œé_Îá$æ¬ýÓù‚ †1éû³¹°ÉþÑ–3cLÿèo^Є÷¦ÿî5Qko=È¿ 1g Õ7ø¿Ÿ}9{z6ûf¦ï°ÑЄÐÄxçF>WVÃ>[0dà§Œ“òãŒ#©hÜ«9óFõŸÏZ@aÇûCAÞ”Ñnb´,£}},£7}>.£'eô¼Œ~˜`}]F«Êp>'7Á<Ý™Á[é‚yÐY3 _Ìú'Ëíöáü3 㽄;ûÓ÷ýv÷¦¿¸Þïn¶Kéá'úÏæ làÀ„ƒÎeøK¾X7Ç›Õ:axÿç:÷Ýz¹Aè¸<.3™j9?~òüA¸]o.ßIDFCy€¨‰ ÊõàÏF|æÖ«¢Î«õa³ºYn#µ¬´¾[ãWØß—›«ùB¦ü›ù‚ Æú—ëÕfIQ‘^bBøà˜þåòßbšá‚Æ0^m@KãÇ„·Š¢H,¸6I4„aªÚÇDܹëõÅÅæ|³¾:hµ¤×öDøÓÃq³[ë–¼>®†êß§ûýõ¾îʱz÷Ãr{³®3_ïßôŸÿ|ü99z1-íMÿÅÕq½?_¿;‚°ÚÇpï¹€EI‹J h£ á%©jdû5AÐI\Ö“,’ßiÇãâžpÒ¸(3ä}ç[Î `âŒÊã3gŠÏ`nX…?Ì ªc2*H‹·-B©"ÓXQöGz—yæx+Î?—W«å¾Fäšüÿ°¦ª¡÷Õë×WyÊôœÕñj}¹_¯›´¸¾¨“˜Z]L–Œxy³=nÞmk4¼ZÞß,÷ëÕÃl´ ¨’û­~º9Œrèî )â^‘„g ØxÜ êΦ5Ìõr pÏA×Z%jÄÁ5Yú×gjZ¼[„¨|X”Á­í¼ù Ðg±ôÍ1÷ÜváfÔè pHj#:-ö†Ç3àŽ-îpnù~†škÙ_ÞÄÓÉ# Qß÷ÎÛS´J1§{Ç•^§â¬t#‰¥´°2ê±ôŒ “h[=• ™I¯‰3“ʸ>(Â8BSR³A8gØâOˆRáTÆ–7|."–¶°áò¶]¸§s04iè[k :S¬9€‰÷ÒIée¸›.ëp_‡ç~H;ô2YÊŽTRH'íQÛt í‡÷ÖB}ÒÞ3,¾F #G˜ç85ÉVœz4픂Íûù„IÊÝR’õ¸ªö¤Ÿ×á§Æ­}ðq®&-ƒs8I’”!\ÎD:ÏÛveAÍcª[ôšêÏêSÊ»‚ÜNtÇ©Väc]ýK¾˜èiêòÍîf¢AY—уÊzu/ëe%ü¬ïï—æ'PÅü8Éüeþiîµzªã;NX½ªB¦ö㲌eôUÕ ® æFˆ##t©û“¡ÐZ}×'Õ–« ½›ðØNý=·²«¶u»ÞNˆ>LŠžŠ£)[kÜþ(&$—ƒà¾Öâ&fNÂ'¦8&= î= C«Zà0T7Öè³÷ëîÛîj¦îUÓ¬Cèu?…K·´\m‡£OÐï®ÁHÔ+ÝI+Åé'-.[ô›àskêÝ Ã"œ—g8  ƒøç¦«˜ˆp–aZTÈÓY¿¼|lÁ9zEÂqgÖÙA*ê0 ×hÜ€U8Ge'®ÄBFbEϱqÓRXàÂ!ÃQ­ÈkI‰N]4lUF‚iEÒ¢Pd-3‡±d.=~0®5爨‹´Ú F' whoÓ R~@‘É0ÜI¯"ª¥Pž¥rˆpV$ ®þ_I6$…S£rÁÃûTÊUôkÈ©á¶\dŠR ÜŽšr¥7¹ÂA 'ÐW Îå¢L'ýÊò±d•ñ àNǃ'v †Š ~%nø˜ò|!¤rƒ´†7¥öh½ ã"œ9d˜gÿ ®Iœ(\`¨à ¦I‹B‘µÌÆv´!¨˜ f¶ A…+çàK*F~Ìa’ e!VV†q䛢W;êÛ»º w=Ö°`¾Œ©ZE§z‡}²V‘/¥1:–õŠ¡‚I¥•šl‚²(0ÞrŠœo(\ç*‡G´"cèÖ„ÄAéÆŠ¢E¦ÈZ&'vŒÊz,»Ó:_Ë:ŽÁP¤sYp[Ö3ŸŒŸñ¶¬[‹t.ëF  iÊz„Û²ž)’’™ÁȈ°ghKèˆC£*†Ü*üRßÓ±(-~)zQ`éØÌ0Å=bÅ4’‡•…C£ Z‘1J¢ÈP› .2"ŒE‹L‘µLNì{†Ûõ ,5ðÙV1(RØiô(h µŒt¨ån |Nýž§Ü­ÈzJœÂ!ÃQ­ÈÚØX8Ä>°Êˆ0­ÈZdЬeæ0¶£µMÒóix¤)T”¡ÒUÛ=ÚT±l,ËóIí²<ÂY@5LzçèÈÎ ¤·>ÂQB†«a•"+9Œ ÃBˬ(ùH‰jÉ.¤´ åêþ–Y(j“j¿N…ÙØy' =_Ý¥*ƒHŠ{B¯ÂyK”1•àÆDS‰NUh”ªD÷}7Òô°á”EÚ6ïj8“èiw 9(z†¥w5A/ä1c{Ç(ªW/{Íš÷¾|Añ¨± Š4Ì(6èv—ÈQOl2¢¥Aï`©ÂU¢ŒQ¥(窄i©5Á\5T3¢Jš6Tî¿Î§äÏ9–c%bZÔPº@U™/œ†, éP§§sšPØEø›…)‹‹¦hæ®—?y üÕšæÝ§—¡Vþ°á«a}Ú?û©1HSÞ‚ ~ÂüIcÕm¯/_½¢AÏÿúÊZö—~C¤+eCã䥡´Øæ,ÿÞÓ7ÄpÐòù~l¦^Ãû±,·ü¯Ã[(Îmmû-–"‹,ãí/½üâ·Üž¾üRóáF´?¶/¿ô˜«0ζÀýþà 8&FoÃáyÕÓ×Ýöw࡬b„=¯¶7ÚSÈkôÂk}ÿOz˜æãà(êíÜÉ+n2EýÆGl®$Ž÷ïž|'6Ûe„y凹ÆÅÏ+·“OÏ«þÍpS_|û+²…!M-6}­¹´š°lw´X¹L¶³‘ÈË:l°wEj¥4*n³ÑÍvlòÀþcºÞ2<†ÿ  ¼>ù8±šØÃTxtkŸ¼§Ê'Ê\Ž>18ô–ˆÐ•:«BHh†:|ú­B/èÉ!…n)<-; ¹& .Ë'¬F_€ë„mYžF5} AÈÅì²RŽ#|Y± àcTÈrߺ÷}CqÓl;åxˆKqUãã®îùú”d¡“ö(ñíî\×ý»ŠûýCPvÄ*~F޾>’›8xÞ{0G…I|ÆAµˆOy£h]}26Õ£áó 6MyÑntSš®Ú•'ßKÒéð/2Zr¼endstream endobj 102 0 obj << /Filter /FlateDecode /Length 2856 >> stream xœÅYËŽ%GÝ߯¨‹º@ù~,@2 A²§%„Æ^˜öÌh`Ú/lóøzΉÌÈÌjîŒÍÔ‹®7Þ•™õÕf»þõÿw„ºýýb¶ß\’µG´nË1Ù£¤íñ’«9J„7—g—’í‘‹Ýr æðLƒRl=R®èŠ?bX¸eåò)¡,c þ ®Å¢ºUj9rœ^u¼:•|9Bª‹SÅæ£{rjr)åÄÕæÔ§ÅžÙ^]¾ºXIåÖÿ=¬‹ÛýãåùnÍõÎùZÒþû+²dJÎnÿzgŽdŒ¯ûýµ8aüþÞ²5)¥ý½?¼÷¨5ízFîXsûoùl«.ì ý“ûßÁ+ïW¯ÂQÀû.÷?~¾tµ‡15…ý׻蠹Øýå ~;ž>¿ñôb<½O_Þ }1ž¾Oïãñoãéñ†È_ÇÓë.¼O¿OÏÆÓãéGïtëÕ _~:óñ¿upZ»•ßïsšo{¦Æhõÿäz—Š5X4 ç·7bzœ!ÿüÿý»#}·–å•ýã†Â×ßèíÅy7žìx:ÆS¾eûÝŒ_×G¾®·îÃOñÏï çÖŽ\Bøîf´æ–ëSûÜ©ÿ¼)îžFñþýåCÖÅê «jÓo.ºtä°Ù”óìöõ‹íÛç—xDWCDó±ìöiB®šz˜¸E a›Q'¥âÙ\Eµ®e‹Î”†]Aiø¾¢Â-¡%/7”P \´ul*‡ËÓFÇ”è^ õR5œãx@ÛpÖ§ÃÐZC„(}ØÙFûC¦œûx`˜µ)Õ/9%.‹ (Á³#lS³GZ,$¿ºÐWUü‚DUBe¢‰þÈòÆ­4!ß%"GȞɾáT™ŰZ z×ÊQäMM Š› ‘蔀&Y·©Á{NÓFÔP/”C½T ç8$6TÍ£0[áÊ+HhIœFˆ£œåbW »ÙB¿[8˜Ù05 ÜlPB)ÜHX[Cƒú´Ñ0$†cxÙ5<‰ƒ±ù€\û´…*û±M 2„Õîæ W€ái©ÀÕ3ƒŠ.Éc– 4Ü5 ÜlPB)ˆÉämj0^ð°Ñ0$†Ê¡^v OâØ\‹DÔ‡áðÙ!^²wØ©t%sx¬“£k®fN{ƒÁ›Ô0¥hšÁ>(ÛÞnSEp×ß õ«Ê ®©ôâ¶Äá½Ã¬*…,#Q‚¨õ»ÐTÀŠM€Î%ΉËϘŠë"­°i§€R0¡Oéˆ-oUyäUÛús÷LDOnK$ƅÑÑ¡9<.”\ˆLs_:ñó9”˜€ß„EƒZeW»ÈwØ ¿ÜÄßU™Çú$¿:  ê *8‡Ð66Þ¦AõIò‚”P±Ñòà*¡5؇HRàAÀÌÕ%“#¦s*PÜ,PB)¨p‰]ƒ=O ’¿¹ ?wÿTøä?CB“ ì`è\öð<&MJuú9N'‡•öjZ¦¹#Ô"ã¢TfýÙ‡))ÏM/9f#LŤ³•¡¶Crw³2½j žú-¯ç!¼X÷ e ª=ª¯gÅ4ìüèòUDúvÃÈŸÅb–Þ¯Xø‚UƒâfƒJq™Õwj°¥aµÑ0%Ô åP/UÃ9Ƽ—si4®÷¦IñÒY‚ggóìp¶av67ð$Ø_Wö_¿hPìzߘ+ej0Òy¦ Ó{ÓôB9ÔKÕpŽCÞ[²•ï2X—\ƒ“‡Œ$Ld^<“ÁÄ'LlÞŒœ¦ˆ¥íŽXV Š› ‘ LÅÁ{S À¦áfC1%š“£y95œãh3òÀuìùßÉL¡t4l]—Î.1Ø6‰ÿËÀì÷^zßä<Ü-7”è ¦,rCƒÃnÜmtL‰îÅàè^ ç8$¶ÈI…ñƒVøÞ&ÿ Ï–ËÍÚ „É*„Q^¶HŸé¿c¬Ø¥6õäï”§Ðj†|Ówè˜݃ÁÑÎ!HXÁ¶ã@EK,,ó“‚íÇÖÀ"“š X)Ãlˆ²B&ÖZžò5ýÂÞ¨íu›ÂØJôq¨o˜üê€r¨]Á9€¶ÇØF8RädL” Ð' 3(Ñ¡ É 0ã<åÝÀXÿz_8à†à®aàfƒJÁkðäP H;tO s©cxÙ5<‰C^f•àâz/5úq¡ •¶¦Ô`Dczt2ú¤‘RÏ[¶•™gÄ¡Aq³A ¥ ÆHÕ€«†)¡^(‡z©ÎqÈ{˘L1da‹öÇ…RådãsMRi+ºÎ~¾˜LmŠ‘Óbe„™è3¬÷ªaàfƒJi1 %y‡Žù¦»Ê1¼ìžÄÑꇓõ“_¤~(Cß74Ï çXWÛ†7e`) •mrô9vhPÜlPB)>!oSƒK «†)¡^(‡z©ÎqHl'nb^‹È±dRX‡ª•cgĘÞã²e(–kÈÆ590À¢±uq¥Ÿ&%Ëábˆ‡Tî:–;æÂàPÿTÃ9‚ÖÍœšåÙNÈJ©ý,Š3'µ:N¸<1£D¥20; f†´rà}ĺhPÜlPB)c39ºË!7NKÇl^ õR5œãh76ñÜ„pSû>1)¨IÐæŠ““öQ:2ï|⬣˜·!÷vÒ9bߪAq³!÷›rt \ÏØ'ÃFÇ”è^ õR5œãh籜صå6ÄH”ÐÎî¦Ävˆ®aìgãæÔŠ…hk£Ü-©†› ™s;ŵ³ûÐÀ[¸Øh˜‡2õB9ÔË®áIýFªðíK5sýFªQ¸‚3Ä#ÜBÈ>Å)Õ¬ ÌœòT¹r°ËÔECÇ݆ÜHu êëŒj(í~bØèXÞtóbp¨ßªáÇi¿™vT_ö›)r3V:OÅνÐñ²ßGßMCƒâfcÙo&Ù¹ÙðÚíÑ­Û¬ý¦ž‰ÔÙq#·Å¨Ë¼ðñËÜñxU¬yÞ}[LæyÓŒE\kåE—RÞȵë¦A`Al_ô\.Ò€¦A™\èÂR2{ƒ²p=ñaõjr½ë"V ¦¹±®—ˆóŠöÆó|Fˆæ0×»p­ `>1n·ë/8YÍ+úqANÒ¦t¥Äœ§±7rð\%µ SN\5–•…pý=â0Å}> stream xœ½\K^ÇqÝϯø–ß,xuûݽ´'°$±M#‹À ™¢?*¦$8ίϩwß1é8‚çÔTWU?nuu÷ÑüñvévÒÿôß7§|ÔuûÓÓyû§§^ÇQFºÖÓ1ûíñ4s?úZ.y÷ô›§uŽ£×y½žGÉÐrÉLëèµZÁÏuS2Á®SOü²mþZøí¼ø³¨æšÇh[P*Øcêeµ¯-¦™Æ1Ï´ÇJ*¸èhLîÍBÚ¼·¯Ÿþø”x oúÏ›Çíó×OŸý:¯Û:VÏýöú«'ätKµ£``TÊíöúñô÷{†£9kê÷ß~þü à<Ój÷þtžu”û?ÐÏùÖ\÷Ï¡1Î6z»³ésÍ3çuÿÙož_e(G¿¯çß½þåÓÏ_?ýŠz¶Z?jºa,Ö1n¹aÀG¹¥TûÑÖíÃÛÛ¿ßÞ?µ£åUÖNºýÿÿ¯¡’ú¤ ï-•cÒć$×c¦[IcÓÐ ðœGÎŽß ÅZG*¡‘Ï)X-8há’}&j¡®r¬>“Â5,J³píÇÌ{É+cÜ0»t›ÖÖ­”3aiÎNJIùèÃ1Ü–\Ž67 Lc5`P¡½ßz:1¡…ûd’„UPÑ*KX¹G¥ÙÀ¬´î˜F¿Ö£î­ul ‹j¡,ᣑ†Z8g;zŠ©…Fá¥[¸öƒû–F"+m­„uüpA?1Éø¦±,Nq›0j´j2ƒA^Vߨÿ>ãŸ2¢¹bµOú&˜ô!Þ¬}[ðKX¦e(„†…¬®] ^ᣫÈ"Q6¡ Išôo^Ý„ïwe,‚ ÜëqfÇoÐb4Z¡Ô²ÊfÁ°ø *™«Ó—äæÄwT‡bj¡Q¸†Fé®ýà+hCN*Òÿ¤3AËÇXð=H±mv®2Ê‘ÒúŸ0º+,  ÔÂ$‰”4ÌBNHŸáB 5°LAC´ö—.ÈŒa›¡±sQ‹GH&v›¹0y*^‚ þ­Žy4OJ¡ÑíGaA±úà*üki>6€“º†à47¿ö@æªâ+ÀÀ ¤šÞy²LÒ&íñŠDß"¶žq4½–ÓXbpkÞ4fl ‹ž`•”N½ XÉ£o>S ‹Â4,J³pí‡ÌXÇꦱC‚mƒgÌ$”‚­ÿB#+™>`|û¾cÐÕhÉ™Û{,‹DêJâýæ:ò6cõ¡˜¿c‰Â5,J³pí‡ô 4QŒä’üaÙ á·2H_X$ˆ V–cŠ™ý›vf”df!°ø &™ò„[è½VŠyü$ •D”báe?$ãSÅ€eÝ•œòM‚ý¼SµQy¤`eð,$|®½:¦”ŒL†ŸBcÁfÁ°øàZB%µKEcÊ ßáC0µ°(Lâ4 ×~p߬e„J“Ò4$Ú ûçàÞ==€Óž¹´‰_—$ØšÔÂ$Tx!L·š`v €ÔÍ¿þÚãÓæ/zÀ«‘ŠoÚ";ÖC§^…ß+¶¾Lõ>c|¯Œ1fy9ÆJ™ÕÝØ40jim ‹ja¬:Pn¡-Î îC1µÐ(\â4 ×~ðŒ $Ù³PN¶ LáÜ3àWFl n’„cLG_ôE…Ƙœ¸Ý‚bõA-L‚šg(·@™UÇbj¡Q¸†Åm®ýìߥ¿Øèl«6 e-ʳ£s1Ô‘Õí“TLǼõ꼩F=eVÌ‚cñ.Á7y{×yÃ'›·øPÌ;ŒDá¥Y¸öC²H«¼c´‘´&v í>ô½"'áìƒH“àQé_Ã\Ø5:G†²Y©›ÃâƒO=*é§ä³€ýKòŽúÌ™J£0 ‹Ò,\ûÁ}«øØq:E›…õÍ%ØøÑ¨6I«´°±–ŠÃBŽiÏ]cJ*7Å50 ÖM«µÇ²ÂÆS‹Á4,D5píƒæ‘É…2«LÉ#*Vç<2¸ÔƆA' |ã“‹qÅœG–¬ÓÀ—RÆfÁ°øà<¢ÊãœGÔŠ)ÆæC0çÂ4,J³p퇮G>xCgR=ðØ$ðG_NÂ>Ïñ0ƪoy9ª[SXrÄw†Å/G• `úPÜ\=\äÕ¨1˜‚Åh®½àY;Q4Ÿ<>K²HH*€€W0h>ñïŽ1¢'VûÚ5ïæØ,ÜB%ˆt²†Z8ÙvøL-, Ó°(͵^‹dʪ8'ôlµK Wœ\0ÆY¡e©Rq¬µHJ›²ÖY7 †Å‡Ö",¡ý!ÝÂöfÆæC°Ö"…iX”fáÚê[-/Šç¾Ç&É|.¬eЧÚè ›M-88Èä)Ö*]´µP »¦º¢½cñÀ TròÍ ÔÅÇH÷  4W°µý‹>h•èˇΠJå±I0Ót¡ÒÉ+¯¦AõOÒyXUýw¨ÊÚÓZ]ޏS@Þ¼NÞäܺb.°Ä¹iXpfáEøü‰e,ÍÆÓ{Ò’ylØÇˆ/Áù¤£SÎ8+ÖâË?ã4-¹@5éKÙ,ÔB%uò¢¨t­’º†`¿×­õµ ¼é¬dÓÍ•¾Kݵ[=SÑ|Ä7D•N Í!Ölj2´ÎM.¡¶öÕé«`ªð¼yžŒòÙì+$} À,d3pí/@:òÑ–N=?¹ô0 uË”[qpN*ÖàeBwL~©TÝ5(o—fA±úБ`Éàë·P;_£ºÅož< •DÜbáe?ôrg‰Uô_¶1—,-éÒµÊ'ÊFn޹d<é2)4袷m ‹n¡¥d ÅÓêáC1_ðLí½jX”fáÚîÛ‰í[úÏYÃá\r®rz¨¨WévùÄùƒT0»T²®A÷Óc³`Xî¹ö)ÇgkŽØvû IßÐß[|Ö| Ÿ³—©IÖnåK— ,EÕ—)רÜáßÜé®3;ÆGݱþy¤Mù±Zp,>¨…I0ò4Ì‚²áC0ZxªáQª…ýàÔ‘(áóPžG¢‹«Ìt$|1IÂæ=½Òþ·¦c,þ„D0צъ`knXP “4^la‰±ùL-¤ßúk‹Ïš_{ å]_QDZp±¡xðV Õ§ÔÎÛQ¢7‡\8L¾Hsª÷ÒfÀ0;°’’T¬óUµ ê<0zóè¯5ìUÌq¦#9VwLÅ6¶´kÐxÍ‚añA-L‚#U% ³PùØ>S ‹Â4,J³p퇬@LÿàU;igxläS]¼`ºfäNK e\oŽiŒÆטréä ‹jaŒõD–w Tç͇`]¶}×°(͵zX™Ò3[e%š“[teH_šà1µ'Œyi-‰Ô4¹22 †ÅŸVTRù; ØÙZÚ|æÒZ£0 ‹Ò,\û¡Y±Ëjh™VÉc“ ß`—Étu‘d« Kô~v>ê*æ¤ØùÔ5Pï2VŽÅ'E•T^Šag,Åð!˜“¢¡ £xÑ ê?ûR½<ŒÀâ ¾n®_, ÿ¿úî‹3Tæ¼Ó€~¨&xǧ½:.(=°êrwS2Á®4Qxæ]É›_ ÌMɻߕÔMÉ»ÒÂI»’ 6¥ÞF`SúkÔötq7P>íÜ5˜­@“ƒd$ÜW(»Ÿ_¡ª¦ôOèd”î¯Nþ]Íz?Y>k»‹xÒ‹Û¸'+hñöï/ÿt•Ão‹&±wpêÄÇ´PŽ•ì’‹Ö¤õÙv-•ìZý¬IÞÆLË$-y&ß”DpÑqæ+m±ÿmƒOÿŠf ÑÛÂÉpJ'<øƒ—èl|¯úSo÷?ÎçWiÒ™ùžÎ í§H/¾BlÓV´}…ÁQ’}…ÿ÷…DÌ€ Ig(TŠÜ•ŸõÕsF}¹Îyûæ‡Û÷ßþ÷3Jý3Ÿùþ–c‘èô¢D×·•é8hO·ÏnßÿðÅû/¿øðåíí‡ß}x~ýéîÎ#)DvÀA÷'I*Õëm'’ààŸŽæ<dµ“¯!•ãa8x$®¡,3`P=¤Ò™ §‘ŸrÝ¢.$4,j³píÅN#©tñ"ç —P™ØG‚™åÆó0<’КHX0,>‚H‚R3É©Æ,ЛNß|.‰kx”jáE?v:I!þÂ꤃aN§“àyò‹¼R= $4„, ‹ “”ÕùyÚ,'Ú_̇᠓„†Ei®ýØé$e¢ ‘ç—`Œæ|’2§<-+ßÃp0J\C#nÁ±øNI™¨Cf»…|D«l>§$4,Jµð¢;©¤Œ™Œ¢`’ųotŽ2±*˜p „ÃA* ¡Œ„Ã3EÁ$ˆˆ9jat)ŽÌ‡â •„†Ei®ýØH%HZ ½GèyÐ9%…ø”%„ða08%¡°4moPì¥9¡Ñs…µï«sŽP ƒQ Ÿ6¿„¿JJÇøÔ¾JJ|ïblŽÒ'¥kç{BIh]$,A()½)Â,Ô*Ø|NIhX”fáÚV·¡çØh%¥3¡Ñi%°šôI)†ƒVB †³®«àk;ç-,àkK}ó!8h%¡aQš…k?vZI¡ |–VRʼ™œVR¨¨Å)†ƒVb#˜…Àâ#h%¥afWrZ ÊÒ.tõ¡8h%¡aQš…k?vZIiô´ž7ZI¡ç´ä¬;ãÃp°JBC8#j  xRIir§àíéõ>m§Ä$"xÙ‡R‚&Ii.‡‘9 ?Ãv§{JIha$,A))tãNû»[Àêšmó!8(%¡aQš…k?vJI¡g­±6J‰·RJG¡‡­¾„ña (%ñk!ŒDsÃâ (%…î9y«ºç¤Í(J‰ÿÚâ³æ/z°SJ ]ÏÉ‹‡Iè‰+%…^¸è’PÙ†ƒQM\Ô€Bõ„’RW÷Öž.èP,»ÅÁ' Z \û°ÓI Ý^ñ­QHðÓS9 ‘š{P= $4„, #c»pæ[XhE°ùhFÆö(Lâ4 ×~ìt’Â7Ic£“”*ÏtFä(|ßTÃA'q %‹¸ÇMãCR‡¾¨…"Ä÷!8è$¡aQš…k?v: t˜ÐñØ$8 •âtDÚèžÒ¨†ƒNr§ ‹ “ R±åˆ¤]7‚ƒN¥Y¸öc§“@‡oT›{~®Î'áÕ‹³= Ÿ$4„. ‹ ” Ò,}4 ©ìœÃÁ( ‹Ò,\û±SJX§æRÂZÕ%…®~Kv¶‡á`”„†ðEÜ€Añ„Ä™ø¥Õ œY°¹„’а͵;¡:™îº›$!™£ÐbmÆö0„’PºH0,.‚PRèôÍl%µPˆ»ZÜ…Â ”„‚Åh®½ØIhÓ(áé­:ÛJw@+}yB„á ]„†P*‚bõ¤ ®ôËtÒ²E¬>é"4,n³píÇNºà¬ÄÿýRH“…”ñÀi­;#B¡S.ì×ʧðÆŽÅ|0.8éiŒ ÎqØkݾbg\„–º©ý‹ìŒ ÈNéTHðoŸÎ¸(ì=h†ƒwB¬ †ÅGP/ EDiÛ,ÀÿgæCqP/\ãT /ú±søA9—£ ÎÉ9 h5ùåP8ƒ£ ÌAˆö Åsp8|íäÍ«\C™}ÁQ Ð \»°søLÔwŽŸšzrŽŸªZð G!4„ wÍ!iLS ø’FÞ|Ž‚I"J±ð²;Gû_ûÆQV@péàL­üÃÁQ a „Ãâ#8 ˆ´kJT … ÌáCppBâ4 ×~ìȲÒZ]B¯åÉi 0šù Li†ƒ¦ÂC †›ÎtHp§ó°[ [Þ|®BhX”fáÚýM:EèŸ!AÕÒ»¼éK˜ËßÛ Ç›~h4å[sÃâ Þô9L¹U ØåšT}Ö7ýøµÅgͯ=ØÞô¡²ôC3AÓÛfySçÙ–Ûf¹‘ú¡ oöaÀ°xˆW}D5…ýgˆžÃ…Àx× ÑÚ_º°¿ìCÖä?û ý—Ã_ö¡ÐË«»áxÙ y· †ÅG¼ì#0&z‡äÕ7‚ãe?4,J³píÇþ²Ï³šÛö²Ïóš«¿ìóêMÝ_Ý ÇË~hÈ»}X0\²‘EL’™ Rl>’r" Ó°(͵ûË>O-Ï[H0RrK1ÄO‚åÕÝp¼ì‡†¼Û‡ÃÙN\.¡ÿJ{Þ±ÛÚæCp¼ì‡†Ei®ýø»¾Û[W<ÿšd­~ÞÛŸÀ7-—lZúä½i¹$´ìÍ;´B²ié£÷¦å’MK_½7-—„ÖË~ï#Z?ý!œŒ!•ý¿¼ƒãÜVh)Ä;¸=äí/λ–¼8›ä¢Õ§^G¹–J.Z+ñv¹i©dײg¾Ð2ÉEËŸN]k‹þ'¾„Ó&¼0­ÛSø¤Á—·ð…c¾…/y¯èbÿèKø§Ÿ…ÿ—òïõžé5ö~êS8ågœúþ–—ð—(¸Õ{ýØßŠ 'Í6tÿã3øLg_÷oùdžé¾ý#ý9‡†s» ùš£„Ëû¡ÏvÇÒ ýÁÝøì×u÷‹ò¦¶BÞ_IÃ@&Q9ç6îÿõLË3÷²î_•›ë¼?XcÍ<ïÿÉN✠®ÆýÝ3‘Ã29E‰l4æý«!>Sž«ßß³~:çJõ Þòß¼ðßIãvšÕyǽÂŒ|Gñ@ÿl÷ð#f²çtÿ^ZxýÀgO+QÄ$®k‘†wF’ú14è)YàÇ«CïÐÖÿÍßõ—âd­L?†‘·Ü¤‡F7—þ]KR¾ÃFˆ)^Æsk¹wæÏ+²1wÆ'èAÒ³×:-ÖŽ"RÒ‰ÃâýßÕ}šà÷$>Ñ ›þ¬NŽ‹¢¢ G{PÛH}Ç‹ŒþÂDŸÙVÕŸh|a"_ÂøÀª¯L÷U¢ÿ gI ›ù\gºš‡y(wŠ‹OK¦R¾')Î&' +L|ßìS²i¿F pž˜ù¤‚Üçé›ON%›»Ëb½,¤ßjË> /W [ 1 3 1 ] /Info 3 0 R /Root 2 0 R /Size 105 /ID [<86b685f29ce08bfcb1d375dfd5ecdd0b>] >> stream xœcb&F~0ù‰ $À8JIò?¿ñ6 ›MÁäÉûD2@$£"ˆdw³¯HéÝ ’EDŠ}‘’a`½{ÀjÌÀä?ÉDr.“ÀâÿÁz3Àl'0™&Ï€H^0Y$ÅL¼O endstream endobj startxref 71013 %%EOF HSAUR3/inst/doc/Ch_graphical_display.R0000644000176200001440000002213714660150060017160 0ustar liggesusers### R code from vignette source 'Ch_graphical_display.Rnw' ################################################### ### code chunk number 1: setup ################################################### rm(list = ls()) s <- search()[-1] s <- s[-match(c("package:base", "package:stats", "package:graphics", "package:grDevices", "package:utils", "package:datasets", "package:methods", "Autoloads"), s)] if (length(s) > 0) sapply(s, detach, character.only = TRUE) if (!file.exists("tables")) dir.create("tables") if (!file.exists("figures")) dir.create("figures") set.seed(290875) options(prompt = "R> ", continue = "+ ", width = 63, # digits = 4, show.signif.stars = FALSE, SweaveHooks = list(leftpar = function() par(mai = par("mai") * c(1, 1.05, 1, 1)), bigleftpar = function() par(mai = par("mai") * c(1, 1.7, 1, 1)))) HSAURpkg <- require("HSAUR3") if (!HSAURpkg) stop("cannot load package ", sQuote("HSAUR3")) rm(HSAURpkg) ### hm, R-2.4.0 --vanilla seems to need this a <- Sys.setlocale("LC_ALL", "C") ### book <- TRUE refs <- cbind(c("AItR", "DAGD", "SI", "CI", "ANOVA", "MLR", "GLM", "DE", "RP", "GAM", "SA", "ALDI", "ALDII", "SIMC", "MA", "PCA", "MDS", "CA"), 1:18) ch <- function(x) { ch <- refs[which(refs[,1] == x),] if (book) { return(paste("Chapter~\\\\ref{", ch[1], "}", sep = "")) } else { return(paste("Chapter~", ch[2], sep = "")) } } if (file.exists("deparse.R")) source("deparse.R") setHook(packageEvent("lattice", "attach"), function(...) { lattice.options(default.theme = function() standard.theme("pdf", color = FALSE)) }) ################################################### ### code chunk number 2: singlebook ################################################### book <- FALSE ################################################### ### code chunk number 3: DAGD-USmelanoma-histbox ################################################### xr <- range(USmelanoma$mortality) * c(0.9, 1.1) xr ################################################### ### code chunk number 4: DAGD-USmelanoma-histbox ################################################### layout(matrix(1:2, nrow = 2)) par(mar = par("mar") * c(0.8, 1, 1, 1)) boxplot(USmelanoma$mortality, ylim = xr, horizontal = TRUE, xlab = "Mortality") hist(USmelanoma$mortality, xlim = xr, xlab = "", main = "", axes = FALSE, ylab = "") axis(1) ################################################### ### code chunk number 5: DAGD-USmelanoma-boxocean ################################################### plot(mortality ~ ocean, data = USmelanoma, xlab = "Contiguity to an ocean", ylab = "Mortality") ################################################### ### code chunk number 6: DAGD-USmelanoma-dens ################################################### dyes <- with(USmelanoma, density(mortality[ocean == "yes"])) dno <- with(USmelanoma, density(mortality[ocean == "no"])) plot(dyes, lty = 1, xlim = xr, main = "", ylim = c(0, 0.018), xlab = "Mortality") lines(dno, lty = 2) legend("topleft", lty = 1:2, legend = c("Coastal State", "Land State"), bty = "n") ################################################### ### code chunk number 7: DAGD-USmelanoma-xy ################################################### layout(matrix(1:2, ncol = 2)) plot(mortality ~ longitude, data = USmelanoma, ylab = "Mortality", xlab = "Longitude") plot(mortality ~ latitude, data = USmelanoma, ylab = "Mortality", xlab = "Latitude") ################################################### ### code chunk number 8: DAGD-USmelanoma-lat ################################################### plot(mortality ~ latitude, data = USmelanoma, pch = (1:2)[ocean], ylab = "Mortality", xlab = "Latitude") legend("topright", legend = c("Land state", "Coast state"), pch = 1:2, bty = "n") ################################################### ### code chunk number 9: DAGD-USmelanoma-south ################################################### subset(USmelanoma, latitude < 32) ################################################### ### code chunk number 10: DAGD-USmelanoma-long-lat-data ################################################### library("sp") library("sf") library("maps") states <- map("state", plot = FALSE, fill = TRUE) ################################################### ### code chunk number 11: DAGD-USmelanoma-long-lat-names ################################################### IDs <- sapply(strsplit(states$names, ":"), function(x) x[1]) rownames(USmelanoma) <- tolower(rownames(USmelanoma)) ################################################### ### code chunk number 12: DAGD-USmelanoma-long-lat-sp ################################################### us1 <- merge(st_as_sf(states), USmelanoma) us2 <- as(us1, "Spatial") ################################################### ### code chunk number 13: DAGD-USmelanoma-long-lat ################################################### spplot(us2, "mortality", col.regions = rev(grey.colors(100))) ################################################### ### code chunk number 14: DAGD-CHFLS-happy ################################################### barplot(xtabs(~ R_happy, data = CHFLS)) ################################################### ### code chunk number 15: DAGD-CHFLS-health_happy_xtabs ################################################### xtabs(~ R_happy + R_health, data = CHFLS) ################################################### ### code chunk number 16: DAGD-CHFLS-health_happy_xtabs2 ################################################### hh <- xtabs(~ R_health + R_happy, data = CHFLS) ################################################### ### code chunk number 17: DAGD-CHFLS-health_happy ################################################### plot(R_happy ~ R_health, data = CHFLS, ylab = "Happiness", xlab = "Health") ################################################### ### code chunk number 18: DAGD-CHFLS-happy_income ################################################### layout(matrix(1:2, ncol = 2)) plot(R_happy ~ log(R_income + 1), data = CHFLS, ylab = "Happiness", xlab = "log(Income + 1)") cdplot(R_happy ~ log(R_income + 1), data = CHFLS, ylab = "Happiness", xlab = "log(Income + 1)") ################################################### ### code chunk number 19: DAGD-CHFLS-RAincome3 (eval = FALSE) ################################################### ## library("lattice") ## xyplot(jitter(log(R_income + 0.5)) ~ ## jitter(log(A_income + 0.5)) | R_edu, data = CHFLS, ## pch = 19, col = rgb(.1, .1, .1, .1), ## ylab = "log(Wife's income + .5)", ## xlab = "log(Husband's income + .5)") ################################################### ### code chunk number 20: DAGD-CHFLS-RAincome3 ################################################### library("lattice") trellis.par.set(list(plot.symbol = list(col=1,pch=20, cex=0.7), box.rectangle = list(col=1), plot.line = list(col = 1, lwd = 1), box.umbrella = list(lty=1, col=1), strip.background = list(col = "white"))) ltheme <- canonical.theme(color = FALSE) ## in-built B&W theme ltheme$strip.background$col <- "transparent" ## change strip bg lattice.options(default.theme = ltheme) xyplot(jitter(log(R_income + 0.5)) ~ jitter(log(A_income + 0.5)) | R_edu, data = CHFLS, pch = 19, col = rgb(.1, .1, .1, .1), ylab = "log(Wife's income + .5)", xlab = "log(Husband's income + .5)") ################################################### ### code chunk number 21: DAGD-household-tab ################################################### data("household", package = "HSAUR3") toLatex(HSAURtable(household), caption = paste("Household expenditure for single men and women."), label = "DAGD-household-tab") ################################################### ### code chunk number 22: DAGD-USstates-tab ################################################### data("USstates", package = "HSAUR3") toLatex(HSAURtable(USstates), caption = paste("Socio-demographic variables for ten US states."), label = "DAGD-USstates-tab") ################################################### ### code chunk number 23: DAGD-suicides2-tab ################################################### data("suicides2", package = "HSAUR3") toLatex(HSAURtable(suicides2), caption = paste("Mortality rates per $100,000$ from male suicides."), label = "DAGD-suicides2-tab", rownames = TRUE) ################################################### ### code chunk number 24: DAGD-banknote-tab ################################################### data("banknote", package = "mclust") banknote$Status <- NULL banknote <- banknote[c(1:5, 101:200),] toLatex(HSAURtable(banknote, pkg = "mclust", nrow = 10), caption = paste("Swiss bank note data."), label = "DAGD-banknote-tab", rownames = FALSE) ################################################### ### code chunk number 25: DAGD-birds-tab ################################################### data("birds", package = "HSAUR3") toLatex(HSAURtable(birds), caption = paste("Birds in paramo vegetation."), label = "DAGD-birds-tab", rownames = TRUE) HSAUR3/inst/doc/Ch_logistic_regression_glm.R0000644000176200001440000003274614660150066020432 0ustar liggesusers### R code from vignette source 'Ch_logistic_regression_glm.Rnw' ################################################### ### code chunk number 1: setup ################################################### rm(list = ls()) s <- search()[-1] s <- s[-match(c("package:base", "package:stats", "package:graphics", "package:grDevices", "package:utils", "package:datasets", "package:methods", "Autoloads"), s)] if (length(s) > 0) sapply(s, detach, character.only = TRUE) if (!file.exists("tables")) dir.create("tables") if (!file.exists("figures")) dir.create("figures") set.seed(290875) options(prompt = "R> ", continue = "+ ", width = 63, # digits = 4, show.signif.stars = FALSE, SweaveHooks = list(leftpar = function() par(mai = par("mai") * c(1, 1.05, 1, 1)), bigleftpar = function() par(mai = par("mai") * c(1, 1.7, 1, 1)))) HSAURpkg <- require("HSAUR3") if (!HSAURpkg) stop("cannot load package ", sQuote("HSAUR3")) rm(HSAURpkg) ### hm, R-2.4.0 --vanilla seems to need this a <- Sys.setlocale("LC_ALL", "C") ### book <- TRUE refs <- cbind(c("AItR", "DAGD", "SI", "CI", "ANOVA", "MLR", "GLM", "DE", "RP", "GAM", "SA", "ALDI", "ALDII", "SIMC", "MA", "PCA", "MDS", "CA"), 1:18) ch <- function(x) { ch <- refs[which(refs[,1] == x),] if (book) { return(paste("Chapter~\\\\ref{", ch[1], "}", sep = "")) } else { return(paste("Chapter~", ch[2], sep = "")) } } if (file.exists("deparse.R")) source("deparse.R") setHook(packageEvent("lattice", "attach"), function(...) { lattice.options(default.theme = function() standard.theme("pdf", color = FALSE)) }) ################################################### ### code chunk number 2: singlebook ################################################### book <- FALSE ################################################### ### code chunk number 3: GLM-plasma-plot ################################################### data("plasma", package = "HSAUR3") layout(matrix(1:2, ncol = 2)) cdplot(ESR ~ fibrinogen, data = plasma) cdplot(ESR ~ globulin, data = plasma) ################################################### ### code chunk number 4: GLM-plasma-fit1 ################################################### plasma_glm_1 <- glm(ESR ~ fibrinogen, data = plasma, family = binomial()) ################################################### ### code chunk number 5: GLM-plasma-summary-1 ################################################### summary(plasma_glm_1) ################################################### ### code chunk number 6: GLM-plasma-confint ################################################### ci <- confint(plasma_glm_1)["fibrinogen",] ################################################### ### code chunk number 7: GLM-plasma-confint ################################################### confint(plasma_glm_1, parm = "fibrinogen") ################################################### ### code chunk number 8: GLM-plasma-confint ################################################### print(ci) ################################################### ### code chunk number 9: GLM-plasma-exp ################################################### exp(coef(plasma_glm_1)["fibrinogen"]) ################################################### ### code chunk number 10: GLM-plasma-exp-ci ################################################### ci <- exp(confint(plasma_glm_1, parm = "fibrinogen")) ################################################### ### code chunk number 11: GLM-plasma-exp-ci ################################################### exp(confint(plasma_glm_1, parm = "fibrinogen")) ################################################### ### code chunk number 12: GLM-plasma-exp-ci ################################################### print(ci) ################################################### ### code chunk number 13: GLM-plasma-fit2 ################################################### plasma_glm_2 <- glm(ESR ~ fibrinogen + globulin, data = plasma, family = binomial()) ################################################### ### code chunk number 14: GLM-plasma-summary-2 ################################################### summary(plasma_glm_2) ################################################### ### code chunk number 15: GLM-plasma-anova-hide ################################################### plasma_anova <- anova(plasma_glm_1, plasma_glm_2, test = "Chisq") ################################################### ### code chunk number 16: GLM-plasma-anova ################################################### anova(plasma_glm_1, plasma_glm_2, test = "Chisq") ################################################### ### code chunk number 17: GLM-plasma-predict ################################################### prob <- predict(plasma_glm_2, type = "response") ################################################### ### code chunk number 18: GLM-plasma-bubble ################################################### plot(globulin ~ fibrinogen, data = plasma, xlim = c(2, 6), ylim = c(25, 55), pch = ".") symbols(plasma$fibrinogen, plasma$globulin, circles = prob, add = TRUE) ################################################### ### code chunk number 19: GLM-womensrole-fit1 ################################################### data("womensrole", package = "HSAUR3") fm1 <- cbind(agree, disagree) ~ gender + education womensrole_glm_1 <- glm(fm1, data = womensrole, family = binomial()) ################################################### ### code chunk number 20: GLM-womensrole-summary-1 ################################################### summary(womensrole_glm_1) ################################################### ### code chunk number 21: GLM-womensrole-probfit ################################################### role.fitted1 <- predict(womensrole_glm_1, type = "response") ################################################### ### code chunk number 22: GLM-plot-setup ################################################### myplot <- function(role.fitted) { f <- womensrole$gender == "Female" plot(womensrole$education, role.fitted, type = "n", ylab = "Probability of agreeing", xlab = "Education", ylim = c(0,1)) lines(womensrole$education[!f], role.fitted[!f], lty = 1) lines(womensrole$education[f], role.fitted[f], lty = 2) lgtxt <- c("Fitted (Males)", "Fitted (Females)") legend("topright", lgtxt, lty = 1:2, bty = "n") y <- womensrole$agree / (womensrole$agree + womensrole$disagree) size <- womensrole$agree + womensrole$disagree size <- size - min(size) size <- (size / max(size)) * 3 + 1 text(womensrole$education, y, ifelse(f, "\\VE", "\\MA"), family = "HersheySerif", cex = size) } ################################################### ### code chunk number 23: GLM-role-fitted1 ################################################### myplot(role.fitted1) ################################################### ### code chunk number 24: GLM-womensrole-fit2 ################################################### fm2 <- cbind(agree,disagree) ~ gender * education womensrole_glm_2 <- glm(fm2, data = womensrole, family = binomial()) ################################################### ### code chunk number 25: GLM-womensrole-summary-2 ################################################### summary(womensrole_glm_2) ################################################### ### code chunk number 26: GLM-role-fitted2 ################################################### role.fitted2 <- predict(womensrole_glm_2, type = "response") myplot(role.fitted2) ################################################### ### code chunk number 27: GLM-role-plot2 ################################################### res <- residuals(womensrole_glm_2, type = "deviance") plot(predict(womensrole_glm_2), res, xlab="Fitted values", ylab = "Residuals", ylim = max(abs(res)) * c(-1,1)) abline(h = 0, lty = 2) ################################################### ### code chunk number 28: GLM-polyps-fit1 ################################################### data("polyps", package = "HSAUR3") polyps_glm_1 <- glm(number ~ treat + age, data = polyps, family = poisson()) ################################################### ### code chunk number 29: GLM-polyps-summary-1 ################################################### summary(polyps_glm_1) ################################################### ### code chunk number 30: GLM-polyp-quasi ################################################### polyps_glm_2 <- glm(number ~ treat + age, data = polyps, family = quasipoisson()) summary(polyps_glm_2) ################################################### ### code chunk number 31: GLM-backpain-clogit ################################################### library("survival") backpain_glm <- clogit(I(status == "case") ~ driver + suburban + strata(ID), data = backpain) ################################################### ### code chunk number 32: GLM-backpain-print ################################################### print(backpain_glm) ################################################### ### code chunk number 33: GLM-CHFLS-polr ################################################### library("MASS") opts <- options(contrasts = c("contr.treatment", "contr.helmert")) CHFLS_polr <- polr(R_happy ~ ., data = CHFLS, Hess = TRUE) options(opts) ################################################### ### code chunk number 34: GLM-CHFLS-polr ################################################### summary(CHFLS_polr) ################################################### ### code chunk number 35: GLM-CHFLS-polr-helmert ################################################### H <- with(CHFLS, contr.helmert(table(R_health))) rownames(H) <- levels(CHFLS$R_health) colnames(H) <- paste(levels(CHFLS$R_health)[-1], "- avg") H ################################################### ### code chunk number 36: GLM-CHFLS-polr-cftest ################################################### library("multcomp") op <- options(digits = 2) cf <- cftest(CHFLS_polr) cftest <- function(x, digits = max(3, getOption("digits") - 3)) { x <- cf cat("\n\t", "Simultaneous Tests for General Linear Hypotheses\n\n") if (!is.null(x$type)) cat("Multiple Comparisons of Means:", x$type, "Contrasts\n\n\n") call <- if (isS4(x$model)) x$model@call else x$model$call if (!is.null(call)) { cat("Fit: ") print(call) cat("\n") } pq <- x$test mtests <- cbind(pq$coefficients, pq$sigma, pq$tstat, pq$pvalues) error <- attr(pq$pvalues, "error") pname <- switch(x$alternativ, less = paste("Pr(<", ifelse(x$df == 0, "z", "t"), ")", sep = ""), greater = paste("Pr(>", ifelse(x$df == 0, "z", "t"), ")", sep = ""), two.sided = paste("Pr(>|", ifelse(x$df == 0, "z", "t"), "|)", sep = "")) colnames(mtests) <- c("Estimate", "Std. Error", ifelse(x$df == 0, "z value", "t value"), pname) type <- pq$type if (!is.null(error) && error > .Machine$double.eps) { sig <- which.min(abs(1/error - (10^(1:10)))) sig <- 1/(10^sig) } else { sig <- .Machine$double.eps } cat("Linear Hypotheses:\n") alt <- switch(x$alternative, two.sided = "==", less = ">=", greater = "<=") rownames(mtests) <- rownames(mtests) printCoefmat(mtests, digits = digits, has.Pvalue = TRUE, P.values = TRUE, eps.Pvalue = sig) switch(type, univariate = cat("(Univariate p values reported)"), `single-step` = cat("(Adjusted p values reported -- single-step method)"), Shaffer = cat("(Adjusted p values reported -- Shaffer method)"), Westfall = cat("(Adjusted p values reported -- Westfall method)"), cat("(Adjusted p values reported --", type, "method)")) cat("\n\n") invisible(x) } ################################################### ### code chunk number 37: GLM-CHFLS-polr-cftest ################################################### library("multcomp") cftest(CHFLS_polr) ################################################### ### code chunk number 38: GLM-CHFLS-polr-cftest ################################################### options(op) ################################################### ### code chunk number 39: GLM-CHFLS-pred-1 ################################################### CHFLS[1,] ################################################### ### code chunk number 40: GLM-CHFLS-pred-2 ################################################### nd <- CHFLS[rep(1, nlevels(CHFLS$R_health)),] nd$R_health <- ordered(levels(nd$R_health), labels = levels(nd$R_health)) ################################################### ### code chunk number 41: GLM-CHFLS-pred-3 ################################################### (dens <- predict(CHFLS_polr, newdata = nd, type = "probs")) ################################################### ### code chunk number 42: GLM-CHFLS-pred-plot ################################################### library("lattice") D <- expand.grid(R_health = nd$R_health, R_happy = ordered(LETTERS[1:4])) D$dens <- as.vector(dens) barchart(dens ~ R_happy | R_health, data = D, ylab = "Density", xlab = "Happiness",) ################################################### ### code chunk number 43: GLM-findings ################################################### ci <- round(exp(confint(plasma_glm_1, parm = "fibrinogen")), 2) ci <- paste("(", paste(ci, collapse = ","), ")", sep = "") HSAUR3/inst/doc/Ch_conditional_inference.R0000644000176200001440000001630714660150041020023 0ustar liggesusers### R code from vignette source 'Ch_conditional_inference.Rnw' ################################################### ### code chunk number 1: setup ################################################### rm(list = ls()) s <- search()[-1] s <- s[-match(c("package:base", "package:stats", "package:graphics", "package:grDevices", "package:utils", "package:datasets", "package:methods", "Autoloads"), s)] if (length(s) > 0) sapply(s, detach, character.only = TRUE) if (!file.exists("tables")) dir.create("tables") if (!file.exists("figures")) dir.create("figures") set.seed(290875) options(prompt = "R> ", continue = "+ ", width = 63, # digits = 4, show.signif.stars = FALSE, SweaveHooks = list(leftpar = function() par(mai = par("mai") * c(1, 1.05, 1, 1)), bigleftpar = function() par(mai = par("mai") * c(1, 1.7, 1, 1)))) HSAURpkg <- require("HSAUR3") if (!HSAURpkg) stop("cannot load package ", sQuote("HSAUR3")) rm(HSAURpkg) ### hm, R-2.4.0 --vanilla seems to need this a <- Sys.setlocale("LC_ALL", "C") ### book <- TRUE refs <- cbind(c("AItR", "DAGD", "SI", "CI", "ANOVA", "MLR", "GLM", "DE", "RP", "GAM", "SA", "ALDI", "ALDII", "SIMC", "MA", "PCA", "MDS", "CA"), 1:18) ch <- function(x) { ch <- refs[which(refs[,1] == x),] if (book) { return(paste("Chapter~\\\\ref{", ch[1], "}", sep = "")) } else { return(paste("Chapter~", ch[2], sep = "")) } } if (file.exists("deparse.R")) source("deparse.R") setHook(packageEvent("lattice", "attach"), function(...) { lattice.options(default.theme = function() standard.theme("pdf", color = FALSE)) }) ################################################### ### code chunk number 2: singlebook ################################################### book <- FALSE ################################################### ### code chunk number 3: CI-roomwidth-ties ################################################### data("roomwidth", package = "HSAUR3") nobs <- table(roomwidth$unit) ties <- tapply(roomwidth$width, roomwidth$unit, function(x) length(x) - length(unique(x))) library("coin") ################################################### ### code chunk number 4: CI-roomwidth-data ################################################### data("roomwidth", package = "HSAUR3") convert <- ifelse(roomwidth$unit == "feet", 1, 3.28) feet <- roomwidth$unit == "feet" meter <- !feet y <- roomwidth$width * convert ################################################### ### code chunk number 5: CI-roomwidth-teststat ################################################### T <- mean(y[feet]) - mean(y[meter]) T ################################################### ### code chunk number 6: CI-roomwidth-permutation ################################################### meandiffs <- double(9999) for (i in 1:length(meandiffs)) { sy <- sample(y) meandiffs[i] <- mean(sy[feet]) - mean(sy[meter]) } ################################################### ### code chunk number 7: CI-roomwidth-plot ################################################### hist(meandiffs) abline(v = T, lty = 2) abline(v = -T, lty = 2) ################################################### ### code chunk number 8: CI-roomwidth-pvalue ################################################### greater <- abs(meandiffs) > abs(T) mean(greater) ################################################### ### code chunk number 9: CI-roomwidth-pvalue ################################################### binom.test(sum(greater), length(greater))$conf.int ################################################### ### code chunk number 10: CI-roomwidth-coin ################################################### library("coin") independence_test(y ~ unit, data = roomwidth, distribution = exact()) ################################################### ### code chunk number 11: CI-roomwidth-coin ################################################### wilcox_test(y ~ unit, data = roomwidth, distribution = exact()) ################################################### ### code chunk number 12: CI-suicides-ft ################################################### data("suicides", package = "HSAUR3") fisher.test(suicides) ################################################### ### code chunk number 13: CI-suicides-chisq ################################################### ftp <- round(fisher.test(suicides)$p.value, 3) ctp <- round(chisq.test(suicides)$p.value, 3) ################################################### ### code chunk number 14: CI-Lanza-data ################################################### data("Lanza", package = "HSAUR3") xtabs(~ treatment + classification + study, data = Lanza) ################################################### ### code chunk number 15: CI-width ################################################### options(width = 65) ################################################### ### code chunk number 16: CI-Lanza-singleI ################################################### library("coin") cmh_test(classification ~ treatment, data = Lanza, scores = list(classification = c(0, 1, 6, 17, 30)), subset = Lanza$study == "I") ################################################### ### code chunk number 17: CI-Lanza-singleII ################################################### cmh_test(classification ~ treatment, data = Lanza, scores = list(classification = c(0, 1, 6, 17, 30)), subset = Lanza$study == "II") ################################################### ### code chunk number 18: CI-Lanza-singleIIa ################################################### p <- cmh_test(classification ~ treatment, data = Lanza, scores = list(classification = c(0, 1, 6, 17, 30)), subset = Lanza$study == "II", distribution = approximate(19999)) pvalue(p) ################################################### ### code chunk number 19: CI-Lanza-singleIII-IV ################################################### cmh_test(classification ~ treatment, data = Lanza, scores = list(classification = c(0, 1, 6, 17, 30)), subset = Lanza$study == "III") cmh_test(classification ~ treatment, data = Lanza, scores = list(classification = c(0, 1, 6, 17, 30)), subset = Lanza$study == "IV") ################################################### ### code chunk number 20: CI-Lanza-all ################################################### cmh_test(classification ~ treatment | study, data = Lanza, scores = list(classification = c(0, 1, 6, 17, 30))) ################################################### ### code chunk number 21: CI-anomalies ################################################### anomalies <- c(235, 23, 3, 0, 41, 35, 8, 0, 20, 11, 11, 1, 2, 1, 3, 1) anomalies <- as.table(matrix(anomalies, ncol = 4, dimnames = list(MD = 0:3, RA = 0:3))) anomalies ################################################### ### code chunk number 22: CI-anomalies-mh ################################################### mh_test(anomalies) ################################################### ### code chunk number 23: CI-anomalies-ordered ################################################### mh_test(anomalies, scores = list(response = c(0, 1, 2, 3))) HSAUR3/inst/doc/Ch_multiple_linear_regression.R0000644000176200001440000002130614660150075021131 0ustar liggesusers### R code from vignette source 'Ch_multiple_linear_regression.Rnw' ################################################### ### code chunk number 1: setup ################################################### rm(list = ls()) s <- search()[-1] s <- s[-match(c("package:base", "package:stats", "package:graphics", "package:grDevices", "package:utils", "package:datasets", "package:methods", "Autoloads"), s)] if (length(s) > 0) sapply(s, detach, character.only = TRUE) if (!file.exists("tables")) dir.create("tables") if (!file.exists("figures")) dir.create("figures") set.seed(290875) options(prompt = "R> ", continue = "+ ", width = 63, # digits = 4, show.signif.stars = FALSE, SweaveHooks = list(leftpar = function() par(mai = par("mai") * c(1, 1.05, 1, 1)), bigleftpar = function() par(mai = par("mai") * c(1, 1.7, 1, 1)))) HSAURpkg <- require("HSAUR3") if (!HSAURpkg) stop("cannot load package ", sQuote("HSAUR3")) rm(HSAURpkg) ### hm, R-2.4.0 --vanilla seems to need this a <- Sys.setlocale("LC_ALL", "C") ### book <- TRUE refs <- cbind(c("AItR", "DAGD", "SI", "CI", "ANOVA", "MLR", "GLM", "DE", "RP", "GAM", "SA", "ALDI", "ALDII", "SIMC", "MA", "PCA", "MDS", "CA"), 1:18) ch <- function(x) { ch <- refs[which(refs[,1] == x),] if (book) { return(paste("Chapter~\\\\ref{", ch[1], "}", sep = "")) } else { return(paste("Chapter~", ch[2], sep = "")) } } if (file.exists("deparse.R")) source("deparse.R") setHook(packageEvent("lattice", "attach"), function(...) { lattice.options(default.theme = function() standard.theme("pdf", color = FALSE)) }) ################################################### ### code chunk number 2: singlebook ################################################### book <- FALSE ################################################### ### code chunk number 3: MLR-setup ################################################### library("wordcloud") ################################################### ### code chunk number 4: MLR-hubble-tab ################################################### data("hubble", package = "gamair") names(hubble) <- c("galaxy", "velocity", "distance") toLatex(HSAURtable(hubble, package = "gamair"), pcol = 2, caption = paste("Distance and velocity for 24 galaxies."), label = "MLR-hubble-tab") ################################################### ### code chunk number 5: MLR-clouds-tab ################################################### data("clouds", package = "HSAUR3") names(clouds) <- c("seeding", "time", "sne", "cloudc", "prewet", "EM", "rain") toLatex(HSAURtable(clouds), pcol = 1, caption = paste("Cloud seeding experiments in Florida -- see text for", "explanations of the variables. Note that the \\Robject{clouds} data set has slightly different variable names."), label = "MLR-clouds-tab") ################################################### ### code chunk number 6: MLR-hubble-plot ################################################### plot(velocity ~ distance, data = hubble) ################################################### ### code chunk number 7: MLR-hubble-beta1 ################################################### sum(hubble$distance * hubble$velocity) / sum(hubble$distance^2) ################################################### ### code chunk number 8: MLR-hubble-lm ################################################### hmod <- lm(velocity ~ distance - 1, data = hubble) ################################################### ### code chunk number 9: MLR-hubble-lm ################################################### coef(hmod) ################################################### ### code chunk number 10: MLR-hubble-age ################################################### Mpc <- 3.09 * 10^19 ysec <- 60^2 * 24 * 365.25 Mpcyear <- Mpc / ysec 1 / (coef(hmod) / Mpcyear) ################################################### ### code chunk number 11: MLR-hubble-lmplot ################################################### layout(matrix(1:2, ncol = 2)) plot(velocity ~ distance, data = hubble) abline(hmod) plot(hmod, which = 1) ################################################### ### code chunk number 12: MLR-clouds-boxplots (eval = FALSE) ################################################### ## data("clouds", package = "HSAUR3") ## layout(matrix(1:2, nrow = 2)) ## bxpseeding <- boxplot(rain ~ seeding, data = clouds, ## ylab = "Rainfall", xlab = "Seeding") ## bxpecho <- boxplot(rain ~ EM, data = clouds, ## ylab = "Rainfall", xlab = "Echo Motion") ################################################### ### code chunk number 13: MLR-clouds-boxplots ################################################### layout(matrix(1:2, nrow = 2)) bxpseeding <- boxplot(rain ~ seeding, data = clouds, ylab = "Rainfall", xlab = "Seeding") bxpecho <- boxplot(rain ~ EM, data = clouds, ylab = "Rainfall", xlab = "Echo Motion") ################################################### ### code chunk number 14: MLR-clouds-scatterplots ################################################### layout(matrix(1:4, nrow = 2)) plot(rain ~ time, data = clouds) plot(rain ~ cloudc, data = clouds) plot(rain ~ sne, data = clouds, xlab="S-Ne criterion") plot(rain ~ prewet, data = clouds) ################################################### ### code chunk number 15: MLR-clouds-outliers ################################################### rownames(clouds)[clouds$rain %in% c(bxpseeding$out, bxpecho$out)] ################################################### ### code chunk number 16: MLR-clouds-formula ################################################### clouds_formula <- rain ~ seeding + seeding:(sne + cloudc + prewet + EM) + time ################################################### ### code chunk number 17: MLR-clouds-modelmatrix ################################################### Xstar <- model.matrix(clouds_formula, data = clouds) ################################################### ### code chunk number 18: MLR-clouds-contrasts ################################################### attr(Xstar, "contrasts") ################################################### ### code chunk number 19: MLR-clouds-lm ################################################### clouds_lm <- lm(clouds_formula, data = clouds) class(clouds_lm) ################################################### ### code chunk number 20: MLR-clouds-summary ################################################### summary(clouds_lm) ################################################### ### code chunk number 21: MLR-clouds-coef ################################################### betastar <- coef(clouds_lm) betastar ################################################### ### code chunk number 22: MLR-clouds-vcov ################################################### Vbetastar <- vcov(clouds_lm) ################################################### ### code chunk number 23: MLR-clouds-sd ################################################### sqrt(diag(Vbetastar)) ################################################### ### code chunk number 24: MLR-clouds-lmplot ################################################### psymb <- as.numeric(clouds$seeding) plot(rain ~ sne, data = clouds, pch = psymb, xlab = "S-Ne criterion") abline(lm(rain ~ sne, data = clouds, subset = seeding == "no")) abline(lm(rain ~ sne, data = clouds, subset = seeding == "yes"), lty = 2) legend("topright", legend = c("No seeding", "Seeding"), pch = 1:2, lty = 1:2, bty = "n") ################################################### ### code chunk number 25: MLR-clouds-residfitted ################################################### clouds_resid <- residuals(clouds_lm) clouds_fitted <- fitted(clouds_lm) ################################################### ### code chunk number 26: MLR-clouds-residplot ################################################### plot(clouds_fitted, clouds_resid, xlab = "Fitted values", ylab = "Residuals", type = "n", ylim = max(abs(clouds_resid)) * c(-1, 1)) abline(h = 0, lty = 2) textplot(clouds_fitted, clouds_resid, words = rownames(clouds), new = FALSE) ################################################### ### code chunk number 27: MLR-clouds-qqplot ################################################### qqnorm(clouds_resid, ylab = "Residuals") qqline(clouds_resid) ################################################### ### code chunk number 28: MLR-clouds-cook (eval = FALSE) ################################################### ## plot(clouds_lm) ################################################### ### code chunk number 29: MLR-clouds-cook ################################################### plot(clouds_lm, which = 4, sub.caption = NULL) HSAUR3/inst/doc/Ch_simple_inference.R0000644000176200001440000002256014660150110017004 0ustar liggesusers### R code from vignette source 'Ch_simple_inference.Rnw' ################################################### ### code chunk number 1: setup ################################################### rm(list = ls()) s <- search()[-1] s <- s[-match(c("package:base", "package:stats", "package:graphics", "package:grDevices", "package:utils", "package:datasets", "package:methods", "Autoloads"), s)] if (length(s) > 0) sapply(s, detach, character.only = TRUE) if (!file.exists("tables")) dir.create("tables") if (!file.exists("figures")) dir.create("figures") set.seed(290875) options(prompt = "R> ", continue = "+ ", width = 63, # digits = 4, show.signif.stars = FALSE, SweaveHooks = list(leftpar = function() par(mai = par("mai") * c(1, 1.05, 1, 1)), bigleftpar = function() par(mai = par("mai") * c(1, 1.7, 1, 1)))) HSAURpkg <- require("HSAUR3") if (!HSAURpkg) stop("cannot load package ", sQuote("HSAUR3")) rm(HSAURpkg) ### hm, R-2.4.0 --vanilla seems to need this a <- Sys.setlocale("LC_ALL", "C") ### book <- TRUE refs <- cbind(c("AItR", "DAGD", "SI", "CI", "ANOVA", "MLR", "GLM", "DE", "RP", "GAM", "SA", "ALDI", "ALDII", "SIMC", "MA", "PCA", "MDS", "CA"), 1:18) ch <- function(x) { ch <- refs[which(refs[,1] == x),] if (book) { return(paste("Chapter~\\\\ref{", ch[1], "}", sep = "")) } else { return(paste("Chapter~", ch[2], sep = "")) } } if (file.exists("deparse.R")) source("deparse.R") setHook(packageEvent("lattice", "attach"), function(...) { lattice.options(default.theme = function() standard.theme("pdf", color = FALSE)) }) ################################################### ### code chunk number 2: singlebook ################################################### book <- FALSE ################################################### ### code chunk number 3: SI-setup ################################################### library("vcd") if (!interactive()) { print.htest <- function (x, digits = 4, quote = TRUE, prefix = "", ...) { cat("\n") cat(strwrap(x$method, prefix = "\t"), sep = "\n") cat("\n") cat("data: ", x$data.name, "\n") out <- character() if (!is.null(x$statistic)) out <- c(out, paste(names(x$statistic), "=", format(round(x$statistic, 4)))) if (!is.null(x$parameter)) out <- c(out, paste(names(x$parameter), "=", format(round(x$parameter, 3)))) if (!is.null(x$p.value)) { fp <- format.pval(x$p.value, digits = digits) out <- c(out, paste("p-value", if (substr(fp, 1, 1) == "<") fp else paste("=", fp))) } cat(strwrap(paste(out, collapse = ", ")), sep = "\n") if (!is.null(x$conf.int)) { cat(format(100 * attr(x$conf.int, "conf.level")), "percent confidence interval:\n", format(c(x$conf.int[1], x$conf.int[2])), "\n") } if (!is.null(x$estimate)) { cat("sample estimates:\n") print(x$estimate, ...) } cat("\n") invisible(x) } } ################################################### ### code chunk number 4: SI-roomwidth-data ################################################### data("roomwidth", package = "HSAUR3") ################################################### ### code chunk number 5: SI-roomwidth-convert ################################################### convert <- ifelse(roomwidth$unit == "feet", 1, 3.28) ################################################### ### code chunk number 6: SI-roomwidth-summary ################################################### tapply(roomwidth$width * convert, roomwidth$unit, summary) tapply(roomwidth$width * convert, roomwidth$unit, sd) ################################################### ### code chunk number 7: SI-roomwidth-boxplot ################################################### layout(matrix(c(1,2,1,3), nrow = 2, ncol = 2, byrow = FALSE)) boxplot(I(width * convert) ~ unit, data = roomwidth, ylab = "Estimated width (feet)", varwidth = TRUE, names = c("Estimates in feet", "Estimates in meters (converted to feet)")) feet <- roomwidth$unit == "feet" qqnorm(roomwidth$width[feet], ylab = "Estimated width (feet)") qqline(roomwidth$width[feet]) qqnorm(roomwidth$width[!feet], ylab = "Estimated width (meters)") qqline(roomwidth$width[!feet]) ################################################### ### code chunk number 8: SI-roomwidth-formula ################################################### I(width * convert) ~ unit ################################################### ### code chunk number 9: SI-roomwidth-tt-T-hide ################################################### tt <- t.test(I(width * convert) ~ unit, data = roomwidth, var.equal = TRUE) ################################################### ### code chunk number 10: SI-roomwidth-tt-T ################################################### t.test(I(width * convert) ~ unit, data = roomwidth, var.equal = TRUE) ################################################### ### code chunk number 11: SI-roomwidth-tt-F ################################################### t.test(I(width * convert) ~ unit, data = roomwidth, var.equal = FALSE) ################################################### ### code chunk number 12: SI-roomwidth-wt ################################################### wilcox.test(I(width * convert) ~ unit, data = roomwidth, conf.int = TRUE) ################################################### ### code chunk number 13: SI-roomwidth-wt-hide ################################################### pwt <- round(wilcox.test(I(width * convert) ~ unit, data = roomwidth)$p.value, 3) ################################################### ### code chunk number 14: SI-waves-data ################################################### data("waves", package = "HSAUR3") ################################################### ### code chunk number 15: SI-wavese-boxplot ################################################### mooringdiff <- waves$method1 - waves$method2 layout(matrix(1:2, ncol = 2)) boxplot(mooringdiff, ylab = "Differences (Newton meters)", main = "Boxplot") abline(h = 0, lty = 2) qqnorm(mooringdiff, ylab = "Differences (Newton meters)") qqline(mooringdiff) ################################################### ### code chunk number 16: SI-waves-tt ################################################### t.test(mooringdiff) ################################################### ### code chunk number 17: SI-waves-wt ################################################### pwt <- round(wilcox.test(mooringdiff)$p.value, 3) ################################################### ### code chunk number 18: SI-waves-wt ################################################### wilcox.test(mooringdiff) ################################################### ### code chunk number 19: SI-water-data ################################################### data("water", package = "HSAUR3") ################################################### ### code chunk number 20: SI-water-plot ################################################### nf <- layout(matrix(c(2, 0, 1, 3), 2, 2, byrow = TRUE), c(2, 1), c(1, 2), TRUE) psymb <- as.numeric(water$location) plot(mortality ~ hardness, data = water, pch = psymb) abline(lm(mortality ~ hardness, data = water)) legend("topright", legend = levels(water$location), pch = c(1,2), bty = "n") hist(water$hardness) boxplot(water$mortality) ################################################### ### code chunk number 21: SI-water-cor ################################################### cor.test(~ mortality + hardness, data = water) ################################################### ### code chunk number 22: SI-water-cor ################################################### cr <- round(cor.test(~ mortality + hardness, data = water)$estimate, 3) ################################################### ### code chunk number 23: SI-pistonrings-chisq-hide ################################################### chisqt <- chisq.test(pistonrings) ################################################### ### code chunk number 24: SI-pistonrings-chisq ################################################### data("pistonrings", package = "HSAUR3") chisq.test(pistonrings) ################################################### ### code chunk number 25: SI-pistonrings-resid ################################################### chisq.test(pistonrings)$residuals ################################################### ### code chunk number 26: SI-assoc-plot ################################################### library("vcd") assoc(pistonrings) ################################################### ### code chunk number 27: SI-rearrests-data ################################################### data("rearrests", package = "HSAUR3") rearrests ################################################### ### code chunk number 28: SI-rearrests-mcnemar ################################################### mcs <- round(mcnemar.test(rearrests, correct = FALSE)$statistic, 2) ################################################### ### code chunk number 29: SI-arrests-mcnemar ################################################### mcnemar.test(rearrests, correct = FALSE) ################################################### ### code chunk number 30: SI-arrests-binom ################################################### binom.test(rearrests[2], n = sum(rearrests[c(2,3)])) HSAUR3/inst/doc/Ch_simultaneous_inference.Rnw0000644000176200001440000005557314416236370020636 0ustar liggesusers \documentclass{chapman} %%% copy Sweave.sty definitions %%% keeps `sweave' from adding `\usepackage{Sweave}': DO NOT REMOVE %\usepackage{Sweave} \RequirePackage[T1]{fontenc} \RequirePackage{graphicx,ae,fancyvrb} \IfFileExists{upquote.sty}{\RequirePackage{upquote}}{} \usepackage{relsize} \DefineVerbatimEnvironment{Sinput}{Verbatim}{} \DefineVerbatimEnvironment{Soutput}{Verbatim}{fontfamily=courier, fontshape=it, fontsize=\relsize{-1}} \DefineVerbatimEnvironment{Scode}{Verbatim}{} \newenvironment{Schunk}{}{} %%% environment for raw output \newcommand{\SchunkRaw}{\renewenvironment{Schunk}{}{} \DefineVerbatimEnvironment{Soutput}{Verbatim}{fontfamily=courier, fontshape=it, fontsize=\small} \rawSinput } %%% environment for labeled output \newcommand{\nextcaption}{} \newcommand{\SchunkLabel}{ \renewenvironment{Schunk}{\begin{figure}[ht] }{\caption{\nextcaption} \end{figure} } \DefineVerbatimEnvironment{Sinput}{Verbatim}{frame = topline} \DefineVerbatimEnvironment{Soutput}{Verbatim}{frame = bottomline, samepage = true, fontfamily=courier, fontshape=it, fontsize=\relsize{-1}} } %%% S code with line numbers \DefineVerbatimEnvironment{Sinput} {Verbatim} { %% numbers=left } \newcommand{\numberSinput}{ \DefineVerbatimEnvironment{Sinput}{Verbatim}{numbers=left} } \newcommand{\rawSinput}{ \DefineVerbatimEnvironment{Sinput}{Verbatim}{} } %%% R / System symbols \newcommand{\R}{\textsf{R}} \newcommand{\rR}{{R}} \renewcommand{\S}{\textsf{S}} \newcommand{\SPLUS}{\textsf{S-PLUS}} \newcommand{\rSPLUS}{{S-PLUS}} \newcommand{\SPSS}{\textsf{SPSS}} \newcommand{\EXCEL}{\textsf{Excel}} \newcommand{\ACCESS}{\textsf{Access}} \newcommand{\SQL}{\textsf{SQL}} %%\newcommand{\Rpackage}[1]{\hbox{\rm\textit{#1}}} %%\newcommand{\Robject}[1]{\hbox{\rm\texttt{#1}}} %%\newcommand{\Rclass}[1]{\hbox{\rm\textit{#1}}} %%\newcommand{\Rcmd}[1]{\hbox{\rm\texttt{#1}}} \newcommand{\Rpackage}[1]{\index{#1 package@{\fontseries{b}\selectfont #1} package} {\fontseries{b}\selectfont #1}} \newcommand{\rpackage}[1]{{\fontseries{b}\selectfont #1}} \newcommand{\Robject}[1]{\texttt{#1}} \newcommand{\Rclass}[1]{\index{#1 class@\textit{#1} class}\textit{#1}} \newcommand{\Rcmd}[1]{\index{#1 function@\texttt{#1} function}\texttt{#1}} \newcommand{\Roperator}[1]{\texttt{#1}} \newcommand{\Rarg}[1]{\texttt{#1}} \newcommand{\Rlevel}[1]{\texttt{#1}} %%% other symbols \newcommand{\file}[1]{\hbox{\rm\texttt{#1}}} %%\newcommand{\stress}[1]{\index{#1}\textit{#1}} \newcommand{\stress}[1]{\textit{#1}} \newcommand{\booktitle}[1]{\textit{#1}} %%' %%% Math symbols \usepackage{amstext} \usepackage{amsmath} \newcommand{\E}{\mathsf{E}} \newcommand{\Var}{\mathsf{Var}} \newcommand{\Cov}{\mathsf{Cov}} \newcommand{\Cor}{\mathsf{Cor}} \newcommand{\x}{\mathbf{x}} \newcommand{\y}{\mathbf{y}} \renewcommand{\a}{\mathbf{a}} \newcommand{\W}{\mathbf{W}} \newcommand{\C}{\mathbf{C}} \renewcommand{\H}{\mathbf{H}} \newcommand{\X}{\mathbf{X}} \newcommand{\B}{\mathbf{B}} \newcommand{\V}{\mathbf{V}} \newcommand{\I}{\mathbf{I}} \newcommand{\D}{\mathbf{D}} \newcommand{\bS}{\mathbf{S}} \newcommand{\N}{\mathcal{N}} \renewcommand{\L}{L} \renewcommand{\P}{\mathsf{P}} \newcommand{\K}{\mathbf{K}} \newcommand{\m}{\mathbf{m}} \newcommand{\argmin}{\operatorname{argmin}\displaylimits} \newcommand{\argmax}{\operatorname{argmax}\displaylimits} \newcommand{\bx}{\mathbf{x}} \newcommand{\bbeta}{\mathbf{\beta}} %%% links \usepackage{hyperref} \hypersetup{% pdftitle = {A Handbook of Statistical Analyses Using R (3rd Edition)}, pdfsubject = {Book}, pdfauthor = {Torsten Hothorn and Brian S. Everitt}, colorlinks = {black}, linkcolor = {black}, citecolor = {black}, urlcolor = {black}, hyperindex = {true}, linktocpage = {true}, } %%% captions & tables %% : conflics with figure definition in chapman.cls %%\usepackage[format=hang,margin=10pt,labelfont=bf]{caption} %% \usepackage{longtable} \usepackage[figuresright]{rotating} %%% R symbol in chapter 1 \usepackage{wrapfig} %%% Bibliography \usepackage[round,comma]{natbib} \renewcommand{\refname}{References \addcontentsline{toc}{chapter}{References}} \citeindexfalse %%% texi2dvi complains that \newblock is undefined, hm... \def\newblock{\hskip .11em plus .33em minus .07em} %%% Example sections \newcounter{exercise}[chapter] \setcounter{exercise}{0} \newcommand{\exercise}{\stepcounter{exercise} \item{Ex.~\arabic{chapter}.\arabic{exercise} }} %% URLs \newcommand{\curl}[1]{\begin{center} \url{#1} \end{center}} %%% for manual corrections %\renewcommand{\baselinestretch}{2} %%% plot sizes \setkeys{Gin}{width=0.95\textwidth} %%% color \usepackage{color} %%% hyphenations \hyphenation{drop-out} \hyphenation{mar-gi-nal} %%% new bidirectional quotes need \usepackage[utf8]{inputenc} %\usepackage{setspace} \definecolor{sidebox_todo}{rgb}{1,1,0.2} \newcommand{\todo}[1]{ \hspace{0pt}% \marginpar{% \fcolorbox{black}{sidebox_todo}{% \parbox{\marginparwidth} { \raggedright\sffamily\footnotesize{TODO: #1}% } }% } } \begin{document} %% Title page \title{A Handbook of Statistical Analyses Using \R{} --- 3rd Edition} \author{Torsten Hothorn and Brian S. Everitt} \maketitle %%\VignetteIndexEntry{Chapter Simultaneous Inference and Multiple Comparisons} %%\VignetteDepends{lme4,multcomp,coin,sandwich} \setcounter{chapter}{14} \SweaveOpts{prefix.string=figures/HSAUR,eps=FALSE,keep.source=TRUE} <>= rm(list = ls()) s <- search()[-1] s <- s[-match(c("package:base", "package:stats", "package:graphics", "package:grDevices", "package:utils", "package:datasets", "package:methods", "Autoloads"), s)] if (length(s) > 0) sapply(s, detach, character.only = TRUE) if (!file.exists("tables")) dir.create("tables") if (!file.exists("figures")) dir.create("figures") set.seed(290875) options(prompt = "R> ", continue = "+ ", width = 63, # digits = 4, show.signif.stars = FALSE, SweaveHooks = list(leftpar = function() par(mai = par("mai") * c(1, 1.05, 1, 1)), bigleftpar = function() par(mai = par("mai") * c(1, 1.7, 1, 1)))) HSAURpkg <- require("HSAUR3") if (!HSAURpkg) stop("cannot load package ", sQuote("HSAUR3")) rm(HSAURpkg) ### hm, R-2.4.0 --vanilla seems to need this a <- Sys.setlocale("LC_ALL", "C") ### book <- TRUE refs <- cbind(c("AItR", "DAGD", "SI", "CI", "ANOVA", "MLR", "GLM", "DE", "RP", "GAM", "SA", "ALDI", "ALDII", "SIMC", "MA", "PCA", "MDS", "CA"), 1:18) ch <- function(x) { ch <- refs[which(refs[,1] == x),] if (book) { return(paste("Chapter~\\\\ref{", ch[1], "}", sep = "")) } else { return(paste("Chapter~", ch[2], sep = "")) } } if (file.exists("deparse.R")) source("deparse.R") setHook(packageEvent("lattice", "attach"), function(...) { lattice.options(default.theme = function() standard.theme("pdf", color = FALSE)) }) @ \pagestyle{headings} <>= book <- FALSE @ <>= library("multcomp") library("coin") library("sandwich") library("lme4") @ \chapter[Simultaneous Inference and Multiple Comparisons]{Simultaneous Inference and Multiple Comparisons: Genetic Components of Alcoholism, Deer Browsing Intensities, and Cloud Seeding \label{SIMC}} \section{Introduction} \section{Simultaneous Inference and Multiple Comparisons} \section{Analysis Using \R{}} \subsection{Genetic Components of Alcoholism} We start with a graphical display of the data. Three parallel boxplots shown in Figure~\ref{SIMC-alpha-data-figure} indicate increasing expression levels of alpha synuclein mRNA for longer \textit{NACP}-REP1 alleles. %%\setkeys{Gin}{width=0.6\textwidth} \begin{figure}[t] \begin{center} <>= n <- table(alpha$alength) levels(alpha$alength) <- abbreviate(levels(alpha$alength), 4) plot(elevel ~ alength, data = alpha, varwidth = TRUE, ylab = "Expression Level", xlab = "NACP-REP1 Allele Length") axis(3, at = 1:3, labels = paste("n = ", n)) @ \caption{Distribution of levels of expressed alpha synuclein mRNA in three groups defined by the \textit{NACP}-REP1 allele lengths. \label{SIMC-alpha-data-figure}} \end{center} \end{figure} \index{Tukey honest significant differences|(} In order to model this relationship, we start fitting a simple one-way ANOVA model of the form $y_{ij} = \mu + \gamma_i + \varepsilon_{ij}$ to the data with independent normal errors $\varepsilon_{ij} \sim \N(0, \sigma^2)$, $j \in \{\text{short}, \text{intermediate}, \text{long}\}$, and $i = 1, \dots, n_j$. The parameters $\mu + \gamma_\text{short}$, $\mu + \gamma_\text{intermediate}$ and $\mu + \gamma_\text{long}$ can be interpreted as the mean expression levels in the corresponding groups. As already discussed in \Sexpr{ch("ANOVA")}, this model description is overparameterized. A standard approach is to consider a suitable re-parameterization. The so-called ``treatment contrast'' vector $% \theta = (\mu, \gamma_\text{intermediate} - \gamma_\text{short}, \gamma_\text{long} - \gamma_\text{short})$ (the default re-parameterization used as elemental parameters in \R{}) is one possibility and is equivalent to imposing the restriction $\gamma_\text{short} = 0$. In addition, we define all comparisons among our three groups by choosing $\K$ such that $\K \theta$ contains all three group differences (Tukey's all-pairwise comparisons): %%' \begin{eqnarray*} \K_\text{Tukey} = \left( \begin{array}{rrr} 0 & 1 & 0 \\%% 0 & 0 & 1 \\%% 0 & -1 & 1% \end{array} \right) \end{eqnarray*} with parameters of interest \begin{eqnarray*} \vartheta_\text{Tukey} = \K_\text{Tukey} \theta = (\gamma_\text{intermediate} - \gamma_\text{short}, \gamma_\text{long} - \gamma_\text{short}, \gamma_\text{long} - \gamma_\text{intermediate}). \end{eqnarray*} The function \Rcmd{glht} (for generalized linear hypothesis) from package \Rpackage{multcomp} \citep{PKG:multcomp,HSAUR:HothornBretzWestfall2008} takes the fitted \Rclass{aov} object and a description of the matrix $\K$. Here, we use the \Rcmd{mcp} function to set up the matrix of all pairwise differences for the model parameters associated with factor \Robject{alength}: <>= library("multcomp") amod <- aov(elevel ~ alength, data = alpha) amod_glht <- glht(amod, linfct = mcp(alength = "Tukey")) @ The matrix $\K$ reads <>= amod_glht$linfct @ The \Robject{amod\_glht} object now contains information about the estimated linear function $\hat{\vartheta}$ and their covariance matrix which can be inspected via the \Rcmd{coef} and \Rcmd{vcov} methods: <>= coef(amod_glht) vcov(amod_glht) @ The \Rcmd{summary} and \Rcmd{confint} methods can be used to compute a summary statistic including adjusted $p$-values and simultaneous confidence intervals, respectively: <>= confint(amod_glht) summary(amod_glht) @ Because of the variance heterogeneity that can be observed in Figure~\ref{SIMC-alpha-data-figure}, one might be concerned with the validity of the above results stating that there is no difference between any combination of the three allele lengths. A sandwich estimator might be more appropriate in this situation, and the \Rarg{vcov} argument can be used to specify a function to compute some alternative covariance estimator as follows: <>= amod_glht_sw <- glht(amod, linfct = mcp(alength = "Tukey"), vcov = sandwich) summary(amod_glht_sw) @ We use the \Rcmd{sandwich} function from package \Rpackage{sandwich} \citep{PKG:sandwich, HSAUR:Zeileis2006} which provides us with a heteroscedasticity-consistent estimator of the covariance matrix. This result is more in line with previously published findings for this study obtained from non-parametric test procedures such as the Kruskal-Wallis test. A comparison of the simultaneous confidence intervals calculated based on the ordinary and sandwich estimator is given in Figure~\ref{SIMC-alpha-confint-plot}. %%\setkeys{Gin}{width=0.95\textwidth} \begin{figure}[h] \begin{center} <>= par(mai = par("mai") * c(1, 2.1, 1, 0.5)) layout(matrix(1:2, ncol = 2)) ci1 <- confint(glht(amod, linfct = mcp(alength = "Tukey"))) ci2 <- confint(glht(amod, linfct = mcp(alength = "Tukey"), vcov = sandwich)) ox <- expression(paste("Tukey (ordinary ", bold(S)[n], ")")) sx <- expression(paste("Tukey (sandwich ", bold(S)[n], ")")) plot(ci1, xlim = c(-0.6, 2.6), main = ox, xlab = "Difference", ylim = c(0.5, 3.5)) plot(ci2, xlim = c(-0.6, 2.6), main = sx, xlab = "Difference", ylim = c(0.5, 3.5)) @ \caption{Simultaneous confidence intervals for the \Robject{alpha} data based on the ordinary covariance matrix (left) and a sandwich estimator (right). \label{SIMC-alpha-confint-plot}} \end{center} \end{figure} It should be noted that this data set is heavily unbalanced; see Figure~\ref{SIMC-alpha-data-figure}, and therefore the results obtained from function \Rcmd{TukeyHSD} might be less accurate. \index{Tukey honest significant differences|)} \subsection{Deer Browsing} \index{Generalized linear mixed model|(} Since we have to take the spatial structure of the deer browsing data into account, we cannot simply use a logistic regression model as introduced in \Sexpr{ch("GLM")}. One possibility is to apply a mixed logistic regression model \citep[using package \Rpackage{lme4},][]{PKG:lme4} with random intercept accounting for the spatial variation of the trees. These models have already been discussed in \Sexpr{ch("ALDII")}. For each plot nested within a set of five plots oriented on a 100m transect (the location of the transect is determined by a predefined equally spaced lattice of the area under test), a random intercept is included in the model. Essentially, trees that are close to each other are handled like repeated measurements in a longitudinal analysis. We are interested in probability estimates and confidence intervals for each tree species. Each of the five fixed parameters of the model corresponds to one species (in absence of a global intercept term); therefore, $\K = \text{diag}(5)$ is the linear function we are interested in: <>= trees513 <- subset(trees513, !species %in% c("fir", "ash/maple/elm/lime", "softwood (other)")) trees513$species <- trees513$species[,drop = TRUE] levels(trees513$species)[nlevels(trees513$species)] <- "hardwood" @ <>= mmod <- glmer(damage ~ species - 1 + (1 | lattice / plot), data = trees513, family = binomial()) K <- diag(length(fixef(mmod))) K @ In order to help interpretation, the names of the tree species and the corresponding sample sizes (computed via \Rcmd{table}) are added to $\K$ as row names; this information will carry through all subsequent steps of our analysis: <>= colnames(K) <- rownames(K) <- paste(gsub("species", "", names(fixef(mmod))), " (", table(trees513$species), ")", sep = "") K @ Based on $\K$, we first compute simultaneous confidence intervals for $\K \theta$ and transform these into probabilities. Note that $\left(1 + \exp(- \hat{\vartheta})\right)^{-1}$ (cf.~Equation~\ref{GLM:logitexp}) is the vector of estimated probabilities; simultaneous confidence intervals can be transformed to the probability scale in the same way: <>= ci <- confint(glht(mmod, linfct = K)) ci$confint <- 1 - binomial()$linkinv(ci$confint) ci$confint[,2:3] <- ci$confint[,3:2] @ The result is shown in Figure~\ref{SIMC-trees-plot}. Browsing is more frequent in hardwood but especially small oak trees are severely at risk. Consequently, the local authorities increased the number of roe deers to be harvested in the following years. %%The large confidence interval for ash, maple, elm and lime %%trees is caused by the small sample size. %%\setkeys{Gin}{width=0.8\textwidth} \begin{figure}[t] \begin{center} <>= plot(ci, xlab = "Probability of Damage Caused by Browsing", xlim = c(0, 0.5), main = "", ylim = c(0.5, 5.5)) @ \caption{Probability of damage caused by roe deer browsing for five tree species. Sample sizes are given in brackets. \label{SIMC-trees-plot}} \end{center} \end{figure} \index{Generalized linear mixed model|)} \subsection{Cloud Seeding} \index{Confidence band|(} In \Sexpr{ch("MLR")} we studied the dependency of rainfall on S-Ne values by means of linear models. Because the number of observations is small, an additional assessment of the variability of the fitted regression lines is interesting. Here, we are interested in a confidence band around some estimated regression line, i.e., a confidence region which covers the true but unknown regression line with probability greater or equal $1 - \alpha$. It is straightforward to compute \stress{pointwise} confidence intervals but we have to make sure that the type I error is controlled for all $x$ values simultaneously. Consider the simple linear regression model \begin{eqnarray*} \text{rainfall}_i = \beta_0 + \beta_1 \text{sne}_i + \varepsilon_i \end{eqnarray*} where we are interested in a confidence band for the predicted rainfall, i.e., the values $\hat{\beta}_0 + \hat{\beta}_1 \text{sne}_i$ for some observations $\text{sne}_i$. (Note that the estimates $\hat{\beta}_0$ and $\hat{\beta}_1$ are random variables.) We can formulate the problem as a linear combination of the regression coefficients by multiplying a matrix $\K$ to a grid of S-Ne values (ranging from $1.5$ to $4.5$, say) from the left to the elemental parameters $\theta = (\beta_0, \beta_1)$: \begin{eqnarray*} \K \theta = \left( \begin{array}{rr} 1 & 1.50 \\%% 1 & 1.75 \\%% \vdots & \vdots \\%% 1 & 4.25 \\%% 1 & 4.50 % \end{array} \right)\theta = (\beta_0 + \beta_1 1.50, \beta_0 + \beta_1 1.75, \dots, \beta_0 + \beta_1 4.50) = \vartheta. \end{eqnarray*} Simultaneous confidence intervals for all the parameters of interest $\vartheta$ form a confidence band for the estimated regression line. We implement this idea for the \Robject{clouds} data writing a small reusable function as follows: <>= confband <- function(subset, main) { mod <- lm(rainfall ~ sne, data = clouds, subset = subset) sne_grid <- seq(from = 1.5, to = 4.5, by = 0.25) K <- cbind(1, sne_grid) sne_ci <- confint(glht(mod, linfct = K)) plot(rainfall ~ sne, data = clouds, subset = subset, xlab = "S-Ne criterion", main = main, xlim = range(clouds$sne), ylim = range(clouds$rainfall)) abline(mod) lines(sne_grid, sne_ci$confint[,2], lty = 2) lines(sne_grid, sne_ci$confint[,3], lty = 2) } @ The function \Rcmd{confband} basically fits a linear model using \Rcmd{lm} to a subset of the data, sets up the matrix $\K$ as shown above and nicely plots both the regression line and the confidence band. Now, this function can be reused to produce plots similar to Figure~\ref{MLR-clouds-lmplot} separately for days with and without cloud seeding in Figure~\ref{SIMC-clouds-lmplot}. For the days without seeding, there is more uncertainty about the true regression line compared to the days with cloud seeding. Clearly, this is caused by the larger variability of the observations in the left part of the figure. \begin{figure} \begin{center} <>= layout(matrix(1:2, ncol = 2)) confband(clouds$seeding == "no", main = "No seeding") confband(clouds$seeding == "yes", main = "Seeding") @ \caption{Regression relationship between S-Ne criterion and rainfall with and without seeding. The confidence bands cover the area within the dashed curves. \label{SIMC-clouds-lmplot}} \end{center} \end{figure} \index{Confidence band|)} \section{Summary of Findings} \begin{description} \item[Genetic components of alcoholism] We were interested in studying all pairwise differences in expression levels for three groups of subjects defined by allele length. Overall, there seem to be different expression levels for short and long alleles but no difference between these two groups and the intermediate group. \item[Deer browsing] For a number of tree species, the simultaneous confidence intervals for the probability of browsing damage show that there is rather precise information about browsing damage for spruce and pine with more variability for the broad-leaf species. For oak, more than $\Sexpr{round(ci$confint["oak (1258)", 2], 2)}\%$ of the trees are damaged. \item[Cloud seeding] Confidence bands for the estimated effects help to identify days where the uncertainty about rainfall is largest. \end{description} \section{Final Comments} Multiple comparisons in linear models have been in use for a long time. The \Rpackage{multcomp} package extends much of the theory to a broad class of parametric and semi-parametric statistical models, which allows for a unified treatment of multiple comparisons and other simultaneous inference procedures in generalized linear models, mixed models, models for censored data, robust models, etc. Honest decisions based on simultaneous inference procedures maintaining a pre-specified familywise error rate (at least asymptotically) can be derived from almost all classical and modern statistical models. The technical details and more examples can be found in \cite{HSAUR:HothornBretzWestfall2008} and the package vignettes of package \Rpackage{multcomp} \citep{PKG:multcomp}. \section*{Exercises} \begin{description} \exercise Compare the results of \Rcmd{glht} and \Rcmd{TukeyHSD} on the \Robject{alpha} data. \exercise Consider the linear model fitted to the clouds data as summarized in Figure~\ref{MLR-clouds-summary}. Set up a matrix $\K$ corresponding to the global null hypothesis that all interaction terms present in the model are zero. Test both the global hypothesis and all hypotheses corresponding to each of the interaction terms. Which interaction remains significant after adjustment for multiple testing? \exercise For the logistic regression model presented in Figure~\ref{GLM-womensrole-summary-2} perform a multiplicity adjusted test on all regression coefficients (except for the intercept) being zero. Do the conclusions drawn in \Sexpr{ch("GLM")} remain valid? \end{description} \bibliographystyle{LaTeXBibTeX/refstyle} \bibliography{LaTeXBibTeX/HSAUR} \end{document} HSAUR3/inst/doc/Ch_quantile_regression.R0000644000176200001440000002462014660150102017557 0ustar liggesusers### R code from vignette source 'Ch_quantile_regression.Rnw' ################################################### ### code chunk number 1: setup ################################################### rm(list = ls()) s <- search()[-1] s <- s[-match(c("package:base", "package:stats", "package:graphics", "package:grDevices", "package:utils", "package:datasets", "package:methods", "Autoloads"), s)] if (length(s) > 0) sapply(s, detach, character.only = TRUE) if (!file.exists("tables")) dir.create("tables") if (!file.exists("figures")) dir.create("figures") set.seed(290875) options(prompt = "R> ", continue = "+ ", width = 63, # digits = 4, show.signif.stars = FALSE, SweaveHooks = list(leftpar = function() par(mai = par("mai") * c(1, 1.05, 1, 1)), bigleftpar = function() par(mai = par("mai") * c(1, 1.7, 1, 1)))) HSAURpkg <- require("HSAUR3") if (!HSAURpkg) stop("cannot load package ", sQuote("HSAUR3")) rm(HSAURpkg) ### hm, R-2.4.0 --vanilla seems to need this a <- Sys.setlocale("LC_ALL", "C") ### book <- TRUE refs <- cbind(c("AItR", "DAGD", "SI", "CI", "ANOVA", "MLR", "GLM", "DE", "RP", "GAM", "SA", "ALDI", "ALDII", "SIMC", "MA", "PCA", "MDS", "CA"), 1:18) ch <- function(x) { ch <- refs[which(refs[,1] == x),] if (book) { return(paste("Chapter~\\\\ref{", ch[1], "}", sep = "")) } else { return(paste("Chapter~", ch[2], sep = "")) } } if (file.exists("deparse.R")) source("deparse.R") setHook(packageEvent("lattice", "attach"), function(...) { lattice.options(default.theme = function() standard.theme("pdf", color = FALSE)) }) ################################################### ### code chunk number 2: singlebook ################################################### book <- FALSE ################################################### ### code chunk number 3: QR-setup ################################################### library("lattice") trellis.par.set(list(plot.symbol = list(col=1,pch=20, cex=0.7), box.rectangle = list(col=1), plot.line = list(col = 1, lwd = 1), box.umbrella = list(lty=1, col=1), strip.background = list(col = "white"))) ltheme <- canonical.theme(color = FALSE) ## in-built B&W theme ltheme$strip.background$col <- "transparent" ## change strip bg lattice.options(default.theme = ltheme) data("db", package = "gamlss.data") nboys <- with(db, sum(age > 2)) ################################################### ### code chunk number 4: QR-db ################################################### summary(db) db$cut <- cut(db$age, breaks = c(2, 9, 23), labels = c("2-9 yrs", "9-23 yrs")) ################################################### ### code chunk number 5: QR-db-plot ################################################### db$cut <- cut(db$age, breaks = c(2, 9, 23), labels = c("2-9 yrs", "9-23 yrs")) xyplot(head ~ age | cut, data = db, xlab = "Age (years)", ylab = "Head circumference (cm)", scales = list(x = list(relation = "free")), layout = c(2, 1), pch = 19, col = rgb(.1, .1, .1, .1)) ################################################### ### code chunk number 6: QR-db-lm2.9.23 ################################################### (lm2.9 <- lm(head ~ age, data = db, subset = age < 9)) (lm9.23 <- lm(head ~ age, data = db, subset = age > 9)) ################################################### ### code chunk number 7: QR-db-lm ################################################### (lm_mod <- lm(head ~ age:I(age < 9) + I(age < 9) - 1, data = db)) ################################################### ### code chunk number 8: QR-db-median ################################################### library("quantreg") (rq_med2.9 <- rq(head ~ age, data = db, tau = 0.5, subset = age < 9)) (rq_med9.23 <- rq(head ~ age, data = db, tau = 0.5, subset = age > 9)) ################################################### ### code chunk number 9: QR-db-lmrq2.9 ################################################### cbind(coef(lm2.9)[1], confint(lm2.9, parm = "(Intercept)")) cbind(coef(lm2.9)[2], confint(lm2.9, parm = "age")) summary(rq_med2.9, se = "rank") ################################################### ### code chunk number 10: QR-db-lmrq9.23 ################################################### cbind(coef(lm9.23)[1], confint(lm9.23, parm = "(Intercept)")) cbind(coef(lm9.23)[2], confint(lm9.23, parm = "age")) summary(rq_med9.23, se = "rank") ################################################### ### code chunk number 11: QR-db-tau ################################################### tau <- c(.01, .1, .25, .5, .75, .9, .99) ################################################### ### code chunk number 12: QR-db-age ################################################### gage <- c(2:9, 9:23) i <- 1:8 ################################################### ### code chunk number 13: QR-db-lm-fit_05 ################################################### idf <- data.frame(age = gage[i]) p <- predict(lm2.9, newdata = idf, level = 0.5, interval = "prediction") colnames(p) <- c("0.5", "0.25", "0.75") p ################################################### ### code chunk number 14: QR-db-lm-fit ################################################### p <- cbind(p, predict(lm2.9, newdata = idf, level = 0.8, interval = "prediction")[,-1]) colnames(p)[4:5] <- c("0.1", "0.9") p <- cbind(p, predict(lm2.9, newdata = idf, level = 0.98, interval = "prediction")[,-1]) colnames(p)[6:7] <- c("0.01", "0.99") p2.9 <- p[, c("0.01", "0.1", "0.25", "0.5", "0.75", "0.9", "0.99")] idf <- data.frame(age = gage[-i]) p <- predict(lm9.23, newdata = idf, level = 0.5, interval = "prediction") colnames(p) <- c("0.5", "0.25", "0.75") p <- cbind(p, predict(lm9.23, newdata = idf, level = 0.8, interval = "prediction")[,-1]) colnames(p)[4:5] <- c("0.1", "0.9") p <- cbind(p, predict(lm9.23, newdata = idf, level = 0.98, interval = "prediction")[,-1]) colnames(p)[6:7] <- c("0.01", "0.99") ################################################### ### code chunk number 15: QR-db-lm-fit2 ################################################### p9.23 <- p[, c("0.01", "0.1", "0.25", "0.5", "0.75", "0.9", "0.99")] round((q2.23 <- rbind(p2.9, p9.23)), 3) ################################################### ### code chunk number 16: QR-db-lm-plot ################################################### pfun <- function(x, y, ...) { panel.xyplot(x = x, y = y, ...) if (max(x) <= 9) { apply(q2.23, 2, function(x) panel.lines(gage[i], x[i])) } else { apply(q2.23, 2, function(x) panel.lines(gage[-i], x[-i])) } panel.text(rep(max(db$age), length(tau)), q2.23[nrow(q2.23),], label = tau, cex = 0.9) panel.text(rep(min(db$age), length(tau)), q2.23[1,], label = tau, cex = 0.9) } xyplot(head ~ age | cut, data = db, xlab = "Age (years)", ylab = "Head circumference (cm)", pch = 19, scales = list(x = list(relation = "free")), layout = c(2, 1), col = rgb(.1, .1, .1, .1), panel = pfun) ################################################### ### code chunk number 17: QR-db-rq2.9 ################################################### (rq2.9 <- rq(head ~ age, data = db, tau = tau, subset = age < 9)) ################################################### ### code chunk number 18: QR-db-rq9.23 ################################################### (rq9.23 <- rq(head ~ age, data = db, tau = tau, subset = age > 9)) ################################################### ### code chunk number 19: QR-db-rq-fit ################################################### p2.23 <- rbind(predict(rq2.9, newdata = data.frame(age = gage[i])), predict(rq9.23, newdata = data.frame(age = gage[-i]))) ################################################### ### code chunk number 20: QR-db-rq-plot ################################################### pfun <- function(x, y, ...) { panel.xyplot(x = x, y = y, ...) if (max(x) <= 9) { apply(q2.23, 2, function(x) panel.lines(gage[i], x[i], lty = 2)) apply(p2.23, 2, function(x) panel.lines(gage[i], x[i])) } else { apply(q2.23, 2, function(x) panel.lines(gage[-i], x[-i], lty = 2)) apply(p2.23, 2, function(x) panel.lines(gage[-i], x[-i])) } panel.text(rep(max(db$age), length(tau)), p2.23[nrow(p2.23),], label = tau, cex = 0.9) panel.text(rep(min(db$age), length(tau)), p2.23[1,], label = tau, cex = 0.9) } xyplot(head ~ age | cut, data = db, xlab = "Age (years)", ylab = "Head circumference (cm)", pch = 19, scales = list(x = list(relation = "free")), layout = c(2, 1), col = rgb(.1, .1, .1, .1), panel = pfun) ################################################### ### code chunk number 21: QR-db-rqss-fit ################################################### rqssmod <- vector(mode = "list", length = length(tau)) db$lage <- with(db, age^(1/3)) for (i in 1:length(tau)) rqssmod[[i]] <- rqss(head ~ qss(lage, lambda = 1), data = db, tau = tau[i]) ################################################### ### code chunk number 22: QR-db-rqss-pred ################################################### gage <- seq(from = min(db$age), to = max(db$age), length = 50) p <- sapply(1:length(tau), function(i) { predict(rqssmod[[i]], newdata = data.frame(lage = gage^(1/3))) }) ################################################### ### code chunk number 23: QR-db-rqss-plot ################################################### pfun <- function(x, y, ...) { panel.xyplot(x = x, y = y, ...) apply(p, 2, function(x) panel.lines(gage, x)) panel.text(rep(max(db$age), length(tau)), p[nrow(p),], label = tau, cex = 0.9) panel.text(rep(min(db$age), length(tau)), p[1,], label = tau, cex = 0.9) } xyplot(head ~ age | cut, data = db, xlab = "Age (years)", ylab = "Head circumference (cm)", pch = 19, scales = list(x = list(relation = "free")), layout = c(2, 1), col = rgb(.1, .1, .1, .1), panel = pfun) HSAUR3/inst/doc/Ch_analysing_longitudinal_dataII.R0000644000176200001440000002543514660150027021461 0ustar liggesusers### R code from vignette source 'Ch_analysing_longitudinal_dataII.Rnw' ################################################### ### code chunk number 1: setup ################################################### rm(list = ls()) s <- search()[-1] s <- s[-match(c("package:base", "package:stats", "package:graphics", "package:grDevices", "package:utils", "package:datasets", "package:methods", "Autoloads"), s)] if (length(s) > 0) sapply(s, detach, character.only = TRUE) if (!file.exists("tables")) dir.create("tables") if (!file.exists("figures")) dir.create("figures") set.seed(290875) options(prompt = "R> ", continue = "+ ", width = 63, # digits = 4, show.signif.stars = FALSE, SweaveHooks = list(leftpar = function() par(mai = par("mai") * c(1, 1.05, 1, 1)), bigleftpar = function() par(mai = par("mai") * c(1, 1.7, 1, 1)))) HSAURpkg <- require("HSAUR3") if (!HSAURpkg) stop("cannot load package ", sQuote("HSAUR3")) rm(HSAURpkg) ### hm, R-2.4.0 --vanilla seems to need this a <- Sys.setlocale("LC_ALL", "C") ### book <- TRUE refs <- cbind(c("AItR", "DAGD", "SI", "CI", "ANOVA", "MLR", "GLM", "DE", "RP", "GAM", "SA", "ALDI", "ALDII", "SIMC", "MA", "PCA", "MDS", "CA"), 1:18) ch <- function(x) { ch <- refs[which(refs[,1] == x),] if (book) { return(paste("Chapter~\\\\ref{", ch[1], "}", sep = "")) } else { return(paste("Chapter~", ch[2], sep = "")) } } if (file.exists("deparse.R")) source("deparse.R") setHook(packageEvent("lattice", "attach"), function(...) { lattice.options(default.theme = function() standard.theme("pdf", color = FALSE)) }) ################################################### ### code chunk number 2: singlebook ################################################### book <- FALSE ################################################### ### code chunk number 3: setup ################################################### options(digits = 3) if (!interactive()) { print.summary.gee <- function (x, digits = NULL, quote = FALSE, prefix = "", ...) { if (is.null(digits)) digits <- options()$digits else options(digits = digits) cat("...") cat("\nModel:\n") cat(" Link: ", x$model$link, "\n") cat(" Variance to Mean Relation:", x$model$varfun, "\n") if (!is.null(x$model$M)) cat(" Correlation Structure: ", x$model$corstr, ", M =", x$model$M, "\n") else cat(" Correlation Structure: ", x$model$corstr, "\n") cat("\n...") nas <- x$nas if (!is.null(nas) && any(nas)) cat("\n\nCoefficients: (", sum(nas), " not defined because of singularities)\n", sep = "") else cat("\n\nCoefficients:\n") print(x$coefficients, digits = digits) cat("\nEstimated Scale Parameter: ", format(round(x$scale, digits))) cat("\n...\n") invisible(x) } } ################################################### ### code chunk number 4: ALDII-gee ################################################### library("gee") ################################################### ### code chunk number 5: ALDII-BtheB-data ################################################### data("BtheB", package = "HSAUR3") BtheB$subject <- factor(rownames(BtheB)) nobs <- nrow(BtheB) BtheB_long <- reshape(BtheB, idvar = "subject", varying = c("bdi.2m", "bdi.3m", "bdi.5m", "bdi.8m"), direction = "long") BtheB_long$time <- rep(c(2, 3, 5, 8), rep(nobs, 4)) names(BtheB_long)[names(BtheB_long) == "treatment"] <- "trt" ################################################### ### code chunk number 6: ALDII-BtheB-geefit-indep ################################################### osub <- order(as.integer(BtheB_long$subject)) BtheB_long <- BtheB_long[osub,] btb_gee <- gee(bdi ~ bdi.pre + trt + length + drug, data = BtheB_long, id = subject, family = gaussian, corstr = "independence") ################################################### ### code chunk number 7: ALDII-BtheB-geefit-ex ################################################### btb_gee1 <- gee(bdi ~ bdi.pre + trt + length + drug, data = BtheB_long, id = subject, family = gaussian, corstr = "exchangeable") ################################################### ### code chunk number 8: ALDII-BtheB-geesummary ################################################### summary(btb_gee) ################################################### ### code chunk number 9: ALDII-BtheB-gee1summary ################################################### summary(btb_gee1) ################################################### ### code chunk number 10: ALDII-respiratory-data ################################################### data("respiratory", package = "HSAUR3") resp <- subset(respiratory, month > "0") resp$baseline <- rep(subset(respiratory, month == "0")$status, rep(4, 111)) resp$nstat <- as.numeric(resp$status == "good") resp$month <- resp$month[, drop = TRUE] ################################################### ### code chunk number 11: ALDII-respiratory-names ################################################### names(resp)[names(resp) == "treatment"] <- "trt" levels(resp$trt)[2] <- "trt" ################################################### ### code chunk number 12: ALDII-respiratory-fit ################################################### resp_glm <- glm(status ~ centre + trt + gender + baseline + age, data = resp, family = "binomial") resp_gee1 <- gee(nstat ~ centre + trt + gender + baseline + age, data = resp, family = "binomial", id = subject, corstr = "independence", scale.fix = TRUE, scale.value = 1) resp_gee2 <- gee(nstat ~ centre + trt + gender + baseline + age, data = resp, family = "binomial", id = subject, corstr = "exchangeable", scale.fix = TRUE, scale.value = 1) ################################################### ### code chunk number 13: ALDII-resp-glm-summary ################################################### summary(resp_glm) ################################################### ### code chunk number 14: ALDII-resp-gee1summary ################################################### summary(resp_gee1) ################################################### ### code chunk number 15: ALDII-resp-gee2-summary ################################################### summary(resp_gee2) ################################################### ### code chunk number 16: ALDII-resp-confint ################################################### se <- summary(resp_gee2)$coefficients["trttrt", "Robust S.E."] coef(resp_gee2)["trttrt"] + c(-1, 1) * se * qnorm(0.975) ################################################### ### code chunk number 17: ALDII-resp-confint-exp ################################################### exp(coef(resp_gee2)["trttrt"] + c(-1, 1) * se * qnorm(0.975)) ################################################### ### code chunk number 18: ALDII-epilepsy ################################################### data("epilepsy", package = "HSAUR3") itp <- interaction(epilepsy$treatment, epilepsy$period) tapply(epilepsy$seizure.rate, itp, mean) tapply(epilepsy$seizure.rate, itp, var) ################################################### ### code chunk number 19: ALDII-plot1 ################################################### layout(matrix(1:2, nrow = 1)) ylim <- range(epilepsy$seizure.rate) placebo <- subset(epilepsy, treatment == "placebo") progabide <- subset(epilepsy, treatment == "Progabide") boxplot(seizure.rate ~ period, data = placebo, ylab = "Number of seizures", xlab = "Period", ylim = ylim, main = "Placebo") boxplot(seizure.rate ~ period, data = progabide, main = "Progabide", ylab = "Number of seizures", xlab = "Period", ylim = ylim) ################################################### ### code chunk number 20: ALDII-plot2 ################################################### layout(matrix(1:2, nrow = 1)) ylim <- range(log(epilepsy$seizure.rate + 1)) boxplot(log(seizure.rate + 1) ~ period, data = placebo, main = "Placebo", ylab = "Log number of seizures", xlab = "Period", ylim = ylim) boxplot(log(seizure.rate + 1) ~ period, data = progabide, main = "Progabide", ylab = "Log number of seizures", xlab = "Period", ylim = ylim) ################################################### ### code chunk number 21: ALDII-epilepsy-gee ################################################### per <- rep(log(2),nrow(epilepsy)) epilepsy$period <- as.numeric(epilepsy$period) names(epilepsy)[names(epilepsy) == "treatment"] <- "trt" fm <- seizure.rate ~ base + age + trt + offset(per) epilepsy_glm <- glm(fm, data = epilepsy, family = "poisson") epilepsy_gee1 <- gee(fm, data = epilepsy, family = "poisson", id = subject, corstr = "independence", scale.fix = TRUE, scale.value = 1) epilepsy_gee2 <- gee(fm, data = epilepsy, family = "poisson", id = subject, corstr = "exchangeable", scale.fix = TRUE, scale.value = 1) epilepsy_gee3 <- gee(fm, data = epilepsy, family = "poisson", id = subject, corstr = "exchangeable", scale.fix = FALSE, scale.value = 1) ################################################### ### code chunk number 22: ALDII-espilepsy-glm-summary ################################################### summary(epilepsy_glm) ################################################### ### code chunk number 23: ALDII-espilepsy-gee1-summary ################################################### summary(epilepsy_gee1) ################################################### ### code chunk number 24: ALDII-espilepsy-gee2-summary ################################################### summary(epilepsy_gee2) ################################################### ### code chunk number 25: ALDII-espilepsy-gee3-summary ################################################### summary(epilepsy_gee3) ################################################### ### code chunk number 26: ALDII-respiratory-lmer ################################################### library("lme4") resp_lmer <- glmer(status ~ baseline + month + trt + gender + age + centre + (1 | subject), family = binomial(), data = resp) exp(fixef(resp_lmer)) ################################################### ### code chunk number 27: ALDII-resp-lmer-dirty ################################################### su <- summary(resp_lmer) if (!interactive()) { summary <- function(x) { cat("\n...\n") cat("Fixed effects:\n") lme4V <- packageDescription("lme4")$Version if (compareVersion("0.999999-2", lme4V) >= 0) { printCoefmat(su@coefs) } else { printCoefmat(su$coefficients) } cat("\n...\n") } } ################################################### ### code chunk number 28: ALDII-resp-lmer-summary ################################################### summary(resp_lmer) HSAUR3/inst/doc/Ch_survival_analysis.Rnw0000644000176200001440000004023214656356403017636 0ustar liggesusers \documentclass{chapman} %%% copy Sweave.sty definitions %%% keeps `sweave' from adding `\usepackage{Sweave}': DO NOT REMOVE %\usepackage{Sweave} \RequirePackage[T1]{fontenc} \RequirePackage{graphicx,ae,fancyvrb} \IfFileExists{upquote.sty}{\RequirePackage{upquote}}{} \usepackage{relsize} \DefineVerbatimEnvironment{Sinput}{Verbatim}{} \DefineVerbatimEnvironment{Soutput}{Verbatim}{fontfamily=courier, fontshape=it, fontsize=\relsize{-1}} \DefineVerbatimEnvironment{Scode}{Verbatim}{} \newenvironment{Schunk}{}{} %%% environment for raw output \newcommand{\SchunkRaw}{\renewenvironment{Schunk}{}{} \DefineVerbatimEnvironment{Soutput}{Verbatim}{fontfamily=courier, fontshape=it, fontsize=\small} \rawSinput } %%% environment for labeled output \newcommand{\nextcaption}{} \newcommand{\SchunkLabel}{ \renewenvironment{Schunk}{\begin{figure}[ht] }{\caption{\nextcaption} \end{figure} } \DefineVerbatimEnvironment{Sinput}{Verbatim}{frame = topline} \DefineVerbatimEnvironment{Soutput}{Verbatim}{frame = bottomline, samepage = true, fontfamily=courier, fontshape=it, fontsize=\relsize{-1}} } %%% S code with line numbers \DefineVerbatimEnvironment{Sinput} {Verbatim} { %% numbers=left } \newcommand{\numberSinput}{ \DefineVerbatimEnvironment{Sinput}{Verbatim}{numbers=left} } \newcommand{\rawSinput}{ \DefineVerbatimEnvironment{Sinput}{Verbatim}{} } %%% R / System symbols \newcommand{\R}{\textsf{R}} \newcommand{\rR}{{R}} \renewcommand{\S}{\textsf{S}} \newcommand{\SPLUS}{\textsf{S-PLUS}} \newcommand{\rSPLUS}{{S-PLUS}} \newcommand{\SPSS}{\textsf{SPSS}} \newcommand{\EXCEL}{\textsf{Excel}} \newcommand{\ACCESS}{\textsf{Access}} \newcommand{\SQL}{\textsf{SQL}} %%\newcommand{\Rpackage}[1]{\hbox{\rm\textit{#1}}} %%\newcommand{\Robject}[1]{\hbox{\rm\texttt{#1}}} %%\newcommand{\Rclass}[1]{\hbox{\rm\textit{#1}}} %%\newcommand{\Rcmd}[1]{\hbox{\rm\texttt{#1}}} \newcommand{\Rpackage}[1]{\index{#1 package@{\fontseries{b}\selectfont #1} package} {\fontseries{b}\selectfont #1}} \newcommand{\rpackage}[1]{{\fontseries{b}\selectfont #1}} \newcommand{\Robject}[1]{\texttt{#1}} \newcommand{\Rclass}[1]{\index{#1 class@\textit{#1} class}\textit{#1}} \newcommand{\Rcmd}[1]{\index{#1 function@\texttt{#1} function}\texttt{#1}} \newcommand{\Roperator}[1]{\texttt{#1}} \newcommand{\Rarg}[1]{\texttt{#1}} \newcommand{\Rlevel}[1]{\texttt{#1}} %%% other symbols \newcommand{\file}[1]{\hbox{\rm\texttt{#1}}} %%\newcommand{\stress}[1]{\index{#1}\textit{#1}} \newcommand{\stress}[1]{\textit{#1}} \newcommand{\booktitle}[1]{\textit{#1}} %%' %%% Math symbols \usepackage{amstext} \usepackage{amsmath} \newcommand{\E}{\mathsf{E}} \newcommand{\Var}{\mathsf{Var}} \newcommand{\Cov}{\mathsf{Cov}} \newcommand{\Cor}{\mathsf{Cor}} \newcommand{\x}{\mathbf{x}} \newcommand{\y}{\mathbf{y}} \renewcommand{\a}{\mathbf{a}} \newcommand{\W}{\mathbf{W}} \newcommand{\C}{\mathbf{C}} \renewcommand{\H}{\mathbf{H}} \newcommand{\X}{\mathbf{X}} \newcommand{\B}{\mathbf{B}} \newcommand{\V}{\mathbf{V}} \newcommand{\I}{\mathbf{I}} \newcommand{\D}{\mathbf{D}} \newcommand{\bS}{\mathbf{S}} \newcommand{\N}{\mathcal{N}} \renewcommand{\L}{L} \renewcommand{\P}{\mathsf{P}} \newcommand{\K}{\mathbf{K}} \newcommand{\m}{\mathbf{m}} \newcommand{\argmin}{\operatorname{argmin}\displaylimits} \newcommand{\argmax}{\operatorname{argmax}\displaylimits} \newcommand{\bx}{\mathbf{x}} \newcommand{\bbeta}{\mathbf{\beta}} %%% links \usepackage{hyperref} \hypersetup{% pdftitle = {A Handbook of Statistical Analyses Using R (3rd Edition)}, pdfsubject = {Book}, pdfauthor = {Torsten Hothorn and Brian S. Everitt}, colorlinks = {black}, linkcolor = {black}, citecolor = {black}, urlcolor = {black}, hyperindex = {true}, linktocpage = {true}, } %%% captions & tables %% : conflics with figure definition in chapman.cls %%\usepackage[format=hang,margin=10pt,labelfont=bf]{caption} %% \usepackage{longtable} \usepackage[figuresright]{rotating} %%% R symbol in chapter 1 \usepackage{wrapfig} %%% Bibliography \usepackage[round,comma]{natbib} \renewcommand{\refname}{References \addcontentsline{toc}{chapter}{References}} \citeindexfalse %%% texi2dvi complains that \newblock is undefined, hm... \def\newblock{\hskip .11em plus .33em minus .07em} %%% Example sections \newcounter{exercise}[chapter] \setcounter{exercise}{0} \newcommand{\exercise}{\stepcounter{exercise} \item{Ex.~\arabic{chapter}.\arabic{exercise} }} %% URLs \newcommand{\curl}[1]{\begin{center} \url{#1} \end{center}} %%% for manual corrections %\renewcommand{\baselinestretch}{2} %%% plot sizes \setkeys{Gin}{width=0.95\textwidth} %%% color \usepackage{color} %%% hyphenations \hyphenation{drop-out} \hyphenation{mar-gi-nal} %%% new bidirectional quotes need \usepackage[utf8]{inputenc} %\usepackage{setspace} \definecolor{sidebox_todo}{rgb}{1,1,0.2} \newcommand{\todo}[1]{ \hspace{0pt}% \marginpar{% \fcolorbox{black}{sidebox_todo}{% \parbox{\marginparwidth} { \raggedright\sffamily\footnotesize{TODO: #1}% } }% } } \begin{document} %% Title page \title{A Handbook of Statistical Analyses Using \R{} --- 3rd Edition} \author{Torsten Hothorn and Brian S. Everitt} \maketitle %%\VignetteIndexEntry{Chapter Survival Analysis} %%\VignetteDepends{survival,coin,partykit} \setcounter{chapter}{10} \SweaveOpts{prefix.string=figures/HSAUR,eps=FALSE,keep.source=TRUE} <>= rm(list = ls()) s <- search()[-1] s <- s[-match(c("package:base", "package:stats", "package:graphics", "package:grDevices", "package:utils", "package:datasets", "package:methods", "Autoloads"), s)] if (length(s) > 0) sapply(s, detach, character.only = TRUE) if (!file.exists("tables")) dir.create("tables") if (!file.exists("figures")) dir.create("figures") set.seed(290875) options(prompt = "R> ", continue = "+ ", width = 63, # digits = 4, show.signif.stars = FALSE, SweaveHooks = list(leftpar = function() par(mai = par("mai") * c(1, 1.05, 1, 1)), bigleftpar = function() par(mai = par("mai") * c(1, 1.7, 1, 1)))) HSAURpkg <- require("HSAUR3") if (!HSAURpkg) stop("cannot load package ", sQuote("HSAUR3")) rm(HSAURpkg) ### hm, R-2.4.0 --vanilla seems to need this a <- Sys.setlocale("LC_ALL", "C") ### book <- TRUE refs <- cbind(c("AItR", "DAGD", "SI", "CI", "ANOVA", "MLR", "GLM", "DE", "RP", "GAM", "SA", "ALDI", "ALDII", "SIMC", "MA", "PCA", "MDS", "CA"), 1:18) ch <- function(x) { ch <- refs[which(refs[,1] == x),] if (book) { return(paste("Chapter~\\\\ref{", ch[1], "}", sep = "")) } else { return(paste("Chapter~", ch[2], sep = "")) } } if (file.exists("deparse.R")) source("deparse.R") setHook(packageEvent("lattice", "attach"), function(...) { lattice.options(default.theme = function() standard.theme("pdf", color = FALSE)) }) @ \pagestyle{headings} <>= book <- FALSE @ <>= x <- library("survival") x <- library("coin") x <- library("partykit") @ \chapter[Survival Analysis]{Survival Analysis: \\ Glioma Treatment and \\ Breast Cancer Survival \label{SA}} \section{Introduction} \section{Survival Analysis} \section{Analysis Using \R{}} \subsection{Glioma Radioimmunotherapy} \begin{figure} \begin{center} <>= data("glioma", package = "coin") library("survival") layout(matrix(1:2, ncol = 2)) g3 <- subset(glioma, histology == "Grade3") plot(survfit(Surv(time, event) ~ group, data = g3), main = "Grade III Glioma", lty = c(2, 1), ylab = "Probability", xlab = "Survival Time in Month", legend.text = c("Control", "Treated"), legend.bty = "n") g4 <- subset(glioma, histology == "GBM") plot(survfit(Surv(time, event) ~ group, data = g4), main = "Grade IV Glioma", ylab = "Probability", lty = c(2, 1), xlab = "Survival Time in Month", xlim = c(0, max(glioma$time) * 1.05)) @ \caption{Survival times comparing treated and control patients. \label{SA-glioma-plot}} \end{center} \end{figure} Figure~\ref{SA-glioma-plot} leads to the impression that patients treated with the novel radioimmunotherapy survive longer, regardless of the tumor type. In order to assess if this informal finding is reliable, we may perform a log-rank test via \index{Log-rank test} <>= survdiff(Surv(time, event) ~ group, data = g3) @ which indicates that the survival times are indeed different in both groups. However, the number of patients is rather limited and so it might be dangerous to rely on asymptotic tests. As shown in \Sexpr{ch("CI")}, conditioning on the data and computing the distribution of the test statistics without additional assumptions are one alternative. The function \Rcmd{surv\_test} from package \Rpackage{coin} \citep{HSAUR:Hothorn:2006:AmStat,PKG:coin} can be used to compute an exact conditional test answering the question whether the survival times differ for grade III patients. For all possible permutations of the groups on the censored response variable, the test statistic is computed and the fraction of whose being greater than the observed statistic defines the exact $p$-value: <>= library("coin") logrank_test(Surv(time, event) ~ group, data = g3, distribution = "exact") @ which, in this case, confirms the above results. The same exercise can be performed for patients with grade IV glioma <>= logrank_test(Surv(time, event) ~ group, data = g4, distribution = "exact") @ which shows a difference as well. However, it might be more appropriate to answer the question whether the novel therapy is superior for both groups of tumors simultaneously. This can be implemented by \stress{stratifying}, or \stress{blocking}, with respect to tumor grading: <>= logrank_test(Surv(time, event) ~ group | histology, data = glioma, distribution = approximate(10000)) @ Here, we need to approximate the exact conditional distribution since the exact distribution is hard to compute. The result supports the initial impression implied by Figure~\ref{SA-glioma-plot}. \subsection{Breast Cancer Survival} Before fitting a Cox model to the \Robject{GBSG2} data, we again derive a Kaplan-Meier estimate of the survival function of the data, here stratified with respect to whether a patient received hormonal therapy or not (see Figure~\ref{SA-GBSG2-plot}). \begin{figure} \begin{center} <>= data("GBSG2", package = "TH.data") plot(survfit(Surv(time, cens) ~ horTh, data = GBSG2), lty = 1:2, mark.time = FALSE, ylab = "Probability", xlab = "Survival Time in Days") legend(250, 0.2, legend = c("yes", "no"), lty = c(2, 1), title = "Hormonal Therapy", bty = "n") @ \caption{Kaplan-Meier estimates for breast cancer patients who either received hormonal therapy or not. \label{SA-GBSG2-plot}} \end{center} \end{figure} Fitting a Cox model follows roughly the same rules as shown for linear models in \Sexpr{ch("MLR")} with the exception that the response variable is again coded as a \Rclass{Surv} object. For the \Robject{GBSG2} data, the model is fitted via <>= GBSG2_coxph <- coxph(Surv(time, cens) ~ ., data = GBSG2) @ and the results as given by the \Rcmd{summary} method are given in Figure~\ref{GBSG2-coxph-summary}. Since we are especially interested in the relative risk for patients who underwent hormonal therapy, we can compute an estimate of the relative risk and a corresponding confidence interval via <>= ci <- confint(GBSG2_coxph) exp(cbind(coef(GBSG2_coxph), ci))["horThyes",] @ This result implies that patients treated with hormonal therapy had a lower risk and thus survived longer compared to women who were not treated this way. \renewcommand{\nextcaption}{\R{} output of the \Rcmd{summary} method for \Robject{GBSG2\_coxph}. \label{GBSG2-coxph-summary}} \SchunkLabel <>= summary(GBSG2_coxph) @ \SchunkRaw Model checking and model selection for proportional hazards models are complicated by the fact that easy-to-use residuals, such as those discussed in \Sexpr{ch("MLR")} for linear regression models, are not available, but several possibilities do exist. A check of the proportional hazards assumption can be done by looking at the parameter estimates $\beta_1, \dots, \beta_q$ over time. We can safely assume proportional hazards when the estimates don't vary much over time. %' The null hypothesis of constant regression coefficients can be tested, both globally as well as for each covariate, by using the \Rcmd{cox.zph} function <>= GBSG2_zph <- cox.zph(GBSG2_coxph) GBSG2_zph @ There seems to be some evidence of time-varying effects, \index{Time-varying effects} especially for age and tumor grading. A graphical representation of the estimated regression coefficient over time is shown in Figure~\ref{SA-GBSG2-zph-plot}. We refer to \cite{HSAUR:TherneauGrambsch2000} for a detailed theoretical description of these topics. \begin{figure} \begin{center} <>= plot(GBSG2_zph, var = "age") @ \caption{Estimated regression coefficient for \Robject{age} depending on time for the \Robject{GBSG2} data. \label{SA-GBSG2-zph-plot}} \end{center} \end{figure} \begin{figure} \begin{center} <>= layout(matrix(1:3, ncol = 3)) res <- residuals(GBSG2_coxph) plot(res ~ age, data = GBSG2, ylim = c(-2.5, 1.5), pch = ".", ylab = "Martingale Residuals") abline(h = 0, lty = 3) plot(res ~ pnodes, data = GBSG2, ylim = c(-2.5, 1.5), pch = ".", ylab = "") abline(h = 0, lty = 3) plot(res ~ log(progrec), data = GBSG2, ylim = c(-2.5, 1.5), pch = ".", ylab = "") abline(h = 0, lty = 3) @ \caption{Martingale residuals for the \Robject{GBSG2} data. \label{SA-GBSG2-mart-plot}} \end{center} \end{figure} The tree-structured regression models applied to continuous and binary responses in \Sexpr{ch("RP")} are applicable to censored responses in survival analysis as well. Such a simple prognostic model with only a few terminal nodes might be helpful for relating the risk to certain subgroups of patients. Both \Rcmd{rpart} and the \Rcmd{ctree} function from package \Rpackage{partykit} can be applied to the GBSG2 data, where the conditional trees of the latter select cutpoints based on log-rank statistics \index{Conditional tree} <>= GBSG2_ctree <- ctree(Surv(time, cens) ~ ., data = GBSG2) @ and the \Rcmd{plot} method applied to this tree produces the graphical representation in Figure~\ref{SA-GBSG2-ctree-plot}. The number of positive lymph nodes (\Robject{pnodes}) is the most important variable in the tree, corresponding to the $p$-value associated with this variable in Cox's %%'s regression; see Figure~\ref{GBSG2-coxph-summary}. Women with not more than three positive lymph nodes who have undergone hormonal therapy seem to have the best prognosis whereas a large number of positive lymph nodes and a small value of the progesterone receptor indicates a bad prognosis. \begin{figure} \begin{center} <>= plot(GBSG2_ctree) @ \caption{Conditional inference tree for the \Robject{GBSG2} data with the survival function, estimated by Kaplan-Meier, shown for every subgroup of patients identified by the tree. \label{SA-GBSG2-ctree-plot}} \end{center} \end{figure} \bibliographystyle{LaTeXBibTeX/refstyle} \bibliography{LaTeXBibTeX/HSAUR} \end{document} HSAUR3/inst/doc/Ch_meta_analysis.R0000644000176200001440000001255014660150070016331 0ustar liggesusers### R code from vignette source 'Ch_meta_analysis.Rnw' ################################################### ### code chunk number 1: setup ################################################### rm(list = ls()) s <- search()[-1] s <- s[-match(c("package:base", "package:stats", "package:graphics", "package:grDevices", "package:utils", "package:datasets", "package:methods", "Autoloads"), s)] if (length(s) > 0) sapply(s, detach, character.only = TRUE) if (!file.exists("tables")) dir.create("tables") if (!file.exists("figures")) dir.create("figures") set.seed(290875) options(prompt = "R> ", continue = "+ ", width = 63, # digits = 4, show.signif.stars = FALSE, SweaveHooks = list(leftpar = function() par(mai = par("mai") * c(1, 1.05, 1, 1)), bigleftpar = function() par(mai = par("mai") * c(1, 1.7, 1, 1)))) HSAURpkg <- require("HSAUR3") if (!HSAURpkg) stop("cannot load package ", sQuote("HSAUR3")) rm(HSAURpkg) ### hm, R-2.4.0 --vanilla seems to need this a <- Sys.setlocale("LC_ALL", "C") ### book <- TRUE refs <- cbind(c("AItR", "DAGD", "SI", "CI", "ANOVA", "MLR", "GLM", "DE", "RP", "GAM", "SA", "ALDI", "ALDII", "SIMC", "MA", "PCA", "MDS", "CA"), 1:18) ch <- function(x) { ch <- refs[which(refs[,1] == x),] if (book) { return(paste("Chapter~\\\\ref{", ch[1], "}", sep = "")) } else { return(paste("Chapter~", ch[2], sep = "")) } } if (file.exists("deparse.R")) source("deparse.R") setHook(packageEvent("lattice", "attach"), function(...) { lattice.options(default.theme = function() standard.theme("pdf", color = FALSE)) }) ################################################### ### code chunk number 2: singlebook ################################################### book <- FALSE ################################################### ### code chunk number 3: MA-smoking-OR-hand ################################################### data("smoking", package = "HSAUR3") odds <- function(x) (x[1] * (x[4] - x[3])) / ((x[2] - x[1]) * x[3]) weight <- function(x) ((x[2] - x[1]) * x[3]) / sum(x) W <- apply(smoking, 1, weight) Y <- apply(smoking, 1, odds) sum(W * Y) / sum(W) ################################################### ### code chunk number 4: MA-smoking-OR ################################################### library("rmeta") smokingOR <- meta.MH(smoking[["tt"]], smoking[["tc"]], smoking[["qt"]], smoking[["qc"]], names = rownames(smoking)) ################################################### ### code chunk number 5: MA-smoking-OR-summary ################################################### summary(smokingOR) ################################################### ### code chunk number 6: MA-smoking-OR-plot ################################################### plot(smokingOR, ylab = "") ################################################### ### code chunk number 7: MA-smoking-random ################################################### (smokingDSL <- meta.DSL(smoking[["tt"]], smoking[["tc"]], smoking[["qt"]], smoking[["qc"]], names = rownames(smoking))) ################################################### ### code chunk number 8: MA-BCG-odds ################################################### data("BCG", package = "HSAUR3") BCG_OR <- meta.MH(BCG[["BCGVacc"]], BCG[["NoVacc"]], BCG[["BCGTB"]], BCG[["NoVaccTB"]], names = BCG$Study) BCG_DSL <- meta.DSL(BCG[["BCGVacc"]], BCG[["NoVacc"]], BCG[["BCGTB"]], BCG[["NoVaccTB"]], names = BCG$Study) ################################################### ### code chunk number 9: MA-BCGOR-summary ################################################### summary(BCG_OR) ################################################### ### code chunk number 10: MA-BCGDSL-summary ################################################### summary(BCG_DSL) ################################################### ### code chunk number 11: BCG-studyweights ################################################### studyweights <- 1 / (BCG_DSL$tau2 + BCG_DSL$selogs^2) y <- BCG_DSL$logs BCG_mod <- lm(y ~ Latitude + Year, data = BCG, weights = studyweights) ################################################### ### code chunk number 12: MA-mod-summary ################################################### summary(BCG_mod) ################################################### ### code chunk number 13: BCG-Latitude-plot ################################################### plot(y ~ Latitude, data = BCG, ylab = "Estimated log-OR") abline(lm(y ~ Latitude, data = BCG, weights = studyweights)) ################################################### ### code chunk number 14: MA-funnel-ex ################################################### set.seed(290875) sigma <- seq(from = 1/10, to = 1, length.out = 35) y <- rnorm(35) * sigma gr <- (y > -0.5) layout(matrix(1:2, ncol = 1)) plot(y, 1/sigma, xlab = "Effect size", ylab = "1 / standard error") plot(y[gr], 1/(sigma[gr]), xlim = range(y), xlab = "Effect size", ylab = "1 / standard error") ################################################### ### code chunk number 15: MA-smoking-funnel ################################################### funnelplot(smokingDSL$logs, smokingDSL$selogs, summ = smokingDSL$logDSL, xlim = c(-1.7, 1.7)) abline(v = 0, lty = 2) HSAUR3/inst/doc/Ch_density_estimation.R0000644000176200001440000002553414660150044017422 0ustar liggesusers### R code from vignette source 'Ch_density_estimation.Rnw' ################################################### ### code chunk number 1: setup ################################################### rm(list = ls()) s <- search()[-1] s <- s[-match(c("package:base", "package:stats", "package:graphics", "package:grDevices", "package:utils", "package:datasets", "package:methods", "Autoloads"), s)] if (length(s) > 0) sapply(s, detach, character.only = TRUE) if (!file.exists("tables")) dir.create("tables") if (!file.exists("figures")) dir.create("figures") set.seed(290875) options(prompt = "R> ", continue = "+ ", width = 63, # digits = 4, show.signif.stars = FALSE, SweaveHooks = list(leftpar = function() par(mai = par("mai") * c(1, 1.05, 1, 1)), bigleftpar = function() par(mai = par("mai") * c(1, 1.7, 1, 1)))) HSAURpkg <- require("HSAUR3") if (!HSAURpkg) stop("cannot load package ", sQuote("HSAUR3")) rm(HSAURpkg) ### hm, R-2.4.0 --vanilla seems to need this a <- Sys.setlocale("LC_ALL", "C") ### book <- TRUE refs <- cbind(c("AItR", "DAGD", "SI", "CI", "ANOVA", "MLR", "GLM", "DE", "RP", "GAM", "SA", "ALDI", "ALDII", "SIMC", "MA", "PCA", "MDS", "CA"), 1:18) ch <- function(x) { ch <- refs[which(refs[,1] == x),] if (book) { return(paste("Chapter~\\\\ref{", ch[1], "}", sep = "")) } else { return(paste("Chapter~", ch[2], sep = "")) } } if (file.exists("deparse.R")) source("deparse.R") setHook(packageEvent("lattice", "attach"), function(...) { lattice.options(default.theme = function() standard.theme("pdf", color = FALSE)) }) ################################################### ### code chunk number 2: singlebook ################################################### book <- FALSE ################################################### ### code chunk number 3: DE-setup ################################################### x <- library("KernSmooth") x <- library("flexmix") x <- library("boot") ################################################### ### code chunk number 4: DE-kernel-figs ################################################### rec <- function(x) (abs(x) < 1) * 0.5 tri <- function(x) (abs(x) < 1) * (1 - abs(x)) gauss <- function(x) 1/sqrt(2*pi) * exp(-(x^2)/2) x <- seq(from = -3, to = 3, by = 0.001) plot(x, rec(x), type = "l", ylim = c(0,1), lty = 1, ylab = expression(K(x))) lines(x, tri(x), lty = 2) lines(x, gauss(x), lty = 3) legend(-3, 0.8, legend = c("Rectangular", "Triangular", "Gaussian"), lty = 1:3, title = "kernel functions", bty = "n") ################################################### ### code chunk number 5: DE-options ################################################### w <- options("width")$w options(width = 66) ################################################### ### code chunk number 6: DE-x-bumps-data ################################################### x <- c(0, 1, 1.1, 1.5, 1.9, 2.8, 2.9, 3.5) n <- length(x) ################################################### ### code chunk number 7: DE-x-bumps-gaussian ################################################### xgrid <- seq(from = min(x) - 1, to = max(x) + 1, by = 0.01) ################################################### ### code chunk number 8: DE-x-bumps-bumps ################################################### h <- 0.4 bumps <- sapply(x, function(a) gauss((xgrid - a)/h)/(n * h)) ################################################### ### code chunk number 9: DE-reoptions ################################################### options(width = w) ################################################### ### code chunk number 10: DE-x-bumps ################################################### getOption("SweaveHooks")[["leftpar"]]() plot(xgrid, rowSums(bumps), ylab = expression(hat(f)(x)), type = "l", xlab = "x", lwd = 2) rug(x, lwd = 2) out <- apply(bumps, 2, function(b) lines(xgrid, b)) ################################################### ### code chunk number 11: DE-epakernel-fig ################################################### epa <- function(x, y) ((x^2 + y^2) < 1) * 2/pi * (1 - x^2 - y^2) x <- seq(from = -1.1, to = 1.1, by = 0.05) epavals <- sapply(x, function(a) epa(a, x)) persp(x = x, y = x, z = epavals, xlab = "x", ylab = "y", zlab = expression(K(x, y)), theta = -35, axes = TRUE, box = TRUE) ################################################### ### code chunk number 12: DE-faithful-density ################################################### data("faithful", package = "datasets") x <- faithful$waiting layout(matrix(1:3, ncol = 3)) hist(x, xlab = "Waiting times (in min.)", ylab = "Frequency", probability = TRUE, main = "Gaussian kernel", border = "gray") lines(density(x, width = 12), lwd = 2) rug(x) hist(x, xlab = "Waiting times (in min.)", ylab = "Frequency", probability = TRUE, main = "Rectangular kernel", border = "gray") lines(density(x, width = 12, window = "rectangular"), lwd = 2) rug(x) hist(x, xlab = "Waiting times (in min.)", ylab = "Frequency", probability = TRUE, main = "Triangular kernel", border = "gray") lines(density(x, width = 12, window = "triangular"), lwd = 2) rug(x) ################################################### ### code chunk number 13: DE-CYGOB1-contour ################################################### library("KernSmooth") data("CYGOB1", package = "HSAUR3") CYGOB1d <- bkde2D(CYGOB1, bandwidth = sapply(CYGOB1, dpik)) contour(x = CYGOB1d$x1, y = CYGOB1d$x2, z = CYGOB1d$fhat, xlab = "log surface temperature", ylab = "log light intensity") ################################################### ### code chunk number 14: DE-CYGOB1-persp ################################################### persp(x = CYGOB1d$x1, y = CYGOB1d$x2, z = CYGOB1d$fhat, xlab = "log surface temperature", ylab = "log light intensity", zlab = "estimated density", theta = -35, axes = TRUE, box = TRUE) ################################################### ### code chunk number 15: DE-faithful-optim ################################################### logL <- function(param, x) { d1 <- dnorm(x, mean = param[2], sd = param[3]) d2 <- dnorm(x, mean = param[4], sd = param[5]) -sum(log(param[1] * d1 + (1 - param[1]) * d2)) } startparam <- c(p = 0.5, mu1 = 50, sd1 = 3, mu2 = 80, sd2 = 3) opp <- optim(startparam, logL, x = faithful$waiting, method = "L-BFGS-B", lower = c(0.01, rep(1, 4)), upper = c(0.99, rep(200, 4))) ################################################### ### code chunk number 16: DE-faithful-optim-print-null ################################################### opp ################################################### ### code chunk number 17: DE-faithful-optim-print ################################################### print(opp[names(opp) != "message"]) ################################################### ### code chunk number 18: DE-attach-mclust ################################################### library("mclust") ################################################### ### code chunk number 19: DE-faithful-mclust ################################################### library("mclust") mc <- Mclust(faithful$waiting) mc ################################################### ### code chunk number 20: DE-faithful-mclust-mu ################################################### mc$parameters$mean ################################################### ### code chunk number 21: DE-faithful-mclust-para ################################################### sqrt(mc$parameters$variance$sigmasq) ################################################### ### code chunk number 22: DE-faithful-flexmix ################################################### library("flexmix") fl <- flexmix(waiting ~ 1, data = faithful, k = 2) ################################################### ### code chunk number 23: DE-faithful-flexmix-parameters ################################################### parameters(fl, component = 1) parameters(fl, component = 2) ################################################### ### code chunk number 24: DE-faithful-2Dplot ################################################### opar <- as.list(opp$par) rx <- seq(from = 40, to = 110, by = 0.1) d1 <- dnorm(rx, mean = opar$mu1, sd = opar$sd1) d2 <- dnorm(rx, mean = opar$mu2, sd = opar$sd2) f <- opar$p * d1 + (1 - opar$p) * d2 hist(x, probability = TRUE, xlab = "Waiting times (in min.)", border = "gray", xlim = range(rx), ylim = c(0, 0.06), main = "") lines(rx, f, lwd = 2) lines(rx, dnorm(rx, mean = mean(x), sd = sd(x)), lty = 2, lwd = 2) legend(50, 0.06, lty = 1:2, bty = "n", legend = c("Fitted two-component mixture density", "Fitted single normal density")) ################################################### ### code chunk number 25: DE-faithful-boot ################################################### library("boot") fit <- function(x, indx) { a <- Mclust(x[indx], minG = 2, maxG = 2, modelNames="E")$parameters if (a$pro[1] < 0.5) return(c(p = a$pro[1], mu1 = a$mean[1], mu2 = a$mean[2])) return(c(p = 1 - a$pro[1], mu1 = a$mean[2], mu2 = a$mean[1])) } ################################################### ### code chunk number 26: DE-faithful-bootrun ################################################### bootparafile <- system.file("cache", "DE-bootpara.rda", package = "HSAUR3") if (file.exists(bootparafile)) { load(bootparafile) } else { bootpara <- boot(faithful$waiting, fit, R = 1000) } ################################################### ### code chunk number 27: DE-faithful-p-ci ################################################### boot.ci(bootpara, type = "bca", index = 1) ################################################### ### code chunk number 28: DE-faithful-mu1-ci ################################################### boot.ci(bootpara, type = "bca", index = 2) ################################################### ### code chunk number 29: DE-faithful-mu2-ci ################################################### boot.ci(bootpara, type = "bca", index = 3) ################################################### ### code chunk number 30: DE-bootplot ################################################### bootplot <- function(b, index, main = "") { dens <- density(b$t[,index]) ci <- boot.ci(b, type = "bca", index = index)$bca[4:5] est <- b$t0[index] plot(dens, main = main) y <- max(dens$y) / 10 segments(ci[1], y, ci[2], y, lty = 2) points(ci[1], y, pch = "(") points(ci[2], y, pch = ")") points(est, y, pch = 19) } ################################################### ### code chunk number 31: DE-faithful-boot-plot ################################################### layout(matrix(1:2, ncol = 2)) bootplot(bootpara, 2, main = expression(mu[1])) bootplot(bootpara, 3, main = expression(mu[2])) HSAUR3/inst/doc/Ch_analysis_of_variance.pdf0000644000176200001440000023605214660150120020230 0ustar liggesusers%PDF-1.5 %¿÷¢þ 1 0 obj << /Type /ObjStm /Length 4205 /Filter /FlateDecode /N 92 /First 771 >> stream xœÍ\[SÜ8~ß_á·­©´î·­©T! d2\·æ¡z§éÎt7Ifý~G²Ý¾5èÙcÙ’ŽŽÎýH22ã™Ê¬ËtfËLæ¼Íl¤È\œË|&„YÈ„âøÃ3¡ƒÄ»LXm3¢óxP™õ:“F˜ ¿Òҳͤwhç2%¹Î„Ï”¶¸‡LŽJŒn%uÎ4Ȥ̴ è¬2à êuf4G½ÉŒ·xr*àöÜ  ™“è_ç”ÊÐ÷w™yxxåE:óŠêMæ5Ç{›y  “@^yLÝâ}È‚v<Ó< 6h —…2hÌ—+Œ¢ Æ™Lc2Üa|Yó€ŽDÁD;$G/"¢ ŠÂÛ€Ž —È h'Ç@–Üâ K‰±0-!5(cYPÑÁæN é Ž'¾˜bXY@VÊÄÄ, + |, +€ÄhÈ ;ªYK0’ ´zµb‘«Ráˆ÷³n°Ò²á ‚d# -Wip$Ä9b¾1ÀµÂ8`ˆq…ñ`¾d4±‚Â1I’ȲUà.xAÃèÁrT* ^ k1ÈÖ­‡Ìx’¼ú@v\wQ@^'$²5ÿöÓO;ÊWã³ñj ®C!ÞdìçëÕt2Ë—Ð…øüz|‡¢òä/yÆvÑ~:¿È?Ž ž\¯.ç‹ì§óüüœs`Ê-îNâR¸èÙàÊ9Ç+®}QOïýºmYoE*[]´—E}X×Ñ{ز„ øÎ¦qʶßéÇÀv‘W“ùlo¼Ê³öþ)¹ÔÜ)„ôG.ÿÎùßÿQ´Ã<~8Ÿä²o“Õev‰ù.ù9ª_æ|›/ΖÙx8šŸÝîõb~v}š޳ׇٳËùrµ<]L¾¬ ,#Ž_´9¾þüïütU’ަJäˆ×g ~2YMóªVÔX#’mô*ˆHe»&T$¶(î¡Æ"ª*àðKØÅ;W´ÄUÌ¢ûS[W¼—é.£R3ôšIV¯™ûž KiÚ_ÏVdVÙË ¨ý/²¸${0œt3ñ/ Ýt’Q“¤¶n65t©‰K ztƒ¾Å& 䯥@'¯˜­òÙj™…Ô*r6ïÌ¿ê+="ýÔbmû•z/оT‘7ùr~½8<¶`d‹“*-æ§Çù pØë½} ž_ÀãÇu„Ó wGºŸÿòrÿÅS v|¼ó¡!àÅÙ“Ùr²~±uD˜Q7-Q§6ƒ$1h‡ç”W4x®ë<S#;¯hn âò&ÝIøUìݤ¹oÓ¼C†d÷ú©Þ!ôÎûŸß½ÜÃo£²¶]*»•¬ÛPƒ"z´¹ïdž¤÷H ’iPº·A¢ç¸ÛGûPµÓÊTå:&±®h§<]6ÞQƒt¨k b‘+± Cpõ?aIÕI«I£ ]&^±¯ •­4V 4纣¶È‘Ñ8M mj²w¨Ò"¼Mi! ÞÊ~ 7Gë¥Ë”ãÅrÛ‡ ÎîD[~óvyôôð—“'‘ Yj]%àBt&.EÇcµ#¾-¹ßë¸zE¸ò¡.:+$UD4yUZ)ÜØܾ¨uêá*¯Œ2DkÄ>¤´0K*¤íT£haƒ–ÐÞJ$ß´`Rë“&—Kýc -‘ðè3iO„WÞ¶òи·=t|.|4‘«î¥MôÑ"ùi£|GÃÓ.‚ÙÑNÓpÔé±á¨wk®ú{Éá°_±ŸÙëè¶O Çýú;¾‚Ö.dz³~'N°ü÷ëñ”<9ýNXü­ût¤æ—ù Fàßѹ_ÁÌ­}< ý4?_¥Ò"-?\ÿ|•Ÿ}žÆåCjƒüj’ÐZæ_1J78øÊ¾±ïìööŸ|1o˜Sy­¦Éy¤yª…â†HÀ†ÙAѶ;M],ˆ¡nk÷øÙûãÀ?yÞPæPbr£2wÃ_1P™-ÂX9P7ÿ(C²žü˜¢sÕß—í*“  SKá°k‚’ÖPcò¤dn(¸ö!õµqÖ< {£"j‚ï3?mS‰î„Cùœð¡'‰ñ=Ì<Á\cNëŸfE)¼U©­ù‘ç5]í„Y©kg|¬iç.Ûkh'éf©—)œ.õp­I÷6ê]¿ÖÕ½q[_ZµÙ & {¬”O¹(4ÔD¶Õ¤%ÆCõ„Êazrrôjïýàdp­º £lGÑBÚ¡î/ö¥¿©´.÷]›kËž¼§ÝMPyÕ¢[º½í¦ïƒÿ°¾ëv½ÉÇ“¯¥< E=Qëxµ¤9Йµ'#/O'“Õdz–£¸‚à/ƒ?û¼ŸæÑ­ÄRò)Tü-_U¯QNmïw6ŸNÇ‹®¬©à­Sç‹¶*Nóå2êãm¨Pêé—éõ²r=Z{=;ƒ£>/òµÃk»;XÃBi4ý]ª5PãN–FÑqK[ZÖVãñ÷ËšJMo’R»M:]‹¹eWÁŸ|8Þÿx3ć¤É²À N“­Þ ©[I“á\z Û hQah–,‡Ÿž<Ýûøã«ÉÕçëåÑ|vøèM~qýóçéä65ÜÛ¦ÚUÓ_[Ä×e¹YÓ}ºíº îÚíãõCíþÜ·û^õ±:’ŠfmSmsIÏ é±©ûµHäUeY7ÛÕíXÊ;& u[ù{ÓPÞš´ì¤ð¶ÔÒšvÑp¬¦åC"eKOM[OoÒ£ºÒàµÝŒli(±’4¬ §ê1œ‡;‡'G'”¡ø:lº™„j/ ˜¡‰„A׎0Ú¦K•øEVõ¯õOª¦5q‚Òb‹m³¥A‹ÆÓÝb<7. ÁåI^–]&Ë6°‡²lâH[–)Ê†Ž‹ô/)ìÁû2ºÚûîËäÓ¯ùjr:®/1¸Ý ÝÈýíÑÇ_bêùmA¹Z~ÛuæÊv<Ë`±tÍléGz3¨«F³qéÒGÑT®Ù¡.Õó ?·O·¶´±±¥¦,‚Goé¹Ä‹î¾hSÖÑÁ!™ÅF+Ö Þr¸LqÝ5s}Šœõy±ŽtŒ\•2UÊQcjš6w¦EÜÛJ?+[ÜL;+3ܳcãrYOÎÙÙShÖàáÛ£S£ºBüiïíÁîIŒËÂýƒSUÛÝ¿cpjÿ—Á)ô¬'8í¬Á7‰0465CcÓg/>íÇäc(i{¨Vó¶ÍáNþ¦œ÷–6åÞf‘RmÌy›7ŽºÕÜ5-õé[3ñó?ž*cÞ×Q¥òˆÄš³MÒÿ©ißÎþÇ]Œ|ÔZÿ,sÓ›Ö?µìðz°B)ZAÇÄæýµ{Úá‚öÕC·P†ýx狱Ô÷ öÙxúårÌ>ç«1»Shµ¶ãËéxy9lmÁi¬¥³¡Ý¥uÑYZo±~¨—ƒ·„÷Þ½ÝÝ{I Ý]Ó-£ù3'6Ä«7í¶mØm栮 ·Þ†›£EîÎmƒCcã[Œw#6nÄÃõ¸÷j‘©ò=´W™²¬étQ¶tº({:þœÊ&ž|î™Ës@Ž™Mèž1óóÃãw‘ÆÇ›[³¥/­$w­ •3ÚÇl˘t •O•Œ]Mf×Ë> koÐóPï–tu®Z3Žé¡ÊüôÝÁ»:ð´yŒ&È6i}—¶¦ø¡ÄEîßuæ Ú6(»¼†ý¤M+LcíN^m rª 13hѹ³ðÐ"ÃP:“aFçÃÝã/N¢Uj5EÜGjQ¼ãš©Ñ ’kÞÝú¶V5mfc“`Ò¤ôÍgNmZò¢EìîrBƒim°ÑfnX7Øh?{í$Ê–¾)Êžü[*Çк-}2›ÍWÑk%¿6Ìë¶–$LùEÃÌë|q–/Š1EÄŒ3>þº>j[ŒÏÚ>‚"F›‘ z}Ööl$ÌN©‹ô|?è1zDj.1ŠS¤5£ âjS%°‡“Ùo%r‘V·³óŽKBY[¹Ã«RW“jmئ1m’› Ú̦q­ëa±ß‹í½NcqÃÕijîFAÉ VÀ›²[#åˆ!-8M_>)9ò~ ‡‡!W|±“ÃxAç øÈ×ù7±Sfd44ˆ‘Ý`–Ft.1üH€êÀŽGüÖØŸ[$Ú)1rŽÎ2p12Rl¤°ÐôMœ)„±Ê™‘Ë´u#©†¡V“®°%éòzkÒµ ¹0vM"ÖÜ߉FÀÍH—ÜdÜ”qÐ0 b`÷•·Dk-ÂHóðW#GO²U §dÍþyÈ9=²r“ÑÐÊŽèHQ…¸Üÿ rÐH°•ÖvɳÁ}p -õYmô_Œäa$ƒZc‡n’N^Ý»‡yÑ*j{KW}q¶¶Kå0¶Kî>ß—õìµ<Ú™OÏê‰c1Ç.ƒ¼TñeÞ]¢$­ù°-qD:ÚÊ‘W¹6ñ? ’n†ØøoÇ묮ñUl‹¯÷ñ7Û 7 ³íf¹­I»ûó ùsµNÂ(HÏdzr££tØ]/A9DKô-?Y<Øc 3MûcÀ l×è¿­E(î#twN%7 —O¯½ì‘1½­@î^ mð[°bñ¿4l°qhFÿ‚–þ)€vv¤k*Držÿ ¡ÜØQ²Ã ;ÜCü‡9ˆØzíîãU7-϶eb€)«9³V‹ö&çç9d‚„à_é3Íô¥àúðªñ} j“¥eÍÿSx´{u~ŽkBHè{Šx”®ñÝC<ÇWÿ,bKcó-OEÆil.ÛH+»UØ-"7ʲ¸S–¥­2Zƒ)¶ÊH³ÓvYÿˆÿBù{endstream endobj 94 0 obj << /Subtype /XML /Type /Metadata /Length 1484 >> stream GPL Ghostscript 10.00.0 2024-08-17T18:31:12+02:00 2024-08-17T18:31:12+02:00 LaTeX with hyperref A Handbook of Statistical Analyses Using R (3rd Edition)Torsten Hothorn and Brian S. EverittBook endstream endobj 95 0 obj << /Filter /FlateDecode /Length 3411 >> stream xœíZIs\·¾Oò#¦R9¼q4/ØW–’]Šå”SËtrˆS©1I‘ŠIMRR˜C~{ºÑXš‡D9Ä¥! €nôòõ‚÷ýZÌr-ð_þ{|¹R³‰ë÷+±þl匟µ—koœƒ[_®‚r³‹±Î\¬¾ZEággÂÚ;#f­`U 2ÎΦUVÃØ°Ee‚¯1~´Œžµ~ ½ÂUˆaö–1•'8ON‡Ù¸Èx ÒÏAHÎS[”'º5™§J­°Ä¨™9™48q æ``­ñ!ÎÞÔ\,Ög«ïW2I}ÿ_®?9Zýò•²ë8G§ÜúèõŠ4"×*¨YD¿vÞÂYz}t¹úËôéf+f%D4~zùü1•±ÓûáLëh¬QÓ«ÍVk=Ké&»ùëÑï˜Ôk¸§’Ö µ­Tpu«Ö[mAÒÀÁ yžöBNWx®1ø0íp,bŒ>úébƒôŒ’fº‡¡ŒÎÀð—hX"ãô&Më……#`ÚuÔÅh;¦ŽaΊ.N§8 !Mœ>&ŠA¨éϤÊÀ`N(á|f.F7o”Oòšîˆ5-ôôcˆ3GûTr‰ '@€~zVÈééwx)Єšö\w°ÑK¥&>½ø¸i7DõlÁZ½÷z½•a2‘ôQÎlw 6äëÉt’&œ åfªÓ] hW¿"®Húã‰ß7± f¬T§Ûr_)™xîÓF˜N-7ENqz™VH¸ÉBûMå'ɽX­´ùy·¼¡uÊb¯­ò§SŒPÞZ8;›¡žþЭ¹Hâ ÖH®(TŽf6Æ.tó"i¤×ÓÙ=nQÖM׉c ÇÜ%ß„ãu’½RoÊ—®ŠPÓWLiß%V¼„oÛý/ªþ.˜¬Øõ‘×G«/W*  l@(Ñ  Ê Ô!p¼xNp$ìƒ#­';#g|ÃLr³5öÅéótO 0¡+t5#µ&™hú·äðAjÀ«ýf +„AœdAHgóíµ–ü}K¦îB22-0W"õiŸ=Sè$ @;تÖG_¬Ž>ê¹T•ËçŒZ²µàeó|Ê%À  G¼F§«ØÉÊ…‹lÞ’u¶eÀå<&ÀÓÁºîäÆ;9§¦_’ P”~Ì( NãM—×Óàz_£¤·ÆZÜè•Äã]€¸ƒq];½j ÅʳÅÛ²z›´ªh-þk‚œðþ*ZE÷΃qZ)áæÐ V€7G§ ¦”$kˆ˜†¸,àö9?c…u +I±ÂBTÔ½H“ bˆ>ù·… «h.8/ùä« ¸‘ ÆvÛïÈq‚¥'цu — ªýæO§)$†Pþšé}“hÃØ£áhÀl‚)%à×lq™ð†™C²NÔSó1Š-ÍlwÕNÛ]0³¦AT'ÈvÒŠ¨;§½¥CÀ9²Çx`EOï6Ö¢C@Tº!¥ÀÌH2rNsáxÄ„) 8â5ðÙóv™ºMQø!G¡µ>¨¤¢rçÿЦ0w„1HPìîÛÆÇ)ØÔ¤¬éSY°8í‹Gü–¥vl<0 R¸¼ïýd Ó6É^9“9ížð ^gÅ'0>)jp\VÉŠ`É=-ðK§LF9xªœ#Ä bŠcD¢ ®ð’™ïeBuð€¢s¸¬ód’ÿİ´ÒI”èEº2i0/8¯ªc¿_RF‡Ü>هɑA,à-¸Ëøœ³d6IùRyå2Ëx.·ÆÓÆÎ-‘ü'™q:ùSƒß!ƒÄÔ,šš™¾Ee‚°b:L‚ŠRî›évޖ棰!Õå R"Ì0"O7¤®”™Ô˜Ùf·#íÝÒjØŠÓÍ®N²DNóV$."¤æªGŒŽ£ ¬N’A%32¾„ñ®áš¼k6ÂKEÀÐ@Ý{¢m½£ ÅÔþ’%muB¢…À¸á*×C{貘² ™G©7 \ˆj„Ð9̾×2ÆÃLjŽe±´¾³á×6¸Å\46ØíÆpÿº‰'‡”θw‘†¡dV]Ìx‡é¦¿Ä=dÓP—ž±3v×ÌÎ(q뙉¿vD2eKç+vxçWhEZgVŒÜÑR!Ëeð1r ÊÊ&‚2§Ë^4˜qàAЦ fj9$S»hAN#rº5NbÜ!Ç¢ØAŠä!•€ ¤Üð„e¹Î!ÏãéO;(O2PR'MgÍÜ`Š•nèÖ^v1-33É‚Ñ-"I¬@¡T+ÞÔÑY×ÑÝà×Ý`ïÕfÁƒÈ«PŸI®X{aíœÓz‰Ç¨ Á#Áþ‚k´*i_•ÿž…ç7 b;o&æ ^bj;?œöv{Qªf@2Ö€yö˜íjP9”> ²»ec+nHÇÚ>¢-¸ú·0Úe¿AìFîÉß…í‘ûû†ÜŽÖ´Í(çº}'¥ºROÏ-RÅØå“÷¥a x~š\$Â}d4-•ôÜY»ÕU$<1¤ mµÁŽË}Eaë'¸WÕ¸åŠÂh€ñè¡Ü æ¾™êðguôßt¿‡Ôž5®¯›ëè»Á¯gŒÕz̯۰‘yYG_ÕÑó:úºŽš8õ€Ùo6-ǰñQŒÄ}=]ÔÑýH-B?ÿ Ôž1Ê"Â_l¶ÆƒeÇÈÒvßèýτԘÙ×ÑÛ:º˜î)»|5ËtÛÛÌìzÀXø€×ËÁÊÝ€^öˆaz qÏ뀈…- oTÂwgs3æå›3ˆ©"â,ôôÅþ=•ƒu­Ÿ1˜äÅŸœžB•$=v©Â$qÏfëð[>Î*m®[Ȧ>=½9ÅziLÁÎ1oðþ7ÂV;;lýèØ?:öÿ…c·+Ÿð•'VàeQ<͉ëÚÇœJ¡æ²8ä¶i“Á]‚í²³eô8Ò*¯ÅŸ‘~ë·¥îžI½¹¾±ÙÕ¼9¡¼§&¶§fFÍÖwÔ Oùü;áØ7(~ å«éÛ–µˆâ- F‘Ú5Ö„Ü}„¤ùAËkÔG[–˜–çG“|j[Yé=õ,éˆÜTºÑâm¤+Zé¤ä­£Û¾ß¶äpQÌp•û1¬ø~è–ïFjÇ÷6¨Ë¾×-·ËúË>0ë6u­.zhbeÓ¬{5¨ÙlÊõŸX³mÁPÁ*ý¢ºì.Á"'ýÁÞe­s_å“q-»¹eÏV*ñn²¿áå`´ÀäýHG:beÊù]§ Åå—:`¿¥„UTÍ¥[>hÚƒœ6&Yƒ¥o'Á$+oËdˆ‘ZÁJµx¹á†õö^à «½íì–êåû²‹ ¡¿{¦º$¸Wñ‡ÃSçáL4«å¢¼öxž¼ÕžÞú³bïû꘴Ð×PåõãèüôÀ0jò@Ùì\úÌÛ´ù„$˜ù$m~3}~uwzs|z}›¶é‹wìhìßÂ\éÏMÞÝ_Ÿ–6jìNƒ$² ¹w-­GJ’ýC(õ&޾쩇Ôý¸Ð:úû*¸C¥ @4àOpC»ösôB¦ä(ÎFaØUˆ "s¥+º™úUì—«TePendstream endobj 96 0 obj << /Filter /FlateDecode /Length 625 >> stream xœuSÁnÕ0¼û+|t1»Þµ½{¤RâÖ6œÚÒ‚èëSKBâãY'yy~”C¬Íxwfgòä!¢‡ö¬ï›K‘Õÿtà߸Â5RE_sÁ(Å‹êVypWN¡ÆÂâkaˆ” µU5–<£2Ù™;СÐcìcîæå\í«œÌ;°•XsGj-ôœ Iä¢'Á°çt­…ÌÊi›v ÔMïž΋ôëëfçÏ&÷êÉ[·„™ýtç–-£G¦X }ûæ§û^#%‰8¼ V@•> #DPÕª5ZFÿ›Ïê£æœú|&ä˜mÅD²È’Ði0#¡Å¬7mžg†–Z^6Ÿ Qœ5 ]‹9v,?6ËrT±ïA@RVxâðeN> stream xœWiXSç¶Þ1½UÄqW¨ž§u¶j«m­Z°8£V¢ 3‚€ÌCDf’¬$Œ"0#Sd7έŠÖÖá9Ƕžjm‹=Úª§í½Oׯžç~µç¶½nò'Ï“½×·Ö»Þõ®÷“16C™L¦XéºbÞ\ë¯ @v=ÍìÛh vr°³92qìÊ1¸zôÑ'G1ÖÏkËCV„†9‡»D¬Š|?jõ¯8oW_?ÿ€Í[‚Ü‚·mŸ9{žzþ‚×.Z²Œa¦0˜©ÌFfó*³…qb¶2Ó7æ¯Ì6f³‚YÉìdÞcf3ÎŒ ³ŠyŸYÍ,`Ö0¯3ë˜EŒ+³˜yƒÁŒdÆ0Zf,3Žá™—˜ñÌf3“æÌØ0jæ¾l»ìäÅCŒCþ)Gþ¹M¨M§íÛ4ÛóŠw ì|ö÷WÎõÝ1lÔ°Ã'¶o×4Âi„ûÑ~ƒ½Î¾ÞþñÈ!#ãF)F¹úitâèãcæKû¾Lq‚(¹™dÒ‚¾×ù”ªd}ÄA¤ì'ýO2Ô:Mˆ&F jàTl¾Íp :àŒ¶RwÊnªÈ¦:C¡^o0æ+[Qn‹¡ ‘L°}C¥°¿6h…[`ÑX\Ä’óÒfþ)±%ëöÒ%¹Eö¸r)/ó·">!ò•;¼6„ºäÝT[{9|”䲋ЭÕ_2´ÐˆµµG» /‹òÏÅSGL R³FÅZô݆Vè‚KZÓà#¬}Ÿ;-°Ë‚%¢ ÇáxŒÆ)ò¦¾¼êaï,•4E§ë½¾Úüw2¬XùCÙ™Ëðw®×ù.yE ³ÈÇ<–à$¶ôÑËC×,Q’¡äK»p&k‚¨P™½a+¤€gJpbTØnoˆÎ^Ò¤·Ic-²ZzÞ'—‚0”ÇÉ — ?g>y…L{¸Ç¢Ãý{8I û‰+ï¾åIÇS¡šA„îü†C-Ç*ŽA'4†äåïwØ*Øž˜ìãéo=ä Ù&âd‹4ªMvb¸„fâÄ» ³âhDóÁàpØO_àkè4ûÄf÷ž!~ÊN–8[A-hË4 1\ÎÁu‘ºøªú¦ª.àN·­%#ɤíÛvz×UÚ÷M¥ˆ6‹xè¬Ñ)8T”÷±XëÑ䥘d pÓ°¹\ñ]–Ç ¥ˆM*ÅŠL¹Bz¢À9Pôf1±áDE0¦Ûö×Ó6Ü¥m8N±l÷¹‡örtÃhþV1Úö :]\„p^ 1uu æ¶7V»ïÚñ~” ûNA–üo’4ë» ' >~F»×)Xšo…ˆåÏò•‹rétß[|ÉàáŠfãCJÕðÚÞ!ð¢„íÍöZ6˜þ² ¯ùB<–ßWàL(\|˜ ¡éÛKBºEšÐ k¼‰®7åø­ô6_ùq©1Ii‰Bü¡Ð<_àV.Ÿ¼³fáAeCPKꉔ¶ÔžƒàÊmÜ­Þ½2Dü$^È<¬3Æé‘J"cc!¥4×…¥BvÖáülc[hÓFŽl¹qëbpý"åÞFÿ\¯<Õ!·Cp’빡/û6{m´AЫ ™&à*!»‚6¨&ID7Q&Ê>ÄYx2¾o6Æñ×E…Ÿf%xS6Í#-U…£_eßZâþFÉ-wÁçŠö+¸çàqÛå³wîtÂðõÆròWCB.”W­7T+1ˆµÖ™¢Õ¦¥ ›¶¹uo>¼‰ŠÌ$/‘HsÈ8üà›®s±².¼',¸ÃPT¬´—^NoÑ& q™Iv÷E9î&ó8B$#p‹J¡[J¯frþWH K˜/£¯~Vwí’p^åÆº%„솫e‚}_%mg«ˆ…â`;3¬åMéË?šy´fÉÚßX™È:}ú¨ú\kô«èœc+²®iЪ”t2e}/-e,-ËiOD…¿f6xÑïlðHöIït*nÆÐN¿žQ{:};>Ý‚õ8˪6Cq¾UHâYþûåÈȽd¼vžGslM}ƒ¹£!ªD§ÌYy†£À]ªv_¥ôgÉ4 ïS¸7Ýêioî2 Ѱí;¡Ca*„JS²!I¯T¡ÌQœã®‰ ñŠloÁ!èPXmgÁMç“ ·¾5ü Æ Tßÿ¨›íË#ÚB.‚#Žxò%:á¬é·ˆÌÝG¨ÌÙÁ7v¶n (ô-Ü [è¹Sí«Üá~dÚßJå®’¨,ÒQV†¬\r–†ò¹%†Ü+À‰l¸6DA°Ë¨·‚ÅêOÃA]F蔋Hxèõ 8'µÂñCQ¢[«Ýûa»!pàÁË,Î±æ`´c¨»j<$ƒVŸ©/Î)/†&®1¢204$ÖGÕ²ûüg§®‹¥´âTÚG¶É)ó†áh9ž‘fò)©I É=Gú“åÕo‡…sÉ$2ýÑRúØÄz´)8|’Õ™ºƒ™BZLÔÚåàÁåq­q­º.èæ.ŽzPZ Õ쟮yFˆqg¥Bz„Šóy²EÒ¥TdÃè ùRî^R@è"4QšhH.F¥8¦ 8ÝZËÀæ‹a£!Ú¦7‚Ê9©IÏbdÿ½ìĬƒfp4AVQv!ÆK?:èûoHà*þ­p÷9Ý¥Þ‡"ñ¡A¨çþ³ÕÖÚ·[éºEŸ‘|#»»ÙËî´”L'3/Cy{kQm“ҋŵ¿Qþ¿Y¢èÄGúû…î¦Ý ©JlIj‚‹tíµÁÙÂæâ¶Æªv¨‹ºÆ—žêGc]#.y¶L¿—K30„¯ÊÕ×öúãP2‡ðóPœ_ù×BºÙ_îúÉ\ ñÚŒʈõ›¢½i>6€£/*mô§È~ Ü÷@¦F*íñU‘ŸE ³È~@掑£'•¢âôŸ8ô¶¾À˜º,!9í@<ìç<›c«6˜Û;ºVΙæE«›TÈϾp$ ÙeÁ™?Ü´`d»¬šŽ¶€r9λËï7ì/§MªÈ+Ðë‹Ò,q©¶Û_¸ùùé°æäea^AÖá,F›É\xI\uuIYe…ºÙKí¯ ô¼k?È ¥Øèü¶g™w]¤2Ø[ãGmY’áƒÖ „ô­‘°™ÛyâtÆyŸö\ÇÙd NÈý…w˧NCÏõëàúÁXï¢ì"üçñ»}öî˜êä{âÄ¥ãP¢|îɬMþ£-{ÏÝ{G¨ Ãoÿ9Þ§þÿ¾ ’,á"Ö[°^C›;÷á¬ñcÕR4þ“Tuþ*Üä~žq—¼#¯Õš’ô›Mþæ…Z׳cO~­0ÁQ¨ô5A¸Â:È̪[‚òd î㼇tòâ2ÓtÊL˜ðPj£Ò>J½¢©HïÖ¹±ê¤˶ ŽåüR¬¿£À °ê=p&¡$9JIòãù^œ+û9J¿òÇý›öxxz6tvXšŽ dYIçàâ R¯?iè )~6Š®’“uy$‰Ò¿;e>BÃ#¹Ü7oÀ-¤ètQ‘BX˜Oã®’Mt¸G;/ 6Í5{•mî–Ôo£*2Z“s´'£J>/ng̪%ï»:œ”&èJ!;ê¹sX3àòõúò ¡¶ö‚Ç´V*·/}ú»{"¼I¹ç#ŸüEæÐÜÀ¼¤¬À¢jº+?º…N&2Ù7[0ª³µGžÛ©rp4¶[eV}ø_žæå~ Ž"©ÙGö…uÏõ¶´*3M“ž®Õ)‰’Œ³•6³¿gÈïÅÉXKcQÜ}2Ò“#á€`…íª¡ÒzeЖÞ,â¬Ô¦ÆFkL)âìûQÿõlçß8+ï'ýÂC9è+åF3P—a¢öF§ÒúSYq7øäfbÍ`Öæêª4 ƒ(®K^›áù&ù.AZþ§Æ`6K&þ4Wàì;¿àxa€RïùA xün¿YËk ìî¤^ý„¶é»3SÍ} QÖç õ[WUÎ?¬«*RçIÓó…†ÐgÐAT%“·û79å’»íëî_H³ñ•Ïvÿ—,&ÿ:$'>+µkÁ˜—[ÂÙ?- ÿôu>çˆ!÷–5ü^­·.’ öb}˜a | _›D¦ô/u N’‹íWÖð‹hx/:(>áo±dÔTråÿþý~’Rއ¡ÐWS¥·pjÿRšTJ%8–CN~öŽâD¶™q9–\*Ç-¥|ÆL·MáQÉÔ*B:—R”Wü¤'^ úhÓ®àOïßÓUe‡òò xm®÷}Áw4{>±ÎææNºw5´éâq“Œ®žárü´OÎ7d@ °zí°ÞK«éµél ×_@lTl‹ñ;°6ä!´ z޵ªÆ|‹ ž&ÈŸ&`>oùw‚¿U©évÀpªE”ÂiÔB rÉ Ãé]F‘¶ó`BFê"ÊŽØ)j*?¾RSi*;sÜTvò”Y„Ó™w›ØO^²jñÆnueC[ù©öýU9BÍÑ–lê–ï¼êµ%Öeù%™Ov&-Ä:ÆI6Öc“:¨3·mù*-­²ú[†³ä¸ïò·³–¿ë3ßÝëSd WÍi¬‘ë ª÷ضcÉm´Åi·¿ù¯‹û¾"#k…Ó¦[çà;îKjøì¦¸®pV5FXºªŽ™S:¶æõ­Yt®/ë]Ó`«ÚK·;Bë§ ×¦é ž‹;¥ƒØ¢L”œ)¸MVÉWâ\þ3q™ô¦¢J—šêd\ê_c«¢ÞX6Ãê­f¡.Cë¼ËèN§W{ÒI<kûqšå>Ž*4ÉîŸÅ7¬Övª¤çdæè¨ýĉ·Ñ¦:W[pP£…ŒT宨]©^°<Ž„¦4 pjHLP’v6+ ²Œ¹ÙBÁ‘úŽëÀ]sTà‘´O™èãŸL›¿§,¢S4”…fî¬gq„z{Êú·zæR<_zr_ÆÑoÞ!Ãc÷èöy¹áÏ–n]eý/¨D¥]$[²¡'·»í¿(¨3T¦Ç…i‚c©æV„¶Zj*:Îݘ1Ÿ¼»™4¯rýQöýM|f}┸v† #÷ù½]›\›j¦÷ø&î"àðϙ³ã~X ‘tòwjöeø…Gú7ÈytxÁ{iȉOÚmþd‚é‹7ÌXŒözÃ]*¶[­·[x¸Ö|õ·uùíPÃ!Oæ@QlZ»ÎýXBUC}y{c´9,Wh¬ë0î*ìÛº--I­Ü0?ýmØËy±QQQ 9•Â9âò's( ³Yl² vÃÀn8Øa˜ÿ™õÒendstream endobj 98 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 200 >> stream xœ½Bÿ CMSSBX10‹‹ù!ùJ‹ ‹ ›÷?¿¼R3oøˆùR‹ ÷¶Ó÷uáæ÷$÷Ÿ÷øw÷Ôʚ걋÷÷Yûm‹^û„g€füêg–°»±•˜®÷›÷÷8û³™s–‹¡‹ÆŸœ‹©ü6÷õ÷u÷÷ ]IP}Uû 7Ÿ ‹ ‹ ‹ ‚J&endstream endobj 99 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1769 >> stream xœ­•kTçÇg˜™*!3©¦œ™rŒ¦ÄÔ( ‚—˜ª¤‰£èr§°Üv¹$n¹¬Àî>»Âr_aY–ë° ×€å ZŒ ž9)m‚95Ml¢ô˜hšw¶/§§˜äKsò¥ói>¼ó¼Ïÿ÷žÿ„« A’$´ÿ-¾‹ok!Û¹×æî¸»Ö{±;=¿zìÚ£ï­"ŸÇ”i¯ff©öfGÇÆ%&ÛD¯ëˆßˆDNø‰@âUb7L„/~Ä£„§|áJèˆÿÑä.þ.ŸPÞÔe×]ÇÝv¸ÕÑ¿¤ÕÌzÆÌôJ:iDÉËF"bÅLSÒ먔ƒ/ CÕ¥8bN‚g .@›ÃîÓØ«ÀMÉü©òÄa·0Šá•L›i:@„qhÓº¯™ßæÃˆ€B™o®_šœ´¼Êãü={2ÁÐÉz8ƒAD×mhH$?‹nݦ†/qJ3s²0^Xè`âu…A|ŽRr§÷ù§wç?Æ+ë„;ÖëWáÏì­>Á?çñn|ƒC&¦ÛTq†Gžô½^¿ðàƒ˜~…?ã"õÝÑkÌÝQÿ]ÛC_ö<$M¡]òµ‘³¨s–’"Q2‡8Ÿû˜ÅîÏzcOüø½ˆF+æÿ‰¥5Åü{Y×# ÁaØŸ(t¥>q¶èbA®5Çz¼N ilTfÄóÁý÷Ô|©Œ£¾¬tÀ@Iž€½˜<(©.7›øò 0ªï?2 À~36ñÑxrWQ•àH7צš-ð>ëh:û9"Í›RL¼Q['­r«Üæ*Ùß'E`#ïO#/;…vJ8ä-bo´OM~°q³ŽÍùv0˜úPuaª{r†ÿ£:Œ RFÇî/xg¦ìߴ쟸äߨ%})=àúNVÏð6‘ÎÒo%¤Â6È2É€¾X\ˆÇP!ó§~kºÅtS^‹N¸ -AéªûdEcØúS§<¤ºÂ&é"i•T”ô,úŒ«²7 _5²"£Ôk ²á8]º™Ò—§BéKJò×ãš5Øõ”X åkÛúÁÊ‹L¦þ ¤C2è!tù“KP]Z›‚Öá¯)טJj¡̦Švq}lèíÆÖ›ïÛÈ37бéY;%=lœ¼ßƒ‘‰] K$°Ûö…‡(5Í- -ï&Àq¡yèœuس—ã¶1 >ª{Év±;ÿ‘yåÚÈà¹F¾ìˆ#aئ ËÇÂ%õæ,­&.œâCÎs>ÉQ‡õžCkЮÚ^/‡—<‰ÏÙPÒ Ù3‹¬Sº°9ƒÉ£zBåadŸöÁãÕw|Ëì™ÑF‹°›AÞÕn"³G[q^þÅ„,|ÈAè4ê¬ÄcÊCÀf`¢½9S;hïlŽAÇ(LB¢úÚ·e4y²ú=…v”Þˆ‚–òC;II«ÑqÎn‚Ư¿Ä`úù§ð*¼æëg…VŽ ¢É\RV¬•¹ë… ÿ½ªh`£7t —…FÆØÈU¢-·vÀ·`ÆÞÆ$ö»L^”õc±ì1!šÖ€¾¦±ðýî.4ý_sµÈ}°ƒhõ<‰Hn ´Àµe7§e¨³ÓS[r[Ö6;y*#¿ZU,#oý!;ÎÉk`N/× )-$WF—-:·´“ãhf‚B±’÷Vb®²\šú+ °ã­QfÞ”¥Õ7)˜Å|Ñ•ÂNðÉ¡“Áµ‘°SÛ}×G4DöÅ=±=E7òz´5–â÷TŽp8ÀþæÍWûk†ó¯•κ •ZÙ¸‡ £XJ³ÑT[Á—U6õUžê™Jº,r»ƒ\®¨FÒ»…øEMlµœáAt§ItmŽrz;·s ótÎr³Óä[Õ‹|Á*Ó«ÔÛtÆ|P± "“>AIw™îËÿ†x]K °œ$‘VSU}Y¥I„F T%X°¯í‹ÀçÉOç)´ï<×®jÊTæ¨2S[s›ÛíM¼¿ÂÕßæþ3p_î+ÁÝ“ þ ü> stream xœUŽ» Ã0 D{MÁ ¢ÄŸ&Hd„´q‘*ë',™ ‚‡Þ{SSÝçØÏ­4È O©t+Æ åF®Æ£­ø¨YÁ«> stream xœµ™XT×Ö÷Ï80çØP™œjÎÄ’ØM4öÞboHoÒÛH‡˜™534éeŠ"X°`×hŒ%jìFƒå&ÆÍ>dsß÷Û3€ñ~oîÍýÞç~ø<<83眽Öþ¯ÿú­=Ê¢ %Ds–­7Öô×W¬ý]Þo =„ÐÃ"À'·Fú>¨w¯Ã½)ÓÏÂYþ³6Î šn?lxw+ŠD­ S_QŸSC¨•Ô*êSj55”ZC £ÖRéuÔj=5’Ú@ͦFQ©9Ôhj5—Cm¦æQŸQó©±ÔjµZDM S©%Ô$j)5™ZFÙQË©)”Õ“²¢zQ}(kJL}@±Ô‡TÕ—²¡l©~TjESµ•êJutt§‘\P”ZÐO'ø¯.jaWa¾g‘aii¹Mô‰è Ý“®gÄŒs·ëô®­Ýrº/ïÑ«Gn×=•=_ZUK¯à^ïíÕû`ŸOú¤[Lj…âcôÿà*kÇV}¸ìÃs}é¾q6 mE¶u¶|¿žýFö«è÷º¿çf€ËGâ ¸Q\š¤¿¤NòøãyÙë>4mPÖ`û!›x…Uk<ÑF#¿H'¨j%äµ.e“r”éQ yR vmûÉ&bƒkôZãK—¨÷jjÁÍÊ*ÕáƒôÆ`C™V©ÖH ¾–DGñhu²Fɶ~«!ó¥kµ—a7ì…ªF¥é’zĤ˪¬ç3Yd‰oZb©ÈŠo#oÙ(Õ[£.—û¥¾âý¨ zÆâbÚA ÉjÔG4åPFž½«ýÙ e°_‚–Ò¿^9qþ\ÖÚUŽù§Ÿ]Á ÚÉ Õ4<£omL·n%Ì{§€eŒøÆ”YúÒâý—37I¬Z7¬\Уz£5’ÜC§žÍ~ÑWÌ£`¾ ‹Ttµ&½‰C½EÏj&¯[²É %ãÙgE—ÎÃ5æágwñ‡\[ßRÑ ÌSÒVJ‹ßx*e_r!¾ü²}Ôò·‡S¯ca¶d¾Åâ>"{ezµ•¡¯èçcÎ]?uˆÄŠWÈ üX½ âÚyOÈû o}0ô-î‰ûŒÀܳ¿ŽD]QÏ—¿ 1‡ƒ°=ëŽÅ‚÷ÁY¨…z8Vº¯ü@SñØ{¥eNeN°ÜÁÖJ¥Žþ1ï|«À(@÷ùßøûlÝÙÓ)UÀi_¥«*|a¥&HM²çK7䇇Éä±Ér žŠ‹ñ"t014j[lHÙÏiOÅlpgØ¢vÖ˜.(¤/B†,?yàŸlðzº#~Q­ö Y[=\Z…i[Bé/™õ´–¶jõ[G­O¼æ}j‚ }ÅOO ŸXìŠ&ãqh9²ûI“ é±2oWq xðÇS±˜åxÃ.tD"~‰šÑú]g‘ e,þTÇib@‘ L>h‹%h;]é²ädˆKà6Îò¨Ýpx$ØŠŸâxž€Hº›ñ:#¥çmƒ Öo/¡ü{}ÅÏÐL¾{ÆCLʸ’.w”ˆï´yuJl—ºYSåpDYó¾§Ñ;èԨƵ߃ºÿú b‘xÄsl!?›ÎŽaRF‹óXBW9Ty˜«g'`KÜsžÝ,Ww]C $¦Ô c¬øÒŽ0„é¬wÝCù¤"îð½Ï²xÁ¿^RJ»µ?«ˆu9÷EÌ ?Ä}ž}вþËаW_Éh‘/‹Òà ‰ñ ´föòD£î—ï]»Ý8q©i¤ÎQõ.Ђ6ÐHƒÖ Dn²z¾&jDY–Á¢`<&t6ž ¶í³îý,Ëg²Ä€ ƒE“d¾#¸q(QÔ^8¬†ò5ùXÂDHjÙv¦³Z¬øþ6ðöÂÛ}Å7Ðèu¡±Ä´ æêïÿÃêÕMš ØM°Ç¬¨mô,eV­!ÅÔò}ºTN¡ ‹ƒ & 8Z_hÈ®ªò­tâÄ7fƒçÂ'R“0›Œè@{˜k h°AÈßjƶxWÄÅï$\£½IÜ;$ìM‚œ R= Îì Øn»÷HnJ븇Ãê|Ì‘€­xN¦ç'YW‚¢CèÁ¾âä†Ö±úä»Q0‡Ùàå:ÝÎóäáœ"G•²˜XHŒ`:³RÕê¢"N£MaÑ>çýªb"3úÀ·ßõÛ—-ñ®rËpÎ ~¶:kaΩ~5e P—Ôq¾N¿ƒ,“©E’—ærHRB\,§HÞŸ¬p¯ph²{Vî W{å”K%â–ª  ùw1$?©1^‡‚ü'æêœÜâUÓWÍ?:ÇæH÷¸f³2ò$h6]Ÿ’ú 1Õ¥¸ÂdðԚ̠Š~¤•yH–Ðâ&lÅñ‹ñ¦t„ÔëÆê3¿=‡‡þËrõ©Z{lØâåx2±3šˆ' UqôU¸]¶ë4©™ Õ¡#š¢üz õ#*ÅaÑ`#Œ–‹TSý>žÌHÀ•4îõ4®öJÅ•óÜÉà5ô,?w…ð¸€ko„_Ñ.£YÍ-B¾•ÅÖj²np¥F‘—b1Pw˜ ^æ¨Ji³2p,nF±ô_|Š4?ôs´ÃÝpjÌú ¡¿4 65㼿ú1*™^ÚH ä]— çûßbÇÑhH–¥‘ž—~ˆ”B4ú®\ð|zâæ³í’›š9ôCÇ;7A1^‚GÐÓa,ʼnÃOÀ¾ŠÊ¯+ô÷ަ0 Eˆ¤¦øµY·¸2SdÓH\n0­#²2ú–¶#2…ldZó-²âz¸Õ±æ zšÂ¼æRY1ßÏ((âc„üDô€ÝQR°÷‚šô™P¥¿*B`‹&²½ÏÔ©²B!â•ÉɲOp† ¶@Uò"\mY=qù©V+C!\Õ~æNCŸƒyŽ/‚‘MZŒ&)r eGJ&QE¦T YðÛŒ‚d†?¢ãhûÙÆÕëä à”'ל½³¬6@ Ýã8ëÊŠ–WW/_Ï’¨3Èãv1üWtC.œ#OtTº«ìIo›îæÀké_ Ö‹Ø£G{X…&júoÔÂ6æÔ˜Â’’°¤àšðö°jUúò9(“bÇâ6ÃPUr¶ÊÔ?ËëAGžá¯Ú  ?ðò•™±©ò,¿ôðI8ÉfÒ%e“…¥t^Ñž‡dX§öl¿â0d+²}5þÍ&5F›`ʃ&-5÷%ªµy…ëRd¦—ls@Ûž…LiD>ú²GãžÐ[7ÞØüÙ]ºJÚ®ßQôà{6ŵܹ ˜â³¹w$'‚WÓ+ƒå2ïäý©²§¡ê=ëÜê7æofê|ûE~ºÈ²ŠB]YvRõµ¤¼æP¡ˆC'ÝÆKDž° ¶š7„Þ£J …xˆÚ¾=!_ÀÍ6èÊ  çЈ!º§Å8[?73¡¥™gk`wÏÒka[Šß>SË6µ.£ ›W ÑÇîܽûPi™±¶!¯É$‹ ¥Ÿ*ˆlò:Ml»,Š•±„²£¶Ç&É—M·™þ2ÞUi¶—·Cg¾BµHÛÀ^ؾɗA­jZñ³6£q÷Í+¿Rn[_ºLcT—A%4*KÛ9@ªMÌ<ÐWVŸýîû¡6²œ("¾øøè@ÃïTŸÐè 6Ô«vv¡ ­dÌæB4=X<;!(š@PO]î  ³¡´=5ÐjuFny#>š×¸ñZÿNÔþ‹ˆ3O'û¨‚:ù,r¡¡ÔYùõ'Žg”Â~¨ *u/sÑ®ðP®ðwØæëî½À³4¤ŽÐ Iϱ$^ìªã¹v/þÁÔQ,’}Càw.Ñ];gð;é]ûWmy*Æ’[ºÁô¶Ó|¡È„UÎúÂû¼”ØÑ}!?”mÙ¹#ê|xçF`¯‘¶ïQ•IƆí*eRܧXeƒ…HŸœ©L!UXVE\ûE¾ïFI¬¹^hD›À&)6Æ[+]0 $±µBcJ†ò™²ðüÐ0i¬ŸC£çás 'O–rVüW¤ƒU?©3˜Hoý“ƒiØèŠüYdw·ñèŽs*ÏÎE!÷ƒX&¨0¬¢LW°óâŒú/qŸÏ0…{sâ7øƒçÈ\ûU¡™™ÛAAT®äüÇ,ŽóF̯›°M’Xý>¬£®>®àKu8¯WÅ1xú;ÖQÐ`?ÄûwªTli"¥,Òo³ƒÔÉ$à²ÝA Š“ë4g*÷wW#FÑmtÈŠ$ëŒxoæPÁO­¢èÖñl|¶JNô¥o¥(tªPÒ6ƒnל_1š­·&Sfü…`³è,P*›††ß7ìæu&îï&ÁñÛXT%Òk¡øùÚg¤ú˜Ï†à>¢¹~oFÁj?e&h’â•ò%ç5dl‡àº3´Îï \€Zu¡´¬Õ®L@èÑñµ°Õ=a‘IF»Åx'b‚ucðX4-F#ÑäÀáðìHÜïG”‹²Ñ§ï=Dƒçâ¸d÷™Ä 2›-šx?C/@ž<¢9ü1ôîÓæAb— ÁLh~Xyež®´Î£zݼÉër˜žæ{ ßø«â:éö1hw:GvkAM¯…( ]bÑtê¨;/~ö#þH‚ß¾7ðÿEkQ •´Ÿ"´ˆÐ¸ÉH!O0ÍýØ¥­:u¿A‰uEsØu4ûzM³ã©¾âßd(Íd'‹’ruUžA’‘]R±˜‡044På,Iˆ p%BbÜXH’]}@ƒ¢˜§—.ݨ‹ª .‘ÔîªM-4 î UÉ’“dÇDæÄåg¥—ÄU¹…9Ê]œ9çjg­˜1óçé¨w7l“ÄFGxƒ#n¥À7Çݶ"ÒÇ \™9Ï× +Ôí×#7kbŽl¨àÖU¬„åÄ/ Q퓲ͤL†àKì§ó=°»nŸVrZôYÀ¤µs7—´ø˜ËRÐβBÔå{öÿßY8®ˆtgÐë÷ëܪ5Tª'û{TšÖˆ{€TÈrÆëŸËúŠG¡è-‹²i(l½6SS :`!‹düÉüÏñ0É‹XöYéͳp“ù‹îã¡þöODðŸytòE¢iñßó MÕlÝí ¾°ƒkƒ{ƒçqùN`nÜ­Hƒ¬XÄ'ª$ò¹^Á° ŽÄ<½mq~Sõš"Bë;ÍÓ2êùÖúúÛyúŠŸ¢yürl ð›rbdúÎ4U©iJ‰Õt¦iQrj½Dü2…ßÍVøJƒõAÆ CqéHÍRcëØ ëeAçÑÅóëHB®¢W¼ ‹?0.Ës;§l/;{}¡ÇSÒ8µäYã%ÚbžßUª¸DÎk•_¥KÃx2¿ í& œrtöÍ@IVò‘¸Ë‘ŒøiyâÎÄ â LâPÌÜsìüg¤ZÇ­<¦8¯ªUe&€¢søµ7¿éjMV:j­¶ú¨qëyÏÒºÞþu‘ˆ¯Â‹Ewít$%§H‡Ïÿ‘1gÅõIó›ÅL›éaÊË(S^nì01ÌÇ´Cü¤%I¡Äå¥èr¡œ)‹ÐD„­?pòú×瓾Ú:Æ¢2¤Ôß?$Äß¿4¤²²´´’à©ÉúÔb4«NPk@-(à lÓ:•mC¢p,%]*MÊ«F#¡È2SYœ 2eˆ&¶BÌ ÎÕWÔ }È¿×Ð`Ö„+=rw™º#ÑXnaJtäyçâIæCƒv¸DA‚·„oßJ5ñ®JØ {T{”ÊkúüñWC„mxdr8ù\…ú´¦˜0b¥ª²ýs ÷£XŒب4Ii„»R®œÉÌ8w¤QSlbOE,Ê^¦‰ioEªLÄBXL¡ìØÊ†ýÇJŠ'ŠéÛl­F°E±xЈ/FÙãn´Šãûü%”÷¤ñ@Ä`r D?zŠDœV;`ƒ®ÒÕ°ßÔÏô8EV‰¯àzóæ¥Ñúðäø¸yÅ7Ø·¯ÑXÄ9/l‘hÜml…-g}6~õaÐÔd7”E”y%(A¥àJ¾9Vw ˜Ç{?ŸúÅÆik–Iðì-3 !!¶â7<-ª@³É’ä—è¸=:1a1YÓú¥WÈt6¤u{ùµÁºYL~…¾x2ãu_1¦Ð^ô†½[~ê2ÉÐÝ 'F~:cÅ o}x¥Q§¯DG@BnºF›–Âeå×»Í`Ø’‘ï¡qƒŒøwÒ%V„8‡¸ym!Öµêhäi-1B)Õ†ÒÒHƒwŒWâ–I—F ‰ø7ļú‰Má%æ{k]zHõ×L¿úŠÿ æ°gBö;uš.73pF­V£˜dŸÄ9K—IââÈ æb˺÷=êÆ¡uþo.3gŽTrïñ"˜GÈíÉâG}ÅmÈÝaKi½k”6Ê·ê¹hWpð-ÖçïÜQÆñàüîOÖ ‰øw¬CÌܧHøÓßÈuâñ?c!'n[Â63¨;¾Î.¿3ò¼ˆ&¸ …ÌͪòÀ2#Wèln†‘ž~+¶H2‹¸˜ÿæ†à„á§'B>Ëî0H38Y„­@™“\Ä‹¼± ÁmþŽs9Ùéi7!‡ì§«H5 ¤Þãpo,OÈ:8û3¹#4×Ï8–R’û`ß×í•‚¾=‰ ḢC÷¡²}¡‡M_ÄÙñ[Ø-;“wAsö›Æ+WϯŸ³Êmó /NÍ~Ww¨.0OÆŸ;ôóYc"4ö\V\]° æë•þ“Vë7ðÕÂ7Èò§{¿ÕÊö»7ráÅQ™Kö0CYÔkzEx“,·5sýÔIs¾¾wªêüMíé¯}r¿„bJÿâ'Èí‘I¶Bt…õ¡qìà-+#×jvrû2* Œ!yÒ(¿x·…Ç\~@,™‰ ’}¤ÇôÅñk6E88q.¡Î0“Á}~Ž,8ñog¡¡±äƒ{ÉFÁð=Q‡Áä—MÅuå‡wçÔ:¬ÞZà퓲¶0S¶Ž˜À™-t¸4oõ?mßü\5w 4Ót¥õƒ·áDÍ/ÿüjñÓð6!K¨oú’Y‰ ò»Ûˆ©T^[Û©áT ¨Õ\º:K“‘nî|#Ê× ïí>‡úЙ aëRÔ“UL[âíkaýŸÝŽî¹xàVý…âšYy(תä‹í:6ƒ·'%ª’5#8­‹Í#ø‘#¢¹ø=ÙßQ÷æ.›µf sÚœšñÜØ[‚a­íÄ»KŸÿpzouwiÅ騃ð=œ;©yÀ´¹£6ð¶â™û{ªjÎÀ`å¢Ï'†qN_°zû<¿½ËŠj××y,Yµ,1˜)¡ÏŽÝÙU{¬™Ð`!²ÝƒÆìœh-lƒn³yE Ó…CŒ¤ígQL8„…Až„ÿ ¯csÛ߉–´ýMÝþN®ÙC¸·Qs˜ÎÒKQk¦_&1ð«Ù²Èrϰ˜ír9§RšxQBnJUúwç¾–d›*Jˤ'¥$ɦÌÀÝV”:ì­),/3™Èÿæ2+Þk‹_­> stream xœ­Y xSUÚN dªPDüïTGEe©, -²»Ó…¶é¾¦Ùšíæ~Ù·îiÓ½)---]€B[Ê"‹¢8€‚:㨳‹ÎI¸ýŸç?IëèÌ8ó3KóôiŸ´çöœï{ß÷{ßS.gÒ}.—;yÝ–›–=åÿvns×ë‹‚i<˜6©ò៖Í@QÓÿôÀàƒÿÇÓkDéë2Ö‡f½’½!gcÍù1¯Æm‰ßŸž˜ôzòö)©»Ò"¦-YºìéåÏü|ÅÊU÷s8ó9aœpÎÎ6Σœ…œíœÇ8;8‹8;9‹9»8s"8OpvsÖr–pörÖs–rB9¯p6p–q6r6q–s6sžáüœóg ç9ÎVÎ N'˜óg'„3“#àÌâ9qær§r–ã“p&qÜÜíÜÖû½ïoˤ%“Zƒ²ƒ¾åL^JPĹ)k§›ºbêØý®iO»ù“—‚…ÁWXùÀ¥£§s§÷Íp„<â›yBP:kʬÒÙ†9…ÂmBZØòЂ‡~9W÷ðk³ÿ£! ·Sq^:Ø'Úëñn¬áŽø~ÂC;P ú¥hm’NÎ0EÀ´¾ÄI6@‹±<ÐF·Âà´GÌeàr*A©§ÔúD~ßn.µW½‡fÌA|'»*(?[-—A¬Œd't» ÑíþÅ–R¨.S‚8‚¶5ê¨hŸq3F1Å U©åD*ËÔ±7‚Øýü`ïˆÜí]âæ¢ÄQ´e”‡ŠÐ:Ùm©5»ËN€¾ª¥¼¾ÿƒk@ô"ó¶D±÷Kâ(i2]yDTsâ±/ÚÑb³C *)芵¤2#cñ6 ò˜ŠòG£­žªêA“`˜øh‡{ïÊ7 ¤¤êxrk4$B~Ž8­ N:Bás™^ï6“ÕW\Ç=@4‚H.¦ ´bêevH§f4@ å¶âšÒ*«ËJ{m;¾ï *½ÂóZGðUøågØY;Ÿ]¸àܖуH€æ£ÇHÖÂÖâ<ï 6"^Û)ªsôXëa Ž7G…Gç.H £D;vGî"Ø•ëñ-ñpÑãŸò|'|«z“Þ&ÂÀØ: ÈKÈ×ÖD_ÞV¹„l,›Âæ²2vÅŸ E .:pÌ¡ZJšÚÍ®f§¿ºˆç–ŸFóÏ6 e7Ð}Ô¥_ÿzàC ¾=ôÄ3™š )ÿ±F}•É"v—=8•7ì"ïWìL2UIÇ3D î°Ê¬±RMÍÐí´'Ða RHvƒÅa±6š*©Ch¡µ¨!ö$ñ~îG‹Ðâ?‡Û˜,¢dÑ¥Y÷Pu5ˆUéÔHŽÀÖ~öú[@ô;^O‰É`ï½Jɲ¢Cw±MqÛfÔ 6*اëáú6~ÌC/_(“ÕÊ @ˆå“v¨¤Ð>Ú†¶£d”‹Yõ'V@±øŸÚÀåi‚"tZ u}–½Ãª?Äoù7¯G²³ÃElسQ{__ó< ø©`´ZŒ½ÿÅU˜Hg<è`;×·¹“ç{ ÉzƒÑzÂ)³)§„ÜÆ’I›Ùå@°Á?X{5}Ê¿dg¨˜b¥ˆN 4!s€Åi4T›È·P†ÿX`–Ê@+:OM¬/È]Ä*þ(blý›¢é|ÄiH[Ÿ¡“ÒÙ£aJüOq‚©\oª6u(ÔØ¨†<Ž%ò‹P(µBÍ0(KPi‹)ö¡±ƒãeþ¥LÞl~ èõÖ "Ø»R^‹._¯À(X|‹‡œ¨G 7ö#Á'`†f¨‘$ÉéÐR{Acµ§üðÉÍί$îÉ“ò¡xדU­Ö› öý×ö¨ àÚ¾ØÉC—Ñ/ó/Ø‹3Š´b¼H§b´GŨu™3éÍ`úk/eèB Y¸^œ…¿š•~W°)ü?»S_ɦ èŠýh­Þ¸‡Z9ÁHuÃc7 ÀQºßO{)&A ˆ)-ØÊL`0UPÁÞ'åî·o ¥—Ý3®ÝVF3ÞÞwuvÈ]h Oѯ€DJÆó r·™OˆÉf8Â%-ËËI/ŠÜ:œø.z¼ |ºº:ÖN†|›nI´õ>T_{éFS§"ÞI¦h•  ä–¢úªÆÒÞØÃ›Ø)±OD!wáÅ ’f5Ö’ò\’x¼NÈÉF´_`©38ú€(sBµMk.¡R!73"Ñþ£(¥/wBeã—ASÆÔÒ6$ 2=÷i<-=:~‡l?O®| ‡ëÑò›ˆ÷ÏTeiÇ%LøÏ$ìçwæ¡ù¿¾:ÐÙBٳ݉N°‚ÁbtÁè6VY¡­«Ájr†‡Ê¼ ·ùUΉŠ?ÏïD‹Lå`Àý¯-2+²yxij˃žå}íüul7£ÕŠA"Üs0îäOLŒ 0…J²ð¸—_"*­Pim¦Æ'åYj÷pÏú<<ŸØëØÚl¶s@ÔÚ¡Ú©2¨¨ýKÇCÄãý…SKÿVP¶²º ¶‰©Ç— ï});w¬ûo1×=ÆÃÐ =ôaÿ"«´ª Øì~À•SQCjâobkþ…¥z°°zpb–ýl-åyÞ¹ƒ³ÊH8•ùi*‘RG®eû5… +‘ ÒEiQ@D–ô=ø«†K”­Ö\.bð€'zi»H=ÎzC¹‰´yš¾Âé¤3³’x*34s DÏ ‹N µ·¶Ö“Õ;{Õ.è„Ú† OuWé0fA 7 “«&%Û ^K"šÊ'zãŒËýÛÞpžw¶áÆXì—qcI¤¥â †Ž…Xˆ6ÆúO‹›`t{ ®®ëÅ><Ö£xp¸íÓ¦÷Hs¥¥â«“úl~ì#ž:/A/  ÿmÄSÙë¾ð;¯ÄÃýòkž·Ý;&°6[mý@T`ØÕF%…%—N†HØgŒòoÞ?«¸/åWæ¹Îíçp±ŸÃZ KŒ%Ì)xùõиDI ÊcÀd#ºÜí ùeyt8¼¸áTÜù/ýÁçnÌ„''N½l-E)øØ¢ªt&$„ ™ɶäÆì¶ô~º [ŠŽ²Ö Ý#pŽô´¾Ûzé0Z CÄÕâRæÅæF¤Ä¾ ÄqÏ»¾ÞÙGA/XÜŽn,6~ØŠT¶ãFmnÎ=q.¡—Fg‡|ˆþ4"pîíÌë¸gÜ]B ?™U²†!Cú{ R*Sæ²åHë M©>B5Œ ö`+Û£c4:5®òäqLŸõŽð¼³¼wö‹ã&Žq¡“cTãîÒoâ–ÅãîM33ýe¾ÏtKÕ5”2ô&'v(ØVÐ2†.P‘)OG³û”ßXüÀÜx Ù˜Š¡n{Æïo‹F+NÏùùûÙ•k¢öñ†¤Ë¬Ç^AOyÌ¥MPIÔŠ…²xõöˆžä·î|þõïÈßyI½Å€DøC9ò‘*.,|îªx"€§¾¬Œ0u]ï·â1·yÞ ÞŸö¨qµt„Ø)®kªwwî|õ;g¾hdÓghæÇ¨0+J-Ã(”äš%Ok‹€Ø™Õ?<ÔôMã1êÐ…ÁŽ~Ìž~]E,|wæxƒÞ¹ûïîô¿ž8àQìL~.Ð /d¿;;g»wXçÖA6p±šì̱RÉöý²HP)g K,´•j…v£ÇO‚ _5ºT¥—Q¯tPF,B•Hèmž£çŽ}m(UËÀlµ8½S|\ü6;oìÜß*'Æy ë?Ýù”<Å „#Üqvð¼§|Ëã”ðË ­`š\¤”1r „r”3¨4-»\i±'£)Ÿô$8ÔW{¼›ºw‚UXê©ðzœ5¶>¿ˆ¿£Š ê˜êt‡Ø!‚ ­N=Ñô 7zwiºxH‰Ä‚V¸h<æºÞÀJ $~u>ûÈB6tÙ±g¿úñŽo–¿{¸ËÑom¢,nA/ZñµÑDw]Fòä='Û£ÎKOÆí‹ÃCH ©á¬±•ÖBQVâÊ,L•ÄÇuÞúæÚ;×\$âz7›*°Îš:+ËQŠ´dÈW-’Œæè¹ì$v2»ˆ÷ìÑ Xg¿9½=¥¥ÄT.ˆd7+S¶®Æ:»SwÍy¬M©=J5œêëÇûŒý9å_ãüöéêQ:ý/Àœ]4ö)£Ã!K'”Û‹]µeUN#iªhC³¬Íã·öCzCu[M[ï¹+ÿ[ŠIIi©¸Ïi¹nÜé!7:éáz ·ýWþ-@«Í`ů6pqþw°D­]ºs'•&Ú“ƒ³ïB> “ÐüC—>…«Äõ—.³ÓI¶êžáà¿Ã9üápU!ÿÈIñ: ]"ÙNÉ÷i%P@¬M9w«õ[›Ug‘JŒ&‹¶§¥¤‘F7µ5ë”±Îܵp:éÈîjìíÇï|ðæ 4óôÑ·b>šâE·Ð#‚TI”ñ®’R¢oj,;XÖIG/9Zp×\·ö7$,Ifk¾Ÿöƒ_&†&'[.RPi+¤dø%”ì×b¾ñõ±'¿<ˆ7‘!¿Ôxs ù6I^F~zV²¼¦ÙÕ‚ÝÂH®Ç÷T3½q E]âù¦þõŒ†ap€‰Üq½>«Þ,NŽpïΠ,´[]¡=.™s²ØFW:%Î\H$žZýØÓ/¿|èN¹Éè$Á 7`È9K@-ÓùOÁîÇ¡–Æ1XmÖZ¬zƒÃF:KÛe;ÏŸ³š‡B3ZT=™mT–Gf|²¹Àœj×’+ŠÚ ‡øèÃ_Þþ²yÚLF¥Í%IÐît|Qàñ²\Ÿ¼“ç=Ží²96½ÍÐU@Ü©“lÁnQNéä ÃãRê/¥ÁXm$[ѽ ~“дÈ1?8ua8»aŽFøey)M&0IƒA¯w4Eóšk‘ˆv~hU*] 678?·—$•(–cˆG²R0S'`ÈxNÂ)úÄD‚®q* ˜*æ‹!Õ@CºQc‚r<ö0à&Ä^ÔtåfÙ8ž¹ý¸ÕÚl7'PT§æ|l‚ ´´ÏŽÔëŽfuö¹ºœ¤»«|G ï§–twÁ|2tu5uÖf½™2ׂÊàRhÓköºòÚÚ&ÏɑØ•V¹ž‰Qi’@¸(q7Ww5¶G‰K&_ß$'a`Uò Žp¿<ó/gúžƒš|(î:”p¬«¦©¡Œ¬ê(??±[44©Ê* -ˆIá÷SGÛÜZß<í÷=Æóåz/ º/v8;6½° 3èìr22è,HƒFQÀkb„Èm`c¨J¦^…]Tž¯U±GÆòçìöÖµéåã6•& ŽÞÉd<à_ªñÛT¼óACI–:36f(Ðk*Aˆ! wbð ë»uíúë‹ßã`(­mìÆñnvg¨Dºj3[öw—±Ýè™ñ5¿[ôïëð­m5ûB÷DE¥‘ÊË®Hƒ½’ßü/Üß-šèAüÝE¼»rïEAûÙúÊc&‡Þd¡‡ŒÌL:Rp!S¾óûr;c¥ª˜v5¡2M‰ZÎZp–ËõÊ}``B•ÅuAOØ0—ìJƒšJ€x:!ðˆTÿ#üÞqĤ.6Pz­q 0 ZÁJÆ^ÆÏ‘0µLÃE½ð»fþèp3ûA™­§šÇþWŸgÐbŠÝ©ÙVš½0Ç=¦Ñ€º „/àÀöŽû§«KœGn´Ôg†°‡jÁ íûÁÝŒʵ ž òÿÏc×ÐÛ|a:UPD²J~õ5¿);‡‚AØ G醬¨ˆæ/äû€ Y,±&ž—A. ÚüýýÐYþ+¬O±W¾W¶W¨Ê”îJ¿w—VÿÛ×WÐñ«>´=ÚL# ;ÍýYxèm&pa¥4–,7žÁd#°`ê@+Õ©5þÛRTãe#ð-!.e¸Åµé)ÒdV5¶{¶ú³*–ëtâÖp½‘>Áw‚`S›Ôj†)–‘/.U‰h_Š,¥¦Šã–Ž£$;uL¤LQ*VƒP9~0'˜¨^è7öB Ð}¹ÕP€˜Rò¥P¤—êsj=VY‹Á®7áVÙr¯XݨÔcF®lEÓÜè‘wyèÉ÷ƒŸ\íñT£¥Ÿ~~€@“WŸZÍ.ZÉFnηD÷_?‚¦uU—tHս޴ÈLR¢„y[e só…P8 î9š±‚}ô™ç…“‘1Ù1¡ÏÉCq‹üü)5°¥²5WjÅ)¨9¿¡¨±Ð“Û§ßä´Ö9±–’ÄÆoÜéo›mñöTC‰NÇöï¾sÍõœÅSÂÍýÊsµõS÷•÷Ügü-úZP„ù¯°AÕÌw ëV–,Š£Ò“ßÌŠ„=°§U÷~¯¶¬*ˆJyeÎn]Xá†ca·ñèñ šæÒ^}©ƒ¼Ó1ü9\#no>¾š½áüg“\¢ÎÎŽA—Ü#óŸœÖëŒjRÏX¥PL$§¤‹òÕ®êëŸùÛÎc…ëÄ 6œ]9þ?–Z´¼µ¶Õ{­†Ûç]Ëó.C‚€ç5Ùz:MY¤%iÅ~öqF½¶±G*r$8‹ dNRÕ!ã0º†“¼ß ‹Ô9*ò;=жž%^`g>ª¥UtJˆ ­Uj³T”Úœ¤Ýf·Ž@5Ô@‡¼LS¯p+ØÅs´Å~€yU‡«ÌYg!;ÑB c ¦Ð…²J³º´ ªP•˜ZÐèunFÄ'èu7"¯qÿìA=ïñÐï[£S¯×ƒ_Œ´KU§«ÁÝ»ï³+¬jMk†ŠÌTÆCÄ;D•j£Ö ÅÕ©iùKìÛsšQúÅÛG«Áhµ’'μeo¢§&içÑü¼8*jUxn–Þ­5ÌoŒSŽhwµÔÕHËs"Ôá)k{7}‚fb§4=y=êÚ3oƉ¨Àv}4p;xî-ôâHE?Ï; ~løxŸ¸öê‘Pö¾Ç<–Xžî’¥žéc_|¡`1DÏ]Ù凯 šÜVÒ–ßDª­ñí95Ä#Ÿ +n¨'Þùà‡Ø6Ÿ¾3ToQ‘ÕìACn]~ÀóËŸÿÙ«Q½ç¯Ž|öû£d`+7~ãö.hàÞéh|™.𼯡A漬°¨íy™oDlÁÐN¶J[Ž™ŒÝ`&ʕՙɅ¢Ä]gsëæÅ£äмr }D 'ØYìl6„Ï.Šl`'¡ÉgúºzHvÎfÁz¸ZÞÕŠæ6R¥îÞKïq¢òèuѬ‚ý* C(ýÛ~%b¹h‹¿ÎùãjRÈèMô A¸&=95%5§2¿¹ÝÓæÁ‡ñ}ŸŒ?ttý‰[èñ[há-ž÷]¬í7Ço¯ü‚ó"¿ê–F^}ËÑç<Ñ]]#Tæh +ë]‡z£ê¢cbÒ ȼXU"Ê+áDëí•¶Jky[ë T@ í*–Ó¢bH ,kªs·¨ÙÎ>œ²x­„Ì_€Su‘â/¢¾vlªt£4B+ª³%IÿXÔo Ùèg­ä(z/Iøد%kŠ^•g 5ŠÄ­»!òMÅåuf— ë2rrSv‹».ô¸É†cCŽ!"˜œ:鹚iS`ÚT˜v?L›Ááü˜îoJendstream endobj 103 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 5485 >> stream xœX \SÇö¾a¹¹*j%ÞÖÿ½ïiÕVmë^kÕ‚[ ŠuAqWöEÂHÈžLØ÷5a ›Å]\©Ô¶QÑW_µ­ŠÕZëÒÚžØ¡ï½ ‹Iÿõ-þÂOnîpæÌ9ß|ß7# ¬,(@ \èêæ6uŠñW>G4Ï]¬U6dc‰l¬JFζ…´`3üÔ+”ñŸ£SÐ‚à…»-/ û(<"r«dÛ²¨í;vz­ðöYå»ÚÍM@ ûÄ“&o~ëmÏ)Ò©ÓäÓcfÌœ=fÎëãæÎ›ÿÆ›5†ú˜K­ ^§VRã¨ñÔjjåF­¡Þ¤ÖRîÔ:jµžZH½Em Q‹©%Ô‡ÔTê#Ê™šN¹P3¨™Ô2jåJ-§fSC¨¹” 5”šO £†SŽÔjeK‰(j$åI±Ô«”eI½FYS4õGñÔ j0åDÖMYQQÔ/‚ A«g‘kqßÒËò¢Õ\«kÖÓ­Ói…îaf2U̳A±ƒº;®"²ÃÆÑæÀÐÍC Û9ìÔð‡k‡ÿJΈwG\·em·ØVÚÞYˆÆŠ–ˆrFŽ0òoìöÑ«k^=açh·ß~¨ý‡Ö%FM%uæ5‘¡b˜¡é~Öþ† Öàg zà 6¾U® @AHŠâwâ¡={9 CIЏ¤¤Ý(† ¬A¥ÜSº¬ Õ7D"o¾ògk˜EW޵öŽDU¨ŒJ—Ö úÂ伨L>)=ɃÂY}ë­±=Ý;)têÜt¶õষ} s #ÙFT¼[@KÅ$P *âáNOÓL§‹HÜ1’òž°˜z|µõøÉ¢à9¹CØ;®Ö8î-óq2úɺs9Ñ—!_‰„é›;B:Ûïô Óo$Ó`†á #èo+\ý¶ù;Oä_§aM0{¡âà ÔÉt-¿‰-9AËCP`@5*ák{ä´èÙ.³ä”4XŸë¾®ßxqN9ïŒ X,‚àèoëxlرbO&NÒÁ—:Á§z¨Ö[¼!€Ìøö#l…­Þ~À¢“Á,ü¶ÞŠg²N®×îwñâå+\¦¼íêèd §3äèmzøâœ¥Ab¸Î– êÀ¨ä݉ɜ")bÄ~ÚÍêu¤à,‰; »à¥@þ‡W¹Õ}·)ÅŇ¡ ŸøæœÐmˆ™2ó˜oÞþ¥ûÜéÍsŠøôè4i=bš‘Fmœ ‹uð޾èoT©Ô ˜¥ìÙ3'Ï_=³`ƤÅ.‹çùÜ9ÊáñVû¶ˆoD > Ÿöã_7zDøò¢‡uŠ¢hkößµµ¹NpSezËs`ûGó=òpúÅl£ÁîüfÂŒ™0;ðXØs„5È‚uvÀ ´Ç–|_ËÃuàÙ» ;ý!ý&²”ßêØ@S<O7eç6òÝÂrTáëƒ""¹%X-õ@8Ø ·!ióTQÎÝï-ÝÆa;ðÅZZ‚Â÷KÆu ’ò|¹žA´ÌcÔzs°Ã[zXrÛNtİœýþì0”S…–FV#¦B]R«ŽÝ?{ÝÒ¨en¼èË=}¡°-“PUs7pçÓÑÅÆ²… -ûgñ3~Oõ0š¬Ñ>- £é—æ>ü ý%¹0U¤©GîgVï·éâj2a(é“;=€fÛ+:ˆÕèìDOà8ä°a‘éâÌ Œ Ð'LMcï‹CÒ9UtZtC?°ôB#fCSä‰ ÎSã‰$­ï‡½çýγè{r^t¿=᫘µ£¼¼ü¦lZ]Ì%—¥ä‡ ÆØ~¢PŠÄõ¹%ª–®Ýû¤BK7­ñ룼è ú³ÿL¦/³/t?©ÆzO#uhf›ÒdzoÒ/šüÞŒ>ê¨&k¼ƒSéI_xw]½q » i|ü”ÑœÒuÕî0ÄÌG'ªy3öÜÖƒÙÇ΄9ªÍb1õ¨{`ðøã[ihÿdÕ=r±é †˜F‰ søà±Y·Íßößͪþ”Ào¬Ê_ƒÊÓE—T£†ú$ç=à&ÝÛÖ?ª/¡Î©sbý碦F*…‘KOÒ‡vq"É>´/¯Ek¬iÊ ¸¦TvYrÖ›­i)O-øÀ5kíF¼Xg= B|¿ÀW4È¡U¢ü¦ÞðpÒƒ¥NPbˆ³4l6Π!‹EQd[ÓQ¡$~%*çÛéõø¸µ’N©‰9»/ê|j¾ÚMžš¸s)‘Œ’v‡ãÖí}ú†$/þ\ƒêùs¸;#,]Ö†ÚPzn™®úŽª(½‚QÑ™î-xPFBAt*@-(½$£‚¨òTÝcíiý–np%•Ž0X4²G•­ˆÑVÅH¶uwfzÂËk¾Á¯o‡j¤UÅÚ܇rT*uZ‘ªå"æo'ñ¢#xq*¾~Ò¨%ç]žr¢ˆÔ™}¤‰#œð®HmÄŽ(ïh”€×m{>i¿Õã2ø!2ík m f†7¬Ûè¢ÚèïCªåÆðĺ¦?½Þ7!ýêØFÃ`ü~Ï´Þnúõu+ð·`x7n>€ÌA¦9¶÷cO ëª #òmς˟¡Ô“EG¢B?êjNÔ¾uш×Ì$‚É6"(߯·êþIW^ÈôD¶ò²Û:ÌÖ<Ë„¬–¹—éÉ`3@çid§GF:OUM¢3ìÑ Üþ/H^ˆ}c¼’¢”try¼&±ümH´¯~9¬hƒŸgìF ¤t@ ñ{1â 7o…L‰T™9¨©Ž* Ùºg{ûãC`ŸŸÁ½0]zí¶4x€Õ¡$énEd"—#Ù䄘Y /}wT BxMó ŠçU>åò*ÄTiJëºÆ"ìø1=Û|?lßóc)?Ú/zÛ³w =¿c½‘¼3çCÖK¸a-j¯óÛV²å5,˜4‹ð+w'þBºÔö×jëð·Z$\í1{þ¢/wÿpé⥠í«ÝúW2úŒÔ N롊°â\XÍjÊQ ÐKįâ!“&)öd<°`änµqQ ©’D>|Ýšø`äˆIo1ªslQ×ÙÓ—q]âÜיЀeú‡·-!ËÈåÃÌš0ì}ýsTÏ¥äîhVW–hϽ¤ïÏß<ƒ[;ÁDìOpçx“(C•I;Ç÷Kç2¤êÏ ‚²9 0ºA`ºîÞ¿ït yf¦é=r3߬)X m[ýBÿp`ÉÚµ[–Lâÿj Ž£ÎÓ§§ÏÁæs¶ug$FÂþäÌÊ+v¢_ã@‹Ø5[œüôàÁ§öoZ»ÊÓÓŸêæ+ZÃÚs¯ëJw}|]´–×Teª²vU&æ!¦´² ®RÒ°&nƒÒw3/Í÷)ߌ˜·9ÎÚRêW,áE˜Š“ƇŽB>EâÜX'ô!Šcf>[#aä³Îo[¢Ž­«åb²·VLEÌb:Å „4JB±EqEJ5JCiEy ÁçÙ Ž–å66ªùê’\Ô…˜n°F3=·L觤^¤ zuÈÒðf~û#£×æ`ùKAþ,ýÿ`èé^¼¾ßëØvÖoÕ« Ê¥0…ÃúÞÁ7x¬œÂ/¤ÁÍŸý¬¥\‡ö1·>¸‰sxñÿ¦¿~´èØuâêQcpE G[‘ ,÷/ ÔJ÷ æ|Õg­ÄL_¨ä^ÑÁèðÉó('¾’‹­ ÓÈó_@÷Æc[Øùx Éï>tF±}¶nŒ­q'j†§£&<¡EO +mxEppxxppE¸V[Q¡å¶'.BÉÅÁÛ¡–Õ&}‰f0î[VÌ ÞQ»ÛZ›²_Y¦,U–ù÷;(lßk¡*²Šs¹¶@ô±PÌ•;ݼ÷ÇòÛÚveÏ+cDOæ”m-ØÙŒŽ8o?z¿Å¥‡ç'©û]Ø÷Ù¸äèÀn[óšbã,çÎúè°óסįe(†¥2/¼Fz°'»ë˜ñ¬eÿïùí—àÇ/¾xszäîB“rú&´†z°è0Êb ÃAhÝlfŽß6“Ï“­áYß„.&ºoï‘o0³[f^wà ú««d+¼ÓwÀíÅÊ`Sø€>@y\ÓCÙkÈòêx–ÌÏš1þžþ‹³»ûZ—¿rð}½„yÙ¨G4~ûÇo߃áf(é-Þçýšf¶^í‘“¦ç›fùªùäd 1~Œ'9a«¨DQˆñï›]ƒöò¸SèÑ¿óîô­3‚óáC¡¨½{ß‘}•EÑ.– %ÛóÚý×!ÉDž¸-fG0'Û\æ‡Ñ ( 7¢%A­zXªä”–†`RÌüµŸk¶yiO|+ay¢»2˜ÈsÒ…M°A™_†â‰ŒD»‰Ü„7%»?ˆ2•å‰§Ü 1×î¹}ÞG‹ry}¥GéSEœŸC.R£±‹Çcɯ>ͨ€'h,‹|šÉàc˜×D@)¡±…M0~éãUKs:+sÝ$MÙ•Œ"YqtiãÓS`¡Ûñ‰çö°@ÿu⦬lUZ¶ÙBäú§ŸÿµúÎf[uòïcñd³gç>ßGþª. : S, ï‘%˜ò¿L¿È׸1`„€ä6®w²-5þ;Å^õ!­Õ Æ&™üocô]ÊÓÃ'¤ÜAp†…åãÀ[`« ½w0ËŸb;°«Ç0 ÈÆðÁ9ì< oÀxý£«]—ÞÄð.xð<¾wÁpÌøØî¥,ªFmé9e­wÒš“¥Îª"ÝŠZŒ1Ó£yeZ‚™©BädÞRoÙz%9«&E&…V)óø%RÓÖ0xŽ"AûÃN'E 95Ô‰Uñ<Žö¢f Quê>·úýÕÅMªê~Ú¦{JPLò¸ÐÕ$IŠMævÎr“(¤Ê™[\–\\¾/«õ ×3gŠÐ$¨&dMé¿×!$yâÔé-??ÃÆ'$%#9c¼Nãà^_Ójú/($ÁާÏÿáÚ¶ó‡/ ¯° Ãç¾7ËKWª©,Õ$ÆgsŇ4œFÌÍ/7O_¼a¥³ÛËjx–EZtȽncͲ ÄD^ )O!<É)HÝüLV¿½Øÿ@ØjÅ&”Âà%B„¼ñ8Eo)IŽ¥·¨oóª,t i™»BR´â½%{‹ªªúzRªÚ͇ª°Eš¢ƒéŤ3^2ìþ¸vé·ðÐ` ·Ù޽ÚOÑ)æê‚ϱÛ,޸įZ®6®§()/5kh¸l<*~qÌÛ#Pæ³+œ÷+¼«Rd1¢ŸŒ(çÓŽ´rùêeS¶ÏÏ?Âgffg!5S%Q‹ÃÂeþÓ®$2h÷í½ûœè!º¼é¬s½1'C,ظ\´½ ?Ù‰¾58þÆ–ÈJ¤qIÉI‰\`pˆTN¸3!7¦ ¦0Rã‹v¡`iXt¤,(E1ÒbiI~VfV6W¯­))ByÄëÆƨ#ö Z¤-©,U×U ²~ßCé ƒÔ‚ºK î°l…T6>†Œ"¿ÜÄ21åjf¼>2áĨ릧yðŒnJÌñå‚éP”¬Œ‰dðû= bxjŸ {‹Üñ p:˜IœP÷Z=(I‘…zƒëƒ<·…3° …&‚«è#?\.ŒBae™y9\mã¾²3D‚~»yhËû‹>~7xiÎé`RÑœlRѺ°’Y`üŽÙß,+ñè.Xr¢_ŸÌÿ‘˜Éþ.ë`3é²ÞM•zã]ÌC(†v롎Gÿ~ýÓî«\=ð`¿ª=ÔŽ>enÎºŽ‡`›wçÎYuxýßC8ÑOŽKW8Žšx:ŒÛ{w^s9ë¤áæâFv¶s‡^wæüw÷>]¶|‰óêÙ½¼vŽþIÅœ£Ü|`ùOêú?)Ã6ýˆoN ’  ¸tÏBìi¯’¥Gh ud–©JuØòŸGôQ!8›èÐ`õg>Äg­^Æ‘³5guW¿·o:ugÕ¶g.,íþV÷誑î×Àa¨c?‹9àÖ¡u›–Æ1ËAÊb™Ð#k[…ìxVF^ªd´¡¥‘ñÞ)›gŸ™Lçe4© õ¨º„k°òã·Ð%Ôü«eDÿ8 ;„M)Çä%ëv'$Ç¢&¬4¢VSUÐò¥Û<8k鵦H,åv ±EÌÒ ÍÂÌ `.Y­Ê[»GG¶uæ×=»ÆtBj'Œí4wtvüB~, Ÿ`3òÒ2Q6S&+ M”âÃ5¿/NÙ­HF‰’iyUv9È÷?³W½Î®_ïµÂÉ©eűc-g¯r3±±’ÚƒËk ÊwyzJvÙXCXôúŽŽv®tœ÷Éê£í­g®õÔÜWV_XX¸ÍSkìr‡Æà©î“ž)›Ÿ]˜C\C¥¤@ŸªŒ—sø&ÞŸ“€$(&'./náöEñéJÂ%å•åäÛl·³µ4î—n^´Ü, ®ð˜-h"Ræ…ä<ñšr/"eMFù~†'³E-äŸQä~£cýÈ›bàþ˜Ï*¨as³Œù Â„üÝÙø촗禪â#•ĆIȷį´agL~â{“ +-ÉMWåóžæy(Q'ãýé'fDàW¾Ù ¬ÐãVàaÔw%ùÙ¨˜ÉIV‡á-Øçâ!‡§6¯çN.¸¶šÐnM¦:‡7ÛK¨þª‡!›ïú[ÛåØŠqRd‚,?13•‡ÙXPŒg’ƒÜ/ÌãצÈzŒIÈŠ¬®ƒ-`¹Ü0n°UT°Í d3Ù A6¶õ/I'0ôendstream endobj 104 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 166 >> stream xœ›dÿCMSS10‹‹øýùJ‹ ‹ ›÷À½ºR3Oøˆù‹ ÷¼È÷˜Ãëá÷ÚÜø7÷Úò©ÎÒ‹Üîûâû#û…ýJá÷Ñ÷2÷PûÑäüGø÷˜÷$÷ÍPDDKPû  7Ÿ ‹ ‹ ‹ ù> stream xœ}Yy\SWÚ¾îåVQ[â…¤:÷ºÑ:U«Ö¥î\Pª¸T@PpcQö%’rB $,!*ÔŠ%ªà‚ûZlmuj[§Ž_§ÎhÕžÛßá›oN0±ã7þüå›7ç¾Ëó>ïó„gB  Žß²sYÂŽ¥ãÂb7§,ÞoÎå¢àßC~Aª½ÀÛx{ÖùS¾¬| Š^{“°ÿ›3wǼ„ù‰ ’’wîZ˜²(uqZTzôÒŒËb‚c7…lŽ ‹_±eåÖmÛWywÜŸÇO˜ø~î¤ÉS>˜:|Úô‘£fÎ@ÉåÄ"„I„£ˆ0báO¬$‰âcb ±ŠK¬&æÄ|b±†X@ü™øˆx$‚ˆ ÄBbñ>±˜˜D,!&K‰eD01•èGô'‰·BH "6 áKø"BLxoƒ ’ –àˆ7ˆ¾Ä\œ“Hx Ô‚¯úìêó«G´ÇwžÁž·ÈÝÔPªÑ‹õÚäÕBûÐ)ox½aêK÷]×÷j¿ð~]Þ ¼ôgú—ôÿu@ê@r |àõ7ëßüý­è·îùˆ}:…þB³ð”ð{áÿ JÔÌ0­¾ïøæù üd~—DóE)¢nñ”·ÿüvç`Á¡ƒ÷ ~Áÿ2€ÿX¡¿¶Z| aê?9›J“H³òtŠ*ާ,ƲJ£¼$“ÛDMâkH´Áí[o Õw§Ûì²%ŽGc©SÏ>¤~€þ$4Z$¡à,ØJVRÎ>°&Z}xÕ1?á hà'3s\gÖS Ðr}ïƒjú¹\ø„ê€ZRØøí·«/nf¹%­2ÛRA>PÉV! ŠwóOàr&ÿT§Ö«µ L|}Uó‡ÁÓ—ÌgîdYa,öç°-Áæ'|ÅV&Ü-¢óÔÓǵoù|a'|t§±±íâÛ7CÛ¦°¨ÜeÕA)Q,Ó cI8•ú ÔX2ª³Êw4:pÎÊwYá…ê˜/` ¨ à°lz]fuH¢Ì_:ÝîG–•XÐÃÆûØ<øÁü|DC/âF|= à(82{1» õá¤ÑÌË!“…<†£~—žÿ’ÐãìË9OÒ7m±øÀ>8œüw| ³©eeí"°,N _¾.2078sªH™]” ²häýð=Ø÷æ—Û/±ûjuPNëåÚü‚¢‚6hIXR  ß™óõÓŠâ*M%Wy«öƒža n'3öîÔÔnÊÂX‘VZªÔ(+Ó˜k¡§H]ª.Å´p¼A¦ÍÏ•J3 íq¢`+|Ï ¿q@  {øæ`¼ë*[…út›Ép·B†c ªp!3¸1T;,9¼èÄö;@ ‡B!ìÅœPô䣫ˆ˜½"1p!+\ CO3?œ_9c؈DMY~æîóg!É9ªÍ§`¨·Y= ieܱ’HAÀ· çA8ÜxFTRS\,4¤ç}‹,JtGhpw ó”O!áª4dW»Õ ¢@^QNQNÖ<Ñ®aH0Јö9ö>`¶^88Ðh„¼‘ØÿË ßî\b¬ËÆJ=èövæ—cÏ®cÏþîvÜné›HÍF¿gÍœ¹lG€¨=Ñ­û¡¯Hm$+°ãf+ 8·øxòe ~ ~ýn÷cG[ Oö…S°¯5n‡{¸ü8A¡?¡®x¨'WQh(ÒÂ.²ýõ¦5T vù$…Ç—±_qЬ>lð&Ålþߟ]¿§0£Ú î\a;.={3+QÈ1¢i©N¦×hÔêR¶kU_è+¶Äh9À沬¨Ú^ºˆ;tîN¨^r"æ/7¯|z¶ 7dY 3miØÎy€Žû´åƧ WK‹\Úð’(|?˜ÀÀ5p©u‹¥+–6 MC¾Ã /Ùúú`uôEP2 $¥n}"v!9ˆ‚!0Dä7 ‘Ë"ŸêMÑSGŠøVœ Õ°Ž‚G$Yv®¶°Ú>"=ºkH7™ò3Uó€¶>÷å`<EP ‡=käÜ¥[,æ`ØEæþ…åS‘"†"¯éÁîA¯èv¤Ã‡ÀS®ã…-ÆÓß8wÃ"¿Š²ÁõNîÃ\ÔKçñh‰ê(ç䋆Á¼7ž?s`ƒ¯p÷(4ŠD>nQç¸e ÅÛG›ÉñrLçYÎÄ÷L+mº?Þ'O¹x¹Ð^å ~+ïaÃÄßß!{Úxo&®quÍ2‘ÄXrº“Å­¤Ð(ø”ù¾3d*'<€èaCýAHç÷Ðë·rcÉ"_,NjÈz7øŒqŸIÝÑ^MsEÕñÿDå;s©ÇüF¸¦[íŒ Î³Â1VÁ3+Ï4yðp-SZ§©ô?fÞD4—wb‘ÇÝÙ¾Üe>ØÁ¬*+Ã%6ÈuREa‘BÊ®Ý:+e) Ç]ü©èÕeœÁÊ4þíûsýðrØô" ÀÒËð\ÂgB0Ô-¢PÊt¡ìd{ýU Þ ¬Ê½ÊV9ÅXË+t ­´˜Ûª]¤‹Áì³çå‹Þw÷À!¹Ü¢½éŠ}Ô3(¬Pƒ³iÃã~ Ìb03ÀA|ôÛŧßãìÉsßSr(‹›Â“i‡ûºqãddèÌ ¸×êQ=ü‘ÙvmÝÁù¸OüÐ[èMäp#ð—®Îƒ×Îs ˆÉ Z´2C…vë\/ê `­:v´ñpÍ!ƒ•Žþýºt~"sïLøLDŒúÌXyúîóþã·ž;ð‰AƒÃlug¶*î´“ÙÖ»&rf_õ&Óõˇ«O± Ôà°*[ŸŽ@…Jê\×»ušÈÕ&Ÿà½AS\¦6à©‚ÀÁëv/éY7YafOÖwÀ3öõ¸#áíh }ÖuÀvj5žÚÞ ©ÆÎsàݵøÌ,*v‘äÖd–; ñÞ‚7ÀLŽ£.ŸŠ ÿhÌÒ¡/ñöë3?Î.ÒÝû: ƒ&»‰‹¹ ÞIÀßeB¨”d§“wZøþØÏj׿ë[ ®ÅOXΟâ+˜­Ö 5!¸Â^#Þ“`ÚnÉäêRê%×%7$¹%«:×” RèiŒŒYo2§²¹e G¶¤U¤Ð+Jä äçfìBž"U¡JŽ…´0°WÕ—°Ú¤ðغC§“n¾ºöµ4­¯kmàpfîêds¢aŽ)¸,Ù€ëdÌÛ‹Wª/ï^ù©¡)7³š5H÷lÁ¼Õ³9AY¹¦zϯ¢bn*Ì«^ú¼Ù‘(9îËÉÝ£s‚BÖ,ÂÈä†L†z¾¹Róèg>T„ê]Zƒj·Láœw[Ò-ÿÄÃéüÎêÜæ¦SÙóTE ¨ÄjÞPzˆ¾R¢îuT2¢ðr"lt^ÙEÂŽ’w+Z‰‹Ü_!“p!sús8‹ƒ7s¿^„da„¢©0.ƒ~äqÇ6fr@Æe½‡B‘Èÿ.ßϾºý7-àäåŒépÜ^h¢#C»5|Ãiþ_På~GsÎ>KázŒÌ¹¼£y¹[µ)5b +iK܉×íøôÈuNÍÊ«p‚ø^¢à:~ä¾î‘äe ÎÅÓ¨òuÓ¨ ‹4±;1‰B.£Ðªî!-|"ù?n’;Àe긱âi~1ƒÚ 4*PĹI®L+Ó©8 ¾5yæKŠŠ@kÓ2¶¤¬Œ}=Ï!OmžF©b£ÉX®)Ò•p¡Ðް™µz,"°hÒ(eª"‹FDâU÷mŽß ¥p~+Ò(åEr ç–å›*ôÚšJ®‡fûX„å¸Àí°œy)Šºßq¹Ž ²ñæø%¤™ 7EmÛ›z„+§š›m‡víÞâøÚÊ·áÄo†w›=øsð£;¤9ÐÐsÕ•‰¨?ž¬·°©þ²íÊí`‡yžZüìó à„z]ý™1]>r½©õ@ÃQ³ Ð7V¿“¨LPìäÒ'æ,Ùó‰xG\LF4 ?Š;ùd¿f_i­³%ü*žgPDh†¼@rź½ï´å,jC‚n“}¡r­2]½r$óåBÅÁ‡ìÃt-²2jÍ‹oàføak³øL‡åspŠþzá¥éK‚׬a““Râ@6-ù.×i+tì ·šoúò©µ¡a»v áHÎúÔÅþ³s—‹x–ªºãZ®{ˆG¶™ìÍ”/³©Ú2Þcî9yÜ¢o‡œœœºy=›š%ÍR:_'7è5ÅF{´áTÍY@_k Ÿ¿`ùähä2N®(”m¯+üþ;õõ¾=yìô‘aæÆhV^ZX,tžD"É3J>ÍæZšs¿4ŸAâì–ãÁûì9„qÖœÓð;FŠ4-eËæÄ¬ ”&ÕfWPXšV€R“R®O[@BvdLBb¾oPvÃ(ÕØ3gú} Tç[ÒN~\#9ƒ#æcÖº½#0Ðú´g@²Âø}㱦MDƒ^¹!ëâŽxj?„%`ó®Îþà>Ï’PèR·( [”EÁϰ*ÞK9Ò ïYá‡ød ®å%þ<Ž›>'5Øo20#+A‘X-ÕÊõ@ J‹MÚÖÝÇMoÍ‘³?IŽábB–o a boL³\WX¬4nRI®%íp ט|,÷8NáŸ`?8vvrTŒ4u…³à + ²T`tØ…t¨`Ê¿6ŸU¥€6–Õ[*b§½»p÷Á‡«‘@ ú›ózþ)èýýÊó³,Û8-„•‡3õÍ•fsUSc3F%}ƶvéØé&/ßtøJ§Ø£Ò5ÙÙKeá­øí'xƒöt—)p³Û‹T®-­Ò³ðS¾ªâ Ùý•5©(Å=7d5%¬®„-=™´4A%îæ¶CV˜b+³yðËàU¦¾²ª¬¦ÒÖPÛŽÓߟŠCǬݽµc;.&<̤§^^þWˆ{þéóS Ö•ûÙtXÍ\k‰Z6wÖ¢I‹×ZOu¯ë>Œ™®¶ÈEÓ'ÏÿQDËåûßÝ~ä@â><`Ò–Ì÷Ê2äW˜ËËë ìPKžòu=­6ö>uºoO»&amðe**¹tUJXbTÈ$Xø>H™©ý¢Mk)Áýy$çè_½v‹»ÿíIè CÃ~¡_GžC…¼§œ^~çÖ¥¦¿œcµLü†ìŒŒ¬›6¤ÅzETÛ¥¿ßûé‡ó[Wq¥©jEq íàF~ÈkéñØA;=¶Ãü<ÖõüèKÚ|.åW@yb‘•bÃÿí2ÚŸïbòfÌ3@’)Ñœ½;k_þEɵœÊBsNe^y*H§g„¼·e£Á”Áæ÷ƒÍa,¯ä% »¼Ê+ÌÌú°W]¹®)Kª,;¾ØÕZ$NBýTy¤Ô®=_|ŠÁü†ñþmð71¨Ë=^™R“d4…Óµ™å9eùPMŸÿêÂíºzi¾™­Z°@.Úi_` uv¡U¦1›Î¿ZSW—Òüt»mjYdIù)‘ºœ®6¸$ÉQ8ç(Ú?pÛ祟Cx`VÈcfÎ7k…-êÌ··»¾îŒn 失ŒuBÌÊÕ+c|Þ~òd;·™ŸÀÌš;ov˜5ê¬Ýð\´5„“Å2Mû6†cÃØÃÆ¢ ¦²D§wü-B'S(U*Û= ÈQØï5 ´2½¦—8e˜õWÜA?áEÆ5CÜ®*& ‘¯ÿÆ>Û¿‡õL·ÌVhÅJ VY¡B^¤)•xêy±R§€WQ„¨{ŠÈ“ËexЃ"P¤.R+EÅr{>‹1+i5vPÁü%ܹ 3#ròDþë‘@¾`Mi\EDU¨ise²F^ªÄlb² X¥Qi¸÷%WÀuß9 ‡`Šš\Ž èhœü|G|W;=àöCs%yø­j%wàãbÐè0¼Âû ) ¹ª(ì—ce&³ùŒÅBÿzè î&BÍ•Z  ¤YøÉèc±X(kßcý€w_à?}âßkq§endstream endobj 106 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 221 >> stream xœÒ-ÿCMR8‹vøzù-‹ ‹ ›÷T¾»¸3ˆøˆø§v©Ô÷÷±òÅ¥Õñ÷bó÷‘÷âÚ½Q"ûDfVT@ŸÀh¯¤¢¬«t¢kpozc,ñM÷÷èçïÞI×%¡Ú§ÆÏ‹ÛÛ1Ä# :Q?f¤{¥ªŸ¡¨°k™uŒµÂØŽ‹¥×ƒ$Ena}{mlt‰N‡xŠƒŠ‹~}”‹œ 7Ÿ ‹ ‹ ‹ aOU¡endstream endobj 107 0 obj << /Filter /FlateDecode /Length 2270 >> stream xœ­XioÇý¾ÈÒ`Û}l@r,;†";Ô"F`Á†\É•öáŸWÝ===«uÀ‹ÕUÕu¼ªž7à²ô¯ü<¿[(nb÷°Ýw '%·RuÞ:Ƀëî> LeÜ.^.‚—ÜÙyg× B•däÎ&)«‚æÖ4R•ÓJig¸ Ak椫±8¸bàÞŽ^•ß[§œܸØ8¤çAȉS£ÔÀ™H§ª¹Á§Æžè®o2…²+?Îﺧ«Å—gÊv‘G§\·º\ä0ËN" ÒàöÂs ‰ÕÝâfú¥ZIöäÅ“ç}PÚSèC$O«òãðò3ªÁ9 P †*<û±ßwç›~é4jD(vøýõæÄŸY¨ïoP!í¨ÆøwXP4¦¾ÓµƒiæJá"†‘¨Æ®Ž4BmŒBY¶#~ ÞyL¥4–]°ÌòQ\öy΢®F³„ ^h˜^]ÀÐO¤Ñ(ô˜ªP.½Æ&°%-B0Ê–Ú)Àƒhˆ»Ì<, ì.)ˆAr£º´†¥H‹€!i…”)Ï=– …‘>àvt#!áF%Žã<ÀçºW)=£š¿]Zd{þ>‹¾Øå6Ù7æwÉ8qѺßÌ´æ† ÷ËOþKå18ð„Zb”Xç n¼ØÒPuF¨”'D_‡\“ S뺬t–­)úM)åûDŠ ï<úU 1íxDìÁ¸À“¿ÌN4º1:MI(H f^ Ai¶Þ¹\ù3DvY(ïŠécåÉ¢|‘9ØxH>È1íRÂucÛs×£ð”;˜«7r©aU@W»‰ói J¬ý©éCÈ>#['9¬ùÙ¦¼9ìÍR—p^ú÷µ¥ö`´Àv„¡ïÓNîc„±$@_eJ`qäC ¤å kßà«Ûû'Ý»™sì¹C˜Þð¼©Òõ±on>Êl²~h®Ð†¯)ûuÒÙ*7)’BF*o•”Å4õŠ{­ˆ/Bm¤’S{Ð…ž Àn{«!`µ8‰‘œžØ—T¾m‘Íi6xÞ¶ì´¢÷¨ãKóŸ#x¬é= Hz>: ¨‹²â r°ÓÓýdáËÄ º%Ø©ˆnËëFJ•bB›£-úNL––ídSä´–²,Ë®<õµ–p›÷A…$¨C¡iƒí˜¼ùïÖØrÔ£®ÇWÇë™/Ä73¯“ñ»ð~î¹óE¥Î=|˜y?­gTfx_Ì>š IK×f>ßÞvëýaßÿeøòì“pendstream endobj 108 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 3445 >> stream xœWkXSg¶Þ1½«ª¸GèÌd3Uñ^©ŽUëe´VQ´jUA@Dnî W!ܳ³’®á~Í/@QQiíèTçèxÆÛ©ÕŽkíÅÚúí<?æKR{:Ï3§sÎÉ—'O~ìµ¾µÖ»Ö»Þ-¢œ&P"‘ÈyÝ»;–Ûþüðë ë~gpƒ‹Sýo^1LA³&ÿ—Û©W(ÛÇkm\|Âú¤dß”ÔMGÒÂÒ3Ânع=*:f§lw¬ËëõµÚN½GyS;©]ÔlÊŸÚMÍ¥öPÔÛÔ^*z‡ZO-¤6P>”/õµ‘ÚDùQ¿§Þ¥–R[©XÊú‰ˆr¢4"OQöÑ„Ä wÅ…NNûœFÝ•’-’‡t?³‰1¼4÷¥Ž‰ÌÄ ‰&ùLw)r¹ÿ²öå]×»¹¸u»ýIP¸Z«ÁŒ‚Ì‚o³ÈbÝ!X7³Å5ŠŠ,Ⱦ¨( ÿÜ#÷PJôj%#£kŒp z Uy?í2ÝLïPeš¡ *ÕZµv±H'9‡ç•æ©P컥2zPs†`4ð‰Âf”I¿ òÊ<ƒ—"Ë%h"ºãì*\³àl>ªŸ‚œn ÈÓÜÑV¤cøÏ³—>¬ Ü&ÅYt°6Ãê&Õ)85ÊQGJ3ƒvÑð tÄ÷¤˜"jöÂë°ÃÑxF)q¿ù„Æ3åÎ2újea ‡›ÿGG›ä0Ĺ Ur“0W/ê¸zï‹…tâiÓŸa7ìîí…§âÉÏf#7äþí·ÈMŠÓp»Âô)'û•£$Óc0¦ïëF œ#× >­"Ë”sFŒžo± P™[ÌCnŽ”çóó‹Še­²²’‡Ç¡·×&¶¥rÙñÂ3ùgò­™Uútˆ`{ÃÑ™‰ŸžË•*ª”e¹À…‚ O¥3!_W¦R55JK˪k´ÚþC =AÅmàú•Á4cjÓU¾¶6Qûv Œ1]mýŸ#ª|Y’ZªÊ…¢`j¡¼‰@0œjF9fa†Y4öTð}(¶®±®°‡Z¨PäIÖ6ï¸à žx7^†—à¼-Å¿G_\ï1q ½ÑUÀTCe=‡ÖÐ'KµW¤fÚO!‡Ýp–@´†EÖE?ÒäFr[hìŠçCÎr¼}C]Èoô“¯¿_ƒßl—ªsTÅ$¦zжÚM'íïnFËšE?Ü@¯šÄè–0ƒ5ã™hK<­\=c®‚Iz€;hìt7eôJÏåkÒ±xz­,*j#|Ö(E4éo¹þ(»ÿ¿§YðB+ØE{7¯[VE ÑQvÇô0!¿ºHä‘GYV…¢*¡B]Þ€~ƒîz´œéÑõ¨3«âA¦ŠWÛ­:ø†lH„<%_"ŸŽµ®Ö̯µ¾'¶NFØÖúJ[l¶á A…pÇÊÚHƒ<¾HQ¸k<¼‘‘ §§Á¬6ƒwËHŒ‡]Ь¬>Z)¯ ðÅrP.Ç©óQMQa”ROã {nÁ$·prWÄ8ì]ðºÄâ<´¹š¼:¨ƒÒêÒª§¨Ûã;Ü]šW*¯Ï:ÐT•V16ÊÔ§õ (}Ç=ú)·‚¡7®›¦¹ÉÑãë¬6¬#jý¥º;Ü…ø]´öFEÁ©z)ZG–´„ôEvÕíféú°Í²–Lƒ±©Ù0ªUrFéÊ`ÎŒE,æÑîÊŸ_S¼ñðºèÔ=Î,’pEJîøŽŸ¯51ùf箉 Ýj9ýñØ eR‚¨sDµBµ}€RÙÂJP‘£¾õ¸¢Âl±´d+sœ"$/Ê\Ç×2gåË‹‹6¯ôXõua%¯†rOÐUëÚl|¢Òë8è°ø3¨ù¡íßaÖ#5q÷¦Ô¤½ÛvðG€,Ͳ4;  º”]òMÒ( Š`V[רn6tê;o{{4¥gE ÏËI¶mÚ~u»j€À3'ì J‡C,¤šH¡Oà0}ý=!…t˧bä‡~`‹jA jÆ`‚c Ÿ¦ #HÿØ 4ñº´hœöHÚžº;Î×<“ ³F¡®P™*ÀÂÒëS’2²Bú#ÏþiàƒóíR´IXQmh컬ö4Ó‡2Èùyûñ% /É+)ðÆù®Â>¹ õ~ÞaYî£ÐGb~Ë)I; qLbsšÁÐÒ`þãúã‹ñÔy^x2fŸÍ!+ŸëB/Wêä@¸ŠÏ,’¦lØ™ÌæågÑläsgøbÍ9>ÉFä"ù•EöO!îõצ¹w žÈ…%`)²ÈB‚ÓÃɬ‡·'ö'ð’B—N¶võ™G¡N1Fè²@ éŒæ#¶¸,dtá|7¯9˜Å“¿ñF“þ28ÐÒȹïÛL£y?1ðìÇEê`›Jr0YXc#¹u1[ S@:qµRf’œ}¡ ˜ñ^:‚f’µt^]«! ·NyÎùL8eä„ZX5þ¼"WK󬇊&N¦pê)ÁÍŸÏVA ä¨v:Êü‚¸ñ?. &ånG«íŠDqU,Ì k³U -ßí|LäˆË‚éø<íûYȹŽT"Ç‚£ÍV?ögM?^ÿËêùÑÿi¾£e;‰4wEÇmÒ\5å6¢Ö’ñ~„¶[Y<ÃÊåÊ""÷Z^¸T·¨Þ‡z2×#Zô+ÑžàÜ¿ÕÇÙÎäöXYJR\\[’¹³½½“pÿ•T³ÕÇ$»Œî^£4áMvEsâexŸ¹rîò=Äžç]+Õ¤«Šuv9ÖÂ!º*r •ÊÜBiNFUÍ¡=™Í{N/ cþÒRŸ™«†ƒ´ÅÜ`hc1š7½’ïŽQ)-‘°ñ \ã³J[^ UÖAYŽ](¦qØŸNƒ]¹J¥+—Ö4æåtŸýã¶Ûy#D(ºÞýæùØ‘÷“;¹ýçCªýê{)¬¢~ÛĈі_Bc†¡A9òOZ¾:µÅú;›„ˆ£ÃÂ7,Iª TLçè ì¢ íÙªwìò¨.©FÅãV²lMa=)ª¦L[‹²…{-£}µÃ@–\´‚¨B®iª@‡Õˆ²5…(—¢\òðÎñ "]žüüµ-Êöæ>bsCÔ­ÓÏ7\ÿKýñ¢—þWÿ¬™€éб#íáº`Xañ»s? ï] + pÏ‘`Æý®ò+Éÿé•ïGšüE§^ôü:D ¸/l`³”ä¼’' ŒÁ®h‚äÙ=cmÇ‹’õÒƒ%E2ÈebÛ3ÛŒ-M¦±]ƒ+fa/)vþ'þú׈¡¿¢%ôpYηþò“ÂÚÖˆ}†(1 8Çv$ëcc““âbÛ“;­.è´´Ùå%p™.“Àe Eý €"ûendstream endobj 109 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 165 >> stream xœšeÿCMSS9‹‹ùùJ‹ ‹ ›÷¿¼¹R3Oøˆù-‹ ÷ºÌ÷“Æìè÷ßâøF÷Ùñ§ÓÓ‹Ýòûßû#ûýJè÷Ï÷4÷RûÏëüRø÷“÷'÷ÏSCJNMû 7Ÿ ‹ ‹ ‹ à;¬endstream endobj 110 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1397 >> stream xœ¥T}Lw¾ÒözjÕÎyd.ÛÝ63âŽÄLPp›AÐ Q  ¥Œ‚mEiEN„·AÊGéÇà"ó#2»MQ©'ê\çÔèqší×äÇ’]©R6³¿vÝ/÷Þïyž÷yÞW@ˆ@@.Y·n±÷íuÀÛ<ÏˆØ €TRQýkÙ´á—¾Ú+#¼ÏÔÕµF›Ÿš.ÏÈT(³ "–ˆ#>"ÖñD±žˆ$> V+‰("šˆ!d<!"4ÄIÁtAkð—P#¼, =+ÄNrYæ±NñXÁ…λÜ(Î-ôD¢nzxc÷â¤ä‚¬t†+oØÌ,%w¨@™ÕuìIìÜä?¡¤‰G{.èÙM(‚üm¨£§Ç¤Žc°Z)Ù‘ÃWqÞª9ãªHo· ]q ¾r#3§@Ù4’c1ÏÂ2,{8‰èá#$cp¡#cïþÒqà꥘wçÇFF²>ÊN—Íq ‘EÓ¯ÜFc”s»j²Y8óÎîEk£Õñ‰l›¤½¤ZÁ`©÷Ñ®gÀÎ%þj$M­<=O ýü®¹Ð—Ðáy“®ƒ¥f÷Î]{˜tóF( /ׇ¨Ž«kJØÃ[¹ÝOtÍ¥7 a•“9wušå|>³«©ô  (9hòÙ‰ru¦*n?s&ó4…Âì÷õd·©ëØ´Ï·ì ®K­\yŽPÍîÞ=£Bk`öªZ`?PGÀff}œÎ»ž4 Ð\÷¨j­'€F¡þÆâÐ[¤lr/ ³d‘D— YJ¯G?a=9óZæw·úÜyP¤Ë/S–3e‰iZPà´Ý>–Ï z´gÿð]N. ß©‡Ö6Y%/~¯ ƒ¯ä]ï8¾ïPSñI45ôoß-è‰KPï)z’xúœÚ£Ü'“ca9C&ãâr²´E÷uÉ!ýÙÒz9d@©^·¦H^˜Tº…*'7 â3ã<›Lêsù¿íÀ±çðíªt+ßà]`<ÐÐg»eh2˜(iT5ÄTjb…<3+T¥|²ç»î»gÝHË G_Ð7boà7’ƒ`YŽu»½¾­ò4ᨛ§²V³xI~% fSKbÕ Á1'cW8¡¨gbtú­Pµ A[Óò3 >†R â6·ïy|É ÏºM÷£É<î t`Hè Ckè&+ETÔ¯˜ÆSæ½'aÙÓYh:zµû®Ý¢¯Öî(m1«^» Š` ,<œÿ2ôÓæ/û®BgrÕ2êùT )?Q|Dª½™0."N‘ƒ ‡c®EgÊÜlr\\ úð°”wØ sý‘y„A~GP«¿×A^ñ¶~v¡·%ô \ÞÈ8. QÆ%º ¡Ä¨ãõÕWï©…Z¨€š}Õ-ú¶â6 ¸ï8й‚fÖZS·×d¨Ì³”˜øi57Ú[´m šMŸåÈYU£â`&PÁ‘¡òZe£š-Ö}šyjQí-[‘º' ôTè±èe4íϾ;h&ކf#’ÐëSºœÎ®®ÞÞ®”øø””õ¬¿GßEX”ö~JÐìÈή#ŽÎÞ öùºCÿ±ñЪÃ=¢ýÿKoÔ››¿ P1oËsŽæ46•J£Q©l޳Ù8Çâ@Ú¿–ÄØ‰§Œƒuúmx ]'GIŽy.á='ú„誢Ñ$$wu-|uèXâ_ví$ž‡gŠÑ°OäJ¿Í§G´‰ãLñ£%~O^äéÌ+Õ|BZÁÄ"©ÿúlŸ:–§ÀOúÒsÙ·>ðß`6{ÕŽhqà¸óÏãø’S˜‰¢í*éNé$N#ˆ¿û‘tendstream endobj 111 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1283 >> stream xœm”{LSwÇ賂?±kÕ¥‘.Û½YL4nÎhÌ4q 8§Ñ8”á|Íu@ …R´µöÝÛžÞÛ÷ƒÊ£¥µ ¾'¢ST|2·L|Äýáb6—hŒËþ0¿âu²ë–ý·ÿÎçñ=ŸïÉ!‰ì,‚$ɉË×®]=Þ›ðžûmÌ<Ä"gxwÂ'ÓžN} ýq !"Éœ\©¢¶¡JñMe“B¥ÐhA †•šÅK'‹ß"ˆb±ŽSHÉNb’ÐÈ&Γ‘,.«/ë±H—½&ûj†‘d€/Kã9‰ÌG 2³pT4ÀKd–j§u; ýFØmñ:t7¤¸èƒÃL/|'žáBGØû6?9…ù»èh]OÕy@á©x&žõdý­‚M[TjÚtñ븶Áî ³^_m(™BÀ†Üî„j½Ýqö ÖKect4Ó#F™¿»»§-ÖŸNù[HV«ù‰úJºzŵÐjÃC ,¡%cÓ!ÓøÌa_ÆdÏrîöÔYa¿UC;í.8‘Åçð…€kóR—°†  œœuM&—}ƒÚµ´I¿мœìö»=§AŽór°´SߦvÀ)¶sÖ`Øíkg©¼Œë¶C#È_rt&ЃÐ~´ôÂ0»žæó^4U8-K@Þ,°ÛŽNÁ].%°{Èô½aŒ@{ÀÆ‚›fÜNh‚ ´cë8ÆQAžÏC’—YÆì“^‹ˆ~½*cöÚšÀŽô-æX¤-Ðá§ÜldÐוxœçKøÞNOk åöÄÒC¿?4Tª­õ ]Ï#]Cg®»üMmÚ×Õ Z.Å3ƒÇ¹ècзájÕzŸ£+£ÍZ‡thkÕà!)2cf¯Ú[VóY) fk¨³+˜ &èö §°†Ñ÷å§ ¿Ü^¦¤\Qæp}²1^ãm„ù°yMs“}Xqè«ÿ¼¯2ÿŸ÷b–Ê]ŒÑ°‘–àCð‚|ôB„K‡d)m²®N«­«KjS©d2EI2 ÏÅ_nè /g¦‹2kƶʄ3ô€…ÍA£ÕÊØŠÿãõZ»à’ƒæp”ó·ú(ÉØÛÿÒŸÁ¿?÷ZÁŸ7G;¯ß§¢e}µ€†Ò—ømœÍÊ0V†ÖoV G€jáA2.hÐOpn#a0ë :z;¥ÿ\]°µ­*”-ÈÏ7–*Ò Œœ;ˆ‰Þóôà‹íý€ž?}©JØfZ’¹Á—ÅñÇ <žhI`o‚Ï’>$nŠÆ³òljÌ-Ù½Ò‹Kê÷쨢JËK?Ø]À/øKšçrxmǺ¹Ÿp*¯½è´òÜ{ý§Ïžé»0ª¼ êºÒ7|F¿Š_,3ØN-ìËäeCGœaˆC¢v„§à¬¨\¾±¶!¤c5€vmp«iWý® ŽBÌ}(rLå­uocK´…õ_¬R­TPyåvbÞvzûFñ,ù•þÚ"a§¾&ž¹>Jâ×]¢“Ø/;Ž'bÒ~‡a~ù’uöf«ŽÞù©†G°½Ö@48¦: {Òl”z¢½ÏGðì?û#‘xPÈNÆV†Ú8§|VùLWÚu¿â™özù¹•€ø©+ø9µ¦ „h •›½¨C< Ĺ ž âiñ7Ô=Iendstream endobj 112 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 278 >> stream xœ ôþCMR7‹‹øù,‹ ‹ ›÷Á¼¸12Q½øˆøÍ‹¯ø¤¯·Ÿ÷’Ü÷ãù¦‰ŒoKL0Šb‹g£‹Í‹Â§ü’j‹~'egŒ÷ް‹ª‹÷ˆ¡Š½ #¯e'‹˜¬øÍ‹à÷ìõè¯Êõ÷ƒìø÷JiˆuP~ƒ…>‹}‹ûLôè®§ÇºÕÆÐÉ‹ê÷ !Õûû74/X¶†•£¨œ¯„®WªÒÏ¡º‹ï¿=:4MFkgû…û‚‚‹‰‹oø0 7Ÿ ‹ ‹ ‹ àIpÆendstream endobj 113 0 obj << /Filter /FlateDecode /Length 2033 >> stream xœ½XÛn7ÝçY ßÐ0¤{“fX¼Ó€p›‹!I<Ábaça2]iFbè%ßžSd_Ør[±@0 qØEÖañðT‘¿URP%ù_÷w}¹PÂÄêíBVß,œñB{ª¼u$‚«.A9ábz.¯QzáL¨¼3Rh«¡'PÎ&+«Ñ6…QßQÚ‰¶ðg­Ç×0ñ×£ 1o P]G‰Éé Œ‹¦@^I%¦Ñ¨ë˜Øt˜o=¤Â›¬N¿-(²êþ¬/«¯–‹/T¶Š":åªåÉ"™*2ZxÀÁby¹x]?ùü¨ JÄèêÿ¿jà5kTý]Ób{¤4^ׯšVk-©ú§»&2©T¬_~ÿ¼”Á韗/€žF ‹µAÇò^LÆ1„à²ñ°2»4Ù¸¶ÍòW¶ˆ…ðH¡œªZ2"ÓÏJBÊèLý例 ‹ TŸÛ¡uZ›¡µZ«¡µž1η›™Y ­«¡u13bœïM=4ßÎÀÝ­³™iNgàÏ-ýÓ™±·3 G_Œ±|\€×3q»™Ù¯uÃRçÑûža%~þÜöß["­¥löyÓFüR=òâÃÛ›&-ý¿ËŬÑ:a¨2Ò{(O¥,ÌëJ)„2Õ~Sý¯Ú.^Wä„ X»¼ª~FLVX…s‘¦êþÿšÄZ)cDô•SR‹h T†¢ÁøÊBé$UɽU$HWÚj‡pWšFºáoç~ÞÍ€]iˆ$‹fßÓ;f7sVø áï{&V^AvUiÕõ”V ¾„ÂV}ÏÄʓ⿅U×SZAê­Jô÷é9 ædõc1oYÕ‰…)þ"9%E²iÖKSÛµƒ®£,ÚÜOÁ®¡ñ#Kþš#úa û¬£"’„5•v˜¢ž0¾m åQi]oÎOϧ«óí§‡Û«MB2.é×!é> Öå¡—›Õ¶ÚTUžÃÊXÌ‘ú‚‘vì÷€Cp?ÙMJÕ±$»¹•(Ù?|ˇh’E© ‘Nö9 ßb¥M«pä£õ´’A†€ ÌÒvþµöŒ`Q°H>&Xrš¾ïá¼îæ¬uí©´îzvú¨h…Á ŠuR¸¾²™ãØõîf¿Î,ƒ_o$W¨Š¢Iù þj³9árƒ09õhQÿg³ß¬.šÏŠHÎBÃv àQå~i,/TZƒÊ¡cÿר¡ÈGÔam4ƒ%«ëÓ.Šœ$o<²êIäæâKa°­­­u“ 'ÈÕèÕp…„š´Ëßm È#y`>T[ŠxB̃wp³â¥£HH£0![3’}h¥öÊ" ³­ÆrcZ ð*U€$C$.sZ6…ž¨l 8ˆ6%áËá'i8|D-QZÞòxÔ½Êzž˜‘o^¶UÒÕ« €ÑóqFsÍPQ–‡‰¯›Òr¿æ_AJÄ3£©P¼z”mö®x-7³åÒ›ØâátWlÞlwûcPÎcªSÝw¤zƒXGV2‰z#æAOÖ»ía/`Ôár³=<r îû¯v·Oš¹Š•<ÉÑbù¯×õ’áò‰SÎÅŠò=­ÔÆ]ïc!‰¸~Ó8á>˜Ä’†iuÆuÓ,ê® “Ÿ¤ÅN ݇Wƒca5Im€N÷“îNò™ÃNe[d™fmzãÜ{ia9‰ª»áÔdò­w¿Ñ$µÂp<ŸÞ ž9×ÙÐ#·éz]DxµÍýç÷—´cNÊ[Ê¡·ØšÁÉd?˜**3Ù°¤:Á(çp{~»”ŽLG÷LqÜ õêºcVìpæK9Çuf…˜¹Ù_&3Ÿˆõe&C©W£M(iÛï" S:{ä!8|`'µþ{Ù»-‹HßuÞiA”þÙð¥6¨„{<E Êîmºã ìò.uÝ…I'Ú%+º"§Ûè7û»÷h++‡„®|nIä¬NŠTV/Èx˜a1´+¨€ë9ä.¿CT­‚ɺŠî‚š°ÛðÛL'CDNu>ÔÏ/x¯"‘±ÀÕípˆ3Eˆ,y_ªÒïÌ|¨áTŸ’äD4o› áP%µÌÞ6\¥GŽú˜N>y7u®‹Ù»Ä­Ã䬜X;>Wï9cåtåùÈkÇ qå"×w¬! ÚÛÒb·Í)í^ïÊm'ŽA¨ ž‚Ï{òýÝ®Üzä6K.å8ãd—äÎsᤙã§žËNˆY”®d˜CžtjÆMb˜ÔwöŽŸ ÃPwÆ6òŒ5’s¡¯eŽ~„Pý’uQé\ƒL$yúê„Ûš$ ó1Ýóì´žIWãMÿdîùg53ä÷Ç~'ðÇØü˜Ô; þ|lþÕ‹ÓܘñÝ·ž~Ä[oû5rµ4šßNQáÏDïPô °Ÿ=î£Ù÷oîåsî½ózÆîzvQ3pæF¬ý[,zöw(f0Œž/Ë÷²ùæÌ÷{K\Þ•‡.w:†;×aƒ+æÕÃÚôŒÚäk'2"®¹|)­ù­ãh—/è!hRœ^"Öj›Ö+ž@Õ¨Äñ µ=?oÔ\Ö˜üjƒY¯ÊÁ½·§½¢+ÔlÖFž»{íŸPpi¥endstream endobj 114 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 121 >> stream xœcd`ab`dddwö Ž441Å»»z}_ÄÚÍÃÜÍÃ2û­Ð~Á=ü;@€ˆ—1012²hþèàû9÷{ÕfÆ{?¾3ÿTÿ^%:gn÷üù•ÝUò6²UUv——Ïíž#Ï'ÇÅb>Ÿ‡³›‡«›‡»›Gˆ‰§$> stream xœcd`ab`dddwöu041%ºÿÕüªîfíæaîæa™ýÝGè‚àYþS 9¾âÒÜÜÄ’Ìü¼’ÔŠÆÆv&FF–¼|¿6ÿ«9ôKv3ãË?«DÿãÝÜØÕÙÝ.Ù0¥{®ÜÏ‹l¿÷²±9xø™åU·¹ÿVïæøcËöýýÇISzûºû%»û»zZ§ü¾ù#Hâ‡Ûw¶îïU-ûs,a3ý^Çú÷"[AWWŽ<ŸKe>g7W7w7¡¿Nendstream endobj 116 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 233 >> stream xœÞ!ÿCMMI7‹÷òù+‹ ‹ ›÷`¿¼¹iJ“øˆø(§ø§÷è÷ÒªÓ÷Øù›¡opnqnz˜v¦¨¦§¦û`ü‡~†‹z\³eÂï·÷š˜~‹ˆ}Š…€‡t;_bd‹w†˜¡¢’ž”¡•¦–¦–¥”£¯æ—ޕޗ‹•ºc±T(]ûz~™‹Ž™Œ–Ž¥á·¯°‹›”ƒpt…|rM 7Ÿ ‹ ‹ ‹ 5î[|endstream endobj 117 0 obj << /Filter /FlateDecode /Length 2718 >> stream xœ­YÛrÇ}‡b+O W°™ûå!NɱåDå$ބĕ²ò‘)…$(”¢—|{N÷ÌÎÌ‚« ™”J…á ·oÓ}úÌâm'Ù ú—?O.j0±{¿Ý 'å`¥ê¼ur®»\ø(†`ÊÆÅâÅ"x9ø ;‚PÙ 2β”UAÖ4Re§•ÒÎ &4­5z ]ÅÑ­Ãàmõ*ÿÝ:åtŒ‹SAú!9qªJ;©ìT17úÔØÝÙâíBr*»üqrÙ}»^üæ¹²]¢S®[ï)Ͳ“Hƒ4ˆ^øABb}¹ø¥wË•ZÉþÉŸŸü¸ jˆÑõÿx±\‰Á ¡cÿÇ¥¢ Ñ™»ZÃWHü»2Mÿ”vœóýß—yÚž“ƒPŠtà)TTv~ÏE'Œë¿O†T0òŸëgäyl=7C@’×?.Ö_ÿÒ?_B· G¾Y®¬‚«Aö×eó¢¬öeu[VCY–Õ¶¬nÊêuY•ÕUY½ìËr7cîfÆp5r¨j–KŠöûõâ¯t„&Økgí`}§e0HAùZâ‡ýåžÿžâÚ¬©a$:jÊûìG38mG¼%#…‹ü´D¯èþìŽX‰Q(‹©Md%xç1ʙ鸀á0Tq³LÔ­YÍŽ<ˆn} C?‘F# Ðƒ¨Ð¬ ^HPâE&€#Ý‚ˆR¼RyWÀ2°kØûKVƒ pDàˆàô¦J^‘¤¸ËlÀkMQQ$BÂ2,€ ŒòÀKúámbcà!ù „ëß/•<ØÛD€’D.øzTLŸ/“l‚ØQ"#BÒKQø‰¶M•8!˜ý¤,ù #â¨Î·Ï½#a‹ì^¤UI`ô9³S)B”ÄÐøA4DµŠQQüè#aH…ïw¡Mzä¢UÜXÆôæ ²™“!Q:rÌr ñ.å’rMI¡v C%µ#bÑŠ‘­æåM]ÞÖå¶.sÕºu¯ÆÙBN³KÊ€hoÚR-^oH$ ©v9­Lå}CåWcC …À<0TØ„MׄÈ&¨§T$ Òë샷Y€RŒÞõ8´ˆK…B´è­z.Ĩ{éƒ>ÝJ‚âÜcH éÞâÁi9ÙVâ4¸œÆÕiº±8ÊE¯;Í÷Ú‰Å1.°qÒ@àÈ¡h"RØdwzêéE à"idG`ë6Œè™Ý8ãCú-Kòõ-c÷G)최p0¾vŒ(ø¼™í> stream xœÕ[ëo·ÿ®ø8-°ø¶Ë7™6œ&Nl¤I«-Џ(6ÒI¾øt'ë$»þ’¿½3>†ë=;¯-´;3ÎüæAúÅbèÅbÀÿÒÿŸ]È^‡Å«“añé‰Õ®WN,œ±¢÷vquâ¥ímef{òä$ ®·Ú/œÕC¯$¬*3^„Þš¸Ê(k¶(Oð5z€ ãgŒƒ_}Ã/KåƒïaB¥ .“U¾×60™¼p½—©.JÍš$Sá–Eb܆ÅåÉ‹¹Hÿwvµøèôä·_I³}°Ò.N/NHÉb!´êÅ‚PVœ^|Ý=øâÁçK/ûl÷'Kà´Ñ²{´\Áñ ƒvª{²\)¥z+d÷×é’!øAÊÐ}ñ)þå†Á[õÏÓÇ pª2xجñä8=®_ÅÅÁ{oiq#°Ô öAÓâÎ-O¿Erjáa…Õ¸äziåbJ Jz"{µ¿½\ï–«¨¾Atj¹’0ìœ3KX€…ï¤Yè‡~î]®,þáÿ·D¡ÄЧŸŸœ¾ÿu·Ý é2!‰CH¼,$aRô@R*ä:ø#p𩨠@'‰ÃWëÃæünÜàÓ@¢jÛy©µ¨îårFoÂÀ‰Ÿ Ž»xVr¢;§#4pÊ·K-‰.ž)¬„O4‚M"l‰»Ê ½ÇÓDÅ(©l·ß±‡8oƒh—4 KÓt›A7²2 : ¡ˆv)ÁÖÀ^/½êXyÁNíf­Pí10Vʈxx#‰ê01¤ /LkªÄÄJŽLëºÿórØäçs?ˆ›OèaÍ>g@Á“ RåÅ«ê­ÈyðÆ9ΘK¤”õ@ÊP°ÁqW-1$¨kNPm{¥½Ï¼¯ß*¨=Íúri X®O“‚ÝäÌ“Ì\þ>k,„ñÖ*•s3™DÙ`ãJwÕf·ø”9Γi >¡б¿MüÀ¢¾ƒ·èåŽ;Pô  Tï`Á`¢lq6Ü$ƒ‡¸Èù§™šî;2Xü]Ñä)â*и>_V…3úû»j‡,X Þÿ®Ž,D C- =Ežù=<)RÖCÿ†KPÌ—KpVóÿMõÿ}IÞEgú*¯êYl9Õh±êtUÞªÒ±T ‚IÉ 1z™Îhýf…1-‘>‡DBçÁöðWöæSC›«üåªT>T\þß×oþ:Î|»›­;ngä¾f2ÌÕ‡™ÍÜÍhâlf/?±ÆøùÕC6å°”È6U+¢w–%«üéªäžH¡õâI‡œWpTâ;:‘÷ð§Ëc&¡ƒ˜àímæB.äF5ˆÒZlèp6-f2Ÿ!þ[‹gY× eÍån¤ ß(X 4Ðt^·ö°† &Â%£‘9èÁÖmLKÒ4lÎÒ#žô1JJYÜ‘tûUëã¡At‚âh Œ‘ƶf¼çU_g ùö»ºúC,Æñ*åžØ)™Í4ûMŸÎS¾I_¨ÕfxèL ’n®ùC‚^íß³¡“m—Ì[k+µ‚ç £œéX`AÉÑ‘°‡\ÿ;¥¥tÜR»Z™…cþ…Óv˜¤«`µP§„¦ ðÎÄŽ%£B:i9ï£EˆÄobÚGj9n·ôe+A'DZӽ䥳˜}¬q@ºæë”b)Ïeý(Iç»gzb¹Û0ÛËbœœ{¾! <¨ þs™üå3:çËKRc—¶DS—íÑ ”PÖ)¾‘IS°¨®T #ã½MÞ£{çLöžo¨ü‘Š«FÂBå¿Ã DNDÄ™d5¥ì†ñ¬âaf/IÁÂñj@þJ]y…Ü‚öT&§vÖ¹Y<0ÈÌÕ @‰¬†ˆ‡J%ó:öLzŒ,gK)6ÉÊÒ«˜õwz €9ºÙYky„ôÖ G…3ưKÄTB XK7ÒÜ cˆ‡¸4s¨Â¬Ëèœ}sW¡=~.ƒóÚ˜>c?×íQàä®vøÛó)Yg9*Ñ}Rý8¡…wÇ‚Á1‡)ÃûD×]‚M‚'MJ~œ5Àçt²ýlŠÀqÅxÍ0¾A¢b7DÄÓ MÀJkúZœE —ëp…ÖÂyQ í ÂD7­0ë®Ùï7ÕX¸g€Ì3Š­”š FcR­"CˆµMiËÐj PUi\+£ÝjÖèe{£0)³È5FÆš÷ÜÕ.(‘´ÔÖ¢±›ˆy‚ŠI7d;„At’,ÛÈÛ‚CåôÚ‚•˜ÑUG¶MiÞ’ö¤‰q?µÎbƒn<›‚%ÙöÔð;—Àb~q/`éT¦i–ÒZã)©š˜´ Húµµ¶òƒ¦m¾eXf€;òÄ„¼Æ8;m_sº;ôê8b{[¶¬7Álƒ‹Rª×-}åc7³d|<9`]¦©{…7Å‘…ï¶G›d³­1Wz‰æ.|ÜF™Œ²ÉÞyJý¢œmÒÆÀèXË7’“… Êqk¡M 8po9Ì´–ÎI  ;RtˆµÔ±ŽT>ƒ)Â4ö]y9A5¸¶Îö5-b(²nÔ’“«Ô½¤ë–DwÒŠ=¯„¾efuWÁëÍt”ëå¤G >ßNÚ+ _PS1aªB›š¬ÔF̶ڊ `2›ç²SobDÁ¡ùc:Y4¶é.%¦zšßhðÜ+æÝ*„ýåî1x33ÊÖ÷eÝËŽ«3.ÀLíÈíES×ÒN4Gs’,aèÐ$ÞÛiUoÊÆÄ`’ ¦ö°¦cðMqÃÛ¬Ûê’ÓÞ8ï97Yæ*KšL>Ý0ž.^˜ 2Uç§@ÀyŽI“O g‡Ù²R&6wcx Ó”Oæ?vD‚“2} x'¥ç·DŒ–g‘›šë_–4oÇ:”éBU(¨RNÓHb¬Ãî;KÑ‚ 5°>;‹U_“`njZû·jlë8ág³ÎÝ,ßÛפôˆ!^6¥Þ¡z|ãÑm»d±+ôMñþ×4 %.à2äÛüÊíy{ž(¥\h;%¢UL'¡ÊTP•t¿ƒu"^¤("­V ¬i…VŸEo¡<dÄFIrþ€#BÂ餷·^™)pÌ£êvGžc` Zë#OÖô%ÀL»eïâÅ, ™Ì!kVÙÓçŒþ3ÙGšK÷iµ¯7’Re –m&œ§[|/ùÑ|M>Ëx°’´¸‘58¹fH³œ%I^ X¬ã>ÅoXöÂl6«=µãqˆE~º.Ió‡tröÂ3.¹W³§ó)E]¾ú¬NO®¢1i—¼%ˆ¦N,/´ò5º~Àkj# [ËL®®5h«tj÷¬6ba­yk¨ '#ºi|@àyÁ26мÁ?-òrPJrú7|¸YìJ ud',ŽïHW˜)Mjª¸+ÑÜþ7_Òæà°9Ö~êÃ’ €¶¢¹ë½!€‰IN,õÖµ À‘&뺤¥:¨Ú´a}«ÚEôo>Ž›ÂÜ´@Ï„[À£f¸Ó¶éKrc$4¶ÒÜÀîSÓ–€/_é=øâËD¯¿-…À˜ç»ù>Ïò~×ÁpBPwBV1B¦—Š’PÖVB .>±¯„¤dÿZÈ•{ó¸¡â&+MLEŠžV‚œajƒ*FmWEÝÛf»¢wl»/–¸”*‘üäôä/ðßZÕ?endstream endobj 119 0 obj << /Filter /FlateDecode /Length 2044 >> stream xœ•XÛr#Ç }çW°òjV™ã¾7à7yËåKì$ޏI¹¼~àJZɵ¤$ëb'Ÿƒî™iŒ´rí–4188@ó·µÜÚÊßøÿì¸òCäõ+»þz•cBqë’²(¯+òyÈ̳ä°:]±-CŽ´.9Ú!xhÍr<äTµRÀsTJ“@ëD‹/“ò—RÁ·´ð7EELCI*¨Q cʆ˜YÅD® dŽ©+‚…ÎÓìm Iy‹Ræb@dH—4P„n,ÄC‰³D”íúrõÛÊÕ¬¯ÇgÇõ—»Õçÿra ×Þ¥¸Þ½[µ’¸µÏ~à"‡áJYŸÍ—›­,³/¶˜_7vð6zÍ[<fvl¢R˜)ШáB!ssy×?ìEÇY›‰Í-ÄÑú’’¹Ú §Ñoþ×ü²ûnõÕnõãŠÎê¼Ù§Øj:w’Èy_:«Ok±ã³>*L&줜ÛQ¿’#E—Íï—dÌ„‰‚ÙÔãMŒS"X²Ö9o6r°B>ÑE6Ÿm¶^ÒèRË`€2'3@åU6§Õ[‹QX8›7¦šðì£qÌùÍŸ-à%ŠMÑ"¢,)ÂÑŠ:»!:–îÎq˜ļÍÁ»9÷±ób¦’¨!3ŽÌõFbBйD0Å I8 o-ÇRÓÀ\‰rß×ðÈ{›¡2¿y£<¾kâÌeaPr…ž,(½Žï¡>#*$C°\vÈŽN²ÖŒXK9˜³ |W÷Í#ÒÔàH¹¸"a‹TªðÏV};[hŒÌÖnÆœG™®Tp7’&f@áÐUo6 ©qóe} K@¸Ã_1_4·Å™yò'<ÉlòxÍŠÓäd¦üU´Ú4ιoko%Šd¾— Y±%pŒðôÔe5èÄ… ~¶Ä$^o¼¦än^ÕÐáµ(¤õ#9ó¨R}·™­ s±Q©. ãÁÓ„J@8`Í?äE”¸þ¯ê¦wµ+8G¸¿ëÅ;ïùM”_ÿMŒp¶1Kž_°Ü:æO,‡–l^_WN‹ ¸øµ È•pA©4&¯¤cÉ úœo³¸Äa€Š÷œ#ÁU‹¸4äµs4ìrYØ•„fWRŒ »Ã²÷·Eå€Úa&€[v¿¹ˆ¡ <L2­‰pl¾ àì-„‰ht‰‘“3é£\Jv a‚Ÿ†é9šýuü¼‰3¨m·¡Z ôðQúÙ‡î¿êºû–Òz}ÊÙ ›åæU%…œC=p•²BŠT>ËP¥¢ÆóAİ€ŸñOÓ¾U,Pµ)i­­Lm ‘+B¨mCÖ{6ÇÍlîVÚ”·šðjò9'Ç#YšÛjÉpè˜ Iž ´z'¼\jTD…HQÉÅü¤Ùã±z6s{ÛsÒLQ‘Çèù@Kƒ6IoéixTdï‡äÃZù»Ü­!dhü´¡§¡6e¯Èûš6ŠbŒ×§½=O¾hm+ðø®æ*…‚\Uð¶“\MýŸj͹˜t_ú£†æÜ­Éüµ?žªú*L·nMhÅg* Ã4[4ŽyèS_- :7#Û¤…°yDf–dƒÜÀ5â‹: Ã$§úÀ´qŸÐ8Dx a*òIG›n…[ õC]ëb~ÔØmø£6½’ÿ}ØKýX§<8¤Ud›/ôáïóˆ}±‡úV³Ü+R‡I!y…bmZ)Æ8´¿?ÛGF7/î#s¤gs¤÷íÜlCAc^nñ×2/­éÕ£FšP\,­ãEz67¯¢‘½jùÃèÄ.-à=ýFç€ë…Ò´£|$Gxì×ÉE4rÆ•¢˜}½ O„+ð„DÎÍÝYa"G(èL,ÒÛiY“Ý5ÛRÀmÔ!æe#-ûŒkù#¨çû½D9¸žG× º>¨z&RÆöFâZ¬Åñö!Ì ßW$õvVØ?vSuîâÀ`‰o|˜‹#(i¢åžqÞ×!ʼn}Ò*éÍußÏ©b.ynZEúfð8‡ý~¹HÜÖòÍ©R}"ärô„Μô©¦ñ¡«.·ƒž’\ „—A†ov ÑWêDÍXàP¯¦Sf¤Ü¼íé>ôS•öØ,xÂzמ3ÚýX±+¯õ$^Hv_To{e–#JÌFa–^Å›¶v‘u#1k×]ŸïªŽòmŠÕîGÓËMëQeèºw^ÏVxÛZÌ.Ô%z†ŠÞk—¹—$B]6qÁS‡“pC NGu‡ÆN ¡ç°D·›H"ÀkÌÐóåVeâV½XË€C\¿7ýüŸuí¿EY0h½Ÿ?0?KÈ»ù6¾ë“í «G.B /.BÛ*@¯ÆcŸª}ÎèÑÑ/•çâ‚¥™jÿL—õåø™çÚ{=µ"càØòô6/b@=*nàt¡p¥ƒ¿nÎq!Z8š¹Òî6%O&Æ:õ .Ôº¾’˜Ì¿û.òm]9r*¾mùƒ ×Ä(-4&WæV±ޤd©?fµ*?(‚Ð?-æÁ;¹ò±Æn%À©Ôw>Ö{{u“Z\& ½·…bú¡Bß&íkUõöcFJÓR¦TÊr%3N•‡uy¢ú‚ôÛδ/¾Lê‹ ¾øÐÁÒž|þ#Àóá-£7-oóÊT/”ýxœGóÜ8'ÓHî«ÙÏÓ{Û™êØ´o ²©­ÿ›½â{ElOf`ý±òÇÕÿ8¬Ãûendstream endobj 120 0 obj << /Filter /FlateDecode /Length 3362 >> stream xœ•Zko[ÇýÎöGÜ/.‹òvß/ì¼#MÑDhP$AA‹”¬”"mQrâþúžÙÝ»;K‘NÃÐr8wvgÏÌ^éÝ &9úW~^ß/ÔdâðóB _,œ”“•jðÖÉ)¸á~ᣘ‚©‚ÝâÛEðròAÞ1i¥* 2NÎ&-«‚ž¬aZUµ´3“ lCkžÈÛqv+Ä0yÛ¼*Ÿ¹SN‡É¸Èœ ÒOAÈΩ¦5K:­âTÝnö‰í'†ÛÅ»…L©ÊëûáåÕâÏß(;Ä):冫›EN³$Ò ¢~’иº_|?†åJ ­äøâë_-ƒšbt㿾]®Ää„Ðqür)¦(Ctf„Tkø ¿C*CpÑŒŸ“TÁ9?þs)‘'!aí² bJ‘ |BEe°Ï'éSt¸ñ³¼‘ FþxõŠ<Üs3$ùê«ÅÕ¿¿Y¶ Gþ²\YWƒßVá®®uõXW?ŒuysFñxæ‘m]=ÔÕ¿ëêÍ™g7m»å’âùìjñ*’ vBHÚY;Y?h ‚¬?¶ÃwÃ~ïT4'A¯ðÿ§t"”Œ9ŒŒ~c£E°ª„Ðð\«I¨³–SrržkUIÓÒk˜V“0-ãìäøŽM´Bð“ç;6IÓ:ˆÇØ´>†xƒ³éqF䕵89! •!¿’Þ`%¼VMz\‘0UVŽ%͘DÚMv„b­§ŒJÐ5Êrñ¾JœVš¨Œœ=£œ‡7UÒi9JŠæZEµ,°5%Ò˜µfI§eÄwœ%VÄéÂO¦U$\kލiñÿ¿bP!VTéã¤%¥¼ 㩯V_R5€$þÕê%ø(‚†´¿¬œÃ7/æo¾¡Ä…Æ/ñ¡Ö&¶9§LÊ*7y3(%¤Ì|Ú±­ü´M_q&xcŒŸT8[à–ÈYë\"[QªÖ¹¢ÔW­3n`™µÎ¥¯j1à} )ë5Ú‹vøÚ$ƹ|²ÑIAd¶XÈO4ÖÒRÇ)Dž7mõäU—7åÑ|fyÓ!ª ð¼)--=Ñò¦-ú“$-ƒ¦‰~Øò¦F§îÒ¦ÌJ–5­Œ£öϳ¦ŒÇ~žeM;|Ÿ5íñ$` €Cðø}P¿ÖÙs­áŸlð Ì”¼"ˆ “s§"ú$Åbð\ò©J šl¡aeˆÀ¯%¼o©}M”Ó˜nà¸#O2¥‰Wažr@w2ƒ'cJÂ,Ñ(‡ÏJsýZxµ¢-¾Z¿`«(‹p®_‹°V´FØÊ7GX%<¹~5À"`ñµòÍñUI‹¯¢±Æ×ðÉê7£±°â³ÅWÑXãkølœÁX X,ºÆ9¼*áõ«`¬õ›%-¾ß0j|¬• fÙM }Pxð?âVfòŽöÃÍúþ³¤8¾ã‡ÕÏwÇíp}ØßÜm¶ûëí°Ûæ/ßowË<æõŸÄ8€ÓmîÓÿôîæf ( …rû@ÆŽÃÝ~¸ß®÷d•¾¢òýRYZéq»;‡›áþðx»Ý·¦p~®úõ61§ôl–¤FÙ87bkc&§Ëˆýyš•¥pq¼KK+­oŸhôµ1 e1`ÒD¼ó˜:Ó8í‚íÔÔíœ8Ŷ54*Lj­S¾ ‹™6r|X/çù[aH¦a\Š@zÃ?CVzAÿK%}P~¤g¥éLÕ+ƒm€ØÞÊÃ6OñÉç#YAG—#—î— X Êa¦†iÜpÍX“Br–F‰\q7mï}Þ;ÆÀ¥7YŠ‚÷Kœ+ãøÄ]Û¥Äâ“Pi ¯ÑìÑÄo— ;^y¤v×6ßfÛ¸ñt°ÍïsŠƒ %"H”ªKÙEƒ-­¥Ì>¶´ÙŒƈYHw­“D6õ'R—¸ƒ†È]d¹ä•ê¹¢6 wqˆ$‘-ÈÌ;ܽm¸{Èl€µ.¸3¸wÅÉð¤ÌáHEÀU<Žë¼ŽàV…¥ÂQÝx¸™×ñˆ¶Yˆð>%™„Oµº»f—=Ïv{ÛL%]ŒÎÆV«ÒvU:ì[zÏ MRcê’”Cê ×]VŠmÍýÈ'^¨ÎOnUüýÐáú®˜ ¾Åéu]‡®"ö §ÙÂÉ gæÈh¨Ï–|›Þ¹,òòâ”醄°¤pQÂYœÉ »ŒqÌó„–I$™À:É‹¿Ø{,=¤7y«Ùnh!úuF£‘^Ý—8t­F\q48H)%`+4Ç`#‚õcV@Åz†5:g†PBƒ.…†¡µ;å’´[œQ“üäõú@*¸2D×úýYÒÛœuƒ±Íu“2Nˆy@b—àfn÷®áÿw'4.¼G•rç Fjžå8A P¹E• ÷Y섳tÌ{™ÃÐä0Káf¶àÇWy‰±—H“}v¨âá‘–Èù&0ÁÜ„¶ßZÞ çú‘Óî‘­§œ-ô„ùõ!Å#¥UàJ˜Ò¥³ m!^R)Ft´™w3J3òœ—¾g´–bÖ™žÎ²Ûú![F)Ašt@‚’¶a6¹Æ²Ú”†-sRä eÝŸúy§SF Lľe¿m=e×õR÷~͵Óä§}ÆnÆŠ?¡›jåÃ Š•HI8A1ƒâ!_±ïøš7Éà€òSÉÇW6†nÊ û† ónúÖ5‡Š:uÍÐ † Õ!\fO|?ƒf.íÔ5î© 06fpñË´FXK|Há¡!/ò;úýŠª§ëôÜ>·Ì z½Jž r%Ók6v—,ï©ÞÈÜú”òùp%´æÃz l¢=¬¯—3é?ËBB0/òŸ²i஘ÎEΖ“+s®«@wl«Jò:€'OÚ!Kñdí2¾n>”³˜ óì0¶q³–`“C±óíö7€»Ú>fï0T<»ì$Óü@(çZjç»Xo{¾¯™¹€réQðX#u©=Ö „wknd_¤NåêXšŠï?…zE1c,žôßµyõ‰A+ïWÔ™)êÔÉ­†§°CΣGI8?°YŒáe—iž™M-$3¿z™àÓ[×Égˆ5°} ?DJÔÂNÙ<ÿ.¿Y»pa禟êpÊ5ŽËúÞà1!>»™”­?¡I7S­ù̾fçôâÍ*—NcLèÛ$º»gݘ3ÊùlzC”j-GºÕ¨H/‡G}Yn,‰»üw„’€›.¹k®þÈ@Ÿ¸ '—[I“H¢KäÇæ'%Í…EË‘±ŒôEº//MºdÌæŽÌÙ2ni5þ\9Ú–¿Q2…£¿ñ8t{SŒŽÞž>²¹AB±&¿ m@¤’á”y@á\÷š gM[5gþªk¥üö°fo\Ø[NñôbSÓ"è~.ϱHð3#º ly,[Óå»?$†ñK¼È@ÉG>Ú–+ Òõ!;íƒäž#”V¦W’iCàãäîGR?:™-ÐÛb>N­Ù]ý¶¤}³oKç_ÔìלÐ9ìïs8ëßî¿®ùd°)ÊlÓÉùßùÔ9!Cã»eÐÔûÉ魯kú­&(·Œgi®¸ðæj›§0 P躮Ò~r±J=x;[–£šÚæÓSú‚^-0`VGL‡î7›ÚÇÿ¶î3bg‰Q¤ùñ“ó‡…¿>ù3ŠÄŒ:/E¾Œwm_ç÷E'“Ôó×V,;ýûÐ*\ÕLÞ5L°;Ì®øú¶ôKk–] ýІžœÙÐiP Éún€íÁþ(äB`wõendstream endobj 121 0 obj << /Filter /FlateDecode /Length 4200 >> stream xœå[YoÇ~§ý#ˆÀ³±wÒ÷$ìøJ ‰D#l?,ÉÉx¹Kó¢—üöTõY=Û³¢$;HøÁÍÞžêê®ûëÒOÇläÇ ÿKÿ?»>£òÇ¯ŽØñ×GFÙQZ~lµá£3Ç×GN˜Ñx_f6GÏ<³£QîØÅF)`U™qÜF‡UZÂX‘Ey‚®Q ~Ôd?­-üêšý2WλÑjÂTš <éFe<áÉq;:Æ)OuQšhÖ$žÊn™%²;¾8ú鈇‹þüäè7Ï„>ö£7Ÿ¼8Š—Ì¹’£•p±À‡'×Gß Ÿ=ýìɉÑ{3üýùvõJ+1üq±ñ0¦¬ž/–RÊÑp1|;]¼cBøáé×ø—eÌùÃÉŸ€Ø©òàà°Ú àãäv}{眉‹†…‚kg*.üâäGÀ…ÇK¸%/…‹tVÛÀŽ`ž« uŒqàó5Ìs¯œî`d¸f^WdÁœÉ{øV§ aGÅ„„¯Â¤u)/Q0B Ú1ë4~…ûy¥ä°&㸉0aX§¯x%RrÕ¬ÞÆ •î㆞ùa÷"mÈLãÝ /Ôp‰t–{¤€¿+X{^&¯p¥“Žñî ¼ó–"kAH·8k¼S\†ií¤XÀiƤÎpÖ3íÜäHé‚TÃÚéb Š‹í°‹lZ'4°Vk†™ôêv,)f(ÏdïuÝ;Ü›bÜÁ†io¸¢ \'DaÄ W‹¬2¤8ìpÉ¥]%W —c„*¢—ÖᥣÎI÷îmÖÈ×­F.óÏKÎG¯5«Èu_RpàÌ¥=W¾þz5<ÝÅ{NÉvq!+` À—Ï ÝC½ªð×ÜZ²É˜¾=? âgÌ+Eîl—(³ 9éÀX_׋¹™•県’~àUî8ãA\xTÞWÜÕ}d5³Y@¶H½jëYõP›Š=9:ùõw{~%©@ãX– RÃUŒ 1V„PˆÓ QÄý¯ã¬âŽž”„*Ü$§ $ × O‰wš&–f3Ù-Æô Q>’²à~‚žC™ñ‘ÁÕû¬[ãfF êFÐ2Œ%ÛzÓ¤C;ÇdÂ0e†' „¥Vd·W0ØŸ¥„ëÆ¯‹Æv²ëà›˜"gZÚÆoí¶Sõd;éÁÆ|áí5›AXUË£míÊè%Y×9„T0,–LyD—ƒw©AÁZ—e§é9ïª?¡ò:Ï$<µ©ÎB†òa±ˆû¸ÔsÕ(h4!&ÉXîEWÉ¢ŽWZ$[€0ªÁ~9Ò&ߌ\‚ý (ÉhTqçÓ*«¸ß¯m‚ŸDRz’?/¾Ž+°ž!®»‰0Dki¾@<ËM`Ý@DF} »wÊ ’Å_,:*<Ž*Ëö®(ÂC]wFUnËèuOu Bä’ñªmí™39C’xz­7–%"þ¯MJQE¼Å]$§:º¤+QHü±n¼,w´¼$""qôlâV“GªN“Òrê¶òÅ9ëÍlñI3‹‰¬—\Eȉ¾/"\—QU„ûžX…§^ý õí4g‰—ŠªÊMaTݼ ð v˜ îYáíSˆçˆ{‡º¿¯›÷¹ï‡2üU½:øñº£ìõÛO*72geôcç× ²I!ó»:¬Û|SFÏËè³2ú¶Œêåȳß/‚41ËìÞâûÙçŽß%uÈÔ[<-£«ÁóÞÇ—Ù>ïéÙA‰_wŽRI÷ôoÓáÿ¾w‡‹ºË¿êpÓÙð¬³Í}g›9)jp+™ß}à»<=„‘Ñâ>†Š¨${³õ´øíÍ Nß¹í79ªÇZÐî ›ƒ²ªJRmwYFO:'}Õ¡Ww«ß³RH;å±ÃÔK¡7ÔÓL ¤®REÁ|Y¸F`"Õ7»ûõfsµ½X>Y½Ú¬!R@0 ÅÅêææv÷Ïü÷ðUm®óØ5´Î×Ûö.ð1üåöûáÓ¯ƒËÂøðì7»³Õý¦©Üj_,ŠÂ:ˆ‹>ÎC瘙16ˆ:«]fC PQ¬—̇ÍÂÖå"ùÙúîêüaµ¹K|29hß UÜ ˜.ów‡2þ:HðÑ &küXoÔK¦!E°¶&\ÓÚâ¹3 àÉšü©f !žÂIB†¬4èLÈ+€³ÓÚË,€D2f½é»¸µ† fx18#oËEAÎ)ž“ÒœÞ+íC½;…øÓ&çü[ÇňU0ûÍ<ãbÞæ|%{îÕuãU$À¸¢E󶬥eÉÖhåÄ…†Êé.R–mMC! U–óµè¢ø x0ór²¦lΠóƒÉC͹6 LT™– òQ,w‚G@$êðOð•f %¸îi´†|-,©tdks óLõ2y³‘ZaQ· I³:­*±©P"¡¸™"•°š›0˼EòöBB§¡AsÞÅÞġ,Fü='(Çcñå¨G³vÔ\çû¾©WO8XöòR€„>\¬àÀ…}ûB>QY'>eœkhÍi5Û"PÄ5µ Þ­aA¹"´>°Kì&„!ÁhµÛ+cú¯;¿Þ`”à5… F)Ô¤:‚”ÕLäVŠ¢e”R‹&jiÅJ õ‹b¥´Âò_¥Dq˜ùð¡]*–Ö:ºËÉ’3Ï S³åt|`¬}Ƥ…øëHÁú&  êÇM^»ÿ¨¡y 3à}X¿‰yÂÑ?Ê=õXñCÆ›ý²ê0}Í<¯ßµ¡»LÓ¸R8yd^µ…óÒƒOåz¤I(ޱÉäÇÙ ð  C/z LÓož(NÛ¾’å¿K» dù"“óýÃŽÂK‡ð_ŸÏvñk° tY 4ÓëÙXP®sÆÆV-Ò†» &D³Ý}œö\¾‘u¢;«6O „¹œ¾p|‡?ÐDй|h¯š®4²Aĉ„.ˆ'mžN ;¶ðf5c¢ü$ão–ízî9WÓ7´’v -HlO‰¯8F=ž}r—rT³o7Óˆv^G²JÌ¥ÁÑE„4Pîaž'Qj‰Ò+Þo:£M§”#àÃÛ×¾ý'€‹÷aëç â)ëÁúI¿BΕq”êÓÝíýeª%ÁPžïàOüJƒŽ€Á´e+”e JVVÆ®–/ë·XV2~‘ü/P _žúÿP%÷–ºäDÔn$Q&.­íÕMSeJšX#ßQ|l·“⨔RdíªK ³.ÊÑ<ÕàøÁ‚6aÌäM½V³ S5† 'M$Û8mæ#^>J? >D£Ä¤$-_1ây‰D“²2sCj»I®€¨8 nyv¯•g Ëܦ£Aù÷¸®ºý·ÆI……ä°[fÚV¶™¼cÞ¦æ%lUæ%úÄOZ¡RSüj¶}.ÉÂc«¦“#ÀȤÂ÷sk·^ýÚfþ%?c›ÕÖ^/˜•Fr¸@ä¾Á^³RI÷S™ E‡]ª åø´ÀAÖ1Ë[Q“"¹yži9Ú«iÉC6l‰â¡÷rU3˜¶¦EN´o²z’ž×Ñ¿ ‘iƒSàF ³ðY”ÇÆá¢d»€•ÅÆ¹>¿m%t˜Rd 8¹·‹iŸ?k•%IôB©¦{³íS£ÂÇžD¥(·‡EQÚ;a±‰/ÃEœ» *¦„ÖÏJ‚zͰtÿ3^}àÙ6fĹ58Éõ'”i¢·ëÆÇLìà«hh\ÊæøU†}‡—‡ÐÊLq1¿'7KÆ= .Dp_ž‹‰øš‡X\Ž6ÖÐÑCG…TØÿ} q´š¥>sMQ›1ܤ†Ëä̼B¨…Örøs,ò½‘ò|Ï×"ÃyµwCj=bÓë—DI/<´N% †àqÑ]qðm>b[ ñ\¨íAÕÐYèûK±òÇö<ÿ‰ˆ2“ßÜUƒkí¶…&üœÅü-zpËK+´IkùPøÃ¼ajÒÎS–¤0+dÀ·Âb.& 0‰½¢¤8ÕCµdnS $ÿ (9’ó" Ó­C›GóüøÚvÓ¦‹)»›çPQÚfŸ!˜L^G°ëDY²Yt*3}Lh]ÊÍžÁmÞÆ%–Ïö7“B¾ý°ÍÚÒòŠûvJýh[:=‰³¼‹êŠ-ÿñ¬ý†$¤€jÜál‘“³Ëº"tT‡ñ¼ãÔøöe†«™:ÑÒï$^Òîn ß%5/Š— -ì½™ÇíónýN§&é¨R3ÿøã¯}$¹L`­ÌÑ*¦YÌQ„ç¨îµŸÂh ÃŒÏ?P©ŒÚ–æ rÙšëf›þ¤Æ«gÒmFpN½÷ìÛ:mpžøbìH¾üÅ¢ü“ŽÛ…æ06¦%‚&˜”ž¼oÑ¢|® ï[O©=жŽîfš*ô®ÄÄ ¼‚}S &ôk¯“—I‡üŽt^4í¡êjÛØ³Ã¹ÉŒJo©±¤¼Cç¤>h[ANi’Á§n Ônrâ&ÞÚ^ À( rz¨U½Au –óÔg–»^~þ>³wQ}*ÿ‹gå ûâúXÄæ®~òÛ2¹¬“½ÃÖÑmg—‹Î~=‹õ}Dùå¾ÔºšSïæ´óë'=ùÕ…—oÿÉæ±ŸlîBú¸~ tŠF˜Ò—ó1âeøªÞC i“W皪€ª=ôðÄˮƿ$?z:wóî°åÏkW ÿÝ#$vmÛÙúfwv™›Â`ƒÓÚ vŠóޱát“Ûˆ”.+¥»'R<÷oùá J öùjû—¼v¡q„Tó°@äÅ€EQí+i­ ¤¥œ’”´lHó†´(-³’äNOª9^ÍÈ‚¦, 1‘Áø•†Ò#Üz§­ô $ïõÇiBú³/¸f³¤!-Ò|Tô—'G…ÿþ œ±—Nendstream endobj 122 0 obj << /Filter /FlateDecode /Length 4004 >> stream xœµ[YoÇ~gþÄ>äa˜˜“¾ädGÊÇFd"F EQ”l^¦$’ßž¯ú¬^ÎìÊ” =h¦¶¦»îúª9óíFÌr#è_ùÿôò@Í&n¾?›?8)g+ÕÆ['çà6—>Š9˜F¸8øâ x9û 7Þ1k¦F 2ÎÎ&.«‚ž­a\¹´3³ lCkži-¶c+Ä0{Û¥*÷\(§Ãl\dBéç ä T窔«Õ¶«2±ýÄæüàÛ™L¹)ÿ^n>>>øÍSe7qŽN¹Íñ˃lf¹‘0ƒ4Ð^øY‚ãøòàÙ$ÅᑌAÉéÑg>= jŽÑMÿüâðHÌN§¿Š9Ê™@Õ‚ãsPe.šé Q¤óÓ?% %$V{J+ˆ„R´n¤PQìóIº‹N7=Ω`äWÇ%Ñ#ÝÌV>þôàøWϦ§‡X[ 8<² ¢9Ý4âI»zÝ®nÛÕ›võ¯©]^¶«³…e®~Ö®>jWGíJ¶«¯)³DkeUå×°™„KŲW r]tß/_¶ßß-<}Ú®Þ.çzá fœ˜ m¿;ça§þ'éX³JÇY(¶åÙšýצâ]ÑÞÞC4F¼Xâ»Eëî ”NüfÁà;—ùåÂv7 švg½âF^Š£Èâ(âžÌ½3ß/ÆÌ“öû£või»ú¢]=^2èéÂ6?,n#Úïs» \³ÝyñßmÖÇǧŠg‚Q´ŒrVÿƒ‚Ñþ¿=Û|¹¹:°³UÑX´¹Á6›¯S{‘AÔ¯5¥ecƒ›…ñíÿÛ3Ö´É>¾´Ç®lPpQþQÉx VBÎÒ¹õjv:Õàéòùáñ×Y»ŸM?$…\V°39G]沫«µCoHýeË;ìêeàŠÆ Ùq®Bá\V(ø–sUÊÀ%a%Í™2aäñháO" <Ê¢¥*ÎT(WÑ™q1+ìq±Ñ‘!>\Lî="?K´}gÜÆ@ å]é³›¡ÕU³H·àAß ®ÚƒœGàº'ß'"”¶# ðÊ%½i}ŠÀS#„øø CĬÑ@·D$æ ü®uýÞò:¬‚Ø´*ÿ,ƒ­#õÓãàCê¸ü»ªOûÙjX`skx£}þùÑ¥ÒQ’íOòuÆ´K6ÜíùŒ ®Pp,´‡q/E¡X©ŒZ>ýž£§{;k×îOñ€®:‡Aä+Ôû¼=Ñ(€€›¾€”^}‹|Ÿ¶(BTŽ&v^`Ôâôàå’!áIÆìË7žQ±^ÑwüûdÉŽ(ĺ†~; #$4J!P€2)b¶ÃBÂ)‡t–v5 ÅÚ)¹†>:ù a¨­p„ï‡è‚ýJ)Žð‰mL˜…´Áïý±‹E®F!ûÙ\ª žC3åkU ç’pâ‡qU çRš&ÎU)œkKV&=ãzÿÚ‚æ5.l4B#H­ êðHI”hOÓ¤ðEܸ^;›Ùidó†57#ÂvaL¥öWÊÀå] 0`\…2pa¸A¿ç\…2ôÉ,k“]ª{ö üg´ÌV²©Í IÔßÉʵ¶²•ØV´Ã<§ÖûJœa–x7¡k_ÐE™µ„¦)X‹Õ|¦Vi&•±nFLîBŽÊ XÆnœ€ÍíÐ}T6ÊÅ2W£ ¤_¸0‹û‘«R—ï°&ãjÆÓŠp®Fa\ta"çjÎ…k?rU ãÚÒ›[¢sýôÊ h6p°¤Ì÷ÛØ :é[é%lµ×—÷ÌXªHÔ-Š­h˜ª&ÃVTLUsa+Ž0WAC;:W“ aª? |Cn”;ç n⃯K*¯8·Â/eàðüÕh¸=îgÑ£ F‘TIuJÆ~¸·$oņ¸4­tô¨‚U¨Œµ_¶B½¯ØŽQüõ26ì[TôØ…hUì¼À¨ÅnôÈ–o:#Ø€ Yí~è±&Ú z<Ân’NI•ZšbĬ ÁGï±ÎZ¦­àÇ–j k€í<÷ôô‰h †¼¡*¥#¯0ŠƒÅ6¸÷„úqg $#Tj*õþOÛ$Õ8<íÝWh÷iôD¡JhÉG¾A¾'ö*Bå¨"¦ÇG vG!“¾ék°8Q`9{ߦFá äiå~ óv‹d¸ šFñí(¤Óo`!Ìm}5õh á¼Û{^¶—ïžUÛ¹ÕŽ ¿Ú`£Yk©G*B€°ÚRQÓ€ìZK…ƒ0}›m©Õt{[ê~Æ5òâ‰P·ñÚ™P5òÊ™P3òÊ¡P³òƒž 5ëíëëûï‰\Ò©"š•¡|–!c×燨MBxúÓÁ8¨ýÊîlXI¥ Û¦wí06Âüìa«RØŒ¯•G[ל«R8—ÆÈ *óðõ²S8—Åô¬ù)F£p®-}˜†t>¡‘ÑÚñ|"¦ Y¡A³eàk5 ã’€“3UãÙ’Kõ!±ÔºÆx×!ÑfÞX CJ“ÄHG IQï°éDÕ(œÉú‹g*Îäö•åL…™"&:8S¡0¦"eçabÿÄã3H!òö чŒå\ÑðG·•ÇûBñ¾i쑞֮Bž”¼ÀµC„”¼k€³p¨Ê+x‡2âÃâb·Ælç07ð:ã‡ZxïT¯ÁØNoÜqØ‚fO¸À*§Ölü°h§ÚŽƒ˜m#—œ2t²¯T/è’'gÈYW)œ Ÿþ>À˜ …3áÁÙ L…™,#ÃKJ¥p&'a^ *…3‘"Œ£êu?êÖjaèo%Fn·üX[¾¡#Ç;-¯7¶tÓfíØ¤SòAîÝC;Òô>ÿ;£NVrOU¹/Pïë9£ÐAO_ ŸµêAQ¡24¡óó£{Fô¶zSe7è|Nö¿ñ¶;ÓWωè?ú;¢†ªÆØ;©Nv(çDQ®VÓµc¢–êyLTƒkÀ“VÞ=&ÚÏxßÁ&Æ8µ·ô‡e2òÕÖ‰ìâj°\€zÎ G²(«˜.€OQGuN´'émC)\œ^§K+­žÎßÑ˃6ÂEvº%z Þùé,¿è‚ìÜÙsÿ†ŠmkèeC)A¾y6¥÷…¤²O/d xÃå§ZF` ÓÛôÆbŒÞãØ«{E{¶ýooÒ*"Hˆà1ØAH鵎Óõ°Œ6„š.‰A8”˜q:¤DxÊéöuRrûz½?H,G ^H妗y9!,D¡|4|‚ Tƒ}¤­Ó¥ˆô ®Zaz•žâp=HŒaºâvy“%0Û2n39==>¤—:¥ú<ïýH¼È>£Ü0õ¸vÉØz`OzL¯9,ÑÍ4¡¯½¡WT£ÚMߤKgmœÞõË‹ÅË7K¡‘tt\–~Á_ö£Î]“ò6+ó•™v;¢7£L>w~V_ŽE#І+áQ‡d´Øþ÷#ýL/ëé䢿Kú£û‰¨ÉÍFQèéù!Õ-BÊzN7½ëoöÒc6hd[v;òØPÂeð2rÞ‹,zDR½¼ËËvËâ àêj°‚š®¿éϼÍRD¾Â«¶á »n²‡§^Ð ÷É-BiœžLܸ<¿Í™ŠTÏMçé{¦Èó1ÀŒ)Û1;˜‹Û–éÅ­Ÿ·T”N/2Ù5*–jž«5Ë)Ã䳨0¥ƒÄÔ<]¿ëâå%%&[zðf{sࡼ9ù¢)u}UÊ"&²“òž,•• )I/‹&²K—.a„é»CkéÅlXà6Å·5Q Ï%#¹(IWª"2¥5-„Ÿ®_Òu ¨š¾?¤®‡NèŠX™!ZÌÎù!LÓŸÓQ@Ï)‹K¸¬E€lÕ¢™‘Ù%®ÇXhtòL}-Ì"ü´ïü¶h¹qøj§IxoIQ* êqÞDK4b©”\<oš›xÂÔ Ñ±Râ«rÂÐzýEg¡Á Ÿ¾îòC5]µ=ùÔ­&X1âe -QDC«tgI'årBõà}ÓÔž:ªµWwééwmn§×©ƒ¢qˉåynÐ1ÖŒ1z”¾30%'“YQy1Æ7-e¤ÉæÊ @Ì'§‡)qtX)6/ \fb¾¼Î2øìIÚ×Ýiçïz ன >Rqs/5dÆÔ’éO”²Xñ89_`¬÷YXÀ=SÀ'¦Í¼ô÷ TmH¹}rÃlr“J…“.O"§?²w»†ÛEývÇ(kËŠ$Ó™™‚­v–W3¨ ,ÀK9q€÷Óyc1¬h±Õ~Ñ3 Å$l0š¸…ÅÕboõÒÄ“ô£{Ù­ µ…õŸÖ®òR6Z)ä(#aíÁ#|‰›nWÆ).]^¡­[ú>eGF6Ù?j™L‡>%“YIÊ‹}ÐpjÆÆÌÅÜ3DI^Ý`œNhÄÒ±nHM%Ë8$ø5Ç)E{Ø"#zÔIµZŒjœ¼ì.äm°D«çñŒµÌ“7Ý<¬ŒçHCøÁ :`€p#Ö¹"ß#4TܳçKú:J•…«›yï9¹*J'ðÚÚqë~ßçŸ ¾ŒÃbµõ•·yˆ^öo¤¦ë–ÄÔW[æ¾XF;RÉc>qwS©¬‘ /zÌ`óú‘wúõm‚TrwÐYæR®™O\{‘Úƒˈ²hL/ϳs§½GŸ© Ôe$g9ýˆ"x j>ûœ"!Zý\ ®y”7© ôœL¥4v Ú³“ñàË1Xì`àè ¦G@e/©%>´ÂÎ4¸9§õL³FÑÁûçebÑ’ŠZ¥ 5ûŸŽfk‰åd·0Ð)—&a5«ËÌ¥cϨ¦-À:µ„A= »÷X´ m¹ÙóšÅzª]ÊNð[hc@ ‹``ˆ¿\UlšÍëÙ€.Ãqê×¹è;ص¸z΀[÷MÛ1¼_J¤ˆŠãF¹ÓójV{»†$YÇ<©xjuDâu®5®¤xc¬°9yq W’ÆÛ<‰s3ÈòÛ;ÁÉ?÷Ĩ£¼Ýù¹ç‡|ˆ÷ï…ï>—¾¹ìŸä}Çøš¿c~6â}V\øÎ°]÷|áƒÍ¾à‹Ý_³ö‡Ù—{øj÷ÏK?_-<Í?ý_¿üéŸ9~ÄÏËÿ´9½endstream endobj 123 0 obj << /Filter /FlateDecode /Length 2375 >> stream xœíZko\·ý¾ÍXôÓÝÖËòý(Ð)Z')œÀµ¶Ц(VÒZV½YkÙѿϒ÷’\ÝUd9hÀ0sy‡ó<3œ¡ófÊ™˜rú“ÿ>ÛL$Óaú~§_N¬vL91uÆ æít3ñÒ2°³žœLwÌj?uVs¦$¨†/³&R…µ®ˆúšFs|4•à×ínˆñP)¿;®k¶«;F9£c–±‡ÝµQ× ^Kk³}ÊÁGØ5ÄðH£±òêÝ}ÚÕðù»ü)¹PǸÝfåU²B±Iq¥À¥hJø\LÙÛ0É)™RhM­›«Ð…TþV2hêƒzUØHÎ ¸Ý—c1 ª]@2Òd©]:[ëMÒy€p/³•Ü„nW©zA÷…A 0uZÀQ$…!ÔÑ8?´ Ò&nímÐU⬅>ÀZ`š~Œ¢gÁCcÕëâ’’Në¢æ:£¨ÄÀÉàƒ3‚ RS¶ùVX\GÉÁëˆì+©x”Àm K¨(¡V~ŸD+o½UÚýæ@!îPÊI2s¨ƒ§Xæ´[5‘¤J£‘ÏøŽ„ot¬I·‰™?åU×}–ÀçèFq=øš$I!l-¿Ê**ßV(zóB\* WˆíX¶ÑÓøãb›LˆîU™%¤Ñ¦*«—%û.^‘¦°CRQ‘Á1¿oé;Ò(øTé³äªáµ‹NElÄÕRžÄµA°*WîÒ.®„¦Ìl“2Ú©2M ˜Õ.R5F8Wëñ»é¥TÆ Tµëq*Ʀ‘ÝG̪D,ŠEÖ~(€qÌÁ×…¶-„ÕÎŒWâϵÍ÷r¤®JÝE‰E¼Qq 7êÛ"žZžF<+) AçuQ¾Ê˜hÒ¥¯œw¹°&- Ô*¨¢`ÊYUa9öQÈ9µ£‘%Bö.çˆ{H”Tÿˆ T;zMôbJ‘ÚŽFåŽk¬®½¶¸tMµi€àJ¦Ôp=½·BÌ—ªi€:âÝãsw¼Þ\NéxŸLEúÔ-ÆuÚµAÝéL Da¨YzÙ¯қǻ„Æ!ãàNÌU‚Æ€£H`».èɦ‚Æ“,j:Ь<ì¼Íáõ½SC1•7cM 4²%@µ‹Ô} -™ºÇen¿“µÈØp`­RL7­€8z•Í|€³’ÿƒ‘ÐÍeÿW£á‘I žåÜ·Ï b®vÛýªŒä›Ó2~ý1ò±šz1k¦«zJ;©Ç·“7åÃ7«e?¿¡PÖ_Êì÷n¹¾YõƒÝ᫵òjt°3ý\žÛ W`ãÒ¦¸ÓÓQÎLQ„þ Uïu ñ•Šã`ÏVq+ú§ŒÐ¡‹Èdp-v‚ðÇ\{úêqmÿ¶úx×JÅ{_ŠÎඬ|À¢D:"ÿySóš“bfÄ›NuçúWŠT_#•¸ù‚TÏ”(Šhz~Èÿ*ò n+â¶ø|nøÌò%/==ê¨âÿªÿųKâM¡¬øôGG^wªujú1 PkÑΉ«ÒqW£×eœEAà‡7‡»÷iÏ u‚ÆË¶¿?œ)©Á¨ÆÒƒ1ÜÀú Ý¡]'ÌѦסšI—?Ä–Á .êY}ÇDêkJ£±I $úŒÓºï!{‚°íĹŒ-ÜÛªÞŽ Ù\Ê8M1ÒCHbxP+÷íéhÑŒhÑ£‚>ƒbTµ¾çi›æœÊ’å¾´_u³VwhMÓÜÌi¹ÛUóÂò:ɱÀè‘6¯iÓR-´iRKûi²…,oÅÁcMrœ‡íˆã€GkJs}Zu4óœà­èÿï‹"'ã E e…›‹¬8ð`òèD¯G·™æ–è—{w&“8ß}6©‡–iZ²}ž$Ý\xØ£%ÑïÆÑ¹k+A2:ˆÃ|î=Æ¢:µ«ÞY›§rºžYé­F_=Õì’û°wg‹<ª xØl1àõIŽL?ïeêmÚ¦¹ùª‚è²Êöæ"½B¦´í!tVI¹©u*™U!‹üu1ù;þüâ"‘endstream endobj 124 0 obj << /Filter /FlateDecode /Length 2774 >> stream xœíZëo·ÿ~éq(€×æ¶|? $€ópÐ hS[(PÄý°:-Õ÷u’\ÉßÞ’KO»Š\­ lw8ÎãÇÙy7ç˜süËÿ¯¶3Ùé0?ãóïgVˆÎ9wÆŠÎÛùvæï¼.›ÙË™w¢s^ÌÕ¼SˆÊŒ¡³&RéUg4¡*3”JYÝiO64F«y‘±|ð3Uªü› e•ï´ D(/\ç¹h„ªTÃLC•…*Û 2‘ýøüÍìÝLDUÎó«íüë“Ù^H3]°ÒÎO^Ï’šÅ\€„†Ós×  8ÙÎ~fB.–"x)س??ûqáe‚e¹XòÎr®ûÓ‚wAø`5ƒY¥@X ø Ì ïmÐì9ÎJα¿-(Š àö9ð๔È~.ƒÔ°Ï7ñW°\[ö]ÚHz-þqòà t”ôó“g'¿û™½†]”×N³ýÕb)ƒî¬7l‡kLÂրĀB²~“hœ—ì<®t"°5Rkέõì"Jí@ñìÍùBZ$ñìzQ„;$*öŠáÂÀ…’RQªsá&€bOÎ@»›£ŽÎ™º1H Å@üjQ7übÙ1<‰†Ånªúß¼Y/†ñ§UZ«(ô Þt,å`厬L¬9ØeS .À¶Ë7ʪB¼ÎêéÖdïÛj|²õYÝE6ï©@«:Kï_§±ñ‚õ84 IÜ’->Cf2øà³‚cjv…´BH©1w‘EÀÖu: ç…½»Aû ï{.¹ÇIÕð´ .ó\¡ypÚ¡hŠíß&ë¯À%UâÿCAÑ3–\# ‘ŒÉ'. }‘6…(’ñdÒƒ§;ö>žœL»¤’ „6OÀVÊHà#ÙvÂZÎqC¢%™Æ!˪…n|»0CÓ±þ*.@`ªL Þ§…cfØOƒ‡‘£S$ŸvFë£(KrÆ(+Óý®„ä‡Döˆþ¡ Ào­‚‰·%1x €Abè*q°Ñ几f)®œÓò(°"±%R¯I–ÐÒZª¯‰c7Ä5Þú$(G¬J$Ö GÕH™¼‹ÛX©Õ`CØq°Vœ¾Xup&£K¿©4Hvèš;™NÊ Ù‘¼P ƒ]šµB=̇m[?^´Íجµ1à3!c¼;‹b¼;¡æÙž¢zÂПf˨ˆ€ä÷èžÃÁzúEOAn¡¸ès8¶äp*ê×yc1WÄQÎÓ–£7!|‚@%\HgØ[”¹-"Pó3Ò ²'x)Ò5ù¡Ãí©!ªëCã³PIraÁ…C!FZg¦ck ¹¥U×np½C¹oÊh;2êË誌>ŒÝ›*tj`¾MŽ€gH¡+À=Ô±s”´>«ÓÑqè¡[Çíãm$½žUW94äŽÊ8_åº{¬šìËè–Ðr × d¿‰Œ«²Ê=N° ] 3È]1cꦹ¢IvS}_¢‡GŠf%•e¬ëF´4p{‡†{Ÿx¤E_-–FB¦ ±õ8—Fp‹Ü·ä×Ì1ÂfUF§et1Âðì~êâ/ê™ëäùý7cw#«†ç¿Ôáº\Žh`u¿g# º&s…ðË1k¾±ë&ú½ª“¢dÎõŒ"E ÔL™"6.øýbéÿ £Îs:ÂoM0&öÃõT–|~¯W|^ ëjâ ¿a®Ëˆß;úºŒ¾áG 8¶‰}ü&ànãÃJÍ=€ÕFE #Â9@Á·¤ %ûéb³ÁœîÈŒXyyµÿWùù¼Œv7Ûaì pÔõnüÁOW¯ØWϳXË*ÜëÆË$Éúr¿:ÇÌ'®a"s‚Tþ…Œ®ÈfB­¨dsþ44^ }$ñ"îù‡áöÅúpqvÓogÅŒ_Œ]+àÒʉ²î -ŸÐò -ÿ§h)ÊÈ—‘ù/¢%—Ÿ \†)´" ã÷x U'7ì1”\>(ɺ' |Êÿ(×~ÊG¥|ëO…Äò±ð¨¸ÊðˆßŠÆáqÑkû’O ù‰€¤xÉGƒä³2ú¶Œj†9–Wþß¼q?#HZYŸ¸.Ã$rž@Jݹõ’›EJ3ýÞë€Râ'd<½ˆª_ðËGPZX¾L´ -¬7%H¡A¯õóêxe€Tr1'VÞ6‰ƒç¶ù„_|¥ð¿!Ń‹Z<øMùôTÀ± A•G³ æ¨LÊ¿QjåêY<}T¶ÇYÇõt!nwT– eÃÄ6WŠqŒ…˜ Å\VÆ=Ñ@Ò((ÉÞ[FÍ•²A$˨„šÔO6µfvP•ƒÇ”/÷ÑÜxíÛjêQù0®ï›rd[_Ë\[&ÎEÝ/•Y½³ûÁ™´÷Ñå:²gA¬—âB\c•ýv–ôR$wtã<ûTe²©ÕÒR2Ö´ÇV\ü-¦;Ëû‹¦)‚0$U޶„‘X ‘ªE©S ObâÑcYʬ'Õí]ÚÙ¼d‘â%ñêðý¡=x‰¦þ´–iÚ’`Ö™D?•X}µØËyÚQ”‰ºsœ{«ŽGÒY-{Iê^mu¾¸tª+)b‹§’]v„ÅáØóªÖ³í¢£A8 Lƒ”òØ*”ÆM [ÐÊð~KªºÉ«ÀÛ:éÞ %‡´‹òÔ3è²ñž–ÉdÆÅdÅk’E) $ÀŠoŠûD^lD•ؾÐ`hQÆ-š<ªÑñ•tOiß”ñŠl÷Y ©‘;-t4ðz”‰!Ý’1ä$$c¬ –ªKZx·ºGyËÎYWsHa%ÊãVÊáÑÚ[‡t´P×&î¦'a°E6UÀùM ¯ë¬èÐ(²_-bt—špêZÀîø+éC`u©4(­ýpß”†”|Ùtœ(¸Hîˆ5ØÑɾ܎¥'RuV_Sö»’Qh['êµ% Ú€‚'ÒŽ;UÿæÛ]ngƒð=ùçœJvRéæJÌB’î°õg2æ ½0¹aE6ípéBÆÖ¨Ó ¡-\âz(‡àøGCm{Ò1ppí’°S ËØG`yœ/´&Ù)==m·Â²Ü ØÖ¦áº ±ù,Y›ÏjGäyõn¢ŒÈh[\§iËD†B»®\ÊvÞ˜ V%[¥v<Ûñ¦¼[Dm·U‘ú*1€ ¹¤š)ÙÒ^>4#-*!f,­‹1¦º"Ö_R“ н•T—¥=ñ:- ÜMd­±ëÏ#ÄÔ¼ÑtŠŸ·Á9¤V Í*°’E䲩ëˆ4ì iœ¾òZ‘cÄûÉÂŒ!;{°U‘§µUà_ëúІ…3;îŽÒå! æº\9¤Ÿ‘¾ÎL¤'c-:ȬM9ÚK|èDod¤ Æ:õÁT{9C ˜OzÊÓÙ«#R^åfßv ¾­¡FPŠôÒlÒ:çiJšÞo@8Ùf‘5„'rÎ|,¡»ä?£ií!Ÿl: bMÞÞ—ª©üf5Ž„ô>~CI¾šö¶ÒBNû~ëæã}¤ÇŒs›Ä£¸ü‚†ö¢4’uHššzñáw'³¿Âß¿«Hcendstream endobj 125 0 obj << /Type /XRef /Length 140 /Filter /FlateDecode /DecodeParms << /Columns 5 /Predictor 12 >> /W [ 1 3 1 ] /Info 3 0 R /Root 2 0 R /Size 126 /ID [<6171a3b1e2c735515f209c695e453828>] >> stream xœcb&F~0ù‰ $À8JŽ’8Éÿ –Ùìr ÔÂ;D2ï‘^ ’QDr8ƒÓÒu)g"%A¤Ø °0›Ì6‘œ ’ïXä?ˆd³Yã@$SØLk°ìe0© &Á¶p¿Ûþ¬Æ H2òå€E6Éw ’k"X¥;ñÅ endstream endobj startxref 80524 %%EOF HSAUR3/inst/doc/Ch_introduction_to_R.Rnw0000644000176200001440000015624114416236367017574 0ustar liggesusers \documentclass{chapman} %%% copy Sweave.sty definitions %%% keeps `sweave' from adding `\usepackage{Sweave}': DO NOT REMOVE %\usepackage{Sweave} \RequirePackage[T1]{fontenc} \RequirePackage{graphicx,ae,fancyvrb} \IfFileExists{upquote.sty}{\RequirePackage{upquote}}{} \usepackage{relsize} \DefineVerbatimEnvironment{Sinput}{Verbatim}{} \DefineVerbatimEnvironment{Soutput}{Verbatim}{fontfamily=courier, fontshape=it, fontsize=\relsize{-1}} \DefineVerbatimEnvironment{Scode}{Verbatim}{} \newenvironment{Schunk}{}{} %%% environment for raw output \newcommand{\SchunkRaw}{\renewenvironment{Schunk}{}{} \DefineVerbatimEnvironment{Soutput}{Verbatim}{fontfamily=courier, fontshape=it, fontsize=\small} \rawSinput } %%% environment for labeled output \newcommand{\nextcaption}{} \newcommand{\SchunkLabel}{ \renewenvironment{Schunk}{\begin{figure}[ht] }{\caption{\nextcaption} \end{figure} } \DefineVerbatimEnvironment{Sinput}{Verbatim}{frame = topline} \DefineVerbatimEnvironment{Soutput}{Verbatim}{frame = bottomline, samepage = true, fontfamily=courier, fontshape=it, fontsize=\relsize{-1}} } %%% S code with line numbers \DefineVerbatimEnvironment{Sinput} {Verbatim} { %% numbers=left } \newcommand{\numberSinput}{ \DefineVerbatimEnvironment{Sinput}{Verbatim}{numbers=left} } \newcommand{\rawSinput}{ \DefineVerbatimEnvironment{Sinput}{Verbatim}{} } %%% R / System symbols \newcommand{\R}{\textsf{R}} \newcommand{\rR}{{R}} \renewcommand{\S}{\textsf{S}} \newcommand{\SPLUS}{\textsf{S-PLUS}} \newcommand{\rSPLUS}{{S-PLUS}} \newcommand{\SPSS}{\textsf{SPSS}} \newcommand{\EXCEL}{\textsf{Excel}} \newcommand{\ACCESS}{\textsf{Access}} \newcommand{\SQL}{\textsf{SQL}} %%\newcommand{\Rpackage}[1]{\hbox{\rm\textit{#1}}} %%\newcommand{\Robject}[1]{\hbox{\rm\texttt{#1}}} %%\newcommand{\Rclass}[1]{\hbox{\rm\textit{#1}}} %%\newcommand{\Rcmd}[1]{\hbox{\rm\texttt{#1}}} \newcommand{\Rpackage}[1]{\index{#1 package@{\fontseries{b}\selectfont #1} package} {\fontseries{b}\selectfont #1}} \newcommand{\rpackage}[1]{{\fontseries{b}\selectfont #1}} \newcommand{\Robject}[1]{\texttt{#1}} \newcommand{\Rclass}[1]{\index{#1 class@\textit{#1} class}\textit{#1}} \newcommand{\Rcmd}[1]{\index{#1 function@\texttt{#1} function}\texttt{#1}} \newcommand{\Roperator}[1]{\texttt{#1}} \newcommand{\Rarg}[1]{\texttt{#1}} \newcommand{\Rlevel}[1]{\texttt{#1}} %%% other symbols \newcommand{\file}[1]{\hbox{\rm\texttt{#1}}} %%\newcommand{\stress}[1]{\index{#1}\textit{#1}} \newcommand{\stress}[1]{\textit{#1}} \newcommand{\booktitle}[1]{\textit{#1}} %%' %%% Math symbols \usepackage{amstext} \usepackage{amsmath} \newcommand{\E}{\mathsf{E}} \newcommand{\Var}{\mathsf{Var}} \newcommand{\Cov}{\mathsf{Cov}} \newcommand{\Cor}{\mathsf{Cor}} \newcommand{\x}{\mathbf{x}} \newcommand{\y}{\mathbf{y}} \renewcommand{\a}{\mathbf{a}} \newcommand{\W}{\mathbf{W}} \newcommand{\C}{\mathbf{C}} \renewcommand{\H}{\mathbf{H}} \newcommand{\X}{\mathbf{X}} \newcommand{\B}{\mathbf{B}} \newcommand{\V}{\mathbf{V}} \newcommand{\I}{\mathbf{I}} \newcommand{\D}{\mathbf{D}} \newcommand{\bS}{\mathbf{S}} \newcommand{\N}{\mathcal{N}} \renewcommand{\L}{L} \renewcommand{\P}{\mathsf{P}} \newcommand{\K}{\mathbf{K}} \newcommand{\m}{\mathbf{m}} \newcommand{\argmin}{\operatorname{argmin}\displaylimits} \newcommand{\argmax}{\operatorname{argmax}\displaylimits} \newcommand{\bx}{\mathbf{x}} \newcommand{\bbeta}{\mathbf{\beta}} %%% links \usepackage{hyperref} \hypersetup{% pdftitle = {A Handbook of Statistical Analyses Using R (3rd Edition)}, pdfsubject = {Book}, pdfauthor = {Torsten Hothorn and Brian S. Everitt}, colorlinks = {black}, linkcolor = {black}, citecolor = {black}, urlcolor = {black}, hyperindex = {true}, linktocpage = {true}, } %%% captions & tables %% : conflics with figure definition in chapman.cls %%\usepackage[format=hang,margin=10pt,labelfont=bf]{caption} %% \usepackage{longtable} \usepackage[figuresright]{rotating} %%% R symbol in chapter 1 \usepackage{wrapfig} %%% Bibliography \usepackage[round,comma]{natbib} \renewcommand{\refname}{References \addcontentsline{toc}{chapter}{References}} \citeindexfalse %%% texi2dvi complains that \newblock is undefined, hm... \def\newblock{\hskip .11em plus .33em minus .07em} %%% Example sections \newcounter{exercise}[chapter] \setcounter{exercise}{0} \newcommand{\exercise}{\stepcounter{exercise} \item{Ex.~\arabic{chapter}.\arabic{exercise} }} %% URLs \newcommand{\curl}[1]{\begin{center} \url{#1} \end{center}} %%% for manual corrections %\renewcommand{\baselinestretch}{2} %%% plot sizes \setkeys{Gin}{width=0.95\textwidth} %%% color \usepackage{color} %%% hyphenations \hyphenation{drop-out} \hyphenation{mar-gi-nal} %%% new bidirectional quotes need \usepackage[utf8]{inputenc} %\usepackage{setspace} \definecolor{sidebox_todo}{rgb}{1,1,0.2} \newcommand{\todo}[1]{ \hspace{0pt}% \marginpar{% \fcolorbox{black}{sidebox_todo}{% \parbox{\marginparwidth} { \raggedright\sffamily\footnotesize{TODO: #1}% } }% } } \begin{document} %% Title page \title{A Handbook of Statistical Analyses Using \R{} --- 3rd Edition} \author{Torsten Hothorn and Brian S. Everitt} \maketitle %%\VignetteIndexEntry{An Introduction to R} %%\VignetteDepends{sandwich} \setcounter{chapter}{0} \SweaveOpts{prefix.string=figures/HSAUR,eps=FALSE,keep.source=TRUE} <>= rm(list = ls()) s <- search()[-1] s <- s[-match(c("package:base", "package:stats", "package:graphics", "package:grDevices", "package:utils", "package:datasets", "package:methods", "Autoloads"), s)] if (length(s) > 0) sapply(s, detach, character.only = TRUE) if (!file.exists("tables")) dir.create("tables") if (!file.exists("figures")) dir.create("figures") set.seed(290875) options(prompt = "R> ", continue = "+ ", width = 63, # digits = 4, show.signif.stars = FALSE, SweaveHooks = list(leftpar = function() par(mai = par("mai") * c(1, 1.05, 1, 1)), bigleftpar = function() par(mai = par("mai") * c(1, 1.7, 1, 1)))) HSAURpkg <- require("HSAUR3") if (!HSAURpkg) stop("cannot load package ", sQuote("HSAUR3")) rm(HSAURpkg) ### hm, R-2.4.0 --vanilla seems to need this a <- Sys.setlocale("LC_ALL", "C") ### book <- TRUE refs <- cbind(c("AItR", "DAGD", "SI", "CI", "ANOVA", "MLR", "GLM", "DE", "RP", "GAM", "SA", "ALDI", "ALDII", "SIMC", "MA", "PCA", "MDS", "CA"), 1:18) ch <- function(x) { ch <- refs[which(refs[,1] == x),] if (book) { return(paste("Chapter~\\\\ref{", ch[1], "}", sep = "")) } else { return(paste("Chapter~", ch[2], sep = "")) } } if (file.exists("deparse.R")) source("deparse.R") setHook(packageEvent("lattice", "attach"), function(...) { lattice.options(default.theme = function() standard.theme("pdf", color = FALSE)) }) @ \pagestyle{headings} <>= book <- FALSE @ \chapter{An Introduction to \R{} \label{AItR}} \setcounter{page}{1} \section{What is \R{}?} The \R{} system for statistical computing is an environment for data analysis and graphics. %% #Z %% and an implementation of the \R{} programming language. The root of \R{} is the \S{} language, developed by John Chambers and colleagues \citep{HSAUR:Becker+Chambers+Wilks:1988,HSAUR:Chambers+Hastie:1992,HSAUR:Chambers:1998} at Bell Laboratories (formerly AT\&T, now owned by Lucent Technologies) starting in the 1960s. The \S{} language was designed and developed as a programming language for data analysis tasks but in fact it is a full-featured programming language in its current implementations. The development of the \R{} system for statistical computing is heavily influenced by the open source idea: The base distribution of \R{} \index{Base distribution} and a large number of user-contributed extensions are available under the terms of the Free Software Foundation's GNU General %%' Public License in source code form. \index{GNU General Public License} This licence has two major implications for the data analyst working with \R. The complete source code is available and thus the practitioner can investigate the details of the implementation of a special method, make changes, and distribute modifications to colleagues. As a side effect, the \R{} system for statistical computing is available to everyone. All scientists, including, in particular, those working in developing countries, now have access to state-of-the-art tools for statistical data analysis without additional costs. With the help of the \R{} system for statistical computing, research really becomes reproducible when both the data and the results of all data analysis steps reported in a paper are available to the readers through an \R{} transcript file. \R{} is most widely used for teaching undergraduate and graduate statistics classes at universities all over the world because students can freely use the statistical computing tools. The base distribution of \R{} is maintained by a small group of statisticians, the \R{} Development Core Team. A huge amount of additional functionality is implemented in add-on packages \index{Add-on package} authored and maintained by a large group of volunteers. The main source of information about the \R{} system is the World Wide Web with the official home page of the \R{} project being \curl{http://www.R-project.org} All resources are available from this page: the \R{} system itself, a collection of add-on packages, manuals, documentation, and more. The intention of this chapter is to give a rather informal introduction to basic concepts and data manipulation techniques for the \R{} novice. Instead of a rigid treatment of the technical background, the most common tasks are illustrated by practical examples and it is our hope that this will enable readers to get started without too many problems. \section{Installing \R{}} \index{Base system|(} The \R{} system for statistical computing consists of two major parts: the base system and a collection of user-contributed add-on packages. The \R{} language is implemented in the base system. Implementations of statistical and graphical procedures are separated from the base system and are organized in the form of \stress{packages}. A package is \index{Add-on package} a collection of functions, examples, and documentation. The functionality of a package is often focused on a special statistical methodology. Both the base system and packages are distributed via the Comprehensive \R{} Archive Network (CRAN) accessible under \curl{http://CRAN.R-project.org} \index{Comprehensive R Archive Network (CRAN)@Comprehensive \R{} Archive Network (CRAN)} \subsection{The Base System and the First Steps \label{AItR:Base}} The base system is available in source form and in precompiled form for various Unix systems, Windows platforms and Mac OS X. For the data analyst, it is sufficient to download the precompiled binary distribution and install it locally. Windows users follow the link \curl{http://CRAN.R-project.org/bin/windows/base/release.htm} download the corresponding file (currently named \file{\Sexpr{HSAUR3:::exename()}}), execute it locally, and follow the instructions given by the installer. \index{Base system|)} \begin{wrapfigure}{lH}[0cm]{2cm} \includegraphics[width=1.95cm]{graphics/Rlogo_bw} \end{wrapfigure} Depending on the operating system, \R{} can be started either by typing `\texttt{R}' on the shell (Unix systems) or by clicking on the %' \R{} symbol (as shown left) created by the installer (Windows). \R{} comes without any frills and on start up shows simply a short introductory message including the version number and a prompt `\texttt{>}': %' \index{Prompt} <>= HSAUR3:::Rwelcome() @ <>= options(prompt = "> ") @ One can change the appearance of the prompt by <>= options(prompt = "R> ") @ and we will use the prompt \Rarg{R>} for the display of the code examples throughout this book. A \texttt{+} sign at the very beginning of a line indicates a continuing command after a newline. Essentially, the \R{} system evaluates commands typed on the \R{} prompt and returns the results of the computations. The end of a command is indicated by the return key. Virtually all introductory texts on \R{} start with an example using \R{} as a pocket calculator, and so do we: <>= x <- sqrt(25) + 2 @ This simple statement asks the \R{} interpreter to calculate $\sqrt{25}$ and then to add $2$. The result of the operation is assigned to an \R{} object \index{Object} with variable name \Robject{x}. The assignment operator \Roperator{<-} binds the value of its right-hand side to a variable name on the left-hand side. The value of the object \Robject{x} can be inspected simply by typing <>= x @ which, implicitly, calls the \Rcmd{print} method: <>= print(x) @ \subsection{Packages} \index{Add-on package|(} The base distribution already comes with some high-priority add-on packages, namely \begin{center} <>= colwidth <- 4 ip <- installed.packages(priority = "high") pkgs <- unique(ip[,"Package"]) pkgs <- paste("\\Rpackage{", pkgs, "}", sep = "") nrows <- ceiling(length(pkgs) / colwidth) pkgs <- c(pkgs, rep("", colwidth * nrows - length(pkgs))) cat(paste(c("\\begin{tabular}{", paste(rep("l", colwidth), collapse=""), "}"), collapse = ""), "\n", file = "tables/rec.tex", append = FALSE) for (i in 1:nrows) { cat(paste(pkgs[(1:colwidth) + (i-1)*colwidth], collapse = " & "), file = "tables/rec.tex", append = TRUE) cat("\\\\ \n", file = "tables/rec.tex", append = TRUE) } cat("\\end{tabular}\n", file = "tables/rec.tex", append = TRUE) rm(ip, nrows) @ \input{tables/rec} \end{center} Some of the packages listed here %% #Z %% are maintained by members of the \R{} core development team and implement standard statistical functionality, for example linear models, classical tests, a huge collection of high-level plotting functions or tools for survival analysis; many of these will be described and used in later chapters. Others provide basic infrastructure, for example for graphic systems, code analysis tools, graphical-user interfaces or other utilities. <>= cp <- available.packages(contriburl = "http://CRAN.r-project.org/src/contrib") ncp <- sum(!rownames(cp) %in% pkgs) rm(cp, pkgs) @ Packages not included in the base distribution can be installed directly from the \R{} prompt. At the time of writing this chapter, $\Sexpr{ncp}$ user-contributed packages covering almost all fields of statistical methodology were available. Certain so-called `task views' for special topics, such as statistics in the social sciences, environmetrics, robust statistics, etc., describe important and helpful packages and are available from \curl{http://CRAN.R-project.org/web/views/} <>= rm(ncp, colwidth, i) @ Given that an Internet connection is available, a package is installed by supplying the name of the package to the function \Rcmd{install.packages}. If, for example, add-on functionality for robust estimation of covariance matrices via sandwich estimators \index{Sandwich estimator} is required (for example in \Sexpr{ch("ALDII")}), the \Rpackage{sandwich} package \citep{PKG:sandwich} can be downloaded and installed via <>= install.packages("sandwich") @ The package functionality is available after \stress{attaching} the package by <>= library("sandwich") @ A comprehensive list of available packages can be obtained from \curl{http://CRAN.R-project.org/web/packages/} Note that on Windows operating systems, precompiled versions of packages are downloaded and installed. %%Currently, the service of overnight compilation of all packages on %%CRAN for the Windows platform is kindly offered by Uwe Ligges from the %%University of Dortmund, Germany. In contrast, packages are compiled locally before they are installed on Unix systems. \index{Add-on package|)} \section{Help and Documentation \label{AItR:HDN}} \index{Help system|(} Roughly, three different forms of documentation for the \R{} system for statistical computing may be distinguished: online help that comes with the base distribution or packages, electronic manuals, and publications work in the form of books, etc. The help system is a collection of manual pages describing each user-visible function and data set that comes with \R{}. A manual page is shown in a pager or Web browser when the name of the function we would like to get help for is supplied to the \Rcmd{help} function <>= help("mean") @ or, for short, \begin{Verbatim} R> ?mean \end{Verbatim} Each manual page consists of a general description, the argument list of the documented function with a description of each single argument, information about the return value of the function and, optionally, references, cross-links and, in most cases, executable examples. The function \Rcmd{help.search} is helpful for searching within manual pages. An overview on documented topics in an add-on package is given, for example for the \Rpackage{sandwich} package, by <>= help(package = "sandwich") @ Often a package comes along with an additional document describing the package functionality and giving examples. Such a document is called a \Rclass{vignette} \citep{HSAUR:Leisch2003,HSAUR:Gentleman2005}. For example, the \Rpackage{sandwich} package vignette is opened using <>= vignette("sandwich", package = "sandwich") @ More extensive documentation is available electronically from the collection of manuals at \curl{http://CRAN.R-project.org/manuals.html} For the beginner, at least the first and the second document of the following four manuals \citep{HSAUR:AItR,HSAUR:RDIE,HSAUR:RIA,HSAUR:WRE} are mandatory: \begin{description} \item[An Introduction to R] A more formal introduction to data analysis with \R{} than this chapter. \item[R Data Import/Export] A very useful description of how to read and write various external data formats. \item[R Installation and Administration] Hints for installing \R{} on special platforms. \item[Writing \R{} Extensions] The authoritative source on how to write \R{} programs and packages. \end{description} Both printed and online publications are available, the most important ones are \booktitle{Modern Applied Statistics with \S{}} \citep{HSAUR:VenablesRipley2002}, \booktitle{Introductory Statistics with \R{}} \citep{HSAUR:Dalgaard2002}, \booktitle{\R{} Graphics} \citep{HSAUR:Murrell2005} and the \R{} Newsletter, freely available from \curl{http://CRAN.R-project.org/doc/Rnews/} In case the electronically available documentation and the answers to frequently asked questions (FAQ), available from \curl{http://CRAN.R-project.org/faqs.html} \index{Frequently asked questions (FAQ)} have been consulted but a problem or question remains unsolved, the \texttt{r-help} email list is the right place to get answers to well-thought-out questions. It is helpful to read the posting guide \curl{http://www.R-project.org/posting-guide.html} before starting to ask. \index{Help system|)} \section{Data Objects in \R{}} \index{Forbes 2000 ranking|(} The data handling and manipulation techniques explained in this chapter will be illustrated by means of a data set of $2000$ world leading companies, the Forbes 2000 list for the year 2004 collected by \booktitle{Forbes Magazine}. This list is originally available from \curl{http://www.forbes.com} and, as an \R{} data object, it is part of the \Rpackage{HSAUR3} package (\textit{Source}: From Forbes.com, New York, New York, 2004. With permission.). In a first step, we make the data available for computations within \R. The \Rcmd{data} function searches for data objects of the specified name (\Robject{"Forbes2000"}) in the package specified via the \Rarg{package} argument and, if the search was successful, attaches the data object to the global environment: \index{Forbes2000 data@\Robject{Forbes2000} data} <>= data("Forbes2000", package = "HSAUR3") ls() @ <>= x <- c("x", "Forbes2000") print(x) @ The output of the \Rcmd{ls} function lists the names of all objects currently stored in the global environment, and, as the result of the previous command, a variable named \Robject{Forbes2000} is available for further manipulation. The variable \Robject{x} arises from the pocket calculator example in Subsection~\ref{AItR:Base}. As one can imagine, printing a list of $2000$ companies via <>= print(Forbes2000) @ <>= print(Forbes2000[1:3,]) cat("...\n") @ will not be particularly helpful in gathering some initial information about the data; it is more useful to look at a description of their structure found by using the following command <>= str(Forbes2000) @ <>= str(Forbes2000, vec.len = 2, strict.width = "cut", width = 60) @ The output of the \Rcmd{str} function tells us that \Robject{Forbes2000} is an object of class \Rclass{data.frame}, the most important data structure for handling tabular statistical data in \R. As expected, information about $2000$ observations, i.e., companies, are stored in this object. For each observation, the following eight variables are available: \begin{description} \item[\Robject{rank}] the ranking of the company, \item[\Robject{name}] the name of the company, \item[\Robject{country}] the country the company is situated in, \item[\Robject{category}] a category describing the products the company produces, \item[\Robject{sales}] the amount of sales of the company in billion US dollars, \item[\Robject{profits}] the profit of the company in billion US dollars, \item[\Robject{assets}] the assets of the company in billion US dollars, \item[\Robject{marketvalue}] the market value of the company in billion US dollars. \end{description} A similar but more detailed description is available from the help page for the \Robject{Forbes2000} object: <>= help("Forbes2000") @ or \begin{Verbatim} R> ?Forbes2000 \end{Verbatim} All information provided by \Rcmd{str} can be obtained by specialized functions as well and we will now have a closer look at the most important of these. The \R{} language is an object-oriented programming language, \index{Object-oriented programming language} so every object is an instance of a class. The name of the class of an object can be determined by <>= class(Forbes2000) @ Objects of class \Rclass{data.frame} represent data the traditional table-oriented way. Each row is associated with one single observation and each column corresponds to one variable. The dimensions of such a table can be extracted using the \Rcmd{dim} function <>= dim(Forbes2000) @ Alternatively, the numbers of rows and columns can be found using <>= nrow(Forbes2000) ncol(Forbes2000) @ The results of both statements show that \Robject{Forbes2000} has $\Sexpr{nrow(Forbes2000)}$ rows, i.e., observations, the companies in our case, with eight variables describing the observations. The variable names are accessible from <>= names(Forbes2000) @ The values of single variables can be extracted from the \Robject{Forbes2000} object by their names, for example the ranking of the companies <>= class(Forbes2000[,"rank"]) @ is stored as an integer variable. Brackets \Robject{[]} always indicate a subset \index{Subset} of a larger object, in our case a single variable extracted from the whole table. Because \Rclass{data.frame}s have two dimensions, observations and variables, the comma is required in order to specify that we want a subset of the second dimension, i.e., the variables. The rankings for all $\Sexpr{nrow(Forbes2000)}$ companies are represented in a \Rclass{vector} structure the length of which is given by <>= length(Forbes2000[,"rank"]) @ A \Rclass{vector} is the elementary structure for data handling in \R{} and is a set of simple elements, all being objects of the same class. For example, a simple vector of the numbers one to three can be constructed by one of the following commands <>= 1:3 c(1,2,3) seq(from = 1, to = 3, by = 1) @ The unique names of all $\Sexpr{nrow(Forbes2000)}$ companies are stored in a character vector \index{character vector@\Rclass{character} vector} <>= class(Forbes2000[,"name"]) length(Forbes2000[,"name"]) @ and the first element of this vector is <>= Forbes2000[,"name"][1] @ Because the companies are ranked, Citigroup is the world's largest %' company according to the Forbes 2000 list. Further details on vectors and subsetting are given in Section~\ref{AItR:BDM}. Nominal measurements are represented by \Rclass{factor} variables in \R, such as the category of the company's business segment %%' <>= class(Forbes2000[,"category"]) @ Objects of class \Rclass{factor} and \Rclass{character} basically differ in the way their values are stored internally. Each element of a vector of class \Rclass{character} is stored as a \Rclass{character} variable whereas an integer variable indicating the level of a \Rclass{factor} is saved for \Rclass{factor} objects. In our case, there are <>= nlevels(Forbes2000[,"category"]) @ different levels, i.e., business categories, which can be extracted by <>= levels(Forbes2000[,"category"]) @ <>= levels(Forbes2000[,"category"])[1:3] cat("...\n") @ As a simple summary statistic, the frequencies of the levels of such a \Rclass{factor} variable can be found from <>= table(Forbes2000[,"category"]) @ <>= table(Forbes2000[,"category"])[1:3] cat("...\n") @ The sales, assets, profits, and market value variables are of type \Robject{numeric}, the natural data type for continuous or discrete measurements, for example <>= class(Forbes2000[,"sales"]) @ and simple summary statistics such as the mean, median, and range can be found from <>= median(Forbes2000[,"sales"]) mean(Forbes2000[,"sales"]) range(Forbes2000[,"sales"]) @ The \Rcmd{summary} method can be applied to a numeric vector to give a set of useful summary statistics, namely the minimum, maximum, mean, median, and the $25\%$ and $75\%$ quartiles; for example <>= summary(Forbes2000[,"sales"]) @ \section{Data Import and Export} \index{Data import and export|(} In the previous section, the data from the Forbes 2000 list of the world's largest %%' companies were loaded into \R{} from the \Rpackage{HSAUR3} package but we will now explore practically more relevant ways to import data into the \R{} system. The most frequent data formats the data analyst is confronted with are comma separated files, \index{Comma separated files} \EXCEL{} spreadsheets, \index{Excel spreadsheets@\EXCEL{} spreadsheets} files in \SPSS{} format \index{SPSS file format@\SPSS{} file format} and a variety of \SQL{} data base engines. \index{SQL data bases@\SQL{} data bases} Querying data bases is a nontrivial task and requires additional knowledge about querying languages, and we therefore refer to the \booktitle{\R{} Data Import/Export} manual -- see Section~\ref{AItR:HDN}. <>= pkgpath <- system.file(package = "HSAUR2") mywd <- getwd() filep <- file.path(pkgpath, "rawdata") setwd(filep) @ We assume that a comma-separated file containing the Forbes 2000 list is available as \file{Forbes2000.csv} (such a file is part of the \Rpackage{HSAUR3} source package in directory \file{HSAUR3/inst/rawdata}). When the fields are separated by commas and each row begins with a name (a text format typically created by \EXCEL{}), we can read in the data as follows using the \Rcmd{read.table} function <>= csvForbes2000 <- read.table("Forbes2000.csv", header = TRUE, sep = ",", row.names = 1) @ The argument \Rarg{header = TRUE} indicates that the entries in the first line of the text file \Robject{"Forbes2000.csv"} should be interpreted as variable names. Columns are separated by a comma (\Rcmd{sep = ","}), users of continental versions of \EXCEL{} should take care of the character symbol coding for decimal points (by default \Rcmd{dec = "."}). Finally, the first column should be interpreted as row names but not as a variable (\Rarg{row.names = 1}). Alternatively, the function \Rcmd{read.csv} can be used to read comma-separated files. The function \Rcmd{read.table} by default guesses the class of each variable from the specified file. In our case, character variables are stored as factors <>= class(csvForbes2000[,"name"]) @ which is only suboptimal since the names of the companies are unique. However, we can supply the types for each variable to the \Rarg{colClasses} argument <>= csvForbes2000 <- read.table("Forbes2000.csv", header = TRUE, sep = ",", row.names = 1, colClasses = c("character", "integer", "character", "factor", "factor", "numeric", "numeric", "numeric", "numeric")) class(csvForbes2000[,"name"]) @ and check if this object is identical to our previous Forbes 2000 list object <>= all.equal(csvForbes2000, Forbes2000) @ The argument \Rarg{colClasses} expects a character vector of length equal to the number of columns in the file. Such a vector can be supplied by the \Rcmd{c} function that combines the objects given in the parameter list into a \Rclass{vector} <>= classes <- c("character", "integer", "character", "factor", "factor", "numeric", "numeric", "numeric", "numeric") length(classes) class(classes) @ An \R{} interface to the open data base connectivity (ODBC) standard \index{Open data base connectivity standard (ODBC)} is available in package \Rpackage{RODBC} and its functionality can be used to access \EXCEL{} and \ACCESS{} files directly: <>= library("RODBC") cnct <- odbcConnectExcel("Forbes2000.xls") sqlQuery(cnct, "select * from \"Forbes2000\\$\"") @ The function \Rcmd{odbcConnectExcel} opens a connection to the specified \EXCEL{} or \ACCESS{} file which can be used to send \SQL{} queries to the data base engine and retrieve the results of the query. <>= setwd(mywd) @ Files in \SPSS{} format are read in a way similar to reading comma-separated files, using the function \Rcmd{read.spss} from package \Rpackage{foreign} (which comes with the base distribution). Exporting data from \R{} is now rather straightforward. A comma-separated file readable by \EXCEL{} can be constructed from a \Rclass{data.frame} object via <>= write.table(Forbes2000, file = "Forbes2000.csv", sep = ",", col.names = NA) @ The function \Rcmd{write.csv} is one alternative and the functionality implemented in the \Rpackage{RODBC} package can be used to write data directly into \EXCEL{} spreadsheets as well. \index{Saving R objects@Saving \R{} objects} Alternatively, when data should be saved for later processing in \R{} only, \R{} objects of arbitrary kind can be stored into an external binary file via <>= save(Forbes2000, file = "Forbes2000.rda") @ where the extension \file{.rda} is standard. We can get the file names of all files with extension \file{.rda} from the working directory <>= list.files(pattern = "\\.rda") @ and we can load the contents of the file into \R{} by <>= load("Forbes2000.rda") @ \index{Data import and export|)} \section{Basic Data Manipulation \label{AItR:BDM}} \index{Data manipulation|(} The examples shown in the previous section have illustrated the importance of \Rclass{data.frame}s for storing and handling tabular data in \R. Internally, a \Rclass{data.frame} is a \Rclass{list} of vectors of a common length $n$, the number of rows of the table. Each of those vectors represents the measurements of one variable and we have seen that we can access such a variable by its name, for example the names of the companies <>= companies <- Forbes2000[,"name"] @ Of course, the \Robject{companies} vector is of class \Rclass{character} and of length $\Sexpr{length(companies)}$. A subset \index{Subset} of the elements of the vector \Robject{companies} can be extracted using the \Rcmd{[]} subset operator. For example, the largest of the $2000$ companies listed in the Forbes 2000 list is <>= companies[1] @ and the top three companies can be extracted utilizing an integer vector of the numbers one to three: <>= 1:3 companies[1:3] @ In contrast to indexing with positive integers, negative indexing returns \index{negative indexing} all elements that are \stress{not} part of the index vector given in brackets. For example, all companies except those with numbers four to two thousand, i.e., the top three companies, are again <>= companies[-(4:2000)] @ The complete information about the top three companies can be printed in a similar way. Because \Rclass{data.frame}s have a concept of rows and columns, we need to separate the subsets corresponding to rows and columns by a comma. The statement <>= Forbes2000[1:3, c("name", "sales", "profits", "assets")] @ extracts the variables \Robject{name}, \Robject{sales}, \Robject{profits} and \Robject{assets} for the three largest companies. Alternatively, a single variable can be extracted from a \Rclass{data.frame} by <>= companies <- Forbes2000$name @ which is equivalent to the previously shown statement <>= companies <- Forbes2000[,"name"] @ We might be interested in extracting the largest companies with respect to an alternative ordering. The three top-selling companies can be computed along the following lines. First, we need to compute the ordering of the companies' sales %%' <>= order_sales <- order(Forbes2000$sales) @ which returns the indices of the ordered elements of the numeric vector \Robject{sales}. Consequently the three companies with the lowest sales are <>= companies[order_sales[1:3]] @ The indices of the three top sellers are the elements $1998, 1999$ and $2000$ of the integer vector \Robject{order\_sales} <>= Forbes2000[order_sales[c(2000, 1999, 1998)], c("name", "sales", "profits", "assets")] @ Another way of selecting vector elements is the use of a logical vector being \Robject{TRUE} when the corresponding element is to be selected and \Robject{FALSE} otherwise. The companies with assets of more than $1000$ billion US dollars are <>= Forbes2000[Forbes2000$assets > 1000, c("name", "sales", "profits", "assets")] @ where the expression \Robject{Forbes2000\$assets > 1000} indicates a logical vector of length $2000$ with <>= table(Forbes2000$assets > 1000) @ elements being either \Robject{FALSE} or \Robject{TRUE}. In fact, for some of the companies the measurement of the \Robject{profits} variable are missing. In \R, missing values are treated by a special symbol, \Robject{NA}, indicating \index{NA symbol@\Robject{NA} symbol} that this measurement is not available. \index{Missing values} The observations with profit information missing can be obtained via <>= na_profits <- is.na(Forbes2000$profits) table(na_profits) Forbes2000[na_profits, c("name", "sales", "profits", "assets")] @ where the function \Rcmd{is.na} returns a logical vector being \Robject{TRUE} when the corresponding element of the supplied vector is \Robject{NA}. A more comfortable approach is available when we want to remove all observations with at least one missing value from a \Rclass{data.frame} object. The function \Rcmd{complete.cases} takes a \Rclass{data.frame} and returns a logical vector being \Robject{TRUE} when the corresponding observation does not contain any missing value: <>= table(complete.cases(Forbes2000)) @ Subsetting \Rclass{data.frame}s driven by logical expressions may induce a lot of typing which can be avoided. The \Rcmd{subset} function takes a \Rclass{data.frame} as first argument and a logical expression as second argument. For example, we can select a subset of the Forbes 2000 list consisting of all companies situated in the United Kingdom by <>= UKcomp <- subset(Forbes2000, country == "United Kingdom") dim(UKcomp) @ i.e., $\Sexpr{nrow(UKcomp)}$ of the $2000$ companies are from the UK. Note that it is not necessary to extract the variable \Robject{country} from the \Rclass{data.frame} \Robject{Forbes2000} when formulating the logical expression with \Rcmd{subset}. \index{Data manipulation|)} \section{Computing with Data} \subsection{Simple Summary Statistics} Two functions are helpful for getting an overview about \R{} objects: \Rcmd{str} and \Rcmd{summary}, where \Rcmd{str} is more detailed about data types and \Rcmd{summary} gives a collection of sensible summary statistics. For example, applying the \Rcmd{summary} method to the \Robject{Forbes2000} data set, <>= summary(Forbes2000) @ results in the following output <>= summary(Forbes2000) @ From this output we can immediately see that most of the companies are situated in the US and that most of the companies are working in the banking sector as well as that negative profits, or losses, up to $\Sexpr{abs(round(min(Forbes2000$profits, na.rm = TRUE)))}$ billion US dollars occur. Internally, \Rcmd{summary} is a so-called \stress{generic function} \index{Generic function} with methods for a multitude of classes, i.e., \Rcmd{summary} can be applied to objects of different classes and will report sensible results. Here, we supply a \Rclass{data.frame} object to \Rcmd{summary} where it is natural to apply \Rcmd{summary} to each of the variables in this \Rclass{data.frame}. Because a \Rclass{data.frame} is a \Rclass{list} with each variable being an element of that \Rclass{list}, the same effect can be achieved by <>= lapply(Forbes2000, summary) @ \index{apply family@\Rcmd{apply} family} The members of the \Rcmd{apply} family help to solve recurring tasks for each element of a \Rclass{data.frame}, \Rclass{matrix}, \Rclass{list} or for each level of a \Rclass{factor}. It might be interesting to compare the profits in each of the $\Sexpr{nlevels(Forbes2000$category)}$ categories. To do so, we first compute the median profit for each category from <>= mprofits <- tapply(Forbes2000$profits, Forbes2000$category, median, na.rm = TRUE) @ a command that should be read as follows. For each level of the factor \Robject{category}, determine the corresponding elements of the numeric vector \Robject{profits} and supply them to the \Rcmd{median} function with additional argument \Rarg{na.rm = TRUE}. The latter one is necessary because \Robject{profits} contains missing values which would lead to a non-sensible result of the \Rcmd{median} function <>= median(Forbes2000$profits) @ The three categories with highest median profit are computed from the vector of sorted median profits <>= rev(sort(mprofits))[1:3] @ where \Rcmd{rev} rearranges the vector of median profits \Rcmd{sort}ed from smallest to largest. Of course, we can replace the \Rcmd{median} function with \Rcmd{mean} or whatever is appropriate in the call to \Rcmd{tapply}. In our situation, \Rcmd{mean} is not a good choice, because the distributions of profits or sales are naturally skewed. Simple graphical tools for the inspection of the empirical distributions are introduced later on and in \Sexpr{ch("DAGD")}. \subsection{Customizing Analyses} \index{Functions|(} In the preceding sections we have done quite complex analyses on our data using functions available from \R{}. However, the real power of the system comes to light when writing our own functions for our own analysis tasks. Although \R{} is a full-featured programming language, writing small helper functions for our daily work is not too complicated. We'll study two example cases. At first, we want to add a robust measure of variability to the location measures computed in the previous subsection. In addition to the median profit, computed via <>= median(Forbes2000$profits, na.rm = TRUE) @ we want to compute the inter-quartile range, i.e., the difference between the 3rd and 1st quartile. Although a quick search in the manual pages (via \texttt{help("interquartile")}) brings function \Rcmd{IQR} to our attention, we will approach this task without making use of this tool, but using function \Rcmd{quantile} for computing sample quantiles only. A function in \R{} is nothing but an object, and all objects are created equal. Thus, we `just' have to assign a \Rclass{function} object to a variable. A \Rclass{function} object consists of an argument list, defining arguments and possibly default values, and a body defining the computations. The body starts and ends with braces. Of course, the body is assumed to be valid \R{} code. In most cases we expect a function to return an object, therefore, the body will contain one or more \Rcmd{return} statements the arguments of which define the return values. Returning to our example, we'll name our function \Rcmd{iqr}. The \Rcmd{iqr} function should operate on numeric vectors, therefore it should have an argument \Robject{x}. This numeric vector will be passed on to the \Rcmd{quantile} function for computing the sample quartiles. The required difference between the $3^\text{rd}$ and $1^\text{st}$ quartile can then be computed using \Rcmd{diff}. The definition of our function reads as follows <>= iqr <- function(x) { q <- quantile(x, prob = c(0.25, 0.75), names = FALSE) return(diff(q)) } @ A simple test on simulated data from a standard normal distribution shows that our first function actually works, a comparison with the \Rcmd{IQR} function shows that the result is correct: <>= xdata <- rnorm(100) iqr(xdata) IQR(xdata) @ However, when the numeric vector contains missing values, our function fails as the following example shows: <>= xdata[1] <- NA iqr(xdata) @ <>= xdata[1] <- NA cat(try(iqr(xdata))) @ In order to make our little function more flexible it would be helpful to add all arguments of \Rcmd{quantile} to the argument list of \Rcmd{iqr}. The copy-and-paste approach that first comes to mind is likely to lead to inconsistencies and errors, for example when the argument list of \Rcmd{quantile} changes. Instead, the dot argument, a wildcard for any argument, is more appropriate and we redefine our function accordingly: <>= iqr <- function(x, ...) { q <- quantile(x, prob = c(0.25, 0.75), names = FALSE, ...) return(diff(q)) } iqr(xdata, na.rm = TRUE) IQR(xdata, na.rm = TRUE) @ Now, we can assess the variability of the profits using our new \Rcmd{iqr} tool: <>= iqr(Forbes2000$profits, na.rm = TRUE) @ Since there is no difference between functions that have been written by one of the \R{} developers and user-created functions, we can compute the inter-quartile range of profits for each of the business categories by using our \Rcmd{iqr} function inside a \Rcmd{tapply} statement; <>= iqr_profits <- tapply(Forbes2000$profits, Forbes2000$category, iqr, na.rm = TRUE) @ and extract the categories with the smallest and greatest variability <>= levels(Forbes2000$category)[which.min(iqr_profits)] levels(Forbes2000$category)[which.max(iqr_profits)] @ We observe less variable profits in tourism enterprises compared with profits in the pharmaceutical industry. As other members of the \Rcmd{apply} family, \Rcmd{tapply} is very helpful when the same task is to be done more than one time. Moreover, its use is more convenient compared to the usage of \Rcmd{for} loops. For the sake of completeness, we will compute the category-wise inter-quartile range of the profits using a \Rcmd{for} loop. \index{Functions|)} \index{Loops|(} Like a \Rclass{function}, a \Rcmd{for} loop consists of a body, i.e., a chain of \R{} commands to be executed. In addition, we need a set of values and a variable that iterates over this set. Here, the set we are interested in is the business categories: <>= bcat <- Forbes2000$category iqr_profits2 <- numeric(nlevels(bcat)) names(iqr_profits2) <- levels(bcat) for (cat in levels(bcat)) { catprofit <- subset(Forbes2000, category == cat)$profit this_iqr <- iqr(catprofit, na.rm = TRUE) iqr_profits2[levels(bcat) == cat] <- this_iqr } @ Compared to the usage of \Rcmd{tapply}, the above code is rather complicated. At first, we have to set up a vector for storing the results and assign the appropriate names to it. Next, inside the body of the \Rcmd{for} loop, the \Rcmd{iqr} function has to be called on the appropriate subset of all companies of the current business category \Robject{cat}. The corresponding inter-quartile range must then be assigned to the correct vector element in the result vector. Luckily, such complicated constructs will be used in only one of the remaining chapters of the book and are almost always avoidable in practical data analyses. \index{Loops|)} \subsection{Simple Graphics} The degree of skewness of a distribution can be investigated by constructing histograms using the \Rcmd{hist} function. (More sophisticated alternatives such as smooth density estimates will be considered in \Sexpr{ch("DE")}.) \begin{figure} \begin{center} <>= layout(matrix(1:2, nrow = 2)) hist(Forbes2000$marketvalue) hist(log(Forbes2000$marketvalue)) @ \caption{Histograms of the market value and the logarithm of the market value for the companies contained in the Forbes 2000 list. \label{AItR:densplot}} \end{center} \end{figure} For example, the code for producing Figure~\ref{AItR:densplot} first divides the plot region into two equally spaced rows (the \Rcmd{layout} function) and then plots the histograms of the raw market values in the upper part using the \Rcmd{hist} function. The lower part of the figure depicts the histogram for the log-transformed market values which appear to be more symmetric. Bivariate relationships of two continuous variables are usually depicted as scatterplots. In \R, regression relationships are specified by so-called \stress{model formulae} which, in a simple bivariate case, may look like <>= fm <- marketvalue ~ sales class(fm) @ with the dependent variable on the left-hand side and the independent variable on the right-hand side. The tilde separates left- and right-hand sides. Such a model formula can be passed to a model function (for example to the linear model function as explained in \Sexpr{ch("MLR")}). The \Rcmd{plot} generic function implements a \Rclass{formula} method as well. Because the distributions of both market value and sales are skewed we choose to depict their logarithms. A raw scatterplot of $2000$ data points (Figure~\ref{AItR:scatter-raw}) is rather uninformative due to areas with very high density. This problem can be avoided by choosing a transparent color for the dots as shown in Figure~\ref{AItR:scatter}. \begin{figure} \begin{center} <>= plot(log(marketvalue) ~ log(sales), data = Forbes2000, pch = ".") @ \caption{Raw scatterplot of the logarithms of market value and sales. \label{AItR:scatter-raw}} \end{center} \end{figure} \begin{figure} \begin{center} <>= plot(log(marketvalue) ~ log(sales), data = Forbes2000, col = rgb(0,0,0,0.1), pch = 16) @ \caption{Scatterplot with transparent shading of points of the logarithms of market value and sales. \label{AItR:scatter}} \end{center} \end{figure} If the independent variable is a factor, a boxplot representation is a natural choice. For four selected countries, the distributions of the logarithms of the market value may be visually compared in Figure~\ref{AItR:box}. Prior to calling the \Rcmd{plot} function on our data, we have to remove empty levels from the \Robject{country} variable, because otherwise the $x$-axis would show all and not only the selected countries. This task is most easily performed by subsetting the corresponding factor with additional argument \Rcmd{drop = TRUE}. \index{Boxplot} \begin{figure} \begin{center} <>= tmp <- subset(Forbes2000, country %in% c("United Kingdom", "Germany", "India", "Turkey")) tmp$country <- tmp$country[,drop = TRUE] plot(log(marketvalue) ~ country, data = tmp, ylab = "log(marketvalue)", varwidth = TRUE) @ \caption{Boxplots of the logarithms of the market value for four selected countries, the width of the boxes is proportional to the square roots of the number of companies. \label{AItR:box}} \end{center} \end{figure} Here, the width of the boxes are proportional to the square root of the number of companies for each country and extremely large or small market values are depicted by single points. More elaborate graphical methods will be discussed in \Sexpr{ch("DAGD")}. \index{Forbes 2000 ranking|)} \section{Organizing an Analysis} <>= file.create("analysis.R") @ Although it is possible to perform an analysis typing all commands directly on the \R{} prompt it is much more comfortable to maintain a separate text file collecting all steps necessary to perform a certain data analysis task. Such an \R{} transcript file, for example called \file{analysis.R} created with your favorite text editor, can be sourced into \R{} using the \Rcmd{source} command <>= source("analysis.R", echo = TRUE) @ When all steps of a data analysis, i.e., data preprocessing, transformations, simple summary statistics and plots, model building and inference as well as reporting, are collected in such an \R{} transcript file, the analysis can be reproduced at any time, maybe with corrected or updated data as it frequently happens in our consulting practice. <>= file.remove("analysis.R") @ \section{Summary of Findings} Data manipulation precedes every statistical analysis and is often more complex than the final model fitting and display. The \R{} language in itself is very powerful and allows efficient data manipulation. For really large data sets that do not fit into the random access memory of the computer, we have to store the data elsewhere, for example in database systems or flat files. Packages for accessing the data from these sources are described in the `Large memory and out-of-memory data' section of the `High-performance and parallel computing' task view. \section{Final Comments} Reading data into \R{} is possible in many different ways, including direct connections to data base engines. Tabular data are handled by \Rclass{data.frame}s in \R{}, and the usual data manipulation techniques such as sorting, ordering or subsetting can be performed by simple \R{} statements. An overview on data stored in a \Rclass{data.frame} is given mainly by two functions: \Rcmd{summary} and \Rcmd{str}. Simple graphics such as histograms and scatterplots can be constructed by applying the appropriate \R{} functions (\Rcmd{hist} and \Rcmd{plot}) and we shall give many more examples of these functions and those that produce more interesting graphics in later chapters. \section*{Exercises} \begin{description} \exercise Calculate the median profit for the companies in the US and the median profit for the companies in the UK, France, and Germany. \exercise Find all German companies with negative profit. \exercise To which business category do most of the Bermuda island companies belong? \exercise For the $50$ companies in the Forbes data set with the highest profits, plot sales against assets (or some suitable transformation of each variable), labeling each point with the appropriate country name which may need to be abbreviated (using \Rcmd{abbreviate}) to avoid making the plot look too `messy'. %%' \exercise Find the average value of sales for the companies in each country in the Forbes data set, and find the number of companies in each country with profits above $5$ billion US dollars. \exercise List all the products made by companies in the UK. \exercise Plot sales against market value for companies in the UK and in Germany using different plotting symbols for the two countries. \exercise For the ten companies in the UK with the greatest profits construct a bar chart of profits labeled with the companies' name. \exercise How many of the $20$ companies with the greatest market value are from the US and how many are from the UK? \exercise Construct a histogram of profits for all companies in Germany with assets above three billion dollars; how many such companies are there? And which product does the company with the greatest profit make? \end{description} \bibliographystyle{LaTeXBibTeX/refstyle} \bibliography{LaTeXBibTeX/HSAUR} \end{document} HSAUR3/inst/doc/Ch_introduction_to_R.pdf0000644000176200001440000056644614660150121017573 0ustar liggesusers%PDF-1.5 %¿÷¢þ 1 0 obj << /Type /ObjStm /Length 4184 /Filter /FlateDecode /N 80 /First 668 >> stream xœÕ\[s9~ß_ÑoËÔ­»Ô½55UI À@€I³Åƒc·“wÆm'°¿~¿#©íö8ŽÉ²Ú}‘ttŽt.ßQ«‘ OT"¤Jtâ„JL’™ØDc‡!’,§<'Á‘ ƒ‰äe"%ǽJ¤/׉Ìs™ Š”l¢”щp‰²žg‰Ê5úÌqÎ ˆ$Zp‰¶ DebxKF+—H›ÙDšÄ ‡ú6±ÎòDºÄæ *30npŸ'Nr剳`¤\nйL2­‰‰$ç`Ré$êAT•ƒI›äÄÐUnˆÉ,É­“`.É30¯!/çèE“ìbiÁD&)8˜N4Äã–$À8ð CB‚óÜA6 ¢ÔÈ3ZaÌ„F[0-„_FÐEž'[ˆ Lšâ–N ÐÁt`–À'J…ÔF…¦Ç‚Ê2ã¨C³‘ãÃ#HbÄp!N,(+1·BYL‚e•q•Xš»<ÇK¾,(k… –¦Þ€,ͳv ¥BçÔ²á9žÐTKÜ:P6#€î„±˜WÌ–0GP6ys¤DSÊVGjE­2P¶¤@™ ‹Üýã—_vTŒ;½Î¸“@sxrœ°7“ñ 5tÔ߿휯:gÅ N¨þëÉeüEts’°'ɯ¿&rîîýøv5”Þ9ýzU$ìý ªsû®÷&ã‹j”üÒ/ú}ÎæÜâ ãNá {ƒ£€rpÎuËéy6«Û”C%ýµÕ±¾Œåù¬ŒžЖ MЇªû~šºDßip0*:ã²>錋äÑ“I.5Tω 3¯~æòŸœÿó§Xr$7åø"¹€¼£QÑGñËâëM5êÕÉ#ÜU½ÛȽU½I·½go_%Ï.ªz\wGåÕúžrüC“ÉÙ_EwÜ ‰JÃá3°~ZŽÅ´T´°5Hv®UDº¶³òƒ-â9oM ªŠôº‘~C;>s±¾\iÆkßžêºø\†3Y™Rq2ôl’¬žMŽoÛšÿÚhÓA5ŽÉi±—eTšNº7H'ã3ÿ OD§POæOMu¡ã9èšÀG„6±¶ ¥¹Œ·‘–ŠD”‰gϱ\Çf±¨å6ÞÆ¾lx,CãOù‹jŒg8¬Æ$fÃI#MdGNxä~(œuCô Ž‹!hÀ=+=*zeg¿úâ훼IáW3-R¸óOÄÀ ›>.êj2êÁ/‚¨»è4FU÷¤ƒ{ûä_ÆÑ/Ìd™Ÿ9å¨'‘Ä«Îì:´™z¦¹v1ìIQSgaÔÙ‡’MBÜ~ŠXË“ád0 )B/™nu“g¯óFÏ·dESWµ×»ŠÆŠèÚ«XÒRŸõÛÚþëÒTª0GjÕEÑžªÉ…äÝL˜²«çëÅ%æç`:oìÛàp¢^¯žÇ©:èœâèнM£è0³:¢óÛÉìn:9•Å;2A$D2¡7D2SDŠFl‚HÑ”m b¨D³‹S;/¼Û•EŠm¤o1²+MÙ|ìwê·fïOß}|øóÁÑ>™ûÓa·ê•ÃsB9žª·éƒ‹ÎˆôËwà£&³P3S÷uï| û©[Ñôzû£ì/¼sž2ü6b{lŸ°'ì);dÏÙ ö’±7옰wìÖag¬Ëz¬`¾1+.{ú‚õY¿¼.XÊÃÎÙ+Ù_ì3°K6dC¸~V± ¿W 説zìï ü> ±šÕÅu1duù…Õ"6fã‹QQ°ñMÅ&ìšÝ°/ì+ûûO1ª~ò!ËñX’‡ƒÎ9A^¯ûAÑÃ\})‚©ðâ~ å‡å ·yT>|Â}x0±ü‡Ì³çÖÒÑY>­§}Ô×mN|Y¬‡D‡õg”§ávªûpÏáNáÈ-íaîÑÐɾÇìzÎlE£>”‰µ9ý¡r xNý,hXÔ ùùÝÔl¨o3[hA„cIk1:*Êñ›k™ÄLc)ö:yÿØ»no´¯;”ãàY åpM¹(\#“ 2ŒgDàÃJ“ä˜V߆î³pv*ÄkOÚÈÐÜôÆú,t†$¦Œ·ƒ<Îw òƇxÂ<f]˜7·Çøp»2Æ?óQþ7ÄùWˆô¯ëß²ß}¼?EĘÿ}d¼;—0êº3ìy ЭˆßÝêò²ÓÆÃп’ù„ 3ppñõê=F ³ýq¸yÂèš›ˆ„ø{R‹ÞÙÀ·hnB#7{ÈqYv>æ=ØcÍðÁóàéE/6o¹ƒ±i|÷üøèÃï>ÎnŒ6Û,9‰e4Î7tMP#8ºŒnÂ’U™73«M„¸ßú ð6üÎþ¤ÊæîU6sHf¾d%0õ¶•øÛ–•<…M4ÖÐ…Ž :_ÚZ ¤ùv0£ >ØùÀ:§zQæiãp¶Nfá ¢/iÅ›7GÏÞ¢·ÓÓµBée­XÄ ´Â¶aèðmé7\Í®wq,SÛŒþêZëžNõx©în¥ù6·³¾V‚ú½ëFmH][Ÿ¢ü·¢Â,&Ì"â@Ý-Ëq9è¸$¯ZFD8ët?z6êtƒ×õWÁëÒåçb<}ŒëP°IzÕ`ÐÍÊß“Î`!¿<§…ûb´JE]oO®“zUPÙ A {‹ÝjTÌÂÅb°yã&”Yˆ¡Ô(·*g2‹>bÁj}DçKk¢ç==‰ƒ.oÀrê1ªä‹VøÕ.C~ûÓt7.y‡\%RG/"-©‘b¶‚ûÐíú&B¥¨FóT!˜!AI w#Sz·ú©åE^•ÃÏ Ë~oiµ/.:Æå·¸øóü˜yÆô!‚󆣎í7]¿oaú]­jЏ¤xÇ…=zGW\—ÝâøÙ>âx4)ü›»ÓQgX{Åî~mZ†Åæ%—øñ7äܤ›{º¥’òá<ÍïšÞp#ÇPÈ í¬Õ‰No¶QvD_mgL=¸â·Ñ·—âúó°ºÕ kn-Oö-¤»äª”‹(—ÖdW \·è¹”oct“ßÅWÍV~öNß<ýùuyy6©ªá«ÇÇÅùäÍÙ lé}¹p–sc%·ÖvÓÁp^üm—n{ì’Öí}Íó¾îÙ÷<–à -?Ná ÕhY”nô~\HxçáÍwG2ƒ˜&ŽpÅ_% Š-¡Ëx™mœ€ ëì"Ó‚$MÅ‚È}À·¬²í Õ3~Zç„Ý$ž95u{Í~—wÇ/¦€¢Kˆ/åÿçàYÃ_{ wùePÜ©Ò~K±iœ¢…ÇEϪç\©ž[>uze·3h;‰Ü®Yã¡,3ŠˆÌ;ˆfçZ{)ln6 ò–7B÷0£›âŒ]—Œh  l*hËŸNsGû%-lÈЉ”‡\o›iÛÄövÀŽ-"·mâ‰Ô2ͬ]“ØÁªSžéÄ*—f~kžÒîP Ÿá´ÙLîïÆ¥2ÏgÜÁƒIú;qwO…ºj =aÛèש`ujá—´àilœÁyðrÁÕÆ¤ÜñuS¯UÊiŸ³”)½ÄN¦ª)… ù¿æ.ŽÑ”»Üa,íÃq—«4—fbÒj‰˜2‡ziFo‰~ æàÃh…~ʃ/3wº{XÍegô\xlc4.¥×‰3Oœ¥"ÏÌï`v ÒɵªLIÖ©ÔÁçK›úýëÀÙ¦Kiß9¥ È™›2g`tÈŠ9ÂÝÊ©uÌ™ ú«¦Ì‘Bàü`Ìi—j§×1n2hWÃN’¾ax(æ`%´×| sW.g:—Á{i÷`ÌIôçÖ3ÇáÌh•Ac p,Q[ jBS‘¬þ¹CfáT6åN —Zú¶å¸3)×iD¾š#J$E®Þ:?£Ä­|€@t wP7aòw9E|÷`Üi‰ÐáÖ½ÓPV¥ô©VÃʳ”?àØ}›; «ðŸPæ4&ZßuèîÃ{U—ï•J ]ƒ Ú¤RFŠÔê -æ¬÷;o=DFþQÛ,2 )Èi/ƒé›¯ÝÜÜ,ð}UÕcdÌÏ'e¯ØRBÉVP¦ÖsëÕ†gáLÝì\„~5:+ê´[m±N%‘dyžúVÎKX…4˜§›.S݅׳âjTÔžYVwÎ/ÏØu5Ь¬kÁ:£±¼»Úˆ4#ŒJÁŸ^AASrÄçžÿ?H åÐq í 2H éE˜E`Ùõ$ìØÏ 3ˆ×Ãm‚þhZ÷TyºidÞÚ\ïή‚ëÖÊc1ä6^Ièݹ ÿaÙê•Þ FvÂn8v5%JÒ…©)*D[€öŽÝÆî·Ó ¬Ž¬ñ‡2öÛ¨ „” S]@êmvÎn=îŒë´ú’vºéä3»šœ±£½“½…“P}O‹"\6z!áß¾‡ÑíóFEh‰”p“„kÎè¿ÀÙÙï]þòÌWýà™¯…`¥à[0ÞDE)0Æ:›9­tXûãò=pà>—ÕpZÕË!‡F‚ºišÜ©‹olÖyRöûíÿ)ü×Óô\ø,‹¨rÓÊ[Q ë÷q”8t]úí s{­éýSk—5}`=·3›¾•žíÇ„Íâ;â’¶n´Þ~ïLvÈßw­&ù_ÿu¢Lendstream endobj 82 0 obj << /Subtype /XML /Type /Metadata /Length 1484 >> stream GPL Ghostscript 10.00.0 2024-08-17T18:31:13+02:00 2024-08-17T18:31:13+02:00 LaTeX with hyperref A Handbook of Statistical Analyses Using R (3rd Edition)Torsten Hothorn and Brian S. EverittBook endstream endobj 83 0 obj << /Type /ObjStm /Length 3058 /Filter /FlateDecode /N 80 /First 708 >> stream xœÍZYsÛF~ß_1Im˜ûØr¹Ê’íX•XñJÙÄÞ”@”¸‘H…¤ì¯ß> A…&é­à+‰ 9hô|ÝÓÇÑ )¢Ê(½Ðш„ IÄ(¼Ó"™L"I¡¤Ô")¡”÷.±R$#” A$+”wQ$-¼‚,i•HAhà}Ú8¸. íd@aB{£¥‚»jÒuŠ _aðJZatÂÁNpŒÆk¸ˆ0Ñ RQ˜$qpVz¬¤°å(%¬‰0Xia%Í…õ(PY˜£Ê ›@¥<œx'A8…ú¨(ËIÂÁí…ÒR8J)­à§ªµpÁp‹pgÊy‰Wi'¼Q8Æ oqÊ:£/ji: $R)…8e0ƒOí¡E¿2"høt‹`=H6NšŽñ"x W™ ©a¢1¢4ØA¢Vh%0°»* ÎÔ‚­-ÞtŠ5´ ´)ëÁÂA¢mÁ´¿BÛ"™ŒèÑü¬áŸr`æ^£À]À®®wD-8rÈ¿WxæðÌàÑŒD:´Ex‘q‹âR>¥<Ú%!Ï8mvTÉV¨>šOkëÿöô©È_Ô‹¥øU8ðæ ‘¿{ÿoœ^ ˜ÄK•9 'Ó··âJäçõç%ú< }[ÌëéR~÷Ódy[‹§ãz<–Ò)}„?œ”ï—pÎ Ÿ;øgÆÏijg]bW™¹ ‚óYÔº¯‚Ráí¼þvÐÕ×|Ôõòeó×|îÔèÖ×+ èådÊ|ð}½Âv½Ü^È‘c=àöÌ“jôix³¨/Œõ¨;Ž­škꇹÐkjÆÕx]`ÄMûš¨3 b{“HÛ'á‡&ÑUB5J£"pâ‹FÙ†øÖZÒ{„?ŸNg˪«X Ðét6]‚ ˆŽ†ïþ¦®&ÅÉì3ŒÃYA8É .D«2Pýj¥xãõböa^Ö wxÒ(5“š•—5ò“¿}ñ æ…ó¿màôûE]×}/LZ3ý=&!äoerhÙ 2™ØäèhÞ ;Kªï*Àtˆý±+v;LÚ£1éög2 ù¤‹.KqƒI³É4Ĥn˜4¯™Îbê3\u˜LÌ^håŸ,®£îhŒÆÕŒê`2¯úQ< Fqb´uÛuFMÃ@õÀЊ™Nø ¡aÑr Ød}ˆ=8{§³ÛÙüò¾(kJ¢4‚u[|ôìtçÔ¡£™Í$6ÕTK¸Ò&5ÌÞ²=GK¶ç¬Ûœcg.]SôlvòæýËósPöòò Âénf‹zÀl©g6hv3›·°bœÛ0]P¾k:~»2ÝE~Ù1Ý­3~ ùdôÌ—úæë3²£‘á¯gBEZ{î„iJÞ Ü¥“±kÚNOª7{Ò¶‡9¼tRm‹ó%¥ÓppRôöêÑ'¨f·¥T(»îÃAx6¸Q!=Dá¡9íâØvبPÛ–ä4ïÓ°>•Ž…/ÒG›Þ>Ýãn^´[»¾ž±†ÞÆ‚%ã+%p' W¹¸cþ>œüç7¸JzÛ|½ÂÓdR%X-Xua³0³Àe'»óÛUv/gwwE>Í?ws<ºE“ä¡ —Á÷³<À{¡°õ4ßn{<¤ùž-vÌòq[’Ïßu&Òºþ¤ƒ?±cÕ©:kåx[yûì†ô&yðľMGسcšÌ>»ñGÊÑö¿ŒÝc*ñìû·?þóüv:aÇÎ ÞˆkÆôã–ú»õæ±hd­ÖizÝh !$tCz»Š?U>Ïùr-úÈNðÁ_¬ûÁ« E‚z±g£C\ãm×ȳ­CìDÿ°(ñçZó5–Q:šïù=|o·©l¯f Û¢[Íjy´žÈîv«öðwþ‡z/A½‡w3Fe>n늴×Yô@LH™„žŠ€Ì…$tLPÖîXï=pg9Ñ`CµÉáÑ»OGpÌ"íu}û±^NÊâÉÉì¶z4®=¢¶‹]«ûšÈ÷%‚^ž½{û÷'.Ò®»lv3æÚjɈéhzÓFÿ A·¨ô> Žr*¸Çäàp„mFZÀ”võy£U£_lFµßâçVâÌwµ›Ïü9ª{{Prmûß®²ÄIþ*;Qy‘ò²©Z«¼ÎÇùu~“ßüqSOóIþ[~›ßA9;Ëïóûz>™Uùïœaòå§Yþ!ÿ˜Ê?çÿ­ç³µM-éÛœcôÆ–|ñ™!ÙÛ’Ô²í&V gÍgvÝЂ…ógÇ™/Œb¶óû“V&SØ0€3eÞný¹Ä˜ŒžÅJëð‰13 ]¬†nÖú7©;QlóI t¬èåÚG(¾Â~F÷—ÛU°&ófÛ~†q>³š•Ê@5T†;J BÚ±ßWøìžm»vz ËêÕ»@O—Úà|™9ÙeÂdAâc`¬¨â6&`æ)´‰Y‚ɘè3@/›²wc¢ã/G{ÅíU­·\{™de 7=›VõçºBŽ?NÊúâ»ø>Ч’EÐC°Gð„@ˆ„D(#BI¨5aŒ`ÁŠM0KpO„HH„‚0"”„ŠPÆV™k> ÁÁ!¡ Œ%¡"Ô„1‚É`•Y°áÃÁ!¡ Œ%¡"ŒL0ÓÀʲHˇ#xB DB"„¡$T„š0F°é˜`¦•eÁŽO„HH„‚0"”„ŠPÆv 6ÌʲHÏG DB"”„Š0F°[±ñÙDL$OšUc1HH„‚0"”„ŠPÆvXv+6>›ˆéäI³‚,8ò‘aD( ¡&Œ¼ØaÙ­Øøl(¦“§Î*³àÄGAJBE¨ c/2^ ì°ìVìl¨Â˜VšEó1"”„ŠPÆ^¾¼Èx)°Ã²s± Œ<‰f:XiÍGI¨5aŒàÀÀË—/v[v.v 6 ÓÌd°Ê,¸ä£"Ô„1‚C/\^^¼ØaÙÑØ)ØtL0ÓÀʲȊš0Fpã`S/0^žÀ®ÆÁfcr™V”…ò1®éÑŽÂ8ÐpPà¥Ë Œ—;1»;›Ée X]Ç3qÕ$’(éaîîþ¬Èný³òüƒŒÓÔ»ƒ›Yüh;‚.í“ÅÔßTí;|=e¾ü·ŽG+5hGé=_LÆãTC]~¥ß2¨5B•YƒÕÐ}äYhÂî&Ó‹ayÿÁÜendstream endobj 164 0 obj << /Filter /FlateDecode /Length 5774 >> stream xœµ\K“7r¾7üæd÷88µ…7 ‹ƒ²×û…cW¢c+š3£¡–œiŠÍ‡çß;( *4›’6tP±$_¾ýÓå<©ËÿËÿ¿y¸Ð“M—Ÿ.æËß_x&Ôep^MÑ_>\Dí'ŸRyóæâ»‹4‡ÉÛx¼'£aTyUš¼£QÎÀ³ƒ–rŒáN¬ç\€¿Æf½…ª˜âœ *¿4y'ë“ )ª0ÅYIšê ü¢“i*«-$‰Õì”"°LY”»f§ha¬ 1MÁ–78x¾¼¿øéB×/óÿn.¿~qñÛoí|™¦äµ¿|ñ߈ºÔQOs —>8˜Ë\¾x¸øÛî?®®çIÏs²a÷‡ç¾š';'mÝî…øÃïàµIÖY½ûöêÚ3)åwêê_ü Óñö©•³¸Úµƒ]¨xym0¸…UžÓ¼aV»GþÞÏf÷G\A¥”\‚×:ÀwïiÝ”´Ù½»Â¿[Ãîpu æo‰˜”TÚ}À±.¥âî^ûÙ'Ÿä?^á&”ZZO^i9âwaf¹ å`b€oDÿ·8>ÀB&âèß½¸øË2X–×°qärXË<¬ÑAïÖSN¦t1+é Ô„܈Ñ' œ¿¶ ¾K»¿"afžUr»WõðöÄÚy¶Áà^‘ãföÄ MHfw¤S²Ö”ýWJœ›\PªÛ~„ÕË‘×Á±Ê.ƒÿ½‡7`¼özrÞéËk­&…ÒFI´½ªh»Ã× 8ÞÇ<—sÁ :ÂT’ʼPzcaêmÙ’Øÿî‰Ø¢ ,xDÁá'É)d¶€þX¯pSí~À~žMÚÞák Ú#63¿‡çg­ÓnÿPsˆÚ ¢.†Üˆ!û7L@TŽ ï¢Ñ@ááSؽE¨ª‚„I¤ÕÕ¬CƒGäu K÷8¯³u´]Ýþ‘Ÿ½ |.™¢,ºppé;¯­‘S¼#R´Ê  âwzNj'(&þ*±ÆÙ€¶0æÈs‚Ùੵ hO(Ðm‘Ë 8?erÁK”§Q;ò/W…ïò5‚“/Žþ€§8S»O<+pry àý$&xòO畜 ølF§BˆÄo>Ô£¿ÇÉ>Lh-(’˜À×~qÎ?Ðê•Ab®¸ÞµÊ¨,q:ïšeÕ%Bqrÿc•: aÈF,Yr¾œa™&“mX~tŠC—‰šÁ ¢§‚¦d[O†Þ²w/ÌOc0axÈ;ùÐ)]–ÙpJI|ž„Ñ:›àÓ>RÀµá{1øuãØ.ƒ_’>”§÷L„7½ Y €¤bÝSœ‘Pòß­ÞæXŠÞ"¯òþgU|yðTÔN°VæM5M»ëjlä‡~’ÍB…;tG˜2¢ò"£Ììâó_o6ü#ñf4!ž/ù¼¯Ž‰¾=„‚‰#eçØÄŽ|üÉ·1ƒ´ŠB>[3‚4ËÅVá&ü·öóºÈ– À0øAàH¡6øQñqBø­të ÈȱSÝ2ZA=kt„sÔ¨qÔç² †7Ù+ÐlÆr0ttoál5±´IXÙ¨!p‡Õ03ìýœX X9YÏ Ø|#ð%yBP{ˆD²N¶×|hT\¥NNŸçöhN×è’Ln`ÎWA´þ*9*l<ñ BÚ).ÄEÒý‘äCݳCç6RYƒ•ǧ…ô(Ô´Ë÷ï„Îú°s¶Ïž’·­A”¸ZF†p,Ò>±‡ãCöµ®¥NT••®×+‘·¸ãÏS¾ö>òßàè ‚&£Ô(¤<³iíܶ3³ÿŠ#†¢S%aò𸫬Ä"?v†7{LB ¤†tJ»úÈœNÆh«ÁAÔçʶñsõ%;¿m9ë=>ºi=&€¹ò¾0F&ષcLu†¹‡b ­Úëaû„©=2\VLÞPá¿´¸ì£l›` ¢æ$“µ¸/œ/9¬>‹cÀ¿Õ€ÿWµŽ|¬V‚ÐÞŒ-Vz/à;fQ‰?^9‡A(¸;"âz#»YíZk†ódbÛu趬½ã¯ØQÜ6OyÖ#¶„’>æÏ†¹B„¼„í•ÂÂaxÎq|IiH.TQý®Ìtn£H9ôúuY«M‘‰hK„¨°už¯L„6¡¼…öär੸ªivÒ9ˆóø×ÆÝ·ô…Ýï+:þûð5&l£|=@áàL¨ˆsÆwÞˆ^V¬pP)뺤õÂo~¬#n:QvÑù¤Á=Vó-¸Øg|ë([ð…¶ùb21²]gW–¥%ÐÇÄ©ý‹í,\ã<,É!†ƒ|ÿÚ|º!Æ&*ÀH›Ì!3ú<è?Á Æ'|ŠeøÏ)%LŠ¢0Ô‘!p»¿7‰3ZÃDZ‹ßà!ë²fSÕYëÝ9…ÂÑ©=7“ÑïI‡a‚«ÚoàÐ-‡¦,ÑN…@1&f pŸ_c¿çý'˜» |“¬|ÝKAçÅÝWv"ßü0»Ä€ÈŠ(UäÚ63ˆµ9ÏÀœ‰pî'ÞH\·@•‘3‰ D©&—¶¨¶Õ¾•åðÍ9Ÿ!È|¥:¼›ª)ˆ ™o¬á¡ê…®DYeQ®î~­m äE ™<]^{v#+ZÇ —­¨ÈH,V”Z¥ÆðíʈQT«´¸ 9ãÔä² !jBí¥JVl;üïÏdß»LzÔè>.;R-Ì—}l‹3™ÖxFÁj~eEMu/³þbŽ Ež¡u› D*po±b¸$rr¤‚{ì5iä½ÌÅÔ‚Ö‘ç@ˆ “`½¡OXÕ L$6:™ñô…YšÔkzW }&Úr•_§ÔŠZײ0Šj[1Í*äÀ|îõ“mÖ,VGaaŸ1AX¾sí©º¼qòo®(ö¢ð^VGî¹ôÜÕ°pTáÍøÛb‚»(/c@T'LdÀÁlq°L8d¤µ‘ƒSt2x Ö'¬†ˆÂíßTrzu† êÔ¹ïà¸¬× †N!Á1„F•æ®Aj[*¸‹½U>˜xM,›>?òJXGÙ×E…³Ö„òMtŽdǶòûOÕ;i!Úë;âõ³JÇÏé1pz‚øúÜØZÏF™³òfÚÛuÞ,SÿÀ<Ò°ovw4ètò.p'ès»½Ž†–ìT¾Šb<ÆÝn¬BŽ(ʾvX²5gÙþ5¨Ùž¼Í±áÔ)öEÚ£Eü|[5Ô*.!÷控2­<äeSS ß,V 7ä©ü]º¬™Sæ”Ú=Š~áŸÒ RnªIqnb£šfß2à£ö0!oÏêÚrJ *ºÕrú#‡Þ W•.)fáé–Õ÷ö‘ßÂyˆ¢É^ªÔm0K9ß®5“t] × ™mÔ¾é2úD AêW^éuñFÝrÚ€æS} §u½æ+úýD­”ݵ·ò Â7×mÔ<ó½zᮉHŒ“bÞè&lhûg¼ü°µÿfEZløsë .nœWQK¬~ä-B\Ø‹sÞøv­BjË»^E²ûq@l•ò ó?óaNÒi#hèÙ 2ÿb¶=ó4†@ýĸÛÔ†²Oˆ]ßµÑ*í.6öXdÙ¨Ó°‡+¢.޹U ŒZuU°'HÅ*²xG¶õD„í¹ZÒEØUë¤ñ^dÓDÉÓ÷É›uÁó&§üͤ½oÛ‹IkÖ8Lö‡Üñ–¸3Jf¼Zß­ã›ÌÛõ²Z›ü5®CÍØ×a³À2×ú2û@#ìlÖ]@‰Qô÷êR×L¼ŽixÚè©ÏŠäˆƒo•ͦ8À+›&Kú†_#L†ÝL[i3­­¹[WÂ!#AÈ’wü,?–*µ7Mgé @[øß¦¼Ê™äÍbŒ+<Û¦§­hÜ[¾ã¯‚2M¡uò⯺‹çÔý²ÏK|ß~³TºZµÜcxUB©–ÛêiªKǼv™r‘Ø”U³ûWµH.:¢¶¬”3Sg7À?×*bS×/[ܯjTdno¶w(ô¼æûÜ ªñ7BYmzÛ¡2&lìÏ[T•gßÈhšº;„Pæ‡Vܸû#…F ½;èú”J8· }“xÄÇq+y˧Ü%DÚ"¬Æ™ŒæBndö­Bæ]P…¢-ÕhûÖ? Rɲt/ôI®ÈõK™:Ì49»}S­Æòwì'lý‹,rmd³Lø½gv\jj02slG7…ßÊÑ$¡à#m‹õÒc–A¤ÈÑÔØ\$Ý„Î^µ‘¹hcé$€ˆ#$‘Ìcºt^2©ÏLQYü tðVÑc׼™ˆÜÓiÛÔCé.<¾å‘.ùÆB¾ à>lª°²Ú2 ´‘GÝ.P :L÷Kk*øcÕ‡t˜îV=ñX:XíhùŽw4îM9µß_"mK¢1t©ëdK¢w)4Zq;ö˜Óà#›b×D³ð0«PÁ+84õi²—»bõg›b±íDù]tˈÍÒÆˆ“ÂÜJqçU(O9ª®›ú—ÁËÉÑ}îRãŒ}{® M'.5b§H´M«^•Ù¶š‹ZåaW·HøþÆìÝ5j4±ÜÍàs¾«~ÅÍÔ ×¤]Þä/Á’J‹"ûfÞ.¬ã|A¾Ôñ Šk)É)Ý‚C™!ÎöÇÑ¢iŠÅð{sZ‘ž¸®°ÒèÛ;ìÃÛáXúps‘¼ÿl,îV?¸0‰ÕÏýàtÖg\o6&’·(o"D{©²D±v¾¿¥›+4{±ÆÄÓ!§Ÿóc¢ŸX7sÞ—im3ᆎM ǦÜI‡óze×§©l%ñNeÝt•¾8‚RW —iU\Aó°JIfä5TQ«Td#§¨üÝYoB¬¤ú[!}T®øž¸Q\e4cÂDêüjK@Ù½•7¥À5 ÚJWkˆ–4áà4¨k–¨ÿ8:ºU(¢XÊ)Q7÷ëhæj;¥èüªú½ˆÔÚºRÓ1¥+'xÙÀPµ®Kc2®îã`¹—ÇOü2`§,ï ŽdXf¢~hL+U⾃ç[ƒÍ̲Éti=¨nãAäEdA–²hGahÝ_»¿Þ¨T¾Â)sNýƒ±il  ‰ä³ û´ª'Ô»˜›”ƒM”‚Þ,˜µÝ2×— þœÌ¨q0©ü»$] iHLQÆôk(\ëùLW–²Îw¤™øòË4µ)€87¯/Ìñç¡k›ùýWî;ömà,Ýèþ‚›ͫր¦h!ã™Õä®j‹‹j8¤vzYcn}¤k²ÈÔ¶>nö}˯øûçªn*G%rÙ„a”•Þö*01ÊLM¾W§)WËvÍP»ÿϹŒ…7ýÕ™ýšø»@:•~Í·›v]º‹Ô ú·Êݼí„þ à>ÿ摵²œ£fC¿yt×ÚÁ/µ#L~Âg°Öúémyúª<ývãéÓɧ©<}[ž®¯®±)j±Æ»òt(O/OwåéfƒÒiãÛ:_áÈÜrL†ÄsÜÔµ}§HÿJ1ä°Ö«“5¾©£¥ö?òÜ~¡ é=%/~ "NS¯ívÀŽÒDëõZiËë+4»^Ü–ç¯x½8¾ùqRWÃ(wvb4=Ÿ×Áõ¹›Ø9»;Ï›a‘ý\–· ž-˜ÉAž¦–u™DhSRsm&m uŸó†in4œ½{r­•…È­O®®ÜÈl®«ßpx\t¥:ǬDRr‚{`žåËEͯtìÉÙ#ç¹ ‰,(I—äu{‘Üy>ã†îf7É ~ÉTÄyUÎ[ì¡p¸ëeç~áõepP©öÙ¸\mBbåUæ^þ]škê1†àyqlù9%üDZ~Ï'Åæ~枣ãúK8[÷Æx¹Õ,·y0|‹?ô%†¤I×.üÙ×±²èÓx&[±Ä6=?Ôƒ—¥F‰ì7Hò†§ˆ¸~¾Åˆ­ +¸ç ™Mŧ ÍõÎ\9U #_‹ã”¿p²ºØ*›íÚÏ–™GÿeG1ž*Dã7ê)ù¦üô‘‡ûÕoáTî·?†Óö¼9{¦fEPÇÖ¹"cmà„æ÷¨’¬³å'_ÿrñÿ]Âþendstream endobj 165 0 obj << /Filter /FlateDecode /Length 4936 >> stream xœå{wf;Þv–Ï:£X+å'–»Öh¥…•­V*?¡PÒ¨VY²¡ÖJ¶ˆ‹ì˜È²Î¶.TÅ¿)QFÚVGˆ²¼k-ãQ*=© "Qy»DÙÍnÎ>žqÏÊYüÏânöÕÅÙço›¹Öaf×gÍ|Æ \ÁéY×r¡gwgoÄùœ;ÓuÍë7çs)Eë¬kþ|>g-s– áš7ø—`Ì©®y{.LksÍ÷ç€ÍZãTó\²Î Ýüð5ö/v¦L@É™pB…WçJ7iS'+èïqm™ìl÷‹ÿ r )l-àPWp„·Ü9 ÄD`zúy‚ž6¼Ôï€aµr¢Y * GYùSÉèY.p3í7ºÙÃcmã¼9x(®\³óä0flzÿŽÝØ¡¥¦¹Â Ykxs‰ü”ØüžY@v”q!‘ÜrÓô Ä«·@f@+:a(ÅB:§켎ø˜¤;òÐF ÄÈ»ó;*pÖÌÍø¢6¶ƒ³zt@jÓoÄ0&]:‰„CÜ»f(A±}((váq„ÞæƒoïÏçÀ ÚRñ6{%*°}Ú4w`U´)‡m‰Â­ _‚°¹T¢I<äÈ Ô-ÉE˸Kš· ʇ*.q?gœ«P,‹ÔÁ¼òKÆADž¬ë`Ù] ¸ âw€ à|/¾;»øýßÞ^T9Œ®“;× êÛõå”·>„­A àTÁ-2Õ­“‚c!4ûÙ×ssè“ÔÕP­®{¡[ŒÀsnAœ ïPWï…ç”.JŒÊ7⎰OÖÞØÂé¸ÙV°'`Ê–§b4GÚ鵚šˆOjô^͵×Õ ¡'QØA 5¿K0ë‰V×®iü”s…С,ŠmlÇ=*ñu$T‚MJ|ŽÅ@ßé~ÛMñ-”Ô•×ËŸ<Á>Pª˜n¶×a­½ ‚1 Z±ðyGçí.nNª5<»û©f5Àv\ì‰c"¦½'ë‹@‚e¾|ð* ç²à¥‚#ž£-*9p£/Q'ÔNàcn† εIèV®=µ2tvB!²A"Ë€*ñuñs1LtDü ]¿½ÆõuZëæ!3€žË“Í;­ÍæE`4OÔ ]°â*2’÷¨ã wFq²µg˜l<2ÌûÉ«DeRÞ×^MŸ£çæ`«¦:Q–Åy ðÎAÃ0 mú/C~åD/ẗô´ÊoËÞƒ@;ôQ¶¥z™kbºäI0ïiÀ¿A&EJ+º½~ ×EÿJt ‹ §OïHl.þ鎂Xñ‚:è…´ðx““ÊÊ{V1\ ÛïáE‚²`*W™fé2`vYžöû’`,Ó™8µ¹§’[My©:2gÍi>¨¡ ®¢‚káMåe3ëâ ÉQ ,Õ¬Q³˜ˆ [’îî L´T䢚ʦ*|ÅÎöÅ‚ ôª¨µ`5¨O¨¿9²WjxÅ®æ†øßþžÀÜ–ð1*ƒ6ôÔ#žÔÒMG1ê îæ¨DÁÔ•¤pô5ª°W%§x JÁD§”ñ w“VÖyé2Zw¢jÈZ—b¿ÙÞ<[ úã|·é b~U-ÛµÑVœªLûÊuX fAzÒþÚ  Û{Ô×dXùÙ—9oR³xt+£A4އ)ì{A£S©Æ%ÉíªÆZ¶ðadz€Ì&i(UÖ –‚·Jä:UŸ×Ñ<¾S+"l‡%Í0m¤ºUý¦z¼)'Ú?£`ãUè©Cµ/-¡Öu™!¯Íàƒ1 tQcI›927Ò»×R“š7ËÊ 99ðyˆ Œ_¦<Í+̇Òã|ßIPξ%½Ã×oÞŸÇ7@ªYA2Ò’™·¯ÖÙÉ$©lÈ2üÄf;Î$/9i,Kä!Ixä²¢¥¹l!ªá|¢ž‰ã™[̾¸n`Ôñê>¯¾È«ÏGV_çÕÛ¼zWoòª—«l kéÙ.¯¶yõS^-ój1Bs;ònÁ—ú¹UN;¡càÍSçYÃi¾Š=há´=èÑç¯Á:9‹#¶ ž[ í»nØÜ²à®I³”Âì}86Š…y™áñÝyVù§:Ù‹ {Ý«¼Gç¡qküXŠö¾7 ý•î÷A¬ZvàéÍ·Å‹­H­ç- ,Õ·Þst=ÌŒê1¤1íG_e-F«Ó@n ‡±Àt ]H?8Í€éýìË£ЦjÏ#‹FÜ£OÞäkÁEå@º˜q¤å鯋‹t”º}„‡v)Pu~”é¡tÃ*0§3Ù£íw÷? ÍÅ©‰áÐ0wK„†¾“ï„“¿*žo¢¾Jd”þ”Ú<9s-îâ¡úG¾¢Ý…7ÑÝÿ"0s-ïrt¢ýtýé,$‰±-0Ôñø‡M䊤lŸÀÇqç«Õ_3‰Éá=LÒ|K*1%p#Ýü­°p8ÍJ‚ÌÔm³z>;Úd¨¿E¦D4ƒ&Ä–xRRîé½5Ôê„ sÍ_H c©ßœÓ+ï0f¯ÿÓ€P‹0V([ÍŠén*¾…j_2Bz>0ô”Õ 9cßÿ¶VÉõ€äÄ_B:k©•”Õ&+KpaµçPà1¥ŸœgU — ~ãÍFBh¨*€£SÆ 29H{Ãù Qóáà·C$©DT Ë+¥ :MTaÛ_ÌÚ¢' ÞÇ~Þ\'º'ã=šö­‹<ê#žÊpZÉŒ›B0yò7BÎ.„ć4Þv¦¾®ÊæÒÎÏÎ#±ö,tG­æÄÙª\do+ƒ]ÌX¬”ºêˆÓÎ:O+æ<¡­[.TÞãMçh$BV³“§džmHbí¤oªÚ¨éQ ú&L»qæA»¯â[Ö¦ñ›$ìUóDrHâñ-~rHƒå—õ-‚¢£áp¾+òá¨ü©sU‹¿ªòo˜S™W«¼ÚŒÀ=ž„»Ù·¼±?¹o?·yc7òëzäÙi|mA0V™¯nŒ)ÂÝùØMá@aµñzd$á}Úˆ‹ù´'Œ¹þݦ|…ÀGŽAƒ!°¡HgõÔ1Ö­™A!ì[ƒ¤Û·­ZÉcå>±©›°¹¯ýc¹Š'Îø¸O û‰¾%Õ“%%9FÔTÆ„h¹V¸E€Ëqk}5ÍQ¤„™1w ,¤–Iü»UyÅFžñ‹+:ö‰<Q"-°›’ÃËûó¹Wé€Uw*ÌRËb´[[_I+·<:™ï^…%aáÕNۤºQXz•ÂÒÑðBøöÝ5F£¨žô¦ïãŒ'"$€M䥰{Ñ$ˆ–,)ðÝÂs´ƒçÛýþðjpU6öÆ~ÁÑÆ.ÓTWÞ¿ËCLppS𛋳¿ž}œiÐSÍvF•Ã[׸˜Iزp¼îþù[£fØâ¿äþ¶àx÷[Ϥµ-³áú6¹z]ÀÃíY3äfv,/ñc¢s˜vû|×'jüY±xoݦÔìŽÇðG×,ªKpiç_ÕÖOîÕQ–C;Â\ÛVsùÒŽ°yš\Ý ŒLÂ!ãed¿TgaÝd…6qmnРIÿ¹^=½cáï@HÃ[È—!”ä5Dm¯éåé_Þîþ%Êï3(±ÿ÷dŽ©|}ý:0ÿâ§#Ïß ÁYöü¿CÌÊOx½Zºp mŠø;ŽÏ©Æß‚¡ÆAj·uÙ„Æèˆ e˜o~JÐê_£¯»úˆÜZúE°6và Óî4¸‘ÓT7‹ÒØâÃèïµ:ìñêÈgåï‹ ‹ŽXž¾|7×xç}Ø”zÎÒ x,ƒš ÆÞù٠ʃ˜ÜÖßÎå-z*¾Þß…þ„ }˜LEŽ2&z€×™oÄCú‰ ¼—‡0Ǿ(u‹ƒö¢ß܉Aô'4'Ê@…·Ä/Šïƒ},ƒÚ&[3÷¨N÷„H÷ §6Çfõ4Ák McÊ•4¥ÎÅNk„FÙ1?NûÀƒy™Rú+ÓE7H;f\±[›nþ#Pÿ9:ÛNø ]iß…-€‰.ÎøGI™6wÔÑTX)ök>ÒÓûö U ‰&mjÜ'|u,›¶Ÿ"ØÄ:ú^ßâ÷á3Ý™xU*j ña„GaX=O" b7òØOPºH½‡C I¶ä‡)öM¤»£ žÍéÆOqcÆ›£òË_:ÉúÇñÞŒ~ 6~͇¦®¤|I¾‡{0v¢aˆ0U®>ê׈ŠÑÁÅ& À©ðûH<ús#)Ícð *ô>ƒ)áég÷僢‰ï…‚Íû&6i ÒD]>ŸÅ¨NGwÒ|9žÅpçDÉb²¿b6z6ÔIFÀ8#P¡Ò4Jï$¶LX|?-¿ÞÞ?íV7·‡ôH5þÿ‚êâvéÿ ï»}Ø\õ‡ Gã7L¯1Õ@¸wøeX-00ø_Aú_oïî«M˜Yw@+“™×ÿ½Üí .€V­jyÚÎ@Ì@’æÌ̹zþªPúçw_½)”ʹc=ò9ëæÌïƒ÷±ÐÍÇ}È VûD9TÈ»å2aƒÚ^û]~:s¶ØÞ-÷eóÇÕá¶lþú«wß÷ÃÅ7ßýXXòæû²Éß^¿}ûúÍÅmb€AÑFÂ~ÄoÃáñ вüñ¸\ã¶…5‡mÁ¹[^£w«Ë‡C!wu( ¥å®P¼XîýŠðy±Ý\­PŒû@–ŸE?Ýn|¶^-–›ýò=D×ÏÊ‹(ë´IY A²>d½ˆ#•WK d·E1Y?#¦¾<^l×ëþr»EûyYÎw¿Ûþ´\ µˆîúÍSù ÎÈÚîöY(V i(_3‚ÂÇ£úß PÈG½Û½·»I¨M#ðÙbuðêPF'ÜnÃ6Tà=²%ay|ß/>@pØ}!;Ü?\‚0{¢ ðäjy·¥óн×ÚDî_Ëøìv¹¾Ÿxs»™¯W¢òKŒàƈPíþÐïTmÁÛ“ƒþéâ/ßê.wÛÇýrWv\mËÝu¿ ºEyî·š2˜ôX¢6Ø«VÀ¾ÿwG¹&v½‹*’!2mq繪†©ÆÆïœUŸ«Ý$$Lžˆáq:ÔßW‰G­ë”·'ósmi®{mØÎ—ÇC³ît_îÿ…«ʼnxŒ|þD%ðgÀÉ|å~dh±™ÃlFæ!Pí£<Ýn—©ùϲüíÈxë˱Ÿ¡©b|nSgAB‡ åRá24^ wSÿ§ćŸå¸é®SÚo|º>1F¯;ìr޳òqáÖXuil¹ÇZ_*BÚ:æ¦íÃ?¸¦[æz@4r=²Ü¯z ¸l¸ÕcžåYUІ’* B ¥¶ú©¸•ÉÏ'r">¸°ðM6wH{’^=º¡0[ò1d-IßÿëÙ?Üõ!endstream endobj 166 0 obj << /Filter /FlateDecode /Length 4860 >> stream xœí\[oÉq~gþ‘§aÀ3Û÷‹$ØØŽ“ÀY#kçax•"’‡+RÒêß§ª/ÓU}zDrWŽ Ø‡Îéé®®®úêÚúáXÌòXàåÿwGj6ñøÓ‘8þÍ‘“r¶R{ëäÜñÝ‘bf}q{ôû£àåìƒ<öΈY+´¾ 2ÎΦQV=[CF­oè(íÌlYÐZ£gœ‹¬XÉ 1ÌÞ6ªÊß”(§Ãl\$Déç $#ªªoبBÔº\¥‰¬'ŽoŽ~8’‰•ÇåwÇÿpvôÍ÷FÇ9:åŽÏ®2›å±6H»~–ÊŸÝýçdNv2:ï§o¿;Ùi­æâôÏ';1‹„Rqúî ÿRBDã§ïO”›CŒqúÝ Ì‚‹fú> ”þðK28}³ ãò”R¨¨Lþ4JiìTšþ>¡}ðÿuö/¸!E6¤•‚¥lêì¶ð=ö11e0ÝýNK5+wÀߨUÈýhPÁG£¦·i'Ú q{¤cº‚—6h¥Ýt²36Ì6Úé)íÔH§7ð¨á„ã´<åQªiIƒýì$gâý‰ò0ÜÊ2EâÃŽÐ1£§÷‰£\ZOÌN]¨ˆÂ†0­‹Äé¢Ñ¶'ƒïOÖÙõd‘¼¶ÕÞÒMï× Ò·ù¥nZ+°‘ü±ÏÈOËÛvþ·í«å¼Ñ“^çó¤;=Í 'N1ú顱ó—êÃô®-ws•éÑ¡R)5œÝJ%{{¿Nöˆ !‰»¯ç±dš‚n›°ÆÁ,~ºlÇ~~‚‚¥|¯u»Ï\ìvZÐEr&çh­Ì£ÉÎ?$²”‚-´í>à£t¶02ânô‘C¹'ƒo€>“¾ÅæqmOø±Ü%ý„|€TNûëüì˜|¾¡‚˜~G>?´·xT(ë #ýQù´"m_è]Õ¨¬1 ÷:½4Þ–áÏDÐ/˜Vˆ9ÂùÊÄ&%‚l"ZQÁDPÚÌ¡ÁÇÛ9^9KÔ§Çõéi}ZÖ§ÛÁÓ¼>= ¾¸XŸÞ ~½YŸ®,CC¡l¨”Ï™£W^‘{ ¶}Êq°u%t2ÚØ½²SÁÎ^5B8¦›`‚ØKøKnÉ.ýò'4`í´\¶#¼lXµk‰ç†£m’up‚¨¬Ø$ùe¸¶JêíÉj–È'”_Ø *3î;;ä†-ø,µöçžm‰Ç†¹Oe¶ÀìÈcGqÅ"BÑÎ%±Ö+Ýï '·(ç×…_A1~ì3`[Oû}Â+!‚«ó%tYîÛn.Z^åeŒ@ªðCëá”—§fëßgTWÊK×´iEab¦®ÈÄ’‹Læ ¸L~â å=¨H`Ü\šX\®OŸˆ'ò¶yɺ8Œ78Z.ëxŽNzk Å©· í3?ôÀVS~ì‡] F&ó‰“ë¨;£šßú‰&BòY‡È=™ƒH"5«—u7fúãtBÀ`Ð$Î0Ä´$²@ä-”‘Q˜ d¡éªì°—Û¥ÊJê&pÆ‚0,Äl$žI+½§tTꢚ¤þãI£¼r Bà?ôÆ €"êHÅ+£&xyï#¨pÃ{ê,'ÕzÜ“é.ß?§”( ¢úÝÈù¬ksá~‰³£µ"êY&Ûþä…ñYdœ8ümyì*(ìÁ,PÖÒD¼O³óíÃçe€åÙçX‚-¾v`Îñ$pY9]å·p²Õ îÉ”ï¾Iñ÷ÔäÝdÃvn£cÈtYˆŽibÖ{°—r]‹§×;ªêäÉÍ&ì Üi@V!n=ûíÑÙß`RM÷ßì¬Â@JþÅúõ ¤«>þõàçe@þåúôi}z; æÍ`f±’ ÷ÎÆ¨QôÀ¼Fc^ã<á}O–J÷J˜CÇe‚÷çÝ`§¾JðTTm¹îA4$ÑjU2§ËDؘ0 ‚'O肉Ž=#B‚W—I8Féb̘W¾{KÌò L?Ä‘7£sÆ †·uñÍ8#íf{QœQÎü7<¥.*ëtv‡¾¿ô˜ ¨Ú›3ݽˆ÷ùúô~ $íÝç¿< û¶fZ\uó’·³ÏÎŒµÎ3w>{ÎKÏœ£¬›àCrŸé¾½¦8œB2°’BbfŃ‚'g§è4‘|®:Ç3Í"G¨¤ŸW©¦ÌËùÐú¼ X¨ëZ¥óU&rÞëmr~(Í̓ݰLDõÉÙì“Ǧ~:wq¨—ö&7Oƒ§fb~±>}3xúåúÔ´çÛõé»ñjã ä3NP‘Õšòì×§ÿ¯‹ÍóàÛ6ßÍ€úOƒ™Ïã¾¶Áýf¤ž»á1}·Ï¢â×’,E?ë\¦ ñ÷(r€¨#¸§Ó¿·¨gÃijÑÒ~Õ)êº=®Ëîªzlä-i,Ô笲àÞdÊ"Þ>·1;§VD½•'-ò.ë`á=<žf:=ˬmJ4ÈMèç‚T–åµH¸ø—y,4G¶_6qOÜÛ•Ï9¦ÇgŒ¥^ N(Zkœ‘½Ò%ÓaML2¤°à’ }9y‡3È`¸æ‰F’ÙA§=Í+?ЏÌs;¯=¿U\ Xvö§úì«Ïy]Ÿss‘&–I©x#KuÒh|É™9+2ä´-óZ£d`êtáA~/%§¯‹Á³+KØÇ£qš®®¼¾m µOæHÀ˜ÜgS O£?g’àšò–X†Z“;ÄÑ,æD\bb… „Å÷¡ø®ÎÀ`bMÒòüàl*êW³ÌÕê šŒ)“äÓ…”t™å¶’óîÉ–H蹯&ùÃ} É1þ±ø•Álî]Ø.›1;W—sS f5b†}ú'šåÇ'éd ªô@ÂlâÍß§¤8ùŽFÜ¿"ü/%¬¦ù=’%þä‹ °Æ-G%ÇÉ .¾ìƒ±.•ÏšZÒ«1x›oÿ¡%°n¨åÃ7e,hxLæCéT{h^³| ËSÛWù+Lñ5;Jiÿ+d…JÚ-Ó@_g\ÚSúXû9ð,xÖ²|’#3Ó×ùÙFfØ9°ZTÂÏ;.,f!OîØtP‘ O9i\‚ê.}oWVñ©ô ª¼ÈˆÃ^VåÅËŠçø~¢F¦3u#©Z×vb·+Ь©Êáp–'gÀ̶ ˜îÀ&wðù’.'µ–žÊôv-Z€¤L°h¡®C¨ò9ðÖœG0UKÓ[8nš$ÞÓ˜áÎè Ëw·!$cÉ2k‡¬ý ¤H'M¦å’M:"i#¹Ø1ω”‹ò¦Œc©N¾8 àæÒJ=¯¼²˜y õ¿èþIuëÍ3k“9' í%û†`iÀv˜fÍùé•Á$Í9¯œÑ´ÐŠ8”#N*Å;ˆîêb\rÏWR?ñËŽPÞõ¨¢ ìVd Äg/_í}­brš§’•Ý)ë@´7Ê‹´ xà$ùºÈ«ŽÒK³-+I•– ¡}Ù! U²Ò¤üFc.˜•-Ö58\“ŸyA ¯?!£a°®Î^Ê>¼«„2È»otn iáЖy—‡¨˜?k\c|µô„ˆÛ¿#N^f¨Ã®œVè ö›p€êÜæÀ…“ ±“ãí|µŠ>5ÍløµÔ }È£±’K€’t~lÅG½ÅÂÐQ†.‹‚—PeÉÀ+âqFÆDý-1ÖES‡í>‹¼Ÿxv/{„dIÞ›Vz,|”̰Èddrß XayÈtÞkj2N þoòr1°x€ Ë›²7±¶jÚ)ä(N ƒË©ü \N§Ëië,Óéuèa¥g±Ê¨Ó}[ÅÚûæ\Œ•¡‡`ST¹P‡á²¼ޏ𠑒% aguÅ$: a'–2ì#dôx@|<›ï1GåÛ¨ýúë¶Ô÷”ب$õË|O7ƒ//=éÊIÛÊw5“©ŽE$%æ-U8`.}à­;¥Ì}CîE.5Ì\Ûó„ÑN[ ra¨°ñƒ5))>ÎÝ“p§I =èû¼‚M—‚ÖÔ©K~àúnSR:gkîQ èúmj™ÄpÐ*I‘ F HîÚˆWö½ïñóIÀËT2¬SG·Ug¿ê+~Ð+V«ÃxÑƶñ¶8» õ¾Hf mfû”òAkžº§‘ùÁÝ€NäßñЋ…Þu9î—œG‘ÛtQ]A|‡wàÙ÷=© >å£àQûr%ÆÑ×uÍΘþØxã¶)ÑÀÃ5`Ìùð¼î«Ü¬·¼qn!a;±·¬;4ßseZìÒn4ÈHC²^íxj´ÜyV³^è+ H¥ÌKýöÃ¥Ç/z{­m‰6ú²Àcâ8‘”ŽB†¾˜QdŸ3V&6…mˆDîÆqw³<Ã:/ï?–Ô{ Ã(ô.ÄVÐ>úº$mV'}…X¢²|E³Ý9c,á—¦À8n+!Ó²‘·y0ì}3Bµl®ÃÝôm]GX’Ç^-¥gÜzNuâSžWÉ‚ý˜ð?½ÔKýíVœçeÑ2à²îˆßè£ÒîØ0á—:t)§ó›Ù몗Þ)¨¿wØJ®gPlÝQè,ý6µ>_.*mÄ}:A¥{.7ÔH–n¯àÌW3¹©-DÄ–€ðÑÿ,t,í¤Ýžµ^ŽÙÈB°n`æÅFuóÖùM¶wÙ\„—ܯÚîÜ0@3 z]øU5½ÊcÆW4~‡Y{ó'J^ü¼6Ñuå¿m¾fñî^ ¹çÍ<ðտЀö¶\ÕS)xF{ópñ3ÝÕ]÷]gJ‰ÇóhL¿R7•†èXÐ}‹A¿¬€ó9¼¬qŸ?LÏ';¼ð²N –6ú¬X±£®8•J^°ÞaûÊxæÒÿÌ4H‚åóϳ9â…²r¨_H.࿸„>£ÛëôåóöNÇÄ&‰$5ÑÝ~¶´µÎQú!£WŠl»ŒK#âôù(Rßÿ éåÿHp}Øâ“¿‹áOâ,'Jåô{âÎç7ålrŸ+íK#çk g¢…ß_},Ç(¿D1nIí½“Q¯7òØõ¦ÔrÒlÊÇta &ÏZ™¥ýf}yO€€¾ô%濟ØoÃU¤¬U„´Øz[ó·ÔéÍÈ“Ší<ˤ°¢©¡u:]E túS¥?ó¿YRîäÌ4êmTôéÍåÎiÙi%mº|+ d>%*]àÿÇÚ/™¼x™ocÊÍ«ÄCºNë"/íä-± …ÌÿYœã[‹â‹endstream endobj 167 0 obj << /Filter /FlateDecode /Length 5342 >> stream xœí\[s·‘~gåG°ü4g‹ã~qÕn•ljSY§")ImÙy8"EJ¶¤C“Tdí¯O7tÏÁPÌÚÙìÖ<b€F£/__p~8U³>Uø_ýÿÅ›3»|úþDþæ$¸8Û¨O£zNáôÍI2a9·7¯OžždçàÒi NÍÖÀ¨ö&é<_Fy ÏŽ Z^ð1NÁ=[ÏûMb½…ª”Ó=#ª¾à4›f2£)é8'¥9M}P}!ÆTšÚj Il5uz}òÉ.Œ<­ÿ»xsúËg'Ÿ>qê4Ï9˜púìꄘ¬Oµ³s´ÀX JúìÍÉ7Ó;g•lœ>ß%;+mõôl—Ìœ´1ðîÜZ3ç¦?ìà¸R ÙM¿ÜuJéì§ßÁk•uÊÁM¿†g›’Óaú1Jeaºþü”& JO_ák•“2&O_ïþúìwH¸a„g?;«-ÿìH}‚Äœ€ˆ:˜ïÒX7'«iðäwϾ;¥`á`NϵٚDó|‰Õðïép ä8à¨öÓ=îO9íòôò9ëà§4Âi==ßÙû”"¾U3œQiº~…_f,|[u†'”²Æâd ¾›nËÛ ²ÓNa?qÚßÓ")Ûéua³ðX±9;g§ýÎ’|€ÅÛèT‰6Ù8"zY±Ò<ý¢t O&égsÇæ­seKê³Óœ.éuÐV.±ÌVVÈ0:MHXÐ^­¾èô3–‰®±ÌvÆ‚Â*ðYŸâ]‚¥§7E„rʱ°3h=L†ó° ć±äpEŒõ ¨÷øYV°ëB;bInì‰ÓQfàD¦Ca}ÖÚùz Ú:‘"™V»9&³ˆâ{üNç \˜Êñ§`€â~þ×å«óå³s­ç콦¯¯Ê0ÝtxÇDí–t#jCû­çܱ“Þ¹.`”ÉÌê8bæQŠàj—jvà\ÉEàÖñb‹‡îw9z¹èºÃ(-Ö&ñ0ó–ÇñFë•Ç÷ øÿSüÖJ uò3˜£Ç©¡¦4Ð2øFnºjÄášH k¼W®;IɹÁqå?× Š-õ¥öTWÓô}÷µ×\ߋɢdÌÊY#`שè…h¸&Ou¸Û{‰öÍLÜØ+qÜò5†SÆr„ÌSH—Ëd~½IQL¢ÐæàÆvùMçÀvÚÞõ¿?ïZ"æêRͲ7RðG¨¸²^8 ®Û{’`@ Ñt%¥È6‹ð_wSÆ!çMŒÓm¥§ÊÂZd-+CüpÝxÓíD'Eâ&¡úÒ˜h¶4ƒ£CÆPÂökâ”Da?u “Œ[…[{ZÓ»l¸¨æéìgpuÿD¨` ²ó`•“®°Ê@3l)É)ú4±ªÓVˆ2x³@¾¯â¡ŽI^÷*¼&…Ð0§T ‘ñ`ŽRÉ÷6ã|O¦)9Œ‹×Ȭ¾Çé€uÚªV¹;A;¼Øi°y!“zLc&0€(ºð]µÓUï…—è{!†fÍŠ886ÿòô!¤•`~`à2–§ßþÜòé\t(Ü?QVS¾]ùp_ EƒV†ÁxÀ¬Ž¬re$ySÁºÜ¬u¨@0Nȇ®|g4D pÈ|»C;—¬Õô7‰V¤ì7»Ô¤ü«B"H5Güàëó-J‰ÉÞUùÄß%í¡pí]wÄt¼@¬˜àÀ³”Ò™¢‘ì•V=eÆ={Æø$L»x](Kyn À–ý4¸ÃG\Íòº`|—aý”ÈW3_Î'Åìäâ/û¤Ð(é#s7Â^cGÒÈ2À”9¦£¿Þ ‹}¹kžÞE„À~C(8‚bpÝÎ¥M‚¥éÙšÜ0ÆoZôq‹Òau”¦BX!´÷YApª…¦‹c¨ò€UÎÎà‡¼"#šb4Ük2è‚ìÄ9óg’‘Ñøï¬)yÖ¢‹KzɇqbïcpM—$éc“|&Iq±¾æ¨-iÌ1Èk¤]0;Í`ÂÊa^´å÷Y¼ÉÁ3 þP:na‹a*m./µQebEN©CG•—Žñ2b–¦¦54àbåK´^ Ë¢÷ƒ§›öôY{útðô«öô¤=}Þž¾nOó`Ü9øÄdØj·íéО¾kO/ÚÓÅ€æyðmŸïz@ýåà‹‹Á¸NóÛ-ïÛÓûv$Ôâ$†ÿJ¦uaÈOÉÊ*š{™-c\‹±FEá2BIgâ¹Q µ &_Ì·3ŒÍÓ©µÜg}®D ¢<¡TØ´ ±7Gݹ(šÔRŠ2‰G­Ì2²ü—„:%ìqñ1qô¡žL J4O¾•Ëyê»dJÔ½_gª'{ŒI`Ž* ÕÚÜÑ6yToà“ØÒK,׳‘[>¦â|ùžì¬‹4Í]RÞ ¹j¥ºuž®È <øfÿ¸ð~Ï*m³,Z+Óù2?ɰeýFYjîA¿Ü¡7cƪH¥5Ó»(0Q‡žÑ éç K1×ðRKaÄŒ@›Þü¿?¢þª=íÛÓ£ÜgqíM{z=6ÞœÿØUùß²;L>à u`žŒÆó¯3Éçæù- F-à¶¿Š3ýQÿ»®êLôÖÙ³:ør™;òVn¾§˜ÁÝÓ#è(7xØ)m½7»R¦5˜–º¥ùâϤÛu#n å²êgQOcÄW,Õ|G´Y ¾“1.˜Ëä§Ê-Wƒ¿g•…[Ž` ÓVÊo±Ó-Ó©cI}Áä³ë÷;Ó¬2´ä’Æ2ÿÒ‚;@Ô{œwkr¬¥¦¨›÷ÕR=·6A“ÞúeLÉ%³ãc\¿äI+k0Jµé‚ýókmæu­çÈ u"ÏZ©OÙ»å*GÕ-‡ Ý2oSƒWd,3íVŒÀ˜Ü½r™L%#žC3È!l¹)»hë² JF8¬)µA§dо–{æüAÁ2Ùœ´PY–%‡Xf^D(/°¶P·ee¬£¤z]N îË5± ËF°ÃK ¬ ”‚2 ¦À6ùzqáL&Yó©òrýåÒ8²ì(&ã=Ǭ|5΃_/4€p²|)4gUsâ†5˜î 6xÿàÓÿMDp3øân0ó«A`w=ØG÷nðíå`? kðãlqâF/AþÒÕ|9ŠÚ:èŽü*åÚHâ3ÝàÿmW¨ë®2+ƒWß®€~37·]X¤G…¥åPÏÝ!9ÌSÂÈ\Òƒ57³Õ4±tˆÀ¾þ¬ :ýÝ*~©Ùûu{]È€» †:;(RgüÓ#›Îëàsf5âTˆÜZDO î>«²aü{.µØöw™†xÍM[dR¢c\eòu+Pí)™–ì–ß ‹yÜ_o—êp‘U ͼî¨²Ä:p=jq¿«LÕ~mK=Òg-Å<¤c8iÜ<ÏX%Y¼¼z鉴¸Õ}X~…N²ü¬áWfp*L=—,i v¢{SÀQB9_VnXZ È ÂT0—Ì7nëãV¨û_&Ü«ò3®‡mvÏ[©ú½ŒÉntßïe˜(ÖÔ´ð¿z¨Dç —Q6`ãÁ=Í…QÍ‹TfÌ£+ú…8°Üœ‰Õ>×(ŠU9ê½Þ¼÷ür¨p¼}¦‘Êr`ÞÂÀ;…öG ½"ëN„Ú6y¶°z»œÍq\2èâ:Ks7ãpÍoÂV“Ty ”FíqOÁú¦7({ÄðmX“.’KËï‡a³ê¾Ma‘&×iâŒÞè)6l K?÷:HO(^Êùõ)£Òmó>_î"ÝÚ¤¥ Y¼$5¯±µb)‚¿àÅi§b¹cÃÊóÜÍ^ï–š<ûßÅôÄ`b­÷Ì «/Fà&BxÐë…3íO³¸Á*Ù/‡ò¹ˆÇ¢&åå8 àòðPÈéä¬We&.¨<6=F%+à –ë¨¥TÿâÜ!Œ½µ5>ðù_\ 0yGñÏz”¹»Ìòfˆ¡Åž[¾îUhˆÉ?“*wÙàÙã¨VÅ1ƒš¦/Ç"ÀÉǸ͆^xÞô96ØXÄ4¡X°<ß­ µ„nØ”¶—,J÷õuJëŒMÙläY–=k8\¾Ëtw ƒIÛ6§2J•-šëʽï·gêžbÊB…8þóvaëOLŸìš#³£ãv€YL¿Bò˜¦;܉ëW®SÚÌÖéÙû(šmåP§Gï ¹(Æ6‡2ºšákÝHþŒ(Š uÕe^Ãá¾¼Â4¼iÿ ¯mƒ1W­™‹Ô3¿ç‡]8 »p4–áì}¯11ê§ÿjE¼1Ÿ‚Ë`¿æXã=½Âå,}ß}*›ýñLÿDpò—a#ÇåxûÜÆýïp-b¸èÂ,ô]ªJEEç¾ qÏø-½G°§Gð»ëk²$+gW¦ËËu—r[kÜIËœv¦p%¸€`<éÜ»¥·\þ,…N\-õ=MùXƒw©rœD*˜÷@Ö¿oF·¶^RûY(–ÕV70Å—¨™â äUí gñ$»ôÈöSKUë÷Ì|°¨ulKÅ­™€·ç¼¥G¶A@>&†¾4¬Òn'!H;7{¼(Ó\Úq!îž½^‹Gµ—åk<›w,Zaút!„~Åùva÷ª-TDܯb­>£P{#+Nˆ1°Oë$õúZ ö]êmÁöx+D{xQg‡Œ0Çlõ¡Ô) háLK«÷æ…rl›u(qìØ^¬lZµÜ¿ØLyÀÄ>eŠîåEì…Ì#/+jš\~Ò„æËŸ€M{R>}2L8æÀûïvÄå´êDË™¿ˆ óÓãnÐXaÆ8¨*£â FBÌÊ”$ăl{t°MÃL"R¥KjaËËîoYá„h/g†ËŽ-D‡ôßþzÍŽxpL6ÏàP›Ú3àq½n2HÉŸà-@°ËÒ¯¹•B=£h+w®è­O~37‚ÜÃéR…ÚÓ[ÜÕy Ë•ȤÌ&~ׂíó¢+'×dÙ²=¬·_íZÑPTΚ¤#VÈ™"$ÑLÙLJ5¦/€²-´,w´+ˆpè!ÅÎL[÷@‹GƒWôÊ ÿÃö”z”²h e~s¥VV®Yè`‘{¿Ðj6n¬l[]wÿ‘ÆÍÏŽ€0´òzÑî?€uX)Nú£n|y“ÞMèÿ®Á^žÎ:Õ?Í´´iþ½?öe~Ûžž¶§Þõ§A Ôˆ2Èàõ€;ŒÝu&Uý)@ãh] Ô·JÚ7ú¯0a©Ÿ¥é“?ÙƒlB¨ûòpûüŦX‡¾Så™Ö‰ªOQ—éáècQ^™§ÖêHÑŠ*·a xIªf6ÀË4æÙÅŽ9ÛFû²³±9m MÒÜ·}ƒû "_6ª2‡Ìì4Ûà}·êVYÁ†T¼Ä=ù ?V§³ÙUŽÖFU‘˜,C°3ãœXº«'®Ã4î´]ßA8n?­0Š}Ë©tšPöp܈_h¾\ö-Âvƒ~úÀ(¯Çf„Zaó±™ï¿rTð_Ìë^¾²ÍðÏ3ógj³êGnÇGÜ-{9v¼ ¦ÉòŠä0_´Õ{H·ÜpSWÂÅ´àÍP€äA5ösí“?G±D\xÔêVÐÓc~@©ñŒÂ´Xšs6ƒ.RäéõŒ£Öõ*Öu7x÷ ¿úõ³“?¼Eendstream endobj 168 0 obj << /Filter /FlateDecode /Length 627 >> stream xœuSÁnÕ0¼û+|t1»Þµ½{¤RâÖ6œÚÒ‚èëSKBâãY'yy~”C¢õdwfgüä!¢‡ö¬ï›K‘Õÿtà߸Â5RE_sÁ(Å‹êVypWN¡ÆÂâkaˆ” µU5–<£2Ù7w C¡Ç0Øaîæå\íTNæX‰J¬¹#µzN…$rÑŽ“`Øs:‚Ö få´M;PꦿwOçEúõu³óg“{u™Ä[·„™ýtç–-£G¦X };óÓÎ}¯‡‘’ÄÞ+ JŸ†"¨jÕ­Î@\8ܶzV•*ázmYEÃÞ>köß–†öwí«‚•µ k‡^Z‹¤šh™‚ENÊ_ œ Já{«n?‚í›EóŒ@«–pÓúvËlj 7΋á$¡ÛÄT­á¯¹u®O†n-¤ÜÊM ø}£*PNÀ ½$EmàØ ˜l÷ÃÇéyCÐ{C‰"f1¦[óã²ýP-É‚>urLhDrö#J´ºüõÛ8QŠj»¡çYŒp‘fÙ| ç³rÆJVí˜nÓæý®ö÷»ï4>ç“»pµØ]µ4Ù•°4±e’-£\EcåC¡eôù´»ˆ5çÔç3!Çl»(&’E–„Nƒ€ -f¸iÓð<3´Ôò²ùâ¬ÍèẔcù±Y–£Š…|¿’²Â³‡/sâAs©¶‹O:´Ñ5kk—*€œæ•¯˜³9ÌÕzŒ³„ŒyY9 'åÖf›Ó5¿:áä«™xÔôc°|'°KÒ+ÍG ZR¸Ñz9ªx9’Ù½pœ&ˆendstream endobj 169 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 5171 >> stream xœ­XgxSg–¾B¶î¥™zƒd®¨%ôJ†PlB1Ý4 ÛwãÞ+î–t$¹m°±ånÜ„+æš^ Ø„$ $$” %Ì$3“sÍç™ÝO2L²“ìóìî³èôÝïžóž÷œ÷=’1Vý™L¦Xî¸læ ó_o9ÃËÌžk$‡AVEoÛÞŽ~Ãþ:äÄPÆüoÞÒÀeA˃W؇:„…±*2j÷šh÷˜=ޱžë½¼}6ùnöówÚ°mÚô3ãgÍž3wÞü÷,a˜±Ìzf³Ïld&0ï0›™‰ÌƉù7f+3™ÙÆlg–1S˜Ìrf'³‚™Æ83öŒ3ƒYÉ|Ȭbf3«™9Ìf-3qdÖ1ï1C˜¡Ì0f8£aF0#žyƒÅØ2vÌ›Ìhf>Mбbâ™G²m²ýf÷k’ËäÛåÍVœU¹ÕkwëcÖS8)~`ƒ¸Á\Iÿþý³ûÿe€fÀ½›6 zkPÔà郋m>°!ó†5´aèýa ÇŸ5Üø­üˆÉ#ÊFN™ÀÛñÕo |#uÔ›£Hj›žLñ-Qr*•I³{æð)•ɺˆ$H !>½/l3âµê@u”&âS±µºVýQh‡Óš íÉAãD6Õ t:½a¿²åÖ¤É[Öï©&÷Р-pLjóÁy,9'mâ¿#ÅÖdÂF: ¢$7ɾCÎG…\ŠÆ+üí°ëD¾|»ûú@Aûgù ÕZÅ^É%¹â bkt—õÍôÆKšË«ГEùâɢҌ٩^­bMº.} tÂeMiß֦Ǚ&ØiÂbQ†#qFâXycÏ2^õ¤÷áT•4‰Å‰7>ÿzÓgdÀ!å³’ÓWà3î¡ýWd‚@¦’x,ÆÑìáO€ [´z¡’ô'wyìÄ)l)ÔC¹Ê¸¶@ ¸¥ìMŒvÙ±ÀÙHêôVi„IVCß·GÊ% âqÌìïÈ›„Ÿ>‹L ãŸ,Ähûè>ŽHqä½À³,éXjtCˆÐµ¿þ@óÑò£Ð ûý÷û3ìlKöMöð ÷¦/éñJ¥—¢ì—Ò¯Ácøž‰×NÞø¢°îÂ׎FòŽ>.Š«Òé«”´ld«ˆcLÒÐVÙ}Zºm4?4’‰¼Ú+Ž„5íküð%¾‹§ýX¹ìNôRv°ÄÞ\Ë(…|M‰R!ŠëÍùuM¤N¾²®±²¸S­kÈ2zÛÖ®{kD+mzr)cZªø6žÆ‰¿¬"Çâ"ü²Šñd4ö'ï)ÉØ¿à¥‡boÁÕÀ†unyÈalêæ0WÿÍŽËÍ Ž£ÜhñÀó­c±¿(ïa±šW)"ÉQ“ÉBàÆcS™âq–ë2¥ˆ*ŲL×Bx¡ÀéP¸à±âDÅ^L·î­£¡|EC9F¹½¤Û÷‘¹6rtÂHþö!´~(hµ1qȹ×GÕÖÖ[Ïo¨rÞµ;ìÃAûXAþWº7é:õÇ¡™V¤¯æP.³4ÞrË^Å+åÒ©žÅ|oqßËM†'´éŽÃ÷Ðfy† Àòböa¶û’¾ð—d¸Ïb±ì‘§@Áüƒ¤ ßFÒMÒ[õ²†[èxKޤ÷-lJJJKbåy·|vè˜Õ!û”õþÍ©ÇSZS»÷#·Á%Þey x=VÈ<¨5DéáJ"c£!åp®  ÙY÷gZƒÚá寿›·/í­K(Tú5xçºç©8€\÷M]Ƀì5‘zA¯Ï,®²Ë)ÝÞLoÅ!¥,â’RÙ=T<å¸]Ãã`‘ ÆÍ*…v~Q¼“Éy_%Õ,aîF^û¼ö“ËÂ9•ëçè×J›ž Š[‹ˆbntôŒíÁ?>ê™°‡~f‚B¦zB H<Ù_}c¦ÛdxD!n…GÐdx*¶`iù­oXÚ.YÙ¹N9<+­ã_Ù‰]î³nÍZmÙ¿gÉšŸËŸÈNü8èyÕYø¤YЭT }޵È:¦A‹Rbè¥c^5š–Ñ4^ˆ oõ4p§Ÿiàm öEïÃIt¾ƒ6úùî‡&ѧ+2ÒPQ&­”ò9E†œnàD6T¨ pÕ'è̳¹Ç´IZÐf&+çÈwÑ`}ATj×h ¶é}-‡®°8®·ÿ|MØUBV~N‘y0õÝßc#  ÷ës/šï£÷‡A ¸éÃúî? F(KÎŒ·O’§ã!ëK¢"@ë¤ ‚ÐèÍg޳ÅιQ ­:E«q"ÓmßÃdëvQ¤ÝHå(vê-—]dqTجä K²ÝÃ}¶÷Hb^˜%¶"8`È+§“96Ý„®u8Õ<œûã,³îÌÅ3üÓ¥É?2J3Óµ)ºº®ÞØ^Q¬Õ Ƭ<ýà.W9¯Tz³d¼šŒr†±Ü{Oüow·5u…HØúXhW”@Ei²>I§T ŒQœå箎tokÆ~h[P¥ïcá«6V.-•ñ¸kª YwÀNd4þÚð¤zâe© [ eP™¬ÎMzé -¶xùÁÊ ö“q1)ÎI5#h—ä‘‚ùÜ}:m;  :,çÂÙ ÎN9H±1÷È4º ¨çŸàÈ…Ù¹0Çå¯qׯ@(ìÐõ•ŽÎpmQ²ýdÛ±>n¦Å ÜOçm©Û',Ž$ëÆ Ñ~T´ìTìý ….hŒ}¦!P—©OÌ»‹V¶÷Éë]*ÅÝU}ÔÂ1M£åÄÊW½3Ò„Ïý¬4N=«ù>)±4Jïó.¶K, k ¼v8øÅ]œˆS'Ý&2gø`_eÎv¾¡£å`˜àHXgl¦À9ÃÎxÏx_¿0/ðÿÒsîDe’.вdå’½ÔŸÏ-Öç^ýecìÒ'öe¯;û´I UÎ#¡A7ÖãôÔr»ó¿ÙÓzǤF„­Þiäì É Ñeê唂F®!¬Â7(0ÚCÕìrîó“7Ä´‡!­²Ê8Lާ¥)|JjR„s¯‰y}iÕbb;wM&=_D½]‡Vù 9>S»/SH‹ŠX³¼aoYLKL‹¶º¸+€C¿;œ¯Q 6/W¿æà©€¾B ÂY<Ù,iSÊ3 ÁÔ2xRB]V@hÃÔêHH.J¥8ªõ&8 ]“¥²ÜZTä<.ìB¸3 ’Ðˤ&Q^§ØEB‰€Ÿ+£‹µJ‘únÊ*2¸-Š_ÒÇŒç6óô=nv ¯fìÖ¥ÉÝ8q™D¦|¿åm-…5Jw×üÜÛ+È…2&°2±9©.Q£Ö g šµ6T¶A˜â«=i&^T°Ö6àÂWöï©\šŒ|e®®æ¡7õ%Ó ?s6­Ý„?Í¥^ôÍÎŒ‡£!#V“‘¡ [·1rÇ pØ%eƒ•î”ÙÀ=2.œúŸ”¤öE«Ùñá×f×· ÿÈc2™€ƒÉRò!Q’$ŽÄáx2—ájj‡†c¸@n‘n~=8·…\Ü{S{>£~âv͵†Ï.T‰pÎz׬¬Z«[Ë`±veàòµ[÷l¦Î/Z¦›dÏù‡ËÑÊîwâ¤ØÿŽ.ßÚ,!9-!B8·¦èª#õƶvŸÎåÓÇ»…ðÎFÕEòão»IMv™pʳ[& o“UQP.Ç™_ñ!ú2ʲò¼|®0Ís‰›‹·¾8Ü”œ¯,ÈËÏ:˜¥Uk2 ™ -Ž©ª*.©(or÷Vûz {jvdQøo°ß­dOm¸rïµÝZ’ô;ZüãÒ·„Ã&nçñߣ=Îü¸ûN#cpBîO¼\9y ºoÜÇÛaƒ²“¸ò_tĺxøm7ÑóøñËÇ Xùze13ê×[Ë ç=Ûƒ->Pür>ü¿¯-d ±Î„uâp‹å À©£FÄK‘´êÏ+Ï]ƒ[Ü“¿"¿È7}@»ì[‹|ûO ¨cGœøFQ G Â³ÔÂÀÖBfnDíB”'Sp¿Ï{’_NGGLfZœV™éDvÚ…Ô«êòô.­ŸÔíaÚZΡŒ_„u÷ø¬\áöäwJŠ]´]Œde~mRG=•{ëæOQij‘µÓ¿eTú1¿âïd-ýÀ ¦|àçQXª<’ÓP"×é_çºÛ'xûÂ;hãï|û—K_“!5©ÒÛgá1w—n:ƒÆ:.³W5„™:+ëSÚ·äu -YtÀ]Ñ9ú¦Á–xweŒK˜ÆKªIÓB,sÌî”b‹2Q²§à6šµO‰3øÏÅ%ÒE¥67(.â“r¹wµµŠ.IJɿeÃlûÚà ´Xà]B”´‰§»Œ[_n¡Ž7=¡¥²Ggð=ó>;NÒñE™9ZºwáÛwЪ*W“¿O­ŒTå®è]©î°\‹‚ Òõj½¸xHŒS’66 Ëó³ ¹ÙB~Q]û à®Â²é*pM P&zxÇí¥Åß]Ö!êËŽ@wÆíPXü¶”u‹»gP<ßxqßÄa î‘Ñ»µ®¶và¦.Viýw¨D¥$k²¡;·ë0Ú|™_A7ØŠ´C1Áê½ÑT||˃ZLÕåígýoNžE>ØDšV9ˆÞ({z 'àÄ©×'&ºÀÎ`áSòˆ÷ƒÈšäšT#tÓMààÀ/Žƒ÷f †Êçp:×wª2¼Bý,œN2J98Œb„sÌ–=XzÊïϧm—ÃU“@6 Üt!×lMžú§Rø\ꕳ³[ ‹²ó¾„ƒÇ7ÓÕ™dY d›ÝŠs[$f_ΰp;gŸ¸nyI‡t—&û f~#ÇçËŸo>BÇ÷ô÷g&ÁëLÙ\±é¢§°3`½+ÌàˆõãõÈ¢pë1Pþþ Ÿ2Ìþ‘OÊ (fî̉ÊsŸ×9mÙèç/~“ø¿}ØÚÛìVmõùpû…ÏîuµìCº‡œ0áßÌH¿ãðm9~†µ¼6B4!™ëÓC⃓b‚|œ!|uáÆÚìò2ZÂÆðïàðÝ«;7<{€s/¢é:`q_ììï/¸¸&ì‚UÿG‡ŠŽéº*…÷yˆ®Í¬QWÁ§PDàÓ9ÕYÆ’†ãt;,öÍ Õ©sbibÓ’g®¤aí¥sð¦¡Mƒ‰:îa‡Å6óþ©Åf>iºvï|Gíþ6¨æ'ÓÁŸ(6®Yë|4®²¾®¬­!Òœ+4Ô¶ë)ô× `ËÖ´¤øHåúYéïƒçÎF@FyäTg‰ÃoŒXa€ÕüÒAýaÐ4 g˜ÿmPcŒendstream endobj 170 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 200 >> stream xœ½Bÿ CMSSBX10‹‹ù!ùJ‹ ‹ ›÷?¿¼R3oøˆùR‹ ÷¶Ó÷uáæ÷$÷Ÿ÷øw÷Ôʚ걋÷÷Yûm‹^û„g€füêg–°»±•˜®÷›÷÷8û³™s–‹¡‹ÆŸœ‹©ü6÷õ÷u÷÷ ]IP}Uû 7Ÿ ‹ ‹ ‹ ‚J&endstream endobj 171 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1769 >> stream xœ­•kTçÇg˜™*!3©¦œ™rŒ¦ÄÔ( ‚—˜ª¤‰£èr§°Üv¹$n¹¬Àî>»Âr_aY–ë° ×€å ZŒ ž9)m‚95Ml¢ô˜hšw¶/§§˜äKsò¥ói>¼ó¼Ïÿ÷žÿ„« A’$´ÿ-¾‹ok!Û¹×æî¸»Ö{±;=¿zìÚ£ï­"ŸÇ”i¯ff©öfGÇÆ%&ÛD¯ëˆßˆDNø‰@âUb7L„/~Ä£„§|áJèˆÿÑä.þ.ŸPÞÔe×]ÇÝv¸ÕÑ¿¤ÕÌzÆÌôJ:iDÉËF"bÅLSÒ먔ƒ/ CÕ¥8bN‚g .@›ÃîÓØ«ÀMÉü©òÄa·0Šá•L›i:@„qhÓº¯™ßæÃˆ€B™o®_šœ´¼Êãü={2ÁÐÉz8ƒAD×mhH$?‹nݦ†/qJ3s²0^Xè`âu…A|ŽRr§÷ù§wç?Æ+ë„;ÖëWáÏì­>Á?çñn|ƒC&¦ÛTq†Gžô½^¿ðàƒ˜~…?ã"õÝÑkÌÝQÿ]ÛC_ö<$M¡]òµ‘³¨s–’"Q2‡8Ÿû˜ÅîÏzcOüø½ˆF+æÿ‰¥5Åü{Y×# ÁaØŸ(t¥>q¶èbA®5Çz¼N ilTfÄóÁý÷Ô|©Œ£¾¬tÀ@Iž€½˜<(©.7›øò 0ªï?2 À~36ñÑxrWQ•àH7צš-ð>ëh:û9"Í›RL¼Q['­r«Üæ*Ùß'E`#ïO#/;…vJ8ä-bo´OM~°q³ŽÍùv0˜úPuaª{r†ÿ£:Œ RFÇî/xg¦ìߴ쟸äߨ%})=àúNVÏð6‘ÎÒo%¤Â6È2É€¾X\ˆÇP!ó§~kºÅtS^‹N¸ -AéªûdEcØúS§<¤ºÂ&é"i•T”ô,úŒ«²7 _5²"£Ôk ²á8]º™Ò—§BéKJò×ãš5Øõ”X åkÛúÁÊ‹L¦þ ¤C2è!tù“KP]Z›‚Öá¯)טJj¡̦Švq}lèíÆÖ›ïÛÈ37бéY;%=lœ¼ßƒ‘‰] K$°Ûö…‡(5Í- -ï&Àq¡yèœuس—ã¶1 >ª{Év±;ÿ‘yåÚÈà¹F¾ìˆ#aئ ËÇÂ%õæ,­&.œâCÎs>ÉQ‡õžCkЮÚ^/‡—<‰ÏÙPÒ Ù3‹¬Sº°9ƒÉ£zBåadŸöÁãÕw|Ëì™ÑF‹°›AÞÕn"³G[q^þÅ„,|ÈAè4ê¬ÄcÊCÀf`¢½9S;hïlŽAÇ(LB¢úÚ·e4y²ú=…v”Þˆ‚–òC;II«ÑqÎn‚Ư¿Ä`úù§ð*¼æëg…VŽ ¢É\RV¬•¹ë… ÿ½ªh`£7t —…FÆØÈU¢-·vÀ·`ÆÞÆ$ö»L^”õc±ì1!šÖ€¾¦±ðýî.4ý_sµÈ}°ƒhõ<‰Hn ´Àµe7§e¨³ÓS[r[Ö6;y*#¿ZU,#oý!;ÎÉk`N/× )-$WF—-:·´“ãhf‚B±’÷Vb®²\šú+ °ã­QfÞ”¥Õ7)˜Å|Ñ•ÂNðÉ¡“Áµ‘°SÛ}×G4DöÅ=±=E7òz´5–â÷TŽp8ÀþæÍWûk†ó¯•κ •ZÙ¸‡ £XJ³ÑT[Á—U6õUžê™Jº,r»ƒ\®¨FÒ»…øEMlµœáAt§ItmŽrz;·s ótÎr³Óä[Õ‹|Á*Ó«ÔÛtÆ|P± "“>AIw™îËÿ†x]K °œ$‘VSU}Y¥I„F T%X°¯í‹ÀçÉOç)´ï<×®jÊTæ¨2S[s›ÛíM¼¿ÂÕßæþ3p_î+ÁÝ“ þ ü> stream xœUŽ» Ã0 D{MÁ ¢ÄŸ&Hd„´q‘*ë',™ ‚‡Þ{SSÝçØÏ­4È O©t+Æ åF®Æ£­ø¨YÁ«> stream xœµyXT×ÖöÁ‘9G£™œjÎÄ{/±Ç Æn°aEz“"u¤ e˜²f†ÞÛ Å¡ª`! vÆ5öX¢Ár£‰ÑìC6É÷íÀä~7÷&ÿ}îÏÃ3眽×Zïz×ûîcAõìAYXX®Z;y’é¯ÁîXû³¬=Áú OÏ‚Ác{X£Öþh`¿#oR¦Ÿµv;6-ܼ0hË¢àB‡. [*Y¶sy¸ëŠ·•‘î«¢<>ö´÷Zí½Ægíöu¾ëýü7lì3®ïøè ]&Mž2uÚô¡ïϘ9köœ÷FŒt5ôV5”²§fQèÕÔlj8µ†šC½G­¥FP먑Ôzjå@¦6Pc¨ÔXjµ€Gm¦Rã©-Ô"jµ•úˆšH-¦&QK¨ÉÔRj µŒšJ-§¦Q+¨éÔJê}j5ƒú˜šIP}©”Hõ£Þ¤ì¨þ”5%¢Þ¢Xêm*œ@ÙP¶Ô@j5˜R4ÅPÛ©^Ô»To‹ÞoPëH¦¨ž”Úb Å“>=>l\ï¹½ç ˱–uÂaÂ,ZH71™¢^ z•õú©w@ï o(ûŒês·o‰Õh«„~¶ý¤oz3¬þšþ¼õ ë&Ñзú¾uš]ùvï·=¼3@:à¥M¶­ÈvµíÙiƒìµ¶|oðËwz½3ò—wj¹Ñ\÷w±JÜönÖnHÝPÑТaS†ù ;3<õ=—÷jGÌ‘>²ßÈí£&ŽÏ+¬ÚÀˆ6ùe%Õív~hûJ69W™ Ñ %Ç`÷Žol"7¹ïrP1þt©z¿¦ŒÐª¬Vé3ÌHo1”kÕYjø`‰@xWË52Û¬ƒ Ο®×^‚=°©š”¦["i{ˆI—Ö0XÏg±Èß´Ä¡ß FÞ²I¢·F=."Ï‹DQô”Å:ÚI KɃêÔ-š ('k×v®½T Åh%ýãåçÏe;¬åpÌ¿¼v#„€j7ƒÖÑpŒþõ1…¾%k`8º®bD7^ÒxˆÔÒŸ¼”‘´ElÎJ»…Ñ¢¬}­€Á¿Í¢wÐ6}umu›ÚÖH{¨•!à[Á]KžîOïSé%ñJe’ ñ<Ì"¥69Rl!G_¸_ÍiÅðX¥öÒ˜î*¦CqRq Z‰6x&NŽ Ø6lIÊÔMšh€ãP¯0ï~›:ªŠ S›’ž†"/4'jäZ9(l!NåbªMö ItÓëDG w¦î42Ví›H/èÑ^£5ßE§ž.x>@Ä£¾‹Tt&½™Co ŸÖ½¿aÅ–X ~”À>-¾x®2&ÞÁos=üË„74RoqG-zé­”~À…úóƒ…ÈöaÛß̺†9âUø‹û •é5bTŽVÓÏš&,]´qÖp±¯øIz‹Ê»h÷]ï‡|YôÖÈW¸/î?[àþ˜ýq,ê…ú~ÿq8;².ଠ:rÎB=ì…ce*5ëöÁØ/)w)w5$•Þà q–89ïØ Ì늡{÷üOü=¶áìé”j y÷Wº«‚HÞ×h‚Õæj5D„Ke±r™ÏÂ:¼ }’”HµÕRrFÚ›Ê\a›ÚÕ\¨"úsÈ#/ü ÞHwÅ/¬×^&{Û —»ÊF ÈÚ+F´U»—ÄØ>Þh}âïWb zr}Ãbwô>žŒ>F3¾CbÄdAz¬dñ*.{w¶æc¼©µˆEߣV´±ö,²h›„G”pšPäSZÅÓ….•Ë!.‘ÛlçU¿éÈX°=Áöx:žŠ]Hº[ñ#§çm›B Ö¯.¢‚»DOч|ö‡›p~9]æ,Ýîðén˜Zu«¦* EY÷ûæšKgÒ©ÑM×Aoüøb‘hÌ3ÜS,z:\Ã%Œç³(”®j9\ÕÌ•³S±%îûÑ ;wÏ’Æ qŒÔPÂXñjù_ ü*ƒ€?Ð>˜MÏ&_¥32ç:Ö ¥Xbi¦#ËÝ·ÑL²Øda‡mN’‚ m£RAÇñ®ÂBTb"LÄâˆñx0x¦Ðª=¥«ìÜ}^ô\P×>Ÿõ/£»±ÚÔB4qhZÖâAh2ž/Æoýò.k+¿§³ž ?…‹’–EûWgN‡y€öÞ[ƒ֮AàÅ—uåtŒ!¼Äºö.* u›ó,‹—üûò'%´ç$KÑÓÊX·ssafèü6îÿtbH.Aã~}£Eþ,Bƒ_d $46Æ/Ș·!½qéîÕ/›¦m œ4—tñ#ª©µ@ƒÛÐkÐhðM¶;ΫÂ&”MR‚'„-À’Ùv5dÉCúi¶ßûb* N—úá&£$agë³B4*Ö`1c"‰eÇ™î~·âuÓò« ¯îÝ@sÐW,êAc± Gf¶ü¤÷ª›5•°šaŸ¹'vÒvÊìz1š@è ízºTN¡ ƒ`&P·K_dÈ©®ö¯ráD7€÷ÒÒÈï’0›èPg˜ë hÌ­ö¹lÇ¡×4¤{Ý„uÚ›¤áQWúÒã ·NŒT÷éo³ºžï;–›ŽÒºî#DcÀ°®s$`+ž“êù÷‹­k !Ÿ HCØ'DmÈm`õò;ѰÙäã>o†÷ɯ"8E®*%˜XHŠc: ’²SÕêâbN£MQñ׃*Á.}èo_ Ø—#ö­öÈpÍ óe]öÒÜSëÊ“ý5œ:!“P“ ©ÅâïÍ ¬„¸XN!O+<+Ý`©ž•çÒu>±¨­:¸RöE ÉAbL(A!Fþ=3¿¼ßæS7@´‹xŽÍ•ìsÏ&2òÅh½7%õ3Bg^ªõÊ2­Þo󴪦j¥^â´¨÷Ä¢„ÀåxKj!Œ³¹æÌO&ã‘ÿ–püªŽ[ü1~OÁ®ØMÃSÑZ±h×ø²¼ö4é©,AF4³ÄâÇ‹h A©?œEÃŒxZ"TÍ xw´œ‘|…«hÜïI\ýåÊË繓!ëi»O¯¥ð¨ë&ŸQ­ÑŒƒÖ6ßÎÿÀÖk²opeF¡ÂŽŒOø|ÌQu5=ŽÅ­(–þ“«~£‚Ÿ«djîkPgÆO(ý°ù¨çÿÙU„j¥zIiת%‚t‹L£áÙ–Fú£Äôä=¢ñÈ×í‚ÓÓ¶.Y0CÞÜÊ¡¯º¾¹ Š)b<†ž“Ð8NqTV}ÊX¡_ºømp›ILñk³oqå¦Èæ’¸<`nWdåô-mWd é\.Ø´ç[dÇ{áVמƒé¹ óžË¤:~ Ñ¢˜ðÓÐ}6³´pÿ“B SîP…A(lÓDuNÊUvD@‚R.—¾‡3lpOT-Ë%ÀÕØ–ï…"®Õ:e»:À<+és"ËõGÃ1²I‹Ñ$çB.¤d¦dTdIô§PO~§Ñ¢õD£ï Ðq4ЏyÝÙ8å͵æì.¯, ”lq¶»lßöÕKײÅê ²\-ï¦óàYÑYé©r$Óy*xš¯§¿ƒXB^a™Tìÿ 6¶èˆ1·Î–„„%à¤‰è «^¥$ÿ—29vδ…ªå9*“¨Ø %dªMÊP€ÝQ5@2+6U–1'ÛŒC%É9dc)ÝwtæAÔÞwE޲Æ?Ù¤ÆhMyФ¥æ}êm~À )RÓG¶¹ íÌBª2"?}ùÃÉé­›nl}Œf\¼B„CÀQtÿ:›â^áÚ ŒîlÞmñ‰uôš™ÔW~0•CŽ4‘|{½<ön.Ø Ì¬ÅŽËJ¢Ê+‹JÊs’k¶©Åu‡³‰:|ÒcŠØ‹í?ºIñ‘beÀ‡ÛC6‚33ûiÈ9Ž,rí+nf’ÐLv$=náv§-nuGŽ7ÝE³ÒH+ýB~8?ƒEK‘]FÆÑ–Û&5¬ð#ð†µ°½[ §…ADÇÇ'&á ¸Õ]þ/4äB1Ä,ú´„ÌXˆ³ ð ÒÁ${Mþ¢ötÉ^Úv¦0lÓè2ZäðjÚ‡âØÝ{ö.+7Ö7æ7›`¬ P“"oÐÄvÂB§Ìˆ%®':>6Y¶jžÍ¼ïL²0Íòó3KÌw¨–)£a'8ªƒ:‹| Ôªfûg˜µߨºfµr§I¾—kŒêr¨‚&eY§h“r!ôU5g¿¸>Ò&CšMÀ—°+ȤÛw«OhôD6ìUíî RVŘɅ`z˜y5u˸]DÆõeÑ¥.g&”Ž'Z­ÎÈ«hfD‡Ãò›6_Ô-ÖF?ÃBÂÌóÀÅ1:’ˆµ¹ÑP ê삽'Žg”ÁA¨.ó,wÓ®7ðRÚïpÚéïéëNà]Ú@ô›ŠÈ̱$\ì^Âs\ü•i £l6D(}/†È÷Ew:ƒßM×BÞ7\Qè­˜DéA”Ô¿¨4_$4É*W}Ñ=^Bè螀ŸJÚ¶ü\‹º^³Q$8j$õ1ª ¢ˆ‹W)“ãF`•  ½!±æù 16ɱ1¾²XÉúÀÅ+ ™˜µˆ"cJ† ˜òˆ‚°pIl€S“÷‘s'O–qVüj2Áj7LJoããƒÉ.õB;X4ãNÓÑÌs*ï:ÎM! €X&¸(¼²¼¤p÷çó÷~€ûOÄ~“½Äo=Eà:°õÉÊŠaP™’Û1ayœ0"~ÃÔýhºØêçQ]}õn%_v[€dí£Ù½‚lŽÁó^kŽÃͦö0±…5p¸[_‡æ 1_¯¦‘ì—©±©¯¶Ù ÍHÉFªö¾6êŽËÂî®jÐ~nö*ƒ†ßw_ÖÝ™xž0@•‰;ÎØ €KoÑd@Ÿ’jäßc3³M„Çä&B$‡¯Å>(ö´ŠP"z„B\ÝÑ7A JH¶I'å@w‰`·'j4÷ÞéŒToa÷Ä´5ƒºKGïâß<Î.£ÑÈßfæaþÇßCûÓ;ê]ÊLÏ:³XôÝ(dBöy8Xk¨f®'v¥ X”Ò¨€­N€ËC÷7*NqØ 9SuPgÜSsŒEÓ.£SvÙgäï\ãàJ~V¥íjŸÂ&ä¨Ôd¡ü«„ùP¢ÊW•*Ô*ˆ`:Šÿ¤…tj²Z•"ãÇu<µÉŒS«ÒɃôb1˜®€æ¡>ª-J_ð…-ŸNP¿Ç qÇ|ºs:´@oM|rÂ…3èz¢T6 ¾g¨æEä!Æ ;YT-ÔkA÷Ìá)é>fâpÜ_L07ðåb¬"AqV¢&9A)KTr>Ã'C`ÀȰ •ß®qb\X ;ãÁB ”–ì lTóäâÅ Ñ !¥âúÚúÔ"ÓÑhURy²☨ܸ‚¬âôÒ¸jpg™›+çZ㪕3añâœõž†âØ]‘¾àÈÚ)ðÏõ4†ÛGù¹€;³ðÙzd…zÿØr³.¦eS%·¡r |LøÒ’Ô~);@Úd8¾ÈŽXÜrôО†Zñiá}Ô¦;,Ú<šè§"¼áÅEê§ç« Ö'ž³‹F6¾xb ú ]+`JpÏ+€¢”‹Þ½ýø)<gÌ‹ÃC†Ìã$'üެf“¿‹[Pn„Z)F³Øí~r²óM‰‡ò«t5{é]×d‹#XÔûèWè-@c™‚KÜÄrc]Zf'úU:.?oâ“A?#Û–,È–&¨ãUb™ƒk€ 8BHmèy¦óäÐÌ'"\€z\gÿÿÎgû(O½ø=AYµ‡Iô˜Gõ¨Õh¸ûH…,ç¿ø¶|€èg†^±(‡†RÈÑk³4UPÌCÔSŽß[:?eŸ–Ý< 7™o±ðÉá¿ýzÿïqS·0JC4-ú¥€ÈÀºí{¼Á–Ârpoôlô>.Û ÌÍÂ;•i+…„$’ºE>‘!°[bžÄ~iy~KÍúbb3v›m>êûÊúÚ«. =Añ³ø]S€ŸeÊë»ÓT­>¦)#­Ñq[¥ªê¼Î $ày‹Ð•&9Æ”Ëg²2ε4it&ѼC ĬÒÄtN¼bU–b!<&ŽØƒ!ØÊ†ûÇNJ ˆЩ4Û&¥Íâ¡cæŒsĽ h-Ç÷ÿS7Ñ—ÆCƒÉ#ýð rÚÈ„} ºB×ÀAÓ öVmUnتñþÝ 67B»aÁú¨}9û{]H¿NÖQ dþ7üŽUL;×µ!R¶}« Ý‚¿Ãæ5TT}®î:ƒ6y×gЭ*]0Ñy‰ ™R†Wtì´Áëx,Ïl­«N‚Á| ½˜„¶\ºwø™IÌz¢]?Û¤G¤*r¡4©©ydž_ýÇw'惈ÃÿÍ×'ÿ-ÖŒy`—íôúµËíׯ]w–þçœÎý*øyI`ÑÉýY{Mf @é¯"~Vt'ðoª_ˆ™"‘$pL‡› žÆÇªR”iÄÅï>åæ.1£ÃEãÖyÏIÐAŽ·þ#,î°ÃÓy©JK$šö_^ R’s¼cG»6AŸ ¤>é)¹hŸjƒfw¤u~hÛùi× ²4úïGt[½éÀ­|lâŒ#è.?œ=”ë&Æ¥ÿB¼€ÆÖ Ñ*ò¶¢»*¥báÞÈRøìþ¾Ow×LJ•pnJY D3¾å±Å¥¥»O¯o²›€ßØ„-8,üõÇK 4A9vÐíD­CtÖ÷Q/‰Þ¤4ÕìùÐFwŸÈ àà ú‚œ´Œ,N£±T«U1+?vvËddWr&)Užšs뢹¼DjŽ×›Dû”‘hÿlü¯´·ÌRt[*µ\ã—çF˜Š-Ö ÿÕ(·‘ž$5O®ºšY •\‚<:‚!2cW¡Œ0ø}dÊ" P²gOá¢5Df+Q¨À˼e°ú¹Ä”xeqÿ•­?Êþ3M¨Õý¼®Äâ?@À/owdSs Íi˜ì„LiŒ<>^Áá¿ÿº 9–Œ¥­43!;/%+KË‘ÇòÜ«!¨5¼Äú ½õ1¥y=¿Ž-ªð‰—É8•ÒTiF y)Õé_œûTœc:UÒ2éÉ)ÉÒ™óqoû2§ýuEå¦]Hôí6z‹½wQÆ]ï‚®°ðeò—>W·};«ÀìaA°Û¿ÅÉó`|˜2¹qþþÙWÂÃ1¸®;ðMõÅÔ›p‹ÁÞø ë« ‘ßJÏÀc8 çáBƱbôƵLñ3"‹Ge­ƒù°’PêéŠ]ãÖ8™Þ~(HŒJ,PÐUjn‹-M·jÅTðÆŸ.!j-g:òIÅMæüLZû‘ðûàA—Öö£'+²LŠn —/¿7Zy‰œuºÑ öÕ 4 qgŽÁs[$œü%¶Â–v§¬;ÚºœÆòÈrŸD%¨\égÇNóhÿìYs6Ï]¿JŒ×c_©Év†ÚŠ^ò´°- ž39 É9~WRâ22Lû—T^&~|x)êýý§ë&ÔóýМÇó_ a íG/Ù;§.‘ Ý™zbìˆùöó}õUÆ}ÕGØÅ_È­¦ñ¸drœrM°³8`ëvEˆ*QªL‚DU’ âQ‡Tš…Üá†%£ñàÅ;œ]>,<í#®K6êaST²#Ô/ÆyÒ“eÈY=zôG–†;+oÓu& 4ò®$ÃÍ7H†Ñ,všIùÙq;MS¾•¨»&8Ú5å» ÑƒçÆ‘üV’û´è…épŸéØNØHc(„HÁ÷²4‡Žz|‡VêÑ€»ÖGžm5¢ˆ6â^x´EoÌzŽ©­.Ñ>ÞÚH—Èj’ª‰êwéQnš"5I¥E²8LGBb^ºF›–Âe4» ­`Ø–Yà¥ñ€ÍŒèg2^íC]C=¼‚·Î_{4ê´–0.‘w5…†²²(ƒoŒOÒ¶éÇ žbÑOˆùá[$2„›¹é•u ê#Ñ_5ý úçï³gBºt3TI^VŒµZ Œbä~I W®ÇÅ‘*Ì,•}÷:êÍ¡ oÿ'·™3Ç-½ûhÌCäñxùâdƒn³e4QÝoÖ·”5ɶë¹]îàä_¶K_°;sïçOfâ·ð Ìâ`±èg\‚˜EOà›¿“ûDS¾ÅNÔ±¼6…oeÐø»ÎÈò#›áK(bnV?XpV¹"/ØDTúVØå`¿¨K3ˆuüg7,N¾y,àƒøWl¦‰,t – ±(såÅLˆÐ»ݨ-È<—›“žvrI=Ý…Òè¹ØBâ;òÅbxÐéÐ!8˜ÅµÐp\{<ãXJiÞýŸvv úÛITHb>v•;bzy<ƒßÆnÛ-¯…BæìgM—¯œß¸p­ÇV{N¿‹ý¢áp+\`O99iäl» ‘§&G.;®!Ä@´ù‹5;¦¯5pÈK_"ËoîþT/=èÙÄE袳VìcFº²¨ß¼ÊˆæøØÖîó¦/üôî©êó_5w¦¿þñ½R~¸)ýË#‡&Ø ÐeÖÆ±Ã¶­‰rÐÔq2ª ¡ù’耥ÇܾB,qÁƒ‘É>Òcúó)ë·D:¹pnNa®ð!ƒû=õäD?…ƦÒS ~ó6¶ÿ¹È8&¾lÖ5TÙ“[GduÍöB§¿”•°™¹}ÌTÎ<(P`׬à­þyXà› óÍã}hºÓúþ«‚æïÿønÑ“ˆKäò¼vI‰¿ò‹/S¥¼êÐáT ¨Õ\º:[“‘n’ëôëA´úz‹Ÿ¢µ4Ûô[ÐnG¦UZ¦F iæiŸœ”$ã6/Y´>‚U†õ­…;ó …Ï_4÷Â}¿˜}íÊÉ6Ô3šw¶Š?ó:’\סŘ–¢VÙt8ü29!’MC.+!+K“’Áø lø²\4Íù,Ww´Ån(¦6.Ü(æí;Fþá¤>KXD¯~°èÿ¬izÏ 1òƒŒ¨@oÑtwÏ94È€ÎT ÚW¢¾¬bî _'p€-~{Ý÷ù¡[{/èêÚLÚÚKé ’ù0£ûTþ!"„ªRˆ×qZâ²!6Ÿ8wœ}ìÌç× PEß]´Êný×´…uS¸Icœ¶ƒí´;+Ÿ}uzMwÑþtô'$îs'5÷™OÔÈ}©8FæÞ¾êº30L¹lö´Ð`Îe«wÌØ¿ª8°~cƒ×е«’™öôØíÚúc­&3ñšÊîw²ÜþC3ñb·˜@ãLjâj§¤øþCIAˆñ?S"6]zèÙ)º‡“X“Š*Äý‘µZh< {ÐÔõÏízˆ\+‹Ÿ¼‹Vs›p8, v`^6î{[žÁýî/Ï&-E›NÈß^ÝÖ¡‹>×[Ÿx¬{µÜðô.Ñ(iX@ÖO/וW”èꡉ9å~ÆÔª%Ë·—Æ”š^wt…ÎxôT~¡< Xâ±::22R¼l¡d"|Ì8‘a%ËÉ…Ì"NôË><ýt^w\(šÖ„´,Ü”¢¾ë‘¥=ê7ý³x`dr¹Œh¼âHñw£Nâ©€=Ï÷‹ð›Ø:¶³b²yZÖÃÏ‘è4ׂzä Ü#¬úe§NNÕÓ¼.> stream xœRkP”e~ßýø>>iÙ€æ›Ü~ì”…ÎÄe5¤&‹tvhMбfAиEÒ@È,™ñ¢¥ Í®RƒrÑ5ø² rÕX&Lcd”ìÂçÝ^w¦o;çÏùqæ9Ïå`ä§@cÿ7“ÒÒ¢£|£š°`ÏN…'JŽ(ýšþ- ¹<òtoò•r×[Ÿ”$Ì1¥¤¦ †^Df´½ŒÐnth+Ú†’P ŒŠü}‰ÖqNÁuø‘b‹¢Y±ÄàŠhµÊA` :;n¥ë ô¤­kôøŸ…_ÀÂCp‡Yø%¥BƒÄj…qÐ;†ÚæO;յ‰òÓEçô¢Š>$“`†ŠÛøá"GëaNf÷àsÐøÛˆ­ÆFD0Ž?Iõî¡7 ¬ÄZc%"Ë› ¢ÏTŒÂÊîpC’›ƒeºKJoÉú6ƒˆE,”°g÷ŸÏÿ¾DÛV|¶ÊUqéø +Ù+îŽ'GãÒœ¶RuO{™«p–¨¿#.ÒÝÞÖÒ|…tסίNf_üèÔ¾:ó™wëÉUqdŠ4´_¯ÊÔ¨h&qЗì˜P  P*òùX=Çb™bù˜X>ÛËJù96 ¶0Ofz™ŒÑu»O"eŸt^Ý*+ºÞ£9÷»ù×òQ¢†Kƒb¼ ·¸E{àZ^]乔Ʋ¯?øáø©Âó¤G꿹ô[o^S£‚cÄá µãÙi¢ä_yÝk˜Tš¿»rQåSD‚Ðì‰ö`endstream endobj 175 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 6603 >> stream xœYXT×¶>#pæ¨Ø˜õž“hÔĘÄ5ö–€b,Ø"Š ¡ e†Þ×P†ÞzSÄÞ°D,ƒš8Öo4Åhcb²ÆlrïÛ“_™oø`söì½öZÿZÿ¿öHó^ŒD"‘.°wp˜0Þø§˜@B »^ØY¨-%`i–æ…ÃG„[áþAh3ೌñe?Ï{¾Ïß…~‹ä‹ý? ø8Ð6H±eI°óÒ­öÛ–¹|²Ýu…ÛÊ«ÜaF2Ë™7™Ì(f%3šYÅŒa˜·˜ÕÌÛÌf,³–YÇÌgÆ1ë™Ì»Ìf!ó³ˆyŸYÌŒg>b>f&2¶Ì$ÆŽ™Ì,a¦0K™©Œ=³ŒéËÌd,™YL?f6ÓŸÀÌe2ƒ˜MŒ#c™×'†g3CkƆ1c†2à †eþÁŒÈôf^gú0˨{s&„ùMâ-ÙÓKè•Õë±ÙJ3½ùTój‹¹gÙl­ÔFê,ýŒ[Ë=ìíÙûyç>ûúÎî›i9ؾ߰~ýþÙæëG¾?ðæ Iƒ¾¶ZaµK6I–)»ñZÿ¿™¯åï 1xóàèÁƒÏ þ÷%C®[¿ifceS=´ßPÅPð´a‡o¾÷sþ"| |.7‹õ"¾îûú CYCè~Õ¡þ¶¤Úàn†zÃm>zJí ÞÑ.¤_»ÖZ—áœW ÏØâ ¨«W€«Xþ«NeËGZ¸*ÀÓ«ŠÅglQÔåÅgG¤‹q© Ž,0òjöÑ[k¶cSlÕ9謞èÑA?Dö%Î0¼Æ7@ÁVa>&§ UA¾x˜´:õŒp›O×­—C˜è„‹XÙá§7öœ8•ïó‰@Û¤óªóÞ5§d^wp¦ ûòcpÜÌuî¤CGÕ·zTê7Òí 8Ùp”ÇAì½2{wgÛ±â›,®öá/–: ­Üõewˆ™@‚X•xyVB¡XÝ®beÏ}MŒKfÑâ|Û-ýÆK3JD[’Ë¡ÀÞ«›ï¸aÛòÉ"Ý8N‡_ê$gôX©73¸¢'Ýñ½Ÿˆ91ï-2ˆÈ¾‡½°×÷? •@¶)ü<û›¿½té굋vãß³Ÿ;ϸD¤Î©“ìÓãåóf†`Ã-¾*½Bâ£bã…¤H —»×l.]GÎÓu‡;²éoŒÜ7mwúCdtx'‰±oÏðwnü”ßp,¾}ÿ·¶ó§7ÏÈSCSÂê€km©q3"×áû:¼Ü( õÔmœEü¹³§.Ü8;ò;‹ìÍr{pL £Í÷o9ÝJž|20ñÇ76:†xîeOj“ò]þÖöšÿ)¬Ð0¨t’;z,Ö›7 ß5³@,kW²Ý#tfqÈ|§àä)8–؈DÚ~”7¨~¢E ±!齂 f&'¹Ñáºrê}Ãë| ”ípƒPÁ·Ö¹j%õ™ù¨qDF~7{]>ÒT®‰Ç©RNc^Ac޲•ÔPjèv1"¿rÃôéóì®<|tEÿÕÍóm…NpêЩÃaCô‡õ›¨Óþx¢ã½z,7ˆìÎŒ¬±MÚiABXLJ¥²v Ä!RgkÜe%Âã®Ça΂N˜´† †À]Æà×¥õqÙ;„öÞ¬ÒIãªu¦i…ïêqñý!²Ã(Çeüwç~À~‚Ú¿HQ \YiauiÄië–„,ue_îê\Šôb»Oz›´Îèa>[` (EbÖµ‹»ñ-y¦ÇáôŒf8kxξÒöá莩¯°}PGv¶«ÜM"û^£×²/óÆêš#tžº!²ŸñfòiŠTyºwÚG¹°—«j¨ÿþë|/¿TAšZßa½Ô˜þ ªØ$ÁIëÁ4ÆLw}ÿyè#•({ÜóUøš¡Û·»ß´*ç–\ˆ/NÈñÎq¬4 äuY…ê¦\¡ÙõTR …ö݉²ŸáWÂk=Ò¹ŽtÄI:<¤“ìÑc…Õjtá+Ê¡¾®ÃY}{œx€ æ6­nÆdp ¾ûÕ/·/¦HL ÕDTu™Œb‡ÍAñ‘;”‚[ÝÖ‚-ÔfË7É0bK–þJl°ï™uå¥b (:=ÝéžËº_J%Æ O¤ÁX§õøL»Ãv#múäÎJYIý€$²ï\v½~ãöÁ¶bк¹'… Éö+£€› '+E“b)¹¯G7zB[Z(+MÖ69c%q$nèø×§aþ]›U¶«ä=#ìÛ3KN ¥ ’›@Îôi'ŒÈ~IÁøG¯öÐB1p×ÙÂʇ«DG¼Ãv`ë/²ƒ2Å„3agƒ€åÒ¿ÏÈbßÑû_dÁûavS ×]„0˜ºó¸‘“ØÓ“tÈ´«c2Þc21Zžpoê$_3Ã|—:çôî9p K$ä&‘àM‹š¿ÌèvX‹Rò8wG)hÁ¦Ê!g§ÑÎ-ÎÓ£™NRhˆ43l6î ¥Þð‡ZÙº~9”ˆÍìzrÂ"™M¨ ?±?äBbŽDÑ|ˆ LŒÝJ„—Ì®ÅͼÁÝ×Bxž´¥¤*÷Í>HÍ*ÖU>Pç§–qj6}mé“Z ¹Ð©…ieÜËpMÐ=ÕYÖÚ†ö4dA†^ |™ç±ä=ÀÕ”Qå Ü•ž#¢§ôêê»äÍOGÁ|/mXEAMV“Z€Lµº4%_YÀýó¤çBQv”,J$Ö¿3tñ»g‚,¨ Z3ŽÖs‘´Â} ¥%h[ˆk¨#Ägï¼koó7M8*MìŽe[‹Öâ<ŽC‹ÝF'ùRÈL2Æ®S7WRb%eÒ‚—t4¦3°FÂïàžîÑS¶{N Ú°±7¾NR-ºåÁÍÎç”jŤ´Mr ÷²6S•µÃ ÷¡œGß²ØÇæW¿„KÊ Zœ7zÎÏU]^êxòÒÈ},ö!o‘dŠÅÖžÿbïNЧø h#,|_fZïž=¶vå’Q‡ݤ®¤êËšG»¿§F»†U@­4¥•‚¬yË~JñÃL^”)7‚cÈOެ7¿.ý›,èI$‰ãh.-¦¹Ôbræ©=ojWmï,_r$<­\Š Ê‘qR#•ë »t’ƒ÷ÿ„Z@v„o ‰õ´IfãK¢µ±%ïa¬u嫳«žÅäEZ$A² $ɧ‡Ë½\“”É NÏ„<®2¤Xîâ·e×Öæ§‡Ñ:'MèÖs×õèßffØŽ¾Æ⢒±B\xð¦yÀM]påÛc5(ÅaÚ½-ªÝJTÀUh‹j¯G2÷2|±ünZ¡¸ëÇ¢®‚;Ru:É•¬¤˜=h°à#\£½ã¼iŽF„¹Iš¨ 9¨€[Õy^-4ˆí*©GP×a‡hðSKs6_$iá™y.鱚˜ÜØ\ȃüÌÌüTÍ=ÔäžâÔí~ì+?¬’6h»0¸Šr{‚*Ú¯;»/wh÷KýqœwÕ>Á´4¯¨ÆYYs­»sá§Ãˆä¹õpìoG-p º¦–Có…ÒUŽÓf/üäjÛW.]¹Ø¼Ê¡G[0ˆúd¥á±S™ê ÜG&ücd˜îÑo&bðQ³¸´=1Ï­0¹ lêrS÷ˆM¥´{Ʀ<å“Ü%:†ŸÇ×t’Óz¬ Ä7WñÚhBvÉd0éûÎ*.ûÿ<y´>ú°Òú˜ÄàX1pÝêh˜ s‡}éÏóù×Ͼ´g½ÉuKø=VÓUÝð,‚jˆ=±ò%É­/ÚãÒ²j< g’ÉO¹6âxÄ ¸§¡.çÉ;WŸ{nBctCî&ºÓ2°‡…‘«#WùM„îRƒƒhÞ-Õ?¹o†£"èoýþGÙ[_@µ­±´¼°æü‡öáìÍ“…5czäÁϤu´ µUôPÛh£ƒHÈyœwæôyÜ|Þªöl°‘™÷ž]qmˆì÷HTáB~õ–£§Î:tò³›Ö¬trZ+NpãS“ö4÷èúµ¶ºèÚÐQ›[‘–§Öø–ÇfWTž[[\¿:rCòŽÍbXŽ[ÉfàÞ]8wê§EîÁ¢Œ0‘aÑ^CÁ-_ž1Ï>‚HnÊóeø¾ö¼õ^SÈñuÕBxÆ–² À-bc bR”ù‘ùÉ¥i)ùiÙö%ø1s*Îjh(+ ³à:pmhSœæ~:¦£_µ¿›†éC"òEP¢QìŽ,còBvÅæ*.n̺­ù ¾€#Üßc˜×êA~jLJBfDR!÷®à=Ø  ¨‰ú,ú\†Ï ¾Ì>–wº¬ô´AMhŽ]Ö:z¬Õ@\ª@åÆûÖÑÉjp‘¬*‚ãÕ‰©ñ]U¢#%ŠÈÌ0ðÆF÷cc“+à²W”rÕÿÒKÿ?:i¶ºë»¤¿•ƒ¶ú-úRšýa8ž–õkì£CË7np\1^\À¢ƒÿyS‰ösß̹CúdÑÿO º³²ã·¨Z­ƒŸ² „-`^%E^5a»€»PñùžÚÅR…ê•,Æ$mõ#§.@ft¹Q UåtÃÿöS+tyº˜Ú÷[ CùÎ.g„  -H+égÒvëøVö³!ɼ&°ÌÇ'0Ðǧ,°¦¦¬¬Fx™¾V'/aá%—KÆÅ›±š¯‰ûZ“¹µŸ.Ÿé³!­z«°¥:á@rqrQr±GWCA¬;:Š2M~C–°ÏKv‘vܵm]Dä‰Îû|3fs²ŸgoÉui„£6'š]Å>ïzj„ÔÀœ¸Ò—‚ugWê#87®Îu¤À2›;sêÇGl¿ö§]MZò“€üD®›*©#޵áW<7˜w»b"Ûé8¸ý]BÁÅÏÍ×Å“J)oˆHQ¦¨SiÎdp5EA¡Þs~„ý8j7Z^d ¿¼Ò;eºJ6z´~)ž­_Ñý cÝcbÜÅùÒî'§Ð¦]µÖ¤ßž÷ßÚÀΪ֗Vµ^-F •Éã”Z4šHî÷LôK¦’qø¼sC»fhnWm0é5LºÍ ·Ù¯nÐòð~çeV‡kúô,ïÙ™†Dä¦#ý=^ÝKÊ£ûó&ý8ùŽ}ÝvíÚ5v'ð»:£¬|Õ¬ŸX2àþûOŸÞ„„ÿÞy|ñ×Xu¤î`Úrð&ã;&u}°é%À©ìk|om$†Q|RB€óèÜ] »EÒ*u êJöç W?’ÊšÛöÝ_žj'•4øeE¸ù—Iÿç”xªÞèå¾ÍGPîò)vNvÛ¼TþF€>ÔÇpÀ…«¥V— ÖDñùÙ¿ñ0jxÝŽí¥W¶T‡¥@&p¥yÅEYIjQ^ôÑN¿|dÎYçfäe@ —µ[2pAJ•ús¨µÉ‚îîàí­¶MñsA••±`£QçÄåÅŠ(YN˜å±áq °Iï}¼–ä—l Þ6Ñà¾s'ì̪Mþ<©Êiº#i4ä4ÖŸ¼èÇ÷xÚ–uöÿ\"õÔDíÐÖ$ ã^Œ4Æá¶g]ÁÙ´1W\¡ÁÄ G°¹ÐØè"#Ù\hts·Œ$#¤ôO·FÈ©ÉF€[#œÛa†öE@©ä¬aœ¾öâ}>>;¦(8…24$&-*5NÄ»~”•Z6¥EÅ™ Ù‰š. Â"2Hk…›pô’‹Æ«ÎÆT^i¿),"!*1$œ² ´¨áÙgØK·m¯ÓÖ/—ZùNM†:%ÃÄ* ÇÓ/Þè‚£­IúŒûs$g2¶íîô£XqEÒbof˜NÞsî«l÷9`ÅAjÛ 3¼ÕÊ7yUy¸È==·×ù5쩬¯70îå"ãþÇ5z¼cp|1€Ï(TdrÅÊ"E`¬2ê vU×u_°@¢Ùs'~¸ypß…–#á+-Gß$ýIŸ™Ó§n¯‰,Ò–ÕäÆçEgGŽÖŸîΗ›'-Ú°ÂÖáU><ÇC ^[»±jišp¡´Æø•$К'$Q¿¹s„ž~kÇÁ€UI› #‹¥”º\ɨ¤WR‹î_z»@Tkà8Ôp¥Ôi» wSWtƤÎ_%ú«I¯”¤–®½”óÆ/µ}Ò†¾ú­”5ŸÌð>ß²»æ |ÆÝ˜ÿ‘ËE»WªJçÉËNLê믯*.wuôRºùŠ~ò$פ• JoNö‹1;„#ìO'>^±lÕÒñ[gçõÓÓ34PÊU—Ê•Ÿ¬ ”6äޣǂì \ÝtζÎh“!-í.YÝÇ_†Èîl ÿä •…a‘qñq±‚—_˜ ¢ &+<7¬?Ä'‡+8òa;Ç£ŸYgÒ'·ÜEA‡S¨j[£Çdêäß±Î`ûS¬s ‡+1¶§;#eÅ–”HC  ¡8-=;S¨nØ_|–ÒÉwÏ·ûpá'ø,É<íC=š™A=ZP¤ôŠÞ6íî"4ÇA?=D3Aöûϳ¤Z´3ÊM­8rä¿PÕ¶¶ã+ ø-Ÿo|wçì‚ÂÈôxúŠ£.ô/VTU–Õ5»~6––…¡¤qdÏIšÏÿ %?ÞEKd'µ‘^‚̰Ö†::sø:ÙÏÛÁ¶f….I“¬IÒpÉi@_ê,€ã–#“3’Ѝ²j=üŸ·O}Ü g¸;So‘¾Äòƒ™3VYÿ/?AöËÜ %ËçûxB«GžÜ´;7O+Ì$ ü4Û½îì…oYºl±íªiÅÿ6•ü‡ ?Ï|ç{³ÿ0·þÃ.ò©Gwd†C0xG¦:å'kµ25¨†ÖÉôbu‘1èŸþï3:3½›häôkÛ0ü–1;ßÄ*>Š œõÖ; ®ê Â´ôt q!¥~rE¨—GñBÚ"ZÓÔ„hè0Ž˜édzÑÓh,Ù‘†îÉI8Ytx?GÞLãg¬ùâÆý«-×Ö( Å*÷Üu´‰LJN‚xˆO ƒhÎaõÊiB'y¡mÌÿÎ`äœù«XmšöœîÆ]t¸ÛJiuöâ’¶{ºŸn úO-ÁZþóðƒŽ°Ö9nZÉ-Ã0ž(¥Žç2å MZv&”s5þEŠhׄÍÓÎÎF.RØnì.êë ²PØ#Åþ%'¾+ÐìóUÍÉþ} ·Iw&W®‹Š‰€pŽJújmEnÓ—×HŸl¡©£§ðy˜à"%½Â—Ìyà¯! Îô䮘¯Ì^³NÀ±cûZ³A˜ÖŠ#Z1±G¶J[Z[~£?f†/ñiÙ)éØFîõ ¦”Cªþ\”•±6Á…a%Å9iÞû•¿±ýÜúõÛ—Ï›×´üøñ¦s7„É ùˆàêC‡JªssK|œ‚})ѯ¦üuk[ËÆ .+æÎÚ»êXóž³7;gÖÚ_\——Wìåììa„\‹ÖàTÚ)–ÂøœŒ¼Lª˃sâ“£U¹C¶FÇ…Ç@° „gFfÇâ7ÄÅ:?:5™ÖíÂ’Üòúß ‘ìC[ #‚×^¹sE²Çà`f°Ç§|îN*>¶ƒJ¤Š]µŠF¡öœŒãó›èw£,ùƒp§Oš¨ þ«=+)B³4F{ /&'*ƒ|ƒ.Öª¬Du4paÁÁô¿T™î#¶„þDÆvPQ˜•ªÎÊ7fºö…?åôyƯ`VóP›’KÞÝŒ6€æðtŠ8ôÛœŒ4(à2ãKý¼É§Äšd‘¾G&4®NÍ¿¹Š^Uzif‡èzzW‹¿ê¬ZÛŽ<ðÕoÕwÆñp´ðÌãµ…Mµp’k’ß'öä ¶«<*”ÚNâΎו5G3ö÷l¯‡§_`Dp”HF}a+· Â÷ÕekvÑî0›Ìç_Õvb7e÷çHÙûn~èv|Íõ¹-þÀÉã1ÊœØôD§I™B[ÿ1Û‰H†WRØ‚’‹Ñ(*kñSšÊYB¡yˆeo°ì–}ÁÒŠaþ ðCÁendstream endobj 176 0 obj << /Filter /FlateDecode /Length 4148 >> stream xœí[[S\7~çWLíÃÖ¡*ë~ñNìd³‰+œÔîzÆ€b°Tþü~-éµÎœÁ<¸ü`¡Ñ´Z­î¯/êùy!z¹ô¯üx±¥zï¶ÄâË-g|¯½\xëdÜâb+(׻Ǚó­ý­(|ïLXxgD¯V3AÆÞÙ´ÊjŒ [4Lð5FàCËö³ÖãÓÐì7pbè½eL• Γӡ7.2ž‚ô}’óT•‰fMáiÜm`‰ífú 2i48ƒ¸„ }0Xk|ˆ½7ã -‹“­Ÿ·d’ú¢üwx±xt°õ`O…¶VÒšÅÁË­|%r¡œê£§ÃÄ>x¿8¸ØúO÷h{Gô"Få…ïζE¯„QÒt/0Ô1F»sZâc :”RûЭN^×?–´F áBì®0m„òÖv§Û©Zu¿V"ÿ=øzëñÁÖ÷[±Ž×)kòçfè¼›ÎjÄ‚è(Ç ’½I :Ö9vT-„Œ¶;N„è|wH<:d÷j[ùt |¼CgÎ….2å\÷ÙöŽŽ¾wÝf£p^Ê®¯³»=¦e”ÒX¾øs"§„ˆÆC$$Xcê–´µ!@Ü;Ú|Þ¢7Fó½¯Ùt"íú€{úš6V{Ëùø–6¸dÕ%Ž‚öQsŽ–—‰ %¢ìŽò´ ®û±²–/,LŸ'NaëWuxM2”V´”wG6„”µÂx¹siúy—˜VQ™Nb‡çÛø[ «1DjØ—åÁžã¬È~uÄ%áJHÕ¤tÑA®;#QˆÐH×cãî)1¥p³²Çåӽ˟áºý<„š³m±q€,©Kvu;-k;Ê‚;RöÑZ™y:IÛ%»7éö¬‰*“$33гÒàmKùŒ+ÓC1Ç3’lµgÝ7«Ä…U:‹k#5çY±ÛLËuºgÿL—é„qÝÑÆ&U¼¢y'„ŽÝ¦=`º5IÔ,ÿ=ÓÒv_-Ï+íóª`ýD@'±ò²ÁÈóyÞc Þ­ú!NpK71†4«Zcg¡„;dÂdø¸””P è§}Jp·v¸Ÿï2¬Hœáõ64ÄnEÊ‚TEàWò§*2´$»¸H jƒ V“;Ûˆr <ÿÆ$Å~‡‡6ƒrùî&QŽÁd‹ÐÆöL|AL/Û­ù⢠ŒŠ3:)…z®“EŽOËÉ“aѼÄÍýk;h\Ënõ:éö‘?*@"Ïö“"@JºÛ%eU"¡[š^f§’G‰š"8NŽ ÔILÂÎQVL1_-hQ6_œI851ßF¾7èÓ÷åIÒøŸ"U¢IÃm•7òƒ©<…8øDåÓ¬Pù*£aZ†)êCDØ’Ì™¿!Š@?ïŠxÓQ“ºi¥]Þ]Lð·lÜ^n`ª…ý¨îû2¼”ÔoŸmÛ*1î²>cÒ §%h…Ê'»Zû¼¤¨è!ÙiÄÖ±œ“£@4L§ñÕÎØÚãàÏ“ƒÂ?OH€8 C—yÀ5k‚øPqÌ×*¿àTE¿à<¢œ‰_ Ó"XóYû¢Á('Ú§Q]Ð2‡z$ï„]*†è‹ÓPIT›F…ºbCt364¸/*ý,¯%C˜ú—4ì‡ö/@t5X˜Ó¼lãËômÁ&'zIù ¹7UÓÏ+Á‚鈎U6ß’%/LB²™|4Bn’á4˜w"¹ŽêÐ>;5#x |ÝuÏŸsÇ5w`‘'&ôÌ N6%ÿ¦.=$Þ#â¦Ðd*)mEô dr<ΧÐÉi Ü©k-îkdµdšUóÄÓ‘¡‡U<»Y$Fræ›g5ÜYUÔªÊô²®ÍjŒÓËÐÀéÍö™®‡L ¯3&‹%»éìÔË&œ¶)—\=)•–ºWPÏbzo2ÀCn1‹>û_Ioᇹ#éþ¶=ƒŽ;°²ƒ‰kÙϰ½RD¤q“e—¨ŒP*: @éhUY‘ô—¯˜8íÞyÎ:‘êÓ "½bšH† rRgÛ¨÷VÔ$S”4oˆÏ*s˜¾dK®KÆ=GÊËœ*+ìýeÒãMIS j¹3I!Eô:Ìl=Ñi3Rà üå%~™ÇŠ«$ gz3ag 8ÃöxÃk\™0ã,Z:›ƒQ>8òÓsYÇç™)—²tÇnÐÎ_ÇÍfœˆÅ9¢o²o“uš4¦’I÷l¥:Èú ÃèD=~LðNSòLä×GWãèáv†ýH Ð4°z0.«£w·ŽúqôbÏlûzæÓë™Q¥w8ŽVãèb†¿úÝå8:™ùÆ‹™ï¾Ùã|™™oœÝʽœùÆrFõbÔ\mêßCÖk+»Ì÷ÜÔÊ@®wÜ)‡V½g ­¦õ|³×zš ~Ã}tvÚBGY=mÎ×PÀo"ñú$9o\ŠgËä$œÕS?¬•ÉÅ·çûÕ^ßQ„@‰6÷…KÚ<õoÛ‚(Ë>±g€ 7rÇ=åM^''x¥a5º‡´  ØLCÀÝòvsT,~µm P‘®˜‚-"‡þ¶†v,1=¹ä@EžËšKÈ“¢6Üäò?«nuÖ¥) %±#°AŒ3¸ÂÐ=­^%C4‘¥8“tåzT¦uÔ¶‡[Ö<§K·©;ͤ¬äoʬåoaµ fL‰Ÿñ kÛ ÚDup[·¿:ú|í£Ýqôtƒê:„ÍÐ…՜ôŠ?ÍàÜá ÏýÌw+½“îf¾q8³®ò|9ÃKEîköÝ9 BBdôxék ¡ kFM@#×"B€!@K8³º<669ÀyÅ C™,t«ÛÜx˜œ€ÉZPKn‰ Å,ÅM%D85®Ì…R˜J \qŒ8eäK;¯Û(ŒÎÍE²Gp¢˜a G{T˵«Tt‹°Ó&nÎk'5)O ÃsåhRXh?©•Œ,íù³[bÈuÄâ¦B„¦K®š*„”«æùR„)å“Óº}ªÁ”ñEÍ@S†¾ê„§*Lƒ è: Q6UõðòÏ^r+øìT‡çÓÔ=*H+"¯æpm-ÇnRáÕúaësž”ž\Ž冶Ãe[À*iVªµgŽÈy ìT¼Ô¹¼È ÔZ¢+ͲEPHôßW¿tӎ긻 FŽcSà,|]ø(U$–.L2í ¿Y4xUfáån¯ÝPq–‹UF&e7þ„ä«$ºzS/±&ÂG –7µ Å2^*s9'(o¦/"%Žå}!g0A8”2LóÏa«›9«ÖRµ¶Éb1V<9cÅ“ÃZ<Ýì(zT—­¢±‡4VäxSÍ›E&loМ¤ ÕªL÷«%ð8æ²–<.[D¾¹Ëê&×µnÂvç/4Œ“‘H”wˆ,$=ïêß‘6ÝYÜ5Gúóâ‰Ùb¦¥ÚXãáü¦|!艇ߣ`9¡âŽ“š ÖX²å ´QÞÄ’Æ,U¸È+ø&øH¥¸òQÞVÓGïJ*úZÍÂJ§tw{ÂL¹·ˆKù£êU*dHk&åôªü¹@¬+× ÿ†ùW#O«ó‡• ôÎÁ¦ÇíG›$J²5¦ O†²[‹š³%º ›Yo&°Iä,L¢”ÓCÑ nZŠšnÁÍ !kò/@±?è'ýØÊÂK(nwж–ST²¨õÎß)¼4žðÓÞ†ŸÄ(n/Ó‚šrðÉËû÷Š4é„<ÿÄГh®Àd¾Qîº jÓ›!d©OÀóÇìû—‰ %ümiuÀ™]‚iOYH n“PX£Ìäý|”}oS§Ïô`eEéбM×Í”DN5Wl ÛeN]­Nù+ãø\ºáµæ¬º2yÅÉ£`Ay`¾f÷9Ë ”ÔG°‚ò€ NSp ¢ÔªÕ>*¥i7¼çiÖä±î5 €W„¬/P Æó¤™Z¤J]&Âé„¡÷‡ðá›ÿ„g"á.OÊQ>.†gï]vn ‚)Xw¡×¸£M•/ÕZå‹rHáR Aë£î½%HF¬[XopuÅL*é£D†ë×Ãb#r¾ 8Ng·U y[`(‚î ¬³îœûDűw#¦ÿÈœASYš„±Â)šéi+¡¦.géÂx×âºk}h:‘¬­DÔµ7ƒœs¯ ›káÑb?Ù´½Ò=Ã5à ‡‰œCRq{!=˜Ü)¾iÅ àżùŠ?v <ß]”ãh6°éE5 ½@Óæêdšÿ6 Ï³à> stream xœ­Y teÖí¦¡)#$´Ðà_5""  ¸°) "²(&¬!€!!{BÈÞé}¯W½oIgí¬¤“@vvÄ@ È¢(¨ 3£â?Î":_7•ùÏÿuFfdæè̤OÎÉétÕ©ï½{ï»÷5—3r‡ËåŽ^±nÓšùóNÍdw}~Å(ǃq#K#]Á(bÂ9:žø™·<íµô¯¯Ì|c窱ì59ks£óbÞÊ]W÷ö®ø°Ý 7nJNI Ÿ3÷ÙùÏ=¿Ã™Æ å<Á ãLç¬ç<É™ÁÙÈyг‰3“³™³…3›Îyš³•ó'‚³‚3‡³ó:g.g;g%çYΜUœùœÕœ5œç9k9/p^ä¼ÅYÇy›³ˆÄy„3žÌ áLäLæÌÇgàŒäx¸¹wF¬ÑËñ¾ùþ¨5ü¾ctÄè D>ñç1Ic¾ÛøÐºqcÇ=<ýáƒ?òȹñŠ /O¨ ^Ü’2qš€#p<7iÖ䓳„IS¶L1LižòåԘǦ=væR|º ¿¼h›×·º‚{Úÿ0mB£Q¯Fiô2š.šÐ1 'YûŒµà…F]÷„¹ÊJP2”šÙmÀïÛÍ.{é‡(x2Êã;Ù%£r÷J£dRÈ“ºÀH¶@»±öÃ]sàb‹ ÊŠ” ×ÙjõT”ŸO{h£„"ЪÔ2"…å ªØë£Ø]ü ßi™Ç7ÇÃE»ûк>*@+f¥Òì):Lé¾âêî¯qЙ³n'û8–’$êCì¬ß}øëf4ËìP‚JúB-©ÌȘµˆÚ]\㨵US':ÐHè%>ÛäÙ¶x{hž„TIlˆ‚Ý›%JÍ‹•„ž;À\Ä03Yv¹üˆˆZH“‰tyZµŒ=¡WÓÐ e¶Â W©µÜJù7âr¾ïAmÞ`ßÍߦüfRÈ×>o@`?`…& ÐXþ Ǫ”¯<Éò)v2%+(¨î£/àâð~–K²ý|‘ ÎåÞ:(Ð^+¦Ø©í£Bþ”¨T+WMü·J(ô9MC£Ñè;Ÿ¯îYa§Ø_±×ìx~ ­£ƒ±P—Qó(´ŒÿµåÅ=³_z‚AùlÃq¹.ó|ä|vév<+`§±3¦Ÿ[÷9øÆO‘¬…­ÄÅ{?‡oªÀ`Á 3N¥;7U•¦Ô“¯±Ýš|Ð+$¼ô´Ô@D*6õ5ý®æ"e«4C9q4É57©"¡ØDÚ¼ußôátêöì•gˆã¨=+÷,‡pâ…Þ´“'šªÉ²Í]êrhÊ··¬ÕÕ‹A1ø¨4­&ÅóÞJbÔß{TÁú½ç ãù&ùÀÖh±_¢Ò1(ÌZ*¢u1QƘ@ƒñ™Þ¼ ŸÓ…bèP&)”«A˜£€|™Uoxt@—®=p‘5 òJÈ]V'–AtG —h^_ñ)4ÿÏ'÷ì—zÓ²2³²$V•EEVï1&c‘¾ƒ5±£7ËŽ6õ6Þªû4—XÜ?³:) rCa1¯?í4z¹ýµ)O¶çü·>±—{û;ž¯k½ÕÖ „c®6*)¬@ºDˆ„ƇŒ®A¸ø¥€a¯÷ ]€´VÌñ“ó–mX¹ —(¡FÙa  {D«§¹¦6·(G¯¬:Ûû«¿ô`åføÔóûÐÜ>”Œ=½,P¥Ó9 &d)‹¶¬„ŠNÖ~äýŒ´–›î1#ØÇ`d@¢-±vocz·®OØýE ÇÜñí§á tv4|Ðp± Í…ăj ±ÉÓ b²Ã“cÞ"BÔÑigª©Nô²ÅãhÇÜ À6M•a;ä[¦Vè=Áˆs½Ú7)äôçÓç¶–œý?wQÍ}¬KV%jh2¤»+/¹$y*ËcDzϰ3ô¬ü˜ ùä¬l?BœDVÁv½2yÝ’M Ü¡<ÝpÔ‹Æ”uR5}=G;°ó¬ ÖÓ½c+Væ)¾Žö\/öpOÜ@Goð|i¾Ù‚X9Äc}oì[ïJÛ”´-ONfŸÙfËâ©Í줬Á*Sb¦ê¾8ÞÖľò¬Ø½ÒmŠxJCkeïˆÖæ¼ :Ø Å 6{ ¸‰Ú‹$33')®3«çpSkC)Y±áˆ¬ˆïŽ¡)ÃUi¨Œ#â¢ÈÍp¯vvÙš)g§û¬­©øxÝ»‡À5P"&îÅwrÑè÷PÆ:åŸ/êD :9MëÈ™J)-£!O(s@ñaƒJ®ÓI€&gP´N»„ ;W]A#Ñ4=°P»s’IÝ@ 3©òãƒöýûŸ²VƒÁ]±¯½µ¹õA6)È?zHÎúNó|úîìû-ŽOp I¨ &ŠîŒþhcl€.jɃ,óOÜÂ2¾»KéU”<“{lXtRZ—§"“Ÿ‹b v^À²Üg›|ùl´ûÄõoz…Ìü‡›i}îS“B~@þZÁ.vñò@l·šìBÊkvÕA Q)ræKãÔÃ;ß½óåw¨!¿õ‘ŒÅ€µXx¿ò¿iªØÐ°©ÿ© ãYÛÞꢢ¡^¢ÖkÝC&?ú&Ï·Ê÷° B«¥'DNQU]µ§õHTË›÷<ÿÌÓk~ƒ&~þG·YéTjiZ®$—ÏyN[ÄæÌîÞußצœ?º¿ Q·ÞCÝ8Ô ÷ï¾Ì»;ÁçÃúm³ÃúmŒv;‘Ÿá*Ëg¿8;y£¯WïÑcð YáƒÒÍÄ—xã.i¤^¨”Ñù ‹ÎJ5@³ÑГaÇŽ3£KÅH© }-¸1n-¦$ôÕOfø}ß @åa˜­§oŒŸ‹ßf8÷¨Úpm…]Ëà„$Qä®›ë°ÿéwzËãìÇð›ÁC~Ô)8Ý{ø*ØʢƜ’ªÉ¤ òAîÈ«•–T%±§f{p§OxÐq/×—¸Í¿ Ldl_l+~5B9ýßµvîæÍTjZDÖ* fðQ¨X€¦¸x ®×^½ÄN ÙÒŸ ‡Àº°íŸÃá<*…8üÎã¢bB¼‘’íЊ!XÞ—|îFÃ6«Þ"‘ЩŽ,ؘšœDª®®±ÖXm¬¥ŒUæƒP §:·–á˜6´^DÂOƒÑÄS‡ÞþlRˆÝ@Oî«RZÆÓ¸JJ1SW[ÔTÔBõ£Wûp×Ê…ïŸ“ÈÎÒü8¢íMµ_ŽhMÖ^Yš*J]$I’â—P¼K‹ùFÄUǿ݄f›Èßj|Y‚š\›8'#7=³BY\Q_¾;ÝÓÙ^ÿ¼z.Ú~í¼Èóýûuš†¦qÜwáu&kÝ#,ÿŽ÷léÍ ,:Ú­="ž|¼Ð¦+ÍwŠÙ°›˜·ô©ç–-;p§Ê\gt’`` rNfúÀ ÃÙ]z­PmÖZ¬ŒÁa#®ÚFGQËæþÂã@`VóмOÕ±§‘ÊôJÏÔç™SìC¢» :ˆÏ>ùíÍÛõ«–ï¡UÚl’ºo=çß ^ÛÂõËZx¾#8êccl†:(âN•xN:ò0J/=ö'’@) Æ2#Ù€V1&0c"239ààçbG¡ÎcWMÆc ða™ Œ&¤ÁÀ0ŽÚCèñúJ$¢™_Z•J¯ÀÆœ2ЬHPÈŸÇJ×.0SÇà„ñ‡“ºcÃË § ©B¾R :H7jLPŒGܰاÕ]þ´hˆÀ‡úOßüÜ`­·Èchg‹¦?Ö AZÏ6+e¶ô4•;IOkqŽï?Î[ÉÖ¼U8´gè«*ª¬õŒ™2WEpqeÝ[öªâÊÊ:ïñÓm=G1+­2†ŽVi@9><õe­µùÍ‘[¢¢cÉ kD¢„̬J~A'÷ö™_xœ x‚kr¡P¸å@üáÖŠºš"²tqÿðÓjÔ Ñ‘ªÌ‚•yÑé üÑù{\é¿Ý‡¶üýVÿ\•ûŽvõ^¢¶f¨Òô j-[ô“M{;zaèáO.ú÷•ïÆúŠ+#vîL%•—ÂË#!¶%%¾ó_øZànAv¥ÿq/ÅÝÉ»+ó]4Ÿ­.9lr0&;8R2 öèöb«“€³ñp¤ÁVÇJ•ÒÍj<´¤…ZÆZpòÏöÉhfpDA©¥übº’®¹À‹‡b•î7Àïå^†ªø+“cÐb£½‘ÙæFõ>˜ìÐ0y .¡ ûG@Uý(ô÷ dá¡÷P¨ sØè2X,¬`ƒTfÃ1•õ •èÕš¼ÀJÖe$cø‹F!.ežxD•éÉI©I{Ê j›½M ƒ{~cåÝÜ ß×<ßþík˜•Ì.Wªu… rààÿ­À-Ö’Lá°YŒn{àB¬@é^Ä­àú"ý‚{·©Mj5MJÉW¦¯T¥é4œXLî#–ý‡Hvì@š2Y)_ Båp`ïGuA·± Bîàß–LrQJ¾  “mT3X8,;c øòìËÖ@œ@mò‹Ð8zâzæ#ÁÑ/®txËÐÜ[_ž$ Ðè¥'—²3³‘ks-QÝ×:ѸÖ2Å~‰Z£Qc­cô¤Ej’€”H‹üm©Ü\þc†‚:e,bŸ|aáÌ022#zotøÊ…²•@Ôe0`—`«/;ЀMn}nMAm¾7» úèôšóÞŠ@K‰câV¯†tˆ³‰L»mqöag­§Ÿßsç:šê=‹…ÏÃýÆ{¥á–çò‡ž3Þ~'(À“Û ”ªç—÷ê—ä+f†‡Ré‰ïdFBD4è?êÒµ€›(‘•dmÕ‡æ¯:zO“àïѸrí•W÷“wö÷~ W‰›k,eš1mAByZKKÏþ£å2¯4pr£7ªI†¶J HLNOËU——]ûòöï[ç¯ÉÙ0vq ÁÙ•¾Ï¡Ë\4Ý—ÍC³}j)F.ƒ-°ücpÆú=ùU嬋fUizIZ‰¦JÀm*¶Î`—Ðú¤5óصy¿-¶Ë²Ò6{c³ô¢q(¤?ŽFö\ªï²a(ü¨5ZÐiÉÂÜøÍñ±1 ÄQ×­kÖ¶jb ¶)×oª:Š?Ëïµd4-V‘A䨑 +ÆqcaÜC0.˜Ãùÿ.a™endstream endobj 178 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 6232 >> stream xœ•yyT×¶~µPE©DÚ‚îhªœM®CœçD@‰s‚ Ž 2ÏMwÓpšnºhæVÁY^à„ó<7zcŸ¹¾{ã{cv¹yëjÀnóË»ký\.ÿ¨>ujßþ¾½·2ʽ%“ÉzDl]½sáömþŸ‡mŒ^´vK„ô\Ào–¾Në=eÈÓ yºWôê;À š?€Ýo¾OINß6cûò™‘³¢fÓo×Üèy1óc×,ˆ[ë¿naÂú€°E7…G,Þ´dsȖ϶.]¹êãÕŸüå‹aÃGŒütÔè1cÇõ?¡ÿ@aò”Á¾Õ—ZDõ£© T*ˆ@S©ÅÔ j 5˜ ¡|©Ï¨!ÔRj(µŒšA}L-§fRŸP+¨YÔ_¨•Ôlj5‡NùQ#¨¹ÔHjõ)5ŸE- FSþÔj!5–  ÆQ“¨ÉÔ{ÔªÕšF½O}@yQrªÅQÞ”¥ ””õ!Õ“¢)*œâ)êLu¡H¬(w*Zæ.ÓËîwšÕéG·P·ÛîþîéEô×Ì%-ìzönç;oé|±‹o—¦®3»¶xÎò,|¯ó{¦nïw ív»û¨î{º¿xÓû7>òr÷²ÈåòÕ=&öÈìñ‚ÛÄ=òVzGøxûÄúð¹çŠ ?ÅE¬bŸ²§rµòÖ‡_|ØØsBÏ“½Üz%õªþhôGÛùÂ{‚¯°A°÷îÜ{™øs7ñgd‡Avh´ËÄpä*ñ z*›ªJL3kKÎØ¬ùÅV1AØÀŒËiü…˯ž ®j¦·H’R†2å…í/Lb~€A4XíNe` 4ÒÅLÛŸØ#í^böqùmÈGsÓœwV1³ðzuǃR|œ&|Î4ƒ‰–×|ûí¡Òk=kP™Æ[œ”‹bP:Òe©—b¤ˆp±Oæ4&‚¼jÖ[ô&”¯¼µ´~RÀº¸3ù6síFì9R·½ÎGþ”v.ÄÅ£KÌËçOžÙô×¹•‚üÙƒšš¦+Þ jÃãç©fF‡Ã¸z£aó%ªÌ°Å—&ìB±ìœiK>æå/ð\É€D|™Ëèˆú@\eBévÅΚé?A²#Ñ.Êì2p«½êÜÄžâL÷ǽ°7ú}3d0zÂë©-¸“ ZËýt%pf°[_Üu¤ÿ¥€·×ÐEpx$F“tz‚™ƒØMï•¢PdUç& ¸ÓX;ƒWàØ~KsF»9ÃWÁ@7¼ûsA÷u‰©Ñq¸@“› ôeÚì¶Ôn²yA'¼Ûâw¢‘Ûа¤bš‹æG…¬ Y:'% aœB—”•„YìùÓ0èrçëCg®òû+Ìy¨€µhLé™Y¼ß‚à¨9ˆ8í›—E9%†b¡øn%t÷çÐ )Щø½;-.3LaRåêL¨åçÊ*À]¡ÏÕç¢V>ƒd¸53¸Skââbq1¯„Ä#^œã‘y'·>@Jè rx”‚\ñbö LM]9g./_Ag¹.-™Ø§Ÿ/fÆ,:÷ð×WÏvÉD“Ý h;çŠÌH8€û!èk=§0–ç”# ìŒo±ŒÇ‘®õÐͽ£ièÇ4£ê¤}á› ×¢5(-+9+9q†bW,óŠØ?xû+qöxžp›o,?4±¸î=±rÐ×~¿=¸rèÆe!i_—J i+5ÁA# nbÝìÄÆÇŒ|^ÉýxiÉ„>}‡`fô¢sßþöêg`„Ž:zlû•`x'Tr0€Iÿ<;•Î0«óŠòòÊ üðÑIýå(-js{†TŸÓxã(›F&Æ÷ó‡@ [§»–ØÂ5.•)~ÆTÁ(’w#2Hwª’wîÀ]i|ó-Ól±{ÉÏÀS’tÌ2ñ)éÉŽwï9hf('=°h‹¸ÝV%¹Iöc¾‚(ZÞûøÔîm蹕¦—ï4©s²Mˆ-*,´ZTÖ¤"!¶4Á…–¢Ï"±ûöÿ/Nº„àf{,j‹K>sÅêÛ´ã(Å‘²5©FÌK>'Ôí°‰µ¤ ƒ@×è#÷‡Nû¹l]¶e±Ž«-yeFÞP@Ën¨jŠ¿Þº¿¼û¸"ù@l‰µ;¼`‘yŠ¡Ø¼˜¼*aëïÔ>¨ªQ¥–óùjÛN”©Û¢ÈÍÈÍl+=cYÑí¶Ê3°ò^RRÒÓb2yùÑÃÛÖõIJQÓ£ w–¥ ûÕ_gœÕTª÷&—¥Å 6hòª¡ƒ7èMz3¯ÏARÀÎD:Èü‰>Ù «ƒb(‚é_Å+Æ1¶·~»f3²0jCÆR¤Ä]g^~QžSf´ %-•¤rÙçà”µ¨!­"¡XU±=[£Û¨0grÛ)ÿI‘cAzÉO'HuÉ´¼åË ËÊæõÄ}Vbz 8]¡ÎŠF1„ѾŸ]¹SVu£ÝäWvð²É`| ¸#Öv« ð%Ns–Þ=&ïÉJÏÎ@éÊàÓaßž¹W¼»‰?XX‡¬l¾Úœ¡ÕekÓùÐ]S#6(l_­QoÖ›…ó`£ —¼U9=“‰ƒ+pâ;xéÓq6žˆ©Ä*•.Üï銴/p÷:€Ùüçg*ht•êÞNKBIìñØ!•¡ r).ð¾ï¼-‚y(zÒØÃ)J÷˜%¸ˆ(|ÀœyÛüz†n=TgAÆ“p ÎÒï69¦KËNCiÊEua7nÞÜöïdÜ™b9ç´&^À-Lœ F$»qo—G-.G…·Ô!ƒÿð†lb¡Ý%.VÜfðvÂ"qÌ$xBßè8C®ê˜j"Qþ—#ˆ.5!.eê`u›lNìPÂ<ŠÆ•L[³DO"ÝÓ Ú[¾{@c/¯“»€¥F¥°­/mïrcSÛ…žx›ˆéÓ.<œ(q¨¦]t³‡…yÏÑÄ6‰ž\xͲò…¤k‚Øû¾?û×[-¶// Gm»m„•-ª<µV©ÎàW͈š†ØQ Ï?j²5­ꚯ¾ƒjQ}êr+ÒÉ%ýª™èL^›ÎÉ3J:3¼]ïâtNú‚ÿÉ$ÁkÚâÝ´¶X:÷uB<â>ˆÁqøÅ8xAnK®ý6–ŽpðWKWX˜Çø5íó%©Yú…‰ÚÑŒ8:ëYr™Ö.øYÆFZìÂìþ™ô2D±ßi¾RÓøCÊáý._’À6¼éâ€b¬ŠËqZÄÝåG§Ȭ£À}ß›þü››Uw¯ ò¸¸‘4Áf›{‰Â€—Ü÷Ç òƒ˜íÓ³c/~¿½Æ…ý³¼IëZNW¹Àqˆ«Öú¶®Ã+D=ÝÇ¥æÿ#JŽfx:ó\\+Zõm>Á ; ±Ë^ÙE®ÖM¼+¹ÜJC*bÿkò,à \ºa»=œ ìµ–²CÍü¡’ü|™ô ·–ÖO Xµ+`Aû:fƒÚ² ŒÑÀ[áGCÎà1ìyç[™eÐ7¦:¤˜š‹Ð¶eþ¹±<ÎqÊÎÿ¥Ýí%Mæzî$Ðð síthÈì!þ½ß–È/¯dâ' º€º8PŽG»´ÿã2}b ›ø d¢ûÑÛ4e§M|Œ.vi[ÝæyxZ,â6Û¿($ ôè÷éí…[m BetUê­ÔÛ©6-±4¥pŠfǘÕýê²>%û1d26*´­QCRžž¿ »+²3³5dª“Ïé1¼é -?¾êðÙ¨;=¯¢–ý µÇª*Ï &t$¡zW鎲ȼi…ù;òHž¬i{‘ýúáõ§Õµ) ¥|žjÏ&¢TkÚ7+V”_`(Ýó‹"Ç,q<+ïöÎdFªM,sJC¨dtëàd¿ÀóH1õp)&Žù ýízù³ŠA \åìòá8è]"EbÞj‹³ý7‘ûÛð½mÛ1Iš‘…ÒP¶R¯&ãr»tV£h]ÅìÀ 'yÓñâ&:RÞ×%iF§\¾Ã;a.wö¯Ð—´[Û]Žût $‘ ƒPX>ôWŽÕ@¡£9䜧÷08z(v•öÿ®»zÛýC/Bã¿‘NÉUš|Ì'm%žÆ3{$RN[zê~¾Þj° wá)éOßÊ «–•^Ð%e%¢då_®ûÿ Ü_?º¢] ËI…‚Æ#o¤JöAç6ÿ Ž#…˜MÌÝí}Ž"¥‡;6b ÒpãxQ²÷[Ÿ$ÏbÆ‘Œ}ãÜšu˜(9üÎÎ÷‚Ô_ÁjR[Óÿ¸ó}»+îXܶw9Ò+¯¹p²¦¢ºç½Q›‰6fk„¹ø6}Ïu”<¶“¾¬ø)íÙ±¹m¼ðÃ_“C.Kà‹PcÑ›‘Yy2üËk6Ä,_Á§6Eî EkPD\è*Öé|7ï« ¬ûïoíO_c`: CñŸu%¤ÁÅ#[#£Ä^ôB/míÕ FÒÿé2Pø::6àø}û›InŠ—¸Ÿ]"Ë3xØï[hàŸ"‡†7<§+Ê4¦#6%555K¯Õg 0÷wC²13) ­VkNvn¶Q9¨`‡»cƒN“¥AZeJ~za‘ÅT^ÌÃj(£ß‡¢qÜdð {³…&fî9ÉñìgÇç ˆ­g €{Û?·tzD$Ùdð5°Üë6¬Ù²7æ¨PÀÔ×ÖÔÞµ{“C?8)/Oã~§—¿¡¥ Åß߼ǙˆÔ¡\6OmNW©3“U|käïþU––˜¬"Mg¾ÉX”/™j1vx=<¬w/À+Î|ØpdÁ}éõ‘¸Ó "n#7ñ1ƒÔ[u[Ñ6%v?=ÿ)tz2QÅãÿä ¯½UÛx°úXYbïT/©Û®Ý)ÄL^°iÎúÏ•ÛÂ×ǯEììðS/öçV´Q…L\*Š^¯ÉP£e†9ÃbÐ#C½ë°¬µPZ!8‡÷–Ž Mx»B’KöSØ9½áõß`#Lj¬Wžk¶ýf¿™{u‚€È+øQÑá(‰U¯ ̦"3ðòÝú;ˆ½vzePð®mXÞ_4aÜüASS)Dž)yà\'µ²z#Ý)/Q]—í˜bá÷øè©Ëè.{/ðÔ¨À€˜«ù˜DUR±éfMžÅc-äUŸ.?Ø›a!3g-½!ZÐh3ÕHÍJ æåß§¿õÙÜGÐ?xyYÍZ^“›™£Albš5u_’и½>åbI?×ýPç7}°¿n{Øá5 Âp2ÐDâïü×ÒP'éD0 é×Ë;J!‚y,òôX_mU¤¯¢áˆÃ‰ |IF¢½ŒÃSxd‡Iäf ïURG uR‡UKë4":”¥Ô«L 2¡ÜœBSãµõ¡sÖ%}¾c½°>pÑ&?Œ–ï]_¯1gæhÛ ,Å{$Z¨Ùq<å+âÕGкCß'ÁçG¯Y¯ŠY,´pÒ~¶"b‚™˜Z®à›²SGO]| ²›OP9*ÕåIz‹XkÕZº©(lü§asg c'-Ã^s,îzaÚOàþ0àùý’KSf-\7>ׄpUõÅee%µ5õ(칺•þC'Œ½hÑ뉂vO¶!«V¢©l›h'_?)ÖqxOk~f†£t$A,0å–XxØ'–]§[;3‰S cj‘NÙ¾Y.7òæjÚ#i«)°~u‡í]—O$j!ÜઊKòË‹ëª+šÐWìßÎòÞC}WîÞܼ…ÿd}ˆšÌŽ»¶è?€”áË_Oo·/9ÀÇA)w³aÍÂéSæš¿Ò~öþ£–ÇB®áZšBçM=eøìå ×w¦öeŠÅ&:Ý#1/½¨¬  2ÿLôioçÓRkÇÓ6S#¤°Ë ŠØX¿sº„²5ª¥ÑÁ‘kG`ÙÜOQJ0¨¤µžä2•@4áhò±¿?9vó®ðøÛSà…€c¡kÐýáØ½7f°ç˜³‹ܽZû÷ ¼©™‹ø")>>q݆/b×#vñš¦«ÿzôô‡K5›ç—¹1zmÎzÖÁvb¯?%¼ã‡$Â;Íäy˜óù±·D8 üÅÅÀbwÒFב¿Ò2ˆLu¾i§¢‰(ª0²,iwâþô+©7“‹3Ë’‹Ó bP;gbà°Mëò ãù”¼ÈÈh8B:AQ+u‚i™ ‰“:Aç°n,±m;±«1K…»f§Ñ*©Mrü°€¹³õñ=ô%ªL9W]•7§0ÈgJ(HÎO·¡RöÒýË÷*«Tée|‘ÊFzù¬Òö"Ó,õ„ù†²ÂKo{ÂqŽ•¿*=NËo9“j,8­ÐÐòeyo7–k€‰vˆ·{¢î¾]Ú~ä}ÁÙk…1qö}ÔïkVZzÊĬصv[Øt˜­H°«+‰eM§NœÜ[š_ÊW—”XLfT@HÐ’‘©ÎÒ©ù4M\Q¬ii¦ÍžkL«Æì\4M`åúY'>»Ñhß}ü/×'㶬ßH(—]^{êZÓùëERvDê@¾=2¼þBjí)("è²Ñûÿù/ÒÅßC×êIZƒ6G‡”Z¤ÎÔj²t Žt&ÒäèÌZ¸—+ZûàåišÌ‚( eé³ô:EŽFŠ|á/“A‚<¹è&^%¦¦ „øÐÅØZ=öF+rË–—n,ÞaÐäêïZ r² ÙaÛãÔëè‚g¡!³ÑE!³C}¥ Á‹npBº4%5|U¯޵ÎG~ÆöÂc´šìL¤•v¹ù…eeçêxp‡AàÀ=Œ·Wt&â b»ÅÚÄÑ6ð²ÙlŒ½Ëñ®È³ ò$ÿzQÔÿµ­€endstream endobj 179 0 obj << /BitsPerComponent 8 /ColorSpace /DeviceGray /Filter /DCTDecode /Height 87 /Subtype /Image /Width 115 /Length 799 >> stream ÿØÿîAdobedÿÛC    %,'..+'+*17F;14B4*+=S>BHJNON/;V\UL[FMNKÿÀ Ws"ÿÄ ÿĵ}!1AQa"q2‘¡#B±ÁRÑð$3br‚ %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyzƒ„…†‡ˆ‰Š’“”•–—˜™š¢£¤¥¦§¨©ª²³´µ¶·¸¹ºÂÃÄÅÆÇÈÉÊÒÓÔÕÖרÙÚáâãäåæçèéêñòóôõö÷øùúÿÚ?õZ(¦îôæ—ŸaF=ɤ*QŸ­)ã#¥G¿çFè:L‘Ô~T ƒÒ–Š(¤'_JL÷¿*uQHHH£pÎ23@ ô"–ŒÒd޽=iÔR¯jõëKE!8úúRd“ƒÆGJ]£¿?Z1Ž”´„ÔR¨úQ“Ûæ­( çõ¤èqØô§SG,O§E4“œ´ bšÖ/û§úS袊)Ï×Ö“©ô"ó­(´´Ãþ±Ý?ÒŸE0 £óÿëRå±÷GàiAÈÈ¥¤?x‘¸Áô¦ºÄæž½)h¤KL?ëýÓý)ôSP‚ƒ^£ŸQÍ)ä|ÜJw§QHFF '+î?ZPAéKESFáÇ b–ŠjŒòy?ÊEQH@4`ö?&Nàê3N¢š =çAÝÛ”ŒÒÓO?:Š(¢Š)‡ýbÿº¥>ŠEû£éKM6;iÔSW¸=©ÕÿÙendstream endobj 180 0 obj << /BitsPerComponent 8 /ColorSpace /DeviceGray /Filter /DCTDecode /Height 87 /SMask 179 0 R /Subtype /Image /Width 115 /Length 2510 >> stream ÿØÿîAdobedÿÛC    %,'..+'+*17F;14B4*+=S>BHJNON/;V\UL[FMNKÿÀ Ws"ÿÄ ÿĵ}!1AQa"q2‘¡#B±ÁRÑð$3br‚ %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyzƒ„…†‡ˆ‰Š’“”•–—˜™š¢£¤¥¦§¨©ª²³´µ¶·¸¹ºÂÃÄÅÆÇÈÉÊÒÓÔÕÖרÙÚáâãäåæçèéêñòóôõö÷øùúÿÚ?õZ(¬ûíjÊÈ•’]òà“ÿÖ¬KŸÎÄ‹[dQë!Éü…gM¬ê³n™¢(Z¬×Wï÷¯.ýµ?ãLóoÊÝܤ­þ4åÔuX¹[ÙÿàM»ùÕ¨‚¹]CX»Ô7,gìöã®8÷5„×QÙn¦võè¿ýz³ì˾V!ü?úôÉÍ¥˜ýäÅÛëŠÍŸ^¶! ÿ:®ºÜ“ܤþâf¥·Ýín‡ý±o𦶪Èq2•ötÅ9o ˜r÷5¬÷2ùú}ÃFýžÔw®ÇÃþ-‡Puµ¾ ovxSüoCí]5åÔvvï4§ £§r}+޾»7;ïïܤpª;Ÿî¯½fA Þ½8E_*ÙNV1÷TzŸSZó ?@·ÞJ—]ºçØW1&±ªx†í­tkg÷aÑG©'ZÐxÞÙjlÅÿ÷Ö2![¶0xJÀ(·†ÐèÏvüØZ«¯iJ[¤v —ûKÿŸ´üøS_]Ò]J½Ôl§¨*HþU™s…/²²-ª1þ$#ùŒVu炾O;G½.2B~Œ?Ͻsw¶’Ç!·½… œxuÿ¨®³Áž$’âOì­EɹQû™Yì}Çê+°®g_™¯u(¬co•Ýþñÿ\½ÃoUX`ÏÙ`>\+ëêßS]MÛÛè:Yjåv5Âi¶7¾8Ö]LŒ'÷Òá•}Ïéרú®™¦Zi6ikcà öIõ'¹÷¬Ï}ƒþ»J℺…ij´wñ¢Ìè«öe8ˆÔ±Á«ÊHŽæÇ'‹Å;ìz×üüAÿ€‹þ45¦²£&æü_ñ¨]5!Äi8þë@Pþ`Ó-u ½:}ö»íf˜‹nŽAíëüë·±¸°ñ~‘ºh€u;]sóDþƸŸiWZEÈecç@|È%Q÷€9üý«ÑômAu]*ÖõhÃ;ãð9Ç_Ý—S¸ M§Ó<çNð5²ïóû«šÍø‘~Ê© ž0X×iàí%toZ[VA$Ç]¹?—O µX*ÿ—úíý+ޱÿ—Ÿúù—ÿB5Wŕ͞˜‘ZÈcÜrÄw­Eð¸@?ÛPò?ºßãAð.½—MV XtBsøÕE–â%ÿIY$ò¥Sü'±üø©æ…gMŒ>‡ÐÓ¾Ü=¿Šo,óˆçƒy_ö”Œ~Œk±ñE’ÝéR6ܼ¼Sì:þ•äɯÞi;ì`–(]‚€}XŸë]^·K½B„³`{Gô«^ œ1“Ë-büE·f‘$Œ^›a:]XÛÏÊKºŸb3V+Å_òáÿ]¿¥qÖ?òóÿ_2ÿèF²¼cͤ@rúõìÍq"tþð¤–êÞ$/$ѪŽå…p#u’'|­v‚%=J©ÉoÈΟn›å‹óèRð7ž7¾¸Œ½±RݲÌ1ú^‰«H±é—,Ý<¶‰μ¾ËÁ—:ì'R…”Gq$…2z€äúW_ã;FPŒep\ž‡ú~UÌØÌÖWk$gåÎEokvñk—0Ïû¦“Àz¿ÙÓûøì–"~ÎOñ/]¿QÛÛé]­`x«þ\?ë·ô®:Çþ^ëæ_ýÒ^Àîé"D“më¹úÔß6ú'þÿö4øg»óƒEƒÌc…ßtHϸ )ekX/Mεª$׊»BŸ$+ýÕ¾µBûÄ2êŒtŸ ÙÉ,²ðÌ9b=IèwÞ ðÒøkJòdq-äíæ\H:ôÃü}k?Æ”—ÓC¢i­ºæå¶îûÌ}”dýq]E…œZ}”–ãAë€1RÍOÅ*‡Ge=¯<×ôi´i‹ÒY¹ù$þï±÷÷ïQi÷æÊž ÷§ê±^,yW^U”á”Ö¶âÉm‚ÛêຎÊ Ÿøþ¢¯x†ê ¸´ùm¥Ic3}ä9+“±ÿ—Ÿúù—ÿB4ÝoZ—FÓÃZ"™ä<¹è*O#Æj»å±v!eF8úšd7îñ™ÚÜ©ã[§5—i§XIxòÍW“1æÞge#ðgõ®÷Ãz΋ /m´:c ÜÑ*€Ü×ùÕ=ÅçzÙi±É-Ìß,q§úÇ?û(÷­/ xu´¥’òý–]NàbF_»öEöõõ5ÑQL–4š6ŽTWFeaEqÚσ$Fi´‡ã©ÛÿA?ÐþuÍ5ÍÅ„ÞUÔRC þ\Tâò ÇÏ€}jK8ã[¸š2\f›cÿ/?õó/þ„k+Æ_ñçùï]êxµ¶ýžzÏaþÎj×ÜjpmÄܲ¨läúôëþ ÁÌf+˜ÕÞ3´œ~D}EfjvòBÛ¢vF2žqÿÖ®ÿÁ:N—k¥Å{bYîS2ÜJs!=Ƕaú×KEQPÝZ[ÞGåÝAÉý×PEs—¾Ó',ÖÏ=«rÀÿcÉá¹´+¸${µ¸ŽG ¿&Ò?ST,åçþ¾eÿÐexÏþ<¢ÿ=ër/øŠuKÛh”ÿÓF'ôzÏáÛ+y·š¬’HÚ#>ä“‘ùVAßo)ó†Ù o*aížàKwn^Wü*jßÙš™ÓælZÞÆOðÉéøôú^EQEËøòú-:ÎÒæl•Izç+Ï¡ñ}´ Á-îvr[$䜚¡¯kÑjÖꋉ“û½ {²}Åú uq=·M9†«·1H<©—ûÇ~œ~ÇÇã(£PZ¡ É&©ßx‚Öðd[ù/Ûž¾¸¯Vðn¶5Ý;†9š3åÊqÕ€ëøŒݯÿÙendstream endobj 181 0 obj << /Filter /FlateDecode /Length 4844 >> stream xœ­\Ys·~ßÊØ·Ì&Ú1î’TªÇ•Jâ$¶ÅÊ‹“ªŒH‰”Mqi-uðß§ÀÝX I¥f1@£ÑÇ×ôÃVŒr+ðOþûüíF&l?nÄö/g¦QOr;Y'Gï¶o7^¹Ñ…PÞ\o^l‚˜FgüvrFŒZÁ¨òÆË0:GY φ Z^Ð1FÀ–¬gí¿z¶ÞB•~œ,!*¿ 49íGã¡ÉËiôBRšê ü‚É4•Õ’Èjb{¹ùa###·ù¯ó·Û?m>ûƈmƒSn{öz“˜,·ÒèqÒÀX J*»={»ùvøënÇ „™ôðÏ;19y¥†³W£—ðôüË/Ù ¿à?&!¼Óÿ=û.¦ÈbÎŽø ,xvÓï½Ëƒ)e FËÉ¥ÁƒÞ}·Ùk-FåÔvìZù4ÏÝ 0Ò„á µŸdÞàä^)ÕpÜíÓðƒ^îö Ø.¼ñQH¡†Ã÷8EÒØaLƒãÃó]¦ËÐMH8™71üéj(£7"oóˆ”èŒÑ@l@z)äpy“r" ó]^4hØ ÅÝ)]pÃ+``?|ØÙJH /Åh½VÚ ïð+¼×÷ËlÜ®ƒ1~ —oâ~µ v¸‰_ ¡<âcŠ„J¯' ˆ ¸L3†ÃëL¾”Ü_×õLóNfŽçB6ÂÖX~¿¨«½©‡rNˆŸãyK5)G9pLá)=ñCÜ f8Ü çŒT2‹Œ Êd*¤†MÃï¥$ Ÿa.€^äŠÆ~’£V‚@Ê1Xxˆ'žÎùáð&˜¤µnÞÆ]€LÛç›x¸A{ÖZÃÔn˜_Ç•ƒ3’Ê5=¼w8ZHÜœ0“œRdJpêÃG|«„f‚£)ììŸ.ùn䪉²ê· ìNÛü"’ "瘌ÓgœÒIå¢,Ì%û"„Ì‘>XN꺾¾ßy d«áììuUE–u{¶'ŒÊÛð4ÛlÅä{|_åá7gETÚ"Oô¨Þ"ÍfTARIý°³`ÚÄLÕå}Õ¾$â@²l¾câšiD–1pYÆhè„"VÎö¢t™ÃÕ Rz´…ŒÛl2´gK_¤Ï,œèQ~¦û¾"Úñªj]ç(¤7㤦Ÿt·e磌Y é/tÜ%BÅ97%à,.ê¨Å DÌMY¼­™ÒRïÐV{aËv¢>““yߥå†i…žÕ²ï£^¥ßáÐW£‚—V3Ó²Úf|¶`öÙ u^“£Û*;D0ÉlTF‰ˆÐ£Ìƒ²LhPpEqFlÒUšÐDt…‰0 PðÅ68§×óÉ:‘Å£ÌÈÌ|a¤^3þU”Ȉóè´t£1ÅùsgU}Q+‚ËgÜ‘¼ŒK¨èÓÂ;¯WE ×Þ1Q*|Œ&Ó‡ “10Á$ÉЛô=Œ¾ïá‹{„| mň#ºáßÄC§©€Ž Éûz|ɾ'Œãö=O×z€¼_ÇÕ²…>ÓU‹Wõ” HšÁP‰x7¬œ0:õ‰OÕ?tLÛЈŒªÌvŒŸ pì©ÆÔAšžBâDðBC ýw™Ÿ ÑùgŽ¿¡TS›ƒQ¥@$0T1ÉBzËö]}ÄL@ µ·×u•Æ앉òÑx=š”œÕ.Hg3æjùé J’ñ3Áþ.?'Cø9ðBU'Pê¶‚f"Oçˆ_žuWAîò÷ª^Wœ}~bË#È#ª@-êJõ³47úÆ-°‘@‘CÝÁÒå­±€À"ŒüßÈ!yöÚ‚µxa·Àov 2¶1üq·· ¦î|ª(¿ïëËcyùCyzWžîÊÓ†ò¨Ê“­?ïꔿ­j×9öH4F‹_nÎ~óíš"vµ ½‘~M.)”¿þLô4_-sÈŽÞ‚òùu˜GÐ }­ŸIJs{8Í99Y˜Ä‚`V[ˆ{ûIpY‰åžj¦¤Z–ÁÜ`3ÐßS*åÚ_òªo±ùÈ‹I2trHo1R=¯c©‡y’>Æpk¢ú1jí·~TàYÕUÔ_|q¶ùzƒ¡óöãFƒµáK'&0)zûvcàüà8ËÌáü¨ü L9x¦rTJ§ü²‰ B˜àƒÂá’¿è E`8P¶Âßù‚™$ެ­û×Â…£ÓW AÑ<׉.cœì`cBÈÁqZíøëôŒ>­Y–à7/ðy%Jb Zá¿8 œBJ@eÄÉ1!úú@fˆÇäÖøthq ¦=xÐ+? <„+øäbVä<øð,¬A劉ïâ¾çÈ*óݯˆáœÖŒD“¯ê®H\LXMöü²Å {a¡RNQÊiDÊôW wÉé}êäô,Xí…!c‚zòS‚ïà[ LÀåüÙv€Õë½. E½¨×¡qbô 0ÆFÞ;à=†é?NŒ)âè±HÀ³*6žºöžÇÕ0­/ìzYL;•‚›juYz"1'¬†® óX¥Øõ÷½¡QÿŠÓW>/ë÷CÆ^^%_6yúÙELh-™1É(mIœ¤•§tÂ9L'lÖ›™Hžrr†é8¼ 1á—Ÿ~޲0`.ØÑ éÄjBvn„.†™)›ÃXáєâš×e,ãh Ö£CðÒ6¹¬¼0…½T°.ª`ÑåJäúPG û¿|]¸òî¢paÀ´.±ËÈkG³kîè#8yØîô€Éò@ôT >‹KÊÙ©¦D°PÚÍÍSùÍÆ 4¯‘Wq¡hWF·O\Ô貯YÞpÉ ­ÊØu5¹4_™`†F(ò`ö#¥)ŠjÌyÂÆïk°Z¡g›oCO³V¬DCéCg·n `Äd!|TˇßÊÿÂÜ0f›ºæt³”ËûÒKh¯Áj•Ãg‰ ¬î=¤€ÓZÂø¸Û$ððøœÕá¤×“qLu×ÒöqÕN3àǤjïÖAZ³p/,®)þÛNxù¦<ݳW} þˆRª$ÄTÒ¸·>‘9g ”'ní‘øZp-SÈñõRØìJÔÓ·Õ‰¤?Ñøù'J¦£|Òͪi/q—)º•`n‘eV àWß[PY ù+âef:ü<’ ¨Â[ÌPy%ù€K˜/øÉ"ÊÁ(ÍÇ’îìi“œÉ#逿«ˆ*|™yq«Dø;pJÝEÅOŽÕ¼hÌKÔ«.B’¦){ v'aFŒÉÓ%:3±¸3ÉÝçh9&¤ÊˆÃ‰|GŸz\XÀ ‰$ëÛäsœH™”òð ÓÒR–ÒB=…X…Pnktׇf‡S–F~ÐúVÌ—`m¸­¦õ²×)ü…3¬®aŽF5Âéïsª‚ÛZçŸ/©#$µgm°¿ãÞjq«{}dÐÊ%Hóœ`3H±ÔX GÌh¬Î+ü#ªMnÕ¸«üL… ì0>Å2XnÅr"ý)È#i- †G/Ò@â’–ç?ì° ‚iε؞ú¸ râB¯ù”*_Òÿ¿'nK“ÒÝ`—À!Òµô|QíQ™ˆÏca|8 FdIi– 2Tÿñ¼îâ¸" Ž 6†PÞ˜ øhœ(d£M,õÊ.^vIáIÓóÅjáno¦.‰eÏNŠÕ b·ÙM¿ËŒ¼3'@?áPG¬V𰦤X¶á0¨êp ––À´†NjÍ€Œ]D¶éNâ‚R»IçLSqÒœ\tOˆÙò’Ã3#\® c-˜Â ¬ì&Cæ…Ô:b-ü41d‡É!P—(U—QH%ˆÝŸkHö³¢$\- mÈL°äD&¦{"%á«.[©6l¼DÖYÉ7pôVèsjàž¢Ã³Ç@Ö1+œ!Æ”Ø.æä•Z4Gýþ'ÂE®V¸‘Û®$é÷€IJKpY}¬,pŠ­>bu·ù*ÅÇ\lBÓ8xå³ÊDÚrÃm¤r‘Shâ{ŸÒÚE…‰"uäÚŠXQ¦h‚´Mó]WÛ˜Z•Á¶¤£EÑOéTž(^|;FüèŸf}Ú=ÖüÀ‰Gl ßÍ× FÝSî°!=ø‹2ý¡Á JˆÆÎ©rj¥çÇ ³mŠmðLœÛZVáñv¨‹J êJÛ°q0F°6¦=—ݸ=·Þ:?­Dm´&—3¶^ZgõÖÂ/JhÙ•]Ÿ¥_.XÎL*šãÑ{È.#ªe9šû>¯ð3Å· *@0©ÑÕlÊ!í1ælfb¢H2ñy&°È@{Žj󼉊û6­ÍˆM Ô¦~Š˜l˜O«ªÑÅðô!Nb(¥1I*Sћߥ<„ kÈíbÇìØ)T¢§µd5„]V¼%’ä)¹»¬qc^¬•Jׄe…¬9͇ûUɃUY¹\)ù¤ca%kK½üz|Š“»Å å.Ú"H ÇåUÕ1†]GÁ<>‚¹]—Ú¤Ü í{{]“}+½)¢ŽdÁ”JÌËñà¬ß²Ê3„{s@$šÈü‰nÆ¡I7ƒvжeŨ˜Ä¤…Œ 9¦y Ú|”alUô¬ACî–%ÌS¬YÕ´}hAÜ6ï_Åé&^}LV$£”û¾‘ }ýûWú®¯ª¬…¹Ê‚ZÍMÀBÈÏ2ˆ8‰öòivžSâÝ¥K*S·Õ0¥d÷kÌ,z¶¯!YéãŽ'êÅ”tzÍõ¡NÏ•˜S¨†ÖØÕÌà Å%ˆZu¹!@{cŠåç‰Pð=ÜŒ冈ó)TH sq>i/hQÃZƒÿXQì雥$ôU⦶ÄlËìx‹ÎKÌÎ!¦ ŠéË$ÖŸW¯¹’òëcå‹´Ü©Áå¬àÞN¤Rª‡ -y-´<Gõ«Äp÷o6´•–¸'}Z@w±’Ï]v| ª¶Öè²!žÜ~j-hb¯‰-ú´pA€tÜ/¼t¬Ë#_LP˜34¥ñœ•m÷´²Ž‹L€‡HŒÙܵáj€Ÿ•mg÷ZòaÎî½ QkñÄVn ’¤i±·çòò% ‚Æ Ü>àuO«à¤Âð|·Ä‚wée[â%Û0VGhÝžiÄ©Pvã•I‹W&5mŒ[©ögn.cZ[ºûè—Ø÷cZY{ÿKà³g•gJJ-2· Ôl°f@‚5éé¤Þ©øøø5Mú!ÃËË‚+¦ü­° ×5rûÔ¤Øb`16À†Vبx²Þ¨_1äßµ1˜T±á‹Øš·h’¢q´0mgE \äð«®½&A¿ˆ[ <¾ê'÷h‡tÂ/zíZ$ÝiâULÑѲÍÿŸÛª‚ýâÑÜ1:\Þ'¾ ˜æ;fj€©šämcÉ£_9vbe©¹œ_¦0OÙ‘X®Þ\ªÝ/_qü<žr‚Šmj4Ë?áÈLê:± ”XÉîƒìIRöð̤œ¼’êÁÈPØØÎü¿6úÊëóë¸>¨ÝJ E§¦ Ç*¿^æ°mÖÞ:Ϥë¶+S7MN- Ìá¹Ñ>h¼’šklÀß49ô í¼*Ç/ íïª&ýø q¾vØ&­ùuŒåãBÒê½ÐH¦eö{Q6+Ùj wY6x¡g(èvΫSXÇ)ï˜ÜrLbÚû¨fµ4töD’¡…¶Óú¡†¯¯Í§ìG@éኞÜ]þ0ü¢‚󘌧pwÕ Ó/ÇÊV²É~€@B§8É„-0½jwk'emç–+ aŠÎ ™kéÌbF&ÍY"&U™{r=_ãµ`~©½$y¨ „UehF¤Ñ¼‘Ÿ <ðʬ{"°½Hï1£—B_å{Žù¶“nÌùeŽÚ ÎUí3»[£ÓèïUÇÿ/ÃFž¶~ÕiZ¬Oµáñwåé³ÎÓçå©öM>/Oÿ,OcgøHã1Ìî¶WÊÓwåéUy:ïÐ> stream xœcd`ab`dddwö Ž441%ºÿ…ü|¹™µ›‡¹›‡eöwG¡S‚Çù€ä8ŠS2“s Û˜Y2tðý¼ú/dÁ¯àùŒW~.`þ!ù÷µèo—’-³Ûº;º%»ºÛºšuœ%êÜ޶¾ÖIçÌœIgendstream endobj 183 0 obj << /Filter /FlateDecode /Length 5095 >> stream xœí\ëo$·‘ÿ.ø 7sÙióýÀ=ßysçC6‰wäÛf5²vaI#KÚ*›,rسrœìÀ€Mõ°‹Åb±êWöO§b’§ÿÉÿ=¿>Q“‰§ïNÄéœ8ã'íå©·NNÁ^Ÿå&cyruòâ$ ?9N½3bÒ f•'AÆÉÙ4Ëj6i~Àç?Z¶žµ~ Íz3W!†É[ÆT~Àyr:LÆEÆS~ Bržê¤ü ™“y*«Í,±ÕÄéåÉO'2 ò4ÿçüúôßÎN¾xnÄiœ¢Sîô쇲<•FO^ƒ`)©ìéÙõÉ·«¯ÖÊO"h¿úrô$¤–«³uPSJÁ³ÖjŠÑ­¾^o༄0^¯ž­Å¤¢.®þC‚‘nõ{œ„R­ž#‰(Tb‰„’°Âï¾¢?B«§8Û ¡ãê¿‘ˆ2DD`• 5’Á+;©U\ö_¸AÃ7觨U8=ûíÉÙ?~ ïÉIˆèÌê_׫€Xî¼<¼*£mÝFß­Êð7e´/£»2zYF2ªŒÄÑÑ·eô¤Œ>ÐÛ62Z·¾û}ÝÒ:‹TßMÑëħ&§‚œÅ÷­üÄA¼1¬>¿ys}q÷úüóYîbÁ *Î/noP¢Q®vpÐÁÀùz` ÎYZù:®ö0¼Æã× ,Ñ®n«*\¡fÉ …„M NŽÑ½z“N©‰†Š!z>ÜÞá !Z} ær0AÄ ”Š«-þ!…ÊröÓøfí”i‚AÅú$&´ÒIã^Œüµ7uSçxÇœ°~õªŠe{?ïϬˆ•Áók³‚åÛ»HK€Ü ¼L~B“ƒ “wunÚg”ÒØæÌ2 C¢l#ˆ"ÒYj ãW(Zm§\f^Ñ œãó|›qÒüîËõL¦ Ù*SP­¤œ¢µEH'l<ܶ7´F”° q@;GZÃŽMN¼aãjÏ”kd.ÌäA}Žš‹ëÁÝÚ•ÑëÁm¼ù»áà†Ã€·Új´Fþláÿ]Ð ‚ŽÓ²œÕq%¿;*ÝËócÄ%`›IèüK®7ÿ¤£¬›´~„{*ÛBá\cœ‚UðÛÙÐZÝÊ›2ºŒ¶ƒ#ù0âQÇI™fúc×1vO{°çãíp(“[c~?=VÉø£ ɯãS#ÁÍÜVïӀ쟘K¾`¼,ØøÎ==…í‚Òv nCÌÐÁ˸°Oò àè¬ | €DÑ¡%†EX½EO®$7ÜО­ÏÆ¹¹£÷n˜DÎ._W°ÛPV^m9ï7tϼ*±ì­Áݧ&﨧ð†ùfÄ$Ö­-÷»Ùq¢0øä+ÂðÚÚVø–êtS|4©á2˘îyU× ¡0…N'H¦0ºè0ÊÇHSY¶9„{¾ç"Ìö˜Ê)pþžÐ‚°!BiËÛHl\1r…Q×êÿLÄÊ{õ e£¯7CÀuÚèñáPgn£i íû ‹ ýxZ…C®¸ýAË䤿sD‚óô4e‡a@1 M\HmT ŸÌR3]8€Ú¤Ü"¥fcÓ›•L¢‡›ù­V•ý@-ÜA䑱¡çs~J;UT6éARM!~•°®Æˆéã?Ñ"×; t½ôÍ[ïë…ç*x›… Ëý™(ö—¹‹¿E§o­– i3ÞBM{öúfªî^Þ?TìõÍøEªôÓêÙÅîury˜»«ðìÿ¢÷ÌJßíÒôŽÒH!¬žmßO‰ƒ‡ÃéÆOx×- ¯‚ xK•šy„ÈoÙ O ÉÛSỉÇÖFÅÉyMkÈ©ê$P1ik«¯’+4Ê9tB%ñóÀ,ü–Ô¬JÎ ÅèU6†À‹Dµ.NŸ|«Ô&Òk*6„oÒ n펮ŽÃû”™…÷5ö¾­‘äþŽ–ÔÚwéFÐX›$úºY£òÈÑ+{^Ð =ã”ü˜ƒ£[^pÏ[–#C³#³ÅHÝ#=›B{æ1Å(±o#wdÏG¿œJ þy€<­´Òû„4€!¢¨Â'¨àÝ!þn@¿ÁD"â©=“Oyêd–Ü"‘þâ&°ÉÈðNÚNÕK¨ÆÄð1ÆÞ% [›9Kú}U]ÙŽéÛ?TqOÞK8TÑÙ{±×€s™¶Ñ}6 ­ž"yµL­õjç5@‘ãM²ÖùFé¶,ÒÃãü*Š5z [NYeßüÎv‘§ Çå¾ßî¸òÌ£MF@ß…T“*ÛÏцâw]¹."|^áÖàÂFT‹hæÉ\-«ÏNz ,é#0­u¢I„ð'ÚÊÐ’yÃÔá‹”’v Ý—¨6`üêÕé?_ˆ4 þ0×n¼Ÿ)ßVÈq¾NÆ ÔãǵµpQà|·—ùiÁUi9‰U>º ÑBUcvxïPYB!ƒbÂðùL“_ŸB¢ªç{¤ƒEº‰šâô}}SQaÒ`ÄÊÐipÝè3ƒù¾þ&¦ÁŽf[:Oæ7hK¶/j§¸=fǯɖE‹Lƒ?Ð*>4ùÐć–¼çƒ:nƒ™ðøã·tl”&MªïÉ­µ(çãë°%ÑBÜø“¼lè¢B°å€NB ð l?ð¥dVë²»ªa Èn‡tù±°|“*.ï®vŠ•yÜÕ–X³¡f5ª™üPÍ*yFåLÃ&aÙÉNÈ=è 3B#N7û@0vM(C $ÖÒZýå1ì>q ¼7Š\œæÀAbÊ™[ןªÏÓK/MÈâwœèâñ¡óŠW­™—´.\¦6Ù¿¥º†µ^iò¬`¶„9â(Â{G–ö »òðŠ®ÁÅV«[ïl±ú×EðÙ×+º¿yöžÅ lLÇ÷ü–µzÀÒA°82ƒÎiݬMïYí-j²áÀy4~»àÕT0öM‘©Ú¨*ûÛþUšk)Krõ6t~«ÕÁ-mÞ¬ñÔtW¡%‰ÀJ¯>cØàªª^‹²x:d¶Êƒ[l¤(Në)ËX¾Çñ\4# ·Ôwö’CœîÎ+\ඉà y”AZ0ÄÛ]Õþæ«ú&Ÿ~1ÄÎ÷kV+Cáù²k¼UÖö>*­ÇºV§v2Œ)Ð))Ûe‰?T%|QýEõÅ#©¦ÚAО£ BŠâ'Ô—´9T^Ì ãð:× $¸2Üb4Í.Kîp=~(­²Á¹î¨v„øx7Æ7\Ÿ~K÷ÐzgG2€t¡¸–%sEJZ Ü|¡"½RÕö¾Ñ˜¯P yÆpÍ]“¡½iâÁ‚P8Á‰¢\¾©/vN ÏeœÙQn´(]¸®K$¬1Ù~ÄÏç ‹›m Ö¸ïx` I‘È¡Š(žÆÌ†‘3Ä\ÙyË7Už‚ûH‹`šÑh8ý‘‡¨¥×`|ÓÛ fb˜âcÊÜšûCq˜Õ–G€9i‰-<ÂÍÚÇÈÄå6˜ÐÄåÛ>>kíý•o®d™»Æ«qTM{pQ–È5½‡±„Q˜yÏq·VMâ¦PýFjMÐgÁˆ„Ðð‡á©ÖÄ:(ªÑ"é!ã@\²E¶—[ZE9î¥{€E»Ü®QöÌ@vÞìÐùØN˜,@« Z ÍÂÂÕJ{³G^ôðŸâ•z\âû‹çQòPUè ôh`»`°óä¯XÒtSÖ~`î=Ïvü‚™‰ñDçëꆯ™Þ®-Œ#v^À„‚6— 7„Só~AvÖ™{À2ØÆH&ÔÕ™`ÀÀ‘O§³Img„ñƒ‰£øÂ940ƒ¢&lpӛؚŒ¬(åêÈø /dæ.h²Q’»q¦eÝ2àÉîËþ†huÌ¿V¬§ÊÉŸ(æ¨Ô$eRñmªæ0úö]Q™U½˜D´ÖC¤YwΊ¸{^ â’Ü tfiÛÒd‡{ç2KM'3¯Åg3Ë›40Ÿak);¼VìàFÅŒÎsáמEØ6½:‰J»$Œ"±ËATZ84IÏjdæž'ºâ½ªÓž1•šÌçf\ûLs£ð]n”èY–sx[³KœK—l_VÓÚÖæ]q¿<¨A);5Éõ)ªCS¨¼¥â<Ä¢>.¿[Õ£äªË®PJÑ9tì¯HàÙlXµqsÈ•+æm’ˆU.UÀf]ßép{n`ð•ÃË’¢?¼žÞ¤ë‰@Ç®´Œªm+I“ëtròZüUrf²ªfƹ]ÚW Æ|èygN½Ií ¬dK=“R¸>KŠÓ¡ƒY2q¡ËqÁ}/÷m0¼³™ËK£¬‚;ïc鬇/ÊèË2úcÕZ­.£/ʨ6Þ 4üaðƨë]í¿>°g£Ô{DY¢¶ïÖU:ShÓ¸;ý§*ûVAKØ„gæ,+ÛŒ´g`8òÙºÁY9N£›çkŽý>¿†¶°©ÏÁã¤ÚK~ý¶†[üÅ-ƒùÔ*’2’»ÊÿËÒ`ôú8p¡‡}Ê™S¬Lõ ™r“Éuƒ@]Äy/ÑËÿŽö Wò é6»d—£zÁ™!pwï_¥êëjáZ‹¸Ô¥¤™bÔMaaËêWÆßÒ»-2ùg¬þLŽ•W$hnˆ}ëEž]b„fçL†”M^þvh9x;ÛÕØ‹â¡kŸŠ¯Ü®µ5¶zŒTtU^µÏwDÅFÝêS—Eor+`…6M¶Ž 1eëruûÏJÖaf<¨‘x’Å(» b |׈Ýb…e»Ë3Dß:Eï-ã®y9°sÙf=ÂÊgºh0Æ*3ËV­ö•£Ö7÷¨\‚ûVƒ7Ò;¼çÝ{ÃïRÙeÊP÷ï/çkTk¶nà{ ºžjîàj;pÓÐB4ÞR3ÐÐ<«j[j½},ª"“–z\µ)U¾×M SêŠÙPדœcàAÏÓ~ЦÂÂ?—‡›Q³õ_þ„ZŸ’-?•rõd]fÈüCPƒ_¡Á5xœ¸.ØžŠ¬ÿ¥Ï¨«"±§ŒŸA×\%~;$η3Úâàðë¼Hïf°×Ñ×÷Cväa[[vÅËõÇÒU”n[(}˜úNx•”5P×Vë‡Þ»ðëì4d¦x—OuÔ£ÐX‡°¡MîöÝ»»*›¾aèÔ›î¦ ÓGQC7–j5åtä0:‹¦)ƒ‹™¥áYóúBË*‹¦Û(2éŽå8²:ð°—Á›®ËIù˜@Ë}syÓRÆ´V¤.®²Ùj>ØHì×Ó¶ËO6ˆ± SUùsÈ_“J5Q ôËÃQ½ýÿjbz00ÃÕPy€ƒÝ U¤'ð)îmÕ*ëMS/¾ºþŸÃÌü‘zfÁ±¡V3©ñr¼Áy+"|#0hƒg]!SV'XüßXäȲkÍÏôx t-} s¤)ñ¯ð)PëK|9eÓ4 ²šFÓNPļ[çÊT fskÐz¥†~ë£×®Ssc ñÈ7 l;Ī”¿ÌíŽS‰Å0F`ôb9f½¯»[PÙû,z™3r"% ûŽ–T&UMGêBe—/3¼:©8!0ûϲÍ]0ÅuX,$vÚ†ä0úXíÄkýìn¼>Ù¸2bÔØÊÕ&Ø®RÿXË”sõ»Ùm4!ÔöGtào÷^MÓ`[ækÝ:C}ÄÒ\ž#f©Ûjƨ‘MaâÎ…ÐlœõÀÕO|˜åÝ_¡»ôAžK{7eZ$X›9I=q‚·£-$LûOùóÝŸ9“®éÒoüÿ¼h¹Í cl¤¯±p‚'oÄJ¦©D/íÇZ£ÑãoIq’Ýf1þQxº™éµxDÏ?bŸ¦GØ'Ó™§¤ÂXNÁŸäÎË—Åó4°¹"õ¤ÒZ̦Jû}V©²ŽÝ®¹O ƒ §É#´ã†Öpr±ëøÀñ¦¶‘Î<·}­‡ºÅü¿ž{ sS,QÑ»J›\eÊ+!²)v·yX‘Z…+ˆšêÀ³®wdÝiu´.³ÇƒR j’ºkplDj\„!/2\ÁË +¥°§EÈDJ~Ä»C jñSÀ£fÀ0Õ8tµ ,_xxóK®rãhŽ+;ÎñWƒoɵ}˜íåÄÿ'(õ“ÊÄòw¦$pÖ§Â. ³äqRBƒ<º4[ÓmØ"²ÿIÅG×d XX£K‹Fÿÿ i:´Âû;Uo#íU Æ XŒw4·ûÖkOOAñ›žîšÉ.¯™Ç `êNÊŽ¾Ú„n·+6µÍ¬:à%,빉fQÆB·ïDï^Éö̲ãYÜYŠP®zoŽ'qñ+-°sÿwë(ª=jÜ$"Ù!‹j6žÈ-ýÇ]—ìÒv_k± jªÎеý  ;ú+éçà”Ë ¤]ß3xalC£íõ¥WóïúÐe ¢ëN5$aÌû†+ÀåYNþÌXíöv=ú¢£†:Ù­aZ»º»åtP½Jøubî¯yôsC4\`îòÃØZ¶>¼ÌÏŸTÒ<ª îS3y_¼×öð;©q€QBÃ2=÷Ÿ¹V1 ¬w~!]–à‹¦fêþ» |N…÷]Í"Ü·uú¶&š{Öïé³a„0U‹¶\ºÌks‚]ÓÓ³“oàŸÿÜv endstream endobj 184 0 obj << /Filter /FlateDecode /Length 4207 >> stream xœÝ[YoÇ~'ò#zš v'}F@vlÃÄfÉ+ar—æ’’œ_Ÿª>«g{V”e(ôÀQOOuwu_ûó‚|Áð_ú{vs"FåoNØâË£ì(-_XmøèÌâæÄ 3ïËÈõÉ'žÙÑ(·°F±Q ˜UF÷£Ña––ð¬È¤<@ç(/5YOk o]³^Þ•ón´šl* Ð=éFe<Ù“ãvtŒÓ=ÕIi ™“öTVË["«±ÅË“ŸOx`ä"ý9»Y|zzò‡ï[øÑa§—'‘É|Á•­ÆÂ¦¸Ð‹Ó›“gçË5¬Ä÷zxúÞgF _á8gLY9|¶\K)GÁåð—¥°#sÒO—NŽŒK>œ.Æ`¢½7Ã7HŠ9kaô[Jìoa Ëýð¯Ÿâ—Þ94`†`Ì+—fÞ1!üðLöćo—kn½³çËOÿŠÇTô˜vôR¸Åé×'§¿6|¿ä#Ѓ£üy¹Ö×áþ nÊÓëòtQžžåñ‹ò´+OwåéEç㺈(OìèÓªîð² ^•§k²H™ø§úøä£nvìP>ïðµîêù2ßW#–j4(…ñºÞx…"â•VÌFPc,3œÆà0jˆb~¸_¢h)®|ü.ˆyO)¼Å¹Î{Þ|fHï•’Ã6€M£¬Ôá«*…»-ŽƤï¡ç „`iØâô´ë]¼ê°E(09`W…«°ei½Ä …CqÓì O’µeöïóÖÉû6u^1ãa83iŒôsÃ?Q™¹7 çÎ`¦vRHƒtð^&~,½†MŒÀÑÄOá…‚k( j|ø]Y÷º‰¬¶-ï77Ñ&áÿòåG ¤ñ¾ŒKk§‡Í5ÎqLZ° ×q |³bpNå8˜°}= ^Äšsƒ³ð0z­y¼*™á6<çJ·rÌžáæ±Ò–fÄÛbΘ_'m\ñüäƒÎ.Ë”E ¸®w Œþî&P¹f|sß,Á/Z'à+Jâ§Ê8"ÑõÎ_fÏá¨ÜvG妘F_£Œj{Ãn“ãÒ0ƒƒK’Ã/8 n¼L‡ƒk‚~u­r¡ë:®;†¹ÏûŽy|—)?¤BÜÎmÇ¢Þwž.:w¾}‡—xþ¼÷øv”½•.Øu+³]Æ„-€FâÕ>ùbw÷âbÊÄÆ»óÍ“®[0£Ò>>1hC4 ‹*eYôˆBU,´WA%™¥æf·É4r4¢L¾WÔøÂjðÞÑoZ¯¨H¼¡ö‰˜×`­‚…PïXvb³¢ÜVýr­ö„mµZ¹Ë<”§^˜¬åߨ½0žJÆL“_ij½[“S/ßK“vñ:ïiÃÿ ÂüIŒ+ø'4ÏI–ùî¼» ¸² €3w¬Ù |à˜vÊ¡˜'ÿK¸îCÆ3€\{GÁâ 9ßPâ¨VàŽxðiUÐn+üyèJ"¥A–!Ryè±Øg® à€ù‘À׊é'8j¹š½³]¼4c¹ˆ}œ—‘pvêq]•²8#ÝuÏ¢\Uájà ÃD‹Í‹ºÜŒy 'tÀVÑÄ?×Üâ ÄísÓ?_Ï}Zˆ ë>¾€°“‡åǼâS|ÛwÝT/H¬K£FkHóK‰ÞVñø®€ýFr5¼)~ýÄâíÙðXõõ&`wœø&Zt°œ²ö.~nÀ³G¾Ù㛀4ú.°@Ä_wù}ÄK㽜³/3)ƒ1~hasŸW½<ÃýÀöõ\1¥`P÷'b¶gMðÈÝôÕ®uöa2ð«qÔEüÎ*Î!Äšè{ŸIÈ9(B€ßÌŒ)þÐD^÷-YYÏγ?‰ˆz5€èİ¡‹UÉ¡G"ÓШ=ÈʹÑ[ØGFù­Õ(8bþ¾W)Rl³7LBaê Ãr%|U–L­ÜÙé~,Ÿdಋ÷ _€Rñ„e…Q²97‘ÖíD¥V»¸ÁÔzô7ÈÈ`˜.â tü0Ú†9¨n ª‚hzgQ*ðuŸ)¶(2Þ9¸2ÌBb¡³:¯Ò*>Qü „/I#ãmpþE>®*¶nÕšæóaš7»´'Q}˜ì©áÝLä8Iæ*NÞ —$Ú¸‹ÃÆË†-oÉ– ½&¼éí~6£Þ?.³N:r¡ø¬ò¢,E*y*É•impóA=7z;Ñ2—Ú2"½ OS1èæÎ:難Iµm'KG“…ôËàº~ŒtÄ3R':L=l;gºé¬[¿ø±‡È£ßUD!pn®I„=ÛŒ%š9š®" ëy߯\½lcFÌ2d³÷Û_lé€Ë¬`÷‰¿í¥œkÞí.žÖ87±8 ŸFÅr ÂL7È€úÆïèBƒÁiYSÿ=6|D )C“"ÈT—\79<ŒwV»Œ"›¨³í…›zd® ïi–%'Òù9ž’KÕ¤tˆƒÊàUXa‚©¬²CHG:ðùð4ÜÛZÈ€î&®lÆ…¼èf*¨ÝAoÇFgqÓhiŠý;[|U(r’ë‰AK‹$ƒËÓ±Sêi4I.Áó´\Ý|Å&€ùž•Ò5)Ó!cö,¬Fhn>¶ÒqѺf=D!V@ðäìÌì a…›³ŠŒ¦awâÔy^OD4°hë¤Ì‰µ ÇðÆ=aVaÎÓRã”혭 †gÇM5¸g˜B$áWö7~ÅBww›B2Ù¨)Í¥mZi*°uTqŒOÁ)†|„ˆF1–û¤S>\åEŽ”oT,” ½7õë6 –¸L€Âr8² VÍSœÍ˜˜FôÍÉbŽšÊ«~Œ¹ô«IRô ö…Y«Bê ÷‡bLרæáöT!Æ0‹{d4•ñüº5·éž¥È‚ \z?ª'Õ°Ä2,÷:Eï©õ›ÍÍàd¦gfÌAE#>2VnËñ$âª3»?zÿž˜Uïwr½_‹ÿß;ÞvxXùÚû½àýû/²é|²ïìš’I*/F)‹+l~ÜÔÂãÏOOþÿþ ãendstream endobj 185 0 obj << /Filter /FlateDecode /Length 4080 >> stream xœÍ[ëo·ÿ.ô8ºj}¾ASÀm'µã¦¶Œ~pƒ`£WÕJwŠOŽãÿ¾3œ]r¸âžå8N0Å%‡Ãá<~3ä}¿½\ ü7þ|u zW¯Äêá3¾×^®¼u²nuu”ë]Œ¹çòàÙA¾w&¬¼3¢× Fåž cïle5´ 4uð1FÀGËÖ³ÖÃ×P­7qbè½eLœ'§Co\d<éû $ç© ;ª1#Oyµ‰%¶šX| “ WãÇW«¿|üÔˆUì£Snutv@B–+itï5˜’Ê®Ž®^t;\‹^ ïþq'0®û šZÄ}÷5ް1Jg»çGÐLjí»/±_ a¼îž<<\k ä…éþ•¨Hi, 1¥bwÄVú‚† áºÏ•ïE‚÷tI-a(´|TúÖ2/;©¿9ú;nÍð­ù>jVGŽþø¢{z(ft¦ûËáÚ*ÕÇ »MîrëÛܺέ—¹µÍ­³ÜºÈ­›ÜÚ•Eþœ;×¥ó‚œZ}nµøúw—›Ÿ7Ø),~—[§ETn‰½­ßÿLbÈì¦C’²Öʽ§rÓØ}ÙÔec{L6òHg{ùø)¸ ×G¯CR8Ó[on­Û ß^¿Üž]ÜìÿpŠÞ@M{þüþãg@wee ÝÑÓç9ÓË cX­óø0BeÁ"½miú:Ï”Qˆ4³)Û_Bu^ü¢‡q¯¥W:\» EcwÜÒ’ö²xÕÃGlÁ,Íü2-MÝÝ•àÏ#œ·,24¦ì\ï' æ05¿iFT½À³Yƒ…èh$©çf¸:…SJz t‡ËÓÝø'øöÉxÖ$ºnØíNáo¤¾Îô*Cñ^QAÝý¯¾¦f2™Þ0 D¢Ñ}úÒ…Iôfæ)E°hf»/¾xÈ ¹Ð d% …DˆfG9Í~rô¸ÌÖ½m±!1~–ÙFÙiêž?÷\wÿâåëá È×ÛW×Å‹ØÛä-zÊQÄIèª{<\œ\¯ Ñ/77§/7ÃÍÅv3\â¦7ó‡iW1L.©Â°ª“H_³ðþDÑX£@¿ å\%‡Á(ç°[£# ôa„‘&Ò<ˆö‘?KÆ›îUþ¼a˜äø›Â†¤ ; ™b/r8‡m Ó±áXlÜ DJ v÷ÝˆŠ½r1Ó¢í3ޤ c4fÚ¯ÕÞ² ½L,Æ`¤†U¦ÞÝ(…(aAhúdÚ—HSÔÝöü"¡-m# ¢,‚'‹ãqЈ°«Š$¶`]ð#G ñÖö%Íc@±†‰NÀ’§i°VÚ„€†!€Â§ Ù7áHÄ«IGYz%j=Ï­M‰š^˜˜)$*é˜SœtL†ˆG”ø·Ñðmý‡ô¤1ª€yÐùc6qKÇ*åéä`0h§½N*CôÉE)ç{ã#¸¼).!;&c°]È,B%Ìüž0íMç Ù¹Ÿ‹|W´•ýÐÁ{Èø\e®f‚P¸I°ª¢†¶gÔv²–7;«aš‡}€BJ+@^eûe˾γ.™JÐ~œ2šóxBtíLó÷ã¶}$mv=Œ¾(ZÏDÜRºz ~iÔ™'YÃî7˜àæß¢“½OMt¡LÂIK´ÔÎk.¬ã²•-®ËÀ)ÓD’ÁM[ôAÙnø®è¯Ôä6'ÚÃuQdÎÉm‡ãÃÉR™¦'%…ì©w3­E©—qº ¹Z€#²Í Ö¦¡ÁEÃÝ0]48õGˆi™¼´³hÀ›Ö„äÃqi ÛzìCZé‰îI? #X.é²^%]v¨Ë¶òZÔ5îHÛF²M §ð¾vŒÓ²Ã%ß2­ØeËΉ›8w©¤.BvØLð,(Ñ! Ü*±]”<ºöd“Ô†,ŒZsò¦‡óLrÛÍÌââÂ’´@£ø ld5 ÒlÌ×'KIî„+®Ë´¤rÓÈQéâ-¥ãÑ\1L—;ƒWlð) ¬¦Uº®@ë3!‡hÇÍÝÐ3å§]œ°ÆÀ‹7i‚AXŠ5Øœðè²v¡q+X_"°€¨¢Dd$x• ˆ &ã ×st,Á 4lm ø\À<ÿ-ÊAç gë—¼dORÕ­Ž„iMÑj˜ÊJÇcþ~4mЦ=7Òš«FúÓÊ¢n}ŠïÍox.Ö¼€Ÿ¸d;þG>Á©*˜îH€h$Mµ‚Ü]ßr³'¤P@6ÈI»èvN¤]Ak5iWt:ŒÚZ­'ír®&Bê¥uŠû-õ(l•ž69Ô¶jeîR³v0ˆTT$¦“¥@Ó¤\†c‚ ¥&ÜÆB%‚TœêûƒTœç‚]©µ³!öÛlNZù~ à›¬@êB"4nk3É_-°$ÒðΕP›·Æ$ð9J¦ŸÓ*ɪƒÐ>ŒÇIHJk¥1?U3ÞYš·ÁµÌ£ ‚mÅØ6q.@,•Ô0Ljc?Ôí u‡$¬Ã6€^åÈ8žÙÐ<š?”ÁoFj€Ef¨¢!ç¥-$¯%KÔ Lí‹nÌÑ“ëý¤OScûÿÕW ^»ÁÖ/QÖde®·€÷Õy%@W¼.ªËWv©äÛp&k˜KéTçÍàéY¶ ‡È5d³3[Ì>€ÕVRÌDsôŽJxáu•s6âšEpñ7— ‚T±ÐµÑ˜áW·3ÈvlÙ´ÿï(¿€Tã uçe–ÎŽK“"Xï+Ú? ç)[3ÔÞv(ʽ'WÀMퟆœÓ° \”¤ ó ƒ…¯Š/çaæ´,]»±êT¢úÜÔÉñöŒ˜¨Bð_âõ¢×³ÀqƒJô”oJ…àú.…$r!¬ŽALH`eÌ‚UJ’`Z]W6Ôkg•­Ô °¥J€'…Ù²€qÒôÕ¬·'ZŒà¨Í-;÷–cÇÜFŸ<Ñ«†“kWðf£MoTÌT9þÏŒo ‡ 9ÆØÊé¥}‚Æùˆ",1åœ<˜Ã]WeÐ ËF`—BTÖ„¾”u>Ç—80•–Õ’@:%kAÅ®™F\‡ÆfÞ›ñS%Ëx^!ãw`™ÆEçBpgç̕昵Sé×%l¬ŸãDxV£õ˜ÀkâxÞ²/ø£Õrùúíx‰9‹eµ¿rÙzþ³k±ö¥Á9:8gI¥®;V*Ü2ox™0w7ÜÀ€ M~"I‚îûdþVѶ›ý0Þ‚mHðUÏȼ¢W”Xhá´’”¡‰J& àu,,– ~¶ *ùŒm=IÞ%\‘±&ß/÷ or‚ÆÉÝöw`Ñu÷³æ]J a„"7<þþá‚­ƒ¡++G;I`§¡(W^ ˜N£ŸMÄêeÕ7€ Ç"~à/?.iìˆ4bžJÝRÖ%Ç`æYX¾zV<+ ¢ƒ >]ä2\•j*=¡îιs%€¤¼rõ+ƒ¥+´$I\h#¨Üòb-Öeõ(Žy±˜ŸcÕ\6ø5’ø!|²tè¶lƒ7ócUü8½›ËÓ[ èì½™Š%5}`!} ½±ãæèí²,¬Í7¼)Þ’¸RcÝ5ÑJ‹ÕØ[­Þðà8ÿ©þž üç­‡‘·½øU£5ÜCi8§R.Çz[@0*ßý)ò ¨… õ“„',{W\=¹ ˆ]•}EPÒŽø!?\K{Ûa·â Ï3žèñÑ'DR#Òo,»i…úOô††@xa+ò§kqj¼Ê ³›œ…jÞ¸Õ[ê³ûñwa{oAÞKk𗀡<=gVg÷„¬ü¦÷-cIþ4~VànyK‰†ó]¬Ò¢”\”À›Ã)ãaP¤B#¶o½ºÈÕÏꊰùX›Ê»k×> stream xœ­YMs$· ½Oí˜Ê©'Ñ´ ~óTmb;åTÊ.ËãÊÁÎaVš•T;ÒhG’må߀è&ÁV²µIía[àÃ@}\ª–Šþ ÿ_Ü.toÓò×…Zþuázzœ‡>úåí"$ÕG[ö‹1@",ƒ·ª7…ÊJ„Ô{—¥œŽ¦wVH•)e¼ím:gMOºÄ‰£Y1Å>¸jÕð³4Ê›Ø[Ÿ„QB4FU©q¥‘Œ*Ç6‰óÔòjñq9”Ëá¿‹ÛåŸ7‹/έZ¦>yí—›÷ 3,ýW¡í–›ÛÅOV«5$¡{ûíjmŒîSLÝ7«µêUŠJëÔ}»¡Ÿ´RɆî|¥}SJÝw+T£O¶û’>UˆÚu?þEç¼²žU‚ÒI[Þš¬ëÆC“i¤¿£ï¨LˆáŸ›¿‘GZxd´Æ£5zµ¹DÎI8¤ˆÆ ÂV¯Gé5Ø>â { G#½íþ´Z;MnCw_÷åëP¾Ë×ÏÝ«‚Ws‚·åk[¾ŽåëCùÚÍœ÷ËÌÞzðÓÌÞŸWÕ«×ÏO¶öáÕw3rxâøyV¼œÑó(ÖŠàëç×3FÖH½{Õ ]¾Ô«_g+B &ur–›¿/6¿ÿ©ûbÑûÐ+è.flØÏZ{œ 仹ÊÃ?­/_ð_B_Á\¹žu¡jòR'Eè«ÍâûÅÇ¥h1¡2‘Œß`£ë1Å ’U¯4ñøç€õåöœ`&¤†»½c&b™˜¾Îôʧî&:p¦»z¢\w))äšc¦‘|@,¬y³ë ¯âfÅ„>ˆc-‘CJ#}üÉ©ÉFºxd/ä&$Ámf5‘I· M>â*†ÀM‡Ž÷Y‹Š€6Ä Z Á˜„"5ÆúHjtp¨(v¿fšL ‹JöÏ)om”]³0^‡\=f«¼ñÝÝ`xL@9€J¢ö1t÷r}[?JƒïV:¢rk¥U$`—Î'%:&/u\JÝ7ÕËÆ–+Ö£‘Þ¿§U„Šòd¡} © O£.[oÌ®¬#LÕRœl=2')‡^íXB+C9L±t‘u`4”Cƒ‹:/2È"C¸Àªb$iÖ­ë]@Z'„i‡ 0~DÔh•õ?á®j˜ãv\Wt“Úõ¨w ™*±ö+Œ x/;ÜŠV æÈ>c5YˆÕÂáï±üI_¤ãOd¿²m49sp£VÍ57×y™E$ÂN(–øÊÒxÁÞ!gNG$QŸÇtDòíƒvrÈâÜ^ÄÊ öÇœž•^m¹¡@? ›‹qüÅ g°Ñ¾û×g?€ bÀž ¥1ªØœ%*wtï:Zvx×o3¤”2r›”¥L× I"uÏù¯­áD2)YüfƒÊ@.ŠlÔ4þŽz¡½Ý×6鑹l"^(¾è*MЍ¾»Â_˜èÑX=8kvU¼“\|àE‹Û8=WwàÆFÎrà]‰Á¾6]C¤.SUéò¼Jý$âQu Œ‘Aq¾Íhµ÷˜¤ØÜvä,Ž % é@ˆwÛ»êß6ßEÒ*áú¾"åY%œ™zÈ4 ¸·ûâŸØsW1pÅ6伕ØÓºÃd¤j[<Ü2ÍÇDLA¢¢7ÙºCTž0»HÜ'q-˜g‰›j_Ž.âÝïÜX©l®Z]0DT„,ƒ®i3òѾvÓ2D™bÉuî…¼á Š5Âуi¡7FgW3k®?'OClúóˆlzõ8‰Þé(\oàÈ”›#vÈу…Ë_G¹n y\¥òsÓ"/[Ewp ¤á©*»XåDÈ¥oð>·† æZ`îXæÞÉ gHk¬ ´•î •$á½!t),&râŽa°ÇÇ›h¦éD¾â>qÈö¦0âÙo•6Íü{£3©á~dâ¯Q•Ìs‰¨z [‘¥ÛÇ:éÍ[)uü&ù«\Éì}E¶Ø˜q™gv`º¡,\F?0?j3 ^‘à´ð {,âif\J© HWÉ5”²çåMfN¥—ä¨aÿ Œ6¿ÉT±v%±…Œóúî›Ë®¨Ø?6½ÀG ¦é£[T¬ÑÃŒ‡Ñ'-e}¼ íØÞÔàݱ>‰ ƒÀ(G¯☭ˆÓ–Ëj~Exµ¬ðK¨›{Ù>S?p›–prÑ…jú1Œg€îOž#apD’÷ ÷­ÇC¸6| b{ŒíXåc[ŽÍX}¨À–!.X€ü^lÄ<´zjê߈ew ˜³AZSï:^ †V¸Fø·ªc+ê>S\Â9j’¥;,‹-¹D'^2.¹9=ˆTͼõ€Ó=˜2ÙÕ7‡»Wß3žg^nfÖêð}¾š¹E‡9¦TÝ‹ùÔÛÕüÞ ¢ÞerÑž]´¹ýLØÈyp3m3̯«ð3ÁU+Ìã¡/ÌýÑ‘° ·ˆ†`a ˜hVý¥n{  ÆžÞy@¡ý„¥€%3Bq\¸Ñ(ü¡‘à^+¾oëyQwMÁÙ ÌÀôÔܽŒµ«’iÕJ?ˆêŸ]O–ÞZ¾#ÅŽ†žËQ¯oKH­º‚‹g˜^9´{åղ튂5ÁÂO…ŸN4æ“55Ðâ¤éÝš!D¦5=òrd_¾ƒÕ÷ÆãÌÓn.3Œí½­=Þ¤c¢Î.Ò¬/ûš»Ê—/·yßÕxˆÄ öõã<û¾û9Þ̼äýn†Lþÿóò4ñ¸·›±õZx7÷Ì·™Qþcùújúô7-QCpy6ýGå"9r¶àx’ÛM I3m§pLìi‘H& ª„8Zä}SóòNª@ïGÝDcùS)ÇäÁ-«hS…Àg5Ó¹=Eò 5cv?_­úªú¬z~ºM•SPiûNtš²;äiž3%%ÊÍw©9'ÆÝÁèVr‰˜B›QV´®²ÔD£ÈïeFá”kË{Ù–¯ŸþÜeá9ˆ1_vsgužåvP×V¡w™IÆ`'–ÜМà¿éaéù¼,O‹b•êrnÀø`¨GÇöºÞ&@ç?¬I˜¶O³âB䢽P:È*h~ÉË.ÊyY¼(ÄáÂË3ö=‚kFß +]1ÌìGo=ÕÜQ€»ël“*òÝä²Âøäƒ‹ ù+œðîå4—¡ø~úT!&–¡ «ËfààPw©‚;>f¹íà ؜Ñ+NQ’²ö¾û LG­-L³F«òkqm÷[,/t,àèú&ÚÜ¿SöŽÓc~€Øç5qhIZ¼í•èbLP[iê%«¦G÷Ö&2ƒžS$¶¹§Éï#IOmðu•÷=×M VáÓº) {í|U™ŒÙU‹‰,¿§èâ§óUyÊG.xSxb)—“&í|M¯,`é8í{§|Í+2oȼJ<°3Þßùíx)*NºdÙßç?ÿ}¿ø¦…±endstream endobj 187 0 obj << /Filter /FlateDecode /Length 5245 >> stream xœ­\YsGr~‡þ xÓŒƒh×}øÅ±kK»¶»k zZ:b‡2` (-þ½3+ëȪé@6ƒlªëÈã˳ñó¹Xä¹Àùÿwwgj1ñü×3qþ‡3'åb¥:÷ÖÉ%¸ó»3ÅL¸=ûñ,x¹ø Ͻ3bÑ &Õ‘ ãâlšeUЋ5lVá³´3‹ lCk^p-¶c9Vˆañ¶*ÿÌåtXŒ‹ìPAú%ÙªÍ*#ݬ|¨º]9ÛOœßœý|&)ÏóïîÎyöÏ?q—è”;¿|Fd–çÈ Ü^øE*{~ywö×RÛ ¥÷›ßýi{¡µZbˆ›ÿØ^ˆEÄ ”Š›?]âOJˆhü懭rKˆ1nþ¼…åBpÑlþ…Ên~ú769½(£ÆÑ’R¨¨ ½¥4vS6º›ýg|Bûàÿçò?ñFŠÝH+[+¸ÕåÜáœìc€ÃäÉüúeö8jè¥Ïp„›k|Ýá\Ø<À¨Ž"8pUÏz³ß^(¿À¥6W87_êÓ;¶_ì Þ2n±Álvø âîî·°˜^mžò¨T›Çm%ÏÇDYí&w‰šÀ+‹ÅI!£Ú¼.¯˜€‡ JÚÍY< °,.à”Ñ›·éäN‰G÷ Lý•1écc;Ú r×p­´Ûì‰jÎKOôq1©ÓÙò”D £Íi=«½%ºäáJ—ˆ ¦}<ìÓúÐÝè½{lR6Yí*I]fK‹’½£=tw(Dˆ™ÌR$>4ÚÍû´¡R°\º,pÁá†(YZ€¤ŠPäîçF¹vö,2€^4F?âh„Q¹¹ÅUò©Ü‹²þ M´VÒ6 ð£„#!‘0Èõ|ß$ø€º¥á‹Ô=i¼¸Ùaë}¦q²Èy¸§jèitºm‹wR\/G‡ ѹ¹) Ÿ•-]ŒËÒŽä ã'JÁÇɽŒ8ºÞp@ÅÅ+Ï/¿?»ü§¿näÒð+n/L„™qó##HºaÔd=©¡ |6i¼äu,<Ÿ€è ¦È¤ÖxÇ Ìfÿ¾Ûl¾Kœ×:úEh“°GcA"×'Ü0¬@\¹!Cå¬;Q JÀyL¢?¿ÕYZ!L',ëô`çjÉY¾¿§@‹'Œž€ [<×ç4 çÄÚ¢^ñ%~AôýŠ|à FñÄfúNŒñôÅÐõW©7œMŸHäî6ï$"QUG%¢Lã•: ¡£¶@ùCÂu+`N¿­¢ƒíV¹¢ËÛè†#Ò䉦€Æ¤?Ryå8UîÛd>¬öî¹ÁËx'Í¢”)x÷ŽéÚ>½)­u~sAr„&˯Œ9Mo7!¸eªBÇrÿÇ™EŒ0ÒDŽ~÷4ÁÉþ÷MB¯i ׫úSb à@pܲî’F ÎDânËÉ[—aÓËPVˆ°ÛÈÍt#Ë ÝDô8à¶M²Õ׈:àH¢{°´ã^"—ÀhM„*WQ„{W’¨ç/ó®"jTôe2Ž[ˆFmÀº)l ¾o´è-s1œ‡ÄXº7²·ÍÙyŸ—P|… ##< °ìÍ„QÎdPóEI9d²¼ (:ÅçúŸ:tgÙÚï 4é[\ }99J;¹Ým³TŒ¾|ëæÍè=#eç$ý#©¨4*¹s+xÃ`÷WQ‹É/r°‹”§|+G®1Ó¨Þš´MšF4©“fZZ(ßáÛžQfiû®H|r#a4ò\p@$­£¹¿%Ùõ;§ÈŽ´K[9Zun+´ 9»?µ8%öY—ÑSÎÎØJH°áüKCêˆ0R&iÔa»´÷YtDZ|ÝÀ[¡s×§-Ò0¦þ{ý,,z¢ X~àY‹¶Â? L>íÐe2Ÿ\8òpzµ¬Á¯üšÞ‚É=sºòLžË@™Ü«¦Ù}B¢ê~‘Y=†4ü±-× ŽBš”>Oש•ºÇ–aSiQ-x߸½ö÷‹p L_½­>ôÓ¨èŽ+ºrÀ¯¦èW Â2ªæìbƒR>¾4Gñ}Ó¬Ï[+aØšnî#Ñõvt fyŒd¹‰ÄL©&±r0Äð2s œVVD|=ÚH0#&Œ)ä£D¸NIìÕlñu.~19™”¯(+¬“Ùš‹L®YM“\}É„¤æK l_\1ÓTBÉ Yêå¾íÂŽñ3[™y.ƒºá~šª k¤y·M%ÆäÊתá®Ö;s³ç µ^IiZóºÑœç&®¶²ÚøœÛöµk€ ²å«l³û½eKU1ò[=ôN\q&‚ìqâ2apuò¯Xmá‡-HÙPµ:U»Ö#²ÎÍæ‘Ê rh!âqG¡,¡\Y v w'qöQ"þù ,®Á„5‹5xn &^R¹cƧË6qâÎfU³Áö a0Åü»ÊÇ2î<#ÇŠâ'\õ¼Ç¯´.,BQZæü$ÉD„´/Ìðµ9Ì]Ib-\,ú!î^ÑcQ¶]³ZfŠØY-„tÎöÑÝ*¿82\¹Ÿ$®R”ÉwL‡V-DX?œ¸Ëѧl)ùß U ê…Âd b»¦›ɽ¯Žẏ~¢×‚p¨C9x¢1$|ÄA)“C›ú»R¹QGŒ7<Ó×f¥Ø>” CÄ>ØŒ þ\‚ÿåH«L§‚r­®{ØJŒ~ž¢<Ý­<íêÓçúô´êL _SÁjDw.ìÁ0ñø\lçµPÐ.Ω*Kæ ¨ïëÎ:+{óŸEL…¨1¨Ù 67¤tÖDÕ7çPž" Î5àzŠåÈ]fF”7ädcol2¾ñÁ’ñ5h´÷X×zVyÓõؤ´Š’Kt±^“öqBÍò†tŸ/}<¬ªÏž­Á2˜Eºü‘ÄĂóö4v~™°Ãq" |]"m´$W½šŒLle~£‡ÏÝ6w…E¯³[b¯«mcZr³ÍMèenžÓ†1ðw‡&±*‡­áqÏg°l“TVâ9mÍ=øéLõN[s »ºf:8ú­y³/Êoò€ÖÀ»›7›j:WPÆøÄÕrŠ[>Ö'Ž<+÷PLñßÒEV6‡RzW7~¨›ÜÖ§ý3ƒ­ ²úNo¶ÄtÔˆAwqXÝu%$ò¤úAE!¹@žÂóÛ¼.¨â Op’é”Ô\P–c`ºË­>õ6ÒGIûZ“1V¢ý jHŒòÕó@pc®çåŒû´ ×Á­µC ³ÿènÍBÇIé_ÃúàW‘\UùlG,EêY/¹ï‡äK>ÛjnŸJƒ©œÁ‘˜0´ß—gx³ëq^óEØf“j;›ñ\¾ôT‚ð¸RÉ|âä™Q-‹+“Ö$cÝô†­Ûõ‡Ô,®|×m½âȱCw쮥pá8ä'8åCŠEìA u‡é;ßLR' FCóòVØoQ{0,b^ך§e°¥ð) <ì›ÝéÞ¹Ì_1%/—¹N§ð DSJèÒ™OÄü61,´ëN72F¤„AW¬Àaôf»ŠÇ2~`2ù©ÿhÖutM ¢5«’•߯7 °Ú+óÊP³ñ='u×Û Ê¬bÿHwÅÆœ>¢Ç¼œ×ïÊÉžïZáFkÒvÈë ÝAùó²w9ÄO?æ¹"Œ6ò¹%¸ÎAÈíRƒÊõõÖžøY{>2cQ›ÞåæÈù¡ðsÿªð1g“†²eퟷ@aÚRê‘þ˜}I¡ƒÞL‘š\YIÔ<›=BÊÄ={ŽŸþ«éAθ…Ö57éÔ"¤OWcßM.DNò°hÔœdï¸'P JÞt«]¸ñ< ôŸA: îBµäíw ¯&µÀ«BÜ¡ë’XàŠ ÛXgÅQ²-‘S­AÿÍz+ç+•L2¶/ú„§pf½Ür“q|Òî‹„¾ß,%Ñ_YµX:؞ʺflÖ™§¬K)Î<Ã>ÕÝ.QH|îw+ƒ“6².æf)lÜÂF^Áb)úi[Ñ3~ᎣCÇäÙçJ7{Öñò”oÝ}ºT®'º¯»ö}î3½‡•DjëÀ°x§¸Šæï›§>q»îR¼P “à¿íh]ž­Ú~Þi±cuÍ«Jû—tZð7K¬,Ñ®÷{ ¿>ˆÚQÄØÍtܨ¸ïzþµ Ö=ë«haR>fƒÃ:‚¿—1XSë2Ž¢8-d ›¬€´0bÙWÃXïÈÄã†X˜ T9oÀ®Øß/ê!ù-©NÙ`úÀ£3Ù¤>Ý^è¢L¶£×™I˜@5ßÕ,!ïvšH\;“1’zö¯ØÚµ_ÒúØÕ4òjGeP™ÚªY^ÿ’»¼¦=ûΙbȲwÁù¡¢OÝ^»›ÝøÙJþVcÄœHßt JSfÕ°—mõfÓx‘šö1M.úÊÿ¾ïJ¯Ši‰’ îØ• j „2e¹IRp×g”êŽï›^qY祪ÆXë•#}Ü’À:ú”Ue¼Ø%#?¤ºn™ðKëºí   aß6œd™F.«o¶MÃé:Ày¸ZTXwÇd3æ•McL߀•ÓØ.¥+á·‰¼}‰•fº/O€ìÈMÐõú S&`hòQDÁu'$ag>øÃv°äÖŒ *UgG‹mÇKa/qçõi¬YÍ{p¡{¢ã¡½hÞÆ®¯^Ò&±´ø%(gøÔå/˜ÇSèÒyÞÛ’éYݘ‹OÖèbÃyíðÕÀžŠ.XÕòô“²I¦ªy%¹ÒÒ\j~i2ÑÓ½j8k ¾¢M°bÉñ…%¯Mˆ'Ön×ÊQدj¾¶•¿Þ®<µ’Øu}úe%µ¼[)j­×5~,y®oûîFöÝJyš+#‡­OÍÕ]oÕh;L>S*L¶3MU Ó÷Géè¶nÇý'šá{kÍglsõl-ЧOü­{’>!ªÏOÛRÞý¦­1tÎþæ(Ô€³:ú~‡UöýÖ£PæoãÔSþî ÛÇŸÄò“Ÿ?§7pYüj€Yå~éñ¶@ßM>chîVtÔM§;J]aSž8‘TËWúj©«ÔÏ7~H» KÈ1®X¨ ˜yF§ô`^Móêð -ëÙ«ÁÛ¶"å§î¿‰]ÐPëΓï4ôž§º9aBí)™55¥ ¾¦Îc M8lC÷Á+„” ñÔwƒ¿7f„m¡g G'·üL¯»ì[Ñ^ò« Q°û ù¾Ýh¢|¾mÆ !šxíó.EhkO†<¥\2ƒó$gg)›šW ï·ÞðDÙE…Vk,¡ÂŽÆbtWZ1]\žy6¤+K6W€ÝêDáã«d]»è÷,©<GiŠ0“ÄᳩÚÿwU®ïe+ø…[ú«ÃÔÄ^ßÍó»_M}Nþõ™—d¯ÛÊÙ(K­ýoÊ*ŸÄŽ¡‡cêýK{‘[ÿH3Bè*[œµ£ÍƒÙ )”Fy &vÍïÌ-kç¿%SrÅ< øDêæºð‹½÷"îés»Á Ã(ý‰Ÿÿsúˆ§p941Ã÷#Htâ ‡1N&‡ÊŒhŸëÑ"§Ð×+•!|4ý7ÉÇeˆò‡oøw-Yx±Naºùù¿iôõ?ˆI…¨ç»§ÖÿTRâäCJ.Ò¬+iÕØîyôP±ÿ%…1îÁ$¬á½¹+eß(÷Û£çl+™|Ì¿oæ‰o/Ïþþý/ê,“endstream endobj 188 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 159 >> stream xœcd`ab`ddduö ²1$º»ÿÔeíæaîæa™ý]ZhŸànþ ÀhÈÀ ÄÀÄÈÈâÿ£ƒïÇòî5?V¯Ù>Ÿñ{ý-æïç~ Š.ëì)KJ+ÖéæÈb_Ö}°ûè2Ž?SÙÓ:êuä2²Ø¶ô=ìÞ„º·tìåQ^“Á®Ó1}ƒ<Ÿ‹ù|În®nîn!nT4/endstream endobj 189 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 294 >> stream xœäþCMSSI10‹uùPù`‹ ‹ ›÷Ä¿»RS34UÊøˆù‹ ÷¼È÷˜ÃøÿÜø|÷Ú÷!²Ò鋨ä3Ðûû…û(ýJáÎ÷Ñ÷3÷ ûÑäû¿ù÷#÷¸VTGD7û!û%ø¿uÐøïÍ÷6ß÷kÞøóù/T­[šE‹û0ûûûn”b©k¯e§„Æ{Ôx‡ŸtŸs‘r‹vBA7$L=¡ÆRk;¿aÜoÞ‹÷-÷ ÷÷ ¡‡ºe¶j°p’0£b–Kœ‹ÓÓØÏë̺y]· 7Ÿ ‹ ‹ ‹ 6Pznendstream endobj 190 0 obj << /Filter /FlateDecode /Length 3636 >> stream xœÍZ[o\·~ú"E{¶Ðžò~qNš)е•§´Ç«•¼‘vWÙ‹ÿûïó<’8nás)ž!9óqæ›!:'=='î_ü±>c½°ç?Ÿ‘ó¯Ï¥½¤ì\KE{£Î×gÚ’ÞˆÜqöúÌhÚkCϵ¤ç åCm¯¤%™á½hTîÁ£¸½0hB)ï,4cZ–±¦×²¬*þÆ‹RÜôBY´(Cuo­UF¥žjT\Tž.­ ÍGÎoÏ~:£^•çñ¿Åúüó«³?¿äÜöV1u~usÔLÏ)¨ Ø=Ñ=eòüj}öC§fsj•ÖÝËogsÎYoí¾™ÍIO¬!ŒÙîÛ+÷‹b…î^͘굶ûnÒŒQVtwM¢ “Ý÷_ ÁþCN„ ")a–‰ð©¥TÈ.Mjy5ú;×6„k£ÿsõ·!†6ă©lêê¶ðÊ ÖÖÀbâ`¼ûy=ýZÎLøhkà` Û k÷='„ZÙ-][¢”é®][Âm+ð(`–ë´†¯f´‡M+Ñmsk—[ork™[ûÜb¹E𭯦¤€­hšf_y[p ZÜÏæL‹ž[Ó ÎV`DÓ½›IéT«»aUÌv_ôÖ oœ>¬‚A–¶LÒº¯/¡aƒ»Ð©ŒF½Ç¬,Ø7 ÀX ÓfÙèo³Â½Ž¹µBð.˲Ýhb•ݰ)Òü‚*²4Û}Óp(@D*Ù"i½›Ã®#:#Rß–Ý—-#­í¼ª1ŠGÉŠÁê£Ö±4jò ˆ+Èa¬"ƒéº_fW?Ž 0•4øÁMîô)˜R0w>`iØÕR<¡ž|ÎÁsqÎþäJ„Ãá­m×á8©?ø™à\*¯A‰ÐÔMäþ{|pj¥ ˆwMvî3hIkxwçÀúpæ&½4œ¤C<í0®@`äŽî?ú% ‘ØÆ‰°µ^5Ñ,¿ ù³ÍÀ§i·â 3áqG+t6¡WQѽn–=Zò²˜ï$,Yr}K·z à¡}9– µ¡¿òm$Æ‚1YOàˆc¾ÜIÂÉÌ€\¦ÎEQÍ€æDKÁGï¶ÖÚ[ÙÐePD,t&=”5‚r,{ã !ãØTÏZ½MÁ€‚ïŠMƒUû9¤ß0˜$nŠåàl“Ójƒl+X¤“0 åa%hIåÏ\Щ÷©ehYìqâçÅlVÆhŠ[ÉÇÿu6—Ì-“ÂrNÃÇ*·6¹uÈ­w¹ù[F¡<Ý,nø82ÍÛ¢é9èGÂEO%·a‡»as7›[iA¶Û k‘ î—éÛãæ°{ ãƒ÷èÃay»u=±c?Ü/÷~²y¾QYË‚x ŽG„±ÐTðY÷Åê°ºÝmQ `íûÍê°„XîWaX÷ú! Ÿ~‹\m{4vXÑk?mžìŸgWú4”§Cͯ—›å|XoU÷åýrqØ­yS H¿¿Ønnï·kâ»Óº!”ô̯ÃMÎËŒ<1ÝKøjµp§:ÎõÍæpŸ~ˆîëçi‚Ù`’o6û#˜lV¢ÑJZE]´-ð°ÛÞ¬û²ùa¿_ÐÞÖÃînyx7Ü—§–Ô”ØlIjÀ|ŽËÔfJ€ ¤q)³.X!Á‘½(¦ÃøŽ3ÛRœÆ~uJ˜8"­ À%Œpgì®ïûÙOh´é)Ъ„†Ÿ}X‚¼Bp®ƒ“P.êúa<É9„IiŒ `¾W"U¢?4©™p “1±;DÉÐß§Ò vv_|Šž7ÅMóg~³.Ý9?ƒênCܦL35IkšƒCPØÒmTœa‘üHbkgž”Hé” ´¸JHYÑnÚªz+iÑ7E[¤Ø˜F¸1¥„ÊD!žB|vX㔸ð^‚7ÝöŒSFfËÑHåÂg5• ÛTXPlŽ ÿYAUHdž‚$…”oøKãâx¥èµ½1lp]/¨±…-úyF©Ò¾°lí›6—ëØ8[?3.bœÛ»°.mýÞÂ÷>ùñ•.„qàÆTäaQ8Ûƒ)g1žÉÁ¼ `ç ¬GZõtöƒR‰]aäˆÚ”D<` À : ’@ï_Uº…G “¼0³¹…Iø ¶¨Ú~)—œ_§]9î›ÝûšœÎ“ØŸÅGìG[g°ð=Ø9f Èj\#íR‹òÑ{œÒ"Œ¤ìwÂS·‰'"ËØ± ¦§‰àa”U—2Ù £I÷ö B·ûÿ¢vžÑ ¶ñÙõpú›¹Ï^€§41>{²ˆÇö;G¿n¹êLa.ï†Ýjxï…Ÿæcê@ Ðù}¨d"/ÊV›C¡n´ô³ÒD„I”¦,Mï„M_sW4ýâí®L‘éçE¡D™!FŽ–âEafi£Y3Gfüd⯆ÅÁ¹ßÄ´~þsj«NÑÒ¾_¾[Þ#FvñòÆQƋˋ—ÇýÖµ‚öÔü™’SýA ðLlrËÝvÿ08š™úþPÄ^/o–›ýÒ­©µ¤̹WñukÊœû­ë÷Å"%3ÆþtQJ²÷º¤ü—amÄ3óùPmÁEqdø¸p³>ê×ÏàݹqýÇR9ÄÍš\v…{8ÁÎïÕ²wpõtU¦JA›7—IÛU¢/Mìiûÿüª¶ ®BJ¥S•ÊgŠJWmáÓ—c¼ú"ʯ±j%… |ÃøÞ6ÒcçOYòWi8¾ÆåVƒ†Yº>ó.wSºÇ|ñèSÅ}œüX\™á1`9êPc³>¼Щ•Ç=̧!º}53D³pånô‰Â`XÌè߆Ê]m ËƉK'ìN§0ƒiK–w¦q0™*Z$õW‰w º†}Fæ|«“ëNÆ ò÷oq¸q´dt5‹Ê†¡¸Æ{ÅQm-#³}EÛ¸1õ]âÛ£/B<ë†=â-.D꺋‘úâÄž”8OÉiaqCãzè®E(˜·Í2ó}¤pènD©ˆ.ˆHoäãˆ;oJÍ4= 'õ|!7 ­xMY]Ð9?c­îm‡p™è0ô>¡‘/_½¥=Ï)œ(÷à&¾þ8UÞ‘á¡<¬±í'oxR58ÿ Òøó®/}aN3§A ‚Øi'¦|‹FÎp|ô ²`ñ}“ÈBd²©¹6 âyˆ‘ÔŸ]|œc±Ã''Š3êj‘éJúãÂ,‹Åávºyh¶ŠšU)¶‘ºE· é~(®zLÞ|7¡´wûKDæ* Ï(?"CV‘¿OÁrFðGò*¿£Ço\Nod’ñ›šá6œÈãà/¢\Ëùõ ¡¡šïá0q%öøƒûy]Wt>ýÕ˜d4;´ºŽˆ¼M&à™Ä‹Ç½xšæOß6¶XüsanèÊÅ'}RfË/Sê›Üú͹­†j&ßàüí“lÊ­èË«³Á¿ÿµò߈endstream endobj 191 0 obj << /Filter /FlateDecode /Length 4300 >> stream xœí\KoǾóW,tÉl ôû‘C;/ÄÄæMöaD®(Z$Wæ’²•_Ÿª®~TÏÎÐRdÃø aoOuuuÕW®ñw1ÊÀÿò¿·gj4qóý™ØüõÌ?j/7Þ:9·¹= Ê.Æ:rsöÕY~t&l¼3bÔ fÕ‘ ãèlše5<6© ð9FÀ–­g­‡_C·^á*Ä0z˘Êœ'§Ãh\d<éÇ $ç©MÊÝœÌS]­°ÄV›«³ïÎdä&ÿsq»ùüüìw_±‰ctÊmÎ_‘åF=z ‚¦¤²›ó۳߶Ê"h?|¶ zRËá|Ô¤R0¶ÓZ1ºáŸ[8®\4ÃçÛp'„Œvø†E”!:3üžuFºá8E ríù+"è„þ†Ã"¡Tþ±ýæü d\1Æ£–˜?¿V¿Ä| ÀDžÌw©´ƒ–4yðÛóoÏ`)XØ©ÍDµ Dç³ÜJ”ÒØáøq¸Y3\§ jõp‡+Ù¥³Ã+ÜTÁ¹ápÏ*XÕpËd0=$!8½ãdwDÝ 7¼ÅùN¢ÄýpØ‚Âð.½æ”ÑœÂe{k¿E–„ GµÓð—^âñ¡ôðþD:†ë¬‚/¢Y:ï馭Íäüo6; : &QøÔ mEvI%¨}Ñ aÉúbÚ­PQ•U¤6*éC}lršŽmy<ƒpŠJz+Çh­$áÊ∂XÔ ö|ƒ¯ÐCË Wû›î¸ êâD:&40Ô¬óšFN&ëí–Î3knH)Éè‡×õ4'¦Ø°¤\iKNUB–YÛ )ðp8¶q~ª÷™X1x‡7E Í’žÁDH ËĤ‘ÒE×8º…1/‚B¥åÊ•)D®+ÉòU °_Ò=4€ ÎKÏׂcÎàl#ux•1Ži•­ª('½5¦{kGƒE|ë†o:šh,¨a¦#œ  ‹¾È‡Ø.é×< 3_Z&³3™8†^¡ÅdΧ+XÁ…‹õH£FØô.>#Ö!†X"zø6©—ñfÕÒ e„Þ¥#Õõ6‚ítMÀÌèõU¹é²ß/3GQ¯!ùUúže&¦#ì—VÀ<6Ü»BÊŒÁv 8Øœ$¾ºßçôrf`’ B÷ “ÍЩn”6`8·÷™Ê ena³ÀÉ\Á.»;¬+:œ° Â5ÓÃÙ)pëQðŒG×|/¡€‡¤UBD˜O¢ÜÔ^qüØgÒ€9hbø x`ƒ î=Ø4MåÏŸGâç¬[RY²(?ü=‘Ð`Ôœ'¦c 2±Tœ*2Ae4•…Šg?Út8H¾<§×;ùÂëeïÁ¹! pV–[Q²C/ ˜Òr­‡c¾&ŒÑ>dà Uß§€D«8ú€\6JÚF¿öú6 Š:ôê‚"8\-âæüïgç¿E¨+¡Ð@p °: ,ÊàM}šêÓqáéë¡>þ¥>X˜Už^Ö§ýUŸÄ“O_osÜé ¸\¯Å{£c[{!¿-Ř|î³Ëéa_ÝO·ûg‹1ŸCßT^eq?Á‚ÚÎõ‰¼IVeQq# E: ]³ïC— Žöã¬1ï‘óé%Ħ®W )„ñ¾å :$ ?XáÄ& °p1ùÙ{ßo-Ðíð¹·Ì ÷KB³0Õ™ê X%†bÜàÞ&±Á±Éû¤}g×uö¾ù~îŸ@‚v `ìÍô&fo])¿Š1t1f'–qP4è„q§ñlÍoÊä醸òÁðÙÓËfÏ7ÌÌY½£L ¤0J‹àÚYà̑厌۫ÞS· —EÅT wbñè{Ln•/=6~(êVr|豄å´ÓÅ6០ÑQ‘cZŠqáô»š¹>V£' ‡ó²Ý—@ÖÊ.Óºn¹á´ ¬—D]éJ<ß©CeþÐÁ-ñJÐiEÔ„ÍYñïšö^±<нx`ǽ¢É\ïßmO@Å|·¯™†¯&G”¤m—y˜\QKI/ðÀHátÝ$÷r–û?²l,y# †»¬²du`¡?rvL‘QŸ’9]pt%g=ô‰ }vpX 4”¢‚D Èok2™fïi6j)ÈÔ€~£›b9 “é‰IVXÃX2‰jù4Õ ƒ!®,L¢üˆ˜g*®ÀÚ1•bç\¥ )ʉxæý›-@Möé(™ÊsS²YDÖãR]ä¦áÜž&¼œA3¶‚ ¬bûœïðç‡E£ã:3-W f –6à#l0…A2ŒÂÊVÀ >hm9NòúÂÕ–¤ü^jL¥:ç0Ë »`ÉR[æmKr]Ÿn£‰AIË'_ÕÀá‘é/$k¾XkŠ'ÖA!ŸÝŸ;í 4¸cïÀ‘—™ Ý-¨~3‡ï…v³’%»YÚ d“&„‹…½Ýüïá Ä(ó׫ÆFÇ‚Âö(Bácð.v OVÏq–"5HÃ’½'SèÎ ýÀÜÀkšm£ú:mK÷VBä¾*Ó§°±®ðÇxb¡0ë®úSe´Ë×Ô—Çæ‡ñƒ Å9þœš²”³:HBuéŒé*™  &6éÀFà8g0š#(Ž?Ïé½ÐårãrZ7¶çù,/S&ŽRÍoCÖSÞx­7§©F AEWwLu ܃Dvž(ÖÃSй‹èn pr&t9 K¯ûü?‘‹vVE.œÐè Xý™†“{b¾åØByî%ë^Vo}fYb^’Ó`¹èÕkrÕÉ«eX z5ÿX ½yÝÉ©VÊ‹\˘ÔyÍTî%KPR,-@ñe I{ç˜ÄÿD¶»¨+”~Õ)8 €Ó°ëàœÖ+1Õ'ä„™Fw÷7¥HGÁ©…ù±Q¨ãp^ÞÊT,¦>üäú Ö„8ô@„_1$O._¶,’Õëu^K2xØ×Lò¿¬7ßß*À·O‚ò¯> xv?ݽyJ„@­v—ªÂíï‹ÃãÝÃý{Ò¢ Mû«ŽábÖºFŽ/,§~œnöG$§ò»oï¯®ŽœÜt<îiÄå‘ÛéþÍþáÝtóø!êõ(E‡€(Í Œ_—STm½ó³è%¿h(±t­ZÁÌâªG³…Õ?‰œ›×%p¯”fymN㇖´ÌëÙNŸªK°ÎŒ´âF†àÏõT¯¯éwf¨,à‡ûåâ!6#*Œ³û³]mÿ`µëÙZw*àt-'Ç…«)+ýVc²²¤”:w@¸Ðß”$ËÒÚ1 ÅSáõyqíൟ¯©Ê´È,¡îêCú•_20£y³­w3óKàlU¥YDvùüÓ‹qÏr`¢aw÷9ÍgAMÙÍúõÓG§Ì¿úÛÃõéy}z¶°Zcº9Á7 o|ó)¾èúËþ~ó[n>k)°&å*§)!褼q[VY­N5˜)“Á«úTïµ&Á~§”ÅvWÀñjÖª„´Á7ö Á-ëDéã¯Ee‰^TÏý—ÒP>–ïËØõÔ›¾0Ç$"…ÕÞþ˜f{3ÊÖ,ø‚îÒÉ€ª³AÞa×:Öøý[M ØÉ-ÛþesçlB—êPeRyEÅût‚Tô·ØT£ºTÝ´œ€Oè[Hà‘․(’(Û[RnZ†1±d× Ã2ºc„hBžtöxšz­Sƒý•²øó6VÔ.ŠÚÜѰÃ"(/ÁÜÓ¸þ©„Q;Iv@³ã¬ØòaÑK=:”z¬D?… –ÿДçÓb mC|"†ÁµÅ:E"=O×c—%a÷'fô(¶‘šr¡ˆ£·v©Ø]²×št·Þ¼V]¨­6À޳è.ëÚØ2<4'DÃjbO!'¥…á~li¡ ul+?qõ#éØ;]†4oš‹^I莅ˆ™¥¢8ê…ÍUš :ØW ‚õ*6/JDôSäx‰Ù(LÈìʃE"o™žœâÇS­ûÒÀ†,¹R­V°µæïò¯(§í¢Ïó{|‡A¼ Õq¤>ß2–[$£W Á©¶=Þ7_¾à›uÒY¯†Ê ~WÂÙ6a©~¬žÇr¥{Å]qõc½ ¯Û—¼¶°Ó±›ÔhfcÐDƒZú¤´t!\1Ïún11»kKè÷\»"û]-\¯v¹Ü,T ZUŸÚ§`¯ÿ_Žè»–«ÏÃgÛßÌÍŒÎ:›ø™Ìø++Ì:Lsì×yn(8Ôn˜Bvj3saΡó=-‚ÑÈÚ=K¶fpZªè®;ëç6y'xC?ó!hB÷½Ñ»ú=V.eT¬³ÖKÔâ¼LT¨-|]¥¤SöI«„³°ºÞSžÄó&Uþû(rî’»—0º/pTŸôÏ #öu#]¹{¼Q,a 6±Îže<¼ƒº§8ïöÀÃRÀV°½Ú-FBüÃZâBŰükÎÀ¨I™t·=pËì+½cìF»û* _C€_¸¨ßã²[€Å"[Ú6„d©³Eá÷ca=GÊ"b›š}JT¨}üwL$šžò’© \Äê%ÑÄ:xy´sÓä5ûVIŸ\ás}Bަ +ñ8]/8Xfö©À®„Û¹£•ˆõeŠå^ÄåRÒµ‡° '’ßéxWÃmœ‹ß%¶ðZkbíâc- ꎙ’Tó¾û²À,EøÙÚJN·òÉžvƒ Ó'݆i—rÞm˜fÛ>šf ÎOáóâ[wƒ>¨®û;³—VŽIÞ+¶Žô4[ußjºý«Þ²^⢵nÆû˜VP!k ½ÖGØ<¤=°^ÐîÿÀêG³nÿO¼i’uð÷õI'vÿ|~ö/øï?FG^™endstream endobj 192 0 obj << /Filter /FlateDecode /Length 3277 >> stream xœí[K“·¾Óþ,âaJœàý8$U¶c§’JÙ{sR|q¹ÔÚÜåŠÜ•¢Ÿz4†˜]ɱRåŠËÍ‚@£týu~½d=_²ðßøïæf!zå—olù—…á¼×\,­6¼wfy³°žõNå†ýâû…³¼·Ž/­Q¬—:åÇ}ot쥅“½V¤Wn¡½¤Q½rdB­•ìƒ,2cRËy×[]´ÿ¦Jézeÿfµ–RôÞù5ë™wLß}sþŒye»ïVÂôÎ{ß}»iίº?‡OfÐÝ?¿$ã@ΔA‘œ /õœ+Ý¥I½¬z¾“ÖÙ.þ$È‚¤0µ€E]\¾ ­w  v†“5½·Ò…ÎëÔ{ ûë¥p8èÿaµÖ„z×ñÕÚ0X±p(Ÿr5έèfš^€îË‹¿/.~ææ=,Ö¨îO N„íãÝ&7þ«ËŸ<=Ï_¢Ñ&ËàÕª±.z!Ušÿc.ã”·ùëukiWù똿ùë¦Hücù¤Û‘ïÉðÖ Ùô27¾{b¦_zC©“Å/çÁÊÂκÑʨ뼫—^i%`?Áêe¯º‡Ð0á»ÛÐæåFw×ѵàÛÃ~‡O#”$}óðÛÜ4ÜÄ™Àymø™õŠgýKzÞ®p˜†æa_¼w],¬‘1–@@¯ƒÂ^Á܇èo9À“íîB;ì…„Y£Ø•–û¹h·ohT4ß寂Q¯þ_¶;"¤MˆŒ˜ÑÀà ƒ8fD Áˆ.™Ñ]Wž¸g†·Osq%Ø/n$4ߣŸT&dƸÁͽªp1 z˜ªù6ø´bÊ&q¾‚JâÑEEŠ;á&ð0N€ð ‹3°Þ³G‡ãˆW^Pì$`Ø2äå$š†üë¶À"™“_gökå³/¯ï¯wÇÃÃݳYÛ,pðEÜrƸ×ö sÀˆ» ±¨!_¯-´ÓpLÕ@ó–l0ÈQiÿ]4Åù†:8¦i°ìËqYôOÑ0¹¬âÚeùýy’×Q]ˆ:q¢Ûކôn’ dþU‚´ibÜ¡U:Ùv+²·!nCJ!+°/²ˆöŸ5É ¤/ ø» ="Á?îç£ÃÆ=:Ü qý𬴉ñ°‚eI,ΤTä]ЬÓÏkH½Ö{ ÔâdNLVŒÖ6SJnéRš¸[­AÆHœ³õR«µIX0üá) óä€?zŒ/WkØzX¿›š^ ÒFž¤0.ÌXx]è*´f¾:ëÇC˳bKÕ˜3¬Ð²ÌQ[ˆöíÐ1*a¸®ø.Åî´¨Ã-ª¦ÝûÀø„å:gq|ô¾ÑX.±]{]Y.\ ›ž{‡ÓÖI©+–yÇLí“Á¹%—tîÝ -q‡–¨ìh‰èZy’”ìÈfÞh³™j‹‰m¦¸þ}}bÔÔOÎ0HÌ â‡,Ò¶¾haúÚ¯ u¦nõMrV®’^f Yœ½°ºw,¦¥5êsŒq ðN-3ãjM)ò„Ûbï·»à`==žN­ÀŸ'ØÍsSÜE ò®ÎŸ2FÕ)haµRm-&y”° ¤VúN ‚n9î¹VÉú®Ê:¬ïBOüÑ™ƒÆ`Òƒ¬¤Ÿ4ÌyšåÍJëP²uI¬txYØ%ý |á>ëœGiÔ™4˜ãl©RÚ@T¯MŸ–.‚H(L4¨â˜›àZ†Iøûf¢ù%=ç!úµp!»ŸxBE]ÚIí® 6ïF"  ÷Å<º %ðäÜ]N‹¹V«¬ @ùµÔ¶0fãéeíÈJ¹„xD pƉ_Oú¬øàùœ“ìfê&Qi¸dAª9>nÞ³ø«LÞ7 ¥ïóîÕôÝÏÍ:Ûu¹gWëŽ{ŸÆ‘25—^qõÇlžçñÉx^Ñù`D6˜§@߀oÃ,%‰”ižÚ¦ØÀÒ Gd$•¬gÖÚ4Ë$ ]­…ó¾· =‹FÀØ# ŒSô–ิ”€ZO«Fó„ÚJ˜‰¬öËÀ§P0n;…!¬mzØ9™qá>¦Z:Íp>¡H~·°çˆ'nÏâF¦=%2¤ú™¸Ä8* äÛ€$@8€Z„ ÛåP€[þ$ÆSF}ÄIa×BHT`æ&WrÏ+Ä­'F nŽ…›æ$5^Qç,s ;0¨xH»"£ð2¸VHÐ+.R…¥*÷P¿#ÙYÍÕr´Ø—cz—Ò†' 1ë«2*Ö{còòª(CãÙ/*žsœ ö$ JæÁÚçwúƒ³†0΂rTܦ­è ŠºçÙo«šöÄo¹eÙoIFrMÊ[J‡fªåãÁÄD˜Ô…_j¬˜“ï…ågl(ì‚wy˜Ïñ´ øÇ¸ ÒÖÍgá­@ªaÈ0÷ô~ Ù&‘ÍÞF=e$²‘õÔDVJ ˜`àoIy¦¾Q"‰qv'Ú<œ’³SÈ/Cáar‡Rj¡Íœa‡ùu(ˆà½ˆé Ƴ•ÅHF%?½²)-G€¾,ÃæðžܶŒNÂæá6é°/Ka`tmS·îq­·#iMºmšÂè¤Öá/ Ðï¢Nhn:V?Ê1HÇím-ü!Ý$ËŸTàB’¦K ½D¦7á vÀO …)±¿ÊÄéüz«Z°=ÒÍñ›YûðTÑ8Ÿï8ž ÷}8^]B<¡–ƒÖ ¥­ï ût!ªë‡cq"\ Œ¥ÎH¤òõ  œp˜”‰³Õ<S­G¼¦'cufhߊ¶nùçûÜ0–Š}ëìM£mßÈ8~K\HâÒÎ\„}˲Ël 46|²ŠÅNÁõyªKt™så;²iidì:¢[-–Ü¡QK~^|ƒ Jß®¹ô…Áäq¿LŠŸów‚gs1á¼èA H˜'ÌTÓÈjgân“ÊKƒ±‚bj¥RuN%ÙCõz§jJÄÿ]òVTý¡*§« AÀ4!Eüf‚?Vë«á#‰{>~Zíø|{<œî†ÍvlÂõ»òér{µ½=m±bûpÿV®ê•óÅpûÓõí{ÆŸeõóÃéúv{:%Ѱ½Ûã›ëÍ6µp:íéáîn½=¡´¢~×÷ýê³'îóà·NT>!á÷”‘¿¢…zr[º/(±E áÚå¼z¯WHzG>c(Åêý;á"/ªB ÿˆ)øÌ±}a_uŸa«ÏËD³dtܘµf ÿ¯ ¿&„¤~Üo6ˆ=O‚ó¡Œ/ @OÃ&4…p*ÜtVߨmK¾ÛNˆIZÛœÏÎ]‘mã<ï.&Œ{U†5yw¸õ‚þ¿åÝF¶/.Æì–<¸@²G e¾^ãùŠÖÙÒ•0ó‡rJäIÁe‰JW¥a“¤~?Wê.ï-šqྟ/è¿ý ýkô—Àt êé¥U0û Ïaµæìµ±ƒïyxè¼ÎÑ ˆãújÞIŽOXל9ð[1é8‰ü½ÂF†¼Î²ÕÅd®*.1TÀo>¥õüɧ´oðiB»'ÄKñ…Å”Ü:Ųrð3ˆÞYÞV%‹1%%e!ŠÆ&t*ÏÁóŸ–f$¥š[;#b¨ ±xîyÈâÒ€?5ñõÇy†È{߇ᯌ`ýË\²âaøó÷I>œØxƒÖŠ‚úœ‡jxŽw°Ñ²õÄ _n[Kþú¿Z/Ί—^¯o]œ€J’Ë\ú¿# _wjRg|ê¶´z¯ ¾ž&L‡Mß0uðT0¸$bbMä½óÜ®ž%$¤§ˆ–‹úB“H.ªÂYUcK©DÑœ–FHvVæ°3÷/Ä%¨3ÕLR»É!ðf’!“ÂgM SáfæMÇÓÏDÓ•OÄ ¼ÎϹ¢L[ Zs²nEMò»øš‡I8¬lgCýÚ : 0 7S– ¾ºXüþûýVUbendstream endobj 193 0 obj << /Filter /FlateDecode /Length 4480 >> stream xœí\I“[7¾wÍP¹æ %ÑîKjfªìÄ™¥Rñ$éœìž[½8énÙ­n/ÿ~À¤ø$Ùñ’J¥rýš  >Ô‹茸ÿâÿO®ŽØ ììÕ™ýëHQ:HÊfZ*:5»:Ò– Fä—G?MmèL+AΠSþb¨”ô½$3|õÊ_p/®Ä ZPJÁ7Z1‘e¬´,TÅc¢7ƒPe¨ ¡Q¥WúRõŠDååMh=2;?zqD=+gñ'W³ÇGûA™¬bjv|vØLgØ@ìžè29;¾:z<§d±¤–j=¿ÿÝbÉ9¬±óÿ,–d ÖÆìü»c÷/Fˆzþ©ÁXkç01ÊŠù×®I´arþÓW¨³H­"B…))a–‰0ÔR*ä<-jyÕû‘kµÑ?ÿ×툡qÆ`i»:^Á~pµ5@Lì,Pçeê½[ÎLD R‰ù?KÉܾéü$¼Ì­1·6Ö“ynžtþü2·¾É­unÝäÖÓÜ:íÌÂr‹ìl=έ/rë^n]w¶tÕY·Œø¹ls±¬­QƒÕÜxÉ"ƒŒÍŽ¿=:þìñü1ýXiõÖÌï\Œ7ãÉíéͽ8´J1(¦ÓÈWHh.@8¸R°ù3/b\ƒpœ8¹SÎèÂI Œ¦ ÿ}ã¾òA3__»Ù€ª$œ£“)aØüMè¡­vÝV>¿sËÆ@êŸ.–LŠÀ"ëçž F,ß.²à¢¯<É ,z>^†© ©§v½LèÜ“¤ávâˆ#Òà¹ß ì­á÷¦Ã¢?_ço#Z÷Ô5¡ÆŠ¼ ý,1ˆï›ö»¾‚š‚Òóç…ÚÑ/]öwŠFnÂ|ÜÈùxã¶lS -s——Ž'3Ø8›b0ËҼÃdæÝ åìþ½öâÄ™4çɼB¶céi#n×s™º.Á†[)i§'JÐR8wF$|ò g\n:£BˆQ´É)C ,r–އý±ÌÆ8ðËVdRÌwŸY¿,Ì}“–Óp€Ð×’ ÷°¥ÊFÖÂaßp d½)„éD/½}J hPó³BÀú&|Ö”U½Ç“ER…‹°˜„u_.¤t\Öé •‘XŒOËÔAóü‰ z³<®“á7“Rš¨éu8!PšŽÿ¤c\‹ÿê­­:6Âã\ŒÚ´:–úó;$âA¥¤Tµ®^;Þ ¢:ÞÞÅ!p‚ë ·]\ûîÉ$ü=\–7¹ ëW¹5äÖm§ßÓΖùÐ|ï£ly›èÝì/T}á¥)Û¡pù}š@Á½#N×c×)ÚSæõ?Jó8ÿ½HËO¹õÑ“‡ô„ÿywr¼Þ;‡_ÎàU‡{‡:&›.9´ánÃÒizä”õºrYþ|ÑYð¦ó­Œ¸íq³ûÊÇgv÷&<ÿ-‹|œÝ²H‡$ãv õ<;p½ž…سÑ8u9ž»ÚP&|Ö!á¹HßznŸüû^àj&+ó'„œâë[BHjÞBò44"ÙVÅgõެ´†;G6ÃÂàè[®B–¿¿ù´gi.UA…EŽêOX: ÿRœâ°.8uº_·qeØt:ôuÕs‘“O)*Èà(1ÌFÔM‚«ÚÊ ‡|}WX‚€Kðx•5ÈxYbBˆb<ÚÓ7 Ã!0B2˜@14ŠBR JDÔDyøæ9Û‘µ¸›3ñ(’:^ªäÈ·§S¦Øá¥§9ðÒÇŽm(­¡£H/:†¬7Ëïʆ Ëàc,÷†å«õÕóõõéõmüÂýäɽëñêþ÷åb B ÀSÁÛ›g×çeÀÕ³ÍÕx{rqº9Ä:á*Šp9d¬àz‘P¤  Ez[…38h5^ñ4ŒYG<•”ÖúÓe·sѯb*^S1±&K*£±™ÚŽq814mb+cWž£xd]@#ë6š ¯w¦Ó”§€åØÕÛM!¹–!„âÇÅØ°®Щ µ3À1:?¿-qó‹0‰¢U¤àE ”—À˜·ßÐ×PÚÚoøJèt41ÍëÃb”ÑA¦¨˜Ðá„¢P1°Âè‚^ÄožñQEY0= @Šá¾tÖ—å¼ë©}°Žæ §‘m¢Žñ^§™Åäý(¸%þ’?NÃ(Ö Ø?‰¹+šYœÓ²ch¦+Ù'³ë›0NÃ%„/â¸!çZÔŒMÛx×âD¤vUŽæi>è7…WK«‘œ6gAŽX¼Ca{Ç¿´VÀ D1šƒuge#8X†Ü·úòÍ:‚nø5Š${iÇq¯ òV[º1ù[ ¯XF£œkì)îÏDJ£„Zb|t»çœ´ LN_ˆƒ¬xÄ8pû¿†Ðâ@«×8V4©/„)ME£=É'žN ¸ íóbi|\£+Œí=´m [kêËvB07ÕÙI«(N2Š|Úu ÓíyL÷>6¦À©Ì©AïøPeÝö$H†¥<ÜÖ ÓÆKyò“(ö߈%‚×Dí=Ánx©Zý3Ðô)v×ü8)a<i’äŠö+Œ®íŠcþ{úã/‘LöȾ3õ!…œ¢[EŠ¢tÁ⻨ØDu€]t k]ð!£kw³{âX¾e,¨~Ü¿Óüû¨ˆ¡SCõ ­ `‚ÒC¢t JdÃT_°IU‘­‰xðÚÀ{Kÿ î|¡e¢Œ¸¯ÖN»êBÃÚàŒ¬üã¦õbÜŠXò‘;8–5PÚyÜ ‡VÁnò4¯±—–ë2&âÜËRr4GþÊÇ{Ú€ '€uáÓVÍÔƒRÒ«§@Ð`^jÑ*µY#®¨ðl²Êáaœ’^EFR–œYWV…§ ef0àu67ÐèD38ùv|‰ÜãÑ{ÍVjèSÃ.x^BjgÚW{œvyYøµ¬w¾…@˜ÁøÂ J©¢ pæzô5ß #BZÌ㎶pë&9µß•`‡žž¡ãG²‰;¥I]œsWDìÃË}"†Åt¼lå-°¼¹•áh[€xÜVó”¨vÇ*(ª¥xÓNœmjcj›\íMSœ”çÛ´'Y›5@§Tdïý!҆׸$ñ¤Òñ¼NFÐb;' ®8ìF6!æˆw];p©³!½ïÆØUŽûXH MÙTQ?þ‚è[‰Û= „=Hž«Kp(£hÏiYaÃb(‘ a·?œUÕ!墢/w—XJWèFu„D‚ï€Dåê-¾P‰÷<÷òíÍnÈSÖ{”[_çÖƒÜúª3»^%­¼Ç¹î¸·{`[ñÊWýŸtˆ\wÖ»î¸(= PJ=^wú•±ÝL§ª¦yÝ!kÓ¡ª:3ºóÌÊðÉ¿ïøñ=ï½+ûÄa'‚蹚=×¾+_Ÿ•æY‡ÚrTW¥ã“'ŸèxѨù×ÞÇ{Vöºk×6¥Üö&Y˜ÃHCécŒÞ•h^©¯Å–|+ô˜îåö’À¶PÂ%!dv ~¯êÞa¦QÎÂgÂ'Ýòœ¿Ø$¾ZŸŠa¶ñ²¿'º¡Î^ÒÚÍáVPuNc¾Âõ¹#à Ü…\Il(ŒÝN-c÷•$—[;«:êÜúÞaý@Þ “á${ëí%«=îQ­7?é²”6‚Aoå²eÌ>—eɬ«çóW.” ŠÇ몌ÀhÛ&ýb9œ¯\Ÿ<±¡Ì½IžøEô¤o[çCüÔm!³.É#±ôLèÀ*K]O 8Ëñc&èûl&Bóù·Å=ë;€w#Ò U¡|¹ØlSF9-𶉠Ú*þH{žL­E¶V`õ?¿™#]Y¯JG3‹ÐŇ-Ū¨×èÐV@‰ ï>Nõ/é°‚…+'ÜDuÞ'ß è!ïˆóYñ˜™fU1O{áP ÖBÑoœ¨xuæ,Ì.„¢éÎ Ô`å,Ï”³jVZÜ`!Sn]N ,¶QK"Êh1gdìe¶9S—І}…g®ªA_øêð®Ø î“³Û&"Ô ‚KîñŽ z¸\Y¯\ˆR=p–µn…X6bÌ~‹ø:ÂJ°[Э`¸âRާIfI@~ÔcD:! a„CÙý –aˆ¿ý„ÀUêá ŒeøþRAW×ØË¹ÃÑĪƒ™–·{½‚†^YÍ{zÖù‘‹ÖÏ:»Ãî~ù{}yzøKOÿ2Âá’’ëÚ÷æ3dã˜:~¾Xj÷CÖì©>_B¿Ë¿¿'|¼'fLHñå?lÌØÀi² ÿ-zÖ—‡ÎÞ4µæî†Ûz BG|)(*æž,¦ÏõèÇ+*î·0†XB¤9±}+õîÚŽ(ˆ'μÿÌ;zÒ´DY ™@_?m­O½ãòŠà±€L¨ ô"䎼Ž)Ðà+`¹Åæ |L ˆ’R»Ò'„+@žc%Yî`2f@h¬nJ-ÀQnj-– 4Ð=Õî'‰ÊwbtÔóºn{L›2m½ï †ç 2‡Š-9ˆ"œ7ªpÄ»ˆ³õ ¥•'K—ÒÄñª~Gå­Rö~bÓÄ‹ðë@´»Ž7 B?ðâó½÷8¹ù¸qŒ(½à÷›Qu(Ç«¶~â…pW~×àc|Öe~–EA"¤(;æßMáõo¿ä)÷}hÄPpÁ4¢½¿ÿxeöÊŽöAjU–V½ئ0G}] ƒ¶½ Gº«Ê?°@ -¤¬‰}„’&ÈBÇG udŠWa`£Fs5ñ 4.Eë={X"Û_¸Ï*‡MÃ/Õ´Gü z‡|aç¹ëÚg ­Ÿ75¿´ƒÚŽ|¦D/’‘qDc_½yÞÒ*©{kEÄaqêanwáËíÝWQ2@F¾(_{k‹”þÀ˜†Oê—p ÙT¯²½6NøT©üvÃj”PD†5ê”H|ÿÍàÒiT9·  xûV¸x ÿ®ëÄCßî¨Ûmßog*(­fCo.«Ûª.øÜ@nÛebŒÄá¾n¶nŠ¡íƒ> stream xœ õýCMMI10‹ûUøÏøN‹ ‹ ›øŒÇÀ»nx;OY ¹j°øˆøì€¡ø-¡÷úÇšËãÆˆ|…t‹†y™‚š—“Ÿ’Œ—º‘¤¡å‘¡‘¡¢œ“¨ŒšªÀæê‹¸”fjMZû{`‚tŠ‹€\®hºé°÷&“•‚‹ˆ‹ˆ|†wGjSZ‹z„•¢¤”£”¡žÀµ÷‹ÄÎ`³C1ZKtz†Ãbª]‹]‹xdy{i}P‹‡•‹•ŒŒ¡‘œÒŸ»¯‹Ÿ–~jvˆ€~WøÏ€¡˜ä÷a䘡¨ç÷Îç÷â÷‘¥¢çÑ‹‹£‹ ~o†wr‹s{–x¦¡«³¿P™iQhVtrÍU•n‹#Rûr•‹“Ž”­õͤ­‹ž®‚QlzHfû {Mha_‹…‹t‹v˜¤¡ ‹§¦u“|mrqk]½w·Í¯Ñ‘Ž—f¯dÇ‹òÄ÷¤•‚‹ˆ‚‰‡„‰j Gsk‹d{«­¡‘¡–·÷©ûU ÷@õ÷I¡÷_ŒÍr²djwropŸq¬—˜”•ŽŒŒŒ‹ŒŒŠ}AhOjj€€‹‰‹ˆ„‡–ÛØ÷  7Ÿ ‹ ‹ ‹ ÜVñ¦endstream endobj 195 0 obj << /Filter /FlateDecode /Length 4111 >> stream xœík·ñû¡?B0 tÕZÛå›l‹Žã¤)⤵ÏÈ7(ä;ÝY…N:Ÿt~ô×w†\’ÃW'?âmá¦öÈáÌpÞ¾št-›tø¯ÿÿìê„·ÒMÞœt“oN4c­b|b”f­Õ“«ãºÖÊôauòôÄÖË&FË®&¥/–¹V+?Kq+Z%ɬô…ÎZ¶Ò’ •’¢EXdLj–u¶5*cÕÿ¦Hia[©AÊ2ÓÚŽHåYñK1«G*mq"ûu“Ë“W'̳rÒÿwv5ùòôä÷Od7q­Ó\ON/N›Ù„˜ê;Ó2®&§W'ÏƧ3æ˜1̓ï§3!xë¬k¾Îº¶s¶ãÜ5ߟâ/ÞuNšæÉ”ëÖ:皦ÎZídó;c¹jž=$“ýBæt'uÉ:î¸ KcR5qS'ŠÙ?àØvÂXóÓé_"N(œÃÖ¨:=žàdã, &ÃÑêÖaqòŒ+ÖvÀÌ0Ø nâõüj1éèd²ÙÎW‹mÿ¼¾Ù\,wðA9ØÕéf¾Ý.à7‚ŸÁ©2!'3€¦ãƒÅ°ºy¸Ü-/o6·×ÀV†‹mãdkà— ¿ð”ü´0™q-=Le:Á&§ßœþöyg¥Ǭùf±^ÜÌW“G«ÅÙîfyqo—–G€ªU./ÖÜxðSDêlóàjæëâÛõnðæ›}£}ÙhÙ8”vÚŸL!k€€Ð&²À“éZÛæ­—ç˜kv^^$“®¹!·rÍüŒLö37\7p dNØbÝK P0‡{„¿óæõT)” ÓÌ\m˜i–~ca@Äæ/p T¸f5MÒæÑÎI)p»8îé“„>§A…¬’·ž‚huNËfžFWi´¨qˆƒ\gѽ?Ýb7 €Ð€ô“·•ÝVd·8ÚV÷Õ¨}âøµ–qòu}“F›4ºH£eí##ìèID–óαæ<P-°ÚÜÚDÜl²?ZŒlØÄõÂK–4@âM-Ãz Ö«*zÕ¿ßx&wÕæv­²‚ M—y!´ Â<ЬäZ7—½â€¾ Òiå?;øÌ¼%âÒâ‚ec­SZ¨m®`±aJN\ãw0#L«ÈrË4¢T_‰"4-h½gÈš«`™;ÐÎ^KzBž§Z;+™hÖ‰ó]vdÇ×SnÀ]0Q(a`‹æ0|7÷ÈG‰å–ƒCX8¨–b`Ñò¾—«,鸜ڊ<Œ‚–JÆsŠÎòǯ+ûeëù¢ 1ŽxuG¿®àz´#BN½!gû2K;ÑÏ3Œ÷4ÈüÝGj$kIlÀ6|é+¬Ç«ìío“.Òu^ÿ`kМUVª#ëpú€Ú®©®lbà8°ÍÉ¿/´B×ùëMU¢J¯‰Ú/36›Û옶óÔšwaÞ‹ÁpØ B(m n¯{nv®X‡¤Ä¸›ZLÊ—+?†¨•{ÀàtÎsË»7p5UáìNUž§Ñý4ºw´úì¯ø©¦R~dX±hЊý<˜ö")%ª÷Ñt?JqùÒË<,ÅS”&Á9zw¢AT­¡ˆ’Ò³Oª0â‘Éç1Á+} î§œ-÷ó¸Yø4N­Uõ²ç€£ÑWäqÏÔ›WÂ(¥­É¼å… ßxÍâc°=꜠´¤9å£Gð Éa—9ˆ)-TäÝHx‚TÑAà ©~ Á½ 8¡JÔ™_¤Ɔ‚Áza•dPh@kÄ"‰8Ö ñ0¾Æíg`éh®\7ß É×X§3:§% Â[Hl!)¬kÊ@zCëÄ‹‘ ë¢î êË6×Ù̲˜PòÆ8§–ãÕžgñAÉÇp”,&,†a{Î_}ð›½px¢Â 3`ïÀš/¸®¡šYîí…òzëtÆÛIÀÖ‘G½“¢v#Îè¥1Ò(MŸÀÏ¿Y“ô™",&¡ã9?Ð`HÒ5*º!»ç uÿ»Ì%¨ò,p[Ë;Ï­ä9êŽQRbXŒ ÀÞ[KËÈYs8fïgoP},"DH®#AÍÂ9N6xÈ{!“íE-ÕPÒ`‡âôÛ¬'Á tÜåÀ’X,’1í4E²ÔñÂ$ß]ær_CDœœÇæÂ "w¦aˆ‚8š•÷H ¤:¥Â³BáüH÷`Kcy“W*œAt¤åƒteÀpó¿ ±)sèy™CÖòìJ¼6¤ÕB¥óJÈ’ÿúJøtW!épàöþ8ü½IÃÏ› OrBuZ-p–©æ{&P\Û6¸·Xõ¤’@LiΙF¼í6ÛsnD ¸v¨—uÿ™U’–<ÎrŒ4ð)a3zØS¡lŒs™¯Ÿ%/~žÕzÄ J=«FÊBeB„Š ,,+¹4Lˆn#_lOŠñ”ÑÒÓbeÆ5ŒÄ¢Œ¶Tß; ̘–ÉT¤áQ¢~/J2±!¢P±ܵŽàç(·åmLÈ«­˜Kzó³ V|XQïVï)_oòl!˜)¢gz+JrïîH´².©Äü(.òÜí%J<ãñG){±ÆrE„ 4ÀÁjµå²¼P4‰ßæÒÁ¼,‘¦ œ N³ªÅ‡9¬O_UØÏí?SÜß—¥ÑÒHZÁ°jP\PâղʗÏÙOñ¶Ï6÷Þnw›óå<ßMþy³:_®/ïAÙßÐÝ{¸Xïü%aŸ÷èöfs½ |â^¼j ·–ýn‚îöx¹žßÌóeã“Åvs{s¶ØÞ½ì3 ñi˜ƒp¬scžhZ…ª!ѽA´$ X(÷²îÆ qç÷5¸…5ƒà™áU±BYõ”ÕT‹FÕ0êÛ÷ÛMÌ¡K5 ”¨oz4ùÏà##B añž— A=„RÀTžøãÞu"Ù¡.M . ‚8¼ý 'ª¤.LÂ;iûKÙðìŸH’r,ú÷3·²/pGG/±4%Ù÷)÷ýy¦H,Øâßé· ËJuº>¦ôM¿÷œ¿àÇõ¹É‡tìƒ.Ž¥âàf2ó¶*xúk@Jðʤ®Ÿ néÇùjöx~³KÀÓÝæác—þæ yDß Ôvªoëa0ªD ðgö¸ùò¯„ñ‡€u-7¹ñˆ›$*`Ì›GoßnÖ7/–+ƒÄUÚ¾c‰Ñÿ`ŽM.D—N-»š£1ÇŠÀ ‡ÌóF¿ †„'äˆ0ÖcŸ{ß¿èðÞ ^Ê[8ȨëÝ$+§I¢b4öxÏ %Û›ÆýWô¢ãé²XèoÉ·#ŒgòiRs2$¡œ*¸‰a®'wÏï߉TØ…ýá†Åà…Jô½Äó“¬}MJÝ—ÓŠŸAÒ Z­‘Èi2 Ù¥>K£GÕ¤[¶¢‡ˆÏHi©ÌgB:,ê|`cŠËf fÇ‚`RÒ¾ÎÝ,›j§Öx1]¡&«qñL'Ù5=J/@¸¿EJ\ÙÏ· {ˆ²µÉ;/;œÏë29ÀÍŸû°CÊô`#…)‰:ÁŽofãX ©Ç.YÒè»4zz‡èÀÞÀôF’ªQ‘%Æ’ôcäÊrKfÓ•méƒN±6Ä‘´t ô勽ʊè:šN:5Ýu‘dÐ÷žèck+ΩߤFe!¬Ã(ò6¡f Èþ ßr¦ÊJgÊ6ÆÊŠóÔü!Áqú4Ç÷]c,]«ÊÖ³I“Í:bÅšgOsgI.ònVCx?óAŠ‡ÃŠ¯äì?°óêó¦Ÿ÷ZáCÈĘ/jÀ]yÆÿƒýÿì`_ë˜Wš`?Á>7€É>zÿà4ÀwÏÇݼùz¾^/1—àÍã9ü`<åJ´,?°d0ß9äïD.*>^þëöå&Â]®çë³%Æq_ˆ|dÜC43ŽñrNcúˆòãñRiÖ$Ã?˜±S˜Á äC¾ ¢†°Ïr‡øÚŽi?Døo2mµ“…xF¤@¸Þvž¸¸m%îõö%ìÖbØß£0õÀ#î:Õ¬HBÌ=|HD›hVa¾í*EÀñv¬½‹»ç º¹Û¹OBl·?²¡­,wíXÊFB é¾'÷F¼(Ž ‹<¸@÷ÎÄA÷¾«HL–Åš[øÅš>··N-û÷=Éò~ýà»§²)<}ò,DøDZ¢Œ”vß9°ì,{Ë(ª½ôie0.¦·Ù†…(ÒH]Ô»i¾w +œ(,%‹FyëX¼väÐYkIg—‘>Û§–r¬W²Þ7tèÜaGÚO•VÙÜltG)Ÿyý‹“?$ÿ/^†µÁÈ¿o§hIÀm1ŸñÃWe±ñ-'Þî8lh¢ì»ŸA 5ÁWíèåÕ¦LÀãÑz“ä÷3£ç‚NŒöZ]“ JŸÓi—ò—>ÙÎK·âø›+šÌ˜†¿ða/B)ËHf‡oˆæÔ#×{l‚K ÌRtÚKŽ}Ä¡P(…'ôN ®I-oI¿Å'o‡²¢c¹ë„¼}ʉ+yùп}òÉwYâD"±¹tpU?9 ϱ:#]%òœ¤In(Ì÷ö"<,ñ•²_z*ú$˜u¶URŽ> .Ø¡+WÆ’·xŒÆD?Ëg“)EÝ ‘ï:ÿÆEÂ-cóŸ7p·5Yöa‰ç¡;”~Cè Ñ> stream xœÕ[ës$µÿnø²R©Ùäv¢÷Õ¤Š×pÅáû|˜óú±àÝ5»ëÿ÷é–4RkvÆ6ÜA%E'¥V«Ÿ¿nÉ?ÍXËg ÿKÿž¯OD«üìç6ûôÄpÞj.fVÞ:3[ŸXÏZ§ò‡›“oNœå­u|fb­0)qÜ·F‡YZ8ÙjEfå/t–4ªUŽl¨µ’-Ò";öl9ïZ« WégÊ”‘®UƦ·­c¼bªÌê¿T³Sy»ž'²›]ütƒ(géŸóõìó“¿¿Tlæ[o„™]žD1ó1p§g¶åBÏÎÖ'ß6\ÍÜsk›¾š/¤­w¾ùl¾`-óŽ á›¯Îð'Á˜W¶y9¦uÞûæÅÈ9g¼j>Æ!³NèæÕGdrXȽaÊD’œ /T\ê9Wºé7õ²šýÇŽIëì÷gŸã‰9‘¶pª³%œá%N¶Þ3q2¨Ö´ÞJ‡“ÂÛ–Y3[€€½..Úu›ç ÃT4›n}‚ðss¾½Ûv÷s¤µ¬õ‚óÙÖïE\üåjÓÂtë'לÂÐÁBžþýâbsu¸>!°ùB¥I¯6«ÃÅr¾ÐáGÑ|sèûòó©Õ«>þŽ›§œrÔ;+ÇLwðý¡¦MWO<º—tt¯‰iRÓNÊö/¦Ã#£Reù„] 9Ÿ2ý˜qxÛT$-aÆ4½œêI_Õøo¤ð™òWüiO~:À4 @Y I]µV©d©Ï瀥8$ùf0cÎÈf»†@kD+™kª(®|s=GEXî›UD ü©Ùǹ {{‡3¼`žÓu·8N+}'(­Lënh½Æfz8Ùp«•ЬÊVñ^F©uù€£Û=’`ÖÖ"Ø^¦zQ“ˢˢáQ4ŠqPr‹'·\kc£ µþ=Š ¹6£È¸TI8iiÖxS„S­é”*yëµÎðŠJé Ì*ußQàWÏtO”ã@) a]T†´)Ÿ+£ gòÜ"8CB$zõ Ž!³€¥¤£³[ÆÏ¶œÔ ÒðL ´RŽ•¦8`Õ™’ÓjÁ ÑüÏ‹%m í[ø¬8l8Í ƒR"x'&¸Oä¸íub,Œó.ž8Ë–Lø1¨Øˆ •bè›bÿW‘c–ÚÃæy‘_!nˆ¡ýXÎQÓÍ3®r¤šp¥sb‡RÁù`‡­q Œ}£ùWá"/ŒÎk¡F„a˜k«ÖM»)L@ƒØPµ"ûL;„&1Z+ >o 8ntMÜÃù ìH8TYüûþ00.¨8ž%ž½LçÆh¬ñ(Y™!t;“äÅâ’·ñ#RÂÈ¿*e¦¦ ¢qrlÊÑ µº¬ûí¦ß$¸iP!äÂe¦¶½)Õj¤k[…öuBëÙ¢-BZ ®VÝÎx!w$XçhK”AZ!+:©0„¶” S½Í”•`°‘tFÑHD0º!{vñ0 "G•KB’¨Ê¤hER´2­C,™ŠôýœƒÀuáTýh=2êòh—G÷c@ú–+Ù“'ŘcÐ|VA<Y ÊE4ÇE‰e4ó„à Á 9ÐÓÖé·w¨Ôg üZ×P&~®yé ô£ i ‘{lQHªÙUk Ôй,_ﬡä΃¬„ˆÇ1.¥‘³wÙÊò¹ÚÐéÏñ3ÙdUL»N ÉzšhbÆÉ ,ÓBˆ+‘Š˜ÿ’D×}$‡é2Š “‡ ‚ßCðÌj]£a× &‘ nLø$,@2ä#6y ¢ÑÜõÄãÑ+ Pœ"ø½—2¦1É0›¨Yq¬{¨wÆ;͈ARG<@¬-šÛr:’h[2#ù%ÚÀˆ_:*’î÷ôK#Š qoÄbÐ!0ï*)v[‡Ô×w¤’ˆÇ×hËHà ²~óàb[ØNkTŽi~¨¬¢â£\FZÚ€•kP–>1sM«÷E:wŨHvž.mTÛü› & ˆŸÁT0.ò&+ʵ@Œ®JÈÛRBÖõZ¤ ~7’kSáf!ùØ’÷޶"È‘%‘’ 6ŽgÔÆÖE"‰ dàý‹1×HÊøž—àj Dn÷ àQh`ÒuÖÍbk×Ò³¿[àZ¼\yÀ7®‹ª&À–€{¤¯êz,À”nñ¸ƒN~†Zª]žk¼“)@—X9•°‹õƒh‡Ô/t·žßŽÚþýðƤ4ç®eÚü~Âak9[ïø!¨/wç!Ï3ÇÚ€³k8Z(fqìüt±—´ñfáʺº %:ê^•JYQ¢¾Ä $ _ óGu «’°UÀÀ«¹ð­0zàÕ^GÆb’ô{ð>…F;ðPÂ\¹J4ÌÃIÀ$:úÑpú_I'XÀTÈ£‰fL<°ñ:x¼øð:fⱃpÛjÀ¶ýÊ›ÐLÿj´¾/: á#Œp(²¤¿­ƒ ±ô€‡y4hù6^´ Àìu@ù0I›ôt`kpa Ò0ÜVŒlOè­  ïg‡Na,|½Ð!9Ì3!n$L¸l¤îÁQù˜¡.3%ûFXšÎ±ÏP‡“8Ìäž=ìkþ¨8´Ã|^ƒš.tUY,Ga†lU•ÂÞ ¿v‚×MÒŠ8Äe¾j <_1}Ø¢·*)h‹‘&Q!m?åËxYïuFÌ$¯pû»/s*úàϰ¼?ÎY·#£’ÇúÑwM>Ï£íHê{GyTR©È#öàèYáúíòpæ>ÐJ‰^§Ð‡5øQ€úTïv)à» e¹åRO¸ÿ® u‘K—mYM&ôÞ¤G4‘ÃJÕ»ÑÓ5;†P ž£ôe.;Òâˆ5Š6zxÑ¢Y(ª®z.$ÈÜÛþ¸)B„xš—¯ÛêêaK¾Aù ÆeQÅD}BëÚ»hél‚,Idßd¡_áØm©.†ªª”të{uò$´Pî„p¨rÕ[nçó>fè+UiÚÒÔT6*b¢A~œ ŽL2eiC$CŒÉc&À±ž‚+:ÿìH€á¨³$3U–¨Þ<ѹ ;0»œRÖ%5OqV ;¡* òKHFJÇÀ‡p(ѧs¤Ù»Ã= L%2îACEÐzqVúuvŠÙEPS=ßäkÒÕ7«a™õ.ÙÅÇmÈ  ¶4–$ EuYÕ;«]…`·²“¾Ê˜.4X½æ°#ƒ®zv—,ßùhl– ×}I./®®ñ´Š ^ÜÄ R;-`Âešd|PTq¤4ºÈÕC ªþ˜R†7õýeïtb2BÁm}m‹Ý?‡=öé{ÌžW“ÒñP‰Lå þ÷¿ör שúá¦"’Þ<Áä®ã!LJŽq²y”1aÓáCS‘>¹ù£6~¯^½ÑuKs¢ŸÖÆ,8ÍÞÁÀEy%‹±¬š-¶Ïâg õçà1ò­+Þ<4²þ×µ‘½_KŸ n€‹’ÇΪDçóU º¥)"ªPj®H¯åƒ^§¥·G¥B¾/€[NÝ~,çù¾œVN:S;ʹÌ(oҟĹatƒ¯vP! ¢[‚ÏÓfíîjKÍø>í i¬ìIù+ÇDáþA¾Áe»H}™G«<:H þ#\”‡\ü?ŠõÿüŽRj‡‘/Ãf`Uð‰ÎGÔpÙãêA®îÉÙFì¨YŽˆ¨l¼#³™ØŽð°.KþY†gù÷ÅÖ_åÑ'”_w`€€¹òÛ(ă¡b–q)¢‘ѧnØÙ ù:Ç^°N^½Ñ—e\ˆÝÖA­«ÀõÔEL—òP5à˜Üîb|‹µ—ÚWµÔ™wÌU}­áe‘áúåyÿ*!ÄEøh¼8Š‹¥ÅÕ ©B}´Q ,Ò{Ê»…lœ¤Aj·ë n|Ì᤺ºÇîñØ«ªßÇ莆S "KÇüagZÄ·¼ýš:k>ÝÓÆ@¦A~ à—Zµ¨ïeÕ‚ ¤Íã¯M¨ÇzšYåë—Ka5Ò_'tx­D‘tµ15¤t‰)K6wýùF²À¶~ÂUäÎ;;(Æ.©'B*M•ÂE8U~Z®Ô—@ ¥˜ o¤&¶Ÿ4¶:Ûy¢“N–E‡{¼§Û/@ ¼|ï-çíÒÛS¯îï("~èJ6™p¼? O<w²‘o&»¯¹Í³ÆÉàþìèI­TF4ù@ƒ‹3‡Qªú_Ÿ÷Æz]ºåRôºÈµù¦4ÿ&^JÚnza˧]Hôšé–yÞÑsž¼a.ån"=,NhYwE²Ú“n ªö­¼)Áø7á†X<íc8b,*c¿‰^Õ)…EÅCí[…ï㪩zbÅ-¹àUXÛÅ…Æ©Jä‰Fèú",ìâ'ž¡R;"1²~#E²7iPÝGÒn¤5‘fŸ‚1ã}‰]xše´µõÎã•ëR£O¤¶Ò)ÝÖ(ØðÇ–zž¬IjÓ$‘ÆrX˜úî™´®ë‡ÍãÕ}9}ÜÈx_ç„ÁµöB@á(Ê{:ÿàSŠ*ùl¤%„–*Wò@œ>Ã+OSÉ%ÑD¯ë§Gãð·§¡Û‰|·›…ȫѣÇÊ)Fì,ÝtfŽŽîJÓXl ˆ§À’¯(ÆÈŽÔ& ÒP¿)ÇP€‚wc½[ï·Ê1ùM6½/œ"<ɰáo~ûëÀø‡Â¶!~}ùøÞ ÈÅhõÓ¬G Û£ßòïËŸ•}õÁhù ^ &Þ¯˜Î;€úL-M'ZÁdYõ’ä)M¬U©+”‚½y⃠§ÂÓFúcÙ«¯Ž®ù´r~ÐÀ^àßøc¤¬°8†f†%+Á=„‰ðÂ!î÷Ojâ߇ þÐ& ï±68í€æóÞ¿ã&PÊV5-©çrØpq雬Ä­/BŸ ó´Bcѯªa ƒÕ-jy¾:Qœæl"&ïcGR’x‹Žn~ã·0?å9Ãn$¸¼‹QûcÔalÉ»jÒ’32ü6xæ‘̣|rvò5ü÷_Cì©Wendstream endobj 197 0 obj << /Filter /FlateDecode /Length 5752 >> stream xœ½<Ûn%¹qïÊ~„q+Ñi7ï$˜ØŽ×dz2ü°1£»<Ò9]vW òï©*²É"›-ig“`–C±‹ÅbÝ«x>N£8œð¿ôÿ³»9êpøýÁtøë«Ý¨œ8tÆŠÑÛû/íhCÈ3·ß„ÉVûCgõ4* «òŒa´†VcÍÍ|žà†ígŒƒ¿új¿+üè C*Mpœ¬ò£¶áä…ý$8NeQš¨Ö$œòn3Jl·éðêàó B¦ÿÝþãÉÁÏ?êé0ŒÁJ{xry‰,…V£S@X@JHsxrwðíð‹£Í4Êi Ú ¿;‚ vÒvøª)„à†Ã&aÍð‡˜$•rÃop^L“vjø×_m”ð“þHP„Ð&.™‚Ÿ¤ à Ûéë¸|šìðË#éÆÉÀG¦„°F.H s¼ƒ0G:ùg8ÜšƒS¦€¼&n€tAI˜:‡#ýîæöh!øá¯6h9I?\méÃþþâaût³ßÁ¿Â…~øåÃóÕã¼VóÏNoöOg×»ýíþê…°€€òp» ȸ-^`kpãÒ˜ôh'OkÝÔ§µ_ïŸ/®÷·çݽÇýn{›fÄpÿ°?>{z$â¼;n(ŽNþÜ^}Ù^Î HEÛÏ®âo:h£åpÓÀyÖúᦥ×ÒZ>¯@k¶… pëŒ ? ¸Õ`5|5¾K7W3% 'W>ÃÝ&*¶4 Œ'f|„vØîp F…áêâhÂíº£rxBœ$2ÐuY{ ,p€¬`8 Ìí•Tv8Ã¥ÀZ«Á(g†ýCüÎz1ì/ã&8æ–¸ÉKa"ÒéËs¤§‡s‹á§]ðÞG¤ ŠPÃ}Á) Žè†ýWtr ‚à±ÀîP_8?NÆÏt|ÌDßçQ¹’§ÞEHh_.°>JBÙ—-ÊÄû»H·òˆ!¤…ïîƤPn‹a9H…p4W…Ó„é€iüw “æ$ØGQ’ÚÆàe13ór„ª\P‰_¼ÙDÆ(Œô¸¸Yç¥FÐBS}¦£êƒ{.ã¬Täˆcÿ\…1#M¼(œÑz8. ¿G^ƒýðï4©a’ó²ΛÀó‹¸/'> ÈðJ”äqäÐW®ö0†!à2¤!MÇÌg¨ÿ쬬¸™•:+YâùhÁF¸xz?)ç]Òþœ*Ù°ÿ)ìcñWy\qoãmѵÔÚz#¥§CÆ+ÒB‡È¼IZÒ ¸ŽdÕõ›ˆ×$ÀÏx, ŸÝ2I“ ^ ʼnzšA06ˆ\0Ig׸ï|,ú½DÈB÷ßn݇È0" òÑ7S˜%2@nyò—Ùº’òÈ”ñîÏÓÏ ¿â¹qëu[”öKçjœ>õœ´Êš6Nî6FP~ø&^$3 ŒÛîH€*Ƚ3ëß³µ·e-;åW‘I»‚ó­f~¡O7Åï‰,›vYÕØ›Þ¢ý° x çG&S{vGq1²f1«Ñ°ù%Kg}Œ ЮÕxq¢3¥ïigÐwâNòÂH£ÈGŽc_[ˆùº!40|r %;G|§då ó0'´¥g±1ÚS—2W¡õ gM즧 ƒy‚ìP XXB7å[гfV(¨èà&$ÃÉZŸËz1—õ}­k3 2Ë´¢WÏãÎÆ îo™ÓxQ<ù¥‘¨9šn\IÒö18K ô<ÍO­×€Á¿§”gX ÊÝF.ñ4ò[Ci§:@óÑÂoNþæÛAD£ðà¨#˜F‰Üʼ<Ú8­3ñ‹†ÀMršD&9uOÑï NJ¼ œ¹+>ÕMáÿ,Þ0¾;Êìp‡4y9|8’É{`æ£Ù–{(xé¾_j‰Îô‚Y߃þ²½Ð|N¦D‚ñ<±“È¢V0Lœñï«´*©ÎȈZ[Q)¿8mƒÈÜLüsS^ñC®pI¹#f,8oPXä 2¶&ÊC¼Çoì+¡Û2Ÿ£n‹ZûÙaÕB¦düÙ͘W|.¦¥˜G®Õ˜BeŸŸ_hF•=9~ˆ0œ§³„!ÌŽ¼”+}QÅç˜ÔÀ¼ûtÿfáW4ÄÈPJ ÌÃ̺Š+—mŒåçµ")TYñ¥¹r¹B ˆž§¬"Ë_)Ü.#Cç'†p“[:\m$¿qCˆè`Ž1%Ï=0û=Šþ.f` Gf_Ø}&A”\©b&ãÇE<À¥¬º_”‡1êáë}<¿ï<%nV¾Q°ÙÂgXëQž³ä$rg”t4Æìó+ö™¾³üÕC$ž1ñ†@w,H¦/ca*V~)F®Î4ÅY{¸¥ÕÁí'—;Z 2¥ª}b²W9ĦáêÚ›CÎÙøï0Ûxu„F‰ÖÆ{ƒ‹÷Ö*ÕÄ'™­wq1æ%ybdŠ,’$•]f*vFsÏ‚•‡8 jºº¹²]ÆB¬‹dÅ2WïRѡÿZ_— ­.Âi,D¼‰#O$Ç®£z„Ð#;{Ï%à¸b<ßÑ›ùÓ:Kú±D­ÝF'ÁWîgh!Làlqg ¡{¹·,.޼í´Í1Ñ$Às¹$Å¢G^¥ùcØ(´ý°±ÉI#Vèµ4ú«l™Ü²aä3¥‚k˜>ëu^lx¦hñþöŠÛÈãø­ŸL#~-FÓ5é+û̘îá0ü«¤:­u”^a9‹¹ïÙ’9ÓH0Ä|³À?)K‘t+F®Y>ó&ÅÕfô.3R+ÄJKH{ìÛ#6Pbm€Ñ8UyÔ¿b”_ÒZ Ù÷häü„‰Oî~Ša„¦m¹^××ù/ZÛf*K€`Ù‘G¢­Ó%§¯ÿ«–ÉÅJ…iLQþˆ%Sp:BµôgE ±ýnãñ<ç®~–ò¼Äd/3¥Ð©† Á­6;zíækÙ.\W ÌÕ…ˆêÜáÝ®{¥9õ6Ö™BTkJ¶,ô!E 6ª_uc”Ú*¸é×–$‰ñÒEœ„Ó2ZlyŸö ÜPìãW†Ëç…³ÏãbTmÛ8Äò{•Þ;-«û¾rÚ hËbÁn™šV?×çÏ~Á ‡ÿ2¢ŠGæ³DFUã<-ìrÃÙ­ÇéOH/ðÀ,rI´r5“`-s4“žñ“F®¨¸(ݰջږnú¼sÇlØ;I¹ w1Œò‚œäª¬HedaŒuÜ õSLmqÖ ªGÔV„fÛŠ §šG-lVÌgdéåÉ-¦ŒÙ¡–Ä ÏÂ"–[¬£õÆ ¼š㎽ò άNT2õFœÝdí"Imˈ^P±c=òˆD­*ßÉ“ƒÀ¬TVy®Že¥·-#ΟEFÔnÎS÷˜,%ýÁººFa%ÛÐð[aæOÁ¹689§eô»bÒ7£Þ¶[±Ó#ܱ˜SIsAêŽ6\zŒ0¾¤Ø<þ}ÈÃzµõá´³Ii–y4½:ú«Nuñ¡³ïeý§Î¾Ç… »Î9ÇÎ&wå“¿/Óü÷Bâ?äѯ ½Žz]T€9_Ò·âO¥} ôB·{gî&ŠŸTy£åó× "þÝç0~‹q6xõljs*׌ +)ø_Ó{óß+mIxIµÂô,ÙT>—(•tcØñMXñðë,ÝŒÎÛMljfS%½“™¡„çXV°ïV[BæËêWHþ¢q!fª´Žt:SaɃ£z;êiÔˆàâiª†£¬þç^Àäb5­BÉlPœh…ÑvŽìj¥V¬eè<&:±ZÁÓ¥lZ´®Ö„ÍS+‰Ý-÷©ªHi…#2ä1A;´š%ÈQ cAL à‡ömãpš_ §0Û]Es‰þSÙz%¹Î›òxi?©ñFÒìª7’.‚uÓ¡ºH90FÍÛ‚Y1ƒu>gª'2 y¿ïØù¹Íí·˜$扊íºc6n;F€Ù¡¿ìèþ]Ç \t”ûçáï™ ì÷›‚ –֡ʽ“((jQÓÀqP©¼mkÅO†D»¥ê_I":¢QsˆF4œ˜Ï “×Um˜5&ÜF圕Jý“0s \q"·gG”–äÛb³YÛEgL<Œ)úÄÅÎóÅUlô — 'jT×Þ|³¶Åm|£*>kÌy”:çÜJÈ|1@Å*`j¼Z1™M“TuðE:ˆÕÙŽú­­ôÑÆ°ŸeÓë§C5¿&y]«ü6›v[½á¸9)ýº²ê©¼¾²êë&íTÛò&ùш¥L[Se±M*>3ÎíG˜M8&²8“,³WÔ’R𘽪œâF±^}Yñr*ÒTap•ä¤ÌŸäáky°’¯éÇMÚ•`’Ç}†:?äD]íÝ\v§BañêÝûŠšhž„w+…‰X©2´I¦F˜žiK\«Âˆ‡ÂDï–p ®,¥§íðçL»Õƃ|ÉÇ Uyøç òd«ŠümYý¥Úlëg4K©1Vc…@P[·$/rÏiþ¼ƒO.$®\¶, MŽvã)§(›ü"tMj°wF(1uŠfÔ!ïØ&!ë›Ú 2‡škó«]\OqÇQ§ >¥Õ¼>%_Ÿ™gmCg¹Ï'5$yL—š,r=ïMÚ•%„ðp**ŸR£Ç¯€¤uµ)Ú•Ú½‹t\ÔK´Cü Å(‰PïN.Sì·ò’dœ/ßõ þ*‘çe‘W t  ™ß’r|‰t0Ö—Õ7ipŪí XP´*íSCT­…7ÀÆ#ÒƒÛ½ÝBBèËe«²w¶*j ¦ð:\©U`[ˆžHëÑXV÷qÅ”$yarÒÖ¯zÂ×°Öë°&ÇéCž½å[|UܦNWµ<€ ¾ ǯXA½_'I1¨ ­bpXi2HE㯰îy銽ŽbþÖ)sΘ²|Ig±¡@‚v™RËàÞO6wY=·ÐfßzvdSf9~Uó!“?f‹žIÍ&üâб  |cë'' NÅ!hêÖÏ­?¬u>ãKVÕv¿üêVx%#ˆדmsŽX!còf=f[yEEWíÙ«&N,lÊ ØH%S—W3¬~±ª:n[Hr¿T Ó1áØ»1ÎjõŠÌ_‰ñ­^ŽªW×Ö+«Ê@¡òÜCÑË[ÖÅW?îËš Ëáv¢Jbó Ïà£1ýʃ¾¢Vò^ÇJÓÀÑôÖ›@ɬw\Ý ‹³ÍcœÊ·ŽC³ÒZ_qG4À}œE§¥~2ƒ³X ì+Ž]Iwœz) ¸‘ò}^½@DJÚ©¿òš¨¯ÆBº¶þ§¨x.«"\¥„ŸâšÆz¾Òb¯#Õ2tÕ7s,Ê`þ¸Q§œ?cåJ–ý7éµR6Ùz€PÇv+™¢ú¤‚#Â0Ø6¡öŽ ÍQ¿a éÖ:6ûý ¬Pœº$Å j‡¦³lzõ^Š’,52­ÉWîiZé »,‘àòTó£2C…õç(俈wÉ0ÌÆ~ܞɦNØÅÃéêøû]zÚpŠðpS?! vru>1!­°-sù`#‚^ohØG+!µöœ){é=a²¿Ñ{êÿÔÉ =°œPÿ‘°…˜´¼`ï;…õÛÙÞK¡ÚjAôÂ{K]]«—OœŸàòö6#ÏšžÇèæ—ÊF†ZÆ)k°z]jîïp‡ÇX7S€ F+FË®>îR²TB~ïck»Qx•ù×ïëÚÚh´Ðí[¹,Pe6Ž5ñSK&D3N°‘àñKU×qv®ù>΢‘lÛža[ŠçýÀcÓ¾ÓÈœpöáqç…^éÇ_oÚKŸ•slkþÇØ‹ÓöK"öpWÿ×µ‰Œ[ru˪ÖC·2cFkKEg,ç<‰©‰ö}c‚[$܈©F:*žøÂ>ØÕl:¥ Hl’^\ã]—mùòÞjôï‚%?}??¥P²y6Qœffa‘AªÅè æ–¼X߯\yÕ|–Vi±72”ûÖá6~·!Ç«*:Cn¡¦çTï-#šU "M†)p§¥ÅDñ<~.ÛÚë°ünyÞu›)¾å׳ÈCäÞ±œ.à‰ˆ»£å—6ñ-(¥åo*ðg‚Š|Uz—ŒŸ/@êdbsœÔ”¿(÷éY ODñgõ Bë/w#4ñ£ù¿³þ^˜¤ü`Í;³¾‚•¼mÓ€)SÚå)Ž[gCËÍÜÏàz½nDÛÿ‡z›Ö£6²Ö}?õwZfz$£C¯bèº,þFŠéÕíˆõù[ün«Ó°Ü ¾J?¤ðU|[õZk¿ZýÂJ±)õ A}&Ÿ™f޲L•3îAV¨wù’éî&[„Û J9)¼Ý¸rBPùa%"ú\Byþâ4Ÿd%ø;€íj[*0ã¬yBfÕjÎ9™ˆ­42Þ¢n0¡ú¯ë=>[uíÓ©$pÛ¬Rü٨ЩäáÚ’fþ œë?™¦âápS}ßæˆ‰¤¢¿¿!“õþÈ••p*äÀa§ìóÔeR`$ßnߢ“ lYß«~y%uÙ ˆ'CãÂT¿cå,›ÐÖÄ./ž×†6-…³ºMÌn¦w7ƒr-wÐ+•¿öuñü«§j Uz¹—Šö’Þþ±µ1"ç_ÉGBœs¡Ïi¯ºêùÍ—fÔçnâ#zà‘èÓ¶?”r¹lø2O8î"V ÎçÅzLÇUn.¾°5Šj¡«!‹gˆA*·òôŸÖ{Gïz?ºÈþ»<¹)“—;^¬÷Ù«v|ßù‚õþÀûýò†ÿ6²îlü[ÔGomØ«ÿo9¯"ÌZá_ï­?í6ÀŸõ —ÆýÒI_ZýMoïÞ'®ó Ð÷Mü½ç Ý3” òè·yôÍz;sŸ_’˜ëPï-õÖùäs> É^dþì âûßô÷_üþûÊôÈâendstream endobj 198 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 551 >> stream xœãýCMR7‹øÙùJ‹ ‹ ›øžÇ¾¸rstdSTUEfFÀøˆøR‹¯ø §÷Ö÷ æ÷[÷xß²ðê‚„ƒ~‹{j¥~ž£¡›©­k©\YTl?mŠöû#€gΓ„Zû—`‹Jg‹Ï´‹¶‹·‰¶‰½ #¯wA‹–­øX§ø(£¸Â÷Âøø8œ‹”}†‰‹~‰Š‚…†m e‘f‹û#i@Yk™q£w±j±„ɽ‚Ü}‹Hdp]++hÊÏyˆ˜Š}‹z‹„wûz‹‚™”ž ¡Ÿ·bÁ‰£‹÷»ÑÒ±z©q£e®]“h‘;™J—‹À«¦²ê÷:nŒ€—‹‹œ‹’žøR«ø ¯÷8Ÿ÷Ú÷ ­÷]ø÷0¯û0÷LiŠ1b(+ˆoèû¢ûßtÃιÄÚÂiUGkfdF‹ßù §ø§÷bº¹æ÷ºÖ÷øù?gΓ„Zûcf¯[ T‹ûû'ûûõ'÷ݼ·œM÷.•¯Hƒ’¼øî<üáq\XcJ‹S‹c¬w¨w©³‹Ë‹¢‹Ö´º³¸¼”¨‹»‹¶u§g—{‹Š‹x 7Ÿ ‹ ‹ ‹ ðòendstream endobj 199 0 obj << /Filter /FlateDecode /Length 3596 >> stream xœÝ[YoÇ~gô¼0‚`6ÑŽûš>œ8€’ȱC†%úÉ‚¹" /wyê@ÿžª>«‡=$ RbèAÃfw]]]Ç×Íóëù‚á¿øÿÁéžè•[¼Ùc‹¿ïiÎû‹…4ï­^œîÇz«òÀfïÙž5¼7–/ŒV¬—&åË]¯?kVöƒ"³ò%µê•% ‡AÉiŽI,ëlo†"Uü™ ¥¥í•vD(ËMo¯„*³ÒH5+ •Ù%™?¶8Ú;ßãÞ”‹øßÁéâ/û{_¨J9 7W'ù¸d…јÖ>Yãì!ßS¼]‡ NÝYC¸ µ Ò$P†LÍ¥6’Û¤¥!t8TÀh\Þãtb&ÁuÎ2MQc«Zå¤Ô«Û,æe ?P‰CÆŒªlÈPP *<)kŽ5H[¯—À ÑÄÔø^SóaHfXQq“,¤û øa‰Ü'% ; †t.e’[êúJ8K iSfO+œÄ¢N$cŽÂòŽÐ_Ê”±‰ñíäCòõ–”PG©•àô¼-!¼OaÜp8UUé°)ô²h¤!NOÏ P²ZË:S}Ì„‘¾~jÄùw¤“'yðQ þwHöi‚ÿ3Òã‹ <ñ°=º;ÙÆ {~=n¯N6ëþpýj¼Þ\=ïÞ>LVvg»—qWÝW‰ÔÏ;pª!OÕð£ž/Ó€Ýv<]_¦Õâ¯}÷ì1ž…øÒë`{ ajX¬ ÙÔΉp&NO./O¶G…Ñëqs„Ÿq{èIwOÆ'Ÿ†ÛÝU7›Ý›õa¡pòª°þl;ö§Ÿ‘_^–_zA›Ã;Wp|Sª ¥ªoÔ¡Šó±M) !•í1—„fOJnª¤q¦zìw8æÀò¶êô~Æ8ÏᴯÈ*1⥖4p®º^uId'ŸrØ#a ùŽ´º¤µ*Yà¾íóqÒfê^&3ÔÝó‹f¤[¢ê ‘44ªpø\@ŽJÔj{HCEt"ë“ÄÈ`“AC¨6;™HÀ‹x–'Dû P³«˜ù޼GÉ¡Î3!?/c¬qb–P&f‰ÃBEe°Ù0ÆM@~ç·S1ãûÇ‘ºßQ¶ÀV(ͺ$èR“.…;W|¢¨˜VÛ¤R wרµmD¶*7ùkÝ:‚ r=BR-ãyYñϵŸ^f¢m¢FÛh |UÖ4·¯c¦>eÅ5C4ƒRa²…@aï0g@^eˆ¤6ZáêÍrÁÒG~¬Æ‹ÛÐ.xw†±EqÁ»wÅ›WÁOS!—0z`—]÷äìL$ÿ¹Õ¸L@$‰AÀ͈UÇÌ‚B&q˜YHê`‘tí¢Ð‰? Q<²’ÔÄžMBÍ©e·1P:(>3´C]–”Û“©ÅHaRo“Òt¯òøo˜Ñ?”К`‡UFÊAãűAÆZZ _à(´¬ÆMÞ–º}¬€9<`Ž);Ù¤,íí-h$½MºˆÙ˜¨QðïˆT>U vBT8xB†cvÆ;'Ç M`±¸5 _P©‘?g¦ø”À^|»˜‰ºÇÑŒwa°õª±¡º¨ q’k§ïåç1§ûÜó°¾ÁXÊ{•«l5nAñ Ó‹¢Ÿý0ÖÂ8î˜ø0ÁÃ@ϸp1¢•ïfzͪ¶j•Ž#¹ÒW§C„£†ûäÐŒp8j¹xG®•Brj Â(æ$rNwY‡XÝÈZ7ÒÌî¬B'ò8‰Œ“;ªL»WÉJ±žUUN*­iÆÁJü¢.8ø‚®†”áíĽ¤À ½Œ²Ä¤ìÇ!ÄNoPâ„)î~gÏ€äP»‘Fû4m}%’œŠV`ÛÒ„T6ï9´K´Û„W VBÙÁ­Am×XÑÄ~}l}ù><Îüײá6€½àJ"6w~‡f*\ßW³³šR,ô²Lüª|´¨³†aDþZ¼[KLc Ø·±zÛ°Ïi×M¾&Túú.=Ë_ kÜÙ¸xÏäîv‹ºE|á¢!mÙ×ëÆÎ4=¶à\Å^5¾È’ó–m+y©ï¢²(￳>6DwǶ÷ ~§ÍmßoܸüØØì_Ë…Ðÿ—áhq鿬›àƒO(^ ¥‡ñ¾—‹ê~*$Z‘ºŸ•ǔ٤…¦ßë‚kÌ-– …ï’…ÇqÐà»&Òˉwä®#àQ†{½â#Ùx¶ gÒ©­ž­çl éš á‡M¯¯%j°/ÄT£´ó]ºßiçN 7€DŸIA$?ÓŒ¶òFB}]ùßÌ Fhêð„ùqò¬Õä©…PW® áïðŠ˜cÁâ²zþ%b<‰ A=&Œ¦”gÑÌøû —N®;ãæÄ°ô†ã<œË{«ò#Dú\d$˜ !MX“wDr1„+á&7z™«gX "Üð¾ ßzþ2äFEäVDVDj § ˆ×Lÿ´šfü$åMž„3É RºðºøÚXý~‘Ö¯IxêT3O¸"$¤‡I."Qó2ˆ*í€Á-âšï â~¿°j°j¦ïŽºÚ* -ZMüò¢Ðõ`’ð¸ÕLâõô½Vt)8}MErE’1·Â–­ë†×±Mã`²ˆ÷¡ãÁÏËSØ7ùë¸B¿-áá´±¢ ûœ¤:aÞ«!¿©"*¿hÁ3«4•a_\V!6Ÿ³»ZoÒ;QˆHëË«ñúbÜ^‘Áß•¯›õÉåõÅúsÏðñþÞðï?´O¸endstream endobj 200 0 obj << /Filter /FlateDecode /Length 5489 >> stream xœÕ\[o\Gr~'ü#ˆE ÎIß/A6ÀÞâMàÝ$^.öÁk,F$E"9’(Ù&‚ä·§ª«/Õ=}†´¬xøALJ}ª»««¾ºö¼=‹<ø_þ÷òîD-&ž~w"N??qÆ/ÚËSo\‚;½; Ê-.Æúæöä'QøÅ™pê‹V0ª¾ 2.ΦQVóaƒÊ >Æø£eóYëᯡ›¯¬*İxË•_ð59ã"[S~ Bò5µAùE7&¯©ÎV–Äf§7'oOdbäiþçòîô—'ÿð¥§q‰N¹Ó‹—'Ädy*^¼ÆÂ¢¤²§w'_m~u¶‹"¿ù÷38‘è„q›ßÁ£1F¿ùac”Înþxïa‘ZûÍ¿â{)„ñzóûÏ϶Zya6JT¤4–†ˆ„RqsÁfú- Âm~}¦ü"üÅY€WRK O>*ï¶2/7ÒŸ}}ño¸5÷旨U8½øâäâï¾Ú|y&ftfóÏg[«ÔƒÜÜÖ—×õéÛÉ»6î¡>ýySÿ¥>íëÓ»úôbB°‘QõI}ú›útYŸvõéýdŽ›£«zl9«_Õ§ïêÓ«úôÍd í¯K}º›,ðûßÁ·“þ¥>½™üµíéå„^ãÇC’ ååb¬Y¿¸Éf[þ:Ëh¼[¢×eg[Æo%ˆ]ŒŠ>ûJ~ ²AÆbØüì×ï>Ü<äÿfó·g[š)TؼøfÿþúòÕýþvóø³"œ¢N)T‘Í?¡LƒvE8½­¶n1Òmö/PÏ¢QÂ&¶øÑ0D,NzkðÚ œ±]QB9¢aa¸¹Ý¢N )UúÎá‘“{ ÑFD ° ¿Ù%ʶ%5p”6À—pžlM‰¶þҦij‚ •qÃiì?k¾GzB¡ ?Ðvu0yí£ÞÜ5 lìþC¢'„FÒÑàûŽoëŽ(«èòƵÒ(+œ ‡fçKæÙ‚ p(+³]Ïê@MÚëý|ê%¤Òu';"ꉊ2¯2BUÜVì¥ù2Èš$Øúƨ"دëÞ6ÃRËŒrO¢½O\ʃÔ<´É‘î¶ÞJ¹Dk%ÑN pÚ‡‰™Fš (\»¦¿s‰hÜqÑ%Îh üÝ]2p®~8«ìèØr8¯w·8·Záû®_%jÆE„ÓšøâÅ8±ã< jQR@»*ýÈ.Ôl46‰[ D[¿’ Ý àÑž–…ÅCªV“„/j§Pø”‘(#ÄîØñà¥^k0)[xáðÝvÌyfFwÿ’žm'õ¯7‰™×T$l7AåötËìËöTX,œy¡õ2ñÞx–»äÄ …G¦¤æÜ¶Ãkœ?ï9?¬Vn+¡Ë ï'¦è#ÖPíQ ,#°ÔkˆòH瀟ujRÏï¶iwSš—í >tèK´z|xÕFp4¹ÏòÒ‰[îÍÎC2/Ê¡¥CÑÇ”u‚Lj‰n³ð!ÁŽëÓkPH‡ ©æi!4ÿpOca¢AÎq¬Ž±±pdÆA¸Œ ý E›=?k"mäŠ&ìîi('’æ’¾ú4 H&œs݉.mß¿cˆ·GMÕøÜ™Ÿ=*8 N@YrÀ¥t4SY:/„;LkæíâÊžT·‡ú–~^¯v¾c3k`ˆ¿‘JvŠÀe°Š&­Xjƒ^ J“ÆÝ6Œ!RÂ+؈@@&¡+ãz¡ËËæ‡bf­u¾XÀ„³dgáäšY2 Ý$¥A£M Öôÿ¾ÎÜÝM¢AA÷M…gø*Lä&μö™ ‰n§«˜Ä°Vq¬z³g®ÆC’$`»G±ÄÅ}ƒØ%ùž*)JbEX7´£VÀd»×$ª.а·ŒƒÁÏxŽtÛâB&ïíðÉéÞƒÄÜ3ÿåºm‰ù/´<}^vj'Ñ|‚¹á ]q®²ã¬}ðÜÑMB(!:ÿBHø­µô\Ø|Á¸é{GŠ; yº9•=;탲æÜìIÖ¡|l{Ú6û‹·ÉÜj5‚Cš1ŽyÒK¥{÷yꀰÙÞâ[@ãˆlð|ɉŸ»tL¤8 î¨ÜÔ1ÙågàÔºÁËô˜2_|=`!¾xÚJ–äZ>hm L³äðÕᇠ/ðv7ËV¨!C?ÀK÷¶¬ —º´õ¤ 3x­_ЀèE°Û ÊÉ/Ëwc—bâαSN2³ ¼§Câh"’K š´\ÂyF—-Q¶‘0¥_Ry×™sfQÙËÔçäúû0ç³sÅæ8²y†µ8µ“²Ç<ôœ:#Å RÈÕÐã(ê@F„¨ã¤GÌB0‰-åª zç7ò,¡3÷Kƒ¼KÛggô‘Ô!.³ˆŽ¥ îËR]µ}€ 2óUuyø£2…±_øöüââÁœÖÁ÷Á—;. Œ@ ä6V…¢Ýåݺ7‹Ì¯ ìEb³É*ÁK´ˆŠsïûƒ¤K ï¸ CbîCÀüd,È£DÅY<ÌÒ%MïiIŽqÇ\⫳NªgXmé7 Ž÷ ¡ÎÛ4ß¡Ö'ÍvعÃÈHÉ ŽþW48-¨²k%uõžÆb6*uþŽ¥ n›<5kH´ÐÚ|gê*[Ð5 ¾kØÄøsÙÊ^°9íÊF’K¾¬° l‹@WMèz;^‡Œ"Zèö"Ú… ½×äè]Ö_¹ê\0´gpsÝÊôØv– ¿eч[u7 G˜$"”.ºf^˜kyÝ¡"etR¼›ü8•mR Vvc”‡¯¥œ—gçþÆc˜@ó øšç ²!æÍ<^u³iõ)üíCÿ”±Z±!÷kJž)~‘Õ3ݱ| cÁÍž‹ë7ÜW|nÒíì]ŒÁo˶Ò.ëfú'õ™V:™=êÀª/·íåÿϲ ²,©¸ñGkW?Mñ¤ñã8¯ïëË“:Ðõd ³j« 5‚Ÿ¨H÷”,MÊaðˆ§±z÷B³MO×óSŸÛÔñ£üéù}”És½þ™ÍøF4Ýÿ57;;‡ÿª,ø{@,Æ ù¥‹ãçÞ6öa²¯‡ SÞÏXñS îy[õ§‚ÝJðçõåÏŸ; ;Õf>æ€*öÛX°Ÿ D›pV“o\üËä¯cŽ‹Áq\zRÝ>l‡ØeBúŽ`}¼¨oÐòÇúô›ƒªg}Àú¿X·†ŒŸ¨~ŒF|ý„}*Qf° ¡ f?6ÿ=Íß «Ù”Šw6åÔA¤ªÛ³*>'º$îžÞƸžpÔΦªÉ‘Š’€ˆÿ邊áS—8e*ç±,¬ËKëQ .¸°+9(V*Xy_¶O‹QºJXÍÒUlìAUÊ` ÇŠñ»ƒHÒa¹¡éé_²¼ùž'ˆÞ´üûY)àXƽ6kÔÜÁR‡=k‰ÖU,˜mqJ‘üg• <Ú¢°Êé>~Çã±°XàB [dƒïâû-ÃÅ>CP†2&¢ Lä®6½Ïó–ô7ÉÂzëDÊûàc1Ÿ–Ã/‡hZÂñ{*Òâw^^ﮯEäyÞ´Ò¨Ô‚á›¶¢UÅ´2e‘˜lõ!tÝ?Û4+Y MHÚ¦ZrËÉeI,‹×Z¯Yµ®‡›û2ú0EPë^”iBý©™ïOó¿i9ç´-x ¤÷Û&ú9©D$¶5âDJo¦¢Hìµ°Ü¢ØÌ‚ 2SÿXczé2Ú,?éäò`ÙeÓöôV¿’±Ä ¨ ›fó{–júž!ÓÌsíCÜÌ»š<²W¸!xzÈV•M?€OCƒ \8Ò=¨Jñ‰tâ(À¢>®FdZuýéJqæ *šÎY¦2`jk¯ÌšÝž­R©¾7H©»JKôòÌ;~Ö\€-È|Ƕ‡©•º·Iœž¦þЧúQT)Ç3û”¶ŽJû¾|Y%³ÁÐòà=ŒUy I$jwÝùJ%ѵ,6-É >¡¼ã`ØÊîÅ<å8$ñD!W\q_ªKÝcŸRÀbÂA@-ÓnRX×#²eí¥È>ë‚§l Ž:6å“ìcVœ‹+X3˜ìÛVX/JÙí‹zÜ™K˜,ÍÒê‹ ÔŸÕµ0$ü‰Ôz›Á³Òµ%µAW½1±%ƒgNýÜŸvNVw½ž€ÝH²kåÕ$ÍlЩÄ]1.¿¬0³’Cêñ˃nαâÅÜÐòbüøn†¾Ÿ5oäŒ&Ý …ÜŸšÒ€õL¬7e®œÌ†½Ï̇jp(p÷DÍçÐ\°æ :|\wP¦]†¬ÀšÙ…Óƒs1M0­›®6Å]³¼ª™ÉÒ=—®$‰;2Õç† Y>åË.ƒc‰ß¹°Ú¢Ù·æ&GÅÝ^rj"¶{šÄ†uC[8ðç´|Æ[óëþãõÈ+g"•á/8x^&Á”`_7®ðí1f=–6³óFŒ«ö‡fîywA*XÁ—€q £>M$·íz˨ãu”à2õ‘V/Ò럔 á4C9:a9`ô"Zñã©2Œ=Z9Ø`0rKƒ}0£.KjƒšãÅX¹”X¹ôtâ[º®;Ï,»ij]›Î5pÍÆcuN©RÏñŠl3¥JÝ%J 8f¬£½DT1óFæè’µÒiƒŠåì@Ê–ÜzPPßµ)ÀÖ¢ýk¤{:ù+Ÿõò—[¬‰Šµe1§‹G_{Ö Y‹è1]‘¨]*Ôï!eM€‹Ãü†V³Öl@C“=×yvµâØm¡Tá+åòé՛ݿOžÏÓw@Xd·c'ΚøpF²îÉõë>=†;!“9¼Ã™SBÈÔp¥¢U0¥_y¯Ï¶¤@ ½ù‘1zEÝôŒ¬’têùD‘ƒQ€ë’9ßIñzP„Cø¼zÝïÎ0c!=fo€@AËm«ùç+Zõ=ð=r´‰; WzÖ·‘À;¥´ñ#b¾ùÖ¥+JÞÞ”JïëÝ3MjQãyHózÖKÏÑõ¾[ÅJëD½ÔÅ&ÙÑ"M[óʱ•Elô¼ÛcÞ»¿Ï‹HqU3kg[‰Ë±†_¢ŒCæò´5fê"¬mƒQ¸éc‘ÞÀ¤eÀ*Ê$ôÎG3Þ èû$«®‚šEµ¶*­Õ#†Ýœ•ØDx[ ot‘®gS+’ªà]—Ýßtí\XOpÀA UwíV²þ]ÿNgÁà31&Ÿ—‰fºÅfÇ ,ÓèN™E«è¯i1‡‚)ÍŠ Ù‹k—!‡Ía†üÏ›¶;ºU¼W‡Wv ©7gÜžß*¬‹b~R—/ÞNzŸÑIEKņ^nžnéc™Ð¹Nï÷Ti ü¯¸Æ‰-»¶ÆÄˆ´ë ýíX\*0"v)À¶:¡Çé@SëŠ<¿G(ÁÆã¤îtUi ^iâdl˜Ô°ÑŽp,“¡ ׉çóüe‹?0&òð­Ž’îòÅ)|^Ë?ÕþxÕø9^t¦·¿ÂnjÝÝG£”ÞxíµOR$îz@ô°4Åú-ÒsÙ_ñ)ƒyàþ}c×®©J™ brÇ€Ó8o§¼š…ò[™î‘à*—í¥Ð¨Žü%smÒõ%×gy—űÓü<ƒ´ËvŒ}.J+ö ÍÞ›b!o³ƒìŠæ€beÑ’’¤×àCm>kë`ŽN¯$iƒÉ_M!ïÛé’ærú$åz4SVÜ –{ñû¼ž*gS©¿a9T($hã`']¹ûÆæŠ"¹'n¶”¿–:XÀ~з#,AÇr<=0¤G·…VŸ³ê“Žw\X‰¹¸-jÉnp«‹ãoUeO•m™nfk˜\Š0û5EǦ¦‡©ÜÇIÅèÃqWoAJ¯þo\RwP.uIƒŸdDÂP䵈+ ÷CzʼnÈikÀ# £XCaVýh;ó¥²±¯¥À!‹ÅzˆLµ æÞ¶ˆ›ÝUÌvdô €ÿ;º·«Œ ýU®.=¶ƒíï^4Ÿ—-%¸ø‡ô¡‘f3f4á5¬ñ‡£NGдó {b·kºFøÈEņ9÷ºêiÇÒ’ôƒUNFô8ìó´'¿†ð©ÜìˆÎÎ$à®É:<ˆØßlÂÆnËV+ÿŽøåE<8ˆ,üì Æ»_[…mXbLg­ÿzªqó³æÙ¾8ÉZÓpŒbÉ¡¿®Á}f–V˜ú@Ó¯^ûaËûœ(·Wïò,éWÊá''M»ä¤=57/åß°÷–û ÓÌ©í;njÓs¿)E.Ї¼¢ÙñÂ<÷ÏÙMŽÇÓ Eiùe,f•‡K^­Ea³Õ„˜Ãä€V Íxÿ«9ÓÏâ¤>£š¿é£ý¾¸>C Ý;JOºšÏ®¬Ã›˜5){ìw(ò %ŽQMo“5‰ £3|LZWªý¬²5ù¹p`ÊÅ_bÂ/™á 89Zeú_…ªygžr?Ú›¥Õs±ì±R@;ŒPŒsçUs¼ø.ß4÷ü&Çz2¶¾´i62÷Êíé¯âðªnù‹yÒ ÕŒ›¸î»2 m?åǾå+‡må;ÖaÑW‡»¼cbgè¨0.Ïk<¼L·c΃úG¢‘òã3Íc*Áüõ>ÅFÞ·BÃ\´p(kÅf{˜¤He§ƒÒ?ïË¡¬ßlå¾,«Õs¤§ý¦Ë,»ÁgÁŸÂxí5Ü®í[pùµeŸnòÇç][¨V°ÖZKšµº×ÍØy|Xë]ñlRð>¼í‰WÁàïúTú‡[ý8¸‰ïu©ÚͱRçÓ|Ö¦RtHšúŠn>«.‘Æ»Iº¨,¶ãáü§H†ÂÜXÚÑX`¯*pwVÜtÀl—õ!ß>gYìԥ8ÓÌþª’“Ñìçö$£Tb¿ Á‹? šÇq7`e´WXh_^ÏœQ£@¹² žOcuš®ÜvX]='ÓwXÙ£Ÿ`5·Ã@Ñ¥ñcóL2®­ ‹ÍõôEï>×K¤x.xró¹&¸4•l™Yï ¦égN£_ë°|](tpÏÖÆ+UÇâŽm>©m½Ö°zƒ¶5‰Þ=q%cö«íËë£×¿¾|{;I1\·éþgvñlö5¿'6¹¤3Ýõå„În“M¯Èp– „†Ÿ •àÓןñìôåþÝ݇Ûýüço.Nþþû__ÎèZendstream endobj 201 0 obj << /Filter /FlateDecode /Length 3788 >> stream xœåZɒǽã+pÐpíÚGØ’lZr8¤°4DÀÙH P³ˆäßûe­Y `LÉòÉ¡ƒzŠÙYY¹¼—Y—b’KAÿ•ÿ_Þ-ÔdâòÝB,ÿ²pRNVª¥·NNÁ-ï>Š)˜¶°[|»^N>È¥wFLZA¨­'g“”UAOÖ0©¶Â¥´3“ lCkžHÛ±šb˜¼íV•¿¹QN‡É¸ÈŒ ÒOAÈÁ¨.UW©bTÛ®ÚÄöËÛÅ ™\¹,ÿ»¼[~v±øÝ7F,ãrË‹›Ev³\J¸Aœ^øI*»¼¸[|·’a½‘Qz¿úô«õFk5ÅW_®7b1¥âê« úK _}³Vn 1ÆÕ×k¨ ÁE³ú= ”]ýãs&œ^”Ñ ã²J)TT&¿¥4vU7zþšžƒÐ>ø]ü•N¤Ø‰´RØZáTW8Ã7$ìc€1EØ0áM•ÞH3Ĭ¼#'éÌêëUtl¹ÚµÅm{úОíé©==¶§—«öxwBM¼oOoÚÓûSjd{ú}{Ríé·Ýìý ÝÝØw]ðý±+z¹æä@äz´V./þ¶¸øÍW½>qЇçÝòâ„qÝàWíéú„Ân®xöé“gƒÐwûáÄnÝèŸN¼ÛsãéÄ»Ås¿¦»v'Üuûè×™‹ÿ|±ø;áž vB[!ÂÍRË`PòKi£"伿^þs¹$%@3È&•[„6“ó%¿xóðx¸½ßÞ-7ˇûW×€8ñÉÝöþ‡ëG püj»{º^g’Î-ƒ4 ÜÀ8£ 0ˆD}¡k úìjP¹&¤Š1(¸S‡¥]Ñ&ÊÂxn»µ2[Ú0 °ƒkD0l^½¸¿þñézùa}ñ}vw›6ÒšÛêÿ‹ÛìdU4œ,—Àƒå÷‰›•€]ØÅZx¨Ë¤·m ÄJG2uÁD?é,¢a® \¦®0!/Ô¤,ª+]Hƒ*R4¡¶Â„4¨®gBu… yDÄêJ2 ¸Éh„FŸt'u‘ç“rÈ›ÆÝà}`òÒj;EsV p§° 5µ²xVBÁ­¤ ?”’’EÚüŒè·Q+e™”MJ­4þ¥UšŒX´ä=¯'éqžºâ„ËÇ9!œ§ìª+ƒ”×ȼAª¬ Rh1&?H•.•Lè"Í¢tn¯á:œéTó®‚_&bbfwIª£væfeÑ¡¬´èÏ:ü 6Ñþõ”½$µÇfˆ±G¤$t,>[,”´’4Rai€Ô@)"Ù1×…*wN¨*e`etGºÐÑáè¾JŒ¸vMJªT+ÐQøÎDÕv :NAéÈf/t;dôžR`® $²½RK¸Wª#m0$X骂1ÍuÑ–ð„´MªÁBÍZm•Œ³¬=±2{k·x”%ÁÈ•9g'§ù«Ç+³·ª2´ÇQšíñ¤ŽÃ4÷YDÛŽã4ÓÖ±­žÀ€'á™u'Vfo•ÌÏ„ó9Búx\ª Ùj¼Œ«<¾;ܾ\!ó(CâÙÒt󹟔×3:Ï ×”M3ÌÏåô²×«¼¡¹åÊê9%¾ÒVO^ÕFêM¤ý-ˆ|²ˆ €ÄdÚ4À]L¨-t!ÂÓhÝ„ú 8±L¨-t¡ÙIøÑºÐ/"c7i´†Ú]CάYoŒÄi̳¡²óÄ"ÆkMË*=*"bSVÕÊS­ÆÜMz;ÕëÐÕ¨û˜T¡¿ºÂ¥ŒÄHɤêÊ …\žŒåRee2HöÀ9¹® RÅV&Ŭÿ¥ÌŒ‚’tgfŠÕ+C‹t]Œ[…s,]` i§~IWç*D-jbiìk‘ \à±¾f+ˆQ Æhm‘{ü*b”rÖé¶a«›QŠ¢æMc°|lWn0l•jå5JëqUÈ¡ ‹ÌÜ UHwV•‘j Îü€öÆÁfúc«á1 U`Üp2UT@¦DçÌ©»-€ûz·õ"ÝPIá"¦nz´)sûD×E6F¡,&Wºr Þy é&Ê4ÍS—<Û—Üï@Ýåê È£ 1`'Ò.Ð2*ÌÙm£GZÆÞcJþCÔjž.Å´qau¿Më(L٤ĠdC㑎.½Y¤ohÍ\¤ùš6GßJ× to'¡]št š«¢åê¶lGPˆYdÙæˆÇ¬Ú ‡6Å_Û±>­Ùyå᪴!À%j.¾ç6]³1¦0¼&-2 ÿ1%;²Z'#Ná(¤rÅeNF9œ…"l0"YÖ!wYµ•†ëkž”ÿ­'-Ý\cÕÔTÈŽ„ƒC¨Ž$¦çޤÔR`§¦ÒÓlãr%jHtSe7T,ÀŒôÆMN(ëé*†6À™ç …ð^’,Už§ÖIc–Taõ6½˜“ÒŸ ê›'žGy#ô™ökÀÚŸ!bl^JûY¢µ]®ê·cŸV?Æ/ÖÔ;aæ9A°€ V¯@6 ÏNu‹Å™GÈ>,¼vrÆ )%iÃ3Köj©ÉŒ©K—‹m~¯¿© ´14t™’ïØü›~Ñþ˜ì¡…\¡½D:ÎX¡›NîðœÜË–ñ¢vŠ#AGeU+íRtð2æ×œ)%H°!üšJ;D©©4,å8òë>…ËyY,Ú–¼êÊvëö‰ ‰¤?P¸=°[˜r¤ô™áu3‡ÉîúÇ‚bºu(Û›¾Çcÿš±¡bHöOئszNé—}™bXVߤ|õÈÑÅ­¾ªP"J¦â±d`º0FBHéâpPæ•}×{Õu]çD’Â#G¡ Ãò°s vÑ˲Sf¶y¼Ð(EºÄµ‡£KÜ/£œ+–I*ºMr„ ÏgÐ*ú7í»mƒ¨6;vùkJA‘©HeœÝ¥°KÙ#ÇLea¥7«lø#cFQuûšPÙˆèxV$ó`S̼ƒV(íàÏdeÓÙ 2šÀ”ß ²|ù*E˜ì”Õ fö°˜òÜÌ[D´¶ý-ê'Ð¼Š¨‡}ßvQ4‰UA@(œ´ ú}åx•>u"ärÊ{s…7íx£ßè5°Â,ysˆ\ äø™(”D‰Ç äá©~FóCÊSνQÍÓ \šE£äyv–·Ædí_7UÓ˜‘ß65O ô.s„L4Ž<›ciÐ*ÅÔ£@h­Î¡æ.¿F ’]l<À‹‡ì.íŠ óˆ—}éÆà’Å‹’7™&tâ+ªúÔŠ¤Uô"™È z=ôçé}ÝýuÕOÊbvè‡fvÜõr:¤­#²ìL¤ó£³„†·O=æ¬/;mœ.–C;t ¯aM¤h.Éä[ÚÑE5äÆ{æÒ;–ŠTI“]¬¥‘ù‘!ôáÔ·ÒgUÑ­å%DZ*'¾ÎUC…Cë@õLoºX<­!Žçq5½0a©Æ’jßA‰gR¶“‰»š´Y¸qKN9¨¼gÐõ–#{§ñ¬0ý`€Å™µWY³dßW?O½µsZtüv=³?å÷Fñ¢_¹—ëÎîS^ 3´NaÃΜœøaBßB¿ )xôöÙ/·ëœ2“D{Q5ÜÓ´‹šËòiʽ¬1‘%Úô= VÊŒ=;Ôe/ÿ#¦öÈ´PqÑølËéyNh™r‚-ó$MÕ$ñŸŸ1<à¢Tƒ4Oû=Á ŽÚó€>ä ‰·¶Å›Ž{3Àª3oz/yÈ?=Áô2-1ˆð&»ª¸u×­ÞöODOcâ½ob@˜¡§Rc;ÚR¶P@*'=¹Ñ—Ò¢jtñtW”æEƪ‰· SŽ>ÑÊgÙ¡Ò¨!ÿ/“AÊW0`Lp]·–gL. Cø‡ŠÔ_ ]A·ù#ÛÍÆ›ÎØ”i­ª‡¿7ÝqŒó¬{g¥œÒ›.ž„¯éí4‹[ÉÁÔÑbô¢ñ>ôJH=d&À`=€ïÙà²ëÐÆ{‡ë,ld8ê/óô4xm{¦{Èâèð† ))°kìR“Ù2ÿŠ¢%Ϧ.Z퀲A ª½,—úLêrþÀÙ–¿6kÒŒަXëʳã²fÅáq>Ú"®â¾.Nå‡ÛìÂhò­`ϲ!oª©¼7Hýdn+¦ÜB½÷>×ÿêSú"³©kcgÙÇ“í:Ñ6"ÿŽ&*‡‹¼­¿äÜÏÚw†Á<¼mFs¬=¤Á-ýî-WŒgá´ôY*ÿ£ã3jÙÔÒ/·ù]ºcóþaàñ4`)=Çiïñ¾,߯:U&©:08b‘¹ÎÆÚ”ËØ´Ÿ}g«E˜OÝ’áÍödLç}´Q{8#Ël»?éw³“¶Cµû!Y¶'êŸ8¨Ô^1vfÍðuûI‹þ^ )& ¬éÍmΛ‡,ƒ™êc/ƒB£ŸFÄk>j9ö!Ëy2½·M›>Sðû^ðgfëÇ`€Ìë 'âЩl‹|>שeÒ½P9½¬$8놋‡“ˆ{—UÀ·Gc­Ýgc–¦ÏTéÚ»–w÷%¯—Ó×bW=¯Ú óõ ‡Ë‘+[]€Ø­©m¯³r¬ØôÝÐÿÝfÅÈ•ÒFmªðZ,G~í½=ôFî-[.+ ÇMª;]&i•8”ãÝ º4¸‘Œ—ÃÕ\_žuVü¢Oëɰì;°™í!¿®c©šðÀt)˜ª¨ÍûüÝJÌg•f”}¥ÖCÅÝ²ÂæÙX¾:8Îé©3…(5®Ðè§Ò®DèKÖ×ÂI€N‚¥gfP’0êÜÜyt’¢Roí¹2þˆ«^Ú7 öª·³v¹LséXœ*Z˜äg¨ŸV%ýž4=¢ظ»½dƒ#ÓÛü·Ù:꘎WŒîZI¿ïÆÉ¶ODYAŠ³Ð™v猻µýjÇ Ñ–eö›>ËÐd–r¡]£'êÉ—hÀ´)¨öµ‰¹×û”¦!G]v²¥ß7jå‹û¿üak²endstream endobj 202 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 3468 >> stream xœWyXSwº>i ç¨*ñœéM¼îk¯ÕÞª­KÕŠ{]QPÙ$,aWÂ’| ›¬a'!@0 ˆˆJµâ[-½¸¤VR®Ô*j5µ†šG­¥Þ¡ÖS¨¨Ñ”r¤ÆP"jÙeGeñy<|-äµA¾+ÿ±Ý\»AûEöÇÑ´¾ÅìbNŒX4¢t¤ÝÈÏFy8¼é7zêè3£ÿ*üXø7DZŽï86¿>Þ¢ZúÁd±7%œÐnýœEíø²?}yºï|ÑÎb.žö”ñ”îÔ–kNÂI(R÷¨N9L4ÑîjƒÛh¸uaQµ~EðìqMcÔÑàCš›,·—Ò—óÒvJ¸Šÿs¢5r臂Á„2`“É '~…W¾[ùØYdÁX ²fmn§ßgw_ß’ 7’ãÍäœ9ÑÓi8¢µ[w¶MÂ}øÛ3ZÎEО\/  ãPxÄŸàíÀ,[푹rkðZÇ‚mdÕ)?íù•çw­4sÅlKNEXM«ÔñIÉ„W¬®¬ÖÕ7„Ô{môñÙ%¶òèÍMøõh‹4Ýpôê>ÛnbéåÊ‚&B¤¹„H&ì0ópü=ÜYË·|7´ˆ}ññ/ü(ÿ…í™IñŽÃ7Ш´ÎLÏÉ(l’ êý° ø]I-–… ޕϿقa: p6¶–pb¦V ´L—,sªxænLìæãCË{l)ä%)T”(V©RRÒÒ*iNÖeÿr÷àbYu´Ä,mNëNéN.UVÌO5Ä3o $L–ýùL’X™¯ÎI&RH¸±ôAH)ÌÑhÊËÄY9EÙÙ­{;”ÂǶ«ýí±ÆèjIБ€ÜeŲìåEÐË4T·~ƒTî‚­X“éEÀCn9)ÀDBo‘ Tð~À?Ôòñšekâ&ãú0Z=?pÒ %q‡«£9»›Q=ý—®ˆ{ÃÜèeÒ€€Õp·LŒõ´p¨€ {Ñ„f“ Ù¾{|K“…f¹>L4i ÅÕ&—r+x’g+xeD¥ÕôÿîÉöÌsó8í6Ì£è%*R7,Æ>®ø÷Þ²TÑ¿³é2¹!­õšfï³s=Ö­X h;#Ưhn¦•Pƒ œ+áfа|:ëb[ÒŽÃi誮»Àˆâ4 8­ÀÞD¯JÉí’ ¾c#!i"y¥å&^…EÅÇÕˆ¬2G•¹LÍQ(›è=ª(µ7B(ضFwB9èüq ‡.9ñ‡•y‡µ¹¥ø&Þt©ìn,lÔ0&:Dé*©&LkU§*=2HV«2ä¹láÐÁ—ËmæÁ;lÕ'-Y•Ö±¾Jì?HßáÛÔÅá ɪteÚq™.SШ(‚LÈWcÒÖ=z*÷BñÞím>õiïç8;GL*j(^±¥€c4›–òh¯=8|Ød6ë?±Âª '÷#R÷fª(•ÀŸ"W¤¯[ä²øqZžJ ¹ã ° °Ú:ÂO%S[˺ö ø ´ªŽM?p¬K´lûšè[T1Àjg¡ AÝ0¬®™ÊRÈ'5+Ö•éM5õ†úëS\Ê£Édé ONŒT“A­Z½¦”§ŽÙÚ„ö…ˆ®e†» Ò2Þ€þ­DsÑ@¬æ±š«,¡¢¦ ÄÜÑUÒ mp<²Æ§fvÃîôí2ßèà½Òíà~úȦ„J@9“²5yŸ ;óû3í ç°jw`x¤„øWÿKÿ±µÆ‹ûµ´Ð²[^‹G¿©³9Œ÷}¾…²ü“›¡Œ¬"¶¦¦²ÔtqeóŽÁU¬!Þt¨˜W/_ï 3'KŽí„BP(Sp€‘çÆU—äW–'˜|C½äâðª}Å$äÌZ±j‘{}@É!‰JHä9¨$ÀxÀ=Þ×v3>Þ‚cÑñÇžÁ–¸þzñÖÆÍ0‹´O0¤jCs⌤V%Ùº¼"æi;UµæR½DWaÔÕsfDEÁŒ·%ܶÕïmYâ5{ú²Î³%ùŸÞ– gY-xÃÂÏÇuCkÙW¹YòÛI×Òÿÿà»vJ·’à+RF”&ì6`7ɲî`Á÷ž>29‹â’´0Ÿ†m^yVž¶*¹"à¦ÿ·÷zîM ò±Œ×ÎÃ5æ17ú&GjyõWbmgæ)°n‰üþ“…fÒ"3:®Bƒ_VF½?‚ɾ¼Oúuú_€`¾ÒÝÑç@aB"¤¤ª%ŠõÒH)Á^^‘ZšR•r9½=õbJ?Ço$ük¶ò¯rºŽÔ2Òc÷q½å#–›dEóR^:Ib•?#Ô®­Ôœ€Ò\]Ã"´6#û˜Dô$ÓÒÌÖGêC¤Q¡¡Õ¦z½¾ž(m´ihN-¯÷Þ¼Ä'ÿ]öý Ù%8ÁôŸ¹ô²§gN)gÆi…¶ìR)A7º'¥©ÕIiâÄùEûw¬Øqj6iÛóçL^ܹ+[!i÷.Sਰ›qyª#AµÙ61«v~0g GteaªX­ƒœD[ªŠ•pnt,¤æj4…¹â¢²äÄ#§/n¼žÜENxóûç½1'"ë%{Îz¬Õ1ÃÆ ¨GY+ïù>‰­!¬EFÿ*«Nh šVhƒºýV=¡/yÈ9—DN‚„qÉÊ$© 2½æ˜Mîë†!Û‘š€“ÜtsyôçŽc—3‰wS÷'z.Ó¸ º0˜v\|bJêp‘†x­V…àãúߢztB©ºëŸ®[_½ùX¿Î¢.Ûå©k§.œ-Û·ò·šàç†ù—^~¥cî@íþ¦½o¡'¬€>aÛ“ÎûïÃÎ1žŒè¦ú‘àß¹5b3çV‰ Åõ>®-aI4Y¸tE†2@Í(rÒr nâÈÏdMûãÂÃÃËà :F,ĸá"¯|lÆ ìEθ¶BJ¦º‹Ýϰu‘†ÈˆÐ}dýKîæG†œ ¼ã·±˜\Cð ú•·¿ôþv©~3l„¥‘Þ3ƒ]ïÁRX«Ñ¶¨óÝkñð'¨mýK}Ηpƒá¤Üçl¬(ŽCûäóp›x÷e¸^x¶âëKefh†¾Øò· ¶ÁbX`~ò¦N°,9Âz}̇øôÙS¯ûÿ…oÙ‹+Ù0*1uSb|zŠ+R†s<þà„Ozàé8¤gÝ Xzñœ9mмªú’£õ1UR…Ôbý•K ÄÓŸ6Îr¼dÁ®n·SNÌ¢ÆYD¡x¤Ýü ‡à0FƒEýüSReendstream endobj 203 0 obj << /Filter /FlateDecode /Length 18259 >> stream xœ}É’ Éqݽ¿¢L§j ]Œ}9Pf"ÅE4R"Á¦ñ@ðИ @ÎÎ`!.úvùsÈŒÌ ÷†Á¨)UgåáëóçÿùâÞü‹ÃÿÆ¿øö]xKýå÷ïÜË_¿+©¾Åê_j.þ­•—oßµPÞJïÇo¾y÷Oﺫo%µ—Z’{‹®:~Ó|+™¯Ê‘~NËEóë5ÉÑ?æåy9Wú×vyÞ|«ÖÛ[ÍËK_¬ïTb{K¥/ïÔ|}kίït^4~q¹f¼Óñ´ùJËÓÜË×ïþóç…|ÿùâÛ—?ÿøîOšÜKë%”—¿x'‹ì_|Šo5ÒÂÒKù_>~ûî__ÿâý÷œë©¾þß÷´#½¸T^ÿž~Œ®÷^_ÿWäÞ}ɯÿü‘~O/c}ýßø½w.Õøúþúý‡éö.½þ ßÅû”å×› ¡¿~\žô7r¹såõ½õÍ5ºáÿ|ßèW>zº”~ª=$úÝß[õ¯¾¿ÿ·‹OKë§¥·ÖÒËÇ¿{÷ñOþõõ§ï=ݲ—ôú?ÞÈ!¼õæ_}üò›ã§ïŸ~süô³Wó¯w~{üôéøé‡ã§ÿ8~újó¼ßmþö|ðo7û³÷çWý¿óÇ?úm4ŸøÕæ:zâüñ'ç¿ÜÜç7ËïŽ ÿìüñ¯6/y®ÔÏÍ·ÇOÎüé',!Þ¿õœý”‰ÿN’V IØ* _?ýrû¶ÿíø÷·ã§ÿ¶® ô—ßý#°çò–üKrµ’B¿„L†¡Æ—\{ é凯^þåå;ÖÖäéÒØ_Š'cBzH%óÿë]§ëÞýâ] ±@¿ éɉøüÇëEV¥¼×IÓšrQÌ£ø’ÞÂõ¢A,H­¶Š,½°H‰"Ÿ¸_úªÂÊ™ïwY."³Eÿ˜+IHÓ,µ«ÍpÍ7K}¬ròð>ôå~Úé|¶÷µÀ–nߨu6x©°_bOEïI7‰oMYÈB¸¼íý’Öhõ ¡!äß^‚ò¢ ûOv°œdûÝ8.»á•ÃÝJœoKúMo[HËæA¤à°ôä4šæÀÈ V,;-¿Ã o͉/ édÞÆ‚áÕ)4Še¿(´uP·áÉ4cC–ª‰Úó†!C{fE*¹¬oÎoN}L_äT3)>C(CV˜7c÷鵓_ÊÝy¯æˆ,- 9Ù5ÅÙÑ£ŠX,g¹(Z,b¡Ýê[“N¹_€Û  ýÞ~rCh‚&|r»D›Ò^øjÈìwÙR+6sG®¹«þ;Vr¤ôÑMq¹äÄ<þ‰2Æ‚èe+ ÃEAßœòI Q€h‘ghš5酪q%¹æ¼]¾ˆDÝÁЧz±FŠÍ2W¥i^¥µesDhÚ«Um ArÆ¥N•­B  K†4*÷!3Þ9-º9¯€ ð0rÏI‘QzŠ•s!ÖÓ^,2‡Û™ïÖ÷+Øšq+W!^ÀÀwéÎÏ8êir:‡¡•"Öû¦8Á½e:l“‹9¶æ0Mñ>¤âÒ@ŸîR±®qäĦPXÊþ«GºÄýaî°€¤‚^µÚ®KEß´¼’`tØj¿#­£ üJ{^›š,7lØV¾ãadSèµôÀ„劄ùp7·è KW#uʦ7²ÇXäRçû>e½#º!ÝËÓ=¥‹Dû@&ÅíÂø ƒ…7A¸±óé°´¼m’\sífÚ*ͽ4xùKð3xÆðü„ ìP»¢ÂÔÓ6g5­«}ÄçtmU­–‹â¡½ÓŒœ [¥ÌBñó•´š£æúˆ[Vòb±)‚i?‘µ#*,wb+ ää9C"£Ö÷á|–¦Òcª&Þ…,VÇ7a£¶XÛüDtË.UÊ&îT30¡…‡ÛP¸­Ð4?ÍôSa+`²WõíøØû%N c5|AòÔ!VmÃ@RÚ%Ðx˜qàë–ߊ&áÕ‰41èÊEuÞ&€¢ ¹Êã'ì5?$XZ> ½»]*UâåäÔˆ.ql=2ž¢èùYßÅ*1 ,[^˜¼ Z })âA|qU|S‚·¦\¶(Þ#–ã>ˆW†ÓñÊ6ùJätß_±°ºm ú× ƒLÒÍqÖN[ ¡°=h ZVÓ¨Ò"q{vü´.œu‘wLÓt?.ñløs¦œQþásáõZîê‘“C•ìÖ‚€a¹Å»â—Ð#(.£¯¢CK·=KnßÑÜyqÍÔ]´k€5Që[$|˜pz ˆ6BËhÈN ¢a‹Av\K(§»®D|$q%ñËj¬ƒÀûéë58 Qf<-·¤G䌱•”½oãh€U?«‰g{0Uô°©p÷È ±ËI´ˆ}÷¶ˆë ¥Ún@ŽœãÖà5­®¡ŠâcÔðÂ3BËÖAIJL®`qµ.”:USÊzî÷ɔİ 'k“ÔìªpΞSlwÀh~Wš%Ii¿:A¶IHQüƒ„€`2’,Uˆ¡-Å\ì3tη¹›(’q7z­=ðD?PÚ_ʾPÓ\ÑîZ“â2SBÊi…ö†ÍWŒæ}Ò>^¾'Osõ4Ô4é&Î0EIì}¡(M ' I1”;{­"AR­ÈØÇÖz’LS²[€î9‹3UˆJ:MR•(i©%*Ã{h ÌjÑŒZk¨ô:°÷µ4=§‚¾±þ`Ý58(Zšä«~¸ºR3Òpe2Š)IŠ¡”–H€)™Ï‰þ»•<|P—H7žsLZ wOû×,$±=‚€j€1#sGêyfÎf¬Œ'“:æ!é^U:Š¢C•ì¿ì"ÆNR‡|3ÕpÍYWc=|rÚ/oö‘‹šEKì’SèjÊO­ŠKœü\©Œ`é\ÝídÐp¦º¤%ì}2ü¿vÒ9ˆ Ù"E³‹„{™t²lý$™3 m ¢„m&Iá— Œ•ï½§œbPO×µ,aF~ ‚ѳ’êTÈ qFr!*rO§¤ˆþa>}yS4$ QsÖžUb‚Lå‘o(/„Â3ö“¨ª˜G/˜f.ÎÈÙÉè‰H-i#…ÿø®\«†J¹¾Lvb e@¦UðŽ VžœÀƒ0ŒjmWÀ8ä«Û´¦Èˆ”ø?Ö…,`S±º [µ¨xËkÓ×Õx¤‘šÓRÜá¥"ö@• '±9ÀU)PnC½,‘gt;Ó×¼àî0NW$Ë‘V8ëa@†û§/Oš>$ʤy™»QúÈ‹¡ÝJF`R½ eô06*^P.Xƒ½á9‚â †ˆê;è"Ç~× Hd,-Æ:%J;ø}¢…@ÓE¨¢š2³Ô´£ þ±\Òĉ¤R4X¼ø³ÛK!ÂİÝû"‰WC„ÄIxÜáK°²NÂZvQ…F,Kœ¶.ÀQòqþþ&kDáërñ^|[V†d˜u¯Ü*k½  …™zàRÔ«õG9ì4‡dºÓjAP&$2Û%F>ü I\2#óå5@‘<’Þ¡í›ÝN®J 4…r§&œÁ* ö0Zˆã¤N1]·{‚$8I±ª‰ØEE]^è \L¦Gm] bTØG„[J: Jê+‰ôEƒŸ)a+Q.Ù/ ÃÑ~oa³Œ‚‡lš2ÇátQ$T#6z€¸o­F` Y>ù3…Õ@,à¾J$K¾;1r‘ô¤Q*‡’eêz”¤0œÛ£ì´†˜]xñ®{º2fÓj=ÊÁÌÕGuf|QŽÙîek,J©(%<@þÈY"`;5wŒ–Mi{f›¢Ã9=’³sÄœià~àÆ!1ƒ‚6ÞiŠª€²@– p‹Lv$ɲUø }aܪOüI™”$Ã르©‚àáhy4S‡Jš§ê÷ ð‘=z¸â+r&­úó—åÓ‹&`ÐÀ |©3˜r‰â3Í\–,åç¶äK¸ïܤP”’Z5¡'ˆ1TÆ ì,{‚Ýf$#ÜQ½5úNü9*¤Ò™ÍKro6/[…çƒ7¹,ÊÚ_Àl ñšÆE°± –è7Q]ˆcEò›žFõé­u'}¨fuš‚£,“¼\¢ÃÅ£â™H„ƒÖ#êö*í6|ñ&ý q µ&VËuÕï‘îÇ7a0=^gZˬu2µÑ D8©Ù'•îŒ?o-¹ª€öNÒgnÇ+Üw6øntkaG‘@›6\Aý"0â6mß^2|PÔæ­²Ž@%h­™ˆd³ŠÎ»¢dÀô/ž‹Ý¨n¨D8ÊФÂG–.*Q$¬1•Ý5´;mºÑêlÜàÄEµ›0"Åc‚@?5²«ŒPR8ïTR8.«qxòI`È«fþ'«#E£ (·2ØaNj½¦‹ÆÝ_ǹÁ)ˆf×*œÓ{õ7Õ—Ç,`9rY=> !eƒ¼Øh [«&ú²§vMõo¨Êf‘x5‹ÍôÒÎÇu’s˜P¤jªc8äA¿öá`ŽB|jÕ!sàKÌLI+þÄ(TlDý¦ä©606ôwEOÖ•ilñ³U¾DÊžú%}ÝL\MÙHº o#‡ö^‘tk€—þn –·ÿ®À»êì,ðºñ:)i€x—°hØ|Nl’è£êµ†¾ˆŸç›Ôé()è‹Ѐ¤ªKãÙ -Žj']Û¬}‘¤+!4 7›ÞƒÚÄA‹aÙR“iHfJR{ [£œe›2‰„Z»-.J4lWÍKÓ£"V’Fà\I+**†ª5¯Ÿ3()¨dqµ¥u­9 y¹'vË,Î9%·¬åpì æW´¡& CU'ÕKñìéJ˜rBæ½jM„= u2£=F5xö½TíQ¨Ú³‚&Nspš“p-·ëì˜$Léʇ¹Á»d§¡ÓAêžìœ) ·„¡ Y 5ØDH‹àðI˨%„¢­ ,˜ƒ6ÄT½ÑèI6 öÓï%oýH«81¹Ucß%×!ùÑ£‚,à¾e7yÇd“´bµê¶«É ÜqP(S½ý¨/Òi=îÜ8ȹµ± °’]Wx£X\&;Œ)²5bÄ S¨? ´GŽãµôz‚f£NLfGmmIÆÌDRP@zSÁŽ4Ю…kZª)ke´?Yõ>!–¦C[n™Wgâ0G[J o õI% ÈÝè^ (ÁfÕçøeK¦à×€õU‚±*¤Ž$$ÍÝ› ƒÚèül‹{\BÜ×R»Ã¯)Ê6[ (]à Á‹ÙnŒï*¥¢ÓŠ+çÛ59L3¢U5„ìÐ)ë–{ QîBê3ŒœÊl«;ç Ñt#lUÚÙBàÏû Z™¢²×etKÇA«Ì{\:7aT#ÔUº%MF%ú¹º¡E Gƶ•)^Ó„k»ÛÉ]nìë¹Õ½»Bt—ƒ…ìBm4VÑèoødÏþ™DÓ”ºn r*äotA¤Ö9ïÌ*}°ˆ?ª¢‰èyD¶hõ²gNÌìp ˆ°úЋ^ùí†K¥ï±ÏúàÂ<âÓ°‹`ÂD%ݣݔšg¾sëúIjD·­FåÑ!©‡Æ3óú™ˆî¾8Ø®y˜À-0Ã-æ«é¿7ŒVhïŠ=¯szTÁ=²^™¾•²=.e¢ç»±Ý(…*èD³ðñ[ƒyä‘«{Ú Ç®±Ý¦aHYšêª‘& Žnp‘gߣâ{q5§ï݈6¸¿ésmÓÐ5ç¸[‡É)-z÷S,Ò+®$.ÐÁ¯…lÐSrüë±~÷\­Þ Ž" rÜà¢Ú—ŸÆÂ¯ƒ¨¾“'t„+ÅM´!U˜– 4§DiJ±w1‚GQ¥-Oé‘G¯úR{Sе˜Î$´é®0åK/éÎ :‹€•É:h–Ó^w„bˆ”lÉ#éˆVaÅæVƒ¬ÇÞ>¦;£ ?ÞÇO„ãù>ÂëË¡i¤`ˬZ*M9H;9°+ébÒݯÞZûÎD¸Hõ-_J;-j׋;U ©£q XXRuÎp|N’j%º.¢fÎzï‚æ¯Ð@È`ý£põ¯Nöe2µç!IzÎ6­‡ýù‹«‹iÚø'¦!‰TWé¸K9¤•U¥0bx#œ¹7c*dbÔ‹à;½´"§½jŃЄ” ‚÷hx0‚^Fb³$j*ꈚyowóù#–Œ!ÞáÂÓ  ´-eþ^³^x'Ò=ƒÑ+ Fh _<‘ËÌwV¤qJáÛå°”¸õ#Ä &œ’b?J•)&fÝfôF”ùµe‰£' te…»=%éó<@º4…`Ti“Ÿ­ž˜{ª†Ø IrcÅž»·ÜƒÑËÍCš÷„uæŠpÔ¶93É# õsd´å  åpÓ»”½T@‚ÚðŒ1¯mÔàö] 2º`à¸ä88;õä¶*ÃûZŒ~èt Në€ÈMp4Ø"ºŸçpÞŽŠ-}oÞµ˜@p Ciõ¶ÀÄ9,'Z Þ„qŒYQ°’Ô±”†Y[5fšêW«>d¦Â+­ ‚œ£d;m‡ óHQÔèf»TuD¡:XÜH°ŠAkQºÅ1~€ñš¤&ecÈÎÒuS¦8€©èÛPe2:ØÕR×ä(œ%ÿ'ÕA²Y û!ÄÌ~B¨Bú«L˜â$×¹GÕ Ñè„§aÏ‚<ÀFØU.¯<üúòFh’`ŒšŠçVùªCÜ$1:3öý¢ÀÖPN,j6/ûÌ £[¿—‹§|Ÿ}HûcnïJ†ãŠmÑ)ÒhVá¶RÓm6š`@STg‰,…KÌ^ñ_d6¹`á³^Çu\§®wÔñt-Üã·úžÇúx' Û ª8vû› p霪˜{!šî6RÀ¯¥ŠfvâmU\Çä5ö µØ`:@(X§~°ªÐ;)Y`&fI%)êÂ+'µS‡@[³f‚*뵞zé¸BÄ£%ýIÆVù&`w×¥CGO †‡ O5á”°$3ÆW¡˜Sמ®%°s¹}žñ5ž´„U7&”„üDáîÙk–lí.œ+‘ŒY=¨°:F3RQ®ó…V¥hÇQ·xXè–É^£O4`̰‰¤y—3GNF<†äQ©©‰Õžu4M·)Õh5!"Ì^>Š—x¯<üéꛊp¶í‹rŒØöÏñf¹(®2Η‘™¯žÀô›4:ÉŸ èÒFö´$¼“œ™`KF)™\¥nÇdšÕí!ÀkTwT‰ŸÆ=èzÙFºmMäò\´Ï!mI3öAåLq@.†+¢ÓšÁpöv4"ŸîdþG͆({©¨`sW!¬ ]*M€ù¼$Ém%˜$4Â'¹¸·¡G@œC?Ï›„Æ7Y†N> Ý’ñQ»¹ó9®2Sx ö:“ÂQ˜<{ÑïH<0ŠŒ·‰»gL~ýé³wú(x‡™±D96„-ÖçÈÚƒYÂgÂö" o`V0Æ‘Â.žûŽ[ñpÄA \£”Ôoëö^˜t,nËlo8r•]u±­÷nßgºg ~¿‡ïƒÿ¦‰fœqêJ`¹ÏWþ l…2†$5™Ÿ‡ó3êÞ0#Iä(±vŒÇ$5ášiÃ&)V,Ra6¸»Þ±!äÉzó-žòYN(ò3ìwyØqz‹(†µõ+š|‚+eÅFSßtÚçL›ˆ^°ÐãU«×t§ŠñˆN£ëÃÉôJ+ŠC»qáÎkñ *¿eä·JFÂ0CùѾ»lÖðý Nöˆ§çH¥\¯#ŠÖ–NÄÎÓNa 7\ïìc¥låeÖ–I˜shÌ~c ãœUÖpx殜IÓÁø;äü±‘“±añdgùL2%_?V¦>&-v"F(‹ù\ '_$j@ƒØ%æÞ鸢UÔZ¦K2( ½ï{]d®Šyßñ É#8Ò8ê1 §a2º— ²“¸Aá‹ÁpŠXÉ"ð£6˜g ·z.åb(î4 ýñrü–H“òºMR·eaîþºJ[sÊoŠ1t< ÆÌyùˆ ®'Ê_XhÅMæO˜G-/+»ó#`®úTóØŸ3-{.2—‹Ú_ƒß¼ò(6ß옔p8¡6ð£Féíõy»r­6EŠS©&vI™© Š"S¼ <–; ”ur–Ž>c<7l8l(uª£PÀãñ×¹IOmì‚Tu¥.XèBªÓ?¬~á PÌÉS{'\Siœ.’¼0àª@͹٬ݒҵJ‚šx Ý‚Ã.9ÏAoßS 3”å´dÈUcÌ ‹]Æß)Ô™?μjwŸ*r¸(é¹éF®?2)>UT)˜IuÞ@QŽ]´JsŒ \­µò¬{؆b´¾V9ÝNM™×åC—Jª o»)”&eó˜î܆¼<âÀFÚ)@:Œ_W"à!j<2©Á¾©#f´›ýgË.Œ‚#p$•>Ⲍð9Wæù(NõS±²â-°Ìã6cäÍ1ùÿ4îôbZˆÐmÈÑ“^yÏA2˜Å!UéGŒ¹ë< ž%>=ï“ \¾Åë„“5bË­—ž¬§³Žx3?âC4ˆ#s˜Ú$<|ÍÀÛµš2sQ»Å›ÞæpûRÌDÝO²£LÁ²«iÓ¨Ägc$ýlŸFŒ«œÝˆG[¹{åz‘û8èÎàvObðU£Ma*/³[¡õûxa`èÊ›B^·­_ÑC}À’©é6ÿåcx?C³›(Æ Ñ†¥†Ësžš<ç:s1f±8‚BZ 予®Š“Ϲ§a}²t‚žaè;'![ïZ›ò®sš÷­B/F¨½1:“>†6T™Ð„fp-°vNÜ0:Ø¡Ê+­I—ñÕô˜®}(]á³­vŽ/9yˆÏjðèÝ;çäí!.9¯€ð._DÜõ¦è™¿ZeÄͬá¡ø4ÞÙç¬&Át‰ÂHVåØaN6cÄšÇ)j6t´¨Ù³jSb‹å´ŠQH3±(ȳÍh[D‹S Uv }s—<)« o˜–]D„Õ‚ÅÊgõäš'BkÔqUgJà4­CÞÂÀJîÓR?ïãÇÉ K¹ý.4Ò2íQÛûSœùSMLâ¬!èâü¾‚qtE©¤ˆÆÃ.ƒqä ;Šê,ƒýªMK\©QµÞž¬9û²—Zò“½Ò„`Кֺ-a`镬y¢è\GEZª ç_îÌGeDÿûþu\ñ•ÞòÐ6É–íÿ¦Ï~»Um0ÖPh.;©Ù÷„ãÂ}’áa ú{½O„9b„:k^-·!ðMkœ¾y'tœ O»' I±•xëµÓl9LÕÌZ¹…Å  ù…tó‘çØÎ«øÍ‰â!ƒ™Qý°!z‡Aeb8!'!4¨ ë }tk£ûƒ"q#ð\÷/䳌Ú½Îøs÷BRYZ ™ÍÃYì25 ã€\½Kþ…Q{ú(èQgPLìèT©óóç©!!;WÌ/ì¾[êãƒÔi»Ó'1c(/j9¾;U7S—f›så3òš‹væÁœêúY‘( H›† „La´ûì°¸åRÉ0©} ¦ñÔ‚ò {ž• G–Æ×g+ãNi¹S\Ѫ€Íða¥ß\K”˜r¡ÉnœrâüŒ['”Ät€%ÃÏÔHÐ.i‰ëmßp ¼6 §Õ( r€!{Ô3UŸG—Ћ܇ÍOM›Ž)‘@Ç<Îߨ+Jö2d-èçHpdÛäÜ ÅMÊþr\ÈæË…ÒìjÓgš0жÄz»ÌGè ëääú¦žìľ'Dµjïå¨õåÀ¥§½cò„¯Muº‡D8µ¹5`r<ÓÊBÒ;`±ø~ÌŸSN¶›vf1‹;GÇU_½9'¹°Bu«„Œj€5eæùDŽ€¢è3AÉÚÁY:ßµjú˜é³¨î.y’á©*¨Ú‰,9µA†A[0/qšÎÁ¡D¸Œr=Üòdÿ7ž¹BÑ)Æ\½ëÇnCêuú“Mó¼ fcsG^nÆŒšÑøj3ŠÛ¹I¤¡×w\•\Ùp 2q8ñ˜‡-*:Nè”û±5ô>‚‹Ø:§d‡lL~9XQËd[¼S°xÙÛR¨¦ðÛ‘¯'¡ ïõd€{!>Fú¡0—ÞSä˜=»V³ÏIÂâ Ñë#鸄»Eæà›Ur 8«š[4³Žô1 Ü‚ÖPær2:׿Ä,;cÉn$š*Hÿ1Yˆ }â1¶½à=ùzehõ8ÏÆõ¢#Ðãà"« ?†[$œZªˆØì*Á›+Ö±=RËOýò!f½ý­õs…®áâå)òa”£Øô¦›‘là4M­ó¤ â`%Äl>óe\ðCÜcà ‚³º,Tvœü¥Tfý¨?2ãIr\àbGoîƒõi+Q^Us¹1@ÐçGC÷I¨k%FÞª¤yCŒ—ÎáRlß,M媥ãE‰a7órh·{ÔªC®)µ*UgWŒÑÍs0B ªFv£­#zÝÄ'ïj÷(9î=|j@; ÁæEG¡ƒì‚Òî2édˆ&uF먩GÝ!¢;eóϘ[‹®Y%“š ?W”#f ì®_lÉ#Kr ÖFåsz0Ÿ9ˆ“fð'‚«jz‰‹Ú:>§TP*©º½Ù+aÀsl×R²Ùhçè‚Äm¶BÙ/Ù˽ê-“í}4ÈÃXŸrmc»ïBŒïeœÔ¶TúlXS1x'÷‰¹@9ÕréÔ¾}Ìè{ZÈ[›]|L¨‰Ê¼ØüJ· ã,òµ¼×k§Mzˆ „À_Û5žÕ€|4ÕÖíÚ +qŸ6€ÄÒT³Jüõù.ÅÚýcúž/ûYvú¤_nT-8Î ά:ÌuŽ·Ái‰ú˜gé;±„“>ç4þ ÎøäÊ>=ýº´s ÒÆî =@¡Å%¯‡{>Éüš¥éf³ UX¯Y?ç*t £ùÅwŒûTrÑìηѸô³1ù¬4 ¯ôÑ3"³¿ð-Ó7Ë3«êƒ0‰ nUÏœÎØ«í;pŸ-èø92G™ýqT±ë£Ÿ~¹Kê¾~ôÓ€{@ô1:„²N@½-n@}›3¨è4æHä&79çd¿?#%LÆ`À€¶‰1Òh{p695†jšFùÚ·ÇÈ´å£L€¯†Ásž-F*Q'Êܸd §Ÿå/Å2{îÎjä‰Ð1f ËIZE&ÁJl”dæ*ÖÌùi¥— í7¦´ ¡®ÂêËœ¨á®CûQ½nÉGjÐ §T#GÊce3([±¾åÇÁLkQ3ûµñ„bdH²‰¡ñƒ. Eœ½ K?Óc*áa.¨|éF¾­´HŒsl0©`ÛHz¿3­a–ISISy©d ±s=êÒ¢³[e/çr‰äF­¤¦‘‘B”]4‡C…B»0Y7k3?w?·u9cÚ;Ȱ*i®ÈØC‹Û€AÎ\±–}†Xõ ”ó<Ÿ÷Ï@NÚ¯ãÙgÓ¡Ù5ñsDý<šÓGrÌj¦HA'dŒ­0Òª).}ú¼w¯$ˆ3 ÙdWë†MU­Ûü*´Ð¨•¡ƒw²$nõ°êóMÇà62`wq£‚j]ƒu+·F ÀS&ÕrÉÀ9O|Y€Šg,0šqÔÂHrM³y, ~ò@À÷ $•†ËܬYJYjD÷UN4w¤J«ÙœÙjMä›44&«,=O9–áYƤÔy€ìyÙC©šÌ“AƒxÚ}4Z”ÚÀ/Õ£yÊÕ`ð¶f½<žÇ<¬R‘ΗsÚˆMl’ÇÒJg% ˜=?gIýéÈâqöuÜ ñè{KÝ;}€Ù´ ÀH œ4)/6ýžt^¤ò^p‘‰c>íHDC öйj(öê ž¾nà<§íÜXšADÉ<©øú€ŠíÂCŒrš[wÊ1«¡û(@˜^UàóÖŒá4¶èuè¬çXá ôo±XóLqÎFKëû¨G†à°`àTVî8Cë… ­*ÑÄjÐF:pÓ=¯DºΉxûz≻KÕØŠ#FqHXè¯Ã4SKr>Fhé´zʯ°¦ŒBà8s{‰ò4AcÁLÄz™Åp*ÇPîÚô®¥ÉsY¬{_Œ°¶ã¼ÐH—yŽ~Ü1—Gl†Ü:™4õ‡×7æòÄudŽ4OÝqE úe í3=3jQ…—¶|ù#oÄï%I{† üclÎHNrTa¬šØMlÕöÆ)§ëÄ/ÆÇÜž{ bU:ŽÞß²u¨ƒ©«^¡GÑv É'hÑv>å?#‚\„ ·ïSŽ9½ìe}®1à^•n (AD«ÁðP¼¦Z€ü^'îìâ¼($NÄJËû8؈\Q­ë dõ0ò×›Éì•6æìB†Rç™:jŒÂB¯8KÀ \CËrŽ÷ýŠôž/2Ú…Nlt®ãäçfp÷yåjííe˜N p¹1's´ž¯ôˆ5Þ”/Ö‘\ïÛhé|”šŸJ°œËó¸—ÀºÑh19X¾7í”Ñsn§:iö}˜cÇÑQ“Òª†œù³ÜBé´S@&y01µ' aãÜTÊìÜ$œT˜BǬ%ýˆá£IJ?m7œœí7}ŠÈ1vaŽø=o~œzËãð&yþ˜òd,Û8}Ûž6Ý‚´íëkëÈ8£wvdh¶Ù¬7aÔ'ÞØd*'Ï€j˜}°©É$ÂP íø—kŸXn¢0Ò)Òø}:DzŠ21i¨ŠEáŒÍñ‘ HòÐÄ‘ÁÛvƒö¯]F!>ÖÔA1\WŸ)*â@!dÒæP¬ c÷|ãäu?étFKî¤\èÅÇYJ1&‡³TõCöZàþÔ¼ÁXÀÞ&µ{Õ¹Áž9 ÄΗøjãÇ40øºsž :ÎÂ7-ÜŸÒ™©øà8êkZô1³;³Œ$K>iðæ¤ A(”'U9Hë)¶ŸØŽ5õCâ› î0U­Ü‹)z¸ƒƒÀ¤öRõ|¯±ÎZJ­Z¾5¡Ô…Ñò°h$d›u?;Â^úd§xã°z_¶Úl¸4fŒ5Ò{xtr&Û2Àåñ9£¯Ã¢¡Íé ÆhÁ\/¤R%{4‡.Œ¾Ø…u÷Y&‡É‰2š8qß·}4;åÖb‡Ñ gµ žãôƒG"·ÂRá´aü,:•hf F×ÑZuø÷Á›·ÎbôYV®;>Ò;ÕVÊÀ¬eVÈ3 ’±Òíf@F†Ìbú8Ïb: [›ïq\ *Ç`–fÔsp‘UJÓsÚ#J#^+¯ÏÔj„Ûô   x-q>TxW¬áú|ÅÀ }AFw×WéK—¨zAë6Ï'¢,©ëmÙJMpIoËËŒ9çÆ í9ãÆhÉðkê9«‡{%ÉÝ( ð*“ñh¥3qÜyBH™zÏèʼn~Pv4`jŒ•¦ÏrŠwóÖu6ŸžqÙSï&úgH×aÑÕ–¬Yo6 u®¨`8ª´f6:FP¦,'ùí>l¦êœ'åY£D`™¥Q_8÷™Ãt?gÂÍuóJ!’‰¤Ëûn®iA˜¥Ý8Œ¤´ôæÄA‹^k>DÙär ¶×JhºhÖÁ½ˆ©GR#‡)>—åA™OÖK-8uÈ$íøG+Æ3SY*]Oé’ÙøÎ§„̲V:3ÎKµ´s}ôˆxެ¶ÒßÑjœ-pð1ýaBÉ_?~ ‰›”ö£Q Ô:m}rüœ…KoøÂÒ|wõ "ÌtŠÕW²^ľåMv©‚§wRaÒ7¦ðùø˜\t–Á×»eáCb×|ïáÛÄ¿fG†U@šÁ,Í8È$†&ðÄ*¯ì‚´žƒÅþŒÏ²:6f¦»”Ã7[5¦C˜¤Ð£ÐÔ<Öå³@}Œ]xR Ž_:©4Ì]jŸÔpÂ6/y–´P¼j÷‘;ßà ù­ž-Š.£Å¢Ò$RÆ,ê¨úçÁ¹µCl̺ÁçœÓè6VdB5N)<…ö BgXß•62Èùz Ÿ3PŒ)Æ›Êà6 û(í3~@XÜçìŸOò¹*Î@ÁSmi7%3™Rkêd‹ypµqÌx©ÅZ“ÛWÏ®V> 3†Ç ͵5êhÂ;Ï¥x˜Ð‘·.ˆ7’5;tN9oF¾‹¥pZ-µÒ¥;q£Wþhÿ/ùzšér—É+´ŠcG0¼Ø˜\‹ŠºÍêLúv±oÃÝ“R¤ÎÀ˜3Wì(„ÓùÒ|ûX™1~ØAΕìeÅÓOT˜Xª&ÀgK 5\ø(¤YÇá<;r„©ÿúܘ „ú„M™-üwùmL蛋³´--ƒ6nQ²À2$˜ wdNœ5’ø9É‚ %Y]Orx˜ûÑB·ÀQ›5ž¬^‹@–…Èœš+…gX0Ï÷=V« ú†çPD†¹ÁãÀG•9#gÇ€;ªvŒLÖ¾1‰ ÀÏÓ·W3ïü0Z¾Ü©/Ë*bÜN5}:ß²š42«HErÈÈlj½m‡`ϳ¹TcNïoÅk“i0íÈU _joœ¨¹üwÆŠé¹6ì }2)÷¨t{uf Odb`tîQž8ë4†ûF¥r¨öBÂxd¹¥?ëAêœÃn póXN€.^Sª£’¤V€ÆY/ø(\›Ƴœ|ëæpýÀ‰? Òš,±Êî£XP®pàjn¤V§·˜,æ¯*ðÇaÙÈëê-s‚Õ(dv:J…÷|‡Ð<೟3+*Ö‰å“+jE•ж¬Q'÷Øx5—»L^Îl_øZWÔ:Û5F8ÚÁtúø9<ЧÏãåÍù.‰GEÑW'u(´tó Â­Ù;lDéùZÈ[VeTwÕ¦˜#¸ÒFO<ºQ×{pUxü)€rœù¨SÂóÀ—#³PSÉ'ã¼r.÷ ¹hÀFt¥ÁÛ&¸MÌÈ„tìVüÙg{ \$¿˜DRYG\¹m}-IWJϳSõ Òª:.m‡óM:Àšâ>y†ÑfûŒ QfÚQ?Öû–b‘4N!Vë|­ ìSHÄrdvǨ ñ¥6nyŽT8Ѹgý]æ<*“ÇÈñ5,ÇJz‚qcÜ•N(‘ÃüLõX¬I:²)93^š0án{tõE¥=Hú¤ê„H_Ö¡bO©cv«Nî—ÍŽOŸ÷@äp8úЦy6åÒú¾± yÈÕî<Ôì©•#ÃBŸÚ«EÖ·š‹ã!}®u@³(Ð4“+ _|nêddÝþ1Ç€­—|æâR9pvÒêp=#m¥Šóè<ÓcªY—à ó¸™Ð(èEwÅp5\Ÿg¢è‚c¶ürÚÔ#r€ókÆP ƒBa ÅÔrǬ”ÅüÀþFsÀ9¦ÂÞŒ“@r¦#´G °55ïü.ãÔ‡«0n'ˆ¼[í^Gp&cÓÇÁ*8ÏȲ(ƒ¯ÔTA]%’W›êŽÚF¥ @|•ûrèÔúFë3ÜbY{<üÞ-ðhX«j#ò±ç (¯DM¶‰:)lzŠ ‡:6g6Ñ;×õ#$I·¹TÕÐÌ¢ä‰rÆ„XMJ£yôÕ<ï\'ÿ LÈ ”jò„óáãöb<+·êqjÁ%³¼Nyl‚œžÀ±ÔK蜃{¹L%·@f ¬]ä\ðmöÒñDc²´Y¡’&[1ûЖ²Í#Žq~ T‚‹ƒüoÍž>¦$ÑÙ³ž89‘Öh¨9DÃ`+Ï*¼Õâs¸vý}¢´{YiíV³q`ñKÚJuJ0Øz  ˜45FÍûf‹(tüÒú<繄Z'éYlXˆƒQar¼f¿[­ZvT'MVù˜ècTF´O`²ždÖ"›~\Ó˜GeÖØ&íháhÞpÛÆmDF¿×œ¾o¥Æ¹j@xLx²ª“¡sN_mE\ïŽsË?¾ûÏwž”Î"I¶;ò,­rü÷‡¯^þåå»w( tz—ß¿ó/Kÿ÷ïïÜË_¿ ˜h ©t•¥óÛwªÂ#Ì_|óîŸ6¿ ¬„| [Ï«ŽßœWEœà vðqÕù›åªÑÕ¾\uüæ¼êöªË»Ÿ×¸—¯±FîÿÿùâÛ—?ÿøîOJÓ ©uªd±>þ‚Ö„¯yAjÝ)ÌÁÙl%Ö—ß¾û××éý‡ÁéíõC ŸÑ¡P_ýTHâz çéý¿}üÛwù‘öǃ0’ÄŸ„ûÛã7Ã(àÂ[”œáüÍåª\Ø”/Wß\®«<ÌrÕøÍz+cžWÍß\®ãš–«ÆoÖ«æW­ßøGîvà¶Ó¦»£ï@ØEiü± ±À—ÂÛ;Ž}`Êoá}?&þ‘¬×kÙìÈ›€ÄŠ,aàœ(A±þè—"ƒ1”hZ>¼ëë7ßý³×?}óÕ?{ÿþã¿/Vðúˆw2‚þ.¾øÛO?¼ÿàó뼂ïk{ýê7¿{OëL‰]~ýôÍo¿¢;ßñêKRÄAžoyEæ8Ð2ؘä©õÞ½ùæI¬_Å?"|ýú·ï?€ÈÑ]ȯ?à÷½ÕR_¿¢åF±´åWÿv^ø•°4uy,9¹^I‰ÜËÇ/éI?¥ë)L$•zýô>`†dzý=Ý1ýúú#ž˜=°¾~q>ñ~t j¿þæ=Žák´õôãL=í•_é¸oÚ;“øúküÚy×H:^¿á¯¡ÿŸ ¯ßã†t½Ë¸ ž^åwò_àwäÑ\[òË÷¸Y'{Üx ðÎN½ï×çí–×ÿáWËÕò-è{¥{/oúí{\RRjX¼I¢7Ù¿ß·¼bäçcŠïþõ2Ztõeiæ·úþú»÷Ã9SXßný”ß¾÷ô€š²|+]WÖk¿[ßøK¾D¶/öšé¹¸Ô5ORâé¾8§­ÆØçëŠÚænSôðúv>Y¤(¹ÀdéIˆ>½Mä‘_>`úRî"K_¼Gžä–w&6|Ö÷"¿­ôDÿ.ÂD:FEšSºxÔ³ÒõE-”ï_–hqq³TÓë÷¿Å=8¬è¼ Ì¯ì)Eùœñó7¢EXy Ê[Œ+~ÃËãò‡_ʽ3)Åç~ÏêWœ£UûºB. [„^ ¢Ù}€|v¬=®Ï^ßô'ó³ûzså°Ë|Ê»9¹ÜöÇÛw8’ò:«[hôÝå•e»öFËÿús¾G/É¿þö¸ÝòàõÚï¿ãuNYDHŒ')Ó/䕊kÆ+SÔ³Hî¼Ýןø¥z#‹ò«sS~ÊO}‡Aú¥Ø8úÂÎzG1U)E^råñ´=Ý«¯9£P(áæ>0½<ˆÐ½-¿_ôþØÚà|œ÷ay%MEÇ- 4ƒë ©Ô7§pÿv}<8Ïôò ùn¶®¤¿õõòï´8´)÷V׿úß•\t¼ìÊôëB¶)áa‡$Ê;@Ëx–Žå!«//ôkX~²žôÉŸVÉq¥ªÐÜ$ÛÆ·þîüí_áï­UW™'øú¢§‡8ò'ÂpL7Å —Þæ«æ×8ñ"ÅÇ£aøÚuã¿—ÛÒ~¯Ÿúéy·Xiq¿9ßm‘¿ïާ}}ÞB‘¨aÓbiú»wÿä_i=aŸIÁèió§ïŸ~ó~cF™ }úâÓÐMGïK–·ì(W\ ¨¼g¥hï²@´9 ¦ŠKøgÌG£…½[N\B"u–OËý>ýDþ¦é÷°éô[Ö¦¼·ua>½ç[d~·ªÍ¼ðºK¸'Eº7‘8ŒØPHŸà¶¡,>”ým‹úhú¤ƒC™5ÀÕæWåXþþwøz•¾þr¹ôÇñÔ‹ZÕ*ÅÍô5Ù9ÍØÍÝĵázÈÀÙùíñÓw‹<ÍŸ~8~úÃNÆ>€X‡íKUžB& Ø "9ÙŒœè%ã<9åOì/zF”rY¹SIJ@¶ ¥½š±ã‚/Nÿi±X?žæ+Ü"ÀÕ¼~¿àÍ”ù7M¼Áïy×é«ÓÅîܼ]òº{׎0™RÝE¹^%?·å¿$ª#¬›5än^üa±úÿ…—ö1܉jåÒ.{DWD¦’14AQN°Ú¾Õ¶-‘·(_©ä…–wºí Þ)“LþüXè?œ(«ˆ“/Öðåç—HsÑÞ#ÖYDaYE|^p-ô~uã¨#Ðõø”ËyÊ¿9}œ¢ kõ©ÅüÅ´|%_>óÇåç_Ÿvïû«fzó«SÔ×÷q©<ð—ž‹þéáï}¨ä¡ £zÕ.þK¹¸PñéËõ%Ïœâ%!ºFÇßÁ´ð€u’O‹T|½l*Çí(Bµ‹xýcÿ<7rWè yî×OwúFÚ‚@ÿúgçÿéñÓ??ýåÎO‚q>ôm~d{ýVR5Ê•Èå'óê¬[DtRú¦í×¹‹ŒóÎòã”gn¢dÈ3âêŽOïð_{›û£ü¢ªO‹ƒ½§Pýßò-Šøõ­ŸFôû©"©Gt±ˆäh Ùb ÙBÇdë:r¸>>^äm€?0˜‹•ùÏó‹×|IRQ@Æçß]òïÙ.:ø›ñB°¿ŸÉŸ]7 Q§±Üît5g^ø-ûz1z×xépø•ÄD>`øcò·ÅƒÿêŒÖ{ÿ(÷Æ>ÿB.¦ö‚³ð3¯bA¦gú†_Î7ÉO0dÈÞ@CÂ% XìçN iB¶ôˆDð´~q»"±rõ«¿ÆF¹|½vMæÅwÄÆøÙšã!×DàbÀ¾’+ÚûA~®®¯µ¦óßp`—K–ø wbøÈ+ù|Í©¦PÂeO8ÖB™Ø¯ùSXDü0B?Êó"b‰åýçëû(èñw¿¾ [žeO©þêŒ5–ݹøõ±šËò¬Ždqv×ho¾ãê;µ¤ê[Yú‘-6sz_m4ø¯g¹Vkà;,Ñ݈Ϳ¿úÛUŒäUk"Ûði*il3ö‰W‰Ä2– ¼Ãî|½^²¬´D†¼Ý‹C]1H6zèðZd%è^Î5ÄY=ÍÔé= ææéTO³Hÿxpêù—²ñyYö{ý 1s /þx5;·˜Ž“/å5s/7`‰ëdƒÿb\¯++&í=Œ(>Š#¼]íΨÎü^4Ôendstream endobj 204 0 obj << /Filter /FlateDecode /Length 2379 >> stream xœÕYYoÇ~Ÿ_10b`ÖÑvú>€$€ Ø„lÃ-A"éæRã%)ñ¢—üö|5ÓGͪC3q ÒÃv×|]wuW7ߎR¨QÒÿü{z9haÓø~ãÑàm&¨18¯Dôãåµ>¥JÙφ$ƒð6ŽÁ[)ŒªR¢J»å Æ– c¬ÄGÇä9ð5®ä­bŠ"8¦T&p¼‰ÂúÄtŠ*ˆ(ש2a…É:UiE%&MŽçÃÛAÍŽóÏéåøÅñ𻬓H^ûñøÕ°8YÊ  ¥”vãñåð|úÓQˆÑ';ý°IIj;¨cHVOŸ÷t³DJÌôW6æôïŽ6[c49+–qŠ4þüÛMÄ8ùé/Ïh—Ò¤e­LQj&С1ÂOZm^MXn€1ÚñøÛáø³çPS )“·Ó7[§Išî*ñ²ŽÞ´Ï¿¯Äm#ÞVâ}ýTGíëY5)/¦:üªŽ®ëè¦Ãð¬ÃZב|pôdv‹R"9§Š#~ ?SL¥šN;:4£®:4 ?4|Z‰ÅŸ6àiÏŸÔÑÕ%šKv÷7*qΖ|lóeG™'u#ut¸é°9é¨ð¡+„”£¢P†}|Úa²ëXyòXí;AnÚÿܱ­§ó‹ ¶KÿA¥•Ñoêè¿”’ÝÊýßèPFÏY0>ßMGÛyþІ-jͱ­R¾¬£—½bïÆ¢Ù¼ïhÑÝ­zÀó°WçX“÷®³¶ ¾ï¬EV«þÑÛg~MY í:šÝ1Z/ngÛªò÷öã³›ÀŸºb>ù?ˆÑƒûScÓæ}gÃÛuôzý«j'od_ßSs”œVÆ¥$Ðñh‡'˜Qk…¶ãÍÙøçñj"br>h•Ða´‹£l£ãh f)= ñ¡YA¯ªÆ¿Íýj]¬E‹ˆfM;‰f¦¨Y{>–…š: ǗèÉvƒN'ëfv_ÚX4Âv´RE¡¨­”E%bUHØ¼Žƒ’G‡—å-üµ^ZXÆÑj´ ºRf–ÅXfT¡Ì¨_t0ëÜh­’Ô®jê#°(‹˜Ô¡ %ÙœWxc…¦ÝH£„J•òo¸/á«![ ­ÈŠLÈÚÌF,$§œ‰cBˆÂ8/‡ÆœóCN&gÊÌpq† ¨Pör˳ÁXD1ˆ²'Ž \ F£´Q÷|W—8¸ !€ób„ G¡<ÞyÆAjÄJ¨™W¦d…ˆW¥E ž‰£‚r"ø• ¼J…ÀXZ$‹®”™e1Ž”)ûÇ9 ˆüW0ÞãB¥~á^©Ä=X–`¥Ÿ5H?é*åñ´2ÑÅj´:ya ñ*”¬ñ*4gÁ EËP`%’Y{w¤Ù”ÆSã:ĤÌÞÉ(Æ3£ eÿ8÷zˆRÛlÞÏêŠÆ”6§è…B ŠE7”ç§²< É W[ÚL ‡:_dЊBAe„¹ä~¹ïVyŽE‹Š(Zfvœ®lÓŽŽn6±•mÅéj˜!–©9´Ì›a‘Õ^–×ɽY…–a9ÊrÖæE@ž7«¢è—9X@VÍM³Ój^Ggt¤#6¢•ðõ77Í볯6ù-w;Ý …·° Õ((Ox«Æ@…Ð0¥ûh Fi¨C¸V õЃªÂED“£ù“ª¦î¾4HΈfz~R=:»Ùl±›¡Äí·TŒ“öô¬a¬§S{zzµ»Àm1 ^—®7H-©Õtµ„–.pDTŽî`‰HX(2BêéÇ«‹»³ÝøÍÅÕùîú²]{ê¥g>-¨ë*g’q A…ÖÊèJá(tv91 ªPV¨ˆ¦3®P™ÂQE‹†âz=2äü-EAÑ벤,s41s¶7G‹/6NÃ]q+×mh—7–FƒžÁà€£‡x‡nrfrz}u‡hÄw%¸ž–4Á¨*ïéúCmbZÖì¯Ï_ äCWÂâtv÷nƒ£ZR,Oö÷gü–úËwÔR—]¿À䈪DçÑyéבüšuûj~éWÒ'ÜÀiˆØLç÷ôÙR;ÜÖAO/RnyÐnR¢Ám~ŸWè›\‹ì ØŒäx¼ƒ¤/+RpÓõFã–©üôwc%¤„éͧ‚1 ú#Ê"NwóßR aº…tènÕ ðj¡J逥¿PDŠy=ÿ-ÛaRvV-Í´Ÿ ÃÔÊÌ–aåyãwÒ†7 ½07 ú¯˜_’ÚÒ[dUQPº¤8‡Ç(ÈØiŒMâægr:EØ»eºÙéݳK^s¸µ÷JY\S"ƾ"U%v ƒ‹/C!edšî¹²7Åžƒ%•†¡¨å¥¥#D5¡_\“O7u8G5H¾y›ŒNÓƒ?ÉO)Í`2Ѿ¤ôÒØSô%V*]ñɶå.­Û–…[\³å=-g‘XE™{—¬ó(Uì°O X0‚Ôe ùš\„ýÊ¥8{4ÐMJMï ¡S™3UçŽ+¹â‚•ô ³üR|8­±q©hèñ§ ΖÔ/.òqHŽÊüvY….Ê-w»ˆ3àõfìë–„ø W:ÞfFI+-çÅ«À°|ÞgÆÄ­»Î6Kÿ›Yò½]LÕˆÃ=¯ßJs2މ1™õöRå0ôâ@Õ¶ä!Nw¯JjWR<§Þ‚]¥Þa15‡µEÖ\Ùaoc±äÙHegçL>TM’Dñ®*¦zzÙO’ jØ“¤u1 2±±â€ºeÉ$¤XßÿŠqjendstream endobj 205 0 obj << /BitsPerComponent 8 /ColorSpace 152 0 R /Filter /FlateDecode /Height 600 /Subtype /Image /Width 600 /Length 17868 >> stream xœí $Uuç{À è"D! âŽkf^t®î3 æi6‰Qµ7EmDcL ‰Ù¸‘2q³FÂb)h6#ñG ®óõŠÊ¢Av ^qˆŒSî=?î­[ÕUÝÕÕU¯»úoâ›þQ]UÝõáÜSçžsn’ˆD"‘H$‰D"‘H$‰D"‘H$‰D"‘H$‰D"‘H$‰D"‘H$‰D"‘H$‰D"‘H$‰D"‘H$‰D"‘H$‰D"‘H$‰D"‘H$‰D"‘H$‰D"‘H$‰D"‘H$‰D"‘H$‰D"‘H$‰D"‘H$‰D"‘H$‰D"‘H$‰D"‘H$‰D"‘H$‰D"‘H$‰D"QÇôù7ˆVU—ªÅquÙÚ¢¿½¨-­]¶@®xlQ»Zäµ®VW-^[}¿ùß»ûã‹8¶hÁjíÚÞ÷K½[’OÕ;¸÷ï¸ÕÇ-\­]ÛW~Ùöøœÿ»ÿ£G½q«-Z¸Z»¶ÿõ$Q½¯›G¿sFæ»?aõ‹¯n騢…«5®ž&ÉÍ=ãb%ï;*óƇv[í<³¥c‹®Ö¸zÙ®»“}û yÔÿw%›<ëY-[´pµÆÕwN;î×Þùc~'úåC>U²‰pµºjÏwþöŸÐýÔ_—m!\­®Ú¼'{DñÆ/|«ü}ájuµÈ{}áªCÒ ê› W¢*Òz6°„+Q W¢6$\‰Úp%*—Ec<ý¤øí¢B1³2â>[øzñæÂÕö‘Ϊ±]½!\m1Oª9®Ê÷$\m W¢V”ñ¯¦qUyáj»k¿}†„+©21S6óA;#\‰ŠTõ¦±l\®D…šÁ¹®D•5Ã=£p%ª®ê¡áJÔ†ŠL›p%š_ã¦M¸µ!áj›ho©‰Ã WÛB•£MM WÛB•¨ Uåªj˜}ª„«m¡q\Šé®D³h x¦ÔAévUÑ’|†m­s¥T)XÕ«›ËÌ›pµŠšŠ….ã*I±Ê½UR6Q–pµ‚šæ#iLF.æÊÛAÞ+ضÔ®VPSœoö­„+ÑLšrSGo"We[ºù“À{]¸ZAUáJOòªsU¶áj5}œâÖO'Vú'áj5"cTiÒŸA4IEc\¥Íp áj»kÖ®š„«í+Ï{®DM‰y®D3¨4Úä?®D³©–Ì‹ÂXsH¸ZI!=ΕÒÉ ©ï3H¸ZIùñqÇR6h®yæ¹êͶ3œ€pµ’Êaå?J Ö„‰çñý© L„«ÕW:‹lZÙþ”p%J|g\§Re\Ñ»“vÇ\UK¸ZuùHñí_æí²Gu¹={%Ê)ÃU&Ôàse ‰ãrp„+Q^Þ@˜‚¦ÞaU>ÐéÙ†Aáj›ˆ£ %Ñõé\%36n®V[©gÎQ…B®ÀÅ3Z¤É®VZ)F¬Šò‰Ë¢YÓBÅ®VZ©[e±*5Jº¸Œ¢ŒÃ)®VZ^ì ¢²Á’©æ2k%\‰r²D[+í…ÕfœËÎÉ®:¦¢¡ª|3‹•Ê€e£XŒWâÿ-?œØ«m ñË\|§X0þÅqœúíʉž¦K'\­¸Æ/sá…÷_„ĨxXt`)ß‚•qö®:¥š\aÐ3Æž ‡D~4Åj"W5%\uJ5¸²m>˜²V‘q¶hªÆy®ægL¸ê”êp•h`e¼+¦-Få¸bkž®º%&kÆ­K9kJû>{F`¯b¥s\Í;©#\uL:­%õ_ÉmTø¢&¼Ðƒd#¥‰Wª:CŽr¡„«.ªØHeÞuR<´'|AX±«ˆpÖP WÛQåNUvYÛyÁñÍ@Ž«Ün…«mª"®i&ºÖÞ“d|Ĥ[Ã(N<ó–‚5Á"N—pÕEMàÊÞñ!ÃSðÏ…÷ vJ6žIÂU'U6 jŒrê'%­C¤Ê3ò’²Ò}¸ÝÍq‚ÂÕªÈY«˜YÒšbë1ƒlÈÊ>è¬T#g#\­Š¼a"0 Æ^•M¸ò?Q?f¢„«®©ë¶s¦•£Èzà<…ãüñÔIo«Ö¹ºù‚ò÷„«*‡€ÞˆY‘åJ)ÎçK¼œtOù(kCj›«½½ò÷„«ÙÅ#]É;ì^EaC\*Žè†9ÑqV§m\*(FÒj/ûxW«oLTÙˆµgx0(sÚáªP®œ5N^àœ\óŒùb·ÊN:ÛhCA+«®tIFCåÑQâí Ñü÷÷þf¤¢à{“#Wìc¹)h¨” nB*sIVu¯K¸Z€&\œÊWÎß(™JcSþPÈŒ™G1¥çs Ì•pÕ1M¸:¯\v+ÍÐx¬à¿`š îNvâ =zóRfEüdo ¦ŸyVÂÕÖk";3q嬓³K™Ãë`œ(Ëžc/Æ3n¹ýÛÀDáq+|GájšÎUµ=8ÏÚ r9®,G<ǃaxü{pÛþGÇâùþ«|Eájšl“ìÅž¶¯#¨‡†?|iËfÇÐC Ã+`QºûŠK¸Z€¦Û$‹‚Á(Mò\iŸ«8ds…P!h1ß f¸òšHõ®¢ *=–rîÞ£)f•Îå8+ÅÙVŽ65cHÆ*æº.í»l’„fkAáj 啎Ž”•å*Ö©!ãéšÀ±”W9›”¤QßÒÎ$ájùäWýHéÚeOœÅaGÞ¦ñ%v"Ú tqFY›”·r~®ÖEÂÕ²È÷n&r•†ÑÝèÇöˆ>–©óJ{Ù[C?Ê®RèòE`sºXÂÕ’(ëR¹<¾êþ†<ӻ؂ cbñ2CçZó%IÂ9ÈvÚÝïñV)`ãç#\uO¹á-ëª+gV(Dém¨+;˜+l¶{Î’{ä0tC 7PŽ/º$\uTÙË–ç*;©œ£4¤,(“ˆÛµËf÷Þõ=sûØJ);ˆqU÷Ë W‹RÎøOso8®´ç)å×2ã‹8£Lý¬8ÁvŽSœ×–µdÅã`252QÂÕV)ÝòãL™}ðyxàQ+Z›sEïДr TÚ»E¸ò[¨Z%Ú³mMI¸Ú"a3æ¿”]ر,¤ú¡yXAþb)ç=¹Ê wG¨h:1{_ Ý²—I¸Ú{Á•ýbÁŠŠ—m{.ÆÉ…Î)Wé'© r¯â0?j+áj‹¤KÀªôaÅIê¶(^ñç:ÅØ§¦Mi+ŠyE®gQz.nˆµ 5%ájkTd¦cå9ïi 3æÉã8ã]WÚ °{ýc”ÍnÏùí~ˆٰš¶¹pµ5*§~&û\Q4!¢õØŸuÁÜ—4–¯rÍ Å¼¼QÓ9›|¨k¦o3i áj‹4v%¦^Ë"å§Sq J‡ÁLu ßɲn…R)L妩µž+jÂVÂÕ‚4ýÚxر+áüôƒTÙYíîê<ºøó.~ûƒ¤öÌTåŠ>,\-«fà*½’IbÓÔÓ›8kuÜF6!=€â`—¿&\†§ê\éÌ!Ê%\-JYs4aŸÛt'j´¥Ä•úÆ$W§Ò”Šl$t6s%\-±V¥—ˆ)á°‚›Ê‹yHscZz·‡£Œƒ›AZ³K»Õ—x7uB vÇÓ8®&« `Ñœ05]Ú^¦Z‹,š°8 Â8²~ØMï({#ÈV¦ +;ŠÎ©ÌÆ: W‹ÖD߆0T!4µ²![Tqê t'2Šì] ²ˆE8Q¤]¹ï9elöóº•p5M3ÿð5ö?™«( ƒ`„¡ PCdGG2LÚB¬b¿¢mm[1å=+;éÓÂ÷®¦hÒUoð%# Ù+CUr ÍäЂÈvä#f1ƒ rº e'p80¡<®pŽ1®¢‰Ö¤Á#$ÞÏ%9~ F`†x„ VQNgÁ@Ù)à†ã ,Ķ·¨½âÛù w¼&¿©p5Y-rå“”Kµó²²Œm —‘ñÇCv¶©d p3#dc`ʼk^ F£ øvÑ<£˜W (½’ëÿ§Ó>M~Uáj²Úã*»gNʾ a­\–qhØb²€«QÀã¡â¾ !ø÷!½o˜"#‡i~é$tb1"@³æJ¸Úm W1·Õ1™K„€YbG·“†äg‘mйL‡ŠÐ§:ÔLã†ÔL*ž&lã« WSÔÔo]8éœå*öÊHi3e-ùr³9$JÛtFC3@òF¹íŒ9ð¡ç´­ÔʦmyAÿœø®‰pµEÊ{M:¶\inÀÎ9Â\Ð…+’ÄŠ›ÃÐSØØŒz«€j»põ’ÈÖB2 :ö6EÔÍYïö4ÆÎQ¸ê’ƽ¦t*ÙNØpŠ”K[§!0DßÛNÕÄT"Hác°FÆQG'*²y×ÐDZ÷Ì$±­!Kϲ¡/,\µª¬Kœód²~MüÅ‘»gÃn{àBÑ=]z+h{ð™wÍíøíŠ:[™?!MRÆÕÆÈ\Né$®2g>bÂU‹Ê¤B®RÿŠrÐÁ‘rw†0-„¶]jc¤¶˜B t÷sT!¦Ä¬—‰ã`„Q>WÙUMgÞ!Q¸jO9åã çÝQ Å+bÇÜqÅŸUôŒ‡A á~0fÈ0ÐÀ·…*¶±ÓL=ÍEÇ*s×9ùÔëI¸jOc\åßá]¥¼dÚ׉+ÛÇÑúò…Õ!t5 Z0†ôQ¬w)Ìή{œ=Wƒ*\uUy*óž?1計‹[t¨HG¶0>rÉRèq…#.À°(,CoÇnVŒ¦‹l˜w2<œNçF¸ZbM¹8WÒ´*Ž8D³Æš–æ2†*†ÁÑ 5§‚ `–п¢x)µ+¢ùC¯f'*\uT3rå×»/!Q[Þ˜+à q~yˆ±PæOyÿí =s•=âô4ôíz| Wmªô’ètF…‹l2\JÀƒ²!¨ç±bfBò ²EÃ$G®"FÐÎ r€53WÆÅß®XÂU-Uþ© /Jîò’/®Üš560p ”ýollEührÆ4ÑŽhè#”8~|:]ãŠäïîŸU»%\m‘*ÿÖºðjëDÛH»·bÿkÔø…„«ZÊzWå\é4ØyJÙd•ØÚ™Øiä Bꛆ¼Ïð@<j# ŒÂŵGØÚ¼Ai~lñ¨£»Ö^‹e#ço*W ]ð%fÿ„«yåc•¹^×a7"ÑPG¥¢*N´kÐräb 8h#%ÁC&˜ †ýÁ`0ÂÑ\1Ìš1\áLôprÊ–ÊÅ!+Ûð6÷߃ë…Uúíf‘p5·Ò_>‹ûDQ.qD®yzûg6—4…äQGŠˆjx†6Á ?²°ôfA¤Ë¥DÃL4&&›=DìÊűc›±BËç½æÔÕÊ}9áj*táyıÀñx§¸´/¢œM¾Ø6 Žï‡s2P§…^ð hbÐ`1ކÃaK¿‚¨‘aƒôÃ!dÖ £€ ¼öÔ2\%™ëâñ|K¹ÚwÇç¾ðÍŸËiU¸rò.‚UÒg±½y‹ÙÇÑì*ÇäGCJ*¦b[Ô…tÃù¿a@@BJ•1Ÿ5P Í@ˆnx±rÙ\ÊVF{\œ}ùWšI³sõÀ»žxÏèñ~ìÀ̇Ëhµ¹r¥[øù±ÍÏlØ\ÑsÎÅ£¢ôÅ)ûÅÆ£0ˆN¥ô†£p…]°n"À›?°W0(bŒÂÞ|Ú¥røÜÐŒEé:c§_üfÿ)fåjßoõŒ×ÿùï¼ýïÞsñ §xözZ® ü+s\ Dxçtc^—’D¹à‹ãŽ*ÄXá Q©ˆ+ž ´0è÷Y3Ef òHG\ž£]‘¡µ6<Û×+ÃR+ 5+W»^õU÷øá¿:ïuuŽiµ*\åw÷¢²õ äÙØ¼:ÕìºI)W ;ÂàÏö)š+¤˜" £¡ñÍC4Sœ‘l`R|Ëh¬zñ.ºÏqŠìÒ³UG³ruÇħ³iE¸*vxÓüÌ|i|Ì+Ãcâ Š"™”|Œ=\õƒŽCÊl0üýþœ*k¼bL åh$$Ç.µ4rEÒ6®ÎYY^½%Õ»üìï^–Ü:÷±W›«Ä =ž™@+F÷xçv Ç0ãˆrÖCòñ¡ú&ÀÁ # `«›››Vdc¢l¦¢ÈFOÉÓ6§ÆZE7$ÚŽÊ­¬:\=t~oG/yòóïŸóØ«ÅU¾ÈEë,¼#ƒDÓ-B ®x”$»±YB÷gus›Ç¾9<1\mlö‡dÓI!yÕAWÚJ7qzte#°ön´FÓÚT‡«Ñ×ÝÖKnxìëç<öŠp•¤Xù]É—²s54aè äA nÝBŽbÙR ¼ß;FK¾¡#þTˆÓ3Æwke,Ö'j»gÆÀñž¦7ÔYCɧ—.þ\4ؤêpõÄ7'wö’äM?1ç±W…+–„K2IV8V¸n”qÌS¨Ã¬õæÝ t@éWT‘ƒ´¢á(ØÜØ‹!…¥b Ap­)7?¶ 0¶û{:K ãeÒ:Vµ¸Úù~äêý;ç<öÊpò0²m®í Xsê¤*ä˜f#[×…^Ý_HÃ!gôÁ8ÐÌà(õ½2®{À ¦ wÿx”¥QñŠ9c‹÷ÒlÏ¢U‡«g½¹zÅÙs{Õ¸¢A&R±o(œ)¢hTiCé.`ŠB—²qÆ Á7ÄÛB´k<6F+‚yg–áÊX0æJ“³DÜ€4v Äc”kZ}ªÃÕGv¼òúÞW/ï]3ç±»ÉUÉ%q¹ŸX¸€7ñš7íÍTõ) ’ ÁRÙêòÅqªf0Àñ/Äø‚ñ°FUr!/ ¡Éò¤"SèÒQŽ¢™Öm™ïÕkµâ ï;±×ëù{ó»“\•þ·Ž—Ó¥ Ó0ÃѢȣ¸í:5p ±Ñ&ûFØæ Ù3¯x›ýDÕ±5¢ŠyüAO†H9'Ž>4bOžÁÉœ±}¨ÔXKÀì÷j ¬zñ«}_¹áïï›ûØá*ós—«Ò$«(×¥{Ìó6Js vå[Ä9C¬¼1lŒƒÍá°oþ¿?Ø›…ñ+æìáaÈ}b¸iŽƒÉ„¶_²ÎžX.ø1…«fિ²š¸ÕþÞvýàÁ-ï(Ù¢\e9*㊜t;Ég˪”Kç‹"e»ÍÆ0[ƒ÷†ðhˆYz0è FÁcI0·|Ã!x솪6Bt”š3‘½Ä|wó<° Œ\ƒvwçà/ߪ–|ûjCf«W=«IÝs¶Ù଻̣«Ê¶ëW6Nîž–rŹyÊÀàJZx§¸ÐÁæªãd¬Ìö ÁP™¡occsccþosˆ\á4N"X8k)€AÈ–‹zB" ¶j°}­ØƒògÓÌ>f¬à{æ0œOu¸ºôΟ~ÔNÚèUGäþ?áìýç*7I[Ž÷lÄü_îAKq Ûö6 ÔÜ<…Œ3€†°uÔÚ®5CW 9ÂrE¦8€Ë?ÄDœÚá*ûЕA»hº½å¹ÀiÄ,ž+ÖE'<<áÝ'½Õüùâ!ï\®ÒIÚ’1„õGi9<åCD!¶âJaÚF0˜Öʰ5Ü4Æj÷Ú®õÍõÝ›æµæ«Ô¹=ŒlŸGXSÂxôôé£ësndDɧÖñš«ÌØ9÷Ï6W7ö¾7áÝ£0 qé1ßÏsuó¬N|zíco « ü÷í ÝÍEvê­úØ\,‘Øv| Ç–HÐcn ‡f Üܽ±f|«u36RË4´d¶ ‹Wë2[÷93£ÐFWí$ ÕÑSìÓ ƒé8Xø=¼×—€«·9éÝó~²IpÊ‹ó\)ÇÕÿ›ÚÇÞ:åü«±w]Pîï,W\Þ¦Ä~gQBîCÍö¨Êf–ÍS¸/Ü0>Ì+ƒ52Ö‰šÄØL- ÝÀÂõëÆ—RÅNé$¶N‚)T©N>ó^’':½z{6Õáêí¨‹?ÒFرyõ}Iò™Cο¨Óãàäÿ‚S®l’ ^ajè)Ã0Ãâr‘±öf ¡—£¹öGÅ9á™qÜ7}ðàaœƒPün)u4qGQŒ˜†«Q€·‹˜!š(ç½ÅœÊŧž~fZ|ì zd¿Z®ŽA=þgþiâVï>®©¥Ÿ<©ô¾±K\MxÓ¥ pÏ´VäO´—Í5ˆ ƒa0 à9G¥à®Ri0Ã!…³À–à>q}ûzbCˆ·7qây}ü2(„âh›4¡ðѵœqçè•\t«<$7Z¬ó:ð- p=rÓÕ%tƒ«dR†7;ÊŠ§€íÀÃÒ9 À¶*‚Yã„=!Tr˜*Š; õÁZð×cóŽá°Ó‰QÔþ67L­onlô! ËlB•`®PÂΖx:÷‚êWSÕ®ÊÅý6”Í\wc"H€º?T<ƒu˜6¹mšõÍ![!"‡kˆ3;WÿãqI„q×aÌ û`®àñˆ"ñ÷™¡„c]2Ü%ã\i_Íþ0³r5ò5ç±W€«„]©L½]‰TS«O.…‡&z`j69 0ðžŽ"z;avC‰àMmöqÝpäj?ã¥1Vàì^8@kÛ‹ÁZ ÿ,­ƒ5«†—Y¹:ÙלÇî"W¹K`“åbnkÝ+NG‰m³3ü˜— ¸ÙÃŒYБÇD¸µ’67 /}4F›ˆæÄ@,éûÃþ<7cª0õ ËRmYYþ óíµ³_¦¦@2Τ‚ˆуÈÅ,WP£5e|b•Œqà 5æN˜Ò,ã:oþeZè›ÁÍ }}¨ZÿþÂ=ì8¡ÛÃ*8ÿ}èÏPn)Æl3ÉÜœ2¹{ékSÒ­$bÍÁÕͧÍyìîq5þ8qÅr™¢´\©¹•‹!ᜅ€Õl†£þˆæmЕB'~04à)ÿ`^g0Š æ° ·‡Ønr"â€ná–"æÜ.Ü}”‚Vq”ãJç¹*ú>%ßt®_ªW÷\xú“ŽÏ“¥çªàÇÕÖ/v)ìø²â¢w[û‰Epñ‡v C¸«ƒì,Ä x`“FÄäñ¬ àÆøTàáo 1ù…û@šOlw}Äž6W@“¢(²\ÙF€ZyÕ®&~õyÀªÃÕñ—'{ ç_5ÇqAËÍUáok±JÓyñUšµ¡& ü©†=!¨I\qØ\G4ã >·ÁbsccˆƒÝh`œ¯ÍMœmî÷7 2ÚßDO s”µi€ ÃCh¯ ËtDàQóÇ0bªÓ:.ûßA-¬¶š«ÃÞ—|í˜$ù‹y§÷ºÃUú®R>M\sžB¬x!øó@û°"èpä&…!†Ú!‰*ÀŒÐÑ11ÜQÌálÂ'ûãg\¯€k– ‘Cò¸ú¸Ñ`@ž»­¯ÀlνP±Kq㣠/ âê¬K’‡ú§dïsÔE®›ê¢ n{ž (f@7t!0,\ƒƒ &'àµO*¤+OaÞ(:ìà³÷7×Ì0Œ(†SCU }‘à|yX܉úŒ¦\ŒÕ€Y Wo9øòäÜ ?·¾mìUö¿ßB® ¤@¿XöÅ¢zRý!fªÇDô¢¿Ñ2ÿàê\Y€$dc°`¶g°öÊÜbFNüK™1Ô „ÛÔÚ¢ kŸ0žæ5†(ùRÓ¿û<¿^®ö½òÂä ‡õý±yœ,;WÞ’åÊÚ/©iÖ™æ[ÀÇ8hÈEñ@Õ Yè8á< ygH™ ¼ö÷¨™È&nÀ0„+³/ZwWñD½È­hÚ…˜”&¼†NÁÄ_ånN¬jqõü¹ïÓßžëÀÉÒse•›ñ÷¦ùàQ© r5WÕÂvU<˜rŒ1'dr¢3Š }0ü!Xë} ⿃&óQž¼mò…d­¸žÕ³UšÎ„ÀR®ÚÿÑêpuâþw#ÇîW:•{®ªÜ(¨xyR´)0ü)JF‡›Á!Æ› !}Ì8ÆÑ‘&šÉpAÕ³q³Œ7¾®:ÄJ‡8õŒî;Ä«È-‡ILæÂ~Y#Êcàî1~ƒÅw…-3W/9²÷Ì«îÿØ]à*Uâ. ¥/hœQŠ{£Q†E(©ò94î5ÄÑC ‚öš€Ò ¹¿#¡ÐõÍQ§y0¨0„;Ê÷룩Ä8QÔd†Ö,QnöHs³˜lQs!W[ð»ÕšÇyè/^¼ó_øðæ:`äJ%¶È2«.W·¾õ'{ÇÌyìNr…¯‡ÐòËt©›'Ìû ±G1sEµ0” ÐE‡ü„á`sP¯lÏ`<°ÈŒ“k»6xoÖËØ*pÄ8ã&æ¥v£È6¡ÉföÔ³\Q3äîquàæÑé½£_þWûç<ö²qUx% ¯e‡WXå²ãNQÐ8æW1†Á‰¢ žg¥q6piTÁ`sm÷úú&ÜJWœ…ä±›±Os©tÌk€q±~êC!ì6ëK+ÛS¦[\ýxoç…Þ7ÿ±—Œ«’{𢫣lç!š“ƒ ¾€bê[ Cnþˆ­×15Û+`s;hm¼±±‰yëÆ\­ollPË+¨é?‚Å9ŸÙ¦²»jÓÄÕo¤•‚n†pAªÃÕ/~ðÁF޽L\¹ÑÄO‰óß͆­ñÒò ŽMˆ v î ´ct͇µ™Ãú+P'˜]^ï· ¢¡F} œbiý#ØÂ–#ŠÊÿ¸›Êž ½‘ ºµ.¢:\ÝôCüçûÿ0ç±—‡+¾>Wc±…±¤+š¶£:®˜bÔ=CS´æCˆéÃ0QEVÄ…¦1xó›ÆDÅêcŽ ÎÛ ¹¢Àa¹szcÀ9°¯HbOÐ;Öê'ó ü篟óØà MB‘¯¢)/4¶A$ôµ‡÷h¹³¿Á бÊp  œ!Öû‰#c« Ân¬Ôf½ß7÷ƒ1öûkë47ˆ=b²¸j¶‰à~Gq@s™¶4M±*šÜ’_43W{÷ìé=m蘧ÎyìeæJ;®hŠFŠÚ. ˆé Ÿ0Â*ùH!dØšZtC²[XO« (P1o¬øU³G©ïór}}òÛ1çËîÁ?£W¥¸h[~oÊg‰ÀË[Ùb÷±%ÍÌÕM¯zUïůýÚç<ö’q•ùÙ=®l fö-â*âFThˆŒ;NkoQß*ê=;RS"ldÛŒ)ŠtAªÕæîµM¬Š ý†æÅõõõÝë›HÙ reÁŠíý FÀ*3q«tsìKnÍ/Zg<÷®f޽t\½d˶T~€„?¸”$¦©PÃPnŒ=€yìå1ÄZR¨ qÂ1ÞR×G(fF¿j÷ÚúpÔ7w„kk»7!MÆPµf UŒ(Š„a¿wM“Ð-ß]ˆ×µ()ö¯–ž«\gü÷†AJ™Ë¾A—.Ä予:¹ÃÔ÷õ70¦ ûœÅ€©T4rA( "¥8±l¸ZƒšøþÆîÝgþÄ.ðâ‡02¢OÅ£˜‚`%HÁ««#ÈÉ ^É^Û¾ì|v…X-1WÛ`}f+ð<®÷Øöð¤vC°Æ7/ó@Ͳ!« z8yi3@ŽcÔòjd›³ƒƒã4X_ÛµkדN[ÇzŠusŸ3…ÃMÏÂÆ ´Ú%õ~Ç£èŠUì§/´ô\­þú8™+rECPÊv¸¢ê. û}BÎ ¶‚Z@L‰ †–‡fm™ó(2®”qÐ×à¶Ð ¸¶{÷i'ž¶¶I€”±†PíŒQÖ˜ÀSíMÀË©b 5Åf“Š\Mÿæü‚²>NŠ|øÄbåÒè·"¥¢u“¨©KHÉ}lqlMÕêc xA{>Hꃊ@ãT¹ \t¨ÀYß½k×v×6C ôª†˜o±ç©gZºÂ-°¥y}®r°˜ JX5C–¬S üï6¨í&æìÅãÁ-áµ»lí ´QÀ ˆŽzò"ñ4× 58!FÛ×wï^@¯vc±v¹:«áì!eóaã>Œ‡*W| ÝÚy¶±wCöœT47TÊú8*ùyÝì¯ËtçÅI0έxòŽÖ Ä6VØ~}ÀµfèƒYlûÞ6¤amGjÍÜ ¢ÁÂIµ(Â¥ÃÄ.ƒƒ°é;e »î³iøÍñ’õq TöóRŠŠ ’¸HóÎÞ2’ ‹ :«x‘šC¶+0 ¡§Œo“ έÛûk¸tÉ(Q@bdê"sÙ?œÌŽ™â| ð\Ȫ‘/>»d}œ"ÿºpiapJ½c×Â…ÆRûEšÞ±..\CëycËlLöìce3€…ý°Ö10:°Œåâ¤w¸ÙÃØµÏb3ˆ)£^O¢üY«Ìð=+$ æŠ×ÇùæœÇ^^®’¢Öl3œÛ®íJ]¸€ ë¿hÞ‰)¾Ža*ð×ÑSÂ>ªÑm®÷±(tþ07ÖÖÖ)6„QA V ‚õ‚b.öBžÌ‰xA5¶…AüÖ3æ"7‰¨ÃU„÷¿}eývPá}:—rc¯²æšd K2WdÐMæàJ$0±¼± áOì½g­›ápÍxWn0ÞU4 ©ñ vOƒºL¯ÁE» wž0Ö<è¡icÈ–ÖP‡«ƒ¡ígÎêý‡9½Ä\Ä•ŠIД¸FÊ­3Èùš8û‡ W~ q#»+cé) †}˜¿é°Ö×û8ñ !¯ˆ–- l)~qm—R“µ*H³ð‡1øèWpП|çW{§ß8ï±—ž«±™ìeÒ”Òì ûï˜)ŒÙ¤ˆuÔ‹4¯-®8‡a³6 ÛÇlÂ$3”¥‚¥£@tw³†­ýÀImÈ”p¥§þ*gM9«´K\%tÐÎG¿uþDäŽqÅ`io A?Æ<›°b”òÚ1ƒ „,×Ëòp¸ ìL;ÀâùÍÑš$ä Ü'R>6MƒÖ¢PeˆTh+Š€âŽŽmWøÔ×cÙúg­¶žÍÝáͦY¹úé¾ÂüóØã*» NÚpªˆœišÂ£ôŽñv1aZaºÃº©ÁB$}ìWÄ PPG(¬À²Oe¬¸&EQØŠFA®©öÝt:¥Øµk°U‹Ájf®z¾æ<ös5ñrÐ[ŠW ¨]^DsƒØ>»æájpÌ—È`  •a‚Sÿ¸: Ìb¢2‚¥êã ‰‹¨âŒ»U8Õ M·»Þ`Ö¿¢ÁÏ%ªEEš•«|Íyìeæª0‚E¯».ídªFØÖ S‘¤pÄôÛ²Š9”D¼<%UÂ@´ =wý€¡—Ç¡jDh̽D1ã´€+.çÐZ7Šª¥þÕøN3Ç^n®J¤Ù_¨­,åPº&/9ÑÚË‘ Â{ýó¸{r@!)*e¥qв‚}lÓ0„¢î>CÑì%Ùǹ²¹ø‹ŠUƒ«O¼¶™cw‘+›íN%^Ø‚Š‹­4¹OÔ® ¼kžf¸”½£G4¬ñ|#Œšê‚þ¢àP…ØÒ! €h€ëí’3eÓbâtÍÌÉÙøú±ªu?ø‡çü ‘cwˆ+/dñʸ„ä>LA´âÁŽçl\»-᪂—®õVƒ%ë.M—ÏO&Ö:¹ŒieEhcÊ*⎟ÖÏr¹êŠ›úÅ×aN»íªËÐG.¾Ïásvå<®R§ªœ›NqµmÖ]Êp•ZM ˜Ø‚P¾jÊ-„K¯RÀ:’*7Ìi-ʹÂÙ›Ãè1uWvþyŽÆ5”ÑY¬¦qµµµ8 Ywiº-†’ŽzÚúø©¹ÊákmÖ2ijêpõ/œwåAÒÒqUAnV†PTÙŽáv»Iœ¯pOâEµvµxHŒch#3ù—Œ“6òHÓc²§¾DXÕâêØ‹näØËÃUåÿÒµv=¦Òü:*õ³Ã– _Å›kä¨}Ì/â*,+0À&·Êõúw³D6œŸ5}îÔ—«:\ý°·r~{õ${Æ… hZxq8xg,Úî>l‰ Æ´?Ãìv…lµ¸VÖ¥Ó©)Ô¹ÊzYsÿ󫎽ú™—häØ]ä*wÝxB9æþÚ¼’›5)¥Òvĸ•J#ñн~›u“d¹²í¼syç´,ca®ÞzèžáÍyì¥ç*ã¸ä_¤A‘²ø°T” Þþ¼OX´òîæ˜Ê…°0Âr˜šý¸õ©(ðÊ\åÏ}Ê7ÙrÕáê «9½<\ í%Ê»0>mœØgS²â®˜ tPÓ™¬t^×4­¾ðØáã+»-1.ç*?*.LmÎ;«k¯z×Þ/•¿¿D\%%jñù׊íŒ37Qh«oˆ«âÝx®6yýWiØ‹'í&}°Óƒ{Ïe§¼Ê\]·‹šñ¾²-–Š«•qe,Ž`añ(dXÙ<âñÝx\ù&05“îæ’'žé¦3w`[-1 œ®r5Ìô’ùû+K7¼®÷s×ßö½ï}mï…;¢’M:ÈUZ»—úØÖ|¨;’r•K@Àýé±M0ÿÊ•¼j;"*fˆ‹f‰²çÜüo1«fåêON|éÑÃ{Þûœ]åK‡ïùUûèõçfÞxð«=k³{«•·.iøÊ»wóoΊ¯§vV&oM4¦44{WÔ ÄÝ!¦(˜3KL>ë&†Zšyü=äœþ«_ñ¢§ôžþžýåÛ=æ=öQ|TækN±:ìô½Õò‹A¦(è4¬”ÿXÁnÒ=¤ï¢ƒf ŠÖÁÑܽ!õÇ´NãîÔ¿‹(ýµ ‹@wŽ«45Ÿ97Õ¹¢¢yÑ·Ô úÿ(ž¹áa×Íëd‚´«ÂÕwžqé;.;ë´+_öè+æ9v¹ò/BöŠ8ªrE›òJºqRÏË¥{ûôw^Eap9¸zÉOƒ™zäg3ùÐcæ9v׸Ҋû»Ð³ÈR®¦ïŒ?Y2-œAVÔ¨¼¢øÅY¾Ôòpu,õC~ÿ“’ûzwÍqìnq×–f½I{E2ƒX¥L`Ç•s—r\Ù0(÷[¹úÉRqõ”ËñŸ7Ÿ’|¹wïÇîWörã=YIþÆ/½:¯‘ÖÞ~9Â3€*íQÓfð ýÖáê÷~,øÇ¹ýÊC®¸íœgÎsìîqe§mh€ò¼âë>é’y‘{•3ó>‡`—$(5ƒjů޼ÓÜ zù?>ãÖyŽÝ ®*Œ‰{-úÜ4±¿•÷,5HÞÙýÒ~²ƒiŰ\ù%<«ÎUòÏŸxÏG¿$?œïØÝáÊT ÃùuãEVécw 76N:)•ß(CO&ý8ik¸jMõ¸º=ºòÚy»‹v„+pd)E†çZJ>àÌ™¥¡€+;¼zfOq•3‹ÝQ®¹øàÞ£z]<1(ZA]âÊ.·DÏmƒÑ¸Ê°”‹¢íÎÅj÷‹6ª:\_ùäîßTyòU5uƒ«ÄE']Ô[Ùž¢U¸r¯åÁ˜ÂU’ÝMǬ:\=Æyî9Ý®¾Ä^»ëµW²±#ÏÆMÇ6Lò(Ùײ»Z¾†ÇST‡«#(ôús;ÏÕÿr”Vžvµ]ÔK6¶HéÌ‹¥º·Ü²”Þð¹}¸zÆ«ñŸáî9ãj¹M½Ö^OcWÞUÊÊXr_ù~}{…éVÛ•«wíxí—ïùÊëv¼kÎcw«4©lŸ¡nÕ2Xal!Îp¥·•üæá½^ï°7Í{ì.re;ùkÛvÒùÎúuR®ü «t_ËúÛ¨^üêîO^ý‰ïÍ}ìNq¥\µ¨mjf38‹·×ºÐW§wJä¸ßqÖY[~-Q?䥿*N’R®r7v…>ÑÄ/©RyCa÷fqfçjäkÎcŶêÇ›zœñ˘zЉs{òã`Ößv~ÑøžËN{ô¼)íkƯ¹HÍÊÕɾæ<ö¢âWS/RÁe´¤øbåÑP”Œ7íe[9C¥¦}jù´DãàViúE*ãjò•m†+¤D¸ª¥qU¥zËÚ°$;zÍvðB®ŠwµÔ®ªl¡½;ÿI³“ˆ†ÚÉÏÔU¬„«*[T¼°6U/﯄³:a¿«CdmC®*„ÇÍU5ƒÁ#a!“?—=Tæ=ÿ¦žAÉn·\Û‘«™å¸ªÂcŽ« @d¶(Ù¸‚7q·[-᪊R¬&xMÉ|\MÞdbl¿î^[”p5E:uÃ˯”{CEáJ×çjA` WåSVöõìF qUµŒzl¯ÂÕ2Ê^ü[žt´eËrïW:Ȥ-Š×›o¯mJ¸š¨,WeñsÛm´<Ëo¢¦›"žŒ¬sî³}¦1 W•Ú¢±†/ô¶²ÀÕ¸aK1™LÓ«Yv\ãtš‘p5QŒ•W“}7®6WUÆ+k,3¯Ì~¨-”p5YÚQ3ï¶^•(k]ìÂ]ç4Â_äWEÂÕt9~Ê^÷B³ï|JÖ©ö‚™# WeêWEW1uæÝ³;Ÿä:en6…«ŠZ ®æ¼ºÚk€Ur€‚´Sáj’ºÂU©)jàâNôË„«Zê Wmj!¥\5At»®¬ñ½ü{Åä-5UÂÕȧj¸t®–Hã1‡ £Ýr»XÂÕòh¶l˜åöÝ…«å‘žepâäâ%\-„«f$\e¥ÇJ¨K·ÓËÞÒ]¸ª¬ö/"E«ªlU~X WUµ×±ÒQKŒ•pUU ±ÅÑå¶T$᪢ʯf{׸<=G¸š ÕàªÅ‹¬ o…«)Z ®Ú¼Êª¤\bù±®*k’¹Úb®: ᪺J+è…«1 WsªM®f/r^ W󪬼˜z‹GiOÂÕÜj +¯1R'î} WK)aО᮪I¸*“v{–«î€%\-¥,W:«EŸVu WK)›ˆå€®ªK¸*¯uèTW]¾ýÒ1'\-ŸôØRô¸ î•q°®„«R}ó¹'ÄÂUM Wå:ðöC‡ÑW·]auòO¶wìÎKî'èKg1ÆÕg.¶:m£Íc‹©–ã eN{ûÇ-P‹¼¶ÂÕêªåkûç-îØ¢ªåk{Ë„ÛAáj…%\‰Úp%jC-_ÛnZܱE ”ÜŠÚp%jC•¨ -”«µ7TÖóž~n:}O+»=õœ6özö©mìõÜÝ3\†ÊZ[ WŸŸá“vNÕÊÛ}éпJZúúê OýQƒ»ûLïoÌßïõ®jpŸV Ÿ*¨Åv©õÀ-·ÜòäÁ§“F¿>íÖèo<ä™Þfš¹zW“;E5~ªFÿ°]ÑM½^ïyIpD´wï Þ{s³»M’ÏžzÌ6{‹õ5t­¿†£a£jþTÿa»¥Kz¤ «úÖÒ'ùåï7¼Ëû¾"õñ¾Ôð~[8Õ¤½¶KjÞ\?ròÏ6½Ë$yážG’äÂ3Þk+§ÊÚŽã §æ¿þM½‹®ÝÒäN?wèËn|ÃŽ÷5¹Ë¤¥Se W ëjÞÑè^ÿzý¨³›Æª¥S%ms®D"‘H$‰D"‘H$‰D"‘H$‰D"‘H$‰D"‘H$‰D"‘H$‰D"‘H$‰D"‘H$mN¿þ߆7¾ãéû=!ÑJ¨„«ïžøíª¿ò-žh%TÂÕ›^Zyã¯ý@“'$Z sµïØ«oüŒæ;’Šº.Då~rç®·=b¼ýÌã^òÁÞÃɧyÈ<»ý;òßÞd({ËÓ}ÂËïá?ò¬#Oºô¡ôÝäõÏ_è7-£•ßì½2zíÁ'É›ì²ÿñü†«ËÎ1oíÿ‰Óþàvýýä•¿öÚ˾6~ߎ—F¿qøùé»ÉŸ.ž»('ƒÊ݇¿Æ<¸òàÛÿyg$?ÅpuAß¼rkïÏ’D½âöäÂËͳלŽï;ñ•æÉzŸuï&_ìݱЯ ZBT>Ùû²yð^ô‰Þ?š—®žýjóà_{Ú»þmõÐ×?|ú“qã¯ô®»óÎ;oÛñ»é»wö>·˜s-¯ *W÷p·G]ùžÞ¿˜ßa¸zî+à•/_pd路îO¾pîAÿê§öW7p»Ð7ºw“Û{_XèW-¡ *Ÿè}Å<¸»wíG{°’Åe†«_y½»ÿó¿Öû¯÷öâ;ÍËÄÕß÷nuŸÅw“äïzß\È©‹–X•ïö:óà÷úú·½2I9Ëpõ_žb^ù‹78%O~ǹŸ#®îÛy¹yò—O¾Õ¾›$úøž¿h9·xoÚñŸ®=ÊÜ^~Èo½ÿüÓz’/ï¸7IîÚ¹û½×¼xÇß~ôyÞû‚Çy3nü{½ÿøþË»áÞM’‹/\ô—-0$>㈠ñ«o;ù‰¿qÅæ•]ï5þ׳~ÌÚÞ$ùØÓßõίŸrm|õž#NºäþôÝGNøØb¿‚hÉõÃ?¾Íü}ù3ÍŸÿþœÊŸŠO;ÐÚ‰VBO9ç+÷ÿù£¯1öïú‡ªzNã €‰VL·îéõÀ„NòWVü̯kñ„D+¢»›^R$‰D"‘H$‰D"‘H$‰D"‘H$‰D"‘H$‰D"‘H$‰D"‘H$‰Œþ?ïzÑÎendstream endobj 206 0 obj << /Filter /FlateDecode /Length 1382 >> stream xœ­WÉnG ½7ò}KÍAÚ‹D†8Îê Ñää0ÖfÃ’Æ–d+þû™y’\vÇÛ2äH}ÉÑÁCk’ã!§ª•ÎQ)íZ'Z|Lê½” ¾Òâ½WÄ4”¤œÚ§hˆ™•OäÊ@ÖiŸf¥Q°Ð}š^Û¹¤^³ýE÷®sÈ~üwrÕ·î¾ù3ÚžÎ>÷ëó®ìzÃP€…SΧ~}Õým~X! Tà‰ùiu„³µ±óâ鯫£üÀLæ{ùà­åXÌï¢ÏÙÆl~Ã1Xf.8B£XK9˜gG—Ä/ÖêæñêȇDdãÃêŸõÏ]˜Ä‘#DÎÁS¿>…Gr?Á„ùW®“µÎy3ÀÏCáhÜP¦Œ3‰›v°Ž ø¼ÙÞ4eäÇ܉®.²yU-Çæ¬Ý äÆïž}„Ô‰‚Ù\7… 'NféöªÆÃ„ØÞÖ0ÙF2›kgk›×3>g" Ì1sÛŠ67 …C}RJ¹ñj¶vÖýë—"s¯`m:ÓžÙ2”¹ @t.sÞYŽÖ™‹›ú ò0b@.³iö ù´Ët¾3ó€@Œ~ßধè30ûJÉ«Eç‹Ï"ÎahÀB˜ÛkI#sãC£\nZ&ëýhör2ï§”žTJTe`ß+—æØåãQ-4A87pJ®)mf¦¿œÌm„B!,0í " ÐR“˜AoÑ.¸ êÝ5¾mÏÛ9»Ø i™lˆ@»Œˆ4q$¹R* ¸ê›Ë™"›—(4 Z+~^Ö‚cBŒâ”©˜ÓætB‚ï!-”s È¬ÜršBI•#ÕÑüû  ´8Q9GÀœC¯*:ÂMË\UQ?Äœ¯›ñBRêªÀ$¬ì’…a æ1\ä-$F÷ÉÆQ¤nò¢q0Är°ùq»k`ÝIa‰Ð[6ÊD† Ù|l dÇD“D¿‡Ÿn2$ç·ílmÚ‡rÑPÅ÷“)ý·Í\øÜVPݤGÒ,~·‹FÓ\\Y$n£ w鯢fÆÍT°‚B«’àBÆPy#8£YÛ¸eo>¬R’`x«€ìaøýC€nnÔÄ9›û„Ðcf‡®òó ^}U 4ô{ƒb.ó©ЂÇò¢‰í`ŠÓU7g$•­)’ÏŽË#¤’îè6ËȽ¸ïúØ©®jñ⹯³cêOfÆõóÑ/›3i›6ntµ:õ²€Eª>¨þQ5¥<ØzU5vÓ55è5}T×Q#XÁ¼½n0Ž¥êw©Ú^ιҳ[³Fâ[1"݆SHyt ‰‚L!m·ÕGòeeÁÏ“Öêc‰øKMž–£ð¿\¡µåà0|ˆŠZü¤mp6âï6¸§j<]rîh§º$žˆõ}Ž =PeqÎnz«z¾ÊÛ¶®_ñàù]0ïg”jM³ÅÊÜ–À0°ÖT×÷Ô]ï‹­^x%ÊàW³äàj †EUN| Œ¦ ôy{Á~­}¸mׇ—áiŽNª‹õFbãYSìÙºûÿ×uvendstream endobj 207 0 obj << /Filter /FlateDecode /Length 142 >> stream xœUŽ» Ã0 D{MÁ ¢ÄŸ&Hd„´q‘*ë',™ ‚‡Þ{SSÝçØÏ­4È O©t+Æ åF®Æ£­ø¨YÁ«> /W [ 1 3 1 ] /Info 3 0 R /Root 2 0 R /Size 209 /ID [<9c19732afc74d0a2cb32a0a79465faa0><86b685f29ce08bfcb1d375dfd5ecdd0b>] >> stream xœcb&F~0ù‰ $À8JCò?ƒÀÙ@6›(®_¥Æõð%ÿ3(ŵø P, O“n RLD2í‘¢} ’Q D²»€Ù×A¤â*Éb"¥Ô@¤`ˆW’Œ’›Alæ ’»l²ÂC°ú RÀ ¬fØ®ã`5?Ádˆä›)("yÅÁìS`“óÁz#A¤ÈFñC`ñFÉöÅn° `½|ÏA¤û<É5Dº¥H¶ P}!Û endstream endobj startxref 191306 %%EOF HSAUR3/inst/doc/Ch_conditional_inference.Rnw0000644000176200001440000003730614656356403020411 0ustar liggesusers \documentclass{chapman} %%% copy Sweave.sty definitions %%% keeps `sweave' from adding `\usepackage{Sweave}': DO NOT REMOVE %\usepackage{Sweave} \RequirePackage[T1]{fontenc} \RequirePackage{graphicx,ae,fancyvrb} \IfFileExists{upquote.sty}{\RequirePackage{upquote}}{} \usepackage{relsize} \DefineVerbatimEnvironment{Sinput}{Verbatim}{} \DefineVerbatimEnvironment{Soutput}{Verbatim}{fontfamily=courier, fontshape=it, fontsize=\relsize{-1}} \DefineVerbatimEnvironment{Scode}{Verbatim}{} \newenvironment{Schunk}{}{} %%% environment for raw output \newcommand{\SchunkRaw}{\renewenvironment{Schunk}{}{} \DefineVerbatimEnvironment{Soutput}{Verbatim}{fontfamily=courier, fontshape=it, fontsize=\small} \rawSinput } %%% environment for labeled output \newcommand{\nextcaption}{} \newcommand{\SchunkLabel}{ \renewenvironment{Schunk}{\begin{figure}[ht] }{\caption{\nextcaption} \end{figure} } \DefineVerbatimEnvironment{Sinput}{Verbatim}{frame = topline} \DefineVerbatimEnvironment{Soutput}{Verbatim}{frame = bottomline, samepage = true, fontfamily=courier, fontshape=it, fontsize=\relsize{-1}} } %%% S code with line numbers \DefineVerbatimEnvironment{Sinput} {Verbatim} { %% numbers=left } \newcommand{\numberSinput}{ \DefineVerbatimEnvironment{Sinput}{Verbatim}{numbers=left} } \newcommand{\rawSinput}{ \DefineVerbatimEnvironment{Sinput}{Verbatim}{} } %%% R / System symbols \newcommand{\R}{\textsf{R}} \newcommand{\rR}{{R}} \renewcommand{\S}{\textsf{S}} \newcommand{\SPLUS}{\textsf{S-PLUS}} \newcommand{\rSPLUS}{{S-PLUS}} \newcommand{\SPSS}{\textsf{SPSS}} \newcommand{\EXCEL}{\textsf{Excel}} \newcommand{\ACCESS}{\textsf{Access}} \newcommand{\SQL}{\textsf{SQL}} %%\newcommand{\Rpackage}[1]{\hbox{\rm\textit{#1}}} %%\newcommand{\Robject}[1]{\hbox{\rm\texttt{#1}}} %%\newcommand{\Rclass}[1]{\hbox{\rm\textit{#1}}} %%\newcommand{\Rcmd}[1]{\hbox{\rm\texttt{#1}}} \newcommand{\Rpackage}[1]{\index{#1 package@{\fontseries{b}\selectfont #1} package} {\fontseries{b}\selectfont #1}} \newcommand{\rpackage}[1]{{\fontseries{b}\selectfont #1}} \newcommand{\Robject}[1]{\texttt{#1}} \newcommand{\Rclass}[1]{\index{#1 class@\textit{#1} class}\textit{#1}} \newcommand{\Rcmd}[1]{\index{#1 function@\texttt{#1} function}\texttt{#1}} \newcommand{\Roperator}[1]{\texttt{#1}} \newcommand{\Rarg}[1]{\texttt{#1}} \newcommand{\Rlevel}[1]{\texttt{#1}} %%% other symbols \newcommand{\file}[1]{\hbox{\rm\texttt{#1}}} %%\newcommand{\stress}[1]{\index{#1}\textit{#1}} \newcommand{\stress}[1]{\textit{#1}} \newcommand{\booktitle}[1]{\textit{#1}} %%' %%% Math symbols \usepackage{amstext} \usepackage{amsmath} \newcommand{\E}{\mathsf{E}} \newcommand{\Var}{\mathsf{Var}} \newcommand{\Cov}{\mathsf{Cov}} \newcommand{\Cor}{\mathsf{Cor}} \newcommand{\x}{\mathbf{x}} \newcommand{\y}{\mathbf{y}} \renewcommand{\a}{\mathbf{a}} \newcommand{\W}{\mathbf{W}} \newcommand{\C}{\mathbf{C}} \renewcommand{\H}{\mathbf{H}} \newcommand{\X}{\mathbf{X}} \newcommand{\B}{\mathbf{B}} \newcommand{\V}{\mathbf{V}} \newcommand{\I}{\mathbf{I}} \newcommand{\D}{\mathbf{D}} \newcommand{\bS}{\mathbf{S}} \newcommand{\N}{\mathcal{N}} \renewcommand{\L}{L} \renewcommand{\P}{\mathsf{P}} \newcommand{\K}{\mathbf{K}} \newcommand{\m}{\mathbf{m}} \newcommand{\argmin}{\operatorname{argmin}\displaylimits} \newcommand{\argmax}{\operatorname{argmax}\displaylimits} \newcommand{\bx}{\mathbf{x}} \newcommand{\bbeta}{\mathbf{\beta}} %%% links \usepackage{hyperref} \hypersetup{% pdftitle = {A Handbook of Statistical Analyses Using R (3rd Edition)}, pdfsubject = {Book}, pdfauthor = {Torsten Hothorn and Brian S. Everitt}, colorlinks = {black}, linkcolor = {black}, citecolor = {black}, urlcolor = {black}, hyperindex = {true}, linktocpage = {true}, } %%% captions & tables %% : conflics with figure definition in chapman.cls %%\usepackage[format=hang,margin=10pt,labelfont=bf]{caption} %% \usepackage{longtable} \usepackage[figuresright]{rotating} %%% R symbol in chapter 1 \usepackage{wrapfig} %%% Bibliography \usepackage[round,comma]{natbib} \renewcommand{\refname}{References \addcontentsline{toc}{chapter}{References}} \citeindexfalse %%% texi2dvi complains that \newblock is undefined, hm... \def\newblock{\hskip .11em plus .33em minus .07em} %%% Example sections \newcounter{exercise}[chapter] \setcounter{exercise}{0} \newcommand{\exercise}{\stepcounter{exercise} \item{Ex.~\arabic{chapter}.\arabic{exercise} }} %% URLs \newcommand{\curl}[1]{\begin{center} \url{#1} \end{center}} %%% for manual corrections %\renewcommand{\baselinestretch}{2} %%% plot sizes \setkeys{Gin}{width=0.95\textwidth} %%% color \usepackage{color} %%% hyphenations \hyphenation{drop-out} \hyphenation{mar-gi-nal} %%% new bidirectional quotes need \usepackage[utf8]{inputenc} %\usepackage{setspace} \definecolor{sidebox_todo}{rgb}{1,1,0.2} \newcommand{\todo}[1]{ \hspace{0pt}% \marginpar{% \fcolorbox{black}{sidebox_todo}{% \parbox{\marginparwidth} { \raggedright\sffamily\footnotesize{TODO: #1}% } }% } } \begin{document} %% Title page \title{A Handbook of Statistical Analyses Using \R{} --- 3rd Edition} \author{Torsten Hothorn and Brian S. Everitt} \maketitle %%\VignetteIndexEntry{Chapter Conditional Inference} %%\VignetteDepends{coin} \setcounter{chapter}{3} \SweaveOpts{prefix.string=figures/HSAUR,eps=FALSE,keep.source=TRUE} <>= rm(list = ls()) s <- search()[-1] s <- s[-match(c("package:base", "package:stats", "package:graphics", "package:grDevices", "package:utils", "package:datasets", "package:methods", "Autoloads"), s)] if (length(s) > 0) sapply(s, detach, character.only = TRUE) if (!file.exists("tables")) dir.create("tables") if (!file.exists("figures")) dir.create("figures") set.seed(290875) options(prompt = "R> ", continue = "+ ", width = 63, # digits = 4, show.signif.stars = FALSE, SweaveHooks = list(leftpar = function() par(mai = par("mai") * c(1, 1.05, 1, 1)), bigleftpar = function() par(mai = par("mai") * c(1, 1.7, 1, 1)))) HSAURpkg <- require("HSAUR3") if (!HSAURpkg) stop("cannot load package ", sQuote("HSAUR3")) rm(HSAURpkg) ### hm, R-2.4.0 --vanilla seems to need this a <- Sys.setlocale("LC_ALL", "C") ### book <- TRUE refs <- cbind(c("AItR", "DAGD", "SI", "CI", "ANOVA", "MLR", "GLM", "DE", "RP", "GAM", "SA", "ALDI", "ALDII", "SIMC", "MA", "PCA", "MDS", "CA"), 1:18) ch <- function(x) { ch <- refs[which(refs[,1] == x),] if (book) { return(paste("Chapter~\\\\ref{", ch[1], "}", sep = "")) } else { return(paste("Chapter~", ch[2], sep = "")) } } if (file.exists("deparse.R")) source("deparse.R") setHook(packageEvent("lattice", "attach"), function(...) { lattice.options(default.theme = function() standard.theme("pdf", color = FALSE)) }) @ \pagestyle{headings} <>= book <- FALSE @ \chapter[Conditional Inference]{Conditional Inference: Guessing Lengths, Suicides, Gastrointestinal Damage, and Newborn Infants \label{CI}} <>= data("roomwidth", package = "HSAUR3") nobs <- table(roomwidth$unit) ties <- tapply(roomwidth$width, roomwidth$unit, function(x) length(x) - length(unique(x))) library("coin") @ \section{Introduction} \section{Conditional Test Procedures} \section{Analysis Using \R{}} \subsection{Estimating the Width of a Room Revised} The unconditional analysis of the room width estimated by two groups of students in \Sexpr{ch("SI")} led to the conclusion that the estimates in meters are slightly larger than the estimates in feet. Here, we reanalyze these data in a conditional framework. First, we convert meters into feet and store the vector of observations in a variable \Robject{y}: <>= data("roomwidth", package = "HSAUR3") convert <- ifelse(roomwidth$unit == "feet", 1, 3.28) feet <- roomwidth$unit == "feet" meter <- !feet y <- roomwidth$width * convert @ The test statistic is simply the difference in means <>= T <- mean(y[feet]) - mean(y[meter]) T @ In order to approximate the conditional distribution of the test statistic $T$ we compute $9999$ test statistics for shuffled $y$ values. A permutation of the $y$ vector can be obtained from the \Rcmd{sample} function. <>= meandiffs <- double(9999) for (i in 1:length(meandiffs)) { sy <- sample(y) meandiffs[i] <- mean(sy[feet]) - mean(sy[meter]) } @ \begin{figure} \begin{center} <>= hist(meandiffs) abline(v = T, lty = 2) abline(v = -T, lty = 2) @ \caption{An approximation for the conditional distribution of the difference of mean \Robject{roomwidth} estimates in the feet and meters group under the null hypothesis. The vertical lines show the negative and positive absolute value of the test statistic $T$ obtained from the original data. \label{CI:perm}} \end{center} \end{figure} The distribution of the test statistic $T$ under the null hypothesis of independence of room width estimates and groups is depicted in Figure~\ref{CI:perm}. Now, the value of the test statistic $T$ for the original unshuffled data can be compared with the distribution of $T$ under the null hypothesis (the vertical lines in Figure~\ref{CI:perm}). The $p$-value, i.e., the proportion of test statistics $T$ larger than \Sexpr{-round(T, 3)} or smaller than \Sexpr{round(T, 3)}, is <>= greater <- abs(meandiffs) > abs(T) mean(greater) @ with a confidence interval of <>= binom.test(sum(greater), length(greater))$conf.int @ Note that the approximated conditional $p$-value is roughly the same as the $p$-value reported by the $t$-test in \Sexpr{ch("SI")}. \renewcommand{\nextcaption}{\R{} output of the exact permutation test applied to the \Robject{roomwidth} data. \label{CI-roomwidth-p-fig}} \SchunkLabel <>= library("coin") independence_test(y ~ unit, data = roomwidth, distribution = exact()) @ \SchunkRaw \renewcommand{\nextcaption}{\R{} output of the exact conditional Wilcoxon rank sum test applied to the \Robject{roomwidth} data. \label{CI-roomwidth-w-fig}} \SchunkLabel <>= wilcox_test(y ~ unit, data = roomwidth, distribution = exact()) @ \SchunkRaw \subsection{Crowds and Threatened Suicide} \renewcommand{\nextcaption}{\R{} output of Fisher's exact test for the %' \Robject{suicides} data. \label{CI-suicides-fig}} \SchunkLabel <>= data("suicides", package = "HSAUR3") fisher.test(suicides) @ \SchunkRaw <>= ftp <- round(fisher.test(suicides)$p.value, 3) ctp <- round(chisq.test(suicides)$p.value, 3) @ \subsection{Gastrointestinal Damage} \label{CI:Lanza} Here we are interested in the comparison of two groups of patients, where one group received a placebo and the other one Misoprostol. In the trials shown here, the response variable is measured on an ordered scale -- see Table~\ref{CI:scores}. Data from four clinical studies are available and thus the observations are naturally grouped together. From the \Rclass{data.frame} \Robject{Lanza} we can construct a three-way table as follows: <>= data("Lanza", package = "HSAUR3") xtabs(~ treatment + classification + study, data = Lanza) @ <>= options(width = 65) @ For the first study, the null hypothesis of independence of treatment and gastrointestinal damage, i.e., of no treatment effect of Misoprostol, is tested by <>= library("coin") cmh_test(classification ~ treatment, data = Lanza, scores = list(classification = c(0, 1, 6, 17, 30)), subset = Lanza$study == "I") @ and, by default, the conditional distribution is approximated by the corresponding limiting distribution. The $p$-value indicates a strong treatment effect. For the second study, the asymptotic $p$-value is a little bit larger: <>= cmh_test(classification ~ treatment, data = Lanza, scores = list(classification = c(0, 1, 6, 17, 30)), subset = Lanza$study == "II") @ and we make sure that the implied decision is correct by calculating a confidence interval for the exact $p$-value: <>= p <- cmh_test(classification ~ treatment, data = Lanza, scores = list(classification = c(0, 1, 6, 17, 30)), subset = Lanza$study == "II", distribution = approximate(19999)) pvalue(p) @ The third and fourth study indicate a strong treatment effect as well: <>= cmh_test(classification ~ treatment, data = Lanza, scores = list(classification = c(0, 1, 6, 17, 30)), subset = Lanza$study == "III") cmh_test(classification ~ treatment, data = Lanza, scores = list(classification = c(0, 1, 6, 17, 30)), subset = Lanza$study == "IV") @ At the end, a separate analysis for each study is unsatisfactory. Because the design of the four studies is the same, we can use \Robject{study} as a block variable and perform a global linear-association test investigating the treatment effect of Misoprostol in all four studies. The block variable can be incorporated into the \Rclass{formula} by the \texttt{|} symbol. <>= cmh_test(classification ~ treatment | study, data = Lanza, scores = list(classification = c(0, 1, 6, 17, 30))) @ Based on this result, a strong treatment effect can be established. \subsection{Teratogenesis} \index{Teratogenesis} In this example, the medical doctor (MD) and the research assistant (RA) assessed the number of anomalies ($0, 1, 2$ or $3$) for each of $395$ babies: <>= anomalies <- c(235, 23, 3, 0, 41, 35, 8, 0, 20, 11, 11, 1, 2, 1, 3, 1) anomalies <- as.table(matrix(anomalies, ncol = 4, dimnames = list(MD = 0:3, RA = 0:3))) anomalies @ We are interested in testing whether the number of anomalies assessed by the medical doctor differs structurally from the number reported by the research assistant. Because we compare \stress{paired} observations, i.e., one pair of measurements for each newborn, a test of marginal homogeneity (a generalization of McNemar's test, \Sexpr{ch("SI")}) needs to be applied: %%' %\newpage <>= mh_test(anomalies) @ The $p$-value indicates a deviation from the null hypothesis. However, the levels of the response are not treated as ordered. Similar to the analysis of the gastrointestinal damage data above, we can take this information into account by the definition of an appropriate score. Here, the number of anomalies is a natural choice: <>= mh_test(anomalies, scores = list(response = c(0, 1, 2, 3))) @ In our case, one can conclude that the assessment of the number of anomalies differs between the medical doctor and the research assistant. %%\bibliographystyle{LaTeXBibTeX/refstyle} %%\bibliography{LaTeXBibTeX/HSAUR} \end{document} HSAUR3/inst/doc/Ch_missing_values.pdf0000644000176200001440000032553714660150122017112 0ustar liggesusers%PDF-1.5 %¿÷¢þ 1 0 obj << /Type /ObjStm /Length 4575 /Filter /FlateDecode /N 99 /First 830 >> stream xœÝ\YsG’~ß_Ñoã ‡»îkáE‹”(’Öá ?@`“„ 2ÊÒüúý²ú@_ [41±Aè®®ÊÊÎ;³ª(ž¨ÄúD'ÖøÄ$žóÄ&ÁÊÄ%‚ ŸøDï“%©)Ú*´%ÂÜÈDxmð0‘\hB. Ò •ôÍÐ ¨¯ÑÏ%!XÜ{¢" ¸Âkq¸(êÅub@C•'†èjZ@Hရ1D}ФR‚J<†à²t-€,€‚P‚ƒ‚˜e]. ¥ñšÄ1EïaYB .q€ ¾‚ª€¬Þhƒñtd£Á8oƒIÑ(Œ'‘d†²à` +AxO²¢ Q­Ý< [Y„¥áñÆ` ;ž‚Œ¸Î`-ºy’5È$œÎàí ;Ò@áC´… ÔÈxð’$“b".Þ.²¡ÁN’p tAC "›`ÿççŸvš­FW£Õˆø e:OØ«ûÕt2˖Уx6ºÁÎo.¿|Ìv€ÓùMòäI„±w¿º/’Ÿ¯³ëkΆ†à×I|¡-Žî ¾çhâ`DþœÚýºoùÜŠüÚꢿ,ž‡õ3j7€-K˜€ïl>OÙ—à;ýØ.²Ñj2ŸŽVYòÃáÿJ.AÞ+Hð\þƒóü³è‡÷øádt™½Kþž¬n“[¼ïb‘]ãñ‹ìËßóÅÕ2ù7§ó«ÇÀ-æW÷ã ðŽÎN’£Ûùrµ/&W uÊñ}.î?ü‘W%éèU‰ñû¨_NVÓ¬z*j¬É6FD¤k»&T$¶(~C1DTUÀðKØE›+úGâªfqÇS_W´ËüW’\ª‚zÍ$«×̉c¯ ††'¥4Ìïg+²ÀìÅÔþa’=™‹ ‰ÿ‡ø¿ÈEºN?6¿³yw˜úqy#t˜~ ¯q\>Àç!oü½”î\àKÙžÍæ+ÂBæSªªóÁ|¶Êfx&`@£rœfW“Ñþü3zS/L ïµH¡Ö¿à”ªtž-ç÷‹1¦¢yž™ù\åóñE¶vvø xeŸWðäIŽb²X®’üØÉh}©ôº1î'Ðù0[Ò\9eÙ»÷¿‘ÝLŒ1lhH˜Ìî§Sz‡|_›D˜ÒNÄ·+¬FSr¯jR×'5¶&m¦”´J"ÀÏx™š ×ø½$R Þ@Éõ¡T ­D©@º˜^µ´&œÓÕŽ˜®íL/Hê$á)¼‡ï¶©§à¦IÙG’³Eö©dfÇÖtlÀ¨Ë9âl$Ù¸f[øzLìCc®òvê[9„Ò.Ôm“xÒÑ<#zTNïˆúFnOýÂü4%R ›ZåÚä×É_ ëãôWk-zØ÷‰«ÙÁü7ˆkaw›×S‹@ E0³™`²‡`ÑÉ™\ÐâWHè:DmkDÓMvÍN/Ò"ø”½FºOÝÇØúÜu§« KüMÍ>©>†Ú1TnãtöGË,Žf—‡'ïÎ~<8ÝYØÓÙx~5™ÝP¡Fqp;Z‹‚¬1 B¤%j~$öpò­â„4­(gÏg{;¹ZÝFw=:Þ—÷óOÙ‹>Ú‘Ü8ä$Šë(/°”H «ÔË!bW!ï&Qb”_{•ÏD=å!Bá=ímì§‘XÅ_Ì  z9F96³Ñ•‡·§>ãOã‰Â ”Gä-„%õ§/Á¤ä ݯlär¥mÊ?>Ï&7·pÁúÑ“ØùÛcû쀲§ì{ÎŽÙ ;egì‚]²_Ù6bؘçÓùŒ]±ŒewW£å-»fדO»†´°6a²)»c36góYÆ>2„Å“ùûëJ‚Øš-Ø’-'ŸÙŠ­nYÆVÏÙ=û›}f_Ø¿ÿ•)¢úòl0s:º¡#ru¿”Þø, QqñãÃg“i¦(å,Ä M/GwY[LÆ{³hnO'Ë%¤0JK$0»Xewo`Ul]žj¢ÈÞÄÓ |GÈ_¿xöËSLvq±ÿ®!çÈÙÞl9Y7¬%¹`{É[O} ¼C”Ùæ;‰cƒïºÎ÷óÙyEsc7éNEG·ˆîÛDïÐa Ý¡VýdïPzÿí«7/1Ã9Ìü02÷)Û†¦f¨a½ªÝýØ3(«Ò½ýŒ¦êÛGûPõÓÊT×uLâ³¢ŸòôµñOuíAC.òÛJ.öa žGýE¿…z“b*Mš¼bŸ:[©¬@ŽKÐZz+@ çiIPhKP“¿CÕÁöcj )(ˆp.¨šRø;I¾º¼–T¨£ëŽ7-ƒ°oñ¦-ú¸ë|þôÅþÑi¤EÃu–¶®’p!ºn;®S ”pã ǃ¯Wª-­|“œæŸ|90EIO6¹ܥ)¥âï&§Ü÷•ÅØÊÚMsªxnšJ¼d¤¨§ã3…dßÄÈÌJ“è@Ö纘;â8Þäð§»tóe+”ëž¿¥ç¦ûøzt¿Á{›è»Eî¿A”²­íÁMŸû6 ÷ßöºï£èÀ‰.ü%{7~^9ò·ì}éÌ'‹ñýÝõ4û\øõñüî.×õ8ËfÑÇgݦäééß„Åäó§¥Û¿e·_>Þf3ˆ?Šàn4^">ÄU4@j1Í®WùÕ"Î{B¯WÚ•Óû%ûk1üu?_eqL¼ÊÇÄ0"»›äx/³O˜œÂŠå”nŸÊð‚ý;[ÌöÊTþ®i«~Ò<Š0*DB7íU™Ñ­íUSG‡b¨¿{}òôâdð//ÇJwÍA7’¶CÍ41*-#ZºZ·Õ¿}-¼6¶Û‡o€Üž¥ ¥;G~ß\›¾}0‡®ÏÛzí}*yõ@Œlq]ƒIws½}Ui숖ãÉd5™^ePÛ‹ÑøÏl¢¸ÎUbÜRâ«ùt:Z.ê{Ãn¨r-êú:eÓl¹l†ì”t­œ¤‡W¦…’î55î~v•-–ãù"[+_[õd(U¡LS÷ò§9^7Ö,“úµæµ4£­z£Ï5Ò7‘Z E¤ËÇYiå|÷+\¿ˆ'Êÿãíï–!U©âv]x„)>Ó¤5© ð)Î¥”!J)RòèR¥õ¯4õd2û³D9VÀ¾;rƤŠÖ/ƒM%’Τá“æ&a(r•=;Ù?¹<½${éZ3Ó nT;|§>ÃŒ™]UµM匷•rFùîvûr%zL<$(- Vm nÐb ë@ôó çh·Š'Ò”×2‘U»¥äZ »æÏùþóóW¿§ÓãfÐYFê_d_LÛË N«ŒošÛ굟òãŒpŒ‹«<L2¾?Mëû(]öõÎǪPþѱ&­âŠ“öú+#º}ö:úXéÑ݇«Q´Òëì«u> ŠhŠxÆkßÎè¶H¶Ø?4ž‘ƒó÷7ož½=}'p Õ¦;’V[Æ*:…’¦yÉ3ÁÁî®5PMkÐpÕvW'»¨¨ÞŸøây€! -Ê›6囄JxÈߣþKôpáä—³c²>*.à¶o;„oÒb å%’Ï"¿w¼÷êìW2óC%^wi®E‹æv°Ë³¡úö&ìÎõ(A³ph¢<°¤ ‘¾N„÷`-‘{n#Èg:%Üá›">˜/GÇG'þâ}ÓÕé¶ð.;TÇÓ .Ժͥ¾ÿª}´%Jº†šç·•DÝMfÈ/£«Éx4­ S°›•œžy£"¬–(u Ó-^ïÞ¯¼=<þå(NP×òPš›‡d©5ñ’äC·äð¼IgÓ¡s_Ù¿M\+i4ºEÙNÁ¶ùâC +!ì 06Q••V7;׆6:×”©”×68æ×&nnì ÷Þ]<{1¾e)G·K.ƒ—r¬ÞPOØÉRÈÚM¯Ëu§šÆ4©0t!ç‘ôdMå_÷Þž½þñåäîÃýòt>;ùé<»¹õa:©«o«êf†·=¼¶UFì¶QÔ¦»¼¥¼ÚÜòз k3ÌúüÁkb9täöïЩí©R[Y¯xÙæ’³ÓkT¼ÊŠõqU©~+_íª×h1¼òU•¯Ëºum…º§öG±d=¨RݨPe°xAj0Íj%±î*÷¦Z˜ð¶ÔU'šµ0$&ñ1­ta[ÚÚ)C?¤MuÕ%ÀëÚXdRC•í"õ:·Pß½6¦…Nƒ¦ð&;Ô•N:Ê`S#í°êÓÆ¿AŽe“±´ ¾¸ö´¾æLÖ{Óòf›ChlQ“»Új·Ù¢V[e̦Ÿ²¯]Ýæ´ñàèÅÉÑsŠÛCÝ–—)ï:±ï:MÓY¶^ArÛÆ«*„ø-îÀbHÛvzqx3Z¦¤ïžÿ:x9]µ—¸Ð¯/ú”Ïhw)1ÿøDwcÂvµ‰7bÂãhui],(YÍæÊ^¹¯çaÛ˜ï ¸oU¥tUìïîåÁ3JºU)Ù)”6jðž€M zm+ê ïû£ãÃwqY! þB7]7õ¶ÁùasM«#-}kM´þ¿q­‰®¹ý}l.ÇÈj9FuXDÇ• Z,ê›dÛj1Æ=¾‰CÙ¯ô7µ½™žƒ{Åã2K ƒ`½G¹ Kç»|jaZUð)$‚¼¦Îïr-ÆÖ¶KáR)|Üý‡i6!‰M¼ƒä*åŽVŒTJáhfv5´«M¿¶Üû5.hPŽ×ïfÙ9f4%>6ž$+®=!ëÍë~;üõùÁeÌh†jvOZguK³‡§uö{¦uPž´®SílahV·i•t'œìå;w–ÎõõîÆ*a~»ÜºmävHظ9$´y³ËCB—oÍÈÐïèõÜV[·‡/¿6^´ÙÒÆä”Žvõ/žÂ²‘¯$ ŸÒÁEie*âºìÎL««›VnSgÉîK ˾ ;ø–Tª@ç{S 2kcÒ €­´)·×¹+&;ÛÃÖ°+¶úïÇÖ¯÷IRˆÔ‘O’8©Dª±är‹mPZöh*¶•x¶wüòð=…1ǃkº»<é¶_Wfóò€â¶ÓæD=\TUââCÞ×Fiq´±&&ЛӏXmó+3Öò®œWÒŽP°‰ Q{1†¶< ÚVà•¢QÝÇæä –ÎŠPý´Á†L¤?ÛˆëÄy,+»ËN†V7eœºé$‹#›5'Ù’‚Á»ú6-=m¿™¨8—úufÖ¤šôPì’^ Ñß'@èHÂà+CÄbŸÈŒVØÆÕ~­YøºÀ‚ÓÿÆ2À&(­ü„ÏÉësSæ‹sǺë<Ô®ªE~›P}˜°§§+¯kIFµ©á›„UÂ'»H*üúƒ:Õd],„˜ïtëÛØiccÑQiÓ+::«ÀedêÜÀêã0ìÔm"ÇyJ»È•ô)l½–<¥?è@¸z¹Óhj‹MƒN§–dzmøE¾4zËxøUÝÑø_ªüâ|ï{txWGÂý6¶t –¸>A$ßá6ê0âw£› C¥z™òX ôÃ=Î ÒwV‘;ôœ/¹ôÍä[Ø¿¹i„ö¡ÒªÁt M'H cf â w-6~ >œ\_g ì_ùùÜü„hRý½Œªó6RÅM yµØ!²#Øñz²kDw„òƒë눻žÒõ„N-çkh ^íX mYªê¡]'ëã3ùɯüHÏŽ£EøÚâ玠҆â|Ã+•Ï‹……¸Ï-nyÝÑ,´W±½¯°ôÿeèÄ¡endstream endobj 101 0 obj << /Subtype /XML /Type /Metadata /Length 1484 >> stream GPL Ghostscript 10.00.0 2024-08-17T18:31:13+02:00 2024-08-17T18:31:13+02:00 LaTeX with hyperref A Handbook of Statistical Analyses Using R (3rd Edition)Torsten Hothorn and Brian S. EverittBook endstream endobj 102 0 obj << /Filter /FlateDecode /Length 3828 >> stream xœå[Ks·¾ï¯Ø[fSâï‡spY‰“8å¤ü`åbç°$¥%«H.%ŠrøïÓÆYÌjÅ8•CÊg1îÆ×_?føn-F¹ø_þ÷òn¥F׿¬ÄúÏ+gü¨½\{ëäÜún”]ŒåÎíêÇU~t&¬½3bÔ V•;AÆÑÙ´Êj¸6lÑtƒ¯1~´l?k=üšý&­B £·L©|ƒëät‹L§ ý„ä:ÕEùF³&ëTv›Tb»™1p™44w Æ``­ñ!ŽÞ”;¸X¬w«w+™¼¾Îÿ\Þ­_Ÿ¯~÷ƒë8F§ÜúüíŠND®î'üÚy ²ôúünõÓð‡Í™•Ñøá/_}·£Q;œ³¾†Û:kÔðÃæLk=Jéé6ÿ<ÿ+ì&à UÒÜîL*´C­Ï´Wƒ W°Ïßn@†ŒÖ ;<¢hc”®Åè¤TÊ 7xÛÇtî“"Rk?ìpGãðMÐp;¸a‹k¥îÞnPQ°Î OxÛ‚†7¨´Ð&´~Aₔ÷û œ8ÜõÃ/x¤Pù1%œÞ'•Upq í#lq϶ؑ3Èz·EŒÊ Ÿ52Jša¿9S~"x~yEJ8pÆwI7°Ä¾!©‘î¶îª×O¸$ëMû zQë<žN4£W~}&ÿG:Œ?â“RXo‘£@AnoÙÄì±§zVLS$ßB«á¹ž2ê÷õùêûb•áÞ gG¡î§;ˆû%Ì 1"G"w£Óž0/ݘôÑ6ÚAnÎL„ãðMÂTŒ^)°ŽÊ€MÇ|>€]2#H qs•}!¥3‰Z¤.ñ6½s„ÀöÑ‚vÊCï˜ø%R$µqëG¤Öçß®ÎûSVOã“RÚ‰1J:¨ }Ôˆ ìf„.01Fû;fÁ›np©’NRi"Ò.NÈ G™r¨J'q6 ™›·l„%A+í­¶èKÀ›!Šãö¤”B'AÆmÕB6ˆ@!ëƒÒ¤mñžD¹è‘"¦çªÆÛ´ƒ´Ò{n6qruP‘+ó›®›/Rz‰ÄN5ǹ÷3” :Àu\ò@Çs¸£øuŠ4€YôsßRHC°f(‚šHˆ)`+HÄ‚"?=?To*˜ïÙc»ì¶É&#‘]¹Œ?ifË35‚ìþ„ö!±Ñ٤Ι”c´Æ“VOÅÜZTP†BÒÅ!0Á©ð ®6Ãu XhxNv9’ûrØÓa^l{Øå(P0>"@‰D¬¸¯Nô=éˎᩊڸV 1%Ý~ªiôÅ:xObaçO‹}œTPSü8/=×l{U—ßÁ iø‡“N"ô™“Gq<ºJ@Œ)g±…,`/~ûªÀ9`Ÿ)TIG è¦8«Ç¿bHdr[{N°ÖêÀºÅ=ê 0Õ)hO°œÄ,­$©Œ!¯‹Šm*"æó) 'ÂK\OºzãÚÛ7Öb=ÔGž^%a˜\Êu¯ícKªÓÆû·x@†;÷šsZ hö=–NsË‚ƒab_]ù{€óHZðd^Öî2I¶1ø4*ð»çúÑ9`Ö®ºAâ¢Õ¸Í¨É3"f/ų|³ãä^†‰Ç¬\bçz([†FfI:Uò 0¡ø•fÂåMå¢9½iúè™|M ŸÃ>Bº¦Ø˜ Dr+]YÇü|`ü]—l›~çü¸½¥ý0ËnSA  xŒNb à¼/tû!¯E¤½¥kh2ø ²¼ÀÉ,ÛÜý¿!­iÇq2kñɪ…ˆàˆÏ.€ö(•ˆQ ›?’0ÌÅ["¨…Mï0±¶nЃN2Ê¥r()$g¤E®Ñ“ú&c±Ëäùù_©è•Ò4áÀW4Ä”MÊüHRù‹5hÈEj¥jãxÍÐJ-4#³Ÿ‡Û1®é9'm ÖúØZA¬ðéüHkMî+­ˆš¯¸\ªW yñ¾š”S÷UåϪK Y“E;’ ÝGSU2ù¥’œ•Y—æœ.äÛ¢²´OÝ@ån±íƒ6 {Þœm!ærFmÍ8)j%ò2U£ "ÞöÐùždxúdÍö¸`¨¿­ »è¢iq®@I… åÜϼmkp“÷Œqò¨÷2RÛŠ ]ëytòKW†O^%<ÒƒØ\lw[ ™`hì€?P.+t³§»B*^Éî“&ÑFßHëZÀ&\¿­Ë©#R^¹y'…§~4]'U˜{Osp#;ÌúÕdk“-n*K1RYòl1QóÇ ì’M^Mà>«ÙNÓÖ> ψ\¸ Ï,i,0,£ùV|N“i/‡Uª¹Øƒݼ[ËÂÕù9i¿ag!ŸÑMº‹=è9vhÕÛ^0 §pŠ&¤˜VF¥L6Ÿ—L’ª‘lC9já„7q)€Zí “Ÿa -ÎŽ IâL“Q›ƒÅ pàGo£¦8×Ñd& ‡B@8@ `Q× r€·^öîXVp&[°9­–˜š°A,pE·!ín*ú›©Ä´Å"\çd™*n ns|ñŒ5H…~d÷ù9ýU¼Óq©|[DìW6V”ìw9þßVSLKºñySGR9¦R{zdì7uˆ32¦m—»¶gþpá^4slRÞS: Ž•S)±PsHƒøÅJŸCæúÕ‹ÁI¡qÌe}ý™1Ó¸ü*‡:H!äî²"wšéIÇA9Ï´ZjçÛâᩆo;FqáI­ÁÖžÒEw‚;.›"85Ö·¼Àô¤ÂØû–yÓ§?<Ëcz<ã<ÓWÀîÈÔeõ«,#±£EtÖ¡Íòd—YØBq9ÅQ/ ¯J=x^uð¼À©¸8BÞHíÍçó­´p!EJ9ÁCÊ tØð‹ j¹¥G%ËÉûá\Ü …+HÙÍ 1 0 ŒÈ|Æ.™„]3}#Xs_Ñ6P¤d„¼û'½±-]éø Ånwù9#CÓÅÐXB×[ƨ¬|¿LÈN`rzz‹5{e’ñ3M²êPkênZ*ÿý™@A²M£ø4å“ÁšÙp`æD6&8Œ ³ÙGé¹8V)1-–[,'²¿îÙK"ǬDKŽiĬñMάϪÓÑ’íy›hzîþÑgÁ»˜Þ €àÃAËìÒyV°òÑSú𥅇'+ð»YnS:ù,ÈOw[ø^W[„?ôr}Ù\RwR2ª%%–[Œ&aCÛëžD#½.&ÂÉûn&kQ›öpi`²ŒüŒç{¼@rU^uÞ l/*Ž9™²ò”CöKÚDBøÓô¢uÏx1gsÚíÈ[…”wZ’†k*QÿAÑŒã„ù<ã5ãÜ‘_)½§¬zmy«E´ÂÝóüU:¶æƒŸõØÓ°fdzÙ3ãJ¼+š/öèvî}Y޹â<ÎK^ÔßÜÍ’:îrðªªIèÖ¨ŽÍWØ7Nx?¥ž '¶ßŽÔÀ7J §,Äèë-‘jÙ¼–ã@¾hÞ]ÌkÊI@‹ÂùÐ''hbþôñÌB_¿íÏ*¯è;,‹o]é#%Äßß¿ª,µ‰Ž¾¾‚38ßR³äpGÑf6[¼¥Å/à”…òw²:íåÒ"¥0ú”ç¢òÐ|[XÓ¾Uu¹ékÌ‚(ÍÃsÝ´b‹œ ¿”#½ØàÌ’>~ï$ Y½fï¼Fò‘ǼN”b}êWÏNø$&ƒûõV:´e…¹‡Ò7hÓ·—N`ª\këäñÓQãláËüí´U‹_gªÞ—jË»Ö&¤¹BúRí¶œÎ¾\íÊÕUç×ÇrN2ü²­rOà¾#ð¡>üžIœ®.;,WÊÕM¹ºcRŠÏµÄGØlõèðƒ¿rÇzÈkþóÝä1jýåÅFcå(5c¾Ó@öèªÏú X; Åâ (%9[%š¤1¥rˆFCh ®­‘øâ{ðà"rƒ#ëÏW+ÕF..«åEUËküþ“ÔÒ‘ÓÒb?>Û-™„ ««ª):–AJ­æ–%[Ã`™2#~l}7S+2ì«j©Ð3ljb¸˜k¸a¡c˜IóîÀÔ—&q¦×;2¦W`G&Õ©Gf â ÒTf©è!#7ç• }¹Y¿>îćŸé”­r¢kU~WÍ%añ8UqŸ×dê‹ Ko•|‰žy;˜½N8/.ÁK&Aw,óZ"ëߨúrË<ô2ž™SÌã¡ÅÑ‚YüqË,¢²c‹Ðœp³²¡/7˙ѻÎFŽ˜:` ˜ãÌ1mˆ¶–™¨FÅ>Ùú‰„Ô2 …¼ˆËWC`Í=~ ÛsZ5ÅŽaÚ+Ì©w¦¾Ü0Hî±½eœè8W›SL«Y"\äDšlÎ+úr³TÀ‰Áa€v^ž }«zœhú@T=N”Ø76ç•M}¹aбÅéÏ«øy9»D2Ù‰[f™î‘‡À/ã›#˶¾Ü2MRèä1³`™;µîËŒíU‡íq¸0Ç-K¶Ê—[mý(tçÌü,ô?“íEX€b‡¥÷à^ÉÌš }¹YÚß90cÒ³=9=‹…£w`?‰å6ÙúrË\„ í˜ê·ašn¸µ¡ì‘éOqºˆbu¦Íˆe'Z©éÕª4ÂJ–|¿ú7‡ëM©endstream endobj 103 0 obj << /Filter /FlateDecode /Length 3894 >> stream xœå[IÜÆö¹ásÎ<²c5Sû#q ¶Ç“° 5£-Ѩµå×ç{UEÖ+6ÙÓ3JN¢ØUõöï-E½éÄ ;AÊß—×5˜Ø}؈r°RuÞ:9×]o|C0Ó‹—›Ÿ6ÁËÁÙygÄ Mo‚Œƒ³i•UAÖ°UÓ¾J;3˜ÀZkô@g1Š#[!†ÁÛÊUù7gÊé0SAú!Ù0UWošU…©‰ÜÈ£'ºg›7™TÙ•¿.¯»¯.6¿ù“]¢S®»xºÉj–„¤ôÂRÙîâzóso¶;e”Ðý÷[(IïUÿív'ƒP*ö?Ñ?œšÅ`¤³Ñç%R¨¨LÿÃ7ÛÖjpÁöÙJhJHÙ?üîÏ_ç­*™ÁΨãß/þe`,F7ac·“nÐ:Êîâ ¼]lN•RõûLN¯ûlj é¢ë_âQCû'…‡ØãZícÁõr›É51fAA)‰Ìoëò²V±µàÌ»hÇÅ·ODgú×K'K óø0®¾"¥Â b¿O¼ ”%iˆ×Cÿ¨'âQÈ ûË-iË{£úë­r´3ôy_Rô‹*.~÷ƒJ÷7Õ>O¶¤baCáéí£-mÃÞõC+ê×›7fˆÁ'­Çn¸¯w`ˆ¢ÅØ=M/ÈçÎZ´ê”jÉ) ]çäñ&;åËIɇééÙôtµðë»é Ž %¢$Ff«¥ ¾®›ß²ǧ˅ͿLOï§§ÓÓ5;eÒ¸†‘ç 3@ xhqzã-`ájÔäxFÿ_©qrF§)V˜3–ÇžZt7 ”p€µð\™U-‡›ÁEÓ{Cñ ¼F|[»ÝY#-©".x€•fІ{€Óúxw¶QlÐ-[б¥}eË…íÎÄÌ–q‰¯´€iÁrˆÖéŒ`\°(Ø ¾ž`Å‚d: —¬ÈzÉ@Y8{,™ÒŒ/[ùRfI2ã%óq&Ò\ÿÃñ”·ƒj V½¿XZžÝ(*ÆSlyš‰dKÂäJ‘rÙÜR.H%á4®1V‘óþR¡Â© b1U{ÅŒeOIÖ‹)ÆÆ_aA0 —š –D½GØO‚¡zR§ÅršE×ùb™™ÁÖ|ÐF”86p¡Š˜÷ÊF²öBhiËtíªX°Á™b9±¬é$óÑ‚›k”õþ’¡¸Fyqd¯ÀØòâV7Œ fWPG/æð·á&E½¿`h.@~Ádn†#_á\èP® Ñ1Àü‚`Öú!6+¢Þ_0Ô¸Ç&³<Ęɤ8æ÷æ“!fP™éÆ^EÐû‹e µ`/É<ÑÊû¢Ó뙢KKœŠ‹•õŸ –¶©=`މe“ò’šyˆ®Š%c¯£GAyˆUíx­Çg/ZSPÓÊλmƒN>Lîì’|Qpû”ü"éäanŽuÝÔ2²¦—:]%‚ÂâICNÝÿ›V!œ ¥9ô°;âYí4¿¿©xnœ£”Æ¢ÜÆkšútDtÂ8Tðã/Y3ý1¤Í…šÜxTçX¡°-På?ö7tD4í,£A=ª ÎKO=jjÙaÕß'"B§±©ùuèxE£¥¾;P“ŒÿnsñëŸû?lûP³BÿQO>\Cãé;ºÒVibÿœiÿI^aHý¯Øû}ÖXôJq¼£%:FƒgÒžBs $½6àÈHÐ|šOD=D‡O«÷—ÔÁ;¾ÿy^í„ZŸÐÈÞäǽÏT¢ý`Ÿ…ѰܫÅ)?áªòù¾Î$…´ |Ø‚·`^@ãýá_y_ÀŠýÄ…äc‹çœvQoKû]öc¢9žwH ºN«é&«&§B–&h¥]Õº­ZW’K󼎎žT’äNeÿySM|ý ]¤ÖÜØXæ=ýŽÖW¥P À „˜ã`ÓÎF8Ô€ªÈÏbâ$Ïu1µR2«×9݃LÄGÙ,Ùo“¥¬$ŽÚ1—‘<€DÀÂ8¸úq²ÙB°ÁÚ|ÈÅ(]å×Nšug :P÷ªÐãû=ûEMûjQ‰Hƒ²&ò!±è™iFqŒ©'ùwxÀÌû@Pzkœ/YêºÂWñ=J¯2ÓC€¿frUX°Ÿ5íƒ/†ÅRÏü49$*rrYV¢T$M÷ÿØ^üsn·BæÃþnÇVûñq+͆†èQÓ‚YäÞÁDUÞó"!lÂÿE£Ë òßò@@õy’¤ ¨V4‡P³ü~v­¢t1ž“rÚÜ×WL£…€ºFÛ8(Á'šþ)#ó6%£œË¹ÀRo°î#íÅpÁÙÖŒ!T‡d¥_PŒV¨õ×ÁH˜@Szú±€ð÷ôCÒt$W³nØGsO 9ú)[>˜è¼­¥ˆx\ô*´—!BKgºÙ”“Þe2M`’±`6ˆží†ÈpÇi£<¿Îžež/h¡T7©æi $"NRƒA“Ÿ°4©‚ºLY”2÷|Š}2\°¿¨á”1(s4QF3k4/YÀU©T@ýLñ69sæ ϼàãÑ3ÕWjT„T€’èq„Îr*á…×¹œC­)SHMɳܰ‚%¤Õœœ@ZünÚD:9øm·%†Zpú†æâE;Š; ³å*èç"9»t)ußµá/A%Z ™ÂBŸáøWw„ãµt*ñ“©©÷wmž–Id‰xôš(K¢œ[ |y£Bð{"Ó%&j\ôDÓ‹SíK l¥}Á‰ƒ¤}¾§ñ$# ÌÁMr8A‚Œ›E¸.E7Ü´à‰å:à9üF:Šp‚âò›chCçT×@!%QfǸ‚Bhûë&ò”*“fe „ Kv0ƒw^¡sƒ Õ-)—®OÛø(ãRÉ”0Tƒ¥îe“6¡BuÍ–ãËJ.±F¹½#0ôãžt$Z*ÜùŒï?ŸÂ±¢ÇUþÙ Ë¡!WÍh¼Ð#âBÝÔ>žk‚tåŽr¤öIõ_æÈ-×Ö¿>(AØËzZ};Ë'é,¼þ¼rœëgõÃ¥iø)bjðùûŒ~¡Â)žê9ú¼ª«ŸU“­A-à-À¸Ý 5‡1ÏgÖIy§µ]š® ’itSÝ”‚5% «»Üë—}7Õ:ŒËV¼‰àQL9p¤×æÀ¹S”.žå½#§(þ˜«jGÅÀƒÌ»€of4¥&=ÞŽãrpèÝÜ,Æ ¥&ú"JB‰²ú –\Ñ—ÆtÔã !x°ð®ñÅ=<¤[·|ó¿ptçxRdðÎpDØ:€·¢£&G vð"ou<·¶…æKm+Í9µ-@ á(ÇCwABOSloi&§+£6…ï@ ÃlD35öWc}ã¢cQà  õÖ‰Vh=Nc™4SbçNÅT3bJ+­Cl3˜ÞÕ0çP2þ…IßJð×3(úS]*âq̓|u ñtøå2Ûnl }B¸‘±àÅÁ¿:Ù°¡"ƒšÂJ :¨2Z‰cgaÝ)¸1²ttã8¾¹{$;‹ÂG:IÚHŽ-×xœêÈÏNV éI–Å™ÿ90PH„Œ Îß"Êλvçã ;2'ÊÌØ—W´@`•Îó–˜qàŒyKãüâodcÚÁjúH¯ÙrÚ¤€?lDXíQ¦úuU„£‘Ÿ«©íѶQÞÌ:‹uÐì˜Ñ ÔIíÐ{ÂÉÁtñ¶q?jÓT¼Œ¨Ù,>êD3¾ÛÌXß0 Î(¦µô¼’\™Â^ÍÉ&È;ðÉÍËzYò)0WнŽì' mFû%Ãÿ?äßÈ4Y!Ÿ¦òT¬lÊ‚»ØêW¥kfãÚ8Ô±èìR°ÿôŸõ‹ÎÙPmŽI}úZýØ…‡%÷Ú.Ý(tvlåm¥[@¯C=_!ýt¦hŒcš/4e~-à-_œL:pb º°¦¯Ð¦ €=$¯#z¬ >+M—ÏÅê,¬Ü ûõ4溕EhïÇqÛ6œ9nÅ99rGjFGfàr-ø¼º4 (j² ûš;”9h Sà¨ôµóqÜXըޤ =7ÊаJϧ:™¸l¦\lJ8n †Yû:šCÑ àÏRiuÈ+©µl¦™ìaeTÉ‹²2Õ2~6(|™É´´¶)4:]…Õ>ŸoYs#Kê”±’MÂÙàô’ätù*-köà}`3mkï¬Ê„”OKߦnS ;ÐÜEŒm_Ó›—¥Årm‰ÙÜÞ>”3ÛÛv·Îæ7i¾aµW,I$ø–>Mr×ܰ¶ñGsÙh‚âþòp3BãiVÁ¢ñ3V„æîgéèbá.M*Õ¢T%°Ë;I¾{(ôš†ò+wÜC“ñÇs‘?f®{(ýjDº¢,}ÑòX†ùÔþYÙG&Âxž%áEŸ–¡ £V¯>éÆ:1sŽÅï‘n>²ë Õ„@ûÉ@3@‰Xd•Ÿ}ú´rOÆÌÅ/·“ù¿ ´…Žò1 éŽn¨Zçß…ð³ *>^GÅŒ¤ç×ÃôÚI=Ï8ÎÀ8|¸³g³»Ã³CæwùÓÞ2*W«·{´ ÿ4×ȇ¬QÙÙ)H>ñ‚ › Æ~ž¤;¢¢ܬdK4b¢7Õ[˜Ëñæû1eöµO=ŽõžVÒ2$ëÔ q„®åç]«𠦼†ïá}~‚Z¹ºb¼qºÔŸ0; ² 5…EU »–ãj.ßmäÏ2éÀ6oó[/ ǵŒvÂ›ØøvÎB¶9€¹vÙæfVnu¿,\ˆõtF'dø25 Ë:ÿ8Ì¢Š>5‰ª¬HA¼T}8ÙlÌsykB<ú0%ñö ºËB娂¾™ó*GhÆ:eYJºkÿÊå<€mʆÆsi*zôÑa½™äŸ|]Ö&“»&ËF¬~Ýs—/Þ&¦1d,Š~ä*f˜}ƒdÓ§ óï²h¤”îVFÃ|Ì/éBü¿ã¯tZŒ­»NmÏ>óNhÚL&GX)Ý|âÆ™`ì6ÿ6~jDðái",SÖß-ÚE @xtvú>åi¥«hîáY‘1ÎÜfù“ \®ÆÁ×O?ØH”‡ø 'LsÂ7ÿÝ\ endstream endobj 104 0 obj << /Filter /FlateDecode /Length 4980 >> stream xœµ\[\¹qÎó ¯ös?ØÓ±ú˜÷‹%XŽÃY`W³FÀ­™Ñ¬Í´.3ZË¿>_‘…§:ÛÄ›Mln/Þ]È´‘›ò×ÕÝæ·—¿þA‹M£Snsùê"o²ÜH£G¯±±`J*»¹¼»øÏáÛï¾ýã6¨1F7üéųFcþ}»Ãña¼^lwZëÑI5ü8ï"bJÅá»ßÓ¿¼Áéÿºüx°Žñ°Xø¸¼Æ¬?¤Î1„àrçŽae°íÂä΃Ý^þ÷£rj³Ã.E­B¦óqkí(£óÃþ=SÁš¨†OÛÁ}°Ã+šÈÆ(r£œw¹‹Ša¸¦/ã°ØÒš}PvØS‡0 a‡huÒŠ¨‡"§c4F™DD¼7YhiH}zA«¾ð±;xê ÚO3âèe¿k¬ïÌ–ÁÈŠþ¼mRòëíÂ&‡1'€ñG£­tyT2ûŽ1íôï./¾¿ÐPfD/0L°–~ãLŒ£ pCyG­k áö5ÌÞ­jÂìdë|")CÆì—mן6ØÏòFáÖa~Ì›i½¯/Ä·#à·„ ˜Õ¸"\+œctìv‰¬4ܵqÅ}Õ‹ßIßÎ{\·ùf ­ˆn¦Äg„W}Qç`]™Oºnæœù¤ÉÀúnŠoíÅ‚ü„”ŽÜY¿ÎXƒ%”éŒwiÅP_X>bÒ°`× j¶YèTÙ6@<Þù%óŽùðu³ÐÉò·{Ö{$4"!8q†Û&Þä.Þ YÛÛ%ƒ]7w£A²*d{%‚#gæ ‰9¦ Ãþœ¢‘ úAÙ&\‘-Qr€^ûJUÏDޏ„ÙXÓ—ýCHÖvæq}†‹kú›G÷–íóÛæ’Ó!£‘Àïò>Ù<Ñ ªQd^Œû?6ÍÜL°Ç0Àb‹tì$â%žh˜€ ˜Fø;Î¥¬[$ýžaþ’#ºeQ$oÏgä¢LjH44¬Ù.í¡DÌ>§Û]dnüšçhŒ° ÑP%6&ÚNøÕCšøïI µ¸çYžd®ÂûmýVfÏÍ3)½‚¦ÒGHžîS‡5‰ ‚4yˆHò‚Í”a1Š4ػ醞]” _J³œ¤R_ïkg¾-p{Ë­ñ‡†‡ÙV³Ã_< R>Úè(B6½ ¤¥FJ—cÊé9®ç`ðg:?S€á}¦ìæö k|Œa=–i,¾f­fL‰S¢ç‘Yâ,[ÐyµjûgFœ’+š§,T (n¹Í-60x.•„ƒiÀ²r÷O§%U`DpØ0&œ+¯Ðø"°Q#°`[;¯6ÝçdÛ(Ô1O ôHE ‡;JLÎ#"ÀHˆ‘ÃòÕ†ƒí‡–=ç0óur2d´?’"£swšš¯ûÔân¢ÕËå_x§IU>"o\/{&ìimAÆ™ÌT¤ºÏ‘j€-Þ²v&›‡· p‡ø‰b«VQþ†¡Ö±±ò¯ ‰”mžLÇÒ…ìc/äãqðÀ]êhyÖòÜ•뻜üÿH“É #_(›Œb|˜X'´â=®‰nÌy’û<‡£`†eµºB¾²†‰s+TŽn.‹Èå¤A›¹-Þ&>D\Ë:\YÈö‚ÚdŸ9—™!„§#Õë‘Z)ßBö¾ÅV,e°¿ÎmŸ|9äV!Ž-»µˆä¸ú Y¼ÒÃðKD¦@‡—s[ä„éÎÑ3-Jºœ%'¿pï|w'“Õ4áòý ÖA9ºª*Í?´,dÁmøãßµ ´×é<É7Í$Ö­_Mí~lþ|ž°,"Å4‘ñv„™x \Séô¼â PDFUºâÃ穬iT–@ãW¬ïç$¥JQ@rÑéÎ߬•­I§ó¬ˆ(¬9$é5«ž¹¿G˜@àE»¶?»š–ZÉH{續tÏ”rÖw£ÏI$–gyO–NøL¿«3üìÒ·Ô˜•¢y©YÎæ]0å+—g$ðf—Ó/§æSÒ½;ÑgDdZ)š]„ô°ÄÀ¤ÝR ’4jÙÌ×IÙž²cól¿œÅ–†îÖZR™›úüµM±‡|2ÛéïÕ'Â~?ŠùHÌ—³uEusP%FÕ³õ±Ú,S“‘®ÌÆ@IFCù ñ~jøüÈHer hÁž,UƒŸ±'ÀìçD–ÐßT¼Ô y:ƒ¢[:çKx:ëÚID;@ ³dÆWMcÁ€Á>‹õ¢0)ìé…¬e=ŸJ‰Ø«ÂýÉÜ¥k³vñ|:•ª©~¡¥kæYÊþ^&™??§ÚÒj'rª 3ØFeW':Îßµäí/ªÃ[Ü™ S³liÖ[`ÃÞ(ŒÂ“âg°ùµå³58ü†*8MPYsO!mµnç²Íj[2v´”þ•À^Ú,Ö9õRÇù© ú,ÿÉ­ ˜®]–YÞó-ÜbJ¸I¬Jè –jƘŒ¤‹£0SÃÉ­Ž‹FRÑð&_ƼÕK…"ˆFa©Õt3ç–/8eR|„´ÄèòÔ§Óþ+~£ ƒdϰ džµ¢T0òÔe„D˜ 㱡’]= úÍIõ…`ÀÔºˆ™€ýÜ4h½ôT ¯Áö¹8Cê.ÏËÐ×ý.e®ŸbÀ…µ8oÿgóV‰"`³º!³»8¬•Jox ´¡Ü}-\`0ŒZI­±ë¼’8½Ï=lÈ5èÚнíè½[JÏR¡ ôGED"®fjor Ü—s!·= ¯!Ñ,œ—UB"¬1V Wòdó«Ä„)È"¹CÄÂ)žB’°NÍBȳêW rJàðDËŸ±3æ×Å,à¼na›ñPB°E&)LíJùƒ”o¢Ê –†[ 4y*·«cy’œñr·ó-_úy™€iÒ¯TdŸH$ç¨pí¡Æ8͘*7ë¶üÛ6è‘,FRz=¯ Ÿ¿Î˜‚ÌëN&ªd± ß³°‹—ÖÔ{x7Ë‹¤<†€ ¶5BœIÛüÀè !À³ßÈhl©œŽóð®›e§Èî4ñ¦@ÔídõvGE‘æo™,·ôÜž¥žè0ÈÄ8³mK—q,¥òcgÛžº¹Ë QšÄ"eE´§_-íJgÂ6fŠi/émÀŸJ5‡FŽBQy]*° }V(ÇÜQA$èÙ)íØe1ˆm^ÏÆ­3˾ɠõªv)~”íäߺ´wylÍZ].=¦Ã å(“¶ñ üª¯®h9ã¹î’–J~æïŸˆa±®ÈuëûüÒÄQ;¤ýˆdy l]µ¯Bœ+©]Í/ˆë= ‰™í¤ú¶²ÒmoÒcèJPfEwÓÏ}ê›_ÌKh­óÝE {iÃVíî=çW…³Òu•¤W©Ù*º˜=uÒ^`º¹I»µ’ÇÞ§Ô\’õæže”°f2.㓱‰)Ç+ŒJ£çjÁèv÷ŒÄ(¸‘òÒÇhbžl?¤Ê;©úØ[΂ßfºqýÎ'qŽ \ƒ¨5À³ôóZI s1²ö•§ }Æ._Ì„Ññ¬wŽ?v‚- WàÑ9©N‹?å:®öÌSôÕž«·ÜV'½ê)ÒDÆ8Ù xF¸Ð»åGs ÅÑ™ZRj³‚ûû»bˆ£çz©Õð¾Y§…7‘KÛªsi²0†@®ó Ô³1íœB¡VœBò˜÷™#›n¢ynÛ¾ð+lÞþ”Ó³>U¤$æªÒì\¶ ØL·þºmÚׄu€Z½Î·Š*Ëé·AÔÈÑÚêyÛÃÐcçY‹,1•/¥]ÕÅD«·œwÌÒ}þ©Óz;áfuN Oÿ@”dË~fmÑ"Hï ŠJ%ªÝ½c3ë‡Zu³3ì¢û¾EÜüЗ‘R Î,œÜÚNÎc !ã<8ÚI×&1„ãV¶æüŒ{y€Pwt_œ u*uFÙ’÷OHw]‰K™ã¼A¥mòýO¾Ô¤jEmF—ò>SÊ3=XH™“C&%¤=þ?5R ?¯%%Yz:«8æ™  ×ýoÔ*»æMn$@°üÚ—u8QV×=ì\„‹c0ì=É)³y·` ß3¿°T`Zb}Jõuœ)-xöš…¯ûb‘÷ÿP\Qª]érAöO—s¸(¬w–ïëKø÷lëyÝVaœà^)÷£?BükïNöMVÏx¡Ø% y¹ÅRÝ j“Päw-Ó÷µ PS.ôDЖQ!ÿ>7{©¾¶m%f|±×âœjúN#©3àÓ—(Ì™@êß, §†”>žDTw TX[=ã wmÈóöyYoöcýúÝ¥KÀï/þb2ì'endstream endobj 105 0 obj << /Filter /FlateDecode /Length 4667 >> stream xœ½[_$·q_ þ ó=¦ÓüO’Q , ‘Ö†$}»sw«ÌάvgO¾<ø³»ŠÅ&‹Ýì¹…|6è¸=ÕÅb±Xõ«bõO›¡›ÿKÿÞÜ_É^‡ÍÏWÃæ·WV»^9±qÆŠÞÛÍý•—¶·!ä'‡«o¯Âàz«ýÆY=ôJU~âEè­‰TFÁX3¢é§ÑühØ|Æ8øÕWóMRùà{g˜Pé—É*ßk˜L^¸Þ‚ËTˆÒƒŠ&É”g›Db³ ›·W?]‰¨ÈMúçæ~óÅõÕ?£†M胕vsý抔,6B«Þ)P,%¤Ù\ß_}×}»…‰¼¡ûÃWÛÝ€Kɺ¯ðñàŒvÝ¿³õ²à»?nwJÁ8Øîk ÞÛ »ßÐS†øÔJ­º/‘Ûü eè~ÿŸÛòGýËoñ/7 Þ*f'é}o;¡¶?\ÿ7.Eò¥¸>(é7׿»ºþ§ïºo¶¢†`u÷oÛ‘ ™ÝÏùá]óè]}ß5ïóè!>/¼ Ÿ¾Á{ŸGO_Ù|Wnòè”GïlZ²î[²–ŸŸËÃ-C™wEÆmkøy4æÑ±ñìGšhiç»ÆHäÑlDÆ`à€1XÆæ<¨ 6;¡û µØ\ß‚A}ÜowŽÏ |÷íxÿpÈwçÝyÿt޼vùm)ú àhÅ·oÇóøj»’^xÜߜޟïî÷ñ1ôÁ„ÉøÎ‰íP«Óp'?/Óß¾u0ß 3è 'yؽÏû‰N3:øŸŒóâlãá¼<Žç»÷y9ª{÷áát~·º{zUžŸ'’Av÷ûñXþº{š&Ýñt.bìzé7o»ó©ÐI—…¦¬çaÿx³?ž‹à7§ã›»Ûýñf_øÜAjXà«È€§ƒ–‰àЊ€àTíO“ø©ÚOÙÁnÞݰ©¯²Œõ‚Olþi`q¾œ½½þqî8w…Ö€… ’„øÍÖ«^€êN۶ஂs×7h¡ø˜É§îéwG ±ÀƒË{FB kàȠÄqà îâSå‚7„NyS%Ú „6p¾€/„ ¡9í=ÒÊàa¶x ¬øïçÂ!N!é,H2x%•ínIHn³ä#‰ã¼4pÂãlVùót_Ú‘¯†` Z¥ŒõŽÏ@leèç2ÛçÌá©â ”Ç×àqKQ»Z,Ÿ®,¤Ò½±ú⮘ßLÄU4 – õ›(vš«/®3h£%xkxªAž ;¦)Ú ¡€ât$éíà¹ô'Rï·¤  vH÷38® wd(°µI³4a<R?¸ྌIÎ/Q Öúî§bZE½ÌZÞoî¥@~(ÁœÙÅ÷Z¡Å‚xj½‡À…c|-jÃHÍà˜‹šéÀCIËg†{¢p–ÁLÔ»bÞ8óàs\^n:Yâнƃ‡WᩉÁ ì¬3fþÜÔ0õ£KlvàêaŸ+Û¬¬å´³)¼GÁ$ºl¶ˆGa^‹J^¦êöß­Ž?EZ ¶©Ñx'50‹~Jo¶7¿SݪƒṠÁãl@ìå¼ã†þŽ^´:[²‡ÊúËlÌöq™vp~Š‚%€ äÊIJª¢ SAA0Ñöx\mÅÌöOÇò¤ĈàS:ýÿ¶käû}šxøz’¢ÊlܺÈè´´–t¹œ„ú$œGÜ=ý~*ëX;Þ¨6Ä«YSx‚΀'(sÚ'\Ø‘?E—6€ß«Ö@'¼³˜=ŽTÑ‹hÃ,/P„ñf Dþا7%ÊŸ‰±‡T·½_û4ó€O (ÎJˆG§Âz­‰ŸŠ¡Üͧ&ZG\Ò°Ljò˜¤±3]ñ \V5p8Ð$€VÁ¶÷‚÷‚¤·Nph´kªóž,UWò/’ÕÍtM˼BN¦Ç¬ 6¾ç"X€~:„˜$’7žÞOæ~‰9òÔ–#!Ë€ý](3QŒ·Hb`#lW§ä2B9»¦*¶í,`¥‰ÚA’¶íÐB 4§ù¬#ׄ!*ð²Ã2WB W[£f Sq–ì¸ð¬·ö§Q3˜/pÇH©”˜¹³a³VôqSPî˜ÒhË‘s¨—¾æ:',·0ZV:VVOTäò`,.gÎ}šXv×H*‚´¥É¦U”,/ïÚ¤Oisæs»{æz©ÎdáL9WäÁò8ªV$yj *‡éYj&!ǰ‚\’Å*‰«Ì—¥<Ìœ0ÀU@æ èæØ:~Ô¯=Ò‹X^â6¹bOŸ•¼åff,É©r3‹P ³+áª9ÿTHFŠJÀ¹k×þö¤ÌôÛõ âz²±Ur}VnÊ‹YSN ŠpBåÍ…cWUåwEä_ñ:«”›Ÿµ²Ó¤-žm“ϨƒÉÄéÄ¡U¦óMõ™yð¸~ç•2•¹§²A,90Èü2ÍQ›í ÷£Ç”¡B\x]Ù*eÉdAƒ µ÷½‰ÅàÁ†)ÆD›%%e%¯NÔõ«tѶZ¥i‹a0ÿta–ȳ.þá.àùÊG”™&-ºœÅjåüÜ£öóÔ]x^½ ½”*çÂöçBÒ¡)ù–©/ö ÔTƒ¼D18Yì~ŒÞr GU“Äî©Ía1ðM©8àe&à ÜJÍ'j™êÁ+E!¶ÜVꃷ™JNK¼®ðKf›ü%æ1¾*O­T“RÄ´°Æyí™òû³zÝÐ΀ƒ-F°§1²E8×÷3_° Òš‘­Ý6çÜvXðc>ê¹§•"j–_®_‚)­#4nGÁãÄÀ #"ˆ²~!Šë¯ÁDJ—cÖ¾ ÚÙrd‡Ž}eI=Q8+ÀmI•Á3ƒ¯Ãx4GV$ë{²;2¶ô3›véj—­8¡¾@Ѿö>ɰèlÅÛ­ê&F‹aï·ÆàzjœÏíqTÐ1/9;ó¸_ÈM­íxbàå®(~ÕVò¦Ä4b€¸Øñb¤ˆ©óŸèf™Á_•ç&b#\Œˆ2¨Xv`BðÅ®žÒ‚ጿ.¥‚ÊøJ†[®‰[7Ç"ÙjÂáj]É¡üÆõNºrXÏ«éV/-lqÑqùó¶ T‰=Koû)‡q0çâÆu=h£ŒXü«ƒ¶1Ž9qĘˆc;ÈuËôþðäÁÞ„©+GbKný Fó %.”oH"157@ôÑ¢ÀKz-€æ—œ€iÉí*áí¤(}éx¬7ÛEì©T̯iydÎ üñ„ù.'/A†Ò›Pf1õ´Yù©RÆçƒœáZï‰Ò!BŽÊ–:EEãjIħ×Åã2Æ#w ÇÊÒë êAbˆ‘÷¥Úø4÷,ìU[N&ºR$ÆF9ÃÙ]ˆä>v1r@C:ɬ(ºRb¥¦ž&Äô!U4â/ÀùÖ¶Ô1м©™ …Ä#¶ÀT!aªÕÂeä!+?šìÒ*'%Žù½·õ‘ä™Únz­¶Â/6X…‘)ï]ldqï–Wä|>ŸnµMJæT´<„çÀ’˜•Ë“ÏyÒ½†ÚÒ=7—cœ5gÄbT*5cŽ>¨ Ž©årK~ªó‚ìdÃEJ'-ÂÄ|°‚ÅZ10—Å~ܺp}!&BZ‚%ô:&¢Þ½³³¸â§¦¯KTUŠy jùñ]»kcrTú#[˜u®E˜2/ä®yÁY¨O„—pMª{Í`#Ï$éÚÔ¹Y–+ÓçvÅf¥´¿rZ«%kq^»M‚²9o °Ké`]赵兵Ee^hÈ•—°bn…è3¨ ÷~è€À+c«"Ûí¶÷¯Æ‹_:ÍšñE¬­ð[mË»ÌõQŽe§ÏâëBC ­Þ0 …,{~Í2Iü²éô¥K‘v×?14Ÿ jŽ’‚f724a•Ò²ZçŠ6ó¢ôüþ,û0ÍxQ¸N’Æ;nlNκ€¸õnÈÙÅ3¾S ´,£ƒ¬\ ÷ÇLy±R6Xv®ÓÁ0Øè„À×ðaŧ­öšEÎßÈ ÌwžêrY¤§‹ÕÖ6&If— U!:˜øEÃG²ìæ ÅÂxESÃiÞ_˜g× Ú’ª½V_É“URWTÚ×é,ð{·¨‹î3h«&d>r|͈뻣iÕ‹².Q'/IŒë M3˘wA ”v¶ï=–a€žYîaœcêMóê:ÎaüZSÊžдW\Ä[f¬/(ó.Ž5»¶û9¿_زr7È©S›§¦>XA4¯$Æ^Rxì„]D&¤îRdŠÛ²CÖ;Z#c³"kÀ0mV¥ºh¦Nód÷-Ï2Ø%ágYz~.FÒ‹‚ëe%×™Ò9L“R͆¦^MTŽÍ.àF»ë©ä ïž®¤S«o˜`¸ð‚ëXoï_ÕÉU—§JN6Câ¹:… ABÊn¥ÉíRc3k±s  _Uþ®ާKÃYWQº­;gØ‘mÞVÙvœCÍ/x¾ri )y›»ÒlW®.xyä‡÷¾JlDB9 ŠgV;ýªL$ß ½¤ö„| îê"3 þ©þgðI³R²Àf¡ô©×®Öñ¤~ý‹é=Î%BL„ÛŸü°=¯ÊúZÀÁ÷ú%¼YöIIåtâ9£â>‰ìm PF¬ú’jQ^w%_dd¹÷-wÖwy*JË_ôGò«¶E2»Y<Ș¥˜¢6ájjVÓ—E&ÌêØíd<:{eW?v3‰ä‰Ý¼=cb<Ëæ„æwSÄÈà׎‹c=xþØ@Rï"V}`³þ ê¸ümD#¯gþÿSËKñæ—^‚¾Æ*ên?òSZPêWŸº DËfˆÉM Ô¨!…«s&²ZØ{[5~R ÿÁ UÜ›Ì=zZY<( ÁtÛ@´/hñvZ}VB˜µ-¶A(9%gßšik×/¹áÌýD¸…ÚÄVÌy @ãhêdx;¦V˜ )]å¿ ¿žuš×ÍF ‡cÂqÚ§ì¬CÖûÁ0eu§É’ `<êõŒÓ‰ùø{€æ%‰HìÊowO×+žËÑ‘o’YÜÆšòâÛä:3èœá1_8¯VhÑÑȯ’XÍ 8©ï‰{ûn˜Ó„럕&ƒ¨Â(w³¤§ërn;ad'c¼QôIü/ÝøÚ/j.«²8"V2OÏ%”s~Kï™è÷y;qcQ:Åü¡rü}¯Ó‚ÆFYïÄ>È“ÚÕœ6ûNæ¥zz à}÷EAyU±"`_&}Ñi­RK¾±iòXdà…†êID a³ÊEÉÐò‡ùn~äX“¥~Hù_×Wÿÿýäm endstream endobj 106 0 obj << /Filter /FlateDecode /Length 626 >> stream xœuSÁnÕ0¼û+|t1»Þµ½{¤RâÖ6œÚÒ‚èëSKBâãY'yy~”C¬Íxwfgòä!¢‡ö¬ï›K‘Õÿtà߸Â5RE_sÁ(Å‹êVypWN¡ÆÂâkaˆ” µU5–<£2Ù™;СÐcìcîæå\í«œÌ;°•XsGj-ôœ Iä¢'Á°çt­…ÌÊi›v ÔMïž΋ôëëfçÏ&÷êÅ[·„™ýtç–-£G¦X }ûæ§û^#%‰8¼ V@•> #DPÕª5> stream xœ­WiTç¶­¶¡ªD§Šs«ñš8ÇhLòŒ0'œh‘Qdd’yèîÓÝŒ*C3+SË(jÔÄÙ$êº1‰ÑÄ— Kc¦÷r ?rßû4É»É[ëýxôÖêê¯Î·Ï>{ï£`l†0 …‚uq_6wŽõ¿ñ@¶?Iè[k Õ0ÜæÐ c-£ÑcÔw'F2Ö¿ÙKÖ…»D¼å馉z;zÅÞ±¾«ãvºÇûù¬ Þ°1Äc÷¦ÐYsçÍyÁ+‹—0Ì$æf2³–™Â¬c¦2Ó˜ Œ3³‘ñ`þÎlbf0[˜eÌVÆ…™ÉlcÞbf1žŒ+ãÆ,gæ2o3+™—™ÌjæÆYȬa˜ÑŒŽÃŒeæ9f3ž™ÀÌ¡õ36L"sO±YqbÈü!-J…r‹²Õ†·©²yhëk{Ìö?Ù<Î3óÃøUü¡ †^±SÙí·ûaØêa5ÃÕÃëG¬Qe¿È¾Íþ¾ƒ«ÃW#‡Œt¹mäõQ^£šG¯}sŒÃ½¬µïË ÇK²G…Bžß÷²V“jˆƒ8H´=$¨ÿ±cV¢^¦Ý«‹‚DàÕÜaC»ñ(t»ºjýÉá“%.ÝŠ £©PÕ†J[ g%2Þv‘šµ˜¾‚vhƒ›`ÑZ|…#gåõÂRjKÖ°öò» ÉJ‹â²¸Y¥‹—„›šˆÒe‹ï;a¢þ–¼™n«æ.僟Š\rSsõ† ÆVzây]ýÀ«ÝПCå§ÒÉCYóER·RÍY =Æ6è† ºŠÁG8û>OzÁn –J ‹ã0')›û– ê‡ý½3Õòt¯õ>úrýÇÄî êÛòw/ÁÇ|¯ëdªHf’+–â®ì# £–†¯\¬"CÉm»ñ%®¡JmÞ ! |Òv'EGxí„xàíemf»<Æ¢¨§ï{Ç*å pâüäy"ÌžG¦’)ãt¼w'ˆdqÀ¿2åXz\„ §°qëѪ£ÐMa…!…»À¶ƒ6§§úDÒ—ô¤HòIñÎTöÍì›+”Ca\šN—‘.®Û´½}Kå p"[Èl2–Ä ¾HÆáv\øÇýR‘aˆOJƒx½*ƒ8ÎX½Þ׆€‹Aç3¯Â}¸ßJWO^û´¤ n×îf2͘¥À׌µ*Ú6²I‰yd»â.mÝfz?4gÁ ]Ù#š–äVàÑîÇÏðEtžõ9±ñÚ±/,@ÕÅWk/Ë¡ŠtåZH‡½|ÞŸ{ê&w 5 Í5ÝÀŸj_EȄ͛¶yï>|$Veß—OÓ;ÐÅð]tþcy_ÿ!‡‘˜H&àP²HE&ý:F{¿çnÀå°¦5Õ>ë€(aRúwÈ÷0+ˆ“)7Z$ÜÚzê$*)û8¬Ôl ynï ²ø)ØRÉÞÏñ^¦’°YÍ.Ëöž#FãþÇ,Ά’W^bwc¦m-å ZÊ1Êí%ƒÜ¾‹Ì]´W¢Æ7¢m¯¨×Ç%@ïÛ¸÷ðáFsû{kk=·ïм-êï³dñÿ¤{‹¡ÛxZiGèeÊeŽÖ[%aåÓz•’R>Õ÷ºÐ_:ør¶ÅôÝqø:~Cì°ª”ëÍõ]2Xþ’,ßybˆ³èM±Àk 3JE\,¤•塸LÌÍ9P˜kj”­×ožßݰ¯Dµ«)0ß·@½ßc?œà/^7”»*Æ(ÙÀWCn¥Ûó™íèP.©PÜAöž¤Ä-òDGHdnP³ú…á„–Í^&uanÇ\ýäðGijjÎ#!(Ì ®–‹ö}Õ·6 ‹¥Aܲ¨ôMê#<”Ø í\ØI?s!ÈD!S?$Å$ ‹JÜŸ¾±Rk1Ý£·Ã=h€x&¶aiû«o8:.YÅÙßTÏÈk„gMöà\‚Ö¬Z­¯<-âwYõ{û“8çÃÕžZEÃr]ól%Î=ÚT2CøtÆÐk`%½Æc‰ ÔÎ_ú™Å>îïNõÐô:èçÁSM§ È6Ë#%EŸ½l'ä2æŸ^â4º0½ÂÀǨ1XΕ*S³’ÔÙxÐö¼Ä†ê=tá ¡†P£õ™ã\©gþ^Ð^›¦×yÙŽ‹0Õ¶SbÃõë¨]„Ã6cØÀaç8×o—Ÿ“Z N5³?÷àLv¼C’ 4EºCàtö› ª¨rÆgZлgZÅs(γúÂ<-|³ôqØEÆéæz·ÄÖ54š;£KõÑœS`<ü…ZÏåª@ŽLÑ’qž0‰_ô0äæÅŽ–n³›î‹lE1TW¤S *µ JÀÌöŒ°`et˜oTG+AÇâZ£h/[YòÅõ}4 qìþ’ÜüÏÁIâBt¾ú8ˆ„­ÆðAp¨Šé¥ºÎp|Ûã¦ßªóØe@æ#Ç’5ÉÔ}±»¨l;©¹#ÆZ¼¯3Úf˜!Û˜TpmïÛíjöˆá²±Ã1]óÀËŸ²g¬×ý]k=úV ƒb:@•þG=\T©i;N8âñmtÆ™Óo…§_bD°*o‹ÐÔÕv  ,pDSì_¼ 6PB{¶DÿÄà]š€Š=mùGôî;+dÅà„(å32˜áO-dð+ä^´“X_ítð¢'ÌüãHÈ)´Ôj¢¶Èç$E9rJÙU*ä—ó/[©I© !°Ý˜4ˆžá$ë³R@¯z…D†_{g§W9½gEq•.öÀfcðÀƒ—8œÕ?1=Z³29Æ)Ü30=RAgÈ6Ì«<Í|“¦:8<,ÖOÝêuö““פ2ÚµÔzÚMôv8J‰ïÊ/ ié) Å?£ÎKk_'Ž æ dú£×èc/4 MÑ}š˜­OÎ3öF¯Z °»2®-®Mß =ü%À‘ÊŠtÚC¢ý“•Ïlè´\L_!‡ã=Ñ’Z¤*.(Ê9£×ê² •,«­--¯®JlñM Ôû‹;ë·æ„S¤F¬u}ç|çá(ÕîÚñSŒ[ÛB27FÁz~ÛñCWœûáÅk8‹L‹ù¿npéä)¸xí¸oÝkÜTÝÄ[ø´+ÞËo×–ÉÎþÇ_8¥ë#ÎöâÅ7È(1XþU8ؼÃ'(Èǧ%¨«ÓÒ|L$«‰ ¥Óùß2Oƒá„±ŽÀ©§Sâ.;[eFÝv)Þ{„ÆGJy÷³°«×GG‰~MÛK×ѹå:ŸØ¬5{×íRµ{ZÒ¿Ž®ÊjKÍÓˆ.Ý ¾ü¶½Ë¿E†Æ ¢¾ r£ŸE••Q¥Ð`¨¬ëëÏy_Ïh£Jú܇ߢ݅Øã‘ͪïû¾bÏ.HÉ . k¥i¥§úý›è\A&ú犦Ä\jaOóJŸUÆ™qé9¶†Œ‘} …þOhœÌ¤ãWˆCò¿Ä±ÀŸèÿŒ<¯f{L?ÃiúùzÓÚóòg=Ô: Q!Q$³AKÂÍV (žÀFá—Ç%ÅùW¬Æ¥  õÕϤµ¬&;C›™©Ó«ˆŠŒµ•×sôŠ“áÕ!7tä,M%q÷È8ÈtJ‚}¢µ WÕÖíMW9èVqVfÐd¦3¥•ÐØ¼Ÿ6äû§D¿~ZÙ7VþE€J0T›*MfȾBbôj] vOcà@mœ̺|}ôÍ÷äÈ‹3|^%" Ð-ÊKÿ2pÍâÈ ?NÆe8ëÎ/8N`•Ü{vRÞÿb…Öë5Ò°‹®MÇŸº¨uÌN7÷±4ð8ÊýVWÊûÜêJQzZž?lyæéeÐ 5©äþuŽd©ìi{Çš©ÐjüÀåi¦ºÍaê¯ChŽI¯§z0ä—R0>¦-ú¯ögo æõŸ-³oyúmŽc¿~ÍBÙâöÿÿ´ÙþŸ–_ŠÀ‹8G‰¡Ÿ ]A->Ïæ¯«¥¥‹ú¥–â™)«PPy¦Äû”Bc‹+VM‚ ë¾_K×ÑÓ¥|±Qs­¦û`E÷!´–çìŸ$b¡EO”O°P°ü3!³ž‹£hŽšl‘'q Ír¢RöÀH)´šŒmÉ Yé¯Pðd8[W}år]uEù»Ç*ÊOœ4KpŠÇ!soû‰‹—/\Û“XÝØ^y²cOMPžXw¤5—n¢w‹¦ùnˆu[:[Eæ‘m©ÉÔÅbâdëkSºq&Ú¶þU–6E'ý_aâ=ø…p+gé›ðÒ›»üJ*"UGòšª@â»C¼wElY|Ë mqÊ­¯~>ú%q¨OUÜ<÷ùÛ4yŸä¾ÌUݤ±t×45§unÌšÚrèÐ_2¸gÀÆD_Uœ—F ‹Ôeè!žÛeƒØ¢B’])¸ÍÖ$«Â9Â'ÒùU¶FŸž‰©"¹Ð¿ÒVMÅ ëa5ù¸mð.¡¾)¯Hñ¼ÛtÂ)–{8²¸Bqï4.²æÿɲA8”§§9_¸…6µùº¢d­²ÒUÛc·§ûÂð>^œiÔµÀ'BR‚Štp{!©ª(Ç”Ÿ+jè¼üeX6[ Þ)¡ª$¿À„Ý´ù;Ê5]’±ò´ð§}j7§­yýâŠçsoáó8êÕ;dXì}¨·8PþdéÁQ5VÐÿ†*T)ÑM¶ .æ÷”¡ýgEÕt£¨Î8¡ÝK9¸*¼ÍRWÕy&äúŒyäÍõ¤eˆŠonàTtžùs’l‹ÿAî » ¦>µ>Ý iî;8ìÓ£æˆÝ9¢i¬€(:ÆÛ´¡Y‘Qt©à<:þÆ{yÈŸ‰O:lþbvÓ^7ãA´o²(ÞÃQeR‡5rë±U€Z®Þy¯ëpaÔñ(ÙBØu«V{M¨il¨ìhŠ1Gä‹M‡;€¿ ¡7e¤$ƨޙ—ùìâ}¹hȪª†¼jñ qû‹9ílV  Ãí`ø0>šaþ…½?Ðendstream endobj 108 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 200 >> stream xœ½Bÿ CMSSBX10‹‹ù!ùJ‹ ‹ ›÷?¿¼R3oøˆùR‹ ÷¶Ó÷uáæ÷$÷Ÿ÷øw÷Ôʚ걋÷÷Yûm‹^û„g€füêg–°»±•˜®÷›÷÷8û³™s–‹¡‹ÆŸœ‹©ü6÷õ÷u÷÷ ]IP}Uû 7Ÿ ‹ ‹ ‹ ‚J&endstream endobj 109 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1769 >> stream xœ­•kTçÇg˜™*!3©¦œ™rŒ¦ÄÔ( ‚—˜ª¤‰£èr§°Üv¹$n¹¬Àî>»Âr_aY–ë° ×€å ZŒ ž9)m‚95Ml¢ô˜hšw¶/§§˜äKsò¥ói>¼ó¼Ïÿ÷žÿ„« A’$´ÿ-¾‹ok!Û¹×æî¸»Ö{±;=¿zìÚ£ï­"ŸÇ”i¯ff©öfGÇÆ%&ÛD¯ëˆßˆDNø‰@âUb7L„/~Ä£„§|áJèˆÿÑä.þ.ŸPÞÔe×]ÇÝv¸ÕÑ¿¤ÕÌzÆÌôJ:iDÉËF"bÅLSÒ먔ƒ/ CÕ¥8bN‚g .@›ÃîÓØ«ÀMÉü©òÄa·0Šá•L›i:@„qhÓº¯™ßæÃˆ€B™o®_šœ´¼Êãü={2ÁÐÉz8ƒAD×mhH$?‹nݦ†/qJ3s²0^Xè`âu…A|ŽRr§÷ù§wç?Æ+ë„;ÖëWáÏì­>Á?çñn|ƒC&¦ÛTq†Gžô½^¿ðàƒ˜~…?ã"õÝÑkÌÝQÿ]ÛC_ö<$M¡]òµ‘³¨s–’"Q2‡8Ÿû˜ÅîÏzcOüø½ˆF+æÿ‰¥5Åü{Y×# ÁaØŸ(t¥>q¶èbA®5Çz¼N ilTfÄóÁý÷Ô|©Œ£¾¬tÀ@Iž€½˜<(©.7›øò 0ªï?2 À~36ñÑxrWQ•àH7צš-ð>ëh:û9"Í›RL¼Q['­r«Üæ*Ùß'E`#ïO#/;…vJ8ä-bo´OM~°q³ŽÍùv0˜úPuaª{r†ÿ£:Œ RFÇî/xg¦ìߴ쟸äߨ%})=àúNVÏð6‘ÎÒo%¤Â6È2É€¾X\ˆÇP!ó§~kºÅtS^‹N¸ -AéªûdEcØúS§<¤ºÂ&é"i•T”ô,úŒ«²7 _5²"£Ôk ²á8]º™Ò—§BéKJò×ãš5Øõ”X åkÛúÁÊ‹L¦þ ¤C2è!tù“KP]Z›‚Öá¯)טJj¡̦Švq}lèíÆÖ›ïÛÈ37бéY;%=lœ¼ßƒ‘‰] K$°Ûö…‡(5Í- -ï&Àq¡yèœuس—ã¶1 >ª{Év±;ÿ‘yåÚÈà¹F¾ìˆ#aئ ËÇÂ%õæ,­&.œâCÎs>ÉQ‡õžCkЮÚ^/‡—<‰ÏÙPÒ Ù3‹¬Sº°9ƒÉ£zBåadŸöÁãÕw|Ëì™ÑF‹°›AÞÕn"³G[q^þÅ„,|ÈAè4ê¬ÄcÊCÀf`¢½9S;hïlŽAÇ(LB¢úÚ·e4y²ú=…v”Þˆ‚–òC;II«ÑqÎn‚Ư¿Ä`úù§ð*¼æëg…VŽ ¢É\RV¬•¹ë… ÿ½ªh`£7t —…FÆØÈU¢-·vÀ·`ÆÞÆ$ö»L^”õc±ì1!šÖ€¾¦±ðýî.4ý_sµÈ}°ƒhõ<‰Hn ´Àµe7§e¨³ÓS[r[Ö6;y*#¿ZU,#oý!;ÎÉk`N/× )-$WF—-:·´“ãhf‚B±’÷Vb®²\šú+ °ã­QfÞ”¥Õ7)˜Å|Ñ•ÂNðÉ¡“Áµ‘°SÛ}×G4DöÅ=±=E7òz´5–â÷TŽp8ÀþæÍWûk†ó¯•κ •ZÙ¸‡ £XJ³ÑT[Á—U6õUžê™Jº,r»ƒ\®¨FÒ»…øEMlµœáAt§ItmŽrz;·s ótÎr³Óä[Õ‹|Á*Ó«ÔÛtÆ|P± "“>AIw™îËÿ†x]K °œ$‘VSU}Y¥I„F T%X°¯í‹ÀçÉOç)´ï<×®jÊTæ¨2S[s›ÛíM¼¿ÂÕßæþ3p_î+ÁÝ“ þ ü> stream xœUŽ» Ã0 D{MÁ ¢ÄŸ&Hd„´q‘*ë',™ ‚‡Þ{SSÝçØÏ­4È O©t+Æ åF®Æ£­ø¨YÁ«> stream xœµ™XT×Ö÷Ï80çØˆ2žê=cKì-¶h4ÆÞEÅ.Ò›©#F`˜²f†ÞËÌÀPPÁBT4jl1QcŒÝhl7111š}p“û¾{0¹ï›{s¿çy?|Ê){­½Öÿÿ[{”M7J ˆæ¯\;i¢å»A^X÷ZÞ–l ½„Ð˦xЈÙöè@_Ôÿ­£}(Ë—ÓÜóB6Ï]¶0|QÄâÈ%Ò¥;—EyD{®ˆñZë½ÊÇÉwµŸÿÚíÎë×mÞ8¦×ØÞãâÆOpŸ8é½ÉS¦N›þþŒ™¼ã:{ÄÈ·çŒêiGQC)'jµššI §ÖPïPk©w)gjµŽI­§FQ¨ÑÔFj µ‰šGm¦æSã¨-Ôj<µ•ZHM Q©ÅÔ$j µ”šL-£¦PË©©Ô jµ’šN­¢Þ§zQÁTojeG…PoQ}¨¹T_ÊžSý(–z›êO9PŽÔj 5ˆQ‰G1TwJF ¦zzzR«I‚(J# (ü£›FØ]Xl#´I³Á¶Á¶wEZz-e0qÌçÝv¯ìáÑ“êy¢×ò^¦Þô.·›m—÷Öð·ú èÜçë¾ ì'Ø7‹#Äû¥õû;»ý¯·ãß>ÜRÿׇ…Ž{_ ÈP3àè€[û ôxgÐÈA¥ûðoÜRî†äCÉÙÁÛg~1äã!w†J† =3ôö°ÍÃöy'ŠWÚµ%ƒm6óKõ‚Ú¶¹B~hÛ 6­@•q ”§%`¯öïb6yůW3At¹æ€¶ÌЪªUí5ÌLo7Uê4¹­ä0êo‹@tÓ(´rP8;C(D7è.Ã^8‡ÕÍ*Ë-1´$dÉêläsYd‹oØb©ÈŽo3oÛ,5Ú£n—Ï¥þâC¨zÆbí*ƒ%äAõšcÚ*¨$ïÞÓñî%28$A+è_®œ¼p>oýZ'üËk7B8¨w3È™†û`jH( Яyàâ²’_Iã!2Û Z|èrvê‰]Û&’•‹F´Ïl$wÑégóž÷ó(œïÆ"5]§ÍjáPѳúi–o™Ž…’ÇÉì³²Kà+æÁ„;øm®½[P…èºVæ'i¯ Å/ýT²¹ˆ ~9>zø÷3®aa¾d%¾Éâ¾"UVU¢ÕôÍã—,Ø8c¸ÄŽWÊLüD£ ú.Ú}WÈ¢õñ ÷Æ}Gcî‹Ù_Æ î¨÷O? 1‡Ã° ën†ÐÃáá,4À>8Qq°êp‹a?„ÒJ÷JwX>àë¥nRW·›±î|›À,@÷î ù_ù{lãÙOÓk1ÓA*/u(Ám˜†d/ˆn*ŽŽ’Ér ž x)ú85´áh0¥âÌ´ŸrxƒlÓxh-7”Ò_@¶¬8 ùâïðFº3~Qƒî YÛ>¸ J˶DÒ*s÷IÐzÚ®ÍWjng¶?ù‚¬7õ?=‰¾c±š†'¡UhúH‚˜\ÈJ”|—šKÁÃÏÀ`VáM{Ð1‰ø'ÔŠ6î9‹'âwõœ6”…ÀƒÎ A»èÈ’)”ÂmžëÛ°éèp?ÅNx*žŒÝIº[ñ3kä›ÃMö¯.¡â»ýÅÏÐG|/ö"‡[*ãJ–ÜM"¾ÝîßUb{4­ÚJ¨‚cªú?–ã,:‡Îˆk^ÿ50¨ç/? ‰Gÿˆm$âg³ÁÃ-JÊèp‹"èšcGjŽsõìdl‹{/œ>×ËGß*I0€ôdsÒ;7‡»Ï‹Ÿ ëÛæ°AtWEuÕS7š…84­Fkñ@4 Ï‘à~¿ f­%Åïí(Ôç¢spIzlÁÕ9Sa6`a´“ß–¨ÐµkÞ%EÀWtF>Ú¥·ßs“λÍ÷9ËâÅÿ>Rþ””ö™h+~Vèyþƒ˜:¿û>{1$O—¡é€±†Ñ¡ ¡!0&D‘˜ê̼Uz^¾ûÕ­æ)H¯Í"½vÆŒêöР‡h‹ 1éLB4èÛçW¢f”g. Çã#çá€ÁŽm£D?Ë œ&1¡ÒpÑTYÐhnJu4(+Bã j]1–0&Q’Ú¶ŸéêJ;~`—ܼºøê~ñuôú†EÝh,±ì¶Uć~Ÿ}šm5ì‡Øo­Üô\U^ƒ'Mûðë,-¨µœR•aLˆ!ÞXjʯ­ ªqçÄ×çß’w²£ƒI˜-ft¸#Ìu&4Ì$äo¶ÍbÛ¿ ÛV©×Ý Ò;[%€ õ¤¾OŸÛðô]c¸©(³3à^"4LÎŘ#ÛñœÌÈO+³¯3…ŒbL‘÷?DÞhkT܉ƒùÌ&¯ÙÓýN}Í) Ô黀I„Ô v c!5/C£)+ã´ZЖ–ô8¤6r¦þåñàÝIù’€Zïll¢›ÎyK N¨¯lººeL Òršä" Ld”I~²¶]š ’9¥bW²BéSí ñd÷ì|–8û‡TI%⇵aÕò/H~LRs²…›ùw¬*0í¡}q<ÿè<[ Ýï•LdIÐkTMq+J¤ÿâªß¥ÔÏWÄv÷Â5¨·ÖOý¡µ`‹P+.ú««ˆ ÊŒÒfÒ oÜ8šx“D£áy¶fzaJÖÒÑxÄ›vÁ‹è)[Ï›®hiåÐ7¹Ê÷$x4=&¢±œ8ú$¬®9ÇØ¡ß:õmÐC!’Zâ×åÝä*-‘Í"qyìÎÈ*雺ÎÈ”²Y\˜eÍ7ÉŠ÷ÁÍÎ5‡Ñ³”Ö5WÈ ü³ ŒOòSÐ}6§¼äÀE ñ³HÕu$DÀ6ml‡Ÿ5ªó"!’U …ìœí€mP­¼€®Ö±r”’â V;«"!¼4ÁVG£ÏCº¼  ÇÈ!3A›Vž“žKª"Wjjâ¡“ÁÇxý$úyôí«ÔBgÿ…²¥GÍõ–°¤$,)ìWmtGX jc ùYª´Ä‰8Ça$ªUä«->]µôä;Ô›T ;º¢j„bUnb†¿Fï}›‹·3c‘ËÒ`}leu©¾2?­n›FRU$ÐÊ‘SÞïI|iñã›” •+‚?Ú¾ܘ™ÏÂÏsä%áðþ²&½ÏŽ ÇÎßîºÅ³þè'ÍwÑŒLŽTŒÅÌ‚|^#DûQ»{ïÞ#•憦¢K‚ÃTÁê0’® ÚÄŽTÙ‰„‹ãv%¦ÉWÎv˜ýS²ƒ2¡¨(Go½C½T;ÁEÚ‘®Ë Q·8ýˆY‡q¸çÖ5«U;Á1ˆ®Ôš5•PͪŠG•êR  Œ5ug¿üz„C¶¬ Žlcrr|¨…ºwkNjÄ€÷©w[š^1ÚÈÆÚ¦¤:†‘os¶ÄléÍ¢ËÜbmÍö§&Z£É.¬jaÄG"‹š75° NFýˆEDãfƒ»K\ “byÒPš¼â}'?É®€CÐVáSé©[ žà«rÚáº3È'`=¸‚_ED#á”õ¶%ªæ¥ç¹UûÆbm( ÉÞI ¸º€ì`‡có»é=PøWgù)'’Gz&ù"Æ—Š,€âa,½ÇKIcßò“ITž?¦)†7}.ZiÇþ˜Õűôw©UiIïbµ"£"W•Nê¹²Ê¸Ž Šýc_Lb-ôG£Ûi‰ òDéºEË! ˆ@”šÓ³PÌTFGFIƒ]›ýŽžo:uª‚”ÎjâuOMfÚø$Ádº£,š~§ùxÎyµ_=ç©”C"VU]©/ÙýÅœ}â¾0…ûpâ—¸ß#ƒÔ¢^¹¹»@I´H®âvŒ_–ä Œ˜ß0ùš*±{=²S&Wó·…HÞ6ŠM6*Éâ<û 5(éPpn{Žhë Žt‘Úph©’ð Éë–‘˜AêÕ1tÙéyHÝÖÛAÓ~EÔeº/¬lþ94þÑ øŠ.ÓÁ³EaêÔÒ~ÆdL|?£ Ù„ΑÝÀ¿ÃæäY¤ƒ)H_ÉðT[“(óç²FÔàƒH„kÛ{'Ë@iŽ Yd;Ð]Q r"\—Œ{ìtà ª‡¨Ë{­EÝI¤ñ|ŸOØ¥4ñ»ûáùc‰ã zGƒ{åzË3†ŽÂ,ÿ0Y*ûÚcªeÁ{ФXT²Øà­®RwKWFì kRž"˜Õ¨=SsÈ`Þ[wê¡9ÞìšKÖó‡)iP5?£ZˆâÛÞc“óÕšhò¢ƒjDE W©Ë•5D3íe±%tFšF.çǶ?sÈIÒ¨³€)„¬2 „®‚–¤BýÕ[T[´þEý\B%ís莚 6 yF{2&_ · Ê`3Ѩ{¦=À¼ÈŽ%8y'‹jEF~\ÿŒt3a8î+!57àåh‚Þv‡°,7E›–¬’§¨8ÿá“`l¯Ý‘ÁÃEh Q—J+Û¦W ‡¹½¶ù ',rÇcÈ0¶ /ÆãðìIi<žˆ¡eh šŒ\9ü þ–ƒ|‹ Q>z÷‹»а8—â¿MŸ ±C§­b‹¦ÜË6 ÍÅ'„h>?ŸE ýíÇÔAj—¤ˆI„p&²8ªª¦H_Ñè[·aá´ C8LÏ º‰¯ÿ_C"3Ý1Pì­Dç-ãÓCÔòBˆ¢Ð%Í¡^ˆºýü‡‘ßâ¿Ið«?ŒèÁCJT¢òŽqê¡M†![\€4òdˤŽ=ËÑÚÓ÷Ê”ÛW·F]Có®Õ·ºî/þU†ÂÑGìx^^¥©-2I²óË«÷óFD†ªãÃ%)I‘!^¤oÒ¡¼D¿/¤IYÌÓK—®7Æ5†—Kö4d”ZFmЩeŠ4$1±IŹeYå%IµÞQnrOΣÎC'fü¢Eº}L;%‰ñ1àψÛ(*ð1G9źƒ3ÿÇuÈõøåØú„c›ª¹ Õk`ÑKwHÕ¦ï4i“áøûî¢cÇïm<¨“|*ºl`êú›GI:Žh¬m)è B!êö5ûÿïtf:¸9Åú0èÅûÜ®-Rj$û{܈ZÍöd‘ïæFÉêLÈK”ArªZ"_à[ åXÂÓÄ[1¶Ô­+#Ü»Û:w¢Þ¯ì¯½Zx±¿ø)Zȯbñ`K€Ÿåȉ»ÒT«9¡­ rTß•¦¥ŠŒ}ñOéü^¶6Ü$ 5†™«M†ZâH­RsÛÄjû“•aÐ6„\E?ó,îg^Yä}N;^>qöúÀˆßwÍä4rçujh›uJU«“R9ÿµÁ5žMï‘IH8}ò÷Ï»*ÉSKºˈŸV¥îN­ö5„å…blž?}ÇœŒ#¸5'”Ô êÜPv‘.Ö12K£ÍËâ@£ÓÕ7o¿à÷ø@÷[? nñUx¾ôÎt=IÉiâðÅßòÖ¬x=i}¹ì¢e3}-ykÉËõ à ¦]“§.O‹„‚0®(]_ULeŒ>$$&*lãÉS×Î]xL|µm¼MMDÅŽ;vTDÔÔTTԙ˗d}†Ím4˜PöC”m¶o›Á¶#Q4–—*DS‹êÐ(%e™«2(@‘ ©‰í0”ó 5é~†Ãäß h²Ö„= ÷XÜ‘ÔXaiz)è2 ( (ÄS­ãw\¢°fÁ«‹ÂWo¥ŽhW ì†ýêýªßå}á“ëCš!Æ1:VM®«Ö|ª5F¬Q×t\ç Rð9ŽÅh±ƒZ›–I¸+ýÊ™ÜìóÇšµ {îP&BøÁJmB‡q”©seQ I)©x¶sà#ÿ¹“’IÅôï¶6³ØâXãÅ$Ú¿ZÿÚOn+¾­µF¡ ,ô$"É Åça’ÿ4 ägfqIÍÓ¯•SÉÕ\²"n„ALv|‰œ˜Á}ätZ‡J…¨9±§qé¾JD˜x…W lÖØ®Zò¯÷_ ѺãìÿV|‚e:Ãkg½à$ß_È/ksa3 ˆbj™¼äY‚b×.%‡ÿþyi‰Ä±T޲œä¼ÂôÜ\GËs¯† Ö(½ý—F)êeIó:Þ™­Œ­ò‹JØ%—sj•e§¦×f}yþœ$ßrb¢c²ÒÒÓdïÏÁ=œ*\Ô—VUZV!5¶9ûî¢ì»BÞ]eáVÚ-ÿ¯¶}?£Øœ`^˜çøÀEi³áø(}RÓœ3¯Fðµáàwµ—2nÀMû᫬7¬6Å|/;OàS¸³O”¡ž×rLd¸S62׿À ¢Î‹eËãÇ® vµœì+É>7šê(ô+!jiëÇV€6’[¹|2DëÉ£Z+™ö"ÒI“¸@ ý> P½tÒo =I™×ha\¸Ž^¾üÉlô%r{Ü1wˆ¯³¯^ ‰ˆ;sž;"Ѥ[ØÛÎðžóQЕÔç7UÆTú§¨@­äÊ?;Ñx˜ÇfÎø`ó¬u+%xYÁGñKžU£yd L NuÛŸš²”eýÒê+dB^ŽzütÎdߌl¦ýŒ>x2çE1¦Ðô’½Suú2ÉÐÉ'Ǽ;ÇiN€1ºÆ¬7ÖuxÎ|äbA0MŸH'%©Ö„¹I‚·nW†«SÔªTHQ§ªa#n—ɲ „;(ºÓ¸x´h‡›ûG%ŸúKêÓÌFØË4„êwD&¸M|º ÝãÇ?säÕpgÅa†Ž£fÞƒd¸å:É0šÁN±@ä\n§Z (6ÃñN`èQ<7à·’ÜgÆ%+-ÏøLûv"ÌÈDC)BJ¾»­5tÔí´Âˆúßµ?úãV3Š~Hæ ~=ÚÆ¢ž3žcj«{œ¿‡6Òzy]j-¡ª·.?.ÈTf¤ªU L“D%o‰Z^°-ËÅ¢S‘L3» %N‚Ð1R˜¥Õe¦syÅ'nC+˜¶eÇûj½a3#~MœÚ)Â#ÂÛ7l±µÇc?Õñ&¤XWbª¨ˆ5$ø§n›zi4²‘ˆEÌÏß#±Äº`~hùÝÇûÉ>=BÞO–=ê/nGè6[AnîÓp¬¢Y¾ÝÈÅ{kPE¼±xwξ3n¿ûádV“ˆ_c=b#/Ši[PÊܨ}þ¨ø0¬4s¥¾°‰pöVØëì´ð¡µv üg×'Mß=ò¡ü+6ÇÒ£+DØTŠ2&\€= ùéŠsÎägeÞ€’F/‘,nH&áXï¼¹> ‡r¹c4|¢û$ûDzyáýƒç: }~ •˜FD•#Z>5œÎoc·íVìæìgÍW®^Ø8­÷V'ÎÏ~Ùx¤.2OÞ;5qÄ̹ãc´®Í.\^Rc¸‰Ðõ‹5;¦:0äç%/‘íwwmòiæ¢ q¹Ë÷3#£N‰æíþ·FãBêV—CYî´¿ÿ*š¸ÜO~·øit»%À;{ùÜÔRàJ«Éå}y 15ª¯Öwyb†4.K“§Íβœ³a#‘ÎøÀ(8y­5¡™–ÿ…ms‰Idæhui5‰]i©©rnóâ%¡ó`!¬4­k.ÙYD”s΂é¸;îýåÌkWO=D6…в³Uò™ïÑ´øŽ™3Ó5j‡öõ¿MJN„4‹·ä&çæjÓó²9?žZZ€f¢>+0?6w(¦6Îß(áÚGüéÈþ,f½úÁ‚ÿñNË–ó†Û­"z!ÒYøyTC:Ñï”–ÚHBŽûÑøý‚“mã„móÑ-¶¨‹Ú¿uòP‘„ÿo`;É)^ÒþwQ|)Y¬Pb%²¨Wqxò÷Ù3‡Ü»Ò«/ÌÍ$äV£Ñ£…E`êü+%II¿ïÈݯQ²`‡NCþñ´Ýé¬ÅcKp_dˆÖhÞ^4½…útú©B'ß5i1¯æ6ánIXHÐvvîý ¶=ƒßº¿,˜Ìt]–E}ø“fÁ%ô›ŸÇŸdÍø·  Aðê¶]zü…Ñþäëe¦gw‰q $¤eÙ?»R_Y¥74@3sÚë:…©•‹—m/O(·|ÀpÈ8óñÓEÍD°Ø{u\LLŒdé|éXŸ •ç@N)'þm?žúgôÑ,Š#Ñ6# 7d¨÷:dë„ÞšúÙ.`ä …œGYŒä‡‘§ðdÀ>€çøâ¸¶OìHž<]‘™ûè $þ”;†ºå#!Ü#¢s«ƒÞ2ŒdªD¾Ÿ>òë,AÒf‚œŒèáÇ-‡þô(­Áój7E·£Ñ9#˜±˜Ùˆ©ÿ”Üï_ž¾ê~Å"[úÙæÏŽTGƒ†SÓ±ª(ËP*ׄW%“ñ4’LÓs”•ºŸÔuRh'x“ñ¿ü?··r‹"¶*Å÷¨ÿ”¼'¯õŠá"ë=ô›‡» ÿÓà÷@îÒNÆ}þ`ß§õi!Uœ·*9¢@šWšÆØq=l¦ë{u‡^= WOèeOQÿ ŸŸh–endstream endobj 112 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 4345 >> stream xœW XS×¶>a89*ŠOÅás¯Ö¡u(jµjÕ:· hUœD”‘0’2 ™e CàÅ¡*ÕªAm Š^ý®¶ÕÒj­uh{»b·}}; †¶Þ{_ø¾ìœ}Ö^ÿþõo ceÁH$é|g—‰¦¯b‰0jŸ;Y§ÚHÀÆl¬4Ã^ÓÛaà´°ý¤?cú›:w{àŽ…òEÁ!¡ŽaNáîŠ-K"<¶n[æéå½Âg¥Ë*ÿ€ cÇm?ÁÍaâ¤ÉQï ŸñúÌY³Ç¼Á0ÙėÌrf³’͸0«˜ÕÌ›Ìf,³–™Ç¬cæ3ã™õÌf!³ˆq`Þg>`™ÉŒó63…™Ê83K™™Œ Ó—™Íôcl™9ÌÆŽ‘17Æž±d†2ÖÌÿ0#2½˜ÞÌ;42ÆŠ‰`þ%™&i°g‘eiaYdùÜÊתÉÚÎÚÃú9›$µ•ª¥Ÿs븆^#z©z}Ù{AŸ¿õɵ™eSØwaß²~’~óûý`û†mˆíaÛgý_ëÿNÿõýuýqÀ–¿Øm²k’õ‘-h9pÅÀì_ñãy¥±¬Ÿ± ô?éÑp[RmôµDƒñ6»_êÛA ±ÛHßZ{5„@BrLBÂNˆâª HxÆW@m]8x‰å?YãT¶|„µW8øT@±øŒ-ª‚ÚüÄ=ÑbBZ(¨€#ó¡|*{™¬‰=Ûq(¶è]ôv èb$»‰3Œùz(ôæ±J95TâǤÅͼÂÉlµ['¥è† YÙÇO®ï?yº p™@·J;öU›öï¹OÅ>]{x¦ »ù¸ú(=;A7õ’O Xi°4z¡?&<&VÄjÂ2€ÈŽC ´xø=Ú ÄLáç:ßxðíåËW¯]rr˜ài¿ýÉ·‚É_-Î5 ¥^¢1ÆX7™\ÖR{Á!)Lí•C‰ØÌ®#'­Sؤª¨£Ñ#.îÊõ†U1¡»â=ˆÎ¥°kð¤us'ó†€âåëZ¨/öô4U n‚´œb}åשie\*›±¦‘ôJË‹,†Gh Ð+/QqÅ]ûºý’סè|qKÓŽ¬YÅœìéŒb÷¼m plðÉæãW±wáxÿL!-47¡´Kß¡}§ÀKŒ ˆ¶4¬Ês¥ÏrÎÌ©uü"˜ ¼ô”G!»ÌҦʀƒ hß­oì_¡J‡²¾qq¾â<éË'§qð õ©YÏý“<í”#7 CÑ·êOr„ï¡ÐÉwìß׬Yítê¿«•Ò¿j×c–ØÞ{ëÉ“{÷ÑVø³,û¼«z“z ø5ªÇøë;=Øãµž×‚Óg±écº IŒ#ùäÚpˆÎ¯ót-|$’©WXæ¿îA½@âûRYsûÁcË "¢–*ºãÆ6ý×-‰t ";)`KÔÖ@Aµ/°Ø8Ùm?P‡šê4Mÿ|UN3¹ìy_Þ‡#ëë'þ¶XꟹsŸ€Ž=b÷|„)ÊÛZœÕг©o¥©Â ‡³y ÐÐà Ñ"Ž#Øí˜Ov½.mIsË'nö©ª´0TBFqj‡+póÞÑ zt4ßhõWä“óV¯ê†iÚóúë_¢Ë—-4 »s—·¥|ÝÔØ¿iñ(ÖðŸEv…µ°Öuãân)*y¢’ºfn)SÌLß“ åœ.¸(<Ö+iÓ´s³‘‹G'6¬NÏ»±’ÞIª2J³E³±(ýŒçyÀ>›¾ñ>±ºmÎÙ`àä áqªÜøŒ]"N#’B2… ªÑžD$CT´N ââ2Ã+kp3ÚcŽÐOèmhÓ lzƒM°±c˜ÿ©ÒL·endstream endobj 113 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 221 >> stream xœÒ-ÿCMR8‹vøzù-‹ ‹ ›÷T¾»¸3ˆøˆø§v©Ô÷÷±òÅ¥Õñ÷bó÷‘÷âÚ½Q"ûDfVT@ŸÀh¯¤¢¬«t¢kpozc,ñM÷÷èçïÞI×%¡Ú§ÆÏ‹ÛÛ1Ä# :Q?f¤{¥ªŸ¡¨°k™uŒµÂØŽ‹¥×ƒ$Ena}{mlt‰N‡xŠƒŠ‹~}”‹œ 7Ÿ ‹ ‹ ‹ aOU¡endstream endobj 114 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1739 >> stream xœ”{PT×Çï²¸Þ Ú¤›°Žso£yOh¢ÆéÄ‘1U§N¤¨B0‚Ey…DzÀ²°ì{÷Þ½¿»ï]X–ÅeY‰µ©X1šÒTmI33¦H';&Ó³ë±^ƒL§öŸÎýçþqÎùýÎ÷w>‘žFˆD¢åÛòò^_÷ò½ßU€©…”qHÅ M®^>ûè­Ì­¸°ò»…ï”׬('â‘ú­MÍ­ùÕ{ë6åÈb7±–( öEÄzb'ñ ±‘ØE¬ VŠ"S(A¤§Do‰Òö¦]óé«Ò//sKXILòÙòI63ySIfGDèÎÅÞYñüû2Vci+©î1övõyÊ·wvE>ÏrGÜ× 3äóÎÞÄô_o9å;\“W‚ØQF›9èÉÒ±ªÓ‹ãè¯ß¬X•Rí¨)(²ÝìòE}ºz¥Á ùû²“ÛÖ•ä6·SÖóûa?´UÔÕ{€! ~°ûy>â¦BŸ9d8 ­ieõÚ":3ÅA}A'¢äí/Äè•Od† ›i³PÄ*½úh”’ õ(eüíù^Ðßôßþn½>‹¥^´--ì·÷ƒ-D÷Ù|háXVG†°]öâ}cvÇ$È‘L2?°çÀ†/âLàyY'ØÀÂx–/8Àî껂Žf¡|É—ý?-{ný 8ƒÎLéÐ¥…n!Ø/¿x`¬vç(Zíìóë»êŽ9»‡OG#^OüÈ$^uÖ%(ÈŽ@[,6%[”„ý@MoGk\ap“!¿mઌTÞ°,[¢2@›Î az^² 3í &÷½{èÜ×3÷FkÆÈ±z+U¶¶PY d«¡ûXÔîq†„‹·ÝO¢YÿEôÄ¢8Y•$eçAu“RÑ¢uYzj@Õ­€J²|V㇊›ÇΞÍ%®Sž«úÉ©Úñ7³á§Kײ]Tü«ÉÁ8ÞÔ6Íjú&µû¡ŒÄÄ|Ç)´y}v–ÊL%páÍ? ¡‘d|HôÞüíHòñyqr§[†^z=‹~h‰6>‰ü<~7bîÄ›Pú3è©¡QgàÅä “Õ’µs=|åô'$ÃÀ˜,¬Žci¼ênÂx˜Õÿ䕚¸cÃvˆÑÃç‡Aø¸¼']‡Û0þ.=(š´`WÐõ“‚ÀƒËÙKfÞI[‚'µâÿ•q“¹ÁTG7`Rµ…Q«Á*¿·7á:ê¥zÎ ^öptO#)9¨®|£KT…´QÉèAõ yk k·ïýyŸ@bAÞ¿ûÅÄk¯(òö¿U¥Ýó G{¿wÔ|+úË·b´wZWFëë•Êúú¨2FãÂXYì¸SO>!Næ¦Je®npOŒ>½ÙÌZX ßúgžUÐ7pr½ÏèvxBnaã5í@êÇaÑtÒ(F)4%ûåš38;ØlñC ȈDèÇ-Üa³³NCÀÒkã²ä‡Y­öu—)¨7ym<}Ìâ± í¸‰‡²pÇt:‹´òö]0è ø½T&•‘þ“°ô!f€ôa>JÿÌOäêendstream endobj 115 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 474 >> stream xœcd`ab`dddsöõõ4±$ºEþÔfíæaîæa™ý£Bèà^þ À”™ËÀàÅàÇÀ ÔÅÀÂ0™qñ¾ËÈ/ÿ.ú‚ñ;Ë¥U—™¿ßøÉ*:»~a~A^a^ÕŒ²e+–-_&÷;áÏÑöº¶úî*Ž˜Í©‡Þoÿ.7kF]wGmWkC»\‰u|RJ7GyÛŒ…‹&Í›²P~ê²i˦-²xý³þé}Sû¦wO娕¼1D#ö·LUÝÌî¾™=¦õÉ-}¸}ý†nŽÙSš JZkŠ|åù~u‚Ãø3ërïUænwDÛÊ›2»Û8Jç6Ξ;{Æ” r¦L^=aÁ„yÓvN\2qáÄ…MÛÖÝ;Õê={Üìæ8Ü[ìŸð›¹:Q¾!¿½ èÞ°íYû0Ü›”ÜÍQÖ>sÁ¢ 3æîŸ¾jË×îÃݳ»·¦­¨š‘73¦Û°;$ ;±ùËìˆn‹îàˆÜä–  “ººKrêJ8JÓjƒ€Î‚ø¥oÙ$¹YÇæíÙÔͱtRiAESZK|KAcR[iöo‰öºÖ¢îü^ØÒ;yÅ–å›wí¿ÖÍq´'¢¢¨£®6XžOŽ‹Å|>g7W7w7Ùjè«endstream endobj 116 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 243 >> stream xœcd`ab`dddwöu041¥ºe~uȰfw³vó0wó°Ìþž+tUðÿy¬`qinnbIf~^JfqANb%cc;##K×>Ö%@ɰ|ÜÍ(Ãò ÈýÎûý k[в¢ûoöܲ6ÍÂß!ÝÞ³ý˜øãå¤É½}Ý$»{»ûZ¦þIû)(ñcÛw©îgµS:6?ªº¹¤ú|ÜZ+Ž%l¿y¿¯e•ùÄVÒÝÕÕÑÚÕÑ]ÑÝðcéß ‰?³þ|n¬ïnëî’l˜Ò=WŽOŽ‹¥2Ÿ‡³›‡«›‡»›Gˆš»[Áendstream endobj 117 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 465 >> stream xœÆ9þCMR7‹wùºù,‹ ‹ ›øHǾ¸012=o¼(jøˆøÍw§ù§¿æ÷®æø˜÷Ó‹÷~Ú]Ñl¹M³;‹û|‹û¥CC‹ûŸ÷|÷|‹÷ŸÓû|ûË]‹N¦wÝ}Ƌ݋Ջԋך ÚË ´‹Á‹¿jQ›UŒC‹4‹A‹A~Lw0Guc‹øÍ‹¯ø¤¯·Ÿ÷’Ü÷ãù¦‰ŒoKL0Šb‹g£‹Í‹Â§ü’j‹~'egŒ÷ް‹ª‹÷ˆ¡Š½ #¯e'‹˜¬øÍ‹à÷ìõè¯Êõ÷ƒìø÷JiˆuP~ƒ…>‹}‹ûLôè®§ÇºÕÆÐÉ‹ê÷ !Õûû74/X¶†•£¨œ¯„®WªÒÏ¡º‹ï¿=:4MFkgû…û‚‚‹‰‹oø0ú÷¼÷?¼Ñùtù”÷ä𢋤£s‹~ý*~s‹sr¢‹šù)ûp˜£‹£¤t‹|ý(|t‹rs£‹˜ 7Ÿ ‹ ‹ ‹ "Ð*endstream endobj 118 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 244 >> stream xœéÿCMSY10‹þTùé÷¢‹ ‹ ›÷kÎÉÅradicalp¦‡)Žøˆù÷z³Þø÷ù'÷zœ‹ŸŸy‹zü±zy‹ww‹œùÕþT úSŸÔù øýëûDø„›†‹ˆ‹Š‹†‹€ƒ,C~‹ˆ‹ˆ†Ž…’‘œ™“–‘š––“÷YüE’{‹”‹š‹Ž‘’™øZú@’™‹‹•ƒ•ƒ„†{ƒ 7Ÿ ‹ ‹ ‹ ”¨_Uendstream endobj 119 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 114 >> stream xœcd`ab`dddsö Ž4±Ä»».ù¾œµ›‡¹›‡eÊ[¡}‚»ùw0€#/c`bddÑúÑÁ÷Kà{ÙÆï ?-˜Ö|/½¸{ñ’’î*ù?/ت‹»‹‹uÏ‘çëæáêæáîæb`"¬endstream endobj 120 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 166 >> stream xœ›dÿCMSS10‹‹øýùJ‹ ‹ ›÷À½ºR3Oøˆù‹ ÷¼È÷˜Ãëá÷ÚÜø7÷Úò©ÎÒ‹Üîûâû#û…ýJá÷Ñ÷2÷PûÑäüGø÷˜÷$÷ÍPDDKPû  7Ÿ ‹ ‹ ‹ ù> stream xœ•XyXS×¶?ÎáT©Vâ¤öžã,èõ:užpdRœiPÁæ&$!°C 3$ TE…â%hp®ó€­U[k½ööõÙûêµv~›{¿·“ ‰}}ïûðÇÎ>{¯õ[¿õ[km åãEI$’î¡q[Ö$ì\°mëüÁ‘ë6$„­ÙçXÒqèoá¿ùÐz? òóF~>U¼ÿÒ,Ý °ë÷(Çߤ©[·MŸ±}æŽY;w%ÌILZ¼&e킘ÐuaëÃ7DÄFÆ-ܸyËŠAŽü—¡ÃÃG¤5zÌØÞãÆ 'STo*Œ §úRT?*’êO-¤P‹¨(j15ZB-¥¦Q˨éÔrjõj&5„šE ¥B¨aÔlj85‡AÍ¥FRó¨T(5ò£Þ¥&Q]¨®T7ÊŸŠ¦¤TwêcŠ£¨@JFÉ)oê}ªKñ”@½Cu¢&÷)*Aâ# •<÷ÚèõÀ{±÷ø,óùš>Ì bJ˜'¾#| Ù ¶åàwJ;õî´¯s·Î ¿óæwøÝ.ÌìÒÖuQWë{Š÷.w£»ýµÛwþCý#ý•þ•þ­Ò1Òéîòî5\ϽØpÊe¥C-j£2]¥JÉrø‰Cí0Ä_9¡?A,üvèÿ솫•Á^ít”€Q{K0EÈœ¼ÃsNn¹äФð.È©ìç™×15yaü¬Ù¼t)Dœåž\Zôa¯>Á˜vîá//Zp]L ;a÷ÚÎyÆ(žA7ð©ÞEçdyÖ\+²±ÀN{€%<Ž÷dFh{÷BL ¡ÓŠêŸÄVm*^ƒV£=Ù»³w§M“íê…%Áƒû;o!ÎÞÂSnÓõe5“‹{áîØËÜ ùõþç5×/ Q8öà\”‹8jBœ(FÞbÝêæáŸéR¼ žûîÒ¢ñ½zĄ̈°s~}ù—¯flû…°j'TsÐQ~”“AgšÔ–‹¥ÂÀ€@}ab®Ü¬6uDHõû1M°Ž†&1ø­ý5 ÐíSÝIÖÊô#Yå^3µ0’Ä=gªv;ÏÜ;ÓøÆ›œÛl÷—žg$è˜eRÒ•»ßÞs&Ü &Ù±`Ö– pËá|IQf¾BÀ!ÌqØNK{þ •Í=ö¡r¥u§Q›cDlIqq‘YU¤(’ÊSMÛÑ´8ûŒfÿ¸IêÁÌj³‹=¹ú‚¥;CV¨ÎO0ïð9µq‡Mômˆ# Ù º–@é|ðÚÏåèrÔ(›um¶Täñ†BZzd}퉔k= ë‹;«vH*¶ï- 3M2#”dI´¤ÚPÛt»á~m½*Ãʨm;Q–n³,?3?Ë•zy%·\™g`¥8b®Ü“˜ÅKÚºº4¢–Œ ŸšP¼³"]¨Jݯ¾›yVS­®Ü]‘Q’ˆRÙˆ‰+}qè˜AoÔ›x}.2vÒ).ðÒþ6 Œkô†$ˆDrÍHïŠx„ŽˆOqóø‰÷e+s2‘Ryz݃3÷J÷žàZP[ 6eju9Z%¿j×äÔ…ˆX÷ICžÞ¤7 çÁF“Ä|#žÎûw88äýˆjÇ‹ó¾p§CóPô£±/“è¾x.!B:kÎÖ«¶Ô4šQ^®Q¸ gé·‡lÓíÉÙƒöÈÃ×]¿qcÿÙë¼[.¦‹Vz¾¶#EÀmLò›€ N àžKm[…7¼—Àß ‡Xhw›Œ=¬¸Åàm$’™ ð”¾þz9b{yÚîG;N´H, €ÑäD«Ç‰ÞîÝ'ü'Üfz ƒ{bs´Ñgþx«•É#ŸbH)ªÃEôk¨gØAf÷ÿ¡^õRˆc~tÅ9k™E~q¡}üºÁÉŠ |†VCâ̪Lj³Á ×çómûìæZÄ^kŒ_£A$ЂbÆÂ²-ùÑHŽùžS Rý¼“1_ß¾öÉù6BÓ‚fnÜüÈÓûIó­ïNƒos³FU'¼Qì Û8XÃh£‡/^n_N0xètË;kb Ã;ð,Z呺r7ÓB‡`芃éy;dîJæ5D/œ‰- ¥P-þLj¡‚"ݘUî¨eÞíVOü‘±>¥¥Í³ŸŽ½Ûƒ0ȡ׋éwúN¿iÆ\"?ç_‹}1Õû޽ü|_å’tRNÖ@¨èGt ÔH÷öÃýhìïaán7õæ1¢£^;1 ‚”æ©Co‰eiøñ`xLŸöØàëNÚ2§xÙEo{,‘®w½Ä Ñ‹­_j]@Š×@,Ã88è‹™¿Ül³}zQ8bÛk#ùlVYÔZu–:“_9mûÄŽ\pþÑ [ë‘F¡±õÚ¡Û¨5eìM-RUoAZÝY>iLD»,D»¬ßˈòä9´kh‡ì$ë܉ÿ†‰(àmv&Ý'Ю†/øµî¦pTçjwì08ÿ<~¦ƒ\0ÿªGÄyôŒÝÒ=Õy„™yŒ_ÑoÇù¢ù·NÎ0'¹Ã¼ ³ìÈBj4m2Ü;èÞÔŸ¾¼Q{çŠ MNN“¸»ÌI1¸¼à¾½>VÄl¯ž˜~ñ[ðýõ0º“@*¾•®õ`ñ@OU n_‹—‹zº—Û«ÖÿÅ+g1•ùI\ ËÛõ.Ÿ`šÚ%/í"×à-^„\~µ¡ •°ÿ˜xKp oÌc½ÚVQÓÊ×”[4&•6+[«âWlš”0±C>–‡ÌúÁbçêÿþí…ŸûýÕÈñÙHKòÝÕ“šì’â4ÒÜŽÛ8<ųq–?¾0†ÀlˆîÃg˜Ôk¸¿ßø{‘Mr²M:ûxÁh’)À#П0â%a$DxÁ_.8u¦ö:’W"»®R×¢A(—t E…%&­Q•+l2Î1Å áhòbÅ´ôPÙ7VO=H°x·Ýàá™Ji N#©!#¢Ýþá×ûsϰú÷±ðÈ}’6æà3òõ0Є»·N­Š˜8lF°ð‡=£¾ã6ßXY3¤] î†ßÃÁ·f=o»Xsã’° s»Cæ, !Ìc=„À—ù ÙËŽ­?l=d±³Ò 'bÐÿè§ÇsÎEMÄTPöúpÑÙ‡¿ü×?~uÚàkWØÅ‡º“J“¡•x:6ÁLá,È&<#å b$–\ù$‰ï3W©Ñf¢L¹Ò¨.ÈÍÓëóøãE· ¢jT¦«V²ÒbåþB]YjTWx¸¢¼Àh$³FÚ¨ÊÊÊÑiù I)êD”ŽÔ¹»,¬4¹0>!oKD”–½IÃÂLñ©“"íœC81ô 'œJÒ†D¦ÅS‡Ë„³.Žöˆ…Ì Ç#n+ÞbKªj3nfÜʰiliåéÅ;P;nØŒ¾1Ñʼn|zÁ¶£È˜×"Óšµyj¥2+eö‘ådåhH3,õº3Ïãi鱕‡În¿Ýã jÛßÜp´¶ú :§Öí*ßQo™RZ°ÃBâT´§’Ljw^{VמZÎ[Tû6’ʲºc -B…†ò}ÿ”嚈ÊÒå­†–d›XáJC¤dT{ÐîðåsH2u÷H&Žù}uÍúÃb„ ׺ûK8z¤ˆl[IÀ£÷ðpççŽêï¸Ø÷@îùqÁQj!š„mêïß#Þ ¬¥¯: ž£S–Ö_8Y_U×ã@åöMDvs4Âl|‹¾çÙŸÛÉ ŸV}Šä5ûvlruc!ø.Ùäñ@qêrÍz2ÉOÆ~º|õúÄeËùŒñ•«Èˆ—¼j¥s®}ÏþÛûÄÕâ%îùëáÜ)jxÈ¿6ÓÀ»oèpJœ}[ s<u6s ¢õ…´¥# :~ަñ“Rá‚i6³ ¿Ùœs’ã4ôãpWlÐi²5H+O/P—˜ÖR¢¡‚vÛ%c¹àòÛfš˜Iú …sí¹Ó¼BbÞ(äÞtBíýÝØ“ 2ðÜ–ûxíúÕ›+…LSC}ã¡]{7:¶‹'ÈmC›àa“·x^r¦C†tŸ%׆c¯D·†o䨷趠­rìszî3ðú $0¬–Ç×䊯¹ÙÐr°îhE#bo×-í¯Û¦Ý)$ß=o㬘ä[ccRÖ vf쩟öçW¹R\".E/‹HÑdªQº<Ó”i6Q¬‡žXÒ^ì˜KÜÏ m¯{ÔŽ¹D ïq®éÍ9楫”©Y<îó¯Ñ®Œ”;`/¶tÀNè}„\¹Ÿè™ÌÎé ¯¾‚ 0¡¥I~®ÕöWtšýrö•ñóBã—/çwlOˆE VM†ÛB“±Äļ|§é6b¯ž^¹k+–öŒ;wÀäô0™È3e÷ÝdGfª7ЯqõÕ9Îö3qœºŒî°÷ÂO MÜÍ'¦©ö «4i,fCnQ1´î´õ#lÔ„4jA£ÍR#5ëˆ'/ýöýÍųß5h|ßÈeõkxM~V®±{222öe|¢Z¶5¥†XRØ»¾êüÆã¡ûˆC¬½• p¾áTDb’6nˆOÛ‰(3{•¢¡¬ü$+B:CBy²9mDÛ«b¶Å+3È@ä€ÒdÌ3[øsç‹ÌûQ9*WÚ’N-¶fB‡Ñ‘ŠcöêJK²°æL“ª£‚t·Ã+rßPÒöÆãîo½ˆrëGsº“.Ñú: ã˜Ç"Oað•v™r% ‡íNcàSÒ8W2NXá‘&“ $–WHƒÖ™Ä.9ªsŒë9ÙHG W5fdDù¹ÅÆ–½Ç‹;›VÍZ«øhGŒ¶1E¢e•1MSV®±éÂt[Òá¡~DZôãÂ?Agè ½ŸFžµ:F•¸Ð•/pÒ!6‡*˜ˆ É å ¿¬8uäÔÅg ¹ñYQ¹Îâ¨9ùˆ-*,**ßX²n܈u³gc&,Åþs,î|aÊ÷àó+0à÷í¢K“f,X;.œ×DqµM¥e õM„•ì¹Æó6*lýáki‚v_Ž!»Á¡`96ÑNn?)6rx_{AVf¶–(‰#H…Æü23Ÿˆe%×èöw˜´ÉDLµH'ïx²æñ¦:š;´5€Žä~ŸÆCvHh, ýí¸ÎÕ––XKëªN ãìW¡çÇbIÏAÁ+önjÝÌމ AÙ±WÃþD!^ürz›}Ñ>ʹÍ«L4gäÜö³_θ†n"è> é2ªˆ 2±¤2*ïúEoøÌqhzÆr«^'S4… I&N> stream xœí}ݯ\Éqß;‘ÿ!ƒ s srNwŸsºØÈFI€%:yüÀ%)j^^šww¥}ñßîúúUUçÒÔzmFv8US]]Ý]§¾ºæÜ8-—õ´ðÿöï«ûgåÒÆéÏ–Óß<Û×õ²­åtlûzéûéþÙ1–KoŽx÷ìWÏú±^޾žŽ½-—ZˆÈ1}—}ª­ôzÙZ¢rL¦ª{»´ž&ܶV/Ì+ͱúè—c © ÎBíµ_Ú>’P}=.}Y'¡‚ ˜‰Ê„òé Sšo9½}öÏVÙÊ“ýóêþô?_<ûo¿¬Ëi\Æ^öÓ‹ß>Óm^O+mÃÚhõËqYËvzqÿì×çýîyie©çŸßÑ&-ý8Êùß=_.ËèK)ãü+öe©üq¹´u߯¡$ëRFiç_üÍÝóZËeïÛùÿÞ­´S˺žò³¿û©-½­Ê†FŽ:þþÅÿaK±]:íæ‹Ÿ={ñg¿>ÿòŽX,co翺{¾•r}=¿säKÿô½zðOßú§oüÓoÎþñþ› ü蟾öO¼ÅfõO៪úóûý Þ!ì‚ð/ãc0ÿÍ]þÈG»;¶mýìV}pä»sÞÜ–¯>;$>½öOb¾¼uJ1æíÑñí£zskÿbÈ­ózysÿ¾JB^mß¹goHþêÆàïn° õºO\níè9™ý}T5?¶þÛlé¿w%ýé‹g˦lñe;N[iûå —QŽKÙÉl6råôñÍéÿÞ?Û.[m#÷¹žè\N¿7ZÖ£]v»×ã²7ò i½ZYû"Ü÷m¹[_Ñ€±]–eY.£‡u v§àPyϘBAž2€À¥6ó*^‘Û+ä\.õ´Õeã¡÷X 1'ˆ¼Û`<%Ĺ€4åRWfåß3ç£*w¡WL!Ï[·“'×wi[L`00 œBås“üº$Ú·¶Ÿ¶£/² éÀ+XöKexÔËÊðJCw˜§,Ë¥'‚B “Æ\”V!R®C6H‡î»îž±©1·}Ñ0:IÎKY1¨+ÅNµÓj¦_öãR¤£Ý$i(&1ð‘×zÙ÷ø¾ŽË¶Çh…½Ðfk—UØøÖ/%O 0€ €€à0/ANˆB˲Ñ:Òš.0ëNñ©*EUƒáB¦‘vj]·ËÚfe§'¿%‚ÒY|¼:‚"Ïí„Ñ;=Rûì fzÀ)\dc0/AO«o—Á“l;™9-`öÊè:ÅÀÞ ‚‡rQØ4¤tÇ ]¸rXçÄ0xµSp wmi…ùÈ ( ¥r¸^‡™„ÕÇi_·qib(CºL¡7Áƒ•w_ÙÎ2<˜$­K½Œ5(ê28 wë2˜r)íȆזæP˜&¤…Ë­®Ö¡êHëÝXEéßuu†Œs!-æÝ'¸ —•‡Õa1Öºg  •’=‡uÌAfœ÷ (Ï!³s(,.Ĥ¤4Wë0cH—Æ4³¯jé<¿©ÖÛå¨n ×/KMdXPgà°L!VÞ0”w‰ƒÃÖU‰m E‡M@F0˜W¡§FgÏ®¢“N좑ŽYÛÑ™*Ád£œ–3ØÙð™…£%€ua˜cˆ!tœÁn-æ0X4C¥¤‡«uè©–µå>a ‘ä*ޤoa¯ ‘aÓŒ‚,år$€]#}èæ„FáR‡«uèÚê.c^»¬ ˜Õ(ýõ!yv†Sf}ÙŽËÒÅÎa`âXçàŽY8àµñyÆ óH —Û8Ìëpô"ÖFNqás 9Nrƒw‰Ñ6Jñ Ãä_Hó“uf=à0< ‡àà°Î!#€Y™Wp ‹B§s(üêYH —[9\­Ãœöàˆ+[I` Q¤/eËWØÆf,ãr$‚JÎ570ÒÐG uûPGà k‚Á¼uÚDKÁqÄ"ÑX‚àC" 5È.S,US,"õØÅ8$jr€,$Œ„ÎÁ ŸÃ—Â)\nã0¯c HêAªZr@RÉ Ž-’Jn³§`ÁàÆÃ ã°Î‘’J!LT aö4…€)Á÷Q‡_/BmE.#×ûŒáÈVgu¦÷ÊÓ¾n“9Çâß‹ˆˆÑ®ˀѨ6ÆkÔ . @Áa^‚9ë¦8–åŒx!¶åF±,KŸð}•R­vЗ „Âx bYæ%¨å w/\Ârã¾hg» ƒ% a9šxÏ  ønŠÐ‡ñ?8À8`Ž0 ŒIéögZ‡™®^ñUÂHxä²…Oþ¨{€E˜®¾ í!ûY°ö UÃà ñSÌ+¤¤‡y“ùðs Œîº?ºv*þlǹááǹÁ8àÜöss bpÐS‰9pn!( ¥r¸^‡®\ E)*[™û„9*ÇÝëh+gCÞ‚;gC€y^Š68w ÕùàXçàÀPöQŽSpØH4‡Â<R€R‚ü}Þ8baͦ¨ºyÞ€!µ}v‰—VŽašÃü,lÊ×)8Òª‰`ƒGCçE±CpàñHs(lÏ´H H ó:tmVòâN€ZœA µ«‘EmE4 È/¹‡ ר£¾ãÓÛ×£“ðª…tªtŠ F#Y‚Çe=<Ò% ¢(p¤X˜žÜ*%5§ mÜJâqjÂH$4Ò9 ‡ p¹Ã¼][ÛÄS¤À „E=·G ›x–)®bAJ" },%GfG\勊ŒƒGM:E «L'p©Á¼ ­…”Mσ"ô­H-Ä1ƒ/K©+?­ÛA£9W(µsÅ0+}ê%Q¬ëÎÁa™ƒGCs±¢‚…èy™"Ø÷ÐFÏKeU:\.NFBíK‡+wÙ#]®tÜl¾"¡®›>²N±ë#î{B Òap@ºŒ9"¡†NaR:‡ySÀØ´ÂzŸ1RZðx­i)Â#:ƒSÌè:‡eŽ5V26R:6•ÌFm1‡Á)jt “Ò9ÌëÐsãÒàzÚ—&¶ê>c:ø ‡Ò•aÚ[.r(Í·æóžR4OCPP´¿ï‰ƒÃ‹KŽá 1Ÿ,8à0=æPXNÚ¤¤‡yfîÉ!ŽFbÚ•âš5y)‘y=\ì½Æ5ö=m æU::@DÄŽ±xÖÇ[¼ëxD쀂ü„Yí¬[O‘Õ¾P ÓW¬>4–ШpDVÀ n‡€uŽˆ¬vV»ºŸ‚Y–¶§9ŽÈ*( ¥r¸^‡ªã²i\íѾc,æ«ëªWòåQ‹ØžU¥lzí ¾&JÕ/‡=jtŒEÎÁbyŸÃ£}—æuLÕÔL=Ž÷sØõ”V2I«õ~JK¦jªX­Ô8,S¤jê&¹€ §˜‚ÿS)Õ `Ï˜Ç `#X[ºÜ¹/õp#ØÒ ÁéÐ)ì’Ï9lS¤kÀÖ»D“àк¸oŸÃàt è&5L‹Ðg¬h¼¹µ¢]? 34œ å ýwé ³áÙ–è»ëÚAÁæ±'ËO¦òUò)8”Áús(lWt"( %8Ìë°dÈ,¬Z_51 íÏ"ñ@“Œ°Óñ…X¡ÑÅA @(.¨‰€S‘4Þ@@ÂEì‡Þî`8Y5¹ý1þ Jüa€‚Á¼„9†.:ÆTÉQS5U]=˜u v‚_¨J`T—"VU‹pÊá0( 78ÌëPOFë–èÁŸ3`ð˜¬Öª‘$ù9ãlã(‰`ˆã Çsæ{LÀO‘MdpH ó*¦ j.c%«]z d.‰¤ jI´>ê^‘|ã%©äq]ðHÔ(˜”^™Ö¡Å[ûšu`ÌÍòƒ~™¹H~ºìR( Š}dO°ûiǘŸvê…cøi æUL…+oi Œv¤D Z;V¢Fž/;¡§e)ô´8ì=-‘–”à -+1šZB P¸ÜÆa^‡žÚÚ´‹ÁCÇà:¶h§…_×rL:®`¿œ‚ wO…+‡ãB\肃>‡‡ .( %8Ìë0;Ru‡¢¸Œ—f††>(ÝP$.rEq‡CÖ\þ¡p`Éå!ÀQÜ¥p@ésDqR€R‚ü EHËÔâëë@Æ„¶dTÑÂÕžh+óx½/ÄÚÖa£Ñõáe~ï ñB?(\dc0/A—E›³—hHrЊzÑÔýF]šrCÙº¥¥ªüÑRÕËa)Z9ˆ¶" ·®#ð÷®$`ßC> OâOëñÚi`´òé­2êSzíÔed‡Q× ŒV>ƒƒVFcÔNC P@Jp˜×¡¦ƒ"äZs¡ 0šæ—URq/à!ŽB?è{*Pr¢Ý àà0 À Í”0G …S˜”Îa^Ç”½DÝ*0Zuò†5«J¡ÍËVH?œÀrgà0ÊVŽÑ“3в&@Õʰ¯!Ÿ ž`¶~ÑN1·ޱgž[4zj#C-WTa3¸VÆ)ºSTM6œ`7ÑÇ`0GHá.·q˜×a—+ç„96ŒG³$GÝR´Kžw;¦x˜ œ‰€ì×1Ô §pfWí²X×fHѰÉà æU¨£ÝfÜ.†ûŒÒÒÛý2'L¸ü7PšvQ,'  „ ¢ÎÀa™Bî Ãex¶1à°wµ96…‚è1<dƒys‰- ÑŽÈеÁÃSxt€DŽÀ0º3Fú7‚ƒöwøh @àRƒy¼2i¢n‰”ýDG;8'ªÐæ¯wçöÏwQ¯ƒûÜWïÀæG•6’mºaÞiÏëU`X¸"Tdý«äŸÁË1‰êŠž1¨>÷ÓŸô–6¨S¦šûÓ9n"MZ¹ tèoè1¾{¾îôU;΄7`klщ}蔆,róÌØYÿdnU­ƒf¢ û*ÃLTnöÊ0• ‘ˆBª/Û$Þ ç¼S´|²xô=E¥!²KíK 9àvÞÓçC>¯|}vî˭튶ý•"MoÛB3×…ëÛµfþ€³æøŸ´¯Ñ¿ m­âüîáíë‡Ç7w/~ŸV»Y«›$в֯îè±[–±Ñ€‡×bQ,pé””:ÿaë_ô{„ºPÔÄ5£Zä ä>cÄz×…¶ƒÓ¢ÊÕ¥F0m÷·üêYåÞ=.À€båþÓ¶‹—ÀpKw92­¤9¦.( ¥q¸Z‡о ½ò åw†¡8]eßÑTä§SÌ(×( “yë}Ñ‹Pô]ÊΰÎ!#€)’9:N‰|…y¤…ËmæuðÚ*—Wºô-;·À N‡¦(Vz=$L¨bjºÃ| äïjð u‰ñ;4 6©fûh.ß­‰½ÂÌ€‚Á¼]VÑØÆ,0ºátÞÚ6kB°mެr{€üÒ´s3ŽsŒíLÙðà sàÈB P¸ÜÆa^‡®m“k ¬Å¥Þ¦-ÒmX×½ÙMáÊÿÒ­vO(°ì)ß6—4Òxm&‚6Wö´Á\A&¶Ùñ½‹«ƒgéeE‚éEBÀ•+÷#AbmÕŠÔkãĉ`+b+L³6Šÿ¹Væ$rmÍ98¼j=Å1p¡½‹}ƒy„Iá&¥s˜×¡§Å[Ì'È=-`¸nû½jÚÈ;"»O‘zÙ-Y9 ŽoGâXç†990à²NMS(Ì ( ¤1˜W!f‘Ýp7ƒ¤õcÇÐsÀ¹Ø ‹ptÕ^¾ÒT©Ù«¡w>ñõØ™y ì¿¥p =Hláœy .ë 09æÇ×ÃçLçÅg\[>/Ž`¶#΋O¹í±™§ór ; çXçHçÕúj–B9°M-%æ08˜S¸ÜÆa^‡žØfÃÜd©'昃ëz´#‹f‰­JÝvpuÝAÙÒ&WN@^©•ÄÀágL©\  ´Î%0…‚<2€2‚Á¼ 9µeÑlwãúá&á0Ôpø±Ø¥!÷jpøAvBì…»4E9¤=Ó9Ö9d„a('é<€£¤9ææuLÉ–m4’r±u®‘±I#Î Ó7çXçH¹-»Hšuz)³Ö/“F:¤‡y³Ÿ_f÷Eæ!ÝU™M¾Ì¼¬S˜vðÊáΣ. nÚ¼´;48iûÞeÖÑóôA£cfN¦Ø6JÔ‹‰í³NÞdé¨Xyœ‚»ƒGâ8¬#00oàó‡9Â@B P@Jp˜×¡±&±‡A÷ Ó‹Åé+SËEî.p—KƒEUô÷NÁNOë<Já$Ò úZMs(,¹Ia.¥q¸ZÇ쬵i/;k B[vÖ]ÒÙð¤}sSn¾æ˜}K®šŽ=?ggW ˆ(ÃçÌŽšN¹ÍŽš»%ä¨éœwwÔ dG¯Ý1ÛpwËÕÒÇÐÃQ²£.ÒÞo(5¾†|>¯@õ_I"=¢r÷xŸ0Ú’F°v 6ý%U]¬AÑ`6ÇlZ¢ àt´Ä°Î!# S_þ‡"š1‡Â<R€R‚ü]…ÐR- w œ‘ÞȆ³:ô(¹³®7ENAG …Ypî 8#p€³ÂáÎ ( %8Ìë˜2ΨÆò|Kø¼`)aªhÎË(1ÞÁeÎ8½J`£­àì½Hà€‚Á¼]VzeÅ'rdŽ¡8ØQ 14ïlÊ*ÿ ó賜«Þi:¹Ä Î ôŠà*l=Åp¾›©i…eßL£pÃÕ"Ôz”¢õù!ýl÷ÓåR}”®oqXš\¹ð/úp˜Ÿoþ]wImèïÁÁáU{Ó%„råž$¹Ïa°øK•Â) %8ÌëCcƒ¶m99sŒ¥Vœˆs´ŠÔ‹îÉí)—¸Û)Èòö#qìÉ™c4·r–zùžœ¹ €Æ`^EöÒ;·7Èk4³J9üãÎ}lGxiÀ᥃B}pp¬s$/Í­0âûÌKs…ø>óÒ'/ xep¸Z‡žyt)!xqÇ1Vš©äãSýv|ËÕ7ÞRþ=i"°ŸŸ:À^Û ŒVfÀÀ 7>ƒ—v\P¸ÔÆ`^…žZ“Ø$…úޱ@Û¡K‰@ž‹ÊmË¡þ²Ûs ¾JÉ‚Ãê;Æuç`¼Ï᡾K H ó:ÔŽð»F*ò$Œv {›€•pʰ÷ D‘g±7 È³Ø Pä E`P¢´a/ò¸NaR‡ëuè¹­²nJAæ~Ÿ1¢”±W¯a¦ä•ÛU –8A4>(Èâ•–88¼˜YpÌBnðä êàŸù J¶ª"à{Hh£ç%ȲJ•WÉø•h äB³r‹å6ü³rÓ—\gâJ´–McU§ØµeÂ98l÷•ÑÍà 7ž1îDC P˜`0-bVErGT‘ÛÇ·¤ŠÜn¾%UT8«¢bBõ”CÀ:GRŬøš¸í·“Å 'Mt ›\¯b^ ‘ãDUY­‚)ye ç•)&É]U1ëyeo5-m“Ä ç¥R*‡ëuLfŸiUGÇPδ$³Ï¡ôØÂ(fß Ì¨;À:E2ûÖ&0 §„uÍgP8™}§€Œ`0¯BÍ. F3¬¸¶Ò ,.¶£ÅÕ—QøÕ˜qp)TºNÛµ‚š„ÅHÓB Pøe™r¸ZÇ”RwZW6}MÕ«NökIõTƒSJí–0;À:GJ©åW_kdÕü«¯#ÕØ NYµS@Jp˜×1§i\1šÓ4.)å4m“E µU8_$Y @ž¶ <ŸŽ)Ü0¸•Ó4…sš —Û8Ìë˜Ò4~Bû–Ó´M볞%q³Ú²Eep¤i °4 ãꑦmM´ÌGWQª`¯pJÓœ‚Á¼„©jÐWùó}Æt—,_ï¤"kªœªNa5çàðª?f Ì"oyuÇ_Rø§ªS@Jp˜×‘3µôF,ÇØû¬,Gò÷]Y•ÞˆeyVPhû±£ï³rö¾+Ÿ#ê”.·q˜×¡êÈN~›Ô¨#Åœ-«ã¶iê¸kä0ŒÄ°k¤c Qàá“æuLEpϰFòc¯@[þì%jϰ½†íVâv[ö̓åÏ>‡gØ.…S@Jp˜×1$Ñ;áë|@(€Î ‘«!œ@²†pɚÞ¬Fs-ç`>‡÷N¸ p¹µwâjÚÒšf9ÐÉÀ¨F•¾-š'©Æ|d•ž–µ´ôC¯ïC_£TãbèdH H ó:¦ µctd¢†éü+Ä=.ÔØ•=.» NjNa×eÎÁ`›#]¨ñ©ÇjG—9ŸÃàt¡æ.·q˜×ñ£´ ò ¯åwÞÄWùõ¢{Ú?¥ Lj„*•c‚Ê MÌè˜Du%E–ë_Ò\X:ÿT¾ÍÍ…Ü6·ò¯K‘¶9ý<¤møÜ6çÝe©‹J1ûª¯ôÔMû„êú3Qù%½Sf¢â‹äV3•a&*.ºj=¨ 3Qù­—S&SEÕ TÀLT¶îD•vâOlm,$×~9,àׇKÿ'ÅB_´q.ú™ôb;W|îë¹%š-Ñì Ü:Æ©û±}ÒýX6úž›§îÇO°?]ùGÐcäæGokÜZjkŒ!K:¸õ§VññÍ«‡»•·ŒÖúÝ7_ß¿™{!kòûÚònæV(fK}Š÷#•ÔÆo Å}qoüËïuM7^k¢(ö\€ƒÃv½¤z‰sàš#¤0 —Ò8\­ƒmgã7àìkz>£Þ¸É[­ÜY7+ŽšÜyã¾Ô‘)öÅ^¯f ÃÕ&Œ8ãà Î:æ€;w!@àRƒyº2JìäWè„LédlÜ¿ïÞèØ¸[¿Ô IÓêМbÓçà°µ*F›ƒƒ6;Æh‡ )@)Áa^‡¬_®Rsk`lÓåç"Qoüö––+æ_ï’â²ÆoÉçî°[`t׃ŠÏáÇæR€Âå6ó:ôܤ]û-$ޱ&o ’Æ?¢¨Gj!‘=ÝF¢¨›¶_ƒÁÞã‘0Üâ ´EÄg@ ‰‹€ï]f=/A–Õýý¢—ËFŠÝfÑ --†·V–T+'ðШ_W»AÃp‡­Ží«t;«„ë^(÷ùýk“χÏ+UUšœ]¿p Œ^—‘™j’rÙu™µ"~áF˜Ø-¡¨[î§ ×a‘û²` ×i1.ÜBP@Hc0¯Â #»™S´üFvüQ¶†Խ凌^†9…ò"(8F*mØ ÚÐs å'¤¤‡yj>Ö>÷DF;›üº,z"ýAöžHØ¢5ÿݾpŒ~Å„Y'sa>‡÷DºNár‡yznœhµÔ™0ÒÒÈGŠ7Öòظ¬´î©)²ñK ¸Úèܺ?‡œ0ÚÓ´ç1æ@WdH H ó:$‰Vá6ÇXÿ©§&~wþÔ9´3 ø`©Åaï"qŒõ€8ëÁÞDâ2€2‚Á¼ ÕHŽs÷S\”F¯9E[¶èTçÓOqQJëu .Ò­‰`\bF¯9ƒƒ^ƒÆ¸( )@)Áa^‡¬_Q}”ìЀqw´,Ú2wµè Y’C[­3Ý]žu®ƒƒÁÉ¡9F]’1p‡¥3„C3ìûYF_-aöÓa yƒ“„ùƒ  7 xa7±‡æ `þ0GHH H ó:̈ˆ Evíh”ºDO¤<ð-÷D6®oï#QŒªuhpŒ~ÅÀhGcpЎǘ=‘!( %8ÌëÐGŒšEëECG ¤Ÿ±ñ…,~|P%.ÜM36ò½j;(öaÞÔ88\`ÈÙåk®ýŽ1:"CP˜„2zß4qÕô×mÑ˲Pw½L‹§×m¢7e$ŠÒ-r5€q½, z™sàº-¤¤‡yj<ÈDIl‹®ÈÀhOc“7HDÏcãLÈ 'º" £Uo§ g\Þـѱíi Úós +2¤¤‡yª‰üCÓ’ÜY`Ô‰ªÈ{çÕ[Qk-çðg„Q¾NÑUçÎ&0ꎂƒº«˜-¤¤‡yº¶ÿÀ5ƒFAª¼d­‘ÑÎÆÖöª?ÖÆÇÖŽEôÇ[#¿vI^s Š®{ì£s10í}Œ9ÐR€R‚üŽÉòûÝMÂÈÍ‹Û\»™q«ìw7n·ÂìºspØîU£7/ÎÁnf|¿»q)œR‚ü=·¾«÷dÍ1–jµ¡·HÅÚþ[MÖ6ü‚À(6üâÀ88ìÉšc4×r–Šùž¬¹ €Êàj–†®¼Q§ Œö66Ñïè}ÔŒpMÝ‘ô쬅¾/8Fç"0èmô>bŽèŽ„A¡R‡ysœ:`P`C„ƒb (Ñ!J¢(pð¸ËKtޱ 8 ‡9¢D)@ár‡yS’a¿c,hGz‹  p„ýH‘ÂRhçØÃ~ÇXÐî,¨÷9<ìw)@)Áa^ÇTY‚O`´bcEMtPõŒ’ê¢NauSgà0J>À f¨é`ލú˜N`2:ƒy“ØOÑ™0Ò,Õkò³ÞG‰ä¥èŽÔ"ö{I0pغ#í¯½Î½‘.¾‡|6x^€šRSæïÍ‘ #½ëkv­÷‘"y}ftG6~¼Ž–(»ù‡­w10ÚÜ´÷1æ@wdH H ó:ôÀøMÉÖ#hA$0ÚÝØøEV©?²ñ«®ŽS´GR¸çöÈÆïÊJí‘£y1aø¤‚6?ú èŽ @àBëøy d-útGF{ÿù6Œ›]§hŽ”ˆh©‰@Þýi£@Ë¢ÚѵãÑ9£%2¦6Í\ ¯J¸Ë%[´DF;EAúê­v-yKdã÷u•=Q {›8FÃb`´¥18hËc̦Èæuü‡ÏÒj=ä Þmilµé-޵<Òc*K!š"ýÁv ~íÂH£a10ÚÒ´å1æ@SdH H ó:ô!ë°ySd`´¥±ñNòhHË#= ‹½ÓØš"›eA¡Ù…sp ‹ #-ÁA[c4E†Fr+‡«u¨NŽáÍ]ë<Àh¿N“¿™xB;Oã—â­Ñ$5jëÞ«É–F3N`´]'8h;ŎÂ\FcpµŠieÞ™0]3cejM>«·Eº\Nar;‡­e10ÚÔè¬éÑçð¶H—Ñ\­Âž5ù‹ Ñíi$Xÿ0€õô s¸Bº €”à0¯Ãέ©Ú{f͋ي˛O-oæ?Ì!ïFõÌšÿtÇžv  1 Òj ,'¶ÑH™Á>’jà æ%X0Üä-³‘ž9Æ’«…ÿþHºŠ_(5ïÓU<÷å¬é*~éé^OÌ ÔœÊZÎå¬=+óÉAáâ‡Y|»Œzº®…ŽQÃÅŒ.NÂ,îúq§ØõäÎp˜E``Áfs„Y„ €”à0¯cz¼Ò1ÖÅèºm]Ž®ýÞéχSØóã öÅ„‘.Fç`]Ž>‡÷AºNár‡y?J$eGrÏý†ÍÊ<¹ò•c¢+±ÉŸ­Í½‹ITWüóŒÿ’ÇJ~£±òü€×'z«XüÕ0¹ïÕ®ÈÔØèTñö!P¥ÆF§òÆF§JNåN•*^çªÔØè+ŠŸUnl¼^w¢úá•ïîÅâü+w6Þjù»õ^Grò“°ý½Žœíœ1ü3ïu¬d´W©±ü ·Yû‰ÒØÂŠü~ÉCþìG£i–bþ×wäé( ØÇùkù¸­[=¿ýöî9yÌ1–²?2~ôc?ÎoîžW>®¾éúUd¢õïiZr(m«<ù‹×4Ó¯˜å²Rº¿¶ó+Ë®¨ç—Ìf!·ÔÏß0É>ÆqÐGЉûQxRàãáB¾d8Îïˆj[ZÇù!³á¿…Õ÷²žIàF§·ôLð[Å›Lû»,à%)ËžeM<N´ôó“2eÉuAüSŠ'x¿dâ±0Á#³è”DOd-üJ¾•äpZ_Ëö¹µ€‰Ó¤;©,ÅvL_ݱ?©½îç·N• iÛ)¹4ò×y¢—7Ï a/¢VD¾e½‘Q¡d­Êóò¼âïä¤hE¤|ôÄÈ?ÿú=ã—ûÓ‚Ïë#iÉÆéÀèç¿ý–¾Y‹|uþù›×_¿|÷¼ð‹È—B0C:®ëÇ×è˜ÂŽüüå/:âü‹ŸüçGYp­&)Zô&Ec?aüòXÆÈikðqw‚Cl,ßæÝ²Yl©Ê80æ…œMB1õïÂlñ#Àõ|²ÜÿÉ•÷½EäzØÐ<çPð-à ùNÅ·N{¯º»¬cíÙWúXÎ5Tè”ÿdÉ–íNMªaÊJqÎ~e˜ß±µvþ6žÚwñ8%Å|ÄBÛTZ{7kÐù/Y[¿§¾ô ½ý.éà†iíÄWäøN yÒ2b#’ó³ã«Oèk³#“×üZÅØú>O(bP̶‡7k?ÖIº§-o@ßðè‹EzPtÀ‡î=ͱo“Ñz':Å]%•rAXªäG¾fâ¾ÔƒvéA­$yãêQÔ±$üû;1l`7¶ÃT¹5þž§'³ÕûsVX!nK#¥‰çãë¬aÉu‰Ù˜x'ƒø•«ÿ;™šD£ó¢¨‹–ãÀÇU½#m2¿Éþ@AãaJÊŸN„çz×z好/‡ú™ûÉGlÒŠ/Øe“Ùwy|‘søA›¬±ÅJÑó™’15IÄšR‰GÓÍNVÑ󗬼—ï…×ûÒv³{²K™:™™+GösÌ ›US4ö¹´ßWvƒï(þG¬ô€¤ÍªX/.¾†'›ø¨ÌHøóoãÐR°—".;/² y_ãÄþ"”ó)·||Ö+ÿᆛ ×ù»/õÔÉ‹ÞrË?ÏçÝ!ñéõççû7 ¾uäc"¼ü—Ï qc-ïnLýÍ Ü忯nÈP¨ñQG7£Žç’ÌÜÝR+dHÿ>õê–6½½¡M7öîæáÿ ûœ†!ˆØH³ÄP3òÅï?--ÍsW:6´“ÊqÐv+Ðe-»ÊÄùL9Ηü‘ks5E¬ÙÉæ€C-uÝÖ–ˆß)³ƒ,ïÛx½üÖY½Š°›"]™º­›¸a‘hö–SÊ-¿¹¢IžÎ‘¹ŸžfѸË"ŽGØò÷×Þƒ»ýóQ뇴áp¾ÑùÈ>•§0#mƱ‹erU)™v®psŠ8I‹éÛ‘7+/ZYâMžê'ïSà\ã7šˆ¯_° „Èqd¨@ž%"MÔmüÜV5Í::EtS~õö– ¥µ®4rųúò†éø˜žÁóZ X]4À |ç3 ¡.³y„ô¤µêßžÓc’Ò6Ö#–¢ÓþÉŠ$×ãú9аi?¿Uê¾Ká…ßå ó“áÖU‚%•“ÝJî{™Ÿç·×Aøh\”÷í²z»iëe޼ž7n]®åÅç¿k)’/lü~…‚¼jY)©{Ïq8Í3äa±4píÇ>æ\'¼5#rìEŸœÿ€uM¶g "ùe}:W²÷Î Ÿº¹Ç‰Á÷:éñe‰“òz¯œˆÝŸì]œØU¥3§ÕÌdëG–#mûW·55ò¸9¥fãÇÏèp@/³Ýz­n”ߺ†çø*9òìû!2¿É~Î)÷wîž“›çÍYòU½„5òà‚Ãs¾éï£JÞspqbÍKÏOâ{%ÞW~eˆ•N¾7”¿Fé)Îm}y;÷VŒ¾‰ÿ“¶.ôðJùûÉ‹»:¥Útb{ÓßÉþ±«™ Ý·…‘……Ó|®³4Ç“O’†tæ”þ=QðzÂu<`'—Ét>Hæ9hã¯kÐþˆøfS0œ«f)Êi0þ¿îøw>û^«Ö•L%_~S_Zøç“£ÝJÇ“_Uµöœ0,|¿å5¦ÿ‘üRú|ó â_‡(°ôu]°Üí êÊ~SàöE¥)U†£í3ú»;²%$­<½é1áfö±sE+?`÷¼ÇK­k³ç^UêµÝI©¯ “…ŒÎSå£ñ›ýó£-jÝò¢R¥3ŠW9Â|-3±˜†%_6;û(h¾ý6Ô{.bkáïÅM”KŒemrÒøê…w¾–büëýøÄiÇ~¾d)ÜÕg‚ˆu)r•ø¨Ä\á~b›ÓrÚËJ»ñ½²àÿCÒ’”}„qœ¾71¯j‹~ìÂ+<¤Ôi®ÙËVQº©Z±ã©Xó½RÝ:?$®‘>öñTd*+™…ãÓ¢6ʹé™sIÙ“²AKo“Æ$&¿S™¶/Ê«É^T5¸ì¸é43©›T%;¡ITË›ßrÚü85SíP3•ó.œn®7깋žpS,ß ä›’›Õti…ò0Îh¦nm_g'„ò÷U¸š®6Ú›ÊÛqS¾Öü¨ÄûhW[•7m³ÆL"ðdIeWÌ$|Oü>6˜ÿ®ìŽqÌEjQÚý…}½Âò £–)·OÑBªó¾LV'ß(‹A:ž‹ÂØ¡>&=SßSÇѤJ/ÒoŃj¿%(Ún_]¿›6K—ׯL)b« î¹o“Ì^õ—‘¡Üpë”PÒSÆš‰Él×c½æø‹Éüë¼åÜ÷²UáßOÍÈ£¢k¿‹¦ÏJ²]Õ1R`î}Ë–,%Â$V#;®,™wn<êÚúTµäÚÒ|ì⦋Oá°”'r­¢Âü3Ãó'6)Çž9<éöíûÛW«Od>O†ò¼ˆ1öOm™hß·i‹ß„q÷Òv&/oîOJœ#>ëÐû'hèendstream endobj 123 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 2527 >> stream xœVkTçžea œ`5¡õŽÑm«†Æ%Šwˆ  ¸€ÜQØå¾»ï®²î×–V.¹‰@ˆV=ÁVcã­IMbŽÓØø.ýüÑY4='5mgæÇü˜y¿ï}.ïó‰([J$ÙymÙ±Òú2ˆvâÚD–HÄ ±­xEæ‚ìÔœû_¢¬×ŒØ¸ƒ ‰IÉ…„†íFFùÈb$‹Ï_@QÛ¨íÔÛ”µ“ò¥vQ”µ†ò¢Þ¢ÖRë(oj=µÚHý†ÚBm¥b('Ê™šB9P3…õ)[ê8õ(Eô©ÚfL¼Tœ+~b[dçbk7nïcßOç3/1²)3§ø;ðg>tøÖq«c“Eéd³ÅΜntAÛkqÍ͵·b ûÝŸÏ^mµ¦ú¡T=¤:#™e¦ý!ÔfwÒð14ŵ%5†—î†Å°o]z£¶w½þ&sv2úraΞÔüÇBÐË;YŠ£¨é¶ß[R1ŠE·YãÄ™¸Îu'ÓÈÔñù茮¡3GRˆ?»BŒIïÆw©‡ N¨±³yðLy;ŒB皨º?„@¼˜ŒÐ-ÙeÆW–—Íi.¯aí7×½¸?g[ߩ鿯ù×Eì½—½ÞЖÈgÔ€ªoÛ†øÖè€AG´ùÝÐeÁ×ÄÁwwrh8ïÚr‘&ó­}^ÑåîãŸDþTŸs¿‡üñ•ÇŸY_‡‡ÙÎbœ‡öœšV©È!‘9hH«3Ô•7ŸˆiÚ²%‰³":N“_ý¢CÚRÍ œ‚zõÅÉ•Rè5Êâ“ÂR FË’ZQë f Šñ¡åu¶ åy*gp*UVVnž¬V¦‹†L^ã ,¾.™o•uä f fV*kÓŠ²©Î,› ésâÿ:,ç”Ej˜tÈ>Ì“itd•è4šê*¸´  +´WiPrî¾:Ö“bJ®ã£Z¤úÕeñkJa”9Q×õRú ZN#‡ÜR`Ê@_-ìs–@½«WÔˆ¾»†3ÅxÃ2›5“9¸9ŽV/œí¡d>%M4±½44Övé 7çK¯–I¥ëá³*›i[…1]¶ë%[ÜÑ“]º{“׊¼îa?¡ÉB+x×A¹”'4l„ÞȦ”ΜSpêšÎ3®©šö8¿ØÎL{géxÄgÿLîd±ó„È,B÷»bL³Té û„ÛB ÈŒô-­\Ê?©¥¥*¹'— ³ï7üƒk§ÎD$Þ{#&ò‚íÇžÙv’Û'÷ íU4bûM¢Ö;|Ol¡,¿`姤C,_“ÒÐ`¨4_XÛ±ŒL[èN¦v|: VX¢¥Ti¹\Ò:Ÿx`6­<‹óqÉ­¾ó¥Ãª«ŸêóåÉÆ„òÆ+Bc–Ÿ£„…à¾+¾[uN@Ÿn¨áTí‰NótÁ©C¦ð’# †TæØØ<]ÐЂmÝ–Lýz.:~ØÓm¨úÚDã Ø2þ|“N–@¡ÁÈz\59f•—Å–ÙÂì©-Ã7>„+Y4‹¼Dܾ‡Nè4ð¸NŸ§ËÊTæä«ù¨9KUG!BMI­ÑêóÐÅhêÙB\|·¢Fà|ˆ†Lcœðiœ Ö(B»+÷>ãФ‘ÑŽþb §»¨H•_Äeæ #.‰¯>l4UU7t„·ì|cåöy¡/»I>ú‰©†×¢ŠH¨ 7_¼e“¨é=:fé`›ëcdI ±±u ææúúf«­“ÍKE£—ðö%1¦X~ÇzÖÄ_‚ÓÌØð¥O=»pnw,U“W2™ }éxGž£VËs¸ŒÃE¥Ñ~i5~g šŸ²|Éœ7ú òøžàª> stream xœcd`ab`dddsö ±±dºý¨ûñµ‡‡±›‡¹›‡eö÷5BÇòï`¦‚$†@gfFF–²ë?òýXø»èÌw3ßa|yõ{ÏUæï¿‹Dg.ï^½¦ »F>þ{ ÛªÜM•Û»9¾3¿yõ]è;·é‡ß,1‰Uyòëë&äÉÙ³Õæwgg-ëž%¿ýÏüxï;×JÑcÇöœ¸pÌÝÄÈËÃÉ%åÎ~9 mg¾Ÿ>ó n¡Í³¢kš§d¢ÕÍVÞ]²aC÷¢ùr8ð[˜Ó9.–Ê|În®nîn!Z0‚Öendstream endobj 125 0 obj << /Filter /FlateDecode /Length 3107 >> stream xœ­YÛnǾ'ú„oºlÄíœN“"M“ EÔ¶Š¢°r±"W2“%©pIË‚>{¿9íÌR+Ù]h8ûÏ>Îü:'5÷ÿ¯¶3V ;¿Ÿ‘ùw3%tÍ5k©hmÔ|;3LÕÊÚa§›½žY¢k%Ì\+AjÎ5ìjk%=”äX‹(m”0‚à£,èI©ñÕŒè%®Œ5µ–Sq£äIqS e ž Õµ!´ä)ÅLäi –X*¨‘ùíì×õŠœÇ«íüo—³?¿âdnk«˜š_ÞÌ‚’éœ ^kÅ‚)Êäür;{S}õãW?, «­UÕ^/@Õ )Xõýb ó"4¯^/–œóZQVýë„XC³Õß¹_š£øO—ÿR<+ —kP}å­1FàÃL@íDàJ/.ž}s9{9µ5pÈ[й²ÆÖÄLh¬´vœzU {B5Ê8õŠ šW Zb•¨¾\,%ƒŽ ­úaó4¬¶«fX†Õ‡auU Ënâpñ9Ÿn‡ÕjXí‡Õ»auV› Ômå¿yy=ÁÎ~bµVwùðgy9uúvâtþÚOÈw‘®'z,öÀ/¦„¹Ë]”Ëè ˆÔÚjn¼'à¬$Xþ0«¾nºîùâ3 ?±–¹½Ë?½©ºíUu³?lO£káE†9º ±J˜©íjÿî¸Ù¶iK8§¯×Ý~¿¾Ë?ËŸºýízß·qR7Ç&ý%‰ë»È=•µÔsûªí7ëSÓõŽeˆ!‘OæËwn/6;„0!¤¢/ªzÑ®7 >0ë7*ŽoÌ%«Í{Og9pÉ¥*Q-)A_4–´Ökƒ5ØdaÛaå )/óOXP÷¾½¹Ù¬6íîèe¤f”“ü¦‡j›c;(éõq]g%}s8ìYñǬ³wMw*LòÏÃUõåoÇߢ"—ÓÔ®ªïwÇö°jïŽô²àtÅÉ*£HkT$µ± ’Ëð«Âo£=‰37JŽ "NdB¤ØÇ+Óâ '4ªoÉjfzZyNM‰\3x²Èˆ† xFªaA ùd|° ·&áL~5(¼?6»usX­ÓùóìÒTÔ,[d¿Ë®&H^¯ÛÛCÛöqeg“?ÞàÓz¿õü˜š+K…·Œ&ðÁhšÁûë¾=¼kŽ›ý®ÏáÓví±]g ëèÕqŸIm7}¿ÙÝîÚ¾O¾PR,¢çÔ7w]ö¼WËþ×Ssh×ϣǣRJq‘MúÕúçSï9xâeSÞñíj>nàì«çñ8Ah¢Y™Ö,ËŽë)KmÿýÛ‹´º[ú`x>ðå¢qëøð6•V)8Ú [”Ö´óTi¥èO £ÒªXþk.©ª âÌ—ÖoÑEPC‰²(Rn)©äÕíɵàœ0‰Â‡}k´Ò®fqDž2²’ Ïb"ת +: nG†%”ÅFC•°ÖéÍÒ»w¨¡e*Ï ¡_]2AŽ@«Â¨+{yÿ hÉD…ù <7a×Ù°Àò¶<ØF »KFÚ0]âØb)‰ÂŒÉw^[ø’­oׂº!‰Vq´½t›á–•dšL¦w°ÈLêÄEPwŽ:Õœ;Se‚»…óL¡™†!J2#1B@âCž–" |žXWÜÇjptî EÊB½ìÐQx5J—‰"BDs\Ò"+²ÁÜ×@‚ì ¥…^'¼¥O(ÎøˆÛBo/Ånu5ÑᢀÀUæ¨É5…kˆ€6šB‘3–4HKί0s ßFMs+uŸ9ã^?©G«¹ä†Ô&ú%(S)Ö¸¶YºBC¨•ÞÚê&®”Ò)v ì(Mu0|h׫æ:O]Æq8÷òŽÄ­‚{ŠÌEzðMdpc¤ ø”Ga)2ðŒ j,LAPb£ МFa$‡‚B[ðàz¢¨ñµÆáSˆ¶â[eÝî½¾æ îaj œ¹+,!•Ñ%æB/«`Uj,ü§Ï¸Ûbÿó,îMà‰A+×Ú¸}}ζó-N9øQÉOƒ‘ƒä}2,«îÇh#tIνt|I[Rè€åÞË‹ŽYè€1ب°x²²ŽÉi›*Y¹¡4¤mà.=ð­OBšŽ|<ªGÉ1¢’!ö í"ÈVg:Äø'(Ÿ(Á…~’Zˆ˜T Í1òK6þkVÄf“ „Ì‹ [ºx³rÞ¬Píª_rxÝž™ýl.§Ô¥Á!f9L$1p§¾dr>í&¦¿ë‰iò“çÓgCdF½šßž=µÆ÷Nˆ¡Íü÷Âp§ïŒ µàØ E -Ü­ÏCè±Ð;U»Ô8ÎnS[U:Ç!;G‰® ~‰:(Gnç}üSÌ®Àv©r³&ƒY¸à®ÌÎó‰4ÆEŒƒuÙg=xyI£ÉÈ\”(*‰å£L€%×ÒÍÀOx•ºFñÍ!ÿÐFw¨^)24GI]fïos†/*ÆÊeäP_r½êQ:>)M$e>Ý9lБ)óYȡډÁ¾ rž¨¥âÂ_Ä"龬‡í(U$7CµÃÈB]8„j'˜RQfŠÖ%;溕.8×FGt€Ñ©mÒ)Õ® 41Ê8µ Ùß.‹Ú»ÎÅd_΂a7XH§Aë[– \W„Bh©JeZB®_A#ìܬLFAN¤j=ò¼àZ 1*ß'OáÀcAT0×ì²²Öa[Z)B¡jDq•Ëå§ô5‘ò‡ ”CVØü¼¯ •¢ <ÊsÓ±c%†')!{¤õ#]ž÷?œÅ¤â0Ý:L. è²ÛêrÕ>ùÈeVÖš7¦eµè#/D–¾ºû¸#GMÆu¿pÔ˜»ÝÊ ^ö¦‡ØL›*ÎK±5¨±ö%q á:NzÔ-Ÿ ˜õ- 6 Õ úŒ‘í?#ÂXhÿð]Â-ÿO_Ôð:NÑEžñ•Š`q4¡ˆq?xô hññÎÛWá󔣗gøT!(Ù·)’Viåöç9ÝM ØˆÄ»¢©Vdº* Ÿÿ2l.óæ§öEƒ2uÝ{1…1ŸÎ7Èo'/¹§n•§ú v¢ÚMôA#v¦Ó§9ÏØßOèçø”å…wqO"¾N)7¡ÅFâØ¦KTTÍö.ݹkÔæ¹îZ+†ÛKÓ|Oê–4Ü<æ[ñ©9çµ´bŠX-_±½w3?ñÉrW¤’¥h±{°Æ¶au5 ]>»„L`]â©þn—Ûu˜h:Šà´ÆÜ¢NaZ,}Á …ëQû³MiãÎtˆðÇÀGMÚ¨9Bn¬÷YGÿ„÷»ç@àýÔzìùÁhXÀ.ä‡éÎk·ìÓ +߇Aý9JüÄ <ÝA†ñ7ŠýZôåÉ‘õ¬A‹yõ¶hZÏôýn—R>‹¢ óa?õ®D ÄûSî­J.º|¿òá#C9tMæëûÉÜò0S¹w:ÅOä²ßýÙô÷ýÈSaq/fPåªéºœ2Ÿ‡—”˜Äýæø¶ÞnÖýUù°‡®ê‹á™ö"#ißßY8Cõ§í¶9|¸Ê9õjYdpÞ1O4¿ÎM1µÝ¬Ú1?| D0h üPw8ȼЋô¼‚BÕßî×@϶m³{6@BßÍûÍ1?Nè&åØm7ý„ncÅpò˜x2<€1ÊNze‹øÇUÁÈ´±ãòåMüƒX~Ç¡$¼ ¤Dí|™ØsðÍ®é>ômbÑz®Þ¼¡?ýä^e1Ôøó%½›]…£ý1+ü婎ïDíð?Ü2àù%.žH¯{/š÷õãeZÔ$ƒRæE¥!XÅ£¿d ©Ý¹É‹mZK䬳‚þÂW?ë.Oš_òü5¾ÏqI óƒò’Öþ©k”‡sýo„ ö.i›2Õ9µ¸„q/j¡":Ý”2¨`9«Ôíx@L9¼õÄ©²þ’ÉC@`Oe|ï­ˆð5ÔA¸jùhÓቘÑE—%9‡¼\ÿL ¹úïPÈ'nÑ :£xÅRTÛr6H2±3¿ÓḾçò¹).P ÄëqAöï/gÿÕÒDžendstream endobj 126 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 165 >> stream xœšeÿCMSS9‹‹ùùJ‹ ‹ ›÷¿¼¹R3Oøˆù-‹ ÷ºÌ÷“Æìè÷ßâøF÷Ùñ§ÓÓ‹Ýòûßû#ûýJè÷Ï÷4÷RûÏëüRø÷“÷'÷ÏSCJNMû 7Ÿ ‹ ‹ ‹ à;¬endstream endobj 127 0 obj << /Filter /FlateDecode /Length 1718 >> stream xœíWYE~÷¯å…6Z]}w "E( ‘xØÍƒ×vv-y<ÎÚ{ðï©>¦õ$A$"?¸Ý®®úêëºú]C[h¨ûÄïe7a­°Íý„6/&  •À-´F5ÝD[Ú‘6¶“×£¡Õ­m9C¡´cÀ¶Jz)É o¥(¤ÒN)Å•h…) J)xëtXÆšVËŒ*þ.A)nZ¡lÊ€n … T–v*©*™0öhs5y7Oe¿–]ól>ùê§m­bª™¿š¡¤zOu L6ónrNÌtÆ£œü4E’¨Ñš‘¦3ÚRk(c–¼v?¥Ü-i+@I«ƒPf™ ?¿˜Î8g­2’ü6dŠï_þú<eF@Pƒ'-·oæ?NÐWË™iæ/'ó/ÏÉ;Ô F1ÁÉm´h‡,vS¦Ñ$çäè$¨aÉÆ sTE¶NØP´ÇÈQhÝrcÝ9tÆ2j¬Ü¶A¦Ôqíð~l:†Ú:§Yƒþ­ÝRP0V 綥”¦ÑFTÌ m‹)S-2gȃÎ(ð`o1.ݦ´ÆI´F´V ÷W s«,ZkJm™{””Z¡ƒa+¤`¥•w55 $Fam1Šx3Æ*¼ÂÎ!ÖÇmò¢ º˜Ñ§T"~cUœ:q²x@ƨ”ƒbà‚ ŠA Wêî>¨Fº©D†¤lÁ*4²=¹/¼ÆmiP&‡Ì‹h-Úâgqã )¬'BH¬(õuç Šÿ#m¨ï$u×=¢`“ˆ 'þ»miU€ï¬?sûX*¹þí #ð² ™Û|—+²T«Y{0Z A΂m«`?dTÁ5Ÿ}E %ÏxëÂFôf©Áȳà;à­Ýú`Ç3âݪ*r¤wŽpàJóLzw瀬!Üp¥œq…<¸Ø¤Ô(^n7 ÐɆb\êÀ nIî}!²Š 5PáëÍâè~XT.^\Yº/â׈S²CÖS¥LÈ‹à<"N­O­"¦ú°K)û@¤9 nÍi¤ ÷¹´l3qñœ ¢ ge¨ÊÂ2•[VPtf´¨PF†Z—´Ýy{FÙêÎÁm˜,·û]¶ñµÓk0Ú«2R\qAW•â¹ÝÖe+úúÖãZ¸Èò»X=êP/‹v­îF€aÈZ.¦å20#qÎBf”ðÌHÙò`²\l1p1ð}ž?õ'늴ƒÄýæxÝv›ÕႬÇÅ ,É7q‰iÒíϲ’õÃþ&ÿÊR‡Õ¹Y/û»ã¦[_L#<†@­‹A1ЧÛ,×5žŒPK.Œ­.Ï0à,êÇÊÒ­×ýjDèI·^ìž$Iäzñ°9ÀT©nÔ]·9ŒÐªq4¤‰þ¸œÙöW«þ€é¸·D.·}¿Ú'õ‰°­˜vÚØ¨Â° ƒ".,êî[wŒ ^~†Cµ+Íl€ç“|·ØþqXœðLÎÏáÍ›éÞ\fF·*†U=ƒã(äEÿ?0ÃQÀ²¦N‡#_©owß>°ŠäíP;‘K°'}) á ©ÆC?2ö>EöY¸(ÕUÏõgÔ)°U'òÒ A£gf>ðH€’ìæÌ˜¡Ìž¯’KœY”¶z–*h·'ÓR‚8ØGX‡bƒÎ ¨†ñŽ,äÍPƒ7þ ÂÝÅèªXxÈ—´¯ê|’XVs#‡2­6´½ÍÃsŸÞ¨ß$ñ’Ý“ëñ,;Ÿø{aï©g¤HÑRù¸m=jËØ‹”ýÀ[Ê·µ¢9öå`]Í;åÓ͉+ ƒ,h«ºrêß>ªðzAŽF•!Œþ[Q…GëcöwûBV϶c0†,†ÞÎM7…È{ç˜Âü\Œã»7¾”†:–Š÷Òû'¶4 –©ð]®<#sÞ<ŽùRb ‚#ã_ŸÆšý͘ÆË´ÚŽéGÆŒQ{ÿËcÙß\Ä~šfþyù˜#ˆý‹ˆfÿ|™ù0›úë!äÓÍê±\¾Éåüïa$õ>¡üÆkøò;FoÊý9Á?f‚kóqßÏç“_ðó'?¸ñendstream endobj 128 0 obj << /Filter /FlateDecode /Length 9253 >> stream xœí}[‹¥Ir˜ŸÛàßP,Ÿ²¦Ž¿¼~™dc ™E`mcv÷¡ºº§§EUW«/;šývÅ="¿:Õ;—•Á‹™‡9'2"232n§ë¯¶sºÚð?ùÿÝË|®óêûÛÕß¼èu?—=]í­§óèW/Fîç>§Aî_üæÅÜös¯ãjïu;— Xiž{#¬Vàs H ˆ8uƒ/[à×Úߎ…ŸJ5æ8ï-%€(S/ã\û 2´ŸÇ–¢LŽ$€Gd2n*Rà¶]½}ñ/mä•üïîá꿾|ñŸþ¾lWó<{îW/¿}Á›œ®R-ç½ÀÆ‚P)·«—/~{ú«¿û«__|ž³ŸþÏo®ë¬­æÓß^ßÀñl[ÝËé7×7¥”sOùô¿Ž(Û[Îóôwƒ£}ÛF/¿ù?@†Öƒ ÛF9^¾®OÈsŒÑy8WØö­2òi^¿üÄÈäÙι竛TÏcT¥šÎÛ6{=ý—ë›–aQ#î xkŸ~°Oöé‹}úlŸ~w²È8âGûôÎ>ýÓ%2É>ý¥}ÊöéûýÚ.ì÷ŽøŸý£ÿÝuüˆ[œÒy¶–®^þúÅËÿøÌV}0àýž·Å…{cŸî.LþÃ2ï.lî—æŸý㫯 æŸ^Û§—öÔ¿¾t†·÷ôÒb.°¹¿°Ÿ/ÀÂÞ]Z¿ Gø Û_ÀMì}?oñ°\Äï..Áù|²Ogûôþ¦!_]íßÿ+X¾-à/žQq×ëùÿ¦^_çímöo?]ëÏFÃ6êÿ+ûQÙŸÕðKgóöÌ×ÿúÒúuAòÇ {r‰Ý·æ:½o.ÝÆ?v–?ÚY¾ºÀû‡‹$ua+¢”ÁÐÖb‹9ÖÞ~ýž]ÜqßçKÁÄÛ °KÊ|ÿõ½ÿÕ2—®æ¥`èMXßS&O#ŽÿþòÅÿÄu¶~®é BÆt.–zέ^¥Tû ÷Ç7Wÿûêý‹vnÂJÈÒX‚« \ —œ N¼ªâ½^!vƒ0c$Hã¶l.ßmxZ†@= @PßS  cf3qù^®œBÚx,,xˆTEP•ÀºŠ;ˆÞÓœBb€íû¹X™C0XA·­ðxîç T6ÐGØ@ß-·s©÷¶ :f8C!½Óf…¶Ófã •‚!.%S8®×–kÏ\UH ÎÓ.‡¤r. )\®ó–a Š ‘}†6¦u‚¾&ÿºm‰Ç2ÝÆÌf(dŸ‰¶B)ìÛ€Ka2@Âß¾ùlúºZUéí¼Á¹OdÕH§ˆÑ@}wÈÊ@ƹDÈw4Sðì¬"'…ùÞôƒ¬à GŠG]a'F@( Q9Ì×±´A䤕€´q°ƒVÁ$”ù‡5ð9Ãj‘Çž+jÑC€”·ØTL€a\+Û8÷bcdÛ'ÒwŒ}ðX)è˜yÐÙ •¡_9…­ò^(ã •B1TJ¥°®ƒÖ6J?'ذQç9Ó™¤Cf TFmg0ô˜p· ÔA¦Ñ"*\fgš¥!ŸŽIQÀG h93œ! [½‘Â3… ¡ç6œ‡Œ)ca) C¤4 ë:~ipj.¶ ·À©l1*À5Îð8F‚áaSð  È kL{ˆ à\S x#ÅP¹•ºŽ56€\3ïKla.^1sÌæ"sÝ<ŽÑb˜ó :f1<€kŒ—Ì(äÎcåÁã(†J©Öuð‰Ëù‰×fc,'Ž™ì8žxn Ý! Jd” ‚{‰îL|çlT5g@lÓÆè 0o èff˜¯c怔q×”0¦¡rà1NA%ÔùëØ‹ÎÉZô¢ 7X¶Ò]ñ’% ŒÝ‹¦søcé¦ëؼ¨AÄ*õ‘ÊÁ½¨Š`^TET/º.bɧ½ b)bh>«EJw½¢Ù°~­Ù²N·±Õ@ "% £ %f`ã¯_«|:}]\N‰œLÓ`%qNyG3{P`usAõáz[T¢¯­=™‰žuáI’å%¦ÞäÖ™ƒ\RKøòHfÒ °‰ Äwе›ŒJâwã¦BŒ™#F¦ klÌÝÆDÿî… 1ÇK`óái¬ xL!…H &¡PX—@«Â”4{.ú œ¬bKCÉe÷2Ñ–„lwo”¬;F›h-ÛUˆä«:_²Ye`Ù®J ß‹|:{]ÀÃ`‘#ÕÃ`Þ¢L ·êñ…ŒC c¡3Ã`!%5a*›?çÁãÆJ©ÖuðÕŒ»Êd‘2zKl‡ËK1ÕÉvŒ #ø­7[¡Ì Rè2 R3V)3)C¥T ë:~©·ÞÅY eI€ò({Z‚”'%11…31FI•S9MÂtl)”A4R ’ K¡L ÅP)…ÂaìÔà[‘Í R&Ks“1—Ñ2ì_E6°%hïóâóuhU6H™Ì¦KMé[™ÍP–ÀHæ@ïû¤°Ó `h3ÊNqÚ ×A•£œð)EŒÎ! QÐ1ó ˆI À ƒp£7 ©h R(†J©ÖupU •”´ÁqªíT}}ƒnø>²ïTÑ1zµÑÏ5bL*…83œ¡L!1€ ­J÷”‡Œq†Ha*¥RX×±¨ã„ =2ÍJŸ‡AÁ‡%¬Ë¯[Ò²,Tâ–Ö9'gËø,EP±y¾™AXÕrXøõ°*ÅEñ×&Ì>ÈÏk’Êí)–ŸØbYðˆ¹Ã~´§jw„.^fGûÜËì¨TÁËÈ8xÃbtÌ<‚—ÁRù ¥iô22^Æ0TJ¥°®ƒ½Œ=Žj¾kÉVí©R²Y}Ë´t×;AC•€=Ÿjºë¨œ¬If•…e»&ƒ"Øóh[Ç1Ûåì¾åB=‚9M¶*EC³W›UtìU ÄQ°1óð*ECCØË•SÀöÑxðØ«Ž¡R*…ukÞ 1îÖbÞŠ‚"4Í[!f ò¤&®<Ž™«bHbj,•%1u…„=¥¥®Û¥Ë8¦®‚á©j[ÇÊã—¥j’2ÎDQQHz'¾tOzÑöÑ“ÄðAHzõkMiuº™AHz1ý§Ê²>CCþOã‘m’^ûZåÓéë îBíôÜÒC€”JE.|4Ø'ôKZѱÕ^++>_ÇY]¡AR¹²Ùä]”6ûåL_©T4g:æŒàfzâ‡Á†nIcë”aIŽ=mt N ‚™‡'ŽàÔ+.É)dRçÁcO ä ‡uˆÒ6*NÕSˆª^®äZLõ´®àÚWÉ~:F£„Ç)èØ´Ï ª>BÁÔKx) C¥T ë:–W Ëõ ɺ¼H*o÷WS}yqЯå=Â&ëX3}Hž®Ó%7ò–è+{A0édþ*þÞxÚhIú4¾Ð¤PâÏ5>1_t¾-gT€$|6]B¥o£ & 8,„кŒ „aJsl\ógK¸Ì•pCƒ”pK•ÓT mlJhQ!¥ *fÖ)€ól2?õ)q} 4æúµˆ¦“WÙYñ§À¤«Ò¦åî³"°S“9¶a‘}د¬K ìý¤Ø¾ÆºL ³u¬Tá+'À=XÆ@›´\A0…Àa |Làø©Ž£ö2ƾŒ`³ÊÓ‚QÝàXZ ±›C¸g®3û%éi¥ë_û•w½’…}°uëì ‚Žµ)Õ!ܶꨫÕYH×«Ë ß«ˆ:}]»ÎšéuÕº^BM«eâ~Nëi-³Säè]¯eâ¡F <óát¨=© ‘¦U¯=­ÊÁ»^UÇ`ÀºZ>ÍÐ=×~‡pÃMÁÇšÖ´§à[Mݽ_§4ùñ‰|ïIeøtk/C¸ÛÆH7Žq°~Á0TD¥°.‚txÃgÿødë~p%-¡1?È’§Úâ“mÝà¶0Æd߬t¬Ï©áW§À²ÎCŸl] ÅP)•º6;Ò7ÜŸBÔýÁìÝ_ç>Ÿàþvº·ÁAò[Qб¹?ƒ¨óR æÜ„‡»?•B1TJ¥°®cqíÁ¤*DŒ¢:U±™êuͦª[V›*^Û-²ŒÝ¦*ÄL¢P“©̨šŠ¡"*…ulA½Fz’éî[¥ …Ték¥ ¿×Ðù kò"0ËNAÇÚ•jé[5 Ò×j<¬óÕ¤0 ‘Ò(¬ëàµ%I½-@?l±‚v±;+Àtwú…u¾DúVáÊðO0¤¯®T§ž ë|­žWÀHÿìF)èØºRÂ}«FAúZ‡u¾š†¡r+…u¬Ê¸ÒØùê~È£+Ó’=ô‘^Uïs½“]‹ø_ë;Cø%Ï)ðKŸóз@—B1TJ¥°®CÒ­¾6ñqÒ¶xÓ_¯„/ûÜøw`Úøên\…ñäߎqck‰³hë|-Ô¿E Èqks 6ÖÆT‡pëªSàÖV硽¯.…`˜”Bá°ö9øŽÑ‚3u{ÃJ/!æ=+=•4w¦•ÞRÂ÷YRT™ncutaWhÄUs¦&‚b˜ˆBá°ÿŒ‹"‚ÁE‘ñ:Ô%·FíØM ÿõ¡}Ù(¡·íhððÉ(-¶†ŸñžÔœør­3ñ‰–ºJµûÕ!Ü»Z öZkk…Ø!¶ºÂþÔÔ¹•U10õù:Ô¶TpߪOç¾Vg ¯& ˜€Bà°„èí1Ìüž¥Iž»ÔcÙk˜º4ûž=žO×±¼V9€Ÿ³|>?w9}s C%T ËèÆÔ<$ÒL× œªVP»˜ÈVHR8ÞÒT·6NÉ ²œº;Z²«IXu¾¤³ÊÀÒ]•@¿ùtöº6°N|ǵ ¸C¸mµbÁv4kk¥”ƒ k|¥¤{“£ cmJu·­:iž0ÚøêR(†J©Öu¬q§ÕF "•M ú¤òia¡ÕF-pÔÚ¨–ZµPÔj£ŒreÓ(HåÓxXmÔ¤P 5…º.)I½ÛlšK>_8î?Ú8©Xåά¾ 9’ ,‰² …!HÃèX‡p ä8E2šC¹ ‚`2 Ã*–Z¸•ÙÂE2«BKÍêÔVf³J¶aH¥Û(èXK`á"™Sà"šóÐ2›K¡*¥RX×!õbêWõÞW‡pçjÙïˆt¶R´³ÐûJ>¯ ú×úk_ªC¸sÕ)pg«óÐÞW—B1TJ¡pXé2>5SO©ö¾:„;W+vÔ†Þ׊=·Kïk¥æ³0°~4k_ªC¸sÕ(Hg«ñ°ÞW“Â0TJ¥°®ƒmPÚQ±­õÕܹJGÏÖØj¡‹v¾BBMÊÀH´èX;S½«N{[…6¿º Š "êüe ì5J§Ûi­¯áÖÕŠo±½Xg+…q=…ÞW õZ{ç±Rб¶§:„Xõ·: éuä{Q§¯‹—qøñT¡8=/`á_Ù‚À¶ñËö¿:„»WIÁè­»[kÞ¹ dý¯àŸÿðE1&—–Œ‚޵7Õ!ܽ긻Õyhÿ«K¡*¥RX×ñçžõÖ¼Qîä°áþUÝy¥¿• çXÕµX2 ÔU£@‚޵;Õ!ܿ긿Õyh¬K¡*¥RX×!×4q °‘þU¸"|ÚÒßZ±·›Ûç¤.%àŽ±³†[wªC¸Õ(H«ñ°X“Â0Tn¥°®ƒ=Ù6b„=Vu)W`{ÄþôuÓ>xés÷o1¥iý]uËÜX¯ `u+Òx¯Uõe¾ µ5ËÜ»eÓ¥·Ké[ó— `* X—p–å-°áV¥ª-®ÂÖ[`U.G ±}¾ µ]Õøs›‹J¡”9?0¾ôÕæ]³G™å¥ªc«ŠwÀ:DJrÔäý­”[ië³ctì`°¡Ì(èX»SÂý«Nû[‡vÀº‚aR …Ã:–ÇES=‡°êXÜ+𥱩žEΆ ‘µбª†CXy<öf岨[µÏcoA0…ÀabFù&hÊïÎÙa7ŽJ(¥¯ØêY­– Ÿ«]å@2Y†’ŒÛ˜“u›Ë¹¼ÓÖlß™+† §é9àœ¶ÔÊéíü mÎ-·ÓG„OȉvüwÎ Ä8}´Ž_®ùï<€Ëu¾ {oJÒ? ñú{iË•þµdlÝÜGÞO·Hf+Œœ>#JŸsßáãh´=#Sà㢲A<ßî¯1žÚK™§ÇHŸ€FÏéô /8$áË÷ß"LÚ˜‘ãw×(ÞÜÚȧk¤]ˆ 63Ó*ÆY 5r’¿†Ó…Y6j9 |ÒÓ)õêCŠ2J?}¸´¯ilâúëÈüöâ.è™WVç<ýí/]ŠÛú*Îú„Û6rûz~¸F_ñô3¢¾#Å*`ª‰6þ©Þ¯´éü œÎ-Â!RihË©å´îÉ ³|â•e <²º#‡³ŸÖÛ·Z—ó»I^Âg°ÁpTøç ð xAXMG ÑA8É}D]&ˆŸ[Ê]Ö¶á_KzëÛ´;î!nmßö4 ž¦.Aþ*KÔ«½7øÅνÐ\ùíoÓïNDe玠×7}Ãí'¼ØýúÂßnÁ 2Õ¡“^"ÿ¼m¿Ðý‘?ƒfbÇ"Y¡m£dPf4pú7dȨà?›v:A¹§ã„l<åÓíg:þ¼Ã±iÃUNï‰O†È¶ø@vrzü?ã¿ù°Ó*6ˆéñ¢mºÁ\zƒ«.Áá±ò´ Ê¡Ó>²U¸€ Ý'ƒ«¯µð!$°ù Isº ‚.Ïо ´¯!”xÿp rBRXXä{Þ»š{Ç זּ° ™kˆ®xKǶ+•p›nW!Ž·é'°£½¨ +“ùåÔzcveÃ]è¶×IŠ N®²Fµ*è|ƒÅÃó‡œâ–|KBnÀ:¡î êˆ=aÖt…Ö ý}‰^˜äïNlf‘?A1¡«1þì¯å¢üÿ«Ý‡4 ²A>mü÷Šj èµñO. ¹¿ü*¹|†K`‰Š(5hõÞÅl2´ãSì33ÙAþúz”3^ÎÇ ìcðö½B‚èpgoÁ$Ùo®îËøFHÏô¯ ?'ZŒ;¼~~üƒ¨€0ÕŽ@qYÐ}¶~mn¼üqêÁ³s&ÆËtã7–.Ó K›å6ÕO'€{ÔË·uñOiì9KôÉâ m°mß’u­{ Äø{H£N›¸›Eë(n?Aéü^åı*n[ØžG…ŽË±™ï§p„(ÍoòyE¿ÁB°2.œñ—­Œö¼Ï„#¡!ú™»°ßQ…ø#èÛ<Øó°îÎîÉ|f6pÙÉeâgHhž(«¯Êôct^™}6“D‚A ²Wr³ÌªÆÛ&.b ˆV¹a¨7q3ZP ÇpÃørÐV·ŸDòtzËÔFŸø§{2õiÙ³÷>í~_0€ûëŒô-8õÙãq-WK‚Œ†âè–Ü×áv²`=S4á$øÜ2Ì8Ý‹¯ÄçãªjvËÑûau×2?°`÷˜åF7ÑÂ ²ÿE­@*ý,f—$‘.z8KÑWÑ¥†O‰’'œâP’èF·œñð½àè¢[X@Fùizh½šÞàÞûõû†YŒã]gX)çÈ«xÝ?œZ°N~q²Vt'¯uoè$þ» Lñí½kê—å".šy¼±z&ÏKÉ[MÁ1Î4e}&Δï—ÀïÂ_ð Êr<˜Ñ,Pǘs?\êÒé¢-éÁû Nì†ûL9rE  ºS© `Ëwß™!¦q;ï¼ã¢_-ùƒ «´·ªë† ßñt°ÙJôl:"ë:ÿ½‘Œ y艞³¾¸D#w“ü@ùƒSþp1n¾ÕMŒÛOü¹L²°(䜋½Yî:óÎcö5â%6θd](HǸ r«`ÖÞ›= +üd…+žÐrúoq] š¦æb¢AÝw´î_¹=Bë Ó*êðvܰòìõºábÇ{‹–©õU5ÖO‰1_ÜŸ§‘š;Zò•ƒŸ Fý¼èÑ^ë2{Tå?I²‰RîcN‘ò<ت9e×ÚÞÛé¨òNTv×´=·1W :(%€‚\~`'n‡ÿtþ«¥NHš’ó…<?¥R©RûãyJ=¯Øà:±„<Ü ®ó‘– ~¬ö¢u·Á®–Ï7½ÚŽ3X3ùóWÜϾÑ5~ÀÛÙϘ¦Ü]ø±£A÷€F¶Å 1L{Ñ¡…Áy}ÖUÃ|uo×€àP7¡“Ž›ÁÅ‚‘ÀqÙ¾£gˆÇ™_,, +XÌ Q«[]|?2éõaªèÐ`»Þ~q;»úR; )ó¶W&8a+¿·²áBñ³èð„dÛÒ”®±Ê副²k°vÑ>®Þ‹f¢ã_O~\ÿsB8%§‹,¬d‚/ûÿ‡«™~ÏóÓ\“™ÇC9 Y¤ƒ¾ ª4=9sôŒZ]6MnxÞòBâß´ì噚]¸w~9žë^ïˆyÌG†õ¹Aÿ)(ä-Û*S|¹Ã½«U´´l&óÄþTS±¯ò€èK8€ØúW¿oßüc¥@¹¬ªêYÏm¼5ðâÂÆ³éj¸êRŸhuR¤‚ëF\ȧá”ð¯‘2¹¯ÅÁNá¹³{» /›>½Ük95*þãAÛ\ÂW¯)GzÿŽÎÒ÷Õë¾;œŸ€Eýë~´`À¯Œ.nŤÖ5îØÅÐ%&|\v Š„µDfÂöÄ:A¸ÊènF>¦4 “¶oƒàçÏo8ÖX cÆy+½DÝËÈ߯úöLâq,Ç-UªÇ­ñRÁ~¡dù9ûðµ:?Œæ¿F{9Ñ#XÃ}nåÀ MÛÓœ'šVÇR° >þ“Ï{.‹ýÄR”ż…jßm´Ð¦ïuýOŠt|Xv¬Ò=¿¶LyÏx9ùâúC¦ÜÊÞÂ*޾Œi© PÑ”R ï#&ÿ¯³Élú2M ⋲c`Ü IŸTW„Öý¥r}Ð|è —8kx•Šfïñ–,æ„û:â¹ÿÀuÊ‘öçâ¤àKŸ<µ‰å•GB[)´Å¬¿D¶ùU&ñÏ9ræhÛv!HÔÔ#Ñ:–yòº PÆšùÎY(~ÆCþ8çªp·—Y† ’~%ñc–kù‰Ápgb4€UV»^[íYä;(ˆ0ÿÙZX ‹ªA©Ýˆµòܽ咯™c›O)i'ë<Ææ¡JÂÐ endstream endobj 129 0 obj << /Filter /FlateDecode /Length 4369 >> stream xœµ[[c·‘~×îŒö(ð~¬³p’™ ;ˆÇ½»3ÆBÝRwËÖ¥-©çûÛSEòÅ#Jžd½ðƒÙT±X¬ËWÅ♟¦¬çS†ÿ¥ÿßm'¢W~úa¦œÎ{ÍÅÔjÃ{g¦Û‰õ¬w*Ol&ßMœå½u|jb½@”g÷½ÑJ '{­Už¡TÒ¨^9²¡ÖJöÈ‹ì8ˆå¼ë­.R¥¿©PFº^O„rÜöŽñJ¨B5ÌTTI¨¼Ý ÙM&?MxPå4ýïn;ýÝÍä7o$›úÞa¦7÷“¨f>å ®àôÌö\èéÍvò¶ãl6Ò2Ù}3-1g­èþ4›³žyÇ„ðÝwø‡aLâõŠím$áLx¡º?ÿq6—RôÆéî¿fTÅ8ï¾úú?_Å¥Â)ÙÀJ/ý÷7ÿ1yu3ùv¢zïÀî ïA0ãïš@Y ǵyÏ{ñ¬âÊYC}©xÖ73Œy£ºßÎæZØwòä:Nyô˜Gïºá6žòèEá}Ì“Ï%e´È£C}jí¼i,&?—Õ«<ºË£}½oœ´u¨U9Êÿ–ámCœ}c´$ÊÉ‹]†­ÕÕå×cã|ïf†èe¿y£ÝÔôÞJ¼6Ö †_On~õ¶»[l6³9¸6ø«è^†\É{1|XŸûízy|×-§ïÁÙ\÷eZ'\·Þ>½¸€`Ÿå/Bv|Þn‡OïºÍö]wXÝíߟÖÛUúYTð@z»Ùï—OÃ^t†’qÓ[iýt"ZÎüôf9é6û‡åþ¸z7Ãÿf7?L晌ëbÍ!Y<*v0é¬xÀíún5œ-þZI}‹g rÀ¡·ežð™n»:=î—ErBöÅvµØ}‘¹íâãúÔÜ”'ëåD[ì¶ëãØ\®—Æ γÝð´I+ˆlÑ\cý#¡ÉŒ1`Ô*H„C很—¸ð®W¸/ʨx\±Ø-6ŸŽ«,ä¹Kuoßò￟ýk8šbqî÷`›—07r=ô“ûýaû¼Y4:ö!ÐáUÊ?eŸ+¹{³:®—Ï‹ÍÅ`ÑZØ‘V¾Yïìcÿ¶Øý›Õr½€„ú–ð›ʃ¼²øUÖf8‡T,Á5¹žs×scÙ„ì‚î;°Q¢B¦=¥Ëò£P‘ûÕýýún½Ú 4ëçqCÈpÉJ¯Ž ´Åi•­ôÝiÙ—}u8ìE¥§¢·÷‹Í3Qö_ïºßþõôפÇ9Ý­ï]÷§Ýiu¸[=€0=JjzU†§àzPšèD/Xü«ÃóŠ6 &V‰gЖëă…ˆ¤½¹JŽì9ò:c@%"'Éר „3¬¬^²'T±Ë ®”µ|<-vËÅa™'V¨è—ÅCœ‹ö»â]š•ñrõpXaˆ 0²¿/?ÞÃOËý¶¥¬ož7§õÓ¦XýÍüøÓóâ°Z¾L¾ƒp/Š:¿Zþð|<­–×V0/ܰ[Ää¸Ûë9÷´O»{9@'@o ¯†ÓC¨ãéqH̉yƒi,À”‘‘8.ŒåjÚbŽ&ÕÊÆ~ òúÜ%Ô†Û=ºœÁ´ãÑidÁÁÄÄ1tK(À}Û=!‚¤_†=Ì48 Ó¤‚dž¢0Ë{-|º­r8cô À"9~ZFBl¾ÏX¯”3Ù'[P#V£ëÄS6O ü¢7l©)è~ñÎl¹‹œ(¢˜Fƒªw$˜f dàhjŸõÑG=:XzðÑ)it¬"âU´Q‡n¥¥Õ°n09q•eä€þE<÷g¥sQåÃnhk¦a–îcæ–¢m4·°ŸÐtvŒõÞÁåwev™%&ŽÙ‘HY¬‹+npPL9ÒAJƒ wu)*Dá°QðAáÿ^ ÔÂm x­áÖÃÁÈ·‹UƒŽ½ÒºX¹(в£À´§s óÆsAµµ$AåÎK#ª8="o°;3tá)ÖJ>èÛ‚Ñ HöD[©–â¦2 ÑîSÀy¯SHòÉ~^üŒà汜p•dë$C,ÓÖ »Hà ÜñäOqÑ!¤Q˜5•k-Ú \C/2ÑpÇpÁ]÷Õ®˜a'µ7¡»“ðŸ% HL’äiKYìwM{€¾Ÿ‹¿EOå “’—0!‡Fô†K«®Ê‹´*)Pú*=¶b!tàTcôþ¶’.k4-fÆ8¬U‘ PwÊÜ$“IB®‡Ÿñ:EìGÍþ°Š$WêjT$uc6#Õ)Í¢ÂG .ÃOv⇸ÎrNë†}‘¸©ÚÙî‰2ÃÓA@ÚJ¯DxO© ãà|ÇÈNÅTb$mWî¹ Ò3LA ‚e”GQׯ _„kÉd‚ëŸD&‚ºñö+¬6¾äãܸ§n=Ä-£¦UÑu*gãÉ ®*Ÿ©¨ …/Ðÿ-Ä·‡;žLƒb‰³ÆÛÊE?~Àv9 jÏ”»d¥¼‹ ~,MèUîê(K´ñÜQA@]Z7ÕÕ…nÆ7ê°©NÒvu$‡ §„1€ÆYÈ6¶…hðóâ.âfñ¶SÅ]óD7½Q¼:õË—ájfRŽ ”Õ–ÜÁÚÁùháJ!øRƒŒ ʧ>ž!%ò¯Ý”hb1äM)¨íÆTÀqðÞT+Ð%Èü;;9’Z9­ Ðc59,#–Æ‹€ÖÐW²­³«:G[ë²8ÄmâŽYUÝŸVÅŒ !¶¤X ?ïf¡ÐÈùqÒ‚Å!¼B€¿€1,[¦¦Åº¦ÍUæøÖˆýÈ0õEÃ9>”yMʃMU "‡£žŠçÉíïÓ@,ÇÎÖñ¸³>$ì\7<‚;‡¡²ß%²WyuRÐYGbU;€ÕJ!4g¦jŒÐdz·ÒÈžéX‰8”›WEiBC ÅsÀN ¾žáBx‡ ÔÒÅ« ö^Uò}pÑ›΂Cô2úàw_ÂÞ¬{ã{t”CãËf6Mí*é,m'…ä2Òvff‡fîþ93øç\jòµ¢rØõ8Ú+™jÜÀW}g*ޕ骑B®óuþäKÛÒÇ›¢¶hÉc1n•ôçN<Ñè‘ÿ•q©¤7ŽKp§t@"õØ)+ïË`ãî>¦º¥Xaž¨eë; ±UÆ!\ySÊ‚øïfÅg_–N[æ9`œrù­±ù©ÀõwÿÿiÌÑl‘Ùü[žœ—Émã!þ®õÜ]^ûoÛ¼ óðË2ä™”µoÙú‚¾ò·¶ù¢©‚óÑDˆðŠ4xP4ïgs¯$öw ŸCCU;"mKž×ù÷¯òèë<ú.^]ÿŒcÕµPôœ?E¨0Œ\|¦Ç‹!sÓn@àC¶ó=öÎÏÚ5)*hבàtu1/Ñö4 êXÅŸâ6ÎÉð¨†cÃF BVA¦ð.p“Yïõq+E[T£Ô„ŒÕhzL"@R%× ruŒÊÈÃ&‹¼®{ˆÂÃmåB7cW–ÝâïX=VAOìòµ~0íß§eÝhiç€tÃ(?•ܾIu¶îTC]Ä 0û4n„õd‹XFs¬Cí¨ãðYé_)ƒKÓ#`€câ ù¡9$ñ›p!¶×Ó# ‡Ä¡;ÝÇ,ÔXÿ=ƒœõ¦§Ô´GC|öÓ°¬ŽŒÇ¢§}VɇH Eùe—FºÚ©s›lÜûÑI˜{¢AGšöTVUüæ:¥Hù97ÉáÈÏMò˜t Yÿ>#|•Gï·éü\ž)¨4´¢† ©œÒˆ­´<‘zí¨Z(ëj¡ªÍ ~ÕM®$êå6DìrL“˜íáÊiª‚;’öZŠŸ{*Z  ëð]3|œ”¡¶/»_ÆîØDý œÌÞ± k(‘håQ¿HoB„~]åQiC ÀÕÃÔœ›×´sUþÌë;Vª(!º)xH´ôOÔ‹7Å^'BÖ@= sî¿/÷Vr?{®Ü×CIk+íKë-8¬Ò ‡áÎåMrØ×¦¤ ….†€ çj¸¤pÂá5·~­CA ´ø¥«Üfg6Š­›܅ǯc FÍ ø!'É (tŠÒynëëÖ 2õ¯ðµl‚©±ò»‘sÇ /Ô3æï‹y4í¼mûBbÔ­^Æ•Úñú­¹8aEœ»S :mRŸyO´Oöåàˆ“¼—Z6p2}V?óÜÚòé àŸ/QqÉoh1˜Brvû5`”M y—8ì¥l´øÜÏGí\ä`|ý\94œ ÕB^W¹˜„ëîWÜû݆_n¸/+Gp[yŽìBcÅÇOÓÏ’ÍYö>O6Äž¤éMÍ‚SôqÀæQ!coÈ›­Çõ§H윢÷±8 ¡†¡;„ ÏB$ž»Ë}¬V·iü Å >¥/ö;t*ÅDÓP奯0@ÓãGâs¯;†O áI<©jl#…ר—ý¤ºÍ;À„œàß’ïëË=±Ì•ïÐË7÷­+ß±uƒä •á£^w0$É:Ä ,(j†˜ÀàèžÇpÁ±öR4êÅ“|5@?É´;ªÑÜ®]ÛŠ¿7d!_D‚¾ºEçááKŽKÏDZ#Eôp¡­oIÑ£ íSÑψ› RŽhyåÑkU¯7ÑaH¡µ®À’¿ØØGkŸt…Åé:eá4¦Óö[«H ù‡"‚#0š’vþ/ÿ0¥ø«Êi­DõÙu> stream xœ­W PS×¾1ˆW¥´‚·6¥sïÔ:V­Zmµµ¶Zk­ZDDD,]Â%,ÙÈž? YHˆ–²Š X„Rµ‚m§ú´VkÛWuæM—§=ÁË›y°S»¼Ûiîd’ÉäÜ{þÿ[þï°0‹ÅšµÅïöÕ«&¿úu_8<¼ØàåQúÌãó|Ðüy—ï{›|q’S¶ðÒŽ¤glÏŒŠñ=¸;îðžø Ä¤¯bX¶[„bAØ^,Û‡-ÃB°7±·°•ØVìml5ö¶{Û­Áü±]˜7æ‡=Í<óÀ:Y^,ÕŒ×gœd¿Ænõóøt¦ÿÌï<÷ÌZ>ëkü]üÚláœ5s}æÖzezÝzì oÂ;Ô­òv‹îŠAþ#l”ƒ¶‡±Òà(:Ú²ºâª®Ï.~BžéAÏÄPÂxU>dâµq=·šÐRƒE 2!¨ó”¤”Ç[x¦¦¤¸Úâ4WQȆðk{^y/€/$e½ñõ‘Yé¹IüánPã Š´Z‡,¿hïuî„dq®Š¯Ì¥6Ñj¹F*ŽØœWa+3ÙM¤·Ûü`Ç3."ÛE¶Ûˆ\ÄÝckè'h‚^H/^tÖÿ ô"ÐBô'b7œ¦ZFzêÛï­Ø™±ˆ@%ïÝ~pïñˆ ×ø  -»É?5¾‘ÐhP€ë4f‰Zâ|òÝÍ‘c¥¡À¡£i.A‹èõ?-B$ A,”Ðc‘€B.©ŠÚOo¤çí\øº—Ñ«Ñê«h5úí·Ý—¿×üšTTÔdÙV½¶¬`²"zŸ -ŸªÊpý =Ÿ&JU±<_|™Aa¢j N_ ФrAŸ×sÆ"°Û$ ØF‹Ñä,(¥šÑbSNut?p˜ýÌEKÐÒŸzDÆÅ'S¢¡p[Ú#t]¹²j807}xå}À»,{¸Q°%¿ µÃa£è‘¾—ÑÄõ@Kæ±GnÛ(ª~ˆ4\Y¼BCúvuò¹¥\?šMÏ¡—Ó‹×voýŒò½Ü '*Û{ñÓÈD„ÑR®ÿ«{&®ïs¡ÙåÇ©ê‘î¾Ƹ«C¢Ô…Z>ÝÔz¥kÚ:£n°ÝÛÜ¡r5žkÍ=ZSåhílÙù³“.ÞþšÿÅw%©UªÔh$RróŠ—”9€§u ÔÜuöPÍçûŽuºÔ%Ѹ÷ýùÓ¨tÿ5öýyn7ƒºÙ|–A½Ê‹¤CÑó=3@âlúÖćO¹‡Ô5a<•ã™;) 3Ø]5 @­0ž° ‚ŠÂÕ©X“oT™¨zhÒ»<öÀmPn“iEÔÚ % gXPŠ8îÚ§´ž#?êr@Vœ"0˜ŒV÷ìqó3ýìÄYi¼\º 8S´‚žj6}+´B‡ªeŠWÌ]‹dæB-˜¦x5=uСã¬i|ÙîÓ㫉I+d -”ë¥*‰F£"—HE±ø±Š{t2‰J% H ó\¼š(¦Ò‡`l>QÙÛN=:EJŒUÔî*f6ìÚ°ðßm†£šòK®%ø Ò(ÕŒOMÎs  êžcHÑÊFR”KÔÃ}ýJœÞ}¨mçBú¹ÅôÖÕ=kïü1â;Ä·µZºL5”ÑAt¢õ?ê-€·åÅ?K¿ ”÷ø«àB­NtÖÅò+6º€Æô¢'òA~? Ù×·£Y=ðG ûM´ÿ}´3p´ýŽÐS Â]Da³ ÿÒóâ©ÔYyKFP‡cCù€Ó>žLát”Ãvù¶Ãíí`D9p7ºÀ÷.úב¹N*ÏL‰çÄ„Å@!xÖ ³­Êð¢|{jv¢ 6¦%ûúÝK]²“ˆåÞQPÂh²`J“¢ti²’ô½S'àÕFúÑô,z ýìÚ“ÛMÞ=6~áô)w×FF“ÁêKÖžz4»ò$U}úD“>>(\'ý5£n –3ÙkðOŠ^2qS£Ö䃚#.̳W•YõdAIzÒT;ß ›µºò†Š†Î³ÿŽüöÎáÃI‰¤÷xR†ƒAzÀú],w6b5}Ãv?éž Lõf‰¹Àø¹à ¹rep0•”š¾ ðÅž(@ÀD²æÑ›ð)~å1zI—=2Úu¶ý:œG¥3æy¼?w‹@•/¢ÄaJðñÍ#ܳ×ëï™Mj£P¨QˆTdNP7ð$UMƒS_¥wRú£†P ƒ‡ï/g¦útFœÏ™´>xòý¨k |Ýè:zŽx¨Kɼ˜.IÚgQcQ u½a©cP³sÞ?X}hE<½TñËè(ltÞšŠô#âdŸJZ/L1GpP)†,<¶*ºÿv#ZV@ú~­p§ÕYfA&/+%­BZ\Qk¯c&Ë0MWÕ²Ð{£(b”=>ç×éT¡Ñ0é4<(öÂ[Ú,Æ_§YÌ{Vˆcß2ªòe¯à©þ<³ª,Û*°f@¾jãó/mÚÔüŸ£†½•VÇPΚr‘z²Âú Z¦Q1‘KnPMZÅLZmÎKQKð¹¼~ÀU³ÑÓȧNÖ‘Ú@¥¹Dúåµ|Cb¡B_’ÓøµË_߸]»msªF¦Ì 5‚™¥]Äð~œ8κýÁŸdü¼ ÆÓYÇÙ×|¨§µ¢¦ºˆ,;V|ŽI?“è(ä P‘²´œ­ü¨àüâ˜ÞãC¿œqv }¿>æô‚ÎVY××9Ĥ“nØŸÇ“%«ó©tÑïŽíhÍôÎïýum]¬Û‘DJÇBìáâÿñ7œ“Ð8 d}‰Œltv&–ëm:£ÑÁðf2£’tˆg¨A)TËüɤn†rfÙ0ÜC)÷|ÐLÄ¢YhÍ|.ðý¥%¹•)Ü„¤„Ôòg“«±žôùý“8š[‘ŸÈML/ͪmr5¸HorŽÇº ¯Ùà5¼æ‚—†ýNàŠ…endstream endobj 131 0 obj << /Filter /FlateDecode /Length 7785 >> stream xœí]kÏÉQþnñ#Ž"$Î ñazº{¦ $$ˆB!¯íìù]{7!_øíÔí©ª9›ds‘€ÈyÐjÌqÛ{RÊY§­Ž[ÛfÒi”ý6–’u "ChL'—•’´åòå“ÿxRd!/öß‹ÇË_<{òÇÿP—˼ÍmÝ.Ï~òD¹\J«·½ÒÂ’Reí—gOþåúç÷ç?xëmÎíúÏ?z ©³õ¶^ÿæá)mϲ´½^ôð´ÖzÛÊzýÇ{’eŽe]çõïþš¡}YÆVÿõÙß’}K: šl+éñì%Iý!žcŒM‰ ¯u»Õˆ¯¥<<ûw&YÉÓºöÛ:.OK»ÑÀµÜ–eníúgOûJ“åúÆ‘ÏýéçþôÖŸ¾õ§oüéÇW|ñ*ÄùŸÿ;Ïÿ™:_žœúøôÉ^ÿïÞ„;›÷»—âþ¥øä›p¶‡_žàbþ/Ïæÿ½Íßž¬É™¸ŸœŒ ~ß?{kÿ§½ü…ï'²~Êò{'K‘µL¹í«ÌùÖöóïãéŠÇ:Ÿ'_žàÎó›Ï¯ý÷NØœ½ÂgÁÕ«4¿…|Áüå³'ÏïìÛ­• … åV)Ƭí¶öv)¥m72ðï_]þéòõ“~ë+…©”S” Y‚Ë¿Kn±ÖµPÜyi[](0§À:0Än[/k­‹Â}¹Ûµ~wð è+þ‰€’„­$€U†âü½^‚CY6 òèèÇY¼ l ÌÙ(Ä&ܾßz¥™†ƒoRtYªÂs¿5â²Ðy¤Lr ªkK¼¶[âXeð`¶MÃ9ô]Ãe(Ì# …bBKåp?žÛÚ¶•K£TãÖ8 L©·JšÒËu[V‚é`R¢°Òƒ$´M:¯%>îKQ؆;¬h0û,²à°S®D.EÀL¾lúùðã dVuë·…ö}_†ÍªNº1u£,N¸ՌùJF‚{Û)Îgld#W8JÞêF+1A¥µ¦ñ€}§c; ¶Ñ.Á7*AÌMÇßÍA÷™fË2öµñ)zL˜Jé^'1j‚[S¸ÛVf±ÛdþA±…Á°Ê½3 †í–¦k óh h ÇyÈÜ%µ…l´y[eϳQ¦M\Fë7>ƒ$^@²srd&±cÛÓÇ{'o’FVþL iÃ3×áë”ïÜfrh‡ÑGýíÛÊÑ Þ‹œC`ØRÑ&ëæÒB =z¼³©›“ S4bU»3pP%ȱR ŸÜqññ|pGPù›øÜôÃèãdR…¶»ÈA§Íõ™Àì+Ÿñµl»Â£0“Bçg©IfSŒ>'Y³¦á€U†\Êd 0 Ç@;æPPŽ“‰õ…lóÁÞôºÞÖƒ½Á»pgol™†Tò>zËÈéú2^Åþa N ì#88¬2ÒN³ÑÞfl5í=‰0m5>‡Š~œ„î5¹¯½_úÂK£{ LÙnôHÍŒA.7É:·Û¶9,;ÑÙÅNóÙ‚@•ÀÓÄÑ]0¾ÍÑom¸À<@u UÑç óZÉ0MžëX¸°ú˜0ìhùi—6Û$+MLV²T£$¡¤ÜöôyS™>° àÀ°õd cÀö‰÷ 概S@Ep8Nâ`qÆÖ´V²v{29c4…qLÎ'Ñ(üœ‡UF>‰tvG2:|vç–d(œÏ"( %8çñ"{õð~ŽïR—ê®Í|nr~ê”À|¶¾x.cÇ áúL#p müÝd^ ÍqkÙ :Æ,â²Wy%Ì`.´1b„`P—I'?>/ BD3¨€Ã cæÐ˜¹t nP]P@Ep8NB7Œ=&½Û•cÅ!L¡h‘½Ì¯2 !`9(ä‡3iF¼‚`•Á# ³ÒR/rà•ÃJ¡ç2B†Á’±¨NaZ:‡ãs‚uÙ%Ù5YËàÈ9|h¥PzMŸs$]ÓpÀîCc à!!!|(Tp áC“8dÓQqŒ•0Í¢Ä!ÉnT@ ãcäÊî°W@c ç`àõ—¡†g`/§ÆMìy1Xeè!á “/qײîlc!Ç7\œ|Ú…­>E^K¿?ø½ê¦>¼ï¾Ž¼ÚE^°7j˜ZÆèÈ!î¨Ò#éZÂÂ&b; æz¡%fód±;`^RŠ/×L¡¢ÎÁa•Á#€¡UäHÕ9Ð*ï¡°l´ia®¥q¸›‡z{2$ ­ç$##Ûà:’¾.s{6ÉnqøJ'˜‚‚l½h©Fúœ7má ÿOAI9¿>ž¶Q`PX ÓÀ(\Cãpœ‚ÌŠÓÑ5òÐÇ„ÑD•óW-ÝëdK’2ݽK¢}²µs=ÓÆrUŒ·L<Ó…øÜôÃèãñ 8JËñ —@èÀ{äÀiáÒ"¶08Å/Naщs¬2RüÂE”Ò#~ijüB†Â)~q h Çy膵•W9•Èc%.ö[ l§—W"¯‘íf ò2¨5À^$sŒ¹œƒÁ\†WÉ\ P@Kp8Îãà«Eµ£f_ÍÅ™:²¯vŒúê] Y¤Oޱäg•ãNOŽÖ) LNŸÈLŒDQKÓ4 `OŸƒä,9rž>¹ €–ÆánêÌÜGÍ1V"+s1XKh+y¥– ldKØÞå5Æô V"óáVB/±¹Fà ƒ»)h²j˜ß÷)^Æ1dd1ê.QÛ ÛªŽÁ¬'=•L±iè« ‰— C²8wë"!¸ËPX ¦( %8ç¡©Þoi§íZ‘†Ž{ú®¾µmKUx—`öj”}´L1¥ «  §¾‡¾UIõ Ã`aZ8´‡ã<ÇqÒ <[>Ž“qã87åbÇÅÀt@ÆTqgå{ï8Žs­bšÁ_ÁtAà ƒ»)§E^·–ôø¯iZd×bÌÓÔÖñU@šÔÖ4-òëiVåIéÇ®¾Ó_çdÉ+Šeb°jÕn;Š. §Jù*;™÷ÿàdv6ß%œÌÎg*9ƒ““q s!ΰÊHN†«<â2ÀâÑìd NNÆ) %8ç¡NÆïE‘ì:ÆRU¿¥´Tטžëú='p ~sŠ\7îN5Su–ÉB„§º®üf´áœêjjß×*÷< à Íê%ŠÎV¯u/Ž…SXÂ98¬2¢DÑÙnõ¸µ& G‰"( %8çqLZ)ÄÕ,~$@CÒJ!ƒT&‘µ*œÓVPXVê<9o¥|€¥ç­Ú•”œóV£ˆ<µaÈøÕ25Ëg‘ (e¼“/¶ÈxÙôÉmÄ e¼øù,†;¬RÆË¹¿•qMÉ¿Àcu e¼þ1ôÃðã ^¤Â ñJ S›µêÑiØ-¡,Ø /A e•x…'tL©-μյ@²|­dÌQéœ2’—í숆{=6ÏûF¹AžÓެ1(4+t«ŒÈɧ7žRp 4¹ïI†Â‘7:…kiîæa‡¶Ke2=`pôÖ&®Åž•Òékb?ƒ¢K¾ûés Žqðã…ÒE@ÓÂ) %8çq¸°ðTß–«Ûeeòx=Ó·Ë|lW>0}GXšŽá–Å;{Ïó!Þ\;TÿÝDÖèËù^ '´ð#’F„'N Ñ Æô”Ë÷|¸åƒàï £+`® 1¸›‚ö±uéFP™C¢v±2IÊù.lÐÒ!\Ê"Å4B‡ý:ÆŽ8Øs~] §€–Êá~ùª“Lø×Ç„á’ÇîWâ7×Ío"ÇegPè]fp¬2â¶³sqž+càPä‹!Ãà¸í ÓÒ9çÁs“v7R‚3/ &ŸVr¥š2 À~¶Ý­Ìm—xÊzåhq6®Ë4Ǽ‘ãqOåòǼot¡å$+CdØ• &SÝé´JTŸûz ù|²Õ|?tø~ šÁu¹ð×Døû-}yxZ:E‰ýºÅã®$þ:–è.ôÞÂÔD§˜¾•ÆÉŠ®×ÇT”|Ö¨Ò¨¼i© s šcê7}œÊ0™ªò,3óæ@å÷‘Ne˜•WýœÊ0*›w¢J+ñ‹íïÍSÞ¤Âß3âÂ*ç³ëÐ *´d»És®×ªÏ;xÙ8}¼]ïÑ'û??ñæ”N!˜Vó›óËŸ3 ‚ȹÒ9ã>Šd_<­˜D{}óöíËw¢oLœÓšMÌ-©l#Þ¿zñöAZ‚{»þô›×¯b’¬ímˆýü.®­““².y£·4äÐ7½×[œÆ·†u¤{žÆyqÍcç²pŒk˜ÀèEMpЋœ«žÐÐŽó`³X'™JnEó÷/0êeɳW‰wÌ ×É—B#¹é:«6_:…Às&€áF£Ž68¨#pÕ¡( %8ç!s´‚R E«k`´WµrJ4»÷²VNˤXnW’;¸@éî{ppÍ¨Ž±vUç`í¬.Ã^] P@Kp¸›‡Ìm§ÓPrW‡µøxºV¹TQïÐÚB)nÍqY`¬¾4k”Õýl %湘ߖ}Ñ^7ìäÛÓx±ŽÐ½Šáº—Λ € ‚Áq ºÙ›T-¢ã'0Ú±S¹¨Îa¹uôвnâN½å‡6b׋£˜‹†úàà0:r£=;ÁA{zBš~B P@Kp8΃çÖê2oÒpŠr|`´œÞ¸*°m^mo\5èÑáJkZÛ"M9NÑ$5€Q/ŒVÔƒƒVÜCjò¡( %8ç!s+[•²”ßF.óÈîiÝÊîúÈ.Ö[¾ le6©ƒ`%çꗉᮽËóÁzÓæ¸táøØTÃà£îzù[ÅrV­C+0Úb%`—þrîÀû°_¼A‹ìÇÔÎû˜ë2%Œæ©Àh{U0Ðö+€þ¬PÀ\Acp7Ý&rüÒ¦{Cãv,ÑbÕ Fm¡mé=ÅnÑvUzÕ/Y;«¼þmK ¯b!R l[6õ…Î0úQ£«ÁAZC„5¼†ö9TÄðã$Ôu¶U.W½á50Ò¯Z'¯çôvÖ:7‰£áµNÞÔLÁ{>‚@´£cýªvVHˆ†W誢38ÎAæÅ73òž£Y'0ÚmSù®¦w4ãT¾ªáµC³Níö½ûœ¯“êˆá£‘&0Újã ¬Ç%x³Ž«àPŽ“3¼ð­¾± ŒÞ·Ê)XïcÅS-ùƶ-´KKcªoÀ¸M ŒÞ·½ ¸± -@-Áá85;Ö2œÜ0p4zËîo³&Ÿp»Ôâ’ƒÔ«:çØÝŸcà¼ÀÁ›É÷-@-Áá8ƒkO&3Špªf3áuݦÂ-æš×‹lpØT`Ü$˜LHp£ê*€*‚ÃqjAº\FF’mY•š ©ÖÒ*/üÞRÓ+Y¹« Ê‹È,ÀhHuŒµ¬:kiuÞôêZ8…iéŽóйK—ÑôJ¶fáÑÞã*‹ØBݯ“$ÖôêkY¥ƾ{¡-­ôBmÒ°áM¯máÝJeÑïÛ€`oH Œ¶¬:kiuÞôêZ8ô‡ã<ô ó`nz Œ^ãÉ Ó‹_óÉ©jÑâúÂ-Sð |Mã–.0zôž/dà&0´´‡ã<,ÙB¤‹„DR¶œŒnÄ9>¨û\ô `èy Œö¬<õKcÚÓZGÑÚ›^ë Ãß3e¸­‡Ñ“íZ ÚÕ2ÐöZ…kiîæ¡‡o1zr¥Q_ØäÄ}g“‹’®´ÉMJú|µÕ†; 7u„ÎÀ¥KpWê*€ÂU4w“ÐpðÿpIdÔý–›_åuÐŽwíu•ñï—Cókå?b´^ñu‡`Yî£c¾.Ôo&Zãk[iÙgMm®m-új__ÏJC)_£m«­rË©wµ6Šr—+­N+›v±‚‚ÃЩŽÐ–Õ®-­!M¯®¸‚Æàn Ù'úEX ô. ÎÈ®ºà­ü& îÌ?WoÃÛMU ô*+ÆëUWÀ]Xh h‡)ÈûÒÖa²\ÇhšÚèÐå$¶Q‚¢±ÒÜÖ5w ÊpÚ z¢ Œ%«o©,xª ð¹é‡ÑÇ ¨ yò®W¿£«‹µ£{G«¤ÓHxÏ«$Ü{¦˜|8ÀèG Œv¬kœpèy -@-Áá8cÌéuQÇXUÓ>«zzHèuQQEP‰º¨‡¡^õ@T«šÎÁªž.Ã뢮(<Ì4Çyh9 ­õèymÜ0#UNt¸¶ª1ÿ±çÕ+žAFó¯-X~„âƒ'P^p«^8ÀHn£éOpÐôÈE  ŒÀu4w³8ÔÁ½Ä-yÚ h^£ö›W±ÂªÜÎ0Ê_ÑYpÐZÈ@‰-´´‡ã<¬V,­ªÑömZ­ûб¦V‰uö‘Ú^Ååm‰Bþè_âà0ZR£M«ÁA›ZCÚ^C P@Kãp79Ë|Í,í¤h{ Œ6­6n¦Mm¯Ûmm¯M϶DÁµ£‘8FKj`´iÕ9XS«Ëð¶W×Â) %8ç¡6¨ì|°½ëÕÚ´*ǶzO+oz¥dZT‘è%1Œ¦ÔÀhÛjpжV¾×Ц"Ʀ ^£nòvz×k`´kµñ=ìV½©U‚¸­¤¶W ôúš(öMapŒÎÔÀhïjpÖÖa­¯¡ƒ}1ü8 sZì@ëk• }M®²|#c4ì‹^ õ50Ú¸*çK®´±µ­»V€¼õ•Üsѯ¼€bjUÉ9F[j`´q58hckÈ@ëkh h Çyü_OyÛºHâͯÑÖUŠÜ»Ôw­µUjæ\ÐõæW± ÒP â¿Ä0S£­«ÁA[[Cš_C P@Kp8ÎÃÞÒ¢þÍ¯Ž±ÖUzCt·­µµq[·vÎYó+½c’}Å®'Ì9ì©ÑÖUç`­­.Û_] §€Þàpœ‡úz²±kû]·WµC­‚;#öïNtÀ[óW`´uK9Moíj˪-õèýjKµ–{4kÑ·ñ¢+ËÚ¶åí­ ü½ïËp(Ç)¼HÓŠî×Àh÷*¸¢»ÕÄF÷+ô Q;ƈNUGða|, pÖôÀåÊGK4ÌÞël—Tw©Dók`¬°RŠZ¢µURkbͯôúìî%s€Ñ˜m] ÚÚ2ÐüZ…kiîæq¸Wô£=:öÚÉB\ìGÏg'°ÀÚÆÑŒž½õpyèÓ¡·¸ŽÆànfFõM@ÆMÙi J$£oÜåÙ¼V6`½µø¸ÙWl°–‹;¬¹ºÕT>x#Ùá €r`pÐ^ãí¡¹S䎎±ÌoŸÖ­‚ÜqÑã”;Ò¡))w«uÈ ûì¹£cù2CÈðÜѵ0 ×Ò8ÜÍCMÅf÷‰aÛfîïo˰Îa·€Óî0 ÐÙˆöYÝfÃÝÀ)ÿdM'€‚`pœB~»¢ó50Ú·Š“¾V;úÑøŠw#ôÝ €Ñ”êk[uÖÖ Þ÷ê:€:‚ÁÝ,~-}¯uï|; ¦8îâZSÛëGD@¤&T²ì›T¦ƒ0™êŽ{’÷+5´V.fsÑ#7´Òù{xZØÒõJ~Þ€…„Þ=/´arç UãK4·¨¼©R+«Sy+«S¥VV×Â[YA•[Y*nA•ZYÊ‹yN•ZYï稾{+kmäÉϾ{+ëÿÜái/C-E–ù×ÞÊJ)Ä­”5·²^ß¼ýòåÛ¯øîÇtW¾Þ~‹ ¬u[ÔÐô!ñ1a¦ô·Ô­è÷ã¶Elbݸ±:Ì-U¿cçM‚çàx pÌ.ß+tòK{È0˜G˜N-Áá8±ÜÎ…’˜®sëòõšÞ¸ìÆo]5óÕw³!¤Æ 7¡wûÁ‡·ïøGæhíúúË×_?£+{!-IÞ³<¹¾~|÷í7¯^>üAìå¹HrăŒòÖÎ~f‚\5åES¥þÕßÖ‚¯¯å±—^¯_~Ë¿Ñç\Ö~}ÏøI9Ñίà·Ñ¯½Ú7šê–ävn»©?-ñ#ùUв¬MþF2wmîcݯϙÍR)¹~Ã$ÛœûN ½@£ï+ uÞ¿. Å#ôÙõÍÇS{­óú6³á ±­åúæû¢±g‚Ÿ(–¬_¦ýÊ$W/ïIÊØ®+×±öë·™ ‰N<^˺ Yšw¬iÛ×V(‘'Ö™ü‘)(ܧµ}—¤¦zõ ¨¬“ÿ5ÿMæÕ6á°ùÒ›¶a¾xàp¥Žº]ßíYá~ƒá{ö2Ë~~ºÂÏm- ÿµkÇþ^øþC”d­7ö)wnÒ¾æÉËv/÷b»·…Þƒ÷*Ó¦~ºÊ²­ü¥~ý: ýñCÐßTG ã¯#˼l|v™}lV'¯3yw¾åmd‡iöü¼`zȸ NKæ[Æ6êõýO¤V¸}bq‘‰ò'§G¡kfòžO_½’”—wÛß&9¡…,e;Šz!oüBïÿÉJÈÈ—*t)¡I•4î=ÚZ²¼™ø0‰/˜KY7}SÖeÙŽoþBoË^få턪ö‹6ùÄ?•¿~×ÈAJD²3?|ý5Û~'×kùð4ƒ¿ÿ–>)$òúÃW/_?ÿšƒø#êû—w#äkŒK¹þðùÞ`ªgü’yæADüurZÇUÂÃÍOBäÉToÍ^ÔãïìpBFfí"ƒœÖ§içÃÉŸ{Ûø]Üñ˾¯ßõ%ýµÿØØï^×ßÂëÊï <¼¯ìx)9(»¾nì8ùm$Þä5?ïñ¼5®¥äšÞÆúR·endstream endobj 132 0 obj << /Filter /FlateDecode /Length 5088 >> stream xœµÍX'ܰ¤Ò™{ÒŽnH©˜~Rλa¥ .þiƤøòõ%GIØëP¨¯n@€Ù¦tí¸oX—KÃ=ë¼i ÂŒ´·by!鿤„9ÛH]¼ ÐT¯#&zbÉÁÑ๑ÖASÁsÁoAóÃRÄÓ~ûA ¦Ë^ ëóáß#¼÷–7Š/G—òâ`ÞR°~ÃçK29 ÕLKkÙq-^-$V¿§F/èíät#Ô›g‚aË5G)ÙÓ!Q¸ú²ƒL"èî°!°ÞÍEõÑ„ÉxÏY÷)‚ÒPE™ r bØÕmé*á²½Âߨ*Ep½’Ê ˆØÊxöÂí Ù†TOOpÉ:_ ÷þz v-Ř8 ?l÷Lá­ C–K3W’ ÓÝF!šë_{çž 9º;&–Èå |ðàëÙÖ)Mö€#ƒûö0bo¥‹à‘ß[îŽY)~M7a+¸<®RÃŽdÃ’&’ä*0»» ìÑSß’ F8M(°c3>SpØÇ„^Rp©Â(ÔŸ¥ßÚð ùó²?eâuvÙ" îh›G&[\@IལÀ-ƒ=ÿŽÊâ{—%(jÀ-ËÇ"Ðôƒ"r}âKwmL°–®àÞ,ÀÚÄ“ÁYªïI›ŒUyZ6Ã\Þ™ûIõ™ÕcÏÏÓ߹ʡLcŒ“ª"Ü´¶ _¯û¢—’LŃ=kF©L– dÐI#ãx¥€AÀ“vŠ®@€: >³|_]ý#³zh-ÃþAv`Ä-ž»4xd<±‘Ð,¯µã„u"ô—˜ú‘.ÝØ^¶·V©,(LU6 ‰£€;«Ò¸¯yͤqÏŒl|P$guOÎ`³®Ñ ¯Ȳ¾ð2‰ˆÆÖ› ÏËܽ—o5¿Ìˆt´‡¦µ—[z¯ÁÄmص* {ZÂC8><ªåÚÒjàä<HøºÁ@ÚõÔ e™«®Gº¯Bă€CçipQÎ1Ř{&kI43$ÏLaî™-À !1Ø[ë!g; vwDDƒ'v¢*A\Ь$ @¾ÅùGO9ä¡J"t"{ZÄL'ºQMRÎåv–Ee~ctªSߨ¶1AµÒQ‚ž,Åvç׉ ºw…}FEFwÍ-ÓIØÎÉ@±ùˆ‰­èí6Üh1<{Rã %3.—pú3jÁ5¿Ï|3¬—a=¥lÌ¢™ÍúÂäon óÒ®d5·•1V‘(è5¹å|Œì´íAþŒAx¸aæë•0ÀÕ5u` ×­}ÈËáBŸª„lXÚ|¤% f,Iá:æÕ°®´ãþ7†çæûgÚè„êßxd—<#¨‹ÏèAeÙP¹£¯æûfñèþ–ɨ H’(Öqϱë—Ö¶Ò7We°Ö&ô|rr6,ÒHÛ8ÈrnæQ€Œ‰ç’©\ZŠØ5\ëÿÒ¶6¥¹¿%œ¶©àº×þ…m³ì$Ò [!&Õ\÷´°ljÂÍÇ*«<(-t4®²hÌý…øe[íÞÕëì*Ä)jžu³å nj4¢»áE•úÄ*Qá½;UáŽgÎp»–‘Ká.[E7.DãÛ„v½ºVßÒVSR¾±MBcïC"V;"öŸª±mï  §(+`<ÛØØT%y—Ã*‘-„,«Š/K¤ßÝâE£ý…gø¦ãHïÚd‚…Q?·Ú,Û- q¬b Ûêë>Ú¹JßþÂçÅIñ+QÑ ¹F[b§”ާÀ.PñùL‘:ñgÙªÌE!s…U8‹åº©ˆ¹–oÈßgMN¨£3Îsë} nA,–‚»´Ý°S•Í·t˜ºçvawýõ°p¾/ù#ÊÃï®.þxq­_ý|!@ÐG­WFbQ­/´3`D]yƒ=în[žéoác¯/ö·¥¬’û²ÀÜú´Y¸À×¥û}:Ë-Ë’ÞgÞ·Œ_AÀá”ÇC+ˆ ap"#SÀ¸}Ê VŒÃáxÿ¸9nó›áp¼·ÏÏè6â49ÇÍñÖåV7`×Á7“ìð4~Þ<¼Pà»Îè0©ävEäá`ØúëíÓèÀàýÇX&C:7ìR˜ô'ÜS&OÌl•ø§àÿ¬7; … \fÃ!+€ûýÍSÆ'´UÖçßÀ–éW,ˆÔÃkȆ|à—#>D¢ò6äö·7ûöž Œžsªb[3*KËå¨U=ø1×"™LU†¬Ú9¼Z¦ùÍ9-~å5V7Z`äg›:qS1îmd㇘$ÕPDð.M¤qŽdßi½M‚è,à ‰Ž6ª´ã?¤PG&`ùÚ€²ÊÚ}ô}Jƒ{Š”€o‡_)æàCdªùæ÷³E±ÂåâÄDó‰ÞæÞr‚rÇ7ni‰„õñRbâZÈ1;0ð×Di»št0žB³ôšôÝ:Õ,N1Ù§TŠ uðÒ§Ã@ŒœuÝ#oS3oâ&GP5+ä”`΂- rÓlÝà^c¥û9C‰!¬™¬Ö>…S¡TR{ Œ‡TË Ã§ý¸#Õ:$Æ"¿ƒAÚæ2 Èðu’.©â 7KÎÄ` ©¤8°p²¾¼¼!vSožq½+«zPbA:–DS2£gªú[¾¶;ÿ1O! ®2<Ù=æa¼2.æ—'E!´93d|Œè¾þpP:è¼6ä‘fžºð|¥cXÌÐ7쨳œØ`ßúL–›zøÆ<µ_쥓4U®ÓÆñiž[ð°”.Õ†<¸!1MRY:ic£k˜§Ç¹€”JBŠy³æl%%µëx Åö:7¼-N|QJ¸^½ Ò²±ÜlX’®6Ë9à6ÉÑÚÄÆD§¢C‹rXýL¨ûÅM&yZHîT41 %䳂9iàdqøU-¹ðî Á3Öðµ»KªÃÇê¢ð±€Èí¾Ùî¤õ÷•³Z‹UãÏ—àŠ¥À°•Õ]ï“p†m^ÎÍǪ ¼à¹%h ÒÁN¿©–Ué½½L+¡i«3õ¾¸<Þ’i5®Œ4åž‹öS–š›™¼qW72ûô jª@6U#rÛùÈm¢õýþ7ô æcø-é”ÿR«eG¢#Ó=OKÔ©(µî ã˜]¿G€Mt›)¼ó¹guZFÒÍ¢°üï6ÄRœÓ²!ÿ@ °yËûSEµ°=qL®WÙ³aFQS g…õ36°…ý3ÓŸZ,Äp­­ ÓŸ„„#NûÌLÓMºþZ¥úïdkbÕvv'U²1üwQ\„ tRئ㼠Vrñœ_4†L|Ÿ×¾^LÏÓ²}/5Vé”ûnš´33NpŽiaª ”„ ¢'÷·§ïóäØÌüFß5ïäD½{«ÍMýÀ´:ŠFÍm›îgë×Ú_@„?iàÐuÏ:ÉÊ%p­•«M€ùÔ‹V"m0¥ã Žh*Öû#½±ˬ_­ÇíæšÛhµÎÙ¶¡j§1RG2ÂD“„¤?›I6MÏ2(nŒšxk±‡1€W!K«è‹€ÎPb¿EYO’65ŽÁ†äŒ¹«=kÞ•X±Fö‹g>gg'‚“óìLç‚BšC‘ªí-D›pÚ6h>ÄLS§B 8ÔÅXƒ—<)¸ð8ø¿,qÄÆ¸ö«‹WáéHˆ÷½DŠküV«èÀ›&Nž†dÛØ½ç¥·•ƒðÇç¸8ØüIzÏÃ4Ö+üÜpÏÐñ>5ži«õþ´×bµ*M›Ú$ Ê-ÌE[‰àÐâ0ëUF½p[Û:83H«\L¯ÎÌÄ.&•rl-n” ò¶I6}ÖÝïNœT Ù°Ë™5‰¹:‰UËàX9¼¡ÜŽœÔ>X>É<æ‚×!سæÝÁ/j>JBðºC5­{‹dãÞ4r‰€½§qÄÉ„V&®èxÌ´õûZtÇ¥U+ ¸€2«{¶A›–¶Îñë*4Ù¼0É•–;š«` €”Ðh9ã@J”åóÄ¡Ðw6Ò.—üãPYKiŒš#¡>q¸e¯ã‡P¶+¯Ï‰8ßX‰“_°ÀwÃ--жíå±FM_ðù¦"²HŸL5¥<`º\.b.m.¤"tò›eÁ-oŒ6U¨(yØ1På{',GWiSo"­iRÞòMÀ›Š¹mú±„¯5ÑXhsH1Qð§üÙùÖÐÒw °åÐí8÷%(ýØnÖ†?«ÞLa*øãÕµ#…¥v’„7góÏ7‰ÌôÎô¢«µ%¦êa¹]?“j=v™‡èLLì3ä)”ÎtÌ£äXeûSI¢ø8ÂüËÀï“Iˆíå5Ä8p ÕKé¹H=%Ý–öÔQ`%{r,k^ÖX©­ïw´Ú¶ßÍíé-$G½¬ÉÉ‘{¦ –ºcâ^x÷Ô ³¿04Ï k‡„c>ÓÄóQX!b¡fìÇã÷çù2íO1_ŒÓT{6‰ÛÁèOàG€&ø¤Vñ²yR°gÞ6ÊR;—…éìÇXñlÍÇXR{@*º1þŽŠ6ÒZt«MÒVvö“©1ÜQ3¾gŠ®.½ÄiVyfœ3ãh&CD…Ü8f*˜Ãšu.¢&âBìlÓ@š—¢uî›L©ï%1Òøü/]k’ËÅ›vŒ7Ò›‡¤ç¤Kð¾ ÑX­¢–%^ÊwεKÖ™ÒgºÍï6ÇûÏå8à;_ŸöÇ»íáþð¾¾<>¿ä%ày·"å¿î¸œý±’±ýéYž<îë:c2ÁÔ=áäßîX ¿Þï>Ýßlw×Û çá€ï#ìÚC –8Ó{È‹*X½£ûY\|hî³Î;ÞÛïÙüy8‹Å” ×ÇùŸg.¯þ›ôþxñÿ­øÆendstream endobj 133 0 obj << /Filter /FlateDecode /Length 3780 >> stream xœ­ZY“Ç~Ÿð˜ÇÛªûÈ–dI°R„Còð,,avg¬þ½ó¨#«§‡ÃVð@oMufVæ—gõ/[5ë­Âåÿ‹ë™]Þ¾Û¨í7› õìµÙFôœÂöz³š“k ¯6O6)ê9&½Á©ÙØÔV’Îsð´Ë›dgïÄ®¶"wÙàf—Cï‘–àXÅJ9ÍÑw©ÊßR¨`ÓìBB%ç¤ô TßUW†]E¨Æ®Ê$ø©í‹Í/MªÜ–ÿ.®·_žo>{lÕ6Ï9˜°=¾a5ë­5h§WqÖÆoϯ7?MÚíÎŒÊNÿÜ–TŠÑLÿØ©Y夌ÉÓü#(eñQÍNŸ#oÑÊdã¦Gßìά5sH~úq§AUJëéþþâWMršÉÀ›ÙæŸ?ØÀa³5i{þpsþ矦küÕ*¥³Ÿ^£UtyzCË9;gáhiØah‡NhM7L6ƒTÓ 8JÀëLî• ÝS"3øoÅõ ËÄ‚iJ"£ÏA¨{QQ.ÊC ­FÐ.T ÄËU"çqˆÊê8ByȰÊU#øRˆò oFŒÜr¼Š‰c¼Š6zG±R©ìJe¼Œ˜d>YÖOÏlýL žO"®ìÐ à7)d0{ÅË ¼òíÎ@Ê$ÿÞ­ˆg[(H%—¤oø% «‡ç•náR¢XDÙýÓUì.¿=Ïl ²Ìäå(>¹QÍZ2@¿)5sjˆ½ÀƒBȶ. v÷·Ý)Ù1XÁµaúŽ’s2t,ëÖ"ÒE&1ŒÒÃÆB[ƆÏÜì±* ± ÀÈÿ=ú¿C, eAæißËqÜdÈúÒ Ï XÞË48"§ DuÊPñofŒÑÏ™{ÐczmˆÙúìO£äWñã­ ý1ŽÖŸy‹5";¼èŠª€Ž¬»‰vàèA)_T;¤j‡¼¨4›Š5«+8E>Ü¿ìŽx2LõêY%6Br/ã%›Œ´Ð‚=`² µ%: øIå /:5B¸©æ¥Œ)í­ýÓU„^VbË…«X¸ŸLé¸Áf7J†÷*F½ëU½çñ/Âd!‡ ûìq¶² Á ÍG±Å9*ª5D´ H§ú—_ŠR …R¸Ãp4ÒÂÚÈ[J\¼Øy0°Ftàq•‹hè3‡ñ*îu‚5|±]° ¯Ä{‡ÓCQŘ(«h5ˆ Y¹õ 32À¤ }¹óØøD …€8œêHd²PÙMqf_$K*Z…ç©íÒE…Äà5Jn!wùúÎU'O¸®†)¸Îlæ‘@?7¬•©¢gòì°D•˯Èw} ‘EÊÐ-¡Þ\Š(*+´ ý/ãªVÃNè4~ÇLŠn¹Â±“æ§#7AT¤LÖâÆu÷ˆ[a´;¡qÂŽÆE‚dDÊ4wAmËØò9Ÿ,@Æû«¬–Zë!ÓõkTd¶(@w3:3ÚOßq¦)(é’VHÙÂæ·hÞ„«§z g¡Ç_Û†.9w½öÜa|~À°Õsžzùq—,°P¬,»l6ÿÞΠÑ@ûL:Üã?"ÂGwÒjÔ}sJ¬,ð½Æ¶÷zÆà~¬È9hPmüyÇó‰,Šu ÌÏÊÜB'IÞÁêÐI¨|^AŠ©êøK·ßŠîž&ûºyîò å³`æmÚBû‰\\ñ+ªÀOòô›èô. œÉ׿G2ñ‘¢ YòË!”¶ ¾*|NF¡BiVÓ¥±)aA%¥Áz2iøË€uç^{h^Ï`ÇsÄB Á¶â°Ìah‡{Õ]h,ªnXEÛï’Á:Û,ªà>ŽhLÂ(žé¤O–‡ˆÛ”× bñ»ÈÍ}&"KVY䋎——ÝQi\vˆ–~½g!F6ý}‚%ºûEC@ÂoéÕø¥)ùkôulžö²´õî‰!ËU)Å Hp¡:‚Ü+J1¡ôÙ2j+ Aš!;,Ò³W¾M~z†\Ê©Mé¼­]LUpÒ 8J~¥Üôe(Æ„åà°ýj‘Xv¼ÃlÞÃ)—¨•¡¡0؇¸¸$zËÆ,¦2(=®F•†þ`]e'ŽFùÈ}`5,‡<Øô–™~à/øpˆ¤?¨ã& ¢Æ²(ŽËÉÁùEq^uœã8f«R«8¢¸žêsœ{[ ”)§EbÔ{Iç†ö¨+(¤Æœó´µlØ/Z ‡‰Ó£û3g€+Ô =ëïEõ.ˆòÅP‰ŸhÕÛ¯‚æa¬F’E0‘Êß‹IÏb¼CiŠMÚ] sq^ Š¿@…C-,Qqï3”õtf ¼ž“vÇíg  (™„‚ç4æ7 Vrò¯ªSpš±.2Ë5N·ËÑ™MÖkwj3Œ:›úϺ>åp`O®¤bd?`Ö± EY1Z!ùíi-£:2îUˆ¶sví"Æ|ÒùOô«=ˆ2t ôg1 :ëEï³^LKÈ ƒïÅ‘YDC²OIÄTJA¦°ðkÔ„š|Kjâ{nˆ¨”.7DQE{ò†híè"˜Rê‡ÂN{i`…㌷EÝåš·ªü?#fQ·.<§ºÎ×½Þ4®ÛWž´vñ]Ѷ¦ý§Õȱlj"tã”Ú…*éßaUD÷€¦ÊxßUaítÂ:cAUV4 wdÍÉ3ù:†"˜TѶ§Û âqµÄ]Ù9ÖuòˆÈ»¯·²CÁÔ‚ÙܳãÊ @+œÈoÏ Þ¿V¾ÔßÒJNªžRŠÔ!‡ER 8ÊËFw­ÁOXß·QÆçËéö¾™LÝûÎŽÀíÜô¤=½mO—íéº=Ý®I`Ó¬Å0åDTœùL àô°´Ö`³á6hÑsÐ%Á[~-us²£Ø”H‰à6¶Õkð_t\ÈØ¦åX‰,•‰ì¥¶OPy¹|µî C;8tÍ9 0þ£šf®Þ—½Ö¦EÇ+Ë虹¤ôŸØ3S% åçØ3S§ãÿÕ33å¥ùÌáËlšåÓWç›ïi¸¶}·û§oá,´½ÞÜ ˜¶‚_z}Ô¦“Ÿ‚™•OÁ°yV)oá¸sŽ‘?{Ð|ußžnÚÓÝʯ¯Û4ºZgùyº/\þxãËöôª¿ò`…Ë«5Úß¶Å‹•°shOOWBÑë]S~Q¨…bŒ%ZW„Öß¿éÓ>ÀÃï™ ºzgoký>4;¤1yÏWÊÎ8 j ô–3êÀ;Ý”hš§&àÁ€z pLg¾•QÜì}) ©WT[úàOø‡tLôh«mˆä6âР݈&Va/‚0î a|&Ø5aÄÇu2é^w2¨üD€‚{:!‚Ã/]«aÙVkÃêKNÖC‹gA(ˆüþC :ˆ\~‡q]ã¥Ä Í£åŒÜu³ˆ;²r‘Ó «ÞÜ-kØzµÿê'ZÌDŠ>ŠtÜœ*Üàt:6n™uø\¥Ct­COôy(Eûü ˜úÜ ›¼FXÆÒR§¹¸üꢥYД"a<ǯð ikU„49Û-g›ârBα¾kì‡GíXÇnd«ÑH¯ÈÊ Vû÷R¢ÖÂpu|9Ô‹ˆWlÂÈG+L|5\8Áxåx·“Éj˜*ÕÏà™ÐCá6 ÑêÊÆt4ڮĽ;ú¦ŸD6™°#¨ŒUÍ`(S Xoƒ€¢n¬¤ì÷‘G)i^ÈúF|Ë26I.ì_ØVõx¹Â?iyòÕÎ9=Ù^\U¾D`"¡È´ªSvõ4AàßkaŸ\íóhÚ㊢V„ï–ˆßùad5øQFâW ­ä| £ZxdXCÌ#©Ðw»Æï_ý W‡1¤Fü ]²s¢“7‚sißöÀ"GÄWÔ³dåè»èÌÜ[`ã« €MGèwÝÍEñE]%Þ%¤£ò™7ˆO›~ä•°}àÀV±SO„>­ŒÉÖÊÍÁ˜¸åT’$Öñ2Ô`¦†bJVÂØ&ã¶oÌ‹ÞoŒ¯í£|Œh ¾(8†ã² ãVÄдמôvL¨‘š£ÆYëþhG#³ñ+§&òÅ…ù°f2n%J9{äÆTÃ}¿ù/šÙ¢8endstream endobj 134 0 obj << /Filter /FlateDecode /Length 1608 >> stream xœWMoÜ6½ ýºÐY–ßœé--Ò¢A› Í=$=ll'1àõ:vÒ$ÿ¾¤DÖë4.ö°5š>¾yC¾ëµ2½Î¿ñÿd×Yå¹ÿØéþ—.ú¤\2} Ñ(Šý®#Udn3ÝóŽuRÑSŸ¢×ÊYXµ2¬b(VÁaì…Ñ4!m¼ÆË â…ð–ñ¦¬ˆI¥ ’'dNÑ‘ò‘ENd’"mdN³Ñ8±°sjѦ”D4Ý¿éÞu¦Ù'»þÇM÷ýN÷¬8ÚØo^wdÓïTrIúÍ®{1ü¼Â.PB&ï«5ÆZûä†'[­³Š™†Ÿò «5û4<ÍöµÃï:ÍÌ CX$­)ºá¦½‰ÓO6âË竵uVo#OC"O *Ä`ûµ‰Ê96ýæ nVdU4Æ[‘ß«ÄDŽÃEYK솳š3Ö%%&¢8Ø1Üï‘f@Sâü0ÛÆVG¥Sä0ÿ¹2 «Š«šFïÛè¬vmtu,çÁm'¯§PJ†‡íûœ kC&/Û974¼òZµeë‡ 9ëâ°¿\Œø’D38ŸqÁû¤È ²ß¨µcd ¬·Ù—«ü\¤8¨%$6ݳÎ+&ªag”‰}LyæÊò–m3™¢_gu'‰íÛˆŠJp‰Ÿ|%ñãó¶.ÛèÑ·×môyµ6UÅ<<»uÛð¼.æO‰rqÌ÷Ó6yr„1û6zu„E׫C4º¼ãÑqfû­î'Ì eÜÇ”¶¦âþ¼ö,SÅ1{ï2y3…l²QòqY§Q‡ˆ †Ð@²#Ë[”´wàOï2¨ ¼_H Z ˜]•«q`w##L%!ÖJãíÈ[€»(‚«rfÆOÆ]bÐÕƒ³ZPææà¹ŽeMî rînaÎàɤe ËG“OH-lÙöGÆV'Ñ„»µ>äà²'íËÚàÂP•®È”i&*NìÆ’D3 †%¼•ûQÌ5ãjg§6è=ãS]$®…h]yKç*îèv;¸µÙñ*õqiÍáŠã¤C-MØ¿HÌyS¿ÂÅëP“MÆÃÔË\·¯Dw*±1>L©a%ÓmìU¶¾`J‡b·8cœA³ŸoÝç3ô·Åñ“¢¼ü‰+áw{ËäÔkw9ш:’.(rü{uÔv’~ûÕÊ_²¹Sù3lò@ÏOç¡ý¥`²`l»<ëþ.¦ñŒendstream endobj 135 0 obj << /Type /XRef /Length 146 /Filter /FlateDecode /DecodeParms << /Columns 5 /Predictor 12 >> /W [ 1 3 1 ] /Info 3 0 R /Root 2 0 R /Size 136 /ID [<4532a6532a7c0c1e411ffc527e7a0867>] >> stream xœcb&F~0ù‰ $À8JŽ’T ÿ3…̲ÙäAéŠßD 4€Há}`²D2ï‘‚A ’Q D²»€Ù×A¤|$X6,b–U‘L&`ÒLjƒeýÀä0É"Eô@¤dä¶B¨áɳÿƒM«TÍÛ –]"å6ƒHQ-°Ëù@$Û$ÂÆv endstream endobj startxref 108986 %%EOF HSAUR3/inst/slides/0000755000176200001440000000000014660150123013455 5ustar liggesusersHSAUR3/inst/slides/Ch_density_estimation.Rnw0000644000176200001440000004500014172224326020476 0ustar liggesusers \input{HSAUR_title} \SweaveOpts{prefix.string=figures/HSAUR,eps=FALSE,keep.source=TRUE} <>= source("setup.R") @ \frame{ \begin{center} \Large{Part 8: Density Estimation} \end{center} focuses on estimating uni- and multivariate densities. } <>= x <- library("KernSmooth") x <- library("flexmix") x <- library("boot") data("CYGOB1", package = "HSAUR3") @ \section{Introduction} \begin{frame} \frametitle{Erupting Geysers} Old Faithful is the most popular attraction of Yellowstone National Park, although it is not the largest or grandest geyser in the park. Old Faithful can vary in height from 100--180 feet with an average near 130--140 feet. Eruptions normally last between $1.5$ to $5$ minutes. From August 1 to August 15, 1985, Old Faithful was observed and the waiting times between successive eruptions noted. There were $300$ eruptions observed, so $299$ waiting times were (in minutes) recorded. \end{frame} \begin{frame} \frametitle{Star Clusters} The Hertzsprung-Russell (H-R) diagram forms the basis of the theory of stellar evolution. The diagram is essentially a plot of the energy output of stars plotted against their surface temperature. Data from the H-R diagram of Star Cluster CYG OB1, calibrated according to \cite{HSAUR:VanismaGreve1972} are given in \Robject{CYGOB1}. \end{frame} \section{Density Estimation} \begin{frame} \frametitle{Density Estimation} The goal of density estimation is to approximate the probability density function of a random variable (univariate or multivariate) given a sample of observations of the variable. Univariate histograms are a simple example of a density estimate; they are often used for two purposes, counting and displaying the distribution of a variable, but according to \cite{HSAUR:Wilkinson1992}, they are effective for neither. For bivariate data, two-dimensional histograms can be constructed, but for small and moderate sized data sets that is not of any real use for estimating the bivariate density function, simply because most of the `boxes' in the histogram %' will contain too few observations, or if the number of boxes is reduced the resulting histogram will be too coarse a representation of the density function. \end{frame} \begin{frame} \frametitle{Density Estimation} If we are willing to assume a particular form for the variable's %' distribution, for example, Gaussian, density estimation would be reduced to estimating the parameters of the assumed distribution. More commonly, however, we wish to allow the data to speak for themselves and so one of a variety of non-parametric estimation procedures that are now available might be used. One of the most popular class of procedures is the kernel density estimators, which we now briefly describe for univariate and bivariate data. \end{frame} \subsection{Kernel Density Estimators} \begin{frame} \frametitle{Kernel Density Estimators} From the definition of a probability density, if the random $X$ has a density $f$, \begin{eqnarray*} f(x) = \lim_{h \rightarrow 0} \frac{1}{2h} \P(x - h < X < x + h). \end{eqnarray*} For any given $h$ a na{\"\i}ve estimator is \begin{eqnarray*} \hat{f}(x) = \frac{1}{2hn} \sum_{i = 1}^n I(x_i \in (x - h, x + h)), \end{eqnarray*} i.e., the number of $x_1, \dots, x_n$ falling in the interval $(x - h, x + h)$ divided by $2hn$. \end{frame} \begin{frame} \frametitle{Kernel Density Estimators} If we introduce a weight function $W$ given by \begin{eqnarray*} W(x) = \left\{\begin{array}{lcl} \frac{1}{2} & & |x| < 1 \\\\ %end 0 & & \text{else} \end{array} \right . \end{eqnarray*} then the na{\"\i}ve estimator can be rewritten as %" \begin{eqnarray*} \hat{f}(x) = \frac{1}{n} \sum_{i = 1}^n \frac{1}{h} W\left(\frac{x - x_i}{h}\right). \end{eqnarray*} but is unfortunately not continuous function. \end{frame} \begin{frame} \frametitle{Kernel Density Estimators} Better: \begin{eqnarray*} \hat{f}(x) = \frac{1}{hn} \sum_{i = 1}^n K\left(\frac{x - x_i}{h}\right) \end{eqnarray*} where $K$ is known as the \stress{kernel function} and $h$ as the \stress{bandwidth} or \stress{smoothing parameter}. The kernel function must satisfy the condition \begin{eqnarray*} \int_{-\infty}^\infty K(x)dx = 1. \end{eqnarray*} Usually, but not always, the kernel function will be a symmetric density function for example, the normal. \end{frame} \begin{frame} \frametitle{Kernel Functions} \begin{description} \item[rectangular:] \begin{eqnarray*} K(x) = \left\{\begin{array}{lcl} \frac{1}{2} & & |x| < 1 \\\\ %end 0 & & \text{else} \end{array} \right . \end{eqnarray*} \item[triangular:] \begin{eqnarray*} K(x) = \left\{\begin{array}{lcl} 1 - |x| & & |x| < 1 \\\\ %end 0 & & \text{else} \end{array} \right . \end{eqnarray*} \item[Gaussian:] \begin{eqnarray*} K(x) = \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2}x^2} \end{eqnarray*} \end{description} \end{frame} \begin{frame}[fragile] \frametitle{Kernel Functions} \begin{center} <>= rec <- function(x) (abs(x) < 1) * 0.5 tri <- function(x) (abs(x) < 1) * (1 - abs(x)) gauss <- function(x) 1/sqrt(2*pi) * exp(-(x^2)/2) x <- seq(from = -3, to = 3, by = 0.001) plot(x, rec(x), type = "l", ylim = c(0,1), lty = 1, ylab = expression(K(x))) lines(x, tri(x), lty = 2) lines(x, gauss(x), lty = 3) legend(-3, 0.8, legend = c("Rectangular", "Triangular", "Gaussian"), lty = 1:3, title = "kernel functions", bty = "n") @ \end{center} \end{frame} \begin{frame}[fragile] \frametitle{Kernel Functions} The kernel estimator $\hat{f}$ is a sum of `bumps' placed at the observations. %' The kernel function determines the shape of the bumps while the window width $h$ determines their width. We look at the individual bumps $n^{-1}h^{-1} K((x - x_i) / h)$, as well as the estimate $\hat{f}$ obtained by adding them up for an artificial set of data points <>= x <- c(0, 1, 1.1, 1.5, 1.9, 2.8, 2.9, 3.5) n <- length(x) xgrid <- seq(from = min(x) - 1, to = max(x) + 1, by = 0.01) h <- 0.4 bumps <- sapply(x, function(a) gauss((xgrid - a)/h)/(n * h)) @ \end{frame} \begin{frame}[fragile] \frametitle{Kernel Functions} \small \begin{center} <>= plot(xgrid, rowSums(bumps), type = "l", xlab = "x", ylab = expression(hat(f)(x)), lwd = 2) rug(x, lwd = 2) out <- apply(bumps, 2, function(b) lines(xgrid, b)) @ \end{center} \normalsize \end{frame} \subsection{Bivariate Density Estimation} \begin{frame} \frametitle{Bivariate Density Estimation} The kernel density estimator considered as a sum of `bumps' %' centred at the observations has a simple extension to two dimensions (and similarly for more than two dimensions). The bivariate estimator for data $(x_1, y_1)$, $(x_2, y_2)$, $\dots$, $(x_n, y_n)$ is defined as \begin{eqnarray*} \hat{f}(x, y) = \frac{1}{nh_xh_y} \sum_{i = 1}^n K\left(\frac{x - x_i}{h_x}, \frac{y - y_i}{h_y}\right). \end{eqnarray*} In this estimator each coordinate direction has its own smoothing parameter $h_x$ and $h_y$. An alternative is to scale the data equally for both dimensions and use a single smoothing parameter. \end{frame} \begin{frame} \frametitle{Bivariate Kernels} \begin{description} \item[Bivariate Normal kernel:] \begin{eqnarray*} K(x, y) = \frac{1}{2 \pi}e^{-\frac{1}{2} (x^2 + y^2)}. \end{eqnarray*} \item[Bivariate Epanechnikov kernel:] \begin{eqnarray*} K(x, y) = \left\{\begin{array}{lcl} \frac{2}{\pi}(1 - x^2 - y^2) & & x^2 + y^2 < 1 \\\\ %end 0 & & \text{else} \end{array} \right. \end{eqnarray*} \end{description} \end{frame} \begin{frame}[fragile] \frametitle{Epanechnikov} \begin{center} <>= epa <- function(x, y) ((x^2 + y^2) < 1) * 2/pi * (1 - x^2 - y^2) x <- seq(from = -1.1, to = 1.1, by = 0.05) epavals <- sapply(x, function(a) epa(a, x)) persp(x = x, y = x, z = epavals, xlab = "x", ylab = "y", zlab = expression(K(x, y)), theta = -35, axes = TRUE, box = TRUE) @ \end{center} \end{frame} \section{Analysis Using R} \begin{frame}[fragile] \frametitle{Old Faithful} \begin{center} <>= data("faithful", package = "datasets") x <- faithful$waiting layout(matrix(1:3, ncol = 3)) hist(x, xlab = "Waiting times (in min.)", ylab = "Frequency", probability = TRUE, main = "Gaussian kernel", border = "gray") lines(density(x, width = 12), lwd = 2) rug(x) hist(x, xlab = "Waiting times (in min.)", ylab = "Frequency", probability = TRUE, main = "Rectangular kernel", border = "gray") lines(density(x, width = 12, window = "rectangular"), lwd = 2) rug(x) hist(x, xlab = "Waiting times (in min.)", ylab = "Frequency", probability = TRUE, main = "Triangular kernel", border = "gray") lines(density(x, width = 12, window = "triangular"), lwd = 2) rug(x) @ \end{center} \end{frame} \begin{frame}[fragile] \frametitle{Star Clusters} \small \begin{center} <>= CYGOB1d <- bkde2D(CYGOB1, bandwidth = sapply(CYGOB1, dpik)) contour(x = CYGOB1d$x1, y = CYGOB1d$x2, z = CYGOB1d$fhat, xlab = "log surface temperature", ylab = "log light intensity") @ \end{center} \normalsize \end{frame} \begin{frame}[fragile] \frametitle{Star Clusters} \begin{center} <>= persp(x = CYGOB1d$x1, y = CYGOB1d$x2, z = CYGOB1d$fhat, xlab = "log surface temperature", ylab = "log light intensity", zlab = "estimated density", theta = -35, axes = TRUE, box = TRUE) @ \end{center} \end{frame} \subsection{A Parametric Density Estimate for the Old Faithful Data} \begin{frame} \frametitle{Parametric Old Faithful} Two-component normal mixture distribution \begin{eqnarray*} f(x) = p \phi(x, \mu_1, \sigma_1^2) + (1 - p) \phi(x, \mu_2, \sigma^2_2) \end{eqnarray*} where $\phi(x, \mu, \sigma^2)$ denotes the normal density. This distribution had five parameters to estimate, the mixing proportion, $p$, and the mean and variance of each component normal distribution. Pearson 100 years ago heroically attempted this by the method of moments, which required solving a polynomial equation of the 9$^{\text{th}}$ degree. Nowadays the preferred estimation approach is maximum likelihood. \end{frame} \begin{frame}[fragile] \frametitle{Maximum Likelihood Estimation} <>= logL <- function(param, x) { d1 <- dnorm(x, mean = param[2], sd = param[3]) d2 <- dnorm(x, mean = param[4], sd = param[5]) -sum(log(param[1] * d1 + (1 - param[1]) * d2)) } startparam <- c(p = 0.5, mu1 = 50, sd1 = 3, mu2 = 80, sd2 = 3) opp <- optim(startparam, logL, x = faithful$waiting, method = "L-BFGS-B", lower = c(0.01, rep(1, 4)), upper = c(0.99, rep(200, 4))) opp @ \end{frame} \begin{frame}[fragile] \frametitle{Maximum Likelihood Estimation} <>= print(opp[names(opp) != "message"]) @ \end{frame} \begin{frame}[fragile] \frametitle{Maximum Likelihood Estimation} Optimising the appropriate likelihood `by hand' %' is not very convenient. In fact, (at least) two packages offer high-level functionality for estimating mixture models. The first one is package \Rpackage{mclust} \citep{PKG:mclust} implementing the methodology described in \cite{HSAUR:FraleyRaftery2002}. Here, a Bayesian information criterion (BIC) is applied to choose the form of the mixture model: <>= library("mclust") @ <>= library("mclust") mc <- Mclust(faithful$waiting) mc @ \end{frame} \begin{frame}[fragile] \frametitle{Maximum Likelihood Estimation} The estimated means are <>= mc$parameters$mean @ with estimated standard deviation (found to be equal within both groups) <>= sqrt(mc$parameters$variance$sigmasq) @ The proportion is $\hat{p} = \Sexpr{round(mc$parameters$pro[1], 2)}$. \end{frame} \begin{frame}[fragile] \frametitle{Maximum Likelihood Estimation} The second package is called \Rpackage{flexmix}: <>= library("flexmix") fl <- flexmix(waiting ~ 1, data = faithful, k = 2) @ with $\hat{p} = \Sexpr{round(fl@prior, 2)}$ and estimated parameters <>= parameters(fl, component = 1) parameters(fl, component = 2) @ \end{frame} \begin{frame}[fragile] \frametitle{Maximum Likelihood Estimation} \small \begin{center} <>= opar <- as.list(opp$par) rx <- seq(from = 40, to = 110, by = 0.1) d1 <- dnorm(rx, mean = opar$mu1, sd = opar$sd1) d2 <- dnorm(rx, mean = opar$mu2, sd = opar$sd2) f <- opar$p * d1 + (1 - opar$p) * d2 hist(x, probability = TRUE, xlab = "Waiting times (in min.)", border = "gray", xlim = range(rx), ylim = c(0, 0.06), main = "") lines(rx, f, lwd = 2) lines(rx, dnorm(rx, mean = mean(x), sd = sd(x)), lty = 2, lwd = 2) legend(50, 0.06, lty = 1:2, bty = "n", legend = c("Fitted two-component mixture density", "Fitted single normal density")) @ \end{center} \normalsize \end{frame} \section{Bootstrap} \begin{frame}[fragile] \frametitle{The Bootstrap} We can get standard errors for the five parameter estimates by using a bootstrap approach \citep[see][]{HSAUR:EfronTibshirani1993}. First, we define a function that, for a bootstrap sample \Robject{indx}, fits a two-component mixture model and returns $\hat{p}$ and the estimated means <>= library("boot") fit <- function(x, indx) { a <- Mclust(x[indx], minG = 2, maxG = 2)$parameters if (a$pro[1] < 0.5) return(c(p = a$pro[1], mu1 = a$mean[1], mu2 = a$mean[2])) return(c(p = 1 - a$pro[1], mu1 = a$mean[2], mu2 = a$mean[1])) } @ \end{frame} \begin{frame}[fragile] \frametitle{The Bootstrap} The function \Rcmd{fit} can now be fed into the \Rcmd{boot} function \citep{PKG:boot} for bootstrapping (here $1000$ bootstrap samples are drawn) \begin{Schunk} \begin{Sinput} R> bootpara <- boot(faithful$waiting, fit, R = 1000) \end{Sinput} \end{Schunk} <>= bootparafile <- system.file("cache", "DE-bootpara.rda", package = "HSAUR3") if (file.exists(bootparafile)) { load(bootparafile) } else { bootpara <- boot(faithful$waiting, fit, R = 1000) } @ Variability of our estimates $\hat{p}$ (BCa confidence intervals): <>= boot.ci(bootpara, type = "bca", index = 1) @ \end{frame} \begin{frame}[fragile] \frametitle{The Bootstrap} We see that there is a reasonable variability in the mixture model, however, the means in the two components are rather stable, as can be seen from <>= boot.ci(bootpara, type = "bca", index = 2) @ for $\hat{\mu}_1$ \end{frame} \begin{frame}[fragile] \frametitle{The Bootstrap} and for $\hat{\mu}_2$ from <>= boot.ci(bootpara, type = "bca", index = 3) @ \end{frame} \begin{frame}[fragile] \frametitle{The Bootstrap} Bootstrap-distribution of $\hat{\mu}_1$ and $\hat{\mu}_2$ with BCa confidence intervals: <>= bootplot <- function(b, index, main = "") { dens <- density(b$t[,index]) ci <- boot.ci(b, type = "bca", index = index)$bca[4:5] est <- b$t0[index] plot(dens, main = main) y <- max(dens$y) / 10 segments(ci[1], y, ci[2], y, lty = 2) points(ci[1], y, pch = "(") points(ci[2], y, pch = ")") points(est, y, pch = 19) } @ \begin{figure} \begin{center} <>= layout(matrix(1:2, ncol = 2)) bootplot(bootpara, 2, main = expression(mu[1])) bootplot(bootpara, 3, main = expression(mu[2])) @ \end{center} \end{figure} \end{frame} \section{Summary} \begin{frame} \frametitle{Summary} Histograms and scatterplots are frequently used to give graphical representations of univariate and bivariate data. But both can often be improved and made more helpful by adding some form of density estimate. For scatterplots in particular adding a contour plot of the estimated bivariate density can be particularly useful in aiding in the identification of clusters, gaps and outliers. \end{frame} \section*{Exercises} \begin{frame} \frametitle{Exercises} \begin{itemize} \item The \Robject{galaxies} data are the velocities of $82$ galaxies from six well-separated conic sections of space \citep{HSAUR:Postmanetal1986,HSAUR:Roeder1990}. The data are intended to shed light on whether or not the observable universe contains superclusters of galaxies surrounded by large voids. The evidence for the existence of superclusters would be the multimodality of the distribution of velocities. Construct a histogram of the data and add a variety of kernel estimates of the density function. What do you conclude about the possible existence of superclusters of galaxies? \item The \Robject{birthdeathrates} data give the birth and death rates for 69 countries \citep[from][]{HSAUR:Hartigan1975}. Produce a scatterplot of the data that shows a contour plot of the estimated bivariate density. Does the plot give you any interesting insights into the possible structure of the data? \end{itemize} \end{frame} \begin{frame} \frametitle{Exercises} \begin{itemize} \item A sex difference in the age of onset of schizophrenia was noted by \cite{HSAUR:Kraepelin1919}. Subsequent epidemiological studies of the disorder have consistently shown an earlier onset in men than in women. One model that has been suggested to explain this observed difference is known as the \stress{subtype model} which postulates two types of schizophrenia, one characterised by early onset, typical symptoms and poor premorbid competence, and the other by late onset, atypical symptoms and good premorbid competence. The early onset type is assumed to be largely a disorder of men and the late onset largely a disorder of women. By fitting finite mixtures of normal densities separately to the onset data for men and women given in \Robject{schizophrenia} see if you can produce some evidence for or against the subtype model. \end{itemize} \end{frame} \begin{frame} \frametitle{References} \tiny <>= src <- system.file(package = "HSAUR3") style <- file.path(src, "LaTeXBibTeX", "refstyle") bst <- file.path(src, "LaTeXBibTeX", "HSAUR") cat(paste("\\bibliographystyle{", style, "}", sep = ""), "\n \n") cat(paste("\\bibliography{", bst, "}", sep = ""), "\n \n") @ \end{frame} \end{document} HSAUR3/inst/slides/definitions.tex0000644000176200001440000001012514172224326016516 0ustar liggesusers %%% copy Sweave.sty definitions %%% keeps `sweave' from adding `\usepackage{Sweave}': DO NOT REMOVE %\usepackage{Sweave} \RequirePackage[T1]{fontenc} \RequirePackage{graphicx,ae,fancyvrb} \IfFileExists{upquote.sty}{\RequirePackage{upquote}}{} \usepackage{relsize} \DefineVerbatimEnvironment{Sinput}{Verbatim}{} \DefineVerbatimEnvironment{Soutput}{Verbatim}{fontfamily=courier, fontshape=it, fontsize=\relsize{-1}} \DefineVerbatimEnvironment{Scode}{Verbatim}{} \newenvironment{Schunk}{}{} %%% environment for raw output \newcommand{\SchunkRaw}{\renewenvironment{Schunk}{}{} \DefineVerbatimEnvironment{Soutput}{Verbatim}{fontfamily=courier, fontshape=it, fontsize=\small} \rawSinput } %%% environment for labeled output \newcommand{\nextcaption}{} \newcommand{\SchunkLabel}{ \renewenvironment{Schunk}{\begin{figure}[ht] }{\caption{\nextcaption} \end{figure} } \DefineVerbatimEnvironment{Sinput}{Verbatim}{frame = topline} \DefineVerbatimEnvironment{Soutput}{Verbatim}{frame = bottomline, samepage = true, fontfamily=courier, fontshape=it, fontsize=\relsize{-1}} } %%% S code with line numbers \DefineVerbatimEnvironment{Sinput} {Verbatim} { %% numbers=left } \newcommand{\numberSinput}{ \DefineVerbatimEnvironment{Sinput}{Verbatim}{numbers=left} } \newcommand{\rawSinput}{ \DefineVerbatimEnvironment{Sinput}{Verbatim}{} } %%% R / System symbols \newcommand{\R}{\textsf{R}} \newcommand{\rR}{{R}} \renewcommand{\S}{\textsf{S}} \newcommand{\SPLUS}{\textsf{S-PLUS}} \newcommand{\rSPLUS}{{S-PLUS}} \newcommand{\SPSS}{\textsf{SPSS}} \newcommand{\EXCEL}{\textsf{Excel}} \newcommand{\ACCESS}{\textsf{Access}} \newcommand{\SQL}{\textsf{SQL}} %%\newcommand{\Rpackage}[1]{\hbox{\rm\textit{#1}}} %%\newcommand{\Robject}[1]{\hbox{\rm\texttt{#1}}} %%\newcommand{\Rclass}[1]{\hbox{\rm\textit{#1}}} %%\newcommand{\Rcmd}[1]{\hbox{\rm\texttt{#1}}} \newcommand{\Rpackage}[1]{\index{#1 package@\textit{#1} package}\textit{#1}} \newcommand{\Robject}[1]{\texttt{#1}} \newcommand{\Rclass}[1]{\index{#1 class@\textit{#1} class}\textit{#1}} \newcommand{\Rcmd}[1]{\index{#1 function@\texttt{#1} function}\texttt{#1}} \newcommand{\Roperator}[1]{\texttt{#1}} \newcommand{\Rarg}[1]{\texttt{#1}} \newcommand{\Rlevel}[1]{\texttt{#1}} %%% other symbols \newcommand{\file}[1]{\hbox{\rm\texttt{#1}}} %%\newcommand{\stress}[1]{\index{#1}\textit{#1}} \newcommand{\stress}[1]{\textit{#1}} \newcommand{\booktitle}[1]{`#1'} %%' %%% Math symbols \newcommand{\E}{\mathsf{E}} \newcommand{\Var}{\mathsf{Var}} \newcommand{\Cov}{\mathsf{Cov}} \newcommand{\Cor}{\mathsf{Cor}} \newcommand{\x}{\mathbf{x}} \newcommand{\y}{\mathbf{y}} \renewcommand{\a}{\mathbf{a}} \newcommand{\W}{\mathbf{W}} \newcommand{\C}{\mathbf{C}} \renewcommand{\H}{\mathbf{H}} \newcommand{\X}{\mathbf{X}} \newcommand{\B}{\mathbf{B}} \newcommand{\V}{\mathbf{V}} \newcommand{\I}{\mathbf{I}} \newcommand{\D}{\mathbf{D}} \newcommand{\bS}{\mathbf{S}} \newcommand{\N}{\mathcal{N}} \renewcommand{\P}{\mathsf{P}} \usepackage{amstext} %%% links \usepackage{hyperref} %%% captions & tables %% : conflics with figure definition in chapman.cls %%\usepackage[format=hang,margin=10pt,labelfont=bf]{caption} %% \usepackage{longtable} \usepackage{rotating} %%% Bibliography \usepackage[round,comma]{natbib} %%% texi2dvi complains that \newblock is undefined, hm... \def\newblock{\hskip .11em plus .33em minus .07em} %%% Example sections %% URLs \newcommand{\curl}[1]{\begin{center} \url{#1} \end{center}} %%% for manual corrections %\renewcommand{\baselinestretch}{2} %%% plot sizes \setkeys{Gin}{width=0.65\textwidth} %%% color \usepackage{color} %%% hyphenations \hyphenation{drop-out} %%% local definitions \setlength{\parskip}{\parsep} \usepackage[utf8]{inputenc}HSAUR3/inst/slides/beamerthemeHSAUR.sty0000644000176200001440000000267414172224326017315 0ustar liggesusers\ProvidesPackageRCS $Header: /home/cvs/CVSroot/RHandbook/HSAUR/slides/beamerthemeHSAUR.sty,v 1.1 2006/05/08 09:16:39 hothorn Exp $ % Copyright 2003 by Till Tantau % % This program can be redistributed and/or modified under the terms % of the GNU Public License, version 2. %%\usepackage[names]{color} \DeclareOptionBeamer{hideothersubsections}{\PassOptionsToPackage{hideothersubsections}{beamerouterthemesidebar}} \DeclareOptionBeamer{hideallsubsections}{\PassOptionsToPackage{hideallsubsections}{beamerouterthemesidebar}} \PassOptionsToPackage{right}{beamerouterthemesidebar} \PassOptionsToPackage{width=2cm}{beamerouterthemesidebar} \DeclareOptionBeamer{width}{\PassOptionsToPackage{width=#1}{beamerouterthemesidebar}} \DeclareOptionBeamer{left}{\PassOptionsToPackage{left}{beamerouterthemesidebar}} \DeclareOptionBeamer{right}{\PassOptionsToPackage{right}{beamerouterthemesidebar}} \ProcessOptionsBeamer \mode \useoutertheme[height=0pt]{sidebar} %\setbeamercolor{structure}{fg=Mahogany} \setbeamercolor{structure}{fg=red!70!green!150} %\setbeamercolor{structure}{bg=red!70!green!50} \setbeamercolor{sidebartab}{fg=white} {\usebeamercolor{structure}} {\usebeamercolor{sidebartab}} \definecolor{lilahell}{rgb}{0.43,0.16,0.41} \definecolor{liladunkel}{rgb}{0.12,0.12,0.13} \setbeamertemplate{sidebar canvas \beamer@sidebarside}[vertical shading][top=lilahell,bottom=lilahell] \insertpagenumber \mode HSAUR3/inst/slides/Ch_recursive_partitioning.Rnw0000644000176200001440000003234614172224326021372 0ustar liggesusers \input{HSAUR_title} \SweaveOpts{prefix.string=figures/HSAUR,eps=FALSE,keep.source=TRUE} <>= source("setup.R") library("randomForest") library("partykit") @ \frame{ \begin{center} \Large{Part 9: Recursive Partitioning} \end{center} explains how to fit regression models via simple recursive partitioning methods. } \section{Introduction} \begin{frame} \frametitle{Introduction} The Forbes 2000 list of the world's biggest industrial companies was %%' introduced in detail in Part~1. Here, our interest is to construct a model explaining the profit of a company based on assets, sales and the market value. The second set of data involves the investigation reported in \cite{HSAUR:Mardinetal2003} of whether laser scanner images of the eye background can be used to classify a patient's eye as suffering %' from glaucoma or not. Glaucoma is a neuro-degenerative disease of the optic nerve and is one of the major reasons for blindness in elderly people. \end{frame} \begin{frame} \frametitle{Glaucoma Data} For $196$ people, $98$ patients suffering glaucoma and $98$ controls which have been matched by age and sex, $62$ numeric variables derived from the laser scanning images are available. The data are available as \Robject{GlaucomaM} \index{GlaucomaM data@\Robject{GlaucomaM} data} from package \Rpackage{TH.data}. The variables describe the morphology of the optic nerve head, i.e., measures of volumes and areas in certain regions of the eye background. Those regions have been manually outlined by a physician. Our aim is to construct a prediction model which is able to decide whether an eye is affected by glaucomateous changes based on the laser image data. \end{frame} \begin{frame} \frametitle{Candidate Models} Both sets of data described above could be analysed using the regression models described in Parts~5 and 6, i.e., regression models for numeric and binary response variables based on a linear combination of the covariates. But here we shall employ an alternative approach known as \stress{recursive partitioning}, where the resulting models are usually called \stress{regression or classification trees}. \end{frame} \begin{frame} \frametitle{Recursive Partitioning} This method was originally invented to deal with possible non-linear relationships between covariates and response. The basic idea is to partition the covariate space and to compute simple statistics of the dependent variable, like the mean or median, inside each cell. There exist many algorithms for the construction of classification or regression trees but the majority of algorithms follow a simple general rule: First partition the observations by univariate splits in a recursive way and second fit a constant model in each cell of the resulting partition. \end{frame} \begin{frame} \frametitle{Recursive Partitioning} For the first step, one selects a covariate $x_j$ from the $q$ available covariates $x_1, \dots, x_q$ and estimates a split point which separates the response values $y_i$ into two groups. For an ordered covariate $x_j$ a split point is a number $\xi$ dividing the observations into two groups. The first group consists of all observations with $x_j \le \xi$ and the second group contains the observations satisfying $x_j > \xi$. Once that the splits $\xi$ or $A$ for some selected covariate $x_j$ have been estimated, one applies the procedure sketched above for all observations in the first group and, recursively, splits this set of observations further. The same happens for all observations in the second group. The recursion is stopped when some stopping criterion is fulfilled. \end{frame} \begin{frame} \frametitle{Ensemble Methods} When the underlying relationship between covariate and response is smooth, such a split point estimate will be affected by high variability. This problem is addressed by so called \stress{ensemble methods}. Here, multiple trees are grown on perturbed instances of the data set and their predictions are averaged. The simplest representative of such a procedure is called \stress{bagging} \citep{HSAUR:Breiman1996}. \end{frame} \begin{frame} \frametitle{Bagging} We draw $B$ bootstrap samples from the original data set, i.e., we draw $n$ out of $n$ observations with replacement from our $n$ original observations. For each of those bootstrap samples we grow a very large tree. When we are interested in the prediction for a new observation, we pass this observation through all $B$ trees and average their predictions. It has been shown that the goodness of the predictions for future cases can be improved dramatically by this or similar simple procedures. More details can be found in \cite{HSAUR:Buehlmann2004}. \end{frame} \section{Analysis using R} \begin{frame}[fragile] \frametitle{Analysis using R: Forbes 2000} The \Rcmd{rpart} function from \Rpackage{rpart} can be used to grow a regression tree. The response variable and the covariates are defined by a model formula in the same way as for \Rcmd{lm}, say. By default, a large initial tree is grown. <>= library("rpart") data("Forbes2000", package = "HSAUR3") Forbes2000 <- subset(Forbes2000, !is.na(profits)) fm <- profits ~ assets + marketvalue + sales forbes_rpart <- rpart(fm, data = Forbes2000) @ \end{frame} \begin{frame}[fragile] \frametitle{Plot Tree} \begin{center} <>= plot(as.party(forbes_rpart)) @ \end{center} \end{frame} \begin{frame}[fragile] \frametitle{Inspect Tree Complexity} <>= print(forbes_rpart$cptable) opt <- which.min(forbes_rpart$cptable[,"xerror"]) cp <- forbes_rpart$cptable[opt, "CP"] forbes_prune <- prune(forbes_rpart, cp = cp) @ \end{frame} \begin{frame}[fragile] \frametitle{Plot Pruned Tree} \small \begin{center} <>= plot(as.party(forbes_prune)) @ \end{center} \normalsize \end{frame} \begin{frame}[fragile] \frametitle{Glaucoma Data} Here, we are primarily interested in the construction of a predictor. The relationship between the $62$ covariates and the glaucoma status itself is not very interesting. We start with a large initial tree and prune back branches according to the cross-validation criterion. \small <>= set.seed(290875) @ <>= data("GlaucomaM", package = "TH.data") glaucoma_rpart <- rpart(Class ~ ., data = GlaucomaM, control = rpart.control(xval = 100)) glaucoma_rpart$cptable opt <- which.min(glaucoma_rpart$cptable[,"xerror"]) cp <- glaucoma_rpart$cptable[opt, "CP"] glaucoma_prune <- prune(glaucoma_rpart, cp = cp) @ \normalsize \end{frame} \begin{frame}[fragile] \frametitle{Pruned Tree for Glaucoma Data} \small \begin{center} <>= plot(as.party(glaucoma_prune)) @ \end{center} \normalsize \end{frame} \begin{frame}[fragile] \frametitle{Problem: Instability} <>= nsplitopt <- vector(mode = "integer", length = 25) for (i in 1:length(nsplitopt)) { cp <- rpart(Class ~ ., data = GlaucomaM)$cptable nsplitopt[i] <- cp[which.min(cp[,"xerror"]), "nsplit"] } table(nsplitopt) @ \end{frame} \begin{frame}[fragile] \frametitle{Bagging: Grow a Forest} <>= trees <- vector(mode = "list", length = 25) n <- nrow(GlaucomaM) bootsamples <- rmultinom(length(trees), n, rep(1, n)/n) mod <- rpart(Class ~ ., data = GlaucomaM, control = rpart.control(xval = 0)) for (i in 1:length(trees)) trees[[i]] <- update(mod, weights = bootsamples[,i]) @ \end{frame} \begin{frame}[fragile] \frametitle{Bagging: Prediction} Estimate the conditional probability of suffering from glaucoma given the covariates for each observation in the original data set by <>= classprob <- matrix(0, nrow = n, ncol = length(trees)) for (i in 1:length(trees)) { classprob[,i] <- predict(trees[[i]], newdata = GlaucomaM)[,1] classprob[bootsamples[,i] > 0,i] <- NA } @ \end{frame} \begin{frame}[fragile] \frametitle{Estimate Misclassification Error} \small <>= avg <- rowMeans(classprob, na.rm = TRUE) predictions <- factor(ifelse(avg > 0.5, "glaucoma", "normal")) predtab <- table(predictions, GlaucomaM$Class) predtab @ \normalsize An honest estimate of the probability of a glaucoma prediction when the patient is actually suffering from glaucoma is \small <>= round(predtab[1,1] / colSums(predtab)[1] * 100) @ \normalsize per cent. \end{frame} \begin{frame}[fragile] \frametitle{Visualizing a Forest of Trees} \small <>= library("lattice") gdata <- data.frame(avg = rep(avg, 2), class = rep(as.numeric(GlaucomaM$Class), 2), obs = c(GlaucomaM[["varg"]], GlaucomaM[["vari"]]), var = factor(c(rep("varg", nrow(GlaucomaM)), rep("vari", nrow(GlaucomaM))))) panelf <- function(x, y) { panel.xyplot(x, y, pch = gdata$class) panel.abline(h = 0.5, lty = 2) } print(xyplot(avg ~ obs | var, data = gdata, panel = panelf, scales = "free", xlab = "", ylab = "Estimated Class Probability Glaucoma")) @ \normalsize \end{frame} \begin{frame}[fragile] \frametitle{Visualizing a Forest of Trees} \begin{center} <>= library("lattice") gdata <- data.frame(avg = rep(avg, 2), class = rep(as.numeric(GlaucomaM$Class), 2), obs = c(GlaucomaM[["varg"]], GlaucomaM[["vari"]]), var = factor(c(rep("varg", nrow(GlaucomaM)), rep("vari", nrow(GlaucomaM))))) panelf <- function(x, y) { panel.xyplot(x, y, pch = gdata$class) panel.abline(h = 0.5, lty = 2) } print(xyplot(avg ~ obs | var, data = gdata, panel = panelf, scales = "free", xlab = "", ylab = "Estimated Class Probability Glaucoma")) @ \end{center} \end{frame} \begin{frame}[fragile] \frametitle{Random Forest} The \stress{bagging} procedure is a special case of a more general approach called \stress{random forest} \citep{HSAUR:Breiman2001b}. The package \Rpackage{randomForest} \citep{PKG:randomForest} can be used to compute such ensembles via <>= library("randomForest") rf <- randomForest(Class ~ ., data = GlaucomaM) @ and we obtain out-of-bag estimates for the prediction error via <>= table(predict(rf), GlaucomaM$Class) @ \end{frame} \begin{frame}[fragile] \frametitle{Unbiased Trees} Another approach to recursive partitioning, making a connection to classical statistical test problems. In each node of those trees, a significance test on independence between any of the covariates and the response is performed and a split is established when the $p$-value is smaller than a pre-specified nominal level $\alpha$. This approach has the advantage that one does not need to prune back large initial trees since we have a statistically motivated stopping criterion -- the $p$-value -- at hand. Such \stress{conditional inference trees} are implemented in the \Rpackage{partykit} package \citep{HSAUR:Hothorn:2006:JCGS}. \end{frame} \begin{frame}[fragile] \frametitle{Unbiased Trees} For the glaucoma data, such a conditional inference tree can be computed using <>= glaucoma_ctree <- ctree(Class ~ ., data = GlaucomaM) @ A convenient display is available. \end{frame} \begin{frame}[fragile] \frametitle{Classification Tree for Glaucoma Data} \begin{center} <>= plot(glaucoma_ctree) @ \end{center} \end{frame} \begin{frame} \frametitle{Summary} Recursive partitioning procedures are rather simple non-parametric tools for regression modelling. The main structures of regression relationship can be visualised in a straightforward way. However, one should bear in mind that the nature of those models is very simple and can only serve as a rough approximation to reality. When multiple simple models are averaged, powerful predictors can be constructed. \end{frame} \begin{frame} \frametitle{Exercises} \begin{itemize} \item Construct a classification tree for the Boston Housing data which are available as \Rclass{data.frame} \Robject{BostonHousing} from package \Rpackage{mlbench}. Compare the predictions of the tree with the predictions obtained from \Rcmd{randomForest}. Which method is more accurate? \item For each possible cutpoint in \Robject{varg} of the glaucoma data, compute the test statistic of the chi-square test of independence and plot them against the values of \Robject{varg}. Is a simple cutpoint for this variable appropriate for discriminating between healthy and glaucomateous eyes? \item Compare the tree models fitted to the glaucoma data with a logistic regression model. \end{itemize} \end{frame} \begin{frame} \frametitle{References} \tiny <>= src <- system.file(package = "HSAUR3") style <- file.path(src, "LaTeXBibTeX", "refstyle") bst <- file.path(src, "LaTeXBibTeX", "HSAUR") cat(paste("\\bibliographystyle{", style, "}", sep = ""), "\n \n") cat(paste("\\bibliography{", bst, "}", sep = ""), "\n \n") @ \normalsize \end{frame} \end{document} HSAUR3/inst/slides/Ch_simple_inference.Rnw0000644000176200001440000003264214172224326020102 0ustar liggesusers \input{HSAUR_title} \SweaveOpts{prefix.string=figures/HSAUR,eps=FALSE,keep.source=TRUE} <>= source("setup.R") @ \frame{ \begin{center} \Large{Part 3: Simple Inference} \end{center} focuses on classical statistical test procedures for the Guessing Lengths, Wave Energy, Water Hardness, Piston Rings, and Rearrests of Juveniles examples. } \section{Introduction} <>= library("vcd") @ \begin{frame} \frametitle{roomwidth: Estimating Room Widths} Shortly after metric units of length were officially introduced in Australia in the 1970s, each of a group of 44 students was asked to guess, to the nearest metre, the width of the lecture hall in which they were sitting. Another group of 69 students in the same room was asked to guess the width in feet, to the nearest foot. The main question is whether estimation in feet and in metres gives different results. \end{frame} \begin{frame} \frametitle{waves: Bending Stress} In a design study for a device to generate electricity from wave power at sea, experiments were carried out on scale models in a wave tank to establish how the choice of mooring method for the system affected the bending stress produced in part of the device. The wave tank could simulate a wide range of sea states and the model system was subjected to the same sample of sea states with each of two mooring methods, one of which was considerably cheaper than the other. The question of interest is whether bending stress differs for the two mooring methods. \end{frame} \begin{frame} \frametitle{water: Mortality and Water Hardness} The data were collected in an investigation of environmental causes of disease. They show the annual mortality per 100,000 for males, averaged over the years 1958--1964, and the calcium concentration (in parts per million) in the drinking water for 61 large towns in England and Wales. The higher the calcium concentration, the harder the water. Towns at least as far north as Derby are identified in the table. Here there are several questions that might be of interest including: are mortality and water hardness related, and do either or both variables differ between northern and southern towns? \end{frame} \begin{frame} \frametitle{pistonrings: Piston-ring Failures} The two-way contingency table shows the number of piston-ring failures in each of three legs of four steam-driven compressors located in the same building. The compressors have identical design and are oriented in the same way. The question of interest is whether the two categorical variables (compressor and leg) are independent. \end{frame} \begin{frame} \frametitle{rearrests: Rearrests of Juveniles} The data arise from a sample of juveniles convicted of felony in Florida in 1987. Matched pairs were formed using criteria such as age and the number of previous offences. For each pair, one subject was handled in the juvenile court and the other was transferred to the adult court. Whether or not the juvenile was rearrested by the end of 1988 was then noted. Here the question of interest is whether the true proportions rearrested were identical for the adult and juvenile court assignments? \end{frame} \section{Statistical Tests} \begin{frame} \frametitle{Statistical Tests} Inference is the process of \begin{itemize} \item drawing conclusions about a population \item on the basis of measurements or observations \item made on a random (!) sample of individuals from the population. \end{itemize} In the following, we shall illustrate the application of the most common statistical tests to the examples shown before. \end{frame} \subsection{Comparing Normal Populations: Student's $t$-Tests} %' \begin{frame} \frametitle{Comparing Normal Populations} The independent samples $t$-test is used to test the null hypothesis that the means of two populations are the same: $H_0: \mu_1 = \mu_2$. The variable to be compared is assumed to have a normal distribution with the same standard deviation in both populations. Test statistic: \begin{eqnarray*} t = \frac{\bar{y}_1 - \bar{y}_2}{s \sqrt{1 / n_1 + 1 / n_2}} \sim t_{n_1 + n_2 - 2} \end{eqnarray*} \end{frame} \begin{frame} \frametitle{Unequal Variances} If the two populations are suspected of having different variances (boxes in boxplots differ significantly), a modified form of the $t$ statistic, known as the Welch test, may be used: \begin{eqnarray*} t = \frac{\bar{y}_1 - \bar{y}_2}{\sqrt{s_1^2 / n_1 + s_2^2 / n_2}} \sim t_\nu. \end{eqnarray*} \end{frame} \begin{frame} \frametitle{Paired Observations} A paired $t$-test is used to compare the means of two populations when samples from the populations are available, in which each individual in one sample is paired with an individual in the other sample or each individual in the sample is observed twice. If the values of the variable of interest, $y$, for the members of the $i$th pair in groups $1$ and $2$ are denoted as $y_{1i}$ and $y_{2i}$, then the differences $d_i = y_{1i} - y_{2i}$ are assumed to have a normal distribution with mean $\mu$ and the null hypothesis here is that the mean difference is zero, i.e., $H_0: \mu = 0$. The paired $t$-statistic is \begin{eqnarray*} t = \frac{\bar{d}}{s / \sqrt{n}} \sim t_{n-1}. \end{eqnarray*} \end{frame} \subsection{Non-parametric Analogues of Independent Samples and Paired $t$-Tests} \begin{frame} \frametitle{Wilcoxon-Mann-Whitney Test} For two independent groups, the Wilcoxon Mann-Whitney rank sum test applies the $t$-statistic to the joint ranks of all measurements in both groups instead of the original measurements. The null hypothesis to be tested is that the two populations being compared have identical distributions. \end{frame} \begin{frame} \frametitle{Wilcoxon-Signed-Rank Test} The Wilcoxon signed-rank statistic is based on the ranks of the absolute differences $|d_i|$. The statistic is defined as the sum of the ranks associated with positive difference $d_i > 0$. It should be noted that this test is only valid when the differences $d_i$ are symmetrically distributed. \end{frame} \subsection{Testing Independence in Contingency Tables} \begin{frame} \frametitle{Contingency Tables} When a sample of $n$ observations in two nominal (categorical) variables are available, they can be arranged into a cross-classification \input{tables/SI_rtimesc} \end{frame} \begin{frame} \frametitle{$\chi^2$-Test} Under the null hypothesis of independence of the row variable $x$ and the column variable $y$, estimated expected values $E_{jk}$ for cell $(j, k)$ can be computed from the corresponding margin totals $E_{jk} = n_{j\cdot} n_{\cdot k} / n$. The test statistic is \begin{eqnarray*} X^2 = \sum_{j = 1}^r \sum_{k = 1}^c \frac{(n_{jk} - E_{jk})^2}{E_{jk}} \sim \chi^2_{(r-1)(c-1)} \end{eqnarray*} \end{frame} \subsection{McNemar's Test} %' \begin{frame} \frametitle{McNemar's Test} Often categorical data arise from \stress{paired} observations, for example, cases matched with controls on variables such as sex, age and so on, or observations made on the same subjects on two occasions: \input{tables/SI_mcnemar} Under the hypothesis that the two populations do not differ in their probability of having the characteristic present, the test statistic \begin{eqnarray*} X^2 = \frac{ (c - b)^2}{c + b} \sim \chi^2_1. \end{eqnarray*} \end{frame} \section{Analysis Using R} \subsection{Estimating the Width of a Room} \begin{frame}[fragile] \frametitle{Estimating the Width of a Room} The first step should be to convert the metre estimates into feet: <>= convert <- ifelse(roomwidth$unit == "feet", 1, 3.28) @ Now, we get the usual summary statistics by <>= tapply(roomwidth$width * convert, roomwidth$unit, summary) @ \end{frame} \begin{frame}[fragile] \frametitle{Boxplots} \begin{center} <>= layout(matrix(c(1,2,1,3), nrow = 2, ncol = 2, byrow = FALSE)) boxplot(I(width * convert) ~ unit, data = roomwidth, ylab = "Estimated width (feet)", var.width = TRUE, names = c("Estimates in feet", "Estimates in metres (converted to feet)")) feet <- roomwidth$unit == "feet" qqnorm(roomwidth$width[feet], ylab = "Estimated width (feet)") qqline(roomwidth$width[feet]) qqnorm(roomwidth$width[!feet], ylab = "Estimated width (metres)") qqline(roomwidth$width[!feet]) @ \end{center} \end{frame} \begin{frame}[fragile] \frametitle{Test for Differences} The two-sample test problem is specified by a \Rclass{formula} and the $t$-test reads <>= t.test(I(width * convert) ~ unit, data = roomwidth, var.equal = TRUE) @ \end{frame} \begin{frame}[fragile] \frametitle{Test for Differences} The Welch-test can be computed via <>= t.test(I(width * convert) ~ unit, data = roomwidth, var.equal = FALSE) @ \end{frame} \begin{frame}[fragile] \frametitle{Test for Differences} The Wilcoxon Mann-Whitney test as one alternative test procedure: <>= wilcox.test(I(width * convert) ~ unit, data = roomwidth, conf.int = TRUE) @ \end{frame} \subsection{Wave Energy Device Mooring} \begin{frame}[fragile] \frametitle{Wave Energy Device Mooring} The \Robject{waves} data set requires the use of a matched pairs $t$-test. This test assumes that the differences between the matched observations have a normal distribution so we can begin by checking this assumption by constructing a boxplot and a normal probability plot \end{frame} \begin{frame} \begin{center} <>= mooringdiff <- waves$method1 - waves$method2 layout(matrix(1:2, ncol = 2)) boxplot(mooringdiff, ylab = "Differences (Newton metres)", main = "Boxplot") abline(h = 0, lty = 2) qqnorm(mooringdiff, ylab = "Differences (Newton metres)") qqline(mooringdiff) @ \end{center} \end{frame} \begin{frame}[fragile] \frametitle{Test for Zero Mean} The paired-$t$-test is performed via <>= t.test(mooringdiff) @ \end{frame} \begin{frame}[fragile] \frametitle{Test for Zero Median} <>= wilcox.test(mooringdiff) @ \end{frame} \subsection{Mortality and Water Hardness} \begin{frame}[fragile] \frametitle{Mortality and Water Hardness} We will construct a scatterplot of the data enhanced somewhat by the addition of information about the marginal distributions of water hardness (calcium concentration) and mortality, and by adding the estimated linear regression fit for mortality on hardness. The scatterplot shows that as hardness increases mortality decreases, and the histogram for the water hardness shows it has a rather skewed distribution. \end{frame} \begin{frame} \begin{center} <>= nf <- layout(matrix(c(2, 0, 1, 3), 2, 2, byrow = TRUE), c(2, 1), c(1, 2), TRUE) psymb <- as.numeric(water$location) plot(mortality ~ hardness, data = water, pch = psymb) abline(lm(mortality ~ hardness, data = water)) legend("topright", legend = levels(water$location), pch = c(1,2), bty = "n") hist(water$hardness) boxplot(water$mortality) @ \end{center} \end{frame} \begin{frame}[fragile] \frametitle{Testing Correlation} We can both calculate the Pearson's correlation coefficient %' between the two variables and test whether it differs significantly for zero by using <>= cor.test(~ mortality + hardness, data = water) @ \end{frame} \subsection{Piston-ring Failures} \begin{frame}[fragile] \frametitle{Piston-ring Failures} The first step in the analysis of the \Robject{pistonrings} data is to apply the chi-squared test for independence. This we can do in \R{} using <>= chisq.test(pistonrings) @ \end{frame} \begin{frame}[fragile] \frametitle{Inspection Deviations} Rather than looking at the simple differences of observed and expected values for each cell it is preferable to consider a \stress{standardised residual}: <>= chisq.test(pistonrings)$residuals @ \end{frame} \begin{frame} \begin{center} <>= library("vcd") assoc(pistonrings) @ \end{center} \end{frame} \subsection{Rearrests of Juveniles} \begin{frame}[fragile] \frametitle{Rearrests of Juveniles} In \Robject{rearrests} the counts in the four cells refer to the matched pairs of subjects; for example, in $\Sexpr{rearrests[1,1]}$ pairs both members of the pair were rearrested. Here, we use McNemar's test: <>= mcnemar.test(rearrests, correct = FALSE) binom.test(rearrests[2], n = sum(rearrests[c(2,3)]))$p.value @ \end{frame} \section*{Exercises} \begin{frame}[fragile] \frametitle{Exercises} \begin{itemize} \item After the students had made the estimates of the width of the lecture hall the room width was accurately measured and found to be $13.1$ metres ($43.0$ feet). Use this additional information to determine which of the two types of estimates was more precise. \item For the mortality and water hardness data calculate the correlation between the two variables in each region, north and south. \item For the data in table \Robject{rearrests} estimate the difference between the probability of being rearrested after being tried in an adult court and in a juvenile court, and find a $95\%$ confidence interval for the population difference. \end{itemize} \end{frame} \end{document} HSAUR3/inst/slides/Ch_analysing_longitudinal_dataII.Rnw0000644000176200001440000002471114172224326022542 0ustar liggesusers \input{HSAUR_title} \SweaveOpts{prefix.string=figures/HSAUR,eps=FALSE,keep.source=TRUE} <>= source("setup.R") library("gee") @ \setkeys{Gin}{width=0.95\textheight} \frame{ \begin{center} \Large{Part 12: Analysing Longitudinal Data II} \end{center} focuses on generalised estimation equations for repeated measurements. } \section{Introduction} \begin{frame} \frametitle{Respiratory illness} The \Robject{respiratory} data were collected in a clinical trial comparing two treatments for a respiratory illness \citep{HSAUR:Davis1991}. In each of two centres, eligible patients were randomly assigned to active treatment or placebo. During the treatment, the respiratory status (categorised \Robject{poor} or \Robject{good}) was determined at each of four, monthly visits. The trial recruited \Sexpr{nlevels(respiratory$subject)} participants (54 in the active group, 57 in the placebo group) and there were no missing data for either the responses or the covariates. The question of interest is to assess whether the treatment is effective and to estimate its effect. \end{frame} \section{Generalised Estimating Equations} \begin{frame} \frametitle{Lack of Independence} The assumption of the independence of the repeated measurements in an GLM will lead to estimated standard errors that are too small for the between-subjects covariates (at least when the correlation between the repeated measurements are positive) as a result of assuming that there are more independent data points than are justified. We might begin by asking is there something relatively simple that can be done to `fix-up' these standard errors so that we %' can still apply the \R{} \Rcmd{glm} function to get reasonably satisfactory results on longitudinal data with a non-normal response? Two approaches which can often help to get more suitable estimates of the required standard errors are \stress{bootstrapping} and use of the \stress{robust/sandwich, Huber/White variance estimator}. \end{frame} \begin{frame} \frametitle{Generalised Estimating Equations (GEE)} But perhaps more satisfactory than these methods to simply `fix-up' the standard errors given by the independence model, %' would be an approach that fully utilises information on the data's %' structure, including dependencies over time. A suitable procedure was first suggested by \cite{HSAUR:LiangZeger1986} and is known as \stress{generalised estimating equations} (GEE). \index{Generalised estimating equations (GEE)} In essence GEE is a multivariate extension of the generalised linear model and quasi-likelihood methods. The primary idea behind the GEE approach is that since the parameters specifying the structure of the correlation matrix are rarely of great practical interest, simple structures are used for the within-subject correlations giving rise to the so-called \stress{working correlation matrix}. \end{frame} \begin{frame} \frametitle{Working Correlation Matrices} \cite{HSAUR:LiangZeger1986} show that the estimates of the parameters of most interest, i.e., those that determine the average responses over time, are still valid even when the correlation structure is incorrectly specified, although their standard errors might remain poorly estimated if the working correlation matrix is far from the truth. But as with the independence situation described previously, this potential difficulty can often be handled satisfactorily by again using the \stress{sandwich estimator} to find more reasonable standard errors. Possibilities for the working correlation matrix that are most frequently used in practice are: \end{frame} \begin{frame} \frametitle{Working Correlation Matrices} \begin{itemize} \item An identity matrix: no correlation at all. \item An exchangeable correlation matrix: with a single parameter which gives the correlation of each pair of repeated measures. \item An autoregressive correlation matrix: also with a single parameter but in which $\text{corr}(y_j, y_k) = \vartheta^{|k - j|}, j \not = k$. With $\vartheta$ less than one this gives a pattern in which repeated measures further apart in time are less correlated, than those that are closer to one another. \item An unstructured correlation matrix: with $q(q-1)/2$ parameters in which $\text{corr}(y_j, y_k) = \vartheta_{jk}$ and where $q$ is the number of repeated measures. \end{itemize} \end{frame} \section{Analysis Using R} \begin{frame}[fragile] \frametitle{Beat the Blues Revisited} <>= data("BtheB", package = "HSAUR3") BtheB$subject <- factor(rownames(BtheB)) nobs <- nrow(BtheB) BtheB_long <- reshape(BtheB, idvar = "subject", varying = c("bdi.2m", "bdi.3m", "bdi.5m", "bdi.8m"), direction = "long") BtheB_long$time <- rep(c(2, 3, 5, 8), rep(nobs, 4)) names(BtheB_long)[names(BtheB_long) == "treatment"] <- "trt" @ <>= osub <- order(as.integer(BtheB_long$subject)) BtheB_long <- BtheB_long[osub,] btb_gee <- gee(bdi ~ bdi.pre + trt + length + drug, data = BtheB_long, id = subject, family = gaussian, corstr = "independence") btb_gee1 <- gee(bdi ~ bdi.pre + trt + length + drug, data = BtheB_long, id = subject, family = gaussian, corstr = "exchangeable") @ \end{frame} \begin{frame} \frametitle{Beat the Blues Revisited} Note how the na\"{\i}ve and the sandwich or %" robust estimates of the standard errors are considerably different for the independence structure, but quite similar for the exchangeable structure. This simply reflects that using an exchangeable working correlation matrix is more realistic for these data and that the standard errors resulting from this assumption are already quite reasonable without applying the `sandwich' procedure %' to them. And if we compare the results under this assumed structure with those for the random intercept model, we see that they are almost identical, since the random intercept model also implies an exchangeable structure for the correlations of the repeated measurements. \end{frame} \section{Respiratory Illness} \begin{frame}[fragile] \frametitle{Respiratory Illness} The baseline status, i.e., the status for \Robject{month == 0}, will enter the models as an explanatory variable and thus we have to rearrange the \Rclass{data.frame} \Robject{respiratory} in order to create a new variable \Robject{baseline}: <>= data("respiratory", package = "HSAUR3") resp <- subset(respiratory, month > "0") resp$baseline <- rep(subset(respiratory, month == "0")$status, rep(4, 111)) resp$nstat <- as.numeric(resp$status == "good") resp$month <- resp$month[, drop = TRUE] names(resp)[names(resp) == "treatment"] <- "trt" levels(resp$trt)[2] <- "trt" @ \end{frame} \begin{frame}[fragile] \frametitle{Respiratory Illness} <>= resp_glm <- glm(status ~ centre + trt + gender + baseline + age, data = resp, family = "binomial") resp_gee1 <- gee(nstat ~ centre + trt + gender + baseline + age, data = resp, family = "binomial", id = subject, corstr = "independence", scale.fix = TRUE, scale.value = 1) resp_gee2 <- gee(nstat ~ centre + trt + gender + baseline + age, data = resp, family = "binomial", id = subject, corstr = "exchangeable", scale.fix = TRUE, scale.value = 1) @ \end{frame} \begin{frame}[fragile] \frametitle{Respiratory Illness} The estimated treatment effect taken from the exchangeable structure GEE model is \Sexpr{round(coef(resp_gee2)["trttrt"], 3)} which, using the robust standard errors, has an associated $95\%$ confidence interval <>= se <- summary(resp_gee2)$coefficients[ "trttrt", "Robust S.E."] coef(resp_gee2)["trttrt"] + c(-1, 1) * se * qnorm(0.975) @ These values reflect effects on the log-odds scale, on the exp scale it reads <>= exp(coef(resp_gee2)["trttrt"] + c(-1, 1) * se * qnorm(0.975)) @ The odds of achieving a `good' respiratory status with the active treatment is between %' about twice and seven times the corresponding odds for the placebo. \end{frame} \section{Epilepsy} \begin{frame}[fragile] \frametitle{Epilepsy} Moving on to the count data in \Robject{epilepsy}, we begin by calculating the means and variances of the number of seizures for all treatment / period interactions <>= data("epilepsy", package = "HSAUR3") itp <- interaction(epilepsy$treatment, epilepsy$period) tapply(epilepsy$seizure.rate, itp, mean) tapply(epilepsy$seizure.rate, itp, var) @ Overdispersion? \end{frame} \section{Summary} \begin{frame} \frametitle{Summary} The generalised estimation equation approach essentially extends generalised linear models to longitudinal data, and allows for the analysis of such data when the response variable cannot be assumed to be normal distributed. \end{frame} \section*{Exercises} \section*{Exercises} \begin{frame} \frametitle{Exercises} \begin{itemize} \item For the \Robject{epilepsy} data investigate what Poisson models are most suitable when subject 49 is excluded from the analysis. \item Investigate the use of other correlational structures than the independence and exchangeable structures used in the text, for both the \Robject{respiratory} and the \Robject{epilepsy} data. \item The \Robject{schizophrenia2} data were collected in a follow-up study of women patients with schizophrenia \citep{HSAUR:Davis2002}. The binary response recorded at 0, 2, 6, 8 and 10 months after hospitalisation was thought disorder (absent or present). The single covariate is the factor indicating whether a patient had suffered early or late onset of her condition (age of onset less than 20 years or age of onset 20 years or above). The question of interest is whether the course of the illness differs between patients with early and late onset? Investigate this question using the GEE approach. \end{itemize} \end{frame} \begin{frame} \frametitle{References} \tiny <>= src <- system.file(package = "HSAUR3") style <- file.path(src, "LaTeXBibTeX", "refstyle") bst <- file.path(src, "LaTeXBibTeX", "HSAUR") cat(paste("\\bibliographystyle{", style, "}", sep = ""), "\n \n") cat(paste("\\bibliography{", bst, "}", sep = ""), "\n \n") @ \end{frame} \end{document} HSAUR3/inst/slides/Ch_cluster_analysis.Rnw0000644000176200001440000003276514172224326020165 0ustar liggesusers \input{HSAUR_title} \SweaveOpts{prefix.string=figures/HSAUR,eps=FALSE,keep.source=TRUE} <>= source("setup.R") library("mclust") library("mvtnorm") mai <- par("mai") options(SweaveHooks = list(rmai = function() { par(mai = mai * c(1,1,1,2))})) @ \frame{ \begin{center} \Large{Part 16: Cluster Analysis} \end{center} focuses on finding homogeneous groups of observations. } \section{Introduction} \begin{frame} \frametitle{Exoplanets classification} Exoplanets are planets outside the Solar System. Since 1995 over a hundred exoplanets have been discovered, nearly all being detected indirectly, using the gravitational influence they exert on their associated central stars. From the properties of the exoplanets found up to now it appears that the theory of planetary development constructed for the planets of the Solar System may need to be reformulated. The exoplanets are not at all like the nine local planets that we know so well. A first step in the process of understanding the exoplanets might be to try to classify them with respect to their known properties. The data gives the mass (in Jupiter mass), the period (in earth days) and the eccentricity (\Robject{eccent}) of the exoplanets discovered up until October 2002. \end{frame} \section{Cluster Analysis} \begin{frame} \frametitle{Cluster analysis} Cluster analysis refers to methods for uncovering or discovering groups or clusters of observations that are homogeneous and separated from other groups, for example in medicine (microarray data) or marketing (groups of customers). Clustering techniques essentially try to formalise what human observers do so well in two or three dimensions. Consider, for example, the following scatterplot. We concentrate on two types of clustering procedures: $k$-means type and classification maximum likelihood methods. \end{frame} \begin{frame} \frametitle{Cluster analysis} \begin{center} <>= dat <- rbind(rmvnorm(25, mean = c(3,3)), rmvnorm(20, mean = c(10, 8)), rmvnorm(10, mean = c(20, 1))) plot(abs(dat), xlab = expression(x[1]), ylab = expression(x[2])) @ \end{center} \end{frame} \subsection{$k$-Means Clustering} \begin{frame} \frametitle{$k$-means clustering} The $k$-means clustering technique seeks to partition a set of data into a specified number of groups, $k$, by minimising some numerical criterion, low values of which are considered indicative of a `good' solution. The most commonly %%' used approach, for example, is to try to find the partition of the $n$ individuals into $k$ groups, which minimises the within-group sum of squares over all variables. The problem then appears relatively simple; namely, consider every possible partition of the $n$ individuals into $k$ groups, and select the one with the lowest within-group sum of squares. \end{frame} \begin{frame} \frametitle{$k$-means clustering} Unfortunately, the problem in practice is not so straightforward. The numbers involved are so vast that complete enumeration of \stress{every} possible partition remains impossible even with the fastest computer: \begin{center} \begin{tabular}{rrl} $n$ & $k$ & Number of possible partitions \\ \hline $15$ & $3$ & $2,375,101$ \\ $20$ & $4$ & $45,232,115,901$ \\ $25$ & $8$ & $690,223,721,118,368,580$ \\ $100$ & $5$ & $10^{68}$ \\ \end{tabular} \end{center} \end{frame} \begin{frame} \frametitle{Heuristical approach} \begin{enumerate} \item Find some initial partition of the individuals into the required number of groups. \item Calculate the change in the clustering criterion produced by `moving' each individual from its own to another cluster. %%' \item Make the change that leads to the greatest improvement in the value of the clustering criterion. \item Repeat steps 2 and 3 until no move of an individual causes the clustering criterion to improve. \end{enumerate} When variables are on very different scales (as they are for the exoplanets data) some form of standardization will be needed before applying $k$-means clustering. Note: $k$ has to be fixed in advance and can hardly be estimated. \end{frame} \subsection{Model-based Clustering} \begin{frame} \frametitle{Model-based Clustering} It is assumed that the population from which the observations arise consists of $c$ subpopulations each corresponding to a cluster, and that the density of a $q$-dimensional observation $\x^\top = (x_1, \dots, x_q)$ from the $j$th subpopulation is $f_j(\x, \vartheta_j), j = 1, \dots, c$, for some unknown vector of parameters, $\vartheta_j$. We also introduce a vector $\gamma = (\gamma_1, \dots, \gamma_n)$, where $\gamma_i = j$ of $\x_i$ is from the $j$ subpopulation. The $\gamma_i$ label the subpopulation for each observation $i = 1, \dots, n$. The clustering problem now becomes that of choosing $\vartheta = (\vartheta_1, \dots, \vartheta_c)$ and $\gamma$ to maximise the likelihood function associated with such assumptions. \end{frame} \subsection{Classification Maximum Likelihood} \begin{frame} \frametitle{Classification Maximum Likelihood} $\gamma = (\gamma_1, \dots, \gamma_n)$ gives the labels of the subpopulation to which the observation belongs: so $\gamma_i = j$ if $\x_i$ is from the $j$th population. The clustering problem becomes that of choosing $\vartheta = (\vartheta_1, \dots, \vartheta_c)$ and $\gamma$ to maximise the likelihood \begin{eqnarray*} L(\vartheta, \gamma) = \prod_{i = 1}^n f_{\gamma_i}(\x_i, \vartheta_{\gamma_i}). \end{eqnarray*} \end{frame} \begin{frame} \frametitle{Normal Distribution} If $f_j(\x, \vartheta_j)$ is taken as the multivariate normal density with mean vector $\mu_j$ and covariance matrix $\Sigma_j$, this likelihood has the form \begin{eqnarray*} L(\vartheta, \gamma) = \prod_{j = 1}^c \prod_{i: \gamma_i = j} |\Sigma_j|^{-1/2} \exp\left(-\frac{1}{2} (\x_i - \mu_j)^\top \Sigma_j^{-1} (\x_i - \mu_j)\right). \end{eqnarray*} \end{frame} \begin{frame} \frametitle{Normal Distribution} The maximum likelihood estimator of $\mu_j$ is \begin{eqnarray*} \hat{\mu}_j = n_j^{-1} \sum_{i: \gamma_i = j} \x_i \end{eqnarray*} where the number of observations in each subpopulation is $n_j = \sum_{i = 1}^n I(\gamma_i = j)$. Replacing $\mu_j$ in the likelihood yields the following log-likelihood \begin{eqnarray*} l(\vartheta, \gamma) = -\frac{1}{2} \sum_{j = 1}^c \text{trace}(\W_j \Sigma_j^{-1} + n \log |\Sigma_j|) \end{eqnarray*} where $\W_j$ is the $q \times q$ matrix of sums of squares and cross-products of the variables for subpopulation $j$. \end{frame} \begin{frame} \frametitle{Normal Distribution} If the covariance matrix $\Sigma_j$ is $\sigma^2$ times the identity matrix for all populations $j = 1, \dots, c$, then the likelihood is maximised by choosing $\gamma$ to minimise trace$(\W)$, where \begin{eqnarray*} \W = \sum_{j = 1}^c \W_j, \end{eqnarray*} i.e., minimisation of the written group sum of squares. Use of this criterion in a cluster analysis will lend to produce spherical clusters of largely equal sizes. \end{frame} \begin{frame} \frametitle{Normal Distribution} If $\Sigma_j = \Sigma$ for $j = 1, \dots, c$, then the likelihood is maximised by choosing $\gamma$ to minimise $|\W|$. Use of this criterion in a cluster analysis will lend to produce clusters with the same elliptical slope. If $\Sigma_j$ is not constrained, the likelihood is maximised by choosing $\gamma$ to minimise $\sum_{j = 1}^c n_j \log | \W_j | / n_j$. \end{frame} \begin{frame} \frametitle{Determining $c$} Model selection is a combination of choosing the appropriate clustering model and the optimal number of clusters. A Bayesian approach is used \citep[see][]{HSAUR:FraleyRaftery1999}, using what is known as the \stress{Bayesian Information Criterion} (BIC). \end{frame} \section{Analysis Using R} \begin{frame}[fragile] \frametitle{Analysis Using R} \begin{center} <>= data("planets", package = "HSAUR3") library("scatterplot3d") scatterplot3d(log(planets$mass), log(planets$period), log(planets$eccen), type = "h", angle = 55, pch = 16, y.ticklabs = seq(0, 10, by = 2), y.margin.add = 0.1, scale.y = 0.7) @ \end{center} \end{frame} \begin{frame}[fragile] \frametitle{$k$-means} <>= rge <- apply(planets, 2, max) - apply(planets, 2, min) planet.dat <- sweep(planets, 2, rge, FUN = "/") n <- nrow(planet.dat) wss <- rep(0, 10) wss[1] <- (n - 1) * sum(apply(planet.dat, 2, var)) for (i in 2:10) wss[i] <- sum(kmeans(planet.dat, centers = i)$withinss) plot(1:10, wss, type = "b", xlab = "Number of groups", ylab = "Within groups sum of squares") @ \end{frame} \begin{frame}[fragile] \frametitle{$k$-means} \begin{center} <>= plot(1:10, wss, type = "b", xlab = "Number of groups", ylab = "Within groups sum of squares") @ \end{center} \end{frame} \begin{frame}[fragile] \frametitle{$k$-means: three clusters} <>= planet_kmeans3 <- kmeans(planet.dat, centers = 3) table(planet_kmeans3$cluster) @ The centers of the clusters for the untransformed data can be computed using a small convenience function <>= ccent <- function(cl) { f <- function(i) colMeans(planets[cl == i,]) x <- sapply(sort(unique(cl)), f) colnames(x) <- sort(unique(cl)) return(x) } ccent(planet_kmeans3$cluster) @ \end{frame} \begin{frame}[fragile] \frametitle{$k$-means: five clusters} <>= planet_kmeans5 <- kmeans(planet.dat, centers = 5) table(planet_kmeans5$cluster) ccent(planet_kmeans5$cluster) @ \end{frame} \subsection{Model-based Clustering in R} \begin{frame}[fragile] \frametitle{Model-based Clustering} <>= library("mclust") planet_mclust <- Mclust(planet.dat) plot(planet_mclust, planet.dat, what = "BIC", col = "black", ylab = "-BIC", ylim = c(0, 350)) @ \end{frame} \begin{frame}[fragile] \frametitle{Model-based Clustering} \begin{center} <>= plot(planet_mclust, planet.dat, what = "BIC", col = "black", ylab = "-BIC", ylim = c(0, 350)) @ \end{center} \end{frame} \begin{frame}[fragile] \frametitle{Model-based Clustering} Different shape of clusters possible: \begin{enumerate} \item Spherical, equal volume, \item Spherical, unequal volume, \item Diagonal equal volume, equal shape, \item Diagonal varying volume, varying shape, \item Ellipsoidal, equal volume, shape and orientation, \item Ellipsoidal, varying volume, shape and orientation. \end{enumerate} The BIC selects model $4$ (diagonal varying volume and varying shape) with three clusters as the best solution: <>= print(planet_mclust) @ \end{frame} \begin{frame}[fragile] \frametitle{Visualizing Results} \begin{center} <>= clPairs(planet.dat, classification = planet_mclust$classification, symbols = 1:3, col = "black") @ \end{center} \end{frame} \begin{frame}[fragile] \frametitle{Visualizing Results} \begin{center} <>= scatterplot3d(log(planets$mass), log(planets$period), log(planets$eccen), type = "h", angle = 55, scale.y = 0.7, pch = planet_mclust$classification, y.ticklabs = seq(0, 10, by = 2), y.margin.add = 0.1) @ \end{center} \end{frame} \begin{frame}[fragile] \frametitle{Clusters} <>= table(planet_mclust$classification) ccent(planet_mclust$classification) @ \end{frame} \section{Summary} \begin{frame} \frametitle{Summary} Cluster analysis techniques provide a rich source of possible strategies for exploring complex multivariate data. But the use of cluster analysis in practice does not involve simply the application of one particular technique to the data under investigation, but rather necessitates a series of steps, each of which may be dependent on the results of the preceding one. The final, extremely important, stage concerns the evaluation of the clustering solutions obtained. Are the clusters `real' or merely artefacts of the algorithms? Do other solutions %%' exist that are better in some sense? Can the clusters be given a convincing interpretation? \end{frame} \section*{Exercises} \begin{frame} \frametitle{Exercises} \begin{itemize} \item The \Robject{pottery}-data give the chemical composition of $48$ specimens of Romano-British pottery, determined by atomic absorption spectrophotometry, for nine oxides. Analyse the pottery data using \Rcmd{Mclust}. To what model in \Rcmd{Mclust} does the $k$-mean approach approximate? \item Construct a three-dimensional drop-line scatterplot of the planets data in which the points are labelled with a suitable cluster label. \item Write a general \R{} function that will display a particular partition from the $k$-means cluster method on both a scatterplot matrix of the original data and a scatterplot or scatterplot matrix of a selected number of principal components of the data. \end{itemize} \end{frame} \begin{frame} \frametitle{References} \tiny <>= src <- system.file(package = "HSAUR3") style <- file.path(src, "LaTeXBibTeX", "refstyle") bst <- file.path(src, "LaTeXBibTeX", "HSAUR") cat(paste("\\bibliographystyle{", style, "}", sep = ""), "\n \n") cat(paste("\\bibliography{", bst, "}", sep = ""), "\n \n") @ \end{frame} \end{document} HSAUR3/inst/slides/tables/0000755000176200001440000000000014172224326014734 5ustar liggesusersHSAUR3/inst/slides/tables/exMDS.tex0000644000176200001440000000044314172224326016437 0ustar liggesusers\begin{eqnarray*} s_{ij} = \left\{ \begin{array}{lcl} 9 & \text{if} & i = j \\ 8 & \text{if} & 1 \le | i - j | \le 3 \\ 7 & \text{if} & 4 \le | i - j | \le 6 \\ & \cdots & \\ 1 & \text{if} & 22 \le | i - j | \le 24 \\ 0 & \text{if} & | i - j | \ge 25 \\ \end{array} \right. \end{eqnarray*} HSAUR3/inst/slides/tables/CA_perm.tex0000644000176200001440000000057614172224326016774 0ustar liggesusers \begin{center} \begin{longtable}{rrl} \caption{Number of possible partitions depending on the sample size $n$ and number of clusters $k$. \label{CA:perm}} \\ $n$ & $k$ & Number of possible partitions \\ \hline $15$ & $3$ & $2,375,101$ \\ $20$ & $4$ & $45,232,115,901$ \\ $25$ & $8$ & $690,223,721,118,368,580$ \\ $100$ & $5$ & $10^{68}$ \\ \end{longtable} \end{center} HSAUR3/inst/slides/tables/PCA_tab.tex0000644000176200001440000000056014172224326016710 0ustar liggesusers \begin{center} \begin{longtable}{cccccc} \caption{Correlations for calculus measurements for the six anterior mandibular teeth.} \\ \hline 1.00 & & & & & \\ 0.54 & 1.00 & & & & \\ 0.34 & 0.65 & 1.00 & & & \\ 0.37 & 0.65 & 0.84 & 1.00 & & \\ 0.36 & 0.59 & 0.67 & 0.80 & 1.00 & \\ 0.62 & 0.49 & 0.43 & 0.42 & 0.55 & 1.00 \\ \hline \end{longtable} \end{center} HSAUR3/inst/slides/tables/CI_rtimesc.tex0000644000176200001440000000123414172224326017477 0ustar liggesusers \begin{center} \begin{longtable}{cc|ccc|c} \caption{The general $r \times c$ table. \label{SI:rtimesc}} \\ & & & $y$ & & \\\ & & $1$ & $\dots$ & $c$ & \\ \hline & $1$ & $n_{11}$ & $\dots$ & $n_{1c}$ & $n_{1 \cdot}$ \\\ & $2$ & $n_{21}$ & $\dots$ & $n_{2c}$ & $n_{2 \cdot}$ \\\ $x$ & $\vdots$ & $\vdots$ & $\dots$ & $\vdots$ & $\vdots$ \\\ & $r$ & $n_{r1}$ & $\dots$ & $n_{rc}$ & $n_{r \cdot}$ \\ \hline & & $n_{\cdot 1}$ & $\dots$ & $n_{\cdot c}$ & $n$ \\\ \end{longtable} \end{center}HSAUR3/inst/slides/tables/MLR-ANOVA-tab.tex0000644000176200001440000000067714172224326017530 0ustar liggesusers \begin{center} \begin{longtable}{lccc} \caption{Analysis of variance table for the multiple linear regression model. \label{MLR-ANOVA-tab}} \\ Source of variation & Sum of squares & Degrees of freedom \\ \hline Regression & $\sum\limits_{i = 1}^n (\hat{y}_i - \bar{y})^2$ & $q$ \\ Residual & $\sum\limits_{i = 1}^n (\hat{y}_i - y_i)^2$ & $n - q - 1$ \\ Total & $\sum\limits_{i = 1}^n (y_i - \bar{y})^2$ & $n - 1$ \\ \end{longtable} \end{center} HSAUR3/inst/slides/tables/SI_mcnemar.tex0000644000176200001440000000030414172224326017470 0ustar liggesusers \begin{center} \begin{tabular}{cccc} & & \multicolumn{2}{c}{Sample 1} \\ & & present & absent \\ Sample 2 & present & $a$ & $b$ \\ & absent & $c$ & $d$ \\ \end{tabular} \end{center} HSAUR3/inst/slides/tables/Lanza.tex0000644000176200001440000000052314172224326016523 0ustar liggesusers \begin{center} \begin{tabular}{ll} Classification & Endoscopy Examination \\ \hline 1 & No visible lesions \\ 2 & One haemorrhage or erosion \\ 3 & 2-10 haemorrhages or erosions \\ 4 & 11-25 haemorrhages or erosions \\ 5 & More than 25 haemorrhages or erosions \\ & or an invasive ulcer of any size\\ \hline \end{tabular} \end{center} HSAUR3/inst/slides/tables/MLR-Xtab.tex0000644000176200001440000000047314172224326017010 0ustar liggesusers\begin{eqnarray*} \X = \left( \begin{array}{ccccc} 1 & x_{11} & x_{12} & \dots & x_{1q} \\ 1 & x_{21} & x_{22} & \dots & x_{2q} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n1} & x_{n2} & \dots & x_{nq} \\ \end{array} \right). \end{eqnarray*} HSAUR3/inst/slides/tables/rec.tex0000644000176200001440000000120614172224326016226 0ustar liggesusers\begin{tabular}{llll} \Rpackage{boot} & \Rpackage{lattice} & \Rpackage{Matrix} & \Rpackage{mgcv}\\ \Rpackage{rpart} & \Rpackage{survival} & \Rpackage{base} & \Rpackage{class}\\ \Rpackage{cluster} & \Rpackage{codetools} & \Rpackage{compiler} & \Rpackage{datasets}\\ \Rpackage{foreign} & \Rpackage{graphics} & \Rpackage{grDevices} & \Rpackage{grid}\\ \Rpackage{KernSmooth} & \Rpackage{MASS} & \Rpackage{methods} & \Rpackage{nlme}\\ \Rpackage{nnet} & \Rpackage{parallel} & \Rpackage{spatial} & \Rpackage{splines}\\ \Rpackage{stats} & \Rpackage{stats4} & \Rpackage{tcltk} & \Rpackage{tools}\\ \Rpackage{utils} & NA & NA & NA\\ \end{tabular} HSAUR3/inst/slides/tables/SI_rtimesc.tex0000644000176200001440000000113014172224326017512 0ustar liggesusers \begin{center} \begin{tabular}{cc|ccc|c} & & & $y$ & & \\\ & & $1$ & $\dots$ & $c$ & \\ \hline & $1$ & $n_{11}$ & $\dots$ & $n_{1c}$ & $n_{1 \cdot}$ \\\ & $2$ & $n_{21}$ & $\dots$ & $n_{2c}$ & $n_{2 \cdot}$ \\\ $x$ & $\vdots$ & $\vdots$ & $\dots$ & $\vdots$ & $\vdots$ \\\ & $r$ & $n_{r1}$ & $\dots$ & $n_{rc}$ & $n_{r \cdot}$ \\ \hline & & $n_{\cdot 1}$ & $\dots$ & $n_{\cdot c}$ & $n$ \\\ \end{tabular} \end{center}HSAUR3/inst/slides/Ch_multiple_linear_regression.Rnw0000644000176200001440000003376714172224326022231 0ustar liggesusers \input{HSAUR_title} \SweaveOpts{prefix.string=figures/HSAUR,eps=FALSE,keep.source=TRUE} <>= source("setup.R") @ \frame{ \begin{center} \Large{Part 6: Multiple Linear Regression} \end{center} focuses on the analysis of cloud seeding experiments. } \begin{frame} \frametitle{clouds: Cloud Seeding} The data were collected in the summer of 1975 from an experiment to investigate the use of massive amounts of silver iodide ($100$ to $1000$ grams per cloud) in cloud seeding to increase rainfall. In the experiment 24 days were judged suitable for seeding on the basis that a measured suitability criterion. On suitable days, a decision was taken at random as to whether to seed or not. \end{frame} \begin{frame} \frametitle{Could Seeding Variables} \begin{description} \item[\Robject{seeding}]: a factor indicating whether seeding action occured (yes or no), \item[\Robject{time}]: number of days after the first day of the experiment, \item[\Robject{cloudcover}]: the percentage cloud cover in the experimental area, measured using radar, \item[\Robject{prewetness}]: the total rainfall in the target area one hour before seeding, \item[\Robject{echomotion}]: a factor showing whether the radar echo was moving or stationary, \item[\Robject{rainfall}]: the amount of rain, \item[\Robject{sne}]: suitability criterion. \end{description} The objective in analysing these data is to see how rainfall is related to the explanatory variables and, in particular, to determine the effectiveness of seeding. \end{frame} \section{Multiple Linear Regression} \begin{frame} \frametitle{Multiple Linear Regression} Assume $y_i$ represents the value of the response variable on the $i$th individual, and that $x_{i1}, x_{i2}, \dots, x_{iq}$ represents the individual's values on $q$ explanatory variables, with $i = 1, \dots, n$. The multiple linear regression model is given by \begin{eqnarray*} y_i = \beta_0 + \beta_1 x_{i1} + \dots + \beta_q x_{iq} + \varepsilon_i. \end{eqnarray*} The residual or error terms $\varepsilon_i$, $i = 1, \dots, n$, are assumed to be independent random variables having a normal distribution with mean zero and constant variance $\sigma^2$. \end{frame} \begin{frame} \frametitle{Multiple Linear Regression} Consequently, the distribution of the random response variable, $y$, is also normal with expected value given by the linear combination of the explanatory variables \begin{eqnarray*} \E(y | x_1, \dots, x_q) = \beta_0 + \beta_1 x_{1} + \dots + \beta_q x_{q} \end{eqnarray*} and with variance $\sigma^2$. The parameters of the model $\beta_k$, $k = 1, \dots, q$, are known as regression coefficients with $\beta_0$ corresponding to the overall mean. The multiple linear regression model can be written most conveniently for all $n$ individuals by using matrices and vectors as \begin{eqnarray*} \y = \X \beta + \varepsilon \end{eqnarray*} \end{frame} \begin{frame} \frametitle{Model Matrix} The \stress{design} or \stress{model matrix} $\X$ \index{Design matrix} \index{Model matrix} consists of the $q$ continuously measured explanatory variables and a column of ones corresponding to the \stress{intercept} term \input{tables/MLR-Xtab} \end{frame} \begin{frame} \frametitle{Nominal Variables} In case one or more of the explanatory variables are nominal or ordinal variables, they are represented by a zero-one dummy coding. Assume that $x_1$ is a factor at $k$ levels, the submatrix of $\X$ corresponding to $x_1$ is a $n \times k$ matrix of zeros and ones, where the $j$th element in the $i$th row is one when $x_{i1}$ is at the $j$th level. \end{frame} \begin{frame}[fragile] \frametitle{Estimation} The least squares estimator of the parameter vector $\beta$ can be calculated by $\hat{\beta} = (\X^\top\X)^{-1} \X^\top \y$ with \begin{eqnarray*} \E(\hat{\beta}) & = & \beta \\ & \text{ and } & \\ \Var(\hat{\beta}) & = & \sigma^2 (\X^\top\X)^{-1} \end{eqnarray*} when the cross-product $\X^\top\X$ is non-singular. \end{frame} \begin{frame} \frametitle{Estimation} If the cross-product $\X^\top\X$ is singular we need to reformulate the model to $\y = \X \C \beta^\star + \varepsilon$ such that $\X^\star = \X \C$ has full rank. The matrix $\C$ is called \stress{contrast matrix} in \S{} and \R{} and the result of the model fit is an estimate $\hat{\beta}^\star$. For the theoretical details we refer to \cite{HSAUR:Searle1971}, the implementation of contrasts in \S{} and \R{} is discussed by \cite{HSAUR:Chambers+Hastie:1992} and \cite{HSAUR:VenablesRipley2002}. \end{frame} \begin{frame}[fragile] \frametitle{Inference} $\hat{y}_i$ is the predicted value of the response variable for the $i$th individual $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_{i1} + \dots + \hat{\beta}_q x_{q1}$ and $\bar{y} = \sum_{i = 1}^n y_i / n $ is the mean of the response variable. The mean square ratio \begin{eqnarray*} F = \frac{\sum\limits_{i = 1}^n (\hat{y}_i - \bar{y})^2 / q}{ \sum\limits_{i = 1}^n (\hat{y}_i - y_i)^2 / (n - q - 1)} \sim F_{q, n - q - 1} \end{eqnarray*} provides an $F$-test of the general hypothesis \begin{eqnarray*} H_0: \beta_1 = \dots = \beta_q = 0. \end{eqnarray*} \end{frame} \begin{frame}[fragile] \frametitle{Variance Estimation} An estimate of the variance $\sigma^2$ is \begin{eqnarray*} \hat{\sigma}^2 = \frac{1}{n - q - 1} \sum_{i = 1}^n (y_i - \hat{y_i})^2. \end{eqnarray*} Individual regression coefficients can be assessed by using the ratio $t$-statistics $t_j = \hat{\beta}_j / \sqrt{\Var(\hat{\beta})_{jj}}$, although these ratios should only be used as rough guides to the `significance' %' of the coefficients. The problem of selecting the `best' subset %' of variables to be included in a model is one of the most delicate ones in statistics and we refer to \cite{HSAUR:Miller2002} for the theoretical details and practical limitations. \end{frame} \section{Analysis Using R} \begin{frame} \frametitle{Cloud Seeding} Prior to applying multiple regression to the data it will be useful to look at some graphics to assess their major features. Here we will construct boxplots of the rainfall in each category of the dichotomous explanatory variables and scatterplots of rainfall against each of the continuous explanatory variables. \end{frame} \begin{frame} \begin{center} <>= data("clouds", package = "HSAUR3") layout(matrix(1:2, nrow = 1)) bxpseeding <- boxplot(rainfall ~ seeding, data = clouds, ylab = "Rainfall", xlab = "Seeding") bxpecho <- boxplot(rainfall ~ echomotion, data = clouds, ylab = "Rainfall", xlab = "Echo Motion") @ \end{center} \end{frame} \begin{frame} \begin{center} <>= layout(matrix(1:4, nrow = 2)) plot(rainfall ~ time, data = clouds) plot(rainfall ~ sne, data = clouds, xlab="S-NE criterion") plot(rainfall ~ cloudcover, data = clouds) plot(rainfall ~ prewetness, data = clouds) @ \end{center} \end{frame} \subsection{Fitting a Linear Model} \begin{frame}[fragile] \frametitle{Fitting a Linear Model} It is sensible to assume that the effect that some of the other explanatory variables is modified by seeding and therefore consider a model that allows interaction terms for \Robject{seeding} with each of the covariates except \Robject{time}. This model can be described by the \Rclass{formula} <>= clouds_formula <- rainfall ~ seeding * (sne + cloudcover + prewetness + echomotion) + time @ and the design matrix $\X^\star$ can be computed via <>= Xstar <- model.matrix(clouds_formula, data = clouds) @ \end{frame} \begin{frame}[fragile] \frametitle{Contrast Matrix} By default, treatment contrasts have been applied to the dummy codings of the factors \Robject{seeding} and \Robject{echomotion} as can be seen from the inspection of the \Robject{contrasts} attribute of the model matrix <>= attr(Xstar, "contrasts") @ \end{frame} \begin{frame}[fragile] \frametitle{Fitting a Linear Model} However, such internals are hidden and performed by high-level model fitting functions such as \Rcmd{lm} which will be used to fit the linear model defined by the \Rclass{formula} \Robject{clouds\_formula}: <>= clouds_lm <- lm(clouds_formula, data = clouds) class(clouds_lm) @ A \Rcmd{summary} method can be used to show the conventional regression analysis output. \end{frame} \begin{frame}[fragile] \frametitle{Inspecting Results} The estimates $\hat{\beta}^\star$ can be assessed via <>= coef(clouds_lm) @ <>= coef(clouds_lm)[1:5] cat("...\n") @ \end{frame} \begin{frame}[fragile] \frametitle{Inspecting Results} The corresponding covariance matrix $\Cov(\hat{\beta}^\star)$ is available via <>= vcov(clouds_lm) @ <>= vcov(clouds_lm)[1:5,1:5] cat("...\n") @ \end{frame} \begin{frame} \frametitle{Inspecting Results} The results of the linear model fit suggest the interaction of seeding with cloud coverage significantly affects rainfall. A suitable graph will help in the interpretation of this result. We can plot the relationship between rainfall and S-Ne criterion for seeding and non-seeding days. \end{frame} \begin{frame} \begin{center} <>= psymb <- as.numeric(clouds$seeding) plot(rainfall ~ sne, data = clouds, pch = psymb) abline(lm(rainfall ~ sne, data = clouds, subset = seeding == "no")) abline(lm(rainfall ~ sne, data = clouds, subset = seeding == "yes"), lty = 2) legend("topright", legend = c("No seeding", "Seeding"), pch = 1:2, lty = 1:2, bty = "n") @ \end{center} \end{frame} \subsection{Regression Diagnostics} \begin{frame} \frametitle{Regression Diagnostics} The possible influence of outliers and the checking of assumptions made in fitting the multiple regression model, i.e., constant variance and normality of error terms, can both be undertaken using a variety of diagnostic tools, of which the simplest and most well known are the estimated residuals, i.e., the differences between the observed values of the response and the fitted values of the response. So, after estimation, the next stage in the analysis should be an examination of such residuals from fitting the chosen model to check on the normality and constant variance assumptions and to identify outliers. \end{frame} \begin{frame} \frametitle{Diagnostic Plots} \begin{itemize} \item A plot of residuals against each explanatory variable in the model. The presence of a non-linear relationship, for example, may suggest that a higher-order term, in the explanatory variable should be considered. \item A plot of residuals against fitted values. If the variance of the residuals appears to increase with predicted value, a transformation of the response variable may be in order. \item A normal probability plot of the residuals. After all the systematic variation has been removed from the data, the residuals should look like a sample from a standard normal distribution. A plot of the ordered residuals against the expected order statistics from a normal distribution provides a graphical check of this assumption. \end{itemize} \end{frame} \begin{frame}[fragile] \frametitle{Residuals and Fitted Values} We need access to the residuals and the fitted values. The residuals can be found by the \Rcmd{residuals} method and the fitted values of the response from the \Rcmd{fitted} method <>= clouds_resid <- residuals(clouds_lm) clouds_fitted <- fitted(clouds_lm) @ \end{frame} \begin{frame} \begin{center} <>= plot(clouds_fitted, clouds_resid, xlab = "Fitted values", ylab = "Residuals", ylim = max(abs(clouds_resid)) * c(-1, 1), type = "n") abline(h = 0, lty = 2) text(clouds_fitted, clouds_resid, labels = rownames(clouds)) @ \end{center} \end{frame} \begin{frame} \begin{center} <>= qqnorm(clouds_resid, ylab = "Residuals") qqline(clouds_resid) @ \end{center} \end{frame} \begin{frame} \frametitle{Cook's Distance} A further diagnostic that is often very useful is an index plot of the Cook's distances for each observation. This statistic %' \index{Cook's distance} %%' is defined as \begin{eqnarray*} D_k = \frac{1}{(q + 1)\hat{\sigma}^2} \sum_{i=1}^n (\hat{y}_{i(k)} - y_i)^2 \end{eqnarray*} where $\hat{y}_{i(k)}$ is the fitted value of the $i$th observation when the $k$th observation is omitted from the model. The values of $D_k$ assess the impact of the $k$th observation on the estimated regression coefficients. Values of $D_k$ greater than one are suggestive that the corresponding observation has undue influence on the estimated regression coefficients. \end{frame} \begin{frame} \begin{center} <>= plot(clouds_lm, which = 4, sub.caption = NULL) @ \end{center} \end{frame} \section*{Exercises} \begin{frame} \frametitle{Exercises} \begin{itemize} \item Investigate refitting the cloud seeding data after removing any observations which may give cause for concern. \item Show how the analysis of variance for the data \Robject{weightgain} data can be constructed from the results of applying an appropriate multiple linear regression to the data. \item Investigate the use of the \Rcmd{leaps} function from package \Rpackage{leaps} for the selecting the `best' %%' set of variables predicting rainfall in the cloud seeding data. \end{itemize} \end{frame} \begin{frame} \frametitle{References} \tiny <>= src <- system.file(package = "HSAUR3") style <- file.path(src, "LaTeXBibTeX", "refstyle") bst <- file.path(src, "LaTeXBibTeX", "HSAUR") cat(paste("\\bibliographystyle{", style, "}", sep = ""), "\n \n") cat(paste("\\bibliography{", bst, "}", sep = ""), "\n \n") @ \end{frame} \end{document} HSAUR3/inst/slides/graphics/0000755000176200001440000000000014172224326015262 5ustar liggesusersHSAUR3/inst/slides/graphics/HSAUR.jpg0000644000176200001440000010037014172224326016647 0ustar liggesusersÿØÿàJFIFvvÿþCreated with GIMPÿÛC       ÿÛC ÿÀ·"ÿÄ ÿÄ\  !1TU“”ÑÒ"AQSaq‘’2Râ#B¡ &3bru±²³á67dsð$%5Vc‚´Á8CDvƒ4Et„ñÿÄÿÄJ !1AQ"aq2R‘’¡±Ñ#BSrÁð35bcs£²Òá$4T‚“ÂC¢ñƒÿÚ ?Ñ,Þ:Zoh_}<³xéi½¡}õ#ê4Èúm ORü³xéi½¡}ôòÍ㥦ö…÷ÔL¨Ó#ê4°E/Ë7Ž–›ÚßO,Þ:Zoh_}DÈú2>£KRü³xéi½¡}ôòÍ㥦ö…÷ÔL¨Ó#ê4°E/Ë7Ž–›ÚßO,Þ:Zoh_}DÈú2>£KRü³xéi½¡}ôòÍ㥦ö…÷ÔL¨Ó#ê4°E/Ë7Ž–›ÚßO,Þ:Zoh_}DÈú2>£KRü³xéi½¡}ôòÍ㥦ö…÷ÔL¨Ó#ê4°E/Ë7Ž–›ÚßO,Þ:Zoh_}DÈŽQ\RÁÏ,Þ:Zoh_}<³xéi½¡}õ”°E3Ë7Ž–›ÚßO,Þ:Zoh_}C¥,LòÍ㥦ö…÷ÓË7Ž–›ÚßPëé[‹Km¡JRŽIJFdŸPL‚f¥yfñÒÓ{BûêU­xªõ9«m¡û¤ÉOVÙa×µ€5”ômÁb͕ϩv+b²PJÓœ—SîAû|«h0Vް†àñ,3hj:”2vB¼ç÷©gyør{ª3Ú~“éT;À“ùøÃ€=P{]÷ ò$-ÿgú>¨Õíkæ¡s#¬{›÷›v]a-ph¿¿²ºéÎe”-±¥«\ûœp‡Á;ýõ±6›|;½«]¥ž-’BŽCæs'ÞjM+Ÿ+ûWUÚH»ÉèQ£FMÃï7=ªl£lå:ƒ¤<ή9¸÷Ÿ¸Xv/­³ÞÕQ¦Ùïj¿¨×Í+_Æîk9„r_[g½ªþ£]ßùD<à!‡?XýÓ]µåÿgJÿ€ç÷M}Â{±Œø¯ˆ\^oêÿ­¦òŸþ¡}õóå›ÇKMí 郞}µ|M|×v,¸ð•3Ë7Ž–›ÚßO,Þ:Zoh_}C¥VÁQU5qÞ™õžújâ/½3ë=õˆ§¤"}gºœE=!ë=ÕUô¥jâ/½3ë=ôÕÄ_zgÖ{ê/OHDúÏu8ŠzB'Ö{¨ŠV®"ûÓ>³ßM\E÷¦}g¾¢ñô„O¬÷Sˆ§¤"}gºˆ¥jâ/½3ë=ôÕÄ_zgÖ{ê/OHDúÏu8ŠzB'Ö{¨ŠV®"ûÓ>³ßM\E÷¦}g¾¢ñô„O¬÷Sˆ§¤"}gºˆ¥jâ/½3ë=ôÕÄ_zgÖ{ê/OHDúÏu8ŠzB'Ö{¨ŠV®"ûÓ>³ßM\E÷¦}g¾¢ñô„O¬÷Sˆ§¤"}gºˆ¥jâ/½3ë=ôÕÄ_zgÖ{ê/OHDúÏu8ŠzB'Ö{¨‹îZnáŸúi[Ì(¢Fu »ÞŠF¸—Íùj¡DŸì®Š¢¡JR”TJUË‚´u‹ôƒ;‰á›C²““²æ²×½K;‡Ã—Ý[A£n xO ì®x¤¢ûsNJ ZrŒÒ½È?o⯭Ci6Þ“³--™~(¼ÜÝãÁ£¿À³ÐvJ¥´€Ì0ø½Ù7Ùîñ²×Ýè7émʉÉö²|éò’R‚?˜žUŸ†ï}mFŽt‚4t„I‰Ê@<éò’°˜žD†ÿ}d! ¡-¶„¥)%)=@WÕsÆÓô‡VÚ;Áź‚~ƒN£õŽ®îÈv)¿gö›B´[o"¤îdh=§µ)JV„·$¥)DJR”D¨÷Uo””‚Ie`ýR)_Mv¨áˆ¼ç^Äúêþ.]9OÿFçu|þõ±?ýܺv7;«Ñ¬Ï®™Ÿ]Mÿ-“ðÇ®¥D$Ð?åPRó‘xg6…8æ¹¥)©JˆàRNUL¯F1q?½KÖÿÿn“þ«ÎqÈ>#l6ÙDÛQ¢D‚!îËFF÷¸=ƒ’Ñv¿e™³!1‘Kñ‚sµ­Úy©[+o<¨*l­¼ñþ x©¶·s{Gå¦ÚÝÌ]햷ŧ¦ÊÛÏꊛ+o<¨*m­ÜÅÞÑùi¶·s{Gå¢&ÊÛÏꊛ+o<¨*m­ÜÅÞÑùi¶·s{Gå¢&ÊÛÏꊛ+o<¨*m­ÜÅÞÑùi¶·s{Gå¢&ÊÛÏꊛ+o<¨*m­ÜÅÞÑùi¶·s{Gå¢&ÊÛÏꊛ+o<¨*m­ÜÅÞÑùi¶·s{Gå¢&ÊÛÏꊛ+o<¨*m­ÜÅÞÑùi¶·s{Gå¢&ÊÛÏꊛ+o<¨*m­ÜÅÞÑùi¶·s{Gå¢/‡‘ (͉­Yò) ‘—ÇX×EKKmLZ"ÛíïªCŠ BR²â”}A fMfÍpYÄ7ý•Ó¼»4d¡9N¡±ñÌû« Y¯Ó¶~þ¡0p“Ü5?‹¬¥*‹=Z¹’†\xž¼œ‡âË Xðýï\µX-r'Ëtù­2‚£ñ>€=çulv¸(GceuÒ< ú÷([c/ÌçÏÁ;½æ³¦Á8_Ûų Z„ÖC]I¸áõ­gzÆ«•í?Kõ—Ž]Š%²Õm²ÁjÛh€Ä8¬VÙeHø —JTJ÷º#‹ÞnN¤©)­kÑ`”¥|¯¤¥)DJR”D¥)DJR”D¥)DTœ]þª^¿«¤ÿ†ªóœr…z1‹¿ÕK×õtŸðÕ^sŽAð®ƒèOý´çÚg¹Êégóò½Ï÷µKãǘÄêiÇ1‰ÔÔŸãûçí§ñýóöÔâ¢Ec©§<Æ'SRŒŸÆ?÷ÏÛDQ¸ñæ1:š¨ª×}E¼Jpò ­×TÊe¦>m‡–i$rã–£ÿÿß?mmO&lò4c±ÄÍFqåO|)Ò (órÌ+ÑZÎÕWß³’Md3¬gbœ´×>åŸÙÊ3k³fQÏÁÕ$¥Åµôö-MãÇ™DêiÇ1‰ÔÖÑi+@– ÎÖë€1+V¹‡5.¿œgóO+gæ>®—‹&6°Ì\¬I̸…ç½HV^”¨nP÷ƒ^” §‘Ú(Xå‰k¸µÂÎGh¸_Ÿ¡ÄÃ0o76Ÿ‡q±TŽ„ÿÛN}¦{œ¡N–?+Üÿ{T¾"yôNºœDóèu66Þ~ïgüÔØÛyû½ŸóTà¢4â'ŸDë©ÄO>‰×ScmçîöÍM·Ÿ»Ùÿ58‰çÑ:êÛ® -%’ÃÒ?ë ]„k§õwgë­EØÛyû½ŸóVÝp`\–t^”@މ-yBA×[›3Ÿ›˜ÕÈÿmF½+4>€üãu!¼Ä­û£r[Z¸6ê;A~#€YoÊièéÝAªV$´áÜ_m]§a—çF_ê¹æ“ëJ³Í'Þ UxÅߣí_–œbïÑŒö¯Ë\ßx‚, á˜"+A°‚§x¶ŒÃ-ËN °{Å–«é ƒÞ ꟣ææÎˆ¢I‡)½WšÍW"ÇÈük ʳKƒ!È“]f;쨥ÆYJG ‚3臻ôc=«òÕ»ÐþÒ½ÒLM†c¡Ý +œÄGÐÒ|åæu<áªãŸáSÌô¡7씫4=¹ aìÇâ.½‡¼¨¾¿Ñä´Vºb˜âÇk„µØ| ‰ÑÜ´Šù€±f ^#³Êµ1rom ɬ¸Êd·:Í•¤Œ”ã>QëªO<ú']^¨þèv‡¤® ¸OH–;r›Vv4€Ôf‹¥˜6q ú©Pkà^Wlm¼ýÞÏùªp“›‡;F†n~Câ¢YÉGÉE0ž3ƒè*±hÑî2¿Æ3l6 ÷(áEèq]yC”k!$gî©v̤V.G´X®ÂáT¾Ó1.´½:é ÌìÆú߯܃Scý&2ÌÇ]m>L! IJROÌ™åÿÚ­25ÿt§Ê’]RÝÄ!m¬S«#!¿Xç— ÝGL¹âÞJ«%k(­xúAƺ<˜Ó¦4›$‡S®8Ã+i/¤nÍM, þ#öVvºh°^¢¶n 0òò qŸ=§>ÑøüêÞá­€îšVááqÑÕŽâ”]/‹¶A†™9†[Z¢6s*Ìä7rCÑ,I1F4ÁÚ&ÓŽóˆ08ÿ¬ ñ'Û‹-AJJ’êóW’ÒQ™ å‘Ë}k;A²Tm¦†"OCÃîܜ;Ïßáe±Ñvž«BˆaK;.F˜ðwÖx‹=”qd!*Áko$‘ñ©u¸(a]"é’möÁ„¯vè“°Â’›ªì@FjRsB’•u’¡–y‚9+>amÜñv¼â[EæÜüÜ:ó‘®¶¶ÊÔìg[ËF¹HJ”ýÛ¹FyŒªÚNê´ˆÎt«7°€¾&œÀíiÌëŽEL”M¶§Tá7|ì9XéàF^›w+2¦*ËyD^<»LÔÆ ×Ûë êúõ²Ë/}W°Žo˜ýùfܶb·4^™1üöl¤}ÉÈÃÕYÆÙ˜œnÍÆ¹"{%™ mô¥IÖNÛ¥[ÒGª°]›‹T‡4[±‚ÞÓ—[®¸6Î×’ÌTëpäÈPì絤g–- ík妫\³^Ç_´Ín>@í—aC¬FU¶iˆíÏàªÃs.ŠÞÄ)ÇÝ PJD¯PÞN쀬#ŽtqzÀÍÛçJy™¶Ë«)zÖp‘zU‘#JÎÍŦ…1ïc¡±î9uqÞÀ‹ÞÜ/k_$¦ÖáÎÄ|–kš÷0 úØmŸ+öj­:UæÎŒ.Qð¼,_ˆ®,Ú-÷9 8ÚœqÒ¬ò^ª~Ê2æNyr §ãœˆtxMžøÂ u;Hï2J›}åšO/áÊ+•;þ$2–|±y7ŒVÊö¿‡P–tÇ‚ìüm­¸q¶ŠÜ®è°æNwa#ÒË=F›+V^¼†ú¿?ÐÍâ‹¶ýw‰l¹b<øŒGµ‘É–ÕIÜŒÉÓ¿–»0½`ý5ج¸ê.=Á ZB³ I‚åIu …6Øðá̰µ®{XO"ëàln±!x>«.a=ðZÒà9}9‹‹\]cùp¦Àwa:#ñÈ+QæÊ—¯#]5›xCZMïKìÛS-¨ÅËk$8êTPœŠÉ'T’y…¥4Óe™(„(„º€BV=`_^ušY¥NE—XâÐr·e×Ý2|T%¡Æ"ÅÍ·+ö®ºUÍ4}Ò Áèvd´ÛQ[ÚÊ”ñ!¦ë9o$är~ê•/F—%a1Õ†sW[LwÔÄ•6Ú›q…$9H?«¼ÁôïʼaR§#Aü¢2YboÌ6؈..FCŠô|ü´(»—¼\ <6ÈU·m³Ý¯ [v›d©Šm:ë 4¥ê'Öräê›m¶JáÜa½Cm§›(Z~ ï­‡Ñí¢Ûƒn!”ܦ[rà‰ ‘#Q^nY$$ä3:£ÕŸ)ʰV,ı%Õ3¦<‡Ýf316ÉÖÉàÒüíù3ßY*­.Jg¾ïŠÐð2µò畆z‘Ã;*}Qóó1¡5¶d7ß;Ü[Ã<ò×.ÕF¥)Zê̪N.ÿU/_ÕÒÃUyÎ9½Åßê¥ëúºOøj¯9Ç øWAô'þÚsí3Üå t³ùù^çûÚ¥ímœÎG^<4ÚÛ9œŽ¼xkŽ>އôúqôt|? ÷Ôáu®v¶Îg#¯mmœÎG^<5ÇGGÃú}8ú:>Ð{ét\ímœÎG^<5·\)Í%Vç›aŸ(Hól¸¬üÜÎ`§û+Q8ú:>Ð{ënø/ÇTÝ¥äÈz0ò„©A(ý]ùwÔkÒ»ƒh’Î7Q~áb·îÆ*Õ€¿QÚqrYocyçñ{2¼tØÞyü^̯säÇ:RXŸ <˜çJOëá®jß3Ïoþ1ý*{Ý»Íw®~+çŸÅìÊñÕÇ…í¾Öñyt>ÎÀAi1Ѳ^ÑÞR¢¡¹ _£õªÝòc)?¬O†« µÌ7ÎÄ›Ê$²úä8éÙC‹PJy53ÈîßúÆ®%ãÂi/1, ºƒ]Ñᯂñ ̋õŽžŸ³:"\ hJõ‚¢¡ÔÈ‘ ´ÈXt§]%m“Nà¢w{«Ï!pgÃØ²[óØq‹EÐ8¬rÛN¸>ús oå)ükit1¥ú$UÅÕ¹]•qJ¶Ü’„6BuT<ÌóÈjÇÅÎB¿âK…îÖ»Œ'È\ž,§Ð Ò–¢JRBG›™Ý[œm«t´”œz|ÐdÄ6–:Í9¶ý][kÙZÃ6u³330geñAymÝ£¾—ÜóìUOܽÑÞ!ÑÝÛI–ëõ©ÈÛQl,¾´úGÞ…93ƒ¿}Xœ1µÆïÃÇXß ´î MÛâ´ç™#!›´—¿5ý9Öbо”áè‘«™r×>îõÈ·¬W)KaÙd53Ìëþ±Ž†ô;¦»ÞŸpFt¸ÜQ,ùùèe*\•ëºCÅ#Ÿ Ë/Y©ÒE.j]¢¥­Œñcf¸4'K‹q l‹TØj„´Sù2a0Ü\‚â8Ø mÝsÚ¨š]ÑÎ=Ò_î–\íÚ1˜Õ²ùi諬‚Ì‘ ¤—Kz§XùàúTG'-en9Áá%¥máÉW{ÅÒÇk‚.—©î¡)’ó‹)-2”ù‰iJQ'ÕéÖ‹Ç [Îám3O-è²e©ë¤[/vK„ Vë Ci—‚É!@Fc.CU¬=û º=À:wÆdÂ)½JN8ŠÊnq§\YiÆÞl$'d¤!CSÍQ9ï$Ž@7Éx à ´´X‚>>î CÅc¼ÉÁÆàƒqáïâ²÷îu¿Â;„Xeh"â°­e‚ý:O ÈeUNkчI_qâÆ#º©!k'/Ð,=[ëX´Ãs h#HxÿBÑ•Êæ¼q,Èâê¹¶×IqnT:ç]Å ò€ôç\è+†þжÒNî·FñõÒdõ:n4¨­¾‚€€6GY@(œ÷꯸b8ºÃ[{Ì)ˆlÁwi‹Û¢ÜŽØÆ-û¶#Å›WŸÑ»&PZu%¦ª3ôù¹Ÿ®®Ý^ â ¥¹jS·( dêCÙGƼÝàÁÂÑZ‹‹05ÖÅ6÷€ñƒ1&rܸª[jolÚˆÔ+( (dÕIeYðóÃ/@“4lÀ—ù”—Ú|vèÒ%„¸æÐ-ÆÂ u‚³e–C<÷Ö©²ðg ßaycá¶Ö úÜD—jÎS¶•òíc#›·^orIf™ö…¾øIkþõu;HÑáÈàÙarv®³LÛ”Ñ<¡Dœ¿ò•V¤hï†õ’÷¢øš+Äv—]·&Åû”gd¢Fܸ-®Z©#<óç謌ôËHØvÍ`Ã`5‡­,¶Û#hãËJBÜËp9gæú35m4»5,öΰéfAZ^ ¹½¬çcؤ*XuÈÍt«´Žè§1pÒ²æNY\v¬ÏÂy¦#à|,Ä0Ãs–‚y5C'W/® 0õJ—£“rJ ò;~w¥ ¨|3¬3JѱF µ`üg[гHmØó"©%n6S³ZU–ýS–°>º i3J×}"^â\&ߨ2ƒ Ö-œÁ×*ô«pød+=µtç ©–u·Â™m0fàx pçqn++)³ó­üžòݘ·wâ4hO«X\NZÜmN|5¤­uŒ„×6Û¸Qs¹ÅÖ³0o÷­ƒÇš>³c[Ž.,¼£~òDv#ŒòÙ£ÎZrõë©%'Ü=õ§ËBÛZ›q%+A)RO(#”Vi"›gH*Ç1pì”·"*¥$¥a'Y JµwI冱v1¼Ûq%Ÿ|µ[Wobs¥óNê-[Õ‘n'3Éé¬ÙOÒªØfdœ7ÏF&“‰®ÌvØß>˕ٙJ…>ð&šp´ƒq‘ŹËŽ+`¸8³&Ä’ ã z@tŽ\ƒWûOΜÙ'C¸’<à“oÊrjìaíiNvŽdMޏ|zÕsog.6¾ª¹ AÞ²$oÜjR4¦ÍƒGÒô„"Êm»‹î;.l¢áBò4%9æ¤sõí5>^^R$CcVÛRëa· ;‰áø^Â~‡94Ã2Šøn¾€^÷îáÏ+,—‚rþ 7̾äÏïŠ× ÊV 0Ú¬Ú0“£gpüÇ‘1¥ÙI’„Vs:©)äúÅÊÕÖ:™êç»>\½õ¬íü´ì¼“%߈Äֻ\œ8f±g(²‘åcM:3l¸i˜=ËŠR•ª¬ú¤âïõRõý]'ü5Wœã|+ÑŒ]þª^¿«¤ÿ†ªóœr…tBí§>Ó=ÎP§K?Ÿ•©­ˆ¾ä¾¬÷S[}É}Yî¨ÜEîw´'¾œEîw´'¾§f¤ëb/¹/«=ÔÖÄ_r_V{ª7{Åí ï§{Åí ï¢f¤ëb/¹/«=Õµœ±Z6I¿)”Êãïî}ZªÕórÜrÝZ•Ä^çq{B{ën¸0ÈD-%—YuåyBAÖe²êWv°ÝQÇJeâ‚0b¾ñ¾I±ÑÜlV÷ÑÐi¬õ­lÔ\jOÔÂ^ÒZ;é©„½¤´wÔ¿)Gæ3;*»©å(üÆgeWusŽ9ÚúÿÙNØ þ§«ýÔML%í u£¾š˜KÚ@ëG}Kò”~c3²«º¾‘=·V–š·NZÖBR”ÄY$ú€Ë}T>dð‹ëÿdÃyž¯÷Pµ0—´ÖŽúja/i­õw5ƒ1ƒä%¬xS„f×/øköUk[d*%ÆËsŠú7)· ¸…ˆ#:÷‹¡¡ÑaÆhíqö¯qdâœ0ß žÀÞ©º˜KÚ@ëG}50—´ÖŽú—å(üÆgeWu<¥˜Ììªî«|sµõÿ²öÁõ=_î¨ü/£œM p®ñíÎ$¥.¥Ð—[÷¥yæšÖý%h/a­­Ób$^íÉÍE¢8ÓCú#sƒÞ7û«kü¥˜Ììªî§”£ó•]Õ²ìþÖÕöv%àc{8±Î»O²àö‹vÝ`+{3M®2ѰµüÑb=¶#°ß²ËÎùÂò„\’„¥Yê r?ˆ¨¼¸ÿD8Iák›l•nºjù—X-«?F¾c%ŽÿQ¬˜ë@:BÁsÛa›Kט’]K1¤ÀiN­G$¤ f¤¨’\„òS¶Îmý2¾D¼O™Ž~ƒŽ¿eÚ;»#Ø¡ÊöÅT( ÆgÎÁó›Ãí G´v¬kJ¹ñöŒ´ƒ¢Ë£6]"àû¦%‘!–g°[SÚÉôžã—!ÜjØ­äEÂÓÈ Ø®è²äÁ}2a¾¶]G"¬d¼ ¦»¾”ƒ*KŒ/p/´3J¿¦ŽCøV.¥yÇ f Çhs‘\ðW´¼ÌiH‚,¸hA±[˃4ÓbÄ 4›£G[™ÈmZ̬ûý)?Èí¸ÛÈK­8•¡C4©'0G¸×œ6«ÝÎÊþÞÝ)m“ö“Ê•|G¦¶JÕˆô·¢{]šëðeç[/© €åÊ2ÑXÈ1GzA#‘ÈçÉPÎÔtG-3yŠ·o?ün=SöN­î7 )_gºK‹ 5VâxÔw°÷­Ž¥Z8SIx¥¶Kɇ-cs.¨d¿è+‘_ÛWuA:Lí9–Ÿ„XñÀh:Ú.½#P•©BåÓÄ}üAì)JR±Êñ)]ðmó®rSÛ ùO¬–™l­d\€ßR®XkY™L›½Šá ¥+Q+‘m¤«Ô €ßº½[+˜b5¤´q¶^•ðb±® .ίsU r‡é‰ñSÝâþ¿ÿEϺtJ{Hî¬ãÁçÜoXb¨¶öÅêUij‚èV¤…6N¸9yªû Ff°nÎõÎáöuxë6ðhÒdlrŸ‡±lèìÁº©3!-”%§’Éd“PË õ±l£©Í«Bü°°71p_‘ €s6ñàsXm ®§Äü˜8»,¬ÜÀ"ã,ôáÇEˆž—‹ì­´›LˆwXo vN«¨pó9Œóβ^›ïwù,Ç!-¬%†uÊŠ•¿$ù©äß»@0ßúëjþ¶þ2kÖ_ÝSÿáyþåýÇ«7Ú,;‹¬<¸¼¥¦ËËm³¤lCˆ#a\c¸b ÒOèí±™Sª r¨eöô«pšÛœ`ÓݶÃ6í+¹y¶Y\T{›pî§=oq5¡e‡¤”ŽP¡»Ý[À7DpS“¥Bo÷ÍŠí2¯/Ì)ý#qÒ…˜ì¤ò„„¤,Ê¥{…h—=·¢œwŠ-øžö"X1µ‚á s¯,†Ó/bâ㺜Wš3ÿÄ« ¥>N½òÓ›ƒž½àŒÁí !MŸš¢Ddh \îZv\hG~Ke°%ÁJxBÁѤ\&êë®#m’ê¬@ßËÉWÛZ#Ò …In%„Izÿ¨b<¦]y£êR¢ }ÙVœð;á+A³ñµûÝ©+Âr"ØÛ-©n==N·³l(ÜUš·y¼µ¹_¹÷ŠqÖ.Ä—KÎ"´OD 6µ-«„Èêar\Ú €Úr’TœÀôõÔº"–ƒ>Uî0‰Îîh-pêœV:æ ¹œÔ•Oé&,Ä#5¢ dHq¿·W-5Ï’¢aväÃÆ6¦CŒ<ÝÅ„- *I¤G(­“á_þ¡Û¿­þ•ŽtÍNøªP•>õ½÷Rœ¾ÙX‘ïÕ‘¸Wÿ¨vïëD†åk4éK£Öd‰¾ùØœüV~vlOÔ©“@[&ܯl–©Ôk—ý+þŸÝ5&£\¿ìé_ðþ騲–;ÖûÈ=ËÍÇ>Ú¾&¾ké϶¯‰¯šîá¢ã¢”¥*¨¥qæº:'É~*qæº:'É~*Ì¿ÁÃH÷· v¿ÉOàá¤?ûÛ†;_ä­oüáCÿ’ßoÁlåz¿Ô;ÙñXk5ÑÑ>KñS5ÑÑ>KñVeþCÿ½¸cµþJ !ÿÞÜ1Úÿ%?Î?ù-öüü¯Wú‡{>+ qæº:'É~*Û¾ ñ×3Eéy©/EO”$ ›jþ®ÿ8ŸãX§ø8iþöáŽ×ù+7èƒ5‚ðx²â«¥®Tá)×v‘åyšŠË!ú»÷Eh}"×éµ:0'ñ´Ù­ÄmcÀØ-Ëah³ôú®újá"äØ^㈺È~M¥§|ÛðÓɯô´ï›~‡±ÂÜâ'iüÔØánq´þj‚lÿÖÿÄߊ˜îßÕÿÈ~ g“_éiß6ü5‘p®ÍbÛ‹r$.u¦|YHUT´ âÕû9+XæÖ.Øánq´þj½ôs¥FônÔû}µv¹–«²u'Á’ð(y:¥?k<Òr$nõòVF”ø0æ?Õ‡às\ßÍ7"Z@9r$8+ƒb¾úrÜ@´þpçb q.p>?Ç?˜ÓöbËŠàbV0ûjjЄ·n‡ÆTȜԬ³Y%J'“2}•‡®ÖiÓ“R3Xí»k®¥®›ZÖ° XœÏŠÉRi“’Òóp0ùeÄA·Ôƒ˜ 1pµolp«9å®ì”çêÏf+¯ý2b} ßÅÌ~ø Âi£j?E ²¤‚7²Þ7ïÝËXçIzfIqá&ᇇ"ܲ¸ï5%J Ö)ÖÍ$oû"¾1n”m:Df¸Ï -7(MìS6Û$4\G.ªÐ´¨ræwÙšT6–\ÔæªÉŒ»ÀHvÛ=®­ˆ$pÈ‹ªIÐã~C/%=¸¸$Ý®ü®  ÏJ¿a-$h>é‰a(;¦¶¬)Ôj¸Ä„¨ R= ß–îPiÁù´¿¡d2¢rZ¦$åïR«[¯ñù8YŒc†«u‘—Œ—S»GdºYÅäì†I ÞšºtS§iz9³¿‡¦ÙEÎÞãŠu°—¶kmJ(g‘³ùÕüŽÚÉD®Ãž›!¿3ÎØ¾÷½µ·—±ZMì¼Ó)/”—ùÌMi"ømk_Kñ×Ú´;pX¿`Õ[±•ŠL›ÛG³i Ô|ÂÔµ¤o$+!šwdsÈV÷~êŸÿ ¬÷,î=V¬ìUgvå Ûðáiƒ!r‘ËR–·TFjS™5 2Èeé&¤pˆÇìpŒÑ¬â|8Ü&”òfE“ZÁfJ ÚÔóÒ É)ÝŸ¬VÇ@é:\µÂsZî·2@m…Ž™ys×ë¡Î¤Ã <´¹½^@xñÌۚʼq,- p±&Ðê\z.•d}´œËrimŸyÉ'à¡^2àü7'bË6Ž¢Û×YìA ÕÏS]a%Y{'ð­˜Ðö˜ôïÀbï9!±ˆ°mÕйQVµqWAÆÜ–\Ë u˜91ž.ÒîŠÙ¼]±.‡ôWpÃ7›ÎÜq‹…äMnÚ:!¶–‘¨¢¤…¬¨¤(ê€r"\¦M@œ†f$Þ ù‡ñî媌êPb˹°&šXödAõº?¹‰ÁãFw<9ˆt½}µÂÄ78·×í—%²—–R“µJ`8²°u¹@#¼Õ[‚¾)¿b¿Ý ÓS×›Œ™-ÛaÍ·ÃmÇ ‘;SYBBNä§$òNf´ó‚g ìgÁfUÆÝÊÆ Ã7wü»c¯TÛÀjíZpª¢@™gWu¿‡]§éÆó¦}hq«[Ø”ºõî,ûÂß3XÜR¤ Jõ:Ê “¸ ö‰+žþ7/8sšÈyÚÇ5™8]i^áÙ‡­ ©æ›’‹6Œ«—]ò TžB+l8d_­– YßºÈØ4ýå¶R²3HQiÿÔ7r×–úWáWnÒþ™lšjÄz+a›­£`\ôêY‘°:Ìr·š5U¼åž°Ýº¯m>þèN Óþ oßteÔ¨²DØ’á]]ͷ€V…#'’Õæœ½ëU Â«ÊºR3lÜ."ÁÝ™ñ· ¬:ºúlÀ˜c®Xë´Û·Ò³›/3%¤¿Ô:ÚÆiZ#ÜEtÜ¿ìé_ðþé­DÑîž®GPĉW3ç!yª;Ÿʃï:Ø[N–0ÍþÒò&Êjß!ÆT”‡\7 IQ|‡3è;ëž¶£:­ûùq¾‚”ÑÖõ›¨ï즚&ÝS«LÝÄ;¸¶Ðœqû+­sí«âk澜ûjøšù®§.p)JRª‹Ñß(Áæ2»žyF1•ØÜð×g¸ô:ºôSÜz]z+ˆ÷MåüV.¹Þ;Ÿðܺü£˜Êìnxiå<ÆWcsÃ]œnãÐêëÑN7qèuuè¦é¼¿ŠÄÞ;Ÿðܺü£˜Êìnxiå<ÆWcsÃ]œnãÐêëÑN7qèuuè¦é¼¿ŠÄÞ;Ÿðܺü£˜Êìnxiå<ÆWcsÃ]œnãÐêëÑN7qèuuè¦é¼¿ŠÄÞ;Ÿðܺü£˜Êìnxiå<ÆWcsÃ]œnãÐêëÑN7qèuuè¦é¼¿ŠÄÞ;Ÿðܺü£˜Êìnxiå<ÆWcsÃYgE:¿é>Ã*ÿÇ™´´Ìƒ¤º©x„‚H)# ±„ß,[æÈ&Ê´½Õ²à/£r’H?´UäzTĬs¡±þI1cÜ­`Ô ÇŠø0¢æj0:ã½EòŒc+±¹á§”`ó]Ï vq»C«¯E8ÝÇ¡Õ×¢¬÷MåüV+­ã¹ÿ ˯Ê0yŒ®Æç†žQƒÌev7<5ÙÆî=®½ãw‡W^Šn›Ëø¬Mã¹ÿ ˘³"¾î£QŸB²Ï5ÇRÌS*3&8æ«öõ2œ¾Ñu*ý‚¯­èÞF’®Zm׸°æ2Ù{fûK!M‚V²F\ª«Å’Q§f[-,Û½Ú M7ñÈx/·MC•€cÇuš58H·†¾*Î¥]zHÑÝÇF—¶lw9ñ¥ºüq$-€  ”œ¼ïO›V¥[MJÆ‘Œéy†á{r#’ö—˜‡5 ± ›´æ R”«u씥(‹ªLhór,¶}—RR¶ÜHRT ƒ¸ŠÀúKà¯d½mn¸äZ¦Ôa8IŒáþiålüdzí+5DÚŽÏFßÓâ–ž#Vžñ¡÷Ž,UZ‰#[…¹†8#¸ê=Üן b<rU«Ú_ƒ!<Äù«´¨nP÷ƒTŠôgal=‹í«´âKLyñ—ú®§2“ëIåI÷ŠÖ}%ðU»Ú¶·]¾»”QšŒH=HW"þƺ eúU§Õ°ËÔí/? |~s²ýe mG3ÔÛǧÞ,>_Lx}/ û¿R»¥Ä•KæÆv;쨥ÆAJ}DâºjV8\h£‚ MŠT´]. ÁrØ™Kâ®TÑ9§0sz¿ ‰Jª¢R”¢%)J"ôƒR÷íàõKñSR÷íàõKñW>O•Ó>–üò|®˜™ô·à® ÆÏ=ž©þ•×X]æ»ÖÆ¥ïÛÁê—⦥ïÛÁê—â®|Ÿ+¦&}-ø)äù]13éoÁLlóÙêŸéL.ó]ëŠãR÷íàõKñSR÷íàõKñW>O•Ó>–üò|®˜™ô·à¦6yìõOô¦y®õ‡Åq©{öðz¥ø©©{öðz¥ø«Ÿ'Ê鉟K~ y>WLLú[ðS<öz§úS ¼×zÃâ¸Ô½ûx=RüTÔ½Áø$ú¶KñW>O•Ó>–üp`+ÅpWq¼Ia(ΖV„†YêÏ$g‘Õvýõí­˜ŠØM|;¸äž?õ^q\`ÃtG5ÖþPø­Ÿàíy\f.z=¦6–£/ôi#YÇ›ùæwäá"°Wœ5tÃúS¹ª¢·æ=¶ÔNk!í…|êæÐ\¨V=+"èöÚ¸®ö^Žì~,â6Ž8u“¼¶Ú”ÕßÂï ;:ÑeÅQd¼Â¡¼¸o–ÂNhpk'=`y OÕR|èmce a2îÊÝ`|†@è׉-znІà#7>»‰ÎÚ¸{V1ц„.úN´?r‹àÄr#§Úvܵ¢3ªï{…Tp†‚™¹ã ø'c˜ñ®‘Ëb jB¸X^ä99õ§^bCj Õ6™îË×^”zS¤)Ó‚ÂèÏ w•b #.G.Áªô˜©TäìDpl&âo“q9óö•‡t—£¼W£lJ» Ùöù ­°üi ai¶I‘­¸‚"«Íhµ».ñž+a¶. q(ø…O¸N|ªZÂF@fwE^Ü0"ºþ&ÃëjkÌeÐCaÿIéÖ­¹xIïXe\ßá›z›LÙkJCÉ*̼Q¨TIó@ÈdrrÖr•)+T“ƒ?ê .³o„ÝÄ Òs&Ú]dåªä%fbD-ÄzÆã­k‹4© h/­”ó ïx¬{‚± ¦Æ\u¾¨2âìßó HRTRHÕ;²ßë©<Ú,¿ê·Än³~„aÁ‡¢K\H'®1ÐÜ€$¼ÈiNþ‘yQÈ3Ï/N\µ„ø.€4›<E¹ÿñQYwQe)µZDÔ³CLP1nÒ@i¸×\]Ú,h©ÌNÓêP#’D;ÚúØ“‘iãAÅzb²áù·&™Öæ™eâÎÑ;BêòJ¼á>¿^Uki@ ÑÖ^"ŸŠ ¶Ã”¡˜'í¨]bW¸2Ï(©ü)_z.‘ír£¸Pë6æœB‡*TYçYªR£éC.8ÐJºÛµ€û’3Ëðq5÷‘O®Ôª’ñ!Þa—s ÝžZX26ô¯–Tg)RR˜ûAuƒ…†Yó"ù‹ú¤µ‡ìÏa—oÞ¤ñ–œn8Šan[Ë ! ^¾ðNgWÒ7oªÞ ÑÜ ÚqÔùÜ.lñ„Á‚ÊT¦ZÏ \ZÈÙþ¨“–¢ lá—0¤9͘¯¢ï5²7æ·’H÷4ÚOþc[e‹0Òõž$ÙÙIAo^è®d´¥[÷àqµêÌ®@ŽØ¢<0Ë4“bNn'2oôy¨Ï,Í^¹•Š]¹yuÈùdËO¥ÎÚ«x‡FP"`ft‰†q*n6§Lw}”†]'-UJN_B S4w£{þ’o ¶Y’†šdÉ”î{6Ry3Ë”Ÿ@’´¢|Y£| t¶Ù§7wÃr¥32A[e2"©‚²T¤æ#Ô7 Éœ,Ñ­º1=´ µÎCϺ¯IÕQBGàûM\Èìƒ'«°ä&a@CÅ › º¦ç'hM³…á7´n”¤¾nA—áa¶€‹õ…†c>ätXnÅ¡l;Šñ ÷Øqd±t±ƒ¬ìˆ‰ßPVªµuTT»3c»–ĬP¼&ÍÕ2d²úêQóJO¤ÁÔk,à¼k‚4m¤¼I}º_&Ê2ݒ™jÞABËúßh«"DW(`{æœpÞ6·n (K’Ö¦ªüô¥yfw¤ï÷UœÕ.RÞ6mîëüÙuµÎmϕ?S…0ñÏ…»Ä mºá·¶ƒ"²²1.ØèÞÅ×›ƒ·-’’‹sSqõÆa:ËP+9oÜ÷×Î=Ñ£XFËiŬDÅÞÑ{ÏŠ¸-¸2¤ïÕËÊ m>Ðö Òn¥Òhq™¥ –çDXÍHý\ùR±êþÚÀÚ_Ñþ1ÀFÛ`‘%‹ž‡5×£LB ]inäÜNd¸G¤Ÿ…_mÈ:‘ f.à:†ö’KsX¾`‹ÜØ‹ÚÖ+J>Ѷ¥ =é/gµÀXä|“nÖ½µºÖ½ h—é1MöÚ0'&§1’G«ër³ªÚJà÷0vá£y´'3Æ£ ë¶ŸüFùSñŠÝÊà€FDf b6gojÛ2D8nÞAó§ýN­ð˘*÷h62›_#Û‚/žÝ|FŽñÏ‘ Í*Vèé+ƒ~Æû[••)±Ý—š‹¬#ô«ùííNGãZ³ŽôcŒtu0ÆÄ–µ¡•+&¥µç°ïÁ~ƒî9utNÌíÕ'iÚø"ñc²>;³æƒ«ûRÙò_¸¡ùíÌxñoŽ\‰V¥)JÜÖª”¥(‹ÑŽ/‡¹Û]±^*q|=ÎÚíŠñWßµs'{ ü4ãÖ®dïa_†¸ªó_µôŸ‚ë;@ýŸ /Ž/‡¹Û]±^*q|=ÎÚíŠñWßµs'{ ü4ãÖ®dïa_†—šý¯¤üÐ?gè ã‹áîv×lWŠœ_s¶»b¼U÷Ç­\ÉÞ¿ 8õ«™;ØWá¥æ¿ké?´Ùúøâø{µÛâ§ÃÜí®Ø¯}ñëW2w°¯ÃN=jæNöøiy¯ÚúOÁ-ö~€¾8¾çmvÅxªçµF²Z0EÞêBWwu»S*2•½´ëÙosCÿ5[|zÕÌì+ðÕgý ]¼ž->Uºñ$ ´#ìÙ„‘º¹e–꺕‹œè›íÏ2-ÙÿêðÀ Ýê á¡¿j§Z$Ùì÷hwxsÂ܆ȖOœ…Ö÷VóéÑ Iz#¸4À7p·&tR•êH£">~5¢ðo‘­’‘6Þ‰1ä5ž£Ãq*Nc-ÇWÕW 4Á@i¼_ˆÒ„P”™êË*Øvz¾êD¼yyˆQb¢Ö呞~ÁšÃVh⣠h1!°Ã7ïÌdG‡½gþMBk â a@Ïk['J÷ìýäåTLÕ¼p´¾¸Û©26³µ“¶$ýŸ›ŸþÕ†#icÃJ“_ØJβƒAô}g!QšÒEú=ÑëÛÛËw  »)-¼ZG *Ë2*îÓrÒrÂc¸xq<]©±Ïµ[¾„_f9‰ o[†Þn™BÎ|)Ó`BÁb˜¨lµÞ(­ºu·f3Ýdý?¢=ÃBוCR]ˆ¶c¸ÊòId:ƒ¬ W-ÿ Ó«Öo„ÆÄ‹½Å¤¤¢SO8‘¬*§gÓ.2°Zü‹iÄ—v „ê%Ž,µ¡ õ$)T{…\7kZ賘àE ˜¸°áÃË.:Œ×ƒ¶q®°Ë Ž¾~í Û=°ÌMÚa´¡›-=®r¢‚¥)`÷窴Ÿ‡8/¤&Ü3Õïú?ñX¦Õ¤¼Y¹Õ‰ïqCÎ)÷VóIRÏÚQÏ IÝR"c|a÷äÁÄ×(ïIV»ËnB’§’9wò¬lÞ×@1éï‰ àËk{]Ù}G›íWÒû;Bœk"4ˆü¯fæOÞ²w Ðð[¼–ñ«—‚®3mnøB{á)Œ Æ>±äG#£ð:§ñ5‰ð–&ÄŸa¨¸’õ.æÀºGý·K©û`r+ÜOή O„îZ0Äø¶æz$4´ì[c›Ò—øÖà”ŸÖÕl¬œ¹ E|IÕ"ÿ‹¿iåZweä9§€,¾dwvÍVfB§6…ŒxAiæC­—§>ÂU¡s»3‹´Ž»¤†’cÜn¨É¼²Hd¸”ü52~i-ìY¡,!¼q“k´N •„hä’‘¨¬Ó¹@ûò"°àÝÉ»*¸™Ò3j -‹¿¿&#ɳ-)„D8—áZÄ¥Z!E1K›ÎlFjwƒc~P2+=1N{Ÿ C³¡µ¥¥ŽÐŒ¬t9‹rЕ°‡Kghñˆ1Lvcˇí%#$Êt¤¤ý,Ï«T×ÏÌofsÉ„O·º·˜BŽEÖVs:¾²•Ÿ¸ŠÖ»¶ ½_TÚ®÷'¤†F«HQÉ RR<Ô€¨‘eʃ!¹p¤»ö޳n´²•$úÁÅlööfJéÄ6`7ȼÉ6½ìFºg©Xgì”’Q¥AÂ^ìBÙ†‘˜µï¦½ŠãÒu¢UŸHwûsì­+7\le½HZŠ’G¯0¡W±Z$iá+¬KiKw”7-Õë¸P¬¹JB“ê)"­ÉÚIÆ÷0ƒ>þëî¶D>¶Û/$zƒšºãçVê^y/ yaЭpàQ ÖõçËkož“ƒ:f`4¹¥áÖpª‹®½òåÃ<³m•™‰, ÅpkƒH»I9ÚØ´¶¶öä²uïiBxÒã‡l÷‰ ÀbBœ‹ÿÒ0¶sA W Èåæå¼É:VÒ4lA h3.±›‹sÄ;-œ\÷G3S‰~®IÜœ+¯HøÕæ2úäÄ22hËi¹ l5N$‘óª5Òñt½Êã·{ƒóÈ$-啑Ȩ{†êÌ7jLœ ™iW½Ð¢´µ¬u¬ÀîFçAp,7¹ÒËꙋ†/0­MÄ’‡”µ0ÊÒ°RÙPÈ•Ê=U³–KíÃÍò±1 š›I“å:‹$üEi•힘 O²N¢ ¸Õ»€‘|Íï‘Êëj£VàVäÝ5"KÀ$u¬ÒHÛNÑš€‡ j C…*IÌr úÅL¹_o€Ð»^&M Œ›ã©ÍAîÖ'*ÝLaÃ÷Ìc¼]0åé“ ²óî {( Z’ 9ä7ú[< £ ø— aû{‹Rà°Û®[t%.ÊmµùªNDê¬ånmèÒ8”3 ›²ÜGªs¾—ZÛ¶æå“.qƒ‡ÊÞÚÙj&cÖ+šÈX{M7Ë}Á·qƒ Ýák «&Í•”úuT„ŒÄ[.ÞŽtOlQo a+w¸0—šu†ƒ C>Te¼íX NÇB¯‡ŠlÛ\öæCšæåÏŽK/QÚX”‚Ó=.Z×qø-&¥eM7h]Z4[«CîɱËt2æõÆtý”(ŽP} õî<££/T€&%vûAäG4¥)XÕ|”¥(‰JRˆ”¥(‰JRˆ•hâ}hóÎFŸÆOTÏ‘¨¼Dóèu8‰çÑ:êî¥È*Wñ“Õ3äiüdõLù‹ÄO>‰×Sˆž}®¢)_ÆOTÏ‘§ñ“Õ3äj/<ú']N"yôNºˆ¥=S>FŸÆOTÏ‘¨¼Dóèu8‰çÑ:ê"•üdõLùôO;×sÀkLre9$Ì…å^$âÉÚ1•½ 3ÊŸ8“»-äšó‹ˆž}®¯Dx–¯|tÝm2˜™|[WS —5œR·„6ByNjB‡ÄU¬ßæüB»’üç÷-3²ttÀšËmáçn+ShŽ^O:êÞ1žD¨êæO.C>JÈ2¸-ÞìúSÿAøŸK³âõÂqûbÍ­ù·D€½unÍÀÞ©X#ßXóÙî°lê\™¶É¸â;4hV~Ãí8ê” ZÛ=d=àZôŠÙÂéCI³ø-p£ÑuµXŠÚ¹š¾°aԴڜѭ“±5›N¸ZV@Ï”U#Dt3ÕÓÿÌÕ`CdA×9åÝÇ.Å­š.³é)_¹é¤©v¹Ö5Y•uÚMn]½ß(¡Æ×²àV¢*P>xËx5k7˜˜WF˜æõ¦âÙt“2,Ú–§&+²›AMí2Vüõް ÷î˜4mi·BýÎ-8[püÑ*ØŒG=$gµŽ—¢†ÖN^”€jçÇÞ<¸ 5¬ZÄölÎãæz+Çzæ¸áÊî>åíºkš1gfŽ=«Sqg-áþ1ø7Ûo \®S–Úâ\ü棪2Û.–7”ê¥*ÖNóšræ*ê¼ð-¾ÅÃÚJ½Øô—2ææŠç* æ:mŠRÒV§cæ÷œ„æ¬óÈä‚@<•¶xûG¸—ðÿ¼cµÄÅ8GBŸe·Ü^Sl\]ZœiÆÝ){ ÚÕž Ï2ŽAPô¿¢®˜cFÚ[‘ƒt}†˜ÿI2œ¼bgcbK}†v!/7µ0ÐȤ,æJ•’ˆÕÚî7Å/·—ô‡ˆÜnÒät.[Ä2´Œ’¤çš@ä#’¨[[o2¯mm¼Éþ¼xi`—<ÖXћт±mÆýo8†önVÖ6n }KŸj2Æb­Åœ–œ¹3…(f9jµ‚8DÞôg6áyµéâIoÛäÀ‰à\D$—›S{Wз׮PT”–°IÖÈdpnÖÛÌŸëdž›[o2¯ù0šu_b+›¡Y7ƒsq¥ëAfSŽ+g'ršÕÿä«Ó™­Ö­)àܸjÒõ 1Ô+g'z lUèÕºÕÍ1þž‡û¦ÿ3ÔõÑoègþñßÊŽÚ+ÿføkú²?÷R´ã Üp­ØÑRÑi—t¶0ê⸴-S «2Õ )'w&uUÑ_û7Ã_Õ‘ÿ¸*ÈábHÐȃ‘VGÿï1R̈tf½ÂàBÜúšx­ 3KêNh6&&¼ºÊ«‡¸“LñªgÒhŠ7ÂV{éÇÇ0‡Õžú“ž#õLúM3Ä~©ŸI¢(Ü|s}Yï§ÂV{êNxÕ3é4Ïú¦}&ˆ£qñÌ!õg¾œ|s}Yï©9â?TϤӓLñªgÒhŠ7ÂV{éÇÇ0‡Õžú“ž#õLúM3Ä~©ŸI¢,‰ÁºP{KÖ„±Ûý“šAþE^úÝjÒþžWÿK–~<$lör”,ö*­Þ³XïŠh¶Ø­²'JRJÃ,#Ye#”åî®gé‚âí&0L&Ø |§©ó£µ”HŽy°®_E«x4WþÍð×õdî ²8Y±+Ÿõ¯ÿ\Å_Ú9…2Û€ìû„g#Éoe·Zpd¤($õÕ£ÂVÁ{ÄÚ$¸Yðõ®MÆk“­Î"öÕ̾y×JYi¸øOé]Ëh²IR² ÉÞr’&ϚΠÀòmù¡Ç.W V‘½'7›ÉzFü²>Š i*ßjµcÛå¾È˜LKR[JšŽB¤pVcð¬mBË btg9½K‚OÓf1lÍí¡ðç•ì›à¸[4õì@EØO?JÚ¥)X–JR”D¥uI“+“-ô2Óc5-j {ɬ]ôál³°ê,®5’s ˜þäüÄò¨ÿÎF³ô™©í$mÍ>uµqÉ­ï:xjx±5jäòqàr“Ü>ý9•‘¯7ûFŠeݦ¶Â?Tš–}I¦°žôü˜­.<ͽ…«çIt{‡êùΰ¦1ÒýÖ÷)ÕÂ}×^ã)ýê?ÑO"GüåXñ÷ߒ꟒òÝqg5-g2èM—躙DÃ1?hñ‡1Ôiìo÷x¡]¡év¥x2_5³Ê=ç‡pô•sb=!^/kq¸î.+ '[%fâÿ¤®êµywšR¥¹Åæî)JR‹åJÚ[y¤Ž¼xi´¶óIxðÓ££áý¾œ}è=ôUºm-¼ÒG^<4Ú[y¤Ž¼xiÇÑÑðþƒßN>އôú%Óimæ’:ñá¦ÒÛÍ$uãÃN>އôúqôt|? ÷Ñ.›Ko4‘× 6–Þi#¯qôt|? ÷Ó££áý¾‰tÚ[y¤Ž¼xi´¶óIxðÓ££áý¾œ}è=ôK¦ÒÛÍ$uãÃM¥·šHëdžœ}è=ôãèèøAï¢]6–Þi#¯m-¼ÒG^<4ãèèøAï§GGÃú}é´¶óIxðÓimæ’:ñá§GGÃú}8ú:>Ð{è—Y;ƒrá«Kրá[9;ÔèPËb¯F¨­Ö­)àÝ)/izÐ;£’sm$äUï­Ö®eéôô?Ý7ùž§î‹C?÷ŽþV*¾g ˹á­tJ¶4e)ä) ²¸¯ÎäË>_}N…oÆŽF•eQîÌ.d„¶¶Ši•¥“žY$æ}ÕQш˜¯6‹€áÙIÔbTÛ½5]Â0ä"ï2âˆnCƒ>ÁvT(ŠÏ6’Õ?RËוirñ#Ã7és„-b29ÜÜp[tÜá…'U½[j5°Ä¼c•iÆq¶ÆŒóæSñ¾ßª“Œ+4–¯²AÌŒ³ô‘é©bé¤D~"ßhXRµÆZ^i£\诹äí†c—0= â‹æzÎka¶À˜Ô–\x5@š¼} 4Iã ¶e>Ô¡-ë à: Þ­–yzrª$«EÎ:U"K§m±qÀ° —yuTA9+——Ôk*a;¤8Pôut¾<~Qº¼é܇ªµGœAÏÝZ¶r‹VÅЮí”È&Xó–úR–¤NIÏ3üáë¯ št7†¹Ñ\Ai9›ÚКñ´NÝÅzÁ{I€XµïÍ6îïà­«†¾Z¦*ßr·ª4„°$ê8¤ŒÚ#0 sÈŒ½UL¬’íÂ& °^mwgƒW\6™N@[›‹ñ$-ŸŠT ´ûŠ« b¿Æ¦-—è­Ã3_uÿfÓüÎæúÊ3Ú“o?îG¸}çв~´é6ðòšnWZIÕB<Øí|ëùαÒñr¼¾d\e-ÕzÜ”û€ä •7JÊ@‘‚ÙyV1º,ˆfçf'¢˜Ó.qÔ“t¥)W Õ)UÜ%‚1F8¸ n´?1ÜÆºÒ2m±ëZÎälÖ¸,áÛÊéŽEæzrPŠœÄVÏ¿Òáøä=ÕªmÙÒveŸêâ^'77´Û²ëc¡l­Khþ™–gœš¤%$d>$šË¬0ÄVQ3(e¦Ò†ÛHJR ¸ ì®}Ú.“+5·á–y €a!Þ.ÈžáaئÊÀR©-Å¢4N%ÂãÁ¹ãsÚ¼åÖÄvgÐ{©­ˆþìÏ ÷Tn"ç<‰×¦œEÎy¯Muu×9):ØîÌúu5±Ý™ôêÄ\ç‘:ôÓˆ¹Ï"ué¥ÑIÖÄvgÐ{©­ˆþìÏ ÷Tn"ç<‰×¦œEÎy¯M.ŠN¶#û³>ƒÝMlG÷f}º£q9äN½4â.sÈzitRu±Ý™ôêkb?»3è=Õˆ¹Ï"ué§sžDëÓK¢“­ˆþìÏ ÷S[ýÙŸAî¨ÜEÎy¯M8‹œò'^š]lG÷f}ºšØîÌúuFâ.sÈziÄ\ç‘:ôÒè¤ëb?»3è=ÔÖÄvgÐ{ª7sžDëÓN"ç<‰×¦—E”ø:¹ÒåŸ&@og'í¤žÅUº¥\¢­/Z© /ôrFHt(ÿ"¯En­s'LŸ§¡þé¿Ìõ?t]úÿ¼wò±r•­ajN~£•sµw<ö«Ï׬kæ•Ü©"Ëekýyï¦ÑÁžKVþ]üµÅ|¸ãl¶§]q(BjRŽ@yª‹“`¨lÊû*QN©Q r ÷TK­ê ¢)›vž–ldâÿ`§à+cM4ÙlLº‹C>¶÷*K§&P}Þ•Ö¼o¦{­öRÕK’9Ž0ðÜ‘üÄrÿ9T«²ýÔ«f*DÀ‚x-ð}÷z ¶ƒ¤ UàÉÚ,NÏ$xñ´þާµ¿ÄÛP >¿9÷? ŸGÄþÊ×O¤«Íõ×DW\ŽÛ„븥ë<çÅ^­9R¤Í}Re¾·^òµœÉ®ªè*&ÏSvvæ7™ÕÎïv§»AÀ(R±´õ¸»É·“ÈhpáïæW$’I$’w’kŠR³K”¯¤!n--¶…)j9%)’}@VgÑ·ä±ñWʱUzå>…òŠ„PÆð¾§° Iî %L¤NÖ#n$¡—Ÿ`ï:ˆmv«êsVÛDæJxê¶Ë+ZÀVÂèÛ‚|‡öW]#Ë,£r…¶2üóîqÁÉðNÿ}gœ£¬!£øó¾ª¥D">3ÌH„—É9“ÞT!41‚Àh@%)Jø_kͽ…¿¤ÙÏ}6þ_g=ôÚ[9¬ž½>m-œÖO^Ÿ w¢ãŒ“aoéösßM…¿¤ÙÏ}6–Îk'¯O†›Kg5“×§ÃDÉ6þ_g=ôØ[úA}œ÷Óilæ²zôøi´¶sY=z|4L“aoéösßM…¿¤ÙÏ}6–Îk'¯O†›Kg5“×§ÃDÉ6þ_g=ôØ[úA}œ÷Óilæ²zôøi´¶sY=z|4L“aoéösßM…¿¤ÙÏ}6–Îk'¯O†›Kg5“×§ÃDÉ6þ_g=ôØ[úA}œ÷Óilæ²zôøi´¶sY=z|4L“aoéösßM…¿¤ÙÏ}6–Îk'¯O†›Kg5“×§ÃDÉdî ÍÄF—­™Jq[9;‹Z¿ü•zs­Ö­)àܸjÒõ 0ÃÈVÎNõ¸2ثѪ+u«™:cý=÷Mþg©û¢ïÐÏýã¿•‰J¥_±=— GÛÝf%²FhhoqÿȬ¤ŽŠm.A†ò¢6A†›ëÎWêwöÖ±³; VÚw˳ ./vMðâãÝâBÙ+»WN 4ˆî»üѯ/VbÅZG°a„­’ð—1#ù”<ßé«‘?ÛZå¤m=Ì»8äV¤ 6;*)aÒ<«?óº±F Æ—›ú”‡,F'ùÉßý#ʪ WElÆÀRvd¬nò7žá˜û#FûOjƒöƒmê5Âaƒ‚š8÷O»±O»ßn—Çö÷Js#æ nB~ R•»­0›æR”«—hëéwÃ6‡JNNÈWšË^õ,î çÝ^SP$¡:<ËÃ5$ؽ¥åãMÄ`4¹Ç@ÉðVÕdMè3ih•“ídùÓå$¥1<«? ÞúØpcÂxOesÅ%ÛšrPJÓ”f•îAûgÞ¯¬Î„!´%¶Ð”Œ’”Œ€ *Ú~—¡ÂÅ/Bn#õŽÕºžóaØT±³ýĉhõ‡acNö<;…ÏhXûG: Á:B$Ä‡å  tùI X?ÌO"þ²)PeB¥7UŽfgb¼ñ&þŽC°d¥ù) jlQã3ÚsJR•b®Ò”¥)JQ›|}®Ž‰ô«ÅN>×GDúUâ©Z؇ÙËêu5±³—ÕêïEÇ6Qxû]éWŠœ}®Ž‰ô«ÅRµ±³—Õêkbg/ª=ÔK(¼}®Ž‰ô«ÅN>×GDúUâ©Z؇ÙËêu5±³—Õê%”^>×GDúUâ§k£¢}*ñT­lCìåõGºšØ‡ÙËêuÊ/k£¢}*ñSµÑÑ>•xªV¶!örú£ÝMlCìåõGº‰eµÑÑ>•x©ÇÚèèŸJ¼U+[û9}Q!örú£ÝD²‹ÇÚèèŸJ¼TãíttO¥^*•­ˆ}œ¾¨÷S[û9}Qî¢YEãíttO¥^*qöº:'Ò¯JÖÄ>Î_T{©­ˆ}œ¾¨÷Q,¯îWh14«k•1"2ÓRT·w§!±W¤šÏ8ûOvûC nÎêXFñÆž©_ðÑéøŸ•jdk® ³¾™å.¥HÌ$ºßš gñßT鳦\_T©ÒóªåRÎÿ•ªT¶6—Xª6«>ÝãšÐÐÓääI¹uÐåØVÍOÚ¹úM9Ôù3„9ÅÅÃÊÌ`xiÃ>ÕxâÍ)ÞïòTWÞl8|÷ÜV³ËüWð«!JRÔVµ)G2IÌ“\R¶†µ¬hc€Ð Ö¢E|W¼Ü”¥)_Ká)JQSЦ Á7˸c÷âIP 6Óƒfµg¿k«çðÊ·2ÉËÖÄ\=+ŸÐ¢*RËÝ–êó®Ýt¸Z_mò–ÊÇ.©Ü}ÄrËZ>Ó½ÆÆò‘'Š•¬jŽçô“ú§Þ*3Û½ƒ˜Ú#ÊÌöèÇ›=ÖòIçc~Å!ìfØKP>bb±ÕàuüyŽÌ­Ú·&•da+áüHÛMJu¤¸®²ÁiÏ诓ð5{Ìzk›*ÔYús-P„XîÝh:Ú éõ9J¬-üœ@æöpïƒÞ¹¥)Xµ|”¥(‰JRˆ”¥(‹Í-e}ã󦲾ñù×®ó\n¹ÖWÞ?:k+ïg½ èCFºQÀxËÌ¿_[º`¬)+Îb2šKKq©-°5HÍ´…fw¨ ·UðhÇ6FnØÛœ‘‡á[ÄL‰.¤NE–Cªm‰n´È“˜ÀÉE ëÏzÛá+Ótü8‚ÃÚÊûÇçMe}ãó¬Çwà™¦K5ÚM…û]¾MÊ n=.9‚CÑâñn2R )-òj‚¢we,œ§NÑÆ‘1åÏ@ˆæ‰j˜˜Íò&79Y#7E²*Juµ³I Ê«½f·MÓô²ÃšÊûÇçMe}ãó¬¨÷M0FÃÊÃí30í×'š[à=çTÔWÜG¡ RO¬€A _:LàÕ¥MÙ.üa܈¶›ØÃóø¬ä>¨ÓTÀ}PO¡M¨F~£‘¦ñ„Úê†À¹ ë+ï5•÷ζps°c Úô¶¹÷•ÜfãȸIèq‚ HŽèJ”øó ‚€VYÕߤÞø®É¥lWƒ4z6Ň¯0ã7;¬†Ù2nÛB™`dÖ%^¬’2*#:ùß2öºúܾ؀Zñ¬¯¼~tÖWÞ?:Í’¸5N°èÚDZMép¦ÎÇ.àÉöE1¨ôW)Ú(9¼ï>n®[³ÌòU{L| ñÞ Çó°þYV$³œTŒ%nsŒ6eªrã¡ô¡ä ‚3B‰ÖäoÊ«¾eítܾ׷à­uÖWÞ?:k+ïeû-1ݯÖ-†{’}äÆÖ*KÍ¥9¶æ¨ä fNê¨\¸(é¦ÑÅqÃñØrEÞ…æÕ):ÐçMiÆiÿ¹®—¼f9êoÍ7Oä±µ“ÝìgA-š™^ô+ðô|Eg=ð„‘µSù£pâ²W»ÿÆç£à~UÙÁb÷o´iÜg!ã‚ìò&­S˜y1ä±-,:‰ZÛõFdäÞj9¤ÕzáÀÍt·‹´]þ’c«÷­‚׋ÌÃ@½«·¶%Þhý&ZùÃ<½©IHUàYèb#/â ç¨±Y*tìý.((ò×vaæ2Ðä³®Ç PØL);99f¨Îù«¼>pWŸ8w^°ó¨oŒQÚWš ÈRrô¡\£ñ­‡Ñ×TMm.n™¨’d¶?±cþs¨;iú!Í ØÛõn=aöNŽî6=¤©{gúJ3hAÞpÐ÷G…ÇrÏôªušÿhÄ„«LÖßGërR©IåQ¨Zb^4¤WAŽÒ×·"±à©F hs a89§B ÁñJR•â½”¥y£Jûؽì—ôšl^öKúMwšãu”´)¦Ö4G‡t‹a{9týÿaÇ0ùq2ƒ‰0¢pÉÁÏ]5q½»¥ã85º'$|µÚûÙîõVؽì—ôšl^öKúMWsÖ²oâ\þ?d¨Z±£L›I÷Œ¹ñ±—W›€f”®Ë Õ^¸NNlÊþÊ“ª 7ŠÊø†Ò/ï±›ÑÐlÞž¸ÈÕvxq¤.T˜OùÈÙ`“ Tòf<™oÕí‹ÞÉI¦Åïd¿¤ÕL&8‚x*63ÚU–x@éá­9I³ÈNrÑäÇ®¨Aís6b¤Ÿ5:¡e#—0ÝYðÕòŽ'¸c NƒS§``ÄÉáèÉd •%H §]yr$ß¾µ„¶âFjm@zÊH¯š¦å–Ú&ý÷&ú­c…¼xúpÑΘÑÞ#aèv/'›€ÿ¦qvi.•ìüÌö„åªrË–ª6>– s Û4TˆŽÊì75è³Úe™î¥bcƒgšÞ@N®òAå«ÉZÃJ <DÄAÇñø e±' (¸ƒß0`ÀO0/Ï‚Dƒq Ù©Á#Wg¿_[-LÆYršÄ8I Á6•5iUÚÓ|fäÜøwËDî/)¤.:·yÈWš®]Å<‡:±éUl&´X/—E{ÉYJ:Uµé^Uób ,âqîô™Î]›šv)†–b9cT½d¥EÌÁ;÷oªõ‹OÐí|ãh)ü==)gþù•u‰=-¸sgdXJ @¤Ÿ;3ËÉXj•]Ûl%Mã®O5š.\#ä9£LC£ 6ÛqÆÅ6uBÍ¥ ¨è (+&ó;·%[·î©ã^²q¾™­Úf¸Xç7)­7ö¤\\ˆ[<ÔÒróv›$ý usVYÖ¥StÎJ»çéuÑÂj:oúk¾ ñ_Šü`×õnÕý±VzŸ¥È€?Wu\ó¸cÛ.U¿i-í<ƒŠ0[¸JâÂ. ×F¼F˜´¢Œ²­mUöÈÏuk *›–rü~¨qü~ î˜ó/Ëyøñà 8┆Ì!$îN~œ…u¶ãŒ¸—ZqHZNiRND|Ò½W’¿ð†–ïx~KK”ûÄ£rd²¬H÷ŽElžÓÅ®ôÃh¼8ÚÁÈq¦áý4r¤ü>U¥µ" Âm²@•KŒ:ŸÖAË?qõÖ½_Ùj^ÓBÁP‡w 2xî?q¸ì[iª4â•W‹Nm>x±í^D™|tJ…!·Ùpf•¶  î­.À:sºXJdÉTU5–‘¬ËŸÓG£â?elžÒõƒ4Ósn¼Ùpû•èøsÞÔt_T¡â˜“ùø#ˆ`?Y¿{oÌÙM»?·ÔêÅ¡G;¨œ‰êžã÷v]_Ô® I ‚3ræ£%½¯8öWÏn÷h*l¯žÝîÐÜœGnDxn‡·bµÆy%À‘¬£±È‡ÚÌz*úZǦ|k’¯šÏƵ£¶R6€k’\Žy óÚkâߥ—uÜ–•jº¤mÙsf ÜKkNygçîݘ©Ó±v¸O3“…Ý‚‡œ·#²ÓKB˜éJu )þMÐ¥$ddAaR˜Bb*ô˜à XðÜ»=ß ·tõÊ4ÆÞZPeµ ©²£™A*úܼ Ïû…¾W†Kê[-¡O.3 T²”¼ \H4 q¿9¿;ô#Òsò”À ®g~²b PdY,‰µ"<&£<Êu\u ÉN‚y¬ï9ç‘äÝõ)UÂÊ„ß4¥)UTJR”D¥)DR¸‹]#æ¿ 8‹]#æ¿ s©j纔ø©©j纔ø¨ª¸â-tŒOšü4â-tŒOšü5Î¥«œJêS⦥«œJêSâ¢.8‹]#æ¿ 8‹]#æ¿ s©j纔ø©©j纔ø¨‹Ž"×HÄù¯ÃN"×HÄù¯Ã\êZ¹Ä®¥>*jZ¹Ä®¥>*"㈵Ò1>kðÓˆµÒ1>kð×:–®q+©OŠš–®q+©OŠˆ¸â-tŒOšü4â-tŒOšü5Î¥«œJêS⦥«œJêSâ¢.8‹]#æ¿ 8‹]#æ¿ s©j纔ø©©j纔ø¨‹Ž"×HÄù¯ÃN"×HÄù¯Ã\êZ¹Ä®¥>*jZ¹Ä®¥>*"øv+m ­3#¸Gê£[3ó£Ô‡S –}Kô¶ù…ED¥)DJR”D¥)DJR”D¥)DJR”D¥)DJR”D¥)DR¸ÄŽ=z»©Æ tqëÕÝJQVéÆ tqëÕÝN1£^®êR‰tã:8õêî§ÑǯWu)DºqˆzõwSŒ@èã׫º”¢]8ÄŽ=z»©Æ tqëÕÝJQ.œbG½]Ôã:8õêî¥(—N1£^®êqˆzõwR”K§ÑǯWu8ÄŽ=z»©J%×˯DZ Z…³W¡[Rrü*=)ED¥)DJR”D¥)DJR”D¥)DJR”D¥)DJR”D¥)D_ÿÙHSAUR3/inst/slides/graphics/Rlogo.jpg0000644000176200001440000001577314172224326017063 0ustar liggesusersÿØÿàJFIFvvÿáExifMM*ÿÛC  !"$"$ÿÛCÿÀе"ÿÄ ÿÄS  !1AQ"2Raq#‘¡±ÁÑ356BVu„’”²Ò$SWr‚“•¢ð%&7CETbcst³ÿÄÿÄ$!123ARqÿÚ ?ÙpAAsSò¬*biö˜e“Ž,%)êÜ Ò>8´6…8â’„$¥(à:Ì-.­Y”&^ß–ñ÷¯t´9r)]còqí…uvà¸+ëWÂu'ÝmJ èB¸[ $l6„ä+ÝE´éhr¤&žN>.U=!>åz?Ó-¤,d2>HVqOÔ+• Ô+ ¾æôÓ ^=Ù1ÂèžÇŽL`œŒ;ˆ°@Ü´t~L¸9p {Ì8¸.ÙvRÓ%a¶Ò0”¦qÀö Ç\…ý~ST¥1qN9Ä0|cî0qÝ…š[­ñG’ÓOW)„ø,e’­—œ“A¹Éjtÿ’㌔/žaæ‹}_(O&¯EŸ9¥¥äžÜ“ÃŽ®£ W$å—÷¹†•ßs4¥Hoˆv§x-…š®Ü»í›ˆF­JM,’A|. “À¬+ÜDäb)ŠrÛY[EHPëIÄ\m=]½m§Â'¦U[’*ÊÚœYSœÆx\ôÀÀÎ@É8‰)ÍYQ, Uµ.ðÔ»3_Ô”2sD%E[ !\—¹À(ã<"/q!„AAEjý»emŠq#ꃩø† ÿ‰Xß„|ü‡Y÷…×K¶eJçã™Z ™–G¤æøçÉ#=g°ã8Ä#®«žµtLfuâ‰pG³Y ‚3Œîw;žÞÈçW—aO>·&ç&’HçõôG…ËqS-*}<5R®…«ÒjXýjȶ|~J^›*&êÓ“dî¯M~äóŠôåÒV¢ÍK<ºw†T}ÃŽ }.µtU:yµ½70éëß`†½»`S¨ì&b¬RëÀd49| ôÚ ~¼ð[;ùæTp‘©K"REu)´‚9¡üñ`º.ªuP‚ëR­$l‘¶{¡zjØR–‰^ºÏÕ ÙùÊ10ÂTGZŒT«̳EA2ØìL*)ï^÷Äúå¨TÊMÀž5R‚S8ŽÃ$o통¡à»{UV‡®šÄ¥’¥¶ÚƒïÄž ÛÒvAMU¨ßŒ¨œÌ8®ø†~öiDà¨÷Æ•·<tþžÜºê³5J´Ãjâ{‰ÐÛNïË„¤Œv+>ؽQô{Lé3"bNϧñŒ?Æú9cÑp©?4=¡F*qVJ[q@sÄz·t“œ´ðÀÏ#­VE–¤*зÊFp 5œ ã?“ì$|òÈüη¹cðc<¿f ££5t°v+R}â$%nDäßǹXP°l‰ùwš´èªKƒ R$Ð…óÎÊH Æ*•}Ó9ù`ÓTGië ÏM-2¾c çÎZÏP)ä$Àû5Uº/ˉ4ÚD´åR}âxZegpPŸp¤þ òRÝWPç|z`€³N—Y ¤à-ÁÏp!=€…] ÒË[LèIÑeRìú𛍏ŸŽ˜9ÉíáNqæŽÁœ‘˜½D’Kåé{ÅO’Ò2tÆÄÂà Ïš7;œBýËçR’´<Ó88›q¨)PíEãÂñõƾ…B#T*5©kRÑ’¤Vç©fnmÖÜrUÂ’G q˜è顎ڲŒ’{©2ù忥úÈýÑd^j_¬ÝöB§à+×ûJ¸?Î?l^¿ÚUÁþqûcG¢¾…[ߨkyy©~º?tGÙ—š—ë#÷D}¬M¹}(dj5ÈGhpÇß&ï¿íäÿ1PzQú÷ö^^j_¬ÝöA忥úÈýÑd+Eµ~Z‰rŸñª? ·ït+R.$žÂé½(ý{û jv¡SÜé&™—}´œ”.\$fSƒ4=w—éRÕÁGT¶N ²ê$'ü'ž¢CQ% \µ÷58ýÜââO¿ˆðš®UÝoµÀvñêxÆ=ªG#ÜDFX ûY$¾M!X³tïT)ÎT¤Ce[™¹Žü„™¯fNú¯4Û.¡g|z@«ë‚#b±÷]`Ónz”Vz §2Ž2qò˜£Üà¢ñ3“ÈJ³îú¡·¯T¯‚¯TÔZo…ŠƒAÂB8R(g¬ì½ ûž†gº™8>ã ƒš8•É8ÎwàˆÝr–\ͱPBFT‘Çò©é |HTYãW˜£ƒ ÞU¹¹g6 iä} ˆk”?ƒ)øsݶËjjßmc '?$B_7;:£sSè6Ón&Ê¡;Ò®eI)ñçÆÜ@z dܓ٪-z¦àfJ\”'e,ì„ÒyߊVܾ òT¨üȵ™)é…l†Ø)'Ú££0„·»ƒÂ&֧˵9UC›îIâÉömm»)6…¬º ŒÒ›X*˜u'¯F6,VüìÉ«Šþ¨êEA• )‰"¡éº®d{‡_teÖeMR-Á“mE7Y¦fÀœeyâ™q¶›Ç­Æ¿rL\¡á3zJRé®¶‡‚›¦4§[)㲎ÑßéÔc˜ÍBkIôÜj}ñ}L¦¢™TS§a$¤ž=œìùà‡gµ£5ni:jµ6Kuûæ}eJWh‹È; åJs ò!PÀÕ[Q7]¬ä«(O°zYEÅÖœž@h Ï(Ë­¸R¥ÊÌ' ¥I1³¡%¯zy30úî«~U PA3Ì40¥’]‘Ûž7Û;䤉©º|àá'‡9I‡=p7W¤Š|ÊÇL„ážb M%Ôônì¡ÛÌ™£Ï9*òT‡ H;b)ˆŸÕKMye  –Áà=£²+ž×ûúss»C¯92(S«áZs”Ë:Hü8Î00q‚AÎå CN°ÅZX34BezÑK½í™jR”€ÛÃ’Àçï€ g.ó3íÌKºÛ̺€¶ÜB‚’´‘AG\~ã"馢ܺq4)óÉv§DÁH–[‡ îN[;ðîI#9=x#MÙ·»wI š%E·ÕÃÄã ó]oaž$öÈäLM;•¿Ä×ú-PübþwøSßÄ×ú-PübþwøS=7µúfËæLG=FN^~MÉY”q¶±‚#¢%i34ªLŒÅr¬„¼‰q†™VáJ$‘×¶öÇFN—&d/Qh\Ò£‚z×de‡ ÒQJ}Ñú6ö “¨õð=ª1ÅWð„›v¦ò%ú&ÙÂ[Ñç+®U ÇC+u%'˜ 1“v+.©ßßÚ]süÈë¤is׫jßXªÓå‘30¢•xœ~"BVåEJSƃ)q)p¡8Z}¸ÄxÝóŽÎP¦Ê;ñs!a%'e(ãæÄM ågJµ'N­Ä: _ cÍGsŸnçêŠEýá<ì¢äéªnM¢0”27îÆÑZ¢éµ93/L\Ƭûn,ܳá®×Í'?4?4ZÐÐ 9æ—/E᪃Xs¦ÁöOxÄeÉ“$W¶1ƒ}ˆm-Ò ÷YëmÔjlÌÒíÎ>'¦æIts!9Ü“õÆ÷²-ŠMlI[ÔId±%(Ž*=dö˜”hJËJˆ2̳hÈáÂP”óÏ`C½u&Fž‡$èŠLÜÑ%ñ÷¶Žq·¬yû9sÜG>Ro–hI"sP.©kn– •ñÔAí§íÆsÔ>r1ÚFJbJsYõzNÓ•uçèr"j·6• åC‹~iìT{#žù»®æèm–_«Vç•ÑÌM!Y § (œ º³€|j] ÓZ~˜Y Q˜-¿Px‡ªIN@‘’”î{IÀÉòõ*òÍKK2Û 2€ÛM6”¡ `$°mzAAÕÝ3®LW­4¥q»OÀ ^}"ƒÔzøO·’aãS2nIO°ä¼Ã+(q·R¤¨AäcrÅ7QtÞÛ½¥Éž—³à ֙ƮÇ}°Ɉ¸‰£3Ój¡$aYýâÍ)UneÓÄ8Ÿo1Wö–^6c®Ì3.º­-Rf¥O ZÓÍsêì&)òuÅ6®’•£±„0*”ÖßA(áq¨ˆ­ |Ý*u3”©§ä¦WÒÊH= ŽQé!r`WŸ|K5V“˜pžøHNêË\·|¯†¦R—ãsA8s)Ø±ÎøÎy˜‹ÕÀö/é…1öi¥²ã%£j‹1Îù/túf÷±åßqI D†f‘‘ž!׎ÎPÂŽKTèÖ„Aa@@@@ëÂhkOãŠBfÛ*Q8aQ–+Ú·JÖe%Ø{à¥-L<æOž¬ ;¶©RrsöÙ–ž•bi…:8šy°´0v„\íŸixÛ¿õZ‡éü=¯åX²¸B‘Tàœ¬Y}ߪ×£öÛ÷²9_¥®Pè\Býœ• ûa¯ä}¥ù­CýÁ¯å9›BÓL»„Zô@BNkùbÏè›#颽यP¯¡AI2,Gÿ!‹ JM*™pT6™%$\•f]„·Å…Œg„ þ1ϲèôADfpð·¼¹[»eGG)9çL(rC£™>þp™–Öƒ¦æÜ¥¥–Ün’ Î1“¼m-F’“¨[KOÊKͰ¥§‰§Û IçÔv…7‘vwæý9¯åpÏ%Š^4݈ÿ»íWÿ2ŸÚ?lFVµr^²Óˆ©IɼâÒ_á!À·;÷æ4‘vwæý9¯åƒÈ»;óNƒþœ×òÄ¿¢L=(ˆ½ Ô‰[Fÿfe‰Ïú6uA™¶Š±€NÊîÿžQ»%Ÿff]¹‰wãN$) I؈D"Í´ SjP˜§µü°éµÐ†¨m¶„¡ F”Œ2v3ä{¹,Š® ( ‚*$ÿÙHSAUR3/inst/slides/Ch_logistic_regression_glm.Rnw0000644000176200001440000003716714172224326021516 0ustar liggesusers \input{HSAUR_title} \SweaveOpts{prefix.string=figures/HSAUR,eps=FALSE,keep.source=TRUE} <>= source("setup.R") @ \frame{ \begin{center} \Large{Part 7: Logistic Regression and \\ Generalised Linear Models} \end{center} explains how to fit regression models to binary response variables and to counts. } \section{Introduction} \begin{frame} \frametitle{Introduction} Ordinary linear regression models assume the response variable to be (approximately) normal distributed. However, many experiments require an assessment of the relationship between covariates and a binary response variable, i.e., a variable measured at only two levels, or counts. Generalised linear models provide a framework for the estimation of regression models with non-normal response variables. The regression relationship between the covariates and the response is modelled by a linear combination of the covariates. \end{frame} \begin{frame} \frametitle{plasma: Erythrocyte sedimentation rate (ESR)} The erythrocyte sedimentation rate (ESR) is the rate at which red blood cells (erythrocytes) settle out of suspension in blood plasma, when measured under standard conditions. If the ESR increases when the level of certain proteins in the blood plasma rise in association with conditions such as rheumatic diseases, chronic infections and malignant diseases, its determination might be useful in screening blood samples taken from people suspected of suffering from one of the conditions mentioned. The absolute value of the ESR is not of great importance, rather it is whether it is less than 20mm/hr since lower values indicate a `healthy' individual. The question of interest is whether there is any association between the probability of an ESR reading greater than 20mm/hr and the levels of the two plasma proteins. If there is not then the determination of ESR would not be useful for diagnostic purposes. \end{frame} \begin{frame} \frametitle{womensrols: Women's role in society} In a survey carried out in 1974/1975 each respondent was asked if he or she agreed or disagreed with the statement `Women should take care of running their homes and leave running the country up to men'. The questions here are whether the responses of men and women differ and how years of education affects the response. \end{frame} \begin{frame} \frametitle{polyps: Colonic polyps} The data stem from an placebo-controlled trial of a non-steroidal anti-inflammatory drug in the treatment of familial andenomatous polyposis (FAP). The trial was halted after a planned interim analysis had suggested compelling evidence in favour of the treatment. The data give the number of colonic polyps after a $12$-month treatment period. The question of interest is whether the number of polyps is related to treatment and/or age of patients. \end{frame} \section{Logistic Regression and Generalised Linear Models} \begin{frame} \frametitle{Logistic Regression} The ordinary multiple regression model is described as $y \sim \N(\mu, \sigma^2)$ where $\mu = \beta_0 + \beta_1 x_1 + \dots + \beta_q x_q$. This makes it clear that this model is suitable for continuous response variables with, conditional on the values of the explanatory variables, a normal distribution with constant variance. So clearly the model would not be suitable for applying to the erythrocyte sedimentation rate since the response variable is binary. \end{frame} \begin{frame} \frametitle{Logistic Regression} For modelling the expected value of the response directly as a linear function of explanatory variables, a suitable transformation is modelled. In this case the most suitable transformation is the \stress{logistic} or \stress{logit} function of $\pi = P(y = 1)$ leading to the model \begin{eqnarray*} \text{logit}(\pi) = \log\left(\frac{\pi}{1 - \pi}\right) = \beta_0 + \beta_1 x_1 + \dots + \beta_q x_q. \end{eqnarray*} The logit of a probability is simply the log of the odds of the response taking the value one. \end{frame} \begin{frame} \frametitle{Logistic Regression} The logit function can take any real value, but the associated probability always lies in the required $[0,1]$ interval. In a logistic regression model, the parameter $\beta_j$ associated with explanatory variable $x_j$ is such that $\exp(\beta_j)$ is the odds that the response variable takes the value one when $x_j$ increases by one, conditional on the other explanatory variables remaining constant. The parameters of the logistic regression model (the vector of regression coefficients $\beta$) are estimated by maximum likelihood. \end{frame} \begin{frame} \frametitle{The Generalised Linear Model (GLM)} Essentially GLMs consist of three main features; \begin{enumerate} \item An \stress{error distribution} giving the distribution of the response around its mean. \item A \stress{link function}, $g$, that shows how the linear function of the explanatory variables is related to the expected value of the response \begin{eqnarray*} g(\mu) = \beta_0 + \beta_1 x_1 + \dots + \beta_q x_q. \end{eqnarray*} \item The \stress{variance function} that captures how the variance of the response variable depends on the mean. \end{enumerate} Estimation of the parameters in a GLM is usually achieved through a maximum likelihood approach. \end{frame} \section{Analysis Using R} \begin{frame}[fragile] \frametitle{ESR and Plasma Proteins: Plot} At first, we will look at conditional density plots of the response variable given the two explanatory variables describing how the conditional distribution of the categorical variable ESR changes over the numerical variables fibrinogen and gamma globulin. It appears that higher levels of each protein are associated with ESR values above $20$ mm/hr. \end{frame} \begin{frame}[fragile] \frametitle{ESR and Plasma Proteins: Plot} \begin{center} <>= layout(matrix(1:2, ncol = 2)) cdplot(ESR ~ fibrinogen, data = plasma) cdplot(ESR ~ globulin, data = plasma) @ \end{center} \end{frame} \begin{frame}[fragile] \frametitle{ESR and Plasma Proteins: GLM} We can now fit a logistic regression model to the data using the \Rcmd{glm} function. We start with a model that includes only a single explanatory variable, \Robject{fibrinogen}. The code to fit the model is <>= plasma_glm_1 <- glm(ESR ~ fibrinogen, data = plasma, family = binomial()) @ \end{frame} \begin{frame}[fragile] \frametitle{ESR and Plasma Proteins: Summary} \small <>= summary(plasma_glm_1) @ \normalsize \end{frame} \begin{frame}[fragile] \frametitle{ESR and Plasma Proteins: Estimation} From the summary we see that the regression coefficient for fibrinogen is significant at the $5\%$ level. An increase of one unit in this variable increases the log-odds in favour of an ESR value greater than $20$ by an estimated $\Sexpr{round(coef(plasma_glm_1)["fibrinogen"], 2)}$ with 95\% confidence interval <>= confint(plasma_glm_1)["fibrinogen",] @ \end{frame} \begin{frame}[fragile] \frametitle{ESR and Plasma Proteins: GLM} Nevertheless it seems likely that increased values of fibrinogen lead to a greater probability of an ESR value greater than $20$. We can now fit a logistic regression model that includes both explanatory variables using the code <>= plasma_glm_2 <- glm(ESR ~ fibrinogen + globulin, data = plasma, family = binomial()) @ \end{frame} \begin{frame}[fragile] \frametitle{ESR and Plasma Proteins: Summary} \small <>= summary(plasma_glm_2) @ \normalsize \end{frame} \begin{frame}[fragile] \frametitle{ESR and Plasma Proteins: Model Comparison} <>= anova(plasma_glm_1, plasma_glm_2, test = "Chisq") @ \end{frame} \begin{frame}[fragile] \frametitle{ESR and Plasma Proteins: Prediction} The estimated conditional probability of a ESR value larger $20$ for all observations can be computed by <>= prob <- predict(plasma_glm_1, type = "response") @ \end{frame} \begin{frame}[fragile] \frametitle{ESR and Plasma Proteins: Plot} %%\setkeys{Gin}{width = 0.5\textwidth} \tiny \begin{center} <>= plot(globulin ~ fibrinogen, data = plasma, xlim=c(2,6), ylim=c(25,50), pch = ".") symbols(plasma$fibrinogen, plasma$globulin, circles = prob, add = TRUE) @ \end{center} \normalsize \end{frame} \begin{frame}[fragile] \frametitle{Women's Role in Society: GLM} %' We first fit a model that includes the two explanatory variables using the code <>= fm <- cbind(agree,disagree) ~ gender + education womensrole_glm_1 <- glm(fm, data = womensrole, family = binomial()) @ \end{frame} \begin{frame}[fragile] \frametitle{Women's Role in Society: Summary} %' \small <>= summary(womensrole_glm_1) @ \normalsize \end{frame} \begin{frame}[fragile] \frametitle{Women's Role in Society: Plot} We now are going to construct a plot comparing the observed proportions of agreeing with those fitted by our fitted model. Because we will reuse this plot for another fitted object later on, we define a function which plots years of education against some fitted probabilities, e.g., \tiny <>= role.fitted1 <- predict(womensrole_glm_1, type = "response") myplot <- function(role.fitted) { f <- womensrole$gender == "Female" plot(womensrole$education, role.fitted, type = "n", ylab = "Probability of agreeing", xlab = "Education", ylim = c(0,1)) lines(womensrole$education[!f], role.fitted[!f], lty = 1) lines(womensrole$education[f], role.fitted[f], lty = 2) lgtxt <- c("Fitted (Males)", "Fitted (Females)") legend("topright", lgtxt, lty = 1:2, bty = "n") y <- womensrole$agree / (womensrole$agree + womensrole$disagree) size <- womensrole$agree + womensrole$disagree size <- size - min(size) size <- (size / max(size)) * 3 + 1 text(womensrole$education, y, ifelse(f, "\\VE", "\\MA"), family = "HersheySerif", cex = size) } @ \normalsize \end{frame} \begin{frame}[fragile] \frametitle{Women's Role in Society: Plot} \begin{center} <>= myplot(role.fitted1) @ \end{center} \end{frame} \begin{frame}[fragile] \frametitle{Women's Role in Society: Interactions} %' An interaction term for gender and education can be included into the logistic regression model via <>= fm <- cbind(agree,disagree) ~ gender * education womensrole_glm_2 <- glm(fm, data = womensrole, family = binomial()) @ \end{frame} \begin{frame}[fragile] \frametitle{Women's Role in Society: Interactions} %' \small <>= summary(womensrole_glm_2) @ \normalsize \end{frame} \begin{frame}[fragile] \frametitle{Women's Role in Society: Plot} \begin{center} <>= myplot(predict(womensrole_glm_2, type = "response")) @ \end{center} \end{frame} \begin{frame}[fragile] \frametitle{Colonic Polyps: Poisson GLM} We will apply a GLM with a log link function, ensuring that fitted values are positive, and a Poisson error distribution, i.e., \begin{eqnarray*} \P(y) = \frac{e^{-\lambda}\lambda^y}{y!}. \end{eqnarray*} This type of GLM is often known as \stress{Poisson regression}. \end{frame} \begin{frame}[fragile] \frametitle{Colonic Polyps: Poisson GLM} <>= polyps_glm_1 <- glm(number ~ treat + age, data = polyps, family = poisson()) @ (The default link function when the Poisson family is requested is the log function.) \end{frame} \begin{frame}[fragile] \frametitle{Colonic Polyps: Summary} \small <>= summary(polyps_glm_1) @ \normalsize \end{frame} \begin{frame}[fragile] \frametitle{Colonic Polyps: Overdispersion} We see that the regression coefficients for both age and treatment are highly significant. But there is a problem with the model, but before we can deal with it we need a short digression to describe in more detail the third component of GLMs mentioned in the previous section, namely their variance functions, $V(\mu)$. Both the Poisson and binomial distributions have variance functions that are completely determined by the mean. The phenomenon of greater variability than expected under the model is observed is called \stress{overdispersion}. \end{frame} \begin{frame}[fragile] \frametitle{Colonic Polyps: Quasi-Likelihood} We can deal with overdispersion by using a procedure known as \stress{quasi-likelihood}, which allows the estimation of model parameters without fully knowing the error distribution of the response variable. <>= polyps_glm_2 <- glm(number ~ treat + age, data = polyps, family = quasipoisson()) @ \end{frame} \begin{frame}[fragile] \frametitle{Colonic Polyps: Summary} \small <>= summary(polyps_glm_2) @ \normalsize \end{frame} \section{Summary} \begin{frame} \frametitle{Summary} Generalised linear models provide a very powerful and flexible framework for the application of regression models to a variety of non-normal response variables, for example, logistic regression to binary responses and Poisson regression to count data. \end{frame} \section{Exercises} \begin{frame} \frametitle{Exercises} \begin{itemize} \item Construct a perspective plot of the fitted values from a logistic regression model fitted to the \Robject{plasma} data in which both fibrinogen and gamma globulin are included as explanatory variables. \item \cite{HSAUR:Collett2003} argues that two outliers need to be removed from the \Robject{plasma} data. Try to identify those two unusual observations by means of a scatterplot. \item The \Robject{bladdercancer} data arise from $31$ male patients who have been treated for superficial bladder cancer \citep[see][]{HSAUR:Seeber1998}, and give the number of recurrent tumours during a particular time after the removal of the primary tumour, along with the size of the original tumour (whether smaller or larger than $3$ cm). Use Poisson regression to estimate the effect of size of tumour on the number of recurrent tumours. \end{itemize} \end{frame} \begin{frame} \frametitle{Exercises} \begin{itemize} \item The \Robject{leuk} data show the survival times from diagnosis of patients suffering from leukemia and the values of two explanatory variables, the white blood cell count (\Robject{wbc}) and the presence or absence of a morphological characteristic of the white blood cells (\Robject{ag}) \citep[the data are available in package \Rpackage{MASS},][]{HSAUR:VenablesRipley2002}. Define a binary outcome variable according to whether or not patients lived for at least 24 weeks after diagnosis and then fit a logistic regression model to the data. It may be advisable to transform the very large white blood counts to avoid regression coefficients very close to 0 (and odds ratios very close to 1). And a model that contains only the two explanatory variables may not be adequate for these data. Construct some graphics useful in the interpretation of the final model you fit. \end{itemize} \end{frame} \begin{frame} \frametitle{References} \tiny <>= src <- system.file(package = "HSAUR3") style <- file.path(src, "LaTeXBibTeX", "refstyle") bst <- file.path(src, "LaTeXBibTeX", "HSAUR") cat(paste("\\bibliographystyle{", style, "}", sep = ""), "\n \n") cat(paste("\\bibliography{", bst, "}", sep = ""), "\n \n") @ \end{frame} \end{document} HSAUR3/inst/slides/Ch_analysing_longitudinal_dataI.Rnw0000644000176200001440000003410314172224326022425 0ustar liggesusers \input{HSAUR_title} \SweaveOpts{prefix.string=figures/HSAUR,eps=FALSE,keep.source=TRUE} <>= source("setup.R") @ \setkeys{Gin}{width=0.95\textheight} \frame{ \begin{center} \Large{Part 11: Analysing Longitudinal Data I} \end{center} focuses on mixed effects models for repeated measurements. } \section{Introduction} <>= library("Matrix") library("lme4") @ \begin{frame} \frametitle{Beat the Blues} Depression is a major public health problem across the world. Antidepressants are the front line treatment, but many patients either do not respond to them, or do not like taking them. The main alternative is psychotherapy, and the modern `talking treatments' such as \stress{cognitive behavioural therapy} (CBT) %%' have been shown to be as effective as drugs, and probably more so when it comes to relapse. The data to be used in this chapter arise from a clinical trial of an interactive, multimedia program known as `Beat the Blues' %%' designed to deliver cognitive behavioural therapy to depressed patients via a computer terminal. In a randomised controlled trial of the program, patients with depression recruited in primary care were randomised to either the Beating the Blues program, or to `Treatment as Usual' (TAU). \end{frame} \begin{frame} \frametitle{Beat the Blues} Here, we concentrate on the \stress{Beck Depression Inventory II} (BDI). Measurements on this variable were made on the following five occasions: \begin{itemize} \item Prior to treatment, \item Two months after treatment began and \item At one, three and six months follow-up, i.e., at three, five and eight months after treatment. %%%better: At two, four and six months follow-up, i.e. at four, six and eight %%%months after treatment \end{itemize} There is interest here in assessing the effect of taking antidepressant drugs (\Robject{drug}, yes or no) and length of the current episode of depression (\Robject{length}, less or more than six months). \end{frame} \section{Analysing Longitudinal Data} \begin{frame} \frametitle{Analysing Longitudinal Data} Because several observations of the response variable are made on the same individual, it is likely that the measurements will be correlated rather than independent, even after conditioning on the explanatory variables. Consequently repeated measures data require special methods of analysis and models for such data need to include parameters linking the explanatory variables to the repeated measurements, parameters analogous to those in the usual multiple regression model and, in addition parameters that account for the correlational structure of the repeated measurements. In this chapter: linear mixed effects models. Next chapter: generalised estimating equations. \end{frame} \section{Linear Mixed Effects Models} \begin{frame} \frametitle{Linear Mixed Effects Models} Linear mixed effects models for repeated measures data formalise the sensible idea that an individual's pattern of responses is %%' likely to depend on many characteristics of that individual, including some that are unobserved. These unobserved variables are then included in the model as random variables, i.e., random effects. The essential feature of such models is that correlation amongst the repeated measurements on the same unit arises from shared, unobserved variables. Conditional on the values of the random effects, the repeated measurements are assumed to be independent, the so-called \stress{local independence} assumption. \end{frame} \begin{frame} \frametitle{Random Intercept Model} Let $y_{ij}$ represent the observation made at time $t_j$ on individual $i$. A possible model for the observation $y_{ij}$ might be \begin{eqnarray*} y_{ij} = \beta_0 + \beta_1 t_j + u_i + \varepsilon_{ij}. \end{eqnarray*} Here the total residual that would be present in the usual linear regression model has been partitioned into a subject-specific random component $u_i$ which is constant over time plus a residual $\varepsilon_{ij}$ which varies randomly over time. $\E(u_i) = 0$ and $\Var(u) = \sigma^2_u$, $\E(\varepsilon_{ij}) = 0$ with $\Var(\varepsilon_{ij}) = \sigma^2$; $u_i$ and $\varepsilon_{ij}$ independent of each other and of time $t_j$. \begin{eqnarray*} \Var(y_{ij}) = \Var(u_i + \varepsilon_{ij}) = \sigma^2_u + \sigma^2 \end{eqnarray*} ``variance components'' \end{frame} \begin{frame} \frametitle{Random Intercept Model} The covariance between the total residuals at two time points $j$ and $k$ in the same individual is $\Cov(u_i + \varepsilon_{ij}, u_i + \varepsilon_{ik}) = \sigma^2_u$. Note that these covariances are induced by the shared random intercept; for individuals with $u_i > 0$, the total residuals will tend to be greater than the mean, for individuals with $u_i < 0$ they will tend to be less than the mean. \begin{eqnarray*} \Cor(u_i + \varepsilon_{ij}, u_i + \varepsilon_{ik}) = \frac{\sigma^2_u}{\sigma^2_u + \sigma^2}. \end{eqnarray*} This is an \stress{intra-class correlation} interpreted as the proportion of the total residual variance that is due to residual variability between subjects. \end{frame} \begin{frame} \frametitle{Random Intercept and Slope Model} In this model there are two types of random effects, the first modelling heterogeneity in intercepts, $u_i$, and the second modelling heterogeneity in slopes, $v_i$: \begin{eqnarray*} y_{ij} = \beta_0 + \beta_1 t_j + u_i + v_i t_j + \varepsilon_{ij} \end{eqnarray*} The two random effects are assumed to have a bivariate normal distribution with zero means for both variables and variances $\sigma^2_u$ and $\sigma^2_v$ with covariance $\sigma_{uv}$: \begin{eqnarray*} \Var(u_i + v_i t_j + \varepsilon_{ij}) = \sigma^2_u + 2 \sigma_{uv} t_j + \sigma^2_v t_j^2 + \sigma^2 \end{eqnarray*} which is no longer constant for different values of $t_j$. \end{frame} \begin{frame} \frametitle{Random Intercept and Slope Model} \begin{eqnarray*} \Cov(u_i + v_i t_j + \varepsilon_{ij}, u_i + v_i t_{k} + \varepsilon_{ik}) = \sigma^2_u + \sigma_{uv} (t_j - t_{k}) + \sigma^2_v t_jt_{k} \end{eqnarray*} is not constrained to be the same for all pairs $t_j$ and $t_{k}$. \end{frame} \begin{frame} \frametitle{Mixed Effects Models} Linear mixed-effects models can be estimated by maximum likelihood. However, this method tends to underestimate the variance components. A modified version of maximum likelihood, known as \stress{restricted maximum likelihood} is therefore often recommended; this provides consistent estimates of the variance components. Competing linear mixed-effects models can be compared using a likelihood ratio test. If however the models have been estimated by restricted maximum likelihood this test can only be used if both models have the same set of fixed effects. \end{frame} \section{Analysis Using R} \begin{frame}[fragile] \frametitle{Beat the Blues} \begin{center} <>= data("BtheB", package = "HSAUR3") layout(matrix(1:2, nrow = 1)) ylim <- range(BtheB[,grep("bdi", names(BtheB))], na.rm = TRUE) tau <- subset(BtheB, treatment == "TAU")[, grep("bdi", names(BtheB))] boxplot(tau, main = "Treated as usual", ylab = "BDI", xlab = "Time (in months)", names = c(0, 2, 4, 6, 8), ylim = ylim) btheb <- subset(BtheB, treatment == "BtheB")[, grep("bdi", names(BtheB))] boxplot(btheb, main = "Beat the Blues", ylab = "BDI", xlab = "Time (in months)", names = c(0, 2, 4, 6, 8), ylim = ylim) @ \end{center} \end{frame} \begin{frame} \frametitle{Beat the Blues} Fit model to the data including the baseline BDI values (\Robject{pre.bdi}), \Robject{treatment} group, \Robject{drug} and \Robject{length} as fixed effect covariates. First, a rearrangement of the data is necessary from the `wide form' in which they appear in the \Robject{BtheB} data frame %%' into the `long form' in which each separate repeated measurement %%' and associated covariate values appear as a separate row in a \Rclass{data.frame}. \end{frame} \begin{frame}[fragile] \frametitle{Beat the Blues} <>= data("BtheB", package = "HSAUR3") BtheB$subject <- factor(rownames(BtheB)) nobs <- nrow(BtheB) BtheB_long <- reshape(BtheB, idvar = "subject", varying = c("bdi.2m", "bdi.3m", "bdi.5m", "bdi.8m"), direction = "long") BtheB_long$time <- rep(c(2, 3, 5, 8), rep(nobs, 4)) names(BtheB_long)[names(BtheB_long) == "treatment"] <- "trt" @ The resulting \Rclass{data.frame} \Robject{BtheB\_long} contains a number of missing values! \end{frame} \begin{frame}[fragile] \frametitle{Random Intercept and Slope} <>= library("lme4") BtheB_lmer1 <- lmer(bdi ~ bdi.pre + time + trt + drug + length + (1 | subject), data = BtheB_long, method = "ML", na.action = na.omit) BtheB_lmer2 <- lmer(bdi ~ bdi.pre + time + trt + drug + length + (time | subject), data = BtheB_long, method = "ML", na.action = na.omit) anova(BtheB_lmer1, BtheB_lmer2) @ \end{frame} \begin{frame} \frametitle{Model Checking} We can check the assumptions of the final model fitted to the \Robject{BtheB} data, i.e., the normality of the random effect terms and the residuals, by first using the \Rcmd{ranef} method to \stress{predict} the former and the \Rcmd{residuals} method to calculate the differences between the observed data values and the fitted values, and then using normal probability plots on each. There appear to be no large departures from linearity in either plot. \end{frame} \begin{frame}[fragile] \frametitle{Model Checking} \begin{center} <>= layout(matrix(1:2, ncol = 2)) qint <- ranef(BtheB_lmer1)$subject[["(Intercept)"]] qres <- residuals(BtheB_lmer1) qqnorm(qint, ylab = "Estimated random intercepts", xlim = c(-3, 3), ylim = c(-20, 20), main = "Random intercepts") qqline(qint) qqnorm(qres, xlim = c(-3, 3), ylim = c(-20, 20), ylab = "Estimated residuals", main = "Residuals") qqline(qres) @ \end{center} \end{frame} \section{Prediction of Random Effects} \begin{frame} \frametitle{Prediction of Random Effects} The random effects are not estimated as part of the model. However, having estimated the model, we can \stress{predict} the values of the random effects. According to Bayes' Theorem, the \stress{posterior %' probability} of the random effects is given by \begin{eqnarray*} \P(u | y, x) = f(y | u, x) g(u) \end{eqnarray*} where $f(y | u, x)$ is the conditional density of the responses given the random effects and covariates (a product of normal densities) and $g(u)$ is the \stress{prior} density of the random effects (multivariate normal). The means of this posterior distribution can be used as estimates of the random effects and are known as \stress{empirical Bayes estimates}. \end{frame} \section{The Problem of Dropouts} \begin{frame} \frametitle{The Problem of Dropouts} \begin{itemize} \item[Dropout completely at random (DCAR)] here the probability that a patient drops out does not depend on either the observed or missing values of the response. \item[\stress{Dropout at random} (DAR)] The dropout at random mechanism occurs when the probability of dropping out depends on the outcome measures that have been observed in the past, but given this information is conditionally independent of all the future (unrecorded) values of the outcome variable following dropout. \item[\stress{Non-ignorable} dropout] The final type of dropout mechanism is one where the probability of dropping out depends on the unrecorded missing values -- observations are likely to be missing when the outcome values that would have been observed had the patient not dropped out, are systematically higher or lower than usual. \end{itemize} \end{frame} \begin{frame} \frametitle{The Problem of Dropouts} Under what type of dropout mechanism are the mixed effects models considered in this chapter valid? The good news is that such models can be shown to give valid results under the relatively weak assumption that the dropout mechanism is DAR. When the missing values are thought to be informative, any analysis is potentially problematical. \end{frame} \section{Summary} \begin{frame} \frametitle{Summary} Mixed effects models allow the correlations between the repeated measurements to be accounted for so that correct inferences can be drawn about the effects of covariates of interest on the repeated response values. In this chapter we have concentrated on responses that are continuous and conditional on the explanatory variables and random effects have a normal distribution. But random effects models can also be applied to non-normal responses, for example binary variables. \end{frame} \section*{Exercises} \begin{frame} \frametitle{Exercises} \begin{itemize} \item Use the \Rcmd{lm} function to fit a model to the Beat the Blues data that assumes that the repeated measurements are independent. Compare the results to those from fitting the random intercept model \Robject{BtheB\_lmer1}. \item Investigate whether there is any evidence of an interaction between treatment and time for the Beat the Blues data. \item Construct a plot of the mean profiles of both groups in the Beat the Blues data, showing also standard deviation bars at each time point. \end{itemize} \end{frame} \begin{frame} \frametitle{Exercises} \begin{itemize} \item The \Robject{phosphate} data show the plasma inorganic phosphate levels for $33$ subjects, $20$ of whom are controls and $13$ of whom have been classified as obese \citep{HSAUR:Davis2002}. Produce separate plots of the profiles of the individuals in each group, and guided by these plots fit what you think might be sensible linear mixed effects models. \end{itemize} \end{frame} \begin{frame} \frametitle{References} \tiny <>= src <- system.file(package = "HSAUR3") style <- file.path(src, "LaTeXBibTeX", "refstyle") bst <- file.path(src, "LaTeXBibTeX", "HSAUR") cat(paste("\\bibliographystyle{", style, "}", sep = ""), "\n \n") cat(paste("\\bibliography{", bst, "}", sep = ""), "\n \n") @ \end{frame} \end{document} HSAUR3/inst/slides/Ch_graphical_display.Rnw0000644000176200001440000004050014172224326020242 0ustar liggesusers \input{HSAUR_title} \SweaveOpts{prefix.string=figures/HSAUR,eps=FALSE,keep.source=TRUE} <>= source("setup.R") @ \frame{ \begin{center} \Large{Part 2: Graphical Displays} \end{center} introduces some basic however very useful graphical techniques for extracting information about Malignant Melanoma and Chinese Health and Family Life. } \section{Introduction} \begin{frame} \frametitle{USmelanoma: Malignant Melanoma in the USA} \cite{HSAUR:FisherBelle1993} report mortality rates due to malignant melanoma of the skin for white males during the period 1950--1969, for each state on the US mainland. The include the number of deaths due to malignant melanoma in the corresponding state, the longitude and latitude of the geographic centre of each state, and a binary variable indicating contiguity to an ocean, that is, if the state borders one of the oceans. Questions of interest about these data include: how do the mortality rates compare for ocean and non-ocean states? and how are mortality rates affected by latitude and longitude? \end{frame} \begin{frame} \frametitle{CHFLS: Chinese Health and Family Life Survey} The Chinese Health and Family Life Survey sampled $60$ villages and urban neighbourhoods chosen in such a way as to represent the full geographical and socioeconomic range of contemporary China excluding Hong Kong and Tibet. Eighty-three individuals were chosen at random for each location from official registers of adults aged between $20$ and $64$ years to target a sample of $5000$ individuals in total. Here, we restrict our attention to women with current male partners and the following variables: \end{frame} \begin{frame} \frametitle{CHFLS: Chinese Health and Family Life Survey} \begin{description} \item[\Robject{R\_edu}]: level of education of the responding woman, \item[\Robject{R\_income}]: monthly income (in yuan) of the responding woman, \item[\Robject{R\_health}]: health status of the responding woman in the last year, \item[\Robject{R\_happy}]: how happy was the responding woman in the last year, \item[\Robject{A\_edu}]: level of education of the woman's partner, \item[\Robject{A\_income}]: monthly income (in yuan) of the woman's partner. \end{description} Here, we focus on graphical displays for inspecting the relationship of these health and socioeconomic variables of heterosexual women and their partners. \end{frame} \section{Initial Data Analysis} \begin{frame} \frametitle{Initial Data Analysis} According to \cite{HSAUR:Chambersetal1983}, ``there is no statistical tool that is as powerful as a well chosen graph'': \begin{itemize} \item In comparison with other types of presentation, well-designed charts are more effective in creating interest and in appealing to the attention of the reader. \item Visual relationships as portrayed by charts and graphs are more easily grasped and more easily remembered. \item The use of charts and graphs saves time, since the essential meaning of large measures of statistical data can be visualised at a glance. \item Charts and graphs provide a comprehensive picture of a problem that makes for a more complete and better balanced understanding than could be derived from tabular or textual forms of presentation. \item Charts and graphs can bring out hidden facts and relationships and can stimulate, as well as aid, analytical thinking and investigation. \end{itemize} \end{frame} \begin{frame} \frametitle{A Word of Warning} The following caveat from the late Carl Sagan (in his book \booktitle{Contact}) should be kept in mind: \begin{quote} Humans are good at discerning subtle patterns that are really there, but equally so at imagining them when they are altogether absent. \end{quote} \end{frame} \section{Analysis Using R} \subsection{Malignant Melanoma} \begin{frame}[fragile] \frametitle{Malignant Melanoma: boxplot \& histogram} We might begin to examine the malignant melanoma data by constructing a histogram or boxplot for \stress{all} the mortality rates. Using these relatively simple technique we have to make sure that the $x$-axis is the same in both graphs. This can be done by computing a plausible range of the data, later to be specified in a plot via the \Rcmd{xlim} argument: <>= xr <- range(USmelanoma$mortality) * c(0.9, 1.1) xr @ \end{frame} \begin{frame}[fragile] \small{ \begin{figure} \begin{center} <>= layout(matrix(1:2, nrow = 2)) par(mar = par("mar") * c(0.8, 1, 1, 1)) boxplot(USmelanoma$mortality, ylim = xr, horizontal = TRUE, xlab = "Mortality") hist(USmelanoma$mortality, xlim = xr, xlab = "", main = "", axes = FALSE, ylab = "") axis(1) @ \end{center} \end{figure} } \end{frame} \begin{frame}[fragile] \frametitle{Malignant Melanoma: Comparing states} Looking at the characteristics of all the mortality rates is a useful beginning but for these data we might be more interested in comparing mortality rates for ocean and non-ocean states. So we might construct two histograms or two boxplots. Such a \stress{parallel boxplot}, visualising the conditional distribution of a numeric variable in groups as given by a categorical variable, are easily computed using the \Rcmd{boxplot} function. \end{frame} \begin{frame}[fragile] \begin{figure} \begin{center} <>= plot(mortality ~ ocean, data = USmelanoma, xlab = "Contiguity to an ocean", ylab = "Mortality") @ \end{center} \end{figure} \end{frame} \begin{frame}[fragile] \frametitle{Malignant Melanoma: density plots} Histograms are generally used for two purposes: counting and displaying the distribution of a variable; according to \cite{HSAUR:Wilkinson1992}, ``they are effective for neither''. Histograms can often be misleading for displaying distributions because of their dependence on the number of classes chosen. An alternative is to formally estimate the density function of a variable and then plot the resulting estimate. \end{frame} \begin{frame}[fragile] \small{ \begin{figure} \begin{center} <>= dyes <- with(USmelanoma, density(mortality[ocean == "yes"])) dno <- with(USmelanoma, density(mortality[ocean == "no"])) plot(dyes, lty = 1, xlim = xr, main = "", ylim = c(0, 0.018)) lines(dno, lty = 2) legend("topleft", lty = 1:2, legend = c("Coastal State", "Land State"), bty = "n") @ \end{center} \end{figure} } \end{frame} \begin{frame}[fragile] \frametitle{Malignant Melanoma: the whole picture} Now we might move on to look at how mortality rates are related to the geographic location of a state as represented by the latitude and longitude of the centre of the state. Here the main graphic will be the scatterplot. The simple $xy$ scatterplot has been in use since at least the eighteenth century and has many virtues -- indeed according to \cite{HSAUR:Tufte1983}: \begin{quote} The relational graphic -- in its barest form the scatterplot and its variants -- is the greatest of all graphical designs. It links at least two variables, encouraging and even imploring the viewer to assess the possible causal relationship between the plotted variables. It confronts causal theories that $x$ causes $y$ with empirical evidence as to the actual relationship between $x$ and $y$. \end{quote} \end{frame} \begin{frame}[fragile] \begin{figure} \begin{center} <>= layout(matrix(1:2, ncol = 2)) plot(mortality ~ longitude, data = USmelanoma) plot(mortality ~ latitude, data = USmelanoma) @ \end{center} \end{figure} \end{frame} \begin{frame}[fragile] Since mortality rate is clearly related only to latitude we can now produce scatterplots of mortality rate against latitude separately for ocean and non-ocean states. Instead of producing two displays, one can choose different plotting symbols for either states. \end{frame} \begin{frame}[fragile] \begin{figure} \begin{center} <>= plot(mortality ~ latitude, data = USmelanoma, pch = as.integer(USmelanoma$ocean)) legend("topright", legend = c("Land state", "Coast state"), pch = 1:2, bty = "n") @ \end{center} \end{figure} \end{frame} \begin{frame}[fragile] This scatterplot highlights that the mortality is lowest in the northern land states. Coastal states show a higher mortality than land states at roughly the same latitude. The highest mortalities can be observed for the south coastal states with latitude less than $32^\circ$, say, that is <>= subset(USmelanoma, latitude < 32) @ \end{frame} \subsection{Chinese Health and Family Life} \begin{frame}[fragile] \frametitle{Chinese Health and Family Life} One part of the questionnaire the Chinese Health and Family Life Survey focuses on is the self-reported health status. Two questions are interesting for us. The first one is ``Generally speaking, do you consider the condition of your health to be excellent, good, fair, not good, or poor?''. The second question is ``Generally speaking, in the past twelve months, how happy were you?''. The distribution of such variables is commonly visualised using barcharts where for each category the total or relative number of observations is displayed. \end{frame} \begin{frame}[fragile] \begin{figure} <>= barplot(xtabs(~ R_happy, data = CHFLS)) @ \end{figure} \end{frame} \begin{frame}[fragile] \frametitle{Chinese Health and Family Life: Two variables} The visualisation of two categorical variables could be done by conditional barcharts, i.e., barcharts of the first variable within the categories of the second variable. An attractive alternative for displaying such two-way tables are \stress{spineplots} \citep{HSAUR:Friendly1994,HSAUR:HofmannTheus2005,HSAUR:Chenetal2008}. Before constructing such a plot, we produce a two-way table of the health status and self-reported happiness using the \Rcmd{xtabs} function: <>= xtabs(~ R_happy + R_health, data = CHFLS) @ <>= hh <- xtabs(~ R_health + R_happy, data = CHFLS) @ \end{frame} \begin{frame}[fragile] \frametitle{Chinese Health and Family Life: spineplots} A \stress{spineplot} is a group of rectangles, each representing one cell in the two-way contingency table. The area of the rectangle is proportional with the number of observations in the cell. Here, we produce a mosaic plot of health status and happiness: \end{frame} \begin{frame}[fragile] \begin{figure} <>= plot(R_happy ~ R_health, data = CHFLS) @ \end{figure} \end{frame} \begin{frame}[fragile] \frametitle{Chinese Health and Family Life: spinogram} When the association of a categorical and a continuous variable is of interest, say the monthly income and self-reported happiness, we are interested in the conditional distribution of happiness given income. One possibility to produce a more appropriate plot is called \stress{spinogram}. Here, the continuous $x$-variable is categorised first. Within each of these categories, the conditional frequencies of the response variable are given by stacked barcharts, in a way similar to spineplots. \end{frame} \begin{frame}[fragile] \begin{figure} <>= layout(matrix(1:2, ncol = 2)) plot(R_happy ~ log(R_income + 1), data = CHFLS) cdplot(R_happy ~ log(R_income + 1), data = CHFLS) @ \end{figure} \end{frame} \begin{frame}[fragile] \frametitle{Chinese Health and Family Life: conditional plots} For our last example we return to scatterplots for inspecting the association between a woman's monthly income and the income of her partner. In addition, we want to study the relationship between both monthly incomes conditional on the woman's education. Such conditioning plots are called \stress{trellis} plots and are implemented in the package \Rpackage{lattice} \citep{PKG:lattice, HSAUR:Sarkar2008}. \end{frame} \begin{frame}[fragile] \begin{figure} <>= xyplot(jitter(log(A_income + 0.5)) ~ jitter(log(R_income + 0.5)) | R_edu, data = CHFLS) @ <>= library("lattice") lattice.options(default.theme = function() standard.theme("pdf", color = FALSE)) print(xyplot(jitter(log(A_income + 0.5)) ~ jitter(log(R_income + 0.5)) | R_edu, data = CHFLS)) @ \end{figure} Four constellations can be identified: both partners have zero income, the partner has no income, the woman has no income or both partners have a positive income. \end{frame} \section{Summary} \begin{frame} \frametitle{Summary} Producing publication-quality graphics is one of the major strengths of the \R{} system and almost anything is possible since graphics are programmable in \R{}. Naturally, this chapter can be only a very brief introduction to some commonly used displays and the reader is referred to specialised books, most important \cite{HSAUR:Murrell2005}, \cite{HSAUR:Sarkar2008}, and \cite{HSAUR:Chenetal2008}. Interactive 3D-graphics are available from package \Rpackage{rgl} \citep{PKG:rgl}. \end{frame} \section*{Exercises} \begin{frame} \frametitle{Exercises} \begin{itemize} \item The \Robject{household} data are part of a data set collected from a survey of household expenditure and give the expenditure of $20$ single men and $20$ single women on four commodity groups. The units of expenditure are Hong Kong dollars, and the four commodity groups are \begin{description} \item[\Robject{housing}]: housing, including fuel and light, \item[\Robject{food}]: foodstuffs, including alcohol and tobacco, \item[\Robject{goods}]: other goods, including clothing, footwear and durable goods, \item[\Robject{service}]: services, including transport and vehicles. \end{description} The aim of the survey was to investigate how the division of household expenditure between the four commodity groups depends on total expenditure and to find out whether this relationship differs for men and women. Use appropriate graphical methods to answer these questions and state your conclusions. \end{itemize} \end{frame} \begin{frame} \frametitle{Exercises} \begin{itemize} \item The data set \Robject{USstates} contains values of seven variables for ten states in the US. The seven variables are \begin{description} \item[\Robject{Population}]: population size divided by $1000$, \item[\Robject{Income}]: average per capita income, \item[\Robject{Illiteracy}]: illiteracy rate (\% population), \item[\Robject{Life.Expectancy}]: life expectancy (years), \item[\Robject{Homicide}]: homicide rate (per $1000$), \item[\Robject{Graduates}]: percentage of high school graduates, \item[\Robject{Freezing}]: average number of days per below freezing. \end{description} With these data \begin{enumerate} \item Construct a scatterplot matrix of the data labelling the points by state name (using function \Rcmd{text}). \item Construct a plot of life expectancy and homicide rate conditional on average per capita income. \end{enumerate} \end{itemize} \end{frame} \begin{frame} \frametitle{Exercises} \begin{itemize} \item Mortality rates per $100,000$ from male suicides for a number of age groups and a number of countries are given in \Robject{suicides2}. Construct side-by-side box plots for the data from different age groups, and comment on what the graphic tells us about the data. \item \cite{HSAUR:FluryRiedwyl1988} report data that give various lengths measurements on $200$ Swiss bank notes. The \Robject{banknote} data are available from package \Rpackage{alr3} \citep{PKG:alr3}. Use whatever graphical techniques you think are appropriate to investigate whether there is any `pattern' or structure in the data. Do you observe something suspicious? \end{itemize} \end{frame} \begin{frame} \frametitle{References} \tiny <>= src <- system.file(package = "HSAUR3") style <- file.path(src, "LaTeXBibTeX", "refstyle") bst <- file.path(src, "LaTeXBibTeX", "HSAUR") cat(paste("\\bibliographystyle{", style, "}", sep = ""), "\n \n") cat(paste("\\bibliography{", bst, "}", sep = ""), "\n \n") @ \end{frame} \end{document} HSAUR3/inst/slides/title_UZH.tex0000644000176200001440000000150714172224326016056 0ustar liggesusers\title{Introduction to Data Analysis with \textsf{R}} \author[T. Hothorn]{Torsten Hothorn} \institute{ Universit\"at Z\"urich \\ \texttt{Torsten.Hothorn@R-project.org} } \date{} \begin{document} \frame{\titlepage} \setbeamertemplate{footline}[page number] \begin{frame}[fragile] \begin{columns} \begin{column}{3.5cm} \includegraphics[width = 3cm]{graphics/HSAUR} \end{column} \begin{column}{7.5cm} This course material is based on \booktitle{A Handbook of Statistical Analysis Using \R{}} (3rd edition) published by CRC press. The \R{} package \Rpackage{HSAUR3} contains all data sets, examples and \R{} code and is available from \curl{http://CRAN.R-project.org/package=HSAUR3} \end{column} \end{columns} \end{frame} HSAUR3/inst/slides/Ch_analysis_of_variance.Rnw0000644000176200001440000003434714172224326020756 0ustar liggesusers \input{HSAUR_title} \SweaveOpts{prefix.string=figures/HSAUR,eps=FALSE,keep.source=TRUE} <>= source("setup.R") @ \frame{ \begin{center} \Large{Part 5: Analysis of Variance} \end{center} focuses on the analysis of one-way layouts for the Weight Gain, Foster Feeding in Rats, Water Hardness and Male Egyptian Skulls examples. } \section{Introduction} \begin{frame} \frametitle{weightgain: Rats Weights} The data arise from an experiment to study the gain in weight of rats fed on four different diets, distinguished by amount of protein (low and high) and by source of protein (beef and cereal). Ten rats are randomised to each of the four treatments and the weight gain in grams recorded. The question of interest is how diet affects weight gain. \end{frame} \begin{frame} \frametitle{foster: Feeding Rats} The data from a foster feeding experiment with rat mothers and litters of four different genotypes: A, B, I and J. The measurement is the litter weight (in grams) after a trial feeding period. Here the investigator's interest lies %' in uncovering the effect of genotype of mother and litter on litter weight. \end{frame} \begin{frame} \frametitle{skulls: Egyptian Skulls} The data give four measurements made on Egyptian skulls from five epochs. The data has been collected with a view to deciding if there are any differences between the skulls from the five epochs. The measurements are: \begin{description} \item[\Robject{mb}]: maximum breadths of the skull, \item[\Robject{bh}]: basibregmatic heights of the skull, \item[\Robject{bl}]: basialiveolar length of the skull, and \item[\Robject{nh}]: nasal heights of the skull. \end{description} Non-constant measurements of the skulls over time would indicate interbreeding with immigrant populations. \end{frame} \section{Analysis of Variance} \begin{frame} \frametitle{Analysis of Variance} For each of the data sets described previously, the question of interest involves assessing whether certain populations differ in mean value for a single variable or for a set of four variables (\Robject{skulls} data). In the first two cases we shall use \stress{analysis of variance} (ANOVA) and in the last \stress{multivariate analysis of variance} (MANOVA) method for the analysis of this data. \end{frame} \begin{frame} \frametitle{Factorial Designs} Both the \Robject{weightgain} and \Robject{foster} data sets are examples of \stress{factorial designs}, with the factors in the first data set being amount of protein with two levels, and source of protein also with two levels. In the second the factors are the genotype of the mother and the genotype of the litter, both with four levels. The analysis of each data set can be based on the same model but the two data sets differ in that the first is \stress{balanced}, i.e., there are the same number of observations in each cell, whereas the second is \stress{unbalanced} having different numbers of observations in the 16 cells of the design. \end{frame} \begin{frame} \frametitle{ANOVA Model} The model used in the analysis of each is \begin{eqnarray*} y_{ijk} = \mu + \gamma_i + \beta_j + (\gamma\beta)_{ij} + \varepsilon_{ijk} \end{eqnarray*} where $y_{ijk}$ represents the $k$th measurement made in cell $(i,j)$ of the factorial design, $\mu$ is the overall mean, $\gamma_i$ is the main effect of the first factor, $\beta_j$ is the main effect of the second factor, $(\gamma\beta)_{ij}$ is the interaction effect of the two factors and \index{Interaction} $\varepsilon_{ijk}$ is the residual or error term assumed to have a normal distribution with mean zero and variance $\sigma^2$. \end{frame} \begin{frame}[fragile] \frametitle{Formula Specification in R} In \R{}, the model is specified by a model \Rclass{formula}. The \stress{two-way layout with interactions} specified above reads <>= y ~ a + b + a:b @ where the variable \Robject{a} is the first and the variable \Robject{b} is the second \Rclass{factor}. The interaction term $(\gamma\beta)_{ij}$ is denoted by \Robject{a:b}. \end{frame} \begin{frame} \frametitle{Estimation and Inference} The model as specified above is overparameterised, i.e., there are infinitively many solutions to the corresponding estimation equations, and so the parameters have to be constrained in some way, commonly by requiring them to sum to zero. The model given above leads to a partition of the variation in the observations into parts due to main effects and interaction plus an error term that enables a series of $F$-tests. The assumptions made in deriving the $F$-tests are: \begin{itemize} \item The observations are independent of each other, \item The observations in each cell arise from a population having a normal distribution, and \item The observations in each cell are from populations having the same variance. \end{itemize} \end{frame} \begin{frame} \frametitle{MANOVA} The linear model used in this case is \begin{eqnarray*} y_{ijh} = \mu_h + \gamma_{jh} + \varepsilon_{ijh} \end{eqnarray*} where $\mu_h$ is the overall mean for variable $h$, $\gamma_{jh}$ is the effect of the $j$th level of the single factor on the $h$th variable, and $\varepsilon_{ijh}$ is a random error term. The vector $\varepsilon^\top_{ij} = (\varepsilon_{ij1}, \varepsilon_{ij2}, \dots, \varepsilon_{ijq})$ where $q$ is the number of response variables (four in the skull example) is assumed to have a multivariate normal distribution with null mean vector and covariance matrix, $\Sigma$, assumed to be the same in each level of the grouping factor. The hypothesis of interest is that the population mean vectors for the different levels of the grouping factor are the same. \end{frame} \begin{frame} \frametitle{MANOVA Inference} A number of different test statistics are available which may give different results when applied to the same data set, although the final conclusion is often the same. The principal test statistics for the multivariate analysis of variance are \begin{itemize} \item Hotelling-Lawley trace, \item Wilks' ratio of determinants \item Roy's greatest root, \item Pillai trace. \end{itemize} \end{frame} \section{Analysis Using R} \subsection{Weight Gain in Rats} \begin{frame}[fragile] \frametitle{Weight Gain in Rats} We should try to summarise the main features of the data first. The following \R{} code produces the required summary statistics <>= tapply(weightgain$weightgain, list(weightgain$source, weightgain$type), mean) tapply(weightgain$weightgain, list(weightgain$source, weightgain$type), sd) @ \end{frame} \begin{frame} \begin{center} <>= plot.design(weightgain) @ \end{center} \end{frame} \begin{frame}[fragile] \frametitle{ANOVA} To apply analysis of variance to the data we can use the \Rcmd{aov} function in \R{} and then the \Rcmd{summary} method to give us the analysis of variance table: <>= summary(wg_aov <- aov(weightgain ~ source * type, data = weightgain)) @ \end{frame} \begin{frame}[fragile] \frametitle{ANOVA} The analysis of variance table shows that the main effect of type is highly significant. The main effect of source is not significant. But interpretation of both these main effects is complicated by the type $\times$ source interaction which approaches significance at the $5$\% level. To try to understand this interaction effect it will be useful to plot the mean weight gain for low- and high-protein diets for each level of source of protein, beef and cereal. \end{frame} \begin{frame} \begin{center} <>= interaction.plot(weightgain$type, weightgain$source, weightgain$weightgain, legend = FALSE) legend(1.5, 95, legend = levels(weightgain$source), title = "weightgain$source", lty = 1:2, bty = "n") @ \end{center} \end{frame} \begin{frame}[fragile] \frametitle{ANOVA Results} The estimates of the intercept and the main and interaction effects can be extracted from the model fit by <>= coef(wg_aov) @ Note that the model was fitted with the restrictions $\gamma_1 = 0$ (corresponding to \Rlevel{Beef}) and $\beta_1 = 0$ (corresponding to \Rlevel{High}) because treatment contrasts were used as default as can be seen from <>= options("contrasts") @ Thus, the coefficient for \Robject{source} of $\Sexpr{coef(wg_aov)[2]}$ can be interpreted as an estimate of the difference $\gamma_2 - \gamma_1$. \end{frame} \subsection{Foster Feeding of Rats of Different Genotype} \begin{frame} \frametitle{Foster Feeding} \begin{center} <>= plot.design(foster) @ \end{center} \end{frame} \begin{frame}[fragile] \frametitle{Unbalanced ANOVA} We can now apply analysis of variance using the \Rcmd{aov} function, but there is a complication caused by the unbalanced nature of the data. Here where there are unequal numbers of observations in the $16$ cells of the two-way layout, it is no longer possible to partition the variation in the data into \stress{non-overlapping} or \stress{orthogonal} sums of squares representing main effects and interactions. In an unbalanced two-way layout with factors $A$ and $B$ there is a proportion of the variance of the response variable that can be attributed to either $A$ or $B$. \end{frame} \begin{frame}[fragile] \frametitle{ANOVA Results} We can derive the two analyses of variance tables for the foster feeding example by applying the \R{} code <>= summary(aov(weight ~ litgen * motgen, data = foster)) @ \end{frame} \begin{frame}[fragile] \frametitle{ANOVA Results} and <>= summary(aov(weight ~ motgen * litgen, data = foster)) @ \end{frame} \begin{frame} \frametitle{Multiple Comparisons} We can investigate the effect of genotype B on litter weight in more detail by the use of \stress{multiple comparison procedures}. Such procedures allow a comparison of all pairs of levels of a factor whilst maintaining the nominal significance level at its selected value and producing adjusted confidence intervals for mean differences. One such procedure is called \stress{Tukey honest significant differences} \index{Tukey honest significant differences} suggested by \cite{HSAUR:Tukey1953}, see \cite{HSAUR:HochbergTamhane1987} also. \end{frame} \begin{frame}[fragile] \frametitle{All-Pair Differences} Here, we are interested in simultaneous confidence intervals for the weight differences between all four genotypes of the mother: <>= TukeyHSD(aov(weight ~ litgen * motgen, data = foster), "motgen") @ \end{frame} \begin{frame} \begin{center} <>= foster_aov <- aov(weight ~ litgen * motgen, data = foster) plot(TukeyHSD(foster_aov, "motgen")) @ \end{center} \end{frame} \subsection{Water Hardness and Mortality} \begin{frame} \frametitle{Water Hardness and Mortality} The water hardness and mortality data for $61$ large towns in England and Wales was analysed in Part~2 and here we will extend the analysis by an assessment of the differences of both hardness and mortality in the North or South. The hypothesis that the two-dimensional mean-vector of water hardness and mortality is the same for cities in the North and the South can be tested by \stress{Hotelling-Lawley} test in a multivariate analysis of variance framework. The \R{} function \Rcmd{manova} can be used to fit such a model and the corresponding \Rcmd{summary} method performs the test specified by the \Rcmd{test} argument. \end{frame} \begin{frame}[fragile] <>= summary(manova(cbind(hardness, mortality) ~ location, data = water), test = "Hotelling-Lawley") @ \end{frame} \begin{frame}[fragile] Looking at the sample means <>= tapply(water$hardness, water$location, mean) tapply(water$mortality, water$location, mean) @ we see large differences in the two regions both in water hardness and mortality, where low mortality is associated with hard water in the South and high mortality with soft water in the North. \end{frame} \subsection{Male Egyptian Skulls} \begin{frame}[fragile] \frametitle{Male Egyptian Skulls} We can begin by looking at a table of mean values for the four measurements within each of the five epochs: <>= means <- aggregate(skulls[,c("mb", "bh", "bl", "nh")], list(epoch = skulls$epoch), mean) means @ \end{frame} \begin{frame} \begin{center} <>= pairs(means[,-1], panel = function(x, y) { text(x, y, abbreviate(levels(skulls$epoch))) }) @ \end{center} \end{frame} \begin{frame}[fragile] There appear to be quite large differences between the epoch means, at least on some of the four measurements. We can now test for a difference more formally by using MANOVA with the following \R{} code to apply each of the four possible test criteria mentioned earlier; <>= skulls_manova <- manova(cbind(mb, bh, bl, nh) ~ epoch, data = skulls) sapply(c("Pillai", "Wilks", "Hotelling-Lawley", "Roy"), function(test) summary(skulls_manova, test = test)$stats[1,6]) @ \end{frame} \section*{Exercises} \begin{frame} \frametitle{Exercises} \begin{itemize} \item Examine the residuals ($\text{observed value} - \text{fitted value}$) from fitting a main effects only model to the \Robject{weightgain} data. What conclusions do you draw? \item The data \Robject{students} arise from a large study of risk taking. Students were randomly assigned to three different treatments labelled AA, C and NC. Students were administered two parallel forms of a test called `low' and `high'. Carry out a test of the equality of the bivariate means of each treatment population. \end{itemize} \end{frame} \begin{frame} \frametitle{References} \tiny <>= src <- system.file(package = "HSAUR3") style <- file.path(src, "LaTeXBibTeX", "refstyle") bst <- file.path(src, "LaTeXBibTeX", "HSAUR") cat(paste("\\bibliographystyle{", style, "}", sep = ""), "\n \n") cat(paste("\\bibliography{", bst, "}", sep = ""), "\n \n") @ \end{frame} \end{document} HSAUR3/inst/slides/HSAUR3_slides_4up.tex0000644000176200001440000000153514172224326017310 0ustar liggesusers \documentclass[landscape]{slides} \usepackage{graphicx} \usepackage{color} \usepackage{pdfpages} \pagestyle{empty} \begin{document} \includepdf[pages=1-,nup=4]{Ch_introduction_to_R.pdf} \includepdf[pages=1-,nup=4]{Ch_simple_inference.pdf} \includepdf[pages=1-,nup=4]{Ch_conditional_inference.pdf} \includepdf[pages=1-,nup=4]{Ch_multiple_linear_regression.pdf} \includepdf[pages=1-,nup=4]{Ch_analysis_of_variance.pdf} \includepdf[pages=1-,nup=4]{Ch_logistic_regression_glm.pdf} \includepdf[pages=1-,nup=4]{Ch_density_estimation.pdf} \includepdf[pages=1-,nup=4]{Ch_recursive_partitioning.pdf} \includepdf[pages=1-,nup=4]{Ch_survival_analysis.pdf} \includepdf[pages=1-,nup=4]{Ch_analysing_longitudinal_dataI.pdf} \includepdf[pages=1-,nup=4]{Ch_analysing_longitudinal_dataII.pdf} \includepdf[pages=1-,nup=4]{Ch_cluster_analysis.pdf} \end{document} HSAUR3/inst/slides/Ch_survival_analysis.Rnw0000644000176200001440000003442414172224326020351 0ustar liggesusers \input{HSAUR_title} \SweaveOpts{prefix.string=figures/HSAUR,eps=FALSE,keep.source=TRUE} <>= source("setup.R") @ \frame{ \begin{center} \Large{Part 10: Survival Analysis} \end{center} explains how to fit regression models to response variables which are only incompletely available. } \section{Introduction} \begin{frame} \frametitle{Introduction} \cite{HSAUR:Granaetal2002} report results of a non-randomised clinical trial investigating a novel radioimmunotherapy in malignant glioma patients. The overall survival, i.e., the time from the beginning of the therapy to the disease-caused death of the patient, is compared for two groups of patients. Since only some patients die by others survive, the time to death is not completely observed. Only the time the patient is still alive is known. Such a time measurement is called \stress{censored}. The main interest is to investigate whether the patients treated with the novel radioimmunothery survive for a longer time. \end{frame} \begin{frame} \frametitle{Introduction} The effects of hormonal treatment with Tamoxifen in women suffering from node-positive breast cancer were investigated in a randomised clinical trial as reported by \cite{HSAUR:Schumacher1994}. Complete data of seven prognostic factors of $686$ women are available for prognostic modelling. Observed hypothetical prognostic factors are age, menopausal status, tumor size, tumor grade, number of positive lymph nodes, progesterone receptor, estrogen receptor and the information of whether or not a hormonal therapy was applied. We are interested in an assessment of the impact of the covariates on the survival time of the patients. \end{frame} \section{Survival Analysis} \begin{frame} \frametitle{Survival Analysis} In many medical studies, the main outcome variable is the time to the occurrence of a particular event. Such observations are generally referred to by the generic term \stress{survival data}. Such data generally require special techniques for analysis for two main reasons: \begin{enumerate} \item Survival data are generally not symmetrically distributed. \item At the completion of the study, some patients may not have reached the endpoint of interest (death, relapse, etc.). Consequently, the exact survival times are not known. All that is known is that the survival times are greater than the amount of time the individual has been in the study. The survival times of these individuals are said to be \stress{censored} (precisely, they are right-censored). \end{enumerate} \end{frame} \begin{frame} \frametitle{Survival and Hazard Function} Of central importance in the analysis of survival time data are two functions used to describe their distribution, namely the \stress{survival} (or \stress{survivor}) \stress{function} and the \stress{hazard function}. The survivor function, $S(t)$, is defined as the probability that the survival time, $T$, is greater than or equal to some time $t$, i.e., \begin{eqnarray*} S(t) = \P(T \ge t) \end{eqnarray*} \end{frame} \begin{frame} \frametitle{Estimation} When there are no censored observations in the sample of survival times, a non-parametric survivor function can be estimated simply as \begin{eqnarray*} \hat{S}(t) = \frac{\text{number of individuals with survival times} \ge t} {n} \end{eqnarray*} where $n$ is the total number of observations. This simple method used to estimate the survivor function when there are no censored observations cannot now be used for survival times when censored observations are present. In the presence of censoring, the survivor function is typically estimated using the \stress{Kaplan-Meier} estimator \citep{HSAUR:KaplanMeier1958}. \end{frame} \begin{frame} \frametitle{Kaplan-Meier Estimator} This involves first ordering the survival times from the smallest to the largest such that $t_{(1)} \le t_{(2)} \le \dots \le t_{(n)}$, where $t_{(j)}$ is the $j$th largest unique survival time. The Kaplan-Meier estimate of the survival function is obtained as \begin{eqnarray*} \hat{S}(t) = \prod_{j: t_{(j)} \le t} \left( 1 - \frac{d_j}{r_j} \right) \end{eqnarray*} where $r_j$ is the number of individuals at risk just before $t_{(j)}$ (including those censored at $t_{(j)}$), and $d_j$ is the number of individuals who experience the event of interest (death, etc.) at time $t_{(j)}$. \end{frame} \begin{frame} \frametitle{Comparing Survival Functions} A formal test of the equality of the survival curves for the two groups can be made using the \stress{log-rank test}. First, the expected number of deaths is computed for each unique death time, or \stress{failure time} in the data set, assuming that the chances of dying, given that subjects are at risk, are the same for both groups. The total number of expected deaths is then computed for each group by adding the expected number of deaths for each failure time. The test then compares the observed number of deaths in each group with the expected number of deaths using a chi-squared test. \end{frame} \begin{frame} \frametitle{Hazard Functions} The hazard function, $h(t)$, is defined as the probability that an individual experiences the event in a small time interval, $s$, given that the individual has survived up to the beginning of the interval, when the size of the time interval approaches zero; \begin{eqnarray*} h(t) = \lim_{s \rightarrow 0} \frac{\P(t \le T \le t + s | T \ge t)}{s} \end{eqnarray*} where $T$ is the individual's survival time. For example, the probability of dying at age $100$ is very small because most people die before that age; in contrast, the probability of a person dying at age $100$ who has reached that age is much greater. \end{frame} \begin{frame} \frametitle{Hazard and Survival Function} The hazard function and survivor function are related by the formula \begin{eqnarray*} S(t) = \exp(-H(t)) \end{eqnarray*} where $H(t)$ is known as the \stress{integrated hazard} or \stress{cumulative hazard}, and is defined as follows: \begin{eqnarray*} H(t) = \int_0^t h(u) du, \end{eqnarray*} \end{frame} \begin{frame} \frametitle{Shapes of Hazard Functions} In practice the hazard function may increase, decrease, remain constant or have a more complex shape. The hazard function for death in human beings, for example, has the `bath tub' shape: \begin{center} <>= hazard <- function(x, alpha = 5, theta = 0.1, sigma = 100) (alpha*theta*(1 - exp(-(x/sigma)^alpha))^(theta - 1)* exp(-(x/sigma)^alpha)*(x/sigma)^(alpha-1))/(sigma* (1 - (1 - exp(-(x/sigma)^alpha))^theta)) x <- seq(from = 0.1, to = 100, by = 0.1) h <- hazard(x, alpha = 5, theta = 0.1, sigma = 100) plot(x, h, type = "l", xlab = "Time", ylab = "Hazard", ylim = c(0, max(h))) @ \end{center} \end{frame} \begin{frame} \frametitle{Cox' Proportional Hazards Model} Modelling the hazard function directly as a linear function of explanatory variables is not appropriate since $h(t)$ is restricted to being positive, however \begin{eqnarray*} h(t) = h_0(t) \exp(\beta_1 x_1 + \dots + \beta_q x_q). \end{eqnarray*} is appropriate. Written in this way we see that the model forces the hazard ratio between two individuals to be constant over time since \begin{eqnarray*} \frac{h(t | \x_1)}{h(t | \x_2)} = \frac{\exp(\beta^\top \x_1)}{\exp(\beta^\top \x_2)} \end{eqnarray*} where $\x_1$ and $\x_2$ are vectors of covariate values for two individuals. \end{frame} \begin{frame} \frametitle{Interpreting Cox' Model} In the Cox model, the baseline hazard describes the common shape of the survival time distribution for all individuals, while the \stress{relative risk function}, $\exp(\beta^\top \x)$, gives the level of each individual's hazard. The interpretation %%' of the parameter $\beta_j$ is that $\exp(\beta_j)$ gives the relative risk change associated with an increase of one unit in covariate $x_j$, all other explanatory variables remaining constant. The parameters in a Cox model can be estimated by maximising what is known as a \stress{partial likelihood}. \end{frame} \section{Analysis Using R} \begin{frame}[fragile] \frametitle{Analysis Using R: Glioma Data} \small \begin{center} <>= data("glioma", package = "coin") library("survival") layout(matrix(1:2, ncol = 2)) g3 <- subset(glioma, histology == "Grade3") plot(survfit(Surv(time, event) ~ group, data = g3), main = "Grade III Glioma", lty = c(2, 1), ylab = "Probability", xlab = "Survival Time in Month", legend.bty = "n", legend.text = c("Control", "Treated") ) g4 <- subset(glioma, histology == "GBM") plot(survfit(Surv(time, event) ~ group, data = g4), main = "Grade IV Glioma", ylab = "Probability", lty = c(2, 1), xlab = "Survival Time in Month", xlim = c(0, max(glioma$time) * 1.05)) @ \end{center} \normalsize \end{frame} \begin{frame}[fragile] \frametitle{Analysis Using R: Glioma Data} \begin{center} <>= data("glioma", package = "coin") library("survival") layout(matrix(1:2, ncol = 2)) g3 <- subset(glioma, histology == "Grade3") plot(survfit(Surv(time, event) ~ group, data = g3), main = "Grade III Glioma", lty = c(2, 1), ylab = "Probability", xlab = "Survival Time in Month", legend.bty = "n", legend.text = c("Control", "Treated") ) g4 <- subset(glioma, histology == "GBM") plot(survfit(Surv(time, event) ~ group, data = g4), main = "Grade IV Glioma", ylab = "Probability", lty = c(2, 1), xlab = "Survival Time in Month", xlim = c(0, max(glioma$time) * 1.05)) @ \end{center} \end{frame} \begin{frame}[fragile] \frametitle{Comparing Groups} The figure leads to the impression that patients treated with the novel radioimmunotherapy survive longer, regardless of the tumor type. In order to assess if this informal finding is reliable, we may perform a log-rank test via <>= survdiff(Surv(time, event) ~ group, data = g3) @ which indicates that the survival times are indeed different in both groups. \end{frame} \begin{frame}[fragile] \frametitle{Permutation Testing} However, the number of patients is rather limited and so it might be dangerous to rely on asymptotic tests. Conditioning on the data and computing the distribution of the test statistics without additional assumptions is one alternative: <>= library("coin") surv_test(Surv(time, event) ~ group, data = g3, distribution = exact()) @ \end{frame} \begin{frame}[fragile] \frametitle{Breast Cancer Survival} \begin{center} <>= data("GBSG2", package = "TH.data") plot(survfit(Surv(time, cens) ~ horTh, data = GBSG2), lty = 1:2, mark.time = FALSE, ylab = "Probability", xlab = "Survival Time in Days") @ \end{center} \end{frame} \begin{frame}[fragile] \frametitle{Breast Cancer Survival} \begin{center} <>= data("GBSG2", package = "TH.data") plot(survfit(Surv(time, cens) ~ horTh, data = GBSG2), lty = 1:2, mark.time = FALSE, ylab = "Probability", xlab = "Survival Time in Days") legend(250, 0.2, legend = c("yes", "no"), lty = c(2, 1), title = "Hormonal Therapy", bty = "n") @ \end{center} \end{frame} \begin{frame}[fragile] \frametitle{Fitting Cox' Model} The response variable is coded as a \Rclass{Surv} object and Cox' model can be fitted using: <>= GBSG2_coxph <- coxph(Surv(time, cens) ~ ., data = GBSG2) summary(GBSG2_coxph) @ \end{frame} \begin{frame}[fragile] \frametitle{Fitting Cox' Model} The response variable is coded as a \Rclass{Surv} object and Cox' model can be fitted using: \small <>= GBSG2_coxph <- coxph(Surv(time, cens) ~ ., data = GBSG2) summary(GBSG2_coxph) @ \normalsize \end{frame} \begin{frame}[fragile] \frametitle{Confidence Intervals} Since we are especially interested in the relative risk for patients who underwent a hormonal therapy, we can compute an estimate of the relative risk and a corresponding confidence interval via <>= ci <- confint(GBSG2_coxph) exp(cbind(coef(GBSG2_coxph), ci))["horThyes",] @ This result implies that patients treated with a hormonal therapy had a lower risk and thus survived longer compared to women who were not treated this way. \end{frame} \begin{frame}[fragile] \frametitle{Survival Trees} A simple prognostic tree model with only a few terminal nodes might be helpful for relating the risk to certain subgroups of patients: \small <>= library("partykit") ctree(Surv(time, cens) ~ ., data = GBSG2) @ \normalsize \end{frame} \begin{frame}[fragile] \frametitle{Visualizing Survival Trees} \begin{center} <>= plot(ctree(Surv(time, cens) ~ ., data = GBSG2)) @ \end{center} \end{frame} \section{Summary} \begin{frame} \frametitle{Summary} The analysis of life-time data is complicated by the fact that the time to some event is not observable for all observations due to censoring. Survival times are analysed by some estimates of the survival function, for example by a non-parametric Kaplan-Meier estimate or by semi-parametric proportional hazards regression models. \end{frame} \begin{frame} \frametitle{Exercises} \begin{itemize} \item Try to reproduce the analysis presented by \cite{HSAUR:SauerbreiRoyston1999}, i.e., fit a multivariable fractional polynomial to the \Robject{GBSG2} data (using package \Rpackage{mfp})! \item The \Robject{mastectomy} data are the survival times (in months) after mastectomy of women with breast cancer. The cancers are classified as having metastised or not based on a histochemical marker. Plot the survivor functions of each group, estimated using the Kaplan-Meier estimate, on the same graph and comment on the differences. Use a log-rank test to compare the survival experience of each group more formally. \end{itemize} \end{frame} \begin{frame} \frametitle{References} \tiny <>= src <- system.file(package = "HSAUR3") style <- file.path(src, "LaTeXBibTeX", "refstyle") bst <- file.path(src, "LaTeXBibTeX", "HSAUR") cat(paste("\\bibliographystyle{", style, "}", sep = ""), "\n \n") cat(paste("\\bibliography{", bst, "}", sep = ""), "\n \n") @ \normalsize \end{frame} \end{document} HSAUR3/inst/slides/Ch_introduction_to_R.Rnw0000644000176200001440000006160414172224326020277 0ustar liggesusers \input{HSAUR_title} \SweaveOpts{prefix.string=figures/HSAUR,eps=FALSE,keep.source=TRUE} <>= source("setup.R") @ \frame{ \begin{center} \Large{Part 1: An Introduction to R} \end{center} teaches some \R{} philosophy, explains how to install \R{} and how to make the first steps in \R{}. } \section{What Is R?} %%\R{}?} \frame{ \frametitle{What Is R?} The \R{} system for statistical computing is an environment for data analysis and graphics. The root of \R{} is the \S{} language, developed by John Chambers and colleagues at Bell Laboratories starting in the 1960s. The \S{} language was designed and developed as a programming language for data analysis tasks but in fact it is a full-featured programming language in its current implementations. The development of the \R{} system for statistical computing is heavily influenced by the open source idea: The base distribution of \R{} \index{Base distribution} and a large number of user contributed extensions are available under the terms of the Free Software Foundation's GNU General %%' Public License in source code form. \index{GNU General Public License} } \frame{ The base distribution of \R{} is maintained by a small group of statisticians, the \R{} Development Core Team. A huge amount of additional functionality is implemented in add-on packages \index{Add-on packages} authored and maintained by a large group of volunteers. The main source of information about the \R{} system is the world wide web with the official home page of the \R{} project being \curl{http://www.R-project.org} } \section{Installing R} %%\R{}} \index{Base system|(} \frame{ \frametitle{Installing the Base System} The \R{} system for statistical computing consists of two major parts: the base system and a collection of user contributed add-on packages. A package is a collection of functions, examples and documentation. Both the base system and packages are distributed via the Comprehensive \R{} Archive Network (CRAN) accessible under \curl{http://CRAN.R-project.org} as precompiled binary distribution and in source form. } \subsection{The Base System and the First Steps \label{AItR:Base}} \frame{ \frametitle{First Steps in R} \begin{columns} \begin{column}{3cm} \includegraphics[width = 2.5cm]{graphics/Rlogo} \end{column} \begin{column}{7cm} Depending on the operating system, \R{} can be started either by typing `\texttt{R}' on the shell (Unix systems) or by clicking on the %' \R{} symbol (as shown left) created by the installer (Windows). \end{column} \end{columns} } \begin{frame}[fragile] \frametitle{R as Pocket Calculator} <>= x <- sqrt(25) + 2 @ The assignment operator \Roperator{<-} binds the value of its right hand side to a variable name on the left hand side. The value of the object \Robject{x} can be inspected simply by typing <>= x @ which, implicitly, calls the \Rcmd{print} method: <>= print(x) @ \end{frame} \subsection{Packages} \begin{frame}[fragile] \frametitle{Important Packages} The base distribution already comes with some high-priority add-on packages, namely \begin{center} \texttt{ <>= colwidth <- 4 ip <- installed.packages(priority = "high") pkgs <- unique(ip[,"Package"]) pkgs <- paste("\\Rpackage{", pkgs, "}", sep = "") nrows <- ceiling(length(pkgs) / colwidth) cat(paste(c("\\begin{tabular}{", paste(rep("l", colwidth), collapse=""), "}"), collapse = ""), "\n", file = "tables/rec.tex", append = FALSE) for (i in 1:nrows) { cat(paste(pkgs[(1:colwidth) + (i-1)*colwidth], collapse = " & "), file = "tables/rec.tex", append = TRUE) cat("\\\\ \n", file = "tables/rec.tex", append = TRUE) } cat("\\end{tabular}\n", file = "tables/rec.tex", append = TRUE) rm(ip, nrows) @ \input{tables/rec} } \end{center} The packages listed here %% #Z %% are maintained by members of the \R{} core development team and implement standard statistical functionality, for example linear models, classical tests, a huge collection of high-level plotting functions or tools for survival analysis. \end{frame} <>= cp <- available.packages(contriburl = "http://CRAN.r-project.org/src/contrib") ncp <- sum(!rownames(cp) %in% pkgs) rm(cp, pkgs) @ \begin{frame}[fragile] \frametitle{User-Contributed Packages} Packages not included in the base distribution can be installed directly from the \R{} prompt. Currently, $\Sexpr{ncp}$ user contributed packages covering almost all fields of statistical methodology are available. <>= rm(ncp, colwidth, i) @ A package is installed by supplying the name of the package to the function \Rcmd{install.packages}. For example the \Rpackage{sandwich} package can be downloaded and installed via <>= install.packages("sandwich") @ The package functionality is available after \stress{attaching} the package by <>= library("sandwich") @ A comprehensive list of available packages can be obtained from \curl{http://CRAN.R-project.org/} \end{frame} \section{Help and Documentation \label{AItR:HDN}} \index{Help system|(} \begin{frame}[fragile] \frametitle{Help and Documentation} Three different forms of documentation for the \R{} system for statistical computing may be distinguished: \begin{itemize} \item online help that comes with the base distribution or packages, \item electronic manuals and \item publications work in the form of books etc. \end{itemize} The help system is a collection of manual pages describing each user-visible function and data set that comes with \R{}. \end{frame} \begin{frame}[fragile] \frametitle{Getting Help in R} A manual page is shown in a pager or web browser when the name of the function we would like to get help for is supplied to the \Rcmd{help} function <>= help("mean") @ or, for short, \begin{Verbatim} R> ?mean \end{Verbatim} The function \Rcmd{help.search} is helpful for searching within manual pages. An overview on documented topics in an add-on package is given, for example for the \Rpackage{sandwich} package, by <>= help(package = "sandwich") @ \end{frame} \begin{frame}[fragile] \frametitle{Package Vignettes} Often a package comes along with an additional document describing the package functionality and giving examples. Such a document is called a \Rclass{vignette} and is viewed in a PDF viewer via <>= vignette("sandwich", package = "sandwich") @ All R code contained in a vignette is available from <>= edit(vignette("sandwich")) @ \end{frame} \begin{frame} \frametitle{Written Documentation} For the beginner, at least the first and the second document of the following four manuals are mandatory: \begin{description} \item[An Introduction to R:] A more formal introduction to data analysis with \R{} than this chapter. \item[R Data Import/Export:] A very useful description of how to read and write various external data formats. \item[R Installation and Administration:] Hints for installing \R{} on special platforms. \item[Writing R Extensions:] The authoritative source on how to write \R{} programs and packages. \end{description} \end{frame} \begin{frame} \frametitle{More Documentation on R} Both printed and online publications are available, the most important ones are \booktitle{Modern Applied Statistics with \S{}} \booktitle{Introductory Statistics with \R{}}, \booktitle{\R{} Graphics} and the \R{} Newsletter, freely available from \curl{http://CRAN.R-project.org/doc/Rnews/} In case the electronically available documentation and the answers to frequently asked questions (FAQ), available from \curl{http://CRAN.R-project.org/faqs.html} have been consulted but a problem or question remains unsolved, the \texttt{r-help} email list is the right place to get answers to well-thought-out questions. Read the posting guide before starting to ask! \end{frame} \section{Data Objects in R} %%\R{}} \begin{frame}[fragile] \frametitle{Data Objects: Forbes 2000 List} \index{Forbes 2000 ranking|(} The data handling and manipulation techniques will be illustrated by means of a data set of $2000$ world leading companies, the Forbes 2000 list for the year 2004 collected by \booktitle{Forbes Magazine}. In a first step, we make the data available for computations within \R. The \Rcmd{data} function searches for data objects of the specified name (\Robject{"Forbes2000")} in the package specified via the \Rarg{package} argument and attaches the data object to the global environment: \index{Forbes2000 data@\Robject{Forbes2000} data} <>= data("Forbes2000", package = "HSAUR3") ls() @ \end{frame} \begin{frame}[fragile] \frametitle{Data Objects: Printing} <>= print(Forbes2000) @ <>= print(Forbes2000[1:3,]) cat("...\n") @ will not be particularly helpful. \end{frame} \begin{frame}[fragile] \frametitle{Inspecting Data Objects} Better look at a description of their structure: <>= str(Forbes2000) @ <>= str(Forbes2000, vec.len = 2) @ \end{frame} \begin{frame}[fragile] \frametitle{Data Objects: Forbes 2000} For each observation, the following eight variables are available: \begin{description} \item[\Robject{rank}]: the ranking of the company, \item[\Robject{name}]: the name of the company, \item[\Robject{country}]: where the company is situated, \item[\Robject{category}]: products the company produces, \item[\Robject{sales}]: the amount of sales of the company, US dollars, \item[\Robject{profits}]: the profit of the company, \item[\Robject{assets}]: the assets of the company, \item[\Robject{marketvalue}]: the market value of the company. \end{description} \end{frame} \begin{frame}[fragile] \frametitle{Data Objects: Forbes 2000} A similar but more detailed description is available from the help page for the \Robject{Forbes2000} object: <>= help("Forbes2000") @ or \begin{Verbatim} R> ?Forbes2000 \end{Verbatim} All information provided by \Rcmd{str} can be obtained by specialised functions as well and we will now have a closer look at the most important of these. \end{frame} \begin{frame}[fragile] \frametitle{Everything is an Object!} The \R{} language is an object-oriented programming language, \index{Object-oriented programming language} so every object is an instance of a class: <>= class(Forbes2000) @ The dimensions of a \Rclass{data.frame} can be extracted using the \Rcmd{dim} function <>= dim(Forbes2000) @ or via <>= nrow(Forbes2000) ncol(Forbes2000) @ \end{frame} \begin{frame}[fragile] \frametitle{Data Frames: Assessing Variables} The variable names are accessible from <>= names(Forbes2000) @ The values of single variables can be extracted from the \Robject{Forbes2000} object by their names <>= class(Forbes2000[,"rank"]) @ Brackets \Robject{[]} always indicate a subset \index{Subset} of a larger object. \end{frame} \begin{frame}[fragile] \frametitle{Vectors} The rankings for all $\Sexpr{nrow(Forbes2000)}$ companies are represented in a \Rclass{vector} structure the length of which is given by <>= length(Forbes2000[,"rank"]) @ A \Rclass{vector} is the elementary structure for data handling in \R{} and is a set of simple elements, all being objects of the same class. <>= 1:3 c(1,2,3) seq(from = 1, to = 3, by = 1) @ \end{frame} \begin{frame}[fragile] \frametitle{Nominal Variables: Factors} Nominal measurements are represented by \Rclass{factor} variables in \R, such as the category of the company's business segment %%' <>= class(Forbes2000[,"category"]) @ Objects of class \Rclass{factor} and \Rclass{character} basically differ in the way their values are stored internally. In our case, there are <>= nlevels(Forbes2000[,"category"]) @ different categories: <>= levels(Forbes2000[,"category"]) @ <>= levels(Forbes2000[,"category"])[1:3] cat("...\n") @ \end{frame} \begin{frame}[fragile] \frametitle{Summarizing Factors} As a simple summary statistic, the frequencies of the levels of such a \Rclass{factor} variable can be found from <>= table(Forbes2000[,"category"]) @ <>= table(Forbes2000[,"category"])[1:3] cat("...\n") @ \end{frame} \begin{frame}[fragile] \frametitle{Numeric Variables} The sales, assets, profits and market value variables are of type \Robject{numeric} <>= class(Forbes2000[,"sales"]) @ and simple summary statistics such as the mean, median and range can be found from <>= median(Forbes2000[,"sales"]) mean(Forbes2000[,"sales"]) range(Forbes2000[,"sales"]) @ \end{frame} \begin{frame}[fragile] \frametitle{Summary Statistics} The \Rcmd{summary} method can be applied to a numeric vector to give a set of useful summary statistics namely the minimum, maximum, mean, median and the $25\%$ and $75\%$ quartiles; for example <>= summary(Forbes2000[,"sales"]) @ \end{frame} \section{Data Import and Export} \index{Data import and export|(} \begin{frame}[fragile] \frametitle{Data Import} The most frequent data formats the data analyst is confronted with are \begin{itemize} \item comma separated files, \item \EXCEL{} spreadsheets, \item files in \SPSS{} format and \item a variety of \SQL{} data base engines. \end{itemize} Querying data bases is a non-trivial task and requires additional knowledge about querying languages and we therefore refer to the \booktitle{\R{} Data Import/Export} manual. \end{frame} <>= pkgpath <- system.file(package = "HSAUR3") mywd <- getwd() filep <- file.path(pkgpath, "rawdata") setwd(filep) @ \begin{frame}[fragile] \frametitle{Comma-separated Files} When the variables are separated by commas and each row begins with a name (a text format typically created by \EXCEL{}), we can read in the data as follows using the \Rcmd{read.table} function <>= csvForbes2000 <- read.table("Forbes2000.csv", header = TRUE, sep = ",", row.names = 1) @ The function \Rcmd{read.table} by default guesses the class of each variable from the specified file. Files in \SPSS{} format are read in a way similar to reading comma separated files, using the function \Rcmd{read.spss} from package \Rpackage{foreign}. \end{frame} \begin{frame}[fragile] \frametitle{Data Export} A comma separated file readable by \EXCEL{} can be constructed from a \Rclass{data.frame} object via <>= write.table(Forbes2000, file = "Forbes2000.csv", sep = ",", col.names = NA) @ The function \Rcmd{write.csv} is one alternative. Alternatively, when data should be saved for later processing in \R{} only, \R{} objects of arbitrary kind can be stored into an external binary file via <>= save(Forbes2000, file = "Forbes2000.rda") @ <>= setwd(mywd) @ \end{frame} \section{Basic Data Manipulation \label{AItR:BDM}} \begin{frame}[fragile] \frametitle{More on Data Frames} \index{Data manipulation|(} Internally, a \Rclass{data.frame} is a \Rclass{list} of vectors of a common length $n$, the number of rows of the table. Each of those vectors represents the measurements of one variable and we can access such a variable by its name <>= companies <- Forbes2000[,"name"] @ A subset of the elements of the vector \Robject{companies} can be extracted using the \Rcmd{[]} subset operator: <>= companies[1:3] @ \end{frame} \begin{frame}[fragile] \frametitle{Subset Indexing} In contrast to indexing with positive integers, negative indexing returns all elements which are \stress{not} part of the index vector given in brackets. For example, all companies except those with numbers four to two-thousand, i.e., the top three companies, are again <>= companies[-(4:2000)] @ \end{frame} \begin{frame}[fragile] \frametitle{Data Frame Indexing} Because \Rclass{data.frame}s have a concept of rows and columns, we need to separate the subsets corresponding to rows and columns by a comma. The statement <>= Forbes2000[1:3, c("name", "sales", "profits", "assets")] @ extracts four variables for the three largest companies. A single variable can be extracted from a \Rclass{data.frame} by <>= companies <- Forbes2000$name @ \end{frame} \begin{frame}[fragile] \frametitle{Data Frame Ordering} The three top selling companies are to be computed. First, we need to compute the ordering of the companies' sales %%' <>= order_sales <- order(Forbes2000$sales) @ The three companies with the lowest sales are <>= companies[order_sales[1:3]] @ and the three top sellers are <>= Forbes2000[order_sales[c(2000, 1999, 1998)], "name"] @ \end{frame} \begin{frame}[fragile] \frametitle{Data Frame Subsetting} Another way of selecting vector elements is the use of a logical vector being \Robject{TRUE} when the corresponding element is to be selected and \Robject{FALSE} otherwise. The companies with assets of more than $1000$ billion US dollars are <>= Forbes2000[Forbes2000$assets > 1000, c("name", "sales", "profits")] table(Forbes2000$assets > 1000) @ \end{frame} \begin{frame}[fragile] \frametitle{Missing Values} In \R, missing values are treated by a special symbol, \Robject{NA}, indicating \index{NA symbol@\Robject{NA} symbol} that this measurement is not available. \index{Missing values} The observations with profit information missing can be obtained via <>= na_profits <- is.na(Forbes2000$profits) table(na_profits) Forbes2000[na_profits, c("name", "profits")] @ \end{frame} \begin{frame}[fragile] \frametitle{Removing Missing Values} We want to remove all observations with at least one missing value from a \Rclass{data.frame} object. The function \Rcmd{complete.cases} takes a \Rclass{data.frame} and returns a logical vector being \Robject{TRUE} when the corresponding observation does not contain any missing value: <>= table(complete.cases(Forbes2000)) @ \end{frame} \begin{frame}[fragile] \frametitle{Using subset} Subsetting \Rclass{data.frame}s driven by logical expressions may induce a lot of typing which can be avoided. The \Rcmd{subset} function takes a \Rclass{data.frame} as first argument and a logical expression as second argument: <>= UKcomp <- subset(Forbes2000, country == "United Kingdom") dim(UKcomp) @ \end{frame} \section{Simple Summary Statistics} \begin{frame}[fragile] \frametitle{str and summary} Applying the \Rcmd{summary} method to the \Robject{Forbes2000} <>= summary(Forbes2000) @ <>= summary(Forbes2000[,1:3]) @ \end{frame} \begin{frame}[fragile] \frametitle{apply and Friends} The members of the \Rcmd{apply} family help to solve recurring tasks for each element of a \Rclass{data.frame}, \Rclass{matrix}, \Rclass{list} or for each level of a factor. We compare the profits in each of the $\Sexpr{nlevels(Forbes2000$category)}$ categories and first compute the median profit for each category from <>= mprofits <- tapply(Forbes2000$profits, Forbes2000$category, median, na.rm = TRUE) @ \end{frame} \begin{frame}[fragile] \frametitle{Sorting} The three categories with highest median profit are computed from the vector of sorted median profits <>= rev(sort(mprofits))[1:3] @ where \Rcmd{rev} rearranges the vector of median profits \Rcmd{sort}ed from smallest to largest. \end{frame} \subsection{Simple Graphics} \begin{frame}[fragile] \frametitle{Simple Graphics: Histograms} The degree of skewness of a distribution can be investigated by constructing histograms using the \Rcmd{hist} function: <>= layout(matrix(1:2, nrow = 2)) hist(Forbes2000$marketvalue) hist(log(Forbes2000$marketvalue)) @ \end{frame} \begin{frame}[fragile] \begin{center} <>= layout(matrix(1:2, nrow = 2)) hist(Forbes2000$marketvalue) hist(log(Forbes2000$marketvalue)) @ \end{center} \end{frame} \begin{frame}[fragile] \frametitle{Simple Graphics: Scatterplots} In \R, regression relationships are specified by so-called \stress{model formulae} which may look like <>= fm <- marketvalue ~ sales class(fm) @ with the dependent variable on the left hand side and the independent variable on the right hand side. The tilde separates left and right hand side. \end{frame} \begin{frame}[fragile] \frametitle{Simple Graphics: Scatterplots} \begin{center} <>= plot(log(marketvalue) ~ log(sales), data = Forbes2000, pch = ".") @ \end{center} \end{frame} \begin{frame} %%% R CMD build will receive an error from texi2dvi because of pdf version %%% 1.4 used here -- exclude this piece of code \begin{center} <>= pdf("figures/marketvalue-sales.pdf", version = "1.4") plot(log(marketvalue) ~ log(sales), data = Forbes2000, col = rgb(0,0,0,0.1), pch = 16) dev.off() @ \includegraphics{figures/marketvalue-sales} \end{center} \end{frame} \begin{frame}[fragile] \frametitle{Simple Graphics: Boxplots} <>= boxplot(log(marketvalue) ~ country, data = subset(Forbes2000, country %in% c("United Kingdom", "Germany", "India", "Turkey")), ylab = "log(marketvalue)", varwidth = TRUE) @ \end{frame} \begin{frame} \begin{center} <>= tmp <- subset(Forbes2000, country %in% c("United Kingdom", "Germany", "India", "Turkey")) tmp$country <- tmp$country[,drop = TRUE] boxplot(log(marketvalue) ~ country, data = tmp, ylab = "log(marketvalue)", varwidth = TRUE) @ \end{center} \end{frame} \section{Organising an Analysis} \begin{frame}[fragile] \frametitle{Organising an Analysis} <>= file.create("analysis.R") @ ALWAYS maintain your R code for an analysis as a separate text file collecting all steps necessary to perform a certain data analysis task! Such an \R{} transcript file can be read by <>= source("analysis.R", echo = TRUE) @ When all steps of a data analysis, i.e., data preprocessing, transformations, simple summary statistics and plots, model building and inference as well as reporting, are collected in such an \R{} transcript file, the analysis can be reproduced at any time! <>= file.remove("analysis.R") @ \end{frame} \begin{frame}[fragile] \frametitle{Exercises} \begin{itemize} \item Calculate the median profit for the companies in the United States and the median profit for the companies in the UK, France and Germany. \item Find all German companies with negative profit. \item Which business category are most of the companies situated at the Bermuda island working in? \item For the $50$ companies in the Forbes data set with the highest profits, plot sales against assets (or some suitable transformation of each variable), labelling each point with the appropriate country name which may need to be abbreviated (using \Rcmd{abbreviate}) to avoid making the plot look too `messy'. %%' \item Find the average value of sales for the companies in each country in the Forbes data set, and find the number of countries in each country with profits above $5$ billion US dollars. \end{itemize} \end{frame} \end{document} HSAUR3/inst/slides/Ch_conditional_inference.Rnw0000644000176200001440000003330014172224326021104 0ustar liggesusers \input{HSAUR_title} \SweaveOpts{prefix.string=figures/HSAUR,eps=FALSE,keep.source=TRUE} <>= source("setup.R") @ \frame{ \begin{center} \Large{Part 4: Conditional Inference} \end{center} focuses on conditional statistical test procedures for the Guessing Lengths, Suicides, and Gastrointestinal Damage examples. } <>= nobs <- table(roomwidth$unit) ties <- tapply(roomwidth$width, roomwidth$unit, function(x) length(x) - length(unique(x))) library("coin") @ \section{Introduction} \begin{frame} \frametitle{Introduction} There are many experimental designs or studies where the subjects are not a random sample from some well-defined population. For example, in clinical trials the subjects are randomly assigned to certain groups, for example a control and a treatment group, and the analysis needs to take this randomisation into account. In this chapter, we discuss such test procedures usually known as \stress{(re)-randomisation} or \stress{permutation tests} where the distribution of the test statistics under the null hypothesis is determined \stress{conditionally} on the data at hand. \end{frame} \begin{frame} \frametitle{roomwidth: Estimating Room Widths} Shortly after metric units of length were officially introduced in Australia in the 1970s, each of a group of 44 students was asked to guess, to the nearest metre, the width of the lecture hall in which they were sitting. Another group of 69 students in the same room was asked to guess the width in feet, to the nearest foot. But \Sexpr{ties[1]} of the estimated widths (in feet) of \Sexpr{nobs[1]} students and \Sexpr{ties[2]} of the estimated widths (in metres) of \Sexpr{nobs[2]} students are tied. This violates one assumption of the \stress{unconditional} test procedures such as the Wilcoxon Mann-Whitney test, namely that measurements are drawn from a continuous distribution. \end{frame} \begin{frame} \frametitle{suicides: Baiting Behaviour} A study was carried out to investigate the causes of jeering or baiting behaviour by a crowd when a person is threatening to commit suicide by jumping from a high building. A hypothesis is that baiting is more likely to occur in warm weather. 21 accounts of threatened suicide were classified by two factors, the time of year and whether or not baiting occurred. The data come from the northern hemisphere, so June--September are the warm months. \end{frame} \begin{frame} \frametitle{Lanza: Gastrointestinal Damage} The administration of non-steriodal anti-inflammatory drugs for patients suffering from arthritis induced gastrointestinal damage. \cite{HSAUR:Lanza1987} and \cite{HSAUR:Lanzaetal1988a,HSAUR:Lanzaetal1988b,HSAUR:Lanzaetal1989} report the results of placebo-controlled randomised clinical trials investigating the prevention of gastrointestinal damage by the application of Misoprostol. The degree of the damage is determined by endoscopic examinations and the response variable is defined as the classification: \input{tables/Lanza} \end{frame} \section{Conditional Test Procedures} \begin{frame} \frametitle{Conditional Test Procedures} In clinical trials, it is often impossible to draw a random sample from all patients suffering a certain disease. Commonly, volunteers and patients are recruited from hospital staff, relatives or people showing up for some examination. The test procedures applied in this chapter make no assumptions about random sampling or a specific model. \end{frame} \begin{frame} \frametitle{Permutation Tests} Instead, the null distribution of the test statistics is computed conditionally on all random permutations of the data. Therefore, the procedures shown in the sequel are known as \stress{permutation tests} or \stress{(re)-randomisation tests}. For a general introduction we refer to the text books of \cite{HSAUR:Edgington1987} and \cite{HSAUR:Pesarin2001}. \end{frame} \subsection{Testing Independence of Two Variables} \begin{frame} \frametitle{Testing Independence of Two Variables} Based on $n$ pairs of measurements $(x_i, y_i), i = 1, \dots, n$ we want to test the null hypothesis of the independence of $x$ and $y$. We may distinguish three situations: Both variables $x$ and $y$ are continuous (correlation), one is continuous and the other one is a factor (one-way layout, independent two-sample) or both $x$ and $y$ are factors (contingency tables). \end{frame} \begin{frame} \frametitle{Example: Two Independent Samples} One class of test procedures for the above three situations are randomisation and permutation tests whose basic principles have been described by \cite{HSAUR:Fisher1935} and \cite{HSAUR:Pitman1937} and are best illustrated for the case of continuous measurements $y$ in two groups, i.e., the $x$ variable is a factor that can take values $x = 1$ or $x = 2$. The difference of the means of the $y$ values in both groups is an appropriate statistic for the assessment of the association of $y$ and $x$ \begin{eqnarray*} T = \frac{\sum\limits_{i = 1}^n I(x_i = 1) y_i}{\sum\limits_{i = 1}^n I(x_i = 1)} - \frac{\sum\limits_{i = 1}^n I(x_i = 2) y_i}{\sum\limits_{i = 1}^n I(x_i = 2)}. \end{eqnarray*} Clearly, under the null hypothesis of independence of $x$ and $y$ we expect the distribution of $T$ to be centred about zero. \end{frame} \begin{frame} \frametitle{Computing the Null-Distribution} Suppose that the group labels $x = 1$ or $x = 2$ have been assigned to the observational units by randomisation. When the result of the randomisation procedure is independent of the $y$ measurements, we are allowed to fix the $x$ values and shuffle the $y$ values randomly over and over again. Thus, we can compute, or at least approximate, the distribution of the test statistic $T$ under the conditions of the null hypothesis directly from the data $(x_i, y_i), i = 1, \dots, n$ by the so called \stress{randomisation principle}. \end{frame} \begin{frame} \frametitle{Computing the Null-Distribution} The test statistic $T$ is computed for a reasonable number of shuffled $y$ values and we can determine how many of the shuffled differences are at least as large as the test statistic $T$ obtained from the original data. If this proportion is small, smaller than $\alpha = 0.05$ say, we have good evidence that the assumption of independence of $x$ and $y$ is not realistic and we therefore can reject the null hypothesis. The proportion of larger differences is usually referred to as $p$-value. \end{frame} \begin{frame} \frametitle{Categorical Variables} The test statistic can be computed from the corresponding contingency table in which the observations $(x_i, y_i)$ are cross-classified. We can make use of the test statistic \begin{eqnarray*} X^2 = \sum_{j = 1}^r \sum_{k = 1}^c \frac{(n_{jk} - E_{jk})^2}{E_{jk}}. \end{eqnarray*} Alternatively, Fisher's exact test based on the hyper-geometric probability of the observed contingency table can be applied. Here, all possible tables can be ordered with respect to this metric and $p$-values are computed from the fraction of tables more extreme than the observed one. \end{frame} \begin{frame} \frametitle{Correlation} When both the $x$ and the $y$ measurements are numeric, the test statistic can be formulated as the product, i.e., by the sum of all $x_i y_i, i = 1, \dots, n$. Again, we can fix the $x$ values and shuffle the $y$ values in order to approximate the distribution of the test statistic under the laws of the null hypothesis of independence of $x$ and $y$. \end{frame} \section{Analysis Using R} \subsection{Estimating the Width of a Room Revised} \begin{frame}[fragile] \frametitle{roomwidth Revised} First, we convert metres into feet and store the vector of observations in a variable \Robject{y}: <>= convert <- ifelse(roomwidth$unit == "feet", 1, 3.28) feet <- roomwidth$unit == "feet" metre <- !feet y <- roomwidth$width * convert @ The test statistic is simply the difference in means <>= T <- mean(y[feet]) - mean(y[metre]) T @ \end{frame} \begin{frame}[fragile] \frametitle{roomwidth Revised} In order to approximate the conditional distribution of the test statistic $T$ we compute $9999$ test statistics for shuffled $y$ values. A permutation of the $y$ vector can be obtained from the \Rcmd{sample} function. <>= meandiffs <- double(9999) for (i in 1:length(meandiffs)) { sy <- sample(y) meandiffs[i] <- mean(sy[feet]) - mean(sy[metre]) } @ \end{frame} \begin{frame} \begin{center} <>= hist(meandiffs) abline(v = T, lty = 2) abline(v = -T, lty = 2) @ \end{center} \end{frame} \begin{frame}[fragile] \frametitle{Approximate Null-Distribution} Now, the value of the test statistic $T$ for the original unshuffled data can be compared with the distribution of $T$ under the null hypothesis. The $p$-value, i.e., the proportion of test statistics $T$ larger than \Sexpr{-round(T, 3)} or smaller than \Sexpr{round(T, 3)} is <>= greater <- abs(meandiffs) > abs(T) mean(greater) @ with a confidence interval of <>= binom.test(sum(greater), length(greater))$conf.int @ \end{frame} \begin{frame}[fragile] \frametitle{Exact Null-Distribution} The function \Rcmd{independence\_test} \citep[package \Rpackage{coin},][]{PKG:coin,HSAUR:Hothorn:2006:AmStat} can be used to compute the exact $p$-value for two independence samples: <>= library("coin") independence_test(y ~ unit, data = roomwidth, distribution = exact()) @ \end{frame} \begin{frame}[fragile] \frametitle{Exact WMW-Test} The exact conditional Wilcoxon rank sum test applied to the \Robject{roomwidth} data: <>= wilcox_test(y ~ unit, data = roomwidth, distribution = exact()) @ \end{frame} \subsection{Crowds and Threatened Suicide} \begin{frame} \frametitle{Crowds and Threatened Suicide} The data in this case are in the form of a $2 \times 2$ contingency table and it might be thought that the chi-squared test could again be applied to test for the independence of crowd behaviour and time of year. The $\chi^2$-distribution as an approximation to the independence test statistic is bad in this situation since the expected frequencies are rather small. One solution is to use a conditional test procedure such as Fisher's exact test as described %' above. \end{frame} \begin{frame}[fragile] \frametitle{Fisher's Test} We can apply this test procedure using the \R{} function \Rcmd{fisher.test} to the \Rclass{table} \Robject{suicides}: <>= fisher.test(suicides) @ \end{frame} \subsection{Gastrointestinal Damages} \begin{frame}[fragile] \frametitle{Gastrointestinal Damages} Here we are interested in the comparison of two groups of patients, where one group received a placebo and the other one Misoprostol. In the trials shown here, the response variable is measured on an ordered scale. Data from four clinical studies are available and thus the observations are naturally grouped together. From the \Rclass{data.frame} \Robject{Lanza} we can construct a three-way table as follows: <>= xtabs(~ treatment + classification + study, data = Lanza) @ \end{frame} \begin{frame}[fragile] \frametitle{Gastrointestinal Damages} The classifications are defined by the number of haemorrhages or erosions, the midpoint of the interval for each level is a reasonable choice, i.e., $0$, $1$, $6$, $17$ and $30$. The corresponding linear-by-linear association tests extending the general \index{Linear-by-linear association test} Cochran-Mantel-Haenzel statistics \citep[see][for further details]{HSAUR:Agresti2002} are implemented in package \Rpackage{coin}. \index{Cochran-Mantel-Haenzel statistic} \end{frame} \begin{frame}[fragile] \frametitle{First Study Only} For the first study, the null hypothesis of independence of treatment and gastrointestinal damage, i.e., of no treatment effect of Misoprostol, is tested by <>= library("coin") cmh_test(classification ~ treatment, data = Lanza, scores = list(classification = c(0, 1, 6, 17, 30)), subset = Lanza$study == "I") @ and, by default, the conditional distribution is approximated by the corresponding limiting distribution. \end{frame} \begin{frame}[fragile] \frametitle{All Studies} We can use \Robject{study} as a block variable and perform a global linear-association test investigating the treatment effect of Misoprostol in all four studies: <>= cmh_test(classification ~ treatment | study, scores = list(classification = c(0, 1, 6, 17, 30)), data = Lanza) @ \end{frame} \begin{frame} \frametitle{Exercises} \begin{itemize} \item Use the \Rcmd{mosaic} and \Rcmd{assoc} functions from the \Rpackage{vcd} package \citep{PKG:vcd} to create a graphical representation of the deviations from independence in the $2 \times 2$ contingency table \Robject{suicides}. \item Generate two groups with measurements following a normal distribution having different means. For multiple replications of this experiment ($1000$, say), compare the $p$-values of the Wilcoxon Mann-Whitney rank sum test and a permutation test (using \Rcmd{independence\_test}). Where do the differences come from? \end{itemize} \end{frame} \begin{frame} \frametitle{References} \tiny <>= src <- system.file(package = "HSAUR3") style <- file.path(src, "LaTeXBibTeX", "refstyle") bst <- file.path(src, "LaTeXBibTeX", "HSAUR") cat(paste("\\bibliographystyle{", style, "}", sep = ""), "\n \n") cat(paste("\\bibliography{", bst, "}", sep = ""), "\n \n") @ \end{frame} \end{document} HSAUR3/inst/slides/HSAUR_title.Rnw0000644000176200001440000000027714172224326016243 0ustar liggesusers \documentclass{beamer} \input{definitions} \usetheme{boxes} \setbeamercovered{transparent} <>= title <- "title_UZH.tex" writeLines(readLines(title)) @ HSAUR3/inst/slides/setup.R0000644000176200001440000000060014172224326014741 0ustar liggesusers rm(list = ls()) if (!file.exists("tables")) dir.create("tables") if (!file.exists("figures")) dir.create("figures") set.seed(290875) options(prompt = "R> ", width = 55, # digits = 4, SweaveHooks = list(leftpar = function() par(mai = par("mai") * c(1, 1.05, 1, 1)))) HSAURpkg <- require("HSAUR3") if (!HSAURpkg) stop("cannot load package ", sQuote("HSAUR3")) rm(HSAURpkg) HSAUR3/inst/NEWS0000644000176200001440000000141414660112565012701 0ustar liggesusers 1.0-15 (2024-08-17) o Import tools 1.0-14 (2023-04-14) o package maptools will retire 1.0-13 (2022-04-25) o don't escape & 1.0-11 (2021-10-18) o reduce size of tar.gz archive 1.0-11 (2021-04-06) o reduce size of tar.gz archive 1.0-10 (2020-09-21) o remove dependency on alr3 1.0-9 (2018-05-28) o update to mice 3.0.0 1.0-8 (2017-08-18) o remove longtable.sty 1.0-7 (2017-06-21) o use logrank_test instead of surv_test (for coin 1.2-0) 1.0-6 (2017-02-28) o tm is not actually needed 1.0-5 (2015-07-28) o NAMESPACE updates 1.0-4 (2015-03-09) o wgs84 -> WGS84 1.0-3 (2015-01-05) o remove platform-dependent Makefiles 1.0-2 (2014-08-18) o tools::delimMatch o png figures 1.0-1 (2014-06-26) o update URL o fix vignette index entries HSAUR3/inst/cache/0000755000176200001440000000000014172224326013242 5ustar liggesusersHSAUR3/inst/cache/DE-bootpara.rda0000644000176200001440000010376214172224326016040 0ustar liggesusersRDX2 X  bootpara ?ׄ‹•\¤@KOšƒVMl@T(Å;S¢ names p mu1.2 mu2.1þ ¸?Ö4F¬Ðd?Ö¤A8àXø?Ö‰å÷5»?Øß[ÌúŽ?×{ãÍ“vŽ?ÕJ~«±L?ׂÿû«˜?ÖŽÆi{º?ØåžâýÃ.?Õ{θ]²æ?ØdõBÀj?Ú«.µÄ?Ôù·qóIz?× 8–6¢?Ù{pµÂ?ÖЉ¾¬A’?ÔšruŒ,?ÙVEX+ƒ®?×HI–lD¾?Øçʯ=ˆ?Ö)ßA}è ?×ÀÆñ¢?Ô«¦é‡Ê?Û9!%ȱ?Õ((~a3Ä?ÔI;¿Eƒî?Ø]÷ô¡?Ô¦·+?ÖÜûîÌ?Ô¢mpd"@?×铤9?×?wš×œ×?ÙOÕŸ£ê?ÖU}©®ê?×?çüµp?Ö~ðbV?ÕCøP›p?ا€Ü2«?ÕÑ#ï ¢?Ö'»·M?×À2 7m"?ØQ¡6<­Æ?Õ¼Yâl=?Ø|ç#pI?×Ùºëmö?ØNô’m-$?Øì–Z7_V?Ö›>Ø3(.?Ø5cõ“TÐ?Ù:;2ÛA–?Ö6™¤{½?Úݦÿ_ª¢?ÕL'gî«ø?×v Óÿn?ÔÖb$v?Ö⬠ \?ÔkËP“¿6?Ô™ˆÝ¨ˆ?×2›ÉÒä?Ô¿ µ&?×ùíþ#‚?Ô`ÌüØ?Õ漢¬^¦?Ö¨ƒXê­?ØŽMƒ¤Ó?×L7+!¶0?×thÛÙ˜æ?Õ×ÓxT?Õ"3>aÇÁ?Õ¬ûÙ‹íô?Ôã(;»PÒ?ØÉÑ¢z?ÔMsùΞ¤?×_T„žDÀ?×è0SØMÎ?×¢ô÷|d?ÕÄd!?+?Ö÷PNHNø?Ö˜[”i¯B?×+IÌðiò?Ö%Ù“ny?Ö†&ö0Br?ÔËÞo€¢@?ÖìÔ•öX¦?× õÍ©|Ü?Öõ$4bþ0?Ö=º¬?Ø)Áð×D?×û,ߘ?Ó­§|¯¥L?Øéâ%Ð?Ø…ù½ú~?Õƒd ¢I?ÓóhŠgд?ÓÈnØDö??×È'½e4e?ÓªÒQÍØØ?Ù2ý̆ø?Ú…Y–]„X?Úâ>ã .?Öv ÆÝrv?×è’Š^?Øͩƾ?׆ý0›{?ÙÙ¼9F!÷?×~ñl^?ÐÙ¯K²”?Ö·N­×?Ö[;¶|?ÕG ›nî?Õõ¿Œ.ò?Ö›¡,‡!*?Õ8» Osü?Ô1ÜØêi„?Öm'+›/?Ö?M ûê¨?Ö¿„ñ™nª?Ù’>›40?×—v¿C4?׫‘Ž\ ?Ö²Öh€–¾?Óì+¬¿¶?Ԙĕ~(ò?Ù§»=I’.?ÜC!þúZ?ÓF—XÉkJ?ÚŽs=ž ?ÖlÈÄ{XÜ?ÙšÆW>K?ØØJ†mWš?Öóµý‹Y´?Óbl©¥#.?ØФsÛ†?ÕUǨ¹=?ØgÜ13±ø?ÕvTg?Õé4¥ØQ ?×Ì/u[ù?×ÀO‰µ0?Ýti‰÷\?Ú:=|w~?Ù+Vt§Ëâ?ÔÈŸ)ïì?ÒcšÒaÁ?Óÿ.z\¬Ì?ÖÕƒel?Ø`‘a|¦?Ô¡…Î-i?×ãMzR²?×òçJXÜr?×ÀÉF¦?ÕA6Çfe?Ö&ôŒECS?Ø‚”Ü[Á†?ÕœR.çÀ?Övï—6?× |Nzöü?Ö=mcÿŒ?ÖÛ—BÞz?Õ]¯´ÿ’â?Ùq*é+2 ?×ë®èÄbû?Ö4ávà?ÚAÜ R–T?״гãK?Ó\ê€C|°?×µ |ö?Õ$®MUh?ÖpºÒN?Ö$ϱhPt?ØÀ:º0?ÓÄ#öÍ£–?×Xk»D?Ö<·ad?×nôO´ýL?Öa3bœª?Øñù¿ÈaH?×ÖT™ÿÞ?×Ⱦi¨è¨?Õ­°ÌÊÎ?Ö£ÀJʽ*?ÖBŽ•Þ?×,>Ý?ÔÃÆµÂ¤??Ù$æºáÐ?Øâ?½+©@?Ö%–í%€‚?ÖuÚÌè®?ØTÛ›ˆÖ?ÔxHT, ?ÖL¥Ÿ‘¨V?Ö Ì++}?ÓYmO&œ?Ô­¤§?²?Ö¿4`µê?Õ]|nÙ¡¸?Ù³KqùL?ÕYÐïþV?Õú+¡žåð?×çšÊZ?Ú~wtŒ<(?Ô,ÌvçXK?×€Æþ¾Ö?×¼šc )f?Ö‹Lš‰Û0?Ù裕Z?ÔæÞ#…é4?×TO-3iž?ÖÖ®mØ?×¹éízUf?Õòù„ê?ÖÎÙç$þ?Ù‰†žØú—?Ù‘rŠY¯´?Ó2ïi¡áP?Úíõ³Ò?Ú±÷y?Q?Õ„¨¼?Ø Ä¿åÿæ?Ü9¸P¸°?×½À§¼?ØÂŽwFÀX?ÙÒ¡åãX?Ôxô—€Å¡?ÖнVih?Ö5:C;ä?ÚxÚG©?×EÜ;‰B ?Õ:´ $?ÔÕD‰]È?ÚOjÌã¨?Ø9ÃÄ _ü?ÖŒè ä2?ÙdÏ9'x?ÔD¸€{ƒ?Ùæ'`Æô?סÔعh?דѢi°f?ÔJb!›^?דž>¾kƒ?Ú#CNkVL?Ù9»|Ü…?ؤË?Õœ–Ví€õ?סø¼qŠÅ?× 2_Μ„?Öéɘ˜~?Õ쬟µpÜ?Ø5¤¨à?Ùµ~®†?Ö`K•¹l,?Ö·9êߌ?Ödý‘µ™?Ø -xŸÑ?Õ>ü±™ö?ÒÆóf>úH?ÚÉZ/à“?Õ ¹Å8Bì?ÕÄs±ŸJ?Ö ûÕg©®?ט [”õì?ÕA›DÄô?ÙK®mÙ#Æ?× #Öè?ØO Ï ˜??×éÄÇÜ€Ž?Ù®eɰÆ?Õ’Ê}gµÒ?Ø'vOªcŠ?ÒSµšˆ,?Ø0Á^;~?ÓÍÌ Õš±?ÚÉKrãë?ÔڟƬ4?Ö‡Nµ™ ?ØÁÓDœ{þ?Ùm!ýÞNS?Ô¶}¬Â"”?×ܘ®¦Éê?×ôþ;9?Ú}>,u_b?Ô³g4òÜ?Ö‡þp€ÅÄ?×µÁ`¨C¥?Óàîä*Ô?Ô·³´'ôf?Øbå°gÜ´?Õš„‘Ûâ?Ý½Ô ?Õ^꛽3b?Õtñï‹?×OÁ?Ó:uXà,Š?Õ”o¨S¹~?ÕûôÔ#`¤?ÕæÔ|~\Y?Õ8þNà?Ö:0·¨?Ö^Å;p?ÔT,Hsâ:?Õ„(¯e¢z?Ó—–½{l?ÙþÁ R²?Ô™¶ÿç €?×ð{Ÿy?ØÙ»ªŽ?×v¢v?؇·!G¤?Øÿ¨Ò`‚Ò?ÕZ·8'á?Ö—SžÑ?ØvŠKäÐN?Ò¯¢ÀdÌ?ÖU'…FV?×ÑÓ©/ Ü?Ó9—5£ð?×êrþ3>ä?ا fþH?Úk`ÛlÞü?Ú€:™Ø±¤?Ô1Eë¯\?ÖT²·€jl?×¾£XÁÿ?ÕâqIP?رPlE•”?ÖHä¸hv´?×¥ajœÔ?Ö\™VÛ?Ò¦L¨ ¯ª?×ñÂDA?Ó~Ø49&˜?Úâ˸B¨á?Ö{Þ˜;6?Øw5àK1ö&?Ú-ƒÒ¾í4ð?Ö‰†Û²ŠÊ?ÔòŸÿñÚ?Ö'f8ﮬ?Øœ¦®Ýþ?Ùx¥(‹çÛ?Ö¸ºxÝ®|?×—È1‡x?בþx±Ç?רäy}Ü?ÖÎBdh°Y?×bP3œ8Ý?×…ÊÒ¢‰¶?ÔÕdœ}§?Ôͧ¾xª ?ÖËbl:?ØÒT|±=i?ÕžKc½òà?Ù²”b®?Ö÷…1=×?×]G‰à›ß?ÙÖç%—‹.?×bPðÆTæ?Ùa®*2Cô?ÚwàXwY?×påâq^?Ú>"Hà?Õ­­OAðš?×—tÝp¿º?ÔIÒûÉTj?Ö'ÕN޶?Ö·ðjòÜ?Ù_"‹T³^?ÙO€ýÖê?Ö å3É¥?×%ê™íÑ?Ùn­©wô?Ù*+íĺ4?Ùëæd?Ê?ÕÎ7,x?Öï‘ôzrˆ?Öä†6Â?×ÜËéx?×&‹{Ð@úE»?×]CV%¡ˆ?Ø.²Ð p?ØÕ”ÃÞ>?Ú4ç0õ¢?Ôó–ÜßÍ?ØT2£éùú?ؼð?ØQZ¯ãI?Ôì¾?ÕZ6!yž?Óå‰ßÈLÆ?Õs¦E¶?Õ€™¨5”ò?ÚÔÍxÔ?מwšA‰ ?ÔË emJ¾?×öTÛÔ‚?Úžx/Tò?ØÃ{×§ð?ÕŒÑY.ÑÎ?Ö›:ò[I?ØÂÒšþ9ò?׬…„@Ð?ÙÓ«Mª¸?ÕYʰbx?ÓD%«!bÖ?ÓÓEg¤ál?Ö¿Åê€?×L¦¹ñž?Ù}<ž(¦?ÕnÕÊ)»?Ö…°pÄKæ?Ôîèrà\?ÕÕ…}4&d?Ö¥Jp¤d:?Ô|W¨r?Úä¾lšÀ?Ùº:OÙ°J?ÖTC·-Ï?ÖÂ4~[¶?Ôã ßY”?Ø׊Œ€†?ס%<–Ò?Õ°vñ—ª?Õúdµ–?Ö«è§ú?Óëm©O}?Ø“Z90?ÚϚꡨž?×5U-z@Ð?ÚÒuŒDÞæ?Ö:lÆ7Z?ÖÎ;V¤?Ö$«â¿?Ôô…:¼?×+¤J`)?Ùvà»t?×Âùw1¸?Õí¤ Š ?Ô! á=à|?Ö‘ ʲŽ?×Hîã S?Õ·840ˆ?ÔülïÛ È?×%bb׌?ÕrJ˜éT?ÖŠJÈWUv?ØÄƒÕ¡Î?Öá¾7l ?×(Å  Ï?Õä&aù ?Ôâ4À·{?Ø\HßI0?ÕW±G?˜¤?ØgH™Ëÿþ?×<š¬hˆ?ÕoÒYhÌn?ØëwøÅ¶?ÑÞéòF! ?ÒîPýˆl=?×Q!—Ô"ï?ÖJü ^‹2?Øu «Æ~?Õ—!Þ(ûè?×Þ±–ç?Ø3òìKþ?Ú¡Ú'ÄØò?Øò©Ø¹y”?ÔÕÀW{{?×À=r½(?ÕÖΉ-n?Öÿz#t€¨?ØÃ¨bRV?ÚaC㮺”?ÖÖÈ@—ó?×™lǬV?ØÒ´×JŽÌ?×a§êACî?ØvܼP§4?ב6ù1ø?Õ€ëÕв?Û8‹õ%¯`?ؤyš<Œ?Ùu.ßñ®4?×E·µ‹R?Õlæq·³?Úd“e%ë°?ÕS߈7+ú?×RiÐGg´?ÓÅF"|Á^?Õ›Oz"œ¾?ÚxÎ -œ?Ö½õ&®?Õó];‚òH?ÖUÇ hxH?Ô©ÆìjWº?Ù^Œ^Íz?ØŒÒLõív?Õr ^4?Ö‡pÞÚØ“?Ù€¡\¤*2?×ç&‰½OB?Øoã””.?×mãÆÔy–?Ö”‚u¯?×™ãð;3?ÖдE(&Á?ÛE¨M0Ä?Õ 'ŸÏª?Õ \ŠÄ?Õ0æÏO1è?Õ8ñ_V?ÖáL^¿ýn?×GKñôN?ÚVÁúr_b?ÓJ)ÜÙê?Õ‘ÀDÌÉú?Ö¬Á ~ÇÊ?Ö¨3qƒ'B?ÖŠŸïæÞ?Ñø¾ÞÃÆ?Ö¿lü·óz?ÙZMa¥?×ôÛ^=f?Ôi… ã‰X?؆ҚÚ,?×`RÝkH¬?Ù‰äê-zÑ?×ÍwlU†?× h±‰Pô?Ô©{˱Î?Ӗبs[ ?ØEviÇ0?ÖÚt’ë-Ö?Ø]³7¤Ô?Ö}`8 ð?ÔžîÛò-?Ö÷:ÐM?ÙK¾"ºÞ?ÙŠ.Ì&?ÙÍ7 wÌ?ÖRwƸ² ?ؤÝÊÀÈ?Ö+_éÚ?×în?×`÷˜B?×0L†ÇÐH?׺+2à²ö?Õ+7t¯½?×ÿ¡Ofˆ?ÔÍNή ?ÛiÖüv?Õ¥ßw{и?Ö­ 5Tƒ¾?×+Õ{¨?ÕÔ !6g ?Ù2t&Ð?ÓÒ|Làø?Ù²] ꕊ?Ù?GNHß?تE‘ÑŽ¯?×xÎUò|?Ó´äw¨ †?ÔÜšTBr?ÕäÆ?Ù#%¹ e?Õx¶Fw[|?Ô°¥æÁƒ?Öå å]±h?ÖüüäÎ?Ùïe…£° ?Ø£)í³wh?×¼î¯Fj ?Ù?ˆ{`{ê?Õ ÆbE—?Úõ³74x?Úq´„ˆš?ÕTÌ29©?Øimj§W?Û'WÈ/’?ÖŒwË ·Ú?Ö¿øÄ¸Æ?Ó[^æw?غbÃ$?ÕÀž}Ýø?ؼÐäC ?Øá½¬¥¼?ÖàmB¥i€?Ú*ìÔè§4?ÔÇÖ¦-,?ÙVQG F|?ÚQÉzQm?Ù+$£ÉOø?×¼7ô^T?Õ_Digf?ÙÃG¤`Ð?Ô6(À¢!Ê?Ùá£GIã®?Õz:¥’ô?ÛˆòX0?×1Yôôl?Ûg›ßm4?Ù'Î6ö2þ?×ô€ù^?Úb¬A <ì?ÕïÞÚ„ÈB?Øšã\õ~?׆ø pVV?ÖZsU‘ R?ÖKMÖJÂ?Ôz$¶?Û_еF?×YÚ]Î6x?Ô*&@ª«’?×l³5¶c?Õk:&ê4h?ÖÝ5‚B?ÕLâpT2ú?ÖÑÁnMU ?Ùn¢°Yär?×'w”°ƒ„?Õé$Þ¥j?Ô‡«³ÇV?×b xÕdž?ÙLŒžÎh?ÒõXÐXš?ØÛÿó‡?ÚÈq¾}?Õéû¾‡?Õà ýV¾?Ó ÊÃÆ$?Û9Žn¹?×Í ,¿??ÙT8½Ó˜?Ö¤ìš1ªz?ÙV˪`žJ?×+¥DsN?×|é.{å*?×W枎\?Ø1“ž7nB?Ös¾­Øº®?Õ…ÖRõ¦?Ù7XO ?ÙjøOX?Ù&Xâĸ˜?Ø6ˆ†Øl?×4ÎÛ-Ÿ@?×Y¶¦tÌ?×oxgß Ì?×±tÖ,?Ù |6ÉR?×òDóŸù†?ÖÿêS¿Ön?Ú0½Žt?Ö0Œ”Ψ?Õ§ƒñ5ÿ²?Øa•¼ö(?ÙvƒråØ?ÙàÚs+è@?Ø;“¯­&?ÖXa£ø?؆@{ùñl?Ø%mÌwÌP?×,(D]ß?Ø(Ï` `?Ò”0lÒí?Ó–D×?a?ÖDíCÇq8?ÔîÖÈÅD?ØžìÄéf?Öûi'éæº?؆jýÇã~?ÚºM˜2?×––òÒÒ?Öâ,W“ãè?×g‹å P?ÒiPÆ×ò?ײ9kôÊ?ÔP¶ ô³n?ÔJ[¸îaÌ?Óõš•ÿ^?ØÙÿgKœ‘?Ô+@ì:?×]ð‚­ÿÐ?ØHøÐBtÎ?Ô"WZV°6?Õ>úRX¬‚?×®Ri—Ìš?Õ)FOKAò?Ù!É|¢U?× 6u¨W¢?Øæ= ª˜œ?Úç ~«v?Ô¸Öf{Ú?Ò™úm#A?×€ SemA?ÖJ*ºud?Ú« Ä®ÎJ?×,Û÷ö¿x?×ò'«ø?× 3@ bà?ÜùÂÀo©^?ØÑªÇÜMò?Öe·¬Žm†?ÙV¾j?Öª£ºñ?Ö”Ž ÔØ$?Örcm¾^?Õõ®_²qÝ?Õý j{C÷?×H™“–wÓ?ÙƒßÍœ?Ö¶–$¢ÎÖ?Õ«o8ßâ?Ùš«ØdÚ?ØåxÔ÷N?ÓñI6bL?Ø,ˆÜ€ ?Ö— :<¬?ÕœwÇsfN?×Ùÿ.´‚?Ô3¢L{F?Ö§p~éÚ?Ø3/Ö„?×ñ°ËðÜ?Õ‡9ûä?ÓfV¿‹„$?ÕÂÑF¶y ?Ó* ;Nª?Ø? 3”)Y?ÖŸ)*N…d?ÙkøŒG¥À?Ûðý(ÁÌØ?Ùù”ád-´?Ó`h°,Wú?×ú¬»À%l?Ú¼9)`6?Ø{Ÿß®„?ÙŸuõû¼?ÖïÝ—ÕÁ(?Ö9B_¦$J?Ôé-^Cf?Ø™ùt?Öü#W} z?Ö» )ªÐo?Ô,‹ŒÈi?ÙŠzöÇ3?Ö´ÈÓ¿¹N?Õø\ðeÓ[?ÚSbO½?Øô9½„Žy?Ø]Ä)j•ž?ÕþXR­(?Ø•#Z`?Ø[ÂôP0?Õ[¥!Ó ?×9ÂDDª?Ö!`Ø?Ú>/—žÐ?×·…FmsY?Ö¼*¯B?ÕE&Sà?Ô¡-ìº0Î?Õ± [Ìz?×윛´?Ø™‘µå02?Ø/¨xg]¨?ØÝjî=%Z?Øw»/ nØ?ÕÙj­ÿ·¬?ÔTKrÛKª?×1•ô\ß}?Ù=BË{uj?Ø2y ?Vj?Ö£€šB6?Öí³'íž>?Øn«Pmö?Õùc8L ?Ù^œ•Uø?ÙIàF™ó?Õ\0âd?ص4è‚ï?Ùù°”‡f?Ö,»¯”Ad?ÔlmÍNÈ5?Ö§òe¸Bl?ØÒÖSxKŒ?Øéoú‹É?ײ¨ß&:Ž?Ö¹]+oz?Õ õ§Øê?×:ÄÐÙ«¼?ÔA @>%?Ú„Ucç¦?ÙË‘ßÛ:?×­-/™t+?Ù M’]K?×SPq²ØG?׫"ûñzš?×ßTÔKØÚ?Öi¨™”?Øïv>w#™?ÖxÂ£ä Ø?ÖÇz­æ?× 4ÛO.û?Ø,†VÌ?ØÊuËØ¢?Ø$å`?Ö;­sòc?Øz‡; ˆf?×`•7kÑL?ÚÓ¤œÖ ?Õ!hõË;Ä?ÖÒØ!á‘?ÔýÓŠ@ˆÐ?×xx 8Îþ?Óôp1kR?ØÀsÅ–@?×ä͹XJ¾?ׯT™«ù„?ÓùÆ»’Ið?Ùn5ëàwÆ?ÖóþÂ$F?Öàh&nH?ÔÑ(r·ö?ׂ/Ðz€ô?Ù!D%ÄÚü?ØuˆtòÐ?ÚûÓRôì?Ø¥–#K–?×6G‰sè$?×½ÇAØž@K©Ñ £%@K† .–/g@K>SP6.@Kl¦0q…@K¨Hâ=,†@Kn.ˆ“–¬@K§õýi>Ø@KœÑŒ´vw@Kc¦f­/@K@ýJÆt9@K3§ñF@JÛõèÊ=î@K(+Âc…D@K†ÑñsJâ@K~?¥Šî9@K*w͹‡@KUìZ@KT”um@K§ ‹ÏoF@KéI¦TS@JÐⲂõ@KOÚ•é~@KEbãÒÈ@KCòWƒø@K´z–{¿M@KX rìõ£@KÙ"R_ð@JËP½!@K Ïÿ¯@K’/ÜÇ¢>@KŽ §û0@Ke®VD2]@K)`?´Gt@J«Æù@K‹"ܶ@JÕµ½Ë;@KZ i4X@K,^˜y¸e@K!¸AnO‘@KiBÉeÒr@Kd0¡&àÓ@K,9)݇¦@J붸޲@KÁiji@K&¨°Qý,@KI‘•<¦S@K)3€×@K7Ö‘@K|™œ‚Q@K1wE †@KÔÅhÙ¹@K_•–ƒÀ@K €§óâ@JëÆ¿“¶@KGGµŒÂM@KŒÿ$@K¦)|M&@Kl$O—~Ó@K;J`ÏÒ‹@JÕ\Z…Ç@KuóÙP@JCC¾§Å@K¨ÑÌRÆ@K¶3++Êh@K«¸×;7®@La¥[í@K7ÆN쟖@K£/Ë@K†ÍÑ|‘@J›õÓ25@J™ç«``@JØÓÕ»x1@K¹‰Â‡š#@KѸ_Cø@Kæ¶sõ#@K'*`¹yp@KAÆ¥À£m@KoÞ7ÓY@K­Æ‹å@JÊvþÉ7Î@KS¯ÅÞø@K” I½…,@Ku„:l@K;¬vh@K4Îa‹&¦@K4ùT3£¨@Jšžª¢%T@KJfÇ}b@Kë3äÌ!@KL¶ª2~u@Kb¦,Íûž@K=­·²@KhXŠWûa@L:iæ=°v@K}怘Áñ@Ke’ÕËŽñ@K@úE½È@Kê·™œ@Kw…XNÖw@K¡ë>À@KÌ!ÎtG@K€Iu‡"·@KBí!…@K§×ÇΠ¾@KÏìé÷†@JûÔÖx[@KiT5pL@K+ü14¤¢@K0–Œüû@K«!’Ê‘@K&‹Zî.@@Ko ߀ @KR×%PæH@Kz›O•@K’V¬a@JǪ³ñ &@JûÒÃßÍ@K²Ä*š=§@KQl%ƒG§@K IÞ˜¾@JÄ:’'ê@KAº­›@K‘ sð,@J¸ë±î©‹@KüÒµo@K¯á• õ@KG}z–šY@KFW‘…2@K{¯1ü³_@K,]ë)6ˆ@K]×–¼4l@Jéêmʲÿ@Jåë´"@Kl«¤u¾]@JËt:ÈDý@J¬Iޱ¶E@Jã¸û·Æ@K»‚ 4†@Kh³ÂGK@KR˜¨ä–W@KcÓëÄŠ@KF垘Ը@Kž!Ù‚™†@JËÖøæÆ@KR¸à‹{@KrJÿį·@K°)!ÔÑ@KsêÌ)2@Kdô°L=:@KG#Ú½>@K¾ƃ›Å@KЮ–\.@K—UƒGÝ@KrÃ6rœ@KnAç¯@K< ÿÛc@KÃÙ»Ææ@K Z){@KÂ>ß*ü@K ³òn4@K1ഠ׬@JÅ :V@K4oÝr9C@K·ÞÏÅ('@K\e(þ@KBº‹À '@K¬Õǯ@KZ×SÎ@KÇAϤJ¸@Kg©•üŠ @Jî)Ì* @Kuyÿ­@K}½Ve¸@Kšu!„†-@K"Î/Š®ì@K!7—Y¶@K9|,[@@KÚpÌ$öþ@KTÖX/„@K,¡*@JÊ! ažG@KÞ\ýö @JôúHÚß@LõKŇ@Kïñ‹Y@LɘZ´@KÖìó½@K4¿æ1^[@KÍ ÆuÄ@KÞVªÀ@K¢Ž RÑó@Kd¿-ò¸Å@Kܧçy@JÖׯs·v@KùˆÅ2°@KÐçaÿu@K%Çß þ°@KLâÈæ$@K–l©3ÝÛ@KR·¨ Òq@K®v™@K€=Ö@K_pqc@Kn ?@K7* M_|@Jùµnðü¯@J•AëOhÉ@K5*×Ï_@K Õã ¾1@K&£†ƒz@J×5TQ@K×s¢‰ÍŠ@Kf,»vßì@K—Î'H@Kÿ¥ÓBf@JÞfådÌ@Jõž]@KxÑÈ*×@Júˆý³ [@KRݾBËå@K$öË× @K¶á&ÞkN@K\ê*ðtã@K ¤^ýW@J¼Gu¥<@K¦—–ŠÒâ@K œxáI@K#\U@K=“ïTò@JðÓI’@K0Zåû|@KÝó´En,@Lwj´ï4í@Jìí½Y^@KU¾…!S@K“°¦ Ò§@K’D“&_@K*>€ì_V@Jû¢Ï)P@JðRÌÅ.X@K7IÁ‹Ã|@KAFË÷P§@KNWåo³@KÌì0+Îã@Krùëg@K*æ]¦@Jö^T4Í@K#áû5>@K#® M@Jž$Ác¯@K7"f_@KAñbjm@KcÕ«àæ9@K)JB9Àù@K^O;]V@K"óvE‘@Kzv¾„# @JÝV€ÉÓ@KÐò ¤@KŠÔcmZ@Kišbyóq@KxÃiÊ‹þ@K˜×én@KYÿ„MÙÝ@K$Ó–ûùt@KHù?#]@KìhünP@K ’ºÛÈK@KŸªx›Œ@JÆ´Ë!Æ@JØñRé†@K›rL¶%m@Kml°J@JøS¡¶)@Ksãæñ1Z@JùÚt‡¥”@KªŽ/ Ã@Kh©èò¹¦@KB9§±€=@K©Öfa6<@J”•¶ @JáœÜûB•@K>%V¡Ç@KŒ…޶é7@K¢#5IÔÐ@JæárÒ6@KÁ'»Zž@Kr @јB@KäðA"_õ@K3¾žEü#@KWK m£@@K;Dþã™@K@ä˜R@Kš)}kò@K.âm ±@K±–wáÖ@KÔžDTm¬@K;Öÿ@Kœ9¨g$@KRLÙFê@K_ot;5@KÁ°Ìú[“@KG"k÷Q@K‰É@JÊï…ê`‰@Kq÷A•_@JüÉK¥²I@Kšïnû¯þ@Lµ&4°²@Jã”aØpó@Jþ½y í³@K&Z#bÛ%@Kf"tŽ+€@K¶ô9 E@Ko’L΄ä@Kr7g”2@K²Ö’”Oç@K£W\Ä@JÌh>¡È@K$>/È @K¼ÚÞ[˜@K¤ÑÚ3¨@Kµ¦ÙyF@K"¢W`Uý@K·Œž²<:@L!ÞÕs@Kb’Ñæ$Ã@K„µ-†’@KN¹º@K Vm=@J×÷ø‘¶Õ@K@K&ÍV„úå@K<…@À@Jõ¦ÉT»@K.²D6t@K<Ú [ë@K’²tü@Kºc™8T¤@KˆI±a@K’™þ2B@J¿VQrQÿ@K&êeAå?@Jþç»Û÷Ë@K†cò ³@Jò'c•„°@K4ÇN˜+"@KÇlZ±£ï@K1ÁAô¬F@KáAFiÃæ@K;%ñ¢@Kk³RÙM@Kžó1éN=@KŠ.GèP+@Jø‚¸À¼@KÜŸÏ¥Ê@Jô׃:@KoÏž|âÚ@K®Û3i~×@LÉÙ6+ @LF«Šrèt@KPÃÉ@Ke3š ®q@Kn”Ó S@KO5/{œ@KµføÛ‚@KÊ;ÑI ˜@K±ö&U@K "´#•@K‹Ìó4ã@KZŸ+†@KfŸ¢ðS@LЩChu@Jù³&àu@K; Úö{þ@KÏK¤ã@KÄ´c®k@K.¡Þ9ÊS@Jâúñ3…@K_qXA¢Ð@KpÁ=(L¸@K¶~<ñp@K^@tPÇ,@K-ËéŸÜ@KÜœ#»:8@K”=ÕÍ»Û@Kc¬ 2Á@Kä"Î)0@JÍ¿Û JË@Jþš ¡HÖ@KRþ¿™ªa@JÄš®3Ÿ%@K‰Ñ*’@Jò*±$1«@K6`Ê)¢Ä@K“½äºÏ@KÚH?wÊA@Jú¥Ê.“?@KXÁz÷ÌØ@Jÿ»¯â#@KM.¿ò@KO&ýN@Ÿ@KÌ6Ø7o@K²^ݸlZ@J±þëµ@K M=”/@J÷t¦ùøÿ@K@9ß&@JÑ7!LÁ@K]ï¡„_@KAΙq×µ@Jµ R/@K")ƒ*‚@KB”€Þ`t@J³„é …@J½yÛvT@KÁ˜7×@KI~Fã€@K!SŒC#@KL¬%Í\©@J¢R9al@Ko– _K«@K ĤpK@JÓx烦@JÜ¥È*±ä@KÑàºïYÔ@KẒ)°@K-²2D}@KJ7‘0e @K>·ª)ظ@K‘äõ*g@K¨<³iy@K6’ÉC®@KO•ž˜í•@KÎÉÕnr@KJVÃ@K. Žï@K$ Nİ@K;"}qP‰@KA$?û@Ky´$ªKž@KÛsÈ(«@Jè!a[o¦@K‰‘…4˜@KÉZƒ¡a@K”Ý«g@K‘ Z1Bâ@KD…cÌÄ@K.ƒÖ²>@Jî™›z…À@KGprÔkÿ@Jpt]r¦¼@KÙæƒ…Q@JÐd T·@K¨9Æ;5—@K­[ðk*@K›<éÅ@Kê!ñyõ9@KQ1â@KtªE¢³(@KadIäªq@K½àMIÈ/@K-ëžÿ @KÂRG¿ì@KÉï+*÷@KpH Ž@K Ò{¹ @KFÈÚ” 1@K•ûNF@K„K½5@JÛÚêõËš@Ku·ð.î›@K>•gÔ¯@K X¶«@K¸4æ¢ê@K|Û©¶@º@Ky¾‘@KÔ¡9‰Û@Kh· ;8@Kàë#Õ@Kð˱B@L)jµòÁ@KReý,Ü@Kˆ „k€@K šdçj@K0"ù@K™Jïþº@Jå¥cþq@K*ž9i&l@Kl”X>é@L Ýæ@K1±…c>@KS¦Sáà@JÄR-)6@K›"ðÖ¿7@Kº:JãG@K£•¼Ã@KLû$®™5@Kœõ"v,C@Ki1I4u¹@J”s«rá@K½_K†@Kâ"Ë)Å@K¶UÓ¿@KƒæÓ‡ƒ@KOÚŸ áo@K$×5V˜@KÏ"BM@K¼‰Ù]%@JÒá_OlG@KKÖ{Âa–@KPöÿ9˰@K‰•5Å=M@K›¥ó—@KÓ>_â@Ky"áU3;@JæË–]²­@KiwÈà¹Ç@K&ÜOK¡@K@×3›õ@Kn±*ôà@KA¨‰í¡@K~sœö†@Kd7TÃ@KËAÖ= @KOY¼æÔ@KKw÷t@JÏ7£f @KÔ®8¢@K¶Ê_@KØ‘^^@KÌÃS„@JÜßDÒ =@KU#ÜŸ‚-@KkNºT:h@K`ï›ÒèÃ@JçØŽ!9@KËÿž3 @Jüqf×@JÕí®†@L°S‚B»@K…ëçü•ˆ@Jîï1 ­è@J‹„¼(@K…b2B@JýÖ ­Åñ@Jî7[ZI@KWÁ ìW@KFô]D1ç@K÷‚¾Îû@K³Q½~Û@KêAY¢%@JÌêÃ>@Ki„|Ëõ@K£Ü<»@KZ!,·s¿@K8qÇÙu@Kaä_C¾@KµváÓ¤8@J°Jev†@K67Iù)Þ@K#¡j@JÕe½\@KHÒ å é@KµëF0_@KÃU”…”K@KdO­äR@K2"4—Ò1@KŠsˆfDî@KFF‡Î®Ñ@KTº–ŒÄ)@KJ‚²SÕ@JážÿQ*¡@K+ )ˆ@Kkõ?÷Õ@K2¥ÎAV@Jà •†š@K.£šCxˆ@K÷¡“Z @KlZ} A@K+!/’Ž@Ku'p›@KFãþ¤s-@K+ZÈ'8Ž@KàP?ÄY@K\_9y: @KeÚ¿Ø„Ê@JúW.@Kÿ}<¤Å@K4»ñåLx@KcõŠ÷ª@KV§{ÇŽ@JöèU;R}@K C@K¦6êC¨@L*F xo¼@KCL&C@JŸ]ò³•ª@KfºŠÞë”@K*ö\2H³@K\¦x_×.@K*æ-¾@Jˆð-@Ka'¢AqÄ@K+ÚÓ'Ê…@J×x4)–@Ka&<þ™@K>òœ7¼€@Jù÷Á8@N@KJ€!º™)@K|{Ñ6Øû@Kæ2ðØ•Ô@Jœ#-ˆ;ó@KI•¥ó@K.ÐÏ ú@KKz%ài’@Kaõ&—¥@Jè7‡a@K¢=¨\0û@K|Øw[&h@K 1¢fÝ@KÓž^@K£jÞ!:í@K½ͼ o@K€Ži=`j@K¦¬z¯6@JÈ«Ä ¡@KØÃ†ÛÄ @K4‚ʤ5@Km…ëÇ@K5žZ©ÍÛ@Kqm?Ô/¥@KW,õ?AÁ@K¤?.R²@J¼:£¸FC@K•Å¡µ\-@K£-v q)@K¿À‹Í@K6Ñ~ýöN@Kn?ñ¬B@JûÌ]•2@KH³Z m@JðöÑÒm@K³à ^wš@K1A µ±@Kl²÷ø„è@KŸ4h¤B@K¹]Ï;þê@K=@¬à'(@KröyÖu@JäÀ‘é @JèEöÀRÒ@K~¶2—@K ¸Y@K䆯–Ó@K$ä_*H"@Jà3§·I@KKÐY0Q@K=i§Ê º@KÅ ñ~â@Jû_3èí@JâŽøÞÙÈ@K T%lÀK@KãkH·›@K-šÄ@KUœñ•°£@JY#wÊÖ@K(ùŽÔHâ@KW ïñ @Kd4Æéî@KssXªÞ0@KI¸vR¯:@Kj±„>Šõ@K=o2#w‚@JÒÉ¿'dÊ@K?§ÓaøÖ@J±ƒsä‚@K•n‘›Š@K ê;º(@KH´7iü@KÍÌT9 ô@KqÞfjS:@K>DªH8@KR?ô¥Jõ@K’‹5Bœ @KëÄxj-@K¬PêK@Ka/;?ã@J÷ÝÍ¡Ì@K ¦Z¦ïg@J褗$t@Km|¡@JÞß”¥V@Kâ(RÛüß@Jñˆ8œ `@KHÄü´ ³@KF@K·éòQ@K2£N†¸ò@KÕ:î‰@K!ö#-ª@KvV›*@Kû„]ð*?@K“<Ç·) @K3ÍUpe|@KŠþIÔ I@K+ÖÑ@+8@K?¬jÏ··@K2OaºNˆ@KAÞ8,3@K#5¾Ö¤Ô@K‹6ûKñ.@KŠŒ³•ú@K1ÂZ…ß@KIfZ©ê@JxH¹4Ê@K!ø@K,û~‹?@Kšñ½ )ä@K;Òe3è„@KöÞÆ¢@K¶ƒe¾=@J†Õ¯¼ÙÖ@KÓé=°Î¨@JØí0@J£áý.º²@K ¤µk@K=øÔ@J§ò¯&½´@K§ß:bÕª@K¿çK—gÔ@KZËtîÃq@K!1®g@KD"(áÍ@K7)°ôj@KÑè; @KVáùáF@K §yöì@LE´Òm¸@J¶ ㆳ5@K,cÕ7»P@JÝ£øg@KN#ƒm¼Ÿ@K<*.}µ¶@K“J¼ @KVBÇ+U@Ke‚ô’g@K[ß±µ0@KE;B„ @KFÍú¦8@JØ›Â@K7f@JÛD)·iñ@J»äâ@KiQzÒÙ·e@JðÀØÁ‡¼@JÞºÆ2x@K6ƒ®ºÝò@Khù– »@K½Âš´'!@KÅFJ ûg@Jè¥,²x@JâÌYZJA@KÃIõõ,§@K[Y›4ÁÐ@K7Ž|˜(©@Kœ~Ëmý@K€ÙùãvO@Kv/ÍoQ@K²¦"”8@KEÐ;íY§@K¬JÁl @KX‡ìƒû@KlpâÖd^@K(ä$fD@KbhÆÛG@K}ÿJìM@K›F í*@Kdj‹ó‘@Kk«#jà @JÒ±ªB*@K}¥£a~ø@K¬~âh@JÅ@`V®Y@KB´3Ãg@KÌhˆ†˜è@K/4Õç¾x@KWê§a Í@K‹L ì´@KLt­þpM@K{i«8û€@K‡âÊ:@Lç¶9;£@K7ýZO¹¦@Jâö©¦@K¹nû Ã@J²¦ œCª@Khý U„†@K‰œ5Ì/G@Kb°µ6Q@K§fwùŠB@KÙ @L 0e™T@KJ“`Û³È@KJ¸Äƒ¥E@K¶°8,gD@K46›ø@KJkç@Kå:ô@Kv–¨r,m@TNOËÐ@SçIê8=Á@T%ÛK@T(¬p+@T=<ûâý@T%J§æ)@T8àf®†@T% DQ e@T(ì²@SöÿGlûG@T'ÒŘ€¾@T)Êa¤,@T6âuÕY@TÌq@T”%\@ @T‘oÞK\@SÿsÀC@(@T+Úi7„@TMü0žŠ~@SÖç©l“@T·™÷y‡@TAÓ¢f—@T=`e³S@T /xröB@S»ÊÙŸ9@Tˆy"ߊ@Sû(÷œ@T^†8ÀÃ@SÒeúÇ›@SîOz»Ÿ @T ïø‚B»@T"PáÆ(@SÚõm]~@TÎd"/“@T»­«S@SçlZOÍ“@TŸl£¢!@T5šÌP@SçhAsàç@T7¶`šl{@Sê yÔ›Ÿ@SøÏ’b@Tg|®uð@T#ó2‰@SóQÈ]@TNP9¬¼@Sáé¡J•µ@TŠÒc«@TÐÂ]Á“@TZÜöm#@SøÍå£e4@SíNíœhy@SÿGF°þo@Sõž/vx@TÚô•™ó@TÒïöqc@T77ñŠ@T êÌDÀ@T/j\®J{@SߦdzÎ@T.d8 I¯@SíÌñX@Sð_3 * @Sú™üh@T2×4¹È¬@TˆÁ"ó~@TÀ6»@SÞ‹ ÿv€@T:¢La,@SöØómX]@TTÎ5Ó<@T<Ôôf*¨@Sû9Gc\t@SèÔ « ¸@SÕâ&?d@SÖ©Óý@TOËöpè@T3Ñmèê@Sõ% 8cF@TêL@SÑŒû@SÚqj™/Ù@SßµÍÖ‡y@Tâ»I@SóÍ4Jç*@Sà=µ™«+@Sì…¨ØM„@Ttøš–@T+¦a0g@T=çXÑH @SòPÉôà@Sûñ¨ŒÓ@Tà‚xBr@Tý˜¯%à@SýäÞΩ@Sé øúëž@Sí¸l}kÆ@T]Ëa@TÿVX ­@Tž!{È@T ‰Ì£‘@Sù=f*–ÿ@T8í\6ë@T$B5øµ¶@T ñ`r@S÷ì{S.@SÃ,Ṹ¤@Sï1šP +@TöŒko‰@T6îËG@Sþ©Gùsa@Sõ2¯Ši @Så]7ƒ…@S¿jÒËÓÀ@TWÜ”¥0@TNc…VÛ6@SçE¼<ã@T ÃZø@SùT•Í@S÷JJ%~@Sð‘{½@T D¯Æù@TS@ÍY Ø@T&Fý*#â@Sã ÚóÔ@T ÀHÒ q@Sï­p¡@SÊPLìË@SÆs™Ç³Ñ@SíÖ[.@Tœ9Ù@T~TU@SãQ—-@T%¼}º£i@T ÂìSA@T-ÃÿeöÆ@SÞü+÷ß3@TM£ä&é@TÃØ™ôl@T Xé~ä9@T£y±Ý@SÛkPþ^@TÇÝ@…k@TIªÔôZ@T#iœp@SåYo Í@T6yN@T1ôòC¬@SÛ÷r|‘þ@S÷œ‘ä]ø@Süc3²tÏ@SþYQÅË@SÒwEz¨²@T åÒ,iB@T •‹e$@Sò`Zy¢@T V@T0q»à´Ö@T¼6½ç@TÒøÓoF@S÷aù„Q”@SÖàDg,U@Sþy®lº@T-©ˆe@SÙƒKüeß@SæhÖì³@T'7þò‹|@Tºi ­@TBå7$¶@SôÅpüÂò@T#zoâõƒ@TÈö¯Rf@SÛìC@ýn@T ZùŽ@Sÿ”ÓŸ±@SúJ¶Jm@TÑOëC°@Sè £A¾@T7êÅ#¤@T+¯Q×RÂ@Sâ»ð@Â@Sð¶ˆÇoû@T­ÚêV@Tä{ŠM-@T=0”¨@Sú­Ø‡°@T!Ú°Qòë@T1<Ó6@T Ȱ@T<Í1Ây@T"Õaϯ@Sï·ÛEë@SÙ-èj–@SýÀMÜ1Ï@T£9¬@TKÂYÛ@T@héòîo@TÍ\¼@Sõ(Í@T:…5Z€@T€ºkQ@T²F"ÔÜ@TT‘o6@Sö”Ø£@TDZ<‘@T> ¯#@Ts:ò@T*O¥Ü*@T@,q›a@T hsO+¨@TîšÓóû@TXYÁ @T "G¦ÙÓ@S´jðô@TŠ{Yì@TÒŽ @T[”– @SùÙy@Sùá'Z@TÜŽË@TR¥À@T*}l{{Ë@TG'åm@T-‚NÆÓ@T 0¼ðu'@Sä%beë@T&\щÚ@T¸WÉ"@T*ôùN@Sâ9‚ð=¯@T5`h@c@S¿Ž-ò @TǨ•È@T XmD@T}_ø@SËÙèæ@T?)ÅL£·@T Úò6Ã@SÖ4_ Ç@TÁ½ýE1@SÚ•<á=³@T#Ú\ªŽ™@T9Aöâ@T<ÍQãÕÒ@T&ü\ 3@T Iy9!ä@TC÷|sÎ.@SÇÛwÞÐ@SçªW’ )@TzË%¹@T ”‘@ß@SÓ·ŒZ`Ò@T£õ9üÓ@T¦žôË@SÞV¦¦@SÌÒe+û@Tûœÿ@TžT…Ù@T?%­—Ö×@SùDìÄ!@SÊ `Wµb@Sõ_)’@Tm?†±@THü ®Ô@Súe´èÓM@T&1êçO@Sçöñ›^@T2‚‰@Té„` @Tzijø~@TA‡ö†Ž…@T)e¾¤`§@Süç¬@Sý} éù@SÒ…Ù‹@SÇñk̈â@T¹¬=/¼@Tkì3)ö@SãlX1C@T‰°Ô=Ã@SôlWM¼@TŒl!sZ@T.aW\ @Sæ[)˜@T Cý<ÒV@T[!-²@SÖÿõC@Tù6áû@SóìB0—À@Sý|›È5ö@Sýn¼nþ?@TnM¼H$@Sê„^ù@Sú­[­?@Sæ×HF@Sʵö»@T >dÂÉ+@SýâÍÞ@@Sí‹EÇ:À@T%yI¡ïã@Sç¿ ݸ@Sü³ Þá¯@SâïUûWÌ@SäôÀ Lû@TÑ„ªã@T",Ü©½ã@Søð÷¸D@SÌéoUA@TfôúöŸ1@SìÁUS–@Sïºî¼@SüÍÇg\J@Ség×ß(@TP¤V@SêÇ鿇@T?JœÐù2@T™Éb@SõšÌ“ß`@TIÆŽ@T UÁú^@SõÙIÓšY@SÌ[}º×@T“J„@Sþ&Q¯@Teu‘o–@SþöZ‹zS@T%,Q¬@SÛ ^¨Jƒ@T>A8 Š@Tô¬÷Þû@S°QŽl|ž@T*Ê»ú¥Ð@T üýX@SÿÍc\AÎ@T« ,®)@Sõ%øÍ›1@SúºkidŸ@T ›îC€@T ¬]€#@TÜj7{@T ¤vK€@T*¦û™“@T@_pã @T1w‘7¶@Tƒ"ÌU@SøŽÈÎB@Sà†dÚ@T*ÞOhÌ@T¼^G‘@T¸Oš@Sŧf‚­…@Tû[Œƒ@SÎÇ×+Bñ@SéŒÀ)À|@T"=¤Òµ@T=–Ÿ¹",@SÚ_†ÿ£@T6ÕLÍ=@T@ïO9óf@SàA(Ò @T7Ø#»Þë@TãoLX@T% ŸZ@T2Ò(tÐ@T*'4¾L@SìÖ½xd¯@Tˆ+¢ @T¥C…åÀ@Süî’8›#@SÐ Z—ËÞ@Th3¿Ž@T •¢¹&p@Th»O³@T 鈟÷¤@Tn-æ W@SõF÷ì/¦@T¨P™·Y@Sí½þ.@T\Èâ!ã@Sä:4ѹ@SõºY;@T‰ÿ½@T D Y<@T)Ep¸#@TY]í0@T¿)vHá@SÞà \1@SøÕQñ !@T"â‡<@To Ë@S÷¶öØ$£@T £ª€ý@T(è<Δ‰@T>vJzå7@Sþï‚ Ø @T$’‚âÎ@T…Å#ÄÓ@T=^8´ù@Sß”ãºþ@T8óë^kä@SÞ8ž¼ïá@TµÉ|¸@T+š½ñ†ž@T$I@Sã£o4®@T t@SôïAí@Sân6“bd@SØ(kæ˜@SãOé·ý™@T)~¡ì¯@Sª_÷¿yà@T¡7#”Z@T. 5àTP@T&¨bQ@T$@Õ²›@Sû“0}ü°@T<™Ð”@TèMƒ@T±"ÒÊž@Sà°q’mý@T hõ(ßð@T"ᇾBz@T9Wy¦Z@TE`x¿.@T¼d(•@SèLÞ.Ð@T ¿®¯ä @T0£aC@T‹ ,[@Sí:ÙšÒÚ@T:›+2ä@SþÉXË@T N¹‰@T³½"R“@T£ÛL’@SyU„7!T@T¶%ô‹@SâÝ”ßÐ@T °f1ÔÝ@SüÝYªyã@Sò%/‘´ž@SîŒZ Ž%@T Ž“U$ÿ@TC*ð|ï@T;ïÇtÙ@SÜm¨¶Ñ @T9¤™Ù4@T"ÆTl5ã@T.=“wª@T$ñR‰@T±‡Ð@T[Ñó1~@Tð’‡Øo@S颴‰«³@SÊ•\[ý_@S·Šé ª@TD©’,Ÿ¥@T•É)@T9ÿ·k@Sμ×Fœ@SÒ’un‰‰@Sâ׿ù0@T`ªU(›@Sî5\û @SÖkÎBå@TDJh@T 7žtð@Tï÷åœ@T(¼‰3 @T= &Ã@Sÿñš° @TmƒJk@T ®ùR¯@S÷´?¦B%@T(;¶G†:@SævG®¼Q@T¦“jš”@S¶ëP#­4@TH£_ó@T¡¤ Ås@SᦩIÑe@T虿I@T›d-•M@Síö×¶l@T$Áà‡@S¾0õ÷îò@SàIt1D`@T 2Ë1@SÞCzrïá@SúO»K7@Sõvñ“7@SÝmSL@SÒrª5O@TÓÂCëf@T Ú+®@T@‡”ŠÉ@SâöU/–@Sýsé¾§d@SÕ(5„‡@T–7÷¹8@Súó5u @Td Û@Tó<Ú~Þ@TLÙªì{@T+±à(r|@TçºH’Ñ@T=”ùÿìt@TK`ŠÕ‡@SþIñpa@Tûüve@TÕf±EÒ@T8öURÕ@Sð‡O·À@SêàZÙú@TרXŽ@T^ÁŒÛß@T+Tº§@TLÇ@TÔý} @T»ÜÀ*@T¤sgÅ@TL¬<) @TIÐÅ@O@S“†‡¤@Ty ù«@SÚ‚Q÷0@T œX¾ö´@Sù©¢†Ñ@SøbI â@SêèGù§@SðlŽâÞõ@T7`:Þ@Tw·y†@T3>Íþ@SئÀh¶_@Sýî%nJ@T‹JL£@T5…—Ðo@SéÛ©¼î@T:­b ~@T>©’öùó@T ÓIƪk@T3(„ fÌ@Sì¨Çò@SõƒãEøI@SóDw›C@Sôá>ë@TûWÚåû@SÞ‰C?à‡@SärEºÔ@Sï<ª²ïÂ@Sìœ5Ü-|@T'úêd@Sô >VF@T͸ òû@Sùz£“åk@T8qeîÆ3@SÝbÅB¿3@T]f‡ÅÑ@TiK&,0@T+¡­7@T4òü)»@T,©ó‘W@T ”&³å€@SܳȢgE@T@U@Tgþ“è8@TšÉmØ@Tþ>”µ@TPy&jt@SõsîƒÞ@SâsY5ß„@Të…aµ\@T ‚ñüÒ´@Sþ6O@Sî65²×@T 5s~¾h@T3+ò Í@T|—½ÿ@Såwz¦v©@Tuø‡+Ù@S÷ÏÕ!=º@T)˜DNd@T/V2O`6@SíŘz@ç@SÅ.[ï@T"'ž½P@T óÍ™Ó@T rM¡±@TÅËI @T4adä@TZp@Ô-@Tf†ç ,@TÒŽä®u@SîÅÕg” @SðµÉFH@T e×Ô@Sà˜¾Œ @S¶ÕpXZ@T§KI€@Sñ¨=ÕÕ@Sðƒ/ë(@T—ÿð@T ‡UÏx~@T2ôÄ¥@TBŠpâS@Sì-¾z{@T,Éü !C@T–Š£kä@T}c»£â@SÑ#–-ØK@S§œ¡zí@Tž(¯@TG#óÿÂ@S䙲-Z@T0‹ @Sõ€BRæ@T6ðd©@T"©»ï½"@T_m.‰@T+l~:@T¦¯[,@T ÿWkÙ@Sô *Ù @Sö°ïfF@SÖC›áZo@T ´YÛ…@T)ᙬ@Sò«|[¹@T*îú@TÄØÞŒG@Sõ|Ë?“@SÖìÀ¶å@Só$?4M@S¿Z(|xý@Sþ*N´%@T6 0¼ms@T"Mª ¹®@Sîú0Ï@T6^”GÛ@Tà°¢’g@SïV8l@S½rYüdô@SÑ/§—î÷@TÊ/Ë @T !eæ@Tâ^Ôr@SÿŸ¢£æ@T0jËõÙb@TxÕ$…D@T"0]@TJD!$@T ŽvW«@THG€Ý@SõÛ×3«Š@TÑ£@T2pU@T Vã~åÊ@T'3¾vÒ@TßhQð@Súµ_ë…@T-ÊÔ8@T*Ç3éB@TÕ„Åž@T“7@Sýwâ•´@T2ÛíÖ@Sä겨’±@SÍ# ‘,@T8]=—@Sʧ5žk @T0MU?›ç@Sï@S×RbõI@SÝ=E|’k@T;?pŒ¬H@T¦ì×ï@T¢¢¿@SøÓ=»¬Ä@Sç)&AEY@TcFéI@Sñ%X¬@Sù’qoC@TG+ÎÙ*–@Sòº®» @Sõ¶Ñ^@SølŽ‚6@Sìp»Ø¶@TF?Я*@T9CTÒ@Sþ¿…Pû†@T)oàt]@Sâ 矦@Tæùy%³@Sò9: @Sæ·Tº~¢@TçÉ @Tª½’Ü@Sê­îšV6@Sù;Îó”-@TœÿÙ@T<þÉ,Ò@TëÖ$¦@TZ37@SÑÿiéq@Sù P¡d#@Týÿúò2@T iÀÕ@T+&@!ŒÅ@TF˜f|@TE°%¥@TÞUFðX@SíÐô_l@Så  §¿@Só†P%@Søü:4Ÿr@Sí£ÙžU¶@T)dCC~@T׸[âŠ@SÖjrÀO@Tžõ¤@Súþ+}ܹ@TXØ)–‰@Tø£%´@SòhéÉÑ>@T1‡Õž–@SüÈ`Þ@S¼¸IÃb@SñÀ¤‰z@T"üÿï@Sú£ÐEž¤@SÝ'>•†@Tîi¨ @T×Ú†´…@T)†Là˜S@Tk©{b@T ’l ™@SïJ:[’%@T•¢Vȇ@T§†&»@Sît®{@TLbiJ™@T(ò¡ðk}@T3?½÷ùY@SýŠp8T @T+•I‚4™@T`ǹ§ƒ@SÖ÷^sùy@T9ã!È@SäÉ7á?@T8•êÐ@T}ô"@Süºþ¡@SÚr³«¿ä@Tgãý»8@Sä„\&ß@Tä&ùYÄ@T"[ùjJ@SóU"gçÆ@Sïy¶°Ô@T àG«E,@T Ç…—pç@T­6ÜS @T.d@T)Ù7èt@T3"ºÁ^@T€F²îþ@Sç¦Ü®êY@TX&åÑ@T–T- dim èþ@@@SÀ@K@R€@O@U@@K€@V@U@@I€@U@@K@U@S€@G€@TÀ@J@O@U@J@SÀ@I€@G€@S€@Q@@R€@TÀ@K€@S@S€@SÀ@R@@S@@P€@T@R€@J@H@T@M€@V€@T@M@U@M@R@@TÀ@P@J€@T€@M€@RÀ@V€@K@T@K@TÀ@QÀ@P@S@@T@@M€@U@H@T€@N@W@S€@S€@P@@R@@T€@L@SÀ@QÀ@O@S@N@S€@S@TÀ@RÀ@T€@Q€@P@@R@@V@S@T@H@U€@N@V€@I@S€@O€@R@U@RÀ@I€@T€@O@V@H€@TÀ@T@@G€@U@J@U€@T@@RÀ@M€@V@@SÀ@M€@T@@I@U@@M€@UÀ@J€@Q@@S@@L@V@T@@F€@T€@K€@V€@F€@TÀ@L@V@@G@T€@I€@U€@J€@SÀ@T@@N@T€@S@@S@M€@T@H€@X@J€@S@@S@@P@@T@@QÀ@Q€@T@@W@@J€@V@@F€@U€@M@S€@P€@S@O€@V@J@W@@H€@L€@S@@Q@T@@T@@R@@I@U@@R€@K€@S@@TÀ@TÀ@I€@S€@U@G@TÀ@K€@T@@L€@S@U@S@@T@@UÀ@S@@I€@S€@N@T€@VÀ@J€@S€@G@S@@U@H€@TÀ@QÀ@T@H€@RÀ@P@S@J€@W€@K€@S@I@T€@K@RÀ@S€@SÀ@S€@S€@Q€@SÀ@Q€@K@U€@I@V€@K@K@S@@SÀ@P@RÀ@G€@U€@O€@U@@T€@L€@T€@PÀ@R€@K@TÀ@R@@R@@V@T@QÀ@TÀ@L@SÀ@S€@U@M@TÀ@E€@N@RÀ@T@@G@V€@G@R€ r“3èvŽ‘ ?h Tk{0a —÷—˜ÀÆÃE¼!­›8³v"øAt6M(—:*ñ³NÎ Qúoº_¥VÞæW)JÀÛR|—ê¢;7ŒÑ«(Ï[%¨…¤ãEz‰ImR—ûèk»Ê‡{U,ªp©/$°底Fœ 2òŠŠómŒ€l§’æÎl†œ(Hù@+^v²I\ÛX]ä–À áts5eâB£©TÂØ8WWæMjhWäH’ÊnI¬58±*Ù^£–®º¯@Pž1Ø!•3‰»î‹xЙoÃ5+êDÌ¡ožÜÚ¢vßÁÀµü\fLZ<*¢Ûàý†÷ú÷PíLÊØjçÚ;ZfWÙVºýhrܬ–v*XâÃÖ?Òo™Zd‘¡y§pÓöý ®òô¡uÚðö©%ÔÖP?Is/ÆŠ TP¯Ÿ¸s¥R\‘é¬\ÀÞvΞ-Bi"›šªÚ­[ÌûÖFŤN.|›ÂÒhžÆM]§+[«ÎîÃÛ+Èj üËJÜ)÷œ…xOšš¦2è<ÁMÿSKèšä#45„·ø­¡ ÅĉùÕêxêU’ØSïì*³öQ…¥ Ki ãý”K+ÙMð;攎Müûù{"Y‹K•%º5Î̼™n_ÿ›q}Uü±>l±±šÂì´naó—†þËvÔ¸9û¦››yàŒÏÌÅ„°àGÈ"Gù('ö~ qQŸ<ྋò‹“jðŽCFDáåÂXs1_:á™õð ¹®¼  Ïðjƒ`ß`s|Ò¬ÇÐ!¡"¿å¨F€3ŒßíH¼=—2Óbz@ÁÄ´wØ*Hr ºkæúV“zìÏÐ TU ‘e­ §ÌÊÌGî` š»®/(â'ÿ¬ÆJs<<ë9rŒë0þï$ç5K8Qt&Ú3òÿž„ÞüÉɳ”¶HHBxS•g÷ô)t Ðû’–è`—¬ÕŒÂ<+`~YâöÏ«¨Û—\ÌGTçüg•²§#Íð)ÊëÄ–ÍMX1ÍñzšË+°ÿ…Ѽ˺ÈT}ßÂt# Qf˜¼ˆ¬BP²Á»â¯Õèhð†ìLpOØü¢+ò„±É í¡tºþôUl?º„ØqÐw¨›ìyð‰”¡61ÒÑ`¸ L˜²y RZÇ‚f_ŽèBZÀì5…<^È›r×+&pó*Œ$6d#8$ÙlšEjÐ ¤p¼õN”·{>‚3£xÀJÖ <‚bÜ~®"jΠÎ ùœP Ž¥Ÿ€Ô]F$×"(}…}:rÐ)k\l<ûÙ4‡@~’pu`ÙCLópà,Å×¢žÐ稚½Œ Êp¼ÑrË3¬ð 7ÐD&ÊIX[óN:ÿ+KpT6H<¢<÷~aMÂ18²à»Ì?|LØþÐ¥(¢õí4(–: ϼæ2àQÀ¯AJ4’ƒÈªdPºxNɽ©ì|GºTôãx’®•w ’–ñÌÂëµàEXÂ’(=yZ¬„®„¼eáqò&­¡0y ü¤$ޏxŠMZƒ¯ýwçû|š±®Ë³B¡‚¾Ç¼ gPÙ£"Sn5H‘¦2 ·6X\tdÒÂå5Tué!è? ú9ÀÐç‡-,ì@bô y!’ïNt`™sÍ à½òà(Ñb%ßú¨;Ò‚Lô Y|‡}2ÖK0p¬DïÛeØ+°· ôÑï-.\º’ Úø,À¡1ÇÔS«b§tËÆÅM—êÀWaE¨3¦ í¤×ddU¥…øÿû±í˜Žîæ¶Øô'C¼_j…•I"<…œ^co¹2k\K\¡ºjŠ£s“‡É¢¨Œ^¾' þñFÝë¸ÿçt*Ô_…Ù.€o½Û;Ò½œUø*MBÈ]Såñq¹cÁódÝ!ª’ˇg-ù1Òâvð0”ë}ç¥4vx¯ÉuhF‰4óiÁ U€&2]äTªhéPï_[ðxù¬³Qéº÷mo®íÈù£% Ž@¾\±âÍëžv7Ž$,ÀqÒž‡þk¾@ííÛ’ZÊç•ÚÝâLp3ó6TÐbG™D÷×ö?A5—ÝÆ¹ÀÐ µUÛeŸ299øÕ7ÖÂ"c5œú%²Âÿ†°JožÙÝf(K^¸–¼ÂU”ê¼§AºŒq©æ×>Ì,ügÐ}XÒÇ`ÿÇãý xû indxûþ { <- a Mclust [ÿÿþ minG@ maxG@þþ if < ÿ $ÿ proþ?ðþ?àþ return c p ÿÿÿ proþ?ðþ mu1 ÿÿÿ muþ?ðþ mu2 ÿÿÿ muþ@þþþþÿÿÿ -?ð ÿÿÿ proþ?ðþþÿ ÿÿÿ muþ@þÿ ÿÿÿ muþ?ðþþþþ ordinary boot dataÿ faithful waitingþ statistic fit R@@þ i?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?ð?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?nÿ t0 t R data seed statistic sim call stype strata weights class bootþþHSAUR3/inst/LaTeXBibTeX/0000755000176200001440000000000014660150123014205 5ustar liggesusersHSAUR3/inst/LaTeXBibTeX/setup.Rnw0000644000176200001440000000316214172224326016044 0ustar liggesusers \SweaveOpts{prefix.string=figures/HSAUR,eps=FALSE,keep.source=TRUE} <>= rm(list = ls()) s <- search()[-1] s <- s[-match(c("package:base", "package:stats", "package:graphics", "package:grDevices", "package:utils", "package:datasets", "package:methods", "Autoloads"), s)] if (length(s) > 0) sapply(s, detach, character.only = TRUE) if (!file.exists("tables")) dir.create("tables") if (!file.exists("figures")) dir.create("figures") set.seed(290875) options(prompt = "R> ", continue = "+ ", width = 63, # digits = 4, show.signif.stars = FALSE, SweaveHooks = list(leftpar = function() par(mai = par("mai") * c(1, 1.05, 1, 1)), bigleftpar = function() par(mai = par("mai") * c(1, 1.7, 1, 1)))) HSAURpkg <- require("HSAUR3") if (!HSAURpkg) stop("cannot load package ", sQuote("HSAUR3")) rm(HSAURpkg) ### hm, R-2.4.0 --vanilla seems to need this a <- Sys.setlocale("LC_ALL", "C") ### book <- TRUE refs <- cbind(c("AItR", "DAGD", "SI", "CI", "ANOVA", "MLR", "GLM", "DE", "RP", "GAM", "SA", "ALDI", "ALDII", "SIMC", "MA", "PCA", "MDS", "CA"), 1:18) ch <- function(x) { ch <- refs[which(refs[,1] == x),] if (book) { return(paste("Chapter~\\\\ref{", ch[1], "}", sep = "")) } else { return(paste("Chapter~", ch[2], sep = "")) } } if (file.exists("deparse.R")) source("deparse.R") setHook(packageEvent("lattice", "attach"), function(...) { lattice.options(default.theme = function() standard.theme("pdf", color = FALSE)) }) @ \pagestyle{headings} HSAUR3/inst/LaTeXBibTeX/refstyle.bst0000755000176200001440000006715714172224326016604 0ustar liggesusers%% %% This is file `refstyle.bst', %% generated with the docstrip utility. %% %% The original source files were: %% %% merlin.mbs (with options: `,ay,nat,nm-rev,keyxyr,dt-beg,yr-par,note-yr,tit-qq,vnum-x,volp-com,add-pub,pre-pub,isbn,issn,url,url-blk,edby,edbyx,blk-com,pp,ed,xedn') %% ---------------------------------------- %% %% Copyright 1994-1999 Patrick W Daly % =============================================================== % IMPORTANT NOTICE: % This bibliographic style (bst) file has been generated from one or % more master bibliographic style (mbs) files, listed above. % % This generated file can be redistributed and/or modified under the terms % of the LaTeX Project Public License Distributed from CTAN % archives in directory macros/latex/base/lppl.txt; either % version 1 of the License, or any later version. % =============================================================== % Name and version information of the main mbs file: % \ProvidesFile{merlin.mbs}[1999/05/28 3.89 (PWD)] % For use with BibTeX version 0.99a or later %------------------------------------------------------------------- % This bibliography style file is intended for texts in ENGLISH % This is an author-year citation style bibliography. As such, it is % non-standard LaTeX, and requires a special package file to function properly. % Such a package is natbib.sty by Patrick W. Daly % The form of the \bibitem entries is % \bibitem[Jones et al.(1990)]{key}... % \bibitem[Jones et al.(1990)Jones, Baker, and Smith]{key}... % The essential feature is that the label (the part in brackets) consists % of the author names, as they should appear in the citation, with the year % in parentheses following. There must be no space before the opening % parenthesis! % With natbib v5.3, a full list of authors may also follow the year. % In natbib.sty, it is possible to define the type of enclosures that is % really wanted (brackets or parentheses), but in either case, there must % be parentheses in the label. % The \cite command functions as follows: % \citet{key} ==>> Jones et al. (1990) % \citet*{key} ==>> Jones, Baker, and Smith (1990) % \citep{key} ==>> (Jones et al., 1990) % \citep*{key} ==>> (Jones, Baker, and Smith, 1990) % \citep[chap. 2]{key} ==>> (Jones et al., 1990, chap. 2) % \citep[e.g.][]{key} ==>> (e.g. Jones et al., 1990) % \citep[e.g.][p. 32]{key} ==>> (e.g. Jones et al., p. 32) % \citeauthor{key} ==>> Jones et al. % \citeauthor*{key} ==>> Jones, Baker, and Smith % \citeyear{key} ==>> 1990 %--------------------------------------------------------------------- ENTRY { address author booktitle chapter edition editor howpublished institution isbn issn journal key month note number organization pages publisher school series title type url volume year } {} { label extra.label sort.label short.list } INTEGERS { output.state before.all mid.sentence after.sentence after.block } FUNCTION {init.state.consts} { #0 'before.all := #1 'mid.sentence := #2 'after.sentence := #3 'after.block := } STRINGS { s t } FUNCTION {output.nonnull} { 's := output.state mid.sentence = { ", " * write$ } { output.state after.block = { add.period$ write$ newline$ "\newblock " write$ } { output.state before.all = 'write$ { add.period$ " " * write$ } if$ } if$ mid.sentence 'output.state := } if$ s } FUNCTION {output} { duplicate$ empty$ 'pop$ 'output.nonnull if$ } FUNCTION {output.check} { 't := duplicate$ empty$ { pop$ "empty " t * " in " * cite$ * warning$ } 'output.nonnull if$ } FUNCTION {fin.entry} { add.period$ write$ newline$ } FUNCTION {new.block} { output.state before.all = 'skip$ { after.block 'output.state := } if$ } FUNCTION {new.sentence} { output.state after.block = 'skip$ { output.state before.all = 'skip$ { after.sentence 'output.state := } if$ } if$ } FUNCTION {add.blank} { " " * before.all 'output.state := } FUNCTION {date.block} { skip$ } FUNCTION {not} { { #0 } { #1 } if$ } FUNCTION {and} { 'skip$ { pop$ #0 } if$ } FUNCTION {or} { { pop$ #1 } 'skip$ if$ } FUNCTION {non.stop} { duplicate$ "}" * add.period$ #-1 #1 substring$ "." = } FUNCTION {new.block.checkb} { empty$ swap$ empty$ and 'skip$ 'new.block if$ } FUNCTION {field.or.null} { duplicate$ empty$ { pop$ "" } 'skip$ if$ } FUNCTION {emphasize} { duplicate$ empty$ { pop$ "" } { "{\em " swap$ * "\/}" * } if$ } FUNCTION {capitalize} { "u" change.case$ "t" change.case$ } FUNCTION {space.word} { " " swap$ * " " * } % Here are the language-specific definitions for explicit words. % Each function has a name bbl.xxx where xxx is the English word. % The language selected here is ENGLISH FUNCTION {bbl.and} { "and"} FUNCTION {bbl.etal} { "et~al." } FUNCTION {bbl.editors} { "eds." } FUNCTION {bbl.editor} { "ed." } FUNCTION {bbl.edby} { "edited by" } FUNCTION {bbl.edition} { "edition" } FUNCTION {bbl.volume} { "volume" } FUNCTION {bbl.of} { "of" } FUNCTION {bbl.number} { "number" } FUNCTION {bbl.nr} { "no." } FUNCTION {bbl.in} { "in" } FUNCTION {bbl.pages} { "pp." } FUNCTION {bbl.page} { "p." } FUNCTION {bbl.chapter} { "chapter" } FUNCTION {bbl.techrep} { "Technical Report" } FUNCTION {bbl.mthesis} { "Master's thesis" } FUNCTION {bbl.phdthesis} { "Ph.D. thesis" } MACRO {jan} {"January"} MACRO {feb} {"February"} MACRO {mar} {"March"} MACRO {apr} {"April"} MACRO {may} {"May"} MACRO {jun} {"June"} MACRO {jul} {"July"} MACRO {aug} {"August"} MACRO {sep} {"September"} MACRO {oct} {"October"} MACRO {nov} {"November"} MACRO {dec} {"December"} MACRO {acmcs} {"ACM Computing Surveys"} MACRO {acta} {"Acta Informatica"} MACRO {cacm} {"Communications of the ACM"} MACRO {ibmjrd} {"IBM Journal of Research and Development"} MACRO {ibmsj} {"IBM Systems Journal"} MACRO {ieeese} {"IEEE Transactions on Software Engineering"} MACRO {ieeetc} {"IEEE Transactions on Computers"} MACRO {ieeetcad} {"IEEE Transactions on Computer-Aided Design of Integrated Circuits"} MACRO {ipl} {"Information Processing Letters"} MACRO {jacm} {"Journal of the ACM"} MACRO {jcss} {"Journal of Computer and System Sciences"} MACRO {scp} {"Science of Computer Programming"} MACRO {sicomp} {"SIAM Journal on Computing"} MACRO {tocs} {"ACM Transactions on Computer Systems"} MACRO {tods} {"ACM Transactions on Database Systems"} MACRO {tog} {"ACM Transactions on Graphics"} MACRO {toms} {"ACM Transactions on Mathematical Software"} MACRO {toois} {"ACM Transactions on Office Information Systems"} MACRO {toplas} {"ACM Transactions on Programming Languages and Systems"} MACRO {tcs} {"Theoretical Computer Science"} FUNCTION {format.url} { url empty$ { "" } { "\urlprefix\url{" url * "}" * } if$ } INTEGERS { nameptr namesleft numnames } FUNCTION {format.names} { 's := "" 't := #1 'nameptr := s num.names$ 'numnames := numnames 'namesleft := { namesleft #0 > } { s nameptr "{vv~}{ll}{, jj}{, f.}" format.name$ 't := nameptr #1 > { namesleft #1 > { ", " * t * } { numnames #2 > { "," * } 'skip$ if$ s nameptr "{ll}" format.name$ duplicate$ "others" = { 't := } { pop$ } if$ t "others" = { " " * bbl.etal * } { bbl.and space.word * t * } if$ } if$ } 't if$ nameptr #1 + 'nameptr := namesleft #1 - 'namesleft := } while$ } FUNCTION {format.names.ed} { 's := "" 't := #1 'nameptr := s num.names$ 'numnames := numnames 'namesleft := { namesleft #0 > } { s nameptr "{f.~}{vv~}{ll}{, jj}" format.name$ 't := nameptr #1 > { namesleft #1 > { ", " * t * } { numnames #2 > { "," * } 'skip$ if$ s nameptr "{ll}" format.name$ duplicate$ "others" = { 't := } { pop$ } if$ t "others" = { " " * bbl.etal * } { bbl.and space.word * t * } if$ } if$ } 't if$ nameptr #1 + 'nameptr := namesleft #1 - 'namesleft := } while$ } FUNCTION {format.key} { empty$ { key field.or.null } { "" } if$ } FUNCTION {format.authors} { author empty$ { "" } { author format.names } if$ } FUNCTION {format.editors} { editor empty$ { "" } { editor format.names ", " * editor num.names$ #1 > 'bbl.editors 'bbl.editor if$ * } if$ } FUNCTION {format.in.editors} { editor empty$ { "" } { editor format.names.ed } if$ } FUNCTION {format.isbn} { isbn empty$ { "" } { "ISBN " isbn * } if$ } FUNCTION {format.issn} { issn empty$ { "" } { "ISSN " issn * } if$ } FUNCTION {format.note} { note empty$ { "" } { note #1 #1 substring$ duplicate$ "{" = 'skip$ { output.state mid.sentence = { "l" } { "u" } if$ change.case$ } if$ note #2 global.max$ substring$ * } if$ } FUNCTION {format.title} { title empty$ { "" } { title "t" change.case$ "\enquote{" swap$ * non.stop { ",} " * } { "} " * } if$ } if$ } FUNCTION {end.quote.title} { title empty$ 'skip$ { before.all 'output.state := } if$ } FUNCTION {format.full.names} {'s := "" 't := #1 'nameptr := s num.names$ 'numnames := numnames 'namesleft := { namesleft #0 > } { s nameptr "{vv~}{ll}" format.name$ 't := nameptr #1 > { namesleft #1 > { ", " * t * } { s nameptr "{ll}" format.name$ duplicate$ "others" = { 't := } { pop$ } if$ t "others" = { " " * bbl.etal * } { numnames #2 > { "," * } 'skip$ if$ bbl.and space.word * t * } if$ } if$ } 't if$ nameptr #1 + 'nameptr := namesleft #1 - 'namesleft := } while$ } FUNCTION {author.editor.key.full} { author empty$ { editor empty$ { key empty$ { cite$ #1 #3 substring$ } 'key if$ } { editor format.full.names } if$ } { author format.full.names } if$ } FUNCTION {author.key.full} { author empty$ { key empty$ { cite$ #1 #3 substring$ } 'key if$ } { author format.full.names } if$ } FUNCTION {editor.key.full} { editor empty$ { key empty$ { cite$ #1 #3 substring$ } 'key if$ } { editor format.full.names } if$ } FUNCTION {make.full.names} { type$ "book" = type$ "inbook" = or 'author.editor.key.full { type$ "proceedings" = 'editor.key.full 'author.key.full if$ } if$ } FUNCTION {output.bibitem} { newline$ "\bibitem[{" write$ label write$ ")" make.full.names duplicate$ short.list = { pop$ } { * } if$ "}]{" * write$ cite$ write$ "}" write$ newline$ "" before.all 'output.state := } FUNCTION {n.dashify} { 't := "" { t empty$ not } { t #1 #1 substring$ "-" = { t #1 #2 substring$ "--" = not { "--" * t #2 global.max$ substring$ 't := } { { t #1 #1 substring$ "-" = } { "-" * t #2 global.max$ substring$ 't := } while$ } if$ } { t #1 #1 substring$ * t #2 global.max$ substring$ 't := } if$ } while$ } FUNCTION {word.in} { bbl.in " " * } FUNCTION {format.date} { year duplicate$ empty$ { "empty year in " cite$ * "; set to ????" * warning$ pop$ "????" } 'skip$ if$ extra.label * before.all 'output.state := " (" swap$ * ")" * } FUNCTION {format.btitle} { title emphasize } FUNCTION {tie.or.space.connect} { duplicate$ text.length$ #3 < { "~" } { " " } if$ swap$ * * } FUNCTION {either.or.check} { empty$ 'pop$ { "can't use both " swap$ * " fields in " * cite$ * warning$ } if$ } FUNCTION {format.bvolume} { volume empty$ { "" } { bbl.volume volume tie.or.space.connect series empty$ 'skip$ { bbl.of space.word * series emphasize * } if$ "volume and number" number either.or.check } if$ } FUNCTION {format.number.series} { volume empty$ { number empty$ { series field.or.null } { output.state mid.sentence = { bbl.number } { bbl.number capitalize } if$ number tie.or.space.connect series empty$ { "there's a number but no series in " cite$ * warning$ } { bbl.in space.word * series * } if$ } if$ } { "" } if$ } FUNCTION {format.edition} { edition empty$ { "" } { output.state mid.sentence = { edition "l" change.case$ " " * bbl.edition * } { edition "t" change.case$ " " * bbl.edition * } if$ } if$ } INTEGERS { multiresult } FUNCTION {multi.page.check} { 't := #0 'multiresult := { multiresult not t empty$ not and } { t #1 #1 substring$ duplicate$ "-" = swap$ duplicate$ "," = swap$ "+" = or or { #1 'multiresult := } { t #2 global.max$ substring$ 't := } if$ } while$ multiresult } FUNCTION {format.pages} { pages empty$ { "" } { pages multi.page.check { bbl.pages pages n.dashify tie.or.space.connect } { bbl.page pages tie.or.space.connect } if$ } if$ } FUNCTION {format.journal.pages} { pages empty$ 'skip$ { duplicate$ empty$ { pop$ format.pages } { ", " * pages n.dashify * } if$ } if$ } FUNCTION {format.vol.num.pages} { volume field.or.null format.journal.pages } FUNCTION {format.chapter.pages} { chapter empty$ 'format.pages { type empty$ { bbl.chapter } { type "l" change.case$ } if$ chapter tie.or.space.connect pages empty$ 'skip$ { ", " * format.pages * } if$ } if$ } FUNCTION {format.in.ed.booktitle} { booktitle empty$ { "" } { editor empty$ { word.in booktitle emphasize * } { word.in booktitle emphasize * ", " * editor num.names$ #1 > { bbl.editors } { bbl.editor } if$ * " " * format.in.editors * } if$ } if$ } FUNCTION {format.thesis.type} { type empty$ 'skip$ { pop$ type "t" change.case$ } if$ } FUNCTION {format.tr.number} { type empty$ { bbl.techrep } 'type if$ number empty$ { "t" change.case$ } { number tie.or.space.connect } if$ } FUNCTION {format.article.crossref} { word.in " \cite{" * crossref * "}" * } FUNCTION {format.book.crossref} { volume empty$ { "empty volume in " cite$ * "'s crossref of " * crossref * warning$ word.in } { bbl.volume volume tie.or.space.connect bbl.of space.word * } if$ " \cite{" * crossref * "}" * } FUNCTION {format.incoll.inproc.crossref} { word.in " \cite{" * crossref * "}" * } FUNCTION {format.org.or.pub} { 't := "" address empty$ t empty$ and 'skip$ { address empty$ 'skip$ { address * } if$ t empty$ 'skip$ { address empty$ 'skip$ { ": " * } if$ t * } if$ } if$ } FUNCTION {format.publisher.address} { publisher empty$ { "empty publisher in " cite$ * warning$ "" } { publisher } if$ format.org.or.pub } FUNCTION {format.organization.address} { organization empty$ { "" } { organization } if$ format.org.or.pub } FUNCTION {article} { output.bibitem format.authors "author" output.check author format.key output format.date "year" output.check date.block format.title "title" output.check end.quote.title crossref missing$ { journal emphasize "journal" output.check format.vol.num.pages output } { format.article.crossref output.nonnull format.pages output } if$ format.issn output format.url output format.note output fin.entry } FUNCTION {book} { output.bibitem author empty$ { format.editors "author and editor" output.check editor format.key output } { format.authors output.nonnull crossref missing$ { "author and editor" editor either.or.check } 'skip$ if$ } if$ format.date "year" output.check date.block format.btitle "title" output.check crossref missing$ { format.bvolume output format.number.series output format.publisher.address output } { format.book.crossref output.nonnull } if$ format.edition output format.isbn output format.url output format.note output fin.entry } FUNCTION {booklet} { output.bibitem format.authors output author format.key output format.date "year" output.check date.block format.title "title" output.check end.quote.title howpublished output address output format.isbn output format.url output format.note output fin.entry } FUNCTION {inbook} { output.bibitem author empty$ { format.editors "author and editor" output.check editor format.key output } { format.authors output.nonnull crossref missing$ { "author and editor" editor either.or.check } 'skip$ if$ } if$ format.date "year" output.check date.block format.btitle "title" output.check crossref missing$ { format.publisher.address output format.bvolume output format.chapter.pages "chapter and pages" output.check format.number.series output } { format.chapter.pages "chapter and pages" output.check format.book.crossref output.nonnull } if$ format.edition output crossref missing$ { format.isbn output } 'skip$ if$ format.url output format.note output fin.entry } FUNCTION {incollection} { output.bibitem format.authors "author" output.check author format.key output format.date "year" output.check date.block format.title "title" output.check end.quote.title crossref missing$ { format.in.ed.booktitle "booktitle" output.check format.publisher.address output format.bvolume output format.number.series output format.chapter.pages output format.edition output format.isbn output } { format.incoll.inproc.crossref output.nonnull format.chapter.pages output } if$ format.url output format.note output fin.entry } FUNCTION {inproceedings} { output.bibitem format.authors "author" output.check author format.key output format.date "year" output.check date.block format.title "title" output.check end.quote.title crossref missing$ { format.in.ed.booktitle "booktitle" output.check publisher empty$ { format.organization.address output } { organization output format.publisher.address output } if$ format.bvolume output format.number.series output format.pages output format.isbn output format.issn output } { format.incoll.inproc.crossref output.nonnull format.pages output } if$ format.url output format.note output fin.entry } FUNCTION {conference} { inproceedings } FUNCTION {manual} { output.bibitem format.authors output author format.key output format.date "year" output.check date.block format.btitle "title" output.check organization output address output format.edition output format.url output format.note output fin.entry } FUNCTION {mastersthesis} { output.bibitem format.authors "author" output.check author format.key output format.date "year" output.check date.block format.btitle "title" output.check bbl.mthesis format.thesis.type output.nonnull school "school" output.check address output format.url output format.note output fin.entry } FUNCTION {misc} { output.bibitem format.authors output author format.key output format.date "year" output.check date.block format.title output end.quote.title howpublished output format.url output format.note output fin.entry } FUNCTION {phdthesis} { output.bibitem format.authors "author" output.check author format.key output format.date "year" output.check date.block format.btitle "title" output.check bbl.phdthesis format.thesis.type output.nonnull school "school" output.check address output format.url output format.note output fin.entry } FUNCTION {proceedings} { output.bibitem format.editors output editor format.key output format.date "year" output.check date.block format.btitle "title" output.check format.bvolume output format.number.series output publisher empty$ { format.organization.address output } { organization output format.publisher.address output } if$ format.isbn output format.issn output format.url output format.note output fin.entry } FUNCTION {techreport} { output.bibitem format.authors "author" output.check author format.key output format.date "year" output.check date.block format.title "title" output.check end.quote.title format.tr.number output.nonnull institution "institution" output.check address output format.url output format.note output fin.entry } FUNCTION {unpublished} { output.bibitem format.authors "author" output.check author format.key output format.date "year" output.check date.block format.title "title" output.check end.quote.title format.url output format.note "note" output.check fin.entry } FUNCTION {default.type} { misc } READ FUNCTION {sortify} { purify$ "l" change.case$ } INTEGERS { len } FUNCTION {chop.word} { 's := 'len := s #1 len substring$ = { s len #1 + global.max$ substring$ } 's if$ } FUNCTION {format.lab.names} { 's := "" 't := s #1 "{vv~}{ll}" format.name$ s num.names$ duplicate$ #2 > { pop$ " " * bbl.etal * } { #2 < 'skip$ { s #2 "{ff }{vv }{ll}{ jj}" format.name$ "others" = { " " * bbl.etal * } { bbl.and space.word * s #2 "{vv~}{ll}" format.name$ * } if$ } if$ } if$ } FUNCTION {author.key.label} { author empty$ { key empty$ { cite$ #1 #3 substring$ } 'key if$ } { author format.lab.names } if$ } FUNCTION {author.editor.key.label} { author empty$ { editor empty$ { key empty$ { cite$ #1 #3 substring$ } 'key if$ } { editor format.lab.names } if$ } { author format.lab.names } if$ } FUNCTION {editor.key.label} { editor empty$ { key empty$ { cite$ #1 #3 substring$ } 'key if$ } { editor format.lab.names } if$ } FUNCTION {calc.short.authors} { type$ "book" = type$ "inbook" = or 'author.editor.key.label { type$ "proceedings" = 'editor.key.label 'author.key.label if$ } if$ 'short.list := } FUNCTION {calc.label} { calc.short.authors short.list "(" * year duplicate$ empty$ short.list key field.or.null = or { pop$ "????" } 'skip$ if$ * 'label := } FUNCTION {sort.format.names} { 's := #1 'nameptr := "" s num.names$ 'numnames := numnames 'namesleft := { namesleft #0 > } { s nameptr "{vv{ } }{ll{ }}{ f{ }}{ jj{ }}" format.name$ 't := nameptr #1 > { " " * namesleft #1 = t "others" = and { "zzzzz" * } { t sortify * } if$ } { t sortify * } if$ nameptr #1 + 'nameptr := namesleft #1 - 'namesleft := } while$ } FUNCTION {sort.format.title} { 't := "A " #2 "An " #3 "The " #4 t chop.word chop.word chop.word sortify #1 global.max$ substring$ } FUNCTION {author.sort} { author empty$ { key empty$ { "to sort, need author or key in " cite$ * warning$ "" } { key sortify } if$ } { author sort.format.names } if$ } FUNCTION {author.editor.sort} { author empty$ { editor empty$ { key empty$ { "to sort, need author, editor, or key in " cite$ * warning$ "" } { key sortify } if$ } { editor sort.format.names } if$ } { author sort.format.names } if$ } FUNCTION {editor.sort} { editor empty$ { key empty$ { "to sort, need editor or key in " cite$ * warning$ "" } { key sortify } if$ } { editor sort.format.names } if$ } FUNCTION {presort} { calc.label label sortify " " * type$ "book" = type$ "inbook" = or 'author.editor.sort { type$ "proceedings" = 'editor.sort 'author.sort if$ } if$ #1 entry.max$ substring$ 'sort.label := sort.label * " " * title field.or.null sort.format.title * #1 entry.max$ substring$ 'sort.key$ := } ITERATE {presort} SORT STRINGS { last.label next.extra } INTEGERS { last.extra.num number.label } FUNCTION {initialize.extra.label.stuff} { #0 int.to.chr$ 'last.label := "" 'next.extra := #0 'last.extra.num := #0 'number.label := } FUNCTION {forward.pass} { last.label label = { last.extra.num #1 + 'last.extra.num := last.extra.num int.to.chr$ 'extra.label := } { "a" chr.to.int$ 'last.extra.num := "" 'extra.label := label 'last.label := } if$ number.label #1 + 'number.label := } FUNCTION {reverse.pass} { next.extra "b" = { "a" 'extra.label := } 'skip$ if$ extra.label 'next.extra := extra.label duplicate$ empty$ 'skip$ { "{\natexlab{" swap$ * "}}" * } if$ 'extra.label := label extra.label * 'label := } EXECUTE {initialize.extra.label.stuff} ITERATE {forward.pass} REVERSE {reverse.pass} FUNCTION {bib.sort.order} { sort.label " " * year field.or.null sortify * " " * title field.or.null sort.format.title * #1 entry.max$ substring$ 'sort.key$ := } ITERATE {bib.sort.order} SORT FUNCTION {begin.bib} { preamble$ empty$ 'skip$ { preamble$ write$ newline$ } if$ "\begin{thebibliography}{" number.label int.to.str$ * "}" * write$ newline$ "\newcommand{\enquote}[1]{``#1''}" write$ newline$ "\expandafter\ifx\csname natexlab\endcsname\relax\def\natexlab#1{#1}\fi" write$ newline$ "\expandafter\ifx\csname url\endcsname\relax" write$ newline$ " \def\url#1{{\tt #1}}\fi" write$ newline$ "\expandafter\ifx\csname urlprefix\endcsname\relax\def\urlprefix{URL }\fi" write$ newline$ } EXECUTE {begin.bib} EXECUTE {init.state.consts} ITERATE {call.type$} FUNCTION {end.bib} { newline$ "\end{thebibliography}" write$ newline$ } EXECUTE {end.bib} %% End of customized bst file %% %% End of file `jasa.bst'. HSAUR3/inst/LaTeXBibTeX/HSAUR.bib0000644000176200001440000023027114172224326015557 0ustar liggesusers> library(utils); library(HSAUR2); HSAUR2:::pkgyears("tmp") > library(utils); library(HSAUR2); HSAUR2:::pkgversions("HSAUR.in") @manual{HSAUR:R, title = {R: A Language and Environment for Statistical Computing}, author = {{R Development Core Team}}, organization = {R Foundation for Statistical Computing}, address = {Vienna, Austria}, year = {2014}, url = {http://www.R-project.org}, } @manual{HSAUR:AItR, title = {An Introduction to R}, author = {{R Development Core Team}}, organization = {R Foundation for Statistical Computing}, address = {Vienna, Austria}, year = {2014}, url = {http://www.R-project.org}, } @manual{HSAUR:RDIE, title = {R Data Import/Export}, author = {{R Development Core Team}}, organization = {R Foundation for Statistical Computing}, address = {Vienna, Austria}, year = {2014}, url = {http://www.R-project.org}, } @manual{HSAUR:RIA, title = {R Installation and Administration}, author = {{R Development Core Team}}, organization = {R Foundation for Statistical Computing}, address = {Vienna, Austria}, year = {2014}, url = {http://www.R-project.org}, } @manual{HSAUR:WRE, title = {Writing R Extensions}, author = {{R Development Core Team}}, organization = {R Foundation for Statistical Computing}, address = {Vienna, Austria}, year = {2014}, url = {http://www.R-project.org}, } @book{HSAUR:Ripley1996, key = {216}, author = {Ripley, Brian D.}, title = {{Pattern} Recognition and Neural Networks}, year = {1996}, publisher = {Cambridge University Press}, address = {Cambridge, UK}, url = {http://www.stats.ox.ac.uk/pub/PRNN/}, pages = 403 } %% Chapter: Analysing Longitudinal Data @article{HSAUR:WatkinsWilliams1998, author = {E. Watkins and R. Williams}, title = {The efficacy of cognitive behavioural therapy}, journal = {Journal of Counseling and Clinical Psychology}, year = 1998, volume = 27, pages = {31-39} } %% et al? @article{HSAUR:Proudfootetal2003, author = {J. Proudfoot and D. Goldberg and A. Mann and B. S. Everitt and I. Marks and J. A. Gray}, title = {Computerized, interactive, multimedia cognitive-behavioural program for anxiety and depression in general practice}, journal = {Psychological Medicine}, year = 2003, volume = 33, number = 2, pages = {217-227} } %% edition? @manual{HSAUR:Becketal1996, author = {A. Beck and R. Steer and G. Brown}, title = {BDI-II Manual}, year = 1996, edition = {2nd}, organization = {The Psychological Corporation, San Antonio} } @book{HSAUR:Diggleetal2003, author = {P. J. Diggle and P. J. Heagerty and K. Y. Liang and S. L. Zeger}, title = {Analysis of Longitudinal Data}, year = {2003}, publisher = {Oxford University Press}, address = {Oxford, UK} } @book{HSAUR:Longford1993, author = {N. T. Longford}, title = {Random Coefficient Models}, year = {1993}, publisher = {Oxford University Press}, address = {Oxford, UK} } @article{HSAUR:Rubin1976, author = {D. Rubin}, title = {Inference and missing data}, journal = {Biometrika}, year = 1976, volume = 63, pages = {581-592} } @article{HSAUR:MurrayFindlay1988, author = {G. D. Murray and J. G. Findlay}, title = {Correcting for bias caused by dropouts in hypertension trials}, journal = {Statistics in Medicine}, year = 1988, volume = 7, pages = {941-946} } @article{HSAUR:DiggleKenward1994, author = {P. J. Diggle and M. G. Kenward}, title = {Informative dropout in longitudinal data analysis}, journal = {Journal of the Royal Statistical Society, Series C}, year = 1994, volume = 43, pages = {49-93} } @article{HSAUR:Carpenteretal2002, author = {J. Carpenter and S. Pocock and C. J. Lamm}, title = {Coping with missing data in clinical trials: {A} model-based approach applied to asthma trials}, journal = {Statistics in Medicine}, year = 2002, volume = {21}, pages = {1043-1066} } @incollection{HSAUR:Diggle1998, author = {P. J. Diggle}, title = {Dealing with missing values in longitudinal studies}, year = 1998, booktitle = {Statistical Analysis of Medical Data}, editor = {B. S. Everitt and G. Dunn}, publisher = {Arnold}, address = {London, UK} } @book{HSAUR:Everitt2002, author = {B. S. Everitt}, title = {Modern Medical Statistics}, year = 2002, publisher = {Arnold}, address = {London, UK} } @article{HSAUR:Heitjan1997, author = {D. F. Heitjan}, title = {Annotation: {W}hat can be done about missing data? {A}pproaches to imputation}, journal = {American Journal of Public Health}, year = 1997, volume = 87, pages = {548-550} } @book{HSAUR:MayorFrei2003, author = {M. Mayor and P. Frei}, title = {New Worlds in the Cosmos: {T}he Discovery of Exoplanets}, publisher = {Cambridge University Press}, year = 2003, address = {Cambridge, UK} } %%% check volume and pages @article{HSAUR:MayorQueloz1995, author = {M. Mayor and D. Queloz}, title = {A {J}upiter-mass companion to a solar-type star}, journal = {Nature}, year = 1995, volume = {378}, pages = {355} } @article{HSAUR:EverittBullmore1999, author = {B. S. Everitt and E. T. Bullmore}, title = {Mixture model mapping of brain activation in functional magnetic resonance images}, journal = {Human Brain Mapping}, year = 1999, volume = 7, pages = {1-14} } @book{HSAUR:Everittetal2001, author = {B. S. Everitt and S. Landau and M. Leese}, title = {Cluster Analysis}, publisher = {Arnold}, year = 2001, edition = {4th}, address = {London, UK} } @book{HSAUR:Gordon1999, author = {A. Gordon}, title = {Classification}, year = 1999, edition = {2nd}, publisher = {Chapman \& Hall/CRC}, address = {Boca Raton, Florida, USA} } @article{HSAUR:ScottSymons1971, author = {A. J. Scott and M. J. Symons}, title = {Clustering methods based on likelihood ratio criteria}, journal = {Biometrics}, year = 1971, volume = 27, pages = {387-398} } @article{HSAUR:BanfieldRaftery1993, author = {J. D. Banfield and A. E. Raftery}, title = {Model-based {G}aussian and non-{G}aussian clustering}, year = 1993, journal = {Biometrics}, volume = 49, pages = {803-821} } @article{HSAUR:FraleyRaftery1999, author = {G. Fraley and A. E. Raftery}, title = {{MCLUST: S}oftware for model-based cluster analysis}, journal = {Journal of Classification}, year = 1999, volume = 16, pages = {297-306} } @article{HSAUR:FriedmanRubin1967, author = {H. P. Friedman and J. Rubin}, title = {On some invariant criteria for grouping data}, journal = {Journal of the American Statistical Association}, year = 1967, volume = 62, pages = {1159-1178} } @article{HSAUR:Marriott1982, author = {F. H. C. Marriott}, title = {Optimization methods of cluster analysis}, journal = {Biometrika}, year = 1982, volume = 69, pages = {417-421} } @article{HSAUR:Dempsteretal1977, author = {A. P. Dempster and N. M. Laird and D. B. Rubin}, title = {Maximum likelihood from incomplete data via the {EM} algorithm {(C/R: p22-37)}}, journal = {Journal of the Royal Statistical Society, Series B}, year = 1977, volume = 39, pages = {1-22} } @article{HSAUR:DubesJain1979, author = {R. Dubes and A. K. Jain}, title = {Validity studies in clustering methodologies}, journal = {Pattern Recognition}, year = 1979, volume = 8, pages = {247-260} } @article{HSAUR:Tubbetal1980, author = {A. Tubb and N. J. Parker and G. Nickless}, title = {The analysis of {Romano-British} pottery by atomic absorption spectrophotometry}, journal = {Archaeometry}, year = 1980, volume = 22, pages = {153-171} } @article{HSAUR:Alonetal1999, author = {U. Alon and N. Barkai and D. A. Notternam and K. Gish and S. Ybarra and D. Mack and A. J. Levine}, title = {Broad patterns of gene expressions revealed by clustering analysis of tumour and normal colon tissues probed by oligonucleotide arrays}, journal = {Cell Biology}, year = 1999, volume = 99, pages = {6754-6760} } @article{HSAUR:Woodleyetal1977, author = {W. L. Woodley and J. Simpson and R. Biondini and J. Berkeley}, title = {Rainfall results 1970-75: {F}lorida area cumulus experiment}, year = {1977}, journal = {Science}, volume = {195}, pages = {735-742} } @book{HSAUR:EfronTibshirani1993, author = {B. Efron and R. J. Tibshirani}, title = {An Introduction to the Bootstrap}, year = {1993}, publisher = {Chapman \& Hall/CRC}, address = {London, UK} } @book{HSAUR:CookWeisberg1982, author = {R. D. Cook and S. Weisberg}, title = {Residuals and Influence in Regression}, year = {1982}, publisher = {Chapman \& Hall/CRC}, address = {London, UK} } @book{HSAUR:VenablesRipley2002, author = {William N. Venables and Brian D. Ripley}, title = {Modern Applied Statistics with {S}}, edition = {4th}, publisher = {Springer-Verlag}, address = {New York, USA}, year = 2002, note = {{ISBN} 0-387-95457-0}, url = {http://www.stats.ox.ac.uk/pub/MASS4/} } @book{HSAUR:McLachlanPeel2000, author = {G. McLachlan and D. Peel}, title = {Finite Mixture Models}, year = 2000, publisher = {John Wiley \& Sons}, address = {New York, USA} } @article{HSAUR:Pearson1894, author = {Karl Pearson}, title = {Contributions to the mathematical theory of evolution}, year = 1894, journal = {Philosophical Transactions A}, volume = 185, pages = {71-110} } @book{HSAUR:Scott1992, author = {D. W. Scott}, title = {Multivariate Density Estimation}, year = 1992, publisher = {John Wiley \& Sons}, address = {New York, USA} } @book{HSAUR:Silverman1986, author = {B. Silverman}, title = {Density Estimation}, year = 1986, publisher = {Chapman \& Hall/CRC}, address = {London, UK} } @book{HSAUR:Simonoff1996, author = {J. S. Simonoff}, title = {Smoothing Methods in Statistics}, year = 1996, publisher = {Springer-Verlag}, address = {New York, USA} } @article{HSAUR:VanismaGreve1972, author = {F. Vanisma and J. P. {De Greve}}, title = {Close binary systems before and after mass transfer}, journal = {Astrophysics and Space Science}, year = 1972, volume = 87, pages = {377-401} } @book{HSAUR:WandJones1995, author = {M. P. Wand and M. C. Jones}, title = {Kernel Smoothing}, year = 1995, publisher = {Chapman \& Hall/CRC}, address = {London, UK} } @article{HSAUR:Wilkinson1992, author = {L. Wilkinson}, title = {Graphical displays}, journal = {Statistical Methods in Medical Research}, year = 1992, volume = 1, pages = {3-25} } %% An Introduction to R @book{HSAUR:Becker+Chambers+Wilks:1988, author = {Richard A. Becker and John M. Chambers and Allan R. Wilks}, title = {The New {S} Language}, publisher = {Chapman \& Hall}, year = 1988, address = {London, UK}, } @book{HSAUR:Chambers+Hastie:1992, author = {John M. Chambers and Trevor J. Hastie}, title = {Statistical Models in {S}}, publisher = {Chapman \& Hall}, year = 1992, address = {London, UK}, } @book{HSAUR:Chambers:1998, author = {John M. Chambers}, title = {Programming with Data}, publisher = {Springer-Verlag}, year = 1998, address = {New York, USA}, } %% Simple Inference @book{HSAUR:Agresti1996, author = {A. Agresti}, title = {An Introduction to Categorical Data Analysis}, year = 1996, publisher = {John Wiley \& Sons}, address = {New York, USA} } @book{HSAUR:Everitt1992, author = {Brian S. Everitt}, title = {The Analysis of Contingency Tables}, year = 1992, edition = {2nd}, publisher = {Chapman \& Hall/CRC}, address = {London, UK} } @article{HSAUR:Haberman1973, author = {S. J. Haberman}, title = {The analysis of residuals in cross-classified tables}, journal = {Biometrics}, year = 1973, volume = 29, pages = {205-220} } @book{HSAUR:Handetal1994, author = {D. J. Hand and F. Daly and A. D. Lunn and K. J. McConway and E. Ostrowski}, title = {A Handbook of Small Datasets}, year = 1994, publisher = {Chapman \& Hall/CRC}, address = {London, UK} } @article{HSAUR:Mann1981, author = {L. Mann}, title = {The baiting crowd in episodes of threatened suicide}, journal = {Journal of Personality and Social Psychology}, year = 1981, volume = 41, pages = {703-709} } @article{HSAUR:MehtaPatel1983, author = {Cyrus R. Mehta and Nitin R. Patel}, title = {A Network Algorithm for Performing {F}isher's Exact Test in $r \times c $ Contingency Tables}, journal = {Journal of the American Statistical Association}, pages = {427-434}, year = {1983}, month = {June}, volume = {78}, number = {382} } @book{HSAUR:Fisher1935, author = {R. A. Fisher}, title = {The Design of Experiments}, year = 1935, publisher = {Oliver and Boyd}, address = {Edinburgh, UK} } @article{HSAUR:Pitman1937, author = {E. J. G. Pitman}, title = {Significance tests which may be applied to samples from any populations}, journal = {Biometrika}, year = 1937, volume = 29, pages = {322-335} } @book{HSAUR:Barlowetal1972, author = {R. E. Barlow and D. J. Bartholomew and J. M. Bremner and H. D. Brunk}, title = {Statistical Inference under Order Restrictions}, year = 1972, publisher = {John Wiley \& Sons}, address = {New York, USA} } @article{HSAUR:Corbetetal1970, author = {G. B. Corbet and J. Cummins and S. R. Hedges and W. J. Krzanowski}, title = {The taxonomic structure of {B}ritish water voles, genus \textit{Arvicola}}, year = 1970, journal = {Journal of Zoology}, volume = 61, pages = {301-316} } @book{HSAUR:EverittRabeHesketh1997, author = {B. S. Everitt and S. Rabe-Hesketh}, title = {The Analysis of Proximity Data}, year = 1997, publisher = {Arnold}, address = {London, UK} } @book{HSAUR:EverittRabeHesketh2001, author = {B. S. Everitt and S. Rabe-Hesketh}, title = {Analysing Medical Data Using {S-Plus}}, year = 2001, publisher = {Springer-Verlag}, address = {New York, USA} } @book{HSAUR:SkrondalRabeHesketh2004, author = {A. Skrondal and S. Rabe-Hesketh}, year = 2004, title = {Generalized Latent Variable Modeling: {M}ultilevel, Longitudinal and Structural Equation Models}, publisher = {Chapman \& Hall/CRC}, address = {Boca Raton, Florida, USA} } @article{HSAUR:Kruskal1964a, author = {Joseph. B. Kruskal}, title = {Multidimensional scaling by optimizing goodness-of-fit to a nonmetric hypothesis}, journal = {Psychometrika}, year = 1964, volume = 29, pages = {1-27} } @article{HSAUR:Kruskal1964b, author = {Joseph B. Kruskal}, title = {Nonmetric multidimensional scaling: {A} numerical method}, journal = {Psychometrika}, year = 1964, volume = 29, pages = {115-129} } @book{HSAUR:Mardiaetal1979, author = {K. V. Mardia and J. T. Kent and J. M. Bibby}, title = {Multivariate Analysis}, year = 1979, publisher = {Academic Press}, address = {London, UK} } @book{HSAUR:Romesburg1984, author = {H. C. Romesburg}, title = {Cluster Analysis for Researchers}, year = 1984, publisher = {Lifetime Learning Publications}, address = {Belmont, CA} } @article{HSAUR:Shepard1962a, author = {Roger N. Shepard}, title = {The analysis of proximities: {M}ultidimensional scaling with unknown distance function {Part I}}, journal = {Psychometrika}, year = 1962, volume = 27, pages = {125-140} } @article{HSAUR:Shepard1962b, author = {Roger N. Shepard}, title = {The analysis of proximities: {M}ultidimensional scaling with unknown distance function {Part II}}, journal = {Psychometrika}, volume = 27, year = 1962, pages = {219-246} } @article{HSAUR:Sibson1979, author = {R. Sibson}, title = {Studies in the robustness of multidimensional scaling. {P}erturbational analysis of classical scaling}, journal = {Journal of the Royal Statistical Society, Series B}, volume = 41, year = 1979, pages = {217-229} } @article{HSAUR:YoungHouseholder1938, author = {G. Young and A. S. Householder}, title = {Discussion of a set of points in terms of their mutual distances}, year = 1938, journal = {Psychometrika}, volume = 3, pages = {19-22} } ### OUP, New York??? @book{HSAUR:Petitti2000, author = {D. B. Petitti}, title = {Meta-Analysis, Decision Analysis and Cost-Effectiveness Analysis}, year = 2000, publisher = {Oxford University Press}, address = {New York, USA} } @article{HSAUR:DeMets1987, author = {D. L. DeMets}, title = {Methods for combining randomized clinical trials: strengths and limitations}, journal = {Statistics in Medicine}, year = 1987, volume = 6, pages = {341-350} } @article{HSAUR:Bailey1987, author = {K. R. Bailey}, title = {Inter-study differences: how should they influence the interpretation of results?}, journal = {Statistics in Medicine}, year = 1987, volume = 6, pages = {351-360} } @article{HSAUR:SuttonAbrams2001, author = {A. J. Sutton and K. R. Abrams}, title = {Bayesian methods in meta-analysis and evidence synthesis}, year = 2001, journal = {Statistical Methods in Medical Research}, volume = 10, pages = {277-303} } @book{HSAUR:Suttonetal2000, author = {A. J. Sutton and K. R. Abrams and D. R. Jones and T. A. Sheldon}, title = {Methods for Meta-Analysis in Medical Research}, year = 2000, publisher = {John Wiley \& Sons}, address = {Chichester, UK} } @article{HSAUR:Woolf1955, author = {B. Woolf}, title = {On estimating the relationship between blood groups and disease}, journal = {Annals of Human Genetics}, year = 1955, volume = 19, pages = {251-253} } @article{HSAUR:Sterlin1959, author = {T. D. Sterlin}, title = {Publication decisions and their possible effects on inferences drawn from tests of significance-or vice versa}, year = 1959, journal = {Journal of the American Statistical Association}, volume = 54, pages = {30-34} } @article{HSAUR:Greenwald1975, author = {A. G. Greenwald}, title = {Consequences of prejudice against the null hypothesis}, year = 1975, journal = {Psychological Bulletin}, volume = {82}, number = 1, pages = {1-20} } @article{HSAUR:Smith1980, author = {M. L. Smith}, title = {Publication bias and meta-analysis}, year = 1980, journal = {Evaluating Education}, volume = 4, pages = {22-93} } @article{HSAUR:Easterbrooketal1991, author = {P. J. Easterbrook and J. A. Berlin and R. Gopalan and D. R. Matthews}, title = {Publication bias in research}, year = 1991, journal = {Lancet}, volume = 337, pages = {867-872} } @article{HSAUR:DuvalTweedie2000, author = {S. Duval and R. L. Tweedie}, title = {A nonparametric `trim and fill' method of accounting for publication bias in meta-analysis}, year = 2000, journal = {Journal of the American Statistical Association}, volume = 95, pages = {89-98} } @article{HSAUR:Oakes1993, author = {M. Oakes}, title = {The logic and role of meta-analysis in clinical research}, journal = {Statistical Methods in Medical Research}, year = 1993, volume = 2, pages = {147-160} } @incollection{HSAUR:Silagy2003, author = {C. Silagy}, title = {Nicotine replacement therapy for smoking cessation {(Cochrane Review)}}, year = {2003}, booktitle = {The Cochrane Library}, publisher = {John Wiley \& Sons}, addess = {Chichester}, note = {{Issue 4}}, } @book{HSAUR:Collett2003, author = {D. Collett}, title = {Modelling Binary Data}, year = 2003, publisher = {Chapman \& Hall/CRC}, address = {London, UK}, edition = {2nd} } @article{HSAUR:CollettJemain1985, author = {D. Collett and A. A. Jemain}, title = {Residuals, outliers and influential observations in regression analysis}, journal = {Sains Malaysiana}, year = 1985, volume = 4, pages = {493-511} } @incollection{HSAUR:Cook1998, author = {R. J. Cook}, title = {Generalized linear model}, booktitle = {Encyclopedia of Biostatistics}, year = 1998, publisher = {John Wiley \& Sons}, address = {Chichester, UK}, editor = {P. Armitage and T. Colton} } @book{HSAUR:Everitt2001, author = {B. S. Everitt}, title = {Statistics for Psychologists}, year = 2001, publisher = {Lawrence Erlbaum}, address = {Mahwah, New Jersey, USA} } @article{HSAUR:Giardielloetal1993, author = {F. M. Giardiello and S. R. Hamilton and A. J. Krush and S. Piantadosi and L. M. Hylind and P. Celano and S. V. Booker and C. R. Robinson and G. J. A. Offerhaus}, title = {Treatment of colonic and rectal adenomas with sulindac in familial adenomatous polyposis}, year = 1993, journal = {New England Journal of Medicine}, volume = 328, number = 18, pages = {1313-1316} } @article{HSAUR:GreenwoodYule1920, author = {M. Greenwood and G. U. Yule}, title = {An inquiry into the nature of frequency distribution of multiple happenings with particular reference of multiple attacks of disease or of repeated accidents}, year = 1920, journal = {Journal of the Royal Statistical Society}, volume = 83, pages = {255-279} } @book{HSAUR:McCullaghNelder1989, author = {P. McCullagh and J. A. Nelder}, title = {Generalized Linear Models}, year = 1989, publisher = {Chapman \& Hall/CRC}, address = {London, UK} } @article{HSAUR:NelderWedderburn1972, author = {J. A. Nelder and R. W. M. Wedderburn}, title = {Generalized linear models}, year = 1972, journal = {Journal of the Royal Statistical Society, Series A}, volume = 135, pages = {370-384} } @book{HSAUR:Piantadosi1997, author = {S. Piantadosi}, title = {Clinical Trials: A Methodologic Perspective}, year = 1997, publisher = {John Wiley \& Sons}, address = {New York, USA} } @article{HSAUR:Davis1991, author = {C. S. Davis}, title = {Semi-parametric and non-parametric methods for the analysis of repeated measurements with applications to clinical trials}, year = 1991, journal = {Statistics in Medicine}, volume = 10, pages = {1959-1980} } @article{HSAUR:ThallVail1990, author = {P. F. Thall and S. C. Vail}, title = {Some covariance models for longitudinal count data with overdispersion}, year = 1990, journal = {Biometrics}, volume = 46, pages = {657-671} } @book{HSAUR:EverittPickles2000, author = {B. S. Everitt and A. Pickles}, title = {Statistical Aspects of the Design and Analysis of Clinical Trials}, year = 2000, publisher = {Imperial College Press}, address = {London, UK} } @article{HSAUR:LiangZeger1986, author = {K. Liang and S. L. Zeger}, title = {Longitudinal data analysis using generalized linear models}, year = 1986, journal = {Biometrika}, volume = 73, pages = {13-22} } @article{HSAUR:ZegerLiang1986, author = {S. L. Zeger and K. Y. Liang}, title = {Longitudinal data analysis for discrete and continuous outcomes}, year = 1986, journal = {Biometrics}, volume = 42, number = 1, pages = {121-130} } @article{HSAUR:Lanzaetal1989, author = {F. L. Lanza and D. Fakouhi and A. Rubin and R. E. Davis and M. F. Rack and C. Nissen and S. Geis}, title = {A double-blind placebo-controlled comparison of the efficacy and safety of 50, 100, and 200 micrograms of misoprostol {QID} in the prevention of {I}buprofen-induced gastric and duodenal mucosal lesions and symptoms}, journal = {American Journal of Gastroenterology}, volume = {84}, number = {6}, pages = {633-636}, year = 1989 } @article{HSAUR:Lanzaetal1988a, author = {F. L. Lanza and R. L. Aspinall and E. A. Swabb and R. E. Davis and M. F. Rack and A. Rubin}, title = {Double-blind, placebo-controlled endoscopic comparison of the mucosal protective effects of misoprostol versus cimetidine on tolmetin-induced mucosal injury to the stomach and duodenum}, journal = {Gastroenterology}, volume = {95}, number = {2}, pages = {289-294}, year = 1988 } @article{HSAUR:Lanzaetal1988b, author = {F. L. Lanza and K. Peace and L. Gustitus and M. F. Rack and B. Dickson}, title = {A blinded endoscopic comparative study of misoprostol versus sucralfate and placebo in the prevention of aspirin-induced gastric and duodenal ulceration}, journal = {American Journal of Gastroenterology}, volume = {83}, number = {2}, pages = {143-146}, year = 1988 } @article{HSAUR:Lanza1987, author = {F. L. Lanza}, title = {A double-blind study of prophylactic effect of misoprostol on lesions of gastric and duodenal mucosa induced by oral administration of tolmetin in healthy subjects}, journal = {British Journal of Clinical Practice}, volume = 40, month = {May suppl}, pages = {91-101}, year = 1987, } @article{HSAUR:WhiteheadJones1994, author = {Anne Whitehead and Nicola M. B. Jones}, title = {A meta-analysis of clinical trials involving different classifications of response into ordered categories}, journal = {Statistics in Medicine}, volume = {13}, pages = {2503-2515}, year = 1994, } @article{HSAUR:Carlinetal2000, author = {John B. Carlin and Louise M. Ryan and Elizabeth A. Harvey and Lewis B. Holmes}, title = {Anticonvulsant Teratogenesis 4: Inter-Rater Agreement in Assessing Minor Physical Features Related to Anticonvulsant Therapy}, journal = {Teratology}, volume = 62, pages = {406-412}, year = 2000 } @book{HSAUR:Edgington1987, author = {Eugene S. Edgington}, title = {Randomization Tests}, publisher = {Marcel Dekker}, year = 1987, address = {New York, USA} } @techreport{HSAUR:TherneauAtkinson1997, author = {Terry M. Therneau and Elizabeth J. Atkinson}, title = {An Introduction to Recursive Partitioning using the rpart Routine}, institution = {Section of Biostatistics, Mayo Clinic}, year = {1997}, address = {Rochester, USA}, number = {61}, url = {http://www.mayo.edu/hsr/techrpt/61.pdf} } @book{HSAUR:Pesarin2001, author = {Fortunato Pesarin}, title = {Multivariate Permutation Tests: With Applications to Biostatistics}, year = {2001}, publisher = {John Wiley \& Sons}, address = {Chichester, UK} } @book{HSAUR:Breimanetal1984, author = {L. Breiman and J. H. Friedman and R. A. Olshen and C. J. Stone}, title = {Classification and Regression Trees}, year = {1984}, publisher = {Wadsworth}, address = {California, USA} } @article{HSAUR:Breiman1996, author = {Leo Breiman}, title = {Bagging Predictors}, journal = {Machine Learning}, pages = {123-140}, year = {1996}, volume = {24}, number = {2} } @article{HSAUR:Mardinetal2003, author = {Christian Y. Mardin and Torsten Hothorn and Andrea Peters and Anselm G J{\"u}nemann and Nhung X Nguyen and Berthold Lausen}, title = {New Glaucoma Classification Method based on standard {HRT} parameters by bagging classification trees}, journal = {Journal of Glaucoma}, pages = {340-346}, year = {2003}, volume = {12}, number = {4} } @article{HSAUR:Breiman2001a, author = {Leo Breiman}, title = {Statistical Modeling: The Two Cultures}, journal = {Statistical Science}, pages = {199-231}, year = {2001}, volume = {16}, number = {3}, note = {with discussion} } @article{HSAUR:Breiman2001b, author = {Leo Breiman}, title = {Random Forests}, journal = {Machine Learning}, pages = {5-32}, year = {2001}, volume = {45}, number = {1} } @article{HSAUR:GarczarekWeihs2003, author = {Ursula Maria Garczarek and Claus Weihs}, title = {Standardizing the comparison of partitions}, journal = {Computational Statistics}, pages = {143-162}, year = {2003}, volume = {18}, number = {1} } @article{HSAUR:Murthy1998, author = {Sreerama K. Murthy}, title = {Automatic Construction of Decision Trees from Data: A Multi-Disciplinary Survey}, journal = {Data Mining and Knowledge Discovery}, pages = {345-389}, year = {1998}, volume = {2} } @incollection{HSAUR:Morrison2005, author = {D. F. Morrison}, title = {Multivariate analysis of variance}, booktitle = {Encyclopedia of Biostatistics}, year = 2005, publisher = {John Wiley \& Sons}, address = {Chichester, UK}, editor = {P. Armitage and T. Colton}, edition = {2nd} } @article{HSAUR:Aitkin1978, author = {M. Aitkin}, title = {The analysis of unbalanced cross-classifications}, journal = {Journal of the Royal Statistical Society, Series A}, year = 1978, volume = 141, pages = {195-223}, note = {with discussion} } @article{HSAUR:Nelder1977, author = {J. A. Nelder}, title = {A reformulation of linear models}, journal = {Journal of the Royal Statistical Society, Series A}, year = 1977, volume = 140, pages = {48-76}, note = {with commentary} } @book{HSAUR:Scheffe1959, author = {H. Scheffe}, title = {The Analysis of Variance}, year = 1959, publisher = {John Wiley \& Sons}, address = {New York, USA} } @book{HSAUR:Stevens2001, author = {J. Stevens}, title = {Applied Multivariate Statistics for the Social Sciences}, year = 2001, publisher = {Lawrence Erlbaum}, address = {Mahwah, New Jersey, USA}, edition = {4th} } @phdthesis{HSAUR:Quine1975, author = {S. Quine}, title = {Achievement Orientation of Aboriginal and White Adolescents}, year = {1975}, address = {Canberra, Australia}, school = {Australian National University}, type = {Doctoral {D}issertation} } @book{HSAUR:Timm2002, author = {N. H. Timm}, title = {Applied Multivariate Analysis}, year = 2002, publisher = {Springer-Verlag}, address = {New York, USA}, } @book{HSAUR:TherneauGrambsch2000, author = {Terry M. Therneau and Patricia M. Grambsch}, title = {Modeling Survival Data: {E}xtending the Cox Model}, publisher = {Springer-Verlag}, year = {2000}, address = {New York, USA} } @book{HSAUR:Agresti2002, author = {Alan Agresti}, title = {Categorical Data Analysis}, year = 2002, edition = {2nd}, publisher = {John Wiley \& Sons}, address = {Hoboken, New Jersey, USA} } @incollection{HSAUR:Tukey1953, author = {John W. Tukey}, title = {The Problem of Multiple Comparisons (Unpublished Manuscript)}, year = 1953, booktitle = {The Collected Works of John W. Tukey VIII. Multiple Comparisons: 1948-1983}, publisher = {Chapman \& Hall}, address = {New York, USA} } @book{HSAUR:HochbergTamhane1987, author = {Yosef Hochberg and Ajit C. Tamhane}, title = {Multiple Comparison Procedures}, year = 1987, publisher = {John Wiley \& Sons}, address = {New York, USA} } @book{HSAUR:Everitt1996, author = {Brian S. Everitt}, title = {Making Sense of Statistics in Psychology: A Second-Level Course}, year = 1996, publisher = {Oxford University Press}, address = {Oxford, UK} } @book{HSAUR:Searle1971, author = {S. R. Searle}, title = {Linear Models}, year = 1971, publisher = {John Wiley \& Sons}, address = {New York, USA} } @book{HSAUR:Kraepelin1919, author = {Emil Kraepelin}, title = {Dementia Praecox and Paraphrenia}, year = 1919, publisher = {Livingstone}, address = {Edinburgh, UK} } @article{HSAUR:FraleyRaftery2002, author = {C. Fraley and A. E. Raftery}, title = {Model-based clustering, discriminant analysis, and density estimation}, journal = {Journal of the American Statistical Association}, year = 2002, volume = {97}, pages = {611-631} } @article{HSAUR:Leisch2004, title = {{FlexMix}: A general framework for finite mixture models and latent class regression in {\rR{}}}, author = {Friedrich Leisch}, journal = {Journal of Statistical Software}, year = {2004}, volume = {11}, number = {8}, url = {http://www.jstatsoft.org/v11/i08/}, } @incollection{HSAUR:Buehlmann2004, author = {Peter B{\"uh}lmann}, editor = {James E. Gentle and Wolfgang H{\"a}rdle and Yuichi Mori}, booktitle = {Handbook of Computational Statistics}, title = {Bagging, Boosting and Ensemble Methods}, pages = {877-907}, year = {2004}, publisher = {Springer-Verlag}, address = {Berlin, Heidelberg} } @article{HSAUR:Petersetal2002, author = {Andrea Peters and Torsten Hothorn and Berthold Lausen}, title = {ipred: Improved Predictors}, journal = {R News}, pages = {33--36}, year = 2002, month = {June}, volume = 2, number = 2, note = {{ISSN} 1609-3631}, url = {http://CRAN.R-project.org/doc/Rnews/} } @article{HSAUR:HarrisonRubinfeld1978, author = {D. Harrison and D. L. Rubinfeld}, title = {Hedonic prices and the demand for clean air}, journal = {Journal of Environmental Economics \& Management}, volume = 5, year = 1978, pages = {81-102} } @book{HSAUR:PinheiroBates2000, author = {Jos\'{e} C. Pinheiro and Douglas M. Bates}, title = {Mixed-Effects Models in {S} and {S-PLUS}}, publisher = {Springer-Verlag}, address = {New York, USA}, year = {2000} } @article{HSAUR:Colditzetal1994, author = {G. A. Colditz and T. F. Brewer and C. S. Berkey and M. E. Wilson and E. Burdick and H. V. Fineberg and F. Mosteller}, title = {Efficacy of {BCG} vaccine in the prevention of tuberculosis. {M}eta-analysis of the published literature}, journal = {Journal of the American Medical Association}, year = 1994, volume = 271, number = 9, pages = {698-702} } @article{HSAUR:DerSimonianLaird1986, author = {R. DerSimonian and N. Laird}, title = {Meta-analysis in clinical trials}, journal = {Controlled Clinical Trials}, year = 1986, volume = 7, number = 3, pages = {177-188} } @article{HSAUR:ChalmersLau1993, author = {T. C. Chalmers and J. Lau}, title = {Meta-analytic stimulus for changes in clinical trials}, journal = {Statistical Methods in Medical Research}, year = 1993, volume = 2, number = 2, pages = {161-172} } @book{HSAUR:EverittDunn2001, author = {Brian S. Everitt and G. Dunn}, title = {Applied Multivariate Data Analysis}, year = 2001, edition = {2nd}, publisher = {Arnold}, address = {London, UK} } @article{HSAUR:LiggesMaechler2003, title = {Scatterplot3d -- {A}n {\rR{}} Package for Visualizing Multivariate Data}, author = {Uwe Ligges and Martin M{\"a}chler}, journal = {Journal of Statistical Software}, year = {2003}, pages = {1--20}, number = {11}, volume = {8}, url = {http://www.jstatsoft.org/v08/i11}, } @article{HSAUR:Prim1957, author = {R. C. Prim}, title = {Shortest connection networks and some generalizations}, journal = {Bell System Technical Journal}, year = 1957, volume = 36, pages = {1389-1401} } @article{HSAUR:KaplanMeier1958, author = {E. L. Kaplan and P. Meier}, title = {Nonparametric estimation from incomplete observations}, journal = {Journal of the American Statistical Association}, pages = {457-481}, year = {1958}, volume = {53} } @article{HSAUR:Cox1972, author = {D. R. Cox}, title = {Regression models and life-tables}, journal = {Journal of the Royal Statistical Society, Series B}, year = 1972, volume = 34, pages = {187-202}, note = {with discussion} } @book{HSAUR:KalbfleischPrentice1980, author = {J. D. Kalbfleisch and R. L. Prentice}, title = {The Statistical Analysis of Failure Time Data}, year = 1980, publisher = {John Wiley \& Sons}, address = {New York, USA} } @article{HSAUR:Granaetal2002, author = {C. Grana and M. Chinol and C. Robertson and C. Mazzetta and M. Bartolomei and C. De Cicco and M. Fiorenza and M. Gatti and P. Caliceti and G. Paganelli1}, title = {Pretargeted adjuvant radioimmunotherapy with {Y}ttrium-90-biotin in malignant glioma patients: A pilot study}, journal = {British Journal of Cancer}, pages = {207-212}, year = {2002}, month = {January}, volume = {86}, number = {2} } @article{HSAUR:Schumacher1994, author = {M. Schumacher and G. Basert and H. Bojar and K. H\"ubner and M. Olschewski and W. Sauerbrei and C. Schmoor and C. Beyerle and {Neumann, R. L. A.} and {Rauschecker, H. F. for the German Breast Cancer Study Group}}, title = {Randomized $2\times2$ trial evaluating hormonal treatment and the duration of chemotherapy in node-positive breast cancer patients}, journal = {Journal of Clinical Oncology}, year = {1994}, volume = {12}, pages = {2086-2093} } @article{HSAUR:SauerbreiRoyston1999, author = {Willi Sauerbrei and Patrick Royston}, title = {Building multivariable prognostic and diagnostic models: Transformation of the predictors by using fractional polynomials}, journal = {Journal of the Royal Statistical Society, Series A}, pages = {71-94}, year = {1999}, volume = {162}, number = {1} } @book{HSAUR:Hartigan1975, author = {J. A. Hartigan}, title = {Clustering Algorithms}, publisher = {John Wiley \& Sons}, year = 1975, address = {New York, USA} } @book{HSAUR:Davis2002, author = {C. S. Davis}, title = {Statistical Methods for the Analysis of Repeated Measurements}, publisher = {Springer-Verlag}, year = 2002, address = {New York, USA} } @book{HSAUR:Everitt2002b, author = {B. S. Everitt}, title = {Cambridge Dictionary of Statistics in the Medical Sciences}, publisher = {Cambridge University Press}, year = 2002, address = {Cambridge, UK} } @article{HSAUR:GowerRoss1969, author = {J. C. Gower and G. J. S. Ross}, title = {Minimum spanning trees and single linkage cluster analysis}, year = 1969, journal = {Applied Statistics}, volume = 18, pages = {54-64} } @manual{HSAUR:StatXact6, key = {516}, author = {Cyrus R. Mehta and Nitin R. Patel}, title = {StatXact-6: Statistical Software for Exact Nonparametric Inference}, organization = {Cytel Software Corporation}, year = {2003}, address = {Cambridge, MA, USA} } @book{HSAUR:Miller2002, author = {Alan Miller}, title = {Subset Selection in Regression}, year = {2002}, publisher = {Chapman \& Hall}, address = {New York, USA}, edition = {2nd} } @article{HSAUR:Fleiss1993, author = {J. L. Fleiss}, title = {The statistical basis of meta-analysis}, journal = {Statistical Methods in Medical Research}, year = 1993, volume = 2, pages = {121-145} } @incollection{HSAUR:Seeber1998, author = {G. U. H. Seeber}, title = {Poisson Regression}, booktitle = {Encyclopedia of Biostatistics}, year = 1998, publisher = {John Wiley \& Sons}, address = {Chichester, UK}, editor = {P. Armitage and T. Colton} } @article{HSAUR:Bates2005, author = {Douglas Bates}, title = {Fitting Linear Mixed Models in {\rR{}}}, journal = {R News}, year = 2005, volume = 5, number = 1, pages = {27--30}, month = {May}, url = {http://CRAN.R-project.org/doc/Rnews/} } @book{HSAUR:KaufmanRousseeuw1990, author = {L. Kaufman and P. J. Rousseeuw}, title = {Finding Groups in Data: {A}n Introduction to Cluster Analysis}, year = 1990, publisher = {John Wiley \& Sons}, address = {New York, USA} } @article{HSAUR:Roeder1990, author = {K. Roeder}, title = {Density estimation with confidence sets exemplified by superclusters and voids in galaxies}, journal = {Journal of the American Statistical Association}, year = 1990, volume = {85}, pages = {617-624} } @article{HSAUR:Postmanetal1986, author = {M. Postman and J. P. Huchra and M. J. Geller}, title = {Probes of large-scale structures in the Corona Borealis region}, year = 1986, journal = {Astrophysical Journal}, volume = 92, pages = {1238-1247} } @article{HSAUR:FreemanHalton1951, author = {G. H. Freeman and J. H. Halton}, title = {Note on an exact treatment of contingency, goodness of fit and other problems of significance}, journal = {Biometrika}, year = 1951, volume = {38}, pages = {141-149} } @article{HSAUR:LeischRossini2003, author = {Friedrich Leisch and Anthony J. Rossini}, title = {Reproducible statistical research}, journal = {Chance}, year = 2003, volume = 16, number = 2, pages = {46-50} } @article{HSAUR:Gentleman2005, author = {Robert Gentleman}, title = {Reproducible Research: {A} Bioinformatics Case Study}, journal = {Statistical Applications in Genetics and Molecular Biology}, year = 2005, volume = 4, number = 1, note = {{Article 2}}, url = {http://www.bepress.com/sagmb/vol4/iss1/art2} } @inproceedings{HSAUR:Leisch2002b, author = {Friedrich Leisch}, title = {Sweave: Dynamic Generation of Statistical Reports Using Literate Data Analysis}, booktitle = {Compstat 2002 --- Proceedings in Computational Statistics}, pages = {575--580}, year = 2002, editor = {Wolfgang H{\"a}rdle and Bernd R{\"o}nz}, publisher = {Physica Verlag, Heidelberg}, note = {{ISBN} 3-7908-1517-9}, } @article{HSAUR:Leisch2003, author = {Friedrich Leisch}, title = {Sweave, {P}art {II}: Package Vignettes}, journal = {R News}, year = 2003, volume = 3, number = 2, pages = {21--24}, month = {October}, url = {http://CRAN.R-project.org/doc/Rnews/} } @article{HSAUR:Leisch2002a, author = {Friedrich Leisch}, title = {Sweave, {P}art {I}: Mixing {R} and {\LaTeX}}, journal = {R News}, year = 2002, volume = 2, number = 3, pages = {28--31}, month = {December}, url = {http://CRAN.R-project.org/doc/Rnews/} } @book{HSAUR:Murrell2005, author = {Paul Murrell}, title = {R Graphics}, year = 2005, publisher = {Chapman \& Hall/CRC}, address = {Boca Raton, Florida, USA} } @Article{HSAUR:Hothorn:2006:JCGS, key = {566}, author = {Torsten Hothorn and Kurt Hornik and Achim Zeileis}, title = {Unbiased Recursive Partitioning: A Conditional Inference Framework}, journal = {Journal of Computational and Graphical Statistics}, year = 2006, volume = 15, number = 3, pages = {651--674}, doi = {10.1198/106186006X133933}, } @Article{HSAUR:Hothorn:2006:AmStat, key = {575}, author = {Torsten Hothorn and Kurt Hornik and Mark A. van de Wiel and Achim Zeileis}, title = {A {L}ego System for Conditional Inference}, journal = {The American Statistician}, year = {2006}, volume = {60}, issue = {3}, pages = {257--263}, doi = {10.1198/000313006X118430}, } @book{HSAUR:Dalgaard2002, author = {Peter Dalgaard}, title = {Introductory Statistics with R}, year = 2002, publisher = {Springer-Verlag}, address = {New York, USA} } @article{HSAUR:Gabriel1971, author = {K. R. Gabriel}, title = {The biplot graphical display of matrices with application to principal component analysis}, year = 1971, journal = {Biometrika}, volume = {58}, pages = {453--467} } @incollection{HSAUR:Gabriel1981, author = {K. R. Gabriel}, title = {Biplot display of multivariate matrices for inspection of data and diagnosis}, booktitle = {Interpreting Multivariate Data}, editor = {V. Barnett}, year = 1981, publisher = {John Wiley \& Sons}, address = {Chichester, UK} } @book{HSAUR:GowerHand1996, author = {J. C. Gower and D. J. Hand}, title = {Biplots}, year = 1996, publisher = {Chapman \& Hall/CRC}, address = {London, UK} } @article{HSAUR:DolnicarLeisch2003, author = {Sara Dolnicar and Friedrich Leisch}, title = {Winter tourist segments in {A}ustria: Identifying stable vacation styles using bagged clustering techniques}, year = 2003, journal = {Journal of Travel Research}, volume = {41}, pages = {281--292} } @article{HSAUR:Elwoodetal1974, author = {P. C. Elwood and A. L. Cochrane and M. L. Burr and P. M. Sweetman and G. Williams and E. Welsby and S. J. Hughes and R. Renton}, title = {A randomized controlled trial of acetyl salicilic acid in the secondary prevention of mortality from myocardial infarction}, year = 1974, journal = {British Medical Journal}, volume = 1, number = 905, pages = {436-440} } @article{HSAUR:Coronary1976, author = {{Coronary Drug Project Group}}, title = {Asprin in coronary heart disease}, year = 1976, journal = {Journal of Chronic Diseases}, volume = 29, pages = {625-642} } @article{HSAUR:ElwoodSweetman1979, author = {P. C. Elwood and P. M. Sweetman}, title = {Asprin and secondary mortality after myocardial infarction}, year = 1979, journal = {Lancet}, volume = 2, pages = {1313-1315} } @article{HSAUR:Breddinetal1979, author = {K. Breddin and D. Loew and K. Lechner and K. {\"U}berla and E. Walter}, title = {Secondary prevention of myocardial infarction. {C}omparison of acetylsalicylic acid, phenprocoumon and placebo. {A} multicenter two-year prospective study}, journal = {Thrombosis and Haemostasis}, year = 1979, volume = 41, number = 1, pages = {225-236} } @article{HSAUR:Aspirin1980, author = {{Aspirin Myocardial Infarction Study Research Group}}, title = {A randomized, controlled trial of aspirin in persons recovered from myocardial infarction}, year = 1980, journal = {Journal of the American Medical Association}, volume = 243, number = 7, pages = {661-669} } @article{HSAUR:Persantine1980, author = {{Persantine-Aspirin Reinfarction Study Research Group}}, title = {Persantine and {A}spirin in coronary heart disease}, journal = {Circulation}, year = 1980, volume = 62, number = 3, pages = {449-461} } @article{HSAUR:ISIS21988, author = {{ISIS-2 (Second International Study of Infarct Survival) Collaborative Group}}, title = {Randomised trial of intravenous streptokinase, oral aspirin, both, or neither among 17,187 cases of suspected acute myocardial infarction: {ISIS-2}}, year = 1988, journal = {Lancet}, volume = 13, pages = {349-360} } @article{HSAUR:Mazess1984, author = {R. B. Mazess and W. W. Peppler and M. Gibbons}, title = {Total body composition by dual-photon {(153Gd)} absorptiometry}, year = 1984, journal = {American Journal of Clinical Nutrition}, volume = 40, pages = {834-839} } @book{HSAUR:Goldberg1972, author = {D. Goldberg}, year = 1972, title = {The Detection of Psychiatric Illness by Questionnaire}, publisher = {Oxford University Press}, address = {Oxford, UK} } %% PACKAGES @article{PKG:sandwich, title = {Econometric Computing with {HC} and {HAC} Covariance Matrix Estimators}, author = {Achim Zeileis}, journal = {Journal of Statistical Software}, year = {2004}, volume = {11}, number = {10}, pages = {1--17}, url = {http://www.jstatsoft.org/v11/i10/}, } @Manual{PKG:coin, title = {\Rpackage{coin}: Conditional Inference Procedures in a Permutation Test Framework}, author = {Torsten Hothorn and Kurt Hornik and Mark van de Wiel and Achim Zeileis}, year = {2013}, url = {http://CRAN.R-project.org/package=coin}, note = {\rR{} package version 1.0-23} } @Manual{PKG:KernSmooth, title = {\Rpackage{KernSmooth}: Functions for Kernel Smoothing for Wand \& Jones (1995)}, author = {Matt P. Wand and Brian D. Ripley}, year = {2014}, note = {\rR{} package version 2.23-10}, url = {http://CRAN.R-project.org/package=KernSmooth}, } @Manual{PKG:boot, title = {\Rpackage{boot}: Bootstrap \rR{} (\rSPLUS) Functions}, author = {Angelo Canty and Brian D. Ripley}, year = {2014}, url = {http://CRAN.R-project.org/package=boot}, note = {\rR{} package version 1.3-9}, } @Manual{PKG:mclust, title = {\Rpackage{mclust}: Model-based Cluster Analysis}, author = {C. Fraley and A. E. Raftery and Ron Wehrens}, year = {2014}, note = {\rR{} package version 4.3}, url = {http://www.stat.washington.edu/mclust}, } @Manual{PKG:randomForest, title = {\Rpackage{randomForest}: {B}reiman and {C}utler's Random Forests for Classification and Regression}, author = {Leo Breiman and Adele Cutler and Andy Liaw and Matthew Wiener}, year = {2013}, note = {\rR{} package version 4.6-7}, url = {http://stat-www.berkeley.edu/users/breiman/RandomForests}, } @Manual{PKG:rpart, title = {\Rpackage{rpart}: Recursive Partitioning}, author = {Terry M. Therneau and Beth Atkinson and Brian D. Ripley}, year = {2014}, note = {\rR{} package version 4.1-8}, url = {http://mayoresearch.mayo.edu/mayo/research/biostat/splusfunctions.cfm}, } @Manual{PKG:mlbench, title = {\Rpackage{mlbench}: Machine Learning Benchmark Problems}, author = {Friedrich Leisch and Evgenia Dimitriadou}, year = {2013}, url = {http://CRAN.R-project.org/package=mlbench}, note = {\rR{} package version 2.1-1}, } @Manual{PKG:nlme, title = {\Rpackage{nlme}: Linear and Nonlinear Mixed Effects Models}, author = {Jos\'{e} C. Pinheiro and Douglas M. Bates and Saikat DebRoy and Deepayan Sarkar}, year = {2014}, url = {http://CRAN.R-project.org/package=nlme}, note = {\rR{} package version 3.1-113}, } @Manual{PKG:lme4, title = {\Rpackage{lme4}: Linear Mixed-Effects Models Using S4 Classes}, author = {Douglas Bates and Deepayan Sarkar}, year = {2014}, url = {http://CRAN.R-project.org/package=lme4}, note = {\rR{} package version 1.1-5}, } @Manual{PKG:gee, title = {\Rpackage{gee}: Generalized Estimation Equation Solver}, author = {Vincent J. Carey and Thomas Lumley and Brian D. Ripley}, year = {2013}, url = {http://CRAN.R-project.org/package=gee}, note = {\rR{} package version 4.13-18}, } @Manual{PKG:rmeta, title = {\Rpackage{rmeta}: {M}eta-Analysis}, author = {Thomas Lumley}, year = {2013}, url = {http://CRAN.R-project.org/package=rmeta}, note = {\rR{} package version 2.16}, } @Manual{PKG:ape, title = {\Rpackage{ape}: {A}nalyses of Phylogenetics and Evolution}, author = {Emmanuel Paradis and Korbinian Strimmer and Julien Claude and Gangolf Jobb and Rainer Opgen-Rhein and Julien Dutheil and Yvonnick Noel and Ben Bolker}, year = {2014}, url = {http://CRAN.R-project.org/package=ape}, note = {\rR{} package version 3.1-1}, } @Manual{PKG:survival, title = {\Rpackage{survival}: {S}urvival Analysis, Including Penalised Likelihood}, author = {Terry M. Therneau and Thomas Lumley}, year = {2014}, url = {http://CRAN.R-project.org/package=survival}, note = {\rR{} package version 2.37-7}, } @Manual{PKG:mfp, title = {\Rpackage{mfp}: {M}ultivariable Fractional Polynomials}, author = {Gareth Ambler and Axel Benner}, year = {2013}, url = {http://CRAN.R-project.org/package=mfp}, note = {\rR{} package version 1.4.9}, } @Manual{PKG:vcd, title = {\Rpackage{vcd}: {V}isualizing Categorical Data}, author = {David Meyer and Achim Zeileis and Alexandros Karatzoglou and Kurt Hornik}, year = {2013}, url = {http://CRAN.R-project.org/package=vcd}, note = {\rR{} package version 1.3-1}, } @Manual{PKG:leaps, title = {\Rpackage{leaps}: {R}egression Subset Selection}, author = {Thomas Lumley and Alan Miller}, year = {2013}, url = {http://CRAN.R-project.org/package=leaps}, note = {\rR{} package version 2.9}, } @Manual{PKG:party, title = {\Rpackage{party}: {A} Laboratory for Recursive Partytioning}, author = {Torsten Hothorn and Kurt Hornik and Carolin Strobl and Achim Zeileis}, year = {2014}, url = {http://CRAN.R-project.org/package=party}, note = {\rR{} package version 1.0-13} } @Manual{PKG:multcomp, title = {\Rpackage{multcomp}: Simultaneous Inference for General Linear Hypotheses}, author = {Torsten Hothorn and Frank Bretz and Peter Westfall}, year = {2014}, note = {\rR{} package version 1.3-2}, url = {http://CRAN.R-project.org/package=multcomp} } @Manual{PKG:lattice, title = {\Rpackage{lattice}: Lattice Graphics}, author = {Deepayan Sarkar}, year = {2014}, note = {\rR{} package version 0.20-27}, url = {http://CRAN.R-project.org/package=lattice} } @Manual{PKG:partykit, title = {\Rpackage{partykit}: A Toolkit for Recursive Partytioning}, author = {Torsten Hothorn and Achim Zeileis}, year = {2014}, note = {\rR{} package version 0.8-0}, url = {http://R-forge.R-project.org/projects/partykit/} } @Manual{PKG:alr3, title = {\Rpackage{alr3}: Methods and Data to Accompany {Applied Linear Regression 3rd edition}}, author = {Sanford Weisberg}, year = {2013}, note = {\rR{} package version 2.0.5}, url = {http://www.stat.umn.edu/alr}, } @Manual{PKG:mboost, title = {\Rpackage{mboost}: Model-Based Boosting}, author = {Torsten Hothorn and Peter B\"uhlmann and Thomas Kneib and Matthias Schmid and Benjamin Hofner}, year = {2013}, note = {\rR{} package version 2.2-3}, url = {http://CRAN.R-project.org/package=mboost} } @Manual{PKG:meta, title = {\Rpackage{meta}: {M}eta-Analysis}, author = {Guido Schwarzer}, year = {2014}, note = {\rR{} package version 3.2-1}, url = {http://CRAN.R-project.org/package=meta} } @Manual{PKG:rgl, title = {\Rpackage{rgl}: 3D Visualization Device System (OpenGL)}, author = {Daniel Adler and Duncan Murdoch}, year = {2014}, note = {\rR{} package version 0.93.996}, url = {http://rgl.neoscientists.org}, } @Manual{PKG:wordcloud, title = {\Rpackage{wordcloud}: Word Clouds}, author = {Ian Fellows}, year = {2014}, note = {\rR{} package version 2.4}, url = {http://CRAN.R-project.org/package=wordcloud} } @Manual{PKG:quantreg, title = {\Rpackage{quantreg}: {Quantile} Regression}, author = {Roger Koenker}, year = {2013}, url = {http://CRAN.R-project.org/package=quantreg}, note = {\rR{} package version 5.05} } @Manual{PKG:MASS, title = {\Rpackage{MASS}: Support Functions and Datasets for Venables and Ripley's MASS}, author = {Brian D. Ripley}, year = {2014}, url = {http://CRAN.R-project.org/package=MASS}, note = {\rR{} package version 7.3-29} } @Manual{PKG:INLA, title = {\Rpackage{INLA}: Functions Which Allow to Perform Full Bayesian Analysis of Latent Gaussian Models Using Integrated Nested Laplace Approximaxion}, author = {Havard Rue and Sara Martino and Finn Lindgren and Daniel Simpson and Andrea Riebler}, year = {2013}, url = {http://www.r-inla.org/download}, note = {\rR{} package version 0.0-1379661604} } @Manual{PKG:rjags, title = {\Rpackage{rjags}: Bayesian Graphical Models Using {MCMC}}, author = {Martyn Plummer and Alexey Stukalov}, year = {2014}, url = {http://CRAN.R-project.org/package=rjags}, note = {\rR{} package version 3-13} } @Manual{PKG:sp, title = {\Rpackage{sp}: Classes and Methods for Spatial Data}, author = {Edzer Pebesma and Roger Bivand}, year = {2013}, url = {http://CRAN.R-project.org/package=sp}, note = {\rR{} package version 1.0-14} } @Manual{PKG:mice, title = {\Rpackage{mice}: Multivariate Imputation by Chained Equations}, author = {Stef van Buuren and Karin Groothuis-Oudshoorn}, year = {2014}, url = {http://CRAN.R-project.org/package=mice}, note = {\rR{} package version 2.21} } @book{HSAUR:Sarkar2008, title = {Lattice: {M}ultivariate Data Visualization with \rR{}}, author = {Deepayan Sarkar}, year = 2008, publisher = {Springer-Verlag}, address = {New York, USA} } @article{HSAUR:Mazessetal1984, author = {R. B. Mazess and W. W. Peppler and M. Gibbons}, title = {Total Body Composition by Dual Photon Absorptiometry}, year = 1984, journal = {American Journal of Clinical Nutrition}, volume = 40, pages = {834-839} } @book{HSAUR:Rawlingsetal1998, author = {J. O. Rawlings and S. G. Pantula and A. D. Dickey}, title = {Applied Regression Analysis}, year = 1998, publisher = {Springer-Verlag}, address = {New York, USA} } @article{HSAUR:FrisonPocock1992, author = {L. Frison and S. J. Pocock}, year = 1992, title = {Repeated Measures in Clinical Trials: Analysis using Mean Summary Statistics and its Implications for Design}, journal = {Statistics in Medicine}, volume = 11, pages = {1685--1704} } @article{HSAUR:Matthewsetal1990, author = {J. N. S. Matthews and D. G. Altman and M. J. Campbell and P. Royston}, year = 1990, title = {Analysis of Serial Measurements in Medical Research}, journal = {British Medical Journal}, volume = {200}, pages = {230--235} } @article{HSAUR:DeBackeretal1998, author = {M. De Backer and C. De Vroey and E. Lesaffre and I. Scheys and P. De Keyser}, title = {Twelve weeks of continuous oral therapy for toenail onychomycosis caused by dermatophytes: {A} double-blind comparative trial of terbinafine 250 mg/day versus itraconazole 200 mg/day.}, journal = {Journal of the American Academy of Dermatology}, year = {1998}, volume = {38}, pages = {S57--S63}, number = {5}, } @article{HSAUR:Freedmanetal2001, author = {W. L. Freedman and B. F. Madore and B. K. Gibson and L. Ferrarese and D. D. Kelson and S. Sakai and J. R. Mould and R. C. Kennicutt and H. C. Ford and J. A. Graham and John. P. Huchra and S. M. G. Hughes and G. D. Illingworth and L. M. Macri and Peter B. Stetson}, title = {Final Results from the {Hubble Space Telescope} Key Project to Measure the {H}ubble Constant}, journal = {The Astrophysical Journal}, year = 2001, volume = 553, number = 1, pages = {47--72} } @book{HSAUR:Wood2006, author = {Simon N. Wood}, title = {Generalized Additive Models: An Introduction with R}, year = 2006, publisher = {Chapman \& Hall/CRC}, address = {Boca Raton, Florida, USA} } @book{HSAUR:SokalRohlf1981, author = {R. R. Sokal and F. J. Rohlf}, year = 1981, title = {Biometry}, publisher = {W. H. Freeman}, address = {San Francisco, California, USA}, edition = {2nd} } @book{HSAUR:HastieTibshirani1990, author = {T. Hastie and R. Tibshirani}, year = {1990}, title = {Generalized Additive Models}, publisher = {Chapman \& Hall}, address = {Boca Raton, Florida} } @book{HSAUR:Hsu1996, author = {Jason C. Hsu}, title = {Multiple Comparisons: Theory and Methods}, year = 1996, publisher = {CRC Press, Chapman \& Hall}, address = {London}, } @article{HSAUR:Boenschetal2005, author = {Domenikus B{\"o}nsch and Thomas Lederer and Udo Reulbach and Torsten Hothorn and Johannes Kornhuber and Stefan Bleich}, title = {Joint Analysis of the {NACP-REP1} Marker Within the Alpha Synuclein Gene Concludes Association with Alcohol Dependence}, journal = {Human Molecular Genetics}, year = 2005, volume = 14, number = 7, pages = {967-971} } @Article{HSAUR:HothornBretzWestfall2008, author = {Torsten Hothorn and Frank Bretz and Peter Westfall}, year = 2008, title = {Simultaneous Inference in General Parametric Models}, journal = {Biometrical Journal}, volume = 50, number = 3, pages = {346--363} } @ARTICLE{HSAUR:Zeileis2006, author = {Achim Zeileis}, title = {Object-oriented Computation of Sandwich Estimators}, year = {2006}, journal = {Journal of Statistical Software}, volume = {16}, number = {9}, pages = {1--16}, url = {http://www.jstatsoft.org/v16/i09/} } @Article{HSAUR:Garcia2005, author = {A. L. Garcia and K. Wagner and T. Hothorn and C. Koebnick and H. J. Zunft and U. Trippo}, title = {Improved prediction of body fat by measuring skinfold thickness, circumferences, and bone breadths}, journal = {Obesity Research}, year = 2005, volume = 13, number = 3, pages = {626--634} } @Article{HSAUR:KelseyHardy1975, author = {Jennifer L. Kelsey and Robert J. Hardy}, title = {Driving of Motor Vehicles as a Risk Factor for Acute Herniated Lumbar Intervertebral Disc}, journal = {American Journal of Epidemiology}, year = 1975, volume = {102}, number = 1, pages = {63--73} } @Book{HSAUR:Keele2008, author = {Luke John Keele}, title = {Semiparametric Regression for the Social Sciences}, year = {2008}, publisher = {John Wiley \& Sons}, address = {New York, USA} } @article{HSAUR:BuehlmannHothorn2007, AUTHOR = {Peter B\"{u}hlmann and Torsten Hothorn}, TITLE = {Boosting Algorithms: Regularization, Prediction and Model Fitting}, JOURNAL = {Statistical Science}, YEAR = {2007}, VOLUME = {22}, NUMBER = {4}, PAGES = {477-505}, } @book{HSAUR:Schwarzer2009, author = {Guido Schwarzer and James R. Carpenter and Gerta R{\"u}cker}, title = {{M}eta-analysis with \rR{}}, year = {2009}, publisher = {Springer-Verlag}, address = {New York, USA}, note = {forthcoming} } @article{HSAUR:Rohlf1970, author = {F. James Rohlf}, title = {Adaptive Hierarchical Clustering Schemes}, journal = {Systematic Zoology}, year = {1970}, volume = 19, pages = {58--82} } @incollection{HSAUR:Hawkins1982, author = {Douglas M. Hawkins and Michael W. Muller and J. Andri {ten Krooden}}, title = {Cluster Analysis}, year = 1982, booktitle = {Topics in Applied Multivariate Analysis}, editor = {Douglas M. Hawkins}, publisher = {Cambridge University Press}, address = {Cambridge, UK} } @article{HSAUR:Parishetal2003, author = {William L. Parish and Edward O. Laumann and Myron S. Cohen and Suiming Pan and Heyi Zheng and Irving Hoffman and Tianfu Wang and Kwai Hang Ng}, year = 2003, title = {Population-Based Study of Chlamydial Infection in China: {A} Hidden Epidemic}, journal = {Journal of the American Medical Association}, volume = 289, number = 10, pages = {1265--1273} } @book{HSAUR:FisherBelle1993, author = {Lloyd D. Fisher and Gerald Van Belle}, title = {Biostatistics. {A} Methodology for the Health Sciences}, year = 1993, publisher = {John Wiley \& Sons}, address = {New York, USA} } @book{HSAUR:ClevelandMcGill1988, author = {William S. Cleveland and Marylyn E. McGill}, title = {Dynamic Graphics for Statistics}, year = 1988, publisher = {Wadsworth \& Brooks/Cole}, address = {Belmont, California} } @book{HSAUR:Tufte1983, author = {E. R. Tufte}, title = {The Visual Display of Quantitative Information}, year = 1983, publisher = {Graphics Press}, address = {Cheshire, Connecticut} } @Article{HSAUR:Meyeretal2006, title = {The Strucplot Framework: Visualizing Multi-Way Contingency Tables with vcd}, author = {David Meyer and Achim Zeileis and Kurt Hornik}, journal = {Journal of Statistical Software}, year = {2006}, volume = {17}, number = {3}, pages = {1--48}, url = {http://www.jstatsoft.org/v17/i03/}, } @book{HSAUR:Chenetal2008, title = {Handbook of Data Visualization}, editor = {C. Chen and Wolfgang H\"ardle and Antony Unwin}, year = 2008, publisher = {Springer-Verlag}, address = {Berlin, Heidelberg} } @book{HSAUR:Chambersetal1983, author = {J. M. Chambers and W. S. Cleveland and B. Kleiner and P. A. Tukey}, title = {Graphical Methods for Data Analysis}, year = 1983, publisher = {Chapman \& Hall/CRC}, address = {London} } @book{HSAUR:Schmid1954, author = {C. F. Schmid}, title = {Handbook of Graphic Presentation}, year = 1954, publisher = {Ronald Press}, address = {New York} } @article{HSAUR:Cleveland1979, author = {William S. Cleveland}, title = {Robust Locally Weighted Regression and Smoothing Scatterplots}, year = 1979, journal = {Journal of the American Statistical Association}, volume = {74}, pages = {829--836} } @book{HSAUR:FluryRiedwyl1988, author = {B. Flury and H. Riedwyl}, title = {Multivariate Statistics: {A} Practical Approach}, year = 1988, publisher = {Chapman \& Hall}, address = {London, UK} } @article{HSAUR:Friendly1994, author = {Michael Friendly}, title = {Mosaic Displays for Multi-way Contingency Tables}, year = 1994, journal = {Journal of the American Statistical Association}, volume = 89, pages = {190--200} } @unpublished{HSAUR:HofmannTheus2005, author = {Heike Hofmann and Martin Theus}, title = {Interactive Graphics for Visualizing Conditional Distributions}, year = 2005, note = {unpublished Manuscript} } @book{HSAUR:RabeHeskethSkrondal2008, author = {Sophia Rabe-Hesketh and Anders Skrondal}, title = {Multilevel and Longitudinal Modeling Using Stata}, edition = {2nd}, publisher = {Stata Press}, year = 2008, address = {College Station, Texas, USA} } @Book{HSAUR:Koenker2005, title = {Quantile Regression}, publisher = {Cambridge University Press}, year = {2005}, author = {Roger Koenker}, series = {Economic Society Monographs}, language = {english}, address = {New York} } @Article{HSAUR:KoenkerBassett1978, title = {Regression Quantiles}, author = {Roger Koenker and Gilbert Bassett}, journal = {Econometrica}, volume = 46, number = 1, year = 1978, pages = {33--50} } @Article{HSAUR:KoenkerNgPortnoy1994, title = {Quantile Smoothing Splines}, year = {1994}, author = {R. Koenker and P. Ng and S. Portnoy}, journal = {Biometrika}, volume = {81}, number = {4}, pages = {673--680} } @Article{HSAUR:FredriksBuurenBurgmeijer2000, author = {A. M. Fredriks and S. van Buuren and R. J. F. Burgmeijer and J. F. Meulmeester and R. J. Beuker and E. Brugman and M. J. Roede and S. P. Verloove-Vanhorick and J. Wit}, title = {Continuing Positive Secular Growth Change in {The} {Netherlands} 1955--1997}, year = {2000}, journal = {Pediatric Research}, volume = {47}, number = {3}, pages = {316--323} } @Article{HSAUR:StasinopoulosRigby2007, author = {D. Mikis Stasinopoulos and Robert A. Rigby}, title = {Generalized Additive Models for Location Scale and Shape {(GAMLSS)} in {R}}, year = {2007}, journal = {Journal of Statistical Software}, volume = {23}, number = {7}, pages = {1--46}, url = {http://www.jstatsoft.org/v23/i07} } @Article{HSAUR:RigbyStasinopoulos2005, author = {R. A. Rigby and D. M. Stasinopoulos}, title = {Generalized Additive Models for Location, Scale and Shape}, year = {2005}, journal = {Journal of the Royal Statistical Society: Series C (Applied Statistics)}, volume = {54}, number = {3}, pages = {507--554}, } @article{HSAUR:HothornKneibBuehlmann2013, author = {Torsten Hothorn and Thomas Kneib and Peter B{\"u}hlmann}, title = {Conditional Transformation Models}, journal = {Journal of the Royal Statistical Society: Series B (Statistical Methodology)}, year = {2013}, doi = {10.1111/rssb.12017}, } @book{HSAUR:FahrmeirKneibLang2013, author = {Ludwig Fahrmeir and Thomas Kneib and Stefan Lang and Brian Marx}, title = {Regression: Models, Methods and Applications}, year = {2013}, publisher = {Springer-Verlag}, address = {Berlin, Heidelberg, Germany} } @Article{HSAUR:DoksumGasko1990, author = {Kjell A. Doksum and Miriam Gasko}, title = {On a Correspondence Between Models in Binary Regression Analysis and in Survival Analysis}, year = {1990}, journal = {International Statistical Review}, volume = {58}, number = {3}, pages = {243--252} } @book{HSAUR:Tutz2012, author = {Gerhard Tutz}, title = {Regression for Categorical Data}, year = {2012}, publisher = {Cambridge University Press}, address = {New York, USA} } @Article{HSAUR:DetteVolgushev2008, author = {H. Dette and S. Volgushev}, title = {Non-crossing Non-parametric Estimates of Quantile Curves}, year = {2008}, journal = {Journal of the Royal Statistical Society: Series B (Statistical Methodology)}, volume = {70}, number = {3}, pages = {609--627}, } @Article{HSAUR:Greenland2006, author = {Sander Greenland}, title = {Bayesian Perspectives for Epidemiological Research: I. {Foundations} and Basic Methods}, year = {2006}, journal = {International Journal of Epidemiology}, volume = {35}, number = {3}, DOI = {10.1093/ije/dyi312}, pages = {765--775} } @Article{HSAUR:Greenland2007, author = {S. Greenland}, title = {Bayesian Perspectives for Epidemiological Research. II. {Regression} Analysis}, year = {2007}, journal = {International Journal of Epidemiology}, volume = {36}, number = {1}, DOI = {10.1093/ije/dyl289}, pages = {195--202} } @Article{HSAUR:Mueller1940, author = {Frank Hermann M\"uller}, title = {{Tabakmi{\ss}brauch und Lungencarcinom}}, journal = {Zeitschrift f\"ur Krebsforschung}, year = 1940, volume = 49, number = 1, pages = {57--85} } @Article{HSAUR:SchairerSchoeninger1944, author = {E. Schairer and E. Sch\"oninger}, title = {{Lungenkrebs und Tabakverbrauch}}, journal = {Zeitschrift f\"ur Krebsforschung}, year = 1944, volume = 54, number = 4, pages = {261--269} } @Article{HSAUR:Wassink1945, author = {W. F. Wassink}, title = {{Ontstaansvoorwaarden voor Longkanker}}, journal = {Nederlands Tijdschrift voor Geneeskunde}, year = 1945, volume = 92, pages = {3732--3747} } @Article{HSAUR:DollHill1950, author = {Richard Doll and A. Bradford Hill}, title = {Smoking and Carcinoma of the Lung}, journal = {British Medical Journal}, year = 1950, volume = 2, pages = {739--748} } @book{HSAUR:Fisher1959, author = {R. A. Fisher}, title = {Smoking. The Cancer Controversy}, year = 1959, publisher = {Oliver and Boyd}, address = {Edinburgh, London, UK} } @article{HSAUR:SchaferGraham2002, author = {Joseph L. Schafer and John W. Graham}, title = {Missing Data: {Our} View of the State of the Art.}, year = {2002}, journal = {Psychological Methods}, volume = {7}, number = {2}, DOI = {10.1037/1082-989X.7.2.147}, pages = {147--177} } @article{HSAUR:WhiteRoystonWood2011, author = {Ian R. White and Patrick Royston and Angela M. Wood}, title = {Multiple Imputation Using Chained Equations: {Issues} and Guidance for Practice}, year = {2011}, journal = {Statistics in Medicine}, volume = {30}, number = {4}, DOI = {10.1002/sim.4067}, pages = {377--399} } @book{HSAUR:vanBuuren2012, title={Flexible Imputation of Missing Data}, author={Stef {Van Buuren}}, year={2012}, publisher={CRC Press}, address = {Boca Raton, Florida, USA} } @article{HSAUR:RubinSchenker1991, title={Multiple Imputation in Healthcare Databases: {An} Overview and Some Applications}, author={Donald B. Rubin and Nathaniel Schenker}, journal={Statistics in Medicine}, volume={10}, number={4}, pages={585--598}, year={1991}, } @incollection{HSAUR:BarnardRubinSchenker1998, author = {J. Barnard and D. B. Rubin and N. Schenker}, title = {Multiple Imputation Methods}, booktitle = {Encyclopedia of Biostatistics}, year = 1998, publisher = {John Wiley \& Sons}, address = {Chichester, UK}, editor = {P. Armitage and T. Colton} } @incollection{HSAUR:Little1998, author = {J. R. Little}, title = {Missing Data}, booktitle = {Encyclopedia of Biostatistics}, year = 1998, publisher = {John Wiley \& Sons}, address = {Chichester, UK}, editor = {P. Armitage and T. Colton} } @book{HSAUR:LittleRubin2002, author = {J. R. Little and D. B. Rubin}, year = 2002, title = {Statistical Analysis with Missing Data}, edition = {2nd}, publisher = {John Wiley \& Sons}, address = {New York, USA} } @book{HSAUR:Rubin1987, author = {Donald B. Rubin}, year = 1987, title = {Multiple Imputation for Nonresponse in Surveys}, publisher = {John Wiley \& Sons}, address = {New York, USA} } @book{HSAUR:Schafer1997, author = {J. L. Schafer}, year = 1997, title = {Analysis of Incomplete Multivariate Data}, publisher = {Chapman \& Hall/CRC}, address = {London, UK} } @incollection{HSAUR:Barnard2002, author = {J. Barnard and C. Frangakis and J. K. Hill and D. B. Rubin}, title = {The {Bayesian} Analysis of the {New York School Choice Scholarships Program}: {A} Randomized Experiment with Noncompliance and Missing Data (with Discussion)}, booktitle = {Case Studies in Bayesian Statistics}, year = 2002, publisher = {Springer-Verlag}, address = {New York, USA}, editor = {C. Gatsonis and R. Kass and B. Carlin and A. Carriquiry and A. Gelman and I. Verdinelli and M. West} } @article{HSAUR:RobertsonArmitage1959, author = {J. D. Robertson and P. Armitage}, year = {1959}, title = {Comparison of Two Hypotensive Agents}, journal = {Anaesthesia}, volume = {14}, number = 1, pages = {53--64} } @article{HSAUR:BarnardRubin1999, author = {J. Barnard and D. B. Rubin}, year = 1999, title = {Small Sample Degrees of Freedom With Multiple Imputation}, journal = {Biometrika}, volume = 86, pages = {948--955} } @article{HSAUR:Vuilleumier1970, author = {F. Vuilleumier}, year = {1970}, title = {Insular Biogeography in Continental Regions. {I. The} Northern {Andes} of {South America}}, journal = {The American Naturalist}, volume = 104, pages = {373--388} } @book{HSAUR:Aitkin1989, author = {M. Aitkin and D. Anderson and B. Francis and J. Hinde}, title = {Statistical Modelling in {GLIM}}, year = 1989, publisher = {Oxford University Press}, address = {New York, USA}, } @incollection{HSAUR:Morabia2013, author = {Alfredo Morabia}, editor = {Wolfgang Ahrens and Iris Pigeot}, booktitle = {Handbook of Epidemiology}, title = {History of Epidemiological Methods and Concepts}, pages = {43--74}, year = {2013}, edition = {2nd}, publisher = {Springer-Verlag}, address = {New York, USA}, } @Article{HSAUR:ZeileisHothornHornik2008, author = {Achim Zeileis and Torsten Hothorn and Kurt Hornik}, title = {Model-based Recursive Partitioning}, journal = {Journal of Computational and Graphical Statistics}, year = {2008}, volume = 17, number = 2, pages = {492--514}, doi = {10.1198/106186008X319331}, } > > HSAUR3/build/0000755000176200001440000000000014660150120012311 5ustar liggesusersHSAUR3/build/vignette.rds0000644000176200001440000000223514660150120014652 0ustar liggesusers‹ÕVÝsÜ4¿Üé%І~@)-n¡}#/0ÃðrM'Ód&$ ÛGµuwlÉHò¥×'þ^þÂÊÖZ²-ß•G|gkZíÇoµûûáh4¦Ó½Ñx¯“{ð³ϧð<MGðÿÍÉ*&œdÅø2Î_2]¦ Vâ”hrvtÅo,ôÛPûØaU,ñšHFxB=È#€¼%ª@3¾ ’¶Ÿ ÉJ¥©lty⯌Xð”i&Œ !挔rÅô&¦J³œ°¸ *%˜ï-Ââ’äÞÊfE’bÅã-SEF69ãZŠ´LÌ ±ñ•' òL,˜Ä’.%UÊÀ–™Ê}@åT“·ŒŒ©*ôk’•Ô~m„e¦YÊrãm¦Úƒ=CX‘Ñd”HϘN¦ Éx P”ˆ¼œr­B†} Ø?KÂ5¥AmO!iRJÅÖ4.ˆÔUÊÚ¶™d+–ËB‰|R‹Áx©(Ud² J¹f ¶©mο8Y‘XÌ{0$:÷ØÍÑ™¿ü ð™#¥‡†ã#±ˆ~³äw«1?[öGgèŒs¤FœÔôo´¹hX¹ãOIs̼.€èUS±ÿªb¾» jükʩitœýk]ˆ”fxþQ£Ú8߸ZvF¯±N¢y]'¸ëþ±ñÔI¤Etee?¡Æs[%ÑUC¥ˆð´eÔyEݶIPÁÐwx=l„uAFLYiÔH;%]×%„½°µƒ8]ÝÔš.±x C¶xº9|ŒØ_lñôÕ=EÈVOtéUO—,×Uùôxð£'oêÇ¡ªè6žs­Jp´óQ³ÝV–sä?v’"]|p'qØÁNâ Ä‚ĉ‡;IûŒ@'q¯“¸Eì$n%ÜIÚò~'qòmÄ¡úÄÉÄ ·vÛÑIÚ™ÞÞIv¨“8Ä–NÒNv¯“´u t’vúÄÈÛœ¶sz²Àç»g'háÉÉó/47yéíOM^ˆf&O{hb²â½yÉ.ÍpZr—mhVò¤IÉ«ÄÁ9Éb>ëOIVr/0#yYžºä˜¼\<g#ïnšŒ¼töç"oÿÐTäÅ;0™hU<®ù<¶èi–Ó0¯F¯ñ®ƒ™,)mÁkñž];¸2M2Q¦}I“5Ü™Æ-`Š7(äCm‹LèïSœQòŠÌöëN¾Ö\È?3ØÀ ÓµMð•OºÈ軜½Ã‹ù •ü:B¯pÓ[ø°›F˦ù2Y7n˜<õEsAÒý¨ŽØ^ÇjѼ?f zó KVu3L(ê»8¾¾îemkˆl2:qËã6!r¶>wGú1–ãp,fU}@mt|œ¬“4¼ã Qù©€jÂ<ÌLN60ݱ¦ÒÒÉeâ>qÂÁŸ ßßã™á—×èÿó?<–p’SœóöÑáS¸Íð+ÓÍÇär~j_÷ðú¹3§å)²}ö†n ATç )nŽð°»ðŒÿ‚ŸÛÛÛ¿»%Qh.šz´°¾þùäô“øHSAUR3/man/0000755000176200001440000000000014416277347012011 5ustar liggesusersHSAUR3/man/students.Rd0000644000176200001440000000231214172224352014132 0ustar liggesusers\name{students} \alias{students} \docType{data} \title{ Student Risk Taking } \description{ Students were administered two parallel forms of a test after a random assignment to three different treatments. } \usage{data("students")} \format{ A data frame with 35 observations on the following 3 variables. \describe{ \item{\code{treatment}}{a factor with levels \code{AA}, \code{C}, and \code{NC}.} \item{\code{low}}{the result of the first test.} \item{\code{high}}{the result of the second test.} } } \details{ The data arise from a large study of risk taking (Timm, 2002). Students were randomly assigned to three different treatments labelled AA, C and NC. Students were administered two parallel forms of a test called \code{low} and \code{high}. The aim is to carry out a test of the equality of the bivariate means of each treatment population. } \source{ N. H. Timm (2002), \emph{Applied Multivariate Analysis}. Springer, New York. } \examples{ data("students", package = "HSAUR3") layout(matrix(1:2, ncol = 2)) boxplot(low ~ treatment, data = students, ylab = "low") boxplot(high ~ treatment, data = students, ylab = "high") } \keyword{datasets} HSAUR3/man/womensrole.Rd0000644000176200001440000000245214172224352014460 0ustar liggesusers\name{womensrole} \alias{womensrole} \docType{data} \title{ Womens Role in Society } \description{ Data from a survey from 1974 / 1975 asking both female and male responders about their opinion on the statement: Women should take care of running their homes and leave running the country up to men. } \usage{data("womensrole")} \format{ A data frame with 42 observations on the following 4 variables. \describe{ \item{\code{education}}{years of education.} \item{\code{gender}}{a factor with levels \code{Male} and \code{Female}.} \item{\code{agree}}{number of subjects in agreement with the statement.} \item{\code{disagree}}{number of subjects in disagreement with the statement.} } } \details{ The data are from Haberman (1973) and also given in Collett (2003). The questions here are whether the response of men and women differ. } \source{ S. J. Haberman (1973), The analysis of residuals in cross-classificed tables. \emph{Biometrics}, \bold{29}, 205--220. D. Collett (2003), \emph{Modelling Binary Data}. Chapman and Hall / CRC, London. 2nd edition. } \examples{ data("womensrole", package = "HSAUR3") summary(subset(womensrole, gender == "Female")) summary(subset(womensrole, gender == "Male")) } \keyword{datasets} HSAUR3/man/orallesions.Rd0000644000176200001440000000113314172224352014613 0ustar liggesusers\name{orallesions} \alias{orallesions} \docType{data} \title{ Oral Lesions in Rural India } \description{ The distribution of the oral lesion site found in house-to-house surveys in three geographic regions of rural India. } \usage{data("orallesions")} \format{ A two-way classification, see \code{\link{table}}. } \source{ Cyrus R. Mehta and Nitin R. Patel (2003), \emph{StatXact-6: Statistical Software for Exact Nonparametric Inference}, Cytel Software Cooperation, Cambridge, USA. } \examples{ data("orallesions", package = "HSAUR3") mosaicplot(orallesions) } \keyword{datasets} HSAUR3/man/aspirin.Rd0000644000176200001440000000163514172224352013735 0ustar liggesusers\name{aspirin} \alias{aspirin} \docType{data} \title{ Aspirin Data } \description{ Efficacy of Aspirin in preventing death after a myocardial infarct. } \usage{data("aspirin")} \format{ A data frame with 7 observations on the following 4 variables. \describe{ \item{\code{dp}}{number of deaths after placebo.} \item{\code{tp}}{total number subjects treated with placebo.} \item{\code{da}}{number of deaths after Aspirin.} \item{\code{ta}}{total number of subjects treated with Aspirin.} } } \details{ The data were collected for a meta-analysis of the effectiveness of Aspirin (versus placebo) in preventing death after a myocardial infarction. } \source{ J. L. Fleiss (1993), The statistical basis of meta-analysis. \emph{Statistical Methods in Medical Research} \bold{2}, 121--145. } \examples{ data("aspirin", package = "HSAUR3") aspirin } \keyword{datasets} HSAUR3/man/phosphate.Rd0000644000176200001440000000205214172224352014255 0ustar liggesusers\name{phosphate} \alias{phosphate} \docType{data} \title{ Phosphate Level Data } \description{ Plasma inorganic phosphate levels from 33 subjects. } \usage{data("phosphate")} \format{ A data frame with 33 observations on the following 9 variables. \describe{ \item{\code{group}}{a factor with levels \code{control} and \code{obese}.} \item{\code{t0}}{baseline phosphate level}, \item{\code{t0.5}}{phosphate level after 1/2 an hour.} \item{\code{t1}}{phosphate level after one an hour.} \item{\code{t1.5}}{phosphate level after 1 1/2 hours.} \item{\code{t2}}{phosphate level after two hours.} \item{\code{t3}}{phosphate level after three hours.} \item{\code{t4}}{phosphate level after four hours.} \item{\code{t5}}{phosphate level after five hours.} } } \source{ C. S. Davis (2002), \emph{Statistical Methods for the Analysis of Repeated Measurements}, Springer, New York. } \examples{ data("phosphate", package = "HSAUR3") plot(t0 ~ group, data = phosphate) } \keyword{datasets} HSAUR3/man/toothpaste.Rd0000644000176200001440000000255014172224352014457 0ustar liggesusers\name{toothpaste} \alias{toothpaste} \docType{data} \title{ Toothpaste Data } \description{ Meta-analysis of studies comparing two different toothpastes. } \usage{data("toothpaste")} \format{ A data frame with 9 observations on the following 7 variables. \describe{ \item{\code{Study}}{the identifier of the study.} \item{\code{nA}}{number of subjects using toothpaste A.} \item{\code{meanA}}{mean DMFS index of subjects using toothpaste A.} \item{\code{sdA}}{standard deviation of DMFS index of subjects using toothpaste A.} \item{\code{nB}}{number of subjects using toothpaste B.} \item{\code{meanB}}{mean DMFS index of subjects using toothpaste B.} \item{\code{sdB}}{standard deviation of DMFS index of subjects using toothpaste B.} } } \details{ The data are the results of nine randomised trials comparing two different toothpastes for the prevention of caries development. The outcomes in each trial was the change, from baseline, in the decayed, missing (due to caries) and filled surface dental index (DMFS). } \source{ B. S. Everitt and A. Pickles (2000), \emph{Statistical Aspects of the Design and Analysis of Clinical Trials}, Imperial College Press, London. } \examples{ data("toothpaste", package = "HSAUR3") toothpaste } \keyword{datasets} HSAUR3/man/birthdeathrates.Rd0000644000176200001440000000107214172224352015440 0ustar liggesusers\name{birthdeathrates} \alias{birthdeathrates} \docType{data} \title{ Birth and Death Rates Data } \description{ Birth and death rates for 69 countries. } \usage{data("birthdeathrates")} \format{ A data frame with 69 observations on the following 2 variables. \describe{ \item{\code{birth}}{birth rate.} \item{\code{death}}{death rate.} } } \source{ J. A. Hartigan (1975), \emph{Clustering Algorithms}. John Wiley & Sons, New York. } \examples{ data("birthdeathrates", package = "HSAUR3") plot(birthdeathrates) } \keyword{datasets} HSAUR3/man/heptathlon.Rd0000644000176200001440000000361414172224352014435 0ustar liggesusers\name{heptathlon} \alias{heptathlon} \docType{data} \title{ Olympic Heptathlon Seoul 1988 } \description{ Results of the olympic heptathlon competition, Seoul, 1988. } \usage{data("heptathlon")} \format{ A data frame with 25 observations on the following 8 variables. \describe{ \item{\code{hurdles}}{results 100m hurdles.} \item{\code{highjump}}{results high jump.} \item{\code{shot}}{results shot.} \item{\code{run200m}}{results 200m race.} \item{\code{longjump}}{results long jump.} \item{\code{javelin}}{results javelin.} \item{\code{run800m}}{results 800m race.} \item{\code{score}}{total score.} } } \details{ The first combined Olympic event for women was the pentathlon, first held in Germany in 1928. Initially this consisted of the shot putt, long jump, 100m, high jump and javelin events held over two days. The pentathlon was first introduced into the Olympic Games in 1964, when it consisted of the 80m hurdles, shot, high jump, long jump and 200m. In 1977 the 200m was replaced by the 800m and from 1981 the IAAF brought in the seven-event heptathlon in place of the pentathlon, with day one containing the events-100m hurdles, shot, high jump, 200m and day two, the long jump, javelin and 800m. A scoring system is used to assign points to the results from each event and the winner is the woman who accumulates the most points over the two days. The event made its first Olympic appearance in 1984. In the 1988 Olympics held in Seoul, the heptathlon was won by one of the stars of women's athletics in the USA, Jackie Joyner-Kersee. The results for all 25 competitors are given here. } \source{ D. J. Hand, F. Daly, A. D. Lunn, K. J. McConway and E. Ostrowski (1994). \emph{A Handbook of Small Datasets}, Chapman and Hall/CRC, London. } \examples{ data("heptathlon", package = "HSAUR3") plot(heptathlon) } \keyword{datasets} HSAUR3/man/voting.Rd0000644000176200001440000000177514172224352013603 0ustar liggesusers\name{voting} \alias{voting} \docType{data} \title{ House of Representatives Voting Data } \description{ Voting results for 15 congressmen from New Jersey. } \usage{data("voting")} \format{ A 15 times 15 matrix. } \details{ Romesburg (1984) gives a set of data that shows the number of times 15 congressmen from New Jersey voted differently in the House of Representatives on 19 environmental bills. Abstentions are not recorded. } \source{ H. C. Romesburg (1984), \emph{Cluster Analysis for Researchers}. Lifetime Learning Publications, Belmont, Canada. } \examples{ data("voting", package = "HSAUR3") require("MASS") voting_mds <- isoMDS(voting) plot(voting_mds$points[,1], voting_mds$points[,2], type = "n", xlab = "Coordinate 1", ylab = "Coordinate 2", xlim = range(voting_mds$points[,1])*1.2) text(voting_mds$points[,1], voting_mds$points[,2], labels = colnames(voting)) voting_sh <- Shepard(voting[lower.tri(voting)], voting_mds$points) } \keyword{datasets} HSAUR3/man/skulls.Rd0000644000176200001440000000306314172224352013602 0ustar liggesusers\name{skulls} \alias{skulls} \docType{data} \title{ Egyptian Skulls } \description{ Measurements made on Egyptian skulls from five epochs. } \usage{data("skulls")} \format{ A data frame with 150 observations on the following 5 variables. \describe{ \item{\code{epoch}}{the epoch the skull as assigned to, a factor with levels \code{c4000BC} \code{c3300BC}, \code{c1850BC}, \code{c200BC}, and \code{cAD150}, where the years are only given approximately, of course.} \item{\code{mb}}{maximum breaths of the skull.} \item{\code{bh}}{basibregmatic heights of the skull.} \item{\code{bl}}{basialiveolar length of the skull.} \item{\code{nh}}{nasal heights of the skull.} } } \details{ The question is whether the measurements change over time. Non-constant measurements of the skulls over time would indicate interbreeding with immigrant populations. } \source{ D. J. Hand, F. Daly, A. D. Lunn, K. J. McConway and E. Ostrowski (1994). \emph{A Handbook of Small Datasets}, Chapman and Hall/CRC, London. } \examples{ data("skulls", package = "HSAUR3") means <- tapply(1:nrow(skulls), skulls$epoch, function(i) apply(skulls[i,colnames(skulls)[-1]], 2, mean)) means <- matrix(unlist(means), nrow = length(means), byrow = TRUE) colnames(means) <- colnames(skulls)[-1] rownames(means) <- levels(skulls$epoch) pairs(means, panel = function(x, y) { text(x, y, levels(skulls$epoch)) }) } \keyword{datasets} HSAUR3/man/Smoking_Mueller1940.Rd0000644000176200001440000000231014172224352015671 0ustar liggesusers\name{Smoking_Mueller1940} \alias{Smoking_Mueller1940} \docType{data} \title{Smoking and Lung Cancer (I) } \description{ Number of smokers in a case-control study. } \usage{data(Smoking_Mueller1940)} \format{ The format is: table [1:5, 1:2] 25 18 13 27 3 4 5 22 41 14 - attr(*, "dimnames")=List of 2 ..$ Smoking_type: chr [1:5] "Extreme smoker" "Very heavy smoker" "Heavy smoker" "Moderate smoker" ... ..$ Group : chr [1:2] "Lung cancer" "Healthy control" } \details{ Extreme smoker: 10-15 cigars, >35 cigarettes, or >50 g pipe tobacco/day. Very heavy smoker: 7-9 cigars, 26-35 cigarettes, or 36-50 g pipe tobacco/day. Heavy smoker: 4-6 cigars, 16-25 cigarettes, or 21-35 g pipe tobacco/day. Moderate smoker: 1-3 cigars, 1-15 cigarettes, or 1-20 g pipe tobacco/day. } \source{ Franz-Hermann Mueller (1940), Tabakmissbrauch und Lungencarcinom. \emph{Zeitschrift fuer Krebsforschung} \bold{49}(1), 57-85. } \references{ Richard Doll (1998), Uncovering the effects of smoking: historical perspective. \emph{Statistical Methods in Medical Research}, \bold{7}(87), 87-117 } \examples{ data(Smoking_Mueller1940) ## maybe str(Smoking_Mueller1940) ; plot(Smoking_Mueller1940) ... } \keyword{datasets} HSAUR3/man/water.Rd0000644000176200001440000000302214172224352013402 0ustar liggesusers\name{water} \alias{water} \docType{data} \title{ Mortality and Water Hardness } \description{ The mortality and drinking water hardness for 61 cities in England and Wales. } \usage{data("water")} \format{ A data frame with 61 observations on the following 4 variables. \describe{ \item{location}{a factor with levels \code{North} and \code{South} indicating whether the town is as north as Derby.} \item{town}{the name of the town.} \item{mortality}{averaged annual mortality per 100.000 male inhabitants.} \item{hardness}{calcium concentration (in parts per million).} } } \details{ The data were collected in an investigation of environmental causes of disease. They show the annual mortality per 100,000 for males, averaged over the years 1958-1964, and the calcium concentration (in parts per million) in the drinking water for 61 large towns in England and Wales. The higher the calcium concentration, the harder the water. Towns at least as far north as Derby are identified in the table. Here there are several questions that might be of interest including, are mortality and water hardness related, and do either or both variables differ between northern and southern towns? } \source{ D. J. Hand, F. Daly, A. D. Lunn, K. J. McConway and E. Ostrowski (1994). \emph{A Handbook of Small Datasets}, Chapman and Hall/CRC, London. } \examples{ data("water", package = "HSAUR3") plot(mortality ~ hardness, data = water, col = as.numeric(water$location)) } \keyword{datasets} HSAUR3/man/waves.Rd0000644000176200001440000000245714172224352013420 0ustar liggesusers\name{waves} \alias{waves} \docType{data} \title{ Electricity from Wave Power at Sea } \description{ Measurements of root mean square bending moment by two different mooring methods. } \usage{data("waves")} \format{ A data frame with 18 observations on the following 2 variables. \describe{ \item{method1}{Root mean square bending moment in Newton metres, mooring method 1} \item{method2}{Root mean square bending moment in Newton metres, mooring method 2} } } \details{ In a design study for a device to generate electricity from wave power at sea, experiments were carried out on scale models in a wave tank to establish how the choice of mooring method for the system affected the bending stress produced in part of the device. The wave tank could simulate a wide range of sea states and the model system was subjected to the same sample of sea states with each of two mooring methods, one of which was considerably cheaper than the other. The question of interest is whether bending stress differs for the two mooring methods. } \source{ D. J. Hand, F. Daly, A. D. Lunn, K. J. McConway and E. Ostrowski (1994). \emph{A Handbook of Small Datasets}, Chapman and Hall/CRC, London. } \examples{ data("waves", package = "HSAUR3") plot(method1 ~ method2, data = waves) } \keyword{datasets} HSAUR3/man/meteo.Rd0000644000176200001440000000207214172224352013375 0ustar liggesusers\name{meteo} \alias{meteo} \docType{data} \title{ Meteorological Measurements for 11 Years } \description{ Several meteorological measurements for a period between 1920 and 1931. } \usage{data("meteo")} \format{ A data frame with 11 observations on the following 6 variables. \describe{ \item{\code{year}}{the years.} \item{\code{rainNovDec}}{rainfall in November and December (mm).} \item{\code{temp}}{average July temperature.} \item{\code{rainJuly}}{rainfall in July (mm).} \item{\code{radiation}}{radiation in July (millilitres of alcohol).} \item{\code{yield}}{average harvest yield (quintals per hectare).} } } \details{ Carry out a principal components analysis of both the covariance matrix and the correlation matrix of the data and compare the results. Which set of components leads to the most meaningful interpretation? } \source{ B. S. Everitt and G. Dunn (2001), \emph{Applied Multivariate Data Analysis}, 2nd edition, Arnold, London. } \examples{ data("meteo", package = "HSAUR3") meteo } \keyword{datasets} HSAUR3/man/gardenflowers.Rd0000644000176200001440000000112514231245366015130 0ustar liggesusers\name{gardenflowers} \alias{gardenflowers} \docType{data} \title{ Garden Flowers Data} \description{ The dissimilarity matrix of 18 species of garden flowers. } \usage{data("gardenflowers")} \format{ An object of class \code{\link{dist}}. } \details{ The dissimilarity was computed based on certain characteristics of the flowers. } \source{ L. Kaufman and P. J. Rousseeuw (1990), \emph{Finding groups in data: an introduction to cluster analysis}, John Wiley & Sons, New York. } \examples{ data("gardenflowers", package = "HSAUR3") gardenflowers } \keyword{datasets} HSAUR3/man/GHQ.Rd0000644000176200001440000000237614172224352012712 0ustar liggesusers\name{GHQ} \alias{GHQ} \docType{data} \title{ General Health Questionnaire } \description{ Data from an psychiatric screening questionnaire } \usage{data("GHQ")} \format{ A data frame with 22 observations on the following 4 variables. \describe{ \item{\code{GHQ}}{the General Health Questionnaire score.} \item{\code{gender}}{a factor with levels \code{female} and \code{male}} \item{\code{cases}}{the number of diseased subjects.} \item{\code{non.cases}}{the number of healthy subjects.} } } \details{ The data arise from a study of a psychiatric screening questionnaire called the GHQ (General Health Questionnaire, see Goldberg, 1972). Here the main question of interest is to see how caseness is related to gender and GHQ score. } \source{ D. Goldberg (1972). \emph{The Detection of Psychiatric Illness by Questionnaire}, Oxford University Press, Oxford, UK. } \examples{ data("GHQ", package = "HSAUR3") male <- subset(GHQ, gender == "male") female <- subset(GHQ, gender == "female") layout(matrix(1:2, ncol = 2)) barplot(t(as.matrix(male[,c("cases", "non.cases")])), main = "Male", xlab = "GHC score") barplot(t(as.matrix(male[,c("cases", "non.cases")])), main = "Female", xlab = "GHC score") } \keyword{datasets} HSAUR3/man/roomwidth.Rd0000644000176200001440000000237714172224352014310 0ustar liggesusers\name{roomwidth} \alias{roomwidth} \docType{data} \title{ Students Estimates of Lecture Room Width } \description{ Lecture room width estimated by students in two different units. } \usage{data("roomwidth")} \format{ A data frame with 113 observations on the following 2 variables. \describe{ \item{unit}{a factor with levels \code{feet} and \code{metres}.} \item{width}{the estimated width of the lecture room.} } } \details{ Shortly after metric units of length were officially introduced in Australia, each of a group of 44 students was asked to guess, to the nearest metre, the width of the lecture hall in which they were sitting. Another group of 69 students in the same room was asked to guess the width in feet, to the nearest foot. The data were collected by Professor T. Lewis and are taken from Hand et al (1994). The main question is whether estimation in feet and in metres gives different results. } \source{ D. J. Hand, F. Daly, A. D. Lunn, K. J. McConway and E. Ostrowski (1994). \emph{A Handbook of Small Datasets}, Chapman and Hall/CRC, London. } \examples{ data("roomwidth", package = "HSAUR3") convert <- ifelse(roomwidth$unit == "feet", 1, 3.28) boxplot(I(width * convert) ~ unit, data = roomwidth) } \keyword{datasets} HSAUR3/man/suicides2.Rd0000644000176200001440000000157514172224352014165 0ustar liggesusers\name{suicides2} \alias{suicides2} \docType{data} \title{ Male Suicides Data } \description{ Number of suicides in different age groups and countries. } \usage{data("suicides2")} \format{ A data frame with 15 observations on the following 5 variables. \describe{ \item{\code{A25.34}}{number of suicides (per 100000 males) between 25 and 34 years old.} \item{\code{A35.44}}{number of suicides (per 100000 males) between 35 and 44 years old.} \item{\code{A45.54}}{number of suicides (per 100000 males) between 45 and 54 years old.} \item{\code{A55.64}}{number of suicides (per 100000 males) between 55 and 64 years old.} \item{\code{A65.74}}{number of suicides (per 100000 males) between 65 and 74 years old.} } } \details{ Each of the numbers gives the number of suicides per 100000 male inhabitants of the countries given by the row names. } \keyword{datasets} HSAUR3/man/Smoking_DollHill1950.Rd0000644000176200001440000000154414172224352016000 0ustar liggesusers\name{Smoking_DollHill1950} \alias{Smoking_DollHill1950} \docType{data} \title{ Smoking and Lung Cancer (IV) } \description{ Number of smokers in a case-control study. } \usage{data(Smoking_DollHill1950)} \format{ The format is: table [1:6, 1:2, 1:2] 2 33 250 196 136 32 27 55 293 190 ... - attr(*, "dimnames")=List of 3 ..$ Smoking : chr [1:6] "Nonsmoker" "1-" "5-" "15-" ... ..$ Diagnosis: chr [1:2] "Lung cancer" "Other" ..$ Sex : chr [1:2] "Male" "Female" } \details{ This is Table V from Doll and Hill (1950). } \source{ Richard Doll and A. Bradford Hill (1950), Smoking and Carcinoma of the Lung, \emph{British Medical Journal}, \bold{2}, 739-748 } \references{ Richard Doll (1998), Uncovering the effects of smoking: historical perspective. \emph{Statistical Methods in Medical Research}, \bold{7}(87), 87-117 } \keyword{datasets} HSAUR3/man/suicides.Rd0000644000176200001440000000120614172224352014072 0ustar liggesusers\name{suicides} \alias{suicides} \docType{data} \title{ Crowd Baiting Behaviour and Suicides } \description{ Data from a study carried out to investigate the causes of jeering or baiting behaviour by a crowd when a person is threatening to commit suicide by jumping from a high building. } \usage{data("suicides")} \format{ A two-way classification, see \code{\link{table}}. } \source{ L. Mann (1981), The baiting crowd in episodes of threatened suicide. \emph{Journal of Personality and Social Psychology}, \bold{41}, 703--709. } \examples{ data("suicides", package = "HSAUR3") mosaicplot(suicides) } \keyword{datasets} HSAUR3/man/Forbes2000.Rd0000644000176200001440000000224714172224352014012 0ustar liggesusers\name{Forbes2000} \alias{Forbes2000} \docType{data} \title{ The Forbes 2000 Ranking of the World's Biggest Companies (Year 2004) } \description{ The Forbes 2000 list is a ranking of the world's biggest companies, measured by sales, profits, assets and market value. } \usage{data("Forbes2000")} \format{ A data frame with 2000 observations on the following 8 variables. \describe{ \item{rank}{the ranking of the company.} \item{name}{the name of the company.} \item{country}{a factor giving the country the company is situated in.} \item{category}{a factor describing the products the company produces.} \item{sales}{the amount of sales of the company in billion USD.} \item{profits}{the profit of the company in billion USD.} \item{assets}{the assets of the company in billion USD.} \item{marketvalue}{the market value of the company in billion USD.} } } \source{ \url{https://www.forbes.com}, assessed on November 26th, 2004. } \examples{ data("Forbes2000", package = "HSAUR3") summary(Forbes2000) ### number of countries length(levels(Forbes2000$country)) ### number of industries length(levels(Forbes2000$category)) } \keyword{datasets} HSAUR3/man/plasma.Rd0000644000176200001440000000360714172224352013546 0ustar liggesusers\name{plasma} \alias{plasma} \docType{data} \title{ Blood Screening Data } \description{ The erythrocyte sedimentation rate and measurements of two plasma proteins (fibrinogen and globulin). } \usage{data("plasma")} \format{ A data frame with 32 observations on the following 3 variables. \describe{ \item{\code{fibrinogen}}{the fibrinogen level in the blood.} \item{\code{globulin}}{the globulin level in the blood.} \item{\code{ESR}}{the erythrocyte sedimentation rate, either less or greater 20 mm / hour. } } } \details{ The erythrocyte sedimentation rate (ESR) is the rate at which red blood cells (erythrocytes) settle out of suspension in blood plasma, when measured under standard conditions. If the ESR increases when the level of certain proteins in the blood plasma rise in association with conditions such as rheumatic diseases, chronic infections and malignant diseases, its determination might be useful in screening blood samples taken form people suspected to being suffering from one of the conditions mentioned. The absolute value of the ESR is not of great importance rather it is whether it is less than 20mm/hr since lower values indicate a healthy individual. The question of interest is whether there is any association between the probability of an ESR reading greater than 20mm/hr and the levels of the two plasma proteins. If there is not then the determination of ESR would not be useful for diagnostic purposes. } \source{ D. Collett and A. A. Jemain (1985), Residuals, outliers and influential observations in regression analysis. \emph{Sains Malaysiana}, \bold{4}, 493--511. } \examples{ data("plasma", package = "HSAUR3") layout(matrix(1:2, ncol = 2)) boxplot(fibrinogen ~ ESR, data = plasma, varwidth = TRUE) boxplot(globulin ~ ESR, data = plasma, varwidth = TRUE) } \keyword{datasets} HSAUR3/man/watervoles.Rd0000644000176200001440000000265614172224352014467 0ustar liggesusers\name{watervoles} \alias{watervoles} \docType{data} \title{ Water Voles Data } \description{ Percentage incidence of the 13 characteristics of water voles in 14 areas. } \usage{data("watervoles")} \format{ A dissimilarity matrix for the following 14 variables, i.e, areas: \code{Surrey}, \code{Shropshire}, \code{Yorkshire}, \code{Perthshire}, \code{Aberdeen}, \code{Elean Gamhna}, \code{Alps}, \code{Yugoslavia}, \code{Germany}, \code{Norway}, \code{Pyrenees I}, \code{Pyrenees II}, \code{North Spain}, and \code{South Spain}. } \details{ Corbet et al. (1970) report a study of water voles (genus Arvicola) in which the aim was to compare British populations of these animals with those in Europe, to investigate whether more than one species might be present in Britain. The original data consisted of observations of the presence or absence of 13 characteristics in about 300 water vole skulls arising from six British populations and eight populations from the rest of Europe. The data are the percentage incidence of the 13 characteristics in each of the 14 samples of water vole skulls. } \source{ G. B. Corbet, J. Cummins, S. R. Hedges, W. J. Krzanowski (1970), The taxonomic structure of British water voles, genus \emph{Arvicola}. \emph{Journal of Zoology}, \bold{61}, 301--316. } \examples{ data("watervoles", package = "HSAUR3") watervoles } \keyword{datasets} HSAUR3/man/BtheB.Rd0000644000176200001440000000475114172224352013256 0ustar liggesusers\name{BtheB} \alias{BtheB} \docType{data} \title{ Beat the Blues Data } \description{ Data from a clinical trial of an interactive multimedia program called `Beat the Blues'. } \usage{data("BtheB")} \format{ A data frame with 100 observations of 100 patients on the following 8 variables. \describe{ \item{drug}{did the patient take anti-depressant drugs (\code{No} or \code{Yes}).} \item{length}{the length of the current episode of depression, a factor with levels \code{<6m} (less than six months) and \code{>6m} (more than six months).} \item{treatment}{treatment group, a factor with levels \code{TAU} (treatment as usual) and \code{BtheB} (Beat the Blues)} \item{bdi.pre}{Beck Depression Inventory II before treatment.} \item{bdi.2m}{Beck Depression Inventory II after two months.} \item{bdi.3m}{Beck Depression Inventory II after one month follow-up.} \item{bdi.5m}{Beck Depression Inventory II after three months follow-up.} \item{bdi.8m}{Beck Depression Inventory II after six months follow-up.} } } \details{ Longitudinal data from a clinical trial of an interactive, multimedia program known as "Beat the Blues" designed to deliver cognitive behavioural therapy to depressed patients via a computer terminal. Patients with depression recruited in primary care were randomised to either the Beating the Blues program, or to "Treatment as Usual (TAU)". Note that the data are stored in the wide form, i.e., repeated measurments are represented by additional columns in the data frame. } \source{ J. Proudfoot, D. Goldberg, A. Mann, B. S. Everitt, I. Marks and J. A. Gray, (2003). Computerized, interactive, multimedia cognitive-behavioural program for anxiety and depression in general practice. \emph{Psychological Medicine}, \bold{33}(2), 217--227. } \examples{ data("BtheB", package = "HSAUR3") layout(matrix(1:2, nrow = 1)) ylim <- range(BtheB[,grep("bdi", names(BtheB))], na.rm = TRUE) boxplot(subset(BtheB, treatment == "TAU")[,grep("bdi", names(BtheB))], main = "Treated as usual", ylab = "BDI", xlab = "Time (in months)", names = c(0, 2, 3, 5, 8), ylim = ylim) boxplot(subset(BtheB, treatment == "BtheB")[,grep("bdi", names(BtheB))], main = "Beat the Blues", ylab = "BDI", xlab = "Time (in months)", names = c(0, 2, 3, 5, 8), ylim = ylim) } \keyword{datasets} HSAUR3/man/birds.Rd0000644000176200001440000000150214172224352013364 0ustar liggesusers\name{birds} \alias{birds} \docType{data} \title{ Birds in Paramo Vegetation Data } \description{ The data were originally derived from a study which investigated numbers of bird species in isolated islands of paramo vegetation in the northern Andes. } \usage{data(birds)} \format{ A data frame with 14 observations on the following 5 variables. \describe{ \item{\code{N}}{number of species} \item{\code{AR}}{area of island in thousands of square km} \item{\code{EL}}{elevation in thousands of m} \item{\code{Dec}}{distance from Ecuador in km} \item{\code{DNI}}{distance to the nearest island in km} } } \source{ F. Vuilleumier (1970), Insular biogeography in continental regions. I. The northern Andes of South America. \emph{The American Naturalist} \bold{104}, 373--388 } \keyword{datasets} HSAUR3/man/agefat.Rd0000644000176200001440000000220014172224352013504 0ustar liggesusers\name{agefat} \alias{agefat} \docType{data} \title{ Total Body Composision Data } \description{ Age and body fat percentage of 25 normal adults. } \usage{data("agefat")} \format{ A data frame with 25 observations on the following 3 variables. \describe{ \item{\code{age}}{the age of the subject.} \item{\code{fat}}{the body fat percentage.} \item{\code{gender}}{a factor with levels \code{female} and \code{male}.} } } \details{ The data come from a study investigating a new methods of measuring body composition (see Mazess et al, 1984), and give the body fat percentage (percent fat), age and gender for 25 normal adults aged between 23 and 61 years. The questions of interest are how are age and percent fat related, and is there any evidence that the relationship is different for males and females. } \source{ R. B. Mazess, W. W. Peppler and M. Gibbons (1984), Total body composition by dual-photon (153Gd) absorptiometry. \emph{American Journal of Clinical Nutrition}, \bold{40}, 834--839. } \examples{ data("agefat", package = "HSAUR3") plot(fat ~ age, data = agefat) } \keyword{datasets} HSAUR3/man/USstates.Rd0000644000176200001440000000144614172224352014043 0ustar liggesusers\name{USstates} \alias{USstates} \docType{data} \title{ US States } \description{ Socio-demographic variables for ten US states. } \usage{data(USstates)} \format{ A data frame with 10 observations on the following 7 variables. \describe{ \item{\code{Population}}{population size divided by 1000} \item{\code{Income}}{average per capita income} \item{\code{Illiteracy}}{illiteracy rate (per cent population)} \item{\code{Life.Expectancy}}{life expectancy (years)} \item{\code{Homicide}}{homicide rate (per 1000)} \item{\code{Graduates}}{percentage of high school graduates} \item{\code{Freezing}}{average number of days per below freezing} } } \details{ The data set contains values of seven socio-demographic variables for ten states in the USA. } \keyword{datasets} HSAUR3/man/planets.Rd0000644000176200001440000000243014172224352013730 0ustar liggesusers\name{planets} \alias{planets} \docType{data} \title{ Exoplanets Data } \description{ Data on planets outside the Solar System. } \usage{data("planets")} \format{ A data frame with 101 observations from 101 exoplanets on the following 3 variables. \describe{ \item{mass}{Jupiter mass of the planet.} \item{period}{period in earth days.} \item{eccen}{the radial eccentricity of the planet.} } } \details{ From the properties of the exoplanets found up to now it appears that the theory of planetary development constructed for the planets of the Solar System may need to be reformulated. The exoplanets are not at all like the nine local planets that we know so well. A first step in the process of understanding the exoplanets might be to try to classify them with respect to their known properties. } \source{ M. Mayor and P. Frei (2003). \emph{New Worlds in the Cosmos: The Discovery of Exoplanets}. Cambridge University Press, Cambridge, UK. } \examples{ data("planets", package = "HSAUR3") require("scatterplot3d") scatterplot3d(log(planets$mass), log(planets$period), log(planets$eccen), type = "h", highlight.3d = TRUE, angle = 55, scale.y = 0.7, pch = 16) } \keyword{datasets} HSAUR3/man/men1500m.Rd0000644000176200001440000000151314172224352013525 0ustar liggesusers\name{men1500m} \alias{men1500m} \docType{data} \title{ Winners of the Olympic Men's 1500m } \description{ The data gives the winners of the men's 1500m race for the Olympic Games 1896 to 2004. } \usage{data("men1500m")} \format{ A data frame with 25 observations on the following 5 variables. \describe{ \item{\code{year}}{the olympic year.} \item{\code{venue}}{city where the games took place.} \item{\code{winner}}{winner of men's 1500m race.} \item{\code{country}}{country the winner came from.} \item{\code{time}}{time (in seconds) of the winner.} } } \examples{ data("men1500m", package = "HSAUR3") op <- par(las = 2) plot(time ~ year, data = men1500m, axes = FALSE) yrs <- seq(from = 1896, to = 2004, by = 4) axis(1, at = yrs, labels = yrs) axis(2) box() par(op) } \keyword{datasets} HSAUR3/man/smoking.Rd0000644000176200001440000000410614231245414013731 0ustar liggesusers\name{smoking} \alias{smoking} \docType{data} \title{ Nicotine Gum and Smoking Cessation } \description{ Data from a meta-analysis on nicotine gum and smoking cessation } \usage{data("smoking")} \format{ A data frame with 26 observations (studies) on the following 4 variables. \describe{ \item{\code{qt}}{the number of treated subjetcs who stopped smoking.} \item{\code{tt}}{the totla number of treated subjects.} \item{\code{qc}}{the number of subjetcs who stopped smoking without being treated.} \item{\code{tc}}{the total number of subject not being treated.} } } \details{ Cigarette smoking is the leading cause of preventable death in the United States and kills more Americans than AIDS, alcohol, illegal drug use, car accidents, fires, murders and suicides combined. It has been estimated that 430,000 Americans die from smoking every year. Fighting tobacco use is, consequently, one of the major public health goals of our time and there are now many programs available designed to help smokers quit. One of the major aids used in these programs is nicotine chewing gum, which acts as a substitute oral activity and provides a source of nicotine that reduces the withdrawal symptoms experienced when smoking is stopped. But separate randomized clinical trials of nicotine gum have been largely inconclusive, leading Silagy (2003) to consider combining the results studies found from an extensive literature search. The results of these trials in terms of numbers of people in the treatment arm and the control arm who stopped smoking for at least 6 months after treatment are given here. } \source{ C. Silagy (2003), Nicotine replacement therapy for smoking cessation (Cochrane Review). \emph{The Cochrane Library}, \bold{4}, John Wiley & Sons, Chichester. } \examples{ data("smoking", package = "HSAUR3") boxplot(smoking$qt/smoking$tt, smoking$qc/smoking$tc, names = c("Treated", "Control"), ylab = "Percent Quitters") } \keyword{datasets} HSAUR3/man/schizophrenia.Rd0000644000176200001440000000245514172224352015137 0ustar liggesusers\name{schizophrenia} \alias{schizophrenia} \docType{data} \title{ Age of Onset of Schizophrenia Data } \description{ Data on sex differences in the age of onset of schizophrenia. } \usage{data("schizophrenia")} \format{ A data frame with 251 observations on the following 2 variables. \describe{ \item{\code{age}}{age at the time of diagnosis.} \item{\code{gender}}{a factor with levels \code{female} and \code{male}} } } \details{ A sex difference in the age of onset of schizophrenia was noted by Kraepelin (1919). Subsequently epidemiological studies of the disorder have consistently shown an earlier onset in men than in women. One model that has been suggested to explain this observed difference is know as the subtype model which postulates two type of schizophrenia, one characterised by early onset, typical symptoms and poor premorbid competence, and the other by late onset, atypical symptoms, and good premorbid competence. The early onset type is assumed to be largely a disorder of men and the late onset largely a disorder of women. } \source{ E. Kraepelin (1919), \emph{Dementia Praecox and Paraphrenia}. Livingstone, Edinburgh. } \examples{ data("schizophrenia", package = "HSAUR3") boxplot(age ~ gender, data = schizophrenia) } \keyword{datasets} HSAUR3/man/BCG.Rd0000644000176200001440000000541014172224352012656 0ustar liggesusers\name{BCG} \alias{BCG} \docType{data} \title{ BCG Vaccine Data } \description{ A meta-analysis on the efficacy of BCG vaccination against tuberculosis (TB). } \usage{data("BCG")} \format{ A data frame with 13 observations on the following 7 variables. \describe{ \item{\code{Study}}{an identifier of the study.} \item{\code{BCGTB}}{the number of subjects suffering from TB after a BCG vaccination.} \item{\code{BCGVacc}}{the number of subjects with BCG vaccination.} \item{\code{NoVaccTB}}{the number of subjects suffering from TB without BCG vaccination.} \item{\code{NoVacc}}{the total number of subjects without BCG vaccination.} \item{\code{Latitude}}{geographic position of the place the study was undertaken.} \item{\code{Year}}{the year the study was undertaken.} } } \details{ Bacille Calmette Guerin (BCG) is the most widely used vaccination in the world. Developed in the 1930s and made of a live, weakened strain of Mycobacterium bovis, the BCG is the only vaccination available against tuberculosis today. Colditz et al. (1994) report data from 13 clinical trials of BCG vaccine each investigating its efficacy in the treatment of tuberculosis. The number of subjects suffering from TB with or without BCG vaccination are given here. In addition, the data contains the values of two other variables for each study, namely, the geographic latitude of the place where the study was undertaken and the year of publication. These two variables will be used to investigate and perhaps explain any heterogeneity among the studies. } \source{ G. A. Colditz, T. F. Brewer, C. S. Berkey, M. E. Wilson, E. Burdick, H. V. Fineberg and F. Mosteller (1994), Efficacy of BCG vaccine in the prevention of tuberculosis. Meta-analysis of the published literature. \emph{Journal of the American Medical Association}, \bold{271}(2), 698--702. } \examples{ data("BCG", package = "HSAUR3") ### sort studies w.r.t. sample size BCG <- BCG[order(rowSums(BCG[,2:5])),] ### to long format BCGlong <- with(BCG, data.frame(Freq = c(BCGTB, BCGVacc - BCGTB, NoVaccTB, NoVacc - NoVaccTB), infected = rep(rep(factor(c("yes", "no")), rep(nrow(BCG), 2)), 2), vaccined = rep(factor(c("yes", "no")), rep(nrow(BCG) * 2, 2)), study = rep(factor(Study, levels = as.character(Study)), 4))) ### doubledecker plot library("vcd") doubledecker(xtabs(Freq ~ study + vaccined + infected, data = BCGlong)) } \keyword{datasets} HSAUR3/man/schizophrenia2.Rd0000644000176200001440000000306414172224352015216 0ustar liggesusers\name{schizophrenia2} \alias{schizophrenia2} \docType{data} \title{ Schizophrenia Data } \description{ Though disorder and early onset of schizophrenia. } \usage{data("schizophrenia2")} \format{ A data frame with 220 observations on the following 4 variables. \describe{ \item{\code{subject}}{the patient ID, a factor with levels \code{1} to \code{44}.} \item{\code{onset}}{the time of onset of the disease, a factor with levels \code{< 20 yrs} and \code{> 20 yrs}.} \item{\code{disorder}}{whether thought disorder was \code{absent} or \code{present}, the response variable.} \item{\code{month}}{month after hospitalisation.} } } \details{ The data were collected in a follow-up study of women patients with schizophrenia. The binary response recorded at 0, 2, 6, 8 and 10 months after hospitalisation was thought disorder (absent or present). The single covariate is the factor indicating whether a patient had suffered early or late onset of her condition (age of onset less than 20 years or age of onset 20 years or above). The question of interest is whether the course of the illness differs between patients with early and late onset? } \source{ Davis (2002), \emph{Statistical Methods for the Analysis of Repeated Measurements}, Springer, New York. } \examples{ data("schizophrenia2", package = "HSAUR3") mosaicplot(xtabs( ~ onset + month + disorder, data = schizophrenia2)) } \keyword{datasets} HSAUR3/man/Lanza.Rd0000644000176200001440000000474614172224352013343 0ustar liggesusers\name{Lanza} \alias{Lanza} \docType{data} \title{ Prevention of Gastointestinal Damages } \description{ Data from four randomised clinical trials on the prevention of gastointestinal damages by Misoprostol reported by Lanza et al. (1987, 1988a,b, 1989). } \usage{data("Lanza")} \format{ A data frame with 198 observations on the following 3 variables. \describe{ \item{\code{study}}{a factor with levels \code{I}, \code{II}, \code{III}, and \code{IV} describing the study number.} \item{\code{treatment}}{a factor with levels \code{Misoprostol} \code{Placebo}} \item{\code{classification}}{an ordered factor with levels \code{1} < \code{2} < \code{3} < \code{4} < \code{5} describing an ordered response variable.} } } \details{ The response variable is defined by the number of haemorrhages or erosions. } \source{ F. L. Lanza (1987), A double-blind study of prophylactic effect of misoprostol on lesions of gastric and duodenal mucosa induced by oral administration of tolmetin in healthy subjects. \emph{British Journal of Clinical Practice}, May suppl, 91--101. F. L. Lanza, R. L. Aspinall, E. A. Swabb, R. E. Davis, M. F. Rack, A. Rubin (1988a), Double-blind, placebo-controlled endoscopic comparison of the mucosal protective effects of misoprostol versus cimetidine on tolmetin-induced mucosal injury to the stomach and duodenum. \emph{Gastroenterology}, \bold{95}(2), 289--294. F. L. Lanza, K. Peace, L. Gustitus, M. F. Rack, B. Dickson (1988b), A blinded endoscopic comparative study of misoprostol versus sucralfate and placebo in the prevention of aspirin-induced gastric and duodenal ulceration. \emph{American Journal of Gastroenterology}, \bold{83}(2), 143--146. F. L. Lanza, D. Fakouhi, A. Rubin, R. E. Davis, M. F. Rack, C. Nissen, S. Geis (1989), A double-blind placebo-controlled comparison of the efficacy and safety of 50, 100, and 200 micrograms of misoprostol QID in the prevention of ibuprofen-induced gastric and duodenal mucosal lesions and symptoms. \emph{American Journal of Gastroenterology}, \bold{84}(6), 633--636. } \examples{ data("Lanza", package = "HSAUR3") layout(matrix(1:4, nrow = 2)) pl <- tapply(1:nrow(Lanza), Lanza$study, function(indx) mosaicplot(table(Lanza[indx,"treatment"], Lanza[indx,"classification"]), main = "", shade = TRUE)) } \keyword{datasets} HSAUR3/man/schooldays.Rd0000644000176200001440000000346014172224352014436 0ustar liggesusers\name{schooldays} \alias{schooldays} \docType{data} \title{ Days not Spent at School } \description{ Data from a sociological study, the number of days absent from school is the response variable. } \usage{data("schooldays")} \format{ A data frame with 154 observations on the following 5 variables. \describe{ \item{\code{race}}{race of the child, a factor with levels \code{aboriginal} and \code{non-aboriginal}.} \item{\code{gender}}{the gender of the child, a factor with levels \code{female} and \code{male}.} \item{\code{school}}{the school type, a factor with levels \code{F0} (primary), \code{F1} (first), \code{F2} (second) and \code{F3} (third form).} \item{\code{learner}}{how good is the child in learning things, a factor with levels \code{average} and \code{slow}.} \item{\code{absent}}{number of days absent from school.} } } \details{ The data arise from a sociological study of Australian Aboriginal and white children reported by Quine (1975). In this study, children of both sexes from four age groups (final grade in primary schools and first, second and third form in secondary school) and from two cultural groups were used. The children in age group were classified as slow or average learners. The response variable was the number of days absent from school during the school year. (Children who had suffered a serious illness during the years were excluded.) } \source{ S. Quine (1975), Achievement Orientation of Aboriginal and White Adolescents. Doctoral Dissertation, Australian National University, Canberra. } \examples{ data("schooldays", package = "HSAUR3") plot.design(schooldays) } \keyword{datasets} HSAUR3/man/polyps.Rd0000644000176200001440000000330614231245405013611 0ustar liggesusers\name{polyps} \alias{polyps} \docType{data} \title{ Familial Andenomatous Polyposis } \description{ Data from a placebo-controlled trial of a non-steroidal anti-inflammatory drug in the treatment of familial andenomatous polyposis (FAP). } \usage{data("polyps")} \format{ A data frame with 20 observations on the following 3 variables. \describe{ \item{\code{number}}{number of colonic polyps at 12 months.} \item{\code{treat}}{treatment arms of the trail, a factor with levels \code{placebo} and \code{drug}.} \item{\code{age}}{the age of the patient.} } } \details{ Giardiello et al. (1993) and Piantadosi (1997) describe the results of a placebo-controlled trial of a non-steroidal anti-inflammatory drug in the treatment of familial andenomatous polyposis (FAP). The trial was halted after a planned interim analysis had suggested compelling evidence in favour of the treatment. Here we are interested in assessing whether the number of colonic polyps at 12 months is related to treatment and age of patient. } \source{ F. M. Giardiello, S. R. Hamilton, A. J. Krush, S. Piantadosi, L. M. Hylind, P. Celano, S. V. Booker, C. R. Robinson and G. J. A. Offerhaus (1993), Treatment of colonic and rectal adenomas with sulindac in familial adenomatous polyposis. \emph{New England Journal of Medicine}, \bold{328}(18), 1313--1316. S. Piantadosi (1997), \emph{Clinical Trials: A Methodologic Perspective}. John Wiley & Sons, New York. } \examples{ data("polyps", package = "HSAUR3") plot(number ~ age, data = polyps, pch = as.numeric(polyps$treat)) legend(40, 40, legend = levels(polyps$treat), pch = 1:2, bty = "n") } \keyword{datasets} HSAUR3/man/polyps3.Rd0000644000176200001440000000274614231245376013712 0ustar liggesusers\name{polyps3} \alias{polyps3} \docType{data} \title{ Familial Andenomatous Polyposis } \description{ Data from a placebo-controlled trial of a non-steroidal anti-inflammatory drug in the treatment of familial andenomatous polyposis (FAP). } \usage{data("polyps3")} \format{ A data frame with 22 observations on the following 5 variables. \describe{ \item{\code{gender}}{a factor with levels \code{female} and \code{male}.} \item{\code{treatment}}{a factor with levels \code{placebo} and \code{active}.} \item{\code{baseline}}{the baseline number of polyps.} \item{\code{age}}{the age of the patient.} \item{\code{number3m}}{the number of polyps after three month.} } } \details{ The data arise from the same study as the \code{\link{polyps}} data. Here, the number of polyps after three months are given. } \source{ F. M. Giardiello, S. R. Hamilton, A. J. Krush, S. Piantadosi, L. M. Hylind, P. Celano, S. V. Booker, C. R. Robinson and G. J. A. Offerhaus (1993), Treatment of colonic and rectal adenomas with sulindac in familial adenomatous polyposis. \emph{New England Journal of Medicine}, \bold{328}(18), 1313--1316. S. Piantadosi (1997), \emph{Clinical Trials: A Methodologic Perspective}. John Wiley & Sons, New York. } \examples{ data("polyps3", package = "HSAUR3") plot(number3m ~ age, data = polyps3, pch = as.numeric(polyps3$treatment)) legend("topright", legend = levels(polyps3$treatment), pch = 1:2, bty = "n") } \keyword{datasets} HSAUR3/man/bp.Rd0000644000176200001440000000135214172224352012665 0ustar liggesusers\name{bp} \alias{bp} \docType{data} \title{ Lowering Blood Pressure Data } \description{ Lowering a patient's blood pressure during surgery, using a hypotensive drug. } \usage{data(bp)} \format{ A data frame with 53 observations on the following 3 variables. \describe{ \item{\code{logdose}}{the logarithm (base 10) of the dose of drug in milligrams} \item{\code{bloodp}}{average systolic blood pressure achieved while the drug was being administered} \item{\code{recovtime}}{time in minutes before the patient's systolic blood pressure returned to 100mm of mercury} } } \source{ J. D. Robertson and P. Armitage (1959) Comparison of Two Hypotensive Agents, \emph{Anaesthesia}, \bold{14}(1), 53--64 } \keyword{datasets} HSAUR3/man/backpain.Rd0000644000176200001440000000322514172224352014035 0ustar liggesusers\name{backpain} \alias{backpain} \docType{data} \title{ Driving and Back Pain Data} \description{ A case-control study to investigate whether driving a car is a risk factor for low back pain resulting from acute herniated lumbar intervertebral discs (AHLID). } \usage{data("backpain")} \format{ A data frame with 434 observations on the following 4 variables. \describe{ \item{\code{ID}}{a factor which identifies matched pairs.} \item{\code{status}}{a factor with levels \code{case} and \code{control}.} \item{\code{driver}}{a factor with levels \code{no} and \code{yes}.} \item{\code{suburban}}{a factor with levels \code{no} and \code{yes} indicating a suburban resident.} } } \details{ These data arise from a study reported in Kelsey and Hardy (1975) which was designed to investigate whether driving a car is a risk factor for low back pain resulting from acute herniated lumbar intervertebral discs (AHLID). A case-control study was used with cases selected from people who had recently had X-rays taken of the lower back and had been diagnosed as having AHLID. The controls were taken from patients admitted to the same hospital as a case with a condition unrelated to the spine. Further matching was made on age and sex and a total of 217 matched pairs were recruited, consisting of 89 female pairs and 128 male pairs. } \source{ Jennifer L. Kelsey and Robert J. Hardy (1975), Driving of Motor Vehicles as a Risk Factor for Acute Herniated Lumbar Intervertebral Disc. \emph{American Journal of Epidemiology}, \bold{102}(1), 63--73. } \examples{ data("backpain", package = "HSAUR3") summary(backpain) } \keyword{datasets} HSAUR3/man/USmelanoma.Rd0000644000176200001440000000221614172224352014325 0ustar liggesusers\name{USmelanoma} \alias{USmelanoma} \docType{data} \title{ USA Malignant Melanoma Data } \description{ USA mortality rates for white males due to malignant melanoma 1950-1969. } \usage{data("USmelanoma")} \format{ A data frame with 48 observations on the following 5 variables. \describe{ \item{\code{mortality}}{number of white males died due to malignant melanoma 1950-1969 per one million inhabitants.} \item{\code{latitude}}{latitude of the geographic centre of the state.} \item{\code{longitude}}{longitude of the geographic centre of each state.} \item{\code{ocean}}{a binary variable indicating contiguity to an ocean at levels \code{no} or \code{yes}.} } } \details{ Fisher and van Belle (1993) report mortality rates due to malignant melanoma of the skin for white males during the period 1950-1969, for each state on the US mainland. Questions of interest about these data include how do the mortality rates compare for ocean and non-ocean states? } \source{ Fisher and van Belle (1993) } \examples{ data("USmelanoma", package = "HSAUR3") } \keyword{datasets} HSAUR3/man/weightgain.Rd0000644000176200001440000000224314172224352014412 0ustar liggesusers\name{weightgain} \alias{weightgain} \docType{data} \title{ Gain in Weight of Rats } \description{ The data arise from an experiment to study the gain in weight of rats fed on four different diets, distinguished by amount of protein (low and high) and by source of protein (beef and cereal). } \usage{data("weightgain")} \format{ A data frame with 40 observations on the following 3 variables. \describe{ \item{\code{source}}{source of protein given, a factor with levels \code{Beef} and \code{Cereal}.} \item{\code{type}}{amount of protein given, a factor with levels \code{High} and \code{Low}.} \item{\code{weightgain}}{weigt gain in grams.} } } \details{ Ten rats are randomized to each of the four treatments. The question of interest is how diet affects weight gain. } \source{ D. J. Hand, F. Daly, A. D. Lunn, K. J. McConway and E. Ostrowski (1994). \emph{A Handbook of Small Datasets}, Chapman and Hall/CRC, London. } \examples{ data("weightgain", package = "HSAUR3") interaction.plot(weightgain$type, weightgain$source, weightgain$weightgain) } \keyword{datasets} HSAUR3/man/household.Rd0000644000176200001440000000202514172224352014254 0ustar liggesusers\name{household} \alias{household} \docType{data} \title{ Household Expenditure Data } \description{ Survey data on household expenditure on four commodity groups. } \usage{data("household")} \format{ A data frame with 40 observations on the following 5 variables. \describe{ \item{\code{housing}}{expenditure on housing, including fuel and light.} \item{\code{food}}{expenditure on foodstuffs, including alcohol and tobacco.} \item{\code{goods}}{expenditure on other goods, including clothing, footwear and durable goods.} \item{\code{service}}{expenditure on services, including transport and vehicles.} \item{\code{gender}}{a factor with levels \code{female} and \code{male}} } } \details{ The data are part of a data set collected from a survey of household expenditure and give the expenditure of 20 single men and 20 single women on four commodity groups. The units of expenditure are Hong Kong dollars, } \source{ FIXME } \examples{ data("household", package = "HSAUR3") } \keyword{datasets} HSAUR3/man/foster.Rd0000644000176200001440000000212314172224352013563 0ustar liggesusers\name{foster} \alias{foster} \docType{data} \title{ Foster Feeding Experiment } \description{ The data are from a foster feeding experiment with rat mothers and litters of four different genotypes. The measurement is the litter weight after a trial feeding period. } \usage{data("foster")} \format{ A data frame with 61 observations on the following 3 variables. \describe{ \item{\code{litgen}}{genotype of the litter, a factor with levels \code{A}, \code{B}, \code{I}, and \code{J}.} \item{\code{motgen}}{genotype of the mother, a factor with levels \code{A}, \code{B}, \code{I}, and \code{J}.} \item{\code{weight}}{the weight of the litter after a feeding period.} } } \details{ Here the interest lies in uncovering the effect of genotype of mother and litter on litter weight. } \source{ D. J. Hand, F. Daly, A. D. Lunn, K. J. McConway and E. Ostrowski (1994). \emph{A Handbook of Small Datasets}, Chapman and Hall/CRC, London. } \examples{ data("foster", package = "HSAUR3") plot.design(foster) } \keyword{datasets} HSAUR3/man/toenail.Rd0000644000176200001440000000372114172224352013721 0ustar liggesusers\name{toenail} \alias{toenail} \docType{data} \title{ Toenail Infection Data } \description{ Results of a clinical trial to compare two competing oral antifungal treatments for toenail infection. } \usage{data("toenail")} \format{ A data frame with 1908 observations on the following 5 variables. \describe{ \item{\code{patientID}}{a unique identifier for each patient in the trial.} \item{\code{outcome}}{degree of separation of the nail plate from the nail bed (onycholysis).} \item{\code{treatment}}{a factor with levels \code{itraconazole} and \code{terbinafine}.} \item{\code{time}}{the time in month when the visit actually took place.} \item{\code{visit}}{number of visit attended.} } } \details{ De Backer et al. (1998) describe a clinical trial to compare two competing oral antifungal treatments for toenail infection (dermatophyte onychomycosis). A total of 378 patients were randomly allocated into two treatment groups, one group receiving 250mg per day of terbinafine and the other group 200mg per day of itraconazole. Patients were evaluated at seven visits, intended to be at weeks 0, 4, 8, 12, 24, 36, and 48 for the degree of separation of the nail plate from the nail bed (onycholysis) dichotomized into \code{moderate or severe} and \code{none or mild}. But patients did not always arrive exactly at the scheduled time and the exact time in months that they did attend was recorded. The data is not balanced since not all patients attended for all seven planned visits. } \source{ M. D. Backer and C. D. Vroey and E. Lesaffre and I. Scheys and P. D. Keyser (1998), Twelve weeks of continuous oral therapy for toenail onychomycosis caused by dermatophytes: A double-blind comparative trial of terbinafine 250 mg/day versus itraconazole 200 mg/day. \emph{Journal of the American Academy of Dermatology}, \bold{38}, S57--S63. } \examples{ data("toenail", package = "HSAUR3") } \keyword{datasets} HSAUR3/man/CHFLS.Rd0000644000176200001440000001647414231472441013136 0ustar liggesusers\name{CHFLS} \alias{CHFLS} \docType{data} \title{ Chinese Health and Family Life Survey } \description{ The Chinese Health and Family Life Survey sampled $60$ villages and urban neighborhoods chosen in such a way as to represent the full geographical and socioeconomic range of contemporary China. } \usage{data("CHFLS")} \format{ A data frame with 1534 observations on the following 10 variables. \describe{ \item{\code{R_region}}{a factor with levels \code{Coastal South}, \code{Coastal East}, \code{Inlands}, \code{North}, \code{Northeast}, \code{Central West}.} \item{\code{R_age}}{age of the responding woman.} \item{\code{R_edu}}{education level of the responding woman, an ordered factor with levels \code{Never attended school} < \code{Elementary school} < \code{Junior high school} < \code{Senior high school} < \code{Junior college} < \code{University}.} \item{\code{R_income}}{monthly income of the responding woman.} \item{\code{R_health}}{self-reported health status, an ordered factor with levels \code{Poor} < \code{Not good} < \code{Fair} < \code{Good} < \code{Excellent}.} \item{\code{R_height}}{height of the responding woman.} \item{\code{R_happy}}{self-reportet happiness of the responding woman, an ordered factor with levels \code{Very unhappy} < \code{Not too happy} < \code{Somewhat happy} < \code{Very happy}.} \item{\code{A_height}}{height of the woman's partner.} \item{\code{A_edu}}{level of education of the woman's partner, an ordered factor with levels \code{Never attended school} < \code{Elementary school} < \code{Junior high school} < \code{Senior high school} < \code{Junior college} < \code{University}.} \item{\code{A_income}}{montjly income of the woman's partner.} } } \details{ Contemporary China is on the leading edge of a sexual revolution, with tremendous regional and generational differences that provide unparalleled natural experiments for analysis of the antecedents and outcomes of sexual behavior. The Chinese Health and Family Life Study, conducted 1999--2000 as a collaborative research project of the Universities of Chicago, Beijing, and North Carolina, provides a baseline from which to anticipate and track future changes. Specifically, this study produces a baseline set of results on sexual behavior and disease patterns, using a nationally representative probability sample. The Chinese Health and Family Life Survey sampled 60 villages and urban neighborhoods chosen in such a way as to represent the full geographical and socioeconomic range of contemporary China excluding Hong Kong and Tibet. Eighty-three individuals were chosen at random for each location from official registers of adults aged between 20 and 64 years to target a sample of 5000 individuals in total. Here, we restrict our attention to women with current male partners for whom no information was missing, leading to a sample of 1534 women. The data have been extracted as given in the example section. } \source{ \url{https://sscs.uchicago.edu} } \references{ William L. Parish, Edward O. Laumann, Myron S. Cohen, Suiming Pan, Heyi Zheng, Irving Hoffman, Tianfu Wang, and Kwai Hang Ng. (2003), Population-Based Study of Chlamydial Infection in China: A Hidden Epidemic. \emph{Journal of the American Medican Association}, \bold{289}(10), 1265--1273. } \examples{ \dontrun{ ### for a description see http://popcenter.uchicago.edu/data/chfls.shtml library("TH.data") load(file.path(path.package(package="TH.data"), "rda", "CHFLS.rda")) tmp <- chfls1[, c("REGION6", "ZJ05", "ZJ06", "A35", "ZJ07", "ZJ16M", "INCRM", "JK01", "JK02", "JK20", "HY04", "HY07", "A02", "AGEGAPM", "A07M", "A14", "A21", "A22M", "A23", "AX16", "INCAM", "SEXNOW", "ZW04")] names(tmp) <- c("Region", "Rgender", ### gender of respondent "Rage", ### age of respondent "RagestartA", ### age of respondent at beginning of relationship ### with partner A "Redu", ### education of respondent "RincomeM", ### rounded monthly income of respondent "RincomeComp", ### inputed monthly income of respondent "Rhealth", ### health condition respondent "Rheight", ### respondent's height "Rhappy", ### respondent's happiness "Rmartial", ### respondent's marital status "RhasA", ### R has current A partner "Agender", ### gender of partner A "RAagegap", ### age gap "RAstartage", ### age at marriage "Aheight", ### height of partner A "Aedu", ### education of partner A "AincomeM", ### rounded partner A income "AincomeEst", ### estimated partner A income "orgasm", ### orgasm frequency "AincomeComp", ### imputed partner A income "Rsexnow", ### has sex last year "Rhomosexual") ### R is homosexual ### code missing values tmp$AincomeM[tmp$AincomeM < 0] <- NA tmp$RincomeM[tmp$RincomeM < 0] <- NA tmp$Aheight[tmp$Aheight < 0] <- NA olevels <- c("never", "rarely", "sometimes", "often", "always") tmpA <- subset(tmp, Rgender == "female" & Rhomosexual != "yes" & orgasm \%in\% olevels) ### 1534 subjects dim(tmpA) CHFLS <- tmpA[, c("Region", "Rage", "Redu", "RincomeComp", "Rhealth", "Rheight", "Rhappy", "Aheight", "Aedu", "AincomeComp")] names(CHFLS) <- c("R_region", "R_age", "R_edu", "R_income", "R_health", "R_height", "R_happy", "A_height", "A_edu", "A_income") levels(CHFLS$R_region) <- c("Coastal South", "Coastal Easth", "Inlands", "North", "Northeast", "Central West") CHFLS$R_edu <- ordered(as.character(CHFLS$R_edu), levels = c("no school", "primary", "low mid", "up mid", "j col", "univ/grad")) levels(CHFLS$R_edu) <- c("Never attended school", "Elementary school", "Junior high school", "Senior high school", "Junior college", "University") CHFLS$A_edu <- ordered(as.character(CHFLS$A_edu), levels = c("no school", "primary", "low mid", "up mid", "j col", "univ/grad")) levels(CHFLS$A_edu) <- c("Never attended school", "Elementary school", "Junior high school", "Senior high school", "Junior college", "University") CHFLS$R_health <- ordered(as.character(CHFLS$R_health), levels = c("poor", "not good", "fair", "good", "excellent")) levels(CHFLS$R_health) <- c("Poor", "Not good", "Fair", "Good", "Excellent") CHFLS$R_happy <- ordered(as.character(CHFLS$R_happy), levels = c("v unhappy", "not too", "relatively", "very")) levels(CHFLS$R_happy) <- c("Very unhappy", "Not too happy", "Relatively happy", "Very happy") } } \keyword{datasets} HSAUR3/man/epilepsy.Rd0000644000176200001440000000350714172224352014122 0ustar liggesusers\name{epilepsy} \alias{epilepsy} \docType{data} \title{ Epilepsy Data } \description{ A randomised clinical trial investigating the effect of an anti-epileptic drug. } \usage{data("epilepsy")} \format{ A data frame with 236 observations on the following 6 variables. \describe{ \item{\code{treatment}}{the treatment group, a factor with levels \code{placebo} and \code{Progabide}.} \item{\code{base}}{the number of seizures before the trial.} \item{\code{age}}{the age of the patient.} \item{\code{seizure.rate}}{the number of seizures (response variable).} \item{\code{period}}{treatment period, an ordered factor with levels \code{1} to \code{4}.} \item{\code{subject}}{the patient ID, a factor with levels \code{1} to \code{59}.} } } \details{ In this clinical trial, 59 patients suffering from epilepsy were randomized to groups receiving either the anti-epileptic drug Progabide or a placebo in addition to standard chemotherapy. The numbers of seizures suffered in each of four, two-week periods were recorded for each patient along with a baseline seizure count for the 8 weeks prior to being randomized to treatment and age. The main question of interest is whether taking progabide reduced the number of epileptic seizures compared with placebo. } \source{ P. F. Thall and S. C. Vail (1990), Some covariance models for longitudinal count data with overdispersion. \emph{Biometrics}, \bold{46}, 657--671. } \examples{ data("epilepsy", package = "HSAUR3") library(lattice) dotplot(I(seizure.rate / base) ~ period | subject, data = epilepsy, subset = treatment == "Progabide") dotplot(I(seizure.rate / base) ~ period | subject, data = epilepsy, subset = treatment == "Progabide") } \keyword{datasets} HSAUR3/man/UStemp.Rd0000644000176200001440000000102614172224352013477 0ustar liggesusers\name{UStemp} \alias{UStemp} \docType{data} \title{ Temperatures in 22 US cities } \description{ Lowest temperatures in Fahrenheit in 22 US cities in four months. } \usage{data(UStemp)} \format{ A data frame with 22 observations on the following 4 variables. \describe{ \item{\code{January}}{lowest temperature in Fahrenheit} \item{\code{April}}{lowest temperature in Fahrenheit} \item{\code{July}}{lowest temperature in Fahrenheit} \item{\code{October}}{lowest temperature in Fahrenheit} } } \keyword{datasets} HSAUR3/man/pottery.Rd0000644000176200001440000000206214172224352013771 0ustar liggesusers\name{pottery} \alias{pottery} \docType{data} \title{ Romano-British Pottery Data } \description{ Chemical composition of Romano-British pottery. } \usage{data("pottery")} \format{ A data frame with 45 observations on the following 9 chemicals. \describe{ \item{Al2O3}{aluminium trioxide.} \item{Fe2O3}{iron trioxide.} \item{MgO}{magnesium oxide.} \item{CaO}{calcium oxide.} \item{Na2O}{natrium oxide.} \item{K2O}{calium oxide.} \item{TiO2}{titanium oxide.} \item{MnO}{mangan oxide.} \item{BaO}{barium oxide.} \item{kiln}{site at which the pottery was found.} } } \details{ The data gives the chemical composition of specimens of Romano-British pottery, determined by atomic absorption spectrophotometry, for nine oxides. } \source{ A. Tubb and N. J. Parker and G. Nickless (1980), The analysis of Romano-British pottery by atomic absorption spectrophotometry. \emph{Archaeometry}, \bold{22}, 153--171. } \examples{ data("pottery", package = "HSAUR3") plot(pottery) } \keyword{datasets} HSAUR3/man/USairpollution.Rd0000644000176200001440000000244714172224352015263 0ustar liggesusers\name{USairpollution} \alias{USairpollution} \docType{data} \title{ Air Pollution in US Cities } \description{ Air pollution data of 41 US cities. } \usage{data("USairpollution")} \format{ A data frame with 41 observations on the following 7 variables. \describe{ \item{\code{SO2}}{SO2 content of air in micrograms per cubic metre.} \item{\code{temp}}{average annual temperature in Fahrenheit.} \item{\code{manu}}{number of manufacturing enterprises employing 20 or more workers.} \item{\code{popul}}{population size (1970 census); in thousands.} \item{\code{wind}}{average annual wind speed in miles per hour.} \item{\code{precip}}{average annual precipitation in inches.} \item{\code{predays}}{average number of days with precipitation per year.} } } \details{ The annual mean concentration of sulphur dioxide, in micrograms per cubic metre, is a measure of the air pollution of the city. The question of interest here is what aspects of climate and human ecology as measured by the other six variables in the data determine pollution? } \source{ R. R. Sokal and F. J. Rohlf (1981), \emph{Biometry}, W. H. Freeman, San Francisco (2nd edition). } \examples{ data("USairpollution", package = "HSAUR3") } \keyword{datasets} HSAUR3/man/Smoking_Wassink1945.Rd0000644000176200001440000000143414172224352015716 0ustar liggesusers\name{Smoking_Wassink1945} \alias{Smoking_Wassink1945} \docType{data} \title{ Smoking and Lung Cancer (III) } \description{ Number of smokers in a case-control study. } \usage{data(Smoking_Wassink1945)} \format{ The format is: table [1:4, 1:2] 6 18 36 74 19 36 25 20 - attr(*, "dimnames")=List of 2 ..$ Smoking : chr [1:4] "Nonsmoker" "Moderate smoker" "Heavy smoker" "Very heavy smoker" ..$ Diagnosis: chr [1:2] "Lung cancer" "Healthy control" } \source{ W. F. Wassink (1945), Ontstaansvoorwaarden voor Longkanker, \emph{Nederlands Tijdschrift voor Geneeskunde}, \bold{92}, 3732--3747 } \references{ Richard Doll (1998), Uncovering the effects of smoking: historical perspective. \emph{Statistical Methods in Medical Research}, \bold{7}(87), 87-117 } \keyword{datasets} HSAUR3/man/clouds.Rd0000644000176200001440000000503614172224352013560 0ustar liggesusers\name{clouds} \alias{clouds} \docType{data} \title{ Cloud Seeding Data } \description{ Data from an experiment investigating the use of massive amounts of silver iodide (100 to 1000 grams per cloud) in cloud seeding to increase rainfall. } \usage{data("clouds")} \format{ A data frame with 24 observations on the following 7 variables. \describe{ \item{seeding}{a factor indicating whether seeding action occured (\code{no} or \code{yes}).} \item{time}{number of days after the first day of the experiment.} \item{sne}{suitability criterion.} \item{cloudcover}{the percentage cloud cover in the experimental area, measured using radar.} \item{prewetness}{the total rainfall in the target area one hour before seeding (in cubic metres times \code{1e+8}).} \item{echomotion}{a factor showing whether the radar echo was \code{moving} or \code{stationary}.} \item{rainfall}{the amount of rain in cubic metres times \code{1e+8}.} } } \details{ Weather modification, or cloud seeding, is the treatment of individual clouds or storm systems with various inorganic and organic materials in the hope of achieving an increase in rainfall. Introduction of such material into a cloud that contains supercooled water, that is, liquid water colder than zero Celsius, has the aim of inducing freezing, with the consequent ice particles growing at the expense of liquid droplets and becoming heavy enough to fall as rain from clouds that otherwise would produce none. The data available in \code{cloud} were collected in the summer of 1975 from an experiment to investigate the use of massive amounts of silver iodide 100 to 1000 grams per cloud) in cloud seeding to increase rainfall. In the experiment, which was conducted in an area of Florida, 24 days were judged suitable for seeding on the basis that a measured suitability criterion (\code{SNE}). } \source{ W. L. Woodley, J. Simpson, R. Biondini and J. Berkeley (1977), Rainfall results 1970-75: Florida area cumulus experiment. \emph{Science} \bold{195}, 735--742. R. D. Cook and S. Weisberg (1980), Characterizations of an empirical influence function for detecting influential cases in regression. \emph{Technometrics} \bold{22}, 495--508. } \examples{ data("clouds", package = "HSAUR3") layout(matrix(1:2, nrow = 2)) boxplot(rainfall ~ seeding, data = clouds, ylab = "Rainfall") boxplot(rainfall ~ echomotion, data = clouds, ylab = "Rainfall") } \keyword{datasets} HSAUR3/man/respiratory.Rd0000644000176200001440000000414214172224352014647 0ustar liggesusers\name{respiratory} \alias{respiratory} \docType{data} \title{ Respiratory Illness Data } \description{ The respiratory status of patients recruited for a randomised clinical multicenter trial. } \usage{data("respiratory")} \format{ A data frame with 555 observations on the following 7 variables. \describe{ \item{\code{centre}}{the study center, a factor with levels \code{1} and \code{2}.} \item{\code{treatment}}{the treatment arm, a factor with levels \code{placebo} and \code{treatment}.} \item{\code{gender}}{a factor with levels \code{female} and \code{male}.} \item{\code{age}}{the age of the patient.} \item{\code{status}}{the respiratory status (response variable), a factor with levels \code{poor} and \code{good}.} \item{\code{month}}{the month, each patient was examined at months \code{0}, \code{1}, \code{2}, \code{3} and \code{4}.} \item{\code{subject}}{the patient ID, a factor with levels \code{1} to \code{111}.} } } \details{ In each of two centres, eligible patients were randomly assigned to active treatment or placebo. During the treatment, the respiratory status (categorised \code{poor} or \code{good}) was determined at each of four, monthly visits. The trial recruited 111 participants (54 in the active group, 57 in the placebo group) and there were no missing data for either the responses or the covariates. The question of interest is to assess whether the treatment is effective and to estimate its effect. Note that the data are in long form, i.e, repeated measurments are stored as additional rows in the data frame. } \source{ C. S. Davis (1991), Semi-parametric and non-parametric methods for the analysis of repeated measurements with applications to clinical trials. \emph{Statistics in Medicine}, \bold{10}, 1959--1980. } \examples{ data("respiratory", package = "HSAUR3") mosaicplot(xtabs( ~ treatment + month + status, data = respiratory)) } \keyword{datasets} HSAUR3/man/rearrests.Rd0000644000176200001440000000175514172224352014305 0ustar liggesusers\name{rearrests} \alias{rearrests} \docType{data} \title{ Rearrests of Juvenile Felons } \description{ Rearrests of juventile felons by type of court in which they were tried. } \usage{data("rearrests")} \format{ A two-way classification, see \code{\link{table}}. } \details{ The data (taken from Agresti, 1996) arise from a sample of juveniles convicted of felony in Florida in 1987. Matched pairs were formed using criteria such as age and the number of previous offences. For each pair, one subject was handled in the juvenile court and the other was transferred to the adult court. Whether or not the juvenile was rearrested by the end of 1988 was then noted. Here the question of interest is whether the true proportions rearrested were identical for the adult and juvenile court assignments? } \source{ A. Agresti (1996). \emph{An Introduction to Categorical Data Analysis}. Wiley, New York. } \examples{ data("rearrests", package = "HSAUR3") rearrests } \keyword{datasets} HSAUR3/man/pistonrings.Rd0000644000176200001440000000164014172224352014643 0ustar liggesusers\name{pistonrings} \alias{pistonrings} \docType{data} \title{ Piston Rings Failures } \description{ Number of failures of piston rings in three legs of four steam-driven compressors. } \usage{data("pistonrings")} \format{ A two-way classification, see \code{\link{table}}. } \details{ The data are given in form of a \code{\link{table}}. The table gives the number of piston-ring failures in each of three legs of four steam-driven compressors located in the same building. The compressors have identical design and are oriented in the same way. The question of interest is whether the two classification variables (compressor and leg) are independent. } \source{ S. J. Haberman (1973), The analysis of residuals in cross-classificed tables. \emph{Biometrics} \bold{29}, 205--220. } \examples{ data("pistonrings", package = "HSAUR3") mosaicplot(pistonrings) } \keyword{datasets} HSAUR3/man/bladdercancer.Rd0000644000176200001440000000206214231245352015033 0ustar liggesusers\name{bladdercancer} \alias{bladdercancer} \docType{data} \title{ Bladder Cancer Data } \description{ Data arise from 31 male patients who have been treated for superficial bladder cancer, and give the number of recurrent tumours during a particular time after the removal of the primary tumour, along with the size of the original tumour. } \usage{data("bladdercancer")} \format{ A data frame with 31 observations on the following 3 variables. \describe{ \item{\code{time}}{the duration.} \item{\code{tumorsize}}{a factor with levels \code{<=3cm} and \code{>3cm}.} \item{\code{number}}{number of recurrent tumours.} } } \details{ The aim is the estimate the effect of size of tumour on the number of recurrent tumours. } \source{ G. U. H. Seeber (1998), Poisson Regression. In: \emph{Encyclopedia of Biostatistics} (P. Armitage and T. Colton, eds), John Wiley & Sons, Chichester. } \examples{ data("bladdercancer", package = "HSAUR3") mosaicplot(xtabs(~ number + tumorsize, data = bladdercancer)) } \keyword{datasets} HSAUR3/man/EFT.Rd0000644000176200001440000000111614172224352012700 0ustar liggesusers\name{EFT} \alias{EFT} \docType{data} \title{ Embedded Figures Test Data } \description{ Embedded figures test for 24 school children. } \usage{data(EFT)} \format{ A data frame with 24 observations on the following 3 variables. \describe{ \item{\code{group}}{a factor with levels \code{row} \code{corner}} \item{\code{time}}{time to complete the pattern} \item{\code{EFT}}{Embedded Figures Test} } } \source{ M. Aitkin, D. Anderson, B. Francis, and J. Hinde (1989), \emph{Statistical Modelling in GLIM}, Oxford University Press, New York, USA } \keyword{datasets} HSAUR3/man/HSAURtable.Rd0000644000176200001440000000414714172224352014163 0ustar liggesusers\name{HSAURtable} \alias{HSAURtable} \alias{toLatex.tabtab} \alias{toLatex.dftab} \alias{HSAURtable.table} \alias{HSAURtable.data.frame} \title{ Produce LaTeX Tables } \description{ Generate \code{longtable} LaTeX environments. } \usage{ HSAURtable(object, ...) \method{HSAURtable}{table}(object, xname = deparse(substitute(object)), pkg = NULL, ...) \method{HSAURtable}{data.frame}(object, xname = deparse(substitute(object)), pkg = NULL, nrows = NULL, ...) \method{toLatex}{tabtab}(object, caption = NULL, label = NULL, topcaption = TRUE, index = TRUE, ...) \method{toLatex}{dftab}(object, pcol = 1, caption = NULL, label = NULL, rownames = FALSE, topcaption = TRUE, index = TRUE, ...) } \arguments{ \item{object}{ an object of \code{table} or \code{data.frame}. } \item{xname}{ the name of the object. } \item{pkg}{ the package \code{object} comes from, optionally. } \item{nrows}{ the number of rows actually printed for a \code{data.frame}.} \item{caption}{ the (optional) caption of the table without label. } \item{label}{ the (optional) label to be defined for this table. } \item{pcol}{ the number of parallel columns. } \item{rownames}{ logical, should the rownames be printed in the first row without column name? } \item{topcaption}{ logical, should the captions be placed on top (default) of the table?} \item{index}{ logical, should an index entry be generated?} \item{\dots}{ additional arguments, currently ignored. } } \details{ Based on the data in \code{object}, an object from which a Latex table (in a \code{longtable} environment) may be constructed (via \code{\link[utils]{toLatex}}) is generated. } \value{ An object of class \code{tabtab} or \code{dftab} for which \code{\link[utils]{toLatex}} methods are available. \code{toLatex} produces objects of class \code{Latex}, a character vector, essentially. } \examples{ data("rearrests", package = "HSAUR3") toLatex(HSAURtable(rearrests), caption = "Rearrests of juvenile felons.", label = "rearrests_tab") } \keyword{misc} HSAUR3/man/CYGOB1.Rd0000644000176200001440000000222314172224352013206 0ustar liggesusers\name{CYGOB1} \alias{CYGOB1} \docType{data} \title{ CYG OB1 Star Cluster Data } \description{ Energy output and surface termperature for Star Cluster CYG OB1. } \usage{data("CYGOB1")} \format{ A data frame with 47 observations on the following 2 variables. \describe{ \item{\code{logst}}{log survface termperature of the star.} \item{\code{logli}}{log light intensity of the star.} } } \details{ The Hertzsprung-Russell (H-R) diagram forms the basis of the theory of stellar evolution. The diagram is essentially a plot of the energy output of stars plotted against their surface temperature. Data from the H-R diagram of Star Cluster CYG OB1, calibrated according to VanismaGreve1972 are given here. } \source{ F. Vanisma and J. P. De Greve (1972), Close binary systems before and after mass transfer. \emph{Astrophysics and Space Science}, \bold{87}, 377--401. D. J. Hand, F. Daly, A. D. Lunn, K. J. McConway and E. Ostrowski (1994). \emph{A Handbook of Small Datasets}, Chapman and Hall/CRC, London. } \examples{ data("CYGOB1", package = "HSAUR3") plot(logst ~ logli, data = CYGOB1) } \keyword{datasets} HSAUR3/man/Smoking_SchairerSchoeniger1944.Rd0000644000176200001440000000154314172224352020046 0ustar liggesusers\name{Smoking_SchairerSchoeniger1944} \alias{Smoking_SchairerSchoeniger1944} \docType{data} \title{ Smoking and Lung Cancer (II) } \description{ Number of smokers in a case-control study. } \usage{data(Smoking_SchairerSchoeniger1944)} \format{ The format is: table [1:5, 1:7] 3 11 31 19 29 2 0 4 6 3 ... - attr(*, "dimnames")=List of 2 ..$ Smoking : chr [1:5] "Nonsmoker" "Moderate smoker" "Medium smoker" "Heavy smoker" ... ..$ Diagnosis: chr [1:7] "Lung cancer" "Lip cancer" "Throat cancer" "Stomach cancer" ... } \source{ E. Schairer and E. Sch\"oninger (1944), Lungenkrebs und Tabakverbrauch, \emph{Zeitschrift fuer Krebsforschung}, \bold{54}(4), 261-269 } \references{ Richard Doll (1998), Uncovering the effects of smoking: historical perspective. \emph{Statistical Methods in Medical Research}, \bold{7}(87), 87-117 } \keyword{datasets} HSAUR3/man/mastectomy.Rd0000644000176200001440000000163614172224352014456 0ustar liggesusers\name{mastectomy} \alias{mastectomy} \docType{data} \title{ Survival Times after Mastectomy of Breast Cancer Patients } \description{ Survival times in months after mastectomy of women with breast cancer. The cancers are classified as having metastized or not based on a histochemical marker. } \usage{data("mastectomy")} \format{ A data frame with 42 observations on the following 3 variables. \describe{ \item{time}{survival times in months.} \item{event}{a logical indicating if the event was observed (\code{TRUE}) or if the survival time was censored (\code{FALSE}).} \item{metastasized}{a factor at levels \code{yes} and \code{no}.} } } \source{ B. S. Everitt and S. Rabe-Hesketh (2001), \emph{Analysing Medical Data using S-PLUS}, Springer, New York, USA. } \examples{ data("mastectomy", package = "HSAUR3") table(mastectomy$metastasized) } \keyword{datasets} HSAUR3/DESCRIPTION0000644000176200001440000000417414660157031012736 0ustar liggesusersPackage: HSAUR3 Title: A Handbook of Statistical Analyses Using R (3rd Edition) Date: 2024-08-17 Version: 1.0-15 Authors@R: c(person("Torsten", "Hothorn", role = c("aut", "cre"), email = "Torsten.Hothorn@R-project.org", comment = c(ORCID = "0000-0001-8301-0471")), person(given = c("Brian", "S."), family = "Everitt", role = "aut")) Maintainer: Torsten Hothorn Description: Functions, data sets, analyses and examples from the third edition of the book ''A Handbook of Statistical Analyses Using R'' (Torsten Hothorn and Brian S. Everitt, Chapman & Hall/CRC, 2014). The first chapter of the book, which is entitled ''An Introduction to R'', is completely included in this package, for all other chapters, a vignette containing all data analyses is available. In addition, Sweave source code for slides of selected chapters is included in this package (see HSAUR3/inst/slides). The publishers web page is ''. Depends: R (>= 3.0.0) Suggests: boot (>= 1.3-9), lattice (>= 0.20-23), MASS (>= 7.3-29), mgcv (>= 1.7-27), rpart (>= 4.1-4), survival (>= 2.37-4), ape (>= 3.0-11), coin (>= 1.1-3), flexmix (>= 2.3-11), Formula (>= 1.1-1), gamair (>= 0.0.8), gamlss.data (>= 4.2.6), gee (>= 4.13-18), KernSmooth (>= 2.23-10), lme4 (>= 1.0-5), maps (>= 2.3-6), mboost (>= 2.2-3), mclust (>= 4.2), mlbench (>= 2.1-1), mice (>= 2.18), multcomp (>= 1.3-1), mvtnorm (>= 0.9-9996), partykit (>= 0.8-0), quantreg (>= 5.05), randomForest (>= 4.6-7), rmeta (>= 2.16), sandwich (>= 2.3-0), scatterplot3d (>= 0.3-34), sf (>= 1.0-9), sp (>= 1.0-14), TH.data (>= 1.0-2), tools, vcd (>= 1.3-1), wordcloud (>= 2.4), HSAUR2 LazyData: yes License: GPL-2 Encoding: UTF-8 NeedsCompilation: no Packaged: 2024-08-17 16:31:15 UTC; hothorn Author: Torsten Hothorn [aut, cre] (), Brian S. Everitt [aut] Repository: CRAN Date/Publication: 2024-08-17 17:30:01 UTC