HSAUR3/0000755000176200001440000000000013303046021011207 5ustar liggesusersHSAUR3/inst/0000755000176200001440000000000013302741062012172 5ustar liggesusersHSAUR3/inst/cache/0000755000176200001440000000000012451513136013240 5ustar liggesusersHSAUR3/inst/cache/DE-bootpara.rda0000644000176200001440000010376212357775376016063 0ustar liggesusersRDX2 X  bootpara ?\@KOVMl@T(;S names p mu1.2 mu2.1 ?4Fd?֤A8X?։5?[?{͓v?J~L?ׂ?֎i{?.?{θ]?dBj?ګ.?qIz?86?{p?ЉA?Ԛru,?VEX+?HIlD?ʯ=?)A} ??ԫ?9!%ȱ?((~a3?I;E?]?+??Ԣmpd"@?铤9??wל?O՟?U}??p?~bV?CPp?ا2?# ?'M?27m"?Q63(.?5cT?:;2A?6{?ݦ_?L'g?v n?b$v?⬠ \?kP6?ԙ?2?Կ &?#?`?漢^?֨X?؎M?L7+!0?th٘?xT?"3>a?լً?(;P?z?MsΞ?_TD?0SM?ע|d?d!?+?PNHN?֘[iB?+Ii?%ٓny?ֆ&0Br?o@?ԕX? ͩ|?$4b0?=?)D?,ߘ?ӭ|L?%?؅~?Ճd I?hgд?nD??'e4e?ӪQ?2̆?څY]X?> .?v rv?^?ͩƾ?׆0{?ټ9F!?~l^?ٯK?N?[;|?G n?.?֛,!*?8 Os?1i?m'+/??M ?ֿn?>40?vC4?׫\ ?ֲh?+?Ԙĕ~(?٧=I.?C!Z?FXkJ?ڎs= ?l{X?ٝW>K?JmW?Y?bl#.?sۆ?UǨ=?g13?vTg?4Q?/u[?O0?ti\?:=|w~?+Vt?ȟ)?ca?.z\?Ճel?`a|?ԡ-i?MzR?JXr?ɍF?A6fe?&ECS?؂[?՝R.?v6? |Nz?=mc?ۗBz?]?q*+2 ?b?4v?A RT?״K?\C|? |?$MUh?pN?$ϱhPt?:0?#ͣ?XkD??Ƶ¤??$??+@?%%?u?T?xHT,?LV? ++}?YmO&?Ԑ??ֿ4`?]|n١?ٳKqL?YV?+?Z?~wt<(?,vXK?׀?׼c )f?֋L0?裕Z?#4?TO-3i?m?׹zUf??$?ى?ّrY?2iP??ڱy?Q?Մ¼? Ŀ?9P?׽?ŽwFX?ҡX?xš?нVih?5:C;?xG?E;B ?:$?D]?Oj?9 _?֌2?d9'x?D{?'`?عh?דѢif?Jb!^?ד>k?#CNkVL?9|܅??՜V?סq? 2_Μ?ɘ~?쬟p?5?ٵ~?`Kl,?ַ9ߌ?d? -xѐ?>?f>H?Z/? 8B?sJ? g?ט [?A›D?Km#? #?O ??܀?ٮeɰ?Ւ}g?'vOc?S,?0^;~? ՚?Kr?ڟƬ4?ևN ?D{?m!NS?Զ}"?ܘ?;9?}>,u_b?Գg4?ևp?׵`C?*?Է'f?bgܴ?՚? ?^꛽3b?t?׍O?:uX,?ՔoS~?#`?|~\Y?8N?:0?^;p?T,Hs:?Մ(ez?ӗ{l? R?ԙ ?{y?ٻ?vv?؇!G?`?Z8'?֗S?vKN?үd?֝U'FV?ө/ ?Ӎ95?r3>?اfH?k`l?ڀ:ر?1E\?Tjl?׾X?՝qIP?رPlE?Hhv?ץaj?\Vې?ҦL ?DA?~49&?˸B?{ޘ;6?w5K1&?-Ҿ4?։۲??'f8ﮬ?؜?x(?ָxݮ|?ח1x?בx?y}?BdhY?bP38?ׅҢ?d}?ͧx ?bl:?T|=i?՞Kc?b?1=?]G?%.?bPT?a*2C?wXwY?pq^?>"H?խOA?חtp?ITj?'N?ַj?_"T^?O? 3ɥ?%?nw?*+ĺ4?d??7,x?zr?6?x?&{@E?]CV%?. p?>?40??T2?ؼ?QZI??Z6!y?L?sE?Հ5?x?מwA? emJ?TԂ?ڞx/T?{ק?ՌY.?֛:[I?Қ9?׬@?ӫM?Yʰbx?D%!b?Egl?ֿ?L?}<(?nՍ)?օpK?r\?Յ}4&d?֥Jpd:?|Wr?l?ٺ:OٰJ?TC-?4~[? Y?׊?ס%?՝? V? $?9n? ,??T8Ӑ?֤1z?V˪`J?+DsN?|.{*?W枎\?17nB?sغ?ՅR?7XO ?jOX?&Xĸ?6l?4-@?Yt?oxg ?ױt,? |6R?D?Sn?0t?0?է5?a(?vr?s+@?;&?Xa?؆@{l?%mwP?,(D]?(` `?0l?ӖD?a?DCq8?D?ؐf?i'?؆j~?ںM2?ז?,W?g P?iP?ײ9k?P n?J[a?^?gK?+@:?]?HBt?"WZV6?>RX?׮Ri̚?)FOKA?!|U? 6uW?= ? ~v?Ըf{?ҙm#A?׀ SemA?J*ud?ګ ĮJ?,x?'? 3@ b?o^?ѪM?em?فVj?֪?֔ $?rcm^?_q? j{C?Hw?ك?ֶ$?իo8?ٚd?xN?I6bL?,܀ ?֗ :y?* ;N?? 3)Y?֟)*Nd?kG?(?d-?`h,W?%l?ڼ9)`6?؁{߮?u?ݗ(?9B_$J?-^Cf?ؙt?#W} z?ֻ )o?,i?يz3?ִӿN?\e[?SbO?9y?])j?XR(?ؕ#Z`?[P0?[!Ӂ ?9DD?!`?>/?׷FmsY?ּ*B?E&S?ԡ-0? [z??ؙ02?/xg]?j=%Z?w/ n?j?TKrK?1\}?=B{uj?2y ?Vj?֣B6?'>?nPm?c8L ?^U?IF?\0d?4?f?,Ad?lmN5?֧eBl?SxK?o?ײ&:?ֹ]+oz? ?:٫?A @>%?ڄUc?ˑ:?׭-/t+?٠M]K?SPqG?׫"z?TK?i?v>w#?x£ ?z?נ4O.?,V?uآ?$`?;sc?z;f?`7kL?Ӥ?!h;?!?ӊ@?xx 8?p1kR?sŖ@?͹XJ?T?ƻI?n5w?$F?h&nH?(r?ׂ/z?!D%?ut?R?إ#K?6Gs$?׽A@K %@K ./g@K>SP6.@Kl0q@KH=,@Kn.@Ki>@Kьvw@Kcf/@K@Jt9@K3F@J=@K(+cD@KsJ@K~?9@K*w͹@KUZ@KTum@K oF@KITS@JⲂ@KOڕ~@KEb@KCW@Kz{M@KX r@K"R_@JP!@K @K/Ǣ>@K 0@KeVD2]@K)`?Gt@J@K"ܶ@J;@KZ i4X@K,^ye@K!AnO@KiBer@Kd0&@K,9)݇@J޲@Kiji@K&Q,@KI@K!tG@KIu"@KB!@KΠ@K@Jx[@KiT5pL@K+14@K0@K!ʑ@K&Z.@@Ko ߀ @KR%PH@KzO@KVa@JǪ &@Jߝ@K*=@KQl%G@K Iޘ@J:'@KA@K s,@J@Kҵo@K @KG}zY@KFW2@K{1_@K,])6@K]ז4l@Jmʲ@J"@Klu]@Jt:D@JIE@J@K 4@KhGK@KRW@KcĊ@KF垘Ը@K!ق@J@KR{@KrJį@K)!@Ksê)2@KdL=:@KG#>@Kƃ@KЮ\.@KUG@Kr6r@KnA@K< c@Kٻ@K Z){@K>*@Kn4@K1 ׬@J :V@K4or9C@K('@K\e(@KB '@K@KZS@KAϤJ@Kg @J)* @Kuy@K}Ve@Ku!-@K"/@K!7Y@K9|,[@@Kp$@KTX/@K,*@J! aG@K\ @JH@LKŇ@KY@LɘZ@K@K41^[@K u@KV@KR@Kd-@Ky@Jsv@K2@Kau@K% @KL$@Kl3@KR q@Kv@K=@K_pqc@Kn ?@K7*M_|@Jn@JAOh@K5*_@K 㠾1@K&z@J5TQ@Ks͊@Kf,v@K'H@KBf@Jfd@J]@Kx*@J [@KRݾB@K$ @K&kN@K\*t@K ^W@JGu<@K@K xI@K#\U@K=T@JӁI@K0Z|@KEn,@Lwj4@JY^@KU!S@Kҧ@KD&_@K*>_V@J)P@JR.X@K7I|@KAFP@KNWo@K0+@Krg@K*]@J^T4@K#5>@K# M@J$c@K7"f_@KAbjm@Kcի9@K)JB9@K^O;]V@K"vE@Kzv# @JV@K @KcmZ@Kibyq@Kxiʋ@Kn@KYM@K$Ӗt@KH?#]@KhnP@K K@Kx@Jƴ!@JR@KrL%m@KmlJ@JS)@Ks1Z@Jt@K/ @Kh@KB9=@Kfa6<@J @JB@K>%V@K7@K#5I@Jr6@K'Z@Kr @јB@KA"_@K3E#@KWK m@@K;D@K@R@K)}k@K.m @Kw@KԞDTm@K;@K9g$@KRLF@K_ot;5@K[@KG"kQ@K@J`@KqA_@JKI@Kn@L&4@Jap@Jy @K&Z#b%@Kf"t+@K9E@KoL΄@Kr7g2@K֒O@KW\@Jh>@K$>/ @K[@K3@KyF@K"W`U@K<:@L!s@Kb$@K-@KN@KVm=@J@K@K&V@K<@@JT@K.D6t@K< [@Kt@Kc8T@KIa@K2B@JVQrQ@K&eA?@J@Kc @J'c@K4N+"@KlZ@K1AF@KAFi@K;%@KkRM@K1N=@K.GP+@J@Kܟϥ@J׃:@KoϞ|@K3i~@L6+ @LFrt@KP@Ke3 q@Kn S@KO5/{@Kfۂ@K;I @K&U@K "#•@K4@KZ+@KfS@LЩChu@J&u@K; {@KϏK@KĴck@K.9S@J3@K_qXA@Kp=(L@K~)ظ@K*g@K@Jz@KGprk@Jpt]r@K情Q@Jd T@K9;5@K[k*@K<@K!y9@KQ1@KtE(@KadIq@KMI/@K- @KRG@K+*@KpH @K {@KFڔ1@KNF@KK5@J˚@Ku.@K>gԯ@K X@K4@K|۩@@Ky@K9@Kh ;8@K#@KB@L)j@KReý,@K k@K dj@K0"@KJ@Jcq@K*9i&l@KlX>@L@K1c>@KSS@JR-)6@K"ֿ7@K:JG@K@KL$5@K"v,C@Ki1I4u@Jsr@K_K@K")@KUӏ@KӇ@KOڟo@K$5V˜@K"BM@K]%@J_OlG@KK{a@KP9˰@K5=M@K@K>_@Ky"U3;@J˖]@Kiw@K&OK@K@3@Kn*@KA@K~s@Kd7T@KA= @KOY@KKwt@J7f @KÔ8@K_@Kؑ^^@KS@JDҠ=@KU#ܟ-@KkNT:h@K`@J؎!9@K3 @Jqf@J՝@LSB@K@J1@J(@Kb2B@J @J7[ZI@KW W@KF]D1@K@KQ~@KAY%@J>@Ki|@K<@KZ!,s@K8qu@Ka_C@KvӤ8@JJev@K67I)@K#j@JՐe\@KH @KF0_@KUK@KdOR@K2"41@KsfD@KFFή@KT)@KJS@JQ*@K+ )@Kk?@K2AV@J @K.Cx@KZ @KlZ} A@K+!/@Ku'p@KFs-@K+Z'8@KP?Y@K\_9y:@Keڿ؄@JW.@K}<@K4Lx@Kc@KV{ǎ@JU;R}@K C@K6C@L*F xo@KCL&C@J]򳕪@Kf@K*\2H@K\x_.@K*-@J-@Ka'Aq@K+'ʅ@Jx4)@Ka&<@K>7@J8@N@KJ!)@K|{6@K2ؕ@J#-;@KI@K. @KKz%i@Ka&@J7a@K=\0@K|w[&h@K 1f@K^@Kj!:@Kͼ o@Ki=`j@Kz6@Jȫ @KÆ @K4ʤ5@Km@K5Z@Kqm?/@KW,?A@K?.R@J:FC@Kš\-@K-v q)@K@K6~N@Kn?B@J]2@KHZ m@Jm@K ^w@K1A @Kl@K4hB@K];@K=@'(@Kryu@J @JER@K~2@K Y@KƖ@K$_*H"@J3I@KKY0Q@K=i @K ~@J_3@J@K T%lK@KkH@K-Đ@KU񕰣@JY#w@K(H@KW@Kd4@KssX0@KIvR:@Kj>@K=o2#w@Jɿ'd@K?a@Js@Kn@K ;(@KH7i@KT9 @KqfjS:@K>DH8@KR?J@K5B@Kxj-@KPK@Ka/;?@J@K Zg@J蝤$t@Km|@JߔV@K(R@J8 `@KH @KF@KQ@K2N@K:@K!#-@KvV*@K]*?@K<Ƿ) @K3Upe|@KI I@K+@+8@K?jϷ@K2OaN@KA8,3@K#5֤@K6K.@K@K1Z@KIfZ@JxH4@K!@K,~?@K )@K;e3@KƐ@Ke=@Jկ@K=Ψ@J0@J.@K k@K=ԍ@J&@K:bժ@KKg@KZtq@K!1g@KD"(@K7)j@K; @KVF@K y@LEm@J ㆳ5@K,c7P@Jݣg@KN#m@K<*.}@KJ @KVB+U@Keg@K[߱0@KE;B @KF8@J؝@K7f@JD)i@J@KiQzٷe@J@J޺2x@K6@Kh @Kš'!@KFJ g@J,x@JYZJA@KI,@K[Y4@K7|(@K~m@KvO@Kv/oQ@K"8@KE;Y@KJl @KX@Klpd^@K($fD@KbhG@K}JM@KF*@Kdj@Kk#j @JұB*@K}a~@K~h@J@`VY@KB3g@Kh@K/4x@KWa @KL @KLtpM@K{i8@K:@L9;@K7ZO@J@Kn@J C@Kh U@K5/G@Kb6Q@KfwB@K @L 0eT@KJ`۳@KJăE@K8,gD@K46@KJk@K:@Kvr,m@TNOА@SI8=@T%K@T(p+@T=<@T%J)@T8f@T% DQ e@T(@SGlG@T'Ř@T)a,@T6uY@Tq@T%\@ @ToK\@SsC@(@T+i7@TM0~@S֏l@Ty@TAӢf@T=`eS@T /xrB@S9@Ty"ߊ@S(@T^8@SeǛ@SOz @T B@T"P(@Sm]~@Td"/@TS@SlZO͓@Tl!@T5P@ShAs@T7`l{@S yԛ@Sϒb@Tg|u@T#2@SQ]@TNP9@SJ@Tc@T]@TZm#@Se4@SNhy@SGFo@S/vx@T@Tqc@T77@T D@T/j\J{@Sߐdz@T.d8 I@SX@S_3 * @Sh@T24Ȭ@T"~@T6@Sދ v@T:La,@SmX]@TT5<@T #@Ts:@T*O*@T@,qa@T hsO+@T@TXY@T "G@Sj@T{Y@TҎ @T[ @Sy@S'Z@T@TR@T*}l{{@TG'm@T-N@T 0u'@S%be@T&\щ@TW"@T*N@S9=@T5`h@c@S- @T@T XmD@T}_@S@T?)L@T 6@S4_ @TE1@Sڕ<=@T#\@T9A@Td+@S@@SE:@T%yI@S ݸ@S @SUW@S L@Tф@T",ܩ@SD@SoUA@Tf1@SUS@S@Sg\J@Sg(@TPV@S避@T?J2@Tb@S̓`@TIƎ@T U^@SIӚY@S[}@TJ@S&Q@Teuo@SZzS@T%,Q@S ^J@T>A8 @T@SQl|@T*ʻ@T X@Sc\A@T ,)@S%͛1@Skid@T C@T ]#@Tj7{@T vK@T*@T@_p@T1w7@T"U@SB@Sd@T*ÞOh@T^G@TO@Sŧf@T[@S+B@S)|@T"=ҵ@T=",@S_@T6L=@T@O9f@SA( @T7#@ToLX@T% Z@T2(t@T*'4L@Sֽxd@T+ @TC@S8#@S Z@Th3@T &p@ThO@T 鈟@Tn- W@SF/@TPY@S.@T\!@S:4ѹ@SY;@T@T D Y<@T)Ep#@TY]0@T)vH@S \1@SQ !@T"<@To @S$@T @T(<Δ@T>vJz7@S @T$@T#@T=^8@Sߔ@T8^k@S8@TɁ|@T+@T$I@So4@T t@SA@Sn6bd@S؏(k@SO@T)~쁯@S_y@T7#Z@T. 5TP@T&bQ@T$@@S0}@T<Д@TM@T"ʞ@Sqm@T h(@T"ᇾBz@T9WyZ@TE`x.@Td(@SL.@T @T0aC@T ,[@S:ٚ@T:+2@SX@T N@T"R@TL@SyU7!T@T%@S@T f1@SYy@S%/@SZ %@T U$@TC*|@T;t@Sm @T94@T"Tl5@T.=w@T$R@T@T[1~@To@S颴@Sʕ\[_@S @TD,@T)@T9k@SμF@SҒun@S0@T`U(@S5\ @SkB@TDJh@T 7t@T@T(3@T= &@S @TmJk@T R@S?B%@T(;G:@SvGQ@Tj@SP#4@TH_@T s@SᦩIe@T虿I@Td-M@S׶l@T$@S0@SIt1D`@T 21@SCzr@SOK7@Sv7@SmSL@Sr5O@TCf@T +@T@@SU/@Ss龧d@S(5@T78@S5u @Td Û@T<~@TL٪{@T+(r|@TH@T=t@TK`Շ@SIpa@Tve@TfE@T8UR@SO@SZ@TרX@T^@T+T@TLǍ@T} @T*@T¤sg@TL<) @TI@O@S@Ty @SڂQ0@T X@S@SbI @SG@Sl@T7`:@Twy@T3>@Sئh_@S%nJ@TJL@T5o@S۩@T:b ~@T>@T Iƪk@T3( f@S¨@SEI@SDwC@S>@TW@SމC?@SrE@S<@S5-|@T'd@S >VF@T͸@Szk@T8qe3@SbB3@T]f@TiK&,0@T+7@T4)@T,W@T &@SܳȢgE@T@U@Tg8@Tm@T>@TPy&jt@Ss@SsY5߄@Ta\@T Ҵ@S6O@S65@T 5s~h@T3+ @T|@Swzv@Tu+@S!=@T)DNd@T/V2O`6@SŘz@@S.[@T"'P@T ͙@T rM@TI @T4ad@TZp@-@Tf ,@TҎu@Sg@SFH@T e@S @SpXZ@TKI@S=@S/(@T@T Ux~@T2ĥ@TBpS@S-z{@T, !C@Tk@T}c@S#-K@Sz@T(@TG#@S䙲-Z@T0 @SBR@T6d@T""@T_m.@T+l~:@T[,@T Wk@S* @SfF@SCZo@T Yۅ@T)ᙬ@S|[@T*@TތG@S|?@S@S$?4M@SZ(|x@S*N%@T6 0ms@T"M @S0@T6^G@Tఢg@SV8l@SrYd@S/@T/ @T !e@T^r@S@T0jb@Tx$D@T"0]@TJD!$@T vW@THG@S3@T@T2pU@T V~@T'3v@ThQ@S_@T-8@T*3B@TՄ@T7@Sw╴@T2Û@S겨@S# ,@T8]=@Sʧ5k @T0MU?@S@SRbI@S=E|k@T;?pH@T@T@S=@S)&AEY@TcFI@S%X@SqoC@TG+*@S @S^@Sl6@Spض@TF?Я*@T9CT@SP@T)ot]@S 矦@Ty%@S9: @ST~@T @T@SV6@S;-@T@T<,@T$@TZ37@Siq@SPd#@T2@T i@T+&@!@TFf|@TE%@TUFX@S_l@S堠@SP%@S:4r@SٞU@T)dCC~@T׸[@SjrO@T@S+}ܹ@TX)@T%@Sh>@T1՞@S`@SIb@Sz@T"@SE@S'>@Tîi @Tچ@T)LS@Tk{b@T l@SJ:[%@TVȇ@T&@St{@TLbiJ@T(k}@T3?Y@Sp8T @T+I4@T`ǹ@S^sy@T9!@S7?@T8@T}"@S@Sr@Tg8@S\&@T&Y@T"[jJ@SU"g@Sy@T GE,@T Džp@T6S @T.d@T)7t@T3"^@TF@SܮY@TX&@TT- dim @@@S@K@R@O@U@@K@V@U@@I@U@@K@U@S@G@T@J@O@U@J@S@I@G@S@Q@@R@T@K@S@S@S@R@@S@@P@T@R@J@H@T@M@V@T@M@U@M@R@@T@P@J@T@M@R@V@K@T@K@T@Q@P@S@@T@@M@U@H@T@N@W@S@S@P@@R@@T@L@S@Q@O@S@N@S@S@T@R@T@Q@P@@R@@V@S@T@H@U@N@V@I@S@O@R@U@R@I@T@O@V@H@T@T@@G@U@J@U@T@@R@M@V@@S@M@T@@I@U@@M@U@J@Q@@S@@L@V@T@@F@T@K@V@F@T@L@V@@G@T@I@U@J@S@T@@N@T@S@@S@M@T@H@X@J@S@@S@@P@@T@@Q@Q@T@@W@@J@V@@F@U@M@S@P@S@O@V@J@W@@H@L@S@@Q@T@@T@@R@@I@U@@R@K@S@@T@T@I@S@U@G@T@K@T@@L@S@U@S@@T@@U@S@@I@S@N@T@V@J@S@G@S@@U@H@T@Q@T@H@R@P@S@J@W@K@S@I@T@K@R@S@S@S@S@Q@S@Q@K@U@I@V@K@K@S@@S@P@R@G@U@O@U@@T@L@T@P@R@K@T@R@@R@@V@T@Q@T@L@S@S@U@M@T@E@N@R@T@@G@V@G@R r3v ?h Tk{0a E!8v"At6M(:*N Qo_VW)JR|;7ѫ([%EzImRkʇ{U,p/$底F 2mll(H@+^vI\X] ts5eBT8WWMjhWHnI58*^@P1!3xЙo5+Doڢv\fLZ<*PLʍj;ZfWVhrܬv*XÁ?oZdyp u%P?Is/Ɗ TPsR\\vΞ-Bi"ڭ[֏FŤN.|hM]+[+j J)xO2lnavԸ9yńG"G('~ qQ<ྋjCFDXs1_: jƒ``s|Ҭ!"F3H=2bz@Ĵw*Hr kVz TU eG` »/('Js<<9r0$5K8Qt&3ɳHHBxSg)t `Ռ<+`~Yϫۗ\GTg#)ĖMX1z+Ѽ˺T}t# QfBPhLpO+ tUl?qwy61` Ly RZǂf_BZ5<^țr+&p*$6d#8$lEj pN{>3xJ -.\ ,1SbtMWaE3 흤ddU혎'C_jI"<^co2k\K\jsɢ^' Ft*_.o;ҽU*MB]Sqcd!g-1v0}4vxuhF4i U&2]ThP_[xQmo% @\v7$,qk@ےZLp36TbGD?A5 Ue2997"c5%Jof(K^U꼧Aq>,g}X` x indx { <- a Mclust [ minG@ maxG@ if <  $ pro?? return c p  pro? mu1  mu? mu2  mu@ -?  pro?  mu@  mu? ordinary boot data faithful waiting statistic fit R@@ i?????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n?n t0 t R data seed statistic sim call stype strata weights class bootHSAUR3/inst/LaTeXBibTeX/0000755000176200001440000000000013302741062014205 5ustar liggesusersHSAUR3/inst/LaTeXBibTeX/setup.Rnw0000644000176200001440000000316212627003544016044 0ustar liggesusers \SweaveOpts{prefix.string=figures/HSAUR,eps=FALSE,keep.source=TRUE} <>= rm(list = ls()) s <- search()[-1] s <- s[-match(c("package:base", "package:stats", "package:graphics", "package:grDevices", "package:utils", "package:datasets", "package:methods", "Autoloads"), s)] if (length(s) > 0) sapply(s, detach, character.only = TRUE) if (!file.exists("tables")) dir.create("tables") if (!file.exists("figures")) dir.create("figures") set.seed(290875) options(prompt = "R> ", continue = "+ ", width = 63, # digits = 4, show.signif.stars = FALSE, SweaveHooks = list(leftpar = function() par(mai = par("mai") * c(1, 1.05, 1, 1)), bigleftpar = function() par(mai = par("mai") * c(1, 1.7, 1, 1)))) HSAURpkg <- require("HSAUR3") if (!HSAURpkg) stop("cannot load package ", sQuote("HSAUR3")) rm(HSAURpkg) ### hm, R-2.4.0 --vanilla seems to need this a <- Sys.setlocale("LC_ALL", "C") ### book <- TRUE refs <- cbind(c("AItR", "DAGD", "SI", "CI", "ANOVA", "MLR", "GLM", "DE", "RP", "GAM", "SA", "ALDI", "ALDII", "SIMC", "MA", "PCA", "MDS", "CA"), 1:18) ch <- function(x) { ch <- refs[which(refs[,1] == x),] if (book) { return(paste("Chapter~\\\\ref{", ch[1], "}", sep = "")) } else { return(paste("Chapter~", ch[2], sep = "")) } } if (file.exists("deparse.R")) source("deparse.R") setHook(packageEvent("lattice", "attach"), function(...) { lattice.options(default.theme = function() standard.theme("pdf", color = FALSE)) }) @ \pagestyle{headings} HSAUR3/inst/LaTeXBibTeX/HSAUR.bib0000644000176200001440000023027112357775377015603 0ustar liggesusers> library(utils); library(HSAUR2); HSAUR2:::pkgyears("tmp") > library(utils); library(HSAUR2); HSAUR2:::pkgversions("HSAUR.in") @manual{HSAUR:R, title = {R: A Language and Environment for Statistical Computing}, author = {{R Development Core Team}}, organization = {R Foundation for Statistical Computing}, address = {Vienna, Austria}, year = {2014}, url = {http://www.R-project.org}, } @manual{HSAUR:AItR, title = {An Introduction to R}, author = {{R Development Core Team}}, organization = {R Foundation for Statistical Computing}, address = {Vienna, Austria}, year = {2014}, url = {http://www.R-project.org}, } @manual{HSAUR:RDIE, title = {R Data Import/Export}, author = {{R Development Core Team}}, organization = {R Foundation for Statistical Computing}, address = {Vienna, Austria}, year = {2014}, url = {http://www.R-project.org}, } @manual{HSAUR:RIA, title = {R Installation and Administration}, author = {{R Development Core Team}}, organization = {R Foundation for Statistical Computing}, address = {Vienna, Austria}, year = {2014}, url = {http://www.R-project.org}, } @manual{HSAUR:WRE, title = {Writing R Extensions}, author = {{R Development Core Team}}, organization = {R Foundation for Statistical Computing}, address = {Vienna, Austria}, year = {2014}, url = {http://www.R-project.org}, } @book{HSAUR:Ripley1996, key = {216}, author = {Ripley, Brian D.}, title = {{Pattern} Recognition and Neural Networks}, year = {1996}, publisher = {Cambridge University Press}, address = {Cambridge, UK}, url = {http://www.stats.ox.ac.uk/pub/PRNN/}, pages = 403 } %% Chapter: Analysing Longitudinal Data @article{HSAUR:WatkinsWilliams1998, author = {E. Watkins and R. Williams}, title = {The efficacy of cognitive behavioural therapy}, journal = {Journal of Counseling and Clinical Psychology}, year = 1998, volume = 27, pages = {31-39} } %% et al? @article{HSAUR:Proudfootetal2003, author = {J. Proudfoot and D. Goldberg and A. Mann and B. S. Everitt and I. Marks and J. A. Gray}, title = {Computerized, interactive, multimedia cognitive-behavioural program for anxiety and depression in general practice}, journal = {Psychological Medicine}, year = 2003, volume = 33, number = 2, pages = {217-227} } %% edition? @manual{HSAUR:Becketal1996, author = {A. Beck and R. Steer and G. Brown}, title = {BDI-II Manual}, year = 1996, edition = {2nd}, organization = {The Psychological Corporation, San Antonio} } @book{HSAUR:Diggleetal2003, author = {P. J. Diggle and P. J. Heagerty and K. Y. Liang and S. L. Zeger}, title = {Analysis of Longitudinal Data}, year = {2003}, publisher = {Oxford University Press}, address = {Oxford, UK} } @book{HSAUR:Longford1993, author = {N. T. Longford}, title = {Random Coefficient Models}, year = {1993}, publisher = {Oxford University Press}, address = {Oxford, UK} } @article{HSAUR:Rubin1976, author = {D. Rubin}, title = {Inference and missing data}, journal = {Biometrika}, year = 1976, volume = 63, pages = {581-592} } @article{HSAUR:MurrayFindlay1988, author = {G. D. Murray and J. G. Findlay}, title = {Correcting for bias caused by dropouts in hypertension trials}, journal = {Statistics in Medicine}, year = 1988, volume = 7, pages = {941-946} } @article{HSAUR:DiggleKenward1994, author = {P. J. Diggle and M. G. Kenward}, title = {Informative dropout in longitudinal data analysis}, journal = {Journal of the Royal Statistical Society, Series C}, year = 1994, volume = 43, pages = {49-93} } @article{HSAUR:Carpenteretal2002, author = {J. Carpenter and S. Pocock and C. J. Lamm}, title = {Coping with missing data in clinical trials: {A} model-based approach applied to asthma trials}, journal = {Statistics in Medicine}, year = 2002, volume = {21}, pages = {1043-1066} } @incollection{HSAUR:Diggle1998, author = {P. J. Diggle}, title = {Dealing with missing values in longitudinal studies}, year = 1998, booktitle = {Statistical Analysis of Medical Data}, editor = {B. S. Everitt and G. Dunn}, publisher = {Arnold}, address = {London, UK} } @book{HSAUR:Everitt2002, author = {B. S. Everitt}, title = {Modern Medical Statistics}, year = 2002, publisher = {Arnold}, address = {London, UK} } @article{HSAUR:Heitjan1997, author = {D. F. Heitjan}, title = {Annotation: {W}hat can be done about missing data? {A}pproaches to imputation}, journal = {American Journal of Public Health}, year = 1997, volume = 87, pages = {548-550} } @book{HSAUR:MayorFrei2003, author = {M. Mayor and P. Frei}, title = {New Worlds in the Cosmos: {T}he Discovery of Exoplanets}, publisher = {Cambridge University Press}, year = 2003, address = {Cambridge, UK} } %%% check volume and pages @article{HSAUR:MayorQueloz1995, author = {M. Mayor and D. Queloz}, title = {A {J}upiter-mass companion to a solar-type star}, journal = {Nature}, year = 1995, volume = {378}, pages = {355} } @article{HSAUR:EverittBullmore1999, author = {B. S. Everitt and E. T. Bullmore}, title = {Mixture model mapping of brain activation in functional magnetic resonance images}, journal = {Human Brain Mapping}, year = 1999, volume = 7, pages = {1-14} } @book{HSAUR:Everittetal2001, author = {B. S. Everitt and S. Landau and M. Leese}, title = {Cluster Analysis}, publisher = {Arnold}, year = 2001, edition = {4th}, address = {London, UK} } @book{HSAUR:Gordon1999, author = {A. Gordon}, title = {Classification}, year = 1999, edition = {2nd}, publisher = {Chapman \& Hall/CRC}, address = {Boca Raton, Florida, USA} } @article{HSAUR:ScottSymons1971, author = {A. J. Scott and M. J. Symons}, title = {Clustering methods based on likelihood ratio criteria}, journal = {Biometrics}, year = 1971, volume = 27, pages = {387-398} } @article{HSAUR:BanfieldRaftery1993, author = {J. D. Banfield and A. E. Raftery}, title = {Model-based {G}aussian and non-{G}aussian clustering}, year = 1993, journal = {Biometrics}, volume = 49, pages = {803-821} } @article{HSAUR:FraleyRaftery1999, author = {G. Fraley and A. E. Raftery}, title = {{MCLUST: S}oftware for model-based cluster analysis}, journal = {Journal of Classification}, year = 1999, volume = 16, pages = {297-306} } @article{HSAUR:FriedmanRubin1967, author = {H. P. Friedman and J. Rubin}, title = {On some invariant criteria for grouping data}, journal = {Journal of the American Statistical Association}, year = 1967, volume = 62, pages = {1159-1178} } @article{HSAUR:Marriott1982, author = {F. H. C. Marriott}, title = {Optimization methods of cluster analysis}, journal = {Biometrika}, year = 1982, volume = 69, pages = {417-421} } @article{HSAUR:Dempsteretal1977, author = {A. P. Dempster and N. M. Laird and D. B. Rubin}, title = {Maximum likelihood from incomplete data via the {EM} algorithm {(C/R: p22-37)}}, journal = {Journal of the Royal Statistical Society, Series B}, year = 1977, volume = 39, pages = {1-22} } @article{HSAUR:DubesJain1979, author = {R. Dubes and A. K. Jain}, title = {Validity studies in clustering methodologies}, journal = {Pattern Recognition}, year = 1979, volume = 8, pages = {247-260} } @article{HSAUR:Tubbetal1980, author = {A. Tubb and N. J. Parker and G. Nickless}, title = {The analysis of {Romano-British} pottery by atomic absorption spectrophotometry}, journal = {Archaeometry}, year = 1980, volume = 22, pages = {153-171} } @article{HSAUR:Alonetal1999, author = {U. Alon and N. Barkai and D. A. Notternam and K. Gish and S. Ybarra and D. Mack and A. J. Levine}, title = {Broad patterns of gene expressions revealed by clustering analysis of tumour and normal colon tissues probed by oligonucleotide arrays}, journal = {Cell Biology}, year = 1999, volume = 99, pages = {6754-6760} } @article{HSAUR:Woodleyetal1977, author = {W. L. Woodley and J. Simpson and R. Biondini and J. Berkeley}, title = {Rainfall results 1970-75: {F}lorida area cumulus experiment}, year = {1977}, journal = {Science}, volume = {195}, pages = {735-742} } @book{HSAUR:EfronTibshirani1993, author = {B. Efron and R. J. Tibshirani}, title = {An Introduction to the Bootstrap}, year = {1993}, publisher = {Chapman \& Hall/CRC}, address = {London, UK} } @book{HSAUR:CookWeisberg1982, author = {R. D. Cook and S. Weisberg}, title = {Residuals and Influence in Regression}, year = {1982}, publisher = {Chapman \& Hall/CRC}, address = {London, UK} } @book{HSAUR:VenablesRipley2002, author = {William N. Venables and Brian D. Ripley}, title = {Modern Applied Statistics with {S}}, edition = {4th}, publisher = {Springer-Verlag}, address = {New York, USA}, year = 2002, note = {{ISBN} 0-387-95457-0}, url = {http://www.stats.ox.ac.uk/pub/MASS4/} } @book{HSAUR:McLachlanPeel2000, author = {G. McLachlan and D. Peel}, title = {Finite Mixture Models}, year = 2000, publisher = {John Wiley \& Sons}, address = {New York, USA} } @article{HSAUR:Pearson1894, author = {Karl Pearson}, title = {Contributions to the mathematical theory of evolution}, year = 1894, journal = {Philosophical Transactions A}, volume = 185, pages = {71-110} } @book{HSAUR:Scott1992, author = {D. W. Scott}, title = {Multivariate Density Estimation}, year = 1992, publisher = {John Wiley \& Sons}, address = {New York, USA} } @book{HSAUR:Silverman1986, author = {B. Silverman}, title = {Density Estimation}, year = 1986, publisher = {Chapman \& Hall/CRC}, address = {London, UK} } @book{HSAUR:Simonoff1996, author = {J. S. Simonoff}, title = {Smoothing Methods in Statistics}, year = 1996, publisher = {Springer-Verlag}, address = {New York, USA} } @article{HSAUR:VanismaGreve1972, author = {F. Vanisma and J. P. {De Greve}}, title = {Close binary systems before and after mass transfer}, journal = {Astrophysics and Space Science}, year = 1972, volume = 87, pages = {377-401} } @book{HSAUR:WandJones1995, author = {M. P. Wand and M. C. Jones}, title = {Kernel Smoothing}, year = 1995, publisher = {Chapman \& Hall/CRC}, address = {London, UK} } @article{HSAUR:Wilkinson1992, author = {L. Wilkinson}, title = {Graphical displays}, journal = {Statistical Methods in Medical Research}, year = 1992, volume = 1, pages = {3-25} } %% An Introduction to R @book{HSAUR:Becker+Chambers+Wilks:1988, author = {Richard A. Becker and John M. Chambers and Allan R. Wilks}, title = {The New {S} Language}, publisher = {Chapman \& Hall}, year = 1988, address = {London, UK}, } @book{HSAUR:Chambers+Hastie:1992, author = {John M. Chambers and Trevor J. Hastie}, title = {Statistical Models in {S}}, publisher = {Chapman \& Hall}, year = 1992, address = {London, UK}, } @book{HSAUR:Chambers:1998, author = {John M. Chambers}, title = {Programming with Data}, publisher = {Springer-Verlag}, year = 1998, address = {New York, USA}, } %% Simple Inference @book{HSAUR:Agresti1996, author = {A. Agresti}, title = {An Introduction to Categorical Data Analysis}, year = 1996, publisher = {John Wiley \& Sons}, address = {New York, USA} } @book{HSAUR:Everitt1992, author = {Brian S. Everitt}, title = {The Analysis of Contingency Tables}, year = 1992, edition = {2nd}, publisher = {Chapman \& Hall/CRC}, address = {London, UK} } @article{HSAUR:Haberman1973, author = {S. J. Haberman}, title = {The analysis of residuals in cross-classified tables}, journal = {Biometrics}, year = 1973, volume = 29, pages = {205-220} } @book{HSAUR:Handetal1994, author = {D. J. Hand and F. Daly and A. D. Lunn and K. J. McConway and E. Ostrowski}, title = {A Handbook of Small Datasets}, year = 1994, publisher = {Chapman \& Hall/CRC}, address = {London, UK} } @article{HSAUR:Mann1981, author = {L. Mann}, title = {The baiting crowd in episodes of threatened suicide}, journal = {Journal of Personality and Social Psychology}, year = 1981, volume = 41, pages = {703-709} } @article{HSAUR:MehtaPatel1983, author = {Cyrus R. Mehta and Nitin R. Patel}, title = {A Network Algorithm for Performing {F}isher's Exact Test in $r \times c $ Contingency Tables}, journal = {Journal of the American Statistical Association}, pages = {427-434}, year = {1983}, month = {June}, volume = {78}, number = {382} } @book{HSAUR:Fisher1935, author = {R. A. Fisher}, title = {The Design of Experiments}, year = 1935, publisher = {Oliver and Boyd}, address = {Edinburgh, UK} } @article{HSAUR:Pitman1937, author = {E. J. G. Pitman}, title = {Significance tests which may be applied to samples from any populations}, journal = {Biometrika}, year = 1937, volume = 29, pages = {322-335} } @book{HSAUR:Barlowetal1972, author = {R. E. Barlow and D. J. Bartholomew and J. M. Bremner and H. D. Brunk}, title = {Statistical Inference under Order Restrictions}, year = 1972, publisher = {John Wiley \& Sons}, address = {New York, USA} } @article{HSAUR:Corbetetal1970, author = {G. B. Corbet and J. Cummins and S. R. Hedges and W. J. Krzanowski}, title = {The taxonomic structure of {B}ritish water voles, genus \textit{Arvicola}}, year = 1970, journal = {Journal of Zoology}, volume = 61, pages = {301-316} } @book{HSAUR:EverittRabeHesketh1997, author = {B. S. Everitt and S. Rabe-Hesketh}, title = {The Analysis of Proximity Data}, year = 1997, publisher = {Arnold}, address = {London, UK} } @book{HSAUR:EverittRabeHesketh2001, author = {B. S. Everitt and S. Rabe-Hesketh}, title = {Analysing Medical Data Using {S-Plus}}, year = 2001, publisher = {Springer-Verlag}, address = {New York, USA} } @book{HSAUR:SkrondalRabeHesketh2004, author = {A. Skrondal and S. Rabe-Hesketh}, year = 2004, title = {Generalized Latent Variable Modeling: {M}ultilevel, Longitudinal and Structural Equation Models}, publisher = {Chapman \& Hall/CRC}, address = {Boca Raton, Florida, USA} } @article{HSAUR:Kruskal1964a, author = {Joseph. B. Kruskal}, title = {Multidimensional scaling by optimizing goodness-of-fit to a nonmetric hypothesis}, journal = {Psychometrika}, year = 1964, volume = 29, pages = {1-27} } @article{HSAUR:Kruskal1964b, author = {Joseph B. Kruskal}, title = {Nonmetric multidimensional scaling: {A} numerical method}, journal = {Psychometrika}, year = 1964, volume = 29, pages = {115-129} } @book{HSAUR:Mardiaetal1979, author = {K. V. Mardia and J. T. Kent and J. M. Bibby}, title = {Multivariate Analysis}, year = 1979, publisher = {Academic Press}, address = {London, UK} } @book{HSAUR:Romesburg1984, author = {H. C. Romesburg}, title = {Cluster Analysis for Researchers}, year = 1984, publisher = {Lifetime Learning Publications}, address = {Belmont, CA} } @article{HSAUR:Shepard1962a, author = {Roger N. Shepard}, title = {The analysis of proximities: {M}ultidimensional scaling with unknown distance function {Part I}}, journal = {Psychometrika}, year = 1962, volume = 27, pages = {125-140} } @article{HSAUR:Shepard1962b, author = {Roger N. Shepard}, title = {The analysis of proximities: {M}ultidimensional scaling with unknown distance function {Part II}}, journal = {Psychometrika}, volume = 27, year = 1962, pages = {219-246} } @article{HSAUR:Sibson1979, author = {R. Sibson}, title = {Studies in the robustness of multidimensional scaling. {P}erturbational analysis of classical scaling}, journal = {Journal of the Royal Statistical Society, Series B}, volume = 41, year = 1979, pages = {217-229} } @article{HSAUR:YoungHouseholder1938, author = {G. Young and A. S. Householder}, title = {Discussion of a set of points in terms of their mutual distances}, year = 1938, journal = {Psychometrika}, volume = 3, pages = {19-22} } ### OUP, New York??? @book{HSAUR:Petitti2000, author = {D. B. Petitti}, title = {Meta-Analysis, Decision Analysis and Cost-Effectiveness Analysis}, year = 2000, publisher = {Oxford University Press}, address = {New York, USA} } @article{HSAUR:DeMets1987, author = {D. L. DeMets}, title = {Methods for combining randomized clinical trials: strengths and limitations}, journal = {Statistics in Medicine}, year = 1987, volume = 6, pages = {341-350} } @article{HSAUR:Bailey1987, author = {K. R. Bailey}, title = {Inter-study differences: how should they influence the interpretation of results?}, journal = {Statistics in Medicine}, year = 1987, volume = 6, pages = {351-360} } @article{HSAUR:SuttonAbrams2001, author = {A. J. Sutton and K. R. Abrams}, title = {Bayesian methods in meta-analysis and evidence synthesis}, year = 2001, journal = {Statistical Methods in Medical Research}, volume = 10, pages = {277-303} } @book{HSAUR:Suttonetal2000, author = {A. J. Sutton and K. R. Abrams and D. R. Jones and T. A. Sheldon}, title = {Methods for Meta-Analysis in Medical Research}, year = 2000, publisher = {John Wiley \& Sons}, address = {Chichester, UK} } @article{HSAUR:Woolf1955, author = {B. Woolf}, title = {On estimating the relationship between blood groups and disease}, journal = {Annals of Human Genetics}, year = 1955, volume = 19, pages = {251-253} } @article{HSAUR:Sterlin1959, author = {T. D. Sterlin}, title = {Publication decisions and their possible effects on inferences drawn from tests of significance-or vice versa}, year = 1959, journal = {Journal of the American Statistical Association}, volume = 54, pages = {30-34} } @article{HSAUR:Greenwald1975, author = {A. G. Greenwald}, title = {Consequences of prejudice against the null hypothesis}, year = 1975, journal = {Psychological Bulletin}, volume = {82}, number = 1, pages = {1-20} } @article{HSAUR:Smith1980, author = {M. L. Smith}, title = {Publication bias and meta-analysis}, year = 1980, journal = {Evaluating Education}, volume = 4, pages = {22-93} } @article{HSAUR:Easterbrooketal1991, author = {P. J. Easterbrook and J. A. Berlin and R. Gopalan and D. R. Matthews}, title = {Publication bias in research}, year = 1991, journal = {Lancet}, volume = 337, pages = {867-872} } @article{HSAUR:DuvalTweedie2000, author = {S. Duval and R. L. Tweedie}, title = {A nonparametric `trim and fill' method of accounting for publication bias in meta-analysis}, year = 2000, journal = {Journal of the American Statistical Association}, volume = 95, pages = {89-98} } @article{HSAUR:Oakes1993, author = {M. Oakes}, title = {The logic and role of meta-analysis in clinical research}, journal = {Statistical Methods in Medical Research}, year = 1993, volume = 2, pages = {147-160} } @incollection{HSAUR:Silagy2003, author = {C. Silagy}, title = {Nicotine replacement therapy for smoking cessation {(Cochrane Review)}}, year = {2003}, booktitle = {The Cochrane Library}, publisher = {John Wiley \& Sons}, addess = {Chichester}, note = {{Issue 4}}, } @book{HSAUR:Collett2003, author = {D. Collett}, title = {Modelling Binary Data}, year = 2003, publisher = {Chapman \& Hall/CRC}, address = {London, UK}, edition = {2nd} } @article{HSAUR:CollettJemain1985, author = {D. Collett and A. A. Jemain}, title = {Residuals, outliers and influential observations in regression analysis}, journal = {Sains Malaysiana}, year = 1985, volume = 4, pages = {493-511} } @incollection{HSAUR:Cook1998, author = {R. J. Cook}, title = {Generalized linear model}, booktitle = {Encyclopedia of Biostatistics}, year = 1998, publisher = {John Wiley \& Sons}, address = {Chichester, UK}, editor = {P. Armitage and T. Colton} } @book{HSAUR:Everitt2001, author = {B. S. Everitt}, title = {Statistics for Psychologists}, year = 2001, publisher = {Lawrence Erlbaum}, address = {Mahwah, New Jersey, USA} } @article{HSAUR:Giardielloetal1993, author = {F. M. Giardiello and S. R. Hamilton and A. J. Krush and S. Piantadosi and L. M. Hylind and P. Celano and S. V. Booker and C. R. Robinson and G. J. A. Offerhaus}, title = {Treatment of colonic and rectal adenomas with sulindac in familial adenomatous polyposis}, year = 1993, journal = {New England Journal of Medicine}, volume = 328, number = 18, pages = {1313-1316} } @article{HSAUR:GreenwoodYule1920, author = {M. Greenwood and G. U. Yule}, title = {An inquiry into the nature of frequency distribution of multiple happenings with particular reference of multiple attacks of disease or of repeated accidents}, year = 1920, journal = {Journal of the Royal Statistical Society}, volume = 83, pages = {255-279} } @book{HSAUR:McCullaghNelder1989, author = {P. McCullagh and J. A. Nelder}, title = {Generalized Linear Models}, year = 1989, publisher = {Chapman \& Hall/CRC}, address = {London, UK} } @article{HSAUR:NelderWedderburn1972, author = {J. A. Nelder and R. W. M. Wedderburn}, title = {Generalized linear models}, year = 1972, journal = {Journal of the Royal Statistical Society, Series A}, volume = 135, pages = {370-384} } @book{HSAUR:Piantadosi1997, author = {S. Piantadosi}, title = {Clinical Trials: A Methodologic Perspective}, year = 1997, publisher = {John Wiley \& Sons}, address = {New York, USA} } @article{HSAUR:Davis1991, author = {C. S. Davis}, title = {Semi-parametric and non-parametric methods for the analysis of repeated measurements with applications to clinical trials}, year = 1991, journal = {Statistics in Medicine}, volume = 10, pages = {1959-1980} } @article{HSAUR:ThallVail1990, author = {P. F. Thall and S. C. Vail}, title = {Some covariance models for longitudinal count data with overdispersion}, year = 1990, journal = {Biometrics}, volume = 46, pages = {657-671} } @book{HSAUR:EverittPickles2000, author = {B. S. Everitt and A. Pickles}, title = {Statistical Aspects of the Design and Analysis of Clinical Trials}, year = 2000, publisher = {Imperial College Press}, address = {London, UK} } @article{HSAUR:LiangZeger1986, author = {K. Liang and S. L. Zeger}, title = {Longitudinal data analysis using generalized linear models}, year = 1986, journal = {Biometrika}, volume = 73, pages = {13-22} } @article{HSAUR:ZegerLiang1986, author = {S. L. Zeger and K. Y. Liang}, title = {Longitudinal data analysis for discrete and continuous outcomes}, year = 1986, journal = {Biometrics}, volume = 42, number = 1, pages = {121-130} } @article{HSAUR:Lanzaetal1989, author = {F. L. Lanza and D. Fakouhi and A. Rubin and R. E. Davis and M. F. Rack and C. Nissen and S. Geis}, title = {A double-blind placebo-controlled comparison of the efficacy and safety of 50, 100, and 200 micrograms of misoprostol {QID} in the prevention of {I}buprofen-induced gastric and duodenal mucosal lesions and symptoms}, journal = {American Journal of Gastroenterology}, volume = {84}, number = {6}, pages = {633-636}, year = 1989 } @article{HSAUR:Lanzaetal1988a, author = {F. L. Lanza and R. L. Aspinall and E. A. Swabb and R. E. Davis and M. F. Rack and A. Rubin}, title = {Double-blind, placebo-controlled endoscopic comparison of the mucosal protective effects of misoprostol versus cimetidine on tolmetin-induced mucosal injury to the stomach and duodenum}, journal = {Gastroenterology}, volume = {95}, number = {2}, pages = {289-294}, year = 1988 } @article{HSAUR:Lanzaetal1988b, author = {F. L. Lanza and K. Peace and L. Gustitus and M. F. Rack and B. Dickson}, title = {A blinded endoscopic comparative study of misoprostol versus sucralfate and placebo in the prevention of aspirin-induced gastric and duodenal ulceration}, journal = {American Journal of Gastroenterology}, volume = {83}, number = {2}, pages = {143-146}, year = 1988 } @article{HSAUR:Lanza1987, author = {F. L. Lanza}, title = {A double-blind study of prophylactic effect of misoprostol on lesions of gastric and duodenal mucosa induced by oral administration of tolmetin in healthy subjects}, journal = {British Journal of Clinical Practice}, volume = 40, month = {May suppl}, pages = {91-101}, year = 1987, } @article{HSAUR:WhiteheadJones1994, author = {Anne Whitehead and Nicola M. B. Jones}, title = {A meta-analysis of clinical trials involving different classifications of response into ordered categories}, journal = {Statistics in Medicine}, volume = {13}, pages = {2503-2515}, year = 1994, } @article{HSAUR:Carlinetal2000, author = {John B. Carlin and Louise M. Ryan and Elizabeth A. Harvey and Lewis B. Holmes}, title = {Anticonvulsant Teratogenesis 4: Inter-Rater Agreement in Assessing Minor Physical Features Related to Anticonvulsant Therapy}, journal = {Teratology}, volume = 62, pages = {406-412}, year = 2000 } @book{HSAUR:Edgington1987, author = {Eugene S. Edgington}, title = {Randomization Tests}, publisher = {Marcel Dekker}, year = 1987, address = {New York, USA} } @techreport{HSAUR:TherneauAtkinson1997, author = {Terry M. Therneau and Elizabeth J. Atkinson}, title = {An Introduction to Recursive Partitioning using the rpart Routine}, institution = {Section of Biostatistics, Mayo Clinic}, year = {1997}, address = {Rochester, USA}, number = {61}, url = {http://www.mayo.edu/hsr/techrpt/61.pdf} } @book{HSAUR:Pesarin2001, author = {Fortunato Pesarin}, title = {Multivariate Permutation Tests: With Applications to Biostatistics}, year = {2001}, publisher = {John Wiley \& Sons}, address = {Chichester, UK} } @book{HSAUR:Breimanetal1984, author = {L. Breiman and J. H. Friedman and R. A. Olshen and C. J. Stone}, title = {Classification and Regression Trees}, year = {1984}, publisher = {Wadsworth}, address = {California, USA} } @article{HSAUR:Breiman1996, author = {Leo Breiman}, title = {Bagging Predictors}, journal = {Machine Learning}, pages = {123-140}, year = {1996}, volume = {24}, number = {2} } @article{HSAUR:Mardinetal2003, author = {Christian Y. Mardin and Torsten Hothorn and Andrea Peters and Anselm G J{\"u}nemann and Nhung X Nguyen and Berthold Lausen}, title = {New Glaucoma Classification Method based on standard {HRT} parameters by bagging classification trees}, journal = {Journal of Glaucoma}, pages = {340-346}, year = {2003}, volume = {12}, number = {4} } @article{HSAUR:Breiman2001a, author = {Leo Breiman}, title = {Statistical Modeling: The Two Cultures}, journal = {Statistical Science}, pages = {199-231}, year = {2001}, volume = {16}, number = {3}, note = {with discussion} } @article{HSAUR:Breiman2001b, author = {Leo Breiman}, title = {Random Forests}, journal = {Machine Learning}, pages = {5-32}, year = {2001}, volume = {45}, number = {1} } @article{HSAUR:GarczarekWeihs2003, author = {Ursula Maria Garczarek and Claus Weihs}, title = {Standardizing the comparison of partitions}, journal = {Computational Statistics}, pages = {143-162}, year = {2003}, volume = {18}, number = {1} } @article{HSAUR:Murthy1998, author = {Sreerama K. Murthy}, title = {Automatic Construction of Decision Trees from Data: A Multi-Disciplinary Survey}, journal = {Data Mining and Knowledge Discovery}, pages = {345-389}, year = {1998}, volume = {2} } @incollection{HSAUR:Morrison2005, author = {D. F. Morrison}, title = {Multivariate analysis of variance}, booktitle = {Encyclopedia of Biostatistics}, year = 2005, publisher = {John Wiley \& Sons}, address = {Chichester, UK}, editor = {P. Armitage and T. Colton}, edition = {2nd} } @article{HSAUR:Aitkin1978, author = {M. Aitkin}, title = {The analysis of unbalanced cross-classifications}, journal = {Journal of the Royal Statistical Society, Series A}, year = 1978, volume = 141, pages = {195-223}, note = {with discussion} } @article{HSAUR:Nelder1977, author = {J. A. Nelder}, title = {A reformulation of linear models}, journal = {Journal of the Royal Statistical Society, Series A}, year = 1977, volume = 140, pages = {48-76}, note = {with commentary} } @book{HSAUR:Scheffe1959, author = {H. Scheffe}, title = {The Analysis of Variance}, year = 1959, publisher = {John Wiley \& Sons}, address = {New York, USA} } @book{HSAUR:Stevens2001, author = {J. Stevens}, title = {Applied Multivariate Statistics for the Social Sciences}, year = 2001, publisher = {Lawrence Erlbaum}, address = {Mahwah, New Jersey, USA}, edition = {4th} } @phdthesis{HSAUR:Quine1975, author = {S. Quine}, title = {Achievement Orientation of Aboriginal and White Adolescents}, year = {1975}, address = {Canberra, Australia}, school = {Australian National University}, type = {Doctoral {D}issertation} } @book{HSAUR:Timm2002, author = {N. H. Timm}, title = {Applied Multivariate Analysis}, year = 2002, publisher = {Springer-Verlag}, address = {New York, USA}, } @book{HSAUR:TherneauGrambsch2000, author = {Terry M. Therneau and Patricia M. Grambsch}, title = {Modeling Survival Data: {E}xtending the Cox Model}, publisher = {Springer-Verlag}, year = {2000}, address = {New York, USA} } @book{HSAUR:Agresti2002, author = {Alan Agresti}, title = {Categorical Data Analysis}, year = 2002, edition = {2nd}, publisher = {John Wiley \& Sons}, address = {Hoboken, New Jersey, USA} } @incollection{HSAUR:Tukey1953, author = {John W. Tukey}, title = {The Problem of Multiple Comparisons (Unpublished Manuscript)}, year = 1953, booktitle = {The Collected Works of John W. Tukey VIII. Multiple Comparisons: 1948-1983}, publisher = {Chapman \& Hall}, address = {New York, USA} } @book{HSAUR:HochbergTamhane1987, author = {Yosef Hochberg and Ajit C. Tamhane}, title = {Multiple Comparison Procedures}, year = 1987, publisher = {John Wiley \& Sons}, address = {New York, USA} } @book{HSAUR:Everitt1996, author = {Brian S. Everitt}, title = {Making Sense of Statistics in Psychology: A Second-Level Course}, year = 1996, publisher = {Oxford University Press}, address = {Oxford, UK} } @book{HSAUR:Searle1971, author = {S. R. Searle}, title = {Linear Models}, year = 1971, publisher = {John Wiley \& Sons}, address = {New York, USA} } @book{HSAUR:Kraepelin1919, author = {Emil Kraepelin}, title = {Dementia Praecox and Paraphrenia}, year = 1919, publisher = {Livingstone}, address = {Edinburgh, UK} } @article{HSAUR:FraleyRaftery2002, author = {C. Fraley and A. E. Raftery}, title = {Model-based clustering, discriminant analysis, and density estimation}, journal = {Journal of the American Statistical Association}, year = 2002, volume = {97}, pages = {611-631} } @article{HSAUR:Leisch2004, title = {{FlexMix}: A general framework for finite mixture models and latent class regression in {\rR{}}}, author = {Friedrich Leisch}, journal = {Journal of Statistical Software}, year = {2004}, volume = {11}, number = {8}, url = {http://www.jstatsoft.org/v11/i08/}, } @incollection{HSAUR:Buehlmann2004, author = {Peter B{\"uh}lmann}, editor = {James E. Gentle and Wolfgang H{\"a}rdle and Yuichi Mori}, booktitle = {Handbook of Computational Statistics}, title = {Bagging, Boosting and Ensemble Methods}, pages = {877-907}, year = {2004}, publisher = {Springer-Verlag}, address = {Berlin, Heidelberg} } @article{HSAUR:Petersetal2002, author = {Andrea Peters and Torsten Hothorn and Berthold Lausen}, title = {ipred: Improved Predictors}, journal = {R News}, pages = {33--36}, year = 2002, month = {June}, volume = 2, number = 2, note = {{ISSN} 1609-3631}, url = {http://CRAN.R-project.org/doc/Rnews/} } @article{HSAUR:HarrisonRubinfeld1978, author = {D. Harrison and D. L. Rubinfeld}, title = {Hedonic prices and the demand for clean air}, journal = {Journal of Environmental Economics \& Management}, volume = 5, year = 1978, pages = {81-102} } @book{HSAUR:PinheiroBates2000, author = {Jos\'{e} C. Pinheiro and Douglas M. Bates}, title = {Mixed-Effects Models in {S} and {S-PLUS}}, publisher = {Springer-Verlag}, address = {New York, USA}, year = {2000} } @article{HSAUR:Colditzetal1994, author = {G. A. Colditz and T. F. Brewer and C. S. Berkey and M. E. Wilson and E. Burdick and H. V. Fineberg and F. Mosteller}, title = {Efficacy of {BCG} vaccine in the prevention of tuberculosis. {M}eta-analysis of the published literature}, journal = {Journal of the American Medical Association}, year = 1994, volume = 271, number = 9, pages = {698-702} } @article{HSAUR:DerSimonianLaird1986, author = {R. DerSimonian and N. Laird}, title = {Meta-analysis in clinical trials}, journal = {Controlled Clinical Trials}, year = 1986, volume = 7, number = 3, pages = {177-188} } @article{HSAUR:ChalmersLau1993, author = {T. C. Chalmers and J. Lau}, title = {Meta-analytic stimulus for changes in clinical trials}, journal = {Statistical Methods in Medical Research}, year = 1993, volume = 2, number = 2, pages = {161-172} } @book{HSAUR:EverittDunn2001, author = {Brian S. Everitt and G. Dunn}, title = {Applied Multivariate Data Analysis}, year = 2001, edition = {2nd}, publisher = {Arnold}, address = {London, UK} } @article{HSAUR:LiggesMaechler2003, title = {Scatterplot3d -- {A}n {\rR{}} Package for Visualizing Multivariate Data}, author = {Uwe Ligges and Martin M{\"a}chler}, journal = {Journal of Statistical Software}, year = {2003}, pages = {1--20}, number = {11}, volume = {8}, url = {http://www.jstatsoft.org/v08/i11}, } @article{HSAUR:Prim1957, author = {R. C. Prim}, title = {Shortest connection networks and some generalizations}, journal = {Bell System Technical Journal}, year = 1957, volume = 36, pages = {1389-1401} } @article{HSAUR:KaplanMeier1958, author = {E. L. Kaplan and P. Meier}, title = {Nonparametric estimation from incomplete observations}, journal = {Journal of the American Statistical Association}, pages = {457-481}, year = {1958}, volume = {53} } @article{HSAUR:Cox1972, author = {D. R. Cox}, title = {Regression models and life-tables}, journal = {Journal of the Royal Statistical Society, Series B}, year = 1972, volume = 34, pages = {187-202}, note = {with discussion} } @book{HSAUR:KalbfleischPrentice1980, author = {J. D. Kalbfleisch and R. L. Prentice}, title = {The Statistical Analysis of Failure Time Data}, year = 1980, publisher = {John Wiley \& Sons}, address = {New York, USA} } @article{HSAUR:Granaetal2002, author = {C. Grana and M. Chinol and C. Robertson and C. Mazzetta and M. Bartolomei and C. De Cicco and M. Fiorenza and M. Gatti and P. Caliceti and G. Paganelli1}, title = {Pretargeted adjuvant radioimmunotherapy with {Y}ttrium-90-biotin in malignant glioma patients: A pilot study}, journal = {British Journal of Cancer}, pages = {207-212}, year = {2002}, month = {January}, volume = {86}, number = {2} } @article{HSAUR:Schumacher1994, author = {M. Schumacher and G. Basert and H. Bojar and K. H\"ubner and M. Olschewski and W. Sauerbrei and C. Schmoor and C. Beyerle and {Neumann, R. L. A.} and {Rauschecker, H. F. for the German Breast Cancer Study Group}}, title = {Randomized $2\times2$ trial evaluating hormonal treatment and the duration of chemotherapy in node-positive breast cancer patients}, journal = {Journal of Clinical Oncology}, year = {1994}, volume = {12}, pages = {2086-2093} } @article{HSAUR:SauerbreiRoyston1999, author = {Willi Sauerbrei and Patrick Royston}, title = {Building multivariable prognostic and diagnostic models: Transformation of the predictors by using fractional polynomials}, journal = {Journal of the Royal Statistical Society, Series A}, pages = {71-94}, year = {1999}, volume = {162}, number = {1} } @book{HSAUR:Hartigan1975, author = {J. A. Hartigan}, title = {Clustering Algorithms}, publisher = {John Wiley \& Sons}, year = 1975, address = {New York, USA} } @book{HSAUR:Davis2002, author = {C. S. Davis}, title = {Statistical Methods for the Analysis of Repeated Measurements}, publisher = {Springer-Verlag}, year = 2002, address = {New York, USA} } @book{HSAUR:Everitt2002b, author = {B. S. Everitt}, title = {Cambridge Dictionary of Statistics in the Medical Sciences}, publisher = {Cambridge University Press}, year = 2002, address = {Cambridge, UK} } @article{HSAUR:GowerRoss1969, author = {J. C. Gower and G. J. S. Ross}, title = {Minimum spanning trees and single linkage cluster analysis}, year = 1969, journal = {Applied Statistics}, volume = 18, pages = {54-64} } @manual{HSAUR:StatXact6, key = {516}, author = {Cyrus R. Mehta and Nitin R. Patel}, title = {StatXact-6: Statistical Software for Exact Nonparametric Inference}, organization = {Cytel Software Corporation}, year = {2003}, address = {Cambridge, MA, USA} } @book{HSAUR:Miller2002, author = {Alan Miller}, title = {Subset Selection in Regression}, year = {2002}, publisher = {Chapman \& Hall}, address = {New York, USA}, edition = {2nd} } @article{HSAUR:Fleiss1993, author = {J. L. Fleiss}, title = {The statistical basis of meta-analysis}, journal = {Statistical Methods in Medical Research}, year = 1993, volume = 2, pages = {121-145} } @incollection{HSAUR:Seeber1998, author = {G. U. H. Seeber}, title = {Poisson Regression}, booktitle = {Encyclopedia of Biostatistics}, year = 1998, publisher = {John Wiley \& Sons}, address = {Chichester, UK}, editor = {P. Armitage and T. Colton} } @article{HSAUR:Bates2005, author = {Douglas Bates}, title = {Fitting Linear Mixed Models in {\rR{}}}, journal = {R News}, year = 2005, volume = 5, number = 1, pages = {27--30}, month = {May}, url = {http://CRAN.R-project.org/doc/Rnews/} } @book{HSAUR:KaufmanRousseeuw1990, author = {L. Kaufman and P. J. Rousseeuw}, title = {Finding Groups in Data: {A}n Introduction to Cluster Analysis}, year = 1990, publisher = {John Wiley \& Sons}, address = {New York, USA} } @article{HSAUR:Roeder1990, author = {K. Roeder}, title = {Density estimation with confidence sets exemplified by superclusters and voids in galaxies}, journal = {Journal of the American Statistical Association}, year = 1990, volume = {85}, pages = {617-624} } @article{HSAUR:Postmanetal1986, author = {M. Postman and J. P. Huchra and M. J. Geller}, title = {Probes of large-scale structures in the Corona Borealis region}, year = 1986, journal = {Astrophysical Journal}, volume = 92, pages = {1238-1247} } @article{HSAUR:FreemanHalton1951, author = {G. H. Freeman and J. H. Halton}, title = {Note on an exact treatment of contingency, goodness of fit and other problems of significance}, journal = {Biometrika}, year = 1951, volume = {38}, pages = {141-149} } @article{HSAUR:LeischRossini2003, author = {Friedrich Leisch and Anthony J. Rossini}, title = {Reproducible statistical research}, journal = {Chance}, year = 2003, volume = 16, number = 2, pages = {46-50} } @article{HSAUR:Gentleman2005, author = {Robert Gentleman}, title = {Reproducible Research: {A} Bioinformatics Case Study}, journal = {Statistical Applications in Genetics and Molecular Biology}, year = 2005, volume = 4, number = 1, note = {{Article 2}}, url = {http://www.bepress.com/sagmb/vol4/iss1/art2} } @inproceedings{HSAUR:Leisch2002b, author = {Friedrich Leisch}, title = {Sweave: Dynamic Generation of Statistical Reports Using Literate Data Analysis}, booktitle = {Compstat 2002 --- Proceedings in Computational Statistics}, pages = {575--580}, year = 2002, editor = {Wolfgang H{\"a}rdle and Bernd R{\"o}nz}, publisher = {Physica Verlag, Heidelberg}, note = {{ISBN} 3-7908-1517-9}, } @article{HSAUR:Leisch2003, author = {Friedrich Leisch}, title = {Sweave, {P}art {II}: Package Vignettes}, journal = {R News}, year = 2003, volume = 3, number = 2, pages = {21--24}, month = {October}, url = {http://CRAN.R-project.org/doc/Rnews/} } @article{HSAUR:Leisch2002a, author = {Friedrich Leisch}, title = {Sweave, {P}art {I}: Mixing {R} and {\LaTeX}}, journal = {R News}, year = 2002, volume = 2, number = 3, pages = {28--31}, month = {December}, url = {http://CRAN.R-project.org/doc/Rnews/} } @book{HSAUR:Murrell2005, author = {Paul Murrell}, title = {R Graphics}, year = 2005, publisher = {Chapman \& Hall/CRC}, address = {Boca Raton, Florida, USA} } @Article{HSAUR:Hothorn:2006:JCGS, key = {566}, author = {Torsten Hothorn and Kurt Hornik and Achim Zeileis}, title = {Unbiased Recursive Partitioning: A Conditional Inference Framework}, journal = {Journal of Computational and Graphical Statistics}, year = 2006, volume = 15, number = 3, pages = {651--674}, doi = {10.1198/106186006X133933}, } @Article{HSAUR:Hothorn:2006:AmStat, key = {575}, author = {Torsten Hothorn and Kurt Hornik and Mark A. van de Wiel and Achim Zeileis}, title = {A {L}ego System for Conditional Inference}, journal = {The American Statistician}, year = {2006}, volume = {60}, issue = {3}, pages = {257--263}, doi = {10.1198/000313006X118430}, } @book{HSAUR:Dalgaard2002, author = {Peter Dalgaard}, title = {Introductory Statistics with R}, year = 2002, publisher = {Springer-Verlag}, address = {New York, USA} } @article{HSAUR:Gabriel1971, author = {K. R. Gabriel}, title = {The biplot graphical display of matrices with application to principal component analysis}, year = 1971, journal = {Biometrika}, volume = {58}, pages = {453--467} } @incollection{HSAUR:Gabriel1981, author = {K. R. Gabriel}, title = {Biplot display of multivariate matrices for inspection of data and diagnosis}, booktitle = {Interpreting Multivariate Data}, editor = {V. Barnett}, year = 1981, publisher = {John Wiley \& Sons}, address = {Chichester, UK} } @book{HSAUR:GowerHand1996, author = {J. C. Gower and D. J. Hand}, title = {Biplots}, year = 1996, publisher = {Chapman \& Hall/CRC}, address = {London, UK} } @article{HSAUR:DolnicarLeisch2003, author = {Sara Dolnicar and Friedrich Leisch}, title = {Winter tourist segments in {A}ustria: Identifying stable vacation styles using bagged clustering techniques}, year = 2003, journal = {Journal of Travel Research}, volume = {41}, pages = {281--292} } @article{HSAUR:Elwoodetal1974, author = {P. C. Elwood and A. L. Cochrane and M. L. Burr and P. M. Sweetman and G. Williams and E. Welsby and S. J. Hughes and R. Renton}, title = {A randomized controlled trial of acetyl salicilic acid in the secondary prevention of mortality from myocardial infarction}, year = 1974, journal = {British Medical Journal}, volume = 1, number = 905, pages = {436-440} } @article{HSAUR:Coronary1976, author = {{Coronary Drug Project Group}}, title = {Asprin in coronary heart disease}, year = 1976, journal = {Journal of Chronic Diseases}, volume = 29, pages = {625-642} } @article{HSAUR:ElwoodSweetman1979, author = {P. C. Elwood and P. M. Sweetman}, title = {Asprin and secondary mortality after myocardial infarction}, year = 1979, journal = {Lancet}, volume = 2, pages = {1313-1315} } @article{HSAUR:Breddinetal1979, author = {K. Breddin and D. Loew and K. Lechner and K. {\"U}berla and E. Walter}, title = {Secondary prevention of myocardial infarction. {C}omparison of acetylsalicylic acid, phenprocoumon and placebo. {A} multicenter two-year prospective study}, journal = {Thrombosis and Haemostasis}, year = 1979, volume = 41, number = 1, pages = {225-236} } @article{HSAUR:Aspirin1980, author = {{Aspirin Myocardial Infarction Study Research Group}}, title = {A randomized, controlled trial of aspirin in persons recovered from myocardial infarction}, year = 1980, journal = {Journal of the American Medical Association}, volume = 243, number = 7, pages = {661-669} } @article{HSAUR:Persantine1980, author = {{Persantine-Aspirin Reinfarction Study Research Group}}, title = {Persantine and {A}spirin in coronary heart disease}, journal = {Circulation}, year = 1980, volume = 62, number = 3, pages = {449-461} } @article{HSAUR:ISIS21988, author = {{ISIS-2 (Second International Study of Infarct Survival) Collaborative Group}}, title = {Randomised trial of intravenous streptokinase, oral aspirin, both, or neither among 17,187 cases of suspected acute myocardial infarction: {ISIS-2}}, year = 1988, journal = {Lancet}, volume = 13, pages = {349-360} } @article{HSAUR:Mazess1984, author = {R. B. Mazess and W. W. Peppler and M. Gibbons}, title = {Total body composition by dual-photon {(153Gd)} absorptiometry}, year = 1984, journal = {American Journal of Clinical Nutrition}, volume = 40, pages = {834-839} } @book{HSAUR:Goldberg1972, author = {D. Goldberg}, year = 1972, title = {The Detection of Psychiatric Illness by Questionnaire}, publisher = {Oxford University Press}, address = {Oxford, UK} } %% PACKAGES @article{PKG:sandwich, title = {Econometric Computing with {HC} and {HAC} Covariance Matrix Estimators}, author = {Achim Zeileis}, journal = {Journal of Statistical Software}, year = {2004}, volume = {11}, number = {10}, pages = {1--17}, url = {http://www.jstatsoft.org/v11/i10/}, } @Manual{PKG:coin, title = {\Rpackage{coin}: Conditional Inference Procedures in a Permutation Test Framework}, author = {Torsten Hothorn and Kurt Hornik and Mark van de Wiel and Achim Zeileis}, year = {2013}, url = {http://CRAN.R-project.org/package=coin}, note = {\rR{} package version 1.0-23} } @Manual{PKG:KernSmooth, title = {\Rpackage{KernSmooth}: Functions for Kernel Smoothing for Wand \& Jones (1995)}, author = {Matt P. Wand and Brian D. Ripley}, year = {2014}, note = {\rR{} package version 2.23-10}, url = {http://CRAN.R-project.org/package=KernSmooth}, } @Manual{PKG:boot, title = {\Rpackage{boot}: Bootstrap \rR{} (\rSPLUS) Functions}, author = {Angelo Canty and Brian D. Ripley}, year = {2014}, url = {http://CRAN.R-project.org/package=boot}, note = {\rR{} package version 1.3-9}, } @Manual{PKG:mclust, title = {\Rpackage{mclust}: Model-based Cluster Analysis}, author = {C. Fraley and A. E. Raftery and Ron Wehrens}, year = {2014}, note = {\rR{} package version 4.3}, url = {http://www.stat.washington.edu/mclust}, } @Manual{PKG:randomForest, title = {\Rpackage{randomForest}: {B}reiman and {C}utler's Random Forests for Classification and Regression}, author = {Leo Breiman and Adele Cutler and Andy Liaw and Matthew Wiener}, year = {2013}, note = {\rR{} package version 4.6-7}, url = {http://stat-www.berkeley.edu/users/breiman/RandomForests}, } @Manual{PKG:rpart, title = {\Rpackage{rpart}: Recursive Partitioning}, author = {Terry M. Therneau and Beth Atkinson and Brian D. Ripley}, year = {2014}, note = {\rR{} package version 4.1-8}, url = {http://mayoresearch.mayo.edu/mayo/research/biostat/splusfunctions.cfm}, } @Manual{PKG:mlbench, title = {\Rpackage{mlbench}: Machine Learning Benchmark Problems}, author = {Friedrich Leisch and Evgenia Dimitriadou}, year = {2013}, url = {http://CRAN.R-project.org/package=mlbench}, note = {\rR{} package version 2.1-1}, } @Manual{PKG:nlme, title = {\Rpackage{nlme}: Linear and Nonlinear Mixed Effects Models}, author = {Jos\'{e} C. Pinheiro and Douglas M. Bates and Saikat DebRoy and Deepayan Sarkar}, year = {2014}, url = {http://CRAN.R-project.org/package=nlme}, note = {\rR{} package version 3.1-113}, } @Manual{PKG:lme4, title = {\Rpackage{lme4}: Linear Mixed-Effects Models Using S4 Classes}, author = {Douglas Bates and Deepayan Sarkar}, year = {2014}, url = {http://CRAN.R-project.org/package=lme4}, note = {\rR{} package version 1.1-5}, } @Manual{PKG:gee, title = {\Rpackage{gee}: Generalized Estimation Equation Solver}, author = {Vincent J. Carey and Thomas Lumley and Brian D. Ripley}, year = {2013}, url = {http://CRAN.R-project.org/package=gee}, note = {\rR{} package version 4.13-18}, } @Manual{PKG:rmeta, title = {\Rpackage{rmeta}: {M}eta-Analysis}, author = {Thomas Lumley}, year = {2013}, url = {http://CRAN.R-project.org/package=rmeta}, note = {\rR{} package version 2.16}, } @Manual{PKG:ape, title = {\Rpackage{ape}: {A}nalyses of Phylogenetics and Evolution}, author = {Emmanuel Paradis and Korbinian Strimmer and Julien Claude and Gangolf Jobb and Rainer Opgen-Rhein and Julien Dutheil and Yvonnick Noel and Ben Bolker}, year = {2014}, url = {http://CRAN.R-project.org/package=ape}, note = {\rR{} package version 3.1-1}, } @Manual{PKG:survival, title = {\Rpackage{survival}: {S}urvival Analysis, Including Penalised Likelihood}, author = {Terry M. Therneau and Thomas Lumley}, year = {2014}, url = {http://CRAN.R-project.org/package=survival}, note = {\rR{} package version 2.37-7}, } @Manual{PKG:mfp, title = {\Rpackage{mfp}: {M}ultivariable Fractional Polynomials}, author = {Gareth Ambler and Axel Benner}, year = {2013}, url = {http://CRAN.R-project.org/package=mfp}, note = {\rR{} package version 1.4.9}, } @Manual{PKG:vcd, title = {\Rpackage{vcd}: {V}isualizing Categorical Data}, author = {David Meyer and Achim Zeileis and Alexandros Karatzoglou and Kurt Hornik}, year = {2013}, url = {http://CRAN.R-project.org/package=vcd}, note = {\rR{} package version 1.3-1}, } @Manual{PKG:leaps, title = {\Rpackage{leaps}: {R}egression Subset Selection}, author = {Thomas Lumley and Alan Miller}, year = {2013}, url = {http://CRAN.R-project.org/package=leaps}, note = {\rR{} package version 2.9}, } @Manual{PKG:party, title = {\Rpackage{party}: {A} Laboratory for Recursive Partytioning}, author = {Torsten Hothorn and Kurt Hornik and Carolin Strobl and Achim Zeileis}, year = {2014}, url = {http://CRAN.R-project.org/package=party}, note = {\rR{} package version 1.0-13} } @Manual{PKG:multcomp, title = {\Rpackage{multcomp}: Simultaneous Inference for General Linear Hypotheses}, author = {Torsten Hothorn and Frank Bretz and Peter Westfall}, year = {2014}, note = {\rR{} package version 1.3-2}, url = {http://CRAN.R-project.org/package=multcomp} } @Manual{PKG:lattice, title = {\Rpackage{lattice}: Lattice Graphics}, author = {Deepayan Sarkar}, year = {2014}, note = {\rR{} package version 0.20-27}, url = {http://CRAN.R-project.org/package=lattice} } @Manual{PKG:partykit, title = {\Rpackage{partykit}: A Toolkit for Recursive Partytioning}, author = {Torsten Hothorn and Achim Zeileis}, year = {2014}, note = {\rR{} package version 0.8-0}, url = {http://R-forge.R-project.org/projects/partykit/} } @Manual{PKG:alr3, title = {\Rpackage{alr3}: Methods and Data to Accompany {Applied Linear Regression 3rd edition}}, author = {Sanford Weisberg}, year = {2013}, note = {\rR{} package version 2.0.5}, url = {http://www.stat.umn.edu/alr}, } @Manual{PKG:mboost, title = {\Rpackage{mboost}: Model-Based Boosting}, author = {Torsten Hothorn and Peter B\"uhlmann and Thomas Kneib and Matthias Schmid and Benjamin Hofner}, year = {2013}, note = {\rR{} package version 2.2-3}, url = {http://CRAN.R-project.org/package=mboost} } @Manual{PKG:meta, title = {\Rpackage{meta}: {M}eta-Analysis}, author = {Guido Schwarzer}, year = {2014}, note = {\rR{} package version 3.2-1}, url = {http://CRAN.R-project.org/package=meta} } @Manual{PKG:rgl, title = {\Rpackage{rgl}: 3D Visualization Device System (OpenGL)}, author = {Daniel Adler and Duncan Murdoch}, year = {2014}, note = {\rR{} package version 0.93.996}, url = {http://rgl.neoscientists.org}, } @Manual{PKG:wordcloud, title = {\Rpackage{wordcloud}: Word Clouds}, author = {Ian Fellows}, year = {2014}, note = {\rR{} package version 2.4}, url = {http://CRAN.R-project.org/package=wordcloud} } @Manual{PKG:quantreg, title = {\Rpackage{quantreg}: {Quantile} Regression}, author = {Roger Koenker}, year = {2013}, url = {http://CRAN.R-project.org/package=quantreg}, note = {\rR{} package version 5.05} } @Manual{PKG:MASS, title = {\Rpackage{MASS}: Support Functions and Datasets for Venables and Ripley's MASS}, author = {Brian D. Ripley}, year = {2014}, url = {http://CRAN.R-project.org/package=MASS}, note = {\rR{} package version 7.3-29} } @Manual{PKG:INLA, title = {\Rpackage{INLA}: Functions Which Allow to Perform Full Bayesian Analysis of Latent Gaussian Models Using Integrated Nested Laplace Approximaxion}, author = {Havard Rue and Sara Martino and Finn Lindgren and Daniel Simpson and Andrea Riebler}, year = {2013}, url = {http://www.r-inla.org/download}, note = {\rR{} package version 0.0-1379661604} } @Manual{PKG:rjags, title = {\Rpackage{rjags}: Bayesian Graphical Models Using {MCMC}}, author = {Martyn Plummer and Alexey Stukalov}, year = {2014}, url = {http://CRAN.R-project.org/package=rjags}, note = {\rR{} package version 3-13} } @Manual{PKG:sp, title = {\Rpackage{sp}: Classes and Methods for Spatial Data}, author = {Edzer Pebesma and Roger Bivand}, year = {2013}, url = {http://CRAN.R-project.org/package=sp}, note = {\rR{} package version 1.0-14} } @Manual{PKG:mice, title = {\Rpackage{mice}: Multivariate Imputation by Chained Equations}, author = {Stef van Buuren and Karin Groothuis-Oudshoorn}, year = {2014}, url = {http://CRAN.R-project.org/package=mice}, note = {\rR{} package version 2.21} } @book{HSAUR:Sarkar2008, title = {Lattice: {M}ultivariate Data Visualization with \rR{}}, author = {Deepayan Sarkar}, year = 2008, publisher = {Springer-Verlag}, address = {New York, USA} } @article{HSAUR:Mazessetal1984, author = {R. B. Mazess and W. W. Peppler and M. Gibbons}, title = {Total Body Composition by Dual Photon Absorptiometry}, year = 1984, journal = {American Journal of Clinical Nutrition}, volume = 40, pages = {834-839} } @book{HSAUR:Rawlingsetal1998, author = {J. O. Rawlings and S. G. Pantula and A. D. Dickey}, title = {Applied Regression Analysis}, year = 1998, publisher = {Springer-Verlag}, address = {New York, USA} } @article{HSAUR:FrisonPocock1992, author = {L. Frison and S. J. Pocock}, year = 1992, title = {Repeated Measures in Clinical Trials: Analysis using Mean Summary Statistics and its Implications for Design}, journal = {Statistics in Medicine}, volume = 11, pages = {1685--1704} } @article{HSAUR:Matthewsetal1990, author = {J. N. S. Matthews and D. G. Altman and M. J. Campbell and P. Royston}, year = 1990, title = {Analysis of Serial Measurements in Medical Research}, journal = {British Medical Journal}, volume = {200}, pages = {230--235} } @article{HSAUR:DeBackeretal1998, author = {M. De Backer and C. De Vroey and E. Lesaffre and I. Scheys and P. De Keyser}, title = {Twelve weeks of continuous oral therapy for toenail onychomycosis caused by dermatophytes: {A} double-blind comparative trial of terbinafine 250 mg/day versus itraconazole 200 mg/day.}, journal = {Journal of the American Academy of Dermatology}, year = {1998}, volume = {38}, pages = {S57--S63}, number = {5}, } @article{HSAUR:Freedmanetal2001, author = {W. L. Freedman and B. F. Madore and B. K. Gibson and L. Ferrarese and D. D. Kelson and S. Sakai and J. R. Mould and R. C. Kennicutt and H. C. Ford and J. A. Graham and John. P. Huchra and S. M. G. Hughes and G. D. Illingworth and L. M. Macri and Peter B. Stetson}, title = {Final Results from the {Hubble Space Telescope} Key Project to Measure the {H}ubble Constant}, journal = {The Astrophysical Journal}, year = 2001, volume = 553, number = 1, pages = {47--72} } @book{HSAUR:Wood2006, author = {Simon N. Wood}, title = {Generalized Additive Models: An Introduction with R}, year = 2006, publisher = {Chapman \& Hall/CRC}, address = {Boca Raton, Florida, USA} } @book{HSAUR:SokalRohlf1981, author = {R. R. Sokal and F. J. Rohlf}, year = 1981, title = {Biometry}, publisher = {W. H. Freeman}, address = {San Francisco, California, USA}, edition = {2nd} } @book{HSAUR:HastieTibshirani1990, author = {T. Hastie and R. Tibshirani}, year = {1990}, title = {Generalized Additive Models}, publisher = {Chapman \& Hall}, address = {Boca Raton, Florida} } @book{HSAUR:Hsu1996, author = {Jason C. Hsu}, title = {Multiple Comparisons: Theory and Methods}, year = 1996, publisher = {CRC Press, Chapman \& Hall}, address = {London}, } @article{HSAUR:Boenschetal2005, author = {Domenikus B{\"o}nsch and Thomas Lederer and Udo Reulbach and Torsten Hothorn and Johannes Kornhuber and Stefan Bleich}, title = {Joint Analysis of the {NACP-REP1} Marker Within the Alpha Synuclein Gene Concludes Association with Alcohol Dependence}, journal = {Human Molecular Genetics}, year = 2005, volume = 14, number = 7, pages = {967-971} } @Article{HSAUR:HothornBretzWestfall2008, author = {Torsten Hothorn and Frank Bretz and Peter Westfall}, year = 2008, title = {Simultaneous Inference in General Parametric Models}, journal = {Biometrical Journal}, volume = 50, number = 3, pages = {346--363} } @ARTICLE{HSAUR:Zeileis2006, author = {Achim Zeileis}, title = {Object-oriented Computation of Sandwich Estimators}, year = {2006}, journal = {Journal of Statistical Software}, volume = {16}, number = {9}, pages = {1--16}, url = {http://www.jstatsoft.org/v16/i09/} } @Article{HSAUR:Garcia2005, author = {A. L. Garcia and K. Wagner and T. Hothorn and C. Koebnick and H. J. Zunft and U. Trippo}, title = {Improved prediction of body fat by measuring skinfold thickness, circumferences, and bone breadths}, journal = {Obesity Research}, year = 2005, volume = 13, number = 3, pages = {626--634} } @Article{HSAUR:KelseyHardy1975, author = {Jennifer L. Kelsey and Robert J. Hardy}, title = {Driving of Motor Vehicles as a Risk Factor for Acute Herniated Lumbar Intervertebral Disc}, journal = {American Journal of Epidemiology}, year = 1975, volume = {102}, number = 1, pages = {63--73} } @Book{HSAUR:Keele2008, author = {Luke John Keele}, title = {Semiparametric Regression for the Social Sciences}, year = {2008}, publisher = {John Wiley \& Sons}, address = {New York, USA} } @article{HSAUR:BuehlmannHothorn2007, AUTHOR = {Peter B\"{u}hlmann and Torsten Hothorn}, TITLE = {Boosting Algorithms: Regularization, Prediction and Model Fitting}, JOURNAL = {Statistical Science}, YEAR = {2007}, VOLUME = {22}, NUMBER = {4}, PAGES = {477-505}, } @book{HSAUR:Schwarzer2009, author = {Guido Schwarzer and James R. Carpenter and Gerta R{\"u}cker}, title = {{M}eta-analysis with \rR{}}, year = {2009}, publisher = {Springer-Verlag}, address = {New York, USA}, note = {forthcoming} } @article{HSAUR:Rohlf1970, author = {F. James Rohlf}, title = {Adaptive Hierarchical Clustering Schemes}, journal = {Systematic Zoology}, year = {1970}, volume = 19, pages = {58--82} } @incollection{HSAUR:Hawkins1982, author = {Douglas M. Hawkins and Michael W. Muller and J. Andri {ten Krooden}}, title = {Cluster Analysis}, year = 1982, booktitle = {Topics in Applied Multivariate Analysis}, editor = {Douglas M. Hawkins}, publisher = {Cambridge University Press}, address = {Cambridge, UK} } @article{HSAUR:Parishetal2003, author = {William L. Parish and Edward O. Laumann and Myron S. Cohen and Suiming Pan and Heyi Zheng and Irving Hoffman and Tianfu Wang and Kwai Hang Ng}, year = 2003, title = {Population-Based Study of Chlamydial Infection in China: {A} Hidden Epidemic}, journal = {Journal of the American Medical Association}, volume = 289, number = 10, pages = {1265--1273} } @book{HSAUR:FisherBelle1993, author = {Lloyd D. Fisher and Gerald Van Belle}, title = {Biostatistics. {A} Methodology for the Health Sciences}, year = 1993, publisher = {John Wiley \& Sons}, address = {New York, USA} } @book{HSAUR:ClevelandMcGill1988, author = {William S. Cleveland and Marylyn E. McGill}, title = {Dynamic Graphics for Statistics}, year = 1988, publisher = {Wadsworth \& Brooks/Cole}, address = {Belmont, California} } @book{HSAUR:Tufte1983, author = {E. R. Tufte}, title = {The Visual Display of Quantitative Information}, year = 1983, publisher = {Graphics Press}, address = {Cheshire, Connecticut} } @Article{HSAUR:Meyeretal2006, title = {The Strucplot Framework: Visualizing Multi-Way Contingency Tables with vcd}, author = {David Meyer and Achim Zeileis and Kurt Hornik}, journal = {Journal of Statistical Software}, year = {2006}, volume = {17}, number = {3}, pages = {1--48}, url = {http://www.jstatsoft.org/v17/i03/}, } @book{HSAUR:Chenetal2008, title = {Handbook of Data Visualization}, editor = {C. Chen and Wolfgang H\"ardle and Antony Unwin}, year = 2008, publisher = {Springer-Verlag}, address = {Berlin, Heidelberg} } @book{HSAUR:Chambersetal1983, author = {J. M. Chambers and W. S. Cleveland and B. Kleiner and P. A. Tukey}, title = {Graphical Methods for Data Analysis}, year = 1983, publisher = {Chapman \& Hall/CRC}, address = {London} } @book{HSAUR:Schmid1954, author = {C. F. Schmid}, title = {Handbook of Graphic Presentation}, year = 1954, publisher = {Ronald Press}, address = {New York} } @article{HSAUR:Cleveland1979, author = {William S. Cleveland}, title = {Robust Locally Weighted Regression and Smoothing Scatterplots}, year = 1979, journal = {Journal of the American Statistical Association}, volume = {74}, pages = {829--836} } @book{HSAUR:FluryRiedwyl1988, author = {B. Flury and H. Riedwyl}, title = {Multivariate Statistics: {A} Practical Approach}, year = 1988, publisher = {Chapman \& Hall}, address = {London, UK} } @article{HSAUR:Friendly1994, author = {Michael Friendly}, title = {Mosaic Displays for Multi-way Contingency Tables}, year = 1994, journal = {Journal of the American Statistical Association}, volume = 89, pages = {190--200} } @unpublished{HSAUR:HofmannTheus2005, author = {Heike Hofmann and Martin Theus}, title = {Interactive Graphics for Visualizing Conditional Distributions}, year = 2005, note = {unpublished Manuscript} } @book{HSAUR:RabeHeskethSkrondal2008, author = {Sophia Rabe-Hesketh and Anders Skrondal}, title = {Multilevel and Longitudinal Modeling Using Stata}, edition = {2nd}, publisher = {Stata Press}, year = 2008, address = {College Station, Texas, USA} } @Book{HSAUR:Koenker2005, title = {Quantile Regression}, publisher = {Cambridge University Press}, year = {2005}, author = {Roger Koenker}, series = {Economic Society Monographs}, language = {english}, address = {New York} } @Article{HSAUR:KoenkerBassett1978, title = {Regression Quantiles}, author = {Roger Koenker and Gilbert Bassett}, journal = {Econometrica}, volume = 46, number = 1, year = 1978, pages = {33--50} } @Article{HSAUR:KoenkerNgPortnoy1994, title = {Quantile Smoothing Splines}, year = {1994}, author = {R. Koenker and P. Ng and S. Portnoy}, journal = {Biometrika}, volume = {81}, number = {4}, pages = {673--680} } @Article{HSAUR:FredriksBuurenBurgmeijer2000, author = {A. M. Fredriks and S. van Buuren and R. J. F. Burgmeijer and J. F. Meulmeester and R. J. Beuker and E. Brugman and M. J. Roede and S. P. Verloove-Vanhorick and J. Wit}, title = {Continuing Positive Secular Growth Change in {The} {Netherlands} 1955--1997}, year = {2000}, journal = {Pediatric Research}, volume = {47}, number = {3}, pages = {316--323} } @Article{HSAUR:StasinopoulosRigby2007, author = {D. Mikis Stasinopoulos and Robert A. Rigby}, title = {Generalized Additive Models for Location Scale and Shape {(GAMLSS)} in {R}}, year = {2007}, journal = {Journal of Statistical Software}, volume = {23}, number = {7}, pages = {1--46}, url = {http://www.jstatsoft.org/v23/i07} } @Article{HSAUR:RigbyStasinopoulos2005, author = {R. A. Rigby and D. M. Stasinopoulos}, title = {Generalized Additive Models for Location, Scale and Shape}, year = {2005}, journal = {Journal of the Royal Statistical Society: Series C (Applied Statistics)}, volume = {54}, number = {3}, pages = {507--554}, } @article{HSAUR:HothornKneibBuehlmann2013, author = {Torsten Hothorn and Thomas Kneib and Peter B{\"u}hlmann}, title = {Conditional Transformation Models}, journal = {Journal of the Royal Statistical Society: Series B (Statistical Methodology)}, year = {2013}, doi = {10.1111/rssb.12017}, } @book{HSAUR:FahrmeirKneibLang2013, author = {Ludwig Fahrmeir and Thomas Kneib and Stefan Lang and Brian Marx}, title = {Regression: Models, Methods and Applications}, year = {2013}, publisher = {Springer-Verlag}, address = {Berlin, Heidelberg, Germany} } @Article{HSAUR:DoksumGasko1990, author = {Kjell A. Doksum and Miriam Gasko}, title = {On a Correspondence Between Models in Binary Regression Analysis and in Survival Analysis}, year = {1990}, journal = {International Statistical Review}, volume = {58}, number = {3}, pages = {243--252} } @book{HSAUR:Tutz2012, author = {Gerhard Tutz}, title = {Regression for Categorical Data}, year = {2012}, publisher = {Cambridge University Press}, address = {New York, USA} } @Article{HSAUR:DetteVolgushev2008, author = {H. Dette and S. Volgushev}, title = {Non-crossing Non-parametric Estimates of Quantile Curves}, year = {2008}, journal = {Journal of the Royal Statistical Society: Series B (Statistical Methodology)}, volume = {70}, number = {3}, pages = {609--627}, } @Article{HSAUR:Greenland2006, author = {Sander Greenland}, title = {Bayesian Perspectives for Epidemiological Research: I. {Foundations} and Basic Methods}, year = {2006}, journal = {International Journal of Epidemiology}, volume = {35}, number = {3}, DOI = {10.1093/ije/dyi312}, pages = {765--775} } @Article{HSAUR:Greenland2007, author = {S. Greenland}, title = {Bayesian Perspectives for Epidemiological Research. II. {Regression} Analysis}, year = {2007}, journal = {International Journal of Epidemiology}, volume = {36}, number = {1}, DOI = {10.1093/ije/dyl289}, pages = {195--202} } @Article{HSAUR:Mueller1940, author = {Frank Hermann M\"uller}, title = {{Tabakmi{\ss}brauch und Lungencarcinom}}, journal = {Zeitschrift f\"ur Krebsforschung}, year = 1940, volume = 49, number = 1, pages = {57--85} } @Article{HSAUR:SchairerSchoeninger1944, author = {E. Schairer and E. Sch\"oninger}, title = {{Lungenkrebs und Tabakverbrauch}}, journal = {Zeitschrift f\"ur Krebsforschung}, year = 1944, volume = 54, number = 4, pages = {261--269} } @Article{HSAUR:Wassink1945, author = {W. F. Wassink}, title = {{Ontstaansvoorwaarden voor Longkanker}}, journal = {Nederlands Tijdschrift voor Geneeskunde}, year = 1945, volume = 92, pages = {3732--3747} } @Article{HSAUR:DollHill1950, author = {Richard Doll and A. Bradford Hill}, title = {Smoking and Carcinoma of the Lung}, journal = {British Medical Journal}, year = 1950, volume = 2, pages = {739--748} } @book{HSAUR:Fisher1959, author = {R. A. Fisher}, title = {Smoking. The Cancer Controversy}, year = 1959, publisher = {Oliver and Boyd}, address = {Edinburgh, London, UK} } @article{HSAUR:SchaferGraham2002, author = {Joseph L. Schafer and John W. Graham}, title = {Missing Data: {Our} View of the State of the Art.}, year = {2002}, journal = {Psychological Methods}, volume = {7}, number = {2}, DOI = {10.1037/1082-989X.7.2.147}, pages = {147--177} } @article{HSAUR:WhiteRoystonWood2011, author = {Ian R. White and Patrick Royston and Angela M. Wood}, title = {Multiple Imputation Using Chained Equations: {Issues} and Guidance for Practice}, year = {2011}, journal = {Statistics in Medicine}, volume = {30}, number = {4}, DOI = {10.1002/sim.4067}, pages = {377--399} } @book{HSAUR:vanBuuren2012, title={Flexible Imputation of Missing Data}, author={Stef {Van Buuren}}, year={2012}, publisher={CRC Press}, address = {Boca Raton, Florida, USA} } @article{HSAUR:RubinSchenker1991, title={Multiple Imputation in Healthcare Databases: {An} Overview and Some Applications}, author={Donald B. Rubin and Nathaniel Schenker}, journal={Statistics in Medicine}, volume={10}, number={4}, pages={585--598}, year={1991}, } @incollection{HSAUR:BarnardRubinSchenker1998, author = {J. Barnard and D. B. Rubin and N. Schenker}, title = {Multiple Imputation Methods}, booktitle = {Encyclopedia of Biostatistics}, year = 1998, publisher = {John Wiley \& Sons}, address = {Chichester, UK}, editor = {P. Armitage and T. Colton} } @incollection{HSAUR:Little1998, author = {J. R. Little}, title = {Missing Data}, booktitle = {Encyclopedia of Biostatistics}, year = 1998, publisher = {John Wiley \& Sons}, address = {Chichester, UK}, editor = {P. Armitage and T. Colton} } @book{HSAUR:LittleRubin2002, author = {J. R. Little and D. B. Rubin}, year = 2002, title = {Statistical Analysis with Missing Data}, edition = {2nd}, publisher = {John Wiley \& Sons}, address = {New York, USA} } @book{HSAUR:Rubin1987, author = {Donald B. Rubin}, year = 1987, title = {Multiple Imputation for Nonresponse in Surveys}, publisher = {John Wiley \& Sons}, address = {New York, USA} } @book{HSAUR:Schafer1997, author = {J. L. Schafer}, year = 1997, title = {Analysis of Incomplete Multivariate Data}, publisher = {Chapman \& Hall/CRC}, address = {London, UK} } @incollection{HSAUR:Barnard2002, author = {J. Barnard and C. Frangakis and J. K. Hill and D. B. Rubin}, title = {The {Bayesian} Analysis of the {New York School Choice Scholarships Program}: {A} Randomized Experiment with Noncompliance and Missing Data (with Discussion)}, booktitle = {Case Studies in Bayesian Statistics}, year = 2002, publisher = {Springer-Verlag}, address = {New York, USA}, editor = {C. Gatsonis and R. Kass and B. Carlin and A. Carriquiry and A. Gelman and I. Verdinelli and M. West} } @article{HSAUR:RobertsonArmitage1959, author = {J. D. Robertson and P. Armitage}, year = {1959}, title = {Comparison of Two Hypotensive Agents}, journal = {Anaesthesia}, volume = {14}, number = 1, pages = {53--64} } @article{HSAUR:BarnardRubin1999, author = {J. Barnard and D. B. Rubin}, year = 1999, title = {Small Sample Degrees of Freedom With Multiple Imputation}, journal = {Biometrika}, volume = 86, pages = {948--955} } @article{HSAUR:Vuilleumier1970, author = {F. Vuilleumier}, year = {1970}, title = {Insular Biogeography in Continental Regions. {I. The} Northern {Andes} of {South America}}, journal = {The American Naturalist}, volume = 104, pages = {373--388} } @book{HSAUR:Aitkin1989, author = {M. Aitkin and D. Anderson and B. Francis and J. Hinde}, title = {Statistical Modelling in {GLIM}}, year = 1989, publisher = {Oxford University Press}, address = {New York, USA}, } @incollection{HSAUR:Morabia2013, author = {Alfredo Morabia}, editor = {Wolfgang Ahrens and Iris Pigeot}, booktitle = {Handbook of Epidemiology}, title = {History of Epidemiological Methods and Concepts}, pages = {43--74}, year = {2013}, edition = {2nd}, publisher = {Springer-Verlag}, address = {New York, USA}, } @Article{HSAUR:ZeileisHothornHornik2008, author = {Achim Zeileis and Torsten Hothorn and Kurt Hornik}, title = {Model-based Recursive Partitioning}, journal = {Journal of Computational and Graphical Statistics}, year = {2008}, volume = 17, number = 2, pages = {492--514}, doi = {10.1198/106186008X319331}, } > > HSAUR3/inst/LaTeXBibTeX/refstyle.bst0000755000176200001440000006715712357775377016630 0ustar liggesusers%% %% This is file `refstyle.bst', %% generated with the docstrip utility. %% %% The original source files were: %% %% merlin.mbs (with options: `,ay,nat,nm-rev,keyxyr,dt-beg,yr-par,note-yr,tit-qq,vnum-x,volp-com,add-pub,pre-pub,isbn,issn,url,url-blk,edby,edbyx,blk-com,pp,ed,xedn') %% ---------------------------------------- %% %% Copyright 1994-1999 Patrick W Daly % =============================================================== % IMPORTANT NOTICE: % This bibliographic style (bst) file has been generated from one or % more master bibliographic style (mbs) files, listed above. % % This generated file can be redistributed and/or modified under the terms % of the LaTeX Project Public License Distributed from CTAN % archives in directory macros/latex/base/lppl.txt; either % version 1 of the License, or any later version. % =============================================================== % Name and version information of the main mbs file: % \ProvidesFile{merlin.mbs}[1999/05/28 3.89 (PWD)] % For use with BibTeX version 0.99a or later %------------------------------------------------------------------- % This bibliography style file is intended for texts in ENGLISH % This is an author-year citation style bibliography. As such, it is % non-standard LaTeX, and requires a special package file to function properly. % Such a package is natbib.sty by Patrick W. Daly % The form of the \bibitem entries is % \bibitem[Jones et al.(1990)]{key}... % \bibitem[Jones et al.(1990)Jones, Baker, and Smith]{key}... % The essential feature is that the label (the part in brackets) consists % of the author names, as they should appear in the citation, with the year % in parentheses following. There must be no space before the opening % parenthesis! % With natbib v5.3, a full list of authors may also follow the year. % In natbib.sty, it is possible to define the type of enclosures that is % really wanted (brackets or parentheses), but in either case, there must % be parentheses in the label. % The \cite command functions as follows: % \citet{key} ==>> Jones et al. (1990) % \citet*{key} ==>> Jones, Baker, and Smith (1990) % \citep{key} ==>> (Jones et al., 1990) % \citep*{key} ==>> (Jones, Baker, and Smith, 1990) % \citep[chap. 2]{key} ==>> (Jones et al., 1990, chap. 2) % \citep[e.g.][]{key} ==>> (e.g. Jones et al., 1990) % \citep[e.g.][p. 32]{key} ==>> (e.g. Jones et al., p. 32) % \citeauthor{key} ==>> Jones et al. % \citeauthor*{key} ==>> Jones, Baker, and Smith % \citeyear{key} ==>> 1990 %--------------------------------------------------------------------- ENTRY { address author booktitle chapter edition editor howpublished institution isbn issn journal key month note number organization pages publisher school series title type url volume year } {} { label extra.label sort.label short.list } INTEGERS { output.state before.all mid.sentence after.sentence after.block } FUNCTION {init.state.consts} { #0 'before.all := #1 'mid.sentence := #2 'after.sentence := #3 'after.block := } STRINGS { s t } FUNCTION {output.nonnull} { 's := output.state mid.sentence = { ", " * write$ } { output.state after.block = { add.period$ write$ newline$ "\newblock " write$ } { output.state before.all = 'write$ { add.period$ " " * write$ } if$ } if$ mid.sentence 'output.state := } if$ s } FUNCTION {output} { duplicate$ empty$ 'pop$ 'output.nonnull if$ } FUNCTION {output.check} { 't := duplicate$ empty$ { pop$ "empty " t * " in " * cite$ * warning$ } 'output.nonnull if$ } FUNCTION {fin.entry} { add.period$ write$ newline$ } FUNCTION {new.block} { output.state before.all = 'skip$ { after.block 'output.state := } if$ } FUNCTION {new.sentence} { output.state after.block = 'skip$ { output.state before.all = 'skip$ { after.sentence 'output.state := } if$ } if$ } FUNCTION {add.blank} { " " * before.all 'output.state := } FUNCTION {date.block} { skip$ } FUNCTION {not} { { #0 } { #1 } if$ } FUNCTION {and} { 'skip$ { pop$ #0 } if$ } FUNCTION {or} { { pop$ #1 } 'skip$ if$ } FUNCTION {non.stop} { duplicate$ "}" * add.period$ #-1 #1 substring$ "." = } FUNCTION {new.block.checkb} { empty$ swap$ empty$ and 'skip$ 'new.block if$ } FUNCTION {field.or.null} { duplicate$ empty$ { pop$ "" } 'skip$ if$ } FUNCTION {emphasize} { duplicate$ empty$ { pop$ "" } { "{\em " swap$ * "\/}" * } if$ } FUNCTION {capitalize} { "u" change.case$ "t" change.case$ } FUNCTION {space.word} { " " swap$ * " " * } % Here are the language-specific definitions for explicit words. % Each function has a name bbl.xxx where xxx is the English word. % The language selected here is ENGLISH FUNCTION {bbl.and} { "and"} FUNCTION {bbl.etal} { "et~al." } FUNCTION {bbl.editors} { "eds." } FUNCTION {bbl.editor} { "ed." } FUNCTION {bbl.edby} { "edited by" } FUNCTION {bbl.edition} { "edition" } FUNCTION {bbl.volume} { "volume" } FUNCTION {bbl.of} { "of" } FUNCTION {bbl.number} { "number" } FUNCTION {bbl.nr} { "no." } FUNCTION {bbl.in} { "in" } FUNCTION {bbl.pages} { "pp." } FUNCTION {bbl.page} { "p." } FUNCTION {bbl.chapter} { "chapter" } FUNCTION {bbl.techrep} { "Technical Report" } FUNCTION {bbl.mthesis} { "Master's thesis" } FUNCTION {bbl.phdthesis} { "Ph.D. thesis" } MACRO {jan} {"January"} MACRO {feb} {"February"} MACRO {mar} {"March"} MACRO {apr} {"April"} MACRO {may} {"May"} MACRO {jun} {"June"} MACRO {jul} {"July"} MACRO {aug} {"August"} MACRO {sep} {"September"} MACRO {oct} {"October"} MACRO {nov} {"November"} MACRO {dec} {"December"} MACRO {acmcs} {"ACM Computing Surveys"} MACRO {acta} {"Acta Informatica"} MACRO {cacm} {"Communications of the ACM"} MACRO {ibmjrd} {"IBM Journal of Research and Development"} MACRO {ibmsj} {"IBM Systems Journal"} MACRO {ieeese} {"IEEE Transactions on Software Engineering"} MACRO {ieeetc} {"IEEE Transactions on Computers"} MACRO {ieeetcad} {"IEEE Transactions on Computer-Aided Design of Integrated Circuits"} MACRO {ipl} {"Information Processing Letters"} MACRO {jacm} {"Journal of the ACM"} MACRO {jcss} {"Journal of Computer and System Sciences"} MACRO {scp} {"Science of Computer Programming"} MACRO {sicomp} {"SIAM Journal on Computing"} MACRO {tocs} {"ACM Transactions on Computer Systems"} MACRO {tods} {"ACM Transactions on Database Systems"} MACRO {tog} {"ACM Transactions on Graphics"} MACRO {toms} {"ACM Transactions on Mathematical Software"} MACRO {toois} {"ACM Transactions on Office Information Systems"} MACRO {toplas} {"ACM Transactions on Programming Languages and Systems"} MACRO {tcs} {"Theoretical Computer Science"} FUNCTION {format.url} { url empty$ { "" } { "\urlprefix\url{" url * "}" * } if$ } INTEGERS { nameptr namesleft numnames } FUNCTION {format.names} { 's := "" 't := #1 'nameptr := s num.names$ 'numnames := numnames 'namesleft := { namesleft #0 > } { s nameptr "{vv~}{ll}{, jj}{, f.}" format.name$ 't := nameptr #1 > { namesleft #1 > { ", " * t * } { numnames #2 > { "," * } 'skip$ if$ s nameptr "{ll}" format.name$ duplicate$ "others" = { 't := } { pop$ } if$ t "others" = { " " * bbl.etal * } { bbl.and space.word * t * } if$ } if$ } 't if$ nameptr #1 + 'nameptr := namesleft #1 - 'namesleft := } while$ } FUNCTION {format.names.ed} { 's := "" 't := #1 'nameptr := s num.names$ 'numnames := numnames 'namesleft := { namesleft #0 > } { s nameptr "{f.~}{vv~}{ll}{, jj}" format.name$ 't := nameptr #1 > { namesleft #1 > { ", " * t * } { numnames #2 > { "," * } 'skip$ if$ s nameptr "{ll}" format.name$ duplicate$ "others" = { 't := } { pop$ } if$ t "others" = { " " * bbl.etal * } { bbl.and space.word * t * } if$ } if$ } 't if$ nameptr #1 + 'nameptr := namesleft #1 - 'namesleft := } while$ } FUNCTION {format.key} { empty$ { key field.or.null } { "" } if$ } FUNCTION {format.authors} { author empty$ { "" } { author format.names } if$ } FUNCTION {format.editors} { editor empty$ { "" } { editor format.names ", " * editor num.names$ #1 > 'bbl.editors 'bbl.editor if$ * } if$ } FUNCTION {format.in.editors} { editor empty$ { "" } { editor format.names.ed } if$ } FUNCTION {format.isbn} { isbn empty$ { "" } { "ISBN " isbn * } if$ } FUNCTION {format.issn} { issn empty$ { "" } { "ISSN " issn * } if$ } FUNCTION {format.note} { note empty$ { "" } { note #1 #1 substring$ duplicate$ "{" = 'skip$ { output.state mid.sentence = { "l" } { "u" } if$ change.case$ } if$ note #2 global.max$ substring$ * } if$ } FUNCTION {format.title} { title empty$ { "" } { title "t" change.case$ "\enquote{" swap$ * non.stop { ",} " * } { "} " * } if$ } if$ } FUNCTION {end.quote.title} { title empty$ 'skip$ { before.all 'output.state := } if$ } FUNCTION {format.full.names} {'s := "" 't := #1 'nameptr := s num.names$ 'numnames := numnames 'namesleft := { namesleft #0 > } { s nameptr "{vv~}{ll}" format.name$ 't := nameptr #1 > { namesleft #1 > { ", " * t * } { s nameptr "{ll}" format.name$ duplicate$ "others" = { 't := } { pop$ } if$ t "others" = { " " * bbl.etal * } { numnames #2 > { "," * } 'skip$ if$ bbl.and space.word * t * } if$ } if$ } 't if$ nameptr #1 + 'nameptr := namesleft #1 - 'namesleft := } while$ } FUNCTION {author.editor.key.full} { author empty$ { editor empty$ { key empty$ { cite$ #1 #3 substring$ } 'key if$ } { editor format.full.names } if$ } { author format.full.names } if$ } FUNCTION {author.key.full} { author empty$ { key empty$ { cite$ #1 #3 substring$ } 'key if$ } { author format.full.names } if$ } FUNCTION {editor.key.full} { editor empty$ { key empty$ { cite$ #1 #3 substring$ } 'key if$ } { editor format.full.names } if$ } FUNCTION {make.full.names} { type$ "book" = type$ "inbook" = or 'author.editor.key.full { type$ "proceedings" = 'editor.key.full 'author.key.full if$ } if$ } FUNCTION {output.bibitem} { newline$ "\bibitem[{" write$ label write$ ")" make.full.names duplicate$ short.list = { pop$ } { * } if$ "}]{" * write$ cite$ write$ "}" write$ newline$ "" before.all 'output.state := } FUNCTION {n.dashify} { 't := "" { t empty$ not } { t #1 #1 substring$ "-" = { t #1 #2 substring$ "--" = not { "--" * t #2 global.max$ substring$ 't := } { { t #1 #1 substring$ "-" = } { "-" * t #2 global.max$ substring$ 't := } while$ } if$ } { t #1 #1 substring$ * t #2 global.max$ substring$ 't := } if$ } while$ } FUNCTION {word.in} { bbl.in " " * } FUNCTION {format.date} { year duplicate$ empty$ { "empty year in " cite$ * "; set to ????" * warning$ pop$ "????" } 'skip$ if$ extra.label * before.all 'output.state := " (" swap$ * ")" * } FUNCTION {format.btitle} { title emphasize } FUNCTION {tie.or.space.connect} { duplicate$ text.length$ #3 < { "~" } { " " } if$ swap$ * * } FUNCTION {either.or.check} { empty$ 'pop$ { "can't use both " swap$ * " fields in " * cite$ * warning$ } if$ } FUNCTION {format.bvolume} { volume empty$ { "" } { bbl.volume volume tie.or.space.connect series empty$ 'skip$ { bbl.of space.word * series emphasize * } if$ "volume and number" number either.or.check } if$ } FUNCTION {format.number.series} { volume empty$ { number empty$ { series field.or.null } { output.state mid.sentence = { bbl.number } { bbl.number capitalize } if$ number tie.or.space.connect series empty$ { "there's a number but no series in " cite$ * warning$ } { bbl.in space.word * series * } if$ } if$ } { "" } if$ } FUNCTION {format.edition} { edition empty$ { "" } { output.state mid.sentence = { edition "l" change.case$ " " * bbl.edition * } { edition "t" change.case$ " " * bbl.edition * } if$ } if$ } INTEGERS { multiresult } FUNCTION {multi.page.check} { 't := #0 'multiresult := { multiresult not t empty$ not and } { t #1 #1 substring$ duplicate$ "-" = swap$ duplicate$ "," = swap$ "+" = or or { #1 'multiresult := } { t #2 global.max$ substring$ 't := } if$ } while$ multiresult } FUNCTION {format.pages} { pages empty$ { "" } { pages multi.page.check { bbl.pages pages n.dashify tie.or.space.connect } { bbl.page pages tie.or.space.connect } if$ } if$ } FUNCTION {format.journal.pages} { pages empty$ 'skip$ { duplicate$ empty$ { pop$ format.pages } { ", " * pages n.dashify * } if$ } if$ } FUNCTION {format.vol.num.pages} { volume field.or.null format.journal.pages } FUNCTION {format.chapter.pages} { chapter empty$ 'format.pages { type empty$ { bbl.chapter } { type "l" change.case$ } if$ chapter tie.or.space.connect pages empty$ 'skip$ { ", " * format.pages * } if$ } if$ } FUNCTION {format.in.ed.booktitle} { booktitle empty$ { "" } { editor empty$ { word.in booktitle emphasize * } { word.in booktitle emphasize * ", " * editor num.names$ #1 > { bbl.editors } { bbl.editor } if$ * " " * format.in.editors * } if$ } if$ } FUNCTION {format.thesis.type} { type empty$ 'skip$ { pop$ type "t" change.case$ } if$ } FUNCTION {format.tr.number} { type empty$ { bbl.techrep } 'type if$ number empty$ { "t" change.case$ } { number tie.or.space.connect } if$ } FUNCTION {format.article.crossref} { word.in " \cite{" * crossref * "}" * } FUNCTION {format.book.crossref} { volume empty$ { "empty volume in " cite$ * "'s crossref of " * crossref * warning$ word.in } { bbl.volume volume tie.or.space.connect bbl.of space.word * } if$ " \cite{" * crossref * "}" * } FUNCTION {format.incoll.inproc.crossref} { word.in " \cite{" * crossref * "}" * } FUNCTION {format.org.or.pub} { 't := "" address empty$ t empty$ and 'skip$ { address empty$ 'skip$ { address * } if$ t empty$ 'skip$ { address empty$ 'skip$ { ": " * } if$ t * } if$ } if$ } FUNCTION {format.publisher.address} { publisher empty$ { "empty publisher in " cite$ * warning$ "" } { publisher } if$ format.org.or.pub } FUNCTION {format.organization.address} { organization empty$ { "" } { organization } if$ format.org.or.pub } FUNCTION {article} { output.bibitem format.authors "author" output.check author format.key output format.date "year" output.check date.block format.title "title" output.check end.quote.title crossref missing$ { journal emphasize "journal" output.check format.vol.num.pages output } { format.article.crossref output.nonnull format.pages output } if$ format.issn output format.url output format.note output fin.entry } FUNCTION {book} { output.bibitem author empty$ { format.editors "author and editor" output.check editor format.key output } { format.authors output.nonnull crossref missing$ { "author and editor" editor either.or.check } 'skip$ if$ } if$ format.date "year" output.check date.block format.btitle "title" output.check crossref missing$ { format.bvolume output format.number.series output format.publisher.address output } { format.book.crossref output.nonnull } if$ format.edition output format.isbn output format.url output format.note output fin.entry } FUNCTION {booklet} { output.bibitem format.authors output author format.key output format.date "year" output.check date.block format.title "title" output.check end.quote.title howpublished output address output format.isbn output format.url output format.note output fin.entry } FUNCTION {inbook} { output.bibitem author empty$ { format.editors "author and editor" output.check editor format.key output } { format.authors output.nonnull crossref missing$ { "author and editor" editor either.or.check } 'skip$ if$ } if$ format.date "year" output.check date.block format.btitle "title" output.check crossref missing$ { format.publisher.address output format.bvolume output format.chapter.pages "chapter and pages" output.check format.number.series output } { format.chapter.pages "chapter and pages" output.check format.book.crossref output.nonnull } if$ format.edition output crossref missing$ { format.isbn output } 'skip$ if$ format.url output format.note output fin.entry } FUNCTION {incollection} { output.bibitem format.authors "author" output.check author format.key output format.date "year" output.check date.block format.title "title" output.check end.quote.title crossref missing$ { format.in.ed.booktitle "booktitle" output.check format.publisher.address output format.bvolume output format.number.series output format.chapter.pages output format.edition output format.isbn output } { format.incoll.inproc.crossref output.nonnull format.chapter.pages output } if$ format.url output format.note output fin.entry } FUNCTION {inproceedings} { output.bibitem format.authors "author" output.check author format.key output format.date "year" output.check date.block format.title "title" output.check end.quote.title crossref missing$ { format.in.ed.booktitle "booktitle" output.check publisher empty$ { format.organization.address output } { organization output format.publisher.address output } if$ format.bvolume output format.number.series output format.pages output format.isbn output format.issn output } { format.incoll.inproc.crossref output.nonnull format.pages output } if$ format.url output format.note output fin.entry } FUNCTION {conference} { inproceedings } FUNCTION {manual} { output.bibitem format.authors output author format.key output format.date "year" output.check date.block format.btitle "title" output.check organization output address output format.edition output format.url output format.note output fin.entry } FUNCTION {mastersthesis} { output.bibitem format.authors "author" output.check author format.key output format.date "year" output.check date.block format.btitle "title" output.check bbl.mthesis format.thesis.type output.nonnull school "school" output.check address output format.url output format.note output fin.entry } FUNCTION {misc} { output.bibitem format.authors output author format.key output format.date "year" output.check date.block format.title output end.quote.title howpublished output format.url output format.note output fin.entry } FUNCTION {phdthesis} { output.bibitem format.authors "author" output.check author format.key output format.date "year" output.check date.block format.btitle "title" output.check bbl.phdthesis format.thesis.type output.nonnull school "school" output.check address output format.url output format.note output fin.entry } FUNCTION {proceedings} { output.bibitem format.editors output editor format.key output format.date "year" output.check date.block format.btitle "title" output.check format.bvolume output format.number.series output publisher empty$ { format.organization.address output } { organization output format.publisher.address output } if$ format.isbn output format.issn output format.url output format.note output fin.entry } FUNCTION {techreport} { output.bibitem format.authors "author" output.check author format.key output format.date "year" output.check date.block format.title "title" output.check end.quote.title format.tr.number output.nonnull institution "institution" output.check address output format.url output format.note output fin.entry } FUNCTION {unpublished} { output.bibitem format.authors "author" output.check author format.key output format.date "year" output.check date.block format.title "title" output.check end.quote.title format.url output format.note "note" output.check fin.entry } FUNCTION {default.type} { misc } READ FUNCTION {sortify} { purify$ "l" change.case$ } INTEGERS { len } FUNCTION {chop.word} { 's := 'len := s #1 len substring$ = { s len #1 + global.max$ substring$ } 's if$ } FUNCTION {format.lab.names} { 's := "" 't := s #1 "{vv~}{ll}" format.name$ s num.names$ duplicate$ #2 > { pop$ " " * bbl.etal * } { #2 < 'skip$ { s #2 "{ff }{vv }{ll}{ jj}" format.name$ "others" = { " " * bbl.etal * } { bbl.and space.word * s #2 "{vv~}{ll}" format.name$ * } if$ } if$ } if$ } FUNCTION {author.key.label} { author empty$ { key empty$ { cite$ #1 #3 substring$ } 'key if$ } { author format.lab.names } if$ } FUNCTION {author.editor.key.label} { author empty$ { editor empty$ { key empty$ { cite$ #1 #3 substring$ } 'key if$ } { editor format.lab.names } if$ } { author format.lab.names } if$ } FUNCTION {editor.key.label} { editor empty$ { key empty$ { cite$ #1 #3 substring$ } 'key if$ } { editor format.lab.names } if$ } FUNCTION {calc.short.authors} { type$ "book" = type$ "inbook" = or 'author.editor.key.label { type$ "proceedings" = 'editor.key.label 'author.key.label if$ } if$ 'short.list := } FUNCTION {calc.label} { calc.short.authors short.list "(" * year duplicate$ empty$ short.list key field.or.null = or { pop$ "????" } 'skip$ if$ * 'label := } FUNCTION {sort.format.names} { 's := #1 'nameptr := "" s num.names$ 'numnames := numnames 'namesleft := { namesleft #0 > } { s nameptr "{vv{ } }{ll{ }}{ f{ }}{ jj{ }}" format.name$ 't := nameptr #1 > { " " * namesleft #1 = t "others" = and { "zzzzz" * } { t sortify * } if$ } { t sortify * } if$ nameptr #1 + 'nameptr := namesleft #1 - 'namesleft := } while$ } FUNCTION {sort.format.title} { 't := "A " #2 "An " #3 "The " #4 t chop.word chop.word chop.word sortify #1 global.max$ substring$ } FUNCTION {author.sort} { author empty$ { key empty$ { "to sort, need author or key in " cite$ * warning$ "" } { key sortify } if$ } { author sort.format.names } if$ } FUNCTION {author.editor.sort} { author empty$ { editor empty$ { key empty$ { "to sort, need author, editor, or key in " cite$ * warning$ "" } { key sortify } if$ } { editor sort.format.names } if$ } { author sort.format.names } if$ } FUNCTION {editor.sort} { editor empty$ { key empty$ { "to sort, need editor or key in " cite$ * warning$ "" } { key sortify } if$ } { editor sort.format.names } if$ } FUNCTION {presort} { calc.label label sortify " " * type$ "book" = type$ "inbook" = or 'author.editor.sort { type$ "proceedings" = 'editor.sort 'author.sort if$ } if$ #1 entry.max$ substring$ 'sort.label := sort.label * " " * title field.or.null sort.format.title * #1 entry.max$ substring$ 'sort.key$ := } ITERATE {presort} SORT STRINGS { last.label next.extra } INTEGERS { last.extra.num number.label } FUNCTION {initialize.extra.label.stuff} { #0 int.to.chr$ 'last.label := "" 'next.extra := #0 'last.extra.num := #0 'number.label := } FUNCTION {forward.pass} { last.label label = { last.extra.num #1 + 'last.extra.num := last.extra.num int.to.chr$ 'extra.label := } { "a" chr.to.int$ 'last.extra.num := "" 'extra.label := label 'last.label := } if$ number.label #1 + 'number.label := } FUNCTION {reverse.pass} { next.extra "b" = { "a" 'extra.label := } 'skip$ if$ extra.label 'next.extra := extra.label duplicate$ empty$ 'skip$ { "{\natexlab{" swap$ * "}}" * } if$ 'extra.label := label extra.label * 'label := } EXECUTE {initialize.extra.label.stuff} ITERATE {forward.pass} REVERSE {reverse.pass} FUNCTION {bib.sort.order} { sort.label " " * year field.or.null sortify * " " * title field.or.null sort.format.title * #1 entry.max$ substring$ 'sort.key$ := } ITERATE {bib.sort.order} SORT FUNCTION {begin.bib} { preamble$ empty$ 'skip$ { preamble$ write$ newline$ } if$ "\begin{thebibliography}{" number.label int.to.str$ * "}" * write$ newline$ "\newcommand{\enquote}[1]{``#1''}" write$ newline$ "\expandafter\ifx\csname natexlab\endcsname\relax\def\natexlab#1{#1}\fi" write$ newline$ "\expandafter\ifx\csname url\endcsname\relax" write$ newline$ " \def\url#1{{\tt #1}}\fi" write$ newline$ "\expandafter\ifx\csname urlprefix\endcsname\relax\def\urlprefix{URL }\fi" write$ newline$ } EXECUTE {begin.bib} EXECUTE {init.state.consts} ITERATE {call.type$} FUNCTION {end.bib} { newline$ "\end{thebibliography}" write$ newline$ } EXECUTE {end.bib} %% End of customized bst file %% %% End of file `jasa.bst'. HSAUR3/inst/NEWS0000644000176200001440000000074613302740734012705 0ustar liggesusers 1.0-9 (2018-05-28) o update to mice 3.0.0 1.0-8 (2017-08-18) o remove longtable.sty 1.0-7 (2017-06-21) o use logrank_test instead of surv_test (for coin 1.2-0) 1.0-6 (2017-02-28) o tm is not actually needed 1.0-5 (2015-07-28) o NAMESPACE updates 1.0-4 (2015-03-09) o wgs84 -> WGS84 1.0-3 (2015-01-05) o remove platform-dependent Makefiles 1.0-2 (2014-08-18) o tools::delimMatch o png figures 1.0-1 (2014-06-26) o update URL o fix vignette index entries HSAUR3/inst/slides/0000755000176200001440000000000013302741062013455 5ustar liggesusersHSAUR3/inst/slides/Ch_graphical_display.Rnw0000644000176200001440000004050013055275020020236 0ustar liggesusers \input{HSAUR_title} \SweaveOpts{prefix.string=figures/HSAUR,eps=FALSE,keep.source=TRUE} <>= source("setup.R") @ \frame{ \begin{center} \Large{Part 2: Graphical Displays} \end{center} introduces some basic however very useful graphical techniques for extracting information about Malignant Melanoma and Chinese Health and Family Life. } \section{Introduction} \begin{frame} \frametitle{USmelanoma: Malignant Melanoma in the USA} \cite{HSAUR:FisherBelle1993} report mortality rates due to malignant melanoma of the skin for white males during the period 1950--1969, for each state on the US mainland. The include the number of deaths due to malignant melanoma in the corresponding state, the longitude and latitude of the geographic centre of each state, and a binary variable indicating contiguity to an ocean, that is, if the state borders one of the oceans. Questions of interest about these data include: how do the mortality rates compare for ocean and non-ocean states? and how are mortality rates affected by latitude and longitude? \end{frame} \begin{frame} \frametitle{CHFLS: Chinese Health and Family Life Survey} The Chinese Health and Family Life Survey sampled $60$ villages and urban neighbourhoods chosen in such a way as to represent the full geographical and socioeconomic range of contemporary China excluding Hong Kong and Tibet. Eighty-three individuals were chosen at random for each location from official registers of adults aged between $20$ and $64$ years to target a sample of $5000$ individuals in total. Here, we restrict our attention to women with current male partners and the following variables: \end{frame} \begin{frame} \frametitle{CHFLS: Chinese Health and Family Life Survey} \begin{description} \item[\Robject{R\_edu}]: level of education of the responding woman, \item[\Robject{R\_income}]: monthly income (in yuan) of the responding woman, \item[\Robject{R\_health}]: health status of the responding woman in the last year, \item[\Robject{R\_happy}]: how happy was the responding woman in the last year, \item[\Robject{A\_edu}]: level of education of the woman's partner, \item[\Robject{A\_income}]: monthly income (in yuan) of the woman's partner. \end{description} Here, we focus on graphical displays for inspecting the relationship of these health and socioeconomic variables of heterosexual women and their partners. \end{frame} \section{Initial Data Analysis} \begin{frame} \frametitle{Initial Data Analysis} According to \cite{HSAUR:Chambersetal1983}, ``there is no statistical tool that is as powerful as a well chosen graph'': \begin{itemize} \item In comparison with other types of presentation, well-designed charts are more effective in creating interest and in appealing to the attention of the reader. \item Visual relationships as portrayed by charts and graphs are more easily grasped and more easily remembered. \item The use of charts and graphs saves time, since the essential meaning of large measures of statistical data can be visualised at a glance. \item Charts and graphs provide a comprehensive picture of a problem that makes for a more complete and better balanced understanding than could be derived from tabular or textual forms of presentation. \item Charts and graphs can bring out hidden facts and relationships and can stimulate, as well as aid, analytical thinking and investigation. \end{itemize} \end{frame} \begin{frame} \frametitle{A Word of Warning} The following caveat from the late Carl Sagan (in his book \booktitle{Contact}) should be kept in mind: \begin{quote} Humans are good at discerning subtle patterns that are really there, but equally so at imagining them when they are altogether absent. \end{quote} \end{frame} \section{Analysis Using R} \subsection{Malignant Melanoma} \begin{frame}[fragile] \frametitle{Malignant Melanoma: boxplot \& histogram} We might begin to examine the malignant melanoma data by constructing a histogram or boxplot for \stress{all} the mortality rates. Using these relatively simple technique we have to make sure that the $x$-axis is the same in both graphs. This can be done by computing a plausible range of the data, later to be specified in a plot via the \Rcmd{xlim} argument: <>= xr <- range(USmelanoma$mortality) * c(0.9, 1.1) xr @ \end{frame} \begin{frame}[fragile] \small{ \begin{figure} \begin{center} <>= layout(matrix(1:2, nrow = 2)) par(mar = par("mar") * c(0.8, 1, 1, 1)) boxplot(USmelanoma$mortality, ylim = xr, horizontal = TRUE, xlab = "Mortality") hist(USmelanoma$mortality, xlim = xr, xlab = "", main = "", axes = FALSE, ylab = "") axis(1) @ \end{center} \end{figure} } \end{frame} \begin{frame}[fragile] \frametitle{Malignant Melanoma: Comparing states} Looking at the characteristics of all the mortality rates is a useful beginning but for these data we might be more interested in comparing mortality rates for ocean and non-ocean states. So we might construct two histograms or two boxplots. Such a \stress{parallel boxplot}, visualising the conditional distribution of a numeric variable in groups as given by a categorical variable, are easily computed using the \Rcmd{boxplot} function. \end{frame} \begin{frame}[fragile] \begin{figure} \begin{center} <>= plot(mortality ~ ocean, data = USmelanoma, xlab = "Contiguity to an ocean", ylab = "Mortality") @ \end{center} \end{figure} \end{frame} \begin{frame}[fragile] \frametitle{Malignant Melanoma: density plots} Histograms are generally used for two purposes: counting and displaying the distribution of a variable; according to \cite{HSAUR:Wilkinson1992}, ``they are effective for neither''. Histograms can often be misleading for displaying distributions because of their dependence on the number of classes chosen. An alternative is to formally estimate the density function of a variable and then plot the resulting estimate. \end{frame} \begin{frame}[fragile] \small{ \begin{figure} \begin{center} <>= dyes <- with(USmelanoma, density(mortality[ocean == "yes"])) dno <- with(USmelanoma, density(mortality[ocean == "no"])) plot(dyes, lty = 1, xlim = xr, main = "", ylim = c(0, 0.018)) lines(dno, lty = 2) legend("topleft", lty = 1:2, legend = c("Coastal State", "Land State"), bty = "n") @ \end{center} \end{figure} } \end{frame} \begin{frame}[fragile] \frametitle{Malignant Melanoma: the whole picture} Now we might move on to look at how mortality rates are related to the geographic location of a state as represented by the latitude and longitude of the centre of the state. Here the main graphic will be the scatterplot. The simple $xy$ scatterplot has been in use since at least the eighteenth century and has many virtues -- indeed according to \cite{HSAUR:Tufte1983}: \begin{quote} The relational graphic -- in its barest form the scatterplot and its variants -- is the greatest of all graphical designs. It links at least two variables, encouraging and even imploring the viewer to assess the possible causal relationship between the plotted variables. It confronts causal theories that $x$ causes $y$ with empirical evidence as to the actual relationship between $x$ and $y$. \end{quote} \end{frame} \begin{frame}[fragile] \begin{figure} \begin{center} <>= layout(matrix(1:2, ncol = 2)) plot(mortality ~ longitude, data = USmelanoma) plot(mortality ~ latitude, data = USmelanoma) @ \end{center} \end{figure} \end{frame} \begin{frame}[fragile] Since mortality rate is clearly related only to latitude we can now produce scatterplots of mortality rate against latitude separately for ocean and non-ocean states. Instead of producing two displays, one can choose different plotting symbols for either states. \end{frame} \begin{frame}[fragile] \begin{figure} \begin{center} <>= plot(mortality ~ latitude, data = USmelanoma, pch = as.integer(USmelanoma$ocean)) legend("topright", legend = c("Land state", "Coast state"), pch = 1:2, bty = "n") @ \end{center} \end{figure} \end{frame} \begin{frame}[fragile] This scatterplot highlights that the mortality is lowest in the northern land states. Coastal states show a higher mortality than land states at roughly the same latitude. The highest mortalities can be observed for the south coastal states with latitude less than $32^\circ$, say, that is <>= subset(USmelanoma, latitude < 32) @ \end{frame} \subsection{Chinese Health and Family Life} \begin{frame}[fragile] \frametitle{Chinese Health and Family Life} One part of the questionnaire the Chinese Health and Family Life Survey focuses on is the self-reported health status. Two questions are interesting for us. The first one is ``Generally speaking, do you consider the condition of your health to be excellent, good, fair, not good, or poor?''. The second question is ``Generally speaking, in the past twelve months, how happy were you?''. The distribution of such variables is commonly visualised using barcharts where for each category the total or relative number of observations is displayed. \end{frame} \begin{frame}[fragile] \begin{figure} <>= barplot(xtabs(~ R_happy, data = CHFLS)) @ \end{figure} \end{frame} \begin{frame}[fragile] \frametitle{Chinese Health and Family Life: Two variables} The visualisation of two categorical variables could be done by conditional barcharts, i.e., barcharts of the first variable within the categories of the second variable. An attractive alternative for displaying such two-way tables are \stress{spineplots} \citep{HSAUR:Friendly1994,HSAUR:HofmannTheus2005,HSAUR:Chenetal2008}. Before constructing such a plot, we produce a two-way table of the health status and self-reported happiness using the \Rcmd{xtabs} function: <>= xtabs(~ R_happy + R_health, data = CHFLS) @ <>= hh <- xtabs(~ R_health + R_happy, data = CHFLS) @ \end{frame} \begin{frame}[fragile] \frametitle{Chinese Health and Family Life: spineplots} A \stress{spineplot} is a group of rectangles, each representing one cell in the two-way contingency table. The area of the rectangle is proportional with the number of observations in the cell. Here, we produce a mosaic plot of health status and happiness: \end{frame} \begin{frame}[fragile] \begin{figure} <>= plot(R_happy ~ R_health, data = CHFLS) @ \end{figure} \end{frame} \begin{frame}[fragile] \frametitle{Chinese Health and Family Life: spinogram} When the association of a categorical and a continuous variable is of interest, say the monthly income and self-reported happiness, we are interested in the conditional distribution of happiness given income. One possibility to produce a more appropriate plot is called \stress{spinogram}. Here, the continuous $x$-variable is categorised first. Within each of these categories, the conditional frequencies of the response variable are given by stacked barcharts, in a way similar to spineplots. \end{frame} \begin{frame}[fragile] \begin{figure} <>= layout(matrix(1:2, ncol = 2)) plot(R_happy ~ log(R_income + 1), data = CHFLS) cdplot(R_happy ~ log(R_income + 1), data = CHFLS) @ \end{figure} \end{frame} \begin{frame}[fragile] \frametitle{Chinese Health and Family Life: conditional plots} For our last example we return to scatterplots for inspecting the association between a woman's monthly income and the income of her partner. In addition, we want to study the relationship between both monthly incomes conditional on the woman's education. Such conditioning plots are called \stress{trellis} plots and are implemented in the package \Rpackage{lattice} \citep{PKG:lattice, HSAUR:Sarkar2008}. \end{frame} \begin{frame}[fragile] \begin{figure} <>= xyplot(jitter(log(A_income + 0.5)) ~ jitter(log(R_income + 0.5)) | R_edu, data = CHFLS) @ <>= library("lattice") lattice.options(default.theme = function() standard.theme("pdf", color = FALSE)) print(xyplot(jitter(log(A_income + 0.5)) ~ jitter(log(R_income + 0.5)) | R_edu, data = CHFLS)) @ \end{figure} Four constellations can be identified: both partners have zero income, the partner has no income, the woman has no income or both partners have a positive income. \end{frame} \section{Summary} \begin{frame} \frametitle{Summary} Producing publication-quality graphics is one of the major strengths of the \R{} system and almost anything is possible since graphics are programmable in \R{}. Naturally, this chapter can be only a very brief introduction to some commonly used displays and the reader is referred to specialised books, most important \cite{HSAUR:Murrell2005}, \cite{HSAUR:Sarkar2008}, and \cite{HSAUR:Chenetal2008}. Interactive 3D-graphics are available from package \Rpackage{rgl} \citep{PKG:rgl}. \end{frame} \section*{Exercises} \begin{frame} \frametitle{Exercises} \begin{itemize} \item The \Robject{household} data are part of a data set collected from a survey of household expenditure and give the expenditure of $20$ single men and $20$ single women on four commodity groups. The units of expenditure are Hong Kong dollars, and the four commodity groups are \begin{description} \item[\Robject{housing}]: housing, including fuel and light, \item[\Robject{food}]: foodstuffs, including alcohol and tobacco, \item[\Robject{goods}]: other goods, including clothing, footwear and durable goods, \item[\Robject{service}]: services, including transport and vehicles. \end{description} The aim of the survey was to investigate how the division of household expenditure between the four commodity groups depends on total expenditure and to find out whether this relationship differs for men and women. Use appropriate graphical methods to answer these questions and state your conclusions. \end{itemize} \end{frame} \begin{frame} \frametitle{Exercises} \begin{itemize} \item The data set \Robject{USstates} contains values of seven variables for ten states in the US. The seven variables are \begin{description} \item[\Robject{Population}]: population size divided by $1000$, \item[\Robject{Income}]: average per capita income, \item[\Robject{Illiteracy}]: illiteracy rate (\% population), \item[\Robject{Life.Expectancy}]: life expectancy (years), \item[\Robject{Homicide}]: homicide rate (per $1000$), \item[\Robject{Graduates}]: percentage of high school graduates, \item[\Robject{Freezing}]: average number of days per below freezing. \end{description} With these data \begin{enumerate} \item Construct a scatterplot matrix of the data labelling the points by state name (using function \Rcmd{text}). \item Construct a plot of life expectancy and homicide rate conditional on average per capita income. \end{enumerate} \end{itemize} \end{frame} \begin{frame} \frametitle{Exercises} \begin{itemize} \item Mortality rates per $100,000$ from male suicides for a number of age groups and a number of countries are given in \Robject{suicides2}. Construct side-by-side box plots for the data from different age groups, and comment on what the graphic tells us about the data. \item \cite{HSAUR:FluryRiedwyl1988} report data that give various lengths measurements on $200$ Swiss bank notes. The \Robject{banknote} data are available from package \Rpackage{alr3} \citep{PKG:alr3}. Use whatever graphical techniques you think are appropriate to investigate whether there is any `pattern' or structure in the data. Do you observe something suspicious? \end{itemize} \end{frame} \begin{frame} \frametitle{References} \tiny <>= src <- system.file(package = "HSAUR3") style <- file.path(src, "LaTeXBibTeX", "refstyle") bst <- file.path(src, "LaTeXBibTeX", "HSAUR") cat(paste("\\bibliographystyle{", style, "}", sep = ""), "\n \n") cat(paste("\\bibliography{", bst, "}", sep = ""), "\n \n") @ \end{frame} \end{document} HSAUR3/inst/slides/graphics/0000755000176200001440000000000012451513136015260 5ustar liggesusersHSAUR3/inst/slides/graphics/Rlogo.jpg0000644000176200001440000001577312357775376017106 0ustar liggesusersJFIFvvExifMM*C  !"$"$C" S  !1AQ"2Raq#356BVu$SWr¢%&7CETbcst$!123ARq ?pAAsS*bie,%)ܝ>868⒄$(:-.Y&^ߖt9r)]cquv+Wu'mJ B[ $l6+Ehr&N>.U=!>z?-,d2>HVqO++  ^=1L`;@ܴt~L9p{8.vR%a0q \~ST1qN90|c0q[GOW),eAjt㌔/a}_(O&E9ܓÎ W$s4Hovx-ܻ훈FJM,A|. +Db)rY[EHPI\m=]m'U[*ڜYSx\@8)YQ, U.Ի3_Ԕ2sD%E[ !\(<"/q!AAEjemq#ꃩ X߄|YKeJZ G#=g8#tLfupGY 3w;W—aO>&&HGqS-*}<5RjXjȶ|~J^*&dM~VKؽQ{L3"bNϧ?9cp?4=F*qVJ[q@szt#VE*зFp 5 ?$|ηccc ZP)$5U/ˉ4DR}xZegpPp RWP|z`NY -p!=] [LIeR9NqDK{O2t Ϛ7;BR<Ӎ88q)PEƾB#T*5kRђVfnmrU’G qڲ{2d^j_B+J??l^UqcG[kyy~?tG#D}M}(dj5Ghp&1PzQ^^j_Ad+E~Zr? t+R.$({ jvS&}.\$fS4=wRGTN $''CQ% \58OUovx=G#DFX Y$M!XtT)TCe[fN4۝.g|z@#b]`nzVz 22q3JTTZoAB8R(g g8> 88wr\ͱPBFT |HTYW Ug6 i}k?)sjjߐmc '?$B_7;:sS6n&ʡ;ҮeI)@zdܓ-zfJ\'e,yߊVܾ Tȵ)l)'ڣ0&֧9UCImm)6 X*u'F6,VɫEA )"麮d{_teeMR-mE7YfeyqǭrL\3zJR鮶4[)cBkIj}}LTSa$=g5ni:j6Ku}eJWh; Js !P[Q7](OzYE֜@h (˭R' I1%zy30~U PA340]۞7;䐤|'9I=p7W|Lb M%n9*T H;b)KMye =+ssC92(SZs:Hü800qA CNZX34BezKjRÒ g.3K̺BAG\~"馢ܺq4)vDH[ N[;I#9=x#MٷwI %E ]oa$LM;-PbwS-PbwS=7fLG=FN^~MYq#%i34LrqVJ$׍FN&d/Qh\ңzdeQJ}6=1Wv%&[+U C+u%' 1v+.]sisjX30x~"BVEJSƃ)q)p8Z}xP;s!a%'e(M gJ'N: _cGsnE'Its!9ܓ-MlI[Id%(*=dhJJ2̳hP`Cu&F$L%qy9sG>RohI"sP.knAs>r1FJbJsYzNӕur"j6 C~iT{#m_VM!Y  ( |j] Z~Y Q-PxIN@{Iò*KK2 2M6 `$mzAA3LW4qO ^}"zOaS2nIO+(qRAcr7Qt۽ɞ }Ɉ3j$aY)Une8o1W^6c3.-RfO Zs&)u60*A(q |*u3WH=Q!r`W|K5VpHN\|RsA8s)y/1i%j1΍/tfqI Df!׎PŽKT֝Aa@@@@hkOBf*Q8aQ+ڷJe%{-Lp֏ܥÜn 1m-F[KOKͰ Iv7vw9p%^4݈W2?lFVr^ӈIɼ_!;4vw9Ȼ;NĿL=( ԉ[Ffe6uANQ%ff]wN$) I؈D"ʹSjPІm F2v3{, ( *$HSAUR3/inst/slides/graphics/HSAUR.jpg0000644000176200001440000010037012357775376016672 0ustar liggesusersJFIFvvCreated with GIMPC       C " \  !1TU"AQSaq2R#B &3bru67ds$%5Vc8CDv4EtJ !1AQ"aq2R#BSr35bcs$4TC ?я,:Zoh_}KRxi}㥦L#4E/7O,:Zoh_}D2>KRxi}㥦L#4E/7O,:Zoh_}D2>KRxi}㥦L#4E/7O,:Zoh_}DȎQ\R,:Zoh_}ks#{v]a-phe-\p;6|;]-BCs'jM++WUHQFM7=ll:<ή9Xv/Qj+_k9r_[g]DM\E}gOS"}gj/3=_zg{/OHDu8zB'{V">M\E}gOS"}gj/3=_zg{/OHDu8zB'{V">M\E}gOS"}gj/3=_zg{/OHDu8zB'{Zni[(Fu ފFjD쮊JRTJU˂u;C׽K;×[An xO xsNJ Zrҽ?o⯐Ci6ޓ--~(vJ07Ù7mʉ|R?U}mFt4tI@<D}d! -)%)=@WsV;ź~Nv)gB[o"dh=)JV$)DJRDUoIe`R)_Mv^.]9OFu|?ܺv7;ѬϮ]M-ǮD$?PRxg68)JRNULF1q?Knq>#l6DQD!FF=ve!1Ksy[+o<*lxs{G]ŧ+o<*mis{G&+o<*mis{G&+o<*mis{G&+o<*mis{G&+o<*mis{G&+o<*mis{G&+o<*mis{G/ (͉Y)XEKKmLZ"C BR}A fMfpY74d9N YӶ~0p5?*=Z\x X\X-r't2>=ulv(Gceu<([c/;泦8_ų ZC]Igzƫ?K]%mjh8VeH JTJ#nN)k`|)DJRD)DJRD)DT]^rz1Kt^sAOggKǘiǏ1ԟEc<'SR?DQ1:}EJp Te>mi$r㖣?mmO&l4cFqO|) (r+ZW߳Md3gb>3kfQ$ŵ-MǙDiǏ1i+@ 1+V5.gO+g>&6\I̸HV^nP^ (XkGh_0o76qTN}{N?+{T"yNDu66~gyT4'DO>ScmM58:ۮ -%? ]kwgEyVp`\t^@-yBA[3mF+4>u!ĭr[Z6;A~#YoiAV$_m]aF_J' Uxߣ_bь\x, "+Ax-N{Ŗ  ꟣ΈI)WW"k ʳK!ȓ]f;쨥ƝYJG3c=ջҽLMcݠ+ĝG|u<S7씫4= a.Vbk| ܴf ^#ʵ1rom ɬd:͕>QO<']^v OH;rVv4f6q Pk^Wlmp;Fn~CYGE03*h23l6 (Eq]yCk!$gvV.GXT1.: ߯܃Sc&2]m>L! IJRÓڭ25tʒ]R!mS#!X GLJ%k(xúAƺ<4$S8+i/nM, #Vvºh^n 0 q=>ᭀVqՎ]/A9[Z6s*7rC,I1F4&08 'ۋ-AJJêWQ }k;ATm"OCîܜ;evBaK;.Fwx=qd!*ko$u(a]"mv蓰’@FjRsBuy9+>amv[E:󑮶g[FHJ۹FyN괈t7&iELMT7|9XF^w+2*yD^@aCFUis.) PJDPN쀬#tqzJy˫)zpzU#JŦ…1c9uq/k_$|k0 m+j:UΌ.Q,_,-9 8ڜqҬ^~2Nyr txM u;H2J}O/+;$2|y7VPtǂmqܮNwa#=F+V^?wlb.a=Z9}9\]cpwa:#+Q#]5xCZMKS-k$8TP'Ty4e((BV=`_^uYNEXre2|T%"+Ú4} vdQ[ʔ!9o$r~/F%a1ՆsW[Lwĕ6ڛq$9H?ʼaR#A2Ybo6؈..FC|(\<6Umݯ [vdm: 4'rmJaCm(Z~ קּn!ܦ[r #Q^nY$$3:՟)ʰV,%3qt|?uvg#mmG^<5GG}8:>{t\mG^<5\)%Va(Hl`+Q8:>{n/Tz0򄁩A(]wkһh7Q~b*ՀQqrYocy{2ty^̯s:RX Ai1Ѳ^R _c)?O 7ě$8CPJy53Ʈ%i/1, ]ᯂ ̋:"\ hJȑ Xt]%mNw{ύ!pgز[qE8rN>s o)kit1$U¹]qJܒ6BuT<ȐjBKֻ'\,РҖJRBG[mtz|d6:9][kÙZ6u330geAymݣUOܽ!IQl,Gޅ93}X1Xߍ M#!59bо葫r>ȷW)Kad53;ޟpFtQ,e*\C# /YE.j]cf4'Kq lTjS2a0\8 msڨ]=_\1ղi諬 KzXTG'-en9%mW{k.))-2iJQ'֋ [m3O-e[/vKV Ci!@Fc.CU==:wd)JN8nq\Yil$'d!CSQ9$@7x X>> Ccqu;Xeh"Ⱝe:O eUNkчI_q#!k'/,=[Xs h#HxBѕq,깶IqnT:] \+жNFd:n46GY@(꯸b8[{)lwiۢ܎-#śWѻ&PZu%3^ jS( dCGƼZ0561&rܸ[jolڈ+( (dIeY/@4lڍ|v%- ueC<g ayc DjSc#^orIfIku;HarvL۔i3J}"^\&2 -*pd+=t um0fx pqn++)ݘw4hOX\NZmN|5u6۸Qs0oǚ>c[.,~Dv#٣Zr%'=BZq%+A)RO(#Vi"gH*1p씷"*$a'Y JwIv1q%|[WobsN-[Ցn'3OҪfd7F&v>ٙJ>&pqŹˎ+`8&Ē z@t\WOΜٍ'C<orjaiNvdM|zsog.6 A$ojR4̓G"m;.lB4%9s5>^^R$CcVRa ;^~942n^+,r 7̾ V 0ڬ0gpǑ1IVs:):>\켓%߈Äֻ\8fg(cM:3li=ˊRR]'5W|+ь]^rtB>=PK?侬S[}}YEw'Ew'fb//=_r_V{7{ { fb//=յZ6I)}ZrrZ^q{B{n0D-%YuyBAeWvQJe0bIlVil\jO^Z;驄wԿ)G3;*(geWus9N ML% uK@G}K~c3=VNZBRY$}T>ddyP0֎ja/iw51%xSf/kUk[d*%s7)#:ahqqd0 ީK@G}50֎(geWu<|s=_/M p$.З[y%h/ab$^E8C#s7k]ղv%c{8λOv`+{3M2Ѱb=#߲\Y r?D8IklnjX-?Fc%Q@:BsaKט]K1iNG$f\Sm2DO~e;#ءT(g GvkJˣ6]"%!g[S!jحE خ}2a]G"d *K/p/3JCV.yǁ fhs\WiH,hA[˃4b 4G[mZ̬)?K8C4'0Gל6)mʕ|GJՈ{]e[/ 2X1GzA#PtG-3yo?n=SN7)_gK 5VxwZ8SIxKɇ-cs.d+_WuA:L9Xh:.#PB}A)JR)]mrS Old\RXkYL +Q+m ߺ[+b5q^b .ίsUrSEtJ{HoXbUijV6N9y Ffnux6hdlrl3!-%dPlͫB71p_ s6sXm8,",ELwXo vNp9β^w,Ǎ!-%uʊ$߻@0j2k_Syǫ7,;<mlC#a\cb OS repۜ`ݶ6+yY\T{p=oq5eP[7DpSBo͊2/)#q҅򄄤,ʥ{h=w-"X1 s,/bW3ī >NӐ !MDdh \Zv\hG~Ke%JxBѤ\&#m@WZ# In%Izb<]yR}V;+A+r"-n==Nl(Uy_q.ėK"OD 6-ar\ڠrTԺ">U0h-pV: ԕO&,#5 dHqW-5ϒav6C<ń- *IG(_ۿtNP>RXWvDk4Kd؜V~vlOԩ@[&ܯlk+5&\_騲;=>ھ&k϶㢔*q:'~*q:'~*̿H vO?ۆ;_oColz;Xk5>KS5>KVeCcJ !1%??-W{>+ q:'~*۾ 3Ey/EO$ j8X8i+75x⫥T)vy!Eh}":0'٭mc-ahj"^㈺~M|ɯ~'inqjlߊ~ g_i65pbۋr$.u|YHUT9+X.nqjsFn}vu'(y:?k??bˊbV0jjЄnTԬY%J'2}iӓR3XkZְ XϊRip0eAԃ 1polp9f+2b} ~ ij?E 7²7XIzfIq&"ܲ5%J )$o"1nm:Df -7(MS6$4\G.дrwٚT6\ɌHv=$pȋI~C/%=$ݮ  Ja-$h>a(;)jĄ R= ߖPid2rZ$R[8YcuSGdYI ޚtSiz9EukmJ(gDÞ!3ؾZM)/Mi"mk_Kڴ;pX`[LGi|Եo$+!wdsV~ ,=VUgv i!rRTFjS5 2e&ppѬ|8&fEZfJ )ݟV@:\sZ2@mysΤ <^@xۚʼq,- p&\z.d}rimy'^27'b6YA S]a%Y{'b9!mйQVqWA\ u91.ټ].Wp7qMn:!(r"\M@f$ 媌Pb˹&XdA?Fw<9t}78%RJ`8u@#[)b Sכ-aͷm ;SYBBN$Nfg gfU 7wcTjZp@gWu]}hq[ؔ,3XRJ: +7/8sy58]i^ه 曒6] TB+l8d_ Yߺ4R3HQiÿ7rזWWnljz+a`\Y:r5U垰ݺm>N oteԨDؒ]]ͷV#'朽U«ʺR3l."ݙ :lcX۷ҳ/3%:iZ#Etܿ_DGPĉW3!y;ʃ:[N0&j!T\7 IQ|3;랶:q즚&SL;Мq+sk澜j.p)JR(2yF1g:Sz]z+MV.;ܺnxi*Ǚ̃xH)# ,[ȁ&ʴղ/rH?UzTĬsI1cܭ` NJ0j0:Ec+᧔`] vqCE8ǡעMV+ ˯0y熞Qev7<5=wW^nM ˘"QB5ŔS*3&82u*FZm׸2{fK!MVF\ŒQf[-,۽ M7x/MCcu58H*Υ]zHFlw9q$- OV[MJƑy{r#5 Ru씥(Lhr,}RRHRTKdmnZa8Iil³+5DF▞#V,UZ#[8#=ם b<rU_!<nPTgal=KLy2II}%Uڶ]QH=HW"ƺ eUհ/?|~se mG3ǧ,>_Lx}/ RĕKv;쨥ƝAJ}DjV8\h MT]. rؙK⮐T90sz JR%)J"RKSRKW>O>| =X]ƥ⦥|+&}-)]13oLlL.]RKSRKW>O>|6yOyq{z{z'鉟K~ y>WLL[SO>p`+pWqIa(ΖVY$gvM|;?^q\`tG5Py\f.z=6/i#Yw"W5tS=Nk!|\V=+"ڸ^~,68u ;:eQd¡oNhpk'=`y OR|mce a2`|@-znІ#7>ڸ{V1ц.N?rr#vܵ3{Tp 'cËb jBX^99^bCj 6^zS) wb #.G.TDpl&oq9tWlJ i aiI"h.+a.q(ON|ZF@fwE^0"&jkeCaIxIXe\zLkJC*̼QTI@drrr)+T? .o s&]d%fbD-zk4 h/x{ \u2 HRTRH;<,n~aK\H'1܀$iNyQ3/N\.4<EQYwQe)ZDԳCLP1n@i\],hNP#D;ؓiAzb&e;BJ>^Uki@ ^" Á']bW2()_z.rP6B*TYYRC.8J۵3q5OԪ!as ݞZX26Tg)RRAuY"aoޤn8an[ ! ^NgW7o q.lTZ \Z l0957H4Oc[e0$IAo^d[q®@<04bNn'2oy,^]yudOxFP"`ftq*n6Lw}]'-UJN_B S4w{o Ydɔ{6Ry3˔@|Y| t٧7wr32A[e2"T#7 ɜ,ѭ1= CϺIQBGM\'&a@C 'hM7nnAac>tXnšl; qdt숉PVuTT3cP&2dQJOk,k4mI}_&2ݒ™jABh"DW(`{p6n (K֦yfwU.R6mumϕ?S0υ m᷶"1.Øכ-sSqa:P+9o=ѣXFiD{ϊ-2 m> nhqDXH\R_1F`%5ףLB ]inNdG_m: f.:KsX`؋+J>Ѷ =/gX|nֽ h1M0'&1GrJ0vy'3ƣ 붟FSFDf b6goj2D8nAN˘*h62_#ۂ/|Fϑ *V+~[)ݗ#NGZctu0Ė+&~9utN'i"c>;R_xo\V)J֪(ю/]^*q|=Ws'{ 4֮da__;@//]^*q|=Ws'{ 4֮da_?g vlW_sbUǭ\¿ 8;Wk?{د}W2wN=jNiyO-~8mvxFZ0EBWwuS*2osC5[|z̝+g ]->U$#لe꺕2- ᡿jZ$hwxs܆ȖOV Iz#47p&tRH">~5o6މ15q*Nc-WW 4@i_҄P*vzDyyQb~Vh h1!7dGgMBk  a@k['JTLռp۩26$Ն#icJ_JβA}g!QE=w  )-ZG *2*rrcxq<]ϵ[_f9 o[nB|)`Bbl(uf3ݝd?=BוCR]cId: W- ӫ֐oŤSO8*g.2Ziėv %, $)T{\7kZ賘E Ð.:׃qˠ~ =Ma-=r)`窴8/&3?XդYՉqC)VIRQ IR"c|a(IVnB9wl@1 k{]}GW;Bk"4fO޲w [3mnB{) >G#:5&a.GK`r+Oή OZ0z$4[cҗl E|I"iZwe9,dwvVfB6xAiC>Us3cnɼHd52~i-Y,!qkN hӹ@"ɻ*3j -&#ɳ-)D8ZĥZ!E1KlFjwc~P2+=1N{ CЌt9rЕKgh1Lvcː%#$t,ϫTofsɐOBEVs:ֻ _Tڮ'FHQ RR<ԏeʃ!pn$lfJ6`7ȼ6FgXgQA^Bن尿uUHws+7\leHZG0WZ$i+KiKw7-PJB)"I0>D>/$zV^y/ yaЭpQ ˝ko:f`4p/0MĒ0ҰRPȕ=UK1 I:$Ei힘ON ջ|jVV5"K$uHNњ j C*Ir L_oл^&M A'*Lac]0 {( Z 97[<  a{Rۮ[t%.mNDnm83 GsZ۶.qj&c+X{M7}q k &uT[.ގtOlQo a+w0u C>TeX NBl\CώK/QX=.Zq-&eM7h]Z4[Cɱt2t(P} </T&%vAG4)X|(JR(JRh}hFOTϑDu8:*W3idLO>S})_OTϑ3j/<']N"yN=S>FOTϑDu8:"dLO;skLre9$̅^$1 3ʟ8-󋈞}Dx|t݁m2|[WS 5R6ByNjBUB-3²ttmn+Sh^O:1DO.C>J2-SAKqbͭDunީX#Xl\ɸ;4hV~8ꔠZ=d=ZCI-puXڹaԴڜѭ5NZV@ϔU#Dt3`CdA9.ŭ.)_餩v5YuMn](V*P>xx5k7WFt2,ږ&+AM2V 4miB-8[p*،G=$gN^jǐ< 5Zlz+z>k1gf=Sqg-17o \S\棪2.7*Nr*-J2* :mRVc@7/nt.[2@#[[o2mmxi`Lgh7V{0՞#LM3~I(|s}YV{Nx34}&q!g|s}Y9?TϤLgh7V{0՞#LM3~I,P{KքAE^jWK~<$lr,*޳Xhح'JRJ,#Ye#g&0L& |Hy_Ex4Wd 8Y+\_92ۀg#ɏoeZpd($գV{$YMk"̾yJYiO]hIR r&Ϛ m.W V'7zF>i*jcLKR[JBpVcmB btg9KOf1l[4@EO?Jڥ)XJRDuI+-2c5-j {ɬ]l,5s F$m>uqɭ:xjx5jqr>97Feݦ?T}I.<ͽIt{ΰ1)}^)?O"GXߒ꟒qg5-g2M躙D1?h1iox]vx2_5=psb=!^/kq.+ '[%fywR)JRJ[yxiIxӏ}=Um-G^<4[yxiN>%im:$uN>qt|?.Ko4׏ 6i#qt|?ӏt[yxiIxӏ}=K$uMHdž}=A]6i#m-G^<4AGG}鴶Ixim:GG}8:>{Y;rKր[9;PbF֭))/izЁ;sm$U֮e?7C?V*g ˹tJ4e)) >_}NoƎFeQ.diY$}Qш6IbT۽5]0"2nC>vT(6?Rוir#7s-b29p[t'U[j5ciƝqƌSߪ+4ǍbD~"hXRZ^i\诹c0= zka\x5@} 4I e>- : yzr$E:U"KmqyuTA9+k*a;8Put<~Q܇GAݝZrVЮȝ&XRNI3 t7\Ai9КNz{IX6୫Z*r4$8#0sȌUL& ^mwgW\6N@[$-T bƦ-聭3_uf3o?G}в~6nWZIB<|αrd\e-zܔ 7J@yV1,ff'.qԓt)W )U%1F8 n?1ƺ2mZ䏍l֍,EzrPVϿ=ժmve^'77۲clKhg%$d>$ˬ0VQ3(eHJR }.+5y a!.ȞaئR-4N%sڼvg{ϠTn"<צEyMuu9):؏u5ݙ\:ӈ"uIvg{ϠTn"<צEyM.N#>MlGf}q9N4.sȝzitRuݙkb?3="usDKϠS[ٟAEyM8'^]lGf}؏uF.sȝzi\:b?3=vg{7sDN"<צE:埏&@og'U\/Z /rFHt("Ens'L?t]wrajN~sw<׬kܩ"˝ekyKV]|l]q(BjR@y`l*QNQ r TK )vld`+cM4lLC>*K&P}ޕּo{RK90ܑr9Tԫf*Dx-ð}z  U,N$xŽP >9?GODW\ۄ븥<^­9R}Re^ɮ*&Svv7vA(RɷhpW$I$wkRK!n--)j9%)}@VgѷWʱUz>P𾧰 I %LN#n$`:mvsVDJx+ZVۂ|W]#,r2qN}g!D">3H9T!41h@%)J_kͽ}6_g=[9>m-O^ w㌓aosM}6k'OKg5קD6_g=[A}ilzisY=z|4LaosM}6k'OKg5קD6_g=[A}ilzisY=z|4LaosM}6k'OKg5קD6_g=[A}ilzisY=z|4LaosM}6k'OKg5קDd FJq[9;Zzs֭)ܸj0VN2ثѪ+u:c=Mg㿕J_= Gf%FhhoqȬm.A6AWwֱ; Vw˳ ./vMB+WN4ѯ/VbZGa1#<髑?Zm=̻8V 6;*)aGDUZ؇u5E6Qx]W}Rkbg/=K(}N>GDUZ؇u5%^>GDUk}*TlCG؇u/k}*S>xV!rMlCGe>xJU+[9}Q!rDJTttO^*}S[9}QYEttO^*q:'үJ>_T{}Q,Wh14k1"2RTw!W8OvC nXFƞ_jdk .H$ߚ gT鳦\_TRT6X6>IuVOڹM939`xi>x)TWl8|VW!JRV)G2I̓\Rhc ֢E|Wܔ)_K)JQSЦ 7ˁcIP 6Ӄfgkʷ2\=+Т*RݖtZ_m.}rZ>ӽ'j*3۽ڐ#=Ic~!fKP>bbuy̭ڷ&da+HMJui诓5{zk*Ys-PXh: 9J-@p޹)X|(JR(-e}󦲾\nW?:k+g CFQx̿_[`)+b2KKq-5Hʹfw Uh6Fn؏ۜ[L.NECmnE z+t8Me}wK5M]M n=.9Cn2R )-jwe,NƑ1@j&79Y#7E*JuI ʫfMÚMe}M0F30'[=TWG ROA _:LեM.a܈>T}POMF~ +5ζpsc fȸIq HJ VYߤɥlW4z6Ň07;2nB`d%^2*#:2ܾ؀Z񬯼~tW?:͒5NǏMp.E1W)(9>n[U{L| YV$T%ns6er 3Boʫetܾ׷uW?:k+e-1ݯ-{}*Kͥ9 fN\(qrE):Miif9o7O䱵gA-^+|Eg=SpW~Uboig!&Sy1-,:ZFdj9zt]c׋@%h&Z<IHUYb#/稱Y*t.((va2䳮 PL);99f>pW8w^oQW Rr\TMm.nd?cs;i! n=aN6={gJ3hApGruhLGrRIQZb^4WA׷"F hs a89B JRyJؽl^KMwu)4Gta{9ta0q20p]5q85'$|Vؽl^KMWsֲo\?dZLIWf ^NNlʓ7/ﱛlޞvxq.TOٍ` Tf s 4T75賐ebcg@NAZJ <DA e' (0`O0/ςDq #Wg_[-LYr8I 65iU|fwD/).:yW]<:Ul&X/E{YJ:U^Ub ,q]v)b9cTdE;oO|h)==)gu=-sgdXJ @;3Xj]l%MO5.\#9LC 6q6uBͥ (+&;%[^qfX7)7\\[U" m@K:A?qֽ_j^BPw 2x?q[i4WNm>x^D|tJ!pf.:sXJdTU5˟G?el4snpst_T☓#`?Y{oM?šG;v]_Ԯ I 3r%8Wnh*lܜGnDxnby%z*ZǦ|kR6k\y kߥuܖjmsf KkNygݘӱvO3݂#KBJu )MХ$ddAaRBb*˜ Xܻ= t4ZPeA*ܼWK[-O.3 T \H4 q9;#s g~b PdY,"<&<u\u Ny9ݐ)Uʄ4)UTJRD)DR]# 8]# sjj-tO4-tO5ΥJS⦥JS.8]# 8]# sjj"HN"H\ZĮ>*jZĮ>*"㈵1>kӈ1>k:q+Oq+O-tO4-tO5ΥJS⦥JS.8]# 8]# sjj"HN"H\ZĮ>*jZĮ>*"v+m 3#G[3ԇS }KED)DJRD)DJRD)DJRD)DJRD)DR=z tqJQV tqN1^Rt:8ǯWu)DqzwS@׫]8=z tqJQ.bG]:8(N1^qzwRKǯWu8=zJ%˯DZ ZW[Rr*=)ED)DJRD)DJRD)DJRD)DJRD)D_HSAUR3/inst/slides/Ch_recursive_partitioning.Rnw0000644000176200001440000003234613055275020021366 0ustar liggesusers \input{HSAUR_title} \SweaveOpts{prefix.string=figures/HSAUR,eps=FALSE,keep.source=TRUE} <>= source("setup.R") library("randomForest") library("partykit") @ \frame{ \begin{center} \Large{Part 9: Recursive Partitioning} \end{center} explains how to fit regression models via simple recursive partitioning methods. } \section{Introduction} \begin{frame} \frametitle{Introduction} The Forbes 2000 list of the world's biggest industrial companies was %%' introduced in detail in Part~1. Here, our interest is to construct a model explaining the profit of a company based on assets, sales and the market value. The second set of data involves the investigation reported in \cite{HSAUR:Mardinetal2003} of whether laser scanner images of the eye background can be used to classify a patient's eye as suffering %' from glaucoma or not. Glaucoma is a neuro-degenerative disease of the optic nerve and is one of the major reasons for blindness in elderly people. \end{frame} \begin{frame} \frametitle{Glaucoma Data} For $196$ people, $98$ patients suffering glaucoma and $98$ controls which have been matched by age and sex, $62$ numeric variables derived from the laser scanning images are available. The data are available as \Robject{GlaucomaM} \index{GlaucomaM data@\Robject{GlaucomaM} data} from package \Rpackage{TH.data}. The variables describe the morphology of the optic nerve head, i.e., measures of volumes and areas in certain regions of the eye background. Those regions have been manually outlined by a physician. Our aim is to construct a prediction model which is able to decide whether an eye is affected by glaucomateous changes based on the laser image data. \end{frame} \begin{frame} \frametitle{Candidate Models} Both sets of data described above could be analysed using the regression models described in Parts~5 and 6, i.e., regression models for numeric and binary response variables based on a linear combination of the covariates. But here we shall employ an alternative approach known as \stress{recursive partitioning}, where the resulting models are usually called \stress{regression or classification trees}. \end{frame} \begin{frame} \frametitle{Recursive Partitioning} This method was originally invented to deal with possible non-linear relationships between covariates and response. The basic idea is to partition the covariate space and to compute simple statistics of the dependent variable, like the mean or median, inside each cell. There exist many algorithms for the construction of classification or regression trees but the majority of algorithms follow a simple general rule: First partition the observations by univariate splits in a recursive way and second fit a constant model in each cell of the resulting partition. \end{frame} \begin{frame} \frametitle{Recursive Partitioning} For the first step, one selects a covariate $x_j$ from the $q$ available covariates $x_1, \dots, x_q$ and estimates a split point which separates the response values $y_i$ into two groups. For an ordered covariate $x_j$ a split point is a number $\xi$ dividing the observations into two groups. The first group consists of all observations with $x_j \le \xi$ and the second group contains the observations satisfying $x_j > \xi$. Once that the splits $\xi$ or $A$ for some selected covariate $x_j$ have been estimated, one applies the procedure sketched above for all observations in the first group and, recursively, splits this set of observations further. The same happens for all observations in the second group. The recursion is stopped when some stopping criterion is fulfilled. \end{frame} \begin{frame} \frametitle{Ensemble Methods} When the underlying relationship between covariate and response is smooth, such a split point estimate will be affected by high variability. This problem is addressed by so called \stress{ensemble methods}. Here, multiple trees are grown on perturbed instances of the data set and their predictions are averaged. The simplest representative of such a procedure is called \stress{bagging} \citep{HSAUR:Breiman1996}. \end{frame} \begin{frame} \frametitle{Bagging} We draw $B$ bootstrap samples from the original data set, i.e., we draw $n$ out of $n$ observations with replacement from our $n$ original observations. For each of those bootstrap samples we grow a very large tree. When we are interested in the prediction for a new observation, we pass this observation through all $B$ trees and average their predictions. It has been shown that the goodness of the predictions for future cases can be improved dramatically by this or similar simple procedures. More details can be found in \cite{HSAUR:Buehlmann2004}. \end{frame} \section{Analysis using R} \begin{frame}[fragile] \frametitle{Analysis using R: Forbes 2000} The \Rcmd{rpart} function from \Rpackage{rpart} can be used to grow a regression tree. The response variable and the covariates are defined by a model formula in the same way as for \Rcmd{lm}, say. By default, a large initial tree is grown. <>= library("rpart") data("Forbes2000", package = "HSAUR3") Forbes2000 <- subset(Forbes2000, !is.na(profits)) fm <- profits ~ assets + marketvalue + sales forbes_rpart <- rpart(fm, data = Forbes2000) @ \end{frame} \begin{frame}[fragile] \frametitle{Plot Tree} \begin{center} <>= plot(as.party(forbes_rpart)) @ \end{center} \end{frame} \begin{frame}[fragile] \frametitle{Inspect Tree Complexity} <>= print(forbes_rpart$cptable) opt <- which.min(forbes_rpart$cptable[,"xerror"]) cp <- forbes_rpart$cptable[opt, "CP"] forbes_prune <- prune(forbes_rpart, cp = cp) @ \end{frame} \begin{frame}[fragile] \frametitle{Plot Pruned Tree} \small \begin{center} <>= plot(as.party(forbes_prune)) @ \end{center} \normalsize \end{frame} \begin{frame}[fragile] \frametitle{Glaucoma Data} Here, we are primarily interested in the construction of a predictor. The relationship between the $62$ covariates and the glaucoma status itself is not very interesting. We start with a large initial tree and prune back branches according to the cross-validation criterion. \small <>= set.seed(290875) @ <>= data("GlaucomaM", package = "TH.data") glaucoma_rpart <- rpart(Class ~ ., data = GlaucomaM, control = rpart.control(xval = 100)) glaucoma_rpart$cptable opt <- which.min(glaucoma_rpart$cptable[,"xerror"]) cp <- glaucoma_rpart$cptable[opt, "CP"] glaucoma_prune <- prune(glaucoma_rpart, cp = cp) @ \normalsize \end{frame} \begin{frame}[fragile] \frametitle{Pruned Tree for Glaucoma Data} \small \begin{center} <>= plot(as.party(glaucoma_prune)) @ \end{center} \normalsize \end{frame} \begin{frame}[fragile] \frametitle{Problem: Instability} <>= nsplitopt <- vector(mode = "integer", length = 25) for (i in 1:length(nsplitopt)) { cp <- rpart(Class ~ ., data = GlaucomaM)$cptable nsplitopt[i] <- cp[which.min(cp[,"xerror"]), "nsplit"] } table(nsplitopt) @ \end{frame} \begin{frame}[fragile] \frametitle{Bagging: Grow a Forest} <>= trees <- vector(mode = "list", length = 25) n <- nrow(GlaucomaM) bootsamples <- rmultinom(length(trees), n, rep(1, n)/n) mod <- rpart(Class ~ ., data = GlaucomaM, control = rpart.control(xval = 0)) for (i in 1:length(trees)) trees[[i]] <- update(mod, weights = bootsamples[,i]) @ \end{frame} \begin{frame}[fragile] \frametitle{Bagging: Prediction} Estimate the conditional probability of suffering from glaucoma given the covariates for each observation in the original data set by <>= classprob <- matrix(0, nrow = n, ncol = length(trees)) for (i in 1:length(trees)) { classprob[,i] <- predict(trees[[i]], newdata = GlaucomaM)[,1] classprob[bootsamples[,i] > 0,i] <- NA } @ \end{frame} \begin{frame}[fragile] \frametitle{Estimate Misclassification Error} \small <>= avg <- rowMeans(classprob, na.rm = TRUE) predictions <- factor(ifelse(avg > 0.5, "glaucoma", "normal")) predtab <- table(predictions, GlaucomaM$Class) predtab @ \normalsize An honest estimate of the probability of a glaucoma prediction when the patient is actually suffering from glaucoma is \small <>= round(predtab[1,1] / colSums(predtab)[1] * 100) @ \normalsize per cent. \end{frame} \begin{frame}[fragile] \frametitle{Visualizing a Forest of Trees} \small <>= library("lattice") gdata <- data.frame(avg = rep(avg, 2), class = rep(as.numeric(GlaucomaM$Class), 2), obs = c(GlaucomaM[["varg"]], GlaucomaM[["vari"]]), var = factor(c(rep("varg", nrow(GlaucomaM)), rep("vari", nrow(GlaucomaM))))) panelf <- function(x, y) { panel.xyplot(x, y, pch = gdata$class) panel.abline(h = 0.5, lty = 2) } print(xyplot(avg ~ obs | var, data = gdata, panel = panelf, scales = "free", xlab = "", ylab = "Estimated Class Probability Glaucoma")) @ \normalsize \end{frame} \begin{frame}[fragile] \frametitle{Visualizing a Forest of Trees} \begin{center} <>= library("lattice") gdata <- data.frame(avg = rep(avg, 2), class = rep(as.numeric(GlaucomaM$Class), 2), obs = c(GlaucomaM[["varg"]], GlaucomaM[["vari"]]), var = factor(c(rep("varg", nrow(GlaucomaM)), rep("vari", nrow(GlaucomaM))))) panelf <- function(x, y) { panel.xyplot(x, y, pch = gdata$class) panel.abline(h = 0.5, lty = 2) } print(xyplot(avg ~ obs | var, data = gdata, panel = panelf, scales = "free", xlab = "", ylab = "Estimated Class Probability Glaucoma")) @ \end{center} \end{frame} \begin{frame}[fragile] \frametitle{Random Forest} The \stress{bagging} procedure is a special case of a more general approach called \stress{random forest} \citep{HSAUR:Breiman2001b}. The package \Rpackage{randomForest} \citep{PKG:randomForest} can be used to compute such ensembles via <>= library("randomForest") rf <- randomForest(Class ~ ., data = GlaucomaM) @ and we obtain out-of-bag estimates for the prediction error via <>= table(predict(rf), GlaucomaM$Class) @ \end{frame} \begin{frame}[fragile] \frametitle{Unbiased Trees} Another approach to recursive partitioning, making a connection to classical statistical test problems. In each node of those trees, a significance test on independence between any of the covariates and the response is performed and a split is established when the $p$-value is smaller than a pre-specified nominal level $\alpha$. This approach has the advantage that one does not need to prune back large initial trees since we have a statistically motivated stopping criterion -- the $p$-value -- at hand. Such \stress{conditional inference trees} are implemented in the \Rpackage{partykit} package \citep{HSAUR:Hothorn:2006:JCGS}. \end{frame} \begin{frame}[fragile] \frametitle{Unbiased Trees} For the glaucoma data, such a conditional inference tree can be computed using <>= glaucoma_ctree <- ctree(Class ~ ., data = GlaucomaM) @ A convenient display is available. \end{frame} \begin{frame}[fragile] \frametitle{Classification Tree for Glaucoma Data} \begin{center} <>= plot(glaucoma_ctree) @ \end{center} \end{frame} \begin{frame} \frametitle{Summary} Recursive partitioning procedures are rather simple non-parametric tools for regression modelling. The main structures of regression relationship can be visualised in a straightforward way. However, one should bear in mind that the nature of those models is very simple and can only serve as a rough approximation to reality. When multiple simple models are averaged, powerful predictors can be constructed. \end{frame} \begin{frame} \frametitle{Exercises} \begin{itemize} \item Construct a classification tree for the Boston Housing data which are available as \Rclass{data.frame} \Robject{BostonHousing} from package \Rpackage{mlbench}. Compare the predictions of the tree with the predictions obtained from \Rcmd{randomForest}. Which method is more accurate? \item For each possible cutpoint in \Robject{varg} of the glaucoma data, compute the test statistic of the chi-square test of independence and plot them against the values of \Robject{varg}. Is a simple cutpoint for this variable appropriate for discriminating between healthy and glaucomateous eyes? \item Compare the tree models fitted to the glaucoma data with a logistic regression model. \end{itemize} \end{frame} \begin{frame} \frametitle{References} \tiny <>= src <- system.file(package = "HSAUR3") style <- file.path(src, "LaTeXBibTeX", "refstyle") bst <- file.path(src, "LaTeXBibTeX", "HSAUR") cat(paste("\\bibliographystyle{", style, "}", sep = ""), "\n \n") cat(paste("\\bibliography{", bst, "}", sep = ""), "\n \n") @ \normalsize \end{frame} \end{document} HSAUR3/inst/slides/definitions.tex0000644000176200001440000001012513055275020016512 0ustar liggesusers %%% copy Sweave.sty definitions %%% keeps `sweave' from adding `\usepackage{Sweave}': DO NOT REMOVE %\usepackage{Sweave} \RequirePackage[T1]{fontenc} \RequirePackage{graphicx,ae,fancyvrb} \IfFileExists{upquote.sty}{\RequirePackage{upquote}}{} \usepackage{relsize} \DefineVerbatimEnvironment{Sinput}{Verbatim}{} \DefineVerbatimEnvironment{Soutput}{Verbatim}{fontfamily=courier, fontshape=it, fontsize=\relsize{-1}} \DefineVerbatimEnvironment{Scode}{Verbatim}{} \newenvironment{Schunk}{}{} %%% environment for raw output \newcommand{\SchunkRaw}{\renewenvironment{Schunk}{}{} \DefineVerbatimEnvironment{Soutput}{Verbatim}{fontfamily=courier, fontshape=it, fontsize=\small} \rawSinput } %%% environment for labeled output \newcommand{\nextcaption}{} \newcommand{\SchunkLabel}{ \renewenvironment{Schunk}{\begin{figure}[ht] }{\caption{\nextcaption} \end{figure} } \DefineVerbatimEnvironment{Sinput}{Verbatim}{frame = topline} \DefineVerbatimEnvironment{Soutput}{Verbatim}{frame = bottomline, samepage = true, fontfamily=courier, fontshape=it, fontsize=\relsize{-1}} } %%% S code with line numbers \DefineVerbatimEnvironment{Sinput} {Verbatim} { %% numbers=left } \newcommand{\numberSinput}{ \DefineVerbatimEnvironment{Sinput}{Verbatim}{numbers=left} } \newcommand{\rawSinput}{ \DefineVerbatimEnvironment{Sinput}{Verbatim}{} } %%% R / System symbols \newcommand{\R}{\textsf{R}} \newcommand{\rR}{{R}} \renewcommand{\S}{\textsf{S}} \newcommand{\SPLUS}{\textsf{S-PLUS}} \newcommand{\rSPLUS}{{S-PLUS}} \newcommand{\SPSS}{\textsf{SPSS}} \newcommand{\EXCEL}{\textsf{Excel}} \newcommand{\ACCESS}{\textsf{Access}} \newcommand{\SQL}{\textsf{SQL}} %%\newcommand{\Rpackage}[1]{\hbox{\rm\textit{#1}}} %%\newcommand{\Robject}[1]{\hbox{\rm\texttt{#1}}} %%\newcommand{\Rclass}[1]{\hbox{\rm\textit{#1}}} %%\newcommand{\Rcmd}[1]{\hbox{\rm\texttt{#1}}} \newcommand{\Rpackage}[1]{\index{#1 package@\textit{#1} package}\textit{#1}} \newcommand{\Robject}[1]{\texttt{#1}} \newcommand{\Rclass}[1]{\index{#1 class@\textit{#1} class}\textit{#1}} \newcommand{\Rcmd}[1]{\index{#1 function@\texttt{#1} function}\texttt{#1}} \newcommand{\Roperator}[1]{\texttt{#1}} \newcommand{\Rarg}[1]{\texttt{#1}} \newcommand{\Rlevel}[1]{\texttt{#1}} %%% other symbols \newcommand{\file}[1]{\hbox{\rm\texttt{#1}}} %%\newcommand{\stress}[1]{\index{#1}\textit{#1}} \newcommand{\stress}[1]{\textit{#1}} \newcommand{\booktitle}[1]{`#1'} %%' %%% Math symbols \newcommand{\E}{\mathsf{E}} \newcommand{\Var}{\mathsf{Var}} \newcommand{\Cov}{\mathsf{Cov}} \newcommand{\Cor}{\mathsf{Cor}} \newcommand{\x}{\mathbf{x}} \newcommand{\y}{\mathbf{y}} \renewcommand{\a}{\mathbf{a}} \newcommand{\W}{\mathbf{W}} \newcommand{\C}{\mathbf{C}} \renewcommand{\H}{\mathbf{H}} \newcommand{\X}{\mathbf{X}} \newcommand{\B}{\mathbf{B}} \newcommand{\V}{\mathbf{V}} \newcommand{\I}{\mathbf{I}} \newcommand{\D}{\mathbf{D}} \newcommand{\bS}{\mathbf{S}} \newcommand{\N}{\mathcal{N}} \renewcommand{\P}{\mathsf{P}} \usepackage{amstext} %%% links \usepackage{hyperref} %%% captions & tables %% : conflics with figure definition in chapman.cls %%\usepackage[format=hang,margin=10pt,labelfont=bf]{caption} %% \usepackage{longtable} \usepackage{rotating} %%% Bibliography \usepackage[round,comma]{natbib} %%% texi2dvi complains that \newblock is undefined, hm... \def\newblock{\hskip .11em plus .33em minus .07em} %%% Example sections %% URLs \newcommand{\curl}[1]{\begin{center} \url{#1} \end{center}} %%% for manual corrections %\renewcommand{\baselinestretch}{2} %%% plot sizes \setkeys{Gin}{width=0.65\textwidth} %%% color \usepackage{color} %%% hyphenations \hyphenation{drop-out} %%% local definitions \setlength{\parskip}{\parsep} \usepackage[utf8]{inputenc}HSAUR3/inst/slides/Ch_analysing_longitudinal_dataI.Rnw0000644000176200001440000003410313055275020022421 0ustar liggesusers \input{HSAUR_title} \SweaveOpts{prefix.string=figures/HSAUR,eps=FALSE,keep.source=TRUE} <>= source("setup.R") @ \setkeys{Gin}{width=0.95\textheight} \frame{ \begin{center} \Large{Part 11: Analysing Longitudinal Data I} \end{center} focuses on mixed effects models for repeated measurements. } \section{Introduction} <>= library("Matrix") library("lme4") @ \begin{frame} \frametitle{Beat the Blues} Depression is a major public health problem across the world. Antidepressants are the front line treatment, but many patients either do not respond to them, or do not like taking them. The main alternative is psychotherapy, and the modern `talking treatments' such as \stress{cognitive behavioural therapy} (CBT) %%' have been shown to be as effective as drugs, and probably more so when it comes to relapse. The data to be used in this chapter arise from a clinical trial of an interactive, multimedia program known as `Beat the Blues' %%' designed to deliver cognitive behavioural therapy to depressed patients via a computer terminal. In a randomised controlled trial of the program, patients with depression recruited in primary care were randomised to either the Beating the Blues program, or to `Treatment as Usual' (TAU). \end{frame} \begin{frame} \frametitle{Beat the Blues} Here, we concentrate on the \stress{Beck Depression Inventory II} (BDI). Measurements on this variable were made on the following five occasions: \begin{itemize} \item Prior to treatment, \item Two months after treatment began and \item At one, three and six months follow-up, i.e., at three, five and eight months after treatment. %%%better: At two, four and six months follow-up, i.e. at four, six and eight %%%months after treatment \end{itemize} There is interest here in assessing the effect of taking antidepressant drugs (\Robject{drug}, yes or no) and length of the current episode of depression (\Robject{length}, less or more than six months). \end{frame} \section{Analysing Longitudinal Data} \begin{frame} \frametitle{Analysing Longitudinal Data} Because several observations of the response variable are made on the same individual, it is likely that the measurements will be correlated rather than independent, even after conditioning on the explanatory variables. Consequently repeated measures data require special methods of analysis and models for such data need to include parameters linking the explanatory variables to the repeated measurements, parameters analogous to those in the usual multiple regression model and, in addition parameters that account for the correlational structure of the repeated measurements. In this chapter: linear mixed effects models. Next chapter: generalised estimating equations. \end{frame} \section{Linear Mixed Effects Models} \begin{frame} \frametitle{Linear Mixed Effects Models} Linear mixed effects models for repeated measures data formalise the sensible idea that an individual's pattern of responses is %%' likely to depend on many characteristics of that individual, including some that are unobserved. These unobserved variables are then included in the model as random variables, i.e., random effects. The essential feature of such models is that correlation amongst the repeated measurements on the same unit arises from shared, unobserved variables. Conditional on the values of the random effects, the repeated measurements are assumed to be independent, the so-called \stress{local independence} assumption. \end{frame} \begin{frame} \frametitle{Random Intercept Model} Let $y_{ij}$ represent the observation made at time $t_j$ on individual $i$. A possible model for the observation $y_{ij}$ might be \begin{eqnarray*} y_{ij} = \beta_0 + \beta_1 t_j + u_i + \varepsilon_{ij}. \end{eqnarray*} Here the total residual that would be present in the usual linear regression model has been partitioned into a subject-specific random component $u_i$ which is constant over time plus a residual $\varepsilon_{ij}$ which varies randomly over time. $\E(u_i) = 0$ and $\Var(u) = \sigma^2_u$, $\E(\varepsilon_{ij}) = 0$ with $\Var(\varepsilon_{ij}) = \sigma^2$; $u_i$ and $\varepsilon_{ij}$ independent of each other and of time $t_j$. \begin{eqnarray*} \Var(y_{ij}) = \Var(u_i + \varepsilon_{ij}) = \sigma^2_u + \sigma^2 \end{eqnarray*} ``variance components'' \end{frame} \begin{frame} \frametitle{Random Intercept Model} The covariance between the total residuals at two time points $j$ and $k$ in the same individual is $\Cov(u_i + \varepsilon_{ij}, u_i + \varepsilon_{ik}) = \sigma^2_u$. Note that these covariances are induced by the shared random intercept; for individuals with $u_i > 0$, the total residuals will tend to be greater than the mean, for individuals with $u_i < 0$ they will tend to be less than the mean. \begin{eqnarray*} \Cor(u_i + \varepsilon_{ij}, u_i + \varepsilon_{ik}) = \frac{\sigma^2_u}{\sigma^2_u + \sigma^2}. \end{eqnarray*} This is an \stress{intra-class correlation} interpreted as the proportion of the total residual variance that is due to residual variability between subjects. \end{frame} \begin{frame} \frametitle{Random Intercept and Slope Model} In this model there are two types of random effects, the first modelling heterogeneity in intercepts, $u_i$, and the second modelling heterogeneity in slopes, $v_i$: \begin{eqnarray*} y_{ij} = \beta_0 + \beta_1 t_j + u_i + v_i t_j + \varepsilon_{ij} \end{eqnarray*} The two random effects are assumed to have a bivariate normal distribution with zero means for both variables and variances $\sigma^2_u$ and $\sigma^2_v$ with covariance $\sigma_{uv}$: \begin{eqnarray*} \Var(u_i + v_i t_j + \varepsilon_{ij}) = \sigma^2_u + 2 \sigma_{uv} t_j + \sigma^2_v t_j^2 + \sigma^2 \end{eqnarray*} which is no longer constant for different values of $t_j$. \end{frame} \begin{frame} \frametitle{Random Intercept and Slope Model} \begin{eqnarray*} \Cov(u_i + v_i t_j + \varepsilon_{ij}, u_i + v_i t_{k} + \varepsilon_{ik}) = \sigma^2_u + \sigma_{uv} (t_j - t_{k}) + \sigma^2_v t_jt_{k} \end{eqnarray*} is not constrained to be the same for all pairs $t_j$ and $t_{k}$. \end{frame} \begin{frame} \frametitle{Mixed Effects Models} Linear mixed-effects models can be estimated by maximum likelihood. However, this method tends to underestimate the variance components. A modified version of maximum likelihood, known as \stress{restricted maximum likelihood} is therefore often recommended; this provides consistent estimates of the variance components. Competing linear mixed-effects models can be compared using a likelihood ratio test. If however the models have been estimated by restricted maximum likelihood this test can only be used if both models have the same set of fixed effects. \end{frame} \section{Analysis Using R} \begin{frame}[fragile] \frametitle{Beat the Blues} \begin{center} <>= data("BtheB", package = "HSAUR3") layout(matrix(1:2, nrow = 1)) ylim <- range(BtheB[,grep("bdi", names(BtheB))], na.rm = TRUE) tau <- subset(BtheB, treatment == "TAU")[, grep("bdi", names(BtheB))] boxplot(tau, main = "Treated as usual", ylab = "BDI", xlab = "Time (in months)", names = c(0, 2, 4, 6, 8), ylim = ylim) btheb <- subset(BtheB, treatment == "BtheB")[, grep("bdi", names(BtheB))] boxplot(btheb, main = "Beat the Blues", ylab = "BDI", xlab = "Time (in months)", names = c(0, 2, 4, 6, 8), ylim = ylim) @ \end{center} \end{frame} \begin{frame} \frametitle{Beat the Blues} Fit model to the data including the baseline BDI values (\Robject{pre.bdi}), \Robject{treatment} group, \Robject{drug} and \Robject{length} as fixed effect covariates. First, a rearrangement of the data is necessary from the `wide form' in which they appear in the \Robject{BtheB} data frame %%' into the `long form' in which each separate repeated measurement %%' and associated covariate values appear as a separate row in a \Rclass{data.frame}. \end{frame} \begin{frame}[fragile] \frametitle{Beat the Blues} <>= data("BtheB", package = "HSAUR3") BtheB$subject <- factor(rownames(BtheB)) nobs <- nrow(BtheB) BtheB_long <- reshape(BtheB, idvar = "subject", varying = c("bdi.2m", "bdi.3m", "bdi.5m", "bdi.8m"), direction = "long") BtheB_long$time <- rep(c(2, 3, 5, 8), rep(nobs, 4)) names(BtheB_long)[names(BtheB_long) == "treatment"] <- "trt" @ The resulting \Rclass{data.frame} \Robject{BtheB\_long} contains a number of missing values! \end{frame} \begin{frame}[fragile] \frametitle{Random Intercept and Slope} <>= library("lme4") BtheB_lmer1 <- lmer(bdi ~ bdi.pre + time + trt + drug + length + (1 | subject), data = BtheB_long, method = "ML", na.action = na.omit) BtheB_lmer2 <- lmer(bdi ~ bdi.pre + time + trt + drug + length + (time | subject), data = BtheB_long, method = "ML", na.action = na.omit) anova(BtheB_lmer1, BtheB_lmer2) @ \end{frame} \begin{frame} \frametitle{Model Checking} We can check the assumptions of the final model fitted to the \Robject{BtheB} data, i.e., the normality of the random effect terms and the residuals, by first using the \Rcmd{ranef} method to \stress{predict} the former and the \Rcmd{residuals} method to calculate the differences between the observed data values and the fitted values, and then using normal probability plots on each. There appear to be no large departures from linearity in either plot. \end{frame} \begin{frame}[fragile] \frametitle{Model Checking} \begin{center} <>= layout(matrix(1:2, ncol = 2)) qint <- ranef(BtheB_lmer1)$subject[["(Intercept)"]] qres <- residuals(BtheB_lmer1) qqnorm(qint, ylab = "Estimated random intercepts", xlim = c(-3, 3), ylim = c(-20, 20), main = "Random intercepts") qqline(qint) qqnorm(qres, xlim = c(-3, 3), ylim = c(-20, 20), ylab = "Estimated residuals", main = "Residuals") qqline(qres) @ \end{center} \end{frame} \section{Prediction of Random Effects} \begin{frame} \frametitle{Prediction of Random Effects} The random effects are not estimated as part of the model. However, having estimated the model, we can \stress{predict} the values of the random effects. According to Bayes' Theorem, the \stress{posterior %' probability} of the random effects is given by \begin{eqnarray*} \P(u | y, x) = f(y | u, x) g(u) \end{eqnarray*} where $f(y | u, x)$ is the conditional density of the responses given the random effects and covariates (a product of normal densities) and $g(u)$ is the \stress{prior} density of the random effects (multivariate normal). The means of this posterior distribution can be used as estimates of the random effects and are known as \stress{empirical Bayes estimates}. \end{frame} \section{The Problem of Dropouts} \begin{frame} \frametitle{The Problem of Dropouts} \begin{itemize} \item[Dropout completely at random (DCAR)] here the probability that a patient drops out does not depend on either the observed or missing values of the response. \item[\stress{Dropout at random} (DAR)] The dropout at random mechanism occurs when the probability of dropping out depends on the outcome measures that have been observed in the past, but given this information is conditionally independent of all the future (unrecorded) values of the outcome variable following dropout. \item[\stress{Non-ignorable} dropout] The final type of dropout mechanism is one where the probability of dropping out depends on the unrecorded missing values -- observations are likely to be missing when the outcome values that would have been observed had the patient not dropped out, are systematically higher or lower than usual. \end{itemize} \end{frame} \begin{frame} \frametitle{The Problem of Dropouts} Under what type of dropout mechanism are the mixed effects models considered in this chapter valid? The good news is that such models can be shown to give valid results under the relatively weak assumption that the dropout mechanism is DAR. When the missing values are thought to be informative, any analysis is potentially problematical. \end{frame} \section{Summary} \begin{frame} \frametitle{Summary} Mixed effects models allow the correlations between the repeated measurements to be accounted for so that correct inferences can be drawn about the effects of covariates of interest on the repeated response values. In this chapter we have concentrated on responses that are continuous and conditional on the explanatory variables and random effects have a normal distribution. But random effects models can also be applied to non-normal responses, for example binary variables. \end{frame} \section*{Exercises} \begin{frame} \frametitle{Exercises} \begin{itemize} \item Use the \Rcmd{lm} function to fit a model to the Beat the Blues data that assumes that the repeated measurements are independent. Compare the results to those from fitting the random intercept model \Robject{BtheB\_lmer1}. \item Investigate whether there is any evidence of an interaction between treatment and time for the Beat the Blues data. \item Construct a plot of the mean profiles of both groups in the Beat the Blues data, showing also standard deviation bars at each time point. \end{itemize} \end{frame} \begin{frame} \frametitle{Exercises} \begin{itemize} \item The \Robject{phosphate} data show the plasma inorganic phosphate levels for $33$ subjects, $20$ of whom are controls and $13$ of whom have been classified as obese \citep{HSAUR:Davis2002}. Produce separate plots of the profiles of the individuals in each group, and guided by these plots fit what you think might be sensible linear mixed effects models. \end{itemize} \end{frame} \begin{frame} \frametitle{References} \tiny <>= src <- system.file(package = "HSAUR3") style <- file.path(src, "LaTeXBibTeX", "refstyle") bst <- file.path(src, "LaTeXBibTeX", "HSAUR") cat(paste("\\bibliographystyle{", style, "}", sep = ""), "\n \n") cat(paste("\\bibliography{", bst, "}", sep = ""), "\n \n") @ \end{frame} \end{document} HSAUR3/inst/slides/HSAUR_title.Rnw0000644000176200001440000000027713055275020016237 0ustar liggesusers \documentclass{beamer} \input{definitions} \usetheme{boxes} \setbeamercovered{transparent} <>= title <- "title_UZH.tex" writeLines(readLines(title)) @ HSAUR3/inst/slides/beamerthemeHSAUR.sty0000644000176200001440000000267413055275020017311 0ustar liggesusers\ProvidesPackageRCS $Header: /home/cvs/CVSroot/RHandbook/HSAUR/slides/beamerthemeHSAUR.sty,v 1.1 2006/05/08 09:16:39 hothorn Exp $ % Copyright 2003 by Till Tantau % % This program can be redistributed and/or modified under the terms % of the GNU Public License, version 2. %%\usepackage[names]{color} \DeclareOptionBeamer{hideothersubsections}{\PassOptionsToPackage{hideothersubsections}{beamerouterthemesidebar}} \DeclareOptionBeamer{hideallsubsections}{\PassOptionsToPackage{hideallsubsections}{beamerouterthemesidebar}} \PassOptionsToPackage{right}{beamerouterthemesidebar} \PassOptionsToPackage{width=2cm}{beamerouterthemesidebar} \DeclareOptionBeamer{width}{\PassOptionsToPackage{width=#1}{beamerouterthemesidebar}} \DeclareOptionBeamer{left}{\PassOptionsToPackage{left}{beamerouterthemesidebar}} \DeclareOptionBeamer{right}{\PassOptionsToPackage{right}{beamerouterthemesidebar}} \ProcessOptionsBeamer \mode \useoutertheme[height=0pt]{sidebar} %\setbeamercolor{structure}{fg=Mahogany} \setbeamercolor{structure}{fg=red!70!green!150} %\setbeamercolor{structure}{bg=red!70!green!50} \setbeamercolor{sidebartab}{fg=white} {\usebeamercolor{structure}} {\usebeamercolor{sidebartab}} \definecolor{lilahell}{rgb}{0.43,0.16,0.41} \definecolor{liladunkel}{rgb}{0.12,0.12,0.13} \setbeamertemplate{sidebar canvas \beamer@sidebarside}[vertical shading][top=lilahell,bottom=lilahell] \insertpagenumber \mode HSAUR3/inst/slides/title_UZH.tex0000644000176200001440000000150713055275020016052 0ustar liggesusers\title{Introduction to Data Analysis with \textsf{R}} \author[T. Hothorn]{Torsten Hothorn} \institute{ Universit\"at Z\"urich \\ \texttt{Torsten.Hothorn@R-project.org} } \date{} \begin{document} \frame{\titlepage} \setbeamertemplate{footline}[page number] \begin{frame}[fragile] \begin{columns} \begin{column}{3.5cm} \includegraphics[width = 3cm]{graphics/HSAUR} \end{column} \begin{column}{7.5cm} This course material is based on \booktitle{A Handbook of Statistical Analysis Using \R{}} (3rd edition) published by CRC press. The \R{} package \Rpackage{HSAUR3} contains all data sets, examples and \R{} code and is available from \curl{http://CRAN.R-project.org/package=HSAUR3} \end{column} \end{columns} \end{frame} HSAUR3/inst/slides/HSAUR3_slides_4up.tex0000644000176200001440000000153513055275020017304 0ustar liggesusers \documentclass[landscape]{slides} \usepackage{graphicx} \usepackage{color} \usepackage{pdfpages} \pagestyle{empty} \begin{document} \includepdf[pages=1-,nup=4]{Ch_introduction_to_R.pdf} \includepdf[pages=1-,nup=4]{Ch_simple_inference.pdf} \includepdf[pages=1-,nup=4]{Ch_conditional_inference.pdf} \includepdf[pages=1-,nup=4]{Ch_multiple_linear_regression.pdf} \includepdf[pages=1-,nup=4]{Ch_analysis_of_variance.pdf} \includepdf[pages=1-,nup=4]{Ch_logistic_regression_glm.pdf} \includepdf[pages=1-,nup=4]{Ch_density_estimation.pdf} \includepdf[pages=1-,nup=4]{Ch_recursive_partitioning.pdf} \includepdf[pages=1-,nup=4]{Ch_survival_analysis.pdf} \includepdf[pages=1-,nup=4]{Ch_analysing_longitudinal_dataI.pdf} \includepdf[pages=1-,nup=4]{Ch_analysing_longitudinal_dataII.pdf} \includepdf[pages=1-,nup=4]{Ch_cluster_analysis.pdf} \end{document} HSAUR3/inst/slides/Ch_density_estimation.Rnw0000644000176200001440000004500013055275020020472 0ustar liggesusers \input{HSAUR_title} \SweaveOpts{prefix.string=figures/HSAUR,eps=FALSE,keep.source=TRUE} <>= source("setup.R") @ \frame{ \begin{center} \Large{Part 8: Density Estimation} \end{center} focuses on estimating uni- and multivariate densities. } <>= x <- library("KernSmooth") x <- library("flexmix") x <- library("boot") data("CYGOB1", package = "HSAUR3") @ \section{Introduction} \begin{frame} \frametitle{Erupting Geysers} Old Faithful is the most popular attraction of Yellowstone National Park, although it is not the largest or grandest geyser in the park. Old Faithful can vary in height from 100--180 feet with an average near 130--140 feet. Eruptions normally last between $1.5$ to $5$ minutes. From August 1 to August 15, 1985, Old Faithful was observed and the waiting times between successive eruptions noted. There were $300$ eruptions observed, so $299$ waiting times were (in minutes) recorded. \end{frame} \begin{frame} \frametitle{Star Clusters} The Hertzsprung-Russell (H-R) diagram forms the basis of the theory of stellar evolution. The diagram is essentially a plot of the energy output of stars plotted against their surface temperature. Data from the H-R diagram of Star Cluster CYG OB1, calibrated according to \cite{HSAUR:VanismaGreve1972} are given in \Robject{CYGOB1}. \end{frame} \section{Density Estimation} \begin{frame} \frametitle{Density Estimation} The goal of density estimation is to approximate the probability density function of a random variable (univariate or multivariate) given a sample of observations of the variable. Univariate histograms are a simple example of a density estimate; they are often used for two purposes, counting and displaying the distribution of a variable, but according to \cite{HSAUR:Wilkinson1992}, they are effective for neither. For bivariate data, two-dimensional histograms can be constructed, but for small and moderate sized data sets that is not of any real use for estimating the bivariate density function, simply because most of the `boxes' in the histogram %' will contain too few observations, or if the number of boxes is reduced the resulting histogram will be too coarse a representation of the density function. \end{frame} \begin{frame} \frametitle{Density Estimation} If we are willing to assume a particular form for the variable's %' distribution, for example, Gaussian, density estimation would be reduced to estimating the parameters of the assumed distribution. More commonly, however, we wish to allow the data to speak for themselves and so one of a variety of non-parametric estimation procedures that are now available might be used. One of the most popular class of procedures is the kernel density estimators, which we now briefly describe for univariate and bivariate data. \end{frame} \subsection{Kernel Density Estimators} \begin{frame} \frametitle{Kernel Density Estimators} From the definition of a probability density, if the random $X$ has a density $f$, \begin{eqnarray*} f(x) = \lim_{h \rightarrow 0} \frac{1}{2h} \P(x - h < X < x + h). \end{eqnarray*} For any given $h$ a na{\"\i}ve estimator is \begin{eqnarray*} \hat{f}(x) = \frac{1}{2hn} \sum_{i = 1}^n I(x_i \in (x - h, x + h)), \end{eqnarray*} i.e., the number of $x_1, \dots, x_n$ falling in the interval $(x - h, x + h)$ divided by $2hn$. \end{frame} \begin{frame} \frametitle{Kernel Density Estimators} If we introduce a weight function $W$ given by \begin{eqnarray*} W(x) = \left\{\begin{array}{lcl} \frac{1}{2} & & |x| < 1 \\\\ %end 0 & & \text{else} \end{array} \right . \end{eqnarray*} then the na{\"\i}ve estimator can be rewritten as %" \begin{eqnarray*} \hat{f}(x) = \frac{1}{n} \sum_{i = 1}^n \frac{1}{h} W\left(\frac{x - x_i}{h}\right). \end{eqnarray*} but is unfortunately not continuous function. \end{frame} \begin{frame} \frametitle{Kernel Density Estimators} Better: \begin{eqnarray*} \hat{f}(x) = \frac{1}{hn} \sum_{i = 1}^n K\left(\frac{x - x_i}{h}\right) \end{eqnarray*} where $K$ is known as the \stress{kernel function} and $h$ as the \stress{bandwidth} or \stress{smoothing parameter}. The kernel function must satisfy the condition \begin{eqnarray*} \int_{-\infty}^\infty K(x)dx = 1. \end{eqnarray*} Usually, but not always, the kernel function will be a symmetric density function for example, the normal. \end{frame} \begin{frame} \frametitle{Kernel Functions} \begin{description} \item[rectangular:] \begin{eqnarray*} K(x) = \left\{\begin{array}{lcl} \frac{1}{2} & & |x| < 1 \\\\ %end 0 & & \text{else} \end{array} \right . \end{eqnarray*} \item[triangular:] \begin{eqnarray*} K(x) = \left\{\begin{array}{lcl} 1 - |x| & & |x| < 1 \\\\ %end 0 & & \text{else} \end{array} \right . \end{eqnarray*} \item[Gaussian:] \begin{eqnarray*} K(x) = \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2}x^2} \end{eqnarray*} \end{description} \end{frame} \begin{frame}[fragile] \frametitle{Kernel Functions} \begin{center} <>= rec <- function(x) (abs(x) < 1) * 0.5 tri <- function(x) (abs(x) < 1) * (1 - abs(x)) gauss <- function(x) 1/sqrt(2*pi) * exp(-(x^2)/2) x <- seq(from = -3, to = 3, by = 0.001) plot(x, rec(x), type = "l", ylim = c(0,1), lty = 1, ylab = expression(K(x))) lines(x, tri(x), lty = 2) lines(x, gauss(x), lty = 3) legend(-3, 0.8, legend = c("Rectangular", "Triangular", "Gaussian"), lty = 1:3, title = "kernel functions", bty = "n") @ \end{center} \end{frame} \begin{frame}[fragile] \frametitle{Kernel Functions} The kernel estimator $\hat{f}$ is a sum of `bumps' placed at the observations. %' The kernel function determines the shape of the bumps while the window width $h$ determines their width. We look at the individual bumps $n^{-1}h^{-1} K((x - x_i) / h)$, as well as the estimate $\hat{f}$ obtained by adding them up for an artificial set of data points <>= x <- c(0, 1, 1.1, 1.5, 1.9, 2.8, 2.9, 3.5) n <- length(x) xgrid <- seq(from = min(x) - 1, to = max(x) + 1, by = 0.01) h <- 0.4 bumps <- sapply(x, function(a) gauss((xgrid - a)/h)/(n * h)) @ \end{frame} \begin{frame}[fragile] \frametitle{Kernel Functions} \small \begin{center} <>= plot(xgrid, rowSums(bumps), type = "l", xlab = "x", ylab = expression(hat(f)(x)), lwd = 2) rug(x, lwd = 2) out <- apply(bumps, 2, function(b) lines(xgrid, b)) @ \end{center} \normalsize \end{frame} \subsection{Bivariate Density Estimation} \begin{frame} \frametitle{Bivariate Density Estimation} The kernel density estimator considered as a sum of `bumps' %' centred at the observations has a simple extension to two dimensions (and similarly for more than two dimensions). The bivariate estimator for data $(x_1, y_1)$, $(x_2, y_2)$, $\dots$, $(x_n, y_n)$ is defined as \begin{eqnarray*} \hat{f}(x, y) = \frac{1}{nh_xh_y} \sum_{i = 1}^n K\left(\frac{x - x_i}{h_x}, \frac{y - y_i}{h_y}\right). \end{eqnarray*} In this estimator each coordinate direction has its own smoothing parameter $h_x$ and $h_y$. An alternative is to scale the data equally for both dimensions and use a single smoothing parameter. \end{frame} \begin{frame} \frametitle{Bivariate Kernels} \begin{description} \item[Bivariate Normal kernel:] \begin{eqnarray*} K(x, y) = \frac{1}{2 \pi}e^{-\frac{1}{2} (x^2 + y^2)}. \end{eqnarray*} \item[Bivariate Epanechnikov kernel:] \begin{eqnarray*} K(x, y) = \left\{\begin{array}{lcl} \frac{2}{\pi}(1 - x^2 - y^2) & & x^2 + y^2 < 1 \\\\ %end 0 & & \text{else} \end{array} \right. \end{eqnarray*} \end{description} \end{frame} \begin{frame}[fragile] \frametitle{Epanechnikov} \begin{center} <>= epa <- function(x, y) ((x^2 + y^2) < 1) * 2/pi * (1 - x^2 - y^2) x <- seq(from = -1.1, to = 1.1, by = 0.05) epavals <- sapply(x, function(a) epa(a, x)) persp(x = x, y = x, z = epavals, xlab = "x", ylab = "y", zlab = expression(K(x, y)), theta = -35, axes = TRUE, box = TRUE) @ \end{center} \end{frame} \section{Analysis Using R} \begin{frame}[fragile] \frametitle{Old Faithful} \begin{center} <>= data("faithful", package = "datasets") x <- faithful$waiting layout(matrix(1:3, ncol = 3)) hist(x, xlab = "Waiting times (in min.)", ylab = "Frequency", probability = TRUE, main = "Gaussian kernel", border = "gray") lines(density(x, width = 12), lwd = 2) rug(x) hist(x, xlab = "Waiting times (in min.)", ylab = "Frequency", probability = TRUE, main = "Rectangular kernel", border = "gray") lines(density(x, width = 12, window = "rectangular"), lwd = 2) rug(x) hist(x, xlab = "Waiting times (in min.)", ylab = "Frequency", probability = TRUE, main = "Triangular kernel", border = "gray") lines(density(x, width = 12, window = "triangular"), lwd = 2) rug(x) @ \end{center} \end{frame} \begin{frame}[fragile] \frametitle{Star Clusters} \small \begin{center} <>= CYGOB1d <- bkde2D(CYGOB1, bandwidth = sapply(CYGOB1, dpik)) contour(x = CYGOB1d$x1, y = CYGOB1d$x2, z = CYGOB1d$fhat, xlab = "log surface temperature", ylab = "log light intensity") @ \end{center} \normalsize \end{frame} \begin{frame}[fragile] \frametitle{Star Clusters} \begin{center} <>= persp(x = CYGOB1d$x1, y = CYGOB1d$x2, z = CYGOB1d$fhat, xlab = "log surface temperature", ylab = "log light intensity", zlab = "estimated density", theta = -35, axes = TRUE, box = TRUE) @ \end{center} \end{frame} \subsection{A Parametric Density Estimate for the Old Faithful Data} \begin{frame} \frametitle{Parametric Old Faithful} Two-component normal mixture distribution \begin{eqnarray*} f(x) = p \phi(x, \mu_1, \sigma_1^2) + (1 - p) \phi(x, \mu_2, \sigma^2_2) \end{eqnarray*} where $\phi(x, \mu, \sigma^2)$ denotes the normal density. This distribution had five parameters to estimate, the mixing proportion, $p$, and the mean and variance of each component normal distribution. Pearson 100 years ago heroically attempted this by the method of moments, which required solving a polynomial equation of the 9$^{\text{th}}$ degree. Nowadays the preferred estimation approach is maximum likelihood. \end{frame} \begin{frame}[fragile] \frametitle{Maximum Likelihood Estimation} <>= logL <- function(param, x) { d1 <- dnorm(x, mean = param[2], sd = param[3]) d2 <- dnorm(x, mean = param[4], sd = param[5]) -sum(log(param[1] * d1 + (1 - param[1]) * d2)) } startparam <- c(p = 0.5, mu1 = 50, sd1 = 3, mu2 = 80, sd2 = 3) opp <- optim(startparam, logL, x = faithful$waiting, method = "L-BFGS-B", lower = c(0.01, rep(1, 4)), upper = c(0.99, rep(200, 4))) opp @ \end{frame} \begin{frame}[fragile] \frametitle{Maximum Likelihood Estimation} <>= print(opp[names(opp) != "message"]) @ \end{frame} \begin{frame}[fragile] \frametitle{Maximum Likelihood Estimation} Optimising the appropriate likelihood `by hand' %' is not very convenient. In fact, (at least) two packages offer high-level functionality for estimating mixture models. The first one is package \Rpackage{mclust} \citep{PKG:mclust} implementing the methodology described in \cite{HSAUR:FraleyRaftery2002}. Here, a Bayesian information criterion (BIC) is applied to choose the form of the mixture model: <>= library("mclust") @ <>= library("mclust") mc <- Mclust(faithful$waiting) mc @ \end{frame} \begin{frame}[fragile] \frametitle{Maximum Likelihood Estimation} The estimated means are <>= mc$parameters$mean @ with estimated standard deviation (found to be equal within both groups) <>= sqrt(mc$parameters$variance$sigmasq) @ The proportion is $\hat{p} = \Sexpr{round(mc$parameters$pro[1], 2)}$. \end{frame} \begin{frame}[fragile] \frametitle{Maximum Likelihood Estimation} The second package is called \Rpackage{flexmix}: <>= library("flexmix") fl <- flexmix(waiting ~ 1, data = faithful, k = 2) @ with $\hat{p} = \Sexpr{round(fl@prior, 2)}$ and estimated parameters <>= parameters(fl, component = 1) parameters(fl, component = 2) @ \end{frame} \begin{frame}[fragile] \frametitle{Maximum Likelihood Estimation} \small \begin{center} <>= opar <- as.list(opp$par) rx <- seq(from = 40, to = 110, by = 0.1) d1 <- dnorm(rx, mean = opar$mu1, sd = opar$sd1) d2 <- dnorm(rx, mean = opar$mu2, sd = opar$sd2) f <- opar$p * d1 + (1 - opar$p) * d2 hist(x, probability = TRUE, xlab = "Waiting times (in min.)", border = "gray", xlim = range(rx), ylim = c(0, 0.06), main = "") lines(rx, f, lwd = 2) lines(rx, dnorm(rx, mean = mean(x), sd = sd(x)), lty = 2, lwd = 2) legend(50, 0.06, lty = 1:2, bty = "n", legend = c("Fitted two-component mixture density", "Fitted single normal density")) @ \end{center} \normalsize \end{frame} \section{Bootstrap} \begin{frame}[fragile] \frametitle{The Bootstrap} We can get standard errors for the five parameter estimates by using a bootstrap approach \citep[see][]{HSAUR:EfronTibshirani1993}. First, we define a function that, for a bootstrap sample \Robject{indx}, fits a two-component mixture model and returns $\hat{p}$ and the estimated means <>= library("boot") fit <- function(x, indx) { a <- Mclust(x[indx], minG = 2, maxG = 2)$parameters if (a$pro[1] < 0.5) return(c(p = a$pro[1], mu1 = a$mean[1], mu2 = a$mean[2])) return(c(p = 1 - a$pro[1], mu1 = a$mean[2], mu2 = a$mean[1])) } @ \end{frame} \begin{frame}[fragile] \frametitle{The Bootstrap} The function \Rcmd{fit} can now be fed into the \Rcmd{boot} function \citep{PKG:boot} for bootstrapping (here $1000$ bootstrap samples are drawn) \begin{Schunk} \begin{Sinput} R> bootpara <- boot(faithful$waiting, fit, R = 1000) \end{Sinput} \end{Schunk} <>= bootparafile <- system.file("cache", "DE-bootpara.rda", package = "HSAUR3") if (file.exists(bootparafile)) { load(bootparafile) } else { bootpara <- boot(faithful$waiting, fit, R = 1000) } @ Variability of our estimates $\hat{p}$ (BCa confidence intervals): <>= boot.ci(bootpara, type = "bca", index = 1) @ \end{frame} \begin{frame}[fragile] \frametitle{The Bootstrap} We see that there is a reasonable variability in the mixture model, however, the means in the two components are rather stable, as can be seen from <>= boot.ci(bootpara, type = "bca", index = 2) @ for $\hat{\mu}_1$ \end{frame} \begin{frame}[fragile] \frametitle{The Bootstrap} and for $\hat{\mu}_2$ from <>= boot.ci(bootpara, type = "bca", index = 3) @ \end{frame} \begin{frame}[fragile] \frametitle{The Bootstrap} Bootstrap-distribution of $\hat{\mu}_1$ and $\hat{\mu}_2$ with BCa confidence intervals: <>= bootplot <- function(b, index, main = "") { dens <- density(b$t[,index]) ci <- boot.ci(b, type = "bca", index = index)$bca[4:5] est <- b$t0[index] plot(dens, main = main) y <- max(dens$y) / 10 segments(ci[1], y, ci[2], y, lty = 2) points(ci[1], y, pch = "(") points(ci[2], y, pch = ")") points(est, y, pch = 19) } @ \begin{figure} \begin{center} <>= layout(matrix(1:2, ncol = 2)) bootplot(bootpara, 2, main = expression(mu[1])) bootplot(bootpara, 3, main = expression(mu[2])) @ \end{center} \end{figure} \end{frame} \section{Summary} \begin{frame} \frametitle{Summary} Histograms and scatterplots are frequently used to give graphical representations of univariate and bivariate data. But both can often be improved and made more helpful by adding some form of density estimate. For scatterplots in particular adding a contour plot of the estimated bivariate density can be particularly useful in aiding in the identification of clusters, gaps and outliers. \end{frame} \section*{Exercises} \begin{frame} \frametitle{Exercises} \begin{itemize} \item The \Robject{galaxies} data are the velocities of $82$ galaxies from six well-separated conic sections of space \citep{HSAUR:Postmanetal1986,HSAUR:Roeder1990}. The data are intended to shed light on whether or not the observable universe contains superclusters of galaxies surrounded by large voids. The evidence for the existence of superclusters would be the multimodality of the distribution of velocities. Construct a histogram of the data and add a variety of kernel estimates of the density function. What do you conclude about the possible existence of superclusters of galaxies? \item The \Robject{birthdeathrates} data give the birth and death rates for 69 countries \citep[from][]{HSAUR:Hartigan1975}. Produce a scatterplot of the data that shows a contour plot of the estimated bivariate density. Does the plot give you any interesting insights into the possible structure of the data? \end{itemize} \end{frame} \begin{frame} \frametitle{Exercises} \begin{itemize} \item A sex difference in the age of onset of schizophrenia was noted by \cite{HSAUR:Kraepelin1919}. Subsequent epidemiological studies of the disorder have consistently shown an earlier onset in men than in women. One model that has been suggested to explain this observed difference is known as the \stress{subtype model} which postulates two types of schizophrenia, one characterised by early onset, typical symptoms and poor premorbid competence, and the other by late onset, atypical symptoms and good premorbid competence. The early onset type is assumed to be largely a disorder of men and the late onset largely a disorder of women. By fitting finite mixtures of normal densities separately to the onset data for men and women given in \Robject{schizophrenia} see if you can produce some evidence for or against the subtype model. \end{itemize} \end{frame} \begin{frame} \frametitle{References} \tiny <>= src <- system.file(package = "HSAUR3") style <- file.path(src, "LaTeXBibTeX", "refstyle") bst <- file.path(src, "LaTeXBibTeX", "HSAUR") cat(paste("\\bibliographystyle{", style, "}", sep = ""), "\n \n") cat(paste("\\bibliography{", bst, "}", sep = ""), "\n \n") @ \end{frame} \end{document} HSAUR3/inst/slides/Ch_logistic_regression_glm.Rnw0000644000176200001440000003716713055275020021512 0ustar liggesusers \input{HSAUR_title} \SweaveOpts{prefix.string=figures/HSAUR,eps=FALSE,keep.source=TRUE} <>= source("setup.R") @ \frame{ \begin{center} \Large{Part 7: Logistic Regression and \\ Generalised Linear Models} \end{center} explains how to fit regression models to binary response variables and to counts. } \section{Introduction} \begin{frame} \frametitle{Introduction} Ordinary linear regression models assume the response variable to be (approximately) normal distributed. However, many experiments require an assessment of the relationship between covariates and a binary response variable, i.e., a variable measured at only two levels, or counts. Generalised linear models provide a framework for the estimation of regression models with non-normal response variables. The regression relationship between the covariates and the response is modelled by a linear combination of the covariates. \end{frame} \begin{frame} \frametitle{plasma: Erythrocyte sedimentation rate (ESR)} The erythrocyte sedimentation rate (ESR) is the rate at which red blood cells (erythrocytes) settle out of suspension in blood plasma, when measured under standard conditions. If the ESR increases when the level of certain proteins in the blood plasma rise in association with conditions such as rheumatic diseases, chronic infections and malignant diseases, its determination might be useful in screening blood samples taken from people suspected of suffering from one of the conditions mentioned. The absolute value of the ESR is not of great importance, rather it is whether it is less than 20mm/hr since lower values indicate a `healthy' individual. The question of interest is whether there is any association between the probability of an ESR reading greater than 20mm/hr and the levels of the two plasma proteins. If there is not then the determination of ESR would not be useful for diagnostic purposes. \end{frame} \begin{frame} \frametitle{womensrols: Women's role in society} In a survey carried out in 1974/1975 each respondent was asked if he or she agreed or disagreed with the statement `Women should take care of running their homes and leave running the country up to men'. The questions here are whether the responses of men and women differ and how years of education affects the response. \end{frame} \begin{frame} \frametitle{polyps: Colonic polyps} The data stem from an placebo-controlled trial of a non-steroidal anti-inflammatory drug in the treatment of familial andenomatous polyposis (FAP). The trial was halted after a planned interim analysis had suggested compelling evidence in favour of the treatment. The data give the number of colonic polyps after a $12$-month treatment period. The question of interest is whether the number of polyps is related to treatment and/or age of patients. \end{frame} \section{Logistic Regression and Generalised Linear Models} \begin{frame} \frametitle{Logistic Regression} The ordinary multiple regression model is described as $y \sim \N(\mu, \sigma^2)$ where $\mu = \beta_0 + \beta_1 x_1 + \dots + \beta_q x_q$. This makes it clear that this model is suitable for continuous response variables with, conditional on the values of the explanatory variables, a normal distribution with constant variance. So clearly the model would not be suitable for applying to the erythrocyte sedimentation rate since the response variable is binary. \end{frame} \begin{frame} \frametitle{Logistic Regression} For modelling the expected value of the response directly as a linear function of explanatory variables, a suitable transformation is modelled. In this case the most suitable transformation is the \stress{logistic} or \stress{logit} function of $\pi = P(y = 1)$ leading to the model \begin{eqnarray*} \text{logit}(\pi) = \log\left(\frac{\pi}{1 - \pi}\right) = \beta_0 + \beta_1 x_1 + \dots + \beta_q x_q. \end{eqnarray*} The logit of a probability is simply the log of the odds of the response taking the value one. \end{frame} \begin{frame} \frametitle{Logistic Regression} The logit function can take any real value, but the associated probability always lies in the required $[0,1]$ interval. In a logistic regression model, the parameter $\beta_j$ associated with explanatory variable $x_j$ is such that $\exp(\beta_j)$ is the odds that the response variable takes the value one when $x_j$ increases by one, conditional on the other explanatory variables remaining constant. The parameters of the logistic regression model (the vector of regression coefficients $\beta$) are estimated by maximum likelihood. \end{frame} \begin{frame} \frametitle{The Generalised Linear Model (GLM)} Essentially GLMs consist of three main features; \begin{enumerate} \item An \stress{error distribution} giving the distribution of the response around its mean. \item A \stress{link function}, $g$, that shows how the linear function of the explanatory variables is related to the expected value of the response \begin{eqnarray*} g(\mu) = \beta_0 + \beta_1 x_1 + \dots + \beta_q x_q. \end{eqnarray*} \item The \stress{variance function} that captures how the variance of the response variable depends on the mean. \end{enumerate} Estimation of the parameters in a GLM is usually achieved through a maximum likelihood approach. \end{frame} \section{Analysis Using R} \begin{frame}[fragile] \frametitle{ESR and Plasma Proteins: Plot} At first, we will look at conditional density plots of the response variable given the two explanatory variables describing how the conditional distribution of the categorical variable ESR changes over the numerical variables fibrinogen and gamma globulin. It appears that higher levels of each protein are associated with ESR values above $20$ mm/hr. \end{frame} \begin{frame}[fragile] \frametitle{ESR and Plasma Proteins: Plot} \begin{center} <>= layout(matrix(1:2, ncol = 2)) cdplot(ESR ~ fibrinogen, data = plasma) cdplot(ESR ~ globulin, data = plasma) @ \end{center} \end{frame} \begin{frame}[fragile] \frametitle{ESR and Plasma Proteins: GLM} We can now fit a logistic regression model to the data using the \Rcmd{glm} function. We start with a model that includes only a single explanatory variable, \Robject{fibrinogen}. The code to fit the model is <>= plasma_glm_1 <- glm(ESR ~ fibrinogen, data = plasma, family = binomial()) @ \end{frame} \begin{frame}[fragile] \frametitle{ESR and Plasma Proteins: Summary} \small <>= summary(plasma_glm_1) @ \normalsize \end{frame} \begin{frame}[fragile] \frametitle{ESR and Plasma Proteins: Estimation} From the summary we see that the regression coefficient for fibrinogen is significant at the $5\%$ level. An increase of one unit in this variable increases the log-odds in favour of an ESR value greater than $20$ by an estimated $\Sexpr{round(coef(plasma_glm_1)["fibrinogen"], 2)}$ with 95\% confidence interval <>= confint(plasma_glm_1)["fibrinogen",] @ \end{frame} \begin{frame}[fragile] \frametitle{ESR and Plasma Proteins: GLM} Nevertheless it seems likely that increased values of fibrinogen lead to a greater probability of an ESR value greater than $20$. We can now fit a logistic regression model that includes both explanatory variables using the code <>= plasma_glm_2 <- glm(ESR ~ fibrinogen + globulin, data = plasma, family = binomial()) @ \end{frame} \begin{frame}[fragile] \frametitle{ESR and Plasma Proteins: Summary} \small <>= summary(plasma_glm_2) @ \normalsize \end{frame} \begin{frame}[fragile] \frametitle{ESR and Plasma Proteins: Model Comparison} <>= anova(plasma_glm_1, plasma_glm_2, test = "Chisq") @ \end{frame} \begin{frame}[fragile] \frametitle{ESR and Plasma Proteins: Prediction} The estimated conditional probability of a ESR value larger $20$ for all observations can be computed by <>= prob <- predict(plasma_glm_1, type = "response") @ \end{frame} \begin{frame}[fragile] \frametitle{ESR and Plasma Proteins: Plot} %%\setkeys{Gin}{width = 0.5\textwidth} \tiny \begin{center} <>= plot(globulin ~ fibrinogen, data = plasma, xlim=c(2,6), ylim=c(25,50), pch = ".") symbols(plasma$fibrinogen, plasma$globulin, circles = prob, add = TRUE) @ \end{center} \normalsize \end{frame} \begin{frame}[fragile] \frametitle{Women's Role in Society: GLM} %' We first fit a model that includes the two explanatory variables using the code <>= fm <- cbind(agree,disagree) ~ gender + education womensrole_glm_1 <- glm(fm, data = womensrole, family = binomial()) @ \end{frame} \begin{frame}[fragile] \frametitle{Women's Role in Society: Summary} %' \small <>= summary(womensrole_glm_1) @ \normalsize \end{frame} \begin{frame}[fragile] \frametitle{Women's Role in Society: Plot} We now are going to construct a plot comparing the observed proportions of agreeing with those fitted by our fitted model. Because we will reuse this plot for another fitted object later on, we define a function which plots years of education against some fitted probabilities, e.g., \tiny <>= role.fitted1 <- predict(womensrole_glm_1, type = "response") myplot <- function(role.fitted) { f <- womensrole$gender == "Female" plot(womensrole$education, role.fitted, type = "n", ylab = "Probability of agreeing", xlab = "Education", ylim = c(0,1)) lines(womensrole$education[!f], role.fitted[!f], lty = 1) lines(womensrole$education[f], role.fitted[f], lty = 2) lgtxt <- c("Fitted (Males)", "Fitted (Females)") legend("topright", lgtxt, lty = 1:2, bty = "n") y <- womensrole$agree / (womensrole$agree + womensrole$disagree) size <- womensrole$agree + womensrole$disagree size <- size - min(size) size <- (size / max(size)) * 3 + 1 text(womensrole$education, y, ifelse(f, "\\VE", "\\MA"), family = "HersheySerif", cex = size) } @ \normalsize \end{frame} \begin{frame}[fragile] \frametitle{Women's Role in Society: Plot} \begin{center} <>= myplot(role.fitted1) @ \end{center} \end{frame} \begin{frame}[fragile] \frametitle{Women's Role in Society: Interactions} %' An interaction term for gender and education can be included into the logistic regression model via <>= fm <- cbind(agree,disagree) ~ gender * education womensrole_glm_2 <- glm(fm, data = womensrole, family = binomial()) @ \end{frame} \begin{frame}[fragile] \frametitle{Women's Role in Society: Interactions} %' \small <>= summary(womensrole_glm_2) @ \normalsize \end{frame} \begin{frame}[fragile] \frametitle{Women's Role in Society: Plot} \begin{center} <>= myplot(predict(womensrole_glm_2, type = "response")) @ \end{center} \end{frame} \begin{frame}[fragile] \frametitle{Colonic Polyps: Poisson GLM} We will apply a GLM with a log link function, ensuring that fitted values are positive, and a Poisson error distribution, i.e., \begin{eqnarray*} \P(y) = \frac{e^{-\lambda}\lambda^y}{y!}. \end{eqnarray*} This type of GLM is often known as \stress{Poisson regression}. \end{frame} \begin{frame}[fragile] \frametitle{Colonic Polyps: Poisson GLM} <>= polyps_glm_1 <- glm(number ~ treat + age, data = polyps, family = poisson()) @ (The default link function when the Poisson family is requested is the log function.) \end{frame} \begin{frame}[fragile] \frametitle{Colonic Polyps: Summary} \small <>= summary(polyps_glm_1) @ \normalsize \end{frame} \begin{frame}[fragile] \frametitle{Colonic Polyps: Overdispersion} We see that the regression coefficients for both age and treatment are highly significant. But there is a problem with the model, but before we can deal with it we need a short digression to describe in more detail the third component of GLMs mentioned in the previous section, namely their variance functions, $V(\mu)$. Both the Poisson and binomial distributions have variance functions that are completely determined by the mean. The phenomenon of greater variability than expected under the model is observed is called \stress{overdispersion}. \end{frame} \begin{frame}[fragile] \frametitle{Colonic Polyps: Quasi-Likelihood} We can deal with overdispersion by using a procedure known as \stress{quasi-likelihood}, which allows the estimation of model parameters without fully knowing the error distribution of the response variable. <>= polyps_glm_2 <- glm(number ~ treat + age, data = polyps, family = quasipoisson()) @ \end{frame} \begin{frame}[fragile] \frametitle{Colonic Polyps: Summary} \small <>= summary(polyps_glm_2) @ \normalsize \end{frame} \section{Summary} \begin{frame} \frametitle{Summary} Generalised linear models provide a very powerful and flexible framework for the application of regression models to a variety of non-normal response variables, for example, logistic regression to binary responses and Poisson regression to count data. \end{frame} \section{Exercises} \begin{frame} \frametitle{Exercises} \begin{itemize} \item Construct a perspective plot of the fitted values from a logistic regression model fitted to the \Robject{plasma} data in which both fibrinogen and gamma globulin are included as explanatory variables. \item \cite{HSAUR:Collett2003} argues that two outliers need to be removed from the \Robject{plasma} data. Try to identify those two unusual observations by means of a scatterplot. \item The \Robject{bladdercancer} data arise from $31$ male patients who have been treated for superficial bladder cancer \citep[see][]{HSAUR:Seeber1998}, and give the number of recurrent tumours during a particular time after the removal of the primary tumour, along with the size of the original tumour (whether smaller or larger than $3$ cm). Use Poisson regression to estimate the effect of size of tumour on the number of recurrent tumours. \end{itemize} \end{frame} \begin{frame} \frametitle{Exercises} \begin{itemize} \item The \Robject{leuk} data show the survival times from diagnosis of patients suffering from leukemia and the values of two explanatory variables, the white blood cell count (\Robject{wbc}) and the presence or absence of a morphological characteristic of the white blood cells (\Robject{ag}) \citep[the data are available in package \Rpackage{MASS},][]{HSAUR:VenablesRipley2002}. Define a binary outcome variable according to whether or not patients lived for at least 24 weeks after diagnosis and then fit a logistic regression model to the data. It may be advisable to transform the very large white blood counts to avoid regression coefficients very close to 0 (and odds ratios very close to 1). And a model that contains only the two explanatory variables may not be adequate for these data. Construct some graphics useful in the interpretation of the final model you fit. \end{itemize} \end{frame} \begin{frame} \frametitle{References} \tiny <>= src <- system.file(package = "HSAUR3") style <- file.path(src, "LaTeXBibTeX", "refstyle") bst <- file.path(src, "LaTeXBibTeX", "HSAUR") cat(paste("\\bibliographystyle{", style, "}", sep = ""), "\n \n") cat(paste("\\bibliography{", bst, "}", sep = ""), "\n \n") @ \end{frame} \end{document} HSAUR3/inst/slides/Ch_analysis_of_variance.Rnw0000644000176200001440000003434713055275020020752 0ustar liggesusers \input{HSAUR_title} \SweaveOpts{prefix.string=figures/HSAUR,eps=FALSE,keep.source=TRUE} <>= source("setup.R") @ \frame{ \begin{center} \Large{Part 5: Analysis of Variance} \end{center} focuses on the analysis of one-way layouts for the Weight Gain, Foster Feeding in Rats, Water Hardness and Male Egyptian Skulls examples. } \section{Introduction} \begin{frame} \frametitle{weightgain: Rats Weights} The data arise from an experiment to study the gain in weight of rats fed on four different diets, distinguished by amount of protein (low and high) and by source of protein (beef and cereal). Ten rats are randomised to each of the four treatments and the weight gain in grams recorded. The question of interest is how diet affects weight gain. \end{frame} \begin{frame} \frametitle{foster: Feeding Rats} The data from a foster feeding experiment with rat mothers and litters of four different genotypes: A, B, I and J. The measurement is the litter weight (in grams) after a trial feeding period. Here the investigator's interest lies %' in uncovering the effect of genotype of mother and litter on litter weight. \end{frame} \begin{frame} \frametitle{skulls: Egyptian Skulls} The data give four measurements made on Egyptian skulls from five epochs. The data has been collected with a view to deciding if there are any differences between the skulls from the five epochs. The measurements are: \begin{description} \item[\Robject{mb}]: maximum breadths of the skull, \item[\Robject{bh}]: basibregmatic heights of the skull, \item[\Robject{bl}]: basialiveolar length of the skull, and \item[\Robject{nh}]: nasal heights of the skull. \end{description} Non-constant measurements of the skulls over time would indicate interbreeding with immigrant populations. \end{frame} \section{Analysis of Variance} \begin{frame} \frametitle{Analysis of Variance} For each of the data sets described previously, the question of interest involves assessing whether certain populations differ in mean value for a single variable or for a set of four variables (\Robject{skulls} data). In the first two cases we shall use \stress{analysis of variance} (ANOVA) and in the last \stress{multivariate analysis of variance} (MANOVA) method for the analysis of this data. \end{frame} \begin{frame} \frametitle{Factorial Designs} Both the \Robject{weightgain} and \Robject{foster} data sets are examples of \stress{factorial designs}, with the factors in the first data set being amount of protein with two levels, and source of protein also with two levels. In the second the factors are the genotype of the mother and the genotype of the litter, both with four levels. The analysis of each data set can be based on the same model but the two data sets differ in that the first is \stress{balanced}, i.e., there are the same number of observations in each cell, whereas the second is \stress{unbalanced} having different numbers of observations in the 16 cells of the design. \end{frame} \begin{frame} \frametitle{ANOVA Model} The model used in the analysis of each is \begin{eqnarray*} y_{ijk} = \mu + \gamma_i + \beta_j + (\gamma\beta)_{ij} + \varepsilon_{ijk} \end{eqnarray*} where $y_{ijk}$ represents the $k$th measurement made in cell $(i,j)$ of the factorial design, $\mu$ is the overall mean, $\gamma_i$ is the main effect of the first factor, $\beta_j$ is the main effect of the second factor, $(\gamma\beta)_{ij}$ is the interaction effect of the two factors and \index{Interaction} $\varepsilon_{ijk}$ is the residual or error term assumed to have a normal distribution with mean zero and variance $\sigma^2$. \end{frame} \begin{frame}[fragile] \frametitle{Formula Specification in R} In \R{}, the model is specified by a model \Rclass{formula}. The \stress{two-way layout with interactions} specified above reads <>= y ~ a + b + a:b @ where the variable \Robject{a} is the first and the variable \Robject{b} is the second \Rclass{factor}. The interaction term $(\gamma\beta)_{ij}$ is denoted by \Robject{a:b}. \end{frame} \begin{frame} \frametitle{Estimation and Inference} The model as specified above is overparameterised, i.e., there are infinitively many solutions to the corresponding estimation equations, and so the parameters have to be constrained in some way, commonly by requiring them to sum to zero. The model given above leads to a partition of the variation in the observations into parts due to main effects and interaction plus an error term that enables a series of $F$-tests. The assumptions made in deriving the $F$-tests are: \begin{itemize} \item The observations are independent of each other, \item The observations in each cell arise from a population having a normal distribution, and \item The observations in each cell are from populations having the same variance. \end{itemize} \end{frame} \begin{frame} \frametitle{MANOVA} The linear model used in this case is \begin{eqnarray*} y_{ijh} = \mu_h + \gamma_{jh} + \varepsilon_{ijh} \end{eqnarray*} where $\mu_h$ is the overall mean for variable $h$, $\gamma_{jh}$ is the effect of the $j$th level of the single factor on the $h$th variable, and $\varepsilon_{ijh}$ is a random error term. The vector $\varepsilon^\top_{ij} = (\varepsilon_{ij1}, \varepsilon_{ij2}, \dots, \varepsilon_{ijq})$ where $q$ is the number of response variables (four in the skull example) is assumed to have a multivariate normal distribution with null mean vector and covariance matrix, $\Sigma$, assumed to be the same in each level of the grouping factor. The hypothesis of interest is that the population mean vectors for the different levels of the grouping factor are the same. \end{frame} \begin{frame} \frametitle{MANOVA Inference} A number of different test statistics are available which may give different results when applied to the same data set, although the final conclusion is often the same. The principal test statistics for the multivariate analysis of variance are \begin{itemize} \item Hotelling-Lawley trace, \item Wilks' ratio of determinants \item Roy's greatest root, \item Pillai trace. \end{itemize} \end{frame} \section{Analysis Using R} \subsection{Weight Gain in Rats} \begin{frame}[fragile] \frametitle{Weight Gain in Rats} We should try to summarise the main features of the data first. The following \R{} code produces the required summary statistics <>= tapply(weightgain$weightgain, list(weightgain$source, weightgain$type), mean) tapply(weightgain$weightgain, list(weightgain$source, weightgain$type), sd) @ \end{frame} \begin{frame} \begin{center} <>= plot.design(weightgain) @ \end{center} \end{frame} \begin{frame}[fragile] \frametitle{ANOVA} To apply analysis of variance to the data we can use the \Rcmd{aov} function in \R{} and then the \Rcmd{summary} method to give us the analysis of variance table: <>= summary(wg_aov <- aov(weightgain ~ source * type, data = weightgain)) @ \end{frame} \begin{frame}[fragile] \frametitle{ANOVA} The analysis of variance table shows that the main effect of type is highly significant. The main effect of source is not significant. But interpretation of both these main effects is complicated by the type $\times$ source interaction which approaches significance at the $5$\% level. To try to understand this interaction effect it will be useful to plot the mean weight gain for low- and high-protein diets for each level of source of protein, beef and cereal. \end{frame} \begin{frame} \begin{center} <>= interaction.plot(weightgain$type, weightgain$source, weightgain$weightgain, legend = FALSE) legend(1.5, 95, legend = levels(weightgain$source), title = "weightgain$source", lty = 1:2, bty = "n") @ \end{center} \end{frame} \begin{frame}[fragile] \frametitle{ANOVA Results} The estimates of the intercept and the main and interaction effects can be extracted from the model fit by <>= coef(wg_aov) @ Note that the model was fitted with the restrictions $\gamma_1 = 0$ (corresponding to \Rlevel{Beef}) and $\beta_1 = 0$ (corresponding to \Rlevel{High}) because treatment contrasts were used as default as can be seen from <>= options("contrasts") @ Thus, the coefficient for \Robject{source} of $\Sexpr{coef(wg_aov)[2]}$ can be interpreted as an estimate of the difference $\gamma_2 - \gamma_1$. \end{frame} \subsection{Foster Feeding of Rats of Different Genotype} \begin{frame} \frametitle{Foster Feeding} \begin{center} <>= plot.design(foster) @ \end{center} \end{frame} \begin{frame}[fragile] \frametitle{Unbalanced ANOVA} We can now apply analysis of variance using the \Rcmd{aov} function, but there is a complication caused by the unbalanced nature of the data. Here where there are unequal numbers of observations in the $16$ cells of the two-way layout, it is no longer possible to partition the variation in the data into \stress{non-overlapping} or \stress{orthogonal} sums of squares representing main effects and interactions. In an unbalanced two-way layout with factors $A$ and $B$ there is a proportion of the variance of the response variable that can be attributed to either $A$ or $B$. \end{frame} \begin{frame}[fragile] \frametitle{ANOVA Results} We can derive the two analyses of variance tables for the foster feeding example by applying the \R{} code <>= summary(aov(weight ~ litgen * motgen, data = foster)) @ \end{frame} \begin{frame}[fragile] \frametitle{ANOVA Results} and <>= summary(aov(weight ~ motgen * litgen, data = foster)) @ \end{frame} \begin{frame} \frametitle{Multiple Comparisons} We can investigate the effect of genotype B on litter weight in more detail by the use of \stress{multiple comparison procedures}. Such procedures allow a comparison of all pairs of levels of a factor whilst maintaining the nominal significance level at its selected value and producing adjusted confidence intervals for mean differences. One such procedure is called \stress{Tukey honest significant differences} \index{Tukey honest significant differences} suggested by \cite{HSAUR:Tukey1953}, see \cite{HSAUR:HochbergTamhane1987} also. \end{frame} \begin{frame}[fragile] \frametitle{All-Pair Differences} Here, we are interested in simultaneous confidence intervals for the weight differences between all four genotypes of the mother: <>= TukeyHSD(aov(weight ~ litgen * motgen, data = foster), "motgen") @ \end{frame} \begin{frame} \begin{center} <>= foster_aov <- aov(weight ~ litgen * motgen, data = foster) plot(TukeyHSD(foster_aov, "motgen")) @ \end{center} \end{frame} \subsection{Water Hardness and Mortality} \begin{frame} \frametitle{Water Hardness and Mortality} The water hardness and mortality data for $61$ large towns in England and Wales was analysed in Part~2 and here we will extend the analysis by an assessment of the differences of both hardness and mortality in the North or South. The hypothesis that the two-dimensional mean-vector of water hardness and mortality is the same for cities in the North and the South can be tested by \stress{Hotelling-Lawley} test in a multivariate analysis of variance framework. The \R{} function \Rcmd{manova} can be used to fit such a model and the corresponding \Rcmd{summary} method performs the test specified by the \Rcmd{test} argument. \end{frame} \begin{frame}[fragile] <>= summary(manova(cbind(hardness, mortality) ~ location, data = water), test = "Hotelling-Lawley") @ \end{frame} \begin{frame}[fragile] Looking at the sample means <>= tapply(water$hardness, water$location, mean) tapply(water$mortality, water$location, mean) @ we see large differences in the two regions both in water hardness and mortality, where low mortality is associated with hard water in the South and high mortality with soft water in the North. \end{frame} \subsection{Male Egyptian Skulls} \begin{frame}[fragile] \frametitle{Male Egyptian Skulls} We can begin by looking at a table of mean values for the four measurements within each of the five epochs: <>= means <- aggregate(skulls[,c("mb", "bh", "bl", "nh")], list(epoch = skulls$epoch), mean) means @ \end{frame} \begin{frame} \begin{center} <>= pairs(means[,-1], panel = function(x, y) { text(x, y, abbreviate(levels(skulls$epoch))) }) @ \end{center} \end{frame} \begin{frame}[fragile] There appear to be quite large differences between the epoch means, at least on some of the four measurements. We can now test for a difference more formally by using MANOVA with the following \R{} code to apply each of the four possible test criteria mentioned earlier; <>= skulls_manova <- manova(cbind(mb, bh, bl, nh) ~ epoch, data = skulls) sapply(c("Pillai", "Wilks", "Hotelling-Lawley", "Roy"), function(test) summary(skulls_manova, test = test)$stats[1,6]) @ \end{frame} \section*{Exercises} \begin{frame} \frametitle{Exercises} \begin{itemize} \item Examine the residuals ($\text{observed value} - \text{fitted value}$) from fitting a main effects only model to the \Robject{weightgain} data. What conclusions do you draw? \item The data \Robject{students} arise from a large study of risk taking. Students were randomly assigned to three different treatments labelled AA, C and NC. Students were administered two parallel forms of a test called `low' and `high'. Carry out a test of the equality of the bivariate means of each treatment population. \end{itemize} \end{frame} \begin{frame} \frametitle{References} \tiny <>= src <- system.file(package = "HSAUR3") style <- file.path(src, "LaTeXBibTeX", "refstyle") bst <- file.path(src, "LaTeXBibTeX", "HSAUR") cat(paste("\\bibliographystyle{", style, "}", sep = ""), "\n \n") cat(paste("\\bibliography{", bst, "}", sep = ""), "\n \n") @ \end{frame} \end{document} HSAUR3/inst/slides/Ch_conditional_inference.Rnw0000644000176200001440000003330013055275020021100 0ustar liggesusers \input{HSAUR_title} \SweaveOpts{prefix.string=figures/HSAUR,eps=FALSE,keep.source=TRUE} <>= source("setup.R") @ \frame{ \begin{center} \Large{Part 4: Conditional Inference} \end{center} focuses on conditional statistical test procedures for the Guessing Lengths, Suicides, and Gastrointestinal Damage examples. } <>= nobs <- table(roomwidth$unit) ties <- tapply(roomwidth$width, roomwidth$unit, function(x) length(x) - length(unique(x))) library("coin") @ \section{Introduction} \begin{frame} \frametitle{Introduction} There are many experimental designs or studies where the subjects are not a random sample from some well-defined population. For example, in clinical trials the subjects are randomly assigned to certain groups, for example a control and a treatment group, and the analysis needs to take this randomisation into account. In this chapter, we discuss such test procedures usually known as \stress{(re)-randomisation} or \stress{permutation tests} where the distribution of the test statistics under the null hypothesis is determined \stress{conditionally} on the data at hand. \end{frame} \begin{frame} \frametitle{roomwidth: Estimating Room Widths} Shortly after metric units of length were officially introduced in Australia in the 1970s, each of a group of 44 students was asked to guess, to the nearest metre, the width of the lecture hall in which they were sitting. Another group of 69 students in the same room was asked to guess the width in feet, to the nearest foot. But \Sexpr{ties[1]} of the estimated widths (in feet) of \Sexpr{nobs[1]} students and \Sexpr{ties[2]} of the estimated widths (in metres) of \Sexpr{nobs[2]} students are tied. This violates one assumption of the \stress{unconditional} test procedures such as the Wilcoxon Mann-Whitney test, namely that measurements are drawn from a continuous distribution. \end{frame} \begin{frame} \frametitle{suicides: Baiting Behaviour} A study was carried out to investigate the causes of jeering or baiting behaviour by a crowd when a person is threatening to commit suicide by jumping from a high building. A hypothesis is that baiting is more likely to occur in warm weather. 21 accounts of threatened suicide were classified by two factors, the time of year and whether or not baiting occurred. The data come from the northern hemisphere, so June--September are the warm months. \end{frame} \begin{frame} \frametitle{Lanza: Gastrointestinal Damage} The administration of non-steriodal anti-inflammatory drugs for patients suffering from arthritis induced gastrointestinal damage. \cite{HSAUR:Lanza1987} and \cite{HSAUR:Lanzaetal1988a,HSAUR:Lanzaetal1988b,HSAUR:Lanzaetal1989} report the results of placebo-controlled randomised clinical trials investigating the prevention of gastrointestinal damage by the application of Misoprostol. The degree of the damage is determined by endoscopic examinations and the response variable is defined as the classification: \input{tables/Lanza} \end{frame} \section{Conditional Test Procedures} \begin{frame} \frametitle{Conditional Test Procedures} In clinical trials, it is often impossible to draw a random sample from all patients suffering a certain disease. Commonly, volunteers and patients are recruited from hospital staff, relatives or people showing up for some examination. The test procedures applied in this chapter make no assumptions about random sampling or a specific model. \end{frame} \begin{frame} \frametitle{Permutation Tests} Instead, the null distribution of the test statistics is computed conditionally on all random permutations of the data. Therefore, the procedures shown in the sequel are known as \stress{permutation tests} or \stress{(re)-randomisation tests}. For a general introduction we refer to the text books of \cite{HSAUR:Edgington1987} and \cite{HSAUR:Pesarin2001}. \end{frame} \subsection{Testing Independence of Two Variables} \begin{frame} \frametitle{Testing Independence of Two Variables} Based on $n$ pairs of measurements $(x_i, y_i), i = 1, \dots, n$ we want to test the null hypothesis of the independence of $x$ and $y$. We may distinguish three situations: Both variables $x$ and $y$ are continuous (correlation), one is continuous and the other one is a factor (one-way layout, independent two-sample) or both $x$ and $y$ are factors (contingency tables). \end{frame} \begin{frame} \frametitle{Example: Two Independent Samples} One class of test procedures for the above three situations are randomisation and permutation tests whose basic principles have been described by \cite{HSAUR:Fisher1935} and \cite{HSAUR:Pitman1937} and are best illustrated for the case of continuous measurements $y$ in two groups, i.e., the $x$ variable is a factor that can take values $x = 1$ or $x = 2$. The difference of the means of the $y$ values in both groups is an appropriate statistic for the assessment of the association of $y$ and $x$ \begin{eqnarray*} T = \frac{\sum\limits_{i = 1}^n I(x_i = 1) y_i}{\sum\limits_{i = 1}^n I(x_i = 1)} - \frac{\sum\limits_{i = 1}^n I(x_i = 2) y_i}{\sum\limits_{i = 1}^n I(x_i = 2)}. \end{eqnarray*} Clearly, under the null hypothesis of independence of $x$ and $y$ we expect the distribution of $T$ to be centred about zero. \end{frame} \begin{frame} \frametitle{Computing the Null-Distribution} Suppose that the group labels $x = 1$ or $x = 2$ have been assigned to the observational units by randomisation. When the result of the randomisation procedure is independent of the $y$ measurements, we are allowed to fix the $x$ values and shuffle the $y$ values randomly over and over again. Thus, we can compute, or at least approximate, the distribution of the test statistic $T$ under the conditions of the null hypothesis directly from the data $(x_i, y_i), i = 1, \dots, n$ by the so called \stress{randomisation principle}. \end{frame} \begin{frame} \frametitle{Computing the Null-Distribution} The test statistic $T$ is computed for a reasonable number of shuffled $y$ values and we can determine how many of the shuffled differences are at least as large as the test statistic $T$ obtained from the original data. If this proportion is small, smaller than $\alpha = 0.05$ say, we have good evidence that the assumption of independence of $x$ and $y$ is not realistic and we therefore can reject the null hypothesis. The proportion of larger differences is usually referred to as $p$-value. \end{frame} \begin{frame} \frametitle{Categorical Variables} The test statistic can be computed from the corresponding contingency table in which the observations $(x_i, y_i)$ are cross-classified. We can make use of the test statistic \begin{eqnarray*} X^2 = \sum_{j = 1}^r \sum_{k = 1}^c \frac{(n_{jk} - E_{jk})^2}{E_{jk}}. \end{eqnarray*} Alternatively, Fisher's exact test based on the hyper-geometric probability of the observed contingency table can be applied. Here, all possible tables can be ordered with respect to this metric and $p$-values are computed from the fraction of tables more extreme than the observed one. \end{frame} \begin{frame} \frametitle{Correlation} When both the $x$ and the $y$ measurements are numeric, the test statistic can be formulated as the product, i.e., by the sum of all $x_i y_i, i = 1, \dots, n$. Again, we can fix the $x$ values and shuffle the $y$ values in order to approximate the distribution of the test statistic under the laws of the null hypothesis of independence of $x$ and $y$. \end{frame} \section{Analysis Using R} \subsection{Estimating the Width of a Room Revised} \begin{frame}[fragile] \frametitle{roomwidth Revised} First, we convert metres into feet and store the vector of observations in a variable \Robject{y}: <>= convert <- ifelse(roomwidth$unit == "feet", 1, 3.28) feet <- roomwidth$unit == "feet" metre <- !feet y <- roomwidth$width * convert @ The test statistic is simply the difference in means <>= T <- mean(y[feet]) - mean(y[metre]) T @ \end{frame} \begin{frame}[fragile] \frametitle{roomwidth Revised} In order to approximate the conditional distribution of the test statistic $T$ we compute $9999$ test statistics for shuffled $y$ values. A permutation of the $y$ vector can be obtained from the \Rcmd{sample} function. <>= meandiffs <- double(9999) for (i in 1:length(meandiffs)) { sy <- sample(y) meandiffs[i] <- mean(sy[feet]) - mean(sy[metre]) } @ \end{frame} \begin{frame} \begin{center} <>= hist(meandiffs) abline(v = T, lty = 2) abline(v = -T, lty = 2) @ \end{center} \end{frame} \begin{frame}[fragile] \frametitle{Approximate Null-Distribution} Now, the value of the test statistic $T$ for the original unshuffled data can be compared with the distribution of $T$ under the null hypothesis. The $p$-value, i.e., the proportion of test statistics $T$ larger than \Sexpr{-round(T, 3)} or smaller than \Sexpr{round(T, 3)} is <>= greater <- abs(meandiffs) > abs(T) mean(greater) @ with a confidence interval of <>= binom.test(sum(greater), length(greater))$conf.int @ \end{frame} \begin{frame}[fragile] \frametitle{Exact Null-Distribution} The function \Rcmd{independence\_test} \citep[package \Rpackage{coin},][]{PKG:coin,HSAUR:Hothorn:2006:AmStat} can be used to compute the exact $p$-value for two independence samples: <>= library("coin") independence_test(y ~ unit, data = roomwidth, distribution = exact()) @ \end{frame} \begin{frame}[fragile] \frametitle{Exact WMW-Test} The exact conditional Wilcoxon rank sum test applied to the \Robject{roomwidth} data: <>= wilcox_test(y ~ unit, data = roomwidth, distribution = exact()) @ \end{frame} \subsection{Crowds and Threatened Suicide} \begin{frame} \frametitle{Crowds and Threatened Suicide} The data in this case are in the form of a $2 \times 2$ contingency table and it might be thought that the chi-squared test could again be applied to test for the independence of crowd behaviour and time of year. The $\chi^2$-distribution as an approximation to the independence test statistic is bad in this situation since the expected frequencies are rather small. One solution is to use a conditional test procedure such as Fisher's exact test as described %' above. \end{frame} \begin{frame}[fragile] \frametitle{Fisher's Test} We can apply this test procedure using the \R{} function \Rcmd{fisher.test} to the \Rclass{table} \Robject{suicides}: <>= fisher.test(suicides) @ \end{frame} \subsection{Gastrointestinal Damages} \begin{frame}[fragile] \frametitle{Gastrointestinal Damages} Here we are interested in the comparison of two groups of patients, where one group received a placebo and the other one Misoprostol. In the trials shown here, the response variable is measured on an ordered scale. Data from four clinical studies are available and thus the observations are naturally grouped together. From the \Rclass{data.frame} \Robject{Lanza} we can construct a three-way table as follows: <>= xtabs(~ treatment + classification + study, data = Lanza) @ \end{frame} \begin{frame}[fragile] \frametitle{Gastrointestinal Damages} The classifications are defined by the number of haemorrhages or erosions, the midpoint of the interval for each level is a reasonable choice, i.e., $0$, $1$, $6$, $17$ and $30$. The corresponding linear-by-linear association tests extending the general \index{Linear-by-linear association test} Cochran-Mantel-Haenzel statistics \citep[see][for further details]{HSAUR:Agresti2002} are implemented in package \Rpackage{coin}. \index{Cochran-Mantel-Haenzel statistic} \end{frame} \begin{frame}[fragile] \frametitle{First Study Only} For the first study, the null hypothesis of independence of treatment and gastrointestinal damage, i.e., of no treatment effect of Misoprostol, is tested by <>= library("coin") cmh_test(classification ~ treatment, data = Lanza, scores = list(classification = c(0, 1, 6, 17, 30)), subset = Lanza$study == "I") @ and, by default, the conditional distribution is approximated by the corresponding limiting distribution. \end{frame} \begin{frame}[fragile] \frametitle{All Studies} We can use \Robject{study} as a block variable and perform a global linear-association test investigating the treatment effect of Misoprostol in all four studies: <>= cmh_test(classification ~ treatment | study, scores = list(classification = c(0, 1, 6, 17, 30)), data = Lanza) @ \end{frame} \begin{frame} \frametitle{Exercises} \begin{itemize} \item Use the \Rcmd{mosaic} and \Rcmd{assoc} functions from the \Rpackage{vcd} package \citep{PKG:vcd} to create a graphical representation of the deviations from independence in the $2 \times 2$ contingency table \Robject{suicides}. \item Generate two groups with measurements following a normal distribution having different means. For multiple replications of this experiment ($1000$, say), compare the $p$-values of the Wilcoxon Mann-Whitney rank sum test and a permutation test (using \Rcmd{independence\_test}). Where do the differences come from? \end{itemize} \end{frame} \begin{frame} \frametitle{References} \tiny <>= src <- system.file(package = "HSAUR3") style <- file.path(src, "LaTeXBibTeX", "refstyle") bst <- file.path(src, "LaTeXBibTeX", "HSAUR") cat(paste("\\bibliographystyle{", style, "}", sep = ""), "\n \n") cat(paste("\\bibliography{", bst, "}", sep = ""), "\n \n") @ \end{frame} \end{document} HSAUR3/inst/slides/Ch_multiple_linear_regression.Rnw0000644000176200001440000003376713055275020022225 0ustar liggesusers \input{HSAUR_title} \SweaveOpts{prefix.string=figures/HSAUR,eps=FALSE,keep.source=TRUE} <>= source("setup.R") @ \frame{ \begin{center} \Large{Part 6: Multiple Linear Regression} \end{center} focuses on the analysis of cloud seeding experiments. } \begin{frame} \frametitle{clouds: Cloud Seeding} The data were collected in the summer of 1975 from an experiment to investigate the use of massive amounts of silver iodide ($100$ to $1000$ grams per cloud) in cloud seeding to increase rainfall. In the experiment 24 days were judged suitable for seeding on the basis that a measured suitability criterion. On suitable days, a decision was taken at random as to whether to seed or not. \end{frame} \begin{frame} \frametitle{Could Seeding Variables} \begin{description} \item[\Robject{seeding}]: a factor indicating whether seeding action occured (yes or no), \item[\Robject{time}]: number of days after the first day of the experiment, \item[\Robject{cloudcover}]: the percentage cloud cover in the experimental area, measured using radar, \item[\Robject{prewetness}]: the total rainfall in the target area one hour before seeding, \item[\Robject{echomotion}]: a factor showing whether the radar echo was moving or stationary, \item[\Robject{rainfall}]: the amount of rain, \item[\Robject{sne}]: suitability criterion. \end{description} The objective in analysing these data is to see how rainfall is related to the explanatory variables and, in particular, to determine the effectiveness of seeding. \end{frame} \section{Multiple Linear Regression} \begin{frame} \frametitle{Multiple Linear Regression} Assume $y_i$ represents the value of the response variable on the $i$th individual, and that $x_{i1}, x_{i2}, \dots, x_{iq}$ represents the individual's values on $q$ explanatory variables, with $i = 1, \dots, n$. The multiple linear regression model is given by \begin{eqnarray*} y_i = \beta_0 + \beta_1 x_{i1} + \dots + \beta_q x_{iq} + \varepsilon_i. \end{eqnarray*} The residual or error terms $\varepsilon_i$, $i = 1, \dots, n$, are assumed to be independent random variables having a normal distribution with mean zero and constant variance $\sigma^2$. \end{frame} \begin{frame} \frametitle{Multiple Linear Regression} Consequently, the distribution of the random response variable, $y$, is also normal with expected value given by the linear combination of the explanatory variables \begin{eqnarray*} \E(y | x_1, \dots, x_q) = \beta_0 + \beta_1 x_{1} + \dots + \beta_q x_{q} \end{eqnarray*} and with variance $\sigma^2$. The parameters of the model $\beta_k$, $k = 1, \dots, q$, are known as regression coefficients with $\beta_0$ corresponding to the overall mean. The multiple linear regression model can be written most conveniently for all $n$ individuals by using matrices and vectors as \begin{eqnarray*} \y = \X \beta + \varepsilon \end{eqnarray*} \end{frame} \begin{frame} \frametitle{Model Matrix} The \stress{design} or \stress{model matrix} $\X$ \index{Design matrix} \index{Model matrix} consists of the $q$ continuously measured explanatory variables and a column of ones corresponding to the \stress{intercept} term \input{tables/MLR-Xtab} \end{frame} \begin{frame} \frametitle{Nominal Variables} In case one or more of the explanatory variables are nominal or ordinal variables, they are represented by a zero-one dummy coding. Assume that $x_1$ is a factor at $k$ levels, the submatrix of $\X$ corresponding to $x_1$ is a $n \times k$ matrix of zeros and ones, where the $j$th element in the $i$th row is one when $x_{i1}$ is at the $j$th level. \end{frame} \begin{frame}[fragile] \frametitle{Estimation} The least squares estimator of the parameter vector $\beta$ can be calculated by $\hat{\beta} = (\X^\top\X)^{-1} \X^\top \y$ with \begin{eqnarray*} \E(\hat{\beta}) & = & \beta \\ & \text{ and } & \\ \Var(\hat{\beta}) & = & \sigma^2 (\X^\top\X)^{-1} \end{eqnarray*} when the cross-product $\X^\top\X$ is non-singular. \end{frame} \begin{frame} \frametitle{Estimation} If the cross-product $\X^\top\X$ is singular we need to reformulate the model to $\y = \X \C \beta^\star + \varepsilon$ such that $\X^\star = \X \C$ has full rank. The matrix $\C$ is called \stress{contrast matrix} in \S{} and \R{} and the result of the model fit is an estimate $\hat{\beta}^\star$. For the theoretical details we refer to \cite{HSAUR:Searle1971}, the implementation of contrasts in \S{} and \R{} is discussed by \cite{HSAUR:Chambers+Hastie:1992} and \cite{HSAUR:VenablesRipley2002}. \end{frame} \begin{frame}[fragile] \frametitle{Inference} $\hat{y}_i$ is the predicted value of the response variable for the $i$th individual $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_{i1} + \dots + \hat{\beta}_q x_{q1}$ and $\bar{y} = \sum_{i = 1}^n y_i / n $ is the mean of the response variable. The mean square ratio \begin{eqnarray*} F = \frac{\sum\limits_{i = 1}^n (\hat{y}_i - \bar{y})^2 / q}{ \sum\limits_{i = 1}^n (\hat{y}_i - y_i)^2 / (n - q - 1)} \sim F_{q, n - q - 1} \end{eqnarray*} provides an $F$-test of the general hypothesis \begin{eqnarray*} H_0: \beta_1 = \dots = \beta_q = 0. \end{eqnarray*} \end{frame} \begin{frame}[fragile] \frametitle{Variance Estimation} An estimate of the variance $\sigma^2$ is \begin{eqnarray*} \hat{\sigma}^2 = \frac{1}{n - q - 1} \sum_{i = 1}^n (y_i - \hat{y_i})^2. \end{eqnarray*} Individual regression coefficients can be assessed by using the ratio $t$-statistics $t_j = \hat{\beta}_j / \sqrt{\Var(\hat{\beta})_{jj}}$, although these ratios should only be used as rough guides to the `significance' %' of the coefficients. The problem of selecting the `best' subset %' of variables to be included in a model is one of the most delicate ones in statistics and we refer to \cite{HSAUR:Miller2002} for the theoretical details and practical limitations. \end{frame} \section{Analysis Using R} \begin{frame} \frametitle{Cloud Seeding} Prior to applying multiple regression to the data it will be useful to look at some graphics to assess their major features. Here we will construct boxplots of the rainfall in each category of the dichotomous explanatory variables and scatterplots of rainfall against each of the continuous explanatory variables. \end{frame} \begin{frame} \begin{center} <>= data("clouds", package = "HSAUR3") layout(matrix(1:2, nrow = 1)) bxpseeding <- boxplot(rainfall ~ seeding, data = clouds, ylab = "Rainfall", xlab = "Seeding") bxpecho <- boxplot(rainfall ~ echomotion, data = clouds, ylab = "Rainfall", xlab = "Echo Motion") @ \end{center} \end{frame} \begin{frame} \begin{center} <>= layout(matrix(1:4, nrow = 2)) plot(rainfall ~ time, data = clouds) plot(rainfall ~ sne, data = clouds, xlab="S-NE criterion") plot(rainfall ~ cloudcover, data = clouds) plot(rainfall ~ prewetness, data = clouds) @ \end{center} \end{frame} \subsection{Fitting a Linear Model} \begin{frame}[fragile] \frametitle{Fitting a Linear Model} It is sensible to assume that the effect that some of the other explanatory variables is modified by seeding and therefore consider a model that allows interaction terms for \Robject{seeding} with each of the covariates except \Robject{time}. This model can be described by the \Rclass{formula} <>= clouds_formula <- rainfall ~ seeding * (sne + cloudcover + prewetness + echomotion) + time @ and the design matrix $\X^\star$ can be computed via <>= Xstar <- model.matrix(clouds_formula, data = clouds) @ \end{frame} \begin{frame}[fragile] \frametitle{Contrast Matrix} By default, treatment contrasts have been applied to the dummy codings of the factors \Robject{seeding} and \Robject{echomotion} as can be seen from the inspection of the \Robject{contrasts} attribute of the model matrix <>= attr(Xstar, "contrasts") @ \end{frame} \begin{frame}[fragile] \frametitle{Fitting a Linear Model} However, such internals are hidden and performed by high-level model fitting functions such as \Rcmd{lm} which will be used to fit the linear model defined by the \Rclass{formula} \Robject{clouds\_formula}: <>= clouds_lm <- lm(clouds_formula, data = clouds) class(clouds_lm) @ A \Rcmd{summary} method can be used to show the conventional regression analysis output. \end{frame} \begin{frame}[fragile] \frametitle{Inspecting Results} The estimates $\hat{\beta}^\star$ can be assessed via <>= coef(clouds_lm) @ <>= coef(clouds_lm)[1:5] cat("...\n") @ \end{frame} \begin{frame}[fragile] \frametitle{Inspecting Results} The corresponding covariance matrix $\Cov(\hat{\beta}^\star)$ is available via <>= vcov(clouds_lm) @ <>= vcov(clouds_lm)[1:5,1:5] cat("...\n") @ \end{frame} \begin{frame} \frametitle{Inspecting Results} The results of the linear model fit suggest the interaction of seeding with cloud coverage significantly affects rainfall. A suitable graph will help in the interpretation of this result. We can plot the relationship between rainfall and S-Ne criterion for seeding and non-seeding days. \end{frame} \begin{frame} \begin{center} <>= psymb <- as.numeric(clouds$seeding) plot(rainfall ~ sne, data = clouds, pch = psymb) abline(lm(rainfall ~ sne, data = clouds, subset = seeding == "no")) abline(lm(rainfall ~ sne, data = clouds, subset = seeding == "yes"), lty = 2) legend("topright", legend = c("No seeding", "Seeding"), pch = 1:2, lty = 1:2, bty = "n") @ \end{center} \end{frame} \subsection{Regression Diagnostics} \begin{frame} \frametitle{Regression Diagnostics} The possible influence of outliers and the checking of assumptions made in fitting the multiple regression model, i.e., constant variance and normality of error terms, can both be undertaken using a variety of diagnostic tools, of which the simplest and most well known are the estimated residuals, i.e., the differences between the observed values of the response and the fitted values of the response. So, after estimation, the next stage in the analysis should be an examination of such residuals from fitting the chosen model to check on the normality and constant variance assumptions and to identify outliers. \end{frame} \begin{frame} \frametitle{Diagnostic Plots} \begin{itemize} \item A plot of residuals against each explanatory variable in the model. The presence of a non-linear relationship, for example, may suggest that a higher-order term, in the explanatory variable should be considered. \item A plot of residuals against fitted values. If the variance of the residuals appears to increase with predicted value, a transformation of the response variable may be in order. \item A normal probability plot of the residuals. After all the systematic variation has been removed from the data, the residuals should look like a sample from a standard normal distribution. A plot of the ordered residuals against the expected order statistics from a normal distribution provides a graphical check of this assumption. \end{itemize} \end{frame} \begin{frame}[fragile] \frametitle{Residuals and Fitted Values} We need access to the residuals and the fitted values. The residuals can be found by the \Rcmd{residuals} method and the fitted values of the response from the \Rcmd{fitted} method <>= clouds_resid <- residuals(clouds_lm) clouds_fitted <- fitted(clouds_lm) @ \end{frame} \begin{frame} \begin{center} <>= plot(clouds_fitted, clouds_resid, xlab = "Fitted values", ylab = "Residuals", ylim = max(abs(clouds_resid)) * c(-1, 1), type = "n") abline(h = 0, lty = 2) text(clouds_fitted, clouds_resid, labels = rownames(clouds)) @ \end{center} \end{frame} \begin{frame} \begin{center} <>= qqnorm(clouds_resid, ylab = "Residuals") qqline(clouds_resid) @ \end{center} \end{frame} \begin{frame} \frametitle{Cook's Distance} A further diagnostic that is often very useful is an index plot of the Cook's distances for each observation. This statistic %' \index{Cook's distance} %%' is defined as \begin{eqnarray*} D_k = \frac{1}{(q + 1)\hat{\sigma}^2} \sum_{i=1}^n (\hat{y}_{i(k)} - y_i)^2 \end{eqnarray*} where $\hat{y}_{i(k)}$ is the fitted value of the $i$th observation when the $k$th observation is omitted from the model. The values of $D_k$ assess the impact of the $k$th observation on the estimated regression coefficients. Values of $D_k$ greater than one are suggestive that the corresponding observation has undue influence on the estimated regression coefficients. \end{frame} \begin{frame} \begin{center} <>= plot(clouds_lm, which = 4, sub.caption = NULL) @ \end{center} \end{frame} \section*{Exercises} \begin{frame} \frametitle{Exercises} \begin{itemize} \item Investigate refitting the cloud seeding data after removing any observations which may give cause for concern. \item Show how the analysis of variance for the data \Robject{weightgain} data can be constructed from the results of applying an appropriate multiple linear regression to the data. \item Investigate the use of the \Rcmd{leaps} function from package \Rpackage{leaps} for the selecting the `best' %%' set of variables predicting rainfall in the cloud seeding data. \end{itemize} \end{frame} \begin{frame} \frametitle{References} \tiny <>= src <- system.file(package = "HSAUR3") style <- file.path(src, "LaTeXBibTeX", "refstyle") bst <- file.path(src, "LaTeXBibTeX", "HSAUR") cat(paste("\\bibliographystyle{", style, "}", sep = ""), "\n \n") cat(paste("\\bibliography{", bst, "}", sep = ""), "\n \n") @ \end{frame} \end{document} HSAUR3/inst/slides/setup.R0000644000176200001440000000060013055275020014735 0ustar liggesusers rm(list = ls()) if (!file.exists("tables")) dir.create("tables") if (!file.exists("figures")) dir.create("figures") set.seed(290875) options(prompt = "R> ", width = 55, # digits = 4, SweaveHooks = list(leftpar = function() par(mai = par("mai") * c(1, 1.05, 1, 1)))) HSAURpkg <- require("HSAUR3") if (!HSAURpkg) stop("cannot load package ", sQuote("HSAUR3")) rm(HSAURpkg) HSAUR3/inst/slides/Ch_simple_inference.Rnw0000644000176200001440000003264213055275020020076 0ustar liggesusers \input{HSAUR_title} \SweaveOpts{prefix.string=figures/HSAUR,eps=FALSE,keep.source=TRUE} <>= source("setup.R") @ \frame{ \begin{center} \Large{Part 3: Simple Inference} \end{center} focuses on classical statistical test procedures for the Guessing Lengths, Wave Energy, Water Hardness, Piston Rings, and Rearrests of Juveniles examples. } \section{Introduction} <>= library("vcd") @ \begin{frame} \frametitle{roomwidth: Estimating Room Widths} Shortly after metric units of length were officially introduced in Australia in the 1970s, each of a group of 44 students was asked to guess, to the nearest metre, the width of the lecture hall in which they were sitting. Another group of 69 students in the same room was asked to guess the width in feet, to the nearest foot. The main question is whether estimation in feet and in metres gives different results. \end{frame} \begin{frame} \frametitle{waves: Bending Stress} In a design study for a device to generate electricity from wave power at sea, experiments were carried out on scale models in a wave tank to establish how the choice of mooring method for the system affected the bending stress produced in part of the device. The wave tank could simulate a wide range of sea states and the model system was subjected to the same sample of sea states with each of two mooring methods, one of which was considerably cheaper than the other. The question of interest is whether bending stress differs for the two mooring methods. \end{frame} \begin{frame} \frametitle{water: Mortality and Water Hardness} The data were collected in an investigation of environmental causes of disease. They show the annual mortality per 100,000 for males, averaged over the years 1958--1964, and the calcium concentration (in parts per million) in the drinking water for 61 large towns in England and Wales. The higher the calcium concentration, the harder the water. Towns at least as far north as Derby are identified in the table. Here there are several questions that might be of interest including: are mortality and water hardness related, and do either or both variables differ between northern and southern towns? \end{frame} \begin{frame} \frametitle{pistonrings: Piston-ring Failures} The two-way contingency table shows the number of piston-ring failures in each of three legs of four steam-driven compressors located in the same building. The compressors have identical design and are oriented in the same way. The question of interest is whether the two categorical variables (compressor and leg) are independent. \end{frame} \begin{frame} \frametitle{rearrests: Rearrests of Juveniles} The data arise from a sample of juveniles convicted of felony in Florida in 1987. Matched pairs were formed using criteria such as age and the number of previous offences. For each pair, one subject was handled in the juvenile court and the other was transferred to the adult court. Whether or not the juvenile was rearrested by the end of 1988 was then noted. Here the question of interest is whether the true proportions rearrested were identical for the adult and juvenile court assignments? \end{frame} \section{Statistical Tests} \begin{frame} \frametitle{Statistical Tests} Inference is the process of \begin{itemize} \item drawing conclusions about a population \item on the basis of measurements or observations \item made on a random (!) sample of individuals from the population. \end{itemize} In the following, we shall illustrate the application of the most common statistical tests to the examples shown before. \end{frame} \subsection{Comparing Normal Populations: Student's $t$-Tests} %' \begin{frame} \frametitle{Comparing Normal Populations} The independent samples $t$-test is used to test the null hypothesis that the means of two populations are the same: $H_0: \mu_1 = \mu_2$. The variable to be compared is assumed to have a normal distribution with the same standard deviation in both populations. Test statistic: \begin{eqnarray*} t = \frac{\bar{y}_1 - \bar{y}_2}{s \sqrt{1 / n_1 + 1 / n_2}} \sim t_{n_1 + n_2 - 2} \end{eqnarray*} \end{frame} \begin{frame} \frametitle{Unequal Variances} If the two populations are suspected of having different variances (boxes in boxplots differ significantly), a modified form of the $t$ statistic, known as the Welch test, may be used: \begin{eqnarray*} t = \frac{\bar{y}_1 - \bar{y}_2}{\sqrt{s_1^2 / n_1 + s_2^2 / n_2}} \sim t_\nu. \end{eqnarray*} \end{frame} \begin{frame} \frametitle{Paired Observations} A paired $t$-test is used to compare the means of two populations when samples from the populations are available, in which each individual in one sample is paired with an individual in the other sample or each individual in the sample is observed twice. If the values of the variable of interest, $y$, for the members of the $i$th pair in groups $1$ and $2$ are denoted as $y_{1i}$ and $y_{2i}$, then the differences $d_i = y_{1i} - y_{2i}$ are assumed to have a normal distribution with mean $\mu$ and the null hypothesis here is that the mean difference is zero, i.e., $H_0: \mu = 0$. The paired $t$-statistic is \begin{eqnarray*} t = \frac{\bar{d}}{s / \sqrt{n}} \sim t_{n-1}. \end{eqnarray*} \end{frame} \subsection{Non-parametric Analogues of Independent Samples and Paired $t$-Tests} \begin{frame} \frametitle{Wilcoxon-Mann-Whitney Test} For two independent groups, the Wilcoxon Mann-Whitney rank sum test applies the $t$-statistic to the joint ranks of all measurements in both groups instead of the original measurements. The null hypothesis to be tested is that the two populations being compared have identical distributions. \end{frame} \begin{frame} \frametitle{Wilcoxon-Signed-Rank Test} The Wilcoxon signed-rank statistic is based on the ranks of the absolute differences $|d_i|$. The statistic is defined as the sum of the ranks associated with positive difference $d_i > 0$. It should be noted that this test is only valid when the differences $d_i$ are symmetrically distributed. \end{frame} \subsection{Testing Independence in Contingency Tables} \begin{frame} \frametitle{Contingency Tables} When a sample of $n$ observations in two nominal (categorical) variables are available, they can be arranged into a cross-classification \input{tables/SI_rtimesc} \end{frame} \begin{frame} \frametitle{$\chi^2$-Test} Under the null hypothesis of independence of the row variable $x$ and the column variable $y$, estimated expected values $E_{jk}$ for cell $(j, k)$ can be computed from the corresponding margin totals $E_{jk} = n_{j\cdot} n_{\cdot k} / n$. The test statistic is \begin{eqnarray*} X^2 = \sum_{j = 1}^r \sum_{k = 1}^c \frac{(n_{jk} - E_{jk})^2}{E_{jk}} \sim \chi^2_{(r-1)(c-1)} \end{eqnarray*} \end{frame} \subsection{McNemar's Test} %' \begin{frame} \frametitle{McNemar's Test} Often categorical data arise from \stress{paired} observations, for example, cases matched with controls on variables such as sex, age and so on, or observations made on the same subjects on two occasions: \input{tables/SI_mcnemar} Under the hypothesis that the two populations do not differ in their probability of having the characteristic present, the test statistic \begin{eqnarray*} X^2 = \frac{ (c - b)^2}{c + b} \sim \chi^2_1. \end{eqnarray*} \end{frame} \section{Analysis Using R} \subsection{Estimating the Width of a Room} \begin{frame}[fragile] \frametitle{Estimating the Width of a Room} The first step should be to convert the metre estimates into feet: <>= convert <- ifelse(roomwidth$unit == "feet", 1, 3.28) @ Now, we get the usual summary statistics by <>= tapply(roomwidth$width * convert, roomwidth$unit, summary) @ \end{frame} \begin{frame}[fragile] \frametitle{Boxplots} \begin{center} <>= layout(matrix(c(1,2,1,3), nrow = 2, ncol = 2, byrow = FALSE)) boxplot(I(width * convert) ~ unit, data = roomwidth, ylab = "Estimated width (feet)", var.width = TRUE, names = c("Estimates in feet", "Estimates in metres (converted to feet)")) feet <- roomwidth$unit == "feet" qqnorm(roomwidth$width[feet], ylab = "Estimated width (feet)") qqline(roomwidth$width[feet]) qqnorm(roomwidth$width[!feet], ylab = "Estimated width (metres)") qqline(roomwidth$width[!feet]) @ \end{center} \end{frame} \begin{frame}[fragile] \frametitle{Test for Differences} The two-sample test problem is specified by a \Rclass{formula} and the $t$-test reads <>= t.test(I(width * convert) ~ unit, data = roomwidth, var.equal = TRUE) @ \end{frame} \begin{frame}[fragile] \frametitle{Test for Differences} The Welch-test can be computed via <>= t.test(I(width * convert) ~ unit, data = roomwidth, var.equal = FALSE) @ \end{frame} \begin{frame}[fragile] \frametitle{Test for Differences} The Wilcoxon Mann-Whitney test as one alternative test procedure: <>= wilcox.test(I(width * convert) ~ unit, data = roomwidth, conf.int = TRUE) @ \end{frame} \subsection{Wave Energy Device Mooring} \begin{frame}[fragile] \frametitle{Wave Energy Device Mooring} The \Robject{waves} data set requires the use of a matched pairs $t$-test. This test assumes that the differences between the matched observations have a normal distribution so we can begin by checking this assumption by constructing a boxplot and a normal probability plot \end{frame} \begin{frame} \begin{center} <>= mooringdiff <- waves$method1 - waves$method2 layout(matrix(1:2, ncol = 2)) boxplot(mooringdiff, ylab = "Differences (Newton metres)", main = "Boxplot") abline(h = 0, lty = 2) qqnorm(mooringdiff, ylab = "Differences (Newton metres)") qqline(mooringdiff) @ \end{center} \end{frame} \begin{frame}[fragile] \frametitle{Test for Zero Mean} The paired-$t$-test is performed via <>= t.test(mooringdiff) @ \end{frame} \begin{frame}[fragile] \frametitle{Test for Zero Median} <>= wilcox.test(mooringdiff) @ \end{frame} \subsection{Mortality and Water Hardness} \begin{frame}[fragile] \frametitle{Mortality and Water Hardness} We will construct a scatterplot of the data enhanced somewhat by the addition of information about the marginal distributions of water hardness (calcium concentration) and mortality, and by adding the estimated linear regression fit for mortality on hardness. The scatterplot shows that as hardness increases mortality decreases, and the histogram for the water hardness shows it has a rather skewed distribution. \end{frame} \begin{frame} \begin{center} <>= nf <- layout(matrix(c(2, 0, 1, 3), 2, 2, byrow = TRUE), c(2, 1), c(1, 2), TRUE) psymb <- as.numeric(water$location) plot(mortality ~ hardness, data = water, pch = psymb) abline(lm(mortality ~ hardness, data = water)) legend("topright", legend = levels(water$location), pch = c(1,2), bty = "n") hist(water$hardness) boxplot(water$mortality) @ \end{center} \end{frame} \begin{frame}[fragile] \frametitle{Testing Correlation} We can both calculate the Pearson's correlation coefficient %' between the two variables and test whether it differs significantly for zero by using <>= cor.test(~ mortality + hardness, data = water) @ \end{frame} \subsection{Piston-ring Failures} \begin{frame}[fragile] \frametitle{Piston-ring Failures} The first step in the analysis of the \Robject{pistonrings} data is to apply the chi-squared test for independence. This we can do in \R{} using <>= chisq.test(pistonrings) @ \end{frame} \begin{frame}[fragile] \frametitle{Inspection Deviations} Rather than looking at the simple differences of observed and expected values for each cell it is preferable to consider a \stress{standardised residual}: <>= chisq.test(pistonrings)$residuals @ \end{frame} \begin{frame} \begin{center} <>= library("vcd") assoc(pistonrings) @ \end{center} \end{frame} \subsection{Rearrests of Juveniles} \begin{frame}[fragile] \frametitle{Rearrests of Juveniles} In \Robject{rearrests} the counts in the four cells refer to the matched pairs of subjects; for example, in $\Sexpr{rearrests[1,1]}$ pairs both members of the pair were rearrested. Here, we use McNemar's test: <>= mcnemar.test(rearrests, correct = FALSE) binom.test(rearrests[2], n = sum(rearrests[c(2,3)]))$p.value @ \end{frame} \section*{Exercises} \begin{frame}[fragile] \frametitle{Exercises} \begin{itemize} \item After the students had made the estimates of the width of the lecture hall the room width was accurately measured and found to be $13.1$ metres ($43.0$ feet). Use this additional information to determine which of the two types of estimates was more precise. \item For the mortality and water hardness data calculate the correlation between the two variables in each region, north and south. \item For the data in table \Robject{rearrests} estimate the difference between the probability of being rearrested after being tried in an adult court and in a juvenile court, and find a $95\%$ confidence interval for the population difference. \end{itemize} \end{frame} \end{document} HSAUR3/inst/slides/Ch_survival_analysis.Rnw0000644000176200001440000003442413055275020020345 0ustar liggesusers \input{HSAUR_title} \SweaveOpts{prefix.string=figures/HSAUR,eps=FALSE,keep.source=TRUE} <>= source("setup.R") @ \frame{ \begin{center} \Large{Part 10: Survival Analysis} \end{center} explains how to fit regression models to response variables which are only incompletely available. } \section{Introduction} \begin{frame} \frametitle{Introduction} \cite{HSAUR:Granaetal2002} report results of a non-randomised clinical trial investigating a novel radioimmunotherapy in malignant glioma patients. The overall survival, i.e., the time from the beginning of the therapy to the disease-caused death of the patient, is compared for two groups of patients. Since only some patients die by others survive, the time to death is not completely observed. Only the time the patient is still alive is known. Such a time measurement is called \stress{censored}. The main interest is to investigate whether the patients treated with the novel radioimmunothery survive for a longer time. \end{frame} \begin{frame} \frametitle{Introduction} The effects of hormonal treatment with Tamoxifen in women suffering from node-positive breast cancer were investigated in a randomised clinical trial as reported by \cite{HSAUR:Schumacher1994}. Complete data of seven prognostic factors of $686$ women are available for prognostic modelling. Observed hypothetical prognostic factors are age, menopausal status, tumor size, tumor grade, number of positive lymph nodes, progesterone receptor, estrogen receptor and the information of whether or not a hormonal therapy was applied. We are interested in an assessment of the impact of the covariates on the survival time of the patients. \end{frame} \section{Survival Analysis} \begin{frame} \frametitle{Survival Analysis} In many medical studies, the main outcome variable is the time to the occurrence of a particular event. Such observations are generally referred to by the generic term \stress{survival data}. Such data generally require special techniques for analysis for two main reasons: \begin{enumerate} \item Survival data are generally not symmetrically distributed. \item At the completion of the study, some patients may not have reached the endpoint of interest (death, relapse, etc.). Consequently, the exact survival times are not known. All that is known is that the survival times are greater than the amount of time the individual has been in the study. The survival times of these individuals are said to be \stress{censored} (precisely, they are right-censored). \end{enumerate} \end{frame} \begin{frame} \frametitle{Survival and Hazard Function} Of central importance in the analysis of survival time data are two functions used to describe their distribution, namely the \stress{survival} (or \stress{survivor}) \stress{function} and the \stress{hazard function}. The survivor function, $S(t)$, is defined as the probability that the survival time, $T$, is greater than or equal to some time $t$, i.e., \begin{eqnarray*} S(t) = \P(T \ge t) \end{eqnarray*} \end{frame} \begin{frame} \frametitle{Estimation} When there are no censored observations in the sample of survival times, a non-parametric survivor function can be estimated simply as \begin{eqnarray*} \hat{S}(t) = \frac{\text{number of individuals with survival times} \ge t} {n} \end{eqnarray*} where $n$ is the total number of observations. This simple method used to estimate the survivor function when there are no censored observations cannot now be used for survival times when censored observations are present. In the presence of censoring, the survivor function is typically estimated using the \stress{Kaplan-Meier} estimator \citep{HSAUR:KaplanMeier1958}. \end{frame} \begin{frame} \frametitle{Kaplan-Meier Estimator} This involves first ordering the survival times from the smallest to the largest such that $t_{(1)} \le t_{(2)} \le \dots \le t_{(n)}$, where $t_{(j)}$ is the $j$th largest unique survival time. The Kaplan-Meier estimate of the survival function is obtained as \begin{eqnarray*} \hat{S}(t) = \prod_{j: t_{(j)} \le t} \left( 1 - \frac{d_j}{r_j} \right) \end{eqnarray*} where $r_j$ is the number of individuals at risk just before $t_{(j)}$ (including those censored at $t_{(j)}$), and $d_j$ is the number of individuals who experience the event of interest (death, etc.) at time $t_{(j)}$. \end{frame} \begin{frame} \frametitle{Comparing Survival Functions} A formal test of the equality of the survival curves for the two groups can be made using the \stress{log-rank test}. First, the expected number of deaths is computed for each unique death time, or \stress{failure time} in the data set, assuming that the chances of dying, given that subjects are at risk, are the same for both groups. The total number of expected deaths is then computed for each group by adding the expected number of deaths for each failure time. The test then compares the observed number of deaths in each group with the expected number of deaths using a chi-squared test. \end{frame} \begin{frame} \frametitle{Hazard Functions} The hazard function, $h(t)$, is defined as the probability that an individual experiences the event in a small time interval, $s$, given that the individual has survived up to the beginning of the interval, when the size of the time interval approaches zero; \begin{eqnarray*} h(t) = \lim_{s \rightarrow 0} \frac{\P(t \le T \le t + s | T \ge t)}{s} \end{eqnarray*} where $T$ is the individual's survival time. For example, the probability of dying at age $100$ is very small because most people die before that age; in contrast, the probability of a person dying at age $100$ who has reached that age is much greater. \end{frame} \begin{frame} \frametitle{Hazard and Survival Function} The hazard function and survivor function are related by the formula \begin{eqnarray*} S(t) = \exp(-H(t)) \end{eqnarray*} where $H(t)$ is known as the \stress{integrated hazard} or \stress{cumulative hazard}, and is defined as follows: \begin{eqnarray*} H(t) = \int_0^t h(u) du, \end{eqnarray*} \end{frame} \begin{frame} \frametitle{Shapes of Hazard Functions} In practice the hazard function may increase, decrease, remain constant or have a more complex shape. The hazard function for death in human beings, for example, has the `bath tub' shape: \begin{center} <>= hazard <- function(x, alpha = 5, theta = 0.1, sigma = 100) (alpha*theta*(1 - exp(-(x/sigma)^alpha))^(theta - 1)* exp(-(x/sigma)^alpha)*(x/sigma)^(alpha-1))/(sigma* (1 - (1 - exp(-(x/sigma)^alpha))^theta)) x <- seq(from = 0.1, to = 100, by = 0.1) h <- hazard(x, alpha = 5, theta = 0.1, sigma = 100) plot(x, h, type = "l", xlab = "Time", ylab = "Hazard", ylim = c(0, max(h))) @ \end{center} \end{frame} \begin{frame} \frametitle{Cox' Proportional Hazards Model} Modelling the hazard function directly as a linear function of explanatory variables is not appropriate since $h(t)$ is restricted to being positive, however \begin{eqnarray*} h(t) = h_0(t) \exp(\beta_1 x_1 + \dots + \beta_q x_q). \end{eqnarray*} is appropriate. Written in this way we see that the model forces the hazard ratio between two individuals to be constant over time since \begin{eqnarray*} \frac{h(t | \x_1)}{h(t | \x_2)} = \frac{\exp(\beta^\top \x_1)}{\exp(\beta^\top \x_2)} \end{eqnarray*} where $\x_1$ and $\x_2$ are vectors of covariate values for two individuals. \end{frame} \begin{frame} \frametitle{Interpreting Cox' Model} In the Cox model, the baseline hazard describes the common shape of the survival time distribution for all individuals, while the \stress{relative risk function}, $\exp(\beta^\top \x)$, gives the level of each individual's hazard. The interpretation %%' of the parameter $\beta_j$ is that $\exp(\beta_j)$ gives the relative risk change associated with an increase of one unit in covariate $x_j$, all other explanatory variables remaining constant. The parameters in a Cox model can be estimated by maximising what is known as a \stress{partial likelihood}. \end{frame} \section{Analysis Using R} \begin{frame}[fragile] \frametitle{Analysis Using R: Glioma Data} \small \begin{center} <>= data("glioma", package = "coin") library("survival") layout(matrix(1:2, ncol = 2)) g3 <- subset(glioma, histology == "Grade3") plot(survfit(Surv(time, event) ~ group, data = g3), main = "Grade III Glioma", lty = c(2, 1), ylab = "Probability", xlab = "Survival Time in Month", legend.bty = "n", legend.text = c("Control", "Treated") ) g4 <- subset(glioma, histology == "GBM") plot(survfit(Surv(time, event) ~ group, data = g4), main = "Grade IV Glioma", ylab = "Probability", lty = c(2, 1), xlab = "Survival Time in Month", xlim = c(0, max(glioma$time) * 1.05)) @ \end{center} \normalsize \end{frame} \begin{frame}[fragile] \frametitle{Analysis Using R: Glioma Data} \begin{center} <>= data("glioma", package = "coin") library("survival") layout(matrix(1:2, ncol = 2)) g3 <- subset(glioma, histology == "Grade3") plot(survfit(Surv(time, event) ~ group, data = g3), main = "Grade III Glioma", lty = c(2, 1), ylab = "Probability", xlab = "Survival Time in Month", legend.bty = "n", legend.text = c("Control", "Treated") ) g4 <- subset(glioma, histology == "GBM") plot(survfit(Surv(time, event) ~ group, data = g4), main = "Grade IV Glioma", ylab = "Probability", lty = c(2, 1), xlab = "Survival Time in Month", xlim = c(0, max(glioma$time) * 1.05)) @ \end{center} \end{frame} \begin{frame}[fragile] \frametitle{Comparing Groups} The figure leads to the impression that patients treated with the novel radioimmunotherapy survive longer, regardless of the tumor type. In order to assess if this informal finding is reliable, we may perform a log-rank test via <>= survdiff(Surv(time, event) ~ group, data = g3) @ which indicates that the survival times are indeed different in both groups. \end{frame} \begin{frame}[fragile] \frametitle{Permutation Testing} However, the number of patients is rather limited and so it might be dangerous to rely on asymptotic tests. Conditioning on the data and computing the distribution of the test statistics without additional assumptions is one alternative: <>= library("coin") surv_test(Surv(time, event) ~ group, data = g3, distribution = exact()) @ \end{frame} \begin{frame}[fragile] \frametitle{Breast Cancer Survival} \begin{center} <>= data("GBSG2", package = "TH.data") plot(survfit(Surv(time, cens) ~ horTh, data = GBSG2), lty = 1:2, mark.time = FALSE, ylab = "Probability", xlab = "Survival Time in Days") @ \end{center} \end{frame} \begin{frame}[fragile] \frametitle{Breast Cancer Survival} \begin{center} <>= data("GBSG2", package = "TH.data") plot(survfit(Surv(time, cens) ~ horTh, data = GBSG2), lty = 1:2, mark.time = FALSE, ylab = "Probability", xlab = "Survival Time in Days") legend(250, 0.2, legend = c("yes", "no"), lty = c(2, 1), title = "Hormonal Therapy", bty = "n") @ \end{center} \end{frame} \begin{frame}[fragile] \frametitle{Fitting Cox' Model} The response variable is coded as a \Rclass{Surv} object and Cox' model can be fitted using: <>= GBSG2_coxph <- coxph(Surv(time, cens) ~ ., data = GBSG2) summary(GBSG2_coxph) @ \end{frame} \begin{frame}[fragile] \frametitle{Fitting Cox' Model} The response variable is coded as a \Rclass{Surv} object and Cox' model can be fitted using: \small <>= GBSG2_coxph <- coxph(Surv(time, cens) ~ ., data = GBSG2) summary(GBSG2_coxph) @ \normalsize \end{frame} \begin{frame}[fragile] \frametitle{Confidence Intervals} Since we are especially interested in the relative risk for patients who underwent a hormonal therapy, we can compute an estimate of the relative risk and a corresponding confidence interval via <>= ci <- confint(GBSG2_coxph) exp(cbind(coef(GBSG2_coxph), ci))["horThyes",] @ This result implies that patients treated with a hormonal therapy had a lower risk and thus survived longer compared to women who were not treated this way. \end{frame} \begin{frame}[fragile] \frametitle{Survival Trees} A simple prognostic tree model with only a few terminal nodes might be helpful for relating the risk to certain subgroups of patients: \small <>= library("partykit") ctree(Surv(time, cens) ~ ., data = GBSG2) @ \normalsize \end{frame} \begin{frame}[fragile] \frametitle{Visualizing Survival Trees} \begin{center} <>= plot(ctree(Surv(time, cens) ~ ., data = GBSG2)) @ \end{center} \end{frame} \section{Summary} \begin{frame} \frametitle{Summary} The analysis of life-time data is complicated by the fact that the time to some event is not observable for all observations due to censoring. Survival times are analysed by some estimates of the survival function, for example by a non-parametric Kaplan-Meier estimate or by semi-parametric proportional hazards regression models. \end{frame} \begin{frame} \frametitle{Exercises} \begin{itemize} \item Try to reproduce the analysis presented by \cite{HSAUR:SauerbreiRoyston1999}, i.e., fit a multivariable fractional polynomial to the \Robject{GBSG2} data (using package \Rpackage{mfp})! \item The \Robject{mastectomy} data are the survival times (in months) after mastectomy of women with breast cancer. The cancers are classified as having metastised or not based on a histochemical marker. Plot the survivor functions of each group, estimated using the Kaplan-Meier estimate, on the same graph and comment on the differences. Use a log-rank test to compare the survival experience of each group more formally. \end{itemize} \end{frame} \begin{frame} \frametitle{References} \tiny <>= src <- system.file(package = "HSAUR3") style <- file.path(src, "LaTeXBibTeX", "refstyle") bst <- file.path(src, "LaTeXBibTeX", "HSAUR") cat(paste("\\bibliographystyle{", style, "}", sep = ""), "\n \n") cat(paste("\\bibliography{", bst, "}", sep = ""), "\n \n") @ \normalsize \end{frame} \end{document} HSAUR3/inst/slides/tables/0000755000176200001440000000000013055275242014736 5ustar liggesusersHSAUR3/inst/slides/tables/MLR-Xtab.tex0000644000176200001440000000047313055275242017012 0ustar liggesusers\begin{eqnarray*} \X = \left( \begin{array}{ccccc} 1 & x_{11} & x_{12} & \dots & x_{1q} \\ 1 & x_{21} & x_{22} & \dots & x_{2q} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n1} & x_{n2} & \dots & x_{nq} \\ \end{array} \right). \end{eqnarray*} HSAUR3/inst/slides/tables/CA_perm.tex0000644000176200001440000000057613055275242016776 0ustar liggesusers \begin{center} \begin{longtable}{rrl} \caption{Number of possible partitions depending on the sample size $n$ and number of clusters $k$. \label{CA:perm}} \\ $n$ & $k$ & Number of possible partitions \\ \hline $15$ & $3$ & $2,375,101$ \\ $20$ & $4$ & $45,232,115,901$ \\ $25$ & $8$ & $690,223,721,118,368,580$ \\ $100$ & $5$ & $10^{68}$ \\ \end{longtable} \end{center} HSAUR3/inst/slides/tables/PCA_tab.tex0000644000176200001440000000056013055275242016712 0ustar liggesusers \begin{center} \begin{longtable}{cccccc} \caption{Correlations for calculus measurements for the six anterior mandibular teeth.} \\ \hline 1.00 & & & & & \\ 0.54 & 1.00 & & & & \\ 0.34 & 0.65 & 1.00 & & & \\ 0.37 & 0.65 & 0.84 & 1.00 & & \\ 0.36 & 0.59 & 0.67 & 0.80 & 1.00 & \\ 0.62 & 0.49 & 0.43 & 0.42 & 0.55 & 1.00 \\ \hline \end{longtable} \end{center} HSAUR3/inst/slides/tables/exMDS.tex0000644000176200001440000000044313055275242016441 0ustar liggesusers\begin{eqnarray*} s_{ij} = \left\{ \begin{array}{lcl} 9 & \text{if} & i = j \\ 8 & \text{if} & 1 \le | i - j | \le 3 \\ 7 & \text{if} & 4 \le | i - j | \le 6 \\ & \cdots & \\ 1 & \text{if} & 22 \le | i - j | \le 24 \\ 0 & \text{if} & | i - j | \ge 25 \\ \end{array} \right. \end{eqnarray*} HSAUR3/inst/slides/tables/SI_mcnemar.tex0000644000176200001440000000030413055275242017472 0ustar liggesusers \begin{center} \begin{tabular}{cccc} & & \multicolumn{2}{c}{Sample 1} \\ & & present & absent \\ Sample 2 & present & $a$ & $b$ \\ & absent & $c$ & $d$ \\ \end{tabular} \end{center} HSAUR3/inst/slides/tables/Lanza.tex0000644000176200001440000000052313055275242016525 0ustar liggesusers \begin{center} \begin{tabular}{ll} Classification & Endoscopy Examination \\ \hline 1 & No visible lesions \\ 2 & One haemorrhage or erosion \\ 3 & 2-10 haemorrhages or erosions \\ 4 & 11-25 haemorrhages or erosions \\ 5 & More than 25 haemorrhages or erosions \\ & or an invasive ulcer of any size\\ \hline \end{tabular} \end{center} HSAUR3/inst/slides/tables/MLR-ANOVA-tab.tex0000644000176200001440000000067713055275242017532 0ustar liggesusers \begin{center} \begin{longtable}{lccc} \caption{Analysis of variance table for the multiple linear regression model. \label{MLR-ANOVA-tab}} \\ Source of variation & Sum of squares & Degrees of freedom \\ \hline Regression & $\sum\limits_{i = 1}^n (\hat{y}_i - \bar{y})^2$ & $q$ \\ Residual & $\sum\limits_{i = 1}^n (\hat{y}_i - y_i)^2$ & $n - q - 1$ \\ Total & $\sum\limits_{i = 1}^n (y_i - \bar{y})^2$ & $n - 1$ \\ \end{longtable} \end{center} HSAUR3/inst/slides/tables/CI_rtimesc.tex0000644000176200001440000000123413055275242017501 0ustar liggesusers \begin{center} \begin{longtable}{cc|ccc|c} \caption{The general $r \times c$ table. \label{SI:rtimesc}} \\ & & & $y$ & & \\\ & & $1$ & $\dots$ & $c$ & \\ \hline & $1$ & $n_{11}$ & $\dots$ & $n_{1c}$ & $n_{1 \cdot}$ \\\ & $2$ & $n_{21}$ & $\dots$ & $n_{2c}$ & $n_{2 \cdot}$ \\\ $x$ & $\vdots$ & $\vdots$ & $\dots$ & $\vdots$ & $\vdots$ \\\ & $r$ & $n_{r1}$ & $\dots$ & $n_{rc}$ & $n_{r \cdot}$ \\ \hline & & $n_{\cdot 1}$ & $\dots$ & $n_{\cdot c}$ & $n$ \\\ \end{longtable} \end{center}HSAUR3/inst/slides/tables/SI_rtimesc.tex0000644000176200001440000000113013055275242017514 0ustar liggesusers \begin{center} \begin{tabular}{cc|ccc|c} & & & $y$ & & \\\ & & $1$ & $\dots$ & $c$ & \\ \hline & $1$ & $n_{11}$ & $\dots$ & $n_{1c}$ & $n_{1 \cdot}$ \\\ & $2$ & $n_{21}$ & $\dots$ & $n_{2c}$ & $n_{2 \cdot}$ \\\ $x$ & $\vdots$ & $\vdots$ & $\dots$ & $\vdots$ & $\vdots$ \\\ & $r$ & $n_{r1}$ & $\dots$ & $n_{rc}$ & $n_{r \cdot}$ \\ \hline & & $n_{\cdot 1}$ & $\dots$ & $n_{\cdot c}$ & $n$ \\\ \end{tabular} \end{center}HSAUR3/inst/slides/tables/rec.tex0000644000176200001440000000120613055275242016230 0ustar liggesusers\begin{tabular}{llll} \Rpackage{boot} & \Rpackage{lattice} & \Rpackage{Matrix} & \Rpackage{mgcv}\\ \Rpackage{rpart} & \Rpackage{survival} & \Rpackage{base} & \Rpackage{class}\\ \Rpackage{cluster} & \Rpackage{codetools} & \Rpackage{compiler} & \Rpackage{datasets}\\ \Rpackage{foreign} & \Rpackage{graphics} & \Rpackage{grDevices} & \Rpackage{grid}\\ \Rpackage{KernSmooth} & \Rpackage{MASS} & \Rpackage{methods} & \Rpackage{nlme}\\ \Rpackage{nnet} & \Rpackage{parallel} & \Rpackage{spatial} & \Rpackage{splines}\\ \Rpackage{stats} & \Rpackage{stats4} & \Rpackage{tcltk} & \Rpackage{tools}\\ \Rpackage{utils} & NA & NA & NA\\ \end{tabular} HSAUR3/inst/slides/Ch_analysing_longitudinal_dataII.Rnw0000644000176200001440000002471113055275020022536 0ustar liggesusers \input{HSAUR_title} \SweaveOpts{prefix.string=figures/HSAUR,eps=FALSE,keep.source=TRUE} <>= source("setup.R") library("gee") @ \setkeys{Gin}{width=0.95\textheight} \frame{ \begin{center} \Large{Part 12: Analysing Longitudinal Data II} \end{center} focuses on generalised estimation equations for repeated measurements. } \section{Introduction} \begin{frame} \frametitle{Respiratory illness} The \Robject{respiratory} data were collected in a clinical trial comparing two treatments for a respiratory illness \citep{HSAUR:Davis1991}. In each of two centres, eligible patients were randomly assigned to active treatment or placebo. During the treatment, the respiratory status (categorised \Robject{poor} or \Robject{good}) was determined at each of four, monthly visits. The trial recruited \Sexpr{nlevels(respiratory$subject)} participants (54 in the active group, 57 in the placebo group) and there were no missing data for either the responses or the covariates. The question of interest is to assess whether the treatment is effective and to estimate its effect. \end{frame} \section{Generalised Estimating Equations} \begin{frame} \frametitle{Lack of Independence} The assumption of the independence of the repeated measurements in an GLM will lead to estimated standard errors that are too small for the between-subjects covariates (at least when the correlation between the repeated measurements are positive) as a result of assuming that there are more independent data points than are justified. We might begin by asking is there something relatively simple that can be done to `fix-up' these standard errors so that we %' can still apply the \R{} \Rcmd{glm} function to get reasonably satisfactory results on longitudinal data with a non-normal response? Two approaches which can often help to get more suitable estimates of the required standard errors are \stress{bootstrapping} and use of the \stress{robust/sandwich, Huber/White variance estimator}. \end{frame} \begin{frame} \frametitle{Generalised Estimating Equations (GEE)} But perhaps more satisfactory than these methods to simply `fix-up' the standard errors given by the independence model, %' would be an approach that fully utilises information on the data's %' structure, including dependencies over time. A suitable procedure was first suggested by \cite{HSAUR:LiangZeger1986} and is known as \stress{generalised estimating equations} (GEE). \index{Generalised estimating equations (GEE)} In essence GEE is a multivariate extension of the generalised linear model and quasi-likelihood methods. The primary idea behind the GEE approach is that since the parameters specifying the structure of the correlation matrix are rarely of great practical interest, simple structures are used for the within-subject correlations giving rise to the so-called \stress{working correlation matrix}. \end{frame} \begin{frame} \frametitle{Working Correlation Matrices} \cite{HSAUR:LiangZeger1986} show that the estimates of the parameters of most interest, i.e., those that determine the average responses over time, are still valid even when the correlation structure is incorrectly specified, although their standard errors might remain poorly estimated if the working correlation matrix is far from the truth. But as with the independence situation described previously, this potential difficulty can often be handled satisfactorily by again using the \stress{sandwich estimator} to find more reasonable standard errors. Possibilities for the working correlation matrix that are most frequently used in practice are: \end{frame} \begin{frame} \frametitle{Working Correlation Matrices} \begin{itemize} \item An identity matrix: no correlation at all. \item An exchangeable correlation matrix: with a single parameter which gives the correlation of each pair of repeated measures. \item An autoregressive correlation matrix: also with a single parameter but in which $\text{corr}(y_j, y_k) = \vartheta^{|k - j|}, j \not = k$. With $\vartheta$ less than one this gives a pattern in which repeated measures further apart in time are less correlated, than those that are closer to one another. \item An unstructured correlation matrix: with $q(q-1)/2$ parameters in which $\text{corr}(y_j, y_k) = \vartheta_{jk}$ and where $q$ is the number of repeated measures. \end{itemize} \end{frame} \section{Analysis Using R} \begin{frame}[fragile] \frametitle{Beat the Blues Revisited} <>= data("BtheB", package = "HSAUR3") BtheB$subject <- factor(rownames(BtheB)) nobs <- nrow(BtheB) BtheB_long <- reshape(BtheB, idvar = "subject", varying = c("bdi.2m", "bdi.3m", "bdi.5m", "bdi.8m"), direction = "long") BtheB_long$time <- rep(c(2, 3, 5, 8), rep(nobs, 4)) names(BtheB_long)[names(BtheB_long) == "treatment"] <- "trt" @ <>= osub <- order(as.integer(BtheB_long$subject)) BtheB_long <- BtheB_long[osub,] btb_gee <- gee(bdi ~ bdi.pre + trt + length + drug, data = BtheB_long, id = subject, family = gaussian, corstr = "independence") btb_gee1 <- gee(bdi ~ bdi.pre + trt + length + drug, data = BtheB_long, id = subject, family = gaussian, corstr = "exchangeable") @ \end{frame} \begin{frame} \frametitle{Beat the Blues Revisited} Note how the na\"{\i}ve and the sandwich or %" robust estimates of the standard errors are considerably different for the independence structure, but quite similar for the exchangeable structure. This simply reflects that using an exchangeable working correlation matrix is more realistic for these data and that the standard errors resulting from this assumption are already quite reasonable without applying the `sandwich' procedure %' to them. And if we compare the results under this assumed structure with those for the random intercept model, we see that they are almost identical, since the random intercept model also implies an exchangeable structure for the correlations of the repeated measurements. \end{frame} \section{Respiratory Illness} \begin{frame}[fragile] \frametitle{Respiratory Illness} The baseline status, i.e., the status for \Robject{month == 0}, will enter the models as an explanatory variable and thus we have to rearrange the \Rclass{data.frame} \Robject{respiratory} in order to create a new variable \Robject{baseline}: <>= data("respiratory", package = "HSAUR3") resp <- subset(respiratory, month > "0") resp$baseline <- rep(subset(respiratory, month == "0")$status, rep(4, 111)) resp$nstat <- as.numeric(resp$status == "good") resp$month <- resp$month[, drop = TRUE] names(resp)[names(resp) == "treatment"] <- "trt" levels(resp$trt)[2] <- "trt" @ \end{frame} \begin{frame}[fragile] \frametitle{Respiratory Illness} <>= resp_glm <- glm(status ~ centre + trt + gender + baseline + age, data = resp, family = "binomial") resp_gee1 <- gee(nstat ~ centre + trt + gender + baseline + age, data = resp, family = "binomial", id = subject, corstr = "independence", scale.fix = TRUE, scale.value = 1) resp_gee2 <- gee(nstat ~ centre + trt + gender + baseline + age, data = resp, family = "binomial", id = subject, corstr = "exchangeable", scale.fix = TRUE, scale.value = 1) @ \end{frame} \begin{frame}[fragile] \frametitle{Respiratory Illness} The estimated treatment effect taken from the exchangeable structure GEE model is \Sexpr{round(coef(resp_gee2)["trttrt"], 3)} which, using the robust standard errors, has an associated $95\%$ confidence interval <>= se <- summary(resp_gee2)$coefficients[ "trttrt", "Robust S.E."] coef(resp_gee2)["trttrt"] + c(-1, 1) * se * qnorm(0.975) @ These values reflect effects on the log-odds scale, on the exp scale it reads <>= exp(coef(resp_gee2)["trttrt"] + c(-1, 1) * se * qnorm(0.975)) @ The odds of achieving a `good' respiratory status with the active treatment is between %' about twice and seven times the corresponding odds for the placebo. \end{frame} \section{Epilepsy} \begin{frame}[fragile] \frametitle{Epilepsy} Moving on to the count data in \Robject{epilepsy}, we begin by calculating the means and variances of the number of seizures for all treatment / period interactions <>= data("epilepsy", package = "HSAUR3") itp <- interaction(epilepsy$treatment, epilepsy$period) tapply(epilepsy$seizure.rate, itp, mean) tapply(epilepsy$seizure.rate, itp, var) @ Overdispersion? \end{frame} \section{Summary} \begin{frame} \frametitle{Summary} The generalised estimation equation approach essentially extends generalised linear models to longitudinal data, and allows for the analysis of such data when the response variable cannot be assumed to be normal distributed. \end{frame} \section*{Exercises} \section*{Exercises} \begin{frame} \frametitle{Exercises} \begin{itemize} \item For the \Robject{epilepsy} data investigate what Poisson models are most suitable when subject 49 is excluded from the analysis. \item Investigate the use of other correlational structures than the independence and exchangeable structures used in the text, for both the \Robject{respiratory} and the \Robject{epilepsy} data. \item The \Robject{schizophrenia2} data were collected in a follow-up study of women patients with schizophrenia \citep{HSAUR:Davis2002}. The binary response recorded at 0, 2, 6, 8 and 10 months after hospitalisation was thought disorder (absent or present). The single covariate is the factor indicating whether a patient had suffered early or late onset of her condition (age of onset less than 20 years or age of onset 20 years or above). The question of interest is whether the course of the illness differs between patients with early and late onset? Investigate this question using the GEE approach. \end{itemize} \end{frame} \begin{frame} \frametitle{References} \tiny <>= src <- system.file(package = "HSAUR3") style <- file.path(src, "LaTeXBibTeX", "refstyle") bst <- file.path(src, "LaTeXBibTeX", "HSAUR") cat(paste("\\bibliographystyle{", style, "}", sep = ""), "\n \n") cat(paste("\\bibliography{", bst, "}", sep = ""), "\n \n") @ \end{frame} \end{document} HSAUR3/inst/slides/Ch_cluster_analysis.Rnw0000644000176200001440000003276513055275020020161 0ustar liggesusers \input{HSAUR_title} \SweaveOpts{prefix.string=figures/HSAUR,eps=FALSE,keep.source=TRUE} <>= source("setup.R") library("mclust") library("mvtnorm") mai <- par("mai") options(SweaveHooks = list(rmai = function() { par(mai = mai * c(1,1,1,2))})) @ \frame{ \begin{center} \Large{Part 16: Cluster Analysis} \end{center} focuses on finding homogeneous groups of observations. } \section{Introduction} \begin{frame} \frametitle{Exoplanets classification} Exoplanets are planets outside the Solar System. Since 1995 over a hundred exoplanets have been discovered, nearly all being detected indirectly, using the gravitational influence they exert on their associated central stars. From the properties of the exoplanets found up to now it appears that the theory of planetary development constructed for the planets of the Solar System may need to be reformulated. The exoplanets are not at all like the nine local planets that we know so well. A first step in the process of understanding the exoplanets might be to try to classify them with respect to their known properties. The data gives the mass (in Jupiter mass), the period (in earth days) and the eccentricity (\Robject{eccent}) of the exoplanets discovered up until October 2002. \end{frame} \section{Cluster Analysis} \begin{frame} \frametitle{Cluster analysis} Cluster analysis refers to methods for uncovering or discovering groups or clusters of observations that are homogeneous and separated from other groups, for example in medicine (microarray data) or marketing (groups of customers). Clustering techniques essentially try to formalise what human observers do so well in two or three dimensions. Consider, for example, the following scatterplot. We concentrate on two types of clustering procedures: $k$-means type and classification maximum likelihood methods. \end{frame} \begin{frame} \frametitle{Cluster analysis} \begin{center} <>= dat <- rbind(rmvnorm(25, mean = c(3,3)), rmvnorm(20, mean = c(10, 8)), rmvnorm(10, mean = c(20, 1))) plot(abs(dat), xlab = expression(x[1]), ylab = expression(x[2])) @ \end{center} \end{frame} \subsection{$k$-Means Clustering} \begin{frame} \frametitle{$k$-means clustering} The $k$-means clustering technique seeks to partition a set of data into a specified number of groups, $k$, by minimising some numerical criterion, low values of which are considered indicative of a `good' solution. The most commonly %%' used approach, for example, is to try to find the partition of the $n$ individuals into $k$ groups, which minimises the within-group sum of squares over all variables. The problem then appears relatively simple; namely, consider every possible partition of the $n$ individuals into $k$ groups, and select the one with the lowest within-group sum of squares. \end{frame} \begin{frame} \frametitle{$k$-means clustering} Unfortunately, the problem in practice is not so straightforward. The numbers involved are so vast that complete enumeration of \stress{every} possible partition remains impossible even with the fastest computer: \begin{center} \begin{tabular}{rrl} $n$ & $k$ & Number of possible partitions \\ \hline $15$ & $3$ & $2,375,101$ \\ $20$ & $4$ & $45,232,115,901$ \\ $25$ & $8$ & $690,223,721,118,368,580$ \\ $100$ & $5$ & $10^{68}$ \\ \end{tabular} \end{center} \end{frame} \begin{frame} \frametitle{Heuristical approach} \begin{enumerate} \item Find some initial partition of the individuals into the required number of groups. \item Calculate the change in the clustering criterion produced by `moving' each individual from its own to another cluster. %%' \item Make the change that leads to the greatest improvement in the value of the clustering criterion. \item Repeat steps 2 and 3 until no move of an individual causes the clustering criterion to improve. \end{enumerate} When variables are on very different scales (as they are for the exoplanets data) some form of standardization will be needed before applying $k$-means clustering. Note: $k$ has to be fixed in advance and can hardly be estimated. \end{frame} \subsection{Model-based Clustering} \begin{frame} \frametitle{Model-based Clustering} It is assumed that the population from which the observations arise consists of $c$ subpopulations each corresponding to a cluster, and that the density of a $q$-dimensional observation $\x^\top = (x_1, \dots, x_q)$ from the $j$th subpopulation is $f_j(\x, \vartheta_j), j = 1, \dots, c$, for some unknown vector of parameters, $\vartheta_j$. We also introduce a vector $\gamma = (\gamma_1, \dots, \gamma_n)$, where $\gamma_i = j$ of $\x_i$ is from the $j$ subpopulation. The $\gamma_i$ label the subpopulation for each observation $i = 1, \dots, n$. The clustering problem now becomes that of choosing $\vartheta = (\vartheta_1, \dots, \vartheta_c)$ and $\gamma$ to maximise the likelihood function associated with such assumptions. \end{frame} \subsection{Classification Maximum Likelihood} \begin{frame} \frametitle{Classification Maximum Likelihood} $\gamma = (\gamma_1, \dots, \gamma_n)$ gives the labels of the subpopulation to which the observation belongs: so $\gamma_i = j$ if $\x_i$ is from the $j$th population. The clustering problem becomes that of choosing $\vartheta = (\vartheta_1, \dots, \vartheta_c)$ and $\gamma$ to maximise the likelihood \begin{eqnarray*} L(\vartheta, \gamma) = \prod_{i = 1}^n f_{\gamma_i}(\x_i, \vartheta_{\gamma_i}). \end{eqnarray*} \end{frame} \begin{frame} \frametitle{Normal Distribution} If $f_j(\x, \vartheta_j)$ is taken as the multivariate normal density with mean vector $\mu_j$ and covariance matrix $\Sigma_j$, this likelihood has the form \begin{eqnarray*} L(\vartheta, \gamma) = \prod_{j = 1}^c \prod_{i: \gamma_i = j} |\Sigma_j|^{-1/2} \exp\left(-\frac{1}{2} (\x_i - \mu_j)^\top \Sigma_j^{-1} (\x_i - \mu_j)\right). \end{eqnarray*} \end{frame} \begin{frame} \frametitle{Normal Distribution} The maximum likelihood estimator of $\mu_j$ is \begin{eqnarray*} \hat{\mu}_j = n_j^{-1} \sum_{i: \gamma_i = j} \x_i \end{eqnarray*} where the number of observations in each subpopulation is $n_j = \sum_{i = 1}^n I(\gamma_i = j)$. Replacing $\mu_j$ in the likelihood yields the following log-likelihood \begin{eqnarray*} l(\vartheta, \gamma) = -\frac{1}{2} \sum_{j = 1}^c \text{trace}(\W_j \Sigma_j^{-1} + n \log |\Sigma_j|) \end{eqnarray*} where $\W_j$ is the $q \times q$ matrix of sums of squares and cross-products of the variables for subpopulation $j$. \end{frame} \begin{frame} \frametitle{Normal Distribution} If the covariance matrix $\Sigma_j$ is $\sigma^2$ times the identity matrix for all populations $j = 1, \dots, c$, then the likelihood is maximised by choosing $\gamma$ to minimise trace$(\W)$, where \begin{eqnarray*} \W = \sum_{j = 1}^c \W_j, \end{eqnarray*} i.e., minimisation of the written group sum of squares. Use of this criterion in a cluster analysis will lend to produce spherical clusters of largely equal sizes. \end{frame} \begin{frame} \frametitle{Normal Distribution} If $\Sigma_j = \Sigma$ for $j = 1, \dots, c$, then the likelihood is maximised by choosing $\gamma$ to minimise $|\W|$. Use of this criterion in a cluster analysis will lend to produce clusters with the same elliptical slope. If $\Sigma_j$ is not constrained, the likelihood is maximised by choosing $\gamma$ to minimise $\sum_{j = 1}^c n_j \log | \W_j | / n_j$. \end{frame} \begin{frame} \frametitle{Determining $c$} Model selection is a combination of choosing the appropriate clustering model and the optimal number of clusters. A Bayesian approach is used \citep[see][]{HSAUR:FraleyRaftery1999}, using what is known as the \stress{Bayesian Information Criterion} (BIC). \end{frame} \section{Analysis Using R} \begin{frame}[fragile] \frametitle{Analysis Using R} \begin{center} <>= data("planets", package = "HSAUR3") library("scatterplot3d") scatterplot3d(log(planets$mass), log(planets$period), log(planets$eccen), type = "h", angle = 55, pch = 16, y.ticklabs = seq(0, 10, by = 2), y.margin.add = 0.1, scale.y = 0.7) @ \end{center} \end{frame} \begin{frame}[fragile] \frametitle{$k$-means} <>= rge <- apply(planets, 2, max) - apply(planets, 2, min) planet.dat <- sweep(planets, 2, rge, FUN = "/") n <- nrow(planet.dat) wss <- rep(0, 10) wss[1] <- (n - 1) * sum(apply(planet.dat, 2, var)) for (i in 2:10) wss[i] <- sum(kmeans(planet.dat, centers = i)$withinss) plot(1:10, wss, type = "b", xlab = "Number of groups", ylab = "Within groups sum of squares") @ \end{frame} \begin{frame}[fragile] \frametitle{$k$-means} \begin{center} <>= plot(1:10, wss, type = "b", xlab = "Number of groups", ylab = "Within groups sum of squares") @ \end{center} \end{frame} \begin{frame}[fragile] \frametitle{$k$-means: three clusters} <>= planet_kmeans3 <- kmeans(planet.dat, centers = 3) table(planet_kmeans3$cluster) @ The centers of the clusters for the untransformed data can be computed using a small convenience function <>= ccent <- function(cl) { f <- function(i) colMeans(planets[cl == i,]) x <- sapply(sort(unique(cl)), f) colnames(x) <- sort(unique(cl)) return(x) } ccent(planet_kmeans3$cluster) @ \end{frame} \begin{frame}[fragile] \frametitle{$k$-means: five clusters} <>= planet_kmeans5 <- kmeans(planet.dat, centers = 5) table(planet_kmeans5$cluster) ccent(planet_kmeans5$cluster) @ \end{frame} \subsection{Model-based Clustering in R} \begin{frame}[fragile] \frametitle{Model-based Clustering} <>= library("mclust") planet_mclust <- Mclust(planet.dat) plot(planet_mclust, planet.dat, what = "BIC", col = "black", ylab = "-BIC", ylim = c(0, 350)) @ \end{frame} \begin{frame}[fragile] \frametitle{Model-based Clustering} \begin{center} <>= plot(planet_mclust, planet.dat, what = "BIC", col = "black", ylab = "-BIC", ylim = c(0, 350)) @ \end{center} \end{frame} \begin{frame}[fragile] \frametitle{Model-based Clustering} Different shape of clusters possible: \begin{enumerate} \item Spherical, equal volume, \item Spherical, unequal volume, \item Diagonal equal volume, equal shape, \item Diagonal varying volume, varying shape, \item Ellipsoidal, equal volume, shape and orientation, \item Ellipsoidal, varying volume, shape and orientation. \end{enumerate} The BIC selects model $4$ (diagonal varying volume and varying shape) with three clusters as the best solution: <>= print(planet_mclust) @ \end{frame} \begin{frame}[fragile] \frametitle{Visualizing Results} \begin{center} <>= clPairs(planet.dat, classification = planet_mclust$classification, symbols = 1:3, col = "black") @ \end{center} \end{frame} \begin{frame}[fragile] \frametitle{Visualizing Results} \begin{center} <>= scatterplot3d(log(planets$mass), log(planets$period), log(planets$eccen), type = "h", angle = 55, scale.y = 0.7, pch = planet_mclust$classification, y.ticklabs = seq(0, 10, by = 2), y.margin.add = 0.1) @ \end{center} \end{frame} \begin{frame}[fragile] \frametitle{Clusters} <>= table(planet_mclust$classification) ccent(planet_mclust$classification) @ \end{frame} \section{Summary} \begin{frame} \frametitle{Summary} Cluster analysis techniques provide a rich source of possible strategies for exploring complex multivariate data. But the use of cluster analysis in practice does not involve simply the application of one particular technique to the data under investigation, but rather necessitates a series of steps, each of which may be dependent on the results of the preceding one. The final, extremely important, stage concerns the evaluation of the clustering solutions obtained. Are the clusters `real' or merely artefacts of the algorithms? Do other solutions %%' exist that are better in some sense? Can the clusters be given a convincing interpretation? \end{frame} \section*{Exercises} \begin{frame} \frametitle{Exercises} \begin{itemize} \item The \Robject{pottery}-data give the chemical composition of $48$ specimens of Romano-British pottery, determined by atomic absorption spectrophotometry, for nine oxides. Analyse the pottery data using \Rcmd{Mclust}. To what model in \Rcmd{Mclust} does the $k$-mean approach approximate? \item Construct a three-dimensional drop-line scatterplot of the planets data in which the points are labelled with a suitable cluster label. \item Write a general \R{} function that will display a particular partition from the $k$-means cluster method on both a scatterplot matrix of the original data and a scatterplot or scatterplot matrix of a selected number of principal components of the data. \end{itemize} \end{frame} \begin{frame} \frametitle{References} \tiny <>= src <- system.file(package = "HSAUR3") style <- file.path(src, "LaTeXBibTeX", "refstyle") bst <- file.path(src, "LaTeXBibTeX", "HSAUR") cat(paste("\\bibliographystyle{", style, "}", sep = ""), "\n \n") cat(paste("\\bibliography{", bst, "}", sep = ""), "\n \n") @ \end{frame} \end{document} HSAUR3/inst/slides/Ch_introduction_to_R.Rnw0000644000176200001440000006160413055275020020273 0ustar liggesusers \input{HSAUR_title} \SweaveOpts{prefix.string=figures/HSAUR,eps=FALSE,keep.source=TRUE} <>= source("setup.R") @ \frame{ \begin{center} \Large{Part 1: An Introduction to R} \end{center} teaches some \R{} philosophy, explains how to install \R{} and how to make the first steps in \R{}. } \section{What Is R?} %%\R{}?} \frame{ \frametitle{What Is R?} The \R{} system for statistical computing is an environment for data analysis and graphics. The root of \R{} is the \S{} language, developed by John Chambers and colleagues at Bell Laboratories starting in the 1960s. The \S{} language was designed and developed as a programming language for data analysis tasks but in fact it is a full-featured programming language in its current implementations. The development of the \R{} system for statistical computing is heavily influenced by the open source idea: The base distribution of \R{} \index{Base distribution} and a large number of user contributed extensions are available under the terms of the Free Software Foundation's GNU General %%' Public License in source code form. \index{GNU General Public License} } \frame{ The base distribution of \R{} is maintained by a small group of statisticians, the \R{} Development Core Team. A huge amount of additional functionality is implemented in add-on packages \index{Add-on packages} authored and maintained by a large group of volunteers. The main source of information about the \R{} system is the world wide web with the official home page of the \R{} project being \curl{http://www.R-project.org} } \section{Installing R} %%\R{}} \index{Base system|(} \frame{ \frametitle{Installing the Base System} The \R{} system for statistical computing consists of two major parts: the base system and a collection of user contributed add-on packages. A package is a collection of functions, examples and documentation. Both the base system and packages are distributed via the Comprehensive \R{} Archive Network (CRAN) accessible under \curl{http://CRAN.R-project.org} as precompiled binary distribution and in source form. } \subsection{The Base System and the First Steps \label{AItR:Base}} \frame{ \frametitle{First Steps in R} \begin{columns} \begin{column}{3cm} \includegraphics[width = 2.5cm]{graphics/Rlogo} \end{column} \begin{column}{7cm} Depending on the operating system, \R{} can be started either by typing `\texttt{R}' on the shell (Unix systems) or by clicking on the %' \R{} symbol (as shown left) created by the installer (Windows). \end{column} \end{columns} } \begin{frame}[fragile] \frametitle{R as Pocket Calculator} <>= x <- sqrt(25) + 2 @ The assignment operator \Roperator{<-} binds the value of its right hand side to a variable name on the left hand side. The value of the object \Robject{x} can be inspected simply by typing <>= x @ which, implicitly, calls the \Rcmd{print} method: <>= print(x) @ \end{frame} \subsection{Packages} \begin{frame}[fragile] \frametitle{Important Packages} The base distribution already comes with some high-priority add-on packages, namely \begin{center} \texttt{ <>= colwidth <- 4 ip <- installed.packages(priority = "high") pkgs <- unique(ip[,"Package"]) pkgs <- paste("\\Rpackage{", pkgs, "}", sep = "") nrows <- ceiling(length(pkgs) / colwidth) cat(paste(c("\\begin{tabular}{", paste(rep("l", colwidth), collapse=""), "}"), collapse = ""), "\n", file = "tables/rec.tex", append = FALSE) for (i in 1:nrows) { cat(paste(pkgs[(1:colwidth) + (i-1)*colwidth], collapse = " & "), file = "tables/rec.tex", append = TRUE) cat("\\\\ \n", file = "tables/rec.tex", append = TRUE) } cat("\\end{tabular}\n", file = "tables/rec.tex", append = TRUE) rm(ip, nrows) @ \input{tables/rec} } \end{center} The packages listed here %% #Z %% are maintained by members of the \R{} core development team and implement standard statistical functionality, for example linear models, classical tests, a huge collection of high-level plotting functions or tools for survival analysis. \end{frame} <>= cp <- available.packages(contriburl = "http://CRAN.r-project.org/src/contrib") ncp <- sum(!rownames(cp) %in% pkgs) rm(cp, pkgs) @ \begin{frame}[fragile] \frametitle{User-Contributed Packages} Packages not included in the base distribution can be installed directly from the \R{} prompt. Currently, $\Sexpr{ncp}$ user contributed packages covering almost all fields of statistical methodology are available. <>= rm(ncp, colwidth, i) @ A package is installed by supplying the name of the package to the function \Rcmd{install.packages}. For example the \Rpackage{sandwich} package can be downloaded and installed via <>= install.packages("sandwich") @ The package functionality is available after \stress{attaching} the package by <>= library("sandwich") @ A comprehensive list of available packages can be obtained from \curl{http://CRAN.R-project.org/} \end{frame} \section{Help and Documentation \label{AItR:HDN}} \index{Help system|(} \begin{frame}[fragile] \frametitle{Help and Documentation} Three different forms of documentation for the \R{} system for statistical computing may be distinguished: \begin{itemize} \item online help that comes with the base distribution or packages, \item electronic manuals and \item publications work in the form of books etc. \end{itemize} The help system is a collection of manual pages describing each user-visible function and data set that comes with \R{}. \end{frame} \begin{frame}[fragile] \frametitle{Getting Help in R} A manual page is shown in a pager or web browser when the name of the function we would like to get help for is supplied to the \Rcmd{help} function <>= help("mean") @ or, for short, \begin{Verbatim} R> ?mean \end{Verbatim} The function \Rcmd{help.search} is helpful for searching within manual pages. An overview on documented topics in an add-on package is given, for example for the \Rpackage{sandwich} package, by <>= help(package = "sandwich") @ \end{frame} \begin{frame}[fragile] \frametitle{Package Vignettes} Often a package comes along with an additional document describing the package functionality and giving examples. Such a document is called a \Rclass{vignette} and is viewed in a PDF viewer via <>= vignette("sandwich", package = "sandwich") @ All R code contained in a vignette is available from <>= edit(vignette("sandwich")) @ \end{frame} \begin{frame} \frametitle{Written Documentation} For the beginner, at least the first and the second document of the following four manuals are mandatory: \begin{description} \item[An Introduction to R:] A more formal introduction to data analysis with \R{} than this chapter. \item[R Data Import/Export:] A very useful description of how to read and write various external data formats. \item[R Installation and Administration:] Hints for installing \R{} on special platforms. \item[Writing R Extensions:] The authoritative source on how to write \R{} programs and packages. \end{description} \end{frame} \begin{frame} \frametitle{More Documentation on R} Both printed and online publications are available, the most important ones are \booktitle{Modern Applied Statistics with \S{}} \booktitle{Introductory Statistics with \R{}}, \booktitle{\R{} Graphics} and the \R{} Newsletter, freely available from \curl{http://CRAN.R-project.org/doc/Rnews/} In case the electronically available documentation and the answers to frequently asked questions (FAQ), available from \curl{http://CRAN.R-project.org/faqs.html} have been consulted but a problem or question remains unsolved, the \texttt{r-help} email list is the right place to get answers to well-thought-out questions. Read the posting guide before starting to ask! \end{frame} \section{Data Objects in R} %%\R{}} \begin{frame}[fragile] \frametitle{Data Objects: Forbes 2000 List} \index{Forbes 2000 ranking|(} The data handling and manipulation techniques will be illustrated by means of a data set of $2000$ world leading companies, the Forbes 2000 list for the year 2004 collected by \booktitle{Forbes Magazine}. In a first step, we make the data available for computations within \R. The \Rcmd{data} function searches for data objects of the specified name (\Robject{"Forbes2000")} in the package specified via the \Rarg{package} argument and attaches the data object to the global environment: \index{Forbes2000 data@\Robject{Forbes2000} data} <>= data("Forbes2000", package = "HSAUR3") ls() @ \end{frame} \begin{frame}[fragile] \frametitle{Data Objects: Printing} <>= print(Forbes2000) @ <>= print(Forbes2000[1:3,]) cat("...\n") @ will not be particularly helpful. \end{frame} \begin{frame}[fragile] \frametitle{Inspecting Data Objects} Better look at a description of their structure: <>= str(Forbes2000) @ <>= str(Forbes2000, vec.len = 2) @ \end{frame} \begin{frame}[fragile] \frametitle{Data Objects: Forbes 2000} For each observation, the following eight variables are available: \begin{description} \item[\Robject{rank}]: the ranking of the company, \item[\Robject{name}]: the name of the company, \item[\Robject{country}]: where the company is situated, \item[\Robject{category}]: products the company produces, \item[\Robject{sales}]: the amount of sales of the company, US dollars, \item[\Robject{profits}]: the profit of the company, \item[\Robject{assets}]: the assets of the company, \item[\Robject{marketvalue}]: the market value of the company. \end{description} \end{frame} \begin{frame}[fragile] \frametitle{Data Objects: Forbes 2000} A similar but more detailed description is available from the help page for the \Robject{Forbes2000} object: <>= help("Forbes2000") @ or \begin{Verbatim} R> ?Forbes2000 \end{Verbatim} All information provided by \Rcmd{str} can be obtained by specialised functions as well and we will now have a closer look at the most important of these. \end{frame} \begin{frame}[fragile] \frametitle{Everything is an Object!} The \R{} language is an object-oriented programming language, \index{Object-oriented programming language} so every object is an instance of a class: <>= class(Forbes2000) @ The dimensions of a \Rclass{data.frame} can be extracted using the \Rcmd{dim} function <>= dim(Forbes2000) @ or via <>= nrow(Forbes2000) ncol(Forbes2000) @ \end{frame} \begin{frame}[fragile] \frametitle{Data Frames: Assessing Variables} The variable names are accessible from <>= names(Forbes2000) @ The values of single variables can be extracted from the \Robject{Forbes2000} object by their names <>= class(Forbes2000[,"rank"]) @ Brackets \Robject{[]} always indicate a subset \index{Subset} of a larger object. \end{frame} \begin{frame}[fragile] \frametitle{Vectors} The rankings for all $\Sexpr{nrow(Forbes2000)}$ companies are represented in a \Rclass{vector} structure the length of which is given by <>= length(Forbes2000[,"rank"]) @ A \Rclass{vector} is the elementary structure for data handling in \R{} and is a set of simple elements, all being objects of the same class. <>= 1:3 c(1,2,3) seq(from = 1, to = 3, by = 1) @ \end{frame} \begin{frame}[fragile] \frametitle{Nominal Variables: Factors} Nominal measurements are represented by \Rclass{factor} variables in \R, such as the category of the company's business segment %%' <>= class(Forbes2000[,"category"]) @ Objects of class \Rclass{factor} and \Rclass{character} basically differ in the way their values are stored internally. In our case, there are <>= nlevels(Forbes2000[,"category"]) @ different categories: <>= levels(Forbes2000[,"category"]) @ <>= levels(Forbes2000[,"category"])[1:3] cat("...\n") @ \end{frame} \begin{frame}[fragile] \frametitle{Summarizing Factors} As a simple summary statistic, the frequencies of the levels of such a \Rclass{factor} variable can be found from <>= table(Forbes2000[,"category"]) @ <>= table(Forbes2000[,"category"])[1:3] cat("...\n") @ \end{frame} \begin{frame}[fragile] \frametitle{Numeric Variables} The sales, assets, profits and market value variables are of type \Robject{numeric} <>= class(Forbes2000[,"sales"]) @ and simple summary statistics such as the mean, median and range can be found from <>= median(Forbes2000[,"sales"]) mean(Forbes2000[,"sales"]) range(Forbes2000[,"sales"]) @ \end{frame} \begin{frame}[fragile] \frametitle{Summary Statistics} The \Rcmd{summary} method can be applied to a numeric vector to give a set of useful summary statistics namely the minimum, maximum, mean, median and the $25\%$ and $75\%$ quartiles; for example <>= summary(Forbes2000[,"sales"]) @ \end{frame} \section{Data Import and Export} \index{Data import and export|(} \begin{frame}[fragile] \frametitle{Data Import} The most frequent data formats the data analyst is confronted with are \begin{itemize} \item comma separated files, \item \EXCEL{} spreadsheets, \item files in \SPSS{} format and \item a variety of \SQL{} data base engines. \end{itemize} Querying data bases is a non-trivial task and requires additional knowledge about querying languages and we therefore refer to the \booktitle{\R{} Data Import/Export} manual. \end{frame} <>= pkgpath <- system.file(package = "HSAUR3") mywd <- getwd() filep <- file.path(pkgpath, "rawdata") setwd(filep) @ \begin{frame}[fragile] \frametitle{Comma-separated Files} When the variables are separated by commas and each row begins with a name (a text format typically created by \EXCEL{}), we can read in the data as follows using the \Rcmd{read.table} function <>= csvForbes2000 <- read.table("Forbes2000.csv", header = TRUE, sep = ",", row.names = 1) @ The function \Rcmd{read.table} by default guesses the class of each variable from the specified file. Files in \SPSS{} format are read in a way similar to reading comma separated files, using the function \Rcmd{read.spss} from package \Rpackage{foreign}. \end{frame} \begin{frame}[fragile] \frametitle{Data Export} A comma separated file readable by \EXCEL{} can be constructed from a \Rclass{data.frame} object via <>= write.table(Forbes2000, file = "Forbes2000.csv", sep = ",", col.names = NA) @ The function \Rcmd{write.csv} is one alternative. Alternatively, when data should be saved for later processing in \R{} only, \R{} objects of arbitrary kind can be stored into an external binary file via <>= save(Forbes2000, file = "Forbes2000.rda") @ <>= setwd(mywd) @ \end{frame} \section{Basic Data Manipulation \label{AItR:BDM}} \begin{frame}[fragile] \frametitle{More on Data Frames} \index{Data manipulation|(} Internally, a \Rclass{data.frame} is a \Rclass{list} of vectors of a common length $n$, the number of rows of the table. Each of those vectors represents the measurements of one variable and we can access such a variable by its name <>= companies <- Forbes2000[,"name"] @ A subset of the elements of the vector \Robject{companies} can be extracted using the \Rcmd{[]} subset operator: <>= companies[1:3] @ \end{frame} \begin{frame}[fragile] \frametitle{Subset Indexing} In contrast to indexing with positive integers, negative indexing returns all elements which are \stress{not} part of the index vector given in brackets. For example, all companies except those with numbers four to two-thousand, i.e., the top three companies, are again <>= companies[-(4:2000)] @ \end{frame} \begin{frame}[fragile] \frametitle{Data Frame Indexing} Because \Rclass{data.frame}s have a concept of rows and columns, we need to separate the subsets corresponding to rows and columns by a comma. The statement <>= Forbes2000[1:3, c("name", "sales", "profits", "assets")] @ extracts four variables for the three largest companies. A single variable can be extracted from a \Rclass{data.frame} by <>= companies <- Forbes2000$name @ \end{frame} \begin{frame}[fragile] \frametitle{Data Frame Ordering} The three top selling companies are to be computed. First, we need to compute the ordering of the companies' sales %%' <>= order_sales <- order(Forbes2000$sales) @ The three companies with the lowest sales are <>= companies[order_sales[1:3]] @ and the three top sellers are <>= Forbes2000[order_sales[c(2000, 1999, 1998)], "name"] @ \end{frame} \begin{frame}[fragile] \frametitle{Data Frame Subsetting} Another way of selecting vector elements is the use of a logical vector being \Robject{TRUE} when the corresponding element is to be selected and \Robject{FALSE} otherwise. The companies with assets of more than $1000$ billion US dollars are <>= Forbes2000[Forbes2000$assets > 1000, c("name", "sales", "profits")] table(Forbes2000$assets > 1000) @ \end{frame} \begin{frame}[fragile] \frametitle{Missing Values} In \R, missing values are treated by a special symbol, \Robject{NA}, indicating \index{NA symbol@\Robject{NA} symbol} that this measurement is not available. \index{Missing values} The observations with profit information missing can be obtained via <>= na_profits <- is.na(Forbes2000$profits) table(na_profits) Forbes2000[na_profits, c("name", "profits")] @ \end{frame} \begin{frame}[fragile] \frametitle{Removing Missing Values} We want to remove all observations with at least one missing value from a \Rclass{data.frame} object. The function \Rcmd{complete.cases} takes a \Rclass{data.frame} and returns a logical vector being \Robject{TRUE} when the corresponding observation does not contain any missing value: <>= table(complete.cases(Forbes2000)) @ \end{frame} \begin{frame}[fragile] \frametitle{Using subset} Subsetting \Rclass{data.frame}s driven by logical expressions may induce a lot of typing which can be avoided. The \Rcmd{subset} function takes a \Rclass{data.frame} as first argument and a logical expression as second argument: <>= UKcomp <- subset(Forbes2000, country == "United Kingdom") dim(UKcomp) @ \end{frame} \section{Simple Summary Statistics} \begin{frame}[fragile] \frametitle{str and summary} Applying the \Rcmd{summary} method to the \Robject{Forbes2000} <>= summary(Forbes2000) @ <>= summary(Forbes2000[,1:3]) @ \end{frame} \begin{frame}[fragile] \frametitle{apply and Friends} The members of the \Rcmd{apply} family help to solve recurring tasks for each element of a \Rclass{data.frame}, \Rclass{matrix}, \Rclass{list} or for each level of a factor. We compare the profits in each of the $\Sexpr{nlevels(Forbes2000$category)}$ categories and first compute the median profit for each category from <>= mprofits <- tapply(Forbes2000$profits, Forbes2000$category, median, na.rm = TRUE) @ \end{frame} \begin{frame}[fragile] \frametitle{Sorting} The three categories with highest median profit are computed from the vector of sorted median profits <>= rev(sort(mprofits))[1:3] @ where \Rcmd{rev} rearranges the vector of median profits \Rcmd{sort}ed from smallest to largest. \end{frame} \subsection{Simple Graphics} \begin{frame}[fragile] \frametitle{Simple Graphics: Histograms} The degree of skewness of a distribution can be investigated by constructing histograms using the \Rcmd{hist} function: <>= layout(matrix(1:2, nrow = 2)) hist(Forbes2000$marketvalue) hist(log(Forbes2000$marketvalue)) @ \end{frame} \begin{frame}[fragile] \begin{center} <>= layout(matrix(1:2, nrow = 2)) hist(Forbes2000$marketvalue) hist(log(Forbes2000$marketvalue)) @ \end{center} \end{frame} \begin{frame}[fragile] \frametitle{Simple Graphics: Scatterplots} In \R, regression relationships are specified by so-called \stress{model formulae} which may look like <>= fm <- marketvalue ~ sales class(fm) @ with the dependent variable on the left hand side and the independent variable on the right hand side. The tilde separates left and right hand side. \end{frame} \begin{frame}[fragile] \frametitle{Simple Graphics: Scatterplots} \begin{center} <>= plot(log(marketvalue) ~ log(sales), data = Forbes2000, pch = ".") @ \end{center} \end{frame} \begin{frame} %%% R CMD build will receive an error from texi2dvi because of pdf version %%% 1.4 used here -- exclude this piece of code \begin{center} <>= pdf("figures/marketvalue-sales.pdf", version = "1.4") plot(log(marketvalue) ~ log(sales), data = Forbes2000, col = rgb(0,0,0,0.1), pch = 16) dev.off() @ \includegraphics{figures/marketvalue-sales} \end{center} \end{frame} \begin{frame}[fragile] \frametitle{Simple Graphics: Boxplots} <>= boxplot(log(marketvalue) ~ country, data = subset(Forbes2000, country %in% c("United Kingdom", "Germany", "India", "Turkey")), ylab = "log(marketvalue)", varwidth = TRUE) @ \end{frame} \begin{frame} \begin{center} <>= tmp <- subset(Forbes2000, country %in% c("United Kingdom", "Germany", "India", "Turkey")) tmp$country <- tmp$country[,drop = TRUE] boxplot(log(marketvalue) ~ country, data = tmp, ylab = "log(marketvalue)", varwidth = TRUE) @ \end{center} \end{frame} \section{Organising an Analysis} \begin{frame}[fragile] \frametitle{Organising an Analysis} <>= file.create("analysis.R") @ ALWAYS maintain your R code for an analysis as a separate text file collecting all steps necessary to perform a certain data analysis task! Such an \R{} transcript file can be read by <>= source("analysis.R", echo = TRUE) @ When all steps of a data analysis, i.e., data preprocessing, transformations, simple summary statistics and plots, model building and inference as well as reporting, are collected in such an \R{} transcript file, the analysis can be reproduced at any time! <>= file.remove("analysis.R") @ \end{frame} \begin{frame}[fragile] \frametitle{Exercises} \begin{itemize} \item Calculate the median profit for the companies in the United States and the median profit for the companies in the UK, France and Germany. \item Find all German companies with negative profit. \item Which business category are most of the companies situated at the Bermuda island working in? \item For the $50$ companies in the Forbes data set with the highest profits, plot sales against assets (or some suitable transformation of each variable), labelling each point with the appropriate country name which may need to be abbreviated (using \Rcmd{abbreviate}) to avoid making the plot look too `messy'. %%' \item Find the average value of sales for the companies in each country in the Forbes data set, and find the number of countries in each country with profits above $5$ billion US dollars. \end{itemize} \end{frame} \end{document} HSAUR3/inst/rawdata/0000755000176200001440000000000012451513136013620 5ustar liggesusersHSAUR3/inst/rawdata/Forbes2000.csv0000644000176200001440000052700612357775376016116 0ustar liggesusers"","rank","name","country","category","sales","profits","assets","marketvalue" "1", 1,"Citigroup","United States","Banking", 94.71, 17.85,1264.03,255.30 "2", 2,"General Electric","United States","Conglomerates",134.19, 15.59, 626.93,328.54 "3", 3,"American Intl Group","United States","Insurance", 76.66, 6.46, 647.66,194.87 "4", 4,"ExxonMobil","United States","Oil & gas operations",222.88, 20.96, 166.99,277.02 "5", 5,"BP","United Kingdom","Oil & gas operations",232.57, 10.27, 177.57,173.54 "6", 6,"Bank of America","United States","Banking", 49.01, 10.81, 736.45,117.55 "7", 7,"HSBC Group","United Kingdom","Banking", 44.33, 6.66, 757.60,177.96 "8", 8,"Toyota Motor","Japan","Consumer durables",135.82, 7.99, 171.71,115.40 "9", 9,"Fannie Mae","United States","Diversified financials", 53.13, 6.48,1019.17, 76.84 "10", 10,"Wal-Mart Stores","United States","Retailing",256.33, 9.05, 104.91,243.74 "11", 11,"UBS","Switzerland","Diversified financials", 48.95, 5.15, 853.23, 85.07 "12", 12,"ING Group","Netherlands","Diversified financials", 94.72, 4.73, 752.49, 54.59 "13", 13,"Royal Dutch/Shell Group","Netherlands/ United Kingdom","Oil & gas operations",133.50, 8.40, 100.72,163.45 "14", 14,"Berkshire Hathaway","United States","Insurance", 56.22, 6.95, 172.24,141.14 "15", 15,"JP Morgan Chase","United States","Banking", 44.39, 4.47, 792.70, 81.94 "16", 16,"IBM","United States","Technology hardware & equipment", 89.13, 7.58, 104.46,171.54 "17", 17,"Total","France","Oil & gas operations",131.64, 8.84, 87.84,116.64 "18", 18,"BNP Paribas","France","Banking", 47.74, 4.73, 745.09, 59.29 "19", 19,"Royal Bank of Scotland","United Kingdom","Banking", 35.65, 4.95, 663.45, 90.21 "20", 20,"Freddie Mac","United States","Diversified financials", 46.26, 10.09, 752.25, 44.25 "21", 21,"DaimlerChrysler","Germany","Consumer durables",157.13, 5.12, 195.58, 47.43 "22", 22,"Altria Group","United States","Food drink & tobacco", 60.70, 9.20, 96.18,111.02 "23", 23,"ChevronTexaco","United States","Oil & gas operations",112.94, 7.43, 82.36, 92.49 "24", 24,"Pfizer","United States","Drugs & biotechnology", 40.36, 6.20, 120.06,285.27 "25", 25,"Wells Fargo","United States","Banking", 31.80, 6.20, 387.80, 97.53 "26", 26,"Verizon Commun","United States","Telecommunications services", 67.75, 2.57, 165.97,103.97 "27", 27,"Barclays","United Kingdom","Banking", 33.69, 4.90, 791.54, 61.33 "28", 28,"Morgan Stanley","United States","Diversified financials", 33.00, 3.64, 580.63, 64.81 "29", 29,"General Motors","United States","Consumer durables",185.52, 3.82, 450.00, 27.47 "30", 30,"Nippon Tel & Tel","Japan","Telecommunications services", 92.41, 2.17, 150.87, 73.00 "31", 31,"Microsoft","United States","Software & services", 34.27, 8.88, 85.94,287.02 "32", 32,"Nestl","Switzerland","Food drink & tobacco", 64.56, 5.48, 62.15,106.55 "33", 33,"SBC Communications","United States","Telecommunications services", 39.16, 5.97, 100.17, 82.93 "34", 34,"Deutsche Bank Group","Germany","Diversified financials", 58.85, 1.53, 792.49, 50.23 "35", 35,"Siemens Group","Germany","Conglomerates", 86.62, 2.81, 85.47, 75.77 "36", 36,"HBOS","United Kingdom","Banking", 32.68, 3.09, 571.76, 52.87 "37", 37,"ENI","Italy","Oil & gas operations", 53.29, 4.82, 67.91, 76.13 "38", 38,"ConocoPhillips","United States","Oil & gas operations", 90.49, 4.83, 81.95, 46.72 "39", 39,"Banco Santander Central","Spain","Banking", 28.70, 3.28, 442.24, 56.78 "40", 40,"Merrill Lynch","United States","Diversified financials", 26.64, 3.47, 485.77, 57.52 "41", 41,"Wachovia","United States","Banking", 24.47, 4.25, 400.87, 62.35 "42", 42,"Time Warner","United States","Media", 38.08, 2.65, 121.78, 77.95 "43", 43,"Hewlett-Packard","United States","Technology hardware & equipment", 73.06, 2.54, 74.71, 70.20 "44", 44,"Procter & Gamble","United States","Household & personal products", 46.99, 5.81, 53.86,131.89 "45", 45,"Samsung Electronics","South Korea","Semiconductors", 50.22, 5.95, 54.58, 72.72 "46", 46,"Johnson & Johnson","United States","Drugs & biotechnology", 40.01, 6.74, 46.66,160.96 "47", 47,"Lloyds TSB Group","United Kingdom","Banking", 24.48, 2.87, 406.99, 48.11 "48", 48,"ABN-Amro Holding","Netherlands","Banking", 23.64, 3.98, 704.95, 39.29 "49", 49,"Honda Motor","Japan","Consumer durables", 67.44, 3.61, 63.09, 40.61 "50", 50,"American Express","United States","Diversified financials", 24.17, 3.00, 175.00, 68.89 "51", 51,"Nissan Motor","Japan","Consumer durables", 57.77, 4.19, 60.56, 41.71 "52", 52,"Bank One","United States","Banking", 21.04, 3.40, 290.01, 58.38 "53", 53,"AXA Group","France","Insurance", 90.10, 1.00, 456.13, 41.39 "54", 54,"Socit Gnrale Group","France","Banking", 35.52, 1.61, 526.54, 40.61 "55", 55,"PetroChina","China","Oil & gas operations", 29.53, 5.67, 58.36, 90.49 "56", 56,"Goldman Sachs Group","United States","Diversified financials", 22.84, 2.54, 394.14, 50.12 "57", 57,"BBVA-Banco Bilbao Vizcaya","Spain","Banking", 24.10, 2.81, 288.80, 44.67 "58", 58,"Intel","United States","Semiconductors", 30.14, 5.64, 47.14,196.87 "59", 59,"MetLife","United States","Insurance", 35.79, 2.24, 326.84, 26.34 "60", 60,"Home Depot","United States","Retailing", 62.90, 4.04, 35.37, 82.29 "61", 61,"Viacom","United States","Media", 25.85, 2.47, 90.94, 68.66 "62", 62,"Allstate","United States","Insurance", 32.15, 2.73, 134.14, 32.90 "63", 63,"Merck & Co","United States","Drugs & biotechnology", 30.78, 7.33, 42.59,108.76 "64", 64,"Novartis Group","Switzerland","Drugs & biotechnology", 26.77, 5.40, 46.92,116.43 "65", 65,"ENEL","Italy","Utilities", 38.99, 2.11, 71.36, 46.84 "66", 66,"Unilever","Netherlands/ United Kingdom","Food drink & tobacco", 50.70, 2.24, 45.49, 72.19 "67", 67,"Washington Mutual","United States","Banking", 18.01, 3.88, 275.18, 39.69 "68", 68,"Crdit Agricole","France","Banking", 31.77, 1.12, 531.01, 38.80 "69", 69,"Deutsche Post","Germany","Transportation", 41.23, 1.64, 169.33, 26.83 "70", 70,"Comcast","United States","Media", 18.35, 3.24, 109.16, 67.30 "71", 71,"Volkswagen Group","Germany","Consumer durables", 91.33, 2.71, 112.87, 17.42 "72", 72,"Tokyo Electric Power","Japan","Utilities", 41.62, 1.40, 116.68, 30.63 "73", 73,"Munich Re","Germany","Insurance", 45.85, 1.14, 191.33, 26.63 "74", 74,"BMW-Bayerische Motor","Germany","Consumer durables", 52.23, 2.12, 58.11, 29.03 "75", 75,"Ford Motor","United States","Consumer durables",164.20, 0.76, 312.56, 26.29 "76", 76,"Tyco International","Bermuda","Conglomerates", 37.57, 1.19, 62.80, 58.41 "77", 77,"US Bancorp","United States","Banking", 14.57, 3.73, 189.29, 52.88 "78", 78,"Roche Group","Switzerland","Drugs & biotechnology", 25.18, 2.48, 45.77, 95.38 "79", 79,"Royal Bank of Canada","Canada","Banking", 18.82, 2.28, 305.01, 31.82 "80", 80,"GlaxoSmithKline","United Kingdom","Drugs & biotechnology", 34.16, 6.34, 29.19,124.79 "81", 81,"China Petroleum & Chemical","China","Oil & gas operations", 39.16, 1.94, 45.32, 50.09 "82", 82,"Sony","Japan","Consumer durables", 63.23, 0.98, 68.04, 38.00 "83", 83,"Nokia","Finland","Technology hardware & equipment", 37.05, 4.52, 29.15,104.30 "84", 84,"BellSouth","United States","Telecommunications services", 22.58, 3.59, 49.62, 54.08 "85", 85,"Walt Disney","United States","Media", 28.44, 1.92, 51.52, 55.06 "86", 86,"Natl Australia Bank","Australia","Banking", 15.34, 2.69, 269.94, 36.51 "87", 87,"Gazprom","Russia","Oil & gas operations", 19.21, 3.81, 77.15, 36.28 "88", 88,"Carrefour Group","France","Food markets", 96.94, 1.45, 40.11, 37.19 "89", 89,"Cisco Systems","United States","Technology hardware & equipment", 19.82, 4.35, 36.59,166.09 "90", 90,"FleetBoston Finl","United States","Banking", 14.22, 2.13, 196.40, 47.19 "91", 91,"RWE Group","Germany","Utilities", 45.68, 1.10, 97.35, 23.76 "92", 92,"UniCredito Italiano","Italy","Banking", 16.53, 1.89, 223.60, 33.53 "93", 93,"BT Group","United Kingdom","Telecommunications services", 29.58, 4.24, 44.42, 28.73 "94", 94,"United Parcel Service","United States","Transportation", 32.81, 3.54, 28.37, 79.62 "95", 95,"United Technologies","United States","Conglomerates", 31.03, 2.36, 34.65, 48.77 "96", 96,"Fortis","Netherlands","Diversified financials", 52.51, 0.56, 507.98, 30.19 "97", 97,"Dow Chemical","United States","Chemicals", 32.63, 1.74, 41.89, 39.85 "98", 98,"Aegon Insurance Group","Netherlands","Insurance", 17.75, 1.63, 266.59, 23.49 "99", 99,"Dexia","Belgium","Banking", 19.62, 1.36, 368.37, 21.64 "100", 100,"Renault Group","France","Consumer durables", 38.17, 2.05, 54.04, 19.64 "101", 101,"Target","United States","Retailing", 46.65, 1.70, 31.42, 37.52 "102", 102,"Coca-Cola","United States","Food drink & tobacco", 21.03, 4.35, 27.34,125.37 "103", 103,"Lehman Bros Holdings","United States","Diversified financials", 17.10, 1.47, 291.64, 23.01 "104", 104,"PepsiCo","United States","Food drink & tobacco", 26.97, 3.49, 25.33, 86.73 "105", 105,"Prudential","United Kingdom","Insurance", 38.22, 0.72, 242.97, 18.84 "106", 106,"Bank of Nova Scotia","Canada","Banking", 13.09, 1.88, 216.00, 26.46 "107", 107,"Boeing","United States","Aerospace & defense", 50.49, 0.70, 52.99, 35.54 "108", 108,"Aventis","France","Drugs & biotechnology", 21.66, 2.29, 31.06, 62.98 "109", 109,"Repsol-YPF","Spain","Oil & gas operations", 29.14, 2.05, 39.34, 26.22 "110", 110,"News Corp","Australia","Media", 20.16, 1.22, 45.65, 55.43 "111", 111,"BASF Group","Germany","Chemicals", 33.84, 1.58, 35.59, 30.00 "112", 112,"China Mobile (HK) Hong","Kong/China","Telecommunications services", 15.53, 3.96, 34.36, 67.08 "113", 113,"Dell","United States","Technology hardware & equipment", 41.44, 2.65, 19.31, 88.46 "114", 114,"Peugeot Groupe","France","Consumer durables", 68.23, 1.89, 58.34, 12.36 "115", 115,"Endesa Group","Spain","Utilities", 20.43, 1.65, 57.92, 21.10 "116", 116,"AT&T","United States","Telecommunications services", 34.53, 1.85, 47.99, 15.84 "117", 117,"Statoil Group","Norway","Oil & gas operations", 35.02, 2.36, 29.01, 23.55 "118", 118,"Bristol-Myers Squibb","United States","Drugs & biotechnology", 19.89, 2.90, 26.53, 56.05 "119", 119,"AstraZeneca","United Kingdom","Drugs & biotechnology", 20.46, 3.29, 23.57, 83.03 "120", 120,"Tesco","United Kingdom","Food markets", 41.48, 1.49, 25.90, 33.99 "121", 121,"Abbott Laboratories","United States","Drugs & biotechnology", 18.99, 2.44, 26.15, 69.27 "122", 122,"BHP Billiton","Australia/ United Kingdom","Materials", 17.86, 2.13, 28.43, 57.43 "123", 123,"Bayer Group","Germany","Chemicals", 30.42, 1.11, 42.78, 21.90 "124", 124,"Prudential Financial","United States","Insurance", 27.73, 0.50, 325.77, 24.92 "125", 125,"MBNA","United States","Diversified financials", 11.38, 2.17, 58.71, 35.71 "126", 126,"Commonwealth Bank Group","Australia","Banking", 10.75, 1.36, 178.29, 31.95 "127", 127,"Petrobras-Petrsleo Brasil","Brazil","Oil & gas operations", 22.61, 2.29, 27.06, 35.52 "128", 128,"Sanpaolo IMI","Italy","Banking", 13.49, 0.93, 212.16, 24.60 "129", 129,"Wyeth","United States","Drugs & biotechnology", 15.33, 3.29, 28.24, 56.35 "130", 130,"Canadian Imperial Bank","Canada","Banking", 13.00, 1.56, 209.00, 18.27 "131", 131,"Motorola","United States","Technology hardware & equipment", 27.06, 0.89, 32.10, 40.08 "132", 132,"EI du Pont de Nemours","United States","Chemicals", 26.20, 0.72, 37.39, 44.32 "133", 133,"Den Danske Bank","Denmark","Banking", 12.64, 1.57, 308.62, 16.39 "134", 134,"Caterpillar","United States","Capital goods", 22.76, 1.10, 37.01, 26.63 "135", 135,"Honeywell","United States","Aerospace & defense", 23.10, 1.34, 29.34, 31.39 "136", 136,"Nordea","Sweden","Banking", 13.42, 0.93, 262.20, 20.14 "137", 137,"Anglo American","United Kingdom","Materials", 16.16, 1.67, 32.95, 35.27 "138", 138,"Canon","Japan","Business services & supplies", 24.76, 1.61, 23.34, 42.84 "139", 139,"Travelers Property Cas","United States","Insurance", 14.54, 1.70, 62.69, 18.46 "140", 140,"Cendant","United States","Hotels restaurants & leisure", 17.49, 1.42, 41.07, 23.08 "141", 141,"Sun Life Financial","Canada","Insurance", 17.02, 1.01, 111.43, 16.58 "142", 142,"Saint-Gobain","France","Construction", 37.22, 1.09, 31.67, 18.87 "143", 143,"East Japan Railway","Japan","Transportation", 21.71, 0.83, 56.79, 20.07 "144", 144,"Hutchison Whampoa","Hong Kong/China","Conglomerates", 9.65, 1.83, 63.53, 35.38 "145", 145,"Cardinal Health","United States","Health care equipment & services", 61.30, 1.45, 19.52, 28.31 "146", 146,"Bank of Montreal","Canada","Banking", 10.08, 1.38, 194.35, 21.63 "147", 147,"Alcoa","United States","Materials", 21.50, 0.99, 31.71, 32.14 "148", 148,"National City","United States","Banking", 9.59, 2.12, 113.93, 21.51 "149", 149,"Westpac Banking Group","Australia","Banking", 9.45, 1.49, 150.08, 24.44 "150", 150,"Lowe`s Cos","United States","Retailing", 30.03, 1.79, 18.68, 45.29 "151", 151,"Toronto-Dominion Bank","Canada","Banking", 11.88, 0.82, 207.09, 22.26 "152", 152,"Korea Electric Power","South Korea","Utilities", 18.01, 2.57, 58.38, 11.84 "153", 153,"Moller-Maersk","Denmark","Transportation", 19.20, 1.53, 24.09, 37.67 "154", 154,"Kookmin Bank","South Korea","Banking", 13.97, 1.07, 157.59, 14.44 "155", 155,"British Amer Tobacco","United Kingdom","Food drink & tobacco", 17.07, 1.86, 25.89, 31.33 "156", 156,"Mitsubishi","Japan","Trading companies",112.76, 0.46, 67.69, 15.13 "157", 157,"Kansai Electric Power","Japan","Utilities", 22.12, 0.68, 60.52, 17.56 "158", 158,"Almanij","Belgium","Diversified financials", 20.64, 0.75, 265.53, 12.16 "159", 159,"Millea Holdings","Japan","Insurance", 24.16, 0.48, 83.23, 22.97 "160", 160,"ANZ Banking","Australia","Banking", 8.79, 1.60, 132.44, 23.40 "161", 161,"Countrywide Financial","United States","Diversified financials", 9.88, 2.37, 97.94, 16.34 "162", 162,"Lockheed Martin","United States","Aerospace & defense", 31.82, 1.05, 25.34, 22.27 "163", 163,"M","United States","Conglomerates", 18.23, 2.40, 17.59, 62.48 "164", 164,"Telstra","Australia","Telecommunications services", 13.81, 2.31, 23.99, 47.18 "165", 165,"Eli Lilly and Co","United States","Drugs & biotechnology", 12.58, 2.56, 21.68, 82.53 "166", 166,"UnitedHealth Group","United States","Health care equipment & services", 28.57, 1.83, 17.63, 35.01 "167", 167,"Pinault-Printemps-Redoute","France","Retailing", 30.64, 1.67, 31.20, 12.84 "168", 168,"Norsk Hydro","Norway","Conglomerates", 23.53, 1.27, 29.65, 17.64 "169", 169,"Northrop Grumman","United States","Aerospace & defense", 23.94, 0.87, 33.66, 18.98 "170", 170,"Manulife Financial","Canada","Insurance", 12.85, 1.19, 59.81, 16.91 "171", 171,"Chubu Electric Power","Japan","Utilities", 18.41, 0.90, 52.08, 15.59 "172", 172,"Sears Roebuck","United States","Retailing", 41.12, 3.40, 27.74, 10.60 "173", 173,"Exelon","United States","Utilities", 15.81, 0.79, 41.62, 21.44 "174", 174,"McDonald`s","United States","Hotels restaurants & leisure", 16.48, 1.04, 25.23, 33.80 "175", 175,"BCE","Canada","Telecommunications services", 14.70, 1.40, 30.35, 20.20 "176", 176,"HCA","United States","Health care equipment & services", 21.81, 1.33, 21.06, 21.65 "177", 177,"Aflac","United States","Insurance", 11.27, 0.91, 49.24, 20.65 "178", 178,"Southern Co","United States","Utilities", 11.17, 1.53, 33.89, 21.60 "179", 179,"Fifth Third Bancorp","United States","Banking", 6.47, 1.77, 91.14, 32.74 "180", 180,"Hyundai Motor","South Korea","Consumer durables", 40.57, 1.21, 37.83, 8.85 "181", 181,"Amgen","United States","Drugs & biotechnology", 8.36, 2.26, 26.18, 83.02 "182", 182,"National Grid Transco","United Kingdom","Utilities", 14.85, 0.62, 39.34, 23.73 "183", 183,"Kroger","United States","Food markets", 53.23, 1.04, 20.61, 14.09 "184", 184,"Lukoil Holding","Russia","Oil & gas operations", 15.25, 1.83, 21.68, 21.65 "185", 185,"SunTrust Banks","United States","Banking", 7.07, 1.33, 125.39, 20.80 "186", 186,"L`Oral Group","France","Household & personal products", 17.65, 1.89, 14.13, 56.46 "187", 187,"AT&T Wireless","United States","Telecommunications services", 16.70, 0.44, 47.80, 27.28 "188", 188,"Rio Tinto","United Kingdom/ Australia","Materials", 10.01, 1.64, 24.08, 43.52 "189", 189,"Iberdrola","Spain","Utilities", 11.94, 1.33, 30.99, 18.78 "190", 190,"Capital One Financial","United States","Diversified financials", 9.78, 1.15, 46.28, 17.17 "191", 191,"Dominion Resources","United States","Utilities", 11.78, 0.72, 41.54, 20.44 "192", 192,"Union Pacific","United States","Transportation", 11.55, 1.31, 33.46, 16.55 "193", 193,"Nextel Commun","United States","Telecommunications services", 10.15, 2.37, 21.44, 29.81 "194", 194,"ACE","Bermuda","Insurance", 10.67, 1.39, 49.52, 12.60 "195", 195,"Bank of New York","United States","Banking", 6.34, 1.16, 92.30, 25.27 "196", 196,"Volvo Group","Sweden","Capital goods", 24.28, 0.60, 32.68, 14.12 "197", 197,"Walgreen","United States","Retailing", 33.74, 1.20, 12.10, 35.33 "198", 198,"Aetna","United States","Health care equipment & services", 18.12, 0.78, 41.06, 11.82 "199", 199,"UES of","Russia","Utilities", 15.76, 1.10, 32.94, 12.72 "200", 200,"Standard Chartered Group","United Kingdom","Banking", 7.40, 0.90, 112.77, 20.15 "201", 201,"Anheuser-Busch Cos","United States","Food drink & tobacco", 14.15, 2.08, 14.69, 42.34 "202", 202,"China Telecom","China","Telecommunications services", 9.12, 2.04, 24.85, 29.92 "203", 203,"CNP Assurances","France","Insurance", 26.35, 0.60, 158.05, 8.00 "204", 204,"Kimberly-Clark","United States","Household & personal products", 13.99, 1.60, 16.41, 30.59 "205", 205,"Hitachi","Japan","Business services & supplies", 69.30, 0.24, 77.32, 21.09 "206", 206,"ThyssenKrupp Group","Germany","Materials", 42.17, 0.60, 33.85, 10.23 "207", 207,"Sprint FON","United States","Telecommunications services", 14.19, 1.62, 21.86, 16.60 "208", 208,"Clear Channel Commun","United States","Media", 8.85, 1.14, 28.17, 27.86 "209", 209,"Denso","Japan","Consumer durables", 19.74, 0.94, 19.60, 17.20 "210", 210,"John Hancock Financial","United States","Insurance", 9.27, 0.83, 108.87, 12.38 "211", 211,"KDDI","Japan","Telecommunications services", 23.56, 0.49, 23.36, 23.55 "212", 212,"BB&T","United States","Banking", 6.24, 1.06, 90.47, 20.43 "213", 213,"Yukos","Russia","Oil & gas operations", 10.86, 3.04, 14.21, 39.81 "214", 214,"Marathon Oil","United States","Oil & gas operations", 36.68, 1.32, 19.06, 10.39 "215", 215,"Groupe Danone","France","Food drink & tobacco", 16.52, 1.06, 16.27, 23.37 "216", 216,"First Data","United States","Software & services", 8.32, 1.36, 26.29, 29.06 "217", 217,"Qwest Communications","United States","Telecommunications services", 14.51, 4.45, 30.46, 8.45 "218", 218,"Metro AG","Germany","Food markets", 54.12, 0.47, 22.94, 14.38 "219", 219,"Bouygues Group","France","Construction", 23.37, 0.70, 25.12, 12.35 "220", 220,"Emerson Electric","United States","Conglomerates", 14.33, 1.12, 15.71, 26.88 "221", 221,"Allied Irish Banks","Ireland","Banking", 6.80, 1.10, 89.95, 15.04 "222", 222,"Principal Financial","United States","Diversified financials", 9.24, 0.79, 103.77, 11.69 "223", 223,"Svenska Handelsbanken","Sweden","Banking", 7.37, 0.84, 147.16, 13.68 "224", 224,"Costco Wholesale","United States","Retailing", 43.87, 0.74, 14.33, 17.23 "225", 225,"Mitsui & Co","Japan","Trading companies",111.98, 0.28, 54.88, 12.30 "226", 226,"Takeda Chemical Inds","Japan","Drugs & biotechnology", 8.85, 2.30, 17.37, 37.96 "227", 227,"Chubb","United States","Insurance", 10.85, 0.79, 38.09, 13.29 "228", 228,"Veolia Environnement","France","Utilities", 35.97, 0.36, 44.04, 12.09 "229", 229,"Bear Stearns Cos","United States","Diversified financials", 6.91, 1.06, 209.69, 12.16 "230", 230,"Banca Intesa","Italy","Banking", 19.20, 0.21, 291.90, 26.26 "231", 231,"FedEx","United States","Transportation", 22.98, 0.65, 16.21, 20.56 "232", 232,"Central Japan Railway","Japan","Transportation", 11.53, 0.42, 46.05, 20.66 "233", 233,"Texas Instruments","United States","Semiconductors", 9.83, 1.20, 15.51, 53.25 "234", 234,"Japan Tobacco","Japan","Food drink & tobacco", 16.46, 0.64, 24.48, 14.84 "235", 235,"Deere & Co","United States","Capital goods", 14.01, 0.64, 26.26, 15.75 "236", 236,"KT","South Korea","Telecommunications services", 13.82, 1.64, 24.11, 10.98 "237", 237,"Sara Lee","United States","Food drink & tobacco", 18.66, 1.11, 14.91, 17.08 "238", 238,"Oracle","United States","Software & services", 9.71, 2.49, 11.78, 72.09 "239", 239,"PNC Financial Services","United States","Banking", 6.09, 0.99, 72.28, 15.82 "240", 240,"WellPoint Health","United States","Health care equipment & services", 20.36, 0.94, 14.79, 16.18 "241", 241,"General Dynamics","United States","Aerospace & defense", 15.72, 0.88, 15.88, 18.99 "242", 242,"Marsh & McLennan","United States","Insurance", 11.11, 1.48, 14.49, 25.96 "243", 243,"Indian Oil","India","Oil & gas operations", 25.26, 1.39, 13.74, 12.93 "244", 244,"Lafarge","France","Construction", 17.18, 0.48, 27.98, 14.05 "245", 245,"Centrica","United Kingdom","Utilities", 23.05, 0.77, 13.96, 17.21 "246", 246,"Coca-Cola Enterprises","United States","Food drink & tobacco", 17.33, 0.68, 25.71, 10.76 "247", 247,"Banco Bradesco Group","Brazil","Banking", 15.76, 0.80, 60.89, 6.83 "248", 248,"Medtronic","United States","Health care equipment & services", 8.57, 1.88, 13.44, 57.38 "249", 249,"J Sainsbury","United Kingdom","Food markets", 27.54, 0.72, 18.87, 10.51 "250", 250,"Fuji Photo Film","Japan","Household & personal products", 21.20, 0.41, 24.30, 15.00 "251", 251,"State Bank of India Group","India","Banking", 10.37, 0.88, 104.80, 7.34 "252", 252,"General Mills","United States","Food drink & tobacco", 10.77, 1.00, 18.78, 16.81 "253", 253,"State Street","United States","Banking", 5.46, 0.72, 87.53, 18.17 "254", 254,"Automatic Data","United States","Business services & supplies", 7.01, 0.97, 24.70, 25.86 "255", 255,"Waste Management","United States","Business services & supplies", 11.57, 0.72, 20.66, 16.87 "256", 256,"Entergy","United States","Utilities", 8.97, 0.92, 28.57, 13.27 "257", 257,"Progressive","United States","Insurance", 11.27, 1.05, 16.16, 17.79 "258", 258,"Pub Svc Enterprise","United States","Utilities", 11.23, 0.91, 26.94, 10.74 "259", 259,"Carnival Corp","Panama/ United Kingdom","Hotels restaurants & leisure", 5.93, 1.18, 23.40, 37.96 "260", 260,"Bank of Ireland","Ireland","Banking", 5.40, 0.91, 97.46, 14.02 "261", 261,"ConAgra Foods","United States","Food drink & tobacco", 19.84, 0.84, 14.53, 14.05 "262", 262,"KeyCorp","United States","Banking", 5.73, 0.90, 84.49, 13.18 "263", 263,"Monte dei Paschi","Italy","Banking", 8.02, 0.61, 134.48, 10.11 "264", 264,"Schlumberger","Netherlands","Oil & gas operations", 13.89, 0.38, 19.94, 37.49 "265", 265,"Occidental Petroleum","United States","Oil & gas operations", 8.94, 1.54, 17.71, 17.22 "266", 266,"Ito-Yokado","Japan","Food markets", 28.32, 0.38, 20.97, 14.46 "267", 267,"Cigna","United States","Health care equipment & services", 18.69, 0.43, 90.17, 7.45 "268", 268,"SEB-Skand Enskilda","Sweden","Banking", 7.43, 0.61, 142.77, 10.21 "269", 269,"FPL Group","United States","Utilities", 9.67, 0.88, 25.16, 11.89 "270", 270,"Burlington Santa Fe","United States","Transportation", 9.29, 0.78, 26.94, 12.03 "271", 271,"St Paul Cos","United States","Insurance", 8.47, 0.88, 40.36, 9.86 "272", 272,"Alcan","Canada","Materials", 14.59, 0.31, 31.25, 16.77 "273", 273,"Oil & Natural Gas","India","Oil & gas operations", 7.01, 2.20, 15.75, 23.26 "274", 274,"Thomson Corp","Canada","Media", 8.14, 0.90, 18.68, 21.07 "275", 275,"Posco","South Korea","Materials", 12.10, 0.92, 16.04, 13.23 "276", 276,"Archer Daniels","United States","Food drink & tobacco", 31.73, 0.49, 17.69, 10.93 "277", 277,"Mitsui Sumitomo Ins","Japan","Insurance", 15.98, 0.28, 54.50, 12.49 "278", 278,"Sanofi-Synthlabo","France","Drugs & biotechnology", 10.12, 2.62, 8.77, 51.88 "279", 279,"McKesson","United States","Health care equipment & services", 66.45, 0.61, 15.95, 8.33 "280", 280,"CVS","United States","Retailing", 26.59, 0.85, 10.54, 14.81 "281", 281,"Tohoku Electric Power","Japan","Utilities", 13.48, 0.52, 34.49, 8.67 "282", 282,"Fortum","Finland","Oil & gas operations", 14.33, 0.97, 20.83, 8.78 "283", 283,"Raytheon","United States","Aerospace & defense", 18.11, 0.37, 23.41, 13.22 "284", 284,"Weyerhaeuser","United States","Materials", 19.87, 0.29, 28.11, 13.95 "285", 285,"Kyushu Electric Power","Japan","Utilities", 12.02, 0.54, 34.69, 8.48 "286", 286,"Akzo Nobel Group","Netherlands","Chemicals", 16.42, 1.02, 14.04, 11.16 "287", 287,"Johnson Controls","United States","Consumer durables", 23.85, 0.71, 13.67, 11.14 "288", 288,"SLM","United States","Diversified financials", 3.91, 1.40, 64.61, 18.21 "289", 289,"Devon Energy","United States","Oil & gas operations", 5.89, 1.73, 27.16, 12.51 "290", 290,"Albertsons","United States","Food markets", 35.90, 0.63, 15.25, 8.79 "291", 291,"Alltel","United States","Telecommunications services", 8.11, 1.32, 16.45, 15.84 "292", 292,"Illinois Tool Works","United States","Capital goods", 10.04, 1.02, 11.19, 24.29 "293", 293,"Ricoh","Japan","Business services & supplies", 14.71, 0.61, 15.11, 13.50 "294", 294,"Surgutneftegas Oil","Russia","Oil & gas operations", 6.29, 1.56, 16.57, 21.36 "295", 295,"Aeon","Japan","Retailing", 26.14, 0.43, 16.75, 11.31 "296", 296,"Gap","United States","Retailing", 15.62, 0.92, 10.18, 18.10 "297", 297,"Gillette","United States","Household & personal products", 9.25, 1.39, 9.96, 37.48 "298", 298,"Progress Energy","United States","Utilities", 8.73, 0.80, 24.14, 11.19 "299", 299,"Anthem","United States","Health care equipment & services", 16.77, 0.77, 13.44, 11.64 "300", 300,"CIC Group","France","Banking", 12.76, 0.40, 170.76, 6.64 "301", 301,"Xerox","United States","Business services & supplies", 15.70, 0.36, 24.59, 11.95 "302", 302,"Golden West Finl","United States","Banking", 3.84, 1.11, 82.55, 16.28 "303", 303,"Reliance Industries","India","Oil & gas operations", 9.57, 0.84, 13.49, 18.40 "304", 304,"Edison International","United States","Utilities", 11.95, 0.61, 35.62, 7.11 "305", 305,"Sysco","United States","Food markets", 27.54, 0.84, 7.31, 24.28 "306", 306,"Gannett","United States","Media", 6.62, 1.20, 14.40, 23.96 "307", 307,"Baxter International","United States","Health care equipment & services", 8.92, 0.90, 13.78, 18.73 "308", 308,"Scottish Power","United Kingdom","Utilities", 8.29, 0.75, 21.89, 12.31 "309", 309,"Mitsubishi Heavy Inds","Japan","Capital goods", 21.94, 0.29, 30.59, 9.82 "310", 310,"EnCana","Canada","Oil & gas operations", 6.37, 0.79, 19.92, 19.10 "311", 311,"Bridgestone","Japan","Consumer durables", 18.93, 0.38, 17.07, 12.86 "312", 312,"Cathay Financial","Taiwan","Insurance", 6.40, 0.38, 60.09, 14.65 "313", 313,"Best Buy","United States","Retailing", 23.09, 0.55, 10.08, 17.42 "314", 314,"Sumitomo","Japan","Trading companies", 78.08, 0.24, 40.69, 7.78 "315", 315,"Eurohypo","Germany","Banking", 12.65, 0.31, 237.41, 7.15 "316", 316,"Deutsche Lufthansa","Germany","Transportation", 17.83, 0.75, 19.89, 7.07 "317", 317,"Vinci Group","France","Construction", 22.77, 0.50, 20.94, 7.68 "318", 318,"Singapore Telecom","Singapore","Telecommunications services", 5.82, 0.79, 18.55, 23.85 "319", 319,"Power Corp of Canada","Canada","Diversified financials", 12.10, 0.41, 44.36, 7.76 "320", 320,"Swisscom","Switzerland","Telecommunications services", 10.52, 0.60, 11.98, 22.63 "321", 321,"Banco do Brasil","Brazil","Banking", 12.09, 0.57, 57.80, 5.77 "322", 322,"Nortel Networks","Canada","Technology hardware & equipment", 10.49, 0.41, 13.72, 34.08 "323", 323,"Schneider Electric","France","Capital goods", 11.04, 0.54, 14.37, 15.39 "324", 324,"Frenings Sparbanken","Sweden","Banking", 6.24, 0.43, 108.47, 10.42 "325", 325,"Aire Liquide Group","France","Chemicals", 10.55, 0.74, 11.51, 17.55 "326", 326,"BOC Hong Kong","Hong Kong/China","Banking", 3.38, 0.86, 94.30, 21.22 "327", 327,"XL Capital","Bermuda","Insurance", 8.02, 0.41, 40.76, 10.61 "328", 328,"Masco","United States","Construction", 10.56, 0.91, 12.20, 12.71 "329", 329,"Toshiba","Japan","Business services & supplies", 47.85, 0.16, 39.73, 13.27 "330", 330,"Aon","United States","Insurance", 9.58, 0.59, 26.21, 8.09 "331", 331,"Cadbury Schweppes","United Kingdom","Food drink & tobacco", 8.53, 0.88, 12.30, 16.88 "332", 332,"Sharp","Japan","Business services & supplies", 16.95, 0.28, 16.65, 18.21 "333", 333,"Valero Energy","United States","Oil & gas operations", 34.51, 0.58, 15.25, 6.70 "334", 334,"Consolidated Edison","United States","Utilities", 9.83, 0.54, 20.97, 9.77 "335", 335,"Mellon Finl","United States","Banking", 4.55, 0.71, 33.98, 14.25 "336", 336,"UPM-Kymmene","Finland","Materials", 12.51, 0.46, 18.26, 10.16 "337", 337,"Colgate-Palmolive","United States","Household & personal products", 9.90, 1.42, 7.48, 29.56 "338", 338,"Federated Dept Strs","United States","Retailing", 15.23, 0.57, 14.75, 8.92 "339", 339,"Anadarko Petroleum","United States","Oil & gas operations", 5.12, 1.25, 20.55, 12.92 "340", 340,"Schering-Plough","United States","Drugs & biotechnology", 8.82, 0.40, 14.34, 27.05 "341", 341,"Compass Group","United Kingdom","Hotels restaurants & leisure", 18.65, 0.31, 14.11, 14.91 "342", 342,"Petro-Canada","Canada","Oil & gas operations", 9.42, 1.29, 11.26, 11.82 "343", 343,"JC Penney","United States","Retailing", 32.34, 0.34, 18.60, 7.71 "344", 344,"Marks & Spencer","United Kingdom","Retailing", 12.76, 0.76, 10.67, 11.73 "345", 345,"Nippon Oil","Japan","Oil & gas operations", 26.44, 0.27, 28.03, 7.50 "346", 346,"Omnicom Group","United States","Media", 8.23, 0.66, 12.68, 15.79 "347", 347,"International Paper","United States","Materials", 25.00, 0.13, 34.64, 20.85 "348", 348,"Old Mutual","United Kingdom","Diversified financials", 14.90, 0.25, 78.44, 6.73 "349", 349,"EMC","United States","Technology hardware & equipment", 6.24, 0.50, 14.09, 33.49 "350", 350,"Allianz Worldwide","Germany","Insurance", 96.88, -1.23, 851.24, 48.07 "351", 351,"CRH","Ireland","Construction", 11.05, 0.65, 11.09, 11.43 "352", 352,"Kingfisher","United Kingdom","Retailing", 17.67, 0.28, 15.12, 12.81 "353", 353,"Kellogg","United States","Food drink & tobacco", 8.81, 0.79, 10.23, 15.77 "354", 354,"Vodafone","United Kingdom","Telecommunications services", 47.99,-15.51, 256.28,174.61 "355", 355,"Medco Health Solutions","United States","Health care equipment & services", 34.26, 0.43, 10.26, 9.45 "356", 356,"NIKE","United States","Household & personal products", 11.25, 0.81, 7.38, 19.03 "357", 357,"Tribune","United States","Media", 5.55, 0.75, 14.27, 17.07 "358", 358,"Telenor","Norway","Telecommunications services", 7.93, 0.68, 13.04, 12.30 "359", 359,"Standard Bank Group","South Africa","Banking", 5.14, 0.58, 45.45, 8.10 "360", 360,"Chunghwa Telecom","Taiwan","Telecommunications services", 5.08, 1.25, 13.44, 15.89 "361", 361,"SCA-Svenska Cellulosa","Sweden","Materials", 10.14, 0.66, 12.58, 9.52 "362", 362,"Michelin Group","France","Consumer durables", 19.33, 0.40, 17.09, 6.92 "363", 363,"Erste Bank","Austria","Banking", 7.50, 0.27, 126.93, 8.12 "364", 364,"Deutsche Telekom","Germany","Telecommunications services", 56.40,-25.83, 132.01, 84.18 "365", 365,"DBS Group","Singapore","Banking", 3.36, 0.59, 86.02, 13.43 "366", 366,"SAP","Germany","Software & services", 8.84, 1.36, 5.62, 54.10 "367", 367,"GUS","United Kingdom","Retailing", 11.29, 0.40, 11.41, 14.17 "368", 368,"Holcim","Switzerland","Construction", 9.42, 0.37, 18.62, 10.27 "369", 369,"Tokyo Gas","Japan","Utilities", 9.54, 0.50, 13.80, 10.30 "370", 370,"Ingersoll-Rand","Bermuda","Conglomerates", 9.88, 0.64, 10.66, 11.56 "371", 371,"AmerisourceBergen","United States","Health care equipment & services", 50.58, 0.46, 11.81, 6.35 "372", 372,"Credit Suisse Group","Switzerland","Diversified financials", 38.01, -2.40, 683.44, 44.13 "373", 373,"FirstEnergy","United States","Utilities", 12.41, 0.18, 33.49, 12.37 "374", 374,"France Telecom","France","Telecommunications services", 57.99,-21.78, 107.86, 64.36 "375", 375,"Cemex","Mexico","Construction", 7.19, 0.63, 15.88, 9.93 "376", 376,"May Dept Stores","United States","Retailing", 13.34, 0.43, 12.04, 10.04 "377", 377,"Firstrand","South Africa","Banking", 4.69, 0.61, 52.81, 7.62 "378", 378,"Accenture","Bermuda","Software & services", 13.64, 0.55, 6.70, 22.04 "379", 379,"Banco Popular Espaqol","Spain","Banking", 3.32, 0.67, 44.01, 14.38 "380", 380,"George Weston","Canada","Food markets", 17.46, 0.44, 10.57, 9.78 "381", 381,"Sberbank of Russia","Russia","Banking", 5.63, 0.97, 34.20, 5.95 "382", 382,"Generali Group","Italy","Insurance", 57.90, -0.79, 239.21, 35.11 "383", 383,"China Unicom","Hong Kong/China","Telecommunications services", 4.90, 0.55, 17.93, 15.67 "384", 384,"JFE Holdings","Japan","Materials", 20.53, 0.13, 31.50, 14.42 "385", 385,"Christian Dior","France","Household & personal products", 15.69, 0.19, 27.48, 10.92 "386", 386,"Henkel Group","Germany","Household & personal products", 11.87, 0.67, 8.60, 11.71 "387", 387,"Lincoln National","United States","Insurance", 4.80, 0.38, 100.83, 8.30 "388", 388,"Kyocera","Japan","Business services & supplies", 9.05, 0.37, 13.83, 13.27 "389", 389,"Shin-Etsu Chemical","Japan","Chemicals", 6.75, 0.62, 10.98, 16.32 "390", 390,"Woori Finance Holdings","South Korea","Banking", 7.22, 0.50, 96.45, 4.93 "391", 391,"Mitsubishi Estate","Japan","Diversified financials", 5.77, 0.30, 25.43, 14.84 "392", 392,"Georgia-Pacific","United States","Materials", 20.26, 0.23, 24.41, 7.64 "393", 393,"Centex","United States","Construction", 10.44, 0.74, 15.58, 6.17 "394", 394,"Areva Group","France","Materials", 8.68, 0.25, 30.84, 9.90 "395", 395,"TPG","Netherlands","Transportation", 12.25, 0.63, 8.29, 11.51 "396", 396,"Sumitomo Mitsui Financial","Japan","Banking", 29.17, -3.94, 868.42, 31.87 "397", 397,"E.ON","Germany","Utilities", 37.95, -0.73, 115.57, 43.96 "398", 398,"Mitsubishi Tokyo Finl","Japan","Banking", 20.65, -1.37, 827.48, 49.92 "399", 399,"West Japan Railway","Japan","Transportation", 9.86, 0.35, 20.06, 7.91 "400", 400,"Taiwan Semiconductor","Taiwan","Semiconductors", 4.68, 0.62, 10.99, 39.11 "401", 401,"Alliance & Leicester","United Kingdom","Banking", 4.08, 0.55, 66.42, 8.01 "402", 402,"Aviva","United Kingdom","Insurance", 52.46, -0.86, 287.58, 22.96 "403", 403,"Mizuho Financial","Japan","Banking", 24.40,-20.11,1115.90, 30.87 "404", 404,"Computer Sciences","United States","Software & services", 13.86, 0.49, 11.11, 8.04 "405", 405,"Zurich Financial Services","Switzerland","Insurance", 47.46, -3.96, 263.85, 21.83 "406", 406,"Diageo","United Kingdom","Food drink & tobacco", 11.25, 0.13, 26.27, 41.30 "407", 407,"HJ Heinz","United States","Food drink & tobacco", 8.28, 0.66, 9.41, 12.76 "408", 408,"SouthTrust","United States","Banking", 3.11, 0.71, 51.92, 11.38 "409", 409,"Telefsnica","Spain","Telecommunications services", 29.84, -5.86, 60.65, 86.39 "410", 410,"Stora Enso","Finland","Materials", 15.31, 0.18, 22.55, 11.02 "411", 411,"Imperial Tobacco Group","United Kingdom","Food drink & tobacco", 5.32, 0.70, 11.53, 15.42 "412", 412,"Telecom Italia","Italy","Telecommunications services", 32.99, -0.81, 85.03, 46.57 "413", 413,"Kohl`s","United States","Retailing", 9.90, 0.62, 7.14, 16.54 "414", 414,"Degussa","Germany","Chemicals", 12.36, 0.36, 15.53, 7.59 "415", 415,"Matsushita Electric Indl","Japan","Consumer durables", 62.62, -0.16, 60.46, 33.02 "416", 416,"Comerica","United States","Banking", 3.30, 0.66, 52.59, 10.08 "417", 417,"Sasol","South Africa","Oil & gas operations", 8.64, 1.05, 9.36, 9.33 "418", 418,"Interbrew","Belgium","Food drink & tobacco", 7.34, 0.49, 11.50, 12.90 "419", 419,"Amerada Hess","United States","Oil & gas operations", 14.31, 0.64, 13.98, 5.42 "420", 420,"Regions Financial","United States","Banking", 3.73, 0.64, 48.79, 8.23 "421", 421,"Sempra Energy","United States","Utilities", 7.49, 0.58, 18.05, 7.02 "422", 422,"TDC Group","Denmark","Telecommunications services", 7.23, 0.64, 12.81, 8.92 "423", 423,"Itochu","Japan","Trading companies", 88.51, 0.17, 37.20, 5.46 "424", 424,"Norfolk Southern","United States","Transportation", 6.47, 0.42, 20.60, 8.71 "425", 425,"STMicroelectronics","Switzerland","Semiconductors", 7.98, 0.28, 11.98, 24.11 "426", 426,"PPL","United States","Utilities", 5.57, 0.73, 17.13, 8.01 "427", 427,"Suez Group","France","Utilities", 48.41, -0.91, 88.39, 22.35 "428", 428,"Constellation Energy","United States","Utilities", 9.70, 0.48, 15.80, 6.68 "429", 429,"Sun Hung Kai Properties","China","Diversified financials", 2.94, 0.84, 20.66, 24.02 "430", 430,"Unocal","United States","Oil & gas operations", 6.40, 0.73, 11.80, 9.58 "431", 431,"HVB-HypoVereinsbank","Germany","Banking", 40.52, -0.87, 705.36, 14.49 "432", 432,"Magna International","Canada","Consumer durables", 12.94, 0.52, 9.97, 7.65 "433", 433,"Qualcomm","United States","Technology hardware & equipment", 4.12, 0.94, 9.03, 46.45 "434", 434,"Electrolux Group","Sweden","Consumer durables", 15.34, 0.59, 9.50, 6.93 "435", 435,"Vivendi Universal","France","Media", 32.05, -5.10, 72.79, 29.12 "436", 436,"CIT Group","United States","Diversified financials", 3.73, 0.57, 46.34, 8.06 "437", 437,"DTE Energy","United States","Utilities", 7.03, 0.52, 19.94, 6.60 "438", 438,"Swiss Re Group","Switzerland","Insurance", 27.53, -0.07, 112.20, 23.44 "439", 439,"United Overseas Bank","Singapore","Banking", 2.68, 0.61, 61.92, 12.77 "440", 440,"Chugoku Electric Power","Japan","Utilities", 8.54, 0.37, 23.36, 6.41 "441", 441,"Apache","United States","Oil & gas operations", 4.20, 1.10, 12.42, 12.82 "442", 442,"Portugal Telecom","Portugal","Telecommunications services", 5.87, 0.41, 12.64, 14.25 "443", 443,"Eastman Kodak","United States","Household & personal products", 13.32, 0.27, 14.76, 8.32 "444", 444,"UFJ Holdings","Japan","Banking", 17.16, -5.15, 665.67, 23.71 "445", 445,"M&T Bank","United States","Banking", 2.96, 0.57, 49.83, 11.35 "446", 446,"Northern Rock","United Kingdom","Banking", 4.30, 0.49, 66.36, 6.12 "447", 447,"Wolseley","United Kingdom","Trading companies", 13.24, 0.48, 7.81, 9.08 "448", 448,"Paccar","United States","Consumer durables", 8.19, 0.53, 9.94, 9.62 "449", 449,"EDP-Elec de Portugal","Portugal","Utilities", 6.71, 0.35, 18.47, 8.39 "450", 450,"Mitsui Fudosan","Japan","Diversified financials", 9.16, 0.22, 24.36, 8.52 "451", 451,"Depfa Bank","Ireland","Diversified financials", 6.85, 0.25, 153.20, 5.61 "452", 452,"Suzuki Motor","Japan","Consumer durables", 17.05, 0.26, 12.35, 8.04 "453", 453,"Charles Schwab","United States","Diversified financials", 3.84, 0.25, 43.76, 17.09 "454", 454,"Itazsa","Brazil","Banking", 9.22, 0.43, 32.39, 4.19 "455", 455,"BG Group","United Kingdom","Oil & gas operations", 4.20, 0.66, 10.88, 18.39 "456", 456,"Staples","United States","Retailing", 12.84, 0.44, 6.32, 12.64 "457", 457,"Pepsi Bottling Group","United States","Food drink & tobacco", 10.27, 0.42, 11.54, 7.33 "458", 458,"SABMiller","United Kingdom","Food drink & tobacco", 6.93, 0.30, 12.87, 13.37 "459", 459,"Accor","France","Hotels restaurants & leisure", 8.59, 0.38, 11.84, 8.99 "460", 460,"Philips Group","Netherlands","Conglomerates", 33.42, -3.37, 32.71, 41.58 "461", 461,"PTT Public Company","Thailand","Oil & gas operations", 9.27, 0.57, 6.83, 12.37 "462", 462,"ABB Group","Switzerland","Capital goods", 20.41, 0.11, 29.53, 12.12 "463", 463,"Gas Natural SDG","Spain","Utilities", 5.53, 0.85, 9.25, 11.28 "464", 464,"Dai Nippon Printing","Japan","Media", 11.07, 0.24, 11.86, 11.16 "465", 465,"Burlington Resources","United States","Oil & gas operations", 4.07, 1.03, 12.58, 11.12 "466", 466,"Hartford Finl Service","United States","Insurance", 17.73, -0.29, 211.37, 18.56 "467", 467,"Marriott Intl","United States","Hotels restaurants & leisure", 9.01, 0.50, 8.18, 10.30 "468", 468,"TransCanada","Canada","Utilities", 4.13, 0.66, 15.85, 9.86 "469", 469,"InterActiveCorp","United States","Retailing", 6.33, 0.17, 21.59, 22.72 "470", 470,"Legal & General Group","United Kingdom","Insurance", 36.10, -0.29, 167.94, 12.22 "471", 471,"Safeco","United States","Insurance", 7.17, 0.26, 35.84, 6.31 "472", 472,"Tyson Foods","United States","Food drink & tobacco", 25.25, 0.36, 10.42, 5.78 "473", 473,"Altadis","Spain","Food drink & tobacco", 9.45, 0.46, 8.66, 9.48 "474", 474,"PPG Industries","United States","Chemicals", 8.76, 0.50, 8.42, 10.03 "475", 475,"Shinhan Financial","South Korea","Banking", 3.97, 0.51, 56.20, 5.81 "476", 476,"AmSouth Bancorp","United States","Banking", 2.94, 0.62, 44.34, 8.83 "477", 477,"Equity Office Prop","United States","Diversified financials", 3.11, 0.66, 24.19, 11.35 "478", 478,"Sibneft","Russia","Oil & gas operations", 4.70, 1.14, 7.55, 15.88 "479", 479,"Limited Brands","United States","Retailing", 8.67, 0.68, 7.28, 9.80 "480", 480,"Solvay Group","Belgium","Chemicals", 9.50, 0.54, 9.50, 7.12 "481", 481,"Takefuji","Japan","Diversified financials", 3.57, 0.80, 16.33, 10.32 "482", 482,"EADS","Netherlands","Aerospace & defense", 31.41, -0.31, 47.82, 18.17 "483", 483,"BCP-Bco Com Portugujs","Portugal","Banking", 4.12, 0.29, 64.97, 7.96 "484", 484,"Kirin Brewery","Japan","Food drink & tobacco", 9.07, 0.27, 14.20, 8.66 "485", 485,"Singapore Airlines","Singapore","Transportation", 5.96, 0.60, 10.88, 8.58 "486", 486,"Textron","United States","Conglomerates", 9.86, 0.27, 15.09, 7.60 "487", 487,"Marubeni","Japan","Trading companies", 74.39, 0.26, 35.23, 3.00 "488", 488,"Duke Energy","United States","Utilities", 21.58, -1.16, 54.99, 19.41 "489", 489,"Eletrobras","Brazil","Utilities", 5.46, 0.31, 33.94, 6.34 "490", 490,"Acom","Japan","Diversified financials", 3.70, 0.64, 18.44, 9.56 "491", 491,"Nomura Holdings","Japan","Diversified financials", 7.59, 0.09, 178.14, 31.06 "492", 492,"Mitsubishi Motors","Japan","Consumer durables", 32.87, 0.32, 19.86, 3.46 "493", 493,"Nationwide Financial","United States","Insurance", 3.91, 0.39, 105.38, 5.84 "494", 494,"Abbey National","United Kingdom","Banking", 15.28, -1.93, 331.21, 15.47 "495", 495,"Scottish & Southern","United Kingdom","Utilities", 6.42, 0.70, 7.76, 10.63 "496", 496,"Jefferson-Pilot","United States","Insurance", 3.65, 0.49, 32.70, 7.55 "497", 497,"Vale do Rio Doce","Brazil","Materials", 4.15, 0.58, 9.45, 20.96 "498", 498,"Husky Energy","Canada","Oil & gas operations", 5.91, 1.02, 9.09, 7.86 "499", 499,"Orix","Japan","Diversified financials", 5.19, 0.21, 50.03, 7.89 "500", 500,"Commerzbank","Germany","Banking", 22.43, -0.31, 437.86, 11.00 "501", 501,"Air Prods & Chems","United States","Chemicals", 6.54, 0.40, 9.79, 11.43 "502", 502,"Southwest Airlines","United States","Transportation", 5.84, 0.44, 9.88, 11.49 "503", 503,"Charter One Finl","United States","Banking", 2.81, 0.63, 42.63, 8.25 "504", 504,"Aiful","Japan","Diversified financials", 3.80, 0.51, 19.17, 8.95 "505", 505,"BPVN Group","Italy","Banking", 3.54, 0.45, 50.48, 6.61 "506", 506,"Praxair","United States","Chemicals", 5.61, 0.59, 8.31, 11.61 "507", 507,"Campbell Soup","United States","Food drink & tobacco", 6.88, 0.65, 6.74, 11.37 "508", 508,"National Bank of Canada","Canada","Banking", 3.47, 0.47, 62.24, 6.02 "509", 509,"Carso Global Telecom","Mexico","Telecommunications services", 10.89, 0.28, 16.72, 5.47 "510", 510,"Suncor Energy","Canada","Oil & gas operations", 4.87, 0.84, 7.95, 11.55 "511", 511,"Hannover Re","Germany","Insurance", 9.37, 0.28, 27.45, 4.61 "512", 512,"DR Horton","United States","Construction", 9.19, 0.70, 7.17, 7.07 "513", 513,"Reckitt Benckiser","United Kingdom","Household & personal products", 5.69, 0.66, 5.64, 17.95 "514", 514,"TJX Cos","United States","Retailing", 12.73, 0.57, 4.45, 11.62 "515", 515,"Malayan Banking","Malaysia","Banking", 2.51, 0.53, 42.08, 9.76 "516", 516,"Assoc British Foods","United Kingdom","Food drink & tobacco", 7.73, 0.52, 7.42, 8.80 "517", 517,"St George Bank","Australia","Banking", 2.94, 0.45, 42.66, 8.07 "518", 518,"Porsche","Germany","Consumer durables", 6.28, 0.64, 7.18, 10.07 "519", 519,"Ameren","United States","Utilities", 4.59, 0.51, 14.32, 7.53 "520", 520,"Marshall & Ilsley","United States","Banking", 2.75, 0.53, 33.75, 8.78 "521", 521,"Yum Brands","United States","Hotels restaurants & leisure", 8.38, 0.62, 5.62, 10.39 "522", 522,"ABSA Group","South Africa","Diversified financials", 4.99, 0.43, 34.06, 4.46 "523", 523,"Finmeccanica","Italy","Aerospace & defense", 8.17, 0.21, 17.52, 7.70 "524", 524,"Fujitsu","Japan","Technology hardware & equipment", 39.06, -1.03, 33.77, 12.32 "525", 525,"Eaton","United States","Capital goods", 8.06, 0.39, 8.22, 9.05 "526", 526,"Fortune Brands","United States","Conglomerates", 5.91, 0.58, 7.44, 10.34 "527", 527,"Cheung Kong","Hong Kong/China","Diversified financials", 0.31, 1.14, 25.80, 22.05 "528", 528,"Toppan Printing","Japan","Media", 10.59, 0.25, 10.91, 7.81 "529", 529,"Ahold","Netherlands","Food markets", 70.57, -1.27, 25.51, 13.30 "530", 530,"Unisn Fenosa","Spain","Utilities", 6.13, 0.36, 15.71, 6.35 "531", 531,"Danaher","United States","Capital goods", 5.29, 0.54, 6.89, 14.21 "532", 532,"Nintendo","Japan","Consumer durables", 4.26, 0.57, 9.06, 12.80 "533", 533,"Cepsa","Spain","Oil & gas operations", 8.85, 0.48, 6.31, 9.29 "534", 534,"Kao","Japan","Household & personal products", 7.32, 0.53, 5.87, 11.86 "535", 535,"Loews","United States","Insurance", 16.10, -0.72, 77.79, 11.98 "536", 536,"Newmont Mining","United States","Materials", 3.21, 0.51, 11.05, 19.73 "537", 537,"Sekisui House","Japan","Construction", 10.84, 0.29, 10.19, 6.88 "538", 538,"NEC","Japan","Technology hardware & equipment", 39.72, -0.21, 29.93, 12.22 "539", 539,"AutoNation","United States","Retailing", 18.20, 0.49, 8.22, 4.49 "540", 540,"Adecco","Switzerland","Business services & supplies", 18.17, 0.26, 6.13, 10.22 "541", 541,"Northern Trust","United States","Banking", 2.62, 0.37, 40.74, 10.78 "542", 542,"Brascan","Canada","Diversified financials", 5.07, 0.44, 16.32, 6.01 "543", 543,"Heineken Holding","Netherlands","Food drink & tobacco", 9.47, 0.42, 8.17, 6.88 "544", 544,"Mitsubishi Chemical","Japan","Chemicals", 15.97, 0.18, 17.13, 5.71 "545", 545,"LM Ericsson","Sweden","Technology hardware & equipment", 16.79, -2.19, 21.16, 44.06 "546", 546,"DnB Holding","Norway","Banking", 4.30, 0.34, 55.51, 4.85 "547", 547,"Boots","United Kingdom","Food markets", 8.41, 0.48, 5.69, 10.99 "548", 548,"Richemont","Switzerland","Household & personal products", 3.95, 0.79, 7.72, 13.98 "549", 549,"Pulte Homes","United States","Construction", 9.05, 0.62, 8.07, 5.71 "550", 550,"Lennar","United States","Construction", 8.66, 0.69, 6.22, 7.38 "551", 551,"Nippon Steel","Japan","Materials", 23.26, -0.44, 31.14, 13.38 "552", 552,"Fiat Group","Italy","Consumer durables", 58.22, -4.15, 96.92, 6.92 "553", 553,"EnBW-Energie Baden","Germany","Utilities", 9.09, 0.16, 22.19, 7.35 "554", 554,"Fubon Financial","Taiwan","Diversified financials", 3.97, 0.27, 33.38, 7.56 "555", 555,"KeySpan","United States","Utilities", 6.85, 0.40, 13.00, 5.79 "556", 556,"CSX","United States","Transportation", 7.79, 0.19, 21.75, 6.76 "557", 557,"Fidelity National Finl","United States","Insurance", 7.26, 0.84, 7.40, 6.37 "558", 558,"Novo-Nordisk","Denmark","Drugs & biotechnology", 4.49, 0.82, 5.81, 15.75 "559", 559,"Natexis Banques Populaire","France","Banking", 10.08, 0.11, 140.13, 5.78 "560", 560,"Linde","Germany","Capital goods", 9.17, 0.25, 12.67, 6.61 "561", 561,"Alcatel","France","Technology hardware & equipment", 17.38, -4.98, 25.58, 20.43 "562", 562,"Sumitomo Chemical","Japan","Chemicals", 9.40, 0.26, 12.36, 6.31 "563", 563,"Resona Holdings","Japan","Banking", 8.97, -7.09, 358.44, 13.41 "564", 564,"BAA","United Kingdom","Transportation", 3.00, 0.59, 14.77, 10.69 "565", 565,"Bunge","Bermuda","Food drink & tobacco", 22.17, 0.41, 9.88, 3.69 "566", 566,"Trkiye Is Bankasi","Turkey","Banking", 4.23, 0.31, 23.73, 6.68 "567", 567,"Canadian National","Canada","Transportation", 3.89, 0.36, 12.04, 11.74 "568", 568,"American Electric","United States","Utilities", 15.58, -0.16, 36.08, 13.21 "569", 569,"Pitney Bowes","United States","Business services & supplies", 4.58, 0.50, 8.89, 9.62 "570", 570,"Daiei","Japan","Retailing", 18.61, 1.15, 19.01, 0.94 "571", 571,"Aisin Seiki","Japan","Consumer durables", 11.91, 0.41, 10.16, 4.41 "572", 572,"Vattenfall Europe","Germany","Utilities", 9.31, 0.20, 17.55, 5.78 "573", 573,"CNOOC Hong","Kong/China","Oil & gas operations", 3.19, 1.12, 7.38, 16.96 "574", 574,"Nan Ya Plastic","Taiwan","Chemicals", 4.96, 0.40, 9.47, 9.27 "575", 575,"Cinergy","United States","Utilities", 4.42, 0.45, 13.63, 6.85 "576", 576,"McGraw-Hill Cos","United States","Media", 4.83, 0.66, 5.25, 14.63 "577", 577,"Royal KPN","Netherlands","Telecommunications services", 12.38,-10.02, 26.36, 20.64 "578", 578,"National Bank of Greece","Greece","Banking", 3.47, 0.22, 56.65, 7.51 "579", 579,"Rohm and Haas","United States","Chemicals", 6.42, 0.29, 9.45, 8.82 "580", 580,"Coles Myer","Australia","Food markets", 17.52, 0.33, 5.32, 7.34 "581", 581,"BOC Group","United Kingdom","Chemicals", 6.19, 0.36, 8.03, 8.68 "582", 582,"Promise","Japan","Diversified financials", 3.47, 0.51, 15.63, 7.40 "583", 583,"WPP","United Kingdom","Media", 6.29, 0.14, 15.53, 13.57 "584", 584,"Schering Group","Germany","Drugs & biotechnology", 6.07, 0.56, 5.66, 9.95 "585", 585,"Harley-Davidson","United States","Consumer durables", 4.62, 0.76, 4.92, 16.07 "586", 586,"Mitsubishi Electric","Japan","Capital goods", 30.79, -0.10, 26.24, 10.28 "587", 587,"Norilsk Nickel","Russia","Materials", 3.08, 0.58, 9.69, 14.48 "588", 588,"Toyota Industries","Japan","Consumer durables", 9.05, 0.19, 13.94, 7.08 "589", 589,"Formosa Petrochemical","Taiwan","Oil & gas operations", 4.89, 0.33, 8.82, 11.10 "590", 590,"Lear","United States","Consumer durables", 15.75, 0.38, 8.57, 4.35 "591", 591,"Tenaga Nasional","Malaysia","Utilities", 4.33, 0.29, 15.78, 7.74 "592", 592,"CLP Holdings","China","Utilities", 3.35, 0.91, 7.79, 11.99 "593", 593,"Syngenta","Switzerland","Chemicals", 7.08, 0.29, 9.86, 7.32 "594", 594,"Woolworths","Australia","Food markets", 17.74, 0.44, 3.85, 9.14 "595", 595,"Arcelor","Luxembourg","Materials", 25.77, -0.20, 25.54, 10.23 "596", 596,"Delhaize Group","Belgium","Food markets", 23.66, 0.19, 11.37, 4.91 "597", 597,"China Life Insurance","China","Insurance", 8.59, -0.27, 37.90, 19.46 "598", 598,"Banche Popolari Unite","Italy","Banking", 4.02, 0.20, 66.12, 5.73 "599", 599,"Whirlpool","United States","Consumer durables", 12.18, 0.42, 7.36, 5.00 "600", 600,"Yamanouchi Pharm","Japan","Drugs & biotechnology", 4.29, 0.51, 7.32, 11.02 "601", 601,"H & M Hennes & Mauritz","Sweden","Retailing", 6.39, 0.85, 3.40, 22.29 "602", 602,"Assurant","United States","Insurance", 6.92, 0.32, 22.87, 3.51 "603", 603,"American Standard","United States","Capital goods", 8.57, 0.41, 5.89, 7.70 "604", 604,"Allied Domecq","United Kingdom","Food drink & tobacco", 4.31, 0.54, 7.78, 8.98 "605", 605,"Safeway Plc","United Kingdom","Food markets", 13.65, 0.27, 7.81, 5.79 "606", 606,"Grupo Ferrovial","Spain","Construction", 5.29, 0.48, 11.78, 5.11 "607", 607,"Osaka Gas","Japan","Utilities", 8.02, 0.25, 9.91, 6.71 "608", 608,"Banca Antonveneta","Italy","Banking", 3.71, 0.23, 51.82, 5.73 "609", 609,"Williams Cos","United States","Utilities", 17.80, 0.10, 30.30, 5.25 "610", 610,"Becton Dickinson","United States","Health care equipment & services", 4.53, 0.55, 5.57, 12.35 "611", 611,"Popular","United States","Banking", 2.66, 0.45, 35.78, 5.99 "612", 612,"Atlas Copco","Sweden","Capital goods", 6.20, 0.45, 6.37, 7.79 "613", 613,"Baoshan Iron & Steel","China","Materials", 4.07, 0.52, 7.43, 10.34 "614", 614,"Sovereign Bancorp","United States","Banking", 2.45, 0.40, 43.51, 6.69 "615", 615,"Thales","France","Aerospace & defense", 11.67, 0.12, 19.13, 6.68 "616", 616,"Nippon Express","Japan","Transportation", 14.19, 0.20, 9.97, 5.58 "617", 617,"Boston Scientific","United States","Health care equipment & services", 3.48, 0.47, 5.70, 34.90 "618", 618,"Hellenic Telecom","Greece","Telecommunications services", 4.53, 0.41, 9.30, 7.69 "619", 619,"Hanson","United Kingdom","Construction", 5.83, 0.30, 10.93, 6.00 "620", 620,"Jardine Matheson","Bermuda","Food markets", 7.40, 0.35, 8.24, 5.91 "621", 621,"Sompo Japan Insurance","Japan","Insurance", 14.41, -0.25, 43.23, 8.09 "622", 622,"Hughes Electronics","United States","Media", 10.12, -0.30, 18.95, 23.56 "623", 623,"Cablevision NY Group","United States","Media", 4.00, 0.43, 10.82, 7.37 "624", 624,"British Airways","United Kingdom","Transportation", 12.15, 0.11, 20.33, 6.36 "625", 625,"CenterPoint Energy","United States","Utilities", 9.36, 0.29, 20.06, 3.16 "626", 626,"Oversea-Chinese Banking","Singapore","Banking", 1.99, 0.38, 48.40, 9.66 "627", 627,"Pernod Ricard","France","Food drink & tobacco", 4.45, 0.43, 7.92, 8.44 "628", 628,"Chinatrust Financial","Taiwan","Banking", 3.04, 0.31, 27.01, 6.67 "629", 629,"DSM","Netherlands","Chemicals", 7.61, 0.29, 11.82, 4.64 "630", 630,"Scottish & Newcastle","United Kingdom","Food drink & tobacco", 5.52, 0.22, 13.42, 6.71 "631", 631,"Industrial Bank of Korea","South Korea","Banking", 4.83, 0.49, 56.06, 2.55 "632", 632,"Imperial Chemical Inds","United Kingdom","Chemicals", 9.86, 0.29, 8.80, 5.04 "633", 633,"Merck","Germany","Drugs & biotechnology", 7.85, 0.21, 7.69, 9.06 "634", 634,"Ajinomoto","Japan","Food drink & tobacco", 8.36, 0.28, 7.02, 7.42 "635", 635,"Matsushita Electric Works","Japan","Capital goods", 11.26, 0.19, 9.37, 6.54 "636", 636,"Mazda Motor","Japan","Consumer durables", 20.00, 0.20, 13.80, 3.44 "637", 637,"Sunoco","United States","Oil & gas operations", 15.87, 0.31, 6.93, 4.51 "638", 638,"MBIA","United States","Insurance", 1.47, 0.61, 30.27, 9.35 "639", 639,"Starwood Hotels","United States","Hotels restaurants & leisure", 3.94, 0.31, 11.89, 7.80 "640", 640,"Enbridge","Canada","Oil & gas operations", 3.75, 0.54, 10.52, 6.62 "641", 641,"Cathay Pacific Airways","China","Transportation", 4.24, 0.51, 9.18, 6.53 "642", 642,"Sanyo Electric","Japan","Consumer durables", 19.24, -0.62, 21.65, 9.43 "643", 643,"MAN Group","Germany","Capital goods", 18.87, 0.14, 11.82, 5.35 "644", 644,"Continental","Germany","Consumer durables", 11.98, 0.24, 8.50, 5.22 "645", 645,"Dean Foods","United States","Food drink & tobacco", 9.18, 0.36, 6.99, 5.33 "646", 646,"Safeway","United States","Food markets", 35.55, -0.17, 15.12, 9.92 "647", 647,"Electronic Data Sys","United States","Software & services", 21.48, -0.27, 18.28, 9.98 "648", 648,"BAE Systems","United Kingdom","Aerospace & defense", 13.00, -1.10, 24.94, 10.11 "649", 649,"Fuji Heavy Inds","Japan","Consumer durables", 11.61, 0.28, 11.09, 3.55 "650", 650,"Halliburton","United States","Oil & gas operations", 16.27, -0.81, 15.47, 13.86 "651", 651,"Office Depot","United States","Retailing", 12.36, 0.30, 6.15, 5.42 "652", 652,"PG&E","United States","Utilities", 9.91, -1.80, 27.76, 11.46 "653", 653,"Royal & Sun Alliance","United Kingdom","Insurance", 20.61, -1.51, 86.56, 5.20 "654", 654,"Secom","Japan","Business services & supplies", 4.43, 0.30, 8.90, 8.60 "655", 655,"Hon Hai Precision Ind","Taiwan","Technology hardware & equipment", 7.44, 0.49, 3.81, 11.64 "656", 656,"Hana Bank","South Korea","Banking", 3.28, 0.27, 63.86, 4.49 "657", 657,"Union Planters","United States","Banking", 2.40, 0.50, 31.91, 5.67 "658", 658,"Public Power","Greece","Utilities", 3.59, 0.50, 10.87, 6.49 "659", 659,"Autostrade","Italy","Transportation", 2.46, 0.56, 8.13, 20.61 "660", 660,"Yamato Transport","Japan","Transportation", 8.22, 0.41, 5.37, 6.65 "661", 661,"Avon Products","United States","Household & personal products", 6.55, 0.60, 3.36, 15.99 "662", 662,"First Tennessee Natl","United States","Banking", 2.69, 0.47, 24.47, 5.67 "663", 663,"Japan Airlines Sys","Japan","Transportation", 17.63, 0.10, 18.03, 5.99 "664", 664,"Dixons Group","United Kingdom","Retailing", 9.22, 0.33, 6.53, 5.49 "665", 665,"Sandvik","Sweden","Capital goods", 5.61, 0.40, 5.65, 8.36 "666", 666,"Sabanci Group","Turkey","Diversified financials", 5.22, 0.23, 18.59, 4.86 "667", 667,"Simon Property Group","United States","Diversified financials", 2.19, 0.48, 15.68, 10.79 "668", 668,"Seagate Technology Cayman","Islands","Technology hardware & equipment", 6.67, 0.74, 4.04, 7.90 "669", 669,"Qantas Airways","Australia","Transportation", 7.66, 0.23, 11.42, 4.92 "670", 670,"Sankyo (pharma)","Japan","Drugs & biotechnology", 4.82, 0.29, 7.50, 9.23 "671", 671,"Capitalia","Italy","Banking", 9.61, -0.30, 146.67, 6.36 "672", 672,"Franklin Resources","United States","Diversified financials", 2.75, 0.56, 7.42, 14.54 "673", 673,"Sumitomo Metal Inds","Japan","Materials", 10.36, 0.14, 17.44, 4.60 "674", 674,"TeliaSonera Group","Sweden","Telecommunications services", 6.85, -0.93, 21.97, 22.51 "675", 675,"Royal Caribbean","Liberia","Hotels restaurants & leisure", 3.78, 0.28, 11.32, 8.09 "676", 676,"Synovus Finl","United States","Banking", 2.41, 0.39, 21.02, 7.55 "677", 677,"Sprint PCS","United States","Telecommunications services", 12.69, -0.66, 21.85, 9.54 "678", 678,"ITT Industries","United States","Conglomerates", 5.63, 0.40, 5.95, 7.10 "679", 679,"SK Corp","South Korea","Oil & gas operations", 36.59, -2.02, 34.91, 4.99 "680", 680,"Everest Re Group","Bermuda","Insurance", 4.11, 0.43, 12.68, 4.82 "681", 681,"Scania","Sweden","Capital goods", 5.45, 0.32, 7.56, 6.58 "682", 682,"Suncorp-Metway","Australia","Diversified financials", 3.44, 0.26, 25.79, 5.30 "683", 683,"TXU","United States","Utilities", 10.77, -4.09, 30.77, 7.89 "684", 684,"HeidelbergCement","Germany","Construction", 6.90, 0.26, 11.55, 4.39 "685", 685,"Banca Naz del Lavoro","Italy","Banking", 5.74, 0.10, 86.49, 5.90 "686", 686,"Bombardier","Canada","Aerospace & defense", 15.55, -0.40, 18.61, 8.68 "687", 687,"mmO2","United Kingdom","Telecommunications services", 7.70,-16.03, 21.12, 14.69 "688", 688,"Bank Mandiri","Indonesia","Banking", 3.75, 0.40, 27.75, 3.33 "689", 689,"Celesio","Germany","Health care equipment & services", 19.31, 0.25, 5.75, 4.68 "690", 690,"Sun Microsystems","United States","Technology hardware & equipment", 11.20, -1.45, 12.22, 18.51 "691", 691,"Cox Communications","United States","Media", 5.67, -0.14, 24.42, 20.48 "692", 692,"Rohm","Japan","Semiconductors", 2.96, 0.45, 6.76, 13.52 "693", 693,"Sodexho Alliance","France","Hotels restaurants & leisure", 12.84, 0.18, 8.81, 5.08 "694", 694,"Cincinnati Financial","United States","Insurance", 3.06, 0.30, 14.96, 6.95 "695", 695,"Lucent Technologies","United States","Technology hardware & equipment", 8.65, -0.17, 15.42, 18.36 "696", 696,"Samsung SDI","South Korea","Business services & supplies", 5.59, 0.50, 4.83, 6.89 "697", 697,"Mattel","United States","Household & personal products", 4.96, 0.54, 4.51, 8.07 "698", 698,"Murata Manufacturing","Japan","Business services & supplies", 3.34, 0.33, 6.97, 13.07 "699", 699,"Delphi","United States","Consumer durables", 28.10, -0.06, 20.90, 5.93 "700", 700,"Swiss Life Holding","Switzerland","Insurance", 15.75, -1.23, 113.34, 4.26 "701", 701,"Air France Group","France","Transportation", 13.82, 0.13, 13.61, 4.42 "702", 702,"Huntington Bancshs","United States","Banking", 2.41, 0.36, 30.10, 5.26 "703", 703,"Supervalu","United States","Food markets", 19.78, 0.25, 6.12, 3.93 "704", 704,"Conseco","United States","Diversified financials", 4.75, 0.53, 29.86, 2.26 "705", 705,"Swire Pacific","China","Diversified financials", 1.95, 0.69, 12.46, 9.94 "706", 706,"H&R Block","United States","Business services & supplies", 3.66, 0.65, 4.46, 10.64 "707", 707,"ASFA-Autoroutes","France","Transportation", 2.82, 0.28, 13.78, 8.23 "708", 708,"Guidant","United States","Health care equipment & services", 3.70, 0.33, 4.64, 19.51 "709", 709,"Ambac Financial Group","United States","Insurance", 1.27, 0.62, 16.75, 8.15 "710", 710,"Asahi Glass","Japan","Construction", 10.96, -0.03, 14.73, 10.75 "711", 711,"VNU","Netherlands","Media", 4.49, 0.18, 11.10, 7.68 "712", 712,"Ciba Specialty Chemicals","Switzerland","Chemicals", 5.36, 0.28, 8.41, 5.46 "713", 713,"Oji Paper","Japan","Materials", 10.26, 0.10, 13.52, 6.35 "714", 714,"Torchmark","United States","Insurance", 2.88, 0.43, 13.22, 5.66 "715", 715,"Pepco Holdings","United States","Utilities", 7.37, 0.22, 13.11, 3.59 "716", 716,"Hilton Group","United Kingdom","Hotels restaurants & leisure", 8.82, 0.16, 8.17, 6.48 "717", 717,"Toys R` Us","United States","Retailing", 11.50, 0.22, 10.70, 3.19 "718", 718,"United Utilities","United Kingdom","Utilities", 2.97, 0.44, 13.26, 5.16 "719", 719,"Taisei","Japan","Construction", 13.91, 0.13, 15.41, 3.66 "720", 720,"OMV Group","Austria","Oil & gas operations", 7.44, 0.33, 6.30, 4.45 "721", 721,"Quest Diagnostics","United States","Health care equipment & services", 4.74, 0.44, 4.30, 8.51 "722", 722,"Skandia Insurance","Sweden","Insurance", 10.53, -0.50, 55.20, 4.87 "723", 723,"British Sky Broadcasting","United Kingdom","Media", 5.27, 0.32, 3.03, 27.26 "724", 724,"White Mountains Ins","Bermuda","Insurance", 3.81, 0.30, 14.97, 4.24 "725", 725,"Seiko Epson","Japan","Technology hardware & equipment", 11.19, 0.11, 10.05, 7.06 "726", 726,"Unibanco Group","Brazil","Banking", 5.30, 0.29, 21.29, 2.77 "727", 727,"MGM Mirage","United States","Hotels restaurants & leisure", 3.91, 0.24, 10.71, 6.15 "728", 728,"Shikoku Electric Power","Japan","Utilities", 4.95, 0.22, 11.96, 4.65 "729", 729,"Valeo","France","Consumer durables", 11.61, 0.23, 7.54, 3.65 "730", 730,"Ebay","United States","Retailing", 2.17, 0.45, 5.82, 44.31 "731", 731,"AutoZone","United States","Retailing", 5.52, 0.53, 3.72, 7.75 "732", 732,"New York Community","United States","Banking", 0.91, 0.32, 23.44, 8.35 "733", 733,"Wesfarmers","Australia","Conglomerates", 5.00, 0.36, 4.27, 8.33 "734", 734,"Mitsui Chemicals","Japan","Chemicals", 8.91, 0.17, 10.04, 4.29 "735", 735,"FCC Group","Spain","Construction", 5.77, 0.29, 7.14, 4.99 "736", 736,"Nippon Yusen","Japan","Transportation", 10.57, 0.12, 10.81, 5.22 "737", 737,"Bradford & Bingley","United Kingdom","Diversified financials", 2.71, 0.28, 40.81, 3.92 "738", 738,"Gallaher Group","United Kingdom","Food drink & tobacco", 3.80, 0.41, 5.47, 7.75 "739", 739,"China Steel","Taiwan","Materials", 3.13, 0.49, 5.79, 8.60 "740", 740,"Tokyu","Japan","Transportation", 11.72, 0.03, 20.86, 6.16 "741", 741,"Genuine Parts","United States","Consumer durables", 8.36, 0.36, 4.05, 5.90 "742", 742,"Brambles Group","Australia/ United Kingdom","Business services & supplies", 5.33, 0.22, 6.31, 7.09 "743", 743,"Parker Hannifin","United States","Capital goods", 6.52, 0.21, 5.80, 6.84 "744", 744,"Grupo Modelo","Mexico","Food drink & tobacco", 3.49, 0.41, 5.61, 8.29 "745", 745,"Amcor","Australia","Materials", 7.22, 0.24, 6.31, 5.20 "746", 746,"Yapi ve Kredi","Turkey","Banking", 4.48, 0.90, 19.83, 1.86 "747", 747,"Beiersdorf","Germany","Household & personal products", 5.88, 0.38, 3.44, 9.94 "748", 748,"China Merchants Bank","China","Banking", 1.44, 0.22, 44.01, 8.11 "749", 749,"GreenPoint Financial","United States","Banking", 1.74, 0.47, 22.99, 6.24 "750", 750,"Aramark","United States","Business services & supplies", 9.45, 0.30, 4.47, 5.03 "751", 751,"Fairfax Financial","Canada","Insurance", 5.21, 0.29, 24.05, 2.49 "752", 752,"Sampo","Finland","Insurance", 1.83, 0.41, 26.36, 6.20 "753", 753,"Este Lauder Cos","United States","Household & personal products", 5.43, 0.31, 3.97, 9.47 "754", 754,"Sumitomo Trust & Banking","Japan","Banking", 4.16, -0.62, 131.13, 8.06 "755", 755,"MTR","Hong Kong/China","Transportation", 0.99, 0.54, 12.96, 8.46 "756", 756,"Lagardre SCA","France","Media", 7.62, -0.27, 19.09, 8.52 "757", 757,"Amrica Telecom","Mexico","Telecommunications services", 5.54, 0.14, 10.92, 6.22 "758", 758,"UnumProvident","United States","Insurance", 10.22, 0.06, 49.34, 4.36 "759", 759,"Tostem Inax","Japan","Construction", 7.98, 0.16, 7.83, 5.55 "760", 760,"Lexmark International","United States","Business services & supplies", 4.75, 0.44, 3.45, 10.76 "761", 761,"Daido Life Insurance","Japan","Insurance", 9.42, 0.05, 50.55, 4.43 "762", 762,"Apple Computer","United States","Technology hardware & equipment", 6.74, 0.14, 6.97, 8.50 "763", 763,"Inditex","Spain","Household & personal products", 4.28, 0.47, 3.24, 13.52 "764", 764,"adidas-Salomon","Germany","Household & personal products", 7.89, 0.33, 4.30, 5.32 "765", 765,"AES","United States","Utilities", 8.42, -0.44, 29.61, 5.68 "766", 766,"Land Securities Group","United Kingdom","Diversified financials", 1.69, 0.36, 14.23, 9.37 "767", 767,"North Fork Bancorp","United States","Banking", 1.27, 0.40, 20.96, 6.67 "768", 768,"Flextronics Intl","Singapore","Business services & supplies", 13.82, -0.35, 9.51, 9.68 "769", 769,"El Paso","United States","Oil & gas operations", 7.93, -3.22, 42.68, 5.14 "770", 770,"Clorox","United States","Household & personal products", 4.17, 0.50, 3.60, 10.17 "771", 771,"Xcel Energy","United States","Utilities", 9.20, -0.19, 18.26, 6.88 "772", 772,"AMP","Australia","Insurance", 5.40,NA, 42.94, 6.70 "773", 773,"Citic Pacific","China","Conglomerates", 2.86, 0.50, 7.33, 6.45 "774", 774,"Mega Financial Holding","Taiwan","Diversified financials", 2.16, 0.17, 47.54, 7.10 "775", 775,"Caremark Rx","United States","Health care equipment & services", 9.07, 0.29, 2.47, 8.06 "776", 776,"Baker Hughes","United States","Oil & gas operations", 5.29, 0.13, 6.30, 12.12 "777", 777,"Eisai","Japan","Drugs & biotechnology", 3.95, 0.35, 4.85, 7.85 "778", 778,"Hershey Foods","United States","Food drink & tobacco", 4.17, 0.46, 3.58, 10.26 "779", 779,"Equity Residential","United States","Diversified financials", 1.82, 0.54, 11.47, 8.04 "780", 780,"Kinki Nippon Railway","Japan","Transportation", 11.03, -0.43, 19.18, 5.62 "781", 781,"Huaneng Power Intl","China","Utilities", 2.23, 0.47, 6.09, 13.07 "782", 782,"Harrah`s Entertain","United States","Hotels restaurants & leisure", 4.08, 0.31, 6.45, 5.72 "783", 783,"Stryker","United States","Health care equipment & services", 3.63, 0.45, 3.16, 17.99 "784", 784,"Old Republic Intl","United States","Insurance", 3.18, 0.44, 9.56, 4.36 "785", 785,"Liberty Media","United States","Media", 2.45, -0.98, 55.88, 32.69 "786", 786,"AdvancePCS","United States","Health care equipment & services", 15.02, 0.20, 3.76, 6.01 "787", 787,"Sumitomo Electric","Japan","Capital goods", 12.60, -0.17, 13.46, 6.38 "788", 788,"Banco de Sabadell","Spain","Banking", 1.99, 0.30, 38.38, 4.77 "789", 789,"Rolls-Royce","United Kingdom","Aerospace & defense", 9.32, 0.09, 11.61, 6.69 "790", 790,"KarstadtQuelle","Germany","Retailing", 16.61, 0.17, 10.72, 2.62 "791", 791,"Telekom Indonesia","Indonesia","Telecommunications services", 2.40, 0.93, 4.74, 9.18 "792", 792,"Teva Pharmaceutical Inds","Israel","Drugs & biotechnology", 2.52, 0.41, 4.63, 17.17 "793", 793,"Telkom","South Africa","Telecommunications services", 4.76, 0.21, 6.64, 6.10 "794", 794,"PartnerRe","Bermuda","Insurance", 3.87, 0.47, 10.90, 3.03 "795", 795,"Zions Bancorp","United States","Banking", 1.89, 0.34, 28.56, 5.25 "796", 796,"Tenet Healthcare","United States","Health care equipment & services", 15.17, -0.40, 13.48, 5.68 "797", 797,"Nipponkoa Insurance","Japan","Insurance", 8.87, -0.22, 26.57, 4.98 "798", 798,"Infineon Technologies","Germany","Semiconductors", 7.18, -0.51, 11.79, 10.73 "799", 799,"Hokkaido Electric Power","Japan","Utilities", 4.39, 0.22, 11.85, 3.76 "800", 800,"TUI Group","Germany","Hotels restaurants & leisure", 21.33, 0.03, 16.00, 4.28 "801", 801,"Mitsui OSK Lines","Japan","Transportation", 7.70, 0.12, 8.82, 5.50 "802", 802,"Humana","United States","Health care equipment & services", 12.10, 0.23, 5.29, 3.51 "803", 803,"Anglo Irish Bank","Ireland","Banking", 1.44, 0.30, 29.74, 5.53 "804", 804,"Bharat Petroleum","India","Oil & gas operations", 11.97, 0.32, 4.70, 3.22 "805", 805,"Foster`s Group","Australia","Food drink & tobacco", 3.19, 0.31, 6.29, 7.16 "806", 806,"Banknorth Group","United States","Banking", 1.58, 0.34, 25.74, 5.39 "807", 807,"Dover","United States","Conglomerates", 4.35, 0.23, 4.93, 8.25 "808", 808,"Edison","Italy","Utilities", 5.40, -0.73, 19.11, 8.43 "809", 809,"L-3 Communications","United States","Aerospace & defense", 4.89, 0.26, 5.82, 5.33 "810", 810,"Temple-Inland","United States","Materials", 4.64, 0.16, 21.35, 3.41 "811", 811,"Hongkong Electric","Hong Kong/China","Utilities", 1.49, 0.88, 7.26, 9.04 "812", 812,"Friends Provident","United Kingdom","Insurance", 6.12, -0.11, 49.37, 4.75 "813", 813,"Unisys","United States","Software & services", 5.91, 0.26, 5.47, 4.78 "814", 814,"National Commerce Finl","United States","Banking", 1.57, 0.31, 22.89, 5.95 "815", 815,"Daiwa Securities","Japan","Diversified financials", 3.28, -0.05, 79.82, 8.75 "816", 816,"Talisman Energy","Canada","Oil & gas operations", 2.78, 0.32, 7.38, 7.17 "817", 817,"Applied Materials","United States","Semiconductors", 4.48, -0.15, 10.31, 36.61 "818", 818,"Starbucks","United States","Hotels restaurants & leisure", 4.35, 0.30, 3.08, 14.54 "819", 819,"Bed Bath & Beyond","United States","Retailing", 4.23, 0.36, 2.78, 12.34 "820", 820,"ICICI Bank","India","Banking", 2.57, 0.24, 22.94, 4.22 "821", 821,"Irish Life & Permanent","Ireland","Insurance", 1.72, 0.30, 34.88, 4.69 "822", 822,"Murphy Oil","United States","Oil & gas operations", 4.97, 0.30, 4.62, 5.64 "823", 823,"Forest Labs","United States","Drugs & biotechnology", 2.43, 0.72, 3.23, 27.26 "824", 824,"Affiliated Computer","United States","Software & services", 4.03, 0.50, 3.86, 6.76 "825", 825,"Fiserv","United States","Software & services", 2.70, 0.32, 7.21, 7.54 "826", 826,"Dollar General","United States","Retailing", 6.67, 0.31, 2.59, 7.68 "827", 827,"Compass Bancshares","United States","Banking", 1.81, 0.34, 26.16, 4.98 "828", 828,"Aioi Insurance","Japan","Insurance", 9.10, 0.12, 20.86, 2.84 "829", 829,"Femsa","Mexico","Food drink & tobacco", 5.09, 0.27, 5.79, 4.69 "830", 830,"United Microelectronics","Taiwan","Semiconductors", 2.18, 0.20, 9.29, 14.66 "831", 831,"Dassault Aviation","France","Aerospace & defense", 3.61, 0.33, 7.01, 4.87 "832", 832,"Express Scripts","United States","Health care equipment & services", 12.92, 0.24, 3.29, 5.54 "833", 833,"Kajima","Japan","Construction", 15.86, 0.09, 16.41, 3.40 "834", 834,"Wm Morrison Supermarkets","United Kingdom","Food markets", 7.07, 0.30, 3.28, 6.76 "835", 835,"Calpine","United States","Utilities", 9.33, 0.12, 26.04, 2.50 "836", 836,"Wisconsin Energy","United States","Utilities", 4.03, 0.26, 9.33, 3.92 "837", 837,"Asahi Breweries","Japan","Food drink & tobacco", 6.70, 0.12, 10.50, 4.66 "838", 838,"Bank of Yokohama","Japan","Banking", 2.32, 0.14, 89.11, 4.91 "839", 839,"Northwest Airlines","United States","Transportation", 8.69, 0.25, 14.16, 0.96 "840", 840,"Reed Elsevier","United Kingdom/ Netherlands","Media", 7.54, 0.14, 2.51, 20.46 "841", 841,"SKF Group","Sweden","Capital goods", 5.75, 0.28, 5.05, 4.41 "842", 842,"Telekom Malaysia","Malaysia","Telecommunications services", 2.59, 0.28, 7.30, 8.42 "843", 843,"VF","United States","Household & personal products", 5.13, 0.37, 4.28, 4.83 "844", 844,"Unipol","Italy","Insurance", 6.69, 0.11, 20.21, 3.47 "845", 845,"Pearson","United Kingdom","Media", 6.96, -0.18, 10.97, 8.85 "846", 846,"Energy East","United States","Utilities", 4.65, 0.21, 10.54, 3.43 "847", 847,"Publicis Groupe","France","Media", 3.07, 0.15, 10.98, 7.15 "848", 848,"Mohawk Industries","United States","Consumer durables", 5.01, 0.31, 4.16, 5.48 "849", 849,"Fondiaria-SAI","Italy","Insurance", 9.38, 0.04, 29.83, 3.57 "850", 850,"EFG Eurobank Ergasias","Greece","Banking", 1.98, 0.19, 26.56, 6.32 "851", 851,"SPX","United States","Conglomerates", 5.00, 0.21, 7.14, 4.25 "852", 852,"Asahi Kasei","Japan","Chemicals", 10.10, -0.57, 9.96, 6.90 "853", 853,"Canadian Natural Res","Canada","Oil & gas operations", 2.22, 0.37, 8.50, 6.80 "854", 854,"Dana","United States","Consumer durables", 9.64, 0.15, 9.48, 3.17 "855", 855,"Alpha Bank","Greece","Banking", 2.05, 0.18, 30.17, 5.88 "856", 856,"Hindustan Petroleum","India","Oil & gas operations", 10.16, 0.31, 3.84, 3.61 "857", 857,"Hokuriku Electric Power","Japan","Utilities", 4.08, 0.18, 13.09, 3.74 "858", 858,"Mediaset","Italy","Media", 2.39, 0.38, 4.34, 13.93 "859", 859,"Intl Game Technology","United States","Hotels restaurants & leisure", 2.25, 0.48, 4.34, 13.01 "860", 860,"Henderson Land Dev","Hong Kong/China","Diversified financials", 0.98, 0.29, 10.95, 8.86 "861", 861,"Fresenius","Germany","Health care equipment & services", 7.89, 0.15, 9.28, 3.32 "862", 862,"Nippon Unipac","Japan","Materials", 9.86, 0.04, 13.55, 5.22 "863", 863,"Willis Group Holdings","United Kingdom","Insurance", 1.98, 0.41, 11.43, 5.67 "864", 864,"Electronic Arts","United States","Software & services", 2.82, 0.50, 3.34, 13.28 "865", 865,"Toyota Tsusho","Japan","Trading companies", 21.80, 0.16, 8.07, 2.46 "866", 866,"NiSource","United States","Utilities", 7.45, 0.04, 15.70, 5.63 "867", 867,"Kinder Morgan","United States","Utilities", 1.10, 0.38, 9.98, 7.43 "868", 868,"E-Trade Financial","United States","Diversified financials", 2.01, 0.20, 26.04, 5.40 "869", 869,"BHW Holding","Germany","Diversified financials", 7.46, -0.38, 117.96, 2.98 "870", 870,"Smiths Group","United Kingdom","Conglomerates", 4.92, 0.18, 4.81, 6.89 "871", 871,"Wm Wrigley Jr","United States","Food drink & tobacco", 3.07, 0.45, 2.52, 12.74 "872", 872,"Alstom","France","Capital goods", 23.26, -1.50, 25.03, 2.70 "873", 873,"Avery Dennison","United States","Business services & supplies", 4.76, 0.27, 4.11, 6.04 "874", 874,"Analog Devices","United States","Semiconductors", 2.19, 0.36, 4.30, 18.83 "875", 875,"Hudson City Bancorp","United States","Banking", 0.81, 0.21, 17.03, 7.43 "876", 876,"LG Card","South Korea","Diversified financials", 4.75, 0.30, 16.34, 0.21 "877", 877,"ACS Group","Spain","Construction", 4.64, 0.19, 5.16, 6.24 "878", 878,"Shiseido","Japan","Household & personal products", 5.26, 0.21, 5.23, 4.95 "879", 879,"Westfield America Trust","Australia","Diversified financials", 1.41, 0.45, 11.00, 5.65 "880", 880,"Nordstrom","United States","Retailing", 6.31, 0.20, 4.37, 5.42 "881", 881,"Thomson","France","Consumer durables", 10.64, 0.03, 10.20, 5.74 "882", 882,"Securitas","Sweden","Business services & supplies", 7.57, 0.17, 4.12, 6.08 "883", 883,"Ko Group","Turkey","Diversified financials", 11.10, 0.04, 12.04, 4.80 "884", 884,"Tatneft","Russia","Oil & gas operations", 4.55, 0.49, 7.14, 2.63 "885", 885,"Wharf (Holdings) Hong","Kong/China","Diversified financials", 1.45, 0.30, 10.39, 7.90 "886", 886,"Orkla","Norway","Food drink & tobacco", 3.48, 0.23, 7.67, 4.82 "887", 887,"Alliance UniChem","United Kingdom","Health care equipment & services", 12.92, 0.18, 5.12, 3.29 "888", 888,"QBE Insurance Group","Australia","Insurance", 3.38, 0.16, 11.44, 5.14 "889", 889,"Siam Cement","Thailand","Construction", 2.97, 0.26, 5.18, 7.90 "890", 890,"Luxottica Group","Italy","Household & personal products", 3.55, 0.34, 3.77, 7.79 "891", 891,"Bank Hapoalim","Israel","Banking", 4.03, 0.10, 55.11, 3.28 "892", 892,"WR Berkley","United States","Insurance", 3.44, 0.32, 8.88, 3.34 "893", 893,"Rockwell Automation","United States","Capital goods", 4.14, 0.31, 4.04, 6.07 "894", 894,"Komatsu","Japan","Capital goods", 9.22, 0.03, 10.50, 5.84 "895", 895,"Cable & Wireless","United Kingdom","Telecommunications services", 6.71,-10.32, 11.59, 6.74 "896", 896,"Telecom of New Zealand","New Zealand","Telecommunications services", 2.64, 0.42, 4.55, 7.48 "897", 897,"Bank of East Asia","Hong Kong/China","Banking", 0.74, 0.25, 25.56, 4.72 "898", 898,"Yamaha Motor","Japan","Consumer durables", 8.57, 0.22, 5.72, 3.10 "899", 899,"Agilent Technologies","United States","Technology hardware & equipment", 6.06, -1.79, 6.30, 17.80 "900", 900,"Serono","Switzerland","Drugs & biotechnology", 2.17, 0.42, 4.40, 11.93 "901", 901,"Sanmina-SCI","United States","Technology hardware & equipment", 10.79, -0.11, 7.76, 6.80 "902", 902,"Cooper Industries","Bermuda","Capital goods", 4.06, 0.27, 4.90, 5.24 "903", 903,"Public Bank","Malaysia","Banking", 1.13, 0.26, 16.95, 5.58 "904", 904,"Fanuc","Japan","Capital goods", 1.81, 0.33, 5.94, 13.46 "905", 905,"Olympus","Japan","Health care equipment & services", 4.77, 0.21, 4.98, 5.24 "906", 906,"EchoStar Commun","United States","Media", 5.46, -0.50, 6.61, 18.86 "907", 907,"Scana","United States","Utilities", 3.34, 0.29, 7.79, 3.91 "908", 908,"Sherwin-Williams","United States","Retailing", 5.28, 0.32, 3.64, 5.15 "909", 909,"Allied Waste Inds","United States","Business services & supplies", 5.40, 0.16, 13.79, 2.74 "910", 910,"Sdzucker","Germany","Food drink & tobacco", 4.73, 0.28, 6.28, 3.40 "911", 911,"Yahoo","United States","Software & services", 1.63, 0.24, 5.93, 30.50 "912", 912,"PacifiCare Health","United States","Health care equipment & services", 10.44, 0.24, 4.62, 2.98 "913", 913,"Westfield Trust","Australia","Diversified financials", 0.78, 0.42, 9.49, 6.13 "914", 914,"SunGard Data Systems","United States","Software & services", 2.87, 0.37, 4.00, 8.48 "915", 915,"Barrick Gold","Canada","Materials", 2.06, 0.23, 7.66, 11.24 "916", 916,"Shimizu","Japan","Construction", 13.11, 0.06, 15.18, 3.48 "917", 917,"MeadWestvaco","United States","Materials", 7.55, 0.00, 12.49, 5.50 "918", 918,"TDK","Japan","Business services & supplies", 5.15, 0.10, 5.95, 9.10 "919", 919,"Obayashi","Japan","Construction", 11.34, 0.03, 16.11, 3.47 "920", 920,"Samsung Fire & Marine","South Korea","Insurance", 4.54, 0.21, 8.87, 3.16 "921", 921,"Formosa Chems & Fibre","Taiwan","Chemicals", 2.51, 0.32, 5.21, 7.50 "922", 922,"All Nippon Airways","Japan","Transportation", 10.29, -0.24, 11.78, 4.43 "923", 923,"Nikko Cordial","Japan","Diversified financials", 2.41, -0.18, 48.16, 9.74 "924", 924,"Providian Financial","United States","Diversified financials", 2.78, 0.20, 14.28, 3.92 "925", 925,"Dentsu","Japan","Media", 2.42, 0.19, 9.71, 6.67 "926", 926,"Bankgesellschaft Berlin","Germany","Banking", 9.43, -0.74, 182.69, 2.30 "927", 927,"AMR","United States","Transportation", 17.15, -1.65, 29.94, 2.42 "928", 928,"Rentokil Initial","United Kingdom","Business services & supplies", 3.60, 0.46, 2.79, 6.91 "929", 929,"Korea Exchange Bank","South Korea","Banking", 5.49, 0.04, 54.39, 3.28 "930", 930,"Interpublic Group","United States","Media", 5.90, -0.33, 11.27, 6.64 "931", 931,"Jones Apparel Group","United States","Household & personal products", 4.36, 0.34, 4.06, 4.59 "932", 932,"Macquarie Bank","Australia","Diversified financials", 1.80, 0.20, 19.52, 5.73 "933", 933,"Swatch Group","Switzerland","Household & personal products", 3.21, 0.36, 3.38, 8.78 "934", 934,"Toray Industries","Japan","Household & personal products", 8.74, 0.05, 10.58, 5.30 "935", 935,"Nissho Iwai-Nichimen","Japan","Trading companies", 54.72, -1.00, 26.80, 0.88 "936", 936,"Kobe Steel","Japan","Materials", 10.19, 0.01, 15.50, 3.49 "937", 937,"Grupo Carso","Mexico","Conglomerates", 5.00, 0.20, 6.06, 3.70 "938", 938,"Canadian Pacific Railway","Canada","Transportation", 2.82, 0.31, 7.68, 4.05 "939", 939,"Autoliv","United States","Consumer durables", 5.00, 0.22, 4.73, 4.18 "940", 940,"Hilton Hotels","United States","Hotels restaurants & leisure", 3.45, 0.14, 8.34, 6.06 "941", 941,"Shanghai Pudong Dev Bk","China","Banking", 1.14, 0.15, 33.64, 5.46 "942", 942,"Taiyo Life Insurance","Japan","Insurance", 9.48, 0.01, 54.64, 2.39 "943", 943,"Daiwa House Industry","Japan","Construction", 10.02, -0.77, 8.06, 5.64 "944", 944,"Vornado Realty","United States","Diversified financials", 1.27, 0.31, 9.08, 6.61 "945", 945,"Man Group Plc","United Kingdom","Diversified financials", 1.59, 0.37, 5.82, 9.01 "946", 946,"Pioneer","Japan","Consumer durables", 6.03, 0.14, 5.17, 5.21 "947", 947,"British Land","United Kingdom","Diversified financials", 0.72, 0.22, 14.30, 5.81 "948", 948,"Family Dollar Stores","United States","Retailing", 4.89, 0.25, 2.04, 6.63 "949", 949,"Ameritrade Holding","United States","Diversified financials", 0.69, 0.19, 14.21, 7.05 "950", 950,"Sanlam South","Africa","Insurance", 6.54, -0.07, 21.17, 3.65 "951", 951,"Antarchile","Chile","Diversified financials", 3.39, 0.24, 6.45, 4.34 "952", 952,"Corporation Mapfre","Spain","Insurance", 5.87, 0.12, 15.45, 2.73 "953", 953,"Next","United Kingdom","Retailing", 3.63, 0.35, 1.56, 7.24 "954", 954,"Fujisawa Pharmaceutical","Japan","Drugs & biotechnology", 3.23, 0.24, 4.17, 7.71 "955", 955,"Crdit Foncier","France","Banking", 2.79, 0.14, 46.07, 2.93 "956", 956,"Archstone-Smith","United States","Diversified financials", 0.90, 0.44, 8.78, 5.26 "957", 957,"Veritas Software","United States","Software & services", 1.77, 0.28, 5.40, 14.02 "958", 958,"Newell Rubbermaid","United States","Household & personal products", 7.75, -0.05, 7.48, 6.94 "959", 959,"Mediobanca","Italy","Diversified financials", 2.31, 0.06, 37.70, 9.34 "960", 960,"Black & Decker","United States","Consumer durables", 4.48, 0.29, 4.22, 4.11 "961", 961,"Quanta Computer","Taiwan","Technology hardware & equipment", 4.12, 0.31, 2.88, 6.47 "962", 962,"Arab Bank","Jordan","Banking", 1.33, 0.23, 22.78, 4.19 "963", 963,"Marui","Japan","Retailing", 4.66, 0.15, 5.94, 4.95 "964", 964,"Great Eastern Holdings","Singapore","Insurance", 3.58, 0.13, 15.76, 3.38 "965", 965,"Mitsui Trust","Japan","Banking", 3.42, -0.82, 102.63, 4.05 "966", 966,"Inco","Canada","Materials", 2.65, 0.15, 9.01, 6.89 "967", 967,"InterContinental Hotels","United Kingdom","Hotels restaurants & leisure", 4.88, 0.05, 8.55, 8.86 "968", 968,"Corning","United States","Technology hardware & equipment", 3.09, -0.22, 10.75, 16.67 "969", 969,"Computer Associates","United States","Software & services", 3.24, -0.16, 10.20, 15.89 "970", 970,"Skanska","Sweden","Construction", 16.77, -0.10, 8.84, 3.72 "971", 971,"Daikin Industries","Japan","Capital goods", 4.84, 0.18, 3.98, 6.00 "972", 972,"Kubota","Japan","Capital goods", 7.84, -0.07, 9.01, 5.58 "973", 973,"Exel","United Kingdom","Transportation", 7.42, 0.19, 3.94, 4.30 "974", 974,"MGIC Investment","United States","Insurance", 1.78, 0.49, 5.92, 6.55 "975", 975,"CenturyTel","United States","Telecommunications services", 2.38, 0.34, 7.90, 3.95 "976", 976,"Commerce Bancorp","United States","Banking", 1.25, 0.19, 22.71, 4.53 "977", 977,"RMC Group","United Kingdom","Construction", 7.25, 0.11, 7.73, 3.57 "978", 978,"Insurance Australia Group","Australia","Insurance", 3.49, 0.10, 10.83, 5.94 "979", 979,"Banca Lombarda Group","Italy","Banking", 2.12, 0.14, 31.48, 4.35 "980", 980,"Formosa Plastics","Taiwan","Chemicals", 2.20, 0.29, 5.02, 8.28 "981", 981,"Solectron","United States","Technology hardware & equipment", 11.04, -3.51, 6.70, 5.52 "982", 982,"Manpower","United States","Business services & supplies", 12.18, 0.14, 4.38, 3.45 "983", 983,"Corus Group","United Kingdom","Materials", 11.57, -0.74, 10.14, 3.62 "984", 984,"Telus","Canada","Telecommunications services", 4.46, -0.15, 10.85, 6.95 "985", 985,"Ecolab","United States","Chemicals", 3.76, 0.28, 3.23, 7.04 "986", 986,"Bbloise Group","Switzerland","Insurance", 6.25, -0.46, 40.52, 2.72 "987", 987,"Monsanto","United States","Chemicals", 4.40, -0.11, 9.18, 8.30 "988", 988,"RadioShack","United States","Retailing", 4.66, 0.28, 2.22, 5.43 "989", 989,"New York Times","United States","Media", 2.97, 0.30, 3.69, 7.14 "990", 990,"Severn Trent","United Kingdom","Utilities", 2.93, 0.16, 9.57, 4.66 "991", 991,"Boston Properties","United States","Diversified financials", 1.31, 0.37, 8.55, 5.04 "992", 992,"Shizuoka Bank","Japan","Banking", 1.49, 0.11, 69.10, 5.26 "993", 993,"Oxford Health Plans","United States","Health care equipment & services", 5.35, 0.35, 2.16, 3.84 "994", 994,"OTP Bank","Hungary","Banking", 1.58, 0.26, 16.58, 3.69 "995", 995,"Smurfit-Stone","United States","Materials", 7.73, -0.10, 10.31, 4.35 "996", 996,"GKN","United Kingdom","Consumer durables", 5.32, 0.16, 5.27, 3.76 "997", 997,"Konica Minolta","Japan","Household & personal products", 4.73, 0.14, 4.24, 6.49 "998", 998,"S-Oil South","Korea","Oil & gas operations", 6.26, 0.16, 4.25, 4.39 "999", 999,"General Growth Prop","United States","Diversified financials", 1.16, 0.25, 8.86, 6.52 "1000",1000,"Northeast Utilities","United States","Utilities", 6.73, 0.13, 10.97, 2.48 "1001",1001,"Korea Gas","South Korea","Utilities", 6.17, 0.25, 7.87, 1.76 "1002",1002,"MOL","Hungary","Oil & gas operations", 5.16, 0.29, 4.20, 3.15 "1003",1003,"First American","United States","Insurance", 5.98, 0.44, 4.28, 2.36 "1004",1004,"Sumitomo Realty & Dev","Japan","Diversified financials", 4.52, 0.04, 16.92, 4.42 "1005",1005,"Hibernia","United States","Banking", 1.33, 0.25, 17.57, 3.58 "1006",1006,"Rallye","France","Retailing", 29.89, 0.07, 18.39, 1.98 "1007",1007,"Tobu Railway","Japan","Transportation", 5.80, 0.09, 13.24, 3.25 "1008",1008,"Symantec","United States","Software & services", 1.70, 0.32, 4.18, 12.52 "1009",1009,"Washington Post","United States","Media", 2.69, 0.25, 3.81, 8.67 "1010",1010,"M-real","Finland","Materials", 6.90, 0.22, 7.78, 1.60 "1011",1011,"Agfa-Gevaert","Belgium","Household & personal products", 4.92, 0.20, 4.09, 4.18 "1012",1012,"Tomkins","United Kingdom","Conglomerates", 5.07, 0.28, 3.73, 3.61 "1013",1013,"KB Home","United States","Construction", 5.59, 0.36, 4.12, 2.68 "1014",1014,"Altana","Germany","Drugs & biotechnology", 2.74, 0.34, 2.31, 8.22 "1015",1015,"Amersham","United Kingdom","Health care equipment & services", 2.48, 0.29, 3.41, 10.51 "1016",1016,"Koram Bank","South Korea","Banking", 2.16, 0.22, 31.67, 2.57 "1017",1017,"Sappi","South Africa","Materials", 5.16, 0.18, 5.93, 3.14 "1018",1018,"Investor","Sweden","Diversified financials", 0.45, 0.19, 8.55, 8.27 "1019",1019,"Reuters Group","United Kingdom","Media", 5.76, -0.65, 5.33, 9.63 "1020",1020,"Caesars Entertainment","United States","Hotels restaurants & leisure", 4.66, 0.11, 9.55, 3.62 "1021",1021,"Ball","United States","Materials", 4.98, 0.23, 4.07, 3.61 "1022",1022,"Knight Ridder","United States","Media", 2.68, 0.29, 4.09, 6.14 "1023",1023,"Daikyo","Japan","Diversified financials", 2.85, 3.27, 6.45, 0.36 "1024",1024,"Softbank","Japan","Software & services", 3.44, -0.85, 7.73, 13.17 "1025",1025,"Delta Air Lines","United States","Transportation", 12.71, -0.81, 25.76, 1.21 "1026",1026,"Oriental Land","Japan","Media", 2.81, 0.16, 5.82, 6.52 "1027",1027,"Leggett & Platt","United States","Consumer durables", 4.39, 0.21, 3.89, 4.66 "1028",1028,"Taisho Pharmaceutical","Japan","Drugs & biotechnology", 2.32, 0.30, 4.71, 5.83 "1029",1029,"Deutsche Boerse","Germany","Diversified financials", 1.23, 0.25, 6.86, 7.10 "1030",1030,"Sealed Air","United States","Materials", 3.53, 0.24, 4.70, 4.03 "1031",1031,"Bank Leumi Group","Israel","Banking", 3.41, 0.09, 51.90, 2.80 "1032",1032,"Health Net","United States","Health care equipment & services", 10.93, 0.19, 3.45, 3.23 "1033",1033,"BPER-Emilia Romagna","Italy","Banking", 2.44, 0.13, 37.76, 2.94 "1034",1034,"W&W-Wstenrot","Germany","Diversified financials", 7.57, -0.08, 56.44, 1.89 "1035",1035,"Nippon Mining","Japan","Oil & gas operations", 18.30, 0.03, 13.45, 2.34 "1036",1036,"Acciona","Spain","Construction", 3.59, 0.17, 6.11, 4.13 "1037",1037,"Pirelli & C","Italy","Diversified financials", 7.06, -0.06, 11.44, 3.57 "1038",1038,"Doral Financial","United States","Banking", 0.86, 0.32, 10.39, 3.69 "1039",1039,"UAL","United States","Transportation", 13.58, -3.78, 22.37, 0.18 "1040",1040,"Reliant Resources","United States","Utilities", 11.23, -2.00, 16.62, 2.37 "1041",1041,"Banco de Chile","Chile","Banking", 0.61, 0.22, 15.63, 3.65 "1042",1042,"Constellation Brands","United States","Food drink & tobacco", 3.32, 0.21, 5.62, 3.77 "1043",1043,"Bangkok Bank","Thailand","Banking", 1.58, 0.15, 29.01, 3.85 "1044",1044,"RJ Reynolds Tobacco","United States","Food drink & tobacco", 5.27, -3.57, 9.68, 4.99 "1045",1045,"Brookfield Properties","Canada","Diversified financials", 1.46, 0.30, 8.10, 4.74 "1046",1046,"Whitbread Holdings","United Kingdom","Hotels restaurants & leisure", 2.83, 0.24, 5.54, 4.23 "1047",1047,"Krung-Thai Bank","Thailand","Banking", 1.13, 0.19, 24.55, 3.36 "1048",1048,"Pinnacle West","United States","Utilities", 2.95, 0.18, 9.11, 3.43 "1049",1049,"Keppel","Singapore","Diversified financials", 3.50, 0.23, 5.94, 3.17 "1050",1050,"Astoria Financial","United States","Banking", 1.18, 0.20, 22.46, 3.30 "1051",1051,"Remgro","South Africa","Conglomerates", 1.11, 1.11, 3.89, 5.62 "1052",1052,"Univision Commun","United States","Media", 1.19, 0.13, 8.01, 11.84 "1053",1053,"Maxim Integrated Prods","United States","Semiconductors", 1.23, 0.35, 2.60, 17.32 "1054",1054,"US Steel","United States","Materials", 9.33, -0.41, 7.83, 3.69 "1055",1055,"Cap Gemini Ernst & Young","France","Software & services", 7.40, -0.54, 5.44, 6.27 "1056",1056,"Legg Mason","United States","Diversified financials", 1.78, 0.25, 6.81, 6.11 "1057",1057,"Zimmer Holdings","United States","Health care equipment & services", 1.57, 0.33, 1.24, 18.74 "1058",1058,"Rinker Group","Australia","Construction", 2.82, 0.32, 3.80, 5.15 "1059",1059,"Bankinter","Spain","Banking", 1.37, 0.17, 30.05, 3.26 "1060",1060,"Abertis Infraestructuras","Spain","Transportation", 0.80, 0.21, 6.78, 7.43 "1061",1061,"AmBev","Brazil","Food drink & tobacco", 2.07, 0.43, 3.06, 9.57 "1062",1062,"Freeport Copper","United States","Materials", 2.21, 0.20, 4.72, 8.24 "1063",1063,"Asustek Computer","Taiwan","Technology hardware & equipment", 3.31, 0.29, 2.68, 5.72 "1064",1064,"Laboratory Corp Amer","United States","Health care equipment & services", 2.94, 0.32, 3.41, 5.58 "1065",1065,"Johnson Matthey","United Kingdom","Materials", 6.83, 0.19, 3.20, 3.85 "1066",1066,"Kone","Finland","Construction", 4.56, 0.17, 4.34, 4.02 "1067",1067,"Paychex","United States","Business services & supplies", 1.20, 0.30, 3.66, 13.17 "1068",1068,"Micron Technology","United States","Semiconductors", 3.51, -0.96, 7.55, 9.59 "1069",1069,"Kawasaki Heavy Inds","Japan","Capital goods", 10.49, 0.11, 9.63, 1.74 "1070",1070,"WW Grainger","United States","Capital goods", 4.63, 0.23, 2.60, 4.41 "1071",1071,"Metalurgica Gerdau","Brazil","Materials", 4.62, 0.43, 4.97, 1.00 "1072",1072,"IKB","Germany","Banking", 3.66, 0.10, 39.59, 2.24 "1073",1073,"PKN Orlen","Poland","Oil & gas operations", 4.41, 0.28, 3.99, 3.08 "1074",1074,"Axis Capital Holdings","Bermuda","Insurance", 1.37, 0.48, 5.25, 4.72 "1075",1075,"Iberia","Spain","Transportation", 4.71, 0.17, 4.85, 3.34 "1076",1076,"Associated Banc-Corp","United States","Banking", 0.98, 0.23, 15.25, 3.26 "1077",1077,"Radian Group","United States","Insurance", 1.38, 0.39, 6.45, 4.32 "1078",1078,"CDW","United States","Retailing", 4.66, 0.18, 1.31, 5.60 "1079",1079,"Odakyu Electric Railway","Japan","Transportation", 5.47, 0.07, 10.69, 3.72 "1080",1080,"St Jude Medical","United States","Health care equipment & services", 1.93, 0.34, 2.56, 12.77 "1081",1081,"ProLogis","United States","Diversified financials", 0.73, 0.25, 6.37, 5.86 "1082",1082,"Unibail","France","Diversified financials", 0.79, 0.35, 6.11, 4.73 "1083",1083,"Phelps Dodge","United States","Materials", 4.14, 0.03, 7.27, 7.31 "1084",1084,"Friedman Billings","United States","Diversified financials", 0.63, 0.20, 11.33, 4.23 "1085",1085,"HHG","United Kingdom","Insurance", 5.68,NA, 51.65, 2.07 "1086",1086,"Outokumpu","Finland","Materials", 5.84, 0.17, 6.57, 2.32 "1087",1087,"Carlsberg","Denmark","Food drink & tobacco", 5.03, 0.14, 6.51, 2.74 "1088",1088,"Ashland","United States","Oil & gas operations", 7.52, 0.09, 6.78, 3.20 "1089",1089,"Abitibi Consolidated","Canada","Materials", 3.69, 0.14, 7.63, 3.32 "1090",1090,"China Minsheng Banking","China","Banking", 0.87, 0.11, 29.17, 4.65 "1091",1091,"NTL","United States","Telecommunications services", 3.50,NA, 10.59, 5.94 "1092",1092,"Hyundai Mobis","South Korea","Consumer durables", 3.52, 0.34, 2.83, 4.12 "1093",1093,"Public Storage","United States","Diversified financials", 0.85, 0.32, 4.74, 6.13 "1094",1094,"Goodyear","United States","Consumer durables", 14.74, -1.44, 14.60, 1.53 "1095",1095,"Liz Claiborne","United States","Household & personal products", 4.20, 0.26, 2.55, 4.04 "1096",1096,"Fluor","United States","Construction", 8.91, 0.16, 3.29, 3.31 "1097",1097,"MTN Group","South Africa","Telecommunications services", 2.46, 0.24, 3.54, 7.54 "1098",1098,"Kerr-McGee","United States","Oil & gas operations", 4.18, -0.14, 9.92, 5.07 "1099",1099,"EOG Resources","United States","Oil & gas operations", 1.82, 0.44, 4.75, 5.07 "1100",1100,"Coventry Health Care","United States","Health care equipment & services", 4.54, 0.25, 1.98, 3.79 "1101",1101,"Transocean","Cayman Islands","Oil & gas operations", 2.43, 0.02, 11.66, 9.26 "1102",1102,"OPAP","Greece","Hotels restaurants & leisure", 2.87, 0.30, 0.81, 5.79 "1103",1103,"Owens-Illinois","United States","Materials", 5.97, 0.13, 10.24, 1.66 "1104",1104,"Commerce Bancshs","United States","Banking", 0.92, 0.21, 14.29, 3.37 "1105",1105,"Telekom Austria","Austria","Telecommunications services", 3.28, 0.01, 8.76, 7.58 "1106",1106,"Shinsegae","South Korea","Retailing", 5.66, 0.21, 3.43, 3.34 "1107",1107,"Mercantile Bkshs","United States","Banking", 0.77, 0.20, 13.70, 3.54 "1108",1108,"TCF Financial","United States","Banking", 1.06, 0.22, 11.32, 3.67 "1109",1109,"Banco BPI","Portugal","Diversified financials", 2.01, 0.15, 26.96, 2.95 "1110",1110,"EMI Group","United Kingdom","Media", 3.44, 0.36, 3.04, 3.85 "1111",1111,"PICC Property & Casualty","China","Insurance", 4.45, 0.03, 8.63, 5.09 "1112",1112,"Janus Capital Group","United States","Diversified financials", 0.99, 0.95, 4.33, 3.84 "1113",1113,"Suzuken","Japan","Health care equipment & services", 8.97, 0.14, 5.27, 2.42 "1114",1114,"IFIL","Italy","Diversified financials", 5.63, -0.39, 8.51, 3.96 "1115",1115,"Hanwha","South Korea","Trading companies", 6.30, -0.17, 31.88, 0.36 "1116",1116,"American Finl Group","United States","Insurance", 3.43, 0.14, 19.86, 2.05 "1117",1117,"Darden Restaurants","United States","Hotels restaurants & leisure", 4.81, 0.22, 2.81, 3.66 "1118",1118,"Samsung South","Korea","Trading companies", 34.77, 0.06, 9.50, 1.52 "1119",1119,"Goodrich","United States","Aerospace & defense", 4.38, 0.12, 5.95, 3.57 "1120",1120,"Rite Aid","United States","Retailing", 16.34, 0.02, 6.34, 2.94 "1121",1121,"General Property Trust","Australia","Diversified financials", 0.46, 0.32, 5.79, 4.60 "1122",1122,"Health Management","United States","Health care equipment & services", 2.71, 0.30, 3.34, 5.48 "1123",1123,"Chiron","United States","Drugs & biotechnology", 1.72, 0.23, 4.20, 9.60 "1124",1124,"TRW Automotive Holdings","United States","Consumer durables", 11.04, -0.10, 9.45, 2.60 "1125",1125,"Cez","Czech Republic","Utilities", 1.85, 0.28, 7.69, 3.95 "1126",1126,"Bank Central Asia","Indonesia","Banking", 1.70, 0.28, 13.03, 2.77 "1127",1127,"Hong Kong & China Gas","Hong Kong/China","Utilities", 0.88, 0.40, 2.59, 9.37 "1128",1128,"Nitto Denko","Japan","Chemicals", 3.20, 0.16, 3.15, 8.08 "1129",1129,"Amazon.com","United States","Retailing", 5.26, 0.04, 2.16, 18.71 "1130",1130,"Ingram Micro","United States","Technology hardware & equipment", 21.74, 0.09, 4.87, 2.54 "1131",1131,"Kasikornbank","Thailand","Banking", 1.02, 0.16, 17.64, 3.48 "1132",1132,"Seibu Railway","Japan","Transportation", 3.55, 0.01, 9.88, 5.52 "1133",1133,"Trkiye Garanti Bankasi","Turkey","Banking", 3.87, 0.03, 21.81, 3.03 "1134",1134,"Apollo-Education Group","United States","Business services & supplies", 1.44, 0.27, 1.54, 13.63 "1135",1135,"Rogers Communications","Canada","Telecommunications services", 3.74, 0.10, 6.53, 4.61 "1136",1136,"Onex","Canada","Business services & supplies", 14.41, -0.09, 12.24, 1.87 "1137",1137,"Li & Fung","Hong Kong/China","Trading companies", 4.78, 0.14, 1.03, 5.60 "1138",1138,"Concord EFS","United States","Business services & supplies", 2.22, 0.35, 2.44, 6.70 "1139",1139,"Visteon","United States","Consumer durables", 17.66, -1.21, 10.96, 1.47 "1140",1140,"Royal Numico","Netherlands","Food drink & tobacco", 4.17, 0.14, 3.69, 5.31 "1141",1141,"Quebecor","Canada","Media", 7.64, 0.10, 10.83, 1.34 "1142",1142,"Moody`s","United States","Business services & supplies", 1.17, 0.35, 0.79, 9.68 "1143",1143,"Turkcell","Turkey","Telecommunications services", 3.17, 0.14, 4.16, 5.81 "1144",1144,"iStar Financial","United States","Diversified financials", 0.55, 0.29, 6.51, 4.19 "1145",1145,"Intuit","United States","Software & services", 1.68, 0.34, 2.60, 9.61 "1146",1146,"Linear Technology","United States","Semiconductors", 0.68, 0.27, 2.14, 13.19 "1147",1147,"NVR","United States","Construction", 3.68, 0.42, 1.36, 3.13 "1148",1148,"Banca Popolare di Milano","Italy","Banking", 2.13, 0.13, 34.03, 2.56 "1149",1149,"IMS Health","United States","Health care equipment & services", 1.38, 0.63, 1.48, 6.37 "1150",1150,"Commerce Asset Holding","Malaysia","Banking", 1.25, 0.15, 24.00, 3.13 "1151",1151,"Kmart Holding","United States","Retailing", 25.80, -1.99, 6.12, 2.58 "1152",1152,"Grupo Financiero Banorte","Mexico","Banking", 2.46, 0.20, 18.94, 1.92 "1153",1153,"Nabors Industries","Bermuda","Oil & gas operations", 1.88, 0.19, 5.59, 6.89 "1154",1154,"Ross Stores","United States","Retailing", 3.79, 0.21, 1.56, 4.55 "1155",1155,"Publishing & Broadcasting","Australia","Media", 1.80, 0.26, 4.65, 6.46 "1156",1156,"Tokyo Electron","Japan","Semiconductors", 3.90, -0.35, 4.36, 11.71 "1157",1157,"CSR Group","Australia","Construction", 4.39, 1.24, 1.53, 1.32 "1158",1158,"Biomet","United States","Health care equipment & services", 1.49, 0.31, 1.75, 10.22 "1159",1159,"China Development Finl","Taiwan","Banking", 0.51, 0.19, 7.56, 5.29 "1160",1160,"Alliant Energy","United States","Utilities", 2.90, 0.19, 7.61, 2.87 "1161",1161,"RenaissanceRe Holdings","Bermuda","Insurance", 1.37, 0.62, 4.71, 3.58 "1162",1162,"Smith & Nephew","United Kingdom","Health care equipment & services", 2.11, 0.26, 2.22, 9.05 "1163",1163,"Rockwell Collins","United States","Aerospace & defense", 2.61, 0.28, 2.71, 5.88 "1164",1164,"George Wimpey","United Kingdom","Construction", 4.19, 0.31, 3.66, 2.71 "1165",1165,"Synthes-Stratec","Switzerland","Health care equipment & services", 1.13, 0.28, 1.53, 11.54 "1166",1166,"Cosmo Oil","Japan","Oil & gas operations", 16.10, 0.03, 10.52, 1.36 "1167",1167,"UNY","Japan","Retailing", 9.99, 0.11, 7.31, 2.07 "1168",1168,"Yamaha","Japan","Household & personal products", 4.44, 0.15, 4.13, 3.48 "1169",1169,"Taiwan Cellular","Taiwan","Telecommunications services", 1.69, 0.43, 4.42, 4.38 "1170",1170,"Kimco Realty","United States","Diversified financials", 0.48, 0.31, 4.60, 5.19 "1171",1171,"Bunzl","United Kingdom","Materials", 4.31, 0.20, 2.12, 3.83 "1172",1172,"Xstrata","United Kingdom","Materials", 1.93, 0.15, 5.11, 8.58 "1173",1173,"Bluescope Steel","Australia","Materials", 3.55, 0.30, 3.18, 3.46 "1174",1174,"Protective Life","United States","Insurance", 1.90, 0.18, 23.30, 2.56 "1175",1175,"Foot Locker","United States","Retailing", 4.66, 0.19, 2.70, 3.62 "1176",1176,"Xilinx","United States","Semiconductors", 1.30, 0.22, 2.80, 14.31 "1177",1177,"Omnicare","United States","Health care equipment & services", 3.50, 0.19, 3.40, 4.61 "1178",1178,"Hypo Real Estate Holding","Germany","Diversified financials", 0.87, 0.02, 183.47, 3.97 "1179",1179,"Showa Denko","Japan","Chemicals", 5.68, 0.11, 8.10, 2.32 "1180",1180,"Malaysia Intl Shipping","Malaysia","Transportation", 1.43, 0.35, 3.88, 5.82 "1181",1181,"Taiheiyo Cement","Japan","Construction", 7.85, 0.05, 11.69, 2.36 "1182",1182,"Navistar Intl","United States","Consumer durables", 7.32, -0.02, 6.90, 3.30 "1183",1183,"Republic Services","United States","Business services & supplies", 2.49, 0.22, 4.40, 4.13 "1184",1184,"Verbund-Austrian Electric","Austria","Utilities", 2.18, 0.16, 7.27, 4.28 "1185",1185,"Taylor Woodrow","United Kingdom","Construction", 3.56, 0.25, 4.08, 2.88 "1186",1186,"Vulcan Materials","United States","Construction", 2.89, 0.21, 3.64, 4.69 "1187",1187,"mg technologies","Germany","Chemicals", 8.54, -0.13, 6.45, 3.18 "1188",1188,"Eiffage","France","Construction", 7.19, 0.13, 6.31, 1.84 "1189",1189,"Sagem","France","Technology hardware & equipment", 4.00, 0.15, 2.98, 5.21 "1190",1190,"UST","United States","Food drink & tobacco", 1.74, 0.49, 1.61, 6.08 "1191",1191,"WellChoice","United States","Health care equipment & services", 5.38, 0.20, 3.04, 3.04 "1192",1192,"Yue Yuen Industrial","Hong Kong/China","Household & personal products", 2.53, 0.31, 2.58, 4.73 "1193",1193,"Tele2","Sweden","Telecommunications services", 3.60, 0.03, 5.26, 7.76 "1194",1194,"Sime Darby","Malaysia","Conglomerates", 3.61, 0.21, 3.80, 3.28 "1195",1195,"Cintas","United States","Business services & supplies", 2.14, 0.26, 2.69, 7.49 "1196",1196,"Wendy`s International","United States","Hotels restaurants & leisure", 3.15, 0.24, 3.16, 4.41 "1197",1197,"Teijin","Japan","Chemicals", 7.53, -0.18, 8.72, 2.67 "1198",1198,"Hormel Foods","United States","Food drink & tobacco", 4.20, 0.19, 2.39, 3.82 "1199",1199,"Compal Electronics","Taiwan","Technology hardware & equipment", 3.38, 0.23, 2.72, 4.07 "1200",1200,"MediaTek","Taiwan","Semiconductors", 0.85, 0.35, 0.88, 7.08 "1201",1201,"Wolters Kluwer","Netherlands","Media", 4.22, 0.03, 6.25, 5.21 "1202",1202,"Engelhard","United States","Chemicals", 3.71, 0.24, 2.93, 3.53 "1203",1203,"Rexam","United Kingdom","Materials", 4.97, -0.19, 5.88, 4.50 "1204",1204,"ALFA","Mexico","Conglomerates", 4.95, 0.13, 6.96, 2.21 "1205",1205,"Brown-Forman","United States","Food drink & tobacco", 2.46, 0.25, 2.43, 5.70 "1206",1206,"Nagoya Railroad","Japan","Transportation", 6.76, -0.40, 10.62, 2.51 "1207",1207,"Adobe Systems","United States","Software & services", 1.29, 0.27, 1.56, 9.19 "1208",1208,"City National","United States","Banking", 0.75, 0.19, 13.02, 2.96 "1209",1209,"First Financial Holding","Taiwan","Banking", 1.53, -0.71, 37.67, 4.77 "1210",1210,"Taishin Financial Holding","Taiwan","Diversified financials", 1.22, 0.12, 15.91, 3.78 "1211",1211,"Gold Fields","South Africa","Materials", 1.86, 0.40, 2.57, 6.55 "1212",1212,"NCR","United States","Technology hardware & equipment", 5.60, 0.06, 5.50, 4.31 "1213",1213,"Canadian Tire","Canada","Retailing", 5.06, 0.19, 3.78, 2.64 "1214",1214,"Impala Platinum Holdings","South Africa","Materials", 1.58, 0.46, 2.18, 5.81 "1215",1215,"Norske Skogindustrier","Norway","Materials", 3.39, 0.17, 6.49, 2.55 "1216",1216,"Converium Holding","Switzerland","Insurance", 3.89, 0.12, 10.08, 2.31 "1217",1217,"Weatherford Intl","Bermuda","Oil & gas operations", 2.45, 0.13, 4.93, 5.73 "1218",1218,"Rouse","United States","Diversified financials", 1.13, 0.20, 6.42, 4.44 "1219",1219,"Tomen","Japan","Trading companies", 17.62, -0.57, 7.99, 1.12 "1220",1220,"Nucor","United States","Materials", 6.27, 0.06, 4.49, 4.78 "1221",1221,"ArvinMeritor","United States","Consumer durables", 8.26, 0.13, 5.43, 1.57 "1222",1222,"Fuji Television Network","Japan","Media", 3.63, 0.13, 3.93, 4.82 "1223",1223,"Hankyu","Japan","Transportation", 4.04, -0.76, 14.09, 2.86 "1224",1224,"Mitsubishi Materials","Japan","Materials", 8.16, -0.23, 11.71, 2.15 "1225",1225,"CMS Energy","United States","Utilities", 8.58, -1.01, 12.31, 1.43 "1226",1226,"Hua Nan Financial","Taiwan","Diversified financials", 1.55, -0.77, 38.48, 4.47 "1227",1227,"Fast Retailing","Japan","Retailing", 2.65, 0.18, 1.88, 6.70 "1228",1228,"Rheinmetall","Germany","Conglomerates", 4.80, 0.26, 4.22, 1.31 "1229",1229,"Takashimaya","Japan","Retailing", 10.03, 0.03, 6.80, 2.59 "1230",1230,"Galeries Lafayette","France","Retailing", 6.96, 0.09, 9.51, 2.13 "1231",1231,"Italmobiliare","Italy","Construction", 4.59, 0.13, 8.84, 1.52 "1232",1232,"Embraer","Brazil","Aerospace & defense", 2.19, 0.33, 3.14, 5.16 "1233",1233,"Australian Gas Light","Australia","Utilities", 2.61, 0.20, 4.23, 3.93 "1234",1234,"Tele Norte Leste","Brazil","Telecommunications services", 3.35, -0.12, 7.46, 5.46 "1235",1235,"BJ Services","United States","Oil & gas operations", 2.27, 0.22, 2.84, 6.79 "1236",1236,"Kesko Group","Finland","Food markets", 8.89, 0.20, 3.47, 1.77 "1237",1237,"Noranda","Canada","Materials", 3.86, -0.45, 7.07, 4.74 "1238",1238,"GAIL (India)","India","Utilities", 2.39, 0.35, 3.14, 4.25 "1239",1239,"GlobalSantaFe","Cayman Islands","Oil & gas operations", 1.91, 0.13, 6.13, 6.79 "1240",1240,"Unitrin","United States","Insurance", 2.94, 0.12, 8.54, 2.95 "1241",1241,"Aluminum Corp of China","China","Materials", 2.03, 0.17, 3.85, 8.17 "1242",1242,"Advanced Micro","United States","Semiconductors", 3.52, -0.27, 7.09, 5.21 "1243",1243,"Toyo Seikan Kaisha","Japan","Materials", 5.89, 0.07, 7.12, 3.19 "1244",1244,"NStar","United States","Utilities", 2.91, 0.20, 6.09, 2.60 "1245",1245,"Hyundai Heavy Industries","South Korea","Capital goods", 7.47, -0.21, 9.19, 2.45 "1246",1246,"Liberty International","United Kingdom","Diversified financials", 0.65, 0.14, 9.29, 4.21 "1247",1247,"Charter Commun","United States","Media", 4.79, -1.99, 21.45, 1.37 "1248",1248,"Ishikawajima-Harima","Japan","Capital goods", 8.62, -0.08, 11.17, 1.76 "1249",1249,"Mylan Labs","United States","Drugs & biotechnology", 1.39, 0.33, 1.88, 6.52 "1250",1250,"Coca-Cola HBC","Greece","Food drink & tobacco", 4.17, 0.04, 5.32, 5.35 "1251",1251,"Furukawa Electric","Japan","Capital goods", 6.01, -0.96, 9.91, 2.52 "1252",1252,"Assa Abloy","Sweden","Capital goods", 2.93, 0.15, 3.78, 5.20 "1253",1253,"Avaya","United States","Technology hardware & equipment", 4.24, 0.04, 4.10, 7.40 "1254",1254,"Tate & Lyle Group","United Kingdom","Food drink & tobacco", 4.36, 0.21, 3.82, 2.53 "1255",1255,"Daito Trust Construction","Japan","Construction", 3.18, 0.21, 2.85, 4.13 "1256",1256,"Hoya","Japan","Technology hardware & equipment", 2.08, 0.17, 2.29, 10.37 "1257",1257,"Continental Airlines","United States","Transportation", 8.87, 0.04, 10.65, 0.97 "1258",1258,"Isuzu Motors","Japan","Consumer durables", 11.42, -1.22, 8.61, 1.44 "1259",1259,"Tele & Data Systems","United States","Telecommunications services", 3.35, 0.02, 9.45, 4.08 "1260",1260,"Invensys","United Kingdom","Capital goods", 7.93, -2.28, 6.50, 2.75 "1261",1261,"Bank Negara Indonesia","Indonesia","Banking", 1.82, 0.28, 14.05, 2.02 "1262",1262,"EW Scripps","United States","Media", 1.79, 0.25, 2.88, 8.05 "1263",1263,"Eastman Chemical","United States","Chemicals", 5.80, -0.27, 6.25, 3.27 "1264",1264,"Nexen","Canada","Oil & gas operations", 1.97, 0.29, 4.01, 4.42 "1265",1265,"Chiba Bank","Japan","Banking", 1.54, 0.07, 66.85, 3.42 "1266",1266,"Ryder System","United States","Business services & supplies", 4.80, 0.14, 5.28, 2.32 "1267",1267,"Biogen Idec","United States","Drugs & biotechnology", 0.50, 0.16, 2.24, 14.25 "1268",1268,"Mirant","United States","Utilities", 5.81, -4.45, 14.16, 0.20 "1269",1269,"Avnet","United States","Technology hardware & equipment", 9.49, 0.01, 4.82, 3.00 "1270",1270,"Astra International","Indonesia","Consumer durables", 3.44, 0.38, 2.79, 2.56 "1271",1271,"Canara Bank","India","Banking", 1.76, 0.22, 17.53, 1.32 "1272",1272,"Dynegy","United States","Oil & gas operations", 5.81, -0.47, 13.84, 1.62 "1273",1273,"Allmerica Financial","United States","Insurance", 3.27, 0.09, 25.01, 1.97 "1274",1274,"Keio Electric Railway","Japan","Transportation", 3.55, 0.13, 4.40, 3.49 "1275",1275,"Keyence","Japan","Technology hardware & equipment", 0.79, 0.20, 2.06, 9.43 "1276",1276,"Julius Baer Holding","Switzerland","Diversified financials", 1.07, 0.13, 8.99, 4.22 "1277",1277,"Hua Xia Bank","China","Banking", 0.76, 0.10, 21.02, 3.46 "1278",1278,"Host Marriott","United States","Diversified financials", 3.60, -0.12, 8.33, 3.72 "1279",1279,"DST Systems","United States","Software & services", 2.41, 0.20, 3.44, 5.02 "1280",1280,"Hynix Semiconductor","South Korea","Semiconductors", 3.96, -1.65, 9.41, 3.25 "1281",1281,"Hochtief","Germany","Construction", 12.61, 0.05, 7.51, 1.85 "1282",1282,"Pactiv","United States","Materials", 3.14, 0.20, 3.71, 3.41 "1283",1283,"Bank of Greece","Greece","Banking", 0.58, 0.15, 36.74, 1.42 "1284",1284,"Mediolanum","Italy","Insurance", 2.34, 0.09, 8.11, 5.32 "1285",1285,"Nippon TV Network","Japan","Media", 2.85, 0.17, 3.98, 3.75 "1286",1286,"Punjab National Bank","India","Banking", 1.91, 0.20, 18.54, 1.63 "1287",1287,"Advanced Info Service","Thailand","Telecommunications services", 1.86, 0.27, 2.92, 6.80 "1288",1288,"Sekisui Chemical","Japan","Construction", 6.77, 0.08, 6.04, 2.71 "1289",1289,"Korean Air","South Korea","Transportation", 5.44, 0.08, 11.83, 1.04 "1290",1290,"Pioneer Natural Res","United States","Oil & gas operations", 1.30, 0.40, 3.95, 3.68 "1291",1291,"Plum Creek Timber","United States","Materials", 1.19, 0.19, 4.39, 5.48 "1292",1292,"Thornburg Mortgage","United States","Diversified financials", 0.59, 0.18, 19.12, 2.20 "1293",1293,"Gecina","France","Diversified financials", 0.31, 0.14, 7.55, 4.45 "1294",1294,"PMI Group","United States","Insurance", 0.89, 0.29, 4.79, 3.47 "1295",1295,"Toll Brothers","United States","Construction", 2.76, 0.26, 3.79, 3.04 "1296",1296,"Bidvest Group","South Africa","Conglomerates", 6.30, 0.18, 1.92, 2.43 "1297",1297,"Kesa Electricals","United Kingdom","Retailing", 5.64, 0.16, 2.81, 2.72 "1298",1298,"XTO Energy","United States","Oil & gas operations", 1.19, 0.29, 3.61, 5.22 "1299",1299,"Petrol Ofisi","Turkey","Oil & gas operations", 6.36, 0.23, 3.23, 1.19 "1300",1300,"Herms International","France","Household & personal products", 1.30, 0.23, 1.64, 7.57 "1301",1301,"Omron","Japan","Business services & supplies", 4.53, 0.00, 4.26, 5.44 "1302",1302,"Jabil Circuit","United States","Technology hardware & equipment", 5.17, 0.08, 3.52, 5.72 "1303",1303,"Lend Lease","Australia","Diversified financials", 6.35, -0.48, 4.79, 3.47 "1304",1304,"Tpras-Trkiye Petrol","Turkey","Oil & gas operations", 7.76, 0.17, 3.01, 2.26 "1305",1305,"LG Corp","South Korea","Chemicals", 4.15, 0.11, 7.48, 2.33 "1306",1306,"Essilor International","France","Health care equipment & services", 2.25, 0.19, 2.27, 6.17 "1307",1307,"Duke Realty","United States","Diversified financials", 0.74, 0.18, 5.55, 4.43 "1308",1308,"AU Optronics","Taiwan","Technology hardware & equipment", 2.18, 0.17, 3.67, 5.91 "1309",1309,"Brunswick","United States","Consumer durables", 4.13, 0.14, 3.60, 3.41 "1310",1310,"Smith International","United States","Oil & gas operations", 3.59, 0.12, 3.10, 5.05 "1311",1311,"ITC","India","Food drink & tobacco", 1.30, 0.29, 1.80, 5.81 "1312",1312,"Dogan Holding","Turkey","Capital goods", 5.64, 0.10, 7.77, 1.35 "1313",1313,"Scor","France","Insurance", 4.80, -0.48, 14.96, 1.70 "1314",1314,"Acer","Taiwan","Technology hardware & equipment", 3.10, 0.25, 3.14, 3.20 "1315",1315,"Level 3 Commun","United States","Telecommunications services", 3.95, -0.72, 8.29, 3.25 "1316",1316,"Barratt Developments","United Kingdom","Construction", 3.59, 0.34, 3.16, 2.38 "1317",1317,"Universal Health","United States","Health care equipment & services", 3.53, 0.20, 2.44, 3.26 "1318",1318,"Brisa","Portugal","Transportation", 0.51, 0.22, 4.32, 4.42 "1319",1319,"Helvetia Patria","Switzerland","Insurance", 4.16, -0.26, 18.88, 1.01 "1320",1320,"Infosys Technologies","India","Business services & supplies", 0.77, 0.20, 0.75, 7.91 "1321",1321,"Boise Cascade","United States","Materials", 7.69, 0.02, 5.07, 2.90 "1322",1322,"KKPC-Korea Kumho","South Korea","Chemicals", 6.51, -0.02, 10.53, 0.14 "1323",1323,"Brinker International","United States","Hotels restaurants & leisure", 3.47, 0.18, 2.02, 3.53 "1324",1324,"Thai Airways Intl","Thailand","Transportation", 3.36, 0.31, 4.06, 2.03 "1325",1325,"Banca Popolare di Lodi","Italy","Banking", 2.45, 0.03, 37.74, 2.48 "1326",1326,"Kelda Group","United Kingdom","Utilities", 1.08, 0.20, 7.10, 3.16 "1327",1327,"Avalonbay Communities","United States","Diversified financials", 0.62, 0.24, 4.97, 3.55 "1328",1328,"Webster Financial","United States","Banking", 0.89, 0.16, 14.57, 2.38 "1329",1329,"AmerUs Group","United States","Insurance", 1.68, 0.16, 21.54, 1.47 "1330",1330,"Dainippon Ink & Chems","Japan","Chemicals", 8.14, 0.02, 8.55, 1.67 "1331",1331,"China Resources Ent","Hong Kong/China","Conglomerates", 3.70, 0.18, 3.64, 2.84 "1332",1332,"IKON Office Solutions","United States","Business services & supplies", 4.71, 0.12, 6.64, 1.74 "1333",1333,"Alps Electric","Japan","Business services & supplies", 5.09, 0.15, 4.00, 2.30 "1334",1334,"Imerys","France","Construction", 3.01, 0.15, 3.80, 3.59 "1335",1335,"Nikon","Japan","Semiconductors", 3.97, -0.07, 4.73, 4.85 "1336",1336,"Smithfield Foods","United States","Food drink & tobacco", 7.99, 0.07, 5.01, 2.76 "1337",1337,"Funai Electric","Japan","Consumer durables", 2.80, 0.16, 1.60, 4.70 "1338",1338,"RR Donnelley & Sons","United States","Media", 4.75, 0.13, 3.19, 3.31 "1339",1339,"T Rowe Price","United States","Diversified financials", 0.99, 0.23, 1.55, 6.54 "1340",1340,"Sky Financial Group","United States","Banking", 0.84, 0.16, 12.90, 2.51 "1341",1341,"Daiichi Pharmaceutical","Japan","Drugs & biotechnology", 2.72, 0.11, 4.22, 4.79 "1342",1342,"Franz Colruyt","Belgium","Food markets", 3.42, 0.15, 1.38, 3.96 "1343",1343,"Wipro","India","Business services & supplies", 0.90, 0.18, 0.88, 8.38 "1344",1344,"Bank of India","India","Banking", 1.59, 0.18, 16.16, 0.72 "1345",1345,"Triad Hospitals","United States","Health care equipment & services", 3.81, 0.13, 4.48, 2.65 "1346",1346,"Premcor","United States","Oil & gas operations", 8.80, 0.12, 3.72, 2.26 "1347",1347,"Arrow Electronics","United States","Technology hardware & equipment", 8.09, 0.01, 5.04, 2.67 "1348",1348,"Mitchells & Butlers","United Kingdom","Hotels restaurants & leisure", 2.52, 0.21, 6.29, 2.23 "1349",1349,"Aareal Bank","Germany","Diversified financials", 2.28, 0.09, 39.14, 1.14 "1350",1350,"Sonae SGPS","Portugal","Conglomerates", 6.59, -0.06, 8.18, 2.20 "1351",1351,"Diamond Lease","Japan","Diversified financials", 4.50, 0.07, 13.55, 1.70 "1352",1352,"Enterprise Inns","United Kingdom","Hotels restaurants & leisure", 0.80, 0.21, 4.56, 3.94 "1353",1353,"Coca-Cola Amatil","Australia","Food drink & tobacco", 2.53, 0.15, 4.33, 3.62 "1354",1354,"Coach","United States","Household & personal products", 1.12, 0.20, 0.86, 7.04 "1355",1355,"Check Point","Israel","Software & services", 0.43, 0.24, 1.71, 5.82 "1356",1356,"Hillenbrand Inds","United States","Health care equipment & services", 2.04, 0.14, 5.41, 4.33 "1357",1357,"KLM","Netherlands","Transportation", 7.06, -0.20, 8.75, 1.00 "1358",1358,"Bank of Baroda","India","Banking", 1.61, 0.18, 16.48, 1.62 "1359",1359,"Hachijuni Bank","Japan","Banking", 1.36, 0.08, 48.17, 2.92 "1360",1360,"Persimmon","United Kingdom","Construction", 2.76, 0.28, 2.85, 2.99 "1361",1361,"Flagstar Bancorp","United States","Banking", 0.97, 0.25, 10.57, 1.44 "1362",1362,"Adolph Coors","United States","Food drink & tobacco", 3.96, 0.16, 4.29, 2.34 "1363",1363,"Hasbro","United States","Household & personal products", 3.01, 0.16, 3.25, 3.81 "1364",1364,"Aker Kvaerner","Norway","Oil & gas operations", 6.30, 0.13, 4.31, 0.91 "1365",1365,"Clariant","Switzerland","Chemicals", 6.39, -0.47, 5.91, 2.62 "1366",1366,"Dollar Tree Stores","United States","Retailing", 2.90, 0.18, 1.49, 3.78 "1367",1367,"Banca Carige","Italy","Banking", 1.01, 0.07, 16.10, 4.43 "1368",1368,"BOK Financial","United States","Banking", 0.87, 0.16, 13.58, 2.33 "1369",1369,"Slough Estates","United Kingdom","Diversified financials", 0.47, 0.16, 6.81, 3.42 "1370",1370,"Industrivarden","Sweden","Construction", 0.57, 0.50, 2.55, 3.45 "1371",1371,"Celanese","Germany","Chemicals", 4.54, 0.12, 5.81, 2.07 "1372",1372,"Hagemeyer","Netherlands","Trading companies", 8.76, 0.14, 3.39, 1.19 "1373",1373,"Banque Nat de Belgique","Belgium","Banking", 1.61, 0.11, 39.50, 1.52 "1374",1374,"Apartment Investment","United States","Diversified financials", 1.53, 0.13, 10.18, 3.10 "1375",1375,"KLA-Tencor","United States","Semiconductors", 1.27, 0.14, 3.07, 10.67 "1376",1376,"Oneok","United States","Utilities", 2.71, 0.23, 5.55, 1.82 "1377",1377,"Espirito Santo Finl","Luxembourg","Banking", 2.60, -0.05, 47.89, 0.94 "1378",1378,"Groupe Bruxelles Lambert","Belgium","Diversified financials", 0.32, -0.25, 7.96, 7.86 "1379",1379,"Vendex KBB","Netherlands","Retailing", 5.08, 0.22, 2.39, 1.53 "1380",1380,"HDFC-Housing Devel","India","Diversified financials", 0.65, 0.16, 6.08, 3.65 "1381",1381,"Citizens Commun","United States","Telecommunications services", 2.55, 0.09, 7.70, 3.51 "1382",1382,"Lyondell Chemical","United States","Chemicals", 3.80, -0.30, 7.63, 3.03 "1383",1383,"Nippon Meat Packers","Japan","Food drink & tobacco", 7.70, 0.04, 5.07, 2.55 "1384",1384,"Altera","United States","Semiconductors", 0.83, 0.16, 1.49, 8.46 "1385",1385,"Barnes & Noble","United States","Retailing", 5.59, 0.13, 3.55, 2.43 "1386",1386,"SAS Group","Sweden","Transportation", 7.48, -0.02, 7.52, 1.53 "1387",1387,"Joyo Bank","Japan","Banking", 1.23, 0.07, 56.68, 2.71 "1388",1388,"Colonial BancGroup","United States","Banking", 0.91, 0.15, 15.83, 2.19 "1389",1389,"Rhodia","France","Chemicals", 6.95, 0.00, 7.87, 0.82 "1390",1390,"McCormick & Co","United States","Food drink & tobacco", 2.27, 0.21, 2.15, 4.21 "1391",1391,"Nippon Shinpan","Japan","Diversified financials", 2.62, 0.01, 41.78, 0.96 "1392",1392,"Maxis Communications","Malaysia","Telecommunications services", 0.99, 0.25, 1.66, 5.17 "1393",1393,"Steel Authority of India","India","Materials", 3.70, -0.10, 4.94, 4.31 "1394",1394,"Valley Natl Bancorp","United States","Banking", 0.61, 0.15, 9.87, 2.66 "1395",1395,"Fuji Electric","Japan","Capital goods", 7.04, 0.03, 7.73, 1.55 "1396",1396,"Thermo Electron","United States","Health care equipment & services", 2.10, 0.20, 3.39, 4.63 "1397",1397,"Crown Holdings","United States","Materials", 6.58, -0.25, 8.02, 1.53 "1398",1398,"Rank Group","United Kingdom","Hotels restaurants & leisure", 2.36, 0.22, 2.79, 3.67 "1399",1399,"Whole Foods Market","United States","Food markets", 3.34, 0.12, 1.28, 4.51 "1400",1400,"PeopleSoft","United States","Software & services", 2.27, 0.09, 4.22, 8.20 "1401",1401,"Hiroshima Bank","Japan","Banking", 1.09, 0.09, 47.69, 2.32 "1402",1402,"Hanwha Chemical","South Korea","Chemicals", 2.84, 0.03, 28.78, 0.95 "1403",1403,"Bank of Fukuoka","Japan","Banking", 1.35, 0.07, 58.63, 2.63 "1404",1404,"Technip","France","Oil & gas operations", 4.68, -0.03, 5.44, 3.07 "1405",1405,"CarMax","United States","Retailing", 4.26, 0.11, 0.99, 3.55 "1406",1406,"Energizer Holdings","United States","Household & personal products", 2.47, 0.20, 2.83, 3.71 "1407",1407,"Dillard`s","United States","Retailing", 7.69, 0.03, 7.02, 1.42 "1408",1408,"Wiener Stadtische","Austria","Insurance", 3.58, -0.02, 11.71, 2.39 "1409",1409,"Kumho Industrial","South Korea","Consumer durables", 5.42, -0.07, 9.26, 0.10 "1410",1410,"Pakistan Telecom","Pakistan","Telecommunications services", 1.23, 0.41, 2.35, 3.50 "1411",1411,"Tech Data","United States","Technology hardware & equipment", 16.50, -0.24, 4.00, 2.30 "1412",1412,"Annaly Mortgage Mgmt","United States","Diversified financials", 0.34, 0.18, 12.99, 1.94 "1413",1413,"Kawasaki Kisen Kaisha","Japan","Transportation", 5.35, 0.09, 4.28, 2.75 "1414",1414,"KT&G","South Korea","Food drink & tobacco", 1.71, 0.29, 3.34, 3.95 "1415",1415,"Ryanair Holdings","Ireland","Transportation", 0.92, 0.26, 2.69, 4.71 "1416",1416,"Alitalia Group","Italy","Transportation", 4.98, 0.10, 6.03, 1.28 "1417",1417,"Kuraya Sanseido","Japan","Health care equipment & services", 10.78, 0.04, 5.27, 1.73 "1418",1418,"Brother Inds","Japan","Business services & supplies", 3.46, 0.19, 2.69, 2.75 "1419",1419,"MedImmune","United States","Drugs & biotechnology", 1.05, 0.18, 2.79, 6.44 "1420",1420,"ITV","United Kingdom","Media", 2.36, 0.02, 3.99, 10.79 "1421",1421,"New Century Financial","United States","Diversified financials", 0.98, 0.25, 8.89, 1.72 "1422",1422,"Chang Hwa Com Bank","Taiwan","Banking", 1.38, -0.71, 34.69, 2.83 "1423",1423,"Amdocs","United Kingdom","Business services & supplies", 1.57, 0.19, 2.83, 6.07 "1424",1424,"Amvescap","United Kingdom","Diversified financials", 2.07, -0.03, 7.34, 6.20 "1425",1425,"US Airways Group","United States","Transportation", 5.50,NA, 8.58, 0.24 "1426",1426,"Orient","Japan","Diversified financials", 2.54, -0.87, 34.55, 1.54 "1427",1427,"Amadeus Global Travel","Spain","Business services & supplies", 2.43, 0.20, 1.34, 3.60 "1428",1428,"Schindler Holding","Switzerland","Capital goods", 5.71, 0.01, 3.56, 3.89 "1429",1429,"Placer Dome","Canada","Materials", 1.21, 0.12, 3.96, 7.03 "1430",1430,"Westfield Holdings","Australia","Diversified financials", 0.74, 0.19, 2.08, 5.79 "1431",1431,"Watson Pharma","United States","Drugs & biotechnology", 1.46, 0.20, 3.28, 5.30 "1432",1432,"Shoppers Drug Mart","Canada","Retailing", 2.56, 0.13, 1.98, 5.15 "1433",1433,"International Power","United Kingdom","Utilities", 1.15, 0.18, 6.47, 2.83 "1434",1434,"Tiffany","United States","Retailing", 1.89, 0.19, 2.29, 5.71 "1435",1435,"Signet Group","United Kingdom","Retailing", 2.65, 0.21, 2.00, 3.16 "1436",1436,"Sacyr-Vallehermoso","Spain","Diversified financials", 0.88, 0.22, 3.75, 4.09 "1437",1437,"Cattolica Assicurazioni","Italy","Insurance", 3.87, 0.06, 12.73, 1.99 "1438",1438,"Daily Mail & General","United Kingdom","Media", 3.22, 0.10, 3.09, 5.22 "1439",1439,"SMC","Japan","Capital goods", 1.75, 0.13, 3.57, 7.53 "1440",1440,"Coca-Cola Femsa","Mexico","Food drink & tobacco", 1.70, 0.25, 1.56, 4.52 "1441",1441,"TECO Energy","United States","Utilities", 2.95, -0.91, 10.46, 2.78 "1442",1442,"Peninsular & Oriental","United Kingdom","Transportation", 4.31, -0.29, 5.74, 2.93 "1443",1443,"Seiyu","Japan","Food markets", 9.65, -0.77, 5.27, 2.02 "1444",1444,"Cesky Telecom","Czech Republic","Telecommunications services", 1.76, 0.14, 5.20, 3.94 "1445",1445,"Imperial Holdings","South Africa","Transportation", 4.32, 0.20, 2.86, 2.18 "1446",1446,"Circuit City Stores","United States","Retailing", 9.69, -0.09, 4.41, 2.31 "1447",1447,"Benq","Taiwan","Technology hardware & equipment", 3.18, 0.21, 2.36, 2.61 "1448",1448,"Ono Pharmaceutical","Japan","Drugs & biotechnology", 1.14, 0.22, 2.94, 5.00 "1449",1449,"Hyundai Merchant Marine","South Korea","Transportation", 4.27, 0.13, 4.85, 0.99 "1450",1450,"Federal-Mogul","United States","Consumer durables", 5.49, -0.18, 8.05, 0.02 "1451",1451,"Severstal","Russia","Materials", 2.24, 0.19, 3.20, 4.18 "1452",1452,"Gudang Garam","Indonesia","Food drink & tobacco", 2.35, 0.23, 1.73, 3.25 "1453",1453,"PepsiAmericas","United States","Food drink & tobacco", 3.24, 0.16, 3.58, 2.74 "1454",1454,"Hovnanian Enterprises","United States","Construction", 3.20, 0.26, 2.33, 2.33 "1455",1455,"Markel","United States","Insurance", 2.09, 0.12, 8.53, 2.65 "1456",1456,"New World Development Hong","Kong/China","Construction", 2.70, -0.62, 14.97, 2.47 "1457",1457,"IndyMac Bancorp","United States","Banking", 0.96, 0.16, 12.07, 1.89 "1458",1458,"Phoenix Cos","United States","Insurance", 2.56, -0.04, 27.56, 1.26 "1459",1459,"Credit Saison","Japan","Diversified financials", 1.80, -0.05, 10.77, 4.74 "1460",1460,"Barloworld","South Africa","Conglomerates", 4.98, 0.16, 3.34, 2.05 "1461",1461,"Nippon Electric Glass","Japan","Business services & supplies", 2.78, 0.12, 4.15, 3.25 "1462",1462,"Michaels Stores","United States","Retailing", 3.00, 0.16, 1.76, 3.22 "1463",1463,"SEM-Samsung Electro","South Korea","Technology hardware & equipment", 3.29, 0.18, 3.00, 2.74 "1464",1464,"First BanCorp","United States","Banking", 0.66, 0.15, 12.67, 1.66 "1465",1465,"StanCorp Financial","United States","Insurance", 2.07, 0.16, 9.99, 1.97 "1466",1466,"Buhrmann","Netherlands","Business services & supplies", 10.13, -0.17, 4.66, 1.34 "1467",1467,"US Commercial","Mexico","Diversified financials", 3.84, 0.23, 1.50, 0.62 "1468",1468,"Oki Electric Industry","Japan","Business services & supplies", 4.95, -0.06, 5.05, 2.69 "1469",1469,"Kerry Group","Ireland","Food drink & tobacco", 3.94, 0.11, 2.67, 3.38 "1470",1470,"Chesapeake Energy","United States","Oil & gas operations", 1.61, 0.27, 4.26, 2.79 "1471",1471,"Alberto-Culver","United States","Household & personal products", 2.96, 0.13, 2.03, 3.75 "1472",1472,"Hammerson","United Kingdom","Diversified financials", 0.33, 0.12, 7.01, 3.39 "1473",1473,"FirstMerit","United States","Banking", 0.81, 0.15, 10.65, 2.23 "1474",1474,"Credito Emiliano","Italy","Banking", 1.36, 0.12, 19.99, 2.02 "1475",1475,"Applera-Applied Biosys","United States","Health care equipment & services", 1.67, 0.20, 2.06, 4.82 "1476",1476,"Genzyme-General","United States","Drugs & biotechnology", 1.54, -0.09, 4.33, 12.41 "1477",1477,"Nrnberger Beteiligungs","Germany","Insurance", 3.00, -0.03, 15.97, 0.93 "1478",1478,"Outback Steakhouse","United States","Hotels restaurants & leisure", 2.61, 0.17, 1.40, 3.41 "1479",1479,"Westcorp","United States","Banking", 1.36, 0.12, 14.62, 2.16 "1480",1480,"CH Robinson Worldwide","United States","Transportation", 3.61, 0.11, 0.91, 3.36 "1481",1481,"Grupo Mexico","Mexico","Materials", 2.39, 0.00, 8.29, 3.49 "1482",1482,"BCV Group","Switzerland","Banking", 1.19, -0.87, 25.27, 2.72 "1483",1483,"SGS","Switzerland","Business services & supplies", 1.98, 0.18, 1.63, 4.60 "1484",1484,"LG International","South Korea","Trading companies", 22.57, 0.08, 2.70, 0.45 "1485",1485,"PCCW","Hong Kong/China","Telecommunications services", 2.58, -1.00, 6.44, 3.80 "1486",1486,"Bank of Hawaii","United States","Banking", 0.64, 0.14, 9.46, 2.47 "1487",1487,"Daewoo Ship & Marine","South Korea","Capital goods", 2.94, 0.22, 2.98, 2.48 "1488",1488,"Garmin","Cayman Islands","Technology hardware & equipment", 0.57, 0.18, 0.86, 5.19 "1489",1489,"Investec","United Kingdom/ South Africa","Diversified financials", 2.06, -0.10, 23.46, 2.51 "1490",1490,"Grupo Televisa","Mexico","Media", 2.08, -0.03, 5.45, 6.42 "1491",1491,"Fulton Financial","United States","Banking", 0.57, 0.14, 9.77, 2.36 "1492",1492,"Givaudan","Switzerland","Household & personal products", 1.94, 0.19, 3.22, 4.46 "1493",1493,"Noble Corp","Cayman Islands","Oil & gas operations", 0.99, 0.17, 3.19, 5.32 "1494",1494,"Acerinox","Spain","Materials", 2.63, 0.18, 2.70, 3.05 "1495",1495,"Beckman Coulter","United States","Health care equipment & services", 2.19, 0.21, 2.56, 3.35 "1496",1496,"H Lundbeck","Denmark","Drugs & biotechnology", 1.34, 0.18, 1.30, 5.02 "1497",1497,"Eurotunnel","France/ United Kingdom","Transportation", 1.01, -2.83, 14.88, 3.29 "1498",1498,"Saks","United States","Retailing", 5.93, 0.07, 4.95, 2.33 "1499",1499,"Uniqa","Austria","Insurance", 3.16, 0.00, 13.67, 1.34 "1500",1500,"Williams-Sonoma","United States","Retailing", 2.61, 0.13, 1.37, 3.84 "1501",1501,"Ryland Group","United States","Construction", 3.44, 0.24, 2.01, 1.94 "1502",1502,"Singapore Press","Singapore","Media", 0.51, 0.22, 1.92, 4.12 "1503",1503,"Nok","Japan","Chemicals", 2.52, 0.11, 2.40, 5.35 "1504",1504,"Owens Corning","United States","Construction", 4.90, 0.03, 7.21, 0.02 "1505",1505,"Inchcape","United Kingdom","Trading companies", 5.50, 0.12, 1.99, 2.25 "1506",1506,"Jacobs Engineering","United States","Construction", 4.62, 0.13, 1.67, 2.41 "1507",1507,"Domtar","Canada","Materials", 3.69, 0.09, 4.52, 2.73 "1508",1508,"Cummins","United States","Capital goods", 6.30, 0.07, 5.13, 2.19 "1509",1509,"Toyoda Gosei","Japan","Consumer durables", 2.92, 0.15, 2.37, 3.15 "1510",1510,"American Axle & Mfg","United States","Consumer durables", 3.68, 0.20, 2.40, 2.13 "1511",1511,"American Natl Ins","United States","Insurance", 2.44, 0.05, 14.31, 2.42 "1512",1512,"Gunma Bank","Japan","Banking", 1.21, 0.03, 47.85, 2.21 "1513",1513,"William Hill Org","United Kingdom","Hotels restaurants & leisure", 5.42, 0.03, 1.43, 3.57 "1514",1514,"Wilmington Trust","United States","Banking", 0.63, 0.13, 8.82, 2.45 "1515",1515,"Scientific-Atlanta","United States","Technology hardware & equipment", 1.60, 0.17, 2.09, 5.01 "1516",1516,"Henry Schein","United States","Health care equipment & services", 3.15, 0.13, 1.70, 3.11 "1517",1517,"Network Appliance","United States","Technology hardware & equipment", 1.01, 0.12, 1.44, 7.49 "1518",1518,"Expeditors Intl","United States","Transportation", 2.62, 0.12, 1.04, 4.12 "1519",1519,"Amer Power Conversion","United States","Technology hardware & equipment", 1.46, 0.18, 1.81, 4.77 "1520",1520,"Kawasho","Japan","Trading companies", 9.79, 0.03, 4.22, 0.37 "1521",1521,"Ispat International","Netherlands","Materials", 6.00, 0.07, 5.63, 0.97 "1522",1522,"Barr Pharmaceuticals","United States","Drugs & biotechnology", 1.15, 0.16, 1.21, 5.31 "1523",1523,"Polo Ralph Lauren","United States","Household & personal products", 2.52, 0.17, 2.13, 3.17 "1524",1524,"CR Bard","United States","Health care equipment & services", 1.43, 0.17, 1.69, 4.92 "1525",1525,"Synopsys","United States","Software & services", 1.18, 0.15, 2.31, 5.52 "1526",1526,"Sage Group","United Kingdom","Software & services", 0.93, 0.17, 2.04, 4.81 "1527",1527,"Holmen","Sweden","Materials", 2.20, 0.20, 3.66, 2.80 "1528",1528,"BorgWarner","United States","Consumer durables", 3.07, 0.17, 3.03, 2.56 "1529",1529,"Mandalay Resort Group","United States","Hotels restaurants & leisure", 2.10, 0.13, 4.73, 3.15 "1530",1530,"Tata Iron & Steel","India","Materials", 1.92, 0.22, 2.69, 3.59 "1531",1531,"Chugoku Bank","Japan","Banking", 0.98, 0.03, 46.10, 2.17 "1532",1532,"Atos Origin","France","Business services & supplies", 3.81, 0.07, 3.00, 4.86 "1533",1533,"Randstad Holding","Netherlands","Business services & supplies", 5.72, 0.06, 1.46, 3.36 "1534",1534,"LandAmerica Financial","United States","Insurance", 3.24, 0.23, 2.16, 1.01 "1535",1535,"Pilkington","United Kingdom","Construction", 3.81, 0.11, 4.28, 2.31 "1536",1536,"Louisiana-Pacific","United States","Materials", 2.30, 0.28, 3.20, 2.48 "1537",1537,"Harman International","United States","Technology hardware & equipment", 2.34, 0.12, 1.74, 4.83 "1538",1538,"Iscor","South Africa","Materials", 2.55, 0.34, 2.46, 2.06 "1539",1539,"Sapporo Hokuyo","Japan","Banking", 1.37, 0.02, 55.89, 1.80 "1540",1540,"Waters","United States","Health care equipment & services", 0.96, 0.17, 1.13, 4.63 "1541",1541,"Neiman Marcus Group","United States","Retailing", 3.19, 0.14, 2.17, 2.83 "1542",1542,"Empire","Canada","Food markets", 7.41, 0.11, 3.15, 1.39 "1543",1543,"Varian Medical Systems","United States","Health care equipment & services", 1.10, 0.14, 1.08, 5.65 "1544",1544,"MONY Group","United States","Insurance", 2.32, 0.04, 21.32, 1.47 "1545",1545,"Pusan Bank","South Korea","Banking", 0.91, 0.12, 12.42, 0.89 "1546",1546,"Tokyu Land","Japan","Diversified financials", 4.30, 0.04, 7.48, 1.22 "1547",1547,"Independence Community","United States","Banking", 0.55, 0.14, 9.55, 2.19 "1548",1548,"Legend Group","China","Technology hardware & equipment", 2.59, 0.13, 0.87, 3.56 "1549",1549,"Boral","Australia","Construction", 2.58, 0.19, 2.65, 2.70 "1550",1550,"Sigma-Aldrich","United States","Chemicals", 1.30, 0.19, 1.55, 3.95 "1551",1551,"Ssangyong Motor","South Korea","Consumer durables", 2.88, 0.27, 1.85, 0.87 "1552",1552,"Vedior","Netherlands","Business services & supplies", 7.51, -0.24, 1.80, 2.78 "1553",1553,"UTStarcom","United States","Technology hardware & equipment", 1.96, 0.20, 2.23, 3.50 "1554",1554,"Storebrand","Norway","Insurance", 2.29, -0.13, 21.36, 1.86 "1555",1555,"Indl Dev Bank of India","India","Banking", 1.56, 0.11, 15.49, 1.08 "1556",1556,"Potash of Saskatchewan","Canada","Chemicals", 2.64, -0.14, 4.57, 4.37 "1557",1557,"Finansbank","Turkey","Banking", 1.37, 0.16, 8.34, 0.46 "1558",1558,"Hokugin Financial Group","Japan","Banking", 1.03, 0.02, 46.65, 1.28 "1559",1559,"Agricultural Bank Greece","Greece","Banking", 1.06, 0.02, 17.48, 2.70 "1560",1560,"SNCF Participations","France","Transportation", 6.70, -0.02, 4.72, 0.55 "1561",1561,"Microchip Technology","United States","Semiconductors", 0.67, 0.12, 1.58, 6.29 "1562",1562,"Aracruz Celulose","Brazil","Materials", 1.06, 0.30, 2.77, 2.87 "1563",1563,"Bank","Japan","Banking", 0.99, 0.07, 44.08, 2.06 "1564",1564,"Manor Care","United States","Health care equipment & services", 3.03, 0.12, 2.40, 3.22 "1565",1565,"AG Edwards","United States","Diversified financials", 2.31, 0.13, 4.18, 2.99 "1566",1566,"Puma","Germany","Household & personal products", 1.60, 0.23, 0.53, 3.40 "1567",1567,"voestalpine","Austria","Materials", 4.78, 0.08, 4.84, 1.90 "1568",1568,"M6-Metropole Television","France","Media", 1.48, 0.17, 1.20, 4.37 "1569",1569,"Daegu Bank","South Korea","Banking", 1.00, 0.11, 13.87, 0.71 "1570",1570,"NCC Group","Sweden","Construction", 5.20, 0.09, 4.06, 0.75 "1571",1571,"Cimpor-Cimentos Portugal","Portugal","Construction", 1.38, 0.19, 3.36, 3.67 "1572",1572,"Maytag","United States","Consumer durables", 4.79, 0.12, 3.02, 2.20 "1573",1573,"USG","United States","Construction", 3.67, 0.14, 3.80, 0.83 "1574",1574,"Hays","United Kingdom","Business services & supplies", 3.80, -0.86, 1.91, 4.40 "1575",1575,"TransAlta","Canada","Utilities", 1.94, 0.18, 4.67, 2.58 "1576",1576,"Financire de l`Odet","France","Transportation", 5.75, 0.03, 5.06, 0.78 "1577",1577,"Esprit Holdings","Hong Kong/China","Retailing", 1.59, 0.15, 0.92, 4.71 "1578",1578,"Arch Capital Group","Bermuda","Insurance", 1.93, 0.24, 5.20, 1.19 "1579",1579,"AMB Property","United States","Diversified financials", 0.62, 0.13, 5.42, 2.93 "1580",1580,"OGE Energy","United States","Utilities", 3.79, 0.11, 4.35, 2.13 "1581",1581,"Keihin Electric Express","Japan","Transportation", 2.65, 0.07, 6.11, 3.22 "1582",1582,"Johnson Electric Holdings","Hong Kong/China","Capital goods", 0.96, 0.15, 0.85, 4.73 "1583",1583,"Beijing Datang Power","China","Utilities", 0.97, 0.17, 3.23, 4.05 "1584",1584,"Iyo Bank","Japan","Banking", 0.91, 0.01, 34.98, 2.10 "1585",1585,"W Holding","United States","Banking", 0.47, 0.11, 11.52, 2.16 "1586",1586,"Air Canada","Canada","Transportation", 6.25, -0.53, 4.72, 0.13 "1587",1587,"Bank of Kyoto","Japan","Banking", 0.81, 0.03, 38.87, 1.71 "1588",1588,"Impac Mortgage Holding","United States","Diversified financials", 0.34, 0.13, 10.67, 1.08 "1589",1589,"Lite-On Technology","Taiwan","Technology hardware & equipment", 3.01, 0.15, 2.60, 2.60 "1590",1590,"BancorpSouth","United States","Banking", 0.72, 0.13, 10.30, 1.73 "1591",1591,"Yamaguchi Bank","Japan","Banking", 0.73, -0.22, 37.31, 1.84 "1592",1592,"Mitsukoshi","Japan","Retailing", 7.98, 0.05, 4.12, 2.05 "1593",1593,"Fuji Fire & Marine","Japan","Insurance", 3.49, -0.04, 8.68, 1.08 "1594",1594,"Nissay Dowa General Ins","Japan","Insurance", 3.30, -0.04, 9.41, 1.73 "1595",1595,"Singapore Technologies","Singapore","Aerospace & defense", 1.66, 0.19, 2.38, 3.62 "1596",1596,"Developers Diversified Realty","United States","Diversified financials", 0.43, 0.18, 3.92, 3.12 "1597",1597,"Provident Finl Group","United States","Banking", 1.59, 0.09, 17.61, 1.70 "1598",1598,"BJ`s Wholesale Club","United States","Retailing", 6.51, 0.10, 1.70, 1.67 "1599",1599,"Cullen/Frost Bankers","United States","Banking", 0.58, 0.13, 9.65, 2.12 "1600",1600,"Hyundai South","Korea","Trading companies", 15.11, -0.15, 0.83, 0.05 "1601",1601,"Kanematsu","Japan","Trading companies", 7.10, 0.02, 4.28, 0.47 "1602",1602,"Advance Auto Parts","United States","Retailing", 3.42, 0.10, 2.01, 3.09 "1603",1603,"Perodua","Malaysia","Consumer durables", 2.44, 0.30, 2.12, 1.42 "1604",1604,"Nanto Bank","Japan","Banking", 0.78, 0.05, 34.49, 1.16 "1605",1605,"Reebok International","United States","Household & personal products", 3.49, 0.16, 1.99, 2.21 "1606",1606,"Bilfinger & Berger","Germany","Construction", 4.16, 0.12, 3.74, 1.34 "1607",1607,"Investors Financial","United States","Diversified financials", 0.58, 0.09, 9.22, 2.80 "1608",1608,"Daishi Bank","Japan","Banking", 0.69, 0.02, 34.29, 1.34 "1609",1609,"Danisco","Denmark","Food drink & tobacco", 2.49, 0.15, 3.96, 2.46 "1610",1610,"Japan Securities Fin","Japan","Diversified financials", 0.24, 0.01, 34.10, 0.53 "1611",1611,"UBE Industries","Japan","Chemicals", 4.34, 0.07, 6.25, 1.32 "1612",1612,"Kimberly-Clark de Mexico","Mexico","Household & personal products", 1.55, 0.22, 2.21, 3.21 "1613",1613,"Petsmart","United States","Retailing", 2.90, 0.11, 1.32, 3.46 "1614",1614,"WPS Resources","United States","Utilities", 4.36, 0.09, 4.29, 1.57 "1615",1615,"Dun & Bradstreet","United States","Business services & supplies", 1.34, 0.17, 1.51, 3.97 "1616",1616,"Pogo Producing","United States","Oil & gas operations", 1.10, 0.28, 2.56, 2.82 "1617",1617,"Fremont General","United States","Banking", 0.74, 0.14, 8.66, 1.50 "1618",1618,"Juroku Bank","Japan","Banking", 0.89, -0.28, 33.02, 1.57 "1619",1619,"Nishi-Nippon Bank","Japan","Banking", 0.97, -0.06, 32.93, 0.91 "1620",1620,"Tiger Brands","South Africa","Food drink & tobacco", 3.32, 0.18, 1.58, 2.09 "1621",1621,"Ranbaxy Laboratories","India","Drugs & biotechnology", 0.99, 0.16, 0.68, 4.11 "1622",1622,"Nishimatsu Construction","Japan","Construction", 4.28, 0.04, 6.23, 0.97 "1623",1623,"Petronas Gas","Malaysia","Oil & gas operations", 0.59, 0.17, 2.62, 3.80 "1624",1624,"Enagas","Spain","Oil & gas operations", 1.97, 0.18, 3.89, 2.83 "1625",1625,"MDU Resources","United States","Utilities", 2.29, 0.18, 3.33, 2.70 "1626",1626,"Shiga Bank","Japan","Banking", 0.67, 0.02, 32.06, 1.14 "1627",1627,"Shenzhen Development Bk","China","Banking", 0.73, 0.05, 19.86, 2.41 "1628",1628,"Canary Wharf Group","United Kingdom","Diversified financials", 0.41, -0.02, 11.19, 3.08 "1629",1629,"Doosan","South Korea","Trading companies", 4.76, -0.22, 5.40, 0.20 "1630",1630,"Lincare Holdings","United States","Health care equipment & services", 1.15, 0.23, 1.43, 3.07 "1631",1631,"Commercial Bank of Greece","Greece","Banking", 1.25, 0.05, 17.74, 2.48 "1632",1632,"Terumo","Japan","Health care equipment & services", 1.70, 0.15, 2.35, 4.24 "1633",1633,"Hyakugo Bank","Japan","Banking", 0.70, 0.02, 30.99, 1.32 "1634",1634,"Beazer Homes USA","United States","Construction", 3.29, 0.18, 2.45, 1.37 "1635",1635,"ASML Holding","Netherlands","Software & services", 1.94, -0.16, 3.61, 9.44 "1636",1636,"San-In Godo Bank","Japan","Banking", 0.96, 0.05, 30.40, 1.35 "1637",1637,"Metso","Finland","Capital goods", 5.35, -0.32, 4.81, 1.86 "1638",1638,"CapitaLand","Singapore","Diversified financials", 2.26, 0.06, 10.34, 2.56 "1639",1639,"Molex","United States","Technology hardware & equipment", 1.96, 0.10, 2.49, 6.52 "1640",1640,"Hyakujushi Bank","Japan","Banking", 0.60, -0.25, 28.87, 2.08 "1641",1641,"Federated Investors","United States","Diversified financials", 0.82, 0.19, 0.88, 3.44 "1642",1642,"Union Bank of India","India","Banking", 1.08, 0.12, 10.75, 0.55 "1643",1643,"NSK","Japan","Capital goods", 4.42, -0.02, 4.97, 2.24 "1644",1644,"Kaneka","Japan","Chemicals", 3.15, 0.11, 3.06, 2.91 "1645",1645,"IVAX","United States","Drugs & biotechnology", 1.35, 0.13, 2.19, 5.01 "1646",1646,"Banca CR Firenze","Italy","Banking", 1.50, 0.09, 18.44, 2.07 "1647",1647,"Israel Discount Bank","Israel","Banking", 1.86, -0.02, 29.27, 1.06 "1648",1648,"Montpelier Re Holdings","Bermuda","Insurance", 0.68, 0.38, 2.61, 2.36 "1649",1649,"Leucadia National","United States","Diversified financials", 0.32, 0.18, 2.77, 3.50 "1650",1650,"Yamada Denki","Japan","Retailing", 6.72, 0.05, 2.59, 2.60 "1651",1651,"SembCorp Industries","Singapore","Capital goods", 2.73, 0.17, 3.89, 1.50 "1652",1652,"FirstGroup","United Kingdom","Transportation", 3.62, 0.15, 2.73, 1.97 "1653",1653,"Hokkaido Bank","Japan","Banking", 0.64, -0.47, 28.65, 0.40 "1654",1654,"Kanebo","Japan","Household & personal products", 4.38, 0.00, 5.67, 0.63 "1655",1655,"Grupo Bimbo","Mexico","Food drink & tobacco", 4.28, 0.10, 3.08, 2.49 "1656",1656,"Winn-Dixie Stores","United States","Food markets", 11.78, 0.03, 2.68, 0.93 "1657",1657,"Higo Bank","Japan","Banking", 0.58, 0.03, 28.13, 1.65 "1658",1658,"Ogaki Kyoritsu Bank","Japan","Banking", 0.60, -0.14, 27.96, 1.78 "1659",1659,"Sumitomo Metal Mining","Japan","Materials", 3.01, -0.01, 3.87, 3.77 "1660",1660,"Shinko Securities","Japan","Diversified financials", 0.68, -0.27, 18.23, 2.38 "1661",1661,"Tokyo Leasing","Japan","Retailing", 3.07, 0.03, 9.02, 0.45 "1662",1662,"Tesoro Petroleum","United States","Oil & gas operations", 8.73, 0.06, 3.68, 1.04 "1663",1663,"BW Bank","Germany","Banking", 1.45, 0.03, 27.41, 1.80 "1664",1664,"Liberty Property","United States","Diversified financials", 0.61, 0.16, 3.76, 3.22 "1665",1665,"Provident Financial Plc","United Kingdom","Diversified financials", 1.41, 0.19, 2.94, 3.31 "1666",1666,"EON-Edaran Otomobil","Malaysia","Retailing", 1.96, 0.13, 8.47, 0.55 "1667",1667,"Nomura Research Institute","Japan","Business services & supplies", 1.97, 0.13, 2.16, 4.34 "1668",1668,"Taiwan Business Bank","Taiwan","Banking", 1.06, -0.03, 26.67, 1.21 "1669",1669,"Autogrill","Italy","Hotels restaurants & leisure", 3.95, 0.01, 2.37, 3.55 "1670",1670,"Tatung","Taiwan","Conglomerates", 4.37, -0.15, 5.53, 1.35 "1671",1671,"Seino Transportation","Japan","Transportation", 3.46, 0.12, 4.12, 1.51 "1672",1672,"Bemis","United States","Materials", 2.64, 0.15, 2.29, 2.64 "1673",1673,"Schroders","United Kingdom","Diversified financials", 0.75, 0.04, 7.31, 3.88 "1674",1674,"San Miguel","Philippines","Food drink & tobacco", 2.55, 0.12, 3.31, 3.05 "1675",1675,"Storage Technology","United States","Technology hardware & equipment", 2.18, 0.15, 2.31, 3.24 "1676",1676,"MDC Holdings","United States","Construction", 2.83, 0.20, 1.83, 1.96 "1677",1677,"CJ","South Korea","Food drink & tobacco", 4.60, 0.10, 3.63, 1.33 "1678",1678,"Molson","Canada","Food drink & tobacco", 1.71, 0.21, 2.66, 3.04 "1679",1679,"Intl Flavors & Frags","United States","Chemicals", 1.90, 0.17, 2.31, 3.47 "1680",1680,"CSM","Netherlands","Food drink & tobacco", 3.37, 0.16, 2.35, 1.76 "1681",1681,"Van Lanschot","Netherlands","Diversified financials", 0.86, 0.10, 11.84, 1.48 "1682",1682,"Yanzhou Coal Mining","China","Materials", 0.77, 0.15, 1.56, 3.95 "1683",1683,"Fraser & Neave","Singapore","Food drink & tobacco", 2.10, 0.19, 4.46, 1.80 "1684",1684,"Grupo Financiero Inbursa","Mexico","Banking", 0.76, 0.08, 6.19, 3.77 "1685",1685,"Western Digital","United States","Technology hardware & equipment", 2.94, 0.16, 1.12, 2.30 "1686",1686,"Great A&P Tea","United States","Food markets", 10.63, -0.12, 2.78, 0.30 "1687",1687,"NOVA Chemicals","Canada","Chemicals", 4.22, 0.03, 4.41, 2.40 "1688",1688,"Genting","Malaysia","Hotels restaurants & leisure", 0.93, 0.20, 3.01, 3.15 "1689",1689,"Diebold","United States","Business services & supplies", 1.99, 0.14, 1.80, 3.85 "1690",1690,"People`s Bank","United States","Banking", 0.77, 0.06, 11.67, 2.76 "1691",1691,"Nidec","Japan","Capital goods", 2.53, 0.05, 2.54, 6.02 "1692",1692,"Gilead Sciences","United States","Drugs & biotechnology", 0.87, -0.07, 1.55, 11.81 "1693",1693,"Toda","Japan","Construction", 4.57, -0.17, 5.08, 1.09 "1694",1694,"Fisher Scientific","United States","Health care equipment & services", 3.56, 0.08, 2.86, 3.50 "1695",1695,"Kagoshima Bank","Japan","Banking", 0.65, 0.04, 25.42, 1.17 "1696",1696,"Regal Entertainment Group","United States","Media", 2.21, 0.16, 2.34, 2.97 "1697",1697,"Allergan","United States","Drugs & biotechnology", 1.77, -0.05, 1.75, 11.72 "1698",1698,"Hong Leong Credit","Malaysia","Diversified financials", 0.65, 0.10, 12.53, 1.40 "1699",1699,"Washington Federal","United States","Banking", 0.45, 0.14, 7.54, 2.06 "1700",1700,"GTech Holdings","United States","Hotels restaurants & leisure", 1.04, 0.18, 1.49, 3.42 "1701",1701,"Equifax","United States","Business services & supplies", 1.23, 0.16, 1.55, 3.55 "1702",1702,"Broadcom","United States","Semiconductors", 1.61, -0.96, 2.02, 11.70 "1703",1703,"Dentsply Intl","United States","Health care equipment & services", 1.57, 0.17, 2.45, 3.45 "1704",1704,"EMAP","United Kingdom","Media", 1.53, 0.14, 1.39, 4.31 "1705",1705,"Neptune Orient Lines","Singapore","Transportation", 4.78, -0.34, 4.74, 1.46 "1706",1706,"Nissin Food Products","Japan","Food drink & tobacco", 2.67, 0.12, 2.71, 2.99 "1707",1707,"Patterson Dental","United States","Health care equipment & services", 1.78, 0.13, 1.42, 4.57 "1708",1708,"Fukuoka City Bank","Japan","Banking", 0.79, -0.43, 24.63, 0.40 "1709",1709,"Cephalon","United States","Drugs & biotechnology", 0.62, 0.19, 2.34, 3.18 "1710",1710,"Downey Financial","United States","Banking", 0.61, 0.10, 11.65, 1.51 "1711",1711,"Hokkoku Bank","Japan","Banking", 0.61, 0.01, 24.42, 1.77 "1712",1712,"Jean Coutu Group","Canada","Retailing", 2.96, 0.12, 1.24, 2.72 "1713",1713,"Guoco Group","Hong Kong/China","Diversified financials", 0.25, 0.16, 4.63, 2.51 "1714",1714,"Allete","United States","Conglomerates", 1.62, 0.24, 3.10, 2.74 "1715",1715,"Dassault Systmes","France","Software & services", 0.81, 0.11, 0.90, 5.35 "1716",1716,"Dow Jones","United States","Media", 1.52, 0.14, 1.30, 3.99 "1717",1717,"City Developments","Singapore","Diversified financials", 1.32, 0.09, 6.49, 3.26 "1718",1718,"Isetan","Japan","Retailing", 5.09, 0.07, 3.47, 2.58 "1719",1719,"Leopalace21","Japan","Diversified financials", 3.02, 0.16, 3.42, 1.65 "1720",1720,"Jaccs","Japan","Diversified financials", 1.21, -0.01, 23.63, 0.73 "1721",1721,"Suruga Bank","Japan","Banking", 0.70, 0.07, 23.49, 1.65 "1722",1722,"Hanjin Shipping","South Korea","Transportation", 4.72, 0.05, 4.71, 1.42 "1723",1723,"Musashino Bank","Japan","Banking", 0.49, 0.04, 23.43, 1.02 "1724",1724,"Sonic Automotive","United States","Retailing", 7.32, 0.08, 2.43, 0.98 "1725",1725,"Metro Inc","Canada","Food markets", 4.13, 0.12, 1.12, 1.53 "1726",1726,"Kiyo Bank","Japan","Banking", 0.52, -0.05, 23.34, 0.69 "1727",1727,"Sumisho Lease","Japan","Diversified financials", 2.91, 0.08, 8.25, 1.22 "1728",1728,"AmeriCredit","United States","Diversified financials", 1.03, 0.08, 8.10, 2.94 "1729",1729,"Toho Bank","Japan","Banking", 0.57, 0.03, 23.25, 0.84 "1730",1730,"Weight Watchers Intl","United States","Business services & supplies", 0.92, 0.13, 0.77, 4.21 "1731",1731,"Pentair","United States","Conglomerates", 2.72, 0.14, 2.78, 2.54 "1732",1732,"BEA Systems","United States","Software & services", 0.98, 0.11, 2.08, 5.14 "1733",1733,"Momiji Holdings","Japan","Banking", 0.59, -0.43, 22.83, 0.38 "1734",1734,"Group 4 Falck","Denmark","Business services & supplies", 4.55, 0.09, 2.78, 2.39 "1735",1735,"Shanghai Automotive","China","Consumer durables", 0.58, 0.13, 1.29, 4.31 "1736",1736,"Bank of Nagoya","Japan","Banking", 0.63, 0.02, 22.51, 1.03 "1737",1737,"Maxtor","United States","Technology hardware & equipment", 4.09, 0.10, 2.72, 2.36 "1738",1738,"Shire Pharmaceuticals","United Kingdom","Drugs & biotechnology", 1.15, -0.95, 5.05, 5.01 "1739",1739,"Central Leasing","Japan","Diversified financials", 2.96, 0.01, 8.19, 0.39 "1740",1740,"Fresh Del Monte","Cayman Islands","Food drink & tobacco", 2.40, 0.24, 1.45, 1.44 "1741",1741,"Sankyo (machinery)","Japan","Consumer durables", 1.05, 0.16, 2.27, 3.50 "1742",1742,"Kyushu-Shinwa Holdings","Japan","Banking", 0.56, 0.01, 22.40, 0.60 "1743",1743,"Denway Motors","Hong Kong/China","Consumer durables", 0.19, 0.14, 0.51, 3.91 "1744",1744,"Bank of Bermuda","Bermuda","Banking", 0.56, 0.09, 12.85, 1.31 "1745",1745,"Juniper Networks","United States","Technology hardware & equipment", 0.70, 0.04, 2.41, 10.37 "1746",1746,"Keiyo Bank","Japan","Banking", 0.54, 0.02, 22.22, 0.76 "1747",1747,"Ebara","Japan","Capital goods", 4.38, -0.24, 4.97, 1.32 "1748",1748,"Erie Indemnity","United States","Insurance", 1.13, 0.19, 2.75, 3.09 "1749",1749,"Kumagai Gumi","Japan","Construction", 4.42, -2.50, 4.86, 0.18 "1750",1750,"Travis Perkins","United Kingdom","Retailing", 2.28, 0.15, 1.52, 2.82 "1751",1751,"Jyske Bank","Denmark","Banking", 1.15, 0.07, 21.65, 2.02 "1752",1752,"Maruha","Japan","Food drink & tobacco", 6.80, 0.01, 3.75, 0.44 "1753",1753,"Shionogi & Co","Japan","Drugs & biotechnology", 2.41, 0.05, 3.11, 5.83 "1754",1754,"Teekay Shipping","Bahamas","Transportation", 1.35, 0.20, 3.62, 2.55 "1755",1755,"Rent-A-Center","United States","Retailing", 2.23, 0.18, 1.83, 2.54 "1756",1756,"TabCorp Holdings","Australia","Hotels restaurants & leisure", 1.28, 0.17, 1.57, 3.27 "1757",1757,"QLogic","United States","Semiconductors", 0.52, 0.13, 0.93, 4.17 "1758",1758,"Health Care Property","United States","Diversified financials", 0.34, 0.14, 2.83, 3.68 "1759",1759,"Transmontaigne","United States","Oil & gas operations", 9.13, 0.02, 0.99, 0.27 "1760",1760,"IDB Holding","Israel","Diversified financials", 2.48, -0.08, 10.52, 0.74 "1761",1761,"Yamazaki Baking","Japan","Food drink & tobacco", 6.09, 0.06, 3.88, 1.77 "1762",1762,"Buderus","Germany","Construction", 1.95, 0.25, 1.51, 2.46 "1763",1763,"SEI Investments","United States","Diversified financials", 0.64, 0.14, 0.59, 3.67 "1764",1764,"Oita Bank","Japan","Banking", 0.53, -0.09, 20.96, 0.68 "1765",1765,"Khne & Nagel Intl","Switzerland","Transportation", 4.46, 0.00, 1.91, 2.91 "1766",1766,"Hyundai Eng & Const","South Korea","Construction", 4.62, -0.01, 4.55, 0.57 "1767",1767,"Puget Energy","United States","Utilities", 2.15, 0.13, 5.53, 2.09 "1768",1768,"Shikoku Bank","Japan","Banking", 0.46, -0.26, 20.84, 1.34 "1769",1769,"Community Health Sys","United States","Health care equipment & services", 2.62, 0.12, 3.19, 2.74 "1770",1770,"Awa Bank","Japan","Banking", 0.62, -0.08, 20.75, 1.43 "1771",1771,"Toto","Japan","Construction", 3.72, 0.03, 3.74, 2.88 "1772",1772,"JSR","Japan","Chemicals", 2.09, 0.09, 2.35, 5.14 "1773",1773,"Stanley Works","United States","Consumer durables", 2.68, 0.11, 2.42, 3.09 "1774",1774,"AWG","United Kingdom","Utilities", 2.75, -0.10, 8.81, 1.46 "1775",1775,"Yamanashi Chou Bank","Japan","Banking", 0.42, -0.07, 20.35, 0.79 "1776",1776,"Maeda","Japan","Construction", 3.88, -0.06, 5.41, 0.61 "1777",1777,"Macerich","United States","Diversified financials", 0.45, 0.14, 4.03, 2.89 "1778",1778,"Jiangsu Expressway","China","Transportation", 0.27, 0.10, 1.64, 5.36 "1779",1779,"R&G Financial","United States","Banking", 0.58, 0.12, 7.84, 1.55 "1780",1780,"Questar","United States","Utilities", 1.40, 0.19, 3.08, 2.97 "1781",1781,"Britannic Group","United Kingdom","Insurance", 1.44, -0.40, 19.87, 1.08 "1782",1782,"Marconi","United Kingdom","Technology hardware & equipment", 3.00, -1.76, 4.91, 2.63 "1783",1783,"Hanshin Construction","South Korea","Construction", 0.38, 0.38, 0.27, 0.06 "1784",1784,"Tokyo Tomin Bank","Japan","Banking", 0.50, 0.01, 19.26, 0.60 "1785",1785,"Teck Cominco","Canada","Materials", 1.86, 0.11, 4.06, 3.36 "1786",1786,"Service Corp Intl","United States","Business services & supplies", 2.31, 0.04, 10.84, 2.09 "1787",1787,"Bank of Iwate","Japan","Banking", 0.39, 0.03, 19.09, 0.79 "1788",1788,"Hudson United Bancorp","United States","Banking", 0.53, 0.12, 8.10, 1.70 "1789",1789,"Swedish Match","Sweden","Food drink & tobacco", 1.57, 0.16, 1.76, 3.22 "1790",1790,"Aichi Bank","Japan","Banking", 0.45, 0.02, 19.07, 0.66 "1791",1791,"AK Steel Holding","United States","Materials", 4.04, -0.56, 5.03, 0.52 "1792",1792,"Sonoco Products","United States","Materials", 2.76, 0.14, 2.52, 2.39 "1793",1793,"Casio Computer","Japan","Business services & supplies", 3.73, 0.05, 3.76, 2.75 "1794",1794,"Abercrombie & Fitch","United States","Retailing", 1.68, 0.20, 1.16, 2.73 "1795",1795,"BPB","United Kingdom","Construction", 3.05, -0.01, 3.50, 3.53 "1796",1796,"Commercial Federal","United States","Banking", 0.80, 0.09, 12.19, 1.14 "1797",1797,"Intl Bancshares","United States","Banking", 0.45, 0.12, 7.51, 2.10 "1798",1798,"Soriana","Mexico","Retailing", 3.10, 0.15, 2.18, 1.60 "1799",1799,"Akita Bank","Japan","Banking", 0.44, 0.03, 18.77, 0.79 "1800",1800,"United Auto Group","United States","Retailing", 8.39, 0.07, 2.97, 1.24 "1801",1801,"Endurance Specialty","Bermuda","Insurance", 1.26, 0.26, 3.46, 2.24 "1802",1802,"South Financial Group","United States","Banking", 0.51, 0.10, 10.72, 1.77 "1803",1803,"CNF","United States","Transportation", 5.10, 0.09, 2.75, 1.55 "1804",1804,"Sumitomo Heavy Inds","Japan","Capital goods", 4.07, 0.02, 4.88, 1.31 "1805",1805,"INI Steel","South Korea","Materials", 3.09, 0.13, 3.56, 1.26 "1806",1806,"Great Plains Energy","United States","Utilities", 2.08, 0.18, 3.64, 2.40 "1807",1807,"Rashid Hussain","Malaysia","Banking", 0.88, -0.01, 18.46, 0.16 "1808",1808,"Eighteenth Bank","Japan","Banking", 0.50, 0.01, 18.30, 0.73 "1809",1809,"DaVita","United States","Health care equipment & services", 1.97, 0.17, 2.04, 2.86 "1810",1810,"Seat-Pagine Gialle","Italy","Business services & supplies", 1.52, 0.06, 3.08, 8.63 "1811",1811,"Aomori Bank","Japan","Banking", 0.38, -0.12, 17.80, 0.71 "1812",1812,"Big Food Group","United Kingdom","Food markets", 8.00, 0.02, 2.14, 1.13 "1813",1813,"Enka","Turkey","Construction", 1.44, 0.21, 2.71, 2.64 "1814",1814,"Allegheny Energy","United States","Utilities", 2.38, -0.62, 10.12, 1.69 "1815",1815,"Convergys","United States","Business services & supplies", 2.29, 0.17, 1.81, 2.41 "1816",1816,"Mabuchi Motor","Japan","Capital goods", 0.98, 0.15, 2.06, 3.29 "1817",1817,"Pall","United States","Health care equipment & services", 1.66, 0.15, 2.02, 3.29 "1818",1818,"National Fuel Gas","United States","Utilities", 2.09, 0.19, 3.84, 2.12 "1819",1819,"ChoicePoint","United States","Business services & supplies", 0.80, 0.15, 1.04, 3.37 "1820",1820,"Vimpel Communications","Russia","Telecommunications services", 0.76, 0.13, 1.69, 3.77 "1821",1821,"Chi Mei Optoelectronics","Taiwan","Technology hardware & equipment", 1.72, 0.13, 2.62, 3.68 "1822",1822,"Shin Kong Financial","Taiwan","Insurance", 1.65, -0.41, 17.47, 2.01 "1823",1823,"Mitsui Engineering & Ship","Japan","Capital goods", 3.98, 0.04, 4.83, 1.26 "1824",1824,"Trustmark","United States","Banking", 0.53, 0.12, 7.63, 1.75 "1825",1825,"Fukui Bank","Japan","Banking", 0.45, 0.02, 17.34, 1.07 "1826",1826,"Pacific Century Regional","Singapore","Telecommunications services", 2.89, 0.02, 7.43, 0.68 "1827",1827,"Standard Pacific","United States","Construction", 2.36, 0.20, 2.46, 1.61 "1828",1828,"Redwood Trust","United States","Diversified financials", 0.28, 0.08, 14.90, 1.07 "1829",1829,"Shaw Communications","Canada","Media", 1.50, -0.06, 5.49, 3.92 "1830",1830,"DPL","United States","Utilities", 1.18, 0.14, 4.39, 2.54 "1831",1831,"YTL","Malaysia","Utilities", 1.06, 0.13, 6.25, 1.60 "1832",1832,"Minara Resources","Australia","Materials", 0.17, 0.34, 0.40, 1.21 "1833",1833,"Salzgitter","Germany","Materials", 4.98, 0.07, 3.99, 0.78 "1834",1834,"Santos","Australia","Oil & gas operations", 0.83, 0.18, 2.98, 2.87 "1835",1835,"Tochigi Bank","Japan","Banking", 0.40, 0.01, 16.78, 0.61 "1836",1836,"Hawaiian Electric","United States","Utilities", 1.76, 0.10, 9.03, 1.94 "1837",1837,"Gambro","Sweden","Health care equipment & services", 3.18, 0.07, 4.00, 2.85 "1838",1838,"Moore Wallace","Canada","Business services & supplies", 2.51, 0.12, 3.02, 2.84 "1839",1839,"Nippon Light Metal","Japan","Materials", 4.35, 0.06, 4.37, 1.18 "1840",1840,"LogicaCMG","United Kingdom","Business services & supplies", 2.84, -1.48, 1.95, 4.14 "1841",1841,"Chiba Kogyo Bank","Japan","Banking", 0.38, 0.02, 16.65, 0.26 "1842",1842,"Guangdong Electric Power","China","Utilities", 0.67, 0.14, 1.43, 3.39 "1843",1843,"Michinoku Bank","Japan","Banking", 0.42, 0.02, 16.60, 0.88 "1844",1844,"ISS","Denmark","Business services & supplies", 5.37, 0.03, 3.12, 2.41 "1845",1845,"Career Education","United States","Business services & supplies", 0.95, 0.10, 1.00, 5.25 "1846",1846,"Basler Kantonalbank","Switzerland","Banking", 0.73, 0.05, 16.57, 0.43 "1847",1847,"Sumikin Bussan","Japan","Trading companies", 6.96, 0.01, 3.32, 0.21 "1848",1848,"Bowater","United States","Materials", 2.72, -0.20, 5.62, 2.49 "1849",1849,"Somerfield","United Kingdom","Food markets", 7.47, 0.06, 2.48, 1.61 "1850",1850,"United Mizrahi Bank","Israel","Banking", 1.09, 0.06, 16.26, 0.71 "1851",1851,"CSK","Japan","Software & services", 3.02, 0.09, 2.53, 2.90 "1852",1852,"Mercury General","United States","Insurance", 2.15, 0.15, 3.00, 2.66 "1853",1853,"Ensco International","United States","Oil & gas operations", 0.79, 0.11, 3.18, 4.42 "1854",1854,"Belo","United States","Media", 1.42, 0.13, 3.58, 3.19 "1855",1855,"Bank of Ikeda","Japan","Banking", 0.42, 0.02, 16.04, 0.97 "1856",1856,"Hyosung South","Korea","Household & personal products", 3.88, 0.05, 4.77, 0.31 "1857",1857,"Merloni Elettrodomestici","Italy","Consumer durables", 3.78, 0.11, 2.93, 1.98 "1858",1858,"Bank of Saga","Japan","Banking", 0.38, 0.01, 16.00, 0.63 "1859",1859,"ServiceMaster","United States","Business services & supplies", 3.57, -0.22, 2.96, 3.17 "1860",1860,"Hokuetsu Bank","Japan","Banking", 0.41, 0.00, 15.81, 0.44 "1861",1861,"Mercantil Servicios Fin","Venezuela","Diversified financials", 0.98, 0.12, 6.69, 0.47 "1862",1862,"Arriva","United Kingdom","Transportation", 3.36, 0.13, 2.11, 1.34 "1863",1863,"International Steel Group","United States","Materials", 3.15, -0.01, 2.41, 3.49 "1864",1864,"Metro Cash and Carry South","Africa","Food markets", 7.10, 0.06, 1.27, 0.66 "1865",1865,"Siam Commercial Bank","Thailand","Banking", 0.95, -0.29, 15.67, 1.80 "1866",1866,"Pixar","United States","Media", 0.26, 0.12, 1.00, 3.64 "1867",1867,"Aplus","Japan","Diversified financials", 0.90, 0.01, 15.59, 0.10 "1868",1868,"Woodside Petroleum","Australia","Oil & gas operations", 1.26, -0.05, 2.81, 7.77 "1869",1869,"AVA","Germany","Retailing", 7.04, 0.02, 1.29, 1.22 "1870",1870,"McClatchy","United States","Media", 1.07, 0.14, 1.86, 3.25 "1871",1871,"Central European Media","Bermuda","Media", 0.11, 0.31, 0.30, 0.53 "1872",1872,"Trizec Properties","United States","Diversified financials", 0.89, 0.12, 5.30, 2.46 "1873",1873,"Bayerische Immobilien","Germany","Diversified financials", 0.42, 0.16, 2.14, 3.01 "1874",1874,"Cosco Pacific","Hong Kong/China","Transportation", 0.24, 0.15, 1.76, 3.07 "1875",1875,"MyTravel Group","United Kingdom","Hotels restaurants & leisure", 6.97, -1.52, 2.55, 0.12 "1876",1876,"Piraeus Bank","Greece","Banking", 0.99, 0.07, 15.47, 2.06 "1877",1877,"Northumbrian Water","United Kingdom","Utilities", 0.81, 0.15, 5.19, 1.12 "1878",1878,"Tosoh","Japan","Chemicals", 3.99, 0.04, 4.49, 2.03 "1879",1879,"Far EasTone Telecom","Taiwan","Telecommunications services", 1.00, 0.23, 1.66, 2.40 "1880",1880,"Nisshin Steel","Japan","Materials", 3.49, -0.02, 5.22, 1.69 "1881",1881,"Del Monte Foods","United States","Food drink & tobacco", 2.78, 0.10, 3.92, 2.31 "1882",1882,"Kangwon Land","South Korea","Hotels restaurants & leisure", 0.40, 0.19, 0.67, 2.67 "1883",1883,"AMMB Holdings","Malaysia","Diversified financials", 1.11, 0.07, 15.24, 1.54 "1884",1884,"Ceridian","United States","Business services & supplies", 1.24, 0.11, 4.27, 2.93 "1885",1885,"Vishay Intertech","United States","Technology hardware & equipment", 2.06, -0.11, 4.50, 3.75 "1886",1886,"Viad","United States","Business services & supplies", 1.57, 0.08, 10.07, 2.22 "1887",1887,"SPAR Handels","Germany","Food markets", 6.84, -0.40, 1.64, 0.40 "1888",1888,"Newfield Exploration","United States","Oil & gas operations", 1.02, 0.19, 2.73, 2.59 "1889",1889,"Yamagata Bank","Japan","Banking", 0.37, 0.01, 15.06, 0.77 "1890",1890,"Sierra Pacific Res","United States","Utilities", 2.81, -0.14, 6.95, 0.92 "1891",1891,"Advantest","Japan","Software & services", 0.83, -0.11, 2.13, 7.53 "1892",1892,"Farmers Bank of China","Taiwan","Banking", 0.58, -0.33, 14.89, 0.60 "1893",1893,"Banco Pastor","Spain","Banking", 0.49, 0.08, 13.12, 1.79 "1894",1894,"Daimaru","Japan","Retailing", 6.72, 0.04, 3.12, 1.71 "1895",1895,"Samsung Heavy Industries","South Korea","Capital goods", 3.60, 0.09, 3.90, 1.17 "1896",1896,"Balfour Beatty","United Kingdom","Construction", 4.99, 0.09, 2.57, 1.92 "1897",1897,"Towa Bank","Japan","Banking", 0.30, -0.11, 14.70, 0.42 "1898",1898,"Red Ectrica de Espaqa","Spain","Utilities", 1.14, 0.15, 4.28, 2.36 "1899",1899,"China Motor","Taiwan","Consumer durables", 1.58, 0.17, 1.52, 2.77 "1900",1900,"Daio Paper","Japan","Materials", 3.26, 0.01, 5.51, 0.94 "1901",1901,"Old National Bncp","United States","Banking", 0.68, 0.09, 9.52, 1.44 "1902",1902,"Dah Sing Financial","Hong Kong/China","Banking", 0.43, 0.11, 7.71, 1.98 "1903",1903,"AEM","Italy","Utilities", 1.09, 0.12, 3.39, 3.49 "1904",1904,"Antofagasta","United Kingdom","Materials", 0.92, 0.10, 2.46, 4.37 "1905",1905,"Research In Motion","Canada","Technology hardware & equipment", 0.32, -0.16, 0.86, 7.42 "1906",1906,"Nippon Steel Trading","Japan","Trading companies", 6.56, -0.01, 2.52, 0.18 "1907",1907,"SpectraSite","United States","Telecommunications services", 0.33, 0.29, 1.53, 1.74 "1908",1908,"Capitol Federal Finl","United States","Banking", 0.43, 0.03, 8.38, 2.67 "1909",1909,"Laidlaw International","United States","Transportation", 4.48,NA, 3.98, 1.49 "1910",1910,"Higashi-Nippon Bank","Japan","Banking", 0.36, -0.06, 14.24, 0.41 "1911",1911,"Tokyo Broadcasting System","Japan","Media", 2.49, 0.09, 3.74, 2.84 "1912",1912,"Investkredit Bank","Austria","Banking", 1.22, 0.03, 14.16, 0.57 "1913",1913,"CBD-Brasil Distribuico","Brazil","Trading companies", 3.74, 0.08, 2.99, 2.64 "1914",1914,"WMC Resources","Australia","Materials", 0.82, -0.02, 4.08, 4.94 "1915",1915,"Brasil Telecom","Brazil","Telecommunications services", 2.00, 0.12, 4.22, 2.45 "1916",1916,"BEKB-BCBE","Switzerland","Banking", 0.57, 0.05, 13.99, 1.08 "1917",1917,"Stockland Australia","Australia","Diversified financials", 0.35, 0.04, 4.01, 5.04 "1918",1918,"Miyazaki Bank","Japan","Banking", 0.37, 0.01, 13.97, 0.56 "1919",1919,"Associated British Ports","United Kingdom","Transportation", 0.69, 0.16, 2.72, 2.75 "1920",1920,"Equitable Resources","United States","Utilities", 1.08, 0.17, 2.80, 2.73 "1921",1921,"Siebel Systems","United States","Software & services", 1.35, 0.00, 2.85, 6.94 "1922",1922,"Mahanagar Telephone Nigam","India","Telecommunications services", 1.22, 0.19, 4.06, 1.90 "1923",1923,"Greater Bay Bancorp","United States","Banking", 0.60, 0.10, 7.79, 1.47 "1924",1924,"Meiji Dairies","Japan","Food drink & tobacco", 6.20, 0.03, 3.06, 1.24 "1925",1925,"Natl Semiconductor","United States","Semiconductors", 1.73, 0.06, 2.08, 6.93 "1926",1926,"Borders","United States","Retailing", 3.61, 0.11, 2.41, 1.86 "1927",1927,"FIBI Holding","Israel","Banking", 0.66, -0.01, 13.76, 0.24 "1928",1928,"Snow Brand Milk","Japan","Food drink & tobacco", 6.15, -0.23, 2.14, 0.68 "1929",1929,"JDS Uniphase","United States","Technology hardware & equipment", 0.63, -0.28, 2.45, 6.90 "1930",1930,"Arthur J Gallagher","United States","Insurance", 1.26, 0.15, 2.90, 2.96 "1931",1931,"LG Construction","South Korea","Construction", 2.83, 0.14, 2.72, 0.79 "1932",1932,"Gamesa","Spain","Capital goods", 1.15, 0.14, 2.04, 3.02 "1933",1933,"Berkeley Group","United Kingdom","Construction", 1.84, 0.25, 2.55, 2.16 "1934",1934,"Hanjaya Mandala Sampoerna","Indonesia","Food drink & tobacco", 1.69, 0.19, 1.10, 2.51 "1935",1935,"Agere Systems","United States","Semiconductors", 1.92, -0.23, 2.31, 6.56 "1936",1936,"Daisan Bank","Japan","Banking", 0.35, 0.01, 13.39, 0.72 "1937",1937,"OKO Bank","Finland","Banking", 0.64, 0.07, 13.35, 1.17 "1938",1938,"First Citizens Bcshs","United States","Banking", 0.76, 0.08, 12.56, 1.26 "1939",1939,"Bausch & Lomb","United States","Health care equipment & services", 2.02, 0.13, 3.01, 3.00 "1940",1940,"St Galler Kantonalbank","Switzerland","Banking", 0.58, 0.07, 13.25, 1.03 "1941",1941,"Wing Lung Bank","Hong Kong/China","Banking", 0.31, 0.10, 7.91, 1.56 "1942",1942,"Avtovaz","Russia","Consumer durables", 3.74, 0.03, 4.35, 0.30 "1943",1943,"Arcelik","Turkey","Consumer durables", 1.92, 0.19, 1.46, 2.43 "1944",1944,"Buenaventura","Peru","Materials", 0.17, 0.11, 0.62, 3.68 "1945",1945,"Whitney Holding","United States","Banking", 0.43, 0.10, 7.75, 1.67 "1946",1946,"Chukyo Bank","Japan","Banking", 0.32, 0.01, 13.17, 0.76 "1947",1947,"Axel Springer","Germany","Media", 2.92, 0.07, 1.63, 3.41 "1948",1948,"ICAP","United Kingdom","Diversified financials", 1.05, 0.12, 1.61, 3.43 "1949",1949,"Metro-Goldwyn-Mayer","United States","Media", 1.96, -0.16, 4.21, 4.14 "1950",1950,"Ehime Bank","Japan","Banking", 0.35, -0.16, 13.10, 0.49 "1951",1951,"CMPC","Chile","Materials", 1.23, 0.09, 3.76, 3.67 "1952",1952,"Finova Group","United States","Diversified financials", 0.33, 0.27, 2.47, 0.03 "1953",1953,"Grupo Imsa","Mexico","Capital goods", 2.63, 0.15, 3.02, 1.15 "1954",1954,"Hanwa","Japan","Trading companies", 5.78, 0.05, 2.38, 0.54 "1955",1955,"Hewitt Associates","United States","Business services & supplies", 2.03, 0.11, 1.66, 3.37 "1956",1956,"Punch Taverns","United Kingdom","Hotels restaurants & leisure", 0.68, 0.15, 3.96, 2.32 "1957",1957,"Falabella","Chile","Retailing", 1.18, 0.10, 1.44, 4.34 "1958",1958,"Laurus","Netherlands","Food markets", 5.75, -0.06, 1.30, 0.90 "1959",1959,"Alliant Techsystems","United States","Aerospace & defense", 2.31, 0.15, 2.55, 2.28 "1960",1960,"Luzerner Kantonalbank","Switzerland","Banking", 0.56, 0.06, 12.72, 1.36 "1961",1961,"Custodia Holding","Germany","Diversified financials", 0.01, 0.26, 0.33, 0.62 "1962",1962,"Iwataya Department Store","Japan","Retailing", 1.20, 0.26, 0.71, 0.17 "1963",1963,"Laurentian Bank","Canada","Banking", 0.89, 0.07, 12.69, 0.49 "1964",1964,"Bca Popolare di Sondrio","Italy","Banking", 0.59, 0.05, 10.66, 2.24 "1965",1965,"Valiant Holding","Switzerland","Banking", 0.44, 0.06, 12.65, 1.28 "1966",1966,"Aquila","United States","Utilities", 2.38, -1.72, 7.67, 0.82 "1967",1967,"BayWa","Germany","Food drink & tobacco", 5.62, 0.03, 2.36, 0.67 "1968",1968,"Hirose Electric","Japan","Technology hardware & equipment", 0.57, 0.10, 1.63, 4.29 "1969",1969,"Hellenic Petroleum","Greece","Oil & gas operations", 3.80, 0.07, 2.73, 2.63 "1970",1970,"Performance Food","United States","Food markets", 5.52, 0.07, 1.74, 1.49 "1971",1971,"Citrix Systems","United States","Business services & supplies", 0.59, 0.13, 1.34, 3.20 "1972",1972,"SEB","France","Consumer durables", 2.95, 0.12, 1.75, 1.98 "1973",1973,"China Southern Airlines","China","Transportation", 2.18, 0.07, 4.49, 3.16 "1974",1974,"Cameco","Canada","Materials", 0.64, 0.16, 2.59, 2.60 "1975",1975,"Neyveli Lignite","India","Materials", 0.54, 0.24, 2.02, 2.12 "1976",1976,"SinoPac Holdings","Taiwan","Banking", 0.69, 0.04, 12.20, 1.98 "1977",1977,"Universal","United States","Food drink & tobacco", 2.86, 0.13, 2.38, 1.22 "1978",1978,"Daewoo Intl","South Korea","Trading companies", 5.50, 0.07, 1.81, 0.35 "1979",1979,"Banco di Sardegna","Italy","Banking", 0.76, 0.06, 12.01, 0.81 "1980",1980,"Petroplus Intl","Netherlands","Trading companies", 5.48, -0.03, 1.50, 0.25 "1981",1981,"CSN-Cia Siderurgica","Brazil","Materials", 1.46, -0.06, 4.22, 4.24 "1982",1982,"Sumitomo Forestry","Japan","Construction", 5.46, -0.13, 2.92, 1.67 "1983",1983,"Bharti Tele-Ventures","India","Telecommunications services", 0.64, -0.04, 1.91, 6.29 "1984",1984,"Indian Overseas Bank","India","Banking", 0.84, 0.09, 8.68, 0.54 "1985",1985,"Cousins Properties","United States","Diversified financials", 0.19, 0.25, 1.14, 1.51 "1986",1986,"Bank of Ryukyus","Japan","Banking", 0.34, 0.04, 11.79, 0.38 "1987",1987,"Bank Philippine Islands","Philippines","Banking", 0.58, 0.10, 7.42, 1.50 "1988",1988,"Haseko","Japan","Construction", 3.84, 0.04, 4.08, 0.71 "1989",1989,"Stanley Electric","Japan","Consumer durables", 2.00, 0.11, 1.82, 3.23 "1990",1990,"Mack-Cali Realty","United States","Diversified financials", 0.58, 0.14, 3.71, 2.46 "1991",1991,"Peabody Energy","United States","Materials", 2.76, 0.04, 5.28, 2.15 "1992",1992,"Origin Energy","Australia","Utilities", 2.24, 0.11, 2.21, 2.75 "1993",1993,"Sogecable","Spain","Media", 1.03, -0.06, 1.53, 6.02 "1994",1994,"Mobilcom","Germany","Telecommunications services", 2.16, -3.62, 8.67, 1.42 "1995",1995,"AMEC","United Kingdom","Construction", 5.17, 0.02, 2.62, 1.53 "1996",1996,"Siam City Bank","Thailand","Banking", 0.48, 0.02, 11.27, 1.47 "1997",1997,"Yokogawa Electric","Japan","Business services & supplies", 2.78, -0.22, 2.96, 3.29 "1998",1998,"Hindalco Industries","India","Materials", 1.35, 0.14, 2.47, 2.76 "1999",1999,"Nexans","France","Capital goods", 5.09, 0.00, 2.71, 0.88 "2000",2000,"Oriental Bank of Commerce","India","Banking", 0.81, 0.10, 7.16, 1.17 HSAUR3/inst/rawdata/Forbes2000.xls0000644000176200001440000106500012357775376016121 0ustar liggesusersࡱ> 3./012 I@\pTorsten Hothorn Ba==hlH/8X@"1Arial1Arial1Arial1Arial1Arial"$"#,##0_);\("$"#,##0\)!"$"#,##0_);[Red]\("$"#,##0\)""$"#,##0.00_);\("$"#,##0.00\)'""$"#,##0.00_);[Red]\("$"#,##0.00\)7*2_("$"* #,##0_);_("$"* \(#,##0\);_("$"* "-"_);_(@_).))_(* #,##0_);_(* \(#,##0\);_(* "-"_);_(@_)?,:_("$"* #,##0.00_);_("$"* \(#,##0.00\);_("$"* "-"??_);_(@_)6+1_(* #,##0.00_);_(* \(#,##0.00\);_(* "-"??_);_(@_)                + )  , * `K Forbes20001`i }3Kawasaki Kisen KaishaKT&GRyanair HoldingsAlitalia GroupKuraya Sanseido Brother Inds MedImmuneITVNew Century FinancialChang Hwa Com BankAmdocsAmvescapUS Airways GroupOrientAmadeus Global TravelSchindler Holding Placer DomeWestfield Holdings Watson PharmaShoppers Drug MartInternational PowerTiffany Signet GroupSacyr-VallehermosoCattolica AssicurazioniDaily Mail & GeneralSMCCoca-Cola Femsa TECO EnergyPeninsular & OrientalSeiyu Cesky TelecomImperial HoldingsCircuit City StoresBenqOno PharmaceuticalHyundai Merchant Marine Federal-Mogul Severstal Gudang Garam PepsiAmericasHovnanian EnterprisesMarkelNew World Development HongIndyMac Bancorp Phoenix Cos Credit Saison BarloworldNippon Electric GlassMichaels StoresSEM-Samsung Electro First BanCorpStanCorp FinancialBuhrmann US CommercialOki Electric Industry Kerry GroupChesapeake EnergyAlberto-Culver Hammerson FirstMeritCredito EmilianoApplera-Applied BiosysGenzyme-GeneralNrnberger BeteiligungsOutback SteakhouseWestcorpCH Robinson Worldwide Grupo Mexico BCV GroupSGSLG InternationalPCCWBank of HawaiiDaewoo Ship & MarineGarminInvestecUnited Kingdom/ South AfricaGrupo TelevisaFulton FinancialGivaudan Noble CorpAcerinoxBeckman Coulter H Lundbeck EurotunnelFrance/ United KingdomSaksUniqaWilliams-Sonoma Ryland GroupSingapore PressNok Owens CorningInchcapeJacobs EngineeringDomtarCummins Toyoda GoseiAmerican Axle & MfgAmerican Natl Ins Gunma BankWilliam Hill OrgWilmington TrustScientific-Atlanta Henry ScheinNetwork ApplianceExpeditors IntlAmer Power ConversionKawashoIspat InternationalBarr PharmaceuticalsPolo Ralph LaurenCR BardSynopsys Sage GroupHolmen BorgWarnerMandalay Resort GroupTata Iron & Steel Chugoku Bank Atos OriginRandstad HoldingLandAmerica Financial PilkingtonLouisiana-PacificHarman InternationalIscorSapporo HokuyoWatersNeiman Marcus GroupEmpireVarian Medical Systems MONY Group Pusan Bank Tokyu LandIndependence Community Legend GroupBoral Sigma-AldrichSsangyong MotorVedior UTStarcom StorebrandIndl Dev Bank of IndiaPotash of Saskatchewan FinansbankHokugin Financial GroupAgricultural Bank GreeceSNCF ParticipationsMicrochip TechnologyAracruz CeluloseBank Manor Care AG EdwardsPuma voestalpineM6-Metropole Television Daegu Bank NCC GroupCimpor-Cimentos PortugalMaytagUSGHays TransAltaFinancire de l`OdetEsprit HoldingsArch Capital Group AMB Property OGE EnergyKeihin Electric ExpressJohnson Electric HoldingsBeijing Datang PowerIyo Bank W Holding Air Canada Bank of KyotoImpac Mortgage HoldingLite-On Technology BancorpSouthYamaguchi Bank MitsukoshiFuji Fire & MarineNissay Dowa General InsSingapore TechnologiesDevelopers Diversified RealtyProvident Finl GroupBJ`s Wholesale ClubCullen/Frost Bankers Hyundai South KanematsuAdvance Auto PartsPerodua Nanto BankReebok InternationalBilfinger & BergerInvestors Financial Daishi BankDaniscoJapan Securities FinUBE IndustriesKimberly-Clark de MexicoPetsmart WPS ResourcesDun & BradstreetPogo ProducingFremont General Juroku BankNishi-Nippon Bank Tiger BrandsRanbaxy LaboratoriesNishimatsu Construction Petronas GasEnagas MDU Resources Shiga BankShenzhen Development BkCanary Wharf GroupDoosanLincare HoldingsCommercial Bank of GreeceTerumo Hyakugo BankBeazer Homes USA ASML HoldingSan-In Godo BankMetso CapitaLandMolexHyakujushi BankFederated InvestorsUnion Bank of IndiaNSKKanekaIVAXBanca CR FirenzeIsrael Discount BankMontpelier Re HoldingsLeucadia National Yamada DenkiSembCorp Industries FirstGroup Hokkaido BankKanebo Grupo BimboWinn-Dixie Stores Higo BankOgaki Kyoritsu BankSumitomo Metal MiningShinko Securities Tokyo LeasingTesoro PetroleumBW BankLiberty PropertyProvident Financial PlcEON-Edaran OtomobilNomura Research InstituteTaiwan Business Bank AutogrillTatungSeino TransportationBemis Schroders San Miguel PhilippinesStorage Technology MDC HoldingsCJMolsonIntl Flavors & FragsCSM Van LanschotYanzhou Coal MiningFraser & NeaveGrupo Financiero InbursaWestern Digital Great A&P TeaNOVA ChemicalsGentingDiebold People`s BankNidecGilead SciencesTodaFisher ScientificKagoshima BankRegal Entertainment GroupAllerganHong Leong CreditWashington FederalGTech HoldingsEquifaxBroadcom Dentsply IntlEMAPNeptune Orient Linesranknamecountrycategorysalesprofitsassets marketvalueNissin Food ProductsPatterson DentalFukuoka City BankCephalonDowney Financial Hokkoku BankJean Coutu Group Guoco GroupAlleteDassault Systmes Dow JonesCity DevelopmentsIsetan Leopalace21Jaccs Suruga BankHanjin ShippingMusashino BankSonic Automotive Metro Inc Kiyo Bank Sumisho Lease AmeriCredit Toho BankWeight Watchers IntlPentair BEA SystemsMomiji Holdings Group 4 FalckShanghai AutomotiveBank of NagoyaMaxtorShire PharmaceuticalsCentral LeasingFresh Del MonteSankyo (machinery)Kyushu-Shinwa Holdings Denway MotorsBank of BermudaJuniper Networks Keiyo BankEbaraErie Indemnity Kumagai GumiTravis Perkins Jyske BankMaruha Shionogi & CoTeekay ShippingBahamas Rent-A-CenterTabCorp HoldingsQLogicHealth Care PropertyTransmontaigne IDB HoldingYamazaki BakingBuderusSEI Investments Oita BankKhne & Nagel IntlHyundai Eng & Const Puget Energy Shikoku BankCommunity Health SysAwa BankTotoJSR Stanley WorksAWGYamanashi Chou BankMaedaMacerichJiangsu Expressway R&G FinancialQuestarBritannic GroupMarconiHanshin ConstructionTokyo Tomin Bank Teck ComincoService Corp Intl Bank of IwateHudson United Bancorp Swedish Match Aichi BankAK Steel HoldingSonoco ProductsCasio ComputerAbercrombie & FitchBPBCommercial FederalIntl BancsharesSoriana Akita BankUnited Auto GroupEndurance SpecialtySouth Financial GroupCNFSumitomo Heavy Inds INI SteelGreat Plains EnergyRashid HussainEighteenth BankDaVitaSeat-Pagine Gialle Aomori BankBig Food GroupEnkaAllegheny Energy Convergys Mabuchi MotorPallNational Fuel Gas ChoicePointVimpel CommunicationsChi Mei OptoelectronicsShin Kong FinancialMitsui Engineering & Ship Trustmark Fukui BankPacific Century RegionalStandard Pacific Redwood TrustShaw CommunicationsDPLYTLMinara Resources SalzgitterSantos Tochigi BankHawaiian ElectricGambro Moore WallaceNippon Light Metal LogicaCMGChiba Kogyo BankGuangdong Electric PowerMichinoku BankISSCareer EducationBasler KantonalbankSumikin BussanBowater SomerfieldUnited Mizrahi BankCSKMercury GeneralEnsco InternationalBelo Bank of Ikeda Hyosung SouthMerloni Elettrodomestici Bank of Saga ServiceMaster Hokuetsu BankMercantil Servicios Fin VenezuelaArrivaInternational Steel GroupMetro Cash and Carry SouthSiam Commercial BankPixarAplusWoodside PetroleumAVA McClatchyCentral European MediaTrizec PropertiesBayerische Immobilien Cosco PacificMyTravel Group Piraeus BankNorthumbrian WaterTosohFar EasTone Telecom Nisshin SteelDel Monte Foods Kangwon Land AMMB HoldingsCeridianVishay IntertechViad SPAR HandelsNewfield Exploration Yamagata BankSierra Pacific Res AdvantestFarmers Bank of China Banco PastorDaimaruSamsung Heavy IndustriesBalfour Beatty Towa BankRed Ectrica de Espaqa China Motor< Daio PaperOld National BncpDah Sing FinancialAEM AntofagastaResearch In MotionNippon Steel Trading SpectraSiteCapitol Federal FinlLaidlaw InternationalHigashi-Nippon BankTokyo Broadcasting SystemInvestkredit BankCBD-Brasil Distribuico WMC ResourcesBrasil Telecom BEKB-BCBEStockland Australia Miyazaki BankAssociated British PortsEquitable ResourcesSiebel SystemsMahanagar Telephone NigamGreater Bay Bancorp Meiji DairiesNatl SemiconductorBorders FIBI HoldingSnow Brand Milk JDS UniphaseArthur J GallagherLG ConstructionGamesaBerkeley GroupHanjaya Mandala Sampoerna Agere Systems Daisan BankOKO BankFirst Citizens Bcshs Bausch & LombSt Galler KantonalbankWing Lung BankAvtovazArcelik BuenaventuraPeruWhitney Holding Chukyo Bank Axel SpringerICAPMetro-Goldwyn-Mayer Ehime BankCMPC Finova Group Grupo ImsaHanwaHewitt Associates Punch Taverns FalabellaLaurusAlliant TechsystemsLuzerner KantonalbankCustodia HoldingIwataya Department StoreLaurentian BankBca Popolare di SondrioValiant HoldingAquilaBayWaHirose ElectricHellenic PetroleumPerformance FoodCitrix SystemsSEBChina Southern AirlinesCamecoNeyveli LigniteSinoPac Holdings Universal Daewoo IntlBanco di SardegnaPetroplus IntlCSN-Cia SiderurgicaSumitomo ForestryBharti Tele-VenturesIndian Overseas BankCousins PropertiesBank of RyukyusBank Philippine IslandsHasekoStanley ElectricMack-Cali RealtyPeabody Energy Origin Energy SogecableMobilcomAMECSiam City BankYokogawa ElectricHindalco IndustriesNexansOriental Bank of Commerce Citigroup United StatesBankingGeneral Electric ConglomeratesAmerican Intl Group Insurance ExxonMobilOil & gas operationsBPUnited KingdomBank of America HSBC Group Toyota MotorJapanConsumer durables Fannie MaeDiversified financialsWal-Mart Stores RetailingUBS Switzerland ING Group NetherlandsRoyal Dutch/Shell GroupNetherlands/ United KingdomBerkshire HathawayJP Morgan ChaseIBMTechnology hardware & equipmentTotalFrance BNP ParibasRoyal Bank of Scotland Freddie MacDaimlerChryslerGermany Altria GroupFood drink & tobacco ChevronTexacoPfizerDrugs & biotechnology Wells FargoVerizon CommunTelecommunications servicesBarclaysMorgan StanleyGeneral MotorsNippon Tel & Tel MicrosoftSoftware & servicesNestlSBC CommunicationsDeutsche Bank Group Siemens GroupHBOSENIItalyConocoPhillipsBanco Santander CentralSpain Merrill LynchWachovia Time WarnerMediaHewlett-PackardProcter & GambleHousehold & personal productsSamsung Electronics South KoreaSemiconductorsJohnson & JohnsonLloyds TSB GroupABN-Amro Holding Honda MotorAmerican Express Nissan MotorBank One AXA GroupSocit Gnrale Group PetroChinaChinaGoldman Sachs GroupBBVA-Banco Bilbao VizcayaIntelMetLife Home DepotViacomAllstate Merck & CoNovartis GroupENEL UtilitiesUnileverWashington MutualCrdit Agricole Deutsche PostTransportationComcastVolkswagen GroupTokyo Electric Power Munich ReBMW-Bayerische Motor Ford MotorTyco InternationalBermuda US Bancorp Roche GroupRoyal Bank of CanadaCanadaGlaxoSmithKlineChina Petroleum & ChemicalSonyNokiaFinland BellSouth Walt DisneyNatl Australia Bank AustraliaGazpromRussiaCarrefour Group Food markets Cisco SystemsFleetBoston Finl RWE GroupUniCredito ItalianoBT GroupUnited Parcel ServiceUnited TechnologiesFortis Dow Chemical ChemicalsAegon Insurance GroupDexiaBelgium Renault GroupTarget Coca-ColaLehman Bros HoldingsPepsiCo PrudentialBank of Nova ScotiaBoeingAerospace & defenseAventis Repsol-YPF News Corp BASF GroupChina Mobile (HK) Hong Kong/ChinaDellPeugeot Groupe Endesa GroupAT&T Statoil GroupNorwayBristol-Myers Squibb AstraZenecaTescoAbbott Laboratories BHP BillitonAustralia/ United Kingdom Materials Bayer GroupPrudential FinancialMBNACommonwealth Bank GroupPetrobras-Petrsleo BrasilBrazil Sanpaolo IMIWyethCanadian Imperial BankMotorolaEI du Pont de NemoursDen Danske BankDenmark Caterpillar Capital goods HoneywellNordeaSwedenAnglo AmericanCanonBusiness services & suppliesTravelers Property CasCendantHotels restaurants & leisureSun Life Financial Saint-Gobain ConstructionEast Japan RailwayHutchison WhampoaHong Kong/ChinaCardinal Health Health care equipment & servicesBank of MontrealAlcoa National CityWestpac Banking Group Lowe`s CosToronto-Dominion BankKorea Electric Power Moller-Maersk Kookmin BankBritish Amer Tobacco MitsubishiTrading companiesKansai Electric PowerAlmanijMillea Holdings ANZ BankingCountrywide FinancialLockheed MartinMTelstraEli Lilly and CoUnitedHealth GroupPinault-Printemps-Redoute Norsk HydroNorthrop GrummanManulife FinancialChubu Electric Power Sears RoebuckExelon McDonald`sBCEHCAAflac Southern CoFifth Third Bancorp Hyundai MotorAmgenNational Grid TranscoKrogerLukoil HoldingSunTrust Banks L`Oral Group AT&T Wireless Rio TintoUnited Kingdom/ Australia IberdrolaCapital One FinancialDominion Resources Union Pacific Nextel CommunACEBank of New York Volvo GroupWalgreenAetnaUES ofStandard Chartered GroupAnheuser-Busch Cos China TelecomCNP AssurancesKimberly-ClarkHitachiThyssenKrupp Group Sprint FONClear Channel CommunDensoJohn Hancock FinancialKDDIBB&TYukos Marathon Oil Groupe Danone First DataQwest CommunicationsMetro AGBouygues GroupEmerson ElectricAllied Irish BanksIrelandPrincipal FinancialSvenska HandelsbankenCostco Wholesale Mitsui & CoTakeda Chemical IndsChubbVeolia EnvironnementBear Stearns Cos Banca IntesaFedExCentral Japan RailwayTexas Instruments Japan Tobacco Deere & CoKTSara LeeOraclePNC Financial ServicesWellPoint HealthGeneral DynamicsMarsh & McLennan Indian OilIndiaLafargeCentricaCoca-Cola EnterprisesBanco Bradesco Group Medtronic J SainsburyFuji Photo FilmState Bank of India Group General Mills State StreetAutomatic DataWaste ManagementEntergy ProgressivePub Svc Enterprise Carnival CorpPanama/ United KingdomBank of Ireland ConAgra FoodsKeyCorpMonte dei Paschi SchlumbergerOccidental Petroleum Ito-YokadoCignaSEB-Skand Enskilda FPL GroupBurlington Santa Fe St Paul CosAlcanOil & Natural Gas Thomson CorpPoscoArcher DanielsMitsui Sumitomo InsSanofi-SynthlaboMcKessonCVSTohoku Electric PowerFortumRaytheon WeyerhaeuserKyushu Electric PowerAkzo Nobel GroupJohnson ControlsSLM Devon Energy AlbertsonsAlltelIllinois Tool WorksRicohSurgutneftegas OilAeonGapGilletteProgress EnergyAnthem CIC GroupXeroxGolden West FinlReliance IndustriesEdison InternationalSyscoGannettBaxter InternationalScottish PowerMitsubishi Heavy IndsEnCana BridgestoneCathay FinancialTaiwanBest BuySumitomoEurohypoDeutsche Lufthansa Vinci GroupSingapore Telecom Singapore Power Corp ofCanada Diversified financialsSwisscomBanco do BrasilNortel NetworksSchneider ElectricFrenings SparbankenAire Liquide Group BOC Hong Kong XL CapitalMascoToshibaAonCadbury SchweppesSharp Valero EnergyConsolidated Edison Mellon Finl UPM-KymmeneColgate-PalmoliveFederated Dept StrsAnadarko PetroleumSchering-Plough Compass Group Petro-Canada JC PenneyMarks & Spencer Nippon Oil Omnicom GroupInternational Paper Old MutualEMC< Allianz WorldwideCRH KingfisherKelloggVodafoneMedco Health SolutionsNIKETribuneTelenorStandard Bank Group South AfricaChunghwa TelecomSCA-Svenska CellulosaMichelin Group Erste BankAustriaDeutsche Telekom DBS GroupSAPGUSHolcim Tokyo GasIngersoll-RandAmerisourceBergenCredit Suisse Group FirstEnergyFrance TelecomCemexMexicoMay Dept Stores Firstrand AccentureBanco Popular Espaqol George WestonSberbank of RussiaGenerali Group China Unicom JFE HoldingsChristian Dior Henkel GroupLincoln NationalKyoceraShin-Etsu ChemicalWoori Finance HoldingsMitsubishi EstateGeorgia-PacificCentex Areva GroupTPGSumitomo Mitsui FinancialE.ONMitsubishi Tokyo FinlWest Japan RailwayTaiwan SemiconductorAlliance & LeicesterAvivaMizuho FinancialComputer SciencesZurich Financial ServicesDiageoHJ Heinz SouthTrust Telefsnica Stora EnsoImperial Tobacco GroupTelecom ItaliaKohl`sDegussaMatsushita Electric IndlComericaSasol Interbrew Amerada HessRegions Financial Sempra Energy TDC GroupItochuNorfolk SouthernSTMicroelectronicsPPL Suez GroupConstellation EnergySun Hung Kai PropertiesUnocalHVB-HypoVereinsbankMagna InternationalQualcommElectrolux GroupVivendi Universal CIT Group DTE EnergySwiss Re GroupUnited Overseas BankChugoku Electric PowerApachePortugal TelecomPortugal Eastman Kodak UFJ HoldingsM&T Bank Northern RockWolseleyPaccarEDP-Elec de PortugalMitsui Fudosan Depfa Bank Suzuki MotorCharles SchwabItazsaBG GroupStaplesPepsi Bottling Group SABMillerAccor Philips GroupPTT Public CompanyThailand ABB GroupGas Natural SDGDai Nippon PrintingBurlington ResourcesHartford Finl Service Marriott Intl TransCanadaInterActiveCorpLegal & General GroupSafeco Tyson FoodsAltadisPPG IndustriesShinhan FinancialAmSouth BancorpEquity Office PropSibneftLimited Brands Solvay GroupTakefujiEADSBCP-Bco Com Portugujs Kirin BrewerySingapore AirlinesTextronMarubeni Duke Energy EletrobrasAcomNomura HoldingsMitsubishi MotorsNationwide FinancialAbbey NationalScottish & SouthernJefferson-PilotVale do Rio Doce Husky EnergyOrix CommerzbankAir Prods & ChemsSouthwest AirlinesCharter One FinlAiful BPVN GroupPraxair Campbell SoupNational Bank of CanadaCarso Global Telecom Suncor Energy Hannover Re DR HortonReckitt BenckiserTJX CosMalayan BankingMalaysiaAssoc British FoodsSt George BankPorscheAmerenMarshall & Ilsley Yum Brands ABSA Group FinmeccanicaFujitsuEatonFortune Brands Cheung KongToppan PrintingAhold Unisn FenosaDanaherNintendoCepsaKaoLoewsNewmont Mining Sekisui HouseNEC AutoNationAdeccoNorthern TrustBrascanHeineken HoldingMitsubishi Chemical LM Ericsson DnB HoldingBoots Richemont Pulte HomesLennar Nippon Steel Fiat GroupEnBW-Energie BadenFubon FinancialKeySpanCSXFidelity National Finl Novo-NordiskNatexis Banques PopulaireLindeAlcatelSumitomo ChemicalResona HoldingsBAABungeTrkiye Is BankasiTurkeyCanadian NationalAmerican Electric Pitney BowesDaiei Aisin SeikiVattenfall Europe CNOOC HongNan Ya PlasticCinergyMcGraw-Hill Cos Royal KPNNational Bank of GreeceGreece Rohm and Haas Coles Myer BOC GroupPromiseWPPSchering GroupHarley-DavidsonMitsubishi ElectricNorilsk NickelToyota IndustriesFormosa PetrochemicalLearTenaga Nasional CLP HoldingsSyngenta WoolworthsArcelor LuxembourgDelhaize GroupChina Life InsuranceBanche Popolari Unite WhirlpoolYamanouchi PharmH & M Hennes & MauritzAssurantAmerican Standard Allied Domecq Safeway PlcGrupo Ferrovial Osaka GasBanca Antonveneta Williams CosBecton DickinsonPopular Atlas CopcoBaoshan Iron & SteelSovereign BancorpThalesNippon ExpressBoston ScientificHellenic TelecomHansonJardine MathesonSompo Japan InsuranceHughes ElectronicsCablevision NY GroupBritish AirwaysCenterPoint EnergyOversea-Chinese Banking Pernod RicardChinatrust FinancialDSMScottish & NewcastleIndustrial Bank of KoreaImperial Chemical IndsMerck AjinomotoMatsushita Electric Works Mazda MotorSunocoMBIAStarwood HotelsEnbridgeCathay Pacific AirwaysSanyo Electric MAN Group Continental Dean FoodsSafewayElectronic Data Sys BAE SystemsFuji Heavy Inds Halliburton Office DepotPG&ERoyal & Sun AllianceSecomHon Hai Precision Ind Hana BankUnion Planters Public Power AutostradeYamato Transport Avon ProductsFirst Tennessee NatlJapan Airlines Sys Dixons GroupSandvik Sabanci GroupSimon Property GroupSeagate Technology CaymanIslandsQantas AirwaysSankyo (pharma) CapitaliaFranklin ResourcesSumitomo Metal IndsTeliaSonera GroupRoyal CaribbeanLiberia Synovus Finl Sprint PCSITT IndustriesSK CorpEverest Re GroupScaniaSuncorp-MetwayTXUHeidelbergCementBanca Naz del Lavoro BombardiermmO2 Bank Mandiri IndonesiaCelesioSun MicrosystemsCox CommunicationsRohmSodexho AllianceCincinnati FinancialLucent Technologies Samsung SDIMattelMurata ManufacturingDelphiSwiss Life HoldingAir France GroupHuntington Bancshs SupervaluConseco Swire Pacific H&R BlockASFA-AutoroutesGuidantAmbac Financial Group Asahi GlassVNUCiba Specialty Chemicals Oji Paper TorchmarkPepco Holdings Hilton Group Toys ` UsUnited UtilitiesTaisei OMV GroupQuest DiagnosticsSkandia InsuranceBritish Sky BroadcastingWhite Mountains Ins Seiko EpsonUnibanco Group MGM MirageShikoku Electric PowerValeoEbayAutoZoneNew York Community WesfarmersMitsui Chemicals FCC Group Nippon YusenBradford & BingleyGallaher Group China SteelTokyu Genuine PartsBrambles GroupParker Hannifin Grupo ModeloAmcor Yapi ve Kredi BeiersdorfChina Merchants BankGreenPoint FinancialAramarkFairfax FinancialSampoEste Lauder CosSumitomo Trust & BankingMTR Lagardre SCAAmrica Telecom UnumProvident Tostem InaxLexmark InternationalDaido Life InsuranceApple ComputerInditexadidas-SalomonAESLand Securities GroupNorth Fork BancorpFlextronics IntlEl PasoClorox Xcel EnergyAMPNA Citic PacificMega Financial Holding Caremark Rx Baker HughesEisai Hershey FoodsEquity ResidentialKinki Nippon RailwayHuaneng Power IntlHarrah`s EntertainStrykerOld Republic Intl Liberty Media AdvancePCSSumitomo ElectricBanco de Sabadell Rolls-RoyceKarstadtQuelleTelekom IndonesiaTeva Pharmaceutical IndsIsraelTelkom PartnerRe Zions BancorpTenet HealthcareNipponkoa InsuranceInfineon TechnologiesHokkaido Electric Power TUI GroupMitsui OSK LinesHumanaAnglo Irish BankBharat PetroleumFoster`s GroupBanknorth GroupDoverEdisonL-3 Communications Temple-InlandHongkong ElectricFriends ProvidentUnisysNational Commerce FinlDaiwa SecuritiesTalisman EnergyApplied Materials StarbucksBed Bath & Beyond ICICI BankIrish Life & Permanent Murphy Oil Forest LabsAffiliated ComputerFiservDollar GeneralCompass BancsharesAioi InsuranceFemsaUnited MicroelectronicsDassault AviationExpress ScriptsKajimaWm Morrison SupermarketsCalpineWisconsin EnergyAsahi BreweriesBank of YokohamaNorthwest Airlines Reed ElsevierUnited Kingdom/ Netherlands SKF GroupTelekom MalaysiaVFUnipolPearson Energy EastPublicis GroupeMohawk Industries Fondiaria-SAIEFG Eurobank ErgasiasSPX Asahi KaseiCanadian Natural ResDana Alpha BankHindustan Petroleum< Hokuriku Electric PowerMediasetIntl Game TechnologyHenderson Land Dev Fresenius Nippon UnipacWillis Group HoldingsElectronic Arts Toyota TsushoNiSource Kinder MorganE-Trade Financial BHW Holding Smiths Group Wm Wrigley JrAlstomAvery DennisonAnalog DevicesHudson City BancorpLG Card ACS GroupShiseidoWestfield America Trust NordstromThomson Securitas Ko GroupTatneftWharf (Holdings) HongOrklaAlliance UniChemQBE Insurance Group Siam CementLuxottica Group Bank Hapoalim WR BerkleyRockwell AutomationKomatsuCable & WirelessTelecom of New Zealand New ZealandBank of East Asia Yamaha MotorAgilent TechnologiesSerono Sanmina-SCICooper Industries Public BankFanucOlympusEchoStar CommunScanaSherwin-WilliamsAllied Waste Inds SdzuckerYahooPacifiCare HealthWestfield TrustSunGard Data Systems Barrick GoldShimizu MeadWestvacoTDKObayashiSamsung Fire & MarineFormosa Chems & FibreAll Nippon Airways Nikko CordialProvidian FinancialDentsuBankgesellschaft BerlinAMRRentokil InitialKorea Exchange BankInterpublic GroupJones Apparel GroupMacquarie Bank Swatch GroupToray IndustriesNissho Iwai-Nichimen Kobe Steel Grupo CarsoCanadian Pacific RailwayAutoliv Hilton HotelsShanghai Pudong Dev BkTaiyo Life InsuranceDaiwa House IndustryVornado Realty Man Group PlcPioneer British LandFamily Dollar StoresAmeritrade Holding Sanlam SouthAfrica AntarchileChileCorporation MapfreNextFujisawa PharmaceuticalCrdit FoncierArchstone-SmithVeritas SoftwareNewell Rubbermaid MediobancaBlack & DeckerQuanta Computer Arab BankJordanMaruiGreat Eastern Holdings Mitsui TrustIncoInterContinental HotelsCorningComputer AssociatesSkanskaDaikin IndustriesKubotaExelMGIC Investment CenturyTelCommerce Bancorp RMC GroupInsurance Australia GroupBanca Lombarda GroupFormosa Plastics SolectronManpower Corus GroupTelusEcolab Bbloise GroupMonsanto RadioShackNew York Times Severn TrentBoston Properties Shizuoka BankOxford Health PlansOTP BankHungary Smurfit-StoneGKNKonica Minolta S-Oil SouthKoreaGeneral Growth PropNortheast Utilities Korea GasMOLFirst AmericanSumitomo Realty & DevHiberniaRallye Tobu RailwaySymantecWashington PostM-real Agfa-GevaertTomkinsKB HomeAltanaAmersham Koram BankSappiInvestor Reuters GroupCaesars EntertainmentBall Knight RidderDaikyoSoftbankDelta Air Lines Oriental LandLeggett & PlattTaisho PharmaceuticalDeutsche Boerse Sealed AirBank Leumi Group Health NetBPER-Emilia Romagna W&W-Wstenrot Nippon MiningAcciona Pirelli & CDoral FinancialUALReliant ResourcesBanco de ChileConstellation Brands Bangkok BankRJ Reynolds TobaccoBrookfield PropertiesWhitbread HoldingsKrung-Thai Bank Pinnacle WestKeppelAstoria FinancialRemgroUnivision CommunMaxim Integrated ProdsUS SteelCap Gemini Ernst & Young Legg MasonZimmer Holdings Rinker Group BankinterAbertis InfraestructurasAmBevFreeport CopperAsustek ComputerLaboratory Corp AmerJohnson MattheyKonePaychexMicron TechnologyKawasaki Heavy Inds WW GraingerMetalurgica GerdauIKB PKN OrlenPolandAxis Capital HoldingsIberiaAssociated Banc-Corp Radian GroupCDWOdakyu Electric RailwaySt Jude MedicalProLogisUnibail Phelps DodgeFriedman BillingsHHG Outokumpu CarlsbergAshlandAbitibi ConsolidatedChina Minsheng BankingNTL Hyundai MobisPublic StorageGoodyear Liz ClaiborneFluor MTN Group Kerr-McGee EOG ResourcesCoventry Health Care TransoceanCayman IslandsOPAPOwens-IllinoisCommerce BancshsTelekom#Austria Telecommunications services ShinsegaeMercantile Bkshs TCF Financial Banco BPI EMI GroupPICC Property & CasualtyJanus Capital GroupSuzukenIFILHanwhaAmerican Finl GroupDarden Restaurants Samsung SouthGoodrichRite AidGeneral Property TrustHealth ManagementChironTRW Automotive HoldingsCezCzech RepublicBank Central AsiaHong Kong & China Gas Nitto Denko Amazon.com Ingram Micro Kasikornbank Seibu RailwayTrkiye Garanti BankasiApollo-Education GroupRogers CommunicationsOnex Li & Fung Concord EFSVisteon Royal NumicoQuebecorMoody`sTurkcelliStar FinancialIntuitLinear TechnologyNVRBanca Popolare di Milano IMS HealthCommerce Asset Holding Kmart HoldingGrupo Financiero BanorteNabors Industries Ross StoresPublishing & BroadcastingTokyo Electron CSR GroupBiometChina Development FinlAlliant EnergyRenaissanceRe HoldingsSmith & NephewRockwell Collins George WimpeySynthes-Stratec Cosmo OilUNYYamahaTaiwan Cellular Kimco RealtyBunzlXstrataBluescope SteelProtective Life Foot LockerXilinxOmnicareHypo Real Estate Holding Showa DenkoMalaysia Intl ShippingTaiheiyo Cement Navistar IntlRepublic ServicesVerbund-Austrian ElectricTaylor WoodrowVulcan Materialsmg technologiesEiffageSagemUST WellChoiceYue Yuen IndustrialTele2 Sime DarbyCintasWendy`s InternationalTeijin Hormel FoodsCompal ElectronicsMediaTekWolters Kluwer EngelhardRexamALFA Brown-FormanNagoya Railroad Adobe Systems City NationalFirst Financial HoldingTaishin Financial Holding Gold FieldsNCR Canadian TireImpala Platinum HoldingsNorske SkogindustrierConverium HoldingWeatherford IntlRouseTomenNucor ArvinMeritorFuji Television NetworkHankyuMitsubishi Materials CMS EnergyHua Nan FinancialFast Retailing Rheinmetall TakashimayaGaleries Lafayette ItalmobiliareEmbraerAustralian Gas LightTele Norte Leste BJ Services Kesko GroupNoranda GAIL (India) GlobalSantaFeUnitrinAluminum Corp of ChinaAdvanced MicroToyo Seikan KaishaNStarHyundai Heavy IndustriesLiberty InternationalCharter CommunIshikawajima-Harima Mylan Labs Coca-Cola HBCFurukawa Electric Assa AbloyAvayaTate & Lyle GroupDaito Trust ConstructionHoyaContinental Airlines Isuzu MotorsTele & Data SystemsInvensysBank Negara Indonesia EW ScrippsEastman ChemicalNexen Chiba Bank Ryder System Biogen IdecMirantAvnetAstra International Canara BankDynegyAllmerica FinancialKeio Electric RailwayKeyenceJulius Baer Holding Hua Xia Bank Host Marriott DST SystemsHynix SemiconductorHochtiefPactivBank of Greece MediolanumNippon TV NetworkPunjab National BankAdvanced Info ServiceSekisui Chemical Korean AirPioneer Natural ResPlum Creek TimberThornburg MortgageGecina PMI Group Toll Brothers Bidvest GroupKesa Electricals XTO Energy Petrol OfisiHerms InternationalOmron Jabil Circuit Lend LeaseTpras-Trkiye PetrolLG CorpEssilor International Duke Realty AU Optronics BrunswickSmith InternationalITC Dogan HoldingScorAcerLevel 3 CommunBarratt DevelopmentsUniversal HealthBrisaHelvetia PatriaInfosys Technologies Boise CascadeKKPC-Korea KumhoBrinker InternationalThai Airways IntlBanca Popolare di Lodi Kelda GroupAvalonbay CommunitiesWebster Financial AmerUs GroupDainippon Ink & ChemsChina Resources EntIKON Office Solutions Alps ElectricImerysNikonSmithfield FoodsFunai ElectricRR Donnelley & Sons T Rowe PriceSky Financial GroupDaiichi Pharmaceutical Franz ColruytWipro Bank of IndiaTriad HospitalsPremcorArrow ElectronicsMitchells & Butlers Aareal Bank Sonae SGPS Diamond LeaseEnterprise InnsCoca-Cola AmatilCoach Check PointHillenbrand IndsKLMBank of BarodaHachijuni Bank PersimmonFlagstar Bancorp<a Adolph CoorsHasbro Aker KvaernerClariantDollar Tree Stores Banca Carige BOK FinancialSlough EstatesIndustrivardenCelanese HagemeyerBanque Nat de BelgiqueApartment Investment KLA-TencorOneokEspirito Santo FinlGroupe Bruxelles Lambert Vendex KBBHDFC-Housing DevelCitizens CommunLyondell ChemicalNippon Meat PackersAlteraBarnes & Noble SAS Group Joyo BankColonial BancGroupRhodiaMcCormick & CoNippon ShinpanMaxis CommunicationsSteel Authority of IndiaValley Natl Bancorp Fuji ElectricThermo ElectronCrown Holdings Rank GroupWhole Foods Market PeopleSoftHiroshima BankHanwha ChemicalBank of FukuokaTechnipCarMaxEnergizer Holdings Dillard`sWiener StadtischeKumho IndustrialPakistan TelecomPakistan Tech DataAnnaly Mortgage Mgmt Ht"   8 M| u V  12[]wVXlnl + D!X"e $"%Q&' (()*@,t-z..@/ L0 l1 [2 {3 l4b5c6s789J:G;\<Z>x?u<@CA?B/CODRE@Ffz؈ I@  %-5=EMU]em%u4}CRap% 4CR%a-p5Memu}$3BQ`o~ %-5MU$]3{;  dMbP?_*+%"D|<~?<~?U } D} D} D} #D                                  ( ) * + , - . /?? Z [ \@@1@@@@ ] [ ^5@\@@ @@@ _ [ `@0@@@@@ a [ b@`@N@ @@@ c d bA@ @AW@@@@ e [ \%@@@@@@ f d \Q@Є@@a@ @ @ g h i@@@@ "@"@ j [ k @@@@@ $@$@ l [ m A@H@}@@ &@&@ n o k @@@@ (@(@ p q k @}@_@S@ *@*@ r s b `@@@@@,@,@ t [ `@@@@.@.@ u [ \W@{@aZ@@0@0@ v [ wh@@g@@1@1@ x y b@@(@@2@2@ z y \@}@0@)@3@3@ { d \ګ@~@2@@4@4@ | [ k@@@ F@5@5@ } ~ i@@@@6@6@  [ @@@@7@7@  [ b@8@@@8@8@  [ @`@s@@9@9@  [ \ب@`@@ @:@:@  [ P@p@A5@N@;@;@  d \R@~@!S@@<@<@  [ k@@v@Y@Q@=@=@  [ i@w@ |@v@>@>@  h  @ k@w@@R@?@?@  [ ƪ@@@@Dlpbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb ! " # $ % & ' ( ) * + , - . / 0 1 2 3 4 5 6 7 8 9 : ; < = > ?  @@@@  o  8@ @G@@!@@@@ ! ![ !!@@@2@"A@A@ " "~ "k"@ c@Y@@#A@A@ # #~ #^#@q@@@$B@B@ $ $d $\$@Ps@@@%B@B@ % % %b%Ѵ@ ~@@@&C@C@ & &[ &b&@0~@@@@'C@C@ ' ' '\'l@t@@.@(D@D@ ( ([ (k(Ф@u@!@x@)D@D@ ) )[ )\)@@@[@*E@E@ * *[ **@p@@s@+E@E@ + +[ +w+@o@/@l@,F@F@ , ,[ ,,[@(@ @@-F@F@ - - --@@R@h@.G@G@ . .[ ..B@@:@p@/G@G@ / /d /\/ @q@a@˲@0H@H@ 0 0q 0\0x@x@5@@1H@H@ 1 1h 1i1X@v@@@2I@I@ 2 2[ 2k2@@e@@3I@I@ 3 3h 3i3@0z@@K@4J@J@ 4 4[ 4\4p@@u@AR@ζ@5J@J@ 5 5y 5`5@?E@+@6K@K@ 6 6y 6\6@ d@@@7K@K@ 7 7 7b7@@̶@@8L@L@ 8 8[ 8k8ء@o@>@@9L@L@ 9 9 9\9Ԣ@q@4@s@:M@M@ : :[ ::@@j@9@;M@M@ ; ;[ ;`;@l@@@<N@N@ < <[ <m<@@y@@@=N@N@ = =[ ==2@n@@Һ@>O@O@ > >[ >`>@q@3@@?O@O@ ? ?[ ?? @@@>@Dlbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb@ A B C D E F G H I J K L M N O P Q R S T U V W X Y Z [ \ ] ^ _ @P@P@ @ @o @@@@T@@A@P@@P@ A A AAv@`j@@L@BP@P@ B Bs BBγ@l@ű@3@CP@P@ C C[ C\C$@@x@@@DQ@Q@ D Dy D\DҨ@\@@P@E@Q@@Q@ E E~ EE@d@A@@FQ@Q@ F F[ FF@@t@R@J@GQ@Q@ G G~ GiG@p@ @8@HR@R@ H Hh HHB@a@@@I@R@@R@ I I~ I`I@\@A@Τ@JR@R@ J J~ JiJg@j@@@KR@R@ K K[ KiK @S@@@LS@S@ L L L^LZ@]@@Ѷ@M@S@@S@ M M[ M\MĖ@Pw@A|@@NS@S@ N No NN@o@@@OS@S@ O O O\Oh@l@A@ܨ@PT@T@ P Pd PP@Ѓ@Φ@_@Q@T@@T@ Q Q QbQ@@h@@@RT@T@ R Rh RiR@X@@C@ST@T@ S S SwS@@|@Ʀ@_@TU@U@ T T[ TT@pv@b@ @U@U@@U@ U U[ UU8@h@ @@VU@U@ V V V\V@p@\@@WU@U@ W W WbW@w@#@X@XV@V@ X Xy XX@ b@V@@Y@V@@V@ Y Y[ YwY@0{@@A8@ZV@V@ Z Z[ Z\Z8@j@.@o@[V@V@ [ [~ [[ر@[@@@\W@W@ \ \ \\\ԙ@g@@2@]@W@@W@ ] ]d ]]@z@Z@r@^W@W@ ^ ^[ ^^@ v@*@@_W@W@ _ _[ _^_>@m@@ @Dlbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb` a b c d e f g h i j k l m n o p q r s t u v w x y z { | } ~  `X@X@ ` `q `k`@L@@@a@X@@X@ a a[ aa~@e@]@"@bX@X@ b bq b`b1@`d@@Z@cX@X@ c c c\c@a@@@dY@Y@ d dy didҭ@i@@@e@Y@@Y@ e e[ eme9@@e@@P@fY@Y@ f f[ ffn@0{@\@|@gY@Y@ g g[ gkg@`b@{@@hZ@Z@ h h[ hh@u@ʣ@@i@Z@@Z@ i id i`iܭ@R@A@p@jZ@Z@ j j j\jt@g@k@@kZ@Z@ k k[ kk@Q@@ī@l[@[@ l ly ll@l@D@@m@[@@[@ m m mbmĦ@i@@|@n[@[@ n n nn@^@ձ@@o[@[@ o o~ oop@c@Ϋ@>@p\@\@ p p ppD@x@ت@4@q@\@@\@ q q[ qwq0@p@,@G@r\@\@ r ry rir@g@ʶ@P@s\@\@ s s ss@d@@|@t]@]@ t t[ tt@ g@@@u@]@@]@ u u ubu\@m@@f@v]@]@ v v[ vv@ r@@@w]@]@ w wd ww@t@j@7@x^@^@ x xd xx4@b@<@@y@^@@^@ y y[ yy@n@n@@z^@^@ z z zz@j@6@o@{^@^@ { {~ {{ħ@[@@@|_@_@ | |[ |`|@?A@x@}@_@@_@ } }[ }k}ȑ@ k@@@~_@_@ ~ ~ ~\~%@a@Ai@@_@_@   b@l@$@@Dlbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb                                `@`@   \@@W@@8@ `@ `@  [ @t@@@@`@@`@   \*@c@ j@@``@``@  [ w$@@V@@P@`@`@  [ x@R@6@P@`@`@     \@c@#@@`@`@   [  ȡ@[@@Τ@`@`@   [  @`@@@a@a@   \@@W@@x@ a@ a@  d @@d@@@@a@@a@  h X@ d@<@@`a@`a@  [ `@@e@}@؜@a@a@  [ T@a@ @@a@a@   `@@Y@@@a@a@  y @@[@@|@a@a@  h @T@/@\@b@b@   ^(@f@Ѹ@@ b@ b@  [ @ b@@@@b@@b@   \@@a@@@`b@`b@  [ 5@X@ƨ@@b@b@   [ \@j@@@Π@b@b@ !  \@b@P@@b@b@ " [ mv@`f@0@@b@b@ #  \@T@A9@d@c@c@ $  $@p@ζ@@ c@ c@ %   @ c@Ң@n@@c@@c@ &  \ԕ@Z@@@`c@`c@ ' d @@g@:@z@c@c@ ( h )@G@q@@c@c@ * h H@Q@@p@c@c@ +  k @?A@@c@c@ , h `@H@A@@Dlbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb                                d@d@ -  \x@d@@H@ d@ d@ . [ k@m@!@@@d@@d@ / [ ܨ@@Z@̣@f@`d@`d@ 0 [ ^|@n@|@h@d@d@ 1  @l@@n@d@d@ 2 [ @p@@@d@d@ 3 [ R@f@@Z@d@d@ 4 y m@d@`@@e@e@ 5  ^b@_@*@@ e@ e@ 6 [ @U@L@@@e@@e@ 7  `@]@]@l@`e@`e@ 8 h Ĝ@V@X@\@e@e@ 9 [ m@@u@@@e@e@ : [ @S@B@@e@e@ ; [ @Z@@h@e@e@ <  @a@@@f@f@ = [  @`@t@@ f@ f@ > [ `@V@<@"@@f@@f@ ? [ t@ c@z@@`f@`f@ @ [ \8@ f@@@f@f@ A  i@@^@@@f@f@ B [  @@l@t@7@f@f@ C d 4@O@@@f@f@ D [ ˴@Z@@@g@g@ E  b.@f@@@ g@ g@ F [ \@`@}@@@@g@@g@ G y @g@@@`g@`g@ H [ @F@@P@g@g@ I J H@d@Т@@g@g@ K  @`@6@X@g@g@ L [ k@\@@Ԛ@g@g@ M [ h@R@:@@Dlbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb                                h@h@ N [  @``@$@ܙ@ h@ h@ O [ @m@@J@@h@@h@ P  `@`a@X@@`h@`h@ Q [ \Ѓ@]@@@h@h@ R   @N@@@h@h@ S [ m\@^@@@h@h@ T [ P@S@ @x@h@h@ U  @[@@@i@i@ V d \ @V@@|@ i@ i@ W [ @j@@@@i@@i@ X  @i@j@`@`i@`i@ Y y `@N@@ @i@i@ Z [ ܕ@d@@@i@i@ [ h @8@4@z@i@i@ \ ~ y@N@r@@i@i@ ] [ ,@@d@@@j@j@ ^ [ @\@@ĥ@ j@ j@ _ h i؞@W@@@@j@@j@ ` [ `@T@C@X@`j@`j@ a h h@H@@@f@j@j@ b [ \@Z@@@j@j@ c  b@s@4@@j@j@ d [ b@`@ȝ@<@j@j@ e y Й@Z@l@B@k@k@ f [ @a@@@ k@ k@ g [ @{@̧@h@@k@@k@ h ~ $@G@@x@`k@`k@ i y B@Q@@L@k@k@ j [ ^d@\@@@k@k@ k l \@@[@@@k@k@ m [ k@S@D@D@k@k@ n  \@U@@`@Dlbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb                                l@l@ o [ m#@R@d@@ l@ l@ p h )@<@p@8@@l@@l@ q h @l@$@@`l@`l@ r [ `@S@­@Ĕ@l@l@ s y @B@4@@l@l@ t [ k@Z@Az@@l@l@ u  \@5@@@l@l@ v [ @@P@T@@m@m@ w h @E@@$@ m@ m@ x [ @^@<@J@@m@@m@ y h @P@ @0@`m@`m@ z [  @P@@/@m@m@ {  @d@֢@(@m@m@ | [ (@[@L@@m@m@ } [ X@ o@h@)@m@m@ ~ [ \@X@<@@n@n@  [ П@W@@H@ n@ n@  [ @V@И@@@n@@n@  [ `\@b@@H@`n@`n@   b@`a@x@4@n@n@  y ؚ@H@ܥ@@n@n@  d @@S@Е@@n@n@  [ @Q@@А@n@n@   \@T@ɷ@X@o@o@  [ Ȋ@g@@j@ o@ o@  d @R@|@l@@o@@o@  h @D@@.@`o@`o@   \4@V@x@@o@o@  [ Ԑ@?X@D@o@o@  [ \@R@@d@o@o@  [ @@X@L@4@o@o@  [ @R@$@\@Dlbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb                                     p@p@  [ @W@R@@p@p@  [ `@@Z@@@̛@ p@ p@  [ @V@ @Ȑ@0p@0p@   @]@H@@@p@@p@  l \@V@ @@Pp@Pp@  [ @U@@@`p@`p@  [ \@V@@@pp@pp@   \@N@D@@p@p@  q b@C@(@J@ p@p@  [ b @@c@@@ p@p@  h   @C@b@@ p@p@  [  4@E@@H@ p@p@   \ 8@N@@@ p@p@  [  8@V@@@p@p@  [ @S@ @̒@p@p@  [ `x@V@@Ў@q@q@   ̖@?@@?@4@q@q@   b@k@/@,@ q@ q@   p@V@0@v@0q@0q@   @W@@@@q@@q@  [ ʨ@H@@@Pq@Pq@  h `@<@@K@@`q@`q@  y @`p@h@D@pq@pq@  [ @N@@@q@q@  [ mƤ@@U@x@$@q@q@  h @J@@@q@q@   bd@@X@F@p@q@q@  [ L@B@J@@q@q@  [  @=@@̕@q@q@  h Ȓ@K@@@q@q@  q @Y@@p@q@q@  [ i@Q@\@h@Dlbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb  ! " # $ % & ' ( ) * + , - . / 0 1 2 3 4 5 6 7 8 9 : ; < = > ?  r@r@  [ k px@a@=@t@!r@r@ ! ![ !b!h@e@8@@" r@ r@ " "[ "" @O@.@x@#0r@0r@ # #[ ##X@`@@@$@r@@r@ $ $[ $ $`@Y@|@@%Pr@Pr@ % %h %%@N@@+@&`r@`r@ & & &b&@c@@@'pr@pr@ ' 'h 'm'l@E@0@@(r@r@ ( ([ (m(h@W@Џ@H@)r@r@ ) )[ ))"@`a@ @H@*r@r@ * *[ **H@T@ܢ@|@+r@r@ + +[ ++4@@S@@0@,r@r@ , ,y ,\,@D@@@-r@r@ - -[ --@B@6@@.r@r@ . .[ .\.x@[@@p@/r@r@ / / /b/@U@@@0s@s@ 0 0[ 00@N@ԫ@8@1s@s@ 1 1[ 11@U@؆@@2 s@ s@ 2 2[ 22@^@@@30s@0s@ 3 3[ 33@V@@D@4@s@@s@ 4 4d 44@?@<@5Ps@Ps@ 5 5h 5 5$@=@@@6`s@`s@ 6 6 6b6@S@ @؝@7ps@ps@ 7 7h 7i7@C@@@8s@s@ 8 8 8`8@C@y@@9s@s@ 9 9[ 9m9 @K@@8@:s@s@ : :h :):@8@ʯ@P@;s@s@ ; ;~ ;\;ē@?@A/@X@<s@s@ < <~ <<ܛ@?@@=s@s@ = =y ==ʡ@?\@@>s@s@ > > >>0@S@@@?s@s@ ? ? ??@D@T@@@Dlbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb@ A B C D E F G H I J K L M N O P Q R S T U V W X Y Z [ \ ] ^ _ @t@t@ @ @o @@p@N@@@At@t@ A A A\A@L@@@B t@ t@ B B BwBd@D@p@@C0t@0t@ C Cy C C@@K@t@ @D@t@@t@ D D D\D@E@/@H@EPt@Pt@ E Ey EE|@R@@l@F`t@`t@ F F F\F u@U@k@@Gpt@pt@ G G G`G@D@د@@Ht@t@ H H[ HH@V@@ܓ@It@t@ I Ih II@0@ @@Jt@t@ J J[ J`J@M@z@H@Kt@t@ K Kd KK@V@8@`@Lt@t@ L Lh LL|@<@@t@Mt@t@ M M[ MbM@M@.@@Nt@t@ N N[ NN@K@b@@Ot@t@ O O[ O\Op|@Q@@,@Pu@u@ P P PP@G@@@Qu@u@ Q Q[ QQ@a@`@@R u@ u@ R R[ RmR̗@L@-@@S0u@0u@ S S[ SbS@?@0@T@u@@u@ T T[ TT@D@h@"@UPu@Pu@ U Ud UU$@?@ @L@V`u@`u@ V V VbVp@ `@@x@Wpu@pu@ W W[ WmWD@A@@@Xu@u@ X Xd XmX@S@@T@Yu@u@ Y Yh YbY@;@@@Zu@u@ Z Z[ ZZ@P@Г@@[u@u@ [ [[ [[9@*@@J@\u@u@ \ \d \k\H@?@@]u@u@ ] ][ ]w]@?@*@^u@u@ ^ ^~ ^`^@^A@Dz@_u@u@ _ _l __D@@P@T@ܑ@Dlbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb` a b c d e f g h i j k l m n o p q r s t u v w x y z { | } ~  `v@v@ ` `d `m`@<@@@av@v@ a a[ aa@S@@@b v@ v@ b bd bb@<@A @c0v@0v@ c c[ ccĪ@E@@@d@v@@v@ d d[ dd&@@T@@@ePv@Pv@ e e[ eeX@?L@@f`v@`v@ f f ffȈ@Q@`@8@gpv@pv@ g g g\g@M@@P@hv@v@ h h hh@?@Ԙ@iv@v@ i i ii@P@@@jv@v@ j jy jij4@D@@@kv@v@ k k k\k@;@@`@lv@v@ l l~ ll@.@q@mv@v@ m m m\mu@M@@@nv@v@ n n~ nn@a@@"@ov@v@ o od omo@D@ԑ@$@pw@w@ p po ppp@B@@ @qw@w@ q qh qqЍ@?@@r w@ w@ r r r^r@P@@@s0w@0w@ s  s[ ss³@G@t@؃@t@w@@w@ t  to tkt@n@=@uPw@Pw@ u  u[ uud@2@*@T@v`w@`w@ v  vy vv@@$@wpw@pw@ w  w wwx@O@И@@xw@w@ x x[ xmxؔ@E@В@`@yw@w@ y y y\yP}@N@@Ї@zw@w@ z z zzP@K@@8@{w@w@ { { {\{t@P@1@x@|w@w@ | | ||H@F@@@}w@w@ } } }\}@@X@@@~w@w@ ~ ~ ~`~@SA\@n@w@w@   ~@K@@|@Dlbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb                                x@x@  h  @*@?@@x@x@  y @3@x@@ x@ x@  ~ @P@@L@0x@0x@  [ `~@C@@@@x@@x@  h H@B@@@Px@Px@  h @O@(@@`x@`x@   \@?@~@px@px@  h k@>@ޣ@0@x@x@  [ @7@@@x@x@   [ P@R@X@H@x@x@ ! y  @?@@x@x@ " q (@O@@@x@x@ # h \ʦ@x3@@x@x@ $ ~ @@R@,@x@x@ % h \"@ a3@@x@x@ & h Ў@A@X@@y@y@ '  @}@O@,@@y@y@ ( d \y@K@@@ y@ y@ ) d `~@U@@0y@0y@ * h \@la>@@@y@@y@ + [ @H@\@ @Py@Py@ , o `@xA@@`y@`y@ - d &@*@@"@py@py@ . [ @P@h@@y@y@ / [ \ps@Q@H@ȑ@y@y@ 0  P@P@@y@y@ 1  @2@@8@y@y@ 2 d @Q@@@y@y@ 3  Ʃ@@T@1@y@y@ 4 [ m@O@P@ؙ@y@y@ 5 ~ P@B@D@@y@y@ 6 h iv@0@̩@Dlbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb                                z@z@ 7 [ \t@P@@@z@z@ 8  b@@Z@@@(@ z@ z@ 9  @H@'@(@0z@0z@ : [ b\@P@ؕ@@@z@@z@ ; [ \Pw@P@@@Pz@Pz@ < [ h@M@4@@`z@`z@ =   @P@@@pz@pz@ > h )I@1@@@z@z@ ? [ 8@E@@8@z@z@ @ o @<@@֢@z@z@ A [ h@@R@Ě@@z@z@ B y @VC@v@z@z@ C [ P@H@@@z@z@ D  k`r@U@$@Ģ@z@z@ E [ b@@R@p@@z@z@ F ~ \@U8@@{@{@ G  i8@J@(@@{@{@ H [ wy@W@8@%@ {@ {@ I  i@M@#@@0{@0{@ J y  @o@@@{@@{@ K [ kPw@L@@0@P{@P{@ L [ @J@(@@`{@`{@ M o `@@P@p{@p{@ N  \p@N@0@@{@{@ O h @B@@@@{@{@ P [ b@z@[@h@@{@{@ Q R X@D@@,@{@{@ S [ Д@;@@@{@{@ T h \К@q@@@{@{@ U [ \r@L@w@@{@{@ V d \z@H@@ @{@{@ W d )@H@h@`@Dlbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb                                |@|@ X [ i@J@@@|@|@ Y R @A@ܜ@8@ |@ |@ Z h k@6@@@0|@0|@ [ l kh@?@@@|@@|@ \ h i@:@L@ @P|@P|@ ] [ kx@?@@`|@`|@ ^  \Ќ@E@N@0z@p|@p|@ _ d b@z@P@@@|@|@ ` [ m@F@@@|@|@ a [  @E@@@|@|@ b d @>@@@|@|@ c y ؊@C@@@|@|@ d q ^@u@>@|@|@ e f b@L@X@T@|@|@ g o  @&@@@|@|@ h  H@@U@"@@}@}@ i h L@8@@p@}@}@ j [ bpy@Y@@`@ }@ }@ k [ `@=A@@0}@0}@ l [ (@?@@@}@@}@ m  y@P@Ę@Ў@P}@P}@ n [ mȃ@1@ޠ@@`}@`}@ o d `4@=f@@p}@p}@ p [ `h@:@@@}@}@ q [ @9@B@H@@}@}@ r  @G@@@}@}@ s [ `@?P@X@}@}@ t  \x@I@@(@}@}@ u [ \`r@O@R@@}@}@ v [ kps@P@@@}@}@ w  b`}@\@@И@}@}@ x [ m@Q@@@Dlbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb                                ~@~@ y  #@K@#@@@~@~@ z h kPv@T@@ @ ~@ ~@ { q @?@d@0~@0~@ | R \y@=@a@@@~@@~@ } h X@;@0@@P~@P~@ ~  @N@@Њ@`~@`~@  [ ^Ў@;@@@p~@p~@  h )@:@@@~@~@  [ ܠ@]{@T@~@~@   @?@@Ѓ@~@~@  h k w@P@М@@~@~@  h k@"@e@D@~@~@  h i@@@@u@~@~@  [ `px@C@@@@~@~@  d \@ h!,@,@~@~@  d @Q@@@@@@  [ `v@H@@@@@   y@M@@`@ @ @   bx@Y@h@@0@0@  h k8@5@@@@@@@  ~ \@?Aa@&@P@P@  [ p@D@@ܑ@`@`@  [ @@F@@@p@p@  [ \q@O@@ @@@  h kw@I@@@@@   \ v@F@@@@@  [ @M@@$@@@  [ @@P@@đ@@@   \u@G@P@Ђ@@@   @<@ @@@@   bp~@U@؈@ @@@  ~ `H@<@r@|@Dlbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb                                     @@  [ @Q@h@@@@  d ȁ@P@@ @@@  [ m@L@{@(@@@   \`o@J@p@@ @ @  d (@J@0@@(@(@   \`r@F@@8@0@0@  ~ i@P@p@x@8@8@  [ |@I@`@@@@@@  [ \@J@@@p@ H@H@  [  0@O@@<@ P@P@   k 0@E@@{@ X@X@    @5@`@@ `@`@  h w @Yb@@@ h@h@  [   0@C@@H@p@p@  [ ^x@M@@@(@x@x@   k?@\@(@:@@@  h @? @h@@@  q @_@Ȕ@@@   (@B@@؃@@@  [  @K@@4@@@  h iz@L@P@@@@   b@H@@@@@  h @J@X@@@@  [ `(@Rc@@@@  [ t@I@D@Ԟ@Ȁ@Ȁ@  h @=@؏@@Ѐ@Ѐ@  h w@5b@@؀@؀@  [ mp@H@@|@@@  o d@:@(@@@@  [ \`p@B@ԯ@ؐ@@@   k@F@@Ȃ@@@  q @E@@@Dlbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb  ! " # $ % & ' ( ) * + , - . / 0 1 2 3 4 5 6 7 8 9 : ; < = > ?  @@  h  @2@Ě@؁@!@@ ! ! !w!<@`k@6@"@@ " " "\"z@A@@P~@#@@ # #d ##H@H@ȁ@,@$ @ @ $ $o $$x@S@ @ؕ@%(@(@ % %[ %%H@O@8@؁@&0@0@ & &[ &&@@Q@p@@'8@8@ ' 'h '',@FT@@(@@@@ ( ( (i(@y@@)H@H@ ) )~ ))h@0@V@@*P@P@ * * *k*x@;@@@+X@X@ + +[ ++h@D@*@@,`@`@ , ,[ ,,X@3@5@ @-h@h@ - -[ -`-@U@ @@.p@p@ . .  ..|@T@(@/@/x@x@ / /y /\/@&@^@@0@@ 0 0~ 0 0@?̓@@1@@ 1 1y 1w1(@ @@2@@ 2 2h 22`@:@P@@3@@ 3 3h 3\3@(@@4@@ 4 4d 44@M@@@5@@ 5 5 55R@D@@w@6@@ 6 6 6\6pz@?@@@7@@ 7 7 77Px@B@В@X@8@@ 8 8[ 88X@00@@9ȁ@ȁ@ 9 9[ 99|@?ȋ@@:Ё@Ё@ : :h :m:@\@@W@;؁@؁@ ; ;h ;i;@D@@{@<@@ < <~ <<@4@l@@=@@ = = =b=s@\@@@>@@ > > >>@D@@@?@@ ? ?[ ??{@F@L@h@Dlbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb@ A B C D E F G H I J K L M N O P Q R S T U V W X Y Z [ \ ] ^ _ @@@ @ @[ @@0~@P@@ܖ@A@@ A Aq AAX@P@ @B@@ B B B\Bu@6@!@x@C@@ C C[ CC@=@@@D @ @ D D DD`@@@@@E(@(@ E Ed EEX@B@@ @F0@0@ F Fh FkFu@I@l@ @G8@8@ G Gd GG@,@D@4@H@@@@ H H~ HH@L@@@IH@H@ I I[ IiI|@S@~@@JP@P@ J Jh J J@$@@KX@X@ K K KK@s@M@H@@L`@`@ L Lh LiLH@3@ȕ@ @Mh@h@ M M MbM~@@@@X@Np@p@ N N[ NiN/@C@Ȋ@0{@Ox@x@ O O OO{@=@@0@P@@ P P PPt@V@X@@Q@@ Q Qo QQ @=@Ў@@R@@ R R RR@F@x@@S@@ S S SS"@4@@T@@ T T TT|@3@đ@~@U@@ U U U`U؊@;@h@V@@ V V V\V y@4@Թ@@W@@ W W[ WiW@E@@@X@@ X Xh XXz@I@@8@YȂ@Ȃ@ Y Y YmY@@U@@u@j@ZЂ@Ђ@ Z Z[ Z`Z@@@ޡ@u@[؂@؂@ [ [[ [ [Ȋ@D@h@@\@@ \ \d \\z@K@P@@]@@ ] ]d ]]T@;@h@@^@@ ^ ^ ^^@H@h@@_@@ _ _h __@?@@Dlbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb` a b c d e f g h i j k l m n o p q r s t u v w x y z { | } ~  `@@ ` ` `\`0w@7@>@@a@@ a a[ aaЛ@$@@@b@@ b b[ bbP|@K@h@L@c@@ c c[ c\cp@F@@@d @ @ d d d d`@F@@X@e(@(@ e e eepy@J@8@(@f0@0@ f f[ f\fn@D@@@g8@8@ g gy gg<@(@@@h@@@@ h hh hh,@4@(@p@iH@H@ i i[ iiu@G@Ё@D@jP@P@ j j jjP|@D@@@kX@X@ k kd kk8@>@@@l`@`@ l  l ll @A@@x@mh@h@ m  mh m`m@п@H@np@p@ n  n[ nn@>@h@ox@x@ o  o[ oo@E@@@p@@ p  pd pp@&@ğ@@q@@ q q[ qq@@=@X@s@r@@ r r r\rh@C@@0@s@@ s sy ss{@E@@`@t@@ t t t\ts@?@@؄@u@@ u uq uuȇ@=@x@}@v@@ v vd vv@@6@@@w@@ w w w\w0~@H@@o@x@@ x xd xxЎ@=@@@yȃ@ȃ@ y y~ yy@5@@P@zЃ@Ѓ@ z zh zz @<@@0@{؃@؃@ { {h { {@3@H@p@|@@ | |h |i|4@4@@u@}@@ } }[ }b}̘@?@@0|@~@@ ~ ~[ ~`~`b@N@@8@@@  [ x@?@@`@Dlbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb                                @@   b@K@p@@@@   z@I@@h@@@  h i@O@x@@@   ~  |@,@x@@ @ @ ! ~ i@8@!@P@(@(@ " [ @B@؅@@0@0@ # [ ƫ@1@@8@8@ $ [ Ƞ@;@0@@@@@ % d *@[|@@H@H@ & h i$@<@T@0v@P@P@ ' [ bl@@T,@@X@X@ ( [ mP@>@8@@`@`@ ) [ @f@@h@h@ * d `@b@@@p@p@ + h {@>@Ћ@@x@x@ ,  w@@H@w@0@@@ -  \t@;@@|@@@ . [ \n@?@@@@ /  pv@?@H@@@ 0  n@L@h@@@@ 1 h @D@Ȁ@Ȅ@@@ 2 [ x@N@u@@@@ 3 [ \p@G@@@@@ 4 h @$@,@@@@ 5 d mЌ@@@h@(@Ȅ@Ȅ@ 6   @D@@ @Є@Є@ 7  kP@7@ @`~@؄@؄@ 8 [ k`k@H@@ܐ@@@ 9 : w؄@R@@y@@@@ ;  @7@ؑ@~@@@ < h  ~@=@@،@@@ =  \@>@@Dlbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb                                @@ > [ k@L@0@@@@ ? h 0@,@@@|@@@ @  h@@W*@@@@ A B w@<@@H@ @ @ C [ \ n@C@l@@(@(@ D [ ԓ@P@Ѝ@0@0@ E [ ^@D@@0@8@8@ F  b@@iF@0@@@@@ G  `y@E@Г@ ~@H@H@ H   @@@@@P@P@ I  ku@:@&@@X@X@ J [ Ԑ@y @@`@`@ K ~ @:@ @p{@h@h@ L  \@$@@p@p@p@ M  L@D@ @x@x@ N d @ @@@@ O P \@D@;@t@@@ Q ~ ,@?@@}@@@ R [ w@ b@@@@ S [ @,@@@@ T h r@F@ @ @@@ U y @2@@@@@ V [ ` s@>@`@@@@ W [ w@1@@@@ X  x@?0~@@ȅ@ȅ@ Y [ @K@0|@8@Ѕ@Ѕ@ Z h t@@@ȅ@l@؅@؅@ [ [ i@T@@@@ \ o `/@^#@z@@@ ] y @*@D@{@@@ ^ [ \ n@B@@p@@@ _ [ @? @x@Dlbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb                                @@ ` [ k@J@T@@l@@@ a  k`h@@Q@x@@@@ b [ v@@P@{@@@@ c y q@<@@@ @ @ d [  w@@@}@|@(@(@ e [ `_@O@0@x@0@0@ f h  @@%@8@8@ g q |@2@X@@@@@@ h o @<@H@@H@H@ i h @$@ @؃@P@P@ j [ `r@E@@@X@X@ k [ @6@|@pv@`@`@ l d @0@@@@h@h@ m [ m'@6@@s@p@p@ n d r@F@@ @x@x@ o h @*@@v@@@ p  b@@@@@{@@@ q [ }@F@z@@@@ r  `t@@p~@@@ s d x@@@r@L@@@ t  `w@>@d@z@@@ u h w|@&@h@@@@ v  \@=@@Pq@@@ w [ px@8@@8@@@ x h ~@6@@}@Ȇ@Ȇ@ y y i$@7@@v@І@І@ z [ m k@F@0@O@؆@؆@ { [ m@@J@@w@@@@ | [ \V@@@P@@@@ }  ^@B@z@@@@ ~ h ؋@1@`@z@@@   @=@P@0@Dlbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb                                @@  h @(@@P@@@  d kp@<@@x@@@  d w@D@@@@@   s@H@@@ @ @  h P@@L@@@(@(@  [ i @B@Py@p@0@0@   @6@@(@8@8@  [  `@5@ @`@@@@@   u@D@@@H@H@   @8@@@@P@P@   \|@V@@@g@X@X@  ~ `@C@u@@`@`@   \b@6@1@X@h@h@  [ \e@G@@@p@p@  [ @>@{@p@x@x@   `H@=@ʢ@ o@@@   `f@D@@`@@@  [ @?@x@@@@  h \z@O@0@@@   X@K@@@p@@@  y Ї@;ԝ@@@@   P@,@@p@@@  [ `@@F@@{@@@  h @0@x@X@@@  [ @F@u@А@ȇ@ȇ@  h `p@@@{@Ї@Ї@  [ w@,@ȅ@!@؇@؇@   z@G@@t@ @@@  ~ @@@z@@@@  [ P@F"@@@@  d k e@B@<@H@@@  [ \_@D@`@؄@Dlbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb                                     @@   @A@@@@@  [ bȈ@ t@@@@  [ z@?v@ȏ@@@  [ @3@@ @ @   `~ @ ư@@(@(@   ^q@?@(@0@0@   kk@1@@0@8@8@  [ X@=@n@0@@@@@  [ b@*@@@ H@H@  h  x@A@P~@@ P@P@  [  z@G@`v@@ X@X@  [ k f@K@@ @ `@`@  h  <@E@@ h@h@    k@G@@l@p@p@  [ y@?@(@@x@x@  [ v@F@s@@@@  [ `s@F@@@{@@@  [ n@XԵ@@@@  [ x@4@w@Ȃ@@@  h  @1@@@@   \h@>@@}@@@  d  @"@$@@@@  ~ m@1@@`p@@@  P n@@W@}@@@@   o@D@|@Ԛ@Ȉ@Ȉ@   }@5@@@Ј@Ј@   `0x@G@@r@؈@؈@  [ \g@A@P@@@@  [ @D@@@@  h `@6¤@ @@@  ~ p@Il@Đ@@@  h p{@6@@w@Dlbbbbrbbbbbbbbbbbbbbbbbbbbbbbbbb  ! " # $ % & ' ( ) * + , - . / 0 1 2 3 4 5 6 7 8 9 : ; < = > ?  @@  ~  @@0@z@!@@ ! !h !!@(@@@"@@ " "[ ""@7@@u@#@@ # #l #\#b@>@<@H@$ @ @ $ $ $b$@@@`}@ t@%(@(@ % % %%s@?@@`@&0@0@ & &[ &\&c@A@@؀@'8@8@ ' '[ '^'0{@7@~@ @(@@@@ ( ( ((@@Rܝ@X@)H@H@ ) )[ ))~@:@0@@*P@P@ * *[ **}@0@@Pu@+X@X@ + + ++b@V@@@@,`@`@ , ,d ,`, @&I@@-h@h@ - -[ --x@:@@}@.p@p@ . .[ .\.c@?@@@/x@x@ / /h /k/t@.@!@0@@ 0 0 0b0`q@@@@h@1@@ 1 1[ 11|@.@@2@@ 2 2[ 220{@>@@s@@3@@ 3 3[ 3m3pz@B@`q@H@4@@ 4 4 4\4p@8@@`z@5@@ 5 5l 5`5e@>@@@P}@6@@ 6 6[ 6b6@>@|@@7@@ 7 7[ 77`n@R@0t@L@8@@ 8 8[ 880y@? x@ @9ȉ@ȉ@ 9 9[ 99p@@@@@:Љ@Љ@ : :[ :m:؄@?@0p@@;؉@؉@ ; ;[ ;\;f@A@p@ @<@@ < <h <`<p@(@L@q@=@@ = = ==@;@@P}@>@@ > > >>@k@4@@@?@@ ? ?y ??v@@@@p~@Dlbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb@ A B C D E F G H I J K L M N O P Q R S T U V W X Y Z [ \ ] ^ _ @@@ @ @[ @@0@8@t@P@A@@ A Ah AAȘ@"@@@u@B@@ B Bd BB@>@t@ @C@@ C C[ CC(@(@X@@D @ @ D D[ DD0y@:@(@x@E(@(@ E Eh EE@(@%@ }@F0@0@ F Fh F\Fm@,@g@~@G8@8@ G G[ GG(@? @X@H@@@@ H H HH@,@`o@@IH@H@ I I I I@<@@{@JP@P@ J J JJ0p@<@І@P@KX@X@ K K[ KK@B@z@0~@L`@`@ L L L`L@&@@u@Mh@h@ M Md MM@2$@@Np@p@ N N[ NN}@5@x@pu@Ox@x@ O Oy OO0s@.@(@X@P@@ P P[ PiPP@?@z@ @Q@@ Q Q Q`QP@@N@Pv@R@@ R R R\Rh@3@@@S@@ S S[ S^S@5@P@@T@@ T Th TT@L @@U@@ U U UbUk@B@!@@@V@@ V V[ ViV @.@@s@W@@ W W W\Wi@2@@`@X@@ X X XbX@?@x@v@YȊ@Ȋ@ Y Yh YYy@2@t@`w@ZЊ@Њ@ Z Z ZZm@C@ {@ĕ@[؊@؊@ [ [[ [[@H@ {@T@\@@ \ \ \k\X@=@@@]@@ ] ]~ ]]@.@@t@^@@ ^ ^h ^^Ў@@,@P@_@@ _ _d _`_h@D@ܑ@@Dlbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb` a b c d e f g h i j k l m n o p q r s t u v w x y z { | } ~  `@@ ` `[ ``q@?t@@a@@ a ah a)a@0@8@n@b@@ b b[ bbH@@@@c@@ c c[ cc[@C@0@8@d @ @ d d[ dkd i@4@X@@e(@(@ e e~ ekeP@C @r@f0@0@ f  fd f^f~@2@~@@g8@8@ g  g[ gg0s@F@o@@h@@@@ h  hy h h,@@p@iH@H@ i  i[ ii}@;@y@@jP@P@ j  j[ jj`k@B@z@l@kX@X@ k k[ k\k@T@5@@8@l`@`@ l l lkl@>@@5@mh@h@ m m mm}@3@ @@np@p@ n nh nnp@5@X@~@ox@x@ o o okoa@F@&@@p@@ p p[ pmp@4@P{@@q@@ q qy qiq@@@@r@@ r r rr@1@y@@s@@ s s sksX@@В@~@t@@ t t tbtp|@H@P@pp@u@@ u u uku b@>@<@@v@@ v v vvu@7@@ ~@w@@ w wd ww0@2@@t@x@@ x x x`x u@0@@@yȋ@ȋ@ y yf yyr@:@0@@zЋ@Ћ@ z z zz0v@A@w@X@{؋@؋@ { { {\{0y@$@@t@|@@ | |[ |`|u@@@@t@}@@ }  }[ } }y@?@@y@@~@@ ~! ~h ~ ~Ќ@@%@@@@@ " d @ @@Dlbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb                                @@ # $ p@E@p|@`@@@ %  \R@?@}@@@ & h iȊ@6@@`s@@@ ' [ w@`f@Л@ @ @ ( o  k@E@{@@(@(@ ) [ wܐ@&@@@@0@0@ *   `y@;@~@`@8@8@ +  \@\@:@|@p@@@@@ , h  f@@@@@H@H@ - h }@5@ @`@P@P@ . [ @@x@X@X@ / [ t@=@X@px@`@`@ 0 [ m@@@v@@h@h@ 1 [ @0@@ q@p@p@ 2 ~ }@<@@@u@x@x@ 3 [ `d@8@@>@@@ 4 [ P@8@|@r@@@ 5  kS@E@@(@@@ 6 [ q@B@@@@@ 7  i@7@@@@@ 8 h |@@@u@@@ 9 [ @@@@@ : h @$@@p@@@ ; h @@,@u@@@ <  ``|@5@@s@Ȍ@Ȍ@ =  `o@@@H@@Ќ@Ќ@ > h @8h@{@،@،@ ? h k n@2в@p@@@ @ [ k`q@4@P@x@@@ A h @n@3@X@؄@@@ B ~ \x@RA@l@@@ C [ ̚@dd@@n@Dlbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb                                @@ D d v@G@pq@@@@ E  \(@@?@t@@@ F [ p@@@@@@ G [ @{@A@`y@|@ @ @ H  kf@4@@@(@(@ I o t@B@ u@p@0@0@ J h P@@@@8@8@ K h )`@@V@@@@@ L h ؏@?/@u@H@H@ M  ^@4@@ w@P@P@ N  q@?@@Py@X@X@ O [ i@6@}@ z@`@`@ P [ u@,@@@h@h@ Q  \\@.@H@@p@p@ R h `@?X@m@x@x@ S h P@@S0@@@@ T [ k_@?@`@@@@ U d kc@B@0@(@@@ V h i؂@,@(@H@@@ W d kR@6@X@(@@@ X [ m~@?i@@@@ Y [ k@Q@3@4@@@@ Z [ `p@@v@@@ \ ] k0u@8@(@ {@@@ ^  `X@(@$@q@ȍ@ȍ@ _ d mv@A@c@@Ѝ@Ѝ@ ` h 0t@8@z@@؍@؍@ a y \pq@,@@Pr@@@ b [ kV@F@p@p@@@ c [  f@<@@@@@ d [ @`@@@@ e  kl@@t@0@Dlbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb                                @@ f [ i|@=@`z@y@@@ g  wy@?@r@8@@@ h i \`@7@̡@0z@@@ j h m }@.@@~@ @ @ k  ``v@*@@ u@(@(@ l h \`u@T @Py@0@0@ m  p@.@(@@8@8@ n d ~@@@@@@@@ o [ wPs@6%@ @H@H@ p [ @t@0@Ԙ@P@P@ q  4@$@@w@X@X@ r h  @~@2@x@@`@`@ s h  @(@p@h@h@ t d 0@3@x@z@p@p@ u [ `@f@H@@x@x@x@ v [ m@A@@x@@@ w [ \?3@@P|@@@ x d @&@(@Pv@@@ y  `u@$@@@@@ z  \j@,@@0{@@@ {  k@=@`@@@@ | [ w@@u@@@@@ } [ @,@`{@u@@@ ~ d @R@v@@@   {@.@@Ȏ@Ȏ@  [ w@<@0t@@Ў@Ў@  o `@G@q@؎@؎@  [ {@&@@@@  [ m }@<@k@@@@  [ r@>@w@P@@@  d Pr@0@@ }@@@  [ k``@B@@@Dlbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb                                @@  h \b@&@@p@@@  [ @A@k@x@@@   \c@:@@w@@@  [ (@$@0{@ @ @  d i@0@x@w@(@(@  h }@,@z@H@0@0@   b@0@@p{@8@8@  [ k]@?@`@@@@@  [ @*@$@o@H@H@   H@?@f@P@P@   b @=@@z@s@X@X@  [ `@F@z@m@`@`@  h k@|@@p@{@h@h@  [ \`@?t@`v@p@p@  y mZ@@@h@x@x@  h  @"@@ @@@  [ @e@@@ z@@@@  [ p@?w@@@@   @6@P@d@@@   ~@4@y@ z@@@  d ^@<@Pw@v@@@  [ x@B@y@p@@@  ~  q@A@l@@@@  d o@=@Pu@l@@@   \k@6@@p@ȏ@ȏ@    @2@@s@Џ@Џ@   kF@3@@؉@؏@؏@  d @@P@@@@  [  }@&@؍@v@@@  [  @7@py@v@@@  [ p@=@y@0@@@  h kq@pt@(@B@Dlbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb                                     @@  h u@@U(@@@@  [ ܓ@@T @@^@@@  h q@0@0@`@ @ @  [ ip{@5@Px@ }@@@  h m@>@p}@8@@@  ~ k^@?p@0@@@  [ v@8@`}@0y@@@   \Pu@"@F@q@ @ @  [ @3@u@0t@ $@$@   \ n@*@@`r@ (@(@  ~ k @  @g@ ,@,@  h b @@@@m@ 0@0@    pv@1@@y@ 4@4@   k @@Pv@8@8@  [ \U@@@<@w@<@<@  [ 8@wz@2@@@@@  [ @@m@D@D@  ] \N@6@l@v@H@H@  [ t@5@@w@L@L@  f \c@.@@x@P@P@  [ x@Pv@@0@T@T@   k@b@>@P@}@X@X@  d q@8@P@pz@\@\@  f \@\@3@.@u@`@`@  [ pr@2@x@pu@d@d@   k @7@@s@h@h@  [ \]@4@@t@l@l@   ^[@[@Px@@p@p@  [ ]@*@@@t@t@  [ ^@A@@p@@x@x@  [ (@Dx@w@|@|@  y  @K@@Dlbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb  ! " # $ % & ' ( ) * + , - . / 0 1 2 3 4 5 6 7 8 9 : ; < = > ?  @@  [ k @f@?H@@!@@ ! ![ !!c@@@_@H@"@@ " " ""q@@@w@@#@@ # # #\# a@1@z@`t@$@@ $ $ $$T@5@0@8@%@@ % % %%i@E@ s@@&@@ & &[ &&k@4@}@@'@@ ' ' 'w't@=@p@@(@@ ( ([ ((`r@@@Pu@p@)@@ ) )d ))X@3@t@x@*@@ * * **|@1@ {@ y@+@@ + +[ ++^@>@v@@,@@ , ,[ ,,u@X@@-@@ - -h - -d@&@@e@.@@ . .[ . .|@7@@p@{@/@@ / / //|@E@@?0@@ 0 0~ 0\0v@$@@l@1Đ@Đ@ 1 1 1b1{@<@x@@s@2Ȑ@Ȑ@ 2 2 2`2 a@H@@}@3̐@̐@ 3 3 33p}@1@P~@t@4А@А@ 4 4[ 4\4X@7@.@`t@5Ԑ@Ԑ@ 5 5[ 5`5@a@C@(@{@6ؐ@ؐ@ 6 6[ 6m6 }@2@``@@7ܐ@ܐ@ 7 7h 77@@@@w@8@@ 8 8[ 88 h@A@p@@9@@ 9 9[ 9k9@R@?@P@:@@ : :y :k:S@A@@}@;@@ ; ;[ ;;y@@@؆@<@@ < <[ <k<O@4@@pz@=@@ = =d =`~ =@ ==-@i@>@@ > > >>@@1@@m@?@@ ? ?  ??p@,@X@ q@Dlbbbbbbbbbbbbbbbbbbbbbbbbbbbbbrb@ A B C D E F G H I J K L M N O P Q R S T U V W X Y Z [ \ ] ^ _ @@@ @ @[ @b@@"@0@t@A@@ A A AAw@,@؇@t@B@@ B B B\BU@&@ʦ@}@C @ @ C C[ C~ C @ CC@@D@@ D D DiDv@A@q@y@E@@ E E[ EkE@U@@@}@(@F@@ F F[ FiF@bЖ@ c@G@@ G G[ GG@z@:@o@@y@H @ @ H H[ HH؋@0@t@t@I$@$@ I I IIn@8@ v@@J(@(@ J J[ JbJ z@,@@K,@,@ K K[ KbKf@F@@@L0@0@ L L[ LL`|@?h@w@M4@4@ M M MbM`n@@8@@N8@8@ N N NNq@>@@T@@O<@<@ O O[ OO@*@@d@P@@@@ P P[ P\PW@5@T@u@QD@D@ Q Q QQt@?`@@RH@H@ R R RmR@5@pu@t@SL@L@ S S[ S\S@S@4@h@ v@TP@P@ T T[ T\TZ@6@@v@UT@T@ U UR UkU i@.@@pr@VX@X@ V Vd VVu@B@s@x@W\@\@ W W W`W{@@@@X`@`@ X X[ XkXX@W@{@x@Yd@d@ Y Yh YY@,@x@@n@Zh@h@ Z Z ZkZ@C@x@[l@l@ [ [ [)[@1@B@\p@p@ \ \[ \`\pu@,@@i@]t@t@ ]  ][ ]]~@6@q@v@^x@x@ ^  ^ ^)^*@@#@c@_|@|@ _  _[ __`{@(@@Pv@Dlbbbrbbbbbbbbbbbbbbbbbbbbbbbbbbb` a b c d e f g h i j k l m n o p q r s t u v w x y z { | } ~  `@@ `  `[ `m`@@Ѓ@`r@a@@ a  a akaG@@@@|@b@@ b b[ bbp@>@t@ @c@@ c c[ cce@7@@z@@d@@ d d[ did@@$@@p@e@@ e e ee g@<@@x@f@@ f fP f\f@e@<@\@Pq@g@@ g g ggV@D@0p@H@h@@ h hh hht@0@s@@@i@@ i i[ imip@@k@<@j@@ j j[ jwj@"@p~@o@k@@ k kf k\kY@0@@u@l@@ l lh ll0v@?@@@m@@ m m m\m0x@@ @r@n@@ n n[ nnb@;@@c@L@o@@ o o oo`w@$@h@|@p@@ p p pp@" @`g@qđ@đ@ q q q)q}@,@Y@@rȑ@ȑ@ r r[ rrk@A@n@@s̑@̑@ s  s[ sis@@^ @`b@tБ@Б@ t! tq ttz@,@w@@uԑ@ԑ@ u" u uu@$@@`@vؑ@ؑ@ v# v[ vv@]@A@S@@@wܑ@ܑ@ w$ w wws@,@z@(@x@@ x% x[ xkxK@=@X@0z@y@@ y& y[ yye@A@@p@@z@@ z' z[ zzQ@;@j@@{@@ {( {[ {{w@E@a@s@|@@ |) | |\|j@*@@p@}@@ }* }[ }}@a@O@b@@~@@ ~+ ~ ~\~?.@8@s@@@ , [ m(@h @ p@Dlbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb                                @@ -  \n@4@@h@@@ .  bg@3@x@@@@ / [ mw@5@c@p|@ @ @ 0  f@:@}@0@@@ 1 h `x@A@{@L@@@ 2  p{@_@ c@`@@@ 3 [ b@?@?@@@ 4  \I@3@@@ @ @ 5 [  r@3@ȇ@q@$@$@ 6  ` a@O@p}@`v@(@(@ 7 d `j@:@k@H@,@,@ 8 [ Pp@<@p@`@0@0@ 9 d 0z@?@v@p@4@4@ : o @\@<@ c@@8@8@ ; h b(@@p@a@<@<@ < h m8@&@؆@i@@@@@ = h {@.@y@u@D@D@ >   e@E@{@`{@H@H@ ? [ kH@?@|@8@L@L@ @ d z@4@j@w@P@P@ A d  h@.@@Њ@T@T@ B  0v@>@s@u@X@X@ C [ `g@2@4@p@\@\@ D [ m }@3@p@v@`@`@ E [ @`@6@q@\@d@d@ F [  @3@@u@|@h@h@ G ~ kU@@@x@l@l@ H h @&@P@m@p@p@ I  a@A@@x@0@t@t@ J h @@D@m@x@x@ K [ i@@t@|@|@ L [  o@6@{@y@Dlbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb                                @@ M  @k@0@@z@@@ N d @v@?y@r@@@ O [ r@5@v@P}@@@ P ~ @*(@s@@@ Q y x@*@@g@@@ R y w@.@r@H@@@ S [ e@H@ d@@@@ T [ Ѐ@4@s@s@@@ U  o@?@ p@}@@@ V  v@@p@@@@@ W  ^v@5@w@t@@@ X [ j@:@p@h@@@ Y [ s@8@s@{@@@ Z h @2@@p@@@ [ [ @z@3@m@w@@@ \  w u@7@q@py@@@ ]  @U@A@V@ @Ē@Ē@ ^ q `z@@@H@Ȓ@Ȓ@ _ [ 0w@8@Pr@v@̒@̒@ ` d @3`@@В@В@ a  ^~@*@@k@Ԓ@Ԓ@ b [ n@?`n@Ё@ؒ@ؒ@ c h  @D@`o@ܒ@ܒ@ d [  `@;@c@@@@ e [ \?3@X@r@@@ f  \ c@Qn@}@@@ g  k^@(@ܘ@w@@@ h  @g@D@p@x@@@ i [ w@@@z@@@ j  m@3@w@p@@@ k  c@G@@k@(@@@ l  0u@1@H@o@Dlbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb                                @@ m o `Px@(@@l@@@ n  bn@*@~@@@@ o [ k@\@4@@{@ @ @ p h )@L@\@@@ q [ @@|@}@@@ r [ iЉ@*@@c@@@ s h v@*@x@ ~@@@ t h @y@S@q@ @ @ u h @7L@j@$@$@ v [ Њ@@Y<@a@(@(@ w  k`c@@S@{@,@,@ x h mp@2@g@@0@0@ y ~ ^~@:@`z@``@4@4@ z h mX@@@@0p@8@8@ { y m@"@@j@<@<@ |  |@*@@c@@@@@ }  `k@@@s@ @D@D@ ~  Pp@4@pz@x@H@H@   t@(P@@L@L@  [ b`l@6@q@8@P@P@   ȋ@4@u@ f@T@T@    x@F@}@X@X@   m@A@s@@\@\@   bg@*@(@8@`@`@  [ ``r@(@@pr@d@d@   `i@1@x@@h@h@  [ v@;(@H@l@l@  h h@@@@s@p@p@  [ 0r@4@@@p@t@t@    X@5@n@x@x@  d k@P@,@@Pz@|@|@  [ }@h @ a@Dlbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb                                @@  h  @ t@f@@@  [ `a@@@g@`@@@   z@@@@@@  h  Ȃ@X@o@@@    Pr@.@w@@@@@  [ wz@@y@ @@@  d @{@5@w@o@@@  h s@5@q@y@@@  h wj@1@l@4@@@  [ @@@@X@@@  h iؑ@^@b@@@  [ t@@@y@@@  d  Ȉ@l@@@@  P \f@<@@@i@@@  [ `f@?r@(@@@  [  @;@pt@@@   bh@=@y@{@ē@ē@  h \@c@@@`u@ȓ@ȓ@  [ ~@,@@m@̓@̓@  [ ?0@l@,@Г@Г@  [ (@{ @4@ԓ@ԓ@  [ w@? ~@@ؓ@ؓ@  P iu@C@pq@p@ܓ@ܓ@   \f@6@d@`@@@  [ b(@G@@d@@@  [ `pt@"@@h@@@  h 0v@*@{@u@@@  h wS@4@i@x@@@  o kZ@*@@`z@@@   \S@$@l@u@@@  [ kv@(@@w@@@  [  n@4@u@`@Dlbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb                                     @@   x@dh@ @@@  ~ @@x@ g@@@  [ s@4@0w@Pu@ @ @   \M@.@@a@@@   `@m@"@X@@@@  h q@1@x@@@@   \g@4@@`d@@@  f @g@;@@r@@@ @ @  h (@ @@p@ $@$@    @ @|@Z@ (@(@  [ b @`@D@x@w@ ,@,@  [  ]@3@p{@ @ 0@0@  [ k M@2@@k@ 4@4@  y k ?@,@@{@8@8@  [ `@V@=@}@u@<@<@  [ @q@:@w@s@@@@@   ^@2@h@`n@D@D@  d m@0@q@q@H@H@  [ b]@=@v@P@L@L@   b@7@0t@]@P@P@  y @`@7@d@@T@T@  h P|@z@@X@X@  [ w(@ @v@@\@\@   k؃@H}@u@`@`@   b@@1@r@@l@d@d@   y@&@`@ m@h@h@  y @3@`l@H@l@l@  [ kR@2@X@{@p@p@   w@k@1@v@x@t@t@  [ iy@,@v@Pu@x@x@  [ bpv@(@`s@@|@|@   @`@=@f@(@Dlbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb  ! " # $ % & ' ( ) * + , - . / 0 1 2 3 4 5 6 7 8 9 : ; < = > ?  @@     @$@H@`@!@@ ! !y !`!~@H`@@e@"@@ " " "w"`s@?s@t@#@@ # #[ ##x@R@ @$@@ $ $d $$pv@A@s@m@%@@ % %[ %%v@4@n@`t@&@@ & &R &&I@6@{@{@'@@ ' 'o '`'z@:@@Y@(@@ ( ( ((@S@4@?@)@@ ) )[ ))@@@ r@*@@ * * **X@t@,@+@@ + +[ ++u@2@@i@v@,@@ , ,f ,,u@?@`y@`i@-@@ - - -\-n@@|@o@.@@ . .d ..[@4@0@s@/@@ / /[ /k/O@8@@0v@0@@ 0 0[ 0\0@V@0@Ė@m@1Ĕ@Ĕ@ 1 1[ 1`1e@0@Ԡ@`b@2Ȕ@Ȕ@ 2 2h 22p@@@d@3̔@̔@ 3 3 3^3 w@2@v@q@4Д@Д@ 4 4[ 44p}@(@@e@5Ԕ@Ԕ@ 5 5h 55@.@@l@6ؔ@ؔ@ 6 6y 66r@.@w@pv@7ܔ@ܔ@ 7 7h 77x@}@P~@8@@ 8 8[ 88@@P@@q@9@@ 9 9h 9i9q@0@d@`}@:@@ : :[ ::@*@s@t@;@@ ; ;[ ;k;X@7@`c@p@<@@ < <[ <\<U@0@(@`o@=@@ = =h ==q@&@`z@}@>@@ > > >>`u@.@@a@x@?@@ ? ? ??V@2@V@0@Dlbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb@ A B C D E F G H I J K L M N O P Q R S T U V W X Y Z [ \ ] ^ _ @@@ @ @ @\@c@2@@@R@A@@ A A[ AAw@*@|@p@B@@ B B[ BbB@(@@w@@l@C @ @ C C[ CwCH@?@p@D@@ D Dd DDo@5@@k@E@@ E E~ EkEl@"@@\@F@@ F FR F^F@@k@G@@ G Gh GkG@@,@@e@H @ @ H Hd HHT@5@|@x@I$@$@ I I IIo@.@{@v@J(@(@ J J[ JJ\@4@U@@K,@,@ K K KKE@8@`e@0@L0@0@ L L[ LLi@,@@{@M4@4@ M Mq MM@4!@?N8@8@ N N N\N d@2@@@d@O<@<@ O Oh O\Oa@ @Ѳ@@r@P@@@@ P Pd PP@q@<@q@r@QD@D@ Q Q[ Q\Q@X@?@b@RH@H@ R R[ RRx@0@z@@m@SL@L@ S S[ SSr@0@ @w@TP@P@ T T TbT@*@z@V@UT@T@ U Uo UU@Gx@`p@VX@X@ V V[ VmV r@2@b@w@W\@\@ W W W\W@Y@@(@{@X`@`@ X X[ X\XU@0@8@ m@Yd@d@ Y Yd YkYG@0@H@`u@Zh@h@ Z Z ZZL@?o@u@[l@l@ [ [~ [[`|@(@(@i@\p@p@ \  \q \)\`@,@0u@]@]t@t@ ]  ] ]\] d@&@C@c@^x@x@ ^  ^[ ^k^ c@*@Џ@`s@_|@|@ _  _[ ___@,@0s@@Dlbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb` a b c d e f g h i j k l m n o p q r s t u v w x y z { | } ~  `@@ `  `[ ``p@7@X@f@a@@ a a a\a@p@@W@b@@ b b bkb@@п@@c@@ c cq cmc@6@m@ c@d@@ d d dkd@P@0@@v@e@@ e e[ eeo@"@@u@f@@ f f[ ffw@>؇@r@g@@ g gh gg@@@o@h@@ h h[ hhT@0@b@p@i@@ i i[ imix@*@0v@`n@j@@ j j jj`@@ c@k@@ k kh k\k^@@$@p@l@@ l l[ l\lV@.@@`k@m@@ m my mm@@T@n@@ n n[ nn`l@5@j@Pz@o@@ o oh oko`p@?R@X@p@@ p p ppX@?d@(@qĕ@ĕ@ q q qq w@$~@z@rȕ@ȕ@ r r[ r\rN@.@؎@p@s̕@̕@ s  sh s s@@(@`c@tЕ@Е@ t! t[ tt@j@4@0u@|@uԕ@ԕ@ u" u[ uu@п@ c@vؕ@ؕ@ v# vd vvm@6@pq@v@wܕ@ܕ@ w$ w[ wwt@(@`@0|@x@@ x% x[ xx`l@"@`z@@y@@ y& yh y\y@[@"@@m@z@@ z' z zzq@@|@W@{@@ {( {h {\{`@@@pp@|@@ |) |y |b|@}@@0s@}@@ }* }[ }m}z@&@X@0v@~@@ ~+ ~[ ~~n@4@q@0w@@@ , [ m@@@a@Dlbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb                                @@ -  ``v@L@m@@@ .  i@@$@@@ / 0 ^@D@`m@ @ @ @ 1 [ w0@8@l@@@ 2 [ kA@2@L@@h@@@  h @"@z@@@@   `e@=@t@x@@@  l W@:@p@p}@ @ @    @$@؂@`@$@$@  h ؐ@@x@e@(@(@  h u@3@p@@,@,@  [ @Z@2@pq@ @0@0@  d m@@x@ܐ@4@4@  [ kX@?ȋ@e@8@8@   \@a@Q@q@<@<@  d c@3@q@@@@@@  d ki@@`@D@D@  [ ~ @ Њ@8@H@H@  h ko@U@@c@L@L@   `n@4@`@v@P@P@  o  ؁@?@v@Px@T@T@   @^@(@x@@X@X@   kR@3@j@@\@\@  [ @b@4@t@@`@`@   mp@*@h@@d@d@  d \@2@8@q@h@h@  [ mg@3@l@؁@l@l@  d mp@5@@s@p@p@   kV@6@@y@t@t@   `0x@@@h@x@x@  d  t@$@Ps@P@|@|@  h  ?*@Pv@@Dlbbbbbbbbbbbbbbbbbrbbbbbbbbbbbbb                                @@   @e@?c@@|@@@  [ pr@VX@`q@@@  d z@=@Pr@@@  h (@@Sx@@i@@@   f@,@@@x@@@   {@4@q@@k@@@ ! [ mH@"{@l@@@ "  ws@5@m@Pp@@@ # h \@6@`r@@@@ $  z@*@P~@X@@@ % [ i(@2(@@@@ &  l@3@t@ z@@@ ' P `m@7@e@ @@@ ( [ @t@0@`v@ q@@@ ) [ t@:@ m@ m@@@ * [ ` j@(@@p@@@ +  p@Od@n@Ė@Ė@ , [ \X@0@ܒ@g@Ȗ@Ȗ@ - [ `p@@_@̖@̖@ . h kf@Ԑ@}@Ж@Ж@ /  ^ @0@t@i@Ԗ@Ԗ@ 0 h `q@(@y@ @ؖ@ؖ@ 1 [ m@0@f@ t@ܖ@ܖ@ 2  wt@2@@ q@@@ 3 [ \P@.@̓@d@@@ 4 [ `i@0@8@h@@@ 5 q @1 }@`@@@ 6  kx@7@?O@@@ 7 h ~@@p@@@ 8 l x@&@p@ u@@@ 9 [ b d@;@z@pq@@@ : [ r@*@`i@@Dlbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb                                @@ ; d k@@(@@0u@@@ < [ \@T@.@@k@@@ =  \a@(@<@@i@ @ @ > [ d@4@i@ ~@@@ ? [ @c@"{@d@@@ @ ~ `@@@W@@@ A [ Pp@1@a@Pu@@@ B [ \a@(@ؖ@k@ @ @ C [ v@&@V@u@$@$@ D  m@@u@(@(@ E o \]@U@q@,@,@ F o h@2@`d@|@0@0@ G  )@ @p@F@4@4@ H   p@ @w@8@8@ I [ \P@,@@n@<@<@ J   `r@6@r@o@@@@@ K  wL@2@U@8@D@D@ L M ki@$T@`o@H@H@ N  j@@@L@L@ O [ \L@,@@m@P@P@ P o @h@3@ t@{@T@T@ Q  bX@1@s@@X@X@ R  pp@2@p@s@\@\@ S [ `k@5@p@t@`@`@ T   `@2@@`@`@d@d@ U V @Y@q@@t@h@h@ W [ m@@~@ m@l@l@ X  `s@\@`@p@p@ Y [ mPp@*@ a@x@t@t@ Z [ u@8@ i@@h@x@x@ [  I@6@h@y@|@|@ \ h o@&@n@@Dlbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb                                @@ ] [ ~@@@@@@ ^ d )@(@h@@@@ _ [ |@*@d@ n@@@ `  w@"@@|@q@@@ a [  @@@`k@@@ b h i@r@.@m@s@@@ c [ iw@4@n@j@@@ d [ `n@@\@@n@@@ e h \@^@@@k@@@ f d @@a@Pv@@@ g [ \O@*@@n@@@ h [ wd@1@ j@P@@@ i [ s@*@@e@ps@@@ j [ w@Y@(@b@h@@@ k [ `p@(@Z@y@@@ l [ w@b@2@f@}@@@ m h )@@`z@B@ė@ė@ n q @@@@X@ȗ@ȗ@ o [ \@0@@^@@̗@̗@ p [ o@1@j@s@З@З@ q [ a@1@ e@~@ԗ@ԗ@ r [ ]@.@l@@@ؗ@ؗ@ s d @W@1@i@~@ܗ@ܗ@ t  k@4@v@q@@@ u [ i0s@1@r@p@@@ v [ @j@*@}@s@@@ w  h@6@p@pv@@@ x h \X@@@ k@@@ y y w@@@`~@@@ z q @@@b@u@@@ { [ `@t@7@k@@Y@@@ | d w@&@z@l@Dlbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb                                     @@ } [ l@<@t@o@@@ ~ [ w@m@(@e@0~@@@   o@A@n@i@ @ @  h \ a@@յ@f@@@  [ X@1@@\@|@@@  [ ms@,@ k@q@@@   (@&@s@`a@@@  [ [@,@[@@ @ @  [ `m@@@`b@ $@$@   \ V@(@h@@V@ (@(@  h k z@@`@^@ ,@,@  [ \ K@,@؍@`k@ 0@0@   w 0p@*@U@@v@ 4@4@     p@3@p@p@8@8@  [ @`@3@`c@x@<@<@   ir@;@ g@U@@@@@  q x@8f@`q@D@D@  [ wh@4@k@ @H@H@   `l@*@@g@L@L@   \c@&@4@[@P@P@   p@,|@P{@T@T@   \ a@0@@G@X@X@  h \Y@@9@`@\@\@   \Z@@P@p@`@`@  y @}@K@d@d@  [ P@(@c@@h@h@   Z@>@Pq@q@l@l@  h \X@@8@i@p@p@  [ r@(@n@ t@t@t@  [ kl@*@ z@r@x@x@  ~ d@7@J@@u@|@|@   }@ @@~@g@Dlbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb  ! " # $ % & ' ( ) * + , - . / 0 1 2 3 4 5 6 7 8 9 : ; < = > ?  @@  y  b@1@^@P{@!@@ ! ! !\!?&@@Q@"@@ " " ""@@"@`y@?#@@ # #R ##@a@3@u@v@$@@ $ $[ $i$}@(@r@k@%@@ % %[ %%v@,@w@T@&@@ & &d &&w@Ug@{@'@@ ' ' ''@h@2@0}@ p@(@@ ( (y ((@@@S@)@@ ) ) )m)c@.@W@p}@*@@ * * *`* h@8@@@]@+@@ + +[ +k+O@*@@Pr@,@@ , ,[ ,,w@&@0{@j@-@@ - -h --p@@@ t@.@@ . . . .X@.@@U@}@/@@ / / //@X@1@0t@Py@0@@ 0 0h 0\0V@?T@@j@1Ę@Ę@ 1 1[ 1\1G@&@@k@2Ș@Ș@ 2 2 22@J}@*@3̘@̘@ 3 3h 3\3@T@@^@`e@4И@И@ 4 4[ 4k4A@*@@[@5Ԙ@Ԙ@ 5 5 5w5r@.@@p@@p@6ؘ@ؘ@ 6 6[ 6\6R@*@@e@7ܘ@ܘ@ 7 7h 7\7@R@6&@g@8@@ 8 8h 8m8@@y@i@9@@ 9 9h 9`9u@ @[@:@@ : :h :`:t@h@e@;@@ ; ; ;;d@3@m@v@<@@ < <[ <k<E@2@x@s@=@@ = =[ =\=c@"@@@e@>@@ > >[ >m>X@$@@e@d@?@@ ? ?[ ?\?M@*@(@j@Dlbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb@ A B C D E F G H I J K L M N O P Q R S T U V W X Y Z [ \ ] ^ _ @@@ @ @ @)@@.T@@A@@ A Ah A)A0@@z@G@B@@ B B[ BmB`u@$@ i@Ps@C @ @ C C CiCn@>@j@a@D@@ D Dh D\DS@@@]@E@@ E E[ EEu@0@h@k@F@@ F F~ FFz@(@`w@`@G@@ G G[ GkGM@"@Ќ@q@H @ @ H Hh H\H@Q@@ʪ@`@I$@$@ I I  II o@.@x@n@J(@(@ J Jh JkJ8@?@J@K,@,@ K Kh KK {@@@`@L0@0@ L L LL`c@6@k@t@M4@4@ M M[ MmM r@&@`@u@N8@8@ N N[ NN@{@"@z@c@O<@<@ O O[ OO`@1@b@x@P@@@@ P P[ PbP[@<@p@q@QD@D@ Q Q[ Q\QR@,@@?RH@H@ R Rh R\R@V@<̩@c@SL@L@ S Sh S\S@X@@V@TP@P@ T T TTt@2@c@ j@UT@T@ U U UUX@0@Q@y@VX@X@ V Vh VVz@@x@@X@W\@\@ W W WbWM@1@`p@w@X`@`@ X X XbXh@2@Px@q@Yd@d@ Y Y[ YYl@2@t@p@Zh@h@ Z Zh Z\ZP@@ @\@[l@l@ [ [ [\[@R@@@ n@\p@p@ \ \d \k\D@|@@s@]t@t@ ] ] ])]}@6@4@^x@x@ ^ ^[ ^^\@7@a@0s@_|@|@ _ _ _\_?@@o@Dlbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb` a b c d e f g h i j k l m n o p q r s t u v w x y z { | } ~  `@@ ` `h ``@e@.@`m@z@a@@ a ah a\aQ@@6@`@b@@ b b[ bbt@2@n@ a@c@@ c cq cc@h@0v@@d@@ d dh d\dX@@@`@e@@ e e e e@@~@@g@f@@ f f fkf@l@@(@p@g@@ g g[ gwgh@$@ o@`@h@@ h hh h\hN@п@j@i@@ i i[ ikiT@3@V@u@j@@ j j j\j[@(@%@K@k@@ k kh k k{@@l@l@@ l lh lls@&@ s@0r@m@@ m m[ mm`@*@`k@P@n@@ n n n\n?"@М@i@o@@ o o o\o@g@ަ@Z@p@@ p p p`pQ@C@Pp@m@qę@ę@ q q[ qkq@@2@Pq@ @rș@ș@ r rh rmr@@0p@@p@s̙@̙@ s s s sq@1@Px@?tЙ@Й@ t td ttv@.@q@h@uԙ@ԙ@ u uh u\uP@Gb@D@vؙ@ؙ@ v vh vv`{@@O@wܙ@ܙ@ w w wwz@$@@s@ o@x@@ x x[ xxh@@p@@W@y@@ y yh y\yM@@@d@z@@ z zh z\zN@,إ@@f@{@@ { {h {{r@0x@w@|@@ | |h |k|Q@;|@m@}@@ } }h }m}0s@@0@F@~@@ ~ ~[ ~b~H@@w@Z@@@  ~ \ b@@j@f@Dlbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb                                @@  [ kN@0@w@ t@@@  d ka@3@`r@t@@@   mh@*@x@K@ @ @  h h@*@k@ {@@@   \Z@֤@@^@@@   x@?m@0v@@@   ^P{@.H@`@@@  h u@(@y@b@ @ @  [ p@.@l@p@$@$@  d k?@؆@@x@(@(@   o@(@t@s@,@,@   [ w@k@.@l@@t@0@0@   [ q@4@f@h@4@4@    |@$@v@`@8@8@    `e@5@p@s@<@<@   [ g@1@l@u@@@@@  q u@0@`m@f@D@D@  q kU@$@@b@H@H@   @S@.@c@x@L@L@   @j@3@{@f@P@P@   \S@ @X@w@T@T@  [ w`r@0@\@l@X@X@  [ @(`q@>@\@\@   `z@@{@n@`@`@   @W@4@r@s@d@d@  [ h@,@f@x@h@h@  [ \@S@@<@@q@l@l@  h  o@@o@Ђ@p@p@  [ U@`c@t@t@t@  h |@1@@[@x@x@  [ @v@ @q@ @|@|@  h \@P@@ܣ@@]@Dlbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb                                @@  [ k@0@@m@r@@@  [  f@?P@@@    k@P@$@@a@@@ ! [ \F@,@@i@@@ " [ Z@2@b@`u@@@ # [ ^@0@`c@0v@@@ $ [  d@X@i@H@@@ % [ c@1@n@u@@@ & d  c@,@`a@z@@@ '  }@A}@@b@@@ 0 h p@(@p@r@@@ 1 [ @f@*@a@|@@@ 2 h \S@E>@D@@@ 3 [ O@3@@m@s@@@ 4 [ \N@$@4@b@@@ 5 h \N@?@ f@@@ 6  mr@(@_@q@Ě@Ě@ 7  k?0@|@`o@Ț@Ț@ 8 [ ^@d@8@`s@ q@̚@̚@ 9 y @T@&@V@@К@К@ : [ c@,@@`@x@Ԛ@Ԛ@ ;  k`@"@H@`t@ؚ@ؚ@ < h m@@u@ p@ܚ@ܚ@ = h kr@0@`u@d@@@ > h k@^@v@@R@@@ ? h \Q@@Z@d@@@ @  }@@p}@a@@@ A h \H@@N@Y@@@ B [ m@ @`n@X@@@ C  y@(@\@ c@@@ D h \J@<@@Q@@@ E h k0r@ @ @^@Dlbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb                                @@ F [ kY@ @P@`r@@@ G h \L@@@7@U@@@ H [ W@*@@S@Pz@ @ @ I [ ^q@,@`q@o@@@ J [ X@&@j@@@@ K h \M@E֡@C@@@ L   p|@"@`q@m@@@ M  iM@*@ `@z@ @ @ N h \O@@@Y@$@$@ O [ wy@$@q@m@(@(@ P d \@W@P@,@,@ Q h kr@?@C@0@0@ R  n@8@ b@b@4@4@ S h i@Z@0@`l@ @8@8@ T h \L@?@N@<@<@ U  i3@,@I@px@@@@@ V  \L@"@@``@D@D@ W [ wQ@@ n@4@H@H@ X h \K@@\@S@L@L@ Y h  `{@8@`@P@P@ Z [ `@\@3@@Ps@T@T@ [ h {@`~@2@X@X@ \ d ml@.@c@q@\@\@ ]   \\@@@@i@`@`@ ^ h @@?@F@d@d@ _ h  n@@ps@8@h@h@ ` a `@4@v@o@l@l@ b [ mk@2@f@o@p@p@ c  `@1@c@pt@t@t@ d [ J@*@@W@z@x@x@ e [ kA@,@q@w@|@|@ f [ b@@X@;@Dlbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb                                @@ g  ko@ p@R@@@ h h @@@x@ f@@@ i ~ `h@?b@n@@@ j [ kP@,@M@v@@@ k h \J@"`@Q@@@ l o {@g@0r@@@ m  |@p|@L@@@ n [ j@*@H@ j@@@ o h \G@:H@`@@@ p [ `p@(@s@ q@@@ q h \O@ 4@a@@@ r h @w@@`w@r@@@ s h  j@"@`m@@@@ t [ ip@&@@n@Ps@@@ u d @$@@b@@@ v h \E@̟@S@@@ w h @x@@N@ě@ě@ x [ kF@,@0y@r@ț@ț@ y  ;@$@d@@̛@̛@ z [ \M@(@@`c@Л@Л@ { [ a@3@@s@r@ԛ@ԛ@ | d `b@D @[@؛@؛@ } d w@f~@pp@ܛ@ܛ@ ~  C@C@;@@@@  h \??@N@@@   @g@&@`y@u@@@  [ l@@@ j@@@  h \C@@ԝ@S@@@  [ \J@(@P@@e@@@   c@0@f@ t@@@  h \F@@̝@P@@@  [ @y@Lp@J@Dlbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb                                     @@  [ @q@,@o@m@@@  h Pw@@w@@@@  [ me@4@]@q@ @ @  d s@ @v@@@  [ \T@"@ @\@@@  [ \F@(@x@@j@@@   m`s@.@@k@d@@@  h \F@@T@S@ @ @  [ m8@@r@_@ $@$@   ` _@:@u@l@ (@(@  [ \ I@$@@ f@ ,@,@  [  @"@@`c@ 0@0@  h   py@@~@``@ 4@4@    Ps@*@@v@_@8@8@  [ j@2@v@n@<@<@   \V@؜@0@@@@@  h \??@@R@D@D@  [ h@1@i@q@H@H@   c@@@s@@L@L@  h \C@(Л@Q@P@P@  d  @@j@@\@T@T@   b@5@p@p@X@X@  [ m@O@ e@\@\@  [ l@1@f@ n@`@`@  h  X@.@i@t@d@d@  [ d@.@@i@t@h@h@  [  j@3@x@j@l@l@  [ T@.@Z@u@p@p@   S@*@ e@w@t@t@   we@*@`p@w@x@x@   `d@DL@ i@|@|@  h  x@@0~@_@Dlbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb  ! " # $ % & ' ( ) * + , - . / 0 1 2 3 4 5 6 7 8 9 : ; < = > ?  @@  [ \ J@(@؇@?!@@ ! !h !\!F@@@Z@"@@ " " ""r@@8@Q@#@@ # #[ ##m@4@n@ d@$@@ $ $[ $k$<@ @H@Z@%@@ % % %%?(@x@&@@ & &[ &&]@,@p{@o@'@@ ' ' ''Z@*@@d@(@@ ( ( ((1@A@D@@^@)@@ ) )~ )) @@x@S@*@@ * * *b*T@2@r@q@+@@ + +h +\+D@?8@N@,@@ , ,[ ,,f@$@8@@h@-@@ - - --s@@@q@.@@ . . ..`o@(@r@q@/@@ / /h //0{@@P{@]@0@@ 0 0d 00q@b`h@y@1Ĝ@Ĝ@ 1 1h 1\1C@@@:@2Ȝ@Ȝ@ 2 2 22P@,@a@0u@3̜@̜@ 3 3h 3\3E@@@V@4М@М@ 4 4  44Ȁ@@s@ n@5Ԝ@Ԝ@ 5 5[ 55W@$@?@6؜@؜@ 6 6o 6\6@R@@@E@7ܜ@ܜ@ 7 7h 7)7@?t@5@8@@ 8 8[ 88q@4@ o@9@@ 9 9d 99X@@o@ d@:@@ : : :\:@[@@h@Q@;@@ ; ;h ;;r@"@o@ r@<@@ < <[ <`<j@.@@p@=@@ = =[ =b=S@&@s@{@>@@ > >[ >>a@*@`v@s@?@@ ? ?h ?\?E@@@@X@Dlbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb@ A B C D E F G H I J K L M N O P Q R S T U V W X Y Z [ \ ] ^ _ @@@ @ @ @@@x@@}@?@A@@ A A AiAw@&@Pr@h@B@@ B Bh B\BC@?0@O@C @ @ C C[ CCPv@6r@s@D@@ D Dh D\DD@@F@E@@ E E EkEX@(@@G@F@@ F Fd FFu@*@`j@`@G@@ G G[ GGs@ n@u@H @ @ H H[ HH0@@_@P@I$@$@ I If I\IW@=|@f@J(@(@ J J[ JJ:@(@?v@K,@,@ K Kh KkKV@?\@$@L0@0@ L L LbL_@q@H@M4@4@ M M~ MmM@@ `@^@N8@8@ N N[ NNZ@,@@g@ @O<@<@ O O OO&@?@>@J@P@@@@ P P[ PkP@V@(@@n@QD@D@ Q Q~ QkQE@0@j@r@RH@H@ R R RR8@.@f@0s@SL@L@ S Sd SSȅ@co@(@TP@P@ T T T\TX@@,@i@UT@T@ U Ud UU@T@.@8@\@VX@X@ V Vh VVx@@|@`i@W\@\@ W W WW?7@d@n@X`@`@ X Xh XXu@P@ e@Yd@d@ Y Y[ YY`q@$@x@l@Zh@h@ Z Z ZZD@3@P@p@[l@l@ [ [ [k[[@@З@@c@\p@p@ \ \[ \\_@&@z@Pr@]t@t@ ] ][ ]w]i@&@@^x@x@ ^ ^[ ^^c@ @x@k@_|@|@ _ _~ __`@Dd@D@Dlbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb` a b c d e f g h i j k l m n o p q r s t u v w x y z { | } ~  `@@ ` `[ `b`Y@3@q@0p@a@@ a ah a\aB@?@@S@b@@ b b[ bbq@,@W@c@@ c ch ccT@&j@@d@@ d d d\dM@@D@N@e@@ e e e\eH@ @@`f@f@@ f fh fmf@@s@`e@g@@ g g g gv@"@`x@@]@h@@ h hd hh0@"@p@h@i@@ i ih i\i>@&@E@j@@ j j jj\@.@z@m@k@@ k k kikc@1@c@Pq@l@@ l lh ll`t@?8@W@m@@ m m[ m\mQ@"@@b@n@@ n n n\nE@&@@h@o@@ o o oo@[@(@0u@u@p@@ p pd ppW@$@n@P{@qĝ@ĝ@ q q qwq@@0U@0@rȝ@ȝ@ r rh r)r@o@2@s̝@̝@ s s[ ss@@=@ c@e@tН@Н@ t t[ t\tE@@0@p@uԝ@ԝ@ u u[ u~ u|@ uux@b@v؝@؝@ v vh v\vB@@@D@wܝ@ܝ@ w wh ww o@"@`w@q@x@@ x x x\x^@@ @L@y@@ y y y)y`w@ @r@p@z@@ z z zzT@y@~@{@@ { { {{@(@`z@n@|@@ | |o |\|L@@ܕ@[@}@@ } } }k}A@@y@@~@@ ~ ~h ~\~B@?ԕ@L@@@  d @Q@0@q@@Dlbbbbbbbbbbbbbbbbbbbbbrbbbbbbbbb                                @@  [ [@1@q@q@@@   [ `@q@@@@    ^@3@`y@g@ @ @   [ \N@$@X@`b@@@   h `@@ s@_@@@   [ e@@j@@@@  [ mv@&@ n@@g@@@   \P@@8@ @ @  h 8@7j@Q@$@$@  [ wO@<n@@(@(@  [ `_@.@ r@r@,@,@   q@,@q@S@0@0@    \@,@i@r@4@4@  d g@?o@k@8@8@  P  e@3@[@`o@<@<@  [ h@7l@@@@@@  h \A@?@R@D@D@   \P@@ܔ@@]@H@H@  [ \S@ @@_@L@L@  [ @i@*@r@@P@P@  o \M@@*@Y@T@T@   \?@$@@c@X@X@   i`w@@0{@>@\@\@   ih@3@@b@`n@`@`@   ! 1@&@O@w@d@d@ " [ \E@$@@d@h@h@ # h \@@?@S@l@l@ $ ~ @r@@`d@Pu@p@p@ % d k@Z@(@ d@pu@t@t@ & [ h@0Pz@y@x@x@ ' h \A@0x@H@|@|@ ( ] ^@"@w@v@Dlbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb                                @@ ) [ k@@;@n@@@@ *   pp@.@r@\@@@ + h )@@m@K@@@ , [ `i@&@d@u@@@ - d Q@.@x@m@@@ . ] m]@$@b@ {@@@ / q @@`@V@@@ 0 [ l@.@o@l@@@ 1 o \L@@@a@@@ 2 ~ k?:@@@O@@@ 3 h m^@:@Q@1@@@ 4  \@V@@ԓ@H@@@ 5  \M@@@l@@@ 6 o \F@@ē@`@@@ 7 [ m@e@T@@@ 8 ~ @@m@P@@@ 9 h wL@$@`d@z@Ğ@Ğ@ :  bw@@q@pp@Ȟ@Ȟ@ ; [ @@@e@b@̞@̞@ < [ M@*@`@t@О@О@ = y ipr@(@?h@Ԟ@Ԟ@ >  @k@@|@s@؞@؞@ ?  P@0@0p@@p@ܞ@ܞ@ @  K@8@@i@j@@@ A  \@Q@@@h@@@ B [ q@*@m@^@@@ C  )@@f@A@@@ D  \S@@Ē@@T@@@ E q ) @??@@ F  @b@`z@z@@@ G h @*@r@d@@@ H  P@g@@Dlbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb                 @@ I  \U@"@ @K@@@ J [ k3@?\@b@@@ K h \A@@l@C@ @ @ L  \M@$@0@?@@ M h x@@y@Q@@@ N h i@&@f@0t@@@ O [ kM@,@0w@n@@@ P [ @q@@@j@ @ @ Q  l@&@k@@$@$@ R  Y@ c@Ђ@(@(@ S ~ k@v@a@,@,@ T d (@@`p@ c@0@0@ U f \H@@@`b@4@4@ V h `q@6r@t@8@8@ W  `@,@n@@q@<@<@ X y  @p@V@@@@@ Y  \@T@$@`@@]@&@bbbbbbbbbbbbbbbb>@7  Oh+'0@H`x Torsten HothornTorsten HothornMicrosoft Excel@/m}@GXN ՜.+,0 PXh px IMBE0  Forbes2000 Arbeitsbltter  !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~      !"#$%'()*+,-Root Entry FWorkbook;SummaryInformation(DocumentSummaryInformation8&HSAUR3/inst/doc/0000755000176200001440000000000013302741062012737 5ustar liggesusersHSAUR3/inst/doc/Ch_bayesian_inference.pdf0000644000176200001440000025674013303046020017664 0ustar liggesusers%PDF-1.5 % 1 0 obj << /Type /ObjStm /Length 3416 /Filter /FlateDecode /N 80 /First 650 >> stream xZ[W۸~?BoӮY$f5kʥCH[<OCB-Ϸ8 0Lf8%yKoK`Y4SV3t1,ʎ9Yb%X’1)$LJ&#äb0cTPa2t«@EEE#DE*%Ƞ() FQh4;<[px w3;IV ^L#f+D4F$ ܱ؁1 0'v-bŴdNp74dQ -h OYlcHuDbx&qX,(`e,3`!*Dטڨ~kE j6CRAk[KؑTXDV `2 @YZE8ÒQN-PD r#p @?H!6y_~a0A>`qslk:~Aǂ>M/i5l8Wv&gKgj6b;IN2L7Zbkn@ u- Zo*܂l)\ AM&Ӝƅ5/{mO'*@0[E`ֱ83/$O! ;?=bLJfwAl=hl::d8%R"'}5v}BL% ȕaipY! 1WH<׊?%1}Sq~,{;ڭaZ?B}} k* s0'QJRI.Z3^C􁯌SW5 rfW#E~_-w>[~O{>鄏x`~/%>|§<)_o;}. ;yl$IfGh):y4Nj+\^lN qY%gKnh܆RbS'Jj ̳uZADԧ~:5i]dx\ wQ0C<0GHoWי`CG'7}||wN*aA .Gu7fdwj.MzI. hIGɪVfU.ķ-.hAf۴o]Zly>}4Y ؛.hi*62Y$eu%(q *ޮF\!+=?UMLyz0@ h^FDl4)c5>+B",LBzK?qVDF{'hb{\U*n+#z%Zl򥘥GM=;:x]c,[6#v4"Ju4e,#`D`΅]xrE7%bWXKL;hSVHb~a7=ɕX2 )4k⮄Yes&J˧UmA fu4<"+os*0-5<.W C~_xoyi yK2$8H;x} ϸ XJ'i`$ppS2qz̓U>fb/u&8Oaycy%o_t68S# -B" 8Ӥ3]WgjdXat;@%+ٰp•\FUC-mBa (l[ !;Q:D2`0~1K'&=3YYxt=m]O0`(M,![arA.*2mq'NW@=Ti%)Qg-tT٭O>~+j|bFT.o\nZޢD_O фbG`>̲<RX`%ͽ+_3oęxaɌTNqj=C*) IOlQQ+j969k BGtTn{ 36q=%xdn#7iؖG\D@PJಸVQ6wO%kwU9u*bf`3jre>i@oseTc j+)]V7ʱlVq1jBY?tsz_5}e [̭eCtLa&=)'L`kwb~8}q^.}g]Qk׈]vlb ,kʥ7ko{zl^VZ\Be;Bgf1pp"mh~(> ݵԾ$c[x$"vB3?q2s]#x/߲]v~K@7%Qk7myrf[pKW^P:ZV]t"<4NWj3t8]/<=.$E85TI!6JC+Xu~~ޟ`SvqGV߱g`ٲG Ecƅ'OPWET]M-g|)߿hMͿr֕Wm]asUNV'ÇEٍ~@➢/Xlt5Cl-Ը8SdL%f4M>"= 9{"ʪɹ|ŽSB:Auv7|hqS 7{'tO[r@Y:s9/endstream endobj 82 0 obj << /Subtype /XML /Type /Metadata /Length 1653 >> stream GPL Ghostscript 9.18 2018-05-28T10:48:02+02:00 2018-05-28T10:48:02+02:00 LaTeX with hyperref package A Handbook of Statistical Analyses Using R (3rd Edition)Torsten Hothorn and Brian S. EverittBook endstream endobj 83 0 obj << /Filter /FlateDecode /Length 4477 >> stream x[[w7r~g#m9b/9덓Mb쮹IƤ4bD")[=_@[r9zP](T}uNz_xaFv?]?]xF.L^.O_|wT:ugMNLrMSح7sS$*'o|LewRQ*0׿TSɸi/ưMnrf啵v:^5zrލSԻ+;A`3S*7'6 KI-kL iQ {j8<褔Wqcjih`n$ >skp<]ZP˙}#Ai=0L%3ab [7eiF09J$+FmwW: ԾʜLVɨ`hO)4bCtMT#KO&'l ?E ]Ƴm.XQcɉ @􊹘)\51mlaVJNǼ ($H>H5Z*̼WvbV\ GeBqjN;7.B$rzB BE@BK<to/Z x"7]VQ!d+6ܟHQcM\W3cIЄ2FԔQ)h;;Mc-7m/&l6,IVih zN0fGAO>,1l`>f$ia},_BCS12р)n6)zw~?KeiV-wS传A`fO6g?dF89FcL7  ]Cj=MwcԾsw 2SllqΧHѦHu*-n g$`iB Ğp-H:lFVNsD۰VlIk1,M$?یPWК%l:[ VF!s-l9C8"(P!q`(V_XAFtS6EEDOI1YDidp{` $D<fф^  $OBhPE82ND~"kt#B$h7ޢD̩&o.\@VB\֏ \M;0VdK4,7eAaBS%|_gng%=L)sfo8Y|0 ޑSCMۑY+kV*KKZ䓇\lM3ȥqMT0޶y#Ruǔ3(TGc=7"S|E[ν2NY,!کs|LbT((R5 JoRwʂqA()ń:{C #G]-e'a6 emSZ{DL_'Y;xl,&ʰNSH'I[@ޚ.G-g`V"jZt˼n\5o 㦅Z-\y D݌ #c8J;sJRW`S|ˡ|,8rZ>&`?&"&P"\=2˶4*Ƕ>u? n;Pk>b<7FWs 3z]mXLL #WEueOr;Sn}:Ƞ*k,۴wTTԉKqjz#@Q[BBjVNEEM wt#%` ˔d~RƒkEuK ul׉g) KhH|BZQsG傀R T., R8SiYI.9YU#G!z̅[OY_/(y(] d2YA/ZCSAUR])\gЦaU~F5r"S4Sj2AeIÙck7K?Q$ʂ{¥ xlɞ^ԝ+D=4(Nf~V[#)H|(TҜ$™=25Ңц+znl' 8 egV,{8d= dH3ty}.>o4y,lƥ1;-i.t.9Le "9[x &=0GovpTx!b1c[1]l K"lcpzZC(G:U cMp,XyhW,%3ia/ Htن|HȣM]CW9 L U!L{b5LS?tf3:]&/fFkk jdCoŴ,P [ ƽH#r:WJV^I׹6 \ZnQp+%_+>F QI/SIx''J3\g#/uEěѿ|;KE80a__}\p&3멚VUU,(z:\G,i8ӫh)]Zll9O<]; XDxY}jNudJqQ/*k])v>pf[f ;jCFwOeisc?Z;>~ `E{[gZ!֟<ݔn7VWc+9&@ni{j8l\;377_rݕ; dvGk εcFQ/tݑɥoӝ9?ԧos}zYWwIקT\}RkBPGWe^z=fg9tcvq떇 S!֝f w^4 ndoOp~$-Up.U|e3)}Ȭ([G SUzCZe_05apvaWu;SW"|$?ŏd1Bk5ewbWҵnׯ_j8Y17Gkn6BayaT׾dWʗzf /lod+2|kl#}9c^Te//;] SNY]k$z]%Ҡzbiב\<*a╨[*<IW"a0S3Gk\(Ů˲yO/UlX7ӊ:k-ZYek %QlIJĶQ) J"9D,vcEardvHrkXI-+q%-y\+Ng9ˡ^C}:է7>,g-p vN7W ݬ }~~veG O{\r8i%[W|=tv$obZZ*i?)]٠ E^g#ҟ~}͖gyg;M̮ 3qp}k9Ӓ^O+.VU5Ofm7i zѕ]cӟ>nlb]뛈W_a{l@\{B,PC6])ŧS7 c J v .?endstream endobj 84 0 obj << /Filter /FlateDecode /Length 4900 >> stream x\ےq}_#=6]_IJt(A).0aB+5ݻШɮKVɓYNr'O~~wPOb gy"(7[OQٙΈY+j-A$e5<"T%Yƫ 1ޒI:'l\$s AH:.TLSN&vNj^Ȥ]v%(U]Snw"+[ѳנXTvwy{# !=4D띟~eG1)zz_@\ v'ӏD$ q?] ' `җ_š@KQ?<] .8JvZ`zB>.Fc} Lӳ fzέfvRNGeE_ F'^@{ 3Bp?5]ޣB %4۠vl|KD6>~Vɞ>HZvmG O= xo$S3rZn\Z2D;ݡA1ws[nMA=وWec`tY/ȋվ=өhPRZ\sj2;Un-xTw<6acVIƂoA-Yy项g+~ՠto䳣aG(lAR#{M!$X ,`2r.tV5p2x{Ƌ,18\R8x 4} Bu5 FKQA`Ud8 U8t8jg;}sqe8iw|\t`]؋WOY $r=Df6Y4me {2zO8΀էS{z۞޴tlOמYf+=ۓmObM| Mof"*!ZpET<b 1dLAd?1.\χ΃D4c9\3%Eif/"X1N2;w*cN7y3츣\_ NwgH=ZnYg(",!m4ʦ4NҀGlIu~(RoplYU@D 0H h}fԵT|׊.HBF}-~jwpPwe}opC7x4k] cALȽijxѰc6BXR_1E4`?AU$';X9ai /UY^O0M/T] 1?aq&OB4L=ϛ.|Zsf/UO;HFp`cCGb*wheJ iқ_]28.M"9\D)G(߇ȷu3LhCO%H8%OIaBk*}]7hhypq';!!Spl6x ~8?=\h @9`Q&jmw }fl!0Cm+i)k@ǁ "݁[N/x@O7*MfjW#]1 |rԀ^ut&Bm9A]2 *=o҉k薸pWy}3^38(= \㋶7TB"%k1wosLucx.W[L_>uw#Sۨ-U/CHBhPm٪ԆQ cdP;O A_J"Һ| LJY[:PK!(^'e˚YliJCzr"NQ 6gPZ0{{16 }g=6]sBϳo~DtgN2u32;$p4+L[w&(n1,-6M)ДW^-1£űN3_ظFׯKh0kg-j;bP4_|Iĕ} Zy0ڥhHΉ%:#.T $'؊)<*A;\޴ۜo/cءN4"gRUAӑϊ~RHu{EMvXjoߙDrS0:oqwE0AL1hRgH!pd;^EPXF XE0| xՃUhT5q2'< 7zCINQ.,(q">O ,Jijhu_q ݌xԽ t?p[krU@Zro~Mz,Rҙ{K,, NPM(k|sZ98[Kͥ~0fUlJ<%pڭ{ɶBÃSy*>^܏N,vKAkcNSky+YN3m?3 <zʭ;|5aVJaxp*>D>HFCXNVt1Ųqב3ezq&$c٤BQ?eŬQ*,D9&^eȀ%_Ka|xcXw138/ܫ)i(_qISIJœNS*@EaH׍7GC14 bNqjasyY((Q_n -|;营>dt QjxHLk$K(@/YD%< ETveXk@fp5ں""Opm&c Ut`uE[]:0EpדF%~^7n,9̥*dM 0Q-̲:d#ɀ䊊`_UL$c}nzmQ Ъ-eU[R$?I "u{!x| zW$xfqhҝg[*YhzkĵM$WrN՛y.o4f%_j]ŀ]qq*Y2cRbp )jMfqwQ)5 ږFyTXL րCEbM=Y>ڙ u`x}?-DxJ4$ݧb02SŸ<\/5NâsxLrw:?}7%BZ+'QؽJ4$?TktܧvXi%%IW#p/eN5x㜙 ?t^|≁+R̦Kz 5w@gtZJa̺R9 6+^f V9R̓8v bl#71ی~5U3)~Q1~胰dPȏ˅rZe,JCeXBA/7rf[ P(uqc.U2_>4GVf䣱/-]ƳLD=d95FMmn|GN(D/㧳3 @?-ŷo\`Vֵ4UOQu@aYsTIj/nWnXNUx/Z `x7"D=qAI׳ r++HpG%is׭~]S3=Gba hªl'h6s*i RIW 8-|Ny1A4aytgIǪP'\CM No7b 1Pv򮿽AQ[P6Ѹa"wJ4?:qʏy,ɍc8|޳(D܋~)ndt+qnc~._(Z5 X7[;:}u~0I՚)|Ќ8euEM%c9P p6msVclqBuerprЉ"^)ЂYrxa7r~4~ZPӤ ~~2|!;R,lݹ FjdD7Vk9UG+5}15͹Pk5׆L  P,y-%G?"@xƷ?5endstream endobj 85 0 obj << /Filter /FlateDecode /Length 5221 >> stream x wDpYA)z~sx2HI|7qx=mvm HBh8]|>YL+~5mnþBss]=>lk]Ay0V UM#mBg_`W4ś~S`8_e/yYl/d/7ٽGq6>/;ȼ SeQ~flúG8iIk-ZYjlz9w=Mm~j{ӫMfn6>0mLA_ܠnSn_A цv6z6G ?`͐-+ׂ%>s}"Vv]\ZBSa4^o;x(B5qpm1FPLq"8 kB :=qׄ߳m *fZ!XGD1, |/JJqdTǑt2R:2:m015Π #^r A7`/>byF<.DwIFa 6`r, }KìAyDf @1 osVf"aCC#wr`"Jc 0QDP)$;`>[̐0HB#RP=P:9&S#m6g@Mx8n*C '7$gI]7@pNWW\zwwυZñ&hvvE#G^YEN F`$"d DYœ6xRI>Ej@$G.tG0Ym_%ˉe@+/W*˙VqOdObg/YrL'匿p t!A\H%dky7A{!k&-gFk(nwIt<A-֑%e,` tj^L"Irۧs'u~H5Չ|VPJ  WO{J6kT*#5(\~2*\KAHSz3т~o> !ǒ tLux4j4k7! R HIB 97T@A0CEhp/񠧯h VE<vInh kX1o vY2RB6>e%jYBHqbU]}1{ʑr}F}0G},Ac6eBu~7HEB \3v(޼<,H,ݖ 1^+W2,xG8ij#lD ln湧T<,*UJmD4 Iee|I <(oze\3& r'*xT\rNx=e|Q@~k h/|8sK'r3e="h#uT ⡊9} #^2Ve6ov#=|/76~A@le o-X0Yʫ! v})IgkL@ZNc6lFSF{8(ӢP.閑F}Pvp_@ ܽډez 1$lʼDr-G2hbi.xs=OdSę;7)JdfuW"S w0; ߣxvY VS\1mw0c Цey(J:{Up C˺32O]8n ;RGW(5+&uFd*GLhQEM6~9T]*0SrQN'eBrku~ )Gi. r?l9  ]J:葆Q6~ժ3פOkej-9h촣ʽ[ t;.0X lAnPp>/?fi:Rdx 6X˴b!v!g[eP6u~ -姙JöZ}Ok`dRexP"LPjXAbq䬨*@sfIvfHL.b cۭ:ǧ6xQwڒsդ:DH\>mvS Lw\ׅp7-+gS?cK/R ̫3!Mrh-.Wř̶¶*iwílryUygLTu\G5=PҤu#oU dKbnv1%'0lSt'2԰%IifVBJ%\g]=V:Aݔy%]b(K}  &۟/xbQҷEգS\:LNuKNe.|!):?J<Ŏ(`LZƮkL aB*ŘQ*6)J;14jo̚> 5[=UE+ ^)! 60n;Dq䓀ejxv ព34Bǐ+-/rt3h|ٵGfX4i ۮkgN<$7M_W' {lMendstream endobj 86 0 obj << /Filter /FlateDecode /Length 619 >> stream xuSMoT1 W=4DZT}tB㼯 ^4ɋonw|u)[Tcka~$qdyvNF& bNZA\FVv=.KׯjroQ%*N 8K$N`k:f3kZ-n݋P?;14S[&#Vs›YW3ְdx$؎ ESaY)Zun( \rxj0WC<" ^n4kTqN)j*YF*Rg;Rb8D@B5ތ{?څ9מo"WǣV&AR7]ڡBO3RB;]_%\64?8tf0 7M஝Fe{Hz& "Y0J ЂPP&XMa#`4 Dm<2 ARٖx@*Q8d^$S`kRi)c[uJGgEN˰ )d/`|]s퉖~l%r:M9U8(f&~endstream endobj 87 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 3450 >> stream xW TTW}eA'bŘ<M+D 5BXU2(2PU dFd(% SF[NӉhh(؝XE;{w}e F&^> ϰ;^-$)dug98;t1 W1\7d^R"#TB&{zΞZQh"¢5 K?6$2,!E5ὈmsMKNN>odUrdBꃰPwlLj&:LeTWlĄ8OlhX\ 0 bzm[4qYRfveJHhfHk0cՌ;ˌe?!Ȭef@f!3b0EbƛYLg2˙YJƇYŌfX/Ɓ`d& r?9utpvlR(W8'qpNRCmer+JI> zX2)gWCsSKv*cuq+Ga}270ykx% ~^_[?:}+=ą \Vמ)Ⱥ,XqZc=ik(sBv(h]جQ$bz(p R`ctVGRdӧOc(&";!Ӛw64vvz/[Q ;oBlV%UsL\. UP+GY<]Fv.bsa8pm #Ė\1לSDzŁI++zcjq'pIK "TT ND| z_-CɕHdᚒK4w>ԠpqI0(@Q_-Nqhåq 'c6A]ϠinxoaG\>iD澟pNG,eV[yVnY.(t>!JtdP0ZixցE-l{m3=.C rk$"HJ`%,l^Zz` lcmn "LJGY 4(`@%/aʭ g*gJCElbiZH{GcH21d?aEޗ&X7ٛVSet a_BBD)dׂk)EҾ>t#ʼn_XT)%K8,;BGѹ^$n)w5*rg`.*> CX2D%_]ǫ͠^Vښ,-4BqDv2;ezߐi^ I3xK0xijaWQC4̅8{jp(3NKG7FZM\sXm5 ]3lc@̸ X3ԺbV^{.Qը7< onرU+ ⏞>SE ڲ` ~!s+,ͧwD_ꁕlTץ^t(gZ Drt"m _x`e"y d)Hr :ױxX d@̢O1I[CCF\9&:*>)rqg?~Zn՗vKI.E`,2S \!{Ƕ(N>cđ8Gk0QKqΆnp ^Lœ%o|; - /Ė#mF[Ui1gqt=w! wH,?5(a]2^.)N8bDEIN7<-z(q;_W 765]lZ82x$t`.I5r˗%шq}^lr0u;jڪZZ(4qG[0)ǧmmv yxz\j2 ]Y;! iM9TV~3kN@}8IpmWsGJ=59> {e)9w>_S\TfRû rvJJ9Rςk'Oµ{{F%'AW_DDQ~%(xGں/x k0t dYF󒅸Fa>$Υ[19I+ /mPBїl!3KPY6uҶ vg> stream xcd`ab`ddt v04qH3a!Skc7s7˚ﷄ ~O XX_PYQ`hii`d``ZXX('gT*hdX뗗%i(gd(((%*c8)槤1000103012ԽK2>}wy߯jcws~7yŞ>~nSg>;3wߛgO^-ym̾^];ǂXπ| wt\eXp~`:endstream endobj 89 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1925 >> stream xmTg*T:hQIQc*$*TI#BawD*/{YayGXvaAPUIi̩ibFHKP$1Dju9Q$)H2<5IQlUժ Q~HWjRUŒujQf`e!XOYLjT+ *}*YQ1*b*toHmdT[* '5,eJL X"'D"P _VMxf⿤+*Z:ZAE~RRD0J7P _@Ksr=^ly>Ow Iȃh^ôD6߅"C/Wߊzv~Q NtJ$?ܥNOiȑdߜgk$_qz,c[p9ܚ8Xg-WŨ]'ZK-e%`6s@quyi/цد/^h JHQzx~H{p/-#@Cns3"Z$7I9(@D[t0xi{p)(7߄^oXO%})="m2  6зEDcMnk 1Hsq9E*?.%=+HIg\RVd4\H,8{̜g@X-57)/h;^d4@+W6-_k+ *٩qZo$BGݔ4rr~%Tw%'%>ZӔn Os{j=W`=kv{RNZpl3Q><wsh>Z_k'q=1DKSx3,qoO`31Qsw NO BOB;ohrdHׄ"p桃MxW/ G^\VT(saJ`;)m*ʿ;:TLc Iѹ}Ecݝt_s}}h8Hn4ɵe5k3MY-G<ߨ*~k*93 y3,qbe;9p\PʽUpn\+Zƫy!(~(s 0k06`jMȢ]Ǔ䞂[9=s~oC,7_]N%#nkelIN{/t<ڛ4zX=vy]7뺅 5roq8FǨ58 >nTp*-Ns!0" A|= 'tM3Ha ڪ*m"4|@UJ=} 88ڍ.&ۨh=vu~Y.)(VWhaYóYaNߟ9|}|w8endstream endobj 90 0 obj << /Filter /FlateDecode /Length 150 >> stream xU;1 {'0q_N@ -ׇE٬W.,?慅:c8]J`̤\՘pBf3y0IVL;)H%Q3T3!T*_qӊ[;KY I*) vjKԐuSBC endstream endobj 91 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 7536 >> stream xy XSJz*=ucZ󌊳<ʢ%Dlj~чK艵;-aXК1̓)@($4&|_8vs̞d7m9vA<ָ݃GyGvN!#c ;eJTTd!d+nwwno/!vk̛݃l($(Tn&;< C- ]$|iIJWFG{\g߆]N6n29s{LzwTig̜ߊFQhj5Cަ6PPNXj#5D6S-Dj+F-ޥSj 5ZJMQrj5ZI͠VQ3,j 5ZKGP0j85Q ՗G R j eE !5%ޠXMj?ԂabQ K,i2HCO0&SOX50V8GTmJ-1#$dXdoYbȊ#o&[>Wèz EɃ55PM۽r/N]i[ T r>Jua!8a7_x2]bչd7Z#]tC< HE7j94XiUgcq2%y0~X%JhK_."!BXX YoxY(Ahc勷#2?U/ Ϣ7ƾ X`/H0̺kECpa?:Tsjj7X Rm+)0 нBWrlF0F:P @X Sҭ%Q2yb\ }ȴ0d挴b!x;TkL7џA$ l'~Q~ SY"y%hm#5vk>h 7 ?=c'Z4$ALd'@Gťvsx^t\" u-{#éIE0%=t)d!)ӼD?Ŏx&H;f#m ֯CЇ2ǘq-[* M5qe8Υ36} E ?b |pw2Z\̢Ѻ\??[Kf;xzZC% )NFOqsXE"O}Dh8mÑ=^ oݎ5C pEz|u3a>`a ! z"`YkJH}>e>Rj)~Vq5<{1$OWѢ@! &D µ_Wm36^Gz5vhh-7/Dm(2\'G.m{F~0Kb@eᢙ =Ju7(+BB,a $:ەV^yu} Xbć'vM-v8`FnA,AI>2[* PE%AR/344ֹq wy ݈tрFylבdQUHV'Aa<{Dn& xMS HV<'ʭ CGC"fپ=$BjбVs hVU8G>DP}RĿ+=S3Ú[>NK)rOKSBR"HߓxR=+N~%!5RaCXԘCFm3 z4T?Jx 9ޟ !Fex,՚H~HVvl!+&t¶s>c--4l:9lZ< O8:|U,ա#zO' FPah#VTsƧ3op=MjV{w:|#Mrx\u FhAC!6korUF7|~z'HUSddOŨUezii8~ј|K#$%(ihA8ڌC *Ӝ:Fj2 7(Q%f󃲣g4IHV@6{GwaڷcP(@Wm)̢Pϸ%CfʶݹQF~d޺'hd@d3\.O?!g`om%;yE.LW]ָS-i:O^$>%A g9e8rIEcIvlh:q]4'#1 W wZnJp2HFҵY؝ eN"q{k)$l8WgCBYڝV;Ywq)wm ]1ڔUUM-b5˱698RPWޯ7Khzh"st#^Od@]-zjꜢvF|4m{p|ps!⤄E4:ds04UyW{h7(]vzoh!zE e- yxվ16φdo'T{b^(k4|S#&$ƗL]_vƾ'䧓x\]:5U%DQ)Ӓ*,D}8nvdzƨ!/὆UX`wE) "u3:b_X4Y-su+OB]c>cFsj(s\RG>NUTUtE%J4*COzfVeS(]/BTە5~ݠ~Ρt7*B5ɗ͠@lϰyx'fQH7=#LH憽@a$,KѤ%+)Jo=mY\fusv0NoEnx"1c+2.=@h%#e'aߢ"T4z1eS$V茙lь{9z-CbH-c!,+U4n^2kHoo 6E}z_Q¢"4Q_?aܷ- ~zHJYTmtH#O79uQ6WҺ#ZxP2>dguCASPY{062T.II $@bXȀRVE90O\^)iۜYfڠUd&gW&5xE=9FwK~6$# ̢7"+㷚o6׮/ UM+;K8VrVtYMtјRЭ ϗlpufЋ?UgTO{B:#\P$zŢ*@ԁG"4b.'y>un1c=<ß )EtB4-{ %MB ,[wj ?Qɩ*|_L8l Oqc9ѽf߉jh v?ɕ"A}RSE訩7M+3K?e؆@ihX>Xkh CjZk}:fgކo{3WO\8=F 4;T*)T:8!#;V$?xXF&>֧",0xۢ 2n֟T\R5R@k#62[@60́_H;u$%gȄ/0gI˕M1e)/7sMƎvI*- ø ]01-BN߸p1-"#""ꪪ!YSZ;]HdJōh"X)+A .HyZ?1IH0VTO]Ex~wK&xuYu4z8:Q^З>9 blcӣu곚 TuO`1ZfҤeݕq\^m V$BMB(W RRHleGs'% lF`c Or hK9##)rZ]iv(waS@DxYtd(WK:1і?i#"!wآ=G&CUFRBU]m^i0O/v[?1iBoMvtJAYD|HmvG7ϩX3C_o.o ,-BH4u2PE "M*?rE I.Ҷ[V2|Dȇ\i`p[0 cڒ܋YQeH7 x?p9rqiXqɌʢ.EFcPcCNvg}^(ev-6xp-G;2dc:LѸ9sI-B/t7l_",;EW:ugѠA-sf.pLåo9Nܫǐ2ZeXۊ$a!axte0YlFqmH-Y:A3?<=]eyqtހx0Nު<#=+gH|; !39*N[X)*.$5<* 8܈h"-A(u:(/2υȕ[U"襵*mzV Ѕ\ IcAD?l6&@1tN?x!T؊杖JH!Kя\o<c++Knlso&T&Tً̰o]pp(O}Yq軆+6}u b'p.圓\c9XM2٪I\L-Cɡ_Q{lh"5!@ZGQtdbA@+[Ln/2Z{\wtM 4qNs[$ [aK)Ӝ:/E *Wɖ3<>8wm\#tla+~ӢZ2\'>5e"b' ^ c D/;5g ݙ~j; :}1gG/6>I>Uc"\PB*U{qL !ѝen4iG$N} ?sdiaFޝd&00Y.nI^w['zu8Ar0v F+DH}~@h]c?0臦 dQ91-ϗC[h1AWf)2SU$Qۣ'vH*I,Ht ekY\~Iɯ ;sbJ|4^Ftc{ON"6=%RRCUU?/u+D+b~% *>>`J2ϻ |MK{K`U>w9׏oadcb?EFO 9q2A v5ǴWPjx1re>-7q'qS4_u;L=q*B~m$dň~~Og:sNO[2C-̅|D> stream xW T綞23*D%R"bo-BB A$;A@P*oAR0bֶ>UW{Um&ÌaV0c#Ĭb35Zf"Y,f60KwƃY,c<7f&&ͼ30Ɩ00*Hb$bŃ)VV+رanER<ס1COXe&zΰI>ս ${+{+^7!2vBMH$ƾ_LN|m02@#O[82hqRЍ9?@+4lȑ0YR" ז}bE.d4,+:x@\W*u^+/ |MIk}|#Ed8 ]4W!HHCdx;5P'y'j) sKpk2S!jF'~qdhv&&/lǵl1HP2VA*(囙MƬW0_Qʍ.ȩO,8bO?OqH/hɑ:[J:Zvlհw*ɿKk8YTNAAb^.KdLH+pprƝiӠ #{N0f;r¹d~|JO?/% JbbZ/at Δ!x\бDN'.XXP+a]?Q\L\%CT]я7^[V-o>cWwپ@d3>Pő k)]hk`t.4wWh0$p>6̚uս!4JH`o^#8Bt*²܏$NZПTټd0MJ-4ˣjmZn` }}A+չ1ɘU|9i+W Abм-o'Sm)QSڐyg71gN^9rTy5E*ʂGCf(H;o%J:>bkp Sk|}hVs':,o!^-lp~!_SlA(/Kd{F8e#>Dw5%-'dĪZAon4ҒlFƍ5q_\i 7ijr6dpz h=%%㫇{ կ3dA7E`L;kkȩ$60dfvCWE !|>5B\[KL311*pyUc+M''- t{Cs;Mn ?X:ϩ4;BgQ'㴚E><:#]ן@lu:2HtvaZgDg/P`S9_ xo7DQP6@1CaAK8b ,SmiհM@˶k1vc%`}eEPϟ.+^s0)akR4P^#'Ow >Y.8<|~nؓh'g^|)jw|#هJ҂kLl6pact6_mq3&}(TyMWH5Q\?g+-Ra p o9v" [Ok?0=AHFO&LکڕIw6'ړVFcKʦՀD쌡70+hg3=8LmC+o?CN"6O9UAEn.ŤH*OԖ4u&LQ*3ˏ7l[;*q *=;o}E{;|,۴ #}@ǮRɤ'>*10iGII`h)ӥ@%z ӴbRܡw2/;Mew^+ǖ3fGu"GSs |6y-Lm6ڞ6^(G "@a~ӷnܺ9\lkk;a}ΤG7YlYH(2(8Y҆*_*'J;>l8Yw8|}2B|}EDr^P /^PNԽ <:JΎO[;#5s좤5?mm?$GnP=m婤ڦӟ|O.o8`^Kݗh HN=' 9Kkq2o q†꼈od 2eɭp3 3twkv4W~|áFm ,ߖl vc3z!˰ǠCWӗXG6ng_n߉ړ̷l; Ko=HCW=JfaTH;o}tKq}nD"_U鰙Nkq,,y_۞Ǒom8 O@n#2!|mvN׸:.Nߡ"_ %{S>k3a>=Yc0fRwiI;ɥL狍g h5/:+|h6UNZޛopQZuyen*)<|NPqլbMVY ?2 endstream endobj 93 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 5411 >> stream xX XSWھ!psU܈WD;7TJ-#V{Vŵ A@-aA =aߔbܨSԿVm;ߵ3'Β<䞜{}PV@ -wlw ?AbI/lZ72ݎm%dhyT8m3]\8qi<`wB Ǎhi E肷R*3g_wrT(|}呾{WBk}{\;C(Z"["LX^^n=k}K7l 2ek.Z<;|s[3g͎3wEާ^S FʃDNmP[eZNImVP3[*ʙzZMR)7jNSBj<5hOGI!Pj!eK S#j5ʋb=OYSTYP'jywOߦ/D'!L46ʰ7نvG0Q6G Fg6ڥ__Y5`dv.c޶_jkquS#JdN },1 x=a_3:(@"~ܐYt_;t * M<}3K$/U|h0̅7^by"CXh[=U=xGUHQ/S`f= k'[ ]'GAըTo%5$pvzaR2}~bW΂_ V=9e ˔5ԗߺ&=uw.A1]b( Ig #$gpYE2[}67}EqpX6//&/*u&eBQdo+\zJ"~Ԗy~~{wl,# #EJX$o,(jqm2Ig5qZ"~YC`nǯ?$9O09< |s[=5$q=[wu#t&2ӸoHR f1:[#7FHI]Sl1X w* ΒC$Hq}˫{Bf6+Ѐs.AMaH%{tO^WH !p!:A3 8:ތiYmTB~bOC㬧mSlAȀ*P*<г@hB~pMJ'W I 'D_($ Ĉ n̥+ ش 5sj\90.(7<*ήd-xHN.P+.ͩdQi|j` Hު :9Jy'fH Ht}ӗ]Ѳ`CluI}AkPbz6hD| #MO8ujbIY(rO'JA@SB‚x|h)dz6'W@EM5_ ! _pp6{v-Ij1EP0Yaa9ѡINyMmJ=W@A f}S;i&H%e)=$xK4KE(#U8Ud(#(8rriu Pja"~2e]!qryhLtmOOn4Ax[Rc2j.5>jR[zG(Y%PU#PpsKWfc&HX''(c Bj4lejH5fK(0o3(òD;b|EoZSP*/~Z9&e?V }HtUr@u_!ЇGÜeDgⶆ>&` :ѺW6z_b>ڶcG: `&E̻aeˌ"i94Ixmh`ƫ"+aQpDFPZ^#MJ ʈgSq1>:%#J-غ)Y%lKY)/x&#J" G#;v QC({up>8䆄3:ѵ“EtmԒ\A7EBF{f!aA;F.`O(;p39xA#3  K?pv^keԏ.a/G"`Թ?{HfJC6|{FwcrCLĠ)҆V#JPմ)q&`$PZ1oX2oWޒ(S㑴X^u\|wLĬSPp:?:3ÌmFk#&mғg5o%idZaDGC9G{iqQ2E o䆂+˂c"J_5mIJ_ -tf ,fh+3l20D6-xvqTm/U-, ][o+9tp#Dum?, .}¬EK[{u0('JޜЇ)c8"ۺ:RUa(3NI#j`=2.|/bwQ*<Œx`QPkEaXhQVE##ڟzulh(x^%J"wޑNj*`aG,K}[Gy!>09qtVf(#܅SR}/'u>O wHbWYjPnyV`S $M-^ j$ܹߜ02:aRg_fsEyLy\2\_W'e!CTilEu^91[~m{[/`*BB$x,hCoά?~<+J`VtB}>-+GLU.69C=;95>E9j}'gk٪BWUA͓jcf{]Cwji#?U~H*=txVre/"B'%WZI=6 Zs<(0)qdF%(ȷj Ʈ=A**J ̈́q1 )WȻnbQ:'ZG}X@)-A%L~>,pvrf6ܲK4pE0l7t#FL+TfH`>Da G؃v*$z$u/mՕޫNFM:ȁEuz1t`Q,&(Hj&Һ DDPT 'ȿ3$:I[d9 ,1DBm#8\J0 ކӋlrJjR1g|ۋq[3?>vJɫsl#Ѕ. Ue<䩦 +w} .xn56D؎?F[>"lU{kTzbũ3g0=㤡0y8B̌NOά^v{λ iq'"dշ;.6)n=ً]qij.X"R/RP(*bq!(---jbԢx}ATK% ϨQF~^!`Q_-P7q)w Ǽz0I@-u~'Q&^_2,'/3\ba7@C@4y}"RR~_Xuɿ #Dq{aAȉlЛNp!.@սd^Ct&榑W*0\Y[/kl?)xz%=oA[b<}pGX7MijZ!M"m'i2ˈ v^nsuݰX//w i'25 ZGlmmM)_endstream endobj 94 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 386 >> stream xwCMR8'vz-   ZWTmqCopyright (c) 1997, 2009 American Mathematical Society (), with Reserved Font Name CMR8.CMR8Computer Modern3vťbڽQ"DfVT@htkpozc,MI%ڧϋ1# :Q?f{ku؎׃$Ena}{mltNx~}vCoa  7 כ Uendstream endobj 95 0 obj << /Filter /FlateDecode /Length 3978 >> stream x[[o%~qNg y+`{z{ SzR=gx!öTWW嫪7bgO~݉Mx"68)G+['6O|c0W'ΈQ+TGg,a>K;3i [!U3t jʓnVf.WxbD|p bzۜmQǿ~v+\@NQ@~ Z =vLU~TBVA+mLpG5pp SdаcwȻp.Tʰ$8Ũl WVѡ .%%H;aKYO<)aIGbNCtFļM{wl]̄S(~Jh|! $Cl$(EFjs+q:*#UTOb DB|޼\frI>hm(J) όHU9}TpN빂/#; E%8vI]cu0$z De>TIo3:oaܷi8c\ٔ`]@JpxYɏq:$"Q /pfړ8!0%#buSi;$qu~H䜂tWy|Em`@g_TrDA*.L5 ^5]UybJh9KkJ` A 6Cs[4ɕ) ̓sVS1a%)b^؁+,caDʛp{v$U㮛>R^6%᫝7~TAw)׊&r?#7kC`! 3c!)=LGUR@E/4hltd)u; ʙ3>omA^WoY,CFsBfЇ<( {U& 9˦%T-#L {~$+bML9':4ԻD!l o38b " ǎ-Igᝫ}#.+0Bg|њ"@ۛ69Gs~YVi\>u5nv7谌 V0͎|h;3p8qV* d<6#duĘL`ށfcx4>7 !33G>#* - {:1jیkchA5rcLcU`pu̍ g/؈75וe?IxM( ei5yщƦ|K& [".y.MHkFV͢l*.INAhxɉE]7lLFML6=^xOjt=o%{Q},<(/ 01 ּlΈ0t^`c*Qe2<ښSYLα_(zz&fHkE&U 8Ѿ]ILeNL/;1U˰u!+:߷ =CnV`ֲ"FXl}H7xwDX3N4К9t1-Pᓦ+-c0(1Ht\ b{X_&COg}c5J۔J"JV,;EWတkXnCFLj?ip0}Vu0ISkj7𺓦r6Y 郣'R\Ĭ ij|g_WyܭUxڄU_y,[oSR]~Ow!;!Bjn"G97H,~ӓ?Èendstream endobj 96 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 3800 >> stream xWkXSg1JQ=go֢VێZm-j V+b-rB =\@\ ADX^FO+S[=9̷Ǐvyy#}Y]z׻x Ǜeǫ˗>.dG's= 76DQ I3!RYN(1)=(8nQիW. zfٲASDq1-1I 1ܗ8QBzNP I~:++kiLꁥҴueғ^O8T5&5!AtKHSe iA[ i !bbs'%&RRW=t3<"O mvbxEL$+2b#*Bl%?1 YD1pa&LfRȩfwj4l?߅GnztgܛYjrvc->ځ&Q/F$z}.IN7AS#xU~ಫ@e`4D#(A;~~RցhE!d:Dw@ᰶw‚ #Fzr(Qkd So㛓p=pOy(qm\Bݖ:V^1cT施xZ~S A&96\uJhLhzgeCyFad{7ò h%!+]W:RY mk.<@6D!fșN/Pa˫uT[]V߻I|vW,ŎQepH4Up|CʊucBMW>g1gr \&Ղ$sǺ&MҨ6 C>R |3)`ZL s MB/ i5Ɵ=Dt%g-C )</\pf˧hR<6"~Ic{ã3Ɏ]Qx| ZPj@)i۔bPѯ*8q.ī(Pr5jPi]x-y+=}ЀD _~w?b1h_Y&Cu)ewzВذ_Y*EדEb+ѷZMg G_wbm,b܆w@3 E(0Q Rt:ekƻ@.iLaZt. )Gm&hZQ.pr1/GvML I ɂOw6ٓ_I̐ӊxWAClM ;ڨ xoفH꘲W obٚ' 3#*LFmN-D}Ėс?H-?]ԡ ’[_=*dx֝o֐hcЃBj9 v5*se)9FЁK+fa]Y8?;i G.}I򅑇ۉ^fK)*+TY9=#h-gRF &Үrf%*2-]Q0[*I dTѱC#h̕"=KpRi7 ݮ@)ˏg_sÒCm--t=t@]SU۳_* ՝>W6û-ml *ӘT G`i>TjtnMyPL훓; TF@v*2nɸwz{.7b MxUګs_4G[>jp-!#IOKO/-j~I '!} Hy2Cs`qwAWEZUͭչq82;:Ӕ}wGfo.3բb=ۓ-|</ W^ecu]Idm*wptˠM94 vs!"F/iG!ه|tʻZ^Uzr7Zm1FUBp D4-FOD+A)1*-걲HX=k>7VfT2<5;m{#|3l0cv4AY'kGtη4eiuu|RKqasĩMx+*qP,fn`"5u.9ݱ|ѬOiVU%zREꙒ\ Hj9|n^3? <^w 3Ylg+70 %-(rWc:88Yc Q:J)hL <6x88gP ׍Fp ,UH61Fƾ5 0[-vv=ƏQ8['_touBwԐ le:7| 6\5p b~{9-Lx=7/okr dV_<,̍pU\Dŝ|Br>4n9}l/ġWoR|tXTZȮejH$К]C_ |A6B8?y7=}(i'^mMDA?3t@0gp2f?ۢqqws5tKvav0R) q]) uPMVuk.MNNJ0]%)̗5Gd[q|Pߟn<*(I%޺S7t-hJq^۽_R=U3 E*\uv]lE6?pe ƚ֞3}cRRj l H_h֩|2;E|gHdOr M*:\^. E?iQ١ƯƵ8BfRW$r/a~BwBKTC-?S%MUU6rAqPzNgq/΂<;k*ʳ]Sb-N ͎4mA;yo`E `WL-qԬ.Ӆ{pFCznmwo*ኂ0؝,z߰xf׃gEN;{ch<\!m>'J;CuRqrj6ϡ_aīQ^G&4.Bz݂PD[cS.mޥKqO*Zg;2=kcЧ=6>$DrF%(\C!ä1@%XeR҇%9Ŗ#F?%W.w{jw>Dq =Q,ѽ7"ΚMqF:@!)BUVǟ[NGbDT~[snV6g56x2mzrzpKA 6yi-,Pww|ws}%hA5,p ) cҢ "[tWzJ*:IV)wr6=s\~}\#G7 [ttB_ZΤ zk"Tqܸsմ *'{^FOoϏ ~&wendstream endobj 97 0 obj << /Filter /FlateDecode /Length 5257 >> stream xlL}LLmj5_a.nGClzj sh%SK֛H}⽷&֗*73w#P$Lh`74yg#Rc3"w֠cc\>>Un><&Ǝū[p?[#s(zPkAEux};=^߮ ;owۇH@f{0<&H[fz~*]zygG- sveF巻=n?6cF`lg/hGC򛏏[THnnz4=l7y_eZ6ڮ XkX*j鎴e`ptqN)P[(RAeZT/Wi7*\:bwYcArzk+쁌nKhl4X r0 TQ2$^ض.iO;nV#P=LDov`Z"`ցX+-;z\!\ }X*ͩȇF`NM!5Xz.SP-X7O-G˩F%XE~S]..3/^1CV)a}^xUJn~+d*%pC) ",3~Q At #u_,U$fxOy]:K[B jvbJt~5n?oJS?^ K6wܞvYd~=N`wg^N>g{0nZ#RaD/iٹ7L;5'6n%ʘ{aL~p.C?;v}V1 H|z*f+OgH>z/]7Amlޣ_Ywckk:OyU# F7^* Nt X̴, bL+\z&UV7oAT5p.v/ܱ1iXX3Wc._d I RbtԳwj #j~`#`((h27'K):Wцh.^ :q(^y+]F0Љ3Jz 80# jؿˮDc$).?ъ82ZqCU @(RjцkNW8FYvew4{IӐ`/L`$0b|OB)- h=# έs;[afdRyol/sSAN^J}>PO`9XgK oi|<ءľtb~n#E l Oŵi!46 ͑/+yg2PN>.ФѧBKkuHwv! m Ch2yŢ;h; >/=g`KxI̠a`t^ L RF(>ѱ65q-7FPȍ8ل]s|H%t}tNYaUƁI^@ _7VR51#Q(GԞJ=Z8wcm<tKX~8sXJ1#6C0w-#0_✜pz] 5+`߫w>S B^_2O]i` TyĮ+IYUd}c' |aa 8u}iPr4Xv?p)WyFyDUx`s!ecJ ֧Kݶov234<+쒻&@(cF7lH͕Ϧn# .4u4V$u\Zjia\!ǠΔ: /#U4T xOR i ntu[[i:r c5\"bXn'Y/ q2&Se) Mg,6}u/!<3{qRE"^h  1' ӝT)4t5>j<4! ,zR==J)\ضW@5Ѫ:0\r{m# *ҋF={P 뢾EX(SPQΈ˂cm䆊YØ#we)#ro38پW]jM&r["x1-/5z@Q0WPXT\s؞ `I;t&eXRKC(θ" YaQܣEFy;!j6gټ.t@Ӏ)JjcԬE.J^r cV=KQB`Z1״0̋P'{tUɗ[ida8d -*T덟iKŘ1_$z%ID&.<;uCn(E)R+W{!h PjsV jmZuyF&o4|(+lp۴=&iaIƗ>aqҟI zJI`^wcv r/yA c u.|c $,__39ɋnMU[1=ocb{(oE6f3NthcZ)2)_9Z4~OwV9uv2GhfS9Fl4C7uR'?ԙ3cfOYOn#hE$ȹ%[FO%0"?G`}vmq?מR$7yZz+ԳJXLe˴!LY*7t0B\xtKBkC(yRq+N 7,.oֈcgRGR€B裲ysNRsەT85nCù"A!O ŗ#Ae^Φ"qXfX|c/O\! t烅Ew0zbAE./Lm63q\M$aS+78r=QA M#CF>qchU棿"zd^ hR<_^ՒWOu 6cEbDKHS,سҬ!nkлa֮ C E+ EAY8y˃KDC[x37YV>b\k)y,G:`!xn4hJ+@xbp( ebuLrۆV0-/@,DHٷv"tT:v.|y*B۾p&;-ŰJy Ao<6pMYYN‚rb@: 1&&Y<{b($g)cT).7'1qUB=7*鐥sRLXI#c 4t9pDsU$v`, Cb1-VM5X{G{]6~dl.zkk3f wRqpĕhV{YQ~E50\D>Mf.e+l-0Ҹ4󾌨&/d4 S;* =E\G)|5ڴVhDLBW媳bahz=^/pplah&W` a89[P`>K VF?F.PD9u=灂}ga&P`9ʤ~o3;endstream endobj 98 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 5707 >> stream xYyXSWڿV IѺU^7Ee EVdMB@vXj]pmݵ:v;vFk3wn$|?IR>W6ŏ EʼnK&.KH\ ^-~u3fΚ=f^'6q&Oh1$fAhb1&qb<Bxk ob% bb#XJL"| ?bJL#V "I11w 1Co!|b(6NaCxB e…H98:;R\4A''ޠߨ4aP[[ǛorC|t]25o5-ܟ k=l.f񋧏gEo&bDj{g;==8,.18r># +Ϩg$\]YW.dc\#8Q7痲sKƚPq$0(`YG.|lQZܹ[,B-Fɰ],Rz~[Aڼ.bH@[ZHjԙtP)cN@TE:\*6Zs!gY] Ea'^HAjL_NȮe&, 's; 1h4<7>P=ȉ-d~2h*(4xC:XIfwԎ]}˕11k?<1dcȦ93ElE#>n|dT&!P"8q).ymi.?C' 3& bH&2k TVHW+pRʐSPQ{X+Nb ;1޷BN dB;+걳2Xo,,;{@ P߄bV(z:"V.U/x{^x/~$kI3$-#jd|4QEeLCz}$ #VzS\* ߣO⚶DWxgBQH$Wl= |l<h$ܐxWl*# I%)zdty쑣5-^`/pk8ǽ 3 vZLBItc-³ :oZ)`/4u,_[]X"_3H Ϡg{dښjSAuv-cW1ke:s.XpAr!Rc6g'969NNNm ֣M e})<r2p8GM;gwUQVit{-J9iEE+ke<=- '?/H"&#&e,^?,@v#9W!{_Zm-+ը1(ʤt咞=S +#^~{yƻD u+NEO.4df N^耸O:o tTelC7ɤJ'')4 yd#ߔLFIh)Y5  ^p("W)ɧ]" ;h==õ);Pν5TcRع𙸯-b8;}Vn[_2\!Ex]_Bd`?``Z\OV8[G0t'q9J}G Wp4DVcm5z9&,j6 =g\Vo%| l:ɹ1qqF"䉼כ=c#fL( FU*mZS/<ζw_;tݙ rj1EV(uO:]krvK plZPPn3,3F)`9zlw|2@Nek|1,hw>[7s^dk=z+1@pSȊ9+9!G Y㉦9:S)8{Qll:SXŝjm-A8®}䭨nd̽kVv$Tzţj$9P%Ҙ4ej2RD[o9Lb8H Ol:t.+gg}gIp8hʮełʤ 꼽x.'Gr2wI* lŜ7V*=Jwn{gڄ٣CZ#%R51cU~v):r>4ą,YKIxTah˩pDN=$ ]o"a (x Ϧ{ C Oc^55G'9'iAXW`PvV݆!4*{sR4нjcQ)lUyT5Dgتw`_]@_3FB:0U4>r(4] ,S]U]kklG29;@ _\t R5-$Q0-u m(+'̞<-0,VD_Fa榙l,N sAendstream endobj 99 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 472 >> stream xcd`ab`dddw441UH3a!˜;G?nn?' ~!Ș__PYQ`hii`d``ZXX('gT*hdX뗗%i(gd(((%*@s JKR|SR AbwGߏa,eD3;[9+'O_ֽoy(O=Zcwmd)ӷ~7D~F}9 ~W2}dtzJ|iݱ)MuS{,(79lN-hh? :iٲsg[bҜn͋3~WgFgusxݛ7]29 xq^^qq^+/^!Wi3.d8}en9.> stream x[o\m/\ MEcAZZˊ%"|C>)P0P\r8 g~ろ|__q8>lQv/6|tfq~сgv4-QlFht%;GM¯Y/s&LʓnTcTfL⩬Y"<twt!Uʅfq / X` 8jX{` 5N;[yA.ិ.{΂ĀZ_J "/!F;> RHtEĨ=~@b+0hZ1>m6HIad%!&-Eq}}vzqxsAh?2 Ȭ 8;O6 =k!X(= 9w'qSz\ArNcȫ$cn0NÝ!xaIXL\Iѻ*ڹYOtB2Վ.z1j [&r*7m(# #OW 9 ۠cew.i|O@XuXm$ݭ/j iΣGӳqWƷdbOmS beW s3kwk{DiSMH7 BM3KA:>=86;j[\v_7a\N$ڑ|B%]БV3Ԭn)45#$Xf<@MvwÞ twOAIZ9#MxҪkų ݂=Q|C{ :=@|~x[_e 6/a^x.)2 QG! >1|?F=G9K@ t^p.z.|`|xts񁅨s'k"@@0|8iڊiֶz==(0BP7gdĆkK$tNC4x B,SRo%,؏ ud71FlbQ83 c$%;=/{6\M#W&"FrtF ܾ(&xX(iCLrb̬m'?54s&@*#|_ze%RP"O*SetXƀD=LeϽ ?If2g9uN$yQ ^Uۉ9?U'ď%ìZVJ?FshXE iJL^ݸPR ~oVBE>ԹLIϔ:ȴh`{yLBl5'~$n{Mr(@*h<.'B4%jMj5RvRBΝ5^{N 2؋l3j} {wAx& >{Sۧ\k7}9'tmJNj@$v9 ۓptUU9?X֧r Wn %ryq> y ^"jF$7ښ *J >h/ 4ضi+\Uޓ:qYVz^m;s/:k]c?BZ[dďCWZMW \Ů8^<9=\mj $g5_&X&SFBzUzi?-Z0[5ێ(uգWWKtK%]GXJZendstream endobj 101 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 329 >> stream xcd`ab`dddw 641H3a!O/nn߷}O=J19(3=DA#YS\GR17(391O7$#57QOL-Tа())///K-/JQ(,PJ-N-*KMQp+QKMU8OB9)槤1000103012)ٽgf|;?̿ܥ;~3>,}} |g|Waq6;7<_s/wt\7Xp9|zaendstream endobj 102 0 obj << /Filter /FlateDecode /Length 3097 >> stream xZoN ؈}?>`7IvQKQBAKԣx2E9ߙݽݹӒc7ISAٙٙ ~Z>e/j7Nn&U~ÄM21ՆL&ֳ֩p9ٟ8[Z))8[NZBQrDJ(hr޵VgjUc|`TW\ɨcӳ ._M[an>̶\դqO7-,y>Wy6s73앆}0&}W$wL<{=K)Z|ZϸoziPe7tkXxӼ3~a zC65spElnbzrr&]/զ8V'gj\X\> T˝Z&yT Y~X[3=KKcE 732ob\1/~ҙbe,.¢7TM ߻L]fj6UL}L2ue는 "3332u=B%I^|UVGeQ,D$CzyCmJ׃EV:X{]Y+UQ=|[.tS-h(]W{~5+<Ȥf襚YZhmewqbwSiκxS+OjU=J1(|GC^iS0gq)XnO*eg3>+  cs,hIPE_0CbLYYQ['1cuekxZ;,j(;x9LfP uX}"|Qqy s&AzO^‘E;)¡3-I'wIsa& WF$󣇌dp@p[V SHS!3 9 BH~{3\W"OE,D|6RE&׾,>lsrX_4HGaY_@4}!J qĩ[^(7F'udFBtܷs}/ޓ8qAz̴)BLbȅtU*C$:–:1; L0@^x 30Zt&\e5By2!ݥ : BykC q @SwS\FowUk@,/`IYz8ۆc/`Z@7ZBˡ% IJWh0]8qN'$\,ٌNqEA!gÐrY;A![&s'GN7*=0f -{a tw!d{ (a6B> np*pʡ `u2ENŬY$0& ßT2ϒ>|p5c~0$!EKq2EVC JL+a jꬄcmmtcD,b@ )[ ?瞟\Gep^gO}zz.ToW\KԻu:vB_tsE H~9}*?Rώ+3i9U7]ڏ5\Q"(81X5 5k˾ĪU`.r~>1;b|9 `px{#EPd x(&u~rʲ"rqꢌW.6XхU2vp*e:'aKMtPB; g.CòbQ'ܻV 9'[~w{3’ªVjxg w [^`w-eKJqP5yEnQrugs++/bGuQ=JH:{hx)E6w ŎDA.m]~(Z g_bn~hzi]Bz$>> ht(,Rv;t=~vKҨC8`wendstream endobj 103 0 obj << /Filter /FlateDecode /Length 4677 >> stream x\Yo$Ǒ~#rއlhdXÅI,_wDYMaA9yDFDFF|ſW K?:ܮĨ[(;JWV>::pŒsy3;V(6JJ~4:ڊ tb&imW엩rލVRH7* M1NiRG3&Tv$<0twr0Uʕfu 2X ::x1|g_Wvk+!ȉ1e|}( ͇0~/˘3?pJj'S0;LP,8x룿lFM^ 9ucHyl>TVpc(|,mƲQ; Ӯ-yㆷqwn8011釛@WJwqbjؐ]5p˦6xϹCh:iԥ!8z놠ҾZ#j^#3fsM3 XR Ҵ (넦|ΫD\F7 qaG ?櫣/~&J&8S%f^FFHƸׁ^_@ ]L6bCdv5p-R ƭ@JrةM\{Eqpͭ#^Dw7D BVn25̂:`6ꝸnP q.&R^0VyQ|P ˝WyX;OJChzW5uiݕUgܫږmgO25t>,xwMiݓqeCZLԼ)53PB뒋:]eyblKҺ)zx:љAYs!r9uدK$W #:rYM,; Au( yL:+ҚJ>/;s={!l>ukeiޯ 'r;|^xYlBD#ՙ(ܗ:-zI:kOYyiRŞj*^tH葵38\]#յRMwVBz"|fzzdUbz:ޙ[xrOJmiׯj;WX_zp=dzR|}?֒srSz葓tzoHj漱1  FBN/wSbD#׋ NYK_BH7L,B:$Ɠ1/qBpKcvhfgq_EyQN0% mgI 4?|am' FuZ%.Rb 'Ao 2 ahKHG!Hgz\5"~]z!nrppeU2 D* 5OZL-%gH*.a&oNgXks]1k]=MUZw#jbtPjM@TOώPX!NAnDs[* Sajpln*728@Wz~:oi 99TUj; RIE:ӻMj]/ &qi qL&m(z׵ѐi![=|;x< ?' (8r>NA)5HȳB:TL5n*,VVVc_uL UFt]pǰ1-x:n/bt˯p虾a/nJ\H kX$=,"ކ^Js dh4e.8?0tś;ප6R.J~WZ?D#6}WՓ6q=sQ~n\U*nzr{ u=ExT9p﮿_n}׳p*r=2~jnp: zaXh<;ϵ$^WcI,d".uKoȗ ƃ4V-*xߐW2Ns_/ZKm`{~|CV6#4*粅MJ5yuY%;jEʑPP`2)'XysijOg[Ď64XڪzC4T{Q1]]3ĨT{i,wghc=2RMkbUDg=D?&\>{Ozٮwz)=T1{=ôwMg"~P{"v-GWT;kK;/;'Սj\ Qu-j/['%zzu*{!TQ,p[| 7뤏S`ׇw2ҷﷷ'ۛ*WF[?6aEX1ݸWӫgvs{[ʅ;LZޡPsen<3%M7xI%'x]>"znzMoR@ `RdR8k+ ,铸 چE*Y/?qcE&jOVvKMvծ5Infڱ;Wjrځ(5wӮ=E4 Z5#uepPLJ"q_zfZ' z5\0 b5Ŷ#a=,!|6E nl$spZk@HxVZl d9-XlbsNQѨ4/IJ(-:m$eJYK2mcD ѐB#ܤ@W=t0|&Ah yj1OJ{t2\#-WVc]i*g6@\-e=TZk,31Ht1LX.- ꭟ@PO;GU™Hz e\&]36X5$Qjs^ BoAMc3jhG f|3f[Q퀂I+#( uW{.ʒ~BˀL(ԉ\X7;wd(p<\&9(ps80MU yA*v07-6"OQ%$PLd#|+GhPJ7q,PͲ\֟j?Vg@_ЀȄ?./3j+qIgsWwDaoa#BͿ-T~զ:eHܐ^R4;=Zg_NՈ(a'6;z/ b{ kD wMHdpk@K(ݭLY :nd[wDG8VqBFyqQ!.Ѝm>8Ȏ` 2Uk/v<:3w&Axendstream endobj 104 0 obj << /Filter /FlateDecode /Length 4239 >> stream x[o~q(d|?@^mR  'YR|G'Q?zgH.9$@Z4pp^|/?~%L_/3y[mx|3Nt,sk륀AqFid{(iTPk%{EfrVoʔWcbzQ</gx<;?:J97ϞϢ3sgYw3M0bdc\'|zq cwcyDŽ݇ONR{Xw{gcstHEAWݗϹ{1>0㡭sbrR5wq.w2'Vح3u7'\v[0故7qRΕnW `cWAL+%' aYzEEqj8Bu뽠Wq 0IM=90$a3 pS8K l/efby6;r[nPjٵ+aL'@c"$WV>,+ L;º` ;,G'%a15m "VE* %bA6e b#lE!gۊx.AlFg1aꝷAxQv`gS4 E'L1 <ԝWI [F:B U 43quz]AnXj3&|` 4(t]Pz7*2ύ.k-7 e&W)Q&1J+wfMZwxI G().h,Tz]OYz`m&кܕ|^kl6Vʸ,YཀྵL4J +F5 qG`Vݘe xcQ0 ɠK0`qG+Uڠ~t" ]CGI|Pvg)m)B jqnbmn6Z2?N8b䀞s[Or:Ulsk[ƻÿJJ4u[wu[ox{Emc] nI_Bd,KP {̭Z}sgGk _4Wg.rYnܺmG@ལx 'lIF^ݳ` NWhm/0:}qI &Vv3q[jw'{fy3k%jo?ٗ=k:i\ėm9 8 ODna:F¤u/z2WtyLwl~ǰP]hvy52H|?4Κ N0'B骘6vȦ#9d7295Ncpel&fŋ8y*bF* >7{1_mgď 81]IxH9C0 3 n)(9Q9K:4,u),p 'tp,.EaX<BqOGw`1dS :Dd rCK)e7ׁk.}D'TߍoB;. (1ydՓ0%C""_%ӽ0%Y;VkB JLe&W{G;av(lJ%:1UhkH``KViֹEiEeS83UOjבYwf;:8!+(pV05K. 'Lcd4+p^&m=b}ENfX&'I=X#aX/#dM8 Nhk!0EeQ")ƗpLȢ&w*vK覷~#c&}h㙸d6a( %jV$C˪4A'I$E&bu 8$˲*Ye,͙8C! 1-Ǘz~43h¨1twD(9&q90ǐcݕ(QvNH>2(&M>ff^]|ܔ!rڰ Kވ`&Ƀ3PKD/RN7'!r}.iBzJ`4$Q8<77dkAVv;#+2'5DŽq0EӚQӆF,aު=XRIऽBkf"IEFubP8t9֗rªjpTU%sd/RNx벏C\w|G}#PQpdǪ Gq ,G0_4uA0Hɨ2'(G:UЭ&oSLEH]KoJwulW>~kq4#8ܺhdK$6Z%U#oZIŒL>ҍyi%oz:[1(eUF|6䩸 i@Nu|Ⳡ U6'htGhv8K=Ӫs">ocU0F: D^Rs[]Xcs\ hRSrK2&*Vrx[$ֲ#-NS~?TRV̛nR~"h/B3Z ÁRd#~R*QҐ"Y!r޾"pgXU/9q%;2Zʀtoo.%;ÊT.^3CJxz61J+ClR3=C[9FٛPsU&,Cv?9#aLR= Ǽ7e6a[2+1K |!*c䌈md-Hba3*n`͂P2zpK>EZ 9P%7<qѨ*P@$h2v?A–Hމxju~aM!hK@{.Q i cm!QC R0R 1}oQfe1* ~Վ'Q_r2""Hp;㨼LlIoD)HdnY0b N|Yf>Q^}~ m`}23=޸:1Φg,=YA& fVK&r& žWX-A8?0r: 19EbeɈ?VGb3\ !i(S M:r2H]ӈi)y-R$ܑ"DQWUz %=nx?)pWEN/2]Yz8:MFމBޑS_zqI)&Eܨ 2m& }ct&5;`٥20a_@ؠ ,Ɍ{2R1cdMWY#O9pD ܈0ӳ?,Zendstream endobj 105 0 obj << /Filter /FlateDecode /Length 3526 >> stream x[~! j}[AI8M+ YHg;%{gH.9]K㶁?y3 k|s/'U~M>>1ʶՆL6'Nxg'g'(7FV Xga0VdQ7A(?jOk N*]k5*MPt2mT(M$2N$MV'ߞ`Ik|pFr[o??dk%BO7'O?lD뽲?Ϧ+DĘ9J)[E79#>!hA˰;L\ܓXH:7OϿ%,9BMNj^ -Hx2O"6yɣ]-Y79ѓwyQh]=ʣx^-U}Vq$s WyV(-˙vr'fbz[,ees{8pFB+j T(lua&e d![ɍ+pipYqϹ0t5W8d+߼@tavC 5w^Ń,pwu͛î=H!B$l@۶Ra5\(Ӹ0;n]Y{q LrύQBEU߆YgN4 3[::; /ڰf(Gq)n;QqΫq_eUB{=# T=[TCz۬=00wT᜷^?")b(L6;D+ ZQhLa2 x!-UXEB"f<#5:"-ցZ8 YmW# !,Uٷ(ri淒GAڭ׏.ku0q2pVe‰BZ&*TD^!zyYXQA ;G+3Wh?xjg4ƃϛ}B1s_J61A׺Ax]20<-2c۞bvW5XD1 SX1]6 T;Q;\,|]JJU@XP@- 7ZZ}{`P9:jQd\d,w-չ+ xΎpB[]%dtozKA` H*b{A\zm m wbѱԍ`?,y`i\Vdb `Abp AHA}<84zb(%ۻhHO cpcG-,DaS];f3 [\ѱ:DYU~FT 01%i:6ųfsc!wkrzHLWli ܛNJ=/ۅpxy=Sў 1N]hMnC@= HHC\I ^KvB2Oyj`XXxzG/!җnFGxxe:lF;d"ݰkOQgf)Z=c8MT\^=\e4mRmѰbC &'(7tv"4n0=*&A4Vc*G 9nCXa"8Ft[;E%Bkʁ7_<Z)R~T *օlҰLu(0iB#IVt}-2BC Pu:UvhIl 4 ´;me.KUe7O;EE*ib4&8:)m a†yDC8TPNK{ $P|HnםQ$"Nj*VjR〙Ͻ$wOR2 Rࠔhi$I[Î7r/KM Ʈi (w 06m郦YM\({ܾ%fgE0ef-Ko] RܧS)#yB?7#Z-D*)~"|K?w#_q&~s} B].}y?oGOWxwqՋq2oo*+Vٹxv$fk,ٻy$j/W(pEe׏e4:?۾'giy}GЮY%TyEֲp~G쨟vDlVkz}=."&2,)'nﮇ[sz~woߪendstream endobj 106 0 obj << /Filter /FlateDecode /Length 3649 >> stream xZIo%? ܗS`NKb+al-iF#[Fc+&g1R,~BW++/nw|~gFohGvLCεf.8185ZjKy zy NtdG/>¯[o*4F/* R`B2%Ǥu* ]"S]mIW_v/.nR1gwlΎтbA(mvt F )|+˓Sk͘s?7?|Zs =R)shv:xhL5w]mO~ڝ΍lMߞP:: @Nf$ua4 'klw^Q=;pI)g- lsvltJ,lTױ) I"Krr"IJkԓ2ٸEt=8l&꫽qFG Zkoz&Rh[ljbQn\ӝ]**yr -9S.`g Nw!:=ht&)7~cO YRӹc^󠗫ca<,<d xT)OL8-kPr4 u6Jy;3@;5(ISJh 2 x^t*+sIyjjR7Mפa(\c0`<N 213wGT(Hiz l&K-sMg{KpF-i %{lc9]VлSa:3aہ4Ѧ fIEީ;&kVE* F钧8\N+ğx9}K1o|:6WQXI2HNߍAJ°Xsq ;̽}:_pi8{`iN`~3tִbbc;N&2GK[* bXxn"cKq ij{1ǧo$z"%#8dTKKrq9oEٺhaQ{Kmg;7a,JJ{+q98-hTN![c$=~$Rnѹ=$c\0-+Xp֌ȩuN{~sbtdZ`ܘ^=zLjeF*Qu |bvta0 >ՒJ]HQk@N94:.Ĺ9z kݼX[DqxzH$?4f):JT2KQJ ް)=%cr}5k HF QQ T GA#ľ`S fylHq6rlL@ I@eLVӋk..<1m‘GX_MNbeXp"#DnuN ?DD s2 uRjlσz$BEI2D?l fEG]$hnI џBM$4[L3"OvRd]"a4STpb6tnb6 &}$1|08K%u/ $u*' MEܖ(5?)Be2@.AkZuD[ymSU*y/pckVCdQ [&JIa} 6jAZapșXpϥs^8C.[ XWKž?) r%)()զ9ڶd"~Lx<`(dZ먘.~mcbb@b/,h-] N`RLxu#>N+{H^fILltzђ2G oD*(F(ިg=Y"`e}, YD ])aE!sz⫫m(I@΋jaWy-MR_lPeXUbZT.Zu8.:CѼNn%7La8 S t2I@둧@Ik |FŬxebW*'Z/. ݟ};S_ҘQ&}b\>!n긝\S}K 0zm @U]pr+PYV(N>}u~;!,R 0f A{0@snGUdŃTG(g1oؒ( 3_8_eZImo(zzӧ#ŸֵO7.9ߪl*eMN^U҇ÿz3¶ѭ8jsgvo }Bi "7uihSN/ m:I"p?xY$W¾k]ys atZ$*ȉT#jW@>ץDZWy|s^KLa´E`8׷U/c&Ihqw|.NL:jw@ycx]lq!o%}Z֪fI.M#Vˁ"8d 2 LHj$̡"P*:Jp 7 ~')\[hc Q7U/͝D=bu(R9zO!7C`(3|EQ+÷''C:tPկW_~u_+c*Ei:\vƋQH5 CB"'yZ)G#Hu|'t9\pak?apaUiWA$oEID|'gQo% .zq^6m}WRT[⹐ė>DO jU&j|wk{=yPk29Yl=-C*@GqID͚}}9lE(Ҭ?]/#Dr':`YhLtUzmPb=O'燴rM8#<S"p.m3.1.9ҊƊ1ɒ5g%\zQ6ֿoY9i>=z,<):;ߚ$O9)cy‚5E 8PPW 0%bSQ@R7ɋ*gendstream endobj 107 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 628 >> stream x-_k`63?[A8nN&"̢0pEht]l3Ӵ2ΡiOtSDh &"No }ߘ^xI\31%OIQN3 )P\[|s)E iF! Bݨ#?r 'GG6_; rB!ga,`mx>_Pj&<^,g_)|̳Jӊzk;\X 5"u7llC]3^bdҳcuYAM΂AqvϮAGTLADwf+0u}>'y7kWe:l<xl^`I)C?D[?F@r\ٿޱEF9ɽQ! 5c~ҐBRMiX6#Q:|[g45,1d%kP~E*lAG`#^ SjTXU)aܹerK˴m:p7KGƹPendstream endobj 108 0 obj << /Type /XRef /Length 127 /Filter /FlateDecode /DecodeParms << /Columns 5 /Predictor 12 >> /W [ 1 3 1 ] /Info 3 0 R /Root 2 0 R /Size 109 /ID [] >> stream xcb&F~0 $8JC?ٍ@6qP, ¹ Rtd "yH# >d"NH~[)V  ".ō\K&IFw`bɓ &~V endstream endobj startxref 89167 %%EOF HSAUR3/inst/doc/Ch_multidimensional_scaling.Rnw0000644000176200001440000002741113302740166021127 0ustar liggesusers \documentclass{chapman} %%% copy Sweave.sty definitions %%% keeps `sweave' from adding `\usepackage{Sweave}': DO NOT REMOVE %\usepackage{Sweave} \RequirePackage[T1]{fontenc} \RequirePackage{graphicx,ae,fancyvrb} \IfFileExists{upquote.sty}{\RequirePackage{upquote}}{} \usepackage{relsize} \DefineVerbatimEnvironment{Sinput}{Verbatim}{} \DefineVerbatimEnvironment{Soutput}{Verbatim}{fontfamily=courier, fontshape=it, fontsize=\relsize{-1}} \DefineVerbatimEnvironment{Scode}{Verbatim}{} \newenvironment{Schunk}{}{} %%% environment for raw output \newcommand{\SchunkRaw}{\renewenvironment{Schunk}{}{} \DefineVerbatimEnvironment{Soutput}{Verbatim}{fontfamily=courier, fontshape=it, fontsize=\small} \rawSinput } %%% environment for labeled output \newcommand{\nextcaption}{} \newcommand{\SchunkLabel}{ \renewenvironment{Schunk}{\begin{figure}[ht] }{\caption{\nextcaption} \end{figure} } \DefineVerbatimEnvironment{Sinput}{Verbatim}{frame = topline} \DefineVerbatimEnvironment{Soutput}{Verbatim}{frame = bottomline, samepage = true, fontfamily=courier, fontshape=it, fontsize=\relsize{-1}} } %%% S code with line numbers \DefineVerbatimEnvironment{Sinput} {Verbatim} { %% numbers=left } \newcommand{\numberSinput}{ \DefineVerbatimEnvironment{Sinput}{Verbatim}{numbers=left} } \newcommand{\rawSinput}{ \DefineVerbatimEnvironment{Sinput}{Verbatim}{} } %%% R / System symbols \newcommand{\R}{\textsf{R}} \newcommand{\rR}{{R}} \renewcommand{\S}{\textsf{S}} \newcommand{\SPLUS}{\textsf{S-PLUS}} \newcommand{\rSPLUS}{{S-PLUS}} \newcommand{\SPSS}{\textsf{SPSS}} \newcommand{\EXCEL}{\textsf{Excel}} \newcommand{\ACCESS}{\textsf{Access}} \newcommand{\SQL}{\textsf{SQL}} %%\newcommand{\Rpackage}[1]{\hbox{\rm\textit{#1}}} %%\newcommand{\Robject}[1]{\hbox{\rm\texttt{#1}}} %%\newcommand{\Rclass}[1]{\hbox{\rm\textit{#1}}} %%\newcommand{\Rcmd}[1]{\hbox{\rm\texttt{#1}}} \newcommand{\Rpackage}[1]{\index{#1 package@{\fontseries{b}\selectfont #1} package} {\fontseries{b}\selectfont #1}} \newcommand{\rpackage}[1]{{\fontseries{b}\selectfont #1}} \newcommand{\Robject}[1]{\texttt{#1}} \newcommand{\Rclass}[1]{\index{#1 class@\textit{#1} class}\textit{#1}} \newcommand{\Rcmd}[1]{\index{#1 function@\texttt{#1} function}\texttt{#1}} \newcommand{\Roperator}[1]{\texttt{#1}} \newcommand{\Rarg}[1]{\texttt{#1}} \newcommand{\Rlevel}[1]{\texttt{#1}} %%% other symbols \newcommand{\file}[1]{\hbox{\rm\texttt{#1}}} %%\newcommand{\stress}[1]{\index{#1}\textit{#1}} \newcommand{\stress}[1]{\textit{#1}} \newcommand{\booktitle}[1]{\textit{#1}} %%' %%% Math symbols \usepackage{amstext} \usepackage{amsmath} \newcommand{\E}{\mathsf{E}} \newcommand{\Var}{\mathsf{Var}} \newcommand{\Cov}{\mathsf{Cov}} \newcommand{\Cor}{\mathsf{Cor}} \newcommand{\x}{\mathbf{x}} \newcommand{\y}{\mathbf{y}} \renewcommand{\a}{\mathbf{a}} \newcommand{\W}{\mathbf{W}} \newcommand{\C}{\mathbf{C}} \renewcommand{\H}{\mathbf{H}} \newcommand{\X}{\mathbf{X}} \newcommand{\B}{\mathbf{B}} \newcommand{\V}{\mathbf{V}} \newcommand{\I}{\mathbf{I}} \newcommand{\D}{\mathbf{D}} \newcommand{\bS}{\mathbf{S}} \newcommand{\N}{\mathcal{N}} \renewcommand{\L}{L} \renewcommand{\P}{\mathsf{P}} \newcommand{\K}{\mathbf{K}} \newcommand{\m}{\mathbf{m}} \newcommand{\argmin}{\operatorname{argmin}\displaylimits} \newcommand{\argmax}{\operatorname{argmax}\displaylimits} \newcommand{\bx}{\mathbf{x}} \newcommand{\bbeta}{\mathbf{\beta}} %%% links \usepackage{hyperref} \hypersetup{% pdftitle = {A Handbook of Statistical Analyses Using R (3rd Edition)}, pdfsubject = {Book}, pdfauthor = {Torsten Hothorn and Brian S. Everitt}, colorlinks = {black}, linkcolor = {black}, citecolor = {black}, urlcolor = {black}, hyperindex = {true}, linktocpage = {true}, } %%% captions & tables %% : conflics with figure definition in chapman.cls %%\usepackage[format=hang,margin=10pt,labelfont=bf]{caption} %% \usepackage{longtable} \usepackage[figuresright]{rotating} %%% R symbol in chapter 1 \usepackage{wrapfig} %%% Bibliography \usepackage[round,comma]{natbib} \renewcommand{\refname}{References \addcontentsline{toc}{chapter}{References}} \citeindexfalse %%% texi2dvi complains that \newblock is undefined, hm... \def\newblock{\hskip .11em plus .33em minus .07em} %%% Example sections \newcounter{exercise}[chapter] \setcounter{exercise}{0} \newcommand{\exercise}{\stepcounter{exercise} \item{Ex.~\arabic{chapter}.\arabic{exercise} }} %% URLs \newcommand{\curl}[1]{\begin{center} \url{#1} \end{center}} %%% for manual corrections %\renewcommand{\baselinestretch}{2} %%% plot sizes \setkeys{Gin}{width=0.95\textwidth} %%% color \usepackage{color} %%% hyphenations \hyphenation{drop-out} \hyphenation{mar-gi-nal} %%% new bidirectional quotes need \usepackage[utf8]{inputenc} %\usepackage{setspace} \definecolor{sidebox_todo}{rgb}{1,1,0.2} \newcommand{\todo}[1]{ \hspace{0pt}% \marginpar{% \fcolorbox{black}{sidebox_todo}{% \parbox{\marginparwidth} { \raggedright\sffamily\footnotesize{TODO: #1}% } }% } } \begin{document} %% Title page \title{A Handbook of Statistical Analyses Using \R{} --- 3rd Edition} \author{Torsten Hothorn and Brian S. Everitt} \maketitle %%\VignetteIndexEntry{Chapter Multidimensional Scaling} %%\VignetteDepends{ape,wordcloud,MASS} \setcounter{chapter}{19} \SweaveOpts{prefix.string=figures/HSAUR,eps=FALSE,keep.source=TRUE} <>= rm(list = ls()) s <- search()[-1] s <- s[-match(c("package:base", "package:stats", "package:graphics", "package:grDevices", "package:utils", "package:datasets", "package:methods", "Autoloads"), s)] if (length(s) > 0) sapply(s, detach, character.only = TRUE) if (!file.exists("tables")) dir.create("tables") if (!file.exists("figures")) dir.create("figures") set.seed(290875) options(prompt = "R> ", continue = "+ ", width = 63, # digits = 4, show.signif.stars = FALSE, SweaveHooks = list(leftpar = function() par(mai = par("mai") * c(1, 1.05, 1, 1)), bigleftpar = function() par(mai = par("mai") * c(1, 1.7, 1, 1)))) HSAURpkg <- require("HSAUR3") if (!HSAURpkg) stop("cannot load package ", sQuote("HSAUR3")) rm(HSAURpkg) ### hm, R-2.4.0 --vanilla seems to need this a <- Sys.setlocale("LC_ALL", "C") ### book <- TRUE refs <- cbind(c("AItR", "DAGD", "SI", "CI", "ANOVA", "MLR", "GLM", "DE", "RP", "GAM", "SA", "ALDI", "ALDII", "SIMC", "MA", "PCA", "MDS", "CA"), 1:18) ch <- function(x) { ch <- refs[which(refs[,1] == x),] if (book) { return(paste("Chapter~\\\\ref{", ch[1], "}", sep = "")) } else { return(paste("Chapter~", ch[2], sep = "")) } } if (file.exists("deparse.R")) source("deparse.R") setHook(packageEvent("lattice", "attach"), function(...) { lattice.options(default.theme = function() standard.theme("pdf", color = FALSE)) }) @ \pagestyle{headings} <>= book <- FALSE @ <>= x <- library("ape") library("wordcloud") @ \chapter[Multidimensional Scaling]{Multidimensional Scaling: British Water Voles and Voting in US Congress \label{MDS}} \section{Introduction} \section{Multidimensional Scaling} \section{Analysis Using \R{}} We can apply classical scaling to the distance matrix for populations of water voles using the \R{} function \Rcmd{cmdscale}. The following code finds the classical scaling solution and computes the two criteria for assessing the required number of dimensions as described above. <>= data("watervoles", package = "HSAUR3") voles_mds <- cmdscale(watervoles, k = 13, eig = TRUE) voles_mds$eig @ Note that some of the eigenvalues are negative. The criterion $P_2$ can be computed by <>= sum(abs(voles_mds$eig[1:2]))/sum(abs(voles_mds$eig)) @ and the criterion suggested by \cite{HSAUR:Mardiaetal1979} is <>= sum((voles_mds$eig[1:2])^2)/sum((voles_mds$eig)^2) @ The two criteria for judging number of dimensions differ considerably, but both values are reasonably large, suggesting that the original distances between the water vole populations can be represented adequately in two dimensions. The two-dimensional solution can be plotted by extracting the coordinates from the \Robject{points} element of the \Robject{voles\_mds} object; the plot is shown in Figure~\ref{MDS-watervoles-plot}. The \Rcmd{textplot} function from package \Rpackage{wordcloud} can be used to annotate the plot with non-overlapping text. \begin{figure} \begin{center} <>= x <- voles_mds$points[,1] y <- voles_mds$points[,2] plot(x, y, xlab = "Coordinate 1", ylab = "Coordinate 2", xlim = range(x)*1.2, type = "n") textplot(x, y, words = colnames(watervoles), new = FALSE) @ \caption{Two-dimensional solution from classical multidimensional scaling of distance matrix for water vole populations. \label{MDS-watervoles-plot}} \end{center} \end{figure} \begin{figure} \begin{center} <>= library("ape") st <- mst(watervoles) plot(x, y, xlab = "Coordinate 1", ylab = "Coordinate 2", xlim = range(x)*1.2, type = "n") for (i in 1:nrow(watervoles)) { w1 <- which(st[i, ] == 1) segments(x[i], y[i], x[w1], y[w1]) } textplot(x, y, words = colnames(watervoles), new = FALSE) @ \caption{Minimum spanning tree for the \Robject{watervoles} data. \label{MDS-watervoles-mst}} \end{center} \end{figure} We shall now apply non-metric scaling to the voting behavior shown in Table~\ref{MDS-voting-tab}. Non-metric scaling is available with function \Rcmd{isoMDS} from package \Rpackage{MASS} \citep{HSAUR:VenablesRipley2002}: <>= library("MASS") data("voting", package = "HSAUR3") voting_mds <- isoMDS(voting) @ and we again depict the two-dimensional solution (Figure~\ref{MDS-voting-plot}). The Figure suggests that voting behavior is essentially along party lines, although there is more variation among Republicans. The voting behavior of one of the Republicans (Rinaldo) seems to be closer to his democratic colleagues rather than to the voting behavior of other Republicans. \begin{figure} \begin{center} <>= x <- voting_mds$points[,1] y <- voting_mds$points[,2] plot(x, y, xlab = "Coordinate 1", ylab = "Coordinate 2", xlim = range(voting_mds$points[,1])*1.2, type = "n") textplot(x, y, words = colnames(voting), new = FALSE) voting_sh <- Shepard(voting[lower.tri(voting)], voting_mds$points) @ \caption{Two-dimensional solution from non-metric multidimensional scaling of distance matrix for voting matrix. \label{MDS-voting-plot}} \end{center} \end{figure} \begin{figure} \begin{center} <>= plot(voting_sh, pch = ".", xlab = "Dissimilarity", ylab = "Distance", xlim = range(voting_sh$x), ylim = range(voting_sh$x)) lines(voting_sh$x, voting_sh$yf, type = "S") @ \caption{The Shepard diagram for the \Robject{voting} data shows some discrepancies between the original dissimilarities and the multidimensional scaling solution. \label{MDS-voting-shepard}} \end{center} \end{figure} \bibliographystyle{LaTeXBibTeX/refstyle} \bibliography{LaTeXBibTeX/HSAUR} \end{document} HSAUR3/inst/doc/Ch_graphical_display.Rnw0000644000176200001440000010242513302740166017530 0ustar liggesusers \documentclass{chapman} %%% copy Sweave.sty definitions %%% keeps `sweave' from adding `\usepackage{Sweave}': DO NOT REMOVE %\usepackage{Sweave} \RequirePackage[T1]{fontenc} \RequirePackage{graphicx,ae,fancyvrb} \IfFileExists{upquote.sty}{\RequirePackage{upquote}}{} \usepackage{relsize} \DefineVerbatimEnvironment{Sinput}{Verbatim}{} \DefineVerbatimEnvironment{Soutput}{Verbatim}{fontfamily=courier, fontshape=it, fontsize=\relsize{-1}} \DefineVerbatimEnvironment{Scode}{Verbatim}{} \newenvironment{Schunk}{}{} %%% environment for raw output \newcommand{\SchunkRaw}{\renewenvironment{Schunk}{}{} \DefineVerbatimEnvironment{Soutput}{Verbatim}{fontfamily=courier, fontshape=it, fontsize=\small} \rawSinput } %%% environment for labeled output \newcommand{\nextcaption}{} \newcommand{\SchunkLabel}{ \renewenvironment{Schunk}{\begin{figure}[ht] }{\caption{\nextcaption} \end{figure} } \DefineVerbatimEnvironment{Sinput}{Verbatim}{frame = topline} \DefineVerbatimEnvironment{Soutput}{Verbatim}{frame = bottomline, samepage = true, fontfamily=courier, fontshape=it, fontsize=\relsize{-1}} } %%% S code with line numbers \DefineVerbatimEnvironment{Sinput} {Verbatim} { %% numbers=left } \newcommand{\numberSinput}{ \DefineVerbatimEnvironment{Sinput}{Verbatim}{numbers=left} } \newcommand{\rawSinput}{ \DefineVerbatimEnvironment{Sinput}{Verbatim}{} } %%% R / System symbols \newcommand{\R}{\textsf{R}} \newcommand{\rR}{{R}} \renewcommand{\S}{\textsf{S}} \newcommand{\SPLUS}{\textsf{S-PLUS}} \newcommand{\rSPLUS}{{S-PLUS}} \newcommand{\SPSS}{\textsf{SPSS}} \newcommand{\EXCEL}{\textsf{Excel}} \newcommand{\ACCESS}{\textsf{Access}} \newcommand{\SQL}{\textsf{SQL}} %%\newcommand{\Rpackage}[1]{\hbox{\rm\textit{#1}}} %%\newcommand{\Robject}[1]{\hbox{\rm\texttt{#1}}} %%\newcommand{\Rclass}[1]{\hbox{\rm\textit{#1}}} %%\newcommand{\Rcmd}[1]{\hbox{\rm\texttt{#1}}} \newcommand{\Rpackage}[1]{\index{#1 package@{\fontseries{b}\selectfont #1} package} {\fontseries{b}\selectfont #1}} \newcommand{\rpackage}[1]{{\fontseries{b}\selectfont #1}} \newcommand{\Robject}[1]{\texttt{#1}} \newcommand{\Rclass}[1]{\index{#1 class@\textit{#1} class}\textit{#1}} \newcommand{\Rcmd}[1]{\index{#1 function@\texttt{#1} function}\texttt{#1}} \newcommand{\Roperator}[1]{\texttt{#1}} \newcommand{\Rarg}[1]{\texttt{#1}} \newcommand{\Rlevel}[1]{\texttt{#1}} %%% other symbols \newcommand{\file}[1]{\hbox{\rm\texttt{#1}}} %%\newcommand{\stress}[1]{\index{#1}\textit{#1}} \newcommand{\stress}[1]{\textit{#1}} \newcommand{\booktitle}[1]{\textit{#1}} %%' %%% Math symbols \usepackage{amstext} \usepackage{amsmath} \newcommand{\E}{\mathsf{E}} \newcommand{\Var}{\mathsf{Var}} \newcommand{\Cov}{\mathsf{Cov}} \newcommand{\Cor}{\mathsf{Cor}} \newcommand{\x}{\mathbf{x}} \newcommand{\y}{\mathbf{y}} \renewcommand{\a}{\mathbf{a}} \newcommand{\W}{\mathbf{W}} \newcommand{\C}{\mathbf{C}} \renewcommand{\H}{\mathbf{H}} \newcommand{\X}{\mathbf{X}} \newcommand{\B}{\mathbf{B}} \newcommand{\V}{\mathbf{V}} \newcommand{\I}{\mathbf{I}} \newcommand{\D}{\mathbf{D}} \newcommand{\bS}{\mathbf{S}} \newcommand{\N}{\mathcal{N}} \renewcommand{\L}{L} \renewcommand{\P}{\mathsf{P}} \newcommand{\K}{\mathbf{K}} \newcommand{\m}{\mathbf{m}} \newcommand{\argmin}{\operatorname{argmin}\displaylimits} \newcommand{\argmax}{\operatorname{argmax}\displaylimits} \newcommand{\bx}{\mathbf{x}} \newcommand{\bbeta}{\mathbf{\beta}} %%% links \usepackage{hyperref} \hypersetup{% pdftitle = {A Handbook of Statistical Analyses Using R (3rd Edition)}, pdfsubject = {Book}, pdfauthor = {Torsten Hothorn and Brian S. Everitt}, colorlinks = {black}, linkcolor = {black}, citecolor = {black}, urlcolor = {black}, hyperindex = {true}, linktocpage = {true}, } %%% captions & tables %% : conflics with figure definition in chapman.cls %%\usepackage[format=hang,margin=10pt,labelfont=bf]{caption} %% \usepackage{longtable} \usepackage[figuresright]{rotating} %%% R symbol in chapter 1 \usepackage{wrapfig} %%% Bibliography \usepackage[round,comma]{natbib} \renewcommand{\refname}{References \addcontentsline{toc}{chapter}{References}} \citeindexfalse %%% texi2dvi complains that \newblock is undefined, hm... \def\newblock{\hskip .11em plus .33em minus .07em} %%% Example sections \newcounter{exercise}[chapter] \setcounter{exercise}{0} \newcommand{\exercise}{\stepcounter{exercise} \item{Ex.~\arabic{chapter}.\arabic{exercise} }} %% URLs \newcommand{\curl}[1]{\begin{center} \url{#1} \end{center}} %%% for manual corrections %\renewcommand{\baselinestretch}{2} %%% plot sizes \setkeys{Gin}{width=0.95\textwidth} %%% color \usepackage{color} %%% hyphenations \hyphenation{drop-out} \hyphenation{mar-gi-nal} %%% new bidirectional quotes need \usepackage[utf8]{inputenc} %\usepackage{setspace} \definecolor{sidebox_todo}{rgb}{1,1,0.2} \newcommand{\todo}[1]{ \hspace{0pt}% \marginpar{% \fcolorbox{black}{sidebox_todo}{% \parbox{\marginparwidth} { \raggedright\sffamily\footnotesize{TODO: #1}% } }% } } \begin{document} %% Title page \title{A Handbook of Statistical Analyses Using \R{} --- 3rd Edition} \author{Torsten Hothorn and Brian S. Everitt} \maketitle %%\VignetteIndexEntry{Chapter Data Analysis using Graphical Displays} %%\VignetteDepends{lattice, maps, maptools, sp} \setcounter{chapter}{1} \SweaveOpts{prefix.string=figures/HSAUR,eps=FALSE,keep.source=TRUE} <>= rm(list = ls()) s <- search()[-1] s <- s[-match(c("package:base", "package:stats", "package:graphics", "package:grDevices", "package:utils", "package:datasets", "package:methods", "Autoloads"), s)] if (length(s) > 0) sapply(s, detach, character.only = TRUE) if (!file.exists("tables")) dir.create("tables") if (!file.exists("figures")) dir.create("figures") set.seed(290875) options(prompt = "R> ", continue = "+ ", width = 63, # digits = 4, show.signif.stars = FALSE, SweaveHooks = list(leftpar = function() par(mai = par("mai") * c(1, 1.05, 1, 1)), bigleftpar = function() par(mai = par("mai") * c(1, 1.7, 1, 1)))) HSAURpkg <- require("HSAUR3") if (!HSAURpkg) stop("cannot load package ", sQuote("HSAUR3")) rm(HSAURpkg) ### hm, R-2.4.0 --vanilla seems to need this a <- Sys.setlocale("LC_ALL", "C") ### book <- TRUE refs <- cbind(c("AItR", "DAGD", "SI", "CI", "ANOVA", "MLR", "GLM", "DE", "RP", "GAM", "SA", "ALDI", "ALDII", "SIMC", "MA", "PCA", "MDS", "CA"), 1:18) ch <- function(x) { ch <- refs[which(refs[,1] == x),] if (book) { return(paste("Chapter~\\\\ref{", ch[1], "}", sep = "")) } else { return(paste("Chapter~", ch[2], sep = "")) } } if (file.exists("deparse.R")) source("deparse.R") setHook(packageEvent("lattice", "attach"), function(...) { lattice.options(default.theme = function() standard.theme("pdf", color = FALSE)) }) @ \pagestyle{headings} <>= book <- FALSE @ \chapter[Data Analysis Using Graphical Displays]{Data Analysis Using Graphical Displays: Malignant Melanoma in the US and Chinese Health and \\ Family Life \label{DAGD}} \section{Introduction} \section{Initial Data Analysis} \section{Analysis Using \R{}} \subsection{Malignant Melanoma} \index{Boxplot|(} \index{Histogram|(} \index{Scatterplot|(} We might begin to examine the malignant melanoma data in Table~\ref{DAGD-USmelanoma-tab} by constructing a histogram or boxplot for \stress{all} the mortality rates in Figure~\ref{DAGD-USmelanoma-histbox}. The \Rcmd{plot}, \Rcmd{hist} and \Rcmd{boxplot} functions have already been introduced in \Sexpr{ch("AItR")} and we want to produce a plot where both techniques are applied at once. The \Rcmd{layout} function organizes two independent plots on one plotting device, for example on top of each other. Using this relatively simple technique (more advanced methods will be introduced later) we have to make sure that the $x$-axis is the same in both graphs. This can be done by computing a plausible range of the data, later to be specified in a plot via the \Rcmd{xlim} argument: <>= xr <- range(USmelanoma$mortality) * c(0.9, 1.1) xr @ Now, plotting both the histogram and the boxplot requires setting up the plotting device with equal space for two independent plots on top of each other. Calling the \Rcmd{layout} function on a matrix with two cells in two rows, containing the numbers one and two, leads to such a partitioning. The \Rcmd{boxplot} function is called first on the mortality data and then the \Rcmd{hist} function, where the range of the $x$-axis in both plots is defined by $(\Sexpr{xr[1]}, \Sexpr{xr[2]})$. One tiny problem to solve is the size of the margins; their defaults are too large for such a plot. As with many other graphical parameters, one can adjust their value for a specific plot using function \Rcmd{par}. The \R{} code and the resulting display are given in Figure~\ref{DAGD-USmelanoma-histbox}. \begin{figure} \begin{center} <>= layout(matrix(1:2, nrow = 2)) par(mar = par("mar") * c(0.8, 1, 1, 1)) boxplot(USmelanoma$mortality, ylim = xr, horizontal = TRUE, xlab = "Mortality") hist(USmelanoma$mortality, xlim = xr, xlab = "", main = "", axes = FALSE, ylab = "") axis(1) @ \caption{Histogram (top) and boxplot (bottom) of malignant melanoma mortality rates. \label{DAGD-USmelanoma-histbox}} \end{center} \end{figure} Both the histogram and the boxplot in Figure~\ref{DAGD-USmelanoma-histbox} indicate a certain skewness of the mortality distribution. Looking at the characteristics of all the mortality rates is a useful beginning but for these data we might be more interested in comparing mortality rates for ocean and non-ocean states. So we might construct two histograms or two boxplots. Such a \stress{parallel boxplot}, visualizing the conditional distribution of a numeric variable in groups as given by a categorical variable, are easily computed using the \Rcmd{boxplot} function. The continuous response variable and the categorical independent variable are specified via a \Rclass{formula} as described in \Sexpr{ch("AItR")}. Figure~\ref{DAGD-USmelanoma-boxocean} shows such parallel boxplots, as by default produced the \Rcmd{plot} function for such data, for the mortality in ocean and non-ocean states and leads to the impression that the mortality is increased in east or west coast states compared to the rest of the country. \begin{figure} \begin{center} <>= plot(mortality ~ ocean, data = USmelanoma, xlab = "Contiguity to an ocean", ylab = "Mortality") @ \caption{Parallel boxplots of malignant melanoma mortality rates by contiguity to an ocean. \label{DAGD-USmelanoma-boxocean}} \end{center} \end{figure} Histograms are generally used for two purposes: counting and displaying the distribution of a variable; according to \cite{HSAUR:Wilkinson1992}, `they are effective for neither'. Histograms can often be misleading for displaying distributions because of their dependence on the number of classes chosen. An alternative is to formally estimate the density function of a variable and then plot the resulting estimate; details of density estimation are given in \Sexpr{ch("DE")} but for the ocean and non-ocean states the two density estimates can be produced and plotted as shown in Figure~\ref{DAGD-USmelanoma-dens} which supports the impression from Figure~\ref{DAGD-USmelanoma-boxocean}. For more details on such density estimates we refer to \Sexpr{ch("DE")}. \begin{figure} \begin{center} <>= dyes <- with(USmelanoma, density(mortality[ocean == "yes"])) dno <- with(USmelanoma, density(mortality[ocean == "no"])) plot(dyes, lty = 1, xlim = xr, main = "", ylim = c(0, 0.018), xlab = "Mortality") lines(dno, lty = 2) legend("topleft", lty = 1:2, legend = c("Coastal State", "Land State"), bty = "n") @ \caption{Estimated densities of malignant melanoma mortality rates by contiguity to an ocean. \label{DAGD-USmelanoma-dens}} \end{center} \end{figure} Now we might move on to look at how mortality rates are related to the geographic location of a state as represented by the latitude and longitude of the center of the state. Here the main graphic will be the scatterplot. The simple $xy$ scatterplot has been in use since at least the eighteenth century and has many virtues -- indeed according to \cite{HSAUR:Tufte1983}: \begin{quote} The relational graphic -- in its barest form the scatterplot and its variants -- is the greatest of all graphical designs. It links at least two variables, encouraging and even imploring the viewer to assess the possible causal relationship between the plotted variables. It confronts causal theories that $x$ causes $y$ with empirical evidence as to the actual relationship between $x$ and $y$. \end{quote} Let's begin with simple scatterplots of mortality rate against longitude %%' and mortality rate against latitude which can be produced by the code preceding Figure~\ref{DAGD-USmelanoma-xy}. Again, the \Rcmd{layout} function is used for partitioning the plotting device, now resulting in two side-by-side plots. The argument to \Rcmd{layout} is now a matrix with only one row but two columns containing the numbers one and two. In each cell, the \Rcmd{plot} function is called for producing a scatterplot of the variables given in the \Rclass{formula}. \begin{figure} \begin{center} <>= layout(matrix(1:2, ncol = 2)) plot(mortality ~ longitude, data = USmelanoma, ylab = "Mortality", xlab = "Longitude") plot(mortality ~ latitude, data = USmelanoma, ylab = "Mortality", xlab = "Latitude") @ \caption{Scatterplot of malignant melanoma mortality rates by geographical location. \label{DAGD-USmelanoma-xy}} \end{center} \end{figure} Since mortality rate is clearly related only to latitude we can now produce scatterplots of mortality rate against latitude separately for ocean and non-ocean states. Instead of producing two displays, one can choose different plotting symbols for either states. This can be achieved by specifying a vector of integers or characters to the \Rcmd{pch}, where the $i$th element of this vector defines the plot symbol of the $i$th observation in the data to be plotted. For the sake of simplicity, we convert the \Robject{ocean} factor to an \Rclass{integer} vector containing the numbers one for land states and two for ocean states. As a consequence, land states can be identified by the dot symbol and ocean states by triangles. It is useful to add a legend to such a plot, most conveniently by using the \Rcmd{legend} function. This function takes three arguments: a string indicating the position of the legend in the plot, a character vector of labels to be printed and the corresponding plotting symbols (referred to by integers). In addition, the display of a bounding box is anticipated (\Rcmd{bty = "n"}). \begin{figure} \begin{center} <>= plot(mortality ~ latitude, data = USmelanoma, pch = (1:2)[ocean], ylab = "Mortality", xlab = "Latitude") legend("topright", legend = c("Land state", "Coast state"), pch = 1:2, bty = "n") @ \caption{Scatterplot of malignant melanoma mortality rates against latitude. \label{DAGD-USmelanoma-lat}} \end{center} \end{figure} The scatterplot in Figure~\ref{DAGD-USmelanoma-lat} highlights that the mortality is lowest in the northern land states. Coastal states show a higher mortality than land states at roughly the same latitude. The highest mortalities can be observed for the south coastal states with latitude less than $32^\circ$, say, that is <>= subset(USmelanoma, latitude < 32) @ Alternatively, we also may simply want to look at a color-coded map of the United States, where each state is plotted in a color that corresponds to its mortality rate. It is fairly simple to set-up such a plot using the \Rpackage{sp} family of packages \citep{PKG:sp}. We start with loading a map of the mainland states, basically a number of polygons: <>= library("sp") library("maps") library("maptools") states <- map("state", plot = FALSE, fill = TRUE) @ It is of course important to match the mortality rates to the corresponding state. We therefore create unique names of the states in lower-case letters for both the polygons and the mortality data <>= IDs <- sapply(strsplit(states$names, ":"), function(x) x[1]) rownames(USmelanoma) <- tolower(rownames(USmelanoma)) @ Now we are ready to merge these two objects into a so-called \Rclass{SpatialPolygonsDataFrame} object. We first create a \Rclass{SpatialPolygons} object from the map in the correct reference system (WGS84, in our case) and then merge the polygons with the data <>= us1 <- map2SpatialPolygons(states, IDs=IDs, proj4string = CRS("+proj=longlat +datum=WGS84")) us2 <- SpatialPolygonsDataFrame(us1, USmelanoma) @ The resulting object \Robject{us2} can now be plotted using the \Rcmd{spplot} function, see Figure~\ref{DAGD-USmelanoma-long-lat}. The colors correspond to the mortality rate, as shown in the color legend to the right of the map. We see that darker grey values corresponding to higher mortality rates appear in the southern costal states, both on the east and the west coast in good agreement with our earlier results. \begin{figure} \begin{center} <>= spplot(us2, "mortality", col.regions = rev(grey.colors(100))) @ \caption{Map of the United States of America showing malignant melanoma mortality rates. \label{DAGD-USmelanoma-long-lat}} \end{center} \end{figure} Up to now we have primarily focused on the visualization of continuous variables. We now extend our focus to the visualization of categorical variables. \index{Boxplot|)} \index{Histogram|)} \index{Scatterplot|)} \subsection{Chinese Health and Family Life} \index{Barchart|(} \index{Spineplot|(} \index{Spinogram|(} One part of the questionnaire the Chinese Health and Family Life Survey focuses on is the self-reported health status. Two questions are interesting for us. The first one is `Generally speaking, do you consider the condition of your health to be excellent, good, fair, not good, or poor?'. The second question is `Generally speaking, in the past twelve months, how happy were you?'. The distribution of such variables is commonly visualized using barcharts where for each category the total or relative number of observations is displayed. Such a barchart can conveniently be produced by applying the \Rcmd{barplot} function to a tabulation of the data. The empirical density of the variable \Robject{R\_happy} is computed by the \Rcmd{xtabs} function for producing (contingency) tables; the resulting barchart is given in Figure~\ref{DAGD-CHFLS-happy}. \begin{figure} <>= barplot(xtabs(~ R_happy, data = CHFLS)) @ \caption{Bar chart of happiness. \label{DAGD-CHFLS-happy}} \end{figure} The visualization of two categorical variables could be done by conditional barcharts, i.e., barcharts of the first variable within the categories of the second variable. An attractive alternative for displaying such two-way tables are \stress{spineplots} \citep{HSAUR:Friendly1994,HSAUR:HofmannTheus2005,HSAUR:Chenetal2008}; the meaning of the name will become clear when looking at such a plot in Figure~\ref{DAGD-CHFLS-health_happy}. Before constructing such a plot, we produce a two-way table of the health status and self-reported happiness using the \Rcmd{xtabs} function: <>= xtabs(~ R_happy + R_health, data = CHFLS) @ <>= hh <- xtabs(~ R_health + R_happy, data = CHFLS) @ A \stress{spineplot} is a group of rectangles, each representing one cell in the two-way contingency table. The area of the rectangle is proportional with the number of observations in the cell. Here, we produce a mosaic plot of health status and happiness in Figure~\ref{DAGD-CHFLS-health_happy}. \begin{figure} <>= plot(R_happy ~ R_health, data = CHFLS, ylab = "Happiness", xlab = "Health") @ \caption{Spineplot of health status and happiness. \label{DAGD-CHFLS-health_happy}} \end{figure} Consider the right upper cell in Figure~\ref{DAGD-CHFLS-health_happy}, i.e., the $\Sexpr{hh["Excellent", "Very happy"]}$ very happy women with excellent health status. The width of the right-most bar corresponds to the frequency of women with excellent health status. The length of the top-right rectangle corresponds to the conditional frequency of very happy women given their health status is excellent. Multiplying these two quantities gives the area of this cell which corresponds to the frequency of women who are both very happy and enjoy an excellent health status. The conditional frequency of very happy women increases with increasing health status, whereas the conditional frequency of very unhappy or not too happy women decreases. When the association of a categorical and a continuous variable is of interest, say the monthly income and self-reported happiness, one might use parallel boxplots to visualize the distribution of the income depending on happiness. If we were studying self-reported happiness as response and income as independent variable, however, this would give a representation of the conditional distribution of income given happiness, but we are interested in the conditional distribution of happiness given income. One possibility to produce a more appropriate plot is called \stress{spinogram}. Here, the continuous $x$-variable is categorized first. Within each of these categories, the conditional frequencies of the response variable are given by stacked barcharts, in a way similar to spineplots. For happiness depending on log-income (since income is naturally skewed we use a log-transformation of the income) it seems that the proportion of unhappy and not too happy women decreases with increasing income whereas the proportion of very happy women stays rather constant. In contrast to spinograms, where bins, as in a histogram, are given on the $x$-axis, a \stress{conditional density plot} uses the original $x$-axis for a display of the conditional density of the categorical response given the independent variable. \begin{figure} <>= layout(matrix(1:2, ncol = 2)) plot(R_happy ~ log(R_income + 1), data = CHFLS, ylab = "Happiness", xlab = "log(Income + 1)") cdplot(R_happy ~ log(R_income + 1), data = CHFLS, ylab = "Happiness", xlab = "log(Income + 1)") @ \caption{Spinogram (left) and conditional density plot (right) of happiness depending on log-income. \label{DAGD-CHFLS-happy_income}} \end{figure} \index{Barchart|)} \index{Spineplot|)} \index{Spinogram|)} \index{Trellis plot|(} For our last example we return to scatterplots for inspecting the association between a woman's monthly income and the income of her partner. Both income variables have been computed and partially imputed from other self-reported variables and are only rough assessments of the real income. Moreover, the data itself is numeric but heavily tied, making it difficult to produce `correct' scatterplots because points will overlap. A relatively easy trick is to jitter the observation by adding a small random noise to each point in order to avoid overlapping plotting symbols. In addition, we want to study the relationship between both monthly incomes conditional on the woman's education. Such conditioning plots are called \stress{trellis} plots and are implemented in the package \Rpackage{lattice} \citep{PKG:lattice, HSAUR:Sarkar2008}. We utilize the \Rcmd{xyplot} function from package \Rpackage{lattice} to produce a scatterplot. The formula reads as already explained with the exception that a third \stress{conditioning} variable, \Robject{R\_edu} in our case, is present. For each level of education, a separate scatterplot will be produced. The plots are directly comparable since the axes remain the same for all plots. \begin{figure} <>= library("lattice") xyplot(jitter(log(R_income + 0.5)) ~ jitter(log(A_income + 0.5)) | R_edu, data = CHFLS, pch = 19, col = rgb(.1, .1, .1, .1), ylab = "log(Wife's income + .5)", xlab = "log(Husband's income + .5)") @ <>= library("lattice") trellis.par.set(list(plot.symbol = list(col=1,pch=20, cex=0.7), box.rectangle = list(col=1), plot.line = list(col = 1, lwd = 1), box.umbrella = list(lty=1, col=1), strip.background = list(col = "white"))) ltheme <- canonical.theme(color = FALSE) ## in-built B&W theme ltheme$strip.background$col <- "transparent" ## change strip bg lattice.options(default.theme = ltheme) xyplot(jitter(log(R_income + 0.5)) ~ jitter(log(A_income + 0.5)) | R_edu, data = CHFLS, pch = 19, col = rgb(.1, .1, .1, .1), ylab = "log(Wife's income + .5)", xlab = "log(Husband's income + .5)") @ \caption{Scatterplot of jittered log-income of wife and husband, conditional on the wife's education. \label{DAGD-CHFLS-RAincome3}} \end{figure} The plot shown in Figure~\ref{DAGD-CHFLS-RAincome3} reveals several interesting issues. Some observations are positioned on a straight line with slope one, most probably an artifact of missing value imputation by linear models (as described in the data dictionary, see the documentation \texttt{?CHFLS}). Four constellations can be identified: both partners have zero income, the partner has no income, the woman has no income or both partners have a positive income. For couples where the woman has a university degree, the income of both partners is relatively high (except for two couples where only the woman has income). A small number of former junior college students live in relationships where only the man has income, the income of both partners seems only slightly positively correlated for the remaining couples. For lower levels of education, all four constellations are present. The frequency of couples where only the man has some income seems larger than the other way around. Ignoring the observations on the straight line, there is almost no association between the income of both partners. \index{Trellis plot|)} \section{Summary of Findings} Using relatively straightforward graphical techniques only on the two sets of data considered in this chapter we have been able to uncover a number of important features of each data set; \begin{description} \item[Melanoma mortality] Mortality is related only to the latitude of a state not to its longitude, mortality is higher for costal states than for land states, and the highest mortality is observed in the south costal states with latitude less than 32 degrees. \item[Health and family life] We saw that happiness depends on health status. Women reported to be very happy more often when they also reported a good or excellent health status. The dependency of happiness on the income of the women seems to be less clear, but we conclude that, conditional on education, the income of wives and their husbands is highly correlated. \end{description} \section{Final Comments} Producing publication-quality graphics is one of the major strengths of the \R{} system and almost anything is possible since graphics are programmable in \R{}. Naturally, this chapter can be only a very brief introduction to some commonly used displays and the reader is referred to specialized books, most important \cite{HSAUR:Murrell2005}, \cite{HSAUR:Sarkar2008}, and \cite{HSAUR:Chenetal2008}. Interactive 3D-graphics are available from package \Rpackage{rgl} \citep{PKG:rgl}. \section*{Exercises} \begin{description} \exercise The data in Table~\ref{DAGD-household-tab} are part of a data set collected from a survey of household expenditure and give the expenditure of $20$ single men and $20$ single women on four commodity groups. The units of expenditure are Hong Kong dollars, and the four commodity groups are \begin{description} \item[\Robject{housing}] housing, including fuel and light, \item[\Robject{food}] foodstuffs, including alcohol and tobacco, \item[\Robject{goods}] other goods, including clothing, footwear, and durable goods, \item[\Robject{service}] services, including transport and vehicles. \end{description} The aim of the survey was to investigate how the division of household expenditure between the four commodity groups depends on total expenditure and to find out whether this relationship differs for men and women. Use appropriate graphical methods to answer these questions and state your conclusions. <>= data("household", package = "HSAUR3") toLatex(HSAURtable(household), caption = paste("Household expenditure for single men and women."), label = "DAGD-household-tab") @ \exercise The data set shown in Table~\ref{DAGD-USstates-tab} contains values of seven variables for ten states in the US. The seven variables are \begin{description} \item[\Robject{Population}] population size divided by $1000$, \item[\Robject{Income}] average per capita income, \item[\Robject{Illiteracy}] illiteracy rate (\% population), \item[\Robject{Life.Expectancy}] life expectancy (years), \item[\Robject{Homicide}] homicide rate (per $1000$), \item[\Robject{Graduates}] percentage of high school graduates, \item[\Robject{Freezing}] average number of days per below freezing. \end{description} With these data \begin{enumerate} \item Construct a scatterplot matrix of the data labeling the points by state name (using function \Rcmd{text}). \item Construct a plot of life expectancy and homicide rate conditional on average per capita income. \end{enumerate} \begin{sidewaystable} \vspace*{12.5cm} \begin{center} <>= data("USstates", package = "HSAUR3") toLatex(HSAURtable(USstates), caption = paste("Socio-demographic variables for ten US states."), label = "DAGD-USstates-tab") @ \end{center} \end{sidewaystable} \exercise Mortality rates per $100,000$ from male suicides for a number of age groups and a number of countries are given in Table~\ref{DAGD-suicides2-tab}. Construct side-by-side box plots for the data from different age groups, and comment on what the graphic tells us about the data. <>= data("suicides2", package = "HSAUR3") toLatex(HSAURtable(suicides2), caption = paste("Mortality rates per $100,000$ from male suicides."), label = "DAGD-suicides2-tab", rownames = TRUE) @ \exercise \cite{HSAUR:FluryRiedwyl1988} report data that give various length measurements on $200$ Swiss bank notes. The data are available from package \Rpackage{alr3} \citep{PKG:alr3}; a sample of ten bank notes is given in Table~\ref{DAGD-banknote-tab}. <>= data("banknote", package = "alr3") banknote$Y <- NULL banknote <- banknote[c(1:5, 101:200),] toLatex(HSAURtable(banknote, pkg = "alr3", nrow = 10), caption = paste("Swiss bank note data."), label = "DAGD-banknote-tab", rownames = FALSE) @ Use whatever graphical techniques you think are appropriate to investigate whether there is any `pattern' or structure in the data. Do you observe something suspicious? \exercise The data in Table~\ref{DAGD-birds-tab} were originally derived from a study reported in \cite{HSAUR:Vuilleumier1970} which investigated numbers of bird species in isolated `islands' of paramo vegetation in the northern Andes. The aim of the study was to investigate how the number of species (\Robject{N}) is related to four other variables, \Robject{AR} (area of `island' in thousands of square km), \Robject{EL} (elevation in thousands of m), \Robject{Dec} (distance from Ecuador in km) and \Robject{DNI} (distance to the nearest `island' in km). Begin by constructing a scatterplot matrix of the data differentiating the islands on each panel by a different plotting symbol and on each diagonal panel showing the histogram of the associated variable. What can you conclude from this plot about how N is related to the other four variables? <>= data("birds", package = "HSAUR3") toLatex(HSAURtable(birds), caption = paste("Birds in paramo vegetation."), label = "DAGD-birds-tab", rownames = TRUE) @ \end{description} \bibliographystyle{LaTeXBibTeX/refstyle} \bibliography{LaTeXBibTeX/HSAUR} \end{document} HSAUR3/inst/doc/Ch_gam.pdf0000644000176200001440000041034013303046020014603 0ustar liggesusers%PDF-1.5 % 1 0 obj << /Type /ObjStm /Length 3611 /Filter /FlateDecode /N 62 /First 500 >> stream x[Ys8~_q*$SۛvLhEGr̯߯%q9L0?` _2Ŕ7b TB9?u]*7dܐ 9nPyUS }T?[Qw wPsp=&1O0!CtJT 4VLԉϤ@o(3Ћ (茩 "FN0H-Y`p4XF(Y(CyG ^:,@tY!Юb’x(У$fD 2:`*$Fq@#+D6zK 9hfೋ(Dg}@X0IFX!zu7Ə"E @ƌ]tX|?o) Ͽ=$,e/_.]`["/9;(?g|viO.ٗcwHnC<PuKl lnOt9IvpE>YFn g&mdGb!&to,ag$yE a]t ^Sfn=~͗t>=$zzeQ)1g(,+}H֊)A^Y^Sk|uGulqqoOYX&j4$= ?=<{s GlJ& H,Ii%-4ki0N;bzkJ+ӏm2!%z@B8 8P00B-p B-| A ͞KZ$JKOh(o өI*KH`%[RNr+Iz{g-;|-?c~O$es|O5w<9x6O̠4"_[$ _,gZ5/`^ 2Ҥ0YBfCN#~Gp^d{~ żӜ̶3~V$&N]j/KI8⎰__]^c39ߞJ!(-:Ц>PMmMZq庯yun> {a{ӧw^cqêlb3ԭfն/i_;/ރl쭧dc#è'uJtYYOM 1i rAPQsRkRh4jB&\W==NK5w }Omec8è ̔diZ'Q{^;354!cCwJBD[1?a傑H'* y GQ@f-oGK=ܒOɭ&5pb(SOIS&2I)A4X ]4"<:uW o^\kRw~F+o#FBA< zB!z✲G{(B跩;ڦ):  C~Hi]*>Y 08Dt ʇƣzf2]קbT]3۷pT]O!WwxX͚FӛݷST{>~<|@zQ4MI5M$ӿ73~װ]2o).0)i>-ԆOAna3Q }jϓϠ OVi/cJ]lj4[N7sWPxzo5_YJ6ŢvXkZ-TP~Q02}OUʤ"נ?Ѫӈ,>(E"Ў(>KGIћƶyC<_@:m2%,2 >a;J-{xZ#$ZF]iGV'O#zOUAl]ڈ4nte0zeBG^?@O_vWO^7Ņѧ7ԐoѪ沐].{z :eG'՗s#mjtZuﭛ{zEt Ԩ 'fjW L8$]L&]i$#"|L ˴1P fb#>-jIE;̒< H>̖y * gZs9GOEmEVjS`@{TR*_k+TlRSJ>˜nu,jQb5Eovzwu}0}N0H ѝͫ  Q&TM-AOO<:E uIY.iPR|2Dn ª'I8khlo@?a]`5 n,OPPO%>':X_]L3oi+&_LK`U0g|,jDž^@Eg]oJ*, |k ZfM2RIUX ;kW"%a-aQ,us~yspDj]|6mZr!ZǘřPP~պ!jJIp1g)udYWRL7]&ze[F-zFݝZxilqVm6bkEmȻSi- *:I?.8y1Nnog#=NCbSlzlM/~m{35KF{#yOZh`zsa#@ߦd>0ㆾ?:`#0vˈq-ܤ#ͽQ N"44ԯu+_$v cl/d`~aMÍU^Ȏ*SzwM*[{v2*욃N Y3Oy=qc) q'&M/Qj6d7M lH;Hzu ]K4; 0qG u -D4 t7GC*L|ں+_9o/]e[^u3=t2{#P#g.h.B4r+ݮDP#$8YV Wgȧu E]d*E?75pW{H}ۮSg+z אmC/rt7Ru?ژY=Q'gaD>U<ܧ(q&:Oʫ 涋Ogendstream endobj 64 0 obj << /Subtype /XML /Type /Metadata /Length 1653 >> stream GPL Ghostscript 9.18 2018-05-28T10:48:04+02:00 2018-05-28T10:48:04+02:00 LaTeX with hyperref package A Handbook of Statistical Analyses Using R (3rd Edition)Torsten Hothorn and Brian S. EverittBook endstream endobj 65 0 obj << /Type /ObjStm /Length 2194 /Filter /FlateDecode /N 62 /First 513 >> stream xYnH}߯,W`0ؙlL" h[YJtn_ZEC;$[UNUgR`>2m#Y̩Ȃbx cXeJZ\S*)npĮnnƋϬd,!vH HP}ALsnB.5|zKXHf I4ʓMeo(bm}HpEeFz&Wsw:| ,m3k7[^D_5R @){b_CBđUS^ŅB\K q JWZLL܈(E9/ĭ-r"}_CàDB,E%EQc)I|_ėbQ3K (l|d~eg wJ|p:+^ڛMs tۣ钲OY<9߰o{R Yi=>}sO6-ϝys3͝{1v7vE5!GmbғV@l"b ȗauQ7@f`dQOfǠЌAG*;+onYf v7Qd`GC=Fm:[ 0d6Gvʇ|9vs:( 1>9>Ƚdr u"Hr1{PR2@fߠzvJ];}yWHmK04`⡜d8~#<DVbn뱥f[k0u f=Q<@`4ö媌<5!n1\Xr˴bʴRe*H~tc* o|FxvjEMoMxB j _{KM#3=~wD$=9-U7 G%*s%HI4cK6|M)`џɦ燭ށMHQz:TuF@:*aⒸK.։LO`5RRW]_m}u[1VQgwDd:XxZ)$;=9Ւ90!6\ů!2{˫eѴMʹȵilH.NY$AӴ9U$@7W{&^k`{<{* =-Pc/ŔCH^zl?:;<:Bv=9I ͼu7CYW`wtFκBtsq55Nxϋu 6 .SKnBOF8|B)L5~]=w@l'@wݪɝ)s}UnU3`nM$jX?+*UIendstream endobj 128 0 obj << /Filter /FlateDecode /Length 4848 >> stream x\KsqCsSCAО(-Ғ : pk;jta+m U= UEn@1aaOs|Ls%X<(E؎XTa@%l\ jpQ%\eH,谿+>ۤ%4cp\pUa_1r8;e_x3d45’DWKp;f<*΍ دF[7]R24R#SZUD2n,`r[]<"|ݼE5;RJ7}?GX4/g}`e`?.Km2Id:w:)fl@rAd a~"J͢DxQ89R;CT#U=R*m vEMS?'KnLiEcV(3-J'%X_"q/szFvnx4[ZsAO2kb uT'T}Fx3rKRԁI${VHiSBW`22͸x['Q!5p6duyu(?W!^gRPE g{°V‹*azHc^*x @  qBta!kߧq{Y Ӫ柷E6&|DKP_K8#݂kip@('E xYn䐭PL K,y4ik/tUgRJ59c~E eIwQe<׋FB ~sΛ vZbK ubm.? m٪)Jm_4r}lHJcﺊ [Z^ҫq㛺D̯NDVJR,{Iv/r'1{4_)Ϫ$PD?_h DS[ pnAw%J.Z[ &&&o!^wpGN֦DǨ2Ѳ劧=*/c-yJ^4]E*tf }k!5 cF6`hh.ʭmKbAOӅx'>ҠƘ9tV)#{TCe"*a”M|غ\__r<mİ%i>U{$ <\5vWՐdi 6{q-e$qiDJq8l鉧fmu O Hdg؊ Yĸ<`u+ѤY'oZ"`W<\p;:[> 8udXQtX.,Yꥴ20G$HUUG!8st0<? iOedSNȪz8F8m\˭\:R??y$vbNK ./A% _—qx(Y̺tI‡-HwP&Md쏱 h= NFxdל1*wG_hvϋE)ArG^neor񳁢MNѹ.Ȳ[1#^t.r?|| $^=x,IJWUj<f7O*3#\sHKskx-^%aZKJ/8d6+' !6ڱjFD{~gRQ橌.z\8a__vt4<~8-ѷ|+qeq5:ArqׅQ?+./;*;DqˆAV|4?g;4sy4h c~nŝ^l3 M4 o0Z `zuW/.hD_xymd'&BpKb#(J~ů˞Τ3.VO2E:;gea_8Q,:Cy{u2 V~Y *"~x9䂠 3͝3zːhQ\<8kp7b@L2:Q"ZoɵY}p@T`/}o؎}x0 O/n^@,aOߺ3?9gW-Ť`Ӣȋr执n,^ 'ޟpgm*ܴ,#{:x JTXrLrsO_IJ_}iȜ#lPļ.v>Bendstream endobj 129 0 obj << /Filter /FlateDecode /Length 619 >> stream xuSMoT1 W=4DZT}tB㼯 ^4ɋonw|u)[Tcka~$qdyvNF& bNZA\FVv=.KׯjroQ%*N 8K$N`k:f3kZ-n݋P?;14S[&#Vs›YW3ְdx$؎ ESaY)Zun( \rxj0WC<" ^n4kTqN)j*YF*Rg;Rb8D@B5ތ{?څ9מo"WǣV&AR7]ڡBO3RB;]_%\64?8tf0 7M஝Fe{Hz& "Y0J ЂPP&XMa#`4 Dm<2 ARٖx@*Q8d^$S`kRi)c[uJGgEN˰ )d/`|]s퉖~l%r:M9U8(f&~endstream endobj 130 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 4379 >> stream xX XWTDŔK5}qb\P\QwdSV 6Ҋ 4. MHh4F%\Dr /3nI|{߅ު{% #HXfgs8B"4GIlilR07=>ćP5 dI`hC / ;&Zϰb k'e2g3$z!!L>M<-0ÉS}Bz{yzX;XR{ZloZχC k@Ϡa.X{qc𒐥a;"=X?@A4]?KU`ZPZ*~5P @c6}ϖCw46%2}U6wbGN&x]YSD>s+ےzIcKj qd5 !COhw9Z DKd`yvzFpf/T 6H^l;:YUhs᨟q(L{HF8o !?˒f+qgZ e3F:lZP[tє50ovn ^) #w% #&{>OބJxd VSA\,ͺ~~l4Y{`rRP^3 >J_ز>hZRpRwYt5w3v]VEVxu/"VXs}}aO Oa LZO,zѺVr+J*%/Y Դ:/$ CŁu)}rH8JC[۴Y\Di!r²{! S ޟ@1XAyhuf>X~G>gE\8}P[41Y\W-pt5ax5ȂU `Ґh300!_ëk'[/|snW֒Eڄl*@[)C.gV.+Hd'qljd"*hm48<)]vkyt7IK.Jz iܮ;rFBr#?o5\,H)' Xl1Ρ|A@ 6w1:[jKOmrЊ2s-Qv_p;mU| 4%p hp:%qhZRD E > #"pKw *X۽]<%I x9Crd!tR=.2{6 !K]Yd=W,0ݻ\xq!}Sյ5eJ#s}v%U|K#3-rWQSs|'(~ZdeYP^( HS"|OX~Tnr]Mt A=QC`"uw叜9[D 2x )s K`rGd^ )7&>Q3.QQo5!&--YfDy?yk(@ EٹK,:uMH su\  q:6q20~rThQ8Fh ؇ϋ(:6EHڻ{t6SNip(lSjZ8ȪcN%n=q\Lň%#L8L^ǟ__Ry$IuFwEjU:Bm(5f$8= CrNl$@B4Rq8-踒x+|&Iy3J{$#u]lBAUx6 b?Yn1SmB]%pǘQ ^-Do˻%kiF7XGsKYtDHUb`/SP~L^wMWNIn@P$HR$,_JgUSmxYCIrmlbL^΁ ±m=Dq$Qd<"^hMlp7h^"W尲SoR~Ư]j<'fov Y >Lƀ~h4F1HWח ZJ'O0nG}FEDI8a lcM?4 g<~(?2S{yהNq`dؑr"Vjȶz|z9,R3{C(ZK@Cl2HB=s ʈz=,"LpDA}/ǽG7›ҝbgYTpS圿\+qN'7 \+WL˷CF{u t,z\mYĕZFo5 :E(⸍5{ܖEF7یtߎՇ xC6A>^N._y OQvGOvccR:[|zU2Q~Qbz^uRZ/,V@ҕ}ɭI7,Wʓ>@vԳȟ%GcF)wJ]u~>u>uYD.o{y^CpFkdOH.^N)f$N2Y!}E /c'ntB]61vŏzz(Rz-_f_5*U8=!=JWRr2LT3cfu6-+8P^DJj.>Wj/ө-M='(8MtzjzQ5b=E;y(hfkK5\*ԍ챂BQVQC(5%ǭ!}C*Lg;aS;h]XⳖݑ~[qx{ϯg鸭K|{K Vdcɝ7La-F:$oZ]l~n-5* !Uj|е,̞di ~0wZ;H2!tF?v"ӓ3uPTC..j ,ɦ &n1R+rM]w[Mw.D t/e<\Usw9%$Ր%_]\Uu +˸lewiBRxގ/_Ҍ jbszk|?L&q$HҤ@b14@/| ,*0ϯgC=\ؗoGd=⑸}ラԊm ͥ3)>d Vۜh՝8um(2Ve'%F1C#8q<Ҏ45HEt2jm>h ]0a uP5Ը+_h/> zBW ;|<`͑Sf M_=>{TXu:UIHv8D<6s )4?XMe>+u%gO~ȋUSmQ[\hn-JҦiӀH9iWd y { S?pdΕ[(oSWYN{dD_"6Ot9y2-5EI?]y(01`endstream endobj 131 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 363 >> stream xcd`ab`ddt v04qH3a!Skc7s7˚ﷄ ~O XX_PYQ`hii`d``ZXX('gT*hdX뗗%i(gd(((%*c8)槤1000103012ԽK2>}wy߯jcws~7yŞ>~nSg>;3wߛgO^-ym̾^];ǂXπ| wt\eXp~`:endstream endobj 132 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1925 >> stream xmTg*T:hQIQc*$*TI#BawD*/{YayGXvaAPUIi̩ibFHKP$1Dju9Q$)H2<5IQlUժ Q~HWjRUŒujQf`e!XOYLjT+ *}*YQ1*b*toHmdT[* '5,eJL X"'D"P _VMxf⿤+*Z:ZAE~RRD0J7P _@Ksr=^ly>Ow Iȃh^ôD6߅"C/Wߊzv~Q NtJ$?ܥNOiȑdߜgk$_qz,c[p9ܚ8Xg-WŨ]'ZK-e%`6s@quyi/цد/^h JHQzx~H{p/-#@Cns3"Z$7I9(@D[t0xi{p)(7߄^oXO%})="m2  6зEDcMnk 1Hsq9E*?.%=+HIg\RVd4\H,8{̜g@X-57)/h;^d4@+W6-_k+ *٩qZo$BGݔ4rr~%Tw%'%>ZӔn Os{j=W`=kv{RNZpl3Q><wsh>Z_k'q=1DKSx3,qoO`31Qsw NO BOB;ohrdHׄ"p桃MxW/ G^\VT(saJ`;)m*ʿ;:TLc Iѹ}Ecݝt_s}}h8Hn4ɵe5k3MY-G<ߨ*~k*93 y3,qbe;9p\PʽUpn\+Zƫy!(~(s 0k06`jMȢ]Ǔ䞂[9=s~oC,7_]N%#nkelIN{/t<ڛ4zX=vy]7뺅 5roq8FǨ58 >nTp*-Ns!0" A|= 'tM3Ha ڪ*m"4|@UJ=} 88ڍ.&ۨh=vu~Y.)(VWhaYóYaNߟ9|}|w8endstream endobj 133 0 obj << /Filter /FlateDecode /Length 150 >> stream xU;1 {'0q_N@ -ׇE٬W.,?慅:c8]J`̤\՘pBf3y0IVL;)H%Q3T3!T*_qӊ[;KY I*) vjKԐuSBC endstream endobj 134 0 obj << /Filter /FlateDecode /Length 2574 >> stream xYKo/#&椫}H9RJ[D@aMR4rZRuoW==5"c SSU]ztjN_v˻lޭT t!fm׫hQۉ2 #Bs KHՊ)MZg7q> "!*)5Q;3T7$rfE٤]wv}} Zե!y׫bnf ӫ0veo'D ^)?IPOk [E1{&l0?&vϾ %"Kc /0R+CYH1Fߗϼ~&/Y?#3QL1T:i?2)hOyRTZO.2 Q;"XGKlM؊>+| Xhfg߾!hP?#ܡou[꾭^ WmuVK[WڷW' baZ,ٶk+YR痶y|3 $ht'dJqa¢>/jPO/J4>{`z^6ONW1%ʬWqЩN!؎|nѽAtOQ0ss_f`Ҡu<$Z د`ӟ>OcQ9s6q !Ga;0 iPcvs(|2j燀 <bC9P6? /Ff1H_S6X0F8C* z0t<\EkfQFBS= q쀧/):!]8>-.d;޿VzxZn#3#.9=Z̆"b?EhؚZu4XѸ8 34 Jm$MݘHgMD+1&OMw T10:0,NJèцdwz(k5yS5' x/E3QeOPIaPTΌTugFD̨0~J#'"a!I "?)ʼn iez僑v|\YK굗Taѕ-QE;{>x;_F%( %Og/'tg'S8BU޿nE8À2eJ ҃W}i!&U<殶vSRavl '.tiӇ*H~ȷ (7{zUP(_3(R1k`G!ꀁ%DM= !_y6s5=qt&Jeb(1͊` WZm3E._Ǥ􆙡/ܖ*4Z 0FϮ1h0Lj{HfWj&bKt>x,A9| E bR7( 7!kpS.tov_ 0mctEB6ϺxϒSdv")1!z a[ 1?%EqQDBIy?.-JTiIB} he(_ODg."+qxVb86j!pH&į_Uđ=F/&rev0]3* FE*כ)Yy7!46VDf_ Sd{5fO i]gg*vYF 67\W)c@\xDX^O77 c /UԊJx57/Ba[e$pq[eN/Ʃ.ior[赋:엹?kd^MeЇQPЄk҉QvJ<.S=ϗ83ݕ] X$lJޡ`es% EZXn?^nQ;FV'pU%*O.@>.~,U.Sb rKWӏ%" rO*U/mC9Sxef$,'McDJ”gQ}7:p %tMh{ko#֦-J`7#&̲^}ұH,Zc/X |Z ę_+I2dY(ɘljy%|=\><@7ӯW⟯(ɍPd@W&[&P7Zld21Ȋ"дeQ+^&q|/^FAN<8F XbU@p(@O嬍ؗ~ì dVDž/R*vϦ]aY",T\aWiqd9|Y-t"I-^gj nm kSPK~}+rlǣ/8EOPp:_/Թ{29si;Dun?Xendstream endobj 135 0 obj << /Filter /FlateDecode /Length 1969 >> stream xY[o\5~_#>e|RtQ6ݖ4m7眵}6&s{f7GŇ \IIY(S6h2zYDO)CI)IIk!Q'],T!5)|t}|v\epS#(ɧJ<0yʷXnSⷅ*GJ%%Lx>] BB`J'֛ï~FD&rd/+I) {\YkצnEIן.(i%3+&"uр1GN1F?" ȝ[ (i+M2FQ ,W@hM6t^RfDԥRjXwe_fૼzWI^]Տ]^nۼ*,&W/ $. oNedk-sZZ sfa7tViLaeˈASZE̫QSYìI-Wlp"&o{%.?K}jM_bsJ:gP- ^[8/tB]ed$\t2R_@ p`[Ѓ=q]AFo.EMqQh?_\߸ /v{}&.6'ZIb]ONLYp<R&y@BM;yOiu^ϖ :p7^)=Oj ǍM].TL[NP\da00X=NQXbܢƋcͨ"|%_ FEOE-7xt@O' XʠǃBTRm-p#:mipI)z'.RvO R}fZj9mz7VΫ _8$gowD"Sד1EewL1P/;%`Mh~t1j곶>!6|h/O'ŧ+OK,g>[2 'cD4TxS29p6~_+Aendstream endobj 136 0 obj << /Filter /FlateDecode /Length 3588 >> stream xZio2h;};NXDIS4],+{z9(/ ޞ:^]3 $_.~ B 9yN!8D"$)Q [)Q݉* 2gUT[a#;9kb'Ċ)To.7QXPQjTj' M:L/`V+$~8vQ̭3( eJr+tKi!IexD׵Ɇn1T1 VR`4v}4W ƿJ9Rя6/'>%ZQ?bJƏKX&iU2Euq% .kk&!jCduj,[%⿏ 'ѯJHIZhm^Ӻԕ+WQά.JU_՛:u]]-IoMrNݫ{Mo|iNM|ZəUM]]Tuz)l5&Smc]XWO ^lSVۺ~|zd:'37l-/gnQ_>NﳣgU+{y֬apu:<6y:L[j@Zsp~pylfaps4C _-wU2_?'dЇq#K$x8?kO9#`&kK 8?kT>Zb:Np &a-a`g"a?]s8?3>>Z~2 A_ 'G%IX1yEO =!=vp.nn0 R |,:w29U%5RG`=_dpV[PDzG\lPgݛ9ڈȸ $"=X-J'08µP*ɩ}R`>[lGENw[<K,6_wJussɷry_ni΃qg'j< wk9;b0:wUྒྷL;k;Q+ )%yo "=S%|Ds|i<ϯR a<˻8]*xWl€+6oSQi2;JP^M8L<:8*4 øoqi!*Iܹƫ q < M iJ[utf݁GǛȊFUؙu~SD#~dw ס78CϴIc6kՑ_Ct$;I;`|SȏqI)lɭSCHVs0'^Dx ն׍h$ x1:XX hLjGҤ9z޹"wcRcӹg{WNq|ɷ1 o)&Ξ؆(cvrZqq SdƸc"ںd% }X!'EOz%鿬o5RrĈr eaL>F_PA"l I'5 dx];Q*7G]t;na;iH';k$| ;Sbҹ!v@~2@(5yp4qNL5;BMшC\lw] 6nsСp[H 9&n]aS\{M: p\z]VzYZKtN8tw(m3}( 6툓%&+KyMQ ՟rUNUj$R{vs歾c`Œޤ|k]N=p02;fѺ B˅ ܯ. 4{s:w8z.Ro79Ȱh! ["w5, ob *+f.T,O&I饟2Ln  ~WR1x0!F 3^_)-[=t/[N%@]Ed9↼n>3aX/K7պi8r{>y )䒆xpDq^w> stream x[Yo~_G <&H[4 Jp2CUwOwrVG<~PoOMuuW? bʿǛ/~8YǕ>[9'୓Spf\url wFLZ'gXF4op#вxfB Ler:LE&S~ BrQhLY$vW?dRP9 BF qNl-i5 f˧_b4~Fc?_NBg%1g IDŽ دq !B%Vz&~}wPX( SÁ4Sf*'`UUnU]ɺu%V*:3^զ|U7;Ǻ_m=WGuuі/.F축ͺ.ɤRNZ9~:txUݖJ֕+,.EW!n^նn߼Xg?-VE?Ͽ{O=}̎nP 9?Y󽁏]|W {7 8^r֏.)fo<`u ꎌ*SIQ;*RwxFUw8UWaT7bwdTo&0^n$ag#GkHEF!*8#TtKЯ).>^pyd m׼Q9&ljFGQTV%w:* JsQY iSܚQ1=ɀdII/AF]DKLH8Ö Gyx;*ß`FDpУכnRO(I̗G'QGI,!`Eb|؜Ǜc]z*k1|hMڽӮ<NM8ӤK nd{Mפ6fhz-Df4 Od9#sq4"DI=II~Zz`vlloH]#.)7]!f /,\ǛG. ЀK?>̊ MC"aK2p^q8$< $3Wk&4*p:L:!;IzƗMԏ,*q”K:J׈>6ByL!Lw1gq1gH4JEg Fp&?KF0;xmGPBkxtv5BQDsd\.]O*3AfЗ#OTe$#^zw^HHIL@esUM3k"UdoO%WO&;N+fm \"};Wt !=o>Km>Ai<kii'D[*E#oǴdgӁX`"(8-$M!Q&fp\"йAD ף=FcxĄKK6SG飺{[^KN$Px7%r;ݠaT8,͢d4+MxRe8e_4+|h5K̞nd9[)5$\4;en9H<3~eHV=_YS>v9l`@R廧K@&{]u- jT9{5:ВB(~wviR8fAEڬ=a#*Sؖe OEMblÍt2գwB#frcQЇB]'T1 %(nτ.W]_/Hm+ncOEp/|ɑ |f4怲{>y6x0u%H89MkU+v2 e=tPãLyb {bGO[%UHPM DV6LE^$6+3ĬhX7* E{XL}֞xõ}B*< l,9w.7 Ku)qˆB*S鳤<gsKM"kIFCgVP$,JvZ ΄A1ŗy||l Bll3w`'+w?B۞U[<4lUv~C-lMARرls`y_L%Q2@wʘDlýj7I{q5Q4H˛6L*" uRjs=wLp`[ټe;Zyx4ށ:n zZv`+E=n6*Jg}!5sv%L'AJW)N^-TVSa F}akҥP2C% ?"pY[A* $M4SnN@}tvjoJu_hb^ݪ r{Pd 4vR@SH]k\*L=1!QN ivR0a$q1E98g1K޵j"HiI{15iKzݜ&J>BJ{"r.gϾga첁802ck , mk'YE^l_kMmw@u,}[fTjmn/XOmC9"7b]Kqb_R$雄AIˑ/3SE Y)dBqң\EZɛ4Iwi~ wgM{J=sVA) 6}rw\G ^fbtf{C6[xΤ̈%;횽~j c~߰#}ɆMhT}Q1(Ρ›N6);{}Tv@ZK^)3R3(ȼ?髣oL<zLmVөendstream endobj 138 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 7714 >> stream xYt׶!V&@F$k Bbnܛpö\d#ɽIdcb%KHHsd^zy--[{9յ %Ds7|? ~%AO!k0?2ApDИ~<;:uHcNu=y{w{$#%swd~ƌ1:$#G9Erq~}cW)~Y3~sЛ7۸1 @Ioδs' |0AGa|^iߖ f/ f AmKٴUVāR=ۿqs 5`VUHfzcRh%P_;cxF)B@QpHݬC,Y=|. ;,`횥FW|uAOYl]e-t2op]+D׵2_I{-~᫒EDჿݟz %MmQeKP%ZI/q/g> ;$pn7Cpa8PuŰ~im JݤnVM`]u@:a6LCH+r x05d0̴r6x;lոk-7ҟB8 oz#~Q2 JKY"{$h-m#52;x4@߰Mr4;$AL.d%@R`Xra:*Z]gXƃb$(.,B)Y>N'x'm$ݭx4N&P'{C,ȸ%wouBlU[ UpT{8Ns茸_zbxDtEI.bQ]spQ`pySfyzJ =)NzGq{m&XAw"O]Dh:08 t 0?@4ٝ_6O\Gzm:fTK<@L$Dnq^5{4-j -׊,U^&M,-RaLaԔ_WX_ 㷑:0[-5&4$oMg" ëVi u?= $H}63)IpPfG=Eh\1G9\Po Ř"?+~:֨s ~3*SӓI vc!5/C)+ZЖp?68Ӈ>XPmbĿ+=K‚S*C]2j9Mr!2$?X.M RPzW{NR={.~!URA]XxԜGf-+ L~Wx-&$h6'=!UxdYH~HCM (ᅍ~4P0pd<cw4O@%W]^qP= 1w.~!,lƃpzjp# '/NYJ8=kFV>ml6:Wa)gUG܊?7j Jn VD[[Zqџ]EQf6y57q4ggd&j5^C۠\L{~#\C{ZT.;9g&#5AS3I~?E ѬcGoit2Vv+RHHT|:C#(EؐNA^eV];t-vTh1 yEl݇+*͍Z,SHil0ڎKJH/8dt"U-P[?eu{l^RJYS 5Ьi.XS/:f wZ|Humg1ӃȧS $b>PCֆob5ªF|8ygXDslC$O1c0{sC=ss@ING/NF̯M2[B$o&ds J(P2jkw!R%54%#!)tyHQ~YUMOh}Wgԩ18#׍f:KݏɳS1"Iv&QeM %"k,9gr;d}fHPE FCi~qH7n\kyƠ! ]:bwE% *fpe}ʓD5iO4w'DѼK;5Z-D;ƳjM4YQErF L{ٟTHӨ9u0U&U OIIgs*iI0d@m&_ +`3]<$8yDF_t3f#!b,7E8! 6gmdSЇpIԥʶ)ܞ ۼcm/DAdh<G;hrWkkT۟޹99e-x7(@]/>/Ds9,b?RDEL3QU5E&u&azzM|45$26EK,!B=uwþoJ?-JT¢rI{ B`-@ycrrխQk np;WiL܇ꀝᒔO$Ƌt(/ ٧,ɥKכ%3J-tj"MLlAbqnYVyIbWÝswI=nFoIcmxVlOfk= G7TsWr— U MK;N 8\b;5ߙp[͠sHFjd7}ſHE4CQ=0QW~k~4=$ wdeE^g@񻮙FZUZ7+ =6F$Oq4XF*6KqΔq+ϫչ)4[4K@3o?́n_~HW٢S$%Ȅ/fq-e%/s,ƙvM$- ¸t}!T11'BN^;{mDTGDWDTTyC>Հf5 M(6 FMeۑ(Kɔ*D;PJ`2(@ vy~C9b“,ӑ`4=  $K,xyQUZثޫQ?>bcjZш5u> cX8iDw_>}h`ў!*{668Թ2HDb{G>;) M--ŃF7r nB9ϟ^4LO!2 ]-WY`wm$‹B4m1{ZBJ1 Ld6U,;7 $mMf j>tZ$V!ȥ\%Kw8b^+/:Ț`'mm;`фhg/Y(mFF!W'OSVS[NJK-DHXzrR% D'\L! ' tU&1õҚVtlz9 5sĒYx/SAzZK%OVzg8i홶/lZ̰_.8a汐_9m`BAU(cE؃48\A~V b)M8K-& \Q>}}<ށE''QɡHTy y Z%̙ ͗_?g~q'yV<riFh]pyM&BWOro _ o(;Ere-AiNsΩ_p֝4>[![y1zH/D' ޺*vvW(w Q$ JZx+bIcH15b\q|=u?}}6B๘&88.h W5? })le>bgߗ(K!Z۳t? bT;6wD Yg3JM!R\ɤf(2>15kbBJB3pYx.l+2s~sGQ|$/><VDUH!!FiuCkߨC""aFc5-/NQuᇰ<$_X^Hc8N;j Ngk"JqeBYyyqkg=6`Ex tn6i<;q^iv:~Ir-Jax͛~1Rex}IOy1vۉo)@Qh =ca`_YORCWs KV%Ad,{8%CBTVp*b畈8aB^YcBJ[iƩgJ(seLo 1:`~ x>HoiW,L7u2nM+4|+; c8rLPcʆLXJْ#WZ?*IC QKlh#eK&@ZOZɴ8 Ĥn:kxf^pr{d;_g_>Gcw8(OҐf6n1T6"$@ȑ ~fޝd:0NYi%Ƴu#C$qJ1|};zD !%&e|Q;GlF,b-ʢSaj8?_:B} S&Ԕ&Ja[]},cy֗**bM~[']J?#oW2fѨsoNi5?Σ酼/&ҫ9[l2QƣFn'V49u8h/G'H}b!'n_>63.Juef6&K6J/ȗ60S|.>/Xkf͌-$oJ7oE H̬_8orbG?|pu4h85xR&*dHd0Mw(xz\Aꨌ0)Y$K5a.]QW9 a,!-R%G@HJ{S2"O_u:E߳1gK(endstream endobj 139 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 5346 >> stream xX tSUO *-lBEY t_Im,eߺMWRBȦ8W^MGgtљ99=iӾ{}W(k@(\ayogpSFq'ns!0^jTA:A[mdvNInFZz~̤Y,Y<;byK"ef$%"$䧧d%2#g'eD}z~~Γ>ZTT47!+onvnӳfGeG[|,?bmBVJ掼EfgFNNɕ ɖgG>_bIҚ䔨3on̊y9s_pc(ht:zC Mقs+ V ^,,<&xI`` T!#  & H$#~zQF "t׉Ȑ>q Ƅjlw/fl{p&,7Ocɵlt$U:G1rzEh !㟉7U&S)PͰ`lh@:6͌?wټ(l *{'C*%+`avC|J cg&$r0hu*">EʝR9~!J;֜RI(;޹sl8~\y`*kK;E'esk@cZDl``WpF{ԾmqӥQlح@EG0jTK/>B1HrAӂ7K />'gkh}OYC/cak>)fzS?djdQt+ot@'F W ;Z5t(mN<qh&}ᨭi2Z9Ё\M'g DeiB?N"̍_uN k1;qūxϳ ڠ<]HAO(\-u=V{?@N'mwt1F#0FPpn#?w!dPzkQP$%0 SJ6-C^. n{yL1O!XkjD+,-:(+R5(P? h e4.M6 =`>^臃L_e./nYix98+`V*V_^8rC{-u6ҜSGm̄OQY]v ҺD]=͹ ZJj䀚PKj[$>C߆ϗPtI@7P%7!Sn4Zf\R:W](__G{M%[v%RDC@@sjmػhi榒f;nh2ZKXg˲ 8Ϛ/[#s3#OSLXcd'w7Qu| Ձ.VMU v@k[ z? .gNO]Wr5RmD/H"~,?xww@ 45On6ͩ#4n|H/vIoѡ. 3="#KhNko%NB-0شT!2) u (VL6C9|貳< yf-L2$A%g.ʀ쁽 >ڦցewvh:20bKSL 蠺`ڱe&Z!YAJ2@r%|Bk~nz''[~ɲ-@RccYjD[ӛϿk3bf =Ow0$2mRTuh;WQվJ!Vrw[tEP76{w<4ÿU4dRkesJؘ7pۖCt#}D"0q8$$,4?Q\ J/LY Fö&%۞8-_5J4*SIqi9 v߱"UU/-P [kkŠO}c.m5H*{1B1?mb70b a1~O8Dwbp>t#L>΢a&C(M*KTn:d֪F&j( &p]=MttOmgtB.-wˠ?z w]|{DHd;i9Ay~;Z==>G+mX@mɘ/X-[hg\ N.DO<'I/~TTtCC/WK(>~>Q} xɦyj^ Y)>М vlkwеT\s X)җAQPin߽?1qV.?)+?*dUvEW15D]DI5[T&'%nynnQz[(+VI '}"Bo$zTԿ1W@JM z*ú /JӓG} c8~=o- IҶ$(dBm\YQY]r+o\QHȭVc˰[2_#3P_,iŏg?[ƷGaKGUd,Z#][Fϡv4 |@NkF7No`?scTFUkX(kuhk\]cKL?q?:r%HGq/0Ggq#%ےbUG [g.(W!8p8jB@<(_OʡXvZzzwNѮPJ*]%"ih4YZhK4}04W>Ρ'U<)g[[*wUv3k>ɫ)ͩs2Y ɵaCdb: v%~IS oDrSⱛV*S=O69 ss5Umx,9GymBwA48"Ʉo>aQ1M9 ˧+s2%rO>gn5Z- ̬CS:1x>w`wfx[:ܕϕógPNm:7n+e%>x7V.a (SyO8p|pP-sh9NinZ n5:6p1`)͖: ՎVV>Yse'KXl``; Rn I?^]1eFQHyrڼ9@loq3~s}dhF 㯯1&QT(9H|7}"(lJ=S\I:wzJ[8!$?֞F0 ;D?l.ʌص+v-yFs~ۊ-qqYb/`?n4 NÀH=St[ŽIvi9duV J*v0yO]kawU+t*>:Sa/Z[n7V^ʏq>Yww#>U@<9-:59PFdHeE:_o~}$R%# ha{C;w^x[.r8&[<(5P:ؤ[ҫS=Xȕ jDtX"e-Ǐ'~O\hi) CW{t9NAnUIפVUzT7a7956 jD;lгunCGe?"{xXHX7:3LF=[I8Hvjtـ53kSLIY8fA}UN̒d&qOFbI^[ob2cj]tU8\ME]YRY*Z"=(\ сQcZ\?~5~@юendstream endobj 140 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 329 >> stream xcd`ab`dddw 641H3a!O/nn߷}O=J19(3=DA#YS\GR17(391O7$#57QOL-Tа())///K-/JQ(,PJ-N-*KMQp+QKMU8OB9)槤1000103012)ٽgf|;?̿ܥ;~3>,}} |g|Waq6;7<_s/wt\7Xp9|zaendstream endobj 141 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 5761 >> stream xX\SW1psU^ZG+uVֺE[EQ *f ɉbu8W[mj[_7?a%~='w=^e5x3h3d?Guܬ X5'B4xhX4yǫN3}isJw8ľ>22rZ'+v<_,Λ6M.O *-xI/; FtZ! 9 uޏ]WBQ!MKCKWލpھ*zվkv \2nW濽`}0y^SM1sV95ZCGͣ^ާ&RIz@FyR%3ZJNmQ˩i j:.J͢ܨ7lj5rVS.#ŧFSc(koGj(5Q BjIRvzFQ2ʊ~Ʒ𿰒Y]Ӷt1ciȒ!<4qh J/6HǑڑ..Sh%"/eaQCGmߴO?c+bCC DGF?#rm^1m6iRB%a:%TUBjj"ckQ3]^OTkCWjT..EEiYԌjK`CS{dsg|mF%;%BJ6EŢø,z/X쑖neyS͉I'5=§prYYMOwC]H'PGpj2,@'kz "3T+cTUVӭGe$q~q:ÔT4@*Gu`AR ϟیyQK3Uȣ¯s¨@~[=qb1PϜ@u+1e1g2<$󪍡|F 6\OcypӺkAk9V*Tbgƭt(Ztt8ٿ UMN; 1J$;e匚4$CQ_סFyܕ)ˈݏr}}MqF%<˜rTPFif%'zӆm]NBiVSCL}x$fe$ HpumВ`>Má\FXSAD£xn) u2D'.|j]Oqxi'xSܛ4(HtFt֒Jl>cG_-`=HD,8Φ( 4ƂDW7Y]̅3@*:,lcNn.hOO$ r# = L7/JN rTiIPja~THTҹq?UirQS]. ٻap(tuw񍻀ևTEJ¥EmY9K|w0FJijTG^xBVUAoǹ,$?Ө].8RtZJ< V#w,a}ºșhd*ã{|6p~jvjJϿo-a|ΉQm&&](}tk@ >GO㓟ܲahP퓵#k]I 1"]auf&;*%1eU UQM6⊭y}٢9JDBL%("G#q4/~z%0] /Kv~}|cS91dĢT_P֢=(sOqf>CvҢC57kE5y:b^mRIp^ kj*55~)C?t-Sd#ZcВRtIf~VG !^ɘZxZYR"rCePf?y%vHБSPnR ) ;}!tGxEXN4B` Я^5DK3[iw.4a,u^jA4ޭl!-ͷ/o5CH e(|֢NN&MUi<޴'O=ܿϞUO"z߱Qj5<V(Gш =]>N_d_3U1nV s4"==n+)@v VG4Y R+0F qfAo7:S-!B$جN$"(-xK;(K]RUy(OukDj;!-f|qGkT9ZCQVk/=l}l0@<=f8q[g>\DEevt3mޜ?oM_q_E|o[{pMsu|̺vg/|̪+\׹nQޟTy;?nI/GsH]4ekX ^cvB g"_Z6|{P?MdifVV6*caRyLp`2_la3'R1]0Lߟ 8ᣓd ~%v\;T/j 7SU( e*P~KO ][Vl[pm4(hWcX󾚦&3M9N9ً+?:8 qFkf5(X+^{";3?U1e$.g2asS#) `xʼn j<ҍi(!X.lϵ r*8_r!Z³1+Vk7|Ncw曂С3zkyu (U0UQ$%Iq(&]P&}\iEaUy#ڔ+W\3z-lA%Ȣ܅T(_3[FfPA6Rg-Ʌl}PQrAb ʼݚ$(eQicWLRz.)/B3W,\#5躞E%)хx[zD0҂LTiB6#3Z7q\G}m6WdC9Эߊo#1TyrlAJn`^ M¤]XL%qBLr3][]q)~xF\ltO!^SA4"i;-a@s()!QD ;8Mx99y βIɩiHɘp7N}$Nϝ:\D_2`3&̟;gW}B0()+9r4b|uz> stream x]O10 T 0Um?eB:gm_Xց$i, x> stream xUW \23ePPDD@@EYeM@," bk^VRk *HE,Z\-"$Fժɻ7P{3{w/JWzə +k\O""2"ݚL$(2)@<;(7=5-fUs<Eo>NKOͲ&YrV~Hl<< M IQWֲ9}r}7&ؼ>(18)$94%,5-<="#Sz6sg;srv,Pʊ S3L*"YT$MEQjj\*)ʁ)?jOPT BQTJMR(s-GR$ʄS)2(AtɱN{LB+FTӍݠ[kQ_J:qfʘzvɞbVu=7?afpՠp K % maxr\7jkE[h0!ߌ|xWܤs 9M 2^|t61H=[0Á׭%bG-[* (SI T!*3>SPњڪ R&6WbsPK|XH=?sqb¯d(%6nڱ|? +EcGL") >T CNUqGif,/ԓ{|Wz:؇7zTq>rԫppa!0 "pNCըH) ~L!hP ն<š=sUhT+6}c/9OgO*v=z[,Yhpie3Se"Ymfm/)K,Wm-8tݪƼvt% JŎ(<#)cv n.Ɠ~bG~0#$o+#*~J8b hH .HpU96,e`[ 0\%|q巓^>ZR_s,ExiW5R|j7n;cn!n=M:A= (QFUBXCB. 2^,f'rV_\=|1b%KB3x'=vߏؐ=vQm-nxJaC $[|j֙.Æ+R)m{/Y:xL#8۶ 0f~?k,UUYmǾyw#6uj)GZM  x} Re]$b֢e6eKěS71>. ߑƆqiS"A;e p/=BZ}-{h` q|h.m4؂ KҔ(-#O`#AyVA+?P[^X!i .I  _7v)؏oۉfҳ4vd@91wA4'#CBFORŨ0))UMs5;H^>-J-Ri֐qȏ%_:߂AvWe5q({{qn~zc|ZU!#eHJI)@@ͼ74AӸ([#"m"{*8/ؚpl";8EOh q`Dcx7F^$Z1WRĶ_˺1ƐA2J{x.x Kiq9K 5# n$D>Z5Z,z2B[xi@aiqX &JhHԀdv+Ӛ#*i`7 Sm-\'pDLٯqkz%JzY5xZ 5Jѫ;C7lIvu69z.b/5j 6`0t9!76Eugvuk3ءրSꂊ?L$b͸s!uTS^=\AHkޖ؀<8XAͻJ"^ \݃vt0>,%Tשc R/_U02&$S6E tH֣{,ϐ$%D1#kܢ8i:a@e -iR”罂N/ LQ9WK\P ]l)NOsFw1OEI ⶅ!7u46Η^&#P&4alh]SxE犌Jt;mJ?ZmD-E/hbƞ q.'A!ؑi37K}Ͽq F|['Kk 孪%x> a1 ~;؍A}_gB0V4,/ wҊPba!5Or #hN‹i?6Q}L@H}5 ]䟙x7.W׶K=0xjZ0itl 'E5,ftMݽnnUތp]8?@ pGpa.<6fPguOua wnZZsYX{~^sQ0ZWSd~ hkb\R^BK†K/վǧ  CRY,"<a;86c`\87, !S_9)Kl U8{fw <NA8 HZ;"n;`gL6&&1,b؝l2swgMby"&➰#KP=*JRoHxG?v` AJ@؟$)Ma}Ro#p\CD?y288A~7٭TGd2p ^ikY4* s/zʳ)\"ؚw-&o<䟙a嬒Ǐ_d3bo/ذ&(U,\;N3'DŽ6vFեNQsb^|,%&8|ʑ*δ1bôѴ⡻ky-jDI^*8pL^SWq kDɒޗm4x;= T>K~] 5"{q8\31aH@r-CGiLE鋍\G@˙as> stream xEU PTG~7<QgbtߌAD1^"U¡"X0rda  Y$Ƹ^ wMYڤeiJbA4-uq<:#̠_ #n`̀e&<m1l"LpI *:*W.P,]Y1RRHVS hs׆j1/tԑqcC9.P´8Ml&HUx#51pzȘx&V(65^r%NK?Y|E(ʕ+N}DMlj*QӨ) z)t:< 1HxIgS*)`WWhA 0QܩC!==g?${3 5m^m󐖒5JG HNnVn(p¥k; HxxO 8qY/32d-;DB)F݀RhGf`UUIFy/6I7fw tr8g{6#&$"qhh=5֭;TsˈPe~{u;o"K3ZFhnG&\aq:eL~hkܿٳD ,YPĚ|סsۛU:NgȖk}=b|G,ot"2@+8Ll YaL;F3="H<UPU\ߜؑ,.ƄjyWUypN:UsZQTHէUŻ }Wm>rT\J >s:h Y[O]  R`:{'d6" PwY?*`/>V-Ʃ4*q#\^p%eE``I,(ݠ++֗~PRj+-{RYEDX\-'VOL&%)lf?З?ZXWVC!\q;u M9vgx"\fYK.kwo&sX2 %J+>An< @ .Ǡ#gf߈B&eP˶E ߵKaa_o~0Q:2n'th?''Pn>y !} <!U%~tOщCƽཪ֮w0M݅03B7H&:bag :"13.\S_d^anG+~[V p##a9lOOW'è`2U4 #P# WeQizmWXJz oˈRvs47ƽύ1N~`#nA;FxO?YJVjF/e'uwk_YR%d<ž8cCɾ=La^ OnJEdJ0 b{c96;$nv0SF=kgj8p櫫fѡh^9_w/_y@ej@j\%Se|k`ֺ\b뽻!VvXspuľDeVd\/U@w_!wZ|h9@Ӧc]84Oi3R#!U7h.빾&R;/!Jüvc? cpO[nQ%GHA b:6C1~k/06mSUZ.%bY$+L%huzB E(nendstream endobj 145 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 3787 >> stream xW TSg>!sT UzFtr2Wu:jD  B0<;Nx3!$J թ޶kmNk?`;]ޛd$k߷3ʍDk6~9+riP;xcE8LM2b(:NMREEDeSæ̟) [-WEք#ѡjG!ۤ dSFձΞhfFR"M)D#erA>ReZ64Z.smMPU5}rU 01ظ%xuAMhޤ}u#"7Fmڬ:YcfldMff lg`v0NMf g1s f2Yˌf0ь'%LH1;F[{Xq(QIEE}a,3Vڣm\d=/yM|vҳ6yy Nw{eS iI_;T`sEyDmWYgi3Hg${@ׅVhWtjmQ-"^OF#ME/~DC; Ԣ~+pz Z:[N tj 5nP eP&8-jǙoɶbí ޻q~;9[sC$,o>/Ձ je?ǢW8Oٲ#a\n=.ՕҁK$<&CfyX[#-(*(,۫P.xu_ԣ&4 Qŋ+ ߨA d_Qtȩk>})JMםy;a~:NudMKG.^*)ZK*~Uv', d: +!7Eә}NAcy;eⓘa)A:^y]P+{jCDB D2PVB-яOQa] aSq57}1rv6Z zP¨4 GAdyZ_R9CC6^gA+6L Tyb24e&>~hͭ|ȟl75=B (DA,D[:j@|fbE6xD[ùb j$< yOaz~PPVP}#Z3L4C~iA)R0FXZ}]7AD(/+otEqWY7¾?I߻;$m]ڱn pVh6h3(*_W f&{sOm],iej2v [07Nûx;+<_p<9yi=9[Ul`7Kry{I噿KDzݑKO}5~kc]jĩTT+{> 5;h^c4 ՗X1VD$WLԪS~lW85t^4Mt H{wzy#>ZeQBw9G^)n;pNT|%#alDpAEpPb쁰n}E7uOC?hܢӯQ%M#<KOw} z3~$磧t#p|I|C!<^%ϒ {=ѳqcqnQf.; DM?`Uo8]/Ywlp·s񄖡9-NCP{l#YG߳|BBП̥Zǹ"%'>2ԡw!ё2"^;}3&#`&e)JRUK*y\jrT7 :V9B/YķՍ_lUw֢3㪡^˓drDe!]Eg X횇_'x'c fSImA ꁻ@ z]}CI(qLOkKg!mp8o}2>1n*42 .:!Ü3/;\dBd@f1Ոڹ']h^,ɡ\oCa_W 7E+ԪFץM4xo^G~A]Ext'ȟW)O4OZnapz-MK*ؿ-nɗ쌞?嵾]BOHM.UL,ѷG pX-"Bu1 Kj0CQ VYFcy&#ndSoǷ {4S)IPccv,vC IpI*1SjR}M1?-U$ݧG7j]@fl40PtJ]\:#տ^jC瑡O#\ ç@d<fߒ_bn~nmMaA;C[ ;:m8%/1:у bdP)&<هgz=>_P`ʇB8 ;}N m?X,!d̻MŅOt,mף׬ЃB>Kkg lC7 qdB~A.3e߹3_5}xq_ZDtOw˹O1 z:r$<2ؑoQ@:ݔh nY""p6_f tx׼/*C;p >a]dCF2b~oDGǫb[W?pJ_~.v^v>|wNC:߱uPND%zp4IY5^I:[*wRZ zH4f!JXz&481AB1WJnj_1RqoR endstream endobj 146 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 5001 >> stream xXyXS׶?TVQRZ8S댂L3Q 0 ! $a!8K"PcEZ~Zm{o'{[kE@x`h4akb,1pR$6%xkԶ>!GpAA y֋^ˣ~仉ޯW#q\T"8*hqa|'LD&H%̙3G5CE'QHc?R%2y$1CjD'oKKC6, K%IQY8P-ITH|dIx?hYb4Y*KT|(^GrIGKrIRT qlRTb$F,KSbl6YbX$|ULNʓb2qQ6 ),m;cd)׼%MT%6;[%BIR ) ibDq$6*)&^kC>˫ Y}kd$~ۇfŘZ8Pl#7>*Il#xg䍏N1kQboi2ErJZʭ1Amqa;f5gq&L)SL1 Fh"%"XK'%$b#G,%>" "XNL#VӉ@b&"|NK X-b EM'!7!$[F 'f`%<@':K+IYCyR۩^O :|k[0n \9ק^߽=n5(oЯ?QԾsmȚ!!W2oS`|aЙC3<XX 84*-Wgrp2e].QmqE2޶k_@5Tzǒ \ ·naEnO ބ&~yg3 utSo=RweD+Wvg@*":|. HQΨ+? N_ue1:\ Yp]=} h?km[]3YTMiiΦ>挺dF/[f"+EF EB_KpLu(1Nv~KȲ[yo;?_ H4 qYp  Ƚ\Ѓ8V懯B# B^zIM(??AO OtM!z2pCcO&"(B6qB_^CĂep= =GVvZNt?/0v 1TŹdAe1!8\Wy/U2U~J1N*G G.rv qRpLW ;w&$:-3 TFN.;@iњlSÝP ޶c^Pߠ(Wʨʮ2 ;:V&dҡ6O8 \g`u%@Jh'd-,s&,1>m/t** -/.Ӓoٽ=\]iUtPk*9V3 yh&qr*$[ y1X#aw"(^$Rנ,A˖'L8b5Ғr P{w`W/g#ODܠ/@ϗ˻\˱-Ǐ': #ÿ_Ah:)G x/,y a01h ]bWxgp+)ޝ'P#7O kI!yeZXxwK֚1b7.ދk]߰ he2 M>X*Jmb3O'ҵ=Þt`.'i!Ps4jܝEO|2'LOJb2$dqk(4>c2F{bD =%Xgq-q/xWFy#fl:QJm{uT-pE3mE)k5B4;H_?Hd7혟_=)F]g0S@p%lnut=_|f("ѷS'?02?A om ?\~CJUYqL5 ,}N5%VU4nGrC ^3͉c{u<{{s=\KxR_K,p#~|DJ-3΅Cĸq5gϿz{,UUFjpye"[gmqXY Yfqg)V::Dmp=%:VnY99he_g3;VN",e~ͤ;/HQ-jxܣ{VŢ"o*]ŭu& 'QWNG/(~ >lM pO4frihSp RFr0o@耆J4_li {6^V`Sso5Yu9I 3T6BvvhR5çX%-?L Ol>zvA͍g@8ْ\T/7-H2aNWdֱ&XĢ|ʱ*PQOG<Ao4;ΤQ(5,L6 #*8޸V+ܽBh}~w5̑jlv$p=r3_tz'Sf. D ם[Wq\t_k6h.чW/Cr6 ǹOo97!:^Uj?O㧽Im n.l2о;t۝>ٛ&Q"l)1 :ƨm6]}xDGn fނ_z2hooEaAhD,/5_[s}Z]oh(e -$=9mPIm=j) *xi][Ѱڲ |N)l$OݴgGw<;)&̣g_ HCg/N,k鰎jWl!Zsg̟tCǕі ( YF<\_u*՝G+MX\& @:+msNܼ̦]oOAo ;yt5lۗ|-f[32mIꨮ?=xR\YNSc=̏sאfDoߗURm'$Νx]\?n=j[=9+f ;6l z?_Ƙ̌@ j6ԆVNҫ˴eƓdeIX%>̽ nY83*kڄG[kKsrtZ;G< Yg".w) ܌V> Ӳ(Dqg;27D'`iM 0h0kEj 95,?X3 ,?zOb7qm_^%v t788xw&1qʬ:ŽlXU6$OS(SYtoLm[[}erLҧZ}Y̧ĸ^wCeUQymP@քO,[DbzEc9do—E/c's?7 o&Lٴ Jv-@_9)4,9 Νb삜`j9G%Ub{0N} nwBNM J`Sy@I&=r 3qQ1Վ z Ͷ<7`ҡTөOc&[Ten{d4I7 F/,z)KVE aLsڶv9 svj[/jfm6)ˀ-^^?sɨcendstream endobj 147 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 505 >> stream xCMMI10$J  b`[WouCopyright (c) 1997, 2009 American Mathematical Society (), with Reserved Font Name CMMI10.CMMI10Computer Modernk:L嗡f?~tBqyw%ԇ}tM{IPc‹}wBtX_x~L6[d{xt^o];Ciedce|TsnnssnnsuCma  7 Дendstream endobj 148 0 obj << /Filter /FlateDecode /Length 1382 >> stream xVMo7/#=q7gPE~S܃,;SrECzI-((|y3{%uz۝^o^:#v .Ju}ВBCwٱ28cpJZzBe[خqZoy+򍨈IF߀%7HGIJ&gf!5ٜdB˴@v)G|]$ՓMӹz۟-Gjo28YRr۽gF` CcxOY(6+atXRhQ`TWrdݷuǒCSl0ޕŎ'T։2"GX' X491OY$wL`,ETykG(MBSO4q?*Iډ_Ҳ3BCP|g٠nX^FMCʨ  #]/(eyJgrHBw%3+ ՐG2+7#OV!`aT v/ffl >wF-Mɫ4|( 6=Y56>D&5D"+&0>m|,@l.sfUz j+鵅ߙ ;Xf{l"$Ìdm %{'SsnRlɹ^r?qk=mIymbTTf(,"4TDM;J4(:4zdNL:uu"ᴴ3Rb)Q39^e[) #Hkn.ڂu8헩;VA41"KEzhђ- .[u;`5 <~JRk<)]$9;,\x,ڜ? c{BTB qOt*%t E[No<$,S$ }V">Ȳͦ5 Y'ZIh~aQ ߏzHo$S˛b2Muj;7k}ݖ@|_LJrS(|6uQ1.,y,@pp5m9\ m ɵ ˭=K#ɷ  t0t8YrD#\(| iͻ&rTI;buH`Əq)szor)y\FgrXhI4N,aE~0t ]-=Ojj]Tj\-yo1,fe!lU]n>YEj%OMNTUȯ#ֶZGJ#g=L47U%< $Zmn/Φ]b#/ji px0rYD6:VruOendstream endobj 149 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 963 >> stream x5QmLuA) dLc aL-0tQ G[F{8V@-P_ЮljQ["m.l31%9S#afyw(~!77~pz.zƨD3]^ <ߒb[sXNlbt9pgkZ#C?MƖ6L%|ʰ);)ar LBP?;cbz _G8 "\&5kRTW:,ʼ:JFoufhc*: |?AR%J&.צpHnϩSBQϏ ᑏG&u &!UWB_FKkDmvw8ImV`<9{#OE+8u L .ڗa.Nݣd:0=CJ.:*@(ЇGj{xLK`m<:tż!o#FOe9ڷ.F/-sY{ޢRA_z3gG -Y} dlJkTrpv$*nvOoo64dix,J?AIJ|_vp` -A1j` p]cpq yI7Q FNAi9W''c|RoBz2$X؈RQ0?mendstream endobj 150 0 obj << /Filter /FlateDecode /Length 11286 >> stream x}Y\Ǒ;b~}pc]%͌C͈q8.(,_rIJI1> oZs2Oo9ՃyeA-sϣ}pe^~N,qX*9ӿ:uHC4OOaN?k}1I^kÿh:똧cӏ~ 1gnɐf*Jjaw:_0?(_/+ tuYʚ|q R_+vмn}x6ŕ%TL)( }WJ=KG$%% 7<qBfHLrJtL3{N(]4Ld]d$'`"6QQ4G74L$ rKYi&N=NL֡tˉXFA!9E2YM!Au[ȤԬD0,"$:A($(u7I0?P+3b&qZ(W'b$uvd#I U++{ڔj-䳕2Eh<5V#gY%kiHW$)F3$HRX*'S#)jD{ͻITD1-$*F&QIVX*ZlҨ@9H+$)FīDȚ<3I QNЫec5KBFO Q*J)}a2Z˥I։Ke7%ee(XRPh0-F!ǒAPDPW J!O{gpM{Jd'G!#V+PIk2TU@sPV 4bmXՈѹyMԌj#4jl<\:"h^u!geނ6I$z;C7{*'˞Afsfvٛ<Ә . PFͨ)/$ {؞?( ՛[) -S_ɆwEZwgvOZmXG lFT&K%BhL@R+fqa(+ʒ0аBuHٰM. F9y!-HD'uLpN0%^X@%vS5QMҤ,e;b_Slx)m @bK OF5)n[PHbJ}PLXWj(F u.K)N }m]6Ůt[Ff$u ,"Jl!JR$"V0FrjHj!a$Wxۧc|=NϘ\FbK)>6.xʞ(߃klmRB_q-j I=R6 y޸ݹ";aeϕ(y.x'C(aGx.`}%.)EٸrRPcR";&ٲ(WE\@d;QWiz(|\[N2pg&YNut$]˧rъR&arT7|(`gI( `) H<$+fJ%QzUB?ib(ip_Q4230c \b&(ӕ8'QJ #2Yu e^(AN;h@雴9^ BbAyɔHL>0Exp) UR;Q`0ti I@BМd"Y,g~E 2L*#o&iixtK3A6=D+$3*3'CEXJ!DL?41g?py4b8(SJ,]V%k-R?YTl8љ, La9[vҚ.W@K$G0ʣ[ZCR:oVY,45Y3IGq"p{ImB%yg/qiHu(WMlM#Mkiuz31GӨf8E׼HV׻, RtmBHij[3$ ,^LhoTo9-hY״,p"2ѩl O=W;zaB|^"-?i.%INJ噒Lx6O 9~a9lU˙!2(j>+wU̵ӟ`y,!\("#FF"{0t,يq^, t3 >XÊyC QNEٰjo*A`!B$iTC\ʜװ'BN~k0.A|=7z0XB-)0SǵKezC+ ڏUlLIZľЪ] )oJ:Up̭b_-\V,#MlqRRѤeI$?)Z>&-g]~.TR5zDcV_nVP$ rs얍I y>| G\V\SlU#G![3*l.|V_ufeU 9lޯ (zI ,s] ߜ1bQ]sIjj=zd|R}IQ|Y5.| >7Wq§ŵ +|Z\V§ų +|On+U§cŗTKeN\/)O'AHy J,2;~uk&1c)q_syAK5P-~),2J ґ} I|ŕcHxUHVuMr܂N^vK.E >2$yrF3UI^ǡG;Տ'>E2IzsY#[6 HíH]JOU&.Z|;;" EpA 3E(C!JZ%Bq7|\2ii.L?ȜIx .M(U)ȜvE2B  %-E y]sLR$/`s'](‚sDV+L[L|l0 2Ygr1SG JaRs9YVSv(?d Z񙬕HBYYKK$!Ѣ,)Ç.JWLI+*e2䂞EaYygmJ%z$\'Ѓ6/ɱ}Wt+"qaARYxDd DBoQ.Ò݃bYpWS ZU.e2@x)Ua z)bdH1Ms׏ 2Msֺ3lSu-y;n|; CZG?-Y*b?. >GH_IߝodP $ ᾛ)WQT:Fi)@)""?o.BzMISb,.vo~TO!Ħk<'kLͰdR,E%V7'ZeT]t[ՙBA.J ˽t] bRfҤ^(T/%PboSV|=,Jy(jDditE AmbsdDȶ2M+(B>[ehVe^6 )ӡ.WP(W1) $EU nc^f cmNv,m4mU@M!ӡhf$GT7Օo,N/+}뽖aHv%2( *dke\1_n1VD ~B6݌bAa[r,#yϣHgzd5ز2%B[!\O{s{S7`J t)^45wxnzr!y]a5^Q #Ԡ7,L۰@I-Wbb^ /__,Iq!6hC~hv0J[H0eRx4SцxPUaEE@hȩe)+]ϙJCɝ4ErŊ`*"UA#@Z@{JiCa,D7%D7,b7Ɓ$XuQ ( fq u4\w-?X<4Pv &3l Dc H&>-V5hvu lu ~m f l$B-mԨO¬Eb5 yu ]g@tiEqɗ?W1Y.8(? ͬ3OWA\r%q5Og`!JcOyƨ_ooǎ4iſzwod("O5|s__?K=xi^eZA6X@)='E)|s/k̹LZ3?nAFB>bLX YD{h5釺_i'ׅZTiumsm0oHiLoUX^"Ѹg"`qLHm}`xGvD3^fv$8ķäqe-;W"r[Qf qA[-˫تϖFϼ4\@&$ @^sY=Q?/.{ eC2޴_,6YA +p0\O+$6yt>Tˣgne{vc[X8RV7#O;Z=°%Lكӽl ‹gYʂ=%D |X+e(y|)@ktvPuÍOX;s}E-оZQp? 5}U7kntt☨.f\ͱn~60UaR"-\W:YޣوD t9h Oeև"N$l jlcaKFUuI?47\xʵa>;XYS{[ee Dy݄$l)0h>症?8/(RZ9p8.ˇ{o!P KXö|;$dudnPJCǘnϮF+Ϥ9/oF.5oHЪ~#:ޥ<[WrTC"T(HapT D^M\d^cw*kH/ ]4 eV|p?Ო,gx׏9{9Wt ۆ-{F[y3ؖvHʝr${TlF&p9gRɢ7N:nx*1 [x8=5;TǹKNP N ҽN?1B{+2V1MK#s0fnd#}saV0΄} endstream endobj 151 0 obj << /Filter /FlateDecode /Length 8463 >> stream x][o\q~ew;H'XIl^+DQ)R&^+>U]>3C{TSӗ|.W?ƕۧ vzO9%wYRvK͗.KnM$whkYr%u DR][r"9%X‡̗RO4d5vM9%fT]YTi&&df[/o/~Ƞ??\ 0j\/Ҳϗ/^tcKR||7^i+5O~v/?~][,Cטw?ǰ Ӄ<}+Or'6ô">={yߑh3 mv7o}}qZ1#/KUʽǟ_w0ͦ xO/dKs.(]+5}$l}It&^g q#}#Lh,)5ep1(^<%$+p+@xT 7Rl -U9>KTt%z>V8wo%PM5-SIpF4UtR;;W m,bhMsE8 IB-gU\%.mE͊s9lQ(~2YH" ai SG y J 4J04i} C46<.al$`B 'l3c`oON`H ~ VAV=)@cHُl!QAY {tVhs/>c`ŬHQ Q]DGZ^-/+-/cpddP]C'}@R1 S 61`SKMe%$qs(L ٚQ%,Q 0W$/ y1Rϭ(:2٢`lUb#(z*J̕ Ard ( FQWV8j =TMCpe%*"JuϘ}ƄJe_ `Z 4yѮ/ab ,}/lHڔd!>$%we &[ x Q?*1y! `\ ` cԂtp1t^TU0VS V3֝"9W~B{܄+Xk5JVSdY6F`v<# ֿ{ŒsgQ` ;Nؒ;ȍ N@WAGv5@0h2Zzш@g,8(3 (J˳=wE0j4NKsbjÛ؛Ѥ}Fn9x=Nv Xڦ5$N8@^*n7{ "iđ6th#J֓"w`5oN rrNWiN6{e)3칸Mp'8Rd܎{%BC@6Z1K:BR614SG# ܽjIBj:2`|N覜>L>P _l>@a\>PFwS8j^A%MkeN)[m/F0d;sC)s4z.Fxs'X`< Hk/' b Vp pȍ;AֱÝ ` | 3lmeƕMv UO :sA G섨| zޔ^8&@wF4nShEn8>7.Xef; F. FCf0 D/ ֏AYA ϭt9]㗸:X5*) /2) y:DyݸHׂg7C"9[yXrijl-{-~ihl*\HFe"Drg ۴xVBFK$kA%uI|-%,!>Cըt[-U"9_ Dr2YB$k& +HHKsP?  : B[(]{0edQ0 2ȽV?$t%V4xiP?J샽aCnt.f3(  lHPiJ$k3(?łsx^CS npS3PTj6?8w4LwE)PRD5xC+l(ϫb(eiޒh(>?މ ZS(RR~CÔh-Qw ?D:DPqD)Ɠz#A)hq+Q)bl&C"9"? ةG^=?:l( 8钆):Gȸh{CG| P(*GcЊb?bazdh;Hh5CG(*qjH!Tb1QH 8s5Ė7Cǀ |cz&cm "&cD\)Ր1ԵI($JGp% "!#^` '(xMԒ!cdH!:1Y/TH0/___&_'AH٧b !^BM /gärB/"xqBW /+: a_c)3%xe_BZHz!91ϩC(.Bkb_ɘlǴ$D&34g2yYͽk~p% /@hLkE3h-LL5hShiSL;iLkf_JRPFg 0xi4L+a_ W5hAaB3P_L(Fa[ SHEW \& 3xYy-3rW֟ѽ(MH(?z Qޟ[Q_9_(!_1!Y_:!-i_ĿĿ]'&uMfnnnuթc_]fտ`_dJLk1/ s2 s_A50/YMDLkb_S׼ԿN5rԿi53 S2ESX7ŧq Bq>:7S oeNjH!DA򝹱?26L+T`_s8WTRbܿ1Q+b_2/!2ؐŏ+d_a( UW8 ^f3m מ מ n׮m<m`&m צm =!2M!2-_)tϗj+*9[ [jL۩l-rVZ3unpTraNZ$gkuJJK}xVܼ&󵰺I%gkyM@%kk*9[3ZuJ x:Hע?4g-J:Msaķep>x/d:P&[x>qr 4R|mn_mYk& H(6zP2+_.OeV}i8L-^_3Wk Zv6.%pEivnhiR~s7Z{Zgug{\ [价(Z+}OlWrՎyG?z~ZS_1rz|oVWZc]dڗW}ivoƊot߳NhΣӹi>wŖ*Z+hɇ_g=MB;-iZ vc=z[Jf㩏 +>f}fVtxfa` N  a\JOoo`Y u߫!hTOs~h<G'VB"FmSl_૮쬧ѱYkΓfZ(B68x{|+Q(_PXCʔ`DcI,Ip$67"^:< b0cGkYYô`m3CN@{`Ӄn^Xœ >j7#߃Za>:q(;[! ؈Dq'y3y`_!x3Bm0(oiڠz,Wϯ׏%`{}/D?"/&Szxq  ?Z{cP VP8#}O0Wc=/eH@Ma7zq5_Qژ{XW62oq b&|{zK6^a&5ǝ>ڒ 5V*fلznck9W?J hf}d eU_lؿRVoo_#`fg/2B^>Q'cOwlAzD=h%j|6Le];;Gꑵ'p5M\X:"> b_k7f^_vdut?Co3`b&y?<k?~xF+^k-竀[ mHwГ6s?B ߍVΩ~Q"*82$)5 ޥ䰺y{SP4A<}+5 "@I1c<9ÞO\fFf:#b㔦y{:sИ$ :K2_4zȎ.KW"3VW.pm+8F)61=kp3?Y g]pZU^dQ0 pT5U>E,mޠ gCldב=ClmF>kL0r0%Mnj\ Y=!U~0s\@Du~WA}3}6Mr^aE#:g/xBL@m8^$eexM.E[A`bO}ak[km+X90x)#y÷[ #yB/Z YB[hvFC[؅o)=mkQLK&N:e}ǒLMX=]^ڦX8njKW{}x)K/ כ8O{yv diSkK`yhW =?.O/@ ~*6Ⱦ#y/*x:!GK^g~[~'Y~6'ʩ>'.z}UތXٶO8 >Uzς޼ 2_-^Zy{A910{^P.vxio|/c߃T ۙބm. Q>q54r*u͸ϯMc7a\`_i}g!f_NlI2S(Зy;Ax͚|YuqgocptXaXIy6v tYFooychS$M%fVq>*~0׃'zWG}Ϙrb=7\'Ywwt(t.9,.?tsDB7AUuCei}mAՐ)endstream endobj 152 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 4425 >> stream xX TWN]Vi;1ոoWA@Pd_D@n\E]hqĜd21j|k,O9s@5ԫw߽k c#Hn8Z>ߔC_ߒ<صRR:1tS| ǍD:?dWlv>̘TG¶xۻyGyG?vگ k?vf@DĮ&O>)$8¢|]C#{NoRm~HЮ0{_`a %5|aD(1>nq~+l_ngǘ9L4a3+Hf3YÌa2cu;3`fYLb61.+,d1%6,ge8ƞ dl%3Q1o0(<,\}mkVd2y!֙rxi;ogZW[~>l@؀8p& 6GE -KJ$M]bp** SRcx]4)S-p\wzꝠИg4Oc?ʯ20;hF= dzB9ˆ삿B~UUV8 ]яEɽkJo;1f.2,"Ӱ֎lU+FQi ARpg(bG̯ae*dn37C34. (ka!J^u+I_8QԵK!76YOMt;B#&2#MeْTc\B2ԩd|4̂w*wsʈ2#ƨ/hRS,̢Os>dwh,*jl:U2c T'YV-'6zjs|LFuV>igF wȳt杓i?Vi䑄J܀#XA}<4y^rUH?ND7/ 鲑+ u!X{.y QCX˙{hSol5A\sp>{Oy!v7s[kjJϭ.!b򧣔 Xr|apLUOCY NB;N @/*.jeQ>tQ q,Yg} /[OT۲uI@l}Jvĩwpf' +̝ B$iEipFC&_l-,WGDTw}kfrCRľqv[e|װs]WB+jV$XAѬRt^B-Ъw+1q˓=?ʘ* mY.A| J]J|nl8 kئ^?@S/BL/*TUYEׁ0}! eR }zp$(Jv^O1{4n낰B(WJyQkph>q :YU?%PQ Fn9GɸD>mK}ں#1u&:X's)-Hv25d+>)*v䄰>'E3x ?&Ɗ3TCpNYVC|-L;huI`Q5zqf(Όm8hřm/q+ا}.6%lCh^vL<@!뤪)H+R *oee vt= its6Bz7 w&Q!nΎfXt$ˈ-qTe}Iⲱ1`Q?A FސjUƫP=XC4f2!.N>1B!}&,=tJ,)rS`Ɣ"玆Wl ]/lrrǥüB̡ۿQ@MJ[ݭd].kY88 >\vk'6Ŭv T ՊsoHXTT=,;~EC.\K,J~:X3}yX3ƚ3 T%9Q0XCntAZ>ؕ@\`c}GD/0J7FB$Qn@hE,׉T9&r{ | 5wu3IdB(C)ȓG^N7]ޣUA(5 6DYgvj#KW+?<*l?#kǛdid:zNUVrx͊d [ҐGnU'5B^-\` ˎ{*;&<8\z+i$H<qjb -N[ڴ:p m1̀vgGL'ͥG j%oSpUN2 0Kd,F|ОhCG7mEVsOwt܂{p=㫓th ҸailX.S]=]"{02Ke`)Wj>!FNd}[ocԕ65Go"6lFo1ɦ JqJ=[IUV}X b-F>)?>rԔoԧA˅:X\QW9^ xΣ\;ek:޺펨!10A˸]>摔kkW^fܒ /sVAQAע }ב7ƶ+נHݓ{(yRjk*'_wo 3}U>]E->=M87t*N hi6;I Mbs x2VyG-NUQ>kUꎧ?NpiOH&7ܲmI.h0%G7F7KEI8|t`YJ-)uPRx!*- h&SvG&({Vc1 f^?]*(33*2LP \ 2TTᐾFg4@$ݏGGH|=^EH!C$胫?߳ 2RZ&ubmcRy*Rceѳ.&l6я&g \ҰbC*SJ䂤bUyM%R8`q]'nF%$2{`"zʾ? 3!=iJ~$kwJ̼,Fnm|Rđ/pV)bxY%V.k#u:H)BWhcUwx;SVF@ǛԚi[Z`UjCYIpCqmDbMwWՖ5 ^z#_UTܷF_͖j%!a G/*xUPص׷p%_~7IfKD۪'L!Z5qcd7j1ՄqOyF?)K|~ 4psͼ 8M1[na0րcǞIQ-D 'K$K. B^=֔\wQkؓi_U~'/Ar G+Rh٫N^'5I;vSI#Nmi=.w#pnSVk,;}@|&_Sѐo^¹~ ]f❐HcA]82dRKNDىV S8%;oD n޹s:8ZWʺ9}tG؎Ъ4^~/5ewRlOi;nF> stream xwCMR8'vz-   ZWTmqCopyright (c) 1997, 2009 American Mathematical Society (), with Reserved Font Name CMR8.CMR8Computer Modern3vťbڽQ"DfVT@htkpozc,MI%ڧϋ1# :Q?f{ku؎׃$Ena}{mltNx~}vCoa  7 כ Uendstream endobj 154 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 362 >> stream x_CMR7',   ZWTmqCopyright (c) 1997, 2009 American Mathematical Society (), with Reserved Font Name CMR7.CMR7Computer Modern2p͋JiuP~>}L讧Ǻɋ !74/XWϡ=:4MFkgo0wCna  7 ڛ %endstream endobj 155 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1591 >> stream xTmPuJ!g36ճ8Ǖ`[Wt%,!@lIiӖ@d /BPRXh)ʌәM:~p/BGOegw7<<ID-#HT'^ܸa 1R^L=8ga~a b( V_yq+Л+ $mdn1'7oNJ?afv+g| G~'_hj}s%P%1tϷ:v O&D:U\> |+_:n3V8qvA!r˭A$ ěD&E$/)+H'4 U"Ӥ$eY~g~T=${4>"?"G**ZEeע5G6)G߷Pwŕؠ-|8H06>qz41[[Y[)dC mq f`46d*DB-Uiw!շ(VS0^VDCX'j }J_k[h&ڡ |&:p^AlpUB$MLZ29@{e `K7Y(|"Cw ;>w7⒰;uf$U4zyg/LGNF,rJj^|+%4z^t˾&]7ѡ`cnhol` *^VܨFqa޽SfhsuLf*,,عpGQ ;Pn粔:z+ʪ %Z+"h ޗu5A`;{us8 XnUVDQv5=i x9@+ z=YܒɅuH;^/_!L)]~sO4V߻|BvD)Q:ƻ"cI9P?CH8C)"BV+4 }#C3Jn4oW1:ZMM6ꡡ=c‘]MrjlFot兞bpAWl|^C3lgm*]|f]î,HO]yf]MN^9GuRCN@_Tf7?ؤ0fKп"p) ~42+ؽ6A2d^e/]\#+ Ìw>,hDݐ.v;LtH pКцrڃjhD,gzcbbq*&!jO@/endstream endobj 156 0 obj << /Filter /FlateDecode /Length 9571 >> stream x}[q;? lӮEa9+ɖ6WB1@67O]3{9DA+Bƙe%+++Oj'>~|u'Aks>=՞^?IzIbpjHI:71@8^轳;d7bgڿyM *'E&# 5^ާN/]_R:u{&~6>ij*'_n҇H}qq/.o^Pz{WDvJJh>(:k<~iEz! 5R O*hSJa? _?/ >/AJ9۰"mǬ jIZ\,$II8d<5DINoϞF`2$ڼBCi+Rw`f7iWfQ=B^jgYx<a,p.?s(erpLK)w<"w3ײPwFGפ9\ @CL+$К*pEeZiE،<:'U`Z @E+"$В1.âZc$Хe,:%Xż$3VjIIX^W4Zc2Nkd(J:Ɔƈ$ *%-HEd*B`^t"AaW+b/80椫OG[dUӢM6".Qkoj%@R?mS>)Ғ|4e.,nH&7XXf%,\Zc X"c$l.+$v`#F2-$D$= Kr M!2U 7"x7iJQzi v5ɢe R 9@`ᬁ0ּ֡&매9"-hGx|egVe Bz3u/0NV#] I\ΪQVNm=X 9E x!JX\?1#Bo(c= 3;Ҏ!q!\ (11Uχ/uzsA߾+u;p&y0yc{SK?&u@?W#sMHGM]sٸ*X 9> X $QGK u<1RC+)KVC8 :`uD,ՐK@8PwDJVC쏬VAjg(5b u홶w:qVG,$U@p2 5tfhǶşYG;Of VC8LaE`<"XYν9tk -p8pqޕٵ},m欎|Qjg_ aRVG8s+a ebc;2YBLR$OENEXmCME3[wTUu4aoiP |!K"&{zy_ ْ5\Z;ŒyM^@@"nd-jgV)۲'/.ט=y+&KDR)3,X҆"0%,*ydW bB- ^R\K͊ͦmhqiP2K%hn)̒}$\yH^ZTBZ*ki" *uu%l3 eQ Ua^l4'/er&Z \ ЕMVK*Mp%ڰ@/g Юf!qbm(;v"Qf.22j \2G@\BFgڗ޽hCWYrbSiK&_.aCpE":ӎ=>x>49;պP|}Dقl@&b/⬉0Q|D8:X$e9k e0֡ux{} q~$H,x Z_5$OmR"Yz"Dd:"XZEc5D VEX~0solM$6by9"q he[M_dT5.P2jمg,ǎ|vv^ =Awx{/T]E8Cpxp·&%L+vDUFdOsuDarG+)1C3@pT"YH\IVE$+#L:(JwD,`UDL[GJ@HV8!Esr_$9,)yb |9#I6w pRC$pDg {K$"Es9;ұr5D<,2HVE$ x%"c#+/`9Z;X[ፁ|'X ,\Q"X(9#堗r8Zqda$!# ֚rW5/ .a}9a3񅅐f#<KV^ؕE d)g"yK5dꁒG lZ]n!\{ nE"RO`-{1/d_(kɓ%ZZ^jk\x"8[0=@]{MՊm8gE^s1 ؂ g%܂G4bAZJ.HG#n ~xccbThWg(Ye$Xpp~ŅBr.)[("[A`[hh*+Nrxj.\O~,Z='d!jnn9%fm>k"lv2YDΚciV05'YHjc[C.`eSEFSh(?zlx(yQAsmJҐ5sۢ$uro:2YV%6nO\'YԙҼ6sD8 Qgaː,{G̚"O`<3zxɢYd0pb8y<+ D2*X y< @:X8&βPǁpr c=@8y!XH,L4D8+(yxc"9@8,8#(wif~ ;Cu'5s㜧- 3GKWʑv$EpFE'aKr슏2Xl4'j;Fqpթ-L5!.%_ypm>41tbF%pqފ DK!0ywEc%LjA\>Q_'\P Q0j4`| c9ss+z ѴD_WV\]"ϯ8ᨦ/kt3W\!0Er{W tIfCCʰCBtI i~&ɡZ@MW?ɓ4P9i, '~\l\uXb-7a>YuM( "Я8Kpڸ"P8 ^Y!Й=W[tbUn'7i`>'(lZ^|{^ϚjTũ1csۥ7 o> TQG橉Q{ mo@ q?Gq+;#&'Py7b{.=ʃ]a,"X!g, _SYGBs9Oyy~L~=}"4YocG)ǾNNs MO5:w/9=H$a[ƗONc$ Õ"Z.ZY!Y_RT6B`\q4bʣy͍[wb #r[+^/ϒi#(AɠZ%M|̩ L+%ka횐_P"hׄ 'q/+ kk=e*oM8w@KN>c߳1v*"K"X]%˒K[4RK5 FqMUFK: ‹r"08)paU Ыv:hIY\2{|\%pO+`EuȂ ncN>k"rp/n"eefgQ:X6cjCPE&{~a[~N[s vyӦ/M3qÍf`<Ɋ> O~4DPjdSV7c  i!' -D$12s |861ksD)zb(y%A/_]X;M-oZN[}®u+s/y<+eܗY,p׊1y< k%#u4D8˖R9#v`5\IDqVG8 d{uhΊJx`\G]&"XY~*l"E~Kk . DlE?n/..mmzLiܶ㈡R TslH`Uu /-b*Bn L+EZX댜6!mPlxq,ZRcȯ3x&JNuB8c1g| 2>qy߷PI^s|okW+-M%7g헛mnoI6 ΈJZnv7/^7Zs[t/*EZ"(MˎZ'lg21_) ~qr_|>{pvRV ͒}9^ 3z//FOG)/+ FCx}ԭ6bΡ-8UnN9.^ݖY+X'$y,lo+٧2+%oݪغzm&oiJ|LM/D,lR ݍabdS5F%ߛ旳lh*Rɭ&Ow&CG;Qyz/@;H4P?^~|]^`'4Tŧ:{azQE8}Po,_ơX;I=''!j0U# a(}+fƪftQ zS3#AY)JiͱZ1Ɖj<7nva-1Hl_x:0H+_D ӻt7z<Qu8SWgj3u9ċ^_j<}HCd|?3%c |>_L^yL^?"=vxŹ.||{Ct3tηX)%[=?bq'[  wt﮿~q\1wwސI}E{q{uͻu asE/o_x7siПc ?jEMOh~᫋M">wqC!c3*mEy,jȉ^r׷L>+Jw*49)IU{~vo~V?#ПLKޖJÆ_7M{4վs1s6g M4ۃO2VuB bFLi¨_QO|՞%GsuV*s,y1ȥPL[)CJGQuGج0w>;"ojQ=?ʱο|$UQ$]&C$]1jX6Yxk47фwH5Kί%v|2l&ļS6_T TޘO7|ʖ7k@Mv2/7,@QCɥ8澔.~O :[5y*~-*mgsx^ME#vdͩ~9h5Sˬ-XQt8aKЈRr+2*eZxXi" [WLeBMPOêr:s.UO,mYA?VAoDWcx_h^.p0\n5")쮡 022'>*1( blhcmZwZwZ!ۭ|s]endstream endobj 157 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 369 >> stream xfCMR6'-   ZWTmqCopyright (c) 1997, 2009 American Mathematical Society (), with Reserved Font Name CMR6.CMR6Computer Modern2wOf}I|:}O˪16-X~_ȱЋ=:D\BEKmlGvCoa  7 ޜ 3endstream endobj 158 0 obj << /Filter /FlateDecode /Length 2372 >> stream xYY~ׯ <6i$Wc{f"ȣ^$[Ҭd7Z#X,T]$:I%rzܒLPɻ#ΩXm8ug3Tft󙳜Zlj5Q) 9{jtIU!94*W4U8弣VZKtT_(帥#Fs$+t*cjv#XU17W7'0p뙥\hr\q65f0&}uoΨ;]̡W`+{D?byUlΘz6nwz9W:RŁp PՓ@1g2sJ SGxT;_<~8ǫAy/Mu?lɄz 3%̱iͼcBڛc%3B~CbN#N (h⇟ae;kYDVj2u-3&2Q.SL]f"SLO:T3x3u5b=2Ԑv^k 8}2#oS|nn@Xԟ&@<˔8j2-bz[%qul_-$j5^Y;x)6c1g$1%z?n1c<'fS6'x?a$y)l݄ƣˮ 71;omk̾ݚc /35 {!ce,&f7B`*RZLkFKn$_=1 M+ښ0> еn>O2u:)N;ǧ_?Y6X$jM貥MY;YF>:5ǰ== 4*ɝ,%4+'x .HI9fћ9:sC(3p]a6Hk(eF!cqGB3JI$h92 WJeN!儧RiKnN%`InptNx@#5"*p&WJ4RU]-M1+ wTi"ZPnR2SJ\l!5pԘRRTחA6,9@!B* Ǻ0ʈ*Xo"6:\)[S9ZGe@'sSׇDlMP4TUs_VXej1RQ8ZKG - |ֆP<ڠxaPbTpdP^* Bt~{^ )ǡ/#HW'`B1dU|z[#ywyw_p BR+wQ<(you0YݤYZp,#"}o.m< %뿷E46*ӂ&ք7ݟ-b(JVKX|*ET{-Uz^葋W~01Gz~u;?_+ e_n6]b+Rk0{dnqWe“ =JKvpa-<Q%1-Cr z5 DpV$Sm;F2g>~~lMf۵QڄL$ Ȇ1ŝ6~o. AylZG?Uj6fOqk)rHjKꝶC$/AuHCč6*Awn騨 $T\棞,oV<>Xuhx6O0ġb5U~|vRjeoTC:dlp;AFJWOj\}T>]&8ޑFR!DDܕÒ\EUuqh ݳu5J Ogk.kRa֡+LIjܴ@Yz%]Tjէ ` Mһm:\n _89DEXHB oL۝ue ('Q1Bp&"T"5n:0P&Df<\OFWJbPX\}9ʍj(Co)B/NCڡل)ݺbS?rHms95}Yt2tr:y~{K$T>گ -~x8Gyc%#{Ll3zޏ=C{~Kz‹B^B]҅wj!0,ޠ /3F"<;+s.fhŠ Q#Μn[h{8en%ɬ5eJq҇$m(ɘ}blT+B[1Р!(p~{f [)u)DJ6sDwWv΍ lC<"{Shb"g%5endstream endobj 159 0 obj << /Filter /FlateDecode /Length 5835 >> stream xXv]]vwRp$t80 $bά3zhlTgeeY11xfw$F=bǿ;ʌc3i>Z}|sdsy͑cf(#QO~$YIiQ ~zdW[Ύf"HvT,7eT&ŁjN)P"G8wvs[ bntZ1Wr4 Hq19ՋVV)3,ԤΉ1efR, ~Ƭ_ M @9,OvZ'S3&n6 -@&' p.Kk; ׷O 38L=h~Óc퇭R'e+8nc醏H kq +> +3.q ͘t7Up;-o1k`:b#yxmze5Qp9lSC"Hvq57 f*tnWH:%I-@ɜk3.M;RhW0,㰁C!F؀L*f̷sntd^G luiA gAqe& e)eTӶ7x x3( QakqSTZы8Hcsׅ m=Oa / 4*أӞ-A2p6zΕh7D'00mqs+9lN.><JռN6Oϒ+>SС>Ox~Az!R?Z鈌]ԂRPB{2F6~I= (/ƠPuô/ŗ xFlH4`/)Fc14/g@Zz\s]8d~ Eی._<`ѤQ̀ GBzܛ[g ,`\#W{qZ8%ێ܁ZW*r[!d' Ԟ6yO(:p\:/Q,'sUn Te8FCp"q9"Ar ]ĎoDgEm݉A+2+OvkW<Ԭ7L3#mM̳KiKG3y%jeH/͔qSiSu?wC5urr/LܚCTJ IXNayi3iJ3fRߞ*U5Pr—5MOh)Ǹ+I/ ϟw /xz9,Ѻe~EF)*K,LfF'jz A\Qj>~@wo&@ `*|hu>ynjo^dR9J9U:}6ƍȸZ"1)y`?k%$>ZIC,O.A'6.Y:EScbWsXf:֍{d77]7WO136V>S*߅a N\9 t+$T%Q.A1t5yG 0܀d-z|Mung}\D2A4KU`foax$[2'+/څ  we>Yh©aȨE)4=|}+f7 2-,bBJ*hǠRt\rPĈ_uIJ+`H[\3\DX?PV ks x2HNTʐ,Tf]65ׄ?ZsWlZo[apt%=#i1ԵlIݶk)f:Ɏ> 4FrK2!Ƅ]J?'!H`y{7NF09Lw+xiʴI:}p"FiQ*맄ɗ*Տs/ (ÑDyxQ3uMVNnL]ʛI:b?6ٱK?u)BlN{,=B"d`\?Ѧ!_^RĒe9ۖM4MP8 #ox/oQL< W$^G']g*Jϊ ;Dfo<91 wі A"M 4Isu V;u؅A 5Su E ֧H7Y6. IvP>@BN`\2t34M1yEb!,xUȫ$1J, Õ&E 'g@3&}R0w-K ]͠EkW A/>pڸz -DiT{3׳--~ cTse$ W)\ ZWr^5f0/\f\󘴟>+転(~ 2*=4!&xqe` fgƐ@ E(mK:Gi!f*F.\j0hSQT>*ڭ0qIC E-_J`gI(OSzJ<cJURrv#c $aT\%DĀnHmsiZ>CgyV9M뺏&!مr~[?ڿPDޝ U$odG k$BC#;(,f\'x~M6_w>nWCq_BYϴ@R_B՞괄]P>%MtV2]LM)I^^3!3,ҀsBRj &*Na,B[ U^3igj%$mȵ?\w}mMg[* b4l~=pU≬0>U-q. 9<K1`i d̑qۦ“D SXƍ2KS,7zjTnZ0Zv Y¨[˚ ޘ1T ;1g,C hYnJ;^p4gu ɆuH4&$w~Cj`\X[յ)gQk-վ(z8m_`濖 MIJUc)m}3Cݼ܅LŢhK6.EpmIR Ez 4 F & FкBh98-]H*p~/w 8jd˭o>K;ڐtXLMÆ-},0D;Ǫo΄q璻u+DM=ؒ~*tn4Ϝ0?&~|dpR"]DN.d1{bmF10I#0{D51L;㳁Ⱥ1 KڳP,!fjSEuco^(Vt TL `J57%,͉2m䯻p*:p?&,"eϥ2֍|؅1qڥM \O%}@J!9fFƤ'4<3q@cහm>wwH M튵kM3{FvPzf;$=7BmaйuIYK*tn%\'ߗZWVF+x2m~ =:L/)WG^ kSA^ },PaC*}-k/GS]x0 RF{aiݥ$sN ,h]:Ν&'Һm&BHR u]7$o/tSxGdQ!uM4 N.Ǵ*kLi93piuZٛ;RY]9(+3^˙l\-1/nhiFR !9i@ҳKnPەSZU0 w'4}EiRY;#Ix$KЫ̂i]U%ĽY/72]Ko:Wg @ 7LD X Z`?}B̗ҙ \J!b{}&^ L{ KX9ى{Xz+4 B8z k&uquP+ +2z;.$uLJZ\'4laVlMjHO7*?])5@ RiV2>w]rDK߷]h\*sߥ>]<,!AV鍏q|Oè7H-x2 ,j'i\M}զrP2aQzf[h9+ox^WAmgL]q{&C@UיybK58i1?]m~u$kM槾#q?u쿓"c~z|$󑐂+wy|W'*_:Tzr GBNU~zhC\syKfo-<(g˂V,[+~μB;){|B!#<5 N"[oAs#jیX"iOWp`hAÉ<ܞ_moC`?|]r{wp=j |^l.N"f4ҳF y_}p| B&I/{h{kؙa2% oߺlMeb?nbswq1sZ=t.̥(˪՚ S{̿ |C;]$]) `^9e]S}G2eEt^FEHhWb7Yz6*d46Hыy;YOUkӇUfſ&*>[k¹z8Mzj#@NJCQR#4'JCrj(&WFJyk$h_-'=mB_x E˙`RG B}Nr~ !_.۲iE^hM^\HOGQx,,52pNTonK?=7?>endstream endobj 160 0 obj << /Filter /FlateDecode /Length 5031 >> stream x\Y$q~oGYT!6Ƃ[ HQ״ճyow`ffAX _0ҿWſ~n!FW.FQZљtͅgv4ʭQlPq?PZBYP&imkR9FPdD&2UPh0I2ZVwAմKPb+?z#"*X .~?oN+;J+1zĘrxH)G¼cB_/˘3B"j'@k9Tb!D/d#[mSW>hrrx(RXJRz_J/Y7ިs)ݗ_J)uE^J?)%YJ|x+oX;ÚQŜ^k?/j_*J龔K馃{_Rz*w;Y_-.J馧R[mW@Wqp]p1e1YCG;u=z+UGNNcG]_4UGo%uyBJU?vM<ꥧ+O#O_^R[-JI&G ظݯoV]=eڮȴHh`hn RL|Avܬ4Kmdʿ^+4Vni a~d~W\`) y09ʀpi_^(({)!1+?錦~65e0a9Ja^CZj}{LZUu鋀\cQRC5P #Vk/X!9Qm˘*4 Hr HE`լeCZ&ᕅƐl"I15C[/0ul{<"2.l50`Q< "ck&aƻQ\eD {}z<7^|ؾ \v+^gdc0}j(Js`5 JZ@PA!(RMJ3"(2ְ[@*nQt, 7~Z ? S]sjV5t hH`h |~z{$+,XIɊpL 2#Љciʩv$ (nEr𨙷B1w]Xu)9T+` ^F 1RZ$"2fCWVz\P-{DOc !oC izh9Obkߵ.cq/ep򧣏T \n3.xGF.OeSFΪ8/樍`0*Bl!'!>sw49PlONAc55[֩|F5 E骚DZv@UxR=2<4=P7n-C;!jB%?!.O hbAXP! C( 0Ă" C,(3"gՏOå Mf?Pj`b8XÛ3Lprxi VBJ`8tx@3c~%VC$㉧[O5,aZp"XHǾn,0 =I<DK|HI *#z_>9Q#X1`e+=UC7ZmU˛ paMG *MӃs3@DF.xp4HGOc|Vz9A'Ó *a[<ћY "#~lݎ u9y=ȵk4[N XGV/f3<]fd\TkT뼦ZCPs2՚nPTǦR`Z3j ELd5ծT*Lc/bh~pDʹw=8w܈;$j@-{Zq3z?ypa~>@9~pC~ f [m2c22s8-i ipُL9;g C%MЎis %,v;2 nA%?|OlÖBr1m RFޤ/9򑶼Ns:i@0`-:t ܢSN#TYu 8lB tnmiTC&7, 6Pht kxOk;vf)Ǻ\7ʭ@ET<6へs6QQ{n4ldh6Lbqg{.RuJjíV'!7`QI`W`JLh+Rȶr-H?Dbx"s.%>Q0` aA⤢r{7N+,+ffSX=,񥈤ÑkEa'fFD3x& INBuh0 (]Zl<~v~ly/n@OޙC:U ; pOxaR&K)1@;p abdTy("@MZARvQ/xuحcv1wq&F4).J>f]J 0 +K68g x}3g{'[>5SBaM3}1{E^Tt ?@rVDظXkYAL)AAB3RnC,]ʙ녱5N!o rOh>7|%0)3RzЊ-*A1#'~蝶6#!@ט.ތ򲮗*ǿ(ni%;il7-c߂gNeG_C. aWUІlu_ hZ>V7<,tnd;2ӘdD' n]Bv:&M1`gI0WH Yܴ+uBfDx/S 4oE"uc9Dy9WFle]"zU % <6 >건@H4!s4y\MaTC#~ꠍ;bVԖ0h*6͸"b}}֘vǙ oѻ1zi6vN2@ZRzƴR$<_JTu]sQ䫪6$Q$%BЈL2'ңVIwWsSݐIi"*@uc-ys8p"%lP1pT78I7_A|wؤȾW-m[A]n3!WHqU5]Dтb ht. bJK(RIᑆ5?D2zuSGJWsu:z9q߹3Yo}.nvG>uGۚuҿUлYU){o|[JߔKc93a?-ZyU*m]rաw3ӻE({tU_uxHL*cRz_ 8u|yC%zӶDUaSOK7{ڦVǼϹP?i.s!n} ߳)wF~<7Ǡ_C;]@̏ЃT4ѓ9Aç=h!&(coTK;K X6 sH<ZW/)v; abӕlLߣ5ƨR9tJF (\ۇws|{Yؾ廡g{4ŹA$ĩߖ7fZ59B+l Kր̰ޒZilZ=5}{.] +|XɈ@쎏QTܙOAO ^î.t8ڒ AS%!8y6|n2&R$g@|9?HXq%am#îQu59F.mÛr)cXwdlSI]ZTah@y/1FgjExɅ`OYrӀ\?C<ji,EټB@1ҁ@Qr#z~fdsn8B#}l&g\I?_UhN1h!̿^> `r:p{dqV@^taiĥ^~4)mHBzk3%?'W I^endstream endobj 161 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 965 >> stream xUmL[U*%5${:4,8cd&2t6庖vPa(/[;Efd!Nö._LtF2ù샷'y{A(55ecꃔNݬQϨz0M?~>|;`Tv|k "f+q9|Sv ~>%(_-[F"?T"JRGb¨ƺ_.B 5!'p9Nݾ'Il! ]6o/>cLZ&t6Y@KNY%6Og;&#sG`.?0wpL:xO> stream x}۲\Ǒ|DL=Vp$j,3NqH\16@;W-3[^sUV:mw_~siO]J>{.%Nˇ^iqOW/91+.) D$+xEL) %,Y˞C\KٜXQ.jO]z|SCs;9rm8NO7g_$_>.yB=q5Ԓ_=w~~jD+5m[_~/DqչAR=3/^K)ܾrK_R/Wx櫏_cݢ:iV}=TIo)_b_;*PPL,~P"eLp>&|a>OӗW>ͧTs5&7q=7 wT.R~""HڤI^(IY,DU =ST$k"eJ7rVw YoT7֔NqC~_-QaD;5gGp/٥~[P/GsZ,ȼ*y}"~كduD˅ۆbBCZbUqW:"Y#E%eIpp 5|h/Y~RTn /"B?33W,4{y4ޝ8_w?<>pM*X2w߽{OoNo?~[|Uϗ=ǿԤOAs *ɢ$@ue ԑX<*T1ݨ&`'rO)Byd] UF o/ 1b^ 9 C d3CDgQ"#%Q@A%tQuUe*S fX9j3BUGEcEqgB7 Ȩ"*7'G,f_rO@j&6fnΊؑYQFTYgt2/F.󂂷u!g^$D> m5\ [FV_BYu>$8NfCi~*(*rGJ*#39>PP泇PӅh_ʵe*h֗;Vo.zWog0P5Vtyv'WUٳ&yT%P}9dFJܞQBJB6HcB.$!pJAO6|li tFoN*4GBWO38mZŘP,XӍgnH(_j  #Bl4#=y*ۮ7D+_,v*0ҧ1^Pvkk;rc1Ѽ:Γ5uMEDyGeѧ+度#F8P G!j'iY u`.X+ &-'5 ѓF|Îf_h,1+0,q+H`,jYgXz{VzBc%1iQƤz ~ FQc%RSgCB*tqY+67[tem֨r>"-QDV{Cb``!F1ˣqXr_^a"eYL߸v$aQc`Q7upKc̪PM #jkYV )ƤECenkLx!0cfP|'|ؕhыH]~r@Du{OC֘r*`ul($jZz&wShLtb ޞĒW-YK*D2W0Y _ha֗k^^a`aZ=c&14uG`f c0iq_wX l,P[YRX=-j h^c̊XfԞИb jLZ91^Ƅ'z(OѱXԧ]V#J` ШTMjm'_[-]K=SWnkLy$-Y$dEŝg++ įm6aE~ ,HL,EPd)֚3 9k vTڊ+YmRX sƢ|)ΨxZ{Bc%1aQƄzQ}BRŁҵԷ+%lW,Inkp["x(29wvLXXm{cǠ Np*N5l;-&cJvZyǎbL%\c#0 #eQc`钂Q1fUϥ' јPrWc"=*TEiIv֥t)h-1]xCh׶rK]3_ن35/AZ=HmKvu&ylTs<V ) wo4{yIT]`,6lijU;tcxÍHw~21l1'o=1Ԙ'3FABb PNѢY`h18Vi)*^y`:o]*1Iz:EtmjY!$e%IuA &-RR0:̛U߰C$X ڶ(l8AY4Xn㑲To0fQK;BC#\!iMr^N1(RU6MM Pb1T¯ 䆨!<`80zScEZ );&ǎҦCNC@1X)!U+.È1>jX  1;vT8ĜvCq$DژmnEY(L? &,ʼ1.YC=:Dj*:"K{biLXSm_l-YB|,RbҥqZk".j͖FJ>sx_T +USfV!g !amօ[ Rݡccoc5,E^%j+A]c̪XO/ zUjLGJ39bloMesc8e1~*y@n)ZsŜ,U7yt~bX,k.xbTe>r(`g ]= )bJ$ -^tcbB6Y+رR}XǮY+ӈʢ(ZƘ11R.՘rGcBi OQQ㨱F<3wCiCŢf=>Ħ/Vmq t-%ʼnXU؇A I2IYbu!{I.Bܜ3xƒfi0/a@,#(K!EDI"m>Ҧ1(ei R5Ƭ~V1f֌N@} iIƤjhQ="ENcՂ5ϡON mo 4+`cVmq t-s@}n2j%tuҵVB!bJXl+qf``QJ )9"P &YXM/հezӐPQX q1`0fE2,EoXXP1bխ$K`¢ *5&<D9bŌ & G1YDMNyM ,ﹱh1No"߰8y P1P5HKj̰4עǵ;pxv/c{~v51+pA݇4&Y^ŴWITVGeCzuxNc#*Qib`^z1+`\zbj1iqŤ(nqK]s#=!ZbySwPm 䖢^]/|BHy3)E&iMnn!i爥;7 ]Aٸ;s,yhטdnX XLha&)pi1z,y2h0fL``uMIŕ;ڧ1H8a*n#"Tzh9ꈎCIcOBGqOs S -M4xR$\-\sSӼqSYQ 1Gl%-?Q$mOˍŤEFUc0~[1*[j F[XEn75,\F{Bc%1iQƤzs]bU,5V+xI|{m1~^-_-MK9=qw?XLy4a-Y5e1F(whrz ȓc1|j%ŹbJ{aΆ[Lfb" bäz?-vT}6WcVޅf)o,^D55VR^c̊hOhLW5&-ҘT/s[c-J'VXj,P46D_, p&YC{irKҾsgUʛuFjcW`ۋ;}ݧ"oJsSAuom8)kޔb1iQ#!=!,oرQ$ aOc̪  $ vT;qxRg¹V5W5,jOhLW5&-ҘT/s[c-J'VXՆhĵW;X ־w *{n4u췏}UƠA\;> Ƭ Z~_NJk1ɢ7ΥLZm09BرReKc|nTV)ڢƈPJr  gJ@Zb0XD{dԋhsדH6@$+-7J9VVvL}?Mno$qZc`{mIm$kE1E|^4رR ?;i``aiˇ+cBQ0d LX9d0^'z(Oѱtǫs6W"Xb<.Ew*UηC8Qgp1XԠtX-jL݈[c u4ĭ;fcEW1OD( ,ko ?LO 6Rr` #BDԘ8ю` ?:*7<{?8MN*&n9.bau [E#~"%8g92byqYa"~1l?1PpyV+թ쳦2N s"ڢ\05VvKxUc¢! *5&<ѣDyBD^6^dQ\gZh=;ǒcmr,pd,`C\o fw9c1ŚW@ZLأzwh ;D6v Yhsqcbi oڢ¶jkY;oT~Иb jLZ٣1^Ƥ'ZhOqtϫ^d*7bSfcY i3"c:yDžP׫ ʼFCA9WFKg0{qNXaVbҢ ԖmEko!R<`G; IAPl֜ƘoJcVm&1ɒ՘(sGcRh ?P~XcG;{.mƛhQ߱s`SGS8=/V.ih]q7my Xny4زQeCByWX)ƉQ vsuU[4j?1 ,w+?LO &,1P/s`<8Վutګ̷^[9p-Tvi8WBR!E eWv!"5v#$n55dyǙ=4a[+ԸM>Kaf-Ƭʇ^vJIŤ3G*@J4wVw)NσT 0[-iڡ!\Z@7E{ㄞƘKryƬԱr$MVÄE_1e1V߱c +]c8%iY^kL/56lLPrWc"=*TEع}L$iㅢ܎`Ϧc FvZuTY)d幞a1i1yOABwcR@H-vd)8 AC-T ;L4&YҟdhLj 2X츊HpсH R Ny8M C8e1>oX\#6zuY%qv8l!UBCRw;DzS{-O_/FA1'g\R@c%1iOƄr >(sŎώPFkKV#=ۑ?=?|zSA+S̓k82x>ߜ#w/paa[F5S#Wt{8~|0b٭m5Gz0II圩BNOHR'̧q-c{eJF-4H88t)ٻSG@}z[=Ɋ6}zNE~E ²y"Kn$[wBۡ7n АPNt|994bN:S=/㟤udFƽ?%]Ve߲LW] % 𛋕B+5oȐQuiN!IVޱzhD(0<￑┤2eIx(͐x_p`Nw|"%q~cyv5GWGJ&z{1ZގQ4֐9ϫ%p]cJWbr I wSO.{x׳ =(~ k))-w9T;6,ܣ8|ъVQ˸D,-MnTޛ:h\&|ErTu/PKgzH̊] { }ZTV*Ý[ܫf3mTHu~FղP$_=gP==z]lf^F$_!s~ᆣQ[`ɣvgr+\{>*}+9p0Q{x>qC'r\[_lRǕKߋ,`dZIQ[4(+aEGT!PViHj4Ƽ7:G`QH+ZU3U=qٿ?%@hEv}^V%:|n_M6"ʜ{A`HF^o ϛ=o͙X H=t%  BWV`퉆%? s-Ӳn!o9Q䳈֯i.,wEk>&knZo3uEZKE`ΫGwHgPs|BNK5|mIFn;:ѢYncB*AAFxnFIWn1 qNt1bWsRƹ$lhh!&MY[^1yy"h rF]$׷$NL}b|K 1hRrqa:bLf[_Uݏmj-w~\ҍ &*^Oͧ7>ϧ/qEeڭ[Œn1>gjQ0Us ϓT xZ{}R 2ͪQxw$1?7慻㈟ ]Q"8t[dn0BѕP†o7֕Z3#tNm)lmǷ/V*ڛZ?nnE*v oCjdd,* A" NM{iô/sR/>kMRv75\rhI>Ok[ۺYDdSACC53CP(_QJ ,ο!gT9:ALN((2sMՃyЉ+~G}endstream endobj 163 0 obj << /Filter /FlateDecode /Length 1218 >> stream xVK7 O#(z-m }yכlx-`AӼo?_e= FnnȱP`,)<fyj Wl8 9UxqCDLJIK).BB[Jj96fR9!tNhXL9ю)hn o~zàF70B ~xm]q7p&՚˯~ZC7rX/bOl~epDTx99ˍJּK8/3\ jװ)kƂG9{]=Dvj'73p%d?Zzཹs.Ўy''͡_+@|^#ٶslTbAr D1:t損B̳sj߉9@ޡ{|5sR~%皸6p\Q.WKT9QڽPv 81RD2}mihAB 8p<c`҅.vd?Xp9RvCv< ГP8]IL$(N2CVh^džܱ%aDf= 3d^$ɀמWRqy qc"EHz+wߪ/.-Z~ZAfmM;.Iea{^F)$aM#\5GwAH֎d3#4Mgy[4smN4Fs7oi:۳MEjq{% :sjå(4,"=yf#]n,qYȾY0!Y" ydymdҔF֫'~a>EOL?\> stream xU;1 {'0q_N@ -ׇE٬W.,?慅:c8]J`̤\՘pBf3y0IVL;)H%Q3T3!T*_qӊ[;KY I*) vjKԐuSBC endstream endobj 165 0 obj << /Type /XRef /Length 180 /Filter /FlateDecode /DecodeParms << /Columns 5 /Predictor 12 >> /W [ 1 3 1 ] /Info 3 0 R /Root 2 0 R /Size 166 /ID [<85d25ddf275dce8b066c1861c687ac9c><39023d05465c11da8d0c96d43ceadc5b>] >> stream xcb&F~0 $8J҉70~_?_NVg"@$QD2\` D  Rk1W`5, DIF'` md: R)%`5`sUNjk"fH Q)Dʃy.*x endstream endobj startxref 134937 %%EOF HSAUR3/inst/doc/Ch_analysis_of_variance.R0000644000176200001440000002067213302740761017667 0ustar liggesusers### R code from vignette source 'Ch_analysis_of_variance.Rnw' ### Encoding: ASCII ################################################### ### code chunk number 1: setup ################################################### rm(list = ls()) s <- search()[-1] s <- s[-match(c("package:base", "package:stats", "package:graphics", "package:grDevices", "package:utils", "package:datasets", "package:methods", "Autoloads"), s)] if (length(s) > 0) sapply(s, detach, character.only = TRUE) if (!file.exists("tables")) dir.create("tables") if (!file.exists("figures")) dir.create("figures") set.seed(290875) options(prompt = "R> ", continue = "+ ", width = 63, # digits = 4, show.signif.stars = FALSE, SweaveHooks = list(leftpar = function() par(mai = par("mai") * c(1, 1.05, 1, 1)), bigleftpar = function() par(mai = par("mai") * c(1, 1.7, 1, 1)))) HSAURpkg <- require("HSAUR3") if (!HSAURpkg) stop("cannot load package ", sQuote("HSAUR3")) rm(HSAURpkg) ### hm, R-2.4.0 --vanilla seems to need this a <- Sys.setlocale("LC_ALL", "C") ### book <- TRUE refs <- cbind(c("AItR", "DAGD", "SI", "CI", "ANOVA", "MLR", "GLM", "DE", "RP", "GAM", "SA", "ALDI", "ALDII", "SIMC", "MA", "PCA", "MDS", "CA"), 1:18) ch <- function(x) { ch <- refs[which(refs[,1] == x),] if (book) { return(paste("Chapter~\\\\ref{", ch[1], "}", sep = "")) } else { return(paste("Chapter~", ch[2], sep = "")) } } if (file.exists("deparse.R")) source("deparse.R") setHook(packageEvent("lattice", "attach"), function(...) { lattice.options(default.theme = function() standard.theme("pdf", color = FALSE)) }) ################################################### ### code chunk number 2: singlebook ################################################### book <- FALSE ################################################### ### code chunk number 3: ANOVA-setup ################################################### library("wordcloud") ################################################### ### code chunk number 4: ANOVA-weightgain-mean-var ################################################### data("weightgain", package = "HSAUR3") tapply(weightgain$weightgain, list(weightgain$source, weightgain$type), mean) tapply(weightgain$weightgain, list(weightgain$source, weightgain$type), sd) ################################################### ### code chunk number 5: ANOVA-weightgain-plot ################################################### plot.design(weightgain) ################################################### ### code chunk number 6: ANOVA-weightgain-aov ################################################### wg_aov <- aov(weightgain ~ source * type, data = weightgain) ################################################### ### code chunk number 7: ANOVA-weightgain-aov-summary ################################################### summary(wg_aov) ################################################### ### code chunk number 8: ANOVA-weightgain-iplot (eval = FALSE) ################################################### ## interaction.plot(weightgain$type, weightgain$source, ## weightgain$weightgain) ################################################### ### code chunk number 9: ANOVA-weightgain-iplot-nice ################################################### interaction.plot(weightgain$type, weightgain$source, weightgain$weightgain, legend = FALSE) legend(1.5, 95, legend = levels(weightgain$source), title = "weightgain$source", lty = c(2,1), bty = "n") ################################################### ### code chunk number 10: ANOVA-weightgain-coef ################################################### coef(wg_aov) ################################################### ### code chunk number 11: ANOVA-weightgain-contrasts ################################################### options("contrasts") ################################################### ### code chunk number 12: ANOVA-weightgain-coef-sum ################################################### coef(aov(weightgain ~ source + type + source:type, data = weightgain, contrasts = list(source = contr.sum))) ################################################### ### code chunk number 13: ANOVA-foster ################################################### data("foster", package = "HSAUR3") ################################################### ### code chunk number 14: ANOVA-foster-plot ################################################### plot.design(foster) ################################################### ### code chunk number 15: ANOVA-foster-aov-one (eval = FALSE) ################################################### ## summary(aov(weight ~ litgen * motgen, data = foster)) ################################################### ### code chunk number 16: ANOVA-foster-aov-one ################################################### summary(aov(weight ~ litgen * motgen, data = foster)) ################################################### ### code chunk number 17: ANOVA-foster-aov-two (eval = FALSE) ################################################### ## summary(aov(weight ~ motgen * litgen, data = foster)) ################################################### ### code chunk number 18: ANOVA-foster-aov-two ################################################### summary(aov(weight ~ motgen * litgen, data = foster)) ################################################### ### code chunk number 19: ANOVA-weightgain-again (eval = FALSE) ################################################### ## summary(aov(weightgain ~ type * source, data = weightgain)) ################################################### ### code chunk number 20: ANOVA-foster-aov ################################################### foster_aov <- aov(weight ~ litgen * motgen, data = foster) ################################################### ### code chunk number 21: ANOVA-foster-tukeyHSD ################################################### foster_hsd <- TukeyHSD(foster_aov, "motgen") foster_hsd ################################################### ### code chunk number 22: ANOVA-foster-tukeyHSDplot ################################################### plot(foster_hsd) ################################################### ### code chunk number 23: ANOVA-water-manova ################################################### data("water", package = "HSAUR3") summary(manova(cbind(hardness, mortality) ~ location, data = water), test = "Hotelling-Lawley") ################################################### ### code chunk number 24: ANOVA-water-means ################################################### tapply(water$hardness, water$location, mean) tapply(water$mortality, water$location, mean) ################################################### ### code chunk number 25: ANOVA-skulls-data ################################################### data("skulls", package = "HSAUR3") means <- aggregate(skulls[,c("mb", "bh", "bl", "nh")], list(epoch = skulls$epoch), mean) means ################################################### ### code chunk number 26: ANOVA-skulls-fig ################################################### pairs(means[,-1], panel = function(x, y) { textplot(x, y, levels(skulls$epoch), new = FALSE, cex = 0.8) }) ################################################### ### code chunk number 27: ANOVA-skulls-manova ################################################### skulls_manova <- manova(cbind(mb, bh, bl, nh) ~ epoch, data = skulls) summary(skulls_manova, test = "Pillai") summary(skulls_manova, test = "Wilks") summary(skulls_manova, test = "Hotelling-Lawley") summary(skulls_manova, test = "Roy") ################################################### ### code chunk number 28: ANOVA-skulls-manova2 ################################################### summary.aov(skulls_manova) ################################################### ### code chunk number 29: ANOVA-skulls-manova3 ################################################### summary(manova(cbind(mb, bh, bl, nh) ~ epoch, data = skulls, subset = epoch %in% c("c4000BC", "c3300BC"))) summary(manova(cbind(mb, bh, bl, nh) ~ epoch, data = skulls, subset = epoch %in% c("c4000BC", "c1850BC"))) summary(manova(cbind(mb, bh, bl, nh) ~ epoch, data = skulls, subset = epoch %in% c("c4000BC", "c200BC"))) summary(manova(cbind(mb, bh, bl, nh) ~ epoch, data = skulls, subset = epoch %in% c("c4000BC", "cAD150"))) HSAUR3/inst/doc/Ch_multiple_linear_regression.R0000644000176200001440000002133213302741034021121 0ustar liggesusers### R code from vignette source 'Ch_multiple_linear_regression.Rnw' ### Encoding: ASCII ################################################### ### code chunk number 1: setup ################################################### rm(list = ls()) s <- search()[-1] s <- s[-match(c("package:base", "package:stats", "package:graphics", "package:grDevices", "package:utils", "package:datasets", "package:methods", "Autoloads"), s)] if (length(s) > 0) sapply(s, detach, character.only = TRUE) if (!file.exists("tables")) dir.create("tables") if (!file.exists("figures")) dir.create("figures") set.seed(290875) options(prompt = "R> ", continue = "+ ", width = 63, # digits = 4, show.signif.stars = FALSE, SweaveHooks = list(leftpar = function() par(mai = par("mai") * c(1, 1.05, 1, 1)), bigleftpar = function() par(mai = par("mai") * c(1, 1.7, 1, 1)))) HSAURpkg <- require("HSAUR3") if (!HSAURpkg) stop("cannot load package ", sQuote("HSAUR3")) rm(HSAURpkg) ### hm, R-2.4.0 --vanilla seems to need this a <- Sys.setlocale("LC_ALL", "C") ### book <- TRUE refs <- cbind(c("AItR", "DAGD", "SI", "CI", "ANOVA", "MLR", "GLM", "DE", "RP", "GAM", "SA", "ALDI", "ALDII", "SIMC", "MA", "PCA", "MDS", "CA"), 1:18) ch <- function(x) { ch <- refs[which(refs[,1] == x),] if (book) { return(paste("Chapter~\\\\ref{", ch[1], "}", sep = "")) } else { return(paste("Chapter~", ch[2], sep = "")) } } if (file.exists("deparse.R")) source("deparse.R") setHook(packageEvent("lattice", "attach"), function(...) { lattice.options(default.theme = function() standard.theme("pdf", color = FALSE)) }) ################################################### ### code chunk number 2: singlebook ################################################### book <- FALSE ################################################### ### code chunk number 3: MLR-setup ################################################### library("wordcloud") ################################################### ### code chunk number 4: MLR-hubble-tab ################################################### data("hubble", package = "gamair") names(hubble) <- c("galaxy", "velocity", "distance") toLatex(HSAURtable(hubble, package = "gamair"), pcol = 2, caption = paste("Distance and velocity for 24 galaxies."), label = "MLR-hubble-tab") ################################################### ### code chunk number 5: MLR-clouds-tab ################################################### data("clouds", package = "HSAUR3") names(clouds) <- c("seeding", "time", "sne", "cloudc", "prewet", "EM", "rain") toLatex(HSAURtable(clouds), pcol = 1, caption = paste("Cloud seeding experiments in Florida -- see text for", "explanations of the variables. Note that the \\Robject{clouds} data set has slightly different variable names."), label = "MLR-clouds-tab") ################################################### ### code chunk number 6: MLR-hubble-plot ################################################### plot(velocity ~ distance, data = hubble) ################################################### ### code chunk number 7: MLR-hubble-beta1 ################################################### sum(hubble$distance * hubble$velocity) / sum(hubble$distance^2) ################################################### ### code chunk number 8: MLR-hubble-lm ################################################### hmod <- lm(velocity ~ distance - 1, data = hubble) ################################################### ### code chunk number 9: MLR-hubble-lm ################################################### coef(hmod) ################################################### ### code chunk number 10: MLR-hubble-age ################################################### Mpc <- 3.09 * 10^19 ysec <- 60^2 * 24 * 365.25 Mpcyear <- Mpc / ysec 1 / (coef(hmod) / Mpcyear) ################################################### ### code chunk number 11: MLR-hubble-lmplot ################################################### layout(matrix(1:2, ncol = 2)) plot(velocity ~ distance, data = hubble) abline(hmod) plot(hmod, which = 1) ################################################### ### code chunk number 12: MLR-clouds-boxplots (eval = FALSE) ################################################### ## data("clouds", package = "HSAUR3") ## layout(matrix(1:2, nrow = 2)) ## bxpseeding <- boxplot(rain ~ seeding, data = clouds, ## ylab = "Rainfall", xlab = "Seeding") ## bxpecho <- boxplot(rain ~ EM, data = clouds, ## ylab = "Rainfall", xlab = "Echo Motion") ################################################### ### code chunk number 13: MLR-clouds-boxplots ################################################### layout(matrix(1:2, nrow = 2)) bxpseeding <- boxplot(rain ~ seeding, data = clouds, ylab = "Rainfall", xlab = "Seeding") bxpecho <- boxplot(rain ~ EM, data = clouds, ylab = "Rainfall", xlab = "Echo Motion") ################################################### ### code chunk number 14: MLR-clouds-scatterplots ################################################### layout(matrix(1:4, nrow = 2)) plot(rain ~ time, data = clouds) plot(rain ~ cloudc, data = clouds) plot(rain ~ sne, data = clouds, xlab="S-Ne criterion") plot(rain ~ prewet, data = clouds) ################################################### ### code chunk number 15: MLR-clouds-outliers ################################################### rownames(clouds)[clouds$rain %in% c(bxpseeding$out, bxpecho$out)] ################################################### ### code chunk number 16: MLR-clouds-formula ################################################### clouds_formula <- rain ~ seeding + seeding:(sne + cloudc + prewet + EM) + time ################################################### ### code chunk number 17: MLR-clouds-modelmatrix ################################################### Xstar <- model.matrix(clouds_formula, data = clouds) ################################################### ### code chunk number 18: MLR-clouds-contrasts ################################################### attr(Xstar, "contrasts") ################################################### ### code chunk number 19: MLR-clouds-lm ################################################### clouds_lm <- lm(clouds_formula, data = clouds) class(clouds_lm) ################################################### ### code chunk number 20: MLR-clouds-summary ################################################### summary(clouds_lm) ################################################### ### code chunk number 21: MLR-clouds-coef ################################################### betastar <- coef(clouds_lm) betastar ################################################### ### code chunk number 22: MLR-clouds-vcov ################################################### Vbetastar <- vcov(clouds_lm) ################################################### ### code chunk number 23: MLR-clouds-sd ################################################### sqrt(diag(Vbetastar)) ################################################### ### code chunk number 24: MLR-clouds-lmplot ################################################### psymb <- as.numeric(clouds$seeding) plot(rain ~ sne, data = clouds, pch = psymb, xlab = "S-Ne criterion") abline(lm(rain ~ sne, data = clouds, subset = seeding == "no")) abline(lm(rain ~ sne, data = clouds, subset = seeding == "yes"), lty = 2) legend("topright", legend = c("No seeding", "Seeding"), pch = 1:2, lty = 1:2, bty = "n") ################################################### ### code chunk number 25: MLR-clouds-residfitted ################################################### clouds_resid <- residuals(clouds_lm) clouds_fitted <- fitted(clouds_lm) ################################################### ### code chunk number 26: MLR-clouds-residplot ################################################### plot(clouds_fitted, clouds_resid, xlab = "Fitted values", ylab = "Residuals", type = "n", ylim = max(abs(clouds_resid)) * c(-1, 1)) abline(h = 0, lty = 2) textplot(clouds_fitted, clouds_resid, words = rownames(clouds), new = FALSE) ################################################### ### code chunk number 27: MLR-clouds-qqplot ################################################### qqnorm(clouds_resid, ylab = "Residuals") qqline(clouds_resid) ################################################### ### code chunk number 28: MLR-clouds-cook (eval = FALSE) ################################################### ## plot(clouds_lm) ################################################### ### code chunk number 29: MLR-clouds-cook ################################################### plot(clouds_lm, which = 4, sub.caption = NULL) HSAUR3/inst/doc/Ch_recursive_partitioning.Rnw0000644000176200001440000005514313302740166020653 0ustar liggesusers \documentclass{chapman} %%% copy Sweave.sty definitions %%% keeps `sweave' from adding `\usepackage{Sweave}': DO NOT REMOVE %\usepackage{Sweave} \RequirePackage[T1]{fontenc} \RequirePackage{graphicx,ae,fancyvrb} \IfFileExists{upquote.sty}{\RequirePackage{upquote}}{} \usepackage{relsize} \DefineVerbatimEnvironment{Sinput}{Verbatim}{} \DefineVerbatimEnvironment{Soutput}{Verbatim}{fontfamily=courier, fontshape=it, fontsize=\relsize{-1}} \DefineVerbatimEnvironment{Scode}{Verbatim}{} \newenvironment{Schunk}{}{} %%% environment for raw output \newcommand{\SchunkRaw}{\renewenvironment{Schunk}{}{} \DefineVerbatimEnvironment{Soutput}{Verbatim}{fontfamily=courier, fontshape=it, fontsize=\small} \rawSinput } %%% environment for labeled output \newcommand{\nextcaption}{} \newcommand{\SchunkLabel}{ \renewenvironment{Schunk}{\begin{figure}[ht] }{\caption{\nextcaption} \end{figure} } \DefineVerbatimEnvironment{Sinput}{Verbatim}{frame = topline} \DefineVerbatimEnvironment{Soutput}{Verbatim}{frame = bottomline, samepage = true, fontfamily=courier, fontshape=it, fontsize=\relsize{-1}} } %%% S code with line numbers \DefineVerbatimEnvironment{Sinput} {Verbatim} { %% numbers=left } \newcommand{\numberSinput}{ \DefineVerbatimEnvironment{Sinput}{Verbatim}{numbers=left} } \newcommand{\rawSinput}{ \DefineVerbatimEnvironment{Sinput}{Verbatim}{} } %%% R / System symbols \newcommand{\R}{\textsf{R}} \newcommand{\rR}{{R}} \renewcommand{\S}{\textsf{S}} \newcommand{\SPLUS}{\textsf{S-PLUS}} \newcommand{\rSPLUS}{{S-PLUS}} \newcommand{\SPSS}{\textsf{SPSS}} \newcommand{\EXCEL}{\textsf{Excel}} \newcommand{\ACCESS}{\textsf{Access}} \newcommand{\SQL}{\textsf{SQL}} %%\newcommand{\Rpackage}[1]{\hbox{\rm\textit{#1}}} %%\newcommand{\Robject}[1]{\hbox{\rm\texttt{#1}}} %%\newcommand{\Rclass}[1]{\hbox{\rm\textit{#1}}} %%\newcommand{\Rcmd}[1]{\hbox{\rm\texttt{#1}}} \newcommand{\Rpackage}[1]{\index{#1 package@{\fontseries{b}\selectfont #1} package} {\fontseries{b}\selectfont #1}} \newcommand{\rpackage}[1]{{\fontseries{b}\selectfont #1}} \newcommand{\Robject}[1]{\texttt{#1}} \newcommand{\Rclass}[1]{\index{#1 class@\textit{#1} class}\textit{#1}} \newcommand{\Rcmd}[1]{\index{#1 function@\texttt{#1} function}\texttt{#1}} \newcommand{\Roperator}[1]{\texttt{#1}} \newcommand{\Rarg}[1]{\texttt{#1}} \newcommand{\Rlevel}[1]{\texttt{#1}} %%% other symbols \newcommand{\file}[1]{\hbox{\rm\texttt{#1}}} %%\newcommand{\stress}[1]{\index{#1}\textit{#1}} \newcommand{\stress}[1]{\textit{#1}} \newcommand{\booktitle}[1]{\textit{#1}} %%' %%% Math symbols \usepackage{amstext} \usepackage{amsmath} \newcommand{\E}{\mathsf{E}} \newcommand{\Var}{\mathsf{Var}} \newcommand{\Cov}{\mathsf{Cov}} \newcommand{\Cor}{\mathsf{Cor}} \newcommand{\x}{\mathbf{x}} \newcommand{\y}{\mathbf{y}} \renewcommand{\a}{\mathbf{a}} \newcommand{\W}{\mathbf{W}} \newcommand{\C}{\mathbf{C}} \renewcommand{\H}{\mathbf{H}} \newcommand{\X}{\mathbf{X}} \newcommand{\B}{\mathbf{B}} \newcommand{\V}{\mathbf{V}} \newcommand{\I}{\mathbf{I}} \newcommand{\D}{\mathbf{D}} \newcommand{\bS}{\mathbf{S}} \newcommand{\N}{\mathcal{N}} \renewcommand{\L}{L} \renewcommand{\P}{\mathsf{P}} \newcommand{\K}{\mathbf{K}} \newcommand{\m}{\mathbf{m}} \newcommand{\argmin}{\operatorname{argmin}\displaylimits} \newcommand{\argmax}{\operatorname{argmax}\displaylimits} \newcommand{\bx}{\mathbf{x}} \newcommand{\bbeta}{\mathbf{\beta}} %%% links \usepackage{hyperref} \hypersetup{% pdftitle = {A Handbook of Statistical Analyses Using R (3rd Edition)}, pdfsubject = {Book}, pdfauthor = {Torsten Hothorn and Brian S. Everitt}, colorlinks = {black}, linkcolor = {black}, citecolor = {black}, urlcolor = {black}, hyperindex = {true}, linktocpage = {true}, } %%% captions & tables %% : conflics with figure definition in chapman.cls %%\usepackage[format=hang,margin=10pt,labelfont=bf]{caption} %% \usepackage{longtable} \usepackage[figuresright]{rotating} %%% R symbol in chapter 1 \usepackage{wrapfig} %%% Bibliography \usepackage[round,comma]{natbib} \renewcommand{\refname}{References \addcontentsline{toc}{chapter}{References}} \citeindexfalse %%% texi2dvi complains that \newblock is undefined, hm... \def\newblock{\hskip .11em plus .33em minus .07em} %%% Example sections \newcounter{exercise}[chapter] \setcounter{exercise}{0} \newcommand{\exercise}{\stepcounter{exercise} \item{Ex.~\arabic{chapter}.\arabic{exercise} }} %% URLs \newcommand{\curl}[1]{\begin{center} \url{#1} \end{center}} %%% for manual corrections %\renewcommand{\baselinestretch}{2} %%% plot sizes \setkeys{Gin}{width=0.95\textwidth} %%% color \usepackage{color} %%% hyphenations \hyphenation{drop-out} \hyphenation{mar-gi-nal} %%% new bidirectional quotes need \usepackage[utf8]{inputenc} %\usepackage{setspace} \definecolor{sidebox_todo}{rgb}{1,1,0.2} \newcommand{\todo}[1]{ \hspace{0pt}% \marginpar{% \fcolorbox{black}{sidebox_todo}{% \parbox{\marginparwidth} { \raggedright\sffamily\footnotesize{TODO: #1}% } }% } } \begin{document} %% Title page \title{A Handbook of Statistical Analyses Using \R{} --- 3rd Edition} \author{Torsten Hothorn and Brian S. Everitt} \maketitle %%\VignetteIndexEntry{Chapter Recursive Partitioning} %%\VignetteDepends{vcd,lattice,randomForest,partykit} \setcounter{chapter}{8} \SweaveOpts{prefix.string=figures/HSAUR,eps=FALSE,keep.source=TRUE} <>= rm(list = ls()) s <- search()[-1] s <- s[-match(c("package:base", "package:stats", "package:graphics", "package:grDevices", "package:utils", "package:datasets", "package:methods", "Autoloads"), s)] if (length(s) > 0) sapply(s, detach, character.only = TRUE) if (!file.exists("tables")) dir.create("tables") if (!file.exists("figures")) dir.create("figures") set.seed(290875) options(prompt = "R> ", continue = "+ ", width = 63, # digits = 4, show.signif.stars = FALSE, SweaveHooks = list(leftpar = function() par(mai = par("mai") * c(1, 1.05, 1, 1)), bigleftpar = function() par(mai = par("mai") * c(1, 1.7, 1, 1)))) HSAURpkg <- require("HSAUR3") if (!HSAURpkg) stop("cannot load package ", sQuote("HSAUR3")) rm(HSAURpkg) ### hm, R-2.4.0 --vanilla seems to need this a <- Sys.setlocale("LC_ALL", "C") ### book <- TRUE refs <- cbind(c("AItR", "DAGD", "SI", "CI", "ANOVA", "MLR", "GLM", "DE", "RP", "GAM", "SA", "ALDI", "ALDII", "SIMC", "MA", "PCA", "MDS", "CA"), 1:18) ch <- function(x) { ch <- refs[which(refs[,1] == x),] if (book) { return(paste("Chapter~\\\\ref{", ch[1], "}", sep = "")) } else { return(paste("Chapter~", ch[2], sep = "")) } } if (file.exists("deparse.R")) source("deparse.R") setHook(packageEvent("lattice", "attach"), function(...) { lattice.options(default.theme = function() standard.theme("pdf", color = FALSE)) }) @ \pagestyle{headings} <>= book <- FALSE @ <>= library("vcd") library("lattice") library("randomForest") library("partykit") ltheme <- canonical.theme(color = FALSE) ## in-built B&W theme ltheme$strip.background$col <- "transparent" ## change strip bg lattice.options(default.theme = ltheme) mai <- par("mai") options(SweaveHooks = list(nullmai = function() { par(mai = rep(0, 4)) }, twomai = function() { par(mai = c(0, mai[2], 0, 0)) }, threemai = function() { par(mai = c(0, mai[2], 0.1, 0)) })) numbers <- c("zero", "one", "two", "three", "four", "five", "six", "seven", "eight", "nine") @ \chapter[Recursive Partitioning]{Recursive Partitioning: Predicting Body Fat, Glaucoma Diagnosis, and Happiness in China \label{RP}} \section{Introduction} \section{Recursive Partitioning} \section{Analysis Using \R{}} \subsection{Predicting Body Fat Content} The \Rcmd{rpart} function from \Rpackage{rpart} can be used to grow a regression tree. The response variable and the covariates are defined by a model formula in the same way as for \Rcmd{lm}, say. By default, a large initial tree is grown, we restrict the number of observations required to establish a potential binary split to at least ten: <>= library("rpart") data("bodyfat", package = "TH.data") bodyfat_rpart <- rpart(DEXfat ~ age + waistcirc + hipcirc + elbowbreadth + kneebreadth, data = bodyfat, control = rpart.control(minsplit = 10)) @ A \Rcmd{print} method for \Rclass{rpart} objects is available; however, a graphical representation \citep[here utilizing functionality offered from package \Rpackage{partykit},][]{PKG:partykit} shown in Figure~\ref{RP-bodyfat-plot} is more convenient. Observations that satisfy the condition shown for each node go to the left and observations that don't are an element of the right branch in each node. %' As expected, higher values for waist and hip circumferences and wider knees correspond to higher values of body fat content. The rightmost terminal node consists of only three rather extreme observations. \begin{figure} \begin{center} <>= library("partykit") plot(as.party(bodyfat_rpart), tp_args = list(id = FALSE)) @ \caption{Initial tree for the body fat data with the distribution of body fat in terminal nodes visualized via boxplots. \label{RP-bodyfat-plot}} \end{center} \end{figure} \index{Cross-validation} To determine if the tree is appropriate or if some of the branches need to be subjected to pruning we can use the \Robject{cptable} element of the \Rclass{rpart} object: <>= print(bodyfat_rpart$cptable) opt <- which.min(bodyfat_rpart$cptable[,"xerror"]) @ The \Robject{xerror} column contains estimates of cross-validated prediction error for different numbers of splits (\Robject{nsplit}). The best tree has \Sexpr{numbers[bodyfat_rpart$cptable[opt, "nsplit"] + 1]} splits. Now we can prune back the large initial tree using <>= cp <- bodyfat_rpart$cptable[opt, "CP"] bodyfat_prune <- prune(bodyfat_rpart, cp = cp) @ The result is shown in Figure~\ref{RP-bodyfat-pruneplot}. Note that the inner nodes three and six have been removed from the tree. Still, the rightmost terminal node might give very unreliable extreme predictions. \begin{figure} \begin{center} <>= plot(as.party(bodyfat_prune), tp_args = list(id = FALSE)) @ \caption{Pruned regression tree for body fat data. \label{RP-bodyfat-pruneplot}} \end{center} \end{figure} Given this model, one can predict the (unknown, in real circumstances) body fat content based on the covariate measurements. Here, using the known values of the response variable, we compare the model predictions with the actually measured body fat as shown in Figure~\ref{RP-bodyfat-predict}. The three observations with large body fat measurements in the rightmost terminal node can be identified easily. \begin{figure} \begin{center} <>= DEXfat_pred <- predict(bodyfat_prune, newdata = bodyfat) xlim <- range(bodyfat$DEXfat) plot(DEXfat_pred ~ DEXfat, data = bodyfat, xlab = "Observed", ylab = "Predicted", ylim = xlim, xlim = xlim) abline(a = 0, b = 1) @ \caption{Observed and predicted DXA measurements. \label{RP-bodyfat-predict}} \end{center} \end{figure} \subsection{Glaucoma Diagnosis} <>= set.seed(290875) @ <>= data("GlaucomaM", package = "TH.data") glaucoma_rpart <- rpart(Class ~ ., data = GlaucomaM, control = rpart.control(xval = 100)) glaucoma_rpart$cptable opt <- which.min(glaucoma_rpart$cptable[,"xerror"]) cp <- glaucoma_rpart$cptable[opt, "CP"] glaucoma_prune <- prune(glaucoma_rpart, cp = cp) @ \setkeys{Gin}{width = 0.65\textwidth} \begin{figure} \begin{center} <>= plot(as.party(glaucoma_prune), tp_args = list(id = FALSE)) @ \caption{Pruned classification tree of the glaucoma data with class distribution in the leaves. \label{RP:gl}} \end{center} \end{figure} \setkeys{Gin}{width=0.95\textwidth} \index{Classification tree!choice of tree size} \index{Tree size} As we discussed earlier, the choice of the appropriately sized tree is not a trivial problem. For the glaucoma data, the above choice of three leaves is very unstable across multiple runs of cross-validation. As an illustration of this problem we repeat the very same analysis as shown above and record the optimal number of splits as suggested by the cross-validation runs. <>= nsplitopt <- vector(mode = "integer", length = 25) for (i in 1:length(nsplitopt)) { cp <- rpart(Class ~ ., data = GlaucomaM)$cptable nsplitopt[i] <- cp[which.min(cp[,"xerror"]), "nsplit"] } @ \newpage <>= table(nsplitopt) @ Although for \Sexpr{sum(nsplitopt == 1)} runs of cross-validation a simple tree with one split only is suggested, larger trees would have been favored in \Sexpr{sum(nsplitopt > 1)} of the cases. This short analysis shows that we should not trust the tree in Figure~\ref{RP:gl} too much. \index{Bagging} \index{Bootstrap approach!glaucoma diagnosis data} One way out of this dilemma is the aggregation of multiple trees via bagging. In \R{}, the bagging idea can be implemented by three or four lines of code. Case count or weight vectors representing the bootstrap samples can be drawn from the multinominal distribution with parameters $n$ and $p_1 = 1/n, \dots, p_n = 1/n$ via the \Rcmd{rmultinom} function. For each weight vector, one large tree is constructed without pruning and the \Rclass{rpart} objects are stored in a list, here called \Robject{trees}: <>= trees <- vector(mode = "list", length = 25) n <- nrow(GlaucomaM) bootsamples <- rmultinom(length(trees), n, rep(1, n)/n) mod <- rpart(Class ~ ., data = GlaucomaM, control = rpart.control(xval = 0)) for (i in 1:length(trees)) trees[[i]] <- update(mod, weights = bootsamples[,i]) @ The \Rcmd{update} function re-evaluates the call of \Robject{mod}, however, with the weights being altered, i.e., fits a tree to a bootstrap sample specified by the weights. It is interesting to have a look at the structures of the multiple trees. For example, the variable selected for splitting in the root of the tree is not unique as can be seen by <>= table(sapply(trees, function(x) as.character(x$frame$var[1]))) @ Although \Robject{varg} is selected most of the time, other variables such as \Robject{vari} occur as well -- a further indication that the tree in Figure~\ref{RP:gl} is questionable and that hard decisions are not appropriate for the glaucoma data. In order to make use of the ensemble of trees in the list \Robject{trees} we estimate the conditional probability of suffering from glaucoma given the covariates for each observation in the original data set by <>= classprob <- matrix(0, nrow = n, ncol = length(trees)) for (i in 1:length(trees)) { classprob[,i] <- predict(trees[[i]], newdata = GlaucomaM)[,1] classprob[bootsamples[,i] > 0,i] <- NA } @ Thus, for each observation we get \Sexpr{length(trees)} estimates. However, each observation has been used for growing one of the trees with probability $0.632$ and thus was not used with probability $0.368$. Consequently, the estimate from a tree where an observation was not used for growing is better for judging the quality of the predictions and we label the other estimates with \Robject{NA}. Now, we can average the estimates and we vote for glaucoma when the average of the estimates of the conditional glaucoma probability exceeds $0.5$. The comparison between the observed and the predicted classes does not suffer from overfitting since the predictions are computed from those trees for which each single observation was \stress{not} used for growing. <>= avg <- rowMeans(classprob, na.rm = TRUE) predictions <- factor(ifelse(avg > 0.5, "glaucoma", "normal")) predtab <- table(predictions, GlaucomaM$Class) predtab @ Thus, an honest estimate of the probability of a glaucoma prediction when the patient is actually suffering from glaucoma is <>= round(predtab[1,1] / colSums(predtab)[1] * 100) @ per cent. For <>= round(predtab[2,2] / colSums(predtab)[2] * 100) @ percent of normal eyes, the ensemble does not predict glaucomateous damage. \begin{figure} \begin{center} <>= library("lattice") gdata <- data.frame(avg = rep(avg, 2), class = rep(as.numeric(GlaucomaM$Class), 2), obs = c(GlaucomaM[["varg"]], GlaucomaM[["vari"]]), var = factor(c(rep("varg", nrow(GlaucomaM)), rep("vari", nrow(GlaucomaM))))) panelf <- function(x, y) { panel.xyplot(x, y, pch = gdata$class) panel.abline(h = 0.5, lty = 2) } print(xyplot(avg ~ obs | var, data = gdata, panel = panelf, scales = "free", xlab = "", ylab = "Estimated Class Probability Glaucoma")) @ \caption{Estimated class probabilities depending on two important variables. The $0.5$ cut-off for the estimated glaucoma probability is depicted as a horizontal line. Glaucomateous eyes are plotted as circles and normal eyes are triangles. \label{RP:glplot}} \end{center} \end{figure} \index{Random forest} The bagging procedure is a special case of a more general approach called \stress{random forest} \citep{HSAUR:Breiman2001b}. The package \Rpackage{randomForest} \citep{PKG:randomForest} can be used to compute such ensembles via <>= library("randomForest") rf <- randomForest(Class ~ ., data = GlaucomaM) @ and we obtain out-of-bag estimates for the prediction error via <>= table(predict(rf), GlaucomaM$Class) @ \subsection{Trees Revisited} For the body fat data, such a \stress{conditional inference tree} can be computed using the \Rcmd{ctree} function \index{Conditional tree} <>= bodyfat_ctree <- ctree(DEXfat ~ age + waistcirc + hipcirc + elbowbreadth + kneebreadth, data = bodyfat) @ This tree doesn't require a pruning procedure because an internal stop criterion based on formal statistical tests prevents the procedure from overfitting the data. The tree structure is shown in Figure~\ref{RP-bodyfat-ctree-plot}. Although the structure of this tree and the tree depicted in Figure~\ref{RP-bodyfat-pruneplot} are rather different, the corresponding predictions don't vary too much. \begin{figure} \begin{center} <>= plot(bodyfat_ctree, tp_args = list(id = FALSE)) @ \caption{Conditional inference tree with the distribution of body fat content shown for each terminal leaf. \label{RP-bodyfat-ctree-plot}} \end{center} \end{figure} Very much the same code is needed to grow a tree on the glaucoma data: <>= glaucoma_ctree <- ctree(Class ~ ., data = GlaucomaM) @ and a graphical representation is depicted in Figure~\ref{RP-glaucoma-ctree-plot} showing both the cutpoints and the $p$-values of the associated independence tests for each node. The first split is performed using a cutpoint defined with respect to the volume of the optic nerve above some reference plane, but in the inferior part of the eye only (\Robject{vari}). \begin{figure} \begin{center} <>= plot(glaucoma_ctree, tp_args = list(id = FALSE)) @ \caption{Conditional inference tree with the distribution of glaucomateous eyes shown for each terminal leaf. \label{RP-glaucoma-ctree-plot}} \end{center} \end{figure} \subsection{Happiness in China} \index{Chinese Health and Family Life Survey} A conditional inference tree is a simple alternative to the proportional odds model for the regression analysis of the happiness variable from the Chinese Health and Family Life Survey. In each node, a linear association test introduced in Section~\ref{CI:Lanza} taking the ordering of the happiness levels into account is applied for selecting variables and split-points. Before we fit the tree with the \Rcmd{ctree} function, we recode the levels of the happiness variable to allow plotting of these symbols with restricted page space: \newpage <>= levels(CHFLS$R_happy) levels(CHFLS$R_happy) <- LETTERS[1:4] CHFLS_ctree <- ctree(R_happy ~ ., data = CHFLS) @ The resulting tree is depicted in Figure~\ref{RP-CHFLS-ctree-plot} and very nicely backs up the results obtained from the proportional odds model in Chapter~\ref{GLM}. The distribution of self-reported happiness is shifted from very unhappy to very happy with increasing values of self-reported health, i.e., women that reported excellent health (mind the $>$ sign in the right label of the root split!) were at least somewhat happy with only a few exceptions. Women with poor or not good health reported being not too happy much more often. There seems to be further differentiation with respect to geography and also income but the differences in the distributions depicted in the terminal leaves are negligible. \begin{figure} \begin{center} <>= plot(CHFLS_ctree, ep_args = list(justmin = 10), tp_args = list(id = FALSE)) @ \caption{Conditional inference tree with the distribution of self-reported happiness shown for each terminal leaf. The levels of happiness have been abbreviated (A: very unhappy, B: not too happy, C: somewhat happy; D: very happy). The \Rcmd{justmin} argument ensures that split descriptions longer than $10$ characters are displayed over two lines. \label{RP-CHFLS-ctree-plot}} \end{center} \end{figure} \bibliographystyle{LaTeXBibTeX/refstyle} \bibliography{LaTeXBibTeX/HSAUR} \end{document} HSAUR3/inst/doc/Ch_missing_values.pdf0000644000176200001440000032011113303046020017063 0ustar liggesusers%PDF-1.5 % 1 0 obj << /Type /ObjStm /Length 3393 /Filter /FlateDecode /N 62 /First 493 >> stream xZYs8~_Ij* 5*_X#;3䁖hYHT5HJ<$z_dFMJ)4ӁcX"eVKL70 8[LDaĄb25I0:<$[& 8+t,V0)qvX* Wʡ]3`4Li,ͧK v0Ii>^ j/[r2.Xeq]DBNNX^q.iWޖg?U{WlgsY#hy/a+&deƻ74Y%0ODxE1s-MKXT}Zbl|O_[/_֙n $R+u {?YrADNaaVtJk(HS)*3+J eJx)dMx*6\N2jvzřxJ΄qV82>ɐˤ꽞/?!?~w9%? ))ep&SPLB3Z7}r?-M.*~K' m6Kyoc#qXB[<\n`QLlliAꥃ7[S0]X^% LB8.Yv@PŘ>4PwIz}SBP#>'_1gl'<$^+~SOg|<Ҽ0Pm1m[S^]9mea-]VMnŮS~{&+1٤/ ]-" B~PLAkZHg53B YQ>8aX B~P*+tԌfw }-tr"ۈ ;< phLR (TtbOZBJiHxASVח+9~|qUMVDtliz L ö3w*E0o8(*?,Tl"83 # c)*"Bp#@>?^D ts+1@Ass<$/IJTCyTψ:i{򆺉tty󊿆_|z$O:/oɷ •x2({O/K¯ >#MIfytoKg |rw|4ʋWr#lY1C}ܦߋ &_bJ W-}vƿ?@i$ WBSCD4`3 !CrU ,بӶ%*S<.@zAE†U&VXa\dEWVzØ{7k#ܜzņ#jlKz+y8-f;;:l4 Ay~V?6= jc}-۳th4׶c~nvTus 4Q7(bN8Mt:I`x9ɽK/ >nI6sFeT"N3dhZ֖0/I&2PhZr@gd>X١nE^TlHFkŨ2hZFo57VIerC\9x~ s4RW\lQveUe_ 41Po 3_6B` Yi%J,nRvo+r{m%%hn/:mJ7ŐΏQO׏(շN-謟9`;N΄ fn-u7WDWA[M fEu2[sPw{~zu@?|ܬw?BE)*/=,pI\`<m_]Ss4Ӯ<ڱOWW8$tKek!l [3.>w(cof?Eendstream endobj 64 0 obj << /Subtype /XML /Type /Metadata /Length 1653 >> stream GPL Ghostscript 9.18 2018-05-28T10:48:06+02:00 2018-05-28T10:48:06+02:00 LaTeX with hyperref package A Handbook of Statistical Analyses Using R (3rd Edition)Torsten Hothorn and Brian S. EverittBook endstream endobj 65 0 obj << /Type /ObjStm /Length 2351 /Filter /FlateDecode /N 62 /First 513 >> stream xYkoFb>(~E?֍Iꕓ&MLʒ!n_IE\νst 0c>2cA`emXLYaYPLEYL+Y02팀 ,xfW#3J(EɌEŌqՂE+&jsJhVa+10k ދZܔB0 %$8eh9aΦ9ax#Eң )R4!<]|!P^JNu؟ I1uàil|}4,,?~|]?&Fg^Kf,]&MWd7E9wrr=駶 2 8[̹tb񉽺 ;+Kv<-}pz<:CbޮIFrQ5B_pj6 FfFfOn5׌VrZi $~Ժ-g9m@=mN{`-h3z@ *t-I$ IURd85RjLR 9;Zuᓗo_G&-fKRw`.nuyt=]!BTB٪-+ wIik2AJJⲼ^+aWVm9 ^Lo_ŧ'V%}U`JHa$!=6E줘p~+zz8-bvXYIqfyF&&WxjjTdr82USfb$Ii`۫cq z0˷&k,O?yY̦#L4`H18.LxhɨWJ9*%CE7+iUlӼ3~s>Wu/_"6_Kk_yYy /\;~Wˮۄo:My{͐$\]vkP,`ʳwOᦇĀ~$#urMJMrnVy+e&&T 8wuyaS2MZR 'HtP]In28L'';;6jH!fSͯQ_ dP>m:̢euLÏ.t f`p, h?Vt¢dS~ W+xzͯ^#=FEUYV)"eIQaVM!1)ʓr=}ی8{8dy360X=z:A}$z`c!6)KL^Zg"7Q[u-FwO?j0%NNN&r;`qh07 f ۸ZR#c"vq,MDnwZmIMjI@(ǔqی3u=;3SN=ש-o~p Ǻx(z c=:8ia0mZLZf`v| ]FȺhzm[%2o<<W ذhWnRX<@xhYJL`:L@Hi3*cm]F2 >DN,mvX,7ib]%$d0Թ2#-D<FtQdLAu̜ԧ"ۊ 'ԅh;(obSZ%̤WԖ *)3=Zfڃ:dq B&/<8aO=hۤ-u:lazs"R֩][ ;U#j*T~5Pj֠vGm?Tl9_.R{O~!܊Dwk:ti0#5=;ڃ pl QV iB^.K%\b32Z ԞJZ858m9AU![:IC%~,?-UTFRi;j4OǘP` 1rdojM֍z9̫Y)'[[}^dΠM $_FTѳP (e\> stream x[KsWEJ\vI6+; V-R؞,1N%֋ٞ~|uOZoa{ZXqko[߯r޹[΄wFZz'8:Kk|eYW 12 a4.2c4-75Y[Qfeh %LƇ8zSbޭ~^I:s}"1:֗oV)2rp?[חm.Ĩ1%F o.֣nn˿` UB 3 mՠ W'b>^85<}cFQiAc+lB&~C &FkB@4i/PE÷oH>l+.@kЧn2fj$OZZ7.G|\_01v[&[fá]z; `?$!aM[_g?NFA\[!rpv!A.wP "G" BBqj$ A[ (,34*Eaf 7-|̹@08\3Y,?ȱ:FڣB":(d)Mڤc_߮.c%H2h52B) ^" d8#MB.IQLJ;!t$q6 qͶl%A+RrhAqz@Aݤ~ +NZ-%Qd;=8is\_u| !vȗ B8): Q:U׈3#^'tt K\`+"=?;=n 1mx Sex-7A#O (\H9Fk|PȭEh(dQd[THH\PInF>]NGr?Pm &Ŷ`@exh%;q_Г?pDF\@T#Q@q ;ZSQAq^zfZ~+vGu3 1^dCQgSD鱏k-0*[W>".$1۪"f|.~c-DZǺô%ղ ^+=s[N̴61 z2,Es˒ab0I`K҂?iwMC I~\:C{,pMƌ{gD^jX0#v1e, ITfv9'LKϴkJ8& VՖ~KaRCxNb<6.nZDڛt 'AV8e7UvZbBFpg@o\|Kx{=̓aItQ!RHH+6eOFLaSV J8p|ECL1(R58m FXnK~nCxsҶ`{V$Vt}LkS RE|RZɋG(8&?/0ldvI*+ɯ䬩̺<2t!6p&*wÈy8`/Vb1j{Ƣ(S7 m /CW w.,hR!C9gBWg'vd2XKغ2|.)=nR&PK-tOwTݓ&FHZ&\ORlTMbN;0;MXΒWBص*>N>D.\3+ h>U_Qӊz.`nޭehHitbgԅw.7A*8I\1 S:E(q)H5ON&#نTEPmR45fWs16I¦ PcmfN_y_<X. ߑS4XS^Bͤ;VF8~J(3}zh86iPfX5bTmNHt'CZсV=2p& .kOKә  }F9Ά9ۡo*,"ڂ=y=1-+ܤdlT:;ܤQg̑T`%+<Ġwwh YMgXQ+&,}f4HGrJrv?\o96SlA +sb( /?7f_p7H!"6IA9Zj0o;FqᅭEw;F T35طδ>Zc\_9~ev:Y~e`<"UNq|> )@lu*ӣUp. H#2K&aLlί6p6yOzc[OK P5G4FHzׄlMIOfMrho-iBʧS}d~Τ32:%1K`Dgj%"Ҝ_iO6aL0gcҶ7m_hΚۺߘ_]>0p~\<;N/4u_EA"ǬDK4f6g6ixlzςwѱQ<'[xhqvYh j;'G^^8MJFDжa'H8`߭d-jiGCpug<~`{5ᘓ)kO9dLxCyٺgyětXGKhf).5wJіZD[%=_|G`paÚgƕxW4_9(9sy'uuUS ЭQ-Sod8vI |pR,}A%R-r<yOY(l{Zkݎ ~۟Wޤ,y!S}{mA3 c9Ꭲl6xpk8B[/BL_ܵM*=bT 3 m80@QPej`WI=RC jz(vLn|Mb=[/:~sk¨nDR|cV̵?5N/[=[}氛km{; ">E+W7_8A"]wnz\n=R}%~CfG;FQ[mw_^`4@Rs0; dOeY졀Sي2M+D4RkppmD&|qbE-jy1?EtLiiX>- ' VMXe[F2eF~VdY7Bϰr|`ᆅa"D$#S_n^/dLB&չ!aу|7‘Y*B7M/7K7ʝ3UNtʯ3, .xS_l5 3osdt2%/@9<Z-,`!M/7˙ѻNN&X8sLe&QlD?i~^Ďe!?9ƩŎa+G0He8WsCլ.rM6ʆ,ppp`˳oUMljM/7  @gE2t<~$߄,rBܹ}Xfl:l38n*_nG;1LaNރ{%3r|'`.g{vy G/`+2!I{S#GTaIXvYv"}Ik?B?'o-qzFv~YRB!8v`endstream endobj 129 0 obj << /Filter /FlateDecode /Length 4138 >> stream x[I$G\s+}BK"y@1LOz/2EVfMuɊo[뭢6Nӻ}Q/7Ak>>&f'7xvcMҹ&;j|#WzAi/Aq`+G?qU- 6.dTұOJ7LM7ͪHnISˍ.*]m?Z>O6nPv^^tBUw/.b4/vW9)cr-#(eQN#/d㺯Yk\hLi}՟5Xm݅~5 ^w[;zkf./sN? rE=lGt/pȹ S|\Jy2U+9RXzuDEK[k 4&3rCTyO*uQWۇ&З{3-6;{N )}-bfQ|q}NG#G>)OO rói^E DG~lMJNNwv|^?ll|:,<] _ތOW 0>.-<2R7)FK[vo~}-WRg/=~Ț(Q`ṚU)deE ϩ b&sUI..zZ`'VP!ĵbAX(qhY/t&`3 jY-:3%\U3{\Iչ~_ Y̱Wb "cl lE`&!:X\+NZlrcy`bZқO>1Wbܣ=q@F,(Z2X pb%+bR^/7UFiXEJXET( /^xOuTUPԡuqJl(}&^?RTVC+gG@wGZrFcZBu~ULƣ@Foi@4ro]-6-MAeb΂&k^P:bvNiʆJ;VMPTn/-a~[DOƨP[ͺ~إ3[䱯60RgkPSF*М0H!}P4B{3Tzkg3G Wb:;1ؖ%7W ~# e@Cm P[F y+>"A2UAd 7XОη!{6paGꥂhVo5:m񹞔`HpAQi4.T'}4F3z \3;+@ GfM >creQԇ=vI ?8iF]OmK2BEQ2Ky>L@R#Ntl&hRxXEdPt]Q!1(xP?_aŽb]uʹ(iYz&c#j2u(ü*Eu,ۄ^3椉vh= 3,GmZ3G(̈́i0ku zNAm ?*@P5dՏXBz054]] D?l6.}zw'n 7X-сcIJ ɌQH!sqCsEUgQGist7̮!pV w4vڷ1p={:y' 8 KܘrW8lGc-dӴͬ=Q9+}UM|Oc5t}Mk^V˵e#p{Pl/Lo- o9eS4./64f+>x#*ܧEJqrw\~Hi[( Q#+pCWdm2§; 2,/ M8W!0X܃]O&}$c7q6?Y9$'E 9&2;:*hͿ+gSrI'φuvqlg/Fwۃ@׼kWG{4aQW)HޑhUf[{;yp9y?,&vrd"!ٖw#t?6e a ߗPPXL&R҆H:i+~hˍos,Geb7fVt?\tF;0f.(?{&4yӀ5WA7X޻n>er4Iy#4"]赊A^q9`\ݧ%}ǔ)_嫷@@ΣG7H6_ʢyR9Z #n9iNhڌ%D)o;B,sq>~BX[E Es'ihȜgn|އ?gv Oc+yojvOh!s ow;LC;`)K9`rb,ZS*9T-i _g3 StO(>/&6~t/tPԠ[7[ťr#YVj[qF{Ժ{-s6nl'9VISZrAxO_Y{o6% endstream endobj 130 0 obj << /Filter /FlateDecode /Length 4944 >> stream x\K$7rW:PWÆJ45V]3_/H&ʬ"`<2v#F_~astF7/Q{1EPnt1֞QљΈQ+=A4j 4u1FGֳЭ7qbeLΓa4.2cnLᩮ6V2 tSyuB8FEHG!X0%\_w_ibhQÿow8'!ËNk=:CD B8|G 0&vk#WX48\q .L<^wS*d:DG A8ңv8lqP1 cY6hظw!F;ቆhݶxT"ኚc>Qt1,t舥JU0ʹҔAG{ĉQi/YiyB[BPoBhHD)>MQiR U^:n !|IJs9lw2]|]GnM#,)SZ6ipn,x1b+ElRޘ:ai2jK߷ c\^ixVͰ|qf[+-- }zMdF(qB>l";OgBS3c*Ɖb0f&{#4{Xzf=\]joiP0+Xt26 yņ|Yv@r,=doL`ۛ%tZi4[K8t0T5S.$8#Bve|Ro]·&- Oh4/8}w4qf^jl>!?on 0cT[U 1 _h28( (ou!(#MM0\'DUM/pӤߍr4j C>.4^,diq%u}'C;qc?^-Ԍ/l{7g!i[Ew;%hVk2. GLL3XA ,8AXlBC=R&%]{&DJo[TzF3 9f ~|?K8%Jk_pk'\Et$Ç<&":D,ǖ8lрxI~L˺MTCE `cjL%C8G3=6x=6:|)H!mVӻ>zNau-4qn$-D$rP_d(fM}2waUO8Ee$`T77%?5L̄]߬ffdI6a08Z]xtls_Og n" *SI$g &Ln ~MȬliI /Κkf%AcK'3ɰVgo6O2DҔoCvnI-%I%_ok0+&3#HL=rTAj1]@];5ZcIGm(S07 6Pf{!XHdNPEZ&;HUE@5Ǣy$_Ib\ 5`y'bPLR,sgG},Q,)qMyCelm떭D<+k]Q6Ә\}:$ھ6zw sysʓyNLTHQQ1f+Y9ED3TO0խޞFͣf'K<9DvJ\NMhSNYRBpr.2a:kbpb$[ XɔUe@S]P+ݕ;S|EׁO`y6 &C?R?4u_r:NӪ|DؿS=Gv7Ij2s 7M'bVM1s eHy t_Q9^(,:(jCh)ddKQV|VpU"BD*s}˅X-q[":L|>bB&[4D~@vףRͅ\}˭f&M}{>Q}|_ _;Fk̴MseF#\>(GU fi]KJ{΋|$EˢRoGpܘAOPR)yOd FUdѕY<'>~aO9W6)>#v#/8O tw:Kž3A^Y^kպԙU鬞E_H,jA7%\8Ď[]p+gTf/+ ͽ%`^|E0Ors,j?L{T)y,4t32zs{ϑydX0&ɾ|D <.r$ Y)W-`!AV M8oYQ,ʷSETY{>]@# =L*~%NTRVʮ.t\k%ۿnQ2A2f5l>(87T{>l o -#$Qv.ƬzBE_iSxHJS X/VvZi x;s߳jpqؖB&tq]*T$գ^ i0̍©g2>B y~GQA(9|VTfS$ Ȕr!M 0v+gߞjckK}~!6RFA-lŁ$X(섋"@VݔMJoxa}}@RUc/6xdGؠ򭽁&I{T4= 1-xPھ\ |Mf=JB5* Jla0XwW83HGezJ;PX팝1,fUK؊xf`Uڄ{`%4Wq7bJ m_y YZOOԐsNT+HVbzYo۠G>r\0b^u:Q5 |ϒ.»YU$U1Pu-ZLrI %yr׭@4vE@3z*)z[^R@kI.980SybpF:[R~$]yp+ CSʔ.u QnM(z(HJO d]znQN~6۴&rm[rX.&Pgδ +x?dlenK`ïySԦKTtߺMrdz~ 9Z[q}گR>I艥kj.i #) ru8{#R ,ܚ$EWQ[dr4\JB"p+[Gν|P%/A&%JwkyIibmқEmF@S#C&%b*YRҥKc^wEi s׹[6K.D8(r >-9@{_LióZi'`,?q+h'a_Y,Kgϥ8U;E'(g|U ˋ'4,MJ?le_!j*H2J?n/կ[C+ {"U<^_ݦ}{MyfЏW> stream xuSMoT1 W=4DZT}tB㼯 ^4ɋonw?IOc1W0Fas8<[P#1'cF.#d;SGZC`WJ[9鷨XK'jzM%kIF5I3p™5I]7h?۝ZB~xpy+bw~ع,b懫 DLLΎ`k2 DUm> stream xmW TSgھ!{A*X{ܪU jeb"D@,YeI&`EY")q-:iVLcG+S[-7~/`[ϴC{y H$60xY<KqHRpw!cse#HS%jvE'+f 🣘X٩S#cUCbCNMdrb{Mz->qYsh;IEP|\mUlbF_c$G&*#"Q,[|EbRTzmȨ] {6lZx`>La1Sf:3ldf1Pfe2˙טLcV1kZu&g^b̋7qfv'iI qQ.c\ \ʺىl'p]Enn܆vܽOc >6k$v{W?/K#Ǟy頏% !4#hf O) E`2_ h}B|]*eAvFJ䎘#Gz\H6*A)Jp;JqS'Noi:Ȣ.J/lK8N?5,27/\yϒD ͿWzOcos?8Ym_+b(ܽR9Nk>~ roH؀هE[VDW9EƢk5a,$C'Y%m.1Ǘ|'~T2L78^ &']ok;'OOй:nl0 C m~ Nw|Lzݨ%s9"'!ȋ*{мE]mvaRPzmXu\O 7aiɬEdp{eKت-`p.XTaO{JC1JGbBFv~HMMꞾ2(Ry㿩AYloq.**Z%]cRqz=  tUQ]ŒWLR b8{2Tb_І iA,',*KLPU'=!ԀE|%XSkycו9ӻ`AyEI0f ,P@G`5ֆK$?ҩ+]t4ܠf͜vCX[_^?upA]>kyavx')J-gsTx(nDyAU)[xd[`D=;Fe*~j;9(>ǛR/L,3ʥ,dtCElu s%C@Hdedyi Zf8k%6&IvJѭAPO556:_?MdցHRQ\xbCjs١rl;y˚M^yThX-B{vL7;OEMDO?e| S.v7$EHxۡ&8]77@J( -x4rIPLԚw#\ջzGD>'8g<]fDfη$@>]kqoc}KbGO7P`TduQ?:l,?39܁pZ Dx]|r#K1.{vEc4mnk[@tIkt<W,vGΞ|<_ HD\Ϭ} G>kmdE(҂iXbJUSMG=ZrFJCCxTgrâ=6`F]K),:c=q#8 Kh:a8F# BeI2rҿ c=dz 2> stream xcd`ab`ddt v04qH3a!Skc7s7˚ﷄ ~O XX_PYQ`hii`d``ZXX('gT*hdX뗗%i(gd(((%*c8)槤1000103012ԽK2>}wy߯jcws~7yŞ>~nSg>;3wߛgO^-ym̾^];ǂXπ| wt\eXp~`:endstream endobj 134 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1925 >> stream xmTg*T:hQIQc*$*TI#BawD*/{YayGXvaAPUIi̩ibFHKP$1Dju9Q$)H2<5IQlUժ Q~HWjRUŒujQf`e!XOYLjT+ *}*YQ1*b*toHmdT[* '5,eJL X"'D"P _VMxf⿤+*Z:ZAE~RRD0J7P _@Ksr=^ly>Ow Iȃh^ôD6߅"C/Wߊzv~Q NtJ$?ܥNOiȑdߜgk$_qz,c[p9ܚ8Xg-WŨ]'ZK-e%`6s@quyi/цد/^h JHQzx~H{p/-#@Cns3"Z$7I9(@D[t0xi{p)(7߄^oXO%})="m2  6зEDcMnk 1Hsq9E*?.%=+HIg\RVd4\H,8{̜g@X-57)/h;^d4@+W6-_k+ *٩qZo$BGݔ4rr~%Tw%'%>ZӔn Os{j=W`=kv{RNZpl3Q><wsh>Z_k'q=1DKSx3,qoO`31Qsw NO BOB;ohrdHׄ"p桃MxW/ G^\VT(saJ`;)m*ʿ;:TLc Iѹ}Ecݝt_s}}h8Hn4ɵe5k3MY-G<ߨ*~k*93 y3,qbe;9p\PʽUpn\+Zƫy!(~(s 0k06`jMȢ]Ǔ䞂[9=s~oC,7_]N%#nkelIN{/t<ڛ4zX=vy]7뺅 5roq8FǨ58 >nTp*-Ns!0" A|= 'tM3Ha ڪ*m"4|@UJ=} 88ڍ.&ۨh=vu~Y.)(VWhaYóYaNߟ9|}|w8endstream endobj 135 0 obj << /Filter /FlateDecode /Length 150 >> stream xU;1 {'0q_N@ -ׇE٬W.,?慅:c8]9J`̤\՘pBf3y0IVL;)H%Q3T3!T*_qӊ[;KY I*) vjKԐuS~C endstream endobj 136 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 7838 >> stream xyt׶ٚ9`e ddJBe;L/6ƽ w[ؖU$^drA6)8!@h!B@h7!3q{GMr˽ɿ,if{w$lP@4oŚqc =Wy[-B=\F5o(@hÔӦxu֐6ȞF>v 'MnGQ)gjN VSQk)jJQjKmQ|j4Z@RcE8j1@-&R˨Irj2BR#՗GDT"Q ՕQNT7D);*zE͡zSzbw>n*R0ʆ vmlm=CKLY]w챬猞vVcz}{fqio;3ϯu;ox+Wݩf{SpK$ɒ|I C 00|РAǼ+ڒ6%zA]!?m9Vʊ8Pg1=ש@BsP&hUթd7t\VrE :GiZ9(\ uW`/#fd 6,7mTdǷmQra=gq9*A j"kﱮX%h9S/[{nL %0nYoL2@Z|Jvf]FKd$Йs_("5]jP/m'KᘻK`V+i?dp|r|]| |ŽE[UYTV/G/a`A=@,z{k7f?|[Vz$F'+Ui)࠴j{vX nRWMX*&0 B>t:`LtS Z! GG Ox (5XnL?̙h_\wئqךo(?lYq: tGFU}pD(sI:ڮGjje?h7?;e'ǡhH\J|Ka0+=DjECGczNB`AW.AȒ)mӸp?xt&4;6__F%6#jM" =VmTqU8Ρ3} E/D|EI.bQ]{hq`mqSxzJAzRpxKaCl6DT'LġhZqxk ԗpYz|U9``a5' +;"n﹇I{c)ZJ{?I0fG 8pPP "HL ܕ_I$vքPGh0B&痢fg. ǣ#mL? ,1p$YpnJYQPK(Imvv߯n^_zfQKնOӢ-IQ5JhҴ҂Z)QIƄJuu98a; ńX\kDBVL(* QVGBAv <cHN} ԞgoInqUf`fGdU-]GdJL.̼[dVǞJ˞+e|_O6% g`u$D6mu5"!U =mPWXJ .HOMe ]^c䐙M+HI%ȕ ~Ip٠ac4e|ZwW5C;\u~+$l_E( dE7z+x#=$zUjVgL 氤$,)6VC^A88 Eu|yNW=Y#XQAUr3yAYѓpHO'KÚZ8dqHХ(5:e @g͍Rf5CqOoly\F{ +6ݳڽsw$]rp |m*̴[cjJUi4ꆣyD=5^Cب\\ L~#\#ZT4BuGñiAyF$v޽G+LZ SHk .We']+1Mbì2(r;KTqjBu :ݷ^ t֤ZhVUZ'TZE`?WCeqfս[sJk xzEB FYXڔc4wʖx"[zJnf3#dV0⣑E͛)N"q`ָ"NYACh8CcXwn x9ug:pʈ&WtPJۖ第y<6\${/։@\IKE4ɿ!1Td(4}!?4@Յbx1U+Ǥ.%BZ>V;`!2(rUUMPY ǾZ臆 ҵ! A(5g.&6pJUd?m25ӆ F=节Y4n jC)D&4J_>` ?_ E [z%" 41~A4Ibt+mlP1xՠCa`9z8کCKoH[ Wb.5_|):fa{yyIpNՉ :(9>f`[B0DzF²mZJ] 萮R$EL"3QյE& &azf-|u$2VC ]0ۧGE,%B=uCJ?XCJT¢ z$B`@y٩c 5Q ngp!;^VTkꊌqަ(؀{١n?ِp|c f5$|R5;M@d0̾#{$ na-VU(D]bL7Xoc۵EJ ' dO1R#ٯ#E,ʧ \m-ylPDysp!O@?O):s&ioD4 wsnM&% 9U- ͐rOejQ:{uHOA[tɺ]@ꓕ^hz{MGf[)-?!8e_9fZ`ہ@QƄil]q΅̛Ĩ2S$Rq?{.p=rriXq[AF%FcPաcC)6vn(a}| xmq MG[tCum%5 yZnv!Klֲ9)D+ EFSr_LhXXIhc4.K2a 8u1¶9m[2ٮT9iйV׶F, f)+N?B6вUϱF 25juKN$&Q(MզesF~4MG3>-(?q|@LmA;H}^pX\rN8D/Ȁ~Ԗ(t/86J6f@Iwh*" -^Z?Co|'j@JzH f3?`Fޙ^}an& ZF󖯐$%^{_ndXW^ǩ,OՀFEo^1Y |׸EXۈ$a!aYy,~\`2uYf͟2 .߄\k¿/O>7؟zZz>bdjCU370LXtGEB;$pg #`תɒy1qc@_9x8m3ұpSzEIFPȕ*|?4l<?GOK>}ZGGvbVՋ ,* 8\΂"Jz=r_"QkYXC쑬D s>9NM~Q|ORAB? ي^<~wH=硒@_XVQQsFâlA[I rĮV i؋<;qXi:aYJJa`[~1Rex}Iy1vۊ(@Qh =cb ߍXOR#_TCr a_"'2r>#CBT3t57 B+P6khWHi ZyğOS|!ZF,صKsnZ"℞r ssufPk 0y-VVF%9\iFuY_\8/hմ4ٸs*L29{B~;~_nnZ;80 f 0}܁_2ϔ}[w9&b/z*cw>p)d~=p)lh ̆Dw.-&Թt_B6[ HnŲ @<֓GV1EDi$̾!';|}=Nd~뉊'#1]!@UL_ JӓMgyrpf]!k|(E5hm(-(mW|j"*aLG6D3~EB3WHN85γ ѵ&VLG/4sc$07IЖpu:B )T5b2YpDw m?IC{P}pD@gK=y#Go*&5$-7H4vvP+p u<|io!όKVRgwɉ1"ZEUrs؋-&,f֡m,>%lZ/O# ֕'ʌT5a4IT ۲T$D¥IQ)YZ]f:Wtq[vL 61_qp F,%XYkOK6pd#BwH,lXq~B^OՎFWf 9κ}4a O<;,gcutV^YqXaJ}`#l&dSo6|Iin[9.@\%졐_k 6bfD>j9Gi~{\Vy+Ҹ&P`Fbf.!<}#5lw?=Z NMǪ̦T N&4L>2wpux:.O^͊آpߧ|3>lpofJNK:&ˇ>lH T4Nj畠L{Ӧnsl{t5qYߣ'E7=endstream endobj 137 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 4081 >> stream xW T׶@t:1U8(**3E@(2ςL}YQPb4qzɊOt%/9$Qcᙜ{_pHuT]s{3pP( <:}V#(lynY %X lijýCpPFPF- e;~ٳg9Nsrm;??b6[@`(N5۶Gێ?0**)Sbcc'GNh=*vD[hHr`048,:?#?"a! FEFEc׬]3eiӝgd f%3YŌc5=YǬg&0 Bflf\7f1qgLƃY2C+Fühkƞ&$2O(. X:r~ʮ;~RUeS\5_6>R'|R-ВPXfC4z$?Wq١홪->-U`Ǚ%ŋ$@|'ppri]{R`AL##r;*7\]HY\쯟-atB7 #PK6 t,fю p[ (ym^<=a9}&{h!){VF!t8b}c|Q:;?{ БP0%v'!-S☵]4e̯VN*2b?6S;4U0r[תPD0 =~ܺM+l@OeS$|0}m/C)@?g_JڈhTCd J-oL7oZ5\$˚>%퇹 @ɗ !kc1 JȮOq~BmymaĦ[y}s{V7GlM22`7%)Ź&8T&P=,_Zc[~ǃr&/ ]J%e,8lU0thD hy4tV7[MA!4JlN/E#KEyIy}}X2x2g_A.}FByu;1ʀ6'-e'&bm f01s(qR;O%vӱSS|_ \!195xe-msCT73:x݌QV]QP \Xk~K<\//X2]$ȏUvݾ&EL<,8\f*43)G>RRY~K.3pl>w9f0;bF@MMA{22޳kN^YR'9&B8 (rd6U෎E,6_Eo;du`d50J^% k1vZ|7yZ =P]b;E 5|jx[pݞc6l.>ΰ+hOit UNv>y$Xf-t?P^zQSWqŲ?J)oBuIv0鶦&ƊsQQ 9Nm ~좓tR/ҩR&JG-d=sWcua2~ZQǝӵDm ).XtCA)a)Kw%σJx$yUGwKXıpst.M &|!3te(\}aR%ק{ / O ݐ 6j4; Hy'j/{b,`6>!e3q b |VE8GZkzq>ҖplYkJ|*@]fET@F|+B+.\EF3Hy&|y"7v7鍆5?#W 1pB-܄buJ]`̷Ʌ|*+(dɖ\NJ-5ZX {hf> stream xX XSWھ!psUBѺ.ťVZqkAѪU@U8.[X(.UqV jkTt3VKmmն3_3 3?Oxȹ|=P6@ -f:ZJ-ܨww)jIͤޠfQ^JʅR(;/G j05R ar(15$l)lAd|\6Ķ).riE2Aci}1x!Eˆ.Z=L0l;nT=DZ'8%v+熳\=\?t[`|Mگ CHgz-RԌԝ(֣r ]QcQ_̢kŢ0i-$mOB.4l} ݳ)tNMmr߂l *j91TJqu3RbYԼ/,>R*k2p~6AIh0mԉ 6`a?u7/_~mBwr#n+}!n\(gϟ;}ƹE3'-\:_q=w81 xa 3J~3 /iFi ׇFVNo-|UKPL, W EۑuMs|!c=DZ5 5Hf4d09?9d== 岢cS]kJ84{r o^|k_)lCkT-q\J2KHca.! F6XM/њϴ!LȆQ$~08]7B1,~ 'Ufss)F>/FfsYqcى7tNM|HI@bN_?200mڢ\ZEzQ$b,_PVu0pLo8/~~Ƭ>4W?U ,N 7,̶gߡy#1~wѓuݸ}%!1q\ך ,@ޖr~maB1]57E"-w螄)IM:mF$ST'VDF(I 'X~i@=bjxu`QPk4 H + 4X7 [R "8 шJTZL4w׺a!IӦt(1^r~j!PA ҆5~lW^Ld0O/7OaPocP,dd0sVאɅ?Yb%UqG x^ٌ|Ta d%ӹ`m RIW,#X;; YV=ZGf~'%C(>Ud9F>qp|`*%lD&VO ).u/f9;Q2sAL[J:U<"NϿчR=?cL-45TΌ.5^1_D0J%YJm-bj]c^ N9i])@2罀Ɛm`d,/}?H΢C FBm^dյ^zcw_$/p j '̃22iv\}]gSKGo\$C L4FY48¡^10>/XQ83\p"$ΠNth;&jM*.BvZВuk#c#l=!Ya<٧K/ZU3\x Zu&~/=/> C,MH`f4"bB{wףx) W !HxG$>x`Mi'"ecݢ$@On!4d!ERmTtmF$CI*;^#a(˅6*vF%PNT__*{ T; M}o|>\O[xbo udPʭ*g` l+,yGGlG!|feۤȖu>og_$ swiKpOhϖJPX#^90rK J:`@KK57:_*OEWQG<4M?mܙEyLu/pE0dגB<56YSXP ?!x iغF.P؃ӱ ĵUO.CRBߖvcL~:0*, ^%D,[IB%t1jH$cQ*i~ K' I+Y\lq(ǎz'К5xmQ'ܥJC,G`cq_! hڝ? -I˙49Lm,<`ѫ-`[9$6fSv'ɂF&G t[qm<{O3؀# $D0ƛ~uU<Oă04%gߔ i\ ufL1򊴲ʃyp溉 ZP^F9nBI96)95 i:~o~Q8D?΀x> stream x{PTﲸ\ EvI[M|dg5QT.>`Y}Ͼ_eqYVAAm"VV+i&cƶc'wן*v2ڙLq{s>_Fp8KZZu 52E]pg|F! BbXFl! V[ Mg9i,-}c//c}FIF+aYmɉrУm׹&IUQg9oOәި7v -9@T+ ѹA4ԃUF3TQX d1tJJ.-S4PKԗTMB :Q/C) #!uEUMgD7t<+ְAtF)Zi]pu>8xv:;;l;bZ5d; G`lwm?|BEBx78Ȑ>5&+g5gkP層R"QFE)48]^8QiuB6c07f]ղHZO|MpLqduvC= ( (2n@MK_ɜ$!{zendstream endobj 140 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 631 >> stream xcd`ab`ddds4T~H3a!+6k7s7ʟ\BcG``fd+nr/,L(QHT04Q020TpM-LNSM,HM,rr3SK*4l2JJ s4u3K2RSRSJsSN%E )Ey L ^ ~ @00Lf\F˿`rie7~ή__WW5lيe˗N3A#fsۿ͚QQ.WbQ6cI,lڲiK,^zԾS9v%o ш-SU7ofτi}rKn_c悒֚"_y_`0̺{Ѷ6ҹΞ1e܄)WOX0a޴L\8qEӶu_z#79'fNooo7l{> &$%ws\hŒ;䧯pi+f͌6 Nl~2;ۢ;8"7B¤Ҵ ~[6Inֱy{6us,TZPєR RИV[DN^e]us퉨(ꨫ +y Nʾ|<< "endstream endobj 141 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 394 >> stream xcd`ab`dddwu0415H3a!-C5e&ł 002时Lq/,L(QHT04Q020TpM-LNSM,HM,rr3SK*4l2JJ s4u3K2RSRSJsS .ԃP%E )Eyť R2 r+#Y~tɰ.z ݌2,l߯(+f-k,=ۏ?^N=Aeꟴ?v}~V;`[KǭXZVIl%]]] ?͐3.Ɇ)sϾkKe>I<<@endstream endobj 142 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 621 >> stream xoHqeڋ5M4yOnng0Gj^Ƙԙ )WEbH0J̤ A!Bo]y^}>t LdMcAB9&AVԒL`H`t/R>nōy$N9ٲJk [nT^^t;>f\.F{^py-:$,r(DgMq +%x >m{y6mVN%^dmB+/BjKY9BF >t=Aҗ<>5O$L2B1ŚAlJi J b6(+r\&$0^3%[V^ڞZ v@ lhiys 6`>xryXA*jCt TEC_I]3L Ƴ@;1X8wHPwRc8c\719~ox{g+A=ۤr 1sLSfo֗>4>oKݘm6||?1 [Iպʑ (Yɽ,5a(5 endstream endobj 143 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 395 >> stream xcd`ab`dddw 441UH3a!/XyyXV~+=S{ FҖnʢdMCKKs#KԢ<Ē 'G!8?93RA&J_\/1X/(NSG<$C!(8,5E-?D/17U:=土[PZZZW2ac3##fߏsWmf;OUsvϟ_]%g#[Uewy9|? Y+x>㕟 H}-dnɮfgF u93'O8aִiGqT={Jf 1ifww/-mr|ŋ/d-=}3fn9.zͳyxXϙendstream endobj 144 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 272 >> stream xcd`ab`ddds 4H3a!s=<<<, }=\19(3=DA#YS\GR17(391O7$#57QOL-Tа())///K-/JQ(,PJ-N-*KMQp+QKMUNL:)槤10002&FF|aӂg2ً/)鮒󂭺hQy?헰ξk<<@\endstream endobj 145 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 329 >> stream xcd`ab`dddw 641H3a!O/nn߷}O=J19(3=DA#YS\GR17(391O7$#57QOL-Tа())///K-/JQ(,PJ-N-*KMQp+QKMU8OB9)槤1000103012)ٽgf|;?̿ܥ;~3>,}} |g|Waq6;7<_s/wt\7Xp9|zaendstream endobj 146 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 5434 >> stream xYy\S׶>TVpgZL a"HHB`@!TE%:\[zk>6 }}{￰>{o}kps!@i ƅJSJ~P?̅k |ڍYxaAG䟾g?XpX.>a}_ LFǤ'Μ9S=SDX,?$ 8I|58%F"Jċ7. $Xqp*,BJ!Oı? iB|pqL!/I2"$22IR49KI)HqJXiG%ħeI y~ NHNIHRK6ĄXM(32!"M߳pi|8EbgD)Mņg{Q$̈́di|IXI\kTb3m&v/MIF}`GVM[ O[NLЁ? .OX$[$iirJ#%AQ!15;b1s7gf`D9SN#DL"BD(1XC%a:XOl E&b1O,%&Db1XNL&VSj"ބ+'b(CGC#fĻ\b1Dx[ !1`/b13p#Rn@s.\׹Fo#?UE=q^NНSoDOD#x0`ɀkֿ' r_񞉞~Hno8&a))^i^ C Eq{'ρNLKΣsٻ Ne,.דcjI%cK\ے?U_l K r)8vՔ§œ/:>Dx |ǙMbfC&|DuA=)lyP2WM Mr="}1RAkA#2V.b9^`@6޳͕/b(4 y!nW W ED!U@8IfO҆Ke`Eb-ۖfirM#~6o0rڨ+Cz^T誹; ?tp*s_1HDzEF*AYn?tiKN0)y9 EfOh-k[O` pwB.=udSpM58uY~2>b(BoN(euD[#[n!g'~8|/{˟!@S1NX\!ia1Qptk#*ΉJ끙H"33{R|* GR]YIA8]pWBQp$;{?2;olh4 F{݀x2JH_'΅ى >Е#<|n@e>QS=sH}ٖ_1aGSydӱm fbQiEHFSPBN*#{8.̱{ YT첝F_Z:d(L ^Z\:Vՠܷ.* d!srNXm1vi=8 b=(6Z=*-+yޡ%ܫs=TYntҐm):DIk֠5p硙ĉ'򄣱j^_:AJ==HN9.^P.]0t[\c빫,mEn67:b_@;29Me(NKN[> _`09YqB 82)y|czAZO4C[Ntu>I?n)4)$FMT >LE3 ߄z,?XtQ [-3y_\c%!fs*30(:V[v}M]0М|񚚸ҭ~Pd7}rӴ*4y!c>iѡR4s}anI/._NPh&?v@A/4%)uL `0/iȱ#z8@` e }A;kOTSRر阻CqAo8Ţ;ڹxC`_!F/? at\N@+|%3&[IzQil{z[NI[c/ j8{01-WDhrɯ7͟^䎚q>&ZYg,L)?:a:Ƶu];|=Y8DJq`eU+OU&NƑ_pi%|[ :` R(2B؁clGHzF?t/aW8xshƣ19ܴ{ ~Fӝ+0#cqͭhb Nxň|;+H9NdUշ'mpW]Wb37h>gL+nfJtA9`x >u]lcMYؤ2(jyU Y 0j8iw~WCg5w{Oj^ qs;f 4-C!Dgp ̇)3!r6n²GNÙ2}B`FČ!N */:tx>M b%TWzE1S &y sEzjA|wNSs9~ ԑNm 3q/=~Ҹ4|o-}}%.1 ̣Xjk9Rd>Ox;.1΅Arpهn[VcȆ3`tF)K h3,QvC”'y*u>+ˊK[@4ʼ嚚 H]m^g2^QPPQ4)&ZQ.K- whjK'cNL-Cq`d:u;kNXXX9ceͫGj6P1s"}5"P|]qքk > ܒҞ0zK\_n ;QvH\+MgQ?\9"8maKVR/8kDrr4թaS:L0:hf]3o[;c?W1;-cRPgRro5ٵ9I 9qȭuilNY1/:/ 3 T.}әCgotkj8N#Y)Iu2$Ʃb><}xYskNV-kR݁+Kx@Zu{!*6`e[ -6(=>7-4)CD_P),0=4z:w_B=₵­7V[𬝲ɖCK܉eH-C{9h>yƽI;X79}Z0xtSxTMl پmxĕflb̼{zocޞB5P{[+חY _SuyʞMQwU_IauYnV2>^gkۚ_b{vvŲ"zՠBteA627:W/|ʊ͖_>~Ķ峦Νdcњ(fFmB;|_/a]#8sIe,.ړvicq8Nx]~8Eb*yX]o7o#$IVXw|Ldv@/9A݁&<6d OQrې:;uizr>?]ؾq( X4&gްcm? <`KY-5=uG,;A~i~9θz4 c"dy Ҡ/1s+@-3ZW{G[*6` |g>ֿSJT& c%SJ(o XMOԸ> stream x]oG y9d:Hpw6A(w<,YQ4wr&yiNuX,޿m(7L=+635Ll~wToܞ(`Jٟ΂rV *=ADeUУ5p*hZGF 1Vsq Pji&pLl<>ۙL*L9Ԫ&)9s-7j~no=L7J@t~y[KN"TDpBhjHg$R;[ )_ _@F&ne'$ѫ-X`۝UjA7s_ZKPZK뱴2 LJ]i}_ZjUi,VxJJ/Ye˛@h9Z+7<;/7+ ZUųey2Һ\XZWkK P_O=Ui^yÊռn4Z'Ên=f3Q߻~u~_%!ʏʩM4jp]@Xpr|{Uxѣ3J4Bim6aDWbΠ*8YOa(hN`⨢|2kHwPez:LYwC82H،0*;uÚ( iX "0Ǝ|Q6) _ku/D{V%>%EiDf,'D;ǚQV)Q]C]WV|zH( p 4:CDU}E `4Eʞ`722ozO nBa5^~0<'zz,F/(si۸.E BQ|̧+4t1lzp8}U-Qq`E_V?gWv #ϰAb0pqSi>?$&XL`cB@7ZEm,#Qjv\; #KL!)=TGJU{7b$BG*=jX[DW3A#/(lo,v'~2~@k[FjdXV' = цSM= ©* T/S)hG+GҒ^TDXۧ6Y UPG=hK'DSO{Y4B[IgQ 6`-lp}y8^іZ.9i.! XM:" UG d3}2uߌGCKR= J)!\v`hTNIB \G@;XJ}O aာbӢ`.ޘߑ"$9:,S7@4Nv-aU0R6Ҝ: LYR=K@w<Fx;ԡ#􇛖dC 쇇ŰQn]0֨8;usQ5p+:1y!b3C=\9UIc,TyX]aֺK2,/K)aH/.`Ǝk\"Cˬ.gU [5E֤gd)UaH7MTj0\ϩ i T+vLuJm̷Q':7) '7^{*,_r9Py(8N54T&,z8p3ͨ&> =8+-&*avs;0hkXm 3SAu˞eyHaR-=٘nZ +:T>ְOըs%;W[I>甂⇡G\)q=Fȣ6BU*@U U*V*TTXP Pb2Rxh9oF+@`|в۲ؕ{jyٳ,i'i !niGIS*?' M%Oy#ԴR z1Ї8K/pz=b膇-UdBBa\ cz])mA~ާ/95jHyzM]HQI[z]:# "Hеdp<*3$Á0pd(ɽ`ir2 x5z<)7ɴLېa?/Ŗɐ˗ULL~گӧ @.|0`FȓCTh C ^Nj6B8= bD#J۪)tJA+timN"=-&]^5Ǝ.xMj$1i87}-4B5ɬ}"61qfrvY kLcehIDg^#5fVkgZuOF?KD7gcg9W>ru%Ք!,u˪'|4+@Gj!`1Dil1׬}0dbyvCy LDE?˿<{>nW?/*?W˯#-Ņo_9~ZnW0 rPRl~<Am@5?5]nK(I fv!M$jxf8䡃pJ ?o]ːqH$LE&4wɵ t6O'OkC\?lULvٳ"gsb {HYFG v gc gкI65I[CKtY$ fv-ixV'5DlDO︅x&ȅMa(z)ף`Mߤ^` ǺK:$\x }r5V-O2-9[ +d:' HJύw &KZ fl7+߼i|. xO(x@`ɁE?dȃ< z+jܲWϺJ绕}Ez ;yluÊW_b ZY!nWr2J߸bE*}BرKvͮͮQ!#5u4L+FGHۘEm#b\lUf*C5-͢WpyQ[[iMf,W&k46$Q9~tFL4 O`yEy2g!SUXNhN r`0ϕLnVrSK9ܱ ǜKsPZcj|}zmM-g ]k])*,W ˊ5>%jrgĴvTfT  KȎH5dCJJ9ru.ah!w5Z$[RZ| ȣ.Vuj&6 KR, |KT*.p9  +b 6xۼ2@;wETiJe1<7Bu8J e#PޝZj k6MXq7^oV++,_e\FЂ JVLxNu[Y-g0+|%H.sEYݖB}A'"e9,4SE2|Z3(σ9l[JZNDY3qe#\*7@Uibb3byfyE.f(Е4Lddم4IIV&HXw̯3;}[NF@ԬE/8aO8fV3ib"yxPeߣ7f ![pcв^X;ȾiP(AZ(+n92rVN ^vC|rWa*'[䘻uh_D/*5܃HRtf $+!1OS%b0 q8ZO>u)%{T|Uh*_-~Mė,.,Gd/>)0`:`;En?ZH<͹{Jc3NN9Ů'GaBHHU6bkT 濮eqMn!v.&jNgzgN18=euS*z-ѼzJj5d6>ݯHl5 B䉪ՓL)FBS3Dt*H k-&g`R /Sezn7~|Wendstream endobj 148 0 obj << /Filter /FlateDecode /Length 3167 >> stream xYY~'#d/'}JleÁeDA,9KgHxJߞ>kÕ쩮:Ô|_-wDO'l([K˧V^;3]O0&&(7FZ wсJKX+B7(bQyZ[VλjTڠ:je_vaJq>rׯ~W~Яj5ºͦeyFxղ_ݗ_ۑ~ľ°iF l c2[B$Y-?N4]r0>]}խn}P rxLj.պ[ =^w|궷H;`tshEE\'幮bQݷ~<6u34t+jO1V7YSn>6* "c4g8@e2+U95ȘZX;X"n#Wi<{ܬvs&hV .N%ڃkC;aY'CCɕmwU}͡-St%+j\e W "N(J<sp=JƓ.U0( 8$݂edJl9 ۢvqUOgf=4v/oC,֫öZv9D˙O/V] ck/SCv_3' "|?V;VˉFRgE~rPCjVr'4PFxP0(Z'4m)Vj5 !]I0!lZG:Hʮ91ZcU:0? i8(:9]Cw#XS8f3Ɯ?yq:|%g*J/ ;աC} qL[5"r]üAp㐡LFGw}|P  R,abaB?G>[pЇsJKnxA@gKc.@.*pHƐaF\I/'eYB[R+&}>M>HAoZtp*HxWwc82?f|3#N:Eu)_YiH:rEPB}ُ`/ =B?UҫYQ@rGue7zhsݫq~ Sb{.G^fR6Wa7jfڏ6 p1yb?L=u~a]洜Ź\:lJMͦ>۬O\ L`@^mb4\Ӊ<|'gUBEU)sci\RWi.:<_nʠW06 [~)IH=tC )fx05$\@qAܓz.ƇR\>"!s"ȳFӉXr6t%M¬,4N!9&GzI+2,!4'h\|KICT&dD]6̝o!}OJ dNC$20[3^Ie1 KIچ˼7,ujp:"4Dad7Kt#+ē~y%%xɂmҙDb"m YN΍0dReqD8w9fMq{b4np؆q^^]QöXnৣ4{Lp6V_tLzfFY7ep 4E65\+> stream x[o$q%@Opi~@v)9zYiFYyߞ*,gvX,V /~swovrb+/moCO g+ /BoMe54=s?1~zW>TzyƓ>U/ Bhӽ"]0B8W=S % q 1Hg3+lwKLp9FZ-.܂L[;A RwB%S8U5x@SE˗ã ҽd@ Ј`5)M̤4CdH;Ѳg fĽmŜ38Y+X`O pxplY]PvL,U3ƕor=^<=ʾ |vUD`h0P_Q;" gx(=sq5POȘD6LnkQD|4W ǟ\ Qy'10>hwJYup)0x\ &A9︢mƖ}ܦߣ` `phTCF}W[P^x >u( Sn1jwUPOA^:%y7#l|@ly'^2+.R:-%YaN>1*d `x}<:!?ܕ?6[9Z@4 sg"F$|& \ s}A3ެa?/bЛDCD|^O BW`tK 7S8'jG0]f3Y*V5>xEn# m!hD;3YīkdUyBNǴ /6^"؀~ 9#<؎`w&4c)vu-#bkb $ajNi=4c< ,#n%p,.*ƒ]4Jn)btv0lInVUا1s=FttK$,RSk'x5Ѭi*%xJDBe]$U&j *&#B)m@ĽFT8V bE=wҕ"b^ج˶rTyAo_#E6֜[ם6ßq$ȉ"DAk'{&L9 f(q!C!?*xKc(0my9wx; J_v{J -ٱ1?F&P#ނ4+1@|Mxxt2%D^ѸZbqC dv2~*2<L]>6q@C,Ub8ZOy p~Xj- UBTHCVv4s)%Jm7V+: xv8?!Rk-p f5P[*rs>Ʀ3#R#A]08[Ώt/HN.HgCoXƲtfa &kr6oN1L_'-cVc|Tk1e. t|^ RXj eŗ-/J[ylP-:Hj4`Ҳ 4t[U6y3*À$1SZ ٔ:€m +trL`QVap?_ŠM[m4\f*>vSu'MɡJO ƋGًpS;iݟg:v_ERgT.kGu\bmդF亢4z֥JL.Fmo@ar5dV5T[hQWLݪknM-+C>;xjALbl$Nؙg]LX`z;k$l@d êbਦN`GtUߋ"rYupäpQy B 3 թ7LLxugw!q,u )ַK]ͬ.w-0q<^T,iؕ]Vv\CE  9W.y+t.g.Xy )6B(gVH$Wޒ{BwuP3@$&Յ$(}[V&ԯUp1ǵD>̫pBo}ORx(O,{(#V}K(/32Dm1Ec1$XH7 S47b6}d¨U'>/q"y`6mLhAh^"B?u]h:u 4]*&.3%%ySoz^GFl_k)!mGq^||X}Oer a֥F?pRH,yAXVD3c&-sMll+ L}6O j |֍^7$CZBK@u0YU8Y@q9~O6A'rݗ;OH̋ls| ) =f܅+2dy>lI!*ʍ.I:>lF?k+ J㈉<-g-D"7{ I# /jW#lIa5ݯ Rqnǝ*5+vY(!FD1J?ȕ#Oo5Ɏ?V1 'J|_8Ru#׊8&#iAWmG[BLmd?C-6endstream endobj 150 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 386 >> stream xwCMR8'vz-   ZWTmqCopyright (c) 1997, 2009 American Mathematical Society (), with Reserved Font Name CMR8.CMR8Computer Modern3vťbڽQ"DfVT@htkpozc,MI%ڧϋ1# :Q?f{ku؎׃$Ena}{mltNx~}vCoa  7 כ Uendstream endobj 151 0 obj << /Filter /FlateDecode /Length 161 >> stream x]O10 vA,tahU@p' aK,N>~l#GpƲ5 HeQ7-Ɲ剳B7O~W3g}.!tD[U]kL'F;e4',CIT @s$Lg)lSendstream endobj 152 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 2230 >> stream xUU PXMh:*Y EPG#2v7}"g]]T  "363 MZ[VR$s޹'$alD$920M0+R6&JVPIWZ41 &2nɎ_hODKjP͙nj8$\DX:X.xC, 8k*jwQ?vf/s^aRe9Y[TZ<ϯܰvMa+(ql]&فӹ :_V`;Puٹvvy(񂲣̐]P-x:/ *U# R^3>a~¬T`a~i}^<ykgkBn㌍<넱ƙKq`٠}^siԉ}U#l1Rjy}TXz:&{ILu3E<*)9iײ6pՐ!ġ77Tf$ִ%{mLۀ*q'X4zc۸=y4aA/ƒE7ΥIJ +̺xK7c]/neh,O]VvoluAҠRs# Y% zkx.vu>})j}2oq%q{n}?2iC 4WDHQTt*quAe,K'}vsKi2a0m.O 2LI~E2e41JX78 [pPSmEb4 *Sò6'Rn8{?O#^ܨoNq~myO4%~ +A*JkfLupv^Cˎ(h_/fL/qg_X0݁\O> stream xET PT콘u4޽ A"+G|⮰<]‚sx2a w:d _-HѐZ Y;lfsrr?E Ifgs;i-RϿ$VlD: OO5x5QRF8b7As%nR v!/B?LE?FZ,/g'vdIgpoR}=l Y4T=Wq-#1hNiM`l8s 40tylեKBW7l{4W 㧑CNuC2 ~B g1x|±`{SK}`h(pnw܅ m u'mp3wuu^<i y[ .ak+iJ4 0#pgq=sw! x g٧᝞xX \-R|0xG7u8 5I29J=HV&fpN y4aJzOzt))+c\n$쑻2&mh}dow| #?:pDzD7t `*=vkPHwrTU aEgڕ]0Q;,ײq1{k oXr.|qC ܇ԏ|VZ󒪲pL_ysο4|ˡxmHp9:+ ξSvLl ?!y\Qu`}PG,AAķK<* $#t!]tiىfc߿K|;o{$,پo[#5=P؟,ir_5Df(TL[E] * ?h#EZ>F|iSVv\ (_-NZ8 ny=zY¡'^r>FE׸\!1!> stream xV{Tg`FHS]_*U|VD04!(y&!@ (ꪧek۵=j;`ݺtfr$}ݍA!]?7u!pCO=@${ѣQh*_ } $}*1M/Jc$sϐ̝=;PD)SH$!RmL)PULL&3NM\:nTR̐q 2L")YJJJ2ko\ 21Y+SKBT;e %mitNY<.>T͜EĻD(#6ӈR"xXF,'Jb["XK %Cy8wH|fr$+^1#g zR?"Ku[mnf >%p (tء1~q-ԅ[12B+k1Pn0Mt$| ͪ6m| ̂3TPsXhz>lf4B6i31Mp>D_qڵ'ude; Bz9 画T:)P|&'ΰ9ӛF=ºcJnLmP3xHYcFY Zw}z8G|ymI_ 9WWy;?RSCʓ/\/4'c"=YmʖCʖuRiq!~3XpLWґK Gvvv3]HWCqV21;;/_Qōݵ4|wER}Uё۟ݿP^cO5o dLN,Pbf9ibn4eV sZZ^Xc(v_t\H-H*\Zԡ(Z0,+j}NsZC8IIkTi~ܤiJ9Lr.^aUa\8` sgvdV[V->g$750sHXҞf]gQ8}(TO/pE}b܇SS;BLg햲m yv%K.1jg_HM.2%qNA-k D`5ZjlI0jMQ .LB TZg(bxRTX[[YrJC$A 2Vz/$>@?+2]׆r{6⢡McUP,~FR[r8Q`53-@_&]7:jj MbGfeĻHF"vAqɛ! |x:T4Qz?L+F+clo=;*7n.jq}O &qƽ ]}sEbu 9M8A]W~)āa#{UcA qj*&8X!;S|SqDp\ssp8i_|O՚Y!> eoɇ4J_Z_QUbp$DqLb >f"+6UqUrGZXN 8}֙z, m{f^%๪*,.^@υoqe ;0Mis=bnX93`InE,&W?]EͪG "^[|^`.!1Kx5Z<>slǠWf@#W/{[4 JVPv44l|:I0xo]=6".ҧO`ˆ3&05r̴]k7k~ٓV/>u0URͦXXOo}{b7e`ckpZ\")?/n㧃ϭo Ӵw,]UI CT׼jSߋg*;ƯoXܹe<=zR?]GRb" JUƴχEusJwtYlP+xxAl 8v 7Zp=8`TQܬ9A 6]3 8o*6Xߑ3; E)MDaql';ך-^$F} 9/(E;0>9BHؐ|ORQ'(4-ϼ\UcBΓ.#^CތZU$BE>Hendstream endobj 155 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 396 >> stream xcd`ab`ddds TH3a!Gݏ<<,+X }=T19(3=DA#YS\GR17(391O7$#57QOL-Tа())///K-/JQ(,PJ-N-*KMQp+QKMUML:)槤1000$1028RvB s3/~=wݫta[r{7w7 }6%&*/C~}݄<9{eݳ}Q)z؞yy8/g3-qVtMLTʻK6l^4_~ `Z0~WLd?u[2 U^QZendstream endobj 156 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 645 >> stream x]HSqsܙv"m;`LD .ԩ}@Q\ig>؎UiNŨAhP:0e. B$Ȯ3Qˠ.>rA2RvZ,!G32!1C%2%GT 7 Z" :^ lihdk4 lsYMF;7 )u8ݵ@T-)kj38\135}Ay߄xS=O'}, jl삆DU\,{xg_XVIVi7ج: ~-9֘^> stream xcd`ab`ddds H3a!Skc7s7 ~.ȘW_PYQ`hii`d``ZXX('gT*hdX뗗%i(gd(((%*]&s JKR|SRYt^}י1y#no~\~r]O9V=׋翛}}5۟'Wgq>7<_s.wt3\Xpso/yypendstream endobj 158 0 obj << /Filter /FlateDecode /Length 1425 >> stream xWKo7XRna-Z Za-) VG}.k۠i43|ޕB_h/^-/ҕ+_*QeSǨ`S)j,FKFGtbQVP%3tk -CV汇eF 9(-,e,j@ ZH2,(-ES~7GZ*urtC HH \ ^p)0JeqJ~.fj(sqE3&Ȩ* 2@} NtV|>gF WH#(sM5hGVX2k;f&DXy`#m zS 勐hZ AG1_g_r*i @E@I@UiU1@fm:\'阤$ &I$ iRgNj$HR$NR3aȌ֥Ef zb>piҸ]h^Ȳ>ֽ"_u"N#~6hgdZ7u::tYESPOi֋P.̬& pҙǶЬWrBYrn}pe&6F9%1]޴EpE.6m%XXuƺΆ&–?8g8|(g=Pzafrz g!FAP%xZpd,&65=O_ߟ-ax`cD.=J}KehM/d7(g:YFshmP`0|=ҌPnmdKN6JG#y#COpq&\ev.4qd4:aCA ׭>MU89?GUCLZ2N"(Z6n&3pj1#vp?ɢLN;dߠ]PYkQVոub^@<{AZR]Qd*n1ۇ a8bh.j_Ka^ gb+T))u|;="I+ĒKROn'7i'6;>d闘@䇯 P5kl爵ˉZ{(M}cwP̧ cˆ{.?ߟLgDendstream endobj 159 0 obj << /Filter /FlateDecode /Length 5293 >> stream x\[o$IVH,E1BvWbv{w""#Nn;GNG8q?n(7^eOh?j/7:9> ʍ.ƺruI~t&l3b Pu%8:Ƴa@1Zv-#,pqT:BS=m"&6?$M Tlctmޝdaˍ4zQR ݯ5h?lql4֨SITk=:Rqo//Dp?D8ÈB.pp ! Q .Lrjs*9*ppUwK}:ԧ>8L>>4(/듪Oo&pP>7m [H"r'g}DTujA@bOl3QiAhMTq~~ tQnd>^nQo^8抱w[cCT&i xs~)}%cs_t Fi`%=_/xӮy`QYcQ ovuvS.S|=m nFo++|/(E7T@k< <8_B֍FnP2QMfTl4nDྻ&bVD' 7?pJy4H]T&w' Jȉ1&Rcŧ@c|@;baS8U"# `(.B+)4~8?>z>(a>/ 4Z:j4^O)h¢ZS.c[z AW+G̠g%1BMp+kHGWe-VoϤcUZ?LG}3/O 7دBϬ _w}CNJb\yTv<2qd"T~ J 51N1Bg{5 ٮICMdBuگ^bpH' : F=?k^6W ȧC#IZj4qx@x=:PR+ݗʝW.(af Vi[wx&[(M/Jf k_kV /%WUJxQ#'_!n=vy5Jm>J-cmhA#:4en`$4s>\oPu )+%1UY0S]Ԁ5QŠ؄S1/U!2i)7VlOGqDS!~:I"X' uY^i ΔC*¬o*+ 6dԴAieC0"1AC9%%Ia *dIIR :?{|R\~:jc6=X|{’IbÄ}yR6)ܟo%Npu8\&6uqe6>}p}dCk:~j@E֠UCkJ!vGa9Vԓ~^?.9(tzM``~1Fo(42z #(iRg}7&0R&>0Sb LpINܤnf~cRh QZjs ˳N`tȡ#G +@W]/>ik&!fU nvW GO׷//łqC3K/iGb>[s> b~اUkT脀} w4o,\`ͥmRAWܴȌ 6)PwՁNzE"pwYͧq8,ߞERG:ETzw!ʒXGӔPr/`[9iDibD|1+t$~dY`cf kډhKL~H\|= 6>m῰ }Z.' ;P86lRw{OdOBRdiCf+#OȅeL8nwdFq}[b#,}Βz'AO'<x>s{F>*OW{:mV0]{1QdД%Dg9g}LT^h<7%L9虇;zFyeۭ0SiG i\L"T7m˂Xe4F'9)dT3E0ae>lQzmSç-T"ϳrޭ!>p*J0$;z"Һ[K@b>OI #JiAR,H 1ZMi>Z"}8.wTz/g qHhXkܜ5*{j~fv PP_F} (!Ћ/DFx^1[FzL{D.1 !!ML,wmF/]a} LTp26veh#I--Mè+@ ۹Mc>Ê~byˋn %A}FqH1T}o (I0ޒYz}6) aL??O }@ e/6MϪ3 ] d[Cz{F KxÐh_QR 6Gc$ᦟS\&=yd?z'cak@J9d[l>pg+ E8U  Iρ9X$*vP.}\VAY'>AEJsFCEyV)1,3^0̄9j"MapU26rmd_d]#rr9gf3+؁1f9e9y145t%$gG-2U*GZtyYi&th(AP?CCplr1&p,sB(O;8Y<̫jɒд}Z[f,sŠŗ1OU~%G뚃fN9 (?ԧ6];+.˞>ﺇfH;47ts#:ڌ楿)X& Kї!P;̷ bռ}~F'M)7f>o26[/"QلΊOK/žXV/V)?HeƥIv'ǹ SP"ltG?F%Q=ZΝhFi?'k띓r?xJ߮Zc gQz`MRKm߱>SxR뎇ܪ雉G_יvMW"xm1[-b:SHݼo?`1:c;Js^b>\}X;oe^vaB`+/y?V%oJR7T"?wiRZ\Z[}$4 g ̏1[>IQD#7IiJͮT73r3/K&u2GCkoxOcab ! p>26䷶W:tAn^rBN*\D,Ya:gd"}b`?o?(>ug0],(gQg@:&\ˢ}mUn|^ +бpfۥ7[bǫRàLcQOJIy &-gz_z<"ZU1B&B&/&T\I6Z|D@*%o2r~\KAd*1~05 O )8lzEWG-+X}089Uȼ^kάΰ5]hvS>Fcy~vtRq+&a6^e@$ LY}V9=<(endstream endobj 160 0 obj << /Filter /FlateDecode /Length 4108 >> stream x[]5ֆHS;Hsm?@>wJH:?{gH.9ܣN>oiz>eN>y876rb85S n'ֳީ<|;q5RQqF*-"TyRIzȆZ+#/ 󮷺H~St2PjPyA&^O~ij;Ufzjͧٞ =N:f?L2=g.ݳ9kElzwØ!7H™Bur6Ruq>A 2q.6yr1fz !ABޅm 6x~=d)}6k!`wٽɓ<:M]v mѣ&Q]mE]qi,&U]>^) ֫(Oloyt[\׍qٙ!LMtӋ'z]-6 p$o֧~^/=`uuu P~v86ڿ>Y@r/o %㦷܀vv}jn*vq|[Ɓ_:y1(e62XEDhtbĄ P/M\ήWonyw\e)C{h|}wr"N^ۻ͢1@b(?ʘJ$y:w[ZؑZwcrGKx&dl62Lp!Y4sscل?A\RBE l/WW֬~rU-N|7ߞ}1'Py*zp}礽y{iuZݞ0$5*jBs=Jt,bp* :2p'Ѯ`0"l.j#{NAGE/;VˇV0/\Opv8/1S2LQO bXĽC*5P C 3P0˨:+z\)$<$ =﭅ZQp9JL$We&,R'$S FpފlgRH! H(GLa*IB2);Hp<̏R.Wq\nU$ "hfr8 LBnu@5 a~PHw*^ېPB!ߍW:|X I\ŃA]u%Bk{@(aJJ_pZ{] qr n_YWH 0h, D͠u餐& ,<[<2񆸃OF*Px0"(@iސS,=.,:ˀYhQPh[F$&F;u5,l? ePhd`0  n)}D0}Hq dP M9MmU+fWP销_Ve.9\k 50vOW ^*HcRԁwy)͢4T9U!'kY 7U Rfx:0H[O)`KB^ .0zyNI?TV(X q@9MXBXeK[͐ McV5Q!Gʉ([HW A 3%*R`*7bxH 7aҴ°lbڹ1bpGi24 oBj vJ"ЁCQE 7@ ralm8CyMpAxCeI(@yꤠ[8UX uCsfzmd={c&Pn^%." 8#\7c#,2X۫}D>  y*,m'Oe55;8RزahtUT8XaxW$#%#C,mK x?d8*NH IXqɤ7t@" }F{TuPIZ" [e`ʛ>9+}3*Es@0=z{s4Zd6ΓexszR&$o#1?-CIY{-;[65dkYC+]PՎHےi~y}GѓRZVQ@s~Uy0rh3<\;[0PXqUe^vd1?m`86lEHt2b<8Nfm,VbR0Vc*/HS#,: ʙvƮ,{!zL)~+J%qr%MJuo"V$ݸ֓-b1Rs w7H#.T7D>>d{ANOi`ݰ}VɛH YyH#] '#]NlDiTYU"凔ÑI)yL*C8)6{ *!CRC8@ŀDQ0P֠s.W|" 4 UAQ}(CPu}w~芾 k3" Q Qkں T1D7-⸠)6;vԃwץp%]g\9ڗ[Ҡ5n=nJ 8pv݃pXxjG6v2ԮjSVĹ= V1&k}i*FzXԲ'ӗ+{[)2s`2AhbX Ђxx]J$#CAU97 Y@{^l}7}k@]7xClV) 0PYswj7HqoǞoRLdgm 4Wzgϡ] l#qR|B/P,sCQg; 9R>jv$Q\W 9C `ptϣXz6nj˴`B尭$ (`UqlI=IG*)"FպDr QB[{1@ԵX;qq;datp+rQH U1v~˗-32I(V}YU#Rg.FYfZAUwi^e[':$7 J-]TN']I&"(}QD8 g sԄ*ԿYz̓wWfhG> stream xW PU)֦RXm-V-"""ǍB0p$r痄@ Xh۩>{hmz̼j˛y 盱Nf7}}6{p۱~rz ~h7.0s [5/D{Q}giŒL~J40(qE͛7 ||ݺ́[əxQ`H45Y/eҜgRRSkd5kę)ϮX(KS&NNN |I,&άn)X,dI3CIə" x"q$4kGv|bHRԽtS1,ۃ-°plVb ؋l{ہ=6`!nl ="9ìgg>=9!s;wW)oX࿠7{>[Es*A)c(drQ0alS`nx -1!E" mNAcTK$+6UV46:ڑ>4Fyn~5T$5C8H4O(OT#^X rc#k.7Hg֤O̯-vYQe.mG^=601Y|>DQ3D!Ívl|9vO\2A(%w ~Yމ^Zy;qjb a.6ۡFW] ,yeDK AՀ@`0 w= '΢o6Y_ 6d`vYS1htUtϙE:]mH2E t Z/ >b/wY!(h,:rGnCiYЊCBƥEThLY]<:'%o^{ ҽx @*ȌvNjqR~fUt]\B}:OPHUÕ%oE靮RHH;OjⴰRy^_9_~oqm(8^8P@0۩< w+˳ܘݣ)-5 %d-=`}M]I.RWKWsO$`%<I܆g/*E,opQ9Sbi)ߞN`Q9&>p 4T9B~Gk1.]J/!,v K])jDj#3c'okar*y֤2A-Ť(.!pDDel Qљz&_.ktN/dҒp+|3K%;r^p4"mKוN WO%B! Κ0%hj;Z `T d:H2 G0:^8f>7N5B2}o֍UE뇸t!K-Rҡk u0q4S̍P lzU+P]CϜ@icKKj\Eߝ#\5lgh:0/T 0\f>YĶpw?D4<xs^40vb5xIg@ Xg .Ҳ$́ё΋Gߺ BfYw:ϳ@Mr)fO@|9cì| no0'1FZe)T+tXePS1P{-F+*ģ0M~oM%氻ygjVxӯtk7tCkZWS5 gӺ:1 \zb YJKVd2Ar*-BA &2Q{%Ml?xP/uS{ٰ}l'1ՈKJE Iod}jt=Ͳs 麹HVx:8Գk)rf_>;Ut8(GO~o-0(y/gOmt@k}?Zw}C1#G_a^_Q ex(t@;\>K"9JM3񞲫_yh?۔#%~@!7Di|^bt"AuA5^^IW$%v\[W$;+ٞ,Z'nQH0LƓٞQT voa{2x5؊՝`%ԿTԍ5l:M4ME`Ju.+Y\نw4䷒N"*L'&Y:99$N= j~MD%EI*H9~ï=wYH2w-^;{.99v:/Xa(RSh1뭷]4 dnPh6R#PgSaLFѢ'_hqG$<ƢV˻ 57C OѡV4rJ2=xd dxR}b23-%dNED&άUW6[r9q;Νt3tf/237ҳTB m~H|:ǥpeA nˣ?|翏ؚ.,f +9Wh SF2FF.Mow-NUVZq!4lWsуȿEӗFez _}GW?U&>4),"V1WoA/d=M'|CݵM dъ lbGdnNjcM=r3Q6XDdEf?[jE IHw 4}:?8 goQy“W' 2jr;d؇đZ1?].5wxۼ3&PY'EPF{knڛʹ$##FN>PCey`:l0 7bsendstream endobj 162 0 obj << /Filter /FlateDecode /Length 4000 >> stream x\Yo~_G, 6`A@i)d>CڑÆ[S}_L%gbo_^/$af/vL9t r2B/.wjtVs$2ŋ\F+PhoZ9S-j$k3mC&/\k*L#הgTƗ" t9|+" [,V), }ٗ+/Y |´A-/VkstVJ1+}<2 _NުZnX~&fRY<:XBŲV0kzU0,@ϫؕWy&̭ܺz[&X=2Rk[gSnPS֧%sib}[o J n`L |t+LYi뎨~u~s}>.rk'{~y-_uYg!ˊ.v*!ܒm'7ceqO:rgIg  6In#-!eZ,ASvf2EL%83F"Kw"fg]B~LČ`[@*@z?!.U[<~x;HHoLo\rۙڙ!}=Z5u;# =I#d?Aj` Ç#IKv1m7H 8ƒ :xI i7 &J l;9p"yAM &3;UP4vMDp9PH>2px] Ncg8q"ζ 5tpM=S*qcc-6h$pZJۓ X1)~0K5sJ>amof mL8"NHj$<#,&J͵jU}HyX4+Ɣ\ZDc3tK*(X%( H16Wz4\>}FJ`Vmq)5lȐp)Nq) 6 ]skwUIq!ݬIIUxy铂TPCR* >*.=붎xV6=QhGe?z' I@64PiVw8\my#ܱcU,F=~u=)+$1%Ve.sX&)X [ +)OEUbU.誠j)mC ֳ̊U4AZgf5LPecRy?ªejIأ"X(Mt ªRUXc V34eJR͕*O:v** bSz*BS:iv +Y<wFA?XD)b mC=gd3n*k+ѹ0PN$LEH{*tJ8yAhzGTY0ȧQ6Q tUK 檬NN=Sl;ɱ*%&>X4ϕUM˛-u#OL'̄EgB;橬j*\WY$GSX}Le5F)-ZG)RB*$3[eq3[aU $<\9JsUQ2MKEi{ڔ xsV5bjdl\&KS57,/fR(YWUnQ.&bUioH38~)΁ZXҮn~Rje\(uåhJ+J3WU*\TRi^E.N\u4sRiJ+J3WU*wRp(wJK3NR-٧JQ;J z Rp~y>!'.RBdO R4tꜵŽ,[ #W0`83(ӌBܭvVZgg|G`/f* Kpw.)!·.N#h4-簏a7qsŋXs7 dtw nZgɌ xGNpQ> W4B6*I7Nzn]Q܌cJ0\v^)jBE<{+㭇b +hz^\MwFT4U˽F|dOljiZrT-PULJxBCz=3|bԓ78N <~|ɿ{ (C>|2Q,QO[ƶZ$.Y_~VŶ꺎4$ !"BLH&:q8gu(%@Í}~"CuZdGp-j5\jEt8n"Ch~5iߎ\J7 &NF6*\@iSLZ ᰾u&N\-ʥMvyuHuMKa|Uw];U>mN#+u6tBOaz|-OE(s-"A4l,A\;s:ٜ_?9P^b؄#Bω0vm~i8V kzϨAFFnE79L)U.'\aD9ȈEh%7I&R P68 2^zE`[괢Hf+rqqXzKIa9/w80Fv6-|e\Ŀ y1,}s[}24ymHbc7;ӉlХ[Hwc ų+ۭe۳C,a?[$h-G^f_;/ª@z 豿Awut]t Ǚ_WB[XR~ۻVR Br7Ce?LBonR*ۘPQYIN"Q`](]HM$w×$"af!O Y#kI*"晹1ULlBI(#]d8)kH] KCzFuv.CGYַUSagdk_b}*x2guꗊQgNCRa`&HI we=ZZ?ڍR ^94+@Z *fN[j7]#29=Vm'' AڼqDN7}KcXj >!PmP >ERZr)iEI2.4NUJVƽsE2G!~w%a)WT+Dik 0![yq\9nǒ#3jendstream endobj 163 0 obj << /Filter /FlateDecode /Length 5018 >> stream x\ݏ9roCdw .w<yF+HڑSG-޷`5MUdb\^.{ӍuX|X){#+{o7.ұ;;/j /CoMez٨G V3GZc^w*/6Eyz/d:*4Ң &O,n~QW ,B7$n aRM'oF|%sr%zP*t_6E5)TPoaP,%LH8!Qnf`aPp^"Q-u>҄  9 k;-6G<!8D낳D0>q =}.pD!h=tDdޣAv@S$t'60z⺽ o C^n%OZ}H5CYhlz;z9dE.xmzgayx(}ƉJ,塍+4%n h[༃l<; H@}^* .,~w^gl3t`Pe_6qg # w#N[vhNĝWrE|?s_`gP=u硗&`\GY+IJC+4JVX , $ܧ`U]shB(^c+`@HC#@@Cii dR޺NlOw  8 Q¡U8I18.M E@+ChiVaW Qz"G/D60ހ" &8|^M07ԯAǁ뱞4$GSu{Mcch$G6ZEfwǘ\m5 -Ċn}wq#]cȌʵGƙ6AXu\PPf3@ 2U Qc]@DݨH´ 8 -2p% qk[-@!Ng0>ijNw\CG g:0@# Oπ*<==eƁIw\lw?w ףXnw{FҡWyUGC5V"{N\PyB\pHDY;7\"$;<N'Vi+Fa&,ow Q7wCzH#3uq5vm < l^)Nf ۿ :rt :b/j>:2} KN_ЈY8 BmݡJ1<0$[y[Q%/G%2g z2`Wr7ҽ4(&Pus* Q>.\BI=j|Ppѐ$hoko}ڏ?7MzJ'r*E,$_̞/O]^c)SVkPLB.erCPȉh'ΔP芠.e"넄!J Hx5&84}yxu=}&BWYM\_rӂN'|J;i\/ǗqnBlp(Wd9qxH)%d!+vKs/7]2 EL z]ms6ć 6gb=$bGe3MB(aN7P&˚rODX)dclτ*Ŭ <5˻n8CJ/s4~-}Xشٙz^Z Y%y7w0,e $P>'|KƗp'̀:&iX=oǴTF[Xp`zϢ ݯH/H0S5;_ 1G&-LFAmp{4%WEPDtR1OlB΁DsR%Ggח KΜܱ;BkxZƧ56\&*$Pt1 _lGW$3=C|-Տ?5EpGxȼԸs.H`Oqk˩ F9Vh"r8`57v7qz2"O mnkCbthJvn6d@\lAoefC{|3f_2C4q󶵡ᯁZŸe7#JZ=+b̢gPSǸ($=z'7*nsj|cDظǓ7~ڹ%5KzN?a!\<\0G (O{ԏ\ ^ah;{`>ڨ mjM$X gfwKT R5DI_UwS> F@> u9sĮ# GɀW,9~_XW_`tA{J,>yON5q;4kiS@S4O^u Rd6/F0B 7Gm@Wc!sںPめ˕>2mee_q:cU.S=KEDʀlUgH*"ևa=+{peejpGm[}p^!Z4ulP$_]>κ_cXxFB?_v~LT( e|D.a\[ќpJQ-ݤmCK.¢cu6h xdT1e~FaRԴ}J:>(ʷHH5jzs-[rIp/t/ӁeS :l f>`w)TiTi%ݳcl9@0=l"UdcusD$ `hw4س*uKQJl5@Ϲ/rWaFE7o`aQ+z%vt͗ ӦM]8W'u4_KƬEk4-YbF7Ή*;Nڕoah2ޭKMbڅZD;%Q˟{ʿ{}sT%.#6rկ#J5\|])>N|S)~毖N*j҉s6U}j`h q;kKŢ[?w:oNT*\igNx{> '? oKkT|:D 6丢4Nq?Sنu;oSЗqsڞsqRTY纠͏hr Pǁ;;;b\]-yVF8Y ǭT9:5Ԝ*e,,`7t;@ye|X0|Z~F\-%}OdiJ5oݢ> stream xZrO# ڵ/AْlM-pX> I `(Z=\lTWfe|Y?o,_m~ W75}ۯ7NJ9G1.7O7ΈY+Lj#A4˪gkج6gigf@ki-&bZRNٸȔ AA> RM\ՉW72t[{~fv۞ds˭ӫ$e,ìO^"x?N,bJ)(f#>OBEe'_NV ӏ; )`reG*Zk NO+{ ;ƍnwxU7d.4qA@e5e1rm1`m%2)k@1 t*O%dnij2!JƄa9vY U 0YUz`_`?_U, (,_(L%LB>^0prLz|(!"_trb[\#4nS`cjDm"̐ 7-Mϗy8 *ow H{ _ HoKu]7G (V9{`ي f4sMCCsڨAtQ݃-˃ʂӴӷ;,mK[G!`.&b&4|^d1W.ſ7ZY M 08K83;&t%Rt0:k4 = l1OR{ȄOר—(aK@98[?%#7dEՅiOESf~Q>qJ us'NyVSwLLg-x(K~cbmgc[+o(%TXI2H9Ep<%0tU!aϻ ލQr.(bj7G :uJ~g 9'?Zϛ =r\f~k9wMK/Z9guwy!c E-0)aFyXԩ,^80;t0zq Qau3ˈ=KżeI&sBQ'b:[/";!iԋ0&;rF; ysQ !Yc =6~yvѽ"?+[yEYJW(f?)MEGrDB:rxP>THO9}e"#YK| DZ•Uy(!Sj5=HH|< rAecr`VRe}44A*NYof*Nuİkϔ#I Cn'B[z $z%{T>elO(QjJ﵁ODEXn&*-h!kۋVeaJ1^Rt6Ǫ a2;Q7 ?ix'iKv%QPeJ W-Hx+fr,pnd:8~GD? ;Q*Fu4j1bU)ib, k hǠ( 6y^q N81)4VU=@.@$h}eSwm͓]t5B#}GTa_%k, se|i]~yO)zv]r͢ULrX7=cbnFFa)]`c Mo{3ZKO%<}V۹*v36Lp򩶣Xo0n~"IԝxHC)Px{Xno>lEs8 4Y Mޅ1ۥ@%CstX6~[ݡYRF(v5ح::Kb\ {k EZ{Tr]ҧBV,ҦeAnj{SXI`Fa?Ϳ&Sendstream endobj 165 0 obj << /Filter /FlateDecode /Length 1243 >> stream xVKE }AA\O( PmaWev6 eE0n?CoC ?t)gsL4p4$Y{ՉC f )VqJih`2*1f啿)*rTAS<$*&<%Ӣ4 V:cL)$ێ*w~T\AKk`SOXE.Cwfߠqڐy͋{7pJ既/Ɇd~[8B#[ɛJ;uU9C*^~y"]tfg1sywV-zf5șaup0JCG **uDE3/KbΡ;\Mz1_ԛU&1(YR Xė-75&]Z'.C88&Ƃ|67madZy_-a8AC~h\8;ASdw5?g9?o_^N:Q*Zta, >44S8v’Y s]A+i%<|6`Du | ÜBݱ}i;ǥsx9j$KWB{E仅MKg-T/H{}ufgS<6n NM=؅k.Nʵ"PLhT] k,Ǝ˞Ɋ:eĘrcȋVC\QDQOWiO5'G{x[T_ Lendstream endobj 166 0 obj << /Type /XRef /Length 181 /Filter /FlateDecode /DecodeParms << /Columns 5 /Predictor 12 >> /W [ 1 3 1 ] /Info 3 0 R /Root 2 0 R /Size 167 /ID [<85b625ff8cbcb035d34f14923fee3be8>] >> stream x1A7OXfEI4hBj6J*5ql-(DNe2 5"E`2S2w&s'B0?[{oHA s+P7x\`}-o4w:fl,aeh#kάy’ ,`ޮ3X8V||Gz&p endstream endobj startxref 106113 %%EOF HSAUR3/inst/doc/Ch_principal_components_analysis.Rnw0000644000176200001440000004133113302740166022200 0ustar liggesusers \documentclass{chapman} %%% copy Sweave.sty definitions %%% keeps `sweave' from adding `\usepackage{Sweave}': DO NOT REMOVE %\usepackage{Sweave} \RequirePackage[T1]{fontenc} \RequirePackage{graphicx,ae,fancyvrb} \IfFileExists{upquote.sty}{\RequirePackage{upquote}}{} \usepackage{relsize} \DefineVerbatimEnvironment{Sinput}{Verbatim}{} \DefineVerbatimEnvironment{Soutput}{Verbatim}{fontfamily=courier, fontshape=it, fontsize=\relsize{-1}} \DefineVerbatimEnvironment{Scode}{Verbatim}{} \newenvironment{Schunk}{}{} %%% environment for raw output \newcommand{\SchunkRaw}{\renewenvironment{Schunk}{}{} \DefineVerbatimEnvironment{Soutput}{Verbatim}{fontfamily=courier, fontshape=it, fontsize=\small} \rawSinput } %%% environment for labeled output \newcommand{\nextcaption}{} \newcommand{\SchunkLabel}{ \renewenvironment{Schunk}{\begin{figure}[ht] }{\caption{\nextcaption} \end{figure} } \DefineVerbatimEnvironment{Sinput}{Verbatim}{frame = topline} \DefineVerbatimEnvironment{Soutput}{Verbatim}{frame = bottomline, samepage = true, fontfamily=courier, fontshape=it, fontsize=\relsize{-1}} } %%% S code with line numbers \DefineVerbatimEnvironment{Sinput} {Verbatim} { %% numbers=left } \newcommand{\numberSinput}{ \DefineVerbatimEnvironment{Sinput}{Verbatim}{numbers=left} } \newcommand{\rawSinput}{ \DefineVerbatimEnvironment{Sinput}{Verbatim}{} } %%% R / System symbols \newcommand{\R}{\textsf{R}} \newcommand{\rR}{{R}} \renewcommand{\S}{\textsf{S}} \newcommand{\SPLUS}{\textsf{S-PLUS}} \newcommand{\rSPLUS}{{S-PLUS}} \newcommand{\SPSS}{\textsf{SPSS}} \newcommand{\EXCEL}{\textsf{Excel}} \newcommand{\ACCESS}{\textsf{Access}} \newcommand{\SQL}{\textsf{SQL}} %%\newcommand{\Rpackage}[1]{\hbox{\rm\textit{#1}}} %%\newcommand{\Robject}[1]{\hbox{\rm\texttt{#1}}} %%\newcommand{\Rclass}[1]{\hbox{\rm\textit{#1}}} %%\newcommand{\Rcmd}[1]{\hbox{\rm\texttt{#1}}} \newcommand{\Rpackage}[1]{\index{#1 package@{\fontseries{b}\selectfont #1} package} {\fontseries{b}\selectfont #1}} \newcommand{\rpackage}[1]{{\fontseries{b}\selectfont #1}} \newcommand{\Robject}[1]{\texttt{#1}} \newcommand{\Rclass}[1]{\index{#1 class@\textit{#1} class}\textit{#1}} \newcommand{\Rcmd}[1]{\index{#1 function@\texttt{#1} function}\texttt{#1}} \newcommand{\Roperator}[1]{\texttt{#1}} \newcommand{\Rarg}[1]{\texttt{#1}} \newcommand{\Rlevel}[1]{\texttt{#1}} %%% other symbols \newcommand{\file}[1]{\hbox{\rm\texttt{#1}}} %%\newcommand{\stress}[1]{\index{#1}\textit{#1}} \newcommand{\stress}[1]{\textit{#1}} \newcommand{\booktitle}[1]{\textit{#1}} %%' %%% Math symbols \usepackage{amstext} \usepackage{amsmath} \newcommand{\E}{\mathsf{E}} \newcommand{\Var}{\mathsf{Var}} \newcommand{\Cov}{\mathsf{Cov}} \newcommand{\Cor}{\mathsf{Cor}} \newcommand{\x}{\mathbf{x}} \newcommand{\y}{\mathbf{y}} \renewcommand{\a}{\mathbf{a}} \newcommand{\W}{\mathbf{W}} \newcommand{\C}{\mathbf{C}} \renewcommand{\H}{\mathbf{H}} \newcommand{\X}{\mathbf{X}} \newcommand{\B}{\mathbf{B}} \newcommand{\V}{\mathbf{V}} \newcommand{\I}{\mathbf{I}} \newcommand{\D}{\mathbf{D}} \newcommand{\bS}{\mathbf{S}} \newcommand{\N}{\mathcal{N}} \renewcommand{\L}{L} \renewcommand{\P}{\mathsf{P}} \newcommand{\K}{\mathbf{K}} \newcommand{\m}{\mathbf{m}} \newcommand{\argmin}{\operatorname{argmin}\displaylimits} \newcommand{\argmax}{\operatorname{argmax}\displaylimits} \newcommand{\bx}{\mathbf{x}} \newcommand{\bbeta}{\mathbf{\beta}} %%% links \usepackage{hyperref} \hypersetup{% pdftitle = {A Handbook of Statistical Analyses Using R (3rd Edition)}, pdfsubject = {Book}, pdfauthor = {Torsten Hothorn and Brian S. Everitt}, colorlinks = {black}, linkcolor = {black}, citecolor = {black}, urlcolor = {black}, hyperindex = {true}, linktocpage = {true}, } %%% captions & tables %% : conflics with figure definition in chapman.cls %%\usepackage[format=hang,margin=10pt,labelfont=bf]{caption} %% \usepackage{longtable} \usepackage[figuresright]{rotating} %%% R symbol in chapter 1 \usepackage{wrapfig} %%% Bibliography \usepackage[round,comma]{natbib} \renewcommand{\refname}{References \addcontentsline{toc}{chapter}{References}} \citeindexfalse %%% texi2dvi complains that \newblock is undefined, hm... \def\newblock{\hskip .11em plus .33em minus .07em} %%% Example sections \newcounter{exercise}[chapter] \setcounter{exercise}{0} \newcommand{\exercise}{\stepcounter{exercise} \item{Ex.~\arabic{chapter}.\arabic{exercise} }} %% URLs \newcommand{\curl}[1]{\begin{center} \url{#1} \end{center}} %%% for manual corrections %\renewcommand{\baselinestretch}{2} %%% plot sizes \setkeys{Gin}{width=0.95\textwidth} %%% color \usepackage{color} %%% hyphenations \hyphenation{drop-out} \hyphenation{mar-gi-nal} %%% new bidirectional quotes need \usepackage[utf8]{inputenc} %\usepackage{setspace} \definecolor{sidebox_todo}{rgb}{1,1,0.2} \newcommand{\todo}[1]{ \hspace{0pt}% \marginpar{% \fcolorbox{black}{sidebox_todo}{% \parbox{\marginparwidth} { \raggedright\sffamily\footnotesize{TODO: #1}% } }% } } \begin{document} %% Title page \title{A Handbook of Statistical Analyses Using \R{} --- 3rd Edition} \author{Torsten Hothorn and Brian S. Everitt} \maketitle %%\VignetteIndexEntry{Chapter Principal Component Analysis} \setcounter{chapter}{18} \SweaveOpts{prefix.string=figures/HSAUR,eps=FALSE,keep.source=TRUE} <>= rm(list = ls()) s <- search()[-1] s <- s[-match(c("package:base", "package:stats", "package:graphics", "package:grDevices", "package:utils", "package:datasets", "package:methods", "Autoloads"), s)] if (length(s) > 0) sapply(s, detach, character.only = TRUE) if (!file.exists("tables")) dir.create("tables") if (!file.exists("figures")) dir.create("figures") set.seed(290875) options(prompt = "R> ", continue = "+ ", width = 63, # digits = 4, show.signif.stars = FALSE, SweaveHooks = list(leftpar = function() par(mai = par("mai") * c(1, 1.05, 1, 1)), bigleftpar = function() par(mai = par("mai") * c(1, 1.7, 1, 1)))) HSAURpkg <- require("HSAUR3") if (!HSAURpkg) stop("cannot load package ", sQuote("HSAUR3")) rm(HSAURpkg) ### hm, R-2.4.0 --vanilla seems to need this a <- Sys.setlocale("LC_ALL", "C") ### book <- TRUE refs <- cbind(c("AItR", "DAGD", "SI", "CI", "ANOVA", "MLR", "GLM", "DE", "RP", "GAM", "SA", "ALDI", "ALDII", "SIMC", "MA", "PCA", "MDS", "CA"), 1:18) ch <- function(x) { ch <- refs[which(refs[,1] == x),] if (book) { return(paste("Chapter~\\\\ref{", ch[1], "}", sep = "")) } else { return(paste("Chapter~", ch[2], sep = "")) } } if (file.exists("deparse.R")) source("deparse.R") setHook(packageEvent("lattice", "attach"), function(...) { lattice.options(default.theme = function() standard.theme("pdf", color = FALSE)) }) @ \pagestyle{headings} <>= book <- FALSE @ \chapter[Principal Component Analysis]{Principal Component Analysis: The Olympic Heptathlon \label{PCA}} \section{Introduction} \section{Principal Component Analysis} \section{Analysis Using \R{}} To begin it will help to score all seven events in the same direction, so that `large' values are `good'. We will recode the running events to achieve this; <>=a data("heptathlon", package = "HSAUR3") heptathlon$hurdles <- max(heptathlon$hurdles) - heptathlon$hurdles heptathlon$run200m <- max(heptathlon$run200m) - heptathlon$run200m heptathlon$run800m <- max(heptathlon$run800m) - heptathlon$run800m @ \begin{figure} \begin{center} <>= score <- which(colnames(heptathlon) == "score") plot(heptathlon[,-score]) @ \caption{Scatterplot matrix for the \Robject{heptathlon} data (all countries). \label{PCA-heptathlon-scatter}} \end{center} \end{figure} Figure~\ref{PCA-heptathlon-scatter} shows a scatterplot matrix of the results from all $25$ competitors for the seven events. Most of the scatterplots in the diagram suggest that there is a positive relationship between the results for each pairs of events. The exception are the plots involving the javelin event which give little evidence of any relationship between the result for this event and the results from the other six events; we will suggest possible reasons for this below, but first we will examine the numerical values of the between pairs events correlations by applying the \Rcmd{cor} function <>= w <- options("width") options(width = 65) @ <>= round(cor(heptathlon[,-score]), 2) @ <>= options(width = w$width) @ Examination of these numerical values confirms that most pairs of events are positively correlated, some moderately (for example, high jump and shot) and others relatively highly (for example, high jump and hurdles). And we see that the correlations involving the javelin event are all close to zero. One possible explanation for the latter finding is perhaps that training for the other six events does not help much in the javelin because it is essentially a `technical' event. An alternative explanation is found if we examine the scatterplot matrix in Figure~\ref{PCA-heptathlon-scatter} a little more closely. It is very clear in this diagram that for all events except the javelin there is an outlier, the competitor from Papua New Guinea (PNG), who is much poorer than the other athletes at these six events and who finished last in the competition in terms of points scored. But surprisingly in the scatterplots involving the javelin it is this competitor who again stands out but because she has the third highest value for the event. It might be sensible to look again at both the correlation matrix and the scatterplot matrix after removing the competitor from PNG; the relevant \R{} code is <>= heptathlon <- heptathlon[-grep("PNG", rownames(heptathlon)),] @ Now, we again look at the scatterplot and correlation matrix; \begin{figure} \begin{center} <>= score <- which(colnames(heptathlon) == "score") plot(heptathlon[,-score]) @ \caption{Scatterplot matrix for the \Robject{heptathlon} data after removing observations of the PNG competitor. \label{PCA-heptathlon-scatter2}} \end{center} \end{figure} <>= w <- options("width") options(width = 65) @ <>= round(cor(heptathlon[,-score]), 2) @ <>= options(width = w$width) @ The correlations change quite substantially and the new scatterplot matrix in Figure~\ref{PCA-heptathlon-scatter2} does not point us to any further extreme observations. In the remainder of this chapter we analyze the \Robject{heptathlon} data with the observations of the competitor from Papua New Guinea removed. <>= w <- options("digits") options(digits = 4) @ Because the results for the seven heptathlon events are on different scales we shall extract the principal components from the correlation matrix. A principal component analysis of the data can be applied using the \Rcmd{prcomp} function with the \Rcmd{scale} argument set to \Robject{TRUE} to ensure the analysis is carried out on the correlation matrix. The result is a list containing the coefficients defining each component (sometimes referred to as \stress{loadings}), \index{Loadings} the principal component scores, etc. The required code is (omitting the \Robject{score} variable) <>= heptathlon_pca <- prcomp(heptathlon[, -score], scale = TRUE) print(heptathlon_pca) @ The \Rcmd{summary} method can be used for further inspection of the details: <>= summary(heptathlon_pca) @ <>= options(digits = w$digits) @ The linear combination for the first principal component is <>= a1 <- heptathlon_pca$rotation[,1] a1 @ We see that the hurdles and long jump competitions receive the highest weight but the javelin result is less important. For computing the first principal component, the data need to be rescaled appropriately. The center and the scaling used by \Rcmd{prcomp} internally can be extracted from the \Robject{heptathlon\_pca} via <>= center <- heptathlon_pca$center scale <- heptathlon_pca$scale @ Now, we can apply the \Rcmd{scale} function to the data and multiply with the loadings matrix in order to compute the first principal component score for each competitor <>= hm <- as.matrix(heptathlon[,-score]) drop(scale(hm, center = center, scale = scale) %*% heptathlon_pca$rotation[,1]) @ or, more conveniently, by extracting the first from all precomputed principal components <>= predict(heptathlon_pca)[,1] @ \begin{figure} \begin{center} <>= plot(heptathlon_pca) @ \caption{Barplot of the variances explained by the principal components (with observations for PNG removed). \label{PCA-heptathlon-pca-plot}} \end{center} \end{figure} <>= sdev <- heptathlon_pca$sdev prop12 <- round(sum(sdev[1:2]^2)/sum(sdev^2)*100, 0) @ The first two components account for $\Sexpr{prop12}\%$ of the variance. A barplot of each component's variance (see %%' Figure~\ref{PCA-heptathlon-pca-plot}) shows how the first two components dominate. A plot of the data in the space of the first two principal components, with the points labeled by the name of the corresponding competitor, can be produced as shown with Figure~\ref{PCA-heptathlon-biplot}. In addition, the first two loadings for the events are given in a second coordinate system, also illustrating the special role of the javelin event. This graphical representation is known as \stress{biplot} \citep{HSAUR:Gabriel1971}. \index{Biplot} A biplot is a graphical representation of the information in an $n \times p$ data matrix. The `bi' is a reflection that the technique produces a diagram that gives variance and covariance information about the variables and information about generalized distances between individuals. The coordinates used to produce the biplot can all be obtained directly from the principal components analysis of the covariance matrix of the data and so the plots can be viewed as an alternative representation of the results of such an analysis. Full details of the technical details of the biplot are given in \cite{HSAUR:Gabriel1981} and in \cite{HSAUR:GowerHand1996}. Here we simply construct the biplot for the heptathlon data (without PNG); the result is shown in Figure~\ref{PCA-heptathlon-biplot}. The plot clearly shows that the winner of the gold medal, Jackie Joyner-Kersee, accumulates the majority of her points from the three events long jump, hurdles, and 200m. \begin{figure} \begin{center} <>= biplot(heptathlon_pca, col = c("gray", "black")) @ <>= tmp <- heptathlon[, -score] rownames(tmp) <- abbreviate(gsub(" \\(.*", "", rownames(tmp))) biplot(prcomp(tmp, scale = TRUE), col = c("black", "lightgray"), xlim = c(-0.5, 0.7)) @ \caption{Biplot of the (scaled) first two principal components (with observations for PNG removed). \label{PCA-heptathlon-biplot}} \end{center} \end{figure} The correlation between the score given to each athlete by the standard scoring system used for the heptathlon and the first principal component score can be found from <>= cor(heptathlon$score, heptathlon_pca$x[,1]) @ This implies that the first principal component is in good agreement with the score assigned to the athletes by official Olympic rules; a scatterplot of the official score and the first principal component is given in Figure~\ref{PCA-heptathlonscore}. \begin{figure} \begin{center} <>= plot(heptathlon$score, heptathlon_pca$x[,1]) @ \caption{Scatterplot of the score assigned to each athlete in 1988 and the first principal component. \label{PCA-heptathlonscore}} \end{center} \end{figure} %%\bibliographystyle{LaTeXBibTeX/refstyle} %%\bibliography{LaTeXBibTeX/HSAUR} \end{document} HSAUR3/inst/doc/Ch_missing_values.Rnw0000644000176200001440000006351513302740166017107 0ustar liggesusers \documentclass{chapman} %%% copy Sweave.sty definitions %%% keeps `sweave' from adding `\usepackage{Sweave}': DO NOT REMOVE %\usepackage{Sweave} \RequirePackage[T1]{fontenc} \RequirePackage{graphicx,ae,fancyvrb} \IfFileExists{upquote.sty}{\RequirePackage{upquote}}{} \usepackage{relsize} \DefineVerbatimEnvironment{Sinput}{Verbatim}{} \DefineVerbatimEnvironment{Soutput}{Verbatim}{fontfamily=courier, fontshape=it, fontsize=\relsize{-1}} \DefineVerbatimEnvironment{Scode}{Verbatim}{} \newenvironment{Schunk}{}{} %%% environment for raw output \newcommand{\SchunkRaw}{\renewenvironment{Schunk}{}{} \DefineVerbatimEnvironment{Soutput}{Verbatim}{fontfamily=courier, fontshape=it, fontsize=\small} \rawSinput } %%% environment for labeled output \newcommand{\nextcaption}{} \newcommand{\SchunkLabel}{ \renewenvironment{Schunk}{\begin{figure}[ht] }{\caption{\nextcaption} \end{figure} } \DefineVerbatimEnvironment{Sinput}{Verbatim}{frame = topline} \DefineVerbatimEnvironment{Soutput}{Verbatim}{frame = bottomline, samepage = true, fontfamily=courier, fontshape=it, fontsize=\relsize{-1}} } %%% S code with line numbers \DefineVerbatimEnvironment{Sinput} {Verbatim} { %% numbers=left } \newcommand{\numberSinput}{ \DefineVerbatimEnvironment{Sinput}{Verbatim}{numbers=left} } \newcommand{\rawSinput}{ \DefineVerbatimEnvironment{Sinput}{Verbatim}{} } %%% R / System symbols \newcommand{\R}{\textsf{R}} \newcommand{\rR}{{R}} \renewcommand{\S}{\textsf{S}} \newcommand{\SPLUS}{\textsf{S-PLUS}} \newcommand{\rSPLUS}{{S-PLUS}} \newcommand{\SPSS}{\textsf{SPSS}} \newcommand{\EXCEL}{\textsf{Excel}} \newcommand{\ACCESS}{\textsf{Access}} \newcommand{\SQL}{\textsf{SQL}} %%\newcommand{\Rpackage}[1]{\hbox{\rm\textit{#1}}} %%\newcommand{\Robject}[1]{\hbox{\rm\texttt{#1}}} %%\newcommand{\Rclass}[1]{\hbox{\rm\textit{#1}}} %%\newcommand{\Rcmd}[1]{\hbox{\rm\texttt{#1}}} \newcommand{\Rpackage}[1]{\index{#1 package@{\fontseries{b}\selectfont #1} package} {\fontseries{b}\selectfont #1}} \newcommand{\rpackage}[1]{{\fontseries{b}\selectfont #1}} \newcommand{\Robject}[1]{\texttt{#1}} \newcommand{\Rclass}[1]{\index{#1 class@\textit{#1} class}\textit{#1}} \newcommand{\Rcmd}[1]{\index{#1 function@\texttt{#1} function}\texttt{#1}} \newcommand{\Roperator}[1]{\texttt{#1}} \newcommand{\Rarg}[1]{\texttt{#1}} \newcommand{\Rlevel}[1]{\texttt{#1}} %%% other symbols \newcommand{\file}[1]{\hbox{\rm\texttt{#1}}} %%\newcommand{\stress}[1]{\index{#1}\textit{#1}} \newcommand{\stress}[1]{\textit{#1}} \newcommand{\booktitle}[1]{\textit{#1}} %%' %%% Math symbols \usepackage{amstext} \usepackage{amsmath} \newcommand{\E}{\mathsf{E}} \newcommand{\Var}{\mathsf{Var}} \newcommand{\Cov}{\mathsf{Cov}} \newcommand{\Cor}{\mathsf{Cor}} \newcommand{\x}{\mathbf{x}} \newcommand{\y}{\mathbf{y}} \renewcommand{\a}{\mathbf{a}} \newcommand{\W}{\mathbf{W}} \newcommand{\C}{\mathbf{C}} \renewcommand{\H}{\mathbf{H}} \newcommand{\X}{\mathbf{X}} \newcommand{\B}{\mathbf{B}} \newcommand{\V}{\mathbf{V}} \newcommand{\I}{\mathbf{I}} \newcommand{\D}{\mathbf{D}} \newcommand{\bS}{\mathbf{S}} \newcommand{\N}{\mathcal{N}} \renewcommand{\L}{L} \renewcommand{\P}{\mathsf{P}} \newcommand{\K}{\mathbf{K}} \newcommand{\m}{\mathbf{m}} \newcommand{\argmin}{\operatorname{argmin}\displaylimits} \newcommand{\argmax}{\operatorname{argmax}\displaylimits} \newcommand{\bx}{\mathbf{x}} \newcommand{\bbeta}{\mathbf{\beta}} %%% links \usepackage{hyperref} \hypersetup{% pdftitle = {A Handbook of Statistical Analyses Using R (3rd Edition)}, pdfsubject = {Book}, pdfauthor = {Torsten Hothorn and Brian S. Everitt}, colorlinks = {black}, linkcolor = {black}, citecolor = {black}, urlcolor = {black}, hyperindex = {true}, linktocpage = {true}, } %%% captions & tables %% : conflics with figure definition in chapman.cls %%\usepackage[format=hang,margin=10pt,labelfont=bf]{caption} %% \usepackage{longtable} \usepackage[figuresright]{rotating} %%% R symbol in chapter 1 \usepackage{wrapfig} %%% Bibliography \usepackage[round,comma]{natbib} \renewcommand{\refname}{References \addcontentsline{toc}{chapter}{References}} \citeindexfalse %%% texi2dvi complains that \newblock is undefined, hm... \def\newblock{\hskip .11em plus .33em minus .07em} %%% Example sections \newcounter{exercise}[chapter] \setcounter{exercise}{0} \newcommand{\exercise}{\stepcounter{exercise} \item{Ex.~\arabic{chapter}.\arabic{exercise} }} %% URLs \newcommand{\curl}[1]{\begin{center} \url{#1} \end{center}} %%% for manual corrections %\renewcommand{\baselinestretch}{2} %%% plot sizes \setkeys{Gin}{width=0.95\textwidth} %%% color \usepackage{color} %%% hyphenations \hyphenation{drop-out} \hyphenation{mar-gi-nal} %%% new bidirectional quotes need \usepackage[utf8]{inputenc} %\usepackage{setspace} \definecolor{sidebox_todo}{rgb}{1,1,0.2} \newcommand{\todo}[1]{ \hspace{0pt}% \marginpar{% \fcolorbox{black}{sidebox_todo}{% \parbox{\marginparwidth} { \raggedright\sffamily\footnotesize{TODO: #1}% } }% } } \begin{document} %% Title page \title{A Handbook of Statistical Analyses Using \R{} --- 3rd Edition} \author{Torsten Hothorn and Brian S. Everitt} \maketitle %%\VignetteIndexEntry{Chapter Missing Values} %%\VignetteDepends{mice} \setcounter{chapter}{15} \SweaveOpts{prefix.string=figures/HSAUR,eps=FALSE,keep.source=TRUE} <>= rm(list = ls()) s <- search()[-1] s <- s[-match(c("package:base", "package:stats", "package:graphics", "package:grDevices", "package:utils", "package:datasets", "package:methods", "Autoloads"), s)] if (length(s) > 0) sapply(s, detach, character.only = TRUE) if (!file.exists("tables")) dir.create("tables") if (!file.exists("figures")) dir.create("figures") set.seed(290875) options(prompt = "R> ", continue = "+ ", width = 63, # digits = 4, show.signif.stars = FALSE, SweaveHooks = list(leftpar = function() par(mai = par("mai") * c(1, 1.05, 1, 1)), bigleftpar = function() par(mai = par("mai") * c(1, 1.7, 1, 1)))) HSAURpkg <- require("HSAUR3") if (!HSAURpkg) stop("cannot load package ", sQuote("HSAUR3")) rm(HSAURpkg) ### hm, R-2.4.0 --vanilla seems to need this a <- Sys.setlocale("LC_ALL", "C") ### book <- TRUE refs <- cbind(c("AItR", "DAGD", "SI", "CI", "ANOVA", "MLR", "GLM", "DE", "RP", "GAM", "SA", "ALDI", "ALDII", "SIMC", "MA", "PCA", "MDS", "CA"), 1:18) ch <- function(x) { ch <- refs[which(refs[,1] == x),] if (book) { return(paste("Chapter~\\\\ref{", ch[1], "}", sep = "")) } else { return(paste("Chapter~", ch[2], sep = "")) } } if (file.exists("deparse.R")) source("deparse.R") setHook(packageEvent("lattice", "attach"), function(...) { lattice.options(default.theme = function() standard.theme("pdf", color = FALSE)) }) @ \pagestyle{headings} <>= book <- FALSE @ \chapter[Missing Values]{Missing Values: Lowering Blood Pressure During Surgery \label{MV}} \section{Introduction} \index{Blood pressure} It is sometimes necessary to lower a patient's blood pressure during surgery, using a hypotensive drug. Such drugs are administered continuously during the relevant phase of the operation; because the duration of this phase varies so does the total amount of drug administered. Patients also vary in the extent to which the drugs succeed in lowering blood pressure. The sooner the blood pressure rises again to normal after the drug is discontinued, the better. The data in Table~\ref{MV-bp-tab} \citep[a missing-value version of the data presented by][]{HSAUR:RobertsonArmitage1959} relate to a particular hypotensive drug and give the time in minutes before the patient's systolic blood pressure returned to 100mm of mercury (the recovery time), the logarithm (base 10) of the dose of drug in milligrams, and the average systolic blood pressure achieved while the drug was being administered. The question of interest is how is the recovery time related to the other two variables? For some patients the recovery time was not recorded and the missing values are indicated as NA in Table~\ref{MV-bp-tab}. <>= data("bp", package = "HSAUR3") toLatex(HSAURtable(bp), pcol = 2, caption = paste("Blood pressure data."), label = "MV-bp-tab") @ \section{Analyzing Multiply Imputed Data} \label{MI:ana} From the analysis of each data set we need to look at the estimates of the quantity of interest, say $Q$, and the variance of the estimates. We let $\hat{Q}_i$ be the estimate from the $i$th data set and $S_i$ its corresponding variance. The combined estimate of the quantity of interest is \begin{eqnarray*} \bar{Q} = \frac{1}{m}\sum_{i = 1}^m \hat{Q}_i. \end{eqnarray*} To find the combined variance involves first calculating the within-imputation variance, \begin{eqnarray*} \bar{S} = \frac{1}{m}\sum_{i = 1}^m S_i \end{eqnarray*} followed by the between-imputation variance, \begin{eqnarray*} B = \frac{1}{m - 1} \sum_{i = 1}^m (\hat{Q}_i - \bar{Q})^2 \end{eqnarray*} then the required total variance can now be found from \begin{eqnarray*} T = \bar{S} + (1 + m^{-1}) B \end{eqnarray*} This total variance is made up of two components; the first which preserves the natural variability, $\bar{S}$, is simply the average of the variance estimates for each imputed data set and is analogous to the variance that would be suitable if we did not need to account for missing data; the second component, $B$, estimates uncertainty caused by missing data by measuring how the point estimates vary from data set to data set. More explanation of how the formula for $T$ arises is given in \cite{HSAUR:vanBuuren2012}. The overall standard error is simply the square root of $T$. A significance test for $Q$ and a confidence interval is found from the usual test statistic, ($Q-$ hypothesized value of $Q$)/$\sqrt{T}$, the value of which is referred to a Student's $t$-distribution. The question arises however as to what is the appropriate value for the degrees of freedom of the test, say $v_0$? \cite{HSAUR:Rubin1987} suggests that the answer to this question is given by; \begin{eqnarray*} v_0 = (m - 1) (1 + 1/r^2) \end{eqnarray*} where \begin{eqnarray*} r = \frac{B + B / m}{\bar{S}} \end{eqnarray*} But \cite{HSAUR:BarnardRubin1999} noted that using this value of $v_0$ can produce values that are larger than the degrees of freedom in the complete data, a result which they considered `clearly inappropriate'. Consequently they developed an adapted version that does not lead to the same problem. Barnard and Rubin's revised value for the degrees of freedom of the $t$-test in which we are interested is $v_1$ given by; \begin{eqnarray*} v_1 = \frac{v_0 v_2}{v_0 + v_2} \end{eqnarray*} where \begin{eqnarray*} v_2 = \frac{n(n-1)(1 - \lambda)}{n + 2} \end{eqnarray*} and \begin{eqnarray*} \lambda = \frac{r}{\sqrt{r^2 + 1}}. \end{eqnarray*} The quantity $v_1$ is always less than or equal to the degrees of freedom of the test applied to the hypothetically complete data. \citep[For more details see][]{HSAUR:vanBuuren2012}. \index{Imputation|)} \section{Analysis Using \R{}} To begin we shall analyze the blood pressure data in Table~\ref{MV-bp-tab} using the complete-case approach, i.e., by simply removing the data for patients where the recovery time is missing. To begin we might simply count the number of missing values using the sapply function as follows: <>= sapply(bp, function(x) sum(is.na(x))) @ So there are ten missing values of recovery time but no missing values amongst the other two variables. Now we use the \Rcmd{summary} function to look at some basic statistics of the complete data for recovery time: <>= summary(bp$recovtime, na.rm = TRUE) @ And next we can calculate the complete data estimate of the standard deviation of recover time <>= sd(bp$recovtime, na.rm = TRUE) @ The final numerical results we might be interested in are the correlations of recovery time with blood pressure and of recovery time with logdose. These can be found as follows: <>= with(bp, cor(bloodp, recovtime, use = "complete.obs")) with(bp, cor(logdose, recovtime, use = "complete.obs")) @ And a useful graphic of the data is a scatterplot matrix which we can construct using \Rcmd{pairs}. The scatterplot matrix is given in Figure~\ref{MV-bp-pairs-cc}. \begin{figure} \begin{center} <>= layout(matrix(1:3, nrow = 1)) plot(bloodp ~ logdose, data = bp) plot(recovtime ~ bloodp, data = bp) plot(recovtime ~ logdose, data = bp) @ \caption{Scatterplots of the complete cases of the \Robject{bp} data. \label{MV-bp-pairs-cc}} \end{center} \end{figure} To investigate how recovery time is related to blood pressure and logdose we might begin by fitting a multiple linear regression model (see Chapter~\ref{MLR}). The relevant command and the summary of the results is shown in Figure~\ref{MV-bp-lm-cc}. Note that this summary output reports that ten observations with missing values were removed prior to the analysis; this is default for many models in \R. \renewcommand{\nextcaption}{\R{} output of the complete-case linear model for the \Robject{bp} data. \label{MV-bp-lm-cc}} \SchunkLabel <>= summary(lm(recovtime ~ bloodp + logdose, data = bp)) @ \SchunkRaw Now let us see what happens when we impute the missing values of the recovery time variable simply by the mean of the complete case; for this we will use the \Rpackage{mice} \citep{PKG:mice} package; <>= library("mice") @ We begin by creating a new data set, \Robject{imp}, which will contain the three variables log-dose, blood pressure, and recovery time with the missing values in the latter replaced by the mean recovery time of the complete cases; <>= imp <- mice(bp, method = "mean", m = 1, maxit = 1) @ So now we can find the summary statistics of recovery time to compare with those given previously <>= with(imp, summary(recovtime)) @ Making the comparison we see that only the values of the first and third quantile and the median have changed. The minimum and maximum values are the same and so, of course, is the mean. But of more interest is what happens to the sample standard deviation; its value for the imputed data can be found using: <>= with(imp, sd(recovtime)) @ The value for the imputed data, $\Sexpr{round(with(imp, sd(recovtime))[["analyses"]][[1]], 2)}$ is, as we would expect, lower than that for the complete data, $\Sexpr{round(with(bp, sd(recovtime, na.rm = TRUE)), 2)}$. What about the correlations? <>= with(imp, cor(bloodp, recovtime)) with(imp, cor(logdose, recovtime)) @ The correlations of blood pression and recovery time are very similar before ($\Sexpr{round(with(bp, cor(bloodp, recovtime, use = "complete.obs")), 2)}$) after ($\Sexpr{round(with(imp, cor(bloodp, recovtime))[["analyses"]][[1]], 2)}$) imputation. For log-dose, imputation changes the correlation from $\Sexpr{round(with(bp, cor(logdose, recovtime, use = "complete.obs")), 2)}$ to $\Sexpr{round(with(imp, cor(logdose, recovtime))[["analyses"]][[1]], 2)}$. The scatterplot of the imputed data is found as given by the code displayed with Figure~\ref{MV-bp-pairs-imp}. For mean imputation, the imputed value of the recovery time is constant for all observations and so they appear as a series of points along the value of the mean value of the observed recovery times namely, $\Sexpr{round(with(bp, mean(recovtime, na.rm = TRUE)), 2)}$. \begin{figure} \begin{center} <>= layout(matrix(1:2, nrow = 1)) plot(recovtime ~ bloodp, data = complete(imp), pch = is.na(bp$recovtime) + 1) plot(recovtime ~ logdose, data = complete(imp), pch = is.na(bp$recovtime) + 1) legend("topleft", pch = 1:2, bty = "n", legend = c("original", "imputed")) @ \caption{Scatterplots of the imputed \Robject{bp} data. Imputed observations are depicted as triangles. \label{MV-bp-pairs-imp}} \end{center} \end{figure} \renewcommand{\nextcaption}{\R{} output of the mean imputation linear model for the \Robject{bp} data. \label{MV-bp-lm-imp}} \SchunkLabel <>= with(imp, summary(lm(recovtime ~ bloodp + logdose))) @ \SchunkRaw Comparison of the multiple linear regression results in Figure~\ref{MV-bp-lm-imp} with those in Figure~\ref{MV-bp-lm-cc} show some interesting differences, for example, the standard errors of the regression coefficients are somewhat lower for the mean imputed data but the conclusions drawn from the results in each table would be broadly similar. \index{Predictive mean matching} The single imputation of a sample mean is not to be recommended and so we will move on to using a more sophisticated multiple imputation procedure know as \stress{predictive mean matching}. The method is described in detail in \cite{HSAUR:vanBuuren2012} who considers it both easy-to-use and versatile. And imputations outside the observed data range will not occur so that problems with meaningless imputations, for example, a negative recovery time, will not occur. The method is labeled \Robject{pmm} in the \Rpackage{mice} package and here we will apply it to the blood pressure data with $m = 10$ (we need to fix the seed in order to make the result reproducible): <>= imp_ppm <- mice(bp, m = 10, method = "pmm", print = FALSE, seed = 1) @ The scatterplot of the imputed data is found as given by the code displayed with Figure~\ref{MV-bp-pairs-imp-mice}. We only show the imputed recovery times from the first iteration ($m = 1$).The imputed recovery times now take different values. \begin{figure} \begin{center} <>= layout(matrix(1:2, nrow = 1)) plot(recovtime ~ bloodp, data = complete(imp_ppm), pch = is.na(bp$recovtime) + 1) plot(recovtime ~ logdose, data = complete(imp_ppm), pch = is.na(bp$recovtime) + 1) legend("topleft", pch = 1:2, bty = "n", legend = c("original", "imputed")) @ \caption{Scatterplots of the multiple imputed \Robject{bp} data (first iteration). Imputed observations are depicted as triangles. \label{MV-bp-pairs-imp-mice}} \end{center} \end{figure} From the resulting object we can compute the mean and standard deviations of recovery time for each of the $m = 10$ iterations. We first extract these numbers from the \Robject{analyses} element of the returned object, convert this list to a vector, and use the \Rcmd{summary} function to compute the usual summary statistics: <>= summary(unlist(with(imp_ppm, mean(recovtime))$analyses)) summary(unlist(with(imp_ppm, sd(recovtime))$analyses)) @ We do the same with the correlations as follows <>= summary(unlist(with(imp_ppm, cor(bloodp, recovtime))$analyses)) summary(unlist(with(imp_ppm, cor(logdose, recovtime))$analyses)) @ The estimate of the mean of the blood pressure data from the multiply imputed results is $\Sexpr{round(mean(unlist(with(imp_ppm, mean(recovtime))$analyses)) , 2)}$, very similar to the values found previously. Similarly the estimate of the standard deviation of the data is $\Sexpr{round(mean(unlist(with(imp_ppm, sd(recovtime))$analyses)) , 2)}$ which lies between the complete data estimate and the \emph{mean-imputed} value. The two correlation estimates are also very close to the previous values. The variation in the estimates of mean, standard deviation, and correlations across the ten imputation is relatively small apart from that for the correlation between log-dose and recovery time -- here there is considerable variation in the values for the ten imputations. Finally, we will fit a linear model to each of the imputed samples and then find the summary statistics for the ten sets of regression coefficients: the results are given in Figure~\ref{MV-bp-lm-cc-mice}: <>= fit <- with(imp_ppm, lm(recovtime ~ bloodp + logdose)) @ \renewcommand{\nextcaption}{\R{} output of the multiple imputed linear model for the \Robject{bp} data. \label{MV-bp-lm-cc-mice}} \SchunkLabel <>= summary(pool(fit)) @ \SchunkRaw The result for blood pressure is similar to the previous complete data and mean-imputed results with the regression coefficient for this variable being highly significant $(p = \Sexpr{round(summary(pool(fit))["bloodp", 5], 3)})$. But the result for log dose differs from those found previously; for the multiply imputed data the regression coefficient for log dose is not significant at the $5\%$ level $(p = \Sexpr{round(summary(pool(fit))["logdose", 5], 3)})$ whereas in both of the previous two analyses it was significant. This finding reflects the greater variation of the value of the correlation between log dose and recovery time in the ten imputations noted above. (Remember that the standard errors in Figure~\ref{MV-bp-lm-cc-mice} computed by \Rcmd{pool} arise from the formulae given in Section~\ref{MI:ana}.) Now suppose we wish to test the hypothesis that in the population from which the sample data in Table~\ref{MV-bp-tab} arises a mean recovery time of $27$ minutes. We will test this hypothesis in the usual way using Student's t-test applied to the complete-data, the singly imputed data, and the multiply imputed data: <>= with(bp, t.test(recovtime, mu = 27)) with(imp, t.test(recovtime, mu = 27))$analyses[[1]] @ For the multiply imputed data we need to use the \Rcmd{lm} function to get the equivalent of the $t$-test by modeling recovery time minus $27$ with an intercept only and testing for zero intercept. So the code needed is: <>= fit <- with(imp_ppm, lm(I(recovtime - 27) ~ 1)) summary(pool(fit)) @ Looking at the results of the three analyses we see that the complete-case analysis fails to reject the hypothesis at the $5\%$ level whereas the other two analyses lead to results that are statistically significant at the level. This simple (and perhaps rather artificial) example demonstrates that different conclusions can be reached by the different approaches. \section{Summary of Findings} The estimated standard deviation of the blood pressure is lower when computed from the mean-imputed data than from the complete data. The corresponding value from the multiply imputed data lies between these two values. The estimate of the mean from the multiply imputed data is very similar to the value obtained in the complete data analysis. (The value from the singly imputed data is, of course, the same as from the complete data.) The estimates of the correlations between blood pressure and recovery time and log dose and recovery time are very similar in all three analyses but the variation in the latter across the ten multiple imputations is considerable and this results in the regression coefficient for log dose being less significant than in the other two analyses. Testing the hypothesis that the population mean of recovery time is $27$ minutes using complete-case analysis leads to a different conclusion than is arrived at by the two multiple imputations approaches. \section{Final Comments} Missing values are an ever-present possibility in all types of studies although everything possible should be done to avoid them. But when data contain missing values multiple imputation can be used to provide valid inferences for parameter estimates from the incomplete data. If carefully handled, multiple imputation can cope with missing data in all types of variables. In this chapter we have given only a brief account of dealing with missing values; a detailed account is available in the issue of \stress{Statistical Methods in Medical Research entitled Multiple Imputation: Current Perspectives} (Volume 16, Number 3, 2007) and in \cite{HSAUR:vanBuuren2012}. \section*{Exercises} \begin{description} \exercise The data in Table~\ref{MI-UStemp-tab} give the lowest temperatures (in Fahrenheit) recorded in various months for cities in the US; missing values are indicated by NA. Calculate the correlation matrix of the data using \begin{enumerate} \item the complete-case approach, \item the available-data approach, and \item a multiple-imputation approach. \end{enumerate} Find the principal components of the data using each of three correlation matrices and plot the cities in the space of the first two components of each solution. <>= data("UStemp", package = "HSAUR3") toLatex(HSAURtable(UStemp), caption = "Lowest temperatures in Fahrenheit recorded in various months for cities in the US.", label = "MI-UStemp-tab", rownames = TRUE) @ \exercise Find $95\%$ confidence intervals for the population means of the lowest temperature in each month using \begin{enumerate} \item the complete-case approach, \item the mean value imputation, and \item a multiple-imputation approach. \end{enumerate} \exercise Find the correlation matrix for the four months in Table~\ref{MI-UStemp-tab} using complete-case analysis, listwise deletion, and multiple imputation. \end{description} %%\bibliographystyle{LaTeXBibTeX/refstyle} %%\bibliography{LaTeXBibTeX/HSAUR} \end{document} HSAUR3/inst/doc/Ch_analysing_longitudinal_dataI.Rnw0000644000176200001440000003373413302740166021717 0ustar liggesusers \documentclass{chapman} %%% copy Sweave.sty definitions %%% keeps `sweave' from adding `\usepackage{Sweave}': DO NOT REMOVE %\usepackage{Sweave} \RequirePackage[T1]{fontenc} \RequirePackage{graphicx,ae,fancyvrb} \IfFileExists{upquote.sty}{\RequirePackage{upquote}}{} \usepackage{relsize} \DefineVerbatimEnvironment{Sinput}{Verbatim}{} \DefineVerbatimEnvironment{Soutput}{Verbatim}{fontfamily=courier, fontshape=it, fontsize=\relsize{-1}} \DefineVerbatimEnvironment{Scode}{Verbatim}{} \newenvironment{Schunk}{}{} %%% environment for raw output \newcommand{\SchunkRaw}{\renewenvironment{Schunk}{}{} \DefineVerbatimEnvironment{Soutput}{Verbatim}{fontfamily=courier, fontshape=it, fontsize=\small} \rawSinput } %%% environment for labeled output \newcommand{\nextcaption}{} \newcommand{\SchunkLabel}{ \renewenvironment{Schunk}{\begin{figure}[ht] }{\caption{\nextcaption} \end{figure} } \DefineVerbatimEnvironment{Sinput}{Verbatim}{frame = topline} \DefineVerbatimEnvironment{Soutput}{Verbatim}{frame = bottomline, samepage = true, fontfamily=courier, fontshape=it, fontsize=\relsize{-1}} } %%% S code with line numbers \DefineVerbatimEnvironment{Sinput} {Verbatim} { %% numbers=left } \newcommand{\numberSinput}{ \DefineVerbatimEnvironment{Sinput}{Verbatim}{numbers=left} } \newcommand{\rawSinput}{ \DefineVerbatimEnvironment{Sinput}{Verbatim}{} } %%% R / System symbols \newcommand{\R}{\textsf{R}} \newcommand{\rR}{{R}} \renewcommand{\S}{\textsf{S}} \newcommand{\SPLUS}{\textsf{S-PLUS}} \newcommand{\rSPLUS}{{S-PLUS}} \newcommand{\SPSS}{\textsf{SPSS}} \newcommand{\EXCEL}{\textsf{Excel}} \newcommand{\ACCESS}{\textsf{Access}} \newcommand{\SQL}{\textsf{SQL}} %%\newcommand{\Rpackage}[1]{\hbox{\rm\textit{#1}}} %%\newcommand{\Robject}[1]{\hbox{\rm\texttt{#1}}} %%\newcommand{\Rclass}[1]{\hbox{\rm\textit{#1}}} %%\newcommand{\Rcmd}[1]{\hbox{\rm\texttt{#1}}} \newcommand{\Rpackage}[1]{\index{#1 package@{\fontseries{b}\selectfont #1} package} {\fontseries{b}\selectfont #1}} \newcommand{\rpackage}[1]{{\fontseries{b}\selectfont #1}} \newcommand{\Robject}[1]{\texttt{#1}} \newcommand{\Rclass}[1]{\index{#1 class@\textit{#1} class}\textit{#1}} \newcommand{\Rcmd}[1]{\index{#1 function@\texttt{#1} function}\texttt{#1}} \newcommand{\Roperator}[1]{\texttt{#1}} \newcommand{\Rarg}[1]{\texttt{#1}} \newcommand{\Rlevel}[1]{\texttt{#1}} %%% other symbols \newcommand{\file}[1]{\hbox{\rm\texttt{#1}}} %%\newcommand{\stress}[1]{\index{#1}\textit{#1}} \newcommand{\stress}[1]{\textit{#1}} \newcommand{\booktitle}[1]{\textit{#1}} %%' %%% Math symbols \usepackage{amstext} \usepackage{amsmath} \newcommand{\E}{\mathsf{E}} \newcommand{\Var}{\mathsf{Var}} \newcommand{\Cov}{\mathsf{Cov}} \newcommand{\Cor}{\mathsf{Cor}} \newcommand{\x}{\mathbf{x}} \newcommand{\y}{\mathbf{y}} \renewcommand{\a}{\mathbf{a}} \newcommand{\W}{\mathbf{W}} \newcommand{\C}{\mathbf{C}} \renewcommand{\H}{\mathbf{H}} \newcommand{\X}{\mathbf{X}} \newcommand{\B}{\mathbf{B}} \newcommand{\V}{\mathbf{V}} \newcommand{\I}{\mathbf{I}} \newcommand{\D}{\mathbf{D}} \newcommand{\bS}{\mathbf{S}} \newcommand{\N}{\mathcal{N}} \renewcommand{\L}{L} \renewcommand{\P}{\mathsf{P}} \newcommand{\K}{\mathbf{K}} \newcommand{\m}{\mathbf{m}} \newcommand{\argmin}{\operatorname{argmin}\displaylimits} \newcommand{\argmax}{\operatorname{argmax}\displaylimits} \newcommand{\bx}{\mathbf{x}} \newcommand{\bbeta}{\mathbf{\beta}} %%% links \usepackage{hyperref} \hypersetup{% pdftitle = {A Handbook of Statistical Analyses Using R (3rd Edition)}, pdfsubject = {Book}, pdfauthor = {Torsten Hothorn and Brian S. Everitt}, colorlinks = {black}, linkcolor = {black}, citecolor = {black}, urlcolor = {black}, hyperindex = {true}, linktocpage = {true}, } %%% captions & tables %% : conflics with figure definition in chapman.cls %%\usepackage[format=hang,margin=10pt,labelfont=bf]{caption} %% \usepackage{longtable} \usepackage[figuresright]{rotating} %%% R symbol in chapter 1 \usepackage{wrapfig} %%% Bibliography \usepackage[round,comma]{natbib} \renewcommand{\refname}{References \addcontentsline{toc}{chapter}{References}} \citeindexfalse %%% texi2dvi complains that \newblock is undefined, hm... \def\newblock{\hskip .11em plus .33em minus .07em} %%% Example sections \newcounter{exercise}[chapter] \setcounter{exercise}{0} \newcommand{\exercise}{\stepcounter{exercise} \item{Ex.~\arabic{chapter}.\arabic{exercise} }} %% URLs \newcommand{\curl}[1]{\begin{center} \url{#1} \end{center}} %%% for manual corrections %\renewcommand{\baselinestretch}{2} %%% plot sizes \setkeys{Gin}{width=0.95\textwidth} %%% color \usepackage{color} %%% hyphenations \hyphenation{drop-out} \hyphenation{mar-gi-nal} %%% new bidirectional quotes need \usepackage[utf8]{inputenc} %\usepackage{setspace} \definecolor{sidebox_todo}{rgb}{1,1,0.2} \newcommand{\todo}[1]{ \hspace{0pt}% \marginpar{% \fcolorbox{black}{sidebox_todo}{% \parbox{\marginparwidth} { \raggedright\sffamily\footnotesize{TODO: #1}% } }% } } \begin{document} %% Title page \title{A Handbook of Statistical Analyses Using \R{} --- 3rd Edition} \author{Torsten Hothorn and Brian S. Everitt} \maketitle %%\VignetteIndexEntry{Chapter Analyzing Longitudinal Data I} %%\VignetteDepends{lme4,multcomp} \setcounter{chapter}{12} \SweaveOpts{prefix.string=figures/HSAUR,eps=FALSE,keep.source=TRUE} <>= rm(list = ls()) s <- search()[-1] s <- s[-match(c("package:base", "package:stats", "package:graphics", "package:grDevices", "package:utils", "package:datasets", "package:methods", "Autoloads"), s)] if (length(s) > 0) sapply(s, detach, character.only = TRUE) if (!file.exists("tables")) dir.create("tables") if (!file.exists("figures")) dir.create("figures") set.seed(290875) options(prompt = "R> ", continue = "+ ", width = 63, # digits = 4, show.signif.stars = FALSE, SweaveHooks = list(leftpar = function() par(mai = par("mai") * c(1, 1.05, 1, 1)), bigleftpar = function() par(mai = par("mai") * c(1, 1.7, 1, 1)))) HSAURpkg <- require("HSAUR3") if (!HSAURpkg) stop("cannot load package ", sQuote("HSAUR3")) rm(HSAURpkg) ### hm, R-2.4.0 --vanilla seems to need this a <- Sys.setlocale("LC_ALL", "C") ### book <- TRUE refs <- cbind(c("AItR", "DAGD", "SI", "CI", "ANOVA", "MLR", "GLM", "DE", "RP", "GAM", "SA", "ALDI", "ALDII", "SIMC", "MA", "PCA", "MDS", "CA"), 1:18) ch <- function(x) { ch <- refs[which(refs[,1] == x),] if (book) { return(paste("Chapter~\\\\ref{", ch[1], "}", sep = "")) } else { return(paste("Chapter~", ch[2], sep = "")) } } if (file.exists("deparse.R")) source("deparse.R") setHook(packageEvent("lattice", "attach"), function(...) { lattice.options(default.theme = function() standard.theme("pdf", color = FALSE)) }) @ \pagestyle{headings} <>= book <- FALSE @ <>= library("lme4") library("multcomp") residuals <- function(object) { y <- getME(object, 'y') y - fitted(object) } @ \chapter[Analyzing Longitudinal Data I]{Analyzing Longitudinal Data I: Computerized Delivery of Cognitive Behavioral Therapy -- Beat the Blues \label{ALDI}} \section{Introduction} \section{Analyzing Longitudinal Data} \section{Analysis Using \R{}} \begin{figure} \begin{center} <>= data("BtheB", package = "HSAUR3") layout(matrix(1:2, nrow = 1)) ylim <- range(BtheB[,grep("bdi", names(BtheB))], na.rm = TRUE) tau <- subset(BtheB, treatment == "TAU")[, grep("bdi", names(BtheB))] boxplot(tau, main = "Treated as Usual", ylab = "BDI", xlab = "Time (in months)", names = c(0, 2, 3, 5, 8), ylim = ylim) btheb <- subset(BtheB, treatment == "BtheB")[, grep("bdi", names(BtheB))] boxplot(btheb, main = "Beat the Blues", ylab = "BDI", xlab = "Time (in months)", names = c(0, 2, 3, 5, 8), ylim = ylim) @ \caption{Boxplots for the repeated measures by treatment group for the \Robject{BtheB} data. \label{ALDI:boxplots}} \end{center} \end{figure} We shall fit both random intercept and random intercept and slope models to the data including the baseline BDI values (\Robject{pre.bdi}), \Robject{treatment} group, \Robject{drug}, and \Robject{length} as fixed effect covariates. Linear mixed effects models are fitted in \R{} by using the \Rcmd{lmer} function contained in the \Rpackage{lme4} package \citep{PKG:lme4,HSAUR:PinheiroBates2000,HSAUR:Bates2005}, but an essential first step is to rearrange the data from the `wide form' in which they appear in the \Robject{BtheB} data frame %%' into the `long form' in which each separate repeated measurement %%' and associated covariate values appear as a separate row in a \Rclass{data.frame}. This rearrangement can be made using the following code: <>= data("BtheB", package = "HSAUR3") BtheB$subject <- factor(rownames(BtheB)) nobs <- nrow(BtheB) BtheB_long <- reshape(BtheB, idvar = "subject", varying = c("bdi.2m", "bdi.3m", "bdi.5m", "bdi.8m"), direction = "long") BtheB_long$time <- rep(c(2, 3, 5, 8), rep(nobs, 4)) @ such that the data are now in the form (here shown for the first three subjects) <>= subset(BtheB_long, subject %in% c("1", "2", "3")) @ The resulting \Rclass{data.frame} \Robject{BtheB\_long} contains a number of missing values \index{Missing values} and in applying the \Rcmd{lmer} function these will be dropped. But notice it is only the missing values that are removed, \stress{not} participants that have at least one missing value. All the available data is used in the model fitting process. The \Rcmd{lmer} function is used in a similar way to the \Rcmd{lm} function met in \Sexpr{ch("MLR")} with the addition of a random term to identify the source of the repeated measurements, here \Robject{subject}. We can fit the two models (\ref{ALDI:ModelA}) and (\ref{ALDI:ModelB}) and test which is most appropriate using <>= library("lme4") BtheB_lmer1 <- lmer(bdi ~ bdi.pre + time + treatment + drug + length + (1 | subject), data = BtheB_long, REML = FALSE, na.action = na.omit) BtheB_lmer2 <- lmer(bdi ~ bdi.pre + time + treatment + drug + length + (time | subject), data = BtheB_long, REML = FALSE, na.action = na.omit) anova(BtheB_lmer1, BtheB_lmer2) @ \renewcommand{\nextcaption}{\R{} output of the linear mixed-effects model fit for the \Robject{BtheB} data. \label{ALDI-BtheB-summary}} \SchunkLabel <>= summary(BtheB_lmer1) @ \SchunkRaw The \Rcmd{summary} method for \Rclass{lmer} objects doesn't print $p$-values for Gaussian mixed models because the degrees of freedom of the $t$ reference distribution are not obvious. However, one can rely on the asymptotic normal distribution for computing univariate $p$-values for the fixed effects using the \Rcmd{cftest} function from package \Rpackage{multcomp}. The asymptotic $p$-values are given in Figure~\ref{ALDI-BtheB-summary-p}. \renewcommand{\nextcaption}{\R{} output of the asymptotic $p$-values for linear mixed-effects model fit for the \Robject{BtheB} data. \label{ALDI-BtheB-summary-p}} \SchunkLabel <>= cftest(BtheB_lmer1) @ \SchunkRaw We can check the assumptions of the final model fitted to the \Robject{BtheB} data, i.e., the normality of the random effect terms and the residuals, by first using the \Rcmd{ranef} method to \stress{predict} the former and the \Rcmd{residuals} method to calculate the differences between the observed data values and the fitted values, and then using normal probability plots on each. How the random effects are predicted is explained briefly in Section~\ref{ALDI:predictrandom}. The necessary \R{} code to obtain the effects, residuals, and plots is shown with Figure~\ref{ALDI:qqplots}. There appear to be no large departures from linearity in either plot. \begin{figure} \begin{center} <>= layout(matrix(1:2, ncol = 2)) qint <- ranef(BtheB_lmer1)$subject[["(Intercept)"]] qres <- residuals(BtheB_lmer1) qqnorm(qint, ylab = "Estimated random intercepts", xlim = c(-3, 3), ylim = c(-20, 20), main = "Random intercepts") qqline(qint) qqnorm(qres, xlim = c(-3, 3), ylim = c(-20, 20), ylab = "Estimated residuals", main = "Residuals") qqline(qres) @ \caption{Quantile-quantile plots of predicted random intercepts and residuals for the random intercept model \Robject{BtheB\_lmer1} fitted to the \Robject{BtheB} data. \label{ALDI:qqplots}} \end{center} \end{figure} \begin{figure} \begin{center} <>= bdi <- BtheB[, grep("bdi", names(BtheB))] plot(1:4, rep(-0.5, 4), type = "n", axes = FALSE, ylim = c(0, 50), xlab = "Months", ylab = "BDI") axis(1, at = 1:4, labels = c(0, 2, 3, 5)) axis(2) for (i in 1:4) { dropout <- is.na(bdi[,i + 1]) points(rep(i, nrow(bdi)) + ifelse(dropout, 0.05, -0.05), jitter(bdi[,i]), pch = ifelse(dropout, 20, 1)) } @ \caption{Distribution of BDI values for patients that do (circles) and do not (bullets) attend the next scheduled visit. \label{ALDI-dropout}} \end{center} \end{figure} \bibliographystyle{LaTeXBibTeX/refstyle} \bibliography{LaTeXBibTeX/HSAUR} \end{document} HSAUR3/inst/doc/Ch_cluster_analysis.pdf0000644000176200001440000040015513303046020017426 0ustar liggesusers%PDF-1.5 % 1 0 obj << /Type /ObjStm /Length 4181 /Filter /FlateDecode /N 58 /First 463 >> stream xZww64Aiێge;3m3EGl'{N{sI$eGA..ދ# Qd!j092Qd"Qd!˰&E @,D !BBtÆM@,sȷnm(D5::ԧSD+*J MTf{ qCldh̄JLQLK|# ED# Y;G6aИl|Sن SòmjИw8- |bȅh u`s! ( ,ʘ &z.Cth ㇗;|ٛCv*WEm^; *TJ*h,[S]UֵCנ \@"ЕmEӶDDqg !oЇ e^)@H52bF%]rE7o ӫW|x\TIpZިYA& 2A2F{LOF+h*MpF0؀ly 2쨢N ߁0B 5s#9`h Djwj^Z6ݫ~Pz~^pU8P3^8>TkڡH B#(DDA^C4g@R/E* ]`(dBYWC}pkʸG I#">bn@|C{Eb<2:$9>j݉JǭEjluuLJ+ PR~󅪰wIX  ,fE$!hn-BuɥԂ/JR%Mj(o[` ]oɱnvqڢ ״Npc B j L3 J i2# V`Bc`xwn>znwn܇Gq \3^٫vX*,S.^e+Kk|qp[%Xd8 sW#bS=n١:\Xt2J-W@У!&lj)_<;{@-U=SDxNwOOM AkccО()SRsX]-=4LKjBĐLf`+" $$:%u=-Zm!GG:{Ÿ`=12biα59Cȸ^ӗ̐^O؄HQS3׬Yvˢʉ| C X,Y ny.DV^)r  v鲝Ѵ%ǷUBr4زl2[uy" -1yHeaNu-wAD<J Hd%e0BI΄I EH^3Y9:D<`tA1)þL ȃvy Vy"J3l(bQx3{:?V`2Y,K-[5g H0>4Lc$i"{s3eL3ۀc[?{Cե,'$|=cִf99Wc]EnŒ߲$5)d+$J_4F0607,! BAdĊ6@@~uV} +=#|LvC4-Yc;x#_vL< &@L # YR'P$ 7Ճ{Uxa<ƥx:jS cYw`#zKxIA*k ]!|Ni, DA©֜E7`,C5w(+xE>TZy;ӂDl)ȔVOksj>0go9R\7Z&IQFIk,wR8QZFrPBzFpnh>9 -ԊIx SF܈7!Hc˅zb(~N:,N_rXkearW xu;B8)og'iv)^XUF0w]$qY;; 3ڐWܞw#3eWuMohY.JNlt^vZh7 *Z7Y׿&<@Һ:>&I'ZZ? b')Vg '*!t?u)-E'ہoۯiBD!]!S+d(d6hF^*mЬ҈)D 1BBfLTS(+Db q ̈Bs̱{q'p‰'e˖m*N:i۶m'|s:L 80 -˲m{ǎrΝ;O=]vvi~z{{{GGGgggWWWwwwOOOooo___ݻGFFFGG8|>?66611gϞɩ{۷o;pgyYg}مBaffT*93;;;777??b&tСjZ|߯+++>r9swy~b A c" QB\!C!3&)D 1BBfL1tBL!hLD!]!S+d(dFt\x]t_|%\z饗]v_~W\yW]uW_}5\{]w_ 7x7t7|-z뭷v~wywuw}={w<=?#<裏=?Op,Eb&L[ W2 n6 a@(nȱ3]Ak,,kD%ǹe }#=b[lÁ-ӻ(n_:'uX1ML!oO4n4SGhNr &&VX&z'TYaG{2 2.RN13gVz (4+g0 is̢v*tS7~x nLOMK{)luM9@Q#Z=j*ۻ۷9eGSxex3FPR7z4rba.2(Z}prjgu,ܳTRv6E0bޝܩgj=z6P0 4gTendstream endobj 60 0 obj << /Subtype /XML /Type /Metadata /Length 1653 >> stream GPL Ghostscript 9.18 2018-05-28T10:48:03+02:00 2018-05-28T10:48:03+02:00 LaTeX with hyperref package A Handbook of Statistical Analyses Using R (3rd Edition)Torsten Hothorn and Brian S. EverittBook endstream endobj 61 0 obj << /Type /ObjStm /Length 2361 /Filter /FlateDecode /N 57 /First 464 >> stream xZrF}ǤRF[U*U#yʶP2MjHȱAbdHL 4o{nSL0Yd2-s\^`zE IIC}Ťy͔c&4)icLŀi%#i9`:i i /f4  $Az3^["3`VDJfbVS_3kouԷ;  ! x(FR#o5ǧ&C lKh)#ѐ4`ƥ(f }%0 8)%00na@:f _CK:h89h{v7ʿ4h ޛI1'b1G/[L+Zl["ʜj?[FdgEe3T+n[D7&go5WXF~l?u$2(YB Zc&, |LC56 YT w‰2Vdd?ۜ3DLl^uY"UY+Pfv!LݚTj#!s כЖJI)9%( áMC)őڥT&peI5 PhhiOyXE(LPfV]fB)3[e~4Aǿ61⇳fd,oF X]4d/&|A :ZFAV _L%kh|tj,`yQ>eFK-=p*C*ݕ\5_r&Swo9NV֟n'70p,9 19>3>Yod~}_7<şs~L JPpOh:^2mJDt3L˛Giߡc:j%pM'5'g%YΤ?FwLZWpre૳9@e0Pe tp֙Rݯ>$ '&$ D&~q`mz [9 VmZW(| ΝA5E=S. pS5O`z_S~_!?Oϧ&{oooY" +2w9ɿ{&m\~hme*ڤm:V 8G-Kh~!; 4Eihk.m}I^k[v׊r7-&Ӻ mA&P Zh6ڭ4ɷCA`%}f߶8IP kJ3AO4$vDiHCغ+䫃D~B\*{}K&l)LW)fuW{ӷ޼bSyVv[ʳ}c eWAT ˴vZdlm?+Ah |#~ /P*Z.=+*S#%eۤ~̯֔1]ԯEWvmhSr_[}/N~|5/&ы|zՓk&CømOڔ׊5ZӥtZA=](TQnf6S*vԷoGcxf,UT1iM1kgt,X1L7"_,]5"Ub:\Y_T1;jY~5mERYJr~KF~+ϋQ6RlU瘏I<8FTw!VTp]P5pq*5 Net\ /[D /mkZVL/M:6.bRu`,Pۥ"ƝD0J.6)$ ]z@*2F2kK*'dfq-UT{\KIJy'Ri s~'l׫bW Unid*VtJ,9Qꉧ .3w{F떖8r088FwֿAk]-obؒfaz U DHSq6>T^G;t3BdܙmcXe2 Jx[`0M,VQUL+Yl')f]C:uz̙wf앤X#+vkBŝE ]ȶveEaYYِɝB&A|N?VH<(q;aRJ @HMendstream endobj 119 0 obj << /Filter /FlateDecode /Length 5119 >> stream x\Is9vcJc_<^{K83j9|qtHYa~ xHfPXQ(Sn 3|6x\mԛS^$Ɛs"86185ZjOy Fy m'MrSy7QrDISit! cRZnL6$vscN2,PR.XS=8XmMv<`ͻ OMֲ7~ݩ(]mT6oA;3a0zo6pPv@7q8 \6p:7.7Ы3) * !wZB'*}6v}T~`Q0 .찟YPb3 {@ אN+6;lRfFa*sN8_+opNW)[gp<Wq}KTlaHܷV큌ƠƠu5j0 tW8,L7HS H)w Dd$ȳ~j 4Zv|&HSC6T1I!#_ hJɀs#BZH47'nzK' δȠ߄%ݰn٠÷D)xH&W6t܋5>5E)gK)9' 1`}Hv)6i<[0CFòƎ˃*[<ޕ9 k Cs5wغYJqU@ϝC‰Z;_{%Kn+?8Mh X#Xt1gcg;MyS TOs,BN9VrqQHto^ ("kt5ܱ$\6=N`D{-OATMy@,̾iW9ӊ;;y\ ,!/C4tÆ6ZZ8bPȝ ;s ,BK[:/[MDB}+N,Ș^"۫. 'l4&-)+~-G U Ѵu6dC1.ԆŇ<=8MP@AhM`'g41q^nIld?"Hge LJ=U->., E7y1MqM<ٛ0lZZCVvX n &N8^L)oAJ ե%㴤b"GGUͽs4W';WU{K`2T]][V!*i{wAҹx*!c2DNYyJK'N>YeuAmīGf<6'< 㘩Td2`4Q\v{. JM+ߕNX/JHz4XY{E2htW9V.}h?@;nqrcJu13=`d;qC-0.J \nEғ8 t8إc(,aNyJDHYqGVpsHx; :蠫 ZmW<OâUD^.^5\QQSQD=U]my596Γd)+u' V2 ~bs+"wN-/ZK]JV3>*K+ PEd%~a!CS|[mfzg5E^vы|9cY.E':&B|r^YC"v!PŽ$-8#S.Y^>{8J +T^qtDyFp(>bzsm-X@ɧ./Y껦Z'_WR4t8 i 냄PaLk]db, ӹW<8`ȇգ/][R#܀0@&")@}TP6OUsY;dנPR`&yJ , Ycm5ka SR{wh*X`hE2i%* }= eAԼH`AhǾ*<2x(Ϩ&WPeAosgG;uGiTx+ "YK` t˳z #4+:P^ E^@Q _fzy'*\>kk=Kv@,ù`g}/3!Z97_7/>: .ߛ,2`[Cŝ_ NgU=oN̡ _}(k5J?N3IO‡^4H%k]Bc}޵.(>y>~eA A:Mi *(9hDe= _e> stream xuSMoT1 W=4؉G*UT>NTt@Hx=h2kǓg=ݻWטËKt8sE_ c{'#ȓq 52Ls2֊j2J3u9vY~T~*QtfY"vk^FάiH꺁pGCJު%,{7ٜ",v燽{^r-f~A$>L:c OFGҌ0HڊP<'ͱUWgFQj`%*jx14A#*p+|Mf~8*4NI8_SU%HEjlGS*Z ]HP&Q?ܙqF0Miul+oki׿v(.̶ǎfCw f͈cg#aפ\ iTg h- xĨ> )bD.2r c59M|Q hycDPT%nH%Pgb,<Ӌd _lM W[ݿ;-e,]*.ssbd2le( _ܧ+~s%.봾ydN&mjB:quܦ8nb֍^?#&|endstream endobj 121 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 3356 >> stream xW Pgq`UMLWt}ōEAk`f "((0$!+11Z{W^WDǟuMխꚚG}2ƥ#X9!>8?FȤ7HoɁy*9\Mn.Mo5Ͼ)\&%ub#=ƭ7u;~c(u<[ O^D|^^Qqug葨XE{,UG{ɽo haFΎ`F1Ahf3 f>dV0㙏9*ƟcYLa1]&Yʌ`yEb\}2Y} }J|quqMS S`Y6q\ws|]/ &JF+%qmʤ?Pl`4$Kd0錱,H.I8hj gnl.?;]m8x().oI*E4B=U=YrGJ#ͮ$Et]geer?h>%}# f 3v&oTl*EFţeqRV8F̆vMyc~੒BXyӮ<GWS\W +e+p!lƪyaHƓy CY{0khVTJ pݰR5x!S}GdH$w~e< ط|V ;Ql?AҍBi@8 JG[W2eS_O/ N2!ǓhdQdXvL$JXS/D4n: (ߝ:wý:̵ȃ*Z)RGvc4SrhwxLCEU/÷|cQ| Iܴ^<Òٿ׽ejf鶢&.dbT$RbǢ2Cя6Vj0xcK^,kՊ ,BoNۢBs-hLw2r*Һ^=~99ao)WHn Iƶvu*DLg!^MQ/>ȰIƯ1k.K w[ vl F]цE?<$eՙ]plDZXPs3AN(5[cHXv  sPT*,99ðz;cK,59+. NsBsZK'e]A R/E9n8NFcZa:n&c=;^;~Ц^.O唖v,rq!|]mh+DE ,/q[c} x5=z AN aW .[`H;kgU>K~*}']LWW;h&Qr3lF_0B*m9^*nBlq#sI>Nw JiO))}y{av6d-D t=h%e&;~`ųoY&˩żb0La*KB[PUoε%w]QNFUJWTǵj3pE+wzc0(9PRT ]5y+hMqw(znA bdM06N)(dMd;q)ߵ"pvVk {1T1lI_g8 B1=eY 6LvS<Ȃ4؞c@#g+kWW㥔# kԵc?}퐞l6e -xQx݂CpHn)l6̢ј b9UeNu6g GM%ooOr‹:Cg=SZ6d]MȱSӻ8[ŀ5+D}W/ I>BL㣼Q;מSp<ɶB7kpfoK!W@US%x2; $qN8upd$b̢PZ1ƌ#Ή5.fKSYCIr;sȠmAslWs[$Pv=e}Ǡ> uZoǁϻLS"l^-4ȢIB}YN0o+/Fw=4w'd3)^Zz#&a%%;+{~N5.I4&9x(X*ZzLu0` ƚ,Y2j2ҏg/i+  "}p ޢ;@G ҃^!DS~vmO3^x$Y;nӁ ;C\Ʈ)YH=p1LP~F Q{ڱ&p[FK쿱:]w?FOfyuP5Ghj+賕_W?r/M_Ք|HɊës! 1S)͜h2eYV ҽ &CYRPVnqS2j{^endstream endobj 122 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 363 >> stream xcd`ab`ddt v04qH3a!Skc7s7˚ﷄ ~O XX_PYQ`hii`d``ZXX('gT*hdX뗗%i(gd(((%*c8)槤1000103012ԽK2>}wy߯jcws~7yŞ>~nSg>;3wߛgO^-ym̾^];ǂXπ| wt\eXp~`:endstream endobj 123 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1925 >> stream xmTg*T:hQIQc*$*TI#BawD*/{YayGXvaAPUIi̩ibFHKP$1Dju9Q$)H2<5IQlUժ Q~HWjRUŒujQf`e!XOYLjT+ *}*YQ1*b*toHmdT[* '5,eJL X"'D"P _VMxf⿤+*Z:ZAE~RRD0J7P _@Ksr=^ly>Ow Iȃh^ôD6߅"C/Wߊzv~Q NtJ$?ܥNOiȑdߜgk$_qz,c[p9ܚ8Xg-WŨ]'ZK-e%`6s@quyi/цد/^h JHQzx~H{p/-#@Cns3"Z$7I9(@D[t0xi{p)(7߄^oXO%})="m2  6зEDcMnk 1Hsq9E*?.%=+HIg\RVd4\H,8{̜g@X-57)/h;^d4@+W6-_k+ *٩qZo$BGݔ4rr~%Tw%'%>ZӔn Os{j=W`=kv{RNZpl3Q><wsh>Z_k'q=1DKSx3,qoO`31Qsw NO BOB;ohrdHׄ"p桃MxW/ G^\VT(saJ`;)m*ʿ;:TLc Iѹ}Ecݝt_s}}h8Hn4ɵe5k3MY-G<ߨ*~k*93 y3,qbe;9p\PʽUpn\+Zƫy!(~(s 0k06`jMȢ]Ǔ䞂[9=s~oC,7_]N%#nkelIN{/t<ڛ4zX=vy]7뺅 5roq8FǨ58 >nTp*-Ns!0" A|= 'tM3Ha ڪ*m"4|@UJ=} 88ڍ.&ۨh=vu~Y.)(VWhaYóYaNߟ9|}|w8endstream endobj 124 0 obj << /Filter /FlateDecode /Length 150 >> stream xU;1 {'0q_N@ -ׇE٬W.,?慅:c8]  I1 7g`tBw2SZJffBPUR=uw$֓TS>HԖ!56w/RCendstream endobj 125 0 obj << /Filter /FlateDecode /Length 1946 >> stream xXYo7~_1hϢ}p $"+ >LF6:I+^cKu~uP)~ew+j}.:Hz6ĹZ\etN,&S1@Nhd2Boyfo3:FSt}̝OLIާ&40f2OѥΚי2!]ƳfY8'aۊJÏ3_ôgW4!i?g׫6F[rsbPLYrv8cn&J `L46A"$\licUpʙ՗gWYmc#G}*P֢>N *kܰӔxkx{%~1DV%LLY>ݜx!"j>)])'g.[$EWv4NEɩkO4e;"< /A'eSֹJ6[}Bh%7AzK.ƒ[6 ܋~N yR [H ,碌L * |;RKm@p);uS Afu_6Ő7Hl`4x_uC6t6.qR`'2: agSWw`y&Y 6H>9q&L:!9_!5{pUCѧ"Pٜb:i,&DWn$DEi,% Qg晆mHbf"5>xTOJz:vޏyz#3|f8 2SpV[:evZ^WvFsI]t{`i^llpF-2i0\6rA<գAMlQ [I`=ctƨfTzm'-‚&s`wnNElOPDCyGRI9Y[!2g&pU9 4TD"R'l [+-UT5|첰1lj0-zXwolB0vnmDfpCꧪ4~_4j?SL2L949Lh"z9iZ[40K1Uc@AapYV°qr,NƑTYW-sH57k`1JPVR;yT(Ez)"o"Ӧ֋|Ԧq'`gm)}7o@7bz9 @i׻Coj Ӌi3<,Po&D=[޽u`c Z Zu3Qͷ r~'B/xʈa)GedXt6& _7!V8[7W}]U(N 5O6:2&PGN^JXRxټKߢC-.?g UIAe/70=,;ΆCLGvvP MBJp /p\e9: Y~\/fcISLK#`}@k)c!?0넵ΦfKeݟq@ۢIgM 5乨 Gn2|n߾{.gY9\{d\CyѺe_>^@xkֽ hP㳦 [2>@j6޼s=}\:?G;r]/ X;="0^Ж9-Uh阁[v8\2>df{hzWmpH}սD |F{gP~/8y3't^Lw ^^vw >Mmd<CnlLvvo cXu~aϽ:p"Щ!9 kiglendstream endobj 126 0 obj << /Filter /FlateDecode /Length 2037 >> stream xXݏGLxNWD"9BC-%pwOUwOO2{A,_}̾륀^ҿٮ3MNzo]TU {g *'@&)0Ra3hтt1[!U;tET/ƩYj4RũjnٓEҾwƴjGru =`` P_tJKFyb۸BI|ȨD裎óq2AL;A*T40O2wW;+0"`SFR_ƕUh!me*u@m+u]J\J]&*:3Tv2 7畹D*RVRwzQG7g *ԦRs7_+3aew$腵aa/-դhM{vu^-is/J|X,eql!1=_ߨ.zdjXR s>ǥ]\*Yp?,R Y|jn%4.6 1}= %wIvz ׆J;o+ph|zL\J4;:5P"?pEoD 6EZFL)up@ڃ>ތFH@[A$7: #aZތdAHm\H *BY 2Dbƿ‚8 -U}eEiccdFnF:TIr7";ڣg_Y%W\vT*@ Nrnn)!8_:дC6T.NĎcn` {-ڥ6ۙɻqb;늊,e, iG,-NDCѰT2t(F%C=L3ƣ3I=>!DZNf_we}\N[*J3bn HI:G?2C͎dxNۄjA2[d&@(]yQ2BnEV&;eI]1:±s'`3~dq0+odqf:cR`N!>К&u)!iV: 72ĀLbC4K"qn7_hs5jj)yK4PԠYy1Y޳lA5猀ëf!W2 nIk~Ѭyb')AҨPSE*#E)0ί{,a?9L,+x}f,+֖ Lb ?൚{np :ZZ%rxJvY@a}RԿWM+E(RX-㔴̉*,R j!mԸ1c] ^ â O9_΃Nqxx,=Q:3vfzg Txfy'V{f&OS0MΎ*4' x?9wߠlp䦣3tɈ\H|vRЭ'ܬ^󢙖S"f <@lPGdHp@y<*4-O>ms*ԜJM6xp*>-Y{2l,y%8+6ն9=BstL5^dHr Q+:d|ItqsUn3\|uwSXPhhBC5vb@1[-R͔/LA^GVdiG,)ܲhXN_,9v?LMMZ'~c6.Ѝ[$-PBq^@(2\>b[t1/woSai?IUendstream endobj 127 0 obj << /Filter /FlateDecode /Length 7340 >> stream x]kq>ȏ0Ni 1;@,F6YV=-ɣSdݜZ7{&"<- e/]ɦ/O/ WS"j?*rs"a6d4ZU$4y'@\_QA7q>uc*LqVZ)co[Խm>?ϖ?=SM8)yOVe A)O//.RO.ds|rye6SNǟ-ZX׵xI{}RvѮTՄXu+1ho+> ק]}M}z'O>O7:uQקc}|[ uYnw7DGCd5|9׭? ^!nSt sqղ6FWjmzԔSlƹݜ_|K`A/復]AAv/vѯsC|hXUé4M{?д")>.HۑU}dFbif~\o"0=6,x3`А-f* AT2_>֧ <> /*}W?-"4eu/΢jR`ljjB<~LĠ|q: fKG;>p#M>:t`}tTI]JɨߜS7ix i:@~JEK4OE!&)n.TdG@Êcyͤ J^eb<^Em1~O帥!\rM9@J/KPu6Kj A=1&!- OH?X!+mRr*,U*b{R&;~z7gatx"+3䈗Ea+Gk ̊ ❝,ҫ0-pYRV2y?Y=B*mRPF0[Z 59Cd%}Ҕ xH3ݤgVoPD; *פ`6VTq$' ->q^KC L֒Ҥ)IRfW8hWDFHx.8'( tLLS1 3@CS⚆ /% ;BJ3Fg5dN2E =GlYUxzJ1 ba@s ^\V[1W[M?צ¤H ZP,3t#RzqɕZuumjz xo+~/4Ux L  97_zK(C/.$= Ez@ϞzvQ֧f38- !8зFDZ²RXZhQAA)XeVߜRi?u-Z.8$vj m-n.5dӕ鐰&*r.NkiYϡjNң=Rz (Tr" q*# "+mR2Y;tKC`g&X"}2̪*!a6~sJCr3K:@?WI-z7hDX6펌ű- JHh B$XcB Rȩ)Ч,Y3YBcGHMJ<}L )B*!YidB"ӥ!iDc29#EŊ͢}(3L"Ϯ݋UtfP1L*Jټ} cv-aNqzvo˖lޭ54,7vH E4_{dMJzȤ8eBpW0\#4,9 `H&`J[?M*. @\͍Ri0kZ¥+KK/ȦШ49IX۽])텘lz _f'u{:g H%t!C0i 1DIR)OWiʡ(}07C`Z=Ɇ;w6C 7UDj8\/wH%Kq̙LiXړN*Y -5taYIҮ. .T Bi8(*UpiL>XcJCzcD.$<&\XSު ΋sXd"Q`;BJ/dbTĀCwywK=Q#uvnniιv:XbrAMf> f"q.eT(GikvӌJIuf)? b 2.i=RlXJC1N,0B{ q_v@ R&'_}Y`^f̌J8²ĬqA>3.bJ[l|G!A\(aP@9eQaN63S(ڽ"XY =qa^ *Ǝ+B{r@ IA9$Yo˼48+]SCm1oY겷\tYȶJ#9sG83g>Tҡw~PA:8K6@JFmx K\)Dgm¿#qE)pJ=ƴCaOCdMJV`RA,׭Sy;hTʤ6"#~IBj,H%M;S! f@+]$ͪ,+4$'0>~9@*]f Ilך,ipǓxE*OP׀ȡbV9rk\I+*iY[UE9jJvfPӵ*Hʁऍ*}*Zu|8:)Wt+'+#VZĉxTxeYiSTGn*S7ۛw]k7+]xčɓ W%!ȾqNL=6O9Qa׃p#OQIM@EfrR8%*iZ!4RFJ!QFB%uĊF w+#saA)rgQp,M¹SG*iLK) lB#fy{&%bZ݅\]:JZgg^l- !!V 'FE,3I=Rz5֩7ͳzp;ɧIz\C J ŝS&X}œnH,ټba߈h,F \~ckWnѰW@N^Ѻ1𒍧=; 4/)G%Į$ݸH%MG6)棱!~,Jl., y7M!6/ΐP>^4𶺛vWm, x)I4@*29°]zd# rK w5!+]׎_vz+Rbx4*dz5$[X}!"]PTY[É9PHJ#!Ya5w5c~7.JƲBёPEXI"O#rRf^"b–rμ" &v3(CVڤdMw[:X)(J Qƃζtym8cۯbl9wV~̀䭶Rz c80+ib>W(MIZ @̾͜!\+9Y?8E*3X̓VQ@k,~._i's/ρ<(t 3;~^9m.dp4ȺG 4ӗޥMc6%FVV䠛u1Et!ó))n'Q+]R)D3&LpT$4ɏLŤks6(SXUpiS$8F?#6 A^~KC#)wdWoo8ְhhG:P\8qj(O%D5/i}_7oQi<~SM/*ݏmM,w=~w99-_n#Y`J:,A3ts|SA:N5 "]^~-SJ~hmmNgtK0WiQ2G_:e+:C5xfU=!x_MMFK mp,6d_ca ^ T;foe̜T uAXf7ֲk a2&Ax,`VV%e:.-~N|#9ttO_/6 zet;EP7a5~5y֭n|e?E~m]=DžX0Xޔ!.I rhzWG/N][vClGL{6rz.Gy&L=(s\Xli|R'4V-BMe#yUDԽWx)bͺWWr7]4EX$Mu ؀!f4^}d딝%fOm2k(\ҡ&^|3#z^w| RhY Co!A.~gsTrgɔ4DYZuUu}7vƬ2oJJVrER: 1$JC7-ϺɾtnEK= U'..yhLg;v8M\HXU6z׺W f`F)fڝo=:8hVgM.j8a}?W~9}Wmէ_oF2~@2sx\1݀߷t]FfA#2ోɾrl*vCendstream endobj 128 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 7233 >> stream xyTT׺9džx"X`IQDc{EzF 73^  b-&jX"F&F샛{ ޼u{˵X2o_cFw̄WhG 3~p7~ k-z<ՊJ})Y@hȐ^aF͘1}g`%%g.mGXaaAN>?t|`ن]vQ`@*[yخ t (j܀y[-^(tqҝ]"\WDr_a{u>}7m4~6a^>RQ먑zjMmPfjO}LmPmBjH-%Rj2B-R+iJj:l j0P;TʟMYRTj.ՏDT>©f=do(sJe6,Tsy9h D3_w_ؽKO^{zֻrev}~ &X5BE'v}pd݀ևmT 90dAܠۇC쇸3sjĶ⓶laa5ܲ=h_ZbV>Wk_&*ң!䲤uf]]:=(jz [BtUJ->X 2H_A] Q6) D.ebm%BKEDk]AWnKiG),!SWWBy^ӻHv k9/!àu4<_}LO΁+ѭ4*Ef$n[o&]EVH܊>bG!|7)Zuz3 M۸|t,?g_7n~[jRH?BBdogĂJ|Z1@M,4cؒKuDYU+*}|{~cƢ  NAGBypPpJ*+a xl8Icv3@gRS)֨U{~tcADT,/E_$fRmJu)9=%U.j E7!-F'k_XFֶAܰ-abl?[~օF? Mvh #& c ۭp Ux^t\,M{#N<` @S*FBH&'C\egccFx2v&nhi Y Z9|/2Gq-]$}uTqEpIgҩM"ј\,z6 \%(>~80OsF^b{ŋ} 1B*g03l {bHBAm5A~,Jod$467yz^mqiF2k3ɬӣڽfhpڪCcu vyC؄-B!x|<<l96%gپ:T"*١Di@Y!*`1"Eǹu͛o BXԍbnY@tٯjVWhF*h<ڶՠTsrex3EjgNtkx-q&;jKl֣#2p>8,JߍJ6Fx9*>8ȭ#笮MEi1[W9R%IbZ](RQrGYmhlv5,0ͻnh"+9 L&d7r6J|Z5MrȻ ;6ŭҥyߋOׄȤ>ɇS9@Cjp߿`039,/**IݮW&nIbOZtfB 9;B6鳐ye8rID#qw8nu;vHb "7Utű{;Z^oo648X &ڨ55TK|q$Yֳ~7ؠ4,1ޡ\ 2*1k1mjN+zUTCܤMb.䃶ߍΐFmdp{TZ"{j8õȳ˶"7vhv<*UF^e3#:ߴƠ.s29ёĜȕbPe?}*C}pGf->qpW4PDۂ[ ϙXl6D(0dMBO\^%HN<ɿ 1Hh0(.ڢ }? @x7בࠖG,"FRVZc&g)R+3mPs50NJ.ZI@H" ,\ub3:>i<Ӧ'1:C<X4^Ӊ̋J:U.X&(p7Mˉ^G! AvpL_ 8 *|;&mH>(er"؉B:5IL:YgƩAz?JWB+PoVV ԯ!H16aοZ\9:sʦu{yqN(}>fOL07b-#AqV:)^!KPp#`7l=a _e'UI*ڧWJ%al^?S+1HD-CcdXDL\L DgdК!O |~>/8ɇ|..92Bڍ maz|M$Ӧ@]4ħ6J^/~C{/ڄh2 d':v-Ck/CPfU~ͻYtvw) As)RUgU! R 'ą 1,@YaFy10O\R&[ZdڠQJDdո;\]8Z}oFN_>>ܘ#Kbo6VU/!Q囲SdLF+G8F2l-6 wtp`Ыܲ=L%{BZV$#%( aQ edG<(StE%ͥ!Kޚ+OY'Fi'iJΠPRyvmD`䡟w;H|6&[pnߝo5mSކ % ,:s0kS+$ ~,!YY&O jE{BpV9]hsT^߄On?)hj>H3}hc+%WN~z"7l!28Y-A\̄}+lMAܜ$2M($>vxÇnppWz觚+uV"'%\'Qϛ:r/GZa1w[hrIN Р?DtCV. %Q-LG>8;\wv0_N`Yp ~k}E7Dĝ; /l.s'LZw 4u9 PʹN6Og|ebH g6<-B,BINw%&,%^$Deǯ"i/gOf :^*^%7؏fFTK`?z9S8Ś`'e2T D%fDRi:rƃ89)[\>>$ 7iӥ Y>~#{+n/55 .ͷH v!vd.?# 憎@7LCِTZ05ruF߳4ɐ}돗7vh]nWK['s9/> `"׸1 "O#&c1xnƠ&#.1k^<*8+\'l&slN]SIՒ> stream xY XWמ պ}ZZX(( HH%쐰"wqտZbk7~w߰$7ssy{3Vpus9q<7Ǎ"]l-Z׎fi;nph #<8LB/R+:M~iMq5ceA>?o`'WO'SN~>HDR龅ӧdiANqIEN|B}$>{VN<|B/L#qrrYr}!Ua2ޮQ{]+?`S`{oY΢O|wSvNk Ys#1Xb= HL ܈MĻfbNl![Tb!1N$j™Ms5ZbJ#'F6  baK &CRb1ABƒxEžXBXį`^cm-`6؜'BFT>)f!42)>n7m?8:a[%oLOqĈF_bgjaN:َ F8hϸ!\)0MxU?{t|R%Dulbb*A,.u2˖#@`P9(f_E6/iLB+0ZK^C&@vm یnFLd/.ޢA7KB =vl2['rv\I =|lcUM _l9~xEDP{[T98;ARWI;$$=ڨ[#>Ie lUga6;_[X:\ a8dȇ=Y?'Fg&Xas08F&Hh~1ͥyk7n^u1u2F.k1\w.AIq$F -4^w$rAk ~# IC(`5zwafN> ٴTy-Ao Ip^ {\K^}q+]V~ $[<_((Cgv@?VS:OaWa%wu2)7Ή.~"܀g=n aOV׏7XMɂ h(^t Bzö ?՝c ©&걽u~mhP*}[Duc_%cٷ=ԶqBE_&8tćK`5 G^@x0OǓ{1h4ivV{=V6t*GpZQ^4c^Y4]&N(|JUu~PHJ I`RhRfvv |N &|y޽3vl̹+asB%2v@$مڦ\aV'Y wD2nˮ H7ͿOv{"\,ӝߠru[(&<Ѹnj18SZd5 0jqFWX=?FǟC{6TJGpP, h XDj̠{= 0b@" +@]mP>? cz :#l #CɌSy0 5 3auT"bl10[|1ʹ}|n9KsD=jsuo`i&j,T;,M&=N+9&۷y|2]AB#8D=Zr dN;Swp< * ( ԕϛq5]MPg2&FjPAs;|)lFݒ|mPlxC _pjR8,L,. .-fz+3`5k[a] ̡w_$ޖ^xV%k4=9tR]~}6d_MU1yW˾)ዅŞ>֓7:&-,'QߣCO J`7z` _h_b IB8숓о8>W"J("G0IUb:NT(\gp;m2§/oN7k ¬au,Ph8 l-4bMyh | W~ZlTnP˶{WqL~eqaNc҂YxڂPf31Z^Mhϟ?eJXH9 peny8Z]+ Mޓt3#ЉCeQ. R "zΟ&)IXArVW18 .^RA`&4|NӫY4 =JXr׈PJnˤ +s|ڑДιsN*jQ ٬٩c k~}Z9ނz9UgJ*A&^26B C(ɀMp*\n/NMy[}M&FE`={FI7?0poNTqmYx~hz{R!XiY-״gσTg3ރ'x$/?O? *v/+0i."-Tbm7~Z8:<û5T# [R\QWǠK9pxt{ІcwꚎg\aa ylر&Z4R,)L/Uܦ/n.~ 9#@Vke T(jްAp<Ҷ| nwsr:'3/ PeMAw|btpYUqȏOV$ɢlc{v^3\s:462sr/@. _)t~bX;㏯4=`%3r2#NJ#ߪX؂Uu)-)NfC:pQ&#sѰ;#y3do s2ӱJ҇eAg6ne. ,^K4v>|kP@Ie UF #^Ef(pJ*jnͦ=1s++pz}n/<uoݳJ +.(VkYIG !䐛j4lEjsPkSCD\Qf 8ʢ#9yWXN2da7!g@Cvsueb`}z0Τ*>c Pw!1 () ;ؕ= pA?9r+ ڎ[[d(+Mʋd ;_r'no!&jp̽f{t)IƚQcS޻ tczH*h˕Ƣ?Z8'촂 Nj˻cRcC*U}aeo/G;>LXc9/ٮܾʿB7'?qJSWw)_ h_"Q7$+9N>;u^s"=UH~KV=e?;.9ךmb5{CΙ](&&% q\uNBvtnt\%SHJ^ /e2|+y1y T jJAqOBz^M;\7:>1EgWiu?N\!q|E61 42 IP_ڠ.'_x#&N rRyU*&MT"YLUX.~r?=bѬLia"(~+5 3^,Qnj _pm·opf$DbYe$L #`_8hBrvb;p:D=2ZѩutT;z\ +!9܊l$D@ fuvd; mkendstream endobj 130 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 3941 >> stream xWyXSWڿ*-6v".Vw lJwQ ! $aHqAEj[GO~j9N$Igs<%҄B1Aq/?\߬~L"797DfP{G-z1cKe鉒$niӸt[ KbOqT/NHϭX1E'/ |øq81" NƞEq%Qx4Eᢤ ђ$4A>'"8L%Ӣ2XN&N7's1 Ih.II⒣iB'Kx|UKID,,1)6"jW.לt F%[yw!IsI$H1-"ұ]J(,$ح1qbM5+8#dt۷R;$8nrRn9g-n\D"g-d.GoT(OJ^"Z+ٺ-Ӧ>ǎ4a&M! "!V0 —XM!>'kxb!XL,!ˈ b*Hx_D,1D &s wBH #ƒ$.$ `*'o|:+IRMB*%!m@?\]][[[уWn|e!!*~ަ~Yfv Oz oA#̥Rs;ZvГ2UUW3؍9XJ <8&P2VgSA j$v]P@U}*m)(󾹺ef`Tڲ"N»[|}F ~|opd zN7*"g_OFrNZ~HBp5@3~k ) ;tB֒a.5t֗: -鈿!p0f^^GĜEE50Ҫ~<QS?|WHi3 §*9V#wm9CY j޲&"$E)rϡg{:yUEEV+C_Ȑ˰$xfBMp9p)*AgP boihO6}qgߎC5ݱAR) [n7ohRԉʔ&9y䗂JPVV\[uK[-:Z8 +sw䋄G"C#yɕlv_Ayʽ;jsR@2k!GO괥ZH[t*١Pv|i&fqpC"7Ͷ &"Wr5RhOAna=#~pnvr#˔,u HgQ71YjdqG,swX=4]F^ܢ_5>!`c2f[7ҪyY59htKwP-r58dȇ/ZGcŧ)<O32d/fS=~F٠ݵ<]<.-+FV: Ҡi%=fCYd* f-XY_x#7ϗjuDwځ ݸMZiC:0@@V]_<۰?k~9 ]Vpz[׋Y{B [;p ^~bO-߶`) Cbz.#DpezG5$ T0w`16zwD#IJ;^FN|-YiO$Ed`2Q8CqpHO2̼9#`-wcbԭ4E^f᫛ݦ]li AaT(+}Udl* TzM/p"Z 9^pSr'~.! /y޻p +LKDɮHy #CSC_C>7C_ख़g.)ٯfFS?9]{HMYNQW Ѻm7૧-cf/ gWC5n~pty|\fO>zy#7.RX*GJ;4 %0ל|޷m LR Ceͫvuo Ԣ&ːPK-684i/0>)p鹿g]ȟ9d\+D)8S]TorZ*>;.;zV|jo xjtټ9LGh)upγw6Rn+'yF*mإPh3wWWk&ϱJÁ!bw{`7_G'NMb:(ԁǓwNoo2G)GzъIp.Ѽdu?C6]h8 yqoG$nk,K`cAzk#n@ylx3\oaОeyj+%5=980%f(%S(\hUTN4m "P)Y:_ Dko~/~c^)R'ggE΁,Mڒ%08%$.l=xoI38 0a%2ƎF6 ᬄET ]y땻 ʤq̤#35pz!p/7ZK@ RҶݧ*q l^11BA>p6*۔z,mJ<} Gtsѓ ~ъ}8a*LB'uq!Ɗ][>/^NgwHAǫ.^"jZH4T47F[-3}_Жc2YB]A3=$3d̃N~endstream endobj 131 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1685 >> stream xET PTG~7<8/1f6׋ƒWXx #  r%[f@NDd8u!bւژ,fٸFjfk)EӴhj7ىf}AɀRֿIZ_0p5t|rgBbzRtdQ%Ew]5G Iaxe9Ʉh1]`јNɴC#!)emҜ0$R xOg,۱<{&% I߄pCRj2}Lsy܆v;cJGj1CzlOh܊N6,v 3Eׄ{ˑA({d#'jBFH^V4~r k\ThE"_R^:8;< g>qUЯ*Tbz=VD'FLXZyIuHXrh/=}EBaV{[r6 Yh%t * cUu=r:՘ qݒv(B(iz؛}[-Fs{9>{$,F"X 4Uh99J ė܄3R1rz6O|QɕW1SYC ؠSan?I}>E4juF/ԕVA9M@4Uʒj GZqy7UXPҊr'B9w:PyolJ /%oѕF#zb"bF{x <۰"T1"pP#@AqB&`MZ &?mf_Gf9$xefq7[l=tȈݘ˅2 y0GnW9DVo dM ^h;SvTHO =xZMIbn.4oYˑ,:Y6Dq(CIU֣S6VE}>~o!.dՁC, ֡k=ia5ꁫ3~ޱ'Sv!F-  XS\E6K)(㺋+!Oė>Z Qh 0 'з,8ÑR A;\'u{N ^-307 : h(O/ׇ6fW ٙjr[Ym e uKzG$`Ek7`m-õxS?%t rVچxB4i6w霄`ڌayq-ƞΛcd.R-:"RZx'/LLj} 8)2@HAs* ~/t GU9b@ 1ˉZa:k ^ZTCreREQ/sbendstream endobj 132 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 3852 >> stream xW TSW1T U|;m R̿nթk]P4`HBX{^M $"Q@.VlmǖӎZ{fov:=]f漜w+FM ?|? gF ~oBpxf(?I xol\*RN *pҹg/."d1u2uvrWO|ޱ9֍vŞnF 5dd7+tVqCux*uIW/;*9I^`׊XF''k\e$7'Z`t>y}.%uJS/;_rL #BW~`nO=ŏeA.yTOsbR--Bw%8_cwp jDi&~E|)(EGLA}.8 E}$S =p,-Nڠ:"d@A8lT N6hi=mBet!8-sfk,Ueu70/UD{?F!C_ L5%(\6;OLv4?eOkpߜB7usLa߼E!rIFiwy4M@~Go J KR`_j,*eko#\՞IȠvgJe;*H$ќno&$0qs`tKzlZ$74+5TOQh&~E[q,5Ucg P)!_: 3CqyzeI$9W%e{SY5K șy>>9g2r]I&0鐓*46E%ŝ=Z /u'$eUůTBsD.PL#-Xd^IvNzIެOFkciiZFu 7x uC/b˔ J}@Zh AFzy(]tPqE`h!<RHlIs=pJ$B?XKcI'wK>y)Z Z }DNvOa5z";ri8|H/).v/c=6bj`y thS!S<\,V)EByޅŜLyDc柶 xNV"jK(emP+ӻ8n'D@ (&C-‘F%{kˠ Jk3膧!!=c!A,(Q\>,WŞD/;Q88b(2;dži9rHtUq Y\6\lD pn=kCa/(G:]Ez2 k@'z@y&hEmGLF֊q1;,jeiL0E#,ɇ!˸7MخA˚]XM%b7R(j1-8B:[\FiNj];uf`NIVj r(߈ĭ,"!jbcsNwf?2B*B@lncv-gcqrgl*sHfkּ^ng҉`068GȹxM{x{`z6|YU$`څ6hpPwpXBU('U4ڭ-k>d"_ȷ- J*&Aeoillqrr$軈n\͋ptG==ݧJ\7)u?3WgWٚVLBQgO^r|{q{|4&FJ9aK1Q9b J2b^o!XKŕ2ZO_X-G_=K:"u6b*Š!Z{hqѝ glj%<忇ӏG/ [дpRc1|a,6 ͰmM fSL+7Ym1}wW {b`dRt\c!eH]yy_jac:8O&NiIo ='.;so-lmB&0!K ِ`Gno (P#m=0F> stream xmS}LgzMb\PQj͉u j-O-O!JUʇR9]eneé7]>4f9c4{B&?oy/^G$IR[D^(q C<*hP@) _FIhVYVcfk槤,I,HNNѤVNkdhyޤ"_Se9$ɖYsWN8AYo[5k83٠55Ftdz&[Ap;u|Dd[DN&5DHrb-)9 EQfJ'(ϑŶXJ@0j D#W#Uc 9?B*p:m~vepjƂXi (A@gy2dVuszz-bwTtyh${4&EO|l`?*7bvw0BDz`ҷkXwi#_ i֫\PN(-n^o S_p:A5%˨qEn S>J+2P4Nw%sَcO T=-|n:~?{)?d󱺓VoO[N;{2=L  @v ӀOQv1JR"whω,d/UY`w^D_yp(+rt*wOI@zTm9Ԓƕ 1MTOvgjM~8vEtA<)$!ޚzh{8(d0EJK}X[r9qܢ2c*,$73[dG*JA yܵP ٮ3Y-qN9^.AP{AvaLAh/){S*Ծ5oZT{*ʏw0 v xBwlŔ"쌼#v<>@+ǖ5 hU) f)_ʰr"A jendstream endobj 134 0 obj << /BitsPerComponent 8 /ColorSpace 30 0 R /Filter /FlateDecode /Height 800 /Subtype /Image /Width 800 /Length 16116 >> stream x}`񥢑!DHVXpJ-WDǢ{Q(S9Ux40DH2ٙ?v$dߟ?ݙeB!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!$ ]4gj/bD^"vz9Al-Rzf^UvO^]V^)O=i^-Wo#^],7_^W:͜^nzJ z|C|>!>dW > pR9q^#k9^oիUa^WvM7XFԫNO4Z ӫa}jt'/ҫ#<R>s[wOp^^Ln^;SFRw&V{F7>AKz ڰLTCպU'xF(ի'-lL^#.XT 0洝-kȦqi ]C]Ӫs[LY(ƪOLhx>p}4NcYsވc򊊊r>'>nK\|dC^::2>o^NJG#9|(u{qOmvͲlV\jEN z#9|X\s>,H. ajZN.}8|z>jzծWӿT.>G4󫲡9k>j|ð4Q&"ۣӪ6{n|"1DPU]*l295'Jm>{#  >RMLj6ÙGі|w|-c4Ƕ {$=]4n4cGKl?hQMǝ8-sC2>F|nB'5movo(I]}e|᤼d|HGqۋ5I7[TZVCU7rWd|h?c;_1z_Z>]u|'wƮ[saacIN9>ڍ#yaLLjp|lO>i:"0&cG8>GIv9bcH}M}4MْzcC|0}p$Qई4>!۸!=h>; z?щ~>g+>g/~|"݆Wz|Cě{CdIwoMn/p|'y{ƍw#.&1dۋ4o ]Ft>GWj빿?h>WpW|DZ|> L!?>|#v6Ԑum4 2q]i$]'"{:SLJӌz|>ڪg~{Хa?>Gt~{a?>‡3=ҋ0Ý..Xr0-pۋ+C0uҋGdj|ۋw$Zo"W|}~^z# |큗^ćqW^ćqɂ|$?>D>L{0'@G:j#| 9'B!A|G{UߠS>w7|dgu|ߵbx=gð|q{qkmqdH/|sۋck>_+Ⱥ+5YCG*G,0 GkV2>Xr4ƅoԸ496W~3I=D"EW|G[߭ȍ>q\o}>dNމ|Cĝ)>DkK&v9);C_->q̿?304955i>=ݒ۾ܙ>[51o|$>|>܇j*3Ťw417j4>a!?ƑG>Zk >6we=NeH'~>g.}i;F>^`77GGh8j{Xޙ## |XٍssO>R{QH|^cm:HjרGÇ!h۷$i"+?vزF82Yp~zn*ZUW0{߯NGG3kۨ[c > 1>G #=hZFؿD˔WMͯ3E8#C}a}У~qNy5S5!o>>ݽ}j# 8T ˇ3[\dz!>R>GtW LJ^R+|#+5kn>5ѝV4H5>|hfM48].|">g<%u'674NjerB|0j:|I|fȍi"p?M/||WG|dKQ۫+L46mNޙ5=zw0|cC؝vw!ySoѱ_ɢHy3hCXNاp'NHˇn߮{㝜)on/^q8=}>PWC]¿+c>2= ;Ʋ&-H nY ࣍JnzsJo,GzG[Q51oio݊69c||dgJGiY$:R^)DnԴ滦HX$B.Ç9>ׇ>u퍽{j>Gߵ\]Z|zt2|#}/W9/#9|X5EKGj #9|M褠6,u\>Vl>=jnð}קGGa>|>ZԇB4}CO:Y׼7RZr>aE0=׭RQ274ls|ه;=z2|zcWTT>ǻnmlLXr_z>ڽ5_>R;IA|#\= ^,wsgE=۝>1=Ix־Y]|}}~x;K|eCsߗ]|0>|mÇiػrUioڅ1Ij>TZV9>Duohs>&k?kT|8wfY1_ϸp}>_Ù[vn]G%N>1pۋ}:tr\>yeeUӫ|v9>F|>>Lkj:7ێр)e5>[967`eڨDٟMo!7@||h>4w|i>bQc|ģ{ܝ4fكp} ӍR۽h_C'c p}u{aOLu,_#la_5]Q||>2!_So4-L}374_*ɔe)Go\Uj1>QFHyF6Dd)>|wj {5qPv->GM}ke-5qP}{sՃU9p6>7X[lsG^ۋkNܭ[saoWGWjn {CMݜ}P>"GPwG|>faSajfI7jjlٟ?!E]8db2(i>d ^>|.M>|_xV| }-rR|#š6_ jT&>>T&i.Wh}>>_xGBb>N| N;G/:)7d;r3?}&;#hqd@.MS(E}'v]ӫaejf55;_>!efݪ˺܈|F;ӫy2-~跦?^ҭ[3:і;C_-,4jCsL| #u|#\c^t|Xo\13~@o:=n/>[h˚@. a{~7䶯7w5jb}a>|>Z0&e˚s̲#A::3cdCea\mQ>|gۅ]=b=N G8gEvvyOہ|Cϛ]-k%+.<CXޙ5<'>1HO|!v>bŹ9çqqɧ8}ۋ3k~qnAυ}7X38G>>j=s?fo]}:őh.zeG0h>~O>9ZSo1-4rM߫%[YNhh.vgz_}>Ms}]/W*A(W"M00Toߎ|G{}>>o>݇ "GPw7t>n/ ɇ R;IA|#\n/׆Ý "_#la_ |d57Dl |#}|G>LG";ןrU}fj3ӛɎL|,:R.">r<~o1M~70D>>|MGs|C[]ag,|zcߵǼ>e>,w}ڂ<'yG>&tR]c5_8)/>Q\bMm; 8G>>Rw-'K|߭݊|#>|}+wҷj"2Ooj:2gv|ػ,wCߵ\]Z|ztl]ɖ/W9,qtG"sw-q8|x'>|9}2Wý$,Qwͬ~#G6oh|nYcs>G#";,GBW[{>~-+0IsSB[Hh7uMM'^djldL]oilsyĻL"r_B25[G ]|$k7GBodkuwuM"5}zeG6J{F"SI%7}򊊊GV~qW{ק-q>%>U3 LXrѕKL/>Q8ŕGǾ3F>0:_>p9N>ۋw jݦ/^kE,H. ahӖ97wOXx2q~;>> 687ONXx;Klq?_ě^64g}Ӿw?#?q >GD >Z!Nͦk2^563,xAO|44n] D\fz( WM㏲(1ƴ?_|8G $qM|#+}t+bw->>'[ߵv|dۯL2˛kԘ7^srYG>κdk-ѴhFZͲb>js!p}q}ׅN8wέ>2W=%t;s~I'cЫɖWVV^5 h>]Sϯ~l7Wh>]Sϲ3ygG{z#h>z?wo<$\:ޑ Sg5GiprDe81 2rz>k,eEvt߮^!ίķk%GmGky+/35wSqAGk&Sw?-r}V|v̀4(!5 >ڣ[CjnQk+=>8ˤ]`l7PmWSp}ZkK'-Nz]Ey{r#lI|$T>G}=7>DžZzw3.$_|# |\e8?>N|#(ΏPS,QwGAGH>L"gC|Co:(Ѫ}}͡'N |COaԟ-Twc>G9NB57~^|#|D"E$,Twc>8- ]2G8Vލ4>1>4hGS8ۛهnd8G>>Rw >=jv^|[#sj'|2k;/2<vš[XhX:[e=9R bɎdyMMRl4VchZhڌ/kn)2hn݅|#!V&]>maYnɓxܛ;zYO;DND;ěMG}.? Kwo>Y#qGdj|#\xGO5.bw>\dz!>n/LA8{sQ Kw9G2WDnٮ"&,O>GÿDN%G}۴/cߖ&́|Ρ9A<>1'2ѹ׷rFLM|HH]K>H>LkAbx(_ G8aor|c|#|||oPWE_#l-p~e߾;Ʋ&->Ǜ^rכ;W7jb}la >|Mؾ&-N AN25]}JFL2|G[\s:/>!^zg>}>D Sؾ{ |D/|Uyz 'G>^ GܜSǸ9>a7P}XVC5+|_}4e\|#G]}:[|նQ]/y߷G>|}Z-2&;>̄4p)"I9LZ2n:.mlf\|up0|_|dwW񁏔{7;|w:uM͎{7;|nҷco>@}vDG> ^,wn;'GlwR:LjR$i^R+|_=w}>Rla1s wH|>|4Ȧ-cZ׼&m"rUI&i Gc-6۷zC4|!"=h>w͉>| >մw+L|Cĝ1G|^?ѪR>ڞU7x͸p}>uqQ_P=Z'4ǽ; 8G>jg 'KvаWܭGv&u,+sI|Uy6^:|iO:G+++^ >Ro[L eG4v܌Q)2{4)6`z2SM˚j~iM9>ڇf>Ե71;J|#}ۭ)WWm;]-k>|D[z>5?q0>j~ӍB>̭]}:[|`ۋoߖ 8G>Z[ݎZֲq>|4 YnG|>[2!XS^gZi'(__יI]g>y3nԵa6|>R3wze>D1+**Qק-q>>LXrʏl8^ GE>}vh||#\n/ Շ_#ljdzw|X֮WӿGlh#i|ЇwZ‡$`!#E >RݨiĴc>|#\&~.>>ݠo>އ GP \|pk9|#/ﶌ U>5[G7r~}o>|>>>|>܇|d7].]ܴRVH)BnkLozd.nRfiU.|)7clwEa?>ÙӠ|ȸw?-r}V|"w//=|>,`lu|#\c^p>#o}7k|cln n"+ίVr~zn*Z|#w5>>|MC>Hٚ}H94HC0—|G#|mv7>w~>(Z|CĝfzZz >_??TiY ߛ>аz!1pۋ~|}_ϸ!qdg|=p~.ZG+9jG0"|,D_ᣭׅHycHޟ]r>!}#aBn"A0 ]f\mfڇie͘^ƌ}^55ۍ >c4[Ý>]VGO5cv'#p}(u{qO+Q;IA|#\= ^,m=>p~}+|2>䭌|#y+#}$ >|C >!_S '#ͬ1ˮ3E_Qnƈ'u^ ԛL#3 Y9=>|dgneFn>!&\o}G{tNube}N|zʉb!ySv#iX[bY6} In>D>&tRS|WW_ownZ=Rb|}Xy8yyv.zF>v@. ]ya>ڣjb} .ڎ.ڎ=h]Ի-aZsIi3i$ɷUSD0e?$S_)wa!h>?2|AO?m>q |)μG@ :-_1p}>+òjר/mph(>^,OҶ-iϑ䃜_#l`_Z|1yM|~mTK=|#y|G6Q'W|# _t\S>N]S#|A!t' p}Nw{qP}WY0G>Ou{qAoh!߲,( ah%W\|# ]{pk߇|ѝV4H5>|dC63oU',48.|O茻Xr|= )eF$Be2ff>| x4'^GOi>+L|Dv#c|s\|xՖל3 ǰ{^U7xj/:ɐ^G>z q{qLm> *q~}IxOHܭ>>|0iҺyL"|eGޑ\Cn܅q}so)3DT6Rr.wMb]Ӛd)>Ѧ}ػǬ|Aru>k|]-k>|yy-Iߎ|ò̭]-jFܜ|Պ]߽Ҵ>umAG>GxQZ6G@ͬ~#>Ǻ.>>|>f!;RiҲMeL[!ҮlM\f$)Ӹ4Ǵ|mw|e򊊊>w[c>LXr߱>|d~?|.[^.>cÝdEg8K]=-cdzǚ|Vr~/>9;]|#K}>|MC6I$;R>QBSLlڅơI9F?2N3>6q|#'f{#G]>v|ѻYаWinVnq9N>ۋw Qvn]G%N(P}L뜟ɅAίVr~yeeUӫԟE>HwGB|.>||8&I㾤ΈtȦ"C.3oOl4`4&QuY|(~|ube}㱰Ӡ!ySg_] h>.âW],YimcلG秷^C_}>Z_[4ndP|#\CJcp&E?ڝScY:!2[N|n/aWGu|+|#+jbS>ڣ빿?h><80g]}>5>|G>vccҲS'v{b7r!#uƦ34~>|i.o\>3E>fzZz >UUNʋp}X;_1z{ In> ԆnAυu8G>ZU {>ds|>'#WG>|G;Zd,3-LB S&W5 θ,u+W")[ iL8IcG~>Fǟ|ѬMG:*u+>FG"'=p}X]ǞNJGQ$]>Gk<>R(>|$ >|#Grw#n ZJЫgVՆeZNzH֭2!>dW > ^2OU-?U7գ^^UU5mzuzU'XDn^^լO\"^C&Z3yċ#8J^#t+?^^լOj+zx?WUbG^~G*D&B!B!B#.oTiCsb)71Grzy^ury^9Ǟn#7jCor؈:jDNS-#rFTjDjWhb{!ohbk:Q7Uḕ7LFU6#\XU*UJ GUj4n{mB5U.gkJv[U5O+t>(~Yns")WWmz^T1mb[<]v;/~JވbvF*5"UyrKoDnȭԈ]xQhxWQhT>ޡÑ.w*oW*w4^U*v9/zq /ܷX7iő~RoċIZmYi5թkjv俠љ'7vD߽ -yvG*5" (~7"R#RFYCިƫhThTF*QWÑ.w*oػ ǫJF{*pT{y/|vuӺ_Pe5|oZ_^lW|LXr_l.CngΑGBl+ʻ3/vμ)h7ڀe|D:9Fͩ9UlDJHM|8;o5U7WQ;Vw[hu^t*o8b/䎽UōyZw|vnfYqV\j|$2zw6wh {<fܜSmѝ-,`ވ*6hQF#VEwg9qƩbV-QWVDhdž#\ث[o8NSF=C)cq*o8ּш^%wU<;G݂ mGM,;NdE޽u? V|;"v[cuC5ӛlown zT(ZG;gDJQ]Ul4=7j4nF{ qKo8Bw4n[{}8ځǗyV6CʼnV]{eq:Q[S/U%o|ӺhEU|D*>"=> wsވU|DJەM|8hTFj8:Q;Tw8U孢npT*5FFj8R^jw4nJuG8M>p(lhb6>[]h !M+ziI"c>V&p;sGdha ŏIǾf?GltaiBʼn>YoY/D;tJ [3>HI܇5'S˺/܇\}"˻eT3דytgwI=>Hឳ;{;>E}܁HgA'[ B!B!B!B!B!B!B!B!B!B!B!B!B!B bW5endstream endobj 135 0 obj << /Filter /FlateDecode /Length 1903 >> stream xY[oSG~w /VRAP$((!8!;4s];'`D+2wg9gK&_p>zBjv)n" tK歓<86帋1q>^ܙ3kT-jЦ c>b?k=B BQtB =B:ePX:;dP9_p,cӣQlɤk8JIet>z<{l揗cl5m^%檠[m%kD-v3 @NLԛRE?RĽ_+Dk:]3 zY箕uTeܛMܓ=)eEχڒc9нC;SnogoI*gȮjbMZFVvX,_V]\S뤲ךV&[3vR\ͧr[, CFjp+fet\ӤrNamJ㘨r==ÖI WңB pK Tpk~8!2O ^twS3M`}+(@i۶Yh"l&YF`cൂ22 ˜iJ7Z{rVHЙ'v&q8@/'q%_2$r;D3yXnwq3p1.9Dw B#< OSr!v r7gvr,HTES< `/j*Zu'ѩڧ,B#K)D}ףr :&*qr/'L`H8JkaUJl%jM] Զ> stream xcd`ab`dddw 641H3a!O/nn߷}O=J19(3=DA#YS\GR17(391O7$#57QOL-Tа())///K-/JQ(,PJ-N-*KMQp+QKMU8OB9)槤1000103012)ٽgf|;?̿ܥ;~3>,}} |g|Waq6;7<_s/wt\7Xp9|zaendstream endobj 137 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 3049 >> stream x]V TW23beQ "R@^]^P"/$"Wk^֮um- )*1H]\u{vɹs3d %HLҲe$lEK`avt)nR`94̂J*ĥْ3'3cS]lԺE;wyƝb嗖%iY[iʼLmV\PmY9ۤ(^eMVܼmSR36ef)-\f"G%.nVAPBj-ERT K-({ʗZCQ@RAT0BQKpʓKͣSSӔ)5ES59%(pdInLO gBiXZnnRdɒdeO<Gs&9ec6O1ojԳSo:VMVgfT*Fl*5Vy n7 Buj[u)rъц\s^(^ޗ1fcNH%(ИO^ }]|ijCfjow>j!s G,n64OBבJ ^hWz%$.<蠒TkY+Sb5\"{VC3 yz9NQ*kS<8c"nhZ&aS,k[sch ef(a^NBDh]3霣1ZW[<_Zp-XB})! @X~0 쇢6} Ms+r< O _3af[CWhH)#v355L%/2싽AihYێvS}0&=BdX/`_^BYc(W/mv~\j~wKb*0C \\he,ڸ/|̘N>Jь,'F\g􁍘ߖ!ޫl;HyJ{ ۘ;w~M v~yw֬(u['[_V䵠pqAB ەĆmnJxxXIWF)M<Mɉ-65߬0=^`aّT1`x/pa3`.#І-|xf[iDP{„QDRֲG#n>L즡}}kfGɞ"bbInC‘5:+ag2*iʂ[ ڑ n#y}e%\)^Z8v}cN @+/bl/>*hB7O}W}N3YR.pnk0{|/0᷼!HHH'3@5 J;tv2rtl{+AgHLL=z'= e4tLaz(RנH KĮ`|1xa'ޠBf6vwimXp~ D ݾzƹ 97n/W/WGMG&ȳ&"sG[Bٻٿ&́0 r!=U!`; K'D6IߴX~<5872YX_bCb4ˆ-oJojWF[JҢ䚷%((+5<'mOgkX}#'O^עVENh-}7hv'fѓ*sQ [Akd#I.1qN}$P:~lsu`̶0xSG :m_lmVyşutŒ'Jk/"VU; {> N=I<ց>kd 48MzP'2+!ƶB;vC_ [Xۿ>ЖO@ی>{r|ħVl*!A,uuG?ď<1]uS 'O<“Cund8ˑQ`=cץ EsSt]LS KBѝjtpY,ݵZ7;)#1'S_

> stream x]O10 D 0Um?eB:gm_Xց$i, x> stream xmV Pgtc`T AcEQAI\x hBk å ̛ r)#73Ic]ݤM4h׳?7V^Uկ}{-^$ 4pIЭ0N"0^ d}#8K١ gGn$nEI%伥;:OϼysTj#Ta:&6L'>PUSt;ߙ5+55ufXlĨ^hVI$h"Uq:af\LiU8/KL%^c™>Pԛjj 5RjL-(j@MRs)5rj@ePO$K.2t4UzaC4G%+2f<:T7}AnP! qv_ev]xؗÑ?0.&E-k54A\>0fe@m.X٧/>+fV5ll}"-<|(Tmi׬cVRZqz-ʟ&Snc›S+ϭo*z bn#6m¸fΰ%^E!0xwpvkܺYs9x"لmA0d&vmFЦfYJ/znpvi ψ&|K VYYXj- O'cM[-)Cі2k2q&&jld%m%|'BCb/=`4Z.xRMt|\Zd0~'W cdU%8Ztenc 0a >$a gۍ&cf>*$-XEpJPRf0pÔ ?w ]4sVtۦ7 op*ȸ jj@tfz:Q)8_5tEM01Uq"]jDR:R!\ƪ"8֤ȶ_wM>oei˘[ϥL~;`i3wVko?f֊n-6 u͏PP )~[a*{kIw3pG*-fc1LbYz]]њ]-[266PXb1IW78귧c2 KR`ܿwܫ+NkWtH$߼0ʡh^N&t5⼹U(xsx=Do׻MF u%Y2TJd6<i"sewԉP64Ei;͈#sR{zk2!"! 6kr(3 f$3.4J$,5VE5 :@ z)" ;:oP~ 2HIQgPy}a.qOs+2^Rgӄ%樘)ĸ"\# Y &Gh!БE\}Kcϒs(35"WadsۃcѦg]n8t\ePI#­^2榪>hfv[sz[T.0 ~0:kU8O]ږ_5zKBo)!|wU)d*(!y9삠ILBv2SpZRUNV^2YPt7ܓ_EOmgzoxx =Ϣ$Ys*lؑlCMk {k-FHuOjvǷW\CNj d ssg1ΫWڴ'ٖM|m]=D&pєok2V1^l %6o 'i[vg?WzV q&F],9[+edK!͏@٫N(wv1;)ڡendstream endobj 140 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 5169 >> stream x TSw_2TϪhjVk⎨EV!,!BIFalvwkQ\ZmL[KEtL9y/w^1|bFXey_g&/IA1l3OF ;`Xb͊la;%*i/=yOY"'%KMKJdNٜO-JZnpsI$ Y9sEΜ=EM)%'EJ!_/1Z ۞muTjzӇTIdr/4?J9m?1c_^oi1Tb}h/k>sPxCp|\!)cja8&#- c]:b5Gb|TwrZȏџq;:vP#gh:s8?"c2fF1 zW~DG~Gj' wQnRk>G#T`4ZVW~YcNbY$3æyrG%}GVfb(F7~~A W&(v&-ڼ9PXtՃlȳEc]͕Tͦ =yD9U>l So+C|XhO7 x c!I"CT&R+LJP~̢Q r0QQɠJUp4Bτ~^2 sEqGQo]m]!i8LY:ʔq'XB墕?n-+I`.qcrkP *xd0 7{}5J_o g'F~ fݱ@uXCʹi V.P$k7}oXO}v G{Ѱh7LCy++%34&fV~hI[u<͇kԹ5E?MVM&Z>y}![E=}k8Fw\>ރQћH0~(A qt^uߘx,`0is3bxy qAls"S+Mvn6?Ơx4fbl/^RxIfNූBxW6dᏙ/> t'> :Cwu|$2KKnܗ0~3(]WhqM)T&N *oPTryI-RTExDbT,bNڼer<\x3[%TymcOUHx\4tM.ɏ HWVD:Pp75Mف3BndE~acN#mHo^{[/o' LU٥R7j*1+HFj$6{c7Z28=ޜLl׏u]=FFypptIU ќX[q|)K9ZW2iNR\i?/qPy̰5!%8^uDmO͗Ǥ JojH_AT$wYݐj@[6z]8(M3ykv4sٿgSm=1Ӹ\z9WO}SR43e7J]_ ܇-y ڼl>/iWC BwS dYqނLYrRg﮿{B/VڒJU Te¦pf<*ߝÇ<2*1kbj>֌Fkodc2bd)]Eյen+UmAMCKWRRrRduZZV&s؇3}ڇNYj}H8 nJg bsA2.1p7^ŒʟChetpU!}JBf(m2'g\a&@n2`6}#P gӺWa1bBO"GNtbdBӸDI |GI-376uҗkq֪yogf~:WkWNhEt~d)z\odr]⩻hV ;] [/qlQz?ωyM,s`GJEg2ag97`XgDo[|Zlҩ"-s!-븷huS`1[0rb, 0)Fɀ]֦;̖R'4unTt H\l$د9ML!ӏwnӪ{M2Y }ͺ{_$~ : u9UX_FU_,tJ#*\ xxP* >pJvP|iu݀ѥr@hA[0YNp S˽\)kAɤڰ@$C !͚TOXE%߬lf7f,s}?`?q HLOыC~rѿ_6Z{wSѰ#`(X mc?!EOZLE~'gfdVH-~| >ͭkw|W?[n!OJSg\RPMgA,6?> stream x%KKQueһ+!LkF![Ԫ0Rh fR):iNQѦںl@vP,qp ּZ({,mCswiv:ŒhprLE%1"2Z hGJZ2(!Kt iL hi3EHvceEUՐ Br\Fj>a ]9CО a/_1Y VPB>J]|U?w^ dY^5ccͬ%꽾.eN^ҲW/޷ 4؉hFEf5h {EY皭LJfn4n[h[]o;FƏxa _( iendstream endobj 142 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1102 >> stream xRmLSW>-V,6u9. a*&@ՙPi0$PAEg$ۏ82cy/9[+}}PH&AE5= OoA"$Ů0bld"أ 7t,V`2ּm\ΝI1\JVgpZo6xQrnn3ϗ$9XC=j3-sf=hsT2 FneؕSc-.)6Nk7,p;_j3#>ҡChڋRQҢL!C2ԁRԸd!! Ju 9IaAxSՁϖ:Od+ZFhv6~I[pZMv kK^[X;vjBemlәgQf rTQ_9hEׂo03 M=`nBֹ~Ð U*DVAܓd%W7&G?NuْvJ(@. !Sg8_MtƜx_i^rq?zaߧa!Z{D+ CTvWH;I1Nȹ\9_vibf~&4#e_ g\d<І/Nj}#>;"P%ZWAkۺ|,WP R" J UMmq3yt&k G>%mYJ|D=,MO&\t||33V?jou7\)>??c \k`Q}, U{o l/u:=]Gf CԔz@f0īЋCdr%@R(R]5 rѡ, ѥ/fSto[!MŦVB@ prTd߿yS^1|=2J+>J&}0#ҽG?(av5b >|r> stream xwCMR8'vz-   ZWTmqCopyright (c) 1997, 2009 American Mathematical Society (), with Reserved Font Name CMR8.CMR8Computer Modern3vťbڽQ"DfVT@htkpozc,MI%ڧϋ1# :Q?f{ku؎׃$Ena}{mltNx~}vCoa  7 כ Uendstream endobj 144 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1416 >> stream xUT{TUή8;#₈JŃ C@W}(f X "# 4@Q9&)|]twͬ?;] I]EQâ2yt݄0>Q҈8E%~՞/A)==A+$ אBisL9kVyąIƏU8)_ ?737;k"/So1dqنksyΘ B99ky̬l*G ţ% -JDI( M@( E 8D!DR e6St9"\Δ;}RjTpY)q; G4.d8ƕ 2@7)oW/ J*խxxxwLhcl[t_9};1j|T2+–KW3nI 31ȨZůX<])#`0Ao?J>1Z>{Vrӧ;8B nSOb)[7Nǔp f`3Qa ]8lQDއ)捇0Nn#ra܅Ac AXK I?/&ZX|麠AӺveYQǢ=#cv&1)sS?={iA| 3ի3 nq}jo)&| t0'Wmsݣz^v c#:3_T<~$obE' uDf'dؗc 6bofU a)Fb^6z2"`ͬصH bgP~V~ƍEBA('-~W5ILU?!``ӗM5;RnY>ڱg#i$?Xn`s!^~JhJ-WXVa1d0 DpK"Lb!MN2p?L^:U>is;S{mg䤩rxݫwM,2FZz#QBeZEZU@Tez5 nrR^b)/S*wZT9DBoHendstream endobj 145 0 obj << /Filter /FlateDecode /Length 4521 >> stream x[ٮǑ}({iQR_A6.ySQ^4Ԡv⦍_s}q2VmY0=9˪6Tv?ͩl?M~ɱ1|Zk6%-p'rDA\'q&Ϊݖc꣋ޔJNzY ɞt>zs@܇?裗}/e;?7}~GjS_>d 2飏>c}G@O.^݇GC;>zuAa>ΣuFhhE}uÓ5r^wn(W֪6H7CG׃Y^̓@'&-ȹ6ֵDR.oʼefEŭg|-xݧ-v q&J<t+>?I#K<;qJ?偁>?h(0`<)c`;ۑ@`7cןNv$ؑs}Hco7{GGiyyp@UOёGrޡ ;꽳طHq;[$w%ɷ-3s2kIw?JNfYmM"~Jq˫/_MF{WtaPIKmX5l -h Iot@yLv9hZ3;m&˧.< n'sM7{lg>~߫LЍQ˨:V۩[)E@ 2kؠm~a+z$G0*k'(/.(D IsdpEm\e.RA@TW(^(RL@jj[Sal R\isA(踙:F)1ʂ&Ϣc21DRuFQM.ŢMklDȅ \NlU |UJ^8.4@ B ڊ,.)x" zb(>,DJ %?S |ˏm3̣M5bEC-b=LsU5*&N[QCߎi+uqITJ: ЕueS_ kq` ́Iүe-"\\"u5*zxpVJԸ0/CUR4/іƷP,p1sظvnnLrY8{r΢NF ԈEB TI CTXZ` %bRz*B&z a1xy QnXD4)RH. b=d c04.Xf!f4.QDN˃ktFF)Z/p鎡 H_(R .HVRi Z)ŵSPI MW+v`pj&_HTR ˨fJ.%yd$׀D] _)VBˉ+e^~¹_)J=QN2*c()Gx*Ȩ *eDž~c/!)RggS UPB #$QnQ>P -gp1g [m.ěytC 1v<l_Brd] f'\q;+ ,7Q#pC`e#&%xfFF7&.(}33m~EP9{;D c65*N>gl]1E(WnWx#YDBTR);Cwy~#jŤV8 FΪ& '+>'1*YW .(Ct) xb)NC1+*]pkӱ=?RјES !"i;}6-vטGS.cCo))W??_xb{©3B;TTuWl|{cy5+++Uٙ&IGe17t\'ʹ x [*/n֫JYN@г;섟~3؟j˟TUJBm<&YgnmzlU-ɷEх{49˛%6a:PtQendstream endobj 146 0 obj << /Filter /FlateDecode /Length 3601 >> stream x[Yo~G,<&I߇ 9q`8lKe=俧a؁]]UWգk65O\^ĨՊ2ՆάWֳѩqz,kkAq?FiUz(iԨYPk%GrލVWo*nTc=ͨ$TY.DcՋ*]?O@Ү0냓UT7_sPW{fG.|5w+!蕄AGmlye/yp@<ƶK?34wقB.JX7|d)>J무.Jk*F ǥu]ZJڹl8>nkg}WZW7Mi]zwܛ水ΨjZ_7*z9.uSZW3ޥ+\1-Ù#6Ѻ3y!TK=O^i%@),Nf p0]w|,pRy& G 6 ^礐f8hҗ◻;[=o+\xPKc^)m0 {ބ9s] ٮ5 ,P.$o|SG%(+9%k`fRی9ߗ;>G %3F)荇]'4 Q;Dž&*.vwH#<?d4;sIeƦ;˷}in`O0YZfn:v5Ь_[I87X1:+l,l _^ݖ, 5ڗ1`X`!T08FA;^N x9r ˛8O#- 7#EB yƤUDŽ(mu ,`U]SHqh41E1f#5,]#ze+NT4b>GUGqh)A_6`[XDF 1\yDŽh"KĂ3\-]8a|`σ/ ZRO7]0K÷%/}i?|[ZW}c? =mp^!XZGwGU΄Wz@z]}m=kjjԧWU V v<W)kSfm dRd/as) 7p[K;1i9?& ZwL)[Q+ٻrq& ԅN@t*>Fg$Z0s=pkri=ˁs?L6??!)|i3e6C%IU` &,  G᫘y#$}lYF~CwVM.8%Li.5@Tbe^B>} iȈR8qHi0 0xY'4x-N 6& 4 ;60Լ i).,9MZb}O[CZyt$q}ȴ3JJvarcAsvJX!n,щF8(΅䱗AVۖ+])%D!P^z CTZʐ%*,]ˌ7Y $uӤ TD# <&Ш^^{WL/ X%ԥ {zJx_311k&q"\>\ Bk'̪_ Gt{+Eq`~ϜTHؠGld_1I#UT2ي6S*XֈZvh(m pƕt<B̉P`fyCȫdC L0P*q!ꑠU!A 6|86 |oGh_4kl`b{Rrh:U*-;-A7GA7]!]zE̴",NǝldGe@Pϔ[ZPK+"5~ӋM/828q`p$|k"oDm6Ч|9K/!rҎ0=y_ xRm+#]逑qJvJo fR9z4kU ˥߿ɤxrqpb eCp?bZynuZ{ީ֫WhVX ԫuD8ͷ,ݗhKR5/9@L@ }0=YDSo*Xi׏&3X"cJSy|Qs촖 z88B0ن B7f|1$۴c,2+UZ_U5kzB27dKP5e:KSm( #ѮfcvR4xQon׼PS;C;`8K ^ǤJhdɢ?Ey)OKYgS,ɧQv'PΖ]<|m:,2HڞxB]y 3vAX6^s=@,YJxۤw@R_`;|W6Wga:SwRg0^` gLBQ+lbDkm,M/BKLaQ9*ZtԷ[RKToA'Љq3_x?]TbuϺ&i"p(3f/ڔf>~^G\(:vT HyCNGu`q#;F%>KY]Riu Nf]DtF1 Q{ h}yBk: 7i_He &u,VQ,ax֊%6%ap/&-|0(+q{r}'cNՓOA0Ȼ+T;t.ާA2P3|$W|E|J~vG$~&.? %-?EeypuKH$T?;"CR05L6nF =捭P(sߪ4I5KyPSs-/J%A9 O% aݞ=k[/RA';*t4Hb.TD-(ŏbR4SQib€{|+/Vendstream endobj 147 0 obj << /Filter /FlateDecode /Length 7790 >> stream x]kq? #@&ޛ~? $m0 Lj-FA`J\Rt眪\+anuM?OzZ>=SoïO>CɞJ:~R\:ZɧOɧ!`NށkP+z<f`ccƯey_UԩF|9T>OعOS#,ä|\:<{D'l1u?_S! K1!So,\=W6$~Nd?u`8ts\K)Iy7AٟāKpiéХ:..è?~=7xz?>?ǽ&W<xz<}9n7ݎάӇ;sOwAj`_OӯO^Mi~sBMPZK׳MM.{KkO5FMJR>{||3Wzti>=~#''ԘN vp`)'ׇ?yO)O{Rm@punWځ79OX p+ F{̂d\I MMRL:U\@;J_>&41s'AKLP(L'$1b`aR09@@Axg:e0~q&LP`SهOHsCxJ͒{F#2=,53}d!j :lVaLyIǫeWf*qZױ::YAAUe@w-G'Sz(頠 U/X(YQ^`*m&N,FjqVOP6 y [Ts:CO"O-/tEgO0.o &bcXutJrs2\{\~R,\{/\pe8aj+ W,\p5•B W,\[,\2sٸÅ,#Nm]sM\.sq %>qLjgˎt$YG_lAIj3B;P1f!'o^q}{x_}s;yu0c0g_~+3- ~YTJxMcљx•mRCݰC]ΠE vUf(ªD񒚻2>@qeJp(W40hpG ;$8f.%mvcyO5KVOcHshffH\ U[ U@)k+]1]1X d&DM-hNm~dh؛%(gtmնE*ɓmj':m(gtE$f-(gDGvL/ZI?ٿI"ʛ1'ı&qT%/+CͬU2V(E|s$#x V䪎$ -mgRg+Hj~$RYN9աm_m^i aFҩNwiۼ 17 >EGgmlHO /)o^z|<1n$`,!?0H Ac8*@k꘵p6ϧP/%}b/YfW3pWt=',`]ai?1) a+`=TM)%6cXƑfsE)~"Xt=flv-@|`8C-KV)˺9:G݌ n/NP&*\Jc:  !=C5qJ17q5D>I*zÑa6˛Z>1M)S> hZXb3"v7* NFθǥ::pr C 4A~.Bѣ9HJ&QGxvGFZ2@l_u$fʈB[̔Rxh2f#fV`-behruJGv) 25 (Klg2bG)C<}?;e ]5A^@kc0SS|Y`^T, o6 (Hf [a C8[FY"bÄA)3 5L: (Km) Ïc sXa2FY{bp J;yDc s`C _aof.MUˣ%`:F)fLѝ$͉zNX.(fPUz AĔK,R|TqEwر+b+FtMW$mI',5zW0HIZH lAd'CӉEqv.v|a¢vGnQΜ]6㰗w㠑Rqy|` ~ȱ`O%j;)m`َ:xZl~6ؙ!-_(nAL^h[E CԓAζ,N;皻')){ xVokYtƑRJ#dY8DigyQ Z̮ GyheJRGG0C]Lu;15Y \]Il\ĴL]): 2֖v}AT"Q4 yjCf7* w(wj%{Q#4ZA"U*I+n9ZP9,b\?$OBxFZ^(ItT|,T%njg`LfL Q^+k "T$E&Fփc:J 8{fh7KiKΦw];pAS٬ٱ-Ϫ;Resw`X]|=c(gr)rOn ZYzgsƗR6j:_,I\D q`Awʙ}BzOG&pЮJilH.lpO`0yQv>{n]W$˰G?=vW\ō͸aq mؘ:aeQܝb5(WkP6Dl u6n\:+~<xԏť㇦]{,=!n icC?i943eC- ^qnDϓlr(eNsbkX֌'9(ۛmF\v> 4 lߢʤ}.N}6S< 'B aN\J8w%M(4~Q R}T4ݴ<꾘[%CAz#ʭ QUO)oik39͠ؤYZBY43qrrH>ZEZiuJt&QY,aAas3%3OK0OK,{hl{hR}x~KfwFZv\sR]DXokL~7fɦ,>|-/-/g -~y*>?O?}~{? _M%|NfO>SY/ݑxT<`B&F/ՔK=⅂QǗB'o tmF/.=[ޛYifa0'q09^Π"xʡ]6 Ƹr%{_o/bRyr=CM3RKRM>?]ǿ\Ƚaf7|_@yWsxQ_ 6+ }%͓e5̢_8fANEkΆI!09USi YX$#0~ԛseσBã[_nr+b، &9bJZ{ܶʥ aU(86ݳd8Y/;N^aJz *,uxnR&ff#3w~MV2S\.rX/AMН$Jj kʸ(dyQZņ܍fQVBC@ɶ.n*#g >E .o\{]ey-W nH)pv~3$o6SPR :i^ǫIs%'[/quݲѡh^T{l ".4M;ѧI|~A v+cR};IiIdo:SIjKJs }RNnG;VwMBvϘI ږ#'ŒYºC/iV%Hբ"oX>Oґ k1]&qC$} @;_rQfyoM v%/.iрL}z>Q vD%(>ץ0|oӫ?nᇯqnwb}?l^+'7RNϯoڿܗ/t@Q)N_\{[;m%_}n~E_n{e7{8%o WW__o ?':WL8]6g@x탦qڴonA²ՄTp/Q N* hW_N 306WrnEdeNThƔP\:;_nts(u+k@ܡ\7vɲ^mFZL9mCx6Ԗ]f cMo6iڏIAFݸ մEŕ3$1R3/'ZaΞd=2TxPYv(nL&s[] /^&xy+hZ WTdFQXs~`Mޝٛܚɸ/vjw Ve --ޝ8\!ᕄBּ}钸ٯJ Y]K7/֝ QЧ#:xL}T[VVgU| ~ eZw*xj]!v"r@G1io׏ٴ8NOn ֈqI]26M6wy)bVD+pֿ¦J6Y]+x{ӈufiD:W+Uoe a1N14GiB_i*,ɹ#=Sgm6O8ύ: دwC{ ʬz[,}SbвMI"bwB 8q? ?;q7q^ݞ8)wwoZz=endstream endobj 148 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 474 >> stream x0CMMI10'J   C`]ZouCopyright (c) 1997, 2009 American Mathematical Society (), with Reserved Font Name CMMI10.CMMI10Computer ModernkL嗡f?~tBqyw%ԇ}tM{IPc‹}wBtX_x~L6[d{xt^o];Ciedce|uCma  7 ̿endstream endobj 149 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 331 >> stream xcd`ab`ddp 44H3a!3kc7s7{' ~O+XP_PYQ`hii`d``ZXX('gT*hdX뗗%i(gd(((%*@ݧs JKR|SRYBt^}ω33G[7]z}r[~kb}vEly~_d}{O!lYwVWG g/d4mn9.<'yx\Qxendstream endobj 150 0 obj << /Filter /FlateDecode /Length 15688 >> stream x}mfqA~D#Ӿ| 6 6)0Fzg׊Slϋ4-c?3,^^X,O㋿iiwy>w/{q0J,{|1au޼ً5\nxh 9p.5jRR}Jofk=ҿsζyF2QFE)CR()͋yQK_>/[ۼw_tw+ qr^v<\Q/~P'g/~\/?-5vñ_U?KeT}@#5U:ӗ8V/ըt?wzO_wΟ~qTx]7?}O'd_GB]c/~?.,4G}^?w7O}D;oGz|]QZ샲}w>Wy318G?}B=?SK_>7OVٟB/@rkeuᄎ_w߼^4G&?/sև1F׳5oC8rRW?K1R?$+^_!J֗$cmk=N2L|Zl[_{]S>ZK]ƱHiHtI]SϹxRTw>2=U*~=T-he[)GRg.d@i%Q7+q$mQ##>h=6gjx4 9481Bs*&tvޫ[y'ѢNZINj"Z{A&_+Zyz D2'LV'Zg=IIֆR`}HM#rs#kEѓl}L]Pxzr!%<=JyP? ٥>?^s^ (ϦB)N@ ٙP^pI΄*٥G臏5=TJ&/R?0^6+7^pw@;lXr#4b'l %٭@h?DFqЪ8ͦ)d't&>6d0oY¾vUI &\ȑz-K!9 7yRDJMCiy>Du uSiZv4 ٥BuдDl"kl2RQCa1%9膒4ԌHXSZHc/Gt 2kh'r4d$c3&ZH푰/G)M~b3q>ZYxth?pH4D".%5׭lry\uCv)'^88?>?is7 ZbKi~>$RjQcCv)]MORG]g[Cr{G6!!uS/W9 .VQ*B9j5Q2g/[t+ FJ{ 呫bzi dRm"Cb)L TBZђA!lN[G]F3fg%DJzM7 7fN;ZZ{<(g,r%l PU_' a'VfXaα!c'9 C?&]ghѬ6")S䳨:^\dסnu\Fv)Unu.64U\<^j &gz[CTuw[$Rq4Ljm&վ>nM-`m; !N).hR"EBmU.7j+]J _Y2'=͆0od#FFnzwiGz0yl:ȍ:n##@ ݏ\%#bJYDs: I"JDP<'=QU5dUdQ]@ ͙oFKiH1EhjP];DŽp:a؁ \[N'8KeM >EI&oO2sv.]J .-rXtJ:Jρ}J {::\WFE"l2r=,?T gGcp>8Xa dӱ(P# OQ/vaFqP1!dz}BF@_dZNTpd3D֒_7m'D Lxel0L-6D)9~cMCL3p4EkD'Es¯p[ F[7;gK";d` $<̴!:X h.DŽg4lOn(/>ƫ4dmJwRQPhCq.EENm)-?*>]yLHӢ,qc=kሔrg)G$,C 9D:-v(icBFssk=u]yËh#!pìfy:nȒNЉsYOtM|UclyL;j%PnKW)E_@Fb3wіDHHA 65dX"lz\<#Q-<.KmFNNfKOHm&Iˀ(~}yGW-\>+ $Y4=&szC4 Yhe3CGFvڒ}:+Rl#R 'aOBn${b-։0:7~6)I/I UԏLJVkd'J""[)apRlxYr)ER)HJ)KbbI![)T*}㧓p` '}}a'N?>N7a%? ;+.1+(=-;1zBu4 J.ņ K vB[DEhlV)|ց~g&|ڵ "4?n.y=L섨 zOc'>;iι|ȍg(ק߬(m*|GvlN'|=N;G'cmծ $vB/}]k!#G*@Z'Eh!/GYbDЏ{"84&$q0=BҐC]: vBÉ\wNhؑLFhg_;_VkgC2,\vevB[yvBh3}0oR.ifؔEBтHm:j™p6diH鐲E:!:#¬QAC@K=oM4W Sef*BΪ^:;LNhm!NNVNJݶ9 2 rC?NNhKANOhCPxZmt[)z^@6Xlb̑L.%#'4fK`#408.%Vϭ`'0 a'8cfq?Wյ ]BzFP$ 1+ 5bEjs9]kSM"HrW5ҡ#Zo9[vB9 E,N ,Z2`/Gn diYJ2:Np`C&!62 n4) MZmXЦCE!(4lq4( x0FHh81;׆R2tsEK!@yAH$Fl~ԩA5()JbJ"KR~0`#?4He:Bo-R5#YGZ:}X5 H9WgFn>\ߌ܉R*2*9"{:RTG`{Px`0K}^.ȩp9n=͋6S5Y CZt3K}fҦS;uuٿejvY lR޵./ '+@wD,3nd/k2-Ԫd\ҍ<l qcx#]6%d?qAɇf5;RRSLZ]\u!h>ĐWR!.=չ.pR*$'y}-]X|Gpw~5폯U]q:٤DZ:ělKi7 : c"vՃ{JKyMzu.IҁKG҆R{M88*jل=CǁoZ=&`Q_K. #怛#WvYۛnzcgu9qv9v"8\MH \\U*2ݑM+x9"ݱm>ƆRn ֵqPpJւemA lg02Z l|q)Yħ! h=|Чč[+JRqLYhٝ`&CkX[EgKIMrKԵI 1F2)ly"KiMS$ /6Et.%5M&w䪕~J,n&cK%c}qD:k{LV``3W u{O]m٥&*= #fi6cGX=h]kⳀ됓+eBj׆RKl YI= qڎMKEn;ACAŭc:">C5N!g$ËC:{.,x6aBP}G2 y=EH\ha^:;KIMvZIY U&f5ddҚ4)p&W(sCv)9*>9 o)/) - (!0 Nbt2| 17d.qmUQ)Hi.L)P-13yeb_]\RGZM8@T/lf.aC #21FjH{cX}ޅ%4veRul:eyADzn.qRUSgK'sv!s\#Z^Eƒ V_>O 4AdFEFIg872qL\")oJnkU)GT'0M\:UhkCv)陸yH`?^QDlz  Ug!ڴ8ܙzrIRR"1k0)xT/UxFKENrg,| h0eSp*\|| &5ߨV~aEKhMO8j7}caHѺv Q(v(:bޒu4}33:rRMfKI"R0sTa`[ \/]\t>{ 9D"}і&OyqpbEVϮ#G8I@~8! ɧu\|Q)5}'U dld84WR9x\Bi$Miq"[_Z6)d'RK[SQIX"nGPR!g3W"p.kÌ6^ ÓV*545TD^I-᤭J7ʋd6DJ v:F#mF#%&3Z<8l@)E)osDŽeUqZŨek=S&LDŽ`aBM "h$pQd.T)APV 77GTrxt'$q3u29)5$o-#SGg`O|9 Ȳ]%pGZd*j iPCR8#P &z59RD*q%DUXayZ< !R M/gV/ː;'{ (J$%ZdXrp^4R).R/uI8G|g\[}ɒq)Čr$ ׳CWa`,Y[$|4\5j껗ٞ_M9rMDGYa nێ-r<[0.WQ$` ` 2Dcz18zA2vA2#g[gcgc~!`!`Y `Y 2K}^fz(ۮ2D"Ζ  !7R٣ګw!`7`73K}f{c &`w&`Y `Y r#쾥evD;KhMFFmi88y y #^r";TلDUp,S,29vK!8<GR|G9G.#.fdՐKyA| |٥wQ,A,AFv)1  ,]A0SzPqb.%C'\+`g`gr#Kj-`` [ ٥d$}A,}A X t> % €cN e= V@6!Ga=dd-JAA٥nt'-= #~],{A X C^ ^)y\ ΀e/f/.n3 2e2 e f^ K^# 2` 2g2g X XX2R$!΀e.f.HG(KHa|"בq@<:q`Q۬ MLp-t@ AdAA٥&IaqMKaIi Z2 X R2eL#Ֆ)Gv)n0pҀe0HKW@43 ` 2ɨ]$+p#.,A X 8  ܁s@tAN.`) .H,A,A $€%1€&1|/H,A,64eA+G_b_bg€]v€0`9 0` 0'F$>=0 2_r8_ X XLTA$ o ,UA/ƀ/ȌV@1]1 ƀ%0ƀ%0ȌKW@1` 1` X` _1Vb "匁@1` 1` e_@ @1JH3i(Y MQJ XL7 $/p/HdVd@,` , 2Yz' d;]u&:W X Xps e0e0\W\GWRW@Sd%,#*`) *`) 2UU X X [,KX+g 5v&%585h\~EBjF 5r?s? JJU<\ ɥ*_Υ ɥݟW.eH.uESOOcˑ֪Q[xc 4e?1"A?x2>N<8㕫f )WIJ >[SX*H}2 K243ݻG&7D0WzM9'N K}^j"SMMdBا1@ЋӜƀY)wFvOIc@&LOd -KMKc@0ER޵S%Z&NcА`4Ց =?a94'AGrN$$Gp<5g1h3w ԣ9j=j숦rg.#h::ZEaw~yĽ3IE'C,XR(Y|XYO`pD"YOW TL Xќ@mHpWn>ra2Ki7)֫+ ojJ.Քf)-ZSBv) '\HViJ=܊K ws5. *9&$wAv!HCb  ؅"BRe لB\<M]]J?mR@}l!Y(sЃڈg.@ej$sABv)%< ~.%.@&DDTMO-AOҟR-G.{yCsrd b ٥@AwҢ RJ3=ׂ"X,240N4n #s4xE0sɐ}VБ6izޥH)MQZ5р 8M0Ip&NPLCf }Ҕ_4рaѺ$E.Ep";g@ \T>kHӴA|%-P M@z>eMZE.Ʀ岻uOX&(huZCNgbXֵ)(Y RH6 y Ez]"$M7АxM\ fΉ B(ʉ }nY-o$-vjҼH)RPe([}[~Ȃ/5o"Zd)JU)Ci4mAᖶ@)I Mߵ-!hYւhYXE˳fi ЪM)A,oA4 -sDzq$K\;Y8@)y -U6g>%smx5H)S@Tk mUɉ ouiHrM\`4 [%{GO$|qMI RXzґBVQ9 ϖ 閦 <"]ɓD}pwo|ܮL^K^ǕN+Ps3z.Yܓ|(La%û3D}=9 zj?KSt-~+$j2T휾O+cm.+3CA196U>i8uS85kj 4QfMR6ל.>*xwA3H,MM ٥&8=kq6[T: n6xw廽+/WɑO1RiXmC`Q drWI?mVtIJՕ'do2#9M~JPBށx̻򝠚bsm1׋RہxSp#"aXB0`zz6E+B`kH}]JG+#b[]JT-s\߮l@v)]IFĻ"a6 pS etDӊ,m VgMSGRB?w!AVf : i'ɵ& ԩ=Rq_ *#]F"TQy iEK:M">۱B_=7dN,c7aGS̻4cށD̻ҌHjE%][yن+ԢQ jsl.z9y}K1x}/n鍔Ϻ<7&&!G0<]=j oW#ζ!jIbv; vJ#5]fh+J!oG"Mc}75+%MB -bo66+EtOم8K]+I𮰎|ގw%a+im^JK-ݰ1J #)]͈xSp[;yNyě Sܼij##7RZSdʑ)u&1VdJԟHvqGSWc`rn.dmf][fУ?#] jm]J$u-Mm%woRo!oGRȻ{!o^Ǹy[];뜽Qwŧұ-Pؓ=*r-͊Sہxs;KwewsI۳6}LYc,:r֩5Gh7[q`;ݕ +Iz*yуݰ`7/>u`w چř`wÚbD2UqP7 LL)mHvW\ޟ[7~x{ݸSv$}x [/{' } BMzΑLzvchV7o<ֿs>8ǹXHs܎87\5r)_@.zۑtca7IrSÌv$.Rjz+E nGR ƶWohc\#oP# e-ݠ`UX;Ʈv#Gput!="݆H7H5U`Pmªj^IKUL] t_CWVdtn1O7 Iđ=^R˭hEyZUN7T:V ?xh='Yg-}Ơ/0 FׂG6Bzworr RV_Ok)M~ +f/+w@q~ӨH}d \үWE#XAAG%@N+T-O6^Zx54Ps!]vh"鸪oy~Tʪz&WކfI俾V;KM<O'=!U |.b2W8PO-J]uwiOJ䬹ysFBY%IZ#ɟ~ӗ_`-L膁?}O/[zOokxޟџKzO?ӻ'jʾ~B6_?}D-?Q?'L} %} wi6?ǁ⏯+׋VI^dk?i WUFUۯÏ3t*XȰߕ/h)`PhgRCVECZ}{5o|W&x郧%/3%'ow7~/E3y-/cVYX¤AC8O;yb~KY>9{?J w5Mo6dOkXz8o=8endstream endobj 151 0 obj << /Filter /FlateDecode /Length 5740 >> stream x\k\q>b`l8Hb8p  Պ Gԣ_W+JKgﭮ:U}g9 _^Gn 9B|J:^ť-ڑ7-r);HuغR:LB eqz^yMR˖㤔Nɗ-:TlފNCHEFuOk*MO37=//ǿQ}>֭&_h߲aux{97oj 5N9c ٟ>9{d߮EL-ƹzolLInJd?)Q0X}k)%i+NO~'wqsxa+% {stU|ٯ^;Ww_Wopzۯ>+߯^Oroໝ!/nGs;W˿i6ܟ_Dw;#I-r#'snNjV$yngk61NۯNyxƧ{su7ݹ/ϯ0;c'>yv'Î۝u֯2:ҟ)^f/[O<vnϿq˽9R޹jح1ǥ5߾J#[ j,w؍UCU[ u^Je 9 e^C{MLu+,ɢט4O37LzbD< dܥ:2IuORRÓ@&]#Ts.Ԁ!c+4/KeTWf)ER,,ÚI!Ć,R,Ol"KnPRdM!$Q4:Yt"`vwQ>MGj+]i*rx/m9 tv|OgKZ-_Cp: 1gz-~Q>,(5n&Ή=vkx0)稔 GmXy)V#XM*, ֦47$okKHQ`$FDk@ʓdUM$c%ݗ@"RXQ߉ tOFCUW"2)X9ˌ.Z]AE e9da8hᶬ,[J>otL'H T&,:Yf0zV+RmAd lA]憐&h?v _:3*T\\:8B RUtR[Yc@PQp%~"iQ`EbAlN B7$J6"-,LcT@v[y }A#b*OƉBHͪ(wBbNFRK%^8(/]B^RRTk`c1BFghM[JUաc 4T0RF6Rod-{q'q5*2bXSGf9ڊ@x+węc E,~ҝJ"7a@ {gRfk)BdžP_C e3TӾHT33;^{ BId=Dk]lْdž:",v~EQOL€* F"W j} x:l(T?`N#FVҴwaLHƀWdKtuGNB 4"7R\tRջGCn ;lbbF5ueuey9=4. z^!búpYZnEŪV3rm8uT>]^Z/Q5RVCZx ( Yh!Q,i,ma]vwIupZ#.> VdaYGi5Y:Ȇ֎A=>,ZKC/KGy)Ϭ@'jҨ= G{jK:s`n b#q^DɑE`DkV/3"GRS.(%}c,[rt!i` L%22cѣtg):HnSbMfH*л @dζYGk+JEN˒QDyCFvhgQE,<{@QOkFs>R`88Q W4J˔zų6Q UaZ z) ϔMJg2uT15j%AG%vxt+0->pQ*EΎ29G롵>/&Nkhܞ!\ *L:awQGuqAF\l"]qgd%sӎr&fw^,VTt.*phfdRGx6K*iS#WT%VӗxA''7u8T˃ 3=o,qF!}jU\63~-(JwTAAwV 16۞'H:JyP苌5Qij$N:p5FO1m6lR.Xi:JABZKr43֢ X?xDF$m,=w1DBO P"-)440c nJ=ȥW#:GEU]u-h#1;lQ@lo$fqR= u8upjUM:JrHBGI=4Rr(V)A4"R)RvqeWoIcX~i Yv"fGM5UBE2YGnS8p(d,\GGI[Ov+(;`؜RfAFI\*9 ߉^u!G/{jlFQSQ:xOg6@~3= uDW"%.%jV:CK_oT,iR𒗝7'f qHLKH1}- dkϱjN rF^[qx"͛=~ ONg4i9)"Qm.N\[Fkit Uyȉ:p=Ya@%-x;}Va,3OS.,uAcG:uw "X:vϿ[l ,?~|?]}W=ϟ.*@=:E#Nh]>M/MON%/?V[Og YP8%Г-6#%; S,[zziFd!O7,}b e" ^ j^f[8<_@pRNQ"c=Irt/6w,0q> 8L&:69RbPۇđ{^$<{@g_˯B^vYq/{_ƽKv3 ~x_n07q~\~~UjGendstream endobj 152 0 obj << /Filter /FlateDecode /Length 150 >> stream xU;1 {'0q_N@ -ׇE٬W.,?慅:c8]  I1 7g`tBw2SZJffBPUR=uw$֓TS>HԖ!56w/RCendstream endobj 153 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1328 >> stream xmLSgoi b&Dݽ5s A\"c5F -J"pO-o 0Dd4f̢_-{9I?8Ŋ>p2}z3ACˆXoK[q[ŪP7f qHO(ߝ7Arr*?]*T 2~@)Jp! B&R*ڥR$㝉|X)+ja?K.SB7 J)TEB ðJeP(H1,;`Xbcb FdDL}gnC8hò;Cz Oh.3?{=ח\&J _4㦹 !aL*>Ufd,~c'&oblHa=!m;oI?<@yBк?:cTo/x4PKfFu̴8ۆlÝi\rt(aGRk@nnԧ%`?(^BkEdotU5|u u1W`aM?x V|Q/2#YMZB+TShp6:_8;^> .+8[ o[A]]'1Ւe{'^%\+ wO;_嬤(0?^g|M/+֗Nh4(Yã1i;&fO ]r'dFp.Gw-OQҿ|{&`^Cg0zX(qYRS鱉ٳ3L vjh1|UF3D b)7Τ3kw$s~F2|7<`l^_>=T^ GH.B/GQ4 mݍb47\3(-EI`/x&mtx?gUk.L*s}NL>D m=-v )1@ GxX .5UK1q( WA{-.<~'"C6(Սa욼b`l,XLTK;TGepbB3b6`֒̔YMp%myIp51;ZܽQP̳D G-tZb1endstream endobj 154 0 obj << /Type /XRef /Length 173 /Filter /FlateDecode /DecodeParms << /Columns 5 /Predictor 12 >> /W [ 1 3 1 ] /Info 3 0 R /Root 2 0 R /Size 155 /ID [<7429a6c66f65326df7766fa602c6b040><7c809ab6425f9282a4a54b85b67b722e>] >> stream xcb&F~0 $8JR p8~/W3CX [A$o9d: "9H`0i"eH9 R8"?Htɖ ${v\ "y\f܊ R,{ DMx ">Hh),k6a) "ŷ!" endstream endobj startxref 130733 %%EOF HSAUR3/inst/doc/Ch_logistic_regression_glm.R0000644000176200001440000003277213302741026020423 0ustar liggesusers### R code from vignette source 'Ch_logistic_regression_glm.Rnw' ### Encoding: ASCII ################################################### ### code chunk number 1: setup ################################################### rm(list = ls()) s <- search()[-1] s <- s[-match(c("package:base", "package:stats", "package:graphics", "package:grDevices", "package:utils", "package:datasets", "package:methods", "Autoloads"), s)] if (length(s) > 0) sapply(s, detach, character.only = TRUE) if (!file.exists("tables")) dir.create("tables") if (!file.exists("figures")) dir.create("figures") set.seed(290875) options(prompt = "R> ", continue = "+ ", width = 63, # digits = 4, show.signif.stars = FALSE, SweaveHooks = list(leftpar = function() par(mai = par("mai") * c(1, 1.05, 1, 1)), bigleftpar = function() par(mai = par("mai") * c(1, 1.7, 1, 1)))) HSAURpkg <- require("HSAUR3") if (!HSAURpkg) stop("cannot load package ", sQuote("HSAUR3")) rm(HSAURpkg) ### hm, R-2.4.0 --vanilla seems to need this a <- Sys.setlocale("LC_ALL", "C") ### book <- TRUE refs <- cbind(c("AItR", "DAGD", "SI", "CI", "ANOVA", "MLR", "GLM", "DE", "RP", "GAM", "SA", "ALDI", "ALDII", "SIMC", "MA", "PCA", "MDS", "CA"), 1:18) ch <- function(x) { ch <- refs[which(refs[,1] == x),] if (book) { return(paste("Chapter~\\\\ref{", ch[1], "}", sep = "")) } else { return(paste("Chapter~", ch[2], sep = "")) } } if (file.exists("deparse.R")) source("deparse.R") setHook(packageEvent("lattice", "attach"), function(...) { lattice.options(default.theme = function() standard.theme("pdf", color = FALSE)) }) ################################################### ### code chunk number 2: singlebook ################################################### book <- FALSE ################################################### ### code chunk number 3: GLM-plasma-plot ################################################### data("plasma", package = "HSAUR3") layout(matrix(1:2, ncol = 2)) cdplot(ESR ~ fibrinogen, data = plasma) cdplot(ESR ~ globulin, data = plasma) ################################################### ### code chunk number 4: GLM-plasma-fit1 ################################################### plasma_glm_1 <- glm(ESR ~ fibrinogen, data = plasma, family = binomial()) ################################################### ### code chunk number 5: GLM-plasma-summary-1 ################################################### summary(plasma_glm_1) ################################################### ### code chunk number 6: GLM-plasma-confint ################################################### ci <- confint(plasma_glm_1)["fibrinogen",] ################################################### ### code chunk number 7: GLM-plasma-confint ################################################### confint(plasma_glm_1, parm = "fibrinogen") ################################################### ### code chunk number 8: GLM-plasma-confint ################################################### print(ci) ################################################### ### code chunk number 9: GLM-plasma-exp ################################################### exp(coef(plasma_glm_1)["fibrinogen"]) ################################################### ### code chunk number 10: GLM-plasma-exp-ci ################################################### ci <- exp(confint(plasma_glm_1, parm = "fibrinogen")) ################################################### ### code chunk number 11: GLM-plasma-exp-ci ################################################### exp(confint(plasma_glm_1, parm = "fibrinogen")) ################################################### ### code chunk number 12: GLM-plasma-exp-ci ################################################### print(ci) ################################################### ### code chunk number 13: GLM-plasma-fit2 ################################################### plasma_glm_2 <- glm(ESR ~ fibrinogen + globulin, data = plasma, family = binomial()) ################################################### ### code chunk number 14: GLM-plasma-summary-2 ################################################### summary(plasma_glm_2) ################################################### ### code chunk number 15: GLM-plasma-anova-hide ################################################### plasma_anova <- anova(plasma_glm_1, plasma_glm_2, test = "Chisq") ################################################### ### code chunk number 16: GLM-plasma-anova ################################################### anova(plasma_glm_1, plasma_glm_2, test = "Chisq") ################################################### ### code chunk number 17: GLM-plasma-predict ################################################### prob <- predict(plasma_glm_2, type = "response") ################################################### ### code chunk number 18: GLM-plasma-bubble ################################################### plot(globulin ~ fibrinogen, data = plasma, xlim = c(2, 6), ylim = c(25, 55), pch = ".") symbols(plasma$fibrinogen, plasma$globulin, circles = prob, add = TRUE) ################################################### ### code chunk number 19: GLM-womensrole-fit1 ################################################### data("womensrole", package = "HSAUR3") fm1 <- cbind(agree, disagree) ~ gender + education womensrole_glm_1 <- glm(fm1, data = womensrole, family = binomial()) ################################################### ### code chunk number 20: GLM-womensrole-summary-1 ################################################### summary(womensrole_glm_1) ################################################### ### code chunk number 21: GLM-womensrole-probfit ################################################### role.fitted1 <- predict(womensrole_glm_1, type = "response") ################################################### ### code chunk number 22: GLM-plot-setup ################################################### myplot <- function(role.fitted) { f <- womensrole$gender == "Female" plot(womensrole$education, role.fitted, type = "n", ylab = "Probability of agreeing", xlab = "Education", ylim = c(0,1)) lines(womensrole$education[!f], role.fitted[!f], lty = 1) lines(womensrole$education[f], role.fitted[f], lty = 2) lgtxt <- c("Fitted (Males)", "Fitted (Females)") legend("topright", lgtxt, lty = 1:2, bty = "n") y <- womensrole$agree / (womensrole$agree + womensrole$disagree) size <- womensrole$agree + womensrole$disagree size <- size - min(size) size <- (size / max(size)) * 3 + 1 text(womensrole$education, y, ifelse(f, "\\VE", "\\MA"), family = "HersheySerif", cex = size) } ################################################### ### code chunk number 23: GLM-role-fitted1 ################################################### myplot(role.fitted1) ################################################### ### code chunk number 24: GLM-womensrole-fit2 ################################################### fm2 <- cbind(agree,disagree) ~ gender * education womensrole_glm_2 <- glm(fm2, data = womensrole, family = binomial()) ################################################### ### code chunk number 25: GLM-womensrole-summary-2 ################################################### summary(womensrole_glm_2) ################################################### ### code chunk number 26: GLM-role-fitted2 ################################################### role.fitted2 <- predict(womensrole_glm_2, type = "response") myplot(role.fitted2) ################################################### ### code chunk number 27: GLM-role-plot2 ################################################### res <- residuals(womensrole_glm_2, type = "deviance") plot(predict(womensrole_glm_2), res, xlab="Fitted values", ylab = "Residuals", ylim = max(abs(res)) * c(-1,1)) abline(h = 0, lty = 2) ################################################### ### code chunk number 28: GLM-polyps-fit1 ################################################### data("polyps", package = "HSAUR3") polyps_glm_1 <- glm(number ~ treat + age, data = polyps, family = poisson()) ################################################### ### code chunk number 29: GLM-polyps-summary-1 ################################################### summary(polyps_glm_1) ################################################### ### code chunk number 30: GLM-polyp-quasi ################################################### polyps_glm_2 <- glm(number ~ treat + age, data = polyps, family = quasipoisson()) summary(polyps_glm_2) ################################################### ### code chunk number 31: GLM-backpain-clogit ################################################### library("survival") backpain_glm <- clogit(I(status == "case") ~ driver + suburban + strata(ID), data = backpain) ################################################### ### code chunk number 32: GLM-backpain-print ################################################### print(backpain_glm) ################################################### ### code chunk number 33: GLM-CHFLS-polr ################################################### library("MASS") opts <- options(contrasts = c("contr.treatment", "contr.helmert")) CHFLS_polr <- polr(R_happy ~ ., data = CHFLS, Hess = TRUE) options(opts) ################################################### ### code chunk number 34: GLM-CHFLS-polr ################################################### summary(CHFLS_polr) ################################################### ### code chunk number 35: GLM-CHFLS-polr-helmert ################################################### H <- with(CHFLS, contr.helmert(table(R_health))) rownames(H) <- levels(CHFLS$R_health) colnames(H) <- paste(levels(CHFLS$R_health)[-1], "- avg") H ################################################### ### code chunk number 36: GLM-CHFLS-polr-cftest ################################################### library("multcomp") op <- options(digits = 2) cf <- cftest(CHFLS_polr) cftest <- function(x, digits = max(3, getOption("digits") - 3)) { x <- cf cat("\n\t", "Simultaneous Tests for General Linear Hypotheses\n\n") if (!is.null(x$type)) cat("Multiple Comparisons of Means:", x$type, "Contrasts\n\n\n") call <- if (isS4(x$model)) x$model@call else x$model$call if (!is.null(call)) { cat("Fit: ") print(call) cat("\n") } pq <- x$test mtests <- cbind(pq$coefficients, pq$sigma, pq$tstat, pq$pvalues) error <- attr(pq$pvalues, "error") pname <- switch(x$alternativ, less = paste("Pr(<", ifelse(x$df == 0, "z", "t"), ")", sep = ""), greater = paste("Pr(>", ifelse(x$df == 0, "z", "t"), ")", sep = ""), two.sided = paste("Pr(>|", ifelse(x$df == 0, "z", "t"), "|)", sep = "")) colnames(mtests) <- c("Estimate", "Std. Error", ifelse(x$df == 0, "z value", "t value"), pname) type <- pq$type if (!is.null(error) && error > .Machine$double.eps) { sig <- which.min(abs(1/error - (10^(1:10)))) sig <- 1/(10^sig) } else { sig <- .Machine$double.eps } cat("Linear Hypotheses:\n") alt <- switch(x$alternative, two.sided = "==", less = ">=", greater = "<=") rownames(mtests) <- rownames(mtests) printCoefmat(mtests, digits = digits, has.Pvalue = TRUE, P.values = TRUE, eps.Pvalue = sig) switch(type, univariate = cat("(Univariate p values reported)"), `single-step` = cat("(Adjusted p values reported -- single-step method)"), Shaffer = cat("(Adjusted p values reported -- Shaffer method)"), Westfall = cat("(Adjusted p values reported -- Westfall method)"), cat("(Adjusted p values reported --", type, "method)")) cat("\n\n") invisible(x) } ################################################### ### code chunk number 37: GLM-CHFLS-polr-cftest ################################################### library("multcomp") cftest(CHFLS_polr) ################################################### ### code chunk number 38: GLM-CHFLS-polr-cftest ################################################### options(op) ################################################### ### code chunk number 39: GLM-CHFLS-pred-1 ################################################### CHFLS[1,] ################################################### ### code chunk number 40: GLM-CHFLS-pred-2 ################################################### nd <- CHFLS[rep(1, nlevels(CHFLS$R_health)),] nd$R_health <- ordered(levels(nd$R_health), labels = levels(nd$R_health)) ################################################### ### code chunk number 41: GLM-CHFLS-pred-3 ################################################### (dens <- predict(CHFLS_polr, newdata = nd, type = "probs")) ################################################### ### code chunk number 42: GLM-CHFLS-pred-plot ################################################### library("lattice") D <- expand.grid(R_health = nd$R_health, R_happy = ordered(LETTERS[1:4])) D$dens <- as.vector(dens) barchart(dens ~ R_happy | R_health, data = D, ylab = "Density", xlab = "Happiness",) ################################################### ### code chunk number 43: GLM-findings ################################################### ci <- round(exp(confint(plasma_glm_1, parm = "fibrinogen")), 2) ci <- paste("(", paste(ci, collapse = ","), ")", sep = "") HSAUR3/inst/doc/Ch_conditional_inference.pdf0000644000176200001440000021133213303046020020360 0ustar liggesusers%PDF-1.5 % 1 0 obj << /Type /ObjStm /Length 3829 /Filter /FlateDecode /N 79 /First 648 >> stream x[mW۸~m{K֛}Ϟ嵅퇐miv}F~e'=!X4zfX gF1fa X5YfEA6bB/PLXY9 J~B[&b9*L -PG)IB4*#BtWSVi1δB`ڢ32dFDxFR1+b5&FcdKˢ$+51Lq#`Eubqbq,)p #U('F/8NMe@J]<(Dl4 QEAr`\((͊@s*1 uF3C@OzbB M: U⊦B3Ra&B'4c2YH4a$ӌYHVztc!Y@iPݳJPQi +C o(A>`g,8tHw~2Ɖ*N%,x욽~Dll^gYL~F64L۹Oidd{'+=hpKUΓ =o ڟN+v7~EP]{6 eĞL|@!ۻfl8MroM9{e_q~cHd%슝,O1ۜ ?gP҇Y:|!#3Ji|Y)M69E &A'u}`ʳ:|j2&,'ᡬj&\1t@-l#RbB_i2! ;?=|BfThfó$d{=L~u>D@|q8^WɌd .>}&o11;4Bd).+].tTL`r0'nuXT5{ YIHmԆ{[#jKFuNm$4i;puK CHkChB|N&ç p*ͦOp|rDX<"!X.طh@h{"fj\}0Q{Z;XЖb[: :J04H=tPk AMjeTg:tJ[#$8uC1 U$+B}LhN ;8ʋ,y'rȳrf鏚X3{Ыdy>[Alx?w]b7`'R+HbA\J# ?\p2zCz'O??Kqsԓ% Rt'Dxwt[.I[O=n Gdy%-U9dʊߔeC gY0,+d,fYzg 7nĴ; ڽx# e<|}~2Ohūl<@t_\)vHoe0|3Zeʠ.Efʰ[n'%eimM˕+KY݁ogъД7#Køefw++&|kK%ۋV ]EDwq۸UPmy EErhBOXcHa/B҄5MQFn3B<`uN9M[VdA\7&Zl}U""Lw_|=L }v%gTc+TlL\XLc_²]^Q+ 풬G܇O#N}Ew[_ڟ+׮jNF{3UYWc?[6c+Z] #|%lښpM<#:Җ;mG0[^/:DФRT֪>LBjRv1xL^.]w݊7e"lV?nܮgɝazXBt>{GG.Q6{Xx瞟%2)5nXoHDR+g>!L OOUe Drی<|#[Ɉwq;Q|%^VEYz_8/f’T=^e2ͫ2{b֍㦡Of/)lmdEכֿFxG,[d[Z軳v{}WɆ?YT2 k;98_ }u?2 q1y6g!M=*;yh`=humf?0GYAwϺhon;Iy/N15C(B?jDߐՏ=E6\6{kg~`S$һ/zXQpږٞ/,n.ouendstream endobj 81 0 obj << /Subtype /XML /Type /Metadata /Length 1653 >> stream GPL Ghostscript 9.18 2018-05-28T10:48:03+02:00 2018-05-28T10:48:03+02:00 LaTeX with hyperref package A Handbook of Statistical Analyses Using R (3rd Edition)Torsten Hothorn and Brian S. EverittBook endstream endobj 82 0 obj << /Filter /FlateDecode /Length 3657 >> stream x˒#G.pphUS0aa4/<3]'3*խ՚=؇)ee\r.z;s3՚8;/fV{96vk]en, :jPe':KPV0n?Zv~ :B ir:EFS Br*PdmI6"Fe .aB bMA`14$yg4<)7%ȹ ϝK/͟K*!͗~Q\>m5yXj[)]c//6sSIkVϗڂ ]c#^X9V'BVJ@nR! A7+RA5&4tp/ޭ/P4"<&mh%x`Eg5D2ZJz0ե mT!&|Q#ѣb:B'MXgHA)6=2upA6%V~6ȉ Y<[[V{ۺ[h98cIjDQ\R0⟙Jjė,IU{M7_QXy< Z:߼e_3T䓍'',P0j..ft(.fYܰ=\`ܘj$fJ8(pN!,* ӴDB#K5򟸓B3[AA@P%{7͆4\- Ӂ$:1 HHΠ ,&BISTJ5( %JUu O6- 84Roߚ+N_,E 3,jb٦0&({UxMЂ}Z"n kؔ)C4׉S ]_p:!jN, ɭt,'*f2.mp'% gDviqp)bK COz玌t rn-\ Pq.&^Gl 2I ჩmKڐ [+Ht+͠o.HO9(wL>97aNUa\u+*/4Q\˫A7 ՒsMac츬׉@3aPn,dWSԞ12bfXJZ.vӣlԌ7 5T=Rb !ˌD;r;h bˎ^Uļ$(y+$!\}X6V))bO%n)t*@>*7XT  ,=UYF~h򣲺/`ޖmYmPV7eQY=hz\պ~.+e˲>-yYbX`:*ve.GD|h~W.\V^hꮬF~ڍTHt̓Q1z9Bè5ɱͪԶTY}5ʺ:R%n.N l;*18-_MXi-]RtƂ >?[4q]͈tr~¬B'qUL6) 3:8^AzFw7nkƊ;lx ܱN)qNC/x`4JsI5RS}.r m c}&ɥ ׸xk9u-) TV/;ļX?Kۑx=ch'GLkBY+aԊi-L^ȗp[(NPQŮkHp3w@ae#th٧qҧ x*o"H>+b;o@N͛H;lZ\'tDC7:rG:Xp8+uv2OAߓe| }h?~99aROju]x&4=u*w12D$?3nw!zNOE_1Sd)xNj|r^MҀ*MUf7wgP3jx+=#UIୌPQ#"2f疤io3K>^ BP8ʖ,hXr*+q.4zԓoR4A >jx88Јc]'<ߧ[T#ZlT*i7M2Yt>Ux*'k9N5י#r֦u:k%"KSN;1ìby1r;lgT#o#)IV%|{7gmHGsnHR IJ=e8ʼ^ūfêUyB{kDf~Md+m,*h:kWUs1qoV,ծ.2T~d>Vj&5>r80Uԇ!_%/SXsaw'([y(4jDoM`_**X} 5xuB@cszK#p/X=9IQbq/)]]F3> stream xuSMoT1 W=4؉G*UT>NTt@Hx=h2kǓg=ݻWטËKt8sE_ c{'#ȓq 52Ls2֊j2J3u9vY~T~*QtfY"vk^FάiH꺁pGCJު%,{7ٜ",v燽{^r-f~A$>L:c OFGҌ0HڊP<'ͱUWgFQj`%*jx14A#*p+|Mf~8*4NI8_SU%HEjlGS*Z ]HP&Q?ܙqF0Miul+oki׿v(.̶ǎfCw f͈cg#aפ\ iTg h- xĨ> )bD.2r c59M|Q hycDPT%nH%Pgb,<Ӌd _lM W[ݿ;-e,]*.ssbd2le( _ܧ+~s%.봾ydN&mjB:quܦ8nb֍^?#&|endstream endobj 84 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 3386 >> stream xW T綞Ȍ hmGIPXciqZEQX**IyDH"G y#R"bZSu㽭?=wu׿o$0F"K6̚9E|Q"N&$D\Oo ^x3GьT"Ѥhv%Fۦ*fϟXMVbT:zlҥ)|_v.9355UUUMrS+Rcu1Qڨd}T"PSV%D){IؙJVk"8QtYvnEJPJ*m[1qL3a&2o3!dƇ„20:f*y,a&f)2˙Lˬb1jEƝ12/0i&VLraaaW.#\]]'nIe΍ⲇ;GF#n2fwou?yhĕuqݟϫ1B2 ҈ygϼt0j ɆBH.M);lZC/nll D ,8e tQB䮘#G\I 6qURH#~ y3V00YU^,H9d-~y~ Ʋ|y{EiC[%膕&[P3'X2 ~cb!kx2p^KmDO >4uk@8 Y6 ÕI.hssF(J =i1xUC5N%SшȢ8oޓ&y.NYԄ^;(wU{_4tW2,Mr#Z6 N 8Ai_+x+EA_;PO("'!5+]^Xv=a1c"V]OYmӎz?Mi=6*Lݾ,awr"y7do樦 !X~2֕Ue:}oU!nuB#)p!#;o7qjf롮#2( 2ڿ&ŷnAs)o[EESLT*Z(ݓo=B!;^ \y؉8:@R`/'AŽ h:y7pz0ewA^Uõ=1@ x*t5F>[+4PҒeT=5=p(6q%ѓwdZ`5j MG>,A-953>Gk`_ѡk=gLdo}E.EUByC pQGڋR}xl#1T%3H;}[ٍogUalPBbIDJ)c2_:6Y"/.$7@jȗX3`cp[3t3=%3,U <-E[V/|߲$7/s e dqB4i[MydƗAEeqQMCw-y)󥇊J/H8̧w`އL sbBNF8ݗY[_0LEd'a3.q Oqsiy UAnk<HuYЫJJk8іoEu εJ"3%w(Q0_u46fw`-kZ>ocl2g+!zwoB~?4B|#iqSD}V\G+(c}%O Cu}e;/͸G^ ټ+N-ο{LM7=7A[`v<>|sN,3U!)%! L_jM8v Q@pl$ G%_v`k,H(ubiL!ddy\9\HH bOAVFbA~K\2(,.*j'U:C4!k918̆t)@۵sL*ހ{8Ǖ L&$72@2:@m–#bɄof89%Vz&Of R5>g9DA&}?ZX }DH2ܒр_sS~du+7$N`z^) 9^DD)&SRa1ՔN)k|>4ٿx:uڢb8ʊ{"l:^MP(o`6.ԙkD:e!CnF,dh-4 GA/V|rK 7@s[͈^;C#?zUt!3_2HN#|Lyy| 6^eͼoh> _;FbCwe62jkd,=hᆎ]K4pb #Docۨ(-ű?t u;MŇ,j29]oJ;RizAY#Ʋruw|*e`B>^pncMkr̡fr+YT:*p8 WOwB`DΕ'ka11k'>yT^Sii$|'r\;EB"HQk];#QQ]ǭ]YJh_ΐ\\~Z`qc2e {xKUo38Y<`}0ux<)'WPnJx:'-E$+:6̐ ;X0ؠ?٪ R:qCm8e`_|KӷeBEEف 3?]{DLg=':,ů++ʮM2R]LЧV6rLq (F \ʪ 5Nm(*,>H,(:[xJJVG/|FG?ǒIS֐$_yb 0Po>FINL6~ϓ{H_Qޏ྆jbQ,SИo<(vYbHn+R6%#.܆+ssCI̓an4-Dendstream endobj 85 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 363 >> stream xcd`ab`ddt v04qH3a!Skc7s7˚ﷄ ~O XX_PYQ`hii`d``ZXX('gT*hdX뗗%i(gd(((%*c8)槤1000103012ԽK2>}wy߯jcws~7yŞ>~nSg>;3wߛgO^-ym̾^];ǂXπ| wt\eXp~`:endstream endobj 86 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1925 >> stream xmTg*T:hQIQc*$*TI#BawD*/{YayGXvaAPUIi̩ibFHKP$1Dju9Q$)H2<5IQlUժ Q~HWjRUŒujQf`e!XOYLjT+ *}*YQ1*b*toHmdT[* '5,eJL X"'D"P _VMxf⿤+*Z:ZAE~RRD0J7P _@Ksr=^ly>Ow Iȃh^ôD6߅"C/Wߊzv~Q NtJ$?ܥNOiȑdߜgk$_qz,c[p9ܚ8Xg-WŨ]'ZK-e%`6s@quyi/цد/^h JHQzx~H{p/-#@Cns3"Z$7I9(@D[t0xi{p)(7߄^oXO%})="m2  6зEDcMnk 1Hsq9E*?.%=+HIg\RVd4\H,8{̜g@X-57)/h;^d4@+W6-_k+ *٩qZo$BGݔ4rr~%Tw%'%>ZӔn Os{j=W`=kv{RNZpl3Q><wsh>Z_k'q=1DKSx3,qoO`31Qsw NO BOB;ohrdHׄ"p桃MxW/ G^\VT(saJ`;)m*ʿ;:TLc Iѹ}Ecݝt_s}}h8Hn4ɵe5k3MY-G<ߨ*~k*93 y3,qbe;9p\PʽUpn\+Zƫy!(~(s 0k06`jMȢ]Ǔ䞂[9=s~oC,7_]N%#nkelIN{/t<ڛ4zX=vy]7뺅 5roq8FǨ58 >nTp*-Ns!0" A|= 'tM3Ha ڪ*m"4|@UJ=} 88ڍ.&ۨh=vu~Y.)(VWhaYóYaNߟ9|}|w8endstream endobj 87 0 obj << /Filter /FlateDecode /Length 150 >> stream xU;1 {'0q_N@ -ׇE٬W.,?慅:c8]  I1 7g`tBw2SZJffBPUR=uw$֓TS>HԖ!56w/RCendstream endobj 88 0 obj << /Filter /FlateDecode /Length 2752 >> stream xYM+}ȡX\ $ lMuA|,F>Hv-ES5bU:WHw7 %L>-d K֑.|"Qp"x>P睑B+(@Q8 ZXhVK;#LhhB U:tƩ@^I hdwҮwtjEr":B` R.ziA CJW+)K̉N׿ ɒXE E@R\%˕J@/c%%[;đ%3LQ$2ۋ]հpTio$dS_/WVCwa=78܎8Z8JL1ͣ8z\nt?,.~qt?݌^?C©Q8~n voۋŏ&Xi@ i ?lugGLP4V$2](p>%_7_wzwuw}+@%<8 FحH/'3xE6 f}hB6>nv?fڨVEcAO ),v:Z/ yTLS':U *))퍐*UAY4J*ibc %wU9IܩNd`Fu;u"tW$9/4~> -dPJ.#Fj6$6j@8 X $-KodC*VBQ5H&ZFb] krn2`2"&UOKH/x(C% B!FIT$^F4# q aX%TZڢTDI(F%kxwEkduK"ՌKcb:,F䩒יd%82=u\r`aJXޑ/^w6)@XZtHqEaLH􌲥"h~<b8i@u8XbD_w֨dF"G 4mLi:DF4d6aORi4iEq!>Pff_*PL47)N,t[Q}+HPUq- hI`SƱqi;\V*GU#b _`>;n=]ccЪs=:r10jfkb'8|]"BwoR(Ĥ^n%&FW;>75$E&Uꋮ;f+ @w>POD G@ ]ZtOuxWWuX˙,c[mYLrl6Rf.%=wE׭v: PϚT eQ\e:>C@Ԋu PT0rƓ #3 Ly\L|"49/.1Rp}^ض6Q/4 ֧}ѠlsR |IJJ:OKGqI0Zd BqM|`d {3yyg6tqFUj6L6vWs񻩼|/=X\TYǨ1s>B爢BXVT&B2)knx]fr4t,>rgԴg "H2=TpP)ﲹ#gaxcDþ֏m f4phݚt&)'G2Q?gWS3ibJG_SWw. M|[(YC?9m4!uja2 d@ƨ8 D1 P!>MDg1XIG.~W~↓7o&%iL(] \؍K⊌4;dԭϷu^a$z[jPYᾆ>%#ISILT&My-tvz._8ՓI'&}Ww?{N!Jr+Ⱦ@i5m-벹luSp7݆_&w5R7 QclMzLQ pޱ I"`Y 8msO3|ɫܰt*΀n`}_8˺ŃVYP[Y#GmddhDSC89͐. GlbK89tF9ߴpǰnDfW4rot$G)?o„9PlQ ]5G+qbӅ[=~TOKb&3d̸zf} {롚(\זnqGunwѝgF_ϊͻ/;i>sB?FBiǯ-> stream xYw\T׶>cx. FkFc77m SЋAp@@ QF11^cDvh!3޽/?8s^k}PV}(@ r$O>B]0@g-?|03mz Q"wD;51,cvF8(,4qgys燅K}#WFR5wn輰,\8ztXq+}V[n AC6;2c&0q)SM?ޡVS#5 jzzZO6PcXj5LmQ[6j5N->QŔZJMQSi j:ZE}HSPjP}~T5¨A`ʖSC( e''@#e(`X}4¾+U~ ?[t 6\9Rzf>WrFe_~s}}PuC:a0ۣ߾H&:+mRBlF*'@)HOx'nT3t搶 СW0Ho44(F :(rP8p.n}ULѫ!)G`="k|KE6|y6|؉>)+i7,!/jԜ~KdpDVп^=sbuNnHPcz1)4b-WKY#_otm!YG-F[$D{n'Q$߇EjAΡDOoZ %S٧W.̽np}E72Iw5-~鯒}EEs\U9 T&.YeĆW $A(ECFqXc/OHz{epNU{ CX R7Э+%0 НB7|z`t[V! [Kbcdd\]p%^>I-d9T2pF_9|vh</!WV{_ԤJWIi*K42E66]~RcF3/Hh:vBOH|I|K#]Ux~tB"u/ I N=Rvӥ#S( %:ׯi ~Wix hwh4ؾJ:O~{ƣLȸ#w~M UpIY m'"gJ"~: 6^u]; E}h,1܂#t~][ a*hcScR Lԗ <8y$ɃHl707H5>S+_Qw4EK4%#LO/m0D~ џ؉#+n'|fK,gr"un`!=NxH/h9e=+ _dȾBI`Og.!K mid9k9MjJ%?1dN؝PzA"%a{Z_H~ Rcj4[pF;q""[$=]LK<%3s~ 3u|=@', SÖmiʭ {G=Tpt<{bO4OA$kmO^f@+P}X! JP:ŢF<]B*ƃ4]z;&o <,,j7qq_wMڂ\QKX@9ɸ%r}I5Ѽp?6u?L/m# Z caX'*6 r@ƣ_ ^DOݾxC&('K8zLB8q8\[cC. Wcl&fDVCD"L{EvzAT\-|yU.kDB;1iVDC, ٻ8[zy֡BUޚ!S^Fad("',[f.eǍEedY)6ֲlZG~*#yγjm jz* B wf(Q'g Brb "3 >Ioy8* ->+Ifڧ6;kϨܜ)3]r(yDFy޶G5}!'oL~T^Lzzm\8!Wڠſ٧ekv`\. -)hءmYY,@ꮁ^n}i6_@TW%P$`mP]6DLQqHYDٿ7>DE"\=0U*pH!@RTo;fHPD`5nLu]J17!&w3XdB%8PϠJ+Id!ݤ&DhU%6Y{H@)hD[A#XT/ƧF/!A4mFJF9n C>D.t9Or!EXǓIe^S10$-Cx<켇F.y 3-z'W/@V|1|rXW \"."蒘u~ N4[ƟHd-@ h-Bh @w~[_1_QRUYf"4FlsSLc,BݩBPe[sͻ~N E9Tx^WS_lVW%FJRü 2%UY+Wn4'4GVI7ePЩe 0E)%9U)>1r/OγS'fE} $ɉq(.5Ƭof Ƥ[jMkaKHe2iQ ޢ'h>|*`[J,X\;p zftEK'hKfGFֳ_Xc'EW,* |mTY)𻋢f1&#9?{m6iK/iya ,VV},] dzOMWK "aHz}ܥm ʉ/g W_-l'~Xh <9!2}o5Մ{ӴT"`#+Âc(R5LM%M$!/=Ws_p}es9 z)<)\:dR:Oy7%)_3{UFbl:;&n)%u:? cyh r8t ';/':۟P<_ztGRR6 (>5&vHDBi h<* hl'$yZuQZ߁=ME, iPDe(n R/1m=9+b}Oթ,|Ob1ZlfdSy|~mJ1 U&CJm2Ht<TRN;2TWπq?xb0y!=f)ʮd=J6[vP~xd彧_+'Wx\='3UdwjUzY9 P_h%s4^;_̌B?eK.=,B.|=ѝm`j7g O pg*aP)ʙHQ " +ɻXT}Ls fb4  x nG‘| usOeV{3"苳`v<09}t`wSRmW]<>k<|vs'i\HakC3t/K^"'5Ɏq 2=Y4hVml{r;g˴u};gIӣ;U(!Dy!8y䎵ùùuƨbiBHϒS^ߓȆ4Hȇ_Nް-̓r9 XdʼnmUlqp)hl{@Q#ំnA+`qS8SBaw_ ކ MqM#T2"Q'?=%U; Bۦ&8;*$ ݃k]ya$WUtC܉,?_ݠIFs*IZja/Ez0;7j5uUJa.S[&5V2!Csl-1JD2 !@[!͘ē ]zAK' f|]Jz4Sz{+SΌoف:c+$rci=-uJQplߩTT鐦NWnF-@)wXtyX<|QǜO$F=`+B'=^_84^qsd%h$nA2\ة&:erAĚ3{no'NHUDb)ZGvǟm7&܈vsLmHfBސ^OdbWYjm1KvVT$D5$i{rLwq%~Zʈ'cug_N#JHiC:cڕqJ" 1w:4=y}7G߱4qo5ns\/ٗr< 8=@̂Ho9w/-1_gW@yyq\;| eJJ#W[[CVȈ6a[C.?'7i#!Ft#tm ؿ~" m^lƔd S17MEm U1&?*DM%4{)*df7}ىu!fN5 m/bF_Ȯ^ŢMv`.%$/J+jݪTx}de h:o/rqrF痢Ђl{~Ws+ pb@/8Zendstream endobj 90 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 2801 >> stream xmV PgqVqTQ1*((D/ (KPd͌"" (#ⅷ&xJj79t躚׳?[?9*{~ԃQ(lYn`N]%uG%*pVS;.X~R˘%)vSxA72dsʔcu<蘾 a0381 |ōz+Q(/:-rjs>ӿg^^{Yj$tdBERvx i婰b`OzFt19+x=[k9k: 98r-9":qSmϡ tm͑gr,RDVp~_]YWM3rWUX[kk sơQSE")-yu#Ƭ *jڑȌt4́PZg5vE50ZA_O@?|d?Y( ==vqGqD&Xky/ шj4IrVґ&SF8ysa w2 +Zq1/r)aYA>`L.]uC%|mO@DcKJ/XibQC8tydޠ *L턠 .`k,`懲4wPB4v@4\PYY]TqE*Q! yhW6Tzq$|w$pAm}%ْY|)+~uC!Gq@\C nGwvピ%f![7m`4hK9V8\$Zy qnM 5ZM{hedC4ezޅWR$+y@sqwhr_FnY KD @p3X3rdQ~)CD0Clg@V,S- eܔg]龊I$=hyHTR|O m 먍`َs ڏU7rj%nwƞӱ?zu/j>uϲyPZ)E8%]IfSJu@pDeP9uHE(IVqiK}X'7 k8\+)8MkUٛ&!H&-*q)I˩5`;gRyQʭ+PYMRJI$NJ9Wq.2_}N}e/0ҟ z1'ᄦ7G !s)sQ6 ҏbƁ'uƢy=J\-ql&V;' â{{LvL#CtT(=kp4V Vh=12LqR8瑫4܏D>{_&jzв x{2đ"A)Ӵ|ѤJK׬KgElf|-\\mjLLqs H޻>2%kV<,f}^s"ּSⲊ0.̴lI{8{?'[*]A"kZZ߂|u =H/d\5ߣA^)YdWYZpΛ]˟Ӽ̕?΄ qcMDS:WD> stream xX TSg>1*M9hVUm}Q7b-@B+Eg @  LGPJ"1?#Ssx^UV̏^hѪ9ibdAdIfZN[x&)Y)VrAA䜼BqƫG%ѻiѯ 9i-(I%im4ðhphS8oD_|85-=#s,]aql{`1^l6`Xul3{[mŖaa۱c , {bX7+eN}bD].sĜ܁ĻdO1ȴi.DjY$;rՏ/5{gF:nY(cmbbk;`>ZM{,IX ?Cn h`*1hN)oe@֞Ba| vH (r +v W^a6Du@&dB\G7(=y*WImy$"COʯC~2qKϦyoqE k4!vs?pC;sH9$ ,Ћ#gGr6lrMzP]tmgU:Jz #:V^OK/Wh9?} w/-g m}A4,P/'l1KPd3@+3Ls AnVEvƔsc♆bм H H`bVH^p]Ǯz^d=M&'|jZ\d# kdlWi6.SA Htv݈$}3 |f(6 'o=Y4ggv/vmJ~9l:Vq5 j;y )f ̸G FEIJ4^ 8ȵPˤ{aLJ4L&qFD+WA|QP՜!DAts6L cI)Um5Zt NNM)ZC I?36a qjlvz*Uv˰`6.ڋ;@q"OE=@=^5ųD̑gp ,OQ/'nxE[[RFD}'tdiܩNYԸQPTݗr zJKDxEt`4p J:-+#I96g#}2d %>g" QuAc-dd <CLah9ZDl{E`*U C' }8L &-̤ctԱTWA=cnZ$O%scsC\}IC]4Ty-`ԡn2(%S ,f6z^ՙ{*F \Bkߛȑox-BY̝GkZ!r\r_,|\qgwJ\okn]p+a`ZKg.Ng xTCBk~I "of?a赡>Eo%F0KSDTowaVULMOs~BF}=u' =Hdm[x5ghJ)qLc Mޤ//:~w|8'e6~MA H2| gu̥7=x@Qj ~C1{Ž盿m';i)b]YnLge$b4JJEA!O~Vm4*b$(jNfd;zNH'en2uFG0p!q6 7X}Z*8oΦK._U^g3sʿZ݀gѫ.~Pa-:?K|]afI9n@1S{9[gyPKkU))|-OOFxt0`z+ S)|5ZUހjq[&d&vwBaϖDUP;᧢E_P&|Ⴧ "OR_nQz}NZc>=O~5iL<@[HTQ2<OmH9uzFDAp \|QP\me|[0{dW=E1!qwVY^Pl< g\0 j=j(!K82ȶAh۠a1Daw{m2/޾͍Du{s SLЊc A#Gؚ}?^R^wL5`H+0[銟,'Ѳkx?_;;k&:Ch!oؼKFf1vDvx0>eӕXH (ЀIsTW*L{Ag&[Fnη<՛ AW <3 c߱$b#{\Nu$HnMqӱ`[ lƘJ~9ΦQTxuNV`ԇyW3y z@QfHvCz3&۽pPlVVRf=ӏCUG}F?` Zx+8Z:f{8^Sڮ:E&¡)@ gmW-W?A;PdiJe+bvXSn0R`nKAcqSQPzѡ}hcHyJ- T̖J-LXfYog]Wn1Cx oд4&>'B$Lw*:W$MqE2"8[3x>nXKO;{yO~Ƨ *Ù&0SN,@竹/(S;Uԡ@f-'ZcÊ7噍9baT/R M] ;S RP2P=`VEz!:bXk0jY N-wy2W@-* j&9рWݾ ODs kZQeו3AMiŌI2 ތGJgsdiԉ+j#""0Boendstream endobj 92 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 5814 >> stream xY \S!psU܈WAZUֽbo KٗoX+.뫭֪Zk]|k"߾_Nf|;&(K J$I;9;Olu0B$a!E#+G+eo#J(H8hW[n?m)g7~ɳx|<ޞnr2_)7[.5w $IA2oOWȽxx;;of_N8gjසR};x:MQ$1d!MCCZ9uamv&svn_<|I# e20͈LEՂl~A qV rH$&BPE ŗ ͤGYy)?tQ%BA ^,:26Ya[cSjt6<1!g0Wh0mn ?[4:[/% -Gt~GVt̫6{<|átfDFLHeLtߕ99ߢѺ RS\_u9F! v5-}WpZY]he|yN sY,Ea[i<8ш2ΚPI,x!㤧[NcY< p `:|W]rbtXDqVxnU^Ǔ^pF}8<ϰyV6<*(}z"!#z-*ҬlYGNi5JNv^KU5ǟ-K = P"!2B^gìvΞ`Mn$iD2a2(17p(:t0y1ڙoJ %PmӺF#XЀ4Q@g/J ,c*#e"#z4?;lsҹ HB2VH·,f+?A4 :u0/1 [8 ~E]4eBuFѕT"F+6+.01Gi(W5@߮uN7x!X'z ;Ge<3 YYi>4kjIkiwHV3lBCXC. Go|/U{ͭB|7))iS%0.C)0$'.tMN^>YA'2;6nE&b)5 \"Y:ktKkr4(:cB\sZPM^3MKcl}_itD|Jxa]\,'63W,Y[BI 4=/Fzs[Ћѷ:.9{GciyaͅAӹc{zs:WsM h3 6s_&5v۱g>٧[֯ٶͦͅi˛yxZ[]\md oȭHw'<<~]&V^]w,ȷ b*F0e ]Caf\!/[k8t+R: >U-THOO͠~";v |ea6\ Ym *2:Xexrh՟?c1n4"_ˆXQ&F?^32Yq\tܠyͮle$GUvʑb[q^xFƲ&,((44(,@2ڜ /{^6/ތٚo0qپznЦjέ:SmH[ma,7dsK02]4:w?+s^1#}>-׳ٝl>~-x_ϥ$vyVdiZ"9uĴ̝÷!ĴkSzR ٙm[]O4i)Oz4kWHz\ž,ڡ~-Z̽;EĪǚԫx&h^vnӓ՛zI=lMs»wY޿BQtӄb̪KW-d'uGe_9c,gxw= CS{P1^;4l9x1 ݹ|rcrQ\xζ3ܷ,Znbz]N~(F:Dq* H=P"mn;x`y~#ՒnIuJ%#S *Fz!Hc BQtt$?/+}.|rj ԄAKSS!1Co{pޭ% 7]Zqq}2𻩮v낫HiYR?]};~N3Qm569P|y P;H˩_:eӶE7G,sg-[7wΚ椿,[z񏦡'7/4psq;ˡd\\{>8 ǏhmNBAV*j&Ղ˂<v/zuFmw'p)&*X4m$)6|$EB7xGsx)&z71L5yC*ƒ 64ǘJ@ii2:96%"  g¸m?Z}.5A$qg^.z';t^ht=__)ݲG &v/2߮D'Lw :ǢU0l-z! d Gy,v#ơ17_yqy|ǁ "DueT_AEDA xKڨH 櫴Hs$?I8Lqtq<~#tz͐@eAO+ * ‚$%k$sKLF ӐeI%ss&KzLxz&RJͩW#ޔu&58'&1yΡʆq8>򧛇\l9z ax;w̝51EܤL3j봥>vp3.U+ӽ$$$X0NCe0ɣ|f $3x t Nb,v al +8L]].aTMKWM`ᶏ.btmWs>cn,K|+ե'NI믚*k{W(,xi$/bOO.xڕ= 322PT*O>&xw Ww3$D#k6/ä _BU2&1)1  V!ⳣrAJyB @Ygru5U\JB5ԖAqɤBRQ$kG)l\h"f's(SNt{䄨[=y%'!ˇ C I` d~!.hd7!-WT'رް-=x$=:X֩DY\us{v"|^Њ3AѬLh0Lcݥ ~=s_S;Ԋf5RthGox˜$H )VTU5{}6pb\W±rS$.F6L. YGѬ0jZFhӁNXfj ip⯷O/_8abn@L8}CL2"Ⱥdݟ endstream endobj 93 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 5343 >> stream xYyXSgֿVVdѺu W@q/A,M6A IbQZBZ}_::vFG}^fM$v|"\(HO!1~Il၊sH"~ ͍dpEn5_[]gWT(:(jР`a>JSnL8q|C|"^1F>HRDŪ1 ɗ)H/HQąFea0EL['! W&(cc?όU0%yIPY|(W)⢕\/'ʕ1aQyDlL\KG'DU@l|B|XR '7̙g1!24zo BbʍJD]6uzm8ƍiv~nco3s݂.^axWn̻{QSֳm}qս{ճx"~;o^Wkx>}6N-(/*j7Ѝk25n2{KqL^("Z-@-AkֆK Ѧ秣4{<+uTƚr Y9y992E[!vo_VV;{;.HڂN7E mBb.P*-ԁDW+FxDڐgYc 1bO@ vi "ؗTSxZp<.Hy똚L5oL~|r13ׯ~]H$tzGRژ-j_4O㛌H.KFGf%%%E=Ѝ]L}j{HFP| sA/p;Jj kv},a3B" 0ёO#6Wl@h{mi$ {bk=a?<6__u`:bq{`鐯}wK|.dg02W> x%^~|R>c,̯ ]atl!:>{=1͠I~KtLGftr+zCUVl:pwJ(<%l,][&c&MWؗb Ӹ.#6ޠ.,0 ܔ]^oݑj܂ v p &'V8'A<ʰL]cԦ8ި$>ಗ+Q>kSm*)hc)Bϗwm۷߲38̈́֒T3fo7ޫoά(O%))γtQM-{JYq?k 2'ćƄV-Ecf&Vdu{_ݣ޽&2 K6y/:(ZuV`1ifn]k2(J@3ϒ-9HϾW!%ܑlKʮ-n3>ꌇmhʚ}qƒfJ4(3˷kwfLlr}w6ڵ:JԻ]Y9(KxRqݪd+JP9[6h,YHe]Hgs`I-j$$);9q[|)Bq7pf'XA6bc=66:wCÒ +HmxYy}Цd4vg@,Ǖ[7$@ p~1hԿIqƍglwTB-&mLGvcQ(U:D/( ZpcIIfz Q1!ca{zb#k4:3}ܦ`96A}Ek"Cf# 9X<jW$Y҅^seIe\;t2^vYL֤ڐ9˪בgbݢݾ6-Łi˭O{KKn F;rF'_\cD?vȀ<:ۉR|o艽END KDB+h%^9P!=Ð:g:1Ohq˼C'#K Hw\yB/s.OcI~:g'2lfщ1B0ET>chw 'x6xwƒh61W.'2|G$ަG}Iݑնb\-k \d%d{fmfRL%j:O# X;k ĎYr1M|koFԜ3<{O4Ґ*\LD#%*LB ZGrÿa*6٠awg;L#wm j}{ S:>:Ӧk8T{Š q{{x6h*.y`EB>qչUgElccETQqg ՒE:ݔLUMA}Q]TGF'{TWBYT'M[dOM@j1Pđ|3p)<=PͬIGipc/Åz1L}4 g Xŷ íc2xS<.Ivsނ-k> mGRIZ&3dl7tE6&dJ:"0;9 -IOiw<B` )9sHbp@n]j[3Z B{ͧdÃ|TvU n/_,'K܍%3-p7~k;`i#j?Y9 { bVUYSVD#^坧vS8NLBllq$ rU#hhR֭SAl>g7O ݗ~31=ƝwJweӜO#vY+??|ņ $0tЏl_};0_476|q a&& gMV@='bmqIP Q2:aU`D&)tuzIASDsZ| *IY=ipO. W  !;^huqd VT |̣k&ge!#[BXkՇ\+Ҍ:N_"<4@x& iEiEM&Vz׍^c|?NeEȆc>VC6 pO4(ͪ4jdjhF8:EdN=),#2'br mD3_@#e߸o6?YMboY9Xɣ-4/|4&2q)n> stream x%]L[uϡPfbdqѹlΌ dܠmY?9 {Ibi6{C&8Cb4ٍ1xCJ13LFދ}8VY8^nkk=< >VɆ$3[@!Eҿ>>p} 7Ma1"2>ocYȧ=0 df5'RY "P :^sܠ@y6> stream xwCMR8'vz-   ZWTmqCopyright (c) 1997, 2009 American Mathematical Society (), with Reserved Font Name CMR8.CMR8Computer Modern3vťbڽQ"DfVT@htkpozc,MI%ڧϋ1# :Q?f{ku؎׃$Ena}{mltNx~}vCoa  7 כ Uendstream endobj 96 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1299 >> stream xUkPW& Aئh*[Ƣ*:bE &XᆇTJEQĂOV(Zb8:"g鵝T;sϞ?An206CaѥԘ._cI2iQ;cSܓ} xAx$goʶ3'V &(Üe!/CoZo0Zr 64YHt!OAf6-=#3+ "-C(%A( E#-AqA^(FJ1%Y R ꦃ#* C qFOD_tԪ~J+N8{>UVGa56x.%MawxL (錚' $Q 0 @!XvgW:>rTD/Y|WmJnٝ;{*QT64BQn `dL RHeL]d:fQDU & &67}sLigM>_Pz{VTq?A8ּw٧#]EU=87pԼʫ<dl@:L qOP^)?+ްs H rHpOM)9 G $4vh$h=ŋg90p9D^ ҾZa^|n%\ ]̃vk'f{g [0*/ '%@6j̣ޞ;yn%6|B!`Pե,Zm/<$p~-=,'c%Oo рd#?p^]Aa}q%m D`FL6rD bkjƕX?|sǗKزA-m|<6. }yޭ8dXSSZVʌ<̆Y*\ b|0Ln 0D_n4q/=i_2^aLO7E`(@}9^IYc}}{!O)i{ٗ,>  u9;qCONTppQb\:c"VH1jpxӓOW; (肗/8M٦> stream xUT}TTes+ΝDJd r!bXC1CL JA@06ȠCnn>w:vksy~KSr79zCޜ|{2DL g;!y{>D?(MoHH{.;07+sY,>f+ _N-FQiRH!;Ǩ7yX)OgtHRśv Yƕ~KQ[*zP*Hi0JKEPQYj>xj!@bHɥ˷;Щt">PvIfN.?%{1(p71;jC֐1{pvg[i*/;V^%SBqV7۰Mot@TKIpmаFz%DPƏDgxl ^*>(@Q%P{j*oKzJF2JOLyx ( V,?'~l~V9d8+C$sGF>ӞmMKCXrkrkJ2wp+,E,m;bi S=j]qMq媙 'PQءҾ',uA?Tj7.}lk87ъ:vBg;teah?L4Nj;yxp7T}~ q_^NC%}dNqၝ%Q )H[ =}#t UT ((לeH}% q&_Ul:I#QZ/$!Oo{W KFeZlA,/ֳ'H =&:0oA&ND0;c4ROB`yHhyvC/˒"&$*EC܃M+%H.2xKe(s t6roYBR4!W';XnƣƂ$+ ?4z1 _t_iGY/o~zA"?$ffBs|r :Ie՝"נ]#)C/C*2?6+:!&g m1e$l6!ɑFwx*UM['GbIJO' pujJ}hA5.\ĭлW9ȁ%a w[,0r6]NijnH~9nvG݈$/)F})/ƆYb6p`_r$f.7&>s㽓~2z䶑q SXvݮKw #ģOx%S&Hrk܀j :ϙu{eѪG=<.W="KQ]> stream xESkLWaAժjwX*bB,ta KAdQ_ ,O]@hLGѶMriӁ47_r9;߹4%sho<-'v-1F"L z$1zShCd\e6=utԴx_%9є Ч2B@jI”8ϩ?`0ӄX}Z EQ2W;FPSLj65KBjQ:Cg;:959a7MbR|M# R8A#eF* Jr ;[}=CU?aX5ܢa<7" ­^c5ϕ!+^ڍ]Sd:'WۑH§ ơ #Cv?X\#MQj#[9;CЦXV܉pnyhyňFLj28l G>]C( vG_;m5CqxbBy(r0;$8}ɰrjj+XNfuuKߞՒY찥rƺ O_di5Y*Em՗𵁻ƟSguuYf .܍÷|Ь~) W C]0%EEB.ᛐ]dyO68J|:aQ E߯M]nrSE&i*Uoc]Emy8er!;%$T7ܣCă\u]ds%1ZupA`̕Jԥd)(˵@qp?/b1b丌o,=jHXTq"YV*G]Z/u>Q;K89*kme=Q#'*!i5VZ@Ōr=eendstream endobj 99 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 3396 >> stream xW TSgھ1{x0R֞j=^’.%7o-v (P@ĥV;qѶz8uweΙ/8s:$'9yy)}z oC בOQcO(9eo>6!phhy# ti:))R& u+wB/@]D7iuC Ԙ+͕#"4BE!(ЈPI!(O E&(nNszn3UpuVڌ79y\ηD\uxs8zkDn m#R\X {) }{^$?))ZF0,dk.vugQfyqn&7<<@A".c@j OJ{ᬽ{֤)[{ԱYRp7ZhguxtߞCӞδuK "^~%NIh3P~'C44K4 ͘Gnx8dx"_=.? CסH 21ҩ܎[!Uw[R&ȋC#2כt/N"_7ǗbѰ$wNr|%=CpͬOO ~H x B0)2k1wu)PZ }KR1W ZFND|]c|t}nR Tٮ$ _Nitd=ʾⱢ&C{nA{6ȩC!yͭ"CRT>s3\(ZLfQr ~`= ri(˙!N:Zݠ|R:"j,2@I=P PՂ0-؍򾹊~s{mTe-0PO.XwRˢjB>kn3Iomܰ^!|yiɽm50,s HXĮcpF;S٦4MFUnQ}s7eh-BXr{ RAQ5B9$UjUMimcܤ AiR}B#SU s;v|+|:nͻVf`  iLE\XrCn1%M2k20Sc!\Klx*BG}dTH\&!FXYP^hTU ~( WIY=Ha}}]ЊW\wWJib(Mmb 8(B$O\])ݠlu8[Z{*bxMPcg/`ytmJxb ]3>3 .WT{v"w7Ctq |jTC.\9lcb%V _Cq cY;+mk$\+03[hafǺ m[L&`/^Ф&i MP{`kt;7B-xHЀ4s 2\;JjXNc9Bc*=ã}0R^H%;4xygzo~*FPN ؝.};=;Vz֣o3@&N&(4!haih)nؑB[o0W\ٍ:mN^Z@;)Bu7bPgg`(W$ dw].sg :,+R)Mk}/s3_p9|lC z`rKD5Qh6DВ#O3Z,I|`1l 1S 3q2 Ǹf9𭅝(Qy(3n b5&=Lsyr2ށFIUY_VyT;UJ65CaW{s^7j运,.%h@a]h.eLd-ڧ)GS ~;;n9l1NTZQkvB3-ZS0_񪵠ix.qJSѬQX1Mvc> /j̨.BCWvO&Nt87m~ukGX&`՘O*h-Nw z7>Sh2>??Q_G4{X=c?FOܛ)B8씪wY+`ۙTƯ߅o3ƟuZ5NjIsc Ypb3`Űiưh]eh{vb[ǹŌs?[yZ^+TleiA!Z5Qn57@*- h{ShryYiH (Ԧ`PJ2K6"xh[È41;--%Nd6L&PRNyWGZjo{|>>MwUtm3{r/PVɗ9w[ګlŖ(dL) 95[8oQ\?z~pǘ-*2b ˳:@Pɩv6 Y\tO:M4oYkvK@ƀ' P endstream endobj 100 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1305 >> stream x}Lwzӂx.N4&ȋ&*8‹/8hW+PWAQliVa"FܔLn̷N\Fsl.(?K.{rwy, qLI[:ai8'O+(J(eG&߆P3 fEb)9bجUQ sbU3TIFŠQTij^5y)S4-z_v4:l?5Ve7zJUk٪ݤJL*]mԪBlBhZ*ۤ0 Sr+ok6i#ebX[-R%R, db >_ {B"edwDo`_ Bw 0qϑP$| ePW 3n?i3gd$'R nAp9[15@~@sW.fg[e{ A#7dar $G?^uB)xn)eѭ*TIibg=t 0{.eLlVsw/ǩCmǏk 6'=:|nvƒØ`kFYdC@"7ϺGO7P7WQh9~b#9ƃk=-^[T J-C0SH8iY4(9í *|_KmqjבL0Ɛ7%-Z@{[=,2IR.r:#&+_q\lԁ͠QDW]iɵ뵙w у:WxYPwq6PNkJmkʨ)>-yA jh70 ! N7;ڊ)wjv굇ZcA-rV;Kk {<呂lBϢ(8땢 A KPDL FGClӱcl(8C$88qAj }z>bKѽ0\/~&Dx H-("v "cໝ-=K=֕@ X?ǫ' u %ocN΄ 9Z.{/m#85zD>q|5A\a\ZT ^x|| +G(⵲ޘ!ȡ#B$.B/^e3wk?aj<)3m> stream xcd`ab`dddsH3a!3%kc7s7JBcG``fd+nr/,L(QHT04Q020TpM-LNSM,HM,rr3SK*4l2JJ s4u3K2RSRSJsS%E )Ey ! L,~txݽ ?|wꜾɽts|g_b[] 2uzYrK;L'9BY .uݝ]m}SN;QwU3vslb[,[znʺKWv/_޽gy ]3vN2{9z'N+]yڴiNƾ*|%yxendstream endobj 102 0 obj << /Filter /FlateDecode /Length 2453 >> stream xYݏ?Q/Z)ຉ"1[A K;6',R.w=9C pvvv廂T ?8fL ]qM -*3T ٫%RZ RqRc$Z$B##Ğ+cMeg>)n*lⓡ2>E!Ϙxѥ)gftHhKH*'bX\iA4ĂSbT>}aBx5VHo 'Bs^)E51[xiB?/N(8a Zi8܀ٗ5('< ;NP[Y ? )V, k3D/M֔Q\N9ZU{X~7+W}S>~޵ge|f>b~qME̠ #JXYJY\"Z`Dx%\X] g E!ܖ{2º͡2aSLyڌb@r 6Yc5 bf+@| r "pUk<'2ruLRc\"̤]V21s)+FF{QVFo>;f .Dy޺p,7ڴ :T&5j NP(P(ȽF.`r8 VO%'Zy*>9NIAPrmiҡ6HʷsA2&INSX~JΕI25#N;?-tRXm pQ{_z&N3?쇙C#g/ G'bd6z}Vmޔ|4PV hC# T6PqppsmM@]ex:O Tye y;O"yȘn2%\eWQH3m3Nl2V.®I:ڟ &kygYdhdnѝTQ!hB 6`MlY@S8J2Qv]{1Z.L,RYYNfկ@f)*1XPN)zF-S 嬮cVn~_w>U3j2 8B塎$̨Pvuv7uWId׻k6fDolGΩ(ya F%rQBT\5B@7ykaj\5Hޏf-,OeU\ףlx$uEma{?ʚRn:\(F;9<GB0U!s"%I FFE*-w8XA% !JgPpډ0'ѝpݒ N|0hn_*(x\Gc:4ؘo*I5vb}T\JOeSPQI:H@o,u$Hn"Gb?!^h{zߙ[49@{E{f{\gOC@u_gA@  earٵWmx}mw?9::=P.EUQح]!wQ36dQ\V3?j8 ȄwS3 EG!Nb^QmN,&xL&d\5jI֥.,_'~#S:P谉0_1g~村lǯ8I`D5A9a@kIxO$PK7X`oH`|7K Dm]eb>pGUe`GWwtrPn4U֡C؉~TJ@Ψ3` DPUhXco͐pv|;Mb;'8%3̉(,} xgxw.ؐu8S8p9/yu)yzɡh@ @g[COe@vVqD٪A_7EC.&T8^#z;z~82ͺ]cHs ̓n_{Pq|,+#ޯkL~l]X *fDl3_ЭWTG7U_wOi?lMv a4"B̃}0b&e!fu0نlP3~+਱jz[TCu}ȥ\{`RݰZ *އ/CrvF> stream xcd`ab`dddw 641H3a!O/nn߷}O=J19(3=DA#YS\GR17(391O7$#57QOL-Tа())///K-/JQ(,PJ-N-*KMQp+QKMU8OB9)槤1000103012)ٽgf|;?̿ܥ;~3>,}} |g|Waq6;7<_s/wt\7Xp9|zaendstream endobj 104 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 328 >> stream xcd`ab`ddds H3a!Skc7s7 ~.ȘW_PYQ`hii`d``ZXX('gT*hdX뗗%i(gd(((%*]&s JKR|SRYt^}י1y#no~\~r]O9V=׋翛}}5۟'Wgq>7<_s.wt3\Xpso/yypendstream endobj 105 0 obj << /Filter /FlateDecode /Length 2646 >> stream xY[oc~W#Gu%@ZlllۍڗlQȒU"l|l!!2%@i)k{ӻ~"Z&lpj.V:3OgSib7j,oSkk4oRZ8jE FZ+٢.bqtyZNZeͥw|^g($ּ NL{n4W+M?mܵ"^ 7`&Q4NٸlH$(0q7+_4ׂ9 9ϴƍٳhyȍGͦ!^etU7.=KhD;UH5oNt_0uČq/_M~N8lW8 (<ܭ1j$oIFDƵGHƅm|/u6R,iidQy13 ܒJȌ"H[eUoQPF;R?;89 /J ցJ+K@&hKBM0X+C 7.gś ͮIHP.a@H.AL3eT[5~-ܑ/#H|ae ٌ;˰5b]Qw>{Aq' )ڬ.^lm0U n]šS|C,+ ܊P>HZ/4lȑ&sTvB:9oNrc~\/jjH=_}wl*+AwYӛ=|fٝt/k؛t؇2XK6 CkDh$?TQUa 9oOPwYb*ZjCiu-*C?8Vi>m^#`yy|ڻFPfWGZj))[SIv-Hs\;32'lE~5Djİbx8P''8ڣ N k%IU(:Q~Vr딬.%ZQvW>*\ .[r3dA0\gFvFetnʨAg˵.Mn+}sKU4V*35"{&i&^7:XO1U Z폵52$]﫞*0K?V βڤ,ike\*eCm ~/.vA,׋qox=!xc ųqpYoq4neD*>>5d"c ^u?Fx_Co~k|ryאjn, >]L ?1Sendstream endobj 106 0 obj << /Filter /FlateDecode /Length 2705 >> stream x[o#WGAVǡ)p 5hsjkimW$wC]rp->7fÙ!1阸zo)_FvvD_5tQ0U+kjzd0c98b\-S?y%OJ l^+cM%R:)nj,P]BNx:lJh628ޠz V15] ^k(zzWjkzZ!LOͫד)VUkc+_?J!% V0cT`4fND`d%Cjx V _Z}iSw궝Ln͈ϴSb&NJj+xj4훪Y9.ڞW7=,/>,bRXU`6nZ8[>T TBeDu9a4 Mmպ L2Օ5u UDH,`…ጫj;T7LP*$G ז"sa8Zb>8^N܋#k43e|Bnji s3aAn]j;*ꝗ&Y5VWMP6-xs5Eң%>*@s (q)v>NeʦFi/lJ)A&vX9UK5h[mG;!as:CCqB %ZC XB`a6y"ЎwZ '.J*(!I!&c@dǀpމt 8:n"%hFo6vj *3 /Y% tA 1L5Ytڻ̽`l% JP) m@Ʋnho% ƏX8sˇZ&"WhAϣ(x8HE"A0 RSlmC>vSF8?a0qבԿ#uTC*Oщv*RMjؼ XFjӯV?'2}T{V)]Ig6D*|Ep@VCx۳?5[|(c>Zʼ,)yN]nR"?O:6R.&~sIx~Y@}mҝk8OH%\s~;nySZnf?Op%j&Y{8 q v)96pR9W9B$vh)c_kTUn#LbʙJLPB信't ,zk{Ϊ]?>G9b&w蘮g2G,~9]Jrv݆߹91huڄv,2kZVAW?{7o:jV>C& B J2{SPsgJ7C90Z6ÃA!fMP3|)=uX̷ :,uE,'ZM^.8 ݢQ\X&`9cСbۤq j .8 LNjP&w/6WTT86z%o1>L yEPY۾XZ{{Yh[;$f]:ۦIokccpmY(vVioo!4N{!Z~"2 h./d]džתoI6FW'dרI`_7#kĹ;n:NF 4Q`2kG> stream xZ_W!U{nRiҦZŞSs^N:;!Pd Qp83~;e-2_l&yf7rw6pj.6ftV|Z)(XZ=VZ4CQdAlYq:v:KBi[e򮵌BeqBFzlz3v½Jf%Ukfzy= Sj vϺ =L;τ;*nr9gٜ1/3L sͻ0g$ΘV0)]׼zb6RF8W@"͗8o7aq*_yٸ\iÿ.<ۘ"6fhع9P~ƅkd3#PftN)Q Lq.ܸ0jM秭qInaVZթfx {`zi5?kiFYXYخ`ƥyqT)|EV7W]0epfb& x}3nH4ogZtMfMǻB*F^v)$Gn@9,-l^zq p|]s7 dJX%dgF IrN3ঘCe ܅%eXn.I!\>>pRŌk68o\K^݊kف=/Q|%FJ8.ۤU6P$#e``aۂx6SV1ȉ+f1wZVT<32\7k.J)4M>ViIO]eNܢe_h;7CT趄.!w>iL4/ϊgE,C@tΎדíװHg$EEE5}UέhN?s"[YԄeSIs,+뼙F)8A@1+ L8继~د!߆lb]y Pź߯8)n ) xLP6sɛ]ۭ 7OWO\| H<\:~YmnvbP׻~VF/&_A׫e?ƘOqw5)1#b~{\e՜-vUzt?oWYܿzZ*k8Sލ܇ {2H6 n|j A`Ԏ!\H3!2+.Hb0{u">}'κuJ,0SL5aއ =C'H3Ky:G8>iAY!䤫hr)EeR3KyQ814&ChR{3083 pOؿuNH.M'lp*lB<80%\ s* _|;\{:bHwvii2U PcbxGu~lS`"CHe5 >K½y "tH `iy7 W\Mq <ʈ6EC! |G`>vϻTwڤL5-#U2Ʀ凳Ԡϋt`X#bD04e'u~V ƺ""w^U&=; ^,H?ފJMR.}'1HOE ,lz-bSw= EowK`YHcD#2yD@;*, m敾BȪCNtaw]$3+bYs&ٌOn-ڧe,$) CE==+|dN`<{S\3ڛuXض =zSOuJiŸ/𕦍ubyh(Zx#Ĥ?J |G94֙3 :C$~]2gy:ÀTpPi_¦o1¬Q&xx/l"|k!pux6r")*;c DK>UݛpNCNVLRv'7PnX (Niܗ,UdGeރ].{ }V5PXj y2y/ πTeQBTzX;='XNmtg Xc`&!ѣLppF"ܐ+y*ْ1=_R'ώJphQW?sCU~dep@5qz|cj<f6C{}b*kZN5ʱ[bB=yMT5ZSL$lԜ;7! t5 춒럭4{)+xJ,=MoxlLxЊz޷!lG dpg^͠ * x J/HO(sNTu'CxSdS¯䜊ޏ5ЃKe!F)LtEW䲘ƕd:)yGGXlZ*lTS?(Op;$Y=IPPF:pRa;KEKC!QUMxe~`f/(G{=)ϿFHk 1vEL점l (P" x{M=}vC+*胚ph[C T,_^NF_.endstream endobj 108 0 obj << /Filter /FlateDecode /Length 1106 >> stream xVo6~ =RC76 CnCa5àJͶ\KiG@-?|?O﮸LPo2,VN ƹgיc5Q)=5z@iJ@#(uROkOaQob H9 Tpn)0rAND)cƇk{P%uF|s9WZER\|s>o 9eɟuJ+A~)JcJr]RJj 0LG޿,c`ߛ_1 n5$a٫cpL`ͿC> #椀)-@qCQjm$|?UG[yzCY 3FV:Z].&gendstream endobj 109 0 obj << /Type /XRef /Length 130 /Filter /FlateDecode /DecodeParms << /Columns 5 /Predictor 12 >> /W [ 1 3 1 ] /Info 3 0 R /Root 2 0 R /Size 110 /ID [<7429a6c66f65326df7766fa602c6b040><7c809ab6425f9282a4a54b85b67b722e>] >> stream xcb&F~0 $8J+?& 8(~&H `xDrHnN) R\DYHtDH`v)y`v X ϴl" $F~ 9 6 endstream endobj startxref 69958 %%EOF HSAUR3/inst/doc/Ch_introduction_to_R.R0000644000176200001440000005173313302741024017207 0ustar liggesusers### R code from vignette source 'Ch_introduction_to_R.Rnw' ### Encoding: ASCII ################################################### ### code chunk number 1: setup ################################################### rm(list = ls()) s <- search()[-1] s <- s[-match(c("package:base", "package:stats", "package:graphics", "package:grDevices", "package:utils", "package:datasets", "package:methods", "Autoloads"), s)] if (length(s) > 0) sapply(s, detach, character.only = TRUE) if (!file.exists("tables")) dir.create("tables") if (!file.exists("figures")) dir.create("figures") set.seed(290875) options(prompt = "R> ", continue = "+ ", width = 63, # digits = 4, show.signif.stars = FALSE, SweaveHooks = list(leftpar = function() par(mai = par("mai") * c(1, 1.05, 1, 1)), bigleftpar = function() par(mai = par("mai") * c(1, 1.7, 1, 1)))) HSAURpkg <- require("HSAUR3") if (!HSAURpkg) stop("cannot load package ", sQuote("HSAUR3")) rm(HSAURpkg) ### hm, R-2.4.0 --vanilla seems to need this a <- Sys.setlocale("LC_ALL", "C") ### book <- TRUE refs <- cbind(c("AItR", "DAGD", "SI", "CI", "ANOVA", "MLR", "GLM", "DE", "RP", "GAM", "SA", "ALDI", "ALDII", "SIMC", "MA", "PCA", "MDS", "CA"), 1:18) ch <- function(x) { ch <- refs[which(refs[,1] == x),] if (book) { return(paste("Chapter~\\\\ref{", ch[1], "}", sep = "")) } else { return(paste("Chapter~", ch[2], sep = "")) } } if (file.exists("deparse.R")) source("deparse.R") setHook(packageEvent("lattice", "attach"), function(...) { lattice.options(default.theme = function() standard.theme("pdf", color = FALSE)) }) ################################################### ### code chunk number 2: singlebook ################################################### book <- FALSE ################################################### ### code chunk number 3: AItR-welcome ################################################### HSAUR3:::Rwelcome() ################################################### ### code chunk number 4: AItR-promt ################################################### options(prompt = "> ") ################################################### ### code chunk number 5: AItR-welcome ################################################### options(prompt = "R> ") ################################################### ### code chunk number 6: AItR-firstex ################################################### x <- sqrt(25) + 2 ################################################### ### code chunk number 7: AItR-firstex-print ################################################### x ################################################### ### code chunk number 8: AItR-firstex-print ################################################### print(x) ################################################### ### code chunk number 9: AItR-recommended ################################################### colwidth <- 4 ip <- installed.packages(priority = "high") pkgs <- unique(ip[,"Package"]) pkgs <- paste("\\Rpackage{", pkgs, "}", sep = "") nrows <- ceiling(length(pkgs) / colwidth) pkgs <- c(pkgs, rep("", colwidth * nrows - length(pkgs))) cat(paste(c("\\begin{tabular}{", paste(rep("l", colwidth), collapse=""), "}"), collapse = ""), "\n", file = "tables/rec.tex", append = FALSE) for (i in 1:nrows) { cat(paste(pkgs[(1:colwidth) + (i-1)*colwidth], collapse = " & "), file = "tables/rec.tex", append = TRUE) cat("\\\\ \n", file = "tables/rec.tex", append = TRUE) } cat("\\end{tabular}\n", file = "tables/rec.tex", append = TRUE) rm(ip, nrows) ################################################### ### code chunk number 10: AItR-CRAN ################################################### cp <- available.packages(contriburl = "http://CRAN.r-project.org/src/contrib") ncp <- sum(!rownames(cp) %in% pkgs) rm(cp, pkgs) ################################################### ### code chunk number 11: AItR-rm ################################################### rm(ncp, colwidth, i) ################################################### ### code chunk number 12: AItR-install-packages (eval = FALSE) ################################################### ## install.packages("sandwich") ################################################### ### code chunk number 13: AItR-library (eval = FALSE) ################################################### ## library("sandwich") ################################################### ### code chunk number 14: AItR-help (eval = FALSE) ################################################### ## help("mean") ################################################### ### code chunk number 15: AItR-help-lib (eval = FALSE) ################################################### ## help(package = "sandwich") ################################################### ### code chunk number 16: AItR-help-lib (eval = FALSE) ################################################### ## vignette("sandwich", package = "sandwich") ################################################### ### code chunk number 17: AItR-Forbes2000 ################################################### data("Forbes2000", package = "HSAUR3") ls() ################################################### ### code chunk number 18: AItR-Forbes2000-ls ################################################### x <- c("x", "Forbes2000") print(x) ################################################### ### code chunk number 19: AItR-Forbes2000-print (eval = FALSE) ################################################### ## print(Forbes2000) ################################################### ### code chunk number 20: AItR-Forbes2000-print ################################################### print(Forbes2000[1:3,]) cat("...\n") ################################################### ### code chunk number 21: AItR-Forbes2000-str (eval = FALSE) ################################################### ## str(Forbes2000) ################################################### ### code chunk number 22: AItR-Forbes2000-str ################################################### str(Forbes2000, vec.len = 2, strict.width = "cut", width = 60) ################################################### ### code chunk number 23: AItR-Forbes2000-help (eval = FALSE) ################################################### ## help("Forbes2000") ################################################### ### code chunk number 24: AItR-Forbes2000-df ################################################### class(Forbes2000) ################################################### ### code chunk number 25: AItR-Forbes2000-dim ################################################### dim(Forbes2000) ################################################### ### code chunk number 26: AItR-Forbes2000-nrow-ncol ################################################### nrow(Forbes2000) ncol(Forbes2000) ################################################### ### code chunk number 27: AItR-Forbes2000-names ################################################### names(Forbes2000) ################################################### ### code chunk number 28: AItR-Forbes2000-rank ################################################### class(Forbes2000[,"rank"]) ################################################### ### code chunk number 29: AItR-Forbes2000-length ################################################### length(Forbes2000[,"rank"]) ################################################### ### code chunk number 30: AItR-Forbes2000-one-to-three ################################################### 1:3 c(1,2,3) seq(from = 1, to = 3, by = 1) ################################################### ### code chunk number 31: AItR-Forbes2000-name ################################################### class(Forbes2000[,"name"]) length(Forbes2000[,"name"]) ################################################### ### code chunk number 32: AItR-Forbes2000-first ################################################### Forbes2000[,"name"][1] ################################################### ### code chunk number 33: AItR-Forbes2000-category ################################################### class(Forbes2000[,"category"]) ################################################### ### code chunk number 34: AItR-Forbes2000-nlevels ################################################### nlevels(Forbes2000[,"category"]) ################################################### ### code chunk number 35: AItR-Forbes2000-levels (eval = FALSE) ################################################### ## levels(Forbes2000[,"category"]) ################################################### ### code chunk number 36: AItR-Forbes2000-levels ################################################### levels(Forbes2000[,"category"])[1:3] cat("...\n") ################################################### ### code chunk number 37: AItR-Forbes2000-table (eval = FALSE) ################################################### ## table(Forbes2000[,"category"]) ################################################### ### code chunk number 38: AItR-Forbes2000-table ################################################### table(Forbes2000[,"category"])[1:3] cat("...\n") ################################################### ### code chunk number 39: AItR-Forbes2000-sales ################################################### class(Forbes2000[,"sales"]) ################################################### ### code chunk number 40: AItR-Forbes2000-numsum ################################################### median(Forbes2000[,"sales"]) mean(Forbes2000[,"sales"]) range(Forbes2000[,"sales"]) ################################################### ### code chunk number 41: AItR-Forbes2000-summary ################################################### summary(Forbes2000[,"sales"]) ################################################### ### code chunk number 42: AItR-Forbes2000-files ################################################### pkgpath <- system.file(package = "HSAUR3") mywd <- getwd() filep <- file.path(pkgpath, "rawdata") setwd(filep) ################################################### ### code chunk number 43: AItR-Forbes2000-read.table ################################################### csvForbes2000 <- read.table("Forbes2000.csv", header = TRUE, sep = ",", row.names = 1) ################################################### ### code chunk number 44: AItR-Forbes2000-csv-names ################################################### class(csvForbes2000[,"name"]) ################################################### ### code chunk number 45: AItR-Forbes2000-read.table2 ################################################### csvForbes2000 <- read.table("Forbes2000.csv", header = TRUE, sep = ",", row.names = 1, colClasses = c("character", "integer", "character", "factor", "factor", "numeric", "numeric", "numeric", "numeric")) class(csvForbes2000[,"name"]) ################################################### ### code chunk number 46: AItR-Forbes2000-all.equal ################################################### all.equal(csvForbes2000, Forbes2000) ################################################### ### code chunk number 47: AItR-Forbes2000-classes ################################################### classes <- c("character", "integer", "character", "factor", "factor", "numeric", "numeric", "numeric", "numeric") length(classes) class(classes) ################################################### ### code chunk number 48: AItR-Forbes2000-RODBC (eval = FALSE) ################################################### ## library("RODBC") ## cnct <- odbcConnectExcel("Forbes2000.xls") ## sqlQuery(cnct, "select * from \"Forbes2000\\$\"") ################################################### ### code chunk number 49: AItR-Forbes2000-RODBC ################################################### setwd(mywd) ################################################### ### code chunk number 50: AItR-Forbes2000-write.table ################################################### write.table(Forbes2000, file = "Forbes2000.csv", sep = ",", col.names = NA) ################################################### ### code chunk number 51: AItR-Forbes2000-save ################################################### save(Forbes2000, file = "Forbes2000.rda") ################################################### ### code chunk number 52: AItR-Forbes2000-list ################################################### list.files(pattern = "\\.rda") ################################################### ### code chunk number 53: AItR-Forbes2000-load ################################################### load("Forbes2000.rda") ################################################### ### code chunk number 54: AItR-Forbes2000-vector-companies ################################################### companies <- Forbes2000[,"name"] ################################################### ### code chunk number 55: AItR-Forbes2000-vector-indexing ################################################### companies[1] ################################################### ### code chunk number 56: AItR-Forbes2000-vector-indexing ################################################### 1:3 companies[1:3] ################################################### ### code chunk number 57: AItR-Forbes2000-vector-negative-indexing ################################################### companies[-(4:2000)] ################################################### ### code chunk number 58: AItR-Forbes2000-top-three ################################################### Forbes2000[1:3, c("name", "sales", "profits", "assets")] ################################################### ### code chunk number 59: AItR-Forbes2000-list-extract ################################################### companies <- Forbes2000$name ################################################### ### code chunk number 60: AItR-Forbes2000-vector-companies ################################################### companies <- Forbes2000[,"name"] ################################################### ### code chunk number 61: AItR-Forbes2000-sales ################################################### order_sales <- order(Forbes2000$sales) ################################################### ### code chunk number 62: AItR-Forbes2000-sales-small ################################################### companies[order_sales[1:3]] ################################################### ### code chunk number 63: AItR-Forbes2000-order ################################################### Forbes2000[order_sales[c(2000, 1999, 1998)], c("name", "sales", "profits", "assets")] ################################################### ### code chunk number 64: AItR-Forbes2000-logical ################################################### Forbes2000[Forbes2000$assets > 1000, c("name", "sales", "profits", "assets")] ################################################### ### code chunk number 65: AItR-Forbes2000-logical2 ################################################### table(Forbes2000$assets > 1000) ################################################### ### code chunk number 66: AItR-Forbes2000-NA ################################################### na_profits <- is.na(Forbes2000$profits) table(na_profits) Forbes2000[na_profits, c("name", "sales", "profits", "assets")] ################################################### ### code chunk number 67: AItR-Forbes2000-complete-cases ################################################### table(complete.cases(Forbes2000)) ################################################### ### code chunk number 68: AItR-Forbes2000-UK ################################################### UKcomp <- subset(Forbes2000, country == "United Kingdom") dim(UKcomp) ################################################### ### code chunk number 69: AItR-Forbes2000-summary ################################################### summary(Forbes2000) ################################################### ### code chunk number 70: AItR-Forbes2000-summary-output ################################################### summary(Forbes2000) ################################################### ### code chunk number 71: AItR-Forbes2000-lapply (eval = FALSE) ################################################### ## lapply(Forbes2000, summary) ################################################### ### code chunk number 72: AItR-Forbes2000-tapply-category ################################################### mprofits <- tapply(Forbes2000$profits, Forbes2000$category, median, na.rm = TRUE) ################################################### ### code chunk number 73: AItR-Forbes2000-medianNA ################################################### median(Forbes2000$profits) ################################################### ### code chunk number 74: AItR-Forbes2000-mprofits ################################################### rev(sort(mprofits))[1:3] ################################################### ### code chunk number 75: AItR-Forbes2000-medianNA ################################################### median(Forbes2000$profits, na.rm = TRUE) ################################################### ### code chunk number 76: AItR-iqr ################################################### iqr <- function(x) { q <- quantile(x, prob = c(0.25, 0.75), names = FALSE) return(diff(q)) } ################################################### ### code chunk number 77: AItR-iqr-test ################################################### xdata <- rnorm(100) iqr(xdata) IQR(xdata) ################################################### ### code chunk number 78: AItR-iqr-test (eval = FALSE) ################################################### ## xdata[1] <- NA ## iqr(xdata) ################################################### ### code chunk number 79: AItR-iqr-test-results ################################################### xdata[1] <- NA cat(try(iqr(xdata))) ################################################### ### code chunk number 80: AItR-iqr ################################################### iqr <- function(x, ...) { q <- quantile(x, prob = c(0.25, 0.75), names = FALSE, ...) return(diff(q)) } iqr(xdata, na.rm = TRUE) IQR(xdata, na.rm = TRUE) ################################################### ### code chunk number 81: AItR-Forbes2000-iqr ################################################### iqr(Forbes2000$profits, na.rm = TRUE) ################################################### ### code chunk number 82: AItR-Forbes2000-tapply-category-iqr ################################################### iqr_profits <- tapply(Forbes2000$profits, Forbes2000$category, iqr, na.rm = TRUE) ################################################### ### code chunk number 83: AItR-Forbes2000-variability ################################################### levels(Forbes2000$category)[which.min(iqr_profits)] levels(Forbes2000$category)[which.max(iqr_profits)] ################################################### ### code chunk number 84: AItR-Forbes2000-for ################################################### bcat <- Forbes2000$category iqr_profits2 <- numeric(nlevels(bcat)) names(iqr_profits2) <- levels(bcat) for (cat in levels(bcat)) { catprofit <- subset(Forbes2000, category == cat)$profit this_iqr <- iqr(catprofit, na.rm = TRUE) iqr_profits2[levels(bcat) == cat] <- this_iqr } ################################################### ### code chunk number 85: AItR-Forbes2000-marketvalue ################################################### layout(matrix(1:2, nrow = 2)) hist(Forbes2000$marketvalue) hist(log(Forbes2000$marketvalue)) ################################################### ### code chunk number 86: AItR-Forbes2000-formula ################################################### fm <- marketvalue ~ sales class(fm) ################################################### ### code chunk number 87: AItR-Forbes2000-marketvalue-sales ################################################### plot(log(marketvalue) ~ log(sales), data = Forbes2000, pch = ".") ################################################### ### code chunk number 88: AItR-Forbes2000-marketvalue-sales-shading ################################################### plot(log(marketvalue) ~ log(sales), data = Forbes2000, col = rgb(0,0,0,0.1), pch = 16) ################################################### ### code chunk number 89: AItR-Forbes2000-country-plot ################################################### tmp <- subset(Forbes2000, country %in% c("United Kingdom", "Germany", "India", "Turkey")) tmp$country <- tmp$country[,drop = TRUE] plot(log(marketvalue) ~ country, data = tmp, ylab = "log(marketvalue)", varwidth = TRUE) ################################################### ### code chunk number 90: AItR-analysis1 ################################################### file.create("analysis.R") ################################################### ### code chunk number 91: AItR-analysis2 (eval = FALSE) ################################################### ## source("analysis.R", echo = TRUE) ################################################### ### code chunk number 92: AItR-analysis3 ################################################### file.remove("analysis.R") HSAUR3/inst/doc/Ch_meta_analysis.Rnw0000644000176200001440000003654413302740166016712 0ustar liggesusers \documentclass{chapman} %%% copy Sweave.sty definitions %%% keeps `sweave' from adding `\usepackage{Sweave}': DO NOT REMOVE %\usepackage{Sweave} \RequirePackage[T1]{fontenc} \RequirePackage{graphicx,ae,fancyvrb} \IfFileExists{upquote.sty}{\RequirePackage{upquote}}{} \usepackage{relsize} \DefineVerbatimEnvironment{Sinput}{Verbatim}{} \DefineVerbatimEnvironment{Soutput}{Verbatim}{fontfamily=courier, fontshape=it, fontsize=\relsize{-1}} \DefineVerbatimEnvironment{Scode}{Verbatim}{} \newenvironment{Schunk}{}{} %%% environment for raw output \newcommand{\SchunkRaw}{\renewenvironment{Schunk}{}{} \DefineVerbatimEnvironment{Soutput}{Verbatim}{fontfamily=courier, fontshape=it, fontsize=\small} \rawSinput } %%% environment for labeled output \newcommand{\nextcaption}{} \newcommand{\SchunkLabel}{ \renewenvironment{Schunk}{\begin{figure}[ht] }{\caption{\nextcaption} \end{figure} } \DefineVerbatimEnvironment{Sinput}{Verbatim}{frame = topline} \DefineVerbatimEnvironment{Soutput}{Verbatim}{frame = bottomline, samepage = true, fontfamily=courier, fontshape=it, fontsize=\relsize{-1}} } %%% S code with line numbers \DefineVerbatimEnvironment{Sinput} {Verbatim} { %% numbers=left } \newcommand{\numberSinput}{ \DefineVerbatimEnvironment{Sinput}{Verbatim}{numbers=left} } \newcommand{\rawSinput}{ \DefineVerbatimEnvironment{Sinput}{Verbatim}{} } %%% R / System symbols \newcommand{\R}{\textsf{R}} \newcommand{\rR}{{R}} \renewcommand{\S}{\textsf{S}} \newcommand{\SPLUS}{\textsf{S-PLUS}} \newcommand{\rSPLUS}{{S-PLUS}} \newcommand{\SPSS}{\textsf{SPSS}} \newcommand{\EXCEL}{\textsf{Excel}} \newcommand{\ACCESS}{\textsf{Access}} \newcommand{\SQL}{\textsf{SQL}} %%\newcommand{\Rpackage}[1]{\hbox{\rm\textit{#1}}} %%\newcommand{\Robject}[1]{\hbox{\rm\texttt{#1}}} %%\newcommand{\Rclass}[1]{\hbox{\rm\textit{#1}}} %%\newcommand{\Rcmd}[1]{\hbox{\rm\texttt{#1}}} \newcommand{\Rpackage}[1]{\index{#1 package@{\fontseries{b}\selectfont #1} package} {\fontseries{b}\selectfont #1}} \newcommand{\rpackage}[1]{{\fontseries{b}\selectfont #1}} \newcommand{\Robject}[1]{\texttt{#1}} \newcommand{\Rclass}[1]{\index{#1 class@\textit{#1} class}\textit{#1}} \newcommand{\Rcmd}[1]{\index{#1 function@\texttt{#1} function}\texttt{#1}} \newcommand{\Roperator}[1]{\texttt{#1}} \newcommand{\Rarg}[1]{\texttt{#1}} \newcommand{\Rlevel}[1]{\texttt{#1}} %%% other symbols \newcommand{\file}[1]{\hbox{\rm\texttt{#1}}} %%\newcommand{\stress}[1]{\index{#1}\textit{#1}} \newcommand{\stress}[1]{\textit{#1}} \newcommand{\booktitle}[1]{\textit{#1}} %%' %%% Math symbols \usepackage{amstext} \usepackage{amsmath} \newcommand{\E}{\mathsf{E}} \newcommand{\Var}{\mathsf{Var}} \newcommand{\Cov}{\mathsf{Cov}} \newcommand{\Cor}{\mathsf{Cor}} \newcommand{\x}{\mathbf{x}} \newcommand{\y}{\mathbf{y}} \renewcommand{\a}{\mathbf{a}} \newcommand{\W}{\mathbf{W}} \newcommand{\C}{\mathbf{C}} \renewcommand{\H}{\mathbf{H}} \newcommand{\X}{\mathbf{X}} \newcommand{\B}{\mathbf{B}} \newcommand{\V}{\mathbf{V}} \newcommand{\I}{\mathbf{I}} \newcommand{\D}{\mathbf{D}} \newcommand{\bS}{\mathbf{S}} \newcommand{\N}{\mathcal{N}} \renewcommand{\L}{L} \renewcommand{\P}{\mathsf{P}} \newcommand{\K}{\mathbf{K}} \newcommand{\m}{\mathbf{m}} \newcommand{\argmin}{\operatorname{argmin}\displaylimits} \newcommand{\argmax}{\operatorname{argmax}\displaylimits} \newcommand{\bx}{\mathbf{x}} \newcommand{\bbeta}{\mathbf{\beta}} %%% links \usepackage{hyperref} \hypersetup{% pdftitle = {A Handbook of Statistical Analyses Using R (3rd Edition)}, pdfsubject = {Book}, pdfauthor = {Torsten Hothorn and Brian S. Everitt}, colorlinks = {black}, linkcolor = {black}, citecolor = {black}, urlcolor = {black}, hyperindex = {true}, linktocpage = {true}, } %%% captions & tables %% : conflics with figure definition in chapman.cls %%\usepackage[format=hang,margin=10pt,labelfont=bf]{caption} %% \usepackage{longtable} \usepackage[figuresright]{rotating} %%% R symbol in chapter 1 \usepackage{wrapfig} %%% Bibliography \usepackage[round,comma]{natbib} \renewcommand{\refname}{References \addcontentsline{toc}{chapter}{References}} \citeindexfalse %%% texi2dvi complains that \newblock is undefined, hm... \def\newblock{\hskip .11em plus .33em minus .07em} %%% Example sections \newcounter{exercise}[chapter] \setcounter{exercise}{0} \newcommand{\exercise}{\stepcounter{exercise} \item{Ex.~\arabic{chapter}.\arabic{exercise} }} %% URLs \newcommand{\curl}[1]{\begin{center} \url{#1} \end{center}} %%% for manual corrections %\renewcommand{\baselinestretch}{2} %%% plot sizes \setkeys{Gin}{width=0.95\textwidth} %%% color \usepackage{color} %%% hyphenations \hyphenation{drop-out} \hyphenation{mar-gi-nal} %%% new bidirectional quotes need \usepackage[utf8]{inputenc} %\usepackage{setspace} \definecolor{sidebox_todo}{rgb}{1,1,0.2} \newcommand{\todo}[1]{ \hspace{0pt}% \marginpar{% \fcolorbox{black}{sidebox_todo}{% \parbox{\marginparwidth} { \raggedright\sffamily\footnotesize{TODO: #1}% } }% } } \begin{document} %% Title page \title{A Handbook of Statistical Analyses Using \R{} --- 3rd Edition} \author{Torsten Hothorn and Brian S. Everitt} \maketitle %%\VignetteIndexEntry{Chapter Meta-Analysis} %%\VignetteDepends{rmeta} \setcounter{chapter}{16} \SweaveOpts{prefix.string=figures/HSAUR,eps=FALSE,keep.source=TRUE} <>= rm(list = ls()) s <- search()[-1] s <- s[-match(c("package:base", "package:stats", "package:graphics", "package:grDevices", "package:utils", "package:datasets", "package:methods", "Autoloads"), s)] if (length(s) > 0) sapply(s, detach, character.only = TRUE) if (!file.exists("tables")) dir.create("tables") if (!file.exists("figures")) dir.create("figures") set.seed(290875) options(prompt = "R> ", continue = "+ ", width = 63, # digits = 4, show.signif.stars = FALSE, SweaveHooks = list(leftpar = function() par(mai = par("mai") * c(1, 1.05, 1, 1)), bigleftpar = function() par(mai = par("mai") * c(1, 1.7, 1, 1)))) HSAURpkg <- require("HSAUR3") if (!HSAURpkg) stop("cannot load package ", sQuote("HSAUR3")) rm(HSAURpkg) ### hm, R-2.4.0 --vanilla seems to need this a <- Sys.setlocale("LC_ALL", "C") ### book <- TRUE refs <- cbind(c("AItR", "DAGD", "SI", "CI", "ANOVA", "MLR", "GLM", "DE", "RP", "GAM", "SA", "ALDI", "ALDII", "SIMC", "MA", "PCA", "MDS", "CA"), 1:18) ch <- function(x) { ch <- refs[which(refs[,1] == x),] if (book) { return(paste("Chapter~\\\\ref{", ch[1], "}", sep = "")) } else { return(paste("Chapter~", ch[2], sep = "")) } } if (file.exists("deparse.R")) source("deparse.R") setHook(packageEvent("lattice", "attach"), function(...) { lattice.options(default.theme = function() standard.theme("pdf", color = FALSE)) }) @ \pagestyle{headings} <>= book <- FALSE @ \chapter[Meta-Analysis]{Meta-Analysis: Nicotine Gum and Smoking Cessation and the Efficacy of BCG Vaccine in the Treatment of Tuberculosis \label{MA}} \section{Introduction} \section{Systematic Reviews and Meta-Analysis} \section{Analysis Using \R{}} The aim in collecting the results from the randomized trials of using nicotine gum to help smokers quit was to estimate the overall \stress{odds ratio}, the odds of quitting smoking for those given the gum, divided by the odds of quitting for those not receiving the gum. Following formula (\ref{MA:barY}), we can compute the pooled odds ratio as follows: <>= data("smoking", package = "HSAUR3") odds <- function(x) (x[1] * (x[4] - x[3])) / ((x[2] - x[1]) * x[3]) weight <- function(x) ((x[2] - x[1]) * x[3]) / sum(x) W <- apply(smoking, 1, weight) Y <- apply(smoking, 1, odds) sum(W * Y) / sum(W) @ Of course, the computations are more conveniently done using the functionality provided in package \Rpackage{rmeta}. The odds ratios and corresponding confidence intervals are computed by means of the \Rcmd{meta.MH} function for fixed effects meta-analysis as shown here <>= library("rmeta") smokingOR <- meta.MH(smoking[["tt"]], smoking[["tc"]], smoking[["qt"]], smoking[["qc"]], names = rownames(smoking)) @ and the results can be inspected via a \Rcmd{summary} method -- see Figure~\ref{MA-smoking-summary}. \renewcommand{\nextcaption}{\R{} output of the \Rcmd{summary} method for \Robject{smokingOR}. \label{MA-smoking-summary}} \SchunkLabel <>= summary(smokingOR) @ \SchunkRaw \begin{figure} \begin{center} <>= plot(smokingOR, ylab = "") @ \caption{Forest plot of observed effect sizes and $95\%$ confidence intervals for the nicotine gum studies. \label{MA:smokingplot}} \end{center} \end{figure} We shall use both the fixed effects and random effects approaches here so that we can compare results. For the fixed effects model (see Figure~\ref{MA-smoking-summary}) the estimated overall log-odds ratio is \Sexpr{round(smokingOR$logMH, 3)} with a standard error of \Sexpr{round(smokingOR$selogMH, 3)}. This leads to an estimate of the overall odds ratio of \Sexpr{round(exp(smokingOR$logMH), 3)}, with a 95\% confidence interval as given above. For the random effects model, which is fitted by applying function \Rcmd{meta.DSL} to the \Robject{smoking} data as follows \vspace{1cm} <>= (smokingDSL <- meta.DSL(smoking[["tt"]], smoking[["tc"]], smoking[["qt"]], smoking[["qc"]], names = rownames(smoking))) @ the corresponding estimate is \Sexpr{round(exp(smokingDSL$logDSL), 3)}. Both models suggest that there is clear evidence that nicotine gum increases the odds of quitting. The random effects confidence interval is considerably wider than that from the fixed effects model; here the test of homogeneity of the studies is not significant implying that we might use the fixed effects results. But the test is not particularly powerful and it is more sensible to assume a priori that heterogeneity is present and so we use the results from the random effects model. \section{Meta-Regression} The examination of heterogeneity of the effect sizes from the studies in a meta-analysis begins with the formal test for its presence, although in most meta-analyses such heterogeneity can almost be assumed to be present. There will be many possible sources of such heterogeneity and estimating how these various factors affect the observed effect sizes in the studies chosen is often of considerable interest and importance, indeed usually more important than the relatively simplistic use of meta-analysis to determine a single summary estimate of overall effect size. We can illustrate the process using the BCG vaccine data. We first find the estimate of the overall effect size from applying the fixed effects and the random effects models described previously: <>= data("BCG", package = "HSAUR3") BCG_OR <- meta.MH(BCG[["BCGVacc"]], BCG[["NoVacc"]], BCG[["BCGTB"]], BCG[["NoVaccTB"]], names = BCG$Study) BCG_DSL <- meta.DSL(BCG[["BCGVacc"]], BCG[["NoVacc"]], BCG[["BCGTB"]], BCG[["NoVaccTB"]], names = BCG$Study) @ The results are inspected using the \Rcmd{summary} method as shown in Figures~\ref{MA-BCGOR-summary} and \ref{MA-BCGDSL-summary}. \renewcommand{\nextcaption}{\R{} output of the \Rcmd{summary} method for \Robject{BCG\_OR}. \label{MA-BCGOR-summary}} \SchunkLabel <>= summary(BCG_OR) @ \SchunkRaw \renewcommand{\nextcaption}{\R{} output of the \Rcmd{summary} method for \Robject{BCG\_DSL}. \label{MA-BCGDSL-summary}} \SchunkLabel <>= summary(BCG_DSL) @ \SchunkRaw To assess how the two covariates, latitude and year, relate to the observed effect sizes we shall use multiple linear regression but will weight each observation by $W_i = (\hat{\sigma}^2 + V_i^2)^{-1}, i = 1, \dots, 13$, where $\hat{\sigma}^2$ is the estimated between-study variance and $V_i^2$ is the estimated variance from the $i$th study. The required \R{} code to fit the linear model via weighted least squares is: \index{Meta-Analysis!weighted least squares regression} <>= studyweights <- 1 / (BCG_DSL$tau2 + BCG_DSL$selogs^2) y <- BCG_DSL$logs BCG_mod <- lm(y ~ Latitude + Year, data = BCG, weights = studyweights) @ and the results of the \Rcmd{summary} method are shown in Figure~\ref{MA-mod-summary}. There is some evidence that latitude is associated with observed effect size, the log-odds ratio becoming increasingly negative as latitude increases, as we can see from a scatterplot of the two variables with the added weighted regression fit seen in Figure~\ref{MA-BCG}. \renewcommand{\nextcaption}{\R{} output of the \Rcmd{summary} method for \Robject{BCG\_mod}. \label{MA-mod-summary}} \SchunkLabel <>= summary(BCG_mod) @ \SchunkRaw \begin{figure} \begin{center} <>= plot(y ~ Latitude, data = BCG, ylab = "Estimated log-OR") abline(lm(y ~ Latitude, data = BCG, weights = studyweights)) @ \caption{Plot of observed effect size for the \Robject{BCG} vaccine data against latitude, with a weighted least squares regression fit shown in addition. \label{MA-BCG}} \end{center} \end{figure} \section{Publication Bias} \begin{figure} \begin{center} <>= set.seed(290875) sigma <- seq(from = 1/10, to = 1, length.out = 35) y <- rnorm(35) * sigma gr <- (y > -0.5) layout(matrix(1:2, ncol = 1)) plot(y, 1/sigma, xlab = "Effect size", ylab = "1 / standard error") plot(y[gr], 1/(sigma[gr]), xlim = range(y), xlab = "Effect size", ylab = "1 / standard error") @ \caption{Example funnel plots from simulated data. The asymmetry in the lower plot is a hint that a publication bias might be a problem. \label{MA-funnel}} \end{center} \end{figure} We can construct a funnel plot for the nicotine gum data using the \R{} code depicted with Figure~\ref{MA:funnel}. There does not appear to be any strong evidence of publication bias here. \begin{figure} \begin{center} <>= funnelplot(smokingDSL$logs, smokingDSL$selogs, summ = smokingDSL$logDSL, xlim = c(-1.7, 1.7)) abline(v = 0, lty = 2) @ \caption{Funnel plot for nicotine gum data. \label{MA:funnel}} \end{center} \end{figure} \index{Meta-analysis!funnel plots|)} %%\bibliographystyle{LaTeXBibTeX/refstyle} %%\bibliography{LaTeXBibTeX/HSAUR} \end{document} HSAUR3/inst/doc/Ch_quantile_regression.pdf0000644000176200001440000107472213302741110020135 0ustar liggesusers%PDF-1.5 % 1 0 obj << /Type /ObjStm /Length 13802 /N 64 /First 521 >> stream 2 0 3 67 4 364 5 507 6 694 7 734 8 862 9 1016 10 1067 11 1419 12 1717 13 1871 14 2079 15 2407 16 2668 17 2685 18 2727 19 2862 20 2879 21 3029 22 3232 23 3437 24 3952 25 4434 26 4686 27 4930 28 5389 29 5928 30 6388 31 6897 32 7113 33 7359 34 8722 35 9036 36 9298 37 9669 38 9983 39 10001 40 10018 41 10037 42 10103 43 10253 44 10433 45 10583 46 10735 47 10941 48 10958 49 11036 50 11190 51 11207 52 11261 53 11415 54 11432 55 11486 56 11635 57 11840 58 12013 59 12200 60 12386 61 12571 62 12758 63 12936 64 13052 65 13134 << /Metadata 66 0 R /Outlines 6 0 R /Pages 4 0 R /Type /Catalog >> << /Author (Torsten Hothorn and Brian S. Everitt) /CreationDate (D:20180528104807+02'00') /Creator (LaTeX with hyperref package) /Keywords () /ModDate (D:20180528104807+02'00') /Producer (GPL Ghostscript 9.18) /Subject (Book) /Title (A Handbook of Statistical Analyses Using R \(3rd Edition\)) >> << /Count 15 /Kids [ 8 0 R 18 0 R 5 0 R 22 0 R 43 0 R 49 0 R 52 0 R 57 0 R 56 0 R 95 0 R 94 0 R 71 0 R 73 0 R 124 0 R 21 0 R ] /Type /Pages >> << /Annots [ 20 0 R 75 0 R 76 0 R ] /Contents 132 0 R /MediaBox [ 0 0 595.28 841.89 ] /Parent 4 0 R /Resources << /ExtGState 81 0 R /Font 82 0 R /ProcSet [ /PDF /Text ] >> /Type /Page >> << /Count 1 /First 7 0 R /Last 7 0 R >> << /Count -5 /Dest [ 5 0 R /XYZ 143.731 699.155 null ] /First 68 0 R /Last 74 0 R /Parent 6 0 R /Title (Quantile Regression) >> << /Contents 133 0 R /MediaBox [ 0 0 595.28 841.89 ] /Parent 4 0 R /Resources << /ExtGState 16 0 R /Font 17 0 R /ProcSet [ /PDF /Text ] >> /Type /Page >> << /BM /Normal /OPM 1 /TK true /Type /ExtGState >> << /BaseFont /LUXBWO+CMBX12 /Encoding 64 0 R /FirstChar 51 /FontDescriptor 11 0 R /LastChar 124 /Subtype /Type1 /Type /Font /Widths [ 562 0 0 0 0 0 0 312 0 0 0 0 0 0 849 799 812 0 738 0 0 879 0 0 0 0 0 0 0 0 844 839 625 0 864 0 0 0 0 0 0 0 0 0 0 0 546 625 500 625 513 343 562 625 312 0 593 312 937 625 562 625 0 459 443 437 625 0 0 0 593 0 0 1125 ] >> << /Ascent 700 /CapHeight 700 /CharSet (/A/B/C/E/H/Q/R/S/U/a/b/c/colon/d/e/emdash/f/g/h/i/k/l/m/n/o/p/r/s/t/three/u/y) /Descent -201 /Flags 4 /FontBBox [ 0 -201 1124 700 ] /FontFile3 134 0 R /FontName /LUXBWO+CMBX12 /ItalicAngle 0 /MissingWidth 500 /StemV 168 /Type /FontDescriptor /XHeight 456 >> << /BaseFont /YEYXXM+CMSSBX10 /Encoding /WinAnsiEncoding /FirstChar 82 /FontDescriptor 13 0 R /LastChar 82 /Subtype /Type1 /Type /Font /Widths [ 702 ] >> << /Ascent 694 /CapHeight 694 /CharSet (/R) /Descent 0 /Flags 65568 /FontBBox [ 0 0 653 694 ] /FontFile3 135 0 R /FontName /YEYXXM+CMSSBX10 /ItalicAngle 0 /MissingWidth 500 /StemV 97 /Type /FontDescriptor >> << /BaseFont /PPKCGK+CMR12 /Encoding /WinAnsiEncoding /FirstChar 46 /FontDescriptor 15 0 R /LastChar 118 /Subtype /Type1 /Type /Font /Widths [ 271 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 693 0 0 666 0 0 734 0 0 0 0 0 0 0 0 0 0 543 707 0 0 0 0 0 0 0 0 0 0 0 0 489 0 0 543 435 0 0 543 271 0 0 0 0 543 489 0 0 380 386 380 0 516 ] >> << /Ascent 704 /CapHeight 704 /CharSet (/B/E/H/S/T/a/d/e/h/i/n/o/period/r/s/t/v) /Descent -21 /Flags 131104 /FontBBox [ 0 -21 692 704 ] /FontFile3 136 0 R /FontName /PPKCGK+CMR12 /ItalicAngle 0 /MissingWidth 500 /StemV 103 /Type /FontDescriptor /XHeight 446 >> << /R17 9 0 R >> << /R18 10 0 R /R20 12 0 R /R22 14 0 R >> << /Contents 137 0 R /MediaBox [ 0 0 595.28 841.89 ] /Parent 4 0 R /Resources << /ExtGState 19 0 R /ProcSet [ /PDF ] >> /Type /Page >> << /R17 9 0 R >> << /Border [ 0 0 1 ] /C [ 0 1 0 ] /Dest [ 21 0 R /XYZ 131.776 496.913 null ] /Rect [ 306.497 314.007 336.475 325.867 ] /Subtype /Link /Type /Annot >> << /Annots [ 58 0 R 59 0 R 60 0 R 61 0 R 62 0 R ] /Contents 138 0 R /MediaBox [ 0 0 595.28 841.89 ] /Parent 4 0 R /Resources << /ExtGState 128 0 R /Font 129 0 R /ProcSet [ /PDF /Text ] >> /Type /Page >> << /Contents 139 0 R /MediaBox [ 0 0 595.28 841.89 ] /Parent 4 0 R /Resources << /ColorSpace 38 0 R /ExtGState 39 0 R /Font 41 0 R /ProcSet [ /PDF /ImageC /ImageI /Text ] /XObject 40 0 R >> /Type /Page >> << /BaseFont /JCQXTC+CMR10 /Encoding 65 0 R /FirstChar 11 /FontDescriptor 24 0 R /LastChar 123 /Subtype /Type1 /Type /Font /Widths [ 583 555 555 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 500 0 0 833 0 277 388 388 0 0 277 333 277 0 500 500 500 500 500 500 500 500 500 500 277 277 0 777 0 0 0 750 708 722 763 680 652 784 750 361 0 777 625 916 750 777 680 777 736 555 722 750 750 1027 0 750 0 0 500 0 0 0 0 500 555 444 555 444 305 500 555 277 305 527 277 833 555 500 555 527 391 394 388 555 527 722 527 527 444 500 ] >> << /Ascent 750 /CapHeight 750 /CharSet (/A/B/C/D/E/F/G/H/I/K/L/M/N/O/P/Q/R/S/T/U/V/W/Y/a/b/c/colon/comma/d/e/eight/endash/equal/f/ff/fi/five/fl/four/g/h/hyphen/i/j/k/l/m/n/nine/o/one/p/parenleft/parenright/percent/period/q/quotedblleft/quotedblright/quoteright/r/s/semicolon/seven/six/t/three/two/u/v/w/x/y/z/zero) /Descent -250 /Flags 4 /FontBBox [ -40 -250 1009 750 ] /FontFile3 140 0 R /FontName /JCQXTC+CMR10 /ItalicAngle 0 /MissingWidth 500 /StemV 151 /Type /FontDescriptor >> << /BaseFont /WVZFFN+CMMI10 /Encoding 63 0 R /FirstChar 12 /FontDescriptor 26 0 R /LastChar 62 /Subtype /Type1 /Type /Font /Widths [ 565 0 0 0 0 0 0 0 0 583 0 0 0 0 0 0 437 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 277 277 0 0 777 ] >> << /Ascent 706 /CapHeight 706 /CharSet (/beta/comma/greater/lambda/period/tau) /Descent -194 /Flags 4 /FontBBox [ 0 -194 694 706 ] /FontFile3 141 0 R /FontName /WVZFFN+CMMI10 /ItalicAngle 0 /MissingWidth 500 /StemV 104 /Type /FontDescriptor >> << /BaseFont /XWTOEU+CMTT10 /Encoding /WinAnsiEncoding /FirstChar 34 /FontDescriptor 28 0 R /LastChar 126 /Subtype /Type1 /Type /Font /Widths [ 525 0 525 0 0 0 525 525 0 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 0 525 525 525 0 0 525 0 525 0 0 0 0 525 525 0 0 0 0 525 0 0 0 525 0 0 0 0 0 0 0 0 525 0 525 525 525 0 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 0 525 525 525 525 ] >> << /Ascent 694 /AvgWidth 525 /CapHeight 623 /CharSet (/A/C/H/I/N/R/a/asciicircum/asciitilde/b/bar/braceleft/braceright/bracketleft/bracketright/c/colon/comma/d/dollar/e/eight/equal/f/five/four/g/greater/h/hyphen/i/j/k/l/less/m/n/nine/o/one/p/parenleft/parenright/period/plus/q/quotedbl/r/s/seven/six/slash/t/three/two/u/underscore/v/w/x/y/zero) /Descent -229 /Flags 35 /FontBBox [ -4 -229 537 694 ] /FontFile3 142 0 R /FontName /XWTOEU+CMTT10 /ItalicAngle 0 /MaxWidth 525 /MissingWidth 525 /StemV 125 /Type /FontDescriptor /XHeight 442 >> << /BaseFont /QVYBTG+NimbusMonL-ReguObli /Encoding /WinAnsiEncoding /FirstChar 37 /FontDescriptor 30 0 R /LastChar 126 /Subtype /Type1 /Type /Font /Widths [ 600 0 0 600 600 0 600 600 600 600 0 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 0 0 600 0 600 600 600 600 0 0 600 0 0 600 600 0 0 0 600 600 600 600 600 0 0 0 0 0 600 0 600 0 0 0 600 600 600 600 600 600 600 600 600 0 0 600 600 600 600 600 600 600 600 600 600 0 600 600 0 0 0 0 0 600 ] >> << /Ascent 624 /AvgWidth 600 /CapHeight 577 /CharSet (/A/C/D/E/F/I/L/M/Q/R/S/T/U/a/asciitilde/b/bracketleft/bracketright/c/colon/comma/d/e/eight/equal/f/five/four/g/greater/h/hyphen/i/l/less/m/n/nine/o/one/p/parenleft/parenright/percent/period/plus/q/r/s/semicolon/seven/six/t/three/two/u/w/x/zero) /Descent -186 /Flags 99 /FontBBox [ -13 -186 700 624 ] /FontFile3 143 0 R /FontName /QVYBTG+NimbusMonL-ReguObli /ItalicAngle -13 /MaxWidth 600 /MissingWidth 600 /StemV 151 /Type /FontDescriptor /XHeight 432 >> << /BaseFont /XFMKPG+CMB10 /Encoding /WinAnsiEncoding /FirstChar 97 /FontDescriptor 32 0 R /LastChar 117 /Subtype /Type1 /Type /Font /Widths [ 486 0 444 0 466 0 500 0 277 0 0 277 833 555 0 0 527 427 394 390 555 ] >> << /Ascent 695 /CapHeight 695 /CharSet (/a/c/e/g/i/l/m/n/q/r/s/t/u) /Descent -201 /Flags 32 /FontBBox [ 0 -201 830 695 ] /FontFile3 144 0 R /FontName /XFMKPG+CMB10 /ItalicAngle 0 /MissingWidth 500 /StemV 124 /Type /FontDescriptor /XHeight 455 >> [ /Indexed /DeviceRGB 255 (\000\000\000\001\001\001\002\002\002\003\003\003\004\004\004\005\005\005\006\006\006\007\007\007\b\b\b\t\t\t\n\n\n\013\013\013\f\f\f\r\r\r\016\016\016\017\017\017\020\020\020\021\021\021\022\022\022\023\023\023\024\024\024\025\025\025\026\026\026\027\027\027\030\030\030\031\031\031\032\032\032\033\033\033\034\034\034\035\035\035\036\036\036\037\037\037 !!!"""###$$$%%%&&&'''\(\(\(\)\)\)***+++,,,---...///000111222333444555666777888999:::;;;<<<===>>>???@@@AAABBBCCCDDDEEEFFFGGGHHHIIIJJJKKKLLLMMMNNNOOOPPPQQQRRRSSSTTTUUUVVVWWWXXXYYYZZZ[[[\\\\\\]]]^^^___```aaabbbcccdddeeefffggghhhiiijjjkkklllmmmnnnooopppqqqrrrssstttuuuvvvwwwxxxyyyzzz{{{|||}}}~~~\177\177\177\200\200\200\201\201\201\202\202\202\203\203\203\204\204\204\205\205\205\206\206\206\207\207\207\210\210\210\211\211\211\212\212\212\213\213\213\214\214\214\215\215\215\216\216\216\217\217\217\220\220\220\221\221\221\222\222\222\223\223\223\224\224\224\225\225\225\226\226\226\227\227\227\230\230\230\231\231\231\232\232\232\233\233\233\234\234\234\235\235\235\236\236\236\237\237\237) ] << /BaseFont /LJFNJE+CMBX9 /Encoding /WinAnsiEncoding /FirstChar 46 /FontDescriptor 35 0 R /LastChar 117 /Subtype /Type1 /Type /Font /Widths [ 328 0 0 591 591 591 591 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 743 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 542 0 591 0 328 0 0 0 0 0 0 0 0 488 0 0 657 ] >> << /Ascent 695 /CapHeight 680 /CharSet (/F/e/four/g/i/one/period/r/three/two/u) /Descent -201 /Flags 131104 /FontBBox [ 0 -201 694 695 ] /FontFile3 145 0 R /FontName /LJFNJE+CMBX9 /ItalicAngle 0 /MissingWidth 500 /StemV 104 /Type /FontDescriptor /XHeight 456 >> << /BaseFont /ONYUEZ+CMR9 /Encoding /WinAnsiEncoding /FirstChar 40 /FontDescriptor 37 0 R /LastChar 121 /Subtype /Type1 /Type /Font /Widths [ 399 399 0 0 0 342 285 0 513 513 0 0 0 513 0 0 0 0 0 0 0 0 0 0 0 0 0 0 785 0 0 0 0 0 0 0 0 0 0 0 0 0 0 570 0 0 0 0 0 0 0 0 0 0 0 0 0 513 570 456 570 457 314 513 570 285 0 0 285 856 570 513 570 542 402 405 399 570 0 742 0 542 ] >> << /Ascent 750 /CapHeight 705 /CharSet (/D/S/a/b/c/d/e/f/five/g/h/hyphen/i/l/m/n/o/one/p/parenleft/parenright/period/q/r/s/t/u/w/y/zero) /Descent -249 /Flags 32 /FontBBox [ 0 -249 833 750 ] /FontFile3 146 0 R /FontName /ONYUEZ+CMR9 /ItalicAngle 0 /MissingWidth 500 /StemV 124 /Type /FontDescriptor /XHeight 453 >> << /R55 33 0 R >> << /R17 9 0 R >> << /R56 147 0 R >> << /R37 23 0 R /R43 27 0 R /R45 29 0 R /R57 34 0 R /R59 36 0 R >> << /Border [ 0 0 1 ] /C [ 0 1 0 ] /Dest [ 21 0 R /XYZ 131.776 562.667 null ] /Rect [ 395.165 558.506 433.401 570.366 ] /Subtype /Link /Type /Annot >> << /Annots [ 42 0 R 44 0 R ] /Contents 148 0 R /MediaBox [ 0 0 595.28 841.89 ] /Parent 4 0 R /Resources << /ExtGState 47 0 R /Font 48 0 R /ProcSet [ /PDF /Text ] >> /Type /Page >> << /Border [ 0 0 1 ] /C [ 0 1 0 ] /Dest [ 21 0 R /XYZ 131.776 562.667 null ] /Rect [ 437.486 558.506 459.403 570.366 ] /Subtype /Link /Type /Annot >> << /BaseFont /YYMHHU+CMSS10 /Encoding /WinAnsiEncoding /FirstChar 82 /FontDescriptor 46 0 R /LastChar 82 /Subtype /Type1 /Type /Font /Widths [ 645 ] >> << /Ascent 694 /CapHeight 694 /CharSet (/R) /Descent 0 /Flags 65568 /FontBBox [ 0 0 617 694 ] /FontFile3 149 0 R /FontName /YYMHHU+CMSS10 /ItalicAngle 0 /MissingWidth 500 /StemV 92 /Type /FontDescriptor >> << /R17 9 0 R >> << /R37 23 0 R /R41 25 0 R /R43 27 0 R /R45 29 0 R /R47 31 0 R /R70 45 0 R >> << /Contents 150 0 R /MediaBox [ 0 0 595.28 841.89 ] /Parent 4 0 R /Resources << /ExtGState 50 0 R /Font 51 0 R /ProcSet [ /PDF /Text ] >> /Type /Page >> << /R17 9 0 R >> << /R37 23 0 R /R41 25 0 R /R43 27 0 R /R45 29 0 R >> << /Contents 151 0 R /MediaBox [ 0 0 595.28 841.89 ] /Parent 4 0 R /Resources << /ExtGState 53 0 R /Font 54 0 R /ProcSet [ /PDF /Text ] >> /Type /Page >> << /R17 9 0 R >> << /R37 23 0 R /R43 27 0 R /R45 29 0 R /R70 45 0 R >> << /Border [ 0 0 1 ] /C [ 1 0 0 ] /Dest [ 56 0 R /XYZ 206.092 246.566 null ] /Rect [ 181.854 601.896 201.55 612.735 ] /Subtype /Link /Type /Annot >> << /Contents 152 0 R /MediaBox [ 0 0 595.28 841.89 ] /Parent 4 0 R /Resources << /ColorSpace 89 0 R /ExtGState 90 0 R /Font 92 0 R /ProcSet [ /PDF /ImageC /ImageI /Text ] /XObject 91 0 R >> /Type /Page >> << /Annots [ 55 0 R ] /Contents 153 0 R /MediaBox [ 0 0 595.28 841.89 ] /Parent 4 0 R /Resources << /ExtGState 87 0 R /Font 88 0 R /ProcSet [ /PDF /Text ] >> /Type /Page >> << /A << /S /URI /Type /Action /URI (http://CRAN.R-project.org/package=quantreg) >> /Border [ 0 0 1 ] /C [ 0 1 1 ] /Rect [ 415.333 547.225 479.97 559.085 ] /Subtype /Link /Type /Annot >> << /A << /S /URI /Type /Action /URI (http://CRAN.R-project.org/package=quantreg) >> /Border [ 0 0 1 ] /C [ 0 1 1 ] /Rect [ 152.697 535.549 311.8 546.667 ] /Subtype /Link /Type /Annot >> << /A << /S /URI /Type /Action /URI (http://CRAN.R-project.org/package=lattice) >> /Border [ 0 0 1 ] /C [ 0 1 1 ] /Rect [ 362.63 481.471 479.97 493.332 ] /Subtype /Link /Type /Annot >> << /A << /S /URI /Type /Action /URI (http://CRAN.R-project.org/package=lattice) >> /Border [ 0 0 1 ] /C [ 0 1 1 ] /Rect [ 152.697 469.795 253.878 480.913 ] /Subtype /Link /Type /Annot >> << /A << /S /URI /Type /Action /URI (http://www.jstatsoft.org/v23/i07) >> /Border [ 0 0 1 ] /C [ 0 1 1 ] /Rect [ 219.088 430.941 388.134 442.059 ] /Subtype /Link /Type /Annot >> << /BaseEncoding /WinAnsiEncoding /Differences [ 12 /beta 21 /lambda 28 /tau 58 /period /comma ] /Type /Encoding >> << /BaseEncoding /WinAnsiEncoding /Differences [ 124 /emdash ] /Type /Encoding >> << /BaseEncoding /WinAnsiEncoding /Differences [ 11 /ff /fi /fl 34 /quotedblright 39 /quoteright 92 /quotedblleft 123 /endash ] /Type /Encoding >> endstream endobj 66 0 obj << /Subtype /XML /Type /Metadata /Length 1653 >> stream GPL Ghostscript 9.18 2018-05-28T10:48:07+02:00 2018-05-28T10:48:07+02:00 LaTeX with hyperref package A Handbook of Statistical Analyses Using R (3rd Edition)Torsten Hothorn and Brian S. EverittBook endstream endobj 67 0 obj << /Type /ObjStm /Length 8581 /N 64 /First 534 >> stream 68 0 69 97 70 214 71 328 72 592 73 710 74 919 75 1019 76 1169 77 1319 78 1682 79 1991 80 2141 81 2353 82 2370 83 2484 84 2626 85 2833 86 2974 87 3183 88 3200 89 3278 90 3296 91 3313 92 3332 93 3398 94 3548 95 3757 96 3944 97 4094 98 4244 99 4261 100 4339 101 4357 102 4374 103 4394 104 4460 105 4610 106 4760 107 4910 108 5060 109 5210 110 5360 111 5510 112 5659 113 5809 114 5957 115 6107 116 6257 117 6274 118 6340 119 6724 120 7051 121 7069 122 7086 123 7106 124 7186 125 7322 126 7339 127 7555 128 7800 129 7817 130 7887 131 7965 << /Dest [ 5 0 R /XYZ 143.731 582.592 null ] /Next 69 0 R /Parent 7 0 R /Title (Introduction) >> << /Dest [ 5 0 R /XYZ 143.731 564.014 null ] /Next 70 0 R /Parent 7 0 R /Prev 68 0 R /Title (Quantile Regression) >> << /Dest [ 5 0 R /XYZ 143.731 543.502 null ] /Next 72 0 R /Parent 7 0 R /Prev 69 0 R /Title (Analysis Using R) >> << /Annots [ 104 0 R 105 0 R 106 0 R 107 0 R 108 0 R 109 0 R 110 0 R 111 0 R 112 0 R 113 0 R 114 0 R 115 0 R ] /Contents 154 0 R /MediaBox [ 0 0 595.28 841.89 ] /Parent 4 0 R /Resources << /ExtGState 116 0 R /Font 117 0 R /ProcSet [ /PDF /Text ] >> /Type /Page >> << /Dest [ 71 0 R /XYZ 140.144 343.489 null ] /Next 74 0 R /Parent 7 0 R /Prev 70 0 R /Title (Summary of Findings) >> << /Contents 155 0 R /MediaBox [ 0 0 595.28 841.89 ] /Parent 4 0 R /Resources << /ColorSpace 120 0 R /ExtGState 121 0 R /Font 123 0 R /ProcSet [ /PDF /ImageC /ImageI /Text ] /XObject 122 0 R >> /Type /Page >> << /Dest [ 73 0 R /XYZ 143.731 271.726 null ] /Parent 7 0 R /Prev 72 0 R /Title (Final Comments) >> << /Border [ 0 0 1 ] /C [ 0 1 0 ] /Dest [ 21 0 R /XYZ 131.776 496.913 null ] /Rect [ 341.171 314.007 363.089 325.867 ] /Subtype /Link /Type /Annot >> << /Border [ 0 0 1 ] /C [ 1 0 0 ] /Dest [ 22 0 R /XYZ 209.181 389.032 null ] /Rect [ 183.649 266.615 203.345 277.454 ] /Subtype /Link /Type /Annot >> << /BaseFont /JBCKVH+CMBX10 /Encoding /WinAnsiEncoding /FirstChar 46 /FontDescriptor 78 0 R /LastChar 121 /Subtype /Type1 /Type /Font /Widths [ 319 0 0 575 575 575 575 575 0 0 0 0 0 0 0 0 0 543 0 869 0 830 0 0 723 0 0 436 0 0 0 0 0 0 0 863 862 638 0 884 0 0 0 0 0 0 0 0 0 0 0 559 0 511 638 527 351 575 0 319 0 0 319 958 638 575 0 0 473 453 447 638 0 0 0 606 ] >> << /Ascent 700 /CapHeight 698 /CharSet (/A/C/F/I/Q/R/S/U/a/c/d/e/f/five/four/g/i/l/m/n/o/one/period/question/r/s/t/three/two/u/y) /Descent -201 /Flags 34 /FontBBox [ 0 -201 935 700 ] /FontFile3 156 0 R /FontName /JBCKVH+CMBX10 /ItalicAngle 0 /MissingWidth 500 /StemV 156 /Type /FontDescriptor /XHeight 455 >> << /BaseFont /RLUNTJ+CMR8 /Encoding /WinAnsiEncoding /FirstChar 51 /FontDescriptor 80 0 R /LastChar 51 /Subtype /Type1 /Type /Font /Widths [ 531 ] >> << /Ascent 665 /CapHeight 665 /CharSet (/three) /Descent -21 /Flags 65568 /FontBBox [ 0 -21 486 665 ] /FontFile3 157 0 R /FontName /RLUNTJ+CMR8 /ItalicAngle 0 /MissingWidth 500 /StemV 72 /Type /FontDescriptor >> << /R17 9 0 R >> << /R18 10 0 R /R20 12 0 R /R37 23 0 R /R39 77 0 R /R41 25 0 R /R43 27 0 R /R45 29 0 R /R47 31 0 R /R49 79 0 R >> << /BaseFont /KUZZGR+CMMI7 /Encoding 130 0 R /FirstChar 28 /FontDescriptor 84 0 R /LastChar 28 /Subtype /Type1 /Type /Font /Widths [ 526 ] >> << /Ascent 431 /CapHeight 431 /CharSet (/tau) /Descent -12 /Flags 4 /FontBBox [ 0 -12 582 431 ] /FontFile3 158 0 R /FontName /KUZZGR+CMMI7 /ItalicAngle 0 /MissingWidth 500 /StemV 87 /Type /FontDescriptor >> << /BaseFont /UQWCEE+CMSY10 /Encoding 131 0 R /FirstChar 2 /FontDescriptor 86 0 R /LastChar 2 /Subtype /Type1 /Type /Font /Widths [ 777 ] >> << /Ascent 491 /CapHeight 491 /CharSet (/multiply) /Descent 0 /Flags 4 /FontBBox [ 0 0 630 491 ] /FontFile3 159 0 R /FontName /UQWCEE+CMSY10 /ItalicAngle 0 /MissingWidth 500 /StemV 94 /Type /FontDescriptor >> << /R17 9 0 R >> << /R37 23 0 R /R41 25 0 R /R43 27 0 R /R45 29 0 R /R89 83 0 R /R91 85 0 R >> << /R55 33 0 R >> << /R17 9 0 R >> << /R97 160 0 R >> << /R37 23 0 R /R43 27 0 R /R57 34 0 R /R59 36 0 R /R70 45 0 R >> << /Border [ 0 0 1 ] /C [ 1 0 0 ] /Dest [ 94 0 R /XYZ 206.092 198.745 null ] /Rect [ 453.928 504.445 473.624 515.284 ] /Subtype /Link /Type /Annot >> << /Contents 161 0 R /MediaBox [ 0 0 595.28 841.89 ] /Parent 4 0 R /Resources << /ColorSpace 100 0 R /ExtGState 101 0 R /Font 103 0 R /ProcSet [ /PDF /ImageC /ImageI /Text ] /XObject 102 0 R >> /Type /Page >> << /Annots [ 93 0 R 96 0 R 97 0 R ] /Contents 162 0 R /MediaBox [ 0 0 595.28 841.89 ] /Parent 4 0 R /Resources << /ExtGState 98 0 R /Font 99 0 R /ProcSet [ /PDF /Text ] >> /Type /Page >> << /Border [ 0 0 1 ] /C [ 1 0 0 ] /Dest [ 94 0 R /XYZ 206.092 198.745 null ] /Rect [ 406.887 444.669 426.583 455.509 ] /Subtype /Link /Type /Annot >> << /Border [ 0 0 1 ] /C [ 1 0 0 ] /Dest [ 73 0 R /XYZ 206.092 318.297 null ] /Rect [ 452.822 178.607 472.518 190.468 ] /Subtype /Link /Type /Annot >> << /R17 9 0 R >> << /R37 23 0 R /R41 25 0 R /R43 27 0 R /R47 31 0 R /R89 83 0 R /R91 85 0 R >> << /R55 33 0 R >> << /R17 9 0 R >> << /R113 163 0 R >> << /R37 23 0 R /R43 27 0 R /R57 34 0 R /R59 36 0 R /R70 45 0 R >> << /Border [ 0 0 1 ] /C [ 1 0 0 ] /Dest [ 94 0 R /XYZ 206.092 198.745 null ] /Rect [ 216.293 549.443 235.989 560.282 ] /Subtype /Link /Type /Annot >> << /Border [ 0 0 1 ] /C [ 1 0 0 ] /Dest [ 73 0 R /XYZ 206.092 318.297 null ] /Rect [ 157.059 537.488 176.755 548.327 ] /Subtype /Link /Type /Annot >> << /Border [ 0 0 1 ] /C [ 1 0 0 ] /Dest [ 73 0 R /XYZ 206.092 318.297 null ] /Rect [ 293.417 465.757 313.113 476.596 ] /Subtype /Link /Type /Annot >> << /Border [ 0 0 1 ] /C [ 1 0 0 ] /Dest [ 94 0 R /XYZ 206.092 198.745 null ] /Rect [ 310.815 370.116 330.511 380.955 ] /Subtype /Link /Type /Annot >> << /Border [ 0 0 1 ] /C [ 1 0 0 ] /Dest [ 73 0 R /XYZ 206.092 318.297 null ] /Rect [ 351.303 370.116 370.999 380.955 ] /Subtype /Link /Type /Annot >> << /Border [ 0 0 1 ] /C [ 0 1 0 ] /Dest [ 21 0 R /XYZ 131.776 535.768 null ] /Rect [ 448.807 250.338 476.384 262.199 ] /Subtype /Link /Type /Annot >> << /Border [ 0 0 1 ] /C [ 0 1 0 ] /Dest [ 21 0 R /XYZ 131.776 535.768 null ] /Rect [ 139.148 238.383 220.426 250.243 ] /Subtype /Link /Type /Annot >> << /Border [ 0 0 1 ] /C [ 0 1 0 ] /Dest [ 21 0 R /XYZ 131.776 535.768 null ] /Rect [ 224.892 238.383 246.81 250.243 ] /Subtype /Link /Type /Annot >> << /Border [ 0 0 1 ] /C [ 0 1 0 ] /Dest [ 21 0 R /XYZ 131.776 470.014 null ] /Rect [ 267.967 238.383 378.528 250.243 ] /Subtype /Link /Type /Annot >> << /Border [ 0 0 1 ] /C [ 0 1 0 ] /Dest [ 21 0 R /XYZ 131.776 470.014 null ] /Rect [ 384.1 238.383 406.018 250.243 ] /Subtype /Link /Type /Annot >> << /Border [ 0 0 1 ] /C [ 0 1 0 ] /Dest [ 21 0 R /XYZ 131.776 601.521 null ] /Rect [ 289.163 154.697 382.034 166.557 ] /Subtype /Link /Type /Annot >> << /Border [ 0 0 1 ] /C [ 0 1 0 ] /Dest [ 21 0 R /XYZ 131.776 601.521 null ] /Rect [ 386.118 154.697 408.036 166.557 ] /Subtype /Link /Type /Annot >> << /R17 9 0 R >> << /R37 23 0 R /R39 77 0 R /R41 25 0 R /R43 27 0 R /R47 31 0 R >> << /BaseFont /UAGBVZ+CMTI10 /Encoding /WinAnsiEncoding /FirstChar 40 /FontDescriptor 119 0 R /LastChar 121 /Subtype /Type1 /Type /Font /Widths [ 408 408 0 0 0 357 0 0 0 0 0 0 0 0 0 0 0 0 306 0 0 0 0 511 0 743 703 715 0 0 0 773 0 385 525 0 627 896 0 0 0 766 729 562 0 0 0 0 0 0 0 0 0 0 0 0 0 511 0 460 511 460 306 460 511 306 0 0 255 817 562 511 511 0 421 408 332 536 0 664 0 485 ] >> << /Ascent 750 /CapHeight 716 /CharSet (/A/B/C/G/I/J/L/M/Q/R/S/a/c/colon/d/e/f/g/h/hyphen/i/l/m/n/o/p/parenleft/parenright/question/r/s/t/u/w/y) /Descent -250 /Flags 32 /FontBBox [ -25 -250 1002 750 ] /FontFile3 164 0 R /FontName /UAGBVZ+CMTI10 /ItalicAngle 0 /MissingWidth 500 /StemV 150 /Type /FontDescriptor /XHeight 442 >> << /R55 33 0 R >> << /R17 9 0 R >> << /R136 165 0 R >> << /R137 118 0 R /R37 23 0 R /R39 77 0 R /R43 27 0 R /R57 34 0 R /R59 36 0 R >> << /Contents 166 0 R /MediaBox [ 0 0 595.28 841.89 ] /Parent 4 0 R /Resources << /ExtGState 125 0 R /ProcSet [ /PDF ] >> /Type /Page >> << /R17 9 0 R >> << /BaseFont /JVPULO+CMBXTI10 /Encoding /WinAnsiEncoding /FirstChar 97 /FontDescriptor 127 0 R /LastChar 117 /Subtype /Type1 /Type /Font /Widths [ 591 0 532 0 532 0 532 0 355 0 0 296 0 650 0 0 532 501 0 385 620 ] >> << /Ascent 695 /CapHeight 695 /CharSet (/a/c/e/g/i/l/n/q/r/t/u) /Descent -202 /Flags 32 /FontBBox [ 0 -202 684 695 ] /FontFile3 167 0 R /FontName /JVPULO+CMBXTI10 /ItalicAngle 0 /MissingWidth 500 /StemV 102 /Type /FontDescriptor /XHeight 452 >> << /R17 9 0 R >> << /R137 118 0 R /R154 126 0 R /R18 10 0 R /R37 23 0 R /R43 27 0 R >> << /BaseEncoding /WinAnsiEncoding /Differences [ 28 /tau ] /Type /Encoding >> << /BaseEncoding /WinAnsiEncoding /Differences [ 2 /multiply ] /Type /Encoding >> endstream endobj 132 0 obj << /Filter /FlateDecode /Length 4475 >> stream x[K$q(:dS\6VlZi >tTk{wxhYd0ɘ6Ө6/tѣM_nͿxF&877QѧTGoz0z7i4fՑrT;N\_c_*8''oh}TrfaJv4A.^a 8JSN1ze309ذN>T?d #GGQqH tTm!/vzp ~Ѐ3cwÏGfLXzXt [1|"6')1'-XFPL Pc |%2@]F#sZo8Ɇ!CH&a B )X#\B6 ZtS&% 0=o n0&vAA}"2+ӞN|aN VJ*+ÔuE` bגO}@GB `/Ӥ$ !ݼLC_ O*3?=pGWa<'*qݱδ X:~$1z\vD Z$Ov !ETzvaLR)𰔢 RDi0 |Nx_3Pi;sK&s fqAm`>K?$th%Rz# !l|07Ă;,g֛6~U k;hH}EV8upf!Ζv|H\ihZ"<g&HDPWBS`{V *ՙAKۢ+)ͤ088SN>U6Z7kES%y] [/- aF0U xj`0sqK43(G8WM[9 QquJul/!g`=OL03$ Y}EJ5-|_%ס,{߲.xXevN1A WnP37YҶO8WՅ.tG,H[A6~@Uff6ez(oKvE D!x0_OJxse e3  **fg.zB^K5/fU9f\dF]jvk=TI@,!,K;Ă"6;~tɽQPX9 ET_׾~=կO fNluv QNУZ'HjzsKڹ^jR)$MȒqJyJ) ,1A fe'͜BZT27"%aA4v d&,`ɓY/ДXpэWUVljqGQ; \\1CLKj2q nXc'if߰OA\ S*psvj$R9q]E.I*lZ~+3b% eȘ )uN &p%t*Ԑp sw5F':LD[D+SD(bRbpa"&+qʏ2-Oy^FXy]<ŚMg"jSTsuD7K ;AжY@VgZs+4,|YEO qAˆcy t0Sկ7-.]y90~tX:ҟF۟<0YmFf[ة8>tHDQ.\]1(iՄX1/3% 3мRDb|`jr^=4G4xn;)3lnH,(8E1m$畧ĭE\k !+C.FzBL"I#۪\ ̕!6}\~qixACf&zo`a cl@pL4>/zJtZJ ;fzv.%iQ;CřCZzT5E[xHa~"Wr#lP,Z"G.Z`S|8-pDbO:˾$tFչ;GOY^x,7b᳥^ty?<|_.<4c-Ɋs(W.HZ.#OM3dS(L6 h3]Nyw7OL /,rVūz/"[m(q /\ѕҿW !h9O aM\w#cZre+ wʬ[北Bze+;rjQIzAR5 c[_ك_kLOl!_ Bk`HҌEW M,2P 56HN:U UjɆS TE@J}IRLEDuR>&_uf@w|-YNfZi$\~\S4ՉN52(3ȟs\NP'e:5peGbH"dh"Jy4b䥬2 $:w͞]Zqi_'!/H+2{LdYb/,,ʶ/!˗ZRL9eM<F! Rܵ7ϹA[Ns (YBaľ-QV!{Y'Y j7$[1Wd&ոE+KJ+!"z<Åsa?RURneWQ_`pVK웉}زoYkQi CNJS;EyTcdr뒈n|٫g9 5u}Ƌo'˰s ZbҼY,ڔA Vfͧ/<`z,ZIpz8KkAƼ<=Ã/p26+!8"VuBkPIIFEz D@`+CE9eu oWVJ?:(tlD4z{^o'C?RWS/HٰFJ,u}PXK=M Q~ZLcJ{|Xz{{_&g1ͱ#H~Y>CwK}/K6mI{6cwp$ _b~+ endstream endobj 133 0 obj << /Filter /FlateDecode /Length 619 >> stream xuSMoT1 W=4DZT}tB㼯 ^4ɋonw|u)[Tcka~$qdyvNF& bNZA\FVv=.KׯjroQ%*N 8K$N`k:f3kZ-n݋P?;14S[&#Vs›YW3ְdx$؎ ESaY)Zun( \rxj0WC<" ^n4kTqN)j*YF*Rg;Rb8D@B5ތ{?څ9מo"WǣV&AR7]ڡBO3RB;]_%\64?8tf0 7M஝Fe{Hz& "Y0J ЂPP&XMa#`4 Dm<2 ARٖx@*Q8d^$S`kRi)c[uJGgEN˰ )d/`|]s퉖~l%r:M9U8(f&~endstream endobj 134 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 3331 >> stream xW Tg@DSV5*D 1⊢`nA@]Ydۍ, #"A/dܢљ7h&&wo69sީӧS{d]?F& MtFʤQr /%=8ɮmk<7e2m\vGbtXHhr i&){(GGmQG*ձX'\?'46vS#bhCޛ0I\F*W#}O7S#.68Z dF9?rsǢ%qjM■!Cׄn_1;eÌaV1cfqc|:fYx20 EYLg23eLfͬdF2z-ƅcҙDzղ~UCj3O"B96s5=X^)NNw81ಳF9[-ҲJg@4sՋaYɠu\Jq 4@=|5Z8mq^!L{aXH'ͦ' Խ^:%d9nOv)`2 7L.4~`~ 27^^( |bkL0=~ Xdnt*f@k l=NЌ5@o%o.U$?=nkd@߁N[d@֑+dq[RUw-:,X%q8 =h뱆W+Ʉs;v(iبV(`+p2PDb gis?07 tvg%A"1'ՙwo8?'KQ 3oB6ԾFLYZm֫|U. P)B.=+G-ۚ\!c>ǜ> j=w[QD+dWIŃ.V$,J LPV)8sf 2'#a늖*.}Byh`LgcP.e-8R9H`0 NќHR]U;_GQidɨGSmք\?ԶO %Om26q>cf%;8\gMȐX"{WKl%oBEUl:ߓ_p"Ѽ(}>P.a_uY7;Eu6zǕ "g8'=X]jli?]j;Sh¿87rc[?oӭq2sɠR2v'A<9PuKDL8uy/t671ߑ\wERȖ"vA.&T.CTT&6UxASTG־(H&&L WlJ5%g_W7DaM!Ǩ*Hkg,-a|~&\;u ݻ^5SKZư.B)u/ztioybPۨK a(ЍD2MBH* (lNpqB(MI5glL-@As#9 <qp)?v\i9w:| 7b;t,ʛ(W7/m H6券P ()L764TP&lD}@|OD| N>u0fJJ8` YkICtR8Άy9X| MxXppSX{] RJ_5Nå-MyG]x_ H]5]Kt%dHt㮼ܼ4$4$Yy6)7UiT(bsQhaXփ ju FqdXđx∏X2@K 5'}@'ו~3_澏%%à3-`d!ťa"l 3U7h+)89ј}W_Z,żm6 O;ކ:zhCotˣ._w_6A#٠QGF>]G_<яznz^$"𙽱-PъS5G } !$*,JO3$r:Ȃ\.)駕H>DA X# v*:9iəaendstream endobj 135 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 363 >> stream xcd`ab`ddt v04qH3a!Skc7s7˚ﷄ ~O XX_PYQ`hii`d``ZXX('gT*hdX뗗%i(gd(((%*c8)槤1000103012ԽK2>}wy߯jcws~7yŞ>~nSg>;3wߛgO^-ym̾^];ǂXπ| wt\eXp~`:endstream endobj 136 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1925 >> stream xmTg*T:hQIQc*$*TI#BawD*/{YayGXvaAPUIi̩ibFHKP$1Dju9Q$)H2<5IQlUժ Q~HWjRUŒujQf`e!XOYLjT+ *}*YQ1*b*toHmdT[* '5,eJL X"'D"P _VMxf⿤+*Z:ZAE~RRD0J7P _@Ksr=^ly>Ow Iȃh^ôD6߅"C/Wߊzv~Q NtJ$?ܥNOiȑdߜgk$_qz,c[p9ܚ8Xg-WŨ]'ZK-e%`6s@quyi/цد/^h JHQzx~H{p/-#@Cns3"Z$7I9(@D[t0xi{p)(7߄^oXO%})="m2  6зEDcMnk 1Hsq9E*?.%=+HIg\RVd4\H,8{̜g@X-57)/h;^d4@+W6-_k+ *٩qZo$BGݔ4rr~%Tw%'%>ZӔn Os{j=W`=kv{RNZpl3Q><wsh>Z_k'q=1DKSx3,qoO`31Qsw NO BOB;ohrdHׄ"p桃MxW/ G^\VT(saJ`;)m*ʿ;:TLc Iѹ}Ecݝt_s}}h8Hn4ɵe5k3MY-G<ߨ*~k*93 y3,qbe;9p\PʽUpn\+Zƫy!(~(s 0k06`jMȢ]Ǔ䞂[9=s~oC,7_]N%#nkelIN{/t<ڛ4zX=vy]7뺅 5roq8FǨ58 >nTp*-Ns!0" A|= 'tM3Ha ڪ*m"4|@UJ=} 88ڍ.&ۨh=vu~Y.)(VWhaYóYaNߟ9|}|w8endstream endobj 137 0 obj << /Filter /FlateDecode /Length 150 >> stream xU;1 {'0q_N@ -ׇE٬W.,?慅:c8]J`̤\՘pBf3y0IVL;)H%Q3T3!T*_qӊ[;KY I*) vjKԐuSBC endstream endobj 138 0 obj << /Filter /FlateDecode /Length 2444 >> stream xYKoϯH49ȻwJ.Qh^?n#Ȉ>DuB-%?^8Va}XhaB._/  +z>rxH2o2x+Ъ+Q%]reJױt<~G ^Ep̩~M'STADOM_>iV)k%mB׆Dur[e U .qV.O.4j]JyD ayrgj%]%T~²i~˫ImiIeWD<4n߯Rj}!R4_'?-rxH"yΖ+@MXy0)L:qޗ8gJ]umV 6;X*$UHۭobF2R(*FlԔp{OQ똊OmA;R1?NNvZx D6/fDb Ś:|~rt"USʾ-;dWro -n]NpY_S$Yҁn4.2E(C2eG!(U?@@tYbvLX2aft\*%sjyrt.`;T(Z)<1:P4/A VXKy ?Ԗ%a~P/QݟVĨq.yr0?mCʛpBJO#)ZJ5GL |J"=9 FG#4;`;^9׎M|ɨ;ݪ|=W y?a00UWCcL'#{6kД؆*V^b7}}E,Q-~*Fh8" \CTQn4J}OAkǩjT& !*Ό*Q.]sS.EF8lvd.&h62Y3plȴ6g#hS;!t 2>Y\$pț~mqt [׉qF*~qKDvP{-<x^:h͂ZҮJUiS*}` Wi;Q|]*}mҟtWO3{ofr?co9&Ī o{Db  =8$1QhcK~5`5 Ŭ _+7Ƶ9(7WHvM(}w)!DzW 0׳.N]o1DֻlWKƯr e "(w^]Mw#pޔIrO-?[wqen}>'ƾښ=z-2uĴw9cw^U;i .*#!r;N٥zJÕJdJIJ"3,令ke˲[vx0ەF^ov '$IwZ֏Ly;m2|+qmW9%GqR*<ߴJM3l#a'Ĩgi6cNf/nD܉+*Ebˏjilo3l灑Kl VEI_3},_P乄_΄x\#KƑdAP(BMƟ6O' KR\c1d`P`x( vН,{Ь'xx"|T؄'h#gl?a{2_L+Ɣ|Ծ>/7Wc߉1kJP c&I ɎtwF=/NyOX U>6EOp|)dQf/ކmpN13J&7UΎB$5mOz9OH`RWB||1[e/Tm4.X 7.u 62_zWlď>:h4zZ? biX}'F0sܝ@6Ht[?^%]%3jY0[Gz*bL. mendstream endobj 139 0 obj << /Filter /FlateDecode /Length 1764 >> stream xioSGSBQ$T p?r|$>) U{]'C!P>d5cUF؀nF0i,aSI$KeFޚV>H59? \0;p+q]n /CbAN 5mّqQ \)knwK[6Bi~\=lnTc2\[>^:Wnɟuë‰z<8iF%iz ۉkNlVeJ)zrW o!n Ⱦ9KM=qv毞4jpmbAW4r aZ2`2eNOw=tB%o}yzehilsZ6spb2N߭JEo0a㾅[JCjMVPSqp%5)6[Pk'\r1C2^Ĩ5e[oelyҭs"p!a \k ~-Dr;,q+ z*> stream xytٚm #Sz/Bj{\dK:{-dcb6-$%$$rǹ+&y{[_^K˒fs>}$,zP@`պI{ݱWyG%BoGlgGU}Ѧ~P  KZ'~(I3f8bW:0ݞWxڛ67 ( Xj*34m]0dQ%KvGt[*c>vSfg#F=ϸ'M2uoQPʑFfRéԻ:=j=5@6RMhj3OR q6j!5N-&PjL-P˩ jN-eG Q)Q I>T eEQ}5%P,6AzQ+!QZ0PP${Bhj-,4Z dbz.%U֦6uهʶz7e~_d-(>= i6sszڝ8vA+%z߽;sp!]`I=:a؉k}WXu$m5Ўlj2+b@!OFmqݨbJ!M]Y:{֪sQdc@tSif9ICpTբ4E;B\:>E%v0-R5qy^A=sW2XJԨn@5Y{y28"A+韯x!o:k7C(0h= W[惓K*F|,i/SI:\ҡk$x+Pj7ҟC8yomf+~Q ~M 㱄*rKFڪKjg>k ۈB߲MǓj= &e OTqx ,f5޲I?vy9$x4Wi@QL1h+$(.,YZ$$s[y5m9>ϰ#`vɀxP˨9f/xW;%;>۫nTC )YtӲ+`[?X$םRFXF׵k)Y0ݳ`$PN'pc_Ew#O=DhHÃ$@_%6_ݪ LMS5IxRҀJ)T UJu.|^BNԞj@GanУaz!cy YT)FMR(IWcQTrvHMC]Ѡ__9t2}G(J@X]Xlq}HNQJO&R$ؖ h@SZv>ٗ'$K|=] o[Zpf`cG$ N!@FGS٥*!!S%&)A5RQ}H8ԐTB &ȧF?HE4ޟ)!/etI~yIVVlIAFFxak_L#--o<9j<OƮMS:8*ܮ [(GA~h A<~802T`?*~hYBӕ+ӡh"“p^ 폄|ۤɻUD>y=a.*zQ<WN ?Hסф0C`P;.!tR oq$?;F, c<7S/Ρ < XNy ֝go]6Iknqf<`VWd-mWd ,.ĸ[dVמCY Ӟd@S6%5g@U8M5!iiwq-@\]~(% PWC0L4#8Mj@zNz.yRz-=n(h4.+%J!5eT(^8v$OWh~('( Wmben|ӻ03 6w|Eƿfidfl2Gv5 ]OzzTgrcSp*i'ЃtV`*ޑ ]O |ӎdpȉkv`f,vZP]][Z^ڰC-iUq4*ej{XeHL'UX eX }Nmj|<^!h HB;l3Ց>]YkHixڬ7*OFnˉ *FM!x&4dsOlj_?$pXz&0\_4&udW]UwH1M)<Q4diuZ#4##>.yHVyE]UM3hcUUݕgBT)Q8-:A'=3S Q*izQOeͨ%"$%e@D%ȑ$kN̐z; ]:71F#~iqO6To4>c(b#^}=*,+MElw\/4o͚uG* Nh58E}F{ g Qld6)_$ }_'*rURVA$Y'QBgUr~lsۜ* B*h}Iڦ_ئ1%8K:fT:k6.@g2L4~/0/s  N͢zN ?l|N0 |5z#HXIMRʓI[}OxsGp HԥjQw;_ ;_ ,5LӇr@_E8Ngr_"$pt-ǫҕ9զ.1Ef4T@n-txJK$_^SSg6IX| >4hg7>k68#`p[ b7R Y7pH3 _,wDp>zrm4|8dzeMԢNuèpq܁ؓJs\zqu}8],ev<|z∙Gi[P=!ϗk9pOK_!o$;EV8peQٵn3-8Lů[9Nޯ䇓<^y<&+XQ7;]Wb+$y,=5V0$Lu|mQ.s+epoF! N98Ry>dc`_jp NBkEs}v8FO_μ~#dQ%zOm͐VvnmRRƖgqsLfI~4!nAZnP i"04eQGS{~:ޜ4yzZfϑ GB%-  ZԨq{phVW il2&N|OTB Y~xprM)Ʒ:x'ZommO#j*jzQS^ ; \NTUq+VtdWi&ߺh;bV.3M}΋I ﴷR|' T4_QbP,X?LyXKR쫣rj KJIʎ-9R!C\&GQ&P6L&3S܉(#1:luP=!p;ϵ(vG6oqlO:8̫Fb3n-{㫬G}'; OO.E]s`%_Kd+bǮ p6 n6&p &D*ЄsVLbt9yT{5YDm$vr?z"zGWhv|d5xsh3].oH'¥O 2)*B2mKvd9U$k$D$H1: 4t.hb/leĿ!u'?mF`C*Z瓲cB"1?}F% ^rP ؇{Ox(NdU4ڪZt\;8W?<8H!\ϐۿēBNܹDlg[:ʋZ627_<.> \l!~~;lpA|(m3eC^=͌GGt"wi\```bf3r덳KݖOFSECkYLӴT/(Ay:v˧ .p(Sӻ}(dendstream endobj 141 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 854 >> stream x%olw:FݒKhd5VҴ3UG%]SmӸPup"i ٢E}!/:jLL~o9'|Zt V7CBݥS?҃61`lYm<O}ع g;p8yzx'g/}>a㌗dx'aq' ?O>y_߾}p8s/q6CzlY?=Y 3nsL!dHBȊCDBB͞ M$u_e{YV"6UoI*/ge(@,ȯEsd>@ ŸUU4us":X>ńW2>EEOKԺ7+|sBqn!gI$IRSGC.U'jKGR@ JZTg V,+Ķ}o#uz>7]8紌<ݜ,dy=WW} Owcxg8VGkAjǴ>*2-$0E9C8Mx/Ywn_.:!IA2܄%iCvKRÁ#>zql,WqFyb#tԯ&e*՘7]O`r4ٹyq)^~P͡h$.e&΋+_v5Et]^^ D*‡ pIV3O IlG䦡S{6C0!_PjOKi)|=Ac?xײdl[>xendstream endobj 142 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 5301 >> stream xX XS׶>!prT E;jZuUqjAqH#!B<< aLPu ukUZmkzn|v{_keiAD"R7Y3N&,b恵Xڲ 0DFQbHTK)j?-3g:;*}Cݼ2`o%Yٯ*Ȕ]xCR!W-|^寔ٻ*"|wد(W{Z7mEי3;8o0/΋H`uJ|R 1,9waہ9WzOo_gEejiC207>r ^|Tƞ;{•Kޜu;;8W^q !سP/(_nW:wd,ţ~x Y|qj@ϣZrh9t3!}kwwL\=Ѕ =Vz)js?.LU LU~OeǎWWyүI 9lAuwXN(hy,Gc *UYw#ǿfq̨$؆F's^/$^t{Ih^z=w em5RZ "Tk ( bTz= 㥏5 /"Mbh9 oнG87{^ FO뇺 Ȉ2,|/Fi6!ptj'!Մ]V,Z1Bv)P  9= PeZ_ M{tO\_.qG=vFLBQ" ljLjD6ZJ 3A=Ԡu۠}ԓQT# KH\3dzU,BW_X#$^%`\TC^lBbH/ĉ 0PXBPӛ :.HA"*ƅ%`.Ud ^]VBd?Y0dkJN,*bh,}v<\Mۺ Y`Vhw|NV"$__645:un('ңxyi\s҈V;đdKBJL_'$}GZl>/FE4fu.ECzA-4?;|Hl@ȈeXKʖ\g "ZAe-'m>HDy MSM%rF}FѡxKduRи :"T1%9 h4?͎t E_6t9U+vEC?<슲yلºN$bC YJc"83oiM0| NV]L$ċ/?LFsc_9g 7X?фٴ!`~,S{Wj|A$k=.{>ؾփ뗅{(C܅Kl^m.`f_:HF3`\cqV/Jw|9,5y]p:0ϓ[e[rEcĠ8J_Ԃ-o[O pAW3~Szzy|ymHxtvͥġh]}ԙO>9[ֻ{ymgج6e;0w/_nLh 5ٻu ).nlZ9+)Ulem+ (䥘$Y ޅ8fh4V{1}g \l]Ϯmľ{S\ w1!cHK Uryx\^^__UU?lchlOgDcNCv L]sS,PG,ENzOO͖a$[,:U$E#ĪeP1h+a+r,z6gƠ:B7zDҍ7cө42O"a2ި501~wJ"Xx׎2w%GVDr8ZW_H*ѳs}`!8:,̠8j}b:CRk8!7vƫ.L45p9UgfB cvjsᑼ$@EO(ӈm?1ys3yg';}}̇ݼ_9gaݏl:8bǿvoAwܿz-ͬKxwϬZeY)utTO*<.YGcH {YP 92m~G3NDӴ\#:6zgtH?]>;''ʘueBXHa Id,69`G<wf# Nz$,;|d~+Uz.x#tHl23{2lDh k%\ VsMqŕ\Yyqw:ؿ򄍰s8f5ҰX+^=]L=R:]8nyjjjZ=&A#*N܂.h?0=vHoOLCMqWBg^ `r11] 8v@g9R! (ow>T0ՑŚh> 19b -kWAZ}Equ4+nt{e'ic:z'd{GO[J XFoZIh;BA؝Xo!_4]0Xe$4G &qI=F*+bYsh O\lֱP.ƣnnEY6ģ򲡔O ۰.ÎjĝZru-r*zαmNv|a(Uڢ49bQ)KԝfjI@$j6݂N"Z t8;s.t@RB JIPn> @*x݀B 1."E D4. d'Jbɟ3$:d-dsqO-  l I+,VEN-*k~)0G۠؛H4ӗDePp}vv4KMWo IK6 .KMH#\촉$d_;]] 09,!;6MǼ&/p4[-&4I  & R L ^!!ރ8Ky].z; t~1]Mot|[dwȓT. bt_>e,KWFW)I.L⚚4?v⸟gV+ UjB/DNfU3} srrT(õ!Uvw _n9hIE֮F~+eZ&.9%9 j! bcv eJjFSqu($M1`*KJQCRtPCvPġL  AOI~ưH[ǒ;n"ΈmOv7 ?P0Wps/40^}5(˳s =ϒ+O y>Brdl|ĜL(v"'}7< }ϖq>.'$Uue~Fc> stream xXyXW(jB[=v}E%.V}iYB/KwF /gf1en5`3yus~w~^@ (߱59qe|܊!䠭r~ݏ,xpzf7oHNMoOU=d^7瞽uApH"cBC ^ I6mtkt,Q'b;dqIKWdҤ4J+. [ * cز y,.Q+Ov#'?KK9~I!S>*d ;䉉T(NKEJHz$U$;|Tp|bRbD\$7/\ecRLxo?Gᝑɼ7o%I$2iF,  Eb"XBL ˈ$b2$D1BPć`L›K&BH >'b 1Kx/A6k=+;0OSO{-u^S ߧA}o~L>Basb20lfk^~y+-νǽ8.3uh49JVeX,GK+J5 6ՐsL&c%esɟ)~a&&aA gÇ+<6HxڸI\יBԳPA.6SL >9~բ͠X|c] $؜L'pg3 0h"vyPG!9ȃUme~6x"0gŠO! =_lI֦mvьLLTڥ` X3tC-3t%Ȥ޷<}Yb%Uc/˓,ٹУYn4V`3Vp2}o56 e"HgeX] D"}0q697KJD ql_. G.)YMUbY?44^zb R(}~Yt sV+/Ug:Q>ϐdA1Ŏ;c_ ;8h(x|{%6H_7΅vGJ @Olw#JT0fa~to^@Wxb*1p$0̳m6[Qқ0 b!fZmT;BJvj$κPqMȟ<3!9qMgr{יpT`V&|yi^Ep')5mT$ՆB3JRe9Za ց 5A"׻!nu[y Y(E;׫I2 W@}LP hV[Ib,!Gꏧ_ vJv l+[T-7k$j{"ŊRT]~+pܜ|ȡU`b,6cNMzAƪCnjz"'+Nq.Ӛ=~D+wEB>s]y[qKC8K8(6wQdt&7E(a-+qp n5xTZ(-TuܲJJ͸66,x1)pyWn(4cs⠉by#Hi4>:`KimTݱ 2:<8Ey|'|3H8rjK"ҷ+7{;)&r&R .>} -%)&Ov3غ7{fUVYH_8"rSYu$8(0DZ֤OOB^B Ä{B|x[/}MGNpFCRUB6,8T w]}ДQ%l= c՞ XCKa:i~&5SL @(ո)ZH:7R elE g84 hK|&B V!x z7Au/߁?O?y b} \R\m8V+58c๩H ݰ{{{dldhEO^/=X_+^:qǙ{;8eI- ka.; |N|c3'KPZK>i èg 9Gv'OBYuo" yO>KsezzfD穑^~O?ظ}Y%["yvn)@<"*"o97Pҙ bQ㑧P+Cvi(ό["`0zD"]Qd2"PL\`Tk0L a%fXxZ քK-xtaq-S)n]x4MJQkH`Agk(L9h4j\NdWd0<]Ʋ2ҷF^h& ೢUe F vx/ٸ'W GC`8`mxtu'?4+;ߪױ. -?UWm@/8 p x6;㵒ȼ'%%$~|rSn KH[$[&-ʗR%{#\V">X>sV ?yKb3S εNJya[Gafq|۸œ;_1CƃuW' Ѹ3M2ZCĉשeϡPKе2eWhj;pз֏Rⵉlڄ]˷-,L E1'oWTDuǠU<5šg5ꁱDHYݮoe=E*gvpG!p$r0z?h8E|8E_ry@gIv&%ƺ\b1[$.n+6 ICS$$Tj&{ͅ,>f9y ܦI*:עY2цS5}M`aФhԬFjDka!aՍ[%8 @c!)Bɶŷd}h8s۾cc3{FےmъDyE;k8RkҬ)`WnWf\l$gϕZ*PkO=&8 Tsmͳ7 4"/d=Wwbɩ'B˝܍$<`P&cgⓍ8qVB3-znt@W5V`rSfnui[˖ ldpжFh,Y,{d1Xa0ÞJY]$O8`s 6! j' ?5Jg;B,[%Ue>-YNШ?B Xsq•ӂ%P>ۼa񓂢_d{ MtT;7}v;}ۛ Äendstream endobj 144 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1467 >> stream xiPwwِC[Zxԣ ZzTt UAT9b•`XnT&`AP!A"Dёz2S8u~̿vNgegwϳ) EӴ\Yn8'3@ n1w,j=1t д!eژiլ* xy{/T-OҚb *M&E Cj1&N+df- BsD%1tKg{j6EkJƪAU ܜژ*hM*1Vk2PnaJRb$ZKS*ZAT(*%/}]gQ)k=p=ċ;匘ݔQE5rykbbd?\h鳶A;4ݦ9Q@枳pm|4+v脾G )vqnqFChFdG`xȧ/%˙6hMPA(q FcBAco'._p^;"\!.{!RуLBǼٜ 6ږds|\ekTTDNjm ؋_)" $2Aq5?3?=w.>XV=4esÎJ[B[~G~nа9jF_t\l JB+2`r+TܿaCg۝;([t!pcy/0[rE}% YN\VK S8tww\.7/0"Vw4HO]ӭ>Jx"$[o5Dd,q#(5cxIAkbMpߗNf/+EJJ-nQ8ix{*'K|"[3mu#f _WVa= l_UJL/&Tg wϴviVÉg}Uni|Qd.|K?_f@aVIBeJi1^eSG>2Mk1jG(AcpWTY,3{%f<InͫRVWT,3Bk:Y_]qiTfT݃>V$(cCZ7'dl`k)8Lq0ofS+;I$wlVDl|شڮspD'/> stream xESkLWaAժjwX*bB,ta KAdQ_ ,O]@hLGѶMriӁ47_r9;߹4%sho<-'v-1F"L z$1zShCd\e6=utԴx_%9є Ч2B@jI”8ϩ?`0ӄX}Z EQ2W;FPSLj65KBjQ:Cg;:959a7MbR|M# R8A#eF* Jr ;[}=CU?aX5ܢa<7" ­^c5ϕ!+^ڍ]Sd:'WۑH§ ơ #Cv?X\#MQj#[9;CЦXV܉pnyhyňFLj28l G>]C( vG_;m5CqxbBy(r0;$8}ɰrjj+XNfuuKߞՒY찥rƺ O_di5Y*Em՗𵁻ƟSguuYf .܍÷|Ь~) W C]0%EEB.ᛐ]dyO68J|:aQ E߯M]nrSE&i*Uoc]Emy8er!;%$T7ܣCă\u]ds%1ZupA`̕Jԥd)(˵@qp?/b1b丌o,=jHXTq"YV*G]Z/u>Q;K89*kme=Q#'*!i5VZ@Ōr=eendstream endobj 146 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 3241 >> stream xV TSg=19"BON((ZmE/D @xWH%@IHD* "RN-Zo;V؎Va~Zg{;ޕdoo#&<?(eW<69ܜl{f::1 x|/!Y/Kʐlj% w|R?|}kDa H TC'Rdߖ(I+,Q*>„\f"2N!RD4FYB0A$p/KHJU < &Q>YHU 3bbŒ}| vb.B vD('ˆb#@l"6o =b2J4b:*r! OrҮI| \ #ȳ\əLN-MS5+`;[Mӑ;q}àe7ZF!S.h-zy`YgSR<:\[nc]P> 9j-fڼBYZ5;T&.=iά7zkdMFS+*3X<̄2))2FkL<]9q5ɥ0Jk+FFjl؞VznV<m9 4+Nbۊ+/_eFeȵRxܭgP1We= *z-+}%:w4X@Kڕ=' _<+\w +d3UM׬i+&=e%c4Z8"Ȇb)٧I%j 5KpyȢ6B12[ fJFh! /NF]UvЪUé3!ca-a%,CVផq/q$V!848j9 ,-Q¬Z(,bRGbS7Mn{V]kܧB^K>Lj?g?$UW,3u '9հEv -ҦLUc-3@ bfb]xI&]ag|#5mT޿ M dhq&b{@&Nw:9ݹFClu'SB~C0CxhnQkʉ&sRFM~%I),'fW~ L?h#B 4}iWpяta 2۠zVrC? $99S;1 f!Ө1ѷeNS3"{cÑVm2\6̲)H2D~-TEEpLw{ u}>!MQvk:H Trln:jxC[xB+b*Ш@Y(6Hj9N)}?h<;tŮ:1l*7l,P.͡4idDz 쇘>8ez ',,A:U.^I`>)kfD L/5(iEk& MC|3Rhz[Ư`ܑೖruY^H]= ڢ]^JJW um0z)șzt_e-VN%7d, nQ~o2|[z _(,S-h-kaڔe=Է>5(aOv @55jȠT-5uM ֘HX$5\xۡCV+@Չ-Y1N.@ѓ~*q|;,& e #C 5[ lm @K~>Ωd.R z}u9c=ymr9rѴS)ȪZjb^h/pT7OQUx{yNXD<{q_gLW~ ԯ֘0lw΅ EPu\Ow664-}h(c@ZeC*W,Ǽ]̾)sO 2]/`8hKK_rCA ~0:|ڠ)/`?܃&wWZMQ)!5;ϜK@nnߢyUG([HESL )Ą֔Yjn❼j>z7nmNJ=Y{ksǕ9tפ# p3OVH6KB, N.ks<\ɑ7htܓ6 r&h.PR>fy a.]{݇'}4LmCG(Є #%eLGs@=#B,M @0l:22m9P.kj}R,'KM};%h/ّgU[=cEaZu/L,HDCns+*r3YfQXU삣IiydSXT/dobendstream endobj 147 0 obj << /BitsPerComponent 8 /ColorSpace 33 0 R /Filter /FlateDecode /Height 400 /Subtype /Image /Width 600 /Length 41913 >> stream x\SٺϹss){N$޻JDcG Q H J(RĊ ;qL~?$;۵ww7voVcT'O+:e€2ӏ"oLx+_j]Ŀy?ހz,x"\^=kS2q2[2cct.R '@I\ͼ7`Dw\+rz74U9 z=6vOcl=7%u$K -#C\&s>lTRdd~Fz1C1O̕$lϼıOn <0~Kq@῎6E.ILԾt܎??nhHI:~5}xL鑨f_6?¢&} wjȿGR\eNH+I8uo@ 1߾~X?]b26DQöV|lށSyO'r%~bL~+2eT0}Pf%e؝(c7?'/;tIPng^T7v@WWdttz{t迌woTcB$$K| s;K#q3mp/Õ4O[\~X] N}Yz1@{r%aMt '_|rAv2.ĺJgnzo ԯE%8†"'b곗xXr"z$7N8GnWW|%Jꔺ!5^ `2_/'`57?m0s+Ik+]F\MඌTG|cru>)W74|8C?a''u r%yMmP%K\x%$)W+ KIR$,)W?\IXR$,)W$I;&ƆG^H7;Ga\IXWC)_H3&Yda͊r%aI\}z!N:iR$qN[qfq\i/-m_")W߇ IN2] WmcIzthcYp8b^&Bji\;iA\4i([bUl 쪛油#zv}kwƦ6< 2R$WIHn~P_8+11CdSg͓;/\IJIsB[ڜ9iy;YW$m{?3N.`ʺ"-+IIZLX?Cm1+"0/z|TxOn:VaguST^jLxKqgCeAi{uϏY We4﷑YP))Wһ^k3gFgݻME;P;rwCl(WXH,?)SpJ*Y|!hr{4 xOD^P))W˧>qF&ku77r@Uy|Y^fWuv=1j[S`֘&3s-'~IۂJI1^?41=x"⺋_XT(+Kp',}7<]aN.hjyawetLvp}K3JLbic-+b%RR$}\[? 7:6 dDo8]nfÇ%v[ų <%30"nëw!?12~~|ll|ӶJD!wN#k1\ɞZP))W֋. p047 Mbs,~ÝGũ)b.εa'Ė0WsW7_^2 4awX n* e1?G-*w37-&; X\ݛѧ%?,-3oݡkn+0.!"4֕#uJ9NuGGݺu3wsB&3;1VlNv3n*+m9u`ON߭|.\<Ǐ رc݉׆{w}B}l rpek{=wͼτ]|0::Y==` ̺&Mxٮ&^[{\M(=jb¼y~zva Ģڜۇw8~895aʱ0okOm=sѽNo߽?t@]vl;p-xg`P#7WW{xt[£aw ߾X:0ה_ͫu xMܡ3-<n]RnZr2{]'ڪț)9{W,\[]!z]Q䙽.VV>'.]}m_;^v_r ={ϖ{YEa׺vwXb{>fUe\IX _M~9K 99j*y`#WzNI]Ys;@ 7TXJٍc6Y_)ɍ[X|kfnG6kZqÛvm\ugȡd~ |Vzغ zVgwr%a_ʾlh srY| wKMuڼΖθ6=Fpqb᣾N+YXp\%ܾMG7[X:zl8娧eleਿvٮwڰH)`zΟ)"y?=jx ]ʕ5W7?ikUr?t *%Uzpl'D6 [G߽e_i7χ>A[bU MV-gڄm%Cr:YBt%]YC}wؾgllc/8!GszfUc= t\DCԨ_0@k*~UU/ȫIIg%^w-aWszljܺas=u&6+N{e:DߴvMJK*ҵ_y.Zc#cZ6G#Cn2XՕyU sa̟djm [Nh9GX扠*kV ٹ̇ xG tu r6y8:;;q~S{U^5$u'itmkkoSN&*4*E՜A%dρ9XФ)ڭX-(1U˙#ֶrLmҍ *%sMnU^Uq^vXu-l^n boG;>w؝C'^O4d]8quKGg8ڦ7o{r3%}5+_3&d"YɠiQD5##otrqZfH߰+(0)qvA#_t({G *%sM%XIUUd׳+J򒢓uu1B8nٶi}о !v)3ш.{n<,8hF{[nvښ^ZZn^FT2Ef9CK$4H"Xm]NvFZFNݽ.WglybZ~GOS |~GUTJO4%Ϲū/_y?֐Wìv\w&OHOJd wo/" H訃ǣB׮tvt]fnjcbHnhimC* bID5,S h(Hz2Uu/E]+qF' O?UfrM \(?y#43+RT-de3O>s~AoWpb=Vڲ6($Ĩ{GmV_fVwrku:u2=4 55uttd#:Z^eD=6J̎(''3ZO^ifbJY%{ϷTJ,z7>W=$v0= ]m-9ގznjIWv =x<{+xʨ˗k\f/7!-CrsK3g=]ȀligaI3Ѣ/`i(#-s4pheg'2ol0.|[UPê&k1SKR{ V^cAN~bpp #v^HQM-MĠX"UWC#a$LTM(h:b4*YUN @`0Gƣp ]dgM * 5eU2cm~3>nFcZx33.Aš/īi{Tq&FAksw|<=UR%0%:5Ie{7r.:m}N ڰi"5Zd<XL(8 $4NUAATJ)8U*B@ʁX H)zdM*JuӾqyuKc>˨t~ kn&:J󋚺FE?na2kߕ3󹜗oV&2ӳOMf>HykS'ݱ?x5[vsxrcmJT׆@pNHԔ8*h FɀA8'`t oO2S55բYn9*xq'faaBd4H:?57W u,V~nr[q ;ޔײjD{i̺]{;.:35-:bU[^%t6em|Mj:t"P8E-+KN6D !PW+2`"Q$"4:Y@]CnȓG<~[N}Ujݢڎ/;9H~%6);oU.(Kc,aNU֭'Ϟ?~vg.n=u~*WuCp_ienlf2{W{ u YE@_TP#b10(APdnni4"YY @!RTuu̝m uUTՔ8*+O}]Ogo\_x~y$S,f2KY7 ¼&nꩣ'\lz6=7w"_{\ݷ ?|񔯇 /;kZik:X۬31Ѣ+:@ guTH@$$2DRb0V4Lt L c5+Cm*kb<wًj]\}'×fjf r;8U\!B*JgfqsrWRT!lhMMI}INGp4u՜zlpQ%)4JM=U"UDWb)h(AxM\Bm)De5^ELJ!PIdr }m6Enodfu96jg#Dѧ?IY We2SZP/sNK[S+hVƹ=): jE:AUnzrl|Noͻz5K{G\oݺonD j:&$ #0jh xe] R٥Py$J(10R^CP"F h*EݐQ0x4SQT۸=xu`[) m!^kkIgkA0Wo8 4+WO[?99*RcnUzs\TA@N{wso8x>pgHZ?S] Ʈ{v]pH17c4ӵLMUUG!(2 EX2ij A, C! h 09 DH"ਚDE"'"q(E}ӖU\ ;ī>[ W_ \=30Y7˚ hȯʮMH+M?TvKWFED^rH+m<6\{۹N4°($`(H C(G`0BEP" EC@ 9< TVL*(e*04 @ҕ5 H4N PN}%K(lOs0Wp~g֬\?㝃oʸ$?*q&؋.^Hz`ȑ#q7y:- 9|.v]tx,ah0H 8{04W$&9l F+aP4 gN'P<(G*JQU($IDCI UMS[ "xPe[ m EW)MӰb4Z`>}a^уΫ##/gymצu+1_J}[YrO&Fyf>Ly~+"2Fsxq mke/|r'+;gͧ#>wႃ BP80 @QP Lt9%rr0@E@H!PYXn|:OP:g49fz[nt``'DgvIaaqhYk?AS{sR.]:fԁ<^}hx/srp^ij@c[3%"EY+Sq:$A )¡Pc?6qX4Bb@PaRG :#X@*%*O4[o@5Te e2~I;ƪ *R?^85ΗCYtǟp/,`e8ve]k\V\q{h΀;Vzrwv_u՛=VXqxLQP TCH0A(  #H WEwCEѕ($Q@ h^L|G4I_J"SA8GST5mo}M*kkgtmw sߍU8Aa}&^N\{;Q&2+C~7z{x:Xlt޽g5چt#C+c&M u*Fcp<CVb H0L4* 4ǂ"$VVhPqhCx8D,' (jjZڛXjjgD-&G06Uq=*WO<@WWΖ8 0ۢb{ʒGݾ4?iCPV;>484[lw?РP884Gub/׼zEu'JJgjRVing +/ܻ[Af^vk{GrG}+W̌lBO 33k Gk}]* eeA TAPB8O!fH8 O& !H,NBF!e%B6T, 8 _|AF'%]Q?K>iCgSVfKwPT@uJg,.:>)-ql(KKJa[AUGqw+?qJqGYyk}κ:fkgUk\J@ane\#0PY9Yy<@uD5ԕ$ aaDJ!qH4bZ&Zd:ϕmL hJtUF ֫\]--m]}vX-3XnvZǨJx>tkeWo=ݹ՜.άTS  ?ioIx1208Mͷ]t=@Ԅ<^ˌ)*/#>+о'Z{rsڹwm=|,Ե,-mjf.ˍ-V;P$]THB騨k0T멪i)<@!(1h"NE HYm9nfa-l豐ˍm }iGں{mXO]qYaz^hkfpn] &\ ;)k>j-l/,OIVP"Tr yjYCO(szxzgp9?cWݿi۱ÁGZnkccjgab`lkkmcc``@ ÒKd0L76PS" TLUHd"YWM@PE 8^B!BCy1H}MpɽGqu5pv4r^eH 38 +|oٰ)0[gٮwu^i8ʗ9StOx^fp5lCɻR~4WΊ7Dw&\D\u`xNѬ.y5%SQO^am||]?86[7#oG>bgmbFǍ9hIXRVZ 4DXEMhH$<%aP4L8"ADr-9zG`r)XO~ ʐ7O֧/'nD3,RYS)|0'so~W#Cަ:.$?-##!^ƣj1Wcx1ié.ߺuFnŧ * 9Z٫kPQ8P QtD +`T)8 QHPHd-/ߍ b7rؼqd –r_OJLI{P!rHkD;u@7Tl; ;q,ӵgg34q_c `UX L Q0D @Rt2#Si~4UCa (QP$]U  `+@ `Y 2 ǢP1Heu2L&+)*DM׹ڸi::+Vy-sظXg㖈w|ߥcY Kˮ;[ZyG9pedX1R:2s/jP_p:/:H(-j}amWo4r;;85ɻ0B3jRފ.*IO-]?=\бa?gW7y:ڛ:ثjPCQP( ,v" Uq (‘p(8Xn,Gԕ00Da/ a_!D|x4OUdk*)$$GRxM;s'7x@LU[ach`^K {;|lLbŢ2Nґ8S -u¾/'sWԹ/3˹j<|X6>:,ʖ|Q2019 Z,1_j٥Y7ocD7t7"7φG_r+޽EΨgp5L[w"MZT,TnX2CPPT#++Ar yG0ryQ!DV0 $\aT6JtM K[®{b[\L l?qJgWUgr ӋE{yâ/g_n{:<6B<66gfOO^ (h'0~ciy¡r2¹JMNo+T:F^ayyabݛwrҋKS6ą\u-{6K]63~bPT3%}*D8 \3(x$UPq  !Dh@H$JA`QP:G0 ER10`5h: 2MCEP5t.sp۷'.l_lifjnnbfWxp`>?k'KdfG ޶;g;z6A&qrnt\[c ^~[%b>Ѩ=7τ_>w3~ꪆiW0gRo0O;ᣂGsX}O''ٹO׃쾡rXY $5O ^ʯyj*z;omͪb3"'Fy)I|^Cv|j\;,08_EvH{kVNNʘaw̴J(S4$0``)xEE#0Hѣ2DL,H< AmQ','JY C p%(15Ԉ?E MYUEH=o{V{9Xpvr^pBb]rmXܽ;玜ʨeqg;vQ9sX@M>)Xs*o.Of56?%>QUFyY^UȞMo{5>/])mi9Pދ?֗uzYwCy?4fpB4-BPa#Vy/߿{?9oˎzeg߈8:"rzzA{netޭۂgfrUDWa(h@%x,BAE:$"h(!"AХKT "`0"B(AW1(KF!H eEc(kiYm>q7سa2ߍnNͿQW>r|%2RU 11w"Cg]xnaYa9pyKXs~y2?:cU2x͂0L*/9-ٹI1!1^1e7w<}ͨQ+YϚ3$0:;}X"(*`O| N8ٙ-zd׺7nɦ{4X8K$,HN4k:PTG[ ,*&F8 B~d.c`,EA88 Ac1$  '4F]SQZfr獞NٶkÞށ"XVuwq7.&EĞ{jOHdhW2dgef<,(c6WՉ]Բ`hÂJzpach6&Լ`"M{+XqyTQa"œ[.EDŽ3ug9֓sv_Rr飘;'r=3dvqs?K瓗OƇz]Օnܻ}񽎼:Va}Q[jbs1QӝUpJ{!7}z>U]^Ff֪*qp *(@Qx *@堲r@@*"~f'?JSb&[?{:6FȚZ0W'LˈS^&t s>Y&7 8Yݭ9-Poz:NZⶳaމmiKW&%d=x6ΠVytߡ(5#19ATOEbI@^;[wނfrZTU:,ۋs] pȈ܆j䄖:~R.>\Z#/_:"!(A%-yɟcm;! vR[ZZ[O?|\Wcb$'N*@mɈ KH(ɉIʈKkȋȨ**ٟ0=~).;/5cĀȸʜ<Em8o’Ik!O1SUUi5cjkδR`un mВ~ýV ZֆgD$ǤAz 0\c4O__o~\%S&OSKJ09Z{qt|qfFNKeiʧIE-ݙ)1jvKMIRRIZ PD%~='~8)-+-%~_~UWqa11Qq1iB 1!@xL@LNAHH մN)+ˊjjUhbdjzH75%)496!'17dITx@UuMs_|#(h}qtm9 s^R$Ps}02nA`[ye7`^۠0'ϿF)Jz`MqKT7Yp9e uة+-.!aI}õ՝eͰaXdC!٩iɱmv0EӺb€G.+-((qB𘀨$ tNVV=.."&!#)|R/TE%L^4glpe#}yy9>| n嗀 (K˅w'e=in\yaW oFeXXufb@̭#/yOg"P0#@K$|Qpes>PfH(.rHMh~VPqzFIIY]I|zVdvk~zBqa}SGi'#: lȭol*D{;sjJt+ GnlqQEy  Ӑ04-` #z @fE:3;W4eN^w[vEʬڂ.$;cǛQ.?ptqWyń_Nς';ODŽO HHLDPXFTH 0Q;.ZǃW\7h^35>SS\TؓV[A[f5 K%Qdsmkw<) x<>FУJ :=:zr[VٓTXQ )h)jj4,s =xFedԶ ҼBό4H5Sя;ՅIOxuC=F奕糔Z8ip(}?KRȶx[sjZrg.eois94j+4,ŋVܛ㷯ZhKJ?qt)bOgEH^IIHDVVRIRJL[,!iӊJ *FfgeeX]u02:wPOӀz/^wws ,m$qVՕ59Q.ݙVu"͍67||4l6#TraQppz>\-p1W'f˪Kj:{(|9>mx8yy%{DgY) U(@C ~] 9.iqQyIAhjLiCse[֋eH#可g&9E>M[FUY]kۏzꌸqT_{U~X`ckJoYswsU:y !'_\P@@\IVX@HLFBHZ]A\(-(pB褸J_>wMmM- M]'.Tt4m‚X8?ql͉Lk^ ZM=Y ~pjx:Kb0+]oh\ Eσd滾ѿɑ~Pgj$nжw>1pDTKpbzltq($0>P9Q bA$y{py#3 N*+ˮQs_M$kl7=+5kgTGwbӄڲ氰(cfx"G읙|܃huoxᖭk pm$RWf\|=@4Sb]BBrW)9t$%AyR’'N *J0H'-$.*,$$&8a'UeUOɈ+jhh-3^@yϘׇܼ< zj Ebb>6% [:[e\qRޕ9(-& .Ji4P$R[;5AUxWFD^9{IOCHQqqxIn Y' & rr{aDӭYM]Ԃ:m먇dTUX\ڇ  oBClJvbn` zn{HGeYN DaxOlQJ ޜ (<9uQ`($)&- h'%Em<!a:RBbz*jjJ&ZZ*Rg߼nr^Y'*΃Ĥ1|v|QiQNi aC5 \hk~y]neěh<*.kka/0O~\tڤΎ ,RVO2 u>.?6~K^rLۥڤ0הzx Zr񕳆g&vkb="r&7߾_R|GϠ']}#㲻Җq7 USق섕! ut ?UGl:0?݅EsmlPWUZGM7 ds>Slk AqSQpeueG J?ŜϫfǸ:>.7aaD!h#-Uq~mPdzZzz m'4G%FF|D Z҂|}su۪ cK+^MRA PTKyFƣZy_/m{A/xw~dW'r?'u)ꢒš%WZ̩B Bj}YkikfdfմU>ܔ@+\Hr@90VSR\uVw ƨ+s3ΊĬlD웢2IYaWn]fbWmh-_1^T7,G#2sdHvfJQjӬ髭rkCM)aQ_O;& J: *"R:r"1ieE &2J7-Ϛ7U0v%'& 969!i3fn>W hVUD{/)1?%(,:栭)ѩiEe^vΎAYqAO}]54:k &%y89'e=-Lm,!&${? 550 Y0h/&?6C&82?6*B?1bheĤggU=[@+j+1(B{dZ|iLT` N-S\w C`wHwTdf:>I e~Woƛ],5@:"".oh #$)&/%vW E5S* Rr2:T2SѺQ\piuʞP;w|B > zu3j%̱I4@a};$93$@q$yo_Vw^cRJs=2Vܻq;I|KnD5TL|b$姹_:-&.%! 6,:/#'Ϥ/pVn*"(/(;"-^-O01hCKKqYhh ?GB:Y¦t.ix%G7g8!;?Y#{3;z}N !bC!MU>/i_lWA+9e V`sD?5%/oNB^Z:S[Fm~9rRr$OIo9kbrRR2v7^}xVݛܯ\}l{ѓ҂g탅.N׭o;7C$Ş7~"jfWAvϑǗyNUG;o 5y>I%yѾ ^֎.&Ҟz=s^_唬]p.$=1!#=1A*8{JY挦%o$:yhg%X_Ƣ=`cYЧ^""ZH*0Xr&*O%d!+CY^1FV65Rlm.-oF˫Ł6X/HwEV o(H L[Kii9ᢡi9I ei5%k;`+3jr2RR2:jj&&,|}_2w{103w niu}J{MfcYt,9$5:H=g54Ί$ÝʏĎ877k7͝][Y߸a'))&&}{JSC[mVnIE7j0 d$u̝ZPTEo3arfĒQ|K}P{xdA8}D[~ĞFNqL8`:#yՃchҋlXQZ[Q^iʢή*^:purzjnqq:`J[r3㠤< TEDD$D]6R?"!-'qiY-uY9)q%+ו T̯9widld6HCGxܾyARaVB^C^T#fxWvZ0hɗX-Wۖ^:a&/**ɯ5R{NYEQQkøJxUCDlVAn凡I.w{C7lY/LSŘ`3.n1iM=%yiZ_[5lB"t>+?7 O'1Pd'kvۏG511@탵=y9.QyF>^e(ˉI8!%wc -uE%1YUeycMum=JJ.ZXXs||~L,,~|b ;ސniw瞍֡~me_edmDǿt HV?gHZ|**qBh݀L7[Rr/8=i*)%,"pڷy]UVYZx) YyMҎf&L6n~oku܆5 E:ܷz2S]V^T;MuPVf(Ø̳p'A7?M jEv6]\iDMsت;y!Hz`sJC^A yS׮?*40=%]sF.GuX j\ G sw+Xj@^QbQAaߐ8] |x6ڎBy+^>2#t7&.!$b>Bڻ&Č8320@-A* '}>Nk̉wEMZVQJ^R5'7/q돂Ljhҿx^{6W̜B2'(;`̷W1nh v[_~Kinp^`N_QQTԾgsF_UJघg߹%5宊s7CP;/h$&GGzD{-AqO:< +f(|S,GBOtMڒ8hqZ[UY>w5aZ(xBf+ 3͜57ED@} ^zwk&5u^q=+Z.7t/BA#đ!UhDSjz4Ylh( Oo@ NB+:Qbn`&?*m Dt.B9 z PgT|Iʃ ZM.=㴜)JJ]}KpSYLV7n-́>(ZN`(wwzI|.IFuVñ5HeX,gd<Z[Y⚐.-ϊ,Lj$|.n}af )9$g?-~\}Օ]7dwK.߶fྑ{e]BRRHC}Bnkvpf2B2cyDB+3ۉI _/m8MA' 9G|ϩ r\zɏo_lѷ~EEQ1!qiU;3M6+((&/~D Ʒ1TST1qq-cїI\flCP )6c;?NmKvvm%1_RPTǗC{f l?n _ҁo^4""5X"_>ɢpx;d< d5U¿߾GE{=vL;V.7_}EK7]:ƗޭQP}E UΑE*?o,n@F` E&jU 1ePn,SȫyU;/܅ y{W 5qak9E,>ёx낞>n6R2"BjWYK"ZO={% [ߌ,Jmkuh*3stjf0$ZS?0p^-Q^D%&ݸvյTBxrO|TMSʦ^%j4Hg'L*rs⓫ʜj`]St="!I paX`>tzAQ,ы[n" ) YU#$ TVS8T呺1'xL Q"4NjHctOwapPlmFBGo]q}t▛W/vg,<%md`1 L=`6}j {,ov>m.۠+Us/P7TGu0?~%OTUU䤵$O_T nZ޽ca_;dvUcKZ D(up?P{Χ(U{"LQVUۇld.b:XO39C@uF&fz0U?=R_ w>^`YvxLyl/2 Չ3|snٺ;E8եnfAivwHpR?@^}:ڧ lmx#"hByäu?|틍٥R^[vOW MUDO V2|t;_~;.$z-^c5w/^0eq喱E|DQ}k^ l&:Vt>=M.1'[k̯_uϹ ҉6WWTAaq";ȤFIm"B3]0HdfSS;-`a),-J.țۤ&WJL|p+.0?vUbp{!^0au2QY8L5L7^>.3g&)};< (VS#N{xwC?ڏ7 U~S=䱪LMoG׻R#rj˒Y;ܺ~)8;geK $l Mq9⨻o?.'M7V'G7.0 ΑW7D,.qpMsH 3eCD$nT,e^|~pܝ{|R9.TV',44%E'E )/ ՛`Ф,."a@F )֗Iߥ|yF.BzMK|?vޢzm7$beMycW*KKU=vJRJYDDUPGsFEf]Ah{n6w}|k:0Ű<< L|b`!*s h2]O@n-/*l-MI˩brgxi1f8ס3+@^(šނAÙg\+~WeŁ=CK:/v #1>„ \2(,.xyU/?s~CjdORGtSK <;yT%ԛAi={RsՀǟwDߎp` wQ)-EIs b2f:F* 4$%%$$tc +F=\',,"aRdgu @d-o N uƇT  =a0k+y 5pO P/w._G.0)a~~1)NZn@mk\^U,e a\jjP36Oj8r3/Ok~$ ̗y)?!*"g,!%+/iyᴾb'%U5.;ydAӲ;qSĴpo]s}\&kPwzx|0cjq)mAqwcW'dg3/2NOyo(^ bYteo˝SQjӂ"FdN0ОVw)K0]J^e-Ro ]}xi7-îyC>~G}2{RPԗ?瓹''&q"2Ɨ%%-n]0RT?onf03 hGG>7o_1{$b_V \|OSsc>(v;rwG'bH|59Y!Ҷ_ X4$hom@2b%0h/8Eh @eW{a9#A):Џl¯Y[c{qsŞ3cd@ -<Ž.pvz\.:wи2,_}yQ& ܙӐQT%qi wlZ\1$/'.]@f0w[uw vwm((AZ} @\['u%U6'gfs\6fe҃ў}s!s8@S@ŗK9&y|12m+\py:\͋a? ~\m~(3e[+4ěU:{sB xr#Q5A+iѬwϗV^);K+Ǟȡq7WΟ|ėg8RQҸb[`"qびy Z(ՙVD9 us.Dqiq~n/B*]"Jys96GN#/̤~\t{J 9:9^pc'.?$}pE'с.fΞ:JQNAFXL­ 4/>=+&)*徫Ӓ vH^ OrpcƆ욎ADjVkM(LZc샯wb{YO"ɼg|W :Ms`|@u^19}$y~Dylm8!'$$((;`{aʈ K߉lѮ'? yWp疛kz!|WB룣LUO7zxx;Ma/yNn Y6DDspL+apӨlZ]}:S~~qWϖWbbǨ`Աw&/%?EYNʫYkRSuLĉ'%UF!x=hNr x{Ht+s x- 37guUƄGw 0&$q Y75`Qv;w[Ay' (]f&wTiəMggѵ#́Ϸ2߭=*a}Χ,6 nD(K 8v⤂PGCMeU+O>r13ԑ>}-чo:*- +z`ea7O/qY5uuƾx3ᾙ~o Y39<Yppilk,\]~߃7A:QAM\gOgL>M3^KNG_tGKFTPP~&JڧϺ9=<񼾌'N dOIY[ZqDLEiC:/޵4^r:Zzލ"/xT_7Q>^Wެ2sx6PږQ^b-F}+\mY]rPXŷٳG!m+MKW-'~=s/эOL.&ayzbnȊ-I)/Oʉ[9G 7w!bzk {*Z`GGi5d'l|fhC'Dv.A\=@h~L>Oe0jnh$60۶=6߾ڟVQTQ^TTX_mm=[+[}Ɨz )nk!1@PEcruJAwIy0(43?/ H$m讂0j˿߈=pG}sl?5;PeAcu6+'+.;TUN6O#jd)9,$&&!&'u,gσNBp/,F nk9Xa4٫na;om'GFc1l ^Riq~̸##&, w} e##]az7Ȼ5:K~ 5eعI"?=1Cn,hۤE6ד 0j{cˏ_'.3^yމD!g>|շ<}7a,o~X[y\w&/w钱?@;f3BR{fDx[Z{4U3`ru #y!it6+Gys7K*7w<yy Lm PXGLYe0i6&ezC[]Y=z?5z༞ ~֏.Xg5` Ԥ@LlK]kꫳ&ffv_W'T'|x۹oDN=|ߦ9`CnPIG|_/hpq6~3޴HٹYڟB( ֳkVSeq+:0f3םZ瞋騀HLx,@їyKWl>~';X-ll'Mo?& ߎX[5avcoLoy_J+T/:fsx[XrSb}K9ԉ| pO+G[7g4Ԣ{z0"{ +JB##BS;[[ZG+Kۛ:4^9$ D{I_`e`{Z<71 ḛ[r,I|^r//P'&oDXnl0 p`UW^P DT ew,H|vIф`X+:7X{2~\aiNvt{$= <4fff]'$|}27t/Zxx٧Z$(y:N4䅇dV!#o8ƚBs|=-oV^-qO8aSNȋk/x*wy>0F@_'Z_UkCŧnM.[=O O OshFƧh59 ) Eԃu!:{ϧ &;W,1(,q+Cso?~e\C' o;PU,>>7[Yw7l2o7@&S Ԍ W*e_) $vK`8?VǛae}cr0jgDn'p`+W3r\]4!z:C|tu}B-px=p فoVA;`_)޿Ӎu6@M]_-ثd,D@q*9GI{&=&;KG7]Q(l:lI/ˀe_3 wbG8,Aٝ ;?sjmH[Jgitv}l]ksZg/ۮf֣m=UWm)Q()V$GȃB$~KBr_ }%y &)pݍabaH>y'nz洢ZZz9*%J.ja.xW;}%[vuI9˾ HUcU?E#.gYϫ056rgIJ(eF!/'ٹ)'j2zdM}ǣ҄q 3@X2m;!0c{Fxt:4'"d%9me1/$ȐV"7ѯăey2M3h_z]P?V5 Pxp>9[wDuXɉ=yUlBWRՎK+-rA2 c oƆzuza,'X{eJ<)9/3:n $6NC޾ #YpdT\Wx~ {%ccVqiyAzjkd=|0}EQCfyW6"u3_WNކ^}*E雽EHm}3Ҫ/чR^L+*m­Pݸ+3a㽈 qTaؤdVh^bD|ڃ.4 ]uNzTZ1^HOH ʞ!;a]=ĂDca1O^QRGs8_^lfWUY1)ŸWvb 2yTQBXs3hZs:̲NVrŋkxr7+ ӝ} n^U%loayC*Sr.77ԘT,gӱ:oLMgee3*vʻscZ͘䕕h~>}\ U]M܌mb=1e88'h ޗ+Ml#4jnѧֲx f{Ն(+VUz?Yy1'9tXhR) M Cx7 +/SJ.uJ_k<~eo0}N !U*Eԝ=" )d -HPiu:wSHm!gC305w$^U)W}@M 꿦ZbpK6KEnEi-UYFܴԽx5?{|3nYm0*5L/*,SuMRR  *rqV^!G_ ̪&~D6^\mlR Wl84ð;#=HazE'1T\i '^}wtbA_uZIC/ޒhl}fRjnx% -i+)2I/h5De;W>v $\t^MҢlej#:LbM4eޏBs;,/.![fZ?YwI&}wXxt+rJv#跱 |}rKŽ SݭWL>ymU{\֩ZhW+^4^ Hټu|*+:LoI-PII x=czWGmH+ Ŧ/a 2h?y@jiQ򎿎UAWjQG- +U#=]NU~@QϝmEBMC JdFgW KZ~|Jd^wwULC `W"CQ_Loj #D_ght4D|\kv`lM0@R}0W"CEVSFV/_^ ~nni1> JdFzRJd`Jd`Jd`Jd`Jd`Jd`Jd`Jd`JdjmNqPꚵr_>Jdʦ rZb~L2b͉"T"mSli /51h4)6gki )+}w2N`u:OЇ*8Y] "X|;&Z&XffFJP.aUۗs.OFNp,msowļx5r$ohNP8O*=B/n\ /̜%`}ȵ0V#ARVjV>t`眧KC-h8Ëp#Y=ҦYQ ЂUuRt ~ӿi3F8Ëp#nxK9cǯ9fB(@"P$[Nt ~3&E.6=OSp,̈́PeV|Ky?T Uh4j µpJ =S: LȦUJ't^ ?$TçKC-r5pBpٔ;ʠBz*H J8K2|>T,Gm< jڡm6k= 0ĎNt`pEz#f;6/gLP^JEP>~c[{qTꌩO^y$}w}#ƊwolAܫ!;w(o*u|{c7Mճ#]qѰ>6pS[v#44쟹 VEc tdƶ7ý -9ХU%N][=v :)luBÊ??D/Ѷuf, ǽZAX{ :, mL)ӨO\COB7_ pܫ'aD8b%7>7ؙVCX'{=!rbF׷Z@q>dGJ6GQcJK' Ezgx[v pWg ߿Ac[>OxGX-nړ[[ e1m͓GGbzH> stream xZo ~q0dmPSNne=K33V. },!ܻg_q;ލDeijgƫ1ާ3(HTiq"DQ ^j޺~Tλj"T;Ae25x"qS2Q;ѣieJu"zt7Al5*73>Ee1W Bqћ_N4+[u z^cu=R6! '˘3_@ˈNA@s&$ T$t}PzloC 5ˆD38R~Y\]n Wq'M,^_\TE=1d&LU7toaj@~ZHuv8rJk`3!Xډs1<YV`AgPFs5ݳDF#.'\\=NyqCZ"ch@$)VK: )< q *5n,52k<ƛx2W2(til+@+.pFY.` 3).Y^(YQhvFKWp ;szд <|`᝷A|Aբ>st5]GٛC{M nfVrJS!\9sXb@TY[]P akәK@$;Z2IxGj |Dec\u(_u< & D`ʚ:#C+u{Z]&XD4 x+`:!0d/KuZ]LI;#ItGn9qjI3@" -lP4ݬ [utrbPN9d +u6eG% Clqt8[y`-D:$JyT[\ [nK Ԡ` P(YRkcivM+y~ RC n6aM >za2҃QQ|8n.RM#4Pve5$ )8` `B:hf>.}`\p4^z@,GwH$RXMB{׋* nN)n%Ht#uAY'M{LKQx';OuC98e {&M*N_&nN'ˍ5ێ`T w`p2eUpX5p^7u.`^ s} gQ`] xeqabTE!A؇{B UBwNpB v ޞAJR>ˢU2܀ rPh)LnJ IǔMi:Ah@GESUp[QXK·lBR5{`$t`| ۚfJ8Ķˉ$UU}ض* #9I:\U?Z_JP@ZjoS5_ $셛 3XA*A/yؖZ\o]{(wh+x5߬:T"%f?]!vchË/F&\1VÙq=>H18>ˈS#NtCNɜHa?~ ߽7hOe=*@v"8Ŏ~Z ??梳j ЍcN8 J2g{Hcr'wh1Mh݃ c`"[(/HQ:R:yT+~kU)xgRZ.3m"to#hNc84mcn~H6}ʮ^(г;qevQwvQuh{-q _0SE{*NB u! J^d#x]re wۛ4itPfnNVDB% KY/N(0K:Sg}?)Ms368r ?d U~x҄߬4LⓁ'C|̽?S_K}t p~!X!ӎo(f;[BQl!VGJ5Of?ڴ9mm?m|NgV|Ujr 0zfTkGrX}9UΌPdy]ss:cQq(TU:e; ^D$3P$cߞdendstream endobj 149 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 329 >> stream xcd`ab`dddw 641H3a!O/nn߷}O=J19(3=DA#YS\GR17(391O7$#57QOL-Tа())///K-/JQ(,PJ-N-*KMQp+QKMU8OB9)槤1000103012)ٽgf|;?̿ܥ;~3>,}} |g|Waq6;7<_s/wt\7Xp9|zaendstream endobj 150 0 obj << /Filter /FlateDecode /Length 3952 >> stream x]oЇC{o# i"HGEXNI'$~o %{ܓ}hp83Y/KOvy_^[~0Ն,ֳީ:0Ym>R9É z:odϸA%0\쾹ޞno53\oVpBK/MTQGsސ', d& 0HExBl\ib <.t%ϓyt ytG[R\>g˅<twə|9\^>/ }cwӜ@|Fgp Y,ۼE)\y ʡ$ /_\D3IiqHT8/76w+R-hh*y2 Faz'9/8 2iH6MC܀*P C]dȳb>YOGSyM)DE^1V4 !w m3WZ9o*JsvqJv_tB{Jb,@RR AYJ2hi+&P% \:AjIo^bOPS'YV OрPbSox(Lp^;'AnF 8+"#j:+DфuӮwY\.񬒬{R4;]fu<0,UE{+讪"тIlrlӔkAiLZ8\pal DapYLʫA>:Y'iXͦ % T̟%,ꖋlE\G !Oe㭴6\XLRA)(S9b?\*1Q8& ОGтjoQ Et (ksmXHL3R{7Uzi9x<3FTTkfzR8wpNfBj R&*pQޮ 1½ۂ+Tw!3+z\ΕhԬZ5gyrݪ͑jE3F~. }|c~:TMṲ̑'(BCȼ8Dr!VU~6$=u2}Ԭ}~pxj^y|G\e{$1Ie&>0 )k>-`"{v넞KUGsCөx|H ^$9&< {$ʈ8ȭ,U#X鎽Aلm Ϧ6Ol1W4*pqAbyqm! H:}M"u +}iMxƳy7!# _뜑G!gW 1, 4Qi Sgd*ƣ69'abɘ^ȊmIH6߳x^53"]%i"MzVz9DNhO2Lij/^+k#:v$,IlLYulr'gXNJ{R-cHr5:0`X9dl∜>*Db!W(Ȓbo$VrM9n¢tY)n=^UkDcW'aނǀx͗B#6 r5-~]I \`䌋[ ,xn0(ϸ屮NX˃]+ؑwXH \~Ȝni2U 4 1s]ec A }Ihڞpu$W?1*0 *7GGG9MJcӺ4{\%`ţ DD^G0=*[ eflʠ.z%>)ӏWmX.sxIUb`46 ƂnhT˳2YnH\8/˺g-z6~ֳszq&{v!h8x]kfuZ5ӫLoFzF2ZX! `z^~鱥H!{D:G_#9_, Eendstream endobj 151 0 obj << /Filter /FlateDecode /Length 2448 >> stream x[k$>Xy:. #8]ì_q?vOIꖪښ9;f?lI]_$t/PK],ZB / am&ep^ufxqh3Q.s9%L:\MZE"88Au& UQ*Sc'ϨSET"hryxP١񿣋ѩ&,A~yx(VKeJ)햇?}*j`7+Zc oVkcJHRk~!ћ_JIh9P)\ʄ$?5qf1'X!eʠsdVuDJ xj2{;*2n3)ƸLhqD8 3Q\:}b"&.ѓ5~^C6,!zMv8ͺ`-(e673TUT~Tó@ePepFpV'a'94`H3mE%_i#ͰҎKP *[O J pNkY/QfftvZVY6d N{fA0"*5XrL;q'@:d@{͘F?!Gcb Zb^AμhyUIL?1|, #8'=V)9DOiǡDc޸rRMiYS1C,9vEh|EDC~RvwCm 1z-i׫t`4?NLL\%mNy.Wu\_J^W`JtWR{(J]TJWJT z\vtfaէ=msgnۅ #IPς+vV.;ft㈾^D!nO:Z7_V|K0QJJJO]vU]M.*uRJuH[o+Sds(Al>[ ţoK.a\f˱%9XG=sT9I])Q)kpʃ=DL <"AG^f<^=7ڵv\;q/ڶC`|$c=c}s>}W?tGz۾1,{R_Bt z_-wNG7w_Os?o?8^~eLԞ_M_32IUPI4ttQޭ%$oC6[4 j_dG2T`A,ϰv硟eeXd4.YxjeJc,X6S f F3Wvݭ}fϊ"znG!񇝹L19% c +΂E|r7ELb5s1+/J10?EF, Xd`U׳ Xfg{~yXr'7Bendstream endobj 152 0 obj << /Filter /FlateDecode /Length 1440 >> stream xYKo7X=ڊM -"m"X=Nl.$$6Ye,Q<g>~3CrZ eOoׇJ J/*gjoE.ƬW;U^8jZUj 1Z+8hIڼc;$̔q_p$eipۿu_?QɀߏBBH$%v7Y*_0YZe\؏6zcߊacg> stream xn$ Q'0=S_8Æm9dsՌVHX]֛Mj6E*˅B_~q?RGbՑR-unGS&~< ^>ȅwFZP 2&(aPeCigz؂#.@VR9QN޸Ȉ AȆ 54P@[O,Ώ^E'VN[.$AؽTvq ˓oK EoO++!81b͗˕֪u?_*}`荔mQGQZRLb›}ɟa.\հ0jh#,W6#r Ug]0~x2 t`OWI"䛣ºk{ݬSlMkuͺ6Rz KP, uʈS` Zi׭i]#A_c[*`l{Me0^;iE=IWn+Aj\%meR% ^$=!wJ8ww"i6]S4֨nS$U+{@2ȃ[C :aat wa6[y`PL')iq1x6VfNu3c΅$t6KOJU_2 aUk+C9k 45f){P7;*2ږUes=2r4Jb$ލ!_-v=sAZfފ!P* 5*lZi1avdVo*tRn Q OfWe=U%w6{:fw4>?8jcr[S.*qy ? 56S!jĿ'` dhlA os -wq'UAۣCmppU`R‘ _UuҴ¡_ pj.xj|4y#/Ѩ4I-4/S $묪|[_&!`ʨ͡v ѮP˛r!9(1 Flwx|'UX]i> &ɰc_T-ZӊFQ DWb=v3Omv38^ 3ơ3@Ŝ]) j,9ea撅x򓰾%Xa:E/çlvl,2;r}#65F^HÞ-@LA%v @ )N "(` Vҙ`y鹞h3Z5KnRHD&D(Ʋ1̦uQUitChK8*m666;[19ߚ'n̼3l|e1(kRR]cYɁ22C]1ch-z=;nw\ho;  m/ub3)P\6425:0@:9QDkXy@osM> 280FTIB2jϺ&bh尙ӟ'X5ڳi˦T{•[kZhIٞH6v!,n|E16M_x^t_NɎYIaH pֶ2 YfК >Hx=c۠+b:~2V#QpCr4j Vm32!es7׸ o?ќ"Ͱj3!# şvr"++ij\ź*Fae@p9H 0 Tm%&G\L+ʘ<}x4,W=aOMYL $LZER$ZPAh)9 ̓ukVig-!X *(xFI S, A8 wYu;Gb@bg:,n2O)'YF(RZӆʆRC*4 ف62U4U)fJ3S4d &1v6^k:}Z~ګbgeCuC<*oo$ʉ}5exvLą$7tgN(qP&zKPbݫa=fH2J(bMW-! JntEʂUlsSOܫfmCث1WYu7ر pyna$* HObbre>fm=^ONޖz2b_o 6Rp3Oy>n$iȊ%U5n o*A}MR1ͫ:Uh ,iGm:/ugW_G!]Fخ72n}0 6u}b`wTta>!q [XfvxpѪ}۞]^n!J؁g (҈6;lI1NwŽ1{+vaۡnva)o>%'ƶ3xٽhӐ[ WWLn=xާxmzScۍ#à1WqS60Z2!Q E>}06!."#FܓR[60PE3QSfMC0SW)nmQJ)T0cZ9nWD<`\s@m:"mEg:Kw2U`GAa<6Bnh1ъ+?]RKCD)wkV?e:B|U^]y5)q^"(*|mtg(M& o {MAgߠHGcF?҉UH0u͕0~i#*S9@Iπ7Y7aK$lAm`N@OAQQ4DebnSdotK ].-֙`' sp$)HZŞs+,۵v:ST{Z^S8uL\pqSˬFOtN-^!F[|%K.Cr0 "gux^!wҬN7iKI4bCK;; ͍"]3<\ȫ*]c.|U47GvRfҝԟVG%5SFp FUP_q$ sL(? 5Qs]k 6=_bpjm3|Wi`%ul5~)6zA88jY.~q1p,a;ّ J=/3%4ZLfrdӰH X'-J<Ќg;xG^<9 Jzendstream endobj 154 0 obj << /Filter /FlateDecode /Length 5784 >> stream x\o$7r.Ї0H&&//% Ыю,idiVE6{$/`.Ū_=8?:'_RDw?xҟ~sbFOѪۓҋOܤɩ}g4 JoiԨAJo(cnpbqLČ-]7oɔ5L95uWSyT|S L"Obt"=LVӋ7',nu@ jSxzq{Qz{Uka09͟b{w0m~Ͻw~Wsct7zy% j ЂmcnP·OxxRz~/\ \?Լю9z Ta{>cg8tþ7WvtXNjڼ%q67LֺWA͇8v78sV7)?6nɺC)ύ3Q5tscMsS&>uG UK7OIoɴ4|La\N KV.;e6goGfp@k$ N{UjPF&w~ o pd9?0 (Is #vżz N!_'+%K@IQIU,T%Y?56n083BgA~D\kaa XŞ”B8^f,xEez"f3CU6b~Q0X  soFX¥Py5%` 1e99oA ) qp$7/q d_׉`Dm%6ù:.yn{Gy_WOQ`=8DUh;>/"$Flt{MSm+&viga'tپ ?PIg'#e#::C§k@"ex?E6$FƒK:;A|?#^s˕J_D/()%okn.DrUəJ#8 -|{sXa<: W8UKZ|֚Q2W+ҬJL@'"3wg"%Rrkv+bW"`iēFZ$l w_M}!7FDfa!UcW16 SJf*$E.20Ajq4AXnT Uʐ }r%9uJ?ntEA$4àGg"GH׮гV?. x(=wί3Ml,ZV2Qk%C(jԑ0a=R~y"Y?!CcKw.~/cL i8%' J,_ $)0-8u՚+ 8bMX3 l^DIiDl !b\`~*;?Y+,c-B;vi]NlHDtS,.f/ m,3f \9W ihm3UŁ$;}nl"7n\? x8 9&wXtNԾ A!f襍d0̅C~ܦ Ѵ `$"ūAӝֹ$yx0:VQ)'4\3B]kzl&L@NVVey)0}Ad-&N3*`{l~:YSı|EV֜w0 a3ǐ^D%AdK(;e%Jeԩ=Uƴs}wchcT)qiZX$>xS (t%Kji>{SL,:uhͯ3ɵ CѳGGkB3ܬ5KEe3kNPD2<2] ' %ʌ 5.OGrwLj5O@-LxD2-PS&luftV(Wtmj}Wgg ( 62kF/s^͘Jszײi- W7zY,М\1N&Q!.|묋DPE ~64@P8}Qd"aW 8zBA[^N bƵ:pH++v<ϕG+$/`j|ؘ<ne҈BF DZ!m#"ǽF\Rݖ.Xm ~TKi0yWuzΜvsEE, MKO}ynqPY,}+M׹lCR 7L}6Ȍ.oIV8D{Uk8B2E#O<<(sV:=ubd0Ki5d{AͪŒC&ɽk cOݐS6.†eKI"(X^*&DvN;a Ҍ|,peY/*/'$Wj?s[.=Soʕ]ҹ%yIn FX (["5) |S>KGߕݗ[nV@X8LЋ+ްxW1ٔ iV%*UGfJ!'Yy6LT `b*47P p%vXY]D ={aW@q(Q+. 0-EkAQixOayôvmυݝe^^8:MXܴceƕmgRs~ }T6)beAl","G` TIJ̱]|0fvדl߳f֋qYwM7by3y7EdlOɹLJ割n+]M3GlEN4 ISɝCChW9iԱtGNu]i~SQr|3a0mi@1xݞ1D>ݞT^2"҅ʋ*Խ>vuyQ$%(4D_:EU8\QfH䇙2yk26e^Hɽ X.#$Y`VESŞ}-ۘx AEyݮYo*Aťƞ.5/PZ8czNIg&:O)EǓ]IY!jlwP"V6t(l} jvHȮ5UJgLX)?B*"rn&;0`~ 353BOj﷈ZAA2 1#tEpcyCB)^4 lEOraS$>qS#͂VC_aUHM)j MGul45B RqA$>KEnae]&S?;DWɑ KYB\ckMVS]XOT^wÂTy @V9 lFl6=R hC,]П1 ێE>x&:Q֦jl zV}> stream xZ[c ~0>S/@/HKS)6<8gǞz%EȳEP-%RǏ:a'jc0 /Dpzt:c+1F;L+;* `$f AoKĠ2yYFe*:Ik3y e.C]Ѯۡ ߖыI{c썾]Tɿ/ЁRZ9?rvW/ ^a3V袌n:zȻ2?vux=swM=q׳B&# :/:!;sϮ̹(,~ы;(\1m+;}g]O〷=2~cbHn;nz:Fɉ;H=߆-/*Y&2XF*+Chps>߈`8Fx_3"DIfm\@pODڃOG;?ߥ]DAh:\62KUQyU$[n9a &Z!ÁA"ahD!%$zzCoL  CQ6J#߲#]]rEI6ie )T(8kS\1.P.Fi_xbR%X \T{}r `NBtEzr0>%vQwr5w2@IEZgb@&):Y!Q{.Au2p )H' " ['C؄;򦞤57Vqb;D`#HD.1{UyOvf/XYz2<%Qa6F]8(BOЉp`/M r/8:"RģjQ@P2\J` dþ6!bi& lyV+uI52#QO \\f[L̀0.$QAR䲚+|3r[c ܕ3"( ]J/ܙHg C@AÙ.HȽ (Q[e  |fй}b%Veq VխFtwYTT,EA [ZNJ\/ 5Z妚Npe%tlGݖ!_hcZ-cA5u@1^T@X\ʨ0?)EpnOvy{s; "$eh4`}H2b}E@Q@SQ:{>LlYݸMt14ϙQDĀǼB°ZNƛ7l3@"). OͺJNyN}u o./J  !;.K/u~h3K:yOI&qfñNBS5~\ٕmE$!>RaS-?E0IG4Sas73XrnȔ#{:RF^*~~LTuQޑy39mq-)ޓ_//$Vg}(dX1t_bS$]=M d\+č[4rRRm{S9IZ%[g]'z=*+;2*G uɣ7Kci ,'${OoZ>08Xc$-X*;GuvY _5ׇ7hG0IOcqAVS$rB즆ytVQ hDWM]miނ|ۧkJn66aIz[qE7LmRRbjry2OBJkhC3'.8z>!Ÿ ]NE5pV7: lY`+*SCՈ)h2AzV 2 ΨMЀOh+-|-~x:O-HmdS%n|OJxm"zY+H|=uln_K*$@O]HΪW7t'sG&!Nl6<+39MrvJ yē ,Gӭl{Qm_ _PI[~eVlO;1 莖*9ypt]"qw׻E2}t31^k]eYJ<X4|!ϺL2رǠխc璗ʼn7{endstream endobj 156 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 3526 >> stream xW TWDlN 7EEEw\Pe" Hߍ +*,-P{Kxf[bL2^{sq2s޼޹OݪJ( v|.=P<돻VZl6~ T(DmK s0yƌpG|0vfh\ܶ&MJLL;1*&dCbX\WplpLBp{Tdr`7M|sZ->.83*(8&aq^dԂظ%ɁA[BVyy$bSNc f%3f05Zf3,dwfLe<Wf:,g[Ǝ00<.@1b2)sŕ>ӕە }k&XTUql /zQbdPG9.Q=]'rd+~< CJ&Kɜ\V`VhGP;qKyTIRhB,vU6z!䪻4~fjq.+ =c0JN9q^>т.2,ie5mW HT˷tMƢw0QʍI/Cd0h ~3@[e<2:ɖh%a6r@]7%eW^d$gY’`b"'HhhgfvEa|PRxs_<,ъ%@ @/6S;4u7*P\0w@$PXUUStnM:AqLs #pKʮf?k3azNAN Co(aV5/oKAӠlaҏTjy"khiǞV0%~KG!HէpNC꽂1Ř]\9-a{`ޭ !`@"D ۊM ;9cN!s'AۭiBl \,D` (K#5b8б5>R 7 uM)V k-)_yruxKsZvQxl*^&`^ăcsvr?uqŢ>+̂FQ&^{>kΩ8/rg'p?&8܂{4 ɏR)KC q_: GDesv:~7ESj!j`~q$ [?_ӪP^ r#2 ?'N^D{暒ꤣ9&r_pwaFZC2!q`W&K[8wfOJ ? N9ԙ+Dk?*\ن;w8Gb 6=bMmfؽ` K DeV%Vd&S@,1~c0x'荙{A=W[#|vӫN){6)({AJ; ][Eͣa92{gӫ;v%BI>pLEw?sPmIVZp {{NX\e_j:ׯ۷u(q1 '}cEM8]nZ_˦&NԀnŪi.ASxi$mrj7L)Pv,'̺;-E 28SZ_-J:1aW1܀ψ}MƖMMC95BY䥄, cUb?y%?W{tת'?DV"^낊{A'g&AWt%ma--kAnZ0ٮ{7TBT#1e[|,޴ Oz{F_pSrD>Rb*4b&?~XyzmNf!]Qymq]C4݅y Pޗ]%kx2x! ]C;~!kqBulh:3m-Xc"?ފc)r #H I&"K?F'֘$TOE), 4l8ɯt{TyRw;zۦgknˎ6xW" +Ă^4v 6j(H#rq.FLP{ߊGLyB{a0θV/Dm@G]qsʮx7J\TW!s aդ-"}U\bQz(ȮHl0 ?: 1, Q` z[ Qb\OIᯡVzv}Ǫ_{sk:/cj]iX?`_4rY7ZH|:)7\kS2Nsw#w#r@:JCG&c!X^>PZ| !Oa W,[䎊siwPok>w Glx.+}yηm^tEq]޿/N+0 +.%_ ! %jUG1Wuρy px|cx*'1cάt\AitJj> stream xwCMR8'vz-   ZWTmqCopyright (c) 1997, 2009 American Mathematical Society (), with Reserved Font Name CMR8.CMR8Computer Modern3vťbڽQ"DfVT@htkpozc,MI%ڧϋ1# :Q?f{ku؎׃$Ena}{mltNx~}vCoa  7 כ Uendstream endobj 158 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 333 >> stream xcd`ab`ddds4H3a!]gnnw }O=Z19(3=DA#YS\GR17(391O7$#57QOL-Tа())///K-/JQ(,PJ-N-*KMQp+QKMU;OL:)槤$200000v1012~_۴ݛvW>ϖםWQ?ZOr.^MVɂ%m7NZ?O|S/;a*j;r\,y8W00l)yendstream endobj 159 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 368 >> stream x%KKQueһ+!LkF![Ԫ0Rh fR):iNQѦںl@vP,qp ּZ({,mCswiv:ŒhprLE%1"2Z hGJZ2(!Kt iL hi3EHvceEUՐ Br\Fj>a ]9CО a/_1Y VPB>J]|U?w^ dY^5ccͬ%꽾.eN^ҲW/޷ 4؉hFEf5h {EY皭LJfn4n[h[]o;FƏxa _( iendstream endobj 160 0 obj << /BitsPerComponent 8 /ColorSpace 33 0 R /Filter /FlateDecode /Height 400 /Subtype /Image /Width 600 /Length 46175 >> stream x\S"&FwJ "]QLT7|/Çݻs%_D=$y)tC~ICU[D [^qneF-\j42*$w-trOACd0~a!-v{H[*veK ,:_M%8!-\(qU\\I@-ӤDV&N? b-6uy ]݀M4շA7۷b/7D8W4[Ю?;_";111!X> i8c l_74\};.by ݆(!:]oE^Iiv;㵌:5-?4\p@:H?62vcg8EW2kWH+jJ'()+W🈞8\I|X|X|jjI|X|X|jjI|X|X|j{qmPNj[q\j3bN\}dk©\ ~'U ©\ ~'ޔqe\ ~'9\U˫@W_wp*>WC߉uq&>WCߊ|oߋA!!'b }tmX@׻os5j 4C̕mux@ګ|ZuE/fbc[[6os5j`٥rFD{=JhKǛ\ '\U}:|\}°s %opPv1/G"+#\s1|\},r<\ؗKR4 ((qwvP25|\5Xհazdjܫ|P?'&3^0 EKt3L iݷ\%x#W-9/Fa :[ۮbp6W ZC=m:2Ew>ob\ܕ&s5Cs5#jD+Ӧs5zHROs5j:${\8t n\,!jkI\LA.Sb[;_\ Hu^Sry꫄o[[2۵ikjpv,qߎ׍x3 >_pZzA|so/Z޿W_*eH7 zqŠW>WT\u]W  t5FԪhq+~@7㪕 aQ^m$A9S:_i2*@*c8qduSYۧfCz]sK OqtKW g|rM&|4d~=țz ~7YeU <35a[۹m{YI/yr~(+'ݸj;¸ZD޵Uǎ-)t~{@px"$3qU]z0?o@v 2Ĭ\}BY{="Zݼ]\򐙠~sE]J OQ? F W /eUW}wo\C#WD#O9ϫ*uNYSBzvક9]3hc_pAN TWo[_Gn\1'\}厅.jn{kg>q*qR+o6@sկ~/xFW9\ ;S^]oSR[5U>џt\ZUY 1d'80bpVϩYޒj6绽ݜdfrc#>cց OzmW;qU`:᪙URQәk{U}&L@ {?EW&yQ99!f<6]b Ӎھmh^<}e`n}(+q2IHDHyW՜ƞcF9$nG:*qǠf&)\u"T&3#KË`U@VKuNvNQy]k[#+7;4S1p$UJ2Us]qyiN 3b?d~֕T\uspinxQ$5:͓0k=ŌrՌM\%dzGuݐM7/yʺo'{16U^,,(U]RPX)z,+tD\E)M߂Ȥn W^2MIͬچ/JNO1wxUήa&rC:2N%f\/`@aDsrW9@.)W0p)/oRrˊR +(BG={Z51Yi⦶'{d@\Җ_G`Z|WϹ+ojmˮMbƦ_JsnL'0+(c"cn_'xȀ6Ek6@}9_G0<&YY&E=/)][&;ۖW%L2- \+w<~-:7qB3ʳ߼V(6UkISU`0b\@':jqU,[q! 0[;bCs91-Ob =-kh֐S]LӞ1MkEI9E]ۿ+(*).~LAe~+n]|؜.͎~.3"9]Ws<܂2n7sFr3t@jY- ע<ZVLaӈ*vG/%..U[xqǮH}eIE*m)+(ʎc#|n&?(wZݫ,}4<ӄاZe<"S׷|{~=A=Z/zqmA#g@)(qZŞ`"cq{65.. (ʒqe՜77Ɏ[p(䉣w/^s9!,v;s\@Z<3飰v^LJL~p:(գ[};c^=}Sggǃ:CY _I/D`[ǼFW ie5XRཋ\}k=]s6qBrvi\GѹϪ]Dg[eѶK|Vw?]tw[NF]9kߣɧ}7n3۞;;鋍FXx,2cvn7l$Ykokۆ/(jg>zŐVi_d/ϓ%<ݴs:wm$w1ečAȪf-kz=4,c]:v.bׂ:c[d\9v;v%ήsR*Ø?ki!3#ڿuϽ/[̡ Hz&Xlfu)WsZʠ= /9+ܿ\}ob!ߚH뗎oJ_MN0"o>ݯ:a՛>.>{Ӗ% 7;} nٺgM/_ԝ>mq9k9;Y|,:KёkW3 !]~j7ȹjp^U_wij|c^Wal SCuQw4hmd경>7ǺKb|ވJIɭ-9c&kw-1u9~S{}p_luKz.Xq: Jhy{xN ںR\EΞe N:ԎOG gqHlwo?bڃ́2j,kr]}M7݌oulvu~S3jfUwh`Ɛn;q3&sƽ_-gg]ݴxӞru^e=[{\ex,Zn>v(l=OflifxC#.ߌ>qcM:t rf^j?lhBKCna~74^ɰ[?jPR[{X_>_07?C '2~Qx`䕝k֯߻?vXxqM^c=~ ܷ͜?е[\yϊ5klڸ`"q8>OܷQU~v\[tzb>kWv7џroS0p3~3DC- sH}Йi}۷Д첢GӍօg0Q9L8e|-1V{Sӥ.Nz:WS[=n^d[+ s%i9u;}پn[˚~KٙZYXbkTg\.q:9z;$cUwُoU=$kmhɮ,W\֓\=J_> q[--틫NhT)ڽZ>$2"Jr+^70N+~>>g*aWYK :.r4`6v'G{/rn1iƨI)-ݖ֖V5“i2r jNNy 2R1 LLHcmnDŬl_gwr4\9 兇J.>}p}QvWLfJ!;Zf,zAf򍐫/u9r%;2|S]P6xjc9{^z2Bg¥?`kg&'MV)1d*h!|Qqgܾ LNf>cm>1$2z/0j@RV/,.j^1z/rcp;>%%ʲ>?/K`2S4l8fF^:gjgKy$̼uϚ6v[i[JI(†䘠+\J+ َ jR&a.5RSifGWKK1d*.AH)!e>6[jkkiIk=vx𸼦Ģ]@pU~5<\q&iz.j'>ZN zۛ?|j×G1\dGU <ϒv6Nj2XB"4%u}=;ǹfJ$%8OLSȊx8T2Ycg3d*GE_{jY&. Z9OPG8\VjtSU "/]?O}qzkp J3 Xo_԰*cLV\ͮΊN >xeW-n?wWr >:w%\u&֥'(I6ֱ5Иcaw5 Ey2~hd dC/Nbӡx.qv1h\{r1. BBJ}tJU][;pv`/7/ $ 8Jf(Q 04$ĐHhGőJT5SxAP8 EA T2AZJU)J+j&yڞ[jejeWgk7a&ʋ.~1?4}l"l0E1V]r]L\{,(&㨜._}^;[iix,\t`œRt4AA c& TYyB*C (j$CQV 1u8ғE17˜|Wsg xYݛFT~AĆ.~1?-{W=qSAy8ugY'9On=RvY4 $<6q@zCع{ߛl;{ӊ GDbt*NP0($R92cɢD:FPcr$) DSMgѡ@ױݶjy\Vè;7.0L=̽'5;9_^[(4v;u=nnal<[ :~TIYXK C!1H$@`0" Cbt9QgxIFh3("#1D,//'ҢkGMF)+Kt97Zi}_$8Uף3ȸKz꼦 Nwg1cK:'oxd hX{_R?c>-o>ɊO ڰe>UgF=v;-[oW Ȩ)x]<CX4KB>Ip4F#QP '*Kq2($2" *ؙ8y :K<w䄔ywN=PF4t-nF _Ć@s ?d& 33&K]zi5ocNk7:sx׉KM*E% WhY멘jXZ/W)()jnj<@@ )Ϡʪb L)T*"`9hJM5Ag0ʚj K# ֜;t.^eYA8Pg<tk %Zsկ4^ m_޼4 &^LL/?FYBl7z),鿊6,0-3ΉJ pъ֗Obyagoع`3f9j$j sg[u&WWY`3WES&E+J' LCqp8$p4Gc(^MO ȲJ\hD#)Tles-5uMJXKP̩ ˛sϞ}T?]ճ~ԯ AY%euuz~1>CtGsjo0K̬ʔ᷃O=g7qgφ<.ֽ^'Om[adh``il3BS!$IQ]YBDFH4A T<K(0N&gK`@{P\L\ . FCa$ QSA!5v* '!P4Ӕt( 'E9))͕<mܳLWb!PCC~)vYGPFկpŀ__G Wc^8)d=l=r6픃 }$fZf\Kqa^tL|Zwn\Ic=<hϵsز1 cDyUE"@ FCpɂ!8UZHY@`D!!hMBOl/C!X 4B"UR)HF0J{'l?u-7/[c(>*n4:/]lCxVΐiQboFr?郻V_k7\6n׎<'1R8"4&1Wd0@RRR$<%). HB$``I JL\JiPeH2Ci *ڊiAp*NhoW+lwhHv Hdw#cݚBù9*__(LIΌqQxNxЉ'cWwٹͷSVOGzc5x,E II!PX")1D P, EއJѠP(}́٧a("`$JB(*!4`pB Hچ'}-heyۧߣi֝ &a@BYmHQUO;Z_ngǹKWlrԒ:neGuKظ,i.##M6^@ptqCf?G?'wssw>-ױQ%#Ugݸ*,e}|f#$1y;ޛy{/^h!4N&[]el8[OHVHbc&̀I( Dd4DbPH(%*ʔ2$$Ex+)Cem5‚4-ɩIt9-%Bs!#cKnVW#$#{s%Q}[rT'gfK}qUUqwEA)129A9PQ\ו'Ԫ 1x>Y1|Vmxaݦkpq½ˎ-*FUtֲ~\-#5N]&R`'5Zx&&C0E!Hx$BP IBh891DP2KHpG4\\qހ12 *81š7%%iRF6]88}q=w΃#_{A2̨pMw; ' I83־Nuiu ]ɹ(##/nrG6/ڹz۶/e' Zi04U4-sZqF= C2MVHԕ‚@}C%ca@ T($h)LAK8ARJD$G2$' ERh*.qC' R ]"ce][asק9r;շo?F23Rº{h+Mt7'? xx'cCqT\_\=gFszf K\-1rFsg%Q7VQѶӛhcyR4x" A`PGd$%(,@"0$AO1h ,h)T%%:!ѢSFɑijzZvv8J8Px)%5eVQFx$[㝟Ι9;xFcvctb5~~p'PPf^goݽ W8}9QY}tݼrmWm޲V!4vټzj:: #ym%nn %:fkt Ψ,4 FJ#$"* pap\|XaTJZNN"0('"a`N5PP12$a*sMU̝91S&eUhie=*2NrGϞd4s/gY, hM.jyۯ^UvufBQ}3AVgk SBr#~rhKs+>*+ykVlmijc8%Z J&N kk+[sk#KBϘ( 8q$Mc1 &! A@(4P8,&D' N( M\GFs{q$PIPt6z4 BBTd jnVZ 2 E ]RdXȬi݁iSDz=ӊOa;sJ^Tg4džlˆ^-E5Sڽ_^lxMU~|UV Z)Ǯ?%*]wK ]Nij uln]t-VؚGMQp?ːfgXS eCC3c3}- 8qD%%!T!!p0`P`$A ҨTNѓ(@x4085)4%). 榎f4Qq3p G%6JJFsTGMEGׁ>ΝBk2s{k`T60*<}I[X7;kfU'KfpȃOۧ>|3 InzrV>yPWV^TeZw]p̮}bisu[_it2'JkPIXD tE  N[^AFKJ.D L >'QtIhP(XAUt-l4̍աBc%U M\dm;XYβPWVhJ%ja7pYgr=&#U+?ma=Hv}馟p5I3TBYeӷ珒O3sؕu݉zU\EnReuP5(dIs3E>~6TV?Vz^f?] ]t}M%&H+h)hY;1g*!1h4AJQNZ 6Q`4@#:H J,!X@%.*"""bӅ3YT F$`vaXD'QX4D\G Ik`MX7K[S|C>}d-[89Ŀ8dK{]]2zρQ}kUZ2UujYMe~G7?Ʒeߖrs_5iaF)+,#+ҩИHLo cS=} 0fJQsZTNEtrs"*w1UUc`ticy /B+J*(qpX2H*IX %Ҥ xA` D01 qqD*EJ0H,$ *P,5FkHT]ZHOUYw;-,-9-4V%7th㲣[N^phe$n[dnا))Jun\`t 0k]3Nfjח \G=Q}3}4EGdKC[ˋ*n֧ScC57]BPiKs˞<~qFL.WM&i_L)Uش.n\'u1RRӦc@!Dc2$:^F#T3XJ$HEp<.%Cf0($ KI3$$ *.!! IbUd4hR8qEfsl LԵUuUTLV;1ed 7SAqթ>y8s>V胻iSNNP5[yL= Z[n [u^e-A dQc߿̸C!cӯ԰+Fv'w;w~SGRN6p84َzfVyMu^"hkouTrJˋ8U[_UDLN,9ZXrV_`5:#|ij賗r',N󷺢@+ZsV˩]Knv{Y6VV jT8LѤp$ &9m_R"@P8@!`P 1 8ĐFMqۅ0XL.%X<%R #2d`<MU,߸bRsyPZ[Rfp\k9}kGwЭufjlX2^Z 4禈hY:*0NVQLj~+&=>3S?&MPfOQS[s]NJT2imm+Kd23w!  RSnE]t R, >_zʣ2 o߷PWOAYRDh("y)HI賌D"FD#x)@c[  X"`(r E-%*UBH@EIIht)Murۙ)*hBBxU7ns5ut䱻ѡAс߸{nmYFYm#[9|x;! [@[s+YL s||ڥ^JvUH H0ӜK[T[ztPqQC[u/3vB;F~cWEG x oKyY}ʋcu s]G"$fp$ASTZzZ 92S0 Hb%H(gHH" C"D%0?:.|}{CuU$DD PRC{a`I:@ xgW9̗繞f=.PV:|Zā s HE$$TU/\33 tNI{@SM.X'޴shhrjC32 xX/Mas2[b~/@>bܗ[Z;j1uP,Zt_.㖞ml,͏]( 3GVTY%TwO?~uD =G%h_]=_^\8.fRן5}10?e@8X(:3',:(ʳyGz RS;-"dcecp )(HQLYx9ٙ9y9ÿS[V<-!*~JBcw+[+v^0U}C$SS|VZuytqyl[I|f"0ETAl3ڠiP m<폋I_ Ofe VSVۃ'>q3 ,LLV&&F&(N8OR,?$ 3+ =ŌrL<vN!!99Q)q9yeEE ֗Xx=.{ʹ :WZշU'2=ý’c=+'5o>';s[g'kC+T/6TጼPb3(62ѐS]ՈjEc0wmIDXʦ(+ 3{ v;^`j쌵dxYY٘YDOq(8K<<AqA1NVVT &fFVnFn> X8s\t:+/7ӑ?:-(.' +(+:;EZ޽ƾ!}j.̌C r r@R/Lx]>Av1Мb33Ck(Z`8N͸|q_Ѕt QaګEۇıFxb?"|w"s+I}h7;F8wP)=]F ;'?<7 Gt/|zh CCO6o9L\mYDTF]Pnh*/O59(76ځêI5&.-*>,$: kzj/^8 'JQ,,B0Rl3 M;+#S/f&Z]$ũ-?$"y8%$DU5nI]KNu(xh/}EsG`XaJPpnwP=0g̜fUX=> ㋫-~U4P>%nߌ\~knj"~pu+nc~2YWTWRX?.v..<}2233rH!5P5!|>|YW_.k5N0L=ޯKhY|_kw؜p}vpxvbUH<-? )|坕QӒpTإuzW/v@(5`a`c`ecgan(t'8X99.n;ӟϿ> =-(,%*%% #}ZA⼦2.)9]yAE%q6~nwmSswԥdCZZ;F!i1y0lk|nF &d-͢l,S_&^f]s_aJT;ߏ[PXt1F(/-Jo鶴('/o^:Q)鄴&WBK0$2]XbcO8ܻc||2AJ>'/*r!{ot|[\qß9P+}5>~Q}ōyѪ{[j'ZlG2u=,k[F8qZA XYyYY0#1:,̜\@n )Qiq)nN?0d28{^缄 յծ޵sʹf8,4#'-.32/17nSJ]K0暴궶^>Pi늽D|@50=:E OV6)o'[H{- F=~p}EW-CCb3aM}݇ICr吞A]Eg_?3dl>ȁ^L[cSGuΒI]lIRGm?NEw h{>(*٫d'G"'&Pj<=JbҪ2掶7:J#`d02P#0SFX9,lR J@+oGy+@DVOTT]--5QAj]R;cuK!)s&wR!n^Rs`єƼPkkfX[tawS09>ZbLH4>S|U=zw2MN`-j`EZ~ =A s3M=XjFbQ)';>5Ȏ$%j3`vBo?Î APL3jyCF{t#+5Ō,+Td>$-q_`p=kw=R^nY9 Q:d{+81?+4AaZ6ƴ`kq/]b0டcr30Sӝ\a.V/;0ݑw/"(#*-*mdcpISU3KOw/8ؘw;ה{=68o^ݲyo/mwJV5|өzS[_'aAiԴܜ\xUΕӒCh( * ACXAm@]TSDXF^vvin"{U]]-ɥM-l:׺&XC[k+Ew}/Fmܔ|oCqI% =sM:z7c"B\c0->$tєcqX1V_[-f\TXXYYNˏ{F5z,<\<@++#%bd>I\l nv|8;'@rI_43:'yMPUS60KI-vTu4%@ˢ$9š<($>Tfp\˿-V$ ~lݻ\>z=#KGȋ$lUi8=+;>!'','<>)06=>";!1GE}SϊʪL(:;)c(Tr=764w׈ꂌ)PwL YT d@(jf,9]4U4IV_EZY8N3?=qɓL'98Xx@'+?;b Y9)Q c~((..,$'+$(-1gug/i^1ja:9ZRVٚRWZ0ݫ{r mX< 7Ij;|Y$e˗OV{pg>" 10|bVWWYP ʨMlxݵ-qiJGo]w=]cb]RJ0yqN =! ؘvt |9Plm蓚Ոutw Gq,<ŗB`MI|;tdm%݆'`RRG ٙ_M$ëҲB] !h0ykv:pIC9B@^J0~w1&6t0 s EԴ'ѽ?rUPJLT[XZ\FYN]VgŹfQp~avsgnE!m+.,Nik1ԥ;Fbk/nqY}&< FsSs;wA?_ZPbV~^n.IhDAFRLoDtыN*=O;#S<=mC"‚Ӣ|C(N G*k ڐAl?n)BsMnKpëab{cXv*N j(o{9Q pͫ ?r,7Fn.[T'%[XFTDLVPXO㢚59Yi-kk%3)1zaicmVXW7E|VOQݓï(O]c~NhT C)WPWdJ(Dҟo_JF%np*tjۨĭFz0liNZUmfTyT+E9tF݈h6.w-caMEyyɥ "+G]B^'w~1(92Aopq15 gՐ貲LijcY.ŵB[CnޒOɵf%=uXlsbXx9gZىoN us:,-) }bu}PW=0S;<@.f6V 3Jz|YXYx$$Ns }玥֙gUaDjj!i^~.M3ZK3 x?85999ֱHkh?"jGɸL3?`\eh|kN}L;{pu4S;pEHPaEYq!qe(xQ{JeSM>z 9e5.(cfeᓕZoR'%d=򦡓Y@IFTfagHO0=u 吮¦qw~l;R99PطI^C=[{7=k]mD݃ApDf1L슉~,r Hs23H9ؙ9xX89lt:/"#+,+%,'tJD攔222j*@}kZݺag'DeGXygja#cS cFƧŰ޻ّ=v xџu{q3jY"\sM|;px-@IΌUegdT'Guu/L8Js#+b_SRVx$31/&zex@'"'&QTTRєՐ;.x.AaNw#<QYY)yڲIjssJ]@צUR+YNh˴[5Qga-0OG{pg>avmz -~*{P׸ER4+O˥(1吆&p^yKgUZdF6@JBO&~-R@d{X:zYyPɭibے%5Ʀ~,3M h4jWVU!^Y Dw; IȤYE6A^

<,! R'O]74#9IN&&fNsrgO pOѱpdd/=%vMuU#}=SgeDN>(f\n.]c3&T3AZ$nYi"\n(i!LmGyA\zo_}9~dM-߃ aQؙz쀏MvJC[ebS\ntw#9?2(yd|]cgq1򬖬yAR{ī\V@k\#]LBU6v[Zѝ0%\ UyuUV*x/{`f8 5U4Cu3PW%lN7wbu) tJVSAqN%ɜVRT1P?u蚪oor20'\侽 =24n_ sEQl߇jaw6lpmxٞG7d}™RN}o0GEărZr<2Kj0T{fcEnxos^iWZ]#)Yy!Y% P߿Y;tV`-1.*xxC)5e%h aenX `aG*I~ /ښd!k jzFȤ6x  ˇS Vr= )ntkj}1HE@E䅄Y~۵( 'u O_XD圔5o: :#N9K P~KkIMGthtDăj ifdu\7>IYx ձExQu"~c.wJ|өp>͍ ʫw22L RC',{FA"$s1,Kz}]Y%p;$;Ùo[mc?2\" +*Jthƅx+]wϧhX3I&+;FFŒDK8_oԱP; ;;[HEx?>#")}JD\GD[@_GKJMR\GP0š:%,//&|-_KSsS(uuxMj^fm-5iqEE-K$;y~qNyy9t%5F\ ;7Eq^iiY{͌<@PTOQxG &;׷#4CKAYYi5&gV߿}缢CZkgVPzvl ZًG2LPp`Ǡ[~iK2"'DHTg:a&vVVv0}=ui. PXPBXPKHPFמgt T4/K(ݾRWVRbcl|m@BtTai8Scb?E|F$/rW_Ft?:^wP}zIN\}/ü\3ʣ oݻkg^Zx>  U S2Z*Q~1m0s"Rb*ʬ 3 p< 3Y<HDU2u4b{{ϒA6\(y T(J# -rӹ )wγR/#`P=3Yp5%"-.>WG2k032022S魸%NORI>U#w'399 7/P@%Bh75#C /)_w]܌ݙVW[WfŃ0X,>3?Y_Nk2{xoFVseӽ@mv/kË蒴x`'#K[}s{n{3US?%'b HLf{=%FphYXSqtCuotapXk(G>aX46?$Β& &F!{?,5I)%ޚQVZXUIxzȒ!.fJS뚒])LJJuy~ E713jΫȜIxhsi9#=]W+]ݼz&31mjopyL}Ib+$"ljH,ԂbU;ӆ^$Ƴ>:GWd|)R%/mGw}'><'B_OEsЭFW+}LUE]iRjNA ;ꚪ =\VAQ5U)Xfr̈́m*LIs(u0 HNͭm/^Mc<|e}ܔ{0?S)R\_DM%Ɠk]xdEnyMj|b۵'v;=?IPUq>A~)5O J  uM^\]G}k1>i7=k `[nމLHkIP,v#7&~iq<#94Wf?-_m;}w3LZՏR?q)9iIieeٳ"\\zF}=Фt{0p]4uD NS-~Wt֓IB:݌Fomsv!qU9i qG^Iuy@)S>\G%&߾nq:ӵ0# kljݠnCʢ>taڛjִ[Ǝyj[jR~33{R" 1!qe ey)9y9A?bU>w^WW{`{ C&"l!+RMLoZv‡F>lGZK}3zEQjsO7Z}Yjcuy/GVݍ+tqI( >ge}MC!|ȵzՒW[hi WBnCLT#ZV~o}uhl6&sy6]|nt8egv|ق tW DC[.vI^ ff? 9xHDȨŅxG%|4 AEz|h'9Ņ8N]{県 {Wyt((% xBSM9Aɑq6f115%ѺK`Ӎ!9Cj0m6ʟ,P'zw^Y%۷moj}n?) G[DA:zgT5/8U&g'8]RAQUW9'^Z t?{uըu.PA*Oq$9N޾ 8D g`QV0ͣђ'&Q) !a>~o(*iN',/Mч_ uIO@WuE9Ջ ҧ/_rî'JդO_eltI*,>t|#~@WO簒F$67p yzc~6%383 :~XHֽKJe(ݾezMYIQLQザue{X^P0|QQE}o1ayŠ⊔&*45Q[S[]]YYKk-жNѻT燵OKjfN|~qMҿ~6َdoUEuكEJJ9ٸeu/jH q ܰ.s <P9+/%yJU6= \48xs͋['ollPF6Tf4Û:<],}3S 1NEQ48q‘7߿&.Z,Sbl\RrBţ(EA{9i]=Xe1Gؘ`[KEVZ+]>NQ_D N(]3~ABUs KGh䬎ȘȬ,nWVeFsXRS־VjY^u,WY^To($~`//+3Iie]c 7'3;3 :>w'`tVN+%x .ܓ㣴Tڋ)QfʣBHO_QVTbDOњ{#ڷ)Ս͍G99.d vlRXޱtRݧMkVnj_^1nޕئm;#VWD,Lk)ʊk/=P-;m"\ݸo`nׂ6՗Uƥ=OrO ,jk"/K#|}<:Eͧ}V)ېx췭F.\47O~ۡZ_8]=ͻ?8E Y@ S03b㔐Q05Sֽε`gk%,!'mE5]#: sXitAF~kn5-#ݠV($:+-+-.87ڠ @E 䱖:l!e'|.,oJ=ABcй ה~ө~0"I9e59򊲧eO_`)QeaIݓ:35ӫ6jbmoKs )K(ꨪ^ m>nbѐ&-ID&BZ!5^af6z-pTU$/tDV-bzE%-5dbs)+AfNiy)Dx'P)٦򪀠ͳٹXqHy9yiW3v妬95u};7f8ҏ/_VU< h ~쨸yhtX#|ca+y@;% \#gpx%m|ӾTS;v*EaYe=%-RgծR<%yEKN[L,`7M[謁#QQ~$'UKs p X8xC=3TP_Z A&9p>i<މpBKKȞ*R_TYTx;Z\G ):sPXQqvN@vvvZzO,ahuUq&az*wnk{]T>'&6'Wd9Gֶ^@ʬ PlƳԝz bbK_yq'8>ݞs;A|=i_d߾X($d{y.';7 6 <[@UU׃ۓojH 5mg$"ЎyrfdY &oD4;AX 3 Ma]?΅bC8Dq<%ĥUB߾mRWL nܷq+j.\ jZzo-Ϫ.5X]$ Q]8:A~,%mk*t`'G2PpV|8O^}JY}]=;NG(~9Es m\,xx89%/*H21s{CZY_8k7{|bәbpMU6(>XD9bC2zz;G qd'5C!jmvk/"'ϩ"O]Ww?6o7Ծv#87VWNPA_GP鬁/~/ǁb7lj׿&z]SoIS]Aw{N6Ι^ w6d㮡S zs,$&wd3 QD9J4q-aDf7?ޢ3Z?>9zD6>k_͔E~z .eꕝarUAL^TXO錂)5I6J.*~ wwp9 J<\ZyXlI?i*_.Ajvvԕdz3gr sD?# !G;%\a< Nc d%{eSߩ?ySn(rJv{Z2Eb+7 AS#,\]s K NWXꛝ7z5f6N,1=0T{U~ʠYAwv?z|oi4Tś<=ER^jE8-ޏR ~iS.(_ v60ReQ&zVv 9k7MK'=hi_olfU-(cp%>[XPg(<}fË'&PVֹ:Z?#zšՎ>zFyshq%.0I)%&va? Џh'p86W2G1_gC\5aoPUC.εȍ345uub!T:Q3 DdX[~=T%/<S|E yA&]}^{OE?uG=xEJL|i;>djɉsܽa(() ct t'ع%N_3247sv , y%C ~jMbu\2N SSDDmv}el@Dc@UE5E!` ~Jdlak+~͞!MĪzkǓȳα1Jе[`u)5Wqw ,¢C75:ۘydqo¢pW= WO aO/MO_>۹_~6Se$s=[R)YwKq8Iv~A U{<<} # z PJT욳bRJY^ckSTh<4CO)!VzI dR[O[vM#3C;yq٥Y93fjMíQ008G&/li{43 "a :{10JE% dL7jɧzomW Ń u%7=E AQY?v˞VҖ=}^ #&!}+& 3q񊽡E\ X,>G!mQ=y}#SU=ں¼Ε͍NICpl `H4zW LbR-Ώ>\>nztvr)Ɲ( Iq^I(N:-7oѩeMݒu@Z|!7l-ȴ_ i&/~4o]M|\CQwO _J,xjkhS(hF ؎RIu]kܻ0c[k6 6 JGQk]8mSY)k )9ŝzTR؏즑:aU둽}n-s3S/F(D(Jhiϣׄú;=ۘ\tW ͸Rvt${ӢTI57'n(JH]{?H_75ҽrEJTHSJUĜ>'+A^9Pܟc//?榇-jŽ"S309LG_M?4v̍G#.L54tui<7-, nxoFˏ߿bAn4;q8 Fhl}et;j83؇oPv飿*iЏ&he|n~jh֛GK+Ͽ~?*owVV}w7>-JW;WK; +Sb@^K9,?㗖>pDYGZZR[\M׾duBLML,L3!,廧O>ll8jzHī2;;zh> ShP;MKf>Pٱ<8K#Q[{?zG\m>!f;\:@ ҧy6Fjbcԝ+oW^{}]*-ʭͽO]EC-{G?Ni`%rJoX+w+`majhw?>Bx{oTkaQQ9E-E~gT})gpvASzAZEluz1C}nN6^>\^w`SSħP%ȨȐ>DTq `<pT]:ht 4{4MҙtwGތ&77x>i='I7;d:|ײ3XȪ½N{ ?;Y\b>KlE//{qg9 wON__~xi8cҤ3-\|Zj߃=szkصm~25JiBƳe6UU"ovN•GLIR:m52zLαӰQ͉/N4zcpıoW,}me[t΋;NkwJy7;;uyǩߎփ t6XH|4J%I Gt$#6l1ǷJTX<1# ΂ET~BXtg UU}PD%s&}/Dj!r!ҨjRq7XpIQ!yBUE]yՌU~@,=A&,Xُ'>z—x}֭m{wͻoΞ6qYxw{,#Wb^g'Nm!K {c~Fm5؂+׃BS&IafW6/w@ڌ{fq[MEEm[Rf' YUco_QMuMG 2UGZI?|dk+*j$mh5iK<oZ ٿ/׮x/\ͯ22 h㾻\>{ƞ_|/C.( %rkk]_˜Aǽ UYtn<*33ssbzw*L/dPqxdH\rc^Zɯ*U4DWŖ*gcs(*7V8oE[͙1uc'~_^2,X}/z_8sw_uλ\I?yp?~/Ji eޣ'ET "#.I%\ܐtie]#ZC)-Jp˥tUçY7#WItH/@ Κĸ" U2bM6򠭦RiWW!Aom*uR/7vQ/k׮zeū:܅sUk_tqMroܾG̽,#KuQJVNvDrFN^!+&Zi$zF4R1'QWMWX H\[ȣUËsr0a օC?X򱉺BX9/3NXʩ2 9פ.WFWuǿzwٳ9}N;֬޸RpH`f~AG~ys]s3Y%ȞZ&pxB$)ŒzjvO›Te9qAU1#! *%_jN'dj(1@̑ ]V MJk2c$zH-y^/y߽{Ӗ=x8!q*u1CmN.{ (\PDG߻7-\.>rd׿#nU07Sǖ ^Hz.-IerLUwTe2^G5X^AڼyL6_]L T>$z?H9.5@Cp8;Es@su h"k0}x.D^q/AazQo<1C?AGZ]שBn[ҙ A[H+9v]ni)$5]"ULa:Xn?Hc[Q' 0gl$OOk.p[UV53$nbՠԄxFRZl'vpu奕]_faN<㯧B:u[]f.AJR ? ׌q3yWs2L5,/Sz.yԪ8]ٺKWoO7ࡁ[U|ڥE-MB0uhq/^W t#sKK{wojfd"@_Z+D6|mv{>[Lֹ8mXl'{mw1" s#wl vG\.!lYW@`PFY7l-T RZe]wkj`ז#Y*\(#Nq~3jEW biU5*27=/?)![kjW!dWlBNX w*ylׇWθ'?(.;] o` B!!W"6ߩ2zm|Aafq `+RPXn3gvJUwyv H*())Ac9Vdt57ªV|2%޶᳍wz'ÕD1Pjza!+?%E+~~[FzGzrIDZ:eRPWUg&bs ֻC1B#9@_ik:^B\E123ͪVc;-RʽD#96;,ka ǭd_-tC#&\buc 0O>t;9dt Pۣ61JS.]uޱiN3&Jq.Ƨ}`Q'q∍=Ύ\..,כ봹< ,`VW1Y)E"&HՉ[K>BÛ{ؾO|nǩ?5#;%??/aėa_1_~?Wn~Ʉl 'JTr{bTXaֳѕ j/d sU |E3\\̱ WZԍn_ydgD|QQJbȀd+56dr?;<`<)U -_×lݠ&;1+xUWc[oc=`UuUU$>݈)ߞ"(lqAޱiaH~ty5%+ATL}>N0xt. Fkj-WrDKU2*x# [;WOS ~gT[!)Yl^ ًLt4F|Z] OضD1mFv4cLЕlkK_i|d^Wޟ %84MlDDucrJM*@cl`: G\ZQ&ML4!)aXi~ЕŌ9 .p^WEn\v%%5(ߍ !2fAU{<Yt5Ym_ėGkF]t,`42"8i* K0ᛧDj{t5(rh<^T=𺒜{abBBQt /\ħ4ױBܮPЮCtYUSh~RFMQZ18&6ӥG]53M.dt5qMʄ<B"PvFV=F(`唠SmMA!%v ( /KLz{01˰<Hn-i;dt{iͶ^W.xŕmDG\.d1 7~ab er*PMmKnZOR@EސwF{UpҦST=ZO+ mNϪV]AmMMPH>qnQV!WH%"viR\ݡm|r%6dd4murPښ;f WZt|k]2KO.: ߩ|]YASatMta+m56,Wu[qc|c+?Aާ\z tE i[0+ٌHB`j+ocX)l{b@7t $O+x[#W,o+HH]ú{Iur+#ZM,#[^o]Y`dXa.ԥ;. f3D]5䜔b+FA\Cm+;CU[$ʾPiIG0B?H @Wv_ QJ5v eO{>%>Е T,̤`2 !$Gϓ*| >u"u9ze¿3TB{ _ă6 EѸm쨽Db!\@Ɠ׃a(Sw~cmޔ;@Ӌc9I6zly0jlGl'Ig\.eaNڷj҇__n!Gɐj*'[ka庼vx[;SGw(~v@n!G]c =vmLdx[;6M]tsE[54tEI;X]84֪q 9Q5qA$KBU܉a#/R)z(|t "ϾF?g%ٚ"|:E9e}bJ9!χ.m/}e"ٚ"IRl4&wRNPD"!+"h\=+|{}k$[Ao-ƒ)1^Tuy~s̆HPъϐ)gX; 1x t^.*L롲%ZJ;Y+<h6wO0n6Mh{k2AvlM4.Z>Rz ~C܃ϙw!ȓ?>hm 84c w\Z<U }G>u3;-fVAW|iX0@o!c9v‰I; #6 ֻ&úߴXzAACXQ- |iBZ@섍 ?m{j#a4I@4 IFc~xs.~cP1zGea]9#s6ǵ d>(~o:FȋV AJ3Bu6 5uqGmAGXW{4 ]Zd=vGq5Ð> stream xYKo7X=ڊM -"m"X=Nd., 6Yy,;Q iCƳÙ<+R@-ӿ%`Y)ab/["zQ儋1k*J/ wF *kDlke5ʆH|hI xkT!-+(&0.L(b+6=m DAu^AKh7]?LT(S̫lh5@zv?%b4}gaF5Ƙ')hTۦA*O_^ɯK"nmPd2ð/[BpN7hb41ke @GcpWA7gY9,GY9.nMt_,MQN,^fuHyÌ)3凼C^2O c̒3ί,җw by)<䀭o]ˀ.>{0CaӰRrF۔$aK3M2[|g:H[.O{@/$C2+TFfi%cF =+[|=q W3&8G*4͗="ϯ)^ '5`<#I}Vd3.MG p.e͙ ܀^?yBL(ϘՇ,=e/3S=n.ـ{m-Dptw:od댔V_1xO9(a2N \L'o8.?ɽN{ְo;WKn<'Ջ0k/(-4`еiZsu@OpW|pO#)Tt>D쇱Lrc6*ab -olg:txCYeMʭ fm]TapN p;N{!2DH ݁cRdm\HJA X;\^d0ERXZG,]&#VE tžu#z>z 122tHHaRZ )LPNTE"ab4} AG=IAn}li~Zp]T@c\Nm2 >4OzNkmTN*HauEmsp8Rňk0[Rc3&]G#&ú-CR*U3G>GmXd?,Q95e9Sr )HO[zLMI>ibi> stream x\o7uosi&2@2E$^!%[Fҳd|}MH->vHǪ~s&}_orz?1O>Q>ZONy=zsD597\|w=-A.~V5)'益3NnreΛ⛧gj2Jy;>1qg֚EV% h}4k%ϰUѨy,L4?V7ߜ?NWaբ59ݞydnfq691e[nv\ѫo. vs\[2ggf$g=^fNZ7W;f{CC\25` Měn3yֳC-+L.1Zq/.lvoi[i˛VM%n6<"Vӟ,,>O.}ꁃ_^J : s޼-5asPv s'O>j\!)B f Xw(!E5Wr+Ͼ8~Qz~x uT#l,[!Sކ<^yZBJY"gÓu+es!7mRBQ+:A+MǕ]ɾpu=6ϝGIZl~-TBAK}\;I6vӎ,L~ѫ,pÝc%8jIo L6;SJ}J릐-RF\@3[͒~U-v&HV^ enc{08 ;}GIͨA8Y [ qBG̯Retm8R4' vk/ x#^ϴcW_ I\TGHas5 {EFQԑOP|U0USڢ^2alBWJPbuttICIJy6[-~T7oR j=E&Dmn:m &۷!]ٰ[y2C7د Yy +D.-Vr|=1l/#j%K8/S}hxAjö-OŪqq˔_K&ϻnšFW#){(>(3ǑV@ZU@f r:6az-.. 8[I"k*YS-յIGGj, 9✗ a`&4m`9-䝏PkW@,"cfMO,yʁ ˢWS㙄Kcz3 ELP#zj;CCEm}'cߏ |X͡L1PX|)%Ș. rW8E #sJxVq%"gB;"sTKQ"UZYl A5&P~E`H-cn Aff#<^RGdsnH]AE~^l7ʼe +5mmWbu-Pʗkg0GXVxD^:܋Bh;)( "Մ˓v@? 在IpPO)P@C86:!9u0}tVWIƙH:dN"c(:n_!F R!d|qYB"Ik-t};Ϩ)88}@$Ӂem1,P객}Pi)\&74m=l Vs$֞~^"@p"CY#N#+ka X8]3R50 "J; ǀvDPNg'b:BW'%@$["(6}" OxFk,Œyd18>/8b6HfTT(1;}<2| 7f ɐp[}S$E&!X|̙dʋ܎WuD2z)AV;) Wj ڠHgzj2U- 9T`)U=_K#D2yF#kB\wqN> 7pqRxhub4#:e, *'z(ANEXXЫVxNB7C+5VtAaIWpk›>Nq"Sij3$BUi)YVދm:E= ]54nmQ?b^tm9 Jx[ KwWl' J?L[}WkCߋՙ2nį;${rUg9\Znw\_z?0'ʼnM){wTa)U A63Kop\E#Jd1 Sk0{֙ 8hk5JYe/HKa4Fi=rf-XJjG)iɈHhoLF֙(eF5RkRdx)刮a Q#+ J0'5:q6)F59ފJ3?1PEt݃a1`]'jT[ QlG|TVS(wcN}GpYǤN C@ֻa*w{(MDQhv7*+W˪܍|* x_ ODxB32VKoȆSR6H{$q_c(ZlԶ*PWc ?B*|(J/nW߬J*kڿm 쾹`%նYoo,MpUJa.jUKft~eB`]є(V[xQSEvw/=p%(!}TwFU~6lLNG?k= NeJu,b:ƭܨz_~{@\ ѯe$0a9ĺdg{65~QWy턗@ϫZ#KNĢEgc{PBq( R 5uk9# H{UycjWǕ׻[8łIYtg: y-C)PY۸ΗLąJP$\/АE'TwٷTYK_s *}{*)2ӓendstream endobj 163 0 obj << /BitsPerComponent 8 /ColorSpace 33 0 R /Filter /FlateDecode /Height 400 /Subtype /Image /Width 600 /Length 48620 >> stream xX]Ǘ6HZ;YUZ@@BWE,l010;PŠAn%DY@]^U?>ݙ{9<O<O<O<O<O<O<O<O<O<O<O<O<O<OԴ"Q^^' j.&,}&$ WGi,?Њ7]6G1v@CU[0#ЁCjD8swЂ~AChu_w+ySlRuCkh}]1MP~@*@:|/@@s63!4ٌqw/iy@`cȗ[jxV rc7r< g/rB(h0aF(anxŐ_r{<(SU\q7бՀ_/콁Non>L/O77; -W=oCBx?T:2zdo\&zD`R p\=oާ@e\݀Jnl{}2rX$Ls3ayKӐ_P:o;@n5kƜDVRRRFs`{7$`Ӹ%aBÝ߱_{m/ihzwVB:NR0ޱ~#mRѰkߋ`dp/ _፼_r>~y`o>i#  GEw;psF2rt y_CU'rU\t(sZIدFÎບh#C~ICU[*|a#_=~W?i7w[kp8{p5kjw?62vH٩׎ [pwظRv迾DF$p}o%m 1x\?x\ x\ x\?x\ x\ x\?x\ ,[ZZbQ\e5Oq5j`q5z[TQ >Ou)U !֟UsU%'qþz >O.//ͯ$WC?+v{'П/!!'b+3nI{=r}|4~1Wn.UdzWy\ Z  _Uh]_˖1WCrUro@ZM Vf3R71>>偣0rW/%vؔ S+#q+4 W 8\ r_ig-Fݞtk>Zrj~_׶qq%`{qc?WonvVU_UqaS=\=G0r֔]{8~D } n*;0~/U</Q%Cd~eWCȶb\}<gb\.ksx\ >[=I m|G"|+5WYv2}?]c߅Ɔ_sKFMB㚫wП2Ʊ#~>f,:E'yb9툾Gz~OZJEgc>{xԕVW؛)$oDsKcmU|'IMǧ> ո,2Es W\wZ_lyUYRTQa2#fLq ;"-Yeՙ̂֬R+ W{ܗj60^sj**imliaNm+e&T q2S?}hǸMߛ( z#m74e^u}>=acv@ޤխPCyMM ިE3T}ϢY]`ulVMQ3%댓}}:4]߁k YR7WmJ}p7s!=\Yc4:qfbco= LueyI1 X}le(vm K\mj9Tڠ17qmsՖAHz{[MUʼB+LWc=Ffz\S?|ilڻO'<+O(`Fqrv)lĦƳy{tsQ+uz39E-Gم֦.l`E& '6c[3,##GquKjXYo/yXTN*`U?o}+! _-AquŪqB'WfQ,ZxMJ)vUՏyQjYXͪ[LZKq7ו>ZGRz fbyZZEVғ͜ċ&$T0,|Ok# )ws^qKvW~OejPE.Uk}^IQVTos"e(>p:r-jwD8US~A|u9EY)_دJ*-)+/\ܚ̧5}iϦ 9Ξc l$~ W$oUӸ*qUh4bov)(3r!3x{m6s&NVu-xn. [; RJ/|"%$eU/ p@5U4&=,^)Ux?)HzI:D@hu};h-gs0\yQ+9UzTtW9EYy+wR)AF{#gc%J0yP\QVq^V*q}c b_Uedg~$##);ckV50]fenunrjTf[vKssK7yM!tLC ڏ( WWU߈J-NBղYų9] 8fzQnc{kcfvU3y؄{<.pbuAgS'܊ͯK=ySZX%w%jc&)!ɍ_}lU0h[`@BAoFZVYSo:p"z,DLfqʼncoͪcfRйc?yP\@E Io#E 3[m϶ˏR?LwWoެ,KH~(7 .#1PO~C m_}lURng\s]KDz3 W5vc~j@ H? 7h͓J*}Č/#/-Wֆ ݼy3Jl=g{ H}^Ѝ%%9|ޝ{_<o"c5.^\}QI N wћ DDC%Sx߄ ]G͙9Y,t{;Vqg&=W-Bn,|ے|U{5&:v$THBcڲkOhۭHV=KCBܽ:(Pw84&N[n9q'N"n%Œݸnm^a87Fl=՜ە{\^ѫ& tرbr9?&.KcVn!;{Y_KENmlIu|se̝=4tlGZ~ҥ삵 m\z؇9udߦukmݾ;w=o\/%11)sϝͬzܼ~y ~!Pl6ɹxwYxZ[;g őؘA<_jܕbUTշr0KJX<.oEs >볒"HoywTQpX+i4vo=v -ٵ{qWά~`wXĕo<;>|u|fyMytJEUûwO-S(&,HHu oX'+pBЫ?Թeҥͪ"srM!r֬m(n1-PXcK>ux1Z[zHΖ݇[@#vt5V4!Ǯ#VGae̥v\xrX3 [z߻orū, ޼/"|ř3gC) 'n߿ti^N%ojfˍ1:<3#[ x)_Wֻn|ԹeSجyn빶ZXs$UO|KcCu\$Aܷ;\rcڛ_v;RܔbcƉܼKRRrjw_"`Mӝm|4֐. mْYAVY1kܔFAH{#o 9kdvYz:]Gmvq1-/ݽvND;u9ƝF˚[tt CeէPy\Jjk)ȫDZk^qUHIMaS'tDCr?}c\ '/=ՋzbEs\-ۺQEչMiN\Ż.Yeg%+[hNJ@ʲB*sXvgGgxyMo[1C/Fo5n*-kl."-n>q-- ]xMi 3)t,6N V>!MXqA\5&["dqqj[>v62+*8#%7+uܩݳBR&39FrfsV~w,|f.XqֆU{xϙjmsz%+7-?cq@ƫe1{5VX~}Iqיt 3W$}.,x&?׆@(>s&<ܐQV$%1ZX7Lx|Xx&xԑiDE4x|_^\R~~ o'5[_xtM!]Nhe;y{Y`al5MQOHVCWUF@HhA.l 8oXAIQϟv0~쵨1®Aphع ]z* y$IpX-徼q2'?Ox?_tZ]b^%<~;ymhqA'JX%[?]7k$='9yzsf9y8OjO FM1Uhd5T5mϕk Yvt[u䮭GHq2r[>(9KtEGpTөTr2\ O0w t@7L/'];e ШHjd-Nb>WRUSs唨ߚ C{*UՔxD.W ߸aώ]{qll4c鎭K>w| EXA{ɹ&+(vjzLW'O45s :LNK4Kf]f[g>]B%婑5?d九w&UO4e>$b{ϰPU'sTSe‘jrp]a勲jVELfJ+-|2bg^?\NY@MvUEz/gwO]'Bw۷|Î5.FWZa(0 [;\\]̵T(t KuL)K5񘢣0u-WdY+$v/'B6DGph;mc UgpWe4QRViƇL擌Q1 !㢄ggٲkn`s2mZ_>ؿ1ll~Es \QsfDeU#MN~:f4U:]S[3Ao~US]\&д}["lBnAxܚ% `>NVOrW`RXfC7ø*5l\%-U:]zp`Α°#g)Lfռ93Tc1'#32N ^y?sWM)"lL={ $,l7m_jd =m[[RmF׷ڻMIR]@aJX &/*z ^d>[eo//xʉ:m"p5\@Cگw`4GnW5` z[lgv}in|bLlVP\p䃹.G>yfڍ[qJwnc͹Ka[X{Ȼ1'lz$xTWgO=? VcYyӌԵ)*E@$a4 E7`uޓՕ:C"Dzɝc.IM%;Zt+uwW T*5\RHT3@9S܉j} 4j{X׍ %iYojY/8.+FQ":#Qls_Y=w:+ם<40cYoZ#QBX<.'S76q7b>VKM}$3mMuLttTQ#$<ISԲp Z9XYNӲ#~t[11}t!r2Yr'#{C#qzz^tl/\~o=i~OouZ޾7m鱑/=+*8q%22'^=~æs=y%(?wJ'[(SG *hL1 tB%1h'hѐh91 * C184HTh4-eRQ''/n I˪Vԭ3s2_eo2d+rsӗx_9V ?F^X^ހvm}[Tu6\v_ߙ''8^8eG1v"3V/j*}ʌ[AvƁUV̞;oe+-ehDpqPX0Чjhq$Tdt-)4X:MCEL!*`"%jԉzd:\t8)  b#Nf&a89OCx姯cAn32U֕^([%n8`Ig~>EH|@ҷoP37ܘ*!8qs=Wbbo^aeGFť< Ox~Ș7g喵ǶoX1o 'ۉ4(?EpĠQd: !`(GPU'H @bPD J)t EHRYZYt&Qڭ3>vi'qne?epM-mh~)w-(ц;^0N9y &Tr8NŖ[ GƎ1 x_ SFE?zx7N>p_gٺUk֮pY=[[YMB``jVFzp8E$- * W*(Q8"q DD Jt:^XJ$H( K"(jjJ#3##!YFXdU%{3nܻ}:1~3RgyONS~aOyf~\Ή]Aoɘf9HV쟫 Lø⯋7yPh0}7><||*R^ի.p_y>*;'q?m3]o#A_IRTԴ4qSH:GTU"@hY|YNh4@TS2"ΐd ]H4P ti&·<~r֭Snd`4w!nv=onqlg~ KxSƶ:DA9߅c~^*L|{f)B۹sYͅE!]'F߼{ʠ˂#m;ns/YeF4rdm=M[K}]ueLҷT2R0H(&.?J!jik$*d5q8<h$t2GKK LPP  t-,썸ؑXfܴ J140~1W\ Wɘ6 = IDDvF݇FFǿ.aUg&-WY./^}Ͼ{.uh㉐G6-s5aN %1A0}GKWv&9;ZikizF&"zOD jV*8$Dh2.|$De`HR$t-x{N\vǹk7޿QYc~'dYf$w~Ktrl?]Ɛs0;}Tć .W-ͯ7>b>@JR[Z^zb|A!6_>U𘙖].Ʌ'`4wŁt`l/W])5DNf:6zFNv6vs uZZ:6&r#FHC"S^`d BhTv&IA[]]cE=vfEv&d(o}փU[ * >`͎6C[4$:陇 :Usvqi^}cp#YOYbo ?&loy{CGqe܂ׯ|rns]=n=bf()~~Q<;/} 2no}<;1q9}; ?pxЅNs:kH16z,@VWW"0H AbH !C@#"@Py,ZFVFRP@D!q4 EaPp]CMEXD&*x"ATT&;qj%+Wב&ʠV\&uNd5` sw5ՙ]Uߟ1[bsN^\U\UXU0-HNNt+rԭ˗u>ֵveMuA7of%'Sw оnj$&8Ñ8AA\'.=AAaHKTd< `r0,#((.08US&Ih4`q2||j>޸rUuhHbEG p%i~:WpV;}S1PL_ ~hДiMM5?m"Jыy(Ԭ.'k[sN^NK:!7^i36Y?H>a~i\z∧ED4q8GҲr,0P$C[,U@!%+IdдUIX*SbI:j4=".&(7B8{MO zU@h8h( ji@\w\}:Ƃsz. UO>6D^[" ƼR֔AۋwKS[uc&ɓgo^u&,㍾j}LM^io_+Kd<|ꑐ-64{ #GO5$B}}}}XeÄo|^ܥ! [i♞rBcK]'Lrf:ImL̤c`8FQ$`S@185Mtt_L!QXBx8 T{I˽&[OEӉr2caT Ӊtecuu+UWRc_^G};kJ@ @7߄tTQVV~qlvdJoҗ@&&jnl݃Y%Yܹ|{+G1E<6vÆg vrDub1gƦں&Z'ۻ[hH4  #QaQ(,D*VF'$)*Q$ GX<,, PwvR3TTC4n.P5Ң+XL>y~\ՂKKG) 2}׊p3wG_ lvD!_KJGc]$8gf[}QeeQ$6ǤIwʞD|j,xVT;WmY`UY~ҳB^̊8`KV_uzyV\]GID`H{ƩFz EmmE1]XHŎĠp9Bah$b0W0Ač!!#j 2rP99} d(8 U64b#(&&lBS׷t^ Ԅčl;7w},kF]ڡǿ_CY|Vug~uF)mяc60&h(ƃUݗ'q:Z̳C{%xY9cu׮q>kH9OTUTID5Q_K]Ft4xh;T#(aMFcPD%-1 +ap9R@(jP0A Ygfd:s3MPn x֘>H>Ej%7V},qA}IakJjWHV wc:[^5TEƞM͋9q3N}q1dFgOvvvrr/oGu!!~)ʹfz&j&j^յ$,'9Ox,c`H0+ cPJHDLw+BAIYE%UmDa0Car20]B@q3a$DhUKC L jypbiMeЉJ8qng::Βoq5 α7rCU_ h#}fiy4[skcjU&. \0Cg1q |zTllꂔkG]|笇."= v=kV.mDkfQ$#F+`U={*+[iMjenPS$H~'P bp9y !jǡp2rx8J5t gTOF׃>6f=b||#0 ]3 aq$u%=?S{G#m euMS q,<]od"x8Əkl wn'`?46X :y`um:v?jh|l~8!󌪫S;z]ۚxֹOXOt:"".ۓgPVo.n}L<=h9#sIz63ܬ hXО8@_%)'"!#+/p ThET'42 B C` P *jJDC1D4 A&xFˣ JΌA@0tvײw2W%H &:[E$+T_B>dGBrrٜvČv4~XP%hc-/xp, ] 9 9wKViy^r1G|Ny73q8^8je>89;5U,bǭSsH{p`\Q$m{]l3" ,\=}C$SO mH>ch<*+'+ /Ǡ@C 8m-e%a$G GiDE"G$` x.MIDAF&Ts(HyU+sMcM%e5iNd 4lmM%hoc3xڋw;LHF]e檬/v|۝1 z9n3Ǹ X`8\svuU󴬚ʬ٥|XS6bCw;勂{11ןooxX(|{UyլĤۗ{ ߃7/ߋxpoxz[ kD&F1|2d*A2 `aU5&jhPRQ(BdhI`IӜlhjich`cFSJ K0<-ljfloijR%3w{7OGKv8?ZgYwsRb36v`@^zZq 7>ݻnwUH+Yyev(Djd%ϖ&-|ѭigְr=Y\,e{Wh;g%*fw3 jj_ˢ/r֪5$m~ىs7Y3PKU\EKB#%( (`dJ"@ 8AZFVZVNijfƚzd2bq @SϘAtK;XYi:Nu5!:\}MڙƮΦ.ӧ)i "Ys\t`0)g,ڥ~ W@.|o{\7:`{^^ޛ!W-h[=i[ʓ K9\5Cnk:/l/2S jegJGS|⣞?N%6~;xEƺe%k{՞=9s:ܑM|-DF aV3;_`3IF%t͕ the%9>,]ڀ7VPc`0r2ddee&HCB %{^HLRQL0dUH&`P98C1w43#kO;֬3ovT3wwtda!$5V,\1o[O׭78blD!\i *Z+pAsj,Ằ8'_z\}حEO t-,Jo+~(tӍPP^. ARSGU@[X&IgK- l/z񼮱%EytbjAFuq&џbahch5NE `JT9aAAI(N&tP]EEmezI`R ~]W M?(]ߛQm>D?yXXz^hU8?/+-jfqnS[ĕRA@?Ueeg7`mm a==WkMƢH C=k]u5I]WIZW͘Abq("')T:CPunI+cQ(8 !/teed'q&CP(`~h0 hJ*:A#`hXI~ @gejtDW3uvW-ټn; w+_t5SמLͬ"y vrmv|1б~Š"džutϗ#[@%U? ` ݣ9SũOJ+ӛ''&UL),;~l=Mf̬=%h:&f8 CYJL!(Pj&$&))/2J(4MUD`&@p8/+&Fede 0E N Eᰀ!SdЀPpy1!(F_LtnNS]N+(/Nu8gꃧׅz' ,Y2kN q)%R;n}-_~vb٨v"e~ί XFqW{G6 V"|ͫJOk8+͝Xř. zU̜:I޻9 /1R sB#&m9 Wkm̌XP ՈD%e2MEA#Si$"B$@ FuuA%6VV`rr py N`8:'tCS=njD3k}#M-MS'3KKܧXL2SX q2LMOG;_z+9/zՒUV]},Y:쒲B0[eQ;J>w6enrvyYgBo`Mw]}f9eU̘oG=:竊c>G[ J+ɯXq˚3O=ΎNz4Md,aD8JUE!D2Aee(,Y%cAtS>f`grYu)i ^Llc ;@99p) .!%#*|NKYUSQ}~s.%z:<&./'!%ΰ~+'ZGe󒣒PEhbSepWXZMoisA_lMe/ggidNϛ}`uaticw  vg(@~_]ZZn ӟf qQe8^MG6'-'mxj.?#Mju-, ,8!7Vl8v\F^M[%,-GvA?uTOZ E 8:m ]`0'x/n0Ρ|`.*(&-{TN@B^Lzn~nnW_2p}?Xa&VvvZ% TJNH^IixHvSOh4*iDQAZ Ķ2bzR?듙:so>LTt5u5cMkְ@~2ezx Q\|i5Dcgy#S} hտ^Ł6WvTmG;gjlxU,ZL?z=ˇTu#/?$vCYmc*왓ԏ_E T>zQiI'Xx? F.#l .V( Urj j "vJH#EǏջjih`(:mit 5oGܲ1ȯE'Wg@ؘH  v@+{h lUrdH?PTZֈ++q+_._O 0-b᳄ b_Kم/E7`)$r=@лϋ煉Vc L)a*^};1mCmqR[c0srp@@A8! 0/.-!e<~H(HIH;z%KW;r/#G5Pfjt.Nn.f' pڲi+8…`0B񔢘مWO738yʙK4_gf皖YPYRlQ0.Fw秢Rc\j9MMw9c~\OfO.rt@3iL!_kXX&Ps(L*5{@{ !=݆uIol)N2~.9''-3!G *BLPxN`*!tIzI>0^Dug)CM ͅcd2-PlΠ00} ^[X[je(Y ͌;.,* '`a r08Y`vCvofزd~YXX89Y9yx0n0ăpqI_+ "p zf7Z[k &tn| T:8Ftg%G7gHo?VfW⾗W/iӥףe.O|/Ww~=;V1f5fL#ׂJ-R(AȈjdZUq[hErQaeW-"IIUƆV%Uh 9> bYc۲`S`^v^~k n++ Z\g 0tWHBQ &$,K(ظy(qmٽ}mwo?.%F ]MLHLF$|Ɉvwx7jkm$z+"/}X] Klj27r;_q%wԅj1 40M·}|N+FYCXm)o^82C'LW7dv;?pw'K}jl"^rۄtbǾ~{zS:۔cv{jƅZz {ɳļܠ&&&<2V8F ϲ /ŮڀRG%`bJC@lGjC,60;H889h`fTn Ϲ {q 0^>aYaIIQFe5zzSdE#ߌhOΞ^7'Ue%>z݅.&'$fET YA{TPI T?q5vԅUw}1;qC@fM(%9ck9S{EYu-Cs>=l$YHr-${VUUy ڒle]rKrk U}kM3o>f:-v"o7DV[^FQHrfrjzǷ =,jOM*-N#|942E%,[E/Cx!1'5w# Z5vdU>RTU:ډEN5E B+B]|\ kYfnh(("0nn!NOtH8E"Eed%yy`pNmL|<`ޱ3HJh<{܉K^Re̯c|3$7"!9.49 5"^#{貚΁E >~z}ʧwM Ni V^G`c)]YBlw'XbcCSC⫋U~8,ӗ7#Gϧk"}2{)9 3+8ZGk2#BRVNt5#,9\bT=U(gF:* <*[A159UESzZ\`mah}.¹?zn~ / <`Mt[vAqRi,^- %-*qdشi 3;'LT^\_LL=-ubB*O\QS7M͛i#<Udg4&*.L173Fe5}pe$cB߄)'~w+zv"~qCkEشlommiəE e%UxlW/y 3=?2>ލ&N(7("QGƦ,FB\{.#ُ᪻~pO+k,@!;qboB9H}}Ϩ|=F>% JQ%A +;2c%i>~7Ma7Έ-_w! vTB%N(͛g xX 'Z"P07ʞAa'" *$8g`wQˆ.&Ϟ!*x+$]'a!Qꜞʪ,P{b&,f[mؖB.}z5<=7iX\ym~W7O짮ڈϚkKҲۆFxdlILlw|!aT脔{ܰĆdLa֎'>OSDl&̜ꗏD5'}Rb0}nWƧ&%头>O–TPoWȩnյ"S `+#i) i.rR:Fn 22_|RAvWE< 6pu#k߀+*?`a`Yj e#0(d̀sXSyy0BJLD.eiR<}e-%.-{J'OF856UE= T' 3ˊR鍘6!k>]Z4Wq?*}/>}E_N\}"N%/)sd|aNSI^QRrjn_XGTi\RB^aEJeN= 61Yqە+jsQ<8lu)r,`Pe &1Qz|898-3#r !Bd^VM#x #2,[1QKempAN@FEPS"Խs#_Q779sV] uGTUj" fafe`3*.|ۉ2\j|_~Օ ])=Wd%>2iXOrv JnKKIuPxBW56QƈuKo"F];.%/$--5Ms׸x\066mL=<ķ8wϪ}1U[^ܻyde 82GP!8w1 H*"dyEd%O;!"* $,xT9IvzSCg.YY?sstLc2[{RuLIf%~_f=l0|/x7p~dqWpp'lQ@S7C]ۖXfV|T^jVJ~Ruvde-U1sת%Mu\=r:1+8l}z|dp& djw!m˫â-}Dzz8Ֆx\yg`8mMXzlfbt܃Eץݸ( )־Iyp_ϊ~LcyfV9wTBc"0'1l=a0NxA/-sd/+"'&*./$"ɯqFWe5/Jud/knNO,OYeD{Dޭ,4Օ֎LLZfO]eZO`3CT8oQ P(ުյbk}ū_c]O]W T֦/:G.^Iq=҄Z<+bS\Tdy->AWEeF I5c5Y5@N!,2䁻N֞?wHIP2]*oJm5L~3L|)m))N67}h^WG嵵57.lc$x?62j.8ڈy&ly877EpqaT=~V:lB`'.(()#+,r좺wM*( 3nf{1Nn un4>6664Gni ·Q^J;~ lhaZ(_[0;_=EWpugayUpEAamT4Lօ .*bzr5vWL}cnVu\\4U M]|ݓcrDc?|~{Ohl|g#['S[6ֆO"MMo=xqir.IK\{NYE%<3j2H@#ml;3?tō[[7˞{G|9{8ݑ`嗔?ݏ,x(KTNB8 n( sx;=ݖr||""2r2Gлft^i3S;K t\"K휼K*JՃcfG۲#kG{FM1"B፾P'熾kY-?Wpu'%kiW/1u$´>9ĘDڜ0ئ bSs)27(/=/?4$ښjgot 7u l{V6ufyHP]ƻNK[7t\Ӻdlmaj|y.dCK(l)k,,`kPUM(L^L{BRƞ.6Nuzh̚@yK,njѸpLKB@*h]"/HoꓒݽlM;>e˲+R\QkmJM+dg+RrGUT.ʰp>׭ mLBn|jGROۀ*$R~'.))AnNA9SDyyٙ T5deh:y@ijb8clUjn['IUؙzi-Nvq"]^FHQNrjoHsTVb6N$sS˯S'&LѝG39QLm🺛ZDqd x]Zkw(-WcZ**gԯ= /H xp˽eؘ]F:=xlcz#RiLEB2]WF!k[ 55f4H*Z#wW:yUӢBLGWYak8en*H Αc1XYFFD%7 l ?U #,,#ZYQFD0BF )) fq @" Z7x$'dU>6Ѷ, ;02K$QMm}׫ω]՞gLAC0$ >+oAzq d7:tWckNÌLtG+K-QH) +=nwv,[_ H pԳ c`俒,M*/uFTU'dU=UDF!Qx]7".kh[Hl+L/M힙m05X>I\`42lhGjy2@] fdgc/==u L_\@DTi9Aa1+κǴ$900Kp;u?VS]`r!'i<9t+ 3F} 9YDk:JZ{E+>+c O]:풃}BBSl n8%D::y\}Q]Mw@.Iea@nӄjp*|;)>Dj]nxo:Ѕ(tWt[%e*] U)aIQY%YI[9zx;Tռs%SomQ]7ZäYrb#Qr[qvȺ CޒTWL4LSة40gTN?mN tK**&7ԥ^q&[{xH켬=oZ9:HpKB`v+;UR =U C"bJGuuNB!I!!(Uw@C'%toX޹XSm~ڥOƒ3x\@H &82㭾amEa}q+_ՇoSWmp ' #Y甫n8.*).#nyeۏ‚PξdE%U@jڻεfȳ.|wf48?:+Wuod;ѱyY-ȫll 4Qƛ+r7ޫuEd?,xʱL$0WwŦqȇGdžx%@loݽWR!<-p)~60!^(BP g=Yq+޺ouAE?*oMp4dp4 1 13 免OL,|&2 vOh{E~J߶_զMKs0X6&uO؅4t󄪄 IVܰزA| c2G`kso;1 |cKlx޺|yBDTXY]c+]˳#j6R E7=-H쥥AjxVd TK7s'*4/XWG][⎞'U^ȘLkb"Bmܼ;Xbj[p]lmEd y<]iFNO=#JSbRJ+; 'GG:c0 N;Y_.FU%pt&0zyWQ e Ma|9?gT|𺃅whaemUHlEVheo_ސeY82mM {+rWd\LԝN̼g{+ *̗Ã-ƪh cʦu j %ؙPNN>gkK%Ņ%4mՔ9vX\Lmm&w5x?h z tYLy~=6*h z܈I)xeu;Ga'N3Bx{jexCbucCPIe>!SfW3n=-rqQOWMjgjFBkж=0Ht O(ݛѢ>,i?ꚝ^|Ʃm~9 n,p|z/M+?*rO|=>vtqMX;9_֓C¼ZFgy7=~i͇٩yq)Q aa<$})#so᫰Kj ²_/מ֒kbn߃D%GX8 1mdޔ s2Pf^ӊuEgG!MoywTb/u6,MDp ypaaҗV̈J(z7~/H #TNk]10rYyeY/^=yEJ^F YK\8gza@IIQ|gĢꩺ4 84:4I~Zv0@&8oxf-sa7uoY) zٍ&];w螎GJKKx$miSPV /KrN h6vEؠA edtu0G)tUX C]XZPgظo*(Lq}do$2۸1䃥H_hG3nL㱃#l?ћˇF q2>Hk|؛W[~xT edU䏪޹}󊚪)eG]8i|Yuz:lvx䛊wȯʏB!ǓKK3 J_¸cf Gt_ϷԓOۯ&뗮Zjo(|{Ie;Errb)q^ZX'(x#)}qƃRi)*qqy%Ucs/VW>y/mGS VV6PTWczCc lM\3p Ǽc$?GH]혩qe $:6vń]X;M]%v(>v JO-[GY6U[R#WLϝ9"˹U7śW\ },IMB^TbSQ@pdTMQQ^@bhb}aPH@"j 5I&RK_~tldtbֱ_IWguQrFaN  I8 fILAM«ty]Gt$7o!('eGI )2Bx9idViSZsj^5o=Ot6&mc Lﯰv `O+5e%'`Zڊ'Ãd\]=S[S'S06Nsjn|eYq~QGݘ4#-i [n[>wsN\kȲWWZ[Y=>7 'q23K)wuu sڳuEzwG~@C[375h4`&C[Knv7 EcJ* 0InnB\NQGQUI>LTXR .?-q%!)+,(,!r.՗ n?. Dz:LBբC| -V` 3KS3/ pUx\GINfvMqmeTor↑~65'/L&g+##}Ϩ̤ᩪ'z:fq/)ƕgŸ@h?1dd|-NԵK Qݸl;.auqyv7=?=(/ujh߳} JÆ+@DLa0+ڶ,+O]uE=+"th3XTBZ%-E18ٶiqG, S R2)m$ xC.%b+vQoz70M}IC4 /Djtw+pc=&dx\c;%eU%E{4ΈBA0/srԳY0²C]eWZn<''%",' VU:m >qD~"3IZCSn;f2698K5?27~ŵY0),+\w4랄c}YR/I#D2p5.0 '9&nf1qܥz?0~['Ψj^i,MOKODVvy65Ղ*HwWl=k1Ҷ҆f\~lhM.  .Nm^"Pf^ fB6{Ux`E)e6FƖהpqn^Emei>#[(|WSHbU=}E1ajRϙMvYq ֕d絴) ^_ Ըqi6RqFI?Ҝn[4 2L$E\{XhjhYYF6h2`j]EZ 5+^Pffi!yc\Rآu~`v=-_2vm;Gw >ojqLOG§WY%ŅIhLoJ zh(,* R=sZGO\-C Z\tuz7fW=9M-47BHI{}i~yQeE7]BmD.tտe#i F*Wu_0nA:>D!0##u M yNCң"Ddv㛺n˳vQ5&6<:FS*]@Wt~ZG|r}ݻT=s&6 m ]WW^M˺[:{ZM`lZcT_[[d߻/${K|6E3DK|hV n4[%))6eeq%1Q~գr2'w3 bg o_nlo~d{JC"[Бr~yRUo7:'葵셛 *H2%BPs/Y ]֚FcCv{#rb2bzm*q@xN%^ fV?G[]HsͣK]\u \3|qp/G<GV]Twz31ܦ3@Ya_G1IF5}_N)ύqj&8ޯRgN,[x{]M+^ NJIIJJn߲+"vEM5ӇNOrFL]:w领5CCsq*+z:;Ti^}X% auĦں@}`t~fmwbSEg}RuYMXL{(#8wF%"#cZu3 m/#<܀ª2`6NY,(Y~Od6L:Gs?b̚؏ G3ޯRg3}$d=$h)J@@\b: Ixܼ[wXYXp@xE$Xi>u攖i '$v*?IX{IVmPIҤlϟտmD?ՉO#)+8jd45;7=77I b *҂ m|O j: QXX=aʉdT}0tXot=m}#Uz70 _}]1+9]ﶋkXBX5+KĉYL{cDT={Uj۰ o_>/ O߾ڊڿ~:/ 〳q]~X/N{x7o;׫fqp8!,̱}:Š@H_yd'9 /]8&!2ÊX?I+ %bU绷:@!77$y20?:*ytSNVWJrR~$e{[ K"f{z)$w5 M ىH}m}dko[RNz]>8[x_6n@l~~yo_`b]\\Rj78GCb '6992 oۨ~&3Oo oh_@ZA qD]crd,g~]GU\=Y'sY9a0;!'*y8??/ƹy7b^ O--'%<<="7K [edWHA=cۦfF/M8\qluY>ᱩ-[)9ҔPaD#:=@kYm~~R,5$L =D5 ԏIOId}-yfx&nU;KMr5껎r4*-ʻ<$:vdfvlMtc׻:dzr;m@M:i:_oMT[(e:,'kzOHZxE1R}탾TY|[sSjBP>yQqiqaJ '%d8W8oklB0nN%[X"@&/4~4W?|blkd떫K)3$,%#15H1xZ+FONU7 ޙV<@_[[&ڳ~1R̡-?psv.ƩE\K1]iHSq}o,X9|Ɇ#3Gh^8:J;/9vJH%T5T)v>.lCZ$NU峉:m7@MOR7Rѐ)9c OF(W'OI o>b̄Yf|a2罗ykX>kN]lڍ_$\e}guN챿hKҶP6gk.?$\TXoɌЋq˻:>6AHU_=6.M16/+2!%O2#d/{cX[ؒr )t)R$4M|FT6_ÉH%Emp=>Uۿdz̳:0뼵dSևZe)mPBuy._7\^8 \|'(_cWmzzƇvssJȲ_\9oZ ]PƋN Jfp£RpL<,HWl+c[y'' ӿquP8,\ Tθ :3ټsu.<בja^HLW_9tǐEu]pųW.Xvo6G[-0jc'-\wq[NCE\}{aO q??<)!XwO x:4$*i2_C6?؆w':ŒN58,d(.ab/#p75*FVgqPX) mDBN6a55.cv9qQ wq=#%U%㣝E~ɤg:ns~ǜysNXu+gϝ8~̐!c&Xo}PxC|s3;|{^4Z|VúfGǧb 2$o{͞߿kp2h\Jv_A @.Z>O~So>uܟ pk傉G >r+G +nʵsluϷHJM~`ybW}&튻vgw^t%lCz!cf&:?xJ)Cm 5_oGХeB* =wz\"zdW^pb9[Jj~ј!Ɉ Ku >su3d) V;+,Xo\]r#9hӅ(\TOD:CGuйx&MnC ~IKJܳW؈x$+? sT(!$evVPp=1 ||=""fBݢ҈c}hݽL5|6X6D<[jb2mˏzfzQ8bnYbq OS|(^GZezԢ5,|b4,IW6>k!Hpi|qYV~Tٓ ԗ E aQYǛ1>͍Km@EEWW^1}„9+y߻~YvŪY}޻eq;?cҠԔdH\j:Laq=mo]#tYg"ÅI0ڲ]"TKn g 祦7x(>kcl@˯ؿX5!1$=E.!p9ٽ*aPw+GBžeM0n{z:رo-67pgpZ1S9t2A*1%K]UW4ATD` r#’S$=T=r $OwEmj I V+HFL~$϶2:e%o/!gEf搙Ez &>Y"&$^>puyFڶqO.lݹ}jIX7v'9D\<r2@g %6^ReVڮ=%%6'6yGcQ)t*l#^H9,C=€,,Qj:s?o|Xvvz2'qAQ]Nzut3gclN>뇁ݾ}#xvr}W. ŦQ ߲"*M+-YaC!ͦ6p{{s8Iߺ&}zZD9؁Jq\cˌ')D,A^J$S2׀dȬ<nXa޿tqIaÒf,;Ou>dh  \X\ yq ͽf<a@ZD9|I _fvY@=9H+R We Vq"J `φ\191Ct%`l!U 3Ne[sEOq|V64bhs]wL}T RRO5!@3H9V j/ӕ]\r矋;*=.l(A?}?v "* 9pzߌ|2Q>PDB!ivP?5k%-gyU%<d吡K1+-:,&d}@XWL&3d{RvseI-=~T/>]$$qytgᅫ*D$vW7xŸg-:ŌĔ nuTU;Y}(q=  .+Y/SkBh>.%ʊ:W2l; *%W_e9wxݦschprv)'<7Mv{i{'o9m |ـwg- ht|6jʛ|^PPI<@U^ӻgc)4/TB]Df󥊮'05d.2} 4ETJ.Lۉ-޲2u? 1'fDz8߾KR"Ǿ:1$cĖU@Xq)XDۙZv<.x\$Ȯצog5 1Th)+.ok1f)y+sI## :;Z[[Ov "S^?L V"^==3S#'yhzk&w)mצ^헬iEml!>ˈ?]tu;@/ZȋzCև"# a`UBW>^pltثu v邥. |l-r kįktd-0SjuU HH2hhvA ` TRSc*U -/Bu5fgJ*n n?r{]Of>!34* Ʀl_[&Ӳh$h"EUoePtzef~}馬描A0D%'Z뤫N@Q=4U2yk޾^~^~X&52XZ EÖVˉ Y(Rw&^ n+*R(=1KC+2%ԉ? %xnLoQz$ rTtѨB]E] >C'}G9S J|&.65vcsz"8LWɍ?AT) fǠە:qfw -_0(jZ{E\5@؈Þ}+v ' *%+5;jGCч)8.IO7lU*ΨH7Z^B}҈{u g7I(iҕ^ ^ Nvѿ64cWoUM{*3pt2?:Q*jac^(]:z%nx,*C{>pa<\}uR#I=vF.qu:c([ 9us.Sjr#H`ZQԕ4z%wd5S =Ů2GC6!g;ga.a 4Qm(m6u |00iQWӪ!]\/O#?yUL._t+Ҧv]@!kRQ]ooQW;UsizK}W]zÅC5MP4Z!JXy{ d%+iQWB.v?1;?NwM"]YjP5Mܜ̖ +P]iO+CAW9fێcU۪^ظ yA8R,WȊ TWڣVW-C|DlT ҵ5PLds;Au =1ݠcDtx/|J6I=FF((@sh7Bi=J;~QA]N [F KreKNꘖ{|-ܟJ5^Aue`q`[a\U軍O%/ S|nwI+4\6*.e[7G`mS;wk1۽TWFٟqT҈tQjҐwWGgՕQUuyiO!Gk#m )<ћZ50 IYY)I\A.U>8mN2kfжՕQ/ -᧱yrn6ߛ\G[1yt;Օוd8[X`iZ)[3*LCGue`@Jb5R2!bn44s~Lq`Q]y]Ibe5jmY!C+om|dۂ(g9 ܣW4;'<ҊEC.-o]TWFa`vՕiAW͋<ˈߌd ++~^v1B6Uo2) [L(7_zKmՕQ3=-cmǡ5c=b!Kz20 = ~;XM20- ;S7 ꒎&20-J&2McޏTWF Xwѓ?20t:e#Օi~ L+Jd`P]VxR~젺20:tMϣ˂ZP]uUh.l(+s8 N{e? . ޳B =6wTW^頢%+020HuۯJ"{-+LW_oɴ^Gbv +DW͟xrŤwfՕ^Wv&kԻԖTW3zגhmuU RҏTWk9< !U{;TWzkT+JW=LnTW@hpf]# JHZ:7]"\ }eldԁUђ>W/mҼcS?K? W_&Gu5^r6i^K|gP!S;Q]f x0*ĂTWzk[k-*tՕiAWkq TWFBǍC⹃(D{+; LlYg0=N *IrH:^Uh KKdH6m7|saHoc]K6mM}Wѭ&-`NMO3Nk+])0q+j͵\hM)&vN i3[' J44эVyY.Om':HJO3)}\U#wY7u?^D7Kc/oǖvl':HJOu R6>.ު.Թ<^D7r{@A+M{XZ?'TIiII:!qV N\/չ ~ZX#;ARZ{RfwCE~ g]+ ixx9QN҂Nq$ $E_' }O'oUT{V1"VOf/ӱ"䃤0휒ǥ[; k"4nb/-~ciE ړ7n%>.ߪ Ib2J1NZ Օӱ"q#K+W-/]J>)oU\@,ltnl˞u΁;77A֕ )>#-K k>WΤV 'B=1du@)muiy)uGp׫iuPy}fb(vNWS=+7::~`^u}{̅/NtjP$ntu0PWΘ';mXa}֝1jpC;N2.mP>a`; l#L䀋S? Cx6C+2+-"QG+|2XάXާxkCcB$l / j i4$Y壃\ P%`JXd$}4jpPPWL6& G5;,e SwP12 r%G|몾ǝ@ӾCA]' ݍ f e} G-PDPF-qK׀i܇$bvTW3ƒvb^ۿ: +fJD^ bNUܯ>~w'WX]} @p׊.ˁC)[t|@(=$ Rmx6{;[szXP;Pbphiu!YJۑqZY(hs<:"<\9Dr@Pqg:mNwFxn5t?PgN6șɠ mtendstream endobj 164 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 4366 >> stream xX tSպ>!4= Vh G@IdPJs6i:7I$Ф:єҁEfZPQdu}{ݷۡﮬLG Fx E~ˆdm0给:k/4)rk@cfux V\T n/3UVAL~h5.Ceag<&D kuj:{U?+zn{^>A˅6)9抽]} aˎ;(e4+6C14Ҁ6F& SYiYVDáٶY)!3Mt l%fT^: C^.:SDj G !|׃:\tr¢VpL|ǰH/D >c jR8'Ty F]iVNsSOWY^`|E[]f;{%gR~ pv_sv~x xsk?Ec jaL|m=Ɲ"ҧJֳɡ[wl:``gw`?pb`\hC!m19g^]qacy8ptxhQW贠1["<@?Y4:4*}@itJ \QȐ-^4ޮㄚD!Djmз@B..<וim'  ][&ٱ;}x; 8ʨ"&<ښ my1nF Vsj+XGD c‹(u/^rݧ*+ﱸ]Jޖ& vX#|ir!S2)( S4`Hӟ41Xg-xkS1h*g4}hizP?QȋWƼG%TaM yA^X jrly bB1)g9?)`9>`>-Kl ZM@ˠFB}D/\Dnvk2# wd1?W%MN z}Y:klPE単놨c)-dކov )y2e "e)Ow'>TTn>6+VwR[ɔc!YNҟ*{sHl]uO|z6" Q(dٹnK\Ϙk2x`fWf2![0:p ppwçd d 2t;qJ/|x@SjX"vvN=|.qbA=>f1K`܄%V&i:-& i,0lW>돾3Ec|n zA2@IoYJN_^gU?E8) S\,2T3_t,ނM7u9pޯ&rZMJ %s$Q2{[[? {uʒK&b>giYt8FFvQ#Y0D5=MǽhDAN"TZos=|hu hאԄ\]Hkc]TS<~#D^1Lst *!KH4 :l#N]=V=O-;;>Kwf6fk+nrFVB:gn_8l~A&ko0#-)_ |n%0\GenŞZOW~{Voe6[74Os,>CQzeQtqC{ݱGt#/rX{1LfFeR KvAQ6`"NAc?.2{-uχ8aRR! &Qwt=OP\@|A ag=Zu}$x4bg}רhwu9XGxQvGzrY^4O~MMi/^V]tOKITȤ+5Ck ~*5e ٚ*Mg٫5FLñ?}~8:wPp^[Dlmc&4 .*zNĆ=/EU5%n+SX֌q4zEfKesusުD2%{ȬvʃNzy\6|k&$.49-h*u97Ii+&@d,2l{p_K!X KwPO*+ V],zi܍;Nўk*P$I"Izk8ppk%IC3] Dξq& @ST)Y6TI47ԗ+icϣŮ*љغb$ v4r:1˖XT`4C'}W.M1iIy?vrA&mi;^PWT/=OR[w˴|v .15\k+wLb4ªvzضKL$L^ =dWҮʜ&&DGQ-'J3[^̋5wCȬ68bE|]MEުScx W'P EV׭:h{a/95_CkH\ ޢH|Џ%gëʸu_;PzF %VwT?~rVSp\DJ~ϞRMeKׯ:65*9 Vޓ+Y,ʮF@.\=粏ߋVuF0: 6 c-P*M&0Bݍɟ3hZE#,3d7zaZl=DyaL0>ר+\8 Hp(RHwd(fGMQcy0endstream endobj 165 0 obj << /BitsPerComponent 8 /ColorSpace 33 0 R /Filter /FlateDecode /Height 400 /Subtype /Image /Width 600 /Length 45132 >> stream xXI#E읚{BB zA {Eł!V""KE&'z6fwg;-Xb%Xb%Xb%Xb%Xb%Xb%Xb%Xb%Xb%Xb%Xb%Xb%Xb%Xb]__~WirKRRwK$ӸW/M̕h%J̕($_pͧ#ߐ,@j0_H-r=q wsSREoH\}ŏ`03K$|Dzo-DK\}ž$ X&ʋK*A!g{|>]n|1ډ{Gsl&Ը#[1W(ԾlDd_Uxf, :$JEHfoRԈDU,{jnzv*qg Vr"z~pHq;qL'~=)G#ZgGDm ono#׳5_XlԎy3nHv{,jCɽ ŸW!6E,6=]9vX%|ӡ g"#Q_f/ǽG7%@??.J ֘`=9lҊ0j.n)[-Wؓ4,gPO۟(m{ -{y$-<O=ϲM?=*J->d0"Аp8ca׾.J`,~| F\5ܲ#g_!P{6AǙ&|<2z2>zQߒ?@lcO_-ß~z;\w2OeYy\ݑs+!i\81wKdxgqYW$$1W"+KIbD,1W"\XbD,1W%\XbKs%b\$JCN$Jh.3~'>4?TbD߉|@5M?TbD߉JW ?+w⪽LU ;qǾzN%J~<gs%bV\uwu_as%b\$Js#GaҊy2.?$J|\=T >k:Ky-Ug͍=&JjO~-R9^:{w>G^-O}.-Q|%?lGA~Qʑ:, ~11WV|ncGGg0} Y\^]?\vKIbD,1W"\XbD,1W%\XbKs%bv\u?}"JݸzTZ{O#Jݸjh(|s%bf\uq6s%b\zR%t:^7O1W"UGAemMqfp\{x\zɋvWXm}שk VΣ7J.m8 99Qo?\4l,LڥG[+ڜ?7}8_֖2OW ݵ}sUoHկ;V'1D d}Kq{PK9_cB=>)@-ݯG.[NSP*1WP cK?6:Zځ4 IƖHK@k^2S=@p50j@\B * hˏ̼~— *jkJ.ՇH=o`e0b~`]AocOؚr9oyȼ/wnL Prg KXr0\!n<_Jn_d=WǙp^'r%|˲SX߇5R^fc.'84 e-:b~?o}xz_8!*[yBڳpDå's+7Hբ.uke-%ЀR?RKէբ4a5Ʀ_u;aΚE7<2]c3r0\ɱP*1WGh*~2!KNVbj}Se}]ys_l6YeHNO&Xo\`0\MZ;KbD7>?mimEYMӳ='{-L(([A!)).u%< W؁s%Bi4u}[ u +wS E.eGZ[oHU]z#N<&bD7'm$QKuCClJi}Unn3tǍ3pEp_Uo(k(ۈj>o@J%JTM ų)}:'1+.Jjji?4ffǛxiw yd~{sRNI$+zJ̕ԙ/?+zd<ʽx%d E/ݾ}kc~ Pߵdd={&%98S1;"u(t}hYc~s_; aMWrjʌ켼¬GM+/ZRߺZV禕ʳxWW꺋4"H̕LN5=S]OJ5(4exn078995ini$^^]QR=G  'MvJ%JT̫(+xoןO$i(^ r5:Zx \N칧 *3$eq4dֿ~Z!( lNF)?rg){[pE.Es%2u~EcA0τ˒r@[p#AW.]ḫ(hyRY`חJ8L5Kpj2ohoz2/H}%w`))T:p@\Xjs70w?ƣ֮ܺNiktnBvm Pr3}<܍+?+n%t6f$PPPfa|shhȬ/ײ| g\XB_=~ a<^JwvwW?1Ö6l[G+bKsΠٹw#8EEǜ8}FkNi⣼GWה$qNNfЈc|_._U]zTx^泡:%Ww՟ݣ @UIutwIk+/֟}۶^z652ֶ8/hNޣCOe:{+r A_}cze W8:CwV)/?V]wonD2%GXXlw=& 8W: ^#\ůHJ+{@Fz̙ůػ2(8xˡ?J:GȩBne [}푁7Z**Vcy뀆gVtBo`u\ͫtvnZ^k' 4-`\o-(>K {5[+xc[;2o}5t6{W Y?wQk\-ٴdu!# >}tصTĭk{_iO徭ȯZoGIb8-|5i_-J.7z_ >`6}=aꗪc >-w&m-,-iz\}ч+uϫ+=df駎qюbo߿wŞe~/\9e3-ݳ{ˆW#ػy9޾8}rʈ֋H.U{`}o^fEIT8Ʉ{絼L׹Q |0_G oX:W]zkΎ?tuTǥ܌O ^:j72O)<`]Zy9,h#΅]?gG"eҚӖ߰"hkϞzĞk6`e^N&T ĻQ_;>.|u]WC+i&Ꙥ!{[qC?CS5_kZ5[4FL4<~9B/F$VvyzXi+;\6{ ;yNsż۵q9K-p%TӍ,lmg]d\ۗ:N )OwP ײlu\R'UvJ]V_,+7ؽl-bK^7cųo9`.q2v6{7/\HKz#BNzDR.WTnf^ U_Z3eWT sR`p79at;7Ll=gZPD΃s~H ߳f΃G"_xپtjsxG1-'/X0sa%aøk 1=pJBg$X{-JpU_(!:x,tT +~a̢TCL# 7xqC'#zF~qֹӋO<}("Q]Es̝fYٓThIYL5 g-[104cׂy>\}ePرҲ]ݫ)y#FnÞnK1W"ַxjw-E=؇ĴDNSz\N2w+v(|WjaiIn^.'7:rݬN·8~s]ܧXXNudM/0v^B0IRf,mel8~DeNn6yꡰ`1nĖn%K8 1Wַ𤰸?l~kusR]OhyKyxe9;7ڹTRSKqbjb۶sgLv{*z3Cq⤫ga~EAk&hrM}'w)4=+]swuU纐M;/63r==;E\E*h`hΌeK;?a*6\Eר0@W!ë4NVlE]maz'_9qi%!AG%>.xWYϯ)xV+_6}o#{VޱrSQT}_4gSƐ@[高ixn=z_XSS۩:v$dr2rBͶ6tviX|wb R6P]wa h(N}`A\}^ _>{RSddlYTXaba0eݜeӁVֵ9}[WIѠkX2n%x޵v6Ӧj3U<7 :f.Z6{̢^WU=k>f*,P*1Wwp&+)=2uTNbY?;aQĹx η]Oˋ 1kˡ{l۰trU+u4%Xju3ӌ6QմYtM Kt~e1U̐(9dp힋V>,]}r@;pvo (3꟔W39h/j:"3&E>tݔY3L5?#!`pXB'odZnHIDea5m sCmgoSْLа &CTR9m^Ц5UDV6ݝl6Qcϻ>)*E ʭPTI̓jy!WG(At]wseQRj|52eOŗVG=z9*9*:;MK}|Wl^{Joܥk. ݼ-N;ͱSHO@阙iꙙNs57"kL_ːŦM$8ǒiXYPH6<=⽸s;F<Ѷ tg;؉6%j<\-VP*1WQSnZGP\SRZ𼱞?eqN:~M\^\z?m{eK7|\Mct_w%snܸ•/mv&!XXjMbbdbg?~[-uǜ.gM56ҷ1'QcGHVaZe¤Ӵ,ww?}oO + {-RgJ>*>__BuXAmuCE!7&\QaGVZ:#(`GcUdNz:C.F"n/a8Xln3~ޕW8UGQ3ókr/<0po:+`e.J26KFpdШ 2JrIHUTDbH8̠Љ CQt IT&, tiF dM;"Rܻz$Pq} 3X_窫$)#9V8ME{bpUO?"9)cǝIM z 6ya`r/@ "׹(z$' s<>;3 >/:&Fջ\N=ˑΚKR"֬_3dǺ9wcn [kɖY]%Ɍ@h;5c)kZ;Sx$#*PG6jDE$ XLEch,(ˈx $S,2CfӴ^l98q*`ǎȌ̫gvz|AhS}edNA:WoyV Ɠ11zҶ˷'>,t6kMLq9!꺍7ru繰}g.bf(TUi)l]M[K= G&YT%F UC8}ƊH_z$"*._y+_`?-xxyٲ]{ػzKO_>u/wpS=m,\yMvpbkijRJD6H!X uKk+UcRh j@~8W^~w0|\s+yͭXÛ%{i<w?-=_Tsڱ˧r3mh厣kdJ(1ItEOL3Yfzz3ݵ hä&"4 uXL&ԄJ`%$&ꑐ$:EUJR3c 8Xv0I`8AVV240 9z8"Xʝh9Ƹ 75#eѩvWbϠЀRh^W4}_P/r|W5L/8_ya舋 ݾkYW[ұcQo;aGCGB6-0w07p7?3LZ0I(ZA"P( I$R4%Bq86J!곬MH8 +*(*  `a`$ 3ZFbQa(! MI8"mp,Cg-8"u=k艔b!j@~0W * EW#ꅘ0ߟͯHd$Ŝ>N3d5ߺzBTz⹠[ldǪN3& ` (,|pqP8&(4ԶdkX+*A08JAb1deTAiaC$dG0*֠(SCb.xݸw>\v6 /A绻?`g׈y?o [ ;*ea&#=l.Jκx9Vj^|bO?q;*БGc[Ȓn\-\mGn߾+xIbdK a0$ 4TrG@ h%4D#p:lee2+P0T c `12C$8QNf"Q5U4L2Q1Uw?x/&=>;.@=$|y}8/<Uo {&Jo9 Fmy$yƒLnFNܥoLfeh؞ȴWoG} A[6oܶ-rzd?Z}yLvAA߫E.$9|dW[>{xksNT;>q֕G=XMDc 0qؐhG"80(A!p4lCIrr0"3$2GShvb$ms3uMW hm[O:)^ywGu|8lYe (Տ[Kj뫹?G1e\9]*Wo-'r}OځQRpUgŵ$"^3֛'F?jpĹCnY6kiny^St h-3 {G׹_=h*wS=:#S02a()àP08LеD(*C B7Dz"J#PpD4*h*"$BHZ,=maUffKUV5<}g ANbs0+<|͞UBntoo7/Z .[]aI0 P٪e0Q0()?2aI -mM%QXBp<@]g9ydC3k 4]Ygi&+N'=d,!!Hx xֹO8wS8vn?i]Ț9nXOݸpEVtiam -`kNxT+cu"QtAQ!b`P$ b@ q$-%5EYXS]@p04--PdG9B麦&^Smut4AYK?R%ϳ4PԊ~W]i[SE{n8zcÏn/x¿u5PDN/>Ko&}w{yC}-;stg7֯6u Lj DXĘen=g"{+6KApx ;QFJc`H, A1 2#c*(4)3 "`  0]\[_D4B 4tY`AMSsTKS6EM'2٦j’9UO;2gr>.Mn\?+3f`{dzkSs~q `W;z$3snf\yد_eaUͣʒ{7[`gk6,X8{ƴƞ3먩X}[2ԕHB@DXfSCP" &_N*5Bf !Hki)[i< kJ p.Av$$ )()E8ѐ7aj-7ܻX>TuNÎW ozj>/ ig0BC6 z$>=mi}yꢓS393Upn& Z=ۀ*3j3@ 2l p *4 "$:*9ZCQ< `h @TUWc# U` F 2BmlB()D#a8eeihlj`J{c^{2g^7*n_<7jqhݒ=rռ~s1VԝG_8we~eËoF^.Wͥ5U*rvo:mrGgwWePO20R35qt``iiO`in`ni@T#1b" 1h,͠P*[KUU +#9$ )d&NS#*18"KǔuhL #}ct!C'b)W14d[{9*I!izysXC2Jb4:έꏽ*M +l \ /aO_zO뉷W5ri1xNЏ祏&^iˮ%6ӽ笇:ib k-]MkCkS{umMK+ c)6&T$NDEy0XvVOM0b#9¢d:YZxiN1v4*ðlY._7heӧ:8x2TM 4w}ˌT%I%4qÂOkdW͓toOWakCǩ8MQ Wǩ^⦋66dgTp湧>i}*5_ُ'eɗ/~͋muQ#Kf3w0R12325S77ҷ5ѳ(4P+(+*hnj%!P1SU(4}M]#G"Id"`/a`p8n椋 1bjk221kCF&.3L4H֜3e4IyG.rtZsRFt_ruP)x*%G3zz=G5/;Z*ӫZ?3sL[wXkTef:/\`3ىMHL33}mEUmDhF) 5<CTe1d:CQL0d5H&`%8fjMja3Մma39go 2Ra[Ub夣..c>+|.$\,5W{~Y_p W!Fc]|OE?ԕ߼g)JflΣ.鋎]-%=EГ k*X  j+,3>6%1Wkm.8YGGT8$/V'>)(؁]4I2CFId SMmC]G+v,3-!*k1YXB!ch8FGYCPf))IICeA8HiQ4UD=c#BO]OSSvT^ t:ٺZjD$bqn%gT]?+vw-!k])~~2/Anh}~W[晠'o/1Ei-i 0Ari]A`aż EY O߉{w W n.N>so_T΍=ȑ&ך>G1ۘ8Tr DiZԩjZ$SZG݈AL -)9F @@NWPp`QTP8Fj0* 4GH LU ʍ5 I'X8tL &_+[e&Kۚ[[U}t?`թg*䤥aZ}N'` LUmcSPaZSU(em*U]SXGD’t2#;FZb,F Jgj D  `9_FbH" )SpL<vLeyɡp$ζtaib4416l2/͙ @r7oCg6ZJWV3oG)%mϷ; o|<.*@2jh^ǝ^=)坍sdo %5>.Jo^x)fbM%I6̶cBd*ZSf^^rT~kr?WgG-]S# !:KHdiz :NQ*>dxEux`XXYsbsC#&'hPx:L)xL ÕFIJT*q 5BB!(Oct& M)!3VN^^E @P]s8%9)YFSQVb(5+;)VfTfjͧz͘lmN'1BIuq7n޴cӡۃ%'Dy3b}Xȸ=Q3/<(W i`~1 j/_FB<~cc뻠gB}\$W@[?窵 () YSf4aㅯTА{Y0YdmSGSaJރ'_Lڣ7SsZr8 N 'Y>ZĉCF%u[aiqy]ӶݯݵaC~x~Nvq84`0cKHD1V%h5:$4eS5"J0(Y ID '-9J !bQPR,KQt4,PQWfYO]r|φ Thq(luK}̍fyHąk N<ՄiEi;siQv{p*+땂9{߷~H4XD'SPPWZ'OCg3Z\󿯵**AA𖦣{+ZV@0Lk+SjPeEYd,+1j'vzFiu{\Y+n鉥K/waw.01`9PH:Ͱ& 6VF- Y$N `e:HH(Z &2B*oJ/4α$RՌX4RHlVSF++ em)fmZЪVwѥa^gC];u!*V6߻~_ΝF P~w_{J~2oOINKN>XW7Bx_[,,͹ˉ?/.+P5~9!`5%EcBˌ$ܰ¬W\S S{rUv\ޏ+~D6#+x2t8YL$c1T)ӐFa %8!12!(<G*aQ@I b ea8LFOK&ѵXDRiW.Q}Jh-g,]tY[Kv΍Grѳ' 8O;󰨷E+*뵃J~2o޸wj Ղ/aHTOs%R?kof^@.wB_W]a7'%QU*P-v=s)+QG/Ȭ+zP_S_# ې4ל8|8N}蘄)#qѝR"Jt(]5bA1A@~@<{׸u_771#|0ٔ iji k{0b`Dgs} 8bG8ή; -|b F'ΐr3)4 ,WX))4x02P\ԏ:ݲ:2YV_9HJ֖)fQW\ǡ|-;7~?_j+5P?,FG/ljAq=#ѶW޲d%ii A"xnNACNFCJF@uġ !Oj <ȩi(II/R؁t\@ӇDCM+A`gpikq%$lhmr<$'Z75Z$VÑ^QaAyᔊvd=;֎Ǭ{qso^U<ֺU+oPD_?|KQ+4;T@M3"~zn=>DE}=2jSun"<$%/7npW|Se𢢾zpkc;WY+[U:AoECrQҎԒjx}?bgfڻQ3C8P9аI>)(Y W}Qw5ehhhxH`ea!@Fv ]Ȃ5a;%) !NJKIAxYyEl, @n^ Ar^%}dHSҲr=K]MMTpQ\B2aYAa)sDoCjUq)7BPk/kŎ_wVa=L[K +taU24#̯xͦ͋aLOBqmS5 މ[Y{|O_LpsFlgmk_|`NZax." 67%D5nK18pSh㗭gGa8כ_6?z"yƺnhK_G )C) "|BJw6"j1WxW۫rϛ7i[Dt<޶QQhEYXTxnuq}H`I8QQ4 ${^ V3+'5!9-)թBv6z~Y^i^5Y%I~ֶIpdOnTjRrNt|]uHsSlvv`qvQ(ݨ͕Z ǿY=6[K ՛RnFǚ P*ס>ևY}Вх7Fƺ;qSge^UmcWxUi#sq4rjIe- h",ݟڗeYY&za٩-١ox]QgyUM܃KBC,(kO" 3^maes@,0䔤4TtԴ,l, SG=trzrj&z+' BOKWXt4T84-. \f`cd,Χp]V?صCCB|b|SMsrM<#R RݟUĦ@[0t(6;\ZmoiTc$ l%Wh˿#o>/J(4W󃐚:8eW0Ey9^ -Y}-cK}sYd+)3!7 wtͯA>V'Ұq)̀t=@~=:6G_D,/M*զ Rpqc534o+\,3P5S KJ w UTдhۑ 9NWZ rŅ@4zzHECAHHMw?sSSQ103@,<\BL +ɾ8h"Wx%%䤮ܸ)$sKQVFO,MTVy8مTUGZ[VU9W45a>}^}@&ypbxw 9;Q~Fdv٥MGY?O# ^q?DU#= a%nl7ו4Y݇c/ shSYb|+p%U9]^p68:6oa)p96ע&f>m~B(-wtV= ̽c̽)S8J%j`SWWS^WjҒpK;O{`K5kN#7@@@ ?r @Kv iHXtT⒬ #ϓSDxXYo+J+psIܖgpKJa<#?T;ŤB%ݣ &&=knv!Yoǁ =}y*Ri1ܞ޸ݹM_Z䏒ʻd 3r۲* c=%QIe5H<?U쁢gq8tgk r{}lh ns9=#wU>f 3=9Ep,ԔYXX" ^'.P_VТP}y1fƋ$(EeoX8&Vgv*eQɾږFNzAY;:H+l 3 .Q123HϜ8r]H8@ tTtp'#HCO `2s q0\<$%-/a~H2z*7$B}>qsHO .IT%fĕzgTGFdFˋ11@э殡-pS;RC#C_ZW$Wdvad؄ؤ4{TXq007( oC[ C%9ISF7m"UMO&kSRڗ7f<4+nk+T!jUM3%WZR‚\Mhs,%K4z Q |fVww4 6DyT u4SSR-oOZxz~ة;#=0АSR=FKx@CJyd@'d0y)ʋJKP8#cfw]LVFJ]7/4.&!&?$(42>6.LgV7@sc3ah}j!%0Ec0>Eڷx(D@:G-`y-e N)ў1 )IUi-5VOMu rM9W8H/ߊޮFYG";Qu,96$3i~\efؑ +KmCu(wS뢠{\ѵcqKUP㻏k=LgE%VBq.&F,123<ʹq V EtI8|"5K.QP]f0 4t$a{44,4//'7 Eɓ'OMo^qH52 <"5~b>7$9>"/jhw)iŐʦ^$z 5 K~ W;*4@6''`-.\T6_45-ll@78zeՇ'eKӢj ;0P0≻WLhhݫk[gf-1F,Hڛlmc\(Lqv NHj5Sg:}.tk{·B+ԯ \)sJOMkB""Vk j<=]u*((?H6V!ɒաq S]U.۽.QvRQQR]"%t{c`cqa+ZFjʋ' bU*ve$ N6A2 w̟Z9:f!KGrrckZ{Нj($ {<|Qn/qC>nKuf'Ggw둵rNJ/l* !1҃D*#?' 7SVR]]WM JgyŽ c7kGJ\R2.f&FFdk+Xѹ5 "#0&3>Û*WCg;5u5!{P_NMOb{!D(+5y ~)ɍxNWUA` 2; V拇fP0Iovp)[p|ӤtL%5- 557=5H"HH^4\<"|,r7e$X<cVtws r0SnjbfeU^19~c~lj oz3R}[Lf:,bY494ûB1f[?өkVp!>j"4nm:҉:Fz$"R˓ *imliiԔp9u- 51!1yaXkkq6(˜:O^UCC^^$稘h:' ~xSl D4M]fUPYke_LRZHdmAGHC~vE'eu- vzUs08"P3Ӄhi@T4zzB=:&F?GD''yғ'FhO bDIVJRF'.橮sbr}^bL2o''&&0- 8LSo4AdG~(nf]Ӥ{, єo _[_N? "DUx\Ցilq~d8Wf>pXv}lQMia?46j/8,s a]cC_{7{Ը)L7%z0a ..M583$,19]|̫*EfgՌ_} QFcqs3mm/4˧$O!}c+AIV);~K<7 ?KXDHGEfd;Pӓ^:)jffNNA.aA+W ˩kb>~H溞3GZz~C;'䲪rhfpb^udGNt C癱9d.; A%l/Åџ62m%G")C~WgC+ŲoO^  _^LcSbݳ2Kb"[-´臢%{P1:-4td;u_OYޓ Q9q)y[ N6Ζf1%5y~X/ ;;6)H*nhßщHM{ VP/dcW1r v/O 2c9( sq6ճȆdw﬐ˬ2H+@l,x EIKb l2PRQ?Y:z1f:$/($7u9^.fv6#H+xٛYfvZ=)ɾ(i@<\—%%ĸ85d4nee5m}#Ԕ K=6e9}ϗGqӨ\_@t n@wëaIch~Ok?㿘?A~iOãe9ɩunI$_pIX!fWGgCk?[} a1QA>N9/;%k_5gl*BB}2m,l!¾؜|\p]MUhRVFUC~:30: ABbB 9IN!QZY37960<#Y8&*49!(:bty:CCZ8E88@Ifc rrI \f`VvUY 4 rx_g:i: #k/g! h1 xe5'ZXU~ȟ1xJҪp>[V^bnmjgyZ qCDp^`~tPR) {̾,=t(hhYB ͽ9 C ^>ZC,R JU~xSdyMdZODjJLtN׋AlY ;# ʚnNβ7ndj,J'p=d3g jĨ(#pWg'8`05 9$ݹS${8s/$df29dy%?% Ly#̪XW#=tpX\csKcہY v9WX_ة #ZQ}c70Ww~AYgEe"3꘤∧(HJ]oMvJH))65u9M88\=vޖ^܋_ &Z(; 5%Hy^sԴT4t NV.n+jB V6';';;#00awU,K_)'ຊ\SM;f!Y5H$vOf0M0@Erٹë6oKv+zSdX䗥wCǮ|`}G]e[DhH& ?́'SJjyV&fzNh8s'S+VZ/vvyTRgZ{937WB˂h\%떱_zAQJ: .N˶QU)/*XɌgducCeЎy,PYm66 ><ځ+vH̴d9c 231,4tEEL 6=3=nP`}[R Ħ%lO2s48(9@"asCMxKV:&d,*gQDҽjϤ7~W{׆s#lSm4"r2БdcUvGD8_a:D+qU a6Кy^S_ M`d{QkG9:.Փ"e\ 25P_2\niZt󲊋ޯ}I˨!Q3 myq51xT%Et~rY$;Z/%=b<0yi  ?~v6Vf3S_PUsC&ûZFIQ1M ajnVF#cHd=Yq⸂GZ&n^&F3"wp`1_[W_U%.~ϞG( eQljX]]Y `Q55M}(-h {׸9YA\b^ŰLb;pN2FK,<=[rˋ1wE7ad:a x1_gכ15aO{{9*YC겒kc3ɉمIڗŲtGaZAi\DT3wgzrHh9'Tsûpΐ13دUᑼ dagRxl}2;3++$4RʪƏjޓ vvqrps )hhn6xpʓ*0Kp ;!4qxx>#ߖWjV]<ifl/z$.-#**/$%%rUSp(uBĸPC-1 33=M]W"xO]87YӂA}7#_2n(JivVQ $=z,T=0v" m k{e]76 q19Y>5qJ.Vl#3҆m)IGv|Ao}?dOQP3qTT4npqx8x mĄDE;I-%艹>A Q5!O5VA+:* cմuiښxw†G޼)sV>*( QӄpN-om~K^k vjchCv瑉'~Yp#` Cҳ\<ߔr_VU!ƺV|o}y3 Xly?كb盝j垜׶q` 4?5n_ ͼ(qymt@7ũ!9,&q Ín|>әrwh:Ə2Z(]'bBLTҪ r314$Oa26>>q!&jZV>-cRaAq^1ᦺъܐ[jxzg`eƠ#bc&h1#fd×ouo7p}>W F_ qֹm.9Ӝ-Ejnzq~AWhfZLRDcTdj_/`y8jk n=/MWKtbL {Ԩ@s+gW"0=?/z+axn{ލOc"c}\2a=c*|-Ud|o16QΊI*}k.*1q͕XGYظ9@RjܓvSD\HP;g\T|瑦-%cmKc?_Ơ䒄شȘڙª 3ࢺD>S͋ d b~˻xBk8z3^\%T.Lf\~W>D1;vVՇdmC}U{JWYAt.& %Y^fak &/x4g0!>l[@F_=漰"QHAG3$l**N5,B ;j|]==]/mw7Csң9hi`b]ѿq2RAR.er X{+(MNoYϰnX$ܒc&.*$!rE#{R<r74ec"[NPM iꆪOm-:XC  k r cCj dJbyiyOJIQ a⇯D}^:}c}skPC/o,Q.\GwN\uvtbWTVu]DO~t/ )U9eFf66-?wϔ7K_WWXI%f&e&L,`F}N0H=twO>jsC/X°ZXMokxpkRlv@NG63m~Y^o2 3I0R!G!^%l]E8^A}^u|W躳PiXQZD371VRaaR枨[>*w ,Mb==B b[JCcJJ Ó{QSb4<=1>H탤lGfBwyb?bT qs ˫̴9ಔ&Iqe5G'Jv>nVWEYY)@5͞hʉ9,fT1?k+SxRۿ2 ٝ咉Ezy{Y<2tq͂{3շ/olnl)IM-uN#1#ܨ2pk4xC';ݪS}$ؗ4?NY#;?e +ޓ =E ~ХcNP2K>zH鉡c[}jz 5%YANq~yM͓y\I^]g!+6Bv ҙ{0E=\@OV`C醪HKGpaW`ST׍%0ȻͷuE9~=`ywz Bsb%=q܏lri}Օ ]_SKbGi.\}zu/Q@}ɅTo(?p vvsKv3ԐSRtDv%5xd9eGEgk\dRZ|OPRȅ @Ȟ\~W){.\'V՗8R;rK ]=xHCE*y[H D*וd4}ߒ榧t.(ZED6/o/w&*PU106<`B23BӴ +i7@Býsf?['n|! x/MqGh5,\[ai%e |uqoAUu/`+k,óFw2"^灪 0/+C4IݾwvRtq'-4Iphdf'\ u>օ)qcEYAdL1sDNl-ޭ~&6 +H1eUqU(X;~OYJFT(ǹXoӁxEU%4H1S8T H<ֹk` Nvhct,|׮5u"jB"!5u(TO;Ǐ"C!aN~&fAn鵓:847= 艹*Eba5v)cTF "[kjB ʰ]MM7PccKÍbTp#n٬ &^G?!Y`39mf@;K pTE-%3u-#:# CTKE,3.6'?$;=uOTC)c 'c;Jwn˩i5d"o7z[k;{ cmMޖ>}pϡ`'$,";ȷZ]ӎY\nn Bܼ!V ҂dpTd\[k˱C <.(2a7o"=aQ= enQVى-I{mck܇DBIz ];G!:07ColQ/2'CWIP?-_}1['`/y.Z=9 HKM->;?'c\ܬԴd)8.{x_Oʷ/󡂼B˩{${źZݿC +rfљYnʷodʋRrKj&gz&_TBt6ag*ePG"tP iuTV<tmX&[CO͏/||r_/njkS]P{wG.V56H5Tp Kл%#& #B}}')ŕ-}RbˠD>6u6x=н2&9]❖R2%Y }, kzљabx⾋@AeǸE;1MßvO˝Jas76+r4sxV{'{%$@ј* N*Ōpa9;Q$8s+[߯וx>kBz=wnJ- lFI>Q<\RX1Һ)ACA⻭~ ,WDA< N>ΦfR4sE2:n+w-R;fᚯ#-Dzb CyTkcC>;ϡ!^VةIN*YFzǰèNtc=v~4mVAzc oﻚ*4sʰڤ+̋N"!zMӼ#VD˘7y3=Fh3fK*,&^ -~8~c[}JI@*4uxjKS12p?` + ^b jff cGX,*h3v;{1MTh Kv1)UkkITS-rFXh'yBqD=ޥZlQ7of&~Ÿ;|t^Lgt/8wyǁəE=*}\{.Y~X. с[~4CKloWǃ$">wdH=<`[Op@*RZVaqT$*) tbqϼaȖylnͽ8zB-,N9ʼn>Hm{3w,8aTgCG^T ?\UZky̞K-)"\6^#dž{C'wj %|offiT,@8x-5Cջ̤جvb3ӑVh1|eteGxN`zlzr`eseF=^ =_a`f;nL_6& ˸ܴ&z۠T~5џA6ߴ⸖ ?n`b` =TUT%}Gؾt*Qݸ7$-NS􁶾jyrpbhϯ_WݳSȺ枊ଢDT4.GO9Ms[wQӍ#c6D7!4f n-tjhOFW_V}v_ݸZini-Mk`u7N22}n =ޡocf&wmһ 9#=R J9R[g= 6V>p햊mj /eY 'RRT'8G+bWLez:j긚kkj{'pC#H7˯:mhXcsK#ٛB =| .@$8-J,ZzB `f 3xW7B$uOٍ+%EwPDʡ{g7v%D5Cۂ_jHTh\ ?֋2>>d:|]ᙉUkOMYfg0KwjD} "}l͌?5 J\v PqKa.%齇/sq]}`n[\]K&>V_z;h64‘>x-_j|=F6ch`:Bȶi۩~l3ف!v.&H}ĭzzgQv7ڕق[ sDϞF$A~Bf'\sȯ''\Yڒ]_؛ҽD켰oe+[t 8;RGtҨ]^~J Ft%7{Fs>Dg8`r.?%ǓIJU}PF^8/5>Djkj~^V1Ŀ|[\E>G1x!ӿ P|RS&N8~-믻-]SOtRDq_.|ԬϿ8%T y?)"s_`|o <)> )j(Kgd)aAWK'!-M)K s0 4oUSDSYk9H4뒒 }vY:_>u9Tvƴ Ǝp_;6ȑ+V^iL]3\eƘ}ߛ2wۏop;pHc8:'%._'s__p) ~bA41waA<|ó~Nܿ=J KK_7J$ XDe-:(;.*<>tK^J +HD1y|:nVg\6bݰŋXM!hl<-+*LڹZ-;'WKÏ5hԊc7SH۱z/:s6EpsL4:{%_~v߁.qwl^ie6zٟYeKBlW,oxlFyZF&(?}=*3hUTRZR!Rt%H**A Ҙ8|\lR6_[4`[z)uDs /x*/+.tR'Љv᳉ϥV^є}';_s_]͓N Wn=n~6=\&biPݐ3sh|~4Yل%=D2Ջ+C|y4k0=d&uEV=g 0u EK?rبu1H!˧y>]uuVR, Ex;3[~:[-[:XrӁ[)Y6O;~S4! *#RKx|{񲕮j*j2x|d̫H-:Y).-SSiHdvPQrQ.7f%?NҤfl^NV+R3E_xo}=/{][u3 /gD߹|?=iX\p2 \[R5VJʪBٮ\R0ҐllNy%uڭq7 ӟbJj 2NnnYWx%tجCCvpbmexo񋏎z~zo"3ƻ?8uvٓ.}"CfΗ* K1ѼL6P^))sHXn!Ҟս?|<5k"VFJ@)ed ؒ3D; ZxN=+iLbُo#wonH1Ȓ<$\FGÄŚAU~7e $$ꪚN9y4RKd$MudC7:&ź{{b-'xv\j۝ +5K*ӣ=9}[jA뗬aJ;7)PQFM u!>Bit鿋l}69S/+G"=)3+6SK6.{ͼbZjfjFZO= k_a^rSy|ZeA:5{'i7^LQ}Vn\B;LVNP循 d6;;I)/֞o'͎+! mz(YQKɹ"g\<"i{>}x4LZsCVq;m㏛6S=?NLɡd_޿~ˣGVYJ$HMҲ ޮPn^,D'75ow IcJ e͊laW@N=}te%88EZ#D<ÖC->?3Q[at ^`PDjTq95:hޖ4=g^`V{U0<44[AMIK *T 0";JYb>\3UdÕ|:wZЮƢu~vd':QU 띏n8^zVo"W@f屘\|q!>q\YG'Ĥx?G/o-0m̒e GM'do}]ʊֱ?}>-xoIhi.7x[. `WUH+i"~zĜ $>z,,S2_g2"ylwz"(2&@:ؚ ہtB8MJL/@x4|`j[H|dv`&r[iWM2$Og]}tuEhЩV4?7n8dgrL@hQ8fDAVPmh#]I@e}#Ĵ=թ]T*xvMsb3I$"&J ~!'WIQzS.Gwj "fXGR[ws_ռ,ЭJҞ{y$úG\(O/%< "Y r m=u\ް%%dZNN=Wd2p6W|%w瞃~T@.FUW/"c6r`/ S~K PZwYW7Z Zt?!"EbS1E&6xrS_-mc#]U#]B]}{|n] -A61yNSE BlLs"яa. 2a}ʱk5.8jNTtU2ihpYTa~nz<SYPn[UKwWՆw] B. :?AZ q/_C =9(,T*+Eˀ$gvw7dMCl]k}Q]TKUW\@4ս<b\ 3$ILGxIʐg6oG̤EtZQM rRV@WZTWπQIf0܇Iн 5&56CKbN[K7di I-J++ >Ntkk@ 8JR֎DLyM4t}$ꤛ[]W(:ĎYŕb(fcű":]׺t9amjZВRֺJtzQrϪhyOFPs!GJ ]8*K@, UO#jtYU%4βZМRu]I8bR"B{ a|%ҕioBw@W1gDؓ-X@W&FMWeT'-U .` ]U]IO>QF>K! ++l8O"K(@W&FUWX~G۷?@W&FUWX,2V5@W&FUW E\(ϰ+v?X/),LQLL}^M=}ʎteb4K]Е21@W +tebz@W&]&L ЕM]+t՛21@W&7tebL Uo]#ꪩ͜] +cD]IfR41>Kue]uQZS_ AO`o¸"%4,f D2H^Kt՛nЕM]+h k !tCjY7 !YhT/nibNI0CR{H]J젴aߤ aF' ԾdfgJ i { }!oR[Kٚ~&hfV Еq2.@W@W ʸ]a]+ +Bp6v!R%ސDx5v&hiNOxG" EfۨF2gأr}kkibp;M2?_gN:hx0}]=+Rla[fqK{Hs2NmF/qO$ ] /!PCoWfѳ*fC(46X "(.OHԸQhxrC09hibhRzNq~ o}; Exp9Lgmhƚ P bFo4^2#O1B^D??+YSzVj#5r ].iZDmEx*'itOk=kH@cC|?lrTN`*WZEqھ߭"gmuЮESC%(en&/O!,2A(w`z@I\0pcePAu)H}4_.c*Fc,wjV,g!4?Gk@<3|=H;+pZ+ <@`8ֈqtz`ձkC!`ʏ=de6jK!Mvg#n ۗpopIN>n~=P. ]}sl_>'lu;Hlβ(+t[? rb]ruu+'7eȸB[N4ǀ¨ f8tR|l|0]/`0o Ǫ ١ cve&y($"uCg˱6ι&;l^0dмG3ԐW!TTx ch֪!Y(kuFo.\Vr:@G%cPՍf7hv Pl؁4Ěz* K6f?tKendstream endobj 166 0 obj << /Filter /FlateDecode /Length 150 >> stream xU;1 {'0q_N@ -ׇE٬W.,?慅:c8]J`̤\՘pBf3y0IVL;)H%Q3T3!T*_qӊ[;KY I*) vjKԐuSBC endstream endobj 167 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1445 >> stream xkLSgO)Qj%guhA\bcs2'[VJ K9O\ r-R$Y8ܲLdN}Y{dܖ}x<<xk#c?{bJc0oM]>||n2mD@xy:s2WeIբݢaa EHT B#VK%9b5WE DչiqN~Rut^V$F)V*Ԣ腾HeNnZ(3%*a<@!ɒ1 c 98Ecba1xxW},|c}ebea6yx >E^:8C@Rx& ԥRe*%(g/1tU)/woe䲻iء#}.iɆdPɌ<1b;Z,}V6q xդ.6U(rUTCe:UsN AQ2|gf:Ku֢JAffņـ?;=N]`i2Z@QYktPnrcpU R,F*5eWZP`z `92զ.ԍξSHG_o;@3ҝ -V95×#ӟ$xKKIpFOtw:yh|tFw8`CTTj6GT%%d/_mmّ*CEЩ"Z%+дDte%!g.cψAL Q5Ph%d4UJePQe<۽sфIzב6W 7NS"((#!%]xtJ >5i_љOӪrtQwLxINod̺U'z2d>8{hG;Q]fڔ'. AYoY&Df&I:mcy]5s\6m%swBg H}m#vjw\R>C5)E\Dlb_6ߨuR/mS xbFuM5z֫MC#+=;CpZYT 0V&Vl#ڡjVm---+#MYGa,FmN7S$@P.kKjV.4K;Od :flʇ>ַQKC0bhIÅ6<89fb718c667c542bc56b6af451d1fb77>] >> stream       !"#$%&'()*+,-./0123456789:;<=>?6L=CCCCCCCCCC C C C C CCCCCCCCCCCCCCCCCCC C!C"C#C$C%C&C'C(C)C*C+C,C-C.C/C0C1C2C3C4C5C6C7C8C9C:C;C<C=C>C?^psdgFJ]m0f ol~nou endstream endobj startxref 292275 %%EOF HSAUR3/inst/doc/Ch_errata.R0000644000176200001440000000352413302741012014751 0ustar liggesusers### R code from vignette source 'Ch_errata.Rnw' ### Encoding: ASCII ################################################### ### code chunk number 1: setup ################################################### rm(list = ls()) s <- search()[-1] s <- s[-match(c("package:base", "package:stats", "package:graphics", "package:grDevices", "package:utils", "package:datasets", "package:methods", "Autoloads"), s)] if (length(s) > 0) sapply(s, detach, character.only = TRUE) if (!file.exists("tables")) dir.create("tables") if (!file.exists("figures")) dir.create("figures") set.seed(290875) options(prompt = "R> ", continue = "+ ", width = 63, # digits = 4, show.signif.stars = FALSE, SweaveHooks = list(leftpar = function() par(mai = par("mai") * c(1, 1.05, 1, 1)), bigleftpar = function() par(mai = par("mai") * c(1, 1.7, 1, 1)))) HSAURpkg <- require("HSAUR3") if (!HSAURpkg) stop("cannot load package ", sQuote("HSAUR3")) rm(HSAURpkg) ### hm, R-2.4.0 --vanilla seems to need this a <- Sys.setlocale("LC_ALL", "C") ### book <- TRUE refs <- cbind(c("AItR", "DAGD", "SI", "CI", "ANOVA", "MLR", "GLM", "DE", "RP", "GAM", "SA", "ALDI", "ALDII", "SIMC", "MA", "PCA", "MDS", "CA"), 1:18) ch <- function(x) { ch <- refs[which(refs[,1] == x),] if (book) { return(paste("Chapter~\\\\ref{", ch[1], "}", sep = "")) } else { return(paste("Chapter~", ch[2], sep = "")) } } if (file.exists("deparse.R")) source("deparse.R") setHook(packageEvent("lattice", "attach"), function(...) { lattice.options(default.theme = function() standard.theme("pdf", color = FALSE)) }) ################################################### ### code chunk number 2: singlebook ################################################### book <- FALSE HSAUR3/inst/doc/Ch_simple_inference.pdf0000644000176200001440000027662013303046021017362 0ustar liggesusers%PDF-1.5 % 1 0 obj << /Type /ObjStm /Length 3301 /Filter /FlateDecode /N 58 /First 461 >> stream xZ[Sܸ~?BoT*#ɺ>*$0@fٱ[eN Ʋ$V}=ˆ '-"D H$$aO93&%X'9ki߇Np%t"/>$^s wq"DK"<Ĉ5 /S|X#Z˂^x2 Sց!aI"BA5R5NˀI BF$#$d ЕZk"aI3(((H #5 JD;!BXFAȁ8(M[ 2X>>2`P 믄"EEz,I簫$i~ńnAyvM޽3$6M βE^)9%Q:#$JNj(^ۋ8*,ݎx#a/!,>'ߓE|E7t;|q6{"-1;9${7Y^ErWpp3f}糤  :]֐44ȁI$6J,fdg2x1j+[J;=H`¿Xޔ2rsƙ*|7CG}$>ھ_\M( +r@fxDLkTF0@+8L<[.@<{ȗPbw>@E6= LOwa>C$߽O* P&zʍ~oqˑ/z#0|k$WvrΟ&wp^:_$`Уlq IOȳR,]^ H|fkyBDwi6CVnW[7$@yVӇ CLfX9>' V?T CH[T3FMmzX=Ge Z )qJlBaJm,X)Q-Гo03,T~])|R`[= q_ IwݧzHO脞O3%i6R{i|;zE M7:4 ӂ78KzO61x zvf]7[ڴ ܾdJf۸#Ff$Ӎ '9jKoqguI=/#ub| x& `F'UE%_;,Z}ɯϼΞSSIq]+)[o.\a l铓aaj 0>+օlOpCj OT}毥#pO *gb~"K;>b]6ސ D>Z,# tf%~] E3qZ$ߡ)l'n']*b$rQBlzQu ]Ր ֓QW~D(VB;3c@Xvvׁ-@"\w mcZ`VMí:{nwK}{LJ~f2+h Ȱ1)?W> tE <*lia(j/2+bjJK&֡{'+;}?x5Tb[l+0RK^Pj..&'';@lrAme DU <]W7bmzl&w9W}^?kI{]Dp<(: F4ʧ Y ED `y`,[Y6G -9טՈ]'Cjiav9?a(ɷ_ ){BV[HxQWk9aоTf+aF ٚ‘!Pb5'b*tn4jh.((6샱>4 5y]\YŮKa∭Ps8-M鲄I$!d { *~+ Z݌ߧĚlȎW+)܌? {C~3?7C.=զ|]߳ub6]$(p>n6].=fOuGBk,cЅu$Cs4>ݪv3(pc(PPdyʷ )'X qo8\sGµhH}ؖmw8Yfw@"f,vRkd@z;:yٞ9 \&k_+Cm0 k4JmOI+gA+{kܭd-0O*:5q#]mǞ:Kc8uc|N=~w}K]Ҕsp;x}U~~]Z=}QC']Ҩ~G RfgWokzruD^?xS}3dQP6,UU +ݷ" s#:y>y»'qMov_LpC]Y7= Q&~&(ܕ="E} _Ύloe3.Ŀa{Lx j|{|ȏ1]X[i.Р~\.'l 78MV;״buY}eӈ yEP#h[8~\_m=U&n !A=C/&{/E## QK-n=n{IG#&Uhendstream endobj 60 0 obj << /Subtype /XML /Type /Metadata /Length 1653 >> stream GPL Ghostscript 9.18 2018-05-28T10:48:08+02:00 2018-05-28T10:48:08+02:00 LaTeX with hyperref package A Handbook of Statistical Analyses Using R (3rd Edition)Torsten Hothorn and Brian S. EverittBook endstream endobj 61 0 obj << /Type /ObjStm /Length 2278 /Filter /FlateDecode /N 58 /First 475 >> stream xZkSH?&ښ*!!(b`$Q@;ڂ{dz g/[%qsm)&,z SR2g9?y-j&E&`2z𧔴+LQ3am|y4&cޡQL+_>2maA0fA2`AqLGA cch؈g&BQF"3b̂Y)p*4DͬC0e6Дx`P: *XĘuT LGy4E Q E34A#PQ&{ $Z@iLP .pYb(AQ!y>1 #G&NC`x̮?IDpNr˳,$MGy6d\j߬kt>Fgg0y69QrUzэ^v'Rd42Na6A9=f]>r*:~7\ԑJ2~vGxb<|ڿo瘩A>k?􂋭F5xhT{Z$ x1bT67Xܦ닾*pw.ޤ-q, ˏ?|Gg|'|ʧߥlzs:|<,Myu˂,E_; 7s5[@7xEy3[誼yS7#KѥᗴÇ|8F ٜT؎YY~I֭X@0:;<::?!c~7~ cpXp[~xwN *Ysd[19wkqmYܢW;p.OzC -lӇm6c3qqZH5}Giڧj(k{>o3#icɗ:KR$ h5"niY]||tv)fٰ2!m F&HWiF5tW?JZ{-MLZK"+KP<8Ĉ(M"V;ޤ? 0̉ 0cC6Ka(Tk۴M5ӄ#Yj)T籧EY-bz"cYJ՝uuRG !|RF"iE[Fwmh L7ݕ+ZPZoifhkfhՆݔP l߿!/J R*[V#P ʗіdUIb/QJɱ(`KTbciSQhqqB]C.VlթɺrRt.JciXKģ[3ͩĚжﶼ_&MK:xFt3D!mn@JVDXZ7-hxM,dխH{?+j3K}WAg-Da:) yyfF_p&w(L!{pIXY 76ޮ09*D[ Ju>5 InE2cjጎNvp KGKԻ 2m. k [4xh+ҋ<ݓds7zLg7n8MatE NvD"4@ N -2Sz}~vx;-dv9r(^^}gk^5ͼ76iCn/ +[ ]+>bۊ_GmÃ3cˇ˧b_&Dʁ/}endstream endobj 120 0 obj << /Filter /FlateDecode /Length 4026 >> stream x[Y~'#@80r@ ˆyZrHKJ\SgGI`jTWUW}utݒ|Of\./bT~a_-|i3˛f4ޗ7 h[Z(*3JK+(O5짵_]_y7ZMJ'#ݨ'<9nG8.J͚S-DvSw2$pbʍNZe*3-/rGa/>r/T'UH{ $6{Xn'3I*cgHM%h-tIHYCX`I}>t0_X3Z3 '=W h,녢&:nSSKS5}Iȕ6lRo}%%>˳ 3! H3yafb$@ #W|3wZk'sXrQCPO8hh-`coհEu> #-Ja zO%Dogq-*/ >0z.ўi7pQpFLGV)I'A>ӣHr*S2Gsv8VCa!PI "00l_@-'줵(vLuFb5A@4^MUopHu:^U !|hBͣ5r[T1"0fɱIfpV98{J>XAdri6 mqc"5'L (bSTc"Ѐ̃z5Q p[dG7S7Mj+\&`0.` XV4Wո+Hʼ@v NZ/,W$;/Q5x-DdQW\7:6E+ _pMb|γ/kAasw""Y0-wnC]ѶetxB8&o(dILA ,+'xD8hdsȋ(_T%nChG+!   Y @>fςBkCP ~[1" =! aOR-|mѐ4fVW܃6nzqV{ 4͇WZ\ 582넦bRDь *&$DWw5!JHVKh {ղh ~&䦌2n0NGѓ+͓2:/ם_/hW6e=-E?zVNpʟn8<%5ICb=.FlhWwGy?Ϧ=-(h G$T%໢ HiC3|G5H9Md!@B"X;l;4{$Y"ʮfk)21U<#SӪ'+`DMm Adw4a@12GjrxMׄ~d;8V(Ctb`g5\\F`(k @'[<cm]q<{Εہ:>)F@y+uB ss߰/c ; Iu3mS}~2>..N Ρ"B@jeڂD6yP!x[˝c-:K +J\=ټD,KLUQ}6piK 7A1U`^)[dZqW`4y[ඖ͛7gbvlCd}4T#Tu='I:f܁L(% A$=d&B5NI;̏EWoR|0i'^_AD4CLܷz#b|>#a-3>|ݞCl)m*l$i1Gڼ,$7=Zs@jNw2$]vnWXܗ2uZJ71=ڂ #Xȵuo]\]lbjzjP"馩zKP;n֛6{7㚆[Iu Kwq6B7YDSj**M'EYSivN'7ȣ[ZxRpmMB%tx Or)\.& RJQ~lf6-VZ)1š\>qږc4eؓ<H"; d66 AiCON!'x\.p~҅ZD1)5Ve| vKgM )~!%O\ARqA}[ #Sr߿ z7o;7eл['b?m yDm J7!Evpp(th ﶋ᳋:K-rm &?\T~! ~"4> stream xuSMoT1 W=4؉G*UT>NTt@Hx=h2kǓg=ݻWטËKt8sE_ c{'#ȓq 52Ls2֊j2J3u9vY~T~*QtfY"vk^FάiH꺁pGCJު%,{7ٜ",v燽{^r-f~A$>L:c OFGҌ0HڊP<'ͱUWgFQj`%*jx14A#*p+|Mf~8*4NI8_SU%HEjlGS*Z ]HP&Q?ܙqF0Miul+oki׿v(.̶ǎfCw f͈cg#aפ\ iTg h- xĨ> )bD.2r c59M|Q hycDPT%nH%Pgb,<Ӌd _lM W[ݿ;-e,]*.ssbd2le( _ܧ+~s%.봾ydN&mjB:quܦ8nb֍^?#&|endstream endobj 122 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 3682 >> stream xW TW֮TD)w@%n &jEQ1"ڍ 6Ј6KFYdGDl% F d&$:I1DCn f9s]_{~{ ơP(X/S+S{#@;I NM_i^T(b^ےa.6w1e˼PmfM&><4ZOrY9"4>eܛfM8Y79V6gDĈpqZ]hwlLrMtK&wޖu 0 3f^m q'h%m 2bU䚨hYwMg(ƏYaV1qfrU,z3>"=rp }'- "=E20ŞqY,Šr{f<ԪG',B'\<=J@_}p,KV VqZ`4<`Gu9T{L_PWCpךC=,Fo"Jw~T?PY)2@GII냭j5T.s!%uP١ֵv'tܣ>b}2oÎ`q_ >ae1*pCz$,-gS*9gspGIu ;~1p.#"ZD{jʗ VfܗܻCk:99;ȫxԎnaRt{EN! !`l:Z5":*NûAD6:=I11L=qJK/B.|~5!@+{ȜE[*;eI4`]NuVYU!ܑNX]"9.7Vr~W2u[߬ Ka:u ˤKkT\x~\]3ċ$Fx j/]lr_V/c/O~{w;ͪ+6HhDAvɇԠ5X?#_W@vӯv9: *x1]+C{rSwF1k].=27 cXΓ@7B\O Rȭ?h;gS[C"BC#Y@|h]V\yN<_y}I6}%q9AȠ !WƲXM3zmźרe5w*Q,np0E<$i"C@j],pjݛa:=rJ~Vd/ \ j7wt>QPqBįc nH»VA|U6Dq԰JlIQRCl!EPih+kL2$nSJnvt:&rtG6*M{KRz6XUl-:.d"^8 |ٙʒ=d齠 n"D]7?Ԧ+PB1E& _-*^ WǗ+ŝߩLt:w0fTzKgyf=\GJ:Cs#3DfJHr|(" %3 ^{vm& o7Ok A<3Yv+aH%YJp^Krקeoo^g/6ٝ=2w![QM}gdm7ج 4,.(r{8J՛m ;SWZw/6,*|&c!oZM(`Ֆ}S ޣFnW|rR~q=5o1u͔k˿<>}H #uoֺu'ޭJ?!Ohi ꘶Gl7ҌlCf!i1Ҋd|T^P"Ay ^N=;9ʩəaŵendstream endobj 123 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 363 >> stream xcd`ab`ddt v04qH3a!Skc7s7˚ﷄ ~O XX_PYQ`hii`d``ZXX('gT*hdX뗗%i(gd(((%*c8)槤1000103012ԽK2>}wy߯jcws~7yŞ>~nSg>;3wߛgO^-ym̾^];ǂXπ| wt\eXp~`:endstream endobj 124 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1925 >> stream xmTg*T:hQIQc*$*TI#BawD*/{YayGXvaAPUIi̩ibFHKP$1Dju9Q$)H2<5IQlUժ Q~HWjRUŒujQf`e!XOYLjT+ *}*YQ1*b*toHmdT[* '5,eJL X"'D"P _VMxf⿤+*Z:ZAE~RRD0J7P _@Ksr=^ly>Ow Iȃh^ôD6߅"C/Wߊzv~Q NtJ$?ܥNOiȑdߜgk$_qz,c[p9ܚ8Xg-WŨ]'ZK-e%`6s@quyi/цد/^h JHQzx~H{p/-#@Cns3"Z$7I9(@D[t0xi{p)(7߄^oXO%})="m2  6зEDcMnk 1Hsq9E*?.%=+HIg\RVd4\H,8{̜g@X-57)/h;^d4@+W6-_k+ *٩qZo$BGݔ4rr~%Tw%'%>ZӔn Os{j=W`=kv{RNZpl3Q><wsh>Z_k'q=1DKSx3,qoO`31Qsw NO BOB;ohrdHׄ"p桃MxW/ G^\VT(saJ`;)m*ʿ;:TLc Iѹ}Ecݝt_s}}h8Hn4ɵe5k3MY-G<ߨ*~k*93 y3,qbe;9p\PʽUpn\+Zƫy!(~(s 0k06`jMȢ]Ǔ䞂[9=s~oC,7_]N%#nkelIN{/t<ڛ4zX=vy]7뺅 5roq8FǨ58 >nTp*-Ns!0" A|= 'tM3Ha ڪ*m"4|@UJ=} 88ڍ.&ۨh=vu~Y.)(VWhaYóYaNߟ9|}|w8endstream endobj 125 0 obj << /Filter /FlateDecode /Length 150 >> stream xU;1 {'0q_N@ -ׇE٬W.,?慅:c8]  I1 7g`tBw2SZJffBPUR=uw$֓TS>HԖ!56w/RCendstream endobj 126 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 7075 >> stream xyy\SHqB% =jPkřV?܊ы kuXCw(_[t 8XYD, 0kӌ 'Mrr#aGOG"a}X>C#>7!zG:H>CCVy8770IOPo eAօ"G.Z*Y3cyXqޫ||۱>9pCP3>3v\ Ot8yiQԻjjM>ޣQS135@6RMfj>5B->R 6jZB9RKe3j*FS+ULʎQ#(C J Q)[JD XjU_j՛RY *^*AAu`}Z8SV0Q>chnG?۬eW :7x`Jd+8dl;.{veUF0|FDP(>"{$+~8 #jHȑ3X߰ F޺UE."CEP/:U KɋTGPEkY{ 'Ο+ذ {` jL( Ю]ER ZtRnVMfR zlEχxbWqhi˷ip;WPZ'EO ~?|_?8]ÂBJ|Ń.z1Bkg.4Zl˥~ު.sW c+<}D.;G3p`6~8$UU|6H$n![1whئ3_fc^0p^R-%f 2yZ>!^g<i?|خP(\iI8?Mtdop妶Dџhm+1v~h=l0 =9~b*4$FL>$JAR('l*y/:*:ЦgՃI}-Nn`J@drm۸`/zWix v'ho0ؾJ=Es6!rM,uTQEpEY"gXt6xEK .fQ$]{(0WLx|-a@mhWlNQS"hY(k0Y﹍f]]8M JH{K:B1BsysAC6jR{ ,ġh Z#GbH.A}-AA,IC`l$21!0 t֩ g6VhՀ>0h 4sΫVT@J'FsI }H?-.64ix -gCv.b E=| ]GYԋb":55`;yF1Hw9jP92: ™P.}.֝]~K 1ی4@f,ҽ!a` <&a=Hy93>ড`X_9r`Q!mdwak p"ef20+vtdTZ :] ޓT(%`iѩa U-Q, 5J#AVW33S2>5tgzjX.FmAbLѢ#Y_?o*?<I{b4nșY ^04&9j崨 Ƣt(Ζӿ?rcm8>*<OMS:hUK;ѢP#"FP:͢QF< *e0q->Ij\s 4#uzAf^f>e2/-;b,j0-+!J \1eX 鉓pXTQ4MfВUC !=6A"?1KV3 M@B̞',̀*?GP^lvY T>YEv/pS-"ИN >ΈU۶^͸x cwlWG03oODFȤ8BC+45y7o)beڸ2mUazvޓžEswDl788IC31;\z6.r&T)$h~yǎVpy ifQɩiCY@#xeXIdjv 1`gfAH5U!(ݳo_{epE24y: "7tvM1ٶl{(.ӚP.SNpQY| Tʶ0k!mNFUB2%"(}moc+-'KIfJ {T'z2֛{ze'G=6kYXtg @TQ{Tq떫{ԸgXHs63U"OAUP|J8>Uu !;|6+UF62-k^Zh bY| B?$JotE2x"B۪sGU%F-bE-Ǩ,#$YHOz+3UMPYZ|NκﲲKOL%JC/t SfC SS-I vm;rJΆ_C&L&ɉmz`0ř>(E3;k<`Hdˢk{) N y6uX꟟ rp22$_`D)4cyPW Y86E/'c7^DNhsLkWC=V-U4WVb}hr3 s벰UMoYkhzU|e3la82-v#?Doj@gIy&cR!WFu&ԋu HrH;]bWt 9T_aD7}.ј?gZ;AtH{;Y,e,2!<kc7 XҸmw"O֤>]{HgWE.kAg[nD T#@:')JU YӠZa1h J 1LW_tJW)3evyI*e0!\̷ _UUoKp w͡- ֡z[cS.DAeh=^`^bEuBt6<%c> 憽O !$(OU(d #$9\F2OMB/~AĢ+|ٝZ0q\#iW]05T \35e(( 3ՆFo:zػ62$$22$2xI_Ru'dh@PA9ӉB%n4}e ]H!! r^A 8L3&wa^(#]Y@]4s8Aj=__'Q^翸>u=eĐըT눡UZ> 9EhRMLR玶u&"OPbW,*_̗B"D'$K<QȤwi4x; .x$b0y>ARN<Ϡ+t=2 ?6mjVDIhQg޲~ScjkzKUl:M9'/Sü7ط\b[ZGD9?"e'7h"HI ,Z U&OU.O;}ܕm廦)_]:a鱀_y|cpۀ(`OB0MI޹œ$2K($xx{L2> 4|"xfϚA_D#QQ#vvPʜ޶ڟbmj ''xXk Wa "rmȴc|C>\.>~fήi UnrSuo;i||M!]fi8jڸ aRcd$>8{qI&! Qc[c]9O(?C9g}v:GCȾ?;J] 3WvfS8#AFmᅫyIL% 1{TDLZVFVS?6,<41K **P/D#Qd=C=OhwgVT!!#0m⤤?K h5?k{8%+Ńm Z C@h \dȒ`n3V /i(-穐B<PX^QQKyq؊| t@+UKTVfsjJLXE,]eTx& է Pբ)\$9" rY}WĴ"Zoý:%i?z*/:!Y& SIάYqaw3ӥ3ྫ+]4UWɧ[5Ew;­[WTa~2WMNw𧺋Y7&b% Qky.Ė_s`tKwMXj=@x+ua+Aŭ\> UULW1$G.$~ d?$iGyA).uկF##K]g_Dw8IinɻR`ˈx ׳DP/'*:^wO]"3Y='@Skk.~/$Inm;Te" RiJHfD]Rirw#-_ܐn>1L62dl=zΊtaFރT:0rb;>Enǧvي F˅HL^z4gی(I7,S8pxQQ<+MI4!]5z)x]FA*MfUjӱ;G J߆0lύ-U{F1=#="}÷Xܗ2/5TVӶO8~G̋Hl0nGMCy? .dn4 Vv]^TK_'3<8LE'HDNԵ|7GocP?|]eűmp ʘuF6Ȳ N6i-|/\H0`&`fr|2:Sܳi&TSD\LQBp ˘m$z~A) ) g!m{׷ m>/jaendstream endobj 127 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 5257 >> stream xXXڞeavTeQƨDRҋp"vKS1+ev&QI4k7[8;go !D8;ϴ3;%FpHkG3d.DuG!Kn0(C @ M\& y{IBl'zL9Smgͷy{خq x? RoϐHۉ %!! f<]*Z4imw3Sv4 vmwtӻ,xlHw{XdT,py C"WGz^Kw;,xwᇋ&N}ԝӦϰ9hC|B%q1@L $b1Ll![e4bXA V{#1XE!Vs5Z„!(Œ ,1H "`b1 KBL '\<)I&6aLrM zӹ5fKJɱd.@PtE=ivଁ);d>ehrȻC,Z-иvre d~w0hDꈫVVVXllmR!\9]Gz>XCH=Nؤ8MW%YZÑ[w3KV5 G~}IT1ؤP@^ƅ*֛akkSh9,Yo%pT,%2~jTm#x,׭!9 +Hw9W(E]j S/]ȈxGDP{EgN0|d]6J΢6X0RP1[ө$ůK#r=k XOc1C~[euY~$|\C^y_)6> X2 ϡ}k7o]ufaX4e!ݣQdr\b2Re>ڝ-|i~ݑ/aw(6>#no0&= ٌty"ڰ`ng>,sW\\:{ Jbx#nGg?,fvH?oV6 X;njpJJ=3Ne(7w-́s`2a$)Y+[`ItϾ3gKro dkݫxƉ }2Js, F͟oݓvWw/r`׮YwIcCAX8EN+;<˘= WHDFpۢLRaa:k8`-å`0 . BTFټ-"W;/t/MȾm GPH B  {v1^a4F!,- ɷ>| -HcL[:/ !}O.`TQQ=֋ #8Eʸj\Q!fzdO[4rɘҔ Da'HV[jgZΥjyjj+~i>;_Cgyq$ } ϟ-RU^?Q4(&mS\UN Asցר*cT]\|*٬S)Y2^$8Lf;Hի{ՠRD&P}]R. Ez߅ џgSqtdA #;JL# :A%(%g@$XwʹoKX "4[4Ȧ UFC)׃P'(bN>(W"22_-V|,L>s$< 73)TΘtu c/̐ E3iFǪŒrJE܄d&G|Ԅ23˩^f,wu0Τ.;vQr>DRH`Ots7]RHۤbPJN/T\DrV|؋-NKFքڲOS/AH(5>my2^=❅AF ͚š^zp(G5/̪{zSЛI'xG00>la& =s[BnhmJǥ'2I;5wY QOQ<)+U)=%aƁ%~.a{I{ C~BfXd,RR^kL*MG}Vth˼E?S-Qz aBpn1@D}d$fTEνjdSq岪D}31_iZO}PB@kP~#)x2xwUF&HdCl%hiCJu.}|;❩,]0r !P>$y TǤ>(^?Xs6iBIzie7D#/aeڋj%,7BԜWka8 mS-5Lt[LD P4JHW$S[F(30s?z’JslUq.0Cs\#S]t9!NІcCڷ?t&C_Bvy=Fʒz7gxE>9n6v2}Me:tz[q!ŧ5HP(rCȿ̷_+?+7=o:؄=QRt_Ԇhy}<{ mH31nÃLܩ~!/TSmhT*jZ<{ y^3,56p4ڼkBƭ&峴ҴR{YyVaC.쯓_uqUb XK)nI3-ni~YLFh^"uGLO`nw=p¹p:iB R}"'TXugڗYdEH<$~|u @1tUOlJRgt)[-Qzуu~E$$KE}O΁MrQb/[4aj94X접nTH<O5W:bKr}4_oߌW]ؿ_w_zߟ6n͛D2o -x`L~&V]Ww"i#aRkAC,ѩu(Qݻk!z.s!/>[:Fý7#BƵ3S6y3];ڝ FIoN\uMlyt77uSgyLl M3(Nzg[Oޅ훝ָ.eGUs]̽a.p:oA%a-9{0 ,<~v񒽆Yyz+?zJ De? I']3NzD9 6õZaZTJ(p]y!E0L;`qtoO]Pz_2g7i.|ߴ.-/^];Z GuA[b B^8?UPZJ9"b=CUa );/x\ %s[ԘrZY%.!9ESjh*tgd䌧DZQp&`n!t:ܶpV rvBn' rPU/ߛd"lPtNDx= 3,4`fgsvaYȭt~#:xpo܃$F+<.lNOxNTӹYxPAB^\6~ܽxD#bB"OYhM 2,87C[hfu0z{CFEx7;)z~X}q^v&*rAxƹxЉ2}C`K4A;t{Ik0dI }{YEx_N',eqB *!+v5BN-Oŕj5n%?8Y{ݭFr.(-*MU d]ͣj=>'>@`27%"HED^R+:LINB6)(RPMƒD$1 Ljb% ǒ1Hro0(4oV̠kvcRF&pJQUs0#׳V֘J6:wz2Mc,j4v tl|$햎^hjt)"7UȹUPDEtce< Ȣ(uyvQAVç<p ` ]op׾V`a$Asa L_n'xN{#jሤds؈TyZX*R䢲#Y1 D1e|}>{j/. IHIށ3;=" '/+'(0ΟG[('g3E'N֟Gԃ/wbzg\6?I= # ,+R &ߛ4q_! e}d^N) (/g>^vj;Ey'}PBBշO2gKub#J-.Vci\PBnt~tA"<$*\")y8/k_V6S..Dy[]S;jD]T[J!yܲ\XGln~34Rj>@gn7Lendstream endobj 128 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 5767 >> stream xYyXS׶?TIĩ uZPmEe(Pg(^y[k}Z퓈g~k Py֌Iߏeܚ qCP(#HNK_O8TryG4T&8 1kǎ}o~"'U.0m474y\]K,!Y(KJ@J&ˤtʰKBCcBB#!$YjT4,{-].%ɩy<9)4i4M!d2=B(OKÿKiҸԨtY4=Y*ONȈcҥd>’ӢSt)1l"QirZW$Ggy.=J&MelIci/6H;\H'ŹvO*JI9QqOv("!mciJ1R܄T)pJ앗.1g^ҺiK2fEeo͉^*[!_z{šĵSM0~ &MBÉ4"IĻ*b5I!XbOl  q"b<BL %ćRb1XN D0!";$ 1!fo mO'Ą!T (#_PSBXo#-1 ws7зMMYZ>y{ַgU,<<8xp*2gEq0.€&`%:wwv4 h; xƴ*PWdֳp?30`_n<]z(mF^p3y+( 27R0nhme.<;' g' 3h$;yPG9ȃUme~"lp3q! =ӒcztPsrLl%`1X1rӖE"]~i>ȣ[_?uYlUEcRKBE,s~R[Vocn@3np"gw9Jd"Bg5 D C(j@)#BpAcÿ BsB}d["q88X9lu \r<.C)7~Yx sV)-3W6"QSVӟ!r#f C/2_vDd+#1hp .ߣ Ӈ Bg'Hȳ?QN- E)?fjm4JC9jآ6c=Tf+CJ(N8#oSa3ˬL ODS9o8Rr,?hXx?|muqE>B0J ʦ4LotmMMEU_f5SZFxT!膺r豇jPJ[ԖZ\b"b[\=yެz6eg|Jl YLk ]: $j[(%*+J4,od_,,H eԤ5͹{_Ѵwh,tMcg8b4 f 1]At$|j~6 (3/=š;TU8ީ;u;ITYA5]6kuzR%}N*@>(7 fP <~~pT+}ΗDTkըh%I!C$ﴀ2{!_>LW/E╝kׯ9sM2sM â^B@$u{붔}9?cnM %ceS3#ZlbkzK:O==w"5=ϛ5k4 ^vm Ejh1vx~+@ΟyP8"qB@rh!RH,%b3#t^+4,;ͭ PL[C?IݭQ/|`27 ,4? =?/P*ZDܴ\p` e/J?DO!zp\10 L% |krWQMHa'˄'o|,yxie0FyOz?Sq C9_sap(4D~npzU*uE3H/T{'xY0y(8_&}] \1_-F !NV ʪ֪KŒM>vz];sU-@UlƪhŪkZ9_ZΕ,gősv6z;N!pd F_1N L|-r^1D.;aB=DWq~|,QCs1Y1wۗYavDt']MQ ݅`Väv;3H)Z?Md:/m 0שNrt󨟹h<삧v.LEu  @$A@JoӒbƬҖjUgg,tPˁPZL_;31hq;l<>-tAh1 O>K2bR-bI]YVn0KV߬Z@EI k{tCZ@[ƆJ wjDJrԙҭ0JQ8$np! v7NLŜ iqzS7a!raqW6NЄ|K6zs5"P|~cYk fnJ]Lak/\_n<\upxf[d/wޥgJPsh{J㡃}- K_ȯO|Fr8r4٭o?hr0*cyYlܛ6c Nrv'Ma#> JI-7 o4TAO`dLIAea`*i-r Z,IG^"}^l\bG l:p&֐ˠwOw֖S8ۖސڨέ Lbv: r$VծmDAeaׯ23\Y*8ٲm%&SKAЋ j<$(O͐mRaٺ^p4-宒f̙?Hv[Џjf [ @u65qE-h}·S&M8%DD Fcw`/.F\u|ȓR8~_ů9uy1;u;;u5珷7 ٻ;e;.z $gϚ?R;%^vrY f`lCTl c[@goD?27q#$PpCjr=w MSpCZ7S6$:.6Ύ9u2hW_eIqh =ұwn? y?&2̢3דN&WdzwԊyLZ~P۲d;e88 2kTk3"Qa` Uk0Ў<:|6  CC#/)3+޾y4#$?''/:@:v}z"Ӡ-aʷqC%Ocvgb#wncOp9r\έ4ʖщr;'E3 Fј3o;JwUelzьqۢ59b/(7Ě)VT7_\7{J)G_Dxp7}uM)E5٦ܪJh/~uNKJ(UpU*M3nƚ/-qRfk% {3+WH:y#d!γ*kZo q+ct \&'w/9[V!/4z3l]_^WjT*]SS]U7l«C 8`J[x'7ZPXTjt쾩KA@c"p퇦h5ʚƳG@o}Bg1R ,6A Mj5[QÑ11R:LEFRKi97hE.֩Z e?d_-wp\WpDTBqJ ĥ(A|RCDFTERYSk15IfH,`&M%<Ćx`rWmû<)c>`aX{u"$ՉD$F^'>?C*A\9tg_N@j[BMc'XmQ^◽=β)rևhՠch* v"A_ Pr_^p= ٟ`%>{GpzB6HRS2A>PVMfɾKnɍIH8==x9+ER{PHqNcjN\;a'&fmd橊V5VFrd9@_E_rV4jV-Q5#$~ƚL;}dMEIXR ?g{ >4G=ĹmGC82~G Q(+c["/ ⊔|k%YM ٖL $oIV( kNUr\eh J[։5MApeXiKYl~@_XW!xmO9S)tODƒvQ3<~QLlوjlWKܵ@ؠ2i,*jL=;Vw`umYqj r[wti%eXزfG  8QĹQ1U/q; b؅len> stream x\ݏ$Гd-%@B(paEsWn{=rU\.N I7zϕ[0{݇+g^u:%Wp1f*J/ wF Mʔp6qY)&Bc$ڢ?k=ET!m!H(er:b!SP^JfeʽM"+ڍ;R)tQDG;{:ePlwvw?Y1Fc 7zNQ!A//ep! <1ޥ{>NwFF+X6ʈ̀IM+Qa@ kT4tsn֫>7`3##vu[?5ʭUh5>=US6^ό0Ћ まğO$Kg8598ԁbN ֪_W>*|UwG+^xQoguen:V/* ?%͸whn]YL_>]($2~'?2ˊjjȝWWo+oUcE!G|g4Qc gWCfO չ/6cu yѭ[=u}Jk?3#73-%έ7 if??U?dܺɭ9֜cahuR Dž8wJ|9̈94R:piEƷGGi=<\YNIN \o2Ug0=eƌylWnC cgq9NIumf!Juߥ8)Tgle}wGampinz XYa)>^RFY+|V3B'L2`ҞDcCC%dVeJœf̉k$i0H'OG$Ψ_ZB, d= 1v+w٬:)4?j/CC@N*T  蠅c4)O -B {D!g4 +\Me~)/+03) sʘk$q0PxE^G(tjw;MxѵqJL;'<,jD-)uP(1;FnlΗnʗ.<)azQD>"'K}dIs<)󙉲\,‚!WHi,:b5R\Q'-\#ka( qWNc θQVL3M!W8DZ: c>O)JmF*qec2wyʇPHǍXlYxp6Dal#tgyDrٷv_~u~۳ǃ3ޭymO;8{1f5PZ)x]mȃ-´wT0 W]͟υN&!b mx1jS7`S -v9TB[ZXeEYK#_#NdtWQ4"n\k !\HuM;@dƴjSkiqvO5ĺS vi:k=m\ۆ66j% P7"mr K߰[?]@bS@N]K@3d" Ɛ*ԦEѨ (ֵ$ jm@/;+I|U@eCF] @'\iP4A0pX :%1>LQ>+2Xţ+2e2\ 2: u2_ywR$l-u*itnjiG&$Xwsi2S\ rNZf XL#e9P5RJ.4e5Q\ B4lIU?J"dC,y8*}ɝ]tmwpvyLG|rXY׼WָjBF5{4ne퐼U k-E{\W2N(f`VU%T ٦ja֒ !~&BITk(å{m~Jׅkb~MepS!\@:be֜)]rrO￿U^G1u|i?%ˁ*UKz$FF[Q!eũoM7;CCz|/-K1.үI=7}\}d.e9ⲽ^u>CI=){[nAẉ &Nd'w.EG/o;KRf7|v )U=Nw;gLpؘyK_'@2 eTiK)cIǘݫU^xҎm`> stream x\Ksus#X^5]b4^JRdOrfb&+RC1x%*$ޤPy|~t'Vӫ=rO'N*}SspoO|\憛NWԻuN%8;Kf[d/y bBkW3XbmY!۲\3a^] aQբJ$[NNޟ("io^Yu8stڝɭNAJӗoOh.wg8}}Q) e LU9΍ {QAM-!7}9ӷؼİhn×nY?<'΁@hoYt #i5NWoδ鼞qeWgXkn]&>;(8ل[z6t.Q/QMfxA* -;l}ņ0+{m/u5h^ F7@R0pPt"y;'5Ooh۫]5Wo*Ok=k͙aO1?=3hEǴt7q0|āLKF5e`L650aw$doEkGe5GkoOʃ>؟T9>*@fG7VK]tKDQp/#x"7B+L(kpH) X $,bcZ6g2eʃ1ڝxq 2aOLlj6~ՑOM_Wb@l%1Z~k2SvBы9BmKv =ӕBF+w -vw8q KreVgyS4 ѷ T&}yͿobwi1T'sA $.1XNkU{< t1`7fxY+m_^ZI͋c5= _Z(4[ZOA>rO4 ?p5>*a NщUZ#Eͫ~ cK]48_bR71i|T<[_"FaIX^eJ?FJe @*_FjD=j#(Mncgʡ:VHTek@9bYxNo n~8J nYaV1G!klg>Vn<̙Oj4c6މvO 9, ~}F_A.;;{Y))AA-Ѯa9 ѭxV2]m>t*A-:t&&AryDeAuAcN:Jޱ' jLSp0 `?ހ71Sn&·7i  =a4ﱸ3߿nE[ExOX(V#L$5* -z3yc(kj ץJ~i7fMEΧKae z?3wV=;^f3Ka5@xua`],%4q:pj+רzF8niS0LC B\}K/"=OwO=#7L~gEUX/VaXM6Kv30Ql09x)i̓qL`UE6,2+ e4Q8IHB @$$cA ?-OfT3ݥ%,U ,Ȣtpn "H2Na-e mјg\V O"(ԧ>mԾ)>z\ ;_M<jiE3UhTzuH|Rpzয>]_޿z!#?ZWY??|?]o?p NғuWW5vFiӐ{RE׏AZ\zoqjqS(9({zђ|qd>OY]ˎ|ӣp*JT9%-+AZ~z"̿2,%PT$fݵ[R{T"T|"xLNDRr sRdz ZXXb#vMq+2ZGjׁ5{&U y͢3P<\8U n{USN"(&d*)0Q~UYHSaB̊4TXxby߱Ms@f;w& ʴ+2T8I2^e[g퉵E0K<1u@jU ɾǠ#HG <-5dNW4Ǽ]Ǔlȏ >`&wdV$.!;F Q@xӑ;V-ZKS(Q倷_άB msXO,$}?B vzɳ8Qc'0W5K E:XUGTލq#Sha&XPG!.3:) UckLwEu^ER/H {;-c|v>D1E W@PwmH.vqDf/6"BȖ*p'KSpT ʾR^(6~ץm8F:Gpw p#`!?w~/ӧNǏJe~zA:벹ίWby-e?O'Y,8=|FINT,,KPʽeu픒'Oѝq&VKftdJd?-JX^ +zJ28OkKli%"~҇DД}lDJ2 M`OwTޣEn h#.2}uh}+F4z7,AZK4^0Ju6tۃFllpZWb[_LǍ l(Q?%W:>Vq>l`QLs.V\JJzO V*TGe0.jΎ9N `R՜20I~* :CIܕLoJ W&-wY ɐnVAiF~-(o_uMqan6.)ƀ!֕kBɲ4tegrY ~>6ޥOݥ:xl |NLj:hzWΖ =LG]WGQw+uL 4#"I~6)o1%`,dwKWo]$r[O 5j`J|h,Ɉ| nP RW]- *F$&ͶRyub@lV EUK$]{ж=}i;"FBUXi^Lޞ :s[p;* Pw)SspnS;l v;^o?7[C4ѵN\܏@.BsJ;}9lbbtS۝[yVQrJ(\u=&2aTM=WWߗx(!pw!WܞC˥L좑t˜.{oŷ5|SU)زN_nNW~:K~"X|̤[}Kj̨`m rOP"pړxp\4MF{᪺)fݯ9jº)k $3= }},mR.&0T5Z* aҋŶT/w{+mIYؓ^U*o CMaR7J+GyWi+lMheBBBQ_R}S㊷t~qpIe[6_ZwER]!k]xE~o֥Jv$߅adE&DoPG1G7wv |} lfjY-ɥ7в&'7s`PkV6E"?JpCj҃#㛷ˈE .`*@ՎQJH n4C!*4ZogUHYr})aov7<@uP> stream xZKs#bK"юP%9(SIي%*\RpA_cfBɊsHޞ~w,U|=P~&Շ1B0#dj=s3#b5{5N0ELIEYQ3:JYʹ64F+FG|̙$ egچL(/\LJT#fB5eLt&*}XVgܢ0О;&ֳ~Iř DgygU9,a [UWl(@ͅ:ཷ3:%y\<k AmδiFi :_lZ7FJ-@-#U. t4l'Dd"rj##."6B]DH$s$r(#ggg\DS{7:DMuMve>Fh`[qddMD JM`bfd;s#tU3$/Y*zUpu,@>e?M( 7l U oi,&(S^ F$>(@njcaNỴ̶5}~Irػ `ʝSM媜 )SpJw[ c/ gI-E仂ĥ.iqwGɚ(m1Y9VN3 ߍAgg4iF lfBhڵL{#~Rbڳ2i 0#&ոP:fO0#6;xGyuv$ejĄ`c3V$*#q,nر3$gOFLG5:JUM⍺GIynar`w@ k tpJ^8t qεs7 C 㺨c{%TLѹSoḤ:bp u*b&TyS pH5b&T AUN5`&TBN5`&TFUs$'Q|Ӑ 00!JAqƒӞ)Sӛ% $?\wR4 br8h;=%vWü?ݥeXC!:.//H,nwWoapq:T0d7G݈YEr?yV eXQ,i{eUӬ{}UUѐIu9C?TUB'՜ZB=? Q7?MӷGH?Kt\!DE7(pmH͈j dx~7C^spњ)%~tFyɌsfzR~ 4w^8toqGy-YZۇ(~~ 1IY {>ÖYZɼ[PM1\ ՇjTQ+&T#&B#19Ց՗_F+3z7BS u#;) `-@nG;'*m 18H**#U#U6kQe:~ghm>z(6,WF1xSHMÏ 8nXU/Տ4\#0u޶]{X\{ZdxY ͻ Ҙ0cȼf8TM8,v?) 9UkC>!q]}a1M>z0l8׵JXZf"?aO nb\:S"p|LҸzt'/l<`<ԋttӑpn<&6k=}נݶ#IwM&Y˚Ё !&)4tK*o~$nPZ8ҿ,:(\I'qp.Kar99.A@*c .r{ͤ t39I7=/0*潕vRIPɸ`K:N;ԖVrMdA W5Y[tH"@ncyshNi2bNIk %f3O=3.DƶJsmvq ڦ\ti ->M^}R;i8GD(xw"Ol2elI,{AQ5O/T=42PGcǡNngj ҫ܉ aQPgE'M~^Plt.s [8/f2 uendstream endobj 132 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 329 >> stream xcd`ab`dddw 641H3a!O/nn߷}O=J19(3=DA#YS\GR17(391O7$#57QOL-Tа())///K-/JQ(,PJ-N-*KMQp+QKMU8OB9)槤1000103012)ٽgf|;?̿ܥ;~3>,}} |g|Waq6;7<_s/wt\7Xp9|zaendstream endobj 133 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1456 >> stream x% PSW#< PSk(qpaKTEYD ! 2 xjZ{e?9 ɰ'ߍ:ώZ 0tF9:F]O/g,"+{={ GF`|-3Qnj//jo4*^;; ؍2X9[X CKiL*jp+pq'jF)ҖBK]k; C+0y߅2pbڴGpnշ-.!h?/xiЦ oM b&f 5sT̀7YlH{G:<[p)9.\< @@겄 _*=Xx"3?np> bo-D\ =y݇wYM`ˮBSRW*X05Xm 歈28kKz]}!_=yţO.?GĕҒai<ڜP)m C<}CZB*=FiyNanlkooQb܇" ʞ] $@¥A]UFf+:1s&j?6/g2cږu͕;kc }yi{fB*hUJwtqDEv8R{yK)'WG]W3B`NȠ`z2 0؝OޜnLS5oQBۨŪ 6OK0TP!&QEC#`[&o2I}%R'pendstream endobj 134 0 obj << /Filter /FlateDecode /Length 160 >> stream x]O10 b C+qP(/ СY:ߝ|pFcpƲ- DeQV-Ɠ剋BwOϲ> stream xUV TSא{$" *VAA'? WbkKBET- TP4!mZ=7kzo^Jf&3gg=FP4MOKMOL0iL~12!cIc)\ iw)M{F'.Z+ _2+N3]+G)!UYܐtŊ59y<<9uMFB?)\{OoN I!)#"3sZN6ir (kj NPT*%ԇKyS>#KQTHR`*2&P)15:NޡRGxʌ)eDJ[z`7"gD&"OF)F-FśĿ2S yrl [ʙr[FG.>bQ̨ G5z1ml5&B3*»Mz=aOtP*VCbOV(8 K t"Z屭%>+o`!zdEV<qFx/H@rW'3ѧ䪄*N J슦QRquw"E/(Ξ%}c"48qx#pj`e}IC*z@'L҉@ RX y8X0p`}vZ6RS M؆3yzOVےvKgb1,AtZ װF?6Ky.!L?TG*Z& @pR*r1$Kwv,Iw'E_E`z#VT\hEZ#wNP9x/ rBǘsxI ["!P0 _ ܔ umC*E;9/r|4qBx:m X.!*ă"|?f m28X )T p ;0/? !^A D©F~맻Nen8tLY_=B$Js(>]3?;DܽbdkM~[Vn Y8[j&,XUt/. hնٹ+6".0Z{P6p Gę*89AO18sg| + R ЄIq~ -Z(:N|qcG &eD Jx~'RNxNX:a#rw,a0nlS0gy7#»`vUK^ '\VkQئWnIk!6'9c>1 w+laz!ג1IN1_?Hr)iFHtaۼUh #1ho!p}Gv\XxޕizX=l RTUWy~=j .#&!f-i ~9{p}TxDɮ+\DPeX',U&#âwN'"y7bKSp*|&6W1N2>.'xyh ȏ8!{QTo']}DE]>^}lriUl &ebp5xVIHn>FR0c%#ѼT]:։pGMp&Ev.6w,[rΧ ()/1cMf^ܖ04EIk:٢o?۟"F?_miG76qAKj7\"Y _Ko6s.lkAn0At0bY3ٿA+}zǍRvpapz6)`p*>2'!/,VњP8Z:>a]M eސ*Hwbh\=aa,WHjN@ҴNBe&y.X#o΢bS<*SI%OJ s? Ax96^ \/ޕI^&#͏n"f^kkUW^=5l s|BQW]O;x%L\3ZM2ln7V|'+Ğ6(-/`1:;]5x]C`JXic5ݗ>,3< *f):pg׆?(%mLZuNr6LfA8;ā/¸U,G5`Ibh<"!XPi 0 f"p`E2lՈ#`X!-ikD歬^3RI_BVՄP(43%6.8NEzuOҔjĹ=#p\Z}ayFbP,f30v# "Zh 9W+yHNթqwliIO3B70{.v@e5# ">((UY ;M2檧Ti} ;a5(L]ySlhG_퐑F#|_JZٰyڴ'dGny"ߍ-wl[a.T?Z^qK+6rd .䆢4< <{h}Kay 3Xr dMpH*z$kG0ц3e{h9%,ci!\ L :,Z,+g/ t!K?ųGaΡ Eue[)TL(膒K)?#ҽ{PԿo[zendstream endobj 136 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 2114 >> stream xUU\L?i9i1gVdKE̝QLMk&T򣈦"Rdl"U~dm{,+}L{8>{~<4eoG4=LgȈKOT VL1S˗" ro=h#!b|DIhz>ƴ5I 骉a/q4wϧS|T2QiLI *Wbdi)q!I)֚TTjP5*UmL[cJ׭^ aab!SEQxjS0ʍ Tɔ P:SjLͧB()u)g'i)Kۍ+kDH%:{=P}&)fNv&{}@Ld`HٱTTNs﷐CVvÙsx˂CpKQ*|ge}䰐|~ w| P.x8)z.)V`iD6r cgnBMk.:e / @w,as1lQ1P, Fӫ͏[pCޝRxRTh8k_c P!Kc]ΚmSG@`A$TXJ(_wO-s2؎8/o΄K")Aw29-KM aw!heA\hG$a_'ubVqmh+EԜ+H~XD@;E;~;0u 1SXP!?}yL_26( cwg*7ۺok9!_]/9| ]Awip`ӈآͻQ9w|iiR]dJ>&`c~QSRr{Ύ,gk€*pbٱh&awpwRṠ<~*DpKp%Jk 9ʶio8x)E֟<-RpaEyW\j#K:,+ƐDeySŖt+,ͺ]XgZš5L޸1[X!m~UEȝs.UK˗pd\<E1?&Rxg0ja>" ϰZl>it)<7Gx4Txpz|G1izi[]{`Pr]GGJ4HyEopco( ^#A gZ"(r[$qnG6s ,[Pp#\J0n츫/L[|%̺0#^܊6a\ {OeT\t:MLLxX/W Xl]bo2}x{NGN^ >=?ϬC{9Vx^6egjnVgzu@%N&z!z5$H$<20'?`?aDޞU?XgϊOnm%8Y/0I1Zt!E*U27 3ߨ-yQf#W̉0g) } Ւr6N}|rDʒokHb|L%}[F/_vk;1G~󂂵.P.AߢNtZۿKA>?h$vϤ}'f])|"Det֗Cֹꊬ%̼(Ole6W*WX("-63+j[a &[/6M/ŞVN,)HNng臑U>'EmF[[۩oZ.TE)qsTkё{ S&}򋦰*"my>YX[0B"&Y;rAa,濚FaI Nb{ r)A :fԲ^ufښ$ `z{ mʩaW ?(j@+#چcIh0&$EPzhskő^!Z( `~aaACk:(+endstream endobj 137 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 2029 >> stream xEU PTG~7<QgbtߌAD1^"U¡"X0rda  Y$Ƹ^ wMYڤeiJbA4-uq<:#̠_ #n`̀e&<m1l"LpI *:*W.P,]Y1RRHVS hs׆j1/tԑqcC9.P´8Ml&HUx#51pzȘx&V(65^r%NK?Y|E(ʕ+N}DMlj*QӨ) z)t:< 1HxIgS*)`WWhA 0QܩC!==g?${3 5m^m󐖒5JG HNnVn(p¥k; HxxO 8qY/32d-;DB)F݀RhGf`UUIFy/6I7fw tr8g{6#&$"qhh=5֭;TsˈPe~{u;o"K3ZFhnG&\aq:eL~hkܿٳD ,YPĚ|סsۛU:NgȖk}=b|G,ot"2@+8Ll YaL;F3="H<UPU\ߜؑ,.ƄjyWUypN:UsZQTHէUŻ }Wm>rT\J >s:h Y[O]  R`:{'d6" PwY?*`/>V-Ʃ4*q#\^p%eE``I,(ݠ++֗~PRj+-{RYEDX\-'VOL&%)lf?З?ZXWVC!\q;u M9vgx"\fYK.kwo&sX2 %J+>An< @ .Ǡ#gf߈B&eP˶E ߵKaa_o~0Q:2n'th?''Pn>y !} <!U%~tOщCƽཪ֮w0M݅03B7H&:bag :"13.\S_d^anG+~[V p##a9lOOW'è`2U4 #P# WeQizmWXJz oˈRvs47ƽύ1N~`#nA;FxO?YJVjF/e'uwk_YR%d<ž8cCɾ=La^ OnJEdJ0 b{c96;$nv0SF=kgj8p櫫fѡh^9_w/_y@ej@j\%Se|k`ֺ\b뽻!VvXspuľDeVd\/U@w_!wZ|h9@Ӧc]84Oi3R#!U7h.빾&R;/!Jüvc? cpO[nQ%GHA b:6C1~k/06mSUZ.%bY$+L%huzB E(nendstream endobj 138 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 4225 >> stream xW TS׺>1sD Ez*I*jץjYA#2I $DœO A 1$@kmܪ>^{$jou&YYZg{m5pL-Q%R*ZFMjI=GyS>T]]{T XZ@5Ht@ѰRI*TqE{mȣ^T}F}:?U31 մ?YP,$wl4 !=WO%wƣu`,,:sb縎{px%,ycP`m>!yD=,Cю$fI`,y ח.wM_Etsds}}3OVi5A x<E%[Vsg.=2 (OK4 l O£ٶ F LR]FC]eoBKr$X)t!nO+upg]٧sIAG,ܤz棻n(.@NF[P(H残7𾒜P\^R8̒Xo v{6/Ln_d `,g_NV*XG(&hf^̴y%Һ&kMmS&Vdm:Z LwOT6گZypa|PlZdfM:/${| lLg옷6m8IhQH:F^WG6 t䭿|{.̉$xe6k*H3sUKf1L0U+4r!ս3kVYE)C4ہhh3f {{̥(Vrҳ*F{SHT9;ۮou!ґ)6=u؂ }/jGױVM #SH@D5&̪#arWMe'vQׂI" sk4oh'K,pJk|TL6hRU) M+R$.X  ȨTwl4U+I}F!ZĽYѴ>Nǫ@ ((o$6l.EtQEYkSv?:0V}1p42 *dCY2=4 Mșʓ_瀽gvU~_Di=?3\κgk1sA}%al|OsXɝɫ |*?t 4J_;FDά=8jq{ii2,5A@Jʘ' $y.y9Pc4"<-6Cd]ޡ`Dm[L4Cqb hbDCFc2&YXDb;T}S<HR(Xu+inV]jU#V8jf6 6N] ,Id8i~l#NO~"7@OqC~ y#cJ 9"(n-Vc1hgtlpD_`ۣ"<.Ntk08Q^)*EW0tuOMSkԾUfxM+˿qK-:K 9:,?Ώÿ"ƿc1;OYlZx@DopO+Zz++ʷO-`-]ܾc2*GBHgTi Uu5YUL0~kq\SCb!c2#a#Ώ!KmiF7 Cq[!OhLXVẽ"v ܫEZ T˜ɢ.<݋|o̎?zΑS\/ ]-[>K\n!b߿q, PrFN#/D 9do2w\YsuOwtB5cnz_\d8$_̵-ɍ R"1Aaoill.oyQ?DgI_2щE-P,[60zMJLOMZُKwo@ --\2)hAvޣ |bXXNNn[tm3eO;yNٕ Y9l+F!5ɺxZZסOMM[n֔O,LZ^sh n} ;f"3lg]g -ضi 4x6]j"ӹlm7{X GFu_E&حDy+2v.$ U_鏧q;aG+{*ߐe(0.bj5hgG*0hBk͝VNW$U2Jw/j@ "Mۈ` EssvIlZRRRMʒ ^CAeaSj(d ZאZ|t `PbynE ؂VWK%%b00%ٓ0o0llp! Na͹&`J %"lhZ_|&|AnF9:}ĸs{/2kˆBr(̲<.sJ=%Vx{zV5bz{[endstream endobj 139 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 328 >> stream xcd`ab`ddds H3a!Skc7s7 ~.ȘW_PYQ`hii`d``ZXX('gT*hdX뗗%i(gd(((%*]&s JKR|SRYt^}י1y#no~\~r]O9V=׋翛}}5۟'Wgq>7<_s.wt3\Xpso/yypendstream endobj 140 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 358 >> stream xcd`ab`dddsH3a!O6nn߯}=\19(3=DA#YS\GR17(391O7$#57QOL-Tа())///K-/JQ(,PJ-N-*KMQp+QKMUNL:)槤1000002012ްتϝcCEsg4vWmn:nFevs^c\oV]ʺis埰^Ҝ]+#scUNQ"Q^?c¾Jp6ml-b>sDendstream endobj 141 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 2699 >> stream xmV Pgq`QC0IxDDTWx%*x 5aå(2fFAQSA#'&Pql-W٣5V^UWw|Qv#(LF/[8sp*!!%=8ѮQ7j&c)LoY(^==M={y9Kbaqj0Nn>QGDk fJMMMOZN$mb6RWUg1,ݞ&#qE$.>1IaXzD6*:`Oy̞3&QkT@mަRArʛVR.G1S.R;(;*z*PfyDɈȗo}"NṀLvǑ{\e?*Sr1ߋ:v@<ޗN?n^LFd>kf gr;Nh1[ f<2uj.9Zvh86M1,*H=IS(ϺlN,ΪNi#GCW[8׌զ}PK e)8R.E flLTHdqVuC$ZDMV1fcq¬gdTB>_?19DVDH} 7'δ6hY+xSR1GpnHD`-[,d`C UhtAPcp]ʧɔԚj6qNoج_(FSS[-]"P`?= N| g0S +Pi\]^0sD|лQ=\;a,Hp}7SI'2: [hgVKW̧P L-z6yUodMLGL -ʞKʼn,9ENe{EM "&)~ܪFb q m4}z.EK1آ.JAD߻4z >hU[@ܸtan%ߓ]~*$܅>)˕ NIrlWIn"[%|4xD=tI=FRl 4δ9աB^#{O YEiTVdB&@1%nDƴSuemӎZ:s0_4-i<%S's@h-ocvl֝1+310)S|*9īihbk-`:kJDbI1E[:ai'41V_یM&iX‡nѸf`>898frpFs@E142IqiBޫ=WNI lLI8N 6}12 }@ud),C\{]'dVCxi]_Cxn~(n {!Ѹ'R/h3hչ͛A\'%߸t^qVV1xӎX%gfM(+S'ѥR"z\0 pI@ TǶ%>qdӷxI04)1D\,液--E5`!f. PT,<\>{Vn+DJ`t3񧏕Y9ƽ``giphRv?ZPj BCumNbD Vv:L(h.=OzMެ$,!]6dq[-l$d\P>%1,O9Q%'L^DK-3W;$K!wA {(_poD窱M}8 yw)`/( о>Nw(.Y%I&-g%B`ԅB&,J\0?]KษXk6A230&Ӊ,2#:_D/Z+adnVCj&.HF_A:*uːAJ~_7p^Noh~ Ç$-(9qUU7KΞ >&ի쬪-oBE]|clޙ/_FK'CNE%Urۮk }ŞSv=帧WeRQr_ΖCaBO`R5cmv(&sa NldWp '1(rSڵ/˰vJ8M!4Y?[kLkfTֵ4X ]+hWx/I FHuI jÙh|jjv:3h÷ud _ {WӻG3Unoꬪ;sufP-0ږi"Γ |h11HJ/C2p  錩85{OI;42밸V|ZQHy-vmvTRendstream endobj 142 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 4925 >> stream xXyXTݞqt&Dqԩ$51n1.h4Up dgXmY;0nq K]Sm_&M3m1{y{rƎp+oY;Џ3ӹ & ma<#a$t}"R?ܼ"צ$ MJ+zUwf‡Co|C_EZ dJ(Q8Bh#ڌD=/b/Goh0+Svc;}3+fcRvW7A=P_Fp8CŪ.q}FԹ0 tɆi&iF6+>])*’V| vVLF֬p۠E;͉!C~3?PoA1K O+y}SH&u1nGS֜JOt? qeS#>@9+po*|d쮠oI%[#1dD_oIvmt>fg.~`?n8x8삝Fu%[@S}xM?D5 Q). ڿ"e:34O0jDZ04V0JJJT5iT4-Z i…\Gcz6dilI ?܋L5;fR6~pO;3S#FC͂4vx vTt[-TiZA.Uj7Nj"?F @mG&%&vW'Cu cIwx5ⵘBiiwluvoƪv R缤/bk~ɖR/3$&{wo?*5Qd~Р,e0|~o҄ aO4EAV26NA9Ud;GcTPLf3,Hlfa*M jSus7.Fw5[yG"|p& CGo3$-BKfmdP *WIlO6w͑V Rަ.Aگj/wU*e2vp-;cR9q1PJkJp0`h*!R٥*E :P;Z[{D3#O}ldIK.зԻpñԣw[#ۈCWow>%shFoď^d_EnR# .zoK`'4L6z>딿8곷P6-)v1dQ, М_5yp uKտ4\stOm0Tru %UMM=ɳ)" Y̎6Dg):_1>)(^牄);S!$nuDUwwiNEjJWnD:K 6ˈA( b= IXv<>l_ :u n GSpxιPMnF e x:0roCULZj)ڹh{c~#3379ȏ+}ҏ p;^pJ&;/?9Zܭ[\q|!fQL_ ׉ˮIpP8zGL)w+X>}v&3:Mm"nln47S=g2mz = M>stoFm[(%cƖ."ZڋNkJ#bgat?@)֔PY Vވw>iGYȈ MRGEDSWZ{p2$8waܚtR(?h묾l8:-hR_]4> pQг˝.&SI·\2G:uJ8i`+z {hX:m[a\I:4(&!NdBKuw~To JZzjt i z/ӰxU a[D#6TRت9揮ۢ/};sI8o,[{ekz/wO,8X{2Z"R.l dIdTӡ]M*YEA%caPg^2jJT:}9Gd5:dі(޼~?i`.bHXl֢2L|mFFLB,#u!džlj)գC,T/{0ӇG:%RPfZ#T4ZBI=m(̏G{hݏhSK٨l:mWC(S0 Ma?A^zŢ#EO/%$IIq pc2aGqoٵUT\(:]h~n驊7ހxcc&aaUendstream endobj 143 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1326 >> stream xmSmLSW]ESnӁ .s`n@ A[B7d-@W7C'˶DL$-eWINޓ=yy!xuWzxxteRA ppR 65e^ K{$P%/qO'Q$͒mz6]G|< JEv}gm ׵/ԛ8;t72BI_!C}w+Rz~Bq?g)V>a{4\DUkkBAKLmZ__ď&$>o7>V8ev6UM;O .LMœx9X H2*eE2HB2n?Bs9gOt$85¼.t>Aw$C=#~D`/0`i[={WYҏ7?o`QJa~b?y*P?U 7s{ 5n+YKJ-R-jC%!#8D̔ŮfD|""DOyDbendstream endobj 144 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1063 >> stream x-oLu(-i"ޝ27H\"a-0:# #RAH{msZ(kma˶`mM_h̢n&.J~a/ef`8g3e A\x&CxVXk{ W3@)$8;M [ʊbŲJ1hZ:ZdՌV; Ú*5v/-5L%JDoh;QTL4>C7_XMȕ<re Bb : ò:VX5e2k#/ݾ m< fTVQ0x =AD xx%@360qA]cg6dޫ[[ 09s4,g?/Ld(aOǟsjs;`!l0LN=4L.%hNYUjPݽTb) {VR |k{loSpSc YB*XFqh^ڐ\2>6z#CTR;"s0FC_=B+"0Euk@ Gё=YЦj7>nFQ9f- {A''#Ǯ.dXP9Y 4i:P=.fJs3^BŅ4۷$Y8${ >v3SDz#1[j9eCmb,8d3q~h  :aA֨KxJ*v[B+ې In+Nׇ͹wX1;4d~("tڻ/76:+Ծ6fv 8/o"@ d}},O/qT2zaZ<(s_U ~ .s*qFP鵛߄yX^$h$범1:]˜J%)Ragt^2'"Ԕ?7i endstream endobj 145 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 386 >> stream xwCMR8'vz-   ZWTmqCopyright (c) 1997, 2009 American Mathematical Society (), with Reserved Font Name CMR8.CMR8Computer Modern3vťbڽQ"DfVT@htkpozc,MI%ڧϋ1# :Q?f{ku؎׃$Ena}{mltNx~}vCoa  7 כ Uendstream endobj 146 0 obj << /Filter /FlateDecode /Length 3685 >> stream x[KoODX =HrHM,=Ȓ,Hޑ.cLi<  0 kŪdw4p&Ngů_ 5\-$axX +3BX 8:?,y189SLE`D.#bFW\Rs) ъꎳZ>xLj3mCy. Li&frBDӟU!`N. `zf8Y/F'RqfrkU,aBTǹj+ZXJ)O\x1~M{;$n_ϥ ~rMCvPǓo͂XԖqeQguNS-`R{ breh5dBM& :O1n(X=~̣<瘇<:0n*~9e}=-F#Q]]L|,Lm_e_dfp ̯+M`\aqÎ]I]GS2)|nѲ䐤k\,5N1lIZ UQXo3:,)5GmhU:w pT((f 0Iؙ,_20M(<3Љ5O&BEh4ʔkIRZTF,Ͻ[!n3< u%ȗ+)\czuS<ӏu\B!0=_bXghԪu˄^ub 5VLf0̈́iҳ0U +@5%=O;;/]xeode_sbZ3Zr):jw^^cw)%25_ow󛋻;J:rID8)Yn}Y=Frc1aO@5IThŁ`+Ax Sj>TKK: T'+J;닒 =; }=~ߘ]49GPi^pFTgvBn?AS7X_EROWwpvx8|H-m|ኀJr ::=,#`1rOIufsNj#icj>mfJ-\t$.3b*¤J&\20MMJŔ)iSd&En/´eP G/SR? 딎1c>ω'=rOVNCQr:&2R5WR3aRX|33MT-i"4LZyI- 'i)ZۗWC'wiāFaaI,hs#1X]z@|0n~sX4 0L [Vtv1Pݖi7%ߓ|~KII@A6eօgN(R| cQaٶ UONjo_tI0ls` oj%WQe]S1]Z9+Fb*)?)E+nϱ֑Ul+0ٯ>'$bA]#J|> cViثn@B%zR& O 'f\HKJ",Z:jI)Dn\-06go oWn:Vd8\&ޛ:=V_4}HO)OD ९Bendstream endobj 147 0 obj << /Filter /FlateDecode /Length 3727 >> stream x[[oc~W#ЇKhA4hv]nl)%[;ΐ

:"KSpGn:>f_wv35HtʏFlpi.V93Y:rzf,ckRZ8iErFuʑ VC]d,]gu*M2uxbsWFJFz|l|=qgv3%Uf|y5cn VlDž_ތ3~$$W t9mLZ1雯&.ce7뗓VJXKҌ;|*H{i^4t{ռn~PM {Ct{}ѷ#y%`RVclAϜTOxx9z-;X͟'f!wvU]_ u>7Y<g9˿osk[ȭ݀w?yP~Q˧" nr*! ~|'`pUw[ǁw[̭t_+66!Z!㖃2C!P/kLon׋͡=,ͣuA0br4_kV20`D'gG WNB1m3nFxCoiU! l-Di4H8tWlEgE($bPT5t}+I`C`~X]f͡v/63T_mNY{,t_a}{au3S Z$nMx4z=k7bq(^a(x- Cq+dD 6Ou$Dm3&t F2L{ʾjxޠ6]NKB&}sC.҆pbd!xIŰPewH6q4JsUpv| }*3p6Y>fq WX,NiɁ̒|[`L?A/\7 BA28ΰ8Q'sYs_):{4];NH| m$bLY<: Ӻg? qD-Wia>HE4寉',5JMꬷ¢gH&W-&G)W Ot%X+oZ!5@krE_5dʰ탣EqGOAF7Sg:x}l+~" Q lT:d"/'WJ6ISCSPtK0S˜O iQYd#xmE%6V itX0W%8Crd 2,賋@OXiE.oUwx 1@*4s4IOQ`6 7!~3ZA(,s^ `r @-D W>1s!:Sn%|c{5&^0ϛԞ-M$iFm2i,[KT+Y_Vi4CirO~?шi`e+icS$Kqir 59@,P??ΈDlE: ñJ˒*f9MDca58b-|h$'elÙ|UNVS$}M"w!MFt0 ѼL*Ъn;(=`Pf61[~{jhSVVoL*/l‚I'={>Đԕ%:J~xwpĒG@9 -QPk`=ǃ:ޕzCIX^M%!Un #$'1B59'NDf*8@YyRN4pmG&5ng?OM f==iZLE/cCNu`axR' ?LƙC*0IIH.\(g)%'NxUe_jrj[SW!>U Mљʑ@{N`E\'pDp+tY,|F ;qW{$&0>]vs))n.~7q)ý ñi9tUiYH AhpKu! .I]ڗ/7 |0OZ'kVCcMkYpǫx_ < ӽlT. )3WMɀu S+隥dO%~ށϹfKV|7|$2C E9bL mb[!D' Bpt;j;xuo&7ov2i70z=$70 lE5h߉zqlJ;=3|Tl~bs-G=y==Qz^k|{MAʶEq; 兠*EEQDU70a`݋-*4Av# UP+-:OU|;/Se2,endstream endobj 148 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1632 >> stream xT}PJL6ӤIQTԶ$pc!~`<8 { %] E)\Z!%7Tk& ڌv?Fȴt:̻I(#$㧿K?!g"*ER$ JQwQYC QF4 I"&ADY|fu\\&)`3uMN0ui^fPY XVt:+t-X,4 vа_-|&LnE[Il Zx.:u &s>AiV5b;NN Kb# BD JB .1dUE!Qrҫҩ&(yH^ѨH~Bi!EC̷3}rs{g#k%}Vpq{Q3-4s,rV`:k,JW%k"AyzfǠbV-_qݥHwhqM>G_MY*UdlQ!2a3K&Փ"Hq.Z>VfJ,&-}1Hpb_޴Q~߱3"E-k h3smDf}mϛCkmz} f+) I/8n6BT)*/SŊYE> Q!%I?cZ;Wz!%@dWqTɝ. T=(Y;tAvZurr%g?5}r{b,tK5ٚz$H%BJOQ3NCkbJPdA'ilvn-7eVNtAuyN*w߮7xe]mc[w j:G[jmߣg\%~-CP?s#Y odOo@m;4}R?΄ʼn{Mp.Aa3B/&P.yNw~i~8qEHZLx7pѱãe;X ?N-E`[?%ɹ盄dHHܐ;_׮]~=)Ōr7ЉI2^xћ xzzhjp(Gg*Vx.g<]='NKQ‡#(c-#ʾTBT֖M7U4jf8 M]==@EoE6iqtVȗiw;z2o[nn4r1DM? i/R~k7-./dNΙ9/pPmr<4)[wC՟\:| % CO) (Euj124TQ?BQ էendstream endobj 149 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 362 >> stream x_CMR7',   ZWTmqCopyright (c) 1997, 2009 American Mathematical Society (), with Reserved Font Name CMR7.CMR7Computer Modern2p͋JiuP~>}L讧Ǻɋ !74/XWϡ=:4MFkgo0wCna  7 ڛ %endstream endobj 150 0 obj << /Filter /FlateDecode /Length 919 >> stream xuUKE cTzH@ ^RðLfMhc_=y=w'?uQ*>K&L]ǁ<̞NxJJcPaOrT;5banr.z+I QgG"Dhb,[M XaΚfIRÖ STe.H9)6_10]5 ^`r:s)=vEǭ}^A,h @~@SDxjBppv_xr :=vc{}ECfw"HqA*Xb_9=S r_ X4D\CvLmZH%j823)9H+{%Ԇ~R5)j8&I0?|X~Q$)X ;}2 ֫ƴ,QS$,z_/oޖKW rTp.EFm$k@Rq>+I`Me/2x$~ZLV 1@4V> stream x[[#~_!Al'c ;ZfVFK @~bb{16.uH\'wxR/77qF,tﵗ o[<zc|{ 2dMTV0a?Z~ zT![&T29z")H!L(O44Y [M,n~ITN )[.ѽנXJ*}{ͫ,c4ol4֨ IurT$"TNkz&Dڠ@;Xu"!Gčʀޅ!/oy_oLX lC.\ xbț2Ӎ6/.Ja?Fv]%ݽ/2ڗѦe263ݹ.e}W_MM/]My;l@v~,C+*iJe:|`I|=Agh )eۿ~]kڻ/~b[yjWe2Lj|x+ ܬTs7r Pclϗ:~wy[ywF`tn.;궏<6~XL_u_}5~T/z?Cv>;tA;ySqaw!A쥆1j_ RVm'M6}#*.bͶnwlOe@"(34y/k/5Ed.|ߞRm쏛u9)v+۫Pbmta"kgl܁՚!7{HBN9yc! }Y_?3eG&]oXR$DHK@aڔ"D+CT{#6#Bq>4 isy?F+I_h lAb6H% K`w:1DA`Օ Hty4t(7`oLm:͇v"1-j lu _R)hnb*LbAYp||XpWwux÷ 1 w\uU5N_0蝶92Z DSbiMT:Y8tDl iK\|dp ]7^H Z&ˑŎ֞A4M[cRyXe ޣ@4AY[1/E/hbZ5rfF@3RH:*s}Y@=g΀&q#n_wneu:y :CR Fȗj;iHJ=.-xHX@T0X0>h HTJ˘ OQMڰ A0wtHW"s lݞi J4k-S :m#%Mv*[! l)T BcNv]'f9U7E<Q(r$ɭo 4l7GРN ?leM8&=1KÁR7rލtx>I4E{1!kgO%L,\h6a4 ?NPnħ К2`̮=?-08ٲXo Ą|xF_8)# ; / +4z=7br:C & #-(o*19qÞԬ/i̛)҃pܐ i&&V7 yW=~Si0N4 WR4 S@>(M鑷" h]5T+-JK[c{}P\e6޵)"wM4%mX$Nz>T=gVaŸUɞk03u%)ք'.Plw j%PbEԜC '$3~h8xY O=YlwWFBV@$ rWJaj8dTi'"u|IJ>)S2SP-u&uLNYPmN3K^3<0,×ʺ`?0 $3-lmJ`ځpjSHZfHbD4Qk8k޺+~cObsNPT3@֍E5.령)ٗv5r2 "@2(-ƄiK*1ёBAYGRR[|+Pt, R)$;p {(JW*75ћdMs%40ݨ6 . i.BE\~͔_4Yӓ #01^WYTNxFf[NyC&i0bJ-1k=^s4І52P >5Xv#jA y(Z?gqy?VzvP}B@I VLR~d !}"Hna:1bej,<!Xo!41h 9P{#z9az̒*վǶ\ndC<3[( )Ge^.s?~fbdMȌrMu.ةI=YUkaQZsږWcl ͆/ɱSL*Hs!+=sK#`y㝕Q fm#@ˍ]R!,{B #i ]*- |kGv }Eldn?V18@z55k6$.=*svaY<Ʀ xݬi腵zb/CɊ|M_@`ut 篆Hff7s[i¶w?)[?v QDn:Ǖlaljp "f*7Q&tW2v^HmsX ?l 5d$Il|[X[$Qt;HZ7cqw#_,$%2hMRBӳEƇaab^2Hq 1uA%-Y޲|`#X }Cg6rܯNݘf# Aݿs~NCR@sX0V9Zmb9sPrO/,W%[^]X|Ṽ8`5R HBQ&ʠx|@u2ݜG xvC3B~W\0)ũЩؘ45\J_}?|TDA%J K׈ {cJd"S =q}a1sȦee{=},j,o7Tq֩  d~#f]B{sn[`>B؍a(u z1vt3៍r'Q'o(q@#D6gba.t[80ڏfAH7g k> stream xXݏ7tS( "wy7k;=QQK% gkdKU`J#'ÎSlkrNǸu|>2b#T=ŤwcuLց#0}]6f<5 I9`TǐyB,ؕ; iǒhHu~lyY%LIo'ۼZ#5}dLlk<wJvAR FU;6S,2{9r+fDW4*Xqu7g̸jC͇E?|`pvCNŘp>&1r)1S2ayy /2)R:@k蘗!(v`FZQQ1f"dm=c씁pWhn=A$=;8T=+a>2Qf<~M=#po5JimϢ$CwAڤ^.S|!xU pף³".L`\)X(KV4sd`϶SerLdrۑ֘pБ7n1&/-VEW p B>9CMXb].*tW㱞(07#MDeX|xF3aL=5ߔvox'g(D'12$?LD'xBBGńQq 69׳v~BG^/w?-<τ]ٷ}'tĠfUvE#;W^L]` "4W.Em)-BiКy>6PNqA1|*( M"ոqQ4 Iى6C-JQ.QI1u 夔<5&D.kYe%Ŀ<<ڗIoݸJ%'.!ѡB2(ԥ/,)9j6׆6qtc?S<08q V=Wɴendstream endobj 153 0 obj << /Filter /FlateDecode /Length 1162 >> stream xVMo6WVY~svb`P$9ȶlLс7"g̐C~.-~| M()Dpse魓\w!$ˮ)*3kV فe5HGC1mZt見qo3Q!4qB$di&MΤ)E;Jʢ\ȡn˟(2+XlYJ(,DIee[ܲwW>VxƳ?o* ~kvS-IxMR]}y!oa}&%! ^@Dn$(VqRI]-./OၰM !K(p[f<7 hFqֻ \W#!#O*T4[%6}BO  5  L_#c v 5 gs=nR 'tq8f3$_VY2Ggbu&8nM#Jǃ F *X5_Z8Z[mOMż`Ĵ~Sj!e$5uaIz0_ڻc**.~RC@[iWM71ɰ#v^7}$L .:+?ϡC-sB^ ŗzLD%(#<7ݺvv?4"\. 17("5{6 G9,`uk۶Fg/笺Uܹ2ݱ`dND. 4Us2&[S΋ٙsSzí4]ߘhP={ tӭ)]fqoyL85TU jTE5ڸ(2^FRPqX 4%snE~­jr?ъ@uB6ȁ+٠q9\#ҎA "3N&H1uIyv5TpvE3NrG5*##EYRT!FQI;;0yt˜פ^+Qғ(k%Xϰ; 3n?Cn=Jz j436Y~6x5=Y;cp{xb$k+lۡ9*w}w[ov@s0lTnP´;2<>fܧ?5vJendstream endobj 154 0 obj << /Filter /FlateDecode /Length 879 >> stream x}Uَ7|#'0WfTL_mQm8 jCNEaAX/|ً:YLQіɓ 5E'o9S4'm-˗u _ cA">YYfHR[dE" [`FNt?1@rq6Q(܇nHɇl3hQ׌TF6@92}F#Q!]FG򶏠u=K\XdEc ,ߴwkwFad G\ns:OpߞͧWY[453Dbstz䂑We(497".]3pzb a}k2]Rb:1 U>7cA4C`Zyca|^Ychc2&eP6aB:}77T8.ɄuǑ:YSnSܢ>(d07JA$yJ`D +7Bd.C|@,32 O#;?J}]ʭK"Y݂kUlendstream endobj 155 0 obj << /Filter /FlateDecode /Length 1382 >> stream xWKD_ʅ6~?" (Jv'(`xg 3e j?ۋ3(DJ;TWWUWuWsLS1t% '$}(14RQlTzL SXY%*Dc%L 3C-VrВfA#,ȟVk5 7X(dƆ84 :SLR䍤6CBc{L@RI-tsɦ)k(昼AO^f0ޡ)㎮8eQv}u,@$tDžWEp7 J/$9(4I Vb($T 3cx MY)tJB58tx؆6-6Hjt.Z%MUH׺{`nP.2)U5dF)?Pʹ`YlzBOC/3f,wkɁԓ E-6@F_%}!B ӱsx,N'>dr LFC'ڵ6!xo]tXw CZ!DR F!y&Ŕ7'&Nt4E+kxTYFse~)dzO Vn 52"]">HCJK,Dg&k:{w^XPo|ɣ/Yv~;irc=G=;10Μ/{3MSZDi|7|S]іhtm8U]mUWnj_k<"P/{0WFM^hÉXƤRDL]r'!ˆ TE [h dI5сHrx"2XpauJ Jgo*M ? L W'Xa`[#[) (Ad *WU7&endstream endobj 156 0 obj << /Filter /FlateDecode /Length 150 >> stream xU;1 {'0q_N@ -ׇE٬W.,?慅:c8]  I1 7g`tBw2SZJffBPUR=uw$֓TS>HԖ!56w/RCendstream endobj 157 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 659 >> stream x5[HSq<,,DK9,!.jeڜmmǭc[&Or97/ҹZ@l>CO!=V3K%<}?IA[[.UV!ӄprRA&t)qvI!7wsVŚR:SJPuFƢרMt1F5 tYgX.ձlwMyn/SeflI)m׳:2E7M,}Emd}Qo6vn4w1BHbt!t ]@9/bDȅ#po\%º@(CtZkEM;60j(mv[H.~Lz0I&[n#ٜA @^g3 8L:bNnHuj` ܂CP*ns|xH߰:cZl:!VGTӸ(5> /W [ 1 3 1 ] /Info 3 0 R /Root 2 0 R /Size 159 /ID [<99a7c06b0064116ca694ba27662d06c2>] >> stream xcb&F~0 $8JRuf? 7ңLp5 (7H (x"H R VDJH _/A$.9lVl "Y;dX X%zD,` &w.g~A# endstream endobj startxref 97225 %%EOF HSAUR3/inst/doc/Ch_errata.Rnw0000644000176200001440000001672513302740166015336 0ustar liggesusers \documentclass{chapman} %%% copy Sweave.sty definitions %%% keeps `sweave' from adding `\usepackage{Sweave}': DO NOT REMOVE %\usepackage{Sweave} \RequirePackage[T1]{fontenc} \RequirePackage{graphicx,ae,fancyvrb} \IfFileExists{upquote.sty}{\RequirePackage{upquote}}{} \usepackage{relsize} \DefineVerbatimEnvironment{Sinput}{Verbatim}{} \DefineVerbatimEnvironment{Soutput}{Verbatim}{fontfamily=courier, fontshape=it, fontsize=\relsize{-1}} \DefineVerbatimEnvironment{Scode}{Verbatim}{} \newenvironment{Schunk}{}{} %%% environment for raw output \newcommand{\SchunkRaw}{\renewenvironment{Schunk}{}{} \DefineVerbatimEnvironment{Soutput}{Verbatim}{fontfamily=courier, fontshape=it, fontsize=\small} \rawSinput } %%% environment for labeled output \newcommand{\nextcaption}{} \newcommand{\SchunkLabel}{ \renewenvironment{Schunk}{\begin{figure}[ht] }{\caption{\nextcaption} \end{figure} } \DefineVerbatimEnvironment{Sinput}{Verbatim}{frame = topline} \DefineVerbatimEnvironment{Soutput}{Verbatim}{frame = bottomline, samepage = true, fontfamily=courier, fontshape=it, fontsize=\relsize{-1}} } %%% S code with line numbers \DefineVerbatimEnvironment{Sinput} {Verbatim} { %% numbers=left } \newcommand{\numberSinput}{ \DefineVerbatimEnvironment{Sinput}{Verbatim}{numbers=left} } \newcommand{\rawSinput}{ \DefineVerbatimEnvironment{Sinput}{Verbatim}{} } %%% R / System symbols \newcommand{\R}{\textsf{R}} \newcommand{\rR}{{R}} \renewcommand{\S}{\textsf{S}} \newcommand{\SPLUS}{\textsf{S-PLUS}} \newcommand{\rSPLUS}{{S-PLUS}} \newcommand{\SPSS}{\textsf{SPSS}} \newcommand{\EXCEL}{\textsf{Excel}} \newcommand{\ACCESS}{\textsf{Access}} \newcommand{\SQL}{\textsf{SQL}} %%\newcommand{\Rpackage}[1]{\hbox{\rm\textit{#1}}} %%\newcommand{\Robject}[1]{\hbox{\rm\texttt{#1}}} %%\newcommand{\Rclass}[1]{\hbox{\rm\textit{#1}}} %%\newcommand{\Rcmd}[1]{\hbox{\rm\texttt{#1}}} \newcommand{\Rpackage}[1]{\index{#1 package@{\fontseries{b}\selectfont #1} package} {\fontseries{b}\selectfont #1}} \newcommand{\rpackage}[1]{{\fontseries{b}\selectfont #1}} \newcommand{\Robject}[1]{\texttt{#1}} \newcommand{\Rclass}[1]{\index{#1 class@\textit{#1} class}\textit{#1}} \newcommand{\Rcmd}[1]{\index{#1 function@\texttt{#1} function}\texttt{#1}} \newcommand{\Roperator}[1]{\texttt{#1}} \newcommand{\Rarg}[1]{\texttt{#1}} \newcommand{\Rlevel}[1]{\texttt{#1}} %%% other symbols \newcommand{\file}[1]{\hbox{\rm\texttt{#1}}} %%\newcommand{\stress}[1]{\index{#1}\textit{#1}} \newcommand{\stress}[1]{\textit{#1}} \newcommand{\booktitle}[1]{\textit{#1}} %%' %%% Math symbols \usepackage{amstext} \usepackage{amsmath} \newcommand{\E}{\mathsf{E}} \newcommand{\Var}{\mathsf{Var}} \newcommand{\Cov}{\mathsf{Cov}} \newcommand{\Cor}{\mathsf{Cor}} \newcommand{\x}{\mathbf{x}} \newcommand{\y}{\mathbf{y}} \renewcommand{\a}{\mathbf{a}} \newcommand{\W}{\mathbf{W}} \newcommand{\C}{\mathbf{C}} \renewcommand{\H}{\mathbf{H}} \newcommand{\X}{\mathbf{X}} \newcommand{\B}{\mathbf{B}} \newcommand{\V}{\mathbf{V}} \newcommand{\I}{\mathbf{I}} \newcommand{\D}{\mathbf{D}} \newcommand{\bS}{\mathbf{S}} \newcommand{\N}{\mathcal{N}} \renewcommand{\L}{L} \renewcommand{\P}{\mathsf{P}} \newcommand{\K}{\mathbf{K}} \newcommand{\m}{\mathbf{m}} \newcommand{\argmin}{\operatorname{argmin}\displaylimits} \newcommand{\argmax}{\operatorname{argmax}\displaylimits} \newcommand{\bx}{\mathbf{x}} \newcommand{\bbeta}{\mathbf{\beta}} %%% links \usepackage{hyperref} \hypersetup{% pdftitle = {A Handbook of Statistical Analyses Using R (3rd Edition)}, pdfsubject = {Book}, pdfauthor = {Torsten Hothorn and Brian S. Everitt}, colorlinks = {black}, linkcolor = {black}, citecolor = {black}, urlcolor = {black}, hyperindex = {true}, linktocpage = {true}, } %%% captions & tables %% : conflics with figure definition in chapman.cls %%\usepackage[format=hang,margin=10pt,labelfont=bf]{caption} %% \usepackage{longtable} \usepackage[figuresright]{rotating} %%% R symbol in chapter 1 \usepackage{wrapfig} %%% Bibliography \usepackage[round,comma]{natbib} \renewcommand{\refname}{References \addcontentsline{toc}{chapter}{References}} \citeindexfalse %%% texi2dvi complains that \newblock is undefined, hm... \def\newblock{\hskip .11em plus .33em minus .07em} %%% Example sections \newcounter{exercise}[chapter] \setcounter{exercise}{0} \newcommand{\exercise}{\stepcounter{exercise} \item{Ex.~\arabic{chapter}.\arabic{exercise} }} %% URLs \newcommand{\curl}[1]{\begin{center} \url{#1} \end{center}} %%% for manual corrections %\renewcommand{\baselinestretch}{2} %%% plot sizes \setkeys{Gin}{width=0.95\textwidth} %%% color \usepackage{color} %%% hyphenations \hyphenation{drop-out} \hyphenation{mar-gi-nal} %%% new bidirectional quotes need \usepackage[utf8]{inputenc} %\usepackage{setspace} \definecolor{sidebox_todo}{rgb}{1,1,0.2} \newcommand{\todo}[1]{ \hspace{0pt}% \marginpar{% \fcolorbox{black}{sidebox_todo}{% \parbox{\marginparwidth} { \raggedright\sffamily\footnotesize{TODO: #1}% } }% } } \begin{document} %% Title page \title{A Handbook of Statistical Analyses Using \R{} --- 3rd Edition} \author{Torsten Hothorn and Brian S. Everitt} \maketitle %%\VignetteIndexEntry{Errata} \setcounter{chapter}{21} \SweaveOpts{prefix.string=figures/HSAUR,eps=FALSE,keep.source=TRUE} <>= rm(list = ls()) s <- search()[-1] s <- s[-match(c("package:base", "package:stats", "package:graphics", "package:grDevices", "package:utils", "package:datasets", "package:methods", "Autoloads"), s)] if (length(s) > 0) sapply(s, detach, character.only = TRUE) if (!file.exists("tables")) dir.create("tables") if (!file.exists("figures")) dir.create("figures") set.seed(290875) options(prompt = "R> ", continue = "+ ", width = 63, # digits = 4, show.signif.stars = FALSE, SweaveHooks = list(leftpar = function() par(mai = par("mai") * c(1, 1.05, 1, 1)), bigleftpar = function() par(mai = par("mai") * c(1, 1.7, 1, 1)))) HSAURpkg <- require("HSAUR3") if (!HSAURpkg) stop("cannot load package ", sQuote("HSAUR3")) rm(HSAURpkg) ### hm, R-2.4.0 --vanilla seems to need this a <- Sys.setlocale("LC_ALL", "C") ### book <- TRUE refs <- cbind(c("AItR", "DAGD", "SI", "CI", "ANOVA", "MLR", "GLM", "DE", "RP", "GAM", "SA", "ALDI", "ALDII", "SIMC", "MA", "PCA", "MDS", "CA"), 1:18) ch <- function(x) { ch <- refs[which(refs[,1] == x),] if (book) { return(paste("Chapter~\\\\ref{", ch[1], "}", sep = "")) } else { return(paste("Chapter~", ch[2], sep = "")) } } if (file.exists("deparse.R")) source("deparse.R") setHook(packageEvent("lattice", "attach"), function(...) { lattice.options(default.theme = function() standard.theme("pdf", color = FALSE)) }) @ \pagestyle{headings} <>= book <- FALSE @ \chapter[Errata]{Errata} %\bibliographystyle{LaTeXBibTeX/refstyle} %\bibliography{LaTeXBibTeX/HSAUR} \end{document} HSAUR3/inst/doc/Ch_quantile_regression.Rnw0000644000176200001440000006444013302740166020137 0ustar liggesusers \documentclass{chapman} %%% copy Sweave.sty definitions %%% keeps `sweave' from adding `\usepackage{Sweave}': DO NOT REMOVE %\usepackage{Sweave} \RequirePackage[T1]{fontenc} \RequirePackage{graphicx,ae,fancyvrb} \IfFileExists{upquote.sty}{\RequirePackage{upquote}}{} \usepackage{relsize} \DefineVerbatimEnvironment{Sinput}{Verbatim}{} \DefineVerbatimEnvironment{Soutput}{Verbatim}{fontfamily=courier, fontshape=it, fontsize=\relsize{-1}} \DefineVerbatimEnvironment{Scode}{Verbatim}{} \newenvironment{Schunk}{}{} %%% environment for raw output \newcommand{\SchunkRaw}{\renewenvironment{Schunk}{}{} \DefineVerbatimEnvironment{Soutput}{Verbatim}{fontfamily=courier, fontshape=it, fontsize=\small} \rawSinput } %%% environment for labeled output \newcommand{\nextcaption}{} \newcommand{\SchunkLabel}{ \renewenvironment{Schunk}{\begin{figure}[ht] }{\caption{\nextcaption} \end{figure} } \DefineVerbatimEnvironment{Sinput}{Verbatim}{frame = topline} \DefineVerbatimEnvironment{Soutput}{Verbatim}{frame = bottomline, samepage = true, fontfamily=courier, fontshape=it, fontsize=\relsize{-1}} } %%% S code with line numbers \DefineVerbatimEnvironment{Sinput} {Verbatim} { %% numbers=left } \newcommand{\numberSinput}{ \DefineVerbatimEnvironment{Sinput}{Verbatim}{numbers=left} } \newcommand{\rawSinput}{ \DefineVerbatimEnvironment{Sinput}{Verbatim}{} } %%% R / System symbols \newcommand{\R}{\textsf{R}} \newcommand{\rR}{{R}} \renewcommand{\S}{\textsf{S}} \newcommand{\SPLUS}{\textsf{S-PLUS}} \newcommand{\rSPLUS}{{S-PLUS}} \newcommand{\SPSS}{\textsf{SPSS}} \newcommand{\EXCEL}{\textsf{Excel}} \newcommand{\ACCESS}{\textsf{Access}} \newcommand{\SQL}{\textsf{SQL}} %%\newcommand{\Rpackage}[1]{\hbox{\rm\textit{#1}}} %%\newcommand{\Robject}[1]{\hbox{\rm\texttt{#1}}} %%\newcommand{\Rclass}[1]{\hbox{\rm\textit{#1}}} %%\newcommand{\Rcmd}[1]{\hbox{\rm\texttt{#1}}} \newcommand{\Rpackage}[1]{\index{#1 package@{\fontseries{b}\selectfont #1} package} {\fontseries{b}\selectfont #1}} \newcommand{\rpackage}[1]{{\fontseries{b}\selectfont #1}} \newcommand{\Robject}[1]{\texttt{#1}} \newcommand{\Rclass}[1]{\index{#1 class@\textit{#1} class}\textit{#1}} \newcommand{\Rcmd}[1]{\index{#1 function@\texttt{#1} function}\texttt{#1}} \newcommand{\Roperator}[1]{\texttt{#1}} \newcommand{\Rarg}[1]{\texttt{#1}} \newcommand{\Rlevel}[1]{\texttt{#1}} %%% other symbols \newcommand{\file}[1]{\hbox{\rm\texttt{#1}}} %%\newcommand{\stress}[1]{\index{#1}\textit{#1}} \newcommand{\stress}[1]{\textit{#1}} \newcommand{\booktitle}[1]{\textit{#1}} %%' %%% Math symbols \usepackage{amstext} \usepackage{amsmath} \newcommand{\E}{\mathsf{E}} \newcommand{\Var}{\mathsf{Var}} \newcommand{\Cov}{\mathsf{Cov}} \newcommand{\Cor}{\mathsf{Cor}} \newcommand{\x}{\mathbf{x}} \newcommand{\y}{\mathbf{y}} \renewcommand{\a}{\mathbf{a}} \newcommand{\W}{\mathbf{W}} \newcommand{\C}{\mathbf{C}} \renewcommand{\H}{\mathbf{H}} \newcommand{\X}{\mathbf{X}} \newcommand{\B}{\mathbf{B}} \newcommand{\V}{\mathbf{V}} \newcommand{\I}{\mathbf{I}} \newcommand{\D}{\mathbf{D}} \newcommand{\bS}{\mathbf{S}} \newcommand{\N}{\mathcal{N}} \renewcommand{\L}{L} \renewcommand{\P}{\mathsf{P}} \newcommand{\K}{\mathbf{K}} \newcommand{\m}{\mathbf{m}} \newcommand{\argmin}{\operatorname{argmin}\displaylimits} \newcommand{\argmax}{\operatorname{argmax}\displaylimits} \newcommand{\bx}{\mathbf{x}} \newcommand{\bbeta}{\mathbf{\beta}} %%% links \usepackage{hyperref} \hypersetup{% pdftitle = {A Handbook of Statistical Analyses Using R (3rd Edition)}, pdfsubject = {Book}, pdfauthor = {Torsten Hothorn and Brian S. Everitt}, colorlinks = {black}, linkcolor = {black}, citecolor = {black}, urlcolor = {black}, hyperindex = {true}, linktocpage = {true}, } %%% captions & tables %% : conflics with figure definition in chapman.cls %%\usepackage[format=hang,margin=10pt,labelfont=bf]{caption} %% \usepackage{longtable} \usepackage[figuresright]{rotating} %%% R symbol in chapter 1 \usepackage{wrapfig} %%% Bibliography \usepackage[round,comma]{natbib} \renewcommand{\refname}{References \addcontentsline{toc}{chapter}{References}} \citeindexfalse %%% texi2dvi complains that \newblock is undefined, hm... \def\newblock{\hskip .11em plus .33em minus .07em} %%% Example sections \newcounter{exercise}[chapter] \setcounter{exercise}{0} \newcommand{\exercise}{\stepcounter{exercise} \item{Ex.~\arabic{chapter}.\arabic{exercise} }} %% URLs \newcommand{\curl}[1]{\begin{center} \url{#1} \end{center}} %%% for manual corrections %\renewcommand{\baselinestretch}{2} %%% plot sizes \setkeys{Gin}{width=0.95\textwidth} %%% color \usepackage{color} %%% hyphenations \hyphenation{drop-out} \hyphenation{mar-gi-nal} %%% new bidirectional quotes need \usepackage[utf8]{inputenc} %\usepackage{setspace} \definecolor{sidebox_todo}{rgb}{1,1,0.2} \newcommand{\todo}[1]{ \hspace{0pt}% \marginpar{% \fcolorbox{black}{sidebox_todo}{% \parbox{\marginparwidth} { \raggedright\sffamily\footnotesize{TODO: #1}% } }% } } \begin{document} %% Title page \title{A Handbook of Statistical Analyses Using \R{} --- 3rd Edition} \author{Torsten Hothorn and Brian S. Everitt} \maketitle %%\VignetteIndexEntry{Chapter Quantile Regression} %%\VignetteDepends{lattice,quantreg} \setcounter{chapter}{11} \SweaveOpts{prefix.string=figures/HSAUR,eps=FALSE,keep.source=TRUE} <>= rm(list = ls()) s <- search()[-1] s <- s[-match(c("package:base", "package:stats", "package:graphics", "package:grDevices", "package:utils", "package:datasets", "package:methods", "Autoloads"), s)] if (length(s) > 0) sapply(s, detach, character.only = TRUE) if (!file.exists("tables")) dir.create("tables") if (!file.exists("figures")) dir.create("figures") set.seed(290875) options(prompt = "R> ", continue = "+ ", width = 63, # digits = 4, show.signif.stars = FALSE, SweaveHooks = list(leftpar = function() par(mai = par("mai") * c(1, 1.05, 1, 1)), bigleftpar = function() par(mai = par("mai") * c(1, 1.7, 1, 1)))) HSAURpkg <- require("HSAUR3") if (!HSAURpkg) stop("cannot load package ", sQuote("HSAUR3")) rm(HSAURpkg) ### hm, R-2.4.0 --vanilla seems to need this a <- Sys.setlocale("LC_ALL", "C") ### book <- TRUE refs <- cbind(c("AItR", "DAGD", "SI", "CI", "ANOVA", "MLR", "GLM", "DE", "RP", "GAM", "SA", "ALDI", "ALDII", "SIMC", "MA", "PCA", "MDS", "CA"), 1:18) ch <- function(x) { ch <- refs[which(refs[,1] == x),] if (book) { return(paste("Chapter~\\\\ref{", ch[1], "}", sep = "")) } else { return(paste("Chapter~", ch[2], sep = "")) } } if (file.exists("deparse.R")) source("deparse.R") setHook(packageEvent("lattice", "attach"), function(...) { lattice.options(default.theme = function() standard.theme("pdf", color = FALSE)) }) @ \pagestyle{headings} <>= book <- FALSE @ %% lower png resolution for vignettes \SweaveOpts{resolution = 100} <>= library("lattice") trellis.par.set(list(plot.symbol = list(col=1,pch=20, cex=0.7), box.rectangle = list(col=1), plot.line = list(col = 1, lwd = 1), box.umbrella = list(lty=1, col=1), strip.background = list(col = "white"))) ltheme <- canonical.theme(color = FALSE) ## in-built B&W theme ltheme$strip.background$col <- "transparent" ## change strip bg lattice.options(default.theme = ltheme) data("db", package = "gamlss.data") nboys <- with(db, sum(age > 2)) @ \chapter[Quantile Regression]{Quantile Regression: Head Circumference for Age\label{QR}} \section{Introduction} \section{Quantile Regression} \section{Analysis Using \R{}} We begin with a graphical inspection of the influence of age on head circumference by means of a scatterplot. Plotting all pairs of age and head circumference in one panel gives more weight to the teens and 20s, so we produce one plot for younger boys between two and nine years old and one additional plot for boys older than nine years (or $>108$ months, to be precise). The \Rcmd{cut} function is very convenient for constructing a factor representing these two groups <>= summary(db) db$cut <- cut(db$age, breaks = c(2, 9, 23), labels = c("2-9 yrs", "9-23 yrs")) @ which can then be used as a conditioning variable for conditional scatterplots produced with the \Rcmd{xyplot} function \citep[package \Rpackage{lattice}]{PKG:lattice}. Because we draw $\Sexpr{nboys}$ points in total, we use transparent shading (via \Rcmd{rgb(.1, .1, .1, .1)}) in order to obtain a clearer picture for the more populated areas in the plot. \begin{figure} \begin{center} <>= db$cut <- cut(db$age, breaks = c(2, 9, 23), labels = c("2-9 yrs", "9-23 yrs")) xyplot(head ~ age | cut, data = db, xlab = "Age (years)", ylab = "Head circumference (cm)", scales = list(x = list(relation = "free")), layout = c(2, 1), pch = 19, col = rgb(.1, .1, .1, .1)) @ \caption{Scatterplot of age and head circumference for $\Sexpr{nboys}$ Dutch boys. \label{QR-db-plot}} \end{center} \end{figure} Figure~\ref{QR-db-plot}, as expected, shows that head circumference increases with age. It also shows that there is considerable variation and also quite a number of extremely large or small head circumferences in the respective age cohorts. It should be noted that each point corresponds to one boy participating in the study due to its cross-sectional study design. No longitudinal measurements (cf.~Chapter~\ref{ALDI}) were taken and we can safely assume independence between observations. We start with a simple linear model, computed separately for the younger and older boys, for regressing the mean head circumference on age <>= (lm2.9 <- lm(head ~ age, data = db, subset = age < 9)) (lm9.23 <- lm(head ~ age, data = db, subset = age > 9)) @ This approach is equivalent to fitting two intercepts and two slopes in the joint model <>= (lm_mod <- lm(head ~ age:I(age < 9) + I(age < 9) - 1, data = db)) @ while omitting the global intercept. Because the median of the normal distribution is equal to its mean, the two models can be interpreted as conditional median models under the normal assumption. The model states that within one year, the head circumference increases by $\Sexpr{round(coef(lm_mod)["age:I(age < 9)TRUE"], 3)}$ cm for boys less than nine years old and by $\Sexpr{round(coef(lm_mod)["age:I(age < 9)FALSE"], 3)}$ for older boys. We now relax this distributional assumption and compute a median regression model using the \Rcmd{rq} function from package \Rpackage{quantreg} \citep{PKG:quantreg}: <>= library("quantreg") (rq_med2.9 <- rq(head ~ age, data = db, tau = 0.5, subset = age < 9)) (rq_med9.23 <- rq(head ~ age, data = db, tau = 0.5, subset = age > 9)) @ When we construct confidence intervals for the intercept and slope parameters from both models for the younger boys <>= cbind(coef(lm2.9)[1], confint(lm2.9, parm = "(Intercept)")) cbind(coef(lm2.9)[2], confint(lm2.9, parm = "age")) summary(rq_med2.9, se = "rank") @ we see that the two intercepts are almost identical but there seems to be a larger slope parameter for age in the median regression model. For the older boys, we get the confidence intervals via <>= cbind(coef(lm9.23)[1], confint(lm9.23, parm = "(Intercept)")) cbind(coef(lm9.23)[2], confint(lm9.23, parm = "age")) summary(rq_med9.23, se = "rank") @ with again almost identical intercepts and only a slightly increased slope for age in the median regression model. Since one of our aims was the construction of growth curves, we first use the linear models regressing head circumference on age to plot such curves. Based on the two normal linear models, we can compute the quantiles of head circumference for age. For the following values of $\tau$ <>= tau <- c(.01, .1, .25, .5, .75, .9, .99) @ and a grid of age values <>= gage <- c(2:9, 9:23) i <- 1:8 @ (the index \Rcmd{i} denoting younger boys), we compute the standard prediction intervals \index{Prediction interval} taking the randomness of the estimated intercept, slope, and variance parameters into account. We first set up a data frame with our grid of age values and then use the \Rcmd{predict} function for a linear model to compute prediction intervals, here with a coverage of $50\%$. The lower limit of such a $50\%$ prediction interval is equivalent to the conditional $25\%$ quantile for the given age and the upper limit corresponds to the $75\%$ quantile. The conditional mean is also reported and is equivalent to the conditional median: <>= idf <- data.frame(age = gage[i]) p <- predict(lm2.9, newdata = idf, level = 0.5, interval = "prediction") colnames(p) <- c("0.5", "0.25", "0.75") p @ We now proceed with $80\%$ prediction intervals for constructing the $10\%$ and $90\%$ quantiles, and with $98\%$ prediction intervals corresponding to the $1\%$ and $99\%$ quantiles and repeat the exercise also for the older boys: <>= p <- cbind(p, predict(lm2.9, newdata = idf, level = 0.8, interval = "prediction")[,-1]) colnames(p)[4:5] <- c("0.1", "0.9") p <- cbind(p, predict(lm2.9, newdata = idf, level = 0.98, interval = "prediction")[,-1]) colnames(p)[6:7] <- c("0.01", "0.99") p2.9 <- p[, c("0.01", "0.1", "0.25", "0.5", "0.75", "0.9", "0.99")] idf <- data.frame(age = gage[-i]) p <- predict(lm9.23, newdata = idf, level = 0.5, interval = "prediction") colnames(p) <- c("0.5", "0.25", "0.75") p <- cbind(p, predict(lm9.23, newdata = idf, level = 0.8, interval = "prediction")[,-1]) colnames(p)[4:5] <- c("0.1", "0.9") p <- cbind(p, predict(lm9.23, newdata = idf, level = 0.98, interval = "prediction")[,-1]) colnames(p)[6:7] <- c("0.01", "0.99") @ We now reorder the columns of this table and get the following conditional quantiles, estimated under the normal assumption of head circumference: <>= p9.23 <- p[, c("0.01", "0.1", "0.25", "0.5", "0.75", "0.9", "0.99")] round((q2.23 <- rbind(p2.9, p9.23)), 3) @ We can now superimpose these conditional quantiles on our scatterplot. To do this, we need to write our own little panel function that produces the scatterplot using the \Rcmd{panel.xyplot} function and then adds the just computed conditional quantiles by means of the \Rcmd{panel.lines} function called for every column of $\Robject{q2.23}$. Figure~\ref{QR-db-lm-plot} shows parallel lines owing to the fact that the linear model assumes an error variance independent from age; this is the so-called variance homogeneity. Compared to a plot with only a single (mean) regression line, we plotted a whole bunch of conditional distributions here, one for each value of age. Of course, we did so under extremely simplifying assumptions like linearity and variance homogeneity that we're going to drop now. \begin{figure} \begin{center} <>= pfun <- function(x, y, ...) { panel.xyplot(x = x, y = y, ...) if (max(x) <= 9) { apply(q2.23, 2, function(x) panel.lines(gage[i], x[i])) } else { apply(q2.23, 2, function(x) panel.lines(gage[-i], x[-i])) } panel.text(rep(max(db$age), length(tau)), q2.23[nrow(q2.23),], label = tau, cex = 0.9) panel.text(rep(min(db$age), length(tau)), q2.23[1,], label = tau, cex = 0.9) } xyplot(head ~ age | cut, data = db, xlab = "Age (years)", ylab = "Head circumference (cm)", pch = 19, scales = list(x = list(relation = "free")), layout = c(2, 1), col = rgb(.1, .1, .1, .1), panel = pfun) @ \caption{Scatterplot of age and head circumference for $\Sexpr{nboys}$ Dutch boys with superimposed normal quantiles. \label{QR-db-lm-plot}} \end{center} \end{figure} For the production of a nonparametric version of our growth curves, we start with fitting not only one but multiple quantile regression models, one for each value of $\tau$. We start with the younger boys <>= (rq2.9 <- rq(head ~ age, data = db, tau = tau, subset = age < 9)) @ and continue with the older boys <>= (rq9.23 <- rq(head ~ age, data = db, tau = tau, subset = age > 9)) @ Naturally, the intercept parameters vary but there is also a considerable variation in the slopes, with the largest value for the $1\%$ quantile regression model for younger boys. The parameters $\beta_\tau$ have to be interpreted with care. In general, they cannot be interpreted on an individual-specific level. A boy who happens to be at the $\tau \times 100\%$ quantile of head circumference conditional on his age would not be at the same quantile anymore when he gets older. When knowing $\beta_\tau$, the only conclusion that can be drawn is how the $\tau \times 100\%$ quantile of a population with a specific age differs from the $\tau \times 100\%$ quantile of a population with a different age. Because the linear functions estimated by linear quantile regression, here in model \Robject{rq9.23}, directly correspond to the conditional quantiles of interest, we can use the \Rcmd{predict} function to compute the estimated conditional quantiles: <>= p2.23 <- rbind(predict(rq2.9, newdata = data.frame(age = gage[i])), predict(rq9.23, newdata = data.frame(age = gage[-i]))) @ It is important to note that these numbers were obtained without assuming anything about the continuous distribution of head circumference given any age. Again, we produce a scatterplot with superimposed quantiles, this time each line corresponds to a specific model. For the sake of comparison with the linear model, we add the linear model quantiles as dashed lines to Figure~\ref{QR-db-rq-plot}. For the older boys, there seems to be almost no difference but the more extreme $1\%$ and $99\%$ quantiles for the younger boys differ considerably. So, at least for the younger boys, we might want to allow for age-specific variability in the distribution of head circumference. \begin{figure} \begin{center} <>= pfun <- function(x, y, ...) { panel.xyplot(x = x, y = y, ...) if (max(x) <= 9) { apply(q2.23, 2, function(x) panel.lines(gage[i], x[i], lty = 2)) apply(p2.23, 2, function(x) panel.lines(gage[i], x[i])) } else { apply(q2.23, 2, function(x) panel.lines(gage[-i], x[-i], lty = 2)) apply(p2.23, 2, function(x) panel.lines(gage[-i], x[-i])) } panel.text(rep(max(db$age), length(tau)), p2.23[nrow(p2.23),], label = tau, cex = 0.9) panel.text(rep(min(db$age), length(tau)), p2.23[1,], label = tau, cex = 0.9) } xyplot(head ~ age | cut, data = db, xlab = "Age (years)", ylab = "Head circumference (cm)", pch = 19, scales = list(x = list(relation = "free")), layout = c(2, 1), col = rgb(.1, .1, .1, .1), panel = pfun) @ \caption{Scatterplot of age and head circumference for $\Sexpr{nboys}$ Dutch boys with superimposed regression quantiles (solid lines) and normal quantiles (dashed lines). \label{QR-db-rq-plot}} \end{center} \end{figure} Still, with the quantile regression models shown in Figure~\ref{QR-db-rq-plot} we assume that the quantiles of head circumference depend on age in a linear way. Additive quantile regression is one way to approach the estimation of non-linear quantile functions. By considering two different models for younger and older boys, we allowed for a certain type of non-linear function in the results shown so far. Additive quantile regression should be able to deal with this problem and we therefore fit these models to all boys simultaneously. For our different choices of $\tau$, we fit one additive quantile regression model using the \Rcmd{rqss} function from the \Rpackage{quantreg} and allow smooth quantile functions of age via the \Rcmd{qss} function in the right-hand side of the model formula. Note that we transformed age by the third root prior to model fitting. This does not affect the model since it is a monotone transformation, however, it helps to avoid fitting a function with large derivatives for very young boys resulting in a low penalty parameter $\lambda$: <>= rqssmod <- vector(mode = "list", length = length(tau)) db$lage <- with(db, age^(1/3)) for (i in 1:length(tau)) rqssmod[[i]] <- rqss(head ~ qss(lage, lambda = 1), data = db, tau = tau[i]) @ For the analysis of the head circumference, we choose a penalty parameter $\lambda = 1$, which is the default for the \Rcmd{qss} function. Simply using the default without a careful hyperparameter tuning, for example using crossvalidation or similar procedures, is almost always a mistake. By visual inspection (Figure~\ref{QR-db-rqss-plot}) we find this choice appropriate but ask the readers to make a second guess (Exercise 3). For a finer grid of age values, we compute the conditional quantiles from the \Rcmd{predict} function: <>= gage <- seq(from = min(db$age), to = max(db$age), length = 50) p <- sapply(1:length(tau), function(i) { predict(rqssmod[[i]], newdata = data.frame(lage = gage^(1/3))) }) @ Using very similar code as for plotting linear quantiles, we produce again a scatterplot of age and head circumference but this time overlaid with non-linear regression quantiles. Given that the results from the linear models presented in Figure~\ref{QR-db-rq-plot} looked pretty convincing, the quantile curves in Figure~\ref{QR-db-rqss-plot} shed a surprising new light on the data. For the younger boys, we expected to see a larger variability than for boys between two and three years old, but in fact the distribution seems to be more complex. The distribution seems to be positively skewed with a heavy lower tail and the degree of skewness varies with age (note that the median is almost linear for boys older than four years). Also in the right part of Figure~\ref{QR-db-rqss-plot}, we see an age-varying skewness, although less pronounced as for the younger boys. The median increases up to 16 years but then the growth rate is much smaller. This does not seem to be the case for the $1\%, 10\%, 90\%$, and $99\%$ quantiles. Note that the discontinuity in the quantiles between the two age groups is only due to the overlapping abscissae. However, the deviations between the growth curves obtained from a linear model under normality assumption on the one hand and quantile regression on the other hand as shown in Figures~\ref{QR-db-rq-plot} and \ref{QR-db-rqss-plot} are hardly dramatic for the head circumference data. \begin{figure} \begin{center} <>= pfun <- function(x, y, ...) { panel.xyplot(x = x, y = y, ...) apply(p, 2, function(x) panel.lines(gage, x)) panel.text(rep(max(db$age), length(tau)), p[nrow(p),], label = tau, cex = 0.9) panel.text(rep(min(db$age), length(tau)), p[1,], label = tau, cex = 0.9) } xyplot(head ~ age | cut, data = db, xlab = "Age (years)", ylab = "Head circumference (cm)", pch = 19, scales = list(x = list(relation = "free")), layout = c(2, 1), col = rgb(.1, .1, .1, .1), panel = pfun) @ \caption{Scatterplot of age and head circumference for $\Sexpr{nboys}$ Dutch boys with superimposed non-linear regression quantiles. \label{QR-db-rqss-plot}} \end{center} \end{figure} \section{Summary of Findings} We can conclude that the whole distribution of head circumference changes with age and that assumptions like symmetry and variance homogeneity might be questionable for such type of analysis. One alternative to the estimation of conditional quantiles is the estimation of conditional distributions. One very interesting parametric approach are generalized additive models for location, scale, and shape \citep[GAMLSS,][]{HSAUR:RigbyStasinopoulos2005}. In \cite{HSAUR:StasinopoulosRigby2007}, an analysis of the age and head circumference by means of the \Rpackage{gamlss} package can be found. One practical problem associated with contemporary methods in quantile regression is quantile crossing. Because we fitted one quantile regression model for each of the quantiles of interest, we cannot guarantee that the conditional quantile functions are monotone, so the $90\%$ quantile may well be larger than the $95\%$ quantile in some cases. Postprocessing of the estimated quantile curves may help in this situation \citep{HSAUR:DetteVolgushev2008}. \section{Final Comments} When estimating regression models, we have to be aware of the implications of model assumptions when interpreting the results. Symmetry, linearity, and variance homogeneity are among the strongest but common assumptions. Quantile regression, both in its linear and additive formulation, is an intellectually stimulating and practically very useful framework where such assumptions can be relaxed. At a more basic level, one should always ask \stress{Am I really interested in the mean?} before using the regression models discussed in other chapters of this book. \bibliographystyle{LaTeXBibTeX/refstyle} \bibliography{LaTeXBibTeX/HSAUR} \end{document} HSAUR3/inst/doc/Ch_density_estimation.R0000644000176200001440000002556013302741011017411 0ustar liggesusers### R code from vignette source 'Ch_density_estimation.Rnw' ### Encoding: ASCII ################################################### ### code chunk number 1: setup ################################################### rm(list = ls()) s <- search()[-1] s <- s[-match(c("package:base", "package:stats", "package:graphics", "package:grDevices", "package:utils", "package:datasets", "package:methods", "Autoloads"), s)] if (length(s) > 0) sapply(s, detach, character.only = TRUE) if (!file.exists("tables")) dir.create("tables") if (!file.exists("figures")) dir.create("figures") set.seed(290875) options(prompt = "R> ", continue = "+ ", width = 63, # digits = 4, show.signif.stars = FALSE, SweaveHooks = list(leftpar = function() par(mai = par("mai") * c(1, 1.05, 1, 1)), bigleftpar = function() par(mai = par("mai") * c(1, 1.7, 1, 1)))) HSAURpkg <- require("HSAUR3") if (!HSAURpkg) stop("cannot load package ", sQuote("HSAUR3")) rm(HSAURpkg) ### hm, R-2.4.0 --vanilla seems to need this a <- Sys.setlocale("LC_ALL", "C") ### book <- TRUE refs <- cbind(c("AItR", "DAGD", "SI", "CI", "ANOVA", "MLR", "GLM", "DE", "RP", "GAM", "SA", "ALDI", "ALDII", "SIMC", "MA", "PCA", "MDS", "CA"), 1:18) ch <- function(x) { ch <- refs[which(refs[,1] == x),] if (book) { return(paste("Chapter~\\\\ref{", ch[1], "}", sep = "")) } else { return(paste("Chapter~", ch[2], sep = "")) } } if (file.exists("deparse.R")) source("deparse.R") setHook(packageEvent("lattice", "attach"), function(...) { lattice.options(default.theme = function() standard.theme("pdf", color = FALSE)) }) ################################################### ### code chunk number 2: singlebook ################################################### book <- FALSE ################################################### ### code chunk number 3: DE-setup ################################################### x <- library("KernSmooth") x <- library("flexmix") x <- library("boot") ################################################### ### code chunk number 4: DE-kernel-figs ################################################### rec <- function(x) (abs(x) < 1) * 0.5 tri <- function(x) (abs(x) < 1) * (1 - abs(x)) gauss <- function(x) 1/sqrt(2*pi) * exp(-(x^2)/2) x <- seq(from = -3, to = 3, by = 0.001) plot(x, rec(x), type = "l", ylim = c(0,1), lty = 1, ylab = expression(K(x))) lines(x, tri(x), lty = 2) lines(x, gauss(x), lty = 3) legend(-3, 0.8, legend = c("Rectangular", "Triangular", "Gaussian"), lty = 1:3, title = "kernel functions", bty = "n") ################################################### ### code chunk number 5: DE-options ################################################### w <- options("width")$w options(width = 66) ################################################### ### code chunk number 6: DE-x-bumps-data ################################################### x <- c(0, 1, 1.1, 1.5, 1.9, 2.8, 2.9, 3.5) n <- length(x) ################################################### ### code chunk number 7: DE-x-bumps-gaussian ################################################### xgrid <- seq(from = min(x) - 1, to = max(x) + 1, by = 0.01) ################################################### ### code chunk number 8: DE-x-bumps-bumps ################################################### h <- 0.4 bumps <- sapply(x, function(a) gauss((xgrid - a)/h)/(n * h)) ################################################### ### code chunk number 9: DE-reoptions ################################################### options(width = w) ################################################### ### code chunk number 10: DE-x-bumps ################################################### getOption("SweaveHooks")[["leftpar"]]() plot(xgrid, rowSums(bumps), ylab = expression(hat(f)(x)), type = "l", xlab = "x", lwd = 2) rug(x, lwd = 2) out <- apply(bumps, 2, function(b) lines(xgrid, b)) ################################################### ### code chunk number 11: DE-epakernel-fig ################################################### epa <- function(x, y) ((x^2 + y^2) < 1) * 2/pi * (1 - x^2 - y^2) x <- seq(from = -1.1, to = 1.1, by = 0.05) epavals <- sapply(x, function(a) epa(a, x)) persp(x = x, y = x, z = epavals, xlab = "x", ylab = "y", zlab = expression(K(x, y)), theta = -35, axes = TRUE, box = TRUE) ################################################### ### code chunk number 12: DE-faithful-density ################################################### data("faithful", package = "datasets") x <- faithful$waiting layout(matrix(1:3, ncol = 3)) hist(x, xlab = "Waiting times (in min.)", ylab = "Frequency", probability = TRUE, main = "Gaussian kernel", border = "gray") lines(density(x, width = 12), lwd = 2) rug(x) hist(x, xlab = "Waiting times (in min.)", ylab = "Frequency", probability = TRUE, main = "Rectangular kernel", border = "gray") lines(density(x, width = 12, window = "rectangular"), lwd = 2) rug(x) hist(x, xlab = "Waiting times (in min.)", ylab = "Frequency", probability = TRUE, main = "Triangular kernel", border = "gray") lines(density(x, width = 12, window = "triangular"), lwd = 2) rug(x) ################################################### ### code chunk number 13: DE-CYGOB1-contour ################################################### library("KernSmooth") data("CYGOB1", package = "HSAUR3") CYGOB1d <- bkde2D(CYGOB1, bandwidth = sapply(CYGOB1, dpik)) contour(x = CYGOB1d$x1, y = CYGOB1d$x2, z = CYGOB1d$fhat, xlab = "log surface temperature", ylab = "log light intensity") ################################################### ### code chunk number 14: DE-CYGOB1-persp ################################################### persp(x = CYGOB1d$x1, y = CYGOB1d$x2, z = CYGOB1d$fhat, xlab = "log surface temperature", ylab = "log light intensity", zlab = "estimated density", theta = -35, axes = TRUE, box = TRUE) ################################################### ### code chunk number 15: DE-faithful-optim ################################################### logL <- function(param, x) { d1 <- dnorm(x, mean = param[2], sd = param[3]) d2 <- dnorm(x, mean = param[4], sd = param[5]) -sum(log(param[1] * d1 + (1 - param[1]) * d2)) } startparam <- c(p = 0.5, mu1 = 50, sd1 = 3, mu2 = 80, sd2 = 3) opp <- optim(startparam, logL, x = faithful$waiting, method = "L-BFGS-B", lower = c(0.01, rep(1, 4)), upper = c(0.99, rep(200, 4))) ################################################### ### code chunk number 16: DE-faithful-optim-print-null ################################################### opp ################################################### ### code chunk number 17: DE-faithful-optim-print ################################################### print(opp[names(opp) != "message"]) ################################################### ### code chunk number 18: DE-attach-mclust ################################################### library("mclust") ################################################### ### code chunk number 19: DE-faithful-mclust ################################################### library("mclust") mc <- Mclust(faithful$waiting) mc ################################################### ### code chunk number 20: DE-faithful-mclust-mu ################################################### mc$parameters$mean ################################################### ### code chunk number 21: DE-faithful-mclust-para ################################################### sqrt(mc$parameters$variance$sigmasq) ################################################### ### code chunk number 22: DE-faithful-flexmix ################################################### library("flexmix") fl <- flexmix(waiting ~ 1, data = faithful, k = 2) ################################################### ### code chunk number 23: DE-faithful-flexmix-parameters ################################################### parameters(fl, component = 1) parameters(fl, component = 2) ################################################### ### code chunk number 24: DE-faithful-2Dplot ################################################### opar <- as.list(opp$par) rx <- seq(from = 40, to = 110, by = 0.1) d1 <- dnorm(rx, mean = opar$mu1, sd = opar$sd1) d2 <- dnorm(rx, mean = opar$mu2, sd = opar$sd2) f <- opar$p * d1 + (1 - opar$p) * d2 hist(x, probability = TRUE, xlab = "Waiting times (in min.)", border = "gray", xlim = range(rx), ylim = c(0, 0.06), main = "") lines(rx, f, lwd = 2) lines(rx, dnorm(rx, mean = mean(x), sd = sd(x)), lty = 2, lwd = 2) legend(50, 0.06, lty = 1:2, bty = "n", legend = c("Fitted two-component mixture density", "Fitted single normal density")) ################################################### ### code chunk number 25: DE-faithful-boot ################################################### library("boot") fit <- function(x, indx) { a <- Mclust(x[indx], minG = 2, maxG = 2, modelNames="E")$parameters if (a$pro[1] < 0.5) return(c(p = a$pro[1], mu1 = a$mean[1], mu2 = a$mean[2])) return(c(p = 1 - a$pro[1], mu1 = a$mean[2], mu2 = a$mean[1])) } ################################################### ### code chunk number 26: DE-faithful-bootrun ################################################### bootparafile <- system.file("cache", "DE-bootpara.rda", package = "HSAUR3") if (file.exists(bootparafile)) { load(bootparafile) } else { bootpara <- boot(faithful$waiting, fit, R = 1000) } ################################################### ### code chunk number 27: DE-faithful-p-ci ################################################### boot.ci(bootpara, type = "bca", index = 1) ################################################### ### code chunk number 28: DE-faithful-mu1-ci ################################################### boot.ci(bootpara, type = "bca", index = 2) ################################################### ### code chunk number 29: DE-faithful-mu2-ci ################################################### boot.ci(bootpara, type = "bca", index = 3) ################################################### ### code chunk number 30: DE-bootplot ################################################### bootplot <- function(b, index, main = "") { dens <- density(b$t[,index]) ci <- boot.ci(b, type = "bca", index = index)$bca[4:5] est <- b$t0[index] plot(dens, main = main) y <- max(dens$y) / 10 segments(ci[1], y, ci[2], y, lty = 2) points(ci[1], y, pch = "(") points(ci[2], y, pch = ")") points(est, y, pch = 19) } ################################################### ### code chunk number 31: DE-faithful-boot-plot ################################################### layout(matrix(1:2, ncol = 2)) bootplot(bootpara, 2, main = expression(mu[1])) bootplot(bootpara, 3, main = expression(mu[2])) HSAUR3/inst/doc/Ch_graphical_display.R0000644000176200001440000002227513302741020017155 0ustar liggesusers### R code from vignette source 'Ch_graphical_display.Rnw' ### Encoding: ASCII ################################################### ### code chunk number 1: setup ################################################### rm(list = ls()) s <- search()[-1] s <- s[-match(c("package:base", "package:stats", "package:graphics", "package:grDevices", "package:utils", "package:datasets", "package:methods", "Autoloads"), s)] if (length(s) > 0) sapply(s, detach, character.only = TRUE) if (!file.exists("tables")) dir.create("tables") if (!file.exists("figures")) dir.create("figures") set.seed(290875) options(prompt = "R> ", continue = "+ ", width = 63, # digits = 4, show.signif.stars = FALSE, SweaveHooks = list(leftpar = function() par(mai = par("mai") * c(1, 1.05, 1, 1)), bigleftpar = function() par(mai = par("mai") * c(1, 1.7, 1, 1)))) HSAURpkg <- require("HSAUR3") if (!HSAURpkg) stop("cannot load package ", sQuote("HSAUR3")) rm(HSAURpkg) ### hm, R-2.4.0 --vanilla seems to need this a <- Sys.setlocale("LC_ALL", "C") ### book <- TRUE refs <- cbind(c("AItR", "DAGD", "SI", "CI", "ANOVA", "MLR", "GLM", "DE", "RP", "GAM", "SA", "ALDI", "ALDII", "SIMC", "MA", "PCA", "MDS", "CA"), 1:18) ch <- function(x) { ch <- refs[which(refs[,1] == x),] if (book) { return(paste("Chapter~\\\\ref{", ch[1], "}", sep = "")) } else { return(paste("Chapter~", ch[2], sep = "")) } } if (file.exists("deparse.R")) source("deparse.R") setHook(packageEvent("lattice", "attach"), function(...) { lattice.options(default.theme = function() standard.theme("pdf", color = FALSE)) }) ################################################### ### code chunk number 2: singlebook ################################################### book <- FALSE ################################################### ### code chunk number 3: DAGD-USmelanoma-histbox ################################################### xr <- range(USmelanoma$mortality) * c(0.9, 1.1) xr ################################################### ### code chunk number 4: DAGD-USmelanoma-histbox ################################################### layout(matrix(1:2, nrow = 2)) par(mar = par("mar") * c(0.8, 1, 1, 1)) boxplot(USmelanoma$mortality, ylim = xr, horizontal = TRUE, xlab = "Mortality") hist(USmelanoma$mortality, xlim = xr, xlab = "", main = "", axes = FALSE, ylab = "") axis(1) ################################################### ### code chunk number 5: DAGD-USmelanoma-boxocean ################################################### plot(mortality ~ ocean, data = USmelanoma, xlab = "Contiguity to an ocean", ylab = "Mortality") ################################################### ### code chunk number 6: DAGD-USmelanoma-dens ################################################### dyes <- with(USmelanoma, density(mortality[ocean == "yes"])) dno <- with(USmelanoma, density(mortality[ocean == "no"])) plot(dyes, lty = 1, xlim = xr, main = "", ylim = c(0, 0.018), xlab = "Mortality") lines(dno, lty = 2) legend("topleft", lty = 1:2, legend = c("Coastal State", "Land State"), bty = "n") ################################################### ### code chunk number 7: DAGD-USmelanoma-xy ################################################### layout(matrix(1:2, ncol = 2)) plot(mortality ~ longitude, data = USmelanoma, ylab = "Mortality", xlab = "Longitude") plot(mortality ~ latitude, data = USmelanoma, ylab = "Mortality", xlab = "Latitude") ################################################### ### code chunk number 8: DAGD-USmelanoma-lat ################################################### plot(mortality ~ latitude, data = USmelanoma, pch = (1:2)[ocean], ylab = "Mortality", xlab = "Latitude") legend("topright", legend = c("Land state", "Coast state"), pch = 1:2, bty = "n") ################################################### ### code chunk number 9: DAGD-USmelanoma-south ################################################### subset(USmelanoma, latitude < 32) ################################################### ### code chunk number 10: DAGD-USmelanoma-long-lat-data ################################################### library("sp") library("maps") library("maptools") states <- map("state", plot = FALSE, fill = TRUE) ################################################### ### code chunk number 11: DAGD-USmelanoma-long-lat-names ################################################### IDs <- sapply(strsplit(states$names, ":"), function(x) x[1]) rownames(USmelanoma) <- tolower(rownames(USmelanoma)) ################################################### ### code chunk number 12: DAGD-USmelanoma-long-lat-sp ################################################### us1 <- map2SpatialPolygons(states, IDs=IDs, proj4string = CRS("+proj=longlat +datum=WGS84")) us2 <- SpatialPolygonsDataFrame(us1, USmelanoma) ################################################### ### code chunk number 13: DAGD-USmelanoma-long-lat ################################################### spplot(us2, "mortality", col.regions = rev(grey.colors(100))) ################################################### ### code chunk number 14: DAGD-CHFLS-happy ################################################### barplot(xtabs(~ R_happy, data = CHFLS)) ################################################### ### code chunk number 15: DAGD-CHFLS-health_happy_xtabs ################################################### xtabs(~ R_happy + R_health, data = CHFLS) ################################################### ### code chunk number 16: DAGD-CHFLS-health_happy_xtabs2 ################################################### hh <- xtabs(~ R_health + R_happy, data = CHFLS) ################################################### ### code chunk number 17: DAGD-CHFLS-health_happy ################################################### plot(R_happy ~ R_health, data = CHFLS, ylab = "Happiness", xlab = "Health") ################################################### ### code chunk number 18: DAGD-CHFLS-happy_income ################################################### layout(matrix(1:2, ncol = 2)) plot(R_happy ~ log(R_income + 1), data = CHFLS, ylab = "Happiness", xlab = "log(Income + 1)") cdplot(R_happy ~ log(R_income + 1), data = CHFLS, ylab = "Happiness", xlab = "log(Income + 1)") ################################################### ### code chunk number 19: DAGD-CHFLS-RAincome3 (eval = FALSE) ################################################### ## library("lattice") ## xyplot(jitter(log(R_income + 0.5)) ~ ## jitter(log(A_income + 0.5)) | R_edu, data = CHFLS, ## pch = 19, col = rgb(.1, .1, .1, .1), ## ylab = "log(Wife's income + .5)", ## xlab = "log(Husband's income + .5)") ################################################### ### code chunk number 20: DAGD-CHFLS-RAincome3 ################################################### library("lattice") trellis.par.set(list(plot.symbol = list(col=1,pch=20, cex=0.7), box.rectangle = list(col=1), plot.line = list(col = 1, lwd = 1), box.umbrella = list(lty=1, col=1), strip.background = list(col = "white"))) ltheme <- canonical.theme(color = FALSE) ## in-built B&W theme ltheme$strip.background$col <- "transparent" ## change strip bg lattice.options(default.theme = ltheme) xyplot(jitter(log(R_income + 0.5)) ~ jitter(log(A_income + 0.5)) | R_edu, data = CHFLS, pch = 19, col = rgb(.1, .1, .1, .1), ylab = "log(Wife's income + .5)", xlab = "log(Husband's income + .5)") ################################################### ### code chunk number 21: DAGD-household-tab ################################################### data("household", package = "HSAUR3") toLatex(HSAURtable(household), caption = paste("Household expenditure for single men and women."), label = "DAGD-household-tab") ################################################### ### code chunk number 22: DAGD-USstates-tab ################################################### data("USstates", package = "HSAUR3") toLatex(HSAURtable(USstates), caption = paste("Socio-demographic variables for ten US states."), label = "DAGD-USstates-tab") ################################################### ### code chunk number 23: DAGD-suicides2-tab ################################################### data("suicides2", package = "HSAUR3") toLatex(HSAURtable(suicides2), caption = paste("Mortality rates per $100,000$ from male suicides."), label = "DAGD-suicides2-tab", rownames = TRUE) ################################################### ### code chunk number 24: DAGD-banknote-tab ################################################### data("banknote", package = "alr3") banknote$Y <- NULL banknote <- banknote[c(1:5, 101:200),] toLatex(HSAURtable(banknote, pkg = "alr3", nrow = 10), caption = paste("Swiss bank note data."), label = "DAGD-banknote-tab", rownames = FALSE) ################################################### ### code chunk number 25: DAGD-birds-tab ################################################### data("birds", package = "HSAUR3") toLatex(HSAURtable(birds), caption = paste("Birds in paramo vegetation."), label = "DAGD-birds-tab", rownames = TRUE) HSAUR3/inst/doc/Ch_meta_analysis.pdf0000644000176200001440000023271013303046020016673 0ustar liggesusers%PDF-1.5 % 1 0 obj << /Type /ObjStm /Length 4462 /Filter /FlateDecode /N 95 /First 789 >> stream x\Ys8~_Mj*"G|I2Ymnd$kiG3P<6u`I K S,1iU i,`)Ke1ǿ$f1S CA,ZGH/(,aʄYp&O$(LJ )ń^3iQ E&2%q8KDsa &)G*c{ TcD]0RQf luqfY焥L@SAk g84AR- (b`ỏE ,#t <3QGх Q> @YԠ,4xA-XI8qA|AY&>ĤT`ei0f u Q-Nb4 ]@9Xqȍ Je4eeb\6 ܂!~ Z@o,7rBPn1XktNk4(0Q0! \Ќ *RP6q,:fnNXv>l pk$]Ƣ-o9x^'Y6b{cmNlf/$h?؋[YߜGtg-ݰ?dW?Axr9e/ps4|d|9d{|vot0f,N3bs<|6 ]_0mS0|K2a˒Q[hF%:?Ɂ[?7xCn$I2k_T)h<6+Ը5AJ(K=5eGe?:aELt'_I6'Dͼ>%^d$\ΘBy&i6x{;@ߪ}$r(+񰿸R,ΦDhOd=SHb4i R m/MV5.䷺9$8'8Ӡ4?9=$ B_9'}9Т[(쀝dymlɃ䪧0G+;(*eCSuISSujVMZ0΂IpiLJV2bUNI6VUc$1+,+̲O0K65JvimC8]2ߺ YH1#hxr"z{|D&󬬽l|?\ѧ׿lm~'ף'-MB:: v 3g\w@5Ke|s䗳RTǵI*wJ4-[H$&]ԉ9T@c4@RuCR=}}-0!QK 7hWnؙvRySx5o/laQ>%Wtq8:4hU* P?~pNO(8Tq1KU:îKQ4WoR<𚗌JѰfC(5F:|j>>>=@ 'yͰEݣtpp˟. LA¸%O%6]KZ\W{ʊzҡ%֝&,{tY ,!K>, >0ԅ"r%|W7VµSӠ ʷB'P1L8K'~ iy-(`\5Mm\&bGCRVx)2^d*zB, ҄#*RÊD;WN s9G_^:-Nnj]JBảHGA?=8|˛b>=)>{1g[~ UZcu]Jvn63unBV/ߣJD>|Z `jt>(]BSt!*1ե[H-SdP q/d B5I6VBuq!7gSj;J5:I="i sc6@x^!xX3|?}MaV iLbN;y5vT "X_`c35nXbr|:{i-uUUƤ;2zVig:C&t]bT]yNNvEUY(U'<֬ g_vj E6=Э=i-$b۞2ן`a/OtE<Fu-:+RhGoiM}B<?2?.v5JOaTK.SIO˶3X}yD;f$(iO*qLNjl(T^HɠwdjQTk%qCT/ִ2z8ECD`:N4R%l;h9uhY;ڟ..%uKp( s) 'ZUTL^J,+{4:%a)}z:% ̷" QU*9B\uH9ݣp+CZ&@43p5#oa/MVmƩч phek ֙iy9N~ʕ/Wnm^lk?\#8w*PדFz P:@zWlUw$jn,C^t >ڥIWN'i8v#g:mu "= "@4jnd+nt]蜬9?ЏUf-X̛g2ئW)`Cmk1wz[p]EǑ[Z6~qj+_﮶1>f26;>娓gKyYjyfZ?U<}<C]G }җv~u{Į?ըo!G3X= r2_sGc(|M :8F 1e.?,?r:endstream endobj 97 0 obj << /Subtype /XML /Type /Metadata /Length 1653 >> stream GPL Ghostscript 9.18 2018-05-28T10:48:06+02:00 2018-05-28T10:48:06+02:00 LaTeX with hyperref package A Handbook of Statistical Analyses Using R (3rd Edition)Torsten Hothorn and Brian S. EverittBook endstream endobj 98 0 obj << /Filter /FlateDecode /Length 3860 >> stream x[[\~R3s " (`/A0̬w-؞]?V8>urFd'\1˳B/_/Qv/6|tfypŒ2sx̎F5R2"]~Z[5ewՄ4Ay2ҍx“vtS4ѬI<2Kd75z*Jg.UѪ2lrGoY<]D]\\.>Z(>ۊypB~WZj-97oOvKTpp5rԚ/Rc{ph{/p;z `p;=> E07I1q1R)ӸB[m[ 2*n%-l;8f%raOp% ח8 *5ikF/ yr|8P<0-u=ޟMTYo$™VWU9D(`w;%ͻF;I%4X~u\E:Yg&R@i1m, < 1Uׇ+D6`폈Z>+//p>$,DtN<`k1 D!4N`o IyBmp I^F}i}TDG7!|n/z$ޛ4UD'/JHXƙQѰg0,͆$ I@rHRHC_z8A`Zk+AbNs98sT = 텡 Qt,x]4@-uE_^) $B̀w<`O8yn DI$4@h-3"B9%iOvqv@6qd~]9!XB&u&<"I0ٯʒ]v>y32сkYGp<$V6Xp_ Nc (:eC29pvV?g0"1 _"tϰ;K`7GtΙ9y@0FzxcD!GpZv"Ëh-.B0ta4eZGs΄KQ #?&ǥL#w3prHv.cc։XRN;@+MQzȑ8$̟wYtg QڏuxDTC je6D-{VdO.By G;]W݁丒f(0kHKPFmXȾq-n;)-+P(@ >D"WX J2~r/Q@;bzG1~C |.h qAs9'?EōIRatdV⇃#GȎ9( ŽZrMVeٛC$v!$0xŶNzq-&C1Pdri4#̠^O -d2`ix σGCb<_iT H1YD(( #< %gψ?$9;UC_S0 8^M\ o`kp S#=LZdGEŮƂc\,!(-WDi,9_b^g-'FhdOwNR1xU\@JL?F׾+$~>! LOc!V scXO'isiZב{jI.E Izb}34¤x\?IƝYU=*s@"楇f5o[8&.)}aAp,SDkY'4%>NmpWNnЧs:!x4_K\'T`h<}-'e,e$;̂o2=[|(X~P&uiǪ/)qh2em{z${n+߮ ha)Cw&ނ7筧!ZZi=+2:'}nᱣ;pQEMcI$BߤXw045S):UQO239 ޣo)ː%$4V(M3އ !:k:;&&IH`VQ δ 9wKlcZr4' 6G%ľ>.rK1lhZ=\Gpil#W U噙6 )O@AYZ_ԾESU '0J+R'DR gwFEWHX y5ӓ{Q`RhbJ\y5 |KHEzxUwDd7J%T{I0=i78m.I)7 ʆgPcZ"Rd:6vq 79Z tTBHϴ4 ^hmidC?5éXFѧPQ鈞dъpr A~8SP;;L6Jf88$^S<ܜ$X9!iC;@ُr"Ƈڲ4mTj`GդwHxkGݸnyUr\tjUm:sozbm{|yer{];Z|Ny=R:g _wFvmg n "ô\S^Xu}l1^z1i<V6#twɼm&NtC0W!Ӂ $=?4IeJHjnW Fٸ{cKt%)xq)^ ~6_/.F-t; ThMёIaҤTK0᪜fWhePhZ+gv 3nǚEV1/*Z#R뫕XEYbPk$:q9Vڻs[_" r8SESVL흘q%#i~lH%RmW2~zn-'u[3~Q os lN3CS cx2sN<CLt>TW7 x҃ G{m^ҭaC k5x|7FGID^ Ýb M(HB1A+ D"~fA 8[KYORэ`}@>]~ F.6{hs|\.6<>k[>>q5:gXcMomR\̘|ʜ2灍$M+",6M'ˏfb_tL:M 4MUݥG.:@6i8_ A;?6j_x" |LJ&(9UdLfs.>|HVp&fپMqȑm>HL5;R lEv:dv ` :fzؤN(!Y:> stream x[{oIv?hiX& Y>cfc`{N9Nuթv&t\SU;zߗK?r#gM\]󅓲R-unyQŋEA.3  cleUн5lTᣴ3 F8b轭\9SN޸Ș AȆ:jiFe 'FO,_Ȥe\>=j}t-Oni@z{rѹ_ʄ>BX,^v_@]"x_֢wBi>Y/sO>btݟ^h}**ӱoX q*ҍJDٝAoΡW =P/.BFq9 . G#hnNzkLwU=@ Ziǩ|[\`oXͪȻ^-n-r V1D_փ.:2v׉lTdUy;-,*KlCwXiV{4uIQ W I !8XP^xGB&-hA !(YbIVۭO*^2|ނ3[w"pZI]):U:HCR`kf(!% ~# *&K(l 01?(v=db"tehcK"b f̎n `Bi1`@AItovq`N*+FF p } gNǟ/+ znZ[{LO@tEUHnR(+mb$m.S4\ aΠ7FP,q֑ykҝ3I,9W,h؇I'e 'ώƚĜ]w88@ e |Li H˿YYS nP%'`))uS[- T<*ܐ*O|0Ջohtf^ jX*b,oùZΉx\6Jyoop9@H8."֝yfe&X-Z HUH˲M@ۀ%FZ{^4R`ۓZ\m0DͷlC=&(+Kk͔SD*nhepq4LTy#b ^lSaMh"Eje*!nǎ zܠ]e!ttrx iQ8MO5bZ@>p#(3`Jx7IJ^3(FeĒqsoP&nYbMǸ d5˙'=EFU%v&:qOĄ7 zCnGɤ,H<-xynࢍN)N73ABD w򐴨: dU:ӃlkΔK $^looI{=1?`*r %vb9 h\,H#ݽaB< z:TiG7D/6HgM؅=`a|JR"fxZMm'Q DgYu>7tNm c:;amnz7 Njh0%24TE 2?ס;m6ta10m')ߗQiҪ|J/e]M*aRZ_QҹLءu3? OKYi=/9Zr;7-aD4 gH N'߻0}OWĦ0Gq:mi8w^ I?oXx@(@c4Ac(1!{#0(W`_aD~vCzQL>..g;fhwBEPWZX^&v9Ѫf&5:4/:d]PaP *=%s}Uu/hRWܸ]Tpc;z)ɈpfW9,-lSM_O`p_/~á[p$i:z\ 湗-F/uyy&Jmi]N躴JmƕA^RZ_b6 8ϿہX[#]d%/6W7g0H#2rwYo6wC{|S(>\\|\)Ͼnorw ÂO=#oy2|$?hkFfb 4H7{u!pnl^ifs;17'w`)k{G%i:}u9 uwhXn_],Ud}hJgiNʕ$Y'P'@N4l(dy),ՕS|ne3FLЪ̗ N̨Š2! ѲL$m9*KQ)HQAh[FUgH>Wlc`Pu$Wb3\om(%Rsj*.#w8h*=VːCz+QMm^P6Ж'J oD ѣ2+*]PD?%ejBj6 3DUmM¢ۤ҂(؁q;keIgP bэ5Ʒ\h&4\À40foW&?5_)bV^^=W {xXݛ|ctT9mN lh!n-7ܰ'48,{?= |Oq/0]. !g8#f<(E-sjendstream endobj 100 0 obj << /Filter /FlateDecode /Length 3873 >> stream xZ[gAA>5 9)m"G!:֒CΐiFH{=f-3z nHʏߎ(JV:3^0>ϬF#lk+3JK+(M5_]u^yZM&(OFVOxrܶqSYMTk:i%r/GG<(tr=>of|q5cdk%(B/֣o&psg)y%SV6Op,6MlaZ7dKs&misj2R VXMؚyDŽgaL.>4;ѷ# p|l`˖e) # ZG-Q-/&4NZ|Y@3f)`7XsnMl؟b)=2CAuB_Hm^W۷dSXinon.hxL%r1k8jy˙O7/(-/Zoj$ZJyEUhu,8 4 L ıV,k \!yי(,UY1J\UB|̦+žͧB[m ´ZY8_ z5|~^vw_$ h,KDŁ}qΏ>G\mw%¾ZrY\CіndMفw3}3[.ұz=;,E]"D?ElrЄ=CNY3Fs/9k9v`FU0i5V519PBx{7*;|kV͵r< DAߒ:EYrls9U0Dȩ&Y9.q3a0f2(ЛރGm LUfAVCmLJd.HY+Xn䝻8.#c(8+.v)<p`CFU?@z`cNm@@Rr FN )d;5+9#1(G .p׵Z?g@3cR %ZyVq1>h e 8ogݐGgQt/?B*5RFpH8 u!{n?-%lEC> "a`e(̈́ .a/F؊r4xA14q/4B!*c01J4O楛\YơFcnAC}b.Hc(epIr#zmJ"; +`\M p)AG9ࠣA:ñO`zQ6+}JʥG5/,|2*mDYt774a= $v??- [` +szٴRѹ?&VIdA"(>rɤ=jit7qxE<혴F mB* $9S۽z D!LZ(L\O:] (_ű,FSWcPd]wC7y}+4]p~+E<Ib=Il[E2&hHQ&Uyӑ *^`72TJ#w!4u9MprpLTd4n׶{ߊjG 7k|m-:UhyrZ&y~X }^8`mGy$ >yʣm-(~&oBXS:xweq}Z&lK 'h cbvwe˰HX\19!#׀QSvyegV~P[~T I`AUŁ[8@?Pcwyx8z_Ql t5 8KPкv^/M!hbbs3T`g(c-FCvw72Z1>"Hy1$ȪyNBSM,kS0%[]zܶ۸8S&(b̙ƃN1IJ*ⳮү5>`'5Ǜ  x˪e%;|C\|F@G }y$Z |>k z]Û>KفډS}^p\V$2;Q==n\`.鴎RFc#_Cd.bCaUrGQӎ YҺX+.zݶ`ӖB^C{D߸ 9K+>QS]ML,n']M c%{ BL $e +LUg528bWtO7ۄ kN\u:&0)p>&J;l $RkQz BbHӴ4Cc*rh{8dg"Th@%~b(drOfeO,DadP5ӑ$n&ټT0/b3[ANSeUl2!iYZi[tJF!D:1wы4A\ьUj@-oI 2ˆܾ0]KtT>AXzLT#[G :Xo C~* O(n\pӊ?@ҎE#wYX뉽GYݔt{k8CYxHp 8BA~Ed-?,~Woz7еInӘIni_ vڥLJI5>p 6cu[[;m`Xendstream endobj 101 0 obj << /Filter /FlateDecode /Length 619 >> stream xuSMoT1 W=4DZT}tB㼯 ^4ɋonw|u)[Tcka~$qdyvNF& bNZA\FVv=.KׯjroQ%*N 8K$N`k:f3kZ-n݋P?;14S[&#Vs›YW3ְdx$؎ ESaY)Zun( \rxj0WC<" ^n4kTqN)j*YF*Rg;Rb8D@B5ތ{?څ9מo"WǣV&AR7]ڡBO3RB;]_%\64?8tf0 7M஝Fe{Hz& "Y0J ЂPP&XMa#`4 Dm<2 ARٖx@*Q8d^$S`kRi)c[uJGgEN˰ )d/`|]s퉖~l%r:M9U8(f&~endstream endobj 102 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 3520 >> stream xW TSgھ!{A** _kťbQjբD@("ʒMPE ,A BTl֭SuUǎ8Smmu{GzZϜ9@/>IGF"Lj[%_r_YP8\;^9 ?CpsT"Mݜ)<}qSf͚9},yѡU1hU#=0vcDhB6Ϟ<9))i*Z3)6~&'E$ ՄkCCbcܗCnolĄxwؐa<̏]Y8QN<4lSxD;ލ=q49ü¼͌fOƛ da2q̻|ƗyYLb2?fY,e3`13f&=dE[82 IxlJG9;iSlDF΁pvtVs)u>H7被s^`F" n}jlgWwj [v cuuRvX=WхM*ٛB 'ei.Y f:$8}9ek}g#TRyDo+PtV.cݛ$_`Rq8m9z&2sua& >؜hȵYAŽ5 9VഠKPe&(V *aqZ#Y*ֈUo]G7 M1m5oVr 8lЩFŭVFr-G^,h!vc|RZT V=Bi>t_:l0I7e:W K(Y+έDsp7^:XBfdAb ~ԖG@A/ZpU,‚!ϓlqCKG$2s$ qy$C2p Ju|YX{G41; FF~ޙQY#+xg 6܌vL^a^+`YZIع{R&Vmhտ=?ǻ,,W%[j4o9QmW48Y`N8lh<Ŝn)Zm31~)ꀅ$h #Pk4Qi6VRMs(KbuHgmHfq+iF|cMnK5Ǜ )n+p "È}Vm.-Gt62FGSeEq5xC+jh qzpAvYɠ-%&@ؖƖ併me;7u-!P ^gxI޾Ԃi櫨-*Ḕ?wz/_Ĵ+vTt4jq=[SUSܢRZA]R#¨buWbp*JsXM&?Vrg2}K7V4Ɨ Auo46@QYN%id7 pa8:_~'H˴+qti(S<jv^>%y ˞TO묆g)$bϏiD|9Dai'yJGۭ jcHN X(.꾂=\ݻב5B ULX{H2{5k;^j0z"YܶnO}9%kca ԾNEzo 8( X())]_iR}i{ov )1$%+Bɮo+}7x>ՏpJ2^qv,"4_Q  t,-ZxSiqIyieIqh:<^Ao'QE{gQ|-/-][[v*.3 R%[g:G8@dS3PWUaZh%s!CY2{q!y'Ss\h&K38@OOneY%pQ| ,J #.xZe䦺U_83aEQ$]XlePQRFC1P )hKjN퐣{ݢ!EeoxX c&yƨ[CzJqcQj%c`938ܖ1)mrl2+h҇"߷dpkBWkt@ƣ# h)Eeu4U11Vܬo~Fgi fH۸9u]w\է ydChタ|xTڏ'bƈyNR| 4 qa V>sOgYZ*AupP$N2XWiC/0+ȥ_{K+Z Bt6-Dvז v=T ( ť2d8չ%fFW9ۯendstream endobj 103 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 363 >> stream xcd`ab`ddt v04qH3a!Skc7s7˚ﷄ ~O XX_PYQ`hii`d``ZXX('gT*hdX뗗%i(gd(((%*c8)槤1000103012ԽK2>}wy߯jcws~7yŞ>~nSg>;3wߛgO^-ym̾^];ǂXπ| wt\eXp~`:endstream endobj 104 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1925 >> stream xmTg*T:hQIQc*$*TI#BawD*/{YayGXvaAPUIi̩ibFHKP$1Dju9Q$)H2<5IQlUժ Q~HWjRUŒujQf`e!XOYLjT+ *}*YQ1*b*toHmdT[* '5,eJL X"'D"P _VMxf⿤+*Z:ZAE~RRD0J7P _@Ksr=^ly>Ow Iȃh^ôD6߅"C/Wߊzv~Q NtJ$?ܥNOiȑdߜgk$_qz,c[p9ܚ8Xg-WŨ]'ZK-e%`6s@quyi/цد/^h JHQzx~H{p/-#@Cns3"Z$7I9(@D[t0xi{p)(7߄^oXO%})="m2  6зEDcMnk 1Hsq9E*?.%=+HIg\RVd4\H,8{̜g@X-57)/h;^d4@+W6-_k+ *٩qZo$BGݔ4rr~%Tw%'%>ZӔn Os{j=W`=kv{RNZpl3Q><wsh>Z_k'q=1DKSx3,qoO`31Qsw NO BOB;ohrdHׄ"p桃MxW/ G^\VT(saJ`;)m*ʿ;:TLc Iѹ}Ecݝt_s}}h8Hn4ɵe5k3MY-G<ߨ*~k*93 y3,qbe;9p\PʽUpn\+Zƫy!(~(s 0k06`jMȢ]Ǔ䞂[9=s~oC,7_]N%#nkelIN{/t<ڛ4zX=vy]7뺅 5roq8FǨ58 >nTp*-Ns!0" A|= 'tM3Ha ڪ*m"4|@UJ=} 88ڍ.&ۨh=vu~Y.)(VWhaYóYaNߟ9|}|w8endstream endobj 105 0 obj << /Filter /FlateDecode /Length 150 >> stream xU;1 {'0q_N@ -ׇE٬W.,?慅:c8]J`̤\՘pBf3y0IVL;)H%Q3T3!T*_qӊ[;KY I*) vjKԐuSBC endstream endobj 106 0 obj << /Filter /FlateDecode /Length 3320 >> stream xZZ#m y9P]t%LJ\쒻Crݤ(x(sWr;_w3Q*?3cfRs1ҙnf=+J Y^Z(VJҊ4:R++]ҨR9"Pk%K]YjpLW$P+TC]>}z;l((mՇjY}| >In?qbh2/>vf~/_-C63<1-rusSZi|l@R!'rծ&um7ܒLr_,?nt0}؜n7uXrXoRnOymWR1z:`R @ۗv9(!!C8)0}Y;ΉH&U4Sk]#rZtbjW ,mJ#(]}S>)T)UkC lpjG*<=;Pbb8t)R.eII˛.I24F% 0;OvW]w*P&ќQE_֭s;D6Qj;|W }thL4,r`G|1TH~n`i擙o O<|"y9g{RmWvXP89IW]sXG9^Uc[XT;w ;J%RS8 6FeN%ɂѸɜñ{UYOOPf9B}@QTsBTg.8! UP^&ο,*?ҕ>=rAkr!8x{=&+5z~>$糯JP>$ѿQ'eݥ^MPͺ8?ITBHiCmjAw25١UP"u:V9TƨQk]\::4 *oujH,ͽJG\ T>.b涱gVl&#ǥREj~!&bũ5QjZCpLגY:Rr.dU9#xqKO6-;=:BMOuw x6e٤bzG:i#{r7IVl3ypGV,d<7Df{ c* ?;&) dU&74Z{hK|:e'B@O܋.Cq`"5Kfi xdqh/6ܤFfyy!KA-a3xO1!<8S\HƸ9PY@'{[T+eQu`: RN v@R(/0HVK$F( bl Ow=QJ䆼q>Z$.+2A!dµa- ECmp@>-śx/ S& ^z(.z?VEǎTB@!ADͭ#x5L,Ö&{LL(E,-X]fo[<^}RO 9]a"OE/&ҐAmg=`fo.'A_2jP\z(ƲQmAbf?ܬ,`AQx=%W/Z y`RaowbRM^%j}։G`  ") *Q:ֺsy  MU/hf1eݍz ؝d۵fĖ: %^3#SQM&agw Ex9L{8Oph("N!,k]\LDL҈ST]Vd|DhA8Ca1S((ү#ᢾ&O`|x4C#3@jO0ycVeep~]^喃6]<.G0O[Ȁbj#ziP3:[hǂhg0g7\EhR+/wZGN'QvsM'-/azrMg6Y~=F(DC3_TXn(8I$ 9?|Mhoo ј]Cؠ=Q_vDŽ1$Jƅ#? i$FukRk$ nvEgXp-O }%$yi]yPobCXx=MLR1i, uc7`r;\&p^*v2.F:1~EA4 D4͛gjYR8A0)lTC$;:Wte#> stream xyiXSJvǩuSc}{ ;z5jrߙ^[=.q p / wT)1- ldPCwWWv/Ͼ.u kHApоKb0 ]f%3Y fV3C5Pf-Ŭgf3# f$˼cF1f!3YČc3 f)3qb^Lo#ctb0LWƁ b1=G-gtbb0v^K/?Ҏ;.~Y+9onǼN:tN.*~ۊnݻuçǏr{Ƽu_'3)K˹^{wア}%}Dz.oCX}]ECKXpE\X"n),r1uR,h)jǎ:Ο-4ԁպc]X >KoPd>٠d瀕,u˰]zK bU51Y<ړD)s"7*Mz])?OJYW,7 :޶^9u|׮Pp% _[d9-AK8XOe_HܠphYGw ,g\P:Ɛ$`wٳ k>0H%ϊ/]k e7 *Ek9+G@?|HsK-hkXG.v@QQ&I=sO*6t%= A_aG(Hq#A,?HS~8[*rXܬt8[[$  >Mk=t !z{쁂:.Y I)Y'fRK) 룙n E에*AoY˾Zxέ@ZpMVW-JK_m)'8ƥ8GT q*P Ȁd^<͸v9<E-  B*9w gz׭;6 O22%[v75nC͎//ag8C_d@+27+wZ}!Wlp\[&ljLꯁο<ʇ>'v i9BI>alUǁzn,']NUr X[ z(W3j(q{ (#dxZz?s?~oJFz<{9:pࠩ3?O vnGbnr`*Y `GF|MֈP22|q~l 3ƫ 1QF^#`̲ Tڷmgػ AO |K*)?ϦРo2T~h6Dmggj8."B"sNuA~c,BiЗ.ɂGږʌRVTkp&!VY s0aFk3fUފYy#EdC-|]_sFA~իOgL cqqd,Pw\{?\qRqP YpRK؋t82tIߐ*t{_wt*]&YpņGRE3d-2_L@`VUڐAH3Ʊq}pjm c?6I_]Eʤlyb[hf[عҏRz dky츍gMLnjWNQ8\GCUqWo ֕M򄩯VV2ZF5Uqz5v6rU")c8|g: ԅCl2DL.;"!Azd8;VR++@R) {RԹ8SZ!)r!%3%ֻm"/|ZUaȶat(Z ڤQ$i0V'J訁u0Q@HOcIRgJmL5z;A&N]yR~:_H}s.mso'GL76>RY 8S9C~~fBm l}pv]is; 7.H E_UШ-oS<11TUs9erchv[) dnz!^hD1ލr}W/{uZY>#ow'?߸ZvQh[\bB1 N}Q.ܫݸ[,u׶ >aTPDQjOG(uo҃|LN,yshUG3>&#ɬTt_TRݗc)*kEAV :mRDDhJҦPIi>5[muG qu>Fq\HQDeEI/7|@zG]Fz>9U]v V(8fApc6ַR,#Eu>ȴתae-.5@ mwRiBӳGԸTWl0fdUy/V-& %FֳNt,e43Z^;|fup J We*2,K;PyHukh!96 q] ̈́$kg_9bO,:}ğ RCO?F+/jKKUEltUn"l_ij gZ՜Zhaq͎z#]'WJqG>!G}_%ˇ]LA$Z(dS8Sf^\+ģnhzA۠` /%X:m\@)29`5ZMQam45j2݉t)4 |[9 cD3xQ3R;`_otimq2&wBSrqSZtn{ך7$?K>ӚJ9,#M.Beۈ;% |nNzM8brh{Q;Np=rg YIɔ> R_BcCXq(qߴ'y/r>or+<7.L;6EɘӣM92"dׇiyxi)?lLpf.W5\bjrjW^[R\j^Hg2i҄&4$>fb+m§ee'dv&%&ςļ9p{pL$Iׯ\zAfǒk8nIKZWctBMRZgUVBV!%;C0#8< vZuП~@3Gsۘ֒w%4FHhmSH(~A"{jcy?/92B2oPR dQ {kdmQD,2G: OS3Ncf./FZ a1w _ ֶLVo9D|MM-o`|8({ 5LhϚ|@J>~hMvWP ,N?F{+M2EO9a }2ݱ;}m*K ,G/wx͊[5]0m"%`''oUҡP8$[?3/p*j,&nt!J~pwmk^э.],NYLa6S'^YWIOAF i1 <9ۺJ?-jc?f_ײ%j.IMQr&)"6D,ؔR˨R+FAQ+/`LK Oށf0oʈ*6xzNdgN|hWrX25[Kc3@<*-FE{ϏVF^бIWCw'P@6aYI]i&qa-.u:M,є٥˥.]endstream endobj 108 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 3782 >> stream xW TTז}eIB/&<+FL`'B!ANU1*J!(XF5hN|I4_s 4ZuTAwϽ.3pP(žo'ʣW@tG%8lzyx3^Cq0FP$]=5.bkx-SfϛtW繽%878!<,*8-a n OH>֬Q3c.2-9"!/,>,.),;&:0Y=1!,7&4,.aqD{'$74lVk?z}ь_1a2+qJf5Yˬc2ƓYld03/ƛͼa|5Ɨyɸ1jf(h ϼČb2ic6E׀n*G*w(;ЭQY%ynB; R4qmNyNU?5GY 'JOR3cFfU5O#iq2hOZTD4A3܅,y G"VR8ӼOo9 Th'ZxH\{c;W-Ir䟆?m4m Krв=hvK8 ]%,NrhX>Co. *jO/-G\[L=ghP )璫aw'wOp@ rhLyxVK'BpKC4t(z23d^=,o~`l7u@#\[_OͲ#?*p6Al2%kuY~_H8b&+/H앏fTg@"8;7_VAU8 uQhON ;hr 'KF{%攀k-:4c*>9cFDbDȀ8㒬yvɯY\[?d=lڰ>h2q2q:NNUY92Ԑ5Tw)8wIm͑ѴU햟ҒRRY Ǭ77?;MwOQ\|Y١ٙ-&EЈ1t=#hj2ZNmn.&b KɓQ؉U8-^ 4 $ ^aBs/TT];._29y{;|~.i;G$=|G}5o_NJ}&dsqG:!0M ,[ޡfWHEH]ab³%܍͑:$XuҵYWޭV׬iK9Ǹ AqBqʊ5t-y8n|S4'Ն>2fT7iNy` D#w̧ zVQ(/VVs'Q) k'K+%mtb9/ yxϐCwN#㢹 :xq{7a5vZ8/yR,ΟZj?i I6hnWy2hu=|V'#Bn<_X\n6m^S@|ic}NZ΍{Qiߥ]t L)Y%>}6d*(::>x?\q^7:<57q?̩\E*s5UK0RU[\CPn8 :d2Ql$ X.كrF=)֯Lt"CB'hyr(1LJh寣>U~˪qt_P?BJ٧-o2m\i݀wpFEካI]j R%+7)P/洪pR *+5tL#@&z]RgB ̧ -Z(-6_f9_}tݮńR?i(=u po+/ hguE *;ݜ39YY>\e#U_%h#|[xC 54QAԠCE^TuSY{o] +q !JGWBqlf Cp A8otOD-{ :z'9D}Pi]8QP1תtəv~vR>nk?oJj4wSiUu͕?>+V5؀ӱmﰥ^KDHwS3*cOFUn+MΧpq +un/{TyenH`+ Fa+58:f)endstream endobj 109 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1125 >> stream x[PWw ;LQvh 㥎m BL6  r?@ ܄@R\ ezXv}}il38w0Ǘߚd}Q\kd,d$'IKCgt$8kjg uFMedg1[g3/1oFMR**N.'\ת8ΰcٜ]YٌYU15jcZcs@S3q &Nmd Yڨ0l9k* a%X)v{ۋ`DG/XٔI|XQ]yW&({ѝWTJ3>+"E(U CH=pmS#gоMK8D;q1 %UD~hE-C} }GMVꯆJ0sV^^氟?bcq[=uo 1ZB9o6Di.%'Wpvf3VjGۻj9āە_QϯS u; 3CW&.Vm:Lî/l#MD zSEpS3ȇIgXI(|W FG)7^^-KC;KIEMqt|pBcuN=0@ zFxCpt}<<6^1@'wv?*`jl%4@qEy Lۨq WZI+liɽhs01pqCmqة-Q (Zw,LN_b"rX\&ߪxQ&=+/jo:8Ce:^kFc*짢a%(&9710u.{ZAyR >ڡ xIqni蹛P.|zæb ᡮqslX:RY#eEuPcC"tq5B^W7FaSy0JKȈ9`5Yc?Kb~zI2> stream xYxSUiڛˆk[{ D6h E2RJә6H.ړ{A-PR/UQ⩿IWxiO9x{[eoGD"2O,Fi8V M/(`pJ,ɣbH /N7I3M$O) $`urX daNU*S|B" _ SDt])t]cݔ!aQ~ WN?E(EQK.o^<|"7>1;Vz\.ڀuA7l|uK ^_82id)SM13aEޢPoS󩗨wZj&P멗 FjL-&S[j5ZIMޠޤܨ;5MPԫj.L)Exj5D-SCPj5ZL FPzXjIeORBE^K]N|5*N/5$F?9O> C]6N h8 rOϹ -f~~N~p9۹ M.##F #T g@1;vZBQ5>2CY,C0qʏOG`9gKmtBM {\C70w`$($DpXne6$6uwr* HnYHW s(QBG@̴ٿDx/l_ge7! SMp$)w`>ϝtYp_g簶1 z=Ha،]^1jOy fޝ|U:_W fDcI1VP 3x;xxr;t$O+[d(Ώ kQ~$,ÿvWUy&Y^ 2o0v냅n\L0'$h>4!VޛWwJz,Vr+A"(p@PU%q;7ocP>Krkrjmd3$0E+kSe(7hݴ*v'/t_QΊ;| JRK `+&ИMNple"'4 =zki,N )Ăֈ4ur:mF1$E4[5/}ОY†vNۺ趂KH+ G%BDI3.WSk26G&8YoyKxvë.0CM> ){ "KfŠhZޥ3?oVI֒~Я\q dfDqkwG"f!:UdC7B86gX 4>.º#D G+&xZ)bVdDAv\{]\hIL ZpP-s Ns,lk$62j0ƧV;h,·n94aGM4H}K%FE{73M2!Q,l`$NDX*tl9Uf|!NK89{iO &0Nړ싹4%Ao=85pgvdr9 *L_J NU =jCYeUL_Ϙwt`V؏6;'+`ɵ_EKC5 m:t]1*@O/=xWFFyǚDBJ煒c`l6-D(X ]RG z]=dܢu}]wT8@@<dz|€lE` Q}`÷{F87%*,J]E4rvEPT. ff?5ko!JRmgm|cEV[zu% x4Rh)K+1 Lင]).tj֘\9k4ϲwt GLml",.6go(>7)vmE)ӕ\JB% Q*517 3Ƃ#Q 1fh2:BY1X64%c3AFԈY]jIPt3w :IѶ3;!?/'97IGŨ$?$+K՟ft]_Zb:zJSkj7Я'X>ٲ57(> ^ _O,:T@r: u+yZq,D0ļaF_bC\G=Ų:Ҥ uyFo~jz-FOctؒt "/1ɩ28¡=a|qxgg"QsBsGgEthf]t jK=[MkZ>q]x Q ur-t o겆 nmomqV}5V3 {|tlx.?u'?A >Ntȩmݰ{#?]flG̷7w6ix&XV\j}cuL-"Y6L^x^xmTH$+Qhx7P"3x{z˶깄T4C̥! >)}W=} k9McQ]ԏ;Jb(d{Dh8xͼq܊ѴnU%GEUQ UU \_u8eWXoz!s%lz_Χ>PFEFyFEP*;bL.s4ayW0+|~``\.+('X{Dvj\HuދVsho|/iM 9 H孰%#W[D+n"ŷ⭩Dm7 iAl@eȑR А!$d dc=Z5b_mJBqA p9h2ȬSV$9Xnh)<ߋZ[wGZ d{x[F" 5IY ulATT;?gu11i2&߉FFVj t%3>0IF,*MΎ_l~a7eEy٨O5AGnN/C>o==CO<`жe'6X|61e(9gs&-s.QT$OH$*ka;8CŴ2 txUpʏ 52tg|+J5:^Q;HQ//ˬ}Iu DP[f8Kt\ b+ۘz[.i(ïgP- ܻ-h8b\ӳ1w$xo=Z9ՍL񿭒ǁ Nz6¸wz,$RvچFVr%a G2i8<hȯV 8F1Zf 0:Vg)+ZXxM=HɨJ[|v{F5*2lQĝyf&6OY8t`qqj5^I2w`YM^ Cdz6usV%%8&0&;W~˚m&E.5-ylM^"1ܾȶ)w5mn81ϐIюg9aXz6+!TʕQɪŽL@(%4PWZۯD'>IueX3v{v`Fi<22oa3xFx<~ I|* w1)M*7gcbLz|Ft:3ʃp]IJ4 i/8u OαڤTf,۞<ÍsXK?í.=z}qPB27~%xwW֪ JR dq,o~ Q¢pE4B' '|gͺ| srr1("TA3Cěӗ>ѵݚ,,h`KM;[*OLIMIBjҏ  Jc C8*4 2eE9y\SC]Y *$ XS`އQCYu U$ 0;@qVNJ+ Ly، oZmuxJMtJHP2.> stream xY TS>TăIsTE:#J[D<$yub <[Z{ZkszI>]뽵\,%E&MHJ.%EeluKe#BdXyBX,0k.[&dq dq$E\lG0YRJ2*0.1)1aJeL8TDyLGphdeBpcdB寽tE? Ʈnr '/IY,m򕑁QAU[VoxۚSO6tY#6`Ӈ|4flָ9&N"Jb*1$C b:1&'VÉ"#>&FkQZbO|H'hb1'qb<@,#&ˉd"BH)AG$A,o61C&&BL#>%‡OĈ'Y}Pe}ý!z8G~O%$KI;߫{|4P;3֗\ ߲ղ?v8">2 h89J3kk88UUWh\$5'ѧno(ؑLrFQ̠$3(`YM9/|lWڽ#ŷqH-@M]j9ߥ'ih"M﫽4,k*H*+RA@pORF?5-z(\stF@xڲC> L9X됇6 C'DyM"K>(i 3tpS)#腶+$$.-3:ir-q-ϡ΄"㧧|?t{MbQK4Cr(p 9h(f'Tzќ( 50_LQ8O/|L;/G 4 @>\(@vԃt9p`{ =^^^)X\U.P*+v GC`*yAE>h'HAv!\)SN-[lްv-{D޵,KC6l ]1E*4i4u}whL¢Yp"@?U%5jN =@ NLBĔ_3JPVf=%R})(cj*'??P* v'G >8>ptB=:7Ctn$u ,9B÷K/٫0 郆!jʳ~} n|z0EmVemCHt|hyh|Q(:iYmZlETcfGhN :v= d|z+J%FCz}$b=:|2 PϢwm @^QvQvhB4v|{QQGQiWP!KOea杭;@>Ѥ.)6’_UťfyNo.p7:]`Q[\{tG9q#V9%lVLnnXWEhIc|awޓZo._ie ՚bͰ{Mlږ u1҂BgNn9S@1Qcê|hBĺnWng4 uU) qG zK]tT-b]e(g([n\YHQחm\M{. 3HAkޮ]q]Ą)4'Ic\ e#-E"2 ˜+&%\*^]xSvm-pS݀/t+RhG'Oݭ~[Ynt\kUlhUlԛftJF) 0ף2K645/w}$748Jd.MB(: 7_4"QOWKFU,Zm_KLUx|`1]^qȓl_qcne>_ϸIP`z#ۣv7QtbnZܢP"i %咱S;~5XXQ3g @؎m{D_A:rы"KL //o(;6|$kYq D h!PH,Aa.SqUtqJO[KYd0L*>MaZV`DӸGZ ma4Zr`HsY Vl+݄ɉˎGεRL]8џ$ڪ?03??JuULn'7Z^R.R*9Kofg \P0X.T3movY cQZDԕQ ~/#(PpoÁZ Iag k&Qn_Ǥuс_b$R8;C.ߺ`)/3/z"BzN  ]}Dž&9nr \:M Q1a[xG}F"o7] R$95ck3C@Oj]{أqy^Lt5Df7m_ڶpU[Zu 8/~'81-\kofp4w{FE~6}a33Vg-(1.M*_p&+p/ cN4| |NpWJ+ <!zE|Q KP)Ȉ1T!a) =-"^\5򕻊D(Oױ;^();8Q4xݹϾx 'NKGbl:VSh|p!p 'ދA2DO+HU"L]F78t~h='t_xARpC γÑvK;4{ T56.}<̆}}5ee2V9_[Xg7l#/?1ڙp<hqmt6 ]i|;1h1 BcaO8ad?At I7fwy,d1^b 7QNj;]Sצ8tUEyYk/ᶚ#80y9._=vi?7v9-,vhih dp {Kόp/nls ։Рcqo~,G&}qGw߭E?_w"l%1hғ kn:Pj##4_|w6d&"F@=>׿ozڳ8di4tJ)HCɌ':D'+A'CC\.N_^"rˁr4э6m@>&JB^pD6]0[|i} e!GUnep ɍ7so4ڜLO`hĦʺ6,00$Z֨V ӓX:Ț#{nm>p 2%&)s*8Ny;'s2jYk-Sul*@Yv/Piq&3m|Q\J&v\'S?db?+$A.@;liv ~own;QY@(x\l %H% 7'qvNw|[ЌvZK3_nŹBH&F(C ؟ұtC%BhGwٙ1Cpzq -AX>g)؎W0j8>BDZEo]˱'m|^`;pF?.U]N!Ǜvݳ3~+Tn1EuBHH$k,}Xf`|}Xdʺl1Pii}|Pp#?twP*b7T`u( +t~.Qqh- QVXPZrSi5UȎV-I;74F|)Yvhk:鐖vR; xi)n9S)H$a1!`&=4|8=len;kɄg!cKM5f֫T4܍1LgUUUW^`e&imES ;;gg{t'SG]~-ŎEH yx%pxbB`@J&6%3?*j1TT?m VN Fijx{GMi3ӶDhWr*r?|h<} s[ ngL>&[ iZXZΐ\fI[@\VhDR TJhgUXvZP>w?87V+m)0wo (Q?E؏l]g!Qm$;2)9|Ed | N|ud0&pE4mhO"[A0X3\X Jva-@2הp$K5ʙ/CPJX4eʿ;qą'Pt1:0_XQ^QQJ>u|n F z)ꋳjBƣuu5MG1*-6v29bCQ3'OAoF{m"nendstream endobj 112 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 753 >> stream x]HSq3ϙ5gFð:;EaL=nV;qBB7 +6ȯj->( Ⱥ(,)oE]u> )BEQLnANr'!:7#B*HJ]Yhgs-z[$*7|JRRml5/0H&lIRY#H&If&&:ٞ`wm5?,C,Zε` ,UMD$`F uQ1TCHܢp@ PP 5¹\p F֕j9C2υv\%yzv=ykoWj9i"` @ %z H8W0+HK'ԇS}1[|$[Z>~z! R4x~N"򡺞.7ps+'u{Fĵ(Qn~b彡1G46|yI˯+{;= !s1}- jݽ_F&9dÏ4_uTksC^xQD!vP~,Vc+i8Go@ߡLzꘕv !=#Ekk<X?Ư{S9ғg<'ZmaՍPv6 rn"ݫ mWUUj``endstream endobj 113 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 386 >> stream xwCMR8'vz-   ZWTmqCopyright (c) 1997, 2009 American Mathematical Society (), with Reserved Font Name CMR8.CMR8Computer Modern3vťbڽQ"DfVT@htkpozc,MI%ڧϋ1# :Q?f{ku؎׃$Ena}{mltNx~}vCoa  7 כ Uendstream endobj 114 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1811 >> stream xE Pgǻa1(vWg67ƒW dFNX\cN@PL,fuA7VmYlmCꪯ~4%h [&,%6o =~`πkLc< rNH)ILH)G)==7R_SCIP'(պV*$Fjt^1:]Җkz6eMbr*>VدI$i" :EZQ̊[3$jRudb&9yɾM׸cF:@RA/{j!G-GO}@9SJM NtMfRrH2i4X(qnH#:1 |׊쫊cɆm&SKPpOCHKJٗ'!RNv)epfɠua:Shų4@bWN{qJ~O(\4u@)tGqD6||HwYtI],HDsЎ ;Ae[?>rɈfL7p.]նVYqeBWQ/^ōgFHxZ {F䡝J`ɶM"׮荞=oNPa(.>?ȀU~UR>P,8G$QY7Ԋ=ǩ }C6kj<~`++L+Wm;#Y٤-N]7t^}AUsX<|u=DɒrcA ͱ! s]_b,)a ?w]F%C`84s&ѝF{d,rhU\dJT5˥<';Ůռz 3\D쓹B%.Q3]G*v.KΫWi ?m."+H]Ҏz "]짣3fۀ\ΝnnB[_`CFX)H?/݀[OYv}Q|PXG(E;l|o<]I8pf0_?}nU:n%gxv&D{5k]fo?u3DfН##θN0 VgfO5@a_z`J*)D8Ko~y};YS'.q޵pKAgXony?;萜<(t!`Wp tOp)~EoyJ>Xq&UxtB@ ={pu΀p^QdVmu^;=x\Gʔ+z}mCGSOpHayH_p?Fe"^H/> stream xcd`ab`ddds H3a!Skc7s7 ~.ȘW_PYQ`hii`d``ZXX('gT*hdX뗗%i(gd(((%*]&s JKR|SRYt^}י1y#no~\~r]O9V=׋翛}}5۟'Wgq>7<_s.wt3\Xpso/yypendstream endobj 116 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 3857 >> stream xW TS>1sTONI]*U|[ZD@#!UN&!!  HV˭V국z߮5@{;og$Y+{߷rAD"WMۼ &!I x`+_ǣ3PKEX*&Y %[dlт޲Q uDqXױƞ-܅K`\- م6R^NS'ՆSp }i)vԠ3h; _BEcSwAx^CiZW%qQk[.kmlj!P&N=tݟ6跜h=mn~8YQ/7Baz*00Q ﴣ{mTwcgZe’/IՀ.Xhh"?oxԎ]Rϣh<eS^Gj9n0=`>V EsDyo&k>)ūQ8q? ɐs FWo|\s˫׺n vtގ:DHvW؇WFma5ksp]҉J\U5~!F.%)M-U.PJ8M9KƂzVmG1601\~VkP2{@NO4cbjSkGޔ7i8'oxXfР0}"RWFB[DB;iGá~p Mҕ!q-:HzANi7;%/ 6r6? lo D^tW/PC!32uJSɚ~R=77RWR|ؒ ppZw8]ޔA8,(5 U\,?c_ByRWbc|4hXe︅j#gH2`ʡl )'O;ZZ#e=kkT֎7T~I:F5nK-^U;ʰuMiR/ZAc? CE6,|C_x[$ųi 7g< K%hf^Q#E³vQ:X7AcmjN5=K#5`E12ꊠ 9WmoKiQ AJ8dWXH9)8}0ѱ[Ńl'j:BHt>K r'YF+cn1rKi˂A|8k.*2v7Pl$`rV4D ۑK#OM7J^?yyZ3L2Cnq^1엖fi2hDZ6_ s9vZ T|h"A'B6fjFemڹ'_/m*j_t?ivg  ;18rƗ~d|~=jO8Pʅ1zųE` / G4GbH Ҵ̗&iNfgm|3x#LҒz;a!3fcwWzs A;\]%U vk^YhQIcC(1UP+,(t3d!qPPRhN8g[@$d ܧ Ahk;XKPdlg{Nv['%Jt鑒 6کrKWPm@YFZB">Q/'4-+]P͗ƠEi/k7$5錅[!8kRFzw6phZuC$;S¡'k0mNz8]P뭦!s[,PŸ؄ă$ZV'̑q? B#hLQtZS8X?`6zA3тO/{Wf.Mp:}X&LaJEØ!!⥮6^Ur%ytL ٓRtےJW:H')y˞Br(LBnNHP&^n#9i;rp#٦t]f^1mvþFc,"Wc]ZPAʠg7n?&)Whguttm%q͎JnbxAoWZI#&44&(r 鄌%p`2vyk:. fTj(+66B599u8Y/Fo<-p*=ONw\œ={ D];}lU1.O5%4U; n]@ ]m+<nmnM| xxx6_X.OR+5FJJZ߷&b 8D BLO\D:r :̮bS"?Hjp^tm{sﱲV䥗mS*_,`A9QEkC9l~An m\Da1 ,_lE.yԘ+GAx; z󇵐9PqFiI~a }wŴw q"Fni:OKaMwԢ%B,dJ`XON6n=m,(*Il[HxRLLLuLl6p!V Ja,QQq訆Zv h◢ޖ*;J)ɠ-/+2q0%lRIc ` i*kW$҂|1?Ecј?bn԰p)E7gسeʷeEYy> stream xVyPwfUbVI'M``\4jRrDr 303E.ad@D%b.Z*FWGIR9\J*J^ocplUԼ_{ MQ4M3kl#=OK/I/*tn%4x* ӝ3h|?4713LxjGB~~dI֫-h$6:%C5Eb\kiii͋ > Ui:KjƬ1jbU z*8:Y5dբ1 (NhXd^oޘI919BPj{j3OmE6ʏ@AGImʝPwyt)ݮ+6+SE;':R ~v Qïbv 1p+?06Bo ֛CybNT˧c|b&E {N8W$'R[Sd.>pEd_OfzqCIq«8F|^cmdv2A.Wī"}Ή69&qGA<'^{_tG@/r׮_ z}IH`X<4[GhqL]w+((˒ Cj+۳;;ynW#M6֗T4bkjmvnDkC&EohB~֮HfCi}A6/!8gz.L6߆J.<xh?*,,**\(!kH[w^ /$ ^biX@p2[]*4[86Ĩ“ŶŇ/^]wHdeoܽߕߗtB=QMԊƜ5qcv̙PٰT.TcL.)Vq8=z\?jfB82>ylpEB%3zSmG;^@OW$fr ]BfQHx+>d )i „R#aeU> stream xX[o}g# /j:C $EMV[NheCZ)_sfvCFa~{w) o{] aMÿr8_x j+]DOQ6$6[)QJ»rgہ*X\x"jSuJM^'o>u:ED'I&IDž? 8&8[   vvb_/)0buV^ឤϗg"SZ9)7?\<wJDX뢆"W,SC@)Ù"F[*#^y\EB +g G~Y@N_ _JG(<*1:s|&Rh0 R > puBA/E}Q؋[މ-aob5!&3%2< Rr1np ra75F)(3STg{ ]K}]Pp*XDg1+ao**s:%{!cL:E\,eP2/S(?P_Nl YR)bSc3>d.. 6RR Pq%=䃍sJ(#NV/YR\Lzt5&JA!+PEw >F7h!g,]bM…f (huE O{%iiJ $& mTJZB1mB4NOę FfQF*s>Iy&H ݁Whp.Hb/)nwĖʢ\|ھ}lZ>Z4C~pM⸺Ywۨsc;J@Mqz=!h&8_/oWx! ¬K/=rUQ|w8$W[|lb!"(iv%BުFL(P j]whd(O_12OFdx3t{h8d;w_n7ukUIN$Sflc;tq =,~J:W@2r n-M|AW;5 1{/`͂roUe@DRkrgZ,͂h&Y` {~&Ϝ qs0:i-9JȦ)k>H8pNDSxeH"F#\%bJ V̓g٣1|!1lhC>m~ ?;fAg L[Ӗ8 jVGMaSymʭ. E15a6͂r? &M,Y8$nB #!Wh 3x~֙ww[j>}xDGO1S0d*QqvMnO_2 K5k!Q릔1Q7@BGs%r[kbK2q΂S >څgOXow@$ ƤMEKSI\z˞]/We |דHFV8؜/)4y^-Pez?,]:x(/VGv WHO0؏xuhJ:л/>햕~t]27Z{np u_!!̬SH]N!83N|Nj9P2*g wtUisMoEԗo*w=zcY$u#kendstream endobj 119 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 329 >> stream xcd`ab`dddw 641H3a!O/nn߷}O=J19(3=DA#YS\GR17(391O7$#57QOL-Tа())///K-/JQ(,PJ-N-*KMQp+QKMU8OB9)槤1000103012)ٽgf|;?̿ܥ;~3>,}} |g|Waq6;7<_s/wt\7Xp9|zaendstream endobj 120 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 3812 >> stream x]W XTU=a9!2PB3DT!ArQD TQJ󒙃xK ! E tF&2=_?9{8{޵wASF(S R3 w+Z>N!*ٺ="12!fOcm)Lȷ3w8;w^W'־yֳEAjyjv~X|<먤<YIX(jQe9~y )J-N K OHψ̌ZrCV|<G. ZST85fQ+(j6EMlhjCRs)ʞZFͣ)_ʁZEQ?DP@*r)Wj9 BET5JMNQ$ʜP),)r#lRFd6,E7 ΉL'3o3<ld2iVͽ͝^F/26e06z|P5&[Lj,]8k&"ٝ0=J^_9]'H_5>[*qDq>59"T`ʼW 0u軣u5-$:p󭏦oSϧ\q K!x+l/+-^= ɍLUUHg' >\AKÃDaY7V3Dssmq[ᡙ[A0kgdr Pf; gpinDL aL"7rދt@q$<>lsdL 7*ZPBJ MXDEjE›*P"8GBaQ փ[-ׁ=e%NKZEuVyr!C8^KrJ_2"2fα5#HWcSBْ;()|_RUҦůYzX;\˹0شs MxLNGi0v6[뤟`/!kró|~[35Ǿi`eňK/_+'m _+׊3T;Nxt S 8CY;#KBtͬukP7w릷e];~J|{Pөy|hMihJ<=I.!D_)6FQG`)3hŎŹE3Thʥ0 $`. N=tsMG>A#.'ep4c+lsJ4/T+`޽xZǗ66eE|}MYQg/ZڥEoC_rx6h̬u#.8l뵚CTT jWt/ykX *B34 ҋłk(W*P%xC qiBabD>+i 5 Z˖",ƕv̞ϞHctMv# q*7gt0{3~ n%iE%hj `wQ=ёOSǾhC=7[0bК l?S@ync#ab䩺"b쀷"xσS F0 Rw#pǡ'f B+QF q/AlMkH9@8vU1~Uw*;*}ntՉKe~]~!A=:PUOZx>,Cs]9Rwᛣ>3YRfЂ|1U1 ]0ɠ02.Bd`K`J$lT.#[ݜۆ+ [MMg AwOp .dP^썧bɻޮ ?Sr~RD]'ŐPOn۪/ڟҸ R8NhH*V+"€dLm|YY0Z/|*O.-5KΫ.}݄80|``(CF$l&a̶֣kb rGo yk䦯g$/urE6 ) QK%ݥhpG;x|<Oqnz+UڼKi(r*J)Hڜ]4y9>P~LC2@EcMSR{).7TÎ_눝[nu3Z©h4 ؉?w}Zvq?7(әdfόy YMGF('b}`oC2O׊_1x= 1)Hl\+ؓGy[[g:ؖk#x0"~#rh?5m)wU}!5PG [5)A[astxi8M!CvLti.g {6p?3uPb2{yJA(#?,%Â}͌\{9EAUkWS#(yߟU[۔_۾&iϻTTWh> J M0q2NUU=يD_.sŶnNS,f,?1d`(Lmx9qǹ W_퐑 ?Ȇacgi O$Oi`;ru ǯ!Nٸ杸"y{ҬOB˸ѷ^}c/ x>RBK/sȅ;cJp$ $>[0`"Bz%WX虿v`OK~_NV b:RQIJ<CL!O䗖<ѿa_H@SkoeNlxn)_p$[-F;/vIs0ypeo__w={*>gbrbgb履Rrendstream endobj 121 0 obj << /Filter /FlateDecode /Length 2351 >> stream xXmG% ҝdAAnt:At^_ yg6${_"$\]S]Ut3QqXOr.\uHCi«g+3BVX8:1Vs^TjΔPx5QHхTRj}1Z1U8gdߥQVym(1őQYjIFxu501Ub]=!T+m5t@1!M5[Oj?HYWUbpqϦ gsKxUZ[?~I&\&gɏ͂Ǒ&` >0NS87-A`{-o0ثzDG6QD$uljz`u,Q$jMz=R, Nl6=OCٟ^իr]V-| 7Ǹ093/yE}0tg§~`;lu ~ Âɋb9_C=-sʅIG.?N!9_,˖:Kjbd?f\a#\ NVV-ւIuvPt'Y\^./Nhq'{uGr?g9gfOe]y_nw{]w_l/LFq! <Rh q\f)މ/k)뻍B4:e1rpJYE_Ji#f.(B !zs=,ZLWŢ ˼xf=~~!p>b?>f{s %!a /sJdקxDPf7M`PTsW0BVU$}e+S-^ƪsU _Ӯ- ๔& ӑX.~(5RJej nLa B ed  ͔Җ$n+.'BҨIZޖ.b Ph,:LAI+#ٓQ67ӑ@(\T°˚LҸzȿTN @A(쵆K1R8$2K$1w.LG=8K!\Ulj_5&3ͼOU6ڏ+7ϙ|:6QD-Gx.fjQ,n7|ǚBMbFy3i,Q;^¢D$۽D5>QLݣP P,u<'e2&{94w6ۑw[h׌„Ir*.0sXsQM NP#&i$`] C.8CΠ54U_8hcL֮ S0p 2k,Ͷ `J1TxYSsW28}h'pׇ&I*!}OY L7KͿRT5!^,lo\4p}}JRݝ@cØP{` i5JZLB Or  ghs6 A4fRc=uR &D)5p )EőTRVvRw='e y|e zg2|"iYWk6 8zKVdۈ6qJ)E9UBjIYIR c"d s$ZH]T) VKI. $ PAH"Xz$%%Z AA8-p([=t0h5%]!+wE,ﲊRQpxWWU`'h_)EDox!WPaxz އn$T⹾sڞV8bv3 1f*s6MhϬw7UrߔP]LBM3 m?k|<]I_ЦrKi7^,>WPw$a4ݻc4 G"i94[ B| bosXYhHWd)G*pF>iCM/&m'-2Yp!׷ըtP{.#u0'ODxaS@ćO$$C0Bvs#<>F}M7. 8,ʕ*OaMT—(% W/%?"RTsuՊ n'Kqn)`DcTuGR"P[\r19qT=$_Cxm:t{jWRKjendstream endobj 122 0 obj << /Filter /FlateDecode /Length 1398 >> stream xXKoEϯ`W  H+!r:o^Ƴ=vTѯdM#M6[]"J2.g%TewI&LNY bS"14TRlʫ9q+9RMϭPɋ 4B e+vIzVatCuQ $mbM>G)٦y9gmIr@^I SD0!σM$$?1)%gln 8q`̕b08+R /ubnău|rLWJzqǑBp:^PjW:ԆҿlI.[%) eQrܴٴC|\hE7 =(x3 ^Om/UQendstream endobj 123 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 939 >> stream xM{h[uMLH\)uQ3 :ǘ&imI$޼okXXתN@Wu >@mof?==|?ppN8}*ŧd9H[6փBֱ'qԿ { qfbqR{mAs\G:nFBXmֱ51D46Ё.]gv3#m(5PoW KЙij;]vbaS=Lm8fa Ʒyn { ^vbX8KvXvF*OoA_@O}&G˛kڬHX)V4G U Gp9~Zjj[j|\Y"A9;Il$q8˨5)LA`3 X5ׇ/o>}$Ļ^HD|XV01<Lۛ ɅIp0h˫\1i6֟ܜj?$}M/տîH 9DBv˷;ҷ$'@?2i`qbd)tf|cR:/C8uNfI=z`T ]Oy2vDU{h1i(ȩFj.Gm[Ó7p,%/xrL $D2:ǩ?35oD&sDžƎNL Al4jԮ~CBUv,b)9RQy Wߠŋb*%'xH =+%/D9XZ!%Fz:_WIz6yl~KtuiɾS> + sAҥ6ۡi+c  endstream endobj 124 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 396 >> stream x~CMMI7'+   ]ZWnsCopyright (c) 1997, 2009 American Mathematical Society (), with Reserved Font Name CMMI7.CMMI7Computer ModerniJ(Ҫopnqnzv`~z\e~}t;_bdw揗cT(]z~ᷯpt|rMwCp`  7 [җ8endstream endobj 125 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 440 >> stream xRCMR7$,  ZUQmqCopyright (c) 1997, 2009 American Mathematical Society (), with Reserved Font Name CMR7.CMR7Computer Modern12Q͋oKL0bg͋§j~'eg #e'͋JiuP~>}L讧Ǻɋ !74/XWϡ=:4MFkgo0wCna  7 ڛ !endstream endobj 126 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 272 >> stream xcd`ab`ddds 4H3a!s=<<<, }=\19(3=DA#YS\GR17(391O7$#57QOL-Tа())///K-/JQ(,PJ-N-*KMQp+QKMUNL:)槤10002&FF|aӂg2ً/)鮒󂭺hQy?헰ξk<<@\endstream endobj 127 0 obj << /Filter /FlateDecode /Length 162 >> stream x]O10 J ]ZUm?eB:t8K结ϲ(-n H0dY hqgy⬼Ml2LY7K+x"VU b'3v PR48n!47I,|Jo8Sendstream endobj 128 0 obj << /Filter /FlateDecode /Length 2059 >> stream xZo$ ~߿b~P"-mlч}w׬Hӿ5c[0~CI'gir^_>m(O7Bi14'JY%6r βjbEEЁA n3>zURMņT:GM vfӺbR^~

PLZPqt>w5A/I6,<%'6nd/W[(t[ ys`j+4`8fo%%`b*}ևOʀ ,o\_DujS\1 |Py/6/i싂m|;Sy@QDѪ}x BA%"J#EՇc pH Pչ!ہ`)/^@dm.zPlV #>O*J.FfRFUfvQ"fڤW}/T1ik`rL >˛K}^4~\'*Pa~':3R")x$mˠ fdK1w&,%u ֕z"A փAQY Z=(&L-TtA=r@5,Jw õ=형|]aV9^ySp0"@O% UrbR6"?4XRNSnJf'B!'/J\.&Qҡ1|4 vfilkt0ڢS&ؘG@JMh@MVW$rOvM>L],#W6KK7H-t=yD6[ٌfZs?G+T}'%74}6=|u}~5ݜ.ޙ3FqYg4.-d~j<8sh:U6ЀoWgGdՙ]} ]۸pamYpƅUŒIk\XաކqW}|4sWo(: cӭ~\fčk-nnMu,fZ%J6B07&PavUҡPdC=Ćt֩ߓNJ:GnPIXG5U([{T@:THvfkDکtNThij̬oJO.AJe ~fܫSkufo]|b0c2wQ>XwBILK ![^2ON ō>@Y7;®Ws惺,L^CUvƊO7wG/p4Ϭ}7uk#W2W͒FuJpMU}tV۔S#suMyޫ5LRblrX^-ar=s Ӡy?K7[jԉw?8׉Ie.tڼ3AeP"qon"ܺ){.+z^MG;5K!"6x5: P%/U,E$ۧ#p_߯c"K\j*SzSFa<>ےKAU8w8}XOUD 4|endstream endobj 129 0 obj << /Type /XRef /Length 143 /Filter /FlateDecode /DecodeParms << /Columns 5 /Predictor 12 >> /W [ 1 3 1 ] /Info 3 0 R /Root 2 0 R /Size 130 /ID [<85b625ff8cbcb035d34f14923fee3be8>] >> stream xcb&F~0 $8J$/ُҏ@,? fgH-`ixDr<H^') V"YH^)}D2{͹"E`s@$'F.%b9`J6, L m*Cb endstream endobj startxref 78887 %%EOF HSAUR3/inst/doc/Ch_missing_values.R0000644000176200001440000001630013302741031016520 0ustar liggesusers### R code from vignette source 'Ch_missing_values.Rnw' ### Encoding: ASCII ################################################### ### code chunk number 1: setup ################################################### rm(list = ls()) s <- search()[-1] s <- s[-match(c("package:base", "package:stats", "package:graphics", "package:grDevices", "package:utils", "package:datasets", "package:methods", "Autoloads"), s)] if (length(s) > 0) sapply(s, detach, character.only = TRUE) if (!file.exists("tables")) dir.create("tables") if (!file.exists("figures")) dir.create("figures") set.seed(290875) options(prompt = "R> ", continue = "+ ", width = 63, # digits = 4, show.signif.stars = FALSE, SweaveHooks = list(leftpar = function() par(mai = par("mai") * c(1, 1.05, 1, 1)), bigleftpar = function() par(mai = par("mai") * c(1, 1.7, 1, 1)))) HSAURpkg <- require("HSAUR3") if (!HSAURpkg) stop("cannot load package ", sQuote("HSAUR3")) rm(HSAURpkg) ### hm, R-2.4.0 --vanilla seems to need this a <- Sys.setlocale("LC_ALL", "C") ### book <- TRUE refs <- cbind(c("AItR", "DAGD", "SI", "CI", "ANOVA", "MLR", "GLM", "DE", "RP", "GAM", "SA", "ALDI", "ALDII", "SIMC", "MA", "PCA", "MDS", "CA"), 1:18) ch <- function(x) { ch <- refs[which(refs[,1] == x),] if (book) { return(paste("Chapter~\\\\ref{", ch[1], "}", sep = "")) } else { return(paste("Chapter~", ch[2], sep = "")) } } if (file.exists("deparse.R")) source("deparse.R") setHook(packageEvent("lattice", "attach"), function(...) { lattice.options(default.theme = function() standard.theme("pdf", color = FALSE)) }) ################################################### ### code chunk number 2: singlebook ################################################### book <- FALSE ################################################### ### code chunk number 3: MV-bp-tab ################################################### data("bp", package = "HSAUR3") toLatex(HSAURtable(bp), pcol = 2, caption = paste("Blood pressure data."), label = "MV-bp-tab") ################################################### ### code chunk number 4: MV-bp-NA ################################################### sapply(bp, function(x) sum(is.na(x))) ################################################### ### code chunk number 5: MV-bp-msd-cc ################################################### summary(bp$recovtime, na.rm = TRUE) ################################################### ### code chunk number 6: MV-bp-sd-cc ################################################### sd(bp$recovtime, na.rm = TRUE) ################################################### ### code chunk number 7: MV-bp-cor-cc ################################################### with(bp, cor(bloodp, recovtime, use = "complete.obs")) with(bp, cor(logdose, recovtime, use = "complete.obs")) ################################################### ### code chunk number 8: MV-bp-pairs-cc ################################################### layout(matrix(1:3, nrow = 1)) plot(bloodp ~ logdose, data = bp) plot(recovtime ~ bloodp, data = bp) plot(recovtime ~ logdose, data = bp) ################################################### ### code chunk number 9: MV-bp-lm-cc ################################################### summary(lm(recovtime ~ bloodp + logdose, data = bp)) ################################################### ### code chunk number 10: MV-bp-mice-pkg ################################################### library("mice") ################################################### ### code chunk number 11: MV-bp-mice ################################################### imp <- mice(bp, method = "mean", m = 1, maxit = 1) ################################################### ### code chunk number 12: MV-bp-imp-summary ################################################### with(imp, summary(recovtime)) ################################################### ### code chunk number 13: MV-bp-imp-sd ################################################### with(imp, sd(recovtime)) ################################################### ### code chunk number 14: MV-bp-imp-cor ################################################### with(imp, cor(bloodp, recovtime)) with(imp, cor(logdose, recovtime)) ################################################### ### code chunk number 15: MV-bp-pairs-imp ################################################### layout(matrix(1:2, nrow = 1)) plot(recovtime ~ bloodp, data = complete(imp), pch = is.na(bp$recovtime) + 1) plot(recovtime ~ logdose, data = complete(imp), pch = is.na(bp$recovtime) + 1) legend("topleft", pch = 1:2, bty = "n", legend = c("original", "imputed")) ################################################### ### code chunk number 16: MV-bp-lm-imp ################################################### with(imp, summary(lm(recovtime ~ bloodp + logdose))) ################################################### ### code chunk number 17: MV-bp-mice ################################################### imp_ppm <- mice(bp, m = 10, method = "pmm", print = FALSE, seed = 1) ################################################### ### code chunk number 18: MV-bp-pairs-mice ################################################### layout(matrix(1:2, nrow = 1)) plot(recovtime ~ bloodp, data = complete(imp_ppm), pch = is.na(bp$recovtime) + 1) plot(recovtime ~ logdose, data = complete(imp_ppm), pch = is.na(bp$recovtime) + 1) legend("topleft", pch = 1:2, bty = "n", legend = c("original", "imputed")) ################################################### ### code chunk number 19: MV-bp-mice-out ################################################### summary(unlist(with(imp_ppm, mean(recovtime))$analyses)) summary(unlist(with(imp_ppm, sd(recovtime))$analyses)) ################################################### ### code chunk number 20: MV-bp-mice-cor ################################################### summary(unlist(with(imp_ppm, cor(bloodp, recovtime))$analyses)) summary(unlist(with(imp_ppm, cor(logdose, recovtime))$analyses)) ################################################### ### code chunk number 21: MV-bp-mice-lm ################################################### fit <- with(imp_ppm, lm(recovtime ~ bloodp + logdose)) ################################################### ### code chunk number 22: MV-bp-lm-mice ################################################### summary(pool(fit)) ################################################### ### code chunk number 23: MI-bp-t ################################################### with(bp, t.test(recovtime, mu = 27)) with(imp, t.test(recovtime, mu = 27))$analyses[[1]] ################################################### ### code chunk number 24: MI-mice-t ################################################### fit <- with(imp_ppm, lm(I(recovtime - 27) ~ 1)) summary(pool(fit)) ################################################### ### code chunk number 25: MI-UStemp-tab ################################################### data("UStemp", package = "HSAUR3") toLatex(HSAURtable(UStemp), caption = "Lowest temperatures in Fahrenheit recorded in various months for cities in the US.", label = "MI-UStemp-tab", rownames = TRUE) HSAUR3/inst/doc/Ch_density_estimation.Rnw0000644000176200001440000004677013302740166017776 0ustar liggesusers \documentclass{chapman} %%% copy Sweave.sty definitions %%% keeps `sweave' from adding `\usepackage{Sweave}': DO NOT REMOVE %\usepackage{Sweave} \RequirePackage[T1]{fontenc} \RequirePackage{graphicx,ae,fancyvrb} \IfFileExists{upquote.sty}{\RequirePackage{upquote}}{} \usepackage{relsize} \DefineVerbatimEnvironment{Sinput}{Verbatim}{} \DefineVerbatimEnvironment{Soutput}{Verbatim}{fontfamily=courier, fontshape=it, fontsize=\relsize{-1}} \DefineVerbatimEnvironment{Scode}{Verbatim}{} \newenvironment{Schunk}{}{} %%% environment for raw output \newcommand{\SchunkRaw}{\renewenvironment{Schunk}{}{} \DefineVerbatimEnvironment{Soutput}{Verbatim}{fontfamily=courier, fontshape=it, fontsize=\small} \rawSinput } %%% environment for labeled output \newcommand{\nextcaption}{} \newcommand{\SchunkLabel}{ \renewenvironment{Schunk}{\begin{figure}[ht] }{\caption{\nextcaption} \end{figure} } \DefineVerbatimEnvironment{Sinput}{Verbatim}{frame = topline} \DefineVerbatimEnvironment{Soutput}{Verbatim}{frame = bottomline, samepage = true, fontfamily=courier, fontshape=it, fontsize=\relsize{-1}} } %%% S code with line numbers \DefineVerbatimEnvironment{Sinput} {Verbatim} { %% numbers=left } \newcommand{\numberSinput}{ \DefineVerbatimEnvironment{Sinput}{Verbatim}{numbers=left} } \newcommand{\rawSinput}{ \DefineVerbatimEnvironment{Sinput}{Verbatim}{} } %%% R / System symbols \newcommand{\R}{\textsf{R}} \newcommand{\rR}{{R}} \renewcommand{\S}{\textsf{S}} \newcommand{\SPLUS}{\textsf{S-PLUS}} \newcommand{\rSPLUS}{{S-PLUS}} \newcommand{\SPSS}{\textsf{SPSS}} \newcommand{\EXCEL}{\textsf{Excel}} \newcommand{\ACCESS}{\textsf{Access}} \newcommand{\SQL}{\textsf{SQL}} %%\newcommand{\Rpackage}[1]{\hbox{\rm\textit{#1}}} %%\newcommand{\Robject}[1]{\hbox{\rm\texttt{#1}}} %%\newcommand{\Rclass}[1]{\hbox{\rm\textit{#1}}} %%\newcommand{\Rcmd}[1]{\hbox{\rm\texttt{#1}}} \newcommand{\Rpackage}[1]{\index{#1 package@{\fontseries{b}\selectfont #1} package} {\fontseries{b}\selectfont #1}} \newcommand{\rpackage}[1]{{\fontseries{b}\selectfont #1}} \newcommand{\Robject}[1]{\texttt{#1}} \newcommand{\Rclass}[1]{\index{#1 class@\textit{#1} class}\textit{#1}} \newcommand{\Rcmd}[1]{\index{#1 function@\texttt{#1} function}\texttt{#1}} \newcommand{\Roperator}[1]{\texttt{#1}} \newcommand{\Rarg}[1]{\texttt{#1}} \newcommand{\Rlevel}[1]{\texttt{#1}} %%% other symbols \newcommand{\file}[1]{\hbox{\rm\texttt{#1}}} %%\newcommand{\stress}[1]{\index{#1}\textit{#1}} \newcommand{\stress}[1]{\textit{#1}} \newcommand{\booktitle}[1]{\textit{#1}} %%' %%% Math symbols \usepackage{amstext} \usepackage{amsmath} \newcommand{\E}{\mathsf{E}} \newcommand{\Var}{\mathsf{Var}} \newcommand{\Cov}{\mathsf{Cov}} \newcommand{\Cor}{\mathsf{Cor}} \newcommand{\x}{\mathbf{x}} \newcommand{\y}{\mathbf{y}} \renewcommand{\a}{\mathbf{a}} \newcommand{\W}{\mathbf{W}} \newcommand{\C}{\mathbf{C}} \renewcommand{\H}{\mathbf{H}} \newcommand{\X}{\mathbf{X}} \newcommand{\B}{\mathbf{B}} \newcommand{\V}{\mathbf{V}} \newcommand{\I}{\mathbf{I}} \newcommand{\D}{\mathbf{D}} \newcommand{\bS}{\mathbf{S}} \newcommand{\N}{\mathcal{N}} \renewcommand{\L}{L} \renewcommand{\P}{\mathsf{P}} \newcommand{\K}{\mathbf{K}} \newcommand{\m}{\mathbf{m}} \newcommand{\argmin}{\operatorname{argmin}\displaylimits} \newcommand{\argmax}{\operatorname{argmax}\displaylimits} \newcommand{\bx}{\mathbf{x}} \newcommand{\bbeta}{\mathbf{\beta}} %%% links \usepackage{hyperref} \hypersetup{% pdftitle = {A Handbook of Statistical Analyses Using R (3rd Edition)}, pdfsubject = {Book}, pdfauthor = {Torsten Hothorn and Brian S. Everitt}, colorlinks = {black}, linkcolor = {black}, citecolor = {black}, urlcolor = {black}, hyperindex = {true}, linktocpage = {true}, } %%% captions & tables %% : conflics with figure definition in chapman.cls %%\usepackage[format=hang,margin=10pt,labelfont=bf]{caption} %% \usepackage{longtable} \usepackage[figuresright]{rotating} %%% R symbol in chapter 1 \usepackage{wrapfig} %%% Bibliography \usepackage[round,comma]{natbib} \renewcommand{\refname}{References \addcontentsline{toc}{chapter}{References}} \citeindexfalse %%% texi2dvi complains that \newblock is undefined, hm... \def\newblock{\hskip .11em plus .33em minus .07em} %%% Example sections \newcounter{exercise}[chapter] \setcounter{exercise}{0} \newcommand{\exercise}{\stepcounter{exercise} \item{Ex.~\arabic{chapter}.\arabic{exercise} }} %% URLs \newcommand{\curl}[1]{\begin{center} \url{#1} \end{center}} %%% for manual corrections %\renewcommand{\baselinestretch}{2} %%% plot sizes \setkeys{Gin}{width=0.95\textwidth} %%% color \usepackage{color} %%% hyphenations \hyphenation{drop-out} \hyphenation{mar-gi-nal} %%% new bidirectional quotes need \usepackage[utf8]{inputenc} %\usepackage{setspace} \definecolor{sidebox_todo}{rgb}{1,1,0.2} \newcommand{\todo}[1]{ \hspace{0pt}% \marginpar{% \fcolorbox{black}{sidebox_todo}{% \parbox{\marginparwidth} { \raggedright\sffamily\footnotesize{TODO: #1}% } }% } } \begin{document} %% Title page \title{A Handbook of Statistical Analyses Using \R{} --- 3rd Edition} \author{Torsten Hothorn and Brian S. Everitt} \maketitle %%\VignetteIndexEntry{Chapter Density Estimation} %%\VignetteDepends{flexmix,KernSmooth,boot} \setcounter{chapter}{7} \SweaveOpts{prefix.string=figures/HSAUR,eps=FALSE,keep.source=TRUE} <>= rm(list = ls()) s <- search()[-1] s <- s[-match(c("package:base", "package:stats", "package:graphics", "package:grDevices", "package:utils", "package:datasets", "package:methods", "Autoloads"), s)] if (length(s) > 0) sapply(s, detach, character.only = TRUE) if (!file.exists("tables")) dir.create("tables") if (!file.exists("figures")) dir.create("figures") set.seed(290875) options(prompt = "R> ", continue = "+ ", width = 63, # digits = 4, show.signif.stars = FALSE, SweaveHooks = list(leftpar = function() par(mai = par("mai") * c(1, 1.05, 1, 1)), bigleftpar = function() par(mai = par("mai") * c(1, 1.7, 1, 1)))) HSAURpkg <- require("HSAUR3") if (!HSAURpkg) stop("cannot load package ", sQuote("HSAUR3")) rm(HSAURpkg) ### hm, R-2.4.0 --vanilla seems to need this a <- Sys.setlocale("LC_ALL", "C") ### book <- TRUE refs <- cbind(c("AItR", "DAGD", "SI", "CI", "ANOVA", "MLR", "GLM", "DE", "RP", "GAM", "SA", "ALDI", "ALDII", "SIMC", "MA", "PCA", "MDS", "CA"), 1:18) ch <- function(x) { ch <- refs[which(refs[,1] == x),] if (book) { return(paste("Chapter~\\\\ref{", ch[1], "}", sep = "")) } else { return(paste("Chapter~", ch[2], sep = "")) } } if (file.exists("deparse.R")) source("deparse.R") setHook(packageEvent("lattice", "attach"), function(...) { lattice.options(default.theme = function() standard.theme("pdf", color = FALSE)) }) @ \pagestyle{headings} <>= book <- FALSE @ <>= x <- library("KernSmooth") x <- library("flexmix") x <- library("boot") @ \chapter[Density Estimation]{Density Estimation: Erupting Geysers and Star Clusters \label{DE}} \section{Introduction} \section{Density Estimation} The three kernel functions are implemented in \R{} as shown in lines 1--3 of Figure~\ref{DE-kernel-fig}. For some grid \Robject{x}, the kernel functions are plotted using the \R{} statements in lines 5--11 (Figure~\ref{DE-kernel-fig}). \numberSinput \begin{figure} \begin{center} <>= rec <- function(x) (abs(x) < 1) * 0.5 tri <- function(x) (abs(x) < 1) * (1 - abs(x)) gauss <- function(x) 1/sqrt(2*pi) * exp(-(x^2)/2) x <- seq(from = -3, to = 3, by = 0.001) plot(x, rec(x), type = "l", ylim = c(0,1), lty = 1, ylab = expression(K(x))) lines(x, tri(x), lty = 2) lines(x, gauss(x), lty = 3) legend(-3, 0.8, legend = c("Rectangular", "Triangular", "Gaussian"), lty = 1:3, title = "kernel functions", bty = "n") @ \caption{Three commonly used kernel functions. \label{DE-kernel-fig}} \end{center} \end{figure} \rawSinput <>= w <- options("width")$w options(width = 66) @ The kernel estimator $\hat{f}$ is a sum of `bumps' placed at the observations. %' The kernel function determines the shape of the bumps while the window width $h$ determines their width. \index{Windows, in kernel density estimation} Figure~\ref{DE-bumps} \citep[redrawn from a similar plot in][]{HSAUR:Silverman1986} shows the individual bumps $n^{-1}h^{-1} K((x - x_i) / h)$, as well as the estimate $\hat{f}$ obtained by adding them up for an artificial set of data points <>= x <- c(0, 1, 1.1, 1.5, 1.9, 2.8, 2.9, 3.5) n <- length(x) @ For a grid <>= xgrid <- seq(from = min(x) - 1, to = max(x) + 1, by = 0.01) @ on the real line, we can compute the contribution of each measurement in \Robject{x}, with $h = 0.4$, by the Gaussian kernel (defined in Figure~\ref{DE-kernel-fig}, line 3) as follows; <>= h <- 0.4 bumps <- sapply(x, function(a) gauss((xgrid - a)/h)/(n * h)) @ A plot of the individual bumps and their sum, the kernel density estimate $\hat{f}$, is shown in Figure~\ref{DE-bumps}. <>= options(width = w) @ \numberSinput \begin{figure} \begin{center} <>= plot(xgrid, rowSums(bumps), ylab = expression(hat(f)(x)), type = "l", xlab = "x", lwd = 2) rug(x, lwd = 2) out <- apply(bumps, 2, function(b) lines(xgrid, b)) @ \caption{Kernel estimate showing the contributions of Gaussian kernels evaluated for the individual observations with bandwidth $h = 0.4$. \label{DE-bumps}} \end{center} \end{figure} \rawSinput \begin{figure} \begin{center} <>= epa <- function(x, y) ((x^2 + y^2) < 1) * 2/pi * (1 - x^2 - y^2) x <- seq(from = -1.1, to = 1.1, by = 0.05) epavals <- sapply(x, function(a) epa(a, x)) persp(x = x, y = x, z = epavals, xlab = "x", ylab = "y", zlab = expression(K(x, y)), theta = -35, axes = TRUE, box = TRUE) @ \caption{Epanechnikov kernel for a grid between $(-1.1, -1.1)$ and $(1.1, 1.1)$. \label{DE-epakernel-fig}} \end{center} \end{figure} \section{Analysis Using \R{}} \numberSinput \begin{figure} \begin{center} <>= data("faithful", package = "datasets") x <- faithful$waiting layout(matrix(1:3, ncol = 3)) hist(x, xlab = "Waiting times (in min.)", ylab = "Frequency", probability = TRUE, main = "Gaussian kernel", border = "gray") lines(density(x, width = 12), lwd = 2) rug(x) hist(x, xlab = "Waiting times (in min.)", ylab = "Frequency", probability = TRUE, main = "Rectangular kernel", border = "gray") lines(density(x, width = 12, window = "rectangular"), lwd = 2) rug(x) hist(x, xlab = "Waiting times (in min.)", ylab = "Frequency", probability = TRUE, main = "Triangular kernel", border = "gray") lines(density(x, width = 12, window = "triangular"), lwd = 2) rug(x) @ \caption{Density estimates of the geyser eruption data imposed on a histogram of the data. \label{DE:faithfuldens}} \end{center} \end{figure} \rawSinput \begin{figure} \begin{center} <>= library("KernSmooth") data("CYGOB1", package = "HSAUR3") CYGOB1d <- bkde2D(CYGOB1, bandwidth = sapply(CYGOB1, dpik)) contour(x = CYGOB1d$x1, y = CYGOB1d$x2, z = CYGOB1d$fhat, xlab = "log surface temperature", ylab = "log light intensity") @ \caption{A contour plot of the bivariate density estimate of the \Robject{CYGOB1} data, i.e., a two-dimensional graphical display for a three-dimensional problem. \label{DE:CYGOB12Dcontour}} \end{center} \end{figure} \begin{figure} \begin{center} <>= persp(x = CYGOB1d$x1, y = CYGOB1d$x2, z = CYGOB1d$fhat, xlab = "log surface temperature", ylab = "log light intensity", zlab = "estimated density", theta = -35, axes = TRUE, box = TRUE) @ \caption{The bivariate density estimate of the \Robject{CYGOB1} data, here shown in a three-dimensional fashion using the \Rcmd{persp} function. \label{DE:CYGOB12Dpersp}} \end{center} \end{figure} \subsection{A Parametric Density Estimate for the Old Faithful Data \label{DE-waiting}} <>= logL <- function(param, x) { d1 <- dnorm(x, mean = param[2], sd = param[3]) d2 <- dnorm(x, mean = param[4], sd = param[5]) -sum(log(param[1] * d1 + (1 - param[1]) * d2)) } startparam <- c(p = 0.5, mu1 = 50, sd1 = 3, mu2 = 80, sd2 = 3) opp <- optim(startparam, logL, x = faithful$waiting, method = "L-BFGS-B", lower = c(0.01, rep(1, 4)), upper = c(0.99, rep(200, 4))) @ \newpage <>= opp @ <>= print(opp[names(opp) != "message"]) @ Of course, optimizing the appropriate likelihood `by hand' %' is not very convenient. In fact, (at least) two packages offer high-level functionality for estimating mixture models. The first one is package \Rpackage{mclust} \citep{PKG:mclust} implementing the methodology described in \cite{HSAUR:FraleyRaftery2002}. Here, a Bayesian information criterion (BIC) is applied to choose the form of the mixture model: \index{Bayesian Information Criterion (BIC)} <>= library("mclust") @ <>= library("mclust") mc <- Mclust(faithful$waiting) mc @ and the estimated means are <>= mc$parameters$mean @ with estimated standard deviation (found to be equal within both groups) <>= sqrt(mc$parameters$variance$sigmasq) @ The proportion is $\hat{p} = \Sexpr{round(mc$parameters$pro[1], 2)}$. The second package is called \Rpackage{flexmix} whose functionality is described by \cite{HSAUR:Leisch2004}. A mixture of two normals can be fitted using <>= library("flexmix") fl <- flexmix(waiting ~ 1, data = faithful, k = 2) @ with $\hat{p} = \Sexpr{round(fl@prior, 2)}$ and estimated parameters <>= parameters(fl, component = 1) parameters(fl, component = 2) @ \begin{figure} \begin{center} <>= opar <- as.list(opp$par) rx <- seq(from = 40, to = 110, by = 0.1) d1 <- dnorm(rx, mean = opar$mu1, sd = opar$sd1) d2 <- dnorm(rx, mean = opar$mu2, sd = opar$sd2) f <- opar$p * d1 + (1 - opar$p) * d2 hist(x, probability = TRUE, xlab = "Waiting times (in min.)", border = "gray", xlim = range(rx), ylim = c(0, 0.06), main = "") lines(rx, f, lwd = 2) lines(rx, dnorm(rx, mean = mean(x), sd = sd(x)), lty = 2, lwd = 2) legend(50, 0.06, lty = 1:2, bty = "n", legend = c("Fitted two-component mixture density", "Fitted single normal density")) @ \caption{Fitted normal density and two-component normal mixture for geyser eruption data. \label{DE:2Dplot}} \end{center} \end{figure} \index{Bootstrap approach|(} We can get standard errors for the five parameter estimates by using a bootstrap approach \citep[see][]{HSAUR:EfronTibshirani1993}. The original data are slightly perturbed by drawing $n$ out of $n$ observations \stress{with replacement} and those artificial replications of the original data are called \stress{bootstrap samples}. Now, we can fit the mixture for each bootstrap sample and assess the variability of the estimates, for example using confidence intervals. \index{Confidence interval!derived from bootstrap samples} Some suitable \R{} code based on the \Rcmd{Mclust} function follows. First, we define a function that, for a bootstrap sample \Robject{indx}, fits a two-component mixture model and returns $\hat{p}$ and the estimated means (note that we need to make sure that we always get an estimate of $p$, not $1 - p$): <>= library("boot") fit <- function(x, indx) { a <- Mclust(x[indx], minG = 2, maxG = 2, modelNames="E")$parameters if (a$pro[1] < 0.5) return(c(p = a$pro[1], mu1 = a$mean[1], mu2 = a$mean[2])) return(c(p = 1 - a$pro[1], mu1 = a$mean[2], mu2 = a$mean[1])) } @ The function \Rcmd{fit} can now be fed into the \Rcmd{boot} function \citep{PKG:boot} for bootstrapping (here $1000$ bootstrap samples are drawn) \begin{Schunk} \begin{Sinput} R> bootpara <- boot(faithful$waiting, fit, R = 1000) \end{Sinput} \end{Schunk} <>= bootparafile <- system.file("cache", "DE-bootpara.rda", package = "HSAUR3") if (file.exists(bootparafile)) { load(bootparafile) } else { bootpara <- boot(faithful$waiting, fit, R = 1000) } @ We assess the variability of our estimates $\hat{p}$ by means of adjusted bootstrap percentile (BCa) confidence intervals, which for $\hat{p}$ can be obtained from <>= boot.ci(bootpara, type = "bca", index = 1) @ We see that there is a reasonable variability in the mixture model; however, the means in the two components are rather stable, as can be seen from <>= boot.ci(bootpara, type = "bca", index = 2) @ for $\hat{\mu}_1$ and for $\hat{\mu}_2$ from <>= boot.ci(bootpara, type = "bca", index = 3) @ Finally, we show a graphical representation of both the bootstrap distribution of the mean estimates \stress{and} the corresponding confidence intervals. For convenience, we define a function for plotting, namely <>= bootplot <- function(b, index, main = "") { dens <- density(b$t[,index]) ci <- boot.ci(b, type = "bca", index = index)$bca[4:5] est <- b$t0[index] plot(dens, main = main) y <- max(dens$y) / 10 segments(ci[1], y, ci[2], y, lty = 2) points(ci[1], y, pch = "(") points(ci[2], y, pch = ")") points(est, y, pch = 19) } @ The element \Robject{t} of an object created by \Rcmd{boot} contains the bootstrap replications of our estimates, i.e., the values computed by \Rcmd{fit} for each of the $1000$ bootstrap samples of the geyser data. First, we plot a simple density estimate and then construct a line representing the confidence interval. We apply this function to the bootstrap distributions of our estimates $\hat{\mu}_1$ and $\hat{\mu}_2$ in Figure~\ref{DE-bootplot}. \begin{figure} \begin{center} <>= layout(matrix(1:2, ncol = 2)) bootplot(bootpara, 2, main = expression(mu[1])) bootplot(bootpara, 3, main = expression(mu[2])) @ \caption{Bootstrap distribution and confidence intervals for the mean estimates of a two-component mixture for the geyser data. \label{DE-bootplot}} \end{center} \end{figure} \index{Bootstrap approach|)} \bibliographystyle{LaTeXBibTeX/refstyle} \bibliography{LaTeXBibTeX/HSAUR} \end{document} HSAUR3/inst/doc/Ch_logistic_regression_glm.Rnw0000644000176200001440000011117213302740166020764 0ustar liggesusers \documentclass{chapman} %%% copy Sweave.sty definitions %%% keeps `sweave' from adding `\usepackage{Sweave}': DO NOT REMOVE %\usepackage{Sweave} \RequirePackage[T1]{fontenc} \RequirePackage{graphicx,ae,fancyvrb} \IfFileExists{upquote.sty}{\RequirePackage{upquote}}{} \usepackage{relsize} \DefineVerbatimEnvironment{Sinput}{Verbatim}{} \DefineVerbatimEnvironment{Soutput}{Verbatim}{fontfamily=courier, fontshape=it, fontsize=\relsize{-1}} \DefineVerbatimEnvironment{Scode}{Verbatim}{} \newenvironment{Schunk}{}{} %%% environment for raw output \newcommand{\SchunkRaw}{\renewenvironment{Schunk}{}{} \DefineVerbatimEnvironment{Soutput}{Verbatim}{fontfamily=courier, fontshape=it, fontsize=\small} \rawSinput } %%% environment for labeled output \newcommand{\nextcaption}{} \newcommand{\SchunkLabel}{ \renewenvironment{Schunk}{\begin{figure}[ht] }{\caption{\nextcaption} \end{figure} } \DefineVerbatimEnvironment{Sinput}{Verbatim}{frame = topline} \DefineVerbatimEnvironment{Soutput}{Verbatim}{frame = bottomline, samepage = true, fontfamily=courier, fontshape=it, fontsize=\relsize{-1}} } %%% S code with line numbers \DefineVerbatimEnvironment{Sinput} {Verbatim} { %% numbers=left } \newcommand{\numberSinput}{ \DefineVerbatimEnvironment{Sinput}{Verbatim}{numbers=left} } \newcommand{\rawSinput}{ \DefineVerbatimEnvironment{Sinput}{Verbatim}{} } %%% R / System symbols \newcommand{\R}{\textsf{R}} \newcommand{\rR}{{R}} \renewcommand{\S}{\textsf{S}} \newcommand{\SPLUS}{\textsf{S-PLUS}} \newcommand{\rSPLUS}{{S-PLUS}} \newcommand{\SPSS}{\textsf{SPSS}} \newcommand{\EXCEL}{\textsf{Excel}} \newcommand{\ACCESS}{\textsf{Access}} \newcommand{\SQL}{\textsf{SQL}} %%\newcommand{\Rpackage}[1]{\hbox{\rm\textit{#1}}} %%\newcommand{\Robject}[1]{\hbox{\rm\texttt{#1}}} %%\newcommand{\Rclass}[1]{\hbox{\rm\textit{#1}}} %%\newcommand{\Rcmd}[1]{\hbox{\rm\texttt{#1}}} \newcommand{\Rpackage}[1]{\index{#1 package@{\fontseries{b}\selectfont #1} package} {\fontseries{b}\selectfont #1}} \newcommand{\rpackage}[1]{{\fontseries{b}\selectfont #1}} \newcommand{\Robject}[1]{\texttt{#1}} \newcommand{\Rclass}[1]{\index{#1 class@\textit{#1} class}\textit{#1}} \newcommand{\Rcmd}[1]{\index{#1 function@\texttt{#1} function}\texttt{#1}} \newcommand{\Roperator}[1]{\texttt{#1}} \newcommand{\Rarg}[1]{\texttt{#1}} \newcommand{\Rlevel}[1]{\texttt{#1}} %%% other symbols \newcommand{\file}[1]{\hbox{\rm\texttt{#1}}} %%\newcommand{\stress}[1]{\index{#1}\textit{#1}} \newcommand{\stress}[1]{\textit{#1}} \newcommand{\booktitle}[1]{\textit{#1}} %%' %%% Math symbols \usepackage{amstext} \usepackage{amsmath} \newcommand{\E}{\mathsf{E}} \newcommand{\Var}{\mathsf{Var}} \newcommand{\Cov}{\mathsf{Cov}} \newcommand{\Cor}{\mathsf{Cor}} \newcommand{\x}{\mathbf{x}} \newcommand{\y}{\mathbf{y}} \renewcommand{\a}{\mathbf{a}} \newcommand{\W}{\mathbf{W}} \newcommand{\C}{\mathbf{C}} \renewcommand{\H}{\mathbf{H}} \newcommand{\X}{\mathbf{X}} \newcommand{\B}{\mathbf{B}} \newcommand{\V}{\mathbf{V}} \newcommand{\I}{\mathbf{I}} \newcommand{\D}{\mathbf{D}} \newcommand{\bS}{\mathbf{S}} \newcommand{\N}{\mathcal{N}} \renewcommand{\L}{L} \renewcommand{\P}{\mathsf{P}} \newcommand{\K}{\mathbf{K}} \newcommand{\m}{\mathbf{m}} \newcommand{\argmin}{\operatorname{argmin}\displaylimits} \newcommand{\argmax}{\operatorname{argmax}\displaylimits} \newcommand{\bx}{\mathbf{x}} \newcommand{\bbeta}{\mathbf{\beta}} %%% links \usepackage{hyperref} \hypersetup{% pdftitle = {A Handbook of Statistical Analyses Using R (3rd Edition)}, pdfsubject = {Book}, pdfauthor = {Torsten Hothorn and Brian S. Everitt}, colorlinks = {black}, linkcolor = {black}, citecolor = {black}, urlcolor = {black}, hyperindex = {true}, linktocpage = {true}, } %%% captions & tables %% : conflics with figure definition in chapman.cls %%\usepackage[format=hang,margin=10pt,labelfont=bf]{caption} %% \usepackage{longtable} \usepackage[figuresright]{rotating} %%% R symbol in chapter 1 \usepackage{wrapfig} %%% Bibliography \usepackage[round,comma]{natbib} \renewcommand{\refname}{References \addcontentsline{toc}{chapter}{References}} \citeindexfalse %%% texi2dvi complains that \newblock is undefined, hm... \def\newblock{\hskip .11em plus .33em minus .07em} %%% Example sections \newcounter{exercise}[chapter] \setcounter{exercise}{0} \newcommand{\exercise}{\stepcounter{exercise} \item{Ex.~\arabic{chapter}.\arabic{exercise} }} %% URLs \newcommand{\curl}[1]{\begin{center} \url{#1} \end{center}} %%% for manual corrections %\renewcommand{\baselinestretch}{2} %%% plot sizes \setkeys{Gin}{width=0.95\textwidth} %%% color \usepackage{color} %%% hyphenations \hyphenation{drop-out} \hyphenation{mar-gi-nal} %%% new bidirectional quotes need \usepackage[utf8]{inputenc} %\usepackage{setspace} \definecolor{sidebox_todo}{rgb}{1,1,0.2} \newcommand{\todo}[1]{ \hspace{0pt}% \marginpar{% \fcolorbox{black}{sidebox_todo}{% \parbox{\marginparwidth} { \raggedright\sffamily\footnotesize{TODO: #1}% } }% } } \begin{document} %% Title page \title{A Handbook of Statistical Analyses Using \R{} --- 3rd Edition} \author{Torsten Hothorn and Brian S. Everitt} \maketitle %%\VignetteIndexEntry{Chapter Logistic Regression and Generalized Linear Models} %%\VignetteDepends{survival,MASS,multcomp,lattice} \setcounter{chapter}{6} \SweaveOpts{prefix.string=figures/HSAUR,eps=FALSE,keep.source=TRUE} <>= rm(list = ls()) s <- search()[-1] s <- s[-match(c("package:base", "package:stats", "package:graphics", "package:grDevices", "package:utils", "package:datasets", "package:methods", "Autoloads"), s)] if (length(s) > 0) sapply(s, detach, character.only = TRUE) if (!file.exists("tables")) dir.create("tables") if (!file.exists("figures")) dir.create("figures") set.seed(290875) options(prompt = "R> ", continue = "+ ", width = 63, # digits = 4, show.signif.stars = FALSE, SweaveHooks = list(leftpar = function() par(mai = par("mai") * c(1, 1.05, 1, 1)), bigleftpar = function() par(mai = par("mai") * c(1, 1.7, 1, 1)))) HSAURpkg <- require("HSAUR3") if (!HSAURpkg) stop("cannot load package ", sQuote("HSAUR3")) rm(HSAURpkg) ### hm, R-2.4.0 --vanilla seems to need this a <- Sys.setlocale("LC_ALL", "C") ### book <- TRUE refs <- cbind(c("AItR", "DAGD", "SI", "CI", "ANOVA", "MLR", "GLM", "DE", "RP", "GAM", "SA", "ALDI", "ALDII", "SIMC", "MA", "PCA", "MDS", "CA"), 1:18) ch <- function(x) { ch <- refs[which(refs[,1] == x),] if (book) { return(paste("Chapter~\\\\ref{", ch[1], "}", sep = "")) } else { return(paste("Chapter~", ch[2], sep = "")) } } if (file.exists("deparse.R")) source("deparse.R") setHook(packageEvent("lattice", "attach"), function(...) { lattice.options(default.theme = function() standard.theme("pdf", color = FALSE)) }) @ \pagestyle{headings} <>= book <- FALSE @ \chapter[Logistic Regression and Generalized Linear Models]{Logistic Regression and Generalized Linear Models: Blood Screening, Women's Role in %' Society, Colonic Polyps, Driving and Back Pain, and Happiness in China \label{GLM}} \section{Introduction} \section{Logistic Regression and Generalized Linear Models} \section{Analysis Using \R{}} \subsection{ESR and Plasma Proteins} \begin{figure} \begin{center} <>= data("plasma", package = "HSAUR3") layout(matrix(1:2, ncol = 2)) cdplot(ESR ~ fibrinogen, data = plasma) cdplot(ESR ~ globulin, data = plasma) @ \caption{Conditional density plots of the erythrocyte sedimentation rate (ESR) given fibrinogen and globulin. \label{GLM:plasma1}} \end{center} \end{figure} We can now fit a logistic regression model to the data using the \Rcmd{glm} function. We start with a model that includes only a single explanatory variable, \Robject{fibrinogen}. The code to fit the model is <>= plasma_glm_1 <- glm(ESR ~ fibrinogen, data = plasma, family = binomial()) @ The formula implicitly defines a parameter for the global mean (the intercept term) as discussed in \Sexpr{ch("ANOVA")} and \Sexpr{ch("MLR")}. The distribution of the response is defined by the \Robject{family} argument, a binomial distribution in our case. \index{family argument@\Rcmd{family} argument} \index{Binomial distribution} (The default link function when the binomial family is requested is the logistic function.) \renewcommand{\nextcaption}{\R{} output of the \Robject{summary} method for the logistic regression model fitted to ESR and fibrigonen. \label{GLM-plasma-summary-1}} \SchunkLabel <>= summary(plasma_glm_1) @ \SchunkRaw From the results in Figure~\ref{GLM-plasma-summary-1} we see that the regression coefficient for fibrinogen is significant at the $5\%$ level. An increase of one unit in this variable increases the log-odds in favor of an ESR value greater than $20$ by an estimated $\Sexpr{round(coef(plasma_glm_1)["fibrinogen"], 2)}$ with 95\% confidence interval <>= ci <- confint(plasma_glm_1)["fibrinogen",] @ <>= confint(plasma_glm_1, parm = "fibrinogen") @ <>= print(ci) @ These values are more helpful if converted to the corresponding values for the odds themselves by exponentiating the estimate <>= exp(coef(plasma_glm_1)["fibrinogen"]) @ and the confidence interval <>= ci <- exp(confint(plasma_glm_1, parm = "fibrinogen")) @ <>= exp(confint(plasma_glm_1, parm = "fibrinogen")) @ <>= print(ci) @ The confidence interval is very wide because there are few observations overall and very few where the ESR value is greater than $20$. Nevertheless it seems likely that increased values of fibrinogen lead to a greater probability of an ESR value greater than $20$. We can now fit a logistic regression model that includes both explanatory variables using the code <>= plasma_glm_2 <- glm(ESR ~ fibrinogen + globulin, data = plasma, family = binomial()) @ and the output of the \Rcmd{summary} method is shown in Figure \ref{GLM-plasma-summary-2}. \renewcommand{\nextcaption}{\R{} output of the \Robject{summary} method for the logistic regression model fitted to ESR and both globulin and fibrinogen. \label{GLM-plasma-summary-2}} \SchunkLabel <>= summary(plasma_glm_2) @ \SchunkRaw <>= plasma_anova <- anova(plasma_glm_1, plasma_glm_2, test = "Chisq") @ The coefficient for gamma globulin is not significantly different from zero. Subtracting the residual deviance of the second model from the corresponding value for the first model we get a value of $\Sexpr{round(plasma_anova$Deviance[2], 2)}$. Tested using a $\chi^2$-distribution with a single degree of freedom this is not significant at the 5\% level and so we conclude that gamma globulin is not associated with ESR level. In \R{}, the task of comparing the two nested models can be performed using the \Rcmd{anova} function <>= anova(plasma_glm_1, plasma_glm_2, test = "Chisq") @ Nevertheless we shall use the predicted values from the second model and plot them against the values of \stress{both} explanatory variables using a \stress{bubbleplot} to illustrate the use of the \Rcmd{symbols} function. \index{Bubbleplot} The estimated conditional probability of a ESR value larger $20$ for all observations can be computed, following formula (\ref{GLM:logitexp}), by <>= prob <- predict(plasma_glm_2, type = "response") @ and now we can assign a larger circle to observations with larger probability as shown in Figure~\ref{GLM:bubble}. The plot clearly shows the increasing probability of an ESR value above $20$ (larger circles) as the values of fibrinogen, and to a lesser extent, gamma globulin, increase. \begin{figure} \begin{center} <>= plot(globulin ~ fibrinogen, data = plasma, xlim = c(2, 6), ylim = c(25, 55), pch = ".") symbols(plasma$fibrinogen, plasma$globulin, circles = prob, add = TRUE) @ \caption{Bubbleplot of fitted values for a logistic regression model fitted to the \Robject{plasma} data. \label{GLM:bubble}} \end{center} \end{figure} \subsection{Women's Role in Society} %' Originally the data in Table~\ref{GLM-womensrole-tab} would have been in a completely equivalent form to the data in Table~\ref{GLM-plasma-tab} data, but here the individual observations have been grouped into counts of numbers of agreements and disagreements for the two explanatory variables, \Robject{gender} and \Robject{education}. To fit a logistic regression model to such grouped data using the \Rcmd{glm} function we need to specify the number of agreements and disagreements as a two-column matrix on the left-hand side of the model formula. We first fit a model that includes the two explanatory variables using the code <>= data("womensrole", package = "HSAUR3") fm1 <- cbind(agree, disagree) ~ gender + education womensrole_glm_1 <- glm(fm1, data = womensrole, family = binomial()) @ \renewcommand{\nextcaption}{\R{} output of the \Robject{summary} method for the logistic regression model fitted to the \Robject{womensrole} data. \label{GLM-womensrole-summary-1}} \SchunkLabel <>= summary(womensrole_glm_1) @ \SchunkRaw From the \Rcmd{summary} output in Figure~\ref{GLM-womensrole-summary-1} it appears that education has a highly significant part to play in predicting whether a respondent will agree with the statement read to them, but the respondent's %' gender is apparently unimportant. As years of education increase the probability of agreeing with the statement declines. We now are going to construct a plot comparing the observed proportions of agreeing with those fitted by our fitted model. Because we will reuse this plot for another fitted object later on, we define a function which plots years of education against some fitted probabilities, e.g., <>= role.fitted1 <- predict(womensrole_glm_1, type = "response") @ and labels each observation with the person's gender: %%' \numberSinput <>= myplot <- function(role.fitted) { f <- womensrole$gender == "Female" plot(womensrole$education, role.fitted, type = "n", ylab = "Probability of agreeing", xlab = "Education", ylim = c(0,1)) lines(womensrole$education[!f], role.fitted[!f], lty = 1) lines(womensrole$education[f], role.fitted[f], lty = 2) lgtxt <- c("Fitted (Males)", "Fitted (Females)") legend("topright", lgtxt, lty = 1:2, bty = "n") y <- womensrole$agree / (womensrole$agree + womensrole$disagree) size <- womensrole$agree + womensrole$disagree size <- size - min(size) size <- (size / max(size)) * 3 + 1 text(womensrole$education, y, ifelse(f, "\\VE", "\\MA"), family = "HersheySerif", cex = size) } @ \rawSinput \begin{figure} \begin{center} <>= myplot(role.fitted1) @ \caption{Fitted (from \Robject{womensrole\_glm\_1}) and observed probabilities of agreeing for the \Robject{womensrole} data. The size of the symbols is proportional to the sample size. \label{GLM-role1plot}} \end{center} \end{figure} In lines 3--5 of function \Rcmd{myplot}, an empty scatterplot of education and fitted probabilities (\Rcmd{type = "n"}) is set up, basically to set the scene for the following plotting actions. Then, two lines are drawn (using function \Rcmd{lines} in lines 6 and 7), one for males (with line type 1) and one for females (with line type 2, i.e., a dashed line), where the logical vector \Robject{f} describes both genders. In line 9 a legend is added. Finally, in lines 12 onwards we plot `observed' values, i.e., the frequencies of agreeing in each of the groups (\Robject{y} as computed in lines 10 and 11) and use the Venus and Mars symbols to indicate gender. The size of the plotted symbol is proportional to the numbers of observations in the corresponding group of gender and years of education. The two curves for males and females in Figure~\ref{GLM-role1plot} are almost the same reflecting the non-significant value of the regression coefficient for gender in \Robject{womensrole\_glm\_1}. But the observed values plotted on Figure~\ref{GLM-role1plot} suggest that there might be an interaction of education and gender, a possibility that can be investigated by applying a further logistic regression model using \index{Interaction} <>= fm2 <- cbind(agree,disagree) ~ gender * education womensrole_glm_2 <- glm(fm2, data = womensrole, family = binomial()) @ The \Robject{gender} and \Robject{education} interaction term is seen to be highly significant, as can be seen from the \Rcmd{summary} output in Figure~\ref{GLM-womensrole-summary-2}. \renewcommand{\nextcaption}{\R{} output of the \Robject{summary} method for the logistic regression model fitted to the \Robject{womensrole} data. \label{GLM-womensrole-summary-2}} \SchunkLabel <>= summary(womensrole_glm_2) @ \SchunkRaw \begin{figure} \begin{center} <>= role.fitted2 <- predict(womensrole_glm_2, type = "response") myplot(role.fitted2) @ \caption{Fitted (from \Robject{womensrole\_glm\_2}) and observed probabilities of agreeing for the \Robject{womensrole} data. \label{GLM-role2plot}} \end{center} \end{figure} We can obtain a plot of deviance residuals plotted against fitted values using the following code above Figure~\ref{GLM:devplot}. \begin{figure} \begin{center} <>= res <- residuals(womensrole_glm_2, type = "deviance") plot(predict(womensrole_glm_2), res, xlab="Fitted values", ylab = "Residuals", ylim = max(abs(res)) * c(-1,1)) abline(h = 0, lty = 2) @ \caption{Plot of deviance residuals from logistic regression model fitted to the \Robject{womensrole} data. \label{GLM:devplot}} \end{center} \end{figure} The residuals fall into a horizontal band between $-2$ and $2$. This pattern does not suggest a poor fit for any particular observation or subset of observations. \subsection{Colonic Polyps} The data on colonic polyps in Table~\ref{GLM-polyps-tab} involves \stress{count} data. We could try to model this using multiple regression but there are two problems. The first is that a response that is a count can take only positive values, and secondly such a variable is unlikely to have a normal distribution. Instead we will apply a GLM with a log link function, ensuring that fitted values are positive, and a Poisson error distribution, i.e., \index{Poisson error distribution} \index{Poisson regression} \begin{eqnarray*} \P(y) = \frac{e^{-\lambda}\lambda^y}{y!}. \end{eqnarray*} This type of GLM is often known as \stress{Poisson regression}. We can apply the model using <>= data("polyps", package = "HSAUR3") polyps_glm_1 <- glm(number ~ treat + age, data = polyps, family = poisson()) @ (The default link function when the Poisson family is requested is the log function.) \renewcommand{\nextcaption}{\R{} output of the \Robject{summary} method for the Poisson regression model fitted to the \Robject{polyps} data. \label{GLM-polyps-summary-1}} \SchunkLabel <>= summary(polyps_glm_1) @ \SchunkRaw We can deal with overdispersion by using a procedure known as \stress{quasi-likelihood}, \index{Quasi-likelihood} which allows the estimation of model parameters without fully knowing the error distribution of the response variable. \cite{HSAUR:McCullaghNelder1989} give full details of the quasi-likelihood approach. In many respects it simply allows for the estimation of $\phi$ from the data rather than defining it to be unity for the binomial and Poisson distributions. We can apply quasi-likelihood estimation to the colonic polyps data using the following \R{} code <>= polyps_glm_2 <- glm(number ~ treat + age, data = polyps, family = quasipoisson()) summary(polyps_glm_2) @ The regression coefficients for both explanatory variables remain significant but their estimated standard errors are now much greater than the values given in Figure~\ref{GLM-polyps-summary-1}. A possible reason for overdispersion in these data is that polyps do not occur independently of one another, but instead may `cluster' together. %' \index{Overdispersion|)} \subsection{Driving and Back Pain} A frequently used design in medicine is the matched case-control study in which each patient suffering from a particular condition of interest included in the study is matched to one or more people without the condition. The most commonly used matching variables are age, ethnic group, mental status, etc. A design with $m$ controls per case is known as a $1:m$ matched study. In many cases $m$ will be one, and it is the $1:1$ matched study that we shall concentrate on here where we analyze the data on low back pain given in Table~\ref{GLM-backpain-tab}. To begin we shall describe the form of the logistic model appropriate for case-control studies in the simplest case where there is only one binary explanatory variable. With matched pairs data the form of the logistic model involves the probability, $\varphi$, that in matched pair number $i$, for a given value of the explanatory variable the member of the pair is a case. Specifically the model is \begin{eqnarray*} \text{logit}(\varphi_i) = \alpha_i + \beta x. \end{eqnarray*} The odds that a subject with $x=1$ is a case equals $\exp(\beta)$ times the odds that a subject with $x=0$ is a case. The model generalizes to the situation where there are $q$ explanatory variables as \begin{eqnarray*} \text{logit}(\varphi_i) = \alpha_i + \beta_1 x_1 + \beta_2 x_2 + \dots \beta_q x_q. \end{eqnarray*} Typically one $x$ is an explanatory variable of real interest, such as past exposure to a risk factor, with the others being used as a form of statistical control in addition to the variables already controlled by virtue of using them to form matched pairs. This is the case in our back pain example where it is the effect of car driving on lower back pain that is of most interest. The problem with the model above is that the number of parameters increases at the same rate as the sample size with the consequence that maximum likelihood estimation is no longer viable. We can overcome this problem if we regard the parameters $\alpha_i$ as of little interest and so are willing to forgo their estimation. If we do, we can then create a \stress{conditional likelihood function} that will yield maximum likelihood estimators of the coefficients, $\beta_1, \dots, \beta_q$, that are consistent and asymptotically normally distributed. The mathematics behind this are described in \cite{HSAUR:Collett2003}. The model can be fitted using the \Rcmd{clogit} function from package \Rpackage{survival}; the results are shown in Figure~\ref{GLM-backpain-print}. <>= library("survival") backpain_glm <- clogit(I(status == "case") ~ driver + suburban + strata(ID), data = backpain) @ The response has to be a logical (\Rcmd{TRUE} for cases) and the \Rcmd{strata} command specifies the matched pairs. \renewcommand{\nextcaption}{\R{} output of the \Robject{print} method for the conditional logistic regression model fitted to the \Robject{backpain} data. \label{GLM-backpain-print}} \SchunkLabel <>= print(backpain_glm) @ \SchunkRaw The estimate of the odds ratio of a herniated disc occurring in a driver relative to a nondriver is $\Sexpr{round(exp(coef(backpain_glm)[1]),2)}$ with a $95\%$ confidence interval of $\Sexpr{paste("(", paste(round(exp(confint(backpain_glm)[1,]), 2), collapse = ","),")", sep = "")}$. Conditional on residence we can say that the risk of a herniated disc occurring in a driver is about twice that of a nondriver. There is no evidence that where a person lives affects the risk of lower back pain. \subsection{Happiness in China} We model the probability distribution of reported happiness using a proportional odds model. In \R{}, the function \Rcmd{polr} from the \Rpackage{MASS} package \citep{HSAUR:VenablesRipley2002, PKG:MASS} implements such models, but in a slightly different form as explained in Section~\ref{GLM:polr}. The model we are going to fit reads \begin{eqnarray*} \log\left(\frac{\P(y \le k | x_1, \dots, x_q)}{\P(y > k | x_1, \dots, x_q)}\right) & = & \zeta_k - (\beta_1 x_1 + \dots + \beta_q x_q) \end{eqnarray*} and we have to take care when interpreting the signs of the estimated regression coefficients. Another issue needs our attention before we start. Three of the explanatory variables are itself ordered (\Robject{R\_edu}, the level of education of the responding woman; \Robject{R\_health}, the health status of the responding woman in the last year; and \Robject{A\_edu}, the level of education of the woman's partner). For unordered factors, the default treatment contrasts, see Chapters~\ref{ANOVA}, \ref{MLR}, and \ref{SIMC}, compares the effect of each level to the first level. This coding does not take the ordinal nature of an ordered factor into account. One more appropriate coding is called \stress{Helmert} contrasts. \index{Helmert constrast} Here, we compare each level $k$ to the average of the preceding levels, i.e., the second level to the first, the third to the average of the first and the second, and so on (these contrasts are also sometimes called \stress{reverse Helmert contrasts}). The \Rcmd{option} function can be used to specify the default contrasts for unordered (we don't change the default \Robject{contr.treatment} option) and ordered factors. The returned \Robject{opts} variable stores the options before manipulation and can be used to conveniently restore them after we fitted the proportional odds model: <>= library("MASS") opts <- options(contrasts = c("contr.treatment", "contr.helmert")) CHFLS_polr <- polr(R_happy ~ ., data = CHFLS, Hess = TRUE) options(opts) @ \renewcommand{\nextcaption}{\R{} output of the \Robject{summary} method for the proportional odds model fitted to the \Robject{CHFLS} data. \label{GLM-CHFLS-polr-summary}} \SchunkLabel <>= summary(CHFLS_polr) @ \SchunkRaw As (almost) always, the \Rcmd{summary} function can be used to display the fitted model, see Figure~\ref{GLM-CHFLS-polr-summary}. The largest absolute values of the $t$-statistics are associated with the self-reported health variable. To interpret the results correctly, we first make sure to understand the definition of the Helmert contrasts. <>= H <- with(CHFLS, contr.helmert(table(R_health))) rownames(H) <- levels(CHFLS$R_health) colnames(H) <- paste(levels(CHFLS$R_health)[-1], "- avg") H @ Let's focus on the probability of being very unhappy. A positive regression coefficient for the first contrast of health means that the probability of being very unhappy is smaller (because of the sign switch in the regression coefficients) for women that reported their health as not good compared to women that reported a poor health. Thus, the results given in Figure~\ref{GLM-CHFLS-polr-summary} indicate that better health leads to happier women, a finding that sits well with our expectations. The other effects are less clear to interpret, also because formal inference is difficult and no $p$-values are displayed in the summary output of Figure~\ref{GLM-CHFLS-polr-summary}. As a remedy, making use of the asymptotic distribution of maximum-likelihood-based estimators, we use the \Rcmd{cftest} function from the \Rpackage{multcomp} package \citep{PKG:multcomp} to compute normal $p$-values assuming that the estimated regression coefficients follow a normal limiting distribution (which is, for \Sexpr{nrow(CHFLS) - 3} observations, not completely unrealistic); the results are given in Figure~\ref{GLM-CHFLS-polr-cftest}. %% mess with the output function <>= library("multcomp") op <- options(digits = 2) cf <- cftest(CHFLS_polr) cftest <- function(x, digits = max(3, getOption("digits") - 3)) { x <- cf cat("\n\t", "Simultaneous Tests for General Linear Hypotheses\n\n") if (!is.null(x$type)) cat("Multiple Comparisons of Means:", x$type, "Contrasts\n\n\n") call <- if (isS4(x$model)) x$model@call else x$model$call if (!is.null(call)) { cat("Fit: ") print(call) cat("\n") } pq <- x$test mtests <- cbind(pq$coefficients, pq$sigma, pq$tstat, pq$pvalues) error <- attr(pq$pvalues, "error") pname <- switch(x$alternativ, less = paste("Pr(<", ifelse(x$df == 0, "z", "t"), ")", sep = ""), greater = paste("Pr(>", ifelse(x$df == 0, "z", "t"), ")", sep = ""), two.sided = paste("Pr(>|", ifelse(x$df == 0, "z", "t"), "|)", sep = "")) colnames(mtests) <- c("Estimate", "Std. Error", ifelse(x$df == 0, "z value", "t value"), pname) type <- pq$type if (!is.null(error) && error > .Machine$double.eps) { sig <- which.min(abs(1/error - (10^(1:10)))) sig <- 1/(10^sig) } else { sig <- .Machine$double.eps } cat("Linear Hypotheses:\n") alt <- switch(x$alternative, two.sided = "==", less = ">=", greater = "<=") rownames(mtests) <- rownames(mtests) printCoefmat(mtests, digits = digits, has.Pvalue = TRUE, P.values = TRUE, eps.Pvalue = sig) switch(type, univariate = cat("(Univariate p values reported)"), `single-step` = cat("(Adjusted p values reported -- single-step method)"), Shaffer = cat("(Adjusted p values reported -- Shaffer method)"), Westfall = cat("(Adjusted p values reported -- Westfall method)"), cat("(Adjusted p values reported --", type, "method)")) cat("\n\n") invisible(x) } @ \renewcommand{\nextcaption}{\R{} output of the \Robject{cftest} function for the proportional odds model fitted to the \Robject{CHFLS} data. \label{GLM-CHFLS-polr-cftest}} \SchunkLabel <>= library("multcomp") cftest(CHFLS_polr) @ \SchunkRaw <>= options(op) @ There seem to be geographical differences and also older and larger women seem to be happier. Other than that, education and income don't seem to contribute much in this model. One remarkable thing about the proportional odds model is that, similar to the quantile regression models presented in Chapter~\ref{QR}, it directly formulates a regression problem in terms of conditional distributions, not only conditional means (the same is trivially true for the binary case in logistic regression). Consequently, the model allows making distributional predictions, in other words, we can infer the predicted distribution or density of happiness in a woman with certain values for the explanatory variables that entered the model. To do so, we focus on the woman corresponding to the first row of the data set: \clearpage <>= CHFLS[1,] @ and repeat these values as often as there are levels in the \Robject{R\_health} factor, and each row is assigned one of these levels <>= nd <- CHFLS[rep(1, nlevels(CHFLS$R_health)),] nd$R_health <- ordered(levels(nd$R_health), labels = levels(nd$R_health)) @ We can now use the \Rcmd{predict} function to compute the density of the response variable \Rcmd{R\_happy} for each of these five hypothetical women: <>= (dens <- predict(CHFLS_polr, newdata = nd, type = "probs")) @ From each row, we get the predicted probability that the self-reported happiness will correspond to the levels shown in the column name. These densities, one for each row in \Robject{nd} and therefore for each level of health, can now be plotted, for example using a conditional barchart, see Figure~\ref{GLM-CHFLS-pred-plot}. We clearly see that better health is associated with greater happiness. \begin{figure} \begin{center} <>= library("lattice") D <- expand.grid(R_health = nd$R_health, R_happy = ordered(LETTERS[1:4])) D$dens <- as.vector(dens) barchart(dens ~ R_happy | R_health, data = D, ylab = "Density", xlab = "Happiness",) @ \caption{Predicted distribution of happiness for hypothetical women with health conditions rating from poor to excellent, with the remaining explanatory variables being the same as for the woman corresponding to the first row in the \Robject{CHFLS} data frame. The levels of happiness have been abbreviated (A: very unhappy, B: not too happy, C: somewhat happy; D: very happy). \label{GLM-CHFLS-pred-plot}} \end{center} \end{figure} We'll present an alternative and maybe simpler model in Chapter~\ref{RP}. \section{Summary of Findings} <>= ci <- round(exp(confint(plasma_glm_1, parm = "fibrinogen")), 2) ci <- paste("(", paste(ci, collapse = ","), ")", sep = "") @ \begin{description} \item[Blood screening] Application of logistic regression shows that an increase of one unit in the fibrinogen value produces approximately a six fold increase in the odds of an ESR value greater than $20$. However, because the number of observations is small the corresponding $95\%$ confidence interval for the odds is rather wide namely, $\Sexpr{ci}$. Gamma globulin values do not help in the prediction of ESR values greater than $20$ over and above the fibrinogen values. \item[Women's role in society] Modeling the probability of agreeing with the statement about women's role in society using logistic regression demonstrates that it is the interaction of education and gender which is of most importance; for fewer years of education women have a higher probability of agreeing with the statement than men, but when the years of education exceed about ten then this situation reverses. \item[Colonic polyps] Fitting a Poisson regression allowing for overdispersion shows that the drug treatment is effective in reducing the number of polyps with age having only a marginal effect. \item[Driving and back pain] Application of conditional logistic regression shows that the odds ratio of a herniated disc occurring in a driver relative to a nondriver is $\Sexpr{round(exp(coef(backpain_glm)[1]),2)}$ with a $95\%$ confidence interval of $\Sexpr{paste("(", paste(round(exp(confint(backpain_glm)[1,]), 2), collapse = ","),")", sep = "")}$. There is no evidence that where a person lives affects the risk of suffering lower back pain. \item[Happiness in China] Better health is associated with greater happiness -- what a surprise! \end{description} \section{Final Comments} Generalized linear models provide a very powerful and flexible framework for the application of regression models to a variety of non-normal response variables, for example, logistic regression to binary responses and Poisson regression to count data. \bibliographystyle{LaTeXBibTeX/refstyle} \bibliography{LaTeXBibTeX/HSAUR} \end{document} HSAUR3/inst/doc/Ch_bayesian_inference.R0000644000176200001440000002610113302740775017317 0ustar liggesusers### R code from vignette source 'Ch_bayesian_inference.Rnw' ### Encoding: ASCII ################################################### ### code chunk number 1: setup ################################################### rm(list = ls()) s <- search()[-1] s <- s[-match(c("package:base", "package:stats", "package:graphics", "package:grDevices", "package:utils", "package:datasets", "package:methods", "Autoloads"), s)] if (length(s) > 0) sapply(s, detach, character.only = TRUE) if (!file.exists("tables")) dir.create("tables") if (!file.exists("figures")) dir.create("figures") set.seed(290875) options(prompt = "R> ", continue = "+ ", width = 63, # digits = 4, show.signif.stars = FALSE, SweaveHooks = list(leftpar = function() par(mai = par("mai") * c(1, 1.05, 1, 1)), bigleftpar = function() par(mai = par("mai") * c(1, 1.7, 1, 1)))) HSAURpkg <- require("HSAUR3") if (!HSAURpkg) stop("cannot load package ", sQuote("HSAUR3")) rm(HSAURpkg) ### hm, R-2.4.0 --vanilla seems to need this a <- Sys.setlocale("LC_ALL", "C") ### book <- TRUE refs <- cbind(c("AItR", "DAGD", "SI", "CI", "ANOVA", "MLR", "GLM", "DE", "RP", "GAM", "SA", "ALDI", "ALDII", "SIMC", "MA", "PCA", "MDS", "CA"), 1:18) ch <- function(x) { ch <- refs[which(refs[,1] == x),] if (book) { return(paste("Chapter~\\\\ref{", ch[1], "}", sep = "")) } else { return(paste("Chapter~", ch[2], sep = "")) } } if (file.exists("deparse.R")) source("deparse.R") setHook(packageEvent("lattice", "attach"), function(...) { lattice.options(default.theme = function() standard.theme("pdf", color = FALSE)) }) ################################################### ### code chunk number 2: singlebook ################################################### book <- FALSE ################################################### ### code chunk number 3: BI-Smoking_Mueller1940-tab ################################################### data("Smoking_Mueller1940", package = "HSAUR3") toLatex(HSAURtable(Smoking_Mueller1940), caption = paste("Smoking and lung cancer case-control study by M\\\"uller (1940).", "The smoking intensities were defined by the number of", "cigarettes smoked daily:", "1-15 (moderate), 16-25 (heavy), 26-35 (very heavy),", "and more than 35 (extreme)."), label = "BI-Smoking_Mueller1940-tab") ################################################### ### code chunk number 4: BI-Smoking_SchairerSchoeniger1944-tab ################################################### x <- as.table(Smoking_SchairerSchoeniger1944[, c("Lung cancer", "Healthy control")]) toLatex(HSAURtable(x, xname = "Smoking_SchairerSchoeniger1944"), caption = paste("Smoking and lung cancer case-control study by Schairer and Sch\\\"oniger (1944). Cancer other than lung cancer omitted.", "The smoking intensities were defined by the number of", "cigarettes smoked daily:", "1-5 (moderate), 6-10 (medium), 11-20 (heavy),", "and more than 20 (very heavy)."), label = "BI-Smoking_SchairerSchoeniger1944-tab") ################################################### ### code chunk number 5: BI-Smoking_Wassink1945-tab ################################################### data("Smoking_Wassink1945", package = "HSAUR3") toLatex(HSAURtable(Smoking_Wassink1945), caption = paste("Smoking and lung cancer case-control study by Wassink (1945).", "Smoking categories correspond to the categories used by M\\\"uller (1940)."), label = "BI-Smoking_Wassink1945-tab") ################################################### ### code chunk number 6: BI-Smoking_DollHill1950-tab ################################################### data("Smoking_DollHill1950", package = "HSAUR3") x <- as.table(Smoking_DollHill1950[,,"Male", drop = FALSE]) toLatex(HSAURtable(x, xname = "Smoking_DollHill1950"), caption = paste("Smoking and lung cancer case-control study (only males) by Doll and Hill (1950).", "The labels for the smoking categories give the number of cigarettes smoked every day."), label = "BI-Smoking_DollHill1950-tab") ################################################### ### code chunk number 7: BI-M-it ################################################### library("coin") set.seed(29) independence_test(Smoking_Mueller1940, teststat = "quad", distribution = approximate(100000)) ################################################### ### code chunk number 8: BI-M40-linit ################################################### ssc <- c(0, 1 + 14 / 2, 16 + 9 / 2, 26 + 9 / 2, 40) independence_test(Smoking_Mueller1940, teststat = "quad", scores = list(Smoking = ssc), distribution = approximate(100000)) ################################################### ### code chunk number 9: BI-expconfint ################################################### eci <- function(model) cbind("Odds (Ratio)" = exp(coef(model)), exp(confint(model))) ################################################### ### code chunk number 10: BI-M40-logreg ################################################### smoking <- ordered(rownames(Smoking_Mueller1940), levels = rownames(Smoking_Mueller1940)) contrasts(smoking) <- "contr.treatment" eci(glm(Smoking_Mueller1940 ~ smoking, family = binomial())) ################################################### ### code chunk number 11: BI-M40-logreg-split ################################################### K <- diag(nlevels(smoking) - 1) K[lower.tri(K)] <- 1 contrasts(smoking) <- rbind(0, K) eci(glm(Smoking_Mueller1940 ~ smoking, family = binomial())) ################################################### ### code chunk number 12: BI-SS44-it ################################################### xSS44 <- as.table(Smoking_SchairerSchoeniger1944[, c("Lung cancer", "Healthy control")]) ap <- approximate(100000) pvalue(independence_test(xSS44, teststat = "quad", distribution = ap)) pvalue(independence_test(Smoking_Wassink1945, teststat = "quad", distribution = ap)) xDH50 <- as.table(Smoking_DollHill1950[,, "Male"]) pvalue(independence_test(xDH50, teststat = "quad", distribution = ap)) ################################################### ### code chunk number 13: BI-data-M ################################################### (M <- rbind(Smoking_Mueller1940[1:2,], colSums(Smoking_Mueller1940[3:5,]))) ################################################### ### code chunk number 14: BI-data-SS ################################################### SS <- Smoking_SchairerSchoeniger1944[, c("Lung cancer", "Healthy control")] (SS <- rbind(SS[1,], colSums(SS[2:3,]), colSums(SS[4:5,]))) ################################################### ### code chunk number 15: BI-data-WDH ################################################### (W <- rbind(Smoking_Wassink1945[1:2,], colSums(Smoking_Wassink1945[3:4,]))) DH <- Smoking_DollHill1950[,, "Male"] (DH <- rbind(DH[1,], colSums(DH[2:3,]), colSums(DH[4:6,]))) ################################################### ### code chunk number 16: BI-data-all ################################################### smk <- c("Nonsmoker", "Moderate smoker", "Heavy smoker") x <- expand.grid(Smoking = ordered(smk, levels = smk), Diagnosis = factor(c("Lung cancer", "Control")), Study = c("Mueller1940", "SchairerSchoeniger1944", "Wassink1945", "DollHill1950")) x$weights <- c(as.vector(M), as.vector(SS), as.vector(W), as.vector(DH)) ################################################### ### code chunk number 17: BI-data-contrasts ################################################### contrasts(x$Smoking) <- "contr.treatment" x <- x[rep(1:nrow(x), x$weights),] ################################################### ### code chunk number 18: BI-models ################################################### models <- lapply(levels(x$Study), function(s) glm(Diagnosis ~ Smoking, data = x, family = binomial(), subset = Study == s)) names(models) <- levels(x$Study) ################################################### ### code chunk number 19: BI-M40 ################################################### eci(models[["Mueller1940"]]) ################################################### ### code chunk number 20: BI-SS44 ################################################### eci(models[["SchairerSchoeniger1944"]]) ################################################### ### code chunk number 21: BI-M40-SS44 ################################################### mM40_SS44 <- glm(Diagnosis ~ 0 + Study + Smoking, data = x, family = binomial(), subset = Study %in% c("Mueller1940", "SchairerSchoeniger1944")) eci(mM40_SS44) ################################################### ### code chunk number 22: BI-M40-SS44-W45-ML ################################################### eci(models[["Wassink1945"]]) ################################################### ### code chunk number 23: BI-M40-SS44-W45 ################################################### mM40_SS44_W45 <- glm(Diagnosis ~ 0 + Study + Smoking, data = x, family = binomial(), subset = Study %in% c("Mueller1940", "SchairerSchoeniger1944", "Wassink1945")) eci(mM40_SS44_W45) ################################################### ### code chunk number 24: BI-DH50 ################################################### eci(models[["DollHill1950"]]) ################################################### ### code chunk number 25: BI-all ################################################### m_all <- glm(Diagnosis ~ 0 + Study + Smoking, data = x, family = binomial()) eci(m_all) ################################################### ### code chunk number 26: BI-all-round ################################################### r <- eci(m_all) xM <- round(r["SmokingModerate smoker", 2:3], 1) xH <- round(r["SmokingHeavy smoker", 2:3], 1) ################################################### ### code chunk number 27: BI-results ################################################### K <- diag(nlevels(x$Smoking) - 1) K[lower.tri(K)] <- 1 contrasts(x$Smoking) <- rbind(0, K) eci(glm(Diagnosis ~ 0 + Study + Smoking, data = x, family = binomial())) ################################################### ### code chunk number 28: BI-meta-data ################################################### y <- xtabs(~ Study + Smoking + Diagnosis, data = x) ntrtM <- margin.table(y, 1:2)[,"Moderate smoker"] nctrl <- margin.table(y, 1:2)[,"Nonsmoker"] ptrtM <- y[,"Moderate smoker","Lung cancer"] pctrl <- y[,"Nonsmoker","Lung cancer"] ntrtH <- margin.table(y, 1:2)[,"Heavy smoker"] ptrtH <- y[,"Heavy smoker","Lung cancer"] ################################################### ### code chunk number 29: BI-meta-data ################################################### library("rmeta") meta.MH(ntrt = ntrtM, nctrl = nctrl, ptrt = ptrtM, pctrl = pctrl) meta.MH(ntrt = ntrtH, nctrl = nctrl, ptrt = ptrtH, pctrl = pctrl) HSAUR3/inst/doc/Ch_graphical_display.pdf0000644000176200001440000165537613302741020017544 0ustar liggesusers%PDF-1.5 % 29 0 obj << /Length 400 /Filter /FlateDecode >> stream xڭ=O1 ;T@lcB ז Pؗ"@| qyc?  \w@ &@p^Q0-/*m<@A%cؽqq%P nD~Z3䖄E>~~+& +oT?QX#[~]0N,s |ya50GmsTvl%jnJ,T *%>P]njE!YPTI|DrBrޮ9sOsN7Q9K܈a&FWbVQE$Q])78&G\~l*-1* JHz\K̻U^&-M%ܼL;zt,grx~UO_ endstream endobj 38 0 obj << /Length 148 /Filter /FlateDecode >> stream xڭ1 A E9?AH&IX[Xy}uaYQ?qc$}2UHK%Cv{Ʊ߭z NMئNFo[0G d ^oQxEVU 󿺚|U5ii} endstream endobj 48 0 obj << /Length 2781 /Filter /FlateDecode >> stream xڭYIϯ!2o7,v^dYcωz9(:@$dLYS[7$fl)9̠꯶f,,*+,QInITy2\%s1Rm(7*hWXTYZ.)Ufs,2τYdOJJ+,#6 N*- *7ii>㥦>XO MlZ{tL^)*r'D:ͪ" @8'G~xXߛ3_Z9'*%ئs^] ˎWŽ^8[g5a]0{ZFjƫ`dT%WdޭѣG~ż7]-Ў ZjNU(ͭJQLI,~Dhxl(IJEjʪf\AV8^\Ls{ʟEn"`fFE!i8U+o-j7Z'W[6/1;:0ZV8fıKbkÓ< | Hec }X0\3f)* ezQJ]x-"8dG;xvK8Lb9%"XQ?'5 > .y-6…1JzkǺqæ'.-G1d-AG9_#Ѥ5y~IX'}=gxv®dKASc CWUIVň( 3yE<[A#ϡ%&+S.cuvcT޸~zB A3g)eI !Il;5>?k#Ngߦݏr'`S瞇h;"[WəpNan!y$s;gM.ܢ _ t.6$mqtw g)ML|Y.bs,DMEXzX> ;TG# M'Sbg.Å۽9h<αx k#~uÁW5%r4҅@TEg@#Ihp.#\ݨ"I_(u6Dx46!J3Kw((̑ۮ7ґd}Ntcؙս wDN9$9LA O>#,- .p'HZX_f}t:r~9s蹃ي,.3+*,[2P8v''#} X2jSUu\i9*,(R@BWO诐ڀk{`u`/Мpn Z.Kl!ҭcOފ eˈ᳕Ϭ+#Q![\Q!Ix7N"އhD<1FC=Z.aDWdr =,E0̮q̭n)9b䰵8reʉ5Ru2x"X ELÈ&ޅK= xU#SU  Mncg;:wͩ,Ϧ1nEy5 3ע4U=PM3ن0[{lȗ6@t8vJ􉜇U]ƁCQm`;0(&҄9HaRXSb]L7}ҫ;h[eN;UUʢJX >9Hڳw!D ~Щ=\RVG |tA,-(]l5OT|׼}0Y::TOg[Fz"dfg]JI.A^pZ8-$'6˱̢Z9,[_ h*Pp2K6]M9(KacxBPahS,xFFjYa_s]hڔ&BH[Č{gT+I8-ek150R'bPt4z*/|"&Rƅ`{I‚'[zm0xŪ'U7Z24}hI_rNG1(!O_l;3f9M>I垿`c2vo @&'j:f.̺ asdz %1*UJׇТ{h5Q1 H ]S]?W_#K.jy7NwBF GޖifQCy$o%8:C~!C;Ž@츰 :LcH#C62OG~eIu\daNY(d5DܵvqGqkEh,֖tJt{ a{e%`#aUع9Ц^5?/4> stream xڽXYoF~ ZLn@4HhYD*"#s-$M>Pcvvo xώy:Ryj3ѳ'@JOVpՉ8}c/OxioOIh [xjx|^+ƥ < xnm#x4<̰JdvK?K9e_ ,v[͛]a6{ yNWҁU*`(R}s&ҖBRWBjFƵhR|Ҋ E[gk5֍0K'y5e0"Sb!f#|OfU:Arԗr_{s_ޭ  '7c38~ +'bArX{l=}ta S?L2 QHeӑE:D i˞/V{R6&aJ^ .f D,{dS>)+EA>dzo5dsPus"/D|"I/J5Q֜m!-zL怅ptf}=+Nܫ7Acy"6dz-KO'Z8v'r8sё$G`8ң!3-r@[^S%8~ fПc 11ПP`-}&YI.%afi 24Jk:SjlhM}9O+Җ{5b"`)F6TWȻAйD_FǗy+8BC'B.,RXH>y厢^m{Tr򶱠=ýɿ.LG;*?;@As`(JtNJP,80ۮ Ӑ9LJ\r6;goewނ,IrMY2xåai`G!P!n!F0ݾ O5|8Iն;2dhJSFJauDSQ{oD9*UZ^u-4rɡ4|hh,7 K. #Ԃ08fҍǤ')'> 0f$nEeIw戆43G * yIz 'ʏ /xGnnZ0d#,ՌM*đMpH@gvf:t!-ĺ7Qby/zIݵæ@SsorFϛRh!U =l|Ce0v9o)cv .+PGI``bW%˾1:('Ի2 Sw"t q_wF<$T5obuL5aThe<;痔$KB.(f8Eo}gW@{2-ǼIaf)7Kꬕ) $q/>kL'[[*ʴ7pA}!]ɓͨigVY4H ڸН1r6:WZo)i䴛 feC]<] <GU6NI"T>/%g16i5vi ? endstream endobj 42 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpfxGizf/Rbuild38ac486d6c6f/HSAUR3/vignettes/figures/HSAUR-DAGD-USmelanoma-histbox.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 71 0 R /BBox [0 0 576 432] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 72 0 R>> /ExtGState << >>/ColorSpace << /sRGB 73 0 R >>>> /Length 544 /Filter /FlateDecode >> stream xTMk1W>t* mBB%m nI(v&ey3# ({ FLp b@RoD)%GAH~+MH*Bu N1f3|-M5a3J1je D`3߉mx>ZWKa©%bіAБF6Fō1hLz}ˤk^Ļ9܀",XQn܄$:*QY4J:GIsf.lSeŎ-Oam Zb ; ¸jBP-LkY_ei:űV~_uٝ]?y endstream endobj 75 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xwTSϽ7PkhRH H.*1 J"6DTpDQ2(C"QDqpId߼y͛~kg}ֺLX Xňg` lpBF|،l *?Y"1P\8=W%Oɘ4M0J"Y2Vs,[|e92<se'9`2&ctI@o|N6(.sSdl-c(2-yH_/XZ.$&\SM07#1ؙYrfYym";8980m-m(]v^DW~ emi]P`/u}q|^R,g+\Kk)/C_|Rax8t1C^7nfzDp 柇u$/ED˦L L[B@ٹЖX!@~(* {d+} G͋љς}WL$cGD2QZ4 E@@A(q`1D `'u46ptc48.`R0) @Rt CXCP%CBH@Rf[(t CQhz#0 Zl`O828.p|O×X ?:0FBx$ !i@ڐH[EE1PL ⢖V6QP>U(j MFkt,:.FW8c1L&ӎ9ƌaX: rbl1 {{{;}#tp8_\8"Ey.,X%%Gщ1-9ҀKl.oo/O$&'=JvMޞxǥ{=Vs\x ‰N柜>ucKz=s/ol|ϝ?y ^d]ps~:;/;]7|WpQoH!ɻVsnYs}ҽ~4] =>=:`;cܱ'?e~!ańD#G&}'/?^xI֓?+\wx20;5\ӯ_etWf^Qs-mw3+?~O~ endstream endobj 84 0 obj << /Length 2084 /Filter /FlateDecode >> stream xڭَ}K$ⲛW3FlC`#q$:Ƥ4lJy جD(I덁w2-2/bh$Z(mVEODLWi mEeG%JRD0Z婉 Xd eKrUHcOWnמf2߼uQW-}de2)cch~~K'y757靈4M'?/?Ͽ~u[,w v)B)63K2ȑQobXhfعL?ܦXn9s$OP+Z6}R.irϧZ  DT#uA51DE9yl (گ9][r$RZ5޸ҿ}ч \n(_}ΚƤQM)V(%t^_=j~ad->vm}Ut„54[^^)ZLG> stream xwTSϽ7PkhRH H.*1 J"6DTpDQ2(C"QDqpId߼y͛~kg}ֺLX Xňg` lpBF|،l *?Y"1P\8=W%Oɘ4M0J"Y2Vs,[|e92<se'9`2&ctI@o|N6(.sSdl-c(2-yH_/XZ.$&\SM07#1ؙYrfYym";8980m-m(]v^DW~ emi]P`/u}q|^R,g+\Kk)/C_|Rax8t1C^7nfzDp 柇u$/ED˦L L[B@ٹЖX!@~(* {d+} G͋љς}WL$cGD2QZ4 E@@A(q`1D `'u46ptc48.`R0) @Rt CXCP%CBH@Rf[(t CQhz#0 Zl`O828.p|O×X ?:0FBx$ !i@ڐH[EE1PL ⢖V6QP>U(j MFkt,:.FW8c1L&ӎ9ƌaX: rbl1 {{{;}#tp8_\8"Ey.,X%%Gщ1-9ҀKl.oo/O$&'=JvMޞxǥ{=Vs\x ‰N柜>ucKz=s/ol|ϝ?y ^d]ps~:;/;]7|WpQoH!ɻVsnYs}ҽ~4] =>=:`;cܱ'?e~!ańD#G&}'/?^xI֓?+\wx20;5\ӯ_etWf^Qs-mw3+?~O~ endstream endobj 99 0 obj << /Length 1959 /Filter /FlateDecode >> stream xXKs6Wp|BHvθI:fX9thJ5DG8@P];'G(^b4q#6:ʍUQ}Gc8{*(U0G"W:/f*NXĎ $JM<UYV|B(UMU)VOfyՓe{v^D*mbuX {ѧ ARE៳0Maxw\t7?k\%~/_23yyh3U<$a~k Ct nglb>Z9*->O[9^w-Dž\Q%\COBS ;H9OO:Ҵ̂ADҘK'p8=ŭmD7X6ډ4[En Pw|P4q+Dx8Hv-'1K"1 x! TE.Q_[yr`Km DATWG,4rȗ @*NTeVc S$eB=xvH hxTrm$ʤ%#qN6خôHQs(v:`ar[t3ÌrbYh&k<Ɇ<] jlL|6NmWd>fiVZ؉0:DBx6<BjZ wogbv%(K|$ pNjP''hMvmӑTj̻Ud'$9@ETPSOKHZ;$8AzG:%+HM6lYTq,(aKGR}ǧfRpݬA/c^T]OcGQF2nz)U. \XfJ@ ЮH)9^AڧCXMm?-m[[ʼ9SP!┥8Vl K/͋PA+Υ#ӉK HIA#BqݕM|7RJI 4w;&}Wmk̝xtH+:ѪOEGɚ)@ =W@4P2sJX/tT8<crj5,_R2#Tp\ω[kS(/ݶb\=Y$w(尯)UڰzW3Nc\]0K\J7mСreM Y~ek*J6u9Qoʸ endstream endobj 64 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpfxGizf/Rbuild38ac486d6c6f/HSAUR3/vignettes/figures/HSAUR-DAGD-USmelanoma-dens.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 101 0 R /BBox [0 0 576 432] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 102 0 R>> /ExtGState << >>/ColorSpace << /sRGB 103 0 R >>>> /Length 6918 /Filter /FlateDecode >> stream xM-uWjj!8R&R` EY^ ##gE޽[=ǟ?8ϫ?V{{>W}s>?}~|y]?zCy||o>\ǷF Zo>*B7h-B9B*+ 5[a57ItZa9R+μWӑZqFeqQ+g.!-Ox09s [j,jDٲPjy =C~2 #Y! ߰w4b}E?T1@jd'Y"Pqby8iz~BMopaRfCTZ.?NMjZBPԢp\mkZ8vLRCdEo2R xd?^j8Oep!Bدxd?'G #QhMNj.p_ᭃ8R~hB4*N&j!H &Gj6H0CzhzSp4a?RdR4&HMgQKM 5{jjઍ5O8iGjßF>$ 'Sdl AѶT_lmBʵ/0Ill,oُGCGY0YO GUϛm3*ݿTxu #\}bُs8wXܨcG& L]Ñ`#`Ey f?w#E=o#~]}UL&?G/O`?Um'8aw*Vv}~|i97UG_bO V<_|][=k~yS _'q G Dc鶿V.OcMy=Z8=oSbY{+aQ G%[FpTG T Sx~AaM`_T/*G~̟Z(z.S޿:,5 IJ9OM30O`g .)/>/sZsQX W9OW u aiW8^SZZ /)ڠ0s [c&ܱ z!` o)5G$}G}'t~y&_}?DS"#c?/gz_GZ$=-}0򄿟~ߟ=lǟS> ?׏+L|kǠ|;~2W|!;&& ?~_`_?w/}aKߓ. r덮ĵ]E>K?_l֋:g^' aFφXc5$>w%|~ 5?]_if%\c[,PUoOJ1ԃ'W=xúzTOp]a^2^]OQ/FJىJD8)[ S x,z#>$>꧄ZUz2|P~E7ԃV|^¿ug]~K$:Ulv5Tg=؍ lTO~Օϻ?P|^0 ^q7z>)$P86NoN?%=)_~7ϺBhT^?Q$8St,XOOޏEQT>__UQ 2!-8^}(#?qOQjayoS?x7ڴǿ?J?|"aӏPӓ?OÚFq>,ݿ?puߝNQw4Ѕ= G/ֽ͸(n?/OQ5 aJ?~P H~93Q(,_?(I>(3bX~TfgyEX_%iO>F<(NPI; ϸK9^z 9=y؛sՎUpiz2a`Nu=> hDSRlZf4f&ON.Fp)#@9h.Jۋ`oc'::A&L˚Tx3:Ґ^]A|77owYM 5w1-{)Ug'+sB 1(&'vcVvf #xgVN|0,?# )VZNyȘ;ӫ>F&{y>S S#|ԧ}QScر$v,:{XWk`ͣCGwu~'Tޟ'O\cz(4v_Q@O _qr܍?4j>_K|< )d`d=WgdPg=JJ`=<;3r3ܮ e9#Aywef$'2,$',}YPɁxrHݳSnT>-Oop\]dc/*ۤi/bȲgAd9F9 $XwIvVs]1 DH6rKU鑶)q`y8Q&朖|AsZfKNv&דɌKY5T2:JFdWd!:7mHg˜Xdc ]d,gӓ Eb@sQ$Fف2Aj .h,NJl kؓE*H>zfŊ(@(AD MZk.mUEyw04O ]Ϊ=f'10i0ך.K|U*SW Y*˕Si^8C\p$N-RQ+p /_|6ee Mn'A䚖$D$9dmYh`P]hpN 8"Ds8uaS\JjACxņ Qɵs%;4ظӉыH LRj;׎^L&10_ 24L (`3bjșU N% 8 Q@L u 42vRL9L|5@M`jX&7XM p |#4|F sh$(u&wjP;5k5ΰCbˢiۀNbQ\`d_(% /{  d&MsN$ux@Ov'Tx3DVo)盧#^g„o7<NbF^|Kaɧd̠N|*[&,iaicp΀p'D XxO53٦_ MԀP8RL.ǧLs~݄M'U`7J|wMV<l!OGKHB!:հưKvy C|Z΍pt5R,CHs@ǫC6a0m/N 2jlŒ% x tS0F~1IilE{,u&ƣ\S,#Oib%>&yR~&gf?&D~LA& 07BqO|tMhi"\S a[AíW:?Dj⹰0k*epO”x5ޒ`:)5x:3Ē&$<7bAZ6;&@W_OśJL%Uޏ/+3nOY DŽJihB,XZ$~⩹௖U1 ҄$zf^Ei]7rљaȿ$"N'&$}9h!5uz~H!,BDo7@-5_&%\F2@ЄEWoYMכ8K1@ B3XL `VɌLP GL@ΕYYMx~$t\o5b:$,vs/£ {7Q]㾟Dn1 $T3esTWm?XPU>率o$a7h@a?V&L&0ypw]&D"Pnbdu(~A4>-_ڟm5vCږo;/M $ﶡ46͉KLr7'H{&X~> a7Ė(̿HtMUMzgBu~.S>믎[- lX.7րY+ dSXi w"lP uVm˗o8/wV7 v[+ cxF_Lй DzBg'L8MnqnA82A% ̗EPtRF_"xNM|#?hh&My?2t|6"_zYRdGe ç9"WaVטhݠ ]жӿmw'>h ΛQ'1 E8!TlMdmy0&0\O'Wm%^B?ݟҦ26#'Zo{>/f֟)'jY p}(h5Ȅc1 K9nބsL@*ˆ@:_' u'|@F{umA-MRs6J`c.$xMj7al^AyJ.L展s4;;钅Aad*0$;9tM4U>7K#gmN~T&iceӓ^ 7GMЭZέۓ%V+$S`5O25 1> stream xwTSϽ7PkhRH H.*1 J"6DTpDQ2(C"QDqpId߼y͛~kg}ֺLX Xňg` lpBF|،l *?Y"1P\8=W%Oɘ4M0J"Y2Vs,[|e92<se'9`2&ctI@o|N6(.sSdl-c(2-yH_/XZ.$&\SM07#1ؙYrfYym";8980m-m(]v^DW~ emi]P`/u}q|^R,g+\Kk)/C_|Rax8t1C^7nfzDp 柇u$/ED˦L L[B@ٹЖX!@~(* {d+} G͋љς}WL$cGD2QZ4 E@@A(q`1D `'u46ptc48.`R0) @Rt CXCP%CBH@Rf[(t CQhz#0 Zl`O828.p|O×X ?:0FBx$ !i@ڐH[EE1PL ⢖V6QP>U(j MFkt,:.FW8c1L&ӎ9ƌaX: rbl1 {{{;}#tp8_\8"Ey.,X%%Gщ1-9ҀKl.oo/O$&'=JvMޞxǥ{=Vs\x ‰N柜>ucKz=s/ol|ϝ?y ^d]ps~:;/;]7|WpQoH!ɻVsnYs}ҽ~4] =>=:`;cܱ'?e~!ańD#G&}'/?^xI֓?+\wx20;5\ӯ_etWf^Qs-mw3+?~O~ endstream endobj 110 0 obj << /Length 1975 /Filter /FlateDecode >> stream x]4~иlfGtA}IN|/rJ)ăZD(JdJD*ʳH0y@䯔UVqY<ˬ7U)kobqiUqtn)au:IǃSgvai=4@a`2,jl1Y{+$X7pVaE{OwD LwԳb<5jvhDLY`y5,HDnSzi-̷cHŦ1 F(؝OJob"FlaR9,%\읱8ּ~ǩ`;BS!Nh } IhpNRu=OR1 %Dfp62sHUh1GLUfn%$-l.7d1Js3;1/ <:yjq~%BXaLK#>p048=|s)KJHԀ@igmzу8;xkI;R}KOJ@i~T~ "0e ~@"ljUqsIp¨3wi#eeIEsr>m{ ^=n{Кޜ'zqJ1U endstream endobj 81 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpfxGizf/Rbuild38ac486d6c6f/HSAUR3/vignettes/figures/HSAUR-DAGD-USmelanoma-xy.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 115 0 R /BBox [0 0 576 360] /Resources << /ProcSet [ /PDF /Text ] /Font << /F1 116 0 R/F2 117 0 R>> /ExtGState << >>/ColorSpace << /sRGB 118 0 R >>>> /Length 1395 /Filter /FlateDecode >> stream xYKo7 ϯ1>D(J]4@zra'/xu3+M~xsiL?/&`/ddn>_̧?7/.&gsfŏ9?o3'oy5=?L^z1,']M>ђ͓3sfo䣍yT{N*N.XGL$&p3Y7%|17qh^:|!.';#v\oO xȦ,'C}PĉmpyzD<\f$Wxduo)Ku nJϥM"ͥ<UEl#NḭZvNK"6{@6 "]?JNRP%g',^DDjs33mAg8jܗUiM(E5fUhE -I:$rR/G[Q%m.iR`L%M9k\"Vu {DgSLƫXRiɊ "xhɵJi䕹8b7J"WmhawrgܯFnR?]Y\}o~qqݞ0;پ^R=h?.?;eeKq#;evAiG: ZP;*̧EHjPutr^ _Jo_nv +_ _RQoZ~[mLtcIY?0Zt䎞~͙y*ǓW<{c罌f * ZXgr*b=7#)Ǩk+ ңH88Z4D3{NG Z(c個G̲t{- F[Ƈq ^4,F,&O~|MXІl0`4cpXP\790 &FF5)2b#1#&ΌbFQjd݂1h)Xԍǃ :!4D%3EW4W@Ԉ)P(̢sQ#ٽD5na> vŵ?j1;&#7F!Whd@/E ;B3,/(]B?A+ v  qp*|z?-ݬFx/ Ba0aƉ' 3N881qbEbOlqb1Ċn= Ttq0$3Ob2)`2\P~t03Ly{:|03s endstream endobj 120 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xwTSϽ7PkhRH H.*1 J"6DTpDQ2(C"QDqpId߼y͛~kg}ֺLX Xňg` lpBF|،l *?Y"1P\8=W%Oɘ4M0J"Y2Vs,[|e92<se'9`2&ctI@o|N6(.sSdl-c(2-yH_/XZ.$&\SM07#1ؙYrfYym";8980m-m(]v^DW~ emi]P`/u}q|^R,g+\Kk)/C_|Rax8t1C^7nfzDp 柇u$/ED˦L L[B@ٹЖX!@~(* {d+} G͋љς}WL$cGD2QZ4 E@@A(q`1D `'u46ptc48.`R0) @Rt CXCP%CBH@Rf[(t CQhz#0 Zl`O828.p|O×X ?:0FBx$ !i@ڐH[EE1PL ⢖V6QP>U(j MFkt,:.FW8c1L&ӎ9ƌaX: rbl1 {{{;}#tp8_\8"Ey.,X%%Gщ1-9ҀKl.oo/O$&'=JvMޞxǥ{=Vs\x ‰N柜>ucKz=s/ol|ϝ?y ^d]ps~:;/;]7|WpQoH!ɻVsnYs}ҽ~4] =>=:`;cܱ'?e~!ańD#G&}'/?^xI֓?+\wx20;5\ӯ_etWf^Qs-mw3+?~O~ endstream endobj 125 0 obj << /Length 1114 /Filter /FlateDecode >> stream xڵV_o6 =XĈ(Q6kEVb؊IA}yGI~'lv h &X"2B%lZ..6,aGY0,``gGJHKQOE`Ydx$7ttD cЂ2R=J"իUnqYo~Nx _3\pJ6 O,J*oW7֟Aߏ"> Q_xөޅ_cX1 O$9$E̕//ȻF O  "UD-W(/N h39Cd9l$9PFd6'SsIn?h$%gHV&)j Hx#Oɨ5xxrQ{?_L0|{~kp\ -/}NTPrH%:;Xge6iW]b5N0ߓGJҭ>8qk_uܹF{mA#I#Ӕ{J99rD8y>G;JMCJIl;f+0}s*"/䰑siQ!S$!5#ʔɲIsm~Zaυe{aȔo!{ -B٪ 24Rjj"҇$4KFj'n DWJ A;q)ߪզ,8 t 5Ki@RZkk a+4ltݿUrcC0QYRAXmG臩WCjehh 껤XXO^+<3jaeIqG ¹*E\,.nZ088J~6Frl0伬hjl<,ؽ&vczH7bXGɵe:_3- /Q+Aw~jn}zE6 y$p0ߜ^oȘgvC/S[MpN-:x'jj@mF+m . m[X>yڔD#OV={MQE:q|s틓iVN9%? mJ endstream endobj 95 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpfxGizf/Rbuild38ac486d6c6f/HSAUR3/vignettes/figures/HSAUR-DAGD-USmelanoma-lat.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 127 0 R /BBox [0 0 432 432] /Resources << /ProcSet [ /PDF /Text ] /Font << /F1 128 0 R/F2 129 0 R>> /ExtGState << >>/ColorSpace << /sRGB 130 0 R >>>> /Length 1329 /Filter /FlateDecode >> stream xXMoI c8P"XH{@"JDɬVg5#v~!siܚo;̈́b7IF<ĆK'2xsWS0?gn2HہXrxp1=pI_$s7/nxo7w%oC0`v{sqn!~jb{̙1Ŗd8f1#bǽ 'yK@ɰ8q^o k:\ +6>!x+X4ɰDq_:B"J AD ?A8`Nx}dL3G `b4QJ`:\zb29Kg'A'm3Av\1bzk$:H>k}6Dh ʄg| 诅egZ P'E5+\'<_@&-^=gA"i!B Ap$ՌVPL=4"Es)iZgRA9k d>mޱ{`CZ0Tč?"l=C`0ׯ LN9;p B]ˎv؆!-(MQ{+@hxe&Ė]{ڄh%^P2X =ה@J>nc)XAsGP*B4gk*%a@9idO[@{AfBpt:?-' z9<(J`9K'DxclBLk2R2a )em)(Lq5jJb֚9 ʥ4 Kpj2 F>nR Em(k `/#*_rw{A!o I$$Ip1|lGAh]9@ BmMzzcmhns36Iך. 0(o0/5jB'uW)t*:v#EȂ9<*_վ55> stream xwTSϽ7PkhRH H.*1 J"6DTpDQ2(C"QDqpId߼y͛~kg}ֺLX Xňg` lpBF|،l *?Y"1P\8=W%Oɘ4M0J"Y2Vs,[|e92<se'9`2&ctI@o|N6(.sSdl-c(2-yH_/XZ.$&\SM07#1ؙYrfYym";8980m-m(]v^DW~ emi]P`/u}q|^R,g+\Kk)/C_|Rax8t1C^7nfzDp 柇u$/ED˦L L[B@ٹЖX!@~(* {d+} G͋љς}WL$cGD2QZ4 E@@A(q`1D `'u46ptc48.`R0) @Rt CXCP%CBH@Rf[(t CQhz#0 Zl`O828.p|O×X ?:0FBx$ !i@ڐH[EE1PL ⢖V6QP>U(j MFkt,:.FW8c1L&ӎ9ƌaX: rbl1 {{{;}#tp8_\8"Ey.,X%%Gщ1-9ҀKl.oo/O$&'=JvMޞxǥ{=Vs\x ‰N柜>ucKz=s/ol|ϝ?y ^d]ps~:;/;]7|WpQoH!ɻVsnYs}ҽ~4] =>=:`;cܱ'?e~!ańD#G&}'/?^xI֓?+\wx20;5\ӯ_etWf^Qs-mw3+?~O~ endstream endobj 138 0 obj << /Length 2069 /Filter /FlateDecode >> stream xڭXYF~⥎13]*(pYD)pPH5$qh=ی'mEYΜ9wYGJޟ.4U,84t*@E&)/D tq Ep}cQ( V*6BY&B(ULKEl4Sf<[eqT$ioxjoV UQ,M`(*I$x{~٠߯:|r=qGwcRQp~-&QKQ"ʼnpxbfNHe:i0LMv0\˳g ;*xA%åPnӍꏌI"9V3#.,^wx/|V?Q>zM\DZA(7.0)H i+ʼn) x2 ?/ۡ;SXYPď$UQBCzg1cʌ_30%g CGs#M_\'L~;&P@_l1QnN0eyoN&VHE%´g * ʴdՖ"=(1::H q4gADBh%Wy0VՄ$1ѱEfuAw}= D 29 MGv_-DyCVYh A J hF_ fHڣC =@koA)8v \ie:Z*^͠H(aN#!K1w+! 5b7w"h6k(AZ3ܸp:ۛLk pcid5GEr;޵-܉j |lUfXgV[wS6z,ldV[87OZry#E, X]AA bp%UeM>X9+I\IxwmDTMއW3UÕp^] )> ite7ɜ{;+QӶEz-YJkRӫwG!9\ ˭Wp@%px/ ]D ]FIj wV,"uu[K@JuFDh؞OŲ\;X[*@}ߊ2Ղ4ЪϕZK'D^пtvʲ !cٺv@X= <%/TKR\lP y-QD꒨ /'!Q-%slƱXY7HQ%. 1#cyyf!U]-^D&f8<˥ h{}nSpwJ z-@ZК-d,okSۮi"W9Z)wT8eQlP`>Y=/rەwȼ7@c&l(*td bT"6jcAUnC?)DW(:ӆC< F8wN5~LCXl!}bׅ:n?k70 (o~z4b 'Y}QBT>:Y' cJE, kqhY}?Mwr+^?)!)CxrH: o浍r tH㜧/"v Ej#|gՌYMo^Wp8TTv#HWK_V$z3E>NL'w<Ogkb  ېY, c*cdqĬZxm`B2?Tl2QR n C}Y[qy0k7^{{\?#z .8X=ox endstream endobj 134 0 obj << /Type /XObject /Subtype /Image /Width 1800 /Height 1200 /BitsPerComponent 8 /ColorSpace [/Indexed /DeviceRGB 255 142 0 R] /Length 74870 /Filter /FlateDecode >> stream xxއTZzJGt E:ETAA@@:Bd{z{;^Z;gv7;Ξ99sD!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!~ؗBHb*h Xʃ#!$o1AmLЛ[-$,\80 |,$ʁj(zp"8~(%}[QɥLp> $Dʧ+4ezz$$oqh`{%ABGE0{p"PAAzEP#! =HHPx&AB{Zgz$$O ky_0E=H;9[`v{|q;?o{SӟL,|~v?V%'rT)fĿw}a~gnx08pЃ=㦎<̨ڭUcII^sEViܸuD-Z(.VҸN@7bĨ#F<+ԸxN;1̨};WiԶyqR%bj4~q1>@2o ʹ $ 15R![dpH7‹||xxoCf2`z͗9;ɥzp"ІЃm3Z\J7ɈIAz&mD(5T2V2~6m')IIGعyU/X;VZ/^&J;=cU =f͚5e„gcc|*6 &Βf9c҈A} {n,1o떽Oʒu۶[d%֭۱}ųiYK۴G./oy ܡ'.gڅ ǏEwu4sa$wl .+ϙ_ܳVdan˙G ЃM Sͨ=+lGtqz;땀|^~FWFLB҃69 |]S7o1z0xWZM >yh!u-=FK.NP!lmS3KDvu}7WBv~Xa` uͼ&5I[43)bIs*eΑ;?%})Z;Lu͍Q@e_}j.]В Df'-1pbv!`nE3{C dž@yx8 = 'YO|@A^\B|7.c(,s?3`9qśFv=$(uNSL OxWN-(MGj-m6U,nu,+=dԾcŁNgA4|] ::?@^9׳6 -lZ"{nbك/>d,Zc0dzo)'ڼ0s̺K=~8RkyȃuZG=9JXf0h՞zO)F.fd\?+EFa^`` \7{ltk٪g քwܬ u6 X'LFmOz-/ypTeֵ8NЃH5@Wl';XŃM.8E!844;0Lz0@)5E&48L^<~*G%.R#ڛ磘ohB2E8SY[D&^֍E%^/+rƏqGoh4gB8EQNN\,o1`0e-yp~<(g њ>U"3"ۜ g`u.?e-/yp8ZnVP5f=gBj EZ&. 2(Y7<> vIω,zRGwu\8`xx ̈́D<+of+_zllLRrQ>eATV#*_;"ؙsa9,/:"c- 6I nV8#&7ޤUNzsaaMHՃ͍z`|CLǹB9`斤"5SJyXi0uUnnC1'ZHP :NzA@l nSF?P0 ?_XY^%iRn"N҃n{T Xh4/d,lԱӯ<sΨ/i`+q{7_-U7e8Zg.>֗ ;eoz.Ж1&D0sBe`Mq5r(~УY[N+$ H՘&ǗVt׃)gg(}hӠ1]/",E9!xFLJ^3G"WY2~m$,.>k% coѧ]{Ѓzp⸠aQsMpОNk̓`4cD~ZLJ^G qmLZAoftf> (y@ &|(=I UK65j{=oRu\a8de2y:324tM|R (VXL RA7=QR:߾4Mjи}SN9:0TLJ?Gdi>gŸEuŗj-%PGj"[c 7bY tӃ_K`QWR\5!:>|c l`὾ʤg9M׺j.η=6Pf}f4D2a{?Swbyye_¡[w.TĻz4.=5U_<_&5 ~W.^]>!gѻRjZ⒭͚c30ފyȥ'xqQ\jӲE[3!''[d+u=hn{1Tl =TS P9"O.Z}644)E4e;ɛrf_ -A*#7r-PqQ\ְdͻ5n9]̍UՃwD1#xvYz@h B)g6jxrD4ny/Q [tQֻo J7=W<d5p#G#礃GqQ\ЬgLiݭ+,A :`8h_fDOGǿ=`URF:\eFWf"366e)9K^mT#E.OQ3yWɟ-a H|RwnѬE+2Zr;nwodth-UɃe Fg_IF>a)_|o޳-I#"ei79 ߔ :ՠ1[e^eW^PmBEյCj,r"*Y\lYf>Ky-[;v'.}S̃Irf cÖfrs_&k?iKd3Wa@2ߗ;o,EYx*F $j B) Pa^h lЬ d>Cߎ*%sb55=x~]QȃA_RD\s"=cLO@G!Yp(7d(8^At=<'SVkg;v69%='̓)_D/y8ENwzVNuG"(ոe2_[;ڽ[X>oɻsԄvh:7QƖ;UUVve鼼ygAʛ|M4/y0801_:Žwl.-[rsYUY6h;i˫ -dePTyL;'QIlPO\`9w0˙+7l=lBOAyyӃħtr[en\=gh%Eyg谨 >Ӆwm\4 eLV>g?'<uͣеO+evДmMOVf\Oy(W(\XnL$TBHKn OZ6Ce41U9QBvsJWB<ʷ[EC2 Oo+<*J+ⰷy?b҃j&+ʙKإN!9ɣ&VH3?5v{~ʫmI<́&=xY`Թj]6M:v0 <ۈAzP"lă,3i4FWf/{qbxDU蟾֑"wEooe/>^"!2zAAÃ7d6jmM~䊸09lZA\zPlM>+PRӃw#" $Vm]p.x]/G>^Igbx0=Fҙ/KZ)aюGC_(݊`? {,. >)b/z4ѼDR?\kƒo hՂ~ypO%{zUAzD ;YqϺ<[`[KZ~\lvI]>uF c([coGUZJe>Џ/TZ#5(Гt=_L "?um5n&GgRك&*`zM{0K? ՗\eH\,CjuR((?$"R'=xJwD dEM,oRك=HhKd9Ǵ,@1obsP _QF\ +{6IY.M8ԃF4OGO\޻scCV<Ԧi!pIu.s瓓+ m{eu&CvE"ZnxŦ9X#V]t"5Uxo()?ȟym <^}c-`@Mԣ[3r&(F%`LԸjJ Wiْqr|;=?p8Y9x+O'~irlYG.6W#aT-)EnKc` N2e۬>:j1H`,RB!%JW,Q,22_DXpp0W!W%Q%!R:%|XϏ/nx3[1iJ[0uoF%PlOI?,djqMZl>AKpx}0"z ҃xp&}}=T0$#* [0'{N10R_,Fjწ[;a]ݢ6o@$:wk{,Y6mG{zH Σ_Ͳ"eLޅ@' o@HpmnAC==gJʏ^јIJ""嗅 p9ImqmAj#sHaIcrk`+}qQ*)|']] KЃH]`}4Zx/fXd_qҼDa]@1sz@7A{m51NjeKAᛛוկI jEkqz }шw蔼3reťU, Ԣd_/pXk1ŗ k,~ D\=:n}nfzWNٷBrP6kCZ<1RAO<8Ay[~N}K4] ={y> U:{-WXvpѠls#_*=0D\.=v:=+Y)Y!9Ne-+ʘ8ۛNCCìc9D``ă p]L\ٺE=rƋZ.s[CI?z).Цڛ.K2[]0̼sו;1h&\9^{еuSxƮb&۾JIy^/K ^imX0$ɪOr72g.{.0L<(;V=\{?M.-rO- +AiL^`xir[ahp^`v)kTN4zQy[$뢜e@^/ [?U-sXWIm #L:2/f+L<9l_<::`Wy]d*Ikwg-SĆ/M5\ٷAfG]NGdGiF}RڲCWJ7Lt˃L}Ȼ-%>딆'&V50^ ?!T֪ah˔/3A=#qJ1 l6mѱK-p]Qɚ'c{(xXvӥ)vim2IK7ֳNvR_ѡ}2iu^Y`gQ\i󮄅7edn1(*uY [/nƮy>AwEꞷ)3y%Y:ukØAT S "3Jx0t5x===%(=Xc=XxNp!=Y/O‚`*L[}OR@Dd#|9Pn8:5dgϵ%otF(ST!'e,=(dp?R*V@Otpf$.6{iv²Bvx(TGA_ڮl`#KYiұd RhIIc.f[gѵ?m eqp :Ӷ6A<\9Pdx: T~?Pŵ6_ktÃe.c 5ʓ]`6(cO&I׊ㇴZ!h^Ug2B:/V=(f"ظ+*G_|T ^\M5\V\&{KVmYsn?|%Km+ճeϙ> -ÁJ"܃67wWWy  DN~`9-kxpޓ*ֶυ6r%f}'YԽ7-)?\,>Mz 6Y5|61hf^``\zT=ÒzzUAT_F F A9#^I@[A<c[c9ټ,zE Z*5c(?mipv'~Ͻq75pЃ"շ)܃F9mm~]J?sE;<҃P`R-}C\p{- rIi(h/Qa֋L:(W'Hul9ӱr'= ,]Z KVMQlqIF,#IY9{RjQԤ-kFuIw7Ef"~4=D?yOöJ<q|,X+)+m+[QTޠ],z-k,3,ctYzޓ3^jɹXWK~}7u111q`ڵ.7aĈվ}G{ekAJ/ r@:`)`^5Ff\x9 {EgА B!!q|%(8$$4""<8~` = Qp h!JI*UjرMZnݡS} :1c ]Yغ~^ye7ZW_|7ڵ~U˗/啅ol4xt߮I6{%'9Ip14fJp> L_.i<nQw3N ~=QF3xބ/^z8K^;'dP6 3 Z]&Ѻ& PPۃE5OЃ.  b/Mv~ҿIF~R#0m.&Y\hG+ %}ݢ Ng@==t̓⪶n=( {u"LKqu=7==^s_NP 6u \ovPW))Rmouu\z.eBqǃ DFA'.Lz5>8<{~'.vGyzkR|PQ̍7APe5`F]%2meO:~m8%<13+~9`knw-m !z/YD(Ǹ PzЩ'n==*qW=\eJREf&S=Et N0(|idY]<㞅nN3>)wee{˶@@A xe!BzЙ+B@gv)}._S oXf@ln4[GvQxyrɴ1WKc«v٥(j$7 j8gv6P3h0UTL3̺=KA{PՂD\ ypOZ.*flvrmXk "A)HjW:i N3uՋ~l+ LLM}(k4?H![0a\KG2R{jjp[{=[>*A:a _uH!,4Hb7InsӚɛl420*QkkDePhFbl'ܢL@ 3ŕ;jŶ&%r੺ev!2tta}p8 8rU]x+2 V`=`Cnr4Ty?#ߐI+ٳ2+u,&BPw5hXBOF} |4ƃ_>hhS)``3?ίbՀK~SU-SH%)7Sn^hYЎw, 20~u×2Ѻ>S,g.V}rK[ /MNdS̒ V7Wu. מS$Ѓ䬗+g>pr ܳ~ZTɍ-Or:*G<9x6!s"QӦem(Sʣ)kd;;6H VQԧs<=N]H\X][y ;^ ^zs #G/?z#}jtݧV&=S,oQj@/JŵR~O*ךr!;-@%_yp%Eŵ@/4(GB"9+=Hݔ M⦖TzG9˿2уx3"!=z o:W3ZnC/\X\r(w $~`# X(/=8 <8 ȷ&b]qr%80A{Pvh\` .SsC9K7M'l-T w1z"iz0\}4\/r<] + 4&]z":ͪd GIV{3~Qԃw#N^0lg$ЃCy6z0߹(b4G*՛Gҵ=H ^éohՉ6JZ{,?]X f?e=% D9&X;MQGZ/a hi"<tPc '_~؏_xLBkoEcn̺5<$'[dSvJ8qTk sp-drRMЭ nz+v+.ײzd?+2۾xkR,4hw]Vi0!cw&zU`s(Iw*#mD|4e+1x2P6M'fJ>`BB{W-(.씴E@{?7={^"UEtOFx=@ޱ/ݡrj}bD8Ko=+Z{z~rݣ#ducAG,h&=$Eu[iԃפ(U'Q6%8`߬${id]h⻮^ە_Xxk7'n+pG&z\&e`ȳ{t"}3 ń/-@޶3 7(OL/\.tX vj8omlE/; 3.`4=˺~U n5_٪ICj*Tkp][}%q}AL:!.zWs U.sJ\ vT)҃EmIe,!l4k/('ǠNg >9rŐc-{î=-:1=_wne[UP`n=Dqh(rrPOe^^z)Z*f𼬯b1&|BN/:ܣ'_j9(\zיt̺-kʙ+}krU 6fYTDZ9.UDM$gTgAm='3?e{}#[Jm$hONz:zU9AQDZJ3dX ,t.[MIYmqanl'}-)ilhxj{XWb8Uz=yYu gU%~g@&ho6's%DŽlv;>΃3<4xPJ{ (gorU ~"TWkԖZՠ}^==K"E)So!Da/E^,kf~cemC`s׫؟c[/P>4q5P DK<(;/7NpA '>()u[U񠨵׫e2z8l [uJq_"xQ{_|y~ z ce0QQ{(sTlǗGldž/Mă3ŏJxxvMYQ8騨JLuS]>X@"3u_S]"ްnfm-UFEJh{; d4eY1AwA@Sy4P({<72*e& G@̭LvlUkؘ=%J-O?08j> mvZ5"[\ [3ΈW~ՃE- ?>{s׃E}8a)y~5[=d=5co:׭ AzЗ[>o6aC> Q_]K8m ]t>6]`wzp#ߦl|SPԧLp37OO?U)`ףO}UϞD}ď*\Zk,=k2ۃ vpT;mMn{WI߬L>~p|Pʅ17W3"+ĥQ2=z^={G>o!9'C Ɨq{ Ŋ <o<ʠq2!d"y/|Tw筷v+YPbM@Yh,O}SkTd&j2 = ;S"Y/^;1tI5t GZS5OSO\`66V D;/kҡ@VFWTb\4h}w9v˳mU!E!A=ds}{N5ׯߺkG Y Qei(|2.U ~ y;爏]u֦";uf3",OE̮վ+f_'ѼuHgqS,tVȷAA0ʩŁ~2BIsmEW! 睖@Ex6 qu\7}7u`w+gě_[kgSL܃?J?ʾIYG[)2BN LcDO0x(T $+)YP2=Q4=&}׿uZa8)7nR׋z>=(Cj3|lU`VCo.4)ѻbM'WJ,&L){l4q((~)2ȥ;YzLr?{uh(]u|?yk5;U."qq>ud}%ii| ZVlggj9[i{k9فh TqV:xhg.S//Orշ)r*=u.**#cP1Zk~3`ةӂjE}@FJMsg}KPB$o\Euhęrqr6%n*Ϝ)"WmomA1YE^տ?=fE0iw,[wէ)2@2=Z;gD^ M/JG;< DXF[T`)jEE.y0!a[ ~1[bΈ\jσņNP+2՗)"OG҃*tuDV/`?!2  ~3QYSكk * M4H7[[\r<1v=hY`{RQ]Hl _W^\ PM*䲺/V:XeƋ/ r8-z?P \ cJ/s^C>ڱdΏ]I9M .)z0RrURrY` ꞣ*.9IZRU@JMwU\K;]-TZ}PT)C )DEGG*/<\yz5񥥫_g}Y Ÿ9ujx:=ȲЃ}R?=F7$@SAAhrO}6*h*xAG$Qx7;Y- EXFfߩtH*=(adey *񸛎g6]fVWo۞ْ/$Y?[ Ch K(pZ)FEmsG4RT8vEX-^-+N]]o8gۓÎs3j{Tr(˺5b&88HgT22 ೇ*uT)N梳WxGRϏN^3(!U9\ݐk`"w/u}?cTY,*?Ӻ=NQ7-8ߦ@$59N\rUh SA 8 qP:V9xV,wT*Q lz'J-z @*kpK.8nYua4t9r>ULэvٳyҭw}HooKgϞ--..>cǎy;={Q%M~THcغׯWUE SA8 `t &ppGvnzpq6e#@P 5* )P`73ڗFA8`%tQOP/C-A| ?~- }|,&JwFk?sZ%8XM#;*O4 Z5!a໎^%y5_tҹoq],3CԤV?Mr#1>yC݉%{qφbSb-NH4sJA8h0qP:qحU5vpWqyW}䈿h zuU<ѕ;`=spUֱRH }0*B֌҉Vr 4ԫǽ2ANbq0 ]ua-Bn>Te9O8X/XYy/B #cLJlӤ^]CXe)rБa8@_op:#n8ljb^(J<Ϛ>qPFϡtWr@CN41}UM"=Te!K8VJ9'xv#J v.>yx( )2Q)'Gbӊ$_*kWUyl*6ޥq?u>A~<b~JDsH_6Ș+QdggO>#dJAegOh7, "YZ p(^煽G~8(׊)/`"IKU@ɦ1W'ҡK|73݂zM!P❼|ݼY<^Pdmx&qP6ϡ,*)eҙ/X߁ĩ8|y?{O|^Cs +fԇmss_(YSG %%vNm3$11wkn_:y2{8(y7 hDEǶk)%oѣ'ѬĘѣG߿ڵM'ށbi&hZ f@ߗIPBU}z>hS #<]➗-X0A|>mNo,?w4q!~iN%"]hIxxxD#wK ɍ[ѤO9g`Q| 0P2`"Vd(YSu8\uЍs_@*J?v:f/0Q*n`͂yBxZۊΤt4qP8(H6l~QSP*c;UcY ⊙Itϊt}7Ek aO܋l+zqT{}m+0ԴN<܈CfzA֛p8٠8,Jېs898qk.AK%*Eg-.lW~bO)|hLAUAC䮶6dĽ_ഴz, 狼88(-z 'jq9&?=3 bթkMsjQ(.X;MI i0qP&־qd.G )Tu_hQMglGuil.(ؽf\^y ڙT6 BvAe'y)&>#%T0@j"\4Hf8""COr@*U)Z%|fM܌ӄvjs ONKO)},[ygG#%F˯[]AC@-\ ୯ ?"wa *g)n79'Z\Zp3%q2@( |q9H gU!xEU Bs <]gt^`/_{i- B:rQ.~acxbjADM!vq魫9{Q `eX_ˌe'q\8sYDRUj xVOdDKlʂf/t}.= g_d4(-f˓ajZ[uDObunu@D>!? wUnqP6~ `aB[ؐU!\A[S|; y-ȁy8(țkSVG~%6 !V8b }a@=ޔnܶ|<[܊i0.7Q匃%5څs C˗+:-9Hi-fA~]'(wLS68vVnq=EoNsKLC}q3 "&R{ib4ߏ_[HWBC ^4.Řgbbq9&juqIm8oxzVU΁?22w8XXqrp>VGa醅҅DhQݿ6ٔ_dҕpzSWr0 ^lA.йe⢯54`"`a!EN=dl|&)=X2q\9<=a 3[88N!gswj3Q(Щ oGRݴZY)gp !=>`0qp6 q\b-~q@o%8x*p[=ѯ7g\>]}NM:^Qv)f .ӥUYc^rWø Ac832bMg7{HG,'c-?SB H6s&nnONb(%8(#{tgyPVblYA‘{ 0 4;h0Y_WٖP+#Ɵ?02~Uߦȓߙ<3p%(k4<gr@ANJiMN:jNԯۘc/n$]+,?47qP6.E8B,UP~C?dʑnK859H& P1 w 7}M8(D#(kQ o*}8rIy•rkuzAl͈]Eo;5''gۏ ,NdŁS}0QQMgTk7*` ޶,j"Ag y 4p7{e21/zPaܢ}Ktq=Eʫʞe+|% xwPx358huww0lf{qrp! ǡ]\WMΩ-c"r9Gur͔KCg ҧ]~kjwI(uxa'6\\G+Tk!{_%u\GRo,>kOl܆kϙzqP{<3lzM>*kN_XfӦʬ)N:gנlُrĉh˚A q^ܰF{Y {PQ=g?UVRjD!QQly1&s3f8-U~>Lp-.LdT3?[q%5qU\:s3IF}]cG:i98 #EmcZZL&]q VRaZ{~#PQs"_W U=Ej`!@%*qFF$d1NqئfReu% ÍvV[|}Ά{Wв53 㠕,`GGzzF>o˭Mo0sI5!p2A蜜]=}h_Ķh""888ŕƕN8M>CNg'v1MRmAL}@6RI# 54`8* W=Lz%)]m]nR{8h)AK e&]>R#2J;9)2]s\~z {q_rH?rLvʕ[=qBr>-p6g^J^䨇4%~?(+=N;v=3*[`+0mE%~A)8h;J*4(\)VꂿLkk0Jy򪥙ҳcCubsUg0ʤ6 Է8?oaAnۡwWBN[\2|_8Rs88(`粃rI9R][Gb˫4H*nlɛ>\ق[UxqMykʋǩ`t se,ݏS%.%_RTd ]8ҍ?8():*Z"ٵ% ,$˫W#ێԅ5AiƉWV= GEu7-zG*#I,8lz3T6j DY2\6m!9 F(wq z8XpqPY ~_1 {[z" dȫ5R1uasaIsq%9x T+'cJ`T@hE%*J,7T@/VTD#wqPMa1XQ;?DC)L`?1NHJ1R&gѺfEwNjG0 />2˥F2H4 [Ɯ}fG '0Z %z'JbAߺ{[$~\jvז 0@CX14:Rcp032eKY]j&U8X_]矿3KAHJqW1TMU'֚}}}yo==}X権V2*3#tONon%'xۦe^Z21H"wP;pp0@1x4w/v^#Y`OD4}v;*|S|c 4 qqP 9'9,^=?5 oޕ:TP8jJOq5^'ܨ^ѵ'voVЛxRUp ߾/FGLfdO>T?3垩x)]9@|3WV=FAd T_gk`E{'\hē1v̨jb/Z̩49m{@vo+#fdEcW?|%}m!''کmնmjj2|y dCnCgʯT=IDJ\ 2lh+wA fsvN7QK")Ͷ?Sݴ-|qj3-5} (Ups"M-~q8^ 0j^`8TK~[3uI ύ@7a:w{P>0qqPو9-p\Fq(Y $6 .9; ? ? D|wwH|a4 T|LhsqqP&8Yag`,*)H:|j v^s/WaJU|FA9NM}`4~Wm]o,FvaKVkϦܓͨy`o2B{&r]q%A9x z3JAXj4^\k);əy9g:ki:uj "*S¼)(d14Fo Эjk*@W)4 qqqіgUu>8&*y0 jGcLE]Xܾ6m `% `C?pǃe3 ,#se9^[Z錃p껨Bd MP)4V88(F8N3q/dRi]DVZq[#lS8(Cȯ<-Fp Emڈ')EJY %EZ`'f4zHm|B1lNA" i`b%˽J|R?׮KɫF@՝=1A싏 7o:$ʣ־&Eƌ $ŗn|?yb[8|ϤsK imq#l25qyRWqPD/{vm_6_7׮C%۾NSZ?X%顓#j$Mq0OX6(`>nTfaFEm?ysئA 5%88蘔тU#hqBM"^:Brq'R#4~OO-6ӃI5HZdD`+ 8<`,0]$Oər92y3ݸr=eb?ky7Rkoe;jD9㠝Bi-q ` @Yb0g\Kpqp2 xU}^4.DTV#d2RA9xѣl󻏬}re;vwy+@)-Vp0B-gL;qRT8gQK0H#/zb,,쮌v΢'a^5JxGL:TIֵaD'tuL[H]e6#q¡eÎ9q&VT#fW$_ Ɵ7h~q8xq>Rh98HnB&ha0%0X-dfS 226L){bAl Z#ɉK(yV =G8˱p,8N>>ġ >xO=|0][m}kj7*sbDX8h*$,YJO{ m!}FֺϬeVocZh-2i8w rvAW:k*Kc-B/@s^"8W,q0}rO^ct;6 ZJdW7U %,U DP/88`9h`|A88h`8w3ϓΓȰ)uMq𾎏Poפ'qZ16\8ƃMkc\Z( ]8)np>&tQ \_16`dڂtA>kmnp<hcMVkTSNTq'`Ѹ1A9xPM)Mēo%lV]L q *lҏfD}:\^W+9a28ؠ9X &`5x.p& sMmE3@?A oQ<<<<%U[Nb-C~wgye+Z g69:mm<8h?j>܄d5`@j6ZPRPYyyk }FbQ!gϫGlIѳNHg>TbbUGQ) 17)f hdl4.Usp&18\+4ҷ|(-g[.CTrJOe5&Y`kv*ݸeݼ'Nbl7jԨ1K[J]_L4l =`}4. Us~Ãܰ0fzl/cYB#yI'ν/T#`cɋ҇U-s_WxPnIFu S;}$ #XjL#L6A~ͯ')LDFRN\Rr K\7=hUfv8,KI҉9eӪ>>[ŏuc}7F4z+/c+ hMC9`8'>/6Q[1]_{7I ;{ֶ7* Ҿ~Lyyq/գ_ox32685WSpq1r[%o-]ЊOB88U$ZKzܽA*"rJ~v)vhE[NwДP |8؈8x@cJ|36J^QG^"E.>1J95EK7R#7Wxh^r3| )Gp@o, rilGq1q_ޘ9`~ oӥ=a \PRD۽^?U~NGp\m|H*(dg0h0->קʍEaEqqrP?̓1s%+&zkhԅ[.wqj@#au~-{UULAWS)EZQaOZN|߸8VpB +#ш9H1N)~z`8¯z&Sb,"d,rAS̢Efn1W49Sxh.oA."hoA CK3Iи.a0`|Le^n3:O0D6J6*)Psn68E yF'/ܵs̺`"@Y`#`mJAl;eYQ)gF>S\d0sWD/kh~7gܻ'cMF|`7N_L)$FN$ >ZSUE36jGjm_rgPYY6-*皛y=틨Ntw|B'uOF |:o;^"OD,ᷱv16Bf$H>j9ppsC`<^= AdQASc|}H <{tY}'ȏ%qNHgVúVNK6@LF8~{s ͒tݩR8h:/P%f88 ٳkҢⰰ#s9~f:9yuF:*O? ̟[bZ8m=/Za|юJ" ӣy6Ma*@S#`?+i^Ej98hRFr*3;?*"p9~f|fXljH2BcbQbidOea<`oߧ\\ɛB>Lq^tH0KeOWs\sO2 l6Ժy90۫Df"T눉N p>1KZ=/fnmoPP0p~Us8L8g ;qQ326F~MH P 8h:[*\ʽxX=@*M؄[4YPqx|ɯIk{v?5!/t;W_PFWnLiSfҿrԩNA~edl4!ʖH[-ZNW!wgWжh;Q/.|ymprJ3d^ rdF(vvN{Xт&:6,Y2wiƧ7[jZ5H8G=56Da.QbiAH>ia`6>;jsߒ2o7.Ό~˗ FZ4ȽĭB p8uG,Urt)Vo(W@sX̱Tp3@;7C`#XYd^Gdtb GM/ i.HZ_хzݑ A_g./ھzT²<;|m_iBR-8cl4~AIH5ZzqތUc_N o:0k<⺏s2.zѕ;+Vo&Hg_pQoVͧ]`&q4S}Aj㷎`޺!UFE ƟPC'pۨ*NaW.aCt+^hV;K) K%REaop&`ZZqA_3w3zoXj[Xp0o -=dl4~5AWS|sb ^"{9xRnLgtېm>Ɨ͝V(Eh'a:M*zi}o'}Z͒28w(;^\U=88h* NbE34qpp˫fgy|H^}zUV^k{U$}:;q8B_Y A㎣E[syZd)@%gr'{n&37Mad4ߣR $t88!ߔ86q8;l׏u^]Aˇ7g b'e mD8Tb溅4~X(B6U xs.fv?cd4ryfCJB $~{!Pw`?*r LtS/4kUzˇࢍqP-hr0 Q)nJo j4nn Sifr KAA7q-5NeOqPRڿ/3_;1HuyB]M\{&U* ?޼ п~;NYgE\D/`8P3[`d$:x}K rΊ)PMl܇گaw`@Sp\xrj!wPRSg'<4mBZ aHdd$yΓ[KzD<՚gy98VUpxu@ڕAfK* N]…>0aڠ1{C}rVy'pS !1?6~,[yK];o>8&88_){Axi.g&x)eT8r;qpH.Lk.D7ҵa~.]W#NߝMmGaZ8L\n5jJ ICbɽe),pp gTPʊɈ,gEx߰crjM ux(p$/1(3fWicx :b|A/ѶI>4]?Vy.PP91arq{vN1ģZ}{B ܗӆ&5Sn&s؈ Nhf `H/=PkOWtJsh8`^rr>.z~Wiq.1B(aNĞLYɃ/gzv_Q /nf:@?-'4yMzΣ z0PKFWm+ Պ-h6^?7jY57Gzy YLIMVlV+  '`2t"n T,~a ]wؔUM˸phk)N³e;yK4}h!5UKaVк㠂qe :C?wLy޹;#d-m8C-lsxpOMM)=F7OΉpcAA+iվ $S9U(A]U.:\7#9H2i[ּm Im2EƋM`JM"yX%]5)۷ orw>bqqz0D7jkSp7PRgsr s>AMr`9 ,k =]C?ms_rJQ^\ ]; 떖 0Z&=AЗ+.xjS|E `5Ipƃl(LW2ǜEE a8NĻyM=9 Xm522VN2gw' +Z0 $jMvfNyrC8Dxnq4Gd@7uKbK!H99wWAaLQpkz|JL8ST0tآI6uCK.s}4o´ϕEl)뎒A<[mRzl68J;Ztsp<@Ai[q*'|! :8 B ĴLV(Qƃ; v=-=ͧ Ey۪ZJ.yqP~-edͱP 1鍢r. U֋g]7nӪ+Ugd8UuFG認Q+AN~ߙ[%-(gl!MrO|98 )Y޷ ck"4Q- >fy>3˚ []BMѬLi|25ޮ=2 ϒw8(?oQK^Omy0)J=IGs9h|~r Gl=)@x\?@ib~&90YFOV6s2|jN{bG3*#K*Åmr5_6^T4oG~W}rRNe?2GGs(p{12iђ.#%u+ob;+AUB:A$O=rp V)I"'j,UOzm^r&4gk MZQk*Z"[}*xؖW38%ӭ}&=_.Y[2|<~֒m.o-14>;v?1noY#}eVǃa\Z2A)9MğhEC_՘/ӄ|{z12_8dhTqa?N;piO%`Zp6.40^|; 8h40풡koSF.砒) %e2lx$ ATH5fȫI<̹\YHiE~ҳ[+7UVSTyg=%z]zqPr]ݱ(-ĭX?7TrNyCE>pQK5=d+$)A12 # Tu&(ՀN;.'ڕ<NU=Kzʖ1՜22hg Iv/k9 <MUp6T潋.Z4l79Rl0FlPXs_gߣdiNN=j 9|ٕfrΞGau57heqPƸVЫ>;jE8UpSTy #ƒJ.B 8y]IF:{(Zߛ URjR\BXoWRᓇ3MJ;O^72*X)|rE5pȧmneaUz\$7"ͳ8f.Ṃu $+![X'6 J5p0ۮWS.by@VPwƃZͫ6qP+c'`wZAX*t:9[H7qfzEsᩓ=[ze^jg[p|_X| Mlv3@5EN<$ y6Aw\ٞ8(\Wϋ>{J Mnۘav^"}m{Rn0o2)~kdTO17`K;!W}c?P ֔l4M3"JF5 QM`G棗A4K^^,{Y?$DVzҫ8l캭/R:N *Gx|n~߾'ɯ&|SUM`*^ҜkPpd?E7}Vk3zw⬁|MkWnyJMIm gr/rlqPQR"ǍKUA$^%E-iaM#'zxsE`)AUMA]׳Z|:00tQnVqϭUWR{RLS/?_h>~Bm^PINTT"P#RuUC~Qm֣ǁ|Ad y0Q!{z)`bЙu;\<(75DLPI" cc ])y2@]~%at/%!϶fMUY8(Vyz'5r @Ӥ;TYޠL.K-/zEO^qu^H~ԅ<ѢQA9aEx_n_6~f5fTƍpi]z%֣G.:_ ܨR,t- W)mJZal4X'Aovo?l |Mg%VJj"y:ٲM50y `T_,E3oc?p9hT^AO+mwJAxI7%sqP0xEsyCTe`X̚v70O9߮ w3]Y)16v ޓX*Ž;Fs&lM s(uS/$dN+_C3:tfw A9XoS//F>&4| RrD׏69I89h8m;/ƅ:Mb4y?Gl"Z\T㠊8&a r9`uj`g FAy]pi4[;[k3BIIkU+Y (I|Z9z\yTևׯט9}xT߸n{='j\.].:j.YJ[jYoE)}XkVŇQ-C=m.IFD4 lӹJ:D4 (pw-GyorU8e_Tq'Ggm4 \cll8(6R@u-E!"U"s\B}}u5י/_&;&aa\p uŭYXm߇; к$5=):44&Sמ CD2q /:StV{!tN5T *m! WwT6=*V -22:|݊&c>2 rq9 LV  3|!tlg 'aUvC RX, '^^^'%%%w̌$t3}`)bA  "&z9/nw~ŷ Cx)qBSh8:_8ElE~S-[@~2 Yeu s {z}Yf :wີuHzT>Ν<6OĄKL:%ӳ\i}J=tC쪱͵`sASaGA)o}A- 2cf5Ӂ}AAOGʻ=E7G@_5<*i28[U S)a-/6U9 Deat!g*vHWջ:`9]0uq0FuNDD\dMt\Gޏ RI15'^?F㱽rUa0{G\2~R< #bg˂fdCD+giFfX Cv>Zm cUlPwy&oi)$J(^|j9 rky~?Tlan*R>$jUA'xqqP9BI˵V QMյ>J[xnvEcdA^HQtrD=6; U_T6R8{4/0^YUMDX@şT~aMJV@9Bnn[8gN]]pQZKOGpZu|]~88蠔7)c  NM *#z [2o9\y6N1x$ Ы[> 5iUN+eL)u[:2y+9YsVIzgdtLq)e+n (usdSζCUaH}`@|6y+J% ]cg.]:q\S)%wZ5δexFFFZ]cIRg-߰'12:&nU|ml; ؇&^AިVO>h[E{8);8<}5_+sڵ䌅-Ӆ3tQѮ]ㅱtY`vQrp@Lro <+2KztwIIEsWx}Ku9WU4g)-=qp]ѭ;o.::*44E'.\ΐKXLbw$ŵIH HJ_/gdtHĀ1ѭl0B\gb4״Ӿuqp6Yf!-Qbڶmiީ3 #59yR&O?{jjjb[A:^qDq;&8|5$eH&~4Lh %, ٧ϰa#'MH}6|Z8$-2g w$m%~N:g7/ͫ6ƶk׮kJ vsVg9ٌI?=*``)xLczFF6 xyӿA=1=W۫ka=IɆ Nީ]ax:;t*z32:$O<a;L>;p9z1xCN}z,vbt_$+[Ȝ cf֡IO51u+kI=3=kj I_32:$Fi+! ppz9xA S#,O0a0}[뜒պ]bڵ뒒EuLII,iQQǩ}$kթou:l왂L ,RZvj.6::4uutttDhh{MSgdtHĪq+jiBqQ7#cbb{״2 {ii]URe*ҺӤ|2'i02:$u8V \g73+Vcb8Z&?s2c(i ,Z&[qP}a0qq!y᪲$[ Tf8ب90E~p}v00=cMols0qq1qXǮh ڍ JI8R@`ԙӍk< 9@γX8r_AA9O䉿>Q'2*%8D3QeK dV/G\0gr;~8wi988jzzX98P$1Om*2Qⅅ'fS$iLMKDM^?<#p7@+90qPP7o1xGM qٿ!`p;u`{Zsƃ qq19N)=Uvp088qP)وwTnFTâ1LDPEljkeih"Xo12:(XMz̴|sb=zl HW-2cpͩ7q v:d3@:bIXM:a rmYA5=(WQpjAp$Q \*/QUWYыY]Iz`b_Ow}plƪ}: ?0{M$Z_ =7w_NXq}5r2Zz٪S%^V7;i iqp q8̨zZzd蛃ײ0G<ꉃ;.ۉ߱/Ni#'lͣ ҷmk܉Lç8HT@L`=6'C6U0ÆE/d-Bk;GNYtSCRPt =>_6q8haYyRԖ>9N8DHu S%L[5sMYp5j`,^%l)}0H!z f uðA}0l'<3=N`Q3gh-ƉQI`"0QHnp s lDQ1g쇂 {펃҉7758HTD_Nb7<S`ɱ88OS@s-(x42O Ekrщ<Zן1ep$cA7`Pw t\({]ڏ ɤDItnjn.y\!uh5ye@"qX,h-8S_ Ur &jG- ٬]O놼k7OGEaIΆA.oJaoyN8"KW8"ձ8\{%o7>k< a$nE̻$jzA9{i4qOADns ZnB`M8xV벜 )8bZѯivVCe$_A+u|5#pK ;Dzu,m΢Mn\+쌁y/ڵ;F.7J?aq1A8EF9ȾYS\M҄I햦^Vw."ܢ5T*RO1Z%q8~͞|<ԍ@pv: v pRQ|1$I q ^7{@dyƌgt7/NNG$*- |Q.&qEq{`] ޡnt8lb?G瘭v6:݀xF}e޴@XAD:uI@3!Ft"rpc-m,.u׉rhsOTqX{㤎8HTKCMV)\o1O LCE 랍To–[zo sbcpGIF/y/`olb?%Է xd?n@h9E{\JawU9! /gG6lwꈃAUvCgf= ACc V4a\,9zWF!w8HTUߤ-W]d^^@jKT+x#Y')A[jdk"'fg9N-5{1dfd_+q8>FloWQT02cqp`G8Pfe.\ b3"~][!Pn\)@1EM/+tt|$qp$;V~ѥ +sF<3R`CF:zKɜ4p[$T*8H";܉O[LO02՛0EnE(X'rq(QҖX}R pVfe qЊ~#+7ؿטD H02cqpx&"ksI c|RH95q7?~+O.MIyrsNQ9؞nh; n fC4X<={ۭ/pw(ÇG/o߮w=q&#Nk -?d3` A[Y{ػ4cV1yiBA3S8hk>>9x9Ѩrq9Am,$d= {xɯ]Kj1L[X^^^7133#999>66fĈCBBܵݥQ{YهlTӨ9G|md},lvroO8H즳+Z w63iu³lC-XPi̢ +#H?ArSKr6t;ٓvSQ>ngyO.%}SV0>Zi?n6s|ڝYf'_XX8kΜ9e+KcWlݒ\w~G! fyonvq엶v;QfO;1z5mq8x=qu0!ڷqll5>жeY/DoP}'MYʿq>h| p{(&͗I;`R\ eMz?q8%ngn x.o^h,`r 0L fla1A-`/m&݀XKk홚0&J`?OOOgKAXώ{QsSmAFr\wꈃ"MT`GPx;G]3*ScO"s$*Imrn58X-el6KwK9DbB QAɜ)aLyL+3EiS'jqPP=\u=w}rKheI%qHݥ4}K>hL[\8j n6υJVbwtAu8XoԫstV׃g8D&qA#uu?kA91E%fc, ^'< [Խ|em۶H vБ`B_N{.`g=9 ;]YΉՀS;q8ݮ4)byh+pf{ ,R qpCcm%krik~hAShuCliG9BsAtd7s̳@5EWq@c0 7 *UjӚ>͞e?]_KxOɨ_'+a0N(栴JŹҀtkp0{g[L 2m)pbV׵=ȋ'ӱj>ϮO6O~}S.3dϲڄ" Z7* uD+`v^speVkhNkڲ-bppiep헄?;]y̐3xMlU @Hp?>6a`4lOpρJs(}<3:י.>i!ȱlp cn% I±&atJM2=,˸{vAmd'//'ٓA8 k@S*<٘^.݇Φ6%A+XZ>. %쇃#{L:v}=t/ug.E"Ire󾳉{k݆wC 0MunؙǾF 8X:bԷ ˒]x=p_qN;69&v}"1uϟ|߾xg\ 07"LK`UbfBP2#RkI!$`ZP QUT=B6hv|Kس3vWć?6`vl{` UUᓫ&'HɷqVwB8P.y*׽͖ p xtJ}Rq51opP3&W8 Q꾬 L^(9PU`wM\lfj͑jﳐ)Х[0vq;w ^+Q|ugEb9X˞`7V{Dk%솃|z-b3, M6|dxfpUVD׆搊?3T\- u4eF Q|1RS䠵[v+K-e-" x4r1Ҫ]Q^<Á;϶6uf5_F5e4cpSat LR}Ï>ڣ[ wA;栮5X<3*39e;h- Vsϻ;/ [H\9UUrTOg-O<|\'3HkV@ٳ"e9K 6Aj#/A{zӔ[' `""~T\6Zrf<ivJrmΘ)̮Tu@"zvrOW7G{|E#;uܻ:)&3÷8_O.q*-xX.T]cNbvu/)]5t{9hL+AfF+NŅAo^?]V);Mp&v:l" =3BALP~gpptJ`8e8Ȉ |wٵZ@gs*V!U-\q0xF`H^$PcJ2J@\' _VYĽn y!^0&UV@ʤe&2:ll-/W5BEĄeS"6^ 9"u@9&ײW ^le6Ɲ*ۋ +nxȂ !=7jwyF僧Uk  lUM`2 qp _[>r= NhGj|El ϱ.-.~0i&⫤>;ҌY$tj.?'u]賵3yzzt8ۂ#TYgߩURZpp);b@0fݶЭ;D#Ae`P<+6A DpUUZ;҈N ꖚmB B6HSN}7e8XTZ5& I vĩ(_r288$95}}3bsp#rit*K{Ϲ/s~LY!$ʇےeppRd€1JqB,RuEc>]]a#=88$9{LY6 jAk18X5Yȧ\5Ng*p_XYU9f2,W* S0A9Iuz 3RaQ[||󤮋f\U&5Pw,$vauuY(Zg5gG183n}|jU;q*6U UmwJИPlp_%ʧ7O!U,WZ%9ذ5Jy׈ˍ|r%}zl$?SEh/U?3b3U8C>p88JqpR@c8~A(@80\oxGjCJp&2KPV%x«UxIs|bfY!пEqAMcUC[y=+ D! Jd(T07IκFO+08龾xΦyB ^p628"s0T!'Z18+YsC :i壒@iы3zX\bVP`UTW )7-:^).q۪4Mu+uأD74csPiJ>`Jf S>qж*˯ȫd?yi>88K oTs8q~k+P?YψY ۬YvA,ξCA1sX*#9?z2,ܕ wMW RT:Jvfq9{'W)VՅ^s:+/NJ`ܘ > r0U c*|K8#u:1 2=CF0 ^=A1x(U{C|2Y@V8h|Y!lp~hF$r=˭lWkءvwK\t(fJIXz09X8A9c @18HuT+ClX:% n`UeCX<^z|l|2bl5F*4t8HN7@GN<`pp2Q, cBJe8$+즫V8,^_,a0VN:Xd8x?;rܡ8ߩHy" 2`ctfiO.Mbq8إR \r˵Rf8PފpW!R†4{=;_ 5pg908g`L4OQRM%0WU1u88NeA`7dK{;{TM,B/HʼnuU'Ӷ^%+PsTh8HNG-`8P.$ 檂`HSdZZL9:la9T8H,9 r}Fq98F4Gm E88aKQ8tOO[k#x%8H쩛Yݫ /zB pXZ5oE9OnZ ^+=>%=u%ȷ#YPo ۏߪOhO ?DQy0Ҩ)oNӧ ?$W猅T,Z^d q8/ƫurruuJ>#bcRS&O^R2{k4S'6+@ T`ފMenRcA`oh ,ЃNM/.':'BY+VXc`";=nbm6e!T `yEiIu4VYEre8(AF|w59ذqM(mbA`ߚ T*RvXLU'kشfMҥ ]ʊ3ҒG1",(u NW,QaT/f֚3x60 q+pJ :`:`lSDW:n!QؤcE#@"*y6 D\fG`drRuZ+WހK s8H@I~X?..SAs{>j( Mi1rp*gwj?O"ח,T,?O!+^M6A0z98JQZ蒧FA:߉q88BV1x=?xVl&f pګ3`98.y1㕖'zfQZS{d\`"C4K(9X0ǨdDǜ*P q88? jX=$;1>Yj -cfiܔ QqbgR]2s]4LꖱI8HL|Wș_'8 8hxT2`;p'#Bq88)k@]۰j~q565u+M4/З{)Ag`UA-e|N"m.h 8h6J3I'3WyN \ <3oJ4=~E$g8v~*x=8h1AN-/9Qt2\Ezv0A\ejmI ~+{hf\b1kٍ=!*RĶ~1ئu*ljA⠱z.}/ >שOMU8D4/8 QXS&= HF^ qP$=^vA5Jr0\ohKyE݁ G]y{xӰC$4Ad@جr0SXd*qn$7?wӠC$ LthfJ rp,0\ .u"U`3Udj_шC$ WO&:.3=K,H N`'W>y܄&8iv^&6A⠨脜ף:⠣rp<J7TitU8Xf\urdO}Gf=w|yX?׻$Ě'm+?. dfu&@J|N&f)v*ChqX~=vYJ+%m7ՙ솃Ω`YnժU-[aPN2~k SPL(NR`GY`lhX49DX?1a9zrXc5ˍ!qFLVg\|IϷI! 獷jkTK/Zb=2ɖ48*?lyxRQ2+눖'<_!L37A:x4,#-`bҋ.c֯0X=ixqLv<ǶtHbOJ/f> CnU n~4|s8hSKv=(*~/T$)"%0<T撳#GAo`b ,;TX)]>PjU^>J*/Fm8%3p0OyBJ\-pFaA/`e֣)9 (˨88(~[/"fq /|:3&4 hS]pK 3[ۦMa J][~饮M̺ުuAQtr&uۃf7d”H "k%@E0\R٥AiFEBqpd?oHӽ]y ɲL{/K鸬]L\0N`%,W)YdX[4#3T9t,^awc]yƙbobFTK=).@2!Lrڒzgf…(*q@5A6c@K L9tm>KpSN?Z~Vexvn'*aJh{h>yVfTV>bhrLkqf?Oc8{P[8(>>I6 |HM'!_=fL&)A'sn5qmp0"+ppHCǐ`yxT>%%U)^ޝlA1r( Zp^=x^.$)!|cLqWO1cpE/%4n Adޟ'Yۿ7g޽m>OUO5>LAu屙NrL3Js e '" ~@JYr P}4Zgc؝1,C=f:hy0er3leCxap'WA6s &>88x5yWgM[v_fN=q>fVǀOH<#T@yŗ<9ȝ*`3P2J.85#QO#A{G'b˚+wx왖}hKKٳgoaZZI6OsNwd[eʰf\&30OӔy_\vTOcqj.{'aؘ x|I#= J+͜H1fppDEIK588GD^RU-]e^nJ=0uĄS& x3'h ]$Cqjppd=Oqj%=ow=Y|8hwzf]a"uSr -{& t 4# &fo='.b29kTm:gΊb9HT2렙F`/D?eS : \ޙpy2Ke\vcR,e9RVk=P$uqPת5p>#E`fx8|S 3r0P&**7~9{&G{NG$Y_8QmKʟHMه( 058 *|z-B:)٨%ϤL`13`3{iT@Ltv MXPp3#nǩܿ^G$~$˱ݤ> A90:H` ؞Ķ6_~UnK;ţ{6]0<((p [{ktKtA I,kL& *9V`"%qpN+Xf`<􁶶H=uv_ҶƙsU|5nZ14w|p )%Cn3爃Ah dcܠˬ}. eTfXq{7x?vz9{J<6{` KrGH7naQ]刃Ah:7ޅx l(L :_ZuMہkjziZ3 @=8H$ǘ@3&l"*le4 pkd<p]ZW7ҽ`iVh4 /ܯu;mEK0~c t㈃Ah;)~Pyt}TVuSҲ6tne>= .NK Ӽ!.*fK'To%fy,0٭Ui刃A`rsh/}27'vUb?X fw,uMN `ʝm.+q00o刃Ah V"y@%b'FrLӧaWt[]Nv8 r0_ƞ[{Gnٙ%fѺ}/ <$ĭ"QC?-=<7>Cĺv[qcpD˿x1_V@v&y*wj}y|$ti{HFPl_ /@t_fP# -Sc+mso2o)QGL>9FOZߟSs7IIaӸ~)=r.G$D@0n@U83 VfηO |fOs/'8<۷g_OP _⿪lkri!I"QhDPYQ */JMSW:v{?ҵX-sF\s>ܺ,"G q$*rX<zx]n]+FlÏr?5~क7׻:ύarpO8H$ل *υZfO{.|Kw~+ʚSky#8H$J P7Xbs2<֝~{/,Gո_/*4Б={ZN;=޻߈AxNxQF:KmU'ң*]K< 8 G,߈AxZ pV!ڮEL?}˳:TrW#ǢU_w6uiB拝0VZ8ʚu8 q$֑@* ˬ_3]lӖy鿓h>UA\޲.MZBሃAp!0@*'&pXsoL݋ н39Qd_?ƫ=Y W$,Y ,5}HcY6o[ܰڜk$$HRɉ/U)ǿglA;+CV9G$SaS;1^')\LR6kD8O&#ZQrUhWj(p=?xU) |:q8HNSKRo6%#$\J]^ig,drpaTZ78+--%69x_b1/nG,"Wv~WKO"~b4"q^O7ٵ>h.S q$c'%iGѷDf<kC U#&g ov5^JIK@یӟ&bA8E8H$$0YсQs -Щv 7$L2ї=h([{^=r,X 2U:)GןėLZjv@97 q$f懯iڕ8;•uդ'@lY?`lϩH_6fǯcRϫS͕~{絝Mj.vN,}=87`%W}onjFYoA I@Z1W|>~*5~2׹ JOA© '-F.EPQ N,dV4L\|7{|W|Ha7E8H$ y@p K}ɝ]3deR.|hĎ;ܿYjDa wsd=ƚ@JZd{JWr`Ү5#h~8}= )A>g|%^yc+DŽ A"W`dr0'K Ry0!hmm$!䷫kԷmYo.L59@gEFQ#IN.J_ zuR}¿`X#ӸJ?0Bw."c&ژfD fjO}[F LOq"oA I@}M,[\rAԃ|kp{^Y8@6>| nvJttNi<,o3@[#N, LJ)C$կppZ 3P n7Hicܷh/?mA{`:%zDX[ő&b9\'QsnVeFdM1@5<.%yKESaJI /.jA IT} xf5g!߬79Y |-QYCd#%[&vӒo:3@8zq8HVR_쀱%!<2  .OzլY9EfӺRuˎ :.ޙ\8_F$޶t&Ay`ޔctq9( ŷ lux۱uR)xBy/i3R:]w>{E{7|p=F$+<{~G+]rĿJkIbp2_z )̨峥@؛W 񔥕15f ̠~F$֥>Cg.QbV(c4 ՛5XqU"R%r:-r`=r 'GK\ h^~F$DVlJ_xbߚG} wVhL {ΨxD^QpF|Ea'G7yWR/#IBՎƧGoM>Ǔxs8(!k OHi'uaִvݘfHݬ^aJ5O^meA IxqrL/0hFbqq"[k4s-%Jsπ^睿 l{ϳ6]Hv;yGLk1%0L8H$ F︮0BNA9x7R40)mGVj c$hTf׽/Sycoc[[˜x*S{Y[aA8=|I=8H$1η|XY{>Z@XMZ=|1CHvI:˩f3*-(q$c<^D$WǍrx~F|YI g\E!|Un ~|j kMa pCspث\XĕIV+ϔ LXe/e~"qPZknsaNmԱA9׃&p0(s 챃\*yAu嫠j0U $"/Vn|2w"dpJw(AO~4k$ÁIm<8mɑva0ǝ}&!C/)l'֔5&pޅkԵF#x&+%l[:~eq|XZ-8o[>lLv,nc9*;⡱90/,(w}{$]y2gaLQr7Q5>"_l׏pj5緩c9"y>ELq#ү dt8H>,\E.[)e O-Z{? NPүn 2-uh8HsU"8H EQLt7Uf>j6⠤6GKld{$;`Az(Gȶxno2 f`FU{${׽U'*yCWCI&xʬjSC88 (A%]\0koR!/\X{ ] ej[ϩሃ:e :IUV5$TdKV&R^+^~!NPu7ح=Ip>,+a{AGBqmLh~%P .mO=uwm^ ih#> ?RAU :~-P ~i$A%s0gIs|]5t7l rW݆S A>顮b?o/q4`3ְW_%pZfmpp3Ҹ7/Xϼ=^%esOt ]ut56S86 !AdG 7K$ -橌Պ/=֒j l0YZj7 +wzm^ iH78E2|Qe**פt2L Tj6 nzo|APbiU"8juߏ08j#XdwN#X^ ^ ihjq0EUERu}jwU냭^pA `bV6^ iH]=H)c&Jm)[UCsp zٰq/q44t:#r^')LMuL 8#t xAЇA*&n*RL.8!qPuـǗ%.{Z-&@g30joIUxe鈃L[Xo}B~s<^ ih-@Vr ?|˺ i1;鈃LzOWOK$ }eid F m5mL`B ]x煁ICCUbǺy$kwkEmJ=CmGjqO 8H`H}DMlU}0mFj<⠤grn 8H*3IG[z\ Z9ؗxK$ =JlYpꌛ/M`!N@qP!3"B,2f}G3MrtE Z__8H$9M+cz˩AmspjG[W.XzгԆA Ɂ z-0ʂ۾lS9X R$b6|D8ZM$AIDeC&$I 0o8))Xof2[݀Ac4@[l(8ibT(}砶dFwS $׷#LI2ZlFJOGAh2ԀA )fbSmKrOӃ3fj? qzCUR @erip"I$.xnÖ́t+툃AfRf5A"9fe^@mG$^986N+&svA e c4pj3'`RYU@$ 0)'fHXa*G鈃A%@[b4pJd'NM&rpp;5q8H"}DZf,_g"GMG$HSld$GSTMZ#luD-G$H+)V"#I$. p0PAn݈AH2,4iТoR%q 4&ppFF$HLj EaAm&h88F#I$yp\Ƥ~LDkhA d'mj\`9%W SX qDJ λ0J[@ LNP$RϑTkX(,_QS ǀ`8S$RO7["[B-%~5q8H"]Gjj(-⩡%ӪNOQ$RPN ~5xV8H$g8 %p 3= }~y({+O.MIy qDGrعEN`z3h:ęF?ls`C~Pj[>qDGWy|FǗʑ!FQ#gc9g(S}ZޏFu8H"?*aIM$65#N<gGxZlhsc4먧trfˬ%Ð/r9Rnmh/L5E[3?MɅ`1 ZqFB8aeOg L' |Nu7]VnU6vTFt<0%)MVS ś+S} q/=#9P:JMٓ1wMT9xiՎׇWV봻2d}jn@=tw98[ u1r܉Ϫ2m˿:x' -iʐwRs2}.jl*T9oPXegZGigGھRRj@qN}o*Psw 8>+V.9dҬsWV1S`ש=5mWz/rȤ }~TV~^O7ύW+sVZkb*1DsN~>{|~ojLWTzFL3ѪϩNsEK I,~lH}rȨgD\^M9q *W$m?"5>@V yԦrֈ*3"ZH;F{kDQ9dgMc/>)gF\6 9iHxnij)=Ի9.Ċs+ON:C9ÐQ_}JF-bT7GҒgJ%C#ZM`~]}նו/4f>v`Vv6w|K%L;Ԧ!r0:#6ts`Ԋ3S]K"yR`FSpOzo܊ւeb^2bj:-``>|իn?:;?;`r󝝫畯}2 ֖$:cr Se@Wdoըam_Z-(LmM',L<\8pD4ZAG]%smktM 1qLW endstream endobj 142 0 obj << /Length 779 /Filter /FlateDecode >> stream x  !!!"""###$$$%%%&&&'''((()))***+++,,,---...///000111222333444555666777888999:::;;;<<<===>>>???@@@AAABBBCCCDDDEEEFFFGGGHHHIIIJJJKKKLLLMMMNNNOOOPPPQQQRRRSSSTTTUUUVVVWWWXXXYYYZZZ[[[\\\]]]^^^___```aaabbbcccdddeeefffggghhhiiijjjkkklllmmmnnnooopppqqqrrrssstttuuuvvvwwwxxxyyyzzz{{{|||}}}~~~b~ endstream endobj 155 0 obj << /Length 1882 /Filter /FlateDecode >> stream xڭnD_71PҲ$M"ov6IѲ<}.-EH(E,N,<::*co^@*Z5D1#yt6Nlջp1cqw0"j/ ,UpIf+Uµe4ze(w̖)@V:k-(E%?zƜ>>܁nXtoc'fcRL]p͌5fcT̨>lNS|źTl䆑"r7bs#H^tTQR1%Dyu 롹 +}Z#F{]YtPΨJ6#6"GJ,! /\%UW8JI3v Qm{<1ɨSԓaR-(C/*g٣ _v2gTFz 7T-> V'f%(P @u.܊ ސYJU%WçAgemwf܎k{z-0b+2rW ÔҼ76>=J;&qGjK|jInAu0mdeF7ռjS# by4f4b/ ob-&sq tk>TQVU˟R5B9C#`lRt*`+0)]1$C'i)J@ uMkmWR=fj6}WIٲhpgr\^fxh8xQB]" ,[ x䢔gPԭE $M,Q.ĞW>i#2EndZZAGa> s endstream endobj 143 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpfxGizf/Rbuild38ac486d6c6f/HSAUR3/vignettes/figures/HSAUR-DAGD-CHFLS-happy.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 158 0 R /BBox [0 0 576 432] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 159 0 R>> /ExtGState << >>/ColorSpace << /sRGB 160 0 R >>>> /Length 389 /Filter /FlateDecode >> stream xOO0f'EREbqA[*JY8ĭPC3ω`Mw~SL:˄庼nMJHZI~*=|MV=EC}h6֖M59a#@^:ڎ5oɎ[ϓ]Ct:Dri4n+l^̤O}}~x{Uuf.ҚS߶}cbZ=#ĔͪJ`X@!ɸHlݠSƥ/XcOTZ}>N\[G\#7,{Y݁ݗA[i+4:m͚'} vmRZ.)&Z:ۅGΘ endstream endobj 162 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xwTSϽ7PkhRH H.*1 J"6DTpDQ2(C"QDqpId߼y͛~kg}ֺLX Xňg` lpBF|،l *?Y"1P\8=W%Oɘ4M0J"Y2Vs,[|e92<se'9`2&ctI@o|N6(.sSdl-c(2-yH_/XZ.$&\SM07#1ؙYrfYym";8980m-m(]v^DW~ emi]P`/u}q|^R,g+\Kk)/C_|Rax8t1C^7nfzDp 柇u$/ED˦L L[B@ٹЖX!@~(* {d+} G͋љς}WL$cGD2QZ4 E@@A(q`1D `'u46ptc48.`R0) @Rt CXCP%CBH@Rf[(t CQhz#0 Zl`O828.p|O×X ?:0FBx$ !i@ڐH[EE1PL ⢖V6QP>U(j MFkt,:.FW8c1L&ӎ9ƌaX: rbl1 {{{;}#tp8_\8"Ey.,X%%Gщ1-9ҀKl.oo/O$&'=JvMޞxǥ{=Vs\x ‰N柜>ucKz=s/ol|ϝ?y ^d]ps~:;/;]7|WpQoH!ɻVsnYs}ҽ~4] =>=:`;cܱ'?e~!ańD#G&}'/?^xI֓?+\wx20;5\ӯ_etWf^Qs-mw3+?~O~ endstream endobj 2 0 obj << /Type /ObjStm /N 100 /First 808 /Length 2119 /Filter /FlateDecode >> stream xZn}Wc2kp:19m`#Q!"Mʎ,ɲ- 3m͞)&cF2ςb)iǔL2ikVL0КʌόF{`KӺ0&;=$ͬd ^%,@  p"p^!ѫ .Y ΑR*FL@ ZO)13Oj@Oz?:j:GoYD(Y(`r@3r@g( XJ8BA@ql xXF& ΒLB0yC.pa:s(@^#?DM&E'( |& RA #4 (6x]k^Y * 'P1Ng I *|Q<-E0\)6OFA%GbB<j+&Ιx]]TLM\o8ڌ)cSuݼ/ل$mVia[T%\m]fMNh aqMLo ٦.r>NUcvR#t8{A4/dgLuxj .nor&f@UeK=u$8gySat_#DfqlBNz>?+ܬ9FhQY˦A9eO'_oAտ2Ey޲K{|Ee5ˆ@bRHX]i?8, ]@0ݣNx g凁Gyͦq*.iyEPn ,o],=![qq= ,I-,5p  !_ø54X3` 3nf:k´X*'^cVΙ`!P&8-<-@ ߱T:w{8wE]Ƈn^=L:hZ/nQ:Q0k5zh'h9[uìXPZ XsU S C@|MM#y&)@|W+Zs8=:"x0ɝ|?}oSQMsؒl91-Y MV$TQ훦u{.Űxm1b 2 pp(s!\,2&4j'nRA I{#=!YNZRϻZ-6m tS'}b9iq@>wwZct GOB͟OE[eXgv>h Bٻ*GזxfP;S~-z ̠# Yԛ7DcI1$hyK+͍y.r4U)=֞r''PsK[Ay]ށ2;5ԛj<}>k@n:Ʌ[̮3@n endstream endobj 171 0 obj << /Length 1495 /Filter /FlateDecode >> stream xڭWKs6Wpr&B/Τi4f&z褙L;hR\_ۻOf\,o]@q Y,Y}$A2-2/L⊠ޜ}0&ͪ47AR*Ma.{&ؔE`*N*OSe_a3Ű6şUƕH/xK~~ [ R* ʸ4̓u!|ۙK.gI,J4>޽}y~QL;؀V.6-V5U(Jmn $3ej< EM[u~: ڭ^7wV#k1sV=$ y [h &"߯V=#c%\" Ģ(nqP%F@+%A&)Lʒ7)]'?m\C4{?LEj3"p"#Uh@0kv ?h\5Zg"/M\ Ժ|*)c?`y!?P,j94\pᖅ (lj%v0qY3•h;%mŹۆu#ӏh~f˰8&),9+( 5<Сa|`cGIU`papX]E-£\mv;u5ܷC2PN:zɮ(Cr Ww4d۞-nY7kaM3֢ͧ?JZ LPRw;5x6;vck8L+Y<=ܩbŎ?q qJ}TDo+>`CͯY,;J!J5q\syC:`tv8*[ };<^kE/"ɓ%[L^L[M2%up6bv5<6ɗP=$֟ NQmL/g@uKvo咎^ )L!EkrƆ+G( endstream endobj 152 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpfxGizf/Rbuild38ac486d6c6f/HSAUR3/vignettes/figures/HSAUR-DAGD-CHFLS-health_happy.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 173 0 R /BBox [0 0 576 576] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 174 0 R>> /ExtGState << >>/ColorSpace << /sRGB 175 0 R >>>> /Length 725 /Filter /FlateDecode >> stream xMO1+֣PJ2;ic6VDLfyGg̤1[y> stream xwTSϽ7PkhRH H.*1 J"6DTpDQ2(C"QDqpId߼y͛~kg}ֺLX Xňg` lpBF|،l *?Y"1P\8=W%Oɘ4M0J"Y2Vs,[|e92<se'9`2&ctI@o|N6(.sSdl-c(2-yH_/XZ.$&\SM07#1ؙYrfYym";8980m-m(]v^DW~ emi]P`/u}q|^R,g+\Kk)/C_|Rax8t1C^7nfzDp 柇u$/ED˦L L[B@ٹЖX!@~(* {d+} G͋љς}WL$cGD2QZ4 E@@A(q`1D `'u46ptc48.`R0) @Rt CXCP%CBH@Rf[(t CQhz#0 Zl`O828.p|O×X ?:0FBx$ !i@ڐH[EE1PL ⢖V6QP>U(j MFkt,:.FW8c1L&ӎ9ƌaX: rbl1 {{{;}#tp8_\8"Ey.,X%%Gщ1-9ҀKl.oo/O$&'=JvMޞxǥ{=Vs\x ‰N柜>ucKz=s/ol|ϝ?y ^d]ps~:;/;]7|WpQoH!ɻVsnYs}ҽ~4] =>=:`;cܱ'?e~!ańD#G&}'/?^xI֓?+\wx20;5\ӯ_etWf^Qs-mw3+?~O~ endstream endobj 184 0 obj << /Length 2101 /Filter /FlateDecode >> stream xnT=_a+b @iI !g{t&}ۙq춴ι̙Dʋgg/b#/8+<ܛ~-p܋$"ֻ:{(0.J02ɻHDJIDo*KdGth g@KaNͪj3xR~1 }d`=u|j~MD-i of= ?fzd8"׳rmZ 4e!^ rh Pm bM ) =䜏۽^ jSןޒ~꭪g;8 M%9)(GYWbd7o$p/C;Z8dl$U8 Ě[tB)Sb_EF"y)&' {NwCU.`nxg[,+JXü1ܯŽ蚷d%J :r(4@as@q*k`RHUQ'(i2QQeP xhӼjYwFne­+s H@t?{r_$~;˸fT3fj5*!u#hyur)Z}QFIw܍¼J<|5B1G~C*ɰ%ݾt|T" y''VXM=G! +3}/Dj}DHQdD{p9-#` ΍5# .!o S*ҢmBBűfJQқ!4߄X)m;]2G N$ypbnv(~_4ܝMӲ?Ȇ^3o'%e59mo`~NIŁ 4Rζܦ ŔCCSu|zb}S׊[_&8/Hc}NNl;ϣM-Q##wF(7"szD4@>3p,鉒zmk+uJe>Hi J"#Ў _ "쓇9ems~З{歆$ݑcHv8U\P$K -AY!gѴam[ š7p7Ƹ%U&EY}b~Ch`aцf> /ExtGState << >>/ColorSpace << /sRGB 189 0 R >>>> /Length 13238 /Filter /FlateDecode >> stream x}M$qEcFdFdĕ]@MC{x rH 7#+t4VE=Lt3O=w?㏏eOnk?}~?O|}GO?)՗R㫏?7Ri/_on]R/8x8yQ[~? 0߳<|ly?ݻe?/d,=ER8KfIem^ը=}6m/Gm^Uj$׍K&٣zFWv._A:z|:qlGu-慜/[ ^˱}B>g}:E&Kz%&%hS_jBZ؋e98޺h^-߸4>hGtSA\e׮jƋ}oѢ)Z[W&i/{ly(H|jR)/ی1,v9˙M_Kp[mFФ<ی'1rcz<Ͻ74i/D?&S޺hǛ?B?޼[=f&i+ۤ}QGF,m^Ө6q5oxbEW}-z_oam41P/ԧtƧ=ӵz~J=ǧGVk\>_1 ȟ_7FWs,fkכR/MoړWqm {=d}2v~X_|Om{|͟?~c/~~;15c=1^ӯ_}=6bZ/d|b/_~e<|#ic`~}cq ss3fC/lǰ7& hyL)hKy(Oc|Y׾˷X.-?W._'G alb–m3=ȏ {IpLW(h CJc@q0iQFaՇiL14:L 4\id+4j~IJDcƀD`(L04*lnDC6!:T!znD=8vWgwYXd܃ƈp>p%7%K9vt&raZNc4lNcu[`NAm{N۾D4]f1`]HQjv1 84 (L24NLFcitщF߈ƀ+ƀ+Npw1 84 (L04*8-WH48D$ c c6B$8B 84 (L24Nq2ӦOؘFciPcjHGJD#Q\i$ QmWi'ig8FaiQF4+D'<I }80hXW%;!ZJ@(h;C߫(=r@Ca^FcmElWFpbQŇ2(S`.76#D}h4Nh4Zr@1~4lDga#Z 8h؞sGv0m16Հƀ/pCX:F[Qru뀧  6Ԁ=D[g4H64)ln~7|&chlGr,P$̾#6W`jWBE~B3 ޅ!îb4=~`u>d3[.̔ƌ+[.U_F8Bw; 4Q X[.9 p.)hlG@oJoc}9~Q%.ߖK>/A8NIc x54Z  4ZSJri% h[@Шi݂bҖKNޖKNoYA#O4pW=` $+BDr;7 !Z^hZhm+E+B{U=ghXMc}-'<˶\ڟ?u>`HAD44Wwzv[@܍ =~R X‰-I,P0XsLj⡠c7l  س \Gm@@=hCڶ-hm8 l%QZ@(40|[.5GJfbPZ  $ϠA/-CA#4#r,v[. ,A ƛ2!huҘ0hIc ~oF4WރhٶoA_M/Nr hKW=h% h k4vaIA#Mxb Yz\s!Dcl5>.9o/w|/A)qI[ h4.X 0 ўe+Gve'IcBq2i4јFgit\pVy#c}ȉhJ#ga˥Npwq0yk04*ӨLd'8FcitoDc߈-:-{&\Zh48DwmCt!oDCԖK+ d\Zipr ҰNpqpL 9Dm88Dh\  h }Y~JиK ˗#Nn,vy(GFT-k%/^g!]wҍh'#]tP}:7cnS:UrCZ:[WO4dADdxKGâ 2ʀ+ñ 2@ BC29 s3!ѸLdl•5J^pqM r^π1q48DcJ@3 ј_C4%@@XBc...H!:& R bjD`ؙ42L#14t+X.p(DbsF,H4 (L $;ؙ42L#146!, \iFl,pG $ipƆ!zLC4H4 r߄CrƦW!Flf^C46B/! LC4v/!- rvC4(I~A` hl_C46H48L  rQ9DcDccq!7C4hD0 8Z T:H42==6!wsq•~CtDc~|97Dz+$usss)9D3gYW72h܏!9o$sf9U2h\̙0C4sM͜9D3g$9C45 i7!N9DI#% IPInII ITM4!I"['I6IⓤEIҔTI-hH*$zI$I yn!yON5Il7I9It;Iƻ I$@IBI/CIM%. IzHItJITLIԼqRJJrJbJ4$!Ve%VRm%t%K ,ÒZ,Ϥe@+D`48D#I{DC4ҿH46!i \iDWFD48D#Dcg!`f!IX ؘhH!`Y,0-p|ゕh,h! r!`b! hs&<8DCsAѐ]C4$E \h/kar _d΁`On+N &>x4,asCSO>)|NӄO>]tә^daN0AD[!|SO>UTӑ3gt'4O>9|qgK~wC@i )Sci bM@2Yit2P籐Sd+c\s]8gȤl2}pígR1P>Aq|6>87ϊĘ;ngbz>qL\ӊwI!asCSO>UʄO>Mt/>|0'<ēO <{;.'e8|bi}bHr5-XF*yļX {x .dk%m؉TCuxƎµLXŧؑE~u>q #xN/Rr܏؞H)E&v/Jl})e6 *mjdb|2-G&-kZ 19_&zy&jyHweOd$ l^ָ@ coSi^9iQH |ul ؎3-l#t/>?4ۀ*k&7EZRxmSߜ2=t[L4$elR iqTM8\͉(MaE6e رMT`Cל^mb3-Nc3 Ex2}Kq{vb:Dm6EQ+mgF;vSO4!{-b >YP l|nrݚr`cxNTK9>eK|zS#eb=ya81P@y4mS>5z&3{c5ަg pPeIgq fRe xΡ E<;O)t&8Nq8O 6j-? )bx~Gxn1>?uɼxF{~k|_Y`8~?9OW[`ul-t*ȉ0 /ijMBj`Y9Yg`Gp'b< my${lMu9!U0FCd<ǫs=D<i* ƿx+r` )r>9Ƞ1A;'gl_!p<0s~>@^MK9I}X-=ܧ^k0-mȅPy[\ 8OdY0>cZN Mֳ3<#oOI o~+lۧjn=V5 =̓s,:shĎ@d9"?&P7y4: Ċ 35hhwESVׅ`@.cߦ 3 %i"$r(6YyebKC݄0Ϣ+s:YUdGh볭hkS史5䑍:"$RB#v!VFl agȶKRsyKلFcǀ42w[ReRd,GN1lphXGF\E.Ǖ @C9ȮK}^ -⑷Ndu|" di׆|E6y5$=ysgH!zHkC(C2a_:8=!0) Oe! ~%]YJ:>D':|b7$+6=PƫQ;4x!q|ނwϼm |b0<]$>_NU'DDsQ=H؃b#@bt"!""1#@$O+3m:B]IݬȈJlJ,KcDMSE\dCFk9գAMHŤP=Wެ-Rl14S,5pS8ŬS%L|h)§"|uY19)|i§ .|:L L|Љ&>t` >!|)§ *|uY1xFOt#!0x`'Yh]jdhh8FVstK V7-#q.;Suyh]n&ف9iM=[SuڣE5OQY[,ڭx~j&|/Okj|SeIq |^|r|2h ͥ:wi2NV~]ڭ8F[ex.gڭĖYh20vCu̜n}jcVXhl\Әn*>;Xz}rSLx>C;6b'6>.x +Zk܈ly1d[#y3bu >{d;؎>X|,~UC<[Bsz\;ev!:C<=pvp|]:s>{|=?S$C8l _۞ |}N^]V6Z>&4Z}Ʃ4^)opWk|Zj.m;rs/6/.ádHv[]YTs98NxIQn8-ml5V27}>[fT{9}qqQ< m?vOY |8Eƴ{_8cYsd F<.Ty}?vܯ4ug=W<:y}mFeQw9c|x&e'~\|K GsA 'c1[d> 0#9N@- H{Z>G]ΧL+!^sylxs>,8g\~E]r^r%ApHuǐg)'r|]7.ygo&8y3iXR*~Ӷ$diE?36ޯSU s} ׶d:;PFnp0{gl^Ŏ ^ےx*ƜO %+0,ȉv$~Pfyz{l+{߽o}O7P!6^. 0P! aAާR{ d }SXAԐTAtC|~3LSY7e}XoKyr<^xx %b݄ya"3#HD&q"YD'=- kUKZC"VQuT-]+ZJZSTHAE(zT$,P[E*XD$AuE̫Z_VXw1kUZf:Z,]M"mp["Ev~d]"w1HEH/2{$$y?@V@LĒfX@vbv Vb 6 b  bpo s~cS C x̂.Cl2DC,6ĀC9ļfAb "!b)"#bG"f%ber3:!1Ia 1XQ1g1vپ)Xƈ͈XՈLp"G t^GwĚG{GL^b R!$R"4R#D{&z.'z6z>'zF=sJ=ijJ=nWꉥYubO.RO/RO0 SO1{gzzgzzƞnpr9tYwc;S{'zz< ճP= Ȟꩨɨ騞 ydOITOJTOKOL|S=7ՓS=;S=?T=CS9ʞYyꙪzdeVtWyƪzΪ'ݳ=mV=q3W=usW=yճKb,vb&,VbD6bb|8&dGdVeeft>EM T\[X[lՔ[,[~~7~W~w~wtSWucWvsWwWo^կ^^/_~ǯ~~Z@h=7pG ;z[՜]rN kNkN,kNc$Z]w=V).w<bgZ0q>}&L|)§"|< 3S§ &|§3焉  a~0A?C§"|qGaӅ3)aqr 3CH>Xf>UHU>Ժn§ .|8c0ax^wwvsCSO>UTs ߰Zp>MtӅOg>Y[ xF%`,]Kx)%qJ.|$q J0)%q`g/>8e&|x)%qJ`g/ g?qxF%E`gd!,XY 3$,,K<#Kc |#L|{CH<#0GIu)|$з`&lA2,<K<#Krȱ\p>H\3?,K<#tH\%W+H%[+H%t{60aSO>UTs S§ &|<Ś0Iϑ`&L|;N 0udz 3"|>i§ .|q)Ci@ 0ҁ0R0bPj,g@3SHf>w-kT˧Z?޵%TjUZF:Rh)YkZLjSUjIZS֢VUuU-jeUKZۻjoZaXw2kUZhJZ֪V]ZoՂV\5W-hU֝W-jUZ}^%^E^e^pJ`/Z/jy9׃zAWK&ԋB*B. C2K^ա^^ ^"5 {zzzݫ\E`+FdkFhԫe^7#^9sQ/Q/{Wz אzWz KIԋII (R)R*R+R{mzuz}zkԫL慦^iꥦ^kw/6jS/7zS/8S/9S/W{٩םzWzמxW+^~^^5^U^wCBTDRTEbTFrTǻ${ExMͫR,R0^쥩^ũ^^^w/QU/R*U/S:U/TJU/WVًUZU^ VbKVf^U^u^ꕫ^굫^w^U_Vz z߽X+YkYիY^^%^E^e^ׯxaWzi׶zqWzy׷z߽K\Ջ\\ ]^쵮^ծ^7wWx{ͳzիzݫz嫗z߽٫__kh%k :ZZ+Ak)hŠփւZZKBkMh- U,.ʐZZk..XkhrνZ=ZGkh- н*ZFRHk!j%i-%zZPZ+JkIi)E֕ZYZKKkmi-.ե^ŵVZcZLki-3uv|ZZlZMki7w|֜ԢZuZvZNki{-ϯw?'~N-?+W~_>ǿK]#!f??=D]E_+YmɲoOߛ>|~N!7߽r}&Gz|ǘLǰqNчOLJ߽oϘx=?$϶sm]hz׌/=O?x/~~> stream xwTSϽ7PkhRH H.*1 J"6DTpDQ2(C"QDqpId߼y͛~kg}ֺLX Xňg` lpBF|،l *?Y"1P\8=W%Oɘ4M0J"Y2Vs,[|e92<se'9`2&ctI@o|N6(.sSdl-c(2-yH_/XZ.$&\SM07#1ؙYrfYym";8980m-m(]v^DW~ emi]P`/u}q|^R,g+\Kk)/C_|Rax8t1C^7nfzDp 柇u$/ED˦L L[B@ٹЖX!@~(* {d+} G͋љς}WL$cGD2QZ4 E@@A(q`1D `'u46ptc48.`R0) @Rt CXCP%CBH@Rf[(t CQhz#0 Zl`O828.p|O×X ?:0FBx$ !i@ڐH[EE1PL ⢖V6QP>U(j MFkt,:.FW8c1L&ӎ9ƌaX: rbl1 {{{;}#tp8_\8"Ey.,X%%Gщ1-9ҀKl.oo/O$&'=JvMޞxǥ{=Vs\x ‰N柜>ucKz=s/ol|ϝ?y ^d]ps~:;/;]7|WpQoH!ɻVsnYs}ҽ~4] =>=:`;cܱ'?e~!ańD#G&}'/?^xI֓?+\wx20;5\ӯ_etWf^Qs-mw3+?~O~ endstream endobj 204 0 obj << /Length 3409 /Filter /FlateDecode >> stream xڭZY~_<$vxH8GM2)ק>(W0þvhɫH?UeZʼXmW|* ^=~aPV^Y²W%,-"Dt<:K:Kdɢ_bVUU/*Ұ'~לRb>~xjUuUxUFe'a&xj]iXL/w$J*w߽A˞a#L>eByTkX?>z^O2Ёᯃ=ѷr&Hۘ~+#h-VBxtX\xY~A3bG(<{diDBtZ-7<NKu =%ZO#ɕSRm2KŹ -a$d"#+1ҽXi1(@b!ٴKiH  )a @EOՠU$LÑI'z`N;S/gׁ=I.gTmTޯEYEfzaqw#ƃ%'{mG`yx)DZC}p تuac?F3p0*Cpqj-7s5ϩL[YYX3Fknyu\i\99zrȸ΀#;?;Y n5zٷ8F;;$_*!-IpXަ:.Nm/B-`.<5HU-d` {b|k.^2h"xpQsۆ)q8k200X~omQPQHĸQ< :VS" "Y4Y;TW|ar+-ѶO*]{}TT]+t+*@bREUW4U6#1IgU08fs-\WY ^:z!*ؽe)Hobf4J5yXĩNBpq! (/süq<╪2fe;QaEM6ŗ.tUMd3sFP2xiOI{D424Ivoa3E,}~pn96&1T;Ili> k\A:*7.k.fEu (p,sonA&S(ֵN ]FSc#Dh?Go,EqCO*HhUhjȽoQ冑+=7й$ h:w:ڒ7;b=s.KC AD9Ċ8gF7q m>[E߄, ^b&0AV*F6O<58X8.XXoxPfz&+!w)B]4CA*^xO:HQyfV `҅z/BybKY$sW}@NqGβOllt8) lF:#eBnlwF]0X>92% ݅DHr,f鋐ɀcL/\c}\H\!1!CCEOaVռiò}Xs}/x>Jvƀ%);jNU}1?9{$zr"5El\vK,e>Ed`*?j2RyFƣFZDGF!Q9-12Hbaljp%(rYd*au.6 d?; dОGh-٠ PO`Flh je&;}*I`y㠆HbSsJ\yՉ`j&SŜ {\8d#(]l[Uk<۸}%ad>F$ퟒTտɵTZhc؀O sSY;f~$Gq?8l:Qļ;wv1> stream xڽnG_ⅵeP@* ^ocTU6{I 0ޙ9gf:x<}?2Ձ RLb,I`Z^ `Ol\WY&Ss]=yLY+HhOIJ\$ =.Uqjs g1VTgV_L򮩾X//͏qHmL恉218P6 &uhqi><<.8r>/ӱ ON:x'>~u3<T?d\#yf3ӓPU,+x8J W]:U:k%KYd 88U$NBB5BJC%ؿ8ﮐj- JMwAl+ʇƙIBo#_:"z.){AFp3W7P]1xV+b4f\JJR3T[ Ks LnIBѶYWY ͦ0RL'5gEW2wKAcpq&mHȬMr= j[7[h;hC)mOa6Bl)NF)Ip0b]QUVj;vDƪ8o=6Wޅ/(XQV41% i-C6=S isFР9V7|($P8&/ .2K20{YJ}|P\14ߴ^00K Q+㉰)7N >/g[v!vrn÷p!n)uܥۢE:1Z8Y I1E۞9hOÿ!妒 @*-iLR̩֌|QR ϥPE? 3\4ArZ%u!X?߉f ĭɈٰ> /ExtGState << /GS1 219 0 R /GS2 220 0 R /GS257 221 0 R /GS258 222 0 R >>/ColorSpace << /sRGB 223 0 R >>>> /Length 87681 /Filter /FlateDecode >> stream x]mm~~~k wza {?8~p_N  Uc\Dn{$,5kVU/??~//_}/k)#~m{}%n|>~~7~ˏ_sGNE_/f kW/~_j_1%uy_k|>3P?ΰ_=?ۗw__/մw_0.WJ?zױ (t2D&`u/̇i>ؿm}mN{'(zWz1sYk_2yuu]?w Syo8/}y]~T@A}}֯{`?kA噲^Go3唯=R_՚g̔;GJ?c|m;~)"g?|-#k?g6>ٿ<>^cg][i-Hrz_b%d,y)6Hbc.5z_h ~lO-E?5D/.մ_ҕc;oY_k1.KMOz'*:/Իd8k$96 ozǫx̀:!*Luc_mUkމ I[{!^?i{ݥմ_ҕc둞_~r;_C{`AM_SmJ %96 ozdzPݰ2U ZHYN:`2zTv}dgY ozY)Œ*mw5YxDޯy缄L6jO.bO.96 ozY^?wa]_j]۽c aL51/5#ޗA6z7띖."m5u,}IEȗJL/]L q1zwU1ÌkEl3mziu&^B&[slb;3xFmX[N^}ӛo >c~˘nov o~, VHѷm%dļ~"96ԋYo>~l~¼֢{X{:~= ^ރ+w^Bm4a--rrm4M:"o֛R- ^A2K,fxDy`wʱ_jd SiL)!dclѩyZ`,%C1lVrLkvve5B%b#f"%@ztEެw<5^'X{x$jҺjVhG̴\k.eXnЋYoe22ٷk2-L$3gl̯U11J6 ƼܘIAQ1od[3s^41ˡa=`+>m]/!&xultEެٳ7'eZ`&/-_|]?A-^BӿYa=99U]AkM:"o[ZaΣ2ZV5Hp& -cb^Ls9K ـ cě{Y|䷌ 1m-/(x@]6 1KYXymftFwX5:/ONy_ـfNw2ɟ c. 'e}xТ] {Vo;}>tpCa;OPY# |}=ـuxOJgc):\gD {;6ej"L l@7K/fC+Milcc ӹ&^B4&-y-4UЋY^̛\s[M”)8y =n B6 }/ :Z24j2-cFˋ3SiUA~zA;%\;ao4]UWЛ|;q ].}bzn ȏ_'%#UdHaؤS/fSjsGjWz~?̅06 y}&^B՟\b[ y  O-ԋY^Ҿ/g$U5?[~҃~J/+81nZeؤO%I߶l'͏Օps RB#`R#m|Ŝj@J ڀ/fdp,)Hǖ!^BÄٟv:.A^};= OIa<1xǫ!yw,M.۟bfG֏ؠK/F$[[}3g쉨/w^ ٮ.Yux=kRZK 5&І|YxC=*Z8rwƸId;$Z{B=x+8܂ؠK/G-!o_p?S-)>œv9E|׵RSM%]t9Nz7A*FлP ,zIv hlХ$;sVQ&fZAGx lv6wyIf46k)Ma$~Em?qE/*hG4Aja^K Ӕ}1`|$A^}y@ A]A~=rSFtc@?'x 2)ı( ;g=M,LDB &-D• =D"t,DHGJ$w{Y^<隝ӳdk:eP\6dF޹2H_Ax>s[j㊬RAԠ#f*^B&[#R˔T aw7Y2pPb]U4lե(^ZX2pYxy/!#ԋYxWWoqq8G?:RoKűjeҒ~M:'Ihf$L8("3f;˖S G1@On ěNƼᠤ~} 5΢.el_c.lINtu)-V=q`a6rd"Ғ7nʤ/푗K;V}]tEެwX-c:E{2}Mqɺ_3]fi7#Nx)@cyzR ZR-{pB+W%}:vT~Wxj+L M:"o;Ucn$zrwXY#HTN7 %#a jCu5D :jKJI(h0 $#H~A*-]fS$46 ozdzL,)'1!'X{J;JKELOxit7=[Uba*J1* c9 (ļXxF(dslѡx1aPѢb_HNv~N@c,{}!O^z'9Cɹ:pLA\dOȹ/ SwN9W5rԠS/f# S'D!|+ 9J@U ـ0:|SޏU/E[ /6R2uLëOxwfTڤHb">AjJØ6KJ|!ǜ)e,鉗.LcRNᯙLzUfvV^KBA6M0kSmYoq.d}-@,-sE">65oұxl`3ԮϲzБ%^B&[2zwـ,z7gi}ѳo1꣨̀H)OV7><zXڒZJ't7ӎ觸o shT"sYqZ]+/!ȋdҎHѩ)xNkrC5N;kQ1\ɢI&t9aI+d 'O{3C6 {9y}[ҙR2$w&҄A'zj1( $bc|cKvK5#lV-ۤ#HPFзKKD!1 $ۓs|lҩWգ$K9VQ1fjc_ Y p-S,|?K|[XI*!_UOuKeK RW[K\dtǻ΀[8a-}IvUK]^'U *"n=GCs"+OڬEx"b|wqk mȗuMp08BԖwQ/OeP?<^Pv:~plѩy l)}X}/|' Q8Ղ&"n*_s]TF|Iуw~{wQ d/xǎ~#foZJJc/e]q?c6mo1> jOQKQ;Ɩ5ߩvߪM:|mw!u⿾F^g;YExT4C%x-cՋ;)eAؠK/Np!cG֔x&[}ھcS;at8X՘htEެw6Sp c{aݕVn~:OЏ!/)f_62&}_f9fc]YJYYxuɥMMny=qUɦ>6ԋYx/f>c: .˷0sZKc9 YÄEږxz/ |Ecw^Įv<>}Y=Sf lWz7e/0id:NVя08z….k|lҧ47@vt[ۑAkC׮Q=>;<1C'a[ ȏ#ԋY0v fCn1 +h%̀㖼N]auqlХxNlARj 9dؔ'^BoCH#ٌnAppK/fcM05y21:Xk ҚU/Ǝk-7 e&}5fÍ.Tbp~w8ۖ˅lcҙmL^AOP%u-l@:zMYOரZ辏-2IUATUEfdr VlSʴ:~Jvn˗4a^A@}Y'd|9KY3!RSM%]Sqw݅:KGyN;6ԋYolT[t;-ȋun m,U%Ʈqb֮d56ԋY^P^Rd'<"5ut^Ჽ zڹa5#QMMۂNT%T۲z~iV+ll@k-:o;}/h1uTRcZ*KB:RFKZ9^$ZiyaAYPS}AJx:ɂ5EPsQG-ɮZ}lҩya7\x-cl/uʼn^{$~O֌wT$P%aM H}A^z'댒cBބ;U{V l!Ѿ:X]UcNțEE`AmY T"-H s jvx =-ԔY8 gq̸iY|1oY4{uwBY5=c*=eX]zMG1wxFǮUJx,҃=K =ziw p^عlؤS/fG8ɣ雡߃nM~T>nG-yXx҂ O\v&}|Oz'*!Z |P?6T3zj'|Apo C6 PW*"v;a'wuWJ;xÖN>A_v/cler^lؤS/f:ʢbK~i_uiGСx>o3t:z}ygT8QgX6+Eg[[Tw_0sa`&2J) x 5e SxTܒ[5vo[{ Z~N/݉5v@%*jYr{5MYA^zY|FYُFiLAGKd㯉x. ـS/f,+NXC+O_yA:txW_jJ^%貽נMiYH`lњLF|VkXK c͢s~7U cNwVG\ovNed6 K^B71\k9.&ؤOo`S?2uv7v='vzvz owYSx uƚV9oŮLw46ԋYH>" Nf[<EAe#: Kh{ƕ0K+?!c>շN{%?޸sݵݰ-AZW B/.ug*{63G$H 1:o;e{Uv}qtf>pe}oXym=wپؠK/青D u{%"̞8-%؈Kѕyx`l@:? /ݿ؜u߮Ԡ{kc%1. H M)="o;e ,ccCl[xso(DeoNjlҩy{aVO^Q4>1΢򚙾nkyeG]zMQf1J]s э'.y alE*7U RvE46SI4NJdOc)׌a|͠x ՘G7yAq*Oc#S|;,mQXY rN 9 RwL;Վ`DţaONCIG#kt{w* ǘ1d9,,ب4k(| X^)\_cTOzlWKL~DSӴ$ꃂTNR:Yi|d12` @,N~$z.0G!ϛiRU\(H^BWQVS#dҫ`ە1BSfִKѿeBQed7F;&=y xytLۺc.w$ '3-DCmgDj_oQW^#V^*G&Ըpcjڐ/*#-pCXtkHe!UfnmT8kI[LXk*tu uwUR7vk!؆ H3馣IG^A#rH"oGͿ8 )-I52ϴ<~b~ M5Du ^ASNo 7.%vgM:)+%Rr_5U6AAGx](kNu^\"qa*OzG?6"" uk҆~Ϣj% z˂;HHA$Ͳt7S&1j&6,>^~"!pc' .GnnU#x'l~B/O]>IvDf66@E~ދXW"4DŽL@ި +4fՔ%ެw{b՘zmj;[JG/[Pδnϝ,.[Fa#ԋY0[LS5+S,c#QpG\ċVɎW凞dY *{5+Exuӻ%列_~☂TjVɞ~HХxNN X6)[:% )uNhQϭ@9u+IvN vS"fjkSDtJPPl!,:鶨c*wK 7Qc.wGڥKթp 7c [Hx=x-ƕ5xJ/Md@M:Q}bum3w!z\2VJ~\UWJ:Q܂>u)N" gQ)7 >()EO Jm7HS]zMTZO-`g:o&' {;WY(_'ʅGكNț#qzԍz8iw O;c z2EXEdgbwz/DeDV \`9Ļu[%t.E5;&z7Nɺ 8p;q2Hɺ%Yw]n"YW y+ّM2%!Hد'TO3f  ZryҎ1Oi;7lˆ|b ^5@8c&/;' 2n[6X<3x r:OVY}g}#]Vhk >6-d{~) 3q~[:ﳼ'<z3P6 57YsB"_f-Sǻ#wn#헀cO MjU1E5mȗu {dLa"ӺSN[|Js ȧI {̚F|ItX6T&̔;\'r"4&Mp;y]#ؠKܣ'\(v.& `Ӏc~A9/Ub{p %݃jTbMɫy8ԋYx/ FcX!6 7bp1lkA^NކUaOuɶZ3DҀY˦+mUnx<#b_k.k+|lcIth͈LKlV95ёO'^B-S]dfԂgzq7$WT1}mځ*P@#Tۼ/^lA^};'m>Wvj\醴]E]cS/WETmv [9;U&JN<'LEqQd-="o;Rnn? f$xOmF"$^B;Z#IL$'ƞjY$ެw/2ݾ +oM&\q!cNțN;vVs޶O EsyKIR-^ziw?#ϓv',aϓv3 zדv'eafzw4`bעYA?(!/'_t{S6 5z7ݴJ1QN+DwcZyZ)"1<j;Oo ěrsF؝ >-6A;(QG7==G7Ό'xE I^z&&Uy ¹6EX|\ ©{ \ VߟW͸?Y9-YPٛ]7;byj7ΈPSqcr|k%.IVM4l{PRd4\]kGKg6`xng!yfÿ H-:ZʈI[oϡ[4꯹m!Ww?'霃z^?$^8$;|i۝i=xNf 3nq'Es y,LA##$~]!ěulIKA&AE P;<[L#%GEެ{nz· CgK)Oy{ӹMtgƅҩy) O,?0 |'Y%4㾦҂#st5dv$c9FkV.7Ar{T{bw?$;nvؤS/fS rhQ)ܖ֚J [zVs53vfv~BGU;vG1ŲQ(G(tQc ^Ak.˕l@(No}'uz=/޴׭~=vV|/#xROy 96ҫd{) fx- ]M=;hIGVx /`$Kg.I-ԋY4,e~LyP'%d+Z*v3ͬ*>,ƜjRb mȗuM&XDŊYR7bd~P%Y 1щ+OЩy1>TSAjrSisJ9OMSE0C婴ıWq,~MsyB/;s<9~֙Pk ,̅ډГs6LgijLBYb̹P4]dk-,;s0.ӝROl9/sĠ0R,rׯcz7J M*`/l)<]O|sޠx0ʡކr nѫc7 vck4W<#yi\.MCR7nqaxY#~;X|Y#Ȳߎ,L2ގ,#68̞,T[Le t[,^O[%JOaw‘d(sؤS/fS6qЫg3;Sg 얳R2걃(㒝pfyu؟N[^j-cdK3ۯAGD JĠ0R]74%ȿ_bQe;\='G|+v~nGޭjJ^ [# ށ5{ʽxEAE޳j0w Q7Î|n^9Û̋|n9@L($fZF ـ'Uj)N~96Ю5{/A,-F(apyye8ԋYc59IUQU]Y]WaTs@zMCܼ#ZbM\Z)e 3KDnb>ts~Pʸ u7yFn21$MR9oy ތjmGPm؄2~8gdIROz/L0 ~0zgA~''`j8X2/PGKa:[Xwĕֳ]ysO4%/B$tWZHv\yI^Mˑdn}k Fitݭ<>nNҬ]xkv=xqNnʖx_xW|q)ťl\7Z-ep K1aM{ـS/fΈ|+ʋ_A]O|EXS5a$ۈ|>8TɛNG|Vn#>k"?cxQq/1Պp[pehW#ݖA^z24T;T}/ƺY*YN "/滑0Ȳo-AzU^uӬNEѷ| | .w)ߐjFao8?raz'W%jcUv%+o}C,Y$^BO8Yp9 ŎKtEެwj*Փ܀YC1MԠo\0_VicYCSfu"Z!}<3"o[f*cOض5=.۟v;}`M$z9Nzەd+/RGFaQW^ĹRW^~uCnTe'q6 26{9AhN>Ia%qmx: BsEN#I^z87oeR祇Y`]|X8 N\<3a^IvY}s:y)s95M6~]NVPJ/7n!;9kkIJpN@M!|wAR:;?c瞤ѣ~5Ɏ*M:V5Fþ(uYݝ|TRJ;QHq냴zAY,dn[l:$3' 3QCֱw͏k[EVKhOLWf@IN[t7S&"ve"t^bI<Ǯ!}%'Sq(v\ A߁ 'ԔY fE/!_lN|u݋+€'j:jLCE=KN==a0Ku{!; *; 4jz򽂷g9]mmc|yN`,=ϱ'A$r{l:M+) ـ[tEެw+'Nk~}:1΍v=~}ፎnx%fN˲NYϽ>1N#eLJ1-C-gTp?̨TyM_oz*,r:T~"N5mėtMb8#ŀai̖O~Xx3ԅIsy]9&z7­l4Y:X`5LL^4 OO)5O [ਡrtEެwR32n>N}Fn-qxnp+1!SS)DcNB# 0sWق8mA:vK޻ԕN$o]f :tIދ-v-c,kk [hA?%K1v^M2~tEެwcp%0fT{xv[p計/Úcy&/]tXI~vYU> 0ݼӷQrkhRz\N:WٮR5^K761ԔYOG^:ϙ#>zot?PWP#ފ ʮ}lP'S:ϰy"gXJH9r3xq 2sQs[,$ـ[tEެwz/Pz//uAz/U_%&]ؤS/fYrU:fkET.6J~{q`/.Wc*v |͔]x<Ӳr:kӥf +F :Ku"e]eoGĦz 9/jU.\'­ao!m=m,+x OjlYNЩy1lӷv_qGAJ/|A?r/vA@G^kಋfI^UZTUP VA=^oԹzU9}뭂z|WA*[uO}ng)Q[֢Tq=rB-l;TdpO/%z0l{ku X,]pt%2譢T M ;QHـUG:5Q:-qit!pE)k9Հ,XWjY_v8ގcx';ALP;AGXoTBíӃx Hj!fyAuLg\̱I^?`d,]su!$g oE}D+wVtܶ@^q91^};/Hm!>W2 \FC+ۄ3$ީu(0l@S/fӹaKALG ^E tى($ꉹTtxTW:8v;o;u?#AŃ`a̠7ìv\i3wOEq?Lpb5t;o`=C> t V7{IKgp-ӯb[_| R%X6.2mȗu}JnD=х̉ǐ:|J I ZR.;)SM%]S֍ Av9mGQY OLjF1E5mėtMt3$G]'ofN^;D7 ^WMMvt Mw}[_d-m3Yewo.ZSkvO2A/ћp+{9.Qt^`沽W ^f]0S5+k^s5)D܈5{%CY'ɮ]])I-c?Xnޛ#S5ލ9oF||F;GFxޑ7m3 7c]ǸAn8l~ /!o!4L/:II^z0*j8a*ᦾųϜ;+ޔKJ@Q,O=5vSoz Nک`8a{69o]vQD^A;wAڃwS?rfƞjﲃM T7Y s ^ˊ*[$^BØ\)&$tT[7S) Z O1c t Avx[qҳz8g/};E5oo3v^TN+=RA3yU.\]O:`6|NQ--%&Է]Kԟ$E&١yYVjM,cD= 'NKqټz$;ų+Zw-VvZ۱> ү  yQ2ic;y1Cʪ4r}l*ѻcc#ߊwHvUc.V-Ǩ=_S-!TpsɕU!ZOLusEEd8XslҩxNt-rN :Piݪ 龃uj)l\ ^f7Qvc55x.Qcd77!o|: %'8[a8j Ӯl@kM4aq/\o|Ãsc%,[-踒v;ρg8Վu^};cMOclY`)i[XOl)w^zHV@{$\ B(\3h/m΄YXek=>6ԋYFJ^%ysi[/kuJ2~GzJ jQymiv^Ucu};cl[WbK*{ m[15]Ow L~ܽAـtս&ٿ>g}?|#ß/vQ>KZҊeҡ to>~^}o[ R${_}Tz-rORM~gD_}ՏI߾ǏQ-#?۰nsoowˏ^r_Ǐ/~G|=}gG^}=WQ`oo5yKՁLi_&c6}6|zKӢ|o?.Yˏ;wjm?wVlB?8w鼳xN4p۶~~[^KLt3翠pm=~/6? ?͐ڇ\O˟UB[cuGS.`*w萗Уc5;Id_ˮ^};a ɳ cz4 ~Y1.DccMc;/ Ivt!آ{Řf,([M!Ƕ8*ei>aA>ELDLa|wO1 T2ɀc83]Wo'O.^B~c֑e|lҫ?WAs)~}cW>6 /|l:&}Ko(wՁ;oR]I^zdzXf=1s/ǂhW;62 !%Yc,)a HϲS/fsW{>qnajdof$n~w; Tri#ԟ.x ƝWÿLJ DK y 5yS9]vw&}BazY]86쒠]L*D=|hDLvWЯ3SMe]8rV+p^4UM/9_JS57% gś\ؤS/fy|:UX*m_m (l[j~p! #U56]kfcZݵ^\Q}^Ɗ/K[p2;.HH%x /k;EcNwZy3cudoі#8!}%3*oƉul@o /9NKםU-c.t,M-۱nmPVV'4S7띾}&ny q}L|E}E7:KP1ܯf|3ԋY0o@p&@QD/0I*$ Iߖw&zMoYٌ1[=½86{k5#WXt!^BM c Ɏ&z7+Xm<޴%ӧ覍zt9;Qdg)AiOz}bz7iw, #I4_gX_(q)64rꦵf_c5-]wY/1S `wcg1H*afSxT$>ҼcěgyQ."\d`GꅀGөV!>EI DL{M{J W%mėtpQ=a׼;f4y,9 ;7mT2EOڐ/*rbF}Ntx{ c7F~8 *fKOAi&+чt758O#೾\, s@ et ?0Ŏ8]{e7ŋ}lҷK `*Q!V"Lqcyf9۶S;sx)w~.޳jڈ/]s” u}aOӂ-'-8f+ގ{]1ѫוOz'y鈎3߷evtoN@~cPC*y>*9 l8йCGRÞ-G9JTa+RS-zwdwl7nurߌ(*k2( a艗'9$o@U >6ԋY,#]m☮ű2o Kȯ6q]Obe{ 2tEެwEXMo_q/߾0TL^dYdW4ެw|wbi RkagB*%4< LKކe7,hlҩWӷ,3{qѼkov=~qˌ6aFkׯ5kh֓lwhftx|T(BVKo͚H$00^b)i#k:2s/ 5Tg!nSRKArW)NFءxDcNțֳtݵw;xrn}YLx 5YW-]_cNțRax< 3Z]_A?#-r&'y -=ةI4ެw|̀g|X:K}O>xڽsgU:lcNț~wFvcƜyK|pN)yyvcyײ]gؤS/7 $MjaU3DLO] }ͨMMe V"׊\vtEެwu#o0ik~$=j,+d,a`z7&.F}|MAP{Ip=:=$G}lҩWw]jOnd f&%.7 /ـ<@NțNA`r(9/^B[2K)˱E^z99ؾ r;.f1Ltx1Gjn^i @ (;]%;klѩ)yz/]Nf%Cͦ/qv84a8PpKOv0ݤioH5gUv<}=iѱ1E5mėt J_P= ?j!u(J'bo>XL*W8մ_Uo axgew 1ҶFQiMcDM[j)մ_5}VJɏ &P9Q v(-}qk%.[Kؤ-I4ͷi[z㞂>l*AGx ycyauu4ԫ-I-c|Qq=i;,Cw JSTF|Iפ2gPaNc՜TIlЎKvWe7mz>vsWOz /j4&}ffܙۖ }}M^B&[_EIv!V{0{o;}/U1 3ԉ9{1XB:4tpLG ?yJM(j&zMFBiSC}c rWJ : GQc k QtEެ~-M&ui6Lcס~x SUՑfӓ~^M:nw'ٞ yĚ̻qZkbEcOE] J;lE5 :, *+&/̖-V)]v/?UX1avl= ob2쒓f -VLItQf"af3zT+PqD^$XKvM:|U:y3׻FW׭:t[EwVѮ&ƚ8/R%;R56U-r7Vsn!+RZ=AZ7%{ "L#-McNțNO/yVQXSu+y6RA{AQ s B),F]I^z'YO>Q7FɌ}a_'/*ǾcJـzl@nנWEw:Wx1+H5U<5n-{JJP.]mY7U> ^'G?#"o;EQ() RmVp/bln罖mQS /缄_\Uw̓v}DV}q,?Ajd"N=ɧ]v'E,켢7<F+O;5kw lɻȰVr$7+3K&_@c/ݤ/.fS8:&Ce'wt*W YQ'UCv0$-eq)}~8~9_ú0|qo[9%74нOsOK)hs0ZoGЋ| nbZdI9ĥMB7(=/NQl;D EJ1г @&٩M|`Y.;j<sO2%wҝK`EjxQ}}4{fadQ=Sc[|op:Ǐ{,75=bݦHv`S?H~ Cv"G)9E]v%ih5Cϥ?Z+|.%Usf[~" WZ;fwk7H5l};YO^k%u$oec-]1dݱ12s/ڟl5v\gPy֐)ZAU=a1_[2.9Uv cUkl颴䒕dI*J:E|u"#BSߢL9 ]a+J~Tal(wUrU ۸"J(7-ZAId䒭鵺R."sE80YR5`nҧ,:v0Ppőr$WT ?aeIʇF*b-@.f#@[`# BpOEF)RHpR%;<-o%cw8Wz2_XFPr~ˋ,R{e뮾8hn򫚽cwr6_f-l~ ۄ$;,~'Ooa[2l;mvdHȱlsmQ>CIyʲD^!e/s.>vs ў<23N+JeOAb,-CsO(/kJIk5`'#c%uYTHw M>l;xݢ=]EiM>;-ulQnWQ-,gn%l Ͻi g@$͢Ͳۧ FYQ:m,!ldL%4P]K8#V]gLZͦU*<(Z'eIUiW(~׫ JOv+l;-u}9.o%}Hɒh Y;:ehniWG&9_9BX4Q9:Gd۲_tpeFtr>-l;&?4 w@-묢o%!ɒO>|}ʢtG'->*Iפ!~Zlt\&j؜ÆT_Z,滑F r)[ZF|Elw|[kXJ8K_L[^^);$8m||Elwz.|GV[anQ\Z/*κn.bsEaneWQyjf d<1掠ԉԓM_Y{v/!J>\/$NwQm#K@>0vzמ/yKn}%*,O[y' >l;=<·Pt_=Mvy߱&+}_pM=X sAM`".4rK'߱|dHІ4'dj{*]Kۚt_e##~|#/#~Oҕ/e ]=qY?v'o|>kn/nf\KF 3{$lJ=Ѹ-e#p,iu?@7SVTTWq][)(ݢsO(Ҭ R-k{'W`_֪2fʊ}_#ػ%}]c.>vG ]?|w*+#/~D'+M#_ Y &vQ[-5rn Y[zT߇J]#vlC:uR.fk 1T3K}ˊTH{[𧡩HTo_#VQknieݩ΀Ыi#3r Yz"TFA9h7X,qnieݩY-&|RyuEogȧ!+ 3G6Pʋ< ݠTϳvA;KTҀgsn mUr+Pe!UF#?.Y{6qIi#8F=o潓ٮ7dEʪC(ە9\)uӮ[NwS) vFPe^s[r 0AMN <겝kH.ٚAPk./'ؗ4;NKȎʲ썺SYd)W2xBMZKIL+2x^f!39“Ak/e[~.p뎁X 0oGH|&PwkຽMdZ 4*:P%dU Y5j4d#F3nO#FUGElwLaLaua՞.*G&GWrɒjÑ*ojCO{47ͩ<HY}iq,UW6CoQz7ڒl;ݸ֟ޫ""+t^2z/}_.u57Gg:tz&vU*I{[w>qgKv`P">voɒe''=Wl;~@Vw21Pq3<0RD|ْ%sB#HlQ`Q]vZRGUsc]RwY[>dipH7(LWW7j=@aBʟώ[:.I=PUF~9 F=3" R?'fekZ6+j!w/+R$lw|/gw1X¦!љ>؝jQeI]L#_3eŏ?.ɧ]snfьx[<"mh~vviCn_ph7d*Je.fSQ|sh(laZeiw>QR(;+V%r Yiwscw+a Bv^siso$|ε@@m 4(@]+s'SvymM#\%G|V|o/){?Αh!\'C5rLIwnG`lK[ ^P=ڮի]tg=-e>h\(Rj*YRRiK胖tgK)]ݷq5Q%7ڨb3lhw%lwݨA%lTRk]OO^*?vu(I#]㎺_0 QZ^{B< d7-=R{>adq_i? \(o}ʒQ6E=o$`n$=nndc F6\p]u|JvȲ7RHr.f\ ϥF5jM\6>nySR(X't,e`Q_ [F$q`ᓺ[$-'l Ɏ ɮ߿Ծn\Ջf$YR# B^ՓTޮװkMK })Ùd*KYJC*KJTkJ[N.\=fa81,T|X1ߓ[ j* GHe׆(/L3l;pe!F ٽEyȥ*!u kЧ2O}o@6c%lw<^/{GxmXk\y_|Ԍ~-K݋_kfsf^Z8nr&ʯ_Ɂ8Q 9Нqni naя'I6wkH*H!S*M */:H&ZAPr?V4UKD ܭHE} \_EeQmrTR){NY!KRV=6҅ILJ}DlN,ɒjHQ1Ez];\Vv5w]^O[>Eو3<nw1JnFG캧.fw-#,do,0V<ͣ6LE.]aPa~k_uTښ Kp,K-w|%K8nFÜ] w|ڵu6nIxr5>6j$ݷ$뷂HB(eq ǪGQfJ!B#Ⱥ2*]x<~#*]$lxJ6*]; OꍀaT [1p:yk_0ptnI6&CqdkB#n] &̑PeJ^,T?v'I9i'+& 'igv摴s[`#~vSNv#ޚ#-[9؃Ze( e"9<ڂCIM_QBIPDQBz][o$v_sIKDY8wQfcwjgu |MQP*ɒjǑ;6oIw=M>$=²%- IJEmۢނEGCG*!WQ$ݞ{^o Gyޔeȳ_Ѳgs `WL)+>G~AYK'ou:t\L TTo/"Gi5FU[Z?)\NS޷rpJTN &( jJv1-P =ɒ{1Ido>lkM|WwTTI&#mQM| "b6Bq\coR^fS\o?0R * y)B5W݂: HAQݠ<.TO(Nf.%r[lWg¦5r[~Gw%5#֩eͨ뮊.f[PX>Xi–RUBev\gV*ݵ9Ʌ5˶K5eckbf%~(d_]*5Vh|El,C|dZ[c*"{A{!k ۑ|n{?v]ăn摆4*/uk*TCLd/s@sOgҭVA{D+$~J~aGؖdI9 H-Y9KWk[lI K|y\ܰܡӵg$;Z߳wLc}ҝt8cߐ}ek 7jd٭]t]Xt2׷|%+jhCuYk!㺍Η]}NXl)62=]>%t|?,%m{$Oۓ.قO%[_"͸bHP;kݭY MDjIPѲ~niQ_t{44ܔ*M9Esl1$Fɒ2~l[uF>'[$dݏsɷ ]so=8Q [gyFrVm)G9XE-ǏPsE@6 f|NO%R] ~Paݠo?Ώw;=]>bQ=;:=wǖ|İ$K}3>b.k|ElB[BLJv+b\(w+ΏPb'.T!-ۺ{ܭ[-?v5dȎf&qEd03oEv436d=Fv43F f`@3GdGw3fhI_YV3d.! |#_YJ)YR%d<x/M 켕{*`vV=k5/W]);(JwsO(NeG` .AmSD鷌k@%8ґOYrݩsO(N78JhzKM脨`b[LnIb>& RDyqz-;1+?Ӫ\S|as9=iݮ[eieA鹰oL}ΖYwf۲F?:]Ll{ltwͶflbtRs;PXzXZm)i_vK>O̠w~w;Ɂ(Qm_H VzuY#dkJAxF"mgDbvOYQ#MBaãm?9wӆxB;J\/<55Jt /BCqUܷjPz_TW}]CGjҝ5k$lMbC%e($2\ hc*ӹf䒭O˨,d 3XF`,g2/XF`5e,â(kݸEh㙯(Oɒ ϼF],<yM>l;] m5M_$響CBbu*9f55ɱZAQDL!l}qKP4Y/D(|T+ Dn 0ZX%7ࣦ` (~zkrj~(5'@;0.f#^mP+t}f)? čg&;eEP(d{?\s)E؝.KFbm+"/3WuNuբ/s~> |c&G擟xB݉b!JDYQk4썔l6CoidStktFy'mf-5@%r`&r󨔰--5k$lF?K":Rnc,~ ٱ/Aiw-kM)QP+S)Ѷ\ߕUhLaHp5K~ix0Pbts+9EN_ >J9G?4]kO FK' ]Sd4q~]E¾. vq \x>!B vƣЀInx VӜ(WɬZQpNqs2kk MF]M ٪%M#el>ӼidBhae%{O>8R'"~E[ hZ4vHE%Q%LKK0rniWlIR_]u=GS? (_26]ќq .9*vUz;b&- *YKcQCVTJ-r5:ߪˬT#X5L5CJIخ;Լ{Jn\#ůn*jϚkdK W}!*ȟTg]MF^GɢK#n0>l;[-}]#h2s6M]uES85!J8&3#UM|-`Fҭ3g%"ü9cxe.Ÿ"1 ʑp ̋fI1$8f 岭 |UD9= @YQ (ajJ0 #BEu'љYsO]jovtx:imh ͞GCnOz\yN˽@63:~n`]wX8?{ۗ}r|ԝ8k{%xҍ3oZ ۟˶zΐ- Qw &vQ6Opys9D'.`S# BcCDxsvî%$t.7]Z;~zCCqy36)(}C[7!ęBKGR3!,DeRzuZVdS`wۂ?c8O"?O}@O_7O`{:ƽk,8sj_Zv$tq.f_YHpB"ǖ$ʔHdIG,‘F.?]AEel;c<v9[վeG岆"e&(bB%xD+3 lw( OW  ulM~JFu؝r約̃["t Q[JH 8FהK >j-Tg? \߀EwO΂e㜲W83 \vR.|f5#ֱfkW\ `kMu+W%HEe n`|Elw-8 M#m"vWC]ebƟސA TIb;|ElwZ ĤЪkhQ&O$vk2.r #J9tCZf/;t޺u&Ǖkyl.>v'8ʁl9F-7j U:AH׹Jn#d;Ύsso@?v'Lg|u_7U#KjœIwknedSr`\U9[Ouw\?w2IvZO3ij=%7dӷϳ@:xjv;b{0XBͫC?n\jeݍ"GD{9ww`v' ;Š]dpf'['>9D oKOnQAA|5BO?*>outT4Qx~QSXa+d?tcd's7o'YR]lce~Xwd--,AdN!(o8 RVTz9R5lE@k[87ݯj#7 BJ}~g,HE ePRMw(6wJN>"pTbF^!FKxM Q2QW,uˑo?}m?4:2o'n%B#vuYTgHwq_&vQ6Q|@!ZJΊ˾8u$X@!+*/A PwpniduL(7c\~P0:ci qX~Q0ڃױ_ ˘.F<v[x. &v0y5!+6t/K]}~tYϾyj]S",jJʬZ]v;Ewߢ}Ό6۰p,v'CVԉPv,U*#JX]}N>;rLf>+$ڂ \Se.f] >O/b_t YQ;j9(BXIZAMVv^Iu..+J{O|pzN{>q:z_OʣI|ĺYN.J9?SVTܮ4B;:"inidjUN 4:-@2 ^vs5 *% ,֘[rhD uA AF%[(m{# ۔>nWoSB/^RB?^#YR+qjh ]-DsO(펥*RSCeO~!|W * ؎"ANjtTOT{]b KsY@GC*]'8kSmV.G4 (-@qᕅ|Elw `fMKPk~# NpM`&@ Ũk…©t' neJ$K#[hqGA܋zî-t{TQ966aVWC!TkD8__ XDX{]4.fx,txSmwn~ˑ(Qe<*ً^Ub XΧS?-Wڜ?:QaFܴOj:T<8e䒭/MN'mrP5/gKsZlm;WГ;>&v5 J87Ǚ!oZ݃" ɒHSlx[*Ipd![e)O%ruLL{.glS}dqj-W5|HTjie !uC-~U];v$8nTzWY8;YJ8ߘbt]J^yi.2>'\u|ls7w$^ZJy-{F߉6]±hZS*'zK3PlJp-c1b9C%u󄬨+ HJ]"DǹBx+d[AqWLUc>k dEA]#~+e?7|es/ ':u?ۈ}9{t;.(ٿ$K#V,V(事^|Elwdjk@gtղ1PMj`=nWilQsd+&XRns/ ؝*{9XJ?2;E{=쭾׭&\ҽJߩz؝cw:&_t<][n'؂o-N.ʏ-'UZf%ۢ d5r*$ xT>FʒsKvsNAR>vG䷜ޫ4.>5Z9 *s/rA98^ZskH.ٚGvs;&,qXW,j]R7Z*;dYpMB]vh鰅4bI a\CO%UF VJ= ݠ[ ~U)?vRsij@4gCrn?"fTj?*;Pc5m l#̋oNɞs<~#@yu~.>vhʎel;]Yp5=tY/;Do_jQJP5vrְ/ݹ ytQf߂om&`XdD ߔ("GA5HUKۂ"t|ElL#M7Rdt֭_aF&0٫8JVQvt^şl[Wjy [#?w "36_(\+yŷ]. 9bDpKqϧR6}#؍NIi''Su\[Lg ӧ,"OUş\IchL8%/>U~~?ε@8N*g& B_\;咭g/G] v9p|q dI@/HETәt\ӮtkZA=khEVkNlBv,rQZ.>vN9+Kbģ8=1~ڼXO'8ӣˎ\Xc< cw{KFE8N6wE2o%"GFxN"Ӯ@M=ߐ X}j_F`,DH;Ž3SbifՐ^7vQ6۝qUFC Xr` )G%d.đqTݳKw.f[2o ~qC4Ƿn:#e d( ̋,ZAx9 %[Sށe虆ZG.sP{'@Z76͵Tbs;XDk.]GWzkM09PY O$K|HZ>7U#M6۝*TOCX[^%Ǘuc'㊲YIsza%W_]vҭ/%,_9B;o1Q~Χ G_8ꎀ]r D]C)3t|%P?;V7D&{~o_dVxS{N6 cGx߷]vcݩQ=t읿h7y׭, GBdI ]}h-M>lut m- >vuGd:VSarWLKi9wQCdݑ%9 pXUḓV-YeȞE]e *ȗqȒnGl(rBfW~*50_]&jyQe׮\+dسy%[#`Ul޾x3/uV֓R J ,)}}(B7(|s/K!؝qO RycrZa[QL'YR;kHa0tɎ{B}$N@$ftb'x"Fx>$(KjPXze'o{:&߁/ ]nVRcIe|!9ߓ=2{صT/ޒnv`{dm~>ANl7,=;p%fSL`v,aW^$[fuqYP1˰V7b;]Ո ġ |u6:;_:UkwH1Y`.Hw4.fS.E &A}T*") hYQ'J8;0|u$vA;W*;˻(}l'٩ءz9z5l2l;@#bЧt^~G1 s&r:ǎ ٥|hjj*d$.ɯ@4a ]9y]LJ:ҽ{6=Ӿmɒ*RCU&-fS #{h¹DCEbH;4Rєjqے/]KFmE HWӃS= [WĨk2-`lC~Ѧs_U{t{^$рu_:Chnc 0Z _Oh$~̷~+@sܨ,hb 3ۆSzJr OLnSs%[/Yvl#G_lCTn{vם~yVvb7Or?UZZ֏ F:2wä15{#^7g'*)KyF*@PEn®=NT;bPD49?IO4wP;WVN\B_Y_YZElw-,ʚ[P>wߩtCvr>$KP8, Hɀ5RfV]X?U8"f.]=dE=Kl+:.]åcGz+Ku=z_Iѻq`ѕA==iѕ'5l7Xeh3pMWxɒÑPWK$pnWʍst#4n3(ǹ%JDzFP7YD,K&7]L|V`vrmvj8!H+:}6Hgޖm 5rƺ6;ޖ|J,(,TD[)b+ũ4d/~P#—aV`jHvdF:L Hf47k)b'@Gb#ŭW>灿-k{KE(YR9HVHwC&vQ6|mwfNto6w-pُ$%|%B/~(N˰{#yjwsn_њF¦lu -55Q u$KzQ#g.5(U$ݾ&b0+ǢE܃ݍf4(*Z$ܽ\݂(0D,I.lJr8 MF T>ȿaVŊsʝm(NxGn;_5/RpU' ,糮FoϼO6ܔ$|\.R{[%ƑIwTvQ6ۭkOvc>0w&ږ=RAh^YQ#Dﲖu_vA;=)X$ ےƊsƗDtGwJcuQ}|.kQ}n{Jc}{Z6w#5VtCm eRjsHI!-.R)_vէRnqIowoN՝X+ʅS p4{j O7<ɒڱqd&cTݠ<_ڏݑ](Ζ9^q Qʗ`E\$YR;Y/xOv=3pl;Uwb+]' DPdԜnv[P-Frz4+XNulG~(`D,2X,`A{jx:BXQXaWUC̛t{Yhtz~ϣЂ` ]4/${݋k82VtwᠹKvh1WSY8] bS1ֱd26TlwhשBW5cΑtka3Z3K= nf F7eVbme6ini)e ,oe3΢vRLYnmmJ P ȟHT`FZ]ɧ]vsY̥;leV"t>"!+*UreU-u[->cwJ74F$U'|)|)x䣊IxktZCW]kTsO(;ҽxF9'OvMtBorf|oVwP%~#8rf!Sn.>vǚ<׸ѝ+w5Mw[7W5 %o7%%!%eUOw vQ6۝IId:#mɒ:rlȆbkW ݠtTvm9/v{勄5ٻ& $<2>[şp?krO !&vQ6W{{wk׺ɟ|,pi!wd'.fN%ldq͝Jpw];*%6my*95S n‰8N%&,-RgO!28 72&Q Pn?ζ̡IɣGmG `m 밶C $K:F:œ[*˽~~qoM>.P~F_"<$KVP<㲟g(t>o#?L;rI)&bCQ_,%"'#PǔeGNw878Yu,1f į#j?+YQ 8"tGf&vA;?O<|F&Jߧ2IXdIE<eS,!؝};6&Q.6@0V^|K$KEI*G*h֩tDknie Ji+04?7 7+QbࣻdIy{xâlCu{{x|ElwB@;(;&r/!,qHlfq&ؒd*rNjP> ֈƢ+ٜ\ȹ-/̓>g-l5Kkz"F)ErQZzzC ],me}˭F[3^RϏqBC#qڭg+o\3́cS-ң4rl ݠ5/K!؝Yrc2Kg_J(KDFWXpD`C?v7:bf TrPu2*;FP5"Dl#%]D3:ڲ֌-R[+ư.K*%q5ex$7b2|vl_e;! q/(肁yqXݹ]kBt!.@ץ\)+"I+> s){9@A 3%>q'z@4(*}tZ>&y"?FG,ɒJ Y4 hPɯbt{>4hֈ41Gq  ruIv GR'=;]̡v9FĻ9#9&"R{JT:p"*qKnZZg0f 岭%쥻t/T wf<DžJ>]E=z.i|yZBR6&j{u ;زlƁϛx$Z[]I6ۭ5ْVZ;T-2GT yFXTUv60 ٵ5Kk!~c_sdzjiMb+s᯽oјd`n pRRw쩥7fHS8#V*x%٩mUHkR]ֲ\wM~cwm@oٳwyE>,7w^vMj\^$z ؝ tz# fl;ݳ#/Th֕=t >l;o#u#Zzy+3wVD;"x3gqܸ`em[UeWW^IhYabQ|]o#R7tg}pU]cSOX.fn k!!\%Z`uR*I GWcnid}dQvv7W`olMwʔ ݌ktǚ$:m[;9PQ9 5Q#ҝ߾-9%NS6 ɱAp 5K 'VHָx&RY}ʟ$"E{v5 kd$5N'{|I"bk{O >Hvypr;2=B7(ң+eY7L,H!X^K >2%Kjbđ`*6EnjYlp I'{㘔#V~`q88ލ#KltOo]$NwoJ3ʾ]s>8ʊy l:!;?=ucw*e4KE{b5Ke*bSJ.҃POw =[l.;70_t&u #>Zq5Cm UH)A%l=[o9jO-5>b_r}_DsO9Q>b.k߶o&W >R Ґu&LlGߢ<ۃ fZs]x]4|nސ9~y FvۈUP[;7=rJ@Ɂ5dI/ znفw{azN_?[dI]ބ`h3 ȝ%=8Ie7&vyQMDz>8Y@nX#vL`ܠ4b:ٺ{ҥ>%f{Й@Z7JKvFW:{aᨭ G%.ɧ]v%v'v keq(SUg~O=vQ;][Xޱ`c>v>[u7 GܗUh~:]}N̢^ V2?LTJrdxOНa31˯% <(ܽB%'9<.İMRT]]k;uw/?v3@aD%;:+ s,(ɒ:!Av Avm{{ҭE ̦ d$/j3x֎fҪB]z #cwEtīLF9Pxhq>av׭ҙC)Q.ѬIwkI ֋=%J5Q~;dA$K5[WK$ b;ƨLwl 5iro|R\SLvٞ{x[#o6o`ɒ $ԩtnr8$~SٶT=R{! Py[ɒr64O(gU=f_Rneo1BLO ,GYiIwḎk( 72sxFFgdd.@>%}H5^EQ>O?v'_֩|}ׇq[?y#*]ޮ;Lx78B7(Wu%{G,/:\òB[=^BA\V@_Em]vjgV"_uEeȶT("H/5rYR#<^m$FCKlnr4M6g^/w0^*J7tJ 0euZ*t T$˙Η]}ܖ@^TEGG.!4E.y+J"ldyBv@#[|El1UlsF9gǖ=Vh?{'O[y$ j;ڏ mn;ZVsOK)~!LLT6|J*-+Oztg3v=#=goElw\Ժ1s.%uh?b7` `vVZVISpc+- ȝȓ`p#"NBh YQZ|עwHrv}-̎_^"׸OFOQgz1>67dNn{N-f4kyFN`" @x'4(Kjx9X.64G'S#|Elw[~ŘV1}YlڹDs\w*ŖZCMg1Hr,6a>ٰ|8`ƳZvfChȤ%I#Q|o5ƨ^6'rִm1TО"a0maؾHa0q/D/Ӿ\ǣkD kH.d9IK DemDT<BV^LSaS +fS$N.+uX׆'.t6Χ5VMx5d4M'ꗎegV0bG&VQf痞u fif,)uk )[~^0%'lwzEkAvEs繉dzT`j6) [L]-T$`SR(*TSY$ϋ8Mk|>%U[jg'l;]W5lrΨr 9hy.j=dQ]]7S=5%y@-שJ/u|z(뾠<֐^ӝz9wSt&lwmaNe⹼W@:n<5Cރ`'٩5j8Вq1Jgqnieii+H} J{[B|m7ƂZy@_h(ܴ7ZA药׹f䒭ӅPH+' ؎vDFQyEum!+8RX$N;[)e+E_Gbu9 X F9JPj7Drp^-Yb+teWi%?_W_篿OOȧ|'_?SjSOs}ʿo|'1x[c :ŴL /È zC><+d/+Kw>Ŀd{>I&cA4O~? @/l>3)#Af>a%~PuYRMA+@MwQ(.I6ۍb. tǵ-U"[։y\P0G<&Tb4>wo`n]~-&~䑆69v0T^YՋ= 6 sO4iv} Ÿm}wCZ[ޔ˒q9ᡡlSt67˻3nܗxFow`>"z<qSv%WO]AU|Ļ0=Ցݠv=sO(t;ujv{@ϻ(o4g|9sYR# y씝Cݞs/ [`|^P{H\7=e[nosO_J G\ @Ek5d/ɁhQVFص@$A.Ճ~V0<^풭_C|c$K*~\TFuqމ_vAeߊmo# |?wqa[8ZHDUBGrP+ފgNri 䲭wPKUC(ߠn18(ǒP>R8]\7)k|ٗݱ"~ߞK^m"K-iZw1UbEH{dъ:߉T}kvx5`HǃkY6+Аq|`?Yb%,)D&[ 2(5&vQ6ۭbPyZ!0I.omQp<-rYP=&>r;}tҗwRfZ1 }dsg$GY|ϣ>>Ѱn̤sO(N9kG|*Uiit-v!qQ\}1՜!M>l;ޗVu<ur!Dr=eI9,uZ؉]FsO(Sʳ+#tw1(*3v ~dIy );S(t{)}VȾξmT:Ļ-J{ۂye-g5Kn=c~ Gvۈ򄷵z[۫R$vn<= ~zGvZ8#2mO-I\TKv$7?)67˫oҭoC>Pcg 鑧 dI#D:;]|El&H\_*:&Y__N\_N$ӊBlwxND*t?,jǟe:?MJG!G%Zy{5>_yI.̓\5-zn\4)rZZx S''沤tmםtmZOΗ]Iy.T/79Ѧ(-xj\TG!w7UB7(mUŇ]v6;v#9pCĊEs%K*k@s(۶PmvsOK g T?cg>[˜[DaP!$YPЭ_F* ݠ;|Yz1vn=c d5,5@|g0e\TQF礹=tgvI6K/o GWMYq lXފf%,}~Н\/[ڵۃw6#M[-&Jnۖ|$K6#Eۅ ݠ|۲O#׵19ٙ&%[ݯ˒(i#ol:J+ ŧ]E]%ֻoե{9Bݦ)tUUY],D`%d]'tUv1K0۝_݊~ މ_wQ~nUɒFn|CB7(~].Ⱦwߢe#8dnD޲ߪi\TFF"wZ|oY/Na'eߏ<2({TnitGx>R0z CɎMc?_J%Uf嗂A_ie_v銌F`>7\XUItH[m#<}Qv n]vutķK9S},u$;eˎ@lkku!&jfǙt.ndNu"h*ignwW`ew;n9i+/vzv'+ֺv9*?^2p++pmi]TK+xusiAzt뛼̲ G&0;[ a>r 9L\Ptp^WTsO(N*#M"۽E ]f#塰|U|nO y};ax`c{EL?{ݐ(>6e㽢ZFiWI̤d!h<о^1+GqW cn&,wB֡u 4Nt_6HWj>_wҜϠ"eE5!"Hh>%Ee2>wQy ٗ?0L9CH X֮(]oϧ|u !".IwUM>j]Ԥ[bAi*og*息~?LKj9tu>C|U]n_+Zeo;׳!Jt)_ T}8Z9DZyt]n]Ξ3M#CYvQz_ ~{.ɊMW06J]ݛFʰ$v-C1m_|R)j$l>4sᚸ,IWeфF'1jnie)! kĊv-)'gz(.~@YRqrHEe<䦹]}ٝA{ݿ{ V4챒w4ukZ;[>*aI7xiWLVnTK Cb(AvvYRQH_&" 2BE< ^Q:)>_&R +u ~XZ]<ɧ]UVҭkyR7zsF|H^y,p@Z-9e(u[vЯyl;ݗY_f8,h`%).eˍh GmYC7(/5}%ݯXҎTq֤T[DX+7Y7Y4ۚ{zO}ٝ=)307`Rƴ=|+Ƨ{MmxWȾNI|&k<ՕX->Ex_ۈ'2,{7+{AuI6۝Ş6וwJ{~HVTnF,Q'nPi|Eٗ)^zldICY%7ݓ*,)iKvСANWEzpt7idؗ#JO H'5nŊF+vl]=L]I6۝bޕg1=' ?u(v}7'j+HnP(;t_P#-E;Õbzy#$K?#U +.OE7f}ґ&sBR(uQ~l;|}oH?)-wu,ye[nPi,t~QF3DCT>vUcˑ-W{"K#\I+Qw"{D%,]&ϕof;_!"/[[/"*޼xn0C[,#?Ny}<.iݯWy+^ ae=t."¼dlhߗ od'0\Qz)~PqCVȡtbS-ׯb+6q Hٗ|#t!㗜-"J~˾o.K*\4\l@PM]}% >ѽ>c+CxO13_Qv7\/\l;;J tp_X^mVxi)$٫Y;_t+—nǂɟ*t_p,i^٠~_%UkÑv- YfS7(/%SRvs%#+-Z.F`]d'Q௹ɧ]M1t .4k!*-3THxfaUUOsORO1Ԑ/~kd#]XHY~` Bw`?4~Cq,Kj$[ԆtG]&vQ6۝ #dǚ F(F+׌2_+%鞹jdi GC9)bQD}Y7.KWO#M9&&K@?rڛdBWԉTP}r  eIX3Cv(zkio\ncNm>/I7ݿCKR6-~Q7dEn4HZF.ȾNd"E󁘱|4prjİR]`ԝGgzVȾNu+X} XcϷ9"Cz?pm߾%3zK{^,7awݾǯYVޒ,-r'lwwe303p?=u a:;=1u]שAee뤻gp}5>-lwa_1 #OQO.Q+~]矢;v$N08hZщdOX|m 6dI _5рx&vu2I+D6 O1%Jb٠˒lt%H5ٚ|El(_푂Zم}DC_& 8 YQQuµ`ned_vw3r ZgtmV?)+57M??d?q ??+7| ?rdIEޅF$˼glae雌Lke adXz6(}V >HXˢt7aw]|X:,F`^uؗNQ2giH6b]s/x-|FPl;H91zLj><$zRo hA{UTE҂O(<؁=QjZHW/{5?bT oGYCw.fZZԕky2ZF2経e|-Nk+_KkZZ֗p~X{j7|XSe=?[}~yc$,DzݱV7wxF&V?@ҙ#09-%5D%۴?bjO(~*|C xK)WDK %?sRBGRU\|ڵrt9-`]T6QoҔ%5}H3Oن[/]fO%fuL~~+W>Wsezy$Y?W&?Ε3d{z+W$lwZ#06b'g\s\yA}=}KTwF,jwQ,.f?. 1wOR|ϴ Ruݯ"<%K[αײiMt_}߇ LldI< hnQe~؝0TQ#P'>5TOx_?ToTQT4v -&vQ6΅Ki̧a%|MNUsEN>eU9:!vSWVU@k)ob36P{n!S߲/ϙ=cdAoT¹ŧvZn/yĠG>8?_8B%=*J$[)}|ElGH˭b몃}!E1 yS%zIj]'UIwɭXUU'fSLzN_ GQmЍ˃"%]t{Lm>ա[#kv JG݃o]O]TՏ#QF&vDll}ovBf}t~y_|%KjxY#l=Ewaw#S1qq{|e{~SEYR5H]e *ŧ]v>D K[6Dfyi_Qln^Yr[r+=Syܷ}؝cP5Io;k(]ow,(ސu]yC7(ߏ#tBdƹNxF/k^ZK'Vǖd~m++PwEb;a>`r*b!U?`b$U_1ulU*{a" $Nb2h_C5'tuQqxz,V%ݑۣɧ]v'?w]ƖηueIEGԄnP|%lȹ̚z&MK[yx?MlÕrGW ᢿj%zlw4B c[ i/r'YR٪meۯНZWqnie Zjzl7t±1ywfnrۭ-M/+*g$M>i4o0/%QT $) ߀O.B075oԛ|}c/B!/__N>%|}D/sO}ٝKu8FYTQ~_v,\qvTs&CwVn:$NgmjE>!,jmgmj2 ,9eE-@vR|Elw!a45/A80'e2[y9-IZ|5ra'A2oi)e//lΌD>en}؆_}nPO]'O]Yw@cec%V&c{=(' c%Ms7#/koW娐Qu|f;Iv陞 gq3]S@9Z8IɖX3@ 1UOL$LSe%YR5GTlSfo2Se뻈o9NǠƜ)ʊ A#8KZnt.ݩȁ,=Daf#JsV&YR=r)d+27YsWeK}ٝ|M+o<پ{̹b_g=M[u5!U 3zRZEl./@cEVlߗdz"Y4q_ל*qo@pѿu%3zL2[Lō}~uʒ tgXҷ"3[iniekqH4$S|>P~-;Uh^tW!_%l;#N.NLV8ޗуos.Kjő(ea2Hwkxd]]tyw8W<3ykaBax%}竑T,X.fF7|7at6j>S_Fbt'YR㵋m,voZ4FȾ쎽u&]?HGHKsxY(_Tv8麵d.[lPKt.f?;d's#(W2Н㕏h쳧ݠ<^ك~a}Wq}?̜|#١򍧺6gH#!O~ QV짐%fעmE.tY5ɧNwG9:SF+c|3hC~޿_=2cZJc݄"3JfgzOkt{Zm2h3,lϟݟ^p_KZDre2`rYa=CwƂ:I+$lw0++6d cMw==ZCc)Ʒc~؝|}V#Ȥ}m囏}MuDI}BydlM[`2Rj :s[1F=7G:uXvs$J}5WkH[.f3VIb~<8tx$Kj8,d/XG=_q|ڵ<#>=?43qZ}kyqϟdb3q#d+Sg{~G (>wwy{JAϗT%zzwMkXZtPw Ii*/J ٗݿ:yy=]4Rp8Bf; qnieݯ\Ϛw|TY'ygbԼkJ5=;gag v̅gNW9=$+jDbS.ܮ!ېX 9s [y$?F૿jǿǾoi;Sjd)Qջ,~~M>킟eث~cD&s ㏵Tw[Bϕ3?~'j|N;:_VkЅwTQE. L|qfGw|ZJlw&*̸>qHI8$m?b#W_Q,zz_Q.&Yg1V\Ovf"{ r1&Ȭ̏ dОvdOvmfKLAp4҄WXu|=^>خλ-nՐ׈7d<㲍 z;W-U6~Iw=ƊX#BlݓXj5V%n$RUzz?jjiXۿ8k8#\PceGɏAmqs./ kIN\sWu%iG^rNt"[qHA>> ʳ4Zie {DŽm btWğ=t_R :u_KԯBS6=]]l;a#]̾Dg~M(pi "׈dIؽy/ T"8ݐ}ٝ^KM@؂D,,qt?Iw 8n&za!R,l)lJPvaCͤۿɸ02.&qOQM/;Ob0|Odwv9I_VJPm觉ZmvizOԦ^uye\ ߮ZߗGNJ'r"9vIYR۳4Jr?>J.%ÜGr?y3i#œ@v-=̉cavqيhja<s{]>쎵#JZO`nE o BdV֔Ko:""ؓ_{*aw^Żڕg[ݯG/ɒ&*n0fTM#[-92 p{3o:. jD>FePv _Gsne)d_v2;Fa6" i&?0qIv a_'i!~+ë;FFwvq*J#u΂쎊(:<Ȟ+vD6]Y C7(ݗQ/ ;Gϯ$9+%)I+IQ>eUN}ŒfUݵ>L>LT>8#WRZI>J.=yu$bV(f߸=OTmBfx{z$zm;pvX.L9Ks~F> Gb-?yfēw3@Ô7~rɨ7_·$6X8I{"e;MY쌶ҞK2ׇ)gy 鷲f3Fobe=r,k]Z%k\'jM~ vN|?wZ_4rm b@vP6eNeIm__4HjsO(4,&$݉8n0wH>1샭 dUE3ւO(b)4R5 }Y;Vo첤{8LS>Od->l,+ԀM .9zxĐ#M85`IάV95˶FE@C.<5=a/prX/qNnI6۝R>­a©OZ;z;_~Be8Ss+zr· jHV0i@ <*bWߗ|6*,(HQ"ăC7(/#(I%95I%I|%܊Q/gguݾGY$!.K*C7(}>*vICXlI[PzQ}(?/'lu:!ͤ; .47M{|~_Gرu2,K]ITY4RǰtdY^KUIm*F\֛¾hgk}a㉅;,). Yïwӷ|ڵԐo&ݹUB*Z Pj6l'M>$%hDYqŷ|ElwQ;zxX֗BYAU2iJ}iiӮt'wƊAͮ]e.h҂o8g7ծj'lwNv|Fb_xlE$YR5s h!_>'$3ZZ,_[ F4'ZƸnsO(~Y=`Y]\_RX<$FtQ͎ojݩ<[_i>HGn2T: 4q爏dIhF*Ɣ-Qw_vU9G-ӏ4@n0 ' O'KQ,J'8e)d_v^ZSC%b,*Kaz^JjN T"I˫D^vkqtZe>Ǒ 5p#71{Q{K9Rk+rNri䲭 HJ3G"@-vy #Ԋq% jvTR]!@R[P#GU'հn]@SGgX0}E17dEȑȓy]9nPV>ͯ }tam-|,C|*ɒjd]J +Kdsniei;}S.bD5ȅ"i"jV۷ m*3w%kMZ͛k`˨bSpSTgL#Ş]w.ȾN.|w~|s4gQ/YR;bYBxO.fc%[.US Њu,-.i=]O~1!Eg!ȏ[%Zp뼱!+*+etGI1[et_ E#Yyx֏_R*PFPm+YTJwT\vQ6۝PxL8Z62Nc/Q̇(?#Uh}l2u@`.fcߨ=.*/V G.fn_7ɒqB5e$݁Ȥɧ]v &*GlDd=DiK'W,3["haeY/KH ;|LQ6rL[νJBewr!E]ļ+ z2vNA\m]puۑS ╺[U[/+e{`9\TKYR-5r '(t>-wvЧ_;_fWTuRj]y()ݑRS#gW>̮_Beww#DlG'b`ԏ ZR[In6v*ݹ sOK)N{~3?A["O&;,/eb.ݹ_zWVRfS(I+:UKBat%$YRC,|Ms/ ]Q4gWpcCn"Tή%wB3r18Tdݱol#81X(Kʃ>3d#7ɧ]vZM#Fơs2}8,>% 5rlv"tNQ|ZJlwBCgNu7aglb7&Wߗ%zLqnFxq_U9 A9ɻyvF#U xCsO(~W?p".|#׫(} i֠5qɢ.R57f%~~a v dw` 韯ϐ~ oUl3բn? 1-vg9߿rH?fS!}vh_U_5zG3I;:inv]S޲t{S#ѝ:P`7"BlYu~#rjĻS@@ӮNșPn㦾E»-tztԈ@![\*tztaբY cF 2%RbN$ʷ1ɒaZrD}S5{OvS_GJ`Jjy:i 0\>#Tz sZ t׼|մ۟Ŋy/ī9hoGzA=zȲ6[ESI6QiT d:=D?f(9;*1EވD9Iw+.f7Nl4rWr|79+IuV>!!+jGGa!;1 [>8xFPc7B{7(-T\ɒ*sY֨deJ7(-cr/KTus@ vij8&#3!TbZwz_/iНšo$ kvZoN0{{ D/]Z.$/~s\W^wvOic߇#Ewݯewa3|'zO|5H,B $>[Jf}mwT+׈lݠt~)+Jg.yh:L%/[[GJ^{V/y٢ܟ\O(Nn~Fu;EE9?-sYR508R5y6 ݠo&_V(& y.ߗՍXpu~@^cߒl;+WCUWfJeK'nDq6wy\UU9wBȾN>g=+켅s#:oou frwӏ:Bx:{UO(~8:QQ׊wuX,W ̃ZB;p!}7]x|jG|4}5bmNIc],WX4#I~F[|ZJlwʵf|u,tfnQzÎu>N6 9;-k[{e?#rj޻_~v%Aa_/p(+jzFy{'݁*ɧ]v.;0uÊwMā'!+ibO ݠ<O(#O)x5BDݒwS. \ve&ZM/GKYG l^=vAewʃE.Hyr'&. D)b3Gvdr.kd=ݏɧ]vǫSˈSL|{"ީ.ɒNu,#TƝcOsawzƈ袹;DQ^_μ> m&ٮ> DlW)vp,ݞt{N??Qy7MNoccT♾IwI'{PٯKs?cYNjt1բ[f^0q1+Gkj%iܓZA؟bNra 岭n~#] rs9Sͤ9׬K\ZA|?<\Zlkς*I-芐ӹ 9^@y+kVAͫG8'rx'>#^ꉏK=pLxKR-l}K͏/!ۼ|®.tShWԽp8.0y]Q~GqdYk_. (CΠCpL~I6u=QG :O]ȝ +B+3R(@.Ⱦ~O=JLld'P ؄db66=e t_{XNKTG {D ^c%R-t'vQ6۝ mm@{牦rJق{$K;FKh)ѦSsO7K4b``i3~wP8h_շ%ꐎe J=ݷH3|G63R#y۶)u{P_a)ӍBEශ{dI= GkxPaޤ^,>kKօ"3DC\Iv)mmƕXbEIwjni%noY[Ñ23AgZ )[˒Z e Ơɧ]vGSw,+[)8kb3wPu9rdu_BewYX1Vk{QTf/j*|6~G9eIuJϗ.Ⱦ GYh`9*–[ZMTYh`ױPON@PO(Nh h&Qg=̳_@krorBiùǡ]EP3wH;ұ[Tx3ɒjʒ%[PJ0u$lwrz$Xsu! DaPk97H,)qAvI6~ýZ}>m^dq|%O3AUo^Cݠ+R.ȾN{bc,xP18pX`bs%bO%hnie?^JM`pOiEdv5T?7Jw+5ٗݩt144A;!FD)ɒgL#3DӮ"t3?r?'҂q7vX< N-[%,X;ѡ>.f-OHԷ)Ȑ %JR2z/!>];wvwL4ݿcL;} F QՊ@hH$+`"$HF@_vAew/]Tlo礼K|,F|F3鞁̹o4l0|?yGύn,A;(k`z;`47ݱˇׇ4ڃ!itl6^]~i&%YR%s/K!;/i*}"p٧ @.?, 2ŧ]v{%ihhb%S`pd|Xqħzvh3VصԪ${of6,W䵰\n(|tWt-E]_4bXUMV׹R#v֫p[Sr\;KV*ςΕ|ٗ)) Q4&$v UGz Glɒ 4{Udէr{v1_{E>7JX'YR%Hk9eUvݠ3|%lwC* W.MƐbweun~ S\šl?vr1sՅz(Hl]x%_Y]TsXBɞcx.vQewb%0A+x ^Q{',10 Ya{!$N@I`fq?tD Z"hMc#џp @DEzDSDM>l]?Ҟ{< .J!(cGY\@|]}l;5KZ{22RX^>}a z5.ֽɻ|؝}ڥ>, >W.[Ǖ>_:PkȢo_*w >A$&Q=?G,ڿ]Ε h%f#|F]ݧɧ]vtF DxP(.}YGdIFs(˝/uל1gie P"Ђ)]%}i'ۀ`%KG(GXJYKr5JF97[KҝsGvgx#;Ayywhsx8J{DjQf3 3 +{#<@[тm,YRMr$3o_vAew Zxvwu40xc%x dIhF@Y+L:?7J;4?f,Og#J>wdIF*Δ-*lo]Kvoror,bO\`XDʿ;v4rYRT#JjI6ǻ{Q K= /9S؊xM{RtR6۝r΅?HEGcEw_א%N9,ΆҝN|Y ٗ v?(u~A$;aNj/SlѹrWڲJ[iV }D) Py#EAESw "نNT'7M~=vypboA&ߗ|IԈ X(Pv*jڷ7}_m7$o}վ\tWSʵo[?B, {#ߗ|JsYR-2[9'rtE+fӵQW\ |)m `_Q~-# ʒqHG_g6Ԇ, `.f?|Jk4L=uC֥_g=ku|J8l۹^>II69$5sH: >T5|JOvO/mgݠט|Y ٗ)y5 ~۽q_%5W# dK<JsO(Nm߶~~.3Sx z6$K*y9R8;tu >l;*v#cga@QCW[*#]W~s:>1 sj`xI\!dז41 b''YN)?\5tãaw|5S#:SZ մRV.:vIu|na|F8(o4'5A1O)+qlR0A4Z΍ΫL]vRᛉF7v-٭|},ؽiDMي3uMsO(@RL;)~j {V3Q_Mj 8PT42M%&4Mj47-gֵ\wL# Ae TߚTpZaOA1n6Kw|a /os]rRrܗ'٭o Z\vWwOȹbٍ^U4d.\ASsyK\8B$ەZiߐ  @C̞}?Nke7{.Ռg]_nUoKE#RH:S& ptӵL|ҵL^D\6盢|ݯGmdIuHC.6e'#jIOt;"R&bL#'RMR|7u*;d߸=&^#ߒ1q-fS}#e}.@>J]-u)5E}kFp&ݯՑ`2W53uʍ='*F WV#/fWy /`=@52eO{u,X[0ʾ߂w`yUgdq|w'p9}}%hE%#z5VIw"_I['9.]Fk [l#M[ 7ax67dy-ԝe5f#^٘#`dL=?T7x >j%$Kj,,G&Y캫[jned_vbϾ{T+P?ʹ]YIwM~Sː?~|O7__ߗ_wUOo矞r~'jOu}~}`|},Mjv~m5_1~m?__` ]{0T~/~?-??=W.}KZ@?߿׏UL}ֵo _`f /b/^9(ρs|6Gχy3˿!<훜1$<|R^Bx/ g?Y;?HPHVg"F ɞLg@-jœSm4$ABKdV%fʰ"6H. OtQ ,)bzJIoݠט|Eٗݼƾ4#Mج0iKS >7Z` 7dANNaeݺ5!|́X氟aНv; 3nuWнmo@d%yɾֵ\p G{&략~-dI i.jtW[T}٭>ҀRw;`q`?#xn YQU>RlIzQR(gHs/ [eB<̫!9̃2=<ο*܊ 5OYn0N+AEqcO:78/A~,*&ˮjܚt;#W pQcSDX=I|,!jvb'S~}nie@经q}aBTQ諷X-YRMw¥5قu9}nieM~rTzJco)/[xn]۵B2YvuK]Ԛs·f_$Kj}Bmʽ&& &d&[F⬡OeO.+6mDĻϹ =fc6~#@{vlTQzjs~6.KL4Ү|i ݠ|':O([ײ4y ;o6QșsBV_W3G9(}W>NUl%ZtHUv@C/|"o ~J?A95 e~u^.ʾN䥟GiP>/LbbpG&YR%/GC7('W[EUb0iv;^!Ҋm[ YQLPc֛t3_vAew# JLw!<= >SV}{LE\Iwʽ][}MZ>0K#Hb)&m|U_w^;| {HRȾֵt}ޗNTM` U/"e*HyQ6Vk{jv}7}];-m+NiwzϨu.@R.Og9׹j&E(>oܧxL 2/A~.-]^%{rYb/㹰 xƮ>tS.HEi]IBhsdRV=cܮFmk[oAl(JOG=xߑ Ȏ7RJxwߑ9厵 3#?sEz4)W% {.ڪtάUo:,wcu}0`PNew#ؼP=k ❾}έor㩉bL.Y[}60ʭ  :}yЉ&~j+}N\p~)f=wuPҰ)"vmaS"7 w {nQ%w^Y`ϵi_O2{Y;]C h(#7a x7%zn~my"=/Lcsi }b|Wزr_4e4Mm%빫*} j”ZCZ6% eTӴ ;NJn"2xqt4YAZBNHq-{.Tzm; ޻q6f`m6fztSdc ZA7Etţ1COx+#110N%b;FcX;at̼[)$,w-t>ƤG,I=v໒(m[}R1fۛnhzKjkkA13A}4/Zv6dsؔø|e;Q}F\xn\lZpP4/dLsM`n1h=J@q Dr} > f=J>W@"[A kIL S]s/@;cۇÊt_Tv%;̼O^v +hmU /c-M=2sQp6Sq'x(%U#ߵi5ZdeKq-rqAឰKPO i rrjh"MuѯDsѤF*zծg{^gՅ.{Sw󘖐KjApE;Bs_\r;Bw,EּUޱq'-lHwM,(wD6hn%ɞ !dķxuYMvUmAVhY1X[r%w`;_^\cqIt_VPG\Gw8% j%޶Z4yFQ2eZGW:hu W*ޱ͵n9!w<sQl,čI)`/A)#$N]);|IBTAICd?|70ߌAMm+h< {mK&xl}q׹/[JܗoN:~vqk*e:۟9Ķ{Fl{n =RGh]\*NfK[k!i܇"NRNG|FxXyE }sq)˴OFCs[xJJ,w:_x|}t"OpTFm3j=To4T#mC 9d}OH0:Zӌm_KjǷ5Z ς :/Q\aSb!VJ٦41-Eac(&U%*s -LcHikQA D)!#QptxTx ZF=/mj @;2`gv #iCq)]D;ɰ~$#  ?_6˝1xo7-_nQߗLS+ah渡r6˝tK.:q'b1O|K{Ha6OUtvYzkd Qc/w%ZCѬ? ހ\ <"m; JnDӻ>jtSdqh%(pDQEs̐%LހtG)ii-ya߸-y-턫x{-T6 ހ+𔔴Yt#`8z GkĨ*==BdR fH9vĻs/@;SyLJ\0؛+Z7[A+h_#Ch n&r ucp~a)/g)0gdEF+WP7m[=(EcFC)NJk}ᨸȱZ5ra1ࣀgd1:s&{f׭<ө<˝EydF&ģʕogAJ4Zy^Y𡬠r-,4wUU;h_r'jnEd37maoc1%-ˎvT%퉷1ޢ;⤋ZFV+9k||[ 4ox˛s )b28u(3y5??t뮐eHQOيZzx>]%w0wyQwS{Y겻vB^?ϦJܪ,$tVrn))i̦̗f܄L9ڳmR3iZ;^j&}y#/5^T|=^6˝E=LH7sus /͘_+3oy-\bZ="m;e-E)[y&+i/\؄>~jRU[xJJ,wY e=HڱTl TlZyV*6K@]==ZPlĻzO>YAzADӜab|Wwכhwj \{ecK'#'f/VX 6dOȲ3|INz\VGO[ mEr1% ˝rNjXؘNK5 -@;]%K15aISfeW/?޵:l\aZ]mJwק߼};Hv͝x׬ð@jKdalC8 3KUmJWBU6oa`kʹ+xMi*f)/ ?3vt0w nQ66o4הe:cG[%),s\֭1sL/H&//%H1O1A7czP>Movx3`|;7f>Ɲ0#ww~;~d 1 %L#o@ُL$KnVDVh~ƎY0v`A+…Ðgĝx^rJ[;\Y7h+3O ("\4>P~r6˝nɌB== 2vŎu3}UNWeE:Wԃ%w'{Sh$oL%4m|6e8ʏ&~Ašr=wtCO}J eS|h(JPvP6'/%w| R= N,H&]fD\= p`,6h;ZQin))i?Ǝv;D0^1bG#uGڻbGo*4bG㞷z#v;.<>6p)P+r/Ř0g&ZBö =cDba HNvp(#(B78|ݥՍ/hO#k|;\+h_r'{2 {2 a"ڿjqBj~*lo7 z৖?}2NJ{{%S8j !MK٥K 5rG~N4X~wGoz0OCр#NZ4Xhn<>Nux?InYWb"+ܾWuMJֽqU47Cʫ~9=y^_#,_l67)'G'f9o7}n%ޡinkrƇ)u~g[6kaʷ[D&cIdQ(օ&[2Ie ڗ;t~! t\-%ZBݻFz+~r%U<]%h_r*G7PcP# OjQ_,tnҰΈu*wx57 /ӷ1[j=e,rowzT<ڒxW[!kY__Fm~~~_O?_՛ޏ[_.1ۺ"4;Cp9%A8}4W$v~q)_>"XX ? cjfNspu6s16_IĻ<ׇ_̉OLׁ 9G؟k͛n+Svc'l#? Ivk$G琶BހC-+fqpazfY*>t| gU7\ܤ% C@AӞ Bv&r6ˍ] GNb iuڡĭy]D- \4Em[kJk1"u_ؗz@2fl;|P*Gд6 &~zhΟ=yOzLv;ѻ;v-Es ?G9Y\dPmeo]rh5 }2UHxT_!-!szD;Nx:͹}،#1X<{ ]v>{\]5n7nڞKׯiڂ|L~=!-͑Suô'޼ ﹉\rs sxO.?othv|J3hsډ>vjUI랛xE,wJ2=YI( {<‰}A>_f]j \96;62CyWc!hM_#G\J'O:_LvNwA잻',ުUw^4qnn H_ԃCȅb]hЭrǷ/oa$ cu8\Sch*K+~if7>2[6+2#7nshS 1bVꑣ%h =깉\r>u} (| }%Uz# ;8i+vpjD้\ro߱"|O$KY.EIRVDKh;m;oo0ԙfX] {kݯ;7nUEa H[A{*w9칉;pГ*d/C,%mڊ;)y׸6e+"m; fGƹ)~S[u%}W;=]hh䑓xde`UF?Z^ydp|oǝo৊_W@oFNiODyWxE,wcdS9ϙ:̷ :OY-9L{ZIwUDM| fc-pt`/\~$ک@U'zݼ=7񔋴Y^:c 9OvēEX@^_S([yDJTr5oFO>iCdSj|9#DZ|6#09?&޷>тV#'ѻY) iT}<_MpWA^NF+ZBn'M{#ۉyn)iܱD'O&wW}6ߵRɳ4lY`SҼ=7񔋴YR_82O:/ 7 E#xdSE6ȦD<%%m;Zo싷-)ޓwa3-H*QEAB-<%%m;NmG&v ]+Yi}M?!0}lTLkL?o7O/0+ endstream endobj 225 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xwTSϽ7PkhRH H.*1 J"6DTpDQ2(C"QDqpId߼y͛~kg}ֺLX Xňg` lpBF|،l *?Y"1P\8=W%Oɘ4M0J"Y2Vs,[|e92<se'9`2&ctI@o|N6(.sSdl-c(2-yH_/XZ.$&\SM07#1ؙYrfYym";8980m-m(]v^DW~ emi]P`/u}q|^R,g+\Kk)/C_|Rax8t1C^7nfzDp 柇u$/ED˦L L[B@ٹЖX!@~(* {d+} G͋љς}WL$cGD2QZ4 E@@A(q`1D `'u46ptc48.`R0) @Rt CXCP%CBH@Rf[(t CQhz#0 Zl`O828.p|O×X ?:0FBx$ !i@ڐH[EE1PL ⢖V6QP>U(j MFkt,:.FW8c1L&ӎ9ƌaX: rbl1 {{{;}#tp8_\8"Ey.,X%%Gщ1-9ҀKl.oo/O$&'=JvMޞxǥ{=Vs\x ‰N柜>ucKz=s/ol|ϝ?y ^d]ps~:;/;]7|WpQoH!ɻVsnYs}ҽ~4] =>=:`;cܱ'?e~!ańD#G&}'/?^xI֓?+\wx20;5\ӯ_etWf^Qs-mw3+?~O~ endstream endobj 231 0 obj << /Length 1532 /Filter /FlateDecode >> stream xڭXrF+p$Lxߏܒĕؕ2sr|IRIeٝa"dv<%Q*Qv%+ 3׾2jzAT {]ZX=M%}u(jlJh`!βZ|~2qɬxt?z6Sϖd~^USTh0JV^Z*[MXxz[/^x4b$^&mp @ \ppk35@@ki nk^\h{IrKWcF{xz I2!:Ӭ#( R$)Cu6m9!Wil!Zq6Oܒz0^APbHiKLVGJVF›Ǹ=;1t? D>R4 >mR3%8sN9--mz$n^/h.יr[#ǃ:U6d6项I<>2k >,&~戵j5w[68xe{uaJ̞P?rI %˖[μ}NWiF*0( +HKf)qa4u{`XTh٦=l^ /k&=SM\l* crDpТhMpe.>Xݧ5㖻ߓC׎lHp}J?-fҿisߕq 잹Vnt*[LpviU_ͶI>huBW;P&+^^C>iAhV:w8B-S ĴQhL{Ҫܟ~Jz6,tX1| ìN;5f/W-NRtG՚p~QBNǾ󇽓"%9^MfJX8/8ZPf v.8sz޸*A^:y9Ťw'G[2ss9:+k VD8 J,#pИ.QMl}e p#@h'1g+*12c@.&KE #xf#PgdgP#&0A02>(9a"6 ́ CKrJLF[5Tc'j,}uep6$2˾ F%U(y p&e%T互L`!g&P,,Zdt0oLw[:\_&^9~p]=:DRdT4 aMs p)g*1CDPl!<% 8㊷?M#L#*p%aJ*U*F:'o 4E.ҁؕ~B Kg2^PY$%`B2;;N9?8 endstream endobj 237 0 obj << /Length 2072 /Filter /FlateDecode >> stream xڭXYoG~ׯy:c XAp0))jEG~} Gda>[VJV$LTPNUy6g TRhrS 1\W~A TUVHOA!T9q+0{ kW&$D 9FDQY=XTOPߋo^*䵯.+eP(_YV~2$'Sc߻_˃QW__R.U5=^97/Q!TS1)x1In.i=x)h)4mO^To2 o9|el '`Qs??Wp3ѡƉ|7(=`"w-5|Rӑ[kE?f 2-#xX;.̧R)<%1` ";>0u?kע%^M|rpZ[ڼsBj4XLhYт|1di,0ZYP"9JG ["(ZFZ3rd`W Lb}NJ Ɖ"Bl$HDtebTPC-D#dY1JBYSYˆ|x~ Z Ql.296틔} SN”E3d*y2]3+@SHs|eN$> ]R$e7uyƩ#GF4*Mgs.PxBS.~8qnL ̼*gFu`z7c7=ڝ@ ]Xsq) @풥Xva W2 qDִ$} 3U=d.5BElP3rJ: 15gE&bNg/ދ&.KQٱ R@16SÛU~jBe; +U[E?M)͒yT-j7]niDZ?lH>0u/iB kT1b۟h=YKcx[aY+COQ%mcXC9-|<,7ƣsy7Y腚.sl.FW(N$v&۶1|e s^z7(90A=[ۍ—-|;l#n!1drPmwM.`Wm*5325M"GSʃe'V. XÛ1ˌ%<7+z )U5p˰[d9tl4 l:vQ$uOK(yQ5-`B"gm,Ŗٲy)x9f2ц̹?xTRH KM{-?u"Zw -ر!|RGNHt VmPDrA.a8 8hIagAVZIb؉pVH} 5JU #&L0K~='Ugeޜ;s90{sJJ8gI+@_tLb_Pofw:cuQa˔ +wdTM>Y'ޠچ, 3nKtD@ZRgh J endstream endobj 253 0 obj << /Length 1905 /Filter /FlateDecode >> stream xڭXIs[EWOUh}! B祰-Ų0E2IYWH#R"P煊:>zVV X{QImRA$c`xU܃HRP}dS9D@ CʊI+oDTգw5ha}Qyٍ0@xԊ>FEqZ'#kk+ytB?PHΗ 7S瓭] rT(x='}?ZSc*VA=-|s>GPD*ֶm0P2}ڛ_e Q P0U9*3zUPE+NPs+ fs׺5I6hlc@Ys:z,Rtv5"c~j(ݐζI S?'CM3P#mNvXJOL,l_ۿ#uA-dU11@[D78kásgq Z\=,_v*HwM"B-_aY9r M T(UrtW]U}h,.Aج7f"leL/jR19P<8\Q @TMByh0iX?.?I #g-gx;^i)taWGC2(|?FC`(%gykz24yfy 8UY޵=ଡ଼pq6/kcQ[4 M5BP5i\MбQ،˸OE>CQM?{ugr;'W&?beZڽBحbUc)W^GRRaSA^Q&v,'2*Ct3!dLcg7$ܓh[ 3N(IZY GQ| _u* RF)W+˛F.p_Ən*?ŧgGt2($#{$eQt0} B LzA2p=H ?s0=j#"Xke?nӪ0}Ӑ#A2C#t9ԡI;`TF3l:hw҅[#4TчnǸsr:xҪ~R4Ý z0"&~{nA5T 4\cBK"(lP|)\~-WHMⲭh4^at\7Pn2/K Ϻ뚮t{zLM@$kO#8LU)Q&]2\9e KWo=Gۯh,+[#,t`6HYCѓ2WEާ'U1enpwjZZ1+M['6qqQJ'z{ 1ʘߋJ E^9k{0')Ytfbeݲ,ڧWeSZ@Uy}}@ so3䇗xҋM97Dߟ{toz˛ֹdejx3nU1\uHv3. endstream endobj 262 0 obj << /Length 923 /Filter /FlateDecode >> stream xڭVr[7 +]\ANmOE'cٮg8q|IR:p9RYum` DVg7wZe RR$dy?O b0 L: c40' Q|4_ي,v&R_shȇzwJ&1Z]( kVWz!cŀQ/*,9.q=<)yO}t>?Z672rۣ5( cu{"D9J˦ 9 F\tx}>FY#gĝs@8s38,2N|^v;y|Ƿ2}&GW3]6[>q&Vl]w\_>IW0ɷTLTn۫xp9{R*ɇv|O(U-(ZWU^I\;IaYCy>)ڷwm\M {\4^/e8oI>=jwy^O9pyUWV_RוJxo\]#%0z`1<:ΊY6 򍓝K旯> stream xڭXrG}W웗%/)YRqTqUV 2l+_e% gzbQ3?qf/զٻܫUBSX.\o~ <х(&c,;JK^ybWerrV?E+#+)#+f%2/&g/]+o)&7WeBYǫף o%|\MގBrJG':삃yZxv,]Ga8S67m;kjpĕG•Fv8fC-6q ¶ ڊF&*rMDjͷ=@q6Xi$ 6E*E9 mʬ NиJm sV1Vw4<]}`&4C/-.]0WΈ-BWB4(YF\vJW3쮡4>Q oM_#m ~} fR&\bw~=N\f&f[_+m<\DWfoi?S4Wp |-I|^OX", Mr:əWBaO`NsQJO)Qõ߀Hez]@, f}F6k"'Yx4/g3& VƶD!J:gE' -߰;kw0d)령7 @EC OFg&,hMM i] WM䷮ n܋z /YXR\dT1.Q|ZV8#& .<)RNIGzK̞&9 D~04B;찗ͦ[]2d )M5-4e;궍9֖e ʔ!lδP9CHUtٜo%o{d>t@38t$ne v '&z/9*& ܄sTD)]~+_*n%D ]IϜrN"(=zE(g.4ݹ>-Kz hiee~Z ~%^q2 endstream endobj 271 0 obj << /Length 148 /Filter /FlateDecode >> stream xڭ1 A E9?AH&IX[Xy}uaYQ?qc$}2UHK%Cv{Ʊ߭z NMئNFo[0G d ^oQxEVU 󿺚|U5ii} endstream endobj 279 0 obj << /Length 2441 /Filter /FlateDecode >> stream xڵYKsWrc *Id;KJmUZӯ@TMr 0f3_5%$KΏ29H9Kt;lHϕ.d8;,I+9KtPМ&G?(3r*)8 O\ZLٚe0eXE./M-m^v,9UnwNWzxG3ѫ302ha\_ӓNﮧx\aCmՇWkʍWnTe\FiER2790>y#Xt \ۏ~^ 46mZ͡=yk.z}a# L45:C{Q!Wy(aŴUϗd*vG~Yj9;~COwlmsg\nch壌{zoYo}Wds8\NimCHZLeI?.gЭgme7[5^1Aalf۔{s#i#g%yukx6&c~ oFp8D޶kk(-\QHB9, t@#qsCzKQ6%=Ȓ֭ =Sdu2?{Hpgsyq+N2buY[obwkD!+ +؃@a{s`?Ϲ}7#lLtLXz=..6Yp8g59v2lL=s`5.8Z-l(e xGke|'#C" ^c:kŗLJ"<=^Fjr S×&4v߫(^,#Fצk`r9?A_Mk98xugF2E EQvI䎾+m~ؚ}D&^F8!12+9g%HfC} prfB$38W?Opk`_ b;@r1ysg|:1(Axۆw`Ưz.ʊݬUe8t ]w Ō“HQaWbZ >JdžO} {vZ0,.d5Oq]dɌ*Wא^C vgP-_"6M 0vr}+E/olѷk4NJsqHxڐ%%`(`l.GTlzNTU-o.i|Iԛp'OH^lTǯBHM`H~jF|G4LtqD&EB\ '5R}7p Qm+h5ǎu^[QBĠ*¢ c-qhcoeqI!`om=8Jj%ج|hW乼hwLY>Ό yN:{hTlқ1~$_I_aw w=>VCt˴R!թ̞~4͔>P|n>D3~ ܹ@HiJ90hr@M"RJ'maQ[GA-ëJw:ly{uo endstream endobj 165 0 obj << /Type /ObjStm /N 100 /First 890 /Length 2497 /Filter /FlateDecode >> stream xZYs~ǯG!s*U4J6'*>%’}^,Hfe$@ ƸxcLi!qqUu4<)R8yGiu>ޣWUq&>hݛtˊZ=hEY4cqWfr[YEGekW!ߩ7,w/禙x_?<OWW%4ɪnG:堼S?uUV;KWՠW[}UB]nz}L1+UanuQMnŤVѰ7-~bM Vb Σa w70q~Ә7&$9##A2s& fG0Gȼ0Ht 'RhA*SIn%$&Dlyd%I;A8UIGT>]Sp!S0ԔD !޹*\=F~ dwv,BhR&7~]H͡(g2'oɢ3O(L`5Ƙ3䦺xysE>C/7962Ag錡aPu"lIat3HyMa'ɇߛ5|ls5iZ<(cY8;]9G[P9 TG';qE;lV-v8/o^ǁk''=xErTܓ۰/9 ]Sؒ k2z_9\<0jAw,}/oжmS۶<0 ǯa C_"R`R}9O_(IѢ1l121IM6f(x!=AeIQ;(ȹ {׊C iOA"Ok D@~ ¤{1%`Oc-s rrRi/9BϰqqXXvKdmHh%# f:/̱wFjfkeUe1}>, ks t)XԼ5mαززز4`%&3$GǦ0ͧb7˜˶Ѯ vAu X]R}?rT]<Hg j 2h1fP@G1nWMݏ?oiCC-E_ D`Ry gW&Y{󉝷2@Wac^dM FJmrfH?}$uQP;X̤KB4DX|N"h| Kk {0}= endstream endobj 305 0 obj << /Length1 1513 /Length2 7530 /Length3 0 /Length 8531 /Filter /FlateDecode >> stream xڍT6,R]C73!Hw  HJ7*H J7tHw~{oZ3{MkLtDr`YXtn_b|}+ v+کUw DA $C(@TQH+>nkv?G;q$@fs :((vnnN@'/ѕb+ a05WÀ'G؟xYvp?r' Pi s&訨4`?j /_(AzÑ8PTur@ֿ !Wԭ?G@n ~W(h ՞+ Gj+r(GGW}pv?7Dy"}6pͯ&ݝzH;LE/[e07`+?' v \a~>Tk8 `#V o/0r }25 ?Q{u(/ On F mP?ގ?{EXOPKrSzo?#@VG8/[Һ.:v kj(T k E=D" f wޯC0M+ף@],zK*;`| o|0y([ms~ !D PD@G?୯? 7'څo:?yS(X}UPi '˲A*ϔGs"$w\ezIf؏|6jpB?$h5^^Zi,7&*ؔLGã+{р֢ʒ.LW3!Z+߽|=iP<Βkۍz8.|(B|g_νsmd48?#J>SRMb2K(<{:S4)\Jy$Z0f{B]С'V6j\`%rL+&ZxC4kmt[z-\@3Ea$IƺmYY6sTWShlb#n4-;pV4XxW^Ps$yA@[E|mg\X$o~in왐2ٜy~v2XP" XiQ;ރ!|Ci޷tG3E#Ϣ Ps?a焍©ۧ㋎%擇va/ p⥟$mG.{z眚;|#kdQBgRbQXX0zw]XY.^R(EBɋecwr=@)k,zu9i` 3\OHW:Mԗz8O *0֍{գF%uF=KHM|T/T˪Lt3ٛ8X uyx);$Bjzv!IC:&F:;q8ɚ&S>?-3X1PQʖ{Ϊ5BJJJ6c2XTL>=Ej| 2AOIfn$<4*hw =rq|p(kTtͧ?{G iQ4ɀLTob,RB[.JTM:8c^}{6seLt3E^hk=.)]5e= Yaa>t[|}2JE,*#rF!wy9Inҗm A!$.|bԃ 37lX6 ȃEGOT&k]ca;#v"!DWT/ۤ l fGI1c%Lϰfc/+}T6ȡg@,XJ&-w9hw!ҥOXwQr~eX (/>ewD+J|3xGI.~#>Rv.U][KXM)\ɂMgZAXkBJl&Z䦖rȽLs%x^Φ5ҪjZi{$>xKk= ,g=,)*;5E3( k0['B)~J_ b!,{+3}t…FesH[nzhr@2^aɬZ ֢q,Y.c_ܱچ~z\ꩊQ2-39SWx&hHRqu04jec>Loc: 8^$ЙGIyon\>i+^#B3X;g朜$nF"ml 6|cwyrr܇ D.Bň^\Qe鸚$+* q\q/>U[6!buTf >US7G6 ഍@@wFK+O .IAbn~;>z#6AȧTЉ;d('d|u5"Ō_%^eq\:{4̓-E`(^lsEMbful=7̔F"yLM>Ƶz*ܠ1χN+E8^@P sن#ъE#o~96ԃNsF(ҎH?[\9w.A,UwA^<|#]Scp˩Ȟzѿ@v5uN>_vqr0ǪßivV3P9miuLFW,H?$y./i$bkVjϕTNV*vD,ȫb _Yf!`ɴp+XgۭC 2|gʐp;Iޞ$*xcΓ>lFGCWEo#*b҆]`~MiaNVrҏ53ۙh2W-A aOZ' ky. X/)Dߎ@zyN{TaXV|^vQ_%u$ ʧrxr؇jMМn K)&jv_ u.d⩴lH9OȘcg\B.W) GeMN6 TZ┲f*(ي 4;H NOrvH^A=O K fC@]ľ Aa7 %;yB(v8dKpI?5.bP$yH?Tmq'~8A1ޅ4 k=Y:M!/|ejFM8Z2nh!d(4&vDi~tЁfN +\D0B";Wb(7-&/DM~t Y7>3%k],~шIUzZ/)-RZњ]~XaeTahF&F. i: IqȔ~`vC90CU05P5ٳg< 7DŽAGM{Far=h^܆|K}S̑bvc+G/5Km@hZt}[de)yRӀai hOf^AkI7vEݪ~OfnET{/#f}Z}OΏ8-9o.*4F 1="2|RaO0y3QN%_W:IiH}ܢӎ㽔#VjϘ_[ܟ(K -m _EɅV+Vg|MԗNWЍ`d3rBwFJ1ëȾhGYj8p}MD]h! Fss|JRey ᚍROJSɂ+rwZ,0d"&a#AvVX"4mLhѭKVQW_5u)د9GytC?bCR]If uScJfbyAF8 V0(u eSfiU3#,yTjQ7`+O9߬U;wYiE瀑& U g1 :%P*L\,指KR ?9sHغuM-5Va/xxNCHġYдeR̔ct h0+x_?G_-IyTmgG_?eaͼ4Q;s*=ޜ2CBu`kn+`%Džqe7ǠL#\9T+Ooʽ7RH\{ˆUEdOW<´jo _НMUCj`9v8?>{ᄎ#hhLM5S?+DcO*͇GBx}s/Jo܋L|9|r/,4l[\c:_WחLbC@!,b5y/& IJ]J|WX[C6rN\ 5+bO&}ş%ww`TRqU}gQlA=5kHzC 4-5GqYz $[y4dU,q;9=gW}Uf)_Lz$$J{nm}!k1>i[IMg϶ء&'[2}Y 3j@H.{ LR(9aAV@u+ wr9SB0]{=rMQ[hL9E,~c؎([5bV:ulK u~=ډqqTϬhe2>|ww? 5|w\L!j%cƾj#E!F@ϗhd/%SA吼o.> D`Ͽu[N67CЋ6.+H_sG!!#9OcKX5;i@ Zو{{gxá↗Ahm0)4 _JIW 16C.-?छIS*(>a}߉x PyyNv2BB,uAP&ؤp퍤WԨk<1S>%LN_ }B']Z?}4Ґ?kշr,N }igʾ pCvyB3^opc[$⛺jRKRAΧ.Y~N'8`T,^᧷Jx7J`'lbqrKHQWkbZbΛ=hE С&WyOs1#8h1IĦ{%YN2"1BeaaL+9\KpuMeLHN*܎w[ 3qg/Vڙ ^wᴙ܃qz3hBVK~?W$:1C\5e oóݎHfUϢ ӵBgiTޟ'$1ı":玬Ίjp nL%Zdmp‹Z `wcۢH]{bfI&=ѦC^x+9ch[ofd^Yg쵇wG"҃qsi7~j=r|?*b;|[5#eEovp~9U=?âYj "2ݙzWUձͤcwfąn$闯F I%lj!ĒAJY{u~{7\Ni*KHdn |s3jYKp endstream endobj 307 0 obj << /Length1 1915 /Length2 14378 /Length3 0 /Length 15568 /Filter /FlateDecode >> stream xڍP\ !@@cw\[pww`!8#sz{ik̵\DYAl :102DYl̬ 'k@Gؖ_b@#7[ l `app23XyvL Y-B l2pz[?j `dy[65/+##\ r.@S-lƈ@P9P99ok -x[&#P,W=0ldb3uٚ@@<=@#kG[-OFI[hsrdtY#e޶YT lcurD8hL-? dkjGvL {g1o&l@'333'7hX0O'=v6 3   d0lfe~ >)lkOG$-."@wu Vf ';(\[30/o.ko-ErlYSU_I:[[+odv;MNoS~ktE֦'d6 "F$ h r2K.54k-Pj003tX]o|]Rlǔ;!!'8T1xk`v@D99L"B\&7I`/b0IXb0j*qA&"<?_|#g_F 7_ o!o$-X߈Y 1 "3![ `{ ?pQy?e/#2N_ qrr+mo~?z h46 l!peJa\rDSˆíHP72qslHKJדA^+$NDHm!Gu}g{/Mw͐9(ywRn}+{*UrO QzEƙsxh1Pgong0'^eO =u6Y;~W%}"{v6&?*K9HfͫyL#؜bT9.Ӝ3Fpz"G &bͯ/#2Ǩ `HRGL^*|ȩQ⣗GYN(/K;1>9Z2W iYV~&I+^5b$KKT+m 1CHn^KkM2yBePGM)u~OdW#9J%P4: OO̊mD} Z֍5#O6ai}2C;He>Ed:N$kN6BbJj;E:K61gv{T+fCj땱Udu"by%_Y5)Ia9~ :)DLz5]oyTŶz5U"xPך9mym>_3-}"K!NtBG0 nKF^1M(:Q}Hd]QPSx]'7=wr81*(Uz OSCoFOvxs HR(j B^Ax|_9$YK*efIw2c8{(ԍٻ g]eףּ%!S8 Zxze>.'f8x+OyU߼MC?knb`} ԋ#[Vɐci 7xQX 2ۺN 0ݪ#O}Чi6;fzt&=퉘 "K XM4yI7.U V[`dVJSh|vY' k%&mn4ut"R4_"jU[6_?ƅ7o !6O"Pj|l+,i]4/dv|+lmPӝ 7r bkB'WXa]ASy[!0ł53N,Ąpߙ[ ?k^6?H/%^sO ovLg7|4zB)h*(!30dpX^=kqe1< Z^ |X>A>COK^w?+؛5'[՘}VCq"vIDrE`>? {Iczk[w(\¤"A:,4/nL> JGī YfĦ2{GV0S>5Beƒ~9 wK":#;H\c| }U -I嬢U8pþZ}z_cDJ8x*6*$t (Xg;ri"ژ:BOW郉2:Q QI$,tֳ`ڋ>=_G\>zt n1<)Qr$W2,FP b!<6+t/x |[726(1@oDx=Uꮼj鄳Lk! 1SW-?5?AuکŶd])^g]ߙ@bkɟ}៸ ۩ Q4F" t~p)ueaԕ}m!ӔTG֜(yMN15p)a22U! p/Ѹ$eǒDg'Z?`틇,3i `F.sb'sM&@gS@&J`YSBhP2DU4u?MAYp3`  Ž{]禞IW鐉ԞM%Q:TKῼ- {-kUE\3)+־ןLbe?}^oyW){`N:M}an^&*VE/:%7:>AʾB n)KnnŖ!6T?3_=I8HcImkv)H 9PF],`%8nR\-/{I7sϢ7ˢ+Ͼ>i;]l {!_( y=|b¡m{wx~vAhOk<ш3 CeV޲EOi77"ùz:omz0oQn,vN62~*coŻᆛ9KOދU? 57K\Dg}NN`hڤ6@,ca324NDPlM;e$U&2Bu-H,' 9}NFlJ/.9gŌ,MͰ)kiN{V=`͔ȖUPa#6^DHEYZb-y:Z >1 u,.2&['Y.a鵍͎ p-م_륳M|5M1QQnc,%z;::3RB׶ 2#Q6풟)Pu:3aNv5#<l@N,.ݙy 6i@IWeP9VNL>*"1`lKUs5"2ůGDZ2Ĥ΋^ZW!fvkq# VNZe}[8Ϊ_uiM3ɢ&75f'Ҍ%:T1ޣ91vqp2ۣ5V/`냆'j؏uRx tGR{yt㛮 :K@$PX3DFޖgGŁrd p1TЭMs-lY߲ xy 5u CK6\ra,[5YBtAR[@$f@A[T^u}xGDeVϟ|LH ف9 OTϬ# @cAf)6P{4k" 3ț %a6E"o|uL:8Lfϩ$U6KÎҁTkr?K%!݅=$)9p tBYL%M~]_Da:~6Z=/[܃6IqIe1x(S[_㑠(ـ˵u?WH?xx[^kCrx00JjA尿dr#̽{!J&/Zleu{.m\re򕹋%3H`fRf,$(H&նHu\JH8ی?B?#.! 0}7tQϡܒ׏q=_|9tw;~Ig`B+%Ĭŵ',ί2 룈W53XHe+T]k9iLJɊ '"nxKT>$ҍاK봜0plc~sEWmƳRB$Cл'Ë"I8e: n}s݆x 6䲿ӍG(">V65rtc)u})FA-4w5lXQ0Q)u nZ}=QCnp3?yp$UDžН߷AK&/C>$2=L-0tw Y(a8aBoq錤8m. Ȅiͤb$r]1ȞgDU 3yT] $e\{"4w!LnZzR}S^+f`HE?cC8Q/bw" }Y | ;05sGZ6Cevvwv:X KdRjPB]9)RhGOJ #ϣske92Zgѿ~Lc$*g`Uը;y2S\ﲆwXINSZRG0٣&Ba-mXVao90/TYv 4m &-Ԑ"HbfOͪ&(wxߥ\AlCScͽ}+\vH Ռch<%W^[@hO39nB) [+N (3Vz`;?PXe<Ů9],Yؿ`Wz*D.TES%׽Nf//InˋX4(1%/qodtSf^160TT܆4.qeMLd:U:I(EVޝ 58ղ ~c*}8g8Mm.o[fo9X2ͣ\X;`}۹C =ټ_ː{ŎД]кf09`7`C.F3y-!os=#c91u7/@kiptQub-am%*v~m\nJlh>^tY䔋 i´X)miD2RBOh%k󮌘} O؝ZƉowk{*_%g=%gr4FZU#(`wZ}U\nc[v@hia0W|vV^fddMtKS`XK ݮWɊM*'(]´xԇI)y1 omN_buf2to( |GFeh8tVJJqV7֪ MH35` dV6pxv0]U0 %-*hzGp,VCH3mHշtKd8MIh@dC"BM @(}20F\˕i%GMBt6[jMSMJugDAAHɅ `_ 1`SՌgv3v>ƒ5 A$uȲ|lona",B"R$Kv;9 uJ -Y |Nӥ\RbAqޏtU#g_GC|9nK#sd;c :<ʡ*5E gE(q%@um2)g '^۽DN-qӧft?\ĭqW+}譿P6 >5<>–B 8W|$l@Q7}M+I}Q(ڒ"^I[#0I?H)rG0! SUų+?hrԥGMvI$S Jv>sS5)4'i@XS >}ePg`\46m>wjߴO~#'F\=5q%IRrx'=YWBK~c%sR.\]D^?Þ ;iX >3XZRCGK1P|e][E )T&_iK^ncT(ݶb!_`f>_[QCtֵ?\cB/ܩg^ru9X@uL_x2]BunzY8H{u.@ÆSF:wGCمƑ\7Bql 6|Y"هma $.(2,],{ Dά[܆*[m2iS~ dzȰUtxpr{{cz:}K 6GҷaTpy ȉ0.C`M˦%vSFr՝, O ٔlydJ 6.K< /VA""޽nse:ޠ9q32Ds%}Ю>a4ꭎv^JNap/[>”}WN#il9 ܾsSdcNAfT_d 7iEKZJ".snra bM](hGCjbW$[4'f (P>2(%2kL_p,ԲO\Y)!0:ߎ= >&I$q >qo8bZɊqPWk6qVLwj~$$^P+Pp<cP;qtH|mX.ߥت_hV6Ȅ-TR\!AЍLQ=XaK\e˩y`\l3X { 5 ] JXfdǷڀ U߼%ؽx(f:RpܝLT #F)W6},/:̹\컬]>oMK-hڥ E iϧ.R#<6!TT֜,Z?Le*KsJ_n2n5fvsp~){o6B o15Y;oДCjc$򳤜gi:z;_TP8 / }|xN(pzɽ4"+@F.KY"Ek:q ݘhĬu'ڻc}265'* pؗuUkYϼBDEI3f}Krt VҥT]3X eCO!{C<~/:dwe &dT8Y_e:~9 V!gQ֭v@ (ް[3alV-USP]Y'okN;2v̟)\aBA`,ܪDj,o  d,Q }DkjH8uO/ON K21ҔG B7W_^IAxG#fJ'U Բr'wB"LX#ܐMCJlJ(ޞBԬՄH@'C2[xP,Kzu jVl 0zA D!E$.bS]I6rsXXțk. _r݉؋qki|ഷ{16r[(ÚӓY_YnILrEkvCd *\T]1ʊ6[$ɦj&$|G|c?!2Y|0,lmgGqԣ8U1Bw"POmj) #< X>0dϮwƓSG<(tK_VDN*vaɄ wc;[ȓY d:+4lqÛw٥v u>jbH {=$oqď.a~EL]b)7PZUfSTUR]#ZLU)8;7)0W;^&2lhɉH14W&EzڜZI5o6e額1$Pߡn8PBį0/0!y3dfV|_*]=[8SŮVbqbA"P.FF' K N:ȝ ͉"i8Ŏ11)"+Q?F~Í;kF:f27]*hЌo0:Q˥K##2GbouI}^z%SFZ= kHpޏ8|L[CLWHdR3fGnrQ?JEQf,*֝D>q*(gVȆ or ۯXaiwud_/"AwC>Q=)NпG||W5.0?(DZXA6\`{)haYF9/ӏy.#=H`襜}n|霧 2sRq$dDkbB0dilP:裶Bj( Ol/[hcVu1dx6ܳ7v+>BHR2;z5e*_f i~;&B mƌ K~] |BHR3a#OzKp$6+X ( .o͌Pr>v'OHdZQ4 9@QQ`0K®H{!$8k6Tp5M>\>zRRɻD~0Q5'QWS857Pqr5J]jKO6%mT W! v:K,$3]`I_, dK Zu6)ߥ  ShWva'JkeP Tl1^atmftZ78IX?E 3RM=?v4qiWG!pzTH?Ưs^YJXꤓEd-4%™|| W<#ReSer` #hLq#r 6QwSI:PZ?-$9,_d# z ث [ciYPz>|xaGv90 eVQT,Bo:yǷ)*!˚M>;lN],g8ƘsC`F6kKi3v fk&#Knѷ'j|bUwwAV =(Zc,?-h# DTb?FmZP)v.5}yɚib*F#|\O UQ!12]eN\i3^.;s|ݏ+6EH~URs1YۨRW/ҬdkN.k g'cO[TI( ^wiykŗ˃94j!QHΈb'L9`W2fێa׿hb>TҾh\ wao{Y,)%\jp¢zq(}MT0_ć,k m' Sn(iQڽ3y ^'^M}rtOm~3mF 4 xfڅw43P}˨mV x7L?xWz볝P>bWÛ@-mH5},T#)%t|{!'TDWSU W24p$C;T-~bYd}T63BUEx`2B԰5} t:& Kk#;*->C[rv!- ,tm`F5[dBrKK}M݌ҿY>Sf$5_sHܯ/F(J#rhΰBc3$D. r8n|BrWu>}v~ȧ^-IiOm9O=W> 26^͌HM#7ң׊Du n' e7Q=RZ4ѪtRNch=53-k?)Kpiu?4u%HzaIHoB8v-33 sQbTnX=bgMԺOI%gv%_;HF{X!H`SzfV$ T~ĶrGɥnpr]L^ ihVڝ/6;&TW](4N G: $J{qHhlU~M,γ*03+ЉbJjca<"/ nX^+eQO endstream endobj 309 0 obj << /Length1 1861 /Length2 11896 /Length3 0 /Length 13051 /Filter /FlateDecode >> stream xڍP #53;w  =k@p,<{꽚YݽW^i(ԵX$,AN`7VvA>'F;2.jWt{I^UEwWO.@' @ak Pa(:A4RN[k: `p1y Z da r6nn΂ll@GWV'(3 rA<@?ZAƊLжuˡd [ ;Vh)(ԜA࿂ `=+}D?-,`o[5PUfurc\^=@׀?kjuvseuuG?ҼYl)"Ox7ߗkvYق-hݙMlR;Մagg\ / ? h{;tra~`  ;!sp,m- k[0?_ Cl?WY: uenNII'// %aou<9rEuN^RuzU.@Ѝy-^8?#TGW_F mxU8Z]I'SpcuYۺY%:,-j``g?}>\_5 <[RldǖqUJ<<_uyb+9Ia $A|6?M$`/c8lr N?赂?赂?MLH5zbzb_prx,̕_ -6 y%m/_Ŀ_ R|/JJ_L_6Wu!u]_G^3@@n' YC K?_m dd!fWNؓeoBdfO/wPH\ݑ_!=nkDhOx{29ׁ474Yt,0HD¢-lݣHΏ^W`=Z^%:1Fs4n,X^s7X/䊟~*5䌽Yt%&4 @vC/}qȻDX04(0Cט(i<Ͱv rRcxDT{ d Æ"W$God^4 ՜cP{qTE=% Ctlb͘cVAa`9x tSX=_mXY@Ga}]zN*88]>eeߴB{y*5 *i3J.HEV<Ś9R4mBџMaz*ՐaܜPL[&4ߞ/;OSF[zR3Fg$y]\o$.L1]U[*Pc˶z7~0p'uUSu,0(۔·̌HO,E!ﲔM0~NUup#_곧!3?A5i«Ѓ >#K@8w)G\F,[|vh@Ȼ(ZQhgKxcc{]HDM,݌;%8I,)}5sz+J)Mw j (I|Ep1?VgzEڙ*te-Ql~;tH7{M!-hs=r-l-p힥U8wy 5qW E#6[a-!mFbSX #V-a'7!!r'v`t N  2ԘT@Z`x#"˂c4931v~" 9Ad7muhxx*GtFvOI%"62CᪿJ-y +:x)Q2doc+[0qSk2[Ɖߑ48&*?6/ K4 ;TEauXs}d ~XS0 #wGט`:Gt'k|tX8ijFモ"vaگ@QlL8GcLͯdc2pY-09~p iP I{u_e 7&i2=Wfe,Qͨui+ lߢv1 6Q?`W=tɸ7ꮬ9!b-tMY*DALEǵ],Ee)/G{r7|[ {y_a@*NB•DLSx ` HYsȖ؜|L,FkPS(M𓷴J[-skR'#de\&pvMHm*D|@!Kߩk(&nlzXKޓ==_J[5|EAדp"d:/'ن0_n(y{>+m[0+/)YqbooUukYA/]ܘKwT6m{Sh`ƛ2,F@,>׬1} %Hl{u}ގ\BxPCà+pp[}F7ʪZmgjqYi,鍱15n uޝ36;J(-ly -z#ԤX(4\'w*֓vgs<]0{sP%'YvKx QO—u+n9*z߃oȈM׍Y@-KDcbsmF\& L\3sIne޶П/!h/e1sףi TpJۏؘ}4ʅ[n\ٶIvF";ɚN[ߨfE"Ņ+Ћl{mP"u3tE΄U1i>rm/xsZ{q6~;}դzgWMZօmW-_raSÐ J1mKl̼aR@uD)Ӕ#yS?{—l%(Ab/EbAQgt#b{l;4[N7;88Q䫪Gͨ䴧p"URw0&JAxK|-~5J@ҩcٸ!\ 5 5}3X[tƛ*U_BDU/eVLNm`D,v {$p`}߱tebYt@⦰ď e 6*r#Q:7RW/N\i57%:=T,[|hKtO@Unʞaã*8 > {6NfHROXsqd[aw۟Pjzze}*qoECI \\" pNy W.u 9}^6D!Ӱ&mUj}|m+xL+dXip瞾p(ZϯuON~cSus0(b빋 Zs~ w[6!$-t\cf|RqLiݚTr_܌-Ѻ)؃7\ׅWBMԫF6\MZ#B]|}p97dW<4\V5of۪TrYHWyX2iR4 &M_s =\rlgx[Yx"'k۪4x&k21"$e[sW2kmq>}MY{dBHcהȕ'ҽ 7ƿ )qm~V\߃nD KB=v0ZNG]:}L;[=l#燒7ĜFj,7CŌFaGۡ(Q(wvB EKѸ퟇FEE@6''Yuhu- BhJF^csΪPw}͔gi×UD]|Fد/ ɑ}Bp RWڶ7PB |ObhZ_3<2=i&?ׯzr58pJrT_NY x)h)WX[BqJcN!%SB^WxOazl_{Se6;9p=UϙLx&lr)6[KC8CXl*jY|06umD^n'n9u̕BϤFʉRvxpi銖͓A!8C5[.^r/lF=v(%#kP蓚,4JטߙM?1>ʹ;%刽`ånFe 5}4T?v!q,M^b]\:v[naη--9z ZzXQD Eנ_w/"R1`B_hL|8́ t4k6PUTvY(nGB8ǁ:Wȧj Z-TYG,:>ƛiGHTM(åocLک[ lPg!rxP-OR ٺD>H6F"8tRZӘ)/Myדa'ֳ.Pnxl\ogvK #dǴt H{|Ttj -u2iڮfvܤ)0FS8}s O74㗀eCx>lvrID[,7pi~qwO K1,me~~+\-{^KKSd 1;8bg' L~:-^A燓ˏUAcY1"=<Μ$ gd&uȒ> H%ŰAnaeU 8[ujHdrwy {'Z1+-g0S'me_s~RrU\r6y';k߇Zl^ Se~w4ǭôt}+%ovYM4-J2x0k+e7e& ty1Ѧ6HrWNr:f?f'nz"CF_ CZ,b@ 55-m7E/J^쾧)U|7XZKpp]PO"ɼ7 3:sOz1);n`,60`.=x6TWhrc->Gܖo ;20ޓֆr}hf!6{Ry#wM\K- AV?=gJ%{'=e3%G!-ZafC^ )Zz#+!q"qs5ͮ40*jg847</8(n9|wBTѺ:xo [Ι5J0 h:(jcdheLx6mC;ϯR9a̤DuZ193BFbZ}BCVuOܚa},7ə[vi`dvjbA?ݹ7B|kR'pk΋y.XQVXjM{x!igqwv 8%rtn5W4xգa9=BuQ)lQ- uE:|l,Pk<ƱN?yJm1J3[÷Y~+3ޫذ ZۆcUNG0t0UUC#"$Yx}\Y ly0]wE{fǐB۵gV+ ;7k Ӕ 7}DXe6?{Iǜwyфw1ƅ"Wث5R5 `y_fm$]Q(6d,wo;ܻ=ZݣƏv]-6>Tڃk|0  ސG/4N^FXxR8~ C53нx8OOF5 .Ԫӵx97JAa?CΥ^F-a"oJH@}9#HY:0Hn2VZ`K߮m}jBRby·z NMdhfoȜ{$z`rr4=ߒ(=n}ł;C@-GcHQ({hq08AS§_}X!SASDXE U;W`KNL+a`q)b !ߐ/5hV,P$ug&l#;W[ȠM=˒j*fA4]5ȷsPi-,BO {hf" ;]1XJgG$NJWbu" WtL-nbU731G«&̧r:[Ǽ<=aht' x̢E( =7*ˀiq|$>,# ds TȘer.ErEmq⾰q)%L.t4,lH8 FLr2%D:ˡ$ͺB' |ZFmZȱzyXP7sVF=}# UcVYG\ΕzG"fg׵Ab+bEtn0Xb^D.-v]GKLɟ =rQD K %#SD국2"va_۝v^h91G [c1;G&2ʓI368Eq"8Sqj ω79& f5o Z:Ԓ=,2QqÈ*2uJ׳B[\qT O3oGXrpl-4P}tȑ{[NZ: u{v_1נFJ[86%~=0z:-_UmI,'@)cS5FT$GHk#"cQ20R=ët oEvnz$!1Rֺ3k 8d:f7a/ʿ'AD&F' 5s`})노J ni:}< #%5U|} k^nqT'~|Acysf?U28D±(='̓.3E I)>pXbRga|| 婽@'hB^qZ41s#5ʛbAh{0sx1uu9Q 7SJQLg9H<\R ? >1S\P)"O]$i?uS0Sn2bx6NLl [l7o}q~V=6a@aR;wAla>aq9Qxe7?4ɸGyԲ3ۂLwyrVݻ? )PgO sEŘt3|ύqv! >^7N kB Bfyr摜JO9zaJiFBdT81قLJߔ4ӌ.qT0/QnTE |zCkJkjE!g Jgخ"Rs}h "dxNQEldهD͋I4H(S ") ]B7elN?pq͈0m0hೄΛhXOh(𤠣K OK80Zg(Zz;G E%yc,'f)r+|3'!Qp[5(ƅuc#L\y]G+~n_?ϓ֧8TYSqTbZk>|wmIRFhŸ0<8Lb-E 07 OIidsz/kOciD5uڄa%=)aJ@)0-FEۋ|m{< C uSFEs /, ǧ%]M,$̱AdR`y44_#ԥJ!*;>5ox_T .iOogFQU4(Wء`nV[h2l|Uc4WUvu* 5i k%6NF; g6Y5+HJcwgݝ#Ue,D;eaT-0WMZ*hi՘2A+;44'j>F CJZ *E7ًy.1a!\pctP @zZ[;HF% -@0Wp$u,'eAZOњ+v񠭃6#VPavnKn 4~qh}z_=κRJFۮ?DU붾?l翈մ=gަM3RP8&+i4瓵!+[XF_ ;MQrA]uĵV29RfVKL$e)3 H >'Kf'ޣwude=O.^뜿/N\9a}Dr-y &v3u%4D:sje)ʦ [?̿p9F%-rYE\|e_bլjCvX*0R!e*QHXjjZ|guU a;"Z&_yGʗ -goy6|oɎmhU܇oy 8wxLUcIcO_5蔄?Ǜ0w endstream endobj 311 0 obj << /Length1 1625 /Length2 8707 /Length3 0 /Length 9777 /Filter /FlateDecode >> stream xڍTk6Ltw H ]%33tKHt !- xy9k}ߚf5<a UAxy$Z >>A^>>66C /51KA B^H?-HJ(}`/@z)"=`^2yp]0;0r"+ځ];RpJ9zyI@`WO^  rC=>P7`6'2^6#O .0;( @=5M܀f;_ѿn`? @:*^~^0@ƃ}0-y= /xv07/O^OoiSVCP'`P;A3 K!A@@Fp7TM/  '*" ~v ݠ!HЧ0{('xyxC??B`p#P?e{|H~~B 4UuչDMAŅȇF b"}"_w.mP?$C~?S?#6 v$r5 ϥU@@צFOJϱ}6.{ty$z{q)}2 7Xiz7AORg>w,MS M7 cr2sFڣV-F[Bz;دixgz YD˰lŶ Tx>"9##)gTOyz(Xh!z!`핡g/5+9= {~:ʊ$ {z6.BP#SϲT՗'aՄ3QIvz[l ￸vS5S{E@aڸrYzĻgIb*cO;x4bnc*ᬋ/ަ@hD,,g(-6ae7ZK63q1J5T8,B Qr1u6E5];4!Yeu4fjq"Y%B_CHyw-X(\+HSAC& F4)K?h {ql`*C߹.{Wa?w3N+8"3\+%p˒PAUb1ש6" JfF`)w''(,T'_Wmp*T,5/P5-)^AhL}.۔T47@*>jZcDT l}b+M~s V.350\XCc~pi3-A/K<"c$ 1xGý*% U26@Vxs/2ECݛaSGC9zeۙY BV%b7-Xh&sP%s34*dߖJQ^rhM~OGg=Y.G~CqPǘ ٵ tt2JQu02_kCtNn FfPe_OͬjnfsA-v z-G(׏ љʖ^ Nn*?bN&Gk5PGOaA瑑vܛ%Cv1~8-=#Ű-M՜k'& G o_RGb;+( cd-5_g#&5UmD(z%)UA,w3S&a=[2de5YϵѥD߸2E֮qrT GלhAm |P>&kùY,j齘[+fhLO~eUi3,6}65FP&Ppρ2I ǭAٌt퍶inAk7r&zz#$ݦQX _Tq&eI T%6qcۊېHyO@!ˢc2jdb[5Uޜv$Waw}B u ʾYoRʕj@9 8t{ý@FܚM\[|B$C7Vk'eWUrbhV雫 aJu)ld-}CrB Dr2/G^$RR<9Dةh 8֖F>b\ЮSOTE_]_ x~*A͔I2ȑ=4^f0|@r׉"z;\875t켩=*(Vmq*XOhkYL ƒmjt>$ɗC@.'38 Nl Gz98sfwKh>}# rnek-+jZNmԴmܒhb'[#I.fh9๡Lƞ06RlK`W<+hR!hb*8bA!&5GůB;*vAʙ<=迮+ti?K2iku6t`3#"~ta$k)3mw uf﷓矉gpīi=|R:D%ԍQk8&X uOlzƊj->w^Ԝ>*9`"a[q_6@d&u ,.:z)]-g|_wt=Kl\@U4,#Xp =d%5D3-ێֱM~BFvk}PII#U}awa$![j@1ӂӾuy{eۓEExH[KϕV~B5zvE#> m 'esnցiI1)NsOMz@6EpW֤%-]oHdSu \3A:@]X?cu] MZ0ea:neE F2&9b 1.& QII. m\N UsOߊ2lU j{#6DcQQrt·+ m )a1lx8|qЖfd`A.p۲o6oP Yo۬؃jQF[PՎۨHxgׇUL׺9/_ }ec_=QW*m L7](z(TĶ9 ]M9>2-WJq3sSAh!7rpgӇL&}a"Xp*,Z׍[vso&i-g(KۆZ(ڂ8cWHxϜ3䈶˅?}F>mFlǶgHN 1 ͪ,Ӗ$է<ݎց /PeF+!\e⵿п$^P29ո.: ϕu?ɶY&5}a,/So#\W`{&XUV@>졆O\*ԍ|f(D.c'rh9F~QF.]cer*x8Qĩ-Q-@T[E>OCs)ⅽrܶI84Mi]+<͒YW?sc')dܴP |.UYJ2y=F5/y|`#&xgɗTk.3)!m@Fjn$cxD(x-;wQ~lTfeM'K4=7AF o C:/|]fQwbbY1DWfhflF&16mew.[6+t/v<{O8R:=:8u{B"~3r9h_P>41*0xu %+!'(K/V-=L#QuD5U!ZI;/Va47u۬L TOfF^,ӄmz܎&{Ze`X++a.-tb[hwr6~]%\:zHP%%䤎.QwFo':J !1n$hJ$m2YćKC(!CEGm Q|N8^hrsٔ %9-`;tlp\u 7K_W% q\lQRxOCp=kG/ɼ[6Є,*`Ӄ_J-҃ۻ8fvM_EyUVWibR]f߳evwZHEUZ]\*MckB-A M\֤bq?DF'#6rC>oG8~|< %47g9/Yup.qmůOp5as>S{Y]$"&Oq"y⠸~Or卡yQSnt-z)n?$т$xXceg.%D4}phBԢ ![#WPe[]NB,[3dw_F2Klueʥ@%`7:N̬-a/K||:kO>4~2L ʍeRY)dcBR ҉E;=%|wHG(Dql԰EKMiSV@:c[../wf>g@D%.~\rvb>$wf>,H44QB}]%IhpkԜ.){g1~6$aLkBur{^f}d\]oRe!лnJwwj*_bbNc:ԊʣGF=4.4A<.JNSC+IkʯYqXTA5hU,XdjQ3zkDQ+zn,qG2"m쫄Gn?5ʊJVcWٵ~U[ʶкM\&wsnP<"0jD'vb>ͱqT6 8y>9ƾ눚vc=sȘ]&> }6O& 2 >RdUXt4\˓5SH ݙN~t6`߶Y~C| 7ڡ+SH8ohXtУZG$ٹ h G!_xwԴ@]A4ݡÔlPUWNj˨gGܿyk1)-?`)۸*yYv9EF?(Ǟstw (Q 8D}4.Y/tFe -ߩ[*GT3f%cS#IHEmn4X}{#K֏_ohZW;j<)LJ aŬXO?Uа{]ESmƏwim~ wVʢ8]sNI h'6nCfKN̳jP|&@r3JR2ӷE&d>-2B(#>zbr& K vƖ;*vH:[#dĤ>̝vǀdJ0'c oIq_5}ᢢL`nv[iLlg1Q-NxbqXhJcN"K9>v}WGPE<*rQ7OtϖWcr_'kʾoQbTbW̖jyL?}/oS[8c4i*o3O7uП t mjbxiS%WEם"ɻW~e4?J? dG}H4J_Q#(x-$o I4_䀬ybu2\7}$=m<A/'I8疪zѭ&7-"$DCS3~1BSgƶ_{C* B.1-(-kMe͠V|eaPW8E2W]qfznyʇŭ(%߿7$X׷-C`* G(\sس'XDkˣ',V>j8e]\Gmi:yvd+խ !VбlOCdYCt`Tf͔nWt4-> 2>;n%XN{R?:ewK&8L u,ap3XyvJxz :;iST4=YͲlr^ND{^p0]R04,;F+#;s XbJɦ}k oٿHZH,X@xwOE!,xx*>{,KE[! M%`t (;mZIh|wlY7~LK /ˏ.<˗S&e99i'iГ``I_y|IJ?uŠq3^wHEƬYsY.<71.>M[$y_QWFoZY-7UKLf%+4SbwewS(V"1[t#MPXKyj޳i[$X{r_P˜ lhqo[G!BI)el`XU]9*ןy\{\k@P4G^CLEES%0s}D|6"'إ*L#Ϟΐmj8q~fTΏk1$,ں< "VЙ $O,Ђ_jzŖOKA2SIP4_Zasv企gV/!pT#t].ճzʄaLϢm\9+N,f endstream endobj 313 0 obj << /Length1 1542 /Length2 7986 /Length3 0 /Length 9010 /Filter /FlateDecode >> stream xڍweTk6%%-)t 0 ] "JҝR ss~ߏo=k\{_{{﵆AKGf VA<|uy#|>>A^>>\= G@`Pq`àWG _D_T '" .x rXy*0(ˢsCl `rs!V (@;W9taV0RK!@;/ Jsp!H;h7Njг tl 8popX W5}tC$I=~^;G0 zB#Ƌ@r@PD#vrAA?(i@=! qF"x]hE E"p)yOGC6V]P+ӿX&l`$@OTv=쀿y:pa o ߿p 70 wz` B,(?`? )߽|uf :zC㠁F\7[^DBΤ>.~hנp;^`?'gu-?B_jC&%WG?_ /ν] R <}ϑ+_OO;[kAVv*Os@Z0]s?arOY:ayޟ=xO5AP>pߡ/} O$Z  _P t B _>/("r"?KWVp2?  [Mì$[/*hy6>6\WvTu*9+9kdO|'-Rb(ɓ=jGKA-F~3 Jn㍩̝gRc}ĢC nl+lΌ8rXiWڧ!nTJ.YtGG/G,bZ-ZITg<)NfTսEkZklIŸHVu(Z\Bhu嵣; ٘,ף㌱4H:[Tv'.S}ɬ9CK$6x2yoQ(:։3 Nv=uFc%<6[K%.g%G,Ty`Ur$ ܬ~w[^&=Ιf[jV,(xU@Ĭ=[Sبb-(Rs9U\ Jq O9=jH_ ́" 9ۛYoGhuBJW_ ?wwi<(:: }׿,ײN[eLN}W #F}jfΈ0%D'(?4,hCvbC;(&)˪GOXEmgZP >8]64]< _ e䬢K*t *XAk2PG }ICd )ц. ,0vѾĎt3Y@K(iJifVrnņ12PK^鲌ːP﫥fʛC,9Y3d8ޛumNMmX-Nٌ%QløD +5E|r{#(!/Nfs1G~>ww6(cpr9KICe ~$f F&GԸ4YLS]w"{ޣ#J0s#Vkj3ΏH{@_I͑1eY݊OU]rC@J!ud= ؉FKrD8] v] #( 7V4$F֛󓽦ĞF岭ڤ<äW֋EalM > Q"wZL%K{@x}L@̑HO00ODtHЖӍ =U5ˬ7ՈF6"7Z.{OdS<>[QTg%'m;貰sb|֕".?8={d/[1ƕrIVN_#j Ior>/1=6:?&kP# U 9g2:R.qa=dR6}y[?2GinH}>Y\Gͷ`mq&7 z)XB5-Mx%x>i8#ۚJ7v6}>%aɤ*:`l o9V X")ZJ*ɴgaS%K]5#ЃݣjyrDbBM?m͘v!7OXuUƶ2U]']T g)X51"c!yrFeԛJ7SGzU1]B2!\bo˗q h| 4ӨVZj#aT { {9v~AA ӟEڎp~9uqh'ya& hdRBLMUه?tcDj1S0Pc$nv:Z T+ puȈA9ɼaiң| e.&8qwhU>,;8JwOit6`+8Pe[[,-@bK`j/j=|=ý0II>mg-!&UNVNF@cK%5qө1}Mͨ<.sbe^coOHq- IL|8JFz$$Η"+?9>{!&B"Hw}2W"">l#^JtC=K/ O =BnjqMjt7 S=(4_M[x[D*Gr}q.4= 9&z B]^@)x 64!SfR"+904䇋to-7G+-&軷ntw0;?r~աH!BWm%C ɷS+=˄dKhM3Y q`- ҈DfK^ >5:2KVpCñRh ys<+#P v;v^@+g.'q`ɰɉ,\gTzZE_ϖ3DC2'OQ׮VgP*ř0B)q VYk_fjm+FXfsk2=-N܎KjR!x?X4`̌Ċl !蜕KSoɞ[r(qX/S0/>Vjua"qՏsq'fߎ540zGle&fG{Nrj162)oPSh0 \cADom>^.dmӯ>vnz\`ޥw},˿uwY' ):OδTɷ@ۃW^3YS9֬ ] nщe6fV|J.l'5o&/hHGL>&:VhId`7N4V95rp!#h3QG?Mِ=pQYzaay#I뮫fXl2D42qm Yd=7q+%N(<9^'9,CRZc W9뀾sU'aՈ1U"6=櫙+aɏV#eK^_pC}l<a${}/襻iZt$_ECߋ[k*;nmS,.NޱS-!)51CިDʐBbMb)7o4 YA/&Btjg'w1WS.w+zЩ8ču-} [IbPm՘n'+sZ5Y 7-jxK:Q^ CR(^e d ^bާE!3a/"KZ9#<=zzHh֎.iB0w^&"3Ma~40Xe.Y(2͸"a#X-tde;q~9M&ƼB}̗xdlcD0I/&&ұ~J6@j֙cW|ުA?YXVaeإlxڽ`ɽCظŴUSű^ %ol6|~ N&ɲoZm&Ro`z~>#nƿUf`k.jb|"U9+|'9CˉRt8Qoߠ}%w!K) ;ӷqmm-M ٓspn9ISPj, O+ID,ΥյR.Oݚ"(rT;Xy3>mpC}\X)֦wMn}42 T$b;Sfk=k:ÖtD9ʇb42?:/`)PP/]<"m $s>ox8 sb[*Z|S$U/gF.2bNzMuC  \,>neb#|})&hȩprs3VK8nN: AS+t&$.1t4uVU=Lj,ҙG(y37}tgꡜվ3BOĪ4lVT&{lLwpkQ5nm`IݹWJոj<~uc\Ê.jWl] ܻ|# 7ZqcM9*-1Nh$}ԖeVGZ",Q0r!,kީ}:dF!K΄;kN "y탿ZD>% Kɳ(xm##0{x}k[`SUL՚Tq͗զ; BHRNt \+Xs4]GFd?"oK2]PlH ȜD!D i\ܮ%ePj6,&~g:Q7榊BGZ96?eZл"t]WqB'rݙkE X:b젼nh$ 1 π: )/n\ua|F)XZ:2Yn/Fx)Wll1_/l.si C$6? :5Z4ę߆k}NPT;m.{fRxIWT{Wţj#gX{F.En͙PuBW mG*Vy,_N}H^ @5:Z^S0Zn)Z[q건zg+/IbYz4,d @!5\OZh' ΀wE2PP JhD.<4GfR+EL7^?k:--lJt-6$~(gOb_f;}5q h޴)tG5a~s:W %J*긽9`; 0ۺ7$$M:|'TiK]VjdчIquX &-~II*7).x 6 D^#gN^Ң 9Pom[ort*O6KV]Ex둎CӪsbYv(aGx:EѮtb1/REzcCQ؟So«c!g wiq&hVWIMluqht89̤zKjCQ "COϵQS6/P^?PpAyi*IUin=r@:g-Wyqֆ!Ptw NyȵL%H,73s'f3>]EQ]Ky"zWp!]1!yY:wWa\v~xfx f.ṉ]^=K.}Xaah&D3橅M2Ne'=WO3 %|] 挊Ìڧ&-_`3̎iO/&Qw{1߼\vթ<RZa,̼8d~APX9H0+dVf2}Uanڬ5plJ !IaY Ibj=y r% n;ЧL<:\;ѵZZS|TGk͝y$|Xk+U5xn@v-b1.PKKkv OZdL麳wCI[s i>/17\[<r`5ǦGQb0iq3w=Z)*0'A檡TҶǖd:Kvl!_ endstream endobj 315 0 obj << /Length1 1461 /Length2 6714 /Length3 0 /Length 7708 /Filter /FlateDecode >> stream xڍwT6ҋtDHޑ.R-!tT]@{)R)"Uw{oe7{f=癝\ 0U;F,(hAHX"2c\aIL`(4.% ꔡ,P| `1I I D$PO=@GpIH %ǎC(  0Dav`@ -@9x1N~ Ѕ&H0r2"0^P U`hCw{ ` Ck s8 _x w C!>pwGSxcPW4]XԡU}[v(8D]{*J77;M+?e8 f=w溸#ʰ=4`*a$.&,<0o;' |F/5?$ p ;_~h' A=) a0G;鿣c0dlQpo9K?0%awWxLeTTDxB as j; {P<&`,ua3a3h+Ho;_uA`vj kvu`nm@XD$V{1vN/s!_W /v\ͿLP4v0Kay!MDE>c%S{ov 9@j4DĎ qm!"-#5(6ߜavvRaua5 L^;F 1}*KIOsf^~Z9w*z[gk9`S]wdM:6w|{i"d K Uc!^tb]59&߾`ZmV! w= ]Jͺ%qBUM8048K3C"5Ȭ,BTm2= 22pj7-k O-,L Ϩ26~ *2;|ѡ=QGX?Ut |`Yt_d=( mw|_@mvF1Eݮ7T7t?m?GԳ48tb 7 Kl%xqD>2\Ow~ʶi)F. [:ӷHP/餬S:~' Hzۮߚ;Y4z{L0Dל}aG[{92llWW?M NCvMo}g]izzxK K)ڱm}Y9.{p>T `U`ێPG^f;v uq|Ii3 ßs< A^ Ll:L[g֤}L"&{{,q0z>\_TS`o@fbaZxVIY?|[d"֊˛4gkL넆峜(o!lF*Yс@3M@V՜$d~^Suv`& ){FE wO=8촞NK [MKY?' ]ijQq޽?Jy$Y<~ӥpzߍӒ*SbY74 T{ѭٓ {`wiw =/J{bqWCŋGۍ r3+ F^YKٰR.IT: s7Hmłv=0a]4k)5S}nHSڗBۨ?1~';̯.SrC,F*!?ߴD/"MMd\CoOы ۛ[-w6#ÅZX`ggoWjmY˞97B1Ӷ>) ā%4e= =dx4(m6>3`F>„ν݊CEdvXޢ2_z|vVTo,ʋV]hOH"5yE 0<2PжI X#Ѯ(ЮbKmY_j=i^ pfζciuQ7HPl8>u![e<$9_rV˶qQ[GSUj8Fܘ-L iV^G GjC<$Xn!=z*zAtri^Qb 0rpDI$ f&^~k>z8L/2RT~K;@qza2@'Hy}'fuW͉F [-3W֘|[tSo77F%p5mpwj~pXg!! QWq~MuI>7AxkrN.3|g~S-d=DmoN;;QDAo܁QW^xgYUNj&=N 챌[=(ÄF}a##[(ąÑsK1zc&wߓKlTfs|F6՟|9L{*opN7F/ D\ژN~DjԖc6c@Ӝ!)a OnZhӂ@/˭2fûr'rd{ S} >ZA{?g0DΊ&2Ug5:/ \x_"QuLL_d ~5gflT >}31'TPnt흳yi׆E?bAޔ5JC^dlViI>&V~۩O1@;{C2OZȈ{~tgl܋X4yϧ/y<=2o롥V(7'8_iJ(?p1N,6IYm<"y %<?.]_-퟽br.TAd ]N۔9^e\W2pGՏ(2 n wJ^ d O*@.haTR+J}W߻/"RX8YpyP$ҸT^RLXN$sePWW&^:*|1|>xe\7n9<9k& k&Tyir]W!cs_]M1(1O #% -̟\"9?% */Tpxn T` Vٮ .o L ֣/\~xM>&kUqץ:N"n;x,yv%ALŠw f۹zYh]NN-5hnAv.`D-#ȑnH۝JU{=i4 2Q,>7ysLZjCD}qx4zlՔ1B< p3٨0ꋶA$~AY'ہ˪;(T^n;Y^;f5sZ V{d5L,).i9pƉ;V`l^%;,ԅ_ɹv6Ѭ\+:g|?om#Rg/\΀~ )|ڰ'oqQG!Gl7L=uxigaJ2#ΞL2!.uѳ݆=4>Kfҏ sr'[|-QE( 本go]TLL15 $剢ρ-lfăA'{( Bj}"h´O>H4JS8/^i*D8R]RI5X{ra"g-})+HPU$*+;ST.[N*2%,,QmBsUE}$5^,%`4E1 oo*Uφ] _,;*ڑ[IdRy짛",\%%M';׏ݺS~P3{U~[ CMXe/.PeO#%gKYZ޹wty™BcZ[]Áh~(eJVJK15t2sq]WJ!˹L]SP=7 $8'U\. j{Wl2ZsWr*'kZL{Q( N!N@ip3g|6(@ّYex@"|BRtRb+Ͽ7"e랛%3QM)G-Pr[KH*v4dy==2Q%6?ޤ5ޙOH& 8r)3n} 5vk]_h .tњkT6{~[޼@2EMoDu^U(n4VptE,vT8~O\rO7?$Wg" 2i,,4cY}QGRŗ w8YF:K>18Y"@N<[rQq!VuBiۓԜky Ydȳ>?z+N%fBrGqF_&n,Έ=~vco[5:F;R|>lrCw*j*$M/@ƻ fcZU2zjB3 %+ʻ2ֱ/t-<#tVY L2'<~G9S'i5Gm *ߋZfCѯ5!o *sȿNe2HHە>"&K;kQ>֗g{ZCvyI>MS w1EzLH.y x>?W 1k˜گt3^J[6u)vRvrUT, ?[(1bi+0S*L!=Yn)'QU@z \CR"j&<ei83Ng5˙b¥Gd5vTa Fy۾Ը9WLڧ"Ħ*t ).Dwnʴq>LȘXtM}-vUYsqw>s+U>zL,]dMȵy-Zڤ b` QB@ʠ~"oPהG>w/szGrEqv",lu8EX뇁Diz+.آ `*w'~ K"żNA%Nf{6 RȜkAy 9pO~H4^J$)Czr\՚,=|,f@%^sD݄FяƮ%uIu-z7KV~` J2d֞)J=|Kq5ho[M*)]!u}DO UM>/7:Wmަ6=ճDita?OnI91F#GHsqL`9LbŕRAs1LAC1I&|yޗREjE {ݻB= K& 'Ꝣg(q7?>~8p`z[[(.}J h$kūkUPETkM5ZX+lJ> stream xڍtT.-! H*€ 5twH0 0 ҍҩtt#Jw t8޵]7qCP'(jkK@a~ PvurC(.H()X6pu H I! P_@RrA "PD8{"avh1zpbNP$ Ah;D0`àhC%AN(~VCAQP50@3?)7@ؠAH(pp6"Z]g(Xn.7W!w2 F890-h=м rD! 7dPFœ(~׈`oYQD89Ah`H({6Gý608Wg#8ug EDb" U;(ˍ @(FB}w P[?ձn|$`rO^?P|go>! ( a_|YF?p6O{WnW܀A`i p@Q URqut? '_hXGP鿣hV p[,E"0  уv8oKk08T`av~@PXb PX }(/ >H')vXK-U(~8M`g ,(x5vE"}fٿz@3` |R{)&B|yO=ʣ+ E*3݂*Ot\{cYj=UDuPocM'=0tY?vJyf0q쭸%Ot81'(b0 #,ScQy%w!үwv)؛Q KQK}>]$9&1ڤvγ0\9|-ͮ=RO{'u:rڦ-gq9mT륍Ip;ohn2@|Ktxڟ Uu5Aʾ =("V3g0JOqqM_-9YTF|I2?>ny7yhzWi=@@[C1zS%YRdžs#8qյ3B ?yQ[a,p%O1FBw\=WN/N[y6C2:8D=C/ζ5 B s-W}b[eǏt݂P.UC )P ˘g (* b1#6c1CI, 24lQ'⮽ ʃ2Yr1Q%^5*yX(G)Xe֚Ƿ;nLݧEkT}[ݹ.]0p=!^|x ۰"}5]}ڏYS-?ɽ BS$Y ىϾ>h;L<>&a"`= A89~wC=!HǒV\5otZTN+=Y)E:/B-6lVpS<: VecW,]sV;u.yjKnNp /H5Q0K-\5NZ#(|kAT&RhE xKh}Lk3$iWN 3 &7 SM :ψ38h.V0Dbh ӥ;rNrU} B,N;qqn8]J$|0k6N^sSCxT$N;e@:EUZO]H~q2] mQ9Z%tlihxr@`LF )~DQ\݉lb[#'Wp#[cށq=v[_>(?D|ڔZxHR*y/W(ʏؤ8h%=<({BX"ʇ?y՗$*^dVdm(c)PHǨ>qzVmSE]qbHʮW+hI$K]qX6!&+wmxw4;aTh!3oԟ~GpRi&A5#w{z JJ?ՓuOV]OόF:§VkM gCi[嵐4?O_b< :U̇1-;h:nj֏2,Z]Ly .DMX+<g?I|3P"—:v@gp"H#V>$T3zRwu(v錆9P j9%Kj& бPw9u5;BkY%xHWwr ?vE瀢T/;/&G%2˫EvBWH#D.V "/bcH0NK'U %ޭ*R]mO ;-h,)>g3m*Zd;/#t 6+}JqEjYO[za8FFvTGs8Ui<~#w^:C(5V7,:0IFȢMMƆLQțzK/܇ZFr+JT3Dkz,s8T'Fd| ^w}m@13i}mѾs>JucHǸQPw/\eV&v-6_=lƟFqE7Ozq`ws)mj;0;]G),s_HgG ^ rK$Qn]pF>(}iYXnb\ Z6Tb&wfsmǵFbHPL*/ڌ#4 iɅ*!()H\ J! 拀uFmL:T@|Wf):g|?7toP6 -u9 kBioNɓ+ALV*=4$M1iwN4De݌} &@h7T&^i 7!#%. 4Hh9YS1cjpx~gkrHfXX ůhMi1y)Cq/w NO!l#vwS4:kaVÍWyD0`{^!RPxVk{DRzt%Uݱm).i#rVe02/t^ɷ ~/}Qw;a]ҲP bAhBkxZd$\ԟ"mx~/fݮ}loUw]Y/ .9'ZwJ9SGa߫ƔL~L!?vJyqgP8rb} 7A粉YFKeF^jh__e]QvH>nnj)eTUI \НPO`W·\LV BW0鵮#|$+ endstream endobj 319 0 obj << /Length1 2634 /Length2 22897 /Length3 0 /Length 24387 /Filter /FlateDecode >> stream xڌP]Y-܂{ݝC,58kNv*ck̵7dD*tB@q{;:&zFn2#LLlio$5r]mL,&vn&nFF3##;qD,Mri{;3< (<(ML\\lN&Fv9# -( @.. FNTwK 24j od 3zx2r{3w#' $49<\LNPr,@hf`g7?޿Yldbbo`diig0e]<\hFv lAFnF6F *7 )@ Ӟ3ͯ~MYTh >QK' h ?W jv@)L@"2s t=L,~Wtd%u`054{;.N@_?ELLSK1wth7@=&㯟@2m2H))k:aa{7+#dQ4?|\W T(Y*cۃX P&.# 3rc(7]mlRSl-m<1r5ߦVhjjR.FE3w@SEK\זX-]+:/hLAW3oJ1;{_+0rr22@h z;{ Ԟ/ ׉~F߈ qD#.ؿ 1$~#fo`X ҿToE7"jQqjQ@ٕ#Pv]7eW@#PvO_X@:% HjMEl #ae%3~cb4:Ao#܁:@dlh@f!(#l,9]21N  쏄.ƭA~Gfځv=Yŀ5[ zU~&)_2K?{~!W_da%w'5 os=?3:? 4ߜb99m-KP_6@? YmC4&PUӂ .N?@YAAL@Nmj:KwE 47 izN=7I{ީ &*=hF(i eiSZpCKҷG'OƱj{Tw|}!ڥɲ]9s{$-p}L!jY4uz?9.݆}nl(3wgЉXZN U2ޡ@]pK|2 :~xǴȨ 6w–s[Q&}m uM/5]ոY>azeNXǜX %`Tp)Zh'ly?iDl`n=Wzڷ8<%Hӽ2a}}{ puUߕ:R$" o7IU݈lc5T6G: iKD( zey?͉tVb}n `iS|6e9,}gĠmQ{ջ\7ݳ?G6~LlzT4xآR l>n^QFEE4 -}M C 0bIK(Wd h0^g262c*ukV0yCt;HWEwؓ~zH(Oݲ"I$e~U'3j(,T3d5&4@Ml2"XQWT Եq!$i*z7.oȻ9ؿ“wwNHNOd(B5w'gKu?W 'z W0aAXm~.}el%;db?:M`P# `8J'%"/+4%؝dD&_'W}T57PXu.5783/~&d--; nD:iR-էUO};&W.岴ˇcݼWqgtNY,|?ddp:i%dE%2 =)"d(º'?WK)Gr@ X_^}f ާ6D-WmF. L9 o X< HR6Mf%zu l_[ƢlJˈ+s±xTqK*9+EhXMXmģ!J3d!'< q tF5Q/U_݂C/ -\B ilng ͰYI*Mx᪍`Tg`i1PnGU;x/V(`崎O"!U*+dYҶrrug =Ȉߩ?~]=0ƆƼ3cgE2Q^t{#V%&a?@׆zASp Y84&S',LEn> l^ YBDAniH9 .R)Y9v6`b/xeGbpW~imQ̏X&e b2XYt3|%%$Y0IѼ$ZQAh^5Oe=R"|c':\KBDUC᠛!&V9eԜ,Q~@I ֦}pӕҕdsᒟkn [j ԙ\4 &qϫO z$^~8.:3>; s}$Ŵkazq)5$-|3n-a*R,{'`*&Pa.J2gm,i50'i=¹^"QD0T}?bm S)aT^gc5؟4xVkH;ڙfӂ=|bрub# Yt}|PrfVw/)fSо#.׼mb,njq4eBC(p჉JI]ũK,UΣ7yra*d-2U4)3G:NiOZ׽Z@֯sxo "o>(>\]DMwL#KFQi+ "Kͯm&wSqʶxw_bjѨABj5. BZ6 2Yf7x*|Ey< <Ƕ8yhxJŽ~yar^cxbՇU# ;ElL:E  -tb+˧uI]2;єc6;R~foϗ ' W%JH.:# νM܄ʤ\zTnV]7ő=F6ٳZ5lrEU;'01*?2X凮&k n(i6BK"HWLk a9%\-v"~WxtEK,eoh_mHP=~\,#aйDX ?qϦ]Sػ\I h\[._0YO KTfugxFPu/έEH&Wi7OVFv_Cc&~$k%'.•!3)j:"xL{t lA@Q (բSqz4b)jILpAFAL`k d _^|!;qPTC.ʦ3fR2}LUUΘ*݅ `ĖWac@AIdWHN 76iG#L͒YI~?T|!4oP3ziC-&PotyBB -7Ds T:!}{ :9ʋXh7E$vZV,>6n-R6k_r'sŪ:#Y*XCf4m:=t\"uH^Lr75qa#z^֛xxqF[%jǒ["Bh"eP!p_\84ZwyWpfh.Yڱ\qM}ўdM ,|8kwXt,!KqfcMinh#*]߆m<q8rj]ψV7TIH3>"0DM!Eo~Tan(McVjeAP 'x*wo8YB憇 :߽䖔P1PЪky@VEO4-'}|Se@ C8Z 1."WX].xU#M-w` pyRɯV(lER&>D7ƺܿiEӴ=ks3_; ,?"ĜY ߫K_`9hhtV8S5bXf^N##osv,/dB|w"}{=wN5`R>8|aFF.LBo<&t {81u&,: ֧:sYihX,fJH=1\|\ĥVLkxD o7rSi8u++&^WkdHnE~縣,о&ۂq#IL !}o0e^fg{€Gk.)ͫx ױGBMdunbjE-*X=SED|B{oivۛ-]'lըSBHS)udW m8 -.3fK>CSc]7 ET/r6AWh[[ ZjZ֞ܜ \k8l:pX]TzsK&DSv3DE_VIOٍHo A u(Du{%]_zǿPd( x4\ sZ/5HaQx=IwR_ Ыnn8 ɸ`3.΃B+O^LnYU^SBrjjC@XpN{WFEs+o9756VfqFEZUp*} :P;wgZpm&1q[-he(`WKO]9u6Xlq?4`LH !j3(R)!K7O܃Ӆ\RXs,j ^}烮[f׊CTbqAOjTg?0LH 0-` [e $8b7+|?>l/}B|zdT# Jm[XNcgT{p?Ԛ6%EcV%Uye[g RzӾwDUb T.4, τ~cQiDiB &1d'G)%HSjޢWtLQEnc~8`vBK7e%pΙMHO3O3)>Ӈk\(-4ŸPxS&d uGX G;%s!tBR-HqcKj$C,DJ aC/uHBE֐OCQ x*|=zyü+dO۸fb19< ݈OvM2fݰ Znȑ "m;Bodnsf;>Ň~VH7QE)pMKoZfXV(WzquY7kЕDrSVЬm>R1U.WWܗmbQzRhWR7!{@`Ѱ/v Sg[G`0E,X]+' ӱOv۝Y;#x\EPG EHuNRd ~hv'>*ff;~vfk@iJ cZΑVѳ5$\ɴd)_sᲮzWБ@ oV'ܱs{wƜB{;@qu6^t[J;6o*m!Z*u0[U^hNوmXAqȏʈKHT%W{XJo5 ӫ|!)L:S<,r* Vd^ a%02}/v <|P|&NIp F 8ew'*rڸN߱yuUPq"Z|UmXʒ\9 .X_J%fȌV4Ə#bة܄zztqB (#TF62$Gx1=Բ$SwDxҹ[z 4?Kj.ѥ!*ASJMXz y%>O:*5d&xۆ4&6w\>2ԓ.yL,~ۆT?C$)״sZcE 8<)oO赞3[۝8avBkGh2wc?bp&fmx%L|sR7bG9#[.g4"S#eSNF?6Wj- j :e̤s̎WCtQXoݥ͵G̏[5=&ߎ|?@p }) ! aEJ-.yV2cGT+OqJpbUvtx֊IJ(Nĥ߄q&U*,G~|6;>`t%JYn`]L[#h6Zxv\\55JVmj1noL<<7aBqUl>MC>ifx.Dz#bvfK.p.볢wb另GUcA浶xNCZ$X$kk?bP&~Hw:RUq, 8M0ߓ֩OôV 7|yjĆʴB! R1! \v(S5"!#LZ"Kݜ[O(oۿYl;Ҝ\h!K7+oD'dFLm}P7n&92WZsd @dh$iDJfvр=Ao5CjDŲi=pdt+uIw3P"dײK6&!`TS~O%!a,;UFs[ϸG\&1n(\DM/Cs? (M|~ۓ_UX5,Q5Oѓ[Ty"bI9] 2-=M޶'8܍lDF_źΐbmǗ1=ile ZXy1q]?B/[{5]P< "7KhjOx&8AUT tJ/uj1ATԒsū٬~^ XY78d[4\ :wXP^n0 ZI%ˍ$獻 {Z#|zbI );;$U.Ԣ>.fȶ8Œ V qdM9ÖlP،_&PVJ#_D&"yLNZ+4Dž[O,?]|GUW܄z7 x[qmSoTafLG~։G=2>$ wA`NSl11iإr iOiv %\?iU/0%ZXfHq0CBL乓SUTR [%$\r6v}]Y\ʙ(N\-XI7zf@pͭˡ`/Kx2|5zZ,٭Vwi{Z9M]{Mـ@)v P8k9nr֬c= 1'IK2Uqo&._^yL;;j7y%]FZBwگ\7e.FgWEއZ$>Ltbƒ˰{`Ύ$LYF1&t'a? k`2&)BS),tNX5pmغcہ_JYʿ|qDv͊ȵOC)1& K&%$~h/*Hיc=ì)-#W>u;e̐ɯcSCSE s)^|G| _5B5KB{c0+Gw&_'_>}plăgStfm cQ/&7s33!?RRUILO!5uL<2٩T JRj ,Fݠ<\;!R^M( L?rz>ض8Z8!M}ቱ7A.-#:Z$ >s{XwpH=ţ@]6l`7 ) !.ub+ Lj8*aьy=A:a">KYĞ&||K|}h]Vh|@41Q[1urG4!bm}u=S`f=Uݏ^OM(#ߪ-4gr^|N23 )?-F8193H2FSo갿wU2>iYS|=mt{"܏BV!^[眖+fV)7U.2bKr: wB %\bebY5zӮ-6RЎ{jI1aY^ݱVڗ~~]t,;+xIďjkw&2A/W[i%^S6[sj6>ћ1jo/"3Hć ^JwmiV%Dŷ"$-̪w֏qO~#lno<4)E#>?YV^fނ!h_JO)iepT:w7$hb+ j ٓ,,IjV}5pHǍiC+= 31-J8-(wjl9´zP[dz{Et|Uɛ%KAړ\n>9 T\SdVa,?Z%A]$)LHHy;;"}Ka:wٜ7C}u/_a*Oh8C62|d`)ZLhAZE- ҋfxl3j$|kԮY5 ׬SPAb[ Ru bNYei|5P) X(N[`IW|iIÌxOSM99I`qɕkE6r*!$8VclKElsyQ*B|#?e-g8n8R-G%4ʬ%q3qy! @3?= uԕպ A9d 2jŻ)ǡr>)O"1v-Jď9xMtR =ac* +)Jo{Bš$Acd҈7vct:7%0$s2a趷˺pT3Sߎڤ2AUfYʜE׈:Ykn$mrnY,6?\.A w2p~>R.)QN{~u-lSv1!-ڋd™&)A `,{,X~:V1/ޒI&m Mel'8A9rvRm<</K&}GOEc5;|mΠVwoN@pWo.0"_v4IGqm'.Liqw;.!Dw-c׵lcJ5hNJhՅf}ŷLX'p7+v7)p:{|kղ<~/C ]T 3BU=#l3SӤ&Nj9=2 &<^m?,iCG(oCab,GZcW5 TܿQw4EO9uzC}g#W{~RM>nT Ÿ.8)ЌswRo8k<y@z1xg6eżụ>Sf@}Svg`ɢ}?D}( Z@DzBsHQWpBX,=3[N`MD8"7q!=> > eP)y].UHB`\.))8 lrI v7wҜ_ܟ?kQdUxU^W; [{* UR3-hZm^at !qơǞI~\:7q(5͡qV az9&#J|Tb(v9,da&lZE1P{ BgT ;񐱗cb.>ye~h4 :ּLL4tEW n EwqY~!]9 0;'xPI0Ab3zS>3K%FC]7y{+3$i}Xҹhiʖ^PU*9NG&g/"_80HZJأx~[g[￷(mkTFg9V3P<ȰQ"k2lGW 9ů#Jr|3s'TŖ{} qm0O8~{;RTɁW7jE BnTh:mrFXĎνS^3y8[BD%΅Pߛ 1εd w.Y24U,OE;"`8n dS̞i8q|d} ~%C `{}bwöR.NŵALFYTfƹkGIH2I#j9p0-VCaȹ FZ|!y=[*-ܮ +$u sR11P9)-=bn'mS=LyjUw̏,Hk3݃{5o渽gbkog 0ڴ6KXztvq\LF-%p@@DkFYV#w"AM-.%``!xȁŨd&xYD0"),[f*ul kmi9'b+?׭B節&aۊҵ7ZJ~JexJ\6COLxʓP5M0{@qX ߼$[pX ҲدAajF h5'8XnL+(l,eTKZEeN^w6+]aט@DDZA I#H -ZKDan^tK "B^mз&0 lvRD.ҊkQxΫ u4, UG-Y ̎l!䤨@~XZyiGKadjb0:"}pH[FknSZF!==^W:VDu g]̱[v(A4$;8@Tj{N<*SdLKº=D.|snlEJUd!kfg>j؇i?SÓ٠;v9X;5uEItT#3^a trǝ{OY$;L[btcmXG "/hZQ.s7줺늭4S~W!Z7!3, RQ<0 @0%zb}y.JL=t b?djAbœamj}5jR5 y_544m;!"<#!Z Gowҝ1 fcڅO{v-y;@_ Y9{>tz`-dZ%S!yI]zC/_'oA0FA4+<`䃓?yYQ4,KR2yQ?{$wɘ*7!kR1b.NSsOPA >grix4y>'*Wˎ=Z0̬1iÆ w68:"0a[GذJZ%-(ƑXߠ !rXǍQ"P/'d9R^q3Ue U3ƶm:b]C >Q _ &oNmm 5YW0).ܒ۟-wR[B(G_H&sQFe%&Inw/eHH<5׹6 F OĄ]jԄP~楌kkwmKLIaVed JgpAD㪇$|tu۪sFzfe.; :4-IJtԌ/׺۴e,aM}1LYhXئ3gtUNޞN;J!wn"ވӅC64T'n {%dad XKe%JG|=^ [78f 5-<NCU FӒ E(yOhw?0(s'2+4Vz[_swlI18^O-9RJdΒtUX.0}yZ5\JT?~^^xKa>>w ^%ʼn>KStyEMM%ĴbW6U~1~[Fui<;oguaO>G.X0T|vKdH&D-z\Ose &{'BrP/ae}Rd++iyn tK?pRAa֌!<:g&yCm!|L'x_؅8nȻV~&^5$_sMK`a Mo+uoS^&sBg?tm @N+dSqߦbAfU%!EM`G{l׭IzHyM&rSco "9])u|o38+JbbH)*8+iG2/[oU@C dn" &<^ϊ\PqzW"RkI%PL/oaC#g"y( ˬ85E5$Q.JO>pNmy0 B\s}$9D]TɁ [}DE%v sezUfXrΰu< bj'3|{ݲp<K{0ֹ,9c*=D\սd '/{+N:}+=9Ka^>2@N@@͞ҝ-Fe{˚ iQVfc.V)aT&t!!<; UBIEg<0V8C_T&mÕ)TRk3ĭK9Abn 6ONwZY<f ^JTI](WOS~ylw߂B,lF[Y)tFB)XkC#Gֳ6":AKQLjY7^/'ŗ>ӜB;2FN&dsq. Ϡ'w@Hv ת;@m#"{,<*U=^RioE#Cby0HUn/9/Bo3!q'KRvD"}[ӍߍKj U^{`4ToC=5[~|?{]N3YfǟhqNjT!s7?Ey[WEinLr&G\5#oّ LLm ')|v_V&QyK T8nYqL[Ng2m\Eঙ:?4N ܾ4 2Bm=GH)Ϋv34rHRAd@;p:o)DmuCv TǪgjfF|IPnPrǿUN4'<[BN8v,jKY_K {FWDtߙ-eOkq- ;?cĞ@0JTP*=%DFui J-뱂kYL?k3 릔zwZ F+I:.I1{̥tG 귉b BU?/u:?F_ Ci&ĖFz,hz]( T 0ɱ.n-3"7Ga^.tO[/Kn…|Ch) O2G!mDW(F/M/.' m}BJ`@le"?3"ykMNY"3$Hi-s6>J.3MjLCO5M>+h*wκێTZz`@-”@إhÿJܰJC^ .E:D$U*;G2iVWl'eSfU= 3{o1;meSo;ܫ.RkYDkȏ5KB23BFWbn"#x|UoIf%B6( gv\7KGM1]CN0-Ɲ8 TB%F:AystoT`Ġu(w<< R;`ʖ@bOMF?x>:r}j6v+ģ|1Ż>{ʴ mHt&%鷠+RO$Qy쉬9*rܳq6'#Rl$O̎[l3T j\QZNxO/9sOIcvwI:jȹN&/)ųA+߫MS $,jΎ 3Wta =d+)ށKu5/V>A_l#қ4o DHQw1uK?J]~FGϷ ;'rІ c\2RUꪄB2M:;fzqXC#(ܥ{9L=+ Ė/;Uî`Lf>&-D=u0'-ڴf/>ז$2˞4]2ҬޓrHo熔MR;T`Eb; t [C,]6.K(vr`;K(b+x y3&8&2fG6mbA\u|9dL //cD2R)\霱n}TxTW j3?n8W0u 27O|)DTv`\o\HsϿ.8 )fFI9Ң *U|;S>c(c/{݌|481u:"X[-GNaqDB`-TjYHF [1P7hQG3 U}ZOmz: ѯFŸ#AmF}E9Hs^jKnwsBImӞ!oi،{yR7s/H$/i%GNuZ<=j=F ς@OR郝K 1m`@LD5)GEDI⒭ g~A"͔]Wv-PTUdAhG<ԔY'h֌?YGppdIIձkTgDƞL(/( }1zJr|4E tK>C$ȇ2WeS(St^1^VOZy> 6: X 0C`t٬/*8ST$so؆(U̪ȳ6pZNR#mOؠ eqMgl=l|ηS'_I_{f,K *%-*J$#)KX3F~SQ/;QYϣ) PNr*ʿ[]22}>hWpBΜ{LT\[̓<)U*?U(Tf7)͎%oBY:GqynQ5M,V)irRQr XÔ!XB{J1onզ ,4zbk h>eUn~&*['4&m}EF'xMoY6dՉQѲ|)g)$]gc^_CȑuFh;fEĽV8ùl>ŨO?Ka945l1-uo!/AB⦈ 5>λjJa)}M-r?(bh2Wָ1 `.S@%B%E6|Ka"fH; "&n#Fb8}IhaHǓp?p_w7GgP=oN?o">{ } ]w]_474B-#ϿPpZ Ih@$\+SX-~rki0?>F3eK&|-/r2k͟_"%}vh C%q nKL|_p.uC!~V+TOiјpK=v'cL\, Ą/-,3CIg>c,Er^6e!-iHRWmq"5}YO,Lo})z4(t5tr(,Tt' s&>~:%E3&MI2=jjZ,o76nwsSϨ|( ٴ7~2 z[_ g8eƜK&ٚy%w8]j,a^{{6l19Bx?]gWQ|E NݘKz19~Di3ˇ磹fJO?x#3$W"in=w&mH5 :X>&OY|V[>1w 8ݬ:QNPfO ;pp?k5<)$fOOF4(E l:ˤ_zX^b'}8 ^g$:Ɣ@~V9o,fx=Cqo-1"I;28]Dz'Gs0`>@䎏Y3(t D WAU+XJ iW?1kp5/[Ea\i>I*,JWFL6M794x&Ch\l0qħd?Fٞ`Mf'='#6|́<8K¾@JH{j 6 cK `( 9b,Y;)[ؿYŜ#<4>*NhV 1R9gPy n;dZ G~Ю` jLXb\ɘFleu63@x1#|^º/ t"gxo爂{* K?#>< 1-6MyD6FDI쇄CSiHD$,*:?92jt|C̓7.).)`6HrL$g5yA+;kXBOqD岥%E-, ܱ_$@[kηa^T O' |w U!3;!`iB|rU= I3f 5¡WU@gܱWx '; w8X|ހs[^Mvz/$dT](8H=05IaC  K\ #R1Gt9j")= "!'C2B~@ÿ́bMKFejέwԺwqIMk6U2Ae >h,Gn" NX.dcw%%"n.i18wLǵ춓LQKòy([}eה?SR24f7PUL׷!YFr6Vv}Y+^jo6Xk>db *\<[@]⯋,s&0PH v9c߄MOIx4QG% kɚ9Ԉ0~9`C*Јl vp.5qo?択&T)wP1h1uAC\%WK [>fqT'i_[{=m3O9N J޳o{_?/Qh(QR endstream endobj 321 0 obj << /Length1 1601 /Length2 8867 /Length3 0 /Length 9921 /Filter /FlateDecode >> stream xڍT.SB)n )R$ABR +RKwJ)N\>{s{WJgff}]af;[A9|<@q?G_flf&yW`S!ԝaUwGOXODb tv(<`:@qfw{Bm#͚'&& qZ`uFk#@ AxW 6I;.rrqvfxBvnr63@] r PkC\/誨4؟jp t' 7f :Bx^.rts~<@PGCj GA;Ôa`yg'' >+a޼6yaPw_!&l@  .zpN}pC   \!v7 'b'~8|W=>'yaq**ZFvSg// _ &* ;W*0g؟>L?{ul;si8?`G/B@/gA,7oApANPG4xп7ΪCPw @{ u{PgP/X S,/#rvU|@6p{P.+a/$ B="<0gО? x6#~HTD>x|^ȿ_P =pa\翡C8+;C:tn Ŀ(_Svwu}GÈ /5¬D}]hU'')4vnN|7Ykro{e|6`F%iHЙiǞL>0^U[Ov K9]_ʳOɫli4|vG{Z9m$w~̋wV31t8{L_L3&pb ]T}zBeBIzN<:t?Ebηxu4usl)qgGC9 8%/*ʫ6DwߗU׼T~Zqi&B5Etpvor}18"t3z"sY# wloc)V_ Z6[*ҵvnfy1/{ LLFzlq8~?ts;Q#anl گi{I>B:MVF^@ΠYW~O/[eerՕyYDEXʘ㮛Q"6ɕ>o+GlFb /859{zlV )}JLbv<'Dc.KK6toϰC}{e\kT9?]:P(;^_S<RKPy k#Zж Pȥk{|A5~X-v}s/_J:a{܄  #a_҈)NK NP⅁QT{f)]8^w1ӄmIzk(x6f(5:L%Le}~$9Nk.IOIbmo٥{Mպ'#>)1O\'rv/֛,¾pY;([BX(ڝ zv ̊SZI L#7k8stT4LA>i_EQN}$b*" V, F“k/)x2@Mro&̷,1^g@pļWE.]?6 |8pԿ!a,3cp)aðv?s1Vx=%ގKs ه-Fj^Hn|J+0h ͠ӏꕺC>:''oտlA2h+!fM^,%y3P-|lˠJD[.mtx(6V}bߖDs4LO$s<%L+j+RM̜sU kN?6!,"3a4'x6 uϊᵪҸ?dN@}#It6\n\Un0=CGT7 &eJt\6E e 3v 'gh8ͣЭW8R'Z=18 /3G AV5"]+U41Y׋6Ɖ 3C54P.2yF4rp53666Z,a4[i ,&:B~ dẠsPbu]0Xs+/@KWi;i#mP+XedAUhL87(!hX5h2<)I$OLph*b P8ztX#_OS>gf |#ekQÚXi*Q?2lfV U˱$FfRW$OIdqq _X?Z.нn_6^5x%<@ T4@p ݑPW@/P!/ SB04PѧB8vBSa ݊?Q OHUΗ[` @8edWLU2ލ޻ Dc69F >@Tصηŕ4)Ìs)3Z~Fv9ԯz~C2x@Pz2~ysӚqb&:N)(dcROFaD EL ߜL#zYEybTrs11FѨ"$C8J]/WY^9A"^VugD{;JQ2ҀEb軙YI& r\U,VI@)ķ>y]&ڶL0EQ%7HɚW~)u0]Drp Zu/~a,n}1pl`$O [(x!.yڙEa3?J{Jd- ^7 }zJ9vYYk^$&Ϟ.J[SLٌ ~(E%KcV֮i ? _=^5" ukskȕnHQ I{{5/(^DRkͪ)&'Eug3t1S>6GnzF!aAQI*UDHo8bHk@3TdqW75;o/i^(;Amàm»AلdphvZ1nRz'g%>zAk0`z}q@ܙIpt.I,]T. fVg?FSvG&MskIKiyGq+7StSmp/(\g];<:C q;kbWX({(czkk}[+thєk<۶ȎwѹD}#!K6 (^4,Fx8nS0_OUHi.[/N;ܝ|@9*%\tmy.2Pg@u7㒞} +G\8]Pg{nIGZmM,Խ3m0Ap<^7G/5U Ո |.!4Ҧo{::/2L[@=1&X,HcQh`mPClOr 9JO:/ky&=5)kvIVݕD5Dk*8I@ujğ谒bCt=apZ3mMQH`IEaS|5Ttq}?%tO\'"h`w {Bo 7xJP'ҘS2bT]f%ئå|ç,ҁcl ;}2F TԷm8 C{0G%St<=8v _G^ŅFl> ˣJ껭 hGcЁ-{6nKXa&m.^zjVVem1|:2'kfVn1gF"G oD15Ge^c7A(">Oes5]j}nֶN6%+#$xxbzpD!B"r7j"uEx`=v{;ES0 ӡWa* sW٧Gf#Mw( b!F/ݮDz3ؖ:"0.ѣv(j #_QPEcbYL7څM|E^;bէ LB{aJ,Mvۭ-Jf:3ך[w(m:07󉥇gs6d#-ƛKO IYJљ?ḑx2Ͽ H/}vlIk&0hf͹4ڀ2rXNl̟{16 ya4ԩXϴpaz~g¢q5mw9SDa'y8t1M%OhN1.y KQ?(pz'jԩ޶'_xO&un-ch֫qK%wos{m~^Lk9w,cLR;*z&5tφrƼI_+3([@*v8 ssWkP%#/VTE.:dyީSA==!4zb|ZI\&܁>Ѻ{R5I0I_} ӱ\}3W rϲx^oy\4kf#+N9pR`'ݔa -ժa g֪ o&nT2t|4!JB)Kw9K'r˜i81Zo]ߝ7o&}3IF8i;t%`S9:=|1Oi1R+zӘ@nl|-Q-__"*&0әEhlӝ\c|<pHr˔a 1[٧񙐲!:Ha[Ibz*6b$qQeL听խCAR73]ظ}LK< ӔF V%YL{Bx؞oܐMIsbp {Ȗg}~:Ԙ#(MTrXc;nsuWa,"r*un[e3%<ć$lKʓ9 a|;vD'{= vMYk!ҳSӝCc ::;ޠp[BEhHӏs/g2 Bxt308(dY:^M}ȶ2\g,X-/zm^w8^Oa+*61]OjNv Ѥ I7G iPE}%hMMʈ2Qv%L (wn:YƢS_7l)XPFQG]Q[=񠉛أT~EO%?i芬)ɱK9>|fug o>`LSmVTLݦpE :3qǴTWPI^9[#PK']!ѳlԴG88y5(swG5x͸ԉ+2#TcƅJm=I/|o5PGU=~Y|-QjYHl$~wxodPG^H[f)ӆaJSi8I:0L~ɥL8+sE|j#s3ݜuOi%h5܏]3'b&{z%E\Y؃kclZ?vBxQ+ngORыO؇K{v|zD$Â+Po[y @!DQ5K=pHhP]J;\$dattoxKr+Y?0 ZZo.HcJtAgG.Oe2=Mljh-l^2 -P0lzSX_V?P˜K@4 !ᄿ店>*!I i ٕQ+ԐgGyn< -:u.)_~4 aeԿEr$IØ']NjsΑ ! +KF^!CH`K= PY8'*,][Ǧ+Ä[ ڵdEpo)#V l2Z(S4yy.8'7>#+%A2V7gbř ^ؾeee,,g|=x3J4\\Hd9ߞ8L5bS"2ʢkE]葥n~Zڊȗm| M7s9r5\;;E+ڣ\"dZFIˮҤpd&xOKْ W2qdY.Ps>[PVPAδy&&h+puyAI֯ DGpl~tN0#ޕmQbd/On~Kw CA6ruVh\~ȧ%/XzZ'sR$pVdBzv tYq{agnbC.&Z_#L$13;<ۇvex/D6i]O?$]FXrޕ~vdC#guPrCsמmOy{Y]8b, b_M'-%8a^3(N6؊mߋ|mV~dVU{G\GGčˍӶkLA E>FOJ@y㞈{ -{̴UQ6HU9/Ե⹦fFnl~V;tG9٬T=Cs\Ej JOTT 8\zI:h3  UIR'l$n"BiUN;IrܟaFKbI⪪X2H:m`I|M]St'__DfZ>zx,x]Mu yk,%eRţm%YN^0hjÞʫlr`0=O㬸^/h5TH /XXU`ˮ,/(T) _%;v(# @X %w55^g}q&i"ZeK6w/X6l->jF-_4sM]2h6Y5 \8ŝlv=dZ?ٷ0۴zLEۣ јkyX.%sr W*ey5p.I牭{B^/?$4h>z1s,Ct#WMZ ~`B_R5%C  :n]kv[Ya4j5/<Xnz>R湰AW9f?QPT'v ҫϫ'.{ $3_s3ӾF1;2wlҧ ^lxBzɆPu[ؙDjkS%EhȥѳAHc$iAh]cuNQ%hd @Q}WaZF< v]7( Th6L"墻_aV5B*u4sUϋ=\sG:jD$nQY_̤EʾNIU+~eATPe&(-=񦿫KN$yG>"a0$|Iqλ9k1(';pVMQ-ƅjLjy&.2dXsJit R*,y] %*24K"]sP-uB8]4ZD [rY ܜIsF0_maپd> stream xڍTT]iKR{HN`afnnFZBP%%]5ks~gﳟ簳m*p( $P6&dg7?VBv0 äPhvӆPPJH $GH@;@# # }ʿ.[nPRRw8@؂`m>m!`?Rp=pD\===@.H8!7r`]1Bv#lGy`؂aHt;kt]?Z] (w%~lm. 7@]-rApt<l T tuE@\QH$C_iЗ Sa($ -ֽYC`vZsw4AJyM($vl%7v]{0 Pw#v[m٣'x̄~@sz{FZ*7ń@! !z,z _U$7thƂ\\HLi;c,w(7 ( G6>6: ր<K U ^`;=U؍ Hȯ *[gD7FG*lv%,&! oB;1/-C;o`p:n`G'z(GLԶZXG>_*p[gNϚΪ<7e&7E4pWf>]Bȧ}$u,7|/!Y*`l(MHW.&F~#M+7?`gzV \7$zyg^5]a⚷/Kcc̃'_dMѲy(H'O&(rFn5y wcE }M~N, #Li)8|^hܙ-)\B N4<B|6t ?,9GhԣcԒ\YpE>k,yA&Ant$Vc5/қ)RRk*Q^|mQ"O0w,p^| (}ϜF%KmV#Jx~g(LiИ?ʀ׊BcK]B~BIZ+cbш"9׭\k)|mHn^h5]oX *!<3D8o MCËf#3Y_PVPϔ'gnÙDɷ*>dOKȟ"tS'lC*[>]k&Yuݟ o|]vlIv@ Sa/w]BD&^kGfm9VC*$\SM0>}_Q Д(  ݓEX7 zZ-l[RFH C\do ~Ɖ.%~҄l`!P5[ڈk v)гic8}'u$Aʶ!f* \v{AVINr0OAg\qtN#"{3kדx}Tf{![cK:ă1{ᨺ'1:]⚏ mkܥp JfC _^ tۊƉ˲t]}^H+5`%N 8kWL.ޚJ,9W=BuΣ'*|p&q?kfg@Bgj%zh5yj..eh8$) n d&m|Y)Ĝtt/p3؃:@ v=~EXyR4mYe51vfz}Yy0<~ՔξoUBlyK&#q*e27L1̾%;MQXIQrG=>Jc/(O;R#A-4D2s[L6'BUnFZA-TgcCq)2/!Vccs_1$GJ&>Mgavg1}~§EQҥ>P8}ke7wZ k|b[]CiD=?QT;'tRq)zMhx!=Ls/|:Cmy6Ks6K=Pkar1~hV1m겭[+R.ɅؑO߲1!zFNDײ #V)259&}ȋ=^{ѺWR"ݫMJU:C6C@tyI85qZbgfʝva@+䍘R9؍l ~ωY}ew{v[\. lnO1-Ԙzf;1h \%r*Sa6MM=IMߙˏzia`}P^vNpKn3lRͨWlTA|=N]A! V ci6tw`{;C8]Sti㙾1tICoćZ[gY\"QaCOmfɽ~LbK{cOMO UL8Xk"d􄭴n7aWuHVW{cL0eua#IT+|ͨ 3AkMnzeB^=mΪ~F.+Lgb+Ӭԉou|}3*tO۴~4I/tt[)o:@bܥ֚rNÔ 0z)fQXY|>WEpm{li<ִy %j"]퇄 |]E~ۄ$$82_yQh _jط|tm,o"K?L}o_Yc^P @)cv&wKt2]ί!X5peɏ7?Q=zB\Ԑ(w!@(";ߝЊ3MIYL7 7ɔM 9? wVڜ=/l E_YJce9ls(GJtya*>U|$W+8vBC)_ua+ ch&j͝ 2`fE(fiA7J}.{1:E<ێǦ/̷6"[Ƥ3*3a\׽"\{;3b@P|YMOH 0ӺWGW!cvƒk~&LF(h8٬2iBei>ê3+^=[D"YUqJj$VtB:{ow#Iq6}XٺjcK$n܃?=L(r]s)<,3lO+pבD:Wܶ2t뜋Fy`j'⓻F 2% lո1fI {ӻ/̐ro uKG`O4Y]z7}|jpb‰иܟMjɃx*RNzE8n9Y4/ T>1;ؼ_B{ 4 t6[)*HLne" Yzmgj`w\z8׹`wB3xـTHi'Top| yٕ*kZw)fpH ,$c9y4p9ӰA Cm`Uѻ͏*'@'eWF!0Rux8RY\F4g/3]^KiOq/[#7~ F't{cf+eEk?] ,[NCnt6꺽 ܟNBodn2$2?=hUEnX jz{LV_yXs dv4bB61dE~)[2#[M[Q`ɤj0hޒ{n_6S!1rIXʽE em׌=o-U9$踆 z=i!b'kRv~JV^#`)~.$B 3=7]E6\~vLgE~ |jk*jPNgIT+߿ o$_u]Qh}=ut>\Na"7~&Ygz-YRl]k8u6[2:ZtHL pc'Q*]PN>A?-|"9jo[Qx_trԕ xC]QKM..n@CHZR挕uC$@m 9Xeha‹y(<9ee 'ѥOKyEEgߑiNӨė\w+)<2Qmw^9en&ʶ@WOj5GrQq,Žg .yf Z>9 3n3R}һI,܍Xv(i='A$-Sy-{E4QzsEX@TZՕO~[;V)?z #!>9q6&`T#MvJ:̕BA9ēkD% N\-S=V}k|cXi":3C%ށȊIQs;'X{Uth(×f%xVÔ5ѽ|<݊"͕!+[釫Uhr8&AS)ѐ-&c(8Dl~~ _J!^)x>Gͩ$`x_ fx "w}Ll{rrK郷t=  *ڨ"OjiF3Ղ_N(һFV}E@FřilyEc^IO44j LT(3ZhJl˹, UeV`$+mȾh-Qh ]1JsJԦk;%Um{y|5ܧdk:DHIIJGJOE;+h5 x;z{!F@3}xAsv> stream xڍT-[>;  - w;<|ZY]vuU$j " S$ `ffcdffEPveE:XxsM\i  `ef"ș nnmP`Ȃ.b G/gkK+Sg 6p bt63q(ZO43̬^ՑÃޅl)HCv]@sr&?1"Pԭ]2,\=Lw}9~6@MFt,wi,, ?Y; dhe` $]=]&M\@MMLL &nQ[  ^d s1=ĭfUbZm@--`Ȥ`nBf tp033sNս:Y0rXKZ[߿]L܁Wg7XXfS?@;[{?+29yCrt(```0qE,+`{'aow,E{4>36s_w;I7;??^{k; pT-_4v^WqO]$=֮fV_v? rA003/Tپ?. >4}b8;x!_;x901:\߷,@''I_$0IqAl&I?zgL5xޣL\ߣ?, d}Ov&.V |X =Q+/Ggƻ_v6bl ˱'_=QRy:?v@ ,[ߓr|1?y@-_Lw\_]*{ƞz ܜwyh@3y_MmP} ŮV s#2l"MUFHP72qs=lx'gXթIc>Bxu='M[fY'7nd<{^)Ϻҕѯ*{UrK4"g)rM3pHa\h?D=F,K{V譻0i\եWA,EfBl$UT*kƞѥvD@~?N|MI#3fUQk -BtV&`g 0E_1ۉȖ] q>Vp"#eWE]ldTh&rEK&YV`bؔۉla2l&S da2?k{iNZ'L(Afۍ=v RnUM_dz{F(F`O/Ѕu`O0nI\&Ɖ>.@1r+Xc=qPiO| Vd6V? !M'k${<>g֓8W閠v޲69tvDΜtxׂD7s"Xa`lFGݞuFΈ^d@mʵ꽥9WR&Y_~)W9 %D=C݋%a|!j|y04OPsxrƽeӾZMy98"pQ\-nsjg—32+JLI\YG(ѹOdty _Z1kjT s fG~HVRάũE&Cn, Z(_*]!F! c%Fd{F5[4SncSpe4h4 5ߍ < nq2^3 . *L3<]HFA|nLp<+H:E:["ȉE+Z>۪uD f2 yZK]Xll^~ Zl Jȟ $`Ky$1~ҥETPvk:/5B'{CE\$̎{8Ri9ODĜ(8P)Uue~k% 5>ۓ( ^G!'lv-c5׌~gTz 0Yd?@^OSO[LE'uh 1fbz%;`UfpF߾g=" ]}>Lf'ǧ 8UGF"sDCrF`m-KW-RxE3tī=r Kslu9_溼ІQ%751xUC͍Gco~Ԛ -9E=A$tEԧ!U :W^ln0lx #-7UfC3J:L7>t\"S쥰 _67ZW(i9I4|rek?6SI[117 v{{w 쮠ͩM%<{:rəF~5AzBH8hfR[̨>>S2&4v5?zd/}&{lXm'W![nb!H Dpٓ-MȀ5Hd5to)eOfhHNK_HcV33P9:ǧjR x腕Ld }t}Jտ0ZeG|C\mAOD@Hul PTk,y{o&?a,GvTޚwҠVTi1],Ȍʼnx(Mc'2jM4U##ԟW7XĊ;L%agS M~Aa֓JeQ'\K0>jU5e~LkqzMtD(}/E6·ɏM T)pRCf+xPI*Z[ z y{1(@hٯ4둜JmO+{/sP_}eh% [^vI-Q07&yRY4:F)cd(Mm6F(2&IZl1Q2{_2ʖG A D#KΜPmVAvA$[iY@R-Ȓ`Kl4Wd׊7|GՉH#8٢:X_C<|NfC٥Y"rmY5 f^vffJ2axXH:xvnj4dP _3ݮslQc#1n6F WASi;xJBIJaŧ+,ATO5WB}2adbo9ɭ`'hx9ZH$Jw 1" 'C:E 2M.*.yCRt]}C}6~b>E'֙1Ojr] l۽E!)k۴]7)!ZnzR<j84DwSqn&J4)`NMyN >ʀ_G: )db9o}l_9f`i, wp>;fFKp*tg /A*5R[Bu$[[:ΆĹ(bQ2< <1E|jU+A[@ z[vpYX$ww &{ʢg9PkMӚlꐀJ\S_1Ķ_4rSl9V!yw*ג>7mAQ:d HhSq;u&Ԗ CA] }!= Og|Փ?J[8\{:G:`T}i[Y78o;Add-wt֍{0%x\>o`ʰMG[v JZ95WqAk %< 6R . ^M,^!@ J,i(}) A ylFhV3}DGצ[ *fuؑictX}#)ǂWe_yxkJu$ۮ<߶ap/W&N~ȋvi$(_c u?&WKDaɋWIM+rqЈЧxNch$Ue""Kc I+T-fB"KE3.wjnnGpo_ D#;%M/$c$A #obi҃@IjgnvbtdNp]*?dvv\MHAWW;V$,~twu6Ma#|~tsiݎ3rQ S%VWċ 41P$VSK<ݦ:,m}J%, R&ڦ)}JtmBGu0j79"šݸѨ'еv%=^"R)' ZG#T~0SA YtdEa|29٣ǃAU [Vt]J@ڵ\OShaI46"kT!Uۅ3$(=sdIbkh+kj!!Fy| VT~=)nIrK3**nw[`F-/1A-sFk {לwuIѹ3=քrBgİ؋XbUMgNxsr42J ^ϊSj FcK$xcAЬ]+çj2ujץ8Jnȶ`fᙩo];D_N0`ބhw9`הl6Fn*lNa;ɛ(Ŭ3ʩ! T_!6dtsΤP8~nM0ZIב^Y`x *TR}D"o&rvHL\rל-E i16;k|a\~;XJ21h]t2?FO(bX[SVQK{p9ԡǖgj,wtӸsˤ>CB?CĂ=ƨx^S8n[kY|"`'XX#x!'""a~»GZcmp!۳"v7'*@5xxzMF1C{Кi6KpiQ Wmzr>QJ%\cԯ)gO^}Qmv.E| C[g& Ï*)SDQրЊV/Jͦ(_ʅ@1(XSC'uΣXJ<&7h@}0_#r+ b!66BݲEvq!r'P4o?HIxsDy~z!hDT AJ[a2.G# B_Μ`fMr]3F/lEg+.;d&btQ%:l9M?7I"{ݝy斛DtVu]^8h+/o_'wR`(S$wOnQ0'q9WB]قΝ 0d{jAlÅo3c9ݿ<9n1ׁ,KcnYߏXZ4fsdԶhW\%^Sg;N%ڀai/XBnӤ#l3z|{ '-ˑiw/[S;ͧXx3l_ lb˚ ̡gA ݉]˅ۧ槒Hƪ{ @vκ?8SUAv]wFbƳ#C_r)F{o|bg.#:2h͇I0exrƊcKT ~!?Rgce;~J'Rٸ$jQ6AV}Woa_sx oh?M j]uJFB/m*,p4eAHDS:@*g׶Y}7VRҊX4)uvG]>Uw%gi$"ViɝUp K@6#虭N֥TY]hI5eBƗ{ YKo8[>l4 %P$.ID" FMU)SQlY01iَ̤wjݠ|dI.Cq㈪<<4Xz.Ooa `-&w,x%$),eamH?';9ߐf>8@Af62:]Q7&d>~H&pI*b4[)_:Fc' K_1Oo<ŤZDl ]*w+hP[|;ZY/w[*7_[B&e"c<+&k짣~g $z`=zX߶&Oe]2Qh2Q1֞-gSպ/\u0yGt܊zXsm{ڋɺZ(=Oj IghUڪpSvD7^JRJE49or%RDp+δX+>AӝCQ}b``wKIG4F@~-ˊ`dht𳖴ĕXXhƖ g=Rs FWͮql{:}Z[NaC%%(6we2=}Z<&' ߹eZFKMM@۸zV,<Y9{s蹑G 7Tt6.֭ |yNye($-}>P>Cv!Ki/# e]ȊC]ԌqX4qb#9¢ܼ^°E)76O>U9l/s5B,Pcz0):+\oqVC EQܸ:pȰkKZ纟xg= h` c~6d CŇ}qEsT?q"01@v7}0eyZ G=aݥ#YTt`jDѶcHAUyytby#5͂E`3,j;1kkikKSWGN {A7nW^OqX(^9i[+n>"&M?CH?#[5S%>aiyQ/n#Ȟs\C+\C;d?g+Dt@>F!u kq#(+6Oō@%m/bA3,%ѹN]xOaD}QS9Z,Ack嵃١?6#B-)>-)"\VԢ X2]ϣÄτ)Agm\/| 5J+gw)f yNe17`=hLri%dSQf~P/ Ω:Iۺ'3D  tNђAzex+qh< ,S!Na2_~U: OăX"[qw3un~a8@ȿht~8>1y|LS)bUZˊ2T2]j5ab܍a#tQZ `Z~Ϥti̔|Ƈ4'6?x&K _br$M KPbP.r7}N!= b sZ%/-)4kjGHNGTW.Bae4x)8y@S֮dgE1nئ(=6 *"~ZXu*/Y1^u& qIP|yd5LRt3wJT.M`)ݧ/%AO)n>E{ bE@Nem5*?6>'hg;Jio`Q|aT՜ʀOhFjRH3é^#.e5xN>t;35tG-~⪏$4@ ہB _K<[W)HP!!< Wz^uW&0#:ܮ{ʙ >B[ZRZ}Tq'mVϕ&θ1U?㟣 __r ")mRݝ Xs^ "~PNq2d`8Oi%Y`жO )eď{47i/|.\*ZR gB&P8ua5+!3m|M4RD& ]~ݠFcRm`$Csl#B~ANJxb9O#\]z5:(m-JReO}R!vݲ^eTrlC9+yrJ}m>̗*+O,Adf  Gז'uH`;L,~8w&Vo"D=]x_1R{K֭ kq1xF@ELД[ZfFA{[+ꢱfҮsxL&Mҭt_쪵R >Zz6YY^FI=K,@oq6%l ;rI![R>3lqLx!}a/9Sg}4ǧ ()Orfה?W^MȲ3-qM8}JCt0iC2]&R張Q.#cP"qy*]`(ý(IkOEګ&u]#wRpYRsY@]}p0vOfi0_=(kfˈ?sb|)SWR D%ˡڑPF; [Ҳ oR+놬}'7/9:R!=FT )2=WGCp$I}2\| aQùJ2 ZPe %uQak#C_VV(qˠR9sTPT^TKHk>fp*lx`nEߵg3N'db>G(O'Is2ŭY}BÕpfUb^4f *s2/q!_N[WyY7*3{&I _PKfMUl{@(TV;Ae1 )k{\#Xov~,ف/ڙx?&ЊU+-OokV dS[3C#MkQ VBP?2GIlHy;CVU~*D9(l3~{+vgtJ!!\C& ow5}_nYn {-4n]FVPx|E DBc>BLJC#z65r~VmaLNuoU Yn6#,Wc)4ĸsS\&P& K=W[:8h.!.[1e؎Tɸ%0.L΁`ϭmnmjid"rKleܧJAKCpH4v1%<N7RD ZoɚA(QZeqZ29x: ~kj&G+|(-` W"1Q #N`˜"8MkP29*EilF#L0>M lQC-(UmI:: W,8@XgЋb4>.foܠnwL~3Z }G j6ǰl,bv@@_:Kax@[ SBbXTD4OX1(QUa S6pbN'2NSlk+"fcPl~/gZ9>!H'FnoDNߗ@^cQɕ*n`CցNb % f|V''.x(^n?xJ0HRt0Ѐ/aq*bs蟶0?bGZQ8hd4BM˾tGJlB/nDP 7%7~H[I'{/^Z-U)j% Y&^| ZwC: n/mC C Ni#Aԗ>M09~RHH4/.*}ƻ}\-wK,]mtЗz{Etfr\CWţ%n !eWij $ N^3za_r+io+dO,E3Ƌ4tC{8Jd{ Ǿ?n5]qRˠD!A-˧zX䞃*7ݪ+<0MG\Ko֮|X@wn*dž⩗(~;KR1–NJaV=9 Ū=yn#&X#(QO-^B6_(:  m\}X'݁<iaIFޘ*{fr5?7uBDH9r]oiuj x}S)˞yPquWo>xYqi%`Cڶ10ˋل, uad^5esذeG(7-A;' 0Iҹ8(z JjhuH ^gAL vUbx㜳 $Q}9pvr,.l _4^n&_X8g%~Hz Yn2[)#a"x8S%0p 9dg Ff1cN 'R9}t:WcUf}!~pb Iyʹ?O8$AR/svr!dN|gæf rb7,3o}7r~gͲ"}ZX鸮n`$6y*i\%,Ծ“+R"ӳe<WjC;\OVȝ /xŠ;S8AX1UT40;vks .ócDֳpNs-r)lR"tC"UUeQ; Fz }/_Px0_4%)~gm op7}H/>ZV,GwSNM1*9 endstream endobj 327 0 obj << /Length1 1370 /Length2 5960 /Length3 0 /Length 6892 /Filter /FlateDecode >> stream xڍwT6R HK7 tw03 ] !-4()%!ݍ}[us]ZD%m(aH.^n @ ~nItma҇!p d `Ma @$7&ȁ=67 A8Lpo7=ߏ5+**;vA0@ 8V;:pk(H'7 wd؀R AC$w񃝡NuGފ@ ~+C )W buwo|+iӿ E(@ 6P_|ˮKiNPDz\ nex@ܒ rYm~ɌOPq@\|yohMcGކp7_w*h2#ۭ~_mͿϿ xAq&ա-gUT\˟0[z"_s}U?q)'Hќ, b92 KVA,qvAhlvS&hQ[$L\ wV\"VE7g脀. +ݺmDǸhdJGfꮫ5w*Cqd۷ޞ|Jp" be(H2(2'c](1G[iuiexE}gmF_CE)"W`|d}hF/jN~0(.5IҪSPbE,f촗oC!vv5!}Yw_,a!o.oqهW؁G[U,JLقdOhBS+B>1| 3^iAK c݇'EB/=${&Q%:(wDq"F4g]L21~by*WH 4:t8|-0B ja)-9'Vuj:0 @{<=- mE ݖJ6rJeCޖ7FcsC;۫MAU-gi@1 ELCӳВe # '%EIP?I{pC2bo7j9>B ]MbeFtsWc ?mO9uJКoD^):4$Fչݣ 9x)&UTǾi1 טmJrHƑH)z!%_B 2~Xrz]Z^|.̣8*oX!YI:4DF:ɢ85鵣v]E+ %r$s۱s(e3C$vol6 Gkч AI9*4Gv;?+$GvoK-$Y-^ayr+!@Yg)ǡ%,gAt\ZM~™ԴzgvQI0l72ʎ_9 LQ`gYS7޴Fwt~n0#7W&DX%/KRTH#P71v,3V\hj$\ۺd`8 XdM:$w*@^EWk'銳#], jL|1܋3iwcݹ7^݈n/Hn>}0Xy'A `?->P*t.WtPD:xX-dL.Z{|J Dr^x@ݻ@Pg ]h9sēSIa/ Id?A9[IP >=~fMk0#(3uVHw BGfo`3ZHڼ)͝۝R*c9kG{?LFOokw-qaKP_з fVd=џoK#3df½̭ eԜC ۂ.pjRUpY˻LXkP~+h;+ӱð<wE&\ǫ8{X͍pNX]ꛃW .s Ke6@FqO 5YH aQCs;N)v x8aN˕SdCЭuop,a2jL@GR+=_v7e2t=3h18P .Q̛dݲ:#cAN([ߦVV=>EN]ZyZL.dk*ƭٗ d:ep9xBr;֋p3V? O&-& |ga0$_/cY##Loz#< a~ɠ?IUD|GֱrwE "Y[7@f|,Lz2͜ߪP dΞ^hBOhggs$t8@6\AubTWj<,Ue_޴ͻ#p_ɂjͥ־3N*C&F:9Տދ:D-XW`/q.R.+DWzJR̾i}.zv:~P/F !-rMN *,P~ ߞ jV_ Yçb4%7h|}Z^O/=+ʊ٫O9XӕnegM^Э2KYTruÛ`T;e U"o6o)cSh4&l&"7%"a wã:mL*yloIkew͚XU@fù))o,].` gmc;uM) _0v! KҜ%G Z\ݯ7GJL|pu+!y]>KR,IyCUrUMӐm3[˲cV-CRJ V>Ԋ Dy>mtU >CH:\wX}s-#5{(^c+)RE;}two$P$$Zڶ膔E0Zq? 2⦓L8uRI1mg21oL)˴R|îrC+`2?,KDIlK-9.hq,ܩ}fjs˨{sS<*{۟:#AZ؏DrZ+nt$% 0Pe+4M+?qbdJѦhi#IXԹ> &CP8vI!Cu3\CVݷ.У&%B]ϓ'>‚^ &sFt':z\͵srKO̺o(J|m=I!Jt.e6 n"V'Gq*OR{8O`̚AYrVD0EW1lL'KVT,IJDlεQNx3etr 8z ;I9kyW++mC\+iy63b6 = ]졯{xlPǽ l+Kz|,G^c ԟ2.j8$hF$\8! d)/de[ o r! mp Ű\2PfŸ4,*8F|Y_WmdL|;+fVll]Wcb$*F/jdZ%̄j,*eHFoTl֙.6ƃ<@;zB~tPV A>/zMY@i.[>wW/ҳ+QȾ: 3𨟿$r bj`Dz0Tq_~0=T$r ޳7 }?@Li eb % :{&22JG{j:&_Q:>/` 5uP]̰q>`}ì֊*Hm#PjV;?M2/&~N6fXHJctFCMʻ,n(ZRD^H3_hI(NY3sa^=nq0FphOLZIL&5Rpv]3S+7a/~Mg%S?Q]);"J^(SJȺT0V HH}<ϗ4Mg@Z/:.{,n5ܘU ?4\0Pb{2# G::6 >[dbAN;zv#&]zU>ص> '^ HDJ~F`7 Ҫ!gC?ʏ׺B7ǭFLZ Go`2*NZ[*&O4J_3֢pؖp]cF+ ajƼcuXameđMAl]5v]2I?T6WTa!+kY7lH "|~1-fv֫̀.b9(&#> stream xڍTuXIHO$6fñ9BZA;iDDAIIAJnз~dz纮>χ!=Bbx| 0 @66#8'`3(`0ʧ\AQHE$ P BK p{6PQ>h_@N(,..;(Cá$Pq\uB@C*qqCex^pC{쁿@\`/`90^4 x@0U^ku]a?Zxܟٿ !P(#p Ň!H_@u+!@y} j?7tw>w8ז\2^CbSaЫ"Q^H?ik{W~c$'A Hs¼N~W{c]Q@U`p1h??`0`p$Wn po芄` 7+٣/_GP[S+(X^Q0W@Łb +ANHPNꯡ=dB0 ? WS/ Ϥ@Fp_ '+=hTo)+S@T!tD}pw7^:A?ƿ$#az(w  WJgЇW+fdH(E4+K_ @~>$ sZB~ݪ P4Jf/_oM`0(`r u m<]"N=~ ;Ph}өjCp iE#4R;gQ(h]g0~6B '@&kn;~ў7\/CyM3U֨2oLn ]_:e8R5LG`9c%1?¿ѵ '8S9u}6YwWqׄi쁵RT?mO?c5~;3Y ,Ÿ/+t<-yT(ÇibK xWŚe-lx٢ mequpu}  t};dZ[0Nm۵RзqNO^2PJmJԧޯק{3];l{-<$aO@g6jz.YA Pbە!]hWW.D`Se "&B-Y7 ˬ:|,?~[bqA'ld yi;BnV<1bmp XDg_4X\?)xTM@!&>S U2TKx.'n*.jDHUT1=yzm][־_c=.4$y 'RUHjNܙJY&-P@!i4AA'=paVhzJ˔xWTtF6wrl|#qLhnRٜ躰Iyq -Y[\ ! u%dz˽] "b̧^MӸ K!Htqgw3%K3L@zSYPMB^DsGpLYC:4#DeJE%KOTq 7:wx^2]|$މLrqzn YqB έ7Rig.\cP]Hb(נW45{>Ln!;N yl9'˺5řL &1XgWqc3,xgO !3[NE bDOiaƤ)~r~+v{zkLNfJ%vBSu%u0chd \`vPr}')~֑e6L袂 WF#eu|`'"xtzPp"3lTd^v }tb{b_cۖ/gэ!~hT@zo>TWQ8uC2%TlEI^R<6咎–?.] L,ܓ,~deGS2Ikg Na׈u"oHỌ83ZX9Ckn'~ `,g0#&Y9st{ŪDQBvLekxn>V3]8樃iZ}s 9mK3hSSӍ'n܏RoP<>4۽gE=kQb+cCv >IOJZje Сsqo Y4=H_.`[FkE|י8\\1@tay`۹{!hR-8oZa|ǣ:Qw܊:XL+&yG͵R3l ^[+7ޝKMV,# *ួqv: س-o&:;߯s UW6ͦ\hfH/]D&-zmώ(r$qiKC$.tX+_M^ɅvE}⭜V3kvb̺.6d$9f;wFo}EGfJ,?$xVZH./Մ."N$6h$܅68cM* ҁ.gmULZ -r8%M)=zk`cϾ=PLe]nMtVY-Uɭc6\V/V֝.fg9:y6F<_@CN)&CCiumr$~ lSA~ "b6[2N4#kMO~'eE:ӵlınu];bl( ^IJ\KgH^*;u菉Xxws/YG [a'3=Ƨ'_^y&u gH;1} "EaC/79m[23ueaxBZϨ/ܧnԕX[ :B-3 3h΍o)SOiE_^|(-\n3b_'>wMtĩpl\kLeS*z>!!"K5Mޢ2xDc̰y慯&'yOTW,/0uic^/W 4FA3+ft$o=Qj OҰ&\S;]Z w`ePYcWU {46CVUå.?T lLͨsrx;< I>z]Bw;41)l_sx($XmD aM1.g|asn'D|Ne›_S»0>Q{W&Oū԰x?GmI4w.8xP>?%. ?R&"(|SEFQkFejōGppk&2[Ѱq "Tjح 5rdҠ|> stream xڍtT.H0 -t7030 ݍtA RHtt co9kz}󹮗MGOa UBQ| ~ @@@_@@r5qBn0\P0 mS8M @ 1 H f!P7"y7fgB+ =x vw8@Ap&euFW G .){E;#v20=@Ez@mh&'(O0 @`( "}U pw7?FJC g0œm% ~> ;!`0 l P `NFJ޲"F ܈~CB!{ܬ# {ml a| CUB&(QQaq7vv~ \!0[( P (5'Ovj猾|$ `& 'hz N_퓓Cx|@"" H3 ĪmE_{%_qpK f- @7+ݐo7o;ÜФuG@P#jBm`UEBۡc)6:0e A~}[QC ~yEu/ H$؛HM'A/-Ho&p @E ~]+HDun^h?CܑH~]_ߢB D2̡*Bѓr( _{ LQW9+}i:So"F&y[RUPr|/?_AYl vCbiOW)uɬp%M k([/jv0}p}#gKeD6`Ř/zM)fb`c/W3z{:ӄ_FPS%u$fչapʉ|p9s۹jA/ (fr蓅Ea&!ԆjG9{~xՈ4Hc{`\-棧5_'S<v&9݇ڸc\Unii_F/mf$4Hꖉ(jTCc ؟?-x}2Shg3xB @i( ٲ奊qT_^ղKu0EK`AbNxfkIrpdXFv!)(%ƿ'gݬUm"f>u:@y`c()[@ ᩆb&ץx)}!3>^ׄ|?TQ%PRƐbx êH}o=8a1N7%Uű nx[r(U_fkBδ+/zIqѰ[s+81'6IB"XUJğfPA"aɉ^֔6Tp{HO4x!u,G+x5ׯ/g y'vqY\> ɢD򿮹:ՖPsOʉ쀜Μ 4xqoźDlq ^v_, M/ot~!,c6"zYY봼e՞Kbs"i}15Wٝ3ӟ 0۰8 ?uq |`_q5q `l:+NZ:[l"xKTF(.9dO.b?iJos0Zz=V v='oy~>@p=j14'IZb$a=҆i)E+oW~fAK@JB{Qx*"3›T8ߊ409SI:0C[+{Gg܄/<\Ձo$qr)#ą$0Eam&WMUt8; 3%]ވ9F$>{G1tᾹWXrXɴ}a {h;4vhrP5ʭZ 7n\NBсk^uƶb%!d4kH^%>휳_LCƂXa[^^ ErloS dO?}E}gY ~3Kҿ6a@TKv3'~Z3'0`^GwKՃ8Cij_]?.5m7RҤNOˣ&^^=OH "̬_ORWǃg9Y q]wYYr>oyYwZ?"|9Za K wd顬JߓGGqύ,@zfhb?Eʩ t12JkE(bH_#kUnm>H/kHb{ftEH!X|<-U[{+SN!05|=:.; wJ5lOCZy&o=`'4-7c3܌%)vau7\P,a]Kh0ûGҊ."sF-÷ jNx\I48 2D WX.ʸ,4;jܿ7&m?V8.P5V /Jˇ0Wcb%Ɓ}³EfCνΨ;.yqTk>l/^bȴ3m"9@eS~N!/nRUz6;&nGrҖ4bf'gzm׶i7kC/>t~行*Q~,B+%[3Ny!j5ymfٗeOHiKl=Q;O9a WA'1G}߲|ǐqd1"Q&6L xs.㨈>1H8}]IJ+*ckP] mb%ul J\S`=z)MT=D}n۞8{J&C{ͬ)-(7*r컍/1$ <;-qp`h|^m.M.Dѻ諀vxG u|^I 􆺄GLDLBNŖh0}AU"Q3I$.]5y>DŽ췏^wh&S-;˧ϳ0Unlj1-i h_in V7رJ%w<\u+"\aeTcܾkSLFaThxRCKogS^‰+~A-,r둧x˲Vcf7b$v;".QԳQTǂ 7mo'ӿy/QQ$"u5qB,nLk{"_?Q퍓j^m_*Էo[NϯJ*x4)L%VJuP%PKk?6e[x\ȥVqƷ-f&tI[qWy^zR2Ͼw}g7"yUp+n%ice\Kp02s96ʝ\F[!F-*I78 5kC|k]B0n3| yezx=kZCZps%om[C-$}CȎg2fJ] sNFEɱ3KŧtMLp#wLzdh_~R[ӓyTvw} 492IȒjs>EN iw}u3[]k>3-&ĆcgXdǎ0V60z{)+2¡|D~.aVqG Ďj cf)^ӜL'Au ͞4Cc$ALe95X񖰧bq1?pcXf*Zwla^E,~-LS5E&qQ*z5QӫHͯ||PD.gFztt)C _eÍ!Լ )hfZ=nu3gy(-n$2]ij{y~Ku)Z"wHz4IU#hx/^%oۀE  j<- n$,#iќWg%a]?z1*H?`xoPn*(4Rwi _ۯcYd#&3jׄ|.c/4muГ[kp{Z`6V[W?OadjHY:l&isLL0 ١V(f%ަ֯s0d\QɓIOӠjst9;bq!N /5GO gd[ u]*s5k:2Cf3[ Nw'sQӅ/M/dܬ> f lZ/)>h:yDSP?7[q*쒵NQdN߲n "jxˉ,]c9):[Gt"k HX K[,9$޺L1aBʭuJy4lEPʤ\Տ7xWW87Y1(ȟzZRӝ~VAUٲo?s U)'!WP xܩ17e|Di:N"p_Q_52\Vd(đu7;TGbAQDMnVnVz,q<:9%]KҚX̊^>S nc>/AWX(EIUjR۩H wG3âGFx4Fs[g u@*~dmT%.El(S3nY̧  >s ǀTB DFw_ڌoTY@$O Jpb)QGR,D*A<:[n7z+%Y%O);rP*.?7@N\]r_-xqSdGWn ji!&WMoe4< t\s*/Ĺ ^?߿qO Q/,UVML43S1.o-#-FNGRDŽԧ`TGnŮ*ط_(Rr_`~K=P̉~-#bm랁z[(3k2S4]e϶ΡērƬJ34؎+\ \ΦK3?6z&|اB[z%z%-Ɵɘ3//Pb/?U|ٰ'e∨7F̔m:v$8uFAn, VB;K"fED6]=J`YEjc(bm tI'꤯м,t)9^>w/'߇:/㮘Jwi"Q!3cĭ#X[ޥ{~%3t|E8pGkd%VX]k TH!Sf 4< ϝ7GRI[mXbLS'yC=c>?MV endstream endobj 333 0 obj << /Length1 2122 /Length2 17215 /Length3 0 /Length 18496 /Filter /FlateDecode >> stream xڌPҀ ][p'xp_>}ykuwPd77۹0 $ll,llH44Z`H4 'g?,$@&.o2)7Ce{; #+`c@ lPf(ہh$<.oqyvۂ@;%-"i\gřlW-vf ;g;oõw*Ձ$/o79@@Kֿhy:V%~`VlzBv6q\\AT/!@)lg71_vN`Gc[x1Y5]ofNn37 먙?|Jmۿ{BߵT:ll?o]*3q[O/-o6o`Mu@]ej]LަA⭣ٹXظ%;ˀ=@fj`忺_͛ f ybc?!Z"o 6CWhoװqpLL<oSi,v.o.}NH,7U/ѿ*R%^6b!!.*x-ޢ-zޢk%&-z/q6o_gj||K?-)"Xz:X |?-W?vc[O7۷?o:Q:l@.k+~MI>|R`utY]V?p[1?PV7t~u@ ¬=P0ت6Z؝yg " Ag[mO=PR j^sz7~눣Zp'-JotÑ+ǮbG1iO+)z|&YwM@Dq@gUJԈOMS;_'ܧ spo/1A7҈Q2Ew)LlwK<~ j Dg<)J%%Bb;F^âIn`/Zr3:x) CTɏȅd"/NnڲrYlaDyD,9>J5 ZYSiEL4/'QAN`&6- x9q=r4dGTڅ$><'#<ԑGVZX G5'=f:QFέH5&(nJ&К)%{|].Z6ļ %0ue!䳔96zn"3x  'z ~H:I} !}_3b\;cd ^7w&Q[[vMTw>UFO'^P=XG(SZY2r^݁In(o?x4=~ kɢpH3J_]|1HA[8վߡk\V+olۗ4LjT E'.XVDҰ/IU3:/ڡƳ6d*C@q3svkGR2RqϠ$iܞ~,'Qw~}AxMs:WB8͑gII3rlO7_#hup]M#Trr_C^fjA5Lh^V6K2~>\uۢCMǣɶ"iF?q E̘<Y T?{Rzj:e-dPI.-5k7f}4cxZ zn@KINm͞KH`~IWY=jp>o9{ߥԮu,{!Gۼ d0p:w|(%}%v3ڊ**99\p (~qobs븙uȮ H5cB $ׇ'@wҦpީ:7jv*l7$ 'Ew-,0aET6y4LJy si_ÓGNCA3d·`U@n{0,,I:Ꜣ8*A[' Ň#pZdVJHne(ܪ{wA私$Yؖ ͥ&}L#j%:vb\2Zj QiY+w}zOy> ~Y>>a34zTQN=yc{ƄAw(p]{O4CMtZAi,8&J0,G&!r/T1D+HZҲa yWi {Qb ).gz4_zgv9J۝}w8m|GV`L I5 ݉qU7&fZ˹V5$-;َGi[H;#Ԉx `sDGᤧ =-(?moBKE$EZ mS,^m)"y.,QpIQ4L숚-FVefc)P꽊FSp  "VkoS^4IH&5\c~dJ vW1嗼Kr7j :hKd8LtЯɍv@MO^ r^M۠t1pky1d`Jql+gRnƁbh/|xĺVm^oMaL˴"Q&@p¶CCM1PR_}eàg;*n{vA7`M/nGPb+ Q&b(QOgCY]@muSsM 륛U뺑RXhm{d\̲ BsP{`Ok ɹ)"#nFj9z`l0F1, %>=kd({27C$ڒ珑hI6'@A!/ϯ=u-.sz3.`'r 7?|ar#~k ;Er!@PJ'@핉{ږS5daV#W CQ.X3u3kŷRwk>Q sH[Ot#{Jd1cȬӆՐ-HXf/o> ޕuHuD]:i5zpAͽپX<38Ry6)k 8.B)qo&)nOݏNǝ/w$g>|WV]3""OsH'hTjRZ Vsx$ߠO6#ɒ:wHq3t4cN W J&^^?g͕|QY7en X'昊u-yR^}%/#vDXgN-i2i#ܖNTyl*^?"@X'ήMgSnz1Бƣֱd 3Yi]t^u'\IL T6cMW.6Re1 ,#> <4HrdLuR&9H,$9SfgNX,"ZY2тPdmPGY#N^?QTA^觠 Ώ&N[$TΪC5a_/ df&.ꈅ53_I|Q߽xV2'cG'0SdwKZwLX泷ݿ{#1;ޯڨ VԲ7W|SqWEV[=Ʌӥc{=n8Y_N/tiUW4џ-E1ŏ$B4!˩!AUzseEl') ͝٨V}wT fM57\ 9$硒ѐkA Niև][5R?&ҿ}$jwi`.gl()>ulե t8b<ᑝDH)y"i%Mf+ۺ+1p;UH˶ ׊NspҸT5,VRVU?=23 _QVGE-Bv2#D7f\c"`}5SD JM5c`w2QDD+E疧 //o?(bSXDG&Ym?ڬ!Šq(J}3cv` 熽\&r Uz !A2,VEF \ﵰ^`_f-,4`ǫOv91't?iWi Pڸj~֛0zSz"=I$4@%$*Y5/B:*\&VHAJ"ƁTUzѧYEjȒ-J3R˓DcD.eZ¬ W?':ɣnJ~S3/IF\f19N_2F ɀ. Z9np}~E=ߟ]G ԄyI @r}o7, &px*i+FS[>qm+8#촔wb ' lL4Cv`,9ql+{2Am8x8OR%qntV` Ѷ+)>ѻJ,v2wbS'A=RY^rZf'쁆DmQ7 V*(Ʀ0VA:0"W/ҹh!h- Z渐}+7l`C#\$pOD$:&[>S(- 9D6]8 &~m2CW}h6Mv7vgvS%jM"RhԝXƗ{p (= aN3f̓i7{H۩cTND[ݦpʻiRT3uIt&5!&U>énNސVYinuBK9:Ua?L뛅g?cNQ(s >,KV`g6qmdE_!<[ј9Ƿ1[|,O9TMR>#"3"k55%b֣2␎Q>[#SN BMN:A{=Q'J z|cM5cmz}kNjq2Xس݌ 'j樸hxJ9L;_@qn2[xcs5a)^v߄Fc=7MD'S@P[gW}JYRW i(WWrzsA˵`)L9G TmY4{a9`ɣ Z(1/i8[-mu9:'Xf=ȃl96Fb؊4 fpu;,kM2A%&) \"R\XuoC 9U0qKLŽVڴ[OU]b! ggK8ϩKz^O톟lGbG:Mcxx%5re)a 8xAYW7W NfC8+WGMZ=2ni-+E 2~Sxz^vCЕ~q,l2[sܨ:.e"M`tE^_3[bn7kN`+[),uJcZH U`nzgczL8# _9f0R2Q`q ڶmN;_эHrBW~M^Q ~ K[o8 9rFzEvt`oJ̗31,&Sot~ $q9V#_GW8N ++ϘR]iOq'g&-QUC}E" vìJ-fR(Q9wG-*7wЦܤhU.Ӌf"Rf8tS!\8ܟV<<0V#(R3.pi ^c9{g]lkzc!F}J"2!,ҁ~ "W j}'@|n!獡ʥ<420ݪ[ _Vet*֘ZzI.JLZS`ppٟ$)F!th~|+0:lg޽VF)sy.Jt BF؇a p:XRwŏƪ 9x@&|--EM?2TXC&aÊL.6A^_ҁMG=D6>uS6Z#W?A(X)&!>:E$f;Cܼ3,=8lYb^?1zw"DDx )֌ѩ> ]WW{E6, Yz_8Tf!{ʎͱ_Q; `/ga.b!N2p(ovllɤiûz5AךPj^|˥J`8/U)&6Oǩ u\!'ؐk)u PHcD^ar{OIr!YZן&7/rSKxnT/a[?UvqE<&'fNMt'%Lydhgߕ–|O HQ_~d1ѧVAax3RpQ#b#7?'k`- R z{hǘrA/9uDiP:'"}vdNwc?䢘#jjMH6${,5VK([Wf?.!^ %YIwD3}8jgMr^=>̃9P+CŮ?Dޡ5U%_7a1D kpU1dŅsdmy5( ǁSG m0eq'{jaF"t>F͹6k1 ^la9yJgB !nC2 Ÿ?yyɯ 1##[U\ [yn4#uOLeAyjCS[1U_X{9,rQ@̫ \ׯ' &QV'rw/lA$1KLf~±vv+ѪAzSZ/9Yh|zG$8tlӥw#$u?j#W%j= 1/W;w<+1,ᯔ/cڣuPvX& dZn|s&`-n o?~%f-h|cuv8 m=xW-3252}ӕ~2. R$:FZ'bXXCQoP:cܻOEWdQE`QW #v}NTFJ=C! ƈS-tL%@'/a;΀<ڤ$DwZ+JNNLTP$#nJʐ"Zx#d )S|Sw$ ȧuR "$miFc/ TT\qjh+eP  E4/>%Xd+m(_IGMpߝKEi$n ϵKq}TK׾)5wLW,>Ze˱zɊ9F=v"CMAM|enWGcM1=@܌sMPK9YG"!n&éIR~$fIb>n5 _m+E~% .Ÿ7=F! rQZLTuѯq"P; g_.e.Yr@=jmh \UM%l&LܹfT嬕/ 暴,ݫא55Jd%JECt~JE|< kRo8_|vveTBAuwrsd}9mx"B;P<"U]gZơ (4 5TUq Tt ;2bzOifWygQaR䫵2K2!𝿸bxH)kOD2\8xƭEBs4ՇE2T&;cC&ghkR Yn `"Flc獓څ6r BQ2^V4fâ3#;sǗ{#zcNf1ee\fu*̟N ;3.#&e9V(v&+:Gfpus20?NOV%aӠS5>aqf< ,5&TrH9HL~V&?ڄJEjnwśG!A_]9MSR53B>t$Z(ii,d @M[t0*֤s밍8i^xeE=šId=Ϛօ]DOWMi2>Z2 6;%X˸S^ބyvP3 :E_ARȴYG NN1? >M'C땁]+ZG7P@fTtd34iF?,vLQc!}~|InH#_]?U#ś*++}ʞov|3\W$a!Hx]TF&W~ g#o-%5<;xU-bL DS/?cO9M(Ռ[,T g/ɪe }fICbvdzP _PhLSC+e% Uakɪ+:b*T7}h-,+(&g.@ڨƕ"]%ɂaԍ8pO#'@@iOXK7:'p-GpFUWnn3h Hf>Ã2V,b/)\@I03 VۗxY jLLV̔+BHt~E$Rz 4~P6 Z8YߊIp,WmkjEϪޫL:b M0 ]_ݖ}ao|#Ɠk&kQff5ȜNqջQZ/LJm;mrkBGX]27Y =N,|ֽY6qQAFIHDgeRn޿fr?)]_jHD0 czN.6}ʓyQn 6y]%C 2kRJ~) fR ;+1]y# 'o,EJ @WV\#+ޤg|IWS4XcKca6p@u W:i^abX2~9}Ӳ~V<t U5+Xe٥RpPK`%Y%+&hMqVtJjPf@f0C3.7#Gh>?f,X`vG.Ҙ$Ҕxw]-ǣg3nG (PHjA(YQ$s<1 z $]~_eu< lӺ>I\mqFN28U2j8WL/dA^ KF}A/0zOtKG Y2R juL5cηū=\/gl9[Vw( NJ$T ??8;-"᭓bD[ãXˀ 3كI9B# ?IEj:o)rP'-y's䘟e{T„F[e;AHz9A iIGXh~:p9MX̌㕹B_̊R4Uvc 5g8@̆SDslONT$fN6tA^UVTA㧝D{E? X.vr;~(8J#{O*CKY#ܻΡCm&l82?;] WChxo,Dqk+h6%˗.!GRN nqP'Œl?/Q.V_u3s;0攐]vAXebexM+ _`dC5%S\%/eA{% o.I=?]؝ʜ(q O*;櫙&3nfG)kI䤤.MO3!ȷ;DQ e5GF6:A(*vTWssB; <.-l5ǁ!a/{Ѹ2~‘~Jχkk'wU$m B+l^r]GlxE r>pP}gEt=M~M|;aO}mR;E]dĠy/?(J}HDh-79'L<]G|s0 콘йMkk1)JiC?ԟ \ZgvkjӮ+M h4rjS}C#Ddo@cS*ԋ)iڢD"Ex7{_ٚ A]ůOB/v̓{L[IԽ#%EuJ)@ڊKƇZdn}F#;1K\1v 2ƒQaP Jq{`Z:W8_"E#D"tN|Mە= _87]DŽzD0\{*(9Mٰ=JMӼ߻I.@[{v1(j{ͫd/_$~nus+7_-Q^Nb|;ܵ놆jN"xZOL DCq~\C%ίΨ_Żp^v?O&frы8ccݽb9pXEǫ/~YjaQ)mu^Խs+ 7p. )u:ES*IFU+Ekq" Ʃ;jRun?oC^fr)^7Y:*i u5:ѳ?gdq^R͸W(y(noWy&f)&@'0(6o%qEx124d)fv ;rք_pȺo?EB}XO5Zą9e:FDG-i(bKaZ|Z P!r TCGFfl6߆/3Ԓ8h!.}1M]/pz>'3]zRePwov&ڣm0Q21,:{e(9r%[Q@hͭTY&a;҉^gh˅SȻ;W.сpEYV|R\Koj1DîVmv+'h:g5'2 V= 6{#AH7z`*-}52zׯt`J0*jU'٤"YkD2|bZZ;,g8$[~&/T$a>£MA3G6|P.e!?t}޴=Jٳe^\4(Q(q攤Gԓ.&):N)Jl FJ[ݶQR4mjup24`D Hu>f (g7C(*n}P.4ME{1# sv[q<8ޣceZƷ<[DU:MP77Vb|v/C]N'KduՊg.JokjZך+bhSIT8*:5[E8FuVuoKtǠAb?&QrN(-%N&/YCb+oY1m Y*?{h F=U]5sơE'LOs>Ku| 5>p n{-u=`xsS} Q1v1m֏j p=HK~]6m}$2u(MOͪBt|@fw|P/6 +މFu60|׎.njӛ"o(&2^3Ec. Sʙ)t9 KraH̥IBfq\gC^$hE[KކS xwS Q#!ދ(X|Ͳ>9b>V1$5ARAM#3^\ bW76~'U:?8C B>s}^P@V0r 5NJ dB/\\O:$AeK~ ZDwݳ[n;'R!7шGBRvYMYv8 5p[7 6vp19QDMm咷A) C7*j)S 9"B o^!ki|8V?I+7 %oJr봩6;Z endstream endobj 335 0 obj << /Length1 2552 /Length2 18009 /Length3 0 /Length 19500 /Filter /FlateDecode >> stream xڌP\ cݝ.h]!@pww3g${󺮵\UI(moPdcr0#RQi\l#RiAvHH8]4Ic@`ggeWމ i2(1ΈTN K>hMl||<lN Sc;%ao x ZAK~wwwfc[gf{' a:F;t: P63"@&؀Lv`W;3!PqGX?`cf?lljjo`l liEfF_6`}c7c XЍbjcplrpqfv#_fe3ڹ8#$ h '?͵w/2ٙ(' ftpr%_4=3"svẃDogc7 '" d0Z[;<cnZQ5rv vghY:R-@{߳r?*f/+c#vO- ܺw@ vWTU\m/W bv6, \L-3P`bce?7ۭ91TS^7C-0{Eٴ:/@G{ۑ;m|`y"6eTin/n=nxVy<415f]Oެ]>ܢUy9G,5>Sweb0߇kmmn רuI ϟmϪHr:V39pJxDq5y֔UTQ>Ȏ0 'bY뾻Zt"V5/.t JTj )17yޛMejfx$u(1[*#I 2 e@Q%@594+?"(c@q9}dSYZOYЧl_ZtSD_p0 #F5Y #֦n[ؒ]&f EQ z ERrRr.{JqC c,oٻ 8YJrtVmZ5:f#>lf8-K:Ty{!m/dg>`}Άt7v`'gBAQtEc UC Lƻ"n~սEcOE+z1:M>9ѵKz+] >_n?ۚ&;T4x&%: R{Z:=x+Kg(nRk=XVln!_{qk}(1,߈P1O Gѧ[uJ gWb?Dŏ)Dhuh!^e* 4 RquA0h!9URYm˺FgӆF)ճ4$H 4h ۳(4yRʌJQ2ꨢ6E q\K2;Z%ʻ| 2,w[V0^fT]}W[bĝ|; ys_L2DdI0#?h-.fhYS3NN6h}7p̓u JPWsf,Pp?S1Z;F:wMlh 'gbSJ?HDȹM>٘3+e+lnyJĬɵa~[s  PgH焹ID~H}=4ޖS!z(-b-v1bH?Z>J\mG_mLyl_ )E1a%:4.Fx?DgP cl(n/O>O9+%^tbGIo~c' ',ȿz4gtQD.Cd,)Mo~CY /ȳ]V szd#8$CӾIΗSYiֻ [KO2oaNk'ߊ=c8KP!vjFO9'w̮C2&RO:]x% Mp|O6>U߈fQ(o"I:ޮ}>:1=WA nUm*c-&sT@ \rE+, 'F tJy JOWE6JχdOz/^{zbdE@]"}a a8ݮгCR FX>g# L}7#1K]aZPI^;DI>_?RK\ 3s(mh)>A N ɭϤI<;vSˆFVM s m˻2D>c$rvŀ>n K:^1qct$rVֈsf%hw^lܔ8;:lVmg: dmc`Bqm@UR—Iq8+sRgGtHfo a7]Cv<A3&S d$0ϛzZY[~^Un` ֔=bƃ,v>&FK.:[M\(NWfp"0aI y m wvZ/jݏh4X7rZŤv'FA;9Ō#[i ¦qa W4ԈzMig ҝ:gMk,+ \$3xfZ~lb)4b+a\O†^+ކNYÚZ rM\x\L9nSb{~mWtB 2 }KLuOPb\%e-1Kok.pM2gVE ًswXG2CuCHT:I6\w+ԤSS ڷ\_էd>2yšYu-f#F8DdMeWT-qO<=”ɚ^'/3󥫭?#5PLk'$rPNKOս W)}1x kV^ WKqH?ˤlLܴyj6ϩI/,-KFaR(Pc Q48׼fvk6ŎsA)/ MT}MIxC/O&3q|s1L酋ٮF4yD^-&M%֪&~Ku=w^D?fCP4FWR2ClRKv7d >)!kfp-1foJu6ZK WJ 9~D]^k=$Dtˆ$ ZG7l]s&}U 5M0[21>pDi66qRđO5oT؇ɧ}iѣ9UD 1S- qԉ3N$Ywƣs#P%M<\ܶS{&}+r~}R"N7c /Pegrr4ן/PVK&+ b:}\L%7LNwn:jI34 ^V%dMFd HU(dTk$օ7^uuߍ4v U^g ݖ_hpGO;9 u5-a`W`|q5 4'""&q,J^ߕ~`pIf+`[@(;aXPUJ6ZkFOoo)j8ʽC4>1>GɇN^!h WB 9e¶ma,Gʋ :đǙ _ 0I *e%l8cwz"BưC0@a^nhdJlfҴ _w;O4 @k<;>ؑ$@ +Yz2%" Ib(_P+ty|G>TK7J!iRP"<i~c@G,KzKFnIXv$]~,*DCE_'O=|ePH"Wg'@`i,T;(fQ Wξ1jbtG.p6?8\c194L|HxL|C2Kͩp?@M]C5v6&B\ZAR^0)yf㍈Й&+5gKW| 025$nӼkBs8`%ɷK%\{)dwf@CrԎMA[XO V>F Rҟ贈 k8c i6Ϲ]b. ۬l(}A'jN?d"2ܼ.ρqFc V*mcsRq\6h] ׬3NDYzf $"U4h{ r V @ Cѱ6>X.zI*)QuGScwA:[yV῕d\+0Ѩnb{yvVAa rf#Գ!-NіY ,?|Q75}zxSG-ojUQdΎ!!/>F!; &'9n8?4Wq5s5O[lCQ9MU<n*A,۵c^ WHCSE|cN)M\dSzNU.h tR{f愋Bb\'6ГI dEi 6M,tjqM2D .3ug}6&߰I%V.B>  gz2Rw]Fz+CO s{bj0Ya_áNPH-z\EM?dR=/L4ٸ}TZ~2'rhv0-K9|{靓:Iǹ圆҉!%9|.nÖ:ZQgLm"O]uM@s`⯄/]^RYۈhxJ#7A<5VYȕM40-}DNӝ*|cu a<4%^>fib1u.+:otW8}{ &Ş>=JuYNOq8GPͲz;<\b4II4%iU!Q2q FO/!cJzcgZц$R#󠬨LLkJ@iA넼eF*^+sQf~VJGlU،r4zQ#R\l:3v;="dffTq `RZ$bݤG6.To*'W@7!=H/szJ"r2΍`أ&92f4PZX$W7rB(S>;l,J|Kp_4ϵtV8kVq EEl;$:|uܚ@P]dX*rC9uORyNNRBD A+g ͑Vw"\lH&|pag;#'y1DI KֈPQL>y1[ Zѥղ+{42'tr' ˃l%^D;5ǀejw9Q] υK]A YݴdgI0PVk085b_/( 8Df|O]$]EȻ{/f5GG۶V1@X#Z ;6lyfzjҍK\_zɱR} =}kx<U7~m }2@RW+siTVXؗdɽ_װrT#[)rleHS1T]Er(CcgXͷ tx^Q ȕWY*hu^ Hqo̊Q1K*tA+_y*Hg r62,jߪԥ2D;x{p*2&&_6Y˒skK.{Sv:ڔQxgS/Voeۤa3i\'f99K٨->,q݉z&ـQ*!핖[~d77eOT©@3L~;agJ[uw6Dc},D߾4qNvmM]y̧39#%'a?DaGP4ϲ'96uZG@L|C|'%TaHez\|i 8T\P*jTX;q˗[1SzK+BRc0ms&M5,^7r ;7[_ m‹ \ƩĈWnNޖʹۆt* 4"6k$Iiz{,iƮe x'ÅesRLU Y'} Ej3' GXfn{a1Ȁ3&)-n"Iy퇥M#G&rUCӌ` clrek+f̏}u%}5߬HY PlWlbIO۩ȩ'd|+Inb]Qy$yE*Zhr x}ިz{iֽ29+f3Ry@_E(Ocˑ>O%f *$5/ ^UoP_?ZϏ;9%@72Anh=.8txÒm?xF*42Ll=1x@ﶕơO:%r#٦9K~6wq-MfxbRѳdftInZ:8dPWp<q#ȃ_2$a~K˽pJD-з%nL:DlgO~t1!bv4$j2;s:Ji9[ # źjU'8o8m\Q@l\z/(.c|5\LJL ) ?FBNCyEƚQCX|/`RJzXr{>c788CПr/ΠW*~vuqƈ0~OZN~M.S:>AT^6rEQiR^ $1%o: iG l"t54um12okrۘ-cTV T1guC}v7[HQ?s<="?ߚ6PBa_7琭I'&x.Ȣ %'GgݬL_\Y]%[r\!sfEr\cD`b(wX/+˧p棲קu$7s VRW@'.Źb!|rht?)5;p'=΋7W60Rkg34B9+xQ]KPx=>xAen6]-ۮJkbdE3 =Zd ton?sRe''f+8Q*2ךcKfxbb|˺I|'3WUn W}wQqk2( Zx}PmfR 6{gJ.tyߠa"U쁱vRGfkYc|IoK\jÜVv\A!qߐ3 B#;^&\VD!EbJЊJyvؠ@-&vV0<<16D:! _8ň҃jW D"P!/c۔RI3>[Ĭsgu^mh_kS̺#+|ÅK_+ѱT,s$YDeP~8 `+K!#2QH*-r/ hՆ FD@مy[*}j[z.+f ?ʪ@W(OBHZtX~:XEOs^Nv'yV ^}6/_p)%+tz* TIImsTס^e*֟RS餫k+9U:֯Jհr IᅯU(}$ыy$:?:dߜ&ҺX WH=ZoϏx"q: v, d&au\sg[gD*$O8dI[R!?R p ˜EjFX\ZSh^ٖ=U;اΏl[2Э '_ddE uX9hkԸn eБ:!cN.=vQ̫5=y2 '钸pI3^{&I-Ѡ@#G+{!nTVZ݇S9Cq¶!'Iy,yNͱ3?Am31/ iG@8.^D$] LhfPܹ^PșHau(k Ԓg܇cuj xQm'̭V9#-'#}d2scuyWs\]Ȍ9qBJU¢Xt\Nr}ڎyfS 1;}bwmfut'ׁ'&w:>9Wt Cm Q-Z+9IY?Fh?\9 xE GisN(?M .2%whuF[V2]ssq#{]YR&΍oBŎyKIR+STې.7JeIp7h8nsW]'9+}ǾAKwǕnjL,aCk˞yN&$,h'up/>.PB2$ /kBerNQ0Tf}Wyp[a[+>Q|ӢSVPY8*δ!*rAÛrmfhFsPvV'@RfTL6;x)9#$ɬgН͊DdqOy"ub¿eѬj|ͭOȄJV;C#`^;ھXJol3UT-׎eRn]"vjXgt!]zqԿz5YOiEƶ !H)ߚhk|fZk4TĎ,#N%d+p}ugf!.<.sZ1oV`1c:GZ rs [1b4aC<5>oic^ %;snǡO[ 8K)+{.e fJB Lmsl̪~>|ۂt@=Cu<9?- pcYYa: B@Xu1RX['t8͠ACnZ~Iol[oyFDdi-nl4JBŰsz&$Rq`263(;# PE CS|%Nw|iFf:siMXSL5lYs+m6/ks5 3i\iIˁW.ٻ ۦhBl8 qdщCl/Xj ^ -PRwVa %d OG:$A?-r|ZCfT:zr>n5K{lzdd}x>=㒘" 2}F0{I$Sr*YW1>]vG\fFw*{ Uʞ7]O}gM|]XI?q-3܈ΆxCDA6稕X>d9Na\ \ĥs3tdjlD`ɯ:nu7CPQaUegrgʩ\o_&Za$`1::RϹ0喔t4Y_J\5_xV6i١'32J(~<7elLr =+3=Hzf=fmނ-DȌmm~ GS[;<(ʔun7̉-bfSxD5N4%Ѻ146Np| 3Ѽxz o\ձguuwDe"c],GJF:t4S!y[N׃VfpZXxX!~6(8Q^G)g×6 Y.J LYBc&3(FtB7{9կ2_Ǒ[e(z/mi$Y&"(-E]I#~կjF#S$v3t?ѩasd绊5t^8)h"]tKSݭ( _$kZw\ΞX{*}8 `Z˕DfNR 8if!ː{9+W̼Tbk71WgAz/ntO3U>YO/vAyPv"=ݱRۄgw:s|L?=a┬[La E oFr"H]n Ѝ CЦ̾;eR6p=8xOh&Al.a% M};޺#E)eO'[A#c } n / ?^,6&&9rIDtCtA#Bd1VXaml/:~!rŀKO5E׸,Ӏ}_%y/_5'>ik]O"~1IKiZ#ngHV,4,(D[x)7'N  UY^qryZQwtX +n6ƴ(0=].TYƝЅ+TP;KW1(WxRg6>(!ȗ2PukrC&.ur.ɝ: U iDNgkiH-86}B>(BMrOߛƝ_ DLMwЮXow(G @ñW_Pa꾒yv@*\vڜ% &CgX!dݭ!GVx>Yo @п>H=)N+nVW-YzM ~Ř~oQ4zd~BJh4&{ gFH |-ؤL{5]GY`+_/5@b$^,s4h/|Z26MϽXK #&Eץ-( ,zm d>%bD6Kq259Rᑀp5eG_|Na(O9u>[!~79iإkBQ ]"pW/6|&89oH:l?fG2nHkJcMPK/QBg٧hrQ-h|he2<&ܜ*J] X瑚&?5%Q~<{e~Kx!n8ŊØl~ߛ)Ay-Nz-oqr4rOfxԾ􉓴9OLfP+%kC~?e9 cjΪs\t2fؘ/Tcݞ(clO&LtglMTr|Ո~B۱~2;aG;jޤYcm&DlM嶀'D![0&&}#9i,ʮ&֊0ҏ8 A  4-к"1Z5W۞BqAIf7RHf]훫$hFdVSsNw}m.u Kd뭳M7݂4<ɡ_R.hfR89Xe*#z )6K }엧 Jz܊oQZ޹Yig,#[?vޮ5{"^ݩ-u+W*~HMǬA ZI4B a/[&&JHZlD .VޔKC ¨{˷w;\Ȇ-+qc9mjzAGB8HN =UhDrma􃽦(wH`x 7c#3!%ݺ5XNN}'Ψk"Ӊ`PTVd/O @ϝM;QzuZ.Y҇W5\m@ .GlY=l2~JA>we5/&cvo/eeo<^e" ޑW╺ VSC߶! bAyDJd~6Ub@ >;h6zohOdy.z~쳴"`$||~ÇɖE\r(卻/SJǏӿ~+sdL~jFV2P{&/F6{1}Զ"8%FYR8_|E=7rwuLz%\U2{0l#X6)JG g 1eqq1 A|w ^OOIogi Lw| pX ^mHqJ`mo{ ^LV(@$$`׃(JYYT(n[i=xrS Js[Z\tKHZ M- 0ʍKҲLuԹ1Ccߥ } ˰8xCd7EzC l0V,;N-jHyV&+iM P{VHVCR~Jev珰#q>QC| \ .ƾh2^Z LC"LB۹f`-+Ni ћ:0zQ MtmVrkJ:)RF# E( 0t)Qɵӱ y\&h|(ZcQb)G#>yB'WH1@aSÅC]}_Ö`4ٰ+-{1 eSFط`''@H[7I?E 3\w"G^(4 GxTg_n8TƿW̰/_rɮr-ojj@q"l2̷6~\8}ڮ֚DHML4GQ_؝I _+"̓o!K6Jg[# fM7< ֆ:'L6L1,;3%QB9Ɍ&O^"ncp.k4Vqhݑi؋@pS\$k(rGTpKGzW_{sIMfxn!lR܀ױqlPO+@1ڢ7o Jc^Y#v=2ff0a=5Hv%(Z2+ ≡۵j  [d8zH\K)c/Ź&tΥRNmˑ% ՆQ@`E ˵n[2XrT@~>P)+,AL=$w`LNIp5ӝ02)AU*zO]/e1SoM>Mi)֥FRg!Y%!Hl55ƹK]L3US9q/831XW]!֞kڱkn޲ ؕ6n6xZ z2:2 +KtǼqۨs[fhj\Θ}2\*̉ w3UC9 UyM:=O,z1`e3. o(A@ vw\ Hk2:NiaUU"=T VI?=QM@ѹ_`lz e7o.Wl֨: & ~Kq#<[gCߙ`[_ N\mkl/(W{w'O0 X{gPdc.j02xD^`E]^`)U@ZcT8\CtyG6s#dpX zPs1MNZ\Ҁ:&Ða ~uzYBoHlALP mɺ6Ir{ߤGy]a7_KҮ+pnyD+˜.pmM큊=0Lb]Ӵdki  4arI:2 }9 hyRN.}-^`R+Cdg?.K.ROXq)\=zHslS,'*PUݻ)}^?J~I#B,2Q4IS! Yy D|8bq9Xܶ; u!9t19L3gdg ft9]npp5Uh=*0 ܆-rm$4$jKf r!Y҉$LQ=haJ":V[ w1/@&܋SOlvLq2ZI#N7+W[7KytwLklW5Bޅ♓ u; ?\*v"@7VMFᕽBPJ^ P@PH-H _]pjf1r4_1D7o}gxr"xK$"O1kj ).:ʖt/un 6OCBmAV_\)0WykaJV&bZdމ2jˑn7ҿff* f"xlbk0ez_  A8^R ,_c~ J#٩uhѶi€ N/\wr4?GbאٚġcW\d~UĦUQo,eO2sl5HщT*"Fٌ9G:GeF?SæҖR/$`>uFC ' ٓo Kyuf7gxD3f4JPюC߁Ãd(S?+(hS{i'1L+ D)Ь33. endstream endobj 337 0 obj << /Length1 725 /Length2 15948 /Length3 0 /Length 16495 /Filter /FlateDecode >> stream xmctn6vضm۶gNVl۶mZ콿~=zUWWWw9&=#7@E\UHCF&lfj`/jj 039̌L0dG/g+ KW տu[#S+;+g%]ōٍN*ffWK3@DAQKJ^@)!07s6(ZdL]̨4&VBofή3wvȉ +ȫDTEFYۻpmfh#d?X=#01LL\fV0 MMrfxٙ(E\͜rfql濮FvV^C2-?*+q+O3SE+vuv3Z?s#gfjffpϬ:z 1(ȫ+i O,fo`jeoPqO#gQ۬hd /f\<:J=73#' d_pMܜ]M?d2343Y_q0 Nm -+1TYa^A458¹Wß 4ۻܕo&63;& [y-&~W׿SǶ3sMXRb9v*C`6,Gډ_[|ң@3;F )6x_ wCm`YPx_e-8%s-J^;$tŲ!r0Y~ë p )SɫZq77K:C# F .{=jϝ!*)=9B_nu2`A\gvLX9 uTl47/i(i[t"\9;#!E>#}@ٌA4Wg A2ĘKFS젷ПUsU02 _5d xϳ${zf6yi^5U^A S!}w)!h %SF;rB90.3=ltf_<9Ka(:y,op#E}r#丂Y |/xISؙAXgbER^9 s-'p'w٫Y5(ӕ|3uVARb$!.D 1@0]I2 g#^pTNYh߽Y~tl2 W*TXQj*zl}t-f:nVMoPX"*Z_n[7*JSkU{uFs'Ldjig&kh֎ wA3tݽJnKn9筼6[o/[x ]V wAeDH~3 }Mg⺈w;k}b21%:woQPK"F\H1^g pHUcf Uovey1-غ aWڠxCL|JRzV>= ;JHA[;`ك;֣'-A!W^ aehīO1]eV O \ =V' }]^Qc(%OOznu<ĜQ؋TIʪ+eA%8d$ d>#gشgAnK}W;2(G5}3.}ysA4Ξ=pdZaQe͆փ$NLjJ)?ɅLo/IKcR!q1hHSEzsu3Mp[HR9"Wq;ED-ˉA0Qkrl(RDRT2;]b׷}7C輀썩$ s4|ɏE]Txp8TQ*}XWױZs۫ozMZǛst!G{~V7N]j[vjxa{L뽱dKc݉Z]`a2&+Wk Mv^a&nhkS/S#7R-nKv՝fŧϴLBCr=m8p cM7=۩ej H 6y'{H@$_MWӦ{_^gf2  B*|Xv-@!G9L5fI";1uCD(T>'p}ua$cc }bu~땺W"tFB@ ]ӶVc+U?0|7$:NW6U 0Oτ: T|w^)3)2ʿLXUܞ~c]'JP2^Yn9g%:N_1P8-vЍ'~{"瘲dzr~a7kTU(jߎyw\t}ƠD񪉸abR3|g$#A^!M{/pU#_§Em? 0i HGam4pqh@!#Eb. .lXp(#\u8"*57ҕ:S):e%eOÆfpgq| gy%CHNmݺm^˭Ƽ]IߕXx0J*_s~.%#]VBoKd-OSmf=mu\> :b( Xs'Jcr-t#wN%TAx @"t-'3<0zCVm*O_> 3Y%rqC{nf \a /E #!8&ѩE(g{`^ay 0"0ۯE&ymC#@;ܝ`(F[.gEq`Sn\^A=.#x腾*/\{9ؾ %:;vv_=}~ZA\7x- ؈#u))I*hof1ZOe43R"=)g*̱$D'Džs3c11զЂ$`LV@L$ 芋R? 9:X<O@WrqAcZդa,̮17yBt1f gtǵ'&"e mڮ 2y ]E&͊bc:xjt:F!3.\:8nty}\y?Z~*gG:{2 HBHU,-0I6v!rQ\WW0qaXx-ؕF(ngm( 9FbGzG YЬ /uV_l!Iar#?Ol\7"2 xϝdwP"/B`pϷ(-jК)j(rgydLlJ^l% ie9,b EU]#'s @{ܜ辧Mv%Rq A>tZ Zjj7?ݨMy+mI\3z'F`rACDiV-!vy}]!h^ UI!Qʉ`Nf?_ E'B_wZzl-ZB _O#R7|pX5J)(P~$hlOq֗߉UI};uA*8qp)/ sna5;]<7@ "{RL+.HlQn5q-&\<2htԹ2z.Ab·uTA??eSC[@0C6T3n&, bTU_!|Jy(9ExףV6e 4'>qR̭n$𨪼S4?ή0LzLQb]{& }qe&U2 ,N2J!F 7؎zotwq1hu{*nղ|Tk Z {hۜխ#4! 42>9N}p$X-o`kkc@&Ds6j,z}tƟ"*BflUbQktw3|$͹GŪ@U#dƀ6oZ9CPQΏG:j% (0knb>f7`*%FXō("یGJ84P~ e9Ϛf*NMW(s &Q ;H膿 *כ>p*,}KUhHJ{寜BZ=p"꫚(0#%)XI|C%[ݖ@45QJR$AU%>"|{e-A; <]brYZpl0C#bѨ cH-'{ -A e%WN" ih5ј*=(VA8;x_jD]|K~= H"ܞqV_Q6O0!ve~Rmܪ}:;3$qJ;*MR*N±):O'ah9 Zsپ|.nЬ#]Y=J{V_DeQ|x\/sr$7]5NFp(mLB7S.4f`=F|D, *l>ELa rC 1",/hR;Mr B4*Y9r)`ߍ!fD@MvHw>X=:rϿKܻ}&Ր;[&~Fiz)v$5BQac!788\.\kV*tXҷp,qX79bVziO('UU Bڎ ,keX*ck4 3ǫE6-3I"#~ϕ&y"`6(eGP{:kiEc [PP,=cVCM=jph6izoOxSvAb7`KidTi[EԛUSx^~Pk*<g>tT͗*υ "`ew9i-(pL~w5JY)l͟-Pe]R,ŝ%FL&F4=' qD?q )3q뽽ob5y%+ Ҳw_ᶟTl/nH9/@JD|#HCp-b3oDǗN3l$̾.yFH:D£Dv"]O@?OSyqd^D?E$d0P?|||Ղނ@7$" WPHԠ=_>qĦ6! _ˋ&s7'VD9!Kf+>U.Ө I.<ՙ@"g}#HkhmA,r3ϛUUUi>ěGgrz鼥 #,dx{kHn*xȧ1zWI=C0{_wmsHs2ء#Β-cwF5K/eI<*~߁_q*.),+w |(-b{2Q%xLaA,;reJ-JusȫxK8RdWS퍙} ^ `ŰFK$s,%ǔ"C%S;5 `AGE"q\UXx=6~^g9o_sd XW Tߴ:gسFlp9ҕyO}4 s~L;Nn Q-zquk#esmFҊ͔?U7drў"kwc)%;Ñw{=LnjҖIxL {޳lیUv`GH$5wtN$ J8f> Tԉ̿sb~^v7V߱Qb}+H1PǤYb1<:,4^4/#o@ъu524Qx13bˉN&%5%=Q$f5d" {^ lBc8I)ni+Hf= ZLtjl֪ĕ;Q P|LȰP~a90y3M8e U>F@?OYxm$G#̲F;i_3@8@HOeC%Pɕv]Y[}`5(qz;^yWmY1`ڨeO9;za0{VS͞V% WkC aBMݼ-VWҋClUZIY$(M IAbrm휹V1l_aAjKC]P \zb=& <&T WōG*nG]("50]QL%W䲋us 8 X #mdǢxgt%WR +t4 0:JV!sjZ,Tv> "[`X 2.6u0V~)ظdp.nRn"X%\A"8]e|X -~O'78vIQkN\G,^wbnQd" ER>-d 8҅AzyXnkfP3AP('NalҮ%Bj_5 F/"I;!(-'U # 懏rΑ8 ?5X:\tL} "o,CVo=Ymc4-r ƕx\oN;.H R@\/ |sN[fv)GF=9G׏~4KMpv]?m?B <SQonW/ʮy. 'Vv"3R0” g/1| ,MK<.j5_(7;=ANʯ`„q2Tu&"RMX1 >rY[P~rnsF'gB]! $i*21Hy .oJyܕ|}vhvax;yY4Ĥ tx #ݟu3籍Z_FgI}] BTllC1 KK߅@HTY>ٴ̺{n#IKɡ(AMդcqɾ)D]Owfen;E~clp 5 G}V7_%%,x%Op}zP+)5`7·9{5Q H2p!Qh߭1N9>^cDL>ezgIrNpՇ;p،V ̬Y}`C|vuES`qc:~X I7Յ79QH:ס\B/i/V&>DuɬLujŒiMwcEJ7=~A=q'QP*G-_ {5Iz]O+N>ӋKN3 %~0qzPieA G>3/3y]M' ˓pEd8щHT5N~ Av7 Z i '6yTt'T f2=4ynS׶61nwGu%m.\SHP K7Zkږ? EpW @x@W#3? d(bAg^r> (6ohpp.@=Sw>h@-Zw* G-:Ƚf3E^@:=ٹCt %A[vr1b wb /Ζj-p |=,aT\.qXĉ.s>mqN;z)k+㊸aT?/۾3tSl3VES46o<`Z*=Acppw=hWciJc8]֨}EM-ȋD詝%فoW-zm"<$7Ԑ @`"Li -3qVnn_DFc )QƲ3$ji@@IP['RފvtBJ.)U1diGRԛIךl[78uw%ϲjK2 pysv@$G™26dpMH*7Ҿ-de QL2;zxTsMv5tVE# KFmAI+hwN/0@M<'-cXH;@҄7J  9ʗG/{*[ӪR@A j(5,!R0H9]c5٪9"$;}O(:a"N)F;.YږKȟ94}NEb錖1 sOվVsУ=4g܆l"`E$1D1}tĔ*MÐr"&vޛq:v{$ ʓт!]c򙬷᭱ݍCs>嫦ByeDli>-eTa;F;far2лcS(ceX~ubO}tr\JE]Æ\KFiK-?R;Jk\fkyWsHFʧrg,3l0B}$(\ޒؿE4 Mg[7aҵ¹/IɁ1iWK fQ7"oF !B)u4f[nۃYK2@(ÿ!+7gn=VZ :kM9쭿bpbiR5Wܓ5-4gʿ"Y $3l ~Ja`m +^%+"G~G=e}QAR&2$Td+3mB&223 ojvς /});;aŧwKaD\mMU|.hըݾ,ߥ4~[_P)+ӻ ed 6.HY sj^?FuC"i?A/;&ăd&L|Nmm3\! J5{ KK6V3Y?sު{hRkG_A V0iC/mCZDA3CČALx"tj\[eJSX мƇӏ$+WU+=׳됰6%;U'R⍜ 4dmj#$i.}ʦz*6̋cA u=ZuNw9?ȣfWW!&NLOlh5FUn9c I'Q W^o!#n@c?%/4}ӈQ6]ݠm&M)Kokq ~#$DfR;ҩ]_ҪۿV]zv@=ǹ19{9fZ"qxlV% 6& dG3@bLzD vÊBmĚL8qՅzΦggh4O͗ [.*(KϢ̃$l~%n"15ܨBKsb_+g-}m\:$m[f݉'Rz&]hDF5T|s<~™`$(ܔ)3ix4 RBPl^ <D uMKEٌ9* U2Ē5KM`0 HlpR((pujh+v9FwGkz%s%}?}A$w^!:3Zj\@{Ed*UKl`vHf4$ PҚ#>a4+ Bd1rqA9_^qZn,њ~\*1oNHg3u <4_0*gL5NpH86]|Aou}Ai2GE"_a?NW֨ dMLxVO'(G5Skz㽷Y3}l8~x1e.v%z:c^|;PZܧdΜF #۵"~VGحnAŌ&9cm 5P&eHxʨ>-%Ps_ɒ5S)p3%A_zꌰ_ UIl7]@5~D p 9$R`7CVDnSC^=ܧ?bk&uY7 3,.cwHCq<`iq,* ['^P @o fx%r˧gmU8 0((˸R\c$ Gp3_p˧ (B`>ч |Ug{Hv$Y j =&M|ˮ5J8]eh1\}hN Zu_v|wغ)4 |8Z0Rʪ 5\B;U7_fi !R܋~=)[Qde]g v$ߨJ-ݖEjiZq2)0;N0z1R*GI{['gM0皈$ 3 Jb_[@XCw]L'Ӂ['qSpL..IS !U]h9 ^^EE<2XRdljog< VE#SQ x{{w5`(,:x,ْ}^᳢/xk 86y00B6ZVb@p$gƅ\x;~(o[_'a,S-w_$Gi)aԟ ~L(O~Jzc}]~ґ»{cE-Yч8~8hmVЋ>5KNs K讁sRnpR4Ò;zkxРjP *L ڇ4\a].܅TW$/ &1ųf GRil4X$0@kN͇ +{咀1j5~ nTmkr!#<`*O#e]IX^\ch ' 7~x$W7>DpHz0զoc@?1NtJMS_\Fd[Ӛ>,䄤=^,]ƹb"F݁_{3ưJf-ceU܄ϯ냚 d\ "ՏT*$ !JAb+%(Jh1 3}L{4P\/D~+I{ubA-FQ >%)q6 0kp(;@PP_;2sb*ˊ_.|.#]<KIVthK+q)OF |?qIFpܖA0:_PCXX\̹4IrOlefB<2YR,cVp9ώn1^|.o>K&Rf}bF]ЛVΜVbֻD$M&)0)l`("̣c H O{'dA&ΊA?W`d gCm)5NƁ r<@Bl4dW+[gBtiּ;LF(TEpl \,jm$ uM/~[6w],}WiB2[#Ni'ȶ[?%FJ`I"Bl,j۝W(cx;V*TRЏ@9[+M10jJ}'fDPP@Y75B6 rbQ1EOQ0N_9h6k,=ƚY^hlCC  7 ?:7$xa] ֺm|O*&ȪľC}_;ɧJZ0D@)m_3Z9F007YA"dZθi| lN0\lsL8= S]s&"AHT\Eq2D 1!菨 fA6& YrOx;AH/=f_GV_00x_C&uò)GgNjyy-{5 2.SPJqݶR8zwu7r|T+Kz6nAYt*QՊU?:>GsO,\1TeyhRSsQf k? nQm%\5lk~U};lSQ69wםqZd>u-vr+ oP$FM]ySA&Ŝ Y؈ ZʭDcb1;KJ2C!࡟p_Lv^)pIN:|hݝ)1z. endstream endobj 339 0 obj << /Length1 1630 /Length2 10815 /Length3 0 /Length 11659 /Filter /FlateDecode >> stream xڭveX\- .%и;w7Ncww!@p\.w̙53?֪Z%MA bjg Xy_,m@ *@sgEcK;@A!4[ځč@^& 4Xxxx(bv`& ,G:Y.@;{[ N?T` STҖ"F6%VL&@`f`b25'w.'hbt3쁎NNK'>dblWv3 w{}ɔN&`{V%q 0ؙ{ڙ8;; 69@7_SK'{#dd 2WG OhKƌ= =%eXa7u't{@ {Fv w) =%2"N迼ߩ%mlپ/?.-cu9k_|ˀއ"2fK'IK7%`fd> S%c}bf7L /]gҖՔעnؿ=7nGM;<#*jdd0q,,^MƿiXuV0;ZtYh$@&vm*dli 6qvt|^{ hhgh==\=8.5d_\V[e=t:~}eWvoۆ+xKEFӓAEϤ_zy>/ZYco{\YEd#/K/&=IJm V;Z=ħʄû[K]x >#cDM+̣ 6rZIbs0\{@Zd0ԟ+ "uF'\:RK(@3[|9A{oE|AU]D,I 4" %8 E*2Cg6ISjGg_mU車ӍA=kt;/sJ/6_=QYO:p]X,IIiuGl=4ρk2r:e;_Ǘg g [|u6Πc>lZ& VKґlpJioPiSR 5>t\@h% $áq ǀ591M3!sqD0/n7|>\ʏdBl~O*q O23&+߹7D% fz䞁TAOȹԠE @nxf-$N1Φ&fu2(~=9^ ̮KQ\k)6!Z5e"ԗJ!4 z*3Rr\lcCUZ-ͣqQQKǃ XO6u[tcLF*Dl+fprӜ9j8D\ӻjr-xѡ0?8B4giwܽ_cB(L4q~-I$ÞU=QFϾ7 43۽fbh$lJԦ[%}bp@tR|LbE³[UbS}屠9N;77K"K+Q4 [ܣ˭nMi>n4$M3Vї+QI:5?@P:ݽW37lE㏈ pC h)x)M ֺͧ#[I`u 5ǘp,CQ6tPsBg+f]lfטuYY {nTA4N7?4䚄0ZdrMc6?("^2ԟBL|:4w[z=,%)nHx#[yCW݃е~ZP:0!ЍZ$rL]Ke/HX^z=c[o@4/ﵕq".pP~!7fFKW)xscTهc1vLgF;{*{R$}wn%6zzHVVD[?[!faʱ9cA}G +MB!]ܚu?}R!WR׌{TψzMĮuot3\>fD(g 5sQwkFZYJˣ*T=~rvXҴ R- 7͏o^| {y޼go{Uym⚐+8x 2mNj~V|PTPj2*|+s>f|3'6AwG8!EMQ*)a03oW)JfEZYԑ{|{y'I*$(A8M?M\{usaBFh: 1NO~ڙ }*x;xmWEA3{ ?y]& w9L41ßH2n ~-l lȋ pN UYZNA[|=YVt!S]t}CSNApVʽ.mﵱgzW؇Bk.%*=Rbmh^!? '|j5FB=R5v,&#Cʣl,V׀JYY佃,x}/XUOS2ԽjBeQ Sf/n$"o68yW>,%c{?4rU||Kՙc*k)ξ!^lvj^$89{g8 \ uu<< TAԘ((Jbq$cᶯfy+oLm%GQx //BܺrF_G]<|PXM3>Uwlz<~Il~9_.jF"/&BVl3)1P+ʱ6-?x 6- [ډj_hTǧGm@iuwfЭeKRȕԝR6Lcqg b`SF`Ӯv0Rfl`.[yӲ:7Ph$搳+mx Yʾ[~PKf#<՜9UVH&O<&ϒgdֳ Ȁ,jd㖝 f-R,-s0~Ԫa ,8HrhG\4^1d8ƣq.&h 诫.xVRZdanl=;NsAk󉄍?q73K[+'Ÿ"+hFȔ=n8pgIy?=Fs?|΀/6dFOuU?ɻDNM8OS2ТYk|knǦZ׾1[#]-Aо՗}Kl[_ơIՊCԓe>P1+7!9~`-#m%E5dcb Eno˫<ŭSe\q=hI#oyj %I᤹CMJ#-R;Za0-nZ#Yf7kE˟Fc‹U*/CeyO1[&="(L]h]pfH閉JK0"\Ԉ=LOdohL^vD8 lZФx i ݡ+YtbX IzF!kͰ_8杒ؔX$rVYZeK}TDg :mWe_hda]"ٚ_ldSn1C5Rw\Ng!&?PՎ 6>p 68ANh~zY[ 'VN>y<=e,Fmds /NG-eV"!m)~ع|aC>f$ԂnMQڧ3e~!hi3??KpvU^ F }h}#?tr$ VNp_Δ x'KH^ T CGa-jźq.Ђ焢ӌ֮y׻B:X mm}ZxW&B{Dci @6ᛷh_7կ囩߶3~$Z`xvU<“N)29+dzOP>%Y5TwuЕ3UustY7hg*8-N]'ȚDK+Rwڊjr¹9kM?r[\t٘h ʄj^8q֝cGq IK+˳hCwK-+= 1Wz6!X$S~ fBYqFXDÎ5\Rqn腎BjUY9UVe,{\y5 E)YN{'tI4%}am;jz ho2r+i/E؞gWkh:eivvӠcIFʒ72]ȱ5g[+׽F* !/oveIGӈA8CK2No`2ۂMzq(8 `]=6F X( åk4lP~]+9(NKF0iKą:d?~f(j6BEÿ*s 1m_4 0΅G+r$)lv"9SC|FqZH7[ᣗW+bE̓ΣS5Χ>M1)Tk-M?OmYuraщp499yуC" 9_C +egH7:xrcxPFBR!bI A4]E/A‡熣&JmV$^FV+;g:xoK@`h FX5]#guoq9TFP_T@;3'yC kU9i3?$gV JqG˞l'#gȶ4 E/>+S V[VyH3mq鎾Чg'Y2%&p3xe"&R</V|%cx!C#,M oV2 +E nŲī~? &VUq.X9IC tHOSkcQd" Ĺ_hNZ!S=j+8 MnwH>"hK<Џw K+0( 专VqCdC"KM" = ] (e*-Su8o*`GͬVf4)C%`T]gàQYꍵpZ^|;oG߲bZ- q簯#]^L*1+3\Qnj$SN0Lia ux  C fGYUMڬ7u#ٲ8M3\iIٱ@b4a-%1{h0dr6^:oh)̴t0>4w $y^Nks~4SCN,GVB9_KGvi}n^ktݫ*!w?ViYbko= {1/E/=9w#t!`)c*Ja&>˸s_Gvm9 xS?#cO .&|ǢX1jYǍ tGif0LG#ct0I+ cILnjq}:nmjP{/ ByhxQyIWop׮ր-&208U^5GK_ 3o6p2?̓ ܃.=Bi%83EFq}h;{y)/DGhe]7C44YfI{kxJ*/^ b{ t22E3dV?=J˵muԟ_6RwAAJ%5*?e b~gkI$X ZV/旊4_ e?yƒ ~ž[Ayq}K*_\¦ Mu,=h}?SE@ܿzZ_'C!CH ɫ5r0w;MFeTU秷!"5ݧ"#ބ-},`kay"?,p@6 iK-"_b8.3 tSȉ#isuHQlDB<+ )$ <-:y5vo|fv18iCzFτtĐgY'궒wa 7;;vFO\1t1 9eOob|0Ig(kp8,:iw "K{ hA?D]TT de4^(|1.*|yӬi$h(]D9bc y;Mq=<[nw%)xeDZBs>#4ZQND\~1t݌p-+{EWdu(jGŤ9wdz=U6g9T̼x(a0t%"6O;(/ q;RG*Sq$S=A p-2\+m"iQfhX#(!Vrs=0 GLG/as#y c۟A1˲%s0$|R{3Xg "& ZH|Z.+ЯhKlêɝu4ņ- Ukn &q p#&Hp=?BECdo pF01B4[0kɏ3N9j̖1~FG/\`$yX"66p0K@r;N27YMc_e0Em 36f6ǯt:%~*i |I\GMQx~h}%=Js}{fo?׋4fQG\D✻*`3 x.iLeB=PX JIvDWcnuz6%GL7ӺRʎBP|qG`|%V8A#=p7tt&]Wk$-Q\eu(3"Fԫ^Sʚ~L^kK#&;|֤|h.ÍBd3Cvrr +|q ] JIoOE>اըE=p=( xNowkGbXbr(I<j@lm;oՄGMpt-XR|9QLq>%cV?d=ܜGPP%4~7y8s d`lQc=9eV @.wAOr)]eqFBc4zmrչ]dlߗ2l5+"YGa{:Wwt9ǒ+m(N<O*L+}ZWE)BvKoL'+YT] G}@Z%Sj Pf{q[L|LrN0ʚR6ثh5,j|ڄDbU>]q+&өZƍ }Vwx^ {TX'0)bl@/H{߭K*`װcbJ%hGgEWZuʨ@VGLt &q7A+cȍh B:K5'󇺍-,%mmrϾq.#[)kQ0."J~&QB1^=[$Si8J/BNB45)j=E6avw a خ:P~X^ЕЦ\F5]r YYdVr~ًͪwޣ}jtc\8 sflRL$O>}cS ~\>+Y\ƵnY]w V׋DY@ 1Tğ̙uzwGO/}K$ck$.G9~:2'sPuLU17V_>[!aԩ6leD8{wDaę^Bqw/lYg鹼wn™ b4bAg -4=*_ۻ(qcf+w0@%YL$TG~.My=n</lYJgJd͠6̧o9緇#/!qH59Jc md3I"+8JUS=_0!܂ #'*c˧!?"z*/ם +gfe[ȴ*+!T9ԱWD9.*L_Q,j^$OC~USoP`\b){11u,xҰYll9Х c1=t'UcաB^kWPM;ԛ ])/16ނ7vIG^RXOXìʤ7sd,WbYK?ib#8=ٝcu{Nrz;mװ0ֽ֪aU#csƫrT"g@M?A0݄k幫h6p g.D$pG2م*^7Q-7R_O7]M:֨jTB':Yp{f}Џضz6;˗ݛ YYMl JzbjqW#O~2ݼNwof/5^ :eJX!OqmCDM@ Vʈ{|چJy;I"/".ݪho Y/Ӊ$}уa%5?lÑ[JN8%5M{ qwz=޴V z8ty.)(^`v. ̼ȄRdߎ }XkP ]\ڡeH6Q"u͕ .Y+ފL{!ήԙV㔨Wy$nh!|ӬlN._{{WB*AWHNɆT]%eU+C)9E 9scfCb*шF604~W~q/C_;GIIƃg=T ]SR3q*_)fPwUf[Ou_XV֍j9"o0Ƈ)Cn8 .|AU[[ oګޗSu8"RGv8,CYP[B*GHjZw̋Q![[bvx<սLnƜΐ#7$RÊ>U]SxD9RchFv ݬ?#5m8*NQCJGgk@~rȷ⦳Nv͟et46 GFq,6o+w|<̰W[W^> _+~3YThK4˹Ͽ憶t}_Bj߭iv1v՟ *s9KiDMTaapinX|x.Ӧ _E9bg -N?t5HFy?5R endstream endobj 359 0 obj << /Author(Torsten Hothorn and Brian S. Everitt)/Title(A Handbook of Statistical Analyses Using R \(3rd Edition\))/Subject(Book)/Creator(LaTeX with hyperref package)/Producer(pdfTeX-1.40.16)/Keywords() /CreationDate (D:20180528104712+02'00') /ModDate (D:20180528104712+02'00') /Trapped /False /PTEX.Fullbanner (This is pdfTeX, Version 3.14159265-2.6-1.40.16 (TeX Live 2015/Debian) kpathsea version 6.2.1) >> endobj 284 0 obj << /Type /ObjStm /N 96 /First 870 /Length 4753 /Filter /FlateDecode >> stream xks9{~|[ں&$@$C2cg`c>]ZiVKaVd*: Y"MW)B"30 OH%ՄDOL8xh'Ho <]I|`%q:Ѓ,`vdO>&ٳ$}=OGp7hKlf`Z8 Za.!C*@" fE:ځ +2 pH@níI"q&Bϛ0 fp<3$2J@gD+3*j$mm$8.G: ײ!PS z{~|lU#e#i@NܢLV J17=[6 PKgq!+l6H"0 "!2 : ijŠ}%Ci#k*x3NZE f؁7Iɭ ʅ@ӨiNe^-Cb< = E#-LS0l(DhFв2g3P(؁l,oa2@Fh4/@ܾqU8.aq3Re fQ dr[,1-V7d MXQ0ԇIdB3<1`y>C.n!P c6kXlyDDڀ!py$YB#@#*\;5@~-9SHn1턌ƒ81 1sze)=+rf gM{:,(1iEP?ģڡc`sb<<"y  ixd3"fp1 ]10Rn1$O`uMXHPk| i#F˼8 [jFń^ `4IQJxPRzX17(qUG#T1Ƥ6OeC T%4jXC #ӯ~֜PI%cH]jXu}Т4كp3xFl ^h޻Pj⩚!4g߲mUsf,o,WKnVƄH7xNqCK;ę 7 14y6j(ۊRa(DUƯ8N&ȸ6olmB灪jn$6;;5UG:uT[ ōfJynTo؜"{<ѬRk`h9_LqG3^(+x|6 P#˭ZRZ8(@1u#PV :̎w4KxfM KڈYfCJpW!v{8 xz"έxLE د`([aSۤUcΦ[|`:42-̈́i!~ڗB-&CFFJ&=yIW^%Z*O-id4eDM|]{R[ EǵA9~Ecl!C($Z|!OY>ɔ/O0ryz/ ,ь0IEL)vҽu>N?|8̋;xv'E.8D|8*Ʒ<}4S%iަE:Ji:Kn,A gy{=DhlStWǽt?}>O(}^oҷ~N?_1YLwdtN8Oi1I\y17m[Znk|ꐭ%{Z$~G5zZw Yd6@7M2Zˍ ۘl&XƗ~O#kZRܤ*~5'NZրO/_>%k9 ,Aҏ5Yه^-U"β tM%'CP1.o7V]RrW%mJ^G.mJg6YmWn:J_ǔNWYzSe.;% 7Ƌ}4*qw"ݷ;"w 93pnH|b2oF4|IV7 V@ޱ§YGGgo]PT9oz),!-v(ܖhC2kK[U>zsc(k~jfVixB'*)sk#y,ZZy=6Yc\be^Aۊ[{.`; 0_71c5dT~>i_;Q*VFFb[ lO՘pZmVoM||d>o)?__R2eA,O*_֛mվҹ_ڇ|6UJ^]-ZMoFUxsaS!Z6ʦRʟQ°M.뢘f_Wiz5^dg.7p9 N!_ζ|6ۼ{-f˥MYU* hדihQ[W?zq 28Z*NR^z[!Wi0~?Yy̮eNWgơυ-ϊzr (>:%,Ɂ%IKrGH .=]'=M|%^mo$}Z&Ji`a[0ħTV馟`q5WB>{:o,ם-ƿiӃb:$f I݌}ʐXǽ{embx}kݫ{^{=Y\<^r{U]o{e{g}zBf{{zzzʷܿz>ww;ӴzDе]K>BfF엜{|?", ;U) hk3_nd=٬}t;ܛ!~ZF hVYt񮋟nY7W[K\w%Ty,6A*}!1~PP'0Kʝ-j'Mlo>,>sS&AumVT֙rQFȧ"lx })ƳL+\GSKH|^\Uu{hz;Bt]$_%[T\.@ϖ07BQCہR $ ]BM!] C ELvs>@NGqSҲ qIJ&M\M^ `4 Q-:!+[ŵ̡+X`̐׀`b wtzVvkb)t;e;􀬹dB4ҮGV8A)xJ¶쳮 Õ]B12-%AArHyqHQ-W:8^bI0ںdn%OwIr}ݘ6iT,vcF"06ig_.EOIAϷOe}2' @SfŹ`vպ-+ϺQƕmrrogy]z{ endstream endobj 360 0 obj << /Type /XRef /Index [0 361] /Size 361 /W [1 3 1] /Root 358 0 R /Info 359 0 R /ID [ ] /Length 902 /Filter /FlateDecode >> stream x%KlEyw.Jz mi)-Hi-Zј11n aru11n\r"h1Jteb6s9MJ)K)'J]>M%V *@=CU'*D}'i> G U6AR6y< cpzSҟIC5CA7۠A)w-,uFhn:0 30L{`HiKڕl?ZvA}甮7L¨ yW^1c;R|af9/pRWjYo aE໏2</8<y*svWUv/Ek=|&eANك'A҃=J |Az(/f lV Q+G u4A Ѡ*sWB@@A 1E#Q(G|A&Fr{/K@PGtID/)}OK R.Fh1fLiqe_QS@ ރ Alq>AbV-G9^bWޚo/jN+$ŢrY&XV_X'O3.V+ 0) sapply(s, detach, character.only = TRUE) if (!file.exists("tables")) dir.create("tables") if (!file.exists("figures")) dir.create("figures") set.seed(290875) options(prompt = "R> ", continue = "+ ", width = 63, # digits = 4, show.signif.stars = FALSE, SweaveHooks = list(leftpar = function() par(mai = par("mai") * c(1, 1.05, 1, 1)), bigleftpar = function() par(mai = par("mai") * c(1, 1.7, 1, 1)))) HSAURpkg <- require("HSAUR3") if (!HSAURpkg) stop("cannot load package ", sQuote("HSAUR3")) rm(HSAURpkg) ### hm, R-2.4.0 --vanilla seems to need this a <- Sys.setlocale("LC_ALL", "C") ### book <- TRUE refs <- cbind(c("AItR", "DAGD", "SI", "CI", "ANOVA", "MLR", "GLM", "DE", "RP", "GAM", "SA", "ALDI", "ALDII", "SIMC", "MA", "PCA", "MDS", "CA"), 1:18) ch <- function(x) { ch <- refs[which(refs[,1] == x),] if (book) { return(paste("Chapter~\\\\ref{", ch[1], "}", sep = "")) } else { return(paste("Chapter~", ch[2], sep = "")) } } if (file.exists("deparse.R")) source("deparse.R") setHook(packageEvent("lattice", "attach"), function(...) { lattice.options(default.theme = function() standard.theme("pdf", color = FALSE)) }) ################################################### ### code chunk number 2: singlebook ################################################### book <- FALSE ################################################### ### code chunk number 3: MA-smoking-OR-hand ################################################### data("smoking", package = "HSAUR3") odds <- function(x) (x[1] * (x[4] - x[3])) / ((x[2] - x[1]) * x[3]) weight <- function(x) ((x[2] - x[1]) * x[3]) / sum(x) W <- apply(smoking, 1, weight) Y <- apply(smoking, 1, odds) sum(W * Y) / sum(W) ################################################### ### code chunk number 4: MA-smoking-OR ################################################### library("rmeta") smokingOR <- meta.MH(smoking[["tt"]], smoking[["tc"]], smoking[["qt"]], smoking[["qc"]], names = rownames(smoking)) ################################################### ### code chunk number 5: MA-smoking-OR-summary ################################################### summary(smokingOR) ################################################### ### code chunk number 6: MA-smoking-OR-plot ################################################### plot(smokingOR, ylab = "") ################################################### ### code chunk number 7: MA-smoking-random ################################################### (smokingDSL <- meta.DSL(smoking[["tt"]], smoking[["tc"]], smoking[["qt"]], smoking[["qc"]], names = rownames(smoking))) ################################################### ### code chunk number 8: MA-BCG-odds ################################################### data("BCG", package = "HSAUR3") BCG_OR <- meta.MH(BCG[["BCGVacc"]], BCG[["NoVacc"]], BCG[["BCGTB"]], BCG[["NoVaccTB"]], names = BCG$Study) BCG_DSL <- meta.DSL(BCG[["BCGVacc"]], BCG[["NoVacc"]], BCG[["BCGTB"]], BCG[["NoVaccTB"]], names = BCG$Study) ################################################### ### code chunk number 9: MA-BCGOR-summary ################################################### summary(BCG_OR) ################################################### ### code chunk number 10: MA-BCGDSL-summary ################################################### summary(BCG_DSL) ################################################### ### code chunk number 11: BCG-studyweights ################################################### studyweights <- 1 / (BCG_DSL$tau2 + BCG_DSL$selogs^2) y <- BCG_DSL$logs BCG_mod <- lm(y ~ Latitude + Year, data = BCG, weights = studyweights) ################################################### ### code chunk number 12: MA-mod-summary ################################################### summary(BCG_mod) ################################################### ### code chunk number 13: BCG-Latitude-plot ################################################### plot(y ~ Latitude, data = BCG, ylab = "Estimated log-OR") abline(lm(y ~ Latitude, data = BCG, weights = studyweights)) ################################################### ### code chunk number 14: MA-funnel-ex ################################################### set.seed(290875) sigma <- seq(from = 1/10, to = 1, length.out = 35) y <- rnorm(35) * sigma gr <- (y > -0.5) layout(matrix(1:2, ncol = 1)) plot(y, 1/sigma, xlab = "Effect size", ylab = "1 / standard error") plot(y[gr], 1/(sigma[gr]), xlim = range(y), xlab = "Effect size", ylab = "1 / standard error") ################################################### ### code chunk number 15: MA-smoking-funnel ################################################### funnelplot(smokingDSL$logs, smokingDSL$selogs, summ = smokingDSL$logDSL, xlim = c(-1.7, 1.7)) abline(v = 0, lty = 2) HSAUR3/inst/doc/Ch_analysis_of_variance.pdf0000644000176200001440000027115413303046020020226 0ustar liggesusers%PDF-1.5 % 1 0 obj << /Type /ObjStm /Length 3212 /Filter /FlateDecode /N 57 /First 453 >> stream xZr:}I*bT|M'/i;9y8 $gm hnm3$$2yLgd~(bYfZh0ppzL&0`G -C&|:KHzG(*17@8+xeP1s\4-zŤPR\3%ڇLyxs& hx4D,yx>NiObZb^t@ˆ>u]LwX(``P;@}x[׸18 35 CC 1<\Bڐp!M A O@1DBB@= a񲸃v𸦂OY͌n}3Bdz3˫ң7& }>#? t(_3>) W8K%(1.ͺlZl`[B3v704n uѝ0dc~ ,Ѭ.?OuNԳ}v|񜚮B,YXi-h^Kk `X۫`ki/RWR*ݒ< ֜nI]ޑ@~#飣7{aܠ u,3Lή1%C~wv%X׏êɪ\+yeΨwQ7Q >^\K@mh'E.?׌ A [ǻ~1@X[BKeYS аu'5am]gU;oᇣS#: I6BtvMPFIyA hA;.6gζ吃Z'lo(ltMi"3"3՘HҤd"C,yE2oFϛiBǠ"T܇KR=GV͋ѵkJe=Bp`[Fy3gҲiepoU-{~ȏ!?)L@]B~N2__m/#,`ÁFR7Y|tZ0w}|f O_'vZY|QgP?R8?"mpt=ck문\%P[u4>ݶO!\5kr߱|iwWNբ[2aϮb>E1uкm:NW%W;& 4F1bo".dBoq^FVQ=Mghw җuhgqtlB 2`,z)h.0v`&m`{|VFq emG?kK5ݱ6Fm{' Dз-) ܡ4?:Ar}ryx>K{(*-U eYӽ︫UokOs{QV 窇Sw z?%էat\I:<-Z( &O5ՔN!QpqzꠥWib5ZD_O)իR*iΊl67_mLz V".{NX̄.:TpjU`H$XLoܵ_9j駸6Jg"HtՇ졉 hFAOhT'l$Lի< 4?փP뒟 kfjjWﲩ$ɯyn[3 Lһ=־X[T3"d`5]\]UN4iM|M! 4udZp/6uIhK|)h@s.FSfH;ɂf FRVR9`<, RKou9/:MY}@Pj.k߀=m:NLhƗvH\*W^j2&!0w#5X`;J˶ c2bO,)XN/c9̫y}SCC996L>TƴԖns+!fwgӟ""PM5l57VKZB(t5ƞT(kV&~ʸf mYec+O2>y--&} G&!z$VtuVC9}J<:뤘Zo谣#gw?ag:RE{dd W8kmH6[bK 9Z)-9붜[b*g'ºb~|m*>+R;~;y9 *ժCgj_=Q |ƍ`Ə`֑/S GēɆ!|_\)Kv3 5>N0Ro/endstream endobj 59 0 obj << /Subtype /XML /Type /Metadata /Length 1653 >> stream GPL Ghostscript 9.18 2018-05-28T10:48:02+02:00 2018-05-28T10:48:02+02:00 LaTeX with hyperref package A Handbook of Statistical Analyses Using R (3rd Edition)Torsten Hothorn and Brian S. EverittBook endstream endobj 60 0 obj << /Type /ObjStm /Length 2182 /Filter /FlateDecode /N 57 /First 465 >> stream xYko~~lQ~E?ā&Vm +i(QH@Ξ3L0Xia0--ss,:Hx&R& 2ȼ;Z2/bJa8 FG˔ǗwLE8b G, i' if:b`,Xu $$qP2DfQ[)LEŬjf7:!Y(6B(,bHAhY:@JX }@  :,y %ФB0@X# 8h5^B+ xW%A,8`R_?,5,L;``g2RI߲94+ ǂ8}?}c4}*?} Ot:^ϴ[cz>^nOS t,uQA@3N5c~5/ )|+>Ť_=+|§ݤ(xט?o?'IP+?SW,ؤ֧Q9*Wѭb-|T[x.O)9T2!" wLZ5r? c~[vq'gC̱4-|G4>HoڏO>)YVQKO4rҗGo%)b'H:ưFF3:u])ai̅hDcqW79$ 9v;>\v|o ?g|>a8ՉibaowE |cѦ%*_-g)HQ&d5FYMYL5+D\x aXm%b7E!w\e35+Br<$c~T▼,-'ΈAS{iEߴD,>PoPꠡ(ALFa5hCf1 4,.5`vSR7#l 4ʊ,CmF}&A 5!q3+%Z Ǭ3d:.<"RPlSDŽv&yaCweĿt D+eD^ٶy y.0r%&}wlب~B^-%M U`2$JMk"RXSI5PA/]I1Ϥ3Y#j6O{X'X> stream xZIo#3Ck_,ǁIJ2A@FDʢf&!=߫zM552%T[^+]>>z~ۙ9s˹NͯgAXgf΢3aVXUgihkgǯat@UU&8MN޸h AHNS[T&Fk M$vcȤѠ &`!Z,g2I^;z 0}tOgY3rEs-ߺK+!݋^ވNcZGcNKu/$u9Tm)ak\mWtr1]<^u(V> &F1@Ѭ‰НiMEXBaVY),l1:bJ w :YD)}j%FjiB-*/<]&8meFP@Qj*,/Q>]ڪ"Ndӭ9huNN^;YIA+w F"syU~yy* ܄vDyp]!ν 9|&[o:;d̒?{R'- ]g3`Gb@p.i) ddf&MP)ϫxau(Izkk ɠ?5peophơ04{w$ i$m5҇@Vn&R"#<<Rz*eƺ "xITJG6|>AFnYƠ{W0J\5 oc vꆙJzL_qeu>+" YȀTȁ|eæ eA^uA.[bVBA2q(@rAqh7ύRK YYTqW|#'HH@fn)7Q̄6%ӆc![L2M]E_W{Rp{1Tf>c҆`w5Z;*?*ĎHv?c;'@ ǐXJ(} @w+6F;X 7*ỳ AU"$Bw_z=Ee0:I{KG)ثn6vCDz4V;zűq n, ^Ӝ}̉Q 5Ca6%.F3tkQ_OqCsT>?fͨzjWiJM>ڢ~5SGf"5rJS[(A]+w7)p )ӓ_tqYÀmxוjcMDf)7iE s߱%{)X-PZlT)!&^OV0y?#Ѵ5 Gzλ,'AIa@Ɋ0䦩= ,jUKۆ'06+rU-豍s8|~ldzO k#6/wDJi2[o3; 7eP>*3^Քz0cFݨJyH\;,%#RM;#pG8>+ Mk/ԛ`(? Pp(HwjԾIm8x̰;X`eX$-nqg8nUdYOb::-Cf>Q%O5ҲAp"`zzyn[7륟@'S^ {T=Y &0 's~[cMmCu늯foaѾrP% )-(H>6߶T^ɺR?oH& V)^?&]i['-Ψ~RrZ7ԆO-X% M߿xXݕR`wŒ|gT6TQ>zoєrc&/QbvRDr C )A]r/A8{Q'P8r8JKJ?cƎ c_cv{g-2ۺO˟yb:x^ ̯q&Nu^whyV#xz/c>VI/w۳v-7ؽР :4fJ[D9T ym^O7I'D 9z]vD]p?gG1vU 'F})=QKE Y⛩~3/Vjendstream endobj 119 0 obj << /Filter /FlateDecode /Length 616 >> stream xuSMoT1 W=4؉G*UT>NTt@Hx=h2kǓg=ݻWטËKt8sE_ c{'#ȓq 52Ls2֊j2J3u9vY~T~*QtfY"vk^FάiH꺁pGCJު%,{7ٜ",v燽{^r-f~A$>L:c OFGҌ0HڊP<'ͱUWgFQj`%*jx14A#*p+|Mf~8*4NI8_SU%HEjlGS*Z ]HP&Q?ܙqF0Miul+oki׿v(.̶ǎfCw f͈cg#aפ\ iTg h- xĨ> )bD.2r c59M|Q hycDPT%nH%Pgb,<Ӌd _lM W[ݿ;-e,]*.ssbd2le( _ܧ+~s%.봾ydN&mjB:quܦ8nb֍^?#&|endstream endobj 120 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 3577 >> stream xWiTTWEA݋18gÊ118V!%CT LծB dERF!ډN=#m1{@W_NUPw{] ckH$w,őq8Z m`2j]L~7b:6S+>J2idsrsswYڮpVƄ+c?a.kUA1.> 5ƌ&OuSń x#b\V)Ã\7S+6&([0E]K,Uo F6t}؆0cOe&2Izf2`  @Vd(Yy23|MJy@8 TdǛaMnZ-#}:'Sx/\'=p8_q >qXciVĹ%-]!d' E0ECKfƒs&lj^)Ӑ;uȞ,aRqr%&i`ZQLxM)vJ?rUXdNww?GN˛rq6  0%֚J[7PL@ȼH=܃.ϡ]H\O?<yewYep.C8w'ygmq gCGq8fDI7(.!woR Y3%; b3up2d(@㻲ZȨ@vnH/5@IptP/ễ8\)LpLe\Ip*Qj\eIJȩ;g%WURK &ߛeZUVh tςۣR&yx:OW9J} ?B\גsG+ S^ Mk|;Kfۈ 9vB? ʃPU z(jH.Ƈn02< '4„aF-+7y6}å}')=4GO"} ㏟PF 2dVXC%%ŽsUEkfI54XU̬J /,$eggĞ a%+p""®;>391"3yfkȂdg4 3EWEkT[N)SMG)R CО/){tL!}e3(N=ݡa8,C:yvv^j+OXzⵄ1KF=qf#r(=ȜxVnҀCx.OQQݐANU^T kHtN~8SJax)`Yo ꆺ~O{Dj R5ܛfobU^!t+[ދf?flBt"ȢxY"╫|(ACSj7^0VC+7m hµQ>W!YmV`<L\rx/de'e#W,ш:yY^okhշT6=^eCG8'|Bq~hp+dsYSA5 {SR@m?Tkpb7" "0~6yv ;QQL:&i=R+s:r=)9_^_RԐIQ)}pQyeMQ"@j|i:º C(!)wT5ϵew~~Q_'0mW&7?/.8@#?n97</#Ln%m YM9rկXZYw5apS&O<lFaC4Ϲgc:kOTh;<U *7Юr_W/]Ei9IuI:y0>i!{3.&rO챉>!%wk4b8 )F[|0UPP*d97,MtWX%!laOJtw]RW򓪲"-dX]+qFjҳu)bsT妖)+]8H5m)J_x$;YlJs(^ B!M 8!MЕANko| PmzO?nWYy^&R_wHmHX 1\X 2NTup7h`K U#qsMR QP54-a>}bNVξ"JN&E_1g@C^xB_F݆Y]@_ ^dgu˒V3 G|)*3YCl; ~ gL»R+-Kፇ, zB=eȾDg !abͲP / ̋ӕȇJiecU+7iJRWuJ{אbcaN0dt/Ch?.i2-K(L}uNSrҫ`xKCT:gҸr8?֋ɍN'naѹhdC%.My:s T&Zb|c2NOWDNl}ojsxc[roC 'R &tYڌlH,.c$>y"PFsY έp?jG?R endstream endobj 121 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 363 >> stream xcd`ab`ddt v04qH3a!Skc7s7˚ﷄ ~O XX_PYQ`hii`d``ZXX('gT*hdX뗗%i(gd(((%*c8)槤1000103012ԽK2>}wy߯jcws~7yŞ>~nSg>;3wߛgO^-ym̾^];ǂXπ| wt\eXp~`:endstream endobj 122 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1925 >> stream xmTg*T:hQIQc*$*TI#BawD*/{YayGXvaAPUIi̩ibFHKP$1Dju9Q$)H2<5IQlUժ Q~HWjRUŒujQf`e!XOYLjT+ *}*YQ1*b*toHmdT[* '5,eJL X"'D"P _VMxf⿤+*Z:ZAE~RRD0J7P _@Ksr=^ly>Ow Iȃh^ôD6߅"C/Wߊzv~Q NtJ$?ܥNOiȑdߜgk$_qz,c[p9ܚ8Xg-WŨ]'ZK-e%`6s@quyi/цد/^h JHQzx~H{p/-#@Cns3"Z$7I9(@D[t0xi{p)(7߄^oXO%})="m2  6зEDcMnk 1Hsq9E*?.%=+HIg\RVd4\H,8{̜g@X-57)/h;^d4@+W6-_k+ *٩qZo$BGݔ4rr~%Tw%'%>ZӔn Os{j=W`=kv{RNZpl3Q><wsh>Z_k'q=1DKSx3,qoO`31Qsw NO BOB;ohrdHׄ"p桃MxW/ G^\VT(saJ`;)m*ʿ;:TLc Iѹ}Ecݝt_s}}h8Hn4ɵe5k3MY-G<ߨ*~k*93 y3,qbe;9p\PʽUpn\+Zƫy!(~(s 0k06`jMȢ]Ǔ䞂[9=s~oC,7_]N%#nkelIN{/t<ڛ4zX=vy]7뺅 5roq8FǨ58 >nTp*-Ns!0" A|= 'tM3Ha ڪ*m"4|@UJ=} 88ڍ.&ۨh=vu~Y.)(VWhaYóYaNߟ9|}|w8endstream endobj 123 0 obj << /Filter /FlateDecode /Length 150 >> stream xU;1 {'0q_N@ -ׇE٬W.,?慅:c8]  I1 7g`tBw2SZJffBPUR=uw$֓TS>HԖ!56w/RCendstream endobj 124 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 7546 >> stream xyt׺a X`:nH ^Boƽބ-l˖IrýȲllcl)P!N ܄@B g$لܛuZZX̜;{o#ս%D V4 ?k'ZAo!g ??*6A`X₠>GO9ag h535o6}gxY>~ADD׀ Ag=~ggOA+]<͋`~], _HQy6/4taآ%;F.t["c*ϼ}l_o3f~шَF7~IL6tz/kJQQRéjIFQj KmSj<@m>>RE$j1B-R˨irj:rVR3([ʎH S4Q۩TO*CYS} %ޡX]* )E-!{CuԂuS { sݳvЍbݣg^`7;6qb;޹:5xz@b;끪I!qCECs9+6%:AM =g/A ZNz9p8~w#j7qE0]V0h7OXƙ%ּBf'U{B蝑q u,s8;.\|(zh*_ZRaYη t6;VWVkBԤ{tSadL*/AAvVpmjWbkȒ /-Hw/^!kk+P0mK8"Q^Rcxɗ_]aIt< D?! b!3^*. ěcϨms &:N|` A[*A;"ȔBByWcNB݊78=ojy}  ~ً4nBƕLD|ç b{ԭ cʺ8E4ןc!eEat#ǀzn }>uk ĕt5_޹1͞{0𧤴D+x 1]Đ_jFY< iX|_#0W!|f5=4 m1Ad|MԌrBExB|<l g#YtpPBVCB,a $8k~P Eh,1킙BES̩ Lmfj@aJcņܚjN|c>x/s!4'e!K hAjvzC7$nǝA^?fww,7 et[ƀam!H<'Klj Q!q@X}Xlq}HNJ L<$GI- 9juI рAU)}oNȕxdf=[8[$ NEAzg3R)Rw&*< 잵>AR&JMAjLԡP#|cG<>`vAVͧҿ$bZ wZЏ2/2Z܂cqbR#|\{ǓIW'F^x Z#^{ h Kh A<~80yD@=a.*-252u3' Ԋ [Ddzi3!ț)N+#iRBh< ]BzER[Z9]'7A1Yгa"lj#O/kΡ0M9 SeH]0 2lbZ-Fչz¼rY)?((TUV̙pe*`&2gT9 T8wG5<\]E#p*!IC4y?mF&% mWZ6AETuwM;@>G6 _A 8yWVr:ڈ&=9i rt݀l{k 0HNWe9HC34z7x4n. ̅KtUźܔmjIeݑ",oR|X0w{Fpf>|z#0h;`7C33!?w`b4/+;j;##5ݼ!>UF8$BΝI"nEW\@#8%4#qW<$x@Zlzؑp4M(B%=R^ao*h1"D !AoE2+옝)mgh2UvPPKgBD;QlˠVzY՟)w?]1+ &Ak}H,Y^ _bblVmhT* J^͘Ņ`zy5wXbr 2 JSVgW0#͛ :cQEN!h(uNaϳ ԇ{Vi׀x)W:]N]@܏̱"Z9g( ޏ#;w{ (VL$lbVR"GBۊԅFQ#QUMbN2%aVb!ҧf+ +lPjtԚtlS|uA A Y+6e顐, 85{=tT9gF&Xm|g0(Ew:gB#*tE1p?N |;;{'(ʕ\ ^ SiGuʾ/#Dl^AouDS p_J _ ^r@T}lWD]j~mv_A۬˻gBTQ8-wf@}vWI$U O22~)i@݈pMGD(!..l'*BM=w8cS51̠ѱ|%4<6ı?XRt1?B&d_{ 5 *]i,:`!MS6hV,5=A9MV\ϬlbJItUBH/vNOQgԪL`!D+%Aj|a,C[0PmHLj]wf {yyHpՈZ(}ap_B07"aIv&%Q)ORr>'N E'UK+*=:{',rcI[x*v#nh,8~Q.h'x.9| Fb PO ~Çh KHP&0@WUp q%@ɮqmEK,-BuOI_*bQM-@<Ŕ[Zs~2ֈhVĿP(Ne$+j0adx/6TNxeEƠ&E 0O/]Z&S^l URSdD%fd%xD8\9ZW ~4F#n?*ܙ!kc7m6TD/] Y헶&%vcm8=@aO6X|̴XuwΫ=m[KdQq Yyc(fQ. efkA#=0C)'rTզ%i^&4_1VJkDj'Vٜ4*e;'nxS<3^mR%$s>kݚ&&t2d7%9.G3⧕ɻJCB1l^8'n U*; ]~3՚LZmq md&_K:HKN _=fWK/6ԗqe0Se)򡒩EEl<t>{uXy``XX``yXuuyy5^3KѼAe,}BL"L|4blei* !qC9wQ8D&3&顐4 rKܠ7O3X% i(|(Da7SSAo i^ Qvѩ{U3RUՖy*wڗ;,4/ m𒧥fd?pP\$LoFn7?1?=&ezXB$ƨLS)7DV}~gsSʃ /)++}f] &,ϟ?ݠ-ځZ<@=zS4tVšܻRi4Vj*nYJgG\NVjV[& }Vb!FӸx5m&'UMo {B]evmk~Y `~)#6iF?\J 썯!GYxg\:Qz]e 9bTɨ0H,vܚ'04٠ׄ4܊eSZGnZt03e$:Ϗi0QnW~6}[ҵ%'Mռ&= ڢܦ $%\ٗ'Nx3?y?\'#rE)b+zr8+/jPܬy0r^ڭ9;`6Fn[NDuC!km$BLjz=k?sLM֦331%7Uy1 X6y*ԜVF\ZH2S"$0;ͽYԚ޻K_C%5 ډSOYŅ׹63 oK|"^Thendstream endobj 125 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 5645 >> stream xY\SW1psݕx^uTuWZqXDdH3+a%bNT j8U۪Xmko?aH99'ys9eяNӧ>7G3M#h ׭AP%$K%#>2oM7)v3Mgg)psrx nSi7qL{oOu *z/zs]ng4s In{]wS,yJ$C13flC}HPoPkqxj=5r6PoR)jL-ޢP˨ }j:@ͤYlj5rVSs)[JH,)Q<՟@ P"j5ZL QVrSnKI( *U$8ЏKxbM˙GIRċ1Jy8 (kAo|l3CkheaȪS%;|pVv>1sD7Ffmke=z۷lό82kX>Xp[Pcx?P $GxpFd(I0ը{FVpWb s花( jTW'hPVM_KlCwm zgc8_|pypKhF7t![/Er #On8yP!w՘ֽe.~N7";Lzo mJ7,1ߔ;wĿA {)\_} 9F+Q`@*k:n3T4X^ezy~Y,0oꖸnٵfO6Nz'2@vS'aX8gN7}{kMuZlo27f-a=ɜ2)c~M$,;;@`vsxAC A CgV_^VYv]YaTw Pj^0۳/T/G`almy,<? b_b!]P=uam8bFB gƬCT}}PX8kDNkN$oڇ˸G=7Pn#P>Sʸ\_?mj9-g->RX~w̩CJ«S)~ Hc,S*a ݋fkzO$d4iFP# 8uި`D&̆( E+ ^5˘#m[wK%#T~Hu9|RG7)Z ۳?k| yiޡ_yެn"1ǩϽ߸}i}TaQibSU{cUfը bp?u4X7-uZ2:DQim@y]`o^PlvВ BP$9td_Vz3>iScŅ&z`.%Q.pҲ?P˟kQwҢ[m J)WW3j:åOOȏ*E3Y:kN$a~ lyqʉR'#- _7vCK"]NCjfo cxy*yqfԞu#ڰ]Q(1N;}zƥ4BڴZ@ -[š^C9ǿԲǽB<g[z} 0"=eW&ۆǿB3Ga~4U Z/ފ\#}/}e;Q^AN[Ysܩ9A9aΓD7 /H^}c"lUtrY6l*$T4/ %R"t^4[BlTTEJwGEh}rlҹB:F/ $ߣ Ob"#f+ׁFi?BڧLQJmI/}7c ϻʳ<`3c+a-nYcL~%UjCjX&Z:wѲvpK{"}g PIXqge?x y:X9gdBjD"iC-FO2 lg 9o0a !C̊0}3TǥjT..>8؟}M*zֹJzl>(Mj=ED դe ]H2KZ|%hb {]oul I?"d8i;v>m ˚#Μ[x ΂nG0'yq5GNz4o:r p;ס͠?wۇZa\m8&sQE/i|cKs+n60B  6&[F 9SUp-\yvyչK+;tc%kZ8 1\&u8f5Y-rY}23=7U0:rN>"`8/7סbVOx\ #i%jL9(޴'!90me~\Typ!{)X\Xq?:oi5=ƴCj;m4JBܽ(). IMpS(QmD27͛79q n266Ლnncyxmϵ~xs7W,+(( !5UMktڌӄ5F9Uʘ|y|*^;#>)&EآD=m T~Q\_QFq 8X@rOFEiD<t>jA>LjbG&8t,i"Mn`^%x֊xa7BSM'523EQ% @?Cy`[.% F Q]~4EyǂLa*#4RYhk#N]vޡ19^?[1:G㒒@I\APBNL~LAF,*<:(E2"yq^fFfW..DR[ ۇjDST[J{2_#6Hecuz20dv'N@-tcb/'CP*&v2,H%~&Jra6tl4$73ڲ>-qgI$p(J3r爪Α%.,ZYqXt`_/ rߞ.{y4r,"% 2 LQjendstream endobj 126 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 329 >> stream xcd`ab`dddw 641H3a!O/nn߷}O=J19(3=DA#YS\GR17(391O7$#57QOL-Tа())///K-/JQ(,PJ-N-*KMQp+QKMU8OB9)槤1000103012)ٽgf|;?̿ܥ;~3>,}} |g|Waq6;7<_s/wt\7Xp9|zaendstream endobj 127 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 5914 >> stream xYyXS׶?TăIĩVZ:[pD@C!@I)$!d@ qX,@ubk[ժݧ퓀>?>{[F@#P"d+8n֏O #쏑$''mƖ?F>\O.c##B2;E&4c itwGH*Oɐ%*[eIioJWdҴ4N(.\nIhtlHh4D$KJcb1TY4N"MtGHIoJJJY$ˊ)7JYVyj*]*OƧD%bi <)&1=)ҤߊwQaԴԘ2Mo [1-!*7U8,Iy%OJɲ{eXy21*ߋR]*ʓ=!MG&R]^':JLv}pI=_*K{Y)B\71*E89]ܦ'Z1o~BԴK2fFeE/ώY* OڼzK5L1cѳ Ƅ7'NvbIpb4A"H"xG!k:b!1XO,"$#"bXBM,%ˈrbJL'D!^#$A%^" U"$1 _"]+07h|C}o()'^oy@nE{^f^xAAW_iyW_ 8+#*?X4>z2QVHhsG>t0XQRU9%h*ov E Rz#4'yĥp$}s-DH4 6c\^w.p4#/C~HTAya? `5p$% }F˓oPµhGCԕb- <F4]PMWjkJ*XB}I!ҶcvPܔjRMj,Z6!ǜ րwݗIwO0Sa3GS Zk6%CrI4r%*#-n%{h6޸(pZ]" O.9;&耺!.FӫA:bmIၸ#ٗAnݙ;MޖP<@5Úct[-&Iڞ JuʒR7+kan,j(T"p7"Nr 0 0 y@s@ˊ%Xq\퉛uێHتRK:X)mn*@>n0 f48 17 (9C;l!vbfWhi_$p4.JnYWmΟD~TQ-KBnںi&"G7XLW/EN+Wv,pBh͢n*XH%>+x@:5 )pJfQ{>|x]ŚϽ7ȝ={ ^Gw"C X -(R.#wr9|rh um:ǣQ uˡ\C!)nċE 1 Y9>ƤǽH CUⳫ3e%Z F42-FP)SlޢU[+71HceGczǧqBVu03G.th~<::4ψR H-< 8/6L@4 `R'bC( D.y$>=rZ DbJDz)PMHaG _uQp7F_eRF|=r:C ==D_ O MOp  7sQ5S C9\mhxYIeǗ6rLnV+lm.;%{ y^~H93 kV:;4\r=`flhQYZuDaA<@OYq{'캴:hrjT[V/33} 'vClyn_ ZDc(Nɱwܫ))|]GX)9V%C0Th>ÇZ7:h֗.T2wNEFر߬'o??u 4NofgOma"ahٮ^p y,<j*+D4 *W< ݐws^' 3Մ'4瀭Z8"`d;ZϞޑrI{Lx-x!M[.} |4իw r0*}$ỳve;ߍ1DXj-pF=Naja[ ^+k NϘhTF[cJq*:EZB @qqivKH i) == >ض+Q2!62̦_\7HCGO+wK`s#j9K,q;wPtٴd9[qw71wa d"Yk-mnJ~&xgoխbUNߌ.F&=B6  @Q- sCWnw=dh8 W(?[7.?΍(3Ы\ǝ~8׺ei=[aЖͳs%bwd`{ӶmfO..ro*H#_̃Ntcn&h\0 $۔yrwQx%1:dceK ݠ¸3B3`QiN}yI'}Y&NFEp|Mw1h.ؓUޔl dr>-FIʎkXY*cy.26=UqV;jSEq>݅CPO+? ME rFfgYqVĮ^nubϧ';s9̍pDD;XiۭĂ$` e(0[\υfVk%=|m PbƒZ%(}o8~½Ƴ'kFx}[5ju@RL'4huf-։zuEA(3tr rPYn2ppFM/W&Ԯץ5J@l5z&-I8 Skf;e>sЂ"|Ayf)hl4F_ Zekl<@_8n+O:6jR r>qAaaڤ6Y5a#̦*{: `e 6_2hOiZ_BoEFU+.*ZLMu6qOjP\^22nnjyq/؃mͥɨO,ު ҟ`P'H_W:<k_WT6krb^±*wk[q Z)QL%%PDy;rp!p(r0o`<|]|)8Ne%) Vc_WMfɞ7گ#Ғp;fcq5QǓ} Nk w7aǦfod䪊.6kcyMrӀ)\hh4jV-U5GH";6uQ[%895]XTSq۩h/x7UC]'w l㕹 T&PZΘސe"oSBY\iPbZSk,@h(g{p4v4+m)1z;7J4?I4+rj7g&|BzDH\ ~5O6X^1Pӂ9?PIc&6Sj07}Ɔ"si9N[lkϰ 8^QU ek fB2_7;pOPph :+u1T4lx[xλkQ@ w)ss&D2-um)Ϝ4ueKvXF̴sS0nS8 $c(jendstream endobj 128 0 obj << /Filter /FlateDecode /Length 2344 >> stream xXmo~X p,9,v7 \']W$+td!ϐ\y؆ ܐ3g|);'v.u+m^.%f*zrEQH)i *tg)oJilpQ{g%h͢D2ɪ{kT$]HQ$gFMR#g&5UՍ65Twz٥qv==[ uI`Bwz*֝Uf%\ʀ,^'/<Ȕ~dP&^ɤ)'VC'p5QHNVI.vB}!њ E$f 2r-d5m@$( D;I<)ՙ:EsQGuڐ pUs5اrgCm&GbsvsO/ȆЍbaw?`#ʈnYV"dH1h:"ZJ"%)ň6\ } b_h0_~Z&erKG,(8h̲N)#z5^G9c.:xM 3^"ph[F !b s0i@ .NG* 3a7|) 1Udf"E&.v`}g =6[]ot]Ϫ} f3y{(Պv9܎T 4>ڕm(@^XAp<omKZ5hNȉꝚbI \d*Vc< g[QMap+u@m*o>&.sJ?p(r>L52Y:rg/oJ&?a3qv_ lvg8RQ<3yk.qL/VL ja= Y`[@|ujk%4+ZZn})$ƲD-[lW` !~݆Co2{<ڧ;<>p[Cj0rw=FoF>ܵsm ޶#V/'Y,^LO y H?|ĊeĊG6l7,ِ;@^MDȻE]:3hyk~6#?z|X0.w\VLo$FCKNņQZLd 挦BEPCc8gs ƤAƊa($( deb'yYyzdᑣYΙzRp#k5 99s-VaE1fK}FJny!^?+ 9f<FaSp75)PY3i!gpwْo<;d }:= Ec`C>5%6 >I%ggUgVⲄIYN7,R/0)z_>Ӆק 26G4QOޓxsRg {z/\ rūS3N Ogۻpw4endstream endobj 129 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 3137 >> stream xUV TW֮#e4 o lA8Ѡ[#.QA$PPK$A! Ȥ%38=Wß?9OWwG$ }rSOy 9Tbq12!c֛BH ?!D$:=#/35eslNDڹvqlSsZ_f[s o/5~gKXG%ugij(QCڴG =@9 3t\MmM] &4W1,vzS ԜCѧ=(-n|軨rr&G (P57sbZ%ȥꆘ.1KBݼ]7Y&.U{`A+ s^}Urb3I}h7>JMF׊Fmx)A\"-"wu†W[{<%czy`l=QR T!Yi˖{+˙}*F%ܬƜmm .Qu Y툁@rXT:z-LڹRl+s=\`e B{a2L~J_R+-?S+ze)1H rHp_-81 +m^ خܯ4}&f>zH@dhֱpO.iz Mx(תB59B^~k)xnk`F&ܡw?I^&+m&'rj9(yzTNϑ8jf!U'B[ߪnY].?}ZqUOouJ^,1ٝM;9'B [{xQUgTH:y(1)J_zW}ZH+RvTnuFn/QzL[oU91˜q#~/ tushְIXnpN "娧|ZrnGk=Dc eys2EXLGQ5j$ Vu4 y~f^zj~2b<oHoۭjLL%|xy3oijtv2a@pk-oxNޱ>Mh?b_$GֻsS$Y_e?ݬT!wQm޻aAށ-;"oiп67H݌΢G<9'?3;5mшKtbՉ3%'T*h ip(jنo x?`uRa6. tdMh4:}WB=:Um%s<*>ҹSOBɴU[-wk) ,v.C2)=]0T*\11] 7Qɽt|ށO;8u|)Pԗb͞E Y0kL"ц uW^9t)n玎DcKo^(%J3Q23nbfm^-+&3~g`#+طr%KzN\}'f^{FoU%OwzGK_F b3f yY*!!8$|#? ƀS76S`oyJ nYbB l62 'aGPOB3p몏s[KʾÍÜ;. zrL*xM`1w3/@=gJ Qދ'm3,ӆaj[Å{?Ha0(m)lg`*9~0(iqdPKZ\ӯ "A_xy"L! ?^^m Ho*I}} j/pf[%ǯ).sFcȵvq`n;x{];C!ܟI_3tV%נGiL ~KĂ[3wo/̟_!%+(lޓ"{YYƇJE!TFq(Hm9bSp(ɶb~$7W `ñ"!8I81(|1+ 0[g3z _+LC"Mj͝7|iPKֽug|䓖3 u~Ԅއ+>_"uX,;NӨnS^:%Plw.4-^`SnT3[;6v=f mn\\)e^ 0Y։-Jl{P2H*p=ĨnoX'OB+@!fz!W\9:z,~4҅iL 2x8hH~H*Rg&n`Sӛ#$}"4l I[y6 όJ!$h1ԏTOZ< 7& L_0'Ϯ8MpDyR6_YI"p[J7#"n)nA߲|H&|)=^NjjK;zpɑcߕJX=rxA@endstream endobj 130 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1591 >> stream xET PT콘u4޽ A"+G|⮰<]‚sx2a w:d _-HѐZ Y;lfsrr?E Ifgs;i-RϿ$VlD: OO5x5QRF8b7As%nR v!/B?LE?FZ,/g'vdIgpoR}=l Y4T=Wq-#1hNiM`l8s 40tylեKBW7l{4W 㧑CNuC2 ~B g1x|±`{SK}`h(pnw܅ m u'mp3wuu^<i y[ .ak+iJ4 0#pgq=sw! x g٧᝞xX \-R|0xG7u8 5I29J=HV&fpN y4aJzOzt))+c\n$쑻2&mh}dow| #?:pDzD7t `*=vkPHwrTU aEgڕ]0Q;,ײq1{k oXr.|qC ܇ԏ|VZ󒪲pL_ysο4|ˡxmHp9:+ ξSvLl ?!y\Qu`}PG,AAķK<* $#t!]tiىfc߿K|;o{$,پo[#5=P؟,ir_5Df(TL[E] * ?h#EZ>F|iSVv\ (_-NZ8 ny=zY¡'^r>FE׸\!1!> stream xW{TSg?1sFTEE:Z(>+@ y ᝓ~@ ( **ꌎw|Zk}X[ν/d{Q6S(Hd}")ĀC,7-mN v6ק5 LG 7X$S{(bQ*ټend]]eÔQ1Ȱ`#y+BTɲyk#UK&&&. _PFHS ;$ۤQvGɬ-^<ѱ 0lP2(نEFe*aC;v[BQoP;] MQ>^jޥS~{Fj)rQǡ3vMn] L_/F 3us8,8C0jBouYnȇj W$ؚf (,AU?UT:@ [a}4*dA{h:=*cX~X7S0Z㭧4r8:ڢ!^(WQ@,$(͚;`G?w!)Nľ~6NkGIayLM/Aߑƨ`/C8 R$C{MhA)8M`5xۗa K [Dy?e|C ++9#WHVfKlY_2,EI+}j1Js+P2WD浩64tvEw ޮZ|N7 *Y8%j* k|j2xH|VVnY^Ep:긖,?s6lf9<ېa 867RM8ct dUt ⊪!0p`b{B Q:*cZ@T*^ˀ*`@0`B&aI4L|$5Gʕ?b}^ ā ro!/or`*CSEW&KpVBd)~\m=^x:*էHLPDj7 jxfքm Z9gQ>4stLCoGDl륨&6#`4 2]ǪRt r/ ";rN9i8&VIм [U2!D 0YD&kQ۫+5$!O8H'Lo3"f:X#U%}`k7IJz _K\T7 D/Fb5|10m@ {Wi b b1=Lȯ&`TZ)2(՗ԡ===:DGku U_qճq%Z[l}MVP ! Aձ|&g).prA(pn3HrI.hV+SW<5hq"T[CйDn$P#tWF!TQY5PXQX u;} 3 5\匕2 =(eamhYj[1r]bpVG<"A(4:@'cA U b!J`s@GR1Xx$,s _Mʜݺorx=8CeEe"Za &- z~huJۻ%An(AftAk|:('UԷ: w\\Pg[7mU7@ JB4$IO`C}AE31B?Pz MG?>QL9Ah+cqI+ao8+!J/K̴%ժɩ4V)"hﻢw6G4rHevYN~ab~O<1L\cb[[SO3t>OV>ׅ^-T*>%W Vshr;|<$րggd4iGIdC[HGN5wFNmL-$1yŁw, zV-i?-II1 Mb`+5D\%fd-]WF­ў|.n*ZxgEiF̹J8ann>| ]=Ygˍpi)od+Z7H46{'D-g&G#/ZJ259Z.jr> !]e><-CK\ ᙌTBeYu-Xt/Eo,n8!W-GARg]09@4ӧhZ[٣I1b4:B![r>\OkH677^+/vTMd"ϵi+"!j#ړ}SC7L譾[="IG [SN:y.V#XRe^v!0|ܤڞ*/M?^y4 ~ro" k#;D͸ dmϱr,ȽM$-z+Nr2&Eilm$5dq5Ʈ{W(Qx]w>`rTK tyrC>t#fh9RYL7׹ qAyh^RӚau&-@qPLٕ%:]e>3w!B޷/Ǝ~XUL"Nm54`#+,J1:"|˒At._^{o] Ց(oTVSKZP\T҄NM}@\B:Im(l\2x2.OarxsC3.kO7񣭡~w4qZziT-c="yeXˉxP~2֔؞5ob;sJz8=Ϳ~0D#J|ϳxeLtk|d'4 u(YC*iԛӤSm^1ݬ{^endstream endobj 132 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 328 >> stream xcd`ab`ddds H3a!Skc7s7 ~.ȘW_PYQ`hii`d``ZXX('gT*hdX뗗%i(gd(((%*]&s JKR|SRYt^}י1y#no~\~r]O9V=׋翛}}5۟'Wgq>7<_s.wt3\Xpso/yypendstream endobj 133 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1545 >> stream xTkPW%fUTj]v7S(ʌ vPՊ `|Q1!B1j"R y('ih5Q;kZwgjh;{fϽC$I*6aˆ`R +Ft(@yeTJIy|Z!M/B4T""&UM PEgjMڨJP zmZ ^c kU!!+rx:NiǛҢFUY ^5_k֚VkWfFA5GUsYAkR%+&#A,Xj.MoH Db.XH$""A$>!fqD<@I 9!ɡdsL]˟) 5*uE듉1y3bYʺUZֽj;ZC&cr&QN7g[߮9vibsrQrwgEI 袗ڇjzX!8=H b11Wu '$p=^ɐ'o#-ֹ7U9e~9i)תl/3XN{a~USf /2?+^+JhJ 6ljk:q=O>`vv<5́tQ?fun-,ց`”vjthpVs%´-R]2ҍm{ o@iZ 7ߢj^]:Ei˂U+n_:ۓ 6kQfhb:< ^q8ӳ讣&Gm0DAs+ꔯJ^̾vkf-T}ߺS/K̕$ho>zeT >L6پo,ܥ4(rbtHqf){t)|T['5xx:SQpJ(T%A>}/y҇,(%s#Vtcچ]%GYwq5}Ȫ9ZZiU\v_WC.X} @]~ؓ(L(սv\hS[+f8YಗY%3ϟ 0&>]L͏ `JtT@i0$u[_;B]=ha\65ζs`L-# +BgOt.ms2vɇ/I|s+6턝*5[Z~z-ϽtdҴT74YZu_m(ۙ^mleC6]Mq`HDo!Fx0KYtt8ёs)SGvVC^67'Q$W<Ÿzz70ƿ؃)>N|RҜ8#CP) bU$egaeNx=%9/疥}DW[=u'Dn Ne'Z$ On6Þ[>} 喋r )Qzk~@_@y)hendstream endobj 134 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1432 >> stream xmmLSguc(3htLq(6וiZTl=/ Z'S|a.l.q1.`u:o'99<$F$Y\R`֛07>""𣿍6'.n,\= I}fFfd3d͓}2k8>BKF'A&C$Hf `MK;.8Q K]Z> 93h;ԶyYw{NAY]Յ 8ZΔ`;o ݾvv0@ˆ L 9T3_V:@N}tlv9pӬ A9Ndz/To u1I,E\QE!}s~E=c,?ޫV{ZXKZZss.ƍ:Ѩu8%IbMy)9I\1QZCQ1hf|Ubor,p({oi%b],L׊9u>47Xxݙqs%El_Tm\-.,(jD9z΅~@@ ʸzZ!TtOcu%1uZCuZk"yKz2j\Q"aY.997gw^3{.TW\|FL/m[F&˅; AˤDY6dⴀqW.y~/VQƽ+3.WV~LPza=rהfjt&UKLLé?ᣰP`f> "bGT/˞增ha> stream xRCMR7$,  ZUQmqCopyright (c) 1997, 2009 American Mathematical Society (), with Reserved Font Name CMR7.CMR7Computer Modern12Q͋oKL0bg͋§j~'eg #e'͋JiuP~>}L讧Ǻɋ !74/XWϡ=:4MFkgo0wCna  7 ڛ !endstream endobj 136 0 obj << /Filter /FlateDecode /Length 2086 >> stream xYmo+߰0tӀ 8AA( ;.@SN1%ϐ\e jx3pF j$].-PB6_,B{ju$knA9b,ūE^8ZPElkS1 H|>k=2'69q)ARm&KG :a1{@O, F)2~.^7 jO/VXJS5!Rƈ EƐBUIU$jw7$]۫WSlW(ɨ9PŬf _epW\=BK L5P&\zJ5:iભ Ѝo{21/։5:%H[ _L'g1JNcid P VxF9PTDuýPҺ\_=^6_Pʥ̶.nVfw4y+cG#HxTc%YfIMFvڳC/qP.g[668).0CdH3=m?P5= {bM+#` \vu6Fr *TP6TCA{h?7'MC7 +X7 #A#CG!IePﱴ1JeQ'KPkhp݄QPjP'G:DWNM͜⎊~q(r/A1wQ}͆Ja.jJRK Z2+JeV@/8k D諕1[N|WI׮&/56m躯9k S#;ơr2g@K)Nv@@s 0Ȁ',l∀;ng0nw’79[u{*4 v7|TD $Ia@ҐÜ]b$ ёT q_73;L%:3k+F㖒i&E(yI9е#I=C0nslf< ædMe^WED9n=:10䡈LX C@Ra&OӺrj>]mer! **3} CR]SJ>B޳`PhW>bog8Тspj(ⴾǦ'q;\#L|9aad ](Aw<5rTMަ3˷ԓ+͐ntRG;T| 0j=`0Șf"h~,Td4o+` D~h_eE"cEnK!W~N*)AY9نw7PA1H*L! E/svt$֞=IVoW'H>;RՇ\pB5nMޢHx >?N%͒KU8ٗc8ibW}),JWGCtjFM0O"z&9m \ }+# J6Nw-̃܌/1ѡ"#[n9벬()u&<.R|iUmgl};[W1gNE/~Ō En~93(q> stream xcd`ab`dddw 441H3a!"nn'~%Ș__PYQ`hii`d``ZXX('gT*hdX뗗%i(gd(((%*@s JKR|SRx##sWmf;OUsvϟ_]%g#[Uewy9|ŋ/d-=}3fn9.zͳyxv^endstream endobj 138 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 361 >> stream xcd`ab`dddwu041H3a!Wu7kc7s7˲ ~!Ș_29(3=DA#YS\GR17(391O7$#57QOL-Tа())///K-/JQ(,PJ-N-*KMQp+QKMUOB9)槤悌M(a``` ``b`bddkCd73J?͍] S{/k[Y^u[on?lp4_u?$~(}g^r?6u/tug]9}.n9.|͓xxȇ8endstream endobj 139 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 2784 >> stream xmU Pgq`18*`BDc 4(Ѡ"ʠ2HK7 r)#7GFr7%M5Ie[{_= e1H$jU> Go%7@7Y-ްvɨ'QR$*ذPV5'A`%KU+#BbÂ"UZMHDVjsTPX6Y5}VNqNQUaZ+$.$6!$XU}zeuTDt6$VIQȨ8mA!Cö~`ᢷ)j:DmP[)o-jZCQZjA-<%HP j *5UeAPO$H㶏+t,N[:Y[=W"3h5ת||xx I 9LK2&wR$e3M 6@)dK]!b`7pZߢc!\2dIda1ӾP 2[Ex#(Uw5]o*l7!4J^;Uʒ? )om='U EjZs59p[.(̒f8E*aJwg;2l|)NdAI=p)tgY}U0 (X!)[l^ \v%ZQ cƘz{y0.V ܬEhLL`sbCCse XEmn`vYx٦3?"P䕻=g>򻭑[SV%05p.CH fcJ4yAD' A{vMn`?2nb>Oӕff~`@刄Nl8ZɚhNvo'PL:w%h9@pCx޲f];̣k0MINЪo}׆E}׫YlHq61g E̡DN Im2,y qAlJ^j"~ZUw"nC=:!^q;:yY9b("25ݑ-[rFgiF8]F&YE1TB* Jpzh͟Z%DSsegcq}6[l*nK+F+5zAfM?g _QJGzXnpaQψ,|K 924':0<g0B,N0{ x-/=F8;®Ӹqd77|SfNAnu)0'j¢"}+^?!8"vI8`pG}`~!:HڕbZ=vD'\܈L~~8l4f1||!K^_I"ff4Z;h\(4qhٶN/"kqH 42x͂ЩɁ[D#r 7ź6/l~hR#zI|d~#E*M;qe\\fdꓷm\xYd5dq ^b4#ڝNZd:+Oֵ7ZA65i9~/3Bj'JJؤ\Ke ϐɄ4a0)I$56Wvt,s Tt_̨i~R\R6h!rú;a"({j}n'Sq*L,Cuuk]lrq@J-+b$LU [jtwfcua.ĈSeڕ eP{4slU -34x+yXr J99(ClsxlP+x+ɪQ1\ՂLg;cÓV<-n(COk4-NnV# O^Z] ?(dϩɆz`jyY !1j28n,34MFgF&d ڀX)}_<gG!E$^[?#% IAJa=rN$,n.qN\ugVxIpt8IIW[pr A"౬t_!>˨_&Y>4W K@3Ɔ$Gs3hcE5@:߬ģ8ls'= *6Y }ZUQ|\cPIa76nX{z_msSU_b0uŽ<4weKL<=BCVu հKK{ZZƪΒYsaz:Bi*0&3^3!Du.3#S9/x^@KWѣ_~JRUeČV>Qe|']='Q<| =/L`әsKejZ ]m GH@j .YX92em| #C"S+?̀U1+ֿS|ӭELlK}&`~Oq1xh8 b$=nJG flmNB޴+@Qk<'+&A23pM?N}颏S"#2'[f5>pJ4hYo(JP:W.)1}顓!$;H>{!Xq&qq)2>\|o1Nb?˷PӋMHFi~<^a[,jϷFYendstream endobj 140 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 6342 >> stream xY xUN ?T8 (Ȣ,Ee- v_ifk?oӦ+MiiiZĖHAQ@A㨳9 yI8s'm{w9eƏc ܴYybby}A0Ƿ<6)0fg*e Rsf/[8{ʕ~gW^#%&'9!=&6{GF\JBN/%W=L~~%YI//\4;?%'y섬ٯerfoIO=%c/2҅9 Yd'd X,skC^ސ1wS7 '$'%oOٱ35mwzĊ&/^e!k.+Κz5$k'kkk!k7)ViZb>zV(5RF&2f_`ma-gme`YfYYSY!i,k:{k..k:p̪liL R0ev8L[JL֨}\[g_JF1^s3I{dnb7% -TnK]v U>D!2oK8%GD5' -4;XC*…ۀU78mT@7;VV !'RZ! sDqprz:2]Q2ZN 4_f+)dv㮢ҫyx__yy1s.l=xh.zd,L />Fi=Cu o9ĉya`}@r=6z3o5Oo[Dt6V 5WU>ˤ2YyDwAR0)bh&G᧟TM4L1=hQTް˜0x4#JpfjhVh=cxA,TIFE Z%Dؾ%,z@̠rx7ϱ=5F<$xfEbͨ7lTOm^S0&PIs\ @)(= b.q?E4h5bt{Uso݈df m_"i`ZUxyС6os S 4rC&ofdw**u Z hBh6o#X`JA#:OE/]*07GSՐ^ٔN+? r@֡Pc ?-C 5(сRSL1+2y5[+`JY-r`mrn؇xF,SAMH՞#7;7WD]éj`l\cԏkr]A}½d/iDxV?*F(Io3_{.TEYQ;lΡt՛P+'.8j~8F^Dle&0*`"hIwgw_ra*|q^6)y G@$ey9E[COuVWɐ2,IGkGn6udF!9!W5L}: /_70z}>lD *UF)NHooޯܗrϹb k 18;qnkh/ˣ g.~pIXtKђaz偘 i1iu{ bKin裫h/k9U%sp彖#h ?WcK[{EGzg/udq;0a+P 1lnjڬ{*bWg|J5 V!"FSkU0};N-[@8ƈNQK[c{0h\7tKu:&'v(VR]$SfY217y52? W5kӬ^AOy̥MPIԊxՎ~?xIŀ S9;2.,|;"L&7fcpUji STT<|ЦѴO¬p*4:\AY]Y}M6_:އO[Kߛ6֠wĹ7o"d̗gjZL-HFj B[h3zCpWc.Uv*I3o E~wf^{#8a;x=6Rޘ%Bu:\d:(P~ܠӴtJ=¦|ҟ ]ԃX Yc;QA:!rhFtνԝ@"^ \6whK`%>y|> _|7;6Q7N2Y `4ĸ]7׵nvmt{lC>V95cuU[s0oLgC>[-lhi]LOQy̸M~\bVPkG'JcUy|E$" P`U롆p:DYYɑ=ywQa= ]gt]gh*g4 b~z[OWOe_0!J[TߣqJ? vc--b\WEHi tJk(+qe: o{.MgM(2bas,f<3Yy̳ߞR*E2[Wcݥ<ނ&}ξ\8sz0g~␥Ůڲ*4U[ a[in7:a{ 7~fVpqXYk.؛|. #5+W)$Spp*{h.d5b( ^ͪH$:&vN76덍 p6j|T4챷c>E㼟TI |WI!75*.Wq\0 ?*PPd*} |ռaMN%u⠟e:>Y{e?rlz ['ނݢ<@R/Xm$[ ~Q7 00S- &;9͵D4JJK0"Y)S0`< }~qʡ* @CQmr,{p^tV8t4-f<:`X8R;>ra~T-ɞ 8u5uf2ׂ`$ {]ymmБx*2.FNE\X;:&.ܾI$J.Y;ܿy)XP}8xgMSCY^~n*PӤ2( &?,96J=zGx]۝F ؅v B: Q!2tT^]DQ2GGg c6&!NH6/Um*ICI:7:j(Ы+!wb xuۋ`(=xgǻ~S,T %f.cck?jJ'W"\ps|~-ܓy/W79&;8=8ddِ ߗuVJצ*Udg\L&TY\ ϒ]aPQO'1;TJ1n(@3WsĺZ]e=fp3@G3h l@^U @U|p{m;ؿ?ymPE;x|]PfܓL*pHHBc^~`!D˯@Є֒&Reo˩!WX!wC=~4p̔ *Na53א[Wy=ⵡx lpi`mo|.qo!^本yoFl HJ7L+3S Iwc9(z&@O3әLN "h¹ޮcwY'Rw{@|3z]4#g~n* Blv3uFȟP[Tz @fuQcP 2| W'HIKM˩onz2c<p_ hOQ {mS E$VY (pnȊ*x@j2 !3sd?޻dL$g"IEd0򡰳OAa<V cbqc H V.B۠ 'g{e0Ã5lo=T&M|y^R@d[D`2U#IEB9D@zH"J@^5X,V7*u#Vn{Ou{ђϾ8jfJ&rs%Q4]RUXpZ"5I@Jl͗>D(p˜예P"?/ تښtٜPX®bB?Z뼏o܈ol4AV }&9s3-WyUn*Ԯ*,YFe {aoMYTʜ=ڰ c=[4٥J;y} N|b5/$']2rZ5H*b"%5CrUw/\'3ʱ]բe--5^Zw)h" It#Y pP2'C*̔(fzx\VҩE "4VRQjsv:P2uܭHdJU2g@-:X]*4JqaA# Yϡ~*)Fu_<}:}gtz𓼃v)5{>ª2дFUSxxRe4Z-{yg)"m`ZS޶&yNܼ8*jUxn"5ukG'I6J"4b*[N?i!AH|#^S,'mo*.3\X'M3(28&W 8\we*\&93i!r5''X)endstream endobj 141 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 386 >> stream xwCMR8'vz-   ZWTmqCopyright (c) 1997, 2009 American Mathematical Society (), with Reserved Font Name CMR8.CMR8Computer Modern3vťbڽQ"DfVT@htkpozc,MI%ڧϋ1# :Q?f{ku؎׃$Ena}{mltNx~}vCoa  7 כ Uendstream endobj 142 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 396 >> stream x~CMMI7'+   ]ZWnsCopyright (c) 1997, 2009 American Mathematical Society (), with Reserved Font Name CMMI7.CMMI7Computer ModerniJ(Ҫopnqnzv`~z\e~}t;_bdw揗cT(]z~ᷯpt|rMwCp`  7 [җ8endstream endobj 143 0 obj << /Filter /FlateDecode /Length 2714 >> stream xY[s~gNt&NIDV}%RJ6E[K~{`,me<Bg|8}q&:NOBuۙd:tw3}7B0#dzg^vb`΋Y͙`*/&r3*KYʹo#Y,mfog"?g]`J۝g)ܢ;&ήg: hElgɏ'?̽d!/ ,*sV*P6Q%tB'$ϥ$Cpƿ&EkAƇ`Bhh:8v_Fd7-]YʊEY궬jWMYr]V-CYj_g)Ǖ5)5BQ~fg2hs5vS=i=3Pq .ob[(#`,ʔ+V @q9'ʔkr?VuЭ(*p)W4jeo8 pq-@75I%2"8 \֎ʶP?&ŪxwRw}wCk+t(rdՠ}.£xګd #֬))p(E_[3)GyqG46S4&ZjG3) "z_c"%`^6 а_c\V$XjҚYeEth 9 D5ZQUpc~  \ncu.4Xd(avx58?i M]J[9dENT(i*gY/_Zs'1CD/T'%C |\J̇RIlKTrЊDCØxI̜clYqQ0p;ުvX< Vj!6bEg37VFpG/%RxEc#X>DJ~7<#$EQkm$& {7bØ%^MoDmvAX_<(.T6G-W5ѡWױG'p5`RbB`da1ÒK($)M-"@ 1 "Adirы/엯ʛMi+tj+ ܔ75=8)˴6Ju=FǍ:fT!VܵQiHCO"JV/U[0%1 qJăxOd>R-F[o*o21>w4'RtLJ.%<&aMIeE9ፎԸ5Xd*jdM o]pv mivl§ $نRpd]an*^6&f[RZLZOٽx[iTg&_ח _zEYqFD\yYwQR.EY?괬Ԅ!W/bĭMieNEq἞`ni9riiG`8P5 |ίOb腴1a6 %("#ht48Y%k_' h,'KSw=34!iEҜ gUU/Q}TvjKq?fy$=|h"p`x`OWCo<;Ms1TkP!&>xo?< ͘gLUd9ۺ3w7wK##>ܷlޕĪ"澬>L; \O}gѫ l.8Z?_wə 0?4)0p:"+VuAgGW߼q А*5_мzҿx[}EX`i<6wUճϳǭendstream endobj 144 0 obj << /Filter /FlateDecode /Length 4050 >> stream x[moG |;6&NI-ֺt:Iw%=;E>qgÙg^Huu_58V٫nىծUN̜v=Ҷ6<9yz:ZgUV/BkM\e5[4L5 g_}o:ÄJ\&|m`2yZ .SY&5Imqf'/ODT,l;{t J~`Lh:4ɷï~9 AO6heds:TtPJVo%]𝔡3u__2!ׅu' ڞ+\q (u(nɦ88*wWOa/}tvQßW3S/~sJ?xi[:6>JB%=B0oSTDL+ tA 4Ƙ nJƻ,:cȷߕ3b)Hlo/pMhD-6Cg \tsBhvɼR+x1ʙ ~$v$?(-,/(]:%T]&v(Iy-B$&x#>Rqs/X :9 Ž"ltkd.*XsY%|LO,`fcBӝs(8*Oet ,:.m5.ۣ(S|#`V]z{GcwgTHF#a?aP"'"⌲\vÂ0/IՀr܂T&vÆY<0U'@J%*LZ,gs`Gnc g d['mJW>@.S a-]Is!ҁCfGKm ShTG\q'gDi &]tE6 4*q?B) 2]L#4+iKq-\6##@覕f yCRhUd*mZT*ke[ 3ּv(v@HTL!! dư-8TN.X PqdS59`OJS,61X}`O sC/EbRAk<%U:Ixͷ<1!1Ύٜۗ.:^Ŗ-M }c73g|<9`]3 n= u6fkcȮtj |2&[)rICb!,Ȑ,P[ mJDkiIbPؑҠCu3c LcߕTkELE֍'9J9 nItGe!m"(Q|)0EUMk#f[uń s٩W1"1,atS=o4xn zyM}] 0S;r{QյќK:4$vZ[|q@#1>|U6릸7{U$Mt¤:< L<|j8;̖2|rcGA$8)ӧqRz~CTW<\\"y;֑LBArDcvYYs]Uc[ ?u&جض$G աx|u +,{k pm~ OG.ԝ*Pe*J?: RV VBϣPizp:Wf ݞzϓ}IYe, !KVsGKh/7R (, Lx=G5$ci Lk4˷MI븏N0fS;X4H!'/<.]S$ ? A4uby5<76UZrרtJ#hQDZ 2p2',c nRŮPGvtҨ%mvc>,IJh˚uRo]ۘirZ*Mַ*]D@ M L٘tEAE%r)!S < ]"o^ZQ.ƫ564cz u _a!wgq1߷ ϣy@ *}?So q1ߜoqe|/Vˣf}YX W*zwᅳzBʋ~޼^ZV~w^vgmo6].h d3|Md}לA(~Z_\?ȣX: =y-&&_Ǥme fu=2xhTL|62Nk0z\G֛WuQU/'M{xH*CAb ]_Nc@w+OPp򧁭"M~fEEb++,)>pBPgBO!J I(p !BR:&' !Drba:]tbԭ6)Z6)b˦OOO |endstream endobj 145 0 obj << /Filter /FlateDecode /Length 2066 >> stream xXێ }!<鷵`q$F (ibê.HkH؇m$<yʮʱ uI ׇE6_l^reNf8ʧl^Vo.Fal^j³1%M",)'w8bޢfߊQK0!f*2n$PIx)Z.~6Ce#*$e\<$k ɈC4UrnTV};[hnƜGUpmbnqRWO K@_1_5ř3y'd6y|firH S* Zm(K%޶H{[OO]VN\8gK@LJ:M5༨ÇkaX;rAa\m* vpȇ(p?MojWp~ߋw= (lc1pr&}^Cazf#l nmM|vӣLݷ3cn؜)7/*+ꉫ +R Vt,#>ŠO;dք? }hjS,[[8"WPۆ06;Sjk㑭FL}$8քBET\O>h3='Mzl4xsp>Gf~HU[k?o(gM f͇ޞg_t|WSB xIw\LoFܭ?i}TPrA%]B|A㘆nF :5#٤‹:$ڦq6D~J|ֱN]m @ }ԆWߣ {S.uvP_jk 0($P-+Gudbm#hq )Қc'ᵽќ=OskHmcS%D͜&.WN9.P;kuf,YyM7U2͂' 79"$z.Ի.B,ǶsG^w>U5sH2tۇjϐV8 -f.VeyYoN 948  %pfiG8YlTSLR3ܽ7_t?DY/h?2=K'v鑋ry1e#m9'j1zl/K'3ϴzbEư"/\A .:pۜ.p>FnS8b?=+u$&)kM 42k`cglX8HIJcZ򣢇6ǫUȭ7UӮЇzgQw# Lڷ퇌 )Q)m8Uγ~LEP/>vY4%?A.nT/xu7gHϣ{y7xSHm+Z;WUĮendstream endobj 146 0 obj << /Filter /FlateDecode /Length 3389 >> stream xZێ}g`_^Hł"F .%r%[J PXS]ӧgvW_{BM&.I9Yo>)*-~X/'VP lҲ*U%\K;36lgB ͫ;t̩ jZ*Nf~b]]Ȕҡs}?H2)JiyH#za1fWLO~O]AopWWzƺ9x<6(W]c]mj;!4 aT4gC//(#r?$FU VLQg-<ת.0&aZi'wlui} ?QS '#RWتI+FRHɎPQ :F@.WJg]tZVp- lMFfYiY$gIq/*5GԴx_1+qҒRT@b|RtUy6 } v4~|69-`RVɛA)&eӦmm 3c=WY\"[QֹW3n`΁j1DXV~F6q.lV-q M[=yMycYtj[g0qJx*kfIwk1BZvBxp)aq;\n6ۇ/ow<08m4}vws`=p0odƍJq Ck 6xU+D§.ƈ#xnVLNۜ/0j|]c~MRkTߑTǀ*W9P>h|cMKZ6,Bp*Η/ 9\R9 HT4KwIk\iC -$`F_6؃m,#DɑQ"܍}[H {Ξ-o*P9[շ9V =HԃVڼ7b;gLv;Qb/u!'5Fh!"H0h~W@Y(EOW<Х2reؖmm TW4xR,$o$bMl/<[ iP?_؛ZNݍ|5A|n]3w FHRH-JJeq1*(q9sv Mj_W3aA+ŽO!䌓Ԙ2V^noߑ>Ph+1poM]Zj5jM1'S0Z!Kl`jƸoha| q+A9_ LH+^s9j-!j[h[ :!a(`xFDs\̮K` C5c+\2BĊ-8C 3o lpNܲdx :p"Ju^G žR(nxD۬`D"o3juw.{Jl\ͫΠ䅮RL/dg܏|X/M[^u*ap`q-pfƏ5w.K/)]*"5Avc S3u0QXx57nhuFQR?U&)llD~ 4t kt΄ \ 'jw%i8&Tp+9c&e!<:)dܞN\x<ٟbW;xg=3v3V T+NPlDJ :w|Łdp@+@7?g UQxӵFP%>Yۀ]dd6 l;iv8`oc2_*y}JM&:tK떡 AC̞~ zJ r%k6v,cp%z lݯ3?BB0Oi_M"g) ̹tȴ9x%69BNAI_/2@͵Ue$?J.a߮#\JD]"?6?)iޠ(,Z1"}(oL_)K̏2.h5\9o(iE?{7VMAnPloe$A8CP׿aYV͙Z)xcSt s,̈[ta/2PQ t}N 9ޱ kId@?Ԛ]oK7t]A~M~Yvu'MPfN2T ASO'2Kmv@Y@]Jc*lYjjkLO zY1fljnOQ%FOc(32޵}_LROXBpU3y00OoYvo(zrbd?BAj$]endstream endobj 147 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1597 >> stream xUTP޽]prv5r-*'*吢L(8Q#B bL:_9@9AE(Llh0 IgI;k2 »ɷ&~|~ҔJA44њ_b-εdFAZAK+RawkcZԪ+Z( B2JI;R2~m/,;S,9gņQ⡲֢@kf-(NεzHL,(w/CQ^TRYfɲͷC#6[jeR8j?Oj'D(ꠖS43‘R:LhIU+SuM L8˜fZS#rI_Ҏ/`Lr>7YݽurR.=O2:isq_Nuџ *aDрil `(]a 8V w(alھ-urnA# AA_#BRI89+O巖T8 1 gz*M:lL_~So^$h3澮Ch}Al<ڸK]?O[FO.@QrH c1Ics3oc]2(54[% E9$G,'`Xޗ|"9fKF{{BH3-|Qͨa?PlaX?M"n,Jx`̼}9wcHKEʦ8Xp,s}m8ݎkO Q` &?5 S9퍓-]B>tu6sS$%m%^$-\ _׆EdsF$_2%mGY=768=RΧݻvL&=z]Oe`CX@Kgq@#o ͞Ӥc * ֳG3" }Kc?=~}7Nw}n G d8~=O)`\:G75u~V[PSȃ/mE%(%NisqnA =!ڈ YMEh5 ?6y?y,mGb艉+ 3طq-iw}L_8݆=RMV` |M=ֶEs#oSfBq6_ ڞ'ۄOIϾ_R7o0' ݻwƘ@h<+ϼ ҹ*w/o6];m<:FS]sNKNKz݃f^1wYI ?x]vE5FZ=7f~8z`5=;0;H~LS\}5,5pD0)@vyRvO`@˾>>{?uStFj|rnjyj񲯶͑2l࠴?!YdMqnD Rp4ԫc ?tթjDsendstream endobj 148 0 obj << /Filter /FlateDecode /Length 4271 >> stream x[[o[~W# Mx ЦH[ hmE䁒h E*/ZIE{fg3ߎ_/ysg\.gbT~-83ʎՆ,nΜ0lϞyfGF)`Uq܏FUZXEyQ ~d?-2WλjT<Fe s Bܙ<0Fabb:]`G0χ:8WN +gRQ1!0iA+v:_~^)9lpw^M蒛%DJ4㆞a"mLjxt{+X{U&_J'-l "kAIw8kS\iXiƤ.q3\djXXaM6j0^-% 콩{qj \'Da$ EVRҀсApPE::ڜ woEi-r^q>zy\E |I3T\V];t BV8/*Zɘ;?g %&.QfAsҁ眎}(w.<*>, [$5,v 5z DD`lUMᔯʢqfx2s}a ESā/[iV_&Sf&5;t@pDDTD"!PMqe':@/{G#u~gV~MQ;= = 9"[c8)L4]G9u\/4Uۂ d?QTh'a!{087y Eɿ6HcFSiT_ϦTl>+Rp4X 8'%WnSr ] /Ht$t#ř$GR¥Pg|d z?wk̨aKz`d;Ca.10LR#a)5u g)bl:8mt(4'EC|C~D.lsPZ܋KQx 4+Dz(MH2 u!先acbX &x6x ':b \5HW(Lz1Rp2.3!ɑk8Rdpf\^IHư_N\3-mJE|nв\`jy+}@u! 'S1,Su95P}]eg! yx}\j 4db(d+--x~MQhΧU6q\ۄ8$,Q|W`=CBws,u72ٽSn,z1qTYbetUs+7=Ӂ KƫAdv^ I?aXo++FD_>DC$:tIWcq05ax +׳ao:^}yc,:^M a2z^FWedoAevXPF7Q]@١#ŋ2z!xɰu!S5~茈o:G;o;uo.mg6mhYd|a\FF.P%Uyϊ)+~}{;}s A\lOIU=u^ݭjK!Ka4L &b>,\#0 ŗvjwz~MY(.ַw俇hpǮuٵ?pw }\ __am6ʩ!{y9ff jWـbb>l.6WW!}t;۩s >Zd̀_ѫ2ڕU7ښpMkoϝȘQHO5S)$dJ̈́88<H$c֛[k`3Z1)>ԻS?mrUM\XE3.mW~Q]7^G+Z4ZZl&qQO\Xalk /EW@C0/'k :?<ԜkDi 5ND; ,7=֐% lm.a^&o6R+,!)p$J$7S2VbfUl  vqϸYFN0҈fWO9XR>Vp¾!hG25洚m(ǚekEP( ׎1םI\o0JB jRA&r+E я2JE PJvPJ+,EPJT^"KzGw9YraV,Ϙ)9xX08nG 0ۘ' ӈu?d6L_3w]R8yd^CLﻄx78 1!ՋQ4ǛӶdi,_drQxip}|Cz.( Ąu. l=oeκa.O4tDUH"DhD销c oP3&O2i>s5}C+ic'w)G5x;ΛHV48=$#J-уBzmg= L׾'_W~. $+\G>ݿL$_iPI[BYda`z`~e%'Sr?Җ$ĥijLͷAT8*YAehΒ6aMV S NHvqx($@p% %i7^)&eev*\r˳GݴbnCEi5~`2yeEfѩ\1u)7{yX>L 6kK+)g`]$[Y IH͸Q2$g:զ:Ʒ/3[U0ԉ~'%}׽ {I݋%H {oq[өI:?xk ^&Vh,(Fhh Ì?Pږ rݚf&gmFpEmpŻ#O:ؘz`Rsyߪ=2ߕCLSޕ;qo˾)uԀ >v^im,Em18̘:K;tNꃵu&|@6'nGk8DNO7BrrgSL=㬼a@\k{٦#b7erU'{;"_OCXБcU5Q&UͺaOuNB%tEҗeC iWGLUAzxˮ;|'БO-^!k6˗) x b8.iHR {"K3%T/.ymB㈨?`}_bVTRN) JY6yCYYYq'fd =Snn_ a(=¬WpJ^s&?k6KҲ!GHv~_Dendstream endobj 149 0 obj << /Filter /FlateDecode /Length 4064 >> stream x[Yo%u~g}C_[Ծ q-%6 E08$g$owj=շ{V|`sOU|UN_vu/J{qfw?9)g+['vWG>9F?YU9:v'ϏN @{ghb#wr~'_탚ct< ǽ љ T!68U࢙$~dɄӓoiP)TT>}R;}7RN%aJW,$v=fL? "=6ij6o.VN#2}}Fq60OVN::oa; ' \]ա}޴Q^ѫ6YQC_ m_;St,Y#)zĸf趍.WD{1b_ Z_۰\1[nW4zɍGQg26?wC}jmŚAVeuѾ(pޞ6~qrg&eBJ0(Ƣ55@YQXPjnv. Oŷ9IOd#b!a|_{[% Qy)WBҹ R~Jy2'E C7F^u*90(+lc#DV%9…GJa\FϹqyT(5p5 m"j΅*q-\ 𡯆!4(Wm'{N4>Y=(zJP+@J!>=E/5w".?i]j NG;B^{V|l=풾~iå1X8`6Sz9E=Y-چI 6-+w-H=#_H~.m_-\>3(iyB٩ruJOv#(M_Q B.էȁcmhÒ񓕼T[ FV8QXP#j=T(G3+˙ 3E'TL˜~v# K pDJQ/I(pjnNjK 鉏L||U7lPFKecf}`&nJdû-)}SFsW}G-.'[(W4q*e,.8W \(QsLynIGY?ř e*:3.f/5-eGK Ż%8Q@ƬeJ޴"qj4@H1,2]>CƻE c4,Kh(S!`O{cAM:b~gG(qgQЅJ]jz3LAt0 U3t趤, ?<[ 򶂶m(o#j{԰{tn'Zw]R|?|#^M[+&h#A'sY>niuX:Pz#FRڬ7&n;Ƚ B>ҵ6)rMlYQvv螀QFwGԽOw|KxAXtۡڏ4AN~mک%rk m{C ~GuHY̒t/RtxQA/ċ~~~/ǒDrFKoA}5-z)E o޼lLzyԘiL=f*EHuHY̒`%!eeXM!<0bF?6e+ۣ90 i \)r!+3i9Sp&Cl`*de 4+3"z` 0QvxL7h&Nѥ/0<![kyTP UfPT,]tnd*]]CRlUrU-Ё5 U G洑JE'tt _ R(dyfq8&*sI kϹ*sQAJ\ Yï2+> r gkVBa7?F c*#2pQN+~S)WT~Hb\2\"e!R#/awr,^]6IԩOsFm_R.l^:,i zż=+0od(<9}c>q">qе:wIvXO A#t؂1)ELE->=ή|m< Ja-#Wp.祾8)sYT>;Pp>LO-Y]>no+F> h{|(и{`دpK5kKT3׋.&ּKtg%t/bVW9^$lSMwM驔is5? #tK7*~(5^-ʃƨ@=bx QxFѣz:O3)jrQzzO}jj{Lbī@ZV.Nrfigm* xPo_X3`+;d2"+*c|RFl.)lGbspL̗7Y}٣Uwڋ7pWd^FK 1udE=+%O> LjVRVRn2ܦR `5.#f+Lgf E^͠./ylVj3 $l0j/z ibIQɗhl-mE y)-rm+ .-}l2n+JRX샆S36f.!J8ЈPHM%8$ )E{"#,F5Nw6XxZ}7+9Ґ~pA@n:{ƀjs"|Gopu3=EiAq~? byͦW[枯1RY#^E)tQƤAgK=a>pej,#ʢE|9ޣT28o!W'y@ɔ3Nh/`36uv ;=AtYĢ;V(j2vl43H,:DsեcϨ-:[A= X mz]N 1U00_*6KS7En3ܺoڎR ET00ʝW-$:iSa\k\I;Xas6N\,Y287, YuDl6z3=YywvZcoFbofCK}W+ۏ__}}2F}ᯊ~/dendstream endobj 150 0 obj << /Filter /FlateDecode /Length 161 >> stream x]O10 D 0Um?eB:gm_Xց$i, x> stream xZko\͏X()Z'-TE]+i-އ {I*l`yy;LL9'!|7L ~71+Kljr4 1Y͙v̚Heֺ"7jTqyV>xLTިu3mCy.j QhhN^JONDt4uN~XN_MThŜcfzoͼd!hhA-کh6WJ1+d}<2t?|Gު J([)aAH67Kebv?+^ \(+Uw6`uVHEDz aY/g3Cgߑk}ӋQm j1z ˏj=Ͱw#tO#Gauq%A1VbL`yP'=XEqjܬo-7!_y՚E8"\$C㰈l;* 93"-Tx^dksn$febn:M:ʏB/VovCn܃`T8mb65)g: _H~?"pQ#jz6b~Eo|l~qi#~G2W}ͤ:P,=SHiydڼXjYP+ 9v4Bqo j^L)RѨquµwc# \ɔ6@yR5 PBG{qכ)=HŸJ6; !¸ؙP_7w1C6vUГM+&YtYyy/{b*oƚhdKjZ2!u~'kaZnZq*g%#ۣ;4Ѱ>hx`RgaJ!r-H>)"fz|;z[>}7K-V7~{jt3As l\wz@"ʙ)4Bq*nEy@=ZgqmxJ{_ඬ|D:"ySbfěNtWT_#Tϔ(hz~* ^=IͯQK8U%NV|#;տ:5he+2΢ Ûg:Aeߗ[|t, ${:av0L) ^pQ8&R_SY'}m'Yy1U22/Fz)0P j= 2EO B Qms*K~Zݡ5Ms3myaqX`@״iǖN44Bb&9·GkJs}2Hz VE񅢄yVx0ytף sKb{w&8}5yZ֓ {$Z8:m%HFoصXT;kBB3 2᫧mrlG!->ɑLI47_V]T> stream xZo~q(`m~HEЦ@QtCK̐\rxr . yp8gw|/L|0w6pk.V;3LgSyb=y9q5RQqF*-"TyRIzȆZ+#/(󮷺H~St2PjPyQ&^LNxP4LYZaדn>\b3鸘-~Qv쇙ٜ1?XFu0+% Y{gT8@;& /m9W>n$Zy2^^n)~6^nkn8yuNta[!b]- $e!{Bϸ ~B*fk{ʹrk*kլl($kew[pqNKAQX-YY3Ϻ\!lTxҭw ekY{-,a{nMj6l2y;Tu{\Y ,(.A8 ݏcqeNރqc̓EM$wMᙠJ(htX0Zי~B4p2m.L٨HdsfqK%>ɪ|78v>CD >ączOSDZ(r(6H!5終E1Abh9cPw1U(%RPǮK QPXI喪2y1Bцh0}6LBa]hl#"#9.A8k|~$hY)CfB(xxBu;?@@4$Cp 6/x r%EñSQIqE2na: pEQ dąx55A,5/1!n ;!CPQr61:}:F-(왲-xGhȣ}oݛrdg==S>/q%kmWlI+r&ӱpͣ]Q!>s-@Fȸ +Е0AlC1pIaw9zhphBe]CAs a1 GzldN&<4FE!R#_DJ&>8  =Д dQ{B'(9JZSF.XlL&l/Dmle@c*oZFOUq2u;DJad8 \@((+!ո|@F-BN@rb:s{譱%zT8a)-uH umRӮF[$SyߖI",Dx )F|`?>VR ܆2MAI}ɬl"%vT`GEզ]?JFm(eO 46^N%z!Uu%&Qws24 /*U\@h  ^!8QPݑT % b tZ K-BӅV%;nP;\>E`<*Ż2kPqDBOU:wZP02*vЁwʻ묣)i|D"+D9ӱx4C:5 bU^1N fFBz6-wV߲yuqJ`x`^а͞ޱIc/>~1&J9endstream endobj 153 0 obj << /Type /XRef /Length 171 /Filter /FlateDecode /DecodeParms << /Columns 5 /Predictor 12 >> /W [ 1 3 1 ] /Info 3 0 R /Root 2 0 R /Size 154 /ID [] >> stream xcb&F~0 $8JRxf; ţ!L0eP2o|! (x"H٫ R<,DJH";DO 6adK"B`3 l. DJ*IF;`g`' R@+lr;ش R'XV W kXV endstream endobj startxref 94383 %%EOF HSAUR3/inst/doc/Ch_analysis_of_variance.Rnw0000644000176200001440000004721313302740166020233 0ustar liggesusers \documentclass{chapman} %%% copy Sweave.sty definitions %%% keeps `sweave' from adding `\usepackage{Sweave}': DO NOT REMOVE %\usepackage{Sweave} \RequirePackage[T1]{fontenc} \RequirePackage{graphicx,ae,fancyvrb} \IfFileExists{upquote.sty}{\RequirePackage{upquote}}{} \usepackage{relsize} \DefineVerbatimEnvironment{Sinput}{Verbatim}{} \DefineVerbatimEnvironment{Soutput}{Verbatim}{fontfamily=courier, fontshape=it, fontsize=\relsize{-1}} \DefineVerbatimEnvironment{Scode}{Verbatim}{} \newenvironment{Schunk}{}{} %%% environment for raw output \newcommand{\SchunkRaw}{\renewenvironment{Schunk}{}{} \DefineVerbatimEnvironment{Soutput}{Verbatim}{fontfamily=courier, fontshape=it, fontsize=\small} \rawSinput } %%% environment for labeled output \newcommand{\nextcaption}{} \newcommand{\SchunkLabel}{ \renewenvironment{Schunk}{\begin{figure}[ht] }{\caption{\nextcaption} \end{figure} } \DefineVerbatimEnvironment{Sinput}{Verbatim}{frame = topline} \DefineVerbatimEnvironment{Soutput}{Verbatim}{frame = bottomline, samepage = true, fontfamily=courier, fontshape=it, fontsize=\relsize{-1}} } %%% S code with line numbers \DefineVerbatimEnvironment{Sinput} {Verbatim} { %% numbers=left } \newcommand{\numberSinput}{ \DefineVerbatimEnvironment{Sinput}{Verbatim}{numbers=left} } \newcommand{\rawSinput}{ \DefineVerbatimEnvironment{Sinput}{Verbatim}{} } %%% R / System symbols \newcommand{\R}{\textsf{R}} \newcommand{\rR}{{R}} \renewcommand{\S}{\textsf{S}} \newcommand{\SPLUS}{\textsf{S-PLUS}} \newcommand{\rSPLUS}{{S-PLUS}} \newcommand{\SPSS}{\textsf{SPSS}} \newcommand{\EXCEL}{\textsf{Excel}} \newcommand{\ACCESS}{\textsf{Access}} \newcommand{\SQL}{\textsf{SQL}} %%\newcommand{\Rpackage}[1]{\hbox{\rm\textit{#1}}} %%\newcommand{\Robject}[1]{\hbox{\rm\texttt{#1}}} %%\newcommand{\Rclass}[1]{\hbox{\rm\textit{#1}}} %%\newcommand{\Rcmd}[1]{\hbox{\rm\texttt{#1}}} \newcommand{\Rpackage}[1]{\index{#1 package@{\fontseries{b}\selectfont #1} package} {\fontseries{b}\selectfont #1}} \newcommand{\rpackage}[1]{{\fontseries{b}\selectfont #1}} \newcommand{\Robject}[1]{\texttt{#1}} \newcommand{\Rclass}[1]{\index{#1 class@\textit{#1} class}\textit{#1}} \newcommand{\Rcmd}[1]{\index{#1 function@\texttt{#1} function}\texttt{#1}} \newcommand{\Roperator}[1]{\texttt{#1}} \newcommand{\Rarg}[1]{\texttt{#1}} \newcommand{\Rlevel}[1]{\texttt{#1}} %%% other symbols \newcommand{\file}[1]{\hbox{\rm\texttt{#1}}} %%\newcommand{\stress}[1]{\index{#1}\textit{#1}} \newcommand{\stress}[1]{\textit{#1}} \newcommand{\booktitle}[1]{\textit{#1}} %%' %%% Math symbols \usepackage{amstext} \usepackage{amsmath} \newcommand{\E}{\mathsf{E}} \newcommand{\Var}{\mathsf{Var}} \newcommand{\Cov}{\mathsf{Cov}} \newcommand{\Cor}{\mathsf{Cor}} \newcommand{\x}{\mathbf{x}} \newcommand{\y}{\mathbf{y}} \renewcommand{\a}{\mathbf{a}} \newcommand{\W}{\mathbf{W}} \newcommand{\C}{\mathbf{C}} \renewcommand{\H}{\mathbf{H}} \newcommand{\X}{\mathbf{X}} \newcommand{\B}{\mathbf{B}} \newcommand{\V}{\mathbf{V}} \newcommand{\I}{\mathbf{I}} \newcommand{\D}{\mathbf{D}} \newcommand{\bS}{\mathbf{S}} \newcommand{\N}{\mathcal{N}} \renewcommand{\L}{L} \renewcommand{\P}{\mathsf{P}} \newcommand{\K}{\mathbf{K}} \newcommand{\m}{\mathbf{m}} \newcommand{\argmin}{\operatorname{argmin}\displaylimits} \newcommand{\argmax}{\operatorname{argmax}\displaylimits} \newcommand{\bx}{\mathbf{x}} \newcommand{\bbeta}{\mathbf{\beta}} %%% links \usepackage{hyperref} \hypersetup{% pdftitle = {A Handbook of Statistical Analyses Using R (3rd Edition)}, pdfsubject = {Book}, pdfauthor = {Torsten Hothorn and Brian S. Everitt}, colorlinks = {black}, linkcolor = {black}, citecolor = {black}, urlcolor = {black}, hyperindex = {true}, linktocpage = {true}, } %%% captions & tables %% : conflics with figure definition in chapman.cls %%\usepackage[format=hang,margin=10pt,labelfont=bf]{caption} %% \usepackage{longtable} \usepackage[figuresright]{rotating} %%% R symbol in chapter 1 \usepackage{wrapfig} %%% Bibliography \usepackage[round,comma]{natbib} \renewcommand{\refname}{References \addcontentsline{toc}{chapter}{References}} \citeindexfalse %%% texi2dvi complains that \newblock is undefined, hm... \def\newblock{\hskip .11em plus .33em minus .07em} %%% Example sections \newcounter{exercise}[chapter] \setcounter{exercise}{0} \newcommand{\exercise}{\stepcounter{exercise} \item{Ex.~\arabic{chapter}.\arabic{exercise} }} %% URLs \newcommand{\curl}[1]{\begin{center} \url{#1} \end{center}} %%% for manual corrections %\renewcommand{\baselinestretch}{2} %%% plot sizes \setkeys{Gin}{width=0.95\textwidth} %%% color \usepackage{color} %%% hyphenations \hyphenation{drop-out} \hyphenation{mar-gi-nal} %%% new bidirectional quotes need \usepackage[utf8]{inputenc} %\usepackage{setspace} \definecolor{sidebox_todo}{rgb}{1,1,0.2} \newcommand{\todo}[1]{ \hspace{0pt}% \marginpar{% \fcolorbox{black}{sidebox_todo}{% \parbox{\marginparwidth} { \raggedright\sffamily\footnotesize{TODO: #1}% } }% } } \begin{document} %% Title page \title{A Handbook of Statistical Analyses Using \R{} --- 3rd Edition} \author{Torsten Hothorn and Brian S. Everitt} \maketitle %%\VignetteIndexEntry{Chapter Analysis of Variance} %%\VignetteDepends{wordcloud} \setcounter{chapter}{4} \SweaveOpts{prefix.string=figures/HSAUR,eps=FALSE,keep.source=TRUE} <>= rm(list = ls()) s <- search()[-1] s <- s[-match(c("package:base", "package:stats", "package:graphics", "package:grDevices", "package:utils", "package:datasets", "package:methods", "Autoloads"), s)] if (length(s) > 0) sapply(s, detach, character.only = TRUE) if (!file.exists("tables")) dir.create("tables") if (!file.exists("figures")) dir.create("figures") set.seed(290875) options(prompt = "R> ", continue = "+ ", width = 63, # digits = 4, show.signif.stars = FALSE, SweaveHooks = list(leftpar = function() par(mai = par("mai") * c(1, 1.05, 1, 1)), bigleftpar = function() par(mai = par("mai") * c(1, 1.7, 1, 1)))) HSAURpkg <- require("HSAUR3") if (!HSAURpkg) stop("cannot load package ", sQuote("HSAUR3")) rm(HSAURpkg) ### hm, R-2.4.0 --vanilla seems to need this a <- Sys.setlocale("LC_ALL", "C") ### book <- TRUE refs <- cbind(c("AItR", "DAGD", "SI", "CI", "ANOVA", "MLR", "GLM", "DE", "RP", "GAM", "SA", "ALDI", "ALDII", "SIMC", "MA", "PCA", "MDS", "CA"), 1:18) ch <- function(x) { ch <- refs[which(refs[,1] == x),] if (book) { return(paste("Chapter~\\\\ref{", ch[1], "}", sep = "")) } else { return(paste("Chapter~", ch[2], sep = "")) } } if (file.exists("deparse.R")) source("deparse.R") setHook(packageEvent("lattice", "attach"), function(...) { lattice.options(default.theme = function() standard.theme("pdf", color = FALSE)) }) @ \pagestyle{headings} <>= book <- FALSE @ <>= library("wordcloud") @ \chapter[Analysis of Variance]{Analysis of Variance: Weight Gain, Foster Feeding in Rats, Water Hardness, and Male Egyptian Skulls \label{ANOVA}} \section{Introduction} \section{Analysis of Variance} \section{Analysis Using \R{}} \subsection{Weight Gain in Rats \label{ANOVA:rats}} Before applying analysis of variance to the data in Table~\ref{ANOVA-weightgain-tab} we should try to summarize the main features of the data by calculating means and standard deviations and by producing some hopefully informative graphs. The data is available in the \Rclass{data.frame} \Robject{weightgain}. The following \R{} code produces the required summary statistics <>= data("weightgain", package = "HSAUR3") tapply(weightgain$weightgain, list(weightgain$source, weightgain$type), mean) tapply(weightgain$weightgain, list(weightgain$source, weightgain$type), sd) @ \begin{figure} \begin{center} <>= plot.design(weightgain) @ \caption{Plot of mean weight gain for each level of the two factors. \label{ANOVA-weightgain-fig}} \end{center} \end{figure} To apply analysis of variance to the data we can use the \Rcmd{aov} function in \R{} and then the \Rcmd{summary} method to give us the usual analysis of variance table. The model \Rclass{formula} specifies a two-way layout with interaction terms, where the first factor is \Robject{source}, and the second factor is \Robject{type}. <>= wg_aov <- aov(weightgain ~ source * type, data = weightgain) @ \renewcommand{\nextcaption}{\R{} output of the ANOVA fit for the \Robject{weightgain} data. \label{ANOVA-weightgain-output}} \SchunkLabel <>= summary(wg_aov) @ \SchunkRaw \begin{figure} \begin{center} <>= interaction.plot(weightgain$type, weightgain$source, weightgain$weightgain) @ <>= interaction.plot(weightgain$type, weightgain$source, weightgain$weightgain, legend = FALSE) legend(1.5, 95, legend = levels(weightgain$source), title = "weightgain$source", lty = c(2,1), bty = "n") @ \caption{Interaction plot of type and source. \label{ANOVA-weightgain-fig2}} \end{center} \end{figure} The estimates of the intercept and the main and interaction effects can be extracted from the model fit by <>= coef(wg_aov) @ Note that the model was fitted with the restrictions $\gamma_1 = 0$ (corresponding to \Rlevel{Beef}) and $\beta_1 = 0$ (corresponding to \Rlevel{High}) because treatment contrasts were used as default as can be seen from <>= options("contrasts") @ Thus, the coefficient for \Robject{source} of $\Sexpr{coef(wg_aov)[2]}$ can be interpreted as an estimate of the difference $\gamma_2 - \gamma_1$. Alternatively, we can use the restriction $\sum_i \gamma_i = 0$ by <>= coef(aov(weightgain ~ source + type + source:type, data = weightgain, contrasts = list(source = contr.sum))) @ \subsection{Foster Feeding of Rats of Different Genotype} As in the previous subsection we will begin the analysis of the foster feeding data in Table~\ref{ANOVA-foster-tab} with a plot of the mean litter weight for the different genotypes of mother and litter (see Figure~\ref{ANOVA-foster-fig}). The data are in the \Rclass{data.frame} \Robject{foster} <>= data("foster", package = "HSAUR3") @ \begin{figure} \begin{center} <>= plot.design(foster) @ \caption{Plot of mean litter weight for each level of the two factors for the \Robject{foster} data. \label{ANOVA-foster-fig}} \end{center} \end{figure} We can derive the two analyses of variance tables for the foster feeding example by applying the \R{} code <>= summary(aov(weight ~ litgen * motgen, data = foster)) @ to give <>= summary(aov(weight ~ litgen * motgen, data = foster)) @ and then the code <>= summary(aov(weight ~ motgen * litgen, data = foster)) @ to give <>= summary(aov(weight ~ motgen * litgen, data = foster)) @ There are (small) differences in the sum of squares for the two main effects and, consequently, in the associated $F$-tests and $p$-values. \index{F-tests@$F$-tests} This would not be true if in the previous example in Subsection~\ref{ANOVA:rats} we had used the code <>= summary(aov(weightgain ~ type * source, data = weightgain)) @ instead of the code which produced Figure~\ref{ANOVA-weightgain-output} (readers should confirm that this is the case). We can investigate the effect of genotype B on litter weight in more detail by the use of \stress{multiple comparison procedures} \index{Multiple comparison procedures|(} \citep[see][and \Sexpr{ch("SIMC")}]{HSAUR:Everitt1996}. Such procedures allow a comparison of all pairs of levels of a factor whilst maintaining the nominal significance level at its specified value and producing adjusted confidence intervals for mean differences. One such procedure is called \stress{Tukey honest significant differences} \index{Tukey honest significant differences} suggested by \cite{HSAUR:Tukey1953}; see \cite{HSAUR:HochbergTamhane1987} also. Here, we are interested in simultaneous confidence intervals for the weight differences between all four genotypes of the mother. First, an ANOVA model is fitted <>= foster_aov <- aov(weight ~ litgen * motgen, data = foster) @ which serves as the basis of the multiple comparisons, here with all pair-wise differences by <>= foster_hsd <- TukeyHSD(foster_aov, "motgen") foster_hsd @ A convenient \Rcmd{plot} method exists for this object and we can get a graphical representation of the multiple confidence intervals as shown in Figure~\ref{ANOVA-foster-mc}. It appears that there is only evidence for a difference in the B and J genotypes. Note that the particular method implemented in \Rcmd{TukeyHSD} is applicable only to balanced and mildly unbalanced designs (which is the case here). Alternative approaches, applicable to unbalanced designs and more general research questions, will be introduced and discussed in \Sexpr{ch("SIMC")}. \begin{figure} \begin{center} <>= plot(foster_hsd) @ \caption{Graphical presentation of multiple comparison results for the \Robject{foster} feeding data. \label{ANOVA-foster-mc}} \end{center} \end{figure} \index{Multiple comparison procedures|)} \subsection{Water Hardness and Mortality} The water hardness and mortality data for $61$ large towns in England and Wales (see Table~2.3) was analyzed in \Sexpr{ch("SI")} and here we will extend the analysis by an assessment of the differences of both hardness and mortality in the North or South. The hypothesis that the two-dimensional mean-vector of water hardness and mortality is the same for cities in the North and the South can be tested by \stress{Hotelling-Lawley} test in a multivariate analysis of variance framework. The \R{} function \Rcmd{manova} can be used to fit such a model and the corresponding \Rcmd{summary} method performs the test specified by the \Rcmd{test} argument <>= data("water", package = "HSAUR3") summary(manova(cbind(hardness, mortality) ~ location, data = water), test = "Hotelling-Lawley") @ The \Rcmd{cbind} statement in the left-hand side of the formula indicates that a \stress{multivariate} response variable is to be modeled. \index{cbind function in formula@\texttt{cbind} function in \textit{formula}} The $p$-value associated with the \stress{Hotelling-Lawley} statistic is very small and there is strong evidence that the mean vectors of the two variables are not the same in the two regions. Looking at the sample means <>= tapply(water$hardness, water$location, mean) tapply(water$mortality, water$location, mean) @ we see large differences in the two regions both in water hardness and mortality, where low mortality is associated with hard water in the South and high mortality with soft water in the North (see Figure~\ref{SI-water-sp} also). \subsection{Male Egyptian Skulls} \index{Multivariate analysis of variance (MANOVA)|(} We can begin by looking at a table of mean values for the four measurements within each of the five epochs. The measurements are available in the \Rclass{data.frame} \Robject{skulls} and we can compute the means over all epochs by <>= data("skulls", package = "HSAUR3") means <- aggregate(skulls[,c("mb", "bh", "bl", "nh")], list(epoch = skulls$epoch), mean) means @ It may also be useful to look at these means graphically and this could be done in a variety of ways. Here we construct a scatterplot matrix of the means using the code attached to Figure~\ref{ANOVA-skulls-fig}. %% %% now uses wordcloud::textplot but xlim/ylim needs to be increased %% \begin{figure} \begin{center} <>= pairs(means[,-1], panel = function(x, y) { textplot(x, y, levels(skulls$epoch), new = FALSE, cex = 0.8) }) @ \caption{Scatterplot matrix of epoch means for Egyptian \Robject{skulls} data. \label{ANOVA-skulls-fig}} \end{center} \end{figure} There appear to be quite large differences between the epoch means, at least on some of the four measurements. We can now test for a difference more formally by using MANOVA with the following \R{} code to apply each of the four possible test criteria mentioned earlier; <>= skulls_manova <- manova(cbind(mb, bh, bl, nh) ~ epoch, data = skulls) summary(skulls_manova, test = "Pillai") summary(skulls_manova, test = "Wilks") summary(skulls_manova, test = "Hotelling-Lawley") summary(skulls_manova, test = "Roy") @ The $p$-value associated with each four test criteria is very small and there is strong evidence that the skull measurements differ between the five epochs. We might now move on to investigate which epochs differ and on which variables. We can look at the univariate $F$-tests \index{F-tests@$F$-tests} for each of the four variables by using the code <>= summary.aov(skulls_manova) @ We see that the results for the maximum breadths (\Robject{mb}) and basialiveolar length (\Robject{bl}) are highly significant, with those for the other two variables, in particular for nasal heights (\Robject{nh}), suggesting little evidence of a difference. To look at the pairwise multivariate tests (any of the four test criteria are equivalent in the case of a one-way layout with two levels only) we can use the \Rcmd{summary} method and \Rcmd{manova} function as follows: <>= summary(manova(cbind(mb, bh, bl, nh) ~ epoch, data = skulls, subset = epoch %in% c("c4000BC", "c3300BC"))) summary(manova(cbind(mb, bh, bl, nh) ~ epoch, data = skulls, subset = epoch %in% c("c4000BC", "c1850BC"))) summary(manova(cbind(mb, bh, bl, nh) ~ epoch, data = skulls, subset = epoch %in% c("c4000BC", "c200BC"))) summary(manova(cbind(mb, bh, bl, nh) ~ epoch, data = skulls, subset = epoch %in% c("c4000BC", "cAD150"))) @ To keep the overall significance level for the set of all pairwise multivariate tests under some control (and still maintain a reasonable power), \cite{HSAUR:Stevens2001} recommends setting the nominal level $\alpha = 0.15$ and carrying out each test at the $\alpha / m$ level where $m$ is the number of tests performed. The results of the four pairwise tests suggest that as the epochs become further separated in time the four skull measurements become increasingly distinct. \index{Multivariate analysis of variance (MANOVA)|)} \bibliographystyle{LaTeXBibTeX/refstyle} \bibliography{LaTeXBibTeX/HSAUR} \end{document} HSAUR3/inst/doc/Ch_multidimensional_scaling.pdf0000644000176200001440000016734613303046021021134 0ustar liggesusers%PDF-1.5 % 1 0 obj << /Type /ObjStm /Length 3982 /Filter /FlateDecode /N 81 /First 659 >> stream x[Ys8~_Ijj؉83gwdED__xf@C&d2ŤQL3 -BE0ǜ Y Ւt%) ՖN4 UzB+pc3hq0)L7K>Ġ$NBͤ! qLFt1Y0Z"”Ŝ0dDDi-'5."b[0 4U0%0Y0qI0P` fGQ28#O>yӘ` X#B D g0!Qp W@L" f AbkCއ!`HH wAAHD{,Ka` A(" ZA-( $r81 N!j 8-D1؈ +e@Qp(d6&3l,tӟLqow1{h?O{;&]gr vM3L& v6beeq2dI؟d1{+8c*g$Oe;{<9?/Ivnr_fo_lŞd"{Lgi /O˛t.cnDhpw<س4$;Ą.qW,VY2b2ޯ5gr9cKFd0?) l>_8r X,Ҍ<Âl.0'3.( 7D,_AAࣝH '%ڗprKbLL_LgqdF@i*ZrIUnE2v>_#b2/9!'HTv?B ɏ,%byBg:$]u{ȑY=)F_"I3ҘYФߚ-. !}FTFR3RSj`jGhL {2&]<Ͳ:.[oz+ob!?ػxg~3-E*w3YA~Šj6,~]|yP!dݐk8$QȠyspt(ꇕm^n?l?jߠM$3Qh'} VE-&7^TG_zMCWpDwqr}SW$g|=~'K>t.hc2^o鬰 L:]%~ TC15;h|hUej產].| 0TR4 {6ٝ.:w>NB W3 \ ,#7甐9iEFqf!n3Qk9Nazt܁6gpuG' QLԌj$ ;.F*ڨfTGbt=*D#M@"J@a@i =tW\cM(hjF`9JNhT}&3T`L !=Sй;GUhb8ؠev#!r\%FޏOQ13~] 1G;e,M B1=I9v>$(wS9@xh hR꺟@#3rkĊuNGun}݃ ^G͏zG8`(F0po_}pp&^f"HhWY^ZzR$6{\şAj|K 3¿o2m`-_k!H *ҴECyD34R>4Ս_!"ֵ+iR \J+GQ?H&cO}>tSp~ R%@hJQPw&WBX(b=UG6v:ֽn V>p{݋{H+uKǺFuOwb],o1ah5㽣]??RLmz'"QN_Ez;W)8ǝϥ kRCVK:4IrE9zLc})Tge7dIN?ɜrP{dx/tzE0\{?&\zr uݺkˮmb69ϦPAo eVMnt $VJ@-z5O)AC)M͍#(ǃWGt{ԑl;j,'F'IbPlK2vszpjX Pk<6Mpd?@760CcWLJGw鮧 @DlPF@p& W .VO= x#7~"9.Kc{ zGp\{eH!%="#s,ji\j#d=8U%Kk=4r7NUd<MSP{ g%(~ZQvL] iʲd2*˚6eKӊߘ!e#/64a$G$ťPІhAU`FNPR\vҧUM S0SmfĻ7/~>caUOj )qf-S0RrTF?Q`gOMڹ'n7=SGn;~:gLl5!Z#_)2JyN>bѧ=\9Y2YŖMvփ1nµaWw8{ .Bvs΅Our]o#W 'wWq9L~ smփXN. {|V{5m䬒Zmh}b- T<1h¸C&^Jzl=y-;D yK7;dYx8ht`-^ .}:'sڒ~z+7 #?]1*ڔuhM;AOԛ DhhZ~ZiڸS.WGWm}2Ń*v0yK:٭. FNރ84%劲rt鵌4(<Z)~?vONPl-fj6v[0%Mrq~X3 ѷR" l+u';d?co _O4ʹ'5^+aZO\qIwݱ 1 $[ g7Yv+_|j~M'~㝳3ş# mF"VLY7:u w:СɤiXS̈dx֖;(#kmHDJ9ЛQE{J&a12!̊3Sg``ȟ҉V75`Okck"4]DM-o-3_ۖjwݣgUV毡Ml>?"?=r&|b";/'? endstream endobj 83 0 obj << /Subtype /XML /Type /Metadata /Length 1653 >> stream GPL Ghostscript 9.18 2018-05-28T10:48:07+02:00 2018-05-28T10:48:07+02:00 LaTeX with hyperref package A Handbook of Statistical Analyses Using R (3rd Edition)Torsten Hothorn and Brian S. EverittBook endstream endobj 84 0 obj << /Filter /FlateDecode /Length 3984 >> stream x[[~GLГb/V$! ){xmzm\$ŃFskوQnW}|{7W35yy&69sƏˍNmnςrܜ=<΄wFZT 2ΦSVcmءi1?ZZ_Co*0zː*'h\d8 $ǩ*ݙS6Ġ1L .a Mݡbsu͙Lߔnp NSnsY('y۝Q;>5<֣nPbIfBćmvڂ@p>DG?s DmV״obqil_Үi0QJ?D ?|L"`nyj[z}:o3J(L("L$I v)0FbѿQB9dw3^OZw&ٛsHߙ A1b 3er28y7%Og17#?&bu\¿LǍ]ӗޚ"ruAb0 9\KୠT}#[}>Edxr|orsZ.3<#t O5(\ Pi}׸UӔ÷yH9 g}B8@jX>S*&];~,J;|pJ/2| iب䤃Hd,cGP NtytxɌ GdziM"s:pB(5^Z"Z"~ 8&g=)M1p&]0C3AWcoꢮuꦮ. t9zi$b+)x)1&$רmU.Y) 05pB7Qp0v2 iyvӋ Yr@\wf#جHHshjzNQ\,n.!*+s&q,YL W;ѻ ϖ4?AgK9n1Ј5Χeɐ%,L&ӆn fgi5R4%3gUbL=)5sdoE4xYZRG !7s곺j꽺Ru1 wp_E-|\J[7#W+/DBX֦IlW7pֳvR굎PN*}uk2`ؼsꍬ }i T}j}z+ E1[JTd>V#{C?pʛJOQ{xY۳niA'G0uaZzWv)2j4N0OZ;[t?OTWq1Z.kvIm|F]`^W?G%,+xE|;H~xQTlvS@a흌%p-jc1^45K"a+ReERLr}&"Lz* +鞷`h)gSA|VLޙ]-/,,2-uÉ"j2:¬+$݇L+ie3%?}I74,tMC,4_MS\.7shxO&VwV' yW>x̏!b#<i9Ydzn駙k>%]Od{iˆ6^eU: kń?m LV3fUl.YL '/Ydž\L Ij(XЕ*՞O\V>*T1vlpf ϯO8VeISj6H@6fnA,XE5RV!d1H2W Ibt ET|W`6J(|-1Z 1_*e/dXFEml> stream xuSMoT1 W=4؉G*UT>NTt@Hx=h2kǓg=ݻWטËKt8sE_ c{'#ȓq 52Ls2֊j2J3u9vY~T~*QtfY"vk^FάiH꺁pGCJު%,{7ٜ",v燽{^r-f~A$>L:c OFGҌ0HڊP<'ͱUWgFQj`%*jx14A#*p+|Mf~8*4NI8_SU%HEjlGS*Z ]HP&Q?ܙqF0Miul+oki׿v(.̶ǎfCw f͈cg#aפ\ iTg h- xĨ> )bD.2r c59M|Q hycDPT%nH%Pgb,<Ӌd _lM W[ݿ;-e,]*.ssbd2le( _ܧ+~s%.봾ydN&mjB:quܦ8nb֍^?#&|endstream endobj 86 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 3345 >> stream xW TSw!P)V} *Vկ.*JŢTAqI" M ",InY}YТկskmiձce쨭tfm=9sNNwO޻'aDz,h8N+i}d6f;O)/aT"Nޞ-4^1idyLU1O(286l*Jᣊ T/ aIIoo?cFbbtUdmoMH U )Tۛ>=!>8V0ۢўۗ/OPl _.Y 3y2DƏyYLf1Of,eerffV2o0>f3蘗qtT=ܓ4MCjC?`,R%~-*C/d֡:q[weu=,wDlgA,rkV2袵\H.I);h.C#6!(=p+ViJY>B3 uSYrKL#$Ebu8,A)Jp3J!?$v>o z|/l+8Dg0kPP TºX6?2cEH۬ye_}7ݝ{8qBݙsZr\>Z~i'q<~,:fʰ=-+fI:a1:IzqL2gx23 g[?pjt Uȫ/Bm\ 4 Ww-&: l=.Qd7NIQd2u,lî H3ToUw.54?\UWC JE)ny`!O%O 4I˽4n7⿺rʟ].|V#,JmP@DG5,ﳰ;c`| -x #tx3Tt\on}*"ͫ[wZ{, Ϣ^0_L' =̒mFu=6KV\H';7?2$g9"|g`. >o'ʒɬ-D\?}qRʟnY>ʄJB G$gis7'L{^1nJE,)*?/:زuӏR }7Kn t,yifX"ܘ +s{Fx"u[|7سrRpz=Z7.!R1tHrۗϠvzǀ#qd~.Gr6ur;Zw i-ZJ%cWqfr'Sf)>]_Ix$F $]> x+}40YD P͉ ,?ޛn(Qe`*[V;WƲz#8LGP?HV~ȄL <жM6>Snf*4xMEdoӝ6?^UdW HBtFGuLXy 0(ʼ#01A]cMrU6|Ý '8++zmj<{&VqyVR|BEY@ 9Gh;CI~p txm^gH T4\i=J϶Lܰ$Җ/?Ȟ'E/PHp )Y|MAꈰর6sS@}=e%O#Nn˽RW򓪵_sdd}xA_wYZ}F[5 gR'e?POmNy"F[ЗC^ $eᗡRU PPŹ> stream xcd`ab`ddt v04qH3a!Skc7s7˚ﷄ ~O XX_PYQ`hii`d``ZXX('gT*hdX뗗%i(gd(((%*c8)槤1000103012ԽK2>}wy߯jcws~7yŞ>~nSg>;3wߛgO^-ym̾^];ǂXπ| wt\eXp~`:endstream endobj 88 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1925 >> stream xmTg*T:hQIQc*$*TI#BawD*/{YayGXvaAPUIi̩ibFHKP$1Dju9Q$)H2<5IQlUժ Q~HWjRUŒujQf`e!XOYLjT+ *}*YQ1*b*toHmdT[* '5,eJL X"'D"P _VMxf⿤+*Z:ZAE~RRD0J7P _@Ksr=^ly>Ow Iȃh^ôD6߅"C/Wߊzv~Q NtJ$?ܥNOiȑdߜgk$_qz,c[p9ܚ8Xg-WŨ]'ZK-e%`6s@quyi/цد/^h JHQzx~H{p/-#@Cns3"Z$7I9(@D[t0xi{p)(7߄^oXO%})="m2  6зEDcMnk 1Hsq9E*?.%=+HIg\RVd4\H,8{̜g@X-57)/h;^d4@+W6-_k+ *٩qZo$BGݔ4rr~%Tw%'%>ZӔn Os{j=W`=kv{RNZpl3Q><wsh>Z_k'q=1DKSx3,qoO`31Qsw NO BOB;ohrdHׄ"p桃MxW/ G^\VT(saJ`;)m*ʿ;:TLc Iѹ}Ecݝt_s}}h8Hn4ɵe5k3MY-G<ߨ*~k*93 y3,qbe;9p\PʽUpn\+Zƫy!(~(s 0k06`jMȢ]Ǔ䞂[9=s~oC,7_]N%#nkelIN{/t<ڛ4zX=vy]7뺅 5roq8FǨ58 >nTp*-Ns!0" A|= 'tM3Ha ڪ*m"4|@UJ=} 88ڍ.&ۨh=vu~Y.)(VWhaYóYaNߟ9|}|w8endstream endobj 89 0 obj << /Filter /FlateDecode /Length 150 >> stream xU;1 {'0q_N@ -ׇE٬W.,?慅:c8]  I1 7g`tBw2SZJffBPUR=uw$֓TS>HԖ!56w/RCendstream endobj 90 0 obj << /Filter /FlateDecode /Length 1232 >> stream xVn7}߯G.Ѽs&oZMERۈ;43Kj@9>Fg>^Y?^n30v1YMi%f8d9CTebvv>&<]3^]WĤs욚}OɓfM=-Ac/fU۵U 24ĆLsh 6aq:eaDigc u5vt1kkdM97d2ڙS`ilYQ-RјdH}vX%D_MjcS_$83Oˁ5nb Ȱ6(<.s"H'T|μa6K;P\=igjhZyBJAVu&UыBb B Ig-o9E֒!Í@b}a)y\Y*de 'Xv-UD3HC6]18YLSWJV}D9gUEX8ĕs:(0bZƪ(3[lm ؤ}*t-8drqVl6lE`~@Aϔ%vэ+k5hkгsrd Uez=#W7vnfT@nL{IY&P& ˘'DpQsb%hxG :ᥱ֔8>SIvtMsukF x"%]8Ջb7Y5@kH2N2!r@;4:W&[8ԵK tt 1\`n,A)G gсO$ʃ8'װ7 r"P|"8LT\ԈEĽzt'#U3a+3:e? .P= \&虌^Bկw,%Vdqg%ػ޷˞]jY2d4?.u\4YeEW8U^r`ulUz+Tt턽ZfӺof>=Pcs-uϟFffmuvfkQ?5ϛuܬV=t1|Y(4Lȅplvgzm:/_!% )@_endstream endobj 91 0 obj << /Filter /FlateDecode /Length 2969 >> stream xZn}߯yu<_'b˲ٱEA Ɛ\]zIJTLw 9+JX[[]uUl^Rvz+<_9){+U㭓}pGSWUA6k 2&)aRå3 @ki/vVj5~J9z"S*H!gJU3*M:Dsm%1`ն}t5ǯWnH 6׫֬YIDs|z~\"x^P¶NJh|5"TlXWzt2ψбl#df.w<}V} ="!}ϙO_|!ch}NFt7@`$L }=eYEJ~V*Ma uUMni.u UPB uYmvyUO % ӚA0Gkesbupw-9IW uR\'0~%Ć60OwE j)Jwae[YLc ? B !QYBeχ 5+ۏΩǘo?0n8]X}Ou5Cqa.~naqU{YR}a;x\c! vpi$}EQ!0菄U)LSNQJ^Jd=vÐǰ`uotR㪜Pwpڣ#XFcMeJLZ46(Ĝstߣc4.#+\ D ~ws{q i)Xv ϵԴjw56Lk^5jyDZ绵tvb'wuQ\ѓBJ'lg͖A]Κ6AJͰmہ|裐퍡Av 2EIX#Iޟnӛ!)0qb!}NV(1Q^ !Fp;T"'t?1Eo7&@ 1(L߽omuAc?H"Eޘ*g̅U9.44y/BZ(Ι_E\(`) L!M3v֨ ѡ7!$A+Ԉe" *{@rN!ҥ| ߿]#4\4ڸ@'= H,vZt_ PCCbKi3A8(|6w ;ia!LK{e+ \r8'QI/B!2i%ZU#H(r7@%]n*m֨@^3ɘ:F|P)zUof׏[7R2zGLfؕm|F 㕷\DQC(2VF'̃UE9~^HXK# ؋;u.&) :1ϸ NK-QS)pp{nyF_E>[%hT %v"7)8@ I,q7PpXcT|p y \z8)ԾP>IY4[-jwCE-uu[p׋ P҇=@BԶP=!MT{Ufa 8wW~zBZd*uV'P:GA{Tn^&Z7(l1_; |AqGITCC>uѧH$р@: xp2=Rvda_6HejI.:*F'+c6.U:vg]KLj0t|U>oեFN70UT5M[Ku4zo\.:ZĶO$B5I-NaŠ -t?z@tP0HۧVO^p5PR >g^JX"hDFu-TMr$җ)OM2&œ0sYᖺ/R<5[txx1w&$J9G!~XʍVGRp^ݬ63O@VrzfL% ts{yg%r,)uj)kɱSO%{'F~̩hBٲ1;T|lhÓ Cm^H՟e.G7z" oi݌Y;t>Een䵝b@WS)>Oͺ V`=]4jw2Y~rt.LǃIckEǢ[hwƒw\;KhN?TTQy]K> stream xyw\T*A&ؕh콋]7m ̬:0,DX5ۛ[4}o |W?0}^k=YϳG@Yh5',?z`DK#> s?)@878$:loHQvM0nvW6 n^n;`m^v#FD|6~|dd8qa>_k-nWWv/OAv+Lgwnp`4+nyWXEQsg 47d^ #Io_4}Yr^+W] :|Q}~2nIL֛>VRèUgpj5rFPk:jMmP9Xj5LͣQjH-S%j)5ZFMS SʆQ!TOH~ʚSQ,>5PЋGAYPj A{=EB lhyGRf|s~Ϫ^nDFߧd Y~'v7?Pkd1`Ѕ+4D3ꐟ?`>H7{()ya'WXu$m2ؔ|ef,ĂB=:c +4M`vepazSJQk$@KuFMKAUҸ$^ qYX*[Ju֨Euqꁞv"FM5Tw^$sgs׭pܿ|vA4C@S\_jN4* .e%oXul$Y9C{ Hrz:@1,R 6=m~f{,1Xx7@?M d+ &2e ߩ0;,f޸ _va$x0\i@QLh%h'] THH6nxx ؊x*]Izm[o.;O,{Íȸ)w.u ሲ]8Nuz+bx3l!?n.RF YN9T{+g&cKwlI\9'8=^\1 Ս"4qh$Zh")Î5AmspQzd޾USa`aJ͑!kVL@WvE>ZYf*" HRkiMc}<Lj!y-tx( 8'`xhҝZ'6ij%@Cz4F ѐlwWE(2LE]mS~?MG%aD,27(+B@",a`$<ݕVnysͽs#zXb$=6M 6kBvz2IƑ}}TNLP&|DW_PʉEqv$6:hs ΃oɢm4joFiG]GF Rݣ~n* cHV<'Ja_h}ė'ZRo\f {?Fq|UN`!9ZmHMWKK94% ~w4.!OWEx1wQAU-PNMɇR Sۥ(!!SLLUxոR=+EERA}h8ԐX G&qx,/ L6dJzOZ7tUkGk$zV-YJ۰'/ Nh"oi~ݱ`Wixvnh H;]_^ш2l@ ~懳hCD*@QG\K~O.\>ǝ [Ks2p@w/&Mu U&DUWx܎yOj Jn&_[q=EQy;7ى4ki'e"GmeԶv?7@1IG3`ˉNگ+.~@7*cdI\0+*+2l:jƶjp@DB͞{6majIu\V$nTW, -l0= ;ˑMmL2Ay{wCiŒ?AY:zUf*WsgR2>m@CΥCb\ i&t37l2xE l݇* M-mFX*U5fX+≚"_>fƋDx˰2 be,l'uȗ@j[ 6[VRnJcPWA-*+:@M·B66YX!FP>ٰGU@&1 0n[;ˢK]jD(OZUPƈEn:[RzEgSl4TE,rԹE{NϪZU]\=o8Oex3QYZ(!3ǒpGϙG@FlHQ:wA\A䣘@^IԿ4_"2*7]]^J讐LڶuehpH1b=٩R$|U6Xt94҅UPʙ .}Ib-E;6)q~xK!ҲtPTEEDJ[}m9yW YoTz鍦' b֣gU>BLhIdMUYq݅{c į{FG}rrv0\[ _?y*cdW_?cS1x[Ciɬ4@֗áZ7i$GtW\f"UG_ueQwW5k/ŷnWݝgBT8M`5aKghğۻHtPk:r^,:x3ѤJYLggUC['k֜=Pnpssn (! 6w<:lE@T ZQLg$NOQΧ6 jU&0Y*WY~Yk+p tΤ,Gstt&3ah].`^E"ʟ{J?h z=zHXIITʓ6G]DspH%Ҫ*y.^1\<5O@ 4MFĎ~B(}|}4l%+tĉh,Y|_sY?}~m!$r DEVU6{7?mPn'!6Uћ=@m(]d ꃨ:'yPbU C7;k^֜[º=s@2fSyEP/ʫ }&IJ @b[Pߎh;[_VZsdv6//8rZW{i|cjKYr Q{pYŠWUGTG{T {#ꗪ?Pzâ<* OB0E*hAgxy<Ew @e@i?iܶ`,:`n߮ɀx$&$ya=e}nsR"L}c}O|~~-'DNSQcw_iHh.P/']jPc}*pn=Ia{兞cgnuS N-yn D[M6+YJH|ֺL"6Kh?yGIÈT'%xbmk43zn19U*' Q3՚LZmQös>GyWC"߶/#)9EqO|)+_/9o,1/cymvsԥ)@5S]Dk_{D_8ʠZ"IfAe=@YzaǸR/*@S (!Q "m! jѾ+h1aƒ vXAIZ.t)&ooր(UFi U uWWg>mbRs54Dժjyb1ZhҤdyvtN#rD RC05qQʑAOfٹo/x{y~\? ,#\Pro2@E',N෪2?b$ѝ6x JSfZw L \hBݼ$Cn tSyJK_> RSg6Q3H}2n>0hkY7'??!6*VO-eD~؝4(l~^f !ND<K#f'8<r#4:VQpoצMjз'Q޺p~T?ٞnK̙oZ/_9a-+}9Cpy<qnur<_8rЗ^#˟$;E,ˌpcQ5Qmv S~}T8I߭<\y>$ˬ?m]N+۟U[l/&z.:#qaV1%Lu0ihgW9 f1xO' Vbp/X g0cV\}xw~#὆myi`+ѓ9cAoZފo:2&J7PWDu Yg3NN"R\$~w 1ʫ|CBCC5Vs\MVkp,<;%Dwq2KHRS k'FsP?4 ߈-Wqq,$3#=-O~͔jK݊,ܐkJo7;,:$ Lo< i9/ W# .!`4/Ѳ xᇳ3%"/ub[R qq/d)zvouM;#8w<bҊֶ{oI\:mv>)퇋=]NTUqKW8IrrTSnD4A= Q-Zɞ%ih:?`]Nʺ#]n"7X sB/Hì-3}v%҈\1dz*}/sp>X)}-[Oґ909Pt5/`@͆!W=4,$̖07Ğ]>Ÿm6^~a><2;8u+4qs[$x [a'9mqc^KUtoT cͧy37M_\b?+VE5he(%0eD22"Ҿz5d1%WŘBkvK$C'̕3tQ2]a'otbru$p6E*IL$U v2N, G! \\g+iL1`7R2b$@Vp{ٍaAލd:0r`lnQz GWٻ0Br0~?Own## ,Vii&e:4g[ (ꁑ<ס,S[\c}}8.7$דң Eztl$2qs"NIZ%4I|L6#-j>~kVt61?Y 5GcҒ1H4wC2F盼uB"1/Abw5r=|p}'A?4q TʷPCWT˗`PB 1 E։'s!xo  O 07?,: \7l$e l \(mR[f#*yr_ȯ5~B0_KqWj Xllߺ}\ot{ۭ5cF,WU'9H2i+[r3t"Gz]/SݧŲ>}):dendstream endobj 93 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 2916 >> stream xV TgɌNb*m>|*@ *H ᥈($KԊA<_֢nUSZVm;g9ݳ{Ifrf^3|#E fz NI  ѷ <ѓ\n,&=0r,>){Q4}tdA35]3sΜW<4hqPC.6@ 4S_2:cFJJghlg>r&% %ɺo|AVhN3eQ|$N .^hHz34-?By^3gfJ&Yͬa2/1 bƓa|ͼ3o1)f,¨q̳PL:s_1la?<|N~N(f\.waD̈oF5jƨ^ɤ'_\3wvYi3tS<&)[4ûptyȚ^dOh',S\$<+h /ã9Tυ}pAͨpUu'=ZzDo u,nu]j(K'u)f_n)U?c@a^3F %@\KnWD5TwO2V?&$rNhP {JmpLB!3,WSjԪ1yo['RLGe5']BpN.I_+ $1PZl:E FG9J_$UƿOgCZ!Qrā유 皪 x7OvI j7hKA2/ȱOE)*LB-*mԾA܈UJ"8.8b.ED!;ᔢ*+2 C@1;{ScѺcM6&Z 'ѬJ\l"{ȋᘴUg qq&N o< :xNYh{Ydl9֢=l%[bm˲wŢ&,V8[3-manY\?d15^[q㉕qAb\8J( T6B+~iÜ {'"\*d {/C.N؝f1g ˃S#j)>|aZ㧏zN}Ԏ$[άʄ$p#z-2děMfZ Т T'cllJfN,VSRJPn!K+*J%t$I zn$wn ]zⲟ*}_(Uu5_Y2dyKV*84ٌT}pSpY]&h)D8:mY_ɥ0*mEpػzcm/}$2g?:\ 99;?1ngLJۚmeǫ[ZkGZhk$ā@CK=bm[2QG|t6,ݸVn3 8}㊨?;eVsy9G*+7kMQв4I + 7U}L|qkxHaZ ˹E_9uiiXA&(Cy\YE:d4qyT+,^.7ЋDUu Z,Żekcp9A2!tsT͍QmeD(rƯvz,X^A4yBMee6nZWLh ~Cʒ]QȩަQ|('NG3z ߹RT '5Ȧ[`́@^sX Q> stream xcd`ab`dddw 641H3a!O/nn߷}O=J19(3=DA#YS\GR17(391O7$#57QOL-Tа())///K-/JQ(,PJ-N-*KMQp+QKMU8OB9)槤1000103012)ٽgf|;?̿ܥ;~3>,}} |g|Waq6;7<_s/wt\7Xp9|zaendstream endobj 95 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 5058 >> stream xX XSWھ1ps]QUP{ZU\Gu׊낻웄@IX$쫈q\jp3VSkmՙvN3 п[L\Β;=g82uby5DCm&SSTʉFMS;JjzMfRkG:ʁKQ󩏩#R)K(j(F R#eI)1BXj ;eAɩ  p٢rQz$]%'jec{:D2PaÆO0b+U#O|5ȨX/ZOit.`wc>c>Vn3Ff*a* @Pe">C (@큇wmT xMt|| D2PĽˡN^|,l ʡEUBm^Bv!>>5UPVK_FKlCw NFd+-6f[I+$P%pk ͥ: (xWzq ApXv@Խʼ˝'p/ցOx8CΎ7/ ό(4y!#3ţ 4 z=Ϯp/ׯߺ}mL+xb"`4)t-yBL\IMķYzh bu~j)jiCc?g+)Z`A3%4ˀn+Z˗.\{ik֯O8vB] <j"k4nWnOL*WLYvB7+Fc ;4͛ö<u&"dنm1oVXT=Ԁ\k&bH܅BX~P4ic~EHqwDu>\`Z f17NJO! ~w{4ӆ*)V颎/ܹA/p)iN`f~‡"/$'8~':A%;nWB)̀\ FMV =F{#>UVѥ]qd@>IT}c,RjP jAŻtwY3|8o 4sLYtcN~ e7Usx3M$bg5{տ&Z\ ۼ0"APh'I! 'mMC2([]e2Xy:jR7E&Źc.Q$;9B롖;ӤfmԬbCm~j)hƒbs#! 0l ENH2fTϖI> Lu)qQJC<~gdXWTg5i9ju)<-xM5}ګ_q&hhcL0^W 𧭏4of$a޵l@oJ_1eK^T3wH<ҽS4Za?BV2(pŞ!| J¢6,Z{(u2#GW[ݎ?"xr}wI+%6 jRyL9AtY"3L WaHxym2PǕDq6ou&i1d[HEJ4dʄ4GL\I) =ꡞRzy?8_Ni{Z* PpPWP8 G"'" xF W!S]EH7zyXK{Mm8q^,q;>@DZҤ- * .-n篣[Q[ 1;mZ;ʝsJ<\\\+ðM+Mϯ kD1t^:o>a1#~-ףZlϵΥz т m.D /Y×!D %?'1oh҈lȆYR&d;W2m!23:;=6dz KrJȧd̮}3O"t7M6XvcJg >*E d+.(hyIG lA5*R{jl|ՁZ`SWUY[Y\Gr%؄MQq Mf Nv@[564@CVM Me7 '"!pb8оqj? "r0Mfd'KA*gD:\h Ix(n4c"DGw#ٜkv0TGIkN1 5JǽĘ$yeADQ?AKGfK?_KuKBk+6P +dqx8E2@ BWQޓtc"ORIץ`A>9vA3[^Rx)w%KŇ'gHE.K/Ɲj$Z5'c|T$s=^QРU# hz J<(4lIqBAɱ'~D j/P1Pȡo{j\Yxs;|53MG!K-.җU&3-uy57;8o!pjG͞ʏӼ T\HӐ2D^wBOV'kSI|,zLצYf)K4^-J@FWsSpϭۼqKsZC2Aǔ$Pߜ盉O9sCmƥ :AM $VIn27+C08@d/#>D? q>\ ɑ2ŰH^YW9UYhY"Pn> stream xSkT9&Mfx5T"jbI̲;಻ ಻\>X]"+R,Y 5ј1њ[c=֤1=1ϐ~hh{y}B&ES^<+i@<^L|*D|:JQ+D&0\>5/a8Jؗ#W2j)Pen?_[ muW78m|Z=jUF8. ?ɹk#"[ZI+WN~ 6 8b!H'"HbMMK2i4_)9p"s Pv2;-Y>ib;zۗ7Syi-`1YWxAҡt5m~*f~F֬o=9cuvc t(fA~;) *f/r.H2΋Zf&?Rr($zcL:@_;~>}-;޺9H#onNKNO|ן%tŒ>#\aݺݒgP)$٦U vZ]6w9՝3nG i$)?N7&Gt\5HmS?_ٹuU95C.2fW{Ǿo7+1Zbpk0Oգ:w4`qzV*ccunYlkp;2xe菈wUCl74,UI<Kxݧ''q+T+˘Ŷr[ %fFN }4:v|̀Rׇ_Ydh;Ll=/mԼ+TAsu B4bW.K)lؚ>7s됚(ܚgI1ϰR,^_@d=籹{&VxTh|,*-zzh}xD9ZSQ:SQcmVjq2g'/A!#7B;lF.7-LNH{&``^o~)"#RٹX="$uAU;> stream xcd`ab`dddw441H3a!=kc7s7lB``fd/mq/,L(QHT04Q020TpM-LNSM,HM,rr3SK*4l2JJ s4u3K2RSRSJsS ӃP%E )Ey  L, t^}V1x ؾ+}oU4tWO?cnWtٝ;ۻ::KY+јlQR5o vqftϟ]=wbߥ~o[7k{ RMS#9~+.璉<< Vendstream endobj 98 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 362 >> stream x_CMR7',   ZWTmqCopyright (c) 1997, 2009 American Mathematical Society (), with Reserved Font Name CMR7.CMR7Computer Modern2p͋JiuP~>}L讧Ǻɋ !74/XWϡ=:4MFkgo0wCna  7 ڛ %endstream endobj 99 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1328 >> stream xEkLSgϡaWu k2Q43"IZ.J[Ze,yO}ɲ˛MsF$I3wK斓܊( ؟GrD T\!"b0Tڌef:x n˖Dz}J:]5t\թ3k6:a[\lZ:SXDZn.iMZcVC2tZjKZ83 JYk QODthgk*M"#>$>"vID&& BL#ގ V څBE!n(w;XΣlՌKﲺP 5ȆQ>sCR8E*aMv\&Qʮ#(Y- -o4I2 UTQ_ɨ]t7,1n@< n`\NƝc7#RXl` p_vBE7opA\?44?B'c3Vwu@L/?\9FK:(wOYR8z!omñ`'ne+. ag9YZҡ*zlA[t] ٳ=FɿchBaODvhUئ!@=rsb'=%p,E\򷴊f*EhajPTˬTF~endstream endobj 100 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 386 >> stream xwCMR8'vz-   ZWTmqCopyright (c) 1997, 2009 American Mathematical Society (), with Reserved Font Name CMR8.CMR8Computer Modern3vťbڽQ"DfVT@htkpozc,MI%ڧϋ1# :Q?f{ku؎׃$Ena}{mltNx~}vCoa  7 כ Uendstream endobj 101 0 obj << /Filter /FlateDecode /Length 1949 >> stream xXY7~ׯhyhe\ Hx}Ysx<GcO~}nqq ?$ ^ TIa4@Tζ( T(HP(ZKFBѬ6[_LbaTP^Feԑ3@F%uG }2QmHb]g[EvŤ  K/l=tDy/"r~2Ed^ߟMaֳi#2bZ iXʩP?dsIiJzٴ1F>g>bˆ{g_aE7_jN8/B@AstQ$:t6V:Sg{&6QD-i訾JOZ'2QD}&j0"Y&J%) eUl2DDnѷ"r2 /sN׉|e8bl*QD/?HL2X#[dutaLoQ6m/t缐e ssIsZ v#"Q}0wzWMeIMPlŢPWك;=^l{MT0_؏bdj$>TEtG*բ( W7#_(}D';ƘJO'F4كl׹sbƒґjD1bDnDǯcܢw+Wߨp6oUG5*.w~6+d16 ͬ7ʐcp i-Lfh'@eJPbd( ePfd- J2] Y^L3ZlPN4n#™IekcLms&qx;rӄ5lp3 8TU9%7@zD99̅%c 0a9%J #g2H[zǦ@zrΣBE%Ts Ɔ Z&0sF׆ٺ'c)sݑ:<":qdX00r9Ŗ\Nv.aQ)sl?!Ҿ nlҒY-$ Xg^q@Ec=myX#,Е)c|\I3rb5i~; aə{k|hft^ІDG퓘!r>XEq`%WECtCNrLD<#e{_3W0~Sm{U8q{Ӌ*.r.B\*)-?X'Ca>RL!X /T1x 6.1WFܶ ;E@K 0 oɀ<8f@vH^FH3-[zN-_:NvouDUhAS>z_pv8hT$UV!V.Gc6m(~YK׌ڣ qO ϊ\g"!ZS8 `_SӤp>Nz*iK9 ƾ;/` i.ӡh&FmYn^HLm AZL yRn0H0q[˃ g=vx̉rݔ%}Ikb$N:!]GY}qE^t%eZendstream endobj 102 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 3495 >> stream xUW TW۞1d2"b%h " * lYpAdXPl[ bk *uAGPVD `Rwp?3̽}yghhEӴ_bjvb8$ޒ Vg.GLĨr܈ft$(M{D/LKX% [2eTqt,[?2 $2NLMK'*WW˔)2euqLRH^?{}ܪ܄䔰kRK\lM0y,EYQ!T(5@-&Rpj2AP*P_PB*SK)oʞfP~?DPL* )j 5*HʌS(2,(r&RFd\zCGC,,nH_EpVڈ6`pp12Әe0Qn`K ;t7Ɠˍ; qr3Â:8uq8 {*Gˏ z  ll$m%߃"x^*إ<ݫ"U!wP |Jɘ BW="G}7'D`VDnء0/`e$Zf+}EhLMTA˵)}5lQ ޔb=E$A})(/ibi.rD86z7,% a#z p"3Yo'#{ȓ/wPyvJ :ϵܖwUl8|R wEZ:̹KHdoXv1{~xJاӢD;s6ns6u9eACim'O@aO_fdN]!gn\(=$9xР(# %]vB=QFCH\|Aj ^%OpK~ S"K8>#+TQфt5IgŮNL>]2djxFKukH^+dTGfs_38~ġom\µ~ ~4,أ lVϲd?VO^zla3.v6KJTZzz|5! hd(QORWר$F$η[6"qX섍qD? 7Ln^H7E/#xeHRoE-[>kpOFs"Κc=x.#Yd8 !Ofa'4 腝b!-\ 0rnfx&Muf 8==,ڮz,XZZuTi prMRf.n}.oTE @xŽq[Ғo0N`8#p7 X[h2so{!X\)[f p `F0l]!b S vsd!;?Y[`RI_酊^9HYe7v`3[1y YeJBfŲ? j^. 58rB.z(7ql 5_Eޜ^K2~B}m7[I>μWWOhKMH&vBVWdb;ri`~ /;SA݌ZPra_],Lj(ˮVJ,X#k.6:%w?(;[X0ۊ-|7endstream endobj 103 0 obj << /Filter /FlateDecode /Length 160 >> stream x]O10 N. 2D! }I.|D/J`H_#490Lu@vw=|*ՔC -A#EN?p^+yp8I.~r 6/l!Sendstream endobj 104 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1403 >> stream xESiLTW}7{0/ΌXqEZP3*0A6>@68"E[1jV[UִAik>HLs%|KS;iOϱa&-̲>fhFFAƀL-1)ucVm%Ru**PSs})]* 1B@Q,7Ec%rvPԗ5BMQ)r$ꦧv^vEvT&y ra?pidi 1#7T]2ㅆ֞M_lNQ!-%rrP jңp A?\/9ٖ l7hθlt5FcBR2Ds;T+!Ryx]έ;N&r=RsH|:`$:0ȿ']Puf~a{XpBeBs~^eVg #1 A>ehSP8v9|гu|!8Px6IItD^ɅAV }A&_{`.;V\ܔ֞.nKZcj꒢C|8k֞9qhѨəi 9M.~.GگL5d@<ԤM=)\Ѓ }o<ηAn);`+ [$G"YCmwsWxrуF2 ^(MlDrdUk @֋ɽVAuMӘ݁3;%¼@wF6F4Ŷt66(Ds+݉1g0B+~]Y#s*%F,£b~)!|ν ʻrNF] 3"Rԡ0f ؄[35Pe3ҳWz$8٫c>L"N>`o+nD'F)|ԔްOIzvW٭ ęL=ؚlih=[ӴJaq >awlWdΆ"0H:fu\Fd⧸xL:|£\w*˷Q> gMXTBȂ  ~؟Uei~r W2iƕ ֶ-i+e- ⶦ.YZ,XSvQ !3V)Ÿ#6WO!tT_,<l28 ;{5v&C^BӸ|.#6p8rgU *pXhX'*&He .erZendstream endobj 105 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 2927 >> stream xVyTSg1{**]*ԽVgFq;U.nBX$݄Md#pEQRv̨]j̗P1IN^rNw^1x!ۂ\_WxcEO惷Hydu<)CMphyA RED( +c b%!%qRehX2ioT℔rEE8eh4EHFVMu`yBRRȣD ^N')Ri*qz$$J]0g.Al&[Pb;I"ˆn"xK"Vk:b=D!|W0QJZ)זCeF}OZ*4a\|! V`3ݔDs%IC}Gn<ɯN Aa<Trch9&ؾ,h\*wF22pVʧVThEn8 h mrnɝ9]g5ŐA+[j MIb:&VU5Kb Zy,C\]5#,K w݆&!oL?* qsC><݊+3VP7VUh4Y6J%|K-ۑ/x93VTgptr˂7:hzΩ}'el-쉕es׍1"V`CM47uExhzvi}aeeDž~Kct[JkLHLlQ8Z[۰:FxW|bD/1%_Sū#¬ZAI=hi# [(0ܕiun؅[V,<Nvg4ly{r[FP͞^ETBn BPӐq[y}ػ|nd TJF S wwԁB gKťzڼjQɎfbApXC d^]%h v.7:Q`t,JSAoGk 67| g{~ayzOs鈸ynRCԪߒ3W~NGwvhZ:aX3}IBX{vS~oG!yUGP}.`|vR )mJmfQbUyYM: Xhk.~ Jendstream endobj 106 0 obj << /Filter /FlateDecode /Length 1998 >> stream xY[[~ׯ8Q oES E H* w7]IiQs!y$jm-As|$pmPfi3-(63\yajuJlfA;bL,J/;h&(P@4*J Izz FV!mAjP \,8EAb8FJj:SCͦN(ӮYV"#cAJi,7g/-b$x9Dz,$%y^nz 1Hc򂟼W?3X "+,C!7KƚwI=/@*#vY(!8 @|a5 K$N>IC~nN!,'iy>g+Z,_̖_a{HʇCR.r嘴d ߇ }'iʈñgͺOʼ#GnG|H+&刜̦7늱StG\S(,oZ:a[$ 缐j־B(Da9E.$~d䝹yۊ>#}~]۬n֢r9Xk^/%BL3+I=a[Փ9Ro*0P14Eܼ*#c|UmCYX3:IŁnCͫQY铇Vɛ>OPpߢso?5urլ/kt>Ts͛|j9}%ʘǪߤϒ"IIzAcIrr=WV+D6FB~ovf(yѠ9kTFhr%O+O3hL?E% ^ؾAi\58@4%*%| i@=b`PeO0/Hz'p18۵@C\yFh@o(`Ȏ \1 NF7(&^O@DRF \f @ !ɶOAq7>Ҙ(4wFBS;';} N]P僮lI F(*X M2DS "Zc,cۯwvn t4Iu]8-~ BG2BZAj ÞO5~m);7Q`(⨍ ignCܜp8: J{pW[tw3Dp+q#{ΰ:EEOH @!@Hyt3~?ЧNfpÑN{gP5VAKuq #GgOmV JH6'c])BO8!7vH#S8w)H`.jh@ !9 k3;bqk?{Yجh=JTN8lDdIT!^7@B7NZdR]8W*%0N] 5aͭ"ڵ=W(cp-fWLNUaޮׇ[@1AL{nui5\ޯnݢ8Q+߅qP w 5FOF0Fhr?EM}M7s0G o4$_{Ҿ4p-=A%Nq -<2;q1\NFKn4_H,TS|z͜(*fZ@6S8"RQVCR O->Bu<; `џd ժacuO@KjAJ2Y-U9𦜻w#oFE]#&5EI|:,.wÜ aqUD4BicyRMOlendstream endobj 107 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1384 >> stream xMTiPg%a"Xj]v7ǀ̨`G9ZZ<P1@8l@)P^DA>!x#)RzT:XXZuֱv.vyyyIBF$IEDn<7WzfIo+gKm^ RI͙^C;_E>$>#ǠKJT~e TKUaZN֫"B6]-Aj#i{ɂhl^N7. I+:!YAk;UyZNת-F&AkPE;=A^z`jm. hb#!>%6j#b IxuJB N.7M"UqNYJSv|B.[sSi!5ع}"BKzfێ¨?n7FؘꑧY&eQ2.]o]Eӡ4<=`)?A>,@&<߆/\dqTx87.)hKyv"؊DGqж&G75l=zu,VRqٍعb"BT},ańk": *0:S]f-[!ha cOkY]-%a ONv@'`=P_ϞI>@iNsа/A]q ;zTL} l-ܸ VwUm4Xtj[(!b%RRGg+R%xgH&X̥el6It8cmHڥ *wQ {R/Al$wLD'(&ڠ fA=Jo R CoϘd 3T<>^FtZ+:d=[ҘIPb/H̏+1et$boʚ!;Ti臊Mm[ro45EUA3CqzŇ"yօLDGQ7*~.sݕ_fW)8'7 b,,F KcN J{raSb0yo7RZϴqD3x9x MGoܷYMy`*>XL/O_:ZF! aRuq%JA>UXd%ջBNkwa7Џ\:r;چ=啙mE}Z흦XaDo$Xl -_dB&=w+OzM=4 =y0\9~HX ax_/|Oʋ-J`yAyplGa_f±؉N:CΉxD~ W2GB1FKצc?ߥ:eѽHQh +=DOS{"zy endstream endobj 108 0 obj << /Filter /FlateDecode /Length 2370 >> stream xYn$}hyI2 zHN*;V1lIލ>8M6gHBugUàK㆛U=|>)̐B4p!UduRӐY* 2*8}*5F^ OH^ъT R):R>rHV40NUZQ:L S*+6o7gxca|5~ǟo*fƿB,q'7s*;<~JZStLF ,/3(NVcw1m/›};/\ތU+q_Wu\W_unxWx_W7uϺzoE/3%7 >>WuQ*q_Wumdžӻ'{FIZ83\|Wo1&qP/YܱF뺞o:建zKWu5$X?#Bud>srIn-⾮ê&۞ j13ugNQ整QQ8B[vq=ZMzp{>*K!D!p 'FfaBV#cپ0*Q5%S#Ht pDRV8Xgq ` ILGtFY;xV@e!/Ӫ0?kd9 }΀ FHexTV Hv!2.нǰ+yVzxTx 'R0 a]L2Ќb_@9vt+ ^L#+b"Vl#APu{pFX*qenU-RIYIXu.p A]8lA%;*Wl@ }MsV S+Vkωq/Ȱ^~!T#׺uR#|<[\+DC](Bdp řSH ^_ 9)­'EMcE3 K>riUT :Ȝd0:CG>\rSA"V@־/AѢ*ē( m{#g'Լ C@D{ 8!}Mw'[*ĤUVƖ\{i8eaӈ*PQhMBH Mo;׬ 23B,撘MuĶBPBT0VDɉeh~2dS:],8| "O1bD9J5&|T Ȍe;9S`ەQN> 7f ˗8@bQιw|Z~%m(x(L R)FbZ< 16ئQ_Ka]Fc _)F~9c2awfIѧN!J eU(Gj$<ȝQG0?T`79HsJ ׷^Rڴ!GpvအM Oن(g[Vj<^/\l\,&C=FGc~T(^$\DaPSdGb`Q3DF7^,N_ZC wFER`JGi_w(J:K N^, !8 8^С`8&Jx]t'ѯԘ%Z!%%q{), ߡ8SZL{1yaB}sHI-D<ʷ7&S1?#QkGq|>%PoF;kybӚ}>AYl }B!R,"F> l4fq I4~/+c=U7L:dGWD V#:=ۇLGA$񐐵jB9URȔ;H}q;0)\󼼝f4F'W jԾ<j )r_Mܞ{%ڟCZHrNo N=ik­܁pk}S^ZS@2, 8]vg,Xslw(eXqp%$'J9LZK(V:0ehvQP\lSW@[x^bRiŬm(~*p'k:8+{[}H+[ g<Lvjݶ$ GUFד)=ns1ǐi'*#m9vٍ rMuSOypmGF6p5c,joK@endstream endobj 109 0 obj << /Filter /FlateDecode /Length 150 >> stream xU;1 {'0q_N@ -ׇE٬W.,?慅:c8]  I1 7g`tBw2SZJffBPUR=uw$֓TS>HԖ!56w/RCendstream endobj 110 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 2631 >> stream xV{TwQjYMPR[jmKQAHHB&!BxFH@yPgTڲvO=m {bOݳəd}߽as`<okV\,1a~Vx|:= a܎D^x"fT.QDdFY'V^)_$g % BE(_E'I3"Eit̆B+xa~aTظhXST(_Jѯ Eѳ~mˊ"yt4K$`dD**̄,Q8)V`vl%cX {ۋc[+ؓXFp`s/1kW~zy ms6|:PA >Nh *0 <Gka(<<=& m&g#; -|)[Zqv:*+?О=1@_&R'׶z cuKI#APdo gdƑAhTȞh#ᦚzW`ܷ3s\3N"b`WV^L-FZ&Y'Dd 7DsTpG#M${EewPܭL;%.Og΢Je8ڡCP(тz8=NWF\eg@xh!A'$MK]Tn^J+|г3W(cJQ-{ߡrۭv`iѻW\α V "h&uƜ F$;Ћ٩E*Rs6C q O"?_@oҨP*qJ;]xlʢ*N o,+eie_AOmȨ&:'oi֣& YR99ѷh u~݀G)N ġ&TxTSU 6pZiesM&]gv+.Ց27\u.sswݖh0 ;zB>KRY.(JVykI쨅F|P(=>1n"ݡzZ:*R R'$h!v44B4C 5cR"N*h!۩֌-8^( EKԓ-\*v.hXm:.[LKqa3HFL>x@ɋB/Ak޽ Nw{R* nqS:h`lބW:&P<L]QQ੪) xJ0àD/3˛,HM&F}>Nxk &QՋ45x$.w9gq쪵C[>>S#9";t $`nc47Z'FAܚ"F^ 0+4ȯ$ KCABĮt }^juY f"ː2 >퟾ CZ6N;zXԟ%Wr=%H{upvx K=D2򪎴zG{0cƷ-~Ϋ3ѴVGnz Scg=>^3K 4 ~{c} C;7W߲2]^fД_|kY3f X \53j23XLj5$QEEХNcЌn5zkf ପC}5|72AeO7/K#;}€g&kj+*Ϝ^C'j]gҴUJZhr[~8$kr!S#݋lpdCn8B7H=*JL,ۤh=zG:":pNx\m+؇V[ Es3j$z#2:8L]hv ?6槴@S}WﵓUN W>Tm5t6uxGF ~\x(}"#=ѩmA_j|LzѨ(H%T*@-2i@gd =REF}fdDҭ.)&]mS{QnWоIt`?`YZeuBnZ#Mk*ɴw^*9=k^J`riDaԫA6هظ#6ƑCeVdfn08LNqޚ`׳3HGȣNJǵ86}6eK ha3x*cN ޗoLMwӰQ 6㵗8ah˶ C"f/*Yw^hBrܧT/Za2/endstream endobj 111 0 obj << /Type /XRef /Length 128 /Filter /FlateDecode /DecodeParms << /Columns 4 /Predictor 12 >> /W [ 1 2 1 ] /Info 3 0 R /Root 2 0 R /Size 112 /ID [] >> stream xcb&F~ c%_yq`o6`:$8 {@UH<2>E@BDH@a vds I\r $!sdAq/bڳ# endstream endobj startxref 60756 %%EOF HSAUR3/inst/doc/Ch_simple_inference.R0000644000176200001440000002260413302741051017005 0ustar liggesusers### R code from vignette source 'Ch_simple_inference.Rnw' ### Encoding: ASCII ################################################### ### code chunk number 1: setup ################################################### rm(list = ls()) s <- search()[-1] s <- s[-match(c("package:base", "package:stats", "package:graphics", "package:grDevices", "package:utils", "package:datasets", "package:methods", "Autoloads"), s)] if (length(s) > 0) sapply(s, detach, character.only = TRUE) if (!file.exists("tables")) dir.create("tables") if (!file.exists("figures")) dir.create("figures") set.seed(290875) options(prompt = "R> ", continue = "+ ", width = 63, # digits = 4, show.signif.stars = FALSE, SweaveHooks = list(leftpar = function() par(mai = par("mai") * c(1, 1.05, 1, 1)), bigleftpar = function() par(mai = par("mai") * c(1, 1.7, 1, 1)))) HSAURpkg <- require("HSAUR3") if (!HSAURpkg) stop("cannot load package ", sQuote("HSAUR3")) rm(HSAURpkg) ### hm, R-2.4.0 --vanilla seems to need this a <- Sys.setlocale("LC_ALL", "C") ### book <- TRUE refs <- cbind(c("AItR", "DAGD", "SI", "CI", "ANOVA", "MLR", "GLM", "DE", "RP", "GAM", "SA", "ALDI", "ALDII", "SIMC", "MA", "PCA", "MDS", "CA"), 1:18) ch <- function(x) { ch <- refs[which(refs[,1] == x),] if (book) { return(paste("Chapter~\\\\ref{", ch[1], "}", sep = "")) } else { return(paste("Chapter~", ch[2], sep = "")) } } if (file.exists("deparse.R")) source("deparse.R") setHook(packageEvent("lattice", "attach"), function(...) { lattice.options(default.theme = function() standard.theme("pdf", color = FALSE)) }) ################################################### ### code chunk number 2: singlebook ################################################### book <- FALSE ################################################### ### code chunk number 3: SI-setup ################################################### library("vcd") if (!interactive()) { print.htest <- function (x, digits = 4, quote = TRUE, prefix = "", ...) { cat("\n") cat(strwrap(x$method, prefix = "\t"), sep = "\n") cat("\n") cat("data: ", x$data.name, "\n") out <- character() if (!is.null(x$statistic)) out <- c(out, paste(names(x$statistic), "=", format(round(x$statistic, 4)))) if (!is.null(x$parameter)) out <- c(out, paste(names(x$parameter), "=", format(round(x$parameter, 3)))) if (!is.null(x$p.value)) { fp <- format.pval(x$p.value, digits = digits) out <- c(out, paste("p-value", if (substr(fp, 1, 1) == "<") fp else paste("=", fp))) } cat(strwrap(paste(out, collapse = ", ")), sep = "\n") if (!is.null(x$conf.int)) { cat(format(100 * attr(x$conf.int, "conf.level")), "percent confidence interval:\n", format(c(x$conf.int[1], x$conf.int[2])), "\n") } if (!is.null(x$estimate)) { cat("sample estimates:\n") print(x$estimate, ...) } cat("\n") invisible(x) } } ################################################### ### code chunk number 4: SI-roomwidth-data ################################################### data("roomwidth", package = "HSAUR3") ################################################### ### code chunk number 5: SI-roomwidth-convert ################################################### convert <- ifelse(roomwidth$unit == "feet", 1, 3.28) ################################################### ### code chunk number 6: SI-roomwidth-summary ################################################### tapply(roomwidth$width * convert, roomwidth$unit, summary) tapply(roomwidth$width * convert, roomwidth$unit, sd) ################################################### ### code chunk number 7: SI-roomwidth-boxplot ################################################### layout(matrix(c(1,2,1,3), nrow = 2, ncol = 2, byrow = FALSE)) boxplot(I(width * convert) ~ unit, data = roomwidth, ylab = "Estimated width (feet)", varwidth = TRUE, names = c("Estimates in feet", "Estimates in meters (converted to feet)")) feet <- roomwidth$unit == "feet" qqnorm(roomwidth$width[feet], ylab = "Estimated width (feet)") qqline(roomwidth$width[feet]) qqnorm(roomwidth$width[!feet], ylab = "Estimated width (meters)") qqline(roomwidth$width[!feet]) ################################################### ### code chunk number 8: SI-roomwidth-formula ################################################### I(width * convert) ~ unit ################################################### ### code chunk number 9: SI-roomwidth-tt-T-hide ################################################### tt <- t.test(I(width * convert) ~ unit, data = roomwidth, var.equal = TRUE) ################################################### ### code chunk number 10: SI-roomwidth-tt-T ################################################### t.test(I(width * convert) ~ unit, data = roomwidth, var.equal = TRUE) ################################################### ### code chunk number 11: SI-roomwidth-tt-F ################################################### t.test(I(width * convert) ~ unit, data = roomwidth, var.equal = FALSE) ################################################### ### code chunk number 12: SI-roomwidth-wt ################################################### wilcox.test(I(width * convert) ~ unit, data = roomwidth, conf.int = TRUE) ################################################### ### code chunk number 13: SI-roomwidth-wt-hide ################################################### pwt <- round(wilcox.test(I(width * convert) ~ unit, data = roomwidth)$p.value, 3) ################################################### ### code chunk number 14: SI-waves-data ################################################### data("waves", package = "HSAUR3") ################################################### ### code chunk number 15: SI-wavese-boxplot ################################################### mooringdiff <- waves$method1 - waves$method2 layout(matrix(1:2, ncol = 2)) boxplot(mooringdiff, ylab = "Differences (Newton meters)", main = "Boxplot") abline(h = 0, lty = 2) qqnorm(mooringdiff, ylab = "Differences (Newton meters)") qqline(mooringdiff) ################################################### ### code chunk number 16: SI-waves-tt ################################################### t.test(mooringdiff) ################################################### ### code chunk number 17: SI-waves-wt ################################################### pwt <- round(wilcox.test(mooringdiff)$p.value, 3) ################################################### ### code chunk number 18: SI-waves-wt ################################################### wilcox.test(mooringdiff) ################################################### ### code chunk number 19: SI-water-data ################################################### data("water", package = "HSAUR3") ################################################### ### code chunk number 20: SI-water-plot ################################################### nf <- layout(matrix(c(2, 0, 1, 3), 2, 2, byrow = TRUE), c(2, 1), c(1, 2), TRUE) psymb <- as.numeric(water$location) plot(mortality ~ hardness, data = water, pch = psymb) abline(lm(mortality ~ hardness, data = water)) legend("topright", legend = levels(water$location), pch = c(1,2), bty = "n") hist(water$hardness) boxplot(water$mortality) ################################################### ### code chunk number 21: SI-water-cor ################################################### cor.test(~ mortality + hardness, data = water) ################################################### ### code chunk number 22: SI-water-cor ################################################### cr <- round(cor.test(~ mortality + hardness, data = water)$estimate, 3) ################################################### ### code chunk number 23: SI-pistonrings-chisq-hide ################################################### chisqt <- chisq.test(pistonrings) ################################################### ### code chunk number 24: SI-pistonrings-chisq ################################################### data("pistonrings", package = "HSAUR3") chisq.test(pistonrings) ################################################### ### code chunk number 25: SI-pistonrings-resid ################################################### chisq.test(pistonrings)$residuals ################################################### ### code chunk number 26: SI-assoc-plot ################################################### library("vcd") assoc(pistonrings) ################################################### ### code chunk number 27: SI-rearrests-data ################################################### data("rearrests", package = "HSAUR3") rearrests ################################################### ### code chunk number 28: SI-rearrests-mcnemar ################################################### mcs <- round(mcnemar.test(rearrests, correct = FALSE)$statistic, 2) ################################################### ### code chunk number 29: SI-arrests-mcnemar ################################################### mcnemar.test(rearrests, correct = FALSE) ################################################### ### code chunk number 30: SI-arrests-binom ################################################### binom.test(rearrests[2], n = sum(rearrests[c(2,3)])) HSAUR3/inst/doc/Ch_recursive_partitioning.R0000644000176200001440000002334613302741050020277 0ustar liggesusers### R code from vignette source 'Ch_recursive_partitioning.Rnw' ### Encoding: ASCII ################################################### ### code chunk number 1: setup ################################################### rm(list = ls()) s <- search()[-1] s <- s[-match(c("package:base", "package:stats", "package:graphics", "package:grDevices", "package:utils", "package:datasets", "package:methods", "Autoloads"), s)] if (length(s) > 0) sapply(s, detach, character.only = TRUE) if (!file.exists("tables")) dir.create("tables") if (!file.exists("figures")) dir.create("figures") set.seed(290875) options(prompt = "R> ", continue = "+ ", width = 63, # digits = 4, show.signif.stars = FALSE, SweaveHooks = list(leftpar = function() par(mai = par("mai") * c(1, 1.05, 1, 1)), bigleftpar = function() par(mai = par("mai") * c(1, 1.7, 1, 1)))) HSAURpkg <- require("HSAUR3") if (!HSAURpkg) stop("cannot load package ", sQuote("HSAUR3")) rm(HSAURpkg) ### hm, R-2.4.0 --vanilla seems to need this a <- Sys.setlocale("LC_ALL", "C") ### book <- TRUE refs <- cbind(c("AItR", "DAGD", "SI", "CI", "ANOVA", "MLR", "GLM", "DE", "RP", "GAM", "SA", "ALDI", "ALDII", "SIMC", "MA", "PCA", "MDS", "CA"), 1:18) ch <- function(x) { ch <- refs[which(refs[,1] == x),] if (book) { return(paste("Chapter~\\\\ref{", ch[1], "}", sep = "")) } else { return(paste("Chapter~", ch[2], sep = "")) } } if (file.exists("deparse.R")) source("deparse.R") setHook(packageEvent("lattice", "attach"), function(...) { lattice.options(default.theme = function() standard.theme("pdf", color = FALSE)) }) ################################################### ### code chunk number 2: singlebook ################################################### book <- FALSE ################################################### ### code chunk number 3: RP-setup ################################################### library("vcd") library("lattice") library("randomForest") library("partykit") ltheme <- canonical.theme(color = FALSE) ## in-built B&W theme ltheme$strip.background$col <- "transparent" ## change strip bg lattice.options(default.theme = ltheme) mai <- par("mai") options(SweaveHooks = list(nullmai = function() { par(mai = rep(0, 4)) }, twomai = function() { par(mai = c(0, mai[2], 0, 0)) }, threemai = function() { par(mai = c(0, mai[2], 0.1, 0)) })) numbers <- c("zero", "one", "two", "three", "four", "five", "six", "seven", "eight", "nine") ################################################### ### code chunk number 4: RP-bodyfat-rpart ################################################### library("rpart") data("bodyfat", package = "TH.data") bodyfat_rpart <- rpart(DEXfat ~ age + waistcirc + hipcirc + elbowbreadth + kneebreadth, data = bodyfat, control = rpart.control(minsplit = 10)) ################################################### ### code chunk number 5: RP-bodyfat-plot ################################################### getOption("SweaveHooks")[["nullmai"]]() library("partykit") plot(as.party(bodyfat_rpart), tp_args = list(id = FALSE)) ################################################### ### code chunk number 6: RP-bodyfat-cp ################################################### print(bodyfat_rpart$cptable) opt <- which.min(bodyfat_rpart$cptable[,"xerror"]) ################################################### ### code chunk number 7: RP-bodyfat-prune ################################################### cp <- bodyfat_rpart$cptable[opt, "CP"] bodyfat_prune <- prune(bodyfat_rpart, cp = cp) ################################################### ### code chunk number 8: RP-bodyfat-pruneplot ################################################### getOption("SweaveHooks")[["twomai"]]() plot(as.party(bodyfat_prune), tp_args = list(id = FALSE)) ################################################### ### code chunk number 9: RP-bodyfat-predict ################################################### DEXfat_pred <- predict(bodyfat_prune, newdata = bodyfat) xlim <- range(bodyfat$DEXfat) plot(DEXfat_pred ~ DEXfat, data = bodyfat, xlab = "Observed", ylab = "Predicted", ylim = xlim, xlim = xlim) abline(a = 0, b = 1) ################################################### ### code chunk number 10: RP-seed-again ################################################### set.seed(290875) ################################################### ### code chunk number 11: RP-glaucoma-rpart ################################################### data("GlaucomaM", package = "TH.data") glaucoma_rpart <- rpart(Class ~ ., data = GlaucomaM, control = rpart.control(xval = 100)) glaucoma_rpart$cptable opt <- which.min(glaucoma_rpart$cptable[,"xerror"]) cp <- glaucoma_rpart$cptable[opt, "CP"] glaucoma_prune <- prune(glaucoma_rpart, cp = cp) ################################################### ### code chunk number 12: RP-glaucoma-plot ################################################### getOption("SweaveHooks")[["nullmai"]]() plot(as.party(glaucoma_prune), tp_args = list(id = FALSE)) ################################################### ### code chunk number 13: RP-glaucoma-cp ################################################### nsplitopt <- vector(mode = "integer", length = 25) for (i in 1:length(nsplitopt)) { cp <- rpart(Class ~ ., data = GlaucomaM)$cptable nsplitopt[i] <- cp[which.min(cp[,"xerror"]), "nsplit"] } ################################################### ### code chunk number 14: RP-glaucoma-cp-print ################################################### table(nsplitopt) ################################################### ### code chunk number 15: RP-glaucoma-bagg ################################################### trees <- vector(mode = "list", length = 25) n <- nrow(GlaucomaM) bootsamples <- rmultinom(length(trees), n, rep(1, n)/n) mod <- rpart(Class ~ ., data = GlaucomaM, control = rpart.control(xval = 0)) for (i in 1:length(trees)) trees[[i]] <- update(mod, weights = bootsamples[,i]) ################################################### ### code chunk number 16: RP-glaucoma-splits ################################################### table(sapply(trees, function(x) as.character(x$frame$var[1]))) ################################################### ### code chunk number 17: RP-glaucoma-baggpred ################################################### classprob <- matrix(0, nrow = n, ncol = length(trees)) for (i in 1:length(trees)) { classprob[,i] <- predict(trees[[i]], newdata = GlaucomaM)[,1] classprob[bootsamples[,i] > 0,i] <- NA } ################################################### ### code chunk number 18: RP-glaucoma-avg ################################################### avg <- rowMeans(classprob, na.rm = TRUE) predictions <- factor(ifelse(avg > 0.5, "glaucoma", "normal")) predtab <- table(predictions, GlaucomaM$Class) predtab ################################################### ### code chunk number 19: RP-glaucoma-sens ################################################### round(predtab[1,1] / colSums(predtab)[1] * 100) ################################################### ### code chunk number 20: RP-glaucoma-spez ################################################### round(predtab[2,2] / colSums(predtab)[2] * 100) ################################################### ### code chunk number 21: RP-glaucoma-baggplot ################################################### library("lattice") gdata <- data.frame(avg = rep(avg, 2), class = rep(as.numeric(GlaucomaM$Class), 2), obs = c(GlaucomaM[["varg"]], GlaucomaM[["vari"]]), var = factor(c(rep("varg", nrow(GlaucomaM)), rep("vari", nrow(GlaucomaM))))) panelf <- function(x, y) { panel.xyplot(x, y, pch = gdata$class) panel.abline(h = 0.5, lty = 2) } print(xyplot(avg ~ obs | var, data = gdata, panel = panelf, scales = "free", xlab = "", ylab = "Estimated Class Probability Glaucoma")) ################################################### ### code chunk number 22: RP-glaucoma-rf ################################################### library("randomForest") rf <- randomForest(Class ~ ., data = GlaucomaM) ################################################### ### code chunk number 23: RP-glaucoma-rf-oob ################################################### table(predict(rf), GlaucomaM$Class) ################################################### ### code chunk number 24: RP-bodyfat-ctree ################################################### bodyfat_ctree <- ctree(DEXfat ~ age + waistcirc + hipcirc + elbowbreadth + kneebreadth, data = bodyfat) ################################################### ### code chunk number 25: RP-bodyfat-ctree-plot ################################################### plot(bodyfat_ctree, tp_args = list(id = FALSE)) ################################################### ### code chunk number 26: RP-glaucoma-ctree ################################################### glaucoma_ctree <- ctree(Class ~ ., data = GlaucomaM) ################################################### ### code chunk number 27: RP-glaucoma-ctree-plot ################################################### plot(glaucoma_ctree, tp_args = list(id = FALSE)) ################################################### ### code chunk number 28: RP-CHFLS-ctree ################################################### levels(CHFLS$R_happy) levels(CHFLS$R_happy) <- LETTERS[1:4] CHFLS_ctree <- ctree(R_happy ~ ., data = CHFLS) ################################################### ### code chunk number 29: RP-CHFLS-ctree-plot ################################################### plot(CHFLS_ctree, ep_args = list(justmin = 10), tp_args = list(id = FALSE)) HSAUR3/inst/doc/Ch_cluster_analysis.R0000644000176200001440000001641013302741001017053 0ustar liggesusers### R code from vignette source 'Ch_cluster_analysis.Rnw' ### Encoding: ASCII ################################################### ### code chunk number 1: setup ################################################### rm(list = ls()) s <- search()[-1] s <- s[-match(c("package:base", "package:stats", "package:graphics", "package:grDevices", "package:utils", "package:datasets", "package:methods", "Autoloads"), s)] if (length(s) > 0) sapply(s, detach, character.only = TRUE) if (!file.exists("tables")) dir.create("tables") if (!file.exists("figures")) dir.create("figures") set.seed(290875) options(prompt = "R> ", continue = "+ ", width = 63, # digits = 4, show.signif.stars = FALSE, SweaveHooks = list(leftpar = function() par(mai = par("mai") * c(1, 1.05, 1, 1)), bigleftpar = function() par(mai = par("mai") * c(1, 1.7, 1, 1)))) HSAURpkg <- require("HSAUR3") if (!HSAURpkg) stop("cannot load package ", sQuote("HSAUR3")) rm(HSAURpkg) ### hm, R-2.4.0 --vanilla seems to need this a <- Sys.setlocale("LC_ALL", "C") ### book <- TRUE refs <- cbind(c("AItR", "DAGD", "SI", "CI", "ANOVA", "MLR", "GLM", "DE", "RP", "GAM", "SA", "ALDI", "ALDII", "SIMC", "MA", "PCA", "MDS", "CA"), 1:18) ch <- function(x) { ch <- refs[which(refs[,1] == x),] if (book) { return(paste("Chapter~\\\\ref{", ch[1], "}", sep = "")) } else { return(paste("Chapter~", ch[2], sep = "")) } } if (file.exists("deparse.R")) source("deparse.R") setHook(packageEvent("lattice", "attach"), function(...) { lattice.options(default.theme = function() standard.theme("pdf", color = FALSE)) }) ################################################### ### code chunk number 2: singlebook ################################################### book <- FALSE ################################################### ### code chunk number 3: thissetup ################################################### library("mclust") library("mvtnorm") mai <- par("mai") options(SweaveHooks = list(rmai = function() { par(mai = mai * c(1,1,1,2))})) data("pottery", package = "HSAUR3") ################################################### ### code chunk number 4: CA-pottery-dist ################################################### pottery_dist <- dist(pottery[, colnames(pottery) != "kiln"]) library("lattice") levelplot(as.matrix(pottery_dist), xlab = "Pot Number", ylab = "Pot Number") ################################################### ### code chunk number 5: CA-pottery-distplot ################################################### trellis.par.set(standard.theme(color = FALSE)) plot(levelplot(as.matrix(pottery_dist), xlab = "Pot Number", ylab = "Pot Number")) ################################################### ### code chunk number 6: CA-pottery-hclust ################################################### pottery_single <- hclust(pottery_dist, method = "single") pottery_complete <- hclust(pottery_dist, method = "complete") pottery_average <- hclust(pottery_dist, method = "average") layout(matrix(1:3, ncol = 3)) plot(pottery_single, main = "Single Linkage", sub = "", xlab = "") plot(pottery_complete, main = "Complete Linkage", sub = "", xlab = "") plot(pottery_average, main = "Average Linkage", sub = "", xlab = "") ################################################### ### code chunk number 7: pottery-cluster ################################################### pottery_cluster <- cutree(pottery_average, h = 4) xtabs(~ pottery_cluster + kiln, data = pottery) ################################################### ### code chunk number 8: CA-planets-scatter ################################################### getOption("SweaveHooks")[["rmai"]]() data("planets", package = "HSAUR3") library("scatterplot3d") scatterplot3d(log(planets$mass), log(planets$period), log(planets$eccen + ifelse(planets$eccen == 0, 0.001, 0)), type = "h", angle = 55, pch = 16, y.ticklabs = seq(0, 10, by = 2), y.margin.add = 0.1, scale.y = 0.7, xlab = "log(mass)", ylab = "log(period)", zlab = "log(eccen)") ################################################### ### code chunk number 9: CA-planet-ss ################################################### rge <- apply(planets, 2, max) - apply(planets, 2, min) planet.dat <- sweep(planets, 2, rge, FUN = "/") n <- nrow(planet.dat) wss <- rep(0, 10) wss[1] <- (n - 1) * sum(apply(planet.dat, 2, var)) for (i in 2:10) wss[i] <- sum(kmeans(planet.dat, centers = i)$withinss) plot(1:10, wss, type = "b", xlab = "Number of groups", ylab = "Within groups sum of squares") ################################################### ### code chunk number 10: CA-planets-kmeans3 ################################################### planet_kmeans3 <- kmeans(planet.dat, centers = 3) table(planet_kmeans3$cluster) ################################################### ### code chunk number 11: CA-planets-ccent ################################################### ccent <- function(cl) { f <- function(i) colMeans(planets[cl == i,]) x <- sapply(sort(unique(cl)), f) colnames(x) <- sort(unique(cl)) return(x) } ################################################### ### code chunk number 12: CA-planets--kmeans3-ccent ################################################### ccent(planet_kmeans3$cluster) ################################################### ### code chunk number 13: CA-planets-kmeans5 ################################################### planet_kmeans5 <- kmeans(planet.dat, centers = 5) table(planet_kmeans5$cluster) ccent(planet_kmeans5$cluster) ################################################### ### code chunk number 14: CA-planets-mclust ################################################### library("mclust") planet_mclust <- Mclust(planet.dat) ################################################### ### code chunk number 15: CA-planets-mclust-plot ################################################### plot(planet_mclust, planet.dat, what = "BIC", col = "black", ylab = "-BIC", ylim = c(0, 350)) ################################################### ### code chunk number 16: CA-planets-mclust-print ################################################### print(planet_mclust) ################################################### ### code chunk number 17: CA-planets-mclust-scatter ################################################### clPairs(planet.dat, classification = planet_mclust$classification, symbols = 1:3, col = "black") ################################################### ### code chunk number 18: CA-planets-mclust-scatterclust ################################################### getOption("SweaveHooks")[["rmai"]]() scatterplot3d(log(planets$mass), log(planets$period), log(planets$eccen + ifelse(planets$eccen == 0, 0.001, 0)), type = "h", angle = 55, scale.y = 0.7, pch = planet_mclust$classification, y.ticklabs = seq(0, 10, by = 2), y.margin.add = 0.1, xlab = "log(mass)", ylab = "log(period)", zlab = "log(eccen)") ################################################### ### code chunk number 19: CA-planets-mclust-mu ################################################### table(planet_mclust$classification) ccent(planet_mclust$classification) HSAUR3/inst/doc/Ch_conditional_inference.Rnw0000644000176200001440000003731413302740166020376 0ustar liggesusers \documentclass{chapman} %%% copy Sweave.sty definitions %%% keeps `sweave' from adding `\usepackage{Sweave}': DO NOT REMOVE %\usepackage{Sweave} \RequirePackage[T1]{fontenc} \RequirePackage{graphicx,ae,fancyvrb} \IfFileExists{upquote.sty}{\RequirePackage{upquote}}{} \usepackage{relsize} \DefineVerbatimEnvironment{Sinput}{Verbatim}{} \DefineVerbatimEnvironment{Soutput}{Verbatim}{fontfamily=courier, fontshape=it, fontsize=\relsize{-1}} \DefineVerbatimEnvironment{Scode}{Verbatim}{} \newenvironment{Schunk}{}{} %%% environment for raw output \newcommand{\SchunkRaw}{\renewenvironment{Schunk}{}{} \DefineVerbatimEnvironment{Soutput}{Verbatim}{fontfamily=courier, fontshape=it, fontsize=\small} \rawSinput } %%% environment for labeled output \newcommand{\nextcaption}{} \newcommand{\SchunkLabel}{ \renewenvironment{Schunk}{\begin{figure}[ht] }{\caption{\nextcaption} \end{figure} } \DefineVerbatimEnvironment{Sinput}{Verbatim}{frame = topline} \DefineVerbatimEnvironment{Soutput}{Verbatim}{frame = bottomline, samepage = true, fontfamily=courier, fontshape=it, fontsize=\relsize{-1}} } %%% S code with line numbers \DefineVerbatimEnvironment{Sinput} {Verbatim} { %% numbers=left } \newcommand{\numberSinput}{ \DefineVerbatimEnvironment{Sinput}{Verbatim}{numbers=left} } \newcommand{\rawSinput}{ \DefineVerbatimEnvironment{Sinput}{Verbatim}{} } %%% R / System symbols \newcommand{\R}{\textsf{R}} \newcommand{\rR}{{R}} \renewcommand{\S}{\textsf{S}} \newcommand{\SPLUS}{\textsf{S-PLUS}} \newcommand{\rSPLUS}{{S-PLUS}} \newcommand{\SPSS}{\textsf{SPSS}} \newcommand{\EXCEL}{\textsf{Excel}} \newcommand{\ACCESS}{\textsf{Access}} \newcommand{\SQL}{\textsf{SQL}} %%\newcommand{\Rpackage}[1]{\hbox{\rm\textit{#1}}} %%\newcommand{\Robject}[1]{\hbox{\rm\texttt{#1}}} %%\newcommand{\Rclass}[1]{\hbox{\rm\textit{#1}}} %%\newcommand{\Rcmd}[1]{\hbox{\rm\texttt{#1}}} \newcommand{\Rpackage}[1]{\index{#1 package@{\fontseries{b}\selectfont #1} package} {\fontseries{b}\selectfont #1}} \newcommand{\rpackage}[1]{{\fontseries{b}\selectfont #1}} \newcommand{\Robject}[1]{\texttt{#1}} \newcommand{\Rclass}[1]{\index{#1 class@\textit{#1} class}\textit{#1}} \newcommand{\Rcmd}[1]{\index{#1 function@\texttt{#1} function}\texttt{#1}} \newcommand{\Roperator}[1]{\texttt{#1}} \newcommand{\Rarg}[1]{\texttt{#1}} \newcommand{\Rlevel}[1]{\texttt{#1}} %%% other symbols \newcommand{\file}[1]{\hbox{\rm\texttt{#1}}} %%\newcommand{\stress}[1]{\index{#1}\textit{#1}} \newcommand{\stress}[1]{\textit{#1}} \newcommand{\booktitle}[1]{\textit{#1}} %%' %%% Math symbols \usepackage{amstext} \usepackage{amsmath} \newcommand{\E}{\mathsf{E}} \newcommand{\Var}{\mathsf{Var}} \newcommand{\Cov}{\mathsf{Cov}} \newcommand{\Cor}{\mathsf{Cor}} \newcommand{\x}{\mathbf{x}} \newcommand{\y}{\mathbf{y}} \renewcommand{\a}{\mathbf{a}} \newcommand{\W}{\mathbf{W}} \newcommand{\C}{\mathbf{C}} \renewcommand{\H}{\mathbf{H}} \newcommand{\X}{\mathbf{X}} \newcommand{\B}{\mathbf{B}} \newcommand{\V}{\mathbf{V}} \newcommand{\I}{\mathbf{I}} \newcommand{\D}{\mathbf{D}} \newcommand{\bS}{\mathbf{S}} \newcommand{\N}{\mathcal{N}} \renewcommand{\L}{L} \renewcommand{\P}{\mathsf{P}} \newcommand{\K}{\mathbf{K}} \newcommand{\m}{\mathbf{m}} \newcommand{\argmin}{\operatorname{argmin}\displaylimits} \newcommand{\argmax}{\operatorname{argmax}\displaylimits} \newcommand{\bx}{\mathbf{x}} \newcommand{\bbeta}{\mathbf{\beta}} %%% links \usepackage{hyperref} \hypersetup{% pdftitle = {A Handbook of Statistical Analyses Using R (3rd Edition)}, pdfsubject = {Book}, pdfauthor = {Torsten Hothorn and Brian S. Everitt}, colorlinks = {black}, linkcolor = {black}, citecolor = {black}, urlcolor = {black}, hyperindex = {true}, linktocpage = {true}, } %%% captions & tables %% : conflics with figure definition in chapman.cls %%\usepackage[format=hang,margin=10pt,labelfont=bf]{caption} %% \usepackage{longtable} \usepackage[figuresright]{rotating} %%% R symbol in chapter 1 \usepackage{wrapfig} %%% Bibliography \usepackage[round,comma]{natbib} \renewcommand{\refname}{References \addcontentsline{toc}{chapter}{References}} \citeindexfalse %%% texi2dvi complains that \newblock is undefined, hm... \def\newblock{\hskip .11em plus .33em minus .07em} %%% Example sections \newcounter{exercise}[chapter] \setcounter{exercise}{0} \newcommand{\exercise}{\stepcounter{exercise} \item{Ex.~\arabic{chapter}.\arabic{exercise} }} %% URLs \newcommand{\curl}[1]{\begin{center} \url{#1} \end{center}} %%% for manual corrections %\renewcommand{\baselinestretch}{2} %%% plot sizes \setkeys{Gin}{width=0.95\textwidth} %%% color \usepackage{color} %%% hyphenations \hyphenation{drop-out} \hyphenation{mar-gi-nal} %%% new bidirectional quotes need \usepackage[utf8]{inputenc} %\usepackage{setspace} \definecolor{sidebox_todo}{rgb}{1,1,0.2} \newcommand{\todo}[1]{ \hspace{0pt}% \marginpar{% \fcolorbox{black}{sidebox_todo}{% \parbox{\marginparwidth} { \raggedright\sffamily\footnotesize{TODO: #1}% } }% } } \begin{document} %% Title page \title{A Handbook of Statistical Analyses Using \R{} --- 3rd Edition} \author{Torsten Hothorn and Brian S. Everitt} \maketitle %%\VignetteIndexEntry{Chapter Conditional Inference} %%\VignetteDepends{coin} \setcounter{chapter}{3} \SweaveOpts{prefix.string=figures/HSAUR,eps=FALSE,keep.source=TRUE} <>= rm(list = ls()) s <- search()[-1] s <- s[-match(c("package:base", "package:stats", "package:graphics", "package:grDevices", "package:utils", "package:datasets", "package:methods", "Autoloads"), s)] if (length(s) > 0) sapply(s, detach, character.only = TRUE) if (!file.exists("tables")) dir.create("tables") if (!file.exists("figures")) dir.create("figures") set.seed(290875) options(prompt = "R> ", continue = "+ ", width = 63, # digits = 4, show.signif.stars = FALSE, SweaveHooks = list(leftpar = function() par(mai = par("mai") * c(1, 1.05, 1, 1)), bigleftpar = function() par(mai = par("mai") * c(1, 1.7, 1, 1)))) HSAURpkg <- require("HSAUR3") if (!HSAURpkg) stop("cannot load package ", sQuote("HSAUR3")) rm(HSAURpkg) ### hm, R-2.4.0 --vanilla seems to need this a <- Sys.setlocale("LC_ALL", "C") ### book <- TRUE refs <- cbind(c("AItR", "DAGD", "SI", "CI", "ANOVA", "MLR", "GLM", "DE", "RP", "GAM", "SA", "ALDI", "ALDII", "SIMC", "MA", "PCA", "MDS", "CA"), 1:18) ch <- function(x) { ch <- refs[which(refs[,1] == x),] if (book) { return(paste("Chapter~\\\\ref{", ch[1], "}", sep = "")) } else { return(paste("Chapter~", ch[2], sep = "")) } } if (file.exists("deparse.R")) source("deparse.R") setHook(packageEvent("lattice", "attach"), function(...) { lattice.options(default.theme = function() standard.theme("pdf", color = FALSE)) }) @ \pagestyle{headings} <>= book <- FALSE @ \chapter[Conditional Inference]{Conditional Inference: Guessing Lengths, Suicides, Gastrointestinal Damage, and Newborn Infants \label{CI}} <>= data("roomwidth", package = "HSAUR3") nobs <- table(roomwidth$unit) ties <- tapply(roomwidth$width, roomwidth$unit, function(x) length(x) - length(unique(x))) library("coin") @ \section{Introduction} \section{Conditional Test Procedures} \section{Analysis Using \R{}} \subsection{Estimating the Width of a Room Revised} The unconditional analysis of the room width estimated by two groups of students in \Sexpr{ch("SI")} led to the conclusion that the estimates in meters are slightly larger than the estimates in feet. Here, we reanalyze these data in a conditional framework. First, we convert meters into feet and store the vector of observations in a variable \Robject{y}: <>= data("roomwidth", package = "HSAUR3") convert <- ifelse(roomwidth$unit == "feet", 1, 3.28) feet <- roomwidth$unit == "feet" meter <- !feet y <- roomwidth$width * convert @ The test statistic is simply the difference in means <>= T <- mean(y[feet]) - mean(y[meter]) T @ In order to approximate the conditional distribution of the test statistic $T$ we compute $9999$ test statistics for shuffled $y$ values. A permutation of the $y$ vector can be obtained from the \Rcmd{sample} function. <>= meandiffs <- double(9999) for (i in 1:length(meandiffs)) { sy <- sample(y) meandiffs[i] <- mean(sy[feet]) - mean(sy[meter]) } @ \begin{figure} \begin{center} <>= hist(meandiffs) abline(v = T, lty = 2) abline(v = -T, lty = 2) @ \caption{An approximation for the conditional distribution of the difference of mean \Robject{roomwidth} estimates in the feet and meters group under the null hypothesis. The vertical lines show the negative and positive absolute value of the test statistic $T$ obtained from the original data. \label{CI:perm}} \end{center} \end{figure} The distribution of the test statistic $T$ under the null hypothesis of independence of room width estimates and groups is depicted in Figure~\ref{CI:perm}. Now, the value of the test statistic $T$ for the original unshuffled data can be compared with the distribution of $T$ under the null hypothesis (the vertical lines in Figure~\ref{CI:perm}). The $p$-value, i.e., the proportion of test statistics $T$ larger than \Sexpr{-round(T, 3)} or smaller than \Sexpr{round(T, 3)}, is <>= greater <- abs(meandiffs) > abs(T) mean(greater) @ with a confidence interval of <>= binom.test(sum(greater), length(greater))$conf.int @ Note that the approximated conditional $p$-value is roughly the same as the $p$-value reported by the $t$-test in \Sexpr{ch("SI")}. \renewcommand{\nextcaption}{\R{} output of the exact permutation test applied to the \Robject{roomwidth} data. \label{CI-roomwidth-p-fig}} \SchunkLabel <>= library("coin") independence_test(y ~ unit, data = roomwidth, distribution = exact()) @ \SchunkRaw \renewcommand{\nextcaption}{\R{} output of the exact conditional Wilcoxon rank sum test applied to the \Robject{roomwidth} data. \label{CI-roomwidth-w-fig}} \SchunkLabel <>= wilcox_test(y ~ unit, data = roomwidth, distribution = exact()) @ \SchunkRaw \subsection{Crowds and Threatened Suicide} \renewcommand{\nextcaption}{\R{} output of Fisher's exact test for the %' \Robject{suicides} data. \label{CI-suicides-fig}} \SchunkLabel <>= data("suicides", package = "HSAUR3") fisher.test(suicides) @ \SchunkRaw <>= ftp <- round(fisher.test(suicides)$p.value, 3) ctp <- round(chisq.test(suicides)$p.value, 3) @ \subsection{Gastrointestinal Damage} \label{CI:Lanza} Here we are interested in the comparison of two groups of patients, where one group received a placebo and the other one Misoprostol. In the trials shown here, the response variable is measured on an ordered scale -- see Table~\ref{CI:scores}. Data from four clinical studies are available and thus the observations are naturally grouped together. From the \Rclass{data.frame} \Robject{Lanza} we can construct a three-way table as follows: <>= data("Lanza", package = "HSAUR3") xtabs(~ treatment + classification + study, data = Lanza) @ <>= options(width = 65) @ For the first study, the null hypothesis of independence of treatment and gastrointestinal damage, i.e., of no treatment effect of Misoprostol, is tested by <>= library("coin") cmh_test(classification ~ treatment, data = Lanza, scores = list(classification = c(0, 1, 6, 17, 30)), subset = Lanza$study == "I") @ and, by default, the conditional distribution is approximated by the corresponding limiting distribution. The $p$-value indicates a strong treatment effect. For the second study, the asymptotic $p$-value is a little bit larger: <>= cmh_test(classification ~ treatment, data = Lanza, scores = list(classification = c(0, 1, 6, 17, 30)), subset = Lanza$study == "II") @ and we make sure that the implied decision is correct by calculating a confidence interval for the exact $p$-value: <>= p <- cmh_test(classification ~ treatment, data = Lanza, scores = list(classification = c(0, 1, 6, 17, 30)), subset = Lanza$study == "II", distribution = approximate(B = 19999)) pvalue(p) @ The third and fourth study indicate a strong treatment effect as well: <>= cmh_test(classification ~ treatment, data = Lanza, scores = list(classification = c(0, 1, 6, 17, 30)), subset = Lanza$study == "III") cmh_test(classification ~ treatment, data = Lanza, scores = list(classification = c(0, 1, 6, 17, 30)), subset = Lanza$study == "IV") @ At the end, a separate analysis for each study is unsatisfactory. Because the design of the four studies is the same, we can use \Robject{study} as a block variable and perform a global linear-association test investigating the treatment effect of Misoprostol in all four studies. The block variable can be incorporated into the \Rclass{formula} by the \texttt{|} symbol. <>= cmh_test(classification ~ treatment | study, data = Lanza, scores = list(classification = c(0, 1, 6, 17, 30))) @ Based on this result, a strong treatment effect can be established. \subsection{Teratogenesis} \index{Teratogenesis} In this example, the medical doctor (MD) and the research assistant (RA) assessed the number of anomalies ($0, 1, 2$ or $3$) for each of $395$ babies: <>= anomalies <- c(235, 23, 3, 0, 41, 35, 8, 0, 20, 11, 11, 1, 2, 1, 3, 1) anomalies <- as.table(matrix(anomalies, ncol = 4, dimnames = list(MD = 0:3, RA = 0:3))) anomalies @ We are interested in testing whether the number of anomalies assessed by the medical doctor differs structurally from the number reported by the research assistant. Because we compare \stress{paired} observations, i.e., one pair of measurements for each newborn, a test of marginal homogeneity (a generalization of McNemar's test, \Sexpr{ch("SI")}) needs to be applied: %%' %\newpage <>= mh_test(anomalies) @ The $p$-value indicates a deviation from the null hypothesis. However, the levels of the response are not treated as ordered. Similar to the analysis of the gastrointestinal damage data above, we can take this information into account by the definition of an appropriate score. Here, the number of anomalies is a natural choice: <>= mh_test(anomalies, scores = list(response = c(0, 1, 2, 3))) @ In our case, one can conclude that the assessment of the number of anomalies differs between the medical doctor and the research assistant. %%\bibliographystyle{LaTeXBibTeX/refstyle} %%\bibliography{LaTeXBibTeX/HSAUR} \end{document} HSAUR3/inst/doc/Ch_multiple_linear_regression.Rnw0000644000176200001440000005606713302740166021510 0ustar liggesusers \documentclass{chapman} %%% copy Sweave.sty definitions %%% keeps `sweave' from adding `\usepackage{Sweave}': DO NOT REMOVE %\usepackage{Sweave} \RequirePackage[T1]{fontenc} \RequirePackage{graphicx,ae,fancyvrb} \IfFileExists{upquote.sty}{\RequirePackage{upquote}}{} \usepackage{relsize} \DefineVerbatimEnvironment{Sinput}{Verbatim}{} \DefineVerbatimEnvironment{Soutput}{Verbatim}{fontfamily=courier, fontshape=it, fontsize=\relsize{-1}} \DefineVerbatimEnvironment{Scode}{Verbatim}{} \newenvironment{Schunk}{}{} %%% environment for raw output \newcommand{\SchunkRaw}{\renewenvironment{Schunk}{}{} \DefineVerbatimEnvironment{Soutput}{Verbatim}{fontfamily=courier, fontshape=it, fontsize=\small} \rawSinput } %%% environment for labeled output \newcommand{\nextcaption}{} \newcommand{\SchunkLabel}{ \renewenvironment{Schunk}{\begin{figure}[ht] }{\caption{\nextcaption} \end{figure} } \DefineVerbatimEnvironment{Sinput}{Verbatim}{frame = topline} \DefineVerbatimEnvironment{Soutput}{Verbatim}{frame = bottomline, samepage = true, fontfamily=courier, fontshape=it, fontsize=\relsize{-1}} } %%% S code with line numbers \DefineVerbatimEnvironment{Sinput} {Verbatim} { %% numbers=left } \newcommand{\numberSinput}{ \DefineVerbatimEnvironment{Sinput}{Verbatim}{numbers=left} } \newcommand{\rawSinput}{ \DefineVerbatimEnvironment{Sinput}{Verbatim}{} } %%% R / System symbols \newcommand{\R}{\textsf{R}} \newcommand{\rR}{{R}} \renewcommand{\S}{\textsf{S}} \newcommand{\SPLUS}{\textsf{S-PLUS}} \newcommand{\rSPLUS}{{S-PLUS}} \newcommand{\SPSS}{\textsf{SPSS}} \newcommand{\EXCEL}{\textsf{Excel}} \newcommand{\ACCESS}{\textsf{Access}} \newcommand{\SQL}{\textsf{SQL}} %%\newcommand{\Rpackage}[1]{\hbox{\rm\textit{#1}}} %%\newcommand{\Robject}[1]{\hbox{\rm\texttt{#1}}} %%\newcommand{\Rclass}[1]{\hbox{\rm\textit{#1}}} %%\newcommand{\Rcmd}[1]{\hbox{\rm\texttt{#1}}} \newcommand{\Rpackage}[1]{\index{#1 package@{\fontseries{b}\selectfont #1} package} {\fontseries{b}\selectfont #1}} \newcommand{\rpackage}[1]{{\fontseries{b}\selectfont #1}} \newcommand{\Robject}[1]{\texttt{#1}} \newcommand{\Rclass}[1]{\index{#1 class@\textit{#1} class}\textit{#1}} \newcommand{\Rcmd}[1]{\index{#1 function@\texttt{#1} function}\texttt{#1}} \newcommand{\Roperator}[1]{\texttt{#1}} \newcommand{\Rarg}[1]{\texttt{#1}} \newcommand{\Rlevel}[1]{\texttt{#1}} %%% other symbols \newcommand{\file}[1]{\hbox{\rm\texttt{#1}}} %%\newcommand{\stress}[1]{\index{#1}\textit{#1}} \newcommand{\stress}[1]{\textit{#1}} \newcommand{\booktitle}[1]{\textit{#1}} %%' %%% Math symbols \usepackage{amstext} \usepackage{amsmath} \newcommand{\E}{\mathsf{E}} \newcommand{\Var}{\mathsf{Var}} \newcommand{\Cov}{\mathsf{Cov}} \newcommand{\Cor}{\mathsf{Cor}} \newcommand{\x}{\mathbf{x}} \newcommand{\y}{\mathbf{y}} \renewcommand{\a}{\mathbf{a}} \newcommand{\W}{\mathbf{W}} \newcommand{\C}{\mathbf{C}} \renewcommand{\H}{\mathbf{H}} \newcommand{\X}{\mathbf{X}} \newcommand{\B}{\mathbf{B}} \newcommand{\V}{\mathbf{V}} \newcommand{\I}{\mathbf{I}} \newcommand{\D}{\mathbf{D}} \newcommand{\bS}{\mathbf{S}} \newcommand{\N}{\mathcal{N}} \renewcommand{\L}{L} \renewcommand{\P}{\mathsf{P}} \newcommand{\K}{\mathbf{K}} \newcommand{\m}{\mathbf{m}} \newcommand{\argmin}{\operatorname{argmin}\displaylimits} \newcommand{\argmax}{\operatorname{argmax}\displaylimits} \newcommand{\bx}{\mathbf{x}} \newcommand{\bbeta}{\mathbf{\beta}} %%% links \usepackage{hyperref} \hypersetup{% pdftitle = {A Handbook of Statistical Analyses Using R (3rd Edition)}, pdfsubject = {Book}, pdfauthor = {Torsten Hothorn and Brian S. Everitt}, colorlinks = {black}, linkcolor = {black}, citecolor = {black}, urlcolor = {black}, hyperindex = {true}, linktocpage = {true}, } %%% captions & tables %% : conflics with figure definition in chapman.cls %%\usepackage[format=hang,margin=10pt,labelfont=bf]{caption} %% \usepackage{longtable} \usepackage[figuresright]{rotating} %%% R symbol in chapter 1 \usepackage{wrapfig} %%% Bibliography \usepackage[round,comma]{natbib} \renewcommand{\refname}{References \addcontentsline{toc}{chapter}{References}} \citeindexfalse %%% texi2dvi complains that \newblock is undefined, hm... \def\newblock{\hskip .11em plus .33em minus .07em} %%% Example sections \newcounter{exercise}[chapter] \setcounter{exercise}{0} \newcommand{\exercise}{\stepcounter{exercise} \item{Ex.~\arabic{chapter}.\arabic{exercise} }} %% URLs \newcommand{\curl}[1]{\begin{center} \url{#1} \end{center}} %%% for manual corrections %\renewcommand{\baselinestretch}{2} %%% plot sizes \setkeys{Gin}{width=0.95\textwidth} %%% color \usepackage{color} %%% hyphenations \hyphenation{drop-out} \hyphenation{mar-gi-nal} %%% new bidirectional quotes need \usepackage[utf8]{inputenc} %\usepackage{setspace} \definecolor{sidebox_todo}{rgb}{1,1,0.2} \newcommand{\todo}[1]{ \hspace{0pt}% \marginpar{% \fcolorbox{black}{sidebox_todo}{% \parbox{\marginparwidth} { \raggedright\sffamily\footnotesize{TODO: #1}% } }% } } \begin{document} %% Title page \title{A Handbook of Statistical Analyses Using \R{} --- 3rd Edition} \author{Torsten Hothorn and Brian S. Everitt} \maketitle %%\VignetteIndexEntry{Multiple Linear Regression} %%\VignetteDepends{wordcloud} \setcounter{chapter}{5} \SweaveOpts{prefix.string=figures/HSAUR,eps=FALSE,keep.source=TRUE} <>= rm(list = ls()) s <- search()[-1] s <- s[-match(c("package:base", "package:stats", "package:graphics", "package:grDevices", "package:utils", "package:datasets", "package:methods", "Autoloads"), s)] if (length(s) > 0) sapply(s, detach, character.only = TRUE) if (!file.exists("tables")) dir.create("tables") if (!file.exists("figures")) dir.create("figures") set.seed(290875) options(prompt = "R> ", continue = "+ ", width = 63, # digits = 4, show.signif.stars = FALSE, SweaveHooks = list(leftpar = function() par(mai = par("mai") * c(1, 1.05, 1, 1)), bigleftpar = function() par(mai = par("mai") * c(1, 1.7, 1, 1)))) HSAURpkg <- require("HSAUR3") if (!HSAURpkg) stop("cannot load package ", sQuote("HSAUR3")) rm(HSAURpkg) ### hm, R-2.4.0 --vanilla seems to need this a <- Sys.setlocale("LC_ALL", "C") ### book <- TRUE refs <- cbind(c("AItR", "DAGD", "SI", "CI", "ANOVA", "MLR", "GLM", "DE", "RP", "GAM", "SA", "ALDI", "ALDII", "SIMC", "MA", "PCA", "MDS", "CA"), 1:18) ch <- function(x) { ch <- refs[which(refs[,1] == x),] if (book) { return(paste("Chapter~\\\\ref{", ch[1], "}", sep = "")) } else { return(paste("Chapter~", ch[2], sep = "")) } } if (file.exists("deparse.R")) source("deparse.R") setHook(packageEvent("lattice", "attach"), function(...) { lattice.options(default.theme = function() standard.theme("pdf", color = FALSE)) }) @ \pagestyle{headings} <>= book <- FALSE @ <>= library("wordcloud") @ \chapter[Simple and Multiple Linear Regression]{Simple and Multiple Linear Regression: \\ How Old is the Universe and Cloud Seeding \label{MLR}} \section{Introduction} \index{Age of the Universe} \cite{HSAUR:Freedmanetal2001} give the relative velocity and the distance of $24$ galaxies, according to measurements made using the Hubble Space Telescope -- the data are contained in the \Rpackage{gamair} package accompanying \cite{HSAUR:Wood2006}, see Table~\ref{MLR-hubble-tab}. Velocities are assessed by measuring the Doppler red shift in the spectrum of light observed from the galaxies concerned, although some correction for `local' velocity components is required. Distances are measured using the known relationship between the period of Cepheid variable stars and their luminosity. How can these data be used to estimate the age of the universe? Here we shall show how this can be done using simple linear regression. <>= data("hubble", package = "gamair") names(hubble) <- c("galaxy", "velocity", "distance") toLatex(HSAURtable(hubble, package = "gamair"), pcol = 2, caption = paste("Distance and velocity for 24 galaxies."), label = "MLR-hubble-tab") @ \vspace*{-1cm} \textit{Source}: From Freedman W. L., et al., \textit{The Astrophysical Journal}, 553, 47--72, 2001. With permission. \vspace*{1cm} \index{Cloud seeding} {\tabcolsep3.5pt <>= data("clouds", package = "HSAUR3") names(clouds) <- c("seeding", "time", "sne", "cloudc", "prewet", "EM", "rain") toLatex(HSAURtable(clouds), pcol = 1, caption = paste("Cloud seeding experiments in Florida -- see text for", "explanations of the variables. Note that the \\Robject{clouds} data set has slightly different variable names."), label = "MLR-clouds-tab") @ } Weather modification, or cloud seeding, is the treatment of individual clouds or storm systems with various inorganic and organic materials in the hope of achieving an increase in rainfall. Introduction of such material into a cloud that contains supercooled water, that is, liquid water colder than zero degrees Celsius, has the aim of inducing freezing, with the consequent ice particles growing at the expense of liquid droplets and becoming heavy enough to fall as rain from clouds that otherwise would produce none. The data shown in Table~\ref{MLR-clouds-tab} were collected in the summer of 1975 from an experiment to investigate the use of massive amounts of silver iodide ($100$ to $1000$ grams per cloud) in cloud seeding to increase rainfall \citep{HSAUR:Woodleyetal1977}. In the experiment, which was conducted in an area of Florida, 24 days were judged suitable for seeding on the basis that a measured suitability criterion, denoted \stress{S-Ne}, was not less than $1.5$. Here \stress{S} is the `seedability', %' the difference between the maximum height of a cloud if seeded and the same cloud if not seeded predicted by a suitable cloud model, and \stress{Ne} is the number of hours between $1300$ and $1600$ G.M.T. with $10$ centimeter echoes in the target; this quantity biases the decision for experimentation against naturally rainy days. Consequently, optimal days for seeding are those on which seedability is large and the natural rainfall early in the day is small. On suitable days, a decision was taken at random as to whether to seed or not. For each day the following variables were measured: \begin{description} \item[\Robject{seeding}] a factor indicating whether seeding action occurred (yes or no), \item[\Robject{time}] number of days after the first day of the experiment, \item[\Robject{cloudc}] the percentage cloud cover in the experimental area, measured using radar, \item[\Robject{prewet}] the total rainfall in the target area one hour before seeding (in cubic meters $\times 10^{7}$), \item[\Robject{EM}] a factor showing whether the radar echo was moving or stationary, \item[\Robject{rain}] the amount of rain in cubic meters $\times 10^{7}$, \item[\Robject{sne}] suitability criterion, see above. \end{description} The objective in analyzing these data is to see how rainfall is related to the explanatory variables and, in particular, to determine the effectiveness of seeding. The method to be used is \stress{multiple linear regression}. \section{Simple Linear Regression} \section{Multiple Linear Regression \label{MLR-MLR}} \subsection{Regression Diagnostics} \section{Analysis Using \R{}} \subsection{Estimating the Age of the Universe} Prior to applying a simple regression to the data it will be useful to look at a plot to assess their major features. The \R{} code given in Figure~\ref{MLR-hubble-plot} produces a scatterplot of velocity and distance. \begin{figure} \begin{center} <>= plot(velocity ~ distance, data = hubble) @ \caption{Scatterplot of velocity and distance. \label{MLR-hubble-plot}} \end{center} \end{figure} The diagram shows a clear, strong relationship between velocity and distance. The next step is to fit a simple linear regression model to the data, but in this case the nature of the data requires a model without intercept because if distance is zero so is relative speed. So the model to be fitted to these data is \begin{eqnarray*} \text{velocity} = \beta_1 \text{distance} + \varepsilon. \end{eqnarray*} This is essentially what astronomers call Hubble's Law and $\beta_1$ is known as Hubble's constant; $\beta_1^{-1}$ gives an approximate age of the universe. To fit this model we are estimating $\beta_1$ using formula (\ref{MLR:beta1}). Although this operation is rather easy <>= sum(hubble$distance * hubble$velocity) / sum(hubble$distance^2) @ it is more convenient to apply \R's linear modeling function <>= hmod <- lm(velocity ~ distance - 1, data = hubble) @ Note that the model formula specifies a model without intercept. We can now extract the estimated model coefficients via <>= coef(hmod) @ and add this estimated regression line to the scatterplot; the result is shown in Figure~\ref{MLR-hubble-lmplot}. In addition, we produce a scatterplot of the residuals $y_i - \hat{y}_i$ against fitted values $\hat{y}_i$ to assess the quality of the model fit. It seems that for higher distance values the variance of velocity increases; however, we are interested in only the estimated parameter $\hat{\beta}_1$ which remains valid under variance heterogeneity (in contrast to $t$-tests and associated $p$-values). Now we can use the estimated value of $\beta_1$ to find an approximate value for the age of the universe. The Hubble constant itself has units of $\text{km} \times \text{sec}^{-1} \times \text{Mpc}^{-1}$. A mega-parsec (Mpc) is $3.09 \times 10^{19}$km, so we need to divide the estimated value of $\beta_1$ by this amount in order to obtain Hubble's constant with units of $\text{sec}^{-1}$. The approximate age of the universe in seconds will then be the inverse of this calculation. Carrying out the necessary computations <>= Mpc <- 3.09 * 10^19 ysec <- 60^2 * 24 * 365.25 Mpcyear <- Mpc / ysec 1 / (coef(hmod) / Mpcyear) @ gives an estimated age of roughly $12.8$ billion years. \begin{figure} \begin{center} <>= layout(matrix(1:2, ncol = 2)) plot(velocity ~ distance, data = hubble) abline(hmod) plot(hmod, which = 1) @ \caption{Scatterplot of velocity and distance with estimated regression line (left) and plot of residuals against fitted values (right). \label{MLR-hubble-lmplot}} \end{center} \end{figure} \subsection{Cloud Seeding} Again, a graphical display highlighting the most important aspects of the data will be helpful. Here we will construct boxplots of the rainfall in each category of the dichotomous explanatory variables and scatterplots of rainfall against each of the continuous explanatory variables. \begin{figure} \begin{center} <>= data("clouds", package = "HSAUR3") layout(matrix(1:2, nrow = 2)) bxpseeding <- boxplot(rain ~ seeding, data = clouds, ylab = "Rainfall", xlab = "Seeding") bxpecho <- boxplot(rain ~ EM, data = clouds, ylab = "Rainfall", xlab = "Echo Motion") @ <>= layout(matrix(1:2, nrow = 2)) bxpseeding <- boxplot(rain ~ seeding, data = clouds, ylab = "Rainfall", xlab = "Seeding") bxpecho <- boxplot(rain ~ EM, data = clouds, ylab = "Rainfall", xlab = "Echo Motion") @ \caption{Boxplots of \Robject{rain}. \label{MLR-rainfall-boxplot}} \end{center} \end{figure} \begin{figure} \begin{center} <>= layout(matrix(1:4, nrow = 2)) plot(rain ~ time, data = clouds) plot(rain ~ cloudc, data = clouds) plot(rain ~ sne, data = clouds, xlab="S-Ne criterion") plot(rain ~ prewet, data = clouds) @ \caption{Scatterplots of \Robject{rain} against the continuous covariates. \label{MLR-rainfall-scplot}} \end{center} \end{figure} Both the boxplots (Figure~\ref{MLR-rainfall-boxplot}) and the scatterplots (Figure~\ref{MLR-rainfall-scplot}) show some evidence of outliers. The row names of the extreme observations in the \Robject{clouds} \Rclass{data.frame} can be identified via <>= rownames(clouds)[clouds$rain %in% c(bxpseeding$out, bxpecho$out)] @ where \Robject{bxpseeding} and \Robject{bxpecho} are variables created by \Rcmd{boxplot} in Figure~\ref{MLR-rainfall-boxplot}. Now we shall not remove these observations but bear in mind during the modeling process that they may cause problems. In this example it is sensible to assume that the effect of some of the other explanatory variables is modified by seeding and therefore consider a model that includes seeding as covariate and, furthermore, allows interaction terms \index{Interaction} for \Robject{seeding} with each of the covariates except \Robject{time}. This model can be described by the \Rclass{formula} <>= clouds_formula <- rain ~ seeding + seeding:(sne + cloudc + prewet + EM) + time @ and the design matrix $\X^\star$ can be computed via <>= Xstar <- model.matrix(clouds_formula, data = clouds) @ By default, treatment contrasts have been applied to the dummy codings of the factors \Robject{seeding} and \Robject{EM} as can be seen from the inspection of the \Robject{contrasts} attribute of the model matrix <>= attr(Xstar, "contrasts") @ The default contrasts can be changed via the \Rarg{contrasts.arg} argument to \Rcmd{model.matrix} or the \Robject{contrasts} argument to the fitting function, for example \Rcmd{lm} or \Rcmd{aov} as shown in \Sexpr{ch("ANOVA")}. However, such internals are hidden and performed by high-level model-fitting functions such as \Rcmd{lm} which will be used to fit the linear model defined by the \Rclass{formula} \Robject{clouds\_formula}: <>= clouds_lm <- lm(clouds_formula, data = clouds) class(clouds_lm) @ The result of the model fitting is an object of class \Rclass{lm} for which a \Rcmd{summary} method showing the conventional regression analysis output is available. The output in Figure~\ref{MLR-clouds-summary} shows the estimates $\hat{\beta}^\star$ with corresponding standard errors and $t$-statistics as well as the $F$-statistic with associated $p$-value. \renewcommand{\nextcaption}{\R{} output of the linear model fit for the \Robject{clouds} data. \label{MLR-clouds-summary}} \SchunkLabel <>= summary(clouds_lm) @ \SchunkRaw Many methods are available for extracting components of the fitted model. The estimates $\hat{\beta}^\star$ can be assessed via \newpage <>= betastar <- coef(clouds_lm) betastar @ and the corresponding covariance matrix $\Cov(\hat{\beta}^\star)$ is available from the \Rcmd{vcov} method <>= Vbetastar <- vcov(clouds_lm) @ where the square roots of the diagonal elements are the standard errors as shown in Figure~\ref{MLR-clouds-summary} <>= sqrt(diag(Vbetastar)) @ \begin{figure} \begin{center} <>= psymb <- as.numeric(clouds$seeding) plot(rain ~ sne, data = clouds, pch = psymb, xlab = "S-Ne criterion") abline(lm(rain ~ sne, data = clouds, subset = seeding == "no")) abline(lm(rain ~ sne, data = clouds, subset = seeding == "yes"), lty = 2) legend("topright", legend = c("No seeding", "Seeding"), pch = 1:2, lty = 1:2, bty = "n") @ \caption{Regression relationship between S-Ne criterion and rainfall with and without seeding. \label{MLR-clouds-lmplot}} \end{center} \end{figure} In order to investigate the quality of the model fit, we need access to the residuals and the fitted values. The residuals can be found by the \Rcmd{residuals} method and the fitted values of the response from the \Rcmd{fitted} (or \Rcmd{predict}) method <>= clouds_resid <- residuals(clouds_lm) clouds_fitted <- fitted(clouds_lm) @ Now the residuals and the fitted values can be used to construct diagnostic plots; for example the residual plot in Figure~\ref{MLR-resid} where each observation is labelled by its number (using \Rcmd{textplot} from package \Rpackage{wordclouds}). Observations $1$ and $15$ give rather large residual values and the data should perhaps be reanalysed after these two observations are removed. The normal probability plot of the residuals shown in Figure~\ref{MLR-qqplot} shows a reasonable agreement between theoretical and sample quantiles, however, observations $1$ and $15$ are extreme again. \begin{figure} \begin{center} <>= plot(clouds_fitted, clouds_resid, xlab = "Fitted values", ylab = "Residuals", type = "n", ylim = max(abs(clouds_resid)) * c(-1, 1)) abline(h = 0, lty = 2) textplot(clouds_fitted, clouds_resid, words = rownames(clouds), new = FALSE) @ \caption{Plot of residuals against fitted values for \Robject{clouds} seeding data. \label{MLR-resid}} \end{center} \end{figure} \begin{figure} \begin{center} <>= qqnorm(clouds_resid, ylab = "Residuals") qqline(clouds_resid) @ \caption{Normal probability plot of residuals from cloud seeding model \Robject{clouds\_lm}. \label{MLR-qqplot}} \end{center} \end{figure} An index plot of the Cook's distances for each observation %' (and many other plots including those constructed above from using the basic functions) can be found from applying the \Rcmd{plot} method to the object that results from the application of the \Rcmd{lm} function. \begin{figure} \begin{center} <>= plot(clouds_lm) @ <>= plot(clouds_lm, which = 4, sub.caption = NULL) @ \caption{Index plot of Cook's distances for cloud seeding data. %' \label{MLR-cook}} \end{center} \end{figure} Figure~\ref{MLR-cook} suggests that observations 2 and 18 have undue influence on the estimated regression coefficients, but the two outliers identified previously do not. Again it may be useful to look at the results after these two observations have been removed (see Exercise 6.2). %% \ref{MLR-ex2}) \index{Regression diagnostics|)} %%\bibliographystyle{LaTeXBibTeX/refstyle} %%\bibliography{LaTeXBibTeX/HSAUR} \end{document} HSAUR3/inst/doc/Ch_simple_inference.Rnw0000644000176200001440000005240613302740166017363 0ustar liggesusers \documentclass{chapman} %%% copy Sweave.sty definitions %%% keeps `sweave' from adding `\usepackage{Sweave}': DO NOT REMOVE %\usepackage{Sweave} \RequirePackage[T1]{fontenc} \RequirePackage{graphicx,ae,fancyvrb} \IfFileExists{upquote.sty}{\RequirePackage{upquote}}{} \usepackage{relsize} \DefineVerbatimEnvironment{Sinput}{Verbatim}{} \DefineVerbatimEnvironment{Soutput}{Verbatim}{fontfamily=courier, fontshape=it, fontsize=\relsize{-1}} \DefineVerbatimEnvironment{Scode}{Verbatim}{} \newenvironment{Schunk}{}{} %%% environment for raw output \newcommand{\SchunkRaw}{\renewenvironment{Schunk}{}{} \DefineVerbatimEnvironment{Soutput}{Verbatim}{fontfamily=courier, fontshape=it, fontsize=\small} \rawSinput } %%% environment for labeled output \newcommand{\nextcaption}{} \newcommand{\SchunkLabel}{ \renewenvironment{Schunk}{\begin{figure}[ht] }{\caption{\nextcaption} \end{figure} } \DefineVerbatimEnvironment{Sinput}{Verbatim}{frame = topline} \DefineVerbatimEnvironment{Soutput}{Verbatim}{frame = bottomline, samepage = true, fontfamily=courier, fontshape=it, fontsize=\relsize{-1}} } %%% S code with line numbers \DefineVerbatimEnvironment{Sinput} {Verbatim} { %% numbers=left } \newcommand{\numberSinput}{ \DefineVerbatimEnvironment{Sinput}{Verbatim}{numbers=left} } \newcommand{\rawSinput}{ \DefineVerbatimEnvironment{Sinput}{Verbatim}{} } %%% R / System symbols \newcommand{\R}{\textsf{R}} \newcommand{\rR}{{R}} \renewcommand{\S}{\textsf{S}} \newcommand{\SPLUS}{\textsf{S-PLUS}} \newcommand{\rSPLUS}{{S-PLUS}} \newcommand{\SPSS}{\textsf{SPSS}} \newcommand{\EXCEL}{\textsf{Excel}} \newcommand{\ACCESS}{\textsf{Access}} \newcommand{\SQL}{\textsf{SQL}} %%\newcommand{\Rpackage}[1]{\hbox{\rm\textit{#1}}} %%\newcommand{\Robject}[1]{\hbox{\rm\texttt{#1}}} %%\newcommand{\Rclass}[1]{\hbox{\rm\textit{#1}}} %%\newcommand{\Rcmd}[1]{\hbox{\rm\texttt{#1}}} \newcommand{\Rpackage}[1]{\index{#1 package@{\fontseries{b}\selectfont #1} package} {\fontseries{b}\selectfont #1}} \newcommand{\rpackage}[1]{{\fontseries{b}\selectfont #1}} \newcommand{\Robject}[1]{\texttt{#1}} \newcommand{\Rclass}[1]{\index{#1 class@\textit{#1} class}\textit{#1}} \newcommand{\Rcmd}[1]{\index{#1 function@\texttt{#1} function}\texttt{#1}} \newcommand{\Roperator}[1]{\texttt{#1}} \newcommand{\Rarg}[1]{\texttt{#1}} \newcommand{\Rlevel}[1]{\texttt{#1}} %%% other symbols \newcommand{\file}[1]{\hbox{\rm\texttt{#1}}} %%\newcommand{\stress}[1]{\index{#1}\textit{#1}} \newcommand{\stress}[1]{\textit{#1}} \newcommand{\booktitle}[1]{\textit{#1}} %%' %%% Math symbols \usepackage{amstext} \usepackage{amsmath} \newcommand{\E}{\mathsf{E}} \newcommand{\Var}{\mathsf{Var}} \newcommand{\Cov}{\mathsf{Cov}} \newcommand{\Cor}{\mathsf{Cor}} \newcommand{\x}{\mathbf{x}} \newcommand{\y}{\mathbf{y}} \renewcommand{\a}{\mathbf{a}} \newcommand{\W}{\mathbf{W}} \newcommand{\C}{\mathbf{C}} \renewcommand{\H}{\mathbf{H}} \newcommand{\X}{\mathbf{X}} \newcommand{\B}{\mathbf{B}} \newcommand{\V}{\mathbf{V}} \newcommand{\I}{\mathbf{I}} \newcommand{\D}{\mathbf{D}} \newcommand{\bS}{\mathbf{S}} \newcommand{\N}{\mathcal{N}} \renewcommand{\L}{L} \renewcommand{\P}{\mathsf{P}} \newcommand{\K}{\mathbf{K}} \newcommand{\m}{\mathbf{m}} \newcommand{\argmin}{\operatorname{argmin}\displaylimits} \newcommand{\argmax}{\operatorname{argmax}\displaylimits} \newcommand{\bx}{\mathbf{x}} \newcommand{\bbeta}{\mathbf{\beta}} %%% links \usepackage{hyperref} \hypersetup{% pdftitle = {A Handbook of Statistical Analyses Using R (3rd Edition)}, pdfsubject = {Book}, pdfauthor = {Torsten Hothorn and Brian S. Everitt}, colorlinks = {black}, linkcolor = {black}, citecolor = {black}, urlcolor = {black}, hyperindex = {true}, linktocpage = {true}, } %%% captions & tables %% : conflics with figure definition in chapman.cls %%\usepackage[format=hang,margin=10pt,labelfont=bf]{caption} %% \usepackage{longtable} \usepackage[figuresright]{rotating} %%% R symbol in chapter 1 \usepackage{wrapfig} %%% Bibliography \usepackage[round,comma]{natbib} \renewcommand{\refname}{References \addcontentsline{toc}{chapter}{References}} \citeindexfalse %%% texi2dvi complains that \newblock is undefined, hm... \def\newblock{\hskip .11em plus .33em minus .07em} %%% Example sections \newcounter{exercise}[chapter] \setcounter{exercise}{0} \newcommand{\exercise}{\stepcounter{exercise} \item{Ex.~\arabic{chapter}.\arabic{exercise} }} %% URLs \newcommand{\curl}[1]{\begin{center} \url{#1} \end{center}} %%% for manual corrections %\renewcommand{\baselinestretch}{2} %%% plot sizes \setkeys{Gin}{width=0.95\textwidth} %%% color \usepackage{color} %%% hyphenations \hyphenation{drop-out} \hyphenation{mar-gi-nal} %%% new bidirectional quotes need \usepackage[utf8]{inputenc} %\usepackage{setspace} \definecolor{sidebox_todo}{rgb}{1,1,0.2} \newcommand{\todo}[1]{ \hspace{0pt}% \marginpar{% \fcolorbox{black}{sidebox_todo}{% \parbox{\marginparwidth} { \raggedright\sffamily\footnotesize{TODO: #1}% } }% } } \begin{document} %% Title page \title{A Handbook of Statistical Analyses Using \R{} --- 3rd Edition} \author{Torsten Hothorn and Brian S. Everitt} \maketitle %%\VignetteIndexEntry{Chapter Simple Inference} %%\VignetteDepends{vcd} \setcounter{chapter}{2} \SweaveOpts{prefix.string=figures/HSAUR,eps=FALSE,keep.source=TRUE} <>= rm(list = ls()) s <- search()[-1] s <- s[-match(c("package:base", "package:stats", "package:graphics", "package:grDevices", "package:utils", "package:datasets", "package:methods", "Autoloads"), s)] if (length(s) > 0) sapply(s, detach, character.only = TRUE) if (!file.exists("tables")) dir.create("tables") if (!file.exists("figures")) dir.create("figures") set.seed(290875) options(prompt = "R> ", continue = "+ ", width = 63, # digits = 4, show.signif.stars = FALSE, SweaveHooks = list(leftpar = function() par(mai = par("mai") * c(1, 1.05, 1, 1)), bigleftpar = function() par(mai = par("mai") * c(1, 1.7, 1, 1)))) HSAURpkg <- require("HSAUR3") if (!HSAURpkg) stop("cannot load package ", sQuote("HSAUR3")) rm(HSAURpkg) ### hm, R-2.4.0 --vanilla seems to need this a <- Sys.setlocale("LC_ALL", "C") ### book <- TRUE refs <- cbind(c("AItR", "DAGD", "SI", "CI", "ANOVA", "MLR", "GLM", "DE", "RP", "GAM", "SA", "ALDI", "ALDII", "SIMC", "MA", "PCA", "MDS", "CA"), 1:18) ch <- function(x) { ch <- refs[which(refs[,1] == x),] if (book) { return(paste("Chapter~\\\\ref{", ch[1], "}", sep = "")) } else { return(paste("Chapter~", ch[2], sep = "")) } } if (file.exists("deparse.R")) source("deparse.R") setHook(packageEvent("lattice", "attach"), function(...) { lattice.options(default.theme = function() standard.theme("pdf", color = FALSE)) }) @ \pagestyle{headings} <>= book <- FALSE @ \chapter[Simple Inference]{Simple Inference: Guessing Lengths, Wave Energy, Water Hardness, Piston Rings, and Rearrests of Juveniles \label{SI}} \section{Introduction} <>= library("vcd") if (!interactive()) { print.htest <- function (x, digits = 4, quote = TRUE, prefix = "", ...) { cat("\n") cat(strwrap(x$method, prefix = "\t"), sep = "\n") cat("\n") cat("data: ", x$data.name, "\n") out <- character() if (!is.null(x$statistic)) out <- c(out, paste(names(x$statistic), "=", format(round(x$statistic, 4)))) if (!is.null(x$parameter)) out <- c(out, paste(names(x$parameter), "=", format(round(x$parameter, 3)))) if (!is.null(x$p.value)) { fp <- format.pval(x$p.value, digits = digits) out <- c(out, paste("p-value", if (substr(fp, 1, 1) == "<") fp else paste("=", fp))) } cat(strwrap(paste(out, collapse = ", ")), sep = "\n") if (!is.null(x$conf.int)) { cat(format(100 * attr(x$conf.int, "conf.level")), "percent confidence interval:\n", format(c(x$conf.int[1], x$conf.int[2])), "\n") } if (!is.null(x$estimate)) { cat("sample estimates:\n") print(x$estimate, ...) } cat("\n") invisible(x) } } @ \section{Statistical Tests} \section{Analysis Using \R{}} \subsection{Estimating the Width of a Room} The data shown in Table~\ref{SI-rw-tab} are available as \Robject{roomwidth} \Rclass{data.frame} from the \Rpackage{HSAUR3} package and can be attached by using <>= data("roomwidth", package = "HSAUR3") @ If we convert the estimates of the room width in meters into feet by multiplying each by $3.28$ then we would like to test the hypothesis that the mean of the population of `metre' estimates is equal to the mean %' of the population of `feet' estimates. We shall do this first %' by using an independent samples $t$-test, but first it is good practice to check, informally at least, the normality and equal variance assumptions. Here we can use a combination of numerical and graphical approaches. The first step should be to convert the meter estimates into feet by a factor <>= convert <- ifelse(roomwidth$unit == "feet", 1, 3.28) @ which equals one for all feet measurements and $3.28$ for the measurements in meters. Now, we get the usual summary statistics and standard deviations of each set of estimates using <>= tapply(roomwidth$width * convert, roomwidth$unit, summary) tapply(roomwidth$width * convert, roomwidth$unit, sd) @ where \Rcmd{tapply} applies \Rcmd{summary}, or \Rcmd{sd}, to the converted widths for both groups of measurements given by \Robject{roomwidth\$unit}. A boxplot of each set of estimates might be useful and is depicted in Figure~\ref{SI-rw-bxp}. The \Rcmd{layout} function (line 1 in Figure~\ref{SI-rw-bxp}) divides the plotting area into three parts. The \Rcmd{boxplot} function produces a boxplot in the upper part and the two \Rcmd{qqnorm} statements in lines 7 and 10 set up the normal probability plots that can be used to assess the normality assumption of the $t$-test. \index{Normal probability plot} \numberSinput \begin{figure} \begin{center} <>= layout(matrix(c(1,2,1,3), nrow = 2, ncol = 2, byrow = FALSE)) boxplot(I(width * convert) ~ unit, data = roomwidth, ylab = "Estimated width (feet)", varwidth = TRUE, names = c("Estimates in feet", "Estimates in meters (converted to feet)")) feet <- roomwidth$unit == "feet" qqnorm(roomwidth$width[feet], ylab = "Estimated width (feet)") qqline(roomwidth$width[feet]) qqnorm(roomwidth$width[!feet], ylab = "Estimated width (meters)") qqline(roomwidth$width[!feet]) @ \caption{Boxplots of estimates of room width in feet and meters (after conversion to feet) and normal probability plots of estimates of room width made in feet and in meters. \label{SI-rw-bxp}} \end{center} \end{figure} \rawSinput The boxplots indicate that both sets of estimates contain a number of outliers and also that the estimates made in meters are skewed and more variable than those made in feet, a point underlined by the numerical summary statistics above. Both normal probability plots depart from linearity, suggesting that the distributions of both sets of estimates are not normal. The presence of outliers, the apparently different variances and the evidence of non-normality all suggest caution in applying the $t$-test, but for the moment we shall apply the usual version of the test using the \Rcmd{t.test} function in \R{}. The two-sample test problem is specified by a \Rclass{formula}, here by <>= I(width * convert) ~ unit @ where the response, \Robject{width}, on the left-hand side needs to be converted first and, because the star has a special meaning in formulae as will be explained in \Sexpr{ch("ANOVA")}, the conversion needs to be embedded by \texttt{I}. The factor \Robject{unit} on the right-hand side specifies the two groups to be compared. <>= tt <- t.test(I(width * convert) ~ unit, data = roomwidth, var.equal = TRUE) @ \renewcommand{\nextcaption}{\R{} output of the independent samples $t$-test for the \Robject{roomwidth} data. \label{SI-roomwidth-tt-fig}} \SchunkLabel <>= t.test(I(width * convert) ~ unit, data = roomwidth, var.equal = TRUE) @ \SchunkRaw \renewcommand{\nextcaption}{\R{} output of the independent samples Welch test for the \Robject{roomwidth} data. \label{SI-roomwidth-welch-fig}} \SchunkLabel <>= t.test(I(width * convert) ~ unit, data = roomwidth, var.equal = FALSE) @ \SchunkRaw \renewcommand{\nextcaption}{\R{} output of the Wilcoxon rank sum test for the \Robject{roomwidth} data. \label{SI-roomwidth-wilcox-fig}} \SchunkLabel <>= wilcox.test(I(width * convert) ~ unit, data = roomwidth, conf.int = TRUE) @ \SchunkRaw <>= pwt <- round(wilcox.test(I(width * convert) ~ unit, data = roomwidth)$p.value, 3) @ \subsection{Wave Energy Device Mooring} The data from Table~\ref{SI-m-tab} are available as \Rclass{data.frame} \Robject{waves} <>= data("waves", package = "HSAUR3") @ and requires the use of a matched pairs $t$-test to answer the question of interest. This test assumes that the differences between the matched observations have a normal distribution so we can begin by checking this assumption by constructing a boxplot and a normal probability plot -- see Figure~\ref{SI-w-bxp}. \begin{figure} \begin{center} <>= mooringdiff <- waves$method1 - waves$method2 layout(matrix(1:2, ncol = 2)) boxplot(mooringdiff, ylab = "Differences (Newton meters)", main = "Boxplot") abline(h = 0, lty = 2) qqnorm(mooringdiff, ylab = "Differences (Newton meters)") qqline(mooringdiff) @ \caption{Boxplot and normal probability plot for differences between the two mooring methods. \label{SI-w-bxp}} \end{center} \end{figure} \renewcommand{\nextcaption}{\R{} output of the paired $t$-test for the \Robject{waves} data. \label{SI-waves-tt-fig}} \SchunkLabel <>= t.test(mooringdiff) @ \SchunkRaw <>= pwt <- round(wilcox.test(mooringdiff)$p.value, 3) @ \renewcommand{\nextcaption}{\R{} output of the Wilcoxon signed rank test for the \Robject{waves} data. \label{SI-waves-ws-fig}} \SchunkLabel <>= wilcox.test(mooringdiff) @ \SchunkRaw \subsection{Mortality and Water Hardness} There is a wide range of analyses we could apply to the data in Table~\ref{SI-w-tab} available from <>= data("water", package = "HSAUR3") @ But to begin we will construct a scatterplot of the data enhanced somewhat by the addition of information about the marginal distributions of water hardness (calcium concentration) and mortality, and by adding the estimated linear regression fit (see \Sexpr{ch("MLR")}) for mortality on hardness. The plot and the required \R{} code are given along with Figure~\ref{SI-water-sp}. In line 1 of Figure~\ref{SI-water-sp}, we divide the plotting region into four areas of different size. The scatterplot (line 3) uses a plotting symbol depending on the location of the city (by the \Rarg{pch} argument); a legend for the location is added in line 6. We add a least squares fit (see \Sexpr{ch("MLR")}) to the scatterplot and, finally, depict the marginal distributions by means of a boxplot and a histogram. The scatterplot shows that as hardness increases mortality decreases, and the histogram for the water hardness shows it has a rather skewed distribution. \numberSinput \begin{figure} \begin{center} <>= nf <- layout(matrix(c(2, 0, 1, 3), 2, 2, byrow = TRUE), c(2, 1), c(1, 2), TRUE) psymb <- as.numeric(water$location) plot(mortality ~ hardness, data = water, pch = psymb) abline(lm(mortality ~ hardness, data = water)) legend("topright", legend = levels(water$location), pch = c(1,2), bty = "n") hist(water$hardness) boxplot(water$mortality) @ \caption{Enhanced scatterplot of water hardness and mortality, showing both the joint and the marginal distributions and, in addition, the location of the city by different plotting symbols. \label{SI-water-sp}} \end{center} \end{figure} \rawSinput \renewcommand{\nextcaption}{\R{} output of Pearsons' correlation coefficient %' for the \Robject{water} data. \label{SI-water-c-fig}} \SchunkLabel <>= cor.test(~ mortality + hardness, data = water) @ \SchunkRaw <>= cr <- round(cor.test(~ mortality + hardness, data = water)$estimate, 3) @ \subsection{Piston-ring Failures} <>= chisqt <- chisq.test(pistonrings) @ \renewcommand{\nextcaption}{\R{} output of the chi-squared test for the \Robject{pistonrings} data. \label{SI-pr-x2-fig}} \SchunkLabel <>= data("pistonrings", package = "HSAUR3") chisq.test(pistonrings) @ \SchunkRaw Rather than looking at the simple differences of observed and expected values for each cell which would be unsatisfactory since a difference of fixed size is clearly more important for smaller samples, it is preferable to consider a \stress{standardized residual} \index{Standardized residual, for chi-squared tests} given by dividing the observed minus the expected difference by the square root of the appropriate expected value. The $X^2$ statistic for assessing independence is simply the sum, over all the cells in the table, of the squares of these terms. We can find these values extracting the \Robject{residuals} element of the object returned by the \Rcmd{chisq.test} function <>= chisq.test(pistonrings)$residuals @ A graphical representation of these residuals is called an \stress{association plot} \index{Association plot} and is available via the \Rcmd{assoc} function from package \Rpackage{vcd} \citep{PKG:vcd} applied to the contingency table of the two categorical variables. Figure~\ref{SI-assoc-plot} depicts the residuals for the piston ring data. The deviations from independence are largest for C1 and C4 compressors in the center and south leg. \begin{figure} \begin{center} <>= library("vcd") assoc(pistonrings) @ \caption{Association plot of the residuals for the \Robject{pistonrings} data. \label{SI-assoc-plot}} \end{center} \end{figure} \subsection{Rearrests of Juveniles} The data in Table~\ref{SI-r-tab} are available as \Rclass{table} object via <>= data("rearrests", package = "HSAUR3") rearrests @ <>= mcs <- round(mcnemar.test(rearrests, correct = FALSE)$statistic, 2) @ and in \Robject{rearrests} the counts in the four cells refer to the matched pairs of subjects; for example, in $\Sexpr{rearrests[1,1]}$ pairs both members of the pair were rearrested. Here we need to use McNemar's %' test to assess whether rearrest is associated with the type of court where the juvenile was tried. We can use the \R{} function \Rcmd{mcnemar.test}. The test statistic shown in Figure~\ref{SI-ra-mc-fig} is $\Sexpr{mcs}$ with a single degree of freedom -- the associated $p$-value is extremely small and there is strong evidence that type of court and the probability of rearrest are related. It appears that trial at a juvenile court is less likely to result in rearrest (see Exercise~3.4). % An exact version of McNemar's test %%' can be obtained by testing whether $b$ and $c$ are equal using a binomial test (see Figure~\ref{SI-ra-mcbin-fig}). \renewcommand{\nextcaption}{\R{} output of McNemar's test %' for the \Robject{rearrests} data. \label{SI-ra-mc-fig}} \SchunkLabel <>= mcnemar.test(rearrests, correct = FALSE) @ \SchunkRaw \renewcommand{\nextcaption}{\R{} output of an exact version of McNemar's test %' for the \Robject{rearrests} data computed via a binomial test. \label{SI-ra-mcbin-fig}} \SchunkLabel <>= binom.test(rearrests[2], n = sum(rearrests[c(2,3)])) @ \SchunkRaw \bibliographystyle{LaTeXBibTeX/refstyle} \bibliography{LaTeXBibTeX/HSAUR} \end{document} HSAUR3/inst/doc/Ch_survival_analysis.R0000644000176200001440000001374413302741062017263 0ustar liggesusers### R code from vignette source 'Ch_survival_analysis.Rnw' ### Encoding: ASCII ################################################### ### code chunk number 1: setup ################################################### rm(list = ls()) s <- search()[-1] s <- s[-match(c("package:base", "package:stats", "package:graphics", "package:grDevices", "package:utils", "package:datasets", "package:methods", "Autoloads"), s)] if (length(s) > 0) sapply(s, detach, character.only = TRUE) if (!file.exists("tables")) dir.create("tables") if (!file.exists("figures")) dir.create("figures") set.seed(290875) options(prompt = "R> ", continue = "+ ", width = 63, # digits = 4, show.signif.stars = FALSE, SweaveHooks = list(leftpar = function() par(mai = par("mai") * c(1, 1.05, 1, 1)), bigleftpar = function() par(mai = par("mai") * c(1, 1.7, 1, 1)))) HSAURpkg <- require("HSAUR3") if (!HSAURpkg) stop("cannot load package ", sQuote("HSAUR3")) rm(HSAURpkg) ### hm, R-2.4.0 --vanilla seems to need this a <- Sys.setlocale("LC_ALL", "C") ### book <- TRUE refs <- cbind(c("AItR", "DAGD", "SI", "CI", "ANOVA", "MLR", "GLM", "DE", "RP", "GAM", "SA", "ALDI", "ALDII", "SIMC", "MA", "PCA", "MDS", "CA"), 1:18) ch <- function(x) { ch <- refs[which(refs[,1] == x),] if (book) { return(paste("Chapter~\\\\ref{", ch[1], "}", sep = "")) } else { return(paste("Chapter~", ch[2], sep = "")) } } if (file.exists("deparse.R")) source("deparse.R") setHook(packageEvent("lattice", "attach"), function(...) { lattice.options(default.theme = function() standard.theme("pdf", color = FALSE)) }) ################################################### ### code chunk number 2: singlebook ################################################### book <- FALSE ################################################### ### code chunk number 3: SA-setup ################################################### x <- library("survival") x <- library("coin") x <- library("partykit") ################################################### ### code chunk number 4: SA-glioma-KM ################################################### data("glioma", package = "coin") library("survival") layout(matrix(1:2, ncol = 2)) g3 <- subset(glioma, histology == "Grade3") plot(survfit(Surv(time, event) ~ group, data = g3), main = "Grade III Glioma", lty = c(2, 1), ylab = "Probability", xlab = "Survival Time in Month", legend.text = c("Control", "Treated"), legend.bty = "n") g4 <- subset(glioma, histology == "GBM") plot(survfit(Surv(time, event) ~ group, data = g4), main = "Grade IV Glioma", ylab = "Probability", lty = c(2, 1), xlab = "Survival Time in Month", xlim = c(0, max(glioma$time) * 1.05)) ################################################### ### code chunk number 5: SA-glioma-logrank ################################################### survdiff(Surv(time, event) ~ group, data = g3) ################################################### ### code chunk number 6: SA-glioma-exact ################################################### library("coin") logrank_test(Surv(time, event) ~ group, data = g3, distribution = "exact") ################################################### ### code chunk number 7: SA-glioma-g4 ################################################### logrank_test(Surv(time, event) ~ group, data = g4, distribution = "exact") ################################################### ### code chunk number 8: SA-glioma-hist ################################################### logrank_test(Surv(time, event) ~ group | histology, data = glioma, distribution = approximate(B = 10000)) ################################################### ### code chunk number 9: SA-GBSG2-plot ################################################### data("GBSG2", package = "TH.data") plot(survfit(Surv(time, cens) ~ horTh, data = GBSG2), lty = 1:2, mark.time = FALSE, ylab = "Probability", xlab = "Survival Time in Days") legend(250, 0.2, legend = c("yes", "no"), lty = c(2, 1), title = "Hormonal Therapy", bty = "n") ################################################### ### code chunk number 10: SA-GBSG2-coxph ################################################### GBSG2_coxph <- coxph(Surv(time, cens) ~ ., data = GBSG2) ################################################### ### code chunk number 11: SA-GBSG2-coxph-ci ################################################### ci <- confint(GBSG2_coxph) exp(cbind(coef(GBSG2_coxph), ci))["horThyes",] ################################################### ### code chunk number 12: GBSG2-coxph-summary ################################################### summary(GBSG2_coxph) ################################################### ### code chunk number 13: SA-GBSG2-zph ################################################### GBSG2_zph <- cox.zph(GBSG2_coxph) GBSG2_zph ################################################### ### code chunk number 14: SA-GBSG2-zph-plot ################################################### plot(GBSG2_zph, var = "age") ################################################### ### code chunk number 15: SA-GBSG2-Martingal ################################################### layout(matrix(1:3, ncol = 3)) res <- residuals(GBSG2_coxph) plot(res ~ age, data = GBSG2, ylim = c(-2.5, 1.5), pch = ".", ylab = "Martingale Residuals") abline(h = 0, lty = 3) plot(res ~ pnodes, data = GBSG2, ylim = c(-2.5, 1.5), pch = ".", ylab = "") abline(h = 0, lty = 3) plot(res ~ log(progrec), data = GBSG2, ylim = c(-2.5, 1.5), pch = ".", ylab = "") abline(h = 0, lty = 3) ################################################### ### code chunk number 16: SA-GBSG2-ctree ################################################### GBSG2_ctree <- ctree(Surv(time, cens) ~ ., data = GBSG2) ################################################### ### code chunk number 17: SA-GBSG2-ctree-plot ################################################### plot(GBSG2_ctree) HSAUR3/inst/doc/Ch_quantile_regression.R0000644000176200001440000002464413302741042017566 0ustar liggesusers### R code from vignette source 'Ch_quantile_regression.Rnw' ### Encoding: ASCII ################################################### ### code chunk number 1: setup ################################################### rm(list = ls()) s <- search()[-1] s <- s[-match(c("package:base", "package:stats", "package:graphics", "package:grDevices", "package:utils", "package:datasets", "package:methods", "Autoloads"), s)] if (length(s) > 0) sapply(s, detach, character.only = TRUE) if (!file.exists("tables")) dir.create("tables") if (!file.exists("figures")) dir.create("figures") set.seed(290875) options(prompt = "R> ", continue = "+ ", width = 63, # digits = 4, show.signif.stars = FALSE, SweaveHooks = list(leftpar = function() par(mai = par("mai") * c(1, 1.05, 1, 1)), bigleftpar = function() par(mai = par("mai") * c(1, 1.7, 1, 1)))) HSAURpkg <- require("HSAUR3") if (!HSAURpkg) stop("cannot load package ", sQuote("HSAUR3")) rm(HSAURpkg) ### hm, R-2.4.0 --vanilla seems to need this a <- Sys.setlocale("LC_ALL", "C") ### book <- TRUE refs <- cbind(c("AItR", "DAGD", "SI", "CI", "ANOVA", "MLR", "GLM", "DE", "RP", "GAM", "SA", "ALDI", "ALDII", "SIMC", "MA", "PCA", "MDS", "CA"), 1:18) ch <- function(x) { ch <- refs[which(refs[,1] == x),] if (book) { return(paste("Chapter~\\\\ref{", ch[1], "}", sep = "")) } else { return(paste("Chapter~", ch[2], sep = "")) } } if (file.exists("deparse.R")) source("deparse.R") setHook(packageEvent("lattice", "attach"), function(...) { lattice.options(default.theme = function() standard.theme("pdf", color = FALSE)) }) ################################################### ### code chunk number 2: singlebook ################################################### book <- FALSE ################################################### ### code chunk number 3: QR-setup ################################################### library("lattice") trellis.par.set(list(plot.symbol = list(col=1,pch=20, cex=0.7), box.rectangle = list(col=1), plot.line = list(col = 1, lwd = 1), box.umbrella = list(lty=1, col=1), strip.background = list(col = "white"))) ltheme <- canonical.theme(color = FALSE) ## in-built B&W theme ltheme$strip.background$col <- "transparent" ## change strip bg lattice.options(default.theme = ltheme) data("db", package = "gamlss.data") nboys <- with(db, sum(age > 2)) ################################################### ### code chunk number 4: QR-db ################################################### summary(db) db$cut <- cut(db$age, breaks = c(2, 9, 23), labels = c("2-9 yrs", "9-23 yrs")) ################################################### ### code chunk number 5: QR-db-plot ################################################### db$cut <- cut(db$age, breaks = c(2, 9, 23), labels = c("2-9 yrs", "9-23 yrs")) xyplot(head ~ age | cut, data = db, xlab = "Age (years)", ylab = "Head circumference (cm)", scales = list(x = list(relation = "free")), layout = c(2, 1), pch = 19, col = rgb(.1, .1, .1, .1)) ################################################### ### code chunk number 6: QR-db-lm2.9.23 ################################################### (lm2.9 <- lm(head ~ age, data = db, subset = age < 9)) (lm9.23 <- lm(head ~ age, data = db, subset = age > 9)) ################################################### ### code chunk number 7: QR-db-lm ################################################### (lm_mod <- lm(head ~ age:I(age < 9) + I(age < 9) - 1, data = db)) ################################################### ### code chunk number 8: QR-db-median ################################################### library("quantreg") (rq_med2.9 <- rq(head ~ age, data = db, tau = 0.5, subset = age < 9)) (rq_med9.23 <- rq(head ~ age, data = db, tau = 0.5, subset = age > 9)) ################################################### ### code chunk number 9: QR-db-lmrq2.9 ################################################### cbind(coef(lm2.9)[1], confint(lm2.9, parm = "(Intercept)")) cbind(coef(lm2.9)[2], confint(lm2.9, parm = "age")) summary(rq_med2.9, se = "rank") ################################################### ### code chunk number 10: QR-db-lmrq9.23 ################################################### cbind(coef(lm9.23)[1], confint(lm9.23, parm = "(Intercept)")) cbind(coef(lm9.23)[2], confint(lm9.23, parm = "age")) summary(rq_med9.23, se = "rank") ################################################### ### code chunk number 11: QR-db-tau ################################################### tau <- c(.01, .1, .25, .5, .75, .9, .99) ################################################### ### code chunk number 12: QR-db-age ################################################### gage <- c(2:9, 9:23) i <- 1:8 ################################################### ### code chunk number 13: QR-db-lm-fit_05 ################################################### idf <- data.frame(age = gage[i]) p <- predict(lm2.9, newdata = idf, level = 0.5, interval = "prediction") colnames(p) <- c("0.5", "0.25", "0.75") p ################################################### ### code chunk number 14: QR-db-lm-fit ################################################### p <- cbind(p, predict(lm2.9, newdata = idf, level = 0.8, interval = "prediction")[,-1]) colnames(p)[4:5] <- c("0.1", "0.9") p <- cbind(p, predict(lm2.9, newdata = idf, level = 0.98, interval = "prediction")[,-1]) colnames(p)[6:7] <- c("0.01", "0.99") p2.9 <- p[, c("0.01", "0.1", "0.25", "0.5", "0.75", "0.9", "0.99")] idf <- data.frame(age = gage[-i]) p <- predict(lm9.23, newdata = idf, level = 0.5, interval = "prediction") colnames(p) <- c("0.5", "0.25", "0.75") p <- cbind(p, predict(lm9.23, newdata = idf, level = 0.8, interval = "prediction")[,-1]) colnames(p)[4:5] <- c("0.1", "0.9") p <- cbind(p, predict(lm9.23, newdata = idf, level = 0.98, interval = "prediction")[,-1]) colnames(p)[6:7] <- c("0.01", "0.99") ################################################### ### code chunk number 15: QR-db-lm-fit2 ################################################### p9.23 <- p[, c("0.01", "0.1", "0.25", "0.5", "0.75", "0.9", "0.99")] round((q2.23 <- rbind(p2.9, p9.23)), 3) ################################################### ### code chunk number 16: QR-db-lm-plot ################################################### pfun <- function(x, y, ...) { panel.xyplot(x = x, y = y, ...) if (max(x) <= 9) { apply(q2.23, 2, function(x) panel.lines(gage[i], x[i])) } else { apply(q2.23, 2, function(x) panel.lines(gage[-i], x[-i])) } panel.text(rep(max(db$age), length(tau)), q2.23[nrow(q2.23),], label = tau, cex = 0.9) panel.text(rep(min(db$age), length(tau)), q2.23[1,], label = tau, cex = 0.9) } xyplot(head ~ age | cut, data = db, xlab = "Age (years)", ylab = "Head circumference (cm)", pch = 19, scales = list(x = list(relation = "free")), layout = c(2, 1), col = rgb(.1, .1, .1, .1), panel = pfun) ################################################### ### code chunk number 17: QR-db-rq2.9 ################################################### (rq2.9 <- rq(head ~ age, data = db, tau = tau, subset = age < 9)) ################################################### ### code chunk number 18: QR-db-rq9.23 ################################################### (rq9.23 <- rq(head ~ age, data = db, tau = tau, subset = age > 9)) ################################################### ### code chunk number 19: QR-db-rq-fit ################################################### p2.23 <- rbind(predict(rq2.9, newdata = data.frame(age = gage[i])), predict(rq9.23, newdata = data.frame(age = gage[-i]))) ################################################### ### code chunk number 20: QR-db-rq-plot ################################################### pfun <- function(x, y, ...) { panel.xyplot(x = x, y = y, ...) if (max(x) <= 9) { apply(q2.23, 2, function(x) panel.lines(gage[i], x[i], lty = 2)) apply(p2.23, 2, function(x) panel.lines(gage[i], x[i])) } else { apply(q2.23, 2, function(x) panel.lines(gage[-i], x[-i], lty = 2)) apply(p2.23, 2, function(x) panel.lines(gage[-i], x[-i])) } panel.text(rep(max(db$age), length(tau)), p2.23[nrow(p2.23),], label = tau, cex = 0.9) panel.text(rep(min(db$age), length(tau)), p2.23[1,], label = tau, cex = 0.9) } xyplot(head ~ age | cut, data = db, xlab = "Age (years)", ylab = "Head circumference (cm)", pch = 19, scales = list(x = list(relation = "free")), layout = c(2, 1), col = rgb(.1, .1, .1, .1), panel = pfun) ################################################### ### code chunk number 21: QR-db-rqss-fit ################################################### rqssmod <- vector(mode = "list", length = length(tau)) db$lage <- with(db, age^(1/3)) for (i in 1:length(tau)) rqssmod[[i]] <- rqss(head ~ qss(lage, lambda = 1), data = db, tau = tau[i]) ################################################### ### code chunk number 22: QR-db-rqss-pred ################################################### gage <- seq(from = min(db$age), to = max(db$age), length = 50) p <- sapply(1:length(tau), function(i) { predict(rqssmod[[i]], newdata = data.frame(lage = gage^(1/3))) }) ################################################### ### code chunk number 23: QR-db-rqss-plot ################################################### pfun <- function(x, y, ...) { panel.xyplot(x = x, y = y, ...) apply(p, 2, function(x) panel.lines(gage, x)) panel.text(rep(max(db$age), length(tau)), p[nrow(p),], label = tau, cex = 0.9) panel.text(rep(min(db$age), length(tau)), p[1,], label = tau, cex = 0.9) } xyplot(head ~ age | cut, data = db, xlab = "Age (years)", ylab = "Head circumference (cm)", pch = 19, scales = list(x = list(relation = "free")), layout = c(2, 1), col = rgb(.1, .1, .1, .1), panel = pfun) HSAUR3/inst/doc/Ch_gam.Rnw0000644000176200001440000006234713302740166014625 0ustar liggesusers \documentclass{chapman} %%% copy Sweave.sty definitions %%% keeps `sweave' from adding `\usepackage{Sweave}': DO NOT REMOVE %\usepackage{Sweave} \RequirePackage[T1]{fontenc} \RequirePackage{graphicx,ae,fancyvrb} \IfFileExists{upquote.sty}{\RequirePackage{upquote}}{} \usepackage{relsize} \DefineVerbatimEnvironment{Sinput}{Verbatim}{} \DefineVerbatimEnvironment{Soutput}{Verbatim}{fontfamily=courier, fontshape=it, fontsize=\relsize{-1}} \DefineVerbatimEnvironment{Scode}{Verbatim}{} \newenvironment{Schunk}{}{} %%% environment for raw output \newcommand{\SchunkRaw}{\renewenvironment{Schunk}{}{} \DefineVerbatimEnvironment{Soutput}{Verbatim}{fontfamily=courier, fontshape=it, fontsize=\small} \rawSinput } %%% environment for labeled output \newcommand{\nextcaption}{} \newcommand{\SchunkLabel}{ \renewenvironment{Schunk}{\begin{figure}[ht] }{\caption{\nextcaption} \end{figure} } \DefineVerbatimEnvironment{Sinput}{Verbatim}{frame = topline} \DefineVerbatimEnvironment{Soutput}{Verbatim}{frame = bottomline, samepage = true, fontfamily=courier, fontshape=it, fontsize=\relsize{-1}} } %%% S code with line numbers \DefineVerbatimEnvironment{Sinput} {Verbatim} { %% numbers=left } \newcommand{\numberSinput}{ \DefineVerbatimEnvironment{Sinput}{Verbatim}{numbers=left} } \newcommand{\rawSinput}{ \DefineVerbatimEnvironment{Sinput}{Verbatim}{} } %%% R / System symbols \newcommand{\R}{\textsf{R}} \newcommand{\rR}{{R}} \renewcommand{\S}{\textsf{S}} \newcommand{\SPLUS}{\textsf{S-PLUS}} \newcommand{\rSPLUS}{{S-PLUS}} \newcommand{\SPSS}{\textsf{SPSS}} \newcommand{\EXCEL}{\textsf{Excel}} \newcommand{\ACCESS}{\textsf{Access}} \newcommand{\SQL}{\textsf{SQL}} %%\newcommand{\Rpackage}[1]{\hbox{\rm\textit{#1}}} %%\newcommand{\Robject}[1]{\hbox{\rm\texttt{#1}}} %%\newcommand{\Rclass}[1]{\hbox{\rm\textit{#1}}} %%\newcommand{\Rcmd}[1]{\hbox{\rm\texttt{#1}}} \newcommand{\Rpackage}[1]{\index{#1 package@{\fontseries{b}\selectfont #1} package} {\fontseries{b}\selectfont #1}} \newcommand{\rpackage}[1]{{\fontseries{b}\selectfont #1}} \newcommand{\Robject}[1]{\texttt{#1}} \newcommand{\Rclass}[1]{\index{#1 class@\textit{#1} class}\textit{#1}} \newcommand{\Rcmd}[1]{\index{#1 function@\texttt{#1} function}\texttt{#1}} \newcommand{\Roperator}[1]{\texttt{#1}} \newcommand{\Rarg}[1]{\texttt{#1}} \newcommand{\Rlevel}[1]{\texttt{#1}} %%% other symbols \newcommand{\file}[1]{\hbox{\rm\texttt{#1}}} %%\newcommand{\stress}[1]{\index{#1}\textit{#1}} \newcommand{\stress}[1]{\textit{#1}} \newcommand{\booktitle}[1]{\textit{#1}} %%' %%% Math symbols \usepackage{amstext} \usepackage{amsmath} \newcommand{\E}{\mathsf{E}} \newcommand{\Var}{\mathsf{Var}} \newcommand{\Cov}{\mathsf{Cov}} \newcommand{\Cor}{\mathsf{Cor}} \newcommand{\x}{\mathbf{x}} \newcommand{\y}{\mathbf{y}} \renewcommand{\a}{\mathbf{a}} \newcommand{\W}{\mathbf{W}} \newcommand{\C}{\mathbf{C}} \renewcommand{\H}{\mathbf{H}} \newcommand{\X}{\mathbf{X}} \newcommand{\B}{\mathbf{B}} \newcommand{\V}{\mathbf{V}} \newcommand{\I}{\mathbf{I}} \newcommand{\D}{\mathbf{D}} \newcommand{\bS}{\mathbf{S}} \newcommand{\N}{\mathcal{N}} \renewcommand{\L}{L} \renewcommand{\P}{\mathsf{P}} \newcommand{\K}{\mathbf{K}} \newcommand{\m}{\mathbf{m}} \newcommand{\argmin}{\operatorname{argmin}\displaylimits} \newcommand{\argmax}{\operatorname{argmax}\displaylimits} \newcommand{\bx}{\mathbf{x}} \newcommand{\bbeta}{\mathbf{\beta}} %%% links \usepackage{hyperref} \hypersetup{% pdftitle = {A Handbook of Statistical Analyses Using R (3rd Edition)}, pdfsubject = {Book}, pdfauthor = {Torsten Hothorn and Brian S. Everitt}, colorlinks = {black}, linkcolor = {black}, citecolor = {black}, urlcolor = {black}, hyperindex = {true}, linktocpage = {true}, } %%% captions & tables %% : conflics with figure definition in chapman.cls %%\usepackage[format=hang,margin=10pt,labelfont=bf]{caption} %% \usepackage{longtable} \usepackage[figuresright]{rotating} %%% R symbol in chapter 1 \usepackage{wrapfig} %%% Bibliography \usepackage[round,comma]{natbib} \renewcommand{\refname}{References \addcontentsline{toc}{chapter}{References}} \citeindexfalse %%% texi2dvi complains that \newblock is undefined, hm... \def\newblock{\hskip .11em plus .33em minus .07em} %%% Example sections \newcounter{exercise}[chapter] \setcounter{exercise}{0} \newcommand{\exercise}{\stepcounter{exercise} \item{Ex.~\arabic{chapter}.\arabic{exercise} }} %% URLs \newcommand{\curl}[1]{\begin{center} \url{#1} \end{center}} %%% for manual corrections %\renewcommand{\baselinestretch}{2} %%% plot sizes \setkeys{Gin}{width=0.95\textwidth} %%% color \usepackage{color} %%% hyphenations \hyphenation{drop-out} \hyphenation{mar-gi-nal} %%% new bidirectional quotes need \usepackage[utf8]{inputenc} %\usepackage{setspace} \definecolor{sidebox_todo}{rgb}{1,1,0.2} \newcommand{\todo}[1]{ \hspace{0pt}% \marginpar{% \fcolorbox{black}{sidebox_todo}{% \parbox{\marginparwidth} { \raggedright\sffamily\footnotesize{TODO: #1}% } }% } } \begin{document} %% Title page \title{A Handbook of Statistical Analyses Using \R{} --- 3rd Edition} \author{Torsten Hothorn and Brian S. Everitt} \maketitle %%\VignetteIndexEntry{Chapter Generalized Additive Models} %%\VignetteDepends{mgcv,rpart,wordcloud,mboost} \setcounter{chapter}{9} \SweaveOpts{prefix.string=figures/HSAUR,eps=FALSE,keep.source=TRUE} <>= rm(list = ls()) s <- search()[-1] s <- s[-match(c("package:base", "package:stats", "package:graphics", "package:grDevices", "package:utils", "package:datasets", "package:methods", "Autoloads"), s)] if (length(s) > 0) sapply(s, detach, character.only = TRUE) if (!file.exists("tables")) dir.create("tables") if (!file.exists("figures")) dir.create("figures") set.seed(290875) options(prompt = "R> ", continue = "+ ", width = 63, # digits = 4, show.signif.stars = FALSE, SweaveHooks = list(leftpar = function() par(mai = par("mai") * c(1, 1.05, 1, 1)), bigleftpar = function() par(mai = par("mai") * c(1, 1.7, 1, 1)))) HSAURpkg <- require("HSAUR3") if (!HSAURpkg) stop("cannot load package ", sQuote("HSAUR3")) rm(HSAURpkg) ### hm, R-2.4.0 --vanilla seems to need this a <- Sys.setlocale("LC_ALL", "C") ### book <- TRUE refs <- cbind(c("AItR", "DAGD", "SI", "CI", "ANOVA", "MLR", "GLM", "DE", "RP", "GAM", "SA", "ALDI", "ALDII", "SIMC", "MA", "PCA", "MDS", "CA"), 1:18) ch <- function(x) { ch <- refs[which(refs[,1] == x),] if (book) { return(paste("Chapter~\\\\ref{", ch[1], "}", sep = "")) } else { return(paste("Chapter~", ch[2], sep = "")) } } if (file.exists("deparse.R")) source("deparse.R") setHook(packageEvent("lattice", "attach"), function(...) { lattice.options(default.theme = function() standard.theme("pdf", color = FALSE)) }) @ \pagestyle{headings} <>= book <- FALSE @ <>= library("mgcv") library("mboost") library("rpart") library("wordcloud") @ \chapter[Scatterplot Smoothers and Additive Models]{Scatterplot Smoothers and Generalized Additive Models: The Men's Olympic 1500m, Air Pollution in the US, Risk Factors for Kyphosis, and Women's Role in %' Society \label{GAM}} \section{Introduction} \section{Scatterplot Smoothers and Generalized Additive Models} \section{Analysis Using \R{}} \subsection{Olympic 1500m Times} To begin we will construct a scatterplot of winning time against the year the games were held. The \R{} code and the resulting plot are shown in Figure~\ref{GAM-men1500m-plot}. There is a very clear downward trend in the times over the years, and, in addition there is a very clear outlier namely the winning time for 1896. We shall remove this time from the data set and now concentrate on the remaining times. First we will fit a simple linear regression to the data and plot the fit onto the scatterplot. The code and the resulting plot are shown in Figure~\ref{GAM-men1500m-lm}. Clearly the linear regression model captures in general terms the downward trend in the times. Now we can add the fits given by the lowess smoother and by a cubic spline smoother; the resulting graph and the extra \R{} code needed are shown in Figure~\ref{GAM-men1500m-smooth}. Both non-parametric fits suggest some distinct departure from linearity, and clearly point to a quadratic model being more sensible than a linear model here. And fitting a parametric model that includes both a linear and a quadratic effect for the year gives a prediction curve very similar to the non-parametric curves; see Figure~\ref{GAM-men1500m-quad}. Here use of the non-parametric smoothers has effectively diagnosed our linear model and pointed the way to using a more suitable parametric model; this is often how such non-parametric models can be used most effectively. For these data, of course, it is clear that the simple linear model cannot be suitable if the investigator is interested in predicting future times since even the most basic knowledge of human physiology will tell us that times cannot continue to go down. There must be some lower limit to the time man can run 1500m. But in other situations use of the non-parametric smoothers may point to a parametric model that could not have been identified \emph{a priori}. \begin{figure} \begin{center} <>= plot(time ~ year, data = men1500m, xlab = "Year", ylab = "Winning time (sec)") @ \caption{Scatterplot of year and winning time. \label{GAM-men1500m-plot}} \end{center} \end{figure} \begin{figure} \begin{center} <>= men1500m1900 <- subset(men1500m, year >= 1900) men1500m_lm <- lm(time ~ year, data = men1500m1900) plot(time ~ year, data = men1500m1900, xlab = "Year", ylab = "Winning time (sec)") abline(men1500m_lm) @ \caption{Scatterplot of year and winning time with fitted values from a simple linear model. \label{GAM-men1500m-lm}} \end{center} \end{figure} \begin{figure} \begin{center} <>= x <- men1500m1900$year y <- men1500m1900$time men1500m_lowess <- lowess(x, y) plot(time ~ year, data = men1500m1900, xlab = "Year", ylab = "Winning time (sec)") lines(men1500m_lowess, lty = 2) men1500m_cubic <- gam(y ~ s(x, bs = "cr")) lines(x, predict(men1500m_cubic), lty = 3) @ \caption{Scatterplot of year and winning time with fitted values from a smooth non-parametric model. \label{GAM-men1500m-smooth}} \end{center} \end{figure} \begin{figure} \begin{center} <>= men1500m_lm2 <- lm(time ~ year + I(year^2), data = men1500m1900) plot(time ~ year, data = men1500m1900, xlab = "Year", ylab = "Winning time (sec)") lines(men1500m1900$year, predict(men1500m_lm2)) @ \caption{Scatterplot of year and winning time with fitted values from a quadratic model. \label{GAM-men1500m-quad}} \end{center} \end{figure} It is of some interest to look at the predictions of winning times in future Olympics from both the linear and quadratic models. For example, for 2008 and 2012 the predicted times and their $95\%$ confidence intervals can be found using the following code \newpage <>= predict(men1500m_lm, newdata = data.frame(year = c(2008, 2012)), interval = "confidence") predict(men1500m_lm2, newdata = data.frame(year = c(2008, 2012)), interval = "confidence") @ \newpage For predictions far into the future both the quadratic and the linear model fail; we leave readers to get some more predictions to see what happens. We can compare the first prediction with the time actually recorded by the winner of the men's 1500m in Beijing 2008, Rashid Ramzi from Brunei, who won the event in $212.94$ seconds. The confidence interval obtained from the simple linear model does not include this value but the confidence interval for the prediction derived from the quadratic model does. \subsection{Air Pollution in US Cities} Unfortunately, we cannot fit an additive model for describing the $\text{SO}_2$ concentration based on all six covariates because this leads to more parameters than cities, i.e., more parameters than observations when using the default parameterization of \Rpackage{mgcv}. Thus, before we can apply the \Rcmd{gam} function from package \Rpackage{mgcv}, we have to decide which covariates should enter the model and which subset of these covariates should be allowed to deviate from a linear regression relationship. As briefly discussed in Section~\ref{GAM:VS}, we can fit an additive model using the iterative boosting algorithm as described by \cite{HSAUR:BuehlmannHothorn2007}. The complexity of the model is determined by an AIC criterion, which can also be used to determine an appropriate number of boosting iterations to choose. The methodology is available from package \Rpackage{mboost} \citep{PKG:mboost}. We start with a small number of boosting iterations ($100$ by default) and compute the AIC of the corresponding $100$ models: <>= library("mboost") USair_boost <- gamboost(SO2 ~ ., data = USairpollution) USair_aic <- AIC(USair_boost) USair_aic @ The AIC suggests that the boosting algorithm should be stopped after $\Sexpr{mstop(USair_aic)}$ iterations. The partial contributions of each covariate to the predicted $\text{SO}_2$ concentration are given in Figure~\ref{GAM-USairpollution-boostplot}. The plot indicates that all six covariates enter the model and the selection of a subset of covariates for modeling isn't appropriate in this case. However, the number of manufacturing enterprises seems to add linearly to the $\text{SO}_2$ concentration, which simplifies the model. Moreover, the average annual precipitation contribution seems to deviate from zero only for some extreme observations and one might refrain from using the covariate at all. \begin{figure} \begin{center} <>= USair_gam <- USair_boost[mstop(USair_aic)] layout(matrix(1:6, ncol = 3)) plot(USair_gam, ask = FALSE) @ \caption{Partial contributions of six exploratory covariates to the predicted $\text{SO}_2$ concentration. \label{GAM-USairpollution-boostplot}} \end{center} \end{figure} As always, an inspection of the model fit via a residual plot is worth the effort. Here, we plot the fitted values against the residuals and label the points with the name of the corresponding city using the \Rcmd{textplot} function from package \Rpackage{wordcloud}. Figure~\ref{GAM-USairpollution-residplot} shows at least two extreme observations. Chicago has a very large observed and fitted $\text{SO}_2$ concentration, which is due to the huge number of inhabitants and manufacturing plants (see Figure~\ref{GAM-USairpollution-boostplot} also). One smaller city, Providence, is associated with a rather large positive residual indicating that the actual $\text{SO}_2$ concentration is underestimated by the model. In fact, this small town has a rather high $\text{SO}_2$ concentration which is hardly explained by our model. Overall, the model doesn't fit the data very well, so we should avoid overinterpreting the model structure too much. In addition, since each of the six covariates contributes to the model, we aren't able to select a smaller subset of the covariates for modeling and thus fitting a model using \Rcmd{gam} is still complicated (and will not add much knowledge anyway). \begin{figure} \begin{center} <>= SO2hat <- predict(USair_gam) SO2 <- USairpollution$SO2 plot(SO2hat, SO2 - SO2hat, type = "n", xlim = c(-20, max(SO2hat) * 1.1), ylim = range(SO2 - SO2hat) * c(2, 1)) textplot(SO2hat, SO2 - SO2hat, rownames(USairpollution), show.lines = FALSE, new = FALSE) abline(h = 0, lty = 2, col = "grey") @ \caption{Residual plot of $\text{SO}_2$ concentration. \label{GAM-USairpollution-residplot}} \end{center} \end{figure} \subsection{Risk Factors for Kyphosis} \index{Spinogram} Before modeling the relationship between kyphosis and the three exploratory variables age, starting vertebral level of the surgery, and number of vertebrae involved, we investigate the partial associations by so-called \stress{spinograms}, as introduced in \Sexpr{ch("DAGD")}. The numeric exploratory covariates are discretized and their empirical relative frequencies are plotted against the conditional frequency of kyphosis in the corresponding group. Figure~\ref{GAM-kyphosis-plot} shows that kyphosis is absent in very young or very old children, children with a small starting vertebral level, and high number of vertebrae involved. \begin{figure} \begin{center} <>= layout(matrix(1:3, nrow = 1)) spineplot(Kyphosis ~ Age, data = kyphosis, ylevels = c("present", "absent")) spineplot(Kyphosis ~ Number, data = kyphosis, ylevels = c("present", "absent")) spineplot(Kyphosis ~ Start, data = kyphosis, ylevels = c("present", "absent")) @ \caption{Spinograms of the three exploratory variables and response variable \Robject{kyphosis}. \label{GAM-kyphosis-plot}} \end{center} \end{figure} The logistic additive model needed to describe the conditional probability of kyphosis given the exploratory variables can be fitted using function \Rcmd{gam}. Here, the dimension of the basis ($k$) has to be modified for \Robject{Number} and \Robject{Start} since these variables are heavily tied. As for generalized linear models, the \Robject{family} argument determines the type of model to be fitted, a logistic model in our case: <>= (kyphosis_gam <- gam(Kyphosis ~ s(Age, bs = "cr") + s(Number, bs = "cr", k = 3) + s(Start, bs = "cr", k = 3), family = binomial, data = kyphosis)) @ The partial contributions of each covariate to the conditional probability of kyphosis with confidence bands are shown in Figure~\ref{GAM-kyphosis-gamplot}. In essence, the same conclusions as drawn from Figure~\ref{GAM-kyphosis-plot} can be stated here. The risk of kyphosis being present decreases with higher starting vertebral level and lower number of vertebrae involved. Children about $100$ months old are under higher risk compared to younger or older children. \begin{figure} \begin{center} <>= trans <- function(x) binomial()$linkinv(x) layout(matrix(1:3, nrow = 1)) plot(kyphosis_gam, select = 1, shade = TRUE, trans = trans) plot(kyphosis_gam, select = 2, shade = TRUE, trans = trans) plot(kyphosis_gam, select = 3, shade = TRUE, trans = trans) @ \caption{Partial contributions of three exploratory variables with confidence bands. \label{GAM-kyphosis-gamplot}} \end{center} \end{figure} \subsection{Women's Role in Society} %' In Chapter~\ref{GLM}, we saw that a logistic regression with an interaction between gender and level of education described the data better than a main-effects only model. Using an additive logistic regression model, we can fit separate, possibly nonlinear, functions of levels of education to both genders: <>= data("womensrole", package = "HSAUR3") fm1 <- cbind(agree, disagree) ~ s(education, by = gender) womensrole_gam <- gam(fm1, data = womensrole, family = binomial()) @ The resulting model is best inspected by a plot (Figure~\ref{GAM-womensrole-gamplot}). For males, the log-odds of agreement decreases linearly with each additional year of education. For females, the log-odds is more or less constant up to five years of education and only then begins to decrease. After 15 years, there seems to be no further impact on the log-odds. When we plot the resulting fitted probabilities in a way similar to Figure~\ref{GLM-role2plot}, we see that the interaction is even more pronounced in the additive compared to the linear model. The flat curve for women with less than five years of education can be explained by the rather large variability of the answers in this area but the plateau to the right is due to two groups of highly educated women with a rather large proportion of agreement. \begin{figure} \begin{center} <>= layout(matrix(1:2, nrow = 1)) plot(womensrole_gam, select = 1, shade = TRUE) plot(womensrole_gam, select = 1, shade = TRUE) @ \caption{Effects of level of education for males (right) and females (left) on the log-odds scale derived from an additive logistic regression model. The shaded area denotes confidence bands. \label{GAM-womensrole-gamplot}} \end{center} \end{figure} <>= myplot <- function(role.fitted) { f <- womensrole$gender == "Female" plot(womensrole$education, role.fitted, type = "n", ylab = "Probability of agreeing", xlab = "Education", ylim = c(0,1)) lines(womensrole$education[!f], role.fitted[!f], lty = 1) lines(womensrole$education[f], role.fitted[f], lty = 2) lgtxt <- c("Fitted (Males)", "Fitted (Females)") legend("topright", lgtxt, lty = 1:2, bty = "n") y <- womensrole$agree / (womensrole$agree + womensrole$disagree) size <- womensrole$agree + womensrole$disagree size <- size - min(size) size <- (size / max(size)) * 3 + 1 text(womensrole$education, y, ifelse(f, "\\VE", "\\MA"), family = "HersheySerif", cex = size) } @ \begin{figure} \begin{center} <>= myplot(predict(womensrole_gam, type = "response")) @ \caption{Effects of level of education for males (right) and females (left) on the log-odds scale derived from an additive logistic regression model. The shaded area denotes confidence bands. \label{GAM-womensrole-probplot}} \end{center} \end{figure} \section{Summary of Findings} \begin{description} \item[Olympic 1500m times] Here the use of a generalized additive model suggested that a quadratic model might best describe the data. When such a model was fitted it made reasonable predictions of the winner's times in the Olympic Games of 2008 and 2012. \item[Air pollution data] Finding a suitable model for these data was problematic because of the outliers in the data and the high correlations between some pairs of explanatory variables. Except for wind, the fitted partial contributions are well approximated by a linear function for most of the observations and it might be questioned if the more complex additive model is really needed. \item[Kyphosis] The risk of kyphosis being present decreases with higher starting vertebral level and lower number of vertebrae involved. Children about 100 months old are under higher risk compared to younger or older children. \item[Women's role in society] For males, the log-odds of agreement decreases linearly with each additional year of education. For females, the log-odds is more or less constant up to five years of education and only then begins to decrease. After $15$ years, there seems to be no further impact on the log-odds. \end{description} \section{Final Comments} Additive models offer flexible modeling tools for regression problems. They stand between generalized linear models, where the regression relationship is assumed to be linear, and more complex models like random forests (see \Sexpr{ch("RP")}) where the regression relationship remains unspecified. Smooth functions describing the influence of covariates on the response can be easily interpreted. Variable selection is a technically difficult problem in this class of models; boosting methods are one possibility to deal with this problem. \section*{Exercises} \begin{description} \exercise Consider the body fat data introduced in \Sexpr{ch("RP")}, Table~\ref{RP-bodyfat-tab}. First fit a generalized additive model assuming normal errors using function \Rcmd{gam}. Are all potential covariates informative? Check the results against a generalized additive model that underwent AIC-based variable selection (fitted using function \Rcmd{gamboost}). \exercise Again fit an additive model to the body fat data, but this time for a log-transformed response. Compare the two models, which one is more appropriate? \exercise Try to fit a logistic additive model to the glaucoma data discussed in \Sexpr{ch("RP")}. Which covariates should enter the model and how is their influence on the probability of suffering from glaucoma? \exercise Investigate the use of different types of scatterplot smoothers on the Hubble data in Table~\ref{MLR-hubble-tab} in Chapter~\ref{MLR-hubble-tab}. \end{description} \bibliographystyle{LaTeXBibTeX/refstyle} \bibliography{LaTeXBibTeX/HSAUR} \end{document} HSAUR3/inst/doc/Ch_analysing_longitudinal_dataII.R0000644000176200001440000002546113302740760021461 0ustar liggesusers### R code from vignette source 'Ch_analysing_longitudinal_dataII.Rnw' ### Encoding: ASCII ################################################### ### code chunk number 1: setup ################################################### rm(list = ls()) s <- search()[-1] s <- s[-match(c("package:base", "package:stats", "package:graphics", "package:grDevices", "package:utils", "package:datasets", "package:methods", "Autoloads"), s)] if (length(s) > 0) sapply(s, detach, character.only = TRUE) if (!file.exists("tables")) dir.create("tables") if (!file.exists("figures")) dir.create("figures") set.seed(290875) options(prompt = "R> ", continue = "+ ", width = 63, # digits = 4, show.signif.stars = FALSE, SweaveHooks = list(leftpar = function() par(mai = par("mai") * c(1, 1.05, 1, 1)), bigleftpar = function() par(mai = par("mai") * c(1, 1.7, 1, 1)))) HSAURpkg <- require("HSAUR3") if (!HSAURpkg) stop("cannot load package ", sQuote("HSAUR3")) rm(HSAURpkg) ### hm, R-2.4.0 --vanilla seems to need this a <- Sys.setlocale("LC_ALL", "C") ### book <- TRUE refs <- cbind(c("AItR", "DAGD", "SI", "CI", "ANOVA", "MLR", "GLM", "DE", "RP", "GAM", "SA", "ALDI", "ALDII", "SIMC", "MA", "PCA", "MDS", "CA"), 1:18) ch <- function(x) { ch <- refs[which(refs[,1] == x),] if (book) { return(paste("Chapter~\\\\ref{", ch[1], "}", sep = "")) } else { return(paste("Chapter~", ch[2], sep = "")) } } if (file.exists("deparse.R")) source("deparse.R") setHook(packageEvent("lattice", "attach"), function(...) { lattice.options(default.theme = function() standard.theme("pdf", color = FALSE)) }) ################################################### ### code chunk number 2: singlebook ################################################### book <- FALSE ################################################### ### code chunk number 3: setup ################################################### options(digits = 3) if (!interactive()) { print.summary.gee <- function (x, digits = NULL, quote = FALSE, prefix = "", ...) { if (is.null(digits)) digits <- options()$digits else options(digits = digits) cat("...") cat("\nModel:\n") cat(" Link: ", x$model$link, "\n") cat(" Variance to Mean Relation:", x$model$varfun, "\n") if (!is.null(x$model$M)) cat(" Correlation Structure: ", x$model$corstr, ", M =", x$model$M, "\n") else cat(" Correlation Structure: ", x$model$corstr, "\n") cat("\n...") nas <- x$nas if (!is.null(nas) && any(nas)) cat("\n\nCoefficients: (", sum(nas), " not defined because of singularities)\n", sep = "") else cat("\n\nCoefficients:\n") print(x$coefficients, digits = digits) cat("\nEstimated Scale Parameter: ", format(round(x$scale, digits))) cat("\n...\n") invisible(x) } } ################################################### ### code chunk number 4: ALDII-gee ################################################### library("gee") ################################################### ### code chunk number 5: ALDII-BtheB-data ################################################### data("BtheB", package = "HSAUR3") BtheB$subject <- factor(rownames(BtheB)) nobs <- nrow(BtheB) BtheB_long <- reshape(BtheB, idvar = "subject", varying = c("bdi.2m", "bdi.3m", "bdi.5m", "bdi.8m"), direction = "long") BtheB_long$time <- rep(c(2, 3, 5, 8), rep(nobs, 4)) names(BtheB_long)[names(BtheB_long) == "treatment"] <- "trt" ################################################### ### code chunk number 6: ALDII-BtheB-geefit-indep ################################################### osub <- order(as.integer(BtheB_long$subject)) BtheB_long <- BtheB_long[osub,] btb_gee <- gee(bdi ~ bdi.pre + trt + length + drug, data = BtheB_long, id = subject, family = gaussian, corstr = "independence") ################################################### ### code chunk number 7: ALDII-BtheB-geefit-ex ################################################### btb_gee1 <- gee(bdi ~ bdi.pre + trt + length + drug, data = BtheB_long, id = subject, family = gaussian, corstr = "exchangeable") ################################################### ### code chunk number 8: ALDII-BtheB-geesummary ################################################### summary(btb_gee) ################################################### ### code chunk number 9: ALDII-BtheB-gee1summary ################################################### summary(btb_gee1) ################################################### ### code chunk number 10: ALDII-respiratory-data ################################################### data("respiratory", package = "HSAUR3") resp <- subset(respiratory, month > "0") resp$baseline <- rep(subset(respiratory, month == "0")$status, rep(4, 111)) resp$nstat <- as.numeric(resp$status == "good") resp$month <- resp$month[, drop = TRUE] ################################################### ### code chunk number 11: ALDII-respiratory-names ################################################### names(resp)[names(resp) == "treatment"] <- "trt" levels(resp$trt)[2] <- "trt" ################################################### ### code chunk number 12: ALDII-respiratory-fit ################################################### resp_glm <- glm(status ~ centre + trt + gender + baseline + age, data = resp, family = "binomial") resp_gee1 <- gee(nstat ~ centre + trt + gender + baseline + age, data = resp, family = "binomial", id = subject, corstr = "independence", scale.fix = TRUE, scale.value = 1) resp_gee2 <- gee(nstat ~ centre + trt + gender + baseline + age, data = resp, family = "binomial", id = subject, corstr = "exchangeable", scale.fix = TRUE, scale.value = 1) ################################################### ### code chunk number 13: ALDII-resp-glm-summary ################################################### summary(resp_glm) ################################################### ### code chunk number 14: ALDII-resp-gee1summary ################################################### summary(resp_gee1) ################################################### ### code chunk number 15: ALDII-resp-gee2-summary ################################################### summary(resp_gee2) ################################################### ### code chunk number 16: ALDII-resp-confint ################################################### se <- summary(resp_gee2)$coefficients["trttrt", "Robust S.E."] coef(resp_gee2)["trttrt"] + c(-1, 1) * se * qnorm(0.975) ################################################### ### code chunk number 17: ALDII-resp-confint-exp ################################################### exp(coef(resp_gee2)["trttrt"] + c(-1, 1) * se * qnorm(0.975)) ################################################### ### code chunk number 18: ALDII-epilepsy ################################################### data("epilepsy", package = "HSAUR3") itp <- interaction(epilepsy$treatment, epilepsy$period) tapply(epilepsy$seizure.rate, itp, mean) tapply(epilepsy$seizure.rate, itp, var) ################################################### ### code chunk number 19: ALDII-plot1 ################################################### layout(matrix(1:2, nrow = 1)) ylim <- range(epilepsy$seizure.rate) placebo <- subset(epilepsy, treatment == "placebo") progabide <- subset(epilepsy, treatment == "Progabide") boxplot(seizure.rate ~ period, data = placebo, ylab = "Number of seizures", xlab = "Period", ylim = ylim, main = "Placebo") boxplot(seizure.rate ~ period, data = progabide, main = "Progabide", ylab = "Number of seizures", xlab = "Period", ylim = ylim) ################################################### ### code chunk number 20: ALDII-plot2 ################################################### layout(matrix(1:2, nrow = 1)) ylim <- range(log(epilepsy$seizure.rate + 1)) boxplot(log(seizure.rate + 1) ~ period, data = placebo, main = "Placebo", ylab = "Log number of seizures", xlab = "Period", ylim = ylim) boxplot(log(seizure.rate + 1) ~ period, data = progabide, main = "Progabide", ylab = "Log number of seizures", xlab = "Period", ylim = ylim) ################################################### ### code chunk number 21: ALDII-epilepsy-gee ################################################### per <- rep(log(2),nrow(epilepsy)) epilepsy$period <- as.numeric(epilepsy$period) names(epilepsy)[names(epilepsy) == "treatment"] <- "trt" fm <- seizure.rate ~ base + age + trt + offset(per) epilepsy_glm <- glm(fm, data = epilepsy, family = "poisson") epilepsy_gee1 <- gee(fm, data = epilepsy, family = "poisson", id = subject, corstr = "independence", scale.fix = TRUE, scale.value = 1) epilepsy_gee2 <- gee(fm, data = epilepsy, family = "poisson", id = subject, corstr = "exchangeable", scale.fix = TRUE, scale.value = 1) epilepsy_gee3 <- gee(fm, data = epilepsy, family = "poisson", id = subject, corstr = "exchangeable", scale.fix = FALSE, scale.value = 1) ################################################### ### code chunk number 22: ALDII-espilepsy-glm-summary ################################################### summary(epilepsy_glm) ################################################### ### code chunk number 23: ALDII-espilepsy-gee1-summary ################################################### summary(epilepsy_gee1) ################################################### ### code chunk number 24: ALDII-espilepsy-gee2-summary ################################################### summary(epilepsy_gee2) ################################################### ### code chunk number 25: ALDII-espilepsy-gee3-summary ################################################### summary(epilepsy_gee3) ################################################### ### code chunk number 26: ALDII-respiratory-lmer ################################################### library("lme4") resp_lmer <- glmer(status ~ baseline + month + trt + gender + age + centre + (1 | subject), family = binomial(), data = resp) exp(fixef(resp_lmer)) ################################################### ### code chunk number 27: ALDII-resp-lmer-dirty ################################################### su <- summary(resp_lmer) if (!interactive()) { summary <- function(x) { cat("\n...\n") cat("Fixed effects:\n") lme4V <- packageDescription("lme4")$Version if (compareVersion("0.999999-2", lme4V) >= 0) { printCoefmat(su@coefs) } else { printCoefmat(su$coefficients) } cat("\n...\n") } } ################################################### ### code chunk number 28: ALDII-resp-lmer-summary ################################################### summary(resp_lmer) HSAUR3/inst/doc/Ch_multiple_linear_regression.pdf0000644000176200001440000032034313303046021021470 0ustar liggesusers%PDF-1.5 % 1 0 obj << /Type /ObjStm /Length 3612 /Filter /FlateDecode /N 62 /First 492 >> stream xZS۸~ }vv6z?|g3 N A[d?0]+FtcpgH2# =Y? =Jt\ l6#CB߭Y6O~$/e,$htRgy'Y1,3<#eM35~,I3iQ;j^  M_TP[JBOX]rö;8$xk'^C. )ln8N JI|8%,%6(c|2J |Nm0DF:*7M8v#%9t|54Ib]%h5+2z 2L/r fi69yR6:\R&SRm2Ao5@;>BQ8yC*-{g+_/S?!=z=~9>Hн$"j d\jTQ W'% alZ\k#%=1XDDR m,4 -@OW3^~/'(#qsfWe؅;nG!=萎{:NY>Sz:^^ zIhFsKZjtEo7㹇Pm߄Rd}-C>lRn? kDoP/lZo7)TUNo;ZWM7b{DO׈f/4" DcES-<- m jo_B lU!Gm\5]h@x$kMȺfU=Yl%ˆv N4xŁ}t$@VPC ff#`DB+YM&5];DTPHrʣ nGPrfolkm͖M󰷮zzzx|@89-Z]DA5} r u1km:ni~78[p@:*S-A.!t1^N,P.4"x%-z'-4gMQi} Ĥh4;to{pgyVv9Cjr/ҵi[T-sZ5m#6k7> ?A^t}ptSotFW*X4r<`]C}| 7 m\x֡y?%cnxk:t*!2 9#L<_mн{awsFmp6Zmt%)CAqC][[b&RQwl omApğα1Bځ=öu;D<|<''auz {)ݼ}M׵Od[̝?QӝlX}9-4Yfh+w"}NdEi/ِ.h;H6&J)3(LYNHy6T ҟ}iUˆ2I<͕XWJػZڏ8K~|輙[*壂=뢾m{'۫dN m Za:vlʿ(-%{So|jxl_*Z RrpzjۉlC+jÆ˧b3lJZ;a7s\4{klw#:ݜG.El[f]3oO'0O/ۚ[w٘Slu2rjS,빹.# `x6Z?]ma;\* m:EeuU26PHSm˝(n x@6`a[3)|㛋]1Yt+?ϠO kܬZW?pA:M񛬺mQ/újVewQT ɋ,*5Eдb?eԆpg |l]F*џ=A)))Wcw: W5P)\Lb|N7flQHp~g4'*˛$?!Foc!DhcQ. }j ^xߧɓgP&*?xeNV3޹Iaǚk%5a>:>[KG#w|쑢hJˎ2;wX1]&xKXh=?IDx~[шxzKa#x$?J6SFendstream endobj 64 0 obj << /Subtype /XML /Type /Metadata /Length 1653 >> stream GPL Ghostscript 9.18 2018-05-28T10:48:07+02:00 2018-05-28T10:48:07+02:00 LaTeX with hyperref package A Handbook of Statistical Analyses Using R (3rd Edition)Torsten Hothorn and Brian S. EverittBook endstream endobj 65 0 obj << /Type /ObjStm /Length 2403 /Filter /FlateDecode /N 62 /First 514 >> stream xZR}?_я3Z}ﮚ*LB@CRy0FX2!ڲdbr!VڗֲYǂc3))ֆ9UIbǜb"68k&$::ǵeB9oy&&LgyTlcS3yse2e08VNG*LBYL+\ a1~P8堙vfE ,3qlhFP?ό:B`F+ZThf Kfbcf鶈-RI4EoHp aN8*M2J:kuj<2 9xc@T<@VN!MH Lc 0 n BGz[oH}b0dΘ*r `XL qrWߎfɴ`iZLᴘeqf_7' u%l' ίi2ar9K|˙Ey:33y4ڹ+#ԓϷۛ&?4gtzɆI<92? <39k~s V2Y=dw8^<`* y $@ЭuMQfJ0"PWiw$9|OL6[*ӈ2UGg+]XiO Dq5KKح10.4bK^i(ȗ3-Vs|bVLm(6VmǤjé;?ܳ\dȋ6˜UےoWt0>]C~!?K% pWU2ܛ}7<$R,Z3$4Y,M wGlnz6gAHȮd4a{"O֏o|eo'U7&EI01gl|&Ox9OGb`Z6iH,F͊o6Ee8O<8˓[ way=#ӋdYR/eM okТs#Mϳ.I#N,计mFp=zw 5X+j"+iKVr=f)M d_oX!QCjtմhR}\k^w}"JCtnZoCoԺ9ȶk#n ͠(=(0C֬NP(|kjtun/ XUDž(/? J>T,&4+a2Қ(vT!. ˌ#kbN/OOöŠ!Im?I[ůnWm:b 4ʭG3nY. EYM1(cP`Lm軑?JqTK=!8֖ zxډcw%U!#J"MFlO1m6yz63vҪ䐈B*vu.---Ժl9d[eHvmiخK FDÆY&6P([v2FaCPD)A/}\KRyz\UK~dxVA k\HOGQidzHdA$vW~TȤlB&B&U 0~.b0(p o/xb|rfWG~mF CseL`pջg$ۤHǣlrvk쑯dk2γM[e϶6k"6TW$/7 XU^)ziӢ5\1,<_U7q‹f5e><`0Iqj]-S /ס.PQ;t'ܓH|I|*wik!i䘥qO FPendstream endobj 128 0 obj << /Filter /FlateDecode /Length 3622 >> stream xZr$WՎaBeE>("!B? T!]M0|p0-H$^\jkEOWVʌ.?UpqQzLa}J&!yjvUKy$<ϳo'&MrSy7irJSit! cRZ&ՁnNimRIƜv.Ҙ溘HCSl$I9<]qpXvA .X^CT\.l2! zs䣅]rpC u18Gqq"$=fDlY*Ä74N1coVǿn*nŘ4ph%=0种AtuY.lX'iMR>%}x(E,a=3.یu~!fDXPp h9\0ͳ,#)cxRY^n/=p3(B|G̈_~̿v^n+/| f{UO Y#[ep[l vZYv39@%>8Rqj;bD =*Mh&91û #l:*5ѩneo60KޗemɐNg8M[Fo ڜ\O 6!n3<#kvpl=)0CMB"8JOB-z:bb`S*ע| !U}&X`J =NܷՐ17t .FFuJ2Ų+10q}ƜWc1PcC"xw8[l\Ш5O6l,!rGZF.MʑUG6iu(P5rBC+r4],8kD΅@SG:ݾk!v׉tƖXPYOr$Yʓ` yYLhcU|(rqi}=VF79)£Hq(2!T~'(-jQdru u9 ?+hg=' Oy< f _{}A|1&t3NˌLGZ߷*.iUPoRb3мª;Վa%0(!ujϕt$RG/}i瀳 ^d5IMYp4ij"M>"qt6{:uO@,̗40DARb7.|HZL4:[sgQ\Ȋ[aHzL%Cp=_Cs2Q~#Nix׳V[!K>Z;T3=׭jK Vs:-.Nk*^pOD=<\yELld.rI{D`+Bd Ydp*a1Chذ'lHMEoFz@MDG?,Sn:!ą@,7=oovLw5l₇HMw)<Ƹ-hl(;ӡ.T=~|X-quS'niL })%iQu uYk~T <+BE_XPlPSq]fRUVjxp(U`g,82{nZd|k~Fq!pGBx~MFb]-/\= _"'_L+zip$q\aV,gOnF-(N(/x (esUf''fw42 qoDW-5٤G4' XW l[yxqSCY޴}^k,`[Jtvqj,8+4N;$}8rv@y -<-tLu)m- orۺtϯJEYmYhNĀtb.vw _gKX7T8U?XƬ[DLZؔ7-uZbʥ H7ܲf$oYkSHvvT-!$ַzY_ PHBGLy:gV_W c?Ͽ֨2=5JӬ̿._/!ta’x(ߤ1,JoH(>E xP5Zy(dL-H2֑OikjT-NPQ͚@#)&#Hz$?]e\XT٩;m0Tn*./ǯ6s?G6^ ϲ rx0B˓xzO,<1Md@]~l GDgNt M`1;!]s- iHK||!aDQ`E$ o/ꎶcHE/'""#ȝZ;H "ڛ33".  1* H Jx!ޥIcD}N1Oa}&B!Ux6;I8*@/Q kй!$N먥tIE5AyUkxhD`#H,)']^s|xԯ„94RROiDޝud>vA('{K_n7.\(LMo6=TJ|V>D߳靓Κ\AWzˇ '7 Z{* j!M637Zbۘ/cdЪ}Mj ĭXKʦDsnǵ~i5MݷZv?Ztڄ]#|FUkt/Є<0maj0U{x~8 5` tmE&[ yv $J[E׿甦"|0Su:▃4!pcTәYendstream endobj 129 0 obj << /Filter /FlateDecode /Length 5342 >> stream x\msqN#qJlz_J\JBIQCj $@JOwLYf{zFr#_ٯ^J<͏gb3gx,(7˛볯Ϣ3aVЪ 2R+ٰF Ѳkhƛgbe/q)H?!jiTFF˳$ tsqs8FYHGxTvs~s ^?;!W IFv !t|4dmK9*"4<ǁ$0Ҙ&5*P )}gZ `=l7ہlVf+k '(5,>B jv9t9iW[0яeߧ؁=(bMa ӫ*k|082ughj;j<9|by;hUAY,o=W閶EEc6"_ `vت2mn`ՍRF97g8d90v<4T(ٲ|"mEyiG ukI6T6iZ(@кGAdo֩,kP6 `$f'#|WZ"8b'p 6A:ވ4.a" {oQb0sxCkJ 0{9!"'mKv/R5Lr.xܤ 7)BFrs0O& >& 頠m]QTț*KF*%>jvʲXޒTgǺl3a:Tc( 4ЊSLMn!.y4b0i6h;"|ԝfߧA5}=/pge<.샲 d|ˉ/ܫѰ0pZV񖺗Vz>ykz">yUm|8ܶnѴ%7>V`ܤ/p';Evؿ;Z"s-"B܀C>a#Rf9w$DR-"sӊ[)!^;n5"nNs؝L o0:دj56䵪ם73᧭jzU-#9.e 6(!-D #тÉeY1IpoQؘ7AR7 LZ 6MBؘ:9musa(izr>4žOY!XQ}K]]hlL@~읶mtxBr,46N˒)I;07d]k˜ `_E"t0۩V's*=\ƃt6KMj~b1# ܔM[G#3,Q PƵ=;iv6(h.Oc.z$A9fwkYbYz(4=]=&tM3`ڢ ˰ikk,PhRL;/g+L.ti%hr$$&ږuw ,IDzZQtVxsw 3 ;λ hد{8NI4ٗO$̣( Sw9JcS'3 Q/U=0<]TTW}x[}bBx_/lz?aP竆 Fk!&rPcogF[J@лY_l+6B[zZ"+EzTsnPS EmVxtR?IMMv5Yp*P贚B&J VQ*ͮYL. X+E[1iļz}LK|vc[D!K$鼓x<#R3֢T56BlĔ{9fVc ?I\ 5Phc)YAq=\lYK[wfY;Ͷb+w"B7Ҡґz᪒[&7[5X5/!}[+tv O`ѥ9p6ޥ;Tjxg#օ-0ŴpX7a.}FH~k>&9;a ߺ$Qb= k%c_5E()R DPGIy+xnrnrd8;t 6Ibn[ھU"aNd Mb~1i1 ^@hJP2Nh mV77+[S tew*hy" #{qS⹉H' 42F;ٱD'qw08 k=ff 6N\iє WPq-ELhkH )$ 5wHd)oJV9a,>rۖ !yJBWk}d<mhg//1T^o}qW"^%jit#V*PEh15XCZ܄j)zQOyxC@ KK[ع %5 cvQd\c<nycG#.:9Iw.9s,4ܦn=ɯ 획˥RvcP8K1֕$eYjB8a \ܓ9^ԍdV* !嵝ljM]Z@-Nm M!T/FV.TRJ;,|bx4@a%7kӹ.-( K5rLK^p1}.O_ }Pt_RslDY$..aD%4BAĶ%wiNɧWa@EJ5hY.[&٬oE<"yʍ(N9SklXX*w JZ \\4p뜅'@\*RGp++u)Ajd/MC|&bGi5PKӺ}M>|y}tQyQy,*Y9Jflfo4cTbǨ1VJ`a~JӬc6">rS.Stk}FthY;F=?g2HϱEp!?232}Z v7)=X [_T`Fi׭101dw%K7*b9z^XXJ6|!B mu 5:O'oe]#=J%+6~jK+vs62L2q3sibYx|;tbjF>9( xkW|KZfZ'Lbh`/wB+'lڹIG&ܓa[E;DkvlsU/*/{p p?;"9o* YtǞE7%chY2It.}E4qydڝ.LdY_5 @2Ps+bwMP\ΦwX_;+t%`a~|inADRtU> stream xuSMoT1 _c`'cTQqkhi.*]8kMfx a5rxxr" ?oJPY0ݠYp3$ A*Y+hIxdq3u9~]?zoQr'jzMR4XI&5I3p™5I]7󀣡a*ed ar;ED.lwzsV*rPGp5>9H6 #$x OśCnON15N.d_͐H`WEn{OSiӬri8qjJѕaד jwnܻ.,|?մ:u=@0>51B=KevI~tn!phh ~<qaD=op5X2T` Z- ev1>)1{(ѵNn1&>5v<`1"UȜL)^3 @Q鬅{wcWeS2=s[uZSt=D_>]-i_3dO|2iSJqqQ̺ѫR&}endstream endobj 131 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 3534 >> stream xW PTWMC߫"qUup(*t tdQFAeo@lEuhqq)'oI =ԫwLL2USN4/9] H$Ai_]'=)D{ JչNC`L{ bIl'v{J&"2Q1nxٳgNTL٢Q#ãUC"(v&<1E1sLINNNdMbbUxBx6!qI6Y^?,|ֈUmk0#L3 d f5ϬefLb3 "Ɨf3KtƏ,gg͌x1LTHriSSIzys rPdl+;Oi\8 oz7cMy]aoă!WBL=/u` 24B܁Z]G$ؒ"0aX#J]&)eϠP[:%T9Bv.`[%(E nBT<]7?#`D'dB|dkͷ]?I'+aĮ]]b8bwd*9cF?Sqp@$'=8 j[в":!#f?njAMr=ESԞiB~OЙ%udd J8G"nؿ"Ǵ+32,2SW]lvPox3pp,4gA)p`SZ[$/(vxL}q>De^(LI޶E~%goAcgΗw+1>!˔J(rÆg$8q6ZU2-u.YƎ.bQNXv P^-: T\gɕrMe%+K wkAix`Jhc ĥ UK~]!q md4dq鹏$ͬwO\+WKcVZ핔 +m}mR{}8mAbe7$I3O%h~ -t^=$'' K)H:cW?w$i܏/%*{#e]&p~A\t-{[#6-e{]F `Ue,:#s3)&<q`%Ѣ޲,.RÜ[ \T& + /9v1Q8@Ptyd?aS,@7X[gMۓS`y$Н0XO4, _㤞){t({Zpt~RYb$K3 3hLt;/Bep.]\h0]ϩ쬯ia E_X7Sp,NmFN8=-pl҄CyfVjh(*7dd4)%*eJ0u h '^0XroFAfxT@Al;/]/og6aYZM8n_&6js/HDAF}>z\8]emЋ,?z"C0-&ݽ媎z B?zpli98PZ1ƈ#.G-6lEմ^V^SCOH"' =2DTON=1B =˛? j~뻨%]V6n:Xca\ƬuʹSޯl@ˋ0 Qrkh(vef-pAKKىDN8a|]_x=wӎH`Bw)C?LE(sL|Ӓ^,o,Sa̗i8x@UM]aRM 꺰EQ|玔Hڭ5 9 㜇[`c|Z \rMVQLe%9Pπ[NGwF!HB;GFqU(T~a#|+{S.C~UkcVl 4[s]AFXo'ҧGF:,{<=dp%ICcԝs~(}|";?mQf箋2~ ݕs^w0V*<-3:%=vF v)qs:Jެio6 d!YJ|tCp5? O+c)qm8uZ={ `zY0uD(ޘ%(׬kQɒ vy<`OkN8O'&s Q&SQPRRiYw?I=I$aIR <x8C28>/g rG\D%[j8h[Plol*F.3v J- ɐaڝq O6Q1q)) v,&=jS%$0M,}}ZPo3!̒Q^?w. iSYBÂnDEbYgŧnޛW/+:POg _-.[ _ǯd/]=fIo?(aWPzSv?R!r8JFoʎ%V D,+~m(_ |ȣ3 .?*5CӨVĨ<_o/l7dJ?]/{>W8-`ѪSG6 77::o#Aq8C!ݘl3Ay!T (ť2Gj~G\]QR:08vendstream endobj 132 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 363 >> stream xcd`ab`ddt v04qH3a!Skc7s7˚ﷄ ~O XX_PYQ`hii`d``ZXX('gT*hdX뗗%i(gd(((%*c8)槤1000103012ԽK2>}wy߯jcws~7yŞ>~nSg>;3wߛgO^-ym̾^];ǂXπ| wt\eXp~`:endstream endobj 133 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1925 >> stream xmTg*T:hQIQc*$*TI#BawD*/{YayGXvaAPUIi̩ibFHKP$1Dju9Q$)H2<5IQlUժ Q~HWjRUŒujQf`e!XOYLjT+ *}*YQ1*b*toHmdT[* '5,eJL X"'D"P _VMxf⿤+*Z:ZAE~RRD0J7P _@Ksr=^ly>Ow Iȃh^ôD6߅"C/Wߊzv~Q NtJ$?ܥNOiȑdߜgk$_qz,c[p9ܚ8Xg-WŨ]'ZK-e%`6s@quyi/цد/^h JHQzx~H{p/-#@Cns3"Z$7I9(@D[t0xi{p)(7߄^oXO%})="m2  6зEDcMnk 1Hsq9E*?.%=+HIg\RVd4\H,8{̜g@X-57)/h;^d4@+W6-_k+ *٩qZo$BGݔ4rr~%Tw%'%>ZӔn Os{j=W`=kv{RNZpl3Q><wsh>Z_k'q=1DKSx3,qoO`31Qsw NO BOB;ohrdHׄ"p桃MxW/ G^\VT(saJ`;)m*ʿ;:TLc Iѹ}Ecݝt_s}}h8Hn4ɵe5k3MY-G<ߨ*~k*93 y3,qbe;9p\PʽUpn\+Zƫy!(~(s 0k06`jMȢ]Ǔ䞂[9=s~oC,7_]N%#nkelIN{/t<ڛ4zX=vy]7뺅 5roq8FǨ58 >nTp*-Ns!0" A|= 'tM3Ha ڪ*m"4|@UJ=} 88ڍ.&ۨh=vu~Y.)(VWhaYóYaNߟ9|}|w8endstream endobj 134 0 obj << /Filter /FlateDecode /Length 150 >> stream xU;1 {'0q_N@ -ׇE٬W.,?慅:c8]YJ`̤\՘pBf3y0IVL;)H%Q3T3!T*_qӊ[;KY I*) vjKԐuSC endstream endobj 135 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 7506 >> stream xyt׶ä́#SB @poe-ɽI\m)`B:nB !3q$/&Z򲤙9goߑ܉9Vco0WCu[uolÞ]%#焄Ƅot9yԩG83f ##ɋ@5!۽#cN p訨QAB}?69j{j^C#y;[77wNHP4;yYwx0EQKf4'tnؼ "JrX,k ~_.p}ІS~!Cg ۈ#F;nSj5ZI}H VQSjJQj#5D͡FR(j 5MͧP Bj5ZLMP$j5ZNM)'՗G%RPPTDu){*zE(1Ջbނ.RR$3 FsZgldwOGR|μ..]6ߵd6#ǣ_8ARտM]];}s }ɍr(d)g3_7`N(^iߚ f/ j[g KٴUVāR=۾sN0CV}@3)TjèqEv0vMRty_->:,6.2XHT9Jn epH?_=yB޺NnpPb9!_ fVekCWS7K[7\2f$N?G|':mV3zOZdd,"~"?N %-mUeIP%ZIhp$RfЮ{B>א7;9 pOzu$pʺ!pA8 NT:lဴҭ V7:5x0ʷ t6;^ TyC!Vi4${(RsHW|@}I=$<-G@BV ;\ < Y7F$Q ڰ<9m( )Av%%S( )4˧aI xF݂כ#nrxs-~fK4dA,D|ͯb5-Jc?qCg5_%etEtͱ#5ǀvn0LB&uQʳ QL`S{&IL4\4Q8REeEh$T-$ AR]i7<->B߰%j[Y@|w٫iV>h}Vg$hiG_giA$cB RS~mm`'1|&:0-̵&4$oNc% V$?= %H>#;?&p0) ؞dF~RC)cBYna6yN{hNYN L"H# yMYՂ!>ǃv%Kkݳ o[XpO}S@-I!@FGkۥ )S*v&+Ogp_qHT"~TV-2$5'Q/}y@vͦg|FHGV0 |uҩd>%wxs=:FxaS_C#-Ԯ;1r< Mj8ܮ}̄QM ~hDKEA\Cw%5\z;&g!<)l6[qHȷ? ڼ\Y䧜Ef5lj%q@s=[AlljEu!DQD4bhPuB4]|z–'+[8M'7A9Na O=="%~]-4LkkL)ƅY|x/js=Mis1 !?=`sK\Ґy VGBlY:/!YPَ3j*B)Wz*BSdhHA9f&h ss n}l˖ZGlQsAeY)YV ࢍ-۠6ƐrP%9CQ"_mU{AOV VoTE@wŪ y^PVD8>;S5;B2?9_3t)}j33 D ?t-YNd1֌>=lth)|Aуt*f` HNWeCJCmڻx 0So].WmH5q8->p|rriy,r +kfRv=bvG?mfr6 yCI={TT5[ Rt&lPe'31Ml-2% r;ԋTqjBmuunYRJYS 5ФM<.XSw˯8f HC-xH^.ĥA6A@#iDVtgѕv]amg&Z.jfG"6]!"Amk\ , 4y{O~]!»C!mǴytm%KF(f*#A.MG/?u@g%꺧&4d`Mt<ڷPʃ +ԗbޏqј=8kPĠ>[nNPQ|@%m1j[F%J:ڒ#:#Jj4WI uH xu]vzRvwԴ]uPu vH|EPEav֑dL|/ɄΓjgs,@ dxISY#DƻHkۺ'@iN Y螨 +wTQlp]1=>eh!ug Y,a( "me3v XTؠ-.R7 +#W"2Q{CS%/3._5?Z[DZjM4YQErF L[_THӨ9Iu0U&U OYYg+*iA0d@ķ%_ 3`3Ѱ}$8yjEF^{N=y=HcCHXMKVSTߠ6ƠO4K+D'z,r/#A(<Gh)BD4-{|!bS.`nܭ΄D$%~1R%"s?N5xd=Ii2ዿ#Y|z%K1},yaˍq]'.I0(]_ULe>$$&*lɐS_Qk"*#"+"jj**j'!Yj@ &eZmHdJEu(%U H`b;$ <Eu?a [1IݖH0VXG]Ex% k$|Qw.اާQ^?ѿi 8E*u՚3Zш5u> X8iDw_=}X`ўD_XM 2u !*!)%|vR2ALo`k5[[ hVńVs|Ͽi1<я!Q Cc5Y景zj;晵ZIh^br~ZmXvnhOaa6V|i?ZHG-jCK)JJpkxjNz8:vEz_3PڌB2!չ\C1>}}"EPɡhATy0v2ݶKJs5]vqÜ^[Vqx#-py:Ԙ!ui%5yZZ}w!&.d3ĝENnNfn:q{k/~Yw~9?l1]eh8p۪uݡsD4.(k o' !djnqq<\"a&{~; uĿMc6AF8 G4)'W%? })lcl>FA1څL˝D{Ϣۄ,Kf)dR3y_FL:аІ -h4\&Oeh" J/D: Jc/-#9C NA٢2!A(!ʠH׳O%m>)/1@-Ihl!] s3Ɉj4`Ht$)@}:b5zBtյ%'r@4{E= ,1Y |Xۈ;%a!iy,~\`2uYD›;tFO o-( iY@ϯWV Ĝajق-',!3?]DzF VH͑ )Ŀg~ ő2}-[ޝN` \ COsqh˓<] $>C[: x}B~$Ž*ZT'*(Np:j+QDPVȵ%hѦikIZ/D8_Ͷ OMYDm^%\<u<^GOg"DD5{O~0xƊXst+s# tljU$hve:EJuv26, J ~]fԧiG$y '?qdi@-w'nA2,>pâ[k횿K~ }f\>۶h+d"VΦ:Q{G_l1GmcQש/1-ϗCh.Wd*3RՄ$Qɛ'ljHѩHVI#~S t.hӶblbĿ"='lQǞE^]"mᨳD #ĺa~@',"y=]LDFrDw X *ۍ\'Vw= ,#*3~OrxXȉƨ- ꊿbBYyQL3܆RfŇa+*oMA+GJsFUFbϥgZwa+#zI?=3j۽f" n\ lߥ)LdļangGAéXU}5Uć%Ci0XGӺvm2dcKY[N3W{pM7}Q;|LE}ZHJ(Ǖ1R#?eE#6wܕy;Ɯn.u+?endstream endobj 136 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 3638 >> stream xW TTW}eA*׈W8((*&Dq 8 S 3(*`U O@A]Cjkk5KBczUb}ugwAL&c{/Q- ޗw%Xʢqx~ÍLwq춴D!N3aa!A1AaA|cC"&m)))ӂƇwrvHLp KO uItX0t.c%%;xdž0 3va_ĤOWxD]y3g}0Uf5e2fqa%4ƃd1/ƍ|x3+fc(cQ &y.$wy\t!*֝=9r 7~蠡YCۭYˬ[ i%ilz{ADGQ*5K1n|Fn/kocdv&dA&pМ/Z787hm+ҙn4תbZ>CjHx$-"*5!X'WH)޳[اhu)Ũ-NF#liB!}\ؑd[~V4S)nH7$IVa>'1Q_G=`~rשN|R -в,4& CmY/X$i}M?)63'ye}}q%%c=6xTCW*7Ϣ5-8PɄ?OKT)vģ~O{-<8vkA %K澹=Te&E=p1}m :]kSjjjK. (= dc FژmF6G8g^@zobR*@{Bjw$"/h2 ]Hɶ;9CSVZ0j-N ;QEdl*)υʎr;C pFؚRQRʛw>ov%CDKTrutK j?viTBV.` ^∾jV7d Ҷf/lJ^7y,zY^hT)%:!A[hKNn?ej܄;) NqrlU'L}B6A]Ϡ7}mq)t184Yr6pFQr*w.J=r؇KH|;Y'-RkrZaྭrWEJq!GMiAl.k ޙ:}W_H}28A0#]*o5 JyxPUSh:عhtzic2QL_cR<~dn:6@=԰6.T9# < +(gӻxEI^NfMhQ!2@p` ,S_IR!+ _dȿ&huznݾLNEX#J,[3t:mX\76qSҦK~'hYEPϝNI IF:HiX"!>i*C {-G5dBZ#q~p VlJ'u\5#*{ /VɓRUFe$=tXMFK%4-p nקtt 9IԳX p!/G`DF*LGL7bC F$qld@F<7@QIM>hY\I~K Uv6nܐu4q7%#挓)y3JZ+-x-\bh} tU5jZB#\:T(VƹƐD.S_(+[Ϫ>3/6 O8TٮّJEwա9iF}K骦5!#hd ~ÄͶ=PKP<)ς`Y@,"6|G9m%;Tks{ ?VUuDEjMDv8t!} kyReb#&MQ4a׽qSYW ի`*Qg4@1?w!x0%x# VWBM/3L"Mhm=8]~iX3Vz-C9&z4qء{~4Sv_~gO]Y[/'nظ9NHy4FӯO@ _v@ޖ]Qn4^QkG_5>srOVXƲfq^:|CՁY;RRT^ BS^yu[#근%yk}}]tEW9fϥ~ŶơrWΗAa\LdR%cЭ|+"*5fx tZ9gtmepz 0&e{3mbӨ5pȎ.3VIm*;{>X~ {Kx-X"IЮݠ4iaɌZtAƛ~Ct!4>P|oJo]{mZgo1nkhu궃FbXu؍Vk]NIUZٗVBe䧆6?Iu(c`P6OW!Ko=Q;Ό0DɃB|߽נ+T"QMw }ZNm0hx/GZύ/MgpxU\#pW (m?Z!vVP)O I\dylccEUCOձd 3?'7{%\nq:8"*e_B;\7Ƭc;js8K~ &9BG&㐴J )|VK7[YZoe0 DSendstream endobj 137 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 5618 >> stream xX XS>!prT!=j]Z[ՊuíZEqٗ@$:;HW)VKKՠ njKmKk;O|ڻ̜o}'<ڊx뽼6;{MD܁6l[&c7jŪV!A/qs{en.H~? nlH]/H͚%JgE" l sY#lp1G7g("*V vY/ $b{6QTj8l[m 9lKֈIn^x/sW}fΚ=gkI/ IۄxDL%6/b 2&+JUbI&fk7I#"׉ @@$!Xb1E,&lRb #c {_&;.aMVJjmD6_vu9#]G֌r6h>z1Sy{:vn^r# /mW;]@2y%Oq|oB W3_ xȅ򡑻E+* ȁ2;)g$*T2ɪ:*Al/6pY;&H #@l-elzn,HZj22 'r`Qc287B/3G f)@9{ ZZ5*r&^?xlmI 5ƽ:|\"hۑŌ'D&A·Jlj ; L&ADx-eWKT]-hmqW`kIhb3%1xz41@ޅ[6L+HLH7 `8 g>@ztd?B+hÏЁA~h>ƽ._r뗻x $6Y`"58"XI?ws+XzI7'4e PNVx9<๴7UxŹՠ&$$0Q{6[OqEB4Wէ;k, !Hlв ~ QrvBz77wo?qlcIlx̸ o:Yt,ǒEmlAYta?@qT3{}aVRbt&hM/aGX2U#\sQx ?ь:RZQmb0OȡB=,-XnAjDG>\h8'P7[2ޯLK`p G#xҒeS:)sqIÅPd}]~H_%097Jgi3@czp'asԨ`| W--82J `0^sLzz2{Ӄ*@]#eɁ>G!,J[ X+"r1#;L9<oxu\[2lO#,q6n a܈}P8WZP>0!r)|ni=D gj܎N䐙 IǓ_* A)Y*dJ2Ȇ^׃˓&·@nQuyn &;ш҄*P :A6z9{z8Ϊ ?sPM5f6KMcaʖ/K{zy]ESQjn gWhu>cša\')8J`Nx]2n_|PHNc><4$tCdy3C hdݧ.{d0@O"H4Em-Os@85Cv6grĞBҊD,N4+5a3.X9^&0q' vk͐B㣼a{^`AVg"l9F>8L ȝ($)0=^CfT+PTn%$4/dg-vKGze'u~!(Q ~N%y̐r_3˜>>ytS$HfKULzl;d%VN_|m2AF_CO=S L&a gC')##H=,֤։PՃ6_!g`chd%䕗T() WiJU jҳ?ۗ6 7cT(էz~?E!f8{qa9tv 7c|ʯGƦf YlYtW~{kGa&*ܞ7񵉑Z\N&[YeڜR{4/uQΠ>Nxap3\F͘ИGS! N|[o*}|ZLnۢ`)ה]~ D=h[wPc1p9ydj.o,=:͢uPTOu;1u_}x|NfνsQ[ TUg?:zںכLft}-&V_ZWDժUY[\+kݒ#'d7+/ WW-_2B "WFLdw&H?qOz?I*dHiA:H.O)с oy^1GGVzm>h.3m 7|nSFS F?#_gcJJ=qwf+IFYmF#s MlZ@&? "*#um1 6-;0A LrD(B׭0=Mft0ؠ4z;s SWS'u; xK0o0MoR*.߻uՃv):ULǤW8g|ק8@ s#E԰n81My:E fy7LƁ )v>qA{)v[jZF2H$qϼL  uˀ; .z7o}'O)6aaz^GwOϭ|jOTUb4F%K`P3S3YWTax~O<N5=ZXZZ+Jf&}s_,_]0l:z*bLlҲn=usFNNjVV*Wf( Ii@ SUkTmuim5~ZCƄ`۽[ҥ#{1L@JY坸'h'CqO'>+dz #Hca(K\,*BT'krE&k隽R4@k d%y*EG= Qtlgή|]!k]LuOyQ >@ӥi%,.D 4+@Ģf'bD*M#o{*2>[]v>圐cGcPCBu~Pl5+|=J p@?Ʈߠ4;PT{fqQQ TY(+I/ùmDdUR::gC {5;:D:+Ah{;h/j8aN.{hBdJNI=@ato^KڋpYځKl*$8, 8A$A27Ih2 ;RSJdw1t9ؑK'%OL͊R*"ʰ=_IDX@]S_0l# \8Q4uX|3׌E7KWȡx .LՋ= A)3ĴL@4Rמ_7+ p+n+T%fR|F=C~e4 MD#17>&"Gғ1,NesⲁWeTTx `+Rӗ!l8o೗.0 uI ٚM 'ul'dWbpꟷήui%3&[Y(@`iŌَ0mG^0endstream endobj 138 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 4615 >> stream xX tS}BX<*B($@)I$`@}w[f$[^16,!vL&ڐ2_3liϜӣ{E̜AXYveЗKXI:l"\$yz`X%m̬eˣlڴqEի7EoO/NMGJ.JO.E+HN/^bg)++[_0+˲E_;9?=zUӟ J w X_M=tgrEj̬_ju7b"#{'>b?qx'&^"ۉebXO;E&"GH"GpēeLxr-+gžkykY$d`vߜ9=>;ke=:Xcͽ*3yq?r#k<6ڏ¸I/$RtF_Zᘱ Щh8 J}nvG Q9l++$I%P.q~^Mwa 5rklmZ:)yuF!V(d63˜tND`\ P5Fh45gApe@2$JdlM5g~ݍrPA[=@j[m c'7[.#پ$Ȅba~y8k=#~ ۀ/jBEVS'U5+=xuXeܵc Y,]ήOcSiemC tq G:JL,WY詻ޤ4l2 ϶&]SxL ˔0?.AG,s!Rr }}Y 7_jEkn/o{^T :tlQ` y͏VL*.sfW'פj¬ ˜.a^ZٚrxG2#2d,U=/ں/|!dUZRs=;6hA5,?+l\yRHs4z}('6omCj}sǪ7_L` ?ݞK8y`ZxnVpg;pS5yUd9OZ,SNPkl/ǀt:5GdQ}4V'׏/Z(AwNӕ()Ѿeyk+5A'j/5#,Ņb¢Zs6aL̬ѮλSzK2oCY,!W_揣 nx6 t&m:]iӘ{lH#Đ8Dk z56T:4 9Ž1!Z@{[jJ5q =/=HD\E/L,aĜ\EJGE .bftpGtǽpyYG=]|7G'։쇭ZJV0uo {KO]\- qәM[߬CfW;ԓMBg$M/~ ͯ}VJo1`&鰨+Rc9r-55P͡iM{HђB?wl_y,w:LNm]V] ¡ߴ{ au)w&2Nqc.p% F#42D'A9O3L/hOfFb e] //IK`S<" ƼUb(uvVuZʙ.db z{3Ͼgrh52Y8.ڟ!~C˓KuA'@y`8ƹz נm:0TB;y\{yèr!U?ɑwg<7; X.fXĬ9˿N{Cvg2:<,~9tg[r?ZM^Vmt 'T𬤷pj?4{q5|g09ey!3?[A23^ Ӡyird,EYʓg3AFi\!,,,J,zeBa}o ‹mQߠ{繥%ټ#XĐg dMhE(-77~~C!V`KiJ*$rHБb1o8K7gap"ZnS{ 3>44zΚo7;8i_Y6yWaC˓ګ%i%HVUG_F/8a<7[3Vf3U`{WۯXU\$+g9՘dZKʹ])+UZf 嵍cxYB_EW9t:$K{w Kˣ ̊6&-N="Zxʦip%I/u7`9A)цNϤk: Jb6jt\uH(bh']Wt*Cv]e' |;;vl=SK((& J؁bMo3C_7v RbZi0Лp5Btp@ʊ8fB?d2zGixGiƛB[gj:L3}99"NTU!4P`T+.&\0& rw| yrWX2W2~=Xj^NAAC& R!Řz3OӓP2~{}fSL{uP_NbTAތ35TCOeCRJC) +cʓ {`zFj:6:8v a8X%PNoh3yW{JĻ=  sA Y-`]ŋtL</Z<oY( بWTs].HrϦ4):]z~IQ $1Mu#3g/ϕ˶O>q A2)֜+!-爡R/֗zq7[u8Fs{ъ}0wUw]%Ѭ-061 ;,IC7O~wuXR)X굔Ebg<["3w\šӂg'o\G%c6Jc@7{ QZV/9g0z մ(%嗡lBS-͞R<]ZTޯoEKd/z};WJ gLzY|,]FaC>퇃>#; ?xg  iAendstream endobj 139 0 obj << /Filter /FlateDecode /Length 4019 >> stream xrI>s4..k]X"KlBؖe'+K["|p:߯ʬzV=?X{p볫mZ\7+;<ѯ/V!>U ЇEӛ.r:Yjz#Wo{B 8S+T KI!QAETY5V DMF>>[]Azb#u~}r5"*bnɃ~lU23=֩vzb W{t5鎩yQ1&`#J6԰ 8H=Z({F vEO3$w1%YbEᑸXAmW*XĿ_HFHU=|oL hw/6iI9JyZt~=ދGjzd MA1b~Xbߣ.Ш-1>dzZ"Lڽό]CNLh¾P9-Iu^C֤dADf-Ikz(@^hB2ewRFzl:b4Q] |&)HiO6:f;#g[BuQ˂ٿFjÇ`& q atGl߬m(UC6`smYzZ8YT VZ ?HK>tkɢ\Gc8/fGW"_җIjb/CB̯ S^`ƇCL;IxvEC1%3WEd={Zd{o25E A]ZTC{vbC{ޔ̚Jpz?,_q,&ɰB .jhURJB)Z@+D +UUºd6AȬKu~zneћATp(CE55 TD\\e+xTlt9=aEɣJpLRpN q=>}\xGL6~[ĤI[Vi.#Gm /*޴^5V(7TtB^*-fǬ"Q$#Ae.P>f:,s6,1N%`HWƞPfɪwk?1H6T qC@Jz>Q0 汜uge] &Sa$>?{"@a ¸2Ÿ^I\Iׄ:~}LaJƀscJHQTYTtʌ.+XmCs,38y8/LP/:piɟuKJ-}Fp cYn;ϡpU,ezء*9 [90-'w8Up U2gi~OutH#'IƎ+Uvyuʿ_sT}V䐝Y]N9> i;S2R+lawUFELhnIƠ@}lAPV$*fP@ԕ]_l>Khf1YB@gأo R6&,ϱUg;vu@ z `02j%k<>/td.4"dM.~K/a:tth ȕg?$t11[pMb:`xYTSz!'^!/Y ֞4%%8Ա  zWLף̕Tqvx@@_z5UԘrd۴Ȓ|Q_ΐ v:uд01 =XQ앰0:*X~!̀2Q9nEhz~·QF1!~$2Q/fAOURQ-HJ2D"U d}[H.*9mYB$$`1gr1dt8QG$@YK5]t_G3J9ᗲ9czˀxDQ'cyLpv~9+_ x\Y:҈r)g*_kC .9"/N :S#pCHKYIQ|+AǝJ f/p~kQeUձtm h׋v\UY}ʐz\YX'8Չ4Nn=h"֊hrh6( jutol%R@ǘtmhtj(uM,vN> =zMW}IQDߔ8'H?(8 _,kmT!IбڌM4 \b/u+^?sЀ6Feχwj?|Vۡ<&vqVf ™2ho7゜r{V]IS.4Y/UA#易cjA"VTH̄N#5f\|{C™Wڍ)g)o; HRK+$RaɟG'C) r#CVG;ieWT0Kd{67e<(^Ul\=Os5zHj/i{[wZtE54ɠ%W7wچ4*,,΍o@,u(YVs+ ]]:-GEލ2}Dv,$W wuf2Ւݔ$N^^l:ץ2-])X"﫮LQGtT:C)_*)KA ,"^˜13', x@{ "iA[f&hw[35%Ꝙ%a飸T-(tW3^4-}|~+endstream endobj 140 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1328 >> stream x%kLSw<\StI3\oǂi$NfNG[Z JKK_7P(y3|5Cd0V99;0dzKJ_K&?ÓӒÛ `>1݀dHqY* qos<J!H%ZDIthWo?(iy*j@%S4ڑWiRR6T& C(I4) cL-UJ1m느Į\{[ Jjw;z;{xV٬6s̱sg@,L?%7V /{>1捽:>/M }ۤ.$]<3uU-bJZ]pΩ2R a"&.=qzN(#qxxB TTJ#Dbd$$au bWӲGմCX1yBaEī)xc3{}%rN Sx>}}ExK[ &/c ZΪL1lz#0c 0!l"zTƅ#Tfy@吤WIsf>n8ʔOk(z$!ryb/PbCS [Q>񱋣, ] ]96U#$fƈ50a ^bcE3 > stream xZ[o[3a7f$pVa'XH]={;"0Z|s ӿjʼn0B2w >|B0#jg^w s^ jΔQ"0k"^1R)ͅhňWs$9SʿBY噶 <Pj騲PI>>/,D4^ ^ìJ +~H1!ͰZrP3˹ 7s)%g2ƿcU=]>_> ""+?-=1f\?yЮMK #zJIXp=DO#'a&}D6keI $⭂ 7b"Ӹ[k߽=qN\)Yj|]6/jWVweXojçq/ꮬO2?uy6sv˪޷-Xof?}Ykfu9s$O׋P )6H#-sz{&p#Ƞ F cȉ b(&4UCbX, " #  p ~ް`eƙG#q$*<~.#u`AcUOF fC 2x/rLsm=>;cQG85wG|*fg+V v;|hT>^][Z sʃbCx,Jǿ; WPexz_1GIJh>BIR6wpAZ`:Bxhg ͫ9jdTT.9 3n|)KɚZj);T'? *(&yȖT*DeHZT}Z*Շw>ͅ0ÏLA=!cm8T5dsV*smA.ѬDfEe2YzJ5tTCq +R(Az>D1o=%s9#҈Iv:=N=iӟUk*R)U0tKRu6HI#.$.Q Վ&"2L\P[<ԪY"Nx^w䊁K3FKP_o EMpd`M3HR.8:C+s^:tԫ)m=Zr5sE} Sh(wѲcā iǗM,: :JDVg8_0|`L-R\EQ;:obmVd.'!|'vYg<bE\+` x!~ t;u!2(J1@xFYANI ezm`M|O^Y8>н{z,**?(CB~*($UMh<=y]y^UDC$$'ĝ,<% ܷW7nTָI8ᒁD\Ұ"كsxd!XAvїϯPl廫gF.8r &K^^ͫY%C\˽q0ۙDSf&)MaK4 zQ$ wAmr 6(dv;"0q"@ k $OĖ40DH X"q{_i"fB)lᅫlD1<4>-mVH_ݻf_R}rI5(~ .(MTGjB(v/G=p42qTh=5sʡh _eCѸnT@T"b~ װ*xlz]Rĸjox3J<|)y';8 ;S;{@|\?N`,͸@sٜog{Y MqN%󇕦*PICbCw:hb6Lfj|ݍIO˙/rKhyVeߧڊݑ>/F2NU u(MJaxØ/V~DKڼO7 Sp>J\+4)6Q#+d[h/Ig 5z5 .M6$1ҷ>q:Mcܡ>>Jº_)p ?-ۦjḱQ6M''"~َiǚn0)G%. Qfn5?7 =振]K /HNendstream endobj 142 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 407 >> stream xcd`ab`dddw 441U~H3a!G=k7s7BG``fd/mq/,L(QHT04Q020TpM-LNSM,HM,rr3SK*4l2JJ s4u3K2RSRSJsS nӃP%E )Ey L@ȰaQ,tj3ߙ3{*?٪*vϑ*|?ʙH~_%;{tnƦi c~ↆɆMS'N.='vMj-9}iz7ĄfL=cZ9?ƾk3XZ=<<@Pendstream endobj 143 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 580 >> stream xOQ0pTx &@<4i$؎}tJBY+%R$AJRAԈBt?,BcK [ssVw8dBe;L8K9z2AA4-Bz4;8ǡC>Wer\c*j;*!K`{Un\>EeW\UeFvTj! lt/nT:PZ@7eUʌ945ة+!J(mdB~D:ڛGIm4O5: R`1 zžH`Psg2y ?݅$`n:4Vj p[wa}LJY4~m -6?+G+c- Rt&&yh'? }aMPea+!QxaYy SĒb)yF:b$̒9$lq1'1,;aendstream endobj 144 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 543 >> stream x%OHaǟw{ۻreN1aL lܫ8nN:x.> stream xcd`ab`ddds 4H3a!s=<<<, }=\19(3=DA#YS\GR17(391O7$#57QOL-Tа())///K-/JQ(,PJ-N-*KMQp+QKMUNL:)槤10002&FF|aӂg2ً/)鮒󂭺hQy?헰ξk<<@\endstream endobj 146 0 obj << /Filter /FlateDecode /Length 4522 >> stream x[[o$(쏨72 wX,QJ$D3/;$Ff&.3~^:97_&c" ?9ª:dMذE_c.ZWCUa1U&8ONɸx OAHS[T&5M 7ICs}? JrSt Wo/ ?$? wzCY@Ч [3a$O7Rl[œ'xM]=+3&3X琗Mxy֠[#8`3H)86%ܱG&SHvt7KTDאHT8:2EU|-z )Jz Z/ݵŠ!!cxT@/,`;eaIV:=]ueMMxe"ٖ=>o Nlb>vwgnc<" MznjN^'#yZEWÃgްnrUw{Vsr["\Tc1ʝBE{IҞJmt`[Qp$ (N!!i G*!P4l j^]rAhHey۴D$i޶ScT] 3KJD"_kJ(rsi|b/4.8I7ի_)Hk}ߦ$/ZIJ%?3dFYbYcs~]%XlU蔠tJXL4^gT<Ant\Gwpzqle4rU$IH0 MS&(;MX|Ιw,׷*> stream x]O10 @vA,ta~ 8ʀ0%:t8K结ϲn(n H0hYhqgy⤼m VDY^OyUn!tfD]MmL#;/dTgqp 8榹I*`~xS V/nSendstream endobj 148 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 3455 >> stream x]W T׶#m nAeGpbI&ZD1b4\C D4N " -ISSn /ZoU=}M h6KOKOL0\ V0~h-Vv DLjǏb̠}4(FO(M/J\: '=5-Onlԩ{M^ɹ -Y'gJVg\+OPaɩk3r>IQblܼV$%'.M K̚9kdiS;9pSTJMRT85"(jZLP^tʛr|('ʗ\(ʕ ܨT DS%5JSU15Z@( 5⩱9ES.;ʈI<,0auF5n[d x6mb\6u wrxqqEW#GlII#LSuT&uwy^svחA+i@)^AΪl'Ӱd^ESu xljfbOE'?Y8= $ եRT€nЊt؍4/32q Ll|WG!lޒQ8<85`|s⤬*`־j`MBa\r+>8G*s[5@\ðL&qBaIAcVHZ`C 9x4<%F[=IHUP"XOyaJ? '~ׇ,L_Ę3oڈ;m[ fך=e%N oD+3>$/ Ҁʠ !'UYZT1+jJ-SOx$At^$$KֽŠ|bjG~}Ε)#[§ 7lAqX*/l}pNKj :ViJI 3`,<q.eR 6~7l&3rCFy7aoWu)mGnK\E O]yC%Q&u'!l/\#t?du>`% V 1,OX$`!}SaVtc8$ix#0୯ȘURP, ї J졯m?ЉGBaY_|z݉TeEjN/rя;a^Lp/9Ft'`~ytetF(Ո X]YaԍcF jFK)l%•LjoxLƪ2F, $a34tc0;O~# ՈtQWяb[F׈3~E {aznXl)xiX`&|bSPZ^~m'qZҁ{}{?@rdHkZ`+q2z\4H}],{ K,ixtAN-q%A<5tGזFEGmŤb=\}BPX y'zV g%;ba>+Wo%s-_r9JVטsCs,'-JU u<؂`GLkbK,lیNaLgݚ"~ZWۣ3Z% B'HMԎ6K߻q_-Yb8#x:,  ^E탥K%VߺLZY7pCQxsyKbp\QAj15β|O,KW0iێ(Q]&ڛn]+ЄMZa?w|ř>z<n6p*Gks/0KV%EQGle$ğHlKR_ʮS֞j!oW(-\+3QEp-˦K;U=_xتҷ͆m{`(TFD9PW0Oz׈2x"_,gpo>8 3?d}LmK=֨XɃG7=' 7 w%.Oצx'H3*}'qFk3Ch^p$ _`(\Ƚ`jasXn>$C6"e.|ʳFn] v"ԎR9Ig?Jٵ`pZ;eHs;|{hӌ[M7 wp:0(\VF )xp/V)ee?˰Et@Yy"0|- B+j [9#Uw}]Cܣ_775X*'K]tDI&c@3.pkld\&!pC X@t;-\2^_-318 3@ \6J<`WL {G߉ oc ث:5"&aEJL\P".m= ^EB=giJch<^^q8.+Qu!aF]~Fx.pMjt"agӏ5ꫯoXR]͹7jj>;시_fRpN9 +*.uT2l7sVd)d2Cs.3ACk]"6ZFf)2 5Iޯ:eVfCa/T;ZV[_yqWϏ.JB%s{P7=?<ԀŠwY9 np$5m(aL~ sQyP^6XO [ۓO޿t5"!Nۼ~ NܔRV 1bhBt+%'ֿ!mB;%aI:j^Px>n&j5Y%˒eŰt]Jޗ#S P9Zܾ64ZӼ 폨`z#JJ]%{#o5IQ Y5endstream endobj 149 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1935 >> stream xEU PWf mbt{&AD1^\%*5:# +x̠pGl̮ՠ]cdkS3mHYz])EӴ/pS\~v': "pϖNEa)M'%%g">>ʗ-]#ߨդEj]F ;"4Lu:]%Kzb6uqRJB>N+߮IդkI:yZ[<%ity`R&%)iU}{/d(Vj&!5JMS,5z"L)5KO3|Jx^Nj;;wJB$n|68ui!D,mB1/d1{sKCG_xKȧmi\ B1ҿ+ pݱR6%nrA..]L+zP Ո4te@ YhRmakdcj>OW =O6QhC".."~"ľ]6|GJ%%3 _ý>n7W8;]HNoŕ6gG 5W)!W_{/t9nCa`LdVqYO92(tĭ,q㇉҆V(GpS6'Ҷ.`pQ-fY#B8$34>~QoU*ԩ38Yen[C/Ɯ̖r@ *s9c}!1w6No͹o5<`ba^{ [vDP2|m127|P|{8 *oXSLGd́]B+9sl#s Ly^] dD._c|zGQV(3nL?Ag-#؞}}ʶx{OK8Lp.E&Q5(|A^a⮐^2Dwyp:\^E|3?dmB_^?G]*?hjKNI%yyP|и/7ѽF?9XE1x\N3-JULbĢ`|0q>~0DȤ[$:/[2#cC|[v/_Q$+xC^I_|._"#rms#g~D 8vymyqxJ C,"vv(}ӄ}Cx`/3! p<`<."34?!VUSn0ِ-#WpL]Yi] g k%DY)u{*]ιN,uuendstream endobj 150 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1530 >> stream xTkLSg>=gVDCP:oFA9^ٳR-_q'2,HCOBOhhkX/}ǴB*<;d$ROR){ ʬ%GS{h*Vf{FJ}eŠfⓋ;\qgU>0DM'5U>4f{?sr6NӐo]'8WP)T*kRe(J$ 1}M:~q}5=x9&>0 Z1Y.S 1="O[F"X\\4 h[eQJl GAc~0 .03B&ZN{ӑCV![А_frnu`q&?>ZXm;oꆚPqHo@CU]qaAMkhԳ]gpޏ;":]\{up[]:/v | ښTM(q)5Up ,؜gL(4u Bx8ͥ51--+9<ΆOpȊKVT,ʭy@9aLD½Ptma5-W* 0kzD W(_!3e!xKaL27}}Tmޑu(E{O6&\{@g7(>_uZ t(ҋu)YY)) CGI{eeaU9mq7ѯ $\GLV$}/7c)M-w0ybƮ\.ڪli-wMstEZQWZھZ35Gbah!QG 2TK:MV.GD|K Cendstream endobj 151 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 386 >> stream xwCMR8'vz-   ZWTmqCopyright (c) 1997, 2009 American Mathematical Society (), with Reserved Font Name CMR8.CMR8Computer Modern3vťbڽQ"DfVT@htkpozc,MI%ڧϋ1# :Q?f{ku؎׃$Ena}{mltNx~}vCoa  7 כ Uendstream endobj 152 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 3904 >> stream xX TS=1sT Ez*vHx8jUqBQ0HBI II ʔ DDޫj}emZ[]o?PoZ^NYZ#H4s͆y«"b Q`'M0O;bn|DaQjψxeHPeRˬyNu=s<%areH_?U%գŒ2R/'Z.`(X/f:]߿Mn),׶pݢ˦, jʿ)׉ |nPʞTZ"J!qYp}s>#bl%ڂ&#k^(R ͢rS,a]B^"&:=xRKϬ:ծ.m 'ZB+Cj[守;cLN YPo>Ժ;pd3yE|?'q _EP i:Y:J언6YчW}ym̐*d” &-SJ%8,lMxowځ+ӕ]=70D5g9Z\ FF58#8G2{[\toC#K )R6--3KQ;]54&F֤hMM=N(J7ǁInJjt)%Az&@1_8$/.kҘ)JW.vZbjd! F--~[d QȤ$BAݧ+՚ߩ2ԉ[D\Mp[%#.6_,f(ׇRn$ lo+~UduW,bs̖,ضpzjqNqw$8xJ+!:fp{AAU.Ř <[ /f_9d mR!i˹mEJvB<^*#|m>p-P!*.p ( Dw4P 5\llsV6L Z>04^{p?DANv%yδ~]v#?n˭ ha/! WЕFB,j353H;Zhy@΄ZqAA:<*uIЀ6K y$y*djʝ`92l;е!dx-1ys^JNjAnqnC<9. eS[یA:W;>ϯ>8/dg"6j˥RKjm \-I0'2W~FXlkt6Z7kOwڼ"Fm>(9Fh52Gs(geLs5w:Y&SutPÑ!1upaU .f lfꙇg^M]=TGkjwC( 7ETE6]'"N棎;2j5ҡj{rVg.JPQJ,<0pMPEE]2'*P5F'r}p0A %}hjUHI+ŵ.&XP.-A6SIC]-׉n;b^e&A8U[[[usKS\#y5 F5hԠMȔm ܪy'q\).tze 0x} ߝqhLQQڳڣՍm>h,rc" [HŃGwYgG!*Go?XbՃstT*$I  >i9m(NW;5,p"JXaR(a@Lf-p![_!Yq){gJN o  e%FcuT. v\ɋdo=<)OKddd!gk[TM{{t砝ӛB~N9?=yጇG]X~QT.f6*͖CÛ[*΋:Z<xXpŋ<<}[D 3 O]p:P.fLa5xb8}/y@F/#n߂a ы7'Zwwʥk=Mɥ-`,Mzsꂸ򢪊$k@:(XY^nm*/j#a'Y&%tc&`*uPH7Y, KlWm144*-eu݆*L%"Ft߰wǒEޔ  r1\?k p%Oa{b#MƊf![X㚇0XB"UD' oZM^h?r,\*+!;ضD#;ujB;hf7~xkqyw9([|00eVD+(ii2;?IHT62!\-剛 4GV=EP?Gz{#29B+m S5Jk`K4Ϭ_d62.'JsYơGø7[ R2t ir|Q- [NL2z̉ }de؈q!z]S 缶/P .ՕA~Po6ҍz@Zr(5O]Kn>[˒j=,;o60:Q©)4!Ṳ?2m! vwȥںi 4J=lve:cLqi$ mv$$.膃ߝxd{w:"sĹӇGE`W?~bnA;ElN92-vrNu$. WbdD,@!/8.22"$Xj0 3mEZ_jM dqYE7vTP_*E΋;C&'8f.р?\CqY)<[3% X,$dYpg)oA^n췙1N݋> stream xXyTS׺?883:YpD@QqhEe<$620q Pubk^k}zǵ]o'Azo-} 'B Kcv%'];)H~WԼ͏?;#oǒ%Jb1XM BDxğIG  b0B % Wb!$p'F1j '"Y$tq98}M|tJړ=/7h 3xCua1wعa Q3¯mvKw;no8=و#N// N4nLH.Rsy:UPƪ*eYAIW &楬\˒Xw` N$aA\Zs! Lfj9zNxP6>.@-)l{6Р4fRA "fDR;6cD_w6w.K[dxI;xG~$A(䎸_.8 ,A|g3ǠA^{I7w]Cv+_Dtm< ヷo1G*4rn2xCtPI¢oMP/',UMiAg' DuDTTh@'QIyI9(S m~\^hdS`6{p]Col`{C`:MeVy< ` E?Ed+Yxyvmc5kǿ %|2)#$M}ddᘪKF`!Hf dL±Кu0] eeg.%F/@`gGsfϭEFrA?gͷ>Qe`+p8: ߣ[:FF%LS/UsPc04hpDIFb^ːC:T7C]b#j/lRnȭIt}=)іؒR%". pn#3iQ@JJteh$11~Cptke|#HP֟p$[^&ΊHw{>=&y iyl;olѶ zPOn ay6Re3U|&(2_cgh;LYj<ɤH6Wy:^)))g{-!ۥ8\ u1;bK9aɚ3_߻yriE3wmPR@G9եra8nSI/6_NQh.r ?vVGAw4% _RnG](PE!ȧ .XVwh<\Nd۠]m D>U/=68HTghR2RO.LTۖux# 2A X0nׇ/N–(Fw>5$ݳ;?܋ÆHeooo^1< GÐ]ߗ=Wo_jN#m*g40՝:$s.!ͩ;e"^Uı/LOBNb%n2V{~bAϡ-M)p,5>AfX\_`H˪ۏ|ڞQvc] o@E~?E:LǛݫT_:3Qo H 枒߉&i6țg(,(R9{:= u57T"l =Z2VJ.Y&hljc;`rG[LKm]EcmGS+s@m `?=A:\ia6 3B-Yjm_Lx(i|LC~MCeejswVS&xm쀿1AЀHr:H/Q:7/77x}{,t/ '1ˬ޿V{~Qj87'/]k۳+O)QeGNsH3EFO9URm' x]b[?qԼONk FNY'=WE`>5d^+P8y噡 Հ3&g43WMH*ˆ^}FP6[b,DUUUk$sKV.f/؂\bh4ӯ.lp2imhko@/ul[3onfr}ŚvzHiF2 <9BEendstream endobj 154 0 obj << /Filter /FlateDecode /Length 172 >> stream x]1 EwN T)bI  D D7@ҡ÷d ut6Q^NG\鄳uT[HGW*,*6Tx݀w {6mWFM ׸I鿕΋EB@+Ivi̗2Ӊ@a]*,X߂9Ew/nVendstream endobj 155 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 543 >> stream xCMMI7$+  b]YnsCopyright (c) 1997, 2009 American Mathematical Society (), with Reserved Font Name CMMI7.CMMI7Computer Modernstari?J(Ҫopnqnzv`~z\e~}t;_bdw揗cT(]z~ᷯpt|rMݗJ:kptM{uNL2B0:Y<<"wCp`  7 1ߊendstream endobj 156 0 obj << /Filter /FlateDecode /Length 1817 >> stream xY[oG~_i/U[ $JĨJ@߬wfƓ@Z!UyɷgϜ9ch9-nGLcǍՎ)'Zg`޶KlY4MY[g5gJ+#^fMehM@y4CC33gR@u3m <T4#A|ZRC#z}8Qh Vvvl-Zsx⠔-W݃Nd!h;A-_'SsT;*{yϥ ?ǹ T /{o7#ݹ0wa2{9>I+۩{ ~Lĭ28Ժ2y/SZd괧E2u{ 3?*O3uXXr/ԃLNTEדIt,#f5]T;Ebxb1Qu2uˢmI3%k>XUd~ZYR\1յegQQv+~T[nΝ'B%'zQ~['۽%˯<t]i~[hּ&9u}+1W0 sæmU0pdGLrY=2C%0ADBMobvo0Q4[᪗[gqɤ@ f3"t R[Le#{&CFz9p%Jw!w%F譊e9,A IZbHpϷr^;. ⽊΍fc.#FVU)f9v^Ne\EfJH55iSZ˷Ϻd m!Vd,RpJE9 BL O6HjaaRo 6cI=q̀p/\1!0G"\7iN!F{֚iīrnPk2y$x057!X` Cmqd \2 a$(K#<’*k@F\0j,k@F\Í g!`!|@ ](O:`ڛNnH4O+41SHIA,K)o> stream xn#GAՔKHͥH6qI(5 Kݼ{!g8Zo)PChC~z`/w_p؝.D[|ta85 Y^Xz gyo_XX/,3J '{Ȫ! ϖyFnO.WRw|CX2gLw`+[;*n4ll_-i/ i؉o`繱%aU,KCU83pfUOj{/[\~zqۯ:/ }^ujf^,Wx3n`XwGCP1 _[%ҋ{oK-zƜsa%ކ)+pnY/w^fEZ{@,W0`qӭqz[?Gz`7@NKz?*7•nRmsh[/3=+6#X",~9sPz(`%Go 6 1܈Yy0 aLjecxs É 71 "Ho:0ANv8'7ȇ%:-.7l; + _%$ X wU.P{'ݒ4oTvw/Z)) j4D`P8?u# F`+(W {Ѐu"FT]XK M>mO"We~jMkkF's<+`~``˼m`9O*Zdqa_+XG4* 1 -Bqynd S SkbA. zHdQ,oM|jfk[9|a(^_wEXPCML_(#^<D&@;1~SmP iFh8 y *k4dyXBHw!wI; [o#YցgE r^{(Z9X#: h|b6rɉ3s$/@ m/WU'@' y_w[)]ZĻAڤns.NJlb(6%ܠLLt\TKmGtf !nz , ,~kj 1hy<0yG<:[}r2 J{-}0L{z-񍶭TRy(:$@Ӣj#QYl_XdS \6JYq }(rBI&y2yΣ<)@,0*~ʆʣ !lt&?eED!2so/A kLӕ=k*LlM˰3܃d#Hj~D|̻iXL_vkW&CZcRʙ+e&6(C4C36k߬aΩx?D1G jNݏ`!|iTv9Ahf%Sm/A%ǹ(DFLB!#qz-y̆/R<~'Ƅ=/ʓF!E+|G׍oHK<* Z:6o.ɳ \& {tٖBV?6~ܧ$8{٘o4:}W0JHq:@̖CΖnQ&j~"Rk#itL~^H Н1) <ށ]Y}S$^S fl1 %iSx{cK_cX?) P-Xwjs%ŸRepj:Me=D΃K!|=xv5 "Qg?r#Os`3^YRƨΛ{6 Nëx[0dWCN_a x2x>(=,ao~:(TT;faM{?K+s?T^k.M*p9ʱ !?Ρ]2UJeĽܼV0nm&T?ƚ.MchE/e213ypj;N^PWy/&pF4X<`ohBB\$gn'w<0uՋ" +JU ;.gO#a[[ ]͢pw1EK2Mzqঃ,{CVP`W /}d#DcPK>铙VJ ٶ|2-_\9e k+RweT[3 $??^Mɋ=4O LˋAkendstream endobj 158 0 obj << /Filter /FlateDecode /Length 4211 >> stream x\oG,W6$"EE>-peG>In KΞVnI}=IgW'>nxywb&oNz~: IMVӓj" :Me,g"M Xd9K;.lWkɔ8YSQ)*ba-TnI짆'_,awv5b%=)y'Ez8 6n8:y6j'iRf|۫+Ei#/Uʘ4y&b _"+}Ə?=0S:#!"Vn~R6ʎO$'ɏ`c>d2&ZQ %*歹IƎa"Zw:5HZѓRL73fJ _Ӻn ll186NNIONOUFHvipڹIN: ~=1\I8P"B=hb*%&Z.SANB2=!N Aȅ9Cu 2gI[? [xPD^BY~8Am'֨gMցC;hRQ2 kIk`A FY3QBJ,C4 @@JI!pO!)e4a`l8vz8q`/0{Јa+04V=@>ƞ`)&N)4>p1M~&xc7)"OhdIOH%8sGFb)NL,@Co62 ɏV*D`EDOU!!)#*D`*oXoz'Is.rm*ڔ+j'M萱6$іG0XGժVsjI" , Ya2,5CVXdĚ!+,~l9kxm.EH_+rs_֗w Z["u+(KP#"=CIg Si_ք.5!' Gk[ga8AoB7֠qkXB Sj5NIU5p,^c (?4@RX{m5 [SW.kpA7ְqwkT4װ9_2w0G*=K_ަ)Y{VDCLֱʥlK)YK1ɻll:R@/$ ^bIg׬~W|Gf7 ɌseU?hYRZ+|YKJ%0 BuY9D/v{ǂy슙"-c͇g"@3.%4:\vVbJ4,A"BoCϽ-yDo؂Qi͇bWݸҎPpnqݖ5~zD\] .8,suRJ%"wٺ |%rOdae_7lRJY4pf/ TeC8/6  /`r_9fӸf IuSځ]B_~%hW¸A3BQ&ڀ}DnDXk&ܤrWFDW-@.{_>9Y&B*Xq sE-R$jh ,Q3`/=E`3Bwm hMkVus[u.Zt 'KmPsPP~jr{3B|e(Xw#alyť_TxM6<شJ0_7g"s8\L_`oK*ДXȯg k\ OV*L尊Ku,}a WFPY͓#C.`7d%Q>lԸfPdsFV?Z 1b_"\)ȡQAR!Ή|e[!l5PH0+8Iڐ6j qȰ7ʈS1K*큈2o+qVgv4R[ű9ke%wo U eXI%I;%^밥 Y\$zW*&%/f|clwt9A 7$sD$\3FI9~ٶ_4\[Ƿ/iUpjHfnDo2K9RKY$rMH.78 `c޻Y,0fAҮ͖?H]hz&}^ `PnW&Ϻ1G m$'ݑ`Ʈ9iC  {.  [ʾh) TbSO.y-E .B 8hendstream endobj 159 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1211 >> stream x}Lwr xd(D.ȋl@T\|%[h{R"(ӇoCHeSЭ.j6o9fD7.q,\{|HBC$Ig.M|L 1vҤ(@921L(/H%.z$$& 3RSgOf vj2:QFI ld5K%B{IrΙ>N3DSUnؼNX(:$!h7 ClӆY. 3A1Ym|!r%RbI'"H'ƪmB"Nɶ1RR-ԀBӪ4) 2GF)%VZ]Zh»r2 COHHfatGz{ݹvijVx0K?*VQLFX$i?@ 663a挜L~9"H~CWS<L!XE|s~+5o3aMU> stream xY[o}_G[g EhSZVV#yX+9{xg5RРߝ]E ^o`=,8 - UFiF6 5QCђ!g,sD Ʋ&JIQ2j'Ĩ©4Q%R' >Bib"| k]-XHh\o^"U8uuyf|1pqU]n߽8'Mw :$iZԉRiDiD3^T:K9ww__Rſ/'tEr8rً 쬵: O63.y%<#eΣ]2yM]5M̮ASg !#ūon>k~0ȇsa檾7q;dMѕz_~H"/;vI+?L'i?݀g j?WW[fowt}/W>p&joo*`DDa 3i+[F*~R ~ZoP_$?ꕄYVlC(,]s^#Abʼnׇj!M㒌9{Cd}SЭ?WW?N9m]lt`ke|Ȟ91֤) 8*Xr'E~MB@Q$Rj1T"f>%ST٫Cb ;@&\C@3R\֓[(46F~cPbTox{oyF:8N:neIF)ao\&?5;PICu qu iSjkƨߎ^ k3G8A(& 2Y%zЫ:Xpe\_qv/eg2ŋ` JsѦvvz.v9nX&%}ˌ0]ve= vOaou?r \9_W#]n/&c~r/[!݈oڐJY^#:p9 c$%F]F7/SuT`Uk $CZf#/ZNHQ8x%5D|; ʓ"l1c0 eA0 Dɰ_j4 ZȨMKʀ&13caЅ,wb5޵6 8r[ΟB5 8 :TjX.L[G)@߶lj4(q4ȕaCh>WBMŚm`+I]'¹I(tPZ6b_C 14܍0J9fIXbN-Á+; '<:pó_?e% uG7#Q7g ' αev2%NQ\Z ĂyM0\!T% z&Ni=ZeL$xRx2bS6Ah0 s^ elM#L+ӑY4hԯ190 'fj`VpB詉dWtl-mI <0 y8{fMsLwv-)ܟ>\ylr=?A3JJqw IP MTzxy//endstream endobj 161 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 328 >> stream xcd`ab`ddds H3a!Skc7s7 ~.ȘW_PYQ`hii`d``ZXX('gT*hdX뗗%i(gd(((%*]&s JKR|SRYt^}י1y#no~\~r]O9V=׋翛}}5۟'Wgq>7<_s.wt3\Xpso/yypendstream endobj 162 0 obj << /Filter /FlateDecode /Length 1814 >> stream xXKoEft D g'B vď<=_ B>T{$ rLKǙfH:"8O2zd=@2D[%PDJһ,t4Jpj)㭴9k$n͊)&ߵQDi}dTe$5ruM}JQT 7%`5$L^{|5&A,WAvbvdDdݳBIIL֩iN1 (R7_c<h#eabeYrݒi ۺY%Wao =ޛ,{p_Lv^D>p]$eW4ʷIgVB*X?a 5Zܟ-Jo Lt s],;*IE~+ԫBA 5j4B-U1.6M0P/'o&^9x W9;t ҹJ[&Unb\$KA*>7rP/j|hۓrBL[a*'jӄgpqJM*6k8xUBQ+t)igsWt juߛS-' len;D;lѺi[ |bQj 鐰 |UW`'D/ >IDZ_ccAG{ϧD[M 6x!fѱI4BxQo6e҂B2?p#r UÍnpU wҠ }=v" ;HW$ Jq푰Cr!r F7e:h1 mc[}qYƻ- m$3I)uɈɦ=iD!}yj|LN_yMe_0+0]mYvDp~p Qy.,NszcHsTLZhe|Yk7I'N6ժk[F(u_2;U,2H|`Ӎ ݇CMVf5K)4LǠl!XW +χZx H1:ǐODspD^MD^7\ L7 n Gw {LgQg-Nn msŕ:endstream endobj 163 0 obj << /Filter /FlateDecode /Length 3684 >> stream x[ms 7ܷur[θi'IDt2'D:+}K{MHJovu8^՛ I[V:Qw_^/{;#z`Pyd읥QV[F7|v7)e1Y!jU77QA>UGoQ٨nū I.]忮Wj}tʭ.o.J KeW_uR7QJ }ވ c|1bZ*軿Óeӗ`x݋P}kW??],lwV6J4YD*7>Y-{ER,^$>ACOR ˏ**tC!Rx+Î[AFWضUX]KYH" AxG~}8?>>p'ywM"Z A#jTǤ^"4fYdJoIʬzԩR4YF LώoèYv\o#򻋙p֥l -qp4%cEd O v_! Ska$l3ݒBp Zy|RB$Kh Ioa: +;lIT^9Jdo`߃Sc XIii>nIœ0TvOb AV}в⻪5.E ]Qef |P+{6X<͆n{MԾN[(C4LcW<B5bO08uYRL( Xjho0/NV7ݖ<K ̄+uyFі ro[aV j@[ ( 根ggwOCT&>B{r$ =,@X}]״}%+/ sT $:!" 1 )a{q@,n)h%FH .wc|:+Oi[ܬҌ+xk@['QrAI( H 8FFYUY60lt:-昇"  G#-?"jR$y;}Zh="Җu33O{hp.BXdsH֊0|,jཛ1;g7.)5Ec-{ , sK5= _EÑ~Ja̫wi(OiWTqАw妾C9:pdM5t[u%j χ5Qn[;pER2xiuK);%J!hhi B6U@Q7!oЈ-K5TݟJXZSiIie!\$ns%|Tnĝ,8 WFM ŴPKZ.>k 3zK] WiŷM#\VPhJM({0XBVVjȅG=T@#(P6;(\81 ,sGZ.g5KE2;hZ'-;)dkk`qHee PJ#G}E1evdgVjAyXUj@Ucr:)8bZSa3I.zIA푒/.q"GF&Ⱥ'taF8^蕂8Y@Elv[Vj7U& qy&r`cKTH~ /n yotɀ|W\ô1}8_okSv[ diw ,\>eo\==XI<RC08bNj[}W?ޫy2˝|1.ݙz 1;,^kN} 'GY>;Frɂ3*_Ngw?Ͽ:{8Pendstream endobj 164 0 obj << /Filter /FlateDecode /Length 1517 >> stream xXo5~߿iqE4=EUH!]B/=wvZ{@}txqW /͗^}Cqy9ِIhR1瑳i^6%YMl Flt( 5~JH¯:ӷJ$Q)sedڦ 40fQޤJ3ͻw5ß˭fo͑Yi`{9؄_$fm~k=qdsr~DڗeFOO!.#k#ފ Y]AyΪ{b * b@RYKj*z ط_/BJCndNHݍn#ˑtT<.H]HHnHbo #j"??dՏltZ,J:YěՏOHfnjJ鷫E,Ѳ7RBUt SKlvkڛ"A2o[h7bs*,mT1k?do (ɠm$<7hXSاA.>dUJG#1$E:^!7%d] {<&dɝ@# ;"(/8M y:T A;DTs¾cބwIS -/NOmŪo_`o u&r_< E3Gѧp -a|%>"٠EStTwONh0$D};oOGwRwx? j3qs_@C9*6jTgLֶOLi %6ԯK/ƥK:b! u sZW*`D ۑ\([ߞ3CE<{>T3CeWL85JN=g✬5jP ݣB {BՑL,-K|w27>Wx:.WzjBSUORK 6L\>隱[X"{N$H*>eeC q>Bg ݞb{y2C1svs}[?\7}9?8cw粻.bs?oCFnCA114T1t@d8cC B-P'9&XsJu&sA##Bbf 81+T ESehm.ZNڿ/iX:*T闋I>ޕ!"4~pԱÂ0pr&,Z2ZlY`9)\tRvks$ XN+5V}FXEܬL)O,!' eȹ'} !:^jgU8 NμW T}a'E;7n"'j"'A ŁT.- Tendstream endobj 165 0 obj << /Filter /FlateDecode /Length 1435 >> stream xWَ7}7ܑz @Gylg,J>?纪lB:un|ȿ0xq3X`ƇC$ҁB$q< );tbSF; REeXY.zSwZdu8NY5?FEŔ4ZX bFUuM>3^ *!矓au4f|M#! Ilwᥢf"U/6[1.Gr4Y1fI[Y=9lȃTpJVd"y֘ZHO"-,QI1"b̙bRXg |V26[2Cc kwO/1"6X3;wtUOJW?rѫzz]Oz:ӫMh7Kdk$<+mQ'?ZkX[?^CfP4>H4z\Y]4#&EY=S[zEv òX.ܳ*u I& 񼰢E JZLŊ yv- {bE8"+[]YI3P!f&>LoWC²ێ RX;VCvFܼ] <: .KT:VE4=Ǿ!oa%4DqAВtbdž'VQw:v5OFO6:DϪn{Nh)'J5{ڒ!E׫ytȪ*!K6VE&GX]1H|EEAo`l}+ yʚ?k7 ѠҦ$/JlϚ(DSc-ȊtYmhn%$=z ʖ#vP~A Ķ^>Ii 삌}sHߑ,ܹщųgo1tl9$uwx{v])Ω~T׀%}oQn0<6d\Lr\}D#1  YԞXl ;oo<]5&`F+ bv1a|WĜSR غ哣DQT!I3݄NcE9^GeO%X2s6/Tb[v<ۉ&8Y feTR3c$۞AޣKZ=ٮp V%PrXo/oe&G7Mߓj'E+ogEW^Pݾ)و»0sSPFVZثϧLo+/3u,:OoOzW`aj*Nendstream endobj 166 0 obj << /Filter /FlateDecode /Length 2229 >> stream xYKoϯhғ0;Hld! +AAfe-Z8+v7ɖm@Ôz|,Vu4hEwߑ.lX4ᛍA@CpT&W>¹o8o2 ‰wYжZx xW-VUpQ3ɛOMZX6piC9z jhH*y)45*IQn8޼>6JɆ_[l<~!OZ`<":E͜ƣo俠uᭋ CNαwY8$WgG ΰSY]V%,ëhׅP u]Uif&ouR)υ.ԾPw,B{0 uc֯:}:Sfm%"7FP/쩐w:-enio%t~}U5 O }N._u7|Y]Fg6oq6JNkHϺ[?+KjW&|GOfB\:oP Jws g~q gs X]䬳Ⱦ1gJO F}irvݹ&Wz Š gդۦWÑwG؜QBAzWdst+Y[/4XuTP|8!<%{Hdwv`v‚uTl&Oxc Jp ?~pXT#aŊvp If%nX!KA,k|fK 8bZqZ2as 5FdՆ51T6Zy:+bSmfxm Cp1NEɶa@ayUh&mАύˋY87qҝ45 /C[mie\<1ڝ>A,dZv&74JO&z3 w[TVAL& yn7ͅ؊s|3_7pofc8%&$u:ƋuƟA9ED_N^㺗O VG<ԜjJL/~NceƺZF-┍ m>o"l3?r+N^ohO׋\A±ir)mVnwMBȮ y>'M he33ؚqE=4̯Ws8t4Fɚϑ?F6GƗ¥9wbMgka>rq^#-":p8p/Mo7˦W2|+#^>j/qϯp\ #ݢ K!I4;ʆu$ 8%9;#p'AV+}>i€`]ԭT Dsq?/qendstream endobj 167 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 933 >> stream xUR{lU_>bˇk β#hܖeҰfR1i6`FMpwn7ǣ$ӌ[&,  ̸4&C$?B8ҙ?!o!9<9#4+(Dח7lAXœz}}|ǎG[_+qʍLY0|)qz,)g&qJwvL.~w~״ZnY\r"*{6('@Ete =ÔB;1q3;td?gQ]#A^MSTa{, Sň#p$wR!"b0{9h^C(< xޮ.N5пm!&endstream endobj 168 0 obj << /Type /XRef /Length 188 /Filter /FlateDecode /DecodeParms << /Columns 5 /Predictor 12 >> /W [ 1 3 1 ] /Info 3 0 R /Root 2 0 R /Size 169 /ID [<821809bfe0d07463b90d55c67e3214c7>] >> stream xcb&F~0 $8J҉70~_?_1( @!/"7H>MtDr<AZ?DH$)DvH ޏ`ٕ`2 D } l- f?잯``l{2J`@$,E`&M^Vo"ٞH ?% endstream endobj startxref 106260 %%EOF HSAUR3/inst/doc/Ch_introduction_to_R.pdf0000644000176200001440000063255313303046020017557 0ustar liggesusers%PDF-1.5 % 1 0 obj << /Type /ObjStm /Length 4779 /Filter /FlateDecode /N 100 /First 844 >> stream x\is8 |ۤB7UsN$c;׾DȢGsߧRH١ҟV|*GGc{׋rg%]O`:bggb6^,Y1X`]^_r<[ݎ Nxq.lVCŷ/l4gpqXG] }=(p6Z ק) vaY~x1= :=V0_ ۛ&қxz1јkAb<"ÛXe:ǿ:]/>I3#dWձj-*BTLuU{[]۪4:R"PZfkHRtZ.hzIT#jp+ձj_NT BN.*a1_+y-2G`j=*lX$u /$p-fEz[`^?yÇQ4 5[ /3nIx"EG6?)-bԹyHݽdV:-aZ[Ijfng/S[ V1TtT}a5VW0g$i \=+%CSz1Ɵc)/xq9/?|? __\̊_o7=ڀh'sJQk1=}2 jWJrpYt9x7=9a8{QxQ\%ٜ߆j5`G>FyC!ӽ|@ږR^ Xf.v|^K뒇!-;r)w bHO_5M̰}qe}ʤl *d ]t›i2&'YNyxTמ=Ec~[&;&㍆̣UyjFĔVr ϺFTO>}{ff{$)f \y$)K⚢,>,r5cGQ@yS!r7$c G .?.r$DF5^>"pCLQAljdhhr0~(|rk>'}!3QUQH*KTB*a 4 YA7|*݌ TxhAх$( I< P;R=U'TrsjfLURHmdEi>;*>!v;%ջ|83O ;t)GiDSHJ -Vb/iG* Z&IQs =bڦK#Ri9_LLGpO~/?/+Ək~w=7=s夜er#^L+8vFys& VQŷb .i_"gt65 ߯m8\I|H/ūtB˼̋e>⼆/%`gYLC>yz*r@|+v4Z7ݾȈhӣ$5n3gd_H~oP¹*"=Iev[usjtDצ< SFdu.A*BY: FOj;ĥmnM8pme"5givEɜ*%mZCUK鑯$VoRzVRztM`׃{bt =MQ5&HcuPr?֕\ULv2"5El(c: zhצRP*+.օHyo+;ZɻW/ZQ+~S+dG+l_K#TE|.~7R;mw;۹]>VR׆%{0Z(x2*pJb t0l0L#%A6Ӄ6`T_&-oNmŬ&|~7Hu5oU=i|XΊbjdu0-*v?uj#ZV^tt\^.^i}s|Uxbqw^fGf%-d~nNE3F(mpm.0f_.|gNxʿ-kCqUݓ`:J<9*yn[WIn˪xiWT9nJ;aזA@ ߸B`ӥ%w@3ºf X6j+XKc Iܴ$'u 髁& Tݰ.海ǽչ];Y.Zf\,|^3\ѝCFUDiE+ZĖ!BKV\hWm2:duf=m3ǥ{.Nhe$՞c2q'rxCQ=AILUY2$gSAeAѦ d iɀ\h!cɕ2[X`cNev2r>M[y-1=H Lu*WBil 8;gJ)(wK '1EWfxZ2EjA?)2t)p\2LvgJ<$۠Q9|1Y A`v89L!}5SZLIL +d!>#(F\gpel\ gq%l_TV!։%W*x`&PvR) ۊQ9G;_tEb!~;ȗe¶uz q#ZK)_|i|U_Gּ~ z#O9Ȟt0VNy6,ZK|})=Bp=kJ훷qwI ON8wlg]8Gx})(1mdgV[ WnZ=ӷƾiuW}í.‚Ck)߱HZV^4Ne}}yxΧ r* "Pvs vZ\͊yth|>8<ˉ0iR8'0O. !}.y|0C;QYNK wO5(Wc~lކQCULQ%\HSiȒQ$͔Ku/(W>9ZhmYdS5vEltRUg5/g^"&sF '~u}V@-R2HxaV;VZGZ|<:"Y򴟅cor٤\j1S8 K!#sm{+dggm`,ҷ1z6j/܅j owEd 1~:Ǎwkqю['_Cb m3!endstream endobj 102 0 obj << /Subtype /XML /Type /Metadata /Length 1653 >> stream GPL Ghostscript 9.18 2018-05-28T10:48:05+02:00 2018-05-28T10:48:05+02:00 LaTeX with hyperref package A Handbook of Statistical Analyses Using R (3rd Edition)Torsten Hothorn and Brian S. EverittBook endstream endobj 103 0 obj << /Type /ObjStm /Length 3853 /Filter /FlateDecode /N 99 /First 906 >> stream x[w{G!@\0l28,) )%ޓ'<=̞ʞN( w3;){$ (<~5¯O7 IBG4SJÎB9AᶤxU  #*lP¸ 'L+0mH E e(?Qn {Ѐ1(HɅOqF(($<"Ér 2sx+ g C.) /Kp"mHz("飉dG*|hfW,8<p}m)E@`1xCTnA(`J}PPԂSG=R_b #, 4@/` 9#C[0}hCnh1&QyhT] UB :NDۭtXm^.S=]b"#shXZ=nowdBPeͷa2&45̓}[`R̍)V*ec;Ǫx'w(`)r@$rhspn٭Մ,ݭ$;޺u}K-ק:-x|]!!@AWMd_(+{3b=~_^1W2p-;Nͻ3n-!zd5nqT[usEwE;1`h83ۮM #Z2-ӂSz%MAk7^=(K3:Ӆ1:y?-[ċ6b~JqhnpWf;Ad^a6׸zw 9yj w2ka{&*V/p{#=o} T*4E(~ SiuwY7ajȷn68)/9g1e@Ԃwѫ5U̫.}MR4ZH3 Q+' ; Ȁ;XBao n5MҦ]QUTi oڸ #%!l @ 4H~N B붽'妇&5j^x?/09^]@l@/~3X[p>N/MCW#3rH>Χ:DsejUM`[|.;Ui%DMg|~Y? ̧8,H)+KYgU.+JZݷo8pgs9{ywպA,1E"iH7zQE"aHY0m[$,)tM1E"iHϿ .‹./K../+ʫꫯk뮻믿nƛno[nno;λ{|z~G}{'|ɧz駟~g}{^|ŗ^z_~W^}^{_7|ͷz~w}{>Ï>?O>>?/˯믿o~ǟ~_~~?Ͽ^Jk.N͇*Dۥ^mX*ݙ-MBư; .kQ(D"oXye{F=9Ab8qZn|_jov!C4MN0#B_ܬN&dbP2]Bxendstream endobj 203 0 obj << /Filter /FlateDecode /Length 5788 >> stream x<ɒ7vOv]=%F>d"E$LMd6eV xpҳM_yfup^_>շWi :xFê&4{Gg+/Ϲ~+V198T~!q&'STa8EE&Tv[Q9E 0r-6Zb-oprpӕ"_ݽ)p4'3ZG=/)\~.^d/|vIںIY=}sskߧBvk8Vnڪ[Ѐ=%s8='Mq#^ (W2ӻ\m[(dtCыӏƦIPQnό>Z5.m¶#vœ]Zyj=t[B?ft!60 DO5ȿ/XDnCJ/Ax?B_߁L;Nf80bZ `!?Aj-ݲDA9yjHxvba.}xr@cSm$Coҭi&,fBvJ\C M5=DH~b=H{԰U¡L7\6zx4iC&}/,o?#F`:jHM2X!;i47H ]T9,  BYJA9YBqAhs*@"AdldJ|t>:>SQ M`.~VPz_1B:d)@yFB|ys)z_T!RQ W5MI2*¡$SFCJ^tT3W7f4<.|cM+2ĉKlrGfm ֍ rM mcļ/%`-GJ!Έ m, 3tlOU 7ٍ<` b鐰QCa>f8*%r.^NsN|TܔNs5 ] y.(Jͣ*^@I;Årtϒtn-XyZvYvȳm\ +#S8Vi؁|mhSeeB-g+I{yo(Qj RlZ?HaETI&*ɏPi!ү~B+@ c UnXV^ 1!  adF 9DŽTgX{(U;=l_0#G - (e{$Ys|*Q  lcuT\Xnl?g"!JsB#2WBrϪ_kp&X[}!dKSL°Vb/xvRҐBbN(FQrW["ٖHQa#<%^'Hmx? IN O%TMkQ_pRWX@ <&OUYRuE_XWu1H{[PuQ3} 1da$Wuk) l *c"_k8"pPߺon0'sʌ1OpB"fYGsII( upF{`p7mYsB̞[w4M7pSShBx˱ +_ZEq(68̮9 %"K, \`D3$\*3gRRMnmQoK|/s> BA+EtMAmejgDQeU%$ obH$wyōh]+L\"zQBhS÷'FY6K! kt1.)ͨGݨz"ՊzL6lk}ezU#"Ch&)[Y@2AbjC0PD0HV5R& UZkfP]|Fr_ԪZNײ2n[qBT((x}ҬVGa0BؾS8#8xwCy`ɥ箇 oeyYDwBL8,,imC, AP7\^] :!.$`ChLQ:wfۦ_x'"XkR&;Gc"Z,hKf !4֋Q梺v[7ؿfi87;l:ExNYCku,d1n76@u_;lٚ|okl:~H{Nr%"䅽:*|ޛH?hR>aMVN Ef(Ş|I>Bj*ׄ $!;GF jZ)3i|94Q}f%3kb5!H<%+^mVMvݭ-~ױVpX k Y}v1)D({aөkos{Fz *i244UWd8ʹwںm'L 2RT!BNڥ,$h+ےWI>,"mfڊŭ[*(4Z%/XpI/{\t7k[Hv{޴GF)F\X55{xQb"jK93pK"6}ræGEn |4fO ,Y ;M72!.ΌNتOOawSor1no]A!0j\h.!Afd>u(VoӠ,AždU ~1ӄ`=6*f6+=ӺQӃŘSiTp(h{L"E&lfE$d!bsŏ5=6wg:m[z(%3xC/&6Yک7(u4uу ݪ [Ƴ)G;h ]:;] Uܯ=rȦ51,<*T2YSC8v)unkcDIn.T$UM8G>qqԅ3qR$ڦUj[Emۀ>C&|wկx&ᚲ˫%xRQ̛t\/ȗ:VKrIȡg.9yCzvNW oc-E{%`<σ/lLhQD<&2er|K7Whb!GFy3PB@ݔqmʓt+ӄ>M`w%RLF4d+dHw+VH?#;gAWY2a"M~-ʛRPo5DKp ?n,jJ4&N}NVtcL7Aziݶd\vϊ'eLa桱TtR8fCA ."gE;Jk6F:ιs ``IV y8D%݆Y[-иlGdFHߵrlD 7le](H7iPQn^;6;;m,-рi!Yjj`:=9 >ҵ djGwewj*E !(;U,\`b|NSq_r o 5G/հ]f0U\4LGlޔ/ow>}7$6E-x[oyyt+Q-Ee@Q1M؇qTC怵^y]]-a[6Tu.8M ;j[zu[Y[ Qh2zlS7qr,vww¢%,o> stream x(hSLRuY=~9CZÚzWu?Xg K_ޞ}ZL>{j{gfgֳީ`sY[g(K@7:@id*O(4WZq-]ou*M2x”w7LUJLr'Bͮ> YvUfv,8+==zvq{։gq @Wg?w/_ϥw;&^]_1l\ysƫd -/ro2%g _+e^6?1i­i5{nl5[L0Bb6I{ ^Z [4 [Y]I lFHL{ύX;#A+;9#Ex۶ tWHw(O@dw)27bxJɎ%S&c  }@Qqϔiqb 1N4 Vǖl|ww>׎'9Q]dr`jM lܺ%*K%,C@ے\lyh 9y}b q"g s-^DQL όq*yV˜)GMpuQ j`{G5\3/vw 87 ?К3F(d4=-[†eaA2LPosk*WTw`qPQI($H.玟c}Ƿn\[3G yLY I$ =s*xlA q$MA`<2(i/?;}|=tba$ 2-%DE1BVD%kN35ПwP g!hقuF@zx\|c7QIbqWrmUq8DF]\L^,Bb%d# 0h ޷Xq Lĵ5v_E嫈W;/}QA}5qB0!1 K`'B$*h"qA}W`[UaK",@ i2#y(po'<`I`!N^e.K ZW5,spMe 9!Q6uM=H,"#ck'|A5 )qSxf tP OSZ3)$ X]HD.*pQ߶QP5YTX]֧C-0VyOCTtSL !𮉲MdZ֨[L)wY&y*JQMUS gz]͌z0d'4fx< `ӀxJŤgbK1lQt%%}UcCm2!!5d[s5ǚS3&8i "PJq-px @SYҏyFLRSAYh8Z zT]\W1feP VM=ĎT' P5+;xrbA8ZݹƆ L(Lt;1`E p]V?a$YHY0l{>DjK =0I*ʰ(bg)β"'$5I4oV}^aS#g1q?:06ZIWK}Hؠ('* {J+*Z$ K1SJDND #) XE)ZBM+fȡk9 'c ]4n`0މgwさi4LiLVy_D}U/X*c y "dEH:%5!1Ac)0j䣵@ЦIx,܀MZD;HRe:tV(2&U #\aII8mLckkÇ)zXY +QRTfNk`7lie#XB7m}<1#oRHh<@g G) Ib0`a#Y,3'&~Z RjDt'H81);b0mW5A%_z{Ch H e1RH$,2ViL Z%Ex! d=gnbAPY}[VeY*~Br)gڕZr~݊/svJ;3zGZs# n8rɬB:62bm 5NơŎ6Rj.R)c aK[B6 ۢ5iCrx I1 7ğZVs!9LZ7eOB{~RC 5Cz/b$1 -0耚D"03l#o"!8!}ʠO!Tn &'wE>k8#p8~4ӥmVf9quڢ>Q-II@H0OM?c5>C>4mL#i|Lc]SeOKbGDO&YH0.(⬯ǻX8)u3M6yFN^gIlP{uk'34~ƣ"Cߊ5_ i9V$$Q⏞`KFpIpc>wYݕWeS}~]\պ#p[86, ?ghϱW }D"X7:Mnd7|za =zu ƆMG 7x}8zӠy5 G(rpGUJ!Ld)DcbȍDp0:H:1aq0^ ĽdCHU}РUP(DZ4` 4̢x}i̸c3. 7mq̸&Ҵ6~j`kEЕS: Tx'MR#3ݱO@ZPhҡ]i͢S\mtC[nL%!1(Yϳ ڍ</!" Ü&{OC"xw~Ct}FSCKWH>C=2LVk'bQu*{ύP0 zcdM|6}> HU:*{/jS3!+]< 3;Mtnbτ~}}s̏TJ/h.nVwF@kk@7Gp\/11_Anm<+E]H^frrKEOoyU9sϠzsf,kY!s~Xvl*nl]*OM%7?|^~O}A&~Oǧ]Ź_]cew}վr\폋je^QV8~#b^[Ȯ_QיHYA=W+dȢPӢ>^6n˪n{Z+nۇ=R,v PO[ APzvaw ?R7КF, )0E,}T k"y|X~pB(_. 4v[$qFBË_ܬ6wozCX7&?HU ajn$EeHMG-]ŏ#QV'&%3d:.6y|v0H OC u[.ȑ(MI6f+qVXM|trT%5x=GV벪p۲:4;h!mcw^:r 41i zp'z9~zOB9ǣqXsUl)B,\֭r{>4rI^z\cYӉƎYK!W?װ2Eז#NқGfG>l5Pj_ra((endstream endobj 205 0 obj << /Filter /FlateDecode /Length 4957 >> stream x\Yq~ =U;KE؎,vHj凚Iq=L 4٥$?8a( |f~۷?NB_~`0ϚK |{a=*//p,(6KltVdTyCGIfȂZ+9\dLnRM2xBvv7DQM3*U4 Xzw򟯁_a.."%6pgvB_^q .{VJ1{l̼cBk`+;}fvw9/Ȭz/!)Lx⧞sc:?[tkLw8zĤ[, hz%a' p{dI!ʹlvzz;U\ ҷR13-؈hgdu=rS yҝ^E9GTynzSGzTr gWldG\X1L}>%lX-1f]= Y>b3>{ 2F->=7:1Cٓ;CDY\~,o~G6 @*C|6|~G>?շxT( #Qٰ"-j^*g"跍V&l"ZDRΉ|7Kcyz.OKyz.Rj @l5!pxx083`"$ߓuܓ9$Rzw?ME@8BV?P{\4.eVR0Wa!f#kn-#S6a,' /=ƒ W.cO|HR4Fg^s)%2 ϔ"c#3`WBa f }o&8/,x%kO}| 'KP=O@AM4 aڛ4%_Ej:qr ;7+U`squq)| |/O\8xSŏ-HW~:Muz@̫ b%A]Q#zƼy,o0(a;t*SR-f9mYc*#B9S4ψՅ@yČ!C32l7a0YqF:]1𔺨-b2 ko t_nݧ4 A_Wþəݼ3; cmC>Ӿ8B2cfłg'4VuGYP3HY2/7C"`kM4Wv2'gsd@ rWy<烧_7A`\Aȧ +O<|3:Kӷ(*p-Ȓ\` ,҃{:gzV-NQX=8dX[XYEE|}!ctN5r-OZxt&( 7q\&Eϸc&[deĽ-|1=>c,BpB*qFJHV>ȐX; F #M4:a ]yhXW9w0ijr#+?Ɨa"C2/5HN69o#T\Y¾6ǪP`l`*aH#9Jr8 tgQ@Xlo m܀X8?8M8c$@!9]fy{%zEI!8?T2'.l(8/^LQk%1[ %+3D8(,t0]| >Daߪ(Q)x_V%XT=7i:dR i,UWkkG,r(fNc BC E6},_59u4)2ήMGE-pGSHC|־-4MU!Om ii\.oMM'3(" zh|?R)ÙP;Epx*o&!91\[*Djd@cvPOqu<9hB4㦉@@wBMrڿ@ddZ" /6CH)nZPo~wZ}[{mJdW'W_ h/9P!9o. &ywaVDrR޶6/M!=0aM)RW/v\)o6 +EZƬ?6dVu$@԰ wM@@UX5= i((N)^Nymtei~Q#܎`CXPw.w8 % iΊ9z`>D.cʷR'nCT'\3Ofus8@D3syN!if4'&,᨝&4'MSI|R)zuP;|Q{d=k4" ]rz+HcΧ4WΥ#`6-M1vh4ߥhDڶtq䋚u,$ P=J-NQ'Qpח2췥Ī$f'aXEȔzOaޅ Hꤱ T`Mx=3rƚ_㸵LF>Tղ977yIcxZq9Չq^cBoH@_M+}Tz;6 K麔Slew [:S%}:A.;j$S'櫚"NbK@xo:~ROZOoǬd!1,̋l﮺\ja/e4ҪP򢿘OM+>Fw\h<@-:SڌgVҔw1JTcA ORg>~7[lY'K| VƨB Kl_ü۟ |y4Gm,g '/vs }~ixH"IMt׃X*sHohƥqG3h$$~ >8ˁR>sDRhi/1rޢ^so -'զ|0y(rO~o?+JB F:ҵ":֍p("3ђt)`MoO.wN N ,[!3)nuxxS%u9O+PĉQ6(i;ac=g>Ekd':Nrh4[&apnו~Zyt?rU~͡[am5ߢ0еiNX)aXv&DvIIs/nshA{ɱ_rbJjV!JhM@z=5{fWZvm:,ժM>IY'7[cr/l4ma]˖>QӒmR}{ ~`Oߒop~u}{'endstream endobj 206 0 obj << /Filter /FlateDecode /Length 5174 >> stream xӜ9p+N8D<ňyUS]]]b?> j6Á83~^zAPnv1֙QٙpVggi06lQk-ZnUa!'8NNٸp AHS['5[A&/~8DߜQnFY/6ABj9lT 掵Vsn-1`'v#L(Ctf:#[\6~:!?ഈA(78#"nFK ȟ S*meZa;( #fs wnC8+f#tq_F$!xa :Z&f#PHOGy}H+"0Mti{PVMuuHLBq~U 23Vatau1'X |JZ1b(v@X`B>k i0b$"}H{kQ(Ԅ;\NۄvD(6#ęZUX~'Mt)}u\>;r~Kˌ7] /U:o0|6k Av]p8w4 ~DJ^nOtw@RoCV.q d9oleeRf{@tD),t.QÿݖKy52qy@dY$:HdDIRyɂQMۖ >k)u~D>|9jB<%I=OFr6i%"ɡ)n咄H9 ?%H XJ]D".:yd1yH'؝V{˦# tS-nM93Ґt|ɮ2=mۂ g$:3)iA3+*gi.c giLAq9|kFU_B$ĺUY >PE;g޶If\Op`H*h"./ .^CoI"]0\~>=M\)pQRg#p]@ЈŞxU4>@J}p%,V[{Ug! \n$: "l@F>JRfa6!Pι=KKP.vr,e؎ 6Rbt7"Hms:l# lEEW (%QCXui;($h΃ŕE(Ҽm~Q`AI{d-.&zp+Hf-_tߎ ~NuF]|V(n\o/z߫8VgաtGNIC{V&xrzCLӾ."WLG䅡g=P(ƲtD$\ܦ-Jt@Pm*qRw>0?$Ҭ\Ư!^es3n `Nrz\2_2?0to(9 Ƞ]ν@eqJ'j}`"gV{˖BP,Tٍh(DPQlGI_"w6qtEnޱ$JQd_5R e-O9޴h u&}x0fPTIJ:S2r"r8"%p`& ~ef<ӁN _k6;'; c0KZK,ӂ+SүWJ t2O'i-=q(sF*0Շ趎>ѫ:yo v]t<`6t|3CݳoGLnX O&)$+)Eנ^Ogpƞ+UԮwgqWؤ%&ubPU7{'~c-NaE3L3/ }_ R>㪻oF}F0˽D6ilf/_ bI?ײǝ8.S;B_g,5?YRo\nO%Ws<6/7hdJ6V$w"/=J/&RX (KrBVe52z[G:aծj+QyjFk=iXn@ii1;|ob3;C;?籉:ce]V2l{[!-P1H7ڥ9XuR~*LM%x|" R+'tEqaL62 @/FOwL9g3da zZW4y.5▤iV=פu)l1}xW Ad uFL#d4.mQ59Y S*0<μza(t)nI=!}YzCRX%#w+\XS rs lcٮE-e7.BOMɄ3ܕ;m-y|٥춵l.Ҹ# EUNr "Tw w :]O=ȗbp68lpը=+~]MfZ2eJ.D+&OMb..mа 4+ʚ7!zQ*L;iQ_ 9TuƢܧ_zS>W #WCʇs:3IYأ M O[rnhxr%q"VDso(w:r=ۙK(39Ao`lqU-AӂӺw핽8kЫ6GG$1a=M5dzt|eJabb״;klmoΏQrJ6A,𵬠?O(yl2/p[^[Ke͇y#vʑXn/>%kgaazkk|Hx9KMe@|; rzFŵNO;\_)x(e,.%&ѹ{|P]>M 0v乶5)\{kY~#Q)0Q+NJ~¼)2jIOn[⬋9H+P œ)ʻTZǺ{^QfG/y |>0 QÒz2@>Gk=XV<K݉HByX/b\gl|J͹K >8w!5O߫qځر<]贬6Dn=3;T|2kTu$1&\xDhM_=+Ik;5EFLjn#R ko˝ȞeŶN vŃkqZ5Ж9~ T' x?7RGiJFiAaJi˺82pQdBк1~wWJy w_|㷛ZAhW1EH]geU9 m=5`OIKk(FMkF=r9}g԰PVxo: w,ro_ ÍmR=S%%^U95Ag3ދ`Tzu_^aQZ|Es>ZWZ*löWuZ7 6G^U;Cׇ{n!Tpx1'X" 8ݛ{̰&_x6endstream endobj 207 0 obj << /Filter /FlateDecode /Length 619 >> stream xuSMoT1 W=4DZT}tB㼯 ^4ɋonw&|u)[Tcka~$qdyvNF& bNZA\FVv=.KׯjroQ%*N 8K$N`k:f3kZ-n݋P?;14S[&#Vs›YW3ְdx$؎ ESaY)Zun( \rxj0WC<" ^n4kTqN)j*YF*Rg;Rb8D@B5ތ{?څ9מo"WǣV&cR7]ڡBO3RB;]_%\64?8tf0 7M஝Fe{Hz& "Y0J ЂPP&XMa#`4 Dm<2 ARٖx@*Q8d^$S`kRi)c[uJGgEN˰ )d/`|]s퉖~l%r:M9U8(f&endstream endobj 208 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 2845 >> stream xV{TW ڎog[ GS(ELB$ #ɗAy#RWE[VVOjݵZ*U׳g'ۺ$s枹}'(DB ?wO"wHA%/OwpuwJ*h24h|SF'gǨXyRQćMj.I>hnq*cjQ3F'uxVkbu%vc;41t*czK4B=%n~ѳԜ dd}!"yr_AWXCz}?inIYLTm <*yچ w_*_ T!4޺ԫ[C݆̃)7$,V`ly~ē'#,P=*|zyo5AkԡTF BƓ)׃18{pB'p/?z4Q B@r"Tdڄ^ g"ZVxb#YU1?0#B7doghfSgDz~!xo^S.u V)ӓ9퍘۱V)ap b1D T8=dºζ?{)FbkʼnɥnL$&–\Ue;ܲPjeHL#n-$[Xe䵒+rE*tf%5۷r9mMk01 =al:ۖ n?%3!4\Vɜ  :,̵@Q)wxgP }T-8]4N1AJΜ )"ADY*y"v]QP8\Fa`>E職u\?v:wVݴ_HŶw`-7Ŷ;dF9DKE;)&7A鍋t949t@8MrmoD y2-oԊuGBKʩ:#U=ᖃ3Ol̄&^p[6Y$CX`<$ցYq8(5:/ۈn<CCǵ ,FT$x( `2p=EYT][SXY*+*_~=M&ī}j?Voů\lmT~!)IDNTϻNH0E$34\^t%JJ[VvT)~GtcAklwGN)y/ o7aér[OڄKI;u=qjcDf0hIH3Lx}8b!:]1> ab-F_)^^{LϮ+H^Ew]B4z #dJ2l^0N􄁀m5fL&7ҶQN*kw6hn4pus.=v+6 %js Hd/Ϲ%&~o%D>\&t|h|Vk4ñ$:ڽY gtR! +Tf;++-sy䡤?Q8x­b2eq ⎡&wq4Jꏔ;D/j}x1ׇHUV\'/󵒰zF=vm)ą쩸P"޹﮵6k*wLOc<2^'鹈ȼ6퍰-IѢy(*6g`9ti.iw>mZ&s:6+rE1cWOwXOϓPki;|/=`ؚ1,Y{}xIl+qDN)q]d&JUnn5sd. ܹ*?+Q.sLw8飒 R# ~vw-UԃU`튦L)c;X-[!g' kgVz{P`,K@H'LŰ3u<uƓٜWUy4PsJ u6{<)؛w88c"l8XN+)41y wQ W/]TP޹;D_21)Jeqk {͜3g_A5a 3RpPn6Ul)5SEWw de sԷxn'nwg.m-DwVuG_ '$B0[إMa#w}{o膁8Pm084Jp(+Z9&B8XM}ڇd\5c_/ / O}nJ9XsDEᵹ X119abĩ*c)єc2@&0V;@u{ d$,vtAIWR/y^^(f0Zendstream endobj 209 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 363 >> stream xcd`ab`ddt v04qH3a!Skc7s7˚ﷄ ~O XX_PYQ`hii`d``ZXX('gT*hdX뗗%i(gd(((%*c8)槤1000103012ԽK2>}wy߯jcws~7yŞ>~nSg>;3wߛgO^-ym̾^];ǂXπ| wt\eXp~`:endstream endobj 210 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1925 >> stream xmTg*T:hQIQc*$*TI#BawD*/{YayGXvaAPUIi̩ibFHKP$1Dju9Q$)H2<5IQlUժ Q~HWjRUŒujQf`e!XOYLjT+ *}*YQ1*b*toHmdT[* '5,eJL X"'D"P _VMxf⿤+*Z:ZAE~RRD0J7P _@Ksr=^ly>Ow Iȃh^ôD6߅"C/Wߊzv~Q NtJ$?ܥNOiȑdߜgk$_qz,c[p9ܚ8Xg-WŨ]'ZK-e%`6s@quyi/цد/^h JHQzx~H{p/-#@Cns3"Z$7I9(@D[t0xi{p)(7߄^oXO%})="m2  6зEDcMnk 1Hsq9E*?.%=+HIg\RVd4\H,8{̜g@X-57)/h;^d4@+W6-_k+ *٩qZo$BGݔ4rr~%Tw%'%>ZӔn Os{j=W`=kv{RNZpl3Q><wsh>Z_k'q=1DKSx3,qoO`31Qsw NO BOB;ohrdHׄ"p桃MxW/ G^\VT(saJ`;)m*ʿ;:TLc Iѹ}Ecݝt_s}}h8Hn4ɵe5k3MY-G<ߨ*~k*93 y3,qbe;9p\PʽUpn\+Zƫy!(~(s 0k06`jMȢ]Ǔ䞂[9=s~oC,7_]N%#nkelIN{/t<ڛ4zX=vy]7뺅 5roq8FǨ58 >nTp*-Ns!0" A|= 'tM3Ha ڪ*m"4|@UJ=} 88ڍ.&ۨh=vu~Y.)(VWhaYóYaNߟ9|}|w8endstream endobj 211 0 obj << /Filter /FlateDecode /Length 150 >> stream xU;1 {'0q_N@ -ׇE٬W.,?慅:c8]k  I1 7g`tBw2SZJffBPUR=uw$֓TS>HԖ!56w/ûC endstream endobj 212 0 obj << /Filter /FlateDecode /Length 4198 >> stream x[[o\~ׯX8 DǼ_I41N}XKFZrߐћCt{2wt@\ai%YxFr1xzqN|/piQ-Vs]uRzNzAKFܜPj|ާ/ًctlNY/tCݵQ+W4r|rbܴO'rG燣5] r~pdBj|L\ޚ F97|яn8DoK9`DB)!FhQ撖"zMk|[֝vcfV{a5$Qs6WI s n/,t_9߷-2t3T1i,Kݯ$ +Z 14մ.)ʓCH`Eƫ#.1::~GhQ '=fx>ynBi\[,iصb+ A[K9F %LeûtsD3BNIo"u \d×I sWFi4sn2 c^5] O: _ "i6\/r؉8@ <ݖ!ltq3CH7 '%R@7O |!Ebo,@ e Ap(Sq fy h6s;_Or ⾁l:4V1l X`DB/ࢠ8tR trE2dX/qs[k9\Mudeϓ"p@ʪDBId }'' ="#xS袔iltAv'y:"-;u]uˮ Ӭ#U9G`$g>yyCLoجؽ ޭ'fB1o&KS=)\=)zTPbz2b>?~"dza9Wjv٩=@(⬋nRn⠝z7{wV!O(XsbCnK=GɫKV9;Lw$uG=M'Sa.)܇dfA%2 GP k-g{2o 8yc p>eW?k|څ[buܐkS&4!dbJ-1}ЈR1U', Nb(gyMB7XAt(T3XQrlWu7"ǖl[eI]-wm|rV]gOu2P8О :0MlRV]zn9e@VKՇ| ?v12H*K:[`ds'}-m; -V'B aO ߹\ /e>Dn汣h^ZMVg s/gn!3y tڥޤ X޾:D%=4Qz(dҩ2  G>b[nsz-bD'4NE~)!>U})hD``Հ3uZѪ>Lpsr}N'Ux^1:ՠuWui%vc_aoAa,?/?X7f-;kfuaFگ· klxUKE^qFaYw}mҝwTUm -^D*vJWU4\T,&LO/DOF䃑sN{vF>:NrX~e>"]V((EGݯ>mNyM 'U7QKNa!+Ia~]XIC޼Uzo~?ugY ?peAz"汁G׹GPV0byÉv.%ϐ򐴫08!X;WCGe)ʋ-<;kV2dzŚ@J5grT&; uSb N|k-oZKB[$4ܻ8BFGn;HY -#'O1͖V]HZg۞dʅRfTq3ב~+jrendstream endobj 213 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 8434 >> stream xyTT9G$29Ԝ{/DcwTĊ*4 S{8 (5oQ Qobbb4!/&7X9{g?y,,,n6h~?ku&[ o؄,ka26A ,,#ƄEڍg7mO:>;=n{w{$%1;2n|ySDEEMvvQ~v#w{{- [mg>d!AHp!^Em޺(dK–/XBr(kbKZ`="K|KV|;y A}Sh) 7jPi<{_WHz< G11dWXn!k4. EG>N.6ghQٹQbhn_]H{ ;SKHT% IJe "'6-m!__rHi?"@Xј*OAYjYZ6xN 9lI-zhSШ0~:J!GF 4hZ9(l!QfMIt˫DGwg62V[I/5Cg.z6XģpTt&Co6yX ~>-r 3oq]}+75R_qW%-z᫔EÄ뎿>{ km:+Ũ obɖVBj-j|Ţ7ǼOP?4aؙuW]p<\}Uw!I[l '5x0*??٦ =P %yߠ S\%%eb<Jaj.h VgH?i_R(/pjwsJO [Z|76x Q{\)S$"9V>c$|@Cai =ѻxZfĈɅ)ȒT\ i7[o݇ĢP;ڲ蘊GsxPS Z%%%!1fӸ=xHf#m[ /{EO2Gp~5K*m}vMTC5Ρ3Z>wEb%aEtm۱6`]-=˛C:PC9c#hq5Ýج<,XQ\&K, ,dC6MeۅS q[ S8z^ #L);=4t.d+^"G֣x(ڱf[#"i[rh},XX=*t^|eONʭCńo\`Cj)zZq񽡘1=ROѢ@! &D ̢uF}z-37NO@:v`h-7GR'G.4dӼwT.% MCghTo*b Aˮn嗗_>,C_&Rt7>nAhM+h2ϳ4p UT"1!=RC~]]`'|WĻF#a07H۝ٮhH H 6ã&EO1R= xvҮ ,!b̑xN-7b u /bfپg$` 5FmXHP84eݏtѿ|v"hobxWW{6/y+ ij~dL pB9Ld07t8<)Y=zV+C%bQG]XxĘ\;f~yïahE@r3.E 6)ȴz|ӪZ+E/%Pam~4 Ptr,u]<cw4@Ţ=}HH hL9 19?]ACJQ,i#њpjn89#'Wk^΄o>YJna3q!;FMM(Sؓ 9 %ߨ:4AoljE)BR4+NѨ kj?bЯ=6C$y*SdI\^0'*'2t>f:mrpa|̕R?hQ SQrID*U;5ݓI ѐ˥l p5U+H娌PTg%}ehF6(\\,6Z4h:ƲS9n-\{ުƐU}z#O&BHV9<́7AGJM*P[zX` KB’@0hjTc2P%L96cQ<_eR<#XUAU+s2dyAYѳpDTO{EwY}qW kMF6ŔMfFGܔ.5ɶݹQHFzz떛;Wt=MvoFwt#!\&%?!gHM^f2AU5Ui;cyD;5]CتXXpe= ȑ\ZT4CO\ݣ{hn&i@ȏgh>vǤ{pf$$C\RRJ*mBC.CJLID /"L/`쥝`wza6.E>(ݻ*ccsQ a U)fMB7,tzdk,!$ 3m(|j2v:ȟZ=fm&vlXmU jEY٭$(}m>c--#KNj{է5z"eB0=R|Zze"g&'Z.neD"Z]+}s\ k, yNʮ#V]tv \27-cIس纹K@FylPNsד V`Rz[Lv f-'r.|8,Ҩ򒽟,<>4S NX!uh@nn(ʔ\U>3Yb_] _yGdd ^i Σ̦pW_j1ߨ> yNC΁6ꮫޮj~b*w_ۙx0 @Cې Sob@jasL@ >(˚P"zB\50Y JH"@`w j4TaĴ5GG8Ůјf1CnUN{Y,n,2!gc/v Xؠ.7"5+qؤ9_{Dg_EK^,9g\~n&A \UPUtI%J4*]OzjVeSYeb] BTە`lu98ݘ ҡEzkⓓ/Aeh}>`^bEuBt;=%L 憼O $(MѤ%+e)Jo4Hm7)C $RIU* ] :c Ĝ$<{Y7OE*4@.NCB(C4r SV謙lz _"k K$@8YU][T^Sy黛sx3q t _.L_j}.@Q Dyدbw+?- T¢n!D3`vg <ôh*kڣnE7],Ev&n격>L4fI|.ɳVEBAW^^LULyHHLTؖ!gn|tFTGDWFVV]C>W, (e;]Hm^YEhX*urB$C0#8@aG8JC(gcyeѠhW!evtbbF'[ {FyN_:usx#Fʣj4:"nkUݟ x"FI$1m-I4+ ؃WʕBD'{0[I1fѤ4Xm_M.^?iqcʿdsL;Bly.܅=Hcks.geނ=Bi|l!5 ݅.G‘\SS'+ 3`r<0:yܴݟdw-W]ڲx?NX;\fO?3u<1g./)@Yc q dͽG[h]\w&5e;[wV|+Q(_z&lFή-1FIₒVR+ҘbBzL2}7%>`ơ RqoNV]S K\Nf_^ &ފŷ^C~2Z?X_-z%` -XmBsh3fU6]NNKN Vi+Mդes~2C}\;f?S[o]c>YD<ӴFTLP:_#\wli O>pYa"?JF&޵QCt8 TomsB]}'dsSǻ 'ۙw|CMsq/<`Q380Rr̈0=V\thmYH&צ3';O؞vhDor\|Rf]Qh ^xZqboտ9o{9G[,A  xG*7*>I&TJJ >8Z&+-=M:g!PrCO.mVcg>NePĖA:m4 Тhz *蹉\+Ks[qD, | <-&3]E Q CW}>Xr"djCUuZ78L]ʿ"´<٢Byk}\LLxbXǸ1 /RNA<ﷸP iY%E7!K2(bߍ=g/o`噹_D6' ~4BtG]Z${(hVW hl2UVtOTBPY p𣽍I圇Rq̮6OƯmGt7U # YW5{)ٳٹFcVWsudTr3ZoF41Kh"ퟝ+ݑJ-zfF` Ǒ7 kd.'S 5\<. &{OE*Zťh`([o\Q6Kh3w?B1~ڌS36^_(-8B9y鹹ZDx̟u1O&ƦI[ x7t/Ҿ۹<&,K[Ӛw-4>J-`_|o1Kp9dzFrL\GXk^.]g Ӌks0i&[ Hn@J ]Nn^t8 0IAgM@OS5!px {A%ɾ|"IxfӾV~t-ioKQJU||,0͛޶֊&KjF؊^- &IMYIE޹4#4PwD=^곟 ݝqz wkΰ3\L)ɴD0WqE*ELU QT%aݦen7i -wd%@VȑG5Fyw֛$h.;d&Ny 1h=όc$q {U|˟ad "ϲ[ѣÈ;L dksaj[/:B S"T&J k\lķm rؙid'\~Po2dB0Ž[ኴozWoy DlԿKOδmXM492yv::dHd0ML|\34zdaPz)S`Vtw匍{bmLo̤=#*B9/erD$?4%(8/S/׸}g0Jڟ|endstream endobj 214 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 5195 >> stream xXTTWܫQD&W;X++ & Pl#HM&3{^-t, L("\1X_4J$1Fc4wf)Ͽ[뭻`{η1fL.qs0^zE& * 9#ti0XZGl'P?7Y2r,,&cIXxBdP@`݄mvΝ3n\!A|B|C|;<¶G'MƴiqqqS}BE,plhgm'߮?/KBc##C8)lIRHbގMj{@{ǎ!>wig̜55ͬb0f3`왵:Ɓd&2'f#,e2gƅqd1o1o33,fƬd^gl[fc e,ad^fxf8c̠2fL2l€%.yKfߚO2?PV4NdwR0 `NVt' V7*ē+.jsQsXk (}*v@jvI)l]$O 2,YnfW Oe{niڣ5фE{k K<쓃,6QD/YBaԒg_'/fk Ǭ=G!c[kYoLЬwA \fVyFZ(h I69Xvfݑmv ]jD-i"Js"ZOti ֜b/=tFF;cR5 4) icAzѪMMYӒ @^D6O%벪է{5'Do.P䭷UW&[2pC]G,1"nuʳ (ȌVi JA}Wik,"p" FA81:Sآnmjvv6[53?/*5!>$ӪlFЀW#kmFcqW ;a>跅8oPAb:ϱ9)h3 !":S V8pYF(cAwgᤢjkv.JA l;;sksƪGdRn7,TJqi6)H#FLB˄e Wq:?4mWm'rhWxJITUKjy [ ԬfA$lԇcVҌٻwdDEU aZvEGJ}b|l[*!Ӻ<4&du+(T=B Ԋze1hN1Ӫ ^5s{28lysewzaWI̧|GƩN14*'xe5zJO GAV.P"\3))⥏E {h*-QbYQC3]KkZvU}7l^lS@K)ʭ)fXTmPXhҝ\8DmڮpI|B&ҸG5db-GlSfW9~m*@Ño>]JmR$COKڭ#:qI1ZmXvTE}oE&@.A:IźEqY%`[ rQ"6:( 9^KC #6R!5B_m5*\ZGD"*>b7Yb.*6icRiƔA Y*Z6>i%nD$7Ȉh:M,]g&Y*[7 ?z&El(.چ:vWZL'l}q.@[pu(M1||?K{Uá[O<'̚5 ##~qF!+QEwUUJ=nsj{dyo~N2H@TdNqCό\WaOv\I Z?NWui0 `8z٤nQ`zpJE䩋Z)"偦@HNMxλ9hcU!FJp7 n3q)=k/XL ߇୙*bzWSGk{칻7cUGWKt,MdrT$6oIVgnJ}SpǮ[Hm_/#v$nj ޕ ܆sPw/8~&*3eA(ݗ_]!먎*֑d𦮮KW\e:({EaͶhOS "64n4hS9eLBl:I_B @KqEb7Y(ϫ}\sġKA{x 7|C9!#;) t#K٧Z _u_i[8XR>>q-B܃i90 ܽ]9:>dw~Y]zUBՎ4zV"|!R_-<\pd$I%ʤجLo迦fLO-+ۗo }cuRoz?i1dL-Is#IzLQ YDz׭3K{n;_vs3֧LuM #jd'*e_/r#R5&,p ũ+bWNTjDs:wӽk|".XtAA.c$VdǥHH\I)+P5rȎ:!Sܦ>\V}\HmK{]/s^"[Ϯ&HYq ~8YE]Ыu aխ p +nok|u%{uB }b.-hY=Zj/} pP8@8lPø1snV+v3aO`VBZvo1 GR?(%g -6AG8Q8 jw 䧾Nd8c?TP UsSޗik-.m,r#;І=Ui 3[4+ДΦo=3gEDQ@jtRL[X v-MfRdpk?RKs?/*y}hqBeNeX\p]!_*: Պg jʮJ.&U:ϝMD7]ąDݠG[dJC){F!5}R#܂;+{EjKdK+BK 9 Ã[0-endstream endobj 215 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1146 >> stream x%LSW'+L6>t`?4aqK TeLIө\tӁ5jAN6#Q~JܓO0iiQEuL+aA>8k+* eȚ8m%{mevk^C %.*J/.ح9")ȷrR rGpFFF Ey—HVGjfoJklE)\h^xm%]JZE!Xc1OM+@hZQz%5(R %@! M(WNJŊzj_iNk'4G}q)f ʟ_3)'x " #*`DAMpy6~5pW{h]U"$=OYKM,wg.^M_聩n2ɃLbFsDP^xr;Ky*$5qdWlUq=c#!i?si'ͭ->U~rI9Dj\gҨ4ҷ0&jL$ت5g+W`d[VB0bfTޓ'ta=f 4UʏcE/ًύp4.SYas_qy& Y6d=Jyl /`/>; :r8F͔yr;.:lPt5Qo]F> YI?\ENkm.7^N<9Cc<6>{~aF@Wq9XP]wӌqjw<`3[X-`1,Ccv8 TNl$E2@C0R#TϘ% GqO:ybjW<:N$c_ ԰3qݬaT-ʞB1!!^)ݏ;G(G-1%YcڶO;?aoi 1 Q51]ZCB`?+XҬtyKuu;.aaI!t_1-nvF_h Jg ü!Xϲ]ހ4~1 9C*QU Bߔ2nendstream endobj 216 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 6764 >> stream xY\Sxy*.⫠=uԺWպpXE 0 7w^P85_Ci=H?I>pn=yO@pӬ'c_7K/,4o;~~ۇSfA`hv޷lg-\T3g.{u utxyIvs^oI^IТ3Rt7bϥoMzKl7yx<ٮ خw5Z7gePClC@Q]AWׄ'y?>L6}]^}=>kf'-~,pћ/Y:y[Svki]ǧ5[>'z5Omޤ6RMDj35r&S[ʙFR۩4jNfPk{lʞC9Psxg ;bΈ/6Zyu`+_IX[Z;Z[?cfg[J?Pҥ# JR&%šhƿr*(E|o0o)E~UN֠优,>)#WCY%1Y`k{S:iI7J9,ҏdP^n%& ՠ"p(FQ+E'i={(K M3'vl1'}ӂ;t;z? Gw_)4l dU?:`3`WJ.9-zdb\ W:v~,Ap +\v0''isufzO#;Nc,a* ?VvX;ǻO㛷9̜ΰDV+fp=UG$%&sVo#gɺ^ /7AZ⎘~);\ؽψLj@L3Ҩ afhzOTSa/zҊovXiO4?v, 1 x`͋+<֮)FhZ̮YWtC0<;` NzBh67a$w]WI路eQk6OExS`-$U$.]\M !v,\hp7t_=Ԟ3+T ;ES-od6BaRn V E] ( (\r(pV:4-lL2$ 6LD'@ /C8eH1ZuFsE4.}';.6(xlֳ-xf XK}DGt}L";toXBO;J V)gdW>dj?8SFG6@X'4dGH'm _Do]䲔`"OF!qCnk<#Оi^ ,;ak:!lU%jlv~'c][hP0 }L鑪9,9[y5-v#6[`{7l/mTHj=׵&i/x@!m\#SVG?©=o߹ i|"4Mq,Ey<ԁ9=!jMX]jTHf]rqabș^5"ɀr6J_ *Cmr[ &b֢@ȥօDGБ: 4P&9ڟt@u1e2n5G,O9w*}~Ks| Ef9!~RFdS*Q)ӁVP56!A~%*ER}2H|/G!645q/RL g-ڌu]~A ܙ)ɐF6QFn(QY-x`fBAd*@-($ ,3ݞNp$! hb+N"(F27|3DU(9TӋ(1[ŋNթxGSL,awDtA qt?a7-0!egß,L'C'1Ψ'. aqo9d wמ3oN(O` >ypxZ^JKgz,o38 bhlq.K*P-o7q/5=^kax8g[hM㿁axE`ho coO.i`WeD}YRRFF]͉܎?Ƥ"N淅$Aɥ5$M<-]#eo$'% #52Ih(ZA#VbI~6itry&|:$ZW:i_f!JA hqBY9(EFXgr}zB:A84Ke+o|w0F!^*TiJoG.xxlO=;^ Zv&=`c<HƝ U\x^ jB߰</V w_N9BDUBAb*DE99EAUpQvӯ\ؤfRS}}@zslWgӢz=cn ںz|W 7,Xꃛ?ƵN8za'ؘ ļgR oI *iXוZUVl 2ZyZ7 :#:^ZT·6rڟkxۓD`ԷՆG$'۶ho 7#Ĺo2}]dU/Ѱ:Â1|TrsXs&,z.t=dƂ.j/v*EvZѪ-f>$>4A 5SOQY]YRw]s/cIi/m W+UpCe[DĂV[Nxںՙf(Z%my|VgC|}d),T*SZYP_޸%vGn>*߫|7bZ>OOq8/TlT|hU$΍sAXfދ0F%̶Z.:ۭbbV (%P)-JSt^`|ܦ&5_]n#,<{&u 0yb+ˆʚs>B?cX؄*|TBHҳ.:N^P?F.2!w9=P·iJ)bbiy OVf$Dw ~d &rK?:i{:7d$~~||.g+ipe?i)ע#7A^S>=VPS`E EnEDժOZHKNr+zFϬbЏf]8@[<Ĥ8q¼."00440"M_sCoZ.K)8ٰ8pGf^έ6hZYZiZoOC; UQS.w_uṱG<1_x4S6gN߄AT\Fh~C6v5ɑ {,d=2}8t'v y+f}uMQ$ #R*Ťҕ$g:Ii$42`OL88􎑦kt`^lo 퓐ï]96]rg~?@# &6ݠrXBf=DOx>j/:W.^äqƛYݮԿ1Z]=rޒGgMq=mk|`3=0ӿǪ;u_#-k2~`믙8 o]~hwנC<z$#9Ð' EmGN,t\w6Lгݣre>ERѷhu+Wb;!<#z. Z`^V"pPI'D7 zPTޓZ:'C]x\ݻy _~'E{x0|gM'+}#0R;`|w1ӯ|9K"Y&+$$s)qdh^U^]Fz7۷`gײ̙wؘk ʃ\]ÃbxE}˗|t[륻ƙuǏ5 ׮ѻf (6?03Qir?{㓢P ΉKouQ|FiK *ɷ<> ;xpCЪw2;3jnOtFJcJr3E,Լ Q pi 3# v sx]I~v&*frxƹxY۹+n&VM:[-=Ji::O> #EJ.>9[_R1-D~oL,+HKVqu?D}Ccx<]4e ya)2Ywuf!'IdY<,bEMwk_'KL!la}} Tq97)ZS_7XrwIoU, ּ X兼b8<Ɛ 1ȫL.0KZpI? F&%"F*HȌH᫿ˊˉ@6ҲTURJoFJ"Xs"$2<!(9-Zw?v;+0[u]6rMt5(YH\$MeYy9\mӑKD} wW}Nڜ ģ9ģ0_s`ƉeOu7F/w:w?1߱E$6+ Cʤ5҆6ϏZM$ Ѡ8W KtbA9ŝ[|u@ڤZ*MP1e"R"tr|Z+g>}yVrCc+saY>#A @ˁZKKozendstream endobj 217 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 5998 >> stream xY tTUx F Pb  X)2UJ;)E&RI f@dPTvڿ[oJBKt/"=g}> rC\|зb-w=!0#73Iz@[e=z4Dj!٤B #5R h46Oڊ£ Cfs*vI"F|,d 췴kl=lByZçE B):%CD~Xhe7^elwIuG׀8h[}HOSj#8U3bsk@+SԈSGJjܵjD ]ħ[m̗#) 1$9Ҍxj0*7؊o#˯T Q "ԘoR &P,9*dX:\h_`t76 +pu@h8{iWb;V1,dJ\8'T&bNt|B4 ٲ.` ؑt87c!h!+;$; :*: ^( fؑNxngh$?MvRh-5Z7H1")[ٞࢩy=z+c+a*jE1הFc\VDDMRUiAc6 QobЄ5h 4嗝g^ةO#j”YI|#vcMU0"&]cL 5F֦wPu@1|*mR{$GaMq<&)<%fGRtE{~*t fRsý6-V>$zRd, -TX=gg<@[ O=Gk:rѓ (qQ-"6rԖǾ3#L55s{Vz^E c!< 0b5,}6g/!R.҈(0t`$n{,r+fW9tdF)tH!G&1:XKk܅XjuBP5 ZC>_&W8|DXp ](r_p RIKQ[a+M6ɂץY ^O#ۘo̡hj/,~hN8d$PR_gVևiJ7ЌKGҞBvul](JpPա DklǤ1dF>ڊ:o/(s?fw8A0=$+aއ.9fU=('+'GڵdNKvX+;thSWH[ >[ ۈE˝诵xHs ܯ!p;@0&\: dLhf:|ht/ {? 2MpD563m#Z5wd퇁OIG^3}vR)ٍ2-liqw Ǻ4m&;䧕gypv;iv璏G!ƮѤ4аvhv5bMޤ؊WKn7J7ћ(8U$ck[Ud-, 206"'>[ED)hm銼"PXtՀͳ˳Rs:76k(kzr R=%~1*!{sLy}gM%9Rq(yT,AP'B5hHN(h% BJ*Q498Hi_z FTtB%䥥0AVjG]{v#>r٤p6x|4xGcw_BX 0QocZCtd-ˮqX=`bT|-\ K3C>,`c}'nt+%#$mb`PJ*@[-;_| Xk!#G0..%jocoK tZ&Biy|zИgx4ViEӟ3!DBaaw7轻/ ~;~]!Ŏb* دzώ[2MBVt3+[6 5J@m7:hBz2qfjlƭZq {s!h} , OG pm6cK߄%Q-Hրŀc97zPtk )sJ#SR(;VQZ+ E1%je^iJ(UMEؚ@QZ)s9֭ߺ g찒%Uu#/xWw +/ bq~jVvn[` ٓ0' ~"(=ʲ!,^lb)PJ;. г|43vsyK'&Yh1+#+CD︷A7%ESS Q8v2y? cp'ysQaxlbO[eDbgA,!޻VA"npՇ=#(r4"n>f<;Nf}h)?m^/qU G`9܀UjN w u XvrmڄItUTy,׈u/\{sycesW e~~t<  nBفtaƆ T(*g)(R&@^ W^fGl/Ch]*82ZRn3 XԝvfÏN.z,\DRm,l N%o.1FcNz'ӱAt=)J"3JSW[TBGwUIIN4]M_h}NRͧ2SK(K4` qǿnBSdA)K2*5%=YE[/x=~iE%\|`{?C77v)ѯ/r <2O. f.x exH03f 93S膛D6Qvome@`VchnmF*+LϷ_a#~[_/]rIZ6\vn<^9Ni2 쒭IG2)rT!%84o.6gl (KKr* ?(fCбZ}2h‡9zcLl| vT\UG̯Ψ^<(nܛt,Sr~z荤6pI~l&a=]?Wu?fo. ZIM`iߏ^F}廹rے3HM [RS/|,p0%ܝ̻ ^4.=lu3V  2vIx `fZ Zd847^q!.YG%A1}n)XRV]b @chҩXYB]E\d%w&{ hcodsP}{L>@ľ]U+\41CS:&,M] -G/bڴeR}ZΧMg+#݋lIЈvޅFG;/pߋ0"I҆836Z q -5wſ4-ӒaG~<.skXf݄I퍝P; ?r塬s*3-5#ugyamsKuW=[bɭKd[qhSi\Lf#SghHA2qVdԇXH` ""MF~u:p: SPș\f7k_î8Bü׀FѓдG?(G3nq@C\NFc:=r^Â̘H*!JzbBeZO0gj2Zi0f32 ؉Kj k ډ^c(Y\²e Nu3JlMtwnXoWn|?BxeT=4@=yS$vV4DATҜͦȂ#o74p==]_5֊# ؇&M\!jisBPnndL9)i"_r`TŮfab6lgh`Tw?xendstream endobj 218 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 6595 >> stream xyyXS׺7J%nL*֡"Թ!@!XaHvuT5"8CsA>oֿH+\sQ|A|{ DD"86-R&(dfΜ)ۖ,y"["UE>Ŀ$#;q岸p,T!-^qlOK) c˂eފ`ydS#! Q)"c?-b`~I,W >)1;w"V'E!zhTdLOQQq1 e w2qAqwc,* {ɓlBʈd]|2Fa5!>VfGyXPLH%VSUT›F&> BBH 'ƒ "` xO! b>FCC w™9)鎳r 5eK'B{w"޹߳ǀ:]Vλ xgДAxo{7ssv3⭃g)3$4J#ן&w>xXhƐz^|󲲠@S{bM9@+T:Y/Z8鈦3ӭ޷x*IX0i8xV%9i򢾂ѤXid@WVTTi\bM1)4-v:VOLjC>sj_zpaMYW#bSZb̼KԵ{~|]֣M%Ela)>ؑ|zyI}j.zWx<% %)fPMm~ؤʬcKXJ iP!Y ȡȠ*?$0"6O٧:眦A'62~swxޠ7P ؞H+@oܟpb_PTR>9j::4g=+-2s՝ rHA[V}J>*_ 3=$)0tReh8@RDFѩ %xpջ7{L~enfca | wGs@3vu*J@9]6hul60n~Z@6z#wI%}]ΡM(- ݛ* ꈴ/D{<{htl2% ^ɯr`?MA=]IboJuwxe+"<wl1w#"mMkZ7ow&kg|c&CTFaa+G"0[hqw(Y$ț{{,TW-[vN8o25I;wL vok%rZ9nv ϋ+//zn3>pϛI C h"SHL<["l) K򣨼/K,Pbq{_2L㧻~hW%Kk-'Z F42Mz}1۹bj6 ҖY++[8W {/tb)mcfz.O޶;?.mmQ{k0+!( SSM GB?3|a9ppځQ 'ǴB3pNyЍtGP ZFUj(/ BO8yvH;ToljX`erk]?.Rܶ=ʑ@)rQ w,YA̓+kf DȐ,+kH}k"~34(DS-pm`N 4D Ml>+n Qwh4N*JM̞FMEO>O\vM d ]] uj$h`鯷;_^⎘w1+T%j:WnYSV_xa>{k9{] Z3wv-3Xq)>3%e`|M[`qO;$1JB/fX[rXZq0QOk˂XJ+F YNv o̵$:HrxFŗ8mo[hFLu$h s5N4شʭh N|e{{kH9;ud9Z`דQ:D*R`[o .q+ 4;fT5..͇ڃgكե2%JUw̋8OI_ʕX9?+h17ښ"z/3,A3D!鷓 '02"Soc~k67I6nǰyd1^aC?QWJOi {EG׮8teyYQkPp; +!`2Yڢ ɧXuYŴCڃФ`U2`H>s8c.I7A`Bas*o%ܟ?&#qkŸ{β;/uBL׊u^yP'uJ,xkZdcQ=_K$l8 Ş(R}i(Ө-HtqȕmȑfԥEz}UTiqE2]G8Zv`CsڠiٰduꂸZT/RvhhbBۏ&cLLÄBq̴;jWluȅĞ :TQqs@44SHUٮc:pN<㹺T_}깎 D"GΠi; pDрVH5]ҝ+OgQo\Ϝ)$~:0`8oY_J,a+T? 1TH򒭧Ěwbm6D\Ɵ+/|1(]F~:.b9ko̼y'Ӭ1dTĀxz%BV&Qǀ]5i48ٹqYSxYY[q tkk>pt)Gjbj% *|JcJpʳ3O6g԰%q Y)e5ߚp@i0Li.P?ި{O*zHwbE-Y _WquCJҽAnN&U$mM[ 3G`}H/BR1B W!W֫ 8dwS(ySp(߰RrlMvn%&Mt2.XAb}{]Z^*H~ru${za\hL>cHcsw`'nzoR`:G~kk[w}Z;߾뱪ދ# ⦋'z| !;/҃cv /5p | -0(=妠Є@I[hݯQp ?j_(:0TMVFCZ=W0PxڷZoͼ$ ݥ9yZ P.3WXAvCǾjNs'TWM8%P-r[J1VÛLcUui]UW 3H6sg#؏C\z5iQu$Xj Zpފ)+7[=xAMLgGYSM\?ØJD2%$՚U +iRe_ͼ^[^Ue}'l.Hf3JAQa"Y)sz).͑'h@~`/)r] 2$UE,+O2fA } ZRe]8/V;rV\c:Uv؟PXTvZ/#Jzl LAI0shgI9dٻ޳r;GR E¥[q=595j`Ul&2IoҥEY>ܴ5 ,Z_rⳛ]Ǐb}1&"$,>[ÛO]pROȷe/֞b)7u:̢Ш?"=ld`P[R-Pj5y:N@S3jMQ=mhXŁ<$!P(v]raS3@JrZlE.M*ªb 5źb@WTrO2o~xԲJi2o^r'C32W: xrCӴ\naJ+jkϷi.GJvUg8^Rh$d 8N !etEـk\wazQn)VYCG3h*ipҌJ[a-i>shZ,' xOl| ,soe0O뽯'E7p wVb:7]v+֨,¨-5UV^;[V'"|01ulNN)EΧW>CȢ`*~@=C.J%MN_}Ym^~}6#<6%kr SPւD^W> stream AdobedC    %,'..+'+*17F;14B4*+=S>BHJNON/;V\UL[FMNK Ws" }!1AQa"q2#BR$3br %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz?Z(旟aF=ɤ*Q)#GF:L~TҖ('_JL*uQHHHp23@ "d=iRjKE!8RdGJ]?Z1RQ( qSG,OE4b/S袊)֓"(?ҟE0 RGiAȥ?x‘枽)hKL?)SP^Q)|JwQHFF '+?ZPAKESFbjy?ʝEQH@4`?&N3N =AO?:()b>EKM6;iSW=endstream endobj 220 0 obj << /BitsPerComponent 8 /ColorSpace /DeviceGray /Filter /DCTDecode /Height 87 /SMask 219 0 R /Subtype /Image /Width 115 /Length 2510 >> stream AdobedC    %,'..+'+*17F;14B4*+=S>BHJNON/;V\UL[FMNK Ws" }!1AQa"q2#BR$3br %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz?Z(jȕ]֬Kċ[dQ!gMn(ZW.?Lo4uX[Mը]CX7,g85Qnvz˾V!?ͥ͟^! :ܓܤfno𦶪q2t9o r52}Fžw-Pu ovxSoC]5vv4 r}+7;ܤp;fA ޽8E_*NV1TzSZ ?@J]W1&xtkgaG'ZxjlŏÐ2![0xJ(vZiJ[v —KS_]]Jl*HUs/-1$#Vu炾O;G.2B~?Ͻsw!xu$OEɹQY}+g_u(co\ÝoUX``>\+S]M:Yjv5i78]L'}Zi6ikc I'}J℺ijwe8ԱH';zA45&_]5!ďi8@P`-u :}fnA뷱~hu;]sDƸiWZEec@|%Q9mAu]*h;9_S M<N5~ʩ 0Xi%toZ[VA$]?OX*+B5W͞ZcrwE@?P?A.MV XtBsE%IY$S'gM>Ӿ=o,y_~kER6ܼS:ɯi;`(]}X]^KB`{G^ 1-bEf$^a:]XKb3V+_]q?_2Fcͤ@rq"t$/$Ѫp#u'|v%=JoΟnR77Rݲ1^H,<μ:'RGq$2zW_;FPep\~UWk$gEokvk0z"~O/]Q]`x\?:^_^"Dm6'4gEctHϸ )ekX/Mε$׊B$+B2t ,9b=Iw kJdq-\H:}k?Ci}dq]EZ}A1RO*Ge=䓑VAo) o*aKwn^W*jٚlZO^EQE-:lIz+ϡ} -vr[$䜚kj {} uq=M91H<~~(PZ &xd[/ېVn5;93qՀݯendstream endobj 221 0 obj << /Filter /FlateDecode /Length 4869 >> stream x\[s~ʏӓx:7R\*dUe%YZh5 $aKݔa w[1ʭ?_~Q /ƙiԓNѻǍWnt!777 V02QVó!t%Y;ͷp'K/(ONѸ@xr:(`c2Oe%2^m(mwg T+a NٻMJI`)ϻ=lfhv^^믾bN/8%9;/0:{SK;vZʩ4hGC4aG'H !q~P^؅!> )p$c ^2_]y/0za#2ȉ \BWi"'0?I `P\7\dyl+!5Zi7W.xظ\c WzoB8X" "pxٗrkiщr6E0yN~K5)G%pLi3nQrF*UFe2RâwZOD@%l^1Xx;'LZ7 *@'۸AkZi7In=V#27$*!`k8Kine2YsL3tRpɺ#s&w^jxkE'k]5eޞ 6[1?V}8YݪȳUTS?, 1SsT/8p,wL20B381:( ]h8AJq]l;t:.uBz3NjQ[qWq_C"0!1)ɹ){qQD+Vbnm͔G_-ˉLvS[fzBQ~LæLv$ޫFȟL-}CQLB(1Qcy0  Έ#ΈO OV Plsz@1_lY= E 󿨪DFǐ) .@6,bLW^U%]{T1LN~I{=|G| }ň#HN@*ɧ}ɿ'=k#@^jBǫC$QԆCbMNzՐ8tLЈv pA^BDBA@ Y`1g\SѤ$L1Bz]c:l7u&앉(xݚ.Hg3j K3<'C9BS'PꮂfO_u@E կmM[`#"[ j I:C쵅 j1n_@e8vJ!6D=YS~חt_HfPUyBRBVծiڜD Z3@{#^R(*n^.4dn:#h$#vsNAXPjq qm? .KqKݔT2;l[gJBK.@YLCzyK#̋DZ^Si QAdU T]P~dz?7:ol4xtb71+pR:oMRœTEW9(Cي| 8_ kbA_=qf\'qܨ)PB,ߥgimβ$yB+)PRK E* EcBɭiL6`T~x ^ 0䬠y-xXO6%|ϑUX#9<%_U m5Rh%Bӌ7.5;5= ^{Ș`;V?z׵:4O({41E= xV}7j 닸Nz]VH "f 'aZ-Sj]'k~_nLr&ח5djZK\en%[ULVG23~^XO+\'(6KgM~'ϔb"zeͭ_)}gT?99/1: )1H؝1'S̖(eqgRzr 'cqo$oSKy"RÃNKKEJbF ]NEA[^~Q9:?R?$?_@Hzd!ǣ:*^&ȠK9=kv|3[h35&u'@-o!݈@4vn}9l@DuPr{R ߢ"HcR¸{!2I€G2@<&Ֆ+%oJ/yʫjw{c<3 Tc 稩PI#rFD{œL(%N@'ֲ\Fi>@vh&¨% i׶ 5d/ V́yFJZjǕ)+:n8לg«PMHX_ [}%6r}!2H&@ؠWPW1T?W-X$Hȥk`y81Kq-M37v,cER3 AZاvn䷅5懃\xk,6:ؠ;U%.M*2n$Mn.K}R>{{S|+RɄiY* A2h'& )z +;b^ 2 !EϚ|a&:L&x1y<-_gt]s|OT Khi$5D2%eY"EDBu=5g<߯!Is,ִ(>IR@1ikb$~Ǣ3f5p@Ax" K<;׻f" #q4@¯UDKĝ*#eQ(:󻖙xron|9XrgO2$z<+(5}GN=μA٨'ܷrl,6\[Hc]++Fa|cr⪉P^PH($D/o-]Q|FWRqiJJڽPS , %9bb9B=Qo:B41W瓃-j89_Ӵo,͠$ijLζPsFXvb2 I?QfJ{PIp8YčȥTOXby6 ih{,qMu03;K[;Ლ \{jhgiǂ\x|#AĔ_-ud8DR lt^/<-A4"^AXgiT^T!l{dꈬZn+i񮤦'V}-L+Y>%f7٫*3YZi6P3+ twҡL!ˬ]zɟ OߺFo_Z[+xRvWW wD%U> stream xcd`ab`dddw 441H3a!/ͬ=<<<,+_!={ #c~iKs~AeQfzFFcnjQfrbobIFjnb ZRaQRR`_^^[_nPYZZTWqr-(-I-ROI-+JLXȒ! ~gsɿEl-Ь,QvpN8gir'̚6m?'tO7qQ$&endstream endobj 223 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 3674 >> stream xW pSWBߘ@ Hc K$n_I$o ք:Mq t3$CIzfTzs=|2DR%g9~.  oɫ/@nbpsqtn6 mNE"&GzN|sy5kOD:.2\U$kɟTq mwcڤ3gOPc{cgZ6sBP*RjKQeԇj95ZIMSQKM"`Q.TXQtbМAbx.\HKi=11ك00]r-P}{簀aOt}E`GcBY$62 !7Q딺4 Iv: ĭX;r%t nUX6 k'FWI݅`V$ET,+mͧXZKy9} dn2\2v/ꛜG!ğO5rj8nA\қ}=VTcQh4JEm}KXyora ?z[uW> Oz5#U`|E=hm["a=BX)I! +FZEMhXH@*ٙoxRB4y<~<9hPfkv8paV宄] [@sr1䐾l].72r| `1L[ MXqtj  r@ރ$8J&%KG[5pWRc<ϥ*mD7GgҲwpr0>s7H)kI;ۙwy'3!Y!>J\nޔ 2,!w_q%Żw:U]=[W[c"p|ðaɊT#g2:W :03Jf=$}l axwNHnU{_=*U917Kcu!|fC!UU=q4n7=&J ݉tdCdOdE~ tVXžF jJ _L,\ ˤȷTb&(i}En ˄!l^Se`ZՐGtQ>(G6Lv_Odhs.B++{aLWu }+Xv%5 ey93E4ԫ  FǚctMpY@<#KU"*lT:7@9:*JC;=gm{T^Gf Bt` Fo9x:~}ǣC4XZRjxg).7Rc2Y '`ӛp ⺤*7 2 `YveH<DckrtE/(./x}5ydA*X(P7n:-t% 6H;l/UQ]RWG] >԰ɨh5~oT%9&})<5«㉐Ӈ' "8 PdQ~x<$[Cpۜ+`(+Zs [ȫώNE~{ySncQpTVR4mn+T)a.6g)5 d{qaVW4BN ܼme^2SwǼYOy,׌\*wo"~gb`km-q OUu{9l![,^'u$_ KRH^KѥB>0irahp\ouFB1ߠ6j@#m;-0 %U(Sg\nGm/i!<( E?|3\s<_MAOփCϻ3C&z)tjd/QK#TJ='yj;jf+ά%?k8wn2?NLėNglG ^aN J(*K9sߔV֑1(ˊB*j>MȬQ u jEeK&sGI?}(1i  kJC9pEJ:b/"ݢ!3e-պf QsK%@3ؚ0ЖS?R "i.ng>k3u2j븦 7mDTSz)M~>jUY\yvq\o#/3(LY%k_F7AMn}Ͽ*/)Z]"Z+;^ā|]A%ҿeoyx4vUcUL_;`4jP7VlRAEqF7Jx5ԛjM(lFr} Ѱ`c63mo)Lp95l=/=y0Ȟ{hѹ k!&|:}`/9K}_f)jcp)| (Bzn!"+Ym.[D%baQfPikؙؤwM]LkNo$M_+oX{Z[r֗rͭbB+|X!j}>LFH1)]5PCqdhgba/Sm+__.-Ac<W攁Ŀ;Ya{v X**xKmwEempg܆)?AQendstream endobj 224 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 454 >> stream xcd`ab`ddp 44U~H3a!]3gk7s7Bߓ``fd,(os/,L(QHT04Q020TpM-LNSM,HM,rr3SK*4l2JJ s4u3K2RSRSJsSӃ%E )Ey LA & gS{='85o~Wte '~ ne׋!۹Y}} ?D+}gb[Q*ߏ~?{?> Y=˵o$̖_XKO,.pr4W]x,H.z{ݒu~λ}W6  'M}쪌.WG g/d4mn9.<'yxT;endstream endobj 225 0 obj << /Filter /FlateDecode /Length 4025 >> stream x[[o[~'BE{X'{@ 'MAS҇cKBRN;{=Cɱ՞|;9霸fv̿)J{I\KE{w3mIoDM{m\+Az`P1JQKF<+ RͅVL2Z]ş7PmPBMQ7K{B"Vw.AmoSY7Spz{n֩3FhOAW.}XXCݷ'F~Tow eE/$09?V”0DR*dkµ;GcJkk`3q0Ò3e%Hr5[!֋%3v͈џPPa{*مS #C[buhK]뤆U* 5ڱ6vz"Vh k%#"nm9,O%kknOa,8D1ME%iCUu:L ;bk`\HV@)»6 рݫR g;\OmzszuN >v& wa CTSnLQo*;O }Xe=io%`!5BSn$6 L:$lE%()rwү;>֝ bA< l\-:i7&Ö5& {=(e6 to1,b;COMŏo: ;0.'*98$uChau)݀ѷ& Z/e)ëbiXoYU++d]5!iy_z{vϭWέCnlKIհ`U`qVGr`@fuSYlG45F@[ِ wu*vӰ#hULxsFeuSn|Gݻ8Zsȓh̆`67(h%27GzFʅ h@&l̶B]^O{Eqhp=ЭHE@v3;1PCk3XhI bvĪXp40R#dmu؆^EE:t[^<ҸK˵d  1cf[ND!& z7ٖ9@$fhYE.g$Bh!@I;LMR |ꁜn€%sAަ"QheQ )BH@%ݜzMnms[?u'\z OxB`47@x@<ψ҂Ev0$tA#q}s=0ܮCpӃicqs=Yj?l75r /QgGcbpc.#H(/_#ᔪv:7| ?monww0NO38/+4t/]mAt_=M|= 7a}IM͚;v  ĥ̲`i;V䢘;lKp*)aXp~l7_OBZ ") +P[2cp%%! "`>8hR3a?']&"w K춘8<|ȟúTw6eI&X‘n ñս)m'Vԛ 4M_Q`RUGC$wP"n\UbL.|ԘSSWOAj`c7]5fJB>T>GT2."7a_}?e]"SqUl0 x"*9[G>Naٔg!f"HV%5# VY`1T tNT&>4mb#38 q ոF U a$;WƆ5CB#L s=fhҽC/k>y(m:'Wq@>yDv"WtUg sy;7+ x&s.?J&b=FK?+MDDit>mQ5wE˯^~^>xbh ^f60Z5sdOrXMLOS[u1׎2^t:7r:}6K%ٝw̭}He] qTUeR#guHB45uʢmR#`I%>,7JP^m t\@&BHpfb:C]NHЃp9Ύ~2L]#s P(?ѝ~M%fT')tߡrպ%LzT+WYZf MDkBa0bCRU~w_8j6x+ Ϝu5c0jLwaW @4&JkNKwrEt_0,&ꇴ0*rZp4~@gR{[܈u6#=I,4(i &lΤ]ih4GLqYIhzeUL. 0.ݡ-ҙ} Txw(1%6Bu9hpfOc_ N {IGGYwM& ^ɦ0"RyqA9;cPNgn\8b{ܨfmnnwW EG\|29dl+TШlՇ?ȽT$`A=x~6BVM:G\B2ã '[UF TXГV=PۑC͜ub~klF/ /%3>AFܡQfz0בT6dڨέ2/t*2Jxg[0:PmK14׍.xo~S!d8i=Tբ{D'*z᫼Љ.w("c*N+G$ QtT0Qee(pNIkrߜU۳>}J1裆뵞R! c*zC|hBً!fbB8#3J X&U_|AaLc+Dv/BFd]vM{O~Z:r#U)Sdu9*\x#: }!W^1Ke(E4y,"=~]τV~;F_Ve &\7~g ei:Zj$ٞ?{~ފe9e4u<ޤ\/NߩT"u07kS3qA??yD endstream endobj 226 0 obj << /Filter /FlateDecode /Length 4336 >> stream x\KsWlٔv#Tى+TldF䊤ܕlקv,9 ׏+6ҿwgJLʯ~8ceGijGgVwgNx_Fvg_yfGF)`Vq܏FYZ³"~Z[5ewՄ4@i2ҍxBvtS4I42Id7:?wρ07g|ŕQ\٫/kaG>[;92.pvbt\H)F5\sƫc{=| sgf3Nyeau\0>wL?sH&{=*%~ ~/X4RH5:Ͽ;`c#V` iavxϹ1xX5܄Jǝ 3gpgb#<eafx cqX5H kF(IWomH4k>ńޟpR}5Bz ªE8 Ȝ 6 tQpx]GqtSEiDr<_]2ƫ@~6ni*n6{>vJd:81G c b%ey1 /.\*>V>MǺ=(Ep!?X$Jgز@}O!Q\ .L&T0T*FaNZֺxxIrp%p]ns" [ +u)[xVOx88D @<jAEpHŹRtc9BK+੬y1KXn^p @܃K$״HVFdV+ ¢}kp5^iô3]EF1N&jCPcG]|F[6D+`wAU `7JrAwu U:/E^.Yp̦mZLj>F[ J>ƕ"EtgZ/[NTZXJ&-\M41ҺQҷHG[euQ⯭u1^ &˕̯qv{tп 'T;dQܕ<g_ӡ<.O?rȁZ2`Ҵ' e";rMf=UcF{aj ~6*y,y_8AHZ}L)DKqjΕcINgΨ/ "Z<Z4HO28M 9Rm17> q*FU l(ğ 3_ᇟ7(P_ |.fζ0 /g=^0Z51Qkw!aXWexD \ګMpo"Y65y?B^5oʽ6;Ksk||\j qť xr2x-؄ 3ٙфysM,7·ucq^vqP~/,;jNC f@Ew y <GrS@E4ErM C6y%E $:~=߲P<)gY,tQbڒAbѫ誃W+M>b!Hpl"rI41mS+"9FpNé1R.` Mo HG"1MoU4>Xe!ipF$wXy5ȠOW_35\&sc >d{,M۫fa W~v#.'һoontxFûi2JΡ FUkkl^ҋ*bZd)[A⪵f3A˙>/XR0tk%> a' 'ˡ^oPhC u3NgAr])2Y~4z?1IXBH k+$Ax}ECiK29Xq"QuEUW7ӛQ/s q9)ݧ0|TOWeyz1kSyڗۙ7_tDz_56: iHۣځYV-C{ޔR}j~#YwcәqzjnI#Jfq9z)Oݶ9δ3M^WvnDtڰFo% 77՝ MC~c_cOhBR+1ж0D%eW#$ {)I1'}'u _H tQh4s-Oq-C?&<+X@? X0 ,ެihRȴ>rie4I+Ο.Rq'=f iUl*K*!幯"@>1wcYxodpXR˜vuiP`6"u/ek J>I_ U`\g.,h|9X1JNsa2pwF q '[Fe"R|#YbH obtw~$W]%1:΄ XMmʳa&:A%;; >>.\A 4=!~i{M|wٝ Nr1F.$ i RP=Q G髍l s^r~}::v.X#<|]~tS։I퀾Ca_9Tg>`NM = :phʝktw>ɶ7zS>J7$h y&ظDy qy_r -KϫoQ29v0Mp  1-V3&'wn,d9݊,Fj*Hs&Bm8i1Rn>|Δ縤 0d H:[~>c"rSڇY*X$H/E;ʯKK*3|T(,X^0M&kN.m%Rkb#- J\}y.DdBL6F:ymN)n0[h|z)Lx|Knka0hhyai]v٢T|_7-y3Ǵ`ZM!-GQuOQieIr8?7__*endstream endobj 227 0 obj << /Filter /FlateDecode /Length 5199 >> stream x\oGrN M~?\'%NYҔbK!?je!FpvsW/b=:zR㋻#5xH3~^{QPnt1'G3;#F`VydMa|eYЬ7qbeL'h\d< $N9[M_r$@ήjqS#'VlxPQ16 XNdXs>6IxeAS?h #?[)jq,8.Y=OJs eN16zF\HY7j}d<2cGe[( ccJ zC]uFّǣ2!Lv`T"P&"zGPS#͛}n*ꟘK>g,=v nC˸O  | Qѡ%Eޣ'WnhPK-@$rv hi;Ueo >0yS=Xflj/ k+|K{Ѥx,+T]'@-t:A2q c|4EaC{.l H[)@b㒑+V'x PnܫX(}+F8q !E U8䊛_CENj:G$8Mo@ڨLR3x t nRLb[ *7p{GƆ%qTQ٤I5]8)<[ @\o)7o}Ml&,,+Q엹En/Z%hڄP^w{}H~^o%Y //z vwF ax8&N z k?]S4 z$-UFh"id+|r -2Fz'OyڨkbgmRvaM!t3-od0 kNd1\IsT6p4F;,=z+1G,SFfG jCz6.b^"bFȞ~9@ty\i qCNdY'\5NP/E݀(~FU;&$88⦰DN('[ç&lm(rɥm;7ȋ 6y1Zt."S$]]rZ۰&WQ}r;wzE7ޱX߲VXZ6@f9=E@68oJƮ)6UUsWb\@ǓJs-eɮ jupCk=5-UhK"W2ZVed;IQsL0|*[gCٝWm$)`7۪#ͷM>Vfdx-}TZOtd1eKUYU _UEU}qOj6}(0(Ej9T^' :L$2uW3\p,4d'Bq-K.BEz"]'0_@gg5wM BG"r8sy.̎rEiRMSX6kw3$HPEOgfCHb쎼*O}E^h4LC2`| fcܚ}qa#&&crLh<>kϕodƫqTM{pQ5QyOqVM➦PFjMgcTkhq ." -R=Q@vN,@sZ ÂZJ{G^5>+uXK UA -`8߲,fy6̄L':߭JQ)8b tAۆ;)zu61Ԅɀuu&0rpRgZNH{sha:M75Y%XQ/iQqf2.hArgʣ99It|z==*zQMFwΪ;^\tnVߩRw[|63Ir؊!\QyƥW/QqQ$v9J &YìD*gL&A(,9J,K:%NK6omm PӮc-Dcu<>.QreW(z$ p 7,߸)ʥ6KJ*`?p{n`˒?ޤHǮmOItrZ$;hUMsH9ѳ9&^ 5OJiR3%r<0@@;/yH'=|UFߔџe2zVF躣7n{Fh=#@۳oMxfβMOq#_5y޸kh uO4z\(iu)]ۿ*[z$Q΢0|N@|K,m1/Pq״سlWn#,}c,3tհ+Gܵ=ٽ~.Szڸx1}ZرucPSxz|︅ xoMG?@%ڜjO cjYS<蓟0JpY?It__vBi?@\#9Bз(tTd:<Ğ3~+wt9z:ҫUzF'Ow (tP052)뤮=s¯]x3{!aCݝӼ ԛ Q]75!u=Ѹ΢bfyxžлJĢmtO8:Y1,򺥌iHm\!>XKlvlc 2(琿&-և(zgyv<`4`:+ [HOS ۲U֛&^|SO3C d9 o"~x2fuE,g=%oa @+| 5i:YQ'(bޮri*7AaCUnD,x 7 l;Ī_v{b#0z-]9$Bi/ӽ:8!0!e`)XIi`S{ y}peD!իMR)귓hB ׺!t gHsyn>F^4;BqWawwIl}/X껩"Ijm!a:?3Rp;@m#WGiK;±hRdY$<]OZ<9ptVac-'33OI(,0o;/_ӴIMRe->- v6&ob\N_>pAפmcn1?ǯ'KT]M2啐  py?VY>)䨄NvkXֶn9T~;\ 0m^'4*ԌP`аL DŨ/|M=SEWwm;!Lբ^arଃ0endstream endobj 228 0 obj << /Filter /FlateDecode /Length 4319 >> stream x[Yo~_G,4p'}F@vlÁc'6\ɫ2&g/h_FwevP>+MS\  ׋߾xBV/FPcl+4b~_)|.Rxk,+%] :}UryØRT=âWF,Mp,Gፗ9$& 99lbtf9zsomavRHtô.ϛ0=%Sxƅ~SW"h_q#ҁx_ĭ8&@<̃ov ív!֜\^Që^st+wn*miE|-̀S2q0əE`H`䰿~w\v:_Q#]2G喰;*?04eTx{QjI'pGg:\{ lf]u*Nh,J'ێE;o{x7nҌJ:L$G@#Oݫ(6ϺnJĠ!0р7e U^d&҈2qtvHy *Xm'6+m/jO8VSMyZݑJ$δU5I04" z دHj\?yNq9OXLDt% Cp~9!{6Y#.NA_ٽ ӠKzxC &/F]=ΰ< Eͣ5˰ /xj=S.;w˗sk*C|1,QGM f|29pDEw?ԃnҹ[XTt7ʑ?)w~Z- GrI,ɹ'\okohQ峙#8=˙>J>S(@ŵ!H{DɌ S'nEaԸ,Ʈp|&GOG `@,/& %0Ms l &GQ,U(8`r$8 ZflXn'b2N=2N[RW*\ DbN byU{ۄ:`hb@knE ˴ *n՚e6\'|XL8II\ .Hq [ޑ#zMx;l!lj|O ʋEf8PWv%sS-s-#2I+Un>aI ܔm'ǰdjPsf/NE6tnu7}?r*(N5ɯ򚱌A3BӓHz޷1>1#'v]ːV\ut V5vokXOb9aG@}t4m'Ah:#/.cĀ=p%S>MТx:eT5OVXaCG:<+D2 :ZҺAT_>3 rvHBͶ"iXu7DhM.:)s-r#L]s˴8;Gk&ܴl!+3H 6fSS۴T1*s y #LbL1|x7ytbP(r.)\H6@aF< S\Id_?Y*ǚH11DH@ 0kUHP<*VqO*nmzg) h48'2,:EߩM.fzfd4ƌȍ뤟]_]nKH!HI=Pli*f14spƆu#Rr}ސ Vz\H|?q.30qT@&mR$Ail]1lRH<ڌú *1C+4,XQX%}T{?3 f! YRʦyBL !{]^>C5=q_wnϤHRL~RFr^]Wj ,a& 5OH,om"g_+L6HP م/$Ebjjw_(˧Z؊J+BA11给87ڔ>΂OA֞q8M޼hO[8D6I~6落8uąlb.Ib"urI+xmN;w"3Pv~hl otcI=5Yq-7|8o4F6.j*2ˢU uلƘZ5SVؐlMQ"tVuOp9xKdU[3q:%$|.fQ/IrQȁ 3p`.If&+xya+|ꝭQin/8]p׊j_6m, / QukG$%_,sq G;6;" *HO:>gj63t&?L?xP򼎋OV|舵/j;MIC,۶0,xO8 i޴= xC]T[O6/$7}'m#8B$lhoqj-FfZPfVI:6ScFS[icԴvyoɘr9Fd½r/g ;κ[9rLA y&m8S2b 3OjÊǝx@Z w,QyNfo2u}5 c6Xg ލ&I3RAoxKn f+9t8IpHx*'^,*$6A 3焩Cƴ4@qkM5 )ыґt'wG> stream x[[o~_G,m/ARMl' }p`[JVsp;)`Os9_ 7?D݌͌͟|n35ާg5ͭQF}kt%4t1/5Ok u|êwdQ}]UƓ59n[8]Swc5ن%tӌ/XR5a櫓YT6s%[+A(.|u1{|XV0m)| MɼGh aR+)+K)AVV_4^ f "<1Rk۝o!γ$4v{ ?eW8 kMli !?=iBy#iNH͗_>C|EZ 5uggW[gWEx'vvytѼΎλwP|>ZwguwVw]y7i*}G'J}A7(F0i c[b $t*5A) l2nxȽ' 8lhؘ`G)[a| 1Q {ji5UXheZikP^6ӳ< ,3b.PXFP~E*~b 0S`) +}洖8hĊAWuZOU-S>I6chc\q1<QXnh/޴ރ7l<9 Ee/{mQVY!oK-1.  ɹ5. orV5RMW]Gi8`sۆڡn%|fa`\3?ٗsbq?F(Ix& kL?GFXgꉊkF\!.62Yjc^UಏcC(pɥ*0oeCFcRpCT*3l:mx\ư9.s*n.O%C iF&ZR 6!c ՛# CXt6Ps= 1ְw|(4mFLlY1+-e]Dai4֝dJPfmis8` 9'mX*$MOR<[\YlZQZNt%#۬G'g:*I24?a r)!<ae,07:ct4{CS :#gpCr7}Jmqw΄vqDX18Yus #(uQH/"@픃WB|#}Nn`aK 1GR`a*x^'ߠp(jv)n%(4(eV5g%it/CgT+ܸE[QX_@q;c%\Ä B/iVM۝Z'Te|RMC6p|GXNq4=딳$.J/%k\!Hy!(DZ㰔 HJ^[^$! z`11Q/X՗Kٱ‡PtSru 7RJ$i‰"c":bN'5"2xo)^<<(3ypRg~.TS&~ÿ\2_6'~3LBϣp1?‹G)/w'Ӆ#"2fdpmXItȤ'1 !=ܜky5۬!Z:*/q‡Nz2.mʑ|!ʋ Uw&%N]ҫi2A4eU6K`zٕ/9Pr5-b@Bs$Fo+IFȸ(U!\v^3 uhEq2s3]\}hƖՕ&2j;%ePh!h|nE`"\Iםg{;ֽjO6)S lnE΀o*2߈;@QR"V@XK|g<% d_Z4 ;xg1ct4 "_$ r")a g4 /RI-FS8ڃAt%R Tdʱ A@ ;5xH.ru=D|MJ<"qҤTQqQO>#>%fawؾbXJVxj|/"0$u#^6F3BD2TL )[Or <"gÅ.WZqess UZ L.[n(g#/ǑX3v%ߡX9 X5ņj'ޝ RsUGOk!G_x[b2պR}xG@sEwHMHʭ|qv $Sf͑vsIß$(JyL;E9u#r;>Lc}A7)оӉ^!Ɍ [Wq RL#̧{/C.*vSput_HX87sQ3@&wE- 7U Fl^H$hqUX}Yh\Jr&%y =B}~Es Q&8ZX;  v *76oq[194=aa4(BLԦV"o?>nc%KQdѿ_D7>QqS"e @WSj㈩xoq΋ XD&~x4IE,[,752,O4⬙mPc 6+6:F> stream xYKs oGl4p'~!Rb'T.Aa\-C~{FO7f8˨j61h4T=,+n{a{jep7Tm8._} ުh;R]r:Y!UwQ5='fUgi7> ">*դT17$S˫Ňd.7V'rn%UAfis Jm.o߬>}Z^N7I+lެcJvcv_R]ßpWֳJP:i˟&dF:*bt7'說ߐpH)Ah^W˫hj4]twuXWzo*ym꾮վou4폫V-Gjuu9")qADf1e-*!V`LBpI5֙i" P+\80]Rwpt *}q{iJGRn*V9T +\H& Rĕ :8*ʅ@:)XG&h} di`=h^JxOzks%Io Lnrisz]BnJ Oyk<)}^y m1[HX7]Z-4K(#]fHѪbiK6Rɇ4 |NQG"W йPX9B oom'X[3 4gq^٬M5Ғ۝Lf rj a^՝dWpQ)T^%1OdBڵO'c؄H)r5]AsXӴ0mQ&wڧJPg:I_Wa QfrȚϟk~.5mMޤe9Fm#g;zbaz}}y{jW/j[WV_̽g<-b5ⷙQC]}5}֨\NH-8~AL){E$ jұˣ76 ŬٍJY#_r`I.nywFofm=AT' g_\l0_힏sobd)}X0ەIZ| sۇ ؝3Q Lcfl`}cGOΟ1w ~8o1Iǽ&E^jq!3=Eb{@#Ozꃯ\7Z릀Vc2fW /&vXA*;UI'M^Y>x6Ak1C CPTtɲ nI"endstream endobj 231 0 obj << /Filter /FlateDecode /Length 5306 >> stream x\[sdq~g5/)۱*ۑ'o<$̒jѸ40Qq@/__t.&y.gt8LJ9Νr1y]~8NNsgfʈa&2ϓlVf'قyBZlż-LU7ߔm`M^fSuVifMz|{ә,=OpK`a V˛3b<MRˇR=SBNBuyuog5V^(V)!vN>{o^> Y;69(I)TP^ Rjʋ|bv ?.{삇ͤɜRQu~3^|Aya_BXWO0:ᭅ HUڭ/P+WVF׫3>Us7k S4*y]s9;;C&\bRȠVok&&f;@ Xs+ĭ[.^-M 8ìf׬cr{KS"34,N % $qNeStJـUܒs-t>3!$6Y#nJxX d$U,w?Uս'^3{*@(/R,xLLpA*{ԭH=gF;E~;" i?W>WѦ|ZYᓲŃqYڐŸRqvOv`fv@)/;C61q3hZ6~Qg*hl>sLL]Yg<[%?U fl }G.HAɀ26qAFr ]?Q~GZTzp BrQؿ$-A]0j5v62^=J9h@<7y%E\Ahlh2{BPÃu[~!)1)TNYΕJ|qp;zRJg).)nuAr7L6-F6v{ve<䂗E:)| VzMPޔWF[fwѬ`@< i&(Xx"ü@$0#Xa۽[0Ĩ|BvjD=? jԨPp7 [ZY.kC~htx!@$S \X>VxgPIIygr (:O`:5374z{$Nn_tv{zOK òaf),"1e '3jI]jDO4i\cv3SeطY#As 1.$j7kaĄ螑v09SdʺJ1TO8jGtFRdq 7l<@?`1"X5s+({-&í󟛀˄/da;̯>4VpOVXzDir.3uг (l=kq1C$i&Ȍ3\ xwaЎ\>qSbrUc ^,#U*;&%gnH59^۬n ƇҖJq?Zߚ_0x։)5T;e[ټ~y6lx=SaOBhNSca\Fs3mҾ^D~647#͚T%'ǔd֡nx:%ƂYԈm׻NLM-T_Aý_)[&f̴-PʵI UX}M맨+.a Xvʏ'fj˖c>X]%4&5oG8X-#/وNpW,~/D O2WU,/ZI}@#ć q1l\l1LJmm07yІn-nD,,;W&YsA[+]U=ܞƼTɬ*䊀ҏ c]|l`%׆ RG1t8,0}bԈF%ڏɈ5o3 ' 4ƍ|-;(S)qQ=JxjL* @%3]Eas S,٘ ~x'rc̩u HKS_1b]˝ ildߘOig)9ciJF@KoR>4hY22S!kSqkia%xRuV <^w#`r{9M&e߫mr؁,#8|W5UjX6DD@je@7NjAMٸs@E r G!5ʒ<yL6jY3yǒ"  jdzX[\c]}#M$>=ŦMKǗPB$F#! Le/xWt=pڪW̄m9ekǧ of}Z F7sςјђ)eJ5Јr- iFN[Y,_ӾO'$^_A]2qY-f ^ms rOaZ!g` YU6~b כ=d͇u=FX_ʉRpl͎+rUjm9S\;gk_+PU-Wd=#qPHow˙ǻ x0c)a謁<;Rn-D? 5& T fqL=mOBܪ8ǜO58U$Ԍ1nM˲<; G`{Zg D(bK7?H8!͉پ:(ր`._a]Zfx-pRIt\ML=DXKb攰ePA0ڦgCro140 EJ -3JmlG pL_bPZLt{3oZx`qaiS>E0kwe昤rqo3;%jo ͞Cޭ\2[ͻ-,5V-[qPװVU$,EY.Kbʄ-1~{ͦy w6|aՒąŕQk etC}[ 5+?4K/ٷm.dNyc`{ȹfGIV痨Rٯ>q1`eߺbK@)%ܳOܤ퀋i;HZ1SEή' ܘqE>?6#Z Q,}b,CZ]fg:+v!=Rpr\;{{AO>Z15Hsk$ARεזI(ru~(ܽ;|N餮Y:Ps-qdWr%fL ^ǏzRn ڶ6 'U%?Tnw 䊒MkwP+687Bң4(^ev-txK<ȶou;hYKwj%IYly1m>YLV9ru,]26L8bĥ<8)kn%L%, pM:ic>/GMxk&?{XJɡhBzCaL$ۀ֚D[ (xņ6 Oio`Y;̐-FOl0om:Z5M^kUfc7>f;K6x>fE8d DmW'@X T.^pߒH & fuJ}Eq+XӪ.6In/2 Ijn]5ǫYflƸn;R|%52/L ot|Ŕ -M>(( ?;Hϐ>Lfߎ3`BBCQƦ-_"!ESS`'AY\Oy;m .XQ{%\jTh^4u_"XeU{K(lW%a[_jM<}Y-oZ˅Mn<ً m{cf>͕.j,KqME Hq)GZogS|-M{'*/\huJo9 ex_\+?-t'̳(sk/a F+DcXp7 u]yHR-髥bCsW BBn㲇J3hrŌy|]rCFļ JyƞޛvNPJF]Mo؅J|}*!yB8ƏckY)?6a+ZK~5!"6_'?Bw[g"ߊp)B_{4'98KٔoreXc 5f!z̳!M]Bv#A߱r)Bje-$ W5)!w]Sוrrrݯ*jB."fxx|˯y0%f!:4 fejIl~Nr0ҏG;/q4endstream endobj 232 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 324 >> stream xcd`ab`dddu 1H3a!#.kc7s7넾G ~"Ș[_PYQ`hii`d``ZXX('gT*hdX뗗%i(gd(((%*"s JKR|SR YtX޽53~OAe=rIa:Y˺v]g*{ZG\Fۖ;Q> stream x[Ks#tgS1ޏCRe;v*]h\&.)Y> hbH%9|4@_7K% nn;.D-0Ն,ֳީq~,Kk륀AqGid{(iTPk% ̘rVƿRF^OrJ2*TFtI'2[mr翻Rw-κʨ^i%`?eớ0FwѵaC%ML6z@3%=~{*{C,1@@^kovB¬QJK %_&Cdsku߭ pr['lj8 ٯEnrk[w;,!hBdČfoF <Eq{fx4wWFB9@eGf, 7`oO+l+$]TCnڸ8= p?xN-CPQNiOq nBf[dN~ ۮiϾfmq^G7ysbQC ^[*(&-`h DSoc{LE *ߟ !mq%𗅨7 hH&@oQ%H&zm" y6WE&7G$=ڔ=_qeI,ΤT]kH$#j q2'&+ )%t)Mܭ c$$,r==Ɨ5l=MM/i#OT1?f,,taZ3_uC˳bK՘3Q[1*a. S`|F8>zh,د,.Mϣi˼CNܒK:n8~hZyfhjm}}bO΁0H ,Ҷhaگ unmrֈb {BD>g43֜" 1 N9 z=7m *TV+bH @J i>a N\d~exGiAc0=AVЀc+&/K"¸Ɖi9tᆦ|B!n-@ޞ L{JhV4qob-C]uPO'] Q\=r8TnԌPxDy5h!iX)qHCݏdi5eA黔>8Y]_b7&124L"Qh9`O~!|gA9*nV=EH徼;mO[d&Ѥhj>LLI YHځ@^X~B.8qOۀ m} 13=&F=e䳱RY)g%ef$ٝhp,RpPܥh3uؑ< ǓŀF%+ʶW6e9G˄532v8 ۤUX k z;rpۦ)Aj" .̓m<=%?R\^BӛЂ-a/2:VEυts݌EXc3|O((7&l6ǔDXףFCrպ{+㞔iC`}­y6>YŪz=յLeٴD2K.Ө%?/APo^Baw&yMiuƪE|l1wƃN7Uy,DG=T>-HK5vFP>b70Әť&ws?} 0VF0׭x'6ޥ> Cmlr=A#×{>Zϊ^o]Jk]& cwjRj|޴z &L?<`KdpNĚ]=I7H H-F7ӗ`AќGH~V3W0%3MR!z#g(Rfu/FӭO ٢L[+b,V{v6`p3 ?.ZXendstream endobj 234 0 obj << /Filter /FlateDecode /Length 4601 >> stream x\Ys~gGlk{'g*I9Gf,?HCr%.ߧqv]9\~0F|`_0_vq=tW'lX`86XY:N?ђ Ar7hF)aAI2QdA8Ȋ,`RMңv(`Q*ezlqy.ή[_iON"33p'KV?:=?a׫8Yj,->9i߭sn &V;7B-9>N3㔜 'dq.2/j7mh~oMk)61i!ף@XnK|Z qyV:Jk*mhYg_֗\nJ붴EimKK>)uSZSi]w/~,GUdzpfؠӯNN?aX.<6wlA ?{E$)H褒b,h?:-A\k[;Dp@I+opR{Dj-̠,yݪH-Y: bUڲzj?ZɌ/INGj4'|V-[e+dt:ٴ^`Yv7mir01@E:PIb4CQ`qygl+CBO'ϻ9| 4$N9ErKtp=Qz(}l ݋ҺXcaC3 .p?zfq!$yKz;{z=:Q \>3zH%A#rlU"-% HCx:0fjƘ_.QQTFS1XD5Lm#F8)6]OU9h&nt#5BSѨ,BP{s;͟I4#07zGʨ4P XQ 6gzTI‚b8A ϻ:u"9dW%~W:gaPQbQ3+9/;&lC2pB ТflEgs< '*"HN 9#|(l ؁i X7B2η$isy n+$F{0 P$ـn9H1JA kH#zigI}!4xZ\C+L55 m5G *v{іRdY oOd824iSސIwqٸD dBe?o@/>D8@͒w<W_laZPJ7mɔy ZҺ-t͔Uǰ5]}lZցRR+1~1J/2LBfcуnҨ6^Cui`mF69m)4sH88ybGVa4ohV2f2=¹Xo$^몧ϰN$¬VT69az%}Ef}M2IBxɋ,f? 5;e`LvA: ӈ3]A]d *`g+HqG[Fr߀@Ϟ'M;Y]|p"vCC"Ftj-Tpmy@UV: snP:h1Hk|MST۶'Y5N,C i=Ye(uNB)Arjȣ9}F 2Ő~c,$Ҧ]Iݑ NvOaj,%@UHnMYUR)*J ݸI)DzVv3yu >+-9^+An:޴m$UX8YHo:η{`8_A5YUՙg ި$~[ZxBKlbJ]%`y,}L(=yX_K-r$-T$*įU;̴[BlX^/.\DMܓӅ>ٻst}>0;z(ba2 _HI2z]`רs=E/B ld%*b~ynِ$ zEjk,k||dPʈk_6V!K;XAS'""sU Je5@bQL_u Qӡ+xLr JG֗ǿ /#|^w]|M:~Z=P}~]~||3f c[pVjI앯%4g :  {?^QqD9}=$h{P@}7IӚ Ƈi;- Ȅ^c.i@aL~MҀ XY;9 44(74/;&cԏu7ew? Qe[ "}4)bM ʳKybxUG孮Ķ@N4 B?; rqS(}x54?F_~% QN歷~)SDhĀy|F*pʎԪ,zKaA}= q=#{E,ȅNlXx}D.MN@SQ(>ija R޳s$ 7Э lRM 8G`0:vn-"/4O]X1^z$1CcyK <$ #`oom9ikXMd6ի젍31};IjrH 5+[i2(<(9dwS_<=uBle ]e( uo> R^ز/a}xz-(Wendstream endobj 235 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 688 >> stream x%[HSqq+B:;yEdI+v.wlyvqsNgΣ˼$,#|)K[YR^|~HE*UQnΞ='BI HTb tqjAx("AQT&+X"6$.jJRAՑHBRv6qY9ffdrL2MNYXc qY & K2֒A2 wq)գ ;Me  |}'wvYa!{˾O ޱ!$?8' [v;voZV+ A1 &UlfQ[um]oO4k;6][):y}X4Ԯoro+ قNnm }ƶ7v1B]uxe 9<ٝxl`#su BaSQjXyQ[ L+n)>u5^٣ffw/ -)Tr^Aa ռ<<96E# y` Aц, endstream endobj 236 0 obj << /Filter /FlateDecode /Length 4184 >> stream x[.]v&"i8i3 NwVӞ%;C.jW؎}8;pzl_zۧNv^K7};i_M4cb|jfqMmezH( @i[[T"˵oj~ .Đp?*/R~j;Y}aH|:b >x0ERJT-i ~(ꕗywQL}DZC)%{Ta#cWO9[yiZI:UN=So~U{ …DnG]V4f |KbU1k7H O22(6<4}l(|/lϣ (pSĶfhGa}i8 KGsq|'$õF`Zl4 B:0'#{a_0Y{]܏+m79 <2 'bsO*0YŠ U;L&#(!uNڍأ@ H4]G<! .J& ר螃^ UNA{ÂX޹o}_II>#{EiE0,\`g|l'jiNzR$odL;M,u|ar""NȝA F=N<(tG479xDGZ Q7LC/r(k -Cmj] BuFnCpb6_V Nϝ%Vg 2׶-f=$Sco Q*IS,(|)a0zB2?K^"6I *6,aɥcbtvS1>2BXqA #(-΃3f20)`hZhcBC7r܏,w+^&M+98q 8$]lˀW4۪?)++7v}EX%\a! Fue= Z(~v`/BH|Ws HPc^=zZYq٥>OGAHjB:L>19$}YJdBMVVDt+tq(ĕ|0(Qm|\ߓ4\e:Z6`wI]č`qLЋTcӡRzZâcâ'IFE8fJ#KRY|YHtG\БXЧ/2+ih:8vEA_{Oͭ#t~xX 5* xr-gthc,Hs|5f$Yv#,W$o š9xK+>oy>@&PpW q^toPݼzlVK\ ;CF?n_(j؜E~8rc x4kv =XA\cã *)Yq `!iY3"갋i+9p.j-= CQ՚T C"ZDm3/:8s!` <-e kR4jdH=978 p}^擛e\6Oy"M|yO|Q6gO/A%Hi`[F1XK 6۰"ESXDa),cqۡCg%]FhZʱZạc8~b;R_|(?MwV }=CKn*o9vaA]DRՎ z3 'FknHK^'YN;W43 ~-B)8-h7\cDXJƈcqHJ'zI-I'oa}ʁ+}wIbqi2&rc5FI]^Ì^)RKOU\ nl\,@W%w!q=~&]24Z?ondX > stream x[Ys#~W‡Tj,'U*]Ykl?̊E[$ZG>h g$9qm F 3oU~pj.fV:3^XZr:>FV {aNZQFʑVEZdŞ-]ku*}LZe `̶\j~`e\è7'_R;m`- /`+ۼ :};gjMf0{Ô$9^8st/e5+l;&]o=op[pBx2kf {aҡ0_`u||nq^p>[\㽈Zn=Kh:v%* zۜVBԝVj,|vϋ~) "zh/pp,2|v;mwOC?7Sqϗ".j _v`>܇|_ą(7no/deKeuvGHqљ<,kQp]h6;'!  gݮ[vtW t휰oc@sa)p;P0Vr+| B/<;cOrY\5y\bplylv Mww,\B;"H^#!=$N+WpnsڠRdbboˊ^iV};߮oJ~+*ֺ;Н61cerj%jU%EzfsBjC𳌜5{XEݣtTj!t8tyLcڈe 2{[w\=崓!X875zѵkM pP1*'ZLjڦ:Irb1ة]u{TL#Lɶ)GwTw"LB,\fjF1^X{!Ԟ="`j.8 bm2H+DE!זBaʷ(ꉨFwd.nFbIO!ڒLK$8p>+l:ouuȭ1 }˕ɓEcP}Vh?Q ETEe4 87ȏq@@ڑ*')M` 5FnJ5u8ƥs&[C8"W1>~$ljCTYO# 8fZpqS_z2Dq Tt"g>-*q` bƄObA$C>b2]oAy'4>]lx w'`H( ȥjD9WE0Ɋr-फuTdHF$޽S;!Krd Ä́5uH"E5fILM'< TYClmcBB|YrT >l0SJ T">ZtR X?vH Cw_?L*AsZ/D8-g:zmw [ ,iCuJ,( ' :9M؃4``\V=@#QIKV MQdԺQظgrj`+F\Ÿ):8C],i u֧PiJ+Wy؉Nj΄q&S.1@ƛ6m3B5pXRtGeI-~\Ac C&&w&p6( a%Dߏ˜zrgH20.H݃3̔Դ}g8qqLӶϲAM15BY|FVU!k'x]$S櫺`ЋxVIAkD1S\z2b~&x \}\"DHrg[#21mrunswʭJEn'[z|̡"O/?j/zr˥0C"1n 4겚 JH*?R ]U}L)Û7:1`"EfvσIxDbPOyBð@Dҫ'm܄I162&l|(*ů u{fH=+Y0+ @nhHXPk%e-}.J+W)螆xRsEj-z<-=Kyrc94s"ЙQŠFy~' A4n >OAֻcZXYW;(|;#&6uʭc! 5Fps0c&7_~^#&N#뾚x0wt=r 5OrHOx;Bf9"nnd`;öLci^k`. +?N,J.f"}놕 i c-qYƉXm.b<1f &׻bnU.GGsU]kxYcd~y?K~:g~z!U#JEjOy4Hv#Gة.F<֪9TR1ژ1o?8דՋX%_jy/Tx hnB8*_?] :s%ȍ"K {x7֑; =)5U~aWmAR{^b>X6f|jo׉ Ae^{9^zu7xHSWIYx1u|3Y}e-ggOh2rO8s%qo֥[.H\JoQ|مD29;{ϓ̩] M$趠*ǀ"O!&#J{=posQ&zUOo>^t$Wn'Cc7z",'ޡR=">~$E7)P=Fn4F_Qc]XeRoɃotQז;|TI 03)]/9ƫr5 k텀QuɧUXH @*g8}WަK^a'ǧ7|ȳѳG,tfJX, (ȕT& PSpd >vBn?(G`$ÆׁO! 6^U.~] hiڣowwe_~2Ղ3SGSӉR0V$!?c,bmJ^9U R& O/ƲUϮr~P^SVX]3ÔDx~Q> stream x\[o$u~WGFW'JNIoY~HKGuwe#=,EJ=IˡXsg?O#;;h:ՑfhݑzΥۣodF-rQ27jG)mItb*h!*vPԎd(MyP(Dj3Idy)0Uc7:Q`6;fRFc(ѧg4ir ]8=I=;43j)BϦI1ǯVk!`I0&U29;qSa4+n„V`0Zq }:#ȭ]nVMqGgMVîF'U0ۛ߭:q;\m?f+Ǘy/ίwի'M 5 paY<՚)\qMrԓc'~yn+yO6q}9~SqA8T /πf\X;r,xN*ɇ jmGsi7Kw|dv?+ pIf6;nXM8= wlj# ``$Lt+98H) J5wڲaQ;b&˙ D/O4l,L -آ_ctOy'tX|اcj=˭DpY쑱 p*Oxk1 k(p+Ԁ-Hc sXM`vT o;fƉn"02'k,Wir dpN@eՓs_E!`S{,2N!`=I~[ 3ӓϠ:G:?evKƴ+kIQw 3Mڤ֮-sY/.K.so T!niƆA3#[;~gw\@Sݡ@@ڢZzCGˋOd u3*!,r U2d !K 0 Cpna/J֗8@Nm>0qjyk24I7ZD);Y@eevNЦ,YM% nسl*8Cpx3Bx$_3 P`8E@In?G2h W{hChb6cF9 @=K8WXLs|PǠ$Lؽ&VhܛpZXJqM#Lx[8֑@xMځ#(S7< 0{4? ݧr}#"pjr jeR^x$a /nT{3%M[VZN+ WTv&$ mw&W3<(]3^lU- GQ<;'g#4Z *.]B:c6p)Ƴ8}WyJ|@lhRC 2E$eg֊CoNR`0N?_얁Y0W&uss<+6M_7DV WIÇWނmщ`3-/hJ` ;1\g;*3QJ c ?7Ye; >DņwAkypa~$Jțv6Y18lf#jJ5"PgY0|eK`ʇz'3!Df yQ8}<=**ce.#JAұpB '/&D6xs`Ipbd?`W iCd۰=KՎRnO:s j1cTkh:t*+N M*MXЇ H飄`nRDt:aǵUՄ6#{hۄ&Yݶ゘AL z8 bđ$Q$92\n(ZHF~YIW3 zC6RAEU +u麍;dE72o$yEGfJiCZ;Tgg-R:#CfQ ,t{ipc%3'n-zP aVzf';]EKu D|yhɁc34VGқgqbV 2|B1jՑɃvf 6͌JBeV`҃@fdZ7I]jqH_Vᬑ<7[.5򺗍\scݓ ʬX.Ϲy1~ZH?)T &Q|>OO~ B|g.' q%"&7~vYqDJ%#JBZz耞 MJu,2J7~eITFQG%!a3$S3Wje:aтճ w\GIυĪj~pzsp\c/( 5Cl nVZVOujSRi1 z%H^ Ct69M׌ cNKwb,~bReޮ5ӡ10LYV>GzߒS.1 nS뾥~P]Ya=7&EIP4cCd\Rb x) T+]Br$X^a~ݖ&N;QSp.*;E,rX0"muHY=I$Ub9QIam='EdG\(C#rsaym[,6vQm}`p7C_T7,mq[y8Wrt\y"dReEGeVER g;䃷֩ zxLo|50mzvSPma;XX5.:T*ވ*;J|}!m{U8(H+_R**lϾtlT\9}S8ZﯪǍ egmW~ɗ7cٍ ƣ7%5Q=1k:)"H"FS\ˈ@lpOωwƒt'a qI<.y)q^#9V eI2 mf~,.Lt"uPN cըA* k=fOHYսi%#5E&eꏸZeQhtUAM.~ǪQ\KZF/DT KLQOkvyH{8e)2Ji>.% }(QyJ27?" Ȟeo2@%"#H]V[6`" J)v\*[J |/Մ5xO^6/IoIj۵Wл'CK|"NRrrǯHB'>(w`03REayE3babŁ8e -y?TeR6ֳ!#]@/6J?)K(4AjTCW=Ɋ?z˽ĿI11*ʲjO^5QfaQB*V4P*m7W_"['FVHzzɫ8UV9JcY.oH_/I6Lg} 7^eЉ{Y^9:(lB7p6rڂkxPe b6-(u9D09>60!!9T\Ș3s^$ !Tt1!cN;S|+YJIe{.u(ѫ"8.j8i'+Hpӫl׃oD'),P4mez/IBJ5Mڰ .w5?*U?G ;CoI”9YlO;`|y)Idxb$Z`YF_аZKi)([9:z/v4?aoKRkyȅ#8?m--kOaw"Vv·!'a6p"":\DM([2D&GN\mLny^u8dzCڱ.Qsq Bi#@`2| 땁/Ԉ&?Jا%e44`d"O_@+`+Nܶ*1l)k {]fZND|T}?wZf~D_)Чo^DR+*JWu֫Wv/n%NJ1LdwgΨY%UAr]rC#zȮ<}qvqab- CVdILo#c:\Oߺ}<1/(@r?`=/8ܐsƴLx]|_Lj=KY{}9 pLfdiRjWbU&L;RwyR+R)V_x~ȵKA{IZoD#ҧ0WMK3_##.RxLYaM8o%͊\xaυv+C;v==xG?ub$>S_Cl~ORq_FH 7 &o֟5 [\IKUk' "s=5__`zO5>yh'܋?ϛ/N~endstream endobj 239 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 709 >> stream x5[HSqqhs^bAT0PQKddTpnm.c'/KwͼL5lx`KJ=Bz!z||8 q\*(L?+W%]CWD x1U~4pЩXmFcILZffz sMdrMͨ՘ g`M.4"rLbY<+4FŦF!c,f1,TcmLEmÊbIB*<|P!(c`ĉG_ZSޙź.wJ-UvD8]k`ݵڕy",2TjD/E(e'P[ tS.4R7,kR} :kera3i!h^$R|f_WGr}YԓQ 00b+/?P̢V"Z~A iՉ=0Kco,!n$% Fh7O֑`=Z_>](8!w> stream x[oű5~ m&E 6DKj(R"%?PiaI }ryvy5g-3_D~&Zoflϙ\̭6uf~1NYZ(JR5:V+2*QҨV9Jq yZ?St2mQySJ 4tv5AoG VFѫY7sW=-z~t1kY{&o0db)h7%kwL<>O1ld!Lw X9Ul2n~;&ro2qI΄*N+ zYێI싣!o&xˍ(w@L? b)B| t/ ;fJHqƛn6@ 0U4ׁ``@/k 3b븡ն8Q;992蔠T]g '<:+fn}6ۋ'!5-%P cfHmaHDGK ކ^1㣘hmu/#p0(($9AzCc]2ünpqT'A@$CCeΣΰEH?)["% INRSx]x]@`UE%H6B 䌑e)zZ<^ :N8]CAuHv;x8 Ӝoz {um׫dY_?o>l.wۗ< K@iV?_ N4bfۧDJpSzbx/M\_w\xاۜȆuI&UM.>#_jAjb uoSʁ! i{Kb'%EᖚUELʥi.*)H A9ߠƸ5.utxě02Ah)IHfC? HJ7]A8?WMhSg~Wjj0g]ߗ %2KnVgҵkSle ȷ2{SEE*_ jh}ZOSO?NgwE"UʚU5 *-2&ۂ^,MǞeNj~Z?TB%8\#|1s墸V 1/DnlTB*#!,RR%^(RQ ~Zаڕzn6#sx[.i8&O`JL#aZ͛nCuh7uW)R~\~O4WcP@y5L&;!,&邖?H7?xK]ȾN4K̭_XJKNH-G(ޒ[4ڳUU+FpM%J/TUz8馬=ܿ[@"tk'B4-Hȯ 0YClQ> stream xZn$+C.IX2 h񡹊Y/rhA>sdTfd,Ed+1˕D&ޟ_Oj孓spL=$x9 W1k6dMRV=[ä & 5z؎UmתJ9f"S*H?!TRmOO~>ɤSUSnuzu-Wf~ʮNN&֧?(!g!-N/N>zZ1F"T>_JhZ9oX8g NqyI)TT&?4vF=HC ߧY~6%g|[1@"F+Ej# /ӟzm6F6zjmzjûdF7m24m6RmiU[N޵.> ^!Q-';bM=>oW,Fgmty]3hW\AX@9 0D}Wk 4,&1(S 6QBnHmi,y.~?HPͦt`f1Ƃ x14Àƭ1o&dꄉ~YDC]LaB^YY.TgU hBm i6Lτ Q\t!3LhI7Ry>(i, Q),HMMce $Pđv625)ˤhRjK41iz^CM)AqIRKb2t6x2*0D @8$j]r^"- lHn&Sq!JM a)UIˢy>i{][$B}GN 2)a>n0P "$' l9#LSe[>fI7)ʃD (fu %dK$v@Dt{8Y徯{׺́$G\a;1i$е-EptO$&B3T7ꞶW RAe%K#Hen)+"l!Ũy%t>Y`ҒC= MGThs~.r$a5Q]a)ͼEtCy ԯ"a7]zM*0@;H J~x>D ^v.r 0g"'P#<ԏTNFQT4(q1G M]i2O sudR a8lhSQJ:a"ZCH6/[(*pK ^Ks/ ޤXd}*@,*L{'e>C3=z:Qv$AхaO, ;mN];tNM˩j̤w,) XS##CݡבPScU| GC~bi q_bjz`B}%IY$vijZŒ[|tZ]o8w wϬ<+@vN끎߬8(V{>ٰ@6<Ɂw u }Q́;@ Z 4b2}rϫOd6]Jqu="-T\4>bzZ`F Rc˺>2:7V=ٮm謹rs|g̣4]jҧe9c<8 7SWeS+}?zB%N{ȈecNN g.r6r)wZ-ltYxYfIX8QROxؙ×-=O XӋ7Y=K/Bw#5e<ٺm5}${&d~\=e[J-u`)Y7\<DܻlfEMո--y.8k7. .G@lubѷPywF2jSGb1c/ް邰ɰ_!eVC9XKx9\Ee/ :,!Q9L(Zq[eR*zȸk</szLF.JEg+4}Zzy 3=(IuܻFI^Xગ]nS_:&*YIl!۽]Y;gZJɶwD })|H)mYz鮗öYw>Q4Ƒ)oǻ?DXendstream endobj 242 0 obj << /Filter /FlateDecode /Length 5580 >> stream x\o9r.A0h~ܻ`tb1dycIm{~U,6Yfd tbկwb'?D &~"N8qSo;= .'QpVЫ< 2Φ^VC۰NѲkhVbeq)H?!jTff'Nd"iW@T+OrNT=x EIeOoO^l~݉A N&:a"7=l_9,Rk>B7bfi)."Tܜ~O݅plD Hj ]2=*F&=n2F \]_lo%vgbЛ𪴾<զ4WZcjEg6Kei]֡Ti+ڗ}g꡴ږ^ַ%_Һ,:ݦ3 )_^uƫ8$Q^:|_S7DC⡩N#ƨkgy;*Tؼvx}7ތ?'`/O p9[i#f|u;lGc4tah(Q[CC,<9k]U= X-@=e~iX-wzr(GP>:'5DKZAHHJ!4q0ьϱqxx1 E m$'%$'fSU p5':}Aވ%й?# 8N@^r@t4]^:nPp[3m7I58z /T΃5iR4KȮVW! 21ԯe ~XٌYôxɀt;6prU^us :V 03{6$ڝ`JX=RlC$ GŁ~%* J"EXW $oU]:a!n;3覺+cU3`hylکD /tźʖsK71t'0!sfCCl-)n$h쩷6s=2iWU'uҌqf'T>4oߦc,hQp@&R /ؐ$G<d>L֖4s_O >C`{ۂ@u}̬/"mdOwY>:ōad&X NDD.$hhr ]DYGBg~iH]{ƙEa>#߇>%$29{XS;)[̻1 \u=4Dht<0R. 7v3 u?Tx`;qrI/I2sXnZ+PAf&?*3¶tnpIaj  qPޭ[H\z^&2;@w#?ZΚX?-{؇ξHSY]2/_N[g=R':C,KivAŲ^ZՏaڳW_RW+3oԬBŋr RI Mw1)kr$cC{4ab)Ny,kҺ*+/ۆ(\%g*w2d~I:L7.K7ymqEKF ᰌ-y f3OY!ȭrx,,z~OpL] rW+Sx-=u"}ͻ7-՞cy\WT*UghU0LQ$[ ]6RV&ڦ\re IL\wk{"(y/4%)<̟RaqWY?h]8q]V$ZX$X̂2SY%T9 drgDFz*_XbM 5I!n?ʏen8<=VM~<ApwQE}ZLA59LÀ-2kzJ Bl2m,#WYqp .C*t8 dO7GQ!8S:*eKzC˃6Z@H"K֣YR|By7!~qć!9RM&u $ NIU`MȎ՗" *ؔiqN,a`-[a(n_\di_YZ/3xRaRɪ7&`p/з\D'`5l_WB5tJ$qS/K̬ߒE|sQ9x״< }j5odFjܞ3.oģ`t}&~\h\T⺀9㺁ҭ2d X.3 r䦸iW}B#S~n!˧|QefX{.hΘSN0Hgā&a]Nxq:kZ䅲 /9x^$ƔT1b=Lefgu0.)aoU<ܮ-9OS)"YNN3LG',E ^ UByVv6Pg\%Ab3ħ64M5vY6=ԺkRfBKpXG{b*%j ֝SPl) P v鵖r 5Q,ftqkdŐ%RBR`8n9k:T4̳Ǯ wXIwHEv.0nώU4Cd~ .tj^gAJL!SŕVx~,zg"c5hY%" %VE1o1d!=o`V״$*|5zd/jutp \;LiG,|fy}ID-ⴿjU몘ЪGBNi]ɼUzUwM8vn0,* ڭFkb|Z&Aϰt;e_be&DW;iW;;ěn ˢw'_RkkX(χ >[B+q"Ųy3D X\*"61探:G@S ?#`qw}c;pO3-~P`ç:6H:.^ ?VxY9LO'ԺF16JPy86ԙ0?Tr[j3Tt.1)!f<*mШ3m%gy9=z.Zk;8|ުM$=j󬮃:MDW yuC^̴ ܌zBJuPp@g S;V2EteuJO REX0f4VjY-IoppaOmfmLOP%E*˺NqSAJwLRȗ$"a(Zĕ,Dd5X|a ۳%!zL fV]VzxtQH=]UƄ.W/K"\hCxQ#^rQ{ZqIh-,>8%Zku٢b~kKYAG5n1mkl5uG/!NA5M Q4Om%}a:dikrbmMzc7ڐ4;ޘ9BhN(Joc1</ l֚sJo?ˑCOjCo=ڿ+Z^,QcW8F=TAdM$ZF1n]IV{5`L7bhi U<*2hożJm/PSu5.V@c?)[?iV2ˍXMIYР&+M3;u{VbѦL ($1Ġr'c"6FַB@>723Gs$44M l>L$VM?wQ^lHfyjGcv2g^և|E c*ٙJrfTI)?ľ? q;fWo^Qi<5Mm_=#ݷXmK9} ~^>k-bs=~ջ P<;2iik5ojN`k㩪c.Ԯ\lXC[>r_SU9zNcw@ڻz{\VtvuEBNP?}gW7{oOqendstream endobj 243 0 obj << /Filter /FlateDecode /Length 18316 >> stream x}ɒ qݽLj ]}9HfZHJ4R"И @ o?po FNYuV.>/Ϳ8ooǟ[/|^]I-VRso|Vz?~ͻx]}+Ԓ[ t[|UsZ.XI1/˹ҿ[j^^jb}[*}y[s~}5㝎WZ^~ͻd9HO>eyw߭w칼%\/!%Bz᫗z7y4ɼftݻ_K!h|!y#QxΔ:^S.9„_i*"%~m +gec$!MԮ665,Зiw[}c@~=}'$5ei KZՃ>$`{ ɋ6?rqw|bWw+q-7m!=.ғh#'X+5#$n(ygDvW(A݆'ӌ Y&j uZ99Q0U|SH Yaތݧ:L~)w罚#$dgG*bh]voM:en.{a ubmJ{᫔2ﲥV,l\sWwH飛rɉyV@9"4kI3Jry| NbeJӼJkдWK*[  iTCfs Zts^$a䞓">+BXd3߭W5VBҝqtC+E;Mq{t&=sla*}H>;ݥb]ȉM8W%$t+:'`Ij],-h1x%$~F0ZF06-4Ynذ|9FȦk  nnFModȥ}zGtC+zJLۅ opc?`i;)x>$8ʹU{i.g hvEmjZWڪZ-C{?8)J+i5GbS6~,"kGTXVsDF98,MTM YoFm1]TM+f` B- p>[i~V0dKj8CK0 -M«i(bЕ(:M:EAs!Ok~H>|wT)]zd龿 cau@ 㬝2@Ca{8QE!i]8"~\L97 #'0 +?rw?.GP\F_E!n{+hk ַH0=lѐD,.PNw] H8JX?kpxZnIc+):({~V9`aSAbhm!.J݀9ǭkZ]C>g:"\j](u )aN&U= 47J ~ul%7 d$YC[>gos7;Q$nZ{~ }ݵ&e 4 }}OihMaBQNb(wZE& Z;$+dsg t*!7PRK(T6Pu`kizN}c5jpP4W.pufdSC)-S2w+y.!n"<瘴@YHb{c 6F 3̜XO&uCҽtE*Efᚳz_ % "5%Ք,Z8.Rҹ +LuHKd%=rEf 2dI2g@@M L/A3*{O9kY@98g%թ366B>"TNI|&hH@8=#P^g'%PU1^0\ZG ]V 5.4r}ʀLA<93`$qWiM )) Yb+tjQ/,H$"5KE*Nbs+R܆zY"vyaH#pÀ O_4}HI2wCzAa lT\{s wEAXZuJvD PE5e fhGcIh"x7gB?)`E&×`+"d X(8m]0Mֈ 0^Uz0@ 3"!WritՂLHdK&|0 dFk."y$C7\h NM8U@a HbnIpbU)#,LںĨtW?SV\_1f5eHFlqZ|g Y}H|wb"!IT%-(Ia8Gi 1!]te8̦z-xBvtVTn*=8ͫxocHdȕڽ~<VE{x{>V܏T ȕcTߊD 2^&U0JH_I C,Q}"KW@2 ?)6ޥpV֖ \X_Ԙ $jPޞIq/fÍ;ըq e7IYT^! %^ͦS#. BHHU[B9Cf׳{ `>>QP©xU1TDP|XRQJ*xDvj -!3&6Esz$g 9Cbm ":Ue, )H eA¸U# 2)IKiSh(4OA#{pVL3Z/˧M4Rg0:g,Ymɗp߹ H (%jBOc0AYHFzksTH3l^ orY*@5`cA-oNJ$7=3.[NP4GY&yDG3G#U,m:M,jM#ݏo`zδYdjApRO*ZrU흤܎WxSGk)bs86C!7N?uE׶ATq:= "s%`v=P` Y.5<ٕĝ98NƮCRpT_ڍ6o3rETRyt߬aPRD4@iYXKOcH4^poЌnu7(-Hv3P(a賃ڦF?F1Nꔽ23MKC" dw!\{Z}l3 Ž"6m!D`lھd<[e&JZ3fwEɀ_<QPpI,]THXc<*khwt!- ٸj7aD ~jdWpީp64\>V1VOVGFPneÜ{MsS̮U48o/Yrz|,@By VM eOP"j;襝$0HTp~ԪCVQ؈/LSm`l9+g|=KtF&"/,o ]wYuuR . `Ѱ$Gk }?!6)QRIUƳZNY,#IWBhn61ò&Ӑ̔F96e v[\hخGE$VTT Uk^?gPRPjKZs r-NY.rJnY%Aͯh BLNӕ0{՚{dF{j{ڣPgM:4'Zn1IҕswNC /+<58Sn C@ j>ᓖQKD[AX0;mz= lKVqb sƾKCGY}n&9hj?xSbiz  aP(}mW,PzQ_5zܹqskc@*`$FLv SdkĈPhkF̎2i%\ ;T%Rh}B,M2a@@JѽPͪ˖\Dw)bQ U;f#V;\cM:4U#M" "ϾG;jN߻mpkqSZX!V\I\(_ .c3ZE'D/>_'P}'=NWhC0-AiNҔbbJ[#^;&k1Ih]-`^ҝt+u,(oG ͭY}LwFA~}חCHYTrvr`W5<&^pZvZԮwR+F>$(Ju]D͜_G_djC.mZWӴOLC6qsH+JaF8soT2ĨwziEN{ )`fIT5.G,CÅ :h[5f.N&{:W@xN.$";H !a(qGM8%~*SL̺3(kGO w{.Jyt h &?[=1T A $=w+n6 )lsfGh@2!v){c^ۨ!*@dtqqpvmU;>hE t?; 5[޼j1 msXN &`%%b) j4$ԯV} L+WZ9G7v43vBu >2:a֢tc5IMƐL5pRѷetQ8KOd@!CPW 1 Hs8 N)žx\^y$257ϭUIbtfEXl^F~/O >ޕ ۢSѬml24 Y lrgN]Zo=&:NT) p79U1B4m=^K2۪kAkt QN`UwR&L̒(JRԅWNjfUk= qGK2MK j)3`IfB30=]K`.r<;j!r/P\e/#3 ^=7it+*>AѥiIx'-:83,R2J.!5Cר?{tۚhC6ڒfʙ ] WD5(hD> QRQ,,"BXATyI=J20I%hOrqoC8?~7 o |%vrs\eu&0yߑx`owϘgQ3crl[ϑ5τE4`#]<6%F)!0,Xܖp*b[ݾt/~ L8ԕr8  d Ij2?gԽaFQb1Ij5ӆMRXlpwcCȓ [2<峜Pg8Q kW4Wϙ6`ǫVNFVv9T~o2a}w٬OϑJ^G/,@nއYJˬ-.0И@9:?]96wc#'c;dJ~L}L0ZDPNH$Ԁ0(K̽q?DLdPz.\GpqcN"dt/AeyTr+GXԎGLtFDN0 S0o S$k/Ne;rfE;'-Ϊ(CÐVĽ<^7eS9`S MVь5D.,M#Y 9B0l?aoM84e 4@?j;6>젙Vlc0cݬ' Sxs!]U8sOx qւd; 3s^Ťm}&qEGm0@n\Pi6-&unucx@+*\O,Њ̟0Z^VvG\5,?gZ\"d.#yQl1)pBmG>vZmRM2SEx*x,w(',}xn6pPTGsJ],ЅT1~XN8]$yaU UpQsӍ\dR|R0꼁h& ZkY h}r2ˇ.Tv!R(M1ݹ yy ;7Rt.DCxdR}SG h7?ϖ]GH*}esQbe#:Z`mțc8i ې'd601Cҏsy,"W9(r"q! FT^fB7n[8%3Rm~f7P# K <5yu6bb%p @u]' rOd=Л}NB޵61\4;[)^P{!ct&} m2 Z`휸at+B)4VZ.1]Pg Z$_rѻwB\r^]6M34Y5B#iYMʱ œlƈ54!RlhQgզifbQgѶ5.yRV0-#53N֨ΔiZܧ~ǏAr]heڣ&8󧚘YC71|! SI]vYU6 'Rj=Yse/'{ 5u[&+YD#Tο ܙ$ʈ:+m-#1Lv`\vR Dž$5zsuZnC8}.N8A:vOb+-+jrr A #αWC.3aC6> p BNBhPA:F!EF_gz@3 ej,z QQΠѩ%RSCBv*^}vObP^r|wn.6 g=4/ ̃9"Q6 haq%aR@LA<+, V9r "UJ(1B8N(% K<]۾AymNQCg>!.6'S"yWeZϑȶɹ)帐͗ զ4amv &AM=}OjQˁKO{ _tpjskxwb?l7bwzsN raV ՄkEgtk1gQ]$)ŸS!UPYrj `^5Cpzos* &OW*,u|NTRu{W€خdl_{[&h>v߅8m1ٰbNrrҩ}6lf];; =_IܨZp Yuo1wb'}i!ɕ|zui%zBK^|5Kf^~U@G=8؝oq)gcY?$h@ ^gDf+~#[/ngVaݪ'8Ww$>[sd2bG?r }ct4ez[܀6gPȋMnr~FJmclrj 4oiG _ <[ UNqN?+^8:e!cL (UJ/oLi)@B]!,՗9Q]?zݒ NFfPb}ˏ֢fk5 Ȑd9B]8{~T\P9|[i`Rx)Gs{ TѭՃJq!* x0̳GI@zm28I*d1dg&dy1̰uAj8^Gz ݙC9t٠I 9%.#RcނO7nQ{S8T)iT.%VF0 8(O,YNT I0oBY3 qki qXmsmLQy;gNsQea8E$--\n/K4!Ӄ0ABe]sGᡯ過LJ7 uc4ϳ:qRF;ܜ:{vt;y\=IvX)pkD͌FsJ(MaNG0){^\ }C-')q@><]:>Qyҧ^>X/)gr`ӎzޘĴIabݴsQ#P C: Ƈe2(J:l.st>^pf7I!z3#\h՚#9 C|2~gZ,>8Rb{ԥEg^8ɍZIM##(h vanf~xMZe?|.8~nrƴwaU\b-8 (1x>?o_dzϦCjy41LN[aUS&\ #x^;Ig,2*ɮ ZUhQ+CdIa5曎md&4㨅fX@䁀3"H**; YԈ9hH1V9256ihLVYzr,óI$R5'h(_G1mzy<9xX"/ $J0{~Βӑw9h8iR^l= .H"|sP4<}yN۹44yRۅ4cVCQ0"ilYϱb✍#Q aq ZUՠt{^tw)uG_3i$|i_aMq>i Ƃ2Uܵ]KXam+x. c. u2i!o h@g,8zf /mG4K yX5ت SN׉_ =Īt ePRWBOТ |F9n3s'DaS4tee(bP#䡉#_B|b>STāBȤ͡ޖs΍sƍђ7sVJQU&Jg(3ы1h+M<y&")aED`ќׁ/zZb(tE~E_;4mm,8^#lޝ޵F܈L=㲧Mϐâ-Yl@=\QpTiltLYN}L8OʳF2Kp3 ~΄116B$I\ӂ0Kq Hi3̉.|ltѬ{ S9F7R|/˃2Zp IVgT%7N dtfj!hYm8[&cÄ~@56)Gu99 6#%@D;15d>}˛R'Nm^,ix#w9[=[$]FEIYQσskؘu9mȄjRx, Aΰ5*m4d>gS6m@Qg->sUnJf2jRyZ5pȞr  9Ydd q6v<} &\|f kkфwK0#o]o$kv."rތ|-K8ZjKwF_4.Wh3`x1+uՙb߆'H1gP2c+0TMϖ@kQHyvS1% 3[8ۘ7gi[xts\I~Z]`f2*W`WCث1[oN:t dNEꚇ3񸬻9}1OJ^c$49HiAd>P2 (Hɰf * s>q e`3٨y9s!DaKhn/C̉1 b@DRCo2f2d/5 yp "چ8 0RfT:h,ƠMSPyg $4dr%1A5GŚ ѻnq̝S:6C=yP4* T8&]5Q5٢dD^E24V=(@LܐI5qyQgrt}Zm6deH0Ȝ8k$s J0n6k IZ`^R}8Qs!smAdRQ<4ܣujpsx3N?˛]NPh0A[w؈󵐷ʨM1Gpxt+R8Q?#.Gf-Nx\1@sрJMp1ح1>H~1(rZ6gAU-t\4t5} ~-"+hB*Zا<.22QKmpqyT&kX Ƹ+P$"XtdS6rf4a?J{I 'CŞRV;/3$>pMlʥ}c;y6S+G>>Wo5 B\fQ7h&W Ⱥc/Z/-rzFJ-y8T.A>q3QЋ$j>D;l崩G׌@@,Y)YEsL"'7LGh`kj]Ʃ9VaN 9xڽLƦ ,TpeQ(_ J$6J*:Щ gx1hzVIDi>Or ܫ@ EE8ʛ(T`f~cBJf}{IDL X0Î󔍝CXO%BG-(UQC(7D l g1xᐖ eWP6f.2F8W8,y-ݐe|*:x[ѰVFcP^luR ullwGHnsE Fy޹N;A( xVnԂK`+0m;] |) hއcz͎bMQoXC0_6tM뎏|O|?_)nJQ/_^i(#̯WtcxB>syG42oYG-nq m["MU"_>S|?+Zro3})r"].n}/db9ʥҲ[طcoT(L p_b ^ɿ~,Exo&6| TD."DGOETxt%2_A~YzRMcbk:/(#{JQ&Q$ 8SWī@DpKwnE}!=(bLKE-?pD7\9l2ƨf_.[@i-/$ϲ$[^w)E%uRqxezٝTodG <'6|ŐN_Y(B+kx<^{5 >0@rbUGo}[?dt{U/Qߜ`P 3?diqhS> #h+9xٕ:%L鏰[q:_pYOy|?j3/IqM$#6'8n(eŢ>ݠڼ W/KOU]R*B_sӌMPi |Cfz~wO??p}ϰۗb~< WEy~)!oy?Wݹxu:e@ &YoבF@r7/XKn;0],&Kg@)Q. 77cN3pɴ `p-2X?}TqYl3vp믿8czŗgg 728 ˱m.̸.W2emn`c ;Ǫ;_?.23^3.༅RpRO|;jkijȉ!~Us~}m["oQR -tS&:?PVh//梽G²ZQ)O~s8 DASiJ|Ͽ;W:79Ry5.=P'" BSG%\rq<ӗK9)KBt*iq$zTQjyn.l܇/79P.J"?<~|?X9H(T"ͫnї零_n,2;Sz!ψ;>ÿmg>-B oQh4OI=E$@ch [Б"o\̿_K>o|vy JJ~&v$D8r՜y]#Ty؅3vX+8pr<*dzo|C 4$\~0&dKHO+K!Wklkd^|Gl 1rM.+*Qk: vdp לz` %\c-_0E#> stream xUUkTTf]3U^"DC`DTADF(3X@_ET= A 0|D#**`⫶ѶFk4ؗnskއe6 ˲IƩ)qMra%WiyP)+?9jX`,AX)3Sץ=?2g ~wiIf]d'l4śCL1aFs~^N, 8҃7ec6$&yx3r&qgV0'` fB%R&Q1(Fhqx%5g؍l-FmSn<0=Z{ AAփ AK!Ah20 bAJ|x0-"hU}o޴=KE%n;iݒUҠMf9o&s0&fA,p0=RЬzD 6g/ BCJy}88~%-ٗ¼,IX9$!Lz >hS]SKYw!ڜJwc©:Kk鴏sx>~KUQ >}nUk_;ٟE\#o?@Qޤ(Z{ a z;)H5d)XP^2fxTix^+Ej+Yyͅke[Zv< nk&fbp;YX*֡aj\t*Ǔe0IsA,Ӫv%'hftCKQJg}D8}{n.B Ya+u+/_oF0scF?o:{rTRl-erdv;wʴ)ϜAOB<Xn4?맨-f <9i\Ifq5Di qa)[Oj}EW6Yɢǚ851[Mum}@>u4/##n p  yӹuP;TGN?^LUE{2)tNQoaSX~z8_"f`6;X*ɍ /0[_ch8M1_ho?'Mw!iŚZnhy/9o cJ 3j^LYJb7 z68 8+2S:<бPXΣ},`v(y9pjƍ֝r|e+;nlu9m{jBt >K=AΓ5%B/>l=D"a;d Mࠀ2!<D+AZ^CzP ~Tfɮ%-JHpEܹA9 螄 H]VJܯ$ըZ''!Ǭ2љg.KxL]MiR`MEl 5LEO2oyєKHJֆv#?'*9rx 2p5 /\E7YC;y)x6\G/ohMgRvs栳 eO\[Ł(Ѝ^XPP_XXog]p,1v _endstream endobj 245 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 2865 >> stream xUV Tf *mL "*, l AWhƨE5 D $hH4 &?>}HBW IR;.93N=83I~?Qpf鋐n};C(1#q$!"IװSק'%$*dfANf+k;e$%LAf\Ty\" IrM,8:%C' KXE LSV{fx)dF/X>&6.!)dUhaV6v3e$`b BDaN,& b>A'M3 ?ž'qF'Q! C$1E6!ȱY3RG'[N(X-5Mm&(nP2jI5!9d0̫a~j^^^ \2+jNT6tþ.#J_i fnz4OhorFenL/-W55TEpa3[=z'T0{wB½vcE.3ZAktЈ7W NSCp 4z?61Xc1v.=& m.?D/TȽ|Y2 '"[ܥ4|"Df>+tVTЬUnơh媥 Z ;!m'~ YSAO㾫mjp{y= gHTaVa&c3%HDe$l/~1DA k^8r# Q'imWuoEe˞0np.Rj?5qR_#Mf߯mj\^WS=3#$gZyȴ(?G-g2,탽Lja\3WQvu"„ݜؘ@x̀5| _-fv 8µ܋rvC-R.}`b5sხAUVvS;E TP0D|t~]іk|^~ NpK;ۘ5誼#W}݈勮߼߲\!7B@=3Ut KP-z\zY>S_r/ˑݔH߶b#4EMl!!SEa:F )[Nؖs/0|7MPr>D Ձ/k6~;O*N!lmROEp-LX毰K;ڱ!Xyp;ɚ"ėy#Y] ->uF/aw_aH8+|.Մ/1v$RB]'90oTfF5KB;96 =nKԞL/ށ G o}s1폂/AjZ[㓩WgS Hw*GۄYNnThA'V]jJZ+5K, e{Rx0ӌxZʹwie3|nzyFi{vvpK/o3WҸE$ACE)H:GU`&yGT! Z*L;FA,D5b^|?%=Spi7B& NOz;lxBxfJiDGVUSHk.X%z0s`9#QkJp럜Ww=dX~z.kowV^fr=6 }oQZ |q:RHuRw}׿w08p/&jendstream endobj 246 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1307 >> stream xESkLWaAժjwX*bB,ta KAdQ_ ,O]@hLGѶMriӁ47_r9;߹4%sho<-'v-1F"L z$1zShCd\e6=utԴx_%9є Ч2B@jI”8ϩ?`0ӄX}Z EQ2W;FPSLj65KBjQ:Cg;:959a7MbR|M# R8A#eF* Jr ;[}=CU?aX5ܢa<7" ­^c5ϕ!+^ڍ]Sd:'WۑH§ ơ #Cv?X\#MQj#[9;CЦXV܉pnyhyňFLj28l G>]C( vG_;m5CqxbBy(r0;$8}ɰrjj+XNfuuKߞՒY찥rƺ O_di5Y*Em՗𵁻ƟSguuYf .܍÷|Ь~) W C]0%EEB.ᛐ]dyO68J|:aQ E߯M]nrSE&i*Uoc]Emy8er!;%$T7ܣCă\u]ds%1ZupA`̕Jԥd)(˵@qp?/b1b丌o,=jHXTq"YV*G]Z/u>Q;K89*kme=Q#'*!i5VZ@Ōr=eendstream endobj 247 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 3628 >> stream xW TS=i x Mq*j_PA!!L"Kd 3)DDZ[-}8ZZ[:޻:YYZ!"8.gˏ̟9̴p.XMOF]Prr8a24"N p-vv^@Y6L, )a~ G"rq+/,rTq(&D,%ˣŇDph_Xd"˗4,"J!ܤp -|4B&wTl8$ * [pN v;];1Mxb/I##b=Jl 6f=b+Fl#&11Fű9議ܧVKWZEW~J[l4؉s&Z1j[fL)8Y !{~'چ 響<7phvOz+a@Bvug i4gmfHOD$| fE A),OVmRBv$LFbf|=A1 nzm] !;% 땁WUdFZ?13y}{_B!ޢhrBTv:m53Lg4E'rXB#/X;?[Na'3d'`cXO vmtA {N@?VT<aWFcB ;#_h6|۰t9RXz(6Ẋ? M@o}d^Qb!ε|='U̜|]T5ef[bdz=>k5\E9G#Bv}d_ Z:f(n+@sO%5$"*TWV}) >}NAv`t71:uA &Ln2sWeYIW~ʏ+x[hV[%2 [H|\Iy+C l'B0g8*S܋{1.$MJJJR% :^Z,%i)ɥ#XSKgC,' ڜ$ 5NN!@JaNW^&)(nR1:n vEU C-e+~[D.$H/rqf`zMhy!z.̤M,UJjϜlz]/ J62j$mG 0WLlEviaH@ }Q7~'#*&';3/b̻"tb WkpP1`-p) l4F>xmqY8/@_| AD#a3u7ĴsSpk!%G1$MddT0.ڈ@.U{&F`ѭP@4E9yhP\جLd4 Nՠ)= 2Hj23lۑ#UeUZ5pĐc+vh# 5wL٨NU9֤{VCFQtZ1\pu>Kk T s|Reêiy=N‚jFu5];~di(ٞMQr4@jgA4AiL]R5+6՘jf;GAŃ5\~89&dAT=5Ȉ۱"#jnИsWOI+tZڃ B%{5- r*e7m=+=4k@pDkmWI[怲aa|r ᔬ"te}Rv|;_8H؄&*A͑t] sh.r}Fk{3z0<:>3X H}4Z!F.\ˆv՞jj3A;ƃbOhUO*v"Gf'0M k ̋7ixנգyA}qtU6T3طY [d:WN Cf-_0^vJWCEJ\ӱS([4ːA~E}j=Ytvk25唬{9\)%…gցu(p6_Ihm7эkzbP*u (enluqI~ey) G,:TC +=J 5i0琒8@8@}t~n=X#po pB><'ת$ېWD=Ϡ:Fh3)0o]M7!;]}:P]XgLhfMn~A%8ڎj5^eC?=bAq8i|jyYy&.[iB9J?y nROىwX\k3ςeK,4䛑 42(|{Fx p& !%U+TmDJ0ʊҔk革WRYn3_o!b-h+fgZмX/u+u7WϘm>)?dZȚ0B^-754b28s;W8OP! WF:Uhv"%iIiĸ{T=eNVuV ;}ThNlxNkԆ}:f8 IMU1Bփ\0WPTxܕ{eF > Ԙ1:0ɪz|Uȫ%Qǒ aj:I2 Y7Av"uAgߺN^M=L1 4lڱ)cE[ջJ=tz/^q e^0{P%&\`tOҥط7ڛ>_nD"6hs  dRF? (h6 :-zܮp P"7 [FZ SGy"aa͏2L6rNEaP}7K&w~jy+߿7| )V~NKq,Nww_[*ZfV)_TVVpe;YdM(\> stream xYn}60h;w `6!p`y @q)xOL_f$d@VWuWR^ǻo/(7 :g^:%w] '\9~™{gՐMZHh5,KB ۊ Ԝ¸Xq ʋ Uͩ(BgwKdڽ~xAP꣈\yMV2Zx"ovfxKQRWkHiS5j5q@bc`VrtÿNJ2I|i|ͶH6Crhtʈ kR֖n3U xQ t,fůtiʒ|Tz)%E7uE9גS,]d5|,]d鳢x 'Ym$N%kyVLaA&9+ ݢ7l^}(MKT`Ӓi$?຀eMU>R)FJ2tX%~{\/bڋF|Wfo풩IR64BU.3GO-ƁmO|}~)Z'굍Q`"HA>_t \_ٔTP-$<0l;+,EcGst ^P\քX32HU8>03̺H H<\dֲ~0<>2,O!&;!id{vqܕ+\v<0 :p>kHV BkFjĢhռ>05gA7/Ƣ6 s/& W #ҮIڠh@(D1 :\FO]89<}۔nw+lGw'L]?UiLe @>PwgΙ֗N ٫ft>D4c(€28> stream xw|΋|>$"H$D"H$D"H$D"H$D"H$D"H$D"H$D"H$D"H$D"H$D"H$D"H$D"H$D"H$D"H$D"H$D"H$D"H$D"H$D"H$D"H$D"H$D"H$D"H1yUjq\]o/jK,[ԮymU{vW{,آEk{Zr穽z3c֮˿O%W|@?q]{}zVW:$ p%"gKUp%jC• WrY4fO.*1+#o.\e|OΑp%jEjWvfgH*3e3;•HUoUJT{JTY33 WDmȴ W5nڄ+Qvf8p#T9jԡp#$\PU٧JǥJ4pgJnW-g*0WJU̼ WX2[%e%` W+i>dbݱmK1j5fJͤ)7u&rUU? ׅT$/:We;VPӇ)ntbyVQ(2F(DT4U vfIڹwJԔ'J4JMcJ4 aɼX!5T\)̐>w,egl; W+V`MxߟDZQqȦO Wwu*U;iwUeUe.{T#W2\eB >W8.G (h]Vmv8P]U2cjzU( Q?:\+ W dd/=xA=4K[0;R^yW$X4&[ FhJ\!+ An0ÕDpUP鱔sM1t.Y)ζr@C2V1uie$0[ WK(pp ,WN O٤$*p& W'o|DJ׆({,;6/n0ڤCs.Ew34F?GLWڛQvB/DYU7䙾\:ך/IA~J?{ oYW]9B!JoCEX\asܻ r|%᪣^g m Yz }aUe]'h/=v[AۃϼknoW i*2F0FrJ'q9ZT rW3i R#j 1%fŸN ʮk28U{)9x)^38+`< `1C-Tfh.:Vɧ^OU{**m$ӾN\>֗(phЂ10bsHavvɸT᪫ʻPA@E\آCE:KB+!pE`x;vb4]düt:7k␦Pq 5ִ41T1 !8LK]z5;;P᪣+x \^+C2kolW虫ioKjSD3*\dP A83-&9r1v^2.v5jO]xQr|q֬ccc+G3vDC0W$|w*-jTօP['Fڽi/X*Mt-% Ӽ<a3a%6mQpr׻۷wڶɎ(8P ԋ\tA.ð+;zQ.z6M@!j4q g#Υ޸͋I4yh!zadXe2Oߣν1VpUCgxR5$!(U@cBR(Jpʚ%qaj RVSeS_VUe*/Z%mF~`GhNo( 8~ #B2;c7ٝ㪙᪎U]^zOGlepDp&9ChċqƲExi# cpclxNX_/$\Rֻ*J9vS&8H#_R0xPe.8 JcGݵZ(9Sb/1$\+E:*Uq]Ɛ#c)@q( 20\`0a֌ gS T.Xن\/o7Y0'r#r? ظ($:2PDT3Ap7"](%f11!bW.یZ>5kV WP #;ť}lŶu|8:-,g@p4XD@ !-h൧*ɔXC|תp]7b{Uɏ!=TL À*c>k0b岹*84jpK_th?oa_͕+§ȏm~f択s.ՠ/N/6At*p0 +ڀuAc.f,Jש;4O13W\_w_W#g?pU_j ;󊸔$\pT! gJE\LAo)j4G: mؾ^Z['sJV^T><Wǣ]7)JaG>EsSDa44`f3 Lo5C/E9N]zb6hf6LZ4?3_xãH&%cW2 ?A?C9 ɱK-\sVdoI[}}{J btGqqnq 3(g=$o0j`E6&f*l8msjUtCܪ;wˋ9Z\\N{12H4B!GI;%tqV'0yVH6 WttGW6kFk4Au:Kݻo9"\%)V~WE\ G:y[XTђo舁?Z51p| uP饋?6:\=񷒤wK;W+K2IV8VnqSì t@WT(!b Ap)7? 0{:K e:VzU_|cwKr?po5/nۛ?S$'@&T`_a"B^@B1IE(ХD32߫9j.;=s\ӥ 0Ѣ:5p &F 3x[Dձ5yAOH9'>4bOɜ}XKj zzon2?wY*My] GȈO5Wsm0 FI@اq{x/WvؤwOos\)1>)_tg>0%8rjGU0l}`^N#fjn?4*pJ'uLJ}t<۳WoEQ??iz/|}IrA/8Sl ^aj)0rf G9q7}aPn)u4qGQQ!(Ŝŧ~fZ| zdZD=E4iK\Mxӥ pVO5 a09GRi0!>q}zbCpyc2(h4ѵq\t<$7ڬWnz_*͎)`;p4A`xaO\h}ؼc8tbB? S[}2P%+ν4urq e3ݘ`G`ssCnf}sV¿xE\au3>+x0v zxi8Àb?K`Mef8icw%r17Ķ& ƬFcI[[>-D sb  a1Uze,/S gReAbH+њ2>JƸs'@iq72-f>T-va>g( dnNܽ)Vʝ78qr\!lmЕB'~04)`^g0 nr"n".}VqJ*>%t_WwqqF._v󂁃"W R"da~T9!$2X-\ƈ'z8e>CcͶ#,`:o$)\3N;Ǐy,=W?~KaǗO,z? P]d`y >`4"6 `7Ƨs/|b˸#Ab$l#@Sɾdゖb4kCMS# {BPⰹh|n8_[[8oBd(+jA ^AaTu\ZXm7W_sؾ8.;\*5)Ċ1?+w@nRbe|9~ f9$  v 1> $93ɥq\PJlj*yZ0 p f0nZAaq'3rU0Uf1\%/mbB!wD 54pG9~}4'К%in-j.j~Z8p^r0{𢫣l! b[ Cn15+`s;hmy\mlnnR+?9٦jonpAՙN#^&hfxi&D w1È aH .o[P>N~ laEܿeOHZ Qn$9<\-%]Ѵq+5BL *".42& ,Vsdp ˝ȁxE{؁V?럛9qU-RRB C1mkIb xwH]o׶ MPn U(awM-]׵()\gAJ˾A.予:71 ŀT4rA( "8lZI'/~##T1)Y j0 gWsizmOj7k|2,276$8F-F9;8X 0N={{SlD)lz6.;-@Wb?}j\+RUw!Xr^bJ X0<4h˜Gq>q})c+ 17kP!PSl6o/(ȇO,V..q+R*Z7TT N0ƀ烤>4NI{E ={6Wm4x=O=n(sUªd}{Am71g/~h ekEtf 1ھ>^b9i :!ea>*W| ywCT47T8*ytI0έx 6V~}fYl6amGj I(¥.;e iq TR ¸H2 :xC+0 o t(Q@bd"s?̎| \Ȫ/>d}"piapJc…REޱ..\CyclLce3600:wb3)^OY=+$ ^^֏l3ۮJ]hމ)a*S>mm(t077(6QA V b.B̉xA5A3"7ts}:rcd K2WdMJ$0OgmpxWn0U4 vOLE w0<蝡icP/7>uR9\ĕIДFʭ38 W~ q#+c) }668 !- l)~qmR*H1Wo;zv?5ﱗeҔ )٤uԋ4-8a6 l$3@twImp*gM9K\%zyU^@~([KNUdCf~oMՏXypҙ'z.OQWQs57b{EM#MBrFZ`s6ݖpUKzu'k\ƴ"1eqOg\uMbk0ve#9rWSUM1.eJLlA(_5¥W)I fw]Ŵe\Ma+F{ja+uR]{WnH<JWzًn{VY,<#`ŖDjl5*G4ưco-dՎ_޺KWϽ;ɔW0TsDvfCVvwtɟC2Q:ab(\eK9o؎$T+o(L_a]YO?39%o: Ԝ$WKE)X*v 9G4qN!@C6@iH/yv;9 ߰%㟏]鲦[Y[<rRv?o7Ȩ]E+b\ᚗ! [^<&9Щ̢Ua+աo3iɸzKe-h>:0L}T?[^@q1z1 ctQ(MdB;wX- Z\?9qU.AWkFn[UѸq ׈b(騧f-C<WxHKUY!IwD"c% `W N[KzlxP>԰"O~4籗'qN-Cּqkpb2[A\T G6MSKqBy%OEn ^TqaW862_p8i#4=&{KU-snG-WKJ X6|Upo1C*p~S_jqq3 WcH #\zq1´?vlV֥ө)ԹzYsWwÍ\O(_Wr&@Ri$^on,Ww#e,{ʫ^KUqɿH"ea(y(h11 aa0 4qSQʟo)Vs{y*Kwa|8Ϧd\1A頦3Y鼮iZ}Wv[:b\U~T\ZwG^ssD\%%j׊37Qhox6yWi؋'&}Ӄ{e\]v"53:}e[,W*XQȰyM`j&%OGO}ÿwK6 WPM*^Whq.)3Հ>z<\6}Ru+"d*W)!̱\jOEP#Xv'IRdxΜY ëgW9{zz_4=XE].Dmʰj6:\ݱ?ynp褋z+S W<SJ阃U,X~y\ld6aaV=su_?WZ_z)yB[>wW{^ O9k4v]%׷WnS/7>类UTPj0g;ƿzx[El'mN:YNʕakYՋ_?yWUڦf6x{ }uzDgC^ji$)*wcWM*7voWxcqg2tܞ8_4=oJk.R3dOs{Q2ZR h(JƛFR>|Zqp4"q56ÕR"\RRemXf;x!WŻZj WUޝI C *VU-*^XFY!v WB檚ɟ* SϠdۮr\U1U 2[l\pUE)Vd>&o21_w-J"WʽǢ ps )+zvZF=Wje - O:ڲ+dkͷ6%\MT6Z7QMOF9>ӘJmXz[YjܰǘL,;q:H(ʫɾW*5Wf?6J,w[ .vs/r"j?e{w>%T{̑2u:YOr27UEWs^]5*9@Aکp5I]5pq'eU-u65R ] W ^b*j S5i\: WKÄn],jy4[6rH2 8FrGU3c%ԥeo.\UVUU* ?,ڎX%J؇r[*pUQWk\#\MjpEօWm^eUR.X W5\m3WpU]՘9&W9/yV^Lţ'jn0hp W$\I;=UwR+բOMr@ W%\:?.~Ozl)),1ZTl"8| Wè"WKpլh2ثz\e.p=i;2&f >pCW=>q+Uv[iWwz|<^&+2Mqk}uڃ;m2j/2>w W񽶪ָ:5GܵjɁl{=w޽%Wt u%\W<⇅z&ڣ{W]du[V~CnwncZ|8fѯI+}ƧZw<&Vv WU6$\ WmHڐp%\!JjC•pՆ+ n/^&w~݊D"H$D"H$D"H$D"H3t~{[# 3iTQG]?{ԉ4z3޻ܧUç jsn&wx#rug/lrO5i]r\q#&zo{n}8qFqF]ѷnۓz3m%]g^|mTa~>]Xt-;7GKrRnMԨma?M2iTY;ѿ7OģO{L:UJ$D"H$D"H$D"H$D"H$D"H$D"H$D"H$D"H]=mO=DW Ww=_n|[<ъ7_8͝hEfK:Y7$w_ǿCK D(@e;$+~go]=tS/yמI^7\~6~oeWg&{ѢhdPc̓I Wj^",𹳿/2~ǝmw{7־u[O`=c}w2)d|'N:7wyJ߽9wʠryؿ뢷<^9ɗK q*qu }ngDK(W&5.5\=zվ|J>p Hw+Qп z_?3vg`vy1Uq/4o͋dߕqPT ;߮>o|߹O}9y)_]wo=>+qzg]T _]琧Bso}#]IrSԋmϏX;ûw% }2^xNViD+!Of_S讣 JwM=z!{ރ _^'S"y2"H$D"H$D"H$D"H$D"H$D"H$D"h?c% endstream endobj 250 0 obj << /Filter /FlateDecode /Length 161 >> stream x]O10 @vA,ta~ 8ʀ0%:t8K结ϲn(n H0hYhqgy⤼m VDY]OyUn!tfD]MmL#;/dTgqp 8榹I*`~xS V/o?Sendstream endobj 251 0 obj << /Filter /FlateDecode /Length 1396 >> stream xWKsG OG-ʁ")B6'*C`}>uh6^ÁmZ-}3>Sv!rqcBq}I |2$9vlː#%G;IBV 8Ghh1R*J^Prjhr!fV>+Y}FBgizmzgݻU@E&~k`0`\t+d <1?8[K0OZf2o-b~}6f2sZ<8 ~Q7R.4Eg|XmCS@ |{V-"59oxy(jq&qo7ѵE6؜[ݳe >ds28!}[gl/E l^ψ40us(4( rl)/#DVt.e(3r\漷3gWAaĀ\(f0+ ^݈dʸMOg`W'D³ݥ$Çd&hr2倫2nS3|\s'MU> BX`D@&1!\pԻi&|۽lbe!2" Joglx=[Z `LżhN'$B9-)T9R BT̹rn[檊1|݌23誾$쒅a1\1>7M^ 6?V ;+zFy Mg=޼񶝭MHE_IXv2e tOOvX+NЍI̸9%(" .dL73JQ*% JәUB_N꫒a?sO5t.8]tsGRٚ"C*inL܋z/::`fʧNBZrBo+CNu%Wz9 byH#vnn׵gn1LjK 9'C\csjdi~Oߊ~/H"QA COE}4Dqv[CRW^/͙M +8ZzY"UHT l*隚> `]6 RT\ѭY#GnË)$;DA#cKM\0Z-p6_/p:bɹ^uI:=TY\߀ުۗERF>ܖ4G'Ez#,)h{qendstream endobj 252 0 obj << /Filter /FlateDecode /Length 150 >> stream xU;1 {'0q_N@ -ׇE٬W.,?慅:c8]k  I1 7g`tBw2SZJffBPUR=uw$֓TS>HԖ!56w/ûC endstream endobj 253 0 obj << /Type /XRef /Length 228 /Filter /FlateDecode /DecodeParms << /Columns 5 /Predictor 12 >> /W [ 1 3 1 ] /Info 3 0 R /Root 2 0 R /Size 254 /ID [<9ea0dcdeb63f74bfc80f686defe076e5><64b1e5613e7dd9ad28e8d8bd335b6f77>] >> stream xcb&F~0 $8JT#3+N46JR3uid?+ Rx9mL[@$O}D?A V D^ǁ$I0[D2`|[ Rl%3A&X`[XzHg \ E@"ebb :6DUH~in`=Z( endstream endobj startxref 209780 %%EOF HSAUR3/inst/doc/Ch_simultaneous_inference.Rnw0000644000176200001440000005557513302740166020634 0ustar liggesusers \documentclass{chapman} %%% copy Sweave.sty definitions %%% keeps `sweave' from adding `\usepackage{Sweave}': DO NOT REMOVE %\usepackage{Sweave} \RequirePackage[T1]{fontenc} \RequirePackage{graphicx,ae,fancyvrb} \IfFileExists{upquote.sty}{\RequirePackage{upquote}}{} \usepackage{relsize} \DefineVerbatimEnvironment{Sinput}{Verbatim}{} \DefineVerbatimEnvironment{Soutput}{Verbatim}{fontfamily=courier, fontshape=it, fontsize=\relsize{-1}} \DefineVerbatimEnvironment{Scode}{Verbatim}{} \newenvironment{Schunk}{}{} %%% environment for raw output \newcommand{\SchunkRaw}{\renewenvironment{Schunk}{}{} \DefineVerbatimEnvironment{Soutput}{Verbatim}{fontfamily=courier, fontshape=it, fontsize=\small} \rawSinput } %%% environment for labeled output \newcommand{\nextcaption}{} \newcommand{\SchunkLabel}{ \renewenvironment{Schunk}{\begin{figure}[ht] }{\caption{\nextcaption} \end{figure} } \DefineVerbatimEnvironment{Sinput}{Verbatim}{frame = topline} \DefineVerbatimEnvironment{Soutput}{Verbatim}{frame = bottomline, samepage = true, fontfamily=courier, fontshape=it, fontsize=\relsize{-1}} } %%% S code with line numbers \DefineVerbatimEnvironment{Sinput} {Verbatim} { %% numbers=left } \newcommand{\numberSinput}{ \DefineVerbatimEnvironment{Sinput}{Verbatim}{numbers=left} } \newcommand{\rawSinput}{ \DefineVerbatimEnvironment{Sinput}{Verbatim}{} } %%% R / System symbols \newcommand{\R}{\textsf{R}} \newcommand{\rR}{{R}} \renewcommand{\S}{\textsf{S}} \newcommand{\SPLUS}{\textsf{S-PLUS}} \newcommand{\rSPLUS}{{S-PLUS}} \newcommand{\SPSS}{\textsf{SPSS}} \newcommand{\EXCEL}{\textsf{Excel}} \newcommand{\ACCESS}{\textsf{Access}} \newcommand{\SQL}{\textsf{SQL}} %%\newcommand{\Rpackage}[1]{\hbox{\rm\textit{#1}}} %%\newcommand{\Robject}[1]{\hbox{\rm\texttt{#1}}} %%\newcommand{\Rclass}[1]{\hbox{\rm\textit{#1}}} %%\newcommand{\Rcmd}[1]{\hbox{\rm\texttt{#1}}} \newcommand{\Rpackage}[1]{\index{#1 package@{\fontseries{b}\selectfont #1} package} {\fontseries{b}\selectfont #1}} \newcommand{\rpackage}[1]{{\fontseries{b}\selectfont #1}} \newcommand{\Robject}[1]{\texttt{#1}} \newcommand{\Rclass}[1]{\index{#1 class@\textit{#1} class}\textit{#1}} \newcommand{\Rcmd}[1]{\index{#1 function@\texttt{#1} function}\texttt{#1}} \newcommand{\Roperator}[1]{\texttt{#1}} \newcommand{\Rarg}[1]{\texttt{#1}} \newcommand{\Rlevel}[1]{\texttt{#1}} %%% other symbols \newcommand{\file}[1]{\hbox{\rm\texttt{#1}}} %%\newcommand{\stress}[1]{\index{#1}\textit{#1}} \newcommand{\stress}[1]{\textit{#1}} \newcommand{\booktitle}[1]{\textit{#1}} %%' %%% Math symbols \usepackage{amstext} \usepackage{amsmath} \newcommand{\E}{\mathsf{E}} \newcommand{\Var}{\mathsf{Var}} \newcommand{\Cov}{\mathsf{Cov}} \newcommand{\Cor}{\mathsf{Cor}} \newcommand{\x}{\mathbf{x}} \newcommand{\y}{\mathbf{y}} \renewcommand{\a}{\mathbf{a}} \newcommand{\W}{\mathbf{W}} \newcommand{\C}{\mathbf{C}} \renewcommand{\H}{\mathbf{H}} \newcommand{\X}{\mathbf{X}} \newcommand{\B}{\mathbf{B}} \newcommand{\V}{\mathbf{V}} \newcommand{\I}{\mathbf{I}} \newcommand{\D}{\mathbf{D}} \newcommand{\bS}{\mathbf{S}} \newcommand{\N}{\mathcal{N}} \renewcommand{\L}{L} \renewcommand{\P}{\mathsf{P}} \newcommand{\K}{\mathbf{K}} \newcommand{\m}{\mathbf{m}} \newcommand{\argmin}{\operatorname{argmin}\displaylimits} \newcommand{\argmax}{\operatorname{argmax}\displaylimits} \newcommand{\bx}{\mathbf{x}} \newcommand{\bbeta}{\mathbf{\beta}} %%% links \usepackage{hyperref} \hypersetup{% pdftitle = {A Handbook of Statistical Analyses Using R (3rd Edition)}, pdfsubject = {Book}, pdfauthor = {Torsten Hothorn and Brian S. Everitt}, colorlinks = {black}, linkcolor = {black}, citecolor = {black}, urlcolor = {black}, hyperindex = {true}, linktocpage = {true}, } %%% captions & tables %% : conflics with figure definition in chapman.cls %%\usepackage[format=hang,margin=10pt,labelfont=bf]{caption} %% \usepackage{longtable} \usepackage[figuresright]{rotating} %%% R symbol in chapter 1 \usepackage{wrapfig} %%% Bibliography \usepackage[round,comma]{natbib} \renewcommand{\refname}{References \addcontentsline{toc}{chapter}{References}} \citeindexfalse %%% texi2dvi complains that \newblock is undefined, hm... \def\newblock{\hskip .11em plus .33em minus .07em} %%% Example sections \newcounter{exercise}[chapter] \setcounter{exercise}{0} \newcommand{\exercise}{\stepcounter{exercise} \item{Ex.~\arabic{chapter}.\arabic{exercise} }} %% URLs \newcommand{\curl}[1]{\begin{center} \url{#1} \end{center}} %%% for manual corrections %\renewcommand{\baselinestretch}{2} %%% plot sizes \setkeys{Gin}{width=0.95\textwidth} %%% color \usepackage{color} %%% hyphenations \hyphenation{drop-out} \hyphenation{mar-gi-nal} %%% new bidirectional quotes need \usepackage[utf8]{inputenc} %\usepackage{setspace} \definecolor{sidebox_todo}{rgb}{1,1,0.2} \newcommand{\todo}[1]{ \hspace{0pt}% \marginpar{% \fcolorbox{black}{sidebox_todo}{% \parbox{\marginparwidth} { \raggedright\sffamily\footnotesize{TODO: #1}% } }% } } \begin{document} %% Title page \title{A Handbook of Statistical Analyses Using \R{} --- 3rd Edition} \author{Torsten Hothorn and Brian S. Everitt} \maketitle %%\VignetteIndexEntry{Chapter Simultaneous Inference and Multiple Comparisons} %%\VignetteDepends{lme4,multcomp,coin,sandwich} \setcounter{chapter}{14} \SweaveOpts{prefix.string=figures/HSAUR,eps=FALSE,keep.source=TRUE} <>= rm(list = ls()) s <- search()[-1] s <- s[-match(c("package:base", "package:stats", "package:graphics", "package:grDevices", "package:utils", "package:datasets", "package:methods", "Autoloads"), s)] if (length(s) > 0) sapply(s, detach, character.only = TRUE) if (!file.exists("tables")) dir.create("tables") if (!file.exists("figures")) dir.create("figures") set.seed(290875) options(prompt = "R> ", continue = "+ ", width = 63, # digits = 4, show.signif.stars = FALSE, SweaveHooks = list(leftpar = function() par(mai = par("mai") * c(1, 1.05, 1, 1)), bigleftpar = function() par(mai = par("mai") * c(1, 1.7, 1, 1)))) HSAURpkg <- require("HSAUR3") if (!HSAURpkg) stop("cannot load package ", sQuote("HSAUR3")) rm(HSAURpkg) ### hm, R-2.4.0 --vanilla seems to need this a <- Sys.setlocale("LC_ALL", "C") ### book <- TRUE refs <- cbind(c("AItR", "DAGD", "SI", "CI", "ANOVA", "MLR", "GLM", "DE", "RP", "GAM", "SA", "ALDI", "ALDII", "SIMC", "MA", "PCA", "MDS", "CA"), 1:18) ch <- function(x) { ch <- refs[which(refs[,1] == x),] if (book) { return(paste("Chapter~\\\\ref{", ch[1], "}", sep = "")) } else { return(paste("Chapter~", ch[2], sep = "")) } } if (file.exists("deparse.R")) source("deparse.R") setHook(packageEvent("lattice", "attach"), function(...) { lattice.options(default.theme = function() standard.theme("pdf", color = FALSE)) }) @ \pagestyle{headings} <>= book <- FALSE @ <>= library("multcomp") library("coin") library("sandwich") library("lme4") @ \chapter[Simultaneous Inference and Multiple Comparisons]{Simultaneous Inference and Multiple Comparisons: Genetic Components of Alcoholism, Deer Browsing Intensities, and Cloud Seeding \label{SIMC}} \section{Introduction} \section{Simultaneous Inference and Multiple Comparisons} \section{Analysis Using \R{}} \subsection{Genetic Components of Alcoholism} We start with a graphical display of the data. Three parallel boxplots shown in Figure~\ref{SIMC-alpha-data-figure} indicate increasing expression levels of alpha synuclein mRNA for longer \textit{NACP}-REP1 alleles. %%\setkeys{Gin}{width=0.6\textwidth} \begin{figure}[t] \begin{center} <>= n <- table(alpha$alength) levels(alpha$alength) <- abbreviate(levels(alpha$alength), 4) plot(elevel ~ alength, data = alpha, varwidth = TRUE, ylab = "Expression Level", xlab = "NACP-REP1 Allele Length") axis(3, at = 1:3, labels = paste("n = ", n)) @ \caption{Distribution of levels of expressed alpha synuclein mRNA in three groups defined by the \textit{NACP}-REP1 allele lengths. \label{SIMC-alpha-data-figure}} \end{center} \end{figure} \index{Tukey honest significant differences|(} In order to model this relationship, we start fitting a simple one-way ANOVA model of the form $y_{ij} = \mu + \gamma_i + \varepsilon_{ij}$ to the data with independent normal errors $\varepsilon_{ij} \sim \N(0, \sigma^2)$, $j \in \{\text{short}, \text{intermediate}, \text{long}\}$, and $i = 1, \dots, n_j$. The parameters $\mu + \gamma_\text{short}$, $\mu + \gamma_\text{intermediate}$ and $\mu + \gamma_\text{long}$ can be interpreted as the mean expression levels in the corresponding groups. As already discussed in \Sexpr{ch("ANOVA")}, this model description is overparameterized. A standard approach is to consider a suitable re-parameterization. The so-called ``treatment contrast'' vector $% \theta = (\mu, \gamma_\text{intermediate} - \gamma_\text{short}, \gamma_\text{long} - \gamma_\text{short})$ (the default re-parameterization used as elemental parameters in \R{}) is one possibility and is equivalent to imposing the restriction $\gamma_\text{short} = 0$. In addition, we define all comparisons among our three groups by choosing $\K$ such that $\K \theta$ contains all three group differences (Tukey's all-pairwise comparisons): %%' \begin{eqnarray*} \K_\text{Tukey} = \left( \begin{array}{rrr} 0 & 1 & 0 \\%% 0 & 0 & 1 \\%% 0 & -1 & 1% \end{array} \right) \end{eqnarray*} with parameters of interest \begin{eqnarray*} \vartheta_\text{Tukey} = \K_\text{Tukey} \theta = (\gamma_\text{intermediate} - \gamma_\text{short}, \gamma_\text{long} - \gamma_\text{short}, \gamma_\text{long} - \gamma_\text{intermediate}). \end{eqnarray*} The function \Rcmd{glht} (for generalized linear hypothesis) from package \Rpackage{multcomp} \citep{PKG:multcomp,HSAUR:HothornBretzWestfall2008} takes the fitted \Rclass{aov} object and a description of the matrix $\K$. Here, we use the \Rcmd{mcp} function to set up the matrix of all pairwise differences for the model parameters associated with factor \Robject{alength}: <>= library("multcomp") amod <- aov(elevel ~ alength, data = alpha) amod_glht <- glht(amod, linfct = mcp(alength = "Tukey")) @ The matrix $\K$ reads <>= amod_glht$linfct @ The \Robject{amod\_glht} object now contains information about the estimated linear function $\hat{\vartheta}$ and their covariance matrix which can be inspected via the \Rcmd{coef} and \Rcmd{vcov} methods: <>= coef(amod_glht) vcov(amod_glht) @ The \Rcmd{summary} and \Rcmd{confint} methods can be used to compute a summary statistic including adjusted $p$-values and simultaneous confidence intervals, respectively: <>= confint(amod_glht) summary(amod_glht) @ Because of the variance heterogeneity that can be observed in Figure~\ref{SIMC-alpha-data-figure}, one might be concerned with the validity of the above results stating that there is no difference between any combination of the three allele lengths. A sandwich estimator might be more appropriate in this situation, and the \Rarg{vcov} argument can be used to specify a function to compute some alternative covariance estimator as follows: <>= amod_glht_sw <- glht(amod, linfct = mcp(alength = "Tukey"), vcov = sandwich) summary(amod_glht_sw) @ We use the \Rcmd{sandwich} function from package \Rpackage{sandwich} \citep{PKG:sandwich, HSAUR:Zeileis2006} which provides us with a heteroscedasticity-consistent estimator of the covariance matrix. This result is more in line with previously published findings for this study obtained from non-parametric test procedures such as the Kruskal-Wallis test. A comparison of the simultaneous confidence intervals calculated based on the ordinary and sandwich estimator is given in Figure~\ref{SIMC-alpha-confint-plot}. %%\setkeys{Gin}{width=0.95\textwidth} \begin{figure}[h] \begin{center} <>= par(mai = par("mai") * c(1, 2.1, 1, 0.5)) layout(matrix(1:2, ncol = 2)) ci1 <- confint(glht(amod, linfct = mcp(alength = "Tukey"))) ci2 <- confint(glht(amod, linfct = mcp(alength = "Tukey"), vcov = sandwich)) ox <- expression(paste("Tukey (ordinary ", bold(S)[n], ")")) sx <- expression(paste("Tukey (sandwich ", bold(S)[n], ")")) plot(ci1, xlim = c(-0.6, 2.6), main = ox, xlab = "Difference", ylim = c(0.5, 3.5)) plot(ci2, xlim = c(-0.6, 2.6), main = sx, xlab = "Difference", ylim = c(0.5, 3.5)) @ \caption{Simultaneous confidence intervals for the \Robject{alpha} data based on the ordinary covariance matrix (left) and a sandwich estimator (right). \label{SIMC-alpha-confint-plot}} \end{center} \end{figure} It should be noted that this data set is heavily unbalanced; see Figure~\ref{SIMC-alpha-data-figure}, and therefore the results obtained from function \Rcmd{TukeyHSD} might be less accurate. \index{Tukey honest significant differences|)} \subsection{Deer Browsing} \index{Generalized linear mixed model|(} Since we have to take the spatial structure of the deer browsing data into account, we cannot simply use a logistic regression model as introduced in \Sexpr{ch("GLM")}. One possibility is to apply a mixed logistic regression model \citep[using package \Rpackage{lme4},][]{PKG:lme4} with random intercept accounting for the spatial variation of the trees. These models have already been discussed in \Sexpr{ch("ALDII")}. For each plot nested within a set of five plots oriented on a 100m transect (the location of the transect is determined by a predefined equally spaced lattice of the area under test), a random intercept is included in the model. Essentially, trees that are close to each other are handled like repeated measurements in a longitudinal analysis. We are interested in probability estimates and confidence intervals for each tree species. Each of the five fixed parameters of the model corresponds to one species (in absence of a global intercept term); therefore, $\K = \text{diag}(5)$ is the linear function we are interested in: <>= trees513 <- subset(trees513, !species %in% c("fir", "ash/maple/elm/lime", "softwood (other)")) trees513$species <- trees513$species[,drop = TRUE] levels(trees513$species)[nlevels(trees513$species)] <- "hardwood" @ <>= mmod <- glmer(damage ~ species - 1 + (1 | lattice / plot), data = trees513, family = binomial()) K <- diag(length(fixef(mmod))) K @ In order to help interpretation, the names of the tree species and the corresponding sample sizes (computed via \Rcmd{table}) are added to $\K$ as row names; this information will carry through all subsequent steps of our analysis: <>= colnames(K) <- rownames(K) <- paste(gsub("species", "", names(fixef(mmod))), " (", table(trees513$species), ")", sep = "") K @ Based on $\K$, we first compute simultaneous confidence intervals for $\K \theta$ and transform these into probabilities. Note that $\left(1 + \exp(- \hat{\vartheta})\right)^{-1}$ (cf.~Equation~\ref{GLM:logitexp}) is the vector of estimated probabilities; simultaneous confidence intervals can be transformed to the probability scale in the same way: <>= ci <- confint(glht(mmod, linfct = K)) ci$confint <- 1 - binomial()$linkinv(ci$confint) ci$confint[,2:3] <- ci$confint[,3:2] @ The result is shown in Figure~\ref{SIMC-trees-plot}. Browsing is more frequent in hardwood but especially small oak trees are severely at risk. Consequently, the local authorities increased the number of roe deers to be harvested in the following years. %%The large confidence interval for ash, maple, elm and lime %%trees is caused by the small sample size. %%\setkeys{Gin}{width=0.8\textwidth} \begin{figure}[t] \begin{center} <>= plot(ci, xlab = "Probability of Damage Caused by Browsing", xlim = c(0, 0.5), main = "", ylim = c(0.5, 5.5)) @ \caption{Probability of damage caused by roe deer browsing for five tree species. Sample sizes are given in brackets. \label{SIMC-trees-plot}} \end{center} \end{figure} \index{Generalized linear mixed model|)} \subsection{Cloud Seeding} \index{Confidence band|(} In \Sexpr{ch("MLR")} we studied the dependency of rainfall on S-Ne values by means of linear models. Because the number of observations is small, an additional assessment of the variability of the fitted regression lines is interesting. Here, we are interested in a confidence band around some estimated regression line, i.e., a confidence region which covers the true but unknown regression line with probability greater or equal $1 - \alpha$. It is straightforward to compute \stress{pointwise} confidence intervals but we have to make sure that the type I error is controlled for all $x$ values simultaneously. Consider the simple linear regression model \begin{eqnarray*} \text{rainfall}_i = \beta_0 + \beta_1 \text{sne}_i + \varepsilon_i \end{eqnarray*} where we are interested in a confidence band for the predicted rainfall, i.e., the values $\hat{\beta}_0 + \hat{\beta}_1 \text{sne}_i$ for some observations $\text{sne}_i$. (Note that the estimates $\hat{\beta}_0$ and $\hat{\beta}_1$ are random variables.) We can formulate the problem as a linear combination of the regression coefficients by multiplying a matrix $\K$ to a grid of S-Ne values (ranging from $1.5$ to $4.5$, say) from the left to the elemental parameters $\theta = (\beta_0, \beta_1)$: \begin{eqnarray*} \K \theta = \left( \begin{array}{rr} 1 & 1.50 \\%% 1 & 1.75 \\%% \vdots & \vdots \\%% 1 & 4.25 \\%% 1 & 4.50 % \end{array} \right)\theta = (\beta_0 + \beta_1 1.50, \beta_0 + \beta_1 1.75, \dots, \beta_0 + \beta_1 4.50) = \vartheta. \end{eqnarray*} Simultaneous confidence intervals for all the parameters of interest $\vartheta$ form a confidence band for the estimated regression line. We implement this idea for the \Robject{clouds} data writing a small reusable function as follows: <>= confband <- function(subset, main) { mod <- lm(rainfall ~ sne, data = clouds, subset = subset) sne_grid <- seq(from = 1.5, to = 4.5, by = 0.25) K <- cbind(1, sne_grid) sne_ci <- confint(glht(mod, linfct = K)) plot(rainfall ~ sne, data = clouds, subset = subset, xlab = "S-Ne criterion", main = main, xlim = range(clouds$sne), ylim = range(clouds$rainfall)) abline(mod) lines(sne_grid, sne_ci$confint[,2], lty = 2) lines(sne_grid, sne_ci$confint[,3], lty = 2) } @ The function \Rcmd{confband} basically fits a linear model using \Rcmd{lm} to a subset of the data, sets up the matrix $\K$ as shown above and nicely plots both the regression line and the confidence band. Now, this function can be reused to produce plots similar to Figure~\ref{MLR-clouds-lmplot} separately for days with and without cloud seeding in Figure~\ref{SIMC-clouds-lmplot}. For the days without seeding, there is more uncertainty about the true regression line compared to the days with cloud seeding. Clearly, this is caused by the larger variability of the observations in the left part of the figure. \begin{figure} \begin{center} <>= layout(matrix(1:2, ncol = 2)) confband(clouds$seeding == "no", main = "No seeding") confband(clouds$seeding == "yes", main = "Seeding") @ \caption{Regression relationship between S-Ne criterion and rainfall with and without seeding. The confidence bands cover the area within the dashed curves. \label{SIMC-clouds-lmplot}} \end{center} \end{figure} \index{Confidence band|)} \section{Summary of Findings} \begin{description} \item[Genetic components of alcoholism] We were interested in studying all pairwise differences in expression levels for three groups of subjects defined by allele length. Overall, there seem to be different expression levels for short and long alleles but no difference between these two groups and the intermediate group. \item[Deer browsing] For a number of tree species, the simultaneous confidence intervals for the probability of browsing damage show that there is rather precise information about browsing damage for spruce and pine with more variability for the broad-leaf species. For oak, more than $\Sexpr{round(ci$confint["oak (1258)", 2], 2)}\%$ of the trees are damaged. \item[Cloud seeding] Confidence bands for the estimated effects help to identify days where the uncertainty about rainfall is largest. \end{description} \section{Final Comments} Multiple comparisons in linear models have been in use for a long time. The \Rpackage{multcomp} package extends much of the theory to a broad class of parametric and semi-parametric statistical models, which allows for a unified treatment of multiple comparisons and other simultaneous inference procedures in generalized linear models, mixed models, models for censored data, robust models, etc. Honest decisions based on simultaneous inference procedures maintaining a pre-specified familywise error rate (at least asymptotically) can be derived from almost all classical and modern statistical models. The technical details and more examples can be found in \cite{HSAUR:HothornBretzWestfall2008} and the package vignettes of package \Rpackage{multcomp} \citep{PKG:multcomp}. \section*{Exercises} \begin{description} \exercise Compare the results of \Rcmd{glht} and \Rcmd{TukeyHSD} on the \Robject{alpha} data. \exercise Consider the linear model fitted to the clouds data as summarized in Figure~\ref{MLR-clouds-summary}. Set up a matrix $\K$ corresponding to the global null hypothesis that all interaction terms present in the model are zero. Test both the global hypothesis and all hypotheses corresponding to each of the interaction terms. Which interaction remains significant after adjustment for multiple testing? \exercise For the logistic regression model presented in Figure~\ref{GLM-womensrole-summary-2} perform a multiplicity adjusted test on all regression coefficients (except for the intercept) being zero. Do the conclusions drawn in \Sexpr{ch("GLM")} remain valid? \end{description} \bibliographystyle{LaTeXBibTeX/refstyle} \bibliography{LaTeXBibTeX/HSAUR} \end{document} HSAUR3/inst/doc/Ch_errata.pdf0000644000176200001440000003351413302741104015325 0ustar liggesusers%PDF-1.5 % 1 0 obj << /Type /ObjStm /Length 3804 /N 25 /First 180 >> stream 2 0 3 67 4 364 5 421 6 574 7 614 8 692 9 845 10 896 11 1230 12 1505 13 1659 14 1866 15 2194 16 2454 17 2471 18 2513 19 2647 20 2664 21 2897 22 3122 23 3272 24 3483 25 3500 26 3542 << /Metadata 27 0 R /Outlines 6 0 R /Pages 4 0 R /Type /Catalog >> << /Author (Torsten Hothorn and Brian S. Everitt) /CreationDate (D:20180528104804+02'00') /Creator (LaTeX with hyperref package) /Keywords () /ModDate (D:20180528104804+02'00') /Producer (GPL Ghostscript 9.18) /Subject (Book) /Title (A Handbook of Statistical Analyses Using R \(3rd Edition\)) >> << /Count 3 /Kids [ 8 0 R 18 0 R 5 0 R ] /Type /Pages >> << /Contents 28 0 R /MediaBox [ 0 0 595.28 841.89 ] /Parent 4 0 R /Resources << /ExtGState 24 0 R /Font 25 0 R /ProcSet [ /PDF /Text ] >> /Type /Page >> << /Count 1 /First 7 0 R /Last 7 0 R >> << /Dest [ 5 0 R /XYZ 143.731 699.155 null ] /Parent 6 0 R /Title (Errata) >> << /Contents 29 0 R /MediaBox [ 0 0 595.28 841.89 ] /Parent 4 0 R /Resources << /ExtGState 16 0 R /Font 17 0 R /ProcSet [ /PDF /Text ] >> /Type /Page >> << /BM /Normal /OPM 1 /TK true /Type /ExtGState >> << /BaseFont /DBSEDP+CMBX12 /Encoding 26 0 R /FirstChar 51 /FontDescriptor 11 0 R /LastChar 124 /Subtype /Type1 /Type /Font /Widths [ 562 0 0 0 0 0 0 0 0 0 0 0 0 0 849 0 0 0 738 0 0 879 0 0 0 0 0 0 0 0 0 0 625 0 864 0 0 0 0 0 0 0 0 0 0 0 546 625 500 625 513 343 562 0 312 0 593 312 0 625 562 0 0 459 443 437 0 0 0 0 593 0 0 1125 ] >> << /Ascent 700 /CapHeight 700 /CharSet (/A/E/H/S/U/a/b/c/d/e/emdash/f/g/i/k/l/n/o/r/s/t/three/y) /Descent -201 /Flags 4 /FontBBox [ 0 -201 1124 700 ] /FontFile3 30 0 R /FontName /DBSEDP+CMBX12 /ItalicAngle 0 /MissingWidth 500 /StemV 168 /Type /FontDescriptor /XHeight 456 >> << /BaseFont /YEYXXM+CMSSBX10 /Encoding /WinAnsiEncoding /FirstChar 82 /FontDescriptor 13 0 R /LastChar 82 /Subtype /Type1 /Type /Font /Widths [ 702 ] >> << /Ascent 694 /CapHeight 694 /CharSet (/R) /Descent 0 /Flags 65568 /FontBBox [ 0 0 653 694 ] /FontFile3 31 0 R /FontName /YEYXXM+CMSSBX10 /ItalicAngle 0 /MissingWidth 500 /StemV 97 /Type /FontDescriptor >> << /BaseFont /PPKCGK+CMR12 /Encoding /WinAnsiEncoding /FirstChar 46 /FontDescriptor 15 0 R /LastChar 118 /Subtype /Type1 /Type /Font /Widths [ 271 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 693 0 0 666 0 0 734 0 0 0 0 0 0 0 0 0 0 543 707 0 0 0 0 0 0 0 0 0 0 0 0 489 0 0 543 435 0 0 543 271 0 0 0 0 543 489 0 0 380 386 380 0 516 ] >> << /Ascent 704 /CapHeight 704 /CharSet (/B/E/H/S/T/a/d/e/h/i/n/o/period/r/s/t/v) /Descent -21 /Flags 131104 /FontBBox [ 0 -21 692 704 ] /FontFile3 32 0 R /FontName /PPKCGK+CMR12 /ItalicAngle 0 /MissingWidth 500 /StemV 103 /Type /FontDescriptor /XHeight 446 >> << /R10 9 0 R >> << /R11 10 0 R /R13 12 0 R /R15 14 0 R >> << /Contents 33 0 R /MediaBox [ 0 0 595.28 841.89 ] /Parent 4 0 R /Resources << /ExtGState 19 0 R /ProcSet [ /PDF ] >> /Type /Page >> << /R10 9 0 R >> << /BaseFont /DUXFJM+CMR10 /Encoding /WinAnsiEncoding /FirstChar 50 /FontDescriptor 21 0 R /LastChar 84 /Subtype /Type1 /Type /Font /Widths [ 500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 750 0 722 0 680 0 0 750 0 0 0 0 0 0 0 680 0 736 0 722 ] >> << /Ascent 716 /CapHeight 716 /CharSet (/A/C/E/H/P/R/T/two) /Descent -22 /Flags 65568 /FontBBox [ 0 -22 732 716 ] /FontFile3 34 0 R /FontName /DUXFJM+CMR10 /ItalicAngle 0 /MissingWidth 500 /StemV 109 /Type /FontDescriptor >> << /BaseFont /RLUNTJ+CMR8 /Encoding /WinAnsiEncoding /FirstChar 51 /FontDescriptor 23 0 R /LastChar 51 /Subtype /Type1 /Type /Font /Widths [ 531 ] >> << /Ascent 665 /CapHeight 665 /CharSet (/three) /Descent -21 /Flags 65568 /FontBBox [ 0 -21 486 665 ] /FontFile3 35 0 R /FontName /RLUNTJ+CMR8 /ItalicAngle 0 /MissingWidth 500 /StemV 72 /Type /FontDescriptor >> << /R10 9 0 R >> << /R11 10 0 R /R25 20 0 R /R27 22 0 R >> << /BaseEncoding /WinAnsiEncoding /Differences [ 124 /emdash ] /Type /Encoding >> endstream endobj 27 0 obj << /Subtype /XML /Type /Metadata /Length 1653 >> stream GPL Ghostscript 9.18 2018-05-28T10:48:04+02:00 2018-05-28T10:48:04+02:00 LaTeX with hyperref package A Handbook of Statistical Analyses Using R (3rd Edition)Torsten Hothorn and Brian S. EverittBook endstream endobj 28 0 obj << /Filter /FlateDecode /Length 365 >> stream xun1{?Ŕ{;̟=U"*CQ4"fwq G>g hZ3?E Mi1ҥa8ȯ96URu΁AQcuSu1Sӎbٱ6Fe:HaM3YEֱ[j{Aq\ ö<^Ü ѤNA?rh^.ZNOgB! Qi.5L"sDNO˼;CUgt&66wVIHZnJ2OWYQ_.s+ˆT{v߆s8CCJ X ŷtNaGØendstream endobj 29 0 obj << /Filter /FlateDecode /Length 616 >> stream xuSMoT1 _c`'cTQqkhi.*]8kMfx a5Bxxr" ?oJPY0ݠYp3$ A*Y+hIxdq3u9~]?zoQr'jzMR4XI&5I3p™5I]7mxp44̟]86S1xLa{?Ln;$ Y $BB ָHf"x$+؎@@V)|?bo?٫;88RZ|q4C&#]QO>MmMvOᤒƩfZtnd5~+UcGWƇ[_O$ gɲZ޹qF]wpTVJfi׿v if_J,cGKCw ECMшCg#~Ӥ\l?P> stream xu{TWg ڎmgU+>N-=UT*I$@* !Ky$%hy)H⫥nZu=Z{lg[7r m̜{ϹϽ4E4̈́Dڲp, Z|K|J$艔 |{1 E#u"%i}ZA~OA`T5G08x<墠`$AKPIji/${_ ==uR3zC9:cr6Uk0icaduV9wό=BI{ҌZ2B5$S5ee>Ԑj\dvoJܷSHjEJmPjJQ5T8ZG=KEPq_҂oP>m]#mLNb1~!pc[ `r( `)* 7ŐlJq>A+|M|LhA_QRvwp?6(> A*E.@'|-cm1CI#8I i܁L<ך7WHD‹:ފ^ \\,X|bqins鍆.ĥI<  3xުOuß{Q}}Sϟs  sLD zdS%G-=BDžG NInjcG&n-7b jWԑ Lyv&D?\{zh>(̲s hiL+>qAhz:O4%_V~%Lhn2+5 3XcwxKAD%,?s:y3@b:qѝEw bcP1;rGws˅G"aMU{khT4 i-"ÿ<4\ {3R #޽ņ6C%2,PdSH;l8x9n߆["\ 'lNH@K@%pƨH2Lȸ;b5:CKd䇁t>K?!e$#=I~2$Rq71T΁woo'SX~ F2P.0[mOTb!to|^Zt$M[X⽘8o_9f(;^`R# #b-x\=JNLu3)tX+ -YrQ6*F+\TVi $ȿD +ټi_CYyⒼ*c[ǀ.N?#ĊmckZ` eD=,VCf4vQ@Ƒb/>_a1q J 1#$c~ҏsx ' D+8G{yt>^2[zC` imIW.v/MNNV/ Ͼk/3FD o:vLS~Rw~ aII1St)%ךn-LH4ͭ#pg}yĔ2qHy/*Ew׏ sendstream endobj 31 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 363 >> stream xcd`ab`ddt v04qH3a!Skc7s7˚ﷄ ~O XX_PYQ`hii`d``ZXX('gT*hdX뗗%i(gd(((%*c8)槤1000103012ԽK2>}wy߯jcws~7yŞ>~nSg>;3wߛgO^-ym̾^];ǂXπ| wt\eXp~`:endstream endobj 32 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1925 >> stream xmTg*T:hQIQc*$*TI#BawD*/{YayGXvaAPUIi̩ibFHKP$1Dju9Q$)H2<5IQlUժ Q~HWjRUŒujQf`e!XOYLjT+ *}*YQ1*b*toHmdT[* '5,eJL X"'D"P _VMxf⿤+*Z:ZAE~RRD0J7P _@Ksr=^ly>Ow Iȃh^ôD6߅"C/Wߊzv~Q NtJ$?ܥNOiȑdߜgk$_qz,c[p9ܚ8Xg-WŨ]'ZK-e%`6s@quyi/цد/^h JHQzx~H{p/-#@Cns3"Z$7I9(@D[t0xi{p)(7߄^oXO%})="m2  6зEDcMnk 1Hsq9E*?.%=+HIg\RVd4\H,8{̜g@X-57)/h;^d4@+W6-_k+ *٩qZo$BGݔ4rr~%Tw%'%>ZӔn Os{j=W`=kv{RNZpl3Q><wsh>Z_k'q=1DKSx3,qoO`31Qsw NO BOB;ohrdHׄ"p桃MxW/ G^\VT(saJ`;)m*ʿ;:TLc Iѹ}Ecݝt_s}}h8Hn4ɵe5k3MY-G<ߨ*~k*93 y3,qbe;9p\PʽUpn\+Zƫy!(~(s 0k06`jMȢ]Ǔ䞂[9=s~oC,7_]N%#nkelIN{/t<ڛ4zX=vy]7뺅 5roq8FǨ58 >nTp*-Ns!0" A|= 'tM3Ha ڪ*m"4|@UJ=} 88ڍ.&ۨh=vu~Y.)(VWhaYóYaNߟ9|}|w8endstream endobj 33 0 obj << /Filter /FlateDecode /Length 150 >> stream xU11E{N  ,l±N6ß7B&A^g0>PH;~ .B&P8.:S phB-+S-?h&!ddF*4JԸiEj[;Ky RI*QvjKԐuSCendstream endobj 34 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1168 >> stream x}LSWދF { :lFb&DYm)ioUin(Q,ݮ@eAM?>0[ehQ a.dysyyM%&P4M3Eśrgwi%=AYw&C : ҵY)XnHihuQqVUZ%1Ӝ%K幹Fd8bqd+$`7;U#fJRejkks*ruRJ,.#NqZK*q[Z׸%S,v8)LESrʠ^SYTOPz*IJZ$>aagBŗ?2ʆnTܤQ2~o {tgl5llO` d l3jik 0U\$-&hNoB?s3+v#Եz9Q %Zfr<[N2tFSw]1 %Xڠ M|Y( \ :#!=Kw:uwBvA>iLb[G@H H>!$W?@c$GqI4`]ͻl NIrd p$o{?gţNk{F?zGp(@v檭z+俕q@(q! 2cTn^v'X>k83a7Ůcv(|VS2C}jS1ɠ_>,ȓz d0^)"䎨r#8* ;PԽT(P[K&6E\+IpwLpy'?X:|u!dY_G V U û` W^n _Om pNKqjAVtE$j9qa[e:Q6fĩ.7ۘc8 Ϲ31 (:mOp :ww5QɊqz22o'SK0 $hM˖oP`po}vU)%^+M?I\q}  \;uauP!yݺ:Xy~vendstream endobj 35 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 386 >> stream xwCMR8'vz-   ZWTmqCopyright (c) 1997, 2009 American Mathematical Society (), with Reserved Font Name CMR8.CMR8Computer Modern3vťbڽQ"DfVT@htkpozc,MI%ڧϋ1# :Q?f{ku؎׃$Ena}{mltNx~}vCoa  7 כ Uendstream endobj 36 0 obj << /Type /XRef /Length 148 /W [ 1 2 1 ] /Info 3 0 R /Root 2 0 R /Size 37 /ID [<85d25ddf275dce8b066c1861c687ac9c>] >> stream      =i$&g.F/$45 endstream endobj startxref 13801 %%EOF HSAUR3/inst/doc/Ch_conditional_inference.R0000644000176200001440000001633713302741006020025 0ustar liggesusers### R code from vignette source 'Ch_conditional_inference.Rnw' ### Encoding: ASCII ################################################### ### code chunk number 1: setup ################################################### rm(list = ls()) s <- search()[-1] s <- s[-match(c("package:base", "package:stats", "package:graphics", "package:grDevices", "package:utils", "package:datasets", "package:methods", "Autoloads"), s)] if (length(s) > 0) sapply(s, detach, character.only = TRUE) if (!file.exists("tables")) dir.create("tables") if (!file.exists("figures")) dir.create("figures") set.seed(290875) options(prompt = "R> ", continue = "+ ", width = 63, # digits = 4, show.signif.stars = FALSE, SweaveHooks = list(leftpar = function() par(mai = par("mai") * c(1, 1.05, 1, 1)), bigleftpar = function() par(mai = par("mai") * c(1, 1.7, 1, 1)))) HSAURpkg <- require("HSAUR3") if (!HSAURpkg) stop("cannot load package ", sQuote("HSAUR3")) rm(HSAURpkg) ### hm, R-2.4.0 --vanilla seems to need this a <- Sys.setlocale("LC_ALL", "C") ### book <- TRUE refs <- cbind(c("AItR", "DAGD", "SI", "CI", "ANOVA", "MLR", "GLM", "DE", "RP", "GAM", "SA", "ALDI", "ALDII", "SIMC", "MA", "PCA", "MDS", "CA"), 1:18) ch <- function(x) { ch <- refs[which(refs[,1] == x),] if (book) { return(paste("Chapter~\\\\ref{", ch[1], "}", sep = "")) } else { return(paste("Chapter~", ch[2], sep = "")) } } if (file.exists("deparse.R")) source("deparse.R") setHook(packageEvent("lattice", "attach"), function(...) { lattice.options(default.theme = function() standard.theme("pdf", color = FALSE)) }) ################################################### ### code chunk number 2: singlebook ################################################### book <- FALSE ################################################### ### code chunk number 3: CI-roomwidth-ties ################################################### data("roomwidth", package = "HSAUR3") nobs <- table(roomwidth$unit) ties <- tapply(roomwidth$width, roomwidth$unit, function(x) length(x) - length(unique(x))) library("coin") ################################################### ### code chunk number 4: CI-roomwidth-data ################################################### data("roomwidth", package = "HSAUR3") convert <- ifelse(roomwidth$unit == "feet", 1, 3.28) feet <- roomwidth$unit == "feet" meter <- !feet y <- roomwidth$width * convert ################################################### ### code chunk number 5: CI-roomwidth-teststat ################################################### T <- mean(y[feet]) - mean(y[meter]) T ################################################### ### code chunk number 6: CI-roomwidth-permutation ################################################### meandiffs <- double(9999) for (i in 1:length(meandiffs)) { sy <- sample(y) meandiffs[i] <- mean(sy[feet]) - mean(sy[meter]) } ################################################### ### code chunk number 7: CI-roomwidth-plot ################################################### hist(meandiffs) abline(v = T, lty = 2) abline(v = -T, lty = 2) ################################################### ### code chunk number 8: CI-roomwidth-pvalue ################################################### greater <- abs(meandiffs) > abs(T) mean(greater) ################################################### ### code chunk number 9: CI-roomwidth-pvalue ################################################### binom.test(sum(greater), length(greater))$conf.int ################################################### ### code chunk number 10: CI-roomwidth-coin ################################################### library("coin") independence_test(y ~ unit, data = roomwidth, distribution = exact()) ################################################### ### code chunk number 11: CI-roomwidth-coin ################################################### wilcox_test(y ~ unit, data = roomwidth, distribution = exact()) ################################################### ### code chunk number 12: CI-suicides-ft ################################################### data("suicides", package = "HSAUR3") fisher.test(suicides) ################################################### ### code chunk number 13: CI-suicides-chisq ################################################### ftp <- round(fisher.test(suicides)$p.value, 3) ctp <- round(chisq.test(suicides)$p.value, 3) ################################################### ### code chunk number 14: CI-Lanza-data ################################################### data("Lanza", package = "HSAUR3") xtabs(~ treatment + classification + study, data = Lanza) ################################################### ### code chunk number 15: CI-width ################################################### options(width = 65) ################################################### ### code chunk number 16: CI-Lanza-singleI ################################################### library("coin") cmh_test(classification ~ treatment, data = Lanza, scores = list(classification = c(0, 1, 6, 17, 30)), subset = Lanza$study == "I") ################################################### ### code chunk number 17: CI-Lanza-singleII ################################################### cmh_test(classification ~ treatment, data = Lanza, scores = list(classification = c(0, 1, 6, 17, 30)), subset = Lanza$study == "II") ################################################### ### code chunk number 18: CI-Lanza-singleIIa ################################################### p <- cmh_test(classification ~ treatment, data = Lanza, scores = list(classification = c(0, 1, 6, 17, 30)), subset = Lanza$study == "II", distribution = approximate(B = 19999)) pvalue(p) ################################################### ### code chunk number 19: CI-Lanza-singleIII-IV ################################################### cmh_test(classification ~ treatment, data = Lanza, scores = list(classification = c(0, 1, 6, 17, 30)), subset = Lanza$study == "III") cmh_test(classification ~ treatment, data = Lanza, scores = list(classification = c(0, 1, 6, 17, 30)), subset = Lanza$study == "IV") ################################################### ### code chunk number 20: CI-Lanza-all ################################################### cmh_test(classification ~ treatment | study, data = Lanza, scores = list(classification = c(0, 1, 6, 17, 30))) ################################################### ### code chunk number 21: CI-anomalies ################################################### anomalies <- c(235, 23, 3, 0, 41, 35, 8, 0, 20, 11, 11, 1, 2, 1, 3, 1) anomalies <- as.table(matrix(anomalies, ncol = 4, dimnames = list(MD = 0:3, RA = 0:3))) anomalies ################################################### ### code chunk number 22: CI-anomalies-mh ################################################### mh_test(anomalies) ################################################### ### code chunk number 23: CI-anomalies-ordered ################################################### mh_test(anomalies, scores = list(response = c(0, 1, 2, 3))) HSAUR3/inst/doc/Ch_survival_analysis.Rnw0000644000176200001440000004024013302740166017623 0ustar liggesusers \documentclass{chapman} %%% copy Sweave.sty definitions %%% keeps `sweave' from adding `\usepackage{Sweave}': DO NOT REMOVE %\usepackage{Sweave} \RequirePackage[T1]{fontenc} \RequirePackage{graphicx,ae,fancyvrb} \IfFileExists{upquote.sty}{\RequirePackage{upquote}}{} \usepackage{relsize} \DefineVerbatimEnvironment{Sinput}{Verbatim}{} \DefineVerbatimEnvironment{Soutput}{Verbatim}{fontfamily=courier, fontshape=it, fontsize=\relsize{-1}} \DefineVerbatimEnvironment{Scode}{Verbatim}{} \newenvironment{Schunk}{}{} %%% environment for raw output \newcommand{\SchunkRaw}{\renewenvironment{Schunk}{}{} \DefineVerbatimEnvironment{Soutput}{Verbatim}{fontfamily=courier, fontshape=it, fontsize=\small} \rawSinput } %%% environment for labeled output \newcommand{\nextcaption}{} \newcommand{\SchunkLabel}{ \renewenvironment{Schunk}{\begin{figure}[ht] }{\caption{\nextcaption} \end{figure} } \DefineVerbatimEnvironment{Sinput}{Verbatim}{frame = topline} \DefineVerbatimEnvironment{Soutput}{Verbatim}{frame = bottomline, samepage = true, fontfamily=courier, fontshape=it, fontsize=\relsize{-1}} } %%% S code with line numbers \DefineVerbatimEnvironment{Sinput} {Verbatim} { %% numbers=left } \newcommand{\numberSinput}{ \DefineVerbatimEnvironment{Sinput}{Verbatim}{numbers=left} } \newcommand{\rawSinput}{ \DefineVerbatimEnvironment{Sinput}{Verbatim}{} } %%% R / System symbols \newcommand{\R}{\textsf{R}} \newcommand{\rR}{{R}} \renewcommand{\S}{\textsf{S}} \newcommand{\SPLUS}{\textsf{S-PLUS}} \newcommand{\rSPLUS}{{S-PLUS}} \newcommand{\SPSS}{\textsf{SPSS}} \newcommand{\EXCEL}{\textsf{Excel}} \newcommand{\ACCESS}{\textsf{Access}} \newcommand{\SQL}{\textsf{SQL}} %%\newcommand{\Rpackage}[1]{\hbox{\rm\textit{#1}}} %%\newcommand{\Robject}[1]{\hbox{\rm\texttt{#1}}} %%\newcommand{\Rclass}[1]{\hbox{\rm\textit{#1}}} %%\newcommand{\Rcmd}[1]{\hbox{\rm\texttt{#1}}} \newcommand{\Rpackage}[1]{\index{#1 package@{\fontseries{b}\selectfont #1} package} {\fontseries{b}\selectfont #1}} \newcommand{\rpackage}[1]{{\fontseries{b}\selectfont #1}} \newcommand{\Robject}[1]{\texttt{#1}} \newcommand{\Rclass}[1]{\index{#1 class@\textit{#1} class}\textit{#1}} \newcommand{\Rcmd}[1]{\index{#1 function@\texttt{#1} function}\texttt{#1}} \newcommand{\Roperator}[1]{\texttt{#1}} \newcommand{\Rarg}[1]{\texttt{#1}} \newcommand{\Rlevel}[1]{\texttt{#1}} %%% other symbols \newcommand{\file}[1]{\hbox{\rm\texttt{#1}}} %%\newcommand{\stress}[1]{\index{#1}\textit{#1}} \newcommand{\stress}[1]{\textit{#1}} \newcommand{\booktitle}[1]{\textit{#1}} %%' %%% Math symbols \usepackage{amstext} \usepackage{amsmath} \newcommand{\E}{\mathsf{E}} \newcommand{\Var}{\mathsf{Var}} \newcommand{\Cov}{\mathsf{Cov}} \newcommand{\Cor}{\mathsf{Cor}} \newcommand{\x}{\mathbf{x}} \newcommand{\y}{\mathbf{y}} \renewcommand{\a}{\mathbf{a}} \newcommand{\W}{\mathbf{W}} \newcommand{\C}{\mathbf{C}} \renewcommand{\H}{\mathbf{H}} \newcommand{\X}{\mathbf{X}} \newcommand{\B}{\mathbf{B}} \newcommand{\V}{\mathbf{V}} \newcommand{\I}{\mathbf{I}} \newcommand{\D}{\mathbf{D}} \newcommand{\bS}{\mathbf{S}} \newcommand{\N}{\mathcal{N}} \renewcommand{\L}{L} \renewcommand{\P}{\mathsf{P}} \newcommand{\K}{\mathbf{K}} \newcommand{\m}{\mathbf{m}} \newcommand{\argmin}{\operatorname{argmin}\displaylimits} \newcommand{\argmax}{\operatorname{argmax}\displaylimits} \newcommand{\bx}{\mathbf{x}} \newcommand{\bbeta}{\mathbf{\beta}} %%% links \usepackage{hyperref} \hypersetup{% pdftitle = {A Handbook of Statistical Analyses Using R (3rd Edition)}, pdfsubject = {Book}, pdfauthor = {Torsten Hothorn and Brian S. Everitt}, colorlinks = {black}, linkcolor = {black}, citecolor = {black}, urlcolor = {black}, hyperindex = {true}, linktocpage = {true}, } %%% captions & tables %% : conflics with figure definition in chapman.cls %%\usepackage[format=hang,margin=10pt,labelfont=bf]{caption} %% \usepackage{longtable} \usepackage[figuresright]{rotating} %%% R symbol in chapter 1 \usepackage{wrapfig} %%% Bibliography \usepackage[round,comma]{natbib} \renewcommand{\refname}{References \addcontentsline{toc}{chapter}{References}} \citeindexfalse %%% texi2dvi complains that \newblock is undefined, hm... \def\newblock{\hskip .11em plus .33em minus .07em} %%% Example sections \newcounter{exercise}[chapter] \setcounter{exercise}{0} \newcommand{\exercise}{\stepcounter{exercise} \item{Ex.~\arabic{chapter}.\arabic{exercise} }} %% URLs \newcommand{\curl}[1]{\begin{center} \url{#1} \end{center}} %%% for manual corrections %\renewcommand{\baselinestretch}{2} %%% plot sizes \setkeys{Gin}{width=0.95\textwidth} %%% color \usepackage{color} %%% hyphenations \hyphenation{drop-out} \hyphenation{mar-gi-nal} %%% new bidirectional quotes need \usepackage[utf8]{inputenc} %\usepackage{setspace} \definecolor{sidebox_todo}{rgb}{1,1,0.2} \newcommand{\todo}[1]{ \hspace{0pt}% \marginpar{% \fcolorbox{black}{sidebox_todo}{% \parbox{\marginparwidth} { \raggedright\sffamily\footnotesize{TODO: #1}% } }% } } \begin{document} %% Title page \title{A Handbook of Statistical Analyses Using \R{} --- 3rd Edition} \author{Torsten Hothorn and Brian S. Everitt} \maketitle %%\VignetteIndexEntry{Chapter Survival Analysis} %%\VignetteDepends{survival,coin,partykit} \setcounter{chapter}{10} \SweaveOpts{prefix.string=figures/HSAUR,eps=FALSE,keep.source=TRUE} <>= rm(list = ls()) s <- search()[-1] s <- s[-match(c("package:base", "package:stats", "package:graphics", "package:grDevices", "package:utils", "package:datasets", "package:methods", "Autoloads"), s)] if (length(s) > 0) sapply(s, detach, character.only = TRUE) if (!file.exists("tables")) dir.create("tables") if (!file.exists("figures")) dir.create("figures") set.seed(290875) options(prompt = "R> ", continue = "+ ", width = 63, # digits = 4, show.signif.stars = FALSE, SweaveHooks = list(leftpar = function() par(mai = par("mai") * c(1, 1.05, 1, 1)), bigleftpar = function() par(mai = par("mai") * c(1, 1.7, 1, 1)))) HSAURpkg <- require("HSAUR3") if (!HSAURpkg) stop("cannot load package ", sQuote("HSAUR3")) rm(HSAURpkg) ### hm, R-2.4.0 --vanilla seems to need this a <- Sys.setlocale("LC_ALL", "C") ### book <- TRUE refs <- cbind(c("AItR", "DAGD", "SI", "CI", "ANOVA", "MLR", "GLM", "DE", "RP", "GAM", "SA", "ALDI", "ALDII", "SIMC", "MA", "PCA", "MDS", "CA"), 1:18) ch <- function(x) { ch <- refs[which(refs[,1] == x),] if (book) { return(paste("Chapter~\\\\ref{", ch[1], "}", sep = "")) } else { return(paste("Chapter~", ch[2], sep = "")) } } if (file.exists("deparse.R")) source("deparse.R") setHook(packageEvent("lattice", "attach"), function(...) { lattice.options(default.theme = function() standard.theme("pdf", color = FALSE)) }) @ \pagestyle{headings} <>= book <- FALSE @ <>= x <- library("survival") x <- library("coin") x <- library("partykit") @ \chapter[Survival Analysis]{Survival Analysis: \\ Glioma Treatment and \\ Breast Cancer Survival \label{SA}} \section{Introduction} \section{Survival Analysis} \section{Analysis Using \R{}} \subsection{Glioma Radioimmunotherapy} \begin{figure} \begin{center} <>= data("glioma", package = "coin") library("survival") layout(matrix(1:2, ncol = 2)) g3 <- subset(glioma, histology == "Grade3") plot(survfit(Surv(time, event) ~ group, data = g3), main = "Grade III Glioma", lty = c(2, 1), ylab = "Probability", xlab = "Survival Time in Month", legend.text = c("Control", "Treated"), legend.bty = "n") g4 <- subset(glioma, histology == "GBM") plot(survfit(Surv(time, event) ~ group, data = g4), main = "Grade IV Glioma", ylab = "Probability", lty = c(2, 1), xlab = "Survival Time in Month", xlim = c(0, max(glioma$time) * 1.05)) @ \caption{Survival times comparing treated and control patients. \label{SA-glioma-plot}} \end{center} \end{figure} Figure~\ref{SA-glioma-plot} leads to the impression that patients treated with the novel radioimmunotherapy survive longer, regardless of the tumor type. In order to assess if this informal finding is reliable, we may perform a log-rank test via \index{Log-rank test} <>= survdiff(Surv(time, event) ~ group, data = g3) @ which indicates that the survival times are indeed different in both groups. However, the number of patients is rather limited and so it might be dangerous to rely on asymptotic tests. As shown in \Sexpr{ch("CI")}, conditioning on the data and computing the distribution of the test statistics without additional assumptions are one alternative. The function \Rcmd{surv\_test} from package \Rpackage{coin} \citep{HSAUR:Hothorn:2006:AmStat,PKG:coin} can be used to compute an exact conditional test answering the question whether the survival times differ for grade III patients. For all possible permutations of the groups on the censored response variable, the test statistic is computed and the fraction of whose being greater than the observed statistic defines the exact $p$-value: <>= library("coin") logrank_test(Surv(time, event) ~ group, data = g3, distribution = "exact") @ which, in this case, confirms the above results. The same exercise can be performed for patients with grade IV glioma <>= logrank_test(Surv(time, event) ~ group, data = g4, distribution = "exact") @ which shows a difference as well. However, it might be more appropriate to answer the question whether the novel therapy is superior for both groups of tumors simultaneously. This can be implemented by \stress{stratifying}, or \stress{blocking}, with respect to tumor grading: <>= logrank_test(Surv(time, event) ~ group | histology, data = glioma, distribution = approximate(B = 10000)) @ Here, we need to approximate the exact conditional distribution since the exact distribution is hard to compute. The result supports the initial impression implied by Figure~\ref{SA-glioma-plot}. \subsection{Breast Cancer Survival} Before fitting a Cox model to the \Robject{GBSG2} data, we again derive a Kaplan-Meier estimate of the survival function of the data, here stratified with respect to whether a patient received hormonal therapy or not (see Figure~\ref{SA-GBSG2-plot}). \begin{figure} \begin{center} <>= data("GBSG2", package = "TH.data") plot(survfit(Surv(time, cens) ~ horTh, data = GBSG2), lty = 1:2, mark.time = FALSE, ylab = "Probability", xlab = "Survival Time in Days") legend(250, 0.2, legend = c("yes", "no"), lty = c(2, 1), title = "Hormonal Therapy", bty = "n") @ \caption{Kaplan-Meier estimates for breast cancer patients who either received hormonal therapy or not. \label{SA-GBSG2-plot}} \end{center} \end{figure} Fitting a Cox model follows roughly the same rules as shown for linear models in \Sexpr{ch("MLR")} with the exception that the response variable is again coded as a \Rclass{Surv} object. For the \Robject{GBSG2} data, the model is fitted via <>= GBSG2_coxph <- coxph(Surv(time, cens) ~ ., data = GBSG2) @ and the results as given by the \Rcmd{summary} method are given in Figure~\ref{GBSG2-coxph-summary}. Since we are especially interested in the relative risk for patients who underwent hormonal therapy, we can compute an estimate of the relative risk and a corresponding confidence interval via <>= ci <- confint(GBSG2_coxph) exp(cbind(coef(GBSG2_coxph), ci))["horThyes",] @ This result implies that patients treated with hormonal therapy had a lower risk and thus survived longer compared to women who were not treated this way. \renewcommand{\nextcaption}{\R{} output of the \Rcmd{summary} method for \Robject{GBSG2\_coxph}. \label{GBSG2-coxph-summary}} \SchunkLabel <>= summary(GBSG2_coxph) @ \SchunkRaw Model checking and model selection for proportional hazards models are complicated by the fact that easy-to-use residuals, such as those discussed in \Sexpr{ch("MLR")} for linear regression models, are not available, but several possibilities do exist. A check of the proportional hazards assumption can be done by looking at the parameter estimates $\beta_1, \dots, \beta_q$ over time. We can safely assume proportional hazards when the estimates don't vary much over time. %' The null hypothesis of constant regression coefficients can be tested, both globally as well as for each covariate, by using the \Rcmd{cox.zph} function <>= GBSG2_zph <- cox.zph(GBSG2_coxph) GBSG2_zph @ There seems to be some evidence of time-varying effects, \index{Time-varying effects} especially for age and tumor grading. A graphical representation of the estimated regression coefficient over time is shown in Figure~\ref{SA-GBSG2-zph-plot}. We refer to \cite{HSAUR:TherneauGrambsch2000} for a detailed theoretical description of these topics. \begin{figure} \begin{center} <>= plot(GBSG2_zph, var = "age") @ \caption{Estimated regression coefficient for \Robject{age} depending on time for the \Robject{GBSG2} data. \label{SA-GBSG2-zph-plot}} \end{center} \end{figure} \begin{figure} \begin{center} <>= layout(matrix(1:3, ncol = 3)) res <- residuals(GBSG2_coxph) plot(res ~ age, data = GBSG2, ylim = c(-2.5, 1.5), pch = ".", ylab = "Martingale Residuals") abline(h = 0, lty = 3) plot(res ~ pnodes, data = GBSG2, ylim = c(-2.5, 1.5), pch = ".", ylab = "") abline(h = 0, lty = 3) plot(res ~ log(progrec), data = GBSG2, ylim = c(-2.5, 1.5), pch = ".", ylab = "") abline(h = 0, lty = 3) @ \caption{Martingale residuals for the \Robject{GBSG2} data. \label{SA-GBSG2-mart-plot}} \end{center} \end{figure} The tree-structured regression models applied to continuous and binary responses in \Sexpr{ch("RP")} are applicable to censored responses in survival analysis as well. Such a simple prognostic model with only a few terminal nodes might be helpful for relating the risk to certain subgroups of patients. Both \Rcmd{rpart} and the \Rcmd{ctree} function from package \Rpackage{partykit} can be applied to the GBSG2 data, where the conditional trees of the latter select cutpoints based on log-rank statistics \index{Conditional tree} <>= GBSG2_ctree <- ctree(Surv(time, cens) ~ ., data = GBSG2) @ and the \Rcmd{plot} method applied to this tree produces the graphical representation in Figure~\ref{SA-GBSG2-ctree-plot}. The number of positive lymph nodes (\Robject{pnodes}) is the most important variable in the tree, corresponding to the $p$-value associated with this variable in Cox's %%'s regression; see Figure~\ref{GBSG2-coxph-summary}. Women with not more than three positive lymph nodes who have undergone hormonal therapy seem to have the best prognosis whereas a large number of positive lymph nodes and a small value of the progesterone receptor indicates a bad prognosis. \begin{figure} \begin{center} <>= plot(GBSG2_ctree) @ \caption{Conditional inference tree for the \Robject{GBSG2} data with the survival function, estimated by Kaplan-Meier, shown for every subgroup of patients identified by the tree. \label{SA-GBSG2-ctree-plot}} \end{center} \end{figure} \bibliographystyle{LaTeXBibTeX/refstyle} \bibliography{LaTeXBibTeX/HSAUR} \end{document} HSAUR3/inst/doc/Ch_analysing_longitudinal_dataII.Rnw0000644000176200001440000005336513302740166022032 0ustar liggesusers \documentclass{chapman} %%% copy Sweave.sty definitions %%% keeps `sweave' from adding `\usepackage{Sweave}': DO NOT REMOVE %\usepackage{Sweave} \RequirePackage[T1]{fontenc} \RequirePackage{graphicx,ae,fancyvrb} \IfFileExists{upquote.sty}{\RequirePackage{upquote}}{} \usepackage{relsize} \DefineVerbatimEnvironment{Sinput}{Verbatim}{} \DefineVerbatimEnvironment{Soutput}{Verbatim}{fontfamily=courier, fontshape=it, fontsize=\relsize{-1}} \DefineVerbatimEnvironment{Scode}{Verbatim}{} \newenvironment{Schunk}{}{} %%% environment for raw output \newcommand{\SchunkRaw}{\renewenvironment{Schunk}{}{} \DefineVerbatimEnvironment{Soutput}{Verbatim}{fontfamily=courier, fontshape=it, fontsize=\small} \rawSinput } %%% environment for labeled output \newcommand{\nextcaption}{} \newcommand{\SchunkLabel}{ \renewenvironment{Schunk}{\begin{figure}[ht] }{\caption{\nextcaption} \end{figure} } \DefineVerbatimEnvironment{Sinput}{Verbatim}{frame = topline} \DefineVerbatimEnvironment{Soutput}{Verbatim}{frame = bottomline, samepage = true, fontfamily=courier, fontshape=it, fontsize=\relsize{-1}} } %%% S code with line numbers \DefineVerbatimEnvironment{Sinput} {Verbatim} { %% numbers=left } \newcommand{\numberSinput}{ \DefineVerbatimEnvironment{Sinput}{Verbatim}{numbers=left} } \newcommand{\rawSinput}{ \DefineVerbatimEnvironment{Sinput}{Verbatim}{} } %%% R / System symbols \newcommand{\R}{\textsf{R}} \newcommand{\rR}{{R}} \renewcommand{\S}{\textsf{S}} \newcommand{\SPLUS}{\textsf{S-PLUS}} \newcommand{\rSPLUS}{{S-PLUS}} \newcommand{\SPSS}{\textsf{SPSS}} \newcommand{\EXCEL}{\textsf{Excel}} \newcommand{\ACCESS}{\textsf{Access}} \newcommand{\SQL}{\textsf{SQL}} %%\newcommand{\Rpackage}[1]{\hbox{\rm\textit{#1}}} %%\newcommand{\Robject}[1]{\hbox{\rm\texttt{#1}}} %%\newcommand{\Rclass}[1]{\hbox{\rm\textit{#1}}} %%\newcommand{\Rcmd}[1]{\hbox{\rm\texttt{#1}}} \newcommand{\Rpackage}[1]{\index{#1 package@{\fontseries{b}\selectfont #1} package} {\fontseries{b}\selectfont #1}} \newcommand{\rpackage}[1]{{\fontseries{b}\selectfont #1}} \newcommand{\Robject}[1]{\texttt{#1}} \newcommand{\Rclass}[1]{\index{#1 class@\textit{#1} class}\textit{#1}} \newcommand{\Rcmd}[1]{\index{#1 function@\texttt{#1} function}\texttt{#1}} \newcommand{\Roperator}[1]{\texttt{#1}} \newcommand{\Rarg}[1]{\texttt{#1}} \newcommand{\Rlevel}[1]{\texttt{#1}} %%% other symbols \newcommand{\file}[1]{\hbox{\rm\texttt{#1}}} %%\newcommand{\stress}[1]{\index{#1}\textit{#1}} \newcommand{\stress}[1]{\textit{#1}} \newcommand{\booktitle}[1]{\textit{#1}} %%' %%% Math symbols \usepackage{amstext} \usepackage{amsmath} \newcommand{\E}{\mathsf{E}} \newcommand{\Var}{\mathsf{Var}} \newcommand{\Cov}{\mathsf{Cov}} \newcommand{\Cor}{\mathsf{Cor}} \newcommand{\x}{\mathbf{x}} \newcommand{\y}{\mathbf{y}} \renewcommand{\a}{\mathbf{a}} \newcommand{\W}{\mathbf{W}} \newcommand{\C}{\mathbf{C}} \renewcommand{\H}{\mathbf{H}} \newcommand{\X}{\mathbf{X}} \newcommand{\B}{\mathbf{B}} \newcommand{\V}{\mathbf{V}} \newcommand{\I}{\mathbf{I}} \newcommand{\D}{\mathbf{D}} \newcommand{\bS}{\mathbf{S}} \newcommand{\N}{\mathcal{N}} \renewcommand{\L}{L} \renewcommand{\P}{\mathsf{P}} \newcommand{\K}{\mathbf{K}} \newcommand{\m}{\mathbf{m}} \newcommand{\argmin}{\operatorname{argmin}\displaylimits} \newcommand{\argmax}{\operatorname{argmax}\displaylimits} \newcommand{\bx}{\mathbf{x}} \newcommand{\bbeta}{\mathbf{\beta}} %%% links \usepackage{hyperref} \hypersetup{% pdftitle = {A Handbook of Statistical Analyses Using R (3rd Edition)}, pdfsubject = {Book}, pdfauthor = {Torsten Hothorn and Brian S. Everitt}, colorlinks = {black}, linkcolor = {black}, citecolor = {black}, urlcolor = {black}, hyperindex = {true}, linktocpage = {true}, } %%% captions & tables %% : conflics with figure definition in chapman.cls %%\usepackage[format=hang,margin=10pt,labelfont=bf]{caption} %% \usepackage{longtable} \usepackage[figuresright]{rotating} %%% R symbol in chapter 1 \usepackage{wrapfig} %%% Bibliography \usepackage[round,comma]{natbib} \renewcommand{\refname}{References \addcontentsline{toc}{chapter}{References}} \citeindexfalse %%% texi2dvi complains that \newblock is undefined, hm... \def\newblock{\hskip .11em plus .33em minus .07em} %%% Example sections \newcounter{exercise}[chapter] \setcounter{exercise}{0} \newcommand{\exercise}{\stepcounter{exercise} \item{Ex.~\arabic{chapter}.\arabic{exercise} }} %% URLs \newcommand{\curl}[1]{\begin{center} \url{#1} \end{center}} %%% for manual corrections %\renewcommand{\baselinestretch}{2} %%% plot sizes \setkeys{Gin}{width=0.95\textwidth} %%% color \usepackage{color} %%% hyphenations \hyphenation{drop-out} \hyphenation{mar-gi-nal} %%% new bidirectional quotes need \usepackage[utf8]{inputenc} %\usepackage{setspace} \definecolor{sidebox_todo}{rgb}{1,1,0.2} \newcommand{\todo}[1]{ \hspace{0pt}% \marginpar{% \fcolorbox{black}{sidebox_todo}{% \parbox{\marginparwidth} { \raggedright\sffamily\footnotesize{TODO: #1}% } }% } } \begin{document} %% Title page \title{A Handbook of Statistical Analyses Using \R{} --- 3rd Edition} \author{Torsten Hothorn and Brian S. Everitt} \maketitle %%\VignetteIndexEntry{Chapter Analyzing Longitudinal Data II} %%\VignetteDepends{gee,lme4} \setcounter{chapter}{13} \SweaveOpts{prefix.string=figures/HSAUR,eps=FALSE,keep.source=TRUE} <>= rm(list = ls()) s <- search()[-1] s <- s[-match(c("package:base", "package:stats", "package:graphics", "package:grDevices", "package:utils", "package:datasets", "package:methods", "Autoloads"), s)] if (length(s) > 0) sapply(s, detach, character.only = TRUE) if (!file.exists("tables")) dir.create("tables") if (!file.exists("figures")) dir.create("figures") set.seed(290875) options(prompt = "R> ", continue = "+ ", width = 63, # digits = 4, show.signif.stars = FALSE, SweaveHooks = list(leftpar = function() par(mai = par("mai") * c(1, 1.05, 1, 1)), bigleftpar = function() par(mai = par("mai") * c(1, 1.7, 1, 1)))) HSAURpkg <- require("HSAUR3") if (!HSAURpkg) stop("cannot load package ", sQuote("HSAUR3")) rm(HSAURpkg) ### hm, R-2.4.0 --vanilla seems to need this a <- Sys.setlocale("LC_ALL", "C") ### book <- TRUE refs <- cbind(c("AItR", "DAGD", "SI", "CI", "ANOVA", "MLR", "GLM", "DE", "RP", "GAM", "SA", "ALDI", "ALDII", "SIMC", "MA", "PCA", "MDS", "CA"), 1:18) ch <- function(x) { ch <- refs[which(refs[,1] == x),] if (book) { return(paste("Chapter~\\\\ref{", ch[1], "}", sep = "")) } else { return(paste("Chapter~", ch[2], sep = "")) } } if (file.exists("deparse.R")) source("deparse.R") setHook(packageEvent("lattice", "attach"), function(...) { lattice.options(default.theme = function() standard.theme("pdf", color = FALSE)) }) @ \pagestyle{headings} <>= book <- FALSE @ <>= options(digits = 3) if (!interactive()) { print.summary.gee <- function (x, digits = NULL, quote = FALSE, prefix = "", ...) { if (is.null(digits)) digits <- options()$digits else options(digits = digits) cat("...") cat("\nModel:\n") cat(" Link: ", x$model$link, "\n") cat(" Variance to Mean Relation:", x$model$varfun, "\n") if (!is.null(x$model$M)) cat(" Correlation Structure: ", x$model$corstr, ", M =", x$model$M, "\n") else cat(" Correlation Structure: ", x$model$corstr, "\n") cat("\n...") nas <- x$nas if (!is.null(nas) && any(nas)) cat("\n\nCoefficients: (", sum(nas), " not defined because of singularities)\n", sep = "") else cat("\n\nCoefficients:\n") print(x$coefficients, digits = digits) cat("\nEstimated Scale Parameter: ", format(round(x$scale, digits))) cat("\n...\n") invisible(x) } } @ \chapter[Analyzing Longitudinal Data II]{ Analyzing Longitudinal Data II -- Generalized Estimation Equations and Linear Mixed Effect Models: Treating Respiratory Illness and Epileptic Seizures \label{ALDII}} \section{Introduction} \section{Methods for Non-normal Distributions} \section{Analysis Using \R{}: GEE} \subsection{Beat the Blues Revisited} To use the \Rcmd{gee} function, package \Rpackage{gee} \citep{PKG:gee} has to be installed and attached: <>= library("gee") @ The \Rcmd{gee} function is used in a similar way to the \Rcmd{lme} function met in \Sexpr{ch("ALDI")} with the addition of the features of the \Rcmd{glm} function that specify the appropriate error distribution for the response and the implied link function, and an argument to specify the structure of the working correlation matrix. Here we will fit an independence structure and then an exchangeable structure. The \R{} code for fitting generalized estimation equations to the \Robject{BtheB\_long} data (as constructed in \Sexpr{ch("ALDI")}) with identity working correlation matrix is as follows (note that the \Rcmd{gee} function assumes the rows of the \Rclass{data.frame} \Robject{BtheB\_long} to be ordered with respect to subjects): <>= data("BtheB", package = "HSAUR3") BtheB$subject <- factor(rownames(BtheB)) nobs <- nrow(BtheB) BtheB_long <- reshape(BtheB, idvar = "subject", varying = c("bdi.2m", "bdi.3m", "bdi.5m", "bdi.8m"), direction = "long") BtheB_long$time <- rep(c(2, 3, 5, 8), rep(nobs, 4)) names(BtheB_long)[names(BtheB_long) == "treatment"] <- "trt" @ <>= osub <- order(as.integer(BtheB_long$subject)) BtheB_long <- BtheB_long[osub,] btb_gee <- gee(bdi ~ bdi.pre + trt + length + drug, data = BtheB_long, id = subject, family = gaussian, corstr = "independence") @ and with exchangeable correlation matrix: <>= btb_gee1 <- gee(bdi ~ bdi.pre + trt + length + drug, data = BtheB_long, id = subject, family = gaussian, corstr = "exchangeable") @ The \Rcmd{summary} method can be used to inspect the fitted models; the results are shown in Figures~\ref{ALDII-gee-summary} and \ref{ALDII-gee1-summary}. \renewcommand{\nextcaption}{\R{} output of the \Rcmd{summary} method for the \Robject{btb\_gee} model (slightly abbreviated). \label{ALDII-gee-summary}} \SchunkLabel <>= summary(btb_gee) @ \SchunkRaw \renewcommand{\nextcaption}{\R{} output of the \Rcmd{summary} method for the \Robject{btb\_gee1} model (slightly abbreviated). \label{ALDII-gee1-summary}} \SchunkLabel <>= summary(btb_gee1) @ \SchunkRaw \subsection{Respiratory Illness \label{ALDII:resp}} The baseline status, i.e., the status for \Robject{month == 0}, will enter the models as an explanatory variable and thus we have to rearrange the \Rclass{data.frame} \Robject{respiratory} in order to create a new variable \Robject{baseline}: <>= data("respiratory", package = "HSAUR3") resp <- subset(respiratory, month > "0") resp$baseline <- rep(subset(respiratory, month == "0")$status, rep(4, 111)) resp$nstat <- as.numeric(resp$status == "good") resp$month <- resp$month[, drop = TRUE] @ <>= names(resp)[names(resp) == "treatment"] <- "trt" levels(resp$trt)[2] <- "trt" @ The new variable \Robject{nstat} is simply a dummy coding for a poor respiratory status. Now we can use the data \Robject{resp} to fit a logistic regression model and GEE models with an independent and an exchangeable correlation structure as follows. <>= resp_glm <- glm(status ~ centre + trt + gender + baseline + age, data = resp, family = "binomial") resp_gee1 <- gee(nstat ~ centre + trt + gender + baseline + age, data = resp, family = "binomial", id = subject, corstr = "independence", scale.fix = TRUE, scale.value = 1) resp_gee2 <- gee(nstat ~ centre + trt + gender + baseline + age, data = resp, family = "binomial", id = subject, corstr = "exchangeable", scale.fix = TRUE, scale.value = 1) @ \renewcommand{\nextcaption}{\R{} output of the \Rcmd{summary} method for the \Robject{resp\_glm} model. \label{ALDII-resp-glm-summary}} \SchunkLabel <>= summary(resp_glm) @ \SchunkRaw \renewcommand{\nextcaption}{\R{} output of the \Rcmd{summary} method for the \Robject{resp\_gee1} model (slightly abbreviated). \label{ALDII-resp-gee1-summary}} \SchunkLabel <>= summary(resp_gee1) @ \SchunkRaw \renewcommand{\nextcaption}{\R{} output of the \Rcmd{summary} method for the \Robject{resp\_gee2} model (slightly abbreviated). \label{ALDII-resp-gee2-summary}} \SchunkLabel <>= summary(resp_gee2) @ \SchunkRaw The estimated treatment effect taken from the exchangeable structure GEE model is \Sexpr{round(coef(resp_gee2)["trttrt"], 3)} which, using the robust standard errors, has an associated $95\%$ confidence interval <>= se <- summary(resp_gee2)$coefficients["trttrt", "Robust S.E."] coef(resp_gee2)["trttrt"] + c(-1, 1) * se * qnorm(0.975) @ These values reflect effects on the log-odds scale. Interpretation becomes simpler if we exponentiate the values to get the effects in terms of odds. This gives a treatment effect of \Sexpr{round(exp(coef(resp_gee2)["trttrt"]), 3)} and a $95\%$ confidence interval of <>= exp(coef(resp_gee2)["trttrt"] + c(-1, 1) * se * qnorm(0.975)) @ The odds of achieving a `good' respiratory status with the active treatment is between %' about twice and seven times the corresponding odds for the placebo. \subsection{Epilepsy} Moving on to the count data in \Robject{epilepsy} from Table~\ref{ALDII-epilepsy-tab}, we begin by calculating the means and variances of the number of seizures for all interactions between treatment and period: <>= data("epilepsy", package = "HSAUR3") itp <- interaction(epilepsy$treatment, epilepsy$period) tapply(epilepsy$seizure.rate, itp, mean) tapply(epilepsy$seizure.rate, itp, var) @ Some of the variances are considerably larger than the corresponding means, which for a Poisson variable may suggest that overdispersion may be a problem, see \Sexpr{ch("GLM")}. \begin{figure} \begin{center} <>= layout(matrix(1:2, nrow = 1)) ylim <- range(epilepsy$seizure.rate) placebo <- subset(epilepsy, treatment == "placebo") progabide <- subset(epilepsy, treatment == "Progabide") boxplot(seizure.rate ~ period, data = placebo, ylab = "Number of seizures", xlab = "Period", ylim = ylim, main = "Placebo") boxplot(seizure.rate ~ period, data = progabide, main = "Progabide", ylab = "Number of seizures", xlab = "Period", ylim = ylim) @ \caption{Boxplots of numbers of seizures in each two-week period post randomization for placebo and active treatments. \label{ALDII-plot1}} \end{center} \end{figure} \begin{figure} \begin{center} <>= layout(matrix(1:2, nrow = 1)) ylim <- range(log(epilepsy$seizure.rate + 1)) boxplot(log(seizure.rate + 1) ~ period, data = placebo, main = "Placebo", ylab = "Log number of seizures", xlab = "Period", ylim = ylim) boxplot(log(seizure.rate + 1) ~ period, data = progabide, main = "Progabide", ylab = "Log number of seizures", xlab = "Period", ylim = ylim) @ \caption{Boxplots of log of numbers of seizures in each two-week period post randomization for placebo and active treatments. \label{ALDII-plot2}} \end{center} \end{figure} We can now fit a Poisson regression model to the data assuming independence using the \Rcmd{glm} function. We also use the GEE approach to fit an independence structure, followed by an exchangeable structure using the following \R{} code: <>= per <- rep(log(2),nrow(epilepsy)) epilepsy$period <- as.numeric(epilepsy$period) names(epilepsy)[names(epilepsy) == "treatment"] <- "trt" fm <- seizure.rate ~ base + age + trt + offset(per) epilepsy_glm <- glm(fm, data = epilepsy, family = "poisson") epilepsy_gee1 <- gee(fm, data = epilepsy, family = "poisson", id = subject, corstr = "independence", scale.fix = TRUE, scale.value = 1) epilepsy_gee2 <- gee(fm, data = epilepsy, family = "poisson", id = subject, corstr = "exchangeable", scale.fix = TRUE, scale.value = 1) epilepsy_gee3 <- gee(fm, data = epilepsy, family = "poisson", id = subject, corstr = "exchangeable", scale.fix = FALSE, scale.value = 1) @ As usual we inspect the fitted models using the \Rcmd{summary} method, the results are given in Figures~\ref{ALDII-epilepsy-glm-summary}, \ref{ALDII-epilepsy-gee1-summary}, \ref{ALDII-epilepsy-gee2-summary}, and \ref{ALDII-epilepsy-gee3-summary}. \renewcommand{\nextcaption}{\R{} output of the \Rcmd{summary} method for the \Robject{epilepsy\_glm} model. \label{ALDII-epilepsy-glm-summary}} \SchunkLabel <>= summary(epilepsy_glm) @ \SchunkRaw \renewcommand{\nextcaption}{\R{} output of the \Rcmd{summary} method for the \Robject{epilepsy\_gee1} model (slightly abbreviated). \label{ALDII-epilepsy-gee1-summary}} \SchunkLabel <>= summary(epilepsy_gee1) @ \SchunkRaw \renewcommand{\nextcaption}{\R{} output of the \Rcmd{summary} method for the \Robject{epilepsy\_gee2} model (slightly abbreviated). \label{ALDII-epilepsy-gee2-summary}} \SchunkLabel <>= summary(epilepsy_gee2) @ \SchunkRaw \renewcommand{\nextcaption}{\R{} output of the \Rcmd{summary} method for the \Robject{epilepsy\_gee3} model (slightly abbreviated). \label{ALDII-epilepsy-gee3-summary}} \SchunkLabel <>= summary(epilepsy_gee3) @ \SchunkRaw \section{Analysis Using \R{}: Random Effects} As an example of using generalized mixed models for the analysis of longitudinal data with a non-normal response, the following logistic model will be fitted to the respiratory illness data \begin{eqnarray*} \text{logit}(\P(\text{status} = \text{good})) & = & \beta_0 + \beta_1 \text{treatment} + \beta_2 \text{time} + \beta_3 \text{gender} \\% & & + \beta_4 \text{age} + \beta_5 \text{centre} + \beta_6 \text{baseline} + u \end{eqnarray*} where $u$ is a subject-specific random effect. The necessary \R{} code for fitting the model using the \Rcmd{glmer} function from package \Rpackage{lme4} \citep{PKG:lme4,HSAUR:Bates2005} is: <>= library("lme4") resp_lmer <- glmer(status ~ baseline + month + trt + gender + age + centre + (1 | subject), family = binomial(), data = resp) exp(fixef(resp_lmer)) @ The significance of the effects as estimated by this random effects model and by the GEE model described in Section~\ref{ALDII:resp} is generally similar. But as expected from our previous discussion the estimated coefficients are substantially larger. While the estimated effect of treatment on a randomly sampled individual, given the set of observed covariates, is estimated by the marginal model using GEE to increase the log-odds of being disease free by $\Sexpr{round(coef(resp_gee2)["trttrt"], 3)}$, the corresponding estimate from the random effects model is $\Sexpr{round(fixef(resp_lmer)["trttrt"], 3)}$. These are not inconsistent results but reflect the fact that the models are estimating different parameters. The random effects estimate is conditional upon the patient's random effect, a quantity that is rarely known in practice. Were we to examine the log-odds of the average predicted probabilities with and without treatment (averaged over the random effects) this would give an estimate comparable to that estimated within the marginal model. <>= su <- summary(resp_lmer) if (!interactive()) { summary <- function(x) { cat("\n...\n") cat("Fixed effects:\n") lme4V <- packageDescription("lme4")$Version if (compareVersion("0.999999-2", lme4V) >= 0) { printCoefmat(su@coefs) } else { printCoefmat(su$coefficients) } cat("\n...\n") } } @ \renewcommand{\nextcaption}{\R{} output of the \Rcmd{summary} method for the \Robject{resp\_lmer} model (abbreviated). \label{ALDII-resp-lmer-summary}} \SchunkLabel <>= summary(resp_lmer) @ \SchunkRaw \clearpage \bibliographystyle{LaTeXBibTeX/refstyle} \bibliography{LaTeXBibTeX/HSAUR} \end{document} HSAUR3/inst/doc/Ch_analysing_longitudinal_dataII.pdf0000644000176200001440000026455313303046017022033 0ustar liggesusers%PDF-1.5 % 1 0 obj << /Type /ObjStm /Length 3282 /Filter /FlateDecode /N 56 /First 445 >> stream xZYs۶~oux[d7uAh,~ %.M&|g YBf,S,4ib|2Y,b1,f" &dQ8L(&:I-o*Yct1)LިPxKd2dP 4]:@c4:LKwĴU3# (t A!"0YC+fc|" :Bâ0F>cB66(Y,,6AP5@?cL lBBPMMU *LY$1NL;6i"4< ѳWg8LW"BJXga?3~ 0a)q:IfXE}:ƷQݰ7o\6l:˓ {ۚ ;/4Wh=MyMvy6v~weIF1?e=pp\i~n1t\3Cwt4c8Fu{:Fa~Nm6giz'"T8_ se}c1+욝,O1ۜ g`үtr6NGlw4xdv6$] g¿)$Ľ"`ae|f\E{_SV~ʕLm(.ng,$j k@LF`+TǺ|='fY610-#~%o?EXYg~t'rtMu UrN>T:gYjP핛̨%i/r5T:Ot*ɗM iJ>2<{uR94y[R5U n*PGp##aGuHxN"=P0to_#?Ed[E|d"`H?TyboMqss-6Nx9h0Ћ|79\bcaQN!FXR LӶܶsݎ ?]8po#9r[q%c]_}I5 CD~L`6\8|td ):慦S|y']~k3:͒Oa|̿fp5'Ӭft|_* vL26MY]M]]]!/Ԅi!jOV ,lu^u~V%VE0k&72>Eo.ih R㥠nhQAt dڕ=0]tvaATB)Y2*TG\zCQRHt6㥿!?*iW@Z@0] u`s*n^5vu:`uK)CIӨID+lax IfaFj0Ws;QhZQ6~uyt2mq2uu+l\a#v>?f!uW .F݀RMBX^&jxPu8Ss͕Lrm#tL Z{fqyFҵ[*OT+4[*";8ώ~r3?ת|V5A4ӗ)Ssz_]j[5ϡմUj껻q@t=N{[? <'EM}BVOq\Wz]1m_mm:?*:ukTô,iB?8s7M֎X7Lpk6|y뿾ftMo($:\EE&=Ӆ]S֣']v2|K%)tK lO#P7^aX/t$ɓȶp SUlbwo= ĕwwXw}:sg^vĽxƔN~`dMVvYl8FJ*`5̧endstream endobj 58 0 obj << /Subtype /XML /Type /Metadata /Length 1653 >> stream GPL Ghostscript 9.18 2018-05-28T10:48:01+02:00 2018-05-28T10:48:01+02:00 LaTeX with hyperref package A Handbook of Statistical Analyses Using R (3rd Edition)Torsten Hothorn and Brian S. EverittBook endstream endobj 59 0 obj << /Type /ObjStm /Length 2239 /Filter /FlateDecode /N 55 /First 444 >> stream xYmSH~b>V4oW[[KpeAu"쯿%˖% r weftO3O`9ɢgN1%si{YcXxԍLZL'LIm0k0UdjjgZH\Ӓi4XLJ$ADS{a:P2#(3N"3DQbMWŬG'juJLX0jj8~-XL ':RH,BIaOc`iA0X 2 OR OAn%89H!Po?A(ٟ‹#F'~&ٌ]1~~)I~)\2%@Va~Br"%s#V|z7ipN-' jK=a8.>4kwt\,TuW+l)eG|ia^ :#lyJv11Q#/?O_)*>-Z+%Tbmv؈IMoaI#vdҹD`gp hZDwjH+Ë7g?>IqMާ0T3/׷9nPΓyvWbg#UNx}-$FZ޻캼=`hJ2ֻj[#Q6Kp$V`SWRh fU(SZRWme %1K5 rS -ݯgt@*X-&F4m<? ?%|'Ŭ5OOpo-zw<3Et&4/yy;OS^r+^)AowX )+=_Y j~gOixM&tO ?HNsQ}k'{oIԁ|/_dk#wyaa䇘ؐWxQJĪRڠnwТu7zaoulG'goQ~y;4Y-n_m E Zf>v avt$u%hu(q-z$AkntTlmڦ 7m|3 v ZeZiUz"5_eZp}hi%eQ1qJ+0%c՚њ=^R}R4D}N=Ƅb*-?jb-EZ> Aڛĩ>L "LTA$% *^>*DPiԊ8nD]? V(C4VPZ9 v*~M?<^+. MSTS[ozt9-x`m(D+WѰ4|C}:{_ȧ髪9?F"YQJ-GC[k2brGwJ2b$@i(Wg-O$}ዻ$ yIE#?zK&1uH4ZC4"GPzzwk@Eװwl;}UK\T>@*DlF$T`;4iݺ-.8?yq瀣y>oPQf^=p&6$6 ɏi9n۸m8D5WV͹ Vhvl0?:أG~`0$),Ҷo5e]yb}^V)گ|/ƋMAI%uφqrdž7Ԙy!6!(mԲԲi$9WN%D M\:&FcT(HX֬^z o;˾hDTv/ /ž.ѝU&ΤeW sXm0J}0< */N39ECo>FyV{ފrN<njv1zY! jNz#<2$l#dHQzÿ8 >xԂ#9Ȧϟ9%*ŀ%"+X=M3c|\(ttd>~*endstream endobj 115 0 obj << /Filter /FlateDecode /Length 3888 >> stream x[Ys~g#\yMc܇rTYc;eby]!jmrIqёt70@c'b0F'f_,(O>|*bwF/#g\x((7GQљΈQ+XUfjhkgo*0z˘'h\d< $.͚Smbf@dh %LƇ8zSfpX\8$Ej4")8~v4# ~Zzq|ur%F%D4~.hDT'0F O+(Y~wwԷ[A[I{x-X8}>BrV'°]= Kw* a$Z o6|hhtjn{z(GRXm}FD^k41a%pЩa(*`?e{JX0FbƧls*$n3\%f}2qsA".pԆDZ[69͆$$UGqIBc4ö Ҧp$JA6DGO.3`Oxg hmL2mR.8 80zUxUk }G6\p_~Iۛx ; :P~ɀt\J[NiJiQ,d!bY_%\Ik TA:xT衃R57lvb+LA(dcьS]Uұ4hqtnKTh[ F,yL9Â*S Xl@* } !11@i f O}Fl%%xȻC"*9h cgyqf T% J`]HhqT=^U =]y’ F9 Mw0 PH2цv^>ѬMNlDo]L,f-1yId=/+C<-k @=ZTl3G뢜 qAvLͣP3v]϶⧌}4JJ#Xt9M9t 5 4Ǔ!|<؄2BB.ZwN FEJ'@<+]So `Y,n0- (J88'8%S_TvSXt=ITԂPȦ.tЗMIilVP9߸>kQ[z1Y3a&^?1x[=P"lIp(7KLِ~ u8~W! IsQ6 #D|EEUY!:QÐ$yJ)jVe.Zo="v LTbհ"T9hմi' |-ٝ*5,=k"-y⌛I*Y:(auڤuPĜk\.9H@kn1rBr)Qyn)sAw27: /p.;uU4[Ip0ڗY5Ld`ʠ d|IqDL }mP `(I tֵE{TK5f@X,KmdEj'QzD_7`ǼLAoi2bn56yH(C=Vnk=8N,;nc``X;AL̼$ @Aq ?DD7xUJ՛8և5JpV'}O3A%#L"@Qq40c7Am5Od kݷ)'VZD_ibqܡ&umBŶu] 7ca.T/{^%9PfVckTzx@?ࡲ"~Y~$x@STomcw~aCha)Px K׍ݮ ?5?(U}gﬤ %{"fc~Mu-YQn%^`4MOkT74jeƭ/Ͼ.mucUJlI8əoJΰoң(Hd>OLWmcv7 eIօ\¡զP99C;œDoI'+p~J;7Uϻ2cwej6:2:븞4up]F2hIB=O̍:G+2i?P잧R?H'͛Ȍ\_Bt=,Gea|P'tտ YLJ_1#TT:VuӱJuwW^vSDYgǻG=C:?B(bQ*Ͽ,p6L]e~YֻM,]tTwѦƖ)yS=f?0e/śol;xk7tx˜zjэ5rADfK~A"$]A0o~?HjqOnG}8x->pGr Mo_$P@Q޴cfR2y}'`M "t?oS; +g)?msV#WѬ7Yp1ʜ>7DԃgIY9oB.Wt#,#=͕]~$gt”|u?P;endstream endobj 116 0 obj << /Filter /FlateDecode /Length 617 >> stream xuSMoT1 _c`'cTQqkhi.*]8kMfx a5rxxr" ?oJPY0ݠYp3$ A*Y+hIxdq3u9~]?zoQr'jzMR4XI&5I3p™5I]7󀣡a*ed ar;ED.lwzsV*rPGp5>9H6 #$x OśCnON15N.d_͐H`WEn{OSiӬri8qjJѕaד jwnܻ.,|?մ:u=@0>51B=KevI~tn!phh ~<qaD=op5X2T` Z- ev1>)1{(ѵNn1&>5v<`1"UȜL)^3 @Q鬅{wcWeS2=s[uZSt=D_>]-i_3dO|2iSJqqQ̺ѫR&}endstream endobj 117 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 3901 >> stream xW TS־!{QDJmo@gEN(*A2Iv2< A!N-X}j[kWZ-;ku,u{1H$bz-2gOgaHxBxE m6bl}y [G1b(ỔqS^ ޷`YШYAOa_ _ <ݬ_KCDF{F1 3uqؒ}"GF^&nW|@J {7.H80o8LddofĬgf3Le61Ә%Vf)3,cf1rƃYdt=}*Yd/\9Y';E|ۈU&:H_|YڷD* ~ȕw߭d#HU>XuyRb-#SWR|}Y.!̎5 ]iKFQ`ڈZ ?9Ց%9vGY'%co˚eΔм$<6/7GOR 9.pYߒ [bud}k<6[˛'NK+υl9x{=s=v)<atdm`GxǿıUґVé:bTwVمs]_YGn7ayǣ{oyDE^HG\KC"Y;+$o(X. UEDʵK0ŪZ}yV9G"'qZkj%mP(Kߢ&-nA@1fQ| "idHB>CNׄ .L2v"iHզéS^wՖ5r>8hee(3@)] |1Tߤژ:|8}-T8ky'@pY%}%$6Ga.` $Jk{a-xZ-GN, |WdlbHÔBDhKpfOy 8BQORs/C *ȌXs~eb Cdq"?N%SQ{ˢ m)<)X.*L1]A'$QHtS|Lp{nv7N__Plf=CBބU1!m/o$ eaRҍ&wߘC3]n`xə?jq!qu-e|ޘ[ e}.ŒdN"vA.?j?]. IETVA=CGD3n7LY<@|v&G% `*ԬZ)8ª$֮} |¢ YOwrAz>w hk._u$[YZLR%ՆpahadčT0,}OlIYIYqyǦɧ.w2y{#;KwvB|JζW8K@ۺ8{*v&6\HGp5vITi!a4pLR?ZX?A9Hht&GȋXouLN ۮt0,=NcrȀ$H2 3FUDO+޽΍tJ!_B0ZK !%AKJMupƙ.=q]tN4)k*ZMجc9uCls˦s#Kqd**Jڕ"2ⴱ8*n君DDe顒.Y|$9+J +H>Yכ[,5<&A &dU *sh$ 54in> +K<$a.4'! lj2=.6yaY)$b|h\$Cubٓ`S΃vt]rrMO }6&Ư(?^3l6J@GTkeeP% g3sgkگ8{-.(:ZY#CTt\J,l# }~ 332 dA& }R.5KiP4BjPpUl-jM]^1\ ,qt^Ge^imK C;[ V@<˓dwI,؛'|h5L^*_/_mE:?8YOh+](U$1 7R>ډFe̗/ |D?GcV٤Swfh^ BC'8¨<3|eܢaa=Uzފ̮忩}}"# &;Qv*i{61d-xf<jt mԐgQд0-׼%dCF6~W:)# 2\i~|A:}e_:OT4e%&H&޹<@BY0 YX7ؠfƖa d#endstream endobj 118 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 363 >> stream xcd`ab`ddt v04qH3a!Skc7s7˚ﷄ ~O XX_PYQ`hii`d``ZXX('gT*hdX뗗%i(gd(((%*c8)槤1000103012ԽK2>}wy߯jcws~7yŞ>~nSg>;3wߛgO^-ym̾^];ǂXπ| wt\eXp~`:endstream endobj 119 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1925 >> stream xmTg*T:hQIQc*$*TI#BawD*/{YayGXvaAPUIi̩ibFHKP$1Dju9Q$)H2<5IQlUժ Q~HWjRUŒujQf`e!XOYLjT+ *}*YQ1*b*toHmdT[* '5,eJL X"'D"P _VMxf⿤+*Z:ZAE~RRD0J7P _@Ksr=^ly>Ow Iȃh^ôD6߅"C/Wߊzv~Q NtJ$?ܥNOiȑdߜgk$_qz,c[p9ܚ8Xg-WŨ]'ZK-e%`6s@quyi/цد/^h JHQzx~H{p/-#@Cns3"Z$7I9(@D[t0xi{p)(7߄^oXO%})="m2  6зEDcMnk 1Hsq9E*?.%=+HIg\RVd4\H,8{̜g@X-57)/h;^d4@+W6-_k+ *٩qZo$BGݔ4rr~%Tw%'%>ZӔn Os{j=W`=kv{RNZpl3Q><wsh>Z_k'q=1DKSx3,qoO`31Qsw NO BOB;ohrdHׄ"p桃MxW/ G^\VT(saJ`;)m*ʿ;:TLc Iѹ}Ecݝt_s}}h8Hn4ɵe5k3MY-G<ߨ*~k*93 y3,qbe;9p\PʽUpn\+Zƫy!(~(s 0k06`jMȢ]Ǔ䞂[9=s~oC,7_]N%#nkelIN{/t<ڛ4zX=vy]7뺅 5roq8FǨ58 >nTp*-Ns!0" A|= 'tM3Ha ڪ*m"4|@UJ=} 88ڍ.&ۨh=vu~Y.)(VWhaYóYaNߟ9|}|w8endstream endobj 120 0 obj << /Filter /FlateDecode /Length 150 >> stream xU;1 {'0q_N@ -ׇE٬W.,?慅:c8]YJ`̤\՘pBf3y0IVL;)H%Q3T3!T*_qӊ[;KY I*) vjKԐuSC endstream endobj 121 0 obj << /Filter /FlateDecode /Length 1599 >> stream xXKoEbĩGʶݑ8"E{s0لرu^{g3H!zW5y+I?1~ﴴߩqm&P'}EOr. }VI!U9.K96B ?ƞsƅɫ qjd>y)RQQ,422ORc2!]F-dmI[9,]~ 59oJi.HO$COV-^ %J+&sQ;:0 RHTJkCJğOGidM^;[ :;q8ؿ h 2@'\0JQr. h#.9hbeRֈ{z} R!j'5Td%Vʝ4krN~˂Hu%hB2.?Iۖ|Q2c&&ovSjVh+%l8{S5u)wY,^w.C*PRUP+eRI`R.F6{/*JK?CEI)8՟/ncj~{RAӰ؍+%M"1]֒{*MB?I<;fKYnn2odQQ|i u[:ZVR_g |Lq6Mt[yo*uS*uYJݭظYѷQ.V^>Z}ەS"3XІ"jVI@ cJ#@x3i'ύjHԑ1U2EԨhTlhz4.hJC.:Ka$X+>`j1ro4 `QD}~>c)O D 2PVӻ7erRredȄNT,5ONJ#V|X{*1k7h^N7Z9AFP%ԌTWpb`gg+_[J]UzEήb%0:h^ռS!| 4(yrܲ:,g@j9p{_wZx-J$l $Q=6 dC 𮠼}xWK> 2'o@\xƙnp{߽m9+Y+0,Hbx*Sq`0ۥ՜|Kdյȃ|s0CW 6i(j{:h?nDv=.M->g j]+Η6HY09g_U^Dy׬iGA*Q,^O\%Ock5ZOre;]\YA&I|ު~{fcw2Tc7uks1(9 7Eϗa08mafe#>Cg<endstream endobj 122 0 obj << /Filter /FlateDecode /Length 2635 >> stream xYko_AlɼFbN\ׅ6R `%$&ܙݙ~DuErvgF?N9SN^N>9fzHOL9u rg^;Sg5gJbS^"0k.#bFWJKYʹ#^A-R~2unz9>9,d)̓FNMCH+_n>5^;7 Xl>HIΛn_o?~.i7[(6_vzn~II{|ffl/I"z]ukR'gaA =zV2|ӝ-O8# g6?헗X]/cV z"odɸJ/a۞vW{x.U (%6>WkK`Wt='*( '%&ΌE g,5#v lc2&x?_td3WL*W+-E]أ:]F#:_u{Y^/e=zo\#\)lBf(;b0Jv6oet >͡ab=a+okN=Z=0 RR3?|hԾsh\j4VQսB`44nD91nHлzC|LYTOsD{Ҧ׆Pa놆W:rFK6U~kEcNlR5`g\XY[CL0#=u!/GɶBF1 RVc.WڑC\.6qHzHsT1t{W1BI1a_jB_e9Y}BD kqY% hg)HvC@,jÜ'䍂+g2z::ت(rC ! B97nKʝ|Ve*^[U @=pXm9Ku\a Ri}9o=]wɪ`{l\E0 L qT (V0 8JlVIl  {1Q"aWgI&uģ_ȤxݢO_u0xWZ8TNP .U->:`ON0i Af-KL ~h a*yp{@U+V ߀p3&?| A08}~  c<Yf;x#1nh]-bѩ⃂hc{+C ,}arypu~pS귎x>*-һ` zx,?R+Dn(wSɞ=gӗoaY8lgFPעvEs Qm4WKKQ ćKEWQܠ =GVYWR>F)~ \wXlF?#+nQFr>qiw⼊1%Jn Hc !(mN3[X̓rbpF/\kwE̽ăɲHd*iJչ$r0=K^7gqׁfM E=A8.adj/h>ˋE>zF *G6u$Wes m ڗm:9*hF8or="C E WG}vd(@%>$ndLhI[͹E{)*$nSU}z\Ik?$ jIдiuڞ[ntF/oe"-p˗1RIāLU5*[$.8Izv{ZUk*omydnȹoL!}Fz EIXԖ?tY;KsY/oFDZFjV25O3%4M!U/G>Q灑gSR&;o b,d\l3}7 yzQ2'5ac]`*zSo"=E XVq3=)Vu_AAkGYrWwѠ{ѸZKOw>+-ޚ-ez8h$Lw3#.*i3&Se^WW# O3=,bz3u)5l.6`˟yyqD,{vZXpg#ϧȉ]Ş jyq,%UJo?_+ dp̘> stream xYtW!+l #S:t;L`܍{-{eئ lBBB w;+&}{;+յ %Dsvg{? ~%@O!{Evܾ7Zׇ sCBc·E:4mڔюǍ8;;|{rH? H"%swd~?**j{PؐpGv;;|ゐHAގō*w\LQԊsB6 4/l~w,rX -4 %_'ˮ\̣᷹.[ZU>""_M\UYTV7]4o[^)3 h}!Yְ׸; p_4 uC~9]mVz8 F '*Vn)ဴj[6X knҭn|$@ lӹO1с*Ou(*mt/_%'*< \BC1g}s a]keacu5hT%PWҶm>RSݩ|@C) =dV)! br!+Qj.qvc} 9m( )]K KP@R qOㆣA ;IxF݊יhn{}'~>{i<ԌkYr7vNִj~t׼s`PC,ww()E,k=s 5lOoPIB9h@vWr?6#e1r׈dXjce!]_aNvv*58f@9ǻJ&\%cr`Tm[zǶsy aC,6j'R ġh%Z '*&3򧥴8D  m{!;p02:A4ĄH#B]1QomL 2gM~ |6((Dou5<Ңp<6rȡc Oy%FT.$ 9TuYk1BԦl:oЗ,BcG~jZ5Z`e&vгUy4ϳrJuT1!Rc~]]`6N|k.JFّbBe1!2wfP!l&#Bz44H!mngSv&̎{H0cls2?̮11F~OyuAq/2ώJʗyegFv[TpCKS$a LeT);J'gů8Z*? @c(Ŀkɏ'><`r H{3.:QQ'L_':d)-n]89d ԀX篝I8ukO O;vGZ"wvBf^fD(Ą?]A JgCY4Ąe"  F%qgIj]N{Y_pV)?oBM>ml6Wi)g RUD܊?o@s DZ[Zqџ}P m&FwX' ͳ1S@ތ ^@OܼpEK+6(KHz&C9q)8XS{EශHj_w2W63:*:*Sfpa5!+ w:FPZ\)+e|9%.kRFՑ[VlREB4$ ٻ8wEu\C^(% R"!<5A/@  >3AVKP+5A]&~x(D'p. /ך1D"ݞ6_'dfB@Vuޖ яУR;z̖54˒ [ֲՆZq8~8Sz/3TU5A*71C= ُF|+}P:@vg]̌P)]f~ˡt(eX 0T=qzz`|kS4ub-+Br*܅^.+epȕfwcf`-p])WoHtx->p|rrYG׃3y<2W¤0z[7y4=|Mb"`!ڇ]{25/j178L#ZM6\Hw43H6L(*[P/VpՄZu41k?ؼjj8UZ jYUiUT.P[χg 6&'LJ.)^.9B6)Ai4DbGdgFZ.naG"7i{F|Ef6׸b{YACh:] 1һCDW T搐E'יd}fHQE`u#dhosǁtp㶪{ Y,n82#"mcPyWNdAJ\'l4YMڳM{O@4ǛŒu. Q|x69_&0VTzuBQC4^';QBgir~ts$: B*GjhyIޤؤ%JgV9;8/[@ehn`^^Eu"ʿ_LPWB0Hbm!aYn6-Y%OQq~C`'l]MAeh$UJڦT s{)lFOY "1o ^؃xZQh/W(+T{93}-:c![4AA^~HsY_}A]qIDg"kM>O^7;֟HdbO`OQK!BWX4Sz" #)Q *qMA\ @<@PaWu͹vg GEE(ί#$Ex 1^,CE~o~e0Ϯ\^!iݘQjSi2Hbb s˲*J꼢{N  >t3xwHcQXmr  [cmլ/A& } Ș W;~xOAC&qzcK Qs)͠s۶Hqj5ّxfoA5i|.W[ z` xE"9|E0@?:s&iߊ/iؾa,}Ows^M&% 9U- Mr,Y]ה߻˒;Qv7_ϿO W\9!2Cg4':۴XW"!օJCB acyQVm\ݩӋHCy{eZ^u8\=q6n4ru5ŒRTouP$ L4ۡ<űYu\P̼s8[uByQݨMegt,6/NWܴc~H{S%gGXՒ1e/rƑޚ+0χll 1Mp h)o>^` 3u y~_ׂh oŷ.}dhC?|Yt%|6sbŕLj"#ﳻUXVژib@3<2NGhmv+A&#ۙ*6.\:rE̚7wý>~Ǩk!h\91SfFm߾oNɉ$$dɹlȏeKǏsKxaٟ,W>ߞI9Cc NEw٢2!A(!ʠHױO%[?)4+/)߁ZFR9*xٳu6O_IVE@e%II稻tX/m 1( ;סzQ!EEAtq=й%@^e\~h-{jKG}~({8+C+zB%ǩ=wWT0wG6;qgPC J,(ɚcq Xa?$?~E[G rnVi؋=;Wi6:ai 7W\NV`/D)2K缘Tg}6/(1e߭XOZ7r!KV0Ɏ/9R!E\u%"xWlЮ´Iwq휰Ϭbf,6{`}}_oCYvƖo3  m&|;u`(3^~+}u Vc \'P9F1es]`,#pliA[?(*v51 !D-mo/]i=Uk^Dl@`ݏH:Bwk2Gk^dwrz!ž~! xDNw-x+i_S嗢t 0_>탍3,5_f>piQ c.J Juk_C$W?'N}t~bL{Uҡ{Nzo,CtIo= F`:%VI6oWSTHQa'#nɲ;(״p mG%IL4#=[ȣ޲Cʭ FM;p-a4hήJi3)'#^I3㒕߻"#R|7Zf@~ E?6;h zL{|9S눡}LeF_$*yS"-Y):4W)q|,.3+n:qKvL 62_H@pp B\㱟g$XYkOK2HU"1?~fѸzݰ ݯh(tDC}+А%ġ#{[ILԧXe|]9{Ϻ}<` +N<[, gCf7etV^w]IaXnJ}`l"eco FZ93@'쑐_c6gD?n9n~]Vy+Ҹ&P`Fcf=]D>zFG5l/ cUQ*ׄW' I 鎴eѺ!wdO RnRf݄՞1\d~#0cp7"~v| iYܡ,/!-R%G@HJ[[2 "O_u:E߳!g+(endstream endobj 124 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 5353 >> stream xX tSeO+0U("{ATT@ā[4mӦMOM6m7-]tbjq7}߭Ee7GI{Y'lMrEυ\6?8L׊}`Mlyhs1G18lvvvS(7=5M~V4k#+uk9k31֯Y[X[Y/gmcfamg`eEg`Efx)GqYY= &|QO#Gɛ& >)JO{ ~ͿTVD+S@|T-^;bұ]QdjIfD ZI5B Z1=AL 8 TZ'>^T-SQRӅr0,'B2m6uQst <"f%JԷ\6}nՈuCO?pkFUjZT60S5lhl8%3_P0:Vhau[GՎ`B0; aŖ!t_ ~t7\yPFM} Cj;y)y «l2m8^c=&^qDZsFHɤ#kV feJ0(X# _( CjsZp3s>IạzsI.^(-VYZ֠rj(R8z4%f)6M: ǭ'"utf0yQ7n@} vhjy(=p6TʏujLTK d2lvY1hD˯θ~K{x;#Fbx>5#ﲟgp";SBKPDU n2lG+7;I^R`Ј@MҺʆc/2%<MF~ Ͼ!o w/T *q FJ\ctA0iWTYqI{@,]&֡?@F!dW ?S'kSIT M?wף @'CU]ecK5u|Ooҁȁoʃ;~ɡgӈjuQH8[Bxc:ڌǤ0)nMFf+ JH49p c< HkG?,nwKbZyCiveH(NCKب3}m&ONI&V\^DiWCHz6Pe>3;nC'0A ݕސךg^k9O9.ZCcۄD|iB~ e bd'ܖ:o/u=zc#Ԋ0rzn)8znhv.; r믠{/Цdd_OB0^7"ޚ㧈;??0>:d֛t`Ms<>7Nsh!0gv f,Tt}lXRa?>{8qb`I J0T/˶<Fiy]~-H:!hj$wR5`*艘x $uQ{V~`zcݛ<ΉKE=s;< fE,6YoK \8cy⨼sR6ͨ4 `UC0+KFEL Z[!ّ_^2nÑ ɻlX*d/k F-R&Dwr/ZO&-+ trR Q;L?|>b٨FxšпpL+m v|<⋿G3?߮j fZCnX b_n/7NL" zg8_Oi,Z.XPӀbfr1@TȨMA Xr9Z&ߓ55*sXRjPw`Ti-Jj~GiMs,ܡ/Ra㯙G_^Qp]mE|W$嶀sL.{,轌᷐F sYQԑzSؠ LR4,2; 6wB5TibP,-Qd̓9{ڀ_Ibu5}]*B/Ѭ:86(PzH@攸|R AzUSD|32qEGV~Vu6Qm6EYeBVhT'DEqHtt֜:NtQ;ꨝu?/2}$*._5[[nFp*M5$XKLZ0&U-8h2ӿvuIWD m*`G+I)ӍR:G` vsâ+#DU  "o* _I (SY47HĦ Rϛ墦Df2yx-<=eelv&t;Ђ9I՟ÓkqB]|`6$cŁ_F[,gنbjnyڿlckZZV&FYA<Н !6]G6QeuW+X3,߷ƈ<4mxUf:Tg.85cRSoI=qVIn,T r($6 ^n49 ^i${@d[luVkv@Oh慓8;F=UU- 6_'u=i] _IOY,OQ/S T֓ %~ o".gmhI)=-K\$;ZS^hHYF#W8#SdDo6y'vOo_Hϰ{rtpr:|b+C*bV=|ǝZ{KbŐ`0w$f#5uviz\w,hьfmwN+Rږ63zk_ ćgM[6䘵|,tIˈ og6cqA‚5*#`xXDޣ 7z6ZT2$ lI?@>̴-HYhB#0AGx'؟39}{^)]Ս>20@o$ͅΙ"F;1Y)4ijW?(ijqz.E`xW1GdсX/;E e5MBl3svQ뼠&[S%m8jk!#>@ʪ3 IPkcE]`*2$ O$͕ N_>qAr~iX!DgMǎ𾁀KWәJB> ),R)GI2*4׌`SzovUp (,6au[JÁ)31u-hZ=-}wwCUhO.hEmG\ߍhZWUIBL`HTJB{h'>)z굋vkU_ՊTтG^Pǃ܏6z oD f8®+Å*\-#ůcad-[8}0>,rXz*B au #qY)dA61s W4@(,̱k'0 o8Iw'ptت6> stream xYTT־kW+y%QƎ%F""a`f&p fUXD%qI4XL5䏯 >o"(H$q^68aHxJxV ^ڠb4кᕿ F!PJ,e!*qykt'9~^<A t\'V'U(BNT*xM}>Qu\-\p\ݔβpql<%ȜCBɗ) PzFXڹ{ߵ~5z_07LmN4ߌ1FSQc5kZjOQש Fjr&Sj5ZNCMޥ\7)WjIfQՔ=%FR(oGT??5G Q j5FR()5XjLAYS*WQggOF|z#"Z')icV0ﷷߏ]4 e+T6x!+:jh00a?:ۖH'Hw w.2֕-1wDĈOv 쾶drP9ȰυB2;Z_ Fw@yAz{-RĔ( A3 54*_EWQ*T?KkPCaޘ,>1#ip66؞:. f~sl*j91TyoEnyXFK>yԙ"{Vt5lOC?tx']tawwF!gaM*.oѰ^^8r]dn((ZZ<¹Tl.t6n2w,Bp7 K7\3'' S#TłTQ=ya; t$ g $wCҘ׏GkL1Ym,lGARe5b*t%goZZKm [}7/5.63ix,9%zfWŰXx~﯀?da4wj+bF c4I)e yVp;#ǯB3%&$&pzIrbQky/7ܵir.lO~(bLߐ!$k9RG`8)fYLgW DxO'q 4 w$ϙM(dzU7(Cz_Ԉ(.u ,@y N7/ j 9TsXuVn^.9_!ȶ໙@˪{GeATƆP.ݕ?Q!isc&*%ݑGO4ऑС-u9 *!D,,!lS?u4[Xl 4H?#rTaQ+NГK!%*دD|+>eJ爫>sHu)9& ON%JoS6]K"\ #S92CiELˌ/*CedV0Qfxb=kH#&"DUH;+#@ɵ_׶EK⺼4妥ҋ Qb~:p)/=%!L3Nт.odb '%! 8b'#fՎ}k|/' g 6^C[Ԧǽ'== <ϴ2 {0"  `+4۳W(ufJAGWI[=1ʢqR d7$6]HJy96;2#S˼9AteDD}/zW*!!N*'OúEnRP|N<'EҲrQ!S*DB=y>9 \La Dl]0JTNQ&pё[#fsw'@8>ͷ\[*}i1/z&X~ϥfa2P)/Er!o1 KLMFQ~Hsv+$Eq+,G~ L;J¢]}k^*Y>{u~r:73 AD ٘fMFbޱ`[~ LAFBߒPq%};^deYjOw{ 7rc?xxt`A)q>|8ZTc.E7ΟmGD\^czWC9 @Q'o~]eI݅fpƛ;S|qYe@Y + lM!e3RL>\Kx)Z !X-h:|Æ'@ Huzl`[.ԁ>:u;ozg>=r'oݰc#?͗H9hE7w4G´ʄ),l\9o-߆K^_K1 |y1;(|5 /~Ӣ:񬘆etR+dp"wlO_+WL[KJf0'ۜYy8,4,Gb.MX]Ԕ 2/M\1!9ӹeqS'AɁ\Fx~G}.M v__NtxѼYs*Gd@P<B1R9FQ;7;`I'tr:Ei"<*x^_^n1IA4M/}πCvĴ nF@ɪ$-rY6KYx <>Lb^|&ݯBl>Wkj[z Zvtٸq8AB̼lc?ɓ ѩ%<#v:~(ʕZId/#Ӧ%)4de @Aڰp@cBAt) J![1Z俿4˂ K ue騈1]_щ%*Cᑼgʻ0w_Tǻ?E%\f3F Q=4ue2]9ָoI A ?a"C>i%YYDTtreTP@RB`3'}XlfAv:XqGңZ&;w7_k~N,k 6PR1n 1D`Ͷxw56nly|FrESsWt|cx|se;z8gч&}Xf5YgМܛ*ReϞm-&e"T]SP;j=ck?NIڒMbP4CؤV_Uu/EgH%*zBec 2knB'Nה6 Nbafs sQ9SYKNr.KG(:7voEqd))/,' ؘn&V߿BR]׷ObZ`%X6 w{mKNC:2FI>M v;6IEyLI^FZ^)5s/t"2aq}=2Ux5zrx]I~N&I`<<شpgZGDwM.7s8" 7!F'd%0Lf<!yB&>[Y] vL=G%r`I G!5ҵ{֪Q.bteť1y)i",ez/uNI ;fa6/% eJXHb%Z51 щH`TQs^}g)5]6CSNދA]h8p I/Ƙ(.e;]ba4]ה0.@}}o ђ~8F1t O6>J0-)q`YUgw* )MqTiӳOʰ#/EPw9;'-="Z/^.kc$KisU{7+FMqA6L52ژЉ Ă!lNIBLTN$u*B(]ENqavz4G$Mpc[a]/W?v`O`$s&87_W~%P]yyNHA2F^T\~(sĬ<3@p. ؾPbaԥN߂zsl\|b2|ߝi4R8n>xe%ƒqysf-W$pǎ7E/l.n/!G:tpmS ssX.۲ܿZ3+Jܛ56^3ȹz=HS|R H1;F?>׭tZ/ PC!HVD)5HŨ%Y9\C]MIK{aLa.bEu% T#)O'oy$q(T^B#YZe1Ek*nW9ݜ0d۝ rxfI5pId}#  <vAy|%*h*ڛ6*;Gw.q}{{oV䞕搈+J"4Aq;g a 椿=]3 y0ƪqZ%0pq ?Xendstream endobj 126 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 392 >> stream xcd`ab`dddw 641U~H3a!O/nn߿ }O=\19(3=DA#YS\GR17(391O7$#57QOL-Tа())///K-/JQ(,PJ-N-*KMQp+QKMUMB9)槤1000102P ~~0}wϾ|x[Nw_'߷}Q;y?3og) Կ`00~Ksp跲ֿ^_n=E'l~];\| pBIOpb1y4^Eendstream endobj 127 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 5759 >> stream xYyXS׶?TI=ZjkQQH ! Pg(^@8Zlֶ^{iݧ퓀wps!FwnKSINZ=9\-QίOܛC?x7Ir7=g>~q#9*t &$Y"OHN3gt[t4P'I?eɊwke2ijL'OIFN ɒd)щ4lYt%:)U+MMʓbbz\rRT_QTeL\*7.sژ߫8369&ŷhyR*L&ʕ,|/>J"w'Żn["NM)yP$f9~~yR3Rdj))]i>A%-N\\L"=:s꬘5ٱpwΚ=zy̟y['3ej{g$D1%oaXbO#&zb"XLDK&"xL,%%ATb91XAG$5,"bƒx'@xJ#Wpb:Cl%H#!| ?b12I <WCq3Kr5=ygCv[8<ziGĎx򵓯0>>!G.y0!]\~?o__CT=|c'r?~v8.2MhrM42_R9&Q U?GǓΠ< ·]d ]aO o@+7Y: Dȭ u2CHa7 굶5|/l@@$wO2Fj6X &P.c^pL%Ӝ;a{' @p"GgqyDNkko ɢ ׮JdLp6 h*eT zuo'(51PMu`d\ގ;' G;sKz"ɘA ߄ <_ЇHۘ(1 P#.  y+5e94JNM(c F.)8n:6Wh˲%)ݖ68w+e:5]#D- Ξ-ҫT F? KFT) Zk-iuIFRs  +-q@_(ezF)2@ -b՘sBUl>1v9C!dEk-#K2:K8C)WX"=Yz *-gaX/u!g1$"mqg CptYQiCIѐ^ HiS.cТ8qG6 .ڝX: &zmb)aRfj7@آ1Dc)u;|wn= cK?Sqf Fk/=#<bMev#'QEW#7L-(SIP)E O_N}.AiҔ]]UUiQW%u]`X@3,X:TB3)6ΫM"LXhk})k ⚻Ooo}0VkoBEy k5j鎛mw[y lƦDQYAY777I/dǎ$Eׄ#EiU\Ic͗&y `ˤÎ0L3k(FD@:59ҜI+1ՔnA M\+`aK>PR_j5C/ n{kԍZ}Ȅ)p'Qxg]$&}m_F$Fd"HK+JXU_&?Ci1ﰌ8Ou#>O҅Bs G @83kv*.ט tb]> {-d8_T)<}X\*߯\ +r$r mjU-xي -$ {ɗ o)CeW];{uA;$t Z$u[s*yg_X-7+nP(gm&5> GLrSAPdya樸YuAaU*>W69S8ڬC۷niv6-Q,ۊJM N~{0;9ÕqOCNEGnLf&84y9A7 QЗLA_4eڍb ( @r!rȧ!zꀈmM\pT:>y7k_s _$b8[o-Z#pym+Kkk< X^uݜ7кa D$B~(`WKgm 'Em46t] =}͹{ݶc+Gn6Б7Rݴ$Œ%$$ML+? TB'kCN|7@OLd6|BNpGqܭ*/GX9"EBO[RK2(zTOrC?㲇:D)ȗP3\TD{"-ĉ'p{㯯5ߺ$ffN#17HQh,||!tDxѣz{sH W/E'r@ Q.z*5[6i d )FD;"&L@C_{o*;w'ې {$P=ĺ7MAQ8C;feVW &MyIP~Zyh|ZXB_Z*וLx()טԅzI@Sjҝ hK_y47%Sd{p%y d8H)s.wq:}[,DX㮥u@[dqWWv[FRb,)7Xqa[RW qv=@$Xu=X4>:`'NoTݷ,|swI8|:*b)37W-7án-?:x2T(mܫ-NhVpjfPLJ1MLi˖45]ϻgrrR@=gj[[T%YtZ¬T)*.,]lp|(eMH-Gzwton:ԺzuaUpyǩr~<}yÖ:֪޷ɵW"*1L uD 3q 98h6kcrtdk> Ewa: *7`zD`iwWC۸bl^߳â~dp;Dy|Ct}A61:,bޯݗV;j,|ۏԄp3ʱWWT4YCC̢e.ux};ol'딒iWm_8)!6k&zrxYcPdX@r^X`` gs|`=ls':?Ec1Y>XeWc`c#8MUMؔ]i @EkBVMf:naIHd+/ q,U{3PF5 >1,{c>ۡoes{7kcIe{t9@_E, Fj p}7fLVxd}6g`XT}t%w~h܅xs? >М{F~Ǩq?=^*PPQ3,1.ӒdUTl"?> stream xEU PTG~7<QgbtߌAD1^"U¡"X0rda  Y$Ƹ^ wMYڤeiJbA4-uq<:#̠_ #n`̀e&<m1l"LpI *:*W.P,]Y1RRHVS hs׆j1/tԑqcC9.P´8Ml&HUx#51pzȘx&V(65^r%NK?Y|E(ʕ+N}DMlj*QӨ) z)t:< 1HxIgS*)`WWhA 0QܩC!==g?${3 5m^m󐖒5JG HNnVn(p¥k; HxxO 8qY/32d-;DB)F݀RhGf`UUIFy/6I7fw tr8g{6#&$"qhh=5֭;TsˈPe~{u;o"K3ZFhnG&\aq:eL~hkܿٳD ,YPĚ|סsۛU:NgȖk}=b|G,ot"2@+8Ll YaL;F3="H<UPU\ߜؑ,.ƄjyWUypN:UsZQTHէUŻ }Wm>rT\J >s:h Y[O]  R`:{'d6" PwY?*`/>V-Ʃ4*q#\^p%eE``I,(ݠ++֗~PRj+-{RYEDX\-'VOL&%)lf?З?ZXWVC!\q;u M9vgx"\fYK.kwo&sX2 %J+>An< @ .Ǡ#gf߈B&eP˶E ߵKaa_o~0Q:2n'th?''Pn>y !} <!U%~tOщCƽཪ֮w0M݅03B7H&:bag :"13.\S_d^anG+~[V p##a9lOOW'è`2U4 #P# WeQizmWXJz oˈRvs47ƽύ1N~`#nA;FxO?YJVjF/e'uwk_YR%d<ž8cCɾ=La^ OnJEdJ0 b{c96;$nv0SF=kgj8p櫫fѡh^9_w/_y@ej@j\%Se|k`ֺ\b뽻!VvXspuľDeVd\/U@w_!wZ|h9@Ӧc]84Oi3R#!U7h.빾&R;/!Jüvc? cpO[nQ%GHA b:6C1~k/06mSUZ.%bY$+L%huzB E(nendstream endobj 129 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 328 >> stream xcd`ab`ddds H3a!Skc7s7 ~.ȘW_PYQ`hii`d``ZXX('gT*hdX뗗%i(gd(((%*]&s JKR|SRYt^}י1y#no~\~r]O9V=׋翛}}5۟'Wgq>7<_s.wt3\Xpso/yypendstream endobj 130 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 3121 >> stream xW TSg~1U|$AꜣvqF}4@H=/7ad@ES;23ݎ>393$''9'~>5Dk7-| O br?OBD)H3kqX|2L>g3s~|qJT$* Ao*Ttb {.55u"!yV^6SgoR%T˴:EJm#\bPkTDI\M'R*ҢӕT1ظxM´Y)j=Bm6R-VjP;pj'[jZF-VP+Uj-z(J*ByQ%"^>u0%[$*,$1WH2Fuz̏4x솘O8C*'ĻA)I%P =>0 q8o:Sw Co|S\ =T0d g'\m`ˍݸ?cݯkڅ9"^R9e r/ν`p< qRطg뎔h,EL|`A}H> *|%R3͙3!IjhmnLZP5H=ޥ/ISq0ECCbͿ6@Ev!ه[PiєC/յܚܡSKFe= T̼PȚlTi.& ed2eKiIYUMii_.TgJ,|qtI g:[@|*dCA 0P("PMG61^㧰.2hi)MN ×޾,=J/֨+#Rn,ؾt/ٹ;V/(?+ŏh2U0͕4@l{jo x[/0iV܏16ODM<'+rq .z/g0XHu@h %TyTpZހOAC]]E'-h,ZhT;ptc抌!4~O(??a[-i*Mdr~smBW`8:#Mѐ Nh2WeUk`$%h& / v-RR8+]sqȒJsJJ*ãAߓ%9%:ʒJ.TۿO꿶&8r-0`o]aK~`>BaZ N 9n0*Vk3&GR8]y<~:Am~S"><6e;(.I3 jۘ߳gwοʤ(:`^kvݶ7=0' !u\Msf`KA/_Y<[=*Ngк E ۶2Ec&0NhN4wguGl.GzhPc9BPf9= %$@J3ͼ܎1}]0]a)Z' ^tʔh6-xV@#u9=ӛ8];6)Y&楟\o5lZ(AqB)XR AfG$4rI8ߐ-q*CFzv܌#ޠOLywIq%bH`oG{g5((/mx6))@Qj$2Tyd 9Hػa胲NPQmaf]0N]9=x?߅oT>4 SR',n}w8z 8zIH&W  8MInJrP(8c^(B|0Mh"Ӕ6]{Cϩalj^0NUu&!)~-,~YH/#,m(d4weԏёlzWOTK)40}gIϢ k-/,1eqSraD; Xll LfplA]ޗo~&Q'++JiN01> stream xT{Pw%aUj}tMsoEzY H6 B !H$N-4kY|X;ެssLN|?`8Q{/^ ^s׿!HA򓯑s}Ҿbgc2eEzQ T +֬YDF)SmԪt$NL=VUsӯ]l6/KZ6,\4k9r:KmV(furGRZ9An5ԛ8Qͦ: Y))٢NLXaX EbQX6 v`\l*6Wc < 8U&u- BhT=KpF-(?!O4j@OL'3-C@"\4sQ0guF `9+4CP?6aމܜ-uyy-zqh;d裩F []'<-WٞViiQNX'Q?`+L4uITY(#$R e& \iAI9n\ (k(;P̜>(u;TQ3],gL̄*q4zi.Sbm۷vg9Uz#z#;z<՚t% ǀf(ԉžMB‰"_-КoH[Cz_¯E+ ]6@aٖQALZ 79y|2!R5ًkSU Fn/WK OT2 iz S}$ـPwvCmiCsꀼ{!}#!x-[۴^=zȳfCmdi2 w%\|r ͶO 7ƣ\/\|π0'YyfF <>(!xXeS-ri rN5eLMrĉBؕR3YAtG cvl) hAFNCQ]tK.bU@Tp:JWhնN-9zUwu{]SPceI;-n8m)q֒߉3?.@_֙僩(ݰ1iZ/p 猡1ۧ }FC>͓Q'P un n)v0Ge*nܖNSw,pDʰz K7E6f4g1Ey `$[iۚT dO;<47㐂ڗ8&$&cfajKz W1?pT$.Qe9e[9C;`j:,E8녀NombWI'hgoVtÏ$PC8:%1 7|LH@܀aɴ*Bdb 'p i*L"@à͊]p6\EnjW$r"ʄUw6 q(TC&)J$ ƅ![\>EW[+L6$m.g+ly"0UO 6P#ߡl U\RR"߿'z뎝b E$[{kߙ\pG-n[gljjP0_S^ȣ2o~7A}D=ڲo]+ >0`*+P UdeG{_Eo^Nƫbʻq[3ݖvS#cȵTė~uӳ 녨c(sj Lz^ưc('endstream endobj 132 0 obj << /Filter /FlateDecode /Length 3230 >> stream xk!)- &#Eb4C)㬇cA{g]W8.ϑy,řcV1/O/#Q+?iƏFFZZ>ڙf䄩ie=z:F5RVZqF,-VR(:㧵]7K弫΄rt2>q[;s[t2%nH76^x0o*3\+Y[ ǟ|9q^O'+Dd ~bLYY=LyDŽGeA @[r9OwΙHжwLP ouLx״8E<$N6Am&hUf zV}P=&)IGx/-.+@щg zkǗ_.?|IЮgR5>ύ)-:A&1& or$2?I7 HwB #5P7TbABBC}^n,jƸ꧈^L7jT VTO(HOBS}}kW}_rJZ GȄ^/ K\O+]BJ씠Mw>UgTXPڌT&DYF E,>e\ <&klρ3A^Ty4V+=d~92N@'f+ i*Hy/=YtfF[``;0p!Pa;YXBfoq%I!M~C(΍ ̉Bkm&`aRT qU[RDc 0ZVL;F9!c,9w]/+F3R`YJΜ% %KY-VS)no kwkp"COeJ/ţ1n!%_ܩ)S$6?.ޗLJN> uPdRN4K}q9z`o5V^ 3RڪۺßgCT͸GlrJЦ(f_%8P,tOZMtAQ^ ̲f~8Ȃ}-כgbߜX<a Ucs<-'oq}:|mn~jv+_~7r΍{V}=Y{sĠ$ -XIդ&-(&E{X)18 2ڞiK vm͘jBHW 1$g]+k%+Uv\SdӬۨgs/ԀW j q&}j-wyuN09 `ޝ-$C,c{`|%Ιo&()>>[na}4f,]U}vQ-<-S]-OAT<$9@1tvoi[YE_jI5߯%7H@t'_| ErcVD{|\QW꟯l_m$ <!EEW PR_\es@RB  ؾG~$^@}7TdUJBc*RE {]BH]Ʉ}]&$"fz ekOДʸ/anlHKc_?CJ%j=m9`p1"QZ9DI؁"'դ`o (rb9::v?=fl^-Pm)uߩFJXjH'[3S}qv#\ ܔW>6@˨GImbgk mr eç*x rhc6pqbz#q y^y$m>bبEn ˳6sp<͏ر̈ۈndއ"a dS9 `C^1]ּl'|u>f5V.gg4AyhcB,TpyD 4E28bg @@s ˨9^ȤpPAhbAϒ2$s`2Ce!d+e.sYun@+f |2kRUg޳Mވ3 X C_<'F6m/ 8x1dR-O1Pwpe.K7L9f3ZnU)@q5(Y[+\c͂5U%mKJ"6AO]W|R\wȳfyu~ WUwQNO SA,xQX#vqvڋ3̩b,6[лwy^i4A> stream xYkGPI ImYYJZKZί!9CrTF y>5z9匦<_'.8ӯ&iS 1g97'gYGSkgRP8xJ 'Vթ̩OIrBdAVq0yǬ.VktL_2idT95pFzJ.'/'!-/4Sϼfzq=IpӔ)x-#Qó{9g;.osee\Jٷ3D>gsgd0ܾ!9y/ Tez/g@` $^9Au %8'P/2yt1~ eg<WY m$CQhpxJ(ψwE͟fs-/g]'6SLԳ.Rި^In3CNPgY[C٤a0@f{<S1rGthU< h愤0Qm! WA1B%Ŝ`eDI`GxSDaw_xM qcƩ"\p*Q—!-v+2#^zu@)YYenVn^A||BEE|/*4C؆HX~D er9QD4Uu9nmTRDP2$U㋈`h].4JlC<mZ\NjfLϳIcoVark)W+T]Q>c0 ЅxR )U*`ҐHgItgz9݆y˥28lS! Gb\'.Ҥ53FTjsٙ=`:;BOm!w|3;4LpM DsTsOU":xι4ulhT+dm!(䵊S(Pd2`G๴ڙY$Dv}ߧG)sHzZtE5@:& k#J`\b5U-xY[; 7 aA#bYeO}jTVqEzEF T(eo8ڀG7>zxn]{cY }yǰ*8G5ֻ[/۩׃a-ֽx޻?Vj)jBӇXgJ~?lH+4z-csOJ2˶(9U8- GLvEvE?U1=P(O0p#Q2g٢Y wϋ=+k^$ 0Gga;&ZwiC~ac {^ @'OͳuFEɤG'~i!"*&+'1ZZ찘M aO׼ 瑯A:kyD;o,Gt/;"}V)DS]^Y$f0RAv֪]0MjɎEPHILhFFo7!t5<* % $?" 9]bX**VC@CSgi)T9O[m&DO=) }Uluj|)1@B S:5rLAXf7M.@uRUk+} @+tӂ:**[s\ܑ$,lq$>R:.*飂-YA5$/j06IHq-,4UBvmG;bD8P!Oa}βd#Jͩ_lW姨}-f ,e$s*yrK5Թ2:;EZJV r#bw,ܟ*5s8>Ǔ2đ! '7W^>hLߖ:Aٳ<j!]R0V5-Fs,yVR 0AOi2unOAYdj{.%Pt8`/]i~Cv'xoZ<P}n秈^S3EcA~cI!7ڞm]5b򙲙ҧ0yU_"m}m{?ştDb~?7endstream endobj 134 0 obj << /Filter /FlateDecode /Length 3342 >> stream xZY~_ 4t߇P,ِ!)IX&c=5S.rf|vDOyZmxt;NY^[ǧ(VKByq_p֊H*%#jdȉYλbUM2xbv*RNO*l"jㄇN/ L}0ӋI 7rW=5zz|Wq6si9zbDٜ;&Θzl.Ջ`Lge_޾!wS|༗dtz3a,'3 ڀXYEAdBɳɷR3g㝯fWY yCyW'70|Wb6}1oj;jW7y6UjWm^c^yѲͫw7[B@K-/&՗fxB{Zm磌a{44> ?f$'̧}<^6&IpE>$bٞu[ݫ՛^qNُ%zKoo^X].xݪ$<>Wl~ P$=s'V4?y 3o֋u;1 1?86Ӳ.1|v8]UK fsn˓ׇwk|wݩ=,LS 7 BFA—Rj9FЦ FvӌUOK$XCPsBņ( 'BH睬xm9sYpz}دC`<; }1MB 3.Jm]7fBK®R^TGExXtvW^.VL:o/1aQ)j}|_bXVŒ59f0“7:pɨn v. fXa"! X]ΰHHpUF\z:kyM׸Ta)aYU,#hK00e=DDYÈǺ#aR4 gV8g[?K%*T{b5#@#(-r;lP7@HTQ@ubFEZ 6R_@{V*RiinȊ?X~j88$N0- QeAmvui7y:MqpH/^t8/NN>-؝.eB!7FPܢB<$|<{o7II>7]$po B8EF1=,TgjdrAQAGC.0^1@K-HJ; ,sa.dH#j̥>e%1BJØIk'UQ߸($Z4SXTϽV IO)O'6SᠡJy;9G1+3a)mcDy8@~'ʣY}ʃ, d€{?g<~4 2=$=qC(iCz% 1VcrP? j xs8Tb m FMh8hCm0iВ0{I8P<| `"K"xtqŅR'3 󮰡OK's\Ys1RC%>JƐAx̙XUj6DJV3(|ĉtKڤ?FW=zO>Jɠ*] tFQPewǛN2Z^}b?0h5~UC(:UDM-zN.^vEGxW1bWo AGݺDaˈo#L ஋40! 0Z |vp"9Lx\`~qCghMdL R4h͡_{סAe 0K_L[ r!U3ؤĝW1 ࡇ9MWG\:bS,"BI( 8[Adsg_/qY]-Ip+t(u(R =j @Sm|Xڞe6?m#Em>,GI3r=詁QA^#>S C#_O sf^KqX{rf tF- jVDBx( Pehf7gH;sW8K?&n=5͝21 4 豦~zlY6a>:.m5hѮlK{UP?%6xl0 K b4"|ǰo<;?2m]b5 @7zzbKPBbsSD_1y7I;Bc*)i%KJU!*lLK?F`5DR>ev4Hyw߫ ɭqd?)ҩ\kdPI܅@-'yRc@J@H(c; @Zc`@;0sŤk0E\p] %ݏp.l.84bh'|ᄛN M6%~?ʎnyEDmN f2̓гgQ&-Ch=9,t~?mL.FձfQC+)LS'{O]^pS4oR(~Wmtg!{K*GZG srA8~O"׋ Τub+6 '(H  Oggo' endstream endobj 135 0 obj << /Filter /FlateDecode /Length 3618 >> stream x[[o\~#Am_[8i4HmAZRIJq:<]$q3 ofl3s=[mĨ}td3 ]9aF}yry3;f(6JT~4:Pi mEJd<-uxY*h5*=2Fe0~#esF~uWBQ!V;°wΙHHlF%u=^ 9Ƥ'M%Ky㯏;v{)\{c8guZg0bzXŽ31" m$"_Ktpa0& jtJfl. ۫9:P 8(5"<‚k@O lfΌq &{네آ8QMa},Q@Șs$' K1uE)>v)&;hX*ߠ<9i8y81E+Y$nDM 7Qk{6-DPB^n.{!G9.> 8LLe[`% b& Ћ"zq* ';s5 kC&#tC+\W [zUl@aE11:i \OUpY3bZ7ܺ(mK~Q:RURx`U0,ei#̦e١AĿݐ1i!,UէS,2il>'2:MuYZ=:SͶӷr"`</:7=(%i Zƨ2Tn.'gO#X Χj r!@B'ztbNFPX|f!>__J_GJ،kFJzRwx9PPׂ /XxU)ވS|]{+.WaZ|D􋈭ۍP MTd+L 92so^,IΰHYޱvQ/Xy)3Nf SY9dJnpjk޼dBZg|o8.*4IAм"nO4gK*4z2ϩ>LK 3pҬ gMxM3bxp@@SHLqx 1ofP4C}|k}{Պw sGAe)X $) dcQh*S/Ձ)e&{THXk<![?&2i{'K&dϤ-QҳxVj[ADӺL'01;n X[ppAgSS`؛pAR9,M,A:>PNQm||LB}ӒYӴ_oX*>C` Ե_{BerՎT= IeelIu_ⴘU~R5MZob5wuZ1NcMe)v PEa* @lE<@Ҵ;n:&l-V"檳p(oe)2-my>+ ":*H΂$`<*q^QWM!uj"ښzNEdN⅊:ucfNbd`KcE§iҫ`jI} Lío󍥸iv 6ewSy-.!&6,x K+d- 7M1WfQz@ dRl-DfE$໚{) -ߘqngkbwUPKpc>#;>MפE*(LV*V>NU—d9o/4Hf(yN*cfҧ dp5 , ݴڦCR>co~M(趝twusZ4pٙtU,S/ړVHue z^uXw Cc]_t U 3Tez]Tn-t_4JMy)wB8kQE=6vl{}~ۋ$R*KYe+oñW=nOg${_a!n9U "yGܿb_^wl;ut"aZΗ5%BY_NoQrM%~5iE]&jPޥœΜ79~XEv=;:*tp.)}םqy_B&(\ "֯QऴtAZi{:;2 4Ke/NQr+աcTˊrF|' xǥU/OC7M7u-Kebxy.UÊ£"t?}i NfM5N"M/2if/%֯Df:SniUջbN+KNO4qxރd?B*b~{-ԫ;8k!ʁ9 ǯ!F{fWEx*ZMK^1]D0݃&o 4]8+}}jGGw07endstream endobj 136 0 obj << /Filter /FlateDecode /Length 4393 >> stream x\[s[u~G#0<_Ğ$YF2׳ܷgYKhGbs۟CMbhz p K? #*A F5efT(q#4,ky^_HFFFy?*^(i"]T]|;jt\ ;ZMЋ GSQ-PX7h5ncvTOPB NP 0b$$Nt)3\Y4.ڮCjJ8v$%(85{& nf}=G}^7 sɨGЈ@J΍7'^Œ7`5gz3 MIg֯Xf*dmdmP!!VˈEDj U V2KK=:=5&GIYOU:͊U aV*qBL67Yhmt~>z{Q0#3o1ofs,rU;9x6P;U,F`Hƪo诐Kuyw԰z4ȵOvJh6y${ntjER;#p, ȹnҔK1u{{0N8:9+ R] ҔRGGha YA=NxnHb! 2/MZwׂBJsLÂ_zU ,2@&XiM cYa=)cUHİ;|Mʗ-I%bd ʬyZ+`L59! FiNqZJ1z˫ӳͫ- ڃSvωfG?Q% $DW Ԅ44Y߼~-˟6{ ,Xx QB꼋w@X δEj:!m]ilI7ԙ7vABblILr,-h&P;Ub$ V$&jfZkJt`"=jWvz#Dbvz{~}yY!]Uһ>=fZ^* ,Xf*dZ  )!π1zw#Aq:S4BȜj4ɹH+5dsTA:c GRS4ILJ-]EX:ɊU ʙyrVvBLM#Р\;?zm0|>gn_}{NYl#]] 3;X4Z+5Db1@2VtY+ ҝ:<=A Q^^i5;7?mm]w{z}l5!5@GV?3LH=ֽ',Ӌզ܆Ŧ܆զ܆Ŧ܆զ܆Ŧkr+r%bXr56j.ӛrWcfؔu1a{q|O9qĿĻ7" -ؖ*ϷS {­ie9K] t·8\S.%; # 1tNOhlzڶm3iԆ5.›5lJ'sN!nl¯h)vvkBw;Zz @qI<ܮHz(hg~A-ϒ )  0"~&Fَ>FaWel6>*5D>w b%=ti\~4MO'v 5!8%' FA}\GìL!P;9k*Xk` !=n/q.K][fT IFZF3Rp) 8Q-\6pP%uЈ ;10겲N$\'3:""af$H$Ys۷dfćQŖ|hDIހ|dz伟m.ۄ~G8~@֍Bzpga-"T'f -;҈U/n3#.&5e(6@ C0)TB,:ʦ۾'j0Et(3("0P7KNK\.9Ew?%?^0* O›X$w죴)BLeۮ:tp vziS${*Td?$vqCȆ)BY6СGˆՂ6+Z "1 `Nr1UsѷB᫊qSTC^ 8i>]%|Ǽg!p˒T  3٠>"qҺ[m(!Q6J#ؖ(?/*ms k&MeݬH'2rO#D` e6S+bIB97%? )bs\D0)zե~Z㈢^eP=.YO]򗍑μM((%7'?fQŶ0u<& 2%[ ')6+[crZ%&o@3t~5ND&fj:%Lb0upm H]ItT]] RRV;ÝT63}e'2)Z[f0fl]ZctB+U?͈֨EDCCKU蕎D%kL$o3d ɖ +ē'Cu%7<Cxݤ2R@k$ aa'6x{TXJE^|g:7Z!yL:OVh1kI3'\8]H6Sie1F>+`(sWyzQ,A Rq*>CCOgȦw<UH釧h}zxj^tz;7ŽDDW˱fs.i{Il>a9/ hz ='Zmi45kzݢ7+ ^?QaoZԹao:ۛBJC[ik{֟|{q/&v~MNLVQjݚh_j^F*3t_ILEjZV ڷIbM~(ir1B/3~)/v6Stt5 zн53̽}[GEhGֹR(3pCseُIR&jB 0=oV<I;Boz=[xa 04A)f|OLl(m 4 |3W{̃kg.$zrr^z)0+S>;4}O'"|f햟 ^cu[sI6{26 .endstream endobj 137 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 3613 >> stream xW TTW}eA'BT^㐼 TLZP  e0ϊ C)PPPJfxqQ;YqF;YWF[Ĝot]5{߽g>OƘcd2;{髽4L&O@{9XҬA6 LƵLcndTr̦81vMhdgivsƒc6GyDžۭ l7握qqQӝ'N 8.qS\WplpLBp{dD`Mc0̨9bb=$z- igM8i 3Y,cF3 f%3YŬf2\ƇLd'Ɲ`3 )BCƓY c%c0*=Y0)d<-z-m_6;W)9pΕŋ\ʲVhK?Z[MUvwX]%"]4#{:8+%7sp Et)Zد/he%|<@mı,y, sPv}_1ڠ?TتZ'W51:ϧc:rw fQvɒY)S?w;ZPA%35J!ͬIe{Xɥzq h2 |?MDo3Oj*i&hZZ V:CT9R(C|_E9:tNh,űh1E{\5 Ng?ojw{D ayLٺ8ewVĢ[;x"'pd<֞WP7G-IbNXa%xNJCĊc/2 2=3u(R8~Kd^GsL7 Zo2jymP؛K˪\@sAK \@MbuuMIUkU[)YFiXM] Lo4/!( ޮXKЧK+]e٣'9G IABЂ@ 68x!.6Ni̺ll'}9M> ۀ85Iq0z(= g͉Ԫ;Aa3sW溜!%$J5 >gyCBjZdCs] ӄʧhp=! "S²`*Lw><4+tΩgx22*yj 8Cݑ),XzinBtĉ8@G'ܫV+Y _"*uQX.i8OX7jxK8f=b#õ2)É=а:1cr0rR7LgV`.;^j(Z+iޫ]gV]}WAT 7.=!&T\GSP(4lc3h4QJB1\ĥqѦAb:hdq|N+AyY*a?qy"^D3eCmRx/Ao’k4]vNMXZ?*,3?'*6k'tTNҞqׅỹ!@߳r'b7EF$y\rJPJnZ7n 9H{pˉ-G<ۓul!z$oWj@ Cpn~WdYzdT^1&Ậx.276WKCbLs|bbdآO΋Qsgٞ}{aH1>sHdWGHײFnjHxH/$͸)]K>l}X\%O>Yê׮)<؏Bch? |659`%5U~U֫"\*I笔sV级t(_{-J*SnP/σcU\/*n5C+#pXwD[ASqrG {6{k:aWB:cQ0˫7lhW >SԦD2ʰ?2h-2~6r(޵.dEb~_ص BJzf$q~IkJBZg8ƟھI|8FkyrrxvVs:F/~ | _mmuowW7.S{y`O~[tc#DS8'^~ߑeB@S=f3SE} +:h jBͺ𹾩%JN#p?P)T:[K!Fvvo旺]ۮ4tDgL,U=8i5O\M}18{dU//~~~MƓ-EyIxg(+!2"#sh{A\)p>dzƳd2DBoPR'35L ٛi3ަ=ٗNVo_9Y8Ô}lw(5k}GN^so~jƆ8eߠKZ7hmH;)z ā#mxkCףJma#Q/]hݩ5FoV/Tm_A [՞ #gB.:DvY9 RJ*t}*ۏx]X/ױgL[es/t-fzb!8(s5lKKh%1Ǝ5݉Jqx(tcCnbƢm;ҳfV*G O8dGu, N)i(PNn{m݃=橉/OM-$I昶Lo h^?9m{~N3Yr"̺B0c Qu5.ڛj6mͩ:b;2KuuTXU=EpDhQ 50zdשO쩨F5̰?4{ӥȣǭ1GF^Q&Jn[^c9:Oű4EvWdN&,0`#壙${'Y]D@W͕ݓZ}<.%UӎvٽS+G+j2#tyvF]A{ B%/5Wޱ>ܡ{>c4+gJ0H7U%E{ķ-P1@0زC%*YZ- ߹endstream endobj 138 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 785 >> stream x]LSwnZtޘ{#1~[~+83Et۫b"~4-hՈTVbt%BHl/`6jw~']+m,e.-PqSm`{>/G/th zMʹZTTK_UH[rt$CiEk}~GVZU% M$!9xBvIVOj^YV!Wl~B ewkBd"vёF/ ՈI=rqw=ui…{SנO^q+ee-؊Exխ'!|*>C5{O8tX'0HMj5ߩ4*h~f8#d,vBu hcjz,0Оt'uuDah7{Zzn޹6pfg˯mj㡛{68=}[j ߏl*xKr`s`<[}Xa(L:h<22+& :_hs poFv~ HcX_ŷ%cp8愧'~]|ΣP u} ٖOXӰDx42tvzoxTm DGxͪU51U2YvZۑC[M.c5v~oM y3Z+!v7M{.[z֐ೳ1֕g &F$ƹ1wnt[endstream endobj 139 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 386 >> stream xwCMR8'vz-   ZWTmqCopyright (c) 1997, 2009 American Mathematical Society (), with Reserved Font Name CMR8.CMR8Computer Modern3vťbڽQ"DfVT@htkpozc,MI%ڧϋ1# :Q?f{ku؎׃$Ena}{mltNx~}vCoa  7 כ Uendstream endobj 140 0 obj << /Filter /FlateDecode /Length 1828 >> stream xX[~Wļ* w!lxA]%8֮R60 R>"Nɧ/4:4o'rbQ%mxi av77ŲiыNPz.tK~c'?$m{u? 'NoΞ7jsvIO*Xf%l9H=m7X#K֐9Oʫˆj13<Ĝr;pFU*N3U.s 1-c<(`e} 3=z= ?/v(ثuw 2EM5b,^# :`>d/j*EEk(ctEӔƣѺ_cxN~i<xȵx4H*8ey%0t)ǀcM7#hMENHix\N b$Y+;-%urV>A 0n^Jho\$|@AXm0oY xRVR]GXYC\*ʦ,rWw3@haQ"u!wE'9cicC]B yѓM侐 }!o ٝ%Y>Uf1x(pɆ \ 腅<*ix0}|p x\֘o^mBe@139t"3 Uljk~xS3=U% H(q <8G3L`J N>iOģpuIថ3>x/&h{&_`>Pȹ(+Q^P>(1+A" $'K"~J8|0SH)G@<>B?⩏wx'g11{U!I-fK\eZAz-͋cN[3#k (@W28 cJB[fG 4I_fey܊LHk>I4ƆL-NGm3$H :o޲|ڍ#/::/ޗϮ(Xmge{"m#?16)T<Ev=K%+Y{S+Lk [El0#`]͗*DOC?5zLP0gk1Y}[} ORl,=j .Qb`[Ҿ)5Ү /Qyen̜ ~>z?endstream endobj 141 0 obj << /Filter /FlateDecode /Length 160 >> stream x]O10 J'B 8QC_Ct;,ֳ ":ր#MEY' ݕ> stream xUT Pg%dw%1AEA D@% ğN{V!XzU`E[)?P@PQ.b"$1=zzw3_ ^ƙv}y! G$ɩQRuI,{H~?GpZ(FN"0pM鄈$SQ(/w[c] z_eϯ_yJwPQQi,V&e+cܝYE]1`GQ-{9 y@o_?%A!$"H!V4BExD$CD1D$8• 7a‘XM|ItI MDec"h\ǟ*N=F; ߁|nV: +{ylUH}t k+1J.gCP&c%cKbW87*<O@,y=P<O_8Q,q+3?rw}yBG(\mٞ° /ߕfߛD| /^GΈ 5ft°R㖺㕛T 4[B@\CmHU L$ƪ1L]kQ"x/Ycy? Hz?K9HkUiɇf^nYg Ilͅ՘y3;7Ԥ $5|ʡ5ʻ/"-s@U)R%Q(mѼڙ#ܱ[yr+z] ie:lI왆c|]Y^Ąfd)|Ut#n%V/81B>";졺Q7 uW^Cǿηq9 Hvg .PaLPweg4;ћQ-ìU}Ԓhh+DSHceysjoPBzt_C0l>.m =((\oF|HǥsG){&Ph\ٺ_}`f?N%oJv=׵We&lweD"VO2c?bc2N2~ kREչMruPքYxƄ?[[InzfDכkhdMxkrEJt@6Y"Zk*l̈+Dؕ_ c)x‚|Ow9m Q q|q'ጌE )rŋɽӒp,SvlM]Kcr><{/kFA,"٦P'n~_oeuC&tFVCV3Eg?rc*uTuu߾@I*c`o7>rk WX"F0p'rD[for*K:W"M>,.*'.\n, [ʚ 57ciEMş!<"aX `B9j7ch=^/^'uf&PRd}aa3a?$7he/A3}1J.\VCx?_;)OK' kb?31W_RRWSՔqǎ> stream x]S}LSWX^ސj* L\T Q*/",B{dˆ筀RF S6Y M9Vtsɲ2yݒݺes~w$A Jk+zěIa#abx̾X%*' 0j ##$emVWWWԊ9YQy)nC\ZSYnu4+5Y̥ݕjlF)z!'Zf6/.),4!mGȀR2.\Ge}b}l>3,AqVKP `QSElH# 6?zD忛Hm͛}=A-` 1s%6Urtw=ҧU6ށMz{TKW) N)|ާ_`ST/_3҃Xm׈"ZSد 7٩Í4e7sh6/''\6wB"` ,;;;\zN</)Ł;)&/i gJn|߹K3a/@ lBs8TWP?g k#S ,^-RͰ"{Yd'I_ <] U4U٘M6Nv^@9;3?CU=yQzDġ*L(l'}+p} OLKKèT!vQ˙]_UH9p;㩖C Cۯ!rNF@,,, Dh(*7rs+yǑѯ |ȾU{c' 2.( _!tܥ[VH֊me[@,NU?1*Bpi &%LVX>WSVmM1,I(>7=+3 _M?֤%k6ceP1p.hڍDׯ*H3.azG7([S*,Yڊ^c)Ե aٗ6Mrwl;pl*5Bb&!endstream endobj 144 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 687 >> stream x%ORqʓ166MkNjZ.ȩ5#AAli"_ G-1֒š2fj^tfBǚY^=syD Fs 3q?+Ģr IQm&qԣ% 9dAqq_L^RAo#5zLYah$ibٗ,kW\\ɥ%鲰fb(G3e$6R]iRRC)b *10) aM%,DeX| Px6fwdxSL#,0?NKv5y-O-e:oR5 ;dV;?O/ā60VE}v 7"wHAe&m6&htr2*I8ȡnCA?Hb__hWU&\kОk)M{}/ E*avbog;l/V>,Od{h{0"P5J]hí}^z)0 0Z%s6o(V6C0S^nw "1d+'ǫrǓpʫԭTQs^*Zendstream endobj 145 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1078 >> stream xmLSwzժt̵(." ..(DXЉaXR[BArq`@\`0E`̸0$#SٹДiWlߡō]bR/tw;u0y-&S MOCQ4si۸*F]&Ә3yτ4o?4 ѡV5D7Fm9Μ%&ޘ˧s32YrQ z8!7P%U+QT Dɩu|(M}7bq^b3|ƈWPbNywk7HZ ąXz$d\-֙I~no`0˙PTpAj% X)M^1ǒ^.(TV+0f_WHUkR6 ҭpry_wd+ZيKB/AWɑ?7M yυ+[=sG?kvapOtxܾZ%9O;o*n<@7Qb~lƧ8HHY=Q;oB{t-[O|2Wԁ)"xia[xujmv(:{Ww]K0T2GKv;\(c%*# rvC0b*,g.Ba:80ht}A 5qKߘ1)Q~> stream xiod7<|xK"lhCp"@hl&s (oOU3^{wD ia`=]~LL?(;I 3'd/˙gv2 (6IX⸟XZX 8GMW׬rMVd'1b],w|^^|[^߭^Ƴ?gMK1 șԘ'+HiX,ւw ⫡@,H*4 Dzi@&I# W32 "%)#'DZd6ʔ@U4&$dZctsBޫPG?4!K Ò܄PH%I]9xP[;1n0-Mo 42$b%IKB. RfBT[n PՊAȳz%z 1_I{1nLS@/rNgmK9p2-PÃ~y=*=;#]4]-e-VhXgT*wtBZ1[$xC} <4(فO6I&%:Z&UCxG>'P$]ތ{!ǫ tp;x`d빉oe:ϟ .ύ5T5zF kz| LDT%\섦ž|[7a$Z9XՄ`NtS -9NS%E&gB/-2LQn lց`0A ܄xW}~z=d.!Jq[].s9]~ݙK"/d ܬӛC-ѻr?].6w_vT@ n}Qv{ۻU-/'%t%vݺw8AOyu}eZ->F{{iP5TdPW!jy w__|SAysdۓ~`sF GEj3qΰ4j] ߌln ҊOfybvnnN>ft`η3(2?>CΆ?%{+%`uxmCHŵ>l'n'/nX-aE=iu}uC4p\rs[ <31B dBA1yz_cɉťy JCQw :]Z@UHXchϴsbS_G04".=1\HjC~C cȪ0=% H^j(75JDG7DΪ0'G"cCu=za2Д, (̪Q;@5Q N+3/KXJC=̑ӻ5*?X??4`ÌXstu`fY+jj=aXnR r@mCFe5b 'a=g ʟn҆_t~5M" & IrN!Z7SLs\q1U%Gz֩K!j]c`x.,l7VH^[xX=4j_8Ȧ"ؘ"ݽBMY+rLY4]2V c&Ag-C XN-:u\ԩmr9oㆁ!φAuӺE@SdBWgix nY3t<CӴXKn<0tWՆ^|Go,PIG? :M%L$Q> stream xV[o6 ~VE](rEg[3sr9iע?~/\aALG#ECm4&Mϳ]B}y_YTy:c@Єl4qS(uDowXc%/NkO 8EL:ūi]:G." Z杕T67T3ezz7BÚ5zsQtC BxD 6ԛ]FmZp@:zِ̨i6LZV/ѩWϛ9z[#ot4ЍQ䁜IzAEgɫ'E:jAȞdoTbD4',[:III̠%fdbmRv} d;ЈrFOiM8u7; mgsNՁ 1Hgmnri$ !K֛Z7?TQ`v6?QϮΛdۢ..OTquϜ OO׻z?«}π^}ER7T=w[ZhTwY~/-pZ ߣ䗕hD;+j' vRmwyw'CLT Ir&0aU +iաkM̘kV.A颍E#\" )W§V`Jdȿ]qL dS%5!SF%vEhP-F!tAnϻ~JȗkDQܟSAX/:JZG@uT7rU*@N0FA7zP4y{.`Ma]3iݖ1z*bTî(T L$<{i8^ryN[\),N ?1JxO.8)tYZPfݻ48k@n}r-HG-Qj]nK)ɖ WnULhKm`^@dԑȇE/B,^k]p0k01pQ]eyCbs =i=;U-bAE|70|f>D|䎁/ci"ɁäΡoxW\-+U;e2L4 tMOǤ$(WOD4V_f< Bh%t\ Wwyendstream endobj 148 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 997 >> stream x5}LuZfټ.l!d/!#K*}=(K)mi}[ZZJ[Ky`P: aD&јwpa1YO$DW߯0=,DxATj sIR*e6uuG@\vN~EOGfa:7)Z'y%F;2;~gnN˶rfPx¤ 7\n\ILDMQ t8 y =Ը7ɥ{)Pv߽}Vdg;@<ޔ>So=8r{ezqgO!g?wNbr ]Dz?h|jp`,$L"TSh_ -J0o] 7u0j,\DwF=\95[8`gNy CR!\+ g{2xa5]9Hǜ=_= ]œ֐s)e$i!껧cUv ,n (|k0Ėf(AsG1\ng߆'Ir!嫃LfK+i^r 9,x$R Oendstream endobj 149 0 obj << /Type /XRef /Length 170 /Filter /FlateDecode /DecodeParms << /Columns 5 /Predictor 12 >> /W [ 1 3 1 ] /Info 3 0 R /Root 2 0 R /Size 150 /ID [<9b5a5f1217f6b71cba7cb9405449bd95><88b079a80141efdea9e230719b76ca26>] >> stream xcb&F~0 $8JR~f? 7:aKP} '&?D2@$} "Hm RD"ouyEHH/}"9+A$_dVݐ {+lKA$ZN0{"X;D3n>E endstream endobj startxref 92079 %%EOF HSAUR3/inst/doc/Ch_simultaneous_inference.R0000644000176200001440000001516513302741060020250 0ustar liggesusers### R code from vignette source 'Ch_simultaneous_inference.Rnw' ### Encoding: ASCII ################################################### ### code chunk number 1: setup ################################################### rm(list = ls()) s <- search()[-1] s <- s[-match(c("package:base", "package:stats", "package:graphics", "package:grDevices", "package:utils", "package:datasets", "package:methods", "Autoloads"), s)] if (length(s) > 0) sapply(s, detach, character.only = TRUE) if (!file.exists("tables")) dir.create("tables") if (!file.exists("figures")) dir.create("figures") set.seed(290875) options(prompt = "R> ", continue = "+ ", width = 63, # digits = 4, show.signif.stars = FALSE, SweaveHooks = list(leftpar = function() par(mai = par("mai") * c(1, 1.05, 1, 1)), bigleftpar = function() par(mai = par("mai") * c(1, 1.7, 1, 1)))) HSAURpkg <- require("HSAUR3") if (!HSAURpkg) stop("cannot load package ", sQuote("HSAUR3")) rm(HSAURpkg) ### hm, R-2.4.0 --vanilla seems to need this a <- Sys.setlocale("LC_ALL", "C") ### book <- TRUE refs <- cbind(c("AItR", "DAGD", "SI", "CI", "ANOVA", "MLR", "GLM", "DE", "RP", "GAM", "SA", "ALDI", "ALDII", "SIMC", "MA", "PCA", "MDS", "CA"), 1:18) ch <- function(x) { ch <- refs[which(refs[,1] == x),] if (book) { return(paste("Chapter~\\\\ref{", ch[1], "}", sep = "")) } else { return(paste("Chapter~", ch[2], sep = "")) } } if (file.exists("deparse.R")) source("deparse.R") setHook(packageEvent("lattice", "attach"), function(...) { lattice.options(default.theme = function() standard.theme("pdf", color = FALSE)) }) ################################################### ### code chunk number 2: singlebook ################################################### book <- FALSE ################################################### ### code chunk number 3: SIMC-setup ################################################### library("multcomp") library("coin") library("sandwich") library("lme4") ################################################### ### code chunk number 4: SIMC-alpha-data-figure ################################################### n <- table(alpha$alength) levels(alpha$alength) <- abbreviate(levels(alpha$alength), 4) plot(elevel ~ alength, data = alpha, varwidth = TRUE, ylab = "Expression Level", xlab = "NACP-REP1 Allele Length") axis(3, at = 1:3, labels = paste("n = ", n)) ################################################### ### code chunk number 5: SIMC-alpha-aov-tukey ################################################### library("multcomp") amod <- aov(elevel ~ alength, data = alpha) amod_glht <- glht(amod, linfct = mcp(alength = "Tukey")) ################################################### ### code chunk number 6: SIMC-alpha-aov-tukey-K ################################################### amod_glht$linfct ################################################### ### code chunk number 7: SIMC-alpha-aov-coefvcov ################################################### coef(amod_glht) vcov(amod_glht) ################################################### ### code chunk number 8: SIMC-alpha-aov-results ################################################### confint(amod_glht) summary(amod_glht) ################################################### ### code chunk number 9: SIMC-aov-tukey-sandwich ################################################### amod_glht_sw <- glht(amod, linfct = mcp(alength = "Tukey"), vcov = sandwich) summary(amod_glht_sw) ################################################### ### code chunk number 10: SIMC-alpha-confint-plot ################################################### par(mai = par("mai") * c(1, 2.1, 1, 0.5)) layout(matrix(1:2, ncol = 2)) ci1 <- confint(glht(amod, linfct = mcp(alength = "Tukey"))) ci2 <- confint(glht(amod, linfct = mcp(alength = "Tukey"), vcov = sandwich)) ox <- expression(paste("Tukey (ordinary ", bold(S)[n], ")")) sx <- expression(paste("Tukey (sandwich ", bold(S)[n], ")")) plot(ci1, xlim = c(-0.6, 2.6), main = ox, xlab = "Difference", ylim = c(0.5, 3.5)) plot(ci2, xlim = c(-0.6, 2.6), main = sx, xlab = "Difference", ylim = c(0.5, 3.5)) ################################################### ### code chunk number 11: SIMC-trees-setup ################################################### trees513 <- subset(trees513, !species %in% c("fir", "ash/maple/elm/lime", "softwood (other)")) trees513$species <- trees513$species[,drop = TRUE] levels(trees513$species)[nlevels(trees513$species)] <- "hardwood" ################################################### ### code chunk number 12: SIMC-trees-lmer ################################################### mmod <- glmer(damage ~ species - 1 + (1 | lattice / plot), data = trees513, family = binomial()) K <- diag(length(fixef(mmod))) K ################################################### ### code chunk number 13: SIMC-trees-K ################################################### colnames(K) <- rownames(K) <- paste(gsub("species", "", names(fixef(mmod))), " (", table(trees513$species), ")", sep = "") K ################################################### ### code chunk number 14: SIMC-trees-ci ################################################### ci <- confint(glht(mmod, linfct = K)) ci$confint <- 1 - binomial()$linkinv(ci$confint) ci$confint[,2:3] <- ci$confint[,3:2] ################################################### ### code chunk number 15: SIMC-trees-plot ################################################### getOption("SweaveHooks")[["bigleftpar"]]() plot(ci, xlab = "Probability of Damage Caused by Browsing", xlim = c(0, 0.5), main = "", ylim = c(0.5, 5.5)) ################################################### ### code chunk number 16: SIMC-clouds-confband ################################################### confband <- function(subset, main) { mod <- lm(rainfall ~ sne, data = clouds, subset = subset) sne_grid <- seq(from = 1.5, to = 4.5, by = 0.25) K <- cbind(1, sne_grid) sne_ci <- confint(glht(mod, linfct = K)) plot(rainfall ~ sne, data = clouds, subset = subset, xlab = "S-Ne criterion", main = main, xlim = range(clouds$sne), ylim = range(clouds$rainfall)) abline(mod) lines(sne_grid, sne_ci$confint[,2], lty = 2) lines(sne_grid, sne_ci$confint[,3], lty = 2) } ################################################### ### code chunk number 17: SIMC-clouds-lmplot ################################################### layout(matrix(1:2, ncol = 2)) confband(clouds$seeding == "no", main = "No seeding") confband(clouds$seeding == "yes", main = "Seeding") HSAUR3/inst/doc/Ch_principal_components_analysis.pdf0000644000176200001440000026156113303046021022202 0ustar liggesusers%PDF-1.5 % 1 0 obj << /Type /ObjStm /Length 4049 /Filter /FlateDecode /N 86 /First 711 >> stream x[Ys8~_TD 8N<>2LȢG= )RLi<[!@@ X0$ӆ%L)4I 6aYc.,Mb/=~]bDEįs謙A)6LH mpq<c<XJt&%9ftQTLr&)cƑbX Eq@L3#1iiI8t8 YbĂ7Y%I s ;K"q3%}Us&J܀xs(%Xh#ce+Pŷ@9VbeQ4(ǎ+ig8hUkP V-hPL 2(v~[N,؀To@YACR('X382 ('㍡QDCHm@~{(uoYIz&lI8xeAY 8-Wb=PC1f'TP9zh Ob硸y>_Tγ񌝍c:ϊ;|{,){_ǖ+a喛'ݷ5O>cbv~3_- TȞI 'om(yv_07-:=|O:)؋:΢"GI4ɧ,(/n&s4YG<% l<=x@n˸tF՟oR[} [._f[6>P;|x[X=YߎJW&xIb7UoL@Wr)K[@u!\8JB`/-O?,?Zr{l_OkLofmeXm=z4e\ȶ{a" i>|N or“\x^rCt bQ=a\է z/.&<~ WЪ'!*]G J7z[MPAtPyewi65::Ex62Qo֞Tt mT4Tګ'~z ._qUd9:4չf.ڪz }i-]jߊ!mrꞾxw#E;PWW$we7{NP"juNdUF QiJyw[ZZ6d "`Te]5ceˤdwrB >9!]'Fd%'?|NS:ZlUDht[#4a* yjSta>@;"cB Ѓ[}P o\ma>Y5yc.UIh~|?9S"$lMGeBvnx;yIkPG蛃'N.gͺMې/Ǔt=z\(%2s| w H(/߲"h_ObTҢ!eR.5.9xj=?ysa}n֋6Ku9lGfJ?̊lK]^ChܮdyAGD{y'[_wF)L:Z&x>f헀jU'p|ew^2ky'] }=[0VEO[ЛqZ*?Odj[9V5k-x-OjC^"#-*b`zr߇C'vEwI" -#j\؟\NE;!6xh8nnbWjN?h+ n{mɣ=m^j)^6<6j@L*eKpCYQ:*e9I 'q=XLHCLqIFC(]vrdK) iƼW5P]+wkFϺ gmrm8:ys{Hv`#ƕM=%R 5Yo5jp-lz͉UyX@Q,ej@u=.?no)͍My46b=R3:Ɔ/q 5oskϣUS1[hU=g&3Y7/%͌\iVoFX=26ݎ8)Ό4~_Yi9_?ipI"Umӛ#QfL  ΢ֱɵKBEA5M_ ;jV{?}lѪ¬}ȫwZO$.nqܵBiOvt8݋; zׅʀ 5MtJUѡc[ L MQ4ݝ {?l`Ф?L qm5J1<>I<62/wPzi>hNAB!aP6ٷC4rQڀv_ :뚁^컆3;M*qV &iQ2^uó-o7Uv}B+I  lu!8&~&rZ忞k LCfkr}$R9]ZӺdzendstream endobj 88 0 obj << /Subtype /XML /Type /Metadata /Length 1653 >> stream GPL Ghostscript 9.18 2018-05-28T10:48:07+02:00 2018-05-28T10:48:07+02:00 LaTeX with hyperref package A Handbook of Statistical Analyses Using R (3rd Edition)Torsten Hothorn and Brian S. EverittBook endstream endobj 89 0 obj << /Filter /FlateDecode /Length 4104 >> stream x[o$GnXEH\!]־SU|܉pޞzzJ/I8Gb#g\y((7苣(LXygĨ3AYZe5 [T&#GY+RFoPytL 2Ey[e܊HcIA200a Mbuq$׫ߝX1:V'ϏgJ!?W[W'G_ ?^Q >}ٱ LhQóz 2sgYJZRQ8Zk ΀Q3@&pVH-;?8l}[ 2AܲbNᚨ(pk(vq& c-F`?&vxJT r!c)L4nq6zpWIbJ%+klC%j-UB5|Mbzpluxg斞T, +2^n\ڀmwON>?BH1x:(gAx.BS@HHUG,AS#%l!Hjd.k5Z i) ԓ1zt D w44gu6UvdQ n0 ڪ_N~f T3y1[#/%7DzM K>$G4y`ҦA-8EЦ` F2$}uv0iA1AB$! xYrf=՘汶͖O'VAC<6(鲭C2OR4B$k wpy{Jp4huǍXq}HOi3F3Z#ǐ([|u@QX%1l{kɁGnx/Xz|$gnD8Ȯeh;f4 \B"Q1ZUj Sq M>Ios9b*ark,d^"3 CUo N - >Uj἖K05 R&7ut;3PeM=woh33wYG:F}XGOԜI#}ZGߴaci}QGO:zVGzFد :.g lhΊ?]ѡur&g dy_*3VE͹x.$+2zK&#|1H[Ȟ|7ݔ2M*$&fJWire}ʰ@ɚ7.XMY-$夐afqd[hݣ$y1 =fbI iopNSG! f92MH5}W 9P8괤$[<"-LJUyOJ(bĸV1IYϓd͔ , 4ʺY`l:U{0IkǶU~&UKa% {f}1vR>'͍Oe5#SbhR#ԗdSX`䴵Њ\ G*N.|c. p %y Zy;ICt}a޶xI$hl@RljRw4}jFGTB-Aj?iLdځ r(c1M%:w-<3V=$ .E 7HDmk.?4X3&` }aRH VZic_t;,l=c@8C2a EvlZVhC19ͦ>387I1K Ip¤0>3%Ӣ+R'3UW{υԌ\C ƳvhkJOlu:~6x'њthKm=k3l[fY0Qw ;F~)kde+a@Ä `$ޥl AfSa1a܊f[v63yos;Πhn[;!_#]͇>mSHyN ϫaQ:f8o[cd"v9D:$s#?<2$bMi"@bqŅ}˷!Ka>+: J@q΄*,T*bwci,P5ഁӪm8d 4UZ״BgvReVhqeB0MגGSVO.B2r߶̤͠^ C3LI'Er}w~~GG2.OVD2T-Il83|vS0aLD z>Jhvʾb&Ux°k)y"%b б9|(vvZ>"Aw $%>ꎲ$OylQ=̉uZFSgo|ˠ]"2]ɟ@FCb6CQsV?n>C5HP5i k:m[n'r뭩il{{EL\C  Pkh|eʬ,WN>pEb,]]ә[7tyݗmkW߳ ¾!@-.{q=Ǜƈ-..<3yu|onw۫][|$UY8`Z1i` ]A0/  OKP'!PrsKr0Q[T7Mn`{�aRc41n?/w-O%f㛼ٵ%gyZخq;#o%4J{É[7(5 6{:Eצk~k}?X&5cذIؿE݋J+,`KNɗnjSj)gu]R7aQx%UDcC.T{|.f8j GvjCbAdGx'EdӰ@ = ^B;x7DR )N&t3l4 VrM(@@9~,,-}gUo\R_BCj\;kvؽo1] wn^{YefV-隱k4cz9cELX܎ZsR=̑& Tc!`тuE%1s({]4^(ô~45"Qy>IL-\hMW j%+],KH>c,8ɾh&DUDiAа%ZH"oi98jU`!>s~ž~ʹ掃_mfi&nIfޓ*cxA!'|QPيI$_>\dt@?r%7]/棶$a#!7tZS(uV`G{Mendstream endobj 90 0 obj << /Filter /FlateDecode /Length 616 >> stream xuSMoT1 W=4؉G*UT>NTt@Hx=h2kǓg=ݻWטËKt8sE_ c{'#ȓq 52Ls2֊j2J3u9vY~T~*QtfY"vk^FάiH꺁pGCJު%,{7ٜ",v燽{^r-f~A$>L:c OFGҌ0HڊP<'ͱUWgFQj`%*jx14A#*p+|Mf~8*4NI8_SU%HEjlGS*Z ]HP&Q?ܙqF0Miul+oki׿v(.̶ǎfCw f͈cg#aפ\ iTg h- xĨ> )bD.2r c59M|Q hycDPT%nH%Pgb,<Ӌd _lM W[ݿ;-e,]*.ssbd2le( _ܧ+~s%.봾ydN&mjB:quܦ8nb֍^?#&|endstream endobj 91 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 3098 >> stream xV TTW}EA'"1&1WD! GD" @J $ 2Tթ€ 2#J$iMG.mwbbM+/ tkի]jw}g2ގdߊ Wlݤi2;iHcNrpz xYL7g2Y|rw4mtdTrֶJO/Esxxx)džk~ꤨXu zTRҎSSSck#ΞLNRM S%)Rdž+Gnw|p/>,\0<.{*mb&m[XȨ耍7ľküȬgƍ `62 ƛyYɬb|f5ɬa2B濘u̫333Jc0V-+Vn__c?0סS1QQxsܗc֌X0vWڝΌ tֻ`A[+Xj}A^149/:KS)>h+РiMp//*ii8片<>tFem)Gt;L,Yrɥ8yE-NAqPJ L$p_h/|PL O;:KT R38{I-A&I'.=NlD17zᣚ؉j :v@/8[Og[0}PcC#Z P,зq9L!{|J"g٨GdwBAM>|aAugJk8u+Yi] 5Q w,j&uQiux}p)pOn(LJݾM<ŒuxߓH}8O&W7Uze Ld8'-lՊ2;b YAŷeeboX fJs=8ujhpѣ1 ys .1BfN^:qszS`wף}ԙ"rYF iq i%ef\Ke| ]B.'@_Q \,yq|r[\` vӂ[)A c:p)K T jND} 0 >[S̩բ=xSٛˡ5ԡx$XE Zُz)8BfbZa.sF|??w-vbVCD_f=,%!fEVon _|` Yh}!h`Yc/dtHƐpƢHԯxH9vEa̸ׂ))[BȆb:9sb]lLbJtq'7>zVpt$TV\1|Ef Bkܩ\4$T2/0 ze-nOo{ś*jb,yw| =ې+Hmzu¶5[[|=/- J2WqʙsȢO˃.QX"˫ ʢ"i}60Xp<ͼB[߁-tԞwߓKA7CSk޵^QS^u%9'V .+_L]LOpڀbo6vu9ZoD-%N͜Vvu|LjGڀ1F$L'/HJ;R F dum Rꏟt/|j ?x f,죍ިZ3~K؂t9G HcfQaQjͶHD^46$D'نTC>_yPȥ)n-P∲Z1NN(kpgtrfU\endstream endobj 92 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 363 >> stream xcd`ab`ddt v04qH3a!Skc7s7˚ﷄ ~O XX_PYQ`hii`d``ZXX('gT*hdX뗗%i(gd(((%*c8)槤1000103012ԽK2>}wy߯jcws~7yŞ>~nSg>;3wߛgO^-ym̾^];ǂXπ| wt\eXp~`:endstream endobj 93 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1925 >> stream xmTg*T:hQIQc*$*TI#BawD*/{YayGXvaAPUIi̩ibFHKP$1Dju9Q$)H2<5IQlUժ Q~HWjRUŒujQf`e!XOYLjT+ *}*YQ1*b*toHmdT[* '5,eJL X"'D"P _VMxf⿤+*Z:ZAE~RRD0J7P _@Ksr=^ly>Ow Iȃh^ôD6߅"C/Wߊzv~Q NtJ$?ܥNOiȑdߜgk$_qz,c[p9ܚ8Xg-WŨ]'ZK-e%`6s@quyi/цد/^h JHQzx~H{p/-#@Cns3"Z$7I9(@D[t0xi{p)(7߄^oXO%})="m2  6зEDcMnk 1Hsq9E*?.%=+HIg\RVd4\H,8{̜g@X-57)/h;^d4@+W6-_k+ *٩qZo$BGݔ4rr~%Tw%'%>ZӔn Os{j=W`=kv{RNZpl3Q><wsh>Z_k'q=1DKSx3,qoO`31Qsw NO BOB;ohrdHׄ"p桃MxW/ G^\VT(saJ`;)m*ʿ;:TLc Iѹ}Ecݝt_s}}h8Hn4ɵe5k3MY-G<ߨ*~k*93 y3,qbe;9p\PʽUpn\+Zƫy!(~(s 0k06`jMȢ]Ǔ䞂[9=s~oC,7_]N%#nkelIN{/t<ڛ4zX=vy]7뺅 5roq8FǨ58 >nTp*-Ns!0" A|= 'tM3Ha ڪ*m"4|@UJ=} 88ڍ.&ۨh=vu~Y.)(VWhaYóYaNߟ9|}|w8endstream endobj 94 0 obj << /Filter /FlateDecode /Length 150 >> stream xU;1 {'0q_N@ -ׇE٬W.,?慅:c8]  I1 7g`tBw2SZJffBPUR=uw$֓TS>HԖ!56w/RCendstream endobj 95 0 obj << /Filter /FlateDecode /Length 11356 >> stream xm7v쫞S˧*`$ߍ- D%;FIo!9dUwο~3Ů_'_xUR]yx?>\yӺ\Mk7W\OyyIn"Y˴58ie!c) 9ʼnZ:J3uJK2{z#`=XtxmW??zgWwv֮^ՇSI>]}<}s"=[h=?Z?ߜ2?op,?۪-͉VhWRQ|zhjz#o }Di_7?yH<4L.\G&ujPL3z~u<JsQnh7= 03!oZζgdsSw*YuTR;@Ë7/?<ˣk&<,k&4+5V^3˔)Z𱓱,E a*cYkzX2v;Z֪ysG cT$CDG2փu3V3}hhiu؇mN%m$ pbƜie]c_^QqZRp<$xI6AZg5 eY FZipG#>!sk>>=h Y D$,1Ȟ $A-2=KD4 YDH7ԁo49臚Pj0͐:"S2@Sv i@s=_GzV%ցB,3b<Z(ȄB`bfg8zL'gS<SId1:53~8d-2J 0e%G1i㗼LD dj5ʅ&ϼ$% 4ye`^MPkR& l @|nț8|F 8|Д2_(0| ė9M9@~iA^{=hltZ f%NHekvݢ2mҀ1N74dI'{X=dGa@s|nbhZ(v;Y NV 4E OZ FLˊel`M:ᚁXG/X4rf@@a`/1cD0~`p60%$@Zf&_5orK)@ ,e jH9,׀00:ƿ@Zb`Xz1pU桎`f9nc/\'x~u/P Ġq)/ߺÖʔ'Z;B8d/)gP,sD_RoQ✁/3_6`b”qX]Q3%FZsWp1ң.Y_z1ixd^_Lp|)إ1EctpKlTh,dOʉg7e!cPmbikX2Z7vbJ41\q';Y¯jC ]_t{К\QR /T0B\+DDA~}$z "uH-@@a ĕ i oiY` o9y!䌅*3rwkɵpxfbRo0<;Z_~-3I`}ap,ܸ p✦A~п!-&7& ~9l"ĩcm82FrvJDq޵6Oo-wرܮ.ۗxn 8KZb @%o}܄3 s% ?ң``.\K\.a{͒s\dp.RWPϥ@x.>vXKqK~[ɽ Au#}S##9F0r'`40caӋB-2 aAc%F!e C' 0$(E10C:1X c>N@ 1L/2aaXQ_aquG :#.2j|i?&NÇ5ՌYVF :.)NփY S5 vfN,ٙ";ӀPajB]/0yY03/ veN,ؙ;P`g^ ˂zY0S/ veN,٩uA3uY_4h>u}SuP"j_T͂Y0Q5 F0jLUPf â!J; Hp^ a˂!LpcM"`^`ByY(1 F0er".I0*PubVǗg'g]ScuPj ^T͂Y0x5 .JUPf ]̂K3Pnp"^[˂qxY8pQ/ .eE,`ܢ^[˂qxY0lQ/baYF!`b9v/> ɟbӐ1Rra$diZ&RY+1R #qcB㺍BHR!P8gnf+ɩ_z^{>u)Dr 4WʡP\9J+bIӲPb&MCr(TUDh&pD9O(I` ·)o(p1 .漁Ŕ7"@Ko t1 .f ,]-" ^xCыo(z1 E/fŌ73P^xCыo(zQ /f]_LZ-x7SZp%z r=+HY غg%Cp b(eb,gq#ךJl =LϐGQIx9H-TE:̨k7R<-j~`!~"igq@gqq @lzVM1Գiѳ`9=+>E.&lecbmܡ>)Ná 8t.CB+1] vPb%F"0vqxhQ2 ^zA26 ^&qB>N0"fA..*NuvQ1Zn8X? $cQp"J]D±8Y0v% .bɦdE,CpID¡HY0t' .dE,`7' .dE,CQpd J]TɂP*S.dtI-j]vOqP+]VI0tѓZaNjE =J90rZa =ᛤ =.zP+ \VA6ZaEjӊ9zN+\V93;!Ŝild;pهtypu7j:Oo+F^1ռD,l$*م?o8 r\`N+̉tù\h9>0r s"]hN+5 Ѓ[D+5 r"]PN+ʉtkap(' TB8W0S Gr\HN+XŹ$șeΕAIXnU?fؐ亄iS4d 7qj%'WGBHk}r$!H-cGӖu8X>/ZN_<=U`TUj(SU |*FBU5#>u`ħ md5󩬆>u`Ч Uõj0SW }ꪡOT5c*U`g,]L(nN51MBUmȏvQ}f8thlA|.&!X|B6braC, GٴB6Ujc, j%c2>@H߸)D)9MZ)mKi%^`\y7HD8#^S/06$/Cx ΐU10,!GVf yJ@4m8M@TH0{('j @9n QnBBkn # ! 3Dl7!@HHENȁc@ȁ`A,&FW4 }Q'r }zxKjuXTâ(ڇX/Ÿ6¨dCl`c9D!("ƊbM0Vdèb(071Ѓ@1QPc1cB Ƅ4HAALz " F%AÌ0IdU:èFC YCG{م?m0QO0 F=Aè'ca VlS0j FMA¨)Cx*CUa a!0QW0 F]A¨,Ca aT1ʂdUaL 4CQav=CAØ/bQc aD (1; X1"5QK 3Qs6e0 ƜA3sQc `:0Qi0* ƤA4/0uQE(؇vCUa#g9S0r*aPURNU!c9V0r&aV1c9X0`UX#FV! C=X0z* aR0sA=X*~Gw~h=_=4+֯Rݍ̇?~7?۽]  TkV}(`W['8 EzǡH8B=Pg~ BQ r(3Az&ȡP9]QĐCr(3EzȡX9"b=SPgԑC9r(3GzȡP Uq TݑӐ3ȨgP`HѼ>Ch(<~KCXe/Xcs1^:lr,ws#*3JfIκ!8mP -NwgQy `<} isluC1qڨW F!NN Mx`D6TF%ĄlN[,::muHSubɓ|N7B!&ds8M6 AqqٿPQz XuU"5vA)m<1F&!jW`rsWD:HGTiS3Sm0R[}j$gF¨C! aiC!L/2a"cD10*֠F b9DA4 bzAEA1Ac bH@̘b0Q 0I@ JEFaD`F6C5#Äy2м\, Pj>!c,}Ґ!VN@;,fX=M=/} =/z3^(fQ0za"'–I=.z3]0fa0tA7 #v3\8fq8ra"1Ecnj"9.r3\8fq0n/-[G:&(؏!Fvf獋ML~X7hܕX2ĢλU{ϸ-X2uc6xMcug&ch'ﹾeM>$x&!c;D\jǙJDk40FLqlۜmTSy h ljɾ?y wbe$1̇OVur$l,Ԓ7~uRJ·W5tNa=|9j} s9͇7c~aܚsۯg7dT\| >{A:9'Ӳ>}u΁Gk*rD >~LL~ʇ9Qr_+uyx3S3}{Nͭ)؝7u̟B>6`)Գ}/N)bή1j.cclZUC/]qSoZ-_ci糍!8p68'S 5MuuMe6ҲFݥ˳e7LmyVJ#>r;4nSfJcxMaEE7>Kjn$'ADM9?k7#Jd/Z0}ru8FgȼAX59nnCC܍ .LحcUZGM.<-ڒG h *g<9`4 /Q߷bofYtФaY{u0qCG}1IZ{.y:H/eiOn[Tsl6}z:U|fdI4_==N0Uv[TL+LJt6 0 6C6ڰ $Qy1VRgXmZPi?sЈ[74r2OWf kK+Reʡh>hS东‡uCK;LG vkd[%G; }uPxMeiXEn2qnflK]IVj,<@M>}o_Q1\ʝeshG~H/:n:=nz+p*ݘ uLOGeZ+yɨO ':0uѾ=I+#SY:Zi~/| :5Xd5>knw̫FGAx9jI|>j K2cþΐ8$ԍ}ld}<~%eџ>%k60M)Fnv[j+u=:63}3L{ꀮ+r߼ڻݰҴf|]n|fSNsdi:L :]_#+)AB&[sUXd8|}?;Lts;iKzoWDXwzH=p_[KzoWDXwvpczeWw]Ѯ/OD:^η'T~y͟;#I}m~ws ow䶷&}maDEЖqèw~YFE,_!wbhK wX>]#-<7%)M48pendstream endobj 96 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 7415 >> stream xy XSㄕTP{CXLZlgdF)2 !d%aPYUVC8|C7~s?xs^k}ߵ#,P@`պ)Mo ݱyg% zfOt(@ (8*tOXqvSfͲh7uYv;]VxvA;=ã \&z0n]pua<=ۭv 3on`igݪ @8ڲ 8dQ%Kv-p]2}Uj5^yo&f~1c 8I;&O:m(j$E}DͦFSku۔#5ZO6P㨍xj5Lͧ&R[;Vj!5F-ޥS%j)F-S+Jj&ZMGPPj5Q ՗GP@ʊD9P)kJLNA?Aj)) eACQ ,8,KK]Dt#f}A Xu k>LXP|a_c7Vqa=䲍'ءC5 ?=a;;$ALd@(YXjy/j@hH14(e@C,5⓸-^ M[Svш&yۖP˨3!?D&d\͔Hw|z!Wݮ*hSsl:=e?}X$[H悫KB5mGkڀv~;{ꚃ%ecWh!Bg*"q<𧥴dK8  <ۈ!5x ~QAҰX`'`@4/[o$=09#+@;V`h-E-(2T'm{{D?)1P xn Ju7+B@",a $:-V^xuՃ!}Xb;Ň~'&uC+7#jmI:ԀJ)T֗jkkvp{iv$V#:ze;]k \E { KOz R= >w7e<@ƃs$`+u#(~dy>n ,`6ϵ>U$W%QlCGCrnZ]Zi4))=zHUF`F{$YYsZ_Iԉ٤a|H/`n%qԄTg&ճ\ST%;jCǒD 5osfOn6_=l*tSZ' T3[k"ZV%YA['-[Q-u~~<WXūL<bW4OC$ʽgI h{:OPR~4F(2T`7.~kh B!qqs>f[q_]EJM%#a)4ki%e%.x1=}ے[*0Mđ`unjGw66WilDVIDBL{Mv{BQ\!+|.΄+U5:Ө HHTY6 p5MPBrTC0JC_4y?MF&%!-;-"G?,]FA3@I4}wF8͵lIwƺ8\]+7r%,^n. dEʉh44@q>*1:ؒczSXRYVJE^A7gیEy*~V5ڬ 썪9q܀8f"ҥ䑍ѝTب)5&=Vdʃ&#`#nL޲mwn2}+MyrXorsd݀l{k+0e HN:kC2Cr=mfbe]e^Jvh.qGO{Lx7+)V|3t0^"V&ǎ'.խɖ{hViŒAȏY9deo5! ?oX;2!b%nr@᲌8 4zg +-IMej!ڏ=464` P"ouâLG\vLB\|\?$LU-fw)c`8|Ԫ51kmG]`OWjJeEj5u?bM,?/1qwQmhR J^ØɅ`zy dѕd&Z*jeG [\ku="saSL:E,rԹEMNfU!htӮ7R t"-ͱ$\n.$( ފ%w!]{(VL&|d\%y)B~i m"I#QUMƆ2%mBOQ.lR@d#$4K`+ZRZ1-KELedQx4.؅ӧ+8+#`uO &I4lE,r<ʻsS )l^x¯qc \֢99 *Wr{#7N;fH~Wv|!wc 9(`pmjZ%4'=.6YiH9FuUUNShcWBTQ8 T{(k"<&? 8|M$3, KQbzD"\50QJH$@Dh q.̐z $Fc~̣O8vTn0=c8bwc ^C-,+MEls02l_H41s5ʌNhmt΍&5U-D;y*u$YQ!TrZLW_TNOQĮg6jU&0Y*U GU U ,Gwc. [)3Rt(@"],P|3}̻` З`u Ks4)Jy=` o 8D]"촯B鉞h@Fx ~OnM“bM@Ӑ3_ЯQCov!g+tLh,Y\zP X_9rP[Ʌ\|jT2EU5Ffnazm|fHdǠ}ׁZ_Q̢"4QwnM ~/EYT}!B`V' <4crr7.gP!;/R$YyycƒU~C%IAH iP^k jV囍1咆 %*Yj Z+Z窕3i\]QÈ;)4F̂Sۭض군HV2i25JΊ aqs[ ;5ў z> I}Qq Y{m/(bQ 吧hj@#dZ6|>un1b}<ß G@4-rpol>)̭'dD'*BR[Ӹ/m.n[_Jjѥ!hv?ɖ"V}BSA訾7MRӛ$}lmhY48$Xb6Ej;'W[ >$aU'o= N-ynxd*>YPV$7-J4#~Z'ګ,$0pyG7rkO(.T9I~oZɁZ;nyѻ@/C}$k:3DዾYqr%S1LyhlgH 0MWULe.((*"dө7>j$bOHg!FAeu,sR, "TQX&@ e,dLؑY#&/ٌ wz$5#XAIZ.t)CnsBZ. _(uj`WW(/'ohq(Hr]xUMu^ Xب4)w]=uESf򞁊8".{&[8JU92xG`+>;) fHa4 [ Gg@8~_4LGO 3]Lzڦ >M=37B0-\Ѯӿ%"`|l'OS!S;Z./yҲd$%L.[r@N(Ud'tdҖ+r<OTi 29C%*иus [K ^ǡ߀~Ӷ]P*-?)8e扐_٦"lR&THi/ef"c.E9X b $p(kd։?6/R>= -ʃLGvvԽP̜굋ضƇf?o<'SOO3aRƹʼnˍo 5{6pء#~\Y~s!.,&g~f+ͭl նn5c^3r~4ʣO#"]eh7j bcX4& c ȘeEOBHMϦ弃ssw,UŻ ?}dQ%xKi/͘VtmuJb֔ĜMZng'l'eFbjӂM~Mט?g .okKv$MhTo2n\ء r2jj50MK^r$>l#ڲ_ug>Nf k`dz}h>Hdj S`Gf' ObsxЃ9di3%?Őg - dhzd I0TQƞ{װu\Vi9>C\꓇p 3~I{hpf{4NQS); C!!\ǹ)AVƕ9a 8,'Kt7M*#]+5{1ٽTEyY9FcVbWvqdW2ݾh7b&>$ڿ[n) *uƯf$8(ž$5O8|= Ԙr5gDj .YKI6{5G?KSbletwDl\Ω0J(Hǒޛp>P_RUi&A}^te;5Log6oq\x>L&",f21[u i&=o<_}dQ99K 4NW ql۩U%”ɐJVA#2;(۸d8eLJg}$)F=cua~..CdY5;hw%nI2fMs{׵xd PVk٭}C+h=cϷQdI=7,?{Lm͡MN^\KL +3*BN)ĭKg:%i$3$HQ: 25ڌ4.h"/laĿ&5+d;qbGDbCEE7'y㑅D3b~% #=o{d9.d4_khhsٿbhOv9#0XO"~k xmƠ ZK(an~02r%^`Kwd!d@^>MߘFBH?=Cigj  Dle$.4v[|r:ԜVF:*%`1f5yRî=&_(bkjlKߧL[; wmܗN e=æ)AU21 "@SXIba> stream xV Tuag$F6*&3k7*DoA_E" {w׀$Qy 51Q[O|j>|iS Mڞg=sg^6Q(산۱Hu%M/vpO%x76 aeFP$]=+%.hҎ 1c̀y h}6Lo2&gvURtsɴ}ԩS SRbgOfępC!% IJ4i n  )ڰCJ"0#%&-؞jJ{GcXf[Œ9Sߜ0o0˙YŬf0k|f fB@f1ʼń1_F c  d3O(>dHrM{{*@Urr~\-y^=ΗyN'H8VCJ9"o~R]gp:UZ".:9ZbApj?dg+TtB<É,y," $SvzS:QEW$|4Fɕ[gB\6Y\EޫMsR&wkZMZ,h"Ò{uJ ĈjVAq(,Wr+&;[2,` A^~8Ɵ? Y mYiհ v̕Nzg f{;"Ald2@DtG.Gwl^뎜|a_l,̂>]}vd|p<SI4L ZV$k%}mhW|4v-ǭֲŕ]xQBwf1X87˭ؕN(∀omY&Q^Hh?yV-'P8}? .4ESVµ*i JZm?e)i[dʡY,Kl^h52%x;#bE5|OvӾ4p z($?8PbSCSREMMtM(;GGDc_C]_CnDEqXHpInġq8M=`߄3Rʁq@죅 ‰zߴ-͙'+:Nf- uōR4qFZXDJIr֧&3+;DD7w!o j)9$E%J.{%ekIl9)ٖnuun˾Ax%Y4Ȉ8:\I.˲s 3##"พ"|8@IV:pe{\gouX\)Uuu#7Q'&8SPU7bgsVS'j@gBmX!jK_HRMI=_)(*DCgwk/D)L(a.Y o ,8xj8UVZ8ljTMc 5'Szb**O-CCғquil' {y⋽8Ra΂0LruɁ@Sw`TBT>xip?|7oD{RϙkLݻ!@h~:,"]qrMª0 iZ18ǡtؘ5U⹡P&@O}0x MZw`uI8gv (x|mGGS~dYPLPi٫6FR!Qc"Ҹ~/' DA !#3tMà0, Q`4k>iz.)e_ħ0?Ev܎!R2Lu11ɆE)w_AA:`)#oI ᛹4 2;OϞ_Z_, +![wcXk <<3'*< w|钍w46TKGVx{ipٙ!&͆PAaU5W gHilj͝Hcs Pb޽y.P u+p7N%_ sͰ7_eU@q: zz]e]_Z$%r:UQF]{s NZTRS5 +*^Wɮnl<{^A~=/& f%c2ړ2_ddO+n_9Wf-y;a{KwMg4;93@2-<9 ?7T :3:ySkjoآ7nrq'cKO4p򊃸aTJzIp^9Uu^VO5!endstream endobj 98 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 4709 >> stream xX XS׶>!pr%{:REV}Ԃ∳@B$ ! ; 2a8CC@E_m-Vڪ{𑝳G<OsdxU3?)8ʠ}nڼUl02m`hI"IEID2ǩo8Μ?'Y]~@_PGO#!%~(ǩ E2پ3f>i72p?i^ǕPɻ$}2?d4 ]C%VHߕ!Qݻo]hCFM!y^pocӮ{;Ϝ5 &kuzb2$7Vb)XFl'+Jb&F&܉9jb.A!>aA?`%aE,$bbaCc[BH%p)&̉(7<^Y6߉j><¢|lFz0bbKVVϬK #cG~1qTћF0f1:[Wh!tj1vصcc/6t+  ~с..ߪ҄P> PRZ\R~KkP ,B rVbsʉr"B35$Rd2"Qx!֐ױۓBSgXz;᧰0nBER2FA)=d!gQbXoXA O=zbd-{jOI>zb!#=PPI:Tǻj=!46ӧ1X?-}o_qtW3:OBB rb׭Kߞ}"7g<ω&D Y?+*$>O+{)ྺ@"t~'wux;E%g62T(Brf%. {PLTQ<xv iI8ҌL1P 7T!qj[zXHa ݕ`$ /W#\}|UQ=YGLrP1{w.ZA!Yd 1 )Y'c{Sj]NC-˔gHfR5MQ(`4e Q8jOp1+֬/β§Lka:8ꡆC&*QcCVCA'|͈Zo}.&JY929.PɈ||8_^ vK*$7U͔Ot?E@0,ϻGM]Q͕JN$H+ Jf=6!j1P͚*/k= gaX^~>pXuJ:]R&x6H kQ)zX/G%XauBtJ_w=Pq ;Rg,l\ q|.. Zpb9Zvr>oNĞVJ"R}1"-pޢč2xu-j`LY 9R]7Œ JC҂Gd&G|Ԃ23+4=~ \*" fMtEVDUp.JgB76}_= -kcr[4 hj P.BrVxH6ۦ[F3T8-0)l~nD 40բ,VZu5? `6,T<ϱFB`Ӌm,$1t8:xJntZerɵNy5#l9Ʊa$ ;WT`FW Gt_ KC#Xt2,^X6_IgGi(IJC=ҔHs0PQ}Qa>G|۟LCx/<.%O'2I۳u ڣ(ՈTUҖLD^e-~u6n{vcgl~@6fxf=Żc4',ģt`傍^/_{7z2P2tG 2c.FxmA$VkCC~F+kȪpWXC=Tq62+jlG= 4؟yPmLlTB"غ)^\˹*]sntuJs_LMZ:4@%Hz _V7,7x ߹yvHk#aކ:V_YWxQ%Mqw1y]zk%AE V8$*]л( c%Z&6ۧb&V (%P$.+L/GPCX.zˉMMluq.AT/X9. I?x7,ӴQgh ^V%_@oAe 87C| 8sc&۽;H ?j)ӡc%%Ww-$D#qYp.>jm Gq itbʉd2*ڻOlJοGiGtԄ!4#&§4 $"B"cs`^C-]Mmٽnd{f/Sr<4$4x@"a~TUؔ˴u18DZqum_RJtAO_3:p ,z+$ɈK*<&-N`4o4eN}DzTOA\w#TǓA AR'OE01\兖+:-X4SӇB~5>DM}äc%?ŵ ӽ+CCL4pq[qF9Ʌ0ȹ0ߑn[lvOkpfnO$zƓ'_?!E>Ьa}J07lb2\_+x&i r`Z>;)Hv ,vgJl/m$ {bJIiwX1`Szt| EG/8qgw.ز{)Yyvt7,\.ֹ{ly|Yynzo^ZfyFp'{?;ktƙXNex`o{2#U 6;O{EwKSwU_~ꚝ-z^h+sUbhxeP<*:Bk@1ml@LFQ'<"N9*޺?!Ye%ڪO=obCLKφ i 'f W XBuo8}t=yN 07,{> b'{8o'Aܓ/j,? !o6~TM_</mhTG '¸o3Q\wc{Nl\\z{#'kChWB#@tnsKG8Ie^Ta^M)㝕zJȒWn\keQt(`  w@9*/(-*QiXiɻ b]U)2x5PC.:C5nLtrP"rF)yI\x0N)(7PC< :|έO(<MJ}>@72(1>c $k܆ѣFEݰKcYa̕\d,Hf '[QDRD!)jTCSj~9SHO^9m])|– +V'g3E4~{bz7Ov`^]/n^}z_2kKҏ[ر2ZUn4Vt(5ilar.K`äiiRRŸeN?o} cBT\*Pz;v_=|;5P raI:Kci%[$"endstream endobj 99 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 5850 >> stream xYyTW֯(ф[v⒈wWhE@Y5 toB4.(F }K5d_g4<9W0h@)p 9<.?llEn'(_#ϒ7 1(yv=~/La5Q\&>=3y> BS3z(zমX:(%h,S_0 t5c=),( nm&?7|rz'Ky铻ǿtT.:a*3GPc16<ų> ipe>G%4&F3v$Is0XXxvF9[_xM N\q%- $N v{(TUd'؎8~8Gmc{| û6c5=Lieq8X6l5:PiXe;|7n_4]Y=s/+6KQ9kДddge)4f fwyѶ6qbG2!xðszdd]-(p8T ifGd YR&w ?A$v@׻!0dD| &b/ݱLljXa95(8IC^@ d|ֲH+'^ ~А/߱+|~Ҹ$#anmjLWeQn^88ךWEuU7icC1H:P=K&{͏KfuVӘ'.*%޳7}N[+f@Z* cAMT\c[6j)z<iϽ&+E8'Ɨ=kR3QT؝LhB3F+m2f%eNCgI ;u詆jF k"ONjZX/ v OC!h90Vpۈ"փ]"Άq.Cs `7ә|2ʃ/pؕ^.Z!`zB*j-4 H7CȞV[kfN? r0iad 16e<|=|t)%v}p| 0@<,( iMV 5G x2kK<'"ఋtH<"Sm :tvBOMh54 P0oZ:ڼ~%b,vx"ȸH!4;';7;Kqy3Z3WB--}WREfvCt4z3V!Wd֙ zg+_oA Y8j|m }kV(IV-avbW _kWx?C :`_P1FuxCH #FߙM/҄4սd~ Gs^yǘ4߃/U|'shcZ Zz 3"3JO@Xߥ L0$ya{"lu [XG lo.W:Q)+#)3srs2͉]1_<*Bm_jS>33h IUX@B' x of{|3|볰Y$' KL% 'a pT~^vt5$߃Ly{:4Ė(dJD4iI6ZiWxlEe:Vmd..; qMu{ scyLy{+97¶ƅ]߸!Imvq΋_#0ta+*,gTsh&V:aH⅑s15z4߻Нp!.5Yk$rLfs|qaq`Y$oEc|M!2dZ/.6 ̖ś+,Ӗ6sc`$uE|Oyۙ0,o0/lsVv ̕SƬPa},SD=ؿEd 8/&v8}Z›d0'Mo(-N U6Ӈ^$Ž'nLcoL7jɵiQ(>"hSe]",(*)r4( ed&`YAnH=ZcZzlび;n :mj 8nzE=(76\f`0bo  &5["wC .D#]mK-wFDBsBhܬ#7SƠtL\kʓw_)ih7bc K0Alk!J5UהWn8>ef_Yw`o"Lk)rm0~7sΜ2g¢uW|w o=XmVP&/'2 KLB (Iiu 6}gzzҡԣ}xm'B_&`%fԳ޾ 3Ô:?Re5|q600(/> w/gZٵ? gsKD;o?h/\&YWctSs4(m^q!qə;Q&הtO՟GBUS 59(5GH!; 2vuu[B bI"H(hK ![?-L0Lxkxk5j恠1r,c# MNf)t׻&x#^&Ԇ u|IkV js IʤҌcci}I{s~J@Pfw*b9\u'$zTWj HWWTnR͘ZO{-vFcq k.q_8KڪjZQsV6eU|]~ /(L1hdL}599QKendstream endobj 100 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 386 >> stream xwCMR8'vz-   ZWTmqCopyright (c) 1997, 2009 American Mathematical Society (), with Reserved Font Name CMR8.CMR8Computer Modern3vťbڽQ"DfVT@htkpozc,MI%ڧϋ1# :Q?f{ku؎׃$Ena}{mltNx~}vCoa  7 כ Uendstream endobj 101 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 3839 >> stream xUW XSֽ1+"V ("Dd<'ZkԪ X8ER/*޾  wIkJg%t=c2bWS~~0>*BzBS1XHQB98z䬔4c󠀐iӧ[3f?1vMMO%ؤuɲXy_luzq`<8 6>=)*E]օ.NvMqOHLΌZaOVoL|B@b`Y<;+,#"mfΚm;g1E-L)jeF-Pԧrʜ QBM>\(K*ZL͠(Wʊrܩ'Eͦ)[j Kͣ(;j5Q%5rP%>8ʐ2|(CЂ9/#G0AxZb:WEnlQ9П 5Ɯd^ّz#gf䯺nzݟG$zzzzH+ţ3FD?GgwpAC >y թ w/6󅜦 *q6|\#tLݩ# E)!_ 9JvTF토[**ˮ(n{7ΪO.\k3s9K7Zpmtn g3h+[A= 2eMcX|) >l@]e6m][)Lǖ<']'l?Zdm bkUI(n TTpP/a!c05"pIC*T$4%?T <`k݆m4kq)º땛5[,5wibB$eK}INSoX 4ɖ]j3k--ZZn뱜낳tUPMjbaR/\,m\Q_[:FuG-c`̽>qR>?I%3K4$ X$W/Ѫ1`þ -T^٠ة0xJB3?xr9f;my[&kW8b׌>HJU UBXSw+52yo^[I6|[ƇqY{tdӉ'v|dp <ٳzdmygW+vPH^tc{4 -N E8 &cB@ÅESXsz|1䍧wT|{lo)(~an**~ϛ3ܭRˬpf4YРP--߹H0 p-#afug4mck+)yʺ0$xJj7cPJb|h5ؘw$KtMa=%WSe;ddK̎C[Lur uXNO{>7X)Kc+ooh(OަUP;5=N78+ʣsN~1-=!l}+õutfo|&X7'kM~"kx7HMG_Jx*xphݶ씴Ĥ{NYiqi߱ٿ䣝s0 4"A:jVhF$EZ˜A-8@ȒŸb5 !ph ޷ .tm AYF\wN|"HI/Xd)c`*.TrO9 #@f39ȇ*F[XTLGOX Y4ie&}Y"֓Nt/Ϟ:qJU/^ ]6_<_s΅t .رL`l{ |\ G[X-շ\ڥh׋a[zCB>xiW-$&@CDl&SFrtB]`vM0yV[xC*ql> x2~?>?' &mC;nT$=9ubgot!I.=<2o?6;4 ^3T*R DrEC7NV\z=aaVl&Z'fVe˛a|2I.V#$ޜ<(ų.v]F"6=B7J 6 1u+M2>l4jEߝTyD#1,9Λ'T_Ϝm然R ;6l'qZoQzv[BRUasgʴ%a8? z J tgyL^opqx  z.)]A],8>"7fVy&1CPG`ˎ ,JvNZN-әgER&hV"*jwRt*U&E ^+TPx.ψQ?w̪(^WAEeIF{ VlG/]P/ 4}xGsr2YҰ+ 7y#_zIu(b;<粯 aG_6~~K>D~$Fem7ض; ⟯/w f'`s?pjn_br-7#ݽ"ztE*~kuz_n3gΆC*[# 0A)\?0|þI,PY:0+*.:ucvV֬=S_~۲KM}\Xy<F@F9Uql~}-C^(&'!y}jZU; _4##~]sm_o='=ڐz'"`]Aϒ:HЦo 0z'FoBn)C(~ W;d)#rZi0GZTs%aq0q-HaL-O7Ct= 89\w嬥 6{AylVcˋN]ըCߟఞ޵Ёz)j}psendstream endobj 102 0 obj << /Filter /FlateDecode /Length 162 >> stream x]O10 *!0~ 8ʀ0%:t8K结ϲ==(ul"~H0Xô2qAVٍDԥBoh)jI4U6ֶI{`mA}(9K7SiZL!`nSendstream endobj 103 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1582 >> stream xE{PSWbcn[޴">ZZPL BR)/ ?@ A@lۥ:uqw윙3̜s~|GS%M7CV/% (?P2 Wb 4.')s+͖SZU&9X ݲ^+wgsLɆlun2XQAsh-TّnZmd6r7s‚׫m&k1טoLQGCQ(nnβY9hs1'e9y4SFͫlTOEPoSsrj%z⨧)J(5F -cV0ȾKkUb1psidU Z0o. ;X^^s #n[WOkh)b+aP*T`0FEohL \I!i E ,ٹPDIa:ՅjcyG:9/k܄,*$Q5$*q<tkfI]eB s;*?'8OT&~[Л.\h;a㬥N[5wF}\,[LvS{zccoC>s[w=xXl-RGFa_!HDi$,fƑwi8#brfPCć܄B.#%З:UD7_j~?78 #Jϔ:]5wi߉&]'  &/ DέoqQhˀ80B⿎_@h~F '.H}O7;%+|#NkPň<ù5U|5؀is0GVU|ڈ`t!KG|)ė{| ƽݘ%%oWcFW?$Ƣ $Oݷ)pU i]'~?5\7@rl>`+ Kj'P P]Ы.;NB{%GON0aԷs{ do&dےz̞KނT4@d5B-dPU>~!yyYFLqݵMYv{q8Qh9J. ,` ,Nsd4="ըVv]0 \N䜄Ev;Ԕq  m3Mv[ (szG+r ᰆ{'G:~֗ڞy4 >V\;ݓڑ|=^|}-xyMNt Ԭʶ8* endstream endobj 104 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 3879 >> stream xWyXS׶?19*5=s҂ylRRE*( a@ œd% (PFjkokj[k>oz{9Η|Y{[-&OD"m\~8 /' 6^Mb}й(AE("2^ +]btْ%.2eht*D"݊P*^:guJűã)k.ƆBd2Qa&EJ?\&mU)e#6("nq񁇷˂?JwB Q{ʃ3FyB(C~%zݲ={䤞_Ђza&jG!lg ZE2\lM%ʫfSMgXSu$`wzFf<(!ZAjBAD󐉈 "XR֞v3 ~{c{dSk Lrh@1Ϝv;%Ɠ{OcSgb~f3  LC+Ԓ":2*P-D˞JnࠄR@XLC\Jt"*nlpa9$wz YJJsƩ6Au#jQz'(OѬD64VZ.nl_/31h.Lai28զQ^lu9%^(*$Br,oJ5K*Es'. ե}ܛ7p2pYV:ce3|א`+Y<{g4*V& ~ h1XFEZu1R.gJ4GZ-oS'mt$x&lP'\74Qp \BCTB/m7O17$ w$/roĂuP^g`^A6Ȧq}~f^j&=KLJ^=`V]NFod Ѣ0 YMx6d0Д0M**fq)Yd+x]vbW8L]mFwCֈ. _.< |yrug'~Cxڱi rX!|} c'+8޼EMѱh&rcMc=|}탛֤2L[/@&-u~\}YEQmqK`:8;\FW^xV>ZlJ vgO7: 2rOD g&eY[^X]P *HO{Vi^C6G*eDDl46)q%2Q4rݺ,&6쪚seg=7߹ˎgZy5P%sIEG%XHzr%zf݇2tŭBP5<떬D\8]9%X{ұVחsU)I']q3ͭ}+-v/gơuuGl@/ThoOIc_;IA Q\:xzߐz:j ,W8؛N` Xa$tY_NXBQL-CQ}/jNr*3b7.znܸ'PřGppx.ʂ\e\^A]͈BwGԷ *9ǢYk vիW.|ƍ'rH2_C_I 6,ۥ9XhO!F2wG NOd/EK1M$?3U] f`@]k1q泧K0oI) ~̆# INP]5.}B&;#ha+1dC.<9Nk!6]%Ϣ&Cbd#rIѦi2 t}h~p;`(g,d4אh# kͼlgsma#3MztH}{F;!d&ܘPonӽl) o57/)u0A_mE,Fh{c(#!)7F7",EN{CFF%IgPr۶.&ؼjx'et&y&j:uu+^)!V$NpDyuV8L>6yETS g(3endstream endobj 105 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 874 >> stream xRolenVF%1@96,:)BK鎵z-J,HƳh aS21qNBs%ې0>/oߓyއ!aុ-7`'mSvQyഃ_Gbl^;]0J@m8[T/*eRUE[ ѠߧH^C>+aPVR U[*BpuCIir)6_H潕ϟPDS Q)ԑz@vD^&^ȊFD%L s۶vݾ.2AǬj`a7=8~u& Cv ٞ0(h~p {< 2HX>ui|x^Ju.b-7uJg>5p bi[YL]5St̢K~Z{꾽䗹׼UuhQШemv (K#{>43 C.% ^PC # >"}٪-=/ܼ*3bK-AʹA2&;g5.>;ms?$7}n\ CBk~-\ L{/:󉁚5 xR V,: }Q65B 1}w F&Tp2Sd''xPozW;seEt+ObKwNu ml9-?Q||VLr@1}+B'﯍|7æ#Blnϼ1|XMy MFI'9`/tVYVczQ(8a"4 1endstream endobj 106 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 329 >> stream xcd`ab`dddw 641H3a!O/nn߷}O=J19(3=DA#YS\GR17(391O7$#57QOL-Tа())///K-/JQ(,PJ-N-*KMQp+QKMU8OB9)槤1000103012)ٽgf|;?̿ܥ;~3>,}} |g|Waq6;7<_s/wt\7Xp9|zaendstream endobj 107 0 obj << /Filter /FlateDecode /Length 10535 >> stream x]Iv?UNe|G 2 {aErln]sNDfUΨjdFEWFE[˒c)9K"յ%-U tDĕ1MKпTեP˔C]bnS+K]\H4R&;i:z?p[^חԨaiK>߼EolwbXJB9n^~|_~/~i-NbowOK8}w{BX}LzN UֵǗ TJMSA^~Kj'ޕGj5ħt'N1gGY͝KQsu  ?%Ołގe O8]{;`G}vR.$lG_/dg?\((n,O#wx wix48߾xg ~Ы_HM]GyjC}oG`GwOh?濽|O-4uj|zZPͰ҇bty/f肣AF i<g#z_ sVY^4옷o6j־RR|4<[ӯ0P x0%D$%$n!F/#P>"MVc 5I.5t%DB PqT  097P +„I:3f9d DD ״2$Z^'T5C[WD ʄ= tWj+`ɋ<*cQn3i`З~<CQPE55 *zbNF)`ܨc$nF7@(4n 6 kN8ڠ.Y}eXB{M@(۝F9-q5((u6rh' 4$ mPVmP1U md]26:h#%L kFn~FT#sd4=^ >QsLd&SW,2r,2Ȝ"v42:t. 5nGC흫+-OПо}|eGQ(` ./1DR8` c-8b 4DQtR*c-8. !Vׂ#61J+t M%m+q5Յ/wIka KIk܀q⵰zBԆ5л5}Ɇ@k|>UCn5~ͣ 4`e9|:k@H4~#6(CQF.felļdnClP"a#Rɶi?g lİurk'm'0ڠ{АA jʏaa} p{p Íh@ϑ37(?"n^7sHqP'ܰ ydF(_l\Jt!E6]*L*y7B4"sw>N)U1ST=Ks*SZwzduJ4i;5&dn%}/<5Fz vl惸H6 r[ &"aFDm@ #6nw bTEͲ>Rx جKP5΁-8WqFo "Vעo93׸ .|K+hMK\1\ti*_ 5oE LJI٩gwS*qcx}4J""Tg9Dv"9DTZj.WؐIp{kطi'~swYu&w'gZ` iJ_"UmNr!w/*G ()D;xZXM+U+1Gd0 ծ6+ e #LK2CZ7@U?Ȱs>yɏ$ "_M02,2>NHm(g`ˈb8ZFt2/vP-,rl}$"l6苿[_pa "A@3IJF؅q%#SD` y) #]alˆRDa^z0,#a*#gıYFadFYTPWwU;ժ`C;`rwp{2jSy`D;X {q5;\}l۰wuW;u;`ݾVw8@ m~gxaVY5n~fE]Yp%U/`̰w^f7者R"ݿvJUWЁ#t`wRf7\E!/(ӑC-C5LYUqd ]b.Y1À%f8 V[H*P0\E M{t+aN5 8EUY07L"_ÀWJprp!v5CA"F PSŒȁ8k>0 uͪfUm]6K&r2wM 6=s` OmP&`lnj7j&h n5MW&&\b7&ptM0&i7IdN)OGS4~m/Dm4=U4c!R'\鷺 ;)oJ(P&KD% uJ"$!_R'ԄACHR!; Ȱ;i|*;}e/זP%֧gU6yɐ^yaHd"DİQy\*kmz~ woh>u91zxCvƃl + 7dSOo*xC kC oxC]' ހ%(U!UVBr6!n CqcdBQer讞0^9T\ȡZ@ OGqöx˻QZ;VhM9!g0 0xPf LAa"E°Qc0|0wPf ށA;(3{af 0wPf ޹"`3PCA1OGq?Z8P*Cpx`l}SCp"|t{GjCrCcrCw`ȡ 9ށ!10P{Vk" 6⨹6mshDw Q 2QYwQԂP5c8j4c8jkؾd(uGl6"EC6iffYdfC?g 7Tᆊ(%:j(ܰpcnX~ܰ pCMT*G cD CZBqBfCîq A1 "SPġ%*qB6iq6Bųqϱy#8tFq0Q!{7€CnnZtFp΍0Нa7#o#8tFp辍0}q6€Cmݷo# 8tFp辍0} gT `>Y 5q3>>?=9m_׏/vF"MͤʚhgcKϱ LYCA9k((3g e̔5 b3@TfXUXd&{D523PTfF'̌523PTfCQk(*^(ġ~`3_v9#Ck0Pe C5pP˛ k(Pa **, 8= 8TX k0Pa *C5p` 8TX k0aWM•Ng#pϱ8LByQ(0/ DEô(qZ̊YQ(P+ V_PPaV 8XQ(0+ fExì(o PaV7̊BFT+ jE]7L+eg+J"&Oj7:iLi9(}xCo㍮pCn,[F'(b"xƒ Qxp! 7D(<^ 7D(<8pCnsMPp+<bygT٧"4qGvSIdhN5k} EȶOϱS 8ckVD@%3h\6^2&ȏ3 d+.q|Y b(3FfXX1u A^FlOAXuW"|Ea49cJq<@4>qƶC:c4#*-2gh"eȰg,[m( %!ơ:c2?*5ک!6N#JrvUsl/` 8F Q 80*C3DǨ2 8T^A](0wa29F6960)J(+1U捡c.՘Cj Ј!~,pdC9~1c0Pw C1r;CՔ`c0Pw C1r;E1r;Cu`ȡ 9!c0Pw C1r;Cu`ȡ5C=/C.;?-4YU7P `1l? Pa6UB-l握h1m*hC1lD1l?b Pa5Cc(0 握X1k?b `Y,j Ј},p c96Q졈#CG"8dEq&8-p좈#FG"8d=r;oCH"9d#EsX/C6R1lcH"9tBsF0Kx5PژDlbG8a[\θ#Hf?urtN?z{IOrh/h؇:Ɵc(Bb4sPf̡B19T(F3_P*CB4sPv> hP-C"4sPf̡B9T(B3 EhP*EuPf MݛPJp429T.710>E4Hۜ?jDCmϩ,2m)FF*^dvȜj_ֹ#/҈0lm{c'k/QZgPk[TRbGQx>ĎS4f3#yWjG{Q$PſU$ytN Q 'ݎdnGږ;jzy_ah\bvv;*PƾBڰQ\B%[2p@zY( Q,;Bc31[?/'OkHMDM(E4sƶwgT CpX av 8FQaUFe28DрǸRP)!9SP̡U1UVBs61800 sC(s>"s41Pse103Ot9󘚷,2=m}SYdN.FT9ET~J#S/IYdNOy31Mra;4\?}:vسxA`0 U[hk0Tm ƂjHC5 cAp,"E[ñhk8m ǂXP5 cA`,ZñXk8k,(vMS֭5>ю'Oz Pa 6L[Cik(0m EH6P60Pm >m XC5kc `5T[ik(0m jXC5kvMPlb q&PkMdc`&>TV"G2_=*)U 52b*S~5`zm[~烱 }0Sb*XL>c1u` }0b"XLU/; }8Gc"hL>I/hL>Ї1`4BĖј|0^ĸtހ& T;n* 9tUr~0VaȡCn* 9dUr~8Vao*9dUr~8Vq!C[! Co*9dUrvD'~BU0t?f䠕lŘrm\SYd<Y`NY%Ȕ*x.FTes"ƗGNω<+z O֐u׊|O~/Zp7pkyRX}:}T<ycsrOJ9ESJSo撬Ttz{{1b<-tֵ OT쉬hYo^|iW5gJLu+T\}'n;FF4ЄzLK.5Q!w۞Q\09~NTozXQ> m(X?*i5%>{>,}Ew04tb TP~bϷw{FXovɎNv‡{-GMȇ}vBl|';ގÅqTvZZt:Bդn<@cKl͇4q6oiPw_*طOKӏ?JaZ4-}!haXO\~%:NK= HsB߈fk4틗TIMVGV1|K^(m72v T!)|3 ˞;s#D?1ү:D\"s|Uoi#/΋GOk)QNM_;[ihFaԗoׯIo Svq.E͹Zqz{j 6Dƭڣ|v{N &_XCėyL"n7jZ?zEdKsV{3/DbR}}6P}8egwZkNkog}8YNYS4Ul[務 ҥƿZ1A͚}ѐteLK<.NשU\y̽W&3/Ksb#Tb~Q'ɽ&{YDŘen3iPwOsCabϴ8~Ƹܟ@HS7T%f2~1> stream x[$7>B =%Hp ((Bw1>.Oݶ=I$q_=]ݜ|W_D~f85s fֳީ<9{z)`RqFYZ8kEf:K+GZi[λN2x”wWLYi50Kr mnW4US)Vq 8;E0٤/TlNA2 đdA.@i a) :4 `ĤuX`h<.4aƸq>#bpn~~,<ޏp&`s㰲Et:u,8ʖ٭"Xjoal&z-% DW}QJQ7#X^E,0`O]mPse~:]~sizfHTCX_G`Ax@}m7{)"k F`!1{O{3 Vi-9 +eWѼmwM0Jkrf0s_)íV (9,`|ԯ_ӗm^Zpwp' x7>jW4f;pєx iђ"R4ZuU%[*;P]s t$ N>] ~A&,cW80 _2y0 ΌdN@Ž7ؔ}|T¨j{[1pAIx(s,S\KrNfy+8|)ƦFsl,ͮP6ې? 44x T+]ьjS2=kLnPn"ٗ]EyYgNCVJ'LIk² ]QGjQ5D  > c#EE5Y4i zh@M A4i~WqĎM|wY%^ǜYMi!8>q!r_2`n?anO o*2.qd}?,Ʋb?-ޑ8,*x*'TLĕ_׋XC Wm~zhe>$u8*1û %= 9p̃(=}""jp.| ֺs,"Wh=!pR5!'$G{3sӣ \e2U^?W;`[ 6a0D0 vYXD f D@2E}TRZM!sc ≋Wϰ(Qv9?o[+hΗy9a͗E $VE&~xw]pc<*$0H0NW3`;OA:en6:xيo) E]5Ck5]YfM5l?sPh9$f\~,N0AoID@ |8'SdVVԄ4 tDQ&DvU~lk!96,?ʆ!s 8d> RO=Z̝0%SnH(n&(r\Nc=IxH[:Q' 1ǵk2ۜq`IwNi;#o&jw{0r]l'h n.0a?3~- M2 !)/۔M_؆/t d ņ`z圾J6wXX%6Q&*^1E+lZSTGq9| G }uQ9I.Xpr9ƨx!p?LH4Oz .vcqlQ.oo[xk5vꎃTky)/#D.Ҳf.鯪CxŅ<8ǽ!J&gVĪfD,;!elx<.?S_4*33}2Qzpkr\.Lږ˪x<JRnPX:%%NQe ِ~b֝]1Qԓk^CUceYj kv1 mMazsfk;Ch m<ָ'D [Jčzi"8}lޑ>dB=rNq116oiSM]>Л5t/&'rŏ:p:ܬzy) mg|}ȕ #x\K~)^-vݞn%=E)r() Κ0' r06uyIo"BH u[ e`Yd2!qtg"m<|| ;fE dظ.F*ԾNp-tv 1F#p5.r14h @ dS?X1k, őtѝs! pЧ86N!:X ;x;l 8p?aho}֞h.$@fL\SLt~LXڎymr eA[d^P^mҩ7C4r:8%Z9٪2P[U v>,$'1Zw9I7-˺^Rz UíZ FXV7}(\Bԭǘ,IHnyTzfPw7SG&ҒOSὐ25~*!ixhzd/d@~Vٯ@dc59Ve}]9Sp$DH\2bHK&?:0T}$$ޞ:^w̏3pveQ=wAE FeX €]hŻnM7Z&K|cX:ǫ/5"HL4Z5o1h=|!]Ug4|hBvAl8IՁ+zL9Ž?>h$-\2"L9XobI~>' }YHx:9 ?3Y9q*ɱ Su_F㍍:MGU??#)//fj͢ endstream endobj 109 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1600 >> stream xiPWbANwC:nr985! YH!$q貄z9tKRbs'6m'㉛i;q>3n?t 3d~yy><,5xe{wlcJa~V|`:CVSE:x:G*uixǮ]yl߾KV)ŅqyDTHr]8u:^0 $54Z˹ybRw\_^+24jHR#۶*u:V\ɵj 2V')V`Xv{ +`aX'MxS^OK{mJ^%`YqR,%>j@'yh L\|\_x4I)uaWP'`ZZH;MwwGAx"EY#F3SV \-p[[CK>jkH^lmv;%^_0o@|Ƌ%(m@z=K^6JȪ"{>VRQYULʾDye$v̍q!+ Yx x^`gum5$*/P&A*+>\P)byH6oF#~eUTh+vL5~6ڶ<^븂l1e\E\WYh$<0x9iʋH0*H?5^Cc6YTiVo@`hrlFsooM͸h m|fnZo4RPNg#5xlZ 麝i V0ZVu4ItvӐAoZhk<a蕥[׈1iX;7Zv]v57U. E֦,cTM '&Ϯg-;gܤT~ l]Ubگ'QFX?ImI)X )> stream xY[o[~'Ї< $EM&Z%˕H=sHrvv, ;Aߋ~XBt,!nErAv1hdMTV=Xè & 5z ^Qm|B9"*H?!'B5qgBU׍2Dwy!IfբCtuWlnIAh/ \I\ cR N]P*/DxPHrb='et¸ s6\4˯(/ωG :(gd -a8+)ad*Zuvuu|[W?rdVљGuu[WOuu_Wu8\_/0P];k;-1G]F"dg piOnlT4*.%J[G=1]4H9 ϓ4g -s|wzN#-Ci BMilPϓ4g d-e~6$8pQnUl0?oow۟/w8؁o4\ c,X36}u{)$1z{yhaN(Nwu)ІG3 q8UTVi(y;*O1É%mD\yM}DxFlS6mR4n)@3*6q_*s Σ4$:ZBH:|c;DڲAatL~JIB &SvCK)vOڸRn HbOBW"vvID06‚x)4reir sU(Q(B}.TlO |@UC Q𳾿žIQV״T.ʴÙ_ݤ,2UHț.( P)Q{KMb͔Ç4>f9YLHt9LjmUeFΝ?]=qPFysgRB@Zj<E3&.%IBa#$CnvZ4aL4hWhBFh^&hMޒGyQH d/N# = ,iIղ =4K՘+!&u_'>[MhNɨR@ `z(|q+V{v=wNp}&ؘ RuXh{3/ݞCse?zx&RD"lNb" v.$| 6?8 #:p Ф;,k띭Cq{۶>k:0Ƅ}#o^5M.lLꕦ1C^4t4d`5E[d, m< &g@BV|.wB_դT%l#D\͗!' WHy2P2Ї*^;P0ϠJ՜zIH4DWI#֎԰5KU &Q@PF*<( AUQc@W( ~wI0}$fGrQXpa#MW9/=w&f-Ef%,'R,#{BJL  ]rA_6078~Oy㽏5 X^ /&7!22o; 4d֩LN1w)ϧГ3o^%,ab#ϣ䘟4߃K[)7*0{\{qkᔐS1>5+]fKZII3"s5YIZ*M\RMOԱ) JIl͊%K]^psYIV8mLjƶ wM(xb# Ft<U:˲a7E|C;nœFp"f"@tfR~>mGvنDҨ DkXꩠ_io3Et_/KX+AEX_O{BB:M 8ҥ}Q7`ahڐNQf ~~vC G-lNzDzcIQ^'O:RY?oxav[PU8z )63 N/ꘛC顉Yp1v:5?>CF< 5O8v}(/A~QcVb39R;(k46OG9$/`wcMv !P< OM8c?' ͖abI?6,2&̐s$E))Xyb Ym>b_!SFءfy~endstream endobj 111 0 obj << /Filter /FlateDecode /Length 4254 >> stream x[[o$Σ112J</Hrx$Z-ܐZJcK3FZbbOĉLqb]*rXN.觧R/.G3qX )8;Gtʩ  [فF.xel+U?/:ٗ}uiQ_FetWF2,ë2ZéEe+m/U R7r|&eGg?E+]ݖQM7eTzBIްgq$zBcՏL3uVx{\0d8u 6 }&֝eS"mB[.zRx՝¯v_owOw5@t1B @w?K4<şMH3g뫛]"jUP〥_ ARVx%~+Ia3pɐ0=b?޽oC_B$Hjp~{g$^zV^N Bf`oK"򗛛=mLm¿//G{WQ Vh,,S35YuQ6 2?ܯû5ه/~xE  lPA,9;<3ɟpsY}\]$9wկ7'920ZVu`؞i]wQH.B>B+dŸkbp5QatA:BhDKeLԎ$H sa+".C!XZpΠv0Gk`QJc[JPQaa>RC+yZS(5Oj~4Fs Kпaԉh#ia&%"*,`RZ0?@"G|;u^(e]wr]p;*.-hPgmA5GsA b%uJ  u-m&5Z[MbS2 'Xjߘ ZY)88, -dr2P&4' $*L SwQi=B(z*ܜØ>~1fWYcV>1l6_tȬ~;iLd,aC*XP:]-(h4C!Kă_"p 8ziaP".pek M=1֡ŋi(,w[Fohm\iH[Q&eҖ-]3emjzoiOh(9e VrFp)é0`/xvU$GVtg 8GY9VdjP@l*Ij!tj(Uu.Ȱ ]DpdA4PNڂ ,BTWs(3шeO$F^K" ӂ$;b ,fkљ=o.CYrRqAds&w.FvŃRBTڲShR <Nh(eu-~qت ,:H``\ +OA(CsjBG C2?JRe\$]/&+_cpY0T.s W9`IeSH4ݪNO'mw9[7SugYᰥ:q"kX~^u|TgE0 shZu: JRB:4; nl>|WjZ+a*_CĊ(2_✞MpFͤquN̤^wh'8z|j* a@k%n垦L*xJilIR2 HlfQ7]]mW9}Ma1E&bzc ܒB|)B%Hm5>jSJ?Q*Z5RǨb[fv|t] _yLÏ*4٤<=c7;S{ oB>WJ)jl*0AsG~.EUCch:Λfv=͛J{l>\yh@3Q*2.٣5$S0dI:֐;AK?QAnwMVLNMuf~AB8G6Ce;}ajJ/b?T]5!C76tDJ.HZ*c)CZty;Y9e *P X9E&l(!Z\U)L' \;.=QrC35Z0k]jQn,"mZMsdIQʦXϿ#_N07jj" /$0Ev ~·I TM̞xdCI~Տ{e}PxCqw4 7k\`RVg6ӑց'=z5/I-s"$[ɡAӓ)ߩDjN+"D9szb7H>7"{ƸI(=Y3(=fm<lOlʹbƟR$zks]Z8tB?7)g˽S& .`r*)=B[kDjxG4{=%Ȯ{ZlĔ9і*o<"6$}g BX]|韌ӂM©~!Ҩv!$Bem^Abnp[ 49?w3xnY֦CqL)kdg?Pڰݡ6Ahb.!eb_$ߜ3lzLw9ïْ8NH<D хS.|KS;w.Z0ܘ)Y֖]P(g*J' G2恹N Jó Sendstream endobj 112 0 obj << /Filter /FlateDecode /Length 2256 >> stream xXmo~XC iDIRNQX|g1 J6PqϒyyfwJNjKmM݇ꞯ 経ۯ"yS|T.x!$$(g0 h0 Fb2FAM֧FJ:MA0 :FTY٠s]FuI&Ox*֝FB)Mد^/_|:L&,o= F{c!*EEċ J8(qZ \/38}4& +["/n.}$O]юj [phe:m7Q:Σ NuzA]ѡOf:r8\G::.qFIxp ‚!?.V?q;Das҅h xV#D&xDwg|B#:S99F '#P i)"UɄ2&$H$ $doQUҠK|~W+d#IJC0 P"$>;gEv2ټ;ޝ$D;ny܁-,g1O@uAJq<\<Ɉ[=a~2h=xy **aTLIb-x׻CA: 5RiZ7Mь-=Jп?w@aRnw|O=xt.tƱ4廵E/>vAî3k:vThm#[\tvvѻ"rGFe$AUI ^q7*Pc͟PANآAyiQUҠ ֪ :&A`/gЖuso@\6'pp`ByaGi~ĩƌq0+POCG֍OƏQ҂j?}b\?I2a( cmAlE˕ n q~oSbO?m<7ƥ6n3#0 6|*߾lo@_ooOPBP+|8:Rj_$ tfDLYiw{،[Ԋ)RV^|$&i޽+e)쬡 xpA8j4 ҴYBT BKs<>,<(>fu/fB 0v:橵]@q(-g`/I@B.cgKv\s'W糳{ddz2x?iǜﵜACAz D/H 'G;^C4(PlᴈEHCT) p!e,:3( ;$) 6Y,ECAruzݛd9BOB` J5]=E3niQ57M6Ppht[+MqBe:VHS@9ėK|UMᛚg L1Q:@ޔ-j7+XC//n{l7ʳ\GkpFhhmt(3A!'ƤC;Vs^wŞ?]^َ8rbϋ(o,q SH3ZH~;͌""|#`O9lr]:we.5—XJ^!6aMl r=P3 6:UABx{ ͉b.1ymSg,nH`l8Ap"|RUדrҺVVLendstream endobj 113 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 610 >> stream xemHqm+/+#!v)H(bTHLMj1O0iz=ۘӡ(^H7Q`7}HAAzPi;ZZ램0[ |''҅EtyeeE1}dc|;c͌ȱ6FwzgE.<ω\i*al]%BQ1EcXgkvfl,+ `st6 iGijutѥGQO+)1_'()=%TWiǑT&g&D"+){C,r[/qA8 uZdHt&(ԣe䗶%Sy58vZZ#QD~%hL~K~d* ʠB!w J֐?z',3x.?7SyaB2)<HL<\Om}iRwm;v4>I5 I>fE3G{CssӉB( ,W[kH,_nvY  0 ݊jŦMٛeb9܍\]EJ/ endstream endobj 114 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 368 >> stream x%KKQueһ+!LkF![Ԫ0Rh fR):iNQѦںl@vP,qp ּZ({,mCswiv:ŒhprLE%1"2Z hGJZ2(!Kt iL hi3EHvceEUՐ Br\Fj>a ]9CО a/_1Y VPB>J]|U?w^ dY^5ccͬ%꽾.eN^ҲW/޷ 4؉hFEf5h {EY皭LJfn4n[h[]o;FƏxa _( iendstream endobj 115 0 obj << /Filter /FlateDecode /Length 1485 >> stream xXߏ7~_xl_*ъVEZ RUp*~M 5B?>gqo\w?ߎSG6K>2b'"gH '#$x<^@@>ڔOl2ryuH()PQR\~:{5hFDD[|3g )w ~Z֕ 8Fq~uqsnuy}uvyЀ: Sg^,_t~a|X% ć&рJa; ҿ濂;p#&rCiE9fP61bPʰꠈ,s8F( uf 8Θ_tք Fzޝ%fRt֕rP`̄5=<'\{D**T\,dX̃@: գN:K~vwG`}@15hzwV #ٓ1 J=V*i<k|U{tcy|;"K"RMWBT5"jg\sՐ(=dI[}BlnG1Rca ZEۮ#jY!aG\Ĥfjݼq%fQ ʘʞ5f*-kV7ՄDendstream endobj 116 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 948 >> stream xUmLSWmi{ZN70D6ƨY[_:+ڭoe,]a+ZNX`A@sκAae8粣mٷsà$b&bxmfӚb>aHX)"NCb,Osw_ E$f%寸ܾ#6a/V/yZ^gجN^C8;lCUy%d5-2WN  2-h;G)JB(`^LT)J)!R8pe= rz_ojǛ[UMx{aV)(/HH.!F9AC'F֬Yn nbȐ)o*K<|8WSXDePT 6|&]Nk U!lZY^:mFV9.@᪬zݾnp;3S6.2 O2 t]M5-{'k1[Yɠ+^F-HҾFXḮ'z\,DV` ۈajhaퟁkQgG.w fuŏZϫp:v8 NA,#j!8G`~KJ~>$-doOD%=Z^q [t|ʼna> /W [ 1 3 1 ] /Info 3 0 R /Root 2 0 R /Size 118 /ID [<821809bfe0d07463b90d55c67e3214c7>] >> stream xcb&F~0 $8JP?j 8(%H D2A$= DʂU|A X9QtDwE&McZ $5jfHn)DrJU@$8dc& endstream endobj startxref 90582 %%EOF HSAUR3/inst/doc/Ch_cluster_analysis.Rnw0000644000176200001440000004347013302740166017441 0ustar liggesusers \documentclass{chapman} %%% copy Sweave.sty definitions %%% keeps `sweave' from adding `\usepackage{Sweave}': DO NOT REMOVE %\usepackage{Sweave} \RequirePackage[T1]{fontenc} \RequirePackage{graphicx,ae,fancyvrb} \IfFileExists{upquote.sty}{\RequirePackage{upquote}}{} \usepackage{relsize} \DefineVerbatimEnvironment{Sinput}{Verbatim}{} \DefineVerbatimEnvironment{Soutput}{Verbatim}{fontfamily=courier, fontshape=it, fontsize=\relsize{-1}} \DefineVerbatimEnvironment{Scode}{Verbatim}{} \newenvironment{Schunk}{}{} %%% environment for raw output \newcommand{\SchunkRaw}{\renewenvironment{Schunk}{}{} \DefineVerbatimEnvironment{Soutput}{Verbatim}{fontfamily=courier, fontshape=it, fontsize=\small} \rawSinput } %%% environment for labeled output \newcommand{\nextcaption}{} \newcommand{\SchunkLabel}{ \renewenvironment{Schunk}{\begin{figure}[ht] }{\caption{\nextcaption} \end{figure} } \DefineVerbatimEnvironment{Sinput}{Verbatim}{frame = topline} \DefineVerbatimEnvironment{Soutput}{Verbatim}{frame = bottomline, samepage = true, fontfamily=courier, fontshape=it, fontsize=\relsize{-1}} } %%% S code with line numbers \DefineVerbatimEnvironment{Sinput} {Verbatim} { %% numbers=left } \newcommand{\numberSinput}{ \DefineVerbatimEnvironment{Sinput}{Verbatim}{numbers=left} } \newcommand{\rawSinput}{ \DefineVerbatimEnvironment{Sinput}{Verbatim}{} } %%% R / System symbols \newcommand{\R}{\textsf{R}} \newcommand{\rR}{{R}} \renewcommand{\S}{\textsf{S}} \newcommand{\SPLUS}{\textsf{S-PLUS}} \newcommand{\rSPLUS}{{S-PLUS}} \newcommand{\SPSS}{\textsf{SPSS}} \newcommand{\EXCEL}{\textsf{Excel}} \newcommand{\ACCESS}{\textsf{Access}} \newcommand{\SQL}{\textsf{SQL}} %%\newcommand{\Rpackage}[1]{\hbox{\rm\textit{#1}}} %%\newcommand{\Robject}[1]{\hbox{\rm\texttt{#1}}} %%\newcommand{\Rclass}[1]{\hbox{\rm\textit{#1}}} %%\newcommand{\Rcmd}[1]{\hbox{\rm\texttt{#1}}} \newcommand{\Rpackage}[1]{\index{#1 package@{\fontseries{b}\selectfont #1} package} {\fontseries{b}\selectfont #1}} \newcommand{\rpackage}[1]{{\fontseries{b}\selectfont #1}} \newcommand{\Robject}[1]{\texttt{#1}} \newcommand{\Rclass}[1]{\index{#1 class@\textit{#1} class}\textit{#1}} \newcommand{\Rcmd}[1]{\index{#1 function@\texttt{#1} function}\texttt{#1}} \newcommand{\Roperator}[1]{\texttt{#1}} \newcommand{\Rarg}[1]{\texttt{#1}} \newcommand{\Rlevel}[1]{\texttt{#1}} %%% other symbols \newcommand{\file}[1]{\hbox{\rm\texttt{#1}}} %%\newcommand{\stress}[1]{\index{#1}\textit{#1}} \newcommand{\stress}[1]{\textit{#1}} \newcommand{\booktitle}[1]{\textit{#1}} %%' %%% Math symbols \usepackage{amstext} \usepackage{amsmath} \newcommand{\E}{\mathsf{E}} \newcommand{\Var}{\mathsf{Var}} \newcommand{\Cov}{\mathsf{Cov}} \newcommand{\Cor}{\mathsf{Cor}} \newcommand{\x}{\mathbf{x}} \newcommand{\y}{\mathbf{y}} \renewcommand{\a}{\mathbf{a}} \newcommand{\W}{\mathbf{W}} \newcommand{\C}{\mathbf{C}} \renewcommand{\H}{\mathbf{H}} \newcommand{\X}{\mathbf{X}} \newcommand{\B}{\mathbf{B}} \newcommand{\V}{\mathbf{V}} \newcommand{\I}{\mathbf{I}} \newcommand{\D}{\mathbf{D}} \newcommand{\bS}{\mathbf{S}} \newcommand{\N}{\mathcal{N}} \renewcommand{\L}{L} \renewcommand{\P}{\mathsf{P}} \newcommand{\K}{\mathbf{K}} \newcommand{\m}{\mathbf{m}} \newcommand{\argmin}{\operatorname{argmin}\displaylimits} \newcommand{\argmax}{\operatorname{argmax}\displaylimits} \newcommand{\bx}{\mathbf{x}} \newcommand{\bbeta}{\mathbf{\beta}} %%% links \usepackage{hyperref} \hypersetup{% pdftitle = {A Handbook of Statistical Analyses Using R (3rd Edition)}, pdfsubject = {Book}, pdfauthor = {Torsten Hothorn and Brian S. Everitt}, colorlinks = {black}, linkcolor = {black}, citecolor = {black}, urlcolor = {black}, hyperindex = {true}, linktocpage = {true}, } %%% captions & tables %% : conflics with figure definition in chapman.cls %%\usepackage[format=hang,margin=10pt,labelfont=bf]{caption} %% \usepackage{longtable} \usepackage[figuresright]{rotating} %%% R symbol in chapter 1 \usepackage{wrapfig} %%% Bibliography \usepackage[round,comma]{natbib} \renewcommand{\refname}{References \addcontentsline{toc}{chapter}{References}} \citeindexfalse %%% texi2dvi complains that \newblock is undefined, hm... \def\newblock{\hskip .11em plus .33em minus .07em} %%% Example sections \newcounter{exercise}[chapter] \setcounter{exercise}{0} \newcommand{\exercise}{\stepcounter{exercise} \item{Ex.~\arabic{chapter}.\arabic{exercise} }} %% URLs \newcommand{\curl}[1]{\begin{center} \url{#1} \end{center}} %%% for manual corrections %\renewcommand{\baselinestretch}{2} %%% plot sizes \setkeys{Gin}{width=0.95\textwidth} %%% color \usepackage{color} %%% hyphenations \hyphenation{drop-out} \hyphenation{mar-gi-nal} %%% new bidirectional quotes need \usepackage[utf8]{inputenc} %\usepackage{setspace} \definecolor{sidebox_todo}{rgb}{1,1,0.2} \newcommand{\todo}[1]{ \hspace{0pt}% \marginpar{% \fcolorbox{black}{sidebox_todo}{% \parbox{\marginparwidth} { \raggedright\sffamily\footnotesize{TODO: #1}% } }% } } \begin{document} %% Title page \title{A Handbook of Statistical Analyses Using \R{} --- 3rd Edition} \author{Torsten Hothorn and Brian S. Everitt} \maketitle %%\VignetteIndexEntry{Chapter Cluster Analysis} %%\VignetteDepends{scatterplot3d,mclust,mvtnorm,lattice} \setcounter{chapter}{20} \SweaveOpts{prefix.string=figures/HSAUR,eps=FALSE,keep.source=TRUE} <>= rm(list = ls()) s <- search()[-1] s <- s[-match(c("package:base", "package:stats", "package:graphics", "package:grDevices", "package:utils", "package:datasets", "package:methods", "Autoloads"), s)] if (length(s) > 0) sapply(s, detach, character.only = TRUE) if (!file.exists("tables")) dir.create("tables") if (!file.exists("figures")) dir.create("figures") set.seed(290875) options(prompt = "R> ", continue = "+ ", width = 63, # digits = 4, show.signif.stars = FALSE, SweaveHooks = list(leftpar = function() par(mai = par("mai") * c(1, 1.05, 1, 1)), bigleftpar = function() par(mai = par("mai") * c(1, 1.7, 1, 1)))) HSAURpkg <- require("HSAUR3") if (!HSAURpkg) stop("cannot load package ", sQuote("HSAUR3")) rm(HSAURpkg) ### hm, R-2.4.0 --vanilla seems to need this a <- Sys.setlocale("LC_ALL", "C") ### book <- TRUE refs <- cbind(c("AItR", "DAGD", "SI", "CI", "ANOVA", "MLR", "GLM", "DE", "RP", "GAM", "SA", "ALDI", "ALDII", "SIMC", "MA", "PCA", "MDS", "CA"), 1:18) ch <- function(x) { ch <- refs[which(refs[,1] == x),] if (book) { return(paste("Chapter~\\\\ref{", ch[1], "}", sep = "")) } else { return(paste("Chapter~", ch[2], sep = "")) } } if (file.exists("deparse.R")) source("deparse.R") setHook(packageEvent("lattice", "attach"), function(...) { lattice.options(default.theme = function() standard.theme("pdf", color = FALSE)) }) @ \pagestyle{headings} <>= book <- FALSE @ <>= library("mclust") library("mvtnorm") mai <- par("mai") options(SweaveHooks = list(rmai = function() { par(mai = mai * c(1,1,1,2))})) data("pottery", package = "HSAUR3") @ \chapter[Cluster Analysis]{Cluster Analysis: Classifying Romano-British Pottery and Exoplanets \label{CA}} \section{Introduction} \section{Cluster Analysis} \section{Analysis Using \R{}} \subsection{Classifying Romano-British Pottery} We start our analysis with computing the dissimilarity matrix containing the Euclidean distance of the chemical measurements on all $\Sexpr{nrow(pottery)}$ pots. The resulting $\Sexpr{nrow(pottery)} \times \Sexpr{nrow(pottery)}$ matrix can be inspected by an \stress{image plot}, here obtained from \index{Image plot} function \Rcmd{levelplot} available in package \Rpackage{lattice} \citep{PKG:lattice, HSAUR:Sarkar2008}. Such a plot associates each cell of the dissimilarity matrix with a color or a gray value. We choose a very dark grey for cells with distance zero (i.e., the diagonal elements of the dissimilarity matrix) and pale values for cells with greater Euclidean distance. Figure~\ref{CA-pottery-distplot} leads to the impression that there are at least three distinct groups with small inter-cluster differences (the dark rectangles) whereas much larger distances can be observed for all other cells. \begin{figure} \begin{center} <>= pottery_dist <- dist(pottery[, colnames(pottery) != "kiln"]) library("lattice") levelplot(as.matrix(pottery_dist), xlab = "Pot Number", ylab = "Pot Number") @ <>= trellis.par.set(standard.theme(color = FALSE)) plot(levelplot(as.matrix(pottery_dist), xlab = "Pot Number", ylab = "Pot Number")) @ \caption{Image plot of the dissimilarity matrix of the \Robject{pottery} data. \label{CA-pottery-distplot}} \end{center} \end{figure} We now construct three series of partitions using single, complete, and average linkage hierarchical clustering as introduced in Subsections~\ref{CA:HC} and \ref{CA:diss}. The function \Rcmd{hclust} performs all three procedures based on the dissimilarity matrix of the data; its \Rcmd{method} argument is used to specify how the distance between two clusters is assessed. The corresponding \Rcmd{plot} method draws a dendrogram; the code and results are given in Figure~\ref{CA-pottery-hclust}. Again, all three dendrograms lead to the impression that three clusters fit the data best (although this judgement is very informal). \begin{figure} \begin{center} <>= pottery_single <- hclust(pottery_dist, method = "single") pottery_complete <- hclust(pottery_dist, method = "complete") pottery_average <- hclust(pottery_dist, method = "average") layout(matrix(1:3, ncol = 3)) plot(pottery_single, main = "Single Linkage", sub = "", xlab = "") plot(pottery_complete, main = "Complete Linkage", sub = "", xlab = "") plot(pottery_average, main = "Average Linkage", sub = "", xlab = "") @ \caption{Hierarchical clustering of \Robject{pottery} data and resulting dendrograms. \label{CA-pottery-hclust}} \end{center} \end{figure} From the \Robject{pottery\_average} object representing the average linkage hierarchical clustering, we derive the three-cluster solution by cutting the dendrogram at a height of four (which, based on the right display in Figure~\ref{CA-pottery-hclust} leads to a partition of the data into three groups). Our interest is now a comparison with the kiln sites at which the pottery was found. <>= pottery_cluster <- cutree(pottery_average, h = 4) xtabs(~ pottery_cluster + kiln, data = pottery) @ The contingency table shows that cluster 1 contains all pots found at kiln site number one, cluster 2 contains all pots from kiln sites number two and three, and cluster three collects the ten pots from kiln sites four and five. In fact, the five kiln sites are from three different regions defined by one, two and three, and four and five, so the clusters actually correspond to pots from three different regions. \subsection{Classifying Exoplanets} \begin{figure} \begin{center} <>= data("planets", package = "HSAUR3") library("scatterplot3d") scatterplot3d(log(planets$mass), log(planets$period), log(planets$eccen + ifelse(planets$eccen == 0, 0.001, 0)), type = "h", angle = 55, pch = 16, y.ticklabs = seq(0, 10, by = 2), y.margin.add = 0.1, scale.y = 0.7, xlab = "log(mass)", ylab = "log(period)", zlab = "log(eccen)") @ \caption{3D scatterplot of the logarithms of the three variables available for each of the exoplanets. \label{CA-planets-scatter}} \end{center} \end{figure} \begin{figure} \begin{center} <>= rge <- apply(planets, 2, max) - apply(planets, 2, min) planet.dat <- sweep(planets, 2, rge, FUN = "/") n <- nrow(planet.dat) wss <- rep(0, 10) wss[1] <- (n - 1) * sum(apply(planet.dat, 2, var)) for (i in 2:10) wss[i] <- sum(kmeans(planet.dat, centers = i)$withinss) plot(1:10, wss, type = "b", xlab = "Number of groups", ylab = "Within groups sum of squares") @ \caption{Within-cluster sum of squares for different numbers of clusters for the exoplanet data. \label{CA-planets-ss}} \end{center} \end{figure} Sadly Figure~\ref{CA-planets-ss} gives no completely convincing verdict on the number of groups we should consider, but using a little imagination `little elbows' can be spotted at the three and five group solutions. %%' We can find the number of planets in each group using <>= planet_kmeans3 <- kmeans(planet.dat, centers = 3) table(planet_kmeans3$cluster) @ The centers of the clusters for the untransformed data can be computed using a small convenience function <>= ccent <- function(cl) { f <- function(i) colMeans(planets[cl == i,]) x <- sapply(sort(unique(cl)), f) colnames(x) <- sort(unique(cl)) return(x) } @ which, applied to the three-cluster solution obtained by $k$-means gets <>= ccent(planet_kmeans3$cluster) @ @ for the three-cluster solution and, for the five cluster solution using <>= planet_kmeans5 <- kmeans(planet.dat, centers = 5) table(planet_kmeans5$cluster) ccent(planet_kmeans5$cluster) @ \subsection{Model-based Clustering in \R{}} We now proceed to apply model-based clustering to the \Robject{planets} data. \R{} functions for model-based clustering are available in package \Rpackage{mclust} \citep{PKG:mclust,HSAUR:FraleyRaftery2002}. Here we use the \Rcmd{Mclust} function since this selects both the most appropriate model for the data \stress{and} the optimal number of groups based on the values of the BIC computed over several models and a range of values for number of groups. The necessary code is: <>= library("mclust") planet_mclust <- Mclust(planet.dat) @ and we first examine a plot of BIC values using the \R{} code that is displayed on top of Figure~\ref{CA-mclust1}. In this diagram the different plotting symbols refer to different model assumptions about the shape of clusters: \begin{description} \item[EII] spherical, equal volume, \item[VII] spherical, unequal volume, \item[EEI] diagonal, equal volume and shape, \item[VEI] diagonal, varying volume, equal shape, \item[EVI] diagonal, equal volume, varying shape, \item[VVI] diagonal, varying volume and shape, \item[EEE] ellipsoidal, equal volume, shape, and orientation, \item[EEV] ellipsoidal, equal volume and equal shape, \item[VEV] ellipsoidal, equal shape, \item[VVV] ellipsoidal, varying volume, shape, and orientation \end{description} \begin{figure} \begin{center} <>= plot(planet_mclust, planet.dat, what = "BIC", col = "black", ylab = "-BIC", ylim = c(0, 350)) @ \caption{Plot of BIC values for a variety of models and a range of number of clusters. \label{CA-mclust1}} \end{center} \end{figure} The BIC selects model VVI (diagonal varying volume and varying shape) with three clusters as the best solution as can be seen from the \Rcmd{print} output: <>= print(planet_mclust) @ This solution can be shown graphically as a scatterplot matrix. The plot is shown in Figure~\ref{CA-planets-mclust-scatter}. Figure~\ref{CA-planets-mclust-scatterclust} depicts the clustering solution in the three-dimensional space. \begin{figure} \begin{center} <>= clPairs(planet.dat, classification = planet_mclust$classification, symbols = 1:3, col = "black") @ \caption{Scatterplot matrix of planets data showing a three-cluster solution from \Rcmd{Mclust}. \label{CA-planets-mclust-scatter}} \end{center} \end{figure} \begin{figure} \begin{center} <>= scatterplot3d(log(planets$mass), log(planets$period), log(planets$eccen + ifelse(planets$eccen == 0, 0.001, 0)), type = "h", angle = 55, scale.y = 0.7, pch = planet_mclust$classification, y.ticklabs = seq(0, 10, by = 2), y.margin.add = 0.1, xlab = "log(mass)", ylab = "log(period)", zlab = "log(eccen)") @ \caption{3D scatterplot of planets data showing a three-cluster solution from \Rcmd{Mclust}. \label{CA-planets-mclust-scatterclust}} \end{center} \end{figure} The number of planets in each cluster and the mean vectors of the three clusters for the untransformed data can now be inspected by using <>= table(planet_mclust$classification) ccent(planet_mclust$classification) @ Cluster 1 consists of planets about the same size as Jupiter with very short periods and eccentricities (similar to the first cluster of the $k$-means solution). Cluster 2 consists of slightly larger planets with moderate periods and large eccentricities, and cluster 3 contains the very large planets with very large periods. These two clusters do not match those found by the $k$-means approach. \bibliographystyle{LaTeXBibTeX/refstyle} \bibliography{LaTeXBibTeX/HSAUR} \end{document} HSAUR3/inst/doc/Ch_survival_analysis.pdf0000644000176200001440000032416613303046021017630 0ustar liggesusers%PDF-1.5 % 1 0 obj << /Type /ObjStm /Length 3150 /Filter /FlateDecode /N 53 /First 414 >> stream xZ[Sܸ~?BoTjG.tj+U\B@v`f d3?_KǗp(N Fjj,X$bLņE,fq(aFfdaBic0UFR1hB̈́4aa4 b"Po0J)Ed L`&Fb* lE#C4fZVE2`1P֭aPeR3!f."f4ƕ13DdeƂ0FR2l Rj̒TxKa04@?e)M2DZ`# ĐVȘH??Hd :fòfter  ?oSw@?ͯ˗eqٳ|(ϩyۣy>YS={}/x̎Bqm7Ob>&t:_sX8Y2>.39W畠v 20'J%,KKX26pI_Z-_jifDI\&'zu'a@~($KxV‘Q2 ^|9c`Տ5 (>|gqaXIZg~|9Eb^}R[tKw]vvCb6Xbl9|٧ֻ(Ud9O)0j/! HX1_jdó;g?lOHŵ("\'s27I߁ Õ\MK*ܰ4xXMkVtal`b 3cI27-Mֶc}`;JZވ*{.gKGU$Z,ݧaʯ5,cZuUhq-w+~?_1|'<$Y\K~ůyƿ)3[> ^z|na!irEv~TJ7_}^6Mi[Wxܤ=xm!oͮL [AtO4׽2Q__`43ۚ-UJ3=͔$AMbdUs}^J$wءEW=9 ;\bIw Ĭ;098KEQX89ԏ2Sn&'ȥh[ҋm :qX&;M'%~ZAʐ.rinɮw(l lU cjqHngA\^C)BT=fZsٛ6LйM(xZ!QIȦr<ɿN5# T(H()k-ٷKխ~Jiņ5\{۷N5Ͷڊ}7Btun5Fʁ8{겔.CoT80,Ȑp"Gޑ z:oq'>FnnN±U }ݤ,<$*ک^Z3 :bRz\_@vpZgϹ8o;C~ďK3onttV:AqwKhspfNg0=9[4,|nz-e^# ƕ|"<. V|ϝ??tl{d vl{m{kCm;o>T}X {c~kCc},m}ݺtMglm ̶ HM,+$E^$s~1O!{t=ɧS/)A+ >bQt;%3r 1)Vȅ؆o8Lq.p;"7X61eDol8n.|jb ExGxhGEW>Һ!#{l~Ι5vAc_p \jdvC87M{oܢA[4Mr'u޼ &lm8 f:BL;`6]0& ٣Wؖk}qtzRWa{8Mǽ&YθC:zYCOr/욊rKpF VyΗS}&47 y*lyǮbm VFQt̀ab78gΦH"Hyubp}+ E>o9{ゕA-ًjc')<4NSzݠJc5'͟*mдq{Ȧf^jsJ67ĴN@[ fPZX/%]EV=P{cgj[01ҡNw"ۼ]]ɪz6j : 4T]_qD)i6PxǸE/|M%/lIY:ЊUZYKtVmLG{7+-![L!$a(T4}vP>(}HCzu9-ʘD8Mr> stream GPL Ghostscript 9.18 2018-05-28T10:48:09+02:00 2018-05-28T10:48:09+02:00 LaTeX with hyperref package A Handbook of Statistical Analyses Using R (3rd Edition)Torsten Hothorn and Brian S. EverittBook endstream endobj 56 0 obj << /Type /ObjStm /Length 2253 /Filter /FlateDecode /N 52 /First 414 >> stream xYmSF_q{봝%Nh!)$>8F5Fw$z i1:N{=Җ0hO0"$?XE4h…p KW3)oeDXD2WA$m% TD ^ktk RJ(b=\'%\Q7'D9 45pUD ; F8XQ8GU+ V yX x\5J^#4[qJ 2=,)a,LJr`0=@P3W9#r3-BEN$4$G•,A0cz7 B92 <4'',&/|]M$K$#uK_'d߃qFw~2#dH}D 9"Iq )tWd/9aqpwGЀaRa<š\ld>97?ƄM/`hiW:@UB2e_Kݵ7"+b0^dwi ((qX0e (ГhN+O&WfCe` ,(u$xa<҂w>b~cOtdKӽߏ~?; Kѻ7:jfZKrљqP/j-}B'.&|sSvs3YFLpTԌr;IaDM-Ӧ0A:t=@.d H/QMs6ظˌhm\g68Kֲm-zZnڸ嚆p/xrفgBb/]>|H,eah[T@bٯ0PCQl;T&g?gqL';{'.6za@X]w m՘)cd X(c go(pD/'@(d$ GdĴ0 mPcaF[VmPo6xB 5^&j$|mb,&}$ǺGĻNRF{18I-#X`&Z}qA1ѷL4eL;5¦DԄO)A_4~NQ{_c,p=}7T#cjO٬Q )j7hx7{Dp7âuLp8γ&l~E4Km))h䕥w_^B EqM 1Mh+v|zU2BҬӸkHufz6i8Ԫg;5oqAs ,83m"n"\r&` L6R  kendstream endobj 109 0 obj << /Filter /FlateDecode /Length 3962 >> stream xn}X% w!@dAq,1yHCrIܡ{{l o`x[SU]1os/f_rD݌Ϳe[ij[gw3'Lk'3lk[X+@}kt(b& \9Z Sdk'm<tP$2%BMށȸ)::ZO73?Osj[o_͢f\ =fj%w5K Ƽ`b^(ݜ^J+ѼZ,-|󿠾.*VHn|)5XX"Ԍ@Ƚp77 <53mnUȮa*y טk~ihkauxS"Z)'CDơΡ.)9!Gdҥxb] 2OAoX6ͻb> Ǥu4Ëב Rm_̃bC`?DuXL{09ނd5hupDG@ ('ށga!Q zOmAzK;*@ϑ"a1A@QJ- $NB ao_*C"YLjTF)F+V aU(͟H Oinӛ&ܯ1?C~"M~Ot6\Ç 7q3d?q).VS%-S-XC`5af=n4Wx $KEQMs[#,a=_ ]'0` 72 5a8[H+"_ a4/߯/Mś/9G ęP ?}o" @!"vQ6R=e_eZf!@o9#W/4; Nqe/0}O`WE‡p7O+L\ `ޏ?,֛zOAiyVY#,& eaζΨޑz2I\b5X}bD](jkU CɛVŠG8KP]stY{IYiOhP nBڟn/Uo(h2JH$?SrmUq9W"L nT =VaKt%p-.Jc !I vl%ad\dߧ.8BxGŀDfRq7]cbrCyoC׎4Q( 8ųY;h/N66㢌4,U{CnMRLtY.UrhWqDl81tЅ Sfol[uXbH{$46wRV1DF{S6=9g:"](ըeRkЋHq҂N5zzꆔ"3YEI.E\Gȥ,*j͇teGeM{)qD.:L*g!#S?n"! ʆ.8lщ잘Tw;8xzìSGu TLg_bԼ3kU62~4L_OŚxCEhS%c $EI-QvYH&9%C*WMoơ+Ay h$ء MOd-9(l\8j#<xbv@`N@C773ehIǧ'H9]xPw`>=E*Cur(-z QUdy/bʃd_ld\F|ӆh+1r/ԭwB5\,&=ĸtڪq{Vq2egܑd}Yb;Pќ6H}_Rh5{$rk<|4R xY+D(H2STy$ ȴvj5.nؤRo'VKnx_rb#Y6ex'n/pboeiqʔwp7r_Mĥ/'<# T}0?Ms_oe[Cu_J|?x2Nw5uŇJ aNry&nM?.,֗b /\^9[Gw{X_I9<߰ч}ڶnof 0<\nwl}ؤe6Oendstream endobj 110 0 obj << /Filter /FlateDecode /Length 616 >> stream xuSMoT1 W=4؉G*UT>NTt@Hx=h2kǓg=ݻWטËKt8sE_ c{'#ȓq 52Ls2֊j2J3u9vY~T~*QtfY"vk^FάiH꺁pGCJު%,{7ٜ",v燽{^r-f~A$>L:c OFGҌ0HڊP<'ͱUWgFQj`%*jx14A#*p+|Mf~8*4NI8_SU%HEjlGS*Z ]HP&Q?ܙqF0Miul+oki׿v(.̶ǎfCw f͈cg#aפ\ iTg h- xĨ> )bD.2r c59M|Q hycDPT%nH%Pgb,<Ӌd _lM W[ݿ;-e,]*.ssbd2le( _ܧ+~s%.봾ydN&mjB:quܦ8nb֍^?#&|endstream endobj 111 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 3255 >> stream xW Tg֭D$N%&UbtpcEQ0t e׍YТ&`tBDI1K<MLt~L2dΜ9u8tsw+d27`QY2y'9u@psOgpSiF.iSr}#=&m1gTY> "7=QqdOGvctDrǤW7ϛ1#55u:.i61S=Rᫍۜ Hgsa"%IKԚ"ߌY7olǼg L3 fd&1[Lef3K?f)Y3saV0/1Jf,c`eQgfsG$kqT }B.."S5ÞrMaZ0|tnn'ݣk^9p mkd>n$!?7?>Q_)C#4>pogS e%`6<#GEqxLS)ZwZ,ʒRt! %W ((KF>q z-Z0bOCHXsO,2~ϒ@ V*Rj>;w=UR(>WnsĽD d@VnkvWжy&B {GxA9p,ێ!5oA]v=%S| g`o5L'^dd2 ,*uoikNl3T‡]|*=8V\8r{G,6o/r`i[vIdh(:<@~>P Q~ M(d?x/['u=Vܙ@2xRіuٱ 'hB+VM"7v)j]ؤV"b%z+p+u)1ho{\JiÐ<1l&dnM4NcK J: Q //Q pU6UJo$&Yg\rP5۷ mzm妢HO4 ppDPsz.tE]Wc4}HXv VFW!TL99`K5EK_/{ rgnEK͂)k(GQ]1Y8/$JX+ =XЁvcbjVlV=»>t{wm`F"77r~סqz]Pk T#i1oklFw!ʞ:X}zoueM[Ƿ#_´[[b4aU]@~|=J$Ɔ͉hf-xIgZS|ўN;63#*%b$RR*Pyŀ^ٙctc@dö"9[%.6I^ _uoxgDEy)ܦjۋ9P{h|;興[s@T}}?stu Mqg}=(;y /ܒcTp=w%,BOb YG9ۉ53~L"[ֶvO?ArCnwVB9''5E-rF+f7=~%'W[}$H/jd~0TG’ *_a'1> C򁯨okd_-x@H.,dWzOW27?(J7k8A[$npT߉hlCr) `M$# xI8*` 85|M:azq^ƇOfh:5x{ˏϗ_{?2AI{'pޚ}[sZ ]Ap7/.` ܄C!ۘj,0! "].rYW]Q6\pu[6 eV7waendstream endobj 112 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 363 >> stream xcd`ab`ddt v04qH3a!Skc7s7˚ﷄ ~O XX_PYQ`hii`d``ZXX('gT*hdX뗗%i(gd(((%*c8)槤1000103012ԽK2>}wy߯jcws~7yŞ>~nSg>;3wߛgO^-ym̾^];ǂXπ| wt\eXp~`:endstream endobj 113 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1925 >> stream xmTg*T:hQIQc*$*TI#BawD*/{YayGXvaAPUIi̩ibFHKP$1Dju9Q$)H2<5IQlUժ Q~HWjRUŒujQf`e!XOYLjT+ *}*YQ1*b*toHmdT[* '5,eJL X"'D"P _VMxf⿤+*Z:ZAE~RRD0J7P _@Ksr=^ly>Ow Iȃh^ôD6߅"C/Wߊzv~Q NtJ$?ܥNOiȑdߜgk$_qz,c[p9ܚ8Xg-WŨ]'ZK-e%`6s@quyi/цد/^h JHQzx~H{p/-#@Cns3"Z$7I9(@D[t0xi{p)(7߄^oXO%})="m2  6зEDcMnk 1Hsq9E*?.%=+HIg\RVd4\H,8{̜g@X-57)/h;^d4@+W6-_k+ *٩qZo$BGݔ4rr~%Tw%'%>ZӔn Os{j=W`=kv{RNZpl3Q><wsh>Z_k'q=1DKSx3,qoO`31Qsw NO BOB;ohrdHׄ"p桃MxW/ G^\VT(saJ`;)m*ʿ;:TLc Iѹ}Ecݝt_s}}h8Hn4ɵe5k3MY-G<ߨ*~k*93 y3,qbe;9p\PʽUpn\+Zƫy!(~(s 0k06`jMȢ]Ǔ䞂[9=s~oC,7_]N%#nkelIN{/t<ڛ4zX=vy]7뺅 5roq8FǨ58 >nTp*-Ns!0" A|= 'tM3Ha ڪ*m"4|@UJ=} 88ڍ.&ۨh=vu~Y.)(VWhaYóYaNߟ9|}|w8endstream endobj 114 0 obj << /Filter /FlateDecode /Length 150 >> stream xU;1 {'0q_N@ -ׇE٬W.,?慅:c8]  I1 7g`tBw2SZJffBPUR=uw$֓TS>HԖ!56w/RCendstream endobj 115 0 obj << /Filter /FlateDecode /Length 3056 >> stream xZogG>sA[ RER$1M E*$%[/;s{;GeN0fw{foF H+eD  "J5bR Ȉgl7DljT^\5A6I$}3nխjPA(դ0|ul:KiR $Ѵϟ",SZ9R?~6E0+0NGK!:\%uҶ%Vfg33ea_Y6ѪәӸi (}Ӗ2(uhۍU-Q=Q5C~`^Ѳ.:|ĬS[цa KΩfdkVF;F{XM薑 Ԃav[F7Q^bcQ*m24DՔ׬hAH0]g3jR, "}>zDW=n0sG;l8>aɧ7 5;V}5bs:Y5s A:cTp(S$Ń{,C{k85bT}7s!I?g%Ƽը2`I l\+dg~r_qcκsf*F3/>!UASWZ:)hT*JFTB T5JefD5 {J5 *H%j@(ՑvC/=6(=z3pI51& fZ$U4s<BzY]Zztj%e^ٲPEN?Q%NG(UO ՀL4'QQ;ȈPO=}P!.i"z TT-R>Gdm8+B"q6 07R=FhtrI@( <a_$'PvW&OvezZ ʱrg!QoVnvPPY:۩v0_j٬6S] jlwq;.mgp tjTqd[)po8)Q3h:onߐ'ii`^"~W" |3E[D 3Jކp* d21kP `@:ī<>5Sߪ(AI duוSb $ BB(ՀPGk RG$R.=&J 9 ;$cRt$A 7$H ,ӒTm4隡Z U)I~)I-IBEJR*%Pt,K1P9Ke6Ȯ5*1r\ded N"b !P 5 [ s0pbRy}> 4"XUHsI2Cd;pQ; eJ'^_3 ^ @9j2HQ堃g&k{@Q@Hctv p2-jb4| NL᠌ jRɷ;ch7o4MSfI#/ s,} vyY)V-NƔpVn߄Eix:XPj8JPbDt:Ӿ*Dm]"EuG%ٳ97TV#vW _^.Qb:8i ϒ/axťBhKTa;d!t֛^q"HIWt7ERHg7GݚAÓb 3^$ u͆ 2$dYtQv)iVpd<ÂHZU]˼54EfH 2zG_Iv]A&m1 Cba>̩ z})_5A}{;Y{GsFAa8 do#\.uY9@ ~GY4kZDQo/g5$϶,1_Ӝ%?U^|qX|g@M7N6J c'pm׏+y/#zQ`4: gf.7 BI[nrYV*pܯUU]LJEevmYǛźFMݱ4vpVoh( vuy c R`SE*>c%Ʌ  [+ok̺V],< s/SPxE(HuF2 :#}Īe&2)٨bR"mѦ533z P1<4w2?CLUϱjt]Tw[|9jendstream endobj 116 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 7232 >> stream xy XS׺J+uZq:թNUE $0 SS@@ڪUl8jkk9_Izszy}| {ַwE@uF ܥ+ƛ?Hƿ#)6[n??EkQB $2enhXl?(Ǒ^q0~`-^!K=}=/A.^[|bGN yG x-Q+}"}"x; r\hY8Ϲa(ǥ>!E-2'tܰ "G.Z(]5cqXq||?_%`U5kNs#G36~x 'M:-E SèϨ #j%BVQ#(j 5ZKPc\j,GmQPZDM>&Qj J-Q5D j ՃIS}([*K(1RoSAOA/j!9;  M-!,Gw dzf#=gN{OjmwE<}nI/>V[wؕ˷nހ;J: xjxP ~|wBQs lwrPa+xm{ zH'k-䇶/a 9 yz">vWjDjm:աLcVH6DGXuF.эڋ U<$^9z<6X*۴H vsax?ꆞXO`!yQ *;s/~ ZBrWr8>"@U )1$@ХKs6Hlב7fA'y>@̣Tt&CDOYa*JO.+n㷹nAkS>""w\9T>[Z[^!3 ;D,zk+?fy@}~9];@#4ъ}UZaVn +`]ɷ Lt69YRz VhդzAh<)C.X@Yzc~D)7x&<reoҝ5j/5%hT%X,Aiv_} >!8@8^h vB1y$69:c0DjCkwA{:NV/Aȑed@r*~oC ^'x3)w^cBc CKT|g)fxr.Ti* +ބtz;߲[`P_~D,~KOg{"E57unO$Qj1B߱%^wiVja7n Vҳ49Pi8*:™P}XPWT_~ 79m6W0r7ڧ^˃59 5NrcAT6 ~֐q;2fL;] (Ten& b%؞,h@SZcJO0E#:\\. Olsur pD B*d!Z8Eƶ O'$ӳY_Z%ԅW˿I$1JM):aߵ~YP+[$As̬/V) ,3uCWX)Ѐ%X_GNx?GG^ {Ix"Z)'\;Oˌh4 h Al~80$BrvH54$Rs܉U4L Q gm_Nm|;3ۨɿUDD}`[vUA[pJ)^~hwUh'"Ԇ)"2u`h4QOB%{ϫIR 6iI1ȐsqwT'/$8T6C)WEa0,d p5P3n}Ӗl!SayZ)V !উNۨ2ĒLOۏDu*sj5DN 5k+91qK/ a]gQYGEA ÿg%jSdg 52e AkY;18 4T>tz|`rmc4ep{߲^U%9B2gqȕhkn^_uqեʂMjIU| {SS, %b-3>8ˑIÁeLƎб;9Pw,Zf9|K``%l ޭʎ߶-5 m0siS'AC7iTZltjؚZL^-DQ2[kJS㞢V3,•prk4IVX蕹I_oKJ/a?v:"e1ެ@&`ztٟbb㉑VswT2QE- 29aQ5>byPr+`?4WTzjW'*m X nWD|J lVzxΪߙ&g#DwZz'7+a?:ib{< wy)B~"mbxઑZǤ*#aJVc!2d)3 +Pܛj94C` O ҁN)3LeLqT4)ح='NTpg?n2ljFsBX4vˑgU~ B ILxitu` /[FC򶁂(\Ʌ41f^4YbN^9VH>M1(<Qa:jvZ%4[VRC>hs3󑪽㒨UMگ-+hzU|E3 Q8*-v'#AbD_ȿn7 S Ldt.kB݈)p]G(!!1CrSpϭ!)hPw1vF qD4n\m~QG"3:cE) &lpe=ļ5iNכv%Bђ`rˏ#}#m 杫(}RRǐ>NU*WUtIYjU~{Z)*h}Aڠ ؠI:fVɗ)#,뎲l4q'0/ o Nʢ:A g1 %s_&v?jST%? zj C#i'-ʈ&5P \~./O[iE\rFlD0QU5E&5azz | U$2L%%B.hFԭ? ~G_(P ʭaM!\n9crrvmWќ m'4˫uEFInAyn`È0U`B$59*ԋ:B&C(ʀyrµrIƬRsJ.d&08,$;]y{h?cwq$)!6q;A>qlE=9|!jnM XFm33`z87i%DPw${ Vc(Dݾed8xQR9#fC=B63_P9@BXT@C9yuΏ [vA,OkcZ`ܮΆ$$Oc#`N|t>܆Uej'hŎ ~]NTU:QMю2-jwu iXx!Tmב&5;^~}}n )e3oLKIG\G4lN-y~gVC,a(MJNWx@p!ӎ̹&8|1?JMՇ9a>Y?wj̬kGTTPt%IWKQks8PkGL[= 揨D|/=UgҎGZ͇ks]m7G-e(( 2u;ՅF=z&>{MdEHHddHHEdMMEE 񒾤z4IhDPQ>ݙ@4yJ} !C9 p{{,ŽVF043 vɖnu(EkZحڭ(/sǮ iqX\FO ]/H*Mz61IN=ܢћb" B%^I|*OIL,lkG=RbXUY"  ѼO7e XG4F0􆪘WoB[FahZy_iׯ+TpmRr/j]x|%՜r>Fܵ/%tf(de L[J5w{}}AV`-`o߆؛l6 ɠ_t$.;<$>I&ɵ$TZ O?<{,阍'2?|*d"׎v{mv[!,D|=#Ssr/ ,Wvs.38CmAYQD'!x‚$ 3K$'<(K]f84=Y޾/,TN]ˡ}r_!MT~6c'0gltڹ+7. 7M=.V'7ExX2e!?/|lklO [3cZaYk'ɺsߵr4>['Kyc ^.4NiEj0n_nM)Hw$bJ0Ub6snQ02 uĿ=-'c66A&8(ꛪ*l Wĭ 0s lbm=3 }%JV]|z4<ޫO3ScjBg:x=ǤN[TU2 RUi*ƈ;d(n7-q<䔿!d]Lc.$20}EHl=#S%ׇFMp5RaN2GVl#t`{i>;>EaB92X!ڰЀ;vm4FmbQ/ڸ9ߏCki>þf+T 6SJRiS%  ;r4L.-hb_7gĿ<#7|1+ĝҒOE}"蟶iѨD+b~yfb쿡d}7^Z-h"ǟہ-&_nA ͧ?ƒ0I:| /2N<, w]FW%|Z^ 7^aXjJ}aa}_M$ܴF,B~&Dԏ=uޗ4t'# ir f fbJ/J!+\g6-_5!WGT  Nli- /bCF*lpߥ&0qWB,[X܃t ~BXD@~󩊆*[ -/Mgl~n 6gmy׳T]{_CQnendstream endobj 117 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 5448 >> stream xX XSֽ1ps%^kuZjX8D 1˜I0 3$̣:I8 N~V[l}ڷ= _}' kWDD"di #D~_{qًMȑC>LE"EXR(\5jkϝQ3M;jqL1BQ,B qL`Gp.vW]rTEMK>("l1 Jޓ̥E)1Jp;īa|U(8O|m^NLL׾ tu=b^g + > TÃo_2sߖ{lxoD Rp+[=x飺B awa5SCDwPj_Yėwi[`,]x,: %`ێ]07<p27n#W 'tSvn#))C~r: I2acN;'l#QAd IC??1Ŵj5aV|$=JX0K -BLFќͫV/h,UI8w_gA!]d-ix,#zjbX,_z/9 "M]Z+EUdPMt/ hp>3ê2#23G2Ս ?|UEG7(1q6t61{HַTs}_>lK2fpiVrɥ{Bc?QFⴖ|lJ-!܌ƯN'W3IoAjjj@VVn, ~Db-6"fB`qRGsn}\[I# ]|UYmu*SuhfU]ZevYJ"_rS3MHM УRܠp G{؀ ɟgғ78it@K-' I+.|I[Х Lђ7%D@ qyö-06Rp,00]XӋHύQ x'=~SU0O,[o˧ߌK8 C'vUe `WM4;ʢ#P8I&]'m:BjK5[G_ ?!S=pEd$B.VwmaK2{)IΈpR$jiDG/Yb|]Rx}bTHtz9hgA)(((}S4(m*`JBz=>y\aN"6%D$rI1#fҎNՂF?D|L[J}Iݍ1/z|},81BAUb8*زIL*RYo5]ZI@xe!B$yۯ`̘UlbVB~b>*@99Y +,BZIIګaf#ݢ2P s0 Er!ퟐoմjH૸-<"uv+Ge@g!*b[ Kzn%Y_=Y AAKwE&c)`o裚:lI{Yk?v\ҶӇN0_'\gc4󎕄Do 4Vw+V#V^ȪxZ=u{Ej3B%r>geU?anx=,8|PeVT¾D>lxZVg.7.@ +s_  !I1d* +:I s{sw5*k/o->8RK㬤"z\j3Ğ)&̍.~%T>Rlj0<? WeWMA [UlڱvbKf7UԒҀnyVac.w8ȠB.s+;~>W/kF']δfqayI^lvA Ľ͟ ׯBL}*8ĩNp` /KaXE#Y|,`I'rZUI*,:xO=W8Cᗗcֿj#93a%}? .]MA]/-Y"k7@bleZƓmyÕmnVЖ;7In~ ^IJ;ZZi0 z(4x{zfnQ3_0qu4-o(87i!BbT\jPmaZԳ`g1u"a,R`:$ Io7 G<#u9y0z%^M¤:%/g٥4 @A0IHp?+lIJex`O4MFx-BKJX; 0\a1lؖ20Ч>lͯK :WVu3|s'z8u1G=fc۪8f Yxd,ל<*Вx߽_LczTU̵J`Pٙ)~ck]ś$$Ǣ$[2 x;R$_̪h1 d:lxANttv ZAe2"2_/5^;>)&Ep˜ 3RIcR\_QF>ap5gSQ.1߄}i?Z$7|la yby;O"xuPf΃ d sKG:2VI>M0o\b!UeŹi?%-bSEEQx z < 8/;d]H0ށq.;1[kޯ-"y .?xcQ{(bI xEExB}0GLӐ8! QU;rMG{⇗53IpXëFr+(-*MI%4u9? D)ysxOQK.jGi!.ksSP"rD%Dk1661& EE9|=%$#&Ԕ[iJu7 R{>h+J Vz5bAd*YM7M! c|,#y,ђXDx drׇC w$9ΔV4gmؽ{E%FS]ϰCOoUPNٔmu- ܹOc l5v5&:Wv8\rkty+dE&5蟫td܁.NC()ՔD%jb8+թ%DEʳ ̅>$a , NwS1 "rþg捎x6>Ml`?ܬLXu2zM9~Eɩ1 ~aA OmSI7_gYvn4B*P/r䙸3T-=*.7 .D!Uci9\M~o-{MŪs hN6ANU 5`C~~bN' ~"à> stream xYyXڟ3LjKHĭVlK B($NʾŅX`oXjk{[ﭵLC;}?<0swg/B oZTdT,>=d}>pzq{V6$ޞ S>|'87* #G~8GN'IL[F:W*O~ɐ%*dIiIdҴ4N( \$! %Rزy,)U SHHcI4")#i`4ZGT)K$OMſK4Y4M!'$q42EooVԴԘ2MO ;icZBtn*XEL:wiTi,+?gL+OU&FgsVÄTyR)DYc_>*.n^G+َoUϗ>rfVS.MN NNҕ_4[1G:y^JjPZŒKcrbe!qa e7&شrSN>cxG}ǣ$ 1!"Jˈp"XA VD$1E&ky|b4D!c'"b1XB,%&$BD"'$KE&L.C#D3!| ?b.4I <z׽zjd55٫=V[zǷO\x~;}Wݯ;1gO! d]G-w=dQ1+^*>^{_W x/#avx.`(ӄ3U)[UEmƘQF}֛B]d"(h$X4{8UvPposdK9saQqIQ$hqx|@0ދ:C-[{ a/ dzZv]LdVtfP ** ;Hoқ@-]6Tż(?ÿ8 p[ nЕS@F%2c'2A} mP m(f]Ce $U04S@Ԅ3y#\: HojK"޾Mh nPz#7:G}RRJNk&؛ۨR]PnO"4#o$v'K{]d# pyjJ8zp )?R% ˧ 4QC ^;R]EVZ`*IWaؼ+MޚPba <<[[T -E"SƆNxh-IѵaH0.40:!ݑS}账I}sCAMȡæ95laެHe<iW `Z>:&0~.ASC0L*զpڈF,M+Z ĨϜ?55ml]g.9VбeGNjT3ngYwfRy0nUB4 1"@6$d`n|ҭk&CNnp1O8wuY.ߥѶ"P(?!{pn֣Օ堊P[Rm$*mf2@>o5-z {Htr>p(*Jn׮S9oyQH/L ڴ ef K >E6*+/^R<ӘE^otn[}M^pټ6aK#X~on]l'fـN_O@:\`j84Q MF/yϝPA)h>r. iA  VR=!zwhl~=C!/\\8FwJvw"?nl"(_̹=$pƹX~y|1dByM z O71@bT\$1\=ZƑrv0$> n.8/8eU; |7cosQ1yms윇=rfZV5.s!?0yXD{(g`x= .,D-ۑgaXРw߻|2+Kbp8.P|$Vz;WHS/VdFSo@W ZɁN qy%s.;}p]1y15v_o!IÙٰdO]EYƢhU5g/KO`L߿;?\ RbhfceԲqoztyt&b:"G.?/{{OOaO'H8P=My6n[@,&.:q{~jom9'm$<\/ Y)_ [遳g,k>n[XR._˚6E^TBYX i>Z.9sʺԃB[{>᰽i{y(EUoFV#]JDNأ> stream xUV TGvF"aE]DT($?" #FDc$?1 Q@quPP/(E@vbjkNg6'̙}h`ExĴĜ8nhISlj$g)"# 22:)|? >6( M_1 +59%fMH9s`j}Xy&f&gX"Ĵ9A7g[ed[X$&oN!EQs3<6fzfen΍[_e88:9/U5LfRTMS:{k j[o?`+7PSyߤx_)/+?cWy?XJ-*z$-uӵjhVKX+`{ia6 ɋ݅otnhѶ ТGڌomT2kmhY }XŒ'8.3'_´fkoeN`z{g,ox~Z7~{Ɛj/ {_|'(.nH=$Ȩ=%9+vqL ضۛꉽl}JzیByLۣڌ}2c8)ڶ%PJs.xϏ:+fMmFuپw w~Q@ )~8A+3?ӎm 6]uF0m퇒]f|;Y,sM,*/ȺlXdg7RVsz0FadˤslsVYBL:ѾnPÑ~Rn92>9Z){֧ Aeٙ;ҿ.T ɥm>;7l ڔ|859-8:óG@d夦$ qgoV >VRueB w~Ax2.Kzʠ "lo|凙 rfa.c 3!=8C5IL"Iҕop)L*(LA}%rcOӨV8z(16rmWU'+=æc݆`:L1>D.xZz~h\qcR]T#S&CRhFұw&8mD5"0T "\J+*Lu4v^1 t[8aRl*ቫ]=c0'(1 =ш2dd 2IV:K'4ҷ̨o8uA&ϮmO}zc6yXWCۀ)#8xG'pbccޙ]g w ƒ!R*'Ssx}~/^L=&v˧C/FGX *ZEa 0ѕc5O\E8ϐ`hi_C8;ؼ5|^qFLWbj Ic?ļ#:}p%\^ӔՂ+UL[%DX{&U--dv7\TmE`‘p,M lW89Gv7=y.ØHy~KQW{RUeV`JƼIpsu9DޛhV4 @q]L]^@t 3)* FKϫ.SL "de@g33Eyr|>blej˷\`KPrѕ3tERЊ49xX@M{|FlBd;\ %K~kٗPJȍOۜ#) }ZS|s& 5QqVYT`(iܱbC=nU \kĜbجo}R"}1zgeF}ۀ؋ޥs!S1kT,{mk}e@Wߊ؟ܘ%KW8 Eo cUD 'gۄBg! uLǐcZ7?{ɗ?,ZB畊= )%~ɝd% nSu?z,0k~Q+m|vKοM. WsK/Ow*+%8^d"Yԟ@[- |/1i0K|$RAw>v_YGxKld: "pB7 L!#IKt^b`S/#X! f\Ja'#&o$F~Ì9^O}y$PEC2bsIæ`*2*l?%5W"U;cb$+C/ƚ  }l[z"$~3d:-lI|'f\}\݇}䛖=Vٌ!B?^,m}[-4fl{m*ʇ ?abpSBsLN&I6t )gj2ҴZ?{x)`[benx)\Rq褢&z[Y<{G>@ ]o{K"^g1L =04+$SpdS[{q9}$ën,tqH/߀-XOߖ^^QR6y\ ?'-eBn+)X<a.O# X9/b+,3"Q^ +n GP,> stream xET PT콘u4޽ A"+G|⮰<]‚sx2a w:d _-HѐZ Y;lfsrr?E Ifgs;i-RϿ$VlD: OO5x5QRF8b7As%nR v!/B?LE?FZ,/g'vdIgpoR}=l Y4T=Wq-#1hNiM`l8s 40tylեKBW7l{4W 㧑CNuC2 ~B g1x|±`{SK}`h(pnw܅ m u'mp3wuu^<i y[ .ak+iJ4 0#pgq=sw! x g٧᝞xX \-R|0xG7u8 5I29J=HV&fpN y4aJzOzt))+c\n$쑻2&mh}dow| #?:pDzD7t `*=vkPHwrTU aEgڕ]0Q;,ײq1{k oXr.|qC ܇ԏ|VZ󒪲pL_ysο4|ˡxmHp9:+ ξSvLl ?!y\Qu`}PG,AAķK<* $#t!]tiىfc߿K|;o{$,پo[#5=P؟,ir_5Df(TL[E] * ?h#EZ>F|iSVv\ (_-NZ8 ny=zY¡'^r>FE׸\!1!> stream xW TSW>1sT E<{ۓQZ{[E2T+ @ C '䍼H "2vzǶ.Ӈ}uw@;Zs;3w$++Y[DM@D"7m>¿'/G`7pDϜNx" zD)z?ur&.&V+5OﲅK&*5qQ$yBLThetLl\*}RBmfSoS>T vP;Mj!GRS?HPARoQTJJyPr5*~ENpQ >2k"KI#Mw3 c`L? S,ASwNEҗA*\ȶLCo3[}_篼SYt6r*t@?d<>Ax t{ve.X {g^uѻ CehdRZo[DwБ;b!űhƬ{ty.@^<8!.PXSz!0b9ul -q S( Dt `iEBM, Mpl ށWq8D+R&UCUv kxFQ'i ~Cf12CB!#"<ȴO{xݙmD`nK/c K_YrZ ͌Dk3=`4h6;<9xWZR}s]^(+{tɁ"$E* UY-{LG9JL҇j ~)AK+2|V̎ԒWsUŨ@4WsX%R ^QQ{$O\He[3['voQ(2iC!st3aIyo b#pFc~~QMUGfHB}J{̩:Vx.\!C[fu%+>=' & 2dx: &SsWVQSW^9`xݸ֯c*֧Y#ޯU\cLPDHQdhyM]>f<mV sI㉷Cz^FZULC]4ޒMT9Z.ݵoyq}J.na ϧ!'< w^bM%hnϯ!xRḾUx!jb!PaJz9ר#  0!`]uPUp\y=n{11:FPʤ64:)Kp7eGzٶwOFJȆdAP.A6R(iudaHcdWb=8{!+j R+i;>v0r(Vč#:2!?.-k()u{ 0J˪yYt=(ueZ߇7ogx֣{7rEgL0+ .zg9Grݰ eTV[s/٬g:97|EO{Y` ~i;!&G ۙk#D8Ͼ7;ǨRX{˦C.h 否HCAq!FG5v$ac9$ E7$WD4"77W̤}A$},􃕈fȮJ93q r %.,6m` L5΁c'R ^VH=E;R"U; G[D4;8W+=v*#^| ];q4~*h !?-r03V'uiJ?4kGfkڎ$:~5QJ>۾ wphtyN0 i !J@_WR {vtNyE D ILJjm=丼+x9yh2FSj`Ѓ1ӮJ fy4- F 1?}L9mh(ǚxG~kp<][ ?*~( }tkK-9fU?7b:v!6כIj/9p&&*)˯5P^UV;pNW YO>^8ߦҙwI7,M&„M4Z/ T#vcXMZZ[9tdE3xO/KWW KxYܜ"mZg  zS[ha00d0_ UWK95LJsl=9LR}%I]#mhm&꼈r^#OZwΜzى#@LoonmvD%cb}$S-_x@f4cC52Ba?mCӑOCNzކĽTn#j,oc~(a·m6P`Kex5{y+_4oƣ-D Q6O 9wƪHΕc"wDMQk A[,ժ"eZLon5Fq ()?.T8vv$v Ib]b\ENx]ْrN1.\sڱAg0s y>ɨߙٲ"I˖ybYDS1^e3hY-x"`Z&Sm%Wה}Jopd.f QQb1?79"1 ><{iiߺ_ӓS?UtGTmAB##`%x濕KZ""+@qGXfFH h=#NJR-ܾ"2f/b`9F9{*}"'R~IaMj[DPF7JIʚ۷RMONNnN448)/jM@22 lg%11Uؑ5UE:BD˿Ȗѡ+c+0>xBw߲\x1ɧ%U\HKC(M#kiSOTltJQN"sendstream endobj 122 0 obj << /Filter /FlateDecode /Length 5438 >> stream x\mo$qN D# w2ӯ@lűb :AbƐ\-R%OTuKl%;pzeЋ~w_|{8φ/όhŹFΜ;s͙lo;F (aV~c&|G¯Z/qfL'3^xrn2)>Dj%p=L];:s{#g$lq. L /ߝ췟}r^ެ`YݯWk8aPvެ8F?S)}/_v N#7aw\q,}P4ӫ?C/<_(љv9xQc~1&h7t <)|wi09}3@ pVx=/Sp^ErK݅F $;"8[$"zf Vsw%3 (Wb""~'@daU׽$ oY, ЃGAf5P.÷k( wnoc[ r`N(x>Pa7IOt 2|`$%:X {Qb*U]0] CxȒ-Yo~S W5qom# R_{ ]3\qx!_UB&v06ptH!y `e A;а s;\J\n?A]A/'q3jGҍCѣc)fD 8G rg6ϸ  REu a(ͨ;f5mWmnq۹ZQ g8=zz;8<+;n[`sT`.UOf٥fiXmU#ܐ~(ej͊M1[SWE&%$,y)x M7be؈ӹq;_]=zH8ZK` >?6hʣ]ͣ?1F<*~rȆsbl4˱WV! 6gMǻg0``Md~8u.7*D[V+L L@xnsQn7cJ &pրmGfĤ)~}oIGwj86ḿo_DﴎóJõJM>M(6At<ۗvs;|ZЧq*;=滧9r f_+  `6`tq|}`-O d _)+yC71FHA`cpp # W'<`9:`@*LG鞁U#f|<,S Eml\t)qp.ӫ. D|"\1 p[+,c͗G6kεV u_y|`3lLh2+kxXPΔ/pPZF9#zZlBVYTZ=$ZT^xNU͵NxP WA+a 2>3:3\B fC؝la4H2x?^$x,X[ # $ntt^hB7؍iZ:1èK5t_ 3`qpאP!&0QPGTgZ_k=}f18f9SKA~4K.8+! |G9]X_}I}OP%L!Q2C}=ho~" e5J_2t}F_e I׃,"BOG̎~N/|Fp}EH71&*jt+~h33\"F44J߲O."kB-e׀iB\Okܔ]cH81.mΓAi:-(`wR( k3H4SӤ߼t,_m>A)f@-lU`[p ͢0BgLԼRQH^Vs`'ջ0) zLX u,Gd٭T}y2U6WRj'Xc` 7r}+F>3TMEQepћ*Y2 &Our,2"1[uޖdpTs5.2%a*0Tdm*YR`ވ!!ݖ2g>3Zeߐ?-1bΗސSzM {iO^\} /H$p4v}6 ڶU݊YvD.s~6]cMVڣfEM=c'}%, B&T%hӏHBFj%9^VNL:.,50崫ڎzlGEI-Z˱"Y[_x,4+Wp\\sXIZ`&shbyF2 =2ᆒ(j!*o͜(hxWl0ANH.cLU]]) ";t|f  2P2熖-\I3'/ilce!'ξ0e,6+ 1(6Im`n.TE,BAr )b44ViD#$)O[CKNdCp3KSt-Ǐj:ٳpLǯ+( k覵6 y5%5 G۠^(@1!CEiץg + %gX[þSDN-8)-7®Z>i*!%0B./?a0!m 𳏅ڬaILC434..|=q5ЭX BՏ9j xӁHmXaDͣu䁗)H t t>w?5h ? |`"ӕ=m PI ;Rmb1֗%HNU&$j;\QL<4>}6+юn罧 ܄9T=ЛPZ[s>kqL$@:(5.6*ӳ/}Uoa\#$Ums;̳m]{C}cA.p.jKN@qLG#I:$`St26vIkr}suvQ*L]؛△XU03=Gs'/>0vvM&M[7 FZl'oK4#dZ 6d }^LWC$x?]Zꮯ =DUg[Tb"F9,1˷@p^jz%k5+"`W~ZnϐR:{Jß 'awJ666HT홭oI3_ kRc!: 2k;㴙Q~ˀ&*ktpA*ZjgnԊ!=`Vܹxh\(6dHH48:\F|>GMedk.tZ`50b(Fb30 ܱQiyICeÐ:h1NĶE.A?p'I2I筛a9b"ޮ--vq]oWSc8膐[NՒϝ呈abf!P֭-[ ,[-lMo^$ŰTFnILWnPԇ̍~`!tNEJ'-3{I QZ*J%+^y Ѣgb\*C$ J?Rx-_qMlE&] u(MODOXRV =)l#.pEv3C$XYuTne)8VFZh4ŏC%~kyʿ> stream x[ou'_b/鉗_$.l:Q8~$JCr$WϞNe؇z~˩:ޟf{_=/;nuKr5c 3ٽܕl\>`Fh&1*VfnSCY c#Z8M2̪^O*2TW*6ؓI-&rҪOjnj<igH׷o!Vuɥ۝-`Voh]ܟt8ι2ž_b!6p3Zo^μwc--~\4g&\OW]VO430n)a1%gq4?|?Wwշ') njzbz=_w?.08_Q~T Yc{Fgx3_!D0_<_W櫷|yyry>h<*}߮lkwZx=\^ $jc9*-f]6</q9 ?(v,lʢ&_fzW)Zڪ?FϨʲ Q"ek˳hp4xb_"Okܵ.V>WnQwutA_a\Wv7_-fe|+CJ>7a] @~"Z;(G}>♫+#2D)i~bNs>{e勊*]dRv^J|ܯW_,qmg7ZpGj>2&@iR /] QC#nѽ0 #l3au&lfbrvV<j5uDVvvj&VuZ=]jVޙ 7{Wd0+gDf?ck ;;6/_G w|u"CVܪ4VѸU~DrjɺR02j5V;#NU_Ѫj_7ܗ3nm;7g-#Gh?,PH뿔h7 8}tg" :HB 4* > q簕/D0 še)Ĕ~+Α:Qc){-Zj1=Z[!v)/&7Ћ 0S}8lIZඁVNр鑜YTH}XG:IAjә4*$ Vtߞ9,B Y/n=v @X#d@{ Y$+k[i8VrHi{M1ښB8U*#LABKXQjCX3BKCdz{2(v^׳7ėhU`b4DwfsS>l$R@מlsbR&ħ4~t6F!y bNXzѣO@{ャbKQ*FH* l 3 NU z+] {Յ/RY{)Q>P8B!VxTz10l3 Iij'i i,[k%Al(sOKܳ21MnsiZ%vzc3i-[-v^#"'JRFZ%Xd򬕷ѷ$–^Se M D%{*@Ldzb 15BOCɊ{[ DEJ (0;iɎy |Ms n v̪o6,މQHmw>S⫷3˾m vcj%@$Ɋ@׆`t/=,|mm!~*49myWM>Evذtɭ%4q%eO+ ROz G.};q![7o*Z;, PpD(ly65=ck 3zzN@5ΧS<."e'ID\SG5Raϭ_pu>`n~@d&dO?{qlrCnɭj!E|HhYp}(H<_:ޟ_};1]O8Sbeu&:c-b~ 7:v ~te7;t{yw|xxCʎjΐ-UtYuWY2M0P Ya >)+||wr|1 ݬEo۳YyYdw裋E|{)4Ͻ;ᾅ,}@éi_ ^4إNx mt9$ã1O$})}|߾'~3>'0&U'_ݷgusF215P&/ y!k'/H&!&vrcÚ@Gd!N5dSw" 4_CVuyj'؛|`0UL->W~]5~طy LsnU'4T'F]}g/Y#ֆn;V{2AlRi?_KźV7YOnCL/nıeVvgv4-9Du- 91MݵWg*?f=0`endstream endobj 124 0 obj << /Filter /FlateDecode /Length 4576 >> stream x[Yoɑ~Cz!>`-B0ۮ _7{UFWeTe2ڔXF豌nzJi~s}?v :>]_mw3s^뮞vOw.Jv'3-R?,3vxDD_z-Ӯp6juuє/+̋LFtwce+wvSԛNx61rM$[d3n*OoJy ٝvuN IKx;U'Ra] a Y.,쌧9wailCiO{ϴtX#;E d˲0?)R.7;q'5t/kut3H 31jo>'l+åk[Y_b29 `֬=k xkvaNi !N8ڳhz29{zq\Qr”޵ JP@Ev=d}%ƬVUIdlkŌ;=M$ѷ3aҌ#C1˸V Oxã6Q-L^ٌ7G 6=?>N$ MG}{l44zhZZ@;+:O+LQNyGJ š? ϝ5 ]Pbѥ~=SdU*MIe4p)B!!u+͟&7e j Owe1E!H8nw~Z`x2mo^Dx_NV;p *T1]bz)g3=!kGgD"_Cyz]Y{UWuH04Z{(pSc~:^C.x){T01S6_uRCM!\\)™CH83(19xD\Wñݰ ž܁˄z;-wqAɠIm7<*"!7fW ]pM4Ŵ$sP`%1 fpH9Nh*MD, Ja6܃ۢ]Іv" gSB6 Dk+$[(,|ft6 t aytHíVn/"T YRqd P me.!+!3'̘lGVt2R]&=‡@ 2 HRK-|d⻸TzBiӊ'+@AR-z~Px1!̂&$]+f|a,T$tITr5_tyS7K]AmxpuS#%@{.D-GQW}NzU1sP͖K- + 2G. >^&^B]58=3  1)B"YAz<_CGMWU sJo q\3Sǃ {ޙYdyM8"؄s\i[ˍfF0CBex C)6l0hzIA$$ %: S3("7oi@֘wuMYQ񔵣S4 a@b +Ɲ"{|xs$9RUf.2hs3D$XJyeTi@ E |ʸ EwU ͚>x)9|b6O nTFa\8wBIDYX,䈈"1$ >tH $i5!\ow)[ͤ[|ljܣLjH6.86ʨWe3Na8&G]ZhD c !hQ~XC'Q! n6!x J FBHL8oךAmv_=r}1,j!m$Fez4 VfvaK:?ØG:\` ߆I VܒJB jmdLg%A~,_ I( j ©8lkfO󜯇춿Pn,"&R*UºТ6 l摬 z47#4fXy0Ql>-ԛm/aҨJ"F}ʠI換qq Z.|i@I{}&mC=xj^֦yBx &l=ᤈ5 MXWj⃗cRP䠢\}=>OM3d5 fgL=Y. UhVeϸMGׇ|<s[KZvdA"*$[NʠnxҖhSB.~(`'q4]0 Bm&Sk䂙qD1ЮbZK@XoB}1~h^)}8 juQsM ӴViC(҄l tI,tl)gr 9d$IHZe RkZy >O@ڹ!aP(x2yY'7$(wk߶=|a]=bN=\uD'2WoW^5#C$s=E-0\u|V'k@[eRY8XV ms gc~I|&&B[)/uR JOpTÇk=$ћpUZi҆nMt$|ʜNRćnCP}NL:|0Jq x[_'ogp402Q ae'oTk٬.[mìUbQP'.#SZVkS\kCn@{uďzEmuӆ ِp} Dz^j1#I#>,Lxh5\¬_u_&hTC-ߌa쀲&/xNln\]7 3 m|4&EEN H:l%NoH?'LN{6#`!4ٹZ/V%~F! eY1{OU!nvD 0)*?.ɥ2H\WN$ *aS7bے-Gҟig[/&Q)΢]74VRfr^V/7iN>Fo<2L(C#%4(P| XeALJ2AuzcWU}rw3>|q4.WKpZƝDY vgl*\$GB*Hm7GҘyG,?bM>f;򮯩XyjQoendstream endobj 125 0 obj << /Filter /FlateDecode /Length 4791 >> stream x]ۮ$G}OY'ˎ#%!$lZqrM3H֎̬,s@ [Ɋ5^m?wѯbV׿^Kq-1][qFX_]>U kNt8ZVI=Ns\m~za)W:qoV}mުQ585Ƕu<uno}K!n>wÚ:QS>y m\]~{%Q˧'X~[D{o~0zHi,AyXsZG/ywN6@CɖSZ85ioS4fЌ5nqSI|[^9 :>;>[ǏO^6Өxv7Ӈ??o^ۍ/9ˊq˵`ʱc)\ k阙3Tr:-_skkݡw/D bXbF||ݛϖ>]e%Ծ|˽ݶKN?2:g=0 thjrkMm)O\pi^Բ沀1S,hIN ?.zWIKt"of5j/1{ZF%C(qtklqk%ZVp^n<" zFkÈ?%|2kZ-09 gm֦WߔzMva_Тs7X|&Upų4Kn+𵝧kJTD; pŢP,rIu-JVtM2]3]`Ӏ u ѪHW25Ad X3;Ej6 f nQD آbdUjZ,,)1c!/"`hZI*` y . if*5}1 Ep[*PE{@aDk&QjR|B`7 E[*UK n!X 2Vb]A5-H-hƑܱ6 )BpG+ ,˒qņR (N1e:o}LPe;B=]qY3SP-l)Xy@hH%@"L.!S'6FCMۚlu[{WKb~13tH-.+7 'ElHư+(y qSPQ@-XFhT输Q`5RNAhJ9b [ҧ őQ_fQbٍ`“`mbT8nsRFX9Ibrd:HaP n,BPgLDw7J 1$3 14m$AP+;fJ>"\GR!%9zFDT̤xBy5AUc&@k'Ҥ$F5R@D\hP7L)5:(6RRV9"r5$3V?CSkN6IX(R]30Ub\K(hkј;EQǶF !(`% [|&ƐݹladZ?)B )ZMhd!Zkw|8\Q:Mt4,BPle*(E?) GSQ 9r<5 Pnz*4قI>BZV{Dq1@y0@hf`",ֵӉ" y0J="*'f@kkp+!JqX6tIL f'1ɲFoi!x6F{)5sSxLwTuX;# zϓ&SPڦx3 AFLidfEؠ?яRb$3ʳI3.ձ Yg \@_CJʣ"FЩF(^ktG4f@;"tNxƱ͑#r&4g.M +X)2_f1ƪ*ѹ-;Hg+y&/1%1ũ3ahFXmEfN侓bwms\@-H`L ,rY`} U#;x#]}&1£@B~`~LȞ64>pPgƊơI,aEA&X5+yӨhQXbıBoX1Z$daS$I8798TҪv`43*J(=8~5ƣq; An;'4pcMsF&V _43\6ċ77ŌDuĤ@Hy$+&+˜8TxIqlkd)2X9lS]%YDmEC5/cXj4_Hͻ8>\|0Y{,/lF;C hsC>݄\{9n$mN3B:m@]x޽Wݷ ozwcR; &gیla1&PlOglf6[3fڜf 9?@gh0Юb3+Mvvh6 n5+g"∪ o;X4~&ĩA̽;s-=hnp bn1wx1wN(gOy0k[ܥd2P<:;I$3y KLg,ٺܳ]X47hE0h0^_)'6Dga<^a#.^|r:~Ы* fe]om\>?wcR,K[ˇr{-?x1cl-vT7pj\yvOXcXT{[#k%DYޱFœ Gʳ/~譶ۓ%P=r5 +5%za0/غ֗psՁ柩Fj,X:_kC7 32+46η1}sc^2fn/Wf7n;c?73x.}{b箽g˃+.u̯dVߝgE~*'潏JD^8D?ҟ^§XhO Z0c}>?~r> stream x{PSwo\ZV{gٵ7;ZRԪ1*UƄG!<" #PX*j#juϙˆՙ̝ws| w7B [Z[(vI\>1y#x}AA+֎Ѩ]8Ht`b#QiKM >}#ϱ{DtR^L+Q2S嗖%ӣC_L`]AN"4b ?>Hfͮ\S1ʇŽ6QwVо#^C@vT|EUڅ\ ; q쳌1R[M},|5ԶܻipW"i52ٖ*P2 ]2k9gg`Aow(ަ3Vmrst*ں) LʁsNӄ{NMm5iRYAڼz-MUl0{BĊk:cR1FY!&x!ލ_`YTf;0.*ჸ\_ok7+6AA͢5/t0 hj oOل.wK`9V'Z@ a<KOwiQ_ǣTS"%4!QbIr =7<.`gG-#|ZHe n wdT%%UgVv;OA^q:C~Ii(3ye>y@[ԵɑtZŗXɐn2UN!6Doj͎~DoC1k+/,Rbi.Dp/z-=3\M7ASBn=O[ x޲wy/|[W8JA쇵O1ލ޿$/B9&_ cS]ׅ(iUK!ɤjK*MLP9ߕiMicͅZ[Z 3JjPTɁZJVנc3SOk@M¼gZ}h"L8GFF¢x C%Kzg9jGn¯8+eG?tk. Bku1̰s`\DݓBn?w{ i LX_h 捫:dldgʳE0fl< QOH*qkn~c~]E>c抚2f0Ξ1!uî̾^ՈĒ⏫b.ejտ!_[F}~ݬ-vsD:B.}J7r_y=' cvukfGDr4>t ,&G`T0SD_Wn ~t%$tRI{ڕ?s~JtVvv6wAldfd?h=s8<#=gÆ5fK[}gSVYN SrkIbyUrI"\'3=Y5z ՟endstream endobj 127 0 obj << /Filter /FlateDecode /Length 161 >> stream x]O0 }L. TU2D! :gvm_Xցf$h, Ÿ> stream xXrG }߯SO;<B(8z8^{6*?hx@hՒZ}}%UI= M4MSKEM(\&ZSl!cYmfg*WjZ]VBhg4.4Jy䙚B!ղyy=xx!wY bCZ'Q\םD<,޽jZ|&R4O'٫Yjge; ]K5"?{e-r-D:&eF\:sX R&DC>p;NVTd1F/. dAzb]>Uzic]x5Yt>I IB#\ΡXJdg2B,NYܐI!$= NYKZ*sRӑ$UTtB"Eb `*0DRS``U;jHy;M5תsr0FFmsJΩb8;6Ls%UJ]q,t{ql;g@MBkjʨ,+SIz(u"hZ9XbG4zpYM[瑨 iBQi:HRxi S/:艠-`YDG&">8]oTh/kS4y`% =&Cʍ&#g%U#'Ktn,~7ءr04>):F?B.:r@4 o4q#޻Vs}]/ q/aE/5tKznh]/K^ZD݄M/=!rį\8;dpKWSO -Z1Q'Hiv,\mzB٬-]/<1\S07LC9J ~BF+ydjM;C&~!SW|da:1t͔EchJɥvٻ.Z=>Qv(b1Aw:gs>т21(n;أꒈˉP:9j3?SX cnp'sNL|^a1N񭲩C>XH+ed`3r` ]Auv֣-ێ~-i}b&rxBW t= }xE$a?z3}3([y;/y=N'}+" -)~ Y!`RBj{CC "xɞm[COG\,_&CcklEʏV^|b&ve4W]2mKA(wlW nY8?X*OSbI&1eOߍT?0rER]w&z xlv8\aR)]}yxIDכcF癏FGaQbgkj|8Mn0`4I>q~D f j#^7ͰcYY^mendstream endobj 129 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 2482 >> stream xuU TSg~1-i%n iǶX lA H"HrCe lBkjљZ hG{s93瞓~~(H$6yO:Wg𯉁g vbyuX"s)Hv+@:>NQ.vQz^rjXu|td/RM+c5Yʥ4oXꖬ[̈ר$XtuniX/9&VDQԼ ITMڻY1qy\EQ *ERש=F*DyS[(_ʓzPzrAP#ѻ"ˌ3jf( ǹQSv ?CJ'ïhK&k` YZ<p,SD/Z6z X!$1Qˁ{Xj1R~¿a~qW{8f~ޝk6ic /Z(*Cf R*&q;PwPѫ֎fd-sv_8Va`RAQ 5epx(ӎnN]l45tMPip]0Y @Nʯ>rh퓐n6*08a@(mp^TAE~AL| ޥwz2+/y-W޸V!aZe,n]-9:B1vr( Q&a>(O$t;;蛚RIˉbKJnj}A j/N7NB׶ }Q0Ddl!'ٯ0GM-IׄIu%Tc5T*BWDr}\/d;Y!9IIhlȁ{Fao M'.DZj_Ws[fm)0uxZmґ|d2)+K~ z]e+rA]Hʪ &OH#= 4 :UkV8b(3&t}b&$-$g8T^P]̘ .G#Wd@Sl2+mȔU,>M Q:]jR1ED[pdcӸ'Oi3в={8-\EK\c{7lɊ%8)ξu>lQspz꓄a&atgwZ{`Kx8lY aflgXM F"s2 )s:p9׺{r2ksP?5߹ c! k~G'lWv`lں?@iQzАg MfU@ ;(A’E){JBg˛&Tv;ΣBbNHsO;1\qBBhnJ^`gټYg7%-vvR$Bendstream endobj 130 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 5191 >> stream xX TSgھ1֡ ^֪Uj*ui\kU@!d#{ a_*(.e֙g| ԙq8B>?`Xmٹib߯sA,SNeEd6LTts*R?"lKZ'Ӄ ^r/,^2xmJ|*?6Z%:=1>%:CˏO rbzhgee-NI[$LMxeނ,~zb7)[4N"HO "O1u:76gl̊Ύɉ ,!q;ΤU -ya)A$BYD1F$e6Y(#f-ٕ7}i\eRg 1UVm&hyF[uRͱƜ^ch.нQ |-,L}TAӹ7]=)Z<&xFrl4reyr:, d-DIS\А RLG){Q<@|.Iح+&w@<\c4^=A?mBlܘwwsk\ce߇J3::U^)<׵-#*}I*@vwe'&1lf'c:V8^KAv>f2i˪ۧdXZbD\4Y5.G :Vr\| 0C-JDЄw}6:7;ꫤSmV I`"y+mƣh>z73n؟z#׀pG{K&o]])w`ɹ?:n]Jl5tX ޷ 0Նra@٠3h걦h5:Ҵd&v7g20!KN.,h{A]@vTO3+ 3[lZ*7+6Fs ڿS亣ߊ[/h$iEf+Jkk+tTKe૨LfIY%Ee[1L/ Od%$9ԬȮ̶{@/lF:t '~Fk\<p'$ЁArA i9KCof͋O'Edz.S߸nEWfE3|^X)$U(2(PN$.-IX͖l+Z*QCT3e^~bfe5&v?qlDNеgwzB8s|Xf]=O̫**s)KIz0z,l5ʛ*.]OKlLLLI}NpNi˛X-c{sj]AD:s8(T|ջp5f*Ŕ=2|6G>R?Dp%;h>ɵIn7mRA#Q;RL7ՙkuz\=xX=Aдs'F>=ЋnY$=늚Ղøky_\chU6 xx-Wsf4BVMf9$,aj0vgx7WIy1p"zcV= m:D+q:ϡ+qI\@.^ zZovQ`20\}; gqJ\jmvA v]; $f5=:5ѩyAC5٩1KraC62H8$/x!at {Ւ-2Vz9]J}4T#`m 5\ c6HG,/f3e2u' U d *>f8'+bfB}opF7I+] ȣ8bH6@hXܘ V4Jhop>Ms9@Z gu'Rێ+\x_\K'{N"}uehU`"RsўSv$rdt7DS7ʼnXX\'3u& x[l-ʎ_[F J Ɏ`u g`*:|kGؓ'R fo;;вkxsѿ|U ؿ?R^ P{pX fP%[\%L:rPyn]  [-򓓒KZFaȿ%e+Q|+4:[ېU[ MA(--۸[qdC^oY-么us S8nT W wR#!"uip+чl8zmhrƫG{GO;{0͙FMrDsdY/Hendstream endobj 131 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1255 >> stream xeSkLSg>=k\{؜̜220RB"m]DD^ a-~Q-{d%|壩0iYRں% 87L|J^C ̏¬Cf$Kj‚E+KVkM:@kӴvΤK&KQgw WU#NkY-Fߨ鬥B>biM:~r3b*.|Pg5Si[Zgҩ sjIPS)j LtJVd+DR G(D1bqwm 9?ݬ<"4X-X=A?\s +Q"0|phؠw0JUg8 q#e/%oyWL~0"iv5U\ u= \WTr 4]i,n׃\RC C(["Y%zYǏ.iϳdFCU?? w /RIᳳl^Vk^98*Rqx{,tuBW2ZrrOKT2x}_C܄k¸$T0ʏӿf1i42O7H+KKoknT5d3ypQwWqk;\:r{*Afl)k txU/A>ڒZϒy.2;ޔs=U)d=T Ǡ_5r"[Rbη0>؛&(^Fdq8=髽r+A $Yz/A`x+r'N\dfO g<ĖR^cWJp{k7nyh1jF NIkdH% ]R #q=`{mj[)Qp=lr;=0$TuBv}L ŠQn3m1v_P $Ӱͽ{7p0i)fi3G&ZEؑڛ#v l ;u怫Q5!n|z=hz/0&`W 1vا喯BnN ޽> reEQy2[ HMUE'SB R݊i^Ezendstream endobj 132 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 759 >> stream x%RKSq?<՚ jPTVhayI!Rk;\4esKv#4"-rA`#EOsS04g!\<"ݑƶ62Pȧ-Q~LLS_8.RYlLaaAu6?*.^*uؤQfT%3:<Oe\caT-]ʹ8XNS cw6d qfuɝVɱ%\~vi/$dRa t$CS0ONqXZo@kT7AFS% 2 tWzɍJ5nFh1UԓxbjIKyDEۏ CMKt G T뮗8 Fա q@p\\e>$+t|7[t- սW1v8bx<⪤G# 'NJ&֭0uS-%ҹ?陁nQ?C2=3G _޾]/0.&V>BHE._Zhg=vh?QA9ns=A;8+`CO9 sӃ/Lk ָKze# (z t)ʼT6 &"KEf$ 'zɫP1endstream endobj 133 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 386 >> stream xwCMR8'vz-   ZWTmqCopyright (c) 1997, 2009 American Mathematical Society (), with Reserved Font Name CMR8.CMR8Computer Modern3vťbڽQ"DfVT@htkpozc,MI%ڧϋ1# :Q?f{ku؎׃$Ena}{mltNx~}vCoa  7 כ Uendstream endobj 134 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1009 >> stream xURmLSW>W-re!P`1F`X$& `e+1bmc -%'Bُy߼P(D( ˵,NٔYi+B[(J(7ɱ30R`BniLya+)*XaeZq):Py?9%U(sYZkC:nq8YejQ+|$RU-Va~dDH2e@BcPmE@S=2$;%ݓ'ʓaH- jp 8Ƒ1" HLȏ]"6gGͽx11WW|xW; B$}ܲOj:d_6֖ :جlnk_||ddJu"`;h"렗ōI4F*k9V]fzKC ΍n Ѵ ɒ>#[H'հlOf'?i5 ao०1` 9m=J\xTPh6E7ž^_fd$) &Ds_vU/1>il|GpzFpθ-•_1@d7ع4sI{.鞳VdYa z6'6qA؉@^Z^SNxs)}_-ubV[@Ce,A)=DA#EZCՄvcd8]~*xIS/z'Jvvv[U:̌Z? >Rk4' bɛ\_bdfҖjg\Zp;;Ts?txUm*5Bxendstream endobj 135 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 329 >> stream xcd`ab`dddw 641H3a!O/nn߷}O=J19(3=DA#YS\GR17(391O7$#57QOL-Tа())///K-/JQ(,PJ-N-*KMQp+QKMU8OB9)槤1000103012)ٽgf|;?̿ܥ;~3>,}} |g|Waq6;7<_s/wt\7Xp9|zaendstream endobj 136 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 327 >> stream xcd`ab`dddu 21H3a!#kc7s7G ~"Ș[_PYQ`hii`d``ZXX('gT*hdX뗗%i(gd(((%*"s JKR|SR Yt8۽ǒ3~t:{} 9w>$:ut=6t.Աk/Tvkp=ol-b>sd[yxTqQendstream endobj 137 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 416 >> stream xcd`ab`ddds44~H3a!;=<<<,+p }=B19(3=DA#YS\GR17(391O7$#57QOL-Tа())///K-/JQ(,PJ-N-*KMQp+QKMU;OL:)槤1000201012c5_x? D{{&vO>113\q~Nn"~+V:Ȯwuj ⨯.m~X`endstream endobj 138 0 obj << /Filter /FlateDecode /Length 6845 >> stream x[q!qON~qqHI6DQ|?Oh_UӳSKp gǞԥzWK/_|/yp<åV.jw[K|C~_jIn M|JR9崔d-KR[s{us֘.}%S7Dwu!_zz!-Hxgn+~_>zjzkvW{[Ͻ\o{tֻC.jRg2|&Ucs%xf¯OOOS/g7Kӧh<*Q#S~}Km_޼DTSպz)zBPGKʡ' ~ݹ-Լ!Dޱ˒{NAJL3 I[ R~mP>@xJBL H٪ҷ@TU*3!k,U@R).$IB1D]RBJJ#3qBkhvI< T`6o G|4RE4j;g 23mЬSY&{7gمlnu4s:i\Lg0eg)^ӥLngtMS>TPݗ_=|䧟~O~O?t%LeHl =o~巈<#iogjP:"Wj>(&x}+7/i* }H+H w@%t\A')ڃ0TX=S!$U% '֔frݺc&=W.Bʱr?z!syb$t ϥB!OPG#%[JzsbsRGZ͓;IIԤ8z̼<ȤH|2AHd(4&ēL*J^8ׂGW6 d'\KDCIP,M-]{)5ByLTG1 ' v$oh~Q@hiVѽy"LB\HJyC?(nfH$n}Ǽd-ulTH_Ŭr"f]kh.LI;cr B2c4MB ?WaS6O ўB,Rjb]+)މ:,UX$TVU⑝0JfHkK7wkȳs~ho\@&}migb e}2+w҈V%w1w:Jn:Ё%=d F#7Ƽ^%H5ڥYH*ҜъM`՜ʘvqTC (JJ$"{sY芮/E,Q?IRl5){M S'jq-5R VKIRdz ,RIRǶd)uӢ{necn[{|sℷKg_U5.w7FB9z{RJɡTolRJRg{ApK)%Rڢ8ł V:9Z/ A`&I'o&  6@Kf29LnE]lO9ѵ{DKWVrtd\ox1D ٩*5H}_+$\HxX6o $"E(DHdMhFY:Dv`LEljɴG{E2v֔dxY2.gšI%1&LxA<_i"΄BB!Rxh <2mm$t&K&Q63!Z~&)&mmp%wx$Y4uW/k|e1IyfK^/`n( L6;! I7)6IP"<:!΢)6֬2U'“qgE[ dlE6cKṥA" edN °$#I6^3!)WqvL=Jw H!݈[Cliv@,hK}YD$cLs@~V $cd4i@2birVafF膦Ni)#"D jh$׈E&HIsH[H.4_"b1Rd"uMF=Rmb3`Oى t(Sut4,lv:=h_*CY)gYyم=kg^4Ha͖UGٴ'/NX֤"YZ= c)YX*F_1ߎn=xGj_ a=TH NDtp% 99`lD.{xc0!6 {>=aמ1:tϝcT1r{=c 1DdQ)E)%C!{jʐ=}"{Ϟ)34l& %m99ӨϴK5 }pR۲FRaQK,¶nK\:Y2jzR󼌧e/r~`qCԏ,§fPGZ]ڢ Q+~v(/FB~O??'hk6Bhɫ/޼cav.#Gg~B l Cb17f@?Fq><2 T#!w֣յj4$]72-UGo+/^w"[=*c+܈ ];(FI#XJMJ7iR,&d)uk'Km.la62u{׍ r5 -[]Yӥ֍YhntB>mcB=Rhvtns[BÁ-=4-,d+LE:3^$)]& *m28 /*6n4^C$Mۼ*pE¼*iBMHr&N֡"^"ޞ{/wBbrLD%Ddjuf8L色$C2Z&DM9 "jphɳIx 6 Xbf?d&YH蓄 e 1jlńIH-9Lxgh2 6d3iMZۼ!!l3rjA 7΄X H6T?"/lˮ0BXYD"6d@&#iaAEyLȂ`qYM>f[~\Cz/&ZR6bS>%G24q@ EK.Ι ]Z9d<g{DI[3Y: ynH@D3i3wx _ڈho)0&8E \-s1qdD&E1&I6HӔ鈬zA&iWMWQYi AȳAz,ƋIbH C/)&!Iw ,E!WqU+HBR^aɳAp[IwH3įX4|E10؊Y$W~")7J!sIЙub1@T*6 NfGӈpjA H4H#co]f-p„4YhtK ia<޻IN v"2~~ZzZ>TY#"TkAoԖb%gt[)F;yz O:G+yw%|HlM8{8&#XI;YJuIRX5]^wi &!iw06tsslŘH2{Iˬq$}F20٣HZf" &'t!w{KcfDWٍ 2-]M9<"䛋l>mMЛMRZ*l.ގOxAHmh^+Ɠ-$],$Mch'KMpo@5u$8/,}Q䬚AB3&Y'$jGo6yE&'}^meҗ3AK¤ϛ*AΚ&XOi '-a1ȼ8k:&K&LNdP {Tj\x1D2/ 3lEH||MN}ltfo]cqM$du"IKޡo ֺ%#A8a]$/8?K$:;C"OX*@M+})%|[hfܨV+\+E:ˀ#sG'OKh R[?H~/tRhH> ~d/Q3=M (F1cm=q"cg˦݅y~DP)g IyڄWn:n= s5n |ٟ,rBP%Uvchș׿ ;ܩzoz~<7wqN5[iO9_h7z/yX,ԁ_5.ߓ.(<7#<1]W/.z#և~Uhe5=> stream xcd`ab`ddds H3a!Skc7s7 ~.ȘW_PYQ`hii`d``ZXX('gT*hdX뗗%i(gd(((%*]&s JKR|SRYt^}י1y#no~\~r]O9V=׋翛}}5۟'Wgq>7<_s.wt3\Xpso/yypendstream endobj 140 0 obj << /Filter /FlateDecode /Length 14117 >> stream x}[%7v{y:>.ɪb ǀc˸3/dq_NkO8bεmoo_fr7on{n߾9"|7e[:n{\irrr# I lޗNxx(}fR;-3#c vN:0IS2o[n_7-oozOӭ˶n\p )H K k߽_={)iז_޾}ZǗ߾1޷됥˺ue9&f}m>Vrv~hݗt~)oHAYޅt?O w@ /W ߾ȟ^Sֿ>___Sꏩ_Q%O;|'?~)}/}[g]%p{oTǏ7?LV =kVׯ'v|5~w]1LUTdeW򗮬e6|7y]ʳww_a/,׶%Rn/&kE4P]i _M[G}gQ?sHa7zF?LwSc|ߖ}3Y?>סԀ%'4?+W)5p|~y )RiN'?GK>ONc(.{;X_?!І[<(]m['џ>1PXVnӝB2/E ¾ҿKǶׄƔ[^FabspЋJ4ɀK/!DAgPflky]7ZtK>*DG0Mqd]^hHZ./e&,Z\kf%|2-ò"uʺQ?-of(&eK*%OSpVdxrJ1,5riUލ.Hb3eR=J^}gEtN ЌlKA8$N]՜wz8[ISLg7VOl734p} n$Hu%S4N]O/Wuk)ֹKoHVǎS zAS<6j*eƓ;7^)걚(}P*ĭ3awZR FPbyluG4)ٲmE>*r1'% 2H/+2RGN'Dۙ[5\sg7'0LdHX&o[4;4 EO:Mwr $ ܩIlqv%8mgU5S5xL4NaݘAlY v(j*PRK<hZrM)_!xT&aEfL˖NByv@hu& *dKPvfsFV@.rIKDgm;.z{Gk27u&{^I|ؓ<9[ zǀ/ͪlPÞ Y9zyZzDRa#XEw-Y3Y "8QJ"jX "av {4嚲9DvYȒTLkb} ]I#P|,'1)#=PCDdtCu|8MKv?w ;"A[(Ƿ3?J~!bg8X5ʳ4j*C9nZZ}*᜞XQ( "~T~$ы5kgPdKQ-t3YZ:L"LB*8q q,du Uoߓh}ҼCV 6種M>]p2(QE bWR*ՙ9 |-i4 :)aё# 69ūP@B5:;:Q6|r|^'ռYߊ3"4h^g9 ,6H:@k[SU%SZ{R[9pROb~MԾY{mvX[ql(rUɋ8Wd8^WRAS뵵#钉mPƩ~qjQ 8GD6L]n,~q|e||q}58{iW^#-gidVн϶icJL+;Lhzw8K낖jT۵`?ћu3٫F]g;dfd\CUDp`5o"z!?+Lk 30a¥:$$OG1kh#8x䏀pƥğUk[QglΕNo%bv"'֛IO ⻛!}E2ȯُg|Uuf>\{ f'V.}v/3Eepׇz+NEUZFIƾ:J)]j)>Y2v&`!;]ܽU$j}b9H&u\"x8ĞN™9XmMKs^o .D(.UItCڞ34up5S8tBRPCP xO4uFƫ[p>P;j@S~6==r+ͱMeQ+7.4p3@ 6s=5䀘wY)4N>;qkv7ZsS%}yfJ\]E/;;i$D3}~g>mA$Ҵ`AO x-![^s hn9CRr,ӡHV j:LGܝ{-f˳p0sġ/ صx`bD&.;iqtKrf+Ȅk:VLM;& Sw)'9f (.EAS7e$N>\/k+x4`+ z= DZ;HuQ d6 }R!>R(`Ϲag{nY ]r=Ojuqku eOvKWl ?*ڱF*00  "rAWqJ$PA,N'q1{.t@b-0+}ĩB)BNj47xt]h1yԔk~s\ gxer<@ :$yb-eq*?tÃyxezc.ptk{P߫%@"/G~eړ><#!0W"@=^_5QZQ z`?E]k>/3*o+ ]Nk1ȃk!B>RtdR^G‡,hppBezX-oIזe'WsoB r 6ŽFJCGNSv1N9䥂 2iqAI0"`yB ?Y֠"6UDi1DLJ5֞n.*nymb~h/ ۿ F*^qF~PA ۨ^]3J~QKGBŌ !GQEgfbFJ*fbF=~Yei:)n?ꏷXqN6"uy乶oes~9`VTf9%X` ꙌY~y͎˅Kn! '9D {j-||z*B[Wǐ[3x zq![\!vH.v?pI.Tq\*y嘟r\S\e\d4 a l..8lQBF.S !m„ V /C0Ź6o;>g2 2"O(zἘa}~M2։"6Xz! (IH|k `%-d.u1EC|!S6}/D1"Vw 2HEb v~^ U֋<[yKދ^& g^8sR YUK}!V/x zӵA*^=Q6BD}n/< /čS x10T`F F~"Vl7_ȱ>9bJBMX/ch s&q&%pDS_Y|B9v&8E 3EY(.B_=W 8,p ῐ 6@.MÀj3`B$Ȥl,q`@sۍ0 ]BT`p|90480tN nW.ju`h`?t GC =1D'Q`e(0x>c9} +N9t0bk?yA= J^_ >_ 08 0ĸ8 < l/3@6$6)y`hI048x] ~Ka3\UL` 3#PaٶDX=B* I6M-"0pOkRC1cWZ+%1Cs1tD04.G ^zeG s9 1 SCRJ-br)1D%ȝ&b@a0 h%!`kaL!Q: o.E^Qk;ʖ@$r\$搕"KÒ#C ʑ;#0C?0d̕ǀ2di82t= 69 z 1xR 1VP7MO)?\ ;ƀ8//8na0`Cs~ Ma~ s2dXU Cۘ!C!ÙǑa[{Gh rdHrd@S ʐ2 _dh5t5l r2bc &ʐ4tfǰ X>Bv ɲmQ ʏhgei<~ ku Cnn0ȐE92dHxZ,(G-.U. ʰF20` m s4| #ʐe86E2`N#AV x+M`y$:aŽoLِL"S)2D*UzC osYm,}*óW,C eH!ˀbtN!̀نQUPfCA5' !9eˀ24CNL d3C 3Cb c1o4Ӱf )e*Ct0f7Gey,CC!+,d#1t$xdzt1Yl$ːW!:tZQ_zY&8wh[ǂ-Hfh)‹g 3V#{dehvY8QKLSf轳X20C(0C{1ac88[2cB $L!P b x>|L9YV #\ A έU'G!6DQeؘ :8ljԧ(/Cp/Cc.ye}adG!%@΂C![ض <f:H% $P뜜z= Jcƕx3te0sdpgVF|ݓ'⊏3HAX&B"|yk5Ccˍ3$IgɕqT XF.wOX~)AJTπ\vқ PZ}׏Xy*{(m;ʕpgp{a3AʟDcАڭ");la RjRhL@P qU z45;R4h§Ph$qA[7ByLS d] s3D` vSmhD@3AeL!&ΐp̓Ц@jaL!1w#X8ھPgHÂΘ b18P k έRI'yI3~0q31w385[9"h&gخ P 4>\̟ڑqQ㫈rˡx&$ݟ߯{^ 3l H]áSDf]wI4+ZFNDc(` +lo( i`@![ BiLC5ARf洬]0GZ<2 =M_LCMf0Kq:0r4l{E5ujqd !?Ӏ؃|:2> ) |ȧAKjObeG/&P(EGp_̨5.543&[%Q/eV'Z;R/=haxЁr⋋MSC [ȼE)VM>Z\~&񸹌)%'9d)).DJ嚸jib2ߥ&-nhbr+ f"5SP| ڂLt2H\Z%)֛FrH J=Ju,uFkhID#umKֆofY 7R R;vs#FRޘ9ָ46mt0.YtC 8٦!;ȱ0#v0 Ei.Y.AJ%!?YDqgd[2ֹ̎`2-qym$+Pidɮ$e F'+u^HF@:w/ cVYpqO95m*ڃi䵕 7E9䝔A'Ք_p<:XdA[O }iCCYǻZ&ָ9cɁpI-tR:k ~*x]^A_!|}zgïU6[q:T%ӂ-KLLI^^1] EL+頜0$P1] aK@_'s1`_qXA*9]Mr-qPӵebj񃃛*}k@Z p`9-FNfB>B X7r0\wipZUY$vrc g!GpMvKڠvc[2:{7cqXn$ n8OڝjkN;[{,{1ݴ[3 = 3U1+Ҍ&cvv lYqO[a`g'``[$jMbUꁳW1UЁIq[TF% ݲU v|An:suCܟ}ZuH6R\ m@1Ж 4 g hf hhv"K 4(Fۜ -n`[n/Mhh7SyHm|PAўM8 s[ӀhuX =bC2@ww a)L-420!E{&G4HZq' HDH{>Jr8&(瞊7 PP N)`<%epǺ9qփ>|bDk)ҏ ±h[kշ5ZTNX0(`kiI1  &h! d }$ e=(N[Qs050uZc%pPrQyIU [ꙫ4@&su1Ju3vPj](zJ{ ? |ZjtMGЧn59Ӄ E%tAiXilQ=i;;='v 4G.47:ӒI׳R OgJZL+/Ub'Y{ARAƖJ)UǠJs{zւz{_ֳssB=sdl;/<g?ă5e3 oQw7ԝ-[6NԝD]0v`x`t*La4]!l"4]mt<$3ރ\k{jB Ҷ2m L+jͣ EE0k;?\Alc5d?J tL-7ۗO0Wbʾvl^+-F-O1^1kA"F緵:S_~&|I__-˚_> Ժ/߾;Zm!r?# %ˀ*ٶULǍr{&Pė/a_>XGfILI/,#6>ߘu:P&Ov;=^8g%$Z p>?Όrԕk!G]ʒbr.NR՗J\4ַ%o u]u)`7aendstream endobj 141 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 727 >> stream x[HSq:),4I*R)B-'7m:ssYN>%6g%L4 z%P/]'(-|^~|0aXD~Ŋ̌%`0ZBBEP$"/ET5mZQ6(X*.>JȦ4kb9rv(NIF*9Wt^&W7i)^*2fZz@ar5MKZK3Tf4f @ (RPẁߘ!g&@/в9ė m(棍5dck&\ڸc%VҤK-xWu(noKr[ aA!, CFi72hor.?mRaWsgܹԳ&ܻw&&>w+>J1E( U~E9(W>vЋSٗU?k7B*$k 'ˑXrh6R-./.ee3(ɻ3Npw=6+$NBU73H> /W [ 1 3 1 ] /Info 3 0 R /Root 2 0 R /Size 143 /ID [<979b130477784fe7b022a57356534b1c>] >> stream xcb&F~0 $8JLg9|f? ɷkGC08 d F+"H >X DbASg6 DH)&$0#͑6d VD:H@;`F]L /)fu]n endstream endobj startxref 108222 %%EOF HSAUR3/inst/doc/Ch_analysing_longitudinal_dataI.R0000644000176200001440000001242113302740754021343 0ustar liggesusers### R code from vignette source 'Ch_analysing_longitudinal_dataI.Rnw' ### Encoding: ASCII ################################################### ### code chunk number 1: setup ################################################### rm(list = ls()) s <- search()[-1] s <- s[-match(c("package:base", "package:stats", "package:graphics", "package:grDevices", "package:utils", "package:datasets", "package:methods", "Autoloads"), s)] if (length(s) > 0) sapply(s, detach, character.only = TRUE) if (!file.exists("tables")) dir.create("tables") if (!file.exists("figures")) dir.create("figures") set.seed(290875) options(prompt = "R> ", continue = "+ ", width = 63, # digits = 4, show.signif.stars = FALSE, SweaveHooks = list(leftpar = function() par(mai = par("mai") * c(1, 1.05, 1, 1)), bigleftpar = function() par(mai = par("mai") * c(1, 1.7, 1, 1)))) HSAURpkg <- require("HSAUR3") if (!HSAURpkg) stop("cannot load package ", sQuote("HSAUR3")) rm(HSAURpkg) ### hm, R-2.4.0 --vanilla seems to need this a <- Sys.setlocale("LC_ALL", "C") ### book <- TRUE refs <- cbind(c("AItR", "DAGD", "SI", "CI", "ANOVA", "MLR", "GLM", "DE", "RP", "GAM", "SA", "ALDI", "ALDII", "SIMC", "MA", "PCA", "MDS", "CA"), 1:18) ch <- function(x) { ch <- refs[which(refs[,1] == x),] if (book) { return(paste("Chapter~\\\\ref{", ch[1], "}", sep = "")) } else { return(paste("Chapter~", ch[2], sep = "")) } } if (file.exists("deparse.R")) source("deparse.R") setHook(packageEvent("lattice", "attach"), function(...) { lattice.options(default.theme = function() standard.theme("pdf", color = FALSE)) }) ################################################### ### code chunk number 2: singlebook ################################################### book <- FALSE ################################################### ### code chunk number 3: ALDI-setup ################################################### library("lme4") library("multcomp") residuals <- function(object) { y <- getME(object, 'y') y - fitted(object) } ################################################### ### code chunk number 4: ALDI-plot-BtheB ################################################### data("BtheB", package = "HSAUR3") layout(matrix(1:2, nrow = 1)) ylim <- range(BtheB[,grep("bdi", names(BtheB))], na.rm = TRUE) tau <- subset(BtheB, treatment == "TAU")[, grep("bdi", names(BtheB))] boxplot(tau, main = "Treated as Usual", ylab = "BDI", xlab = "Time (in months)", names = c(0, 2, 3, 5, 8), ylim = ylim) btheb <- subset(BtheB, treatment == "BtheB")[, grep("bdi", names(BtheB))] boxplot(btheb, main = "Beat the Blues", ylab = "BDI", xlab = "Time (in months)", names = c(0, 2, 3, 5, 8), ylim = ylim) ################################################### ### code chunk number 5: ALDI-long-BtheB ################################################### data("BtheB", package = "HSAUR3") BtheB$subject <- factor(rownames(BtheB)) nobs <- nrow(BtheB) BtheB_long <- reshape(BtheB, idvar = "subject", varying = c("bdi.2m", "bdi.3m", "bdi.5m", "bdi.8m"), direction = "long") BtheB_long$time <- rep(c(2, 3, 5, 8), rep(nobs, 4)) ################################################### ### code chunk number 6: ALDI-showlong-BtheB ################################################### subset(BtheB_long, subject %in% c("1", "2", "3")) ################################################### ### code chunk number 7: ALDI-fit-BtheB ################################################### library("lme4") BtheB_lmer1 <- lmer(bdi ~ bdi.pre + time + treatment + drug + length + (1 | subject), data = BtheB_long, REML = FALSE, na.action = na.omit) BtheB_lmer2 <- lmer(bdi ~ bdi.pre + time + treatment + drug + length + (time | subject), data = BtheB_long, REML = FALSE, na.action = na.omit) anova(BtheB_lmer1, BtheB_lmer2) ################################################### ### code chunk number 8: ALDI-summary-BtheB ################################################### summary(BtheB_lmer1) ################################################### ### code chunk number 9: ALDI-summary-BtheB-p ################################################### cftest(BtheB_lmer1) ################################################### ### code chunk number 10: ALDI-qqnorm-BtheB ################################################### layout(matrix(1:2, ncol = 2)) qint <- ranef(BtheB_lmer1)$subject[["(Intercept)"]] qres <- residuals(BtheB_lmer1) qqnorm(qint, ylab = "Estimated random intercepts", xlim = c(-3, 3), ylim = c(-20, 20), main = "Random intercepts") qqline(qint) qqnorm(qres, xlim = c(-3, 3), ylim = c(-20, 20), ylab = "Estimated residuals", main = "Residuals") qqline(qres) ################################################### ### code chunk number 11: ALDI-dropout ################################################### bdi <- BtheB[, grep("bdi", names(BtheB))] plot(1:4, rep(-0.5, 4), type = "n", axes = FALSE, ylim = c(0, 50), xlab = "Months", ylab = "BDI") axis(1, at = 1:4, labels = c(0, 2, 3, 5)) axis(2) for (i in 1:4) { dropout <- is.na(bdi[,i + 1]) points(rep(i, nrow(bdi)) + ifelse(dropout, 0.05, -0.05), jitter(bdi[,i]), pch = ifelse(dropout, 20, 1)) } HSAUR3/inst/doc/Ch_multidimensional_scaling.R0000644000176200001440000001071313302741033020551 0ustar liggesusers### R code from vignette source 'Ch_multidimensional_scaling.Rnw' ### Encoding: ASCII ################################################### ### code chunk number 1: setup ################################################### rm(list = ls()) s <- search()[-1] s <- s[-match(c("package:base", "package:stats", "package:graphics", "package:grDevices", "package:utils", "package:datasets", "package:methods", "Autoloads"), s)] if (length(s) > 0) sapply(s, detach, character.only = TRUE) if (!file.exists("tables")) dir.create("tables") if (!file.exists("figures")) dir.create("figures") set.seed(290875) options(prompt = "R> ", continue = "+ ", width = 63, # digits = 4, show.signif.stars = FALSE, SweaveHooks = list(leftpar = function() par(mai = par("mai") * c(1, 1.05, 1, 1)), bigleftpar = function() par(mai = par("mai") * c(1, 1.7, 1, 1)))) HSAURpkg <- require("HSAUR3") if (!HSAURpkg) stop("cannot load package ", sQuote("HSAUR3")) rm(HSAURpkg) ### hm, R-2.4.0 --vanilla seems to need this a <- Sys.setlocale("LC_ALL", "C") ### book <- TRUE refs <- cbind(c("AItR", "DAGD", "SI", "CI", "ANOVA", "MLR", "GLM", "DE", "RP", "GAM", "SA", "ALDI", "ALDII", "SIMC", "MA", "PCA", "MDS", "CA"), 1:18) ch <- function(x) { ch <- refs[which(refs[,1] == x),] if (book) { return(paste("Chapter~\\\\ref{", ch[1], "}", sep = "")) } else { return(paste("Chapter~", ch[2], sep = "")) } } if (file.exists("deparse.R")) source("deparse.R") setHook(packageEvent("lattice", "attach"), function(...) { lattice.options(default.theme = function() standard.theme("pdf", color = FALSE)) }) ################################################### ### code chunk number 2: singlebook ################################################### book <- FALSE ################################################### ### code chunk number 3: MDS-setup ################################################### x <- library("ape") library("wordcloud") ################################################### ### code chunk number 4: MDS-voles-cmdscale ################################################### data("watervoles", package = "HSAUR3") voles_mds <- cmdscale(watervoles, k = 13, eig = TRUE) voles_mds$eig ################################################### ### code chunk number 5: MDS-voles-criterion1 ################################################### sum(abs(voles_mds$eig[1:2]))/sum(abs(voles_mds$eig)) ################################################### ### code chunk number 6: MDS-voles-criterion2 ################################################### sum((voles_mds$eig[1:2])^2)/sum((voles_mds$eig)^2) ################################################### ### code chunk number 7: MDS-watervoles-plot ################################################### x <- voles_mds$points[,1] y <- voles_mds$points[,2] plot(x, y, xlab = "Coordinate 1", ylab = "Coordinate 2", xlim = range(x)*1.2, type = "n") textplot(x, y, words = colnames(watervoles), new = FALSE) ################################################### ### code chunk number 8: MDS-watervoles-mst ################################################### library("ape") st <- mst(watervoles) plot(x, y, xlab = "Coordinate 1", ylab = "Coordinate 2", xlim = range(x)*1.2, type = "n") for (i in 1:nrow(watervoles)) { w1 <- which(st[i, ] == 1) segments(x[i], y[i], x[w1], y[w1]) } textplot(x, y, words = colnames(watervoles), new = FALSE) ################################################### ### code chunk number 9: MDS-voting ################################################### library("MASS") data("voting", package = "HSAUR3") voting_mds <- isoMDS(voting) ################################################### ### code chunk number 10: MDS-voting-plot ################################################### x <- voting_mds$points[,1] y <- voting_mds$points[,2] plot(x, y, xlab = "Coordinate 1", ylab = "Coordinate 2", xlim = range(voting_mds$points[,1])*1.2, type = "n") textplot(x, y, words = colnames(voting), new = FALSE) voting_sh <- Shepard(voting[lower.tri(voting)], voting_mds$points) ################################################### ### code chunk number 11: MDS-voting-Shepard ################################################### plot(voting_sh, pch = ".", xlab = "Dissimilarity", ylab = "Distance", xlim = range(voting_sh$x), ylim = range(voting_sh$x)) lines(voting_sh$x, voting_sh$yf, type = "S") HSAUR3/inst/doc/Ch_analysing_longitudinal_dataI.pdf0000644000176200001440000023475513303046017021723 0ustar liggesusers%PDF-1.5 % 1 0 obj << /Type /ObjStm /Length 4574 /Filter /FlateDecode /N 94 /First 782 >> stream xCɯysXd<#;nͯM~&Sr4y|5n`_(X?>2>T-_j1@ܿ=XWD{X}aķf;F*Qk%>a h_Q(]#yxhJQ@W9%]-yZdz ~/䯿jb hu t?]"l?{z#2~ fp @"}7*:/.q>Ί4Sv:^tWЌ~3zK4wtA"M~?;pcxa6Fd"_Wpph|l z:M;4s7̯}`Z'9ǭC =/ti! #zYEա/?\^@o_(P|gkj2PnQ+Dlj0^zEG Z)A@`v zL>F Qp:h-43(g!.| ,ՍpMvR:Օ['Iu9]69AǑǎ)OK`ښg7˸h>pO* ^SPs}m,d[Y=QNg>(u CJ@R`Y̷a9Uiw `̃uU2OQ,2Ei迲>Fh '3+%@$Id q6Rږxmxģ mfyo<"ID8wEa&?FY ~T8٨2QqRQ%Q f#4Q8Q51ׄuFTʰHudiPFG* +d&MVk듷;NFUR絎g]_~J0];uT]`Ѻ ើCw\]_Fce/Nh\4$E[o}h7@vQ${7hJY?Er7-L[Q)tp5O+dttDG}휑9 =1dž2ooI+kJf 4s\n~ݤs~x0</,*|jHg..hP-ӯ2^FŷGwEްT&c:MNw:k ٚ+j!w'ͮͭT]לŕ)EIN?웫..._5ڞ9z:qq0]՛qϻ=m>Z |+:5^NfT~^'^HҘu1}E[L :x*)Yq&]t5,].DBwՒQ+NfؚܼtVpR+VaPmo1]߃k2< ɇzprp~&'18-7PVBqwL{ZXC޾F!>ɪd*LoTu.v ޅv1ڹq`:M\gݭn>P@] ɐLJmVfl5TNCWtIZM ɮ;&BWb׬qC<jpl*}-/|R>O|{@kxaa%~Jk Q5*=Е^KzۏM0^R;<81( 6- ]-- Eҝ "hjyϏ_՛ϳ,ʟZێ=4]ڎGa/RK۹o=Ϫ~qoG:ЎMoJ7P aE9x9q8$B% DrtvcrY%_dl|5nq!|]L{.d ז[!ъ"=oCMo;f#M_G7$[>k%, Bi-Kgc<`M>b'o4*2-A2fx@LkC:ļ#v)˞z%PLO|iƞ+:[8 w0tܰa\R\, ;oQk'\DPz<|VHE6>L@ET9nnqFG!x*ƃO[ver/ޏۥu{oou$k,Qv`_ fuhtwY'\ܠvzwn?`\L:`uܦm=g@a6wTfՍI{XDsW]<(}(Jn.vv̦㾁;$rOY*>O㑙u8j.~X9}=$xKNbiO[$}xqm e0Z6|L;`Efg,%$50tlӞc_}-Γ;`W`ِ' 2WW4xcv^@U$v@ZxDZ+p BA>g:(9JHᩞXFVwQJ)#wlHH&ZF6"bskyx5_L`6Sǯ;!&u'ʀQi:'RՑ0HL04Yu |s{sC~,2m E+c k Aj/x(4eHBCEcΛ<,yd颉11§?|*֗a>%y SntX }/zvSwtos^-r>tOh~[n#W0e;?L<}m*3nΓHsБ]GwF>^ys"7MJ_ >R_&ڒ@p\FJ@uCiJ,xp>۾`qr@U~vuBQ;[׉ 8 H K )ǵzLn >lwjN7@U|NZ_YX?,Uendstream endobj 96 0 obj << /Subtype /XML /Type /Metadata /Length 1653 >> stream GPL Ghostscript 9.18 2018-05-28T10:48:02+02:00 2018-05-28T10:48:02+02:00 LaTeX with hyperref package A Handbook of Statistical Analyses Using R (3rd Edition)Torsten Hothorn and Brian S. EverittBook endstream endobj 97 0 obj << /Filter /FlateDecode /Length 3757 >> stream x[od}?b@}۲(PB*${Id7dwzg_r J?ϗg9ϹfW~ze{ij{g3'Lo3Wog(7F^ Xga0Vd0A(?jOk 󮷚&LF^Odrq*SY&5ImpSw2$HbNZe3g?xiV{XJ){ME{9lTpݒF-Ԡj q҃NMv_sWm6egq2h;i=jD|L+&DEJ@p"Z:PS C"D1rɹ#v|xp5M>KnhG}Y].# 3O_?ƦJ.ɦ+*ʺƺ YUA?<'=DxK=8&=,%TVFQcN%@ѲdC26 !lZ6 oGE= ^4 )D6j%#$%NZV2 aᱏz.bzӠY@64[+rP&0{jPO!"r 7d2G R> r<\ 3#%0^G(IߓձnDPCrFjn~ su29UN\4<pKaB r`3!Kh,952f<(4N~YG<6#Nr(! /ce+ߔf =͌dW۔[]f5Em) h-%2= IL7t1d?/ Ni<0Ga (HIAR+j 4׹-Ka&8'vDu]/d}4͂yx&>@Oچ~Kv)\In,ذ 'hX΄!ʮ zBC>}Bʜ6#GDZUM(Y|t~.QWuV2-awbM'ZQXd 囸ZD$+)bs;sC3s%5Qp ?4"}yf*>+=E - <1_EQ6@27}6 ĵvMrC84[±f(P OV =Q&rh7pRLrG<`m% #)ު:b56^#v1*`/io!Aoˤȱ% !0|e,LoCd(aR6 ӴPje0a U MŐeC 2b_Hp'o$)nk;>$rˢGyt):u Jj_`*uBvC,EQ|W6"}7҅ p.0F)L> So}2\b)A(<]\,skmjnbŤb <}UT`ڄpyU,$+;eU.P{ʈHd۪!]ORoehGARY;ùbF$-UP-sP w:uQG2p ,kV- LMvۻlxaQuJf _75.`fБrUb| X*L&nU]EBW[ ' T}e-)n}>FݤI0Pi|fP˔[< {ϛ|]xΣ,W7R݌Yeſ.dk`hރ V-_?9oni7pt_&dXGxd ^Jpv_aҙ>6g _ ?f Hp1ދE} "ddALh>»׎iMDA򲱗O*Y*G>~$^L2x~ҏ3_I?/n[+y=Zsw75Js@DO.׌ 9:qg{ɲy&ڿ׾08YwŮgERXeCq Hylzzjw;&;MꙃۡgbV33.Icr[+]u^óփ@[k&fMgAeD;4ܐQ&?M"Oy1-xO^KIn /X{]"hN܅Yn {Gݻ$߿|\y8yHq?mŹʔ&Nɬendstream endobj 98 0 obj << /Filter /FlateDecode /Length 616 >> stream xuSMoT1 W=4؉G*UT>NTt@Hx=h2kǓg=ݻWטËKt8sE_ c{'#ȓq 52Ls2֊j2J3u9vY~T~*QtfY"vk^FάiH꺁pGCJު%,{7ٜ",v燽{^r-f~A$>L:c OFGҌ0HڊP<'ͱUWgFQj`%*jx14A#*p+|Mf~8*4NI8_SU%HEjlGS*Z ]HP&Q?ܙqF0Miul+oki׿v(.̶ǎfCw f͈cg#aפ\ iTg h- xĨ> )bD.2r c59M|Q hycDPT%nH%Pgb,<Ӌd _lM W[ݿ;-e,]*.ssbd2le( _ܧ+~s%.봾ydN&mjB:quܦ8nb֍^?#&|endstream endobj 99 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 3419 >> stream xW TWڭPrQ]q5xb\P\ hw ʢ,_h@7*$ht$㖘Iu̸W}dLt&syTS[сH$3#%(m) \:jp:3R$&!+f{RlDXxr 鞞s&+gxxx*FFlVG+}QxO?fsDh|rN8U75&6 CBc!JxJuTtSyDmOUƄF3 0zQKb%,ת5>ICBG޶&2jnʮ 31cU35f-3 `1^f= b0RfYbaf3Jf$7w5ƑIgJVI;Lrpx*;.u48I9:$)+`8g.yy@Ѐº4zA=r/y{Q'+zXq͓*J"góR@BpI*A ?uce bdw*4E%;lz-p~Yr[L#mNdLns8"A)Jp#J!h>!^ ":ȼ=N*|>(W*5{c?/mhZ*A7| EJ d݇޹B8MϹNf d c .gT[$ċ8+? 'b.ar;Y|"iB,FX1<=NCats{"Yœ7;ӊfEV4o/ ^NY1WT*9]j˰k`o˿sYBAčl!@&E9(6Ȁt"L&|tX3/l;(w%txqa'\n$Mf(L YkE78Y򔢕Gãdeu c?~tGa]2/0qf),ނ_C-w.mRNܼW;"+Pvd_l^z l}uN 9 L GXe%tS4}.wy)FB\Ek58"9BWW2 gpR}cCUKEVyr`1Bp_z*6dH=KOڏW*KVUU[cR,?eNҶɿ!GB߲.:.Xd U-((Z{&#omعM(?y ø-Ƞ `)l]M}/Byw =2T,FXe3`-l"{E9;dEdT{G|;}?aT.۠y@B YuI6Bqȅ4H3UEEi#6W~+EEZR љ/N!-Gڹ}4YOtq AӥXN}$eM!Kdԃi87!o 4oRGțy\E?ddS,AqwOFztZ}ֈD3T @YwR&!y^~(ɘg3VE/Id^J5 |2EhIMЅ߀o};I8DOY.N1R;V,nyVhj3V5W>Zma&.uRzn8\޵}]dV2RKɠved&|8`usDJ8m*yoԾ#דwSCq߹,GnN+T4+3rh8Kv8gj-j߇4n*?}h?YpIr6x,YUj@x*ζ\%HwG;٫3NwxB"vcH1&۶6h"#BC"Z-MmYLSuWh=_tWd74=&9'|ч_p]Gno êZ0T?cv3dd UZ'6ft"YּnũCO'뫵Sb Si%3r؛%[h.L+=={Hh{kh{BsOd$N%Xn!T'p~ ex:K71d:.R-<|FXD*;V'7;WWITFz o%qJH݂5][P@"wݛ~jӬد蓴ZCxp_XNQy/XS5 Β1╋ow~3=Lg{!BG]}%{fS-S}m)BʷKKއI ɍS>No?7+tTnX)Q X"[G㯮Qe"sRs[iEs~VkEo7K苮R> stream xcd`ab`ddt v04qH3a!Skc7s7˚ﷄ ~O XX_PYQ`hii`d``ZXX('gT*hdX뗗%i(gd(((%*c8)槤1000103012ԽK2>}wy߯jcws~7yŞ>~nSg>;3wߛgO^-ym̾^];ǂXπ| wt\eXp~`:endstream endobj 101 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1925 >> stream xmTg*T:hQIQc*$*TI#BawD*/{YayGXvaAPUIi̩ibFHKP$1Dju9Q$)H2<5IQlUժ Q~HWjRUŒujQf`e!XOYLjT+ *}*YQ1*b*toHmdT[* '5,eJL X"'D"P _VMxf⿤+*Z:ZAE~RRD0J7P _@Ksr=^ly>Ow Iȃh^ôD6߅"C/Wߊzv~Q NtJ$?ܥNOiȑdߜgk$_qz,c[p9ܚ8Xg-WŨ]'ZK-e%`6s@quyi/цد/^h JHQzx~H{p/-#@Cns3"Z$7I9(@D[t0xi{p)(7߄^oXO%})="m2  6зEDcMnk 1Hsq9E*?.%=+HIg\RVd4\H,8{̜g@X-57)/h;^d4@+W6-_k+ *٩qZo$BGݔ4rr~%Tw%'%>ZӔn Os{j=W`=kv{RNZpl3Q><wsh>Z_k'q=1DKSx3,qoO`31Qsw NO BOB;ohrdHׄ"p桃MxW/ G^\VT(saJ`;)m*ʿ;:TLc Iѹ}Ecݝt_s}}h8Hn4ɵe5k3MY-G<ߨ*~k*93 y3,qbe;9p\PʽUpn\+Zƫy!(~(s 0k06`jMȢ]Ǔ䞂[9=s~oC,7_]N%#nkelIN{/t<ڛ4zX=vy]7뺅 5roq8FǨ58 >nTp*-Ns!0" A|= 'tM3Ha ڪ*m"4|@UJ=} 88ڍ.&ۨh=vu~Y.)(VWhaYóYaNߟ9|}|w8endstream endobj 102 0 obj << /Filter /FlateDecode /Length 150 >> stream xU;1 {'0q_N@ -ׇE٬W.,?慅:c8]  I1 7g`tBw2SZJffBPUR=uw$֓TS>HԖ!56w/RCendstream endobj 103 0 obj << /Filter /FlateDecode /Length 1511 >> stream xWKoEbĩGʶYmCR"lB؉-lğEPV׻+IJƿ~wiicЩ M>8O}ݱX9WqUrUhHUSe)g@Fhb2VGs.W^؛2Ʃ KcSi ѧjmrfedgH,B2Iªu;?Tô&g߻R (9E<yŻaPHQv5`dn$ bN)X|&-(yHܾ I%#e{E}ΖNN5OzoJA~.(:nڈm21Zkēac 9q8mFrgCR5gg%A$:$uԶ%ߕL16d7WF[ (eSy#בc4"Y,^w.CL(FjP+ebI`TVť!qDI)R?_Al[Xm՟\xj4I9FC.)*JI"w0Ƣ RZr/\IQ5ӣd#+^MFF;/&9*iռ_n+uXy*4Shcd*6DR7R:}JTb_*u׼])01٘rn$!@ m *R)hcmΨin6PC⸎lSԒ>@Ǔ.i;Qpt&;5KW٪̰h < c6za]W֤Nbbˬ b*Yq 8 }!eMa]Q\&ƮFŦCZpƦ4$@`60"B54X!E`_*ɅHSQ9"CƇ n(M=X9.9{&dȄNTNXj쟜TAs2=`Sy(]ѲͫЉM8g}5H Z\\"LHu3|;?8ݮh~nŗo*uU9Cٵ_Ѽ Ye!t0r,ײ8#ŔrEk9Von"A2Mi | hQގ>CHx T> stream xy TSUSA 'ZyYy!2CB7 <TűZ[kժZmV7N~]߿\% }(@ ]yBo{%HBm{N{~L?T !)sCb#D9<}X&Lw3igTog%5{oTQQa~Attx=*iooN_!QN+<},o9748L<7"Cny I\,{ ߕ~lw \c] .>6rT}ŏ5~W"oNC Wu m2+ Ўelz*;A)OOޝ?;nNXf*m3]ՠ>{a04y0`@t(rP8BD7뾁=p[U[b镐-kdc-n";LmToz\D1+m2XDԤ9#yn-tuk8og+ wԜXX怛GrF|lhor6K:6\У&{$ [5Z eא#+ G~g_ԬDֶ.AҼ-Qʼ:ƙO=w4EB?MhrII2Rsxt,f޸Chϑ~Me0%]t)d HN6kxt 8x =Hz[# //[ď'|oq)[. ݚvjM8ΠsuW"'F"~<<ݣ(;v0?mq.}+I+A`7ࢁ_n;OLε"Dȶ4Y؉dTǸLxOQ)bI8h=W܌.ᔅ]$AZ;qєsZ-hzRWЇxp}r$'3CEg6A=2&%)ro6 9S*v(^@vwk@IhT"^+6 5TS4 'ϱ}BN͡fd~Ifz*a*̳I6l)K&t}S?8-w4;1 <OĞMƓ82|òFTPV!"HP:΢a&< -;R0q>JnT{{.s5_!Ep]v#8 |-7ӿBRq~ֲ̦{lQSa,))K !Mc-Y%A4:D Y~kByGz*!(Q%ect",,k^o(( v {Cf.mVfonɐ?r,7J>΄v۷^\LT;8]LE?HNEҫ#@šL {[|n*n+⌵eƂƭIMӑ|bB(oTW. d{pg>|q#/1ih;;w^MGOBӳ8Fd~Ϟ#FS6sUpҮ$k+U9IJJ/0r Ūx n0km:omYJh֤1B@K+b5~w#rddSRf^sJ'buc,4%G~n$>,ˎX@k49E5mHTq+=Ǩ'XDfLp%E^4&d禎9pë}^5~!vm_Bl%SͻSG|6B${/ydӻg$WN ! 1X5ԗ楄ط$BcxXpJcRKJO~y gc s {ןZNCzRb.ш?EHAtHqY0ſDfC 4S,.x6g=jў;Tix5-?TFF\OlJZC^qP**F 1Lg_4Lר3u60E].5)@YY`sp t΢Ds$\`eYhmn`A>E "*{LH|0h |1jSTT0v&j .@3Ljp1 ]r.EYǐ(/dE|x<-@K4 m'v *BoE\\u@bXf"|;G/@6\1O~zPW i\"6 "蚺azF |LU$2V߿LjΙ#=\Eވ#J7_%*eQ5rI0dM2dU֜]ʾ=*s2>a'ӪMCASPU0"*L#!BMU{C+ˁytⵖ*I2sZHA2W\W]U.<=uR`/XװSB_Sʸ}١^ޔxlc-v5 c4;2vd8Ⱦ{Z$ nަQy߱F\}e/s(q=j7ٓv_įPzɢ@A0 C/\0o/c}kN)Kӣ0+Ψ([T_@cM]duHHddHHud]]uuF~+AC9al'XN1ДF4,T AC0rAgp{-Bne@y@q`bIV[//_&J#]uPT9}!!j>V+W^R=hZEQƥy9玵j+1D˵V(W SlG3RbX}UY"#[S3mOx}|ĺ ,{)|54􁼽f RK"DZ24pt'3TY$՟ -zY9 P௟%^_?K*?h:>̲~hԜ ??aK6ל-+a;P*ʙQ "֕+,κN$EX tƃcvÇPw9'2ZiTjo=uF5ɺ[٭P|e7]eeO`m9OOmn\~rK C8٢[4r1yK1#[7{E/{6G@lXxxiXsEQ^FF is-$'d2C(y]aꥨ jwZVQAQFC羐7Fdg˦½VVo;TVcwx|Z!xrFn4Am\)wՀA}Q®(t] xHBBIl{$ ]GxVc YlWS\+AU+ui< /Y~x~'Y&Pd?㎡HLA}|2=4QtN~Bۧī͍rRT8B'w}Q߼+RC! 4&WUuxF,~FuT]Þ *:=VxD$ ;R=+Wޙ9Mo C3BA/{ 2 ߧpe/Kp? 3 ˬ2"; 38rNH[>2f2" eKƮ aGt`?ugA-_: vDWGb2t$}p+*-@Ћ쏾@!U|}M@vv]`1D`pGf].kqLF(~ӢZ46B+!-u1qEa} Rzf3Y1͚3ߐݜtjV ԙ*uG 3P RdpwIu:R45bĝ2Y6rE7[ƒ{|RY)ݤ=LsXEHD #{G^ 7]Vim0h=Iۮds4v*ZxʳwF[HS/Dő[)BJUzр[Gl1{$|V5)xsh]!oLk 2Y45XыfUTDS% EZ]V_rh֜?lbį[x5>'P]gL H:hd#g  ,LW4?T'"%IkU#|.?@܉l5MǪ[\7l NЗ=4,_ {?' r΅1z We|V^CsðĕF8[I!:33$1 ohާm1IsnUt.53 ـD~yږ~|#1t*8䚈=R 4m'sKQH~^ hSoql\*z}wrendstream endobj 105 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 2569 >> stream xmU PgqVqT^*IPAQA PynftFnh4Q4u7j%d-yl6lUUQrFd2feO|GqLaU2Ѥ=qM\L_́ݐuYeifkO Z5w*0EPn->d(VWKX=t@+<Y y(sHd~7)XRD D\2 ֫ER+~cPv3ixR[0OZ-c&$QF{u녠ƭIY8Iv[#]%bQ+]swPysxk:VS ͐*חD@ܣvVV aU}΂ϳ7N\>RӑV`S&2&Nj 5G?*`m8У#ݡoP4Ɨ,)*TЊpYĕ8#7uAǧ$ 7jylMr1HΕ.*l0r:Tt _>@&C%/Ov\Oz (w⻽nu0Ȁ,./*>eK:neTZm-1xL!jU'Sgg )fQ%G'JQ7{ucp5&Q"mDn9fr\rx{]K.a >O<۷ju|h޻)$:n:V]tj.4A|xʺݎ,IDVJyoTUݠVSIi!@Hk|' ֱQlʿ ă] ᥹p8ZR^#Amؘ q z*J=4vzHC#>^y6빢vhΡ?:cDF}GLl >zQ}Aޟ*AP\W\ 1 ['z07HeF1dYiFK)I!̗b 1k.Mľ^Hп !Kإ!nRd+j}خx[x~gn@</%dU7Շ$F =FRWW\GY]_tkendstream endobj 106 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 5736 >> stream xY \ZIG@}3|掞.0qۛw5u4t Y)j45ZCARqzj$„l OORPJ[l3q8KJ 0_Bѱ O 1f`_:.1OاCL#Җ7r=Lg=$󡘽xzsw=8#nGc'߁\}xڔ?S A5@A|Igf!_ީF`almy,< %`ъm1C$7\WA,رEso'g'*<*QI+ID J`m7ޱG/n_u+X]67l'N퉞\Y9 |ۂPn.H;!% */V5BF: 4!OuUFHW3M+x+XKV^s*ĔՔE}4wUμKa3wpЅ"=x_E(EcaJG7a9Щ6~Go{zk38٬"=4M^n4N/1;)1E#5/}E{zO۾>K,I D1"$r4My\ǹ/Oggj}2n>T&2{\Yo>{ Y$UE'o~q杣%H:Q f!:[ś< fGU=?FU{*z6TG0p'Dn󝍠e0hQ bnEU.yKwEHz(@?ȡ4aGБM:/!󴑕)5N5L&(Ig^T)%$.u&`E- f9 ~UȶUF;`o^T$DA(0D֯@| H#OD bwc.)I7@a}?ע:HW#(-D_PSVhMMx@z\^D CM(( tSyp"! rS͈ѕHǃچ;Ǣ%~Zee.Iáll_& g}ғxy2+.;>!M-d=Mm Q!{="\Pbv~M{( /19 4L8LƩ'娆Euy]w{ a 5#qyy(dgeރ̼s3~Ւmדz KϺt@f=0gJB+hp-mUs$%1 Q+FWˀ2z }pWZ;q+QTiyτ7ńUEȶ./2$}3jZ d=v%x]/:oJRqzV[^9! 6'2><.9,޼!Vŧ%hgyL/0 O!X'rIKXVQRp,n 3!~g__j/Շ^ jXnp;yc׹n{i)͊QW kll765~C?tNtWGY `p3+ackmuY;_JISa/rx&?iD"աYy FnsҵYǥ썐. .VUS+pڄlm ܆SMK )r,8X&+u\oeu*]uj\jX]—hi59RKRSK|z$R 9a? QW<>wz>_ވNڞi9u ɥ&XV~qܮ y.DŊ/ /MO}(Hfqĩr 3Do(z폢i$8Dt++MQ5MbyI{yK$}w΁mzIe/40k5lĢDM14'[ YSDt[_$7Ek/۝B^t$6=ٟ5𷴝æMu̫fH>} U~XupsY]nkAƗK cٔPݵ$!=!ȃ$Җ#'TD8rX- e[_$ ]{d꠬1;>Ota؇'Pg[O6sr]×x ;6-^0݉-?-YfIg0z-NjZnn`:.UW8kN'E"/QNO?) v+;p4|jQP(3vF`01&jw޺z_45˹ڋ_WmeV츧+ߵpjO"hjPX%qU:?U0:z${a!0^#ס"YCJGE#[HH:."5ʼϝ.Er%.f+!{)X˴ۿ:N:ܶxm0 `L K_c Q* Jp˓bRQmX2H3{s-[oZstśܬelTXͱc5yyaQ< foiݶ}w?\­cGJKvɢQn eVaXX#(ܬlTT)cScw&Dơ0[?cwشTUY<> Flj.jł+%19p0/mĘv~Ph:80C3chIhth!)8}gx<eN_5%x8-FdeV(/Ǣș|jڂdt @*jK1 A~T%\8 1%V4t30[8}TUx@Sh9AO"Jϳ(BvcHz/B u Ԍoucgñ3:zr+ ,CEk+uyY\ቓs3o]*WlաjUJDLIDp)Ľ &N]sT'e;Jb vxlJlj+Sk2ic*:TxJS M fRZ{K%%:>ncm=S,˷RS?9f|~i?g@0(OHYBȟdL"׮^j'LTT*Og}cN]~ѡhWO{wHUNHLdJ5Aq9yZ/dJED?3BeQnfFfW.*@I+Yr ]QEqYam9*i+(0LTVq3$(0wN|=r2kPG @|'Pbjd(dXs \֯lhtl4@*qP'ز5~WQw[q$)J3gs5 GJ.KY۲eģYģ_잹_-s 椿>[ՆD Ks`Q.ó$A@pr0E?sendstream endobj 107 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 329 >> stream xcd`ab`dddw 641H3a!O/nn߷}O=J19(3=DA#YS\GR17(391O7$#57QOL-Tа())///K-/JQ(,PJ-N-*KMQp+QKMU8OB9)槤1000103012)ٽgf|;?̿ܥ;~3>,}} |g|Waq6;7<_s/wt\7Xp9|zaendstream endobj 108 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1039 >> stream xmLSWJ s%Jx"]QYJA_^( RJO! b Ȼc2ɒ- q\vH nه}ٗsa=.kVU&PwHbLzr(Id/uM] |Ĕl2$-\6Vl^R {#8MaP!&\Y{7G4*1=p@1(Diܗi':o0C/|^ԗ0%Mf[9߯O"&gbg{p0y+C _V>f?q?QߕCp]AX,y&$#!;b2{ 󊊩8LvL#Iz~Hj=Oqew]a.6`c7b֮uzIՒw봸lPd$k7bz|ih\E'+0LYuLbA\]PQLk[悔ҸkV_vNn$hX?CظmF,?٪2aPw g޷P~ws Z02@(,\ x2d@LKx/uwW1?@&j }$Y!_Ƀ/fA<ڧgK en a\<ŒYrQŽP>pON0B$Wԑ̀2"ԣTTF*5 endstream endobj 109 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 4093 >> stream xW PSg>1J?VmZnwZ.!{$Bkxbv[Lv?n?ݝdr|;=9`X>ʺB[$ܕalТW P(v>fr5[sIQ6lxfUk7DnJ'%dGNHJ/rSD+?! 6>X,^&GBԪHqDaAJr9٢= Y)OfmkN _"ܝ"&*.$&Nޓ7mCYWyjAD{e>b9q8H"/jbNɲVsUdE Z5UU(E\uڐl"K tNZNp!Q{9<*Vmh!qxy(}GҳiPG PׂTCS?|~~VrjZtFk|g;{E-20n&P'v2OɄs2[]f;}53 4bu6 F vR]JQ^-%&F29[V\" rCmҙJ& siCۭ-o"SBj@]bfhUk;'UDQt(SfK6(kLȍfk~6h :R^& T+ tg/ɾ͎N f*[h5·nq]({NգC$_ܲ}~)o`!}QNQܞ~MՉeT794gUnW @E*EUO30s" dMZ2] 5MoQyh6ʍiWR9N;ZQZjl* @2䬧9E߂y4Rb[O.`*TS%m*Ph”Zu׍5#Gs59go/~L9|6/ 5'i-3n!7O%%ӱC HwZrz UN7{S;6j~y ZiE0[$]CZ@IGc+:[fwϢ~W'j8[#P!"Fы##nsG NC;6x!|^SHLZJv@j:X1(j|MDEtK ˬb?}~t68WG^D1f{AS7_9g醑7$M:%)P ?kp ]cC+I*Hӿܿϓ}0DE})Cb`э O8ZJ+MzҝE򠨢Y^2P` gE{[;}_k т_&')xSb7 P):= rhz ni# ]Tc!IRc::l"2Y:ƷW@%`.uccP  _ϐINCJ?gڋnC;Bqcxo#)uK}ï-×^ڭ֛L*5ez}=C_zkNzD2rsyt^ PD38ne!%BCFcx~X @"S+M%vnSd?3T{4fb n/DP3gd+Kh+g៙'|N7Xv8c2OՁZ>pQ꥿qz5(ui'˴VAe2jIi O邊^Fe0E^4&Jmj:_k^{=qB:%ue & ǃqQ#nK֓f1W9:21!ݚ9YOYf*N1ƨffLZD&3'fNq&0T4dQv0U{Zܐg Oܱ~hi 9Wu`#5rk|]0.g}N{g:\=Fvg?l : 3 ~߭$V@|̩r#&Njv`FX.@LW*jNw'%F 5T3c+1 eKsU:]*Xf[E=ԐBT(.hGJmcԸ@WF\-DKʰhfGj1IoLl>cz-ks@+p%.J9NHDih!s?n18&]5 E 't, A p8=PEr 3eIc_ X^lSfT'eLf6y7v`<1;=Y2p69o g؍A?Buϓ;u4;-|ȫ_j~͡CtVvh9(ZOw/^gPL/ƙkr"8g[eZyL/ eehM:*:2[vj҉G3|hѥ7LxqDG 4قqQ̍v*zu fJCt&JQljЉ 6ahqZ<$6z-BIkr3Jqө`KcE_b}lpz,v7d686:dBsB֬}?TEO66n԰΅^b֡Z@ِ-SU Ҥ})%v0x7 !I֊*Yp Ɛ3o4~HIC{=N7U,s C5ie^W2QKœOT\rwjG&'؁tҦTtFYzЙg7SZ9=lM*^TcsN<7PH@8e_[T UI>L22N+VVtT4_IXi.̩eu7bj0^Qeشq'M{͓ŜIU^#>vNry=LB2+ٖ]4zA2<FyJ?IpG͝LMYXAendstream endobj 110 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 6096 >> stream xYyXڟ3LjKHf*.ZZwPT\*ȾD ,KTK,u}_m^g|;|a9{=>@  ߲1%ii|`Ytʲr([ ý^zJrwwC|<^vr[m82$xc'd$ʣcM&ݘ!y#/KGI?Re [dqKd4J+[(W:7 D+%JSeRy,.I#OFEʓqIK$IåI 9H!K_&ȓo Hy.9\$M'lI#I \UBfBJ<.qi,:<12Vdۗ? om^/ONFoϬ6^/(5EKG#wNy .H\엲(5<}FYT`tPL|CbWn2u3G=f7aI b(FӉw b8LG,'F+DC$FD(1K!kB—OEćbb"D"bbMC% 3wMb&џ@&&<Hl “"0 W"E* {0e-j .:Ơ7bWiwKoz gu 6[ o휷/xx.\'3ozmFɜyޫWWWEbGMb '4~PҠBo 4w⸟s?+aG.2 h9JQfm7jY8V3(j"WG No)ԝB9GfP$,2(3К` { C37س{԰a'T'4毿n jՖ*9 \-PB@$wO0F?5L:(_[6# "}<ݜ,+a{Ʒz B q'6ů>qaЍTXIii2N> ydF/bD EB<دړސYOȲrr.77Aþp8 ȾՅʍ'" E&}oj( ?¯l>08PZ2좹#Er P EO\AĬ $0$ݹ 惨NH:eI+ 2 ]S⺢:`!=k$zNaq)$FuOc7Wl`{mYsECg4ٻ^|%q4#[ݽx<IJ .\-J-M`?b5i٩{3:z`c8 60p8IagT+Zd+Tƞ )?!pV6GT7B\b18U&jqދSͶg"G&!<#ffFSUW`/9J OWˮv&.ɠ**4ܤ,WTi5ƭ`X\'8@=!0LN!XW!Q-ee*\HٚhZ ۡj Umm2Ke@TSGeo8U[wĔ-34fN5gZ@5vnS2NR$|m$$^zŵ핧dnO͗ FsR*jݪ[y' ]js*SA&;tFq;i#(eL%eyS KmFn[Ĩ߼Oj-luW\ tо>JY_F ؙg~wR6RYEh@bDƢYsD 7j =,8f v;r7Ƕz^0u*utĮ$ Kq^4vek}Cr5Rcl˾6(9o m y{Γ/6ݼ 'v1ߞ "zS~ ~{)'*]WQ2p:r#JKl} t>V8*xn,\˔4A%o I˽YU)i.-Ő1JM~F)Yyf?G^xT LRle'Rԛs IQUq؉+@ XG',/4j "va1LV*f>t8ָ8y{-ZVl f1i@H>H9{ۜ: /b 秶‚>?߇Fgbk B>u961|PXj_l#FG=/*cD|_l6YVOn.!vbOp4xyo*P0]d\&s ҢbXyTkriaE2mw8X`Zʠ/j$iT TEfZ^R;dlVpՏ0&ib݇}L㠤8Ǚ9LI;wʅȑ ~7UT\$:{ܥ"AEOtA'G'/ijWS+ח7#CVQ߿t}=U(4`"a7bswx`־}/|#mk /}鸡5_3|CښWW1U=m ?P m?gX լNv[NA3č;7p_t /rp< tF`lMxTjING®0a+B gő;ʵ2hgwi~^h< %& LvAe¦hVs=PW,1$a; --P8u/WҺփsS@:g͝!cze4t}x=tX\m_:g梉ZO޹ @LWGآf[~7Vx gR#߇ dN99CWo>=dh/8*Er|rݛ[zFbdYQ"UeN)_ |;d4Y.~-=*p']/h AU[֗pr瘟AB~%QQA?0Hsh%ah=aZUȏ Cnlgתq|5܊JJZaʌrb< ?xKb3=f^6,s{eX}SQw~6;<ׁﵹpgsƸOJ^uy3a6IRGh81r= & #Sq#{m􍃫Kk ۖlZ8.&2c#{G.jn1(4(C٘LzЗI +ǍPWd\pmv_̗aO760 |nܞN+ gi8}I@š5ĭ)1@A09 F7nAqH.;b#fe/qJPEqTq:g8vܤo^tQm6+$; Gd!/UkU@E FwmߠIZۼQKH h̆9s>UG۲4SuFkBze5*e>gX<bho߮87s҈iuVU[[܆QIj]?zIˢ_b5; -t4 7=, e{ݝ {endstream endobj 111 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 386 >> stream xwCMR8'vz-   ZWTmqCopyright (c) 1997, 2009 American Mathematical Society (), with Reserved Font Name CMR8.CMR8Computer Modern3vťbڽQ"DfVT@htkpozc,MI%ڧϋ1# :Q?f{ku؎׃$Ena}{mltNx~}vCoa  7 כ Uendstream endobj 112 0 obj << /Filter /FlateDecode /Length 4130 >> stream x\Yo~_G 4x'}AH0Ħ`$px,ߧ^I pꫳgg &97_K=^J j)l壘!UrA1iLD 2N&.a\D\ڙvFO(X 1L6\)d\dJ LU)3WubꇕL?ΆGvCSn8zpA ҀORld446W\5ƿcA()zFk5/zt¸D"87G䃑A!FW.8Ih f|Vv|\DGZwG_Fp=G_~dz-'PUxOMtǴzV>\}LOr$VhΧ/hkb~ߖ혿Z=cZ}M+QzBGk孀v{K Z`@>;VhSvoiz>8Ⱦ՛.ʒ㳀 > +f61FZ'6yXthaؐ|0V'vL>|[#K{fBY6VҹݥySy_;5ŤKoen؇cxwbkF79bn~ zۧG>^|-qpGzxI^M F ?9?b (Pw*1dU46bC'O+'eͅ'3.mu91h!Lw`QefJA.hl%BЮ} !+ i,>95xNip-2$P"S*#PhƋ0YdT$L DI"  !dC*ЦN<{nR-C`Iƺ)DRRhkJAUh %p"P$r6)C,3s1R2W}G֓.[@D {lJbL։*Y%XBQ"Jm{QZSYuiv6_EgmZ ꜙ`V5Xt:4Szr#@Sf k^l .M sT *%se[Y[~d=BQUk)d0J.AQiL݈qUj9R8Uӄ ,4e3۾{~S0^*r$:/z#5;Wi l[6qyFQaui{\AvX#<*ZjQN\h3LPl=Yx7 @q@צoҪIQյ5#y/F]u/MʤiO0Xܢ/Avۛɰ_ޞ7s~ d5: OWkig`0 `pxs{UЌ˚GV!*΁;TLu6wB=0JlF(HT{vpFWQVh4ECG;!BA&.13I,-0KI;&kleȀZPݤ Q)v)Y]# *Hz Z8y?\v4?_4]}QG{F%AY#{D2S e\P#>/"O!&*Cp5R2Whl%*RwSUP?**3d=( f n ݇ Cj<29wpBQ íi)ww#h[)l<ָ+BXg~#e\$0Pg2f~2kU>K3}eH}]o<!Z}5>~v5# Q =_"Y-Wpx~L\dbOjis>^5iQMw[CG\|*H$⪗bji 2qDkԿri7?D;\wmSmp^GP Wg˃4f - 8d|!*>Ӵa _AyNNYlJ>%xڸߦSR!a"k3N]B1;>ⴄ_^;0@aZ*yR YBz5mV{(aFA0l*vn`xi+\)/3H߾41{,|sneli7\yQ.7w͡hTln!'g(BmT3QJcseп00scV0 ܍5"h2f E@v8TvL ܣДzZn^8,yq:pD :w2v́.3]-vw,~-ρ*a/!H R^)1HPbO "0`Me%i1 2 )q CN~Nfc{p~gńpQl>u[d)8/&6e+n0ŒT|Hk.O^Gt)56{[^Hai@`6.<#v._m/Mo&hno<7(* u ٜSnLN(@%I1:_%x- g"m^E YyȰpq0 *pm6s>LW+C6wƫ^=7Ix&u1ӥ՛lbh}nS7̓P y }E{(.YQw/߰f N',ODP*Ƌu!,l=o'$\MZ=D KbL񙕍;7xMŷ({ԺhUOf \aoiRy Gbu\ȕWx V1'-*SՏ7Áeߵ/ .DΨ!!Kg?L-f1bzPm wp=ۛ^5Ǧ%D-|zVn@gh{r#&<1"~w`"N4@uU5Ku*V^wĩGcultjtM.XnzFŒ՘' $~QYX3q.;qV0q< O'^>1AxSSo5rY~Γ']9D˦ >-vd~~}FvhUI6sx_endstream endobj 113 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 2454 >> stream xUU XaٙuE0B&`*\PDrs1: h)H  dWj5:v7s,Թ<<3}A\ܴx̚7#ysU™rmah ZBD6f,NKI͵ ۲lr8;pQ 卵L kaS&ߑcchA,퓝!w_uAl&"x&‰""l /›p |M3O+ "XD!s` 0!HR06t@"o 2  ~4ЉE# #K⛔%UK)iK>Nc&93cT͇ VK=ǡ|̔0pqh߻&$Jx Zm-ew&UСi6.`<~!`sl'+t{b !lX`okf(x[@*SgrPO]lC w^ X&cQXzb3Bv {]◂89|sXm%XÛkDM" )@>6)ዔfڌoz>8h-^*\ JrR#7/Q@1ԕMj΋2 WKL[0x.I{7ЇG4TV|tY$ڑÆ<ó^S*s%}ȍڮnIrb7ŵ(yQt^ےʗ=މ W^Uw3O2OEWǩ(A޶|4&J! /^gAE6fHt}%{Ix4O;cL| _h+pW/HyMgCCz3->'"9ij&(4L{C}ds^ho<S9;?ŒS}qVeytIJ^wܢC{welEQ#0>}5T2|9u`OvnZƎwbta ǙPq^!~wlJkY/ K'lǤX‘!xJ*^=1CL;?\U%4ٚ|Zħ@<br8uz>cnZ恂gQ)ZRv ZdnJoЫL`,h;-t{xnZ,Pw` Ʒ(Q*0W^w9m½}alhM)~( m˺Zp๒v3G=B*)%?iwp.j0[=N)x Džx7,2ɥ W1A>aǥ`~\x8oeo i2izl?PT-+F̬S^۰-)0{F^H jVfb WY = k5R׿NizNE`'jZ.3?Sp%{u$?)/觷SUId2iFw|/bX'+.?#=|~rɀI(no1`:%xצ n$&x,&S+` X2 B# =Qnz& ߺz! w{#$icc=݂}„6|(}Bůc@ gؔ\*"pE jH2TsR#l|(Tށ+8B`DPjlՊ"슰K p@zP(+4)m46g&l ʵC(*I1H~Nçp8޺~C/Qמ>%Ep/tejmt(ɂ"l ԣT|Փ"\P&Սg R|V }qldTu}bF [[)2-fviAKx&~ (T*j{9"qy{J>;:%X,Lm{㬌}t̅Aly凥jJESWm]t<YCA%L`;B¨(xrS /F,4҅hhp6pg֖@Gɻ HPQ:Crœ݈y`ZHr|!cUY5!cTHo` ?c脽u+5' XD-56WRKEGG>22\ч yo;endstream endobj 114 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1694 >> stream xUT{PSW?"6^I(k+SB@ª(ЄHش q@k7R0>PĀmg[۵cҩ]Н= [Ǚ9;~}cbfZx.?՘ Tt)Lj<L2R%^d+|,i0̚L9iFՂ -Zkov~Qfe&?Ugҧfgwbu* ^Trryq: h4}6&F!(iZ Ewr# MP'#eRZ6I,y,zKғX;E6q Lɴ ʗo¸e֖ "[ "So^W~%ۉAZrZxL7}# fm7Wvpŕs-g; `̑X rV qiP%Y'//^[$a,m)<)DQUJ' %Q]X# PC䂗$XYBpf|~{辒&ʅI=L ܠ fJQ|F؋A7w?K't_ [239~&-upi7(3A9/oŭC0rȉc(`loGXNK_ȼ#xs`:I!vO \C$iu5ʚjBx/~FSQeviʤ0w|y-#SVVGtBN)Gp-w4ws5O 0|͒!7vyƺ#PvZw(5)l Z*/M4c]7(D5%#^}Yˡ"'e@st2j!nG~[V\;9޳4l( 1Pcq0.ZJ~b"MN ٚyRkQ8jPjB <aF_,:KuDd T)L0Ԑmګ VfYC87=mR* _gN՘Tɦ& 5B]9^ɗluo_9:2Yt!^薡g ^71tO>i/ %W޽]]J{t04oOaԧ/D&$dzυl>~"}不KIq܃8i (;1mZ*SgpBԱAW6J69l95HZXˎVe aMYt9,'p~ؽH;|cOOz󮋉(̍Q0'MV_c>i>3p`2~Xq漡zvvׯʎ=> stream x]O10 vA,tahU@p' aK,N>~l#GpƲ5 HeQ7-Ɲ剳B7O~W3g\.!tD[U]kL'F;e4',CIT @s$Lg)mSendstream endobj 116 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1450 >> stream xETkLWaA9mvvZ5 |Y< Y>@EuAEPpEuAQ6V[mM[? 1MnM=|;hJD4 \=|&MN' ݐP3P)ڧ:L9CQ M'&%gFǘ⼹sŕ ƔCh0 &]ܐk4eӗŘLK1ͳ R}r`Gmv`k偲 YW~ݑњ^9yZ^[^R; N5m:!5'C0Ung.x&H&ݔ XSi\ո }ݷ~"k {B. C&O#QT򑡻ip$9I  h]\dLT9 $UevIn0 = 1u..j-bk[ qJc1bN̳@a^3pfUyz+VW-{@pFϖ%c$i-&ztefLÔ/ sWBW.u~s/EGȸkSm-Ǯ4mlM]{=W&d|( )h1 y}6G9.&4k1R\N6k0?ƀ<K wܽă]fIxK|֌*aeǩ~tŚfY  9s5yk'{9F R%{R-ܝ8kSjY[ t)zyO(ڟDy$tcp:&{ 큺,̍a5C{-`.r52 9kjK'x-d--)= psDoz'9\w}ky5*j=P$J!O("^RKjLJMQendstream endobj 117 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 3370 >> stream xW TSg1D U|N^*jqڿZ[.C@6 {K"6hP(RTZթN;ڣ:sΙhΜ3rryDJ$ 3IĿ<q WpG`pSb(*V秎ID*#2߰ sΞ,9}\ق(&2L-[%F(ZB%[TheoFh1oL8U7UQΟ0Y(NuVZ96㧎*4U M4EQE8myRhrNEr]D*w(j CQj=Hm&RʏJ-SK(j)5ZF-VQEyP"7 ʅ/iD8$dHm..\Koӟ2әTenar~y{c^_;jO@> uW^xt)ItLON)(5N@Ѐ>&uQQŽ%j(z&t*RQVT[Gty< vȆG# xLu'۶_d GfHРcTr[>#'Nrդ |V%+~uk#:`vphu42&c9XOn⑛b> #YOopqK|:|&N/fD'Xd/y e?3\cbpY J0㯢A#@NI;BăśV:=ScEX'#v`M"w8lG={9 DzYHܽ1ݛY"s:l8gB?薓K0m+WQ"5cJ115{jʛE5WiNd̿k4xa`7B}QUt6~zэx 9ZUab95;;R_8Ӗ fxH3iR}0 TLHzdX Jvm<;\<_EV,,^P]HhLҼ4. U>}b{qN>(kXNJ5m1v|IhbˇRnb3-0WgKmE'xcgnY7'$'xWA?#iXΈĶ.t5gHзNg8ğl%?Sv[{fa!4_HF0)UI5*I[%%h;S,Gt5h7q)"/4?UR;à5@Dr1}<.L9/"8`2WwMw%Q`0TyjӀUr/Bѐ!N)%t6ڶ;8J(m:w-7);](SouESRpVً+T5{;B \C&`{]W=v~!{?Txz=;!~S !*KƳYE',ӵ{FcHB Rn(̈́DHdxYE_Ki0A߃й{znZٲ&U~4!8d<4Xښ|}%C>m{W βA/(y±a -kx ۅG= +ptvU 8W/aZ a{ذݡM k*&ck9>}HGqH_IdN#8 ^+b\?eP&5r 2Xbp[6~SrxQ{Jy'Uh5)1~YJ}hzN֫`4rA9dۮk#_7 Hn1OarS!Nu9IF!w+@Þlv@`V}Wo<_zƠqݠ0vYݝߛ J 4ax_ž㵇=0B;60-A=eKe<DGA4NHO FXq@_r6dj_OS|dzt=3fr\丙 B]]Y"zyyx@&]/J=b9 ]鯻NtrB0UɶUޚU)T]'\yFf5ޫsb-ž{W.]R;qǏ 3s љ*kRa:e4vg0]L3YY3ʆp,z#󇞫mI[[dwC)0AUEAyQ)].;m09*\yuCy#0aV gpd>{=o2aɳ&dw45z,} wCO aM#I d&ni5҃Gwe_Vnv|?;6BBCģ g0$&뤉UU3($)f6zodvp3XO|C)78X4ĸrx$}@^ [#T[\kGwF\GjPOwp%%c[([Cj~vTT5(s q^V9j4fY:Ib1|Vxp*]0"Tt~Gyu  vك;?+AU?җиh5~Uޔ~ؑ0nNb>3~+oN1@1%,̈́EpZ0㾂7Ccٟ6Ï6JM dY>`)Ϙ&,) lFZ0å29&9{o3!/iKq%>7r)r HO}c| wm"w_¦HDHֵf٤;sUDY5T5n81UQ&% G:G|>Y/#~B{=\؊H*I6Dc)5:ݯYud.gY=te+ä zF1iW؇7[?8) }\: =?.]&QG|-W%jn}än.݇ *ܟ)endstream endobj 118 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 952 >> stream xRmlE=grl\~nB lEB9𣥈Q h%}v=^imk[km $QH`mц`DƏ:5q5L<?uT+ B^Q$څ]!ᒽb%E/rPW%%x l,>+Ԋ11xXB+( /ᠤbTp`,z2փ}OD UDuQ_ڡR*ec6F:ɏ+x=̏3e򳣧3hʢ#p>3il%Kp{j+شJaFcf'}YNMnctqļ-޶w`)0J *Ψ&)&oi%eQhAr۶i?0$v%m<[݁ޭ M9v ^R|ߜx/L ly’JB|wPz)|vjG{Q-ǯs}D^ieQI~ַIg&lޕ Qؚs>88*yɡW_gǧc{8 0!΢lPpAUWI(FN_7Äd<ƻv^!kÁ1 Zx,?avѺʦ6?_>urb3yT5!?GB> stream xZ[o~g·,p;| ۨ#@%$:Kʱ\vfiТ-`gg|sfW理S/6Gj?aӟ'dtnS-mn&VYV֓Ӊ%UL \iP*$- a?B*cMeaT\(mRܴB&Cuk-mLqamJ mdz5y?>fzrr5ULM.'!tJo5G`aerz67\Ozu-C4?| [8don֋=2At2ӸKɏɴ\Y*0r_ ynȽlnZ*MҔ ~ &<8>G =>X]5 YcׇIq^e*Ћn fjӼX|NVYt椕@.X"Pq!(H`8-&]^wϧ>GծSE?a>>CXpͳ/w k´ G"m3JLleLTuIsY˛yW 2w|0C͍w#r/{]K,յ?#(Z>)q!~g8XtRrQ3 G2ǯr jxdAجqfAiN7BLB9#&oP#ԐDFYBݛZm9C D&L4SFD)%@}t(2Qm6qH*!NA]wa)vTc>u 9d2?C؜0bkL b*j z< J'F#&>!$4U5i{J` Ѽ6^=z&9y$Е4q$XZtVLs0P2(JŦaVbYYobkĻ9kPHZJCDXa 6#9I]!2Ru ,`; \jfZr0SkޏE\$p/R*PB XѯBNn4s, Sr)7DU.70i}0UFΉ<΃Rn"DŔ_}RrJ>XDq1v*ey{, \7rї[.mцE-E,=3 9H/.R4x<UJ1*aءcJ*r N[|YScmv迓 >j)F>{U%Gs>% !MY# &B:endstream endobj 120 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 328 >> stream xcd`ab`ddds H3a!Skc7s7 ~.ȘW_PYQ`hii`d``ZXX('gT*hdX뗗%i(gd(((%*]&s JKR|SRYt^}י1y#no~\~r]O9V=׋翛}}5۟'Wgq>7<_s.wt3\Xpso/yypendstream endobj 121 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 557 >> stream x%oHaǟvXET,S9E1 |2ÑX䵝ޭvI[5i˲ WIo}oz^=GA(2?<:QM`փR]:Bru)Jv!9,nvu8r ^6ݬsVړ8IxI Fv68*H<"\xbP cA.$!t !d@]YT< YSjznGQX3@'Sg:ͭ:ν (4<T&Є&-vixdg[/|S,$CN _lʧ KNʥqf;e-ϟi@_Iʈ ďBsIԣ RzrO=e5*m2k '(d)g)Om2FK.48;nҶP@vj&zdmD'ӕ|ILTW\!Qc˦FA[O1X)endstream endobj 122 0 obj << /Filter /FlateDecode /Length 3575 >> stream xZmo#ˏUkm )]6w4.={m$G/ o %sR\pfsֳ_s9D13Ն3YT9[Z)`QqܷFUZ8jEVJ*Gjdg[λU2ek)m*jUb*x"vӌ P4sz#fHl˅_g7fJ{<_%kwL|pƔ_,RxѼaʄyZƜqðYͷ4G3 pw|! y0 #땃ˁ+_g~ D ov~\[E ɭ/EG`#ĴsgRiP PiOIGPk5D@I1Y᷏(G).rڊxM ?(^hNQC1uzPՂatȣ>$N j!# ;A5n'!~;a+ Z@/4l+2!F3J h .l7I~F9K ( ƃV"V ;\W[ZۭQR0*e,E$<+^IW hpEm q6.R!YTƋ73pX)LpA.㐈)!y3SYXȣ, ܯC:+R LduɣCyz绉qG?}'v"^!KЅx^ N f.jx650q; 4`j ;|a{~遤n!ᓁhI]Ӂk^"Vsî/|;p>7"z{vonwH*KHy-g>v F +g:\. DsY\7/Ί 6]]Vx j] ,HڪX q$nOf}w-,Ou}g4͡](LVӧ35 M:_,?[N rlo 4z+ܘV4WsE=#EJbLƠ;,ԎB2("QK*H%#$JVZ (=so 熐&+#?FL ; 46 :8U1l!øl=1*gfMaDSDyˈ$TB ϔefۭ x||_Cpn(Vfꌘ;` ʢNy xս Jzko-d8 HC}rWpeɰ n}մd2KLH NŤ0q-,*kIP˥`H2I0bH0?ZTpYp)rMe$Lэ}\oӕ mcƘ>*Y!ꇢI̟4@T^ֈ:ij\2U&N(Pe/9(&#bDˀ|0?UbQPHg0%=UP$6FIeltq0{->Ocju ~TwOVbi˅Tsvu3}մ fr_ :rQI;NGݼ k4tU'b1G]JtyhsL62"ХWP1nSo-Ns*)|rhE؈}_}pU fJ:Zr89DQvyVvq|8mSdY,=|mSU]cuM4U@M($ >O^ܖ`{[ڞzI挡DUipw;vMK泱30>ũhE,h}$ e;N#lEJmBx IcҞzY#_G͠Ğ$H>xG}48l`g@5Q3po$}Q @rM@2gľ咣IlBKm4>yFqyG N80;9GF@aE^P@K(MA;wTS!QzXΌRޘQB[Thz`./*4]zjE)OE.*gG`S![%u34𒇨ͤzo'FrWxF{UY3dtUvrtUZs%ĭAiP[wMæ#J<}d[tCзM`.\B,}׮rnIQVBFZǬøߒNw g~G rPPD2]9ˉMnbqzGҍgewY"mt2fX^'CG$Q9HA&?2ouv8y8z^NE`)fr)TvtO!]>yPIS`с8睮ӷ*/jl_ ?KX; o ?$OCFj")9.#;`7xMG*/ۣ$/꬚~To$]: Ҍc\xf?=M@endstream endobj 123 0 obj << /Filter /FlateDecode /Length 5503 >> stream x]kuȏ0d;~I p I @6 (pIiI"9zkWC"O^@un ߼ Kr__TXVwW-򪻺$ĀQ[O})Fv;1ZZۭfk5MKZuoZ4lw[+l9/_n϶֫b{sI{o;@|k zaCh\>o/<s`?/vkik}wagՅ/.7v/<;n~kn`h³ȲP@[;ٝL1 I&v bG_]@v `_~%Ⱦ_L(t*L+C籼K03֊r('ױKw鍗~~3GuI`~ڬg1])$iwvLcI<,¢]!iu]-/~>J1к_=di Bo$C[B:t5_/2w # u߽-p,Е"^-P@ w^ϙ0z[Z s2 [&L&r>Xb¾6[Q5by ;K^0oK2ܖ\cgSl9qU¸tpn|+#A_0!Ϥ)/.%,*&a ?U:QJ8d}WrZ)  75[U7y)\ nq-}[.R$8!D!ݦ 5~IC]yiʃ02gK&'7L 3:*DZC-%*lJYwK`M(tceQ"3dhDTe&U E]bK@)ԗ/9Uc]5).l)j(9sT0lQ_R&]*Pd ]$OL4j5TDJ@i aj LYAxVjgg=dXI$FHy%z&,-*@\R -`Bj!I(,( Xa( Òw :)PxRPM]PG$&H?( BHz7Hvř9 ]7H|P_C+S %$5cȒg|'tL3Ri4T ijl؆HcT )ɩdh72߉ "OC8d[3{@y< R<$1q$AHT%dd:K m1oWIhFJnW%k_cԖn"qJm.9b 4 {#!K:vns Qf(Q3aҶnVtR,TiKLP[` 6 ]1$cE!LC75BF\ЦI>b7])" x34D{`1*8ʽsm=(rdg`Q[4*SCۇ?+6zQv<`dtp t݃!qz_麃0:vkb֤2 k33%hnr"em=!(<3 b<UǘG=(XN=FkFM0dbpGc(0ыCC/;~tZ3{r ׹}o{fʺ@>'|ߋ~7!59x3}weE/yuwx bӹZn4n)<*13uq,Aoo_߾yo|k2ed vo79ܟPC:NװycPgth hfoIHr XuqT1 bDNXyyG ɶ0$P׊Mؓ@b6^@jC0vtry}IZ;<Dh֎Q/S`!ra\T2⌉0Py&X. &AK&k B\4 =KP!(P&{*\ %C1]L-٤HTTIʥ[~`~ndX*dv`3  axy(!R%x8eRJC:EnKd q6o-L,L44 uYU). #ǩM2ˊF)90s+0vN9+4ƖF|8JT_T zׇMN,9@ h)E(yn_SXYI~`QR=M9Mz{r0qG(a3dKJ mdYEE<2y^blH)KLΓ a 3N"hெRHUݕRSSr_)"ŦW i*SpSk ӛB"&`J 6+2bδDAv Аh> 0 y3$ņ)h;Q<E +UMfSl"$ -H(yd0ئ7X+ ݏ(yEih2t^`qt>NM$A'' ݺ@ H3PbwHP0D^pCv#Fxf$^_H\ĸ(\٠ gn++Ќ/}DBfpתgo Eb1,nLJ `Ҏ/]@742+pKlQJ}ʑW)a."5: 5 J"<,@]"a^,85 5TZaVD՜:  I aI-F56rY]N6W((Ef*g"8Aյƽ Шs;=Va(I< l,P$;]LVSm̈́ńR *_`)l*'i %tV^c&!80Lsju`z 3tNPqL}\4}tWcYZYZG*ª쩶Y~ 6u3 eQh`Y,67H8aTmɊ, 9?xJgQ rE .WVTaMi^b-BEOT\s5C T\4%J,%ܟgu8%XVV 5~ Hвu-8(4PVi") Jʸ4,`DZ}Sty6-cy#Tk+@bER℠V3&դh=Ԁ:֛^r&aY-F`~–#5wHc sW$G 7~8IbID+iUBXKJ;#'VesYNJ~JfXqwIƊZpKmK#hB|T2 -J͌USDfNk ^,:)C _(+0AKQYt|?UQ8ZP#$lQk$[y,[&I*i~#7U^9M4t* M$ˣhu M(`1#պ(QPu7`WI~ Sy0CVZ[莳,څd EwD_"7Lku528*wʚ&lXT 󸆧hm9% =sW^f s[[ND1x2Z'x]W!M_W }, `^af6#C7O1(~5\Xb`a$1?Z.Vr拥妫VЯ_s471l0,,RX:McɾծNCxPǣz,, 0:wLcZW=((nsg0zQsgh3>{LmRwuS.T}Oo?E/J#W~*Joۨ6j*b+~5xiǗxJ?[ܳtqaItV2;x?~qۧ/"c^c ݣ0Y>+7u6D%ӁdC˷߆?X˃k[eC:9^@ropmǷ's5vg|~,c(~\NLt@cXվE ǣ9ǂ\2鉯 霯7|_kްx٩1vH̑L~Rקm|/8Gw{h hP]'|=_=/Ұi8=@=ʷ:)1IL^{[Vp9r|:$.l\O5DŽ%V9y>pi+cJ82o[v~-T9| ?{/y ^Z; d BvʣͳLZ)lRuoum~7o4{޼ &3b?Bf_Of=`ijt7/)L%羂ɚ۽٥M^sB ;0~ZԻ<> stream xFCMMI9(nVN   -^[XnsCopyright (c) 1997, 2009 American Mathematical Society (), with Reserved Font Name CMMI9.CMMI9Computer ModernpQV,'@n`y #z\)vbċ !*L@vYGN|]iavl}pzh}Rڠk||l\\^olViRamfJ{ڒuCoa  7 Éendstream endobj 125 0 obj << /Filter /FlateDecode /Length 3757 >> stream x]IhTx p`;=A>h mƱ =߫"]RCP,.U?2{-{7Yƨ`>hTgTʾv<}ɨ>ET{)*yT٩QW>wX݌ ZdB=Rec& Rms2:݂S7?33K=߼[]Uˇ#ހ ƃzalw{ʇ C)Ӎo|yVp.Y[[/?Fk 笊N_sVI˯/1(eo~KR\iŢ$@Kӭ̅|&D@+wX܂-uOWrw77ӟLn[;֓y:oΫzjߛkKVُ7:AllBʸIdG?o֗mm}M(Bc^Ss*'1ވzDX<tw߯jŀ#._Bӭb0!X쪬՝@N!"qm|y[{v,MdGn]N:`mjgC~U{"Zy\ ω#v:?n|Imsk-꺮ZR[(LUL!1܏Yk!wH\/m/Yv$P+>2R=`\΀{1= ; 4ˉĐloMQ"g,XSPΗpdX#p l7~ I ~Vxs<,D+~s8ѫb ,ן%JRShI^ɽ,"oE8ҰsJ;߼H(`xEjByEb5鶑wlQ{e͚[{JYp!UESS9l"+ c-8 DeEӦ~x&}aJ"O%#&`J ,bzH\)ݟJxk»ꮠЙHp|7JD.3Sp6j`e-X3#0\$5OD7~ޡas\9WplN0*r9'ZLx>FvEMLDc&';g"B|g]Q]o9KRI6ܥX4eMZDщ%65#bY 8H l7N] uk@2,d^zڑKw9&n&MWbP^TD{{'{q0= Jk^ҼN]&W>t\(*l._eorjT.B!0 Y \Ө “Ԅ?%7<79߀+<(`"8^_mE^H߹h0q'BC"BLGpW}lf"$w^Bj  +iB<&l&Uxp iRNdxί %{Yy/uyy* "l斕%<' 3!rCދG mǚ:uݯ%6.c|[o(a9 áXv /8HXHN8gQr-NRYk e/r1e0)S e>сk!p)ZyjU bPr #{ʪbg$A51t |R[CM8#.bD"\lL%fHJ3k.)&r]uW [ɾpE""~8/}S9OO^ص y4>U3݋!d{aY!,7/C8w܁Ȝ,?mfQ%sfk(+Cx_3:a0y̍qw/3`b?o+~r)_kT|fjM(,@G6*yeU=,5#rˍV$ԫD%4!ZsT00h_i3x] 旀:T fVf+51P ~lO2q\hY(X ]+_=gwmo!+%Oҋ448k"Ed3dRA[$*[ r锼KMv ~e̢VHmHa~ϻ@b3h'KI:{D@Ͽ@fu/4\z5<=5y.N^@jP_= b0ᔅP{勉䓳w?E WG$|8@e6Uc<__ 3yiߣ؛sUd L輺7WY`Qxf^$ h3~\Ҿg~M>~/9yQ'/V^,/xA,%@^eJB =g̉ :=w&WJSzr;CoV_ Kq݃1$Oi/'5ca=r@o8pz?C<-a;m&}JOjᄒ?|endstream endobj 126 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 861 >> stream x5PmLu5ř4B6Af8Q1"Y`9熫pezp k׮]ysv6n c&~_11}Ԙ?v~,ϗIy! w[rLyA'o: 贋ۏö}w=4BZ/Z8}h }n1l̜Mn+ tu㜯<_kkŷмНaav֫}J6g?ǰta!-g{Ԇڑ*BZģ߈^3_ #^?v&> 4&uZ>}xuvո)@&h(H5v4. 9DސZ{;yҋQh7/ubO ڮ6ckYA W0$ɔj7"NnrsI:DɔܒĊW8frDLܜ$iɉRPeؾxvdfo~$#bI[,ųߩjecC0DV{^3;)Y d` f29cޗ6_;4qlR?@ o/9`e H'|83J_q78 ^1P?8:Ir1ZT#m^\#og"H :lw q`PPz=U{#ꁺv_P @9v52RSa?~Hd.K(Z-2u# JҸht$JG3jWb?{rOtaendstream endobj 127 0 obj << /Type /XRef /Length 146 /Filter /FlateDecode /DecodeParms << /Columns 5 /Predictor 12 >> /W [ 1 3 1 ] /Info 3 0 R /Root 2 0 R /Size 128 /ID [] >> stream xcb&F~0 $8JDA)d"GA$p" A9ɝ"H 5 D DH m w"9 #؄`@$+خV"6Xvdn| Iir`w~LQ endstream endobj startxref 79945 %%EOF HSAUR3/inst/doc/Ch_gam.R0000644000176200001440000001713313302741015014243 0ustar liggesusers### R code from vignette source 'Ch_gam.Rnw' ### Encoding: ASCII ################################################### ### code chunk number 1: setup ################################################### rm(list = ls()) s <- search()[-1] s <- s[-match(c("package:base", "package:stats", "package:graphics", "package:grDevices", "package:utils", "package:datasets", "package:methods", "Autoloads"), s)] if (length(s) > 0) sapply(s, detach, character.only = TRUE) if (!file.exists("tables")) dir.create("tables") if (!file.exists("figures")) dir.create("figures") set.seed(290875) options(prompt = "R> ", continue = "+ ", width = 63, # digits = 4, show.signif.stars = FALSE, SweaveHooks = list(leftpar = function() par(mai = par("mai") * c(1, 1.05, 1, 1)), bigleftpar = function() par(mai = par("mai") * c(1, 1.7, 1, 1)))) HSAURpkg <- require("HSAUR3") if (!HSAURpkg) stop("cannot load package ", sQuote("HSAUR3")) rm(HSAURpkg) ### hm, R-2.4.0 --vanilla seems to need this a <- Sys.setlocale("LC_ALL", "C") ### book <- TRUE refs <- cbind(c("AItR", "DAGD", "SI", "CI", "ANOVA", "MLR", "GLM", "DE", "RP", "GAM", "SA", "ALDI", "ALDII", "SIMC", "MA", "PCA", "MDS", "CA"), 1:18) ch <- function(x) { ch <- refs[which(refs[,1] == x),] if (book) { return(paste("Chapter~\\\\ref{", ch[1], "}", sep = "")) } else { return(paste("Chapter~", ch[2], sep = "")) } } if (file.exists("deparse.R")) source("deparse.R") setHook(packageEvent("lattice", "attach"), function(...) { lattice.options(default.theme = function() standard.theme("pdf", color = FALSE)) }) ################################################### ### code chunk number 2: singlebook ################################################### book <- FALSE ################################################### ### code chunk number 3: packages ################################################### library("mgcv") library("mboost") library("rpart") library("wordcloud") ################################################### ### code chunk number 4: GAM-men1500m-plot ################################################### plot(time ~ year, data = men1500m, xlab = "Year", ylab = "Winning time (sec)") ################################################### ### code chunk number 5: GAM-men1500m-lm ################################################### men1500m1900 <- subset(men1500m, year >= 1900) men1500m_lm <- lm(time ~ year, data = men1500m1900) plot(time ~ year, data = men1500m1900, xlab = "Year", ylab = "Winning time (sec)") abline(men1500m_lm) ################################################### ### code chunk number 6: GAM-men1500m-smooth ################################################### x <- men1500m1900$year y <- men1500m1900$time men1500m_lowess <- lowess(x, y) plot(time ~ year, data = men1500m1900, xlab = "Year", ylab = "Winning time (sec)") lines(men1500m_lowess, lty = 2) men1500m_cubic <- gam(y ~ s(x, bs = "cr")) lines(x, predict(men1500m_cubic), lty = 3) ################################################### ### code chunk number 7: GAM-men1500m-quad ################################################### men1500m_lm2 <- lm(time ~ year + I(year^2), data = men1500m1900) plot(time ~ year, data = men1500m1900, xlab = "Year", ylab = "Winning time (sec)") lines(men1500m1900$year, predict(men1500m_lm2)) ################################################### ### code chunk number 8: GAM-men1500m-pred ################################################### predict(men1500m_lm, newdata = data.frame(year = c(2008, 2012)), interval = "confidence") predict(men1500m_lm2, newdata = data.frame(year = c(2008, 2012)), interval = "confidence") ################################################### ### code chunk number 9: GAM-USairpollution-boost ################################################### library("mboost") USair_boost <- gamboost(SO2 ~ ., data = USairpollution) USair_aic <- AIC(USair_boost) USair_aic ################################################### ### code chunk number 10: GAM-USairpollution-boostplot ################################################### USair_gam <- USair_boost[mstop(USair_aic)] layout(matrix(1:6, ncol = 3)) plot(USair_gam, ask = FALSE) ################################################### ### code chunk number 11: GAM-USairpollution-residplot ################################################### SO2hat <- predict(USair_gam) SO2 <- USairpollution$SO2 plot(SO2hat, SO2 - SO2hat, type = "n", xlim = c(-20, max(SO2hat) * 1.1), ylim = range(SO2 - SO2hat) * c(2, 1)) textplot(SO2hat, SO2 - SO2hat, rownames(USairpollution), show.lines = FALSE, new = FALSE) abline(h = 0, lty = 2, col = "grey") ################################################### ### code chunk number 12: GAM-kyphosis-plot ################################################### layout(matrix(1:3, nrow = 1)) spineplot(Kyphosis ~ Age, data = kyphosis, ylevels = c("present", "absent")) spineplot(Kyphosis ~ Number, data = kyphosis, ylevels = c("present", "absent")) spineplot(Kyphosis ~ Start, data = kyphosis, ylevels = c("present", "absent")) ################################################### ### code chunk number 13: GAM-kyphosis-gam ################################################### (kyphosis_gam <- gam(Kyphosis ~ s(Age, bs = "cr") + s(Number, bs = "cr", k = 3) + s(Start, bs = "cr", k = 3), family = binomial, data = kyphosis)) ################################################### ### code chunk number 14: GAM-kyphosis-gamplot ################################################### trans <- function(x) binomial()$linkinv(x) layout(matrix(1:3, nrow = 1)) plot(kyphosis_gam, select = 1, shade = TRUE, trans = trans) plot(kyphosis_gam, select = 2, shade = TRUE, trans = trans) plot(kyphosis_gam, select = 3, shade = TRUE, trans = trans) ################################################### ### code chunk number 15: GAM-womensrole-gam ################################################### data("womensrole", package = "HSAUR3") fm1 <- cbind(agree, disagree) ~ s(education, by = gender) womensrole_gam <- gam(fm1, data = womensrole, family = binomial()) ################################################### ### code chunk number 16: GAM-womensrole-gamplot ################################################### layout(matrix(1:2, nrow = 1)) plot(womensrole_gam, select = 1, shade = TRUE) plot(womensrole_gam, select = 1, shade = TRUE) ################################################### ### code chunk number 17: GAM-plot-setup ################################################### myplot <- function(role.fitted) { f <- womensrole$gender == "Female" plot(womensrole$education, role.fitted, type = "n", ylab = "Probability of agreeing", xlab = "Education", ylim = c(0,1)) lines(womensrole$education[!f], role.fitted[!f], lty = 1) lines(womensrole$education[f], role.fitted[f], lty = 2) lgtxt <- c("Fitted (Males)", "Fitted (Females)") legend("topright", lgtxt, lty = 1:2, bty = "n") y <- womensrole$agree / (womensrole$agree + womensrole$disagree) size <- womensrole$agree + womensrole$disagree size <- size - min(size) size <- (size / max(size)) * 3 + 1 text(womensrole$education, y, ifelse(f, "\\VE", "\\MA"), family = "HersheySerif", cex = size) } ################################################### ### code chunk number 18: GAM-womensrole-probplot ################################################### myplot(predict(womensrole_gam, type = "response")) HSAUR3/inst/doc/Ch_recursive_partitioning.pdf0000644000176200001440000036644113303046021020652 0ustar liggesusers%PDF-1.5 % 1 0 obj << /Type /ObjStm /Length 3571 /Filter /FlateDecode /N 58 /First 463 >> stream xZkS8 }v:,ftnemiw!$ 1;m_>G_pYK<&,`F1Ta&e6tb&!T ?(,Ja PhQ?{(ǀkd`$ C&CƒIR'L嘗 0iN1u´13#bN1T ,NJf% U&fR3k0?iX؈I"e1(,2(L *b(1SDQXkbT3e(AHhv Z"b("(U H4zb'sDR$"tѳQSg ~3aRLfb0*"ɱ.4@Fuϳ bgU\fK$[E`le:Y{-YEɤHIG :@(/AKU=${Z\K\&z2ڛ{2nl5M﫣2ˋ|L D ǫifWObw>to,;g֐t2g;&d\؋YJP{jQ7)&'BT/^|y+_#[K} ,߾^_Wmb4rwAS6I?Lfd7TzDxWb^B,ѠqgӨ/~` _fualz=y'? tYs N='9]v3Yr fi K64B[^%to Cqv %4(={ly'oX\%UhUI?}w{ _,ٌ^3qTܻ,I޹Ibf!uu6Ap࢚c:+.eժ?mny j#Ե6lܪ@|"rDn7imCy? R*pRHx_*qx7Dv;O%,ܽOҋ* і?;|_}~~Ƨ|ͳ~&|\&%?++K$+[AњhТU-LvЅuJ~k0#%=q:$ߡ{lU 1@7R}A.VƯխzPuo԰tkoNan9g] 1ȗY'ȅbrvPl䔍GTv,k5Ig AfLP?(+\{2b~ng-=YmZ^V-_?uij!]Z( J I:m@$6>=u^J\!-ĩkkXLD HE(H1F[ymܪ+!79m٭qfsn"B~@ݲ(Fғ*2x#E:ܺ LmMo*5?-WZq'>͞NypV]j2ɏ|r)% L>8їߒ@dׄyr^u_*?HfgsW:.瓤*s͓o0Oe=sw2ki-l5(ZRk6j--Z=ǧ'?|F'۸|56e%Cq4s_4@|ji9ĺuaJWRY،(%aCvVlF~\e|4r\1#8D|G?))8y3mK\*J$̮ =6êDP$]@t<.]mŀ [va`f& [؇śwd, vd?`P-3 ΀AԺuЩkנ1o3Fu["_i§kSiOӴHIDlg4q ƥ> stream GPL Ghostscript 9.18 2018-05-28T10:48:08+02:00 2018-05-28T10:48:08+02:00 LaTeX with hyperref package A Handbook of Statistical Analyses Using R (3rd Edition)Torsten Hothorn and Brian S. EverittBook endstream endobj 61 0 obj << /Type /ObjStm /Length 2201 /Filter /FlateDecode /N 57 /First 465 >> stream xYr۶}?_v:% 0錝9Nmב[3yБYJt}/E)mG#A/r 4 )s)eZz3 PϳzI$KsSɤãb2R͔UZ` eh#gZbL9L򒩠WL fZh桛f1%)3zxό81 +\5VId0Pj YZ;bϬf J!%zE lHB@hXV%C#-BWd`h-=lE *P ((L4 Kcfr1~/~X,O ~X J i`DeR%2Q0ݴ%99;i1[^nboպxv5]Sli5"5)/5ehX+Ogޅ}v>|@b{ӛ߼қ,spVZVpc5iwM׏5{Y.Elz,mr,+7|S>%/8l:KMʗ[0W| ^\.-Ŀ|E~O̧kHx[X<LNW;HC'l@b:g{Kt5#EvI8F8U0PÃ>ICپT>.]%(*\tP+FաE͟X5X7=z !Ԑ0O|>9 a?V{tc`F6M{c2R^`1wda4A$+M=A$4єmGnզjb|VdUφHľ Q[^qx2݌Uqb*DG}G샢FƭR`;!6$-rMlz>]_ueF#R8ːTbN~ylp7d Wg؜# Dx3n3θ@ t۴ϰ awPk~ˣcAeӏ4i醌@Z0EMȴ!#b$Ԕ=m[o*Ay>"oy:yNuaλDdOq<#qnSbRE*| $LtF:~ʦz\-Avn:okٓ{R{rm{jJ8S&޾z}t&\Vʸ˯ϯؠ*bCmbCmF .~l026`wͮESꭹcqa(&1BL^3|02E*BW!4 wB9S>US&"HU" 1+kipM>N+*;$tntiYIi)h;tN;<7qަ rj~aH iiTW +/F]`œK3S)6"y{!DU֑+{U* vOK{@.ysXnBm$nօF-G\2bHcsKnꠜ>xzl􏣨hm*F;R8~>uŸ~Mi$}lm<}dm\Vը5Ռ8ۊ0}nC5ijڸBv7~6ئ43uOWeV =z[gJCLLJ3+QᯔL{endstream endobj 119 0 obj << /Filter /FlateDecode /Length 4252 >> stream x[[dq~G4 >~X1 Xތ#a\vv̬C~"yi:6Y,V}uѷ1ˍʿWgZM|w&6>sˍNm΂rܟY~v&l3b Lqv6c-|Ѳ5t-\foSet  ޵W4inKA@z.~Jauw!q%6Pzy>ـ$̺( +PnZQAzI"< ~s.Db[RuZt_=bWl}T-6L߿ƬN龱`A!(yhBٕ~E+4V o!]{\2Wf#" gї FzMl9 a&85oIt""4ɷ|;gdlpm p2ܓFF V.lYH29^]z 4-0ʞ T X,,P)4- Z F.@lz Vi`V* >, ݤ&b!L{r4}:DfIF9a>&;qyq]^\e9vqR.es>\^˵tqȕ9%Fp+}b0-DA6 _t,FvF*I:(? CNTZ+|EQakTb䇭-w*d' (8J$ӡ3R@<)X[-3`E<x~BMRhۨ Jקd鱎vu~}ДyzC<ojekՒ0 ?  :FLW7r2/S!gr$F@.Y.VWWEܩ2. KxWɳ:,lJBzv(Q@6afq2p^}(AJkrNI$'܍ZZa%z{Ϛ " Z&ΔQ< ,Qi29 $w!8)Bh!l [}FyJ"d/JND.tI8>_)zDCd8C/-p<ʲXtكe.!Lf+)I4$kJ.NpS n)ӄmJ.<'ԉ3Y<;-P]y rҤx߰fY'O1W7۲._sHBGlEb=/K#;0fR}ʹFW-@Z,!3$an ?AVBuH0 aA1˄QXW c<)C =!S##]4llZטb-ΖrA~ݱWe<1{_\*L)HK1i_u! )w -m]5sk,tLpGm}0!{juc4 ̯Ezbwn=η.E9AN͘Z$FS2#s9ԢyNl0mש>1xB'[au91ɒ1.eZ#$uQ2R6dBsZ4B ;N -S:zח:j{"z`:\7~%oM#om؎/h2?$!j N*mG[ UG_?zGt6n@󮎞^ =_Gyd)>S$\mg3jRMr7Mn"7?,1qng2\ TӀ!5/u58e?1f`87V;^wV&϶?= Pɖc2ӸAeu k*޴i*ׄԲ(PS1l,庖HmZQ:E=L R#?*0 f aPWYZ]|)*a]f[v^tݷ$o\922qVVROo4)"h~ƀ].[޵dѥ4zDD1w!F,x*NI{*rH)ISB.ipf P} R+㺂wݖ!0{P$/'5NT֜ݷB@d\fDjS_zN*sT &Q=g2# RWT造Zv_Z5EQXU\W>1~}S7cͼz/(/¥e.rTkI.aXw^NKup{ހuQ&]^ o+k,D䤙0٬q-|)ׄS&G}nsDհ< OX 8&.U t\4rBk!C+b hP\r݀ '˟(_ldK)1Dun"NYy)燕t`dg4rF-~ac[}r-z=#ou5se^ӫ0{_Bw[GT_rU'K9߯13umD-+Czs!*B(wVpHb{WdgfL",CHq솞}.Ne*8[ 5T1:̪rV#(ga-XǗ9t\`L>W-,%/V뾼ap%"*x]lFFC.JЉ#'H).JUb2}T}EWlmدbY@m#;fϓF~}ţgmO߁qcy9h {%w8`p)"M?f'٘7պV2fjO~(}6} >j#VOeں}ғYGť%OH\<3k2b?̫_OP3GLlIm:\_A:<^o"Ȧ'rߎY 4!_;gv135L+pMd$u%PG(ߎ`\0J6?W*NXD aV0Pu"LtG{Q)N ֬5c;jp+ 5ͩI5mMG R5 qdjԔ멡܊*lG ?7j)UX85k|\Q3 b:0{paV V*M&](SϣߟR)endstream endobj 120 0 obj << /Filter /FlateDecode /Length 616 >> stream xuSMoT1 W=4؉G*UT>NTt@Hx=h2kǓg=ݻWטËKt8sE_ c{'#ȓq 52Ls2֊j2J3u9vY~T~*QtfY"vk^FάiH꺁pGCJު%,{7ٜ",v燽{^r-f~A$>L:c OFGҌ0HڊP<'ͱUWgFQj`%*jx14A#*p+|Mf~8*4NI8_SU%HEjlGS*Z ]HP&Q?ܙqF0Miul+oki׿v(.̶ǎfCw f͈cg#aפ\ iTg h- xĨ> )bD.2r c59M|Q hycDPT%nH%Pgb,<Ӌd _lM W[ݿ;-e,]*.ssbd2le( _ܧ+~s%.봾ydN&mjB:quܦ8nb֍^?#&|endstream endobj 121 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 3588 >> stream xW TTW}eABhsquEc8bPTPDA Ta@GA( MH;%QWwoM</&ۤWnժ=2b#XW_Q2im9R%Ƣy[7q \#"bR\#EGۍ4e$iNN.v#C6Uah#3bSH`t͞:566v*,jJDd&ņDۭ عEGۭPnJkDضH;paϏpݶ`a[Ԣ1:nS@fU![ׄ͞k:Ìa>b28f%82;jf)m+(1gи8,#H4W.-GIv%}'g_ 1‡W̓$L!d3Q2,*Ѻ8U+) Ľd὜a)L/ܴ,^k;wSpVUG@>p`iZ:agZY4:7?~Xc8[R((ɚ䒭4/]ZػKHؓQ9+0.c4&͘= *'x//z!;@FHXvfL8Xz"S(g|qj1DTZ,<8](Zi ͠+JQ1I? SN/&E X+ 4dw`A"cBT _ 8G@xZ|DE_~S"YT&p[D[} muքsdOh?ض1HrqCOB7g n-Rߎsׅ$,<#RPž0a7E Mp_v_7)!7ľvl94j `'&9[W(,iW gzs7azY@w ^unl˲4),JRJ+xLJ|v3AZ-ahaUvٚҒDbEr -ϚڅtR8}.wpCZ%(2N)RFawY1 `ybIfjj˛JSJv Ɯ*(@qK~D\?n=^&nvE~( z(Jgm]62,l״<3,Mo?ťťEek9FPC]m ;ŏ}#Δkod#,lH `4.(]2*%K}/SMT !##UaN-32J"h*=^"iGh6nu[{ |hQaQ U_2A)ePpSo:R0Z{ )^KLRvl[<=zò;i:N32vA$:@mf!n dwStG.Rj^'ˌflL_]gtbG8VjlXt{=%.^;rype*MbάJhqF?Fz,K&Z=4 {d0{q]HH/]3t8Xkah7760!6uҾ~a(l,7A&2"cAv% nSC-A *=Vqr}߮|tj= MD{w0pIr ]M ^I}sM/@47|af^+o&5& KKͺhaw.9fK_Cn|2\Ԁkv)uRu;י7n(-:,qLBs 69b:1YЕ@fϮ£U9B^^΁}o'v"j]cj9E#\&v66v~ͯHNOMjE8ZJ0'lQ~၊%Nó)%븤X-Utj;@k(ba~wfzj@J4IRKcN{*J ejIj8RxyJ PQA &K:$5G~.H~8dx7~ }X!_??EW1W4.mgE[ DrpMv̅1s~)9$J';8N;$[Bjchs?;,^H֖㼾丩ErYJK7?)wpŰsm j-)ܷ3$!aoi ?ǚQG[t7ssl{hdM9PǵתU᪩г7{|:;2F" )=YtxCdw}]Mҵ,J/y_Ynf&k -fXαAYF0endstream endobj 122 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 363 >> stream xcd`ab`ddt v04qH3a!Skc7s7˚ﷄ ~O XX_PYQ`hii`d``ZXX('gT*hdX뗗%i(gd(((%*c8)槤1000103012ԽK2>}wy߯jcws~7yŞ>~nSg>;3wߛgO^-ym̾^];ǂXπ| wt\eXp~`:endstream endobj 123 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1925 >> stream xmTg*T:hQIQc*$*TI#BawD*/{YayGXvaAPUIi̩ibFHKP$1Dju9Q$)H2<5IQlUժ Q~HWjRUŒujQf`e!XOYLjT+ *}*YQ1*b*toHmdT[* '5,eJL X"'D"P _VMxf⿤+*Z:ZAE~RRD0J7P _@Ksr=^ly>Ow Iȃh^ôD6߅"C/Wߊzv~Q NtJ$?ܥNOiȑdߜgk$_qz,c[p9ܚ8Xg-WŨ]'ZK-e%`6s@quyi/цد/^h JHQzx~H{p/-#@Cns3"Z$7I9(@D[t0xi{p)(7߄^oXO%})="m2  6зEDcMnk 1Hsq9E*?.%=+HIg\RVd4\H,8{̜g@X-57)/h;^d4@+W6-_k+ *٩qZo$BGݔ4rr~%Tw%'%>ZӔn Os{j=W`=kv{RNZpl3Q><wsh>Z_k'q=1DKSx3,qoO`31Qsw NO BOB;ohrdHׄ"p桃MxW/ G^\VT(saJ`;)m*ʿ;:TLc Iѹ}Ecݝt_s}}h8Hn4ɵe5k3MY-G<ߨ*~k*93 y3,qbe;9p\PʽUpn\+Zƫy!(~(s 0k06`jMȢ]Ǔ䞂[9=s~oC,7_]N%#nkelIN{/t<ڛ4zX=vy]7뺅 5roq8FǨ58 >nTp*-Ns!0" A|= 'tM3Ha ڪ*m"4|@UJ=} 88ڍ.&ۨh=vu~Y.)(VWhaYóYaNߟ9|}|w8endstream endobj 124 0 obj << /Filter /FlateDecode /Length 150 >> stream xU;1 {'0q_N@ -ׇE٬W.,?慅:c8]  I1 7g`tBw2SZJffBPUR=uw$֓TS>HԖ!56w/RCendstream endobj 125 0 obj << /Filter /FlateDecode /Length 1691 >> stream xXn7\<w}8A2AD9%YXcZl"{a(YZ^իNI)wCm녑.un\6.%n dHiԜ/~^$epF $ϧC>>#+J$Ot!U>}ٙާ6'!eYxt)GκHIF7j:gw5WuhE)R?nxT(JhI'jL}I(X r8oVKpL,azrd UxW :;h8c;&q¤0aLJ0 R:UY@c(A `w9PDx\YkPS/d/k+vI\q4 c1!Jh2 8R جEF9\v5 \u)%笸ə'd;􏸾4zGҨNZeCHiqJͦDѓxSi9a&s{rsj}ʋKDu&(^-l'/j@]utq %$ʥA`SlvVqt+sN7p[8ӹ;z5Ymy3&r:Fq_P5QC$_tVN-cuxXߵ64=Oů($둳՜ڤ(X2BNھL2~g \h*``e#0!d`6ʱQzR/XiWj":|IٳXa ʁr!ɣ 'WoZ{QH)GxN~]qK{nŠnKv(_) S=('J TkGGS@ygzG2\M<e80wbT#Q8яdƂ*3"?sw(MBqX-Ϙ4;Ǵ0ChvJQhAY,UI  5,o$^̒T*0!ό'C@|YcǓw}XWeVg}P Ƥ፱դc7=],~EEnآ0ou!wQz8hHףt3Jn4Lt-IҫQ:Qzxz}jXm#F-_jݎҮw {hX~^=k][en-`J@:Lòaʆuns̤ >${ =;헼$>, C{9.h,ݶ¸nTa[0V(UeAUei/,kP1:/Sy9+b}bfe|ocpdcluɬu6'5U4m/og{예F1<',b`Y3agm\P 1Ռs㋙%'Rxd}x1|sZs ?-5sX+e|6jXC04a*)=Ecꏈg~F;| |˲ L}q| M(=QXucbN1.V&67"_A#M7;w'8y8wФ~+$!XDQɿ u9?CG߶'endstream endobj 126 0 obj << /Filter /FlateDecode /Length 9491 >> stream x][\q~GL0pǸ_,W9,;8$˵./^%)yȟL7`˔)=谧@8וؕ_kW/Mˣd&Z1MIˣ\ͦ&\=>*nrxLL)nRl\Aq1Es6c ~mIR&Gj[ |لTPM1vJ2q ;IgV/zdJW/WênjriQW]YP 0z7Փˣu8~_GY=9;z ٯ86`ῼ51]ӟ?iO52>;~OO8j]=v eni2Է?4>>k~:[xł,tAudozYj%?f>NjS]gxo_Wycbi{xrGP& Wb`nW:`9Fl[Wnj—6ryHhgSp6W x沀nޚq( (,-}J:%n2Jo@VyEJT)U,ʂo{_%Mm B'6EHz?8S&K8.Kl(e%~ܺJSQ :%nRBJtax-\ kǺM^$wа'bir/CkEJVp9 z' Fތ ,nGߔ,]07*q|N!"MjT n_QMe(ԇܕN*.A7Cdch]9L&5[\'ڔ,@>i 4n&vaP8Kӵ~8Bdlu@ 3f(0AoDžez:7 8zRhZњ@!aP`B g Q/d0t0E;L OkGٵ'A;y%$!{8! n!Btq(pP ;P0V \V;'0&1-P؉nEcV0X\M(/A@xe>J:⡔ċ)sSvh (Y3)'[ͭ|q␤IIII=˜VqM1E E{l|bcXק߾{Tڒ݁\wT<[ݜ~؁&|iҁ'L f/4,u { w[ЀW覕cրa'_>t>ZwIgܢtX.\Z"kF$m.W LXѻAW6Cp:(y+FptB (`R8RR<0pxsLNHJl]9gq{Q*bPPW( #QR vJ1/A@<#B3R}A>7}蠄<-A@(QP32`fo"@3jg)M %3,Ls"38@6_raRxBi,}(xJkQ-Pi'8ݤY1wDkAEc"qZbψ=kyؘ= ^}F2ho0uh}Gpf- 6r7W[8_nuYdMJb4{U]BAm. 8%QOOcfy k—(gQǒɵ8 Efb4m_x#鋠F!8 d\K?N!x fb/k)A؝`_|R1J1⇔W)U?S6'qAYQb3'gWA[Y >}܇}܇}܇? .'Cc^i7]O5*^Q2b!f,Xwk4Qze>Մ&0G#/{f^OH]j+?u#SF \3f)U,6X̬`>1hR{"{ؖŁR1%!w,D lq2>PP ցcofwl6sTX| 'JU=Sۂ6Q4q-]ж'V@cIJ4PR6J9P* el6@p6,K;9L)UL1[MیJ:3R#x'4łZMz:7 ϙ xCuлnQhS$CxcZ1T˻އއ%諶2~R늬p; :@6&ʰp0g t;QS;I];PJńSah}Ql9ri}Q97%FnD]]r.rFo0h 3(Z= @3OZ7VXJZ9P{TJ8%|1a"g\5h/ȸhS2tfxSv ɿO'34W pe HuLqM M&dK΀W<qa,bx\K{F!'!L(bf2/8)p`B.釽S{21vNu 9f8cr\qV񹝝s؇}؇}؇}?q-V/8}y>*lk *Rg/o ľz˥GH,!>Qe U<q.JV:,xn*- P#cqUoh\S?DZ}v.1`ƴ_ Q}03S'LLf ˭Nw77uif>$BxeVx^x3XŠ[w]nJH |q/12J`<ѓ歔bᴕϝ~=40KW@'st.7FLkɶ;K]ͅBe2WkKUkKĥ%ZZĥ[#\eR~j}=U L]x%c)wjiYJMjm“oပR.˫kχФZY%ٱ Fcc;3kIs79{ƬÅkdeacܳVS ZmaD@K@Ks10lHs=@*.2~ c}r/]ߡW0$]j!ʝgśimԾ"x# '7D }B=w&3J@DnWdGgYs79P;=O ! OA#tx.5ͩNpRo @[S;WU<\Ψz\z\:u Y]s $x40Q]GNrSMT71{?t;(uDbT ]ŇJw@Z8B/QkTWftug>[{N_u!|e>XpY8 zU?Hg@(cĤ}?)nve2f-L_|Yc_|Ƈl|Ƈl|Ƈl|?j6-¦B7WnO޽>QrKw|~9QSO_j;%7jz~^[sXj5nԚk% L moR_jXUve^RSc0aMopsPxpL΀D<]1Xo{YO}{:Osƻ-k@}5x ~ϭuE'h<~uEl<~]8g'Ժ<@m[,Q`ޢC7E~:[q3{u}(ꀒǃCL |gԥx*vz.P}=ΦoIfNZD;N[eRaZF+u%𩩇ɢ%[Og {JI'9D&1|x=װ7v8>>yo6ZSEG|c'q<&Y>$(O8A! gD"JƵDY?CO3A,PXEH-%4g_PRߡ!E]ҏx)(dJc8 (JPƔ*GWs+;B!c2!c2!c2!c3GQ*D]"F%#iL%c2eutB2݃k=XABP O*l cjZ8µ/^#i3$.9|H\!ʇK>zC !w??"%frѽi~)~܌FȜ'ot(.G[gaRnpžIx)X= v5?$Սߔǟ?Ŀ,3+e`4d0oQptu}"COpd\ K4>qi|bYKֈ4׃ W~4v?>x>UPΡ \뮘Ǝ[R@?1XHmaҽ`&LDTg, JR0@ܠ]O< mTp{po-D)*fpC7Kp7Ks1n0 pnlHs=7b?,}*|3DPnr;|)wG}9]5RׯO@ZXlR#Դ9?e_9 *m5T% 9%Qp0j+]! ;iQE1Fsֿ<>%Ͽ`c+~zݞj 6tO?i͏隟?S~zO~z»07 | 2_9?=G?}MZ5K'_=B@Tl uWK,ÀI{s~YxV|tZ}."/Z0Zb b_2$ˎ69sΧձÊz.-qՁ`{"!x cBwJmg !* nENk9ozf@8mt!ȉ ce}z!CV2 &Ф-̋_!Oܓ}lah7atH?zDAcͭ .`8$hs(kNZjc7m06(q߿("R-8 i '=C6 %R:'S(|ۂjddnyi}!FTTۚ+lm!F-ZQAط P&`ZRdz->bXM\nPiei ÿ0E)zNI= #,@7 Prm| ͝g@oڃ5PֿFNwHK&ΚOcVåm9( JT$B+[ \K ]BWzؘq h`"\VAo ?5yɾI1WþSQo/;Csznv&2̠ouN_{4de+@A;zSTRQ5JR.(DQe ^*l~ #N&w.p{*)MXcC4%8Cp9]u滓s]K ٪z5{vY!ݽnD`1ѪXA֒)<Ԯ t-acmO(&D epM՞0-66C]}2#2ZVeKa2ˑ{?3>_{SɬnĿpҜ}TQ0h{ c3rNE]v]u}#"N? ?eQqV}Yaݵzq'w h-2B9)Ҕ=*%~5S"W;G?s>Յ ."J;p6sֹ<@nv&R@,^/N:k.a A&q_y3Xs~^|/햓i(x> stream xy XSJ<Ԟ8U+δZ:OUE $YId@8Pcj:[mV݇nDzo><{P]P@4w* =wy{ BϮ; o"}o%#熄Ƅo[uA3Fsظq'L4y5ZA >>S+U35ZMPhjCmRcԧ8j5OPBj5ZLMPj5ZNM.5H 8RݨTՋBT_ʎS(z SHmZ0@P$GXktןml΋!/ӓ bt={9^z}c;voٽ{W}=j@l#vg/36ws~}}Cl' {n-#=dK .Cym{2H'k-䇶/e q yZ>fgHjm:աLpcVH6DGXuFAҍ UҼ$^ ٲz\k6X*۴H vy}x?ꂞXO`!yQ *;{/~ ZJz3ykVq8_>AU g)1_˖eKrR7Jlד3fF'y_̣p Tt&C}DO]q*J&OΟ̽ow.U>"A"9]|2|}E.z DO[-tp-AmT{[  }Gc_?@P_~Fbav Cpb_ՁVn{[*J_X#uoRvIwئ'31сJOU(JMd/S%'% "yj.h Aoϙh_wجvט@8 :Eڋ$f sY"Omǚ쎽ŏY쉦`GMI ى2oWq)x`',f9^AmhHp<~_i@QL1h.lYz:$pf4?8x2t&4;^GŷY|Oq1[&Nuలm8NwЙq-kg"觸DdEI-.bQ]s`a`.mpySg{zJc#$8oAlv()CױZ$R(Df*8fE%Hg.Jx0xigmIf6o#~Rqじ:>y1$3`^C E,BC@L4"1! 9#pIkIwM'uʄw Рh}`h5S.ZP =g^7$/`ĈJEe9G*$+Bcju10FQtC[~`':nU1E]h,1MUS v[kqMS Juu5[890a i䘭&tzF4ztzпi5{@A?vxv({h0:cؖd~J]1sc>BkYC8ˬ1ќ@DH`{:R22NMi>*=}o&KrsS:-,81r]%1Péw*` LҔ)ҷ'+= T{_qHT"_V-6(5%PS5ΰݞy쀜" C7gd~EhGZ0|fhe>%wxc:L`C: x9'`w&hD nT@4#MZ@Ǝ\[붥f_>[zT`VJB0j6 1w9(#Q]z<9AGv VWF@wLy^Pvdf?I+qZu!W ;}f6&+h7er(%v", &`|GhKdAwc3<[џ.)9L grȅhmjP .tեjIU< {WS, 5|1= ?ÑMeL*Ǝѣ-SG*j&i W nuԸ՜0e*k&њ`2'(ոie3gl&YPTCgYZmU+b~,igmHWjLJeuIP~7>GVGʘjcͪZ@&A0iDHbхJ:ZSXʈFlj}!DQ0Jb4ڄw}Tp[͠om{@{ĀLvTf拟*Gi(|6WS:`ᑒg쓊k#87蔶Y/&a._;) Û-CG<w7U/`/A &@HTiuv3]WI`yfiva9!׾}[ouDc#Mo9r}7 -Ddsئ҇+xI6{k/Vsh`Kg_57>;:SQ%,$c?_[͛-L7;͍77=ߚ#! ,=7٬*baIgV+RHGwxI|*CEle $p[45AyX1Oe*-Q:HA.d (@N|=#G_ͶR翺*8f_;̦UteAz.;gg]#FA"Yt,;X1؟ 9G3 ԯnxW jJk,fyҰc:^T0x<ه[>Jv-"}SPœ⥳ڴ3ij6lṣ Ǐhk n$4bed<_xF~.Zd73EgTGrٳ9MugoFN9?`#^.4NyePn_NM)H(ڒZ6` 7Ƹn<\#a0 uĿ=-'66C&8(ꛪ*h Z5? c)lfm=$}%Dy@|O(5z4˼(_˟?g,BDILbjń6fj@ylFѸ݂ccs thHt$J2(?lxIDO KP)5eOEҹ07bZF s.$%PwsxCc RG?wf+c|JRQBaF]gCdeɦWTm(we=w ;8%sH["X@sv97[%ZvXwIBBQ3p/)\`2ْ?^Ȼ[k2k5YzOj;0te1G{?}]5i I0꒏pyu)p/7Gfq懳=$^Hc89Q*F/kG8<IJړ[f=cE_| tڌ=AM7+jو=)4Z$dD.'Q[:I{E+NPՠ \H" t!rXCG9w (綐߂.p#?9 1.`~ fe8KQNǺ:}% >3$;$s9GP+;#) 3a) dKǬ r3͓5@^~lh"eK&B0("%ɑ 0{{[k24^dw%r{huhڒ=1~)JP)6ޏ>0}2 ^e櫌KU96ᢴT)TꋈXr/ 㢮S|_)doU@2tkޟb!Ƥ3rxt\A#0{:&)WI6mURTTHQ`;#ɲ'մ`4?mˬ~4v1!}9G[K [xw֫$ȉdAmfFN y-y_{L#M$Yq WTV"-b)n6֑gԀ߶;t E75h3z8=Ԧ-q~ZGud6 K"m&JE$&:%N1RfepyMGoB7h`#h^>aZu$uKF͓ϏF]%'$6 [כM?dzi5?-&#٣lM,h-.\+ ŵ;O}> 1Ȍ:| Y'r>jz+R:%/iP\{,3q>XM!7hfbFnXmLs=!m"Lj޺Onv:杞79g330%R!\g6[-_5cQf$WW%? I i[[ "Ou:U׳aGϞu={Qendstream endobj 128 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 5070 >> stream xXy\SWھ1Ji܋K-jkh n+jvB;,dϛ=%J67Eqi֎:iǶ=N~]g>;3syy=`XcV߲vg|-[}+ @6nͣG H0f2s+2䔜а١/^4'^,#I]IݜSBJN`SOϋȞ)L~qԜMII¼U qIû7"3C$ ]$2U٫sŽZ>1iwdrʦ-i<8wgF[P7XuVKT56iZx jri>ـ?/3;ʪASP, ϖJ%P qjChVb\N94F-;ytFDV(d:17$Na~ cq=[Q5 yc% 8US ydLsѻh\ 1hՔ\ <]eECy;FC?-_(Sc- 9q$hIY9zL|HS/3}ZNV\먶X͸ozAo?r~ 8έ _|J+墠w?w"/0,IqlPm" h%43ʕS\U41h̽(P:yFXWPkzs'|W> r?,e3f_zq SM}x#b;Em9ܙi4@ zzY;Kz&Ҡɴ*R.jx&e$sDB,h TJ5vf)3\4~ͿFїf@Cb7M>͋ cf"W.$R@Ye0|ajCuȠd;X-FS}Ͳ5ğxfq,bglr*G; %ׁ.ߔ'`_%@nݶFTwe ^ʕ}orF\4c f.0O*k1¹y=g">Nܴ2y g AR7|Wi-6\q?34CmIT*R\VV<ξgU\%KoźfŬVltbYH-‹ 4&3:`̳K@#i UTJc)rOCc9xWek 49N@2Pu(ب<S$BjA^f伡H#Cn?H$ e`s`U#qͻt|4 ~c!"@;]nl%h>!N3/'(zCsg+ :Ӓl|}FS,NRKQ}u'ZflQTȷŒf%ZEx}m JZ ]@:಩ͥt:fB1vm'T:ƦPVVEo"^=ZpzEݛjO^,ۓl+,F;ncyъZ̶lTG*<*.2˄<,̂r9SEP۱??NȽtr𵄗7)*+TYIw΋Zs^ltˮ0($$BSJ 6iE᥼_b!89_dFo[p[!5q2bCX?O l_o*`2vye~/R˙nU!hKżL~F ѥ]pPC㍝„)Yo0Q6og@횬l$ ZQS}--kkPuu81 z*M#Ŏl遊h1O IaNت(,c홻3f}wޡUeE>}ЃSk`D\B/ Ly}qkٞۿ~4EJGtwUMe8f3kaO{t}y YKoLq/:B7 ?MCTV*1l Os3l$=nY&|]C< z~^x@T_CiS@ot`4 *XdrɏfH!WwY+6䐯`#7Y,ftzUO{͎&""{$Q9p>o _}b8! SSbaoI u\vF*G.q9HmGk`%{v|e:3c>~o(6=CuibC3L憯a osZiGNuHr*5*}~Z(CU dKVP_?[LJUPy̨~\bV8+xTqT2Ƞ(l1WC-), )ѝyd sbe.z/[qʠ2~¸.|ȹr"I1tJ⎂ `bqy\HCKؕ tkm7TҚĄ[_]{Z XuJ!j*䳽%ةhf L[ػW'A^Dhf_aR=oV:#GYQ݁Kw*y~`8*#'E+J4%i.u jfZbJ6gih76:stʑ.l? FO!>t J|J}Ss^*ߋV{=aTfQPdK:9 ~JԘodb}O'LTȟTnC$O)W6%ig Jپc>4Tjfhj ՕljSIkEneZj -op|<)*?K`4h Mkv#.:P+Rpni-M)-=0'xN)͉RkA1]AAF *QG~ӕa^8s?B|@@1 y PkJ*pY+l쯱Sl=yp uuf6ANjY]=y`q cTSR@>P=ͮmq Ԧ"QJ ӳ8ʇb޶v658궊 #U)A¢L}?0;/ۋ ^8vmt=;ETX+|GLL%U sO w\>[nsϱ l`kk|.}3ܬiˆyYELH5Hm&+䮬B~o|;V¡l$3̄`FcvR̔uܕpMm>N;<Dk+b[Q(!@\ȝ'cOջ fT7zy) C'8Q@v_f6[rV1*IQaAxx&Siu2wd\ʴ3nrwa/{QՏvws5ƐO6 (9usyf4cJ!tljq de4U87`qg3())Sd%߃]?1 >Bc͸6(4Cda7P aX<`"t:XT/lࢆ*EZ/zOmJRKg+E$V8S1K[/ŌϗeK'>Lt't; z4]C#inOD9b(ҋFP7~^zÃb.nA4m6.W{]hޝOhSKL|Kl#(U&VTJz-e !mC(p9gERт츨Ep"?fׁ WZnAHM'Y)hme RV7Ͻho3Ֆ;+x[%t3_4,*L0vjg;TUҪڈG#ncc Q_} \#o;?k”~{{OW?F5*)*b25-q]ӿ-\!1+Y7Zn]eu}QwȻl&CU4$ rya1|rA$֡:dGp"=2G0b 3pFI+mJNʬg&uenfud^iPhEg EgY.TFTz2([aGن*47zQmXOY` A/+0hendstream endobj 129 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 5622 >> stream xX XS׶>1prTHsZ:k*U *HHBvdyuJ86Wm⭝Zu즯o);|_>{g׿uD]/J$IOb:Z*^'Hb=r#a_tF y %a#~2; :{_' 6e ~;y)eA^J2N[9|\R{*jWP$w޸ U~Jޡފp]×ɃxynRaJop7.oE0EQo/޽dbYr劰pWĎՑ;v~=_ZuFyc;Ǝ{M9yzf65zMGAOFS1;5ZO6PM"j3HmPdj5ZNMVPtj%AfRnJL )T/5rQj5Dmm<)L-!HZt^e~o۹=ٟW-|b ӗaC}zs~=hs#wIK}<^cm658b8-t89sz.]]n4qC녲B2lQ/p=`F޸_Y(!%&!afP1.@u*˗l3*TJgtqOܧ'! bb!W;%35j٨ %OdzR󞰔{rw9%XWmY7v~\N t-hM>aet7!HÏ5 X%x<mo(GuΩ2U rpva:]IܹM(Rx2) JLI*bY41vAX9g n=ի]r$ yEI6Ӌb!Bʠ=\JJVl3l"gɾCJ  ̽(&VSqsBw fʌ_Mw)ӣuiBF00d|L;0 ^y~[㗮\I;u41 ;€i?@?^CmJK1nW1{bu %fEخ|Y6pò7 %'XA[I}<N셙Nc*`b <ݘIJQ e C8Iv u~TV=VxB:!Oǵb0 ;Iְ^qbU%b EݑYVEv祟 Df*Ks#( N|D0Q 󡆅a+m Y=خ$j~c@g 49IiftyC/ B9}TZT} fC)E;y7Z^% C||l]{[%$ M)ry\ٔi _OϘ5e:#f" KBw8ՉGh۲ub /~tYb>-*SWe26'i8YB/bx(vū.#u> :=OM?DO#P4 >ij=HV'YXN{杣m%(O RQ"f:SمpxD #7tN6{ܱ{`x<^Zu}2l'-fQ bnEpK4G|]\A+r40:ؤ3p$vEĝu6wm"| }K+zYG?3 #r)E(c{#,4$*b6 FrPI (| OG^NΕ=1a;1bRpھb*QDύ2CJ)1U>1zzf;#./f^Qt{yy{O زSSYM!PGEAFuEaMNCz!@r3Kx 4<~Ȳ+qft)D=CRwEFy8ĸa˽fws~b8 hk.8j~O ׇhxNSp߃mx3vva`Ҥ!™R{&B$3 0)TCm/|<"Oŭ& $lkL+۵>֑]SHIMIXJkIoE$D҉I\jX0؃RP JQ̎VhR~o6g*#K"Clyr s3Ur mbDlM0JPIQs ["fk 1THޭ6p_ Oз긤]M򢚋o#mc-OV=V4K56AIDX$H!G>+m\F2k,v]aeI,,Yy~|"lX{>R&?fK6^++݆K^_K1 dB03痾n<*tFqit12 21_f,8QINC,A7hc2#{D_,̇㬥Za8X hmDjB(:G})bOKM0so]܇K;OKO&ʬ5QB+QPi@qPz?b.W|rQDq)>Qrte[jFmnt3CvTQAq܎yD ̝뗡Dg,Hfzq6pps,iCdF4M>@2Q+âèp>~zw:) .fp& } _ EҮ( ޅdzZO6 @bdӊM4'WZY]FWtV[_$7JkX-3XzrrEgm Kwݸq3rmlUi<'OlNDr:Rwp`ߵ VkXQlJ E"&t#:KdyprQ+9Dt3­%Dy=-hG.9//GN ҆Y w*"P+l hc=󱧳^^*}1ka_a W$0H ;9*[SprW%+ھ6=ꊓw#ZhuU ,H<2wiNgfFLMh*7i۬|,Y__*_zZjFga1锶hӞDfHU+?w;r=)Ԝ^5-D56@ɓ.ܻ(xDfsQ)SMNr."\Ptv̾x bSIgRTW^Jf[³kXp'l^#jj!`VdFs<-h&3Hh?i&@xٞPdZAq{=v$c)#xw,s ,m|J{= 3" ; 0EYN4ǧ6m.檽l޺eﶇSn,h E"Aɍߛ,,*3H yk^4C~Ia.'E+7u9/+?D)iUOPKjGz״S9)(#5 W0.>:\P!^O IuE.ȿ5Ԧ~RՁkӋUyZÕ _% ܳW6bOk0KuT0k"!YB>FyI&C2G*kcI됬,γyc8AFG-i%@S:q۪%ILD*FSUo˴CϝʠZEcf>-"Zs/E6t>xص Z'g+X:iҟY,нɄ, At^ <^ `e3%bUX&:_,^PKda,0?GZNC`_3 p/l7mg zteDٿXm~|Ƶqx y|KI1KPzviM4dV(G.ŢQ|jڌT E_fs1 Р}|U*3x!3GO"*<zfHPea#ʮMzW^G$t̍1)r$p9S$V}aEǻX|1%PCu-5~KHDZ&qM'&F9K_8.`a-;{OML&/1?6+<~b~m-ﻺՄOjбTΐ!&Ɛ$R^', 8\%1x(._<*Lt 0%ķWt.T^i)' :pXy>$Zpi1 \> stream xWyTS׺?TQ[bV`[jX)8Ds+C(ABXDTQubjk[z_@vx%|~oχc$t*yʷ2y?Nÿꛏ$=#yƟ߯1mzhnEVANZ2Y~2nT*۰aYt /7Fy$1xdȇQ2E/<}+ L"*@Ӭo`۩Pt2t±FW~L&Ry :AΖYgj!$v _5,_Y=Ob ɵ:/?_"B+(o\ p| ta5(:1}! }[k-8p`|(gm2,OykX$gvPI^iȥ)p/8k1[A5mљ KQia~su z^8=>@gQYZ@I4Ȥ,1ZPUelj~AJC%(SZSaF]Ip~J}/G-ONRyh{kN`6BKĐB8Ya/^B5p=\/_{#QEGd@OO*N#7\O}= :a)cQ89L#/plמqAcaʤ-/3Ƣɫc3si`Hޣa4z`ѱ•gL J"Rg6U0jRؖޛ}q3ش]I2huj43UZ $UU^Tw՝v#-|Ţ5k wf3¶Ԙ`FZUS>ےOeQnvώ Cy[ &1#Fϩdvvl8 b2[Xpd%A. * .-,+>7w2jҚ%eBfza@~Ua0ih#S9.J'~p.Y"+OMʨ;?QkQRIزq[S:,^Jv;˗_b"eXc yݾJ!9M5'/ dhGNO:5 o@#}B(!K1 O{f+>NPӁjȡa=G|+~4j@V5ҷCkZh0T2v@_t(bu慮iHĈBÊc\LќQ-I}pXONG P.4'^ A@L@4 )Qj bC) hLHR %?`Gp4D^7v fWP/Dֺ|V溝U{o{d0s켯= :74 AAh, Շ^}vmẰhZX[Dn mg:}v:N^l@w/I Ľ׌{A+=``f0CxcIϳ/ƛo*nl@;e7-(x'XYaVt'ٍM.Bcwg#g~Cȳa=t|i v/XCC87<)0非LxN.HBܐh#>n|np~`!v;/MʽPGs5$@p~G!Y MO2p:F_\0/H_ ?Ck:3BRrqL\&  !+E>$ ߺz`/W -%_|p Xz_ yX9_6F{x79yj''=E ף% S1iym_ b yE,7I~s~KmS_%? LG}l5 *+.. +2kuVl7 G6]w :ܾr:ԍ&uQJiyٹ/\|ѕX5\j@Uq͠Yޣ4q5c̢1^h Ϊ/?M|vOQpWkƕeNVߦ1LRj6NleCi3Ξ`ucEZ]SPxn91ntRt=OA۱3|w+T8 ygaG`f6$dl*l1@usK+vcCv?*.*؉`O܅=(V71wrں` V;LwTE~$jojwt%g#79xӮ'|z@=On_ɂ=1/X6c&{Ww)ݺlS?s޷7~t+܇!D&pXzP=5CnWevx }tE%4ң1Ӑ` 5Ҡt΂u0@ Gj*K[w}s1>΍K$3kbzߟܾ0yG/ڟ?'ًp LBƃv呇uE!^g(8Y2:^T蓸=ml5hUƺbeSn_ |"2u#xzLdLԦT1[<i Bە:79}c^fM߱b[XԤX@t}-*mX+҂|̳" HD׻s`hİ۰}7Eӯa"w[|?@}s+$eZzȣfS9}o(u*g'Ν| nyvM$2ke&k;7py|F$#q 4tYgkj}ͧ}4zIhXtZV/-lo W>ZsGmhet:@c)4=*xĎ~>Pc)NT8_@cȅ^oɨp <% 9Bn&!R33Xwpl=y .b[e-SV J@ؠ1,*kMGw}^Ӆ)н5,.ce<-D {ur\A8|[tSy$sի%=~?̘xM7)qYp[v]ȂzQͦm>A3h,:NY%kkjI+]Κ$ш3B [{nA誸9.Z]ٍBrlZ9y .e.zTio<?2O Hendstream endobj 131 0 obj << /Filter /FlateDecode /Length 6579 >> stream x]nqϧ8XalZ `(/&H^*/R]}8"vpl֩鮮W=3ܨEo}yzv,.o~8P/z}K ӃdrfʻgY%bJy pyKN0uq~?#T)%z!T#HM YȔt\RO{"tQtOIm F;DK%l?_&ߞRyg><";)>;<.A첨1y/WT*ߐ$"h}2$W sN):Ue=l}PЮmPL?x:Dv:: y: ;bqP tt::Qvآ#WGaӎo0gc= ?YhjTß{2> ん"'N/N{wy{y{y{y&owO4GΤJfZhx!䯅 6~{˗P1R,,$ /O0q[)L$yE!S  ΖġSX<)z~j.fɠ4,tY͂"jx=g-ų"Ԁv*>:epVW%$WB8ǒY[-N Ш BX"xLZTib wQjS)AFԂM!hAqB`.T+!ԮU_BԒBTT>ծA`Qqnj(aquBIP (rW`X!D> W)ZvWnZ9:E_+%\(QsG_7J>mc(CI;M}Iʛm]fK)iakl*--#.d d-dFխk6fϰ٘bv"z[A뛍O13m)&,&]SXL̦ز)F-&JwQnk޲M{~RB4A8Rv)ލ4OVj@?Rj!(gknctDbtidɬ.gh*Pg+ _s |Z:Q6Pz5%@b2t.$VؚR@2ONW!O!s1J>VOơCb%: kupF?g;=q Ʌ]=G Oylx{u#"z>Qs戬WG;"t'?>gs>gs>gs>gG~PC nOZF໷3UTtiY`FE{gzdn#fa$yZ'SStΥь}z(f(=\et(ܐNJ%3*81?DUlf)<}(n68t) h:V\错+ȕ\2qƂQ&.4(#0S[2q .1GԇjX+WmH6C[3h@+|nϯ59f`QٍCf(%ˉ{8F9E͙@@074R跤W@N!4,eIl <_t *Mo~g4i^cHM:P,]r0jfĀRk7߄N/&(QahM0=36mL!E Y #ks10ba.#0\FvG$> F0rD}(r?]Z{d[az~ƇC./M(b|:0`I3E,PdpJֻ2 ~ewPd΀p2^(k >{{y!D4lK/7hN6z&O%hՉ^zpb m/'92(pb)Nf\苗x_~N( C2HTkW@ku]{5[N)jOaJOAQddQ7!} QR_l&OYThBn#8+Z1{Z-"a,E6c'׉uu'oEm]WNQ3OUC겲/U&8]2;|E*kiJ tXu[cCpNI[%ծ=FEڜ(/Nwreꑅ: \NPґ2P2 kW=hJZ?sXEx/+Xxu- {U6K+qygm5ƕj/޹ۏl^`7j WD؝j.ǕJ ;7p(-Hā"6)q@r݉kS\gnAbayXW<5B3pS"돡uv`f[1L=ʻ+8#p`ygvQNƜ9q8p&laC.nfƆ>[>[>[>[egm5amfjϳ'ǯOȢJݼ{Lw 8nt86l}z;Zy~9CҗO+#1MݾVCgC3>3>3eGVN,ɕÞt{!][N, "}GH0ED  % "ks10@ba."(\EvG$> Evϊ"<4x x" QXA?0B~xc;?sko~-E,PhMY+1taamP0oBy[}/MCn~83ok/-ա›b۷x#?7A}O9o7ۓ#q2n4Lm0B& G޴w=*Rv{V, `4_'9P 'hfhxY:\Om+=ǭĮL7L6@}L씲E-`FCH:L!:*|u9Ebp :ذMeǵoöR&hx8Mʤ-4M}TmDsmGVP *qJW[Y>'nDk: ƞ< eHGk;/a{S"i~?Oupq{ڞ(:FUӉpSiF&hMkD3gByznVY&VcSMN9NEL5zsǟq`p1ǒΒ WdI ҃)K4z΄>'-4-'/!y#-Y \ikT3%"new6|HT@3]_Xa~,u*Q`+!)1,,ܨv^_w`V]3Zr[M![8*tU?iY?K4Ҟ ! C,PRǁJh ڱ׻Y1Y;STM:&:9}Ca9nXWo;)֍X0Uc@A0KóE]*@PiB7;t {. NH`.Dλk!K!Kj-y wjV`CxHQdd'k@+z4Ø lhw.AMg8iN' *^3%@e$Z4h2q⎹~Sf2Q[>;UL SZSR4|͐oH54)5MO;.=7aȏ48R _=Z:U[mLqV6ݫ3&}\ynY}{~Z+D +:kD+YE>]J'oVnUXÿ]^r,>;vPφ ;  rň֋Nޮ4xwe*\!;7|OGT`Xwm{\bW+ Ԛ_}5^SVax!>3*toAv~Xq'i-Q-x9?Y:o{KU>jyD~Bs"|ek_CH_/Nendstream endobj 132 0 obj << /Filter /FlateDecode /Length 3167 >> stream x[mo~b^c RcmN@S(g]+T! 8zv8~8oDžd:t }B0#dzg^g;3%!^fM2+ft!5i_hVhU'l35SVym1ń5B&XSZ V"[tjsDŽ4˓"lrDεS%gZ?'<`-MpAk!P_.WJ%dTAś,pH#X-Ez2H(Ւ7^s |E@k^ɿ[ <6H)^O˕ɫ |WջZm^W7yuȫM\8C^ջe^m^ӼϐyWj=Cc.v3LZ{|? BeG^"c+-ՈBc~K^e^]2pUK3jhuW_˼Te}uqG4v3LT cw68]F'I&~-L|n.bR1'1=C*: ԇJf>-6+&yI~?BzVs<ӼјuT>f.׳sλx˓ŷ+ɩRN42;)gRwMnPAW*:dG{-8Ao]k)p-SǛ[ Xf 4L8~FK-iB(piCܑ ~!P6BNehAUx2+I/ïWsSiÕtG@-κ 9z@_qqZ8O%)m} v'0#H=$`7XJOЈ| 渢/6x(@lsQv'tH JSɒS<C0YuI(ɕ,*@DP#¡~҇ߍibbE(A >xUU1 >8dOJwQ4K ;R9>Qbas5~W\PX .R oU!Eg+l*#.QeR)8@àxX&QwLM#oKܘx.6Q̬I[q8G [;43!SN)Q!E+0YuHm<PU[T;@jXZm8 -c,%\֤]lJ3h&&R!{&.e!uKG@ofǿ[$(}GW֝0yJoӛ_WX~Wzb_~endstream endobj 133 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 3667 >> stream xUW X1dfJp ED@6Qe Vl]v]ZZkTpQ*(Ri }Qi]n޻{ߗ/9sΜ{ДQ~ɩYK Wca88B+ڝ+E&dbT6|;3hf,IYei3;rq8ra;əKRcHVf-Q,\i̴ LNY"EQ.J~Y+s&&%G,\,U1g)^v]\,)ʊ j5M/Y 5l9W5|)?ʁ T D9S BRa;5B FPrJSi@ʌQ(2,(r% RFdjw>}T}nH%%6 4Z_$=%&Yt6'?JFkxѕr~TDXRarXMeظI9|VhDhZ+b m/k`A;l'l_^M &`ڽ(K#vi+:Ix%8 bp?MJGޜ{K#0ǬYdRērp Z`* xAžYjVMp1|Uk!J 1+3ہu>Xd(rYR(Y q{2&;:Ep҈w5tNtB@ rȁllr*30^ XЩxЛН: ̀g8R yFBTi>)<'TYڨ2{HBy_eٵn枱2y뷭6-\6דEdME Ԭ7ăFQcLͽuZ,[ SBl'' AV^A6Z4$&vGk~wpc)gය7G?)!O?(Q.7>8+HcD7'AFǍC_^ {ME~`*Kf9`g9Yqn~qX`vԥͿ lYDzYv\a;ޒ]; 7ݺ q)k <1mV ;[5ZVb;be,\ߓކuz+69En?{G9s'K3F-EObB>_j R9lۍ/vp`|;H{*:6Z8*OUlB1*{HJgUlõ1~=WFܓ i1 vkJuMք-O8߯.0XV ^c GiWed-I]u,ₓOV_/)< t?@oRj" H>*ʰG@I*>`aWI0" XDLRGP~eyr!y;iu6AQ#?;|Om:דPq!:ȠÝ0=sLU. YJL;oNf4?!)靧{`ГvQ.J^1N:棢]lgvG!\hq/QwWV-yqm,q?f<`oi6`ZL> )?.%Ei9'6z^ꪽ׆gAㅞ259xP't8[a{H<R:ǫjAoR$#pzq(& QB; r 蠣KB.MtPي/܄GqAaFَs ce 4dY-m m;{ 󊂆a38ϸ-ͫʨAХ\:-X.*^m 5_)?_y.P]\cAUO 7?J筤w:wѱUܽhC5#V'؞,eCu:шo`ZK'[C@Z,.plKV0YY2JƁCB=Y4 rfXp.I6rSѕoedoF7jA'$:q?66 SXQrj0 +־oMN. zƁ ižU؈x}W[ (") BEBz - VCF"Uy=,m\; .rq-#F-"86ǎCTwB~d& ba9}L6iWUӬhqqW}'9/rCJwYo - \\V,Ȟ?~`:zq̶; QU^G1̵Br=уm3 -W;x}hQ)gZ33Ȁ{^Rj@jȃn>L\Py Ľ :+%z̽i={KWxxLBbp'IK8G޾*>D~f ̓?%?O+9y7 S050xfIWo]t14;ɓBh}G+ʙf!rθ|ݻvn ;w@]oҟkendstream endobj 134 0 obj << /Filter /FlateDecode /Length 160 >> stream x]O10 T&. 2D! }I.|D/J`H_#49ua:X8 d z&۪=4Rl_l&Sendstream endobj 135 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1935 >> stream xEU PWf mbt{&AD1^\%*5:# +x̠pGl̮ՠ]cdkS3mHYz])EӴ/pS\~v': "pϖNEa)M'%%g">>ʗ-]#ߨդEj]F ;"4Lu:]%Kzb6uqRJB>N+߮IդkI:yZ[<%ity`R&%)iU}{/d(Vj&!5JMS,5z"L)5KO3|Jx^Nj;;wJB$n|68ui!D,mB1/d1{sKCG_xKȧmi\ B1ҿ+ pݱR6%nrA..]L+zP Ո4te@ YhRmakdcj>OW =O6QhC".."~"ľ]6|GJ%%3 _ý>n7W8;]HNoŕ6gG 5W)!W_{/t9nCa`LdVqYO92(tĭ,q㇉҆V(GpS6'Ҷ.`pQ-fY#B8$34>~QoU*ԩ38Yen[C/Ɯ̖r@ *s9c}!1w6No͹o5<`ba^{ [vDP2|m127|P|{8 *oXSLGd́]B+9sl#s Ly^] dD._c|zGQV(3nL?Ag-#؞}}ʶx{OK8Lp.E&Q5(|A^a⮐^2Dwyp:\^E|3?dmB_^?G]*?hjKNI%yyP|и/7ѽF?9XE1x\N3-JULbĢ`|0q>~0DȤ[$:/[2#cC|[v/_Q$+xC^I_|._"#rms#g~D 8vymyqxJ C,"vv(}ӄ}Cx`/3! p<`<."34?!VUSn0ِ-#WpL]Yi] g k%DY)u{*]ιN,uuendstream endobj 136 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 4677 >> stream xX XSg>1s"=NtEUw-. [$_&Q6 j[;c;V;mmVm̟`[g 'D"{ﵛxωG1]ʴ18u<Θ儛0b(*NWW'O;M>{L/PUDp`|m:<4*PMP7G'-Wc͘R,Mbaj>B{ RAJ"}횾GP)ٞVNhԟսna7R,P%BcQ]\rL-0h!-j3I@IȇϴA)ZДd92D#xQ޲4.cq.?:yᭊ$J:Qc m t͡v/%.Wd^ɾWCF׉Vj`Pf+ʐ"j  'w i@ !l1JO_dfgi(<[Pu:*HvC`nuT >HƍJ\UdOF~wxC~fb W|hdЩnle `Wx' -$/:ER5ae,|8;Gn+X>]FfIP\澚)q>M+FMQ#, |[7!ˈ/wȰ7nEdB,L1ڮcuקΙzOQ7>) U1~~I9$X[Db|eY62CI#q OB4˲4dp/U>bR̘fȭ d@IzV#d%,8$7Cw0~nK/u7jbK+j.f^ZUZ lb6mt&[G2 ҼȆdCHlG_x5ao!qM >aS}IXbw>.Q*+Z)4_E_|~/,j hgVA`x[Ro8 Ǜs.Ɇ%8d!>c# y&bL]kRE| v~{͘B>_RJz߃~6aUu]tÚY^Љq"-A1uuj}C4(lGGVAע(|?um8Yiu(?PbMW CӸB)(r/Ʒ{ c:WWBdr3HR!߭bl{QW=F8%`Ђ.Wz/: +rr͏- ,#'?gTQ*(+(}\' 2 4UV LI04d-yN ~{/ lSgPuMv6f 7Kÿ7Ϊ]ZِZWP+iĹe{XfnqH {QJ zT)vtsET4GT)MLK@'8`h~Zhm,=x(U,ZLMn. ʛ#Buqz+ dx` n qV&ߤKjm4[A8?8,|m R*j--u td[l6 fn !OxJECYu#-- vl N Rnm@ Pen-oĜճ''>ce.>6-[=e]}?Ԕ_qTB!h$ڡKRRӕGjC¶hUং |:jjoj_w<,ŕwn6R'{gP M^F^tuviuYqnFH*'΄8RA]R*z8_V{:u*h[mX(%e֦2 EJ"ѐ͒hOh'!L:+ɩ%@7Q 4_L ) EoE xJAD_r0U渾~[>GNi A=硏34%y g|3\@p&Mo3gc|K>=+,C-_s-)#=d8|@Iܺ!S6kKKuyҌ<$T\\^Skm]KO-xmxAJʫ2;xnb/(w&|Id2BEx?K [תم:I BJRԊk.\kVQYwч7Z H: 含ʅ8n%8_6Tߕ_n`$20چMT||Tt&%۵ś{almvp#;xgeRmrK>&Q[Y_TPh _E/6PSLx+gقc>rŹ鳼ht @Fw !#"NW\XP,ufLS#^Ct^B2tY\8[k8<{I&tڼ<ƬPtZzηM"P2]z:L8۝zrMҐ%sQ)M us[@ʥ_s?9Ѣ iO #_*< ^rmp}zGkTUek(*V1Zu-;Lx'/Xu.C.jp{QFXF.ϝ`qJ/}:es7>kQ?Q]ouރgoS=p!γl k`-ؐH$K2T`Mn/IWxnȅ7*3hvކ-ܣJ6L) Ǣzj˭!4b83щZ f?Ļ^T/()k> O@<JX/ L ;tշUtYjcc҃g~<88GϹGD;w*emϴZK7*Jr ru4dv%e.PGK~qln Wl@=rȩgVtlT(vxʹ=˓^=zϻvi6>>#?)C%QcB]eETZF^%i7)Sj wI*endstream endobj 137 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 329 >> stream xcd`ab`dddw 641H3a!O/nn߷}O=J19(3=DA#YS\GR17(391O7$#57QOL-Tа())///K-/JQ(,PJ-N-*KMQp+QKMU8OB9)槤1000103012)ٽgf|;?̿ܥ;~3>,}} |g|Waq6;7<_s/wt\7Xp9|zaendstream endobj 138 0 obj << /Filter /FlateDecode /Length 5461 >> stream x\Yo$q~'#t)ck`mH +֌a`p8=y-9??/lf71b1Ȉ/Wb+AO/~WgwGj1qH;r/˕N..rQ.^Eg;#(Ae5 cc~l>k=~ |U-LNŸd /AH.Sg*f"#*^*.)z(+[ыP,ʮ^]q8%FFcZx; a^Uv勪/p3e侦>7qWSSg|3o%bm@{~lݸ~_LJ(2^oJIWWGE@RRޛź/"2.ne2KLbK¯lK TXsg"ȕsgo2@S)xbbA(t' F؆VKȄHqk9 ]Jh0&,"|B!Y=킴O`JQ/ R0dOF( ZRKg]6)Oʃp y=Bʤy-QPQIJGDŋ159x(0OOĤ=b,%4QG77lR,VZ}M1i Md \Y3z<8Q>8pz}yұZX6RoQCJ匋4b \FU( !D3J43Ve^$R" '%2YT1`3DYnsvwOK%j!4R?Q.<|f R"ÌBTA%=D#q9TyxA6d/ oN<8 )"@Gx!R2EJ`>fM\6H3(!e_CKЙbRReOy^Ҕ&-R) 1etZ1QSA!1cS!DAOD3 KHT((QL%2$IeL\nKT:rI.!S\K*% jZI+˂*)OH[=mY,kR'PJ Ft$m D)w9zV8 6(; Nj>UZqy,tI"[׌bVƧ"-WEtZG^cԌn]*0,jk˱cQbe4U|Y*.T ;v}:;@NCp"hH|OBZg4JzXEs#3G5$[?8 KyTh-PbB!STB٣t6"Jf]^"Te("oi*ltu#(.o# ^AEQ! лOɮ%;rwPDW%!(L^\ ՝A'>Nl^<%1KbQRc)!MZ)JeZDpf;"J"`ɹr::KRb.%-5Wi9SˣZmN3s~9C?g_~Z#h FFG{)<ԣ͡&g;fיԟΔ"SyOO:³.$}iF\+w:~5xyn^W畋Ίד K]9c}CއAT?Tpx{.?7+䬊AT_S|s:?"JYZ." n}[xc E.mK4j9D(S'5B(׷4"DW0LX F@vק4%hʯ/ۂ] R Q.x:J&:g4A+-=MnW$r ;.Ҙ`mİ~[%ݸvY%=+YLoda3^&%@w7E$ـL-q+D7\ vVTb51tޗ5tISh閛ua"G 6m3MtE:Fқ1'76i 0 &JNi1@89|>צz[Ok3$LJ~(!*Ò6iL#yiNB1s(inL1P$o?\KXp[ct@&ͧ~݆'G!C6@]__+KE)ӽ:NՁO'dق:FctjomšQU9[.Cx"Bk W&I$Y"*Q'|6 sߛ~,0+HɈ5$UcXWGf 'D0zm wI3zLh<J1pD痰.~I>l55\I*LIE]T)mc"E Ieg);.W"d?S)33Q `~NvBzq( OPkf~br|r0 F9&_3@CU?{:w4kKVHU@ k8Ç)hB}>)à]g(NSO!dୄo;G/:#(48@KBSy iQ)gEQPK}}1R:G2$ &:2Z\w; f!XcI ԣuK@ 7i$ޛNxc Y bl-Bhlw#槷)f n- t;0~+u[Sެ@Oz FD]@8.{>,y]^*1m =mF99U]UVE3A:"H:afβ:/$aP"V5;xavZQm?ۮYȄu:W:Kd(w:wDej|݈N89:I=1Ϊ_N߰gvwNdwSqTo@1L}$nxp]'>ѿѿq\ _7|m3Sp4|;'(fِ73)!ٔ`bD-1NmQA/cWM/Lzh/f17>7w#^M依]L9k/ľnW' fH/Aoo{;Am}SO߽﫟Uxa~45 D珓qĮg}o;8]3΀z2~kA;oJ2WloER~؉9׫^tmgi*l4v6j M8x>[Q){\4lyºiE ,w51.X"qyv8 ym'Dk>(A]ﺚWT.-uKٰ xflےZ Ճj+{7vL$vSv;u6Yho\8us! nT^9.m$\!$߀&9gz εz隬Ev:_v lKqbq`Cј I٘`zz7yB'SYS˾(;,Х'f)qY,=06r~SeXcj*KոOK*[pro53Gq]'?XH N(xzU[a2\Ywrgc]A"QY&LUȃI BCg6˝k֡8;sVR*;kLi%w{Pgؓw)ӵaʣ>G}vOzxѶ-=0&CJs첧~K`=͢RמsS'۴$bKHq;_]ʜz#tIڏOMOXN !9Hx; :L;&U>})Pp|0Lz6>l#)v~̢HsN'cDaǀ/aSќj:ɓkBej?v ~XB{rK%U&ӓHT Ս6ءBܻ}?{Umzg [_mN*}=[O㫙\̀SpH:q'99(vrTkWoNrYJzv2̬; $|З}1:@6,#}Yu>H:jח$4)ݣ5|) +7m(z,&)ǠdЃ$lz8qq9>> stream xuV Pgqd%!b=*D[ШD uT .Adƀ"AKpPFnh$ĘTPJjf7r__5Sw{{[ ( v Oөx0%}?mt'%8 o|ީmc0n(+'ń 34 .p׼PZansXcu,*v^9g_*Rqڬm~т2,Ye=":׳d]Qc1*Fm#1#MW/(#ydl%S[-zkl]g9)I[] ůxt`ɢ;DVon Abp%[))":kӻ[k voaX9;:kxR(o=--bζW oUx#$E`" eM[9}{ԍnB܄l8\,dD`!4?޶ f(ےg9S[5VHmx"&KL%cyON/ ]?:<6j\*LZ4m9\(Ke}JI^ QTt~x3ۊ%9U OW~ԉp:n.׀$ߗ8 '*OM)rfnf@GDe-C]C܈uʣ%E|Q)[d'>hU$6iؓox {6'd2 G,DI}FO:mOnණ,w*)"W+,{lKXckx&pAUV*nVp_1G[xVgm9X+ՙ YT cҪAI @j.o'Κ\߆ XeZLvIQbXcğA!ӑtI$,1Q ]qWqhδ?ZQ ʰ)[\:M8FmI&cj~W?pD>ח‹d7u ykV~'~#KvVٸc{޾dydyw.S> * '65)h MR 8W(ֶH6Mtؕ:⢡N)ј*/Ӷ;7J}&1L/>))M,1~_Zc ]m4XV75\js}ifk!`Φ&nU("wG_Eb|-2@OSa Kvx΄+W2k mn; .uQP ﺪ1'ɽ{fX3O$|GEcp8vs6x5٘m̀,.$TeŁ)^!0к❼ewPYPAT1Q}nrtgSxjΊxXw/C-z߾{&ʚs 0 ׳{ w![yl%^bi mvI.1gjp]d<Б_ /"Ί;sc C6 cNʨFƪhbh[Xa;{z4諓TT q-x"S[{Nrx}{=\nqDU-m _:Š)aB@FZC;wP[}яYOt2q"FOAo2wϞ^ؖ~T, [=e&@^+mv8zLXW5&ۏ /+ vO7KEFP}o!ڽ ڨ%ӱq]Q y{ćo:A C9z(1_\(ΒxQ>%_iF8!, %hT'|_LD-fyt=!!kx% ).dAA)c U$d;x8-k$SNSIﴶE՝|!;4BGx!)Gʆvv^[J$I`!0B¸$yШiCu|a`ڳHg@) ?Zo\ܭ=3׽`^Uw'c6iY/D\'eAF)۔n2R%@ЦB”Iۏ%=^U\{mo~7 o> stream xTkPT>s4/I.aZTƭ#`,beEYwwkTKpA"wJ,&f8SNی3h&:Mt:}ID;3ߙy}}TMӬNi\=alJ$D1}=07w>I14ms JsKj+ڵ6$&YA7ڴz+d5T<`c||qqqꌳ;?}eӾirEmn3ZMpq _ZP29z{a(Jm8.ciɒoT*Nb_Q&j7JP[mT–RQV6{o"">c ̌ת1շl\IfBb"\7;Ώەj_gHw39r3G`=}ޫQ/Hhtu"bBQJ8\[ }Sq)#]u_DO /lgp!rYq0 \nl9u.@֐p2a R2!;% O vX!7q`l*xĖ۠Nyj ܉,O=C=OSH4fܽZNNȻHE5X$i{[s;諾ctP~Βo FC CN=ˁ]v^GFbׅ3sj`@.0p,Ʈ3ܽ$C6:;A,,$X,VgmfpF GŲFIuݽ5#KӲglGebio] Nri͕րZO7ׅТ(=ɝG5@ICcz#\o|kO)v໡KQreU۱@¤vޗ%D"Kp& r orSѭO8eHʳe6Q-Up:s0a~5dgށ3^I?fBcȋdY&e^7 j~DS1ݵ=yS> stream xwCMR8'vz-   ZWTmqCopyright (c) 1997, 2009 American Mathematical Society (), with Reserved Font Name CMR8.CMR8Computer Modern3vťbڽQ"DfVT@htkpozc,MI%ڧϋ1# :Q?f{ku؎׃$Ena}{mltNx~}vCoa  7 כ Uendstream endobj 142 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 851 >> stream xeoluOlĨw/\F$u)`au=7V=\ktvGT@#!Ad/7&c4j]9b,/7-3GfvCzX[7~ݎ|VqxD1tt3/vv0|l;K>\>f#^V0^B`޽p ucw3aa!6xu3oyyc68n6cU h1l kkޅ`_!|jy2d6oQ78Mdd^Z(.*YJIe?vd􌮞+jB}Ͽ圃㧆iI="y/\A9~r2^8uӵ+ߑ?_vt &čC0XwdSρhQ,F6uԾ7^M\5mi ψ01&s ҫp.ʟ7gTLlxug$"6pЭ׎sst x} _SfYLN7E{veeuqR-y̶K{8ƍIA*]mEq1FvMͩP*Y%Iԙ8mrYS HOyIK [lz}G:N([/\8T>P, T:( 2;uq(B3IUgA 㿭5{-TP竡ZZQ6C6K* 88no~rRb<.ȔϿD0+ e Oo5]Z[}G-Պa+endstream endobj 143 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 327 >> stream xcd`ab`dddu 21H3a!#kc7s7G ~"Ș[_PYQ`hii`d``ZXX('gT*hdX뗗%i(gd(((%*"s JKR|SR Yt8۽ǒ3~t:{} 9w>$:ut=6t.Աk/Tvkp=ol-b>sd[yxTqQendstream endobj 144 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 444 >> stream xNCMMI7'&M   %]ZWnsCopyright (c) 1997, 2009 American Mathematical Society (), with Reserved Font Name CMMI7.CMMI7Computer ModernnOV7Ӎ~ru֋ŌXxO`{aozVj~}t;`bcv>V8SXcmPb`tl~tuf}R~ƞupxfppbuwCp`  7 Lendstream endobj 145 0 obj << /Filter /FlateDecode /Length 4431 >> stream xrd7}GLL>9KPTH%allcg٢ֵf>ZݭVϷid /o&p8Iaћ&?#|@ppUv߁R 8+R kb4 hI` k,~4]pl%I|5%~XP&oqmNsja, xrb÷G"M˄HJ1!g]޺X4ɂPuܔյ7'^3!N)rQWca>:ȕ@U|V Wy&6imADdX˪,88́`[8>-UyzG0]*HQ;"9Z<>ֈ-Fۛ"9k"g5NIPI[Ϝuƿk#, L$#.0zj]s%J[8Lx TwvNbn}AyUnj2@fro؆iNfQEvCtF$V)Y6*m VxhIZy8v^'D'r4b (@=6~`U0;hIXx5ժH&X^8ĄD ZR0^ q+ɜ`3MO/ lAPxLy 789+.X1U7]&Xy{/jrHAy``FKG ̾T*[ M2MԞe2] Jc^ߡpG]"PXl}p`BsV\&ɵrF&Em'E 0X1 j)p}wxY,]Dl$d-.ׁrE .pIjŕC)E&cgnj%a da19bÿz^vcIeQ<_v})*Xjҡf.T4:,h@O9@-9UEH@wx؁UXhuKh s@̮Dgwy`cE;9?[yK`'>qbO¡Bܮ!n c{: $|؞_Ū/Px/&uG-;ڄi 1f GI XOJ C>Q*"BVNQ*:M9B\gb-x@49DXEni XJ$Wf4F4"Y.up s_UX:~I)q% L7jRԫT$ ]Js4Hr&aKb ce3x<9tWS-<[:/UV*${怩v6Qw4MZMRrDAL,$@9MtqgeXyY雼؁6qŘ#-MT[5IɁT9ԀCkGpJ4>nWMM4Vm[)9E#ܶ4v) HRuȱ,G˄tZ JH al|>[YNKN:`-PAi Y"+0v)MÑd O)HHB \bLJ%G4I Tx)N'ށz\Ka joNzeZ̬LrѤ@G3ٍhzXHsڹT]u\b]:qU5UiKͨ&:/4PW+=9.Z iv!̇*|ϕU}(_oNS6KD\%]NF/pd]L@Wԏ FC 8N(Pњ,4$f_ >@@V!҂jhČJxXiŤ*UӾxʷ6i,ص U~R!/(SRMa rdcM_KQJt-˕]배4hõ6.H3F[3uQCD Nk鱙ve#bd.6rRl>5><(~nM2#+͒89凞 &MzeqPmSN6~Ha,p.8BglZ*:Ѷ-YK9N Tm:uRr֝-Nxѩ[/n<É^5vR+t%` \7ջ [q<|ɂ?,MN5wGYك9W,Xw"\E9T*  .:tt \wX6UѯZUm0۟JK;7V\C_o/wwIrw ,TXƾB`RьL edƀ/˜q5GGgJUV2bgpG B/|.41(U5:wLuwbb% XP܄1]Z EG%I׫GLp}jdu}2sEݜ}et|=7%Gwiw IXb%3GTARvHPAx I͛WT uQK0onb| SaLlyTkMExQ҆o&27sWu۳.oowm8Qߧ(Zm;.\.9'-w>䥕}x{!E#` D_o c\} $~;{.-OxgA1`mOtR/VD훐nLs,/!s p)2`qnFjLhQKӜ|Ɨر:_ r_ߒTvMU~x~~-e&;2PΧk%[ZtA <[C(l.=ZHQ0j\+7E\H=MAb;n;_} Sx%lUVnO?rM剔DDviJ)qUrMGtJ1X>Otgx,ئv2{Y;ɦ%A5R9RPie뚬1]U.@XT(߼,:FLqxnFCwO {Io0Pz!C\BN9$r)+3;{,|w.e{8-7RlڇI؞z-TxO\X$Y9H(:cw;>.ju[[ܕ8lZ :n ŚkCġ.a4NG jf6Ub{y9EYJ;sozͼ븣g_{N~|=Wzqr6dGjv]>@w_l}z_endstream endobj 146 0 obj << /Filter /FlateDecode /Length 8526 >> stream x]eQ'<C  QH!a'̌o~Uvs]]b__sG壻᳽Q]qHȳ_U%`hԀ[yTA ŘEr,5%_겦bQ]454֗\2A/>C"zwBl{aiQw_쾸֐{zm 1??s2&dSq^~ecJyZ\Dh!kɃk)%`b&k;2c G)jZ@׿|:>Oӣ7#~)h<9yz:>O9߯A k~&OW'㞟lNj<=髱׿N&çO>gt+Aqψ!"ƵSiOb<}Nםɷ_ vZ/Nxl~t3y<.W"W{}&~:+gϗ|x1P~qB3A9wOO^dF`ûF~(:{X6N1]u˿^^3ӥ!LlrG9JH']|w~}ū<鳧o|ї|^\"Z@"m7yXm&+Hdh m!$ђ+T"Zh۔h$a_qLyE6 &y[ KDWg#Y :3k]UEV5ivL(A#D!чpQ3BNDd#D!ɞ,`0FxErĺ4N[ϑSE`+y b`3B4֪h.C%ڹTwih,DDXcD˾  X2Cb7,xD#<{cgjO0@2XcsՃ7G^(PD޲MFs# JD妲cc+hm Kf"E0jĔ粬?oP г ɔË0x&*d4dڱ-C㰦 dg:(!8&ҒHyغBndI`t'/700>omkh,a|YI6 {6iDc`@*[«Vλ^ K[8$GyW~ Dd3R zKdDG<"\v ØsLēx>1ʆq4jBE?b7+BcVdhie*n/V  GlI3Ns3HNj,(͈S+K=.mڀh,aF&,ei[41HmNF"(@8YoS;Y X')a` hX_y0? iF+D#3S.\h^Yqd+$V5-[]}+}XM"D 1V$,' i} (YZ7H|+GAJ|̟7(M0iΤJ Hh,84:b%n#?hFj 䒛r4!gTB4VsDFK|wM6tV€HLb]4GZ%Uf" U5+p 8#\%YIKpaɝ;P%\ kp+Dc._"LT<=\ Ix@DֺJpDȒ'ι,ԜlSPm[X GHbu"X]= 82)q$j\$vsp,Bj(pN?J D\aÖV pXr$vtҐ#CGq+iZ MjRّ.ԮBlaQPduۊ 5~ dH#ʼnH$ wh{ɓ#{&H˵:q'Dc5>J8 GT(rP:x8bp pWMiʶy7$&*jD2C3,G}ԼʁQHG#Tb:IXpx)8~ JӍ-IC {%>ډfm ;Pj@qLQZ&3scZ!bj%kEmeA䬄(I|b,|%.M[̒Etmˀ9Od`8SAFdži@4zf |̈ % ڙՂ, yZ(T~/b*8STڀd1U"),HwY; } 29)B/$0[?Lpn耖/0r*?p{yl|FV0'D : oX3|ÄCE'y=&>Fe[{҅ۓ#&l\uld: !s9=5ZD~Kֺd$r໦9- ijE5XZ-q!dH{ٸ-ʆo$N&Bo@7x%.:.4ɷD/ߡ=5o+/i |as DDNu{6~E*mI嗱:ҙuZ#6rzHfb+((Gh9/@2̪OwWUX}.8m%q>R#𱶊r{qYߣ=ƒrG\:\5k?lBnxMdј<FݿG n0!Kf oNx:K+}&DclF+頸FA K6)jRbvV$w1Z+:̷SG?X KI%Q^(R?5Jk\n)'6YPIŽa'ud'D*#ۊTpBnlwkqܻ P(Bޤx#ɍ^ObD'DcLkGچ ^O%c($!4G뛸V3pth, tn@gV9@4 kMF?]}@ndMQG#g_ROU`h, F#ڋ4=|4!7X2SuR;{*Z0XN+{#f(Q I `^?h,)FϵZQ#9+R2z I%CRZUt,dh$Y,oYZa)'ڼ jzV%pl/ XPVzu|Dce3NzWXӄ`!ܴ`pA߭# TػdE^kn, bd4J|bW'.FP(JqnCsazڨgJVAЙut Eٯ:\d?xٕDnJAԬw(Va "I_l]Qմlfr:^\2 7X+-8z3ZhQ< #ÿ'4 gf?D!5[xges]ׄ($A/",\JLh$0lfե8pTt=T|PҬGAGZ DcHlغr`1+Y[w2 KNhn@Fqro4cY 霥4Do D!51*Zw3D plo@(o\YOr\dkbXzZ*zb8a@4H=^6@"9?(XZZ\G~)5\ K `Q?tڄ`TFQϕ|D .H b=Dr&jf/=QB420Xښ$U>zPZ*C-zƳ@gWZ# GlGl+Dc5{d$bd ٣Z Kҽ~;f!(B/Iw T/d Oqvw J{\(-T>,(^Ol$`^?($fF#u#ʞg';=u4N'r=r@$F?Öv($iiP^FW$I\=(ca[Ix4Q0Y=;{wh$Zh}zZQPv [FG`Vf6^ͨN8L8F!揽?DoDc5js(9;xovNX2LZvߍ YPD3& 3[x k῏`hdf'֤0ٽK| P(:;tȨ V0#^?#o$H ftF?j.$+"^ OҒspt sZl+g'ɀh$#ٮ4|Kȭ܀h,%Q?$h5_i$MV'Dc7;4k';fp:: [:x: ʱ]||['-Fw5@IX1lkeiO`e-ʝޞF>¡O:vu qs{[+0y_+_? #^Ȅ-w= ](};nUBŮn8ܾn=O\nnv_7^wuynq׶nmvuEf6v+L $`viubW;qMk0=p${yLaSܴ' \ ];|; pSCG͚M  vgC'E`:L庩#:X[ᮎ3B`h]@CήlI.5 k]:~ז=w#]#4:5-f:0cM-2Bnj ?j |4`pSKд.[ZQ薴&Y'O?]`#O_#%B7jSOcZ(ySK53%]Z gZO=Ӽ!!n!2ܱlWG4}d:?#.$#{tKoߧ#L-X"Y tcoY+ 07AJĂHTZ|-9_04W_2+ ?khD Њܲ"|$D|sySq f#YYZ4nw}]z:x䔯{3} h1&HD#t o4v!ө'_ 1;џW%7=-toc7ggJ(hYSLaEo+aImwO&AMԯΖ퍉i.C:endstream endobj 147 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 277 >> stream xcd`ab`dddsH3a!=;kc7s7mBcG``fd+nr/,L(QHT04Q020TpM-LNSM,HM,rr3SK*4l2JJ s4u3K2RSRSJsS%E )Ey V L,*?:o;+J-*Zjђr| 8O6{B߉Wq]b1ùd"\Zendstream endobj 148 0 obj << /Filter /FlateDecode /Length 7936 >> stream x][oq~g#C&dd׈8Jql +QeJž䏦9$WZccX֩K]n]ngW'qNuhݥ͒$u^'ONr2Kf_gI(ٔ% 6%x%_|V݂T}X%1TtyAeiPS&6(鮏I^İHwgW|Jbu~Wm=}qRmv`<~Madoӧ81F@OqzFv.iO u-t CIŕ1&ggQ˹&-qRVOW>nL_K^-_XMwOIYߙK&Ye]7KcnVru-WrsV^U~.WrlظqQh|rn4qy)V$23>lsr+z"WO%Tӓ} iٓi-ɤ3w7ܽ9!3)%5ΑQz1% damg\)~)v2䍎z )~cKPb Q uvu] VJ$AxAd⹯d2wVcFU|m䆮A-lfڲ'aڠxSpJ /z`JY eML nYS'bR)eC|%վb}9+<(9r#&PIy,mPh+SJp⦰!wkH,W[5!<u;L}y9{06%M"@4i{Lӱh"cVIIݤ`2k:XV,HiRϵ/lUE7@ƳN>Bᮆ߄踫[!a$´|4]5?>BiwazS$5L[H4 rg<#,"I+tTs2$&&@6ӤtCarY_ %uBv@aR m+!=B4Ek2]Ѷ;J\sw@(`v@vmEw@w]+#4c<Ƙ;bymQ||OG!ÎCe.:}u:>QF ~z6#̰H5a/$(H*>(AUwyd͢y")qjPрz5À((ƐP"J^JL<ƅJ(pAxv+B0ŽG? ;/3A)r D eQ`1%.n`pex_)vbjׄcpQB0=#SJ])Z$Pw DeBBN JX mqO6Dpe qG?f݌5Yw6H4ZK oȌ(M"l)X%;ıu-M[bEI!|ң[9|)]#dZm 4͊sQ6( I^ۜMbS]n{ v X,KCv݈(dE+g5-JRnג9WSRóto1znNF"*Z֝4CIB6ZS |HJu6iZ~e놤l@J7#mjH BVH^LFnݦ4@PnK_Qg vQj76ꊧjCI1McF[.Ct&t; 4J<0[4@}Ba.=MNbXe?bĸ%0'"qPJL-*<11?cc !bUk,B1xԫ sj²߽ NAZpvCʤUX S~&92VHE+׈aH#Kc+7d+eU8{wf6B\b?G*&Wh)5l4,nRyHaiSi8THYBwHܛOw&M#<@0jPi>dm03KV3UdEBR#LL.ٙabVS`RRƔC]Z+hno 3kf,nQ}xq3   PH()8,' ~GbzNO77T)^X7`IխgC_g~r)| w<)wMB xt+5M|F~SSܟ|KS22~oq5b `؅RL`o'3slDK[lV@a,(sG$/Elں[4yrKE=фj~-)yH-2P6J}ks+$ ,cAfl1~(>b <$Gl14PRlw*; {Y ֍? v%'VݕKj" C&3ǗI\>)dUHzx~ -Lii$hfpG-,ᮚL8>pe5Qr 2JN[ [o֦}\rɵ*d&m_egA&4ȴƩBn.[Ҽ(RDD1(;( Ѽ^TdTP}5Q4qJAh tDu:Бwhf*z ӃŰP3a=x kmxDkz#mDdc~ҏQ1J?F(3Jd8ˋ]>嬟*c:˞`i|*: ?DZ9O?Gh]XrKEP>O{@ppmi|btۨ!,UQU ƃר TKKJ¥j%5cRE)Oc,Uc}UJyp˓蔻 MPw7TW-N'u`%<U5lW[B)T딇ՌoPPb\I N1q-~p p@»: d DAK!Hҹ4t K#Hҹ4Hq}E>5 *l Ƚw`-s.ӏ9,~dk_t " vtXEqW8谋j: %uѡ: Vk瓌8eu;.u_> XktC_E &ZDi:=7Z[ޠD5J^{9)j Jq*f`T6HnD)nޠe%ծOx<.%Tw8fj&WQ;IfR]Ҳ倘P,䔙TN4䴚HLT7ȹ9џwbr>OLE91?199 (V)rB1n9sAN"gő|8crR[N[+Ҏ%@#01 `ɼ6)MM<"AO@hB`X%P-8J #CKK7A?bĒ%Kx(^#1S@ʈH%߽$8=Gj=/ǎaL^e`U5Z(-B׬WYQ.Y Y ԬKլKj¥jև3R\T[(5k}^3U'KP.8DKx[X;K8T7~`OʪԫLpLT2vJcԳ汪Z~SrSqӫ&'){myq BQEc >W5C>Kp |.3R\p D}q?q qfI%.xNo5r|Na:*|`V"ެu og.*a"S dw`s3o}{Barٿ/t.dF s1/N!Һ}-(1LjWJw[Q9)oِbؿ ؏?^Brߏd7cVc[93oIk3ijZbGN2J_\`+-~^5fsHg7ّM Z5ݠTh+IIoN`j!?8| y6W mδPqHuxLD@2 6XҦzo"LU!ձ%YO?+_4* 5n M.J3fh8߂x_iZ% SX`։fqVͶ.;XY5iy~/aNY+XF+D=v7WW@n3nL ^ J)+^T)R9jfv;)t)pd/GKκ9} UC\kaE A+uN)W$$vd Yt45]$e}Y^g)ɏ^)wLWn_3FsBHnWdn1PoرH6U!;b#WeAEfsۥM\~͍DK̪Ӎ|I W'O[Y7>2r闛 _7R ʋBk+[-6:;UZ>m\/*Wk (WVv̗]_x\\_sr #.yW :nYpdB,m4D!x=OAW;.A&$5XwNkDӄ,3!5A **R_bGbu&6g%Lb0+X <},itſ*%Sedz|r4G/.'X!DD:9Q%qgR4x4OaV8ߏFẢbX3ZV^UP&g)m=_/SQSBkf`~Otm\/OP6"ߨdU;kXbO&` gj4Nn{߬Ӿ828iCH)bM <W& o>xυyWfwEgBϹ[/+thzBl.<5Ƽ?R(CrœK&K7\NUp0!uq Т/}ϑͱrHru(#p! w Mj˭ݸfͻ?lF˫{>E vkVMMMV&MRSe#'ڲo~=!y9?oOy#zq{EbFcQH4z E '^ * xy)z#7buX D1*G !(T*=x)l&A.zav3Er9gs5wLƥ^}9P98QV=Xoj!a"A/kk֮JϦEIulm!*/qgn[ZKSfnLKaD^PC Q~2ή)ieʨ.븰>%8z#y5k]]-AGtϪ<,'oh*й[Dp$Ql%XN-B=p6)WUlaC~#3m9f9&4{SVZ,oJCj>P !+pTN SׯQs}S ИHKRJ.4TY(~9ٶ4>s=LK[B'fu='WL7ZeTs,}Tl  8>]f xSBɷ ]>l.fǶ8@m* ˁYd|y %;9 yX+n5()>Ñ~Pqzay v! 7T~6Mgyٯ0B] @nMz攉B$&YDeBV\Ͻ2Ħ ) {tmd][vPm=υz`x?C2-Dݢ*m~"~aGFz6XK㭽+mu@Md3:`~x$bĺ#!`le|BI{ ߾4~R|5F_Ac^K8^YncÕ#cE\fx} -rElfqs.,YeK^UގM ¬p@~UCGYOv@́ '#? JiS*5aZp^fUCJ-UY#xg4kiY:m:mlZ|u2^ۗ#E_L_Dz0gI܉Z/rK/ DXlNViCZ`CP 9M {^[ ðe1hw; r3t#.8=V^_>N7Vv2F_^YDOefQw o,h6jxJZ2b3dֶsk9ӹ%`D\+:` wiŦ{:J.rBt{?ƍ|=Wyk'}m39(<^ *0s9iE_'LV_TMފGsl`L쳖=E;Nl*n<167<xJeKendstream endobj 149 0 obj << /Filter /FlateDecode /Length 5465 >> stream x\koǑN쏸pߏ 'FDZw)%Ec{)` RMwuթS5s;ڝ^\߽۟;qkO')g1ٵIqiMI5yMr fZ"))VJiN0Ǩ1_faUeQڦRU6bi*uF$ lf'9î5{9lkp,._||ǯ>-n5N1m 1g1!~M-bj1叿1%ys/0YRRSX|Zʋ`ʙwquewfZJ|yzVUNWru#W|usj ˅\յ\\偫_Xu˻C\aWo}o/kz&WKï]:-vjZrzc}1xk iJ7󡮶E.2D|ynej&l& HIM)SpkLOm շj2 j\'I K*t@PK$hLVA5xR$$$ V$xr1KC95ĺX\M[Y 2MR%ΐ;!yQ}y n KƉ5hwO N\8jl)(}@<%M[sH.-V]v7 "Y? 1D$ Dg耈 kW4BjEq.D&(lgqLYC<`WLɂB< tIFl U5, ݃~(c`^7!},2+^GHZ9ŵ;Ru ,^ؠǤP@-z C%RF}&4p{; 0`v&#Ld7,40L5墳$W:86\Z=}̓dUkNu:9wiAL*15 D_5MKKUd' #QJ$XIν:̽TjSm~O6jz>Jlݫk2遧wzI819Ga \:=nkpS,@k 類pa+ÝJIikHIڼg#w2dzx쥏0`,0Lzf]}<-s cܠr}~uzu'WW]\WEFYCZE%մǦ] 6JQ鴿7*2ML.(QgzcDNOP؜\ԅf:YkNRa&pq{vG)qDeޚWY;vT.i~ě}~3gCV.#'ᨻJ!ѩ~@ mr}h\Z:ه$PR>tf%Ck?y·-T^t#*6΢}a2?&3rcLyʽ>-f|Fs_+D63cF?$ҳy6~_}*gu…$A`!ȴcϑuI,16$D 8/S;A֨NdkgivՌG8Q=P HT4F|sg:O K ) _Bi_!._:EJڧN55dU$UXP"alŀChtz֑UD F::D"'鑿V-`$&j_hUU EH!( I`IA$ IۑjTd#v,Cq8΁ǁuN>ӾqKcY8?#-Βs8Tt9K`/4\(HZ5ic!nz4LzrHEH:3aҽ,dt$S$t:+q:m̹L{LsUͯ:Mt 9;Ht` A3փ'OȌ0a5 Ȅ(2MK0ld,y#[fY5+ȺY]GfW`zTSU~OU*?UGU~ wd+0} { ?=ٹ~Ңܦ+Z-wEKwף𳆟~w Э{L[G_cPMTwTŃ=I9|~B%vؕ~? S1X$*hJݤhIJu.J3EGR]ThT_ztl#?bS!=.?tN#IV+JWD~cI;Gc%6w>:K7<)BSMP5#X+wL`3ϯ.u޶۲HV~EhrsJ1r1YSO?ޜ>;亼ӳԀ"clG9rPtzK^q-8c,∓/43AZ U|Vڸvk گ6zL51/ݑ10zQ=lbtHMx/]L#LNƻ޿uL.:Ő*6h5!XY\~8rKZ2! ZU1XDC 5M{g:kMH I6Pvy~/q`9 V #=\7 Jbr ԄsLJ/'!h1q +4Z7b"˧q{ąHYE[r~6^+mS_T3GIM74"Q6Vk~Oʀ8o;ђ-iL~?Hz_Y܋,n`| V ,*^q^=R .ػ-yצx@~ێFz46?klGlm9q:;VOnÉ:0 vAB ^gmFRیVI`jעO:Vx;,!{!K퍖 L犍߉?-bb-11]oCjSvat_0NLI{1+dڸvmz6fu'q0dlrHUWTZŖI{r&^^aۤa :ʉ7s{k%/whEkY;Glu)(]mW]~;dh_ΚHU)cEm7q5u_%-0j#Dw*~BUtn=kx V> [^\]aojObC&6ˣL/(UPP|˼>2 4;W}#9YΗtr4Ds]ɔ9JXfxHLSûIVw+N ̣WsKl29{}7||2E#qu/9L7\vH`KNԥH@wem8?E]3qPX˜:|x[KYEu38t wU`h+Oɭ^I|[EqeO'ɤ.endstream endobj 150 0 obj << /Filter /FlateDecode /Length 9255 >> stream x}[s%Ǒ;O+p&z~YrH\r%ǫJg0y0??nY} 3>']/N-z_w'𵶻W7'fqyIzzIa$f$ oO9IQ/1] N-S$˛dWH.⒘{g%flbTR`BB%$j էk2ɿhVZ%v^u&5hGWq;ks':t={q3TET-NqFLC|kcy/ğ3kii}̒IgM~Za% [DT8'`)k~ɢ*J*TlPjxO2\ABk.SёՋZ: okEX;ZpȘa̐АaXbNšC _%k5mH>~xFK{Z–|rvWzD4أfY#):+=y2S~O)S?e_q~}O"RthhM{}q5Z}g.;UhO>{qZipg[zq,m0=j\hOII8)!0T6 wic^ MR6?w%'LrQ>Nt|1:6E.QEfwQ^ 3ZޝUA\^+rH%J׈]!2 @ CND@`(kBĔPF5 O8+ْTY)P0ݘB 0 QbTD! *FbJ`D#7R%0FXP&G,L\:%EDxdINI)@YH.lbJ*G 1 ` Ő+&%2ê rbJuK'+(ɸq'Ur1ѺˬIlMJ`! %,gh&V _"J4x8QH+R^0u2 3%OT4& /?7B-{(pbP,"(uD)fIa -J-id2d 4W" ^yPc4@*Ð (ts*AP,W-T4fÒDmj|հAP>ɉsKI_"TbaQb,"YR5vCRʥc(0Y0 3(E-O1N1UE.MG&pAZ 5ׁki@nݒ;w߽V=t뉦eOFw[2ZzXik#x\`S^~Oy)/?姼kˏUb厴j 07[B`z:ȩ)vd)$5{Ac3VT_BcT\WWWWW/f8:";4>R؇A#θshRTut4#O!Pލwt]s3uHmnT{=CNʅEp%;WRPSDI=o?=ót&88#hR<ʲ\4rV۝WL\rNpU6fO$SL\u=Ki=@_Q1Y3f!_japPL$D73lq&F2`uF #梊D[1kVKAd^H:nǟ\wߝ_*bC.sb*8<b89)^$SH@RXL !AA'R [f)'͙bq?Z.2:P\-4sxxAI剙QaaX#)x,70$Bt:j<5X.R:AuH /xJ(}tgƲH}A2]S5_WBU[ $J K-e'[HNx;Q$a"j,6Oeyr2WP$m<ڤԻG0"_%.uD& !*[G>FXJ8EODH3F))!f"$$05ֳA`J0sPa È_hy`KçZ>~r͖5|-Xyȥ-Fmqh?086 7timÔ֐3 ;Lɢ ·)W!p8Sr%S2\\!ӹge9űPׄGxQ|)σkp^$ʕRRcӿB |ʛ( vbC>jFMx$.hHjQR}%.zhLWy5! J>I-@\ Ë["jjٓ`,n*$*lY* I iBmP 4(kp9u0TCaɆ G,0eY- kgxhJË[޲ۈ{كx=\c=rS~O9W'qsB|~OZe>c)Dν_2B g,gz2pP6~z~eڻIǙ?U1CA"ErK)5 '%'mHVh'3qFYݻ:LNfuJqp=!qNXN\9zjB'3 ^P񾓙F#'3 >qA'5Q(ijl\df'3;8ٹ4Nfv2s0Ǟ4v\&\jl_Qs -ZNq.wsƐ-!wƹL/hcɤ:L\qTJ (:Lq2K-E #6k9ʶcq%LY %:Ee™ۉS$ ؉,cp7{qxdR&=^cVwܭ\6KnۘvIj=ѸKD8Ǒ^yCuv.̽1l& Z&Im|8zFgh_Wˈ3F|݉<+|WL%ZDM8~Ѭm+_%kc3VI,vk}$5Yl­hGY^ee-mE[(OQ1pB#c!f.EoY|+Ѫ^wt,ᇷ='h!-nֵŖ#)h+h-JYy-ևGG6W Sp&H!Zo39 aОr0K_󹧡|Y<~E5F@;O˖E˯ةmAe9dCut%m['eo^h8J ~<;b٢Zcfܚ7c&P_E^RSFo7u}Tio[uVMouYqou?譶+ݩ^ۃݻ{qRw"{ ne؛=dKWto0h1&i2h4dm(5ֳE)h7q讁oaN -{7>r/o2-3 7nkxzp#z3eM{ۣsO)S?eL2SfG=ഞok՛zjk~ <=Lp\W/ ?*oИp!J57Wn_k3L ׫#ߍB4cr ޏ3_.ߞ_9x֠ `RcH S|^=O?䴿]^ߺ%p޼ӃPk}ch6O}5K[sI$OOIF\٥<хLJ2v~S]xk,]*Pdz Pfwwޅ\ ߹Z3.i]4v%~ ]q6yg&3ew3֖_8(]R?itŋ_P5ֵe]x머qv~L ]4|@\gI2g?2 uscuM `:vvh c7 l͔/9Ĕoʏg^1T?J)5S/dqRnm˸-uja`D*z[ HT$sΈ)?iOrؼ3UQ1)BG9n~ybkF99֭c2fw$QS F2 gijeʭ?B]T_K1ŜǴt:~Gj TN}7*M1{HL,Ɯu܄ԗei~օQeQc^8hb3_|lϞ3\tx/<C14evqIuijl6xʤ,]LHqȠ>E/9:UFӌ)v 48n(䄗Jh^'_!^.u"RuP "fiKSuΓ\Yo CHOKG)>%ꣶ*KGQ-Dk!G_x_6? 'EV H {I?[C1>=^ڜwL$Ȣ$Tj)~I&f\ގw͸<(}BtՊ^b3k*%dRu) Bn£JBxepnBcXuV1d3Pw0OV <5)GD)zOƤWæX)%-5N̟d+'!LV%-:*X?~ԌWkGVzd^ښuQ28Q3\ e%J 7el4E!?|K1-<sX4ʜ#NMe#b R` {+d dS;H2Qzv(4eP\S;wgu,Ј W7g WدW_߸_VM]ěGZ!yBKx y5L^>PA _]ֿ#Jfŏq}vw|vqʘkK:Vv !>W6>lmWahwZpe_}ׯ~uG7;_]?~]=.OƐ?_ h$_LTv%.6ڗe,@92Jrm %@&LteMϛZh]6pR/ϢjRK# XŌ%-[z2r.wQN-TdMſ"—^J`b0tcR07U5ܟ@]- 'g4&Η0AY#YQwZ+ Cit=n85ei.Ux?0ݗQAFsobqc.^}?t{[@2+}ByUW8@JۿdTRE*;Vaaw_Aar8W#@ߖc"խZ5y]Ec k8^6d彺r>Y935*vr &%͞E _k^tYX6ʈ@>Z Ζ=eëdҸ):U(>}Ӛ_A϶bZy"SҴE+^JiʰxXI,/#F,bBXm42<-ۨgk+w+ ̱\U{$HVTE:͖9lpMNv1RL/gK<uWx oG1A>)Cqq)[Flem}#. ՁFϖ^m"f&p"0+HO5Zi\9Vc~+(SR D;N~'pTd/}NJВޒ'w}Y71cΐ&޿8` ;e/u|"f]yyDs@09 !DtUL~*)lVa86m)5\|Vx\!|V,|2&W7ȐU=дŘ.Ԝo2xKT^1|ED̞ޕɬRRh21? yYɏe8(PFT%)6tp-.gi}'W.XqFIչv1V82{<c:> 7e98:?hJ-k*2n(P+S)#A7B{ZnV9.꣯H] ֹmb7e}#I8Mͬ+ЪK)inNjcb*jc'tRD,vC]mY|:|6&udy>춌]?)2WJ ƕӮ#-]zD(@KY$+mW2+iH{_F>Dba7-x8G}Vp5\2ή'enYF g=\3dS)w!D6L.Vwm{@J&h۹YrG[mk:cy1F5ߖᒊʔÝVhYW$|>{JAۡ5?z%J )GY梞]Vendstream endobj 151 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 896 >> stream x]lU.3c]G$F?HWYK".jYchKeY,C[-XP]wB(j& BL>{삀/&779r9EQW~-&Pdzޣq#,|cѼr½vZ^U5MUagz7xUZg |_+M\K7ɑ2'zKQe?jhHk h !=34 CBzMSߠUd-a%9L=9w6ƭȎ3-63ԧu6DWs0[EFJZtf/2W?=Sn.WT#QmǘU{*WtK7^Jendstream endobj 152 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1912 >> stream xUP~C {}8cNޝ|ĉm LW&@G7GuHp([RHJ*AZ !Qz>AH!)DŽ*H*T AX"RQ JU.ZS(U+JCĂ%8;ݣ=[C ^@DddjTLݹsf8X݄X*iF};)-ަhIM`énj!Pp+jBPG4 KyPOsX]iHx-[b8 *'vC¨`4Ei-m@fY| ̺fܶ/0 COJ&Jˤ xa(EG=|JImxϵ/+uQ&W@fzl=i3pp.WDGsA,+Y(}8x1q>sF^iyxKoA'0^ᠵfyy~?Zâ>^q jZ^a23Lߞ ȀxJ; i>Zni0Q?n4{+vfѦsyB]*I1$#ovb];k}scRV5ʶ7LڌVTj2+5l}#mNRlY~fho"<<xs+P5ƊF=Y<Nv]TuG{& U\^v`Vq0M*ܹe򖒖fg 4C4ҸVȖ=MmD#-,mRAϰ)hO \tQ! v~ s 瘝 ۟uo3Ih=P f3qXѷݓ5x;\br|+0 P7/mI/H$ʞx$2F0'A~fۥpPCKYYYAɕ}x*p'F(f"@]>#-}z?F `@[ϝ.<CigU 륬 't{FH/,D"NO e> /W [ 1 3 1 ] /Info 3 0 R /Root 2 0 R /Size 154 /ID [<99a7c06b0064116ca694ba27662d06c2>] >> stream xcb&F~0 $8JRqf? ׼Lr| [ ?D2 )TK@& R/Y $ׁ D -۲Ds&,kEfH`|)6lJ!X-- w endstream endobj startxref 125796 %%EOF HSAUR3/inst/doc/Ch_density_estimation.pdf0000644000176200001440000101161513302741104017761 0ustar liggesusers%PDF-1.5 % 1 0 obj << /Type /ObjStm /Length 14835 /N 71 /First 576 >> stream 2 0 3 67 4 364 5 511 6 728 7 768 8 895 9 1049 10 1100 11 1452 12 1750 13 1904 14 2112 15 2440 16 2701 17 2718 18 2760 19 2895 20 2912 21 3062 22 3271 23 3425 24 3614 25 4131 26 4637 27 4789 28 4995 29 5478 30 6032 31 6218 32 6474 33 6796 34 7079 35 7518 36 7862 37 8274 38 8652 39 8721 40 8959 41 9184 42 9201 43 9315 44 9469 45 9608 46 9814 47 10274 48 10779 49 10796 50 10898 51 11052 52 11413 53 11678 54 11695 55 11797 56 11951 57 12253 58 12526 59 12543 60 12622 61 12772 62 12971 63 13155 64 13338 65 13517 66 13596 67 13678 68 13764 69 13844 70 13921 71 14009 72 14087 << /Metadata 73 0 R /Outlines 6 0 R /Pages 4 0 R /Type /Catalog >> << /Author (Torsten Hothorn and Brian S. Everitt) /CreationDate (D:20180528104803+02'00') /Creator (LaTeX with hyperref package) /Keywords () /ModDate (D:20180528104803+02'00') /Producer (GPL Ghostscript 9.18) /Subject (Book) /Title (A Handbook of Statistical Analyses Using R \(3rd Edition\)) >> << /Count 15 /Kids [ 8 0 R 18 0 R 5 0 R 21 0 R 22 0 R 43 0 R 50 0 R 55 0 R 61 0 R 115 0 R 121 0 R 125 0 R 130 0 R 134 0 R 23 0 R ] /Type /Pages >> << /Annots [ 20 0 R 78 0 R 79 0 R 80 0 R 81 0 R 82 0 R 83 0 R ] /Contents 145 0 R /MediaBox [ 0 0 595.28 841.89 ] /Parent 4 0 R /Resources << /ExtGState 100 0 R /Font 101 0 R /ProcSet [ /PDF /Text ] >> /Type /Page >> << /Count 1 /First 7 0 R /Last 7 0 R >> << /Count -3 /Dest [ 5 0 R /XYZ 143.731 699.155 null ] /First 75 0 R /Last 77 0 R /Parent 6 0 R /Title (Density Estimation) >> << /Contents 146 0 R /MediaBox [ 0 0 595.28 841.89 ] /Parent 4 0 R /Resources << /ExtGState 16 0 R /Font 17 0 R /ProcSet [ /PDF /Text ] >> /Type /Page >> << /BM /Normal /OPM 1 /TK true /Type /ExtGState >> << /BaseFont /GTQNZO+CMBX12 /Encoding 66 0 R /FirstChar 51 /FontDescriptor 11 0 R /LastChar 124 /Subtype /Type1 /Type /Font /Widths [ 562 0 0 0 0 0 0 312 0 0 0 0 0 0 849 799 812 862 738 0 884 879 0 0 0 0 0 0 0 0 0 0 625 0 864 0 0 0 0 0 0 0 0 0 0 0 546 625 500 625 513 343 562 625 312 0 593 312 937 625 562 625 0 459 443 437 625 0 0 0 593 0 0 1125 ] >> << /Ascent 700 /CapHeight 700 /CharSet (/A/B/C/D/E/G/H/S/U/a/b/c/colon/d/e/emdash/f/g/h/i/k/l/m/n/o/p/r/s/t/three/u/y) /Descent -201 /Flags 4 /FontBBox [ 0 -201 1124 700 ] /FontFile3 147 0 R /FontName /GTQNZO+CMBX12 /ItalicAngle 0 /MissingWidth 500 /StemV 168 /Type /FontDescriptor /XHeight 456 >> << /BaseFont /YEYXXM+CMSSBX10 /Encoding /WinAnsiEncoding /FirstChar 82 /FontDescriptor 13 0 R /LastChar 82 /Subtype /Type1 /Type /Font /Widths [ 702 ] >> << /Ascent 694 /CapHeight 694 /CharSet (/R) /Descent 0 /Flags 65568 /FontBBox [ 0 0 653 694 ] /FontFile3 148 0 R /FontName /YEYXXM+CMSSBX10 /ItalicAngle 0 /MissingWidth 500 /StemV 97 /Type /FontDescriptor >> << /BaseFont /PPKCGK+CMR12 /Encoding /WinAnsiEncoding /FirstChar 46 /FontDescriptor 15 0 R /LastChar 118 /Subtype /Type1 /Type /Font /Widths [ 271 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 693 0 0 666 0 0 734 0 0 0 0 0 0 0 0 0 0 543 707 0 0 0 0 0 0 0 0 0 0 0 0 489 0 0 543 435 0 0 543 271 0 0 0 0 543 489 0 0 380 386 380 0 516 ] >> << /Ascent 704 /CapHeight 704 /CharSet (/B/E/H/S/T/a/d/e/h/i/n/o/period/r/s/t/v) /Descent -21 /Flags 131104 /FontBBox [ 0 -21 692 704 ] /FontFile3 149 0 R /FontName /PPKCGK+CMR12 /ItalicAngle 0 /MissingWidth 500 /StemV 103 /Type /FontDescriptor /XHeight 446 >> << /R13 9 0 R >> << /R14 10 0 R /R16 12 0 R /R18 14 0 R >> << /Contents 150 0 R /MediaBox [ 0 0 595.28 841.89 ] /Parent 4 0 R /Resources << /ExtGState 19 0 R /ProcSet [ /PDF ] >> /Type /Page >> << /R13 9 0 R >> << /Border [ 0 0 1 ] /C [ 1 0 0 ] /Dest [ 21 0 R /XYZ 255.678 235.046 null ] /Rect [ 175.721 519.887 190.436 530.727 ] /Subtype /Link /Type /Annot >> << /Contents 151 0 R /MediaBox [ 0 0 595.28 841.89 ] /Parent 4 0 R /Resources << /ColorSpace 103 0 R /ExtGState 104 0 R /Font 106 0 R /ProcSet [ /PDF /ImageC /ImageI /Text ] /XObject 105 0 R >> /Type /Page >> << /Contents 152 0 R /MediaBox [ 0 0 595.28 841.89 ] /Parent 4 0 R /Resources << /ExtGState 41 0 R /Font 42 0 R /ProcSet [ /PDF /Text ] >> /Type /Page >> << /Annots [ 62 0 R 63 0 R 64 0 R ] /Contents 153 0 R /MediaBox [ 0 0 595.28 841.89 ] /Parent 4 0 R /Resources << /ExtGState 138 0 R /Font 139 0 R /ProcSet [ /PDF /Text ] >> /Type /Page >> << /BaseFont /QJDJEM+CMR10 /Encoding 72 0 R /FirstChar 11 /FontDescriptor 25 0 R /LastChar 123 /Subtype /Type1 /Type /Font /Widths [ 583 555 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 500 0 0 0 777 277 388 388 0 0 277 333 277 500 500 500 500 500 500 500 500 500 500 500 277 277 0 777 0 0 0 750 708 722 763 680 652 784 750 361 513 777 625 916 750 777 680 0 736 555 722 750 0 1027 0 750 0 0 500 0 500 0 277 500 555 444 555 444 305 500 555 277 305 527 277 833 555 500 555 527 391 394 388 555 527 722 527 527 444 500 ] >> << /Ascent 750 /CapHeight 750 /CharSet (/A/B/C/D/E/F/G/H/I/J/K/L/M/N/O/P/R/S/T/U/W/Y/a/ampersand/b/c/circumflex/colon/comma/d/e/eight/endash/equal/f/ff/fi/five/four/g/h/hyphen/i/j/k/l/m/n/nine/o/one/p/parenleft/parenright/period/q/quotedblleft/quotedblright/quoteleft/quoteright/r/s/semicolon/seven/six/slash/t/three/two/u/v/w/x/y/z/zero) /Descent -250 /Flags 4 /FontBBox [ -40 -250 1009 750 ] /FontFile3 154 0 R /FontName /QJDJEM+CMR10 /ItalicAngle 0 /MissingWidth 500 /StemV 151 /Type /FontDescriptor >> << /BaseFont /YYMHHU+CMSS10 /Encoding /WinAnsiEncoding /FirstChar 82 /FontDescriptor 27 0 R /LastChar 82 /Subtype /Type1 /Type /Font /Widths [ 645 ] >> << /Ascent 694 /CapHeight 694 /CharSet (/R) /Descent 0 /Flags 65568 /FontBBox [ 0 0 617 694 ] /FontFile3 155 0 R /FontName /YYMHHU+CMSS10 /ItalicAngle 0 /MissingWidth 500 /StemV 92 /Type /FontDescriptor >> << /BaseFont /VODZKV+CMTT10 /Encoding /WinAnsiEncoding /FirstChar 34 /FontDescriptor 29 0 R /LastChar 126 /Subtype /Type1 /Type /Font /Widths [ 525 0 525 0 0 0 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 0 525 525 525 0 525 525 525 0 0 525 525 525 525 525 525 525 525 0 0 525 525 525 525 525 0 0 525 525 525 525 0 525 0 525 0 525 0 525 525 0 0 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 0 525 525 ] >> << /Ascent 694 /AvgWidth 525 /CapHeight 623 /CharSet (/A/B/C/D/E/F/G/H/K/L/M/N/O/R/S/T/U/W/Y/a/asciicircum/asciitilde/asterisk/b/braceleft/braceright/bracketleft/bracketright/c/colon/comma/d/dollar/e/eight/equal/f/five/four/g/greater/h/hyphen/i/j/k/l/less/m/n/nine/o/one/p/parenleft/parenright/period/plus/q/quotedbl/r/s/six/slash/t/three/two/u/v/w/x/y/z/zero) /Descent -229 /Flags 33 /FontBBox [ -4 -229 537 694 ] /FontFile3 156 0 R /FontName /VODZKV+CMTT10 /ItalicAngle 0 /MaxWidth 525 /MissingWidth 525 /StemV 80 /Type /FontDescriptor /XHeight 442 >> << /BaseFont /FOKUXK+CMR5 /Encoding /WinAnsiEncoding /FirstChar 48 /FontDescriptor 31 0 R /LastChar 57 /Subtype /Type1 /Type /Font /Widths [ 680 680 680 680 680 680 680 680 680 680 ] >> << /Ascent 677 /CapHeight 677 /CharSet (/eight/five/four/nine/one/seven/six/three/two/zero) /Descent -22 /Flags 65568 /FontBBox [ 0 -22 635 677 ] /FontFile3 157 0 R /FontName /FOKUXK+CMR5 /ItalicAngle 0 /MissingWidth 500 /StemV 95 /Type /FontDescriptor >> << /BaseFont /SSFBGE+CMBX9 /Encoding /WinAnsiEncoding /FirstChar 46 /FontDescriptor 33 0 R /LastChar 117 /Subtype /Type1 /Type /Font /Widths [ 328 0 0 591 591 591 591 591 591 591 591 0 0 0 0 0 0 0 0 0 0 0 0 0 743 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 542 0 591 0 328 0 0 0 0 0 0 0 0 488 0 0 657 ] >> << /Ascent 695 /CapHeight 680 /CharSet (/F/e/eight/five/four/g/i/one/period/r/seven/six/three/two/u) /Descent -201 /Flags 131104 /FontBBox [ 0 -201 694 695 ] /FontFile3 158 0 R /FontName /SSFBGE+CMBX9 /ItalicAngle 0 /MissingWidth 500 /StemV 104 /Type /FontDescriptor /XHeight 456 >> << /BaseFont /VENMCU+CMR9 /Encoding 69 0 R /FirstChar 12 /FontDescriptor 35 0 R /LastChar 121 /Subtype /Type1 /Type /Font /Widths [ 570 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 399 399 0 0 285 342 285 0 513 513 0 0 513 0 0 0 0 0 0 0 0 799 0 0 0 770 727 0 785 699 670 806 0 0 0 799 0 0 0 0 0 0 0 0 742 0 0 0 0 0 0 0 0 0 0 0 0 513 570 456 570 457 314 513 570 285 0 542 285 856 570 513 570 0 402 405 399 570 542 742 542 542 ] >> << /Ascent 750 /CapHeight 716 /CharSet (/A/B/D/E/F/G/K/T/a/b/c/comma/d/e/equal/f/fi/four/g/h/hyphen/i/k/l/m/n/o/one/p/parenleft/parenright/period/r/s/t/u/v/w/x/y/zero) /Descent -249 /Flags 4 /FontBBox [ 0 -249 833 750 ] /FontFile3 159 0 R /FontName /VENMCU+CMR9 /ItalicAngle 0 /MissingWidth 500 /StemV 124 /Type /FontDescriptor /XHeight 453 >> << /BaseFont /UUQNXT+Helvetica /Encoding 68 0 R /FirstChar 32 /FontDescriptor 37 0 R /LastChar 121 /Subtype /Type1 /Type /Font /Widths [ 278 0 0 0 0 0 0 0 333 333 0 0 278 584 278 0 556 556 556 556 556 556 556 556 556 556 0 0 0 584 0 0 0 0 667 0 722 0 611 0 0 0 0 667 0 0 722 0 0 0 0 0 0 0 0 944 0 0 0 0 0 0 469 0 0 556 0 500 556 556 278 556 556 222 0 0 222 833 556 556 556 556 333 500 278 556 0 722 500 500 ] >> << /Ascent 732 /CapHeight 732 /CharSet (/B/D/F/K/N/W/a/asciicircum/c/comma/d/e/eight/equal/f/five/four/g/h/i/l/m/minus/n/nine/o/one/p/parenleft/parenright/period/q/r/s/seven/six/space/t/three/two/u/w/x/y/zero) /Descent -218 /Flags 4 /FontBBox [ 0 -218 929 732 ] /FontFile3 160 0 R /FontName /UUQNXT+Helvetica /ItalicAngle 0 /MissingWidth 278 /StemV 139 /Type /FontDescriptor >> << /BaseFont /Symbol /Encoding 71 0 R /Subtype /Type1 /Type /Font >> << /BaseFont /EHQSRO+CMMI9 /Encoding 70 0 R /FirstChar 58 /FontDescriptor 40 0 R /LastChar 104 /Subtype /Type1 /Type /Font /Widths [ 285 285 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 592 ] >> << /Ascent 694 /CapHeight 694 /CharSet (/comma/h/period) /Descent -193 /Flags 131076 /FontBBox [ 0 -193 562 694 ] /FontFile3 161 0 R /FontName /EHQSRO+CMMI9 /ItalicAngle 0 /MissingWidth 500 /StemV 84 /Type /FontDescriptor >> << /R13 9 0 R >> << /R38 24 0 R /R42 26 0 R /R44 28 0 R /R64 30 0 R /R68 32 0 R /R70 34 0 R /R78 36 0 R /R80 38 0 R /R81 39 0 R >> << /Contents 162 0 R /MediaBox [ 0 0 595.28 841.89 ] /Parent 4 0 R /Resources << /ExtGState 48 0 R /Font 49 0 R /ProcSet [ /PDF /Text ] >> /Type /Page >> << /BaseFont /KJCZPW+CMSY9 /Encoding 65 0 R /FirstChar 0 /FontDescriptor 45 0 R /LastChar 0 /Subtype /Type1 /Type /Font /Widths [ 799 ] >> << /Ascent 272 /CapHeight 272 /CharSet (/minus) /Descent 0 /Flags 4 /FontBBox [ 0 0 712 272 ] /FontFile3 163 0 R /FontName /KJCZPW+CMSY9 /ItalicAngle 0 /MissingWidth 500 /StemV 106 /Type /FontDescriptor >> << /BaseFont /YSOUNB+NimbusMonL-ReguObli /Encoding 67 0 R /FirstChar 31 /FontDescriptor 47 0 R /LastChar 121 /Subtype /Type1 /Type /Font /Widths [ 600 0 0 600 0 600 600 0 0 600 600 0 0 600 0 600 0 600 600 600 600 600 600 600 600 600 600 600 0 0 600 0 0 0 600 600 600 600 600 600 0 0 600 0 0 600 600 600 600 600 0 600 600 600 600 600 0 0 0 0 600 0 600 0 0 0 600 600 600 600 600 600 600 600 600 600 0 600 600 600 600 600 600 600 600 600 600 600 600 600 600 ] >> << /Ascent 655 /AvgWidth 600 /CapHeight 577 /CharSet (/A/B/C/D/E/F/I/L/M/N/O/P/R/S/T/U/V/a/b/bracketleft/bracketright/c/colon/comma/d/dollar/e/eight/equal/f/five/four/g/h/i/j/l/m/n/nine/o/one/p/parenleft/parenright/percent/period/q/quotedbl/quotesingle/r/s/seven/six/t/three/two/u/v/w/x/y/zero) /Descent -186 /Flags 71 /FontBBox [ -13 -186 707 655 ] /FontFile3 164 0 R /FontName /YSOUNB+NimbusMonL-ReguObli /ItalicAngle -13 /MaxWidth 600 /MissingWidth 600 /StemV 151 /Type /FontDescriptor /XHeight 432 >> << /R13 9 0 R >> << /R38 24 0 R /R44 28 0 R /R68 32 0 R /R70 34 0 R /R78 36 0 R /R81 39 0 R /R88 44 0 R /R90 46 0 R >> << /Contents 165 0 R /MediaBox [ 0 0 595.28 841.89 ] /Parent 4 0 R /Resources << /ExtGState 53 0 R /Font 54 0 R /ProcSet [ /PDF /Text ] >> /Type /Page >> << /BaseFont /UFEPSE+Helvetica-Bold /Encoding /WinAnsiEncoding /FirstChar 32 /FontDescriptor 52 0 R /LastChar 117 /Subtype /Type1 /Type /Font /Widths [ 278 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 778 0 0 0 0 0 0 0 0 0 0 722 0 611 0 0 0 0 0 0 0 0 0 0 0 0 556 0 556 0 556 0 611 0 278 0 556 278 0 611 0 0 0 389 556 333 611 ] >> << /Ascent 741 /CapHeight 741 /CharSet (/G/R/T/a/c/e/g/i/k/l/n/r/s/space/t/u) /Descent -218 /Flags 32 /FontBBox [ 0 -218 711 741 ] /FontFile3 166 0 R /FontName /UFEPSE+Helvetica-Bold /ItalicAngle 0 /MissingWidth 278 /StemV 106 /Type /FontDescriptor /XHeight 549 >> << /R13 9 0 R >> << /R38 24 0 R /R42 26 0 R /R44 28 0 R /R64 30 0 R /R68 32 0 R /R70 34 0 R /R78 36 0 R /R97 51 0 R >> << /Contents 167 0 R /MediaBox [ 0 0 595.28 841.89 ] /Parent 4 0 R /Resources << /ExtGState 58 0 R /Font 59 0 R /ProcSet [ /PDF /Text ] >> /Type /Page >> << /BaseFont /VBRFRE+CMTT9 /Encoding /WinAnsiEncoding /FirstChar 49 /FontDescriptor 57 0 R /LastChar 115 /Subtype /Type1 /Type /Font /Widths [ 525 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 525 525 0 0 0 525 0 0 0 0 0 0 0 525 0 0 0 0 0 0 0 0 0 525 0 0 0 0 0 0 0 0 0 0 0 525 0 0 0 0 0 0 0 0 0 0 525 0 525 525 ] >> << /Ascent 622 /AvgWidth 525 /CapHeight 622 /CharSet (/B/C/G/O/Y/e/one/p/r/s) /Descent -222 /Flags 131105 /FontBBox [ 0 -222 505 622 ] /FontFile3 168 0 R /FontName /VBRFRE+CMTT9 /ItalicAngle 0 /MaxWidth 525 /MissingWidth 525 /StemV 75 /Type /FontDescriptor /XHeight 439 >> << /R13 9 0 R >> << /R104 56 0 R /R38 24 0 R /R44 28 0 R /R68 32 0 R /R70 34 0 R /R78 36 0 R >> << /Border [ 0 0 1 ] /C [ 0 1 0 ] /Dest [ 23 0 R /XYZ 131.776 496.913 null ] /Rect [ 394.879 212.784 449.826 224.644 ] /Subtype /Link /Type /Annot >> << /Annots [ 60 0 R 107 0 R 108 0 R 109 0 R ] /Contents 169 0 R /MediaBox [ 0 0 595.28 841.89 ] /Parent 4 0 R /Resources << /ExtGState 112 0 R /Font 113 0 R /ProcSet [ /PDF /Text ] >> /Type /Page >> << /A << /S /URI /Type /Action /URI (http://CRAN.R-project.org/package=boot) >> /Border [ 0 0 1 ] /C [ 0 1 1 ] /Rect [ 176.727 574.403 377.594 585.521 ] /Subtype /Link /Type /Annot >> << /A << /S /URI /Type /Action /URI (http://www.stat.washington.edu/mclust) >> /Border [ 0 0 1 ] /C [ 0 1 1 ] /Rect [ 235.002 469.795 430.149 480.913 ] /Subtype /Link /Type /Annot >> << /A << /S /URI /Type /Action /URI (http://www.jstatsoft.org/v11/i08/) >> /Border [ 0 0 1 ] /C [ 0 1 1 ] /Rect [ 152.697 418.986 326.964 430.104 ] /Subtype /Link /Type /Annot >> << /BaseEncoding /WinAnsiEncoding /Differences [ 0 /minus ] /Type /Encoding >> << /BaseEncoding /WinAnsiEncoding /Differences [ 124 /emdash ] /Type /Encoding >> << /BaseEncoding /WinAnsiEncoding /Differences [ 31 /quotesingle ] /Type /Encoding >> << /BaseEncoding /WinAnsiEncoding /Differences [ 45 /minus ] /Type /Encoding >> << /BaseEncoding /WinAnsiEncoding /Differences [ 12 /fi ] /Type /Encoding >> << /BaseEncoding /WinAnsiEncoding /Differences [ 58 /period /comma ] /Type /Encoding >> << /BaseEncoding /WinAnsiEncoding /Differences [ 109 /mu ] /Type /Encoding >> << /BaseEncoding /WinAnsiEncoding /Differences [ 11 /ff /fi 34 /quotedblright 39 /quoteright 92 /quotedblleft 94 /circumflex 96 /quoteleft 123 /endash ] /Type /Encoding >> endstream endobj 73 0 obj << /Subtype /XML /Type /Metadata /Length 1653 >> stream GPL Ghostscript 9.18 2018-05-28T10:48:03+02:00 2018-05-28T10:48:03+02:00 LaTeX with hyperref package A Handbook of Statistical Analyses Using R (3rd Edition)Torsten Hothorn and Brian S. EverittBook endstream endobj 74 0 obj << /Type /ObjStm /Length 11845 /N 70 /First 606 >> stream 75 0 76 97 77 213 78 314 79 464 80 612 81 762 82 911 83 1061 84 1211 85 1562 86 1850 87 2206 88 2443 89 2583 90 2789 91 2943 92 3153 93 3294 94 3501 95 3654 96 3864 97 4261 98 4612 99 4762 100 4974 101 4991 102 5153 103 6516 104 6535 105 6552 106 6571 107 6637 108 6787 109 6937 110 7087 111 7463 112 7704 113 7721 114 7826 115 7976 116 8176 117 8326 118 8476 119 8625 120 8642 121 8746 122 8902 123 8919 124 8997 125 9147 126 9331 127 9480 128 9497 129 9575 130 9726 131 9902 132 9997 133 10014 134 10142 135 10278 136 10295 137 10503 138 10742 139 10759 140 10827 141 10906 142 10983 143 11062 144 11160 << /Dest [ 5 0 R /XYZ 143.731 582.592 null ] /Next 76 0 R /Parent 7 0 R /Title (Introduction) >> << /Dest [ 5 0 R /XYZ 143.731 564.659 null ] /Next 77 0 R /Parent 7 0 R /Prev 75 0 R /Title (Density Estimation) >> << /Dest [ 5 0 R /XYZ 143.731 293.466 null ] /Parent 7 0 R /Prev 76 0 R /Title (Analysis Using R) >> << /Border [ 0 0 1 ] /C [ 1 0 0 ] /Dest [ 21 0 R /XYZ 255.678 235.046 null ] /Rect [ 285.717 507.374 300.431 519.235 ] /Subtype /Link /Type /Annot >> << /Border [ 0 0 1 ] /C [ 1 0 0 ] /Dest [ 22 0 R /XYZ 200.793 319.729 null ] /Rect [ 321.415 470.429 336.13 482.29 ] /Subtype /Link /Type /Annot >> << /Border [ 0 0 1 ] /C [ 0 1 0 ] /Dest [ 23 0 R /XYZ 131.776 419.205 null ] /Rect [ 142.735 458.474 187.885 471.067 ] /Subtype /Link /Type /Annot >> << /Border [ 0 0 1 ] /C [ 0 1 0 ] /Dest [ 23 0 R /XYZ 131.776 419.205 null ] /Rect [ 191.32 458.474 213.237 471.067 ] /Subtype /Link /Type /Annot >> << /Border [ 0 0 1 ] /C [ 1 0 0 ] /Dest [ 21 0 R /XYZ 255.678 235.046 null ] /Rect [ 384.969 362.833 399.683 374.693 ] /Subtype /Link /Type /Annot >> << /Border [ 0 0 1 ] /C [ 1 0 0 ] /Dest [ 22 0 R /XYZ 200.793 319.729 null ] /Rect [ 225.952 310.132 240.666 320.971 ] /Subtype /Link /Type /Annot >> << /BaseFont /TESCTL+CMBX10 /Encoding /WinAnsiEncoding /FirstChar 46 /FontDescriptor 85 0 R /LastChar 121 /Subtype /Type1 /Type /Font /Widths [ 319 0 0 575 575 575 0 0 0 0 575 0 0 0 0 0 0 0 0 869 0 0 881 755 0 0 0 436 0 0 0 0 0 0 0 0 0 0 0 884 0 0 0 0 0 0 0 0 0 0 0 559 0 511 638 527 0 575 0 319 0 0 319 958 638 575 0 0 473 453 447 638 0 0 0 606 ] >> << /Ascent 698 /CapHeight 698 /CharSet (/A/D/E/I/U/a/c/d/e/eight/g/i/l/m/n/o/one/period/r/s/t/three/two/u/y) /Descent -201 /Flags 34 /FontBBox [ 0 -201 935 698 ] /FontFile3 170 0 R /FontName /TESCTL+CMBX10 /ItalicAngle 0 /MissingWidth 500 /StemV 156 /Type /FontDescriptor /XHeight 455 >> << /BaseFont /TIPWGJ+CMMI10 /Encoding 143 0 R /FirstChar 22 /FontDescriptor 87 0 R /LastChar 120 /Subtype /Type1 /Type /Font /Widths [ 602 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 277 0 0 500 0 0 0 0 0 0 0 0 0 0 0 0 0 849 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 489 0 576 0 0 0 0 0 600 0 503 0 0 0 0 0 0 0 571 ] >> << /Ascent 750 /CapHeight 750 /CharSet (/K/f/h/mu/n/p/period/slash/x) /Descent -250 /Flags 4 /FontBBox [ -32 -250 889 750 ] /FontFile3 171 0 R /FontName /TIPWGJ+CMMI10 /ItalicAngle 0 /MissingWidth 500 /StemV 133 /Type /FontDescriptor >> << /BaseFont /FSIUZD+CMSY7 /Encoding 144 0 R /FirstChar 0 /FontDescriptor 89 0 R /LastChar 0 /Subtype /Type1 /Type /Font /Widths [ 892 ] >> << /Ascent 275 /CapHeight 275 /CharSet (/minus) /Descent 0 /Flags 4 /FontBBox [ 0 0 784 275 ] /FontFile3 172 0 R /FontName /FSIUZD+CMSY7 /ItalicAngle 0 /MissingWidth 500 /StemV 117 /Type /FontDescriptor >> << /BaseFont /JDRCGD+CMR7 /Encoding /WinAnsiEncoding /FirstChar 49 /FontDescriptor 91 0 R /LastChar 50 /Subtype /Type1 /Type /Font /Widths [ 569 569 ] >> << /Ascent 664 /CapHeight 664 /CharSet (/one/two) /Descent 0 /Flags 65568 /FontBBox [ 0 0 505 664 ] /FontFile3 173 0 R /FontName /JDRCGD+CMR7 /ItalicAngle 0 /MissingWidth 500 /StemV 75 /Type /FontDescriptor >> << /BaseFont /JOZLPU+CMSY10 /Encoding 142 0 R /FirstChar 0 /FontDescriptor 93 0 R /LastChar 0 /Subtype /Type1 /Type /Font /Widths [ 777 ] >> << /Ascent 270 /CapHeight 270 /CharSet (/minus) /Descent 0 /Flags 4 /FontBBox [ 0 0 694 270 ] /FontFile3 174 0 R /FontName /JOZLPU+CMSY10 /ItalicAngle 0 /MissingWidth 500 /StemV 104 /Type /FontDescriptor >> << /BaseFont /ATWULT+CMMI7 /Encoding /WinAnsiEncoding /FirstChar 105 /FontDescriptor 95 0 R /LastChar 105 /Subtype /Type1 /Type /Font /Widths [ 404 ] >> << /Ascent 663 /CapHeight 663 /CharSet (/i) /Descent -10 /Flags 131104 /FontBBox [ 0 -10 350 663 ] /FontFile3 175 0 R /FontName /ATWULT+CMMI7 /ItalicAngle 0 /MissingWidth 500 /StemV 52 /Type /FontDescriptor >> << /BaseFont /NVTBFK+CMTI10 /Encoding /WinAnsiEncoding /FirstChar 40 /FontDescriptor 97 0 R /LastChar 121 /Subtype /Type1 /Type /Font /Widths [ 408 408 0 0 0 357 306 0 0 511 0 511 0 0 0 0 511 0 306 0 0 0 0 0 0 743 703 715 755 678 652 0 0 385 525 0 627 896 0 766 678 0 729 562 0 743 0 0 0 0 0 0 0 0 0 0 0 511 460 460 511 460 306 0 511 306 0 0 255 817 562 511 511 0 421 408 332 536 0 664 0 485 ] >> << /Ascent 750 /CapHeight 716 /CharSet (/A/B/C/D/E/F/I/J/L/M/O/P/R/S/U/a/b/c/colon/d/e/eight/f/h/hyphen/i/l/m/n/o/one/p/parenleft/parenright/period/r/s/t/three/u/w/y) /Descent -250 /Flags 98 /FontBBox [ -25 -250 1002 750 ] /FontFile3 176 0 R /FontName /NVTBFK+CMTI10 /ItalicAngle -14 /MissingWidth 500 /StemV 109 /Type /FontDescriptor /XHeight 442 >> << /BaseFont /RLUNTJ+CMR8 /Encoding /WinAnsiEncoding /FirstChar 51 /FontDescriptor 99 0 R /LastChar 51 /Subtype /Type1 /Type /Font /Widths [ 531 ] >> << /Ascent 665 /CapHeight 665 /CharSet (/three) /Descent -21 /Flags 65568 /FontBBox [ 0 -21 486 665 ] /FontFile3 177 0 R /FontName /RLUNTJ+CMR8 /ItalicAngle 0 /MissingWidth 500 /StemV 72 /Type /FontDescriptor >> << /R13 9 0 R >> << /R14 10 0 R /R16 12 0 R /R38 24 0 R /R40 84 0 R /R42 26 0 R /R44 28 0 R /R46 86 0 R /R48 88 0 R /R50 90 0 R /R52 92 0 R /R54 94 0 R /R56 96 0 R /R58 98 0 R >> [ /Indexed /DeviceRGB 255 (\000\000\000\001\001\001\002\002\002\003\003\003\004\004\004\005\005\005\006\006\006\007\007\007\b\b\b\t\t\t\n\n\n\013\013\013\f\f\f\r\r\r\016\016\016\017\017\017\020\020\020\021\021\021\022\022\022\023\023\023\024\024\024\025\025\025\026\026\026\027\027\027\030\030\030\031\031\031\032\032\032\033\033\033\034\034\034\035\035\035\036\036\036\037\037\037 !!!"""###$$$%%%&&&'''\(\(\(\)\)\)***+++,,,---...///000111222333444555666777888999:::;;;<<<===>>>???@@@AAABBBCCCDDDEEEFFFGGGHHHIIIJJJKKKLLLMMMNNNOOOPPPQQQRRRSSSTTTUUUVVVWWWXXXYYYZZZ[[[\\\\\\]]]^^^___```aaabbbcccdddeeefffggghhhiiijjjkkklllmmmnnnooopppqqqrrrssstttuuuvvvwwwxxxyyyzzz{{{|||}}}~~~\177\177\177\200\200\200\201\201\201\202\202\202\203\203\203\204\204\204\205\205\205\206\206\206\207\207\207\210\210\210\211\211\211\212\212\212\213\213\213\214\214\214\215\215\215\216\216\216\217\217\217\220\220\220\221\221\221\222\222\222\223\223\223\224\224\224\225\225\225\226\226\226\227\227\227\230\230\230\231\231\231\232\232\232\233\233\233\234\234\234\235\235\235\236\236\236\237\237\237) ] << /R66 102 0 R >> << /R13 9 0 R >> << /R67 178 0 R >> << /R38 24 0 R /R44 28 0 R /R64 30 0 R /R68 32 0 R /R70 34 0 R >> << /Border [ 0 0 1 ] /C [ 0 1 0 ] /Dest [ 23 0 R /XYZ 131.776 496.913 null ] /Rect [ 454.187 212.784 476.105 224.644 ] /Subtype /Link /Type /Annot >> << /Border [ 0 0 1 ] /C [ 0 1 0 ] /Dest [ 23 0 R /XYZ 131.776 535.768 null ] /Rect [ 336.118 200.829 420.248 212.689 ] /Subtype /Link /Type /Annot >> << /Border [ 0 0 1 ] /C [ 0 1 0 ] /Dest [ 23 0 R /XYZ 131.776 535.768 null ] /Rect [ 425.287 200.829 447.205 212.689 ] /Subtype /Link /Type /Annot >> << /BaseFont /CUGUUA+CMB10 /Encoding 141 0 R /FirstChar 13 /FontDescriptor 111 0 R /LastChar 120 /Subtype /Type1 /Type /Font /Widths [ 555 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 444 0 466 0 0 0 277 0 0 277 833 0 0 0 0 0 394 390 555 0 0 527 ] >> << /Ascent 700 /CapHeight 700 /CharSet (/c/e/fl/i/l/m/s/t/u/x) /Descent -6 /Flags 131076 /FontBBox [ 0 -6 830 700 ] /FontFile3 179 0 R /FontName /CUGUUA+CMB10 /ItalicAngle 0 /MissingWidth 500 /StemV 124 /Type /FontDescriptor /XHeight 453 >> << /R13 9 0 R >> << /R104 56 0 R /R115 110 0 R /R38 24 0 R /R42 26 0 R /R44 28 0 R /R68 32 0 R /R70 34 0 R /R78 36 0 R >> << /Border [ 0 0 1 ] /C [ 0 1 0 ] /Dest [ 23 0 R /XYZ 131.776 458.059 null ] /Rect [ 244.508 536.218 273.519 548.079 ] /Subtype /Link /Type /Annot >> << /Annots [ 114 0 R 116 0 R 117 0 R 118 0 R ] /Contents 180 0 R /MediaBox [ 0 0 595.28 841.89 ] /Parent 4 0 R /Resources << /ExtGState 119 0 R /Font 120 0 R /ProcSet [ /PDF /Text ] >> /Type /Page >> << /Border [ 0 0 1 ] /C [ 0 1 0 ] /Dest [ 23 0 R /XYZ 131.776 458.059 null ] /Rect [ 278.136 536.218 300.054 548.079 ] /Subtype /Link /Type /Annot >> << /Border [ 0 0 1 ] /C [ 0 1 0 ] /Dest [ 23 0 R /XYZ 131.776 562.667 null ] /Rect [ 249.474 371.977 344.597 383.838 ] /Subtype /Link /Type /Annot >> << /Border [ 0 0 1 ] /C [ 0 1 0 ] /Dest [ 23 0 R /XYZ 131.776 562.667 null ] /Rect [ 349.37 371.977 371.287 383.838 ] /Subtype /Link /Type /Annot >> << /R13 9 0 R >> << /R115 110 0 R /R38 24 0 R /R42 26 0 R /R44 28 0 R /R46 86 0 R /R52 92 0 R /R56 96 0 R /R90 46 0 R >> << /Contents 181 0 R /MediaBox [ 0 0 595.28 841.89 ] /Parent 4 0 R /Resources << /ExtGState 122 0 R /Font 123 0 R /ProcSet [ /PDF /Text ] >> /Type /Page >> << /R13 9 0 R >> << /R38 24 0 R /R42 26 0 R /R44 28 0 R /R68 32 0 R /R70 34 0 R /R78 36 0 R >> << /Border [ 0 0 1 ] /C [ 0 1 0 ] /Dest [ 23 0 R /XYZ 131.776 601.521 null ] /Rect [ 394.029 685.705 473.624 697.566 ] /Subtype /Link /Type /Annot >> << /Annots [ 124 0 R 126 0 R ] /Contents 182 0 R /MediaBox [ 0 0 595.28 841.89 ] /Parent 4 0 R /Resources << /ExtGState 127 0 R /Font 128 0 R /ProcSet [ /PDF /Text ] >> /Type /Page >> << /Border [ 0 0 1 ] /C [ 0 1 0 ] /Dest [ 23 0 R /XYZ 131.776 601.521 null ] /Rect [ 139.148 673.75 161.066 685.611 ] /Subtype /Link /Type /Annot >> << /R13 9 0 R >> << /R38 24 0 R /R44 28 0 R /R46 86 0 R /R50 90 0 R /R56 96 0 R /R90 46 0 R >> << /Border [ 0 0 1 ] /C [ 1 0 0 ] /Dest [ 130 0 R /XYZ 200.793 437.849 null ] /Rect [ 174.137 279.756 188.851 290.406 ] /Subtype /Link /Type /Annot >> << /Annots [ 129 0 R ] /Contents 183 0 R /MediaBox [ 0 0 595.28 841.89 ] /Parent 4 0 R /Resources << /ExtGState 132 0 R /Font 133 0 R /ProcSet [ /PDF /Text ] >> /Type /Page >> << /BaseFont /ZapfDingbats /Encoding 140 0 R /Subtype /Type1 /ToUnicode 184 0 R /Type /Font >> << /R13 9 0 R >> << /R144 131 0 R /R38 24 0 R /R42 26 0 R /R44 28 0 R /R46 86 0 R /R50 90 0 R /R68 32 0 R /R70 34 0 R /R78 36 0 R /R80 38 0 R >> << /Contents 185 0 R /MediaBox [ 0 0 595.28 841.89 ] /Parent 4 0 R /Resources << /ExtGState 135 0 R /ProcSet [ /PDF ] >> /Type /Page >> << /R13 9 0 R >> << /BaseFont /AMAOYI+CMBXTI10 /Encoding /WinAnsiEncoding /FirstChar 98 /FontDescriptor 137 0 R /LastChar 117 /Subtype /Type1 /Type /Font /Widths [ 532 532 0 0 0 0 0 0 0 0 296 944 0 591 0 0 0 486 385 620 ] >> << /Ascent 695 /CapHeight 695 /CharSet (/b/c/l/m/o/s/t/u) /Descent -8 /Flags 131104 /FontBBox [ 0 -8 978 695 ] /FontFile3 186 0 R /FontName /AMAOYI+CMBXTI10 /ItalicAngle 0 /MissingWidth 500 /StemV 146 /Type /FontDescriptor /XHeight 452 >> << /R13 9 0 R >> << /R14 10 0 R /R156 136 0 R /R38 24 0 R /R44 28 0 R /R56 96 0 R >> << /BaseEncoding /WinAnsiEncoding /Differences [ 108 /a71 ] /Type /Encoding >> << /BaseEncoding /WinAnsiEncoding /Differences [ 13 /fl ] /Type /Encoding >> << /BaseEncoding /WinAnsiEncoding /Differences [ 0 /minus ] /Type /Encoding >> << /BaseEncoding /WinAnsiEncoding /Differences [ 22 /mu 58 /period 61 /slash ] /Type /Encoding >> << /BaseEncoding /WinAnsiEncoding /Differences [ 0 /minus ] /Type /Encoding >> endstream endobj 145 0 obj << /Filter /FlateDecode /Length 3914 >> stream x[YkŏCr  TLT|dz/x̽nIGjOBW#Z|H0e=2/{ӛDO_OQO6wf8az}YMxf{z)`UqFUZXE]~Z[U \9z Sid'mxעp j9!gq ڴF(} btCW c=(y؂e`XI^%qi9sJ` JE/Lqg ǴO"_a\LN iAT )8q] K7E:A" N 8ﶛb9Ș^D֍)T eѨLw_6\T\izuDO <p[y/ Ah/_`ib.!t"*Td@51Mv>%Xf`^Fzj1%eV2 u<̅J<˰8Nev' #C%˝!Ӏrs/E}ofݶ..v7Ą#˱Շ`gIyݛFHlrIMU\G݁}l$6WmVD/kIPc_K{ }3ɩĆ!Pa:)ubǤu#,Dd4o<&MqͥDۑR{ !#`8r!@H4B؄+RXO` Ĵ3cIX<}ٽR&x/B'wYx_ bB*JD :Ef%p)@E" +j 2>QaE\NH )DFPe:/ GR<*L𶋇$3 (qp2`1 +^e[>@4P]t%1v! 4Klw"2gZB: C2LWP@%OګQ!:$YƜ<)n*Y<Ȓm/GV̙:vɡƗMH i"J!,,?0t",PGsXH0)bMq~LUݐcrhP:KY$!">jס`Cg37Y(gBc@A4#]V~6)RAdFo DYr:2d`sM eurFC3 >KVc}]JWQ* J,C:G*_f()hB+ 0 P (lP Ѐ8)aAPoX`Pl|v.&ICVȢ΄0E5 ?>Lk Nr ccyǡFd% V@c(|rFHwK$V+ՁD lֲiU: X3Qopo08&S>ؘ  XsSf-RZVPf a ]](42Oʢn%J2=Zq IVR ѴŌL3e#8?NYU" \@@X M3K7@_VKP)}x{>,Bzp EvS ~l qE#|Bu\8uع*\4\)b cXsm "+.YB3=p}UA *=0 r `Z1(~B܍5eX<ǀ6SX=$%$ b%tA5Ͱ"ko7'T*HzCC Ǹ§dž ҍYğ fU?Șp<2Qj]Ї /lCv6a~< X6 YVB]dGg/.НIQ0* Z2^J4yBma7c ֡IV.(v 35np<9'C i1臖Ɂt;b ABAL5%vuf "FPz Vt~a$9uvX c{9uhԍưWw0HX 5) R4Db-h.aFranFO:Ms_mj% i|C0J`1q:w}Fp/m'܍ n|Ы<ϣu4hEb@Jd,಑la췠A4oxlki ŇfR6 k% B2MJb>|:+RTuԑ++lRJ ~]WG>^}$g,KmLT S>5aZ=kEP<;&Cbշ6@q1JP0E#_>k7q_]wRu9&%|x7X-qEho|Qָ սc:lg6mԵR sKk4vL:UA|Ɍ(6.qG36<4X zcFU|:.ڔPK8T~[ 2akzoFV#*j|sߒ%?vUpz>rf pGBnA^E޴D̉pLjqCxEY𦖛`iNm ϟTI\̕ K g¢wCk`G#ieufNZV^5is/oIkS2/ll][I݈{ݨnq݌2'ܩwMK 89)S$6xk!TOA5'`_4GXo"IQ<סNcO4Ezminί[WR7pSHes,yBP9rOA7endstream endobj 146 0 obj << /Filter /FlateDecode /Length 616 >> stream xuSMoT1 W=4؉G*UT>NTt@Hx=h2kǓg=ݻWטËKt8sE_ c{'#ȓq 52Ls2֊j2J3u9vY~T~*QtfY"vk^FάiH꺁pGCJު%,{7ٜ",v燽{^r-f~A$>L:c OFGҌ0HڊP<'ͱUWgFQj`%*jx14A#*p+|Mf~8*4NI8_SU%HEjlGS*Z ]HP&Q?ܙqF0Miul+oki׿v(.̶ǎfCw f͈cg#aפ\ iTg h- xĨ> )bD.2r c59M|Q hycDPT%nH%Pgb,<Ӌd _lM W[ݿ;-e,]*.ssbd2le( _ܧ+~s%.봾ydN&mjB:quܦ8nb֍^?#&|endstream endobj 147 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 3180 >> stream x Tgǫi*01)h( /( bĠĀ݂,-[# tƀ,ʾ,%A#2nN3:ϋ&&:x|jH$yg;utuw_ ekCI$eE[7aDa#,6*XQ =3&*&cD%HԩI1Q)rm ̕/𒯈L٦L+S#)8yz[LdJ蔔K,HKKONzs\yZLJ|cdrd&2BNHWGO7[35%2ILJ(J"a{Iɾ)kRmۣcc7/ݽ^ޡfR,jJQԻ;MG-*j5CRk(?j-I^tJGHil\dfMc:i7vnvv#/pzdjQ8dLOtGS#Al f0 k%Bŋͯս I+O'OgNMA*0 !pt94ө 20SAvxS::Gh[:&LkGd;0 & JQ( qV!~+ӣ,kϖBO.(&pX~ch>ACrrL #6%?qDzU<}iq_"NedqOTf^,yό&aJX1:%xҧOnͿCnOd?tK# pJ\V(OƉ[>x k ^^4bwʼn$'=mAPn 5;lшzީ%f=lb2 }Y arrەsF*2}̳{w8\;uǏ!#LeM HgTSM`7b|Y"Ry_&f n@NIK?ϥ:س+jK' >Qȷ =ǒ@ɼu\Aސ)<]_UjzP]P 8m єV˫Ĕl* `.܁N2rV6weD6C¤q0TL`4˒urb8 tqAmIiqyJD' \?bWU{#L.ʫŎ;6zɏ"N}R\Ye&0P)ӻk7Hr3勫LJrA_|B;Y<*7cy-S,A/J0%ױvLꉕ[ :'fىg#ٟi _VQGy>Kx|n9R(3 "NZ$9"Ye]bdYH=IA7(k { _gjhbd$=vtoHu|>7K&4( VX%$²FGUw&)-Q_w+Vſ8U'>{ ~1y; } qPp,iFWȖܷ<0f:FW* :8Vp'}"۝ jHH[vF9Y 94>r hhnƔ =Ws΂VDOn |A*D=[ yz}N!kڸ6R:+:=f$Fy$ɛ.D|V^@.?dJ)}Jh"yzU<Eѕ&馭bj 0 w=B0&M%Ҟ-$ ma<.]"i8!Vhbqҏe`NԥvH@Hfޢ"'kxk2Z?]]Yuҽ.陼4ttB ik*.*=(21 ¸) Z" á}zCfYncjXV0BȠT4鶁8"|Nx7k!M C[<9cAx08Bx]qGjZ^)be~[6́ Mo}Иw7-CΒ.;bGJes`ItT ?A'/uIDG)[,̐pp!ƯHo.v7MLHP.xIm% ZoZtby#< X'PѺMyGBKϡ;_&zdbL.RO ELF S)J +(9.w?R舒&G'3E/pendstream endobj 148 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 363 >> stream xcd`ab`ddt v04qH3a!Skc7s7˚ﷄ ~O XX_PYQ`hii`d``ZXX('gT*hdX뗗%i(gd(((%*c8)槤1000103012ԽK2>}wy߯jcws~7yŞ>~nSg>;3wߛgO^-ym̾^];ǂXπ| wt\eXp~`:endstream endobj 149 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1925 >> stream xmTg*T:hQIQc*$*TI#BawD*/{YayGXvaAPUIi̩ibFHKP$1Dju9Q$)H2<5IQlUժ Q~HWjRUŒujQf`e!XOYLjT+ *}*YQ1*b*toHmdT[* '5,eJL X"'D"P _VMxf⿤+*Z:ZAE~RRD0J7P _@Ksr=^ly>Ow Iȃh^ôD6߅"C/Wߊzv~Q NtJ$?ܥNOiȑdߜgk$_qz,c[p9ܚ8Xg-WŨ]'ZK-e%`6s@quyi/цد/^h JHQzx~H{p/-#@Cns3"Z$7I9(@D[t0xi{p)(7߄^oXO%})="m2  6зEDcMnk 1Hsq9E*?.%=+HIg\RVd4\H,8{̜g@X-57)/h;^d4@+W6-_k+ *٩qZo$BGݔ4rr~%Tw%'%>ZӔn Os{j=W`=kv{RNZpl3Q><wsh>Z_k'q=1DKSx3,qoO`31Qsw NO BOB;ohrdHׄ"p桃MxW/ G^\VT(saJ`;)m*ʿ;:TLc Iѹ}Ecݝt_s}}h8Hn4ɵe5k3MY-G<ߨ*~k*93 y3,qbe;9p\PʽUpn\+Zƫy!(~(s 0k06`jMȢ]Ǔ䞂[9=s~oC,7_]N%#nkelIN{/t<ڛ4zX=vy]7뺅 5roq8FǨ58 >nTp*-Ns!0" A|= 'tM3Ha ڪ*m"4|@UJ=} 88ڍ.&ۨh=vu~Y.)(VWhaYóYaNߟ9|}|w8endstream endobj 150 0 obj << /Filter /FlateDecode /Length 150 >> stream xU;1 {'0q_N@ -ׇE٬W.,?慅:c8]  I1 7g`tBw2SZJffBPUR=uw$֓TS>HԖ!56w/RCendstream endobj 151 0 obj << /Filter /FlateDecode /Length 1249 >> stream xXYo7~_*hah4HSUjejIKi4~/k)opZ삮W&T~_9aA:ihګЃwF )Yp JK;#  5ZXEƾ, (U->E9¸PJX**{%EQ)]_SO겂zpZ0"Z5A\=:: ^z֣i՘K6:~kOzTy7JԡGf#i>D ( (~PR_CP"^tm 4#RT"D hhF$5|J0FC0I MBDYR=9**u3Kׯq'xY34G& 'G$x>! $ty*CDBmMOS:s{3Oܥuj)}8]hN~60$_&4cRUB`j|@ L\Thbz:Y_&s'Lg7 mE n8;(/[vK#X Hӄs$=͊-Y mqoհEtL򜲜#k=B }9/dɲ&~[fjVz0f1ޣ֑(s7InE>'$=TX{L-*(81~B /Gh&o2GÄ} W71cˋh8oLHʸ$d2#fLm$\/UBԇ ^X ї{2B6@9rPxtqvOiV;gL&7a^}ጙq;y@W \*]^ފ ~yP#I6wjkbwsuYk@A+evo^HE.p`knFSӏy+8!>a!xO6Y9-He!NE@Ge;P䁐^5Y9^B,JYbS@66QBIGor'yė:mƛ.5|5HP#KD["|kbbhD *>fD=<% - Eoˋχjfg>^xTsr( }]R*^!RNVR$տEendstream endobj 152 0 obj << /Filter /FlateDecode /Length 17468 >> stream x%UWәtwUE!H` $E&mrmmlY3 |9kݻjoǗ屾,?_]O~n{;r]8"_ݽc^/1l\8jl1зoOW}=ν}q=q}q-k'm6اz7R{'W/^}l˃scl{s~a}*?ok5_kvc'5y[w7N/T/cy>{yW?ߝ<o|_K?(OZUs|Ԃ?~u+_a|7Z"~FG/tOIG2.틵eۖ͗?_~ZѲ_@/iHm˹{ܳ5"K܏GiKp֌6V{~ؐ6ۭ{㱝xK3Mz!;#d8˙!~6Gq~`o/Dwkx7>j{qx<Պ"rpj\w?p|0#cȽ>3xyEvP,pW{5"'yŎ vZXe?#p!bh[{<6>0v>=ݞPӹ>bg/ab_xG{Y#rެq}|Yv7"YX<4m{2|yyc~ lA6iLXFa\2ӌص;"7ǹڙVïG emcȊyӰ?l2O%5cĴ`Zn;]3ZfW3l7oc_ٱmhk>8=bB~aGc;!f{o0Ca{8memlkG=̓3J< حy K~z{cOndF-g5:{qedFvᯬ7=uNvv#> iϝwN;!GFOxߛ݋4ޓݮڎFo"vuEܭfWf׆we>uz:֪+n#Z}Hnc'wkCܽYo7|sǤ֚ՈۮgkSr:oDz`ؑVyxV>we]+;GxѸ5=ʮ:o:5oeȝsnhH4=+zyX",bWsuWDN\6]G炓1ȏ۵N;î<Ļ LwDnL=<X&ke{F(/v3#?Efzۻ~4Ό\~֬ Ypcۯ=Fv8q){㉸Gla_eyo@6tZ+6w,#]bO-ݓ ''zL.Xߔ5b؇lW(E|ݶ0Ǔ˳p9ͿWj'[YG _yȾO=#j~#Ƒ#[]~gV늄ֺ|k-rA3X?ebgnO=MmHd=\pX_Ý7y{ӓbh5~\dUvFsN34{Cp ucn=YksE$}%)çlkDIwFhIx i>,?"HO6|3cX@d(g>Ϙ >cݹ;{\Y3Xk96` x};W'GD07m#WLq[{ϯu3gQɛ {mg{j`l"h95Z;}ےqy#ؕp(5S驷_/_Spe!~ܛy#W.ޏEߟ)G&}{d^9N6짵]Ìc˚Eɬgrq=Sp[&v'gmlP 6@{O3ц2su8: &60ىOsuu{OXپ"ȌKgɁ0#_/3aSoyM/-g g\<\ЇZʱyXYhs=rĀ}lP,Go|O=`oh8c%n…/H7IWY&y'fqN1ٴ]B]t+=.-m[ Bb ͞pulA y䷻NaIIx|eO=2nlXzuP?|BCvvȔɩ3'l1/sL9l6oK[$pn7xDm"LpvfGd˄"1/sLO#21&:x_f fU.ksBG$#0vVn#wf rG\VnkD6tT KӚYhzY9Dqrf&9tF葁Y5;o;19/A5{I'oFFD(< IpNcn;1w?Dtq B9 [ ^s]9=*sCL?sS=L\ޏ O~5]Yiw͎͹r 1Erw@}# |#;jxoMf8K'>pf'ۆ{c+=~=Ǒ~/1ѽV@aDb?vGqlŴ&G7o3a6css 2875Cx#յCX;؋=# GÛ{C~UN*{1$Pyp9.$]sq)O}G{[XU< ?s!̋`=E$H슧5#~#6$'Nlhk"[nav}|0G ['YI쯻5ֈ u #"+:s9euOim߱aȖ7bʚG< 9[m}GSNr6FD0aGkȓ;Wś \`rk]\SƁ|̓fT:8D>v:8xO>kaŮavN {stvް.Hx"#s7G!"i#(: 3,4ZHXe/[v3"&xĿBC׌4aWiYC"c"34%jLxMe1dO|_sy=-_o`\yXί6 _,GEModMyĮOYs*_\{>on}!~:#;2rwӿ sgtpߵ]2ם{&z߈ Drf‘-2/Z-g ӽg%o@i`g6R=Oh 6ݲ3 pg%#v!C/ڽInvzTg\rsȉ-_{Nqt@۹zxum:7ξغONJ,foyOoLo1B[/V^ӶѹFn=ͺtoﵼeͿt4;wpDZE+7% >N׆(9K`p~#9啻{D:}RyΝ1ϊ+"o9|j=H5cc?Bw|[d׎#~b[/EClL2Y326/0EH|c}w~G@6^=:N5v4G5 (5:q O#22cƵ4BgF5 >+χF(XfT>8Q3v:ytZsUZ,9j(\Vs bg2b%7/ۊrW;[j,YݦreK9?uU;/8-v^PjW0VBB;T:vOjrU;Oay|R kgV7UzTUv4Q8y*uFC+uAW W|{ 9ܗ*t^T9[ϗyU֌By@ wVlU|E:_UBg,t8w+ɪyP|Wca0 mX<1RU]3*)}Y|Yfɒ̪tvjT:{}TҞ۠yYR(Wfb*u^N: F*ur:RunJWt^w~,V:s:׋йއε+U\[ҹ>vU:סa+uYRg*:tYjuVakYfZg5e:YkuٰYuY(uY:Y]խY=obz/;WZguV7ZguY.իY?kl`:ka!:HRg f,uրRg ,uRg ,uRg ,uqYtJX鬴J=X-A,tny [BNйe\tnI*[ކJesKԹeYܒH:+DsKEQU:-EsKQg:- GsKQy*GsԹMP&(un:kJgbP&:u\mR6BsvԹMPܦo :e Itf/JglXςJgpBs| QPl+yxAj.xJfrN:[vgql" +yxk(wHC;le1l\7G ;ǷO;[=# ",DsDSsD_;Yz<;GYxA;6 !4h hN'РrAk@ty Zf 4PS& tI t ti t t t t  _ ԧ  k 3ލdd>d~dP]-@1@=6Š:u}A /A4HHHI5IYI}II5S 4S P /pyr RVѕߐ&qyR).VJɰWGkJњ6pyˣk5hMs8fB\FkBŵњsqme\kȥњ#ri\&Fk:ʥњri\/Fkz̥њBsi\8Fkњsif\-hFK6Z ȱ69F7#fX݌룛c}t3rnFȱ>9G7#fX ݌ ct3r,nLҍɱ@19H7&@)<9VH7" fX!-$X#ݐk@y.nD ı@)IX @ "@8H?E@)2Qˡ"g{^XiiX~9j躈7F)=fD ooʛ!͊)"gE*hΊМi2gYH(s.#/sJeg9,"7Krz, /o. /o. /o. /o^:77S[4ry3\L*7owlF.o˛?g3rz܌܌܌܌܌܌܌܌,#72rzU e"rs 9ĹĹș@^\@^, '9KI"r,#9e$2rs9YFNpe 77#87#87#87#87#87#87#87#/p.#/p.#/p.#7"&      ! !rsrs#rs+8/s+ 81VUjU"5JMnVrnFrnFrnFs'97"9A΍a"rs#rs#r܁< ys.VI7w!OpBNpeg9Ĺȹȹ̹̙F^\F^\F^\F^\F^\FNr.#8)eg9YDNpEg9YDNp."7"rx,"7"rz,"7"rz,"7eeeeeeeeeeeee42rzsyzsxysxysxysxsxsxs8YE*ǽ54e-/P!/,!/,/lzا!N#,`<`E-W;X#5^edD`E|C!, qx(*DE9QQBNUS%TE 9UQBNUS%TE 9YQBNV%E 9aQBNX%E 9eQBNYS%E 9eQBNYS%E 9d 9d 9d 9h ybIAAAA AMAMAMaMaMarbrbrbrbrbrbrآ؄(!,JMMM!M!i}U*j*jmgj,j-p. ȉr⢀( '. ȉr⢀X@N[E9mQ@N[E9m( '- IrҢ( -Iqb8eQ>NYSr¢X>Wq¢|( ',J %tE 9](!'+JɊMMMMX*|(#+Ɋ ?ˊIؘ؞ج<\X[XLV,&+$+6,H,Z,l,   \ `` d1d}*Ȣ>8eQdžGZ1&-<uH:EsҢiQ E[T-ՎajE]E]2E]VE]zE]E]E]EuEuE8qQ4~a?xO?m 9ӄiB4!$xOr< 9C!~a?MxS(N!~a?OxOp<)rVrxSdFa<) Oy(9q:O>> #[䪣*5'Q[,(-Y,/Yl!-( ,J)=ׂIE9YQDNVȩ"r("'+Ɋ"r("'+Ɋ"r("+ "rʢ(",)"rʢ(!'-JIrҢ(!'-JIrТK\Ԝy1qQsgbM5-jN[,>mQ@[ ł/*y}~|U r YXXT9K*|,Hb+,0QtEY]QEWybtE]QFWttEI^(+J ?犒Gt(+J9銒P(Q+ ]rY얮(ߥ+ʀrb¢,(o,ʤ)rkʢlXMYSk¢^w,joHcҢ>iQC[-(u&h:YEOڢ9lQ͂C\T". LjE5v..ࢮ+ꢮ=ꢮOꢮaꢮs buME^'/.-zmآ:vbA m,Q"Т*bRۀW#"h6 \l#4pQ#8l i-H[llŖr[Z\l pQ l%@Ŗ$["[ll%dŖE8iQ>NZE8iQ>NZqȢt(,JRrb 9]QBW, '+ Ɋr(!'+!WEd"r("*Ɋ"r(",)"rʢ(",)"rʢddddd#|X<^X<Lj7cFF1 1xxq6^=6@>6ZA=6ZJ=6Ej) >6Ze=6gTgTïgڨG>|dnwhjd˦%Gxd@ù\3ܺ[uv؀iccT[ P}x=6zl@؀/58ڰSq$Pco6j48x hc2 mhOh?e|>@e#8ZVV25VTwܴs$ VVwlX_IaZR7DM5\u\$-aEfLLL̚Ԓ̚&Ԛ̚JP74ݠnhJݨI qC> ͏C74"nh.F|*jNʩ}CgU9ULچ& MTi64mhNLдQ3kچ& MЉ74'n@QP!n.>% ! t!jnHc~s qCC 7ʎh%F lCFc6D] qmCdF6Do qCGܐ7$ i!qCHܐ:7$ %qCIܐR7 a*t+t,t-t.t0t!1tArFfFF 7t8tm_%ySFߗ􍾿#7džoCh1|G;Uv:8Zph њ 5SGkp.-Gp.uG8ZѺGuowo:֏7B7ZW h5tC:p 6r6h#lChc6ց6xhc&h66 hO׆Kq:6> sk^1ް;kkac"8fJaGtFk#:-r࡝E +gn~|:8LMb+'єް{LE{˝9:-r>Ŷ;Nџi芧vbm˯1 ȍטOb03:꩝Kns@Ztozdto3:-riRX4(,r>ktoXL$z£߹"ڙM۽aŋa90>צA멝y] YO : t*Xz|7<="w\b}mӽӽٹegv]6Z>-"w~o@@[]Fݼgཌw6,N*ӵ顝zh皑`7[ |uז=k@L 923OޖڙWX"稯›|Gmq%|ՓgXo|lY>KgO[{Kk!m)2[\]\]\]\]\]>/]\]\]\]\]\GJȒo*䛊," ro*ܻ[]-"˽K˽KPd7YMF{dd7YMF{dd7YMG|K ɒoBnNGH ɺ!Y7dvzdq\7[}pgo2|~%߸|~oO{ yo?7'dd7YMFլTd-x%#kQ,j,ŵ]brrs+pKW Fn Fn Fn Fn Fn Gn G|||Ñ|JN%n,Ser*c\Ued!YvAI. $K@ Bfހހd7777Y Fn F{C|C|C|C|CaTdYFEQsEx|EŅET&P&P&ߩ S{C{C{{{ӑtd7YyG.k.G..G.#jddmEnEnEn{ES|C|C|S%Td7YME|S%P&P&P&P&P&Pd5Pdc(:YY YYY'Y0YW97 7 7 7$Y Hn I||||C%߀&߀&߀d7Y>2F2F:F!:r Tddedd vddddd&`& ӑ`````dd7̛,&#K̢ʴ ȕdR|%dd7YMF|ӑ%߄d7!YMI|SK ɒoB䛐,$ tdw9rw92ݻܻܻܻܻܻ䛊,"KȒo(ro(ro(ro(ro(ro(ro(ro(ro(ro([L"SȔo)2[L"SȔo)2[L"|S g9"z"zSTd7YMEzSPd7YMF{ߔoI2[L$%ɄoI2[ $SɔoA)2)2:JHseFʐoO{toX>Ȟ͞9u?gPO"3w[b]LVb]L&&^J>Mꑻ8"t(4EV=ys νnW]y9UQZ%&E IQPk:%&DZӡt(5JjMZӡt(52!C&zVj\W_=Ը[5Czq=hjz12Q~L!!Hx! zDJL-!ЋzD=3x/8=`+{NdnVn;np+;vpo;vpKnvpu NwtS9Nto:NwǻՍx3[^p5-^pkq+>kk(^S,^zͶ5ֆ¢Ѵ(0EEIQm*(eEIQ"kRȚ%&EAQ4g#Eմ%JCJ&(M2IQҢ4YEiBK /)JSbRfͤ(ͬIQ}4C'EiOLU@Pd (%h% DpСC5$Iư*~8T@8%S$D)QIJ%DAIQRR<%s%EeIQ[R|%EIâȴ(Q3-4%&EiHT{HT{'y@QEձ+[U(SQTˢ:EQ&ʢݔEUۢEѢFiQjǴ(uZZZ+Z=ZObabsb` `zjzrTK(u]ݨQQ$QHQ]SG'F'Fո@ABDQAUc8%J<%J%J%J)%Ji%J %J %2@r(%Ifրfրfրfրfրfրf QQ"k8T#k8T#k:Ț%CP"k:Ț%C Q"kBT5JdMYD֤(5)КUhMZ PBk:К%C PBk8TMx7ݺ|gѴ\6ecp-߽{q^/;=?M/؏bx7XG?qҟ=g[E_Kۡ 6߭?}une=M_5\_ڛgi_Ů\aMc6.Wqyزȍ-e3>?m.es_.Ƃzt-M=^7A{_8oa};ڥ?-,1>}e7\kGL|~_{, y|?׾ŏ3h';q,տW#]<{iϗ<іqM?uJfu|lQ}z1[;O<m__;_N;#%0Oc\X\~e`Boqynv,?vm؟7OG#^?ٺ.8m'?SYz|zMOa/FgZӧ 2erC_q,W_=ldou6y'?x?{` ο:o;xxꕭO-1T38FPz_;O_Ov<}j`X>OV?Eo +[[R}OO7o|?kO7bk۵zx_oԖ1'7o/?O.˿`؏~4eJ endstream endobj 153 0 obj << /Filter /FlateDecode /Length 2696 >> stream xYKo/#99@,%Q (4weȟW=5!m%nTU\^.WYx/bPˇXiﵗKo[nAXoQޙΈ^+P՛ clgÈ Nc~LAC-S\pq\FT.F4E*mPI3} 04\„>bM!bXy,!ZIkGTR:hWr%z%ӪZ 8-}Ƶ47MQJ]Э‰ݯ5N&r\i T >zx}~c&;txpC}:,r`{c|E*(!f|oݎNRF1{} A3HQiQwx KA:vdJ Aу<!D Q]D#e[=ҵt A# $Y!a7%+F8AYu{ny '̻Cߗ) ~B;2=ެpPR q F90!'+/((, '[:袈ٰ8M̊Vj/ecL.cWez \/WOwtPO/):N}=멟_bPEm=POgtRO3.for3?z1ӌL9_u‡&T0Y`9dxvq5'"6FM[v}U&v,ٷ~ b?BO/O*'2T5`|&{MM;OU™v fa  `L (dLhNF2QI:HcV!-*I\UլZ@vo*YTO-crQ2!ZWHjH%pvi!aֆͧ_ y PL p J}67/E |.6ߊG0yɰH139fEޝX`3#H,|Nb.Me:}Wb5(K8{hǿ9AQgr>4ej}עnSS1}ia?БyیT1h~7JPZ%q:+I7[ACX`uy|ѣN BXk_3_g1Χy ݪ^g8'0 Dʌ1n1oΧ | <&e78cP/$!:=Ydߗ*ر0xjq#]5& ֔Z 0T$JKOjc~/ݸ6"dȜu t%b(I `P/I= *z)]LYISFjkD['MѷvU4H!y"ȓ$8mܮ*r]7NR%^sgt{4oYc!X&NJޱ|-Xǹk/ /(T, @|^v SOx6,]ϨMP+Ȥ[ D5a|3]1!!7{s۟@q9aœQJP1cTŽM.+5S4JSbE_`CgHMO7*E5#kXBՍg7#C:b|]oiH'XAYW3L&I[I|h1+l&^(U-QZٕ_`<4KeW;u0Le8%(ˍR/Ni"{;g3eh e/ߧ0slԢKG;HwD{C R[O: ="Q_^CB88(E A.+~޲7%2vHQ2/0Jo5hr"WA BH r;Ӹ0[+ۙzM6?Փ95VE=F74Riuf;)f*Xu+PZd vB*#0i_}ct睮!q?kv%xr8NL4R^i |C@]L>e4qgx0'kfu?9xO, kkp0qy(חluǘ.k#Z׎hfUhʽendstream endobj 154 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 7591 >> stream xy TSJz*=jjVkqqyyLa$y0C TEXZX[ZV; ]_łsϳA Ѽk&N05,zbodk#>V{(g@~hCJ(G$ 0sę3u4aL +##?kC<{G8QQQ܃"ƅ~|l_.`}`3f~#G3q&L4yww)'jNޣP#Hj5ZO6Pc&j.5Lͣ>PqVj5ZHMQj2B-R˩i j%5A`jES G1v'Ջ R6TՏO9R([JLET5PЋZADYQj A=ž+Uni1_\г{o>Q}}}a~Ҁa4~}(xk[),V햁Ͱ~A|o`ȼ! zGW\ w()+pgލF Wt$m6KtG!nr6Pqcb6y\bJM#MY:gn֪a48@C}ZFe పEiZC;A|z>E5l60-R-q y_(>z,]dܨA}L ɳXX$h9˕_yFn>Kua.8`7^x:Ebӱd3"I;:tb=X5٭/z0mò-ӱP(}Z~\cu|%UR1!XX YoxY]/Aheg ԴB>譑q_<` }'$pvf"pA8NTub?jj7X 륮R+!0 нBWtLF0F:P @X S%Q2yB\g }ȴ0d⌴b.x;lSkL GV|vx#Q{m\F,NJ};>0ڞ|4D?MJ4'$ALd'@R0XJi:&=@4})H"vֈАhohM;ko. "O]m{H?&1pTYn"JY`׺,a $<ݕ6ny}#-zXbć~'}VM VoFQ(AH>&[* PE%BRS_f( u7x7RQf΀Yl7dQU7I4ãVBa?u<=}n* ̑mxN秕?E1O /էߍy&?}O}) UI$@jѱVs hRU8ӇxW{͵ OjnzdN p\B L!dK~6]8EzRr»vx/^WK*? Ocu(ȿgfiwϳBNͥed~AHGN0 |&ҩje>e[aqrR#쯏&֟x%'aw쎦hD*ܮs̀FP ~:Y4̈" [\K~O\ _Ger1q@w/FM (S8OUW܆迸wj F^ fD[p_]EQy3؉4omd!Gium뛛$c0'`M { y DRS[\)Y$./Y5}KB6 3>յ0z¼*Y?((tͭ,=pQMY2X MkgMHdez=cPWc_Tk DC0 .+^VGP'՟FVY34y"8˵n хHǻ:^qzuy_E7yDWʙm =X*3AزSXREm Q!A0ڍBu*Ӝ޵tMD)ʎ"]ZXF Kaײ(( -.3^bʃ&+gh7eL֒LkD۶Mt7l.V`*ݑ _KerșosV`f.t^)UoSKv5'j)IZ|&OoWç9pxy+f#lh8YK;EZw,Zsr7a_X"!⒒RREfrtH(5ۥ##idFQPh?Jdw{\jE2HFA`E2'4vN6,{(.ՙW(`8C-E jU3}{o]JjQ] Т6A_[oF wnIȆ}h"k3L#n,ܥ̄@9EZwKϰ0lps!E4:dr4UyW{h׀(]vzh"*K edX.񜅋5 dφd=΢3(7|-D&Y/K IV?.7l>FUI,'I*eZBOSf.nrR?ѧ$"?4S`/O Y ҀZ1#G%LutId4!ȥS8~` &qdjz`Mr<ʷPȃ +֕jξ9+ֳQP$P+qK}&@S%6+;Fzg: :M=Ñn}9ZwIF5Ijڜ|k"&WfG%4ijEay֎d [zA}N=7S1*Q֋&ԃuMI9P95{p {bڛAݥw?ch3!F{;X(dB8PǠ +N(eA[]n&WG kV"IsPqo B-;.d1vCj5Bc\RG}X+*XUP ,JҙijU.7Q%z$SmQ?lY@C%sh *\-q͠Bl}ϰyx'`QHg럒c$s^!hҒ%7|"$f)\FuczGחoEn}b!E<{Y7O@ R>\8-}4а8wؠfESh?E Cj1LdIԮb]UO6 0=+W:i [ΛLR%>Qw$b(P)*-&M[4dDkN߫DPi[uͽzzW GSy.u]ASPY`dd*`g$%12ēb!*KuB[Y/!ja^_Ű<}?fݚ,OArJ"[ Xv1ԯ+'j}-m^pq Zd)/riST:jNӒ}^."$P3*Dj;&؞$*z۱-bps7Gz<%SAe/6KUS95A͓NhJEtWƕy9珵h*L3X!De[G*O HTPlcGs'% Iű1uƽ h KQޗC- rZ~]i*laC@DxQt,e(WK7:1Ѧ?Mǵ>6#S{tΛ#V J,o߆wٲSm2PE%,>9R'N[HQN;|j2  P5k NaP3"AL[{ ;& fa"%.á< i?9QYtԠ/ORmȃ`Qӑt~mw(e}rꅍxmu;ٯESF~8.F'6\W'[y1zHlOJKU)$Ƹ,rېPLWD87p\7=k^$nma~Ͼ=st&SΟg:Q3z[At(so]Y\ᔈ0#V\t`EyH&ekV3#;{ODTqM@ N& ++&#h~Ɏmtht(r(? l囝οvZ)2"/؁چ>RI{ٳܺ+"[V@|z@+$U{=ElXf5Pdײձ|rNTT((.K L e2d3^NU.vUsh2k+~[<;-Dp*K&@h5݋~h@aMҵ򤉋x HBBqϰY<`2ْoȽ[2wvB~<=]eyQdހ?M$M+$>C= 1]Pb-l%GQ;?=!~FB&ǩLJ{!kѳ?ݘ<c++KvY8ބGM iA *o-́D--9vM=`x2vV&[l2Hȭڪb2'r&1.@OT7hnW~6}\Y%'=MmIk:/E *Wʼn<:̏6ZBa&^E5hu(-(5igj"0- !ᕨϟI@=rSzu2'1i>֨uF`?NLTsmݮW"JUA#ɲ;(۴h403~42x O yG wVaI0dI[o ysvz1h-pKw |8Jr0g;! F+DHH?z4賭F4ףm,=9rh#ק%,EfI$*yKbm)Z%46)q|l6+/i:q-'GoD!;EGxm#rq3Z"ֈC/5TURM4YIĿ#R̨7͌k88FZÿ[hI!K4Dv[EܿXU| .U;%sut~ ,#3 7N> stream xcd`ab`dddw 641H3a!O/nn߷}O=J19(3=DA#YS\GR17(391O7$#57QOL-Tа())///K-/JQ(,PJ-N-*KMQp+QKMU8OB9)槤1000103012)ٽgf|;?̿ܥ;~3>,}} |g|Waq6;7<_s/wt\7Xp9|zaendstream endobj 156 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 6540 >> stream xY XSWھ*nW@{KԺk mEE-’o K!a_ER6umUZmkvl'H ܓsn J Ϝawa0n/V8ڰ B֍ ΣvlIY !)CB~>)p`ߦ9͚1c on`'7/w\:-vW" u~mT:+(|zgӜ~_uH=NB%NkLM7Y!;S4xY+VW'y?"R:jךn1{zwz A/p~}ị1uӶ93gg͙;SP)gu#j"D&Sj6Q˨ifj9ZAMR+U =}ʅMRs\j 5rR)GʊClPS!Pj!eK Qéj$5FQ"ʓzAhʞZMDYSԯ`A)jiw+mF43LH"|D2zHʐ[Cw=ba{lشa~y%#G<6Qgfe^IDG_ZlhEkscc#Y0F2x̽1;ol8q]_Vr%CpC%S: w٤rU F(:ȑ*RSQTʸty5jl"60`#EAըNբƢ}9|jV!/7D**`PԹ]o/ ͨd7jQ1w0_l$FXI?u̹8,#]Wg\:lх_Tc:;R: o%`$ o*wL_aC{Y\{[q8TiыP 4\꾣zչw,A$p7 ]1W o<|VLfl#bZVc uaBMrx[ysw}$^G'?F[=xѓES?!==.[YW#+ECp0g.LŎ<d `Ӂ1G`+ OnVJ?_ͅ6]Gbf=qOANUiy"^۲`R׮ou鿼}| gqv^\':6l[rnɂH) k{.ۺUVpn=F: E7&)lJ eFwm`xK؋ֲ_q2i b*5u#7^΋o 2c.t6_A1]bLP,;<8,zѯ}C+leHK"́Ku:{38y$[% ~}67UqPXɌiꃰ^htyۡ݁Hߑ,yE#9/zܞe1{ضK+O/C1#Ta,7旪 vszY_E?1 azfNpPV" m( o}˝L1>92-O6."6۾b~zJG )Ҧ\>$ClYo!@ڂ9&R!~37ܼuhw9+#c8ۺD b5/ xBbo k'?ލ ;G.6_"GW Fdw(UhQ9bnҥ5pڕiJ3f^OɉꍉM? ujCa gOvXocܶÊ?iDž~E nz J VĉpMX'W ތ(ڸ/gDㄈݘK2Jش:E |\K;[%;r]CUqV%s<˜rTPViv%噺:F"iVRDL}_JJ!Px}Ѳ mluI}~Cy*&XU+xI2U]s6ԙ{I 7!1{}b**%]de \=D#βMIje&ODY!@!:~lj;l6 C<ϵm~@0 /3v@6XF FtHBNutɶ"h@o)S77KR "Ea<3z{WFOGIZ[؁t:GA-~q{SStZE6b:8Լh_f'"R:"xA8G!S"UN*bjš1a^w?=܀⻩n+^(56Q!MR㢶-E̼]ߝ!~xo1ڲ'^7~?SYONCN5G 6lORpj0ēPN#9b֛բfG. s^?xCJX vώ˓y礨 S Q*+Rs'~fmד.O 3]{KVQe2fc?9ٟ.ӵ)Wq{Tb*QgAW0W Z/@Ӭ,Iڠ~IϢE Jwł7{UطS%8@G^!\9ъwuJzw3Nw@$: 6E,ڒ \jY !*d*kccaAޠe Qiq5I zV[ڀ^9h& '1B+:9#*ش!)-AKNgTw!2Ɉ_g}Ȯp# E6`Me.Fbm3::ѵE ۨ5Ľp9i-rC+6$H]?y`jPnQZOw>G\zVMUiwP;6N6gsYvBYN2G_/5\26/|t^[aO;ɑme%ytFwcRCL=-.RCR!*iCv>b;bZd2(^ؤ1ȷX/kڋoڢOor*g"f%Pr be} ŗK+on5&bݱd"WX 8ɾob9X &/cT6|a.z/W, |~tí[Y7&8w%Uq `]wځUľiÚfxx?exZ̠  U(}ոy;Ա_Ic Cdҏ(˕e>zu|9;Btg0T7z B=o(yz%3e3Q.S/)D/  'zl1`@iW\cM,Ga1.o×4a@y,MP8Bxf/LGB[x[_"iUoh{Cy; 9F׳q}Qj4O<z'7x1W;GNv0_߳іj| YEE#&tq'D><'w>y8ƕraT?#âsI_@ ')Gn G2 J+C fA[h|?ym2H+`RT%AIdD2l܈A9ʊO< N:mI֣|^EVa1}O .E=?*E(ov1q{%.s;q?|cێe?/뎷O{o ם0N˒.3lv>zq[.z݅=tU.IK~u? u// ] Y;,+ՠrU`̂Nh#{tCuewI꣊,Q5V KcW@jmlD/ [aI0L?8ѓl ~=u;nHKZM) ҲcQa^ ]`(+cfۂjŁ{Ú45q#5ݩpeu7ob/N@YQO mܶ:Y , =ջ*egPS^&MI>"`FnnjD5A! 8su:FsGؒ~Z^)19-1Յm_Cqmı[-EjL@zݾtԡ}$th ;4 CX (U0UQI$9Iq(%Kۡ8)KI&Ҋª n.+] V7xֽDfE-x[FxN;m\h:|T\D)Lދy_e﵄uѡ0(d)5噵Pr 0uY@)Q-*H-"|SR1` E;&!ԒߠLQۋk $xƚy݅OI ZNρO{9wn,"v, [I})B|9<Ɠ}['ȷ,.4ym$QZ;Ree,V-6>=1#: IYILYO`n;vK-\Uf#r/\,M,]LӺ]&,. .NK]gl|n*e4@ 3x(bި% ohpd}ю]Fb~+M+H\/k>\~_Ί:|h^.h4Rg+F-Xqߞ-,u"nޯGwl1{~TF~RI˥5vOZCĔ'QW8 [gwc #sN0Ku RP3)Q#tv2WQFK~K纬[ O(0,χ4rCCllm(Eendstream endobj 157 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1456 >> stream x% PSW#< PSk(qpaKTEYD ! 2 xjZ{e?9 ɰ'ߍ:ώZ 0tF9:F]O/g,"+{={ GF`|-3Qnj//jo4*^;; ؍2X9[X CKiL*jp+pq'jF)ҖBK]k; C+0y߅2pbڴGpnշ-.!h?/xiЦ oM b&f 5sT̀7YlH{G:<[p)9.\< @@겄 _*=Xx"3?np> bo-D\ =y݇wYM`ˮBSRW*X05Xm 歈28kKz]}!_=yţO.?GĕҒai<ڜP)m C<}CZB*=FiyNanlkooQb܇" ʞ] $@¥A]UFf+:1s&j?6/g2cږu͕;kc }yi{fB*hUJwtqDEv8R{yK)'WG]W3B`NȠ`z2 0؝OޜnLS5oQBۨŪ 6OK0TP!&QEC#`[&o2I}%R'pendstream endobj 158 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1811 >> stream xE Pgǻa1(vWg67ƒW dFNX\cN@PL,fuA7VmYlmCꪯ~4%h [&,%6o =~`πkLc< rNH)ILH)G)==7R_SCIP'(պV*$Fjt^1:]Җkz6eMbr*>VدI$i" :EZQ̊[3$jRudb&9yɾM׸cF:@RA/{j!G-GO}@9SJM NtMfRrH2i4X(qnH#:1 |׊쫊cɆm&SKPpOCHKJٗ'!RNv)epfɠua:Shų4@bWN{qJ~O(\4u@)tGqD6||HwYtI],HDsЎ ;Ae[?>rɈfL7p.]նVYqeBWQ/^ōgFHxZ {F䡝J`ɶM"׮荞=oNPa(.>?ȀU~UR>P,8G$QY7Ԋ=ǩ }C6kj<~`++L+Wm;#Y٤-N]7t^}AUsX<|u=DɒrcA ͱ! s]_b,)a ?w]F%C`84s&ѝF{d,rhU\dJT5˥<';Ůռz 3\D쓹B%.Q3]G*v.KΫWi ?m."+H]Ҏz "]짣3fۀ\ΝnnB[_`CFX)H?/݀[OYv}Q|PXG(E;l|o<]I8pf0_?}nU:n%gxv&D{5k]fo?u3DfН##θN0 VgfO5@a_z`J*)D8Ko~y};YS'.q޵pKAgXony?;萜<(t!`Wp tOp)~EoyJ>Xq&UxtB@ ={pu΀p^QdVmu^;=x\Gʔ+z}mCGSOpHayH_p?Fe"^H/> stream xX XS׶>1s x*ISZuc'%L! IV$3ʘ0DAPhZjסZp7}o'^}}=^׿3t#+bw }{SN:ÌbV35Zf,3Yϼl`3MfƋYLf0Vf1d2˘,f%y21ØPyƁqdgg&R옡LMT,&ձVittZO,9 R\cʝ;vG&,8$hu~ҋ}#]2oly+p/ x1JXF(<#|!Ht2lnˑ|%'ml _lK"Q{?&p\pB^R:]JJZRLQsݳ+8J-kP4J9|P[ k al3IRm>' ؿWFFqRc0fegК(ۮ^jQWɂ.,^T;侩4J IV\1QT:Lc,slGMjSҤ^ B,΍7Ifo gգ]G+R.`ge_ZZ l?A>anfRl%KdHt'k _=yyZjL43BvmѴ],f^|Vׅ1ŕ~vИZN c/U/5~tE] \ b=KVcJjF rܲ3R%ڙ22TӒzއ KM /)]2ħklsi*,rA'ƥ6G(QvTahC_A0WK׊S†jA0mtA$$u$ա?kN _y%ºW= ;c8b YMF2]a 92qv7_ zƐ\_)-5w'jXVBE-˭-47_W+ F⚝\%U#qJҔ[ dgsV64b^ɹ8jHm lSrSv.|-pT,#J7{ EEܶ3[/1ȫTk=٨[4#H|9tlq-)?qA;N~Nɑ:*ToZ ndh0xV__?=)d,&Ha}o:U?sT`:FQ,:&e4y@{y3SٕA+MDEB?@52^`\WrSrħhVu}ajnPXPXe]ᯋ[ɸW| F]ǚ搜ܴLܲz.۩na|ʴCs825 (Ej5V(`N Znw+ Z\@G26tt6C2w@lO٭_ՔPA(R6'};D=EDt zn-cT vK>șR.FC7TڡLW3XW0঄"4pRro|wk}pZ˄9C-,lVv|!4ǑZZb?:,UHdm–vMQdntVDZ˙TЃ?"i84%T:cSs6E?utA}?P<{) tK~C~23j4EW)0n|AG6&_ ¯2T>>5ˡH&K*"d)Ihu%X+1Vu]Qia~pZ=ēl.7=+5imn5p#dyxwQ!pYD$fI8d3נ Y_n>،C+@$XNָ?U'@{o^P Kx=^G-%Gp(/#MI\hu\UMEYm9r)}qۙ[F*IaKI6VdDDr)O|t:'\zNjnpاM~AeEX#f\HjVY -2b:EBCaQ M&>, 9}A_7z-Q;',I rĶo\?/|79 Qv硏ڜplwjf)Zކ f'&J Mԃ\cw oU+QN]S\3fn &MXE;-pSNKbxguRBғRgszl2VʖCnl^"%GxAb7 aԕA +ȩ݅eXp鰡3?06endstream endobj 160 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 3150 >> stream xUV XW23 FePI#oX^" b E^PEiuѮUAQZiQ[A@,*E]D46*Zk{&/sgϹ"ԄD[sWHj"%F89L # ӚcY`8X8D>QooJK]pXzYθz(濹MNKPؓ􍙪䌜4يlE"<9uszBMR5;cLMY9s'&&KKW9aL'W7w9s¨t*fP**zZJ)h*(gʟ eTBR$j25QfʜK-Q(K&RBu>+Pډڪ% &6:Up|cԔm 1_!:|m4+ %զܬV# ^byΗQ5b8-Tb?Jy7[+{F5HKh22pMc͵5 ~˫ S ;L\ι I!l)i ?\'1 \a?$SZ 鄩:!$ \؂MAC<{e a ;PO߭kH)";ocIamKR]7j丒ЍE+;>)Ho=I.GDOJ,;Hܭ})ˆf`e6 z\F**65E:1,<Ԉ A{=K4. v_U޼ NmA)c/]-G?>I5N+-BN"$\w\ݪ2)Tt b8Hb<4߀Z!d>سcVĦ,~i6r`6EK"8)6Kƍ/C[D"H=(>#cK-!\m\Cp !qdĘ8CHDT JgbRRlj Bk6^=ѹ} vHK b,M^Id"6]"-aºpxh YWX;.~/; j03):4pǚ*8 7ҚWs/r/]~%J^WՄZѕwL+VT%Kr Nhq, btk}d̽1'xXMG"ʈ:HCw_H;26]JdeY(mJ},9F YK;DW8{Jh^e:v~QA1( W*20.j{eqxy*iRxya_–YzsBYb9?)>H]S B*aH2s-2a+g OadiD1}4o8{C.`5;י _ރ^aG~F0㻮]@wY0!Nvq/$%yMV#Psx7[װ|xe1>K޽|n9כjoFx t@KШ n.ŧF}PꬮrG`L֤!^$mg`94֕]VD̲G!轚v& ygsZ r@sH_yCGO7'N]"z D:!슰[+z;"K 2~%O(|o?:XBWn4HZ"=v^"gؽl2sgoU b4&نB#Hq#bgab vУMWtiPA]Vdą(O*pS? KD8͞O<uhpDk+t,݆ne%iZR`F/5מ5MWӵ.A-j9\Q`zRhVoZ9uҷ午8bra{d!=$Y;`BH}\(YW_|,'Gc:׍c L^W?{xWu]-³ȴtᥢ'Kj.]GlwkG竒ޗgL}=8<ւ>[ w%N 48,hB24 V7u5#IKYޱ5[Ȧ,XUH'{ 8)]V^1:m-H.OH L!/䗒Gѥ\:t[`~Hڛ46!9%#sݘڢ8P! o}F?b,E]endstream endobj 161 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 535 >> stream x CMMI9%UJ  aZUnsCopyright (c) 1997, 2009 American Mathematical Society (), with Reserved Font Name CMMI9.CMMI9Computer Modernh;:I 䀤'f˕(}3wz~y#Ӈ}{~ VzN\llxUm#~r6aegyIVOXoZcU@JJj9AD u`iwqooqXtlltrnnruCoa  7 endstream endobj 162 0 obj << /Filter /FlateDecode /Length 40666 >> stream x[tKr~~=8[R.d Öl!YI3E ӺqQ?~?w}~kK_㺮_}ӟ}?{~h?}~O_펡xͿ7_O3_XJ߽7'OO?qFax(wRo7T$!F߼?Kyɿ&}.c8Q}Aa6>?o?}O'?#~:C_&E?|??r__`石>6?Wc/7|E#2v_w m#Ʒgl/ |?`}ɏ4*޿x޿? $}?#Xo'O{^柿_7?/Zۢ~k$W?_gm?շ?F,Gk#Q^#;,?ϯ~r}̟~_Z2FvVaR3.r׎'ӏ}.}kH׾|K1ůo]}<{\v!_yv,}W7|]f88r-t2$Wg_~} 6x _R?~F_+C3h9.U˽gk.k/[;M]c\.ۆ|_`>a [c*>nn'nb9;:?n:GY:&ȿ?~݈ ڷp봹@qm?H!|_6MFw1:4ܾu1iNkk:1GS1󋢍)7*ʂŘP̾c ,ɘI]f ho {q#&5CHHovkRcWx_n٭y%)z{׾b|/Ǥ!PPc9h7{01{;]1eT^{z$qۓzo<g~qZ1@nkR6USWzsp{A“};z-XFj|R'uhRǸ`/=?4Dyi읇?&50x>px`z_Gr{ؿ'pWx5P]SWU绗* JVDy@!I#e߻v}z:ndrO9!Hg7;4 \5>O7Hep_G@ZVbƧ&^iQo_ʐQڗ=oWqA8 9p Crdۗ* MU7CaFa~RZne2U6eDa!G Z}0kH$A&)Cr]:XC b#)COaL(Ob3'_i_ʐq[+@ aT5-#n0ؗk'n]VO3͎^ MtJ3͎b ɳ_V'#Hޠf XvˠX F/ Rs.`5ޙ#XOW\nu>iL,!,eH_B-O(2$J|/Q,eH^W3FagbG!w!=P-Q,U@K߈LE)a)AD+ًqv7ҟTA8E,U@^}tmBX1TRk 'L7V`1PyK+Vq#gc ưTo* ϙ?,E84gDcTa c|{27+eHq~n]D_*yz ؋1SREƚQSR4Yx{;!,eH;v>b̑9m|QE@}ey ;x{rE=y%eHtb]{OD3̒2$wZ6<=2K|E:Lut`3M,rj$P`HfVRNˆCɪ2* s v^hPfRˆTGX1fR=)H̴(3_rn#nO1XʐoYbUƙiK{bZv2CXʐ֦5 w0CUFۭzB;@Knĩ/2$_GNjckTƗiZI?.ueSRuێ1|k"TByFIWm^ɴ 'Belg!aލ p]WTƗiNIfch^6>QeϜ$qJI5޶lhqxRRO8I3OJܑ#ZwJ48xJ|K ;dޤoHgzgԝgT6܂cYcwS 0NK5~W!Oq)CrҎ߼^sb<ɥ wPq2$yKnLW8mDAβS[j`|0٧y-U@Obs4=S[y~$;$sZ~9iG=+ SÒ< }ZoRC<ǫv=Ɣe̩Ic, ;4Ҟ*~`Ȕ%Zu)K_̑* G;*u])aKERީm|WJnH &'r"26,o.+Z7U}GZCRgL K\* ^J N^|=N+Э7{V$zfRAx)bTRJ4.{eSyBKž瓄+eSa^/zrǼÞ֐g$*OhZgi#m9CҨO_nzeo@~_~Ӂ!H;9xhbrB怒#U@^mn:H Y֗c!)ʛRC#%(-._xB#U@`Nqː|/)Cr_HY^!7L_<4=1%ynK W@}y㓐$0n)AfyAM!o;9i q}t"Kr* B`h2',G|Ux/&L!Kȓ* _)(cvd~)H WfywIՔ/)CzjkCZCvRs' ]:/$,aGʐkǯHHYÎT*9yYÎTyXsٛתSv I({Ѹ+S6}d3n t^GDiWYY>!ye6cg:Rʒv h?7ĕ$9Hf>؏̕9H׷ح4&m +KKs*>r+MS* w;5?)H rnu1ueivϻµWwVm; +KKsؑ*NW;e,+QGp|ugC.=X[YNCk_ ղSJp+9oe9i 8R^Lڻ!qeyi8Rk=fU]OOAC4BlsSrsWxPIp(/៓V#U@^M+ԯ4T_?/Ԉ},%MGJP|ӈ%M7.Rʲo +w#܈rVY&{اcB̔44Gޗk>P!Seih3RΕzNɌ*CS* _1QvRUh#U@^+xj(Z6O5%$F$C?tms 1OTDA/k}Д>8A)Cj]f1vcKXȠYzb;i ;3hP(U@*N *!e9JTBɜM7RM2 \ / 94ˏs(2$u /#BD9BBUE% 5G$9EB)A51*uxj RMs]yXAHIzB̻rF:P 5$ENGp|t! j I4Is* `tG͒mu[sRj 욘vF9G'?u$sMRl׽sͲl =:i,{k9Hޜ>aALY6Azs3 C"WȻn!frRC9&IrRkq~Y+s  ;MX=_ e) JןAgxxΠYzTZm3gHYrCTy C/ztN 4ˎs$2$չ`*f$I΁PIAMZL jqj;P(eH`a)g{R];Nd9J6}&|p(E8Nk =C)C $) J/SL49"J,vJ>sD2$=5YPx(50^ z\)Hv[[LlYC!UCI u>17|!:f3)g|R]WF;}'eY.!y]fGkt5)1Qj`|MiF_R~(U@'ctgy9'|R5Ŗ6'攟9 JjZ/)g }RUŗ!g|R۠e7&,1Qʐ|es]$e9&Jw-ޜ|JYNc!yfBDذ.9e,QQ|Yߥa},qQ|sQ S!gy}RUϫC`LIbT8)O ?S`* _\ Ȝ>E)C%-$,qQʐ൬C{qx f(U@jX?GQBGR>T&az#Eѽ'UODEƦ+x^Px>x:4(6R* ԍ 7o;5r2$_]ּ 9RKoFzA0őC!yxw=09r2$߭8A0ɑCT!v3+;9rX2$~F]^=9r`2$Ț;&9r`* D1 !JȁQʐ|x1}j26ͪ) +WmCaV%Lr(U@j ֊d 92J/z}v I +WBx8,a#GF)C q:aBDGR+Njrx~e 9,Jл}Xҝ*a#E)Cz`#P>&9rX* _7bڰ t%Ls(eHJw9(JY;Ev ⪐|-G\ q|dʞzJaZ#h)C{[Lá  {߫΃ϰ;5r2$D1A%aZ#Gi)CSx5 &6r* D8C\pheI=u0AZ;>-F1Zʐ|o@׹Lt  }OMQfOR+eY!@b'Gjr f+#}r2$ߵ7BCY 1"Wu-PaKFPGL8-eHs\k+s  x~UA1-ô!̚c ,ؘqZʐ5}abcj,j)C*" t:Y1=T6졣&H6r"@KFfFYR>ެ}L  -<)6&r mh{F1fƔئ;6\Gc#!yMmVwm Y1%Cʐ&ck:a05&2qHk_V352oHe<[=8kƺo8!yȦ#t0>wRD"fڐ* ߽tk.=sPd"1TޥgrG֨#F!eHv>sFo#F!E8^+bvd&J*)R;d5CI2D 6f!Db&Z1mw*ILR.X5H3sH95X8H3sHWx:`۠"B!Zp|U~дם a Rˉ[y :Zʐ\W?5*Hs2$ M!d0Gi)Cz爐˱$0Gir?FEАL P-U@^3'^6ȳd 1j)CBDE#j7J*) ;6m!?$Ӊ9NK *FKQG2lk:Yctr^u$ӈ< XuJNBRU&:iRcʠƬYG2CʐŶ4!p~$S= x{eL'f2$Zާٜ5iIHײzc<. dB1ӇTy5ˢyK ZR݇/(~,Zę?2>qh5H&3mH ׯxּ,!<̔!U@RՋcyI@2qCpѡYCΆϨ2|!eH`=6V1'WW#. i"i`d!U@`8^%;Z"X3UH ϚLR55'N]a_ԴL&* d)?Ff-S+ wа/JZW3eH"65-9kjnׂ7o2YTmHaEQ;iYS3qHu,ӫ9 ʈ% i^t ̕"$i5h8Mj"yցhy?!JZW3yH[ݦ&Mjf)CJu0|hZW3}HW4!Ɛܻ R HLf* pL$JZ"W3Hi8Y&V3H лmϕ*5˔j)Cz#&;OgIjf)h{O h^͜!eH*]3ێڜI2ŚICʐ-&BͺhR^Qb4HZ&W3]H ̻ޯ*>gAj )CRMWj1fIj )Cv֣iD ,Z"X3iHWvRc.i^M!U@KZM ƬhZ!eHW+ݠ-S#پt7whg W 7PTy aUkIj3 l"3I6.B5ΙǤ ɽ&v q5=k3IApD`L;g"2$5AbQx%}ʹsf2)C-цgL fr4*][Go|&eH+;C ihRNx*7ҟ)hRk;wI3i MJl2A3eLʐ|Wn#A(τ&U@+IUn#OIDhR5b:7?ILfR5bM%r2g>Nno74j"I;7trb?*IлJlѼo_"iR{q-3t?2 Y+4K$3]H =Jҟ)M'9{UH^vP[|-)IxadӥlLg2$ܱ !&3Ix ڟaRukU(j=4&eH^fQmh2?ˤw_P,8fVLg&"|yρT&eH5;YeSTn{]{]\&eHOض+hˎ>g>TaLo:ȲcaLg>2wXNҟfRkB\&eHs( iDfR1XyS2tlVLg22$^;Py |f2)AA-qOwޠD&eHgPl#Ugj>TeoA5Lpj>5$?Sɤ k,6wܚt?Ȥ w-WJʟLdRpSx0YYiLuyڎb0G{鞈Lj`(؇\bRnD1=mي`6Cf1@`F0!!MtV5lm;tz(B*?c6G!3စ9qÉэ`NCW)C=v抶ю`^C&X)C]ݧU#Kh4$ِ9Vėvo~2JYj@'G bwuw naz#ِU㋧ я`^C&X)CzWu[m8lȄ&U@^ZӮG0!TE7|ۅF0!E7ÍЀ64ALf0$"en^P0[_%eH|c5P0aH&U@|mga _R}u>d2d/D\0d2$[4uu5lC0!!Ns;ϡN=62Ir9Ea ]0lz_VMc]ڰ`|#Ɇ`̫RmUk齠ujpIUʐ|{:}Hhs2Jyo:p_&[H*U@^gܾv}`BW)C Oj =^*U@7,Y8[_*eH`f;Ƌ_z Uʐ#b X 4f2%kr@X)CZHJ=2JXc݇!GX)uZY鞼f|d* w[_phdFVʐz΄栃!x#HD+U@^ a6GVj`8Wt|38Z#,+eH'qͫs{d2$즻(#<+eH`1 J{M. q@2Jw 0MmvolO]bd* 0r&ӂ0$STy-dg3lN qA2I%%v;> @2I!\W8b$."_CucpILʐ^r#~-}fd&* JK)8% d&50+Nmd/N ?2I!h׎0#|7[N(w=!!9{g$ V2mH8UgCNň aGT5AfSǫ2m6 40#qT!@amՊnaGT)Ch@A10#!yς 9w9W +3oa#aG+0#3!uC;Ns>2J1F5v)57#*E8qa1~=¼DR,S30P|dv2$cN߁?=BİR㵙21;!#$+eHIswFȀLRlGG\GyVʐ6}~N}d2$0ќG/`tHVʐzwI̵RLz5}<:$\+eH`ۉ7"/fk ]9jm'3k |&; q^aL['7Tm!Lf['|Hܙ̶RNjy\P_drOV|MVb0&STaL-ȱ'Gׄ9"i +]WګvGf6&L+eH3pߴ q\̴R]3{Sq u|̵RF\}?sص7JZ)C:\Ǫvy/a~MZ)Cn,Gxy&<d2$rG5=LR^|,hpt[Wʐۧ=MߢCLRո 꾖炣ܚ̷R]=/_حavM[+Ⱦ4Πpt_Vj`*qT`0&`Uq7nM9ROG59* ˵Nn]q0&!!Kmѹ0n̖k2K2]S7zSd2wm( sk2J2J;Gܚ̲R. fp+9:̭<+eHWF-eK5f \N3l2JrN߱]̴R䵹MH_ޢa~MZ\2nd2$ArrIʳCLR2kZd0&!y] aNMfY)Cw@O/fd* >jvMX)C#Fa>M"YSՎ.Sm0rI)V":`w"y4a :g94b L|?m߀̱RH|vqEV:`c!.MY)W䥷yd0?$!AX 9, C2JDkq0K$ӬTyKXCEXpM#iVʐV1EFVʐޕ#qu)a>MfZ)Ck5B+z9̧T+eH72/ ^iJwGٰgrOVʐ2ww~grMVy4zaM&Z{4\$* by?>8̣I<+U@eYiC`EOaM\y(%H^{[u@d.qh2K2NR`+ g2KwIpx8a&M})AַkJv΃Rꚾ*l0{&T!.[sg2Jlu˖㼒üLR\sUåf͛L f2JWGA]JfdZ* =it;0g&s!yjoT\d2$br=Dsٶ!LXwMb#{ή sd2JƹLQx*̶ d2J2kOCQŧqLLRQLum!LW~(>4&ٶ!L&X*WSRjcvHUPE8jSg` {\NoD$Ty}DIVʐ2ޯژYgGOHSX.! (c ]{ bn e2Jݮezve'3^ Ȼtk.g7D2^ ɻx+lfdz* )}}̚پaLWQ? aL X.(}Mk7v?o2n+UʐlrDh0_&!˅>Fl0[&.KW:۩CBpn+h_ضy?0O&!y/_g!w|LRZ`aL{)C[m|5aLV)AJ[:$ɱ!nLUAv9bᲴw91S /LEwg&Y1SklqN*coVi#&x}mӗ9Ǐ F 3a2JxW;8u ݒ0&3!yד"٨a.LfT)CBn9iP'0S klVӝnV a2J؎د6X[̘LR]Ov;WS;6̍I*U@dڕ~96̍*eH^ekqt<3[6̏+eH^ek;4gDRzOU~%ˆ1e \ٽaL&X)C[+:@U sf2JW6'Gy3f km Ey3j ɻW1y3k =4$üLRնo 1g2JлV#l&T!6jTEz0rKWn:bQ aM[)C+| \8h6rKVʐw+4o kn@U=g7Y5o ;c8hvsSVʐ|-3ϫ{0&!ym9Fz焹"o ɫ\W}][` ,X'|+eH[hPƃyœ̷R=Fv]l[5QtO3VʐzB~X uURTXPx\df DLR]Oґ+Y avMZ﹮&-d2$/t_|fpueVwC؞`&xϓK'`0&!ay8~ :̱,+eH;})xx=:̱/;k0G94^x0&s!y-W L,[X6 yt^{aMf~)CU‹aMf~)CBީ5>OĴRF~N0&s!ٮݵdt_Vʐ j=}̶R7j+LR5m:j[y6q ɻ`bdʕ* (/|dƕ2$_[X8eugWʐ*N S` _y6q r7{U ՏaM\)C3kvBGl0&STG>CaMf\)C](qgug)Wʐm0&s!O;a\G_y6s <޽zl 'ͽ<̹RչǦ3Ǚfdʕ*wu>U# zn2JZH0&S!ygf w fdʕ* 𲞘vc(4dü̸R䕺^~G0x{WʐV߮[7Xlx Wj9хX o7x<̿Ɍ+eHe=wU|~xWʐ2[fzj LaFI&\+OlT:{)(t+U@މykY㎃f/$m h {Ka>If[)C' _V4b/\i242ӭTyC=c!M&[]85ʑ^j;;̻\+eH)zԜf!;̺I\+E8//dΕ2$b]=;(an2Ju4`/Eww9Wʐ~}$dΕ2$]W0`0&s!y7˸Qvz0&Tվ n2JYoCo\^d̛LRfn6:dƕ"7~2;̹|+eH`y}#_2;̸t+U@^kϯY*ؙ:;ĸd+U@udᅭÌLROhޞ`m2JS8E?&ဋURd2$ݵYt^8zvoYVʐzwCvoYVʐʍm2JT1nhup烷|̳R䵲cG GJ X@ FJ21ڴ?qaLV\Sw4  e2Jл"WϯW^aL"VnMZ$ se2JһwHbdb* Ml!7̔ɴ*U@^k kn0O&!!oWMo(mfdR* 0f 7zl`ɶaL&U)-=ܚ{bW0G&s!y+jaG$V)A.w]u6a0#1xoSM[ xOo\ ;4;uY9#*U@Xs])ݯ5Nb'3JWߚjF 1c2J*N sc2JJit gfdž1\ Pce̯RnvaӃ8Nf=d~2$=껯^ɳaL&X _3'̦ 3dJ8x\_59;6̍*eH' 'Y1qiśr `K EAoymER]Q20g13zIl/E8^ak fsy/TkkW6|k?Cܗ̧R]Pv> _2J ?iF/F \{m9NEl0%!y]uoC 84},*E8^U@Ɛ=3{I,*U@'syl0%!kOkf` fd** = ifd2* 0ey @gTvQص!N5f$B"yb_hv0%S!y5m8v^cݙ$b~6iZ˺fsx/Ujp@`0%Ъxȡu6fIUʐl+Wpf9UpB ‚1\LR=-[@0ƜfdV* 䖫e}C-'mfdR* r::쀞]$R* ^+GO-U +hx~8k6eXUp<bdV* nrnٓa~KfU)C:Ն=9VkTȮ]Х6 *50`4>U\bqdf* foN>82JBzM'T52uRuvv y`|3zɴ*50+Ǽ<%gwy/U ;\-ح-d^2$oldb2$5g!4̂*U@^5YdHt}f$b"d~6 `2Jw0Y?BkaLU)C&Q6 :omL '޾xi}vt}E/dqbd2$d.4+4|L/50ޱd s^KW^`%𪔠yyldF"Tra.ƣL^2J (1e;0%3!!PVjN ^2Jɢ²6naKRfs/K { 6䂳9C̥RU {у7|DR5vF[ٚ!KS)3RNE}d0%1Tyo]zv1 s]2Jrqzrj]Q2{3yɼ*eH^%kgxEfㆹ2a ɻ,=}u|]IJB8՞^:7Ę/U@^A۬F f2K2zH?flk&x?McX;BV e2KZ;F 9Hdvn+iVʐǧ aPH={7ė<+E85G,o0W&!y j[a$L e2JvSB63-x7Ę+U@j1r/9X7̖+U@`IW=d"MrrRO2[{[{h"|d^2$MOT se2JWњ۷F+Y7̗I*U@_=*EE7( d2Jw%麉s2?6̑*eH^E{hְfLfdb]=Gφ1W кNGٲa~LU)C$ m`0G&Ty-m9д Z0m!yUZT6o0[&Ty=-gG0{%熹2Z {M: seJ w%٬ 00?&!y%Ѵ'% riC LR䕴8l]h0G&!qxl 3d2Jл/ܷѳa~LW)C=3=¼̲R5腮gwZGh0#Ӭ!/={+y$4+U@2OgM& 3@2J[wZ;|=nkҼY@4+eH^]{.mZMaL"Zۆ4zs|̳R]K>.ߧd2$p w93m ɫmOk7͗(}üLRc>b## f2JWZZto9V{;h2JGFaM\g$mg9.sh2KW:G:]X4 \D}598̣/E8޿Y;o+Mf$"NG֝g8̠ +50`aݭdn\rbD,x7̗ɼ*eH޿dV?c4o1iUr_`0g&!y-*`0o&T}57>0g&TyM}_G0kf&Y3Vn1|{0_&s!y\0&x7̘ɔ*U@^gYV6o;7̔|*50\=Zr;lfD:wגMWBnd:2$Ch-JxLX&t9;5̅ +E8`acJWCՑUj`t'fs:2J2AWێyafG&Y!u:nyEGa,.øv`'(Z/z*w]ZCU٦a.L&X)CM;ȏt n b2J NrnOdn2$0Q? YṶ̈R\skn sb2Jr]]CĭR7]G<`#&3Ty?2uia}]ܘDR16ہQegy1q5+,5H3LW4li_ֺkl)_j`>^'#eRLt`5~ 0l^pϏ ddZ䗫)vZ;WmUlLR*&)C\ (O<̦R=mnۍO<̦R ᤔWtj TY.t=B0&!yVMa.LT)CB~-ZS\̩R=yZ`S\DRU/Zl൰Q\@R]L"{_$٤!L&U&v>Ȝo . `2J #o_F 3a2J W 1ļߪLfdf* 0KqCܗ@!|e|A0%s!`0%ST+g-Y7|DR 7ìLR}KʌX s^2J-@0fd:* #?mp6O7|LRnJ#ѝ!KfTS*x x3xɌ*50ޱ WkI+Y3vI|*E8T(l'aF TިߖGO ɻk}ނ <ĬR}AV,`N; *E8`_u4=Q kXXxA42keuǔ>N s^2JW̮_L^2J (9u:&qigUʐՈ+}rh9UʐݺǏdN2$=l$^-  _2Jl,O0%s!!6*ϵ8L _2JVU.(d 7w< !7;TѤ!L}Ţ6M`2K 2쪧gK0iI_ʐ=K6~hHtih_pV^ɦa.LX)C*6‚0&x[cskjU 0[׫~*. s`2JnX ޟld^2$]c3> `2Jnvl=~VߧM,LR՛y!& 3`2Jr dVgf0N {[XS؏ =d:2$i电[`0&S!!z(u0j )Uj` ;&o= ri Up^V!`$&smsUfTT9{4It*U@qow_P:[4~ *%( nkׅٚaKSÿ)  1^2JлFV{z{W~x3wd*eH\ljaKR׎(T3\̣RHvT0f$"5uLfd* ٮ(EK-B kc/ eʑ!̖R}G .v',B +P1VW2=TʐUzd|0_#!3#QejqfkdB*vjA|̫RE=迒\`Rgk(ʴ>fm$doښ@gѩ=&eH`j v.s82IWӦ5 L&eH^j}sAǑLpv9#l~rCAǑLʐ߇bWMF392IV-tˈ ;g#q5H^^ a.GX)Cl8 l0#STy]4+9c h5r 9&?dR-qہ<18"+U@^L[`#|>Q&dwdzdsLB>CO;2J ץ^ 㺱 vdV2$L:8;"H*U@^h%Tm}"Ȝ*%(:I5anG"TBv|vd6"G=Зns:2J סf,j}6JX&'Cvx}cBϑSJPn; Xԟ}q$* BB_KaGN):T;Z3n1; )eH^jeG\paFPzw8r{30#k>z݅LXR^8at@HKJP*OD?)KʐF@Ηgy +>/ x>H%E8^F#d}0_#Qxh|i$* pzL`F/)Czu~00 S!!_/P2IxN:=Sޞ#>f¤ ȻU4G[Eä ȫ*1 soLbRiܖNѭ{;2$ !xUbpPjڣ\bR+.4m 5 K4&eH)-,`70+!3Ty}Aղ6'!q SxZ`603!3T!ӗ# b&d"* dsʆ cn'ĕs5H^_ya`(E!|T*50^YyX []-;3Jw<(sUJs2J2}1Š 2JWW8;kݽI?o!xfpw8Y*eH`kw^>0k!STW ԗh@$s!ӪxU#NRG9 ä ɫ/˯ـHB0)A ~+:^L`RkMM=uŶ8 _k;@@_R Eׇfへ n$TN_@,L[R]!N+|ӄ::0G!Ӗ!yE3VFE:0G!1Ty=c3et`Bf.)CBƄ2+Slb)d* ajXG32sI ̻Qwo-f'd* dKm?"R90K!sT!Wq{׆bU:0G!!y71Xu`B&0)CύoؙbO)[XLpQe -s=&:K!񘔠x%m͹&ǁ Ĥǻ/vnv̄LaR.h'u1{3I 6-&9 |3IXܭ.yY3 LʐirHcR>k|IN+Tom?&g{f2)CNWPeY3Leo4&U@^{נO!U@pĪ̈0Agτ|).d^>S; ,:wfT|t/FA֤]4\,|1z=6:':>S gZmwݖqLg2$,K1S1(}3IW]GHOd|/\eDφuY3Kʐ;-$\Jկ$O&U@`9m1(nLg[^7RL^RnjL'"κvJJ^R}YA3HLtP,&U@^l8G>̤7ng>ʤ |{4WݘuB|&2ۍɨ-g'>Ȥ ɫ>琊I39Lv#w^J{D&eHÿYFg| 3ڽÜsXJA!Lvo٨mg:>1T!؍1MԬD&U@0> P>Ǥ r\va-'2> w)nۮ9*(}"gHrJ=&g>QT!KZ#~qL9gƐ2$Kl :iD!mUozy6̺iRd ZOHRf9!y=Ń7 šLRN>85S͙. 2$m[:ҚLRo5A PL;'* K$M 7k3cH7h5ϙ4 rlXF~CiLR x6ϓ{1Wu4BʚLbRjp͂f9@fTw5S͙ˤ w mjz-K"k~:_ @bc; 33i 3fOeF;2 Xx~/s*##2 8l֙oLʐɵUցa?|seR4ل" K\g92)Cb︍W!Q:s1I}hp3<\&50SI} ;L&eHw6*`'9f2\loA7`3T!mx(ys:31IKןo ;>!U@1Zv;11yH{qȩOD3 t%;?﹙ag9 )CbeؤXO pST &b*UKȹAl!eHԶvufpٙ CʐXvZr U3s!*SktٙICʐس}%]fٙiC͞so ӆT*̢[tLRΚmq:5Pb>O;s1mH밬/\631mHk[z6`Y] aZ({G79՘3 ]vu) f3s!AhΞ'\7̩Ɯ!eH,u_lTcΐ2$dm*M-/n6s1iHrN06wq3_iCʐXMsK)a]iCXvG9K՘; ɧII1=~4cCʐؙl;=;[YV (e:/{_f5f)CBXf5)CB9-631HZ.m[c2$0F;j /$"U@Ƙk]Di9Dʐl4f5b%V78טC ,]?Ln^c2$Xg!9טB ]ݬO%kH!Rj:ޟULk RĊ(4'f6nms?;:̽!U@:$-kR ߰N]ZG8llR?MY;j9ؘ5 zAf.7s1oH 2bwyCʐXEi \n`cސ2$duZ k=&731oHPOf5&)Cb]d{3=y7!U@.ăp7.uH f9iU5mf\cސ* E̲53#3YZʐ?3b #߽4̜bR,6|QsaCc4tZl8OŘ? ݞP4ʦ7FGŐ>E&dc2$PMEkb۹)!eH2󈑣 Lm.VF23@g96g#3ZʐXim5FF21 ,ߦ&cyHR.K^b2qG 4-U@iiK- QÖHR& 5@zokL-eHsݏъrcXjbE5u|v-sc -)C!jG˖Rw)i3/w-c L%,Fl1h23YZXˢWvuQpಳk$-U@oRvzyHRB{Zf!;+X2[Ey(YˌXLR҃R';Ѯen,f)C:迱q2;2n`[G&;FyRz%b2;Yj` &0iQ6̌y~֌rq銘iGRg+=RCY6ĉE~"vHw!zRWlzș̉E2$֌LV 0͛?[˜Xdh)C4alh+9ZX9b:+hZf"EKFf눞vέeN̑?DռQ\X ib }>-` \~EݕM7|Z"KKtAD z8.Ѩ%&,T7^=tP2#iZ9Mvf-3b Lsѫe>,2. QLXgbUl拧) Og)} f(s; g^9xD">LZvҘGCHRԙwudig2PʐekӋ1'ras** >dIs(s< U2XD& ҇SS26Vm9vPt7K2Zusi|Nf)Cboשَs ʜN`gbd!wT2f(s: ,~Nw: Q0;}T;5nhln(q:5)`2yYj`݇͜y=e'Ҳ!!ke'гTA 5diAʼn,U@vCqAlj,eH`~awB͉,U@vTѷcnZD* ѳm\D0e - ;(ȜEdA)C[j̬ mZُZ825'l#s~ÄJgֲJ#s e]pɽuo=2_ZʐY ھ|d"R!ɻ)m=)NȼE$i)CB&1}H7`?2oYZʐx?YZG-MKS2n.LEG-"+JS}2jW1E$F⼜v@h@sQx^>[R[y=]Df2$GeŃ$#T=Ev t>$OGH2"#Jxsj;eDF2$v\; H3"%J2^-:G/ȈR"t9'@R. fY=eDB2$бfj gF2Qʐ56LB#׈(eH= 6kk}y' #zyS(eHx{782 LGB* l،u>Qg>ҡT3ƿoAg>!7–~Ag>R!w TUO$}DCvOۅ(?S{ 䲢acQg>pɥsA2H^gpI ^5-Q0LGV2$|܍d#/Js3tF(G HR9Duޓ3]yQʐY`;MW#hLG^2$g,Sw? 'ē=љτ}EBSݺNv? ^􈹰W{6z3e9QʐwCσ,RĎLz@נ3eGpxj~?cIF H>R4-&L;ρ| ٥Dsi(3Gx h-i`;H>RSa+6t;ϑ| ;Ҳ2 L/N.t:̑ }c)Ϗ 3Pʐx93#,uJ]wbAZ'9RTsRՙήxeȆRj4~֙l(E8vft]uu#H 7'ncNYg9!q7I:$zfיp$U@`45N['9裭/hu"#Ht*E Ts$)CGvS Մds$b9fN]WuH'{vkT֙j#eHm#musd)Ai=qUf"5p@6Ը=`^n7hLFʑ2$0SyJQf 5!!L}9LF֑2$eE~;Eb3hGX1}Njq"6u E B#eH, ﻰjbŴ4mbX0]QYQ=JiLF2$jR8Kx ?R33/OΜNf 5!̦YfݒDjK馇̎}Qf"5T~nN Ǎ:6Ө ,3;PTj$ )CbnlR#I,h(c3Hʐxf6#W-IH@RSKTG^#E8138x;zTZ #U@0i5^nz6Ӫ} uF> 3uz6Ӫ} YԻp5 DF* _v~{ h3Gʐ8-/ouiרh3Gʐ8-jZQ&r5^?亳gʩL`2$ KuE/1S1ڥ y2koF#Lh2$AZT|A=f0FTq bIt4.U@<Ou Q=f0ƺ!q l]%q1S1ڥ sE;jr1 Cvq]i:W1ӆ sŰ!kN@f0r!llws!3)H8vz~xDd"#I5*\!3}(Hx:dZ6_7NAf02!qrfwL}r2Ӈ rRt*-S`1ޥ 7yeZ"de砠Ru,TZ"Iؔ"SVGiAR#d=N4X w)Cyd5'J & HLh44wHǏ>Z&bK 'vԦNe*,F!rhZ&bKX~6X^e*,F!qi6C ZcTj Q.eH쀲hN:RI=23KRT ty0Xs/Rj2(>JtNl)]Ep7kTBʉq-eHsp+PrbdK{WN[F%Rr[\+L 2$cN]1A e*'F!>jF|Y;%\RĽiVrϛTN.)CbʙZ7TN.)Cb: kޖS%eHTgV/s%U@V;]l~%50ّ{<2aJgIEkSRĎDV$H&/bHI+~߯af p.?8o6Cm'18R] n$!ƥ];u Ȕ ra9'D(;2I"\p[G$E8Aɢ%Ũ72-"I׊5O!̫LIH2$8`&NmdJ"!!.Z+b#1 Qn~Nid2"Fkwԟ:42!#J+Fve#hLHĈ* ]z,FQRcQqF&$b@I;d/ܦD1e,kLj2$vZ+ԞTR^N|ji;.@.'Y;F;cfOv\R*B5=I^j ;}Rذ7,g82$vzƪvƼKR^݄t܃zc4I+0Hv׳I*@IُMZ-!g:՟H.g:FTqN̚:v|IR>JǍ =K1 {W#,WP* + z]8I "D}n"yC4Iг|=! ;q ӹQ\N2vXR}.f1.\)Cza!#$$9+E8^cEƸ| g}vQ<$$G+E8+;]]ajLIWpxJn7@>f [ N<4;,?h2$LP՘CIQSh_DIxBڞBYϣ!I`vlm=%$AX* h c8I{Vr&DݘDTqiI!Ǹp ]Hh{b,ȸx L!',A+U@<-܆:f,G,eHm43F4KqKvV9P+ԅ[YN+XʐxjqcrR\RVL~bܕ -ֵt/B妰 #$,3+U@ttڹ1rW2$`ba#%,3+eH٬|O~ 3P"e 3߶pJK_YnXʐ8CMCW*2$ e,=E,U@!t)T$fiX2$!\ l| KS\RͺvߚF Z",ஶ~e,ĥ"eHXQ(,DTB\%R e$+Ծ>~Yf%H`Gcv|Y+XʐK(.~\偸 S7Ƨ>BA\R vj殝\䁸gT6E* ]E2$ͺKFu"IqHga`*N1Θ*4׊T<3n(),׊Bn\N"KqH|W|;!w##gl!7>…G`mZ2$v((9۰Z'dp$mRvLvq96ΘvȍoFʐcsk}4!uݟs, {Y؆"E866.~ql|'R]Q4.EʐkcO,f㫑2$Ϫ":z7gEm|7RScn";n y{?e DI|Rͳ6~8b$>)CkߡuEʐwuǵ'>/Fʐx6GL>z ,DC* :d-\5 0~ ,@#* -Ze^ˮ7>‚Mc|RDgVoI oENQV 5[hJ.UNR- !^uaf1>z웒'qr 6[H}g14r͖bxRC}~WeI'@G=Qsd\[Q15%H܅tcm(r+#yHsȶ*zq9/E8?6 q]d}U݋tki絿}Iͧ=}OS{;m}鯿KD򉺌u3le;=Sgo: ſw]Wo ÚNl Տo y]GYe'}joGOӁٿ+ڧ0?COr[WK˂o߿AtGt\'>ܟEux> |>wEjW{Wۻ_Um/>m~O7w8N忀yM5z_?_℥{ϺQ#J/B/J~?,?c=f ꮘ}YYuyy7Iϵw`3:?>'wͷ_u_/=euendstream endobj 163 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 279 >> stream xcd`ab`ddds H3a!3nn߻ ~.ȘW_PYQ`hii`d``ZXX('gT*hdX뗗%i(gd(((%*]&s JKR|SRx##Wnc|Jѹ.(ﮒt^\y?ƾkXZ=9<<@.]zendstream endobj 164 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 5700 >> stream xY TS׺>TQ[⁤zsT*yIs+C(BeB$aP,AyUom뵷iܻ> xo[뽵\,go B MJXA,2?4Zί{p#ܨA_uǒęٱ~u; mT,8$A'MzI"5^(={44UET IE*vb?ɤQ2iz%HC Y YyB]*OFƇ$¥RyLXtR8=^I*c /W$JK:&F$&gil[3-1D M$ʤEtH*R-*$%c"m/EćG,ryYPDZZv /OLEG|h6V+/${-Z+fqҸe I+wGDFl[񎙳̞3n<;|8sGӦ 1?1 x"xXCL DŽXO,&6KRCb1&>'XA|D$ b51#Dp %F$AQxL# ; !$F J0 G"I( JCwq?2#iܩЭoyut098ydy|bСC33_|{U\6)ɴ.w wm[['MzpIݴw6 32 (4 Bjg2=GeTY^S.Ic#i\>L$2_ȶ,Ṃ~HXifP6.^ج0pE܄7,l:T: Ha뮌ljΚ N rAAj"~2r|T5h@ƺy~a)Hꤛ s=M LEO|j˛XZ[zV` :M e$E}Lu`'h3/a: ݩKjJSZ],.nfth\C+b~p<Ⱦ\؃P槯! 9AC^%Z%ڶ\ lM;\۸,+7o6KTQid8O]kAmPI|VyE<.հ5Np"uO!1De҂2PuQ-ՖbZ8Ũ*R*Sy;N6o- 31޷4֓v 0@)XrxJbV(z"Qx/3=Q3>SHhsIfH{((t<T47 @MbsI$K-{WSYX8 '߬{;3ۯm8h4x>}u%6vXL 'BeYBV*Mc9=9qBu‚.7/)*(RB"`/*Hᑈԫ#5fY튪/0ӘlL3ZV۽Vev\eJѢҼ|kWߴfc/9R8 x%U%giT_Q7dgW'4:pIsi˴zpi! ]L8A|PlZk\G| w 0(䊃NS[r*r>OSPɕlM\Ёm%ZVϞ&'[1V޵z9ȉJ]U"g ϐo0VSrkׯ;sMb%\zJ8k-mep/sEXCMedM H=X$3י% 5s3;)#rȐ{S*OPTJKPdvtv>T)lǙVUN-6}]8l5;J1H*K)%7 4X\K\M6OP z6 >#'Z{"Bn=zʁEz^ob9vDAgʑpdN7"4f\o}L%1ꤳk)4>g0@h)g\:z );.+t]Dl{v C9-9f*K_E=^& =̂fis.MLiT DaH,%kqjR_QJ6m_ h5ֿ)4h0X\Y[9\f)h9 D Άr OŪB_Mb!graDv .8| s.5Ÿ󨬨kʔp0,8cq#[w;ݲ9-Afi5uLg0սg&HﱰO2)]ÁG c[{.ug5.iAo#W޿\8x"Lk}0h;"pcG[72iя.Q0Gĉhܵg_x` 1]DY˞;D6PUu3@WaHHi%ȖuyAW\5"~V ~fXp#H)4>gZ$w@ypYyv8?c>?'4~@]95xtopb` dt_v]4 0TXPLPb-P&Nrv 8Nc?aJcod6MuYU t\dIVyQPV%4%jrsS(HUw\");@ m>t&ˠg_gSNkIWUq*sQWeI0MMBWwQ'aot\Qj{'fl\9 jϿp"lk1y)_݄ߙS*cqQ!Eb }uRT< l^C¹ ZVXIdfWX۳-IeSxѺw˵J6|B޵1===d?+t|}ހ M|˚X ,$Wz=:ꟷr>c Yof~=x9ϗx#xBw[}]nw{tgۭo{[ Z=ЋG}1$"yFIvbVdy~I cwZbM3w>z6  C!w G)3n_nyIiFiFjjzXħ;&puZ4Y)aF9kH3EDI>VPm&ƞ̶~ONH#GLwI_&=gB0U)3v*zfM~}fMNE2HLfJdA0&:u'y> stream x}mfqw #0`@+6>uΩ̳#.Wǂgꪾ]f ~GW!|Gm7vI-ܴRåכ>^;GhlRsi5oMjGzZ(U΋V?Rk?7[G4ʁM5KciSҷr$mkMZjn>ӯn6ߌ˨|ۏ4&tibooϋ/cvªx_yڶ_L)]jxWd}q/W۶^9.ң5Ϭ_QxޫO-}m/>W&_F7}1)K5!_z*5Ժmix : rG xDn?O_^vW^F^ ~nw/_p;׿]_b+O{f)7W:/^hFΓ8eQJw??/uL}e^Qz!+`QsWC'na__uGAoC#uwE;yxdU+1'oI9 ~u"|s|ks߫}`I1Q<1y_{9" .1dJp^>yTo?p盰p&.)|77|%mM;{.}x#}O/>y}o~Km\[mRի Ɇ/7~իon7_}]B/рPl &|z~_W?׺oۭ߽K#g`}X-K CBMR#*#TbĶV#Tqџ˿GӬJL`I\N="sC!9O8m\z6Heۋ14ӎx[K~>eaV%-pԅ\>ZK1TNЃUʑTkrdeM$m]q=EIP#{ fF62 tȿ Ҕ +͕ԡv߄:.y%]ZդjJ7c@PG!Jn Kg2cm璦P~.yI: %Q/xQK ˚PfWǎ| {'n:H'brKbO$ϦB̔'GzR\üL!ċ(b۳?mBfKiQUlLsҽ `6>""RYp_6.wu a?3$D8҆o$ 5kHl6\.bC¦G̀a=Y)Pv`6G>Ӛi\<bH (V4Ͻ]%hE Itj@0뤹iʜCl  H ̛4|g {e5KR΃!] P*!Z"$fOԖl6jFPl %Ք"hr͢RLZJ0) J@.1O@23C^ 5 ZfQHֻARf,bwNHf5pP N6e[>:=R 2և#J4R# [UHm ~rdP22ب_@6ѠrMкۼ @3 (%vw%u@ccƶQisaDj@$*@i f(@ 1% k(b7 =A"PaT kw8h@5oBԀjxx1Pm"!%Vɘf4к0B?e6P1,$4bwR{"=԰WL4^r:V!-(L3Vp \#ɋjsiҰQ4HԁV]iTV 5y/@pGysL\M+/ lMװ T>7P Fm?h ' {Zه.<@`׾4?+ۻi0"n[F-%jomm CWȡf%@|>+Kd])pSZ@K,TǬt9f%gSMR l]/lF g)҂>װTcHR ڮ:fg^}s% {J`׹* a^%Lv4V/6ti2cle%Z0k%hX^j $>JxE:И dPT n |~ Iԁe\ TH TIH t5izŒRfŁ۪ΠȌ3ֱ!qaXt NXqk}Ԑט!g94~؀hYD/ #bfN>:f9+%!dkЉ=HT-~띦A4W?CBf)vM,< 4cCc뵛@d#o3\Q Bܠq=㝞-RAH $;o#7[ݟ}pdjUl '^z4K5@4f+J!!bk–ԟ*pʫno?Դ'`82t0ˡ4 ǔ:zc7 sh*>Yi6L"<huF0<\uuz|]`nCOᰁ p Z*n;\z\DO_+B[l=<d~n tgPSF3Ul3c>Qa6 aƄQ! !U7P@,A60`eB;d7ŵ>\B[ l֨xqf:c3uF t C\fL:3㋝5u@L:R-#2HXc [uF#m$| !8JD4A oѡ۞d:S |HpWb-LpP˰Gו\L )xگw겶{ƒDcD67Ptdڻi#|UC2u!E(nFһ䱑 lrJ@ju1KH֔se%M'ye3qIg WfT0X`"!s_)5To>!jWrHRZX!%FPrs4)^0` 8[ f{ؐRE7-E17K9DSN6HN E2ӏK ׎hCvǴDXrэ_)h}ֻ_-M*5g.5>Ry:R]"5+5!5Ǒ8맄yRA/ܤޜtp&~JV!5ǒiyuLJ$Ej"RRHY8;,Rox ^ߞ<yzzRxrXvYCʤX&,s*rrY+3is<VsHMH<y{Q<ȓJ6y,7q}26BYgR9"*5*Y'R-]N/&pZadCYޙ0c^}'?O~4W)#ӏD bȔ7 _ ¹'u ")$NR;rH%[jܑEWM:E ;$#.,RwĻGFq7G##x;!'20^CY#w9R" m^NI3nO' ZBy ֙My##~=anB'ڌ|0X[F&dqODy7sF&$sn :qFKH&%H#ek!M"By_Q$q[W Zz-؜mF? lZWۜiz*;cdWBBIa*,+k\H:HΈg@ 4dڎLc9V?o`8e@=٘l۽(heV#Cy5&qJUXwUbw*6OJ "pbL$)}ΐ(Ҳጟi[ z |jk%$βswҹ 1`H ya#W.FNPE0N3Ha}N"}]yUڜ$8c42GupǯAQ%*+D q9 \Mu5% Hɳ bJqܜȲoUo/9!Mm9:4.8\ p-8RxT^f[߃Hh@O3aUJsfn SS\xt qJZ$ܑwZcRdV HI|]")pD=7_t3p</DC73T+N@Tx{rnHr$DW$p tqDtpΛ#$ B#$HQ% !bL>!>&U7a>w&'s> +!9 !39Q{؀4')H@FyJO NOtDcy-`9;9/"<4$?(CQ2`\P 4"I+ Pڲ'P 9\yxprZTrgp >';[g'$!m?f>[U t= ۄׅM1>!dPOrDM1[XկNVVֵ9ܛ@iΓO#N8 #X܄*A ѝ ahK+QYDu1K)Htp@@3jB -UiuV5aD@>ם'MiH0"@ʄ }:4r'؄5AprǐIB0#BT:s#t !;2~%Ff F@V?f,[AsrB N0D A™XP (vKP`|[SĀ"EKa9<$mCjfvƳ ,8qy ͉ @w ~Zq =}拟; dS(Ţ1Uoho }\ S@՛`'Jd%`~؎FcNgu v˛4Dt`<`g& Q@ +"^4yXd!*0A e`H@ 3P;61!يv37e'D&-?8"zv{+lGDFf[̇@=:]?-}v"qnnH <-3`"'STUH?hWLq I94t2Q|Y9a^զhX{7t;I ) pn2(>-g k<;"yD_Rzg6xyS9 搚cIp'oG>)|<yRmٷ#%շ;Y;!H=!5S@>0ls«tȳO#<)HMJvfZ9ǒ휑r WJQ*5ԛo=)4~,?MC&3ʁ_y퐚cI|w~ o/_Z&J|dj|@^7t߯n|RxqGVOww c@ԼG{HMYTgfyRFȳԇ$UÝmGjۉce2oc{&sW0g'(5AEʑgHJ7 <wHMd§OGx[.BYR'RR伜0ܻRL2d(+?~[(_qRH0.b;juCʤQy-}{Rr Oe"edB ϪT; {&~ .Á,RwzûP3_)Qʤw\Ldh"Շ*K-2N,K-2{+vn)m"fƷǏ0sfLGD@ÌUȞ9Ąeee:3c^{{rĝ~J/ jGv'9.sP.y na/fe23 3TdfZFr({JtOˁ%0k擁ۥ +7OX$vnX.3Y;(:R%Tqq )Ji/rj͂n_ς5)p@ .4֩Ŷ%H\CVW `(+O*4ԖٜJ˛|d7K% E!Wl0Ґ&FOte(  RV<<,o~MnM|0:U$Vir wI2('fΐvFo}"wGRŤUǭiA5Su) +[D5g4XY ^Q'3I[𔳌 "qț/hNV0UDC>2H R"VUѧ+s0X^`(y|<'x?Fx:IUAfpҐh׀HQնtvLg`ucD!Y/{F7DR cZp7d!bg *G5`q< 50ɨGrED*UkT\9\VPr!Y[ZHG۴g!*mSpW0g%*c:/Ku/a"sjͧTE`PU8ggP4GOI\Vcf32TɌ%9Upb!+gC_3]ޒ!2n !:V!?ZO-xWE |-"Ҝ&ϛDgC7vy'T.W%r=|޵'{?q\;#E۽dQ<ا"Ñ(T>5-I&Dlsp`e|Mu7ҐH5DQ. a jB0Rio3 4Kyd!$i@_aU))]1b֍k~:D¼:5H z)_.r왫_].!aZDTg &'5iAe04!x T{ }"!HX= MP'&ؙAJtcA mt!; cH L]Naʝ Nz#C j`TLaВx ' d~P{@`X*xsRnTwr &]r(C9JΪwM͸J&4M)77@~,8lɍbD:A4_5!H_ĥ<놝ɼW8J\ s thh52EqW6oK\ ӛAD=dKٚ*Z%;-?*M[ ͆zT"' h5\`e؂G896G`SOı٥^6Aiu "ϙJ"FdS`cwƮ G.r yOI'AiDٴePuP 3Ж(pmjN/珣,\egHsT o!yW9 iA6!PIϬ"aۊ?ŜP52hZ6/+j6!kŃ .ni*O{0_e<@w*PI>xhl3(!F]-@HGKy-K &b{#VŋydN}$9onA#E.D{jѡ d66S^n!Wja䬂q4Z f~6+N]f奪n/tV;9 F {6ds+`b8dLy)03HpNT`$>T:զrAspSγMXYŅTKN6_.Q0pt^6 zsW"BmGI}-m&c?8eF"\Pխ:瑈BS=l~tN<kQA?Dd֎Sm;&W~!Egmd䮪"OM;cFQ3 ! v3|Mr"./6 N f2 Ӳ2 ϻ[x/@)z? "S4){(d6U% ce+d\)%yI2xyWYdACVy4{ty ݍNCv 6tuѭɜ^ Л\Y;%Q ՉJ/jD5rH=l򃱋‘ aM" ^G;Zj.7ƛ.#1_U#lva8 p{Ԥ}:$77a87y(q̂apeC6~^Q//3.N >[HTe@lZ&?#"H!xׅ 8%kOzaHSm.@pʩGQ9sjef' P Fb5% vD|r0"&dA4~4~"KriN8kM lӫuYȐԎo]AgP^v#}A'y`Sw2 b/`7NA-{DU>咓W>- +p0D-4%r~ȘU6.26<;D6 ˽3}Gj? vcV.a3-"ߡo'9Jyy,p?#{gRyR:<_&XR9+Cz]A3ā<t!HLp ?7) 2N$w,-B 1p?4cƩѫ:2G??w#eOZҞl=e5'OcKЪmuu)n!Ԉf$h4kԌ1hk(T VNmXŵc5:1CPYK :fqC3hquL$Scxendstream endobj 166 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1397 >> stream xUyPSW߃Yb4WP0U@܀atZ \JdW%-r([( ((PNGmNmbc.Fj;s{MӳҢu^ڄ(Ɂy{ ~%šI-Xp^x< E#' >?yK|]FO{WccahCو-+) QuEe`T$ ح V+",3LrٶQ WxWZ%`Ovp)Q ="X߇Ç4WvLI_cb{ܬ\EFB١9J0:{I9*'wjN: em%'WΝ.^`xr9`'swY"pчU*<&GXoD+5FEusK @Mެ74_i\A*F%c]0M+o=_aoZXdFD%oCh_MzÑSǮǸǭQk0 30Ff/&b~8bDmz"g3 tɽD>ݸ==[3*MR@}@ D)nvE qAd24D&UȄ3CgjQ~ңl[Vǂ[̭B<ؗw>/^U SvW vɫ˪*KF(.Wܟq$hAf!$mT 47yH8_qҩĝ4d"z O=`c_%ns!B0oO=o+Fխ⚢"xꋢҊB endstream endobj 167 0 obj << /Filter /FlateDecode /Length 7666 >> stream x\َGr}ﯸᶭ.I3waD0J(ٔEY#ω"//!K%Y'sؓ߯o OqGn鳛d;Q&Ws0 ^<)SNޡ,))J?bPfS8BQ/1m7nZWߺSɗ#:Ul>[VQꝚ}R372OcZ}9գ&NimO`Foa]<=9qְ7;L..s{gd{`l,61pԐ_ycŤc+Ěgesֈ5pW^gcJo;jU.ՔU >'Z㹳(X$*.:Yb^}5Փ+e?ϫߟ?UMl^=̫WѼW]z=WW<˷QRvuTΫ/gٟO敽ۏFoYd^}=jbg3.k$<}^}1ۧ!S«O敝WOW33 X2OW^>O՗yUZojүՋ+w!_[+W/Ͽ7 qGe`Z ̅܍w@׳yꊣ?^'ZmYLϚWz4|uNkN|s%VW쌯q}\W=Yg8+} }xD\zW [_o.ȪP]Õ'~2U~TǛ)-ZhW@5!p^t%F4TX/{~LJon=gp V3ݓ?><.;gc9 :|>Rɖ^xӋW)FeT2 u.tprΔÅ1xDWCD`O@?H =Eo)EoJFI>`ޠYED}ʺRROPQJPo[;15btpNJ9*Zˎ$V48K `zh(Xh|<ְZ s M]IR1X#Izr1j6 G,TO@w\-v#pxHx#Oq2,ez;񀆏6rk$UezXӜF&rj^>LBLCʳvqD-LD%/s{1afa0^':ku?їm3kG z> NçhHNhEN%B`S0cǴ \ţp=ta&z#Ph/[.`&Šk#,hY`9Jڴ$۽xb@'._KA Dޭ;J0g>>ߣUh]•Y1@w$#9$_56`zx!V'Ճ uX |=F%4mIHTG֋C nr^JdR VB:e eGNnBȫPHf(! L.o0!e|OA~4DI,m%тk뀗~[H?T|ime&D~LH,!fb,A{#/732^JT o֭b%>HCxb\/IlG )ōZy;R*'-v[/Shhz,q2&*jA蝚 CjLYKb8ʓ KbIbvhI*2nmf =TõҪK4ۛK&\.fUNO +'RP+)tD))+TW@ `BPڊ-4pVN{TRdKN%eW]8E?TI_*q5uR%h-q-M\ Tl3 qĕi[% *FܻnʲUKhmIhV.ۡ#OhGѸ{C!DoU I h22kpʢZT *i54Qe^"C(.:2smx8`<7۪7KH#9_Yx0-@{T|7]Ya6GjYW:vۖ3-Fu 4 IVh殣x22[nR|D!8y"AtP432(wd'$C_ڂ?ļw+&)Mqf~)50fe \7" Z OFUh3ja{i1syql` ӷSۤU4\iHtzrC(6EÃb}Pkj kc;kvE!t険Xn~b~+ #`,"LK-jUT!ۑ") ->j~d#iG*mW+60Q66켖au>1G?Z;Vj%qPOg[^acg::%7U+^{6 eF۹7_{PDI{*Ÿ8VjA{3y ΫqC6SU> +ۆހcEw[b`0 l2##HsY]xp^NG wcjR'|H3D8Sfۑ25ᓾj7夎 FrEr[>&JJNrYB\)o"{IW<ڷET$ <0y|L D,.3m'&D }Er(ngi fiq'1vKHfXײh3(6mO-ra"6J-ӫتsAm,g`w+ʶ4X7i 4EJ`N8AX0,Jc&W{=\0|;c:ރW.5 BKxX%H "UݒP%(RjrcX L'Ζl]*&ڐ G'en 0hţ3dK@uY%E,5UӞqvQ`ӷ|Ia"qtq0ey"o6eAہ }vpg1Ӈ|s]vxv=7Lp)XaoO+Np?}hFhظ`{D"| ?8 -8p1mY>ݮbV`e˧ɮ~˚ 4w.lGڶ1ѼX}leOOi P@KJ a-A4<8n:HcXCEZ#r03<@#>.=jkI,XZlh%.9JQؙEa2<wg3ɜ2m's.| v'~* wW8?Z0' ͹9rنҰgE{<'T@0d'ލ½ gZ LckV/ i(3 :+9{6Q5?@cw > dDC 'i)*\?V'-:-fberl2a#hHAInʲ5:8C̹m4# 'pI_{GH{Mk̨,`orlꅀ}\ƿ;5;[)yBWN>+Yz=L).š5 mHX/oZb9Y Y$j&;v A'㩅ӱ+4\Op>wңDαQkȇB,QxzQ՚%5ZD"3TYj'^ך%LZoHG \ͦ[>n\KGe;0]}';i,fb#j[mAϣj}/sy m/Gi_?gVliִMwjm6k?/͙l&߹gl= Fc6endstream endobj 168 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1218 >> stream xMLSW7 bM712`_8AGa":SkU>W*RiD񊿭R-"Fkq:}1.4s.s[4y=Z#ssͽ|I$]yy9&(r HC!4pU’T"I&kL6Ð˛ζfުEѢJf0Zmt( S\zc;fFfeM2h1γYEmbƊ[ l)Zmn%"iβ(4x"@,$D1&҈dE!"_bbBz *FHL;K%A(uMmCֆ!~6H͜#ct ai T ')HW箬,ǒNgK3ln;zlͿӍUWS L 8P W`7hUn0 jv]H9R>Fu i%WDD۔^d(ιcĎC")<"H` $>踀65[Pu ߈GELN޿02=KNwڏ9w Kv $HQl[XFP _ KY#H䩏j~ğefg#$ɵl$rH ]%.޹ IJ.7 7D`{sb G׸aH3/F:anܐ[(yfi;>CnlےǁFxMI]2jz 1Htj7zm{{MWP@{7zϯ=߇N2ݽw۹V[e~<vBaXCttӜ"̜&BۗWھi+^*W4i&t<1|e ?T0J"CB6ЉNO┬q2N}~ 97#g(yB4:1t{#rŞY ~e+, c >@ŝ!8Ux';K.]C;x;hx.@sQ)*D> stream xݮlKrwbCi۽<2υ H@dl$_PBEu7!RO1kUFe=$ٽvfeF23?X?]vO?-?䧣_8~]ǏOv|o:?yz韽xz˛?oLͺ~ݽ?~/~o~~˶ޫ~ӷȿ+??yo? ߽oeOHfW_7M/)`q?x[(]}*G~)Ig@g?//ԫ|?yb%oaO[ݏm$և=8۶\_[~Oo#wOǿ73h__9=~rzZ?W]H#_柽~s{d_f?{ŷ/jGƋv}];^~棺{_{U|ZEkx}WW?ï5^]6xh/]62\O۷&{oصb0{i|c>F(LƇ_ǯ61[l̯cȎa<~0DYݷz?.lիO5#N}>reD68uҘ~[}(~3ldNtԫ>xͭ]+K [=޾{8kB;7+9uyϲ12G `S^̧O\} KiafMx٘{K-ݬ?dWvK['W#ϺYgZ1U_= K?ݐwP< Ih|r+}O5^3R8Juo.>ut| X O@82xJ#'Du/(5dם5!;R/^3KP}:?w{")y:M!Q|Kȣ0Hס&E' $̶QߴKG՟xUM%{R|8_(*Yo(F("4kgo8BKn F;j/,!< 4J1ДF8:w(AhJS8"L5#nTM?9JhS > Ii[ÇPj~xE _<ø'P19",!|w: wkgg!M3I>R9ƛ}0ێ /"`JlGVДh#+̓!{k:R$LC_Дy*{e|0Ɗܟ W=G*"4bo?wU|EhJׯqjb`W#4% &)!va mR Uۗn!tO3!:阕a8Xĸ&PUcEhJ^[a;߰ rqXFvfFPT|ughܸuDyIM7T yKȫ>>u+*!",!gsF)4E*"4%_ֳ6Qُ`\4TX+mgqieٶ<1t[aiΡ8GД0uԍ(h˅]]# _a Ja?lM+*+,!_?m׶>sv"BSg_ζ;}EW^kxjJ>}ȟǭД|ׁnDC WFap/*1"4%gr^Wr aE ϙyIgݱER Uߗe6Mu$%~>)hQ UOCWXB^iu3Cs j ;>BW-[9)T? ]!xŋc箻`_)-䰟pd~7~P:>_HYE:JCWH:NkP Ei KcxŔU4zN{ !eU(]a !^n~2!cUh+R_,~nQ[(>'$$'( <+%*C$4%g(vڥg4Z IsB#s{ Ze@^eۗCJuEBSyf N9i& KfJbpUγIhJiej'*e$yH{qO4szdSE9ҞuUNIXBt_ X5%"Y$,!qF;/ y2 MɩWLz XՔѫlgД|UDO8g j:ssV/RvPr`,^<PuE9JI%4%'r ٓ(DQBQAܬQx6GQX^W1r'bR|Pc}^\Q9<Å'g"&)l|ݻQ0#屻@a[5*#'=}^yJ M)!zd]gsNF#ع=qsJH:g~~2uvc=Ky]bۃ?Fe%$=qxݨDBSr?F%L?݂8*GД |65Ŷ_'s)=' u_u+i.p08l:۠).,!?r=T94Ʌ%Lu~+٠dqL腰U&O(a [}W,Pep|}wv>WUfVwӚ}Dd6@[XBNyWн2).4%kz;Y/7i IO-zJT&q)9]<饇[7?ɳ\hJNz%w!q(<ͅooa`MU&Ms!Y}ј}ܤ9. #gK׺fgV<υ(pqwˋr^۵[ܵ'lZ%)9?쐢n,G*ÏДEwuevgGhJRO 5Z!EД| tx.4%ߍu 1b8y.$_GЮ {r)K7uk9 MvUmBS՗Ժ.NF5ȼONl(f'[yw,Nr&:ށwTb)_ "8ʥ#,!뇵v|\c+Д|M٠0ʣ#4%w\019ʦ#,!wj4laSsлv%lRsǧfCtUH82Qw

BQ}pf[t%dyńQ*["Jn(::Gl짝m:[V1 MWVbՅeaPXBOm+ǜД|pX'+ǜД|lCֶU0bssBS▩<usd!}󆳿sBݤ7,y=+Д|hOוwQHhJrڬMO[a9!a ^Rxv}9:$_7uVMoYJ+ߜÏД| 4`ls>‘Mus-2^w})Ḛ s9+<:{M/6sGmU>\ues1rl+CД|G |Cr9 M 楷v>;;fw]9 +y6t)MysӦO|sBSo[PtօoP(*V ^#\uS8bx=M+y/x(4%-:Doh7[!& M ~h+cД|uqٱiǶW1QhJcߟzW6>Da n#Tϡ~es@{e\tK1x(4%_YXåݯ|BS]\qüF_닶+/09 KWW㝮O[W>)!3j9+xozO\;0'q|"ify3(,!_lHO6(4%_16~W>FB]Ά_ykskW>Ea N:@ng_y+뮣gc#pd|s1/as8bW>GC)ag_M`+StG FlݹV0ϡPXBb-Y‚d+;c|s815ηs,iaV+/B|sѧ1{ۯ|‘Nks9'ۯ| zw17uO(x@(4%'+73F_ x9 8LW`J %1 M`'rs R9 MWaͯs 5HU_(4%ab:'/6k[ϼ?yk症Xl5HU`H-$2tk"HU\8-,!_^^{lGIE‘y 4OyǩJ%]s YP~TEBS巵G:?UmДWr]gG %HUa(4%2Mn4?U!U5)!T!UД|OuHQc($ztY9>W!U㡐t|=/c:.B#Ca Ͼ?YTFBG. fA"GC!۝OEHU`@(_9MJAPXB!y\\TEBS] \~TE‘Ua];4U]"|Mx6p7\xTEEBP;*n^*%XR+H\sTvڄJ=rHJFmk]@tTHY822vUɩʉ%ӫmt=>Y82:m{ӳ볦]rTDB&_'6GUM,4%e_x<Ƃ*&rp";Is[.:@KzДo/Y UPU-4%o; Vl*pr.`]o;{or|Ԙ[okI!ZXBZ ݷ uPU-$}QpQE('i)z%><՗/rBU´pd$iw%+%ytܽ+!ZXBN޴rɱPhJ~&coCIPXB~&Cj˟PUP(D}QO_qPXBRaz\ N‘Aɏ\ eNmOfC%TU9rۍ}=I{9vPQ,?q۠[uϥPU,,!xg.Rpd+&Jw9BUДlĉn"\ UeN:{ *ʜ+;X>@U}ДJkIYXB~"a#0<=@U#0VmeJved,&fa >ckG$-HTMz;gfgq?|=@Ec0 hkYhJVp[FST89> Ih\X5]~2qr|/ Vj#8~und;] eZU-?ryԽ\UXzb1#4f eZrtl踷obV_92 M {m8h}ۡH+ %'XZ=#O5ZU,,!Do{C6J"*rXmծ|P(Ҫ ,fa Md8ˡYhJ~fC?vҪ ,g)9!ݕ{Ӫ*,h) ?2~JRq3@p$jEôt|n<'bJrr5]qԪ*,j)ٚS7ٜsZ(rAt oRXՅ9H M \3a{\;VuaBSsR _@@sX9H K`ۀ;RsX1-*~'{ʡI} ,ⱪ s\ِsǪ2 DhJXٞ98׏Eq3|ʍ&V걪 s xzc]jǪ6̙ChJ~r놯* sQ{]H sYU9yM iKGw>kȪ>̙C(*~n _7 s)a 0e ! Ô3{U!|jÜ16,ޔ0ԏUm3ДDن^9Z~jÜ2 kkPTY:;+X C82f2]nC=[9YK}wbn,hb5 a ) *ֵN`zUC+PelUD!?vj>ڂCα- Ԕ&'ۚ}oPViJBA.,c;(J_4g )!'g}}kU,!4%?ݶcne.`4g )aL-^B [է[}+YV`x`4 !~FnsQViBymx#XViNBS=tDg[9_GYEε kU!4%?ww\f_4 )OxMs藺C [9yKw,6~*Ԝ;%lU!4%ɳ2Qs|pe\VUjBS$"3\̦B5e Nl,e25 xu*٢LyBXB~o|K͵lQ4!$cԾk3s%[U9KMjJ lUd7> JuU5!4%dK7@ uQXW}eBSAcUq3pd pub_9 K}DŽIvQмTW}cBSviеxFU}Д4?JȄ%;>~)@UL(*so :Y*˄%䧀j]C˄woP}Ne}k'z6 UT&4%߽fb.~\W}eBSs~?8[@U݇t&eũVҿ*s2&[u_KP͕U\&4%߽cF/NUT&,!y֨JKωLXB~^y5OݜKωLXBZS09+ϹLhJz#hf>GϕU&4%?l;c?\WE}NhBֻOGj>3! pnn XxwfBS=uk9hppLXB~FbWsLhJz^ݬKT!4)a~֘)%*ut4?&)~I\Z=zCδBSB>oK#Eb$ :L+$t4'F`9 MwwzCδˆͯ7 l9 Mwe9!6Qqi/-},{bwȹVhJpymxiDRZgewf;& ixV_ K!2a ݮ x;@ 8D&,!dZ' %*Д|nX@%*Д@3;?L%*SД o9sr||h bpH9LH:~oݓ^hC`BS~u'FNH 9 Mwڼ_ JT!g0){ZKT!e1a w5AMCNeBSBֳGy H 9 GϝwGZ3`CNfSf"Qᆜʄ%;vow{@$*ڐ3ДNF$*ސ3Д|ןu1BIT!3)Ϡvo)=07&,!{Om>H$*0~kQciER]ǦHT!'Za !덾cjg"QІeL<v 8B 9 Kv'ia1`k)VhJ֌X}k9VhJ~6Es GiDEr|>s4HQDRxVɪxOQpb#,|]\UhJ'r>i@ 9 KF fJR!\%7үvB 9 K^G2" 9 M |TwhEJR]Z#s$IUXBAz4};&NRa`%~KEVR^%#/ݜw%ɩU823o-LMfJR[;#nj"%HNBSB]Z$eX!HNjf$LhJya?T$'3xf~ìI*RsYDHRɄ{#oaqQ$əLhJw8Ut_2QT&4%ػsȁT$%3a (Z5h 9 KleL_`#FvEQ]Wl|ΐ 9 KSHI*Д:~z%IVXB`:?&HNz\"<|U7R,+4%ppkg¦'HH%t0{&BRЏ`= uSzN 9 K9\uo *řT#gW)!7鮤.@*4%߭VZ={,?1I@rvл07`*4%dSX b 9 Mj+8I@Rlʯ1I@rzZ8s_d$IUXB^ [$Lb 9 MjZ}-7} *ߥi 7k {8I@bzxlڜ@dF$H VH:_uJ80*,!}ˊЋBEH]~~LήBS\fY f7IUXBaWzfJ3`&7ɹUH:ayD?0s*4%=zdXCLάֹ/ڥв m* 3||oMdrfлC>"LάBSV Ћ_TDfkk_KwZ{^lS1#W۬h)ġڙT4&g|)i/~~oU@6i_hJp|fhS%{Z7}]荁03+4%Ӻk8M29 G{R(B_T\&X)yON0[79VhJ@o*2Д|_5~תLγBSB6֮1h*D+4%Mq_)o*63ДOTjQ~Si;[/uv/H8ɹVXB߱&l+4%aX#)LN NgR{g눻WJNgrlm3ɀ&gZxb 39 I;ex~+Se[O/rl \F9 KxVO7*j3ДۉEˁ{YQδBS8k^KH"YQNB6=fTf%NJk(MɄ*lf{9*htcX~VJ0ާ!BNJ2dTQpkY3|{6OdF) G{M%&T %WTJ19_hJG :@FV*QBҁ17ܨB) /$ߝmX\yRŊrw`VܞK徙Rrã'(ey!nOTq兦7q *HpdvIfz%T兦;wkҿhH!Y^hJ/y7wwn; "D) K{:3CPNBS^0'|[+P\/4%8dFn\ Xg ^XB 3nU*{a BܪUBS>5xH*r5}4T5fUO=8J׽֪UNBS78N댴6oVErw9>sܸ3 [/,w ,T$[_hJBV+dV9 MO/_6Xt [ʹ_H:yھa{Zʙ_XBޟ;BRW[ʉ_XBޟfnԉl*g}!逇CZV/-h}-&8BkwX䚱VR| w9k*{!xϜ['LOZ_hJ77X3תUBS}۷jVr{\jf[_H:o{AomgUQ%=sVx\Vq'U᫜%suyʲ*x|a3= *zҽ}qg̈́W9 KmX =w W) KHMW) EliY$ҭ\T/,c|1( [d/4%߱@kl*zax>3WkEf0Dvzl5\_5V,/4%ߩjg7hU*y)^m/hU*'z)yUHU9 MǘVūB XR|fY^H:G6歃ǙeU*za   fU*'|a yr5 T/,!cRۙhVŪr| ZUѪK8 M ^뢚)Dƶv-oA;w3XU([Aвw7|W㋔bhفM{]tۉbhنM _X;gZ"BS69w3ꉲU-d`zjeZv!BSF7ZpmD&DXBF?RU-)k{s'ValF%؛Ae-y!vsmgVQdE%{˂: pqlCNDH:hѱfJH[Ҳ ʹ# M|N X[R`:,-{v?Y[rwZBMXh9 MwuU-'|a nkcfmG^H:p1 VgV1ꅤ}vf?F@mJˉ^XB^gW)X#,Ͱi) I^`_0Gí遴U-y)>vu=ޱ h9 Kwm1-ϘBh9 KeɌ:b$%3pd0|PNbh9 In͘bh9 M ~w?*rpdRwj![rwW5*~Дw7>݈8[϶]oΥ<N|lK)[в<(CG9[Eђw|),9[вw|:q.|%V!A%䝟͔"hنMw#Wh*Mpd|OQ/zg4fVA}nؾ҈*]ДOVlCFDhJxVAhF#7cCs;)[в[qՀ ӭi8י9[ђwz:_ǷRlCNDhJx[n6U-;)83m~Α[CʰZ|]'WD%{7E5vXDï8f3fXlE%rr {ىM ~EXqDu ^D(*5r^Ӳb>DhJp+3^ɾGMl3_!_ۗ@+—,Bxf(_v"BS_CjkV/9!_Xq9=0S%'",!8rwTdNDhJpbK̈/I50._ BSx!0` ʘ/t.lL ̗Wd $|ىMWqI ^hJZF8Ä+51)B~Rb66̱XlBg%6c4 {مMOK=VV|/;)o|ni(`\cmDgD+—ДYQ_[H`Ki`R`K~DXB~^bŜ9L |ٕKe R8/[a \Д\oȯyقMl>@/[a وwbi,ŝ3+^ Od-s8 %"$~vx z~Ken1/,!8캾mB2_rk^[l}qŕ3޴  \fܯ`zGE1p>$^ 0`M`~KC82(ݚkZ, e!,!xZb*tC=qx}C82p(m޽p}ChJp(̔:?*͇ДQJ֍fWl>%+vlz Z9W=J_J̯zzKB??5؋_Eʨ;wv@ PER3^6Uv:ѥmChJ~s`WdB%!Nľd/!T7U"{هM ~2r.,WEǢ?UkKnDXB~ Vh/!YE;v,WlG%Q]tWlfWEr^RKNDH:p+ڡG7eh1ѿ e",!xm7]"+^v!Bҁ',ڇAUd/{)?G[WlB1ӾUl/a [p}WB:|~+o`C4$VfLɉKhlHDnFDXB~Fci6&xc!BSB\(:Odp>DXB~*bOf X@lD%rZzN\ |يK~EwXxEXpD#?]+ȗƗC{R WXPdD#2-{49 %"$x5̃Za3_ BҁOѳe/~'s@DXBp){w80п%!,!xcGz6yz~K>W_A5`0LzɀI{T~a~DH:p)׎fC^v BSO9-|kEWl@%GWQ $e"4%22p^/ %"$8q^DuxUd/)i^=ӿe"4%ev0e",!=T^!BSsnJB'@*Д\ݵum+^"+[^v"_/,ggWlEr@*ДdO4L{ّM ENg+luߒ{&/a aqi7yZnb|ٔM e]-KmDT(|ٓI;FwY`'cy'OXHw> f v&XqFgRv&fDhJ,Xjhk߄+̗͈XO/C\ AsZ VDXB~b{׎0oPV1?lA c!B: 1 =f",! JV7OoV/a y'JMc7@ ^"~*9n?"_Er:y'W%/0M,4/4%8avlѽq\ً뙰%x u>ŏ3L"{~KP7srChJ~6b!o?fW>%_h_\J~cKČ* tժO_^#W ; _ C`^!BS[,K~kEW1C2"~? e",!b27WqdF%'$'bd~DhJzґpUp/a \v!I/8e?"4%îo_8Q ₼U`/;a ~u$V^v"BSBs+tP+ r7%`s /C!KV1)kjc 3,^vhk_ ܉vE_EI,MM"{vG|VDXܱgjb˖CH:~.Bs* dn<)@L tKe%?pe!4%xQUkX}%W1:ZktA_wSi:}vfW %'#a:UD/'{)UUL/{)swTܯbz9 M 9W<^\΄'|%"e"4%u=fڙUT/)/uq\/!gSa#%",!Cma!p%"xd{ ЯzنKB4pD`~>DhJ~*x^v"BS_ZUD/;)Ն>>^2#rZSUD/)vu+^6#3_/w {يK%|ζ03^6" ++"?qYk|6e"$?aWNv=ӁNUd/{)͊ml/[> ;e"4%="y"{ɅKOD=AMB{قG.Mh_ -l6㿂e!$8<[>{|M #\j֏`y+ly< ||Kr}NfXl>2&V|`ChJp)7N =Q e",!n~uWk yYt|u-c BSS9oV#M3c4"Bҁ[_YPc!BS[i,Z*YlD#6DIpVDhJ~>bVh6S;"81Vx/[a o+{FKVDH:{ۻ_L7#e"$?DhJp+6-Vp/a o6FJ_~5 Lpd>RC(|/4%8텈 ^N/:|qom_hJڋZ_rq~`Gk܋뙾E'Wѽ?MǞgXѽlA"V;YcYaK.DH:wˊ0=Se"4%ӯO/![1fXC%g"EW* XQC?>U 6e"4%8rϲA }PfXlD%Ӫ-*+ΗДʩqӹza +җ݈ДY.~+֗숰wLj? e3",!u9^" 8_2#c9mNc&nDXB~2(Gd З툰tĢ9|ػ ,|ٍM _>40F#ǢPdN ^DhJ֎ B|يGGtYo {يM |}]n&ėpdn}70 e",!81+7C!`Aܸ~4V(g X1@GaA/ ȗ R˚5 b|ـM >0Not9`?j'DV/{a mRULό Η=t9rT7kap\ C82~nVŁLV1)`&,Ɋ;f"4%8sI?mydwDhJp*Z}%8YD'%L'1XD'%V>fmU3 H_6#BS+c|s ؗ ZF$yf89eK"4%8 F+eK",!?19QbSs@˖DhJ~fw G&XIIZ`'U Lx_$‘k[ 'DXH%%.;ltͱ H_vBS y ԗ ΗlF˩_"nY,`/,!~㎕+W7A)Bp+5R wTb|هM nSXXb|هM ne7n&ﶟH` |v<}+ȗMT4knV/;YWjwV/)i\7̎("}MLM-(h`EܸHeV/ya|0,Iy˾CXBaŏ 4_ V/)I 7w(`EI;ljvV/9!o;FF,M{ـM >E+gt0V/Ya jRa;C(* v-%0e!4%?#ѐ} {|MI,Χ!X?`;4ϚJFX`A#'$:L@*Дõ:=>"{M .eM'ݎgnKDXB)̉.crKNDXBpfo"{ًM EKS_wx[@*ДWƵ7ӿe/"4%8(X{vDhJp-#nW\`A1Ko`tV۩tV^~ \u!I#+݈֘ДvmnDhJ,1o(JV1aki69#Ɋ7f"4%?+aZS3^v"BS.&vb{ىM |1BoI+WFazg&XD%2XqpdFDXBp+D5(`EXm>ts)`E|z;\n?q e",!x+p' ,H_ Kѧa'gXA?%}V˗y^hJ~Fb\EV/{)o;»\I`A/ xFy^hJ:4zM*9ťL`C_EX4͙UD/a `H~7Pe"4%8۞;GWQlC2BLk%\PT|D"oz*Д|baTG_E\={CXBg_'_zقMOF<7C`.DhJ*R_03^6!SۗMo< zلK^u~h1 e#",!q=aز_EwWY#*Д ,z݋*ДW6e+"4%81͐ױWнD_ZiT_ ʵZls/b2^PДjB+{g*YFjaџX^FJV1;)i _)1gF<&7"  ZzoJV1)Ɉnfu |نKE,aIog4V|/)Ę= `\Ej F/a WGذ{fK>D(*p*b8^ BSsf^ BS1ξ!~3,_ _NR\;p \Jt-{g X?}UV[f5"V|/y) hP_.@`r~axX `r/k`_hJ`zɚ 025MCh5^3/a :`\>8_6!S33_ BҁON ŷOb|قM \#_y+ƗДuo _"BSzЎɫvɆ V/[a =W3 _v"_iY>p"o;ZE>Y? a}ߓeEv:6i;Ɋ=f'"4%?+S0:B:%+",!L_# +ЗWFX x.e+"4%1m}  @_v"‘[p? $|Gn|ݿ5;+ДDޗvB `EXl9[fFٙV/[a kq>R e'",!-Hs sƀK^DXB~^aӛV/g})\ݓI"|9 M ޠ~T9a /,!ͥwu7c/4%y^v mS |q%?/q]V/)4s }9o-%;",!xH{#@3^DH:_kcݑ##oh՜ /kc `uKnXWjK sO2(^t{d#I&J[:6rD[:}3f=c1"%(P,뀛ޜ`f.k)C%7E+0XH}+0XHʺ{ V`b* has^.`&v+~ .U;c%"eH/1i {\YBD[º5[4)ݛG*DJPSZṆ #01XHxED|,? $6=olof@c!eH(Z"u#|,? $1vf.+)CR9'g Ll>!Rq] BDj`W/,c!"eHP#v|>!Rr [ 8*Dʐ_b#03HH9, CJEj|Ǝhfk)Co;D6xU35!yU5-=c "eH)2=Z?+Wz 0XHIŞ=V RA~umgf+N[{۾=V!RM>^*=#RtwJ,X3!ydlL3ň@h5Ӂ`*DJPS67T㞪<>!R};Ԏlc "U@%1Z)z0sXHJ6q}bTA'\&+)ZY7h[2DU:ފe6i*H+ 2sCYqY/yC ;7pSud"eHP+ Ƣ^dNf# B9j7E2YHJ{ŋ΂|C {$p}ށn|,C {$xx6t>`!"50* F=pD&oYYGL >!R= "Fz)Ahbrq?=y)C jk}0&x 4@2=S5zCʐGb­kUۛC'nZ{? :Y՘CB` 2$*5q%zBDʐWNw"R5>L^2 V`2$E$ |>"R#^G`f6)jin2 l>#R2.YtdME|,F =w?4RD'ko {y|$E zeLU Mc)"U@#aƌIh& Z9=Zz0XHt5]03suU2DUoeg8 {,Aj{> eG]ĺ\ =VR]l Sz01X~HwI۷q~y|,? *EKsA9UfK)CoІtRs<>!RyDm#"U@P*aĤq#3ˠB -ϝwd"eH޻1mLNf#+)C^щV=̃d)"eH Se۶AC)3!AcE+&Q`"2$35TAГKb`[fn2o vic]"eH3gcU"50P.eM]/35!A\5uy}I e=̼>%R!bL>V%R]}wmEc2$}~zD `b1K4i2[`1Kk3Y_JPf88!kG%33Aݹ*DpTw4+tBf`b* xWhg}A:5ΨV`2$(ق|A ɻ%VifVk mOz 甽9}A j\ՔewC0XHJ[k ݻDʐTGT1E_0XH4hc"eH*'$?[rn1~B |PڠP|#"U@P+m}jl)=:-X~,G eMlcmc1"U@P,z#ƢooՇ"W0sHHM,؏w'},G e1욎=#E"U@T]+gA>V$RrZT3j?nG0sXHMZ@-Zp3/;&;:301XHTg5|Xc="eHPN(ABہrDY/x{`(2$hdCo]tpy"N4,2CglWOFUf>$)CcUj*Y9,L e1Vew~eF22$k󔞮eH*殺3 w0XHwRX?GfN>]S{01XHK{zP"{0XHyֈٸ;;9I (JaD5ǚDʐn ko8z af$* hiYCH e&a"2$FmFf+)C~զr0s ajEY/;0 :ci5"0 @UO\o[s@OHWqyG%@Kkm`b"X']g0sXHRqs` &k"o: gg0sXH4]7(\?V#RQf3nLh ~D{)N݋re:Dʐn5b[ f)C.Gi_03XH tJj@U f+)CNY&=`o f "ᄞMm&.'}$@ )&SVK#},@ G54f>!R~a ~`2$8-ۉ̼>"Rvs.{?0XH46oE~`2$LnہrD'4~P8l `2$8, E=h3Ϗ%!:EF}`f(* 律m^&/~,I e9;]L?%Rmix}cU"eH.Et?/y~K ɻ*}rL?%R=KVLT}c]"eHP/: oCtPvDʐ_Ck_/y~L ɻ*3y fk)C8pX/8'c eHW1@.>X;Z*@ʐ,P蠃^dFT@ OC;di_*@{l=g[#ʗ* ^=~˼5|)C2glMoF/U@P|gsܷYcΗ2$_)|68pƔ/U@XÉijkDR ށ5f|)C.8<~2^JP۵j8{mx2k^oCZc* hu%XkLR;`b}lйo/eHPMl~ˬ5&z7 f}˜p[K+禧Уj,D ;F;ktP{oRDʐsak\˨ [f* pԥ :-XHVP5:oJDʐWp短Ogp2WTym?|u-sXHw/6Z9z-XHt vYo@ z.vE[樱2$h?vc+[樑* xuU/'iEzesV:E~[楱2$nnmAŧ*E-HHJ[v/.`eNK)C6Yg{jl4|&Wp`e3!Ag!>[K44=ՖYiLR;XhJ@-q4z:l+i^`cTۖ9iDR-^(gnזhLR;>Z-sј w@Fu V[1Ka̶Hc* (^4ݬ {ml/eH-7]ݖiLRޝ hf023^ `COo{>727^ʐ __z,Oc2$h_ &G%ynƄ/eHzv9jDR]|,xyW=K B_+ Ǐ'<+&})m>hnqE/%(PW=KLIVYK/N_dk%STAV˥VfZ1K Acb ~VLR=$'tœ Lİb* xazj>VWŃ:xa5H4O[+ƫ'd VfVK רE轗TR%xeޜ*-++ J@M68 VfX1KW[ʢ;S+s J8XD[+ :)yL+&yho굦d2ϊ^ʐtA$<+z)C"Xqݱ޿̵ t/50P;* VW1K0jiYVRM'l\,+&{vTBW+sK W[sz;+ @gy ϙݬ̩bҗ2$^Mato^Ībҗ* a7Q?梡*{) Lde.3!AN6-j7UR=o-|*z<^@\*fz)Cp.罕TR5M85TLR;٬EO/2^ʐ vdE_wq~VbWK^ tC+1 +7O`hen!Aغ-L VY1KW[|{*VfZ1K>#­%̵bҗ2F[OiE6D̵RFNw&%NT ^B72)VpM[ջ,-)a +WP}`$e&T Xod3s4IK*eH>h%e>3!ݳC^JDLR+NӍ%e>!R^9I1J WhO?45DDRS&gKND̮Rs.oo VRf(UtgO(xI1K WgȺeo$e&Q`{)AJ; h+ eѽT́]g?!&{ yE)qkM54HED/U@кÆʱk2~2y^ʐ=qII4/U@>[it}79D) 7s4YHG,/eH-S6:TB>R1KWhOVd 6Rf1K4A ߖ^|fDRٻ=zsp2^ʐ>رӝ9DR3|jaD"&~)Cg*YX6t)3 ƫ8xH?L+eHN%^d$%FTSWMʬ"YyF꧌e9E̳RИeZQ&eN!yE?ٯݤ)b"]{5_F/)e \|ZuX'b2{Ѷ82Vʐ.z Lq'b2$0IzE;)sj>|xU ,b* kd~B[v ~R1J]~r+̞a* qE,fY|9I X)9=~ʾ]&XZ*Ͱ-̠az* EƤyǢM̠!~"CFe'k{'3g\ 'Bdz0V)CLd s!y%qu;N0Jr~App2wUOro2oUp|R܌KX{Y3LRz=({&f≏0w24"&e +>Z.u2RM`Ɓ\{)C9=Zg8̖!Ɨ"=0 MJ,m0iz&d_ gzUo;7+*eH>gAN|޹\W)CT85靛̕a~2$[mޢ޻ɌWe>yn2_(V|: nܱ̕a2{B ߇4q2DRտfn&sdf ɫ'm2SyV5[l1z9LYg:'o MJWNIM8C M0JWn]li&sfi '<Ĝa* GcѾ}Y)CH>9Y5 Ę<Ġ!": 'gc ',kt,X)C'L ;8;4+eH^{v̝͘a2$hګvNbJx! ڟ3LRsisljnNNf0JW۞Xw-e!LRm7h} I0JO9q3βyGL2?IVʐ|"F4Y6*wMKIVzm(c$DФ k]'x$3E@pM2G(M{˂z$CѤ glx$I0I]ۥ-Yg!hRlF$Fe44)CRs fII ^ԟ&p{tL27(M|ʈo.1IܐpW~=W"iɎ-ɜX)C뼦z$Bc 篜NX a* 2[׺.+a!̰RU&q7qK2+VuknI0J}`d^s!;ooygd^s!-*z$3Cb :JU8a* 8-zuH'8&+U@>Dk{4 I0J<p{zlpL27V/w/ɼfZ)C~sNc!LRU!w -!*{≩,a2$qv/M I0J׹3Pڻ&#\+eHxzڭgp'&#\+eH>3 EI0J՛&#¤&eHo@LI0IRY<aN2$0_*>^e!iR;G|"$sCӤ N#8&¤&eH^]:Ah|3<aN22CÏ Ib0IrZb_Pd!AIdNg3)C>^QՁ`Qd!sͳ`Rds!yMn[B1@6EfA0It8na.E@0IO8u3w)2YMʐ}5҈Rd!zz5jMYLkRk1BF¬w)2 IMӦA&E8>MÑF=|EjR4f[|Fswq}`2$f+E̴R}7^Dm &Eb@0JP?O ? =`2$D/r'x@D+U@^92S嗤E>0JO8`Pd!٘=Ȏ>(2YVpvr}`F2$$i4\n|QdQYF779&eH>bB4yVoQdsTڃ)@"sӤ k''̣E}`N2$0_{5^4)2 9M|vF" Ӥ ̷{nxS>EA0IP*aV@)2YMʐrɧ_}̃`V2$c1ʕAOyפ+(W{*3/|Ĺ`V2$p߹#5jr&5V<`^2$1Aь;"q(2MrA 9K3!yu~@3IW,_=I ~@3I=a:K!Yό&eHw͢bi4;C IҤ kveCs~@3IoWUd>s!V!iR55gFG > ȫvG I> '"UڴwlD|¢25 ,ۏvOD(AkXȲ}f5)C)#0Q ,gR* h.쎏B4lYMʐ-(#ejRd>Ӛ!y}I4A!%LkR=r}f5)C(hpϤ&50^{@ֶO+0Yϔ&eH^8{U=IϜ&U@>P!4 f@3IXl@hR㕁 ^y Ȳ|3)Cl~C<Mʐ{5Xz\ n@3I]Ϋg#Y|&eH`9#ϫ\Lʐ>Ц/T MzZ2,g:* ?02LgRUϵ)og,g62$hѧz' Τ [umehR[7uodi>sTcw|LR5x4Y "eHG wM3Icz:>,&*U ^Y.<&eH^6yuqɞ>ri1)C~n`~QDdRі8ng4Ty- L( vJ3cHגͺDD[mg43!yj xd}}Re3z4Rs|;˥3 +V*!!βixNATHdCK\ZBؑt;KyH ב(Ý!h Af>9vyQLR^F勗}u v<3cHwm~JȰC+mKXg,Pa!βg )CVRF"nȰ9Cʐ {3:K0+ @f*3x3$;e"/KjDYn$!eH]}ڨ(,7e2>ˌDK`)C+ZF '/?$Ce۲,l2[H6捵ŀa1MTf B,{W3<6Q- yjcx}RλNx_/Jd$)CS*4F&IjtvSJjk$p>'Y!U@L=5Y!eHI uj*OcC \,C%*  ͪёIl> 55M7 >iu a)?eҐ͒S aSGm)6KN) |?T}6N* MLR@RH~erh -o,,U@S:X %`3,,eH^d^0f Gh)CB?0S}1}Ҙe `Šp:ڧYNAZʐoKx4YNJ5H^cya\HC1mlo,'d2$圐̅1 > w6+^Qs;Cʐ~} ]sYd"2Hf " YDʐjKa0id"2H DD&:OI!U@`ܨ id"2uHwq=8w2Yd!2sHWz(w#i,Cd"hШn~CR]nEs IcFRȬ!50^7]F 9dRphaz;wW!rCRtwJڪ@f!f)Cfλ_R,?,eH^7Fp ,K-eH+[`Tvd%r"PfZva˒1RtwZ]fZ$`-U@^+i,X-eHzMIJ]-,P-U@ xbO꧍>_r1 R}B ,kY.ƱZʐn+Ag$~ _ek)CJVijWŬ-K8XKwض=O۲c!y?hU_,'ޡ7 yʄO!s2&h-kz~ܲDʐ#p۞O޲܌)Dʐnd?߲܌c!yȈ g\=/ [q2$|ǎۻcf 1ݮl>.˲3R}xnp\8,7H-eH^=Ừ&PoInFZj`q_ݲ!yމ8\,)-50^9s-(BKXXP}p (뒶,!-U@wכmVܦ-8BKW[<ڲ#!yJ ҧmYJZ *t/cVHے"xb ƎVs,,eH^=2{Ig(cٲ|c!y`7[j^>i2R]0oW2,8-E8^1:/R,0-eHzj(}n= {N8YӉeYi)CjZ>ˍ̇BT!np r,(E8ӵ?4M~3,(eH` ad+(z8"Jx6{ʨj QPH* MաBceiEoo>`kQD3*bFY^.5JRa%dFYAZʐQa":DGr%>!bnzS$,U@Qu͵)!5 RT䗂(z8BK]1j1ό#!yEZk&Qp2$ڡΆ(I}(FKUؑ}j= U{V όbT!75fOӉ>1ʲR]U t0>eyORU!dȉ|!!jݣ/BN;F /&DYY`g$0(U@^m0ϨψtàT!Zg keGB)Cjog\,H(U@^k}҉_(Iv8J.pu.!ʲ OG;ItGYp42$cC|Qe {fWջ{N\' Y~1QʐL,{THB !!vz{44$I1(*Jw 6>, Y~1QʐTh9 9H_pT2$lm}*G(KA􂣢T!vn}$ TL-WWd F`AU 5Y̋R$@-U@~'ӎR٘di)CFZ+Ys}BIiS}CLCe L<95C$CTy_΄,-U@~~>'қ04OD,!ΰ7ݬ}* L]D,BTy -=~,Ǡ(U@^fɞ]e qS{1 ״>I R}&M l{C,$08J}~nu! Rne')H^p0* d.3fhC> RtU϶4JLsD2$p`B{Wo(eHqؙߨS,? ϬG-5]Ż4=D)CSA_30z៩zRHӋRt=GF)CBڌm/9hLS* |T=G!)C'JQEU=}Rs㎟ 3UqQʐ=֬MP(eHn(3iρQx:Yyϔ=E)CB0i&"H{RuQζiO=Er?S ܧEF;LsP* X-+޼3mAQpbE? qSݝi{R eWo!}>e3mO!Qx@33ϔ=GD)CBܭӞ:N ϔ=D)CBl{E}x3Ϥ=DBl{_ FP(eHMjGxV9*Jw-,zvZ}kPqQp1T] ? {ۻ[|>AP$eH9vp44G )C}@ Qzih@Rc۷>LES* ? lWkE:; <ٝMU:; ,v9I"U{c>Fov9IbJ}Z/3AH}4̄_ILH# pKnj 3QQʐ;7LN- 3QQʐn jЮDHsT* ?f@G/3AQ9WTl+LEsT2ްDmڙ(eH~&Ycb^3QQʐsv CP{h Rv{ڸ/hIRe4GEŞxC{h>RSH^ig*Ï!#&LxPڙ$eHSM0 Y LDs* ;xv"9Hb3'7~!H3 GʐP ?44)AjevN4)Cfo5LAs2$ћ3Wٙ$U@9%0$hLr2$?盱MU@RҶǾ]/j3!HʐrFd$U@` @!a{Q VARsTk}h3Hʐ2-QI1(Lr2$̈\6 i!HvӴb WTzD;EU=R՞b0ykPZ#eHP~FBTZ#U@~6862*Gez7nc 6S} O&lAfj!!F\}C_zM V>REj^fz"Tb_1n6S +ךNfZgiZw-T=Rwƶ0ײN#U@i[d3ʱGʐw R6ө{ `s[]:5(U =R5“u+,+Lr2$?Gƶ麌WJ#eH>E7w8!J6OfIJu3M]ʐuoDݘiBRCm[ܰMD>"uLF* {E׸8;1Sӥ Tl>LN2$|}ܸ>Lf2$鸱F^8&0d8>"K] p!j!)C:nB>Rs 2<3MGʐdhDo٫zᘈB>R8R*׍&#eH~6dXQݘiB>RtO$=1| +LM{vt!G)CBZW_ _c 9HT{^=&0 6Y:Z WC1˥ ȫ87bÐ{͘AR/Ѹ^5f7TL?}(UP"-.E8^ù۹"YHԌ.eH~2Y˨r3=;\ʐ|͠ooc&iK s  ,S]˥ gC^$2Ż\ʐx2E\|N˂30!ȳL{F2.8 R2;]ʐU~mAeڋw!զNB2].qCy{ <ˤWL32n:?v@]t,^ +7VA3)oZ&xKWm6ۤ ,^˥ 63fF/RtOc=F 4Z&xKWlP Y2\ʐ g7]}Ft)C#5MZNK4ot)AA4X1#Sq^e6T!uُڻv -S_ϥ Of&]?%Z"xKر¦(/RUvUR*OYxK)̈;L{.2$ہzh ]JPܹ2Ne 7x-ێ;^ Tq)C®kU9^P&sx?I׍yiò6Lv* mE_2ûIʐ|LІ"۴F"(8!kw6!E (S7ͥ g0F*HL&* a} kWA=.E8^5H~k2}{\ʐF?iL~t"(S8ǥ ɫS2(8˥ +Fma0(*(S8ѥ 񠱧 )RZ'6]{%D2 42WB.U@^uX8XPrxKwcnP&sxOIP_ (`z*L"z* 2IC~9H.uPqx;I{EN :AAIpvMEYz'929I ] Nsdx]=Ն_W$U@z`gX/$eHwǷiHpdjTyUϠ P(F&%B5=8xt8_52{\ʐf8msrw^AQ LM>* AB{LKF2$aƹp^so*)CJj[˯t4G&(x_I"΢^2;ё VRU4A+JLFՑi VRwٰW}%U@^KP # s7ձ1DZ* Z1nP~t/?iAJpڳ3:=2]AJ3n8^z$TA8y>pRR]th-'$[J4j>O'$;JBĒ |ἧ 4^bgKXʐwL*b Ńb wg}s>cqWR9+$g,KʐG=Ex!yUb=D>q[R]/̎3&%eHw bktN ޒ* wmA$~B漵 {*WkZ ygIbU{X?csYRMnR/(?sYR a@Β2BvZ|M֒2$΃*Y?ct^Rծ۰+22lƞ O<ͫ#fXʐ˂l7u 'c)C3;E 'c)Crl0fXt3 :kFQz;g9hoNzؓw!a+h{Β2$&We ',)C1Ɗ ',)C/eL6cO[R>e@Eȓ7Tywlސ w׌;yKUfXGԮG~͸W!ٶ3"fɫXʐi-w*2$?}7V׌;yK?d1fٯafX֏ߪ,)^Rg8BqYS k]'c6pYS `V,)^R1= 2e,U@~zjAmCR&&;釷8ޅG 4Q/`rfVqSXFOxOHuHDxWxʁ]EX=me+V PcOZ!ђ"̭ee|kVʐo?({T)<.2VF~ =H3h="+c#^RH0vcX৞26E,eH>gī9!zJTy}>ffv]DyHϲ٬qh7CdџW}<-d, ?uLùמϫC$ms&(!QAZW϶Gr?W)̫'5da?X)As*}-9=!d_!9$Y*U@~.uiPJ{;TvLY w^RU kN+Eʐr9Q{_32 @ϫEgC \ 3f8?ܹ,r* aد.'׊T CBKDJPcF 1_n]W^Rt[>D$Fq[jߡYh*E8:t|>؛հ@&Y/ YL%"eH~*j+,22$daϚGm YP"U@^ÏfcaZxkE<tW6QxQM+/r}Z@0phyH璣Z{ ,R* 6>F%З5^(RӍ&} hA$}䣨Ɵx4pfE40 ]Y}7VzYD ,r ѠF6,** bs?]liZ!e׊!k#ua/ iV k:4^+R`h|YX"E8> gksl.e>)IvUL!eq?)CzQZ!$A>)rsQLCS* rT5K(ET }bH$7K]4Y"eHlukm!$׋Tw~ ]v>$?))nP߆XT kNMJS* L6(MIc"ﮙU7z}*RuV4Ȅ]XX ݧSE{ZQug2$w{caM8 ;;۶1tS5o ;;۵H=Jakg?)Croe.ynl#50^?ـ;;۵H5]#ZT ^1l'#U@i릯}.F {( ݃]+ւ)\a eۃTy2~}bw8~93zSP?S2$O(:{(H>֊[&J6}0Rem)p'dzb7}o_hRA-ԯl32$vaj!HVtnk5Y1ayVu =f ՚D~Ru¸Wj K 7.(Pi[ ^I5LgKn4xTX M\z,3kr>긧\zWCk@sAo]*@ p}}K ]7'OU2>b[RU_7끙gϖT::wA+|tumQ9Cw(gϖT2|ӺhIs]4令{YmɂC5#mVIUm +gUqj}M},z-zgl>__m[׶F_g#~s⽷=5Q:~볿>4P?~e{~o]6 ~Q`}Y?}ŗMx׶nhH.oi+YOЯiZ?opWOECi~-˩?WGK۷EO?;GKo{<}?}~ezN_q_?a -h~vi?[ RiڏS^sw_xxc#%L lļ}/__$Nc>8tp!6,˧~=K{7'VqeOK]ϿmGMoT7O_OlΪɟ)l}?+U- 0loxy<(\?'i8G{/-<}".}lu?9*%·w }mA;x5Ҷďr-Tݫўx~c[_OidmlVD﷉|nF/' >od??Ѩ؏?׏=gO ۏ~3~T?~^A{;h1x`>k3mU`gc% u--ֵؽg?^Wi+h|I4B7-UDۏ_ǣ m93qNٰ'c!=ϖL7u?7×o}{Ӱ61ٽ=m Xx #Ľ>O{cV6ޞ?L]+/ׇ^B>`oؠ?=ivJ\]=SW] -qP5mK4hr׶=Dzcb nh`q+i#+i*}v?|@t!'|qG mTnKA{Ӹ~Z;{uyO{~-aVmכٟ!q~,#\? 7/Z\4x:m`la>siы4BGO#4i9Lq͏zmnQzI}\H{I7}~@ [Kv_$v녛d9~g_ޞ_?_&j_=E}׆\Sm\?&*P:y^Hw7Ux[F8umQ Դ=Ūm`eW=E{]H?ݣ96r&̍X\i<{~(G MQI3zMLlP[AZ@z"?Z}-H\/n__üS1*y_;vY<̌ϾW׶6>ŗ-?oW?_}|/Wm^_ -~w՟~Җg 4endstream endobj 170 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 2713 >> stream xV Tg c%Rl;_ Jkm*jQ!3%K &+Jy*kDknO} vQ[mu]ٳ;@d&'w{~FFEd2zw[U(u9XcrpdGqEJ.%YӫE,X0]=c+N qz6>S=]^Rf%$G/rsWujm69M^W ӪG5rY&E9{',INѧ ֬9sQ$j-JP TNySA2ʇZNVRoR~ʙG9R*%j5ʦޓUGEvv}D:~`noO0fޘѨ]qe ? !ޓI,߿b6^ LFd9[PpN9Lh'[,9k] ,ڠu8p:M,*HP(mV*TҍȒk5tjA犩yc*q&/>pwqG,QR;|i#tkEBkV"6@0 "*Nb CW|MtBW9~Biĥ4n8b", 5 4b?/2||a΍[}eF9W*`񅡭'| OE*?`;Zy6j^yaӹ X |{%cA viBiQ㤭 ݎϐz!C+hlà 7j(&^zRZs893 ♈ u8UDn֯ffM|5D~P̵ݦ rlK~0a9} f5AFtD?8"aYXo5zv0~nκ KfCĤ;m;|L <WVTUp3c(g[u'.v#R -/˞H4#ȟYrVOKw @76%}Qa44khkдiF&8mE_X+Ng+o io'~{Wu3WzzAFEƚO8|v{sp:{*WLIrlH AatiAD *$)4SZ/lq=3m hǣPiv;(? U9ïb0_{O{Z3N7T(5p,k _*a呩fqA8Sl9;=cvNr`)[rSO&^dHBс-*),@ɐ [ ,C :`y.'41V}"(͒Vm)AXeL݅U9R(D\| &k5I8(`3Lit>zIig')*2ͦ|.iupF49$Y&J7'ǛV.AKleDjԫO#!i^e17|l2Lx4mJ2 )?Ǯ"&<jtAuP@,:)mbCooPƱqOy.@v|>x+lxv7S{o ɧ'VMy``K3/=V]1B^R=S6,(h*Agؚ6`5ؽ5{W4rk H$ZePk$E{E=ځ_tTy8uv^%oT?z8kԋY=Ԭ+?KdNym،hbS=1-C)9Vb90 ɷIijqVZo:|_}ZcefGaI)6$q_.Ԃ'o]ͨb]?Y|nxl_],77b u0_|y.7()&4kOfo2w ϻ3BVr{M c D==QHj9ؗf ړOIogff-=dCz65'Ym oe_9[ I&ؓ-ikGr3XBx ^ G\M$%$.\\,djǞ\ȒU!4q _DeL9fW7T8h> N%˵>xBsv ҝ3E/zvͷ& h)a#KיN*BS|~Vq1=Iy^XꝰĦӗp|Qjk8M6&9߼l%j07ʸv-PS''mw2?u09[+5ΣpRb#Se!qARQ|HABha *^ƌ_`RZ%EBdendstream endobj 171 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1565 >> stream xmS{lSᖦCݽ2QnJh`;`;7ׯGb㐤iTuieIXaӴIйFӜ M?9:ñ5k[Z[wmm^9gߓ. 4ԝ{$2?1 z<-nQ۩Nloݾ}&?թ UAkT:]0Ъh|ޱelެЙ6?ٸIn~IeR g`8S_]\tȤx~/iuDix*??ėfZMkǫڧhL@( Q2{ 㰽C5 M̉R9 wƠ–e굉1~ąmޤܴ'_{c?|a=91ç:d#:[$yi4כLzR# 5){鈴0sx< CW>+fcho" [ 8CFiY{14.R|~^#'b*dž026w pޟ)sgP* gҟCXe 0d/mǁf$UFIL3Ha p<";SnDJ+S=ВLɵu_?BVhxx4Ѐa#/endstream endobj 172 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 272 >> stream xcd`ab`ddds 4H3a!s=<<<, }=\19(3=DA#YS\GR17(391O7$#57QOL-Tа())///K-/JQ(,PJ-N-*KMQp+QKMUNL:)槤10002&FF|aӂg2ً/)鮒󂭺hQy?헰ξk<<@\endstream endobj 173 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 440 >> stream xRCMR7$,  ZUQmqCopyright (c) 1997, 2009 American Mathematical Society (), with Reserved Font Name CMR7.CMR7Computer Modern12Q͋oKL0bg͋§j~'eg #e'͋JiuP~>}L讧Ǻɋ !74/XWϡ=:4MFkgo0wCna  7 ڛ !endstream endobj 174 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 280 >> stream xcd`ab`dddw 441H3a!"nn'~%Ș__PYQ`hii`d``ZXX('gT*hdX뗗%i(gd(((%*@s JKR|SRx##sWmf;OUsvϟ_]%g#[Uewy9|ŋ/d-=}3fn9.zͳyxv^endstream endobj 175 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 396 >> stream x~CMMI7'+   ]ZWnsCopyright (c) 1997, 2009 American Mathematical Society (), with Reserved Font Name CMMI7.CMMI7Computer ModerniJ(Ҫopnqnzv`~z\e~}t;_bdw揗cT(]z~ᷯpt|rMwCp`  7 [җ8endstream endobj 176 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 4930 >> stream xXyTSg޾1KWMϺԭJZ XB$&$d#Kd U\jjk7JS?7`93ߜ@r{y{~96l۹ybnIa+ ai7 H4 OՆČ$ITtϜ>KVxqY$  HD&gy):99qsϥ- ;(!)j>ih"R##|^IOy=4.gxw?6$%$G&lKL'b6$nMzPr-iaeo;C+6n9s.Z ~ ŸIl'@"NbG'/^b#%^!%fb)xXFl#^'Tb41$&| "1pFl+ fpԘQ'ȅstc*{{ڧO]\YώO0!L"I&O2c=]2pN*A)!ډhW7އIE`z3s5{uo}pުƓ>BtuTt]ș xf^9(4o櫨{ꐰ<8̔1;ӵ?Zy3Ք@oҠ* ϣ_[rm{Y0^ʧg""9U| ,_Oغ^@/֢%)?|)Q_^@hЩ8_)eБyX*Sm&hfC -R@0-ue14˒Yvx?c4g~{C$LnopQPd/6_6];LnR +F`e<]pNυh J)+v$(XWb+OI ;dxolf<]+2uזVk-ʥ =X\yv/|l5qOt"KT鲔 hj`B0ۍm>E6UMoLOY JQ?Y7)FDۘa1|])v((TXTF2c^P@bg$L!QRғ[!Fnb̽+DvA]LUrV d-Yr{+QA)2Z~.2߬FW-'خik3s[VbFiU:ͣbV+Л$vcc3錍$,բ˨F~vľrMgX;iv膷.w؊p䁌Q^kq J?,;޹]qx}2wcC(:R.Rjfv}'@V&'d׆<ﭮ?%T_UߪR2ܜYS^Wv|3?:l~ \nPh;؉6TJ|WԀhDhNA 0vՙ&E"{c(Ymu AG̣V %F@&Bm, GshI+R3&Hڕiqx~m^8=!>n?y'*c6@% YQ PR@[i)#C Bos͍5tŮNu%Bum:U.EMg& ԗUj9dQ&ՅCa! 01ygGlZ,56ءS <Ȑ[!qt@tEC*!mXz0)Ñ=Q5fiX,F%@03w?ClZkAhœ4Vad.85·_v`Z%hQ?rK*A ٤xNt4~x8ZȖ\g|rRrrEeV5R\~a)Ұ7 uk'% nīz[* WޟQ-1KU|ՙ.-N~?kYnjdui!7{@Z̅,69:&P1ܭ8uΓoz: s'H:vqbsul>“bwzyr|h[nf@|?!WɯX?7Lz܋TTed̞쐼hـ]E?p?_C ΚbrKvk8MST%evG֭$9}D?sIiWjt:^yM&zo)ؕ.\]0a{Nd^Nd ?Q,3o/N z-P;q(; 27X+Vuyf4B.G OE*}.àR0bg*Cba^?!T .lFkK[8Gڠm:<`2u_ aV9YP|J/Rs _vµa]EB0ҁiG':*̺o"%QT&x%}dƷ?8Veg-XdDɳ vlIsX'@s"#?;ދyϿ}jzpk;hlw Yŋw/fG}|D ?v85$pGT^H]E%+J[[a8ŲCFT(jkZ:M'ITt*?OXiRѹaTR H7KM%5PE:2 eIIi:Ёc%'})DkzNԿw75g<XQ$V`Yw25~!~ִ舠t?ϽDҁ [s8kr[VeuqH6IvLohjt?1caKq` 9Y@D`&PYk'Y"䗍cW k/ho s2DNmf>M66dh99\ 7ku$TÅ{*D| Mۡw&{s.A=R||2[__W|Uߎ=PmGCxU:<'&ّ,g2&h^|.Mf&%$U)K*ч U5'|Ooԧaz@D:ԥSfY {=ūg?nݱMF; KΞ\|$yX<$MEo(]FA^GT$gqAC)֖of6Ay?oشNIuM.>d,t%sGH_n՘8acA 1X78m:sVkMÙ-O*)RzvB w605̟YMLnbvADBfxrƘ?8I)Pqw7GhЈzuQ'Ks 64>vT[U}m1]Rr#n!UI ]xz0{;`(>ًDžnؓa-=V;zax7}joqZ`e0ɛK7ΚzV]ϥњ.!,~8|D~/?bQ% 9Yuk^J w`1kzZmhN"g|Ie*PC{;}:?aZ_OjSZ깭;/0}J y /@y9/(U'HcbVd5;6gaYU$V\lr,GjxAUrǍB*RRcEX4F͏7;mUվڹHsA;=B΋ /RFO!@5s~u?pCu:`IUkQ{46;N; ]|B*"i>PZh+T %p$|"6Spr N$p.ڱ Ԙ\zL_U<ﮟL2 JO[ޢ1JR ;0e섓͞x@>GbTt꼈CF=ﺏ#B9 ծț$HL j~ԩ)nRL^G뗱锟[c^Ujnm~ [NΚ,2RUY֨:KdiB|k=Ag`G ejsu,=fUF;l!endstream endobj 177 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 386 >> stream xwCMR8'vz-   ZWTmqCopyright (c) 1997, 2009 American Mathematical Society (), with Reserved Font Name CMR8.CMR8Computer Modern3vťbڽQ"DfVT@htkpozc,MI%ڧϋ1# :Q?f{ku؎׃$Ena}{mltNx~}vCoa  7 כ Uendstream endobj 178 0 obj << /BitsPerComponent 8 /ColorSpace 102 0 R /Filter /FlateDecode /Height 600 /Subtype /Image /Width 600 /Length 11187 >> stream xyMe; WEHT&-*ҦM(d IC$f$&KFƾ3e,w==rs?;|<B&cWbmX)|+udao+~ܷ֌3&,fQ7r6`u!oeg&Ѯ`}ۼnpKu!o'ޭ]7b.7E}Ӯ`}72)55iL3K ۷i=laiXCrLKϺΦn-p }3[C 0We`%Hhۖx⻋# s# xE+gE+JxcxE gEy "!o`Ey50މD 3YG@r %B̫Uù# AvR(J^Mx3J_G zOEhzQC-mi: zWTau qP:jW|'^$J v+FڧAj: wwLg=+718^ !1]ޑmhrR W + u(~ à xE{]dE+dGFfyyr=8h^Q ؅A.7x"΍#`xE- dU+|{whWYA8oKi*W_=i*m @4iL4Mtcxwp^H%%2a?$qP"̉t% XA:g+YnT+ 03 xE\f4%}8h^֒˶֧m+Ur K.@(^1`UH^``H^EZGF$GY@;ڀW$xyna0"ɜЍ>I%^>b8^ -uU|cT ջWj<%HޫOļnpr&nyW^}2Xjib^P`UO^=Pjib^EaH"{uRkf U$L (»WwI*:G3jը+u8"{%G{{!urFZA%u^I|E[>%N!NP ^eehŷW2kN-P3;3E͍͒6L+&Pj{ΏSʭwwp~EN|VL 5c匩;% pUl6CjZq0W;$sn9J# 1eg&I i8Wn)QoRg%ļ*n2:Z^3R~b^=O{"*%,VYg]su/2~.Tn5H$' y72)55iL3KDr^XŗNɜXF/p2q']]j|evsR*Y`ҳdijR%)qBq\&kYȳϫPe[bᖧ`FFm(.A\MӲF"O=k+T/PQ1vWߖ,n{JS7vm{Gg˫ӯ}x*n($uՇ€%CʼE j7jz R-M@ijJgys3 WWB󅓞AW΂L{=8^α&]d l=K«Re"G]({޶<ΦSpԳ\+g⛋^l\n0?5gʘ«_F}㹐0ٻ͈{],"W΂_r>ty5[9d ]x"d{՜-+\RSL84N؈v 3l!ǫgy&ټr\ ߜ{Ƕ@."^OyIF߶Fcư«( W5+r_j^^(eVh͗~wuŋktmcT.Xx6e-W"?<}z_z7 z'I PB9CKֱS =3ČgtWcXz>u^Zo_B^zu[7{{U8As+.rW_.|mi2ۥ:x-XG@ xE#'XG/Lq0"BӍjJmnF8 vW$pnHruv ~ܓܶX2wH^$Hpup(VmɫfWXڒO'!~CI`OGj49P Fmw]1˫)eۢb#jK2c—Wgm[XI+t(9B lm\m}8kWK y)goY h/eg_882jWh6΃_iӞ>]]^y[V1W7s_|!aWh6~.[V:H/"ګ1rTE ,IIIm#ѾmE.ii+=Ou0+OP_l *0J#s\Oh64Vpۺ\^-rz)7H{W-y YJr^*zFqYEhh]W`˫IiZJ7M{ &GjA6>mӅm ߉W^[G^,M=S o:xYGi̙+߶e5xZG^H -QބUoa O䆑M'mUw )\𴎶_#J>95Q4J;N}%PJh^9o${qn޿NB_ij38OzB{pkU!0B+Gd ϝ 'P[CS@̫smMRЫ@ ${q+˚ZHb^=[mM޵Y#$0ɓōzt0ļ)Vf{7D&^Oh}# 1n|͋(y}B̫^o^wm/Q?wļ:Q#7}5Eܥ ?] '?b Ϋ{79/Ztf{dUswXj=\)Y5Ov3W#kwژ6RGP?BIUVϬl+^ei-i!0J`?uL: >7w㭨c+i?2{zV-6 p4Gym"^. j7jz 9D;C_rlE3+7uW+nye',Ch[iw=OqOA+gLM)^,z;&MJI@+wCE+o!h]_ ..G7m[t3^AhBΫzzx1 8uXwx"U{0]OzF_GOƃWB 3{ $и'K2yy)/ ߸_gWUGOƃW n)QW>ƅOWuWʺY⛚uT9n5|wS8uWS pM%߃gO+=7ۨӆWtqϰz]5+cݝǞ&\s5 ?WӆW-q#RS4H XGr׃i=laiR%+~!y_4`Zzu|yuA Co7@R+\fWxsϏj8 _W8Fx0aP.b+&PWT}#^aj-dUAp"Zw 8"1VK%iOa4zzp=O;n:+ݥjҿ ɫ+Up5)}CNXG-^Wžnۿe7 ^m0+[qMы:3kYK[؊!QyQ8j+8D[1Z3w<n;VűCի׵8:8f[V VwOxBW+N8jM[ɵ`ٌ|:'IX+L|xuՅDFhjA庿YWl0?^#J24UAӏP7?^Z_l=Z1&S7^EóeyAWW;h Sxe^)*ʽhjEum n]yGw[('u+yv߉ 4xq`^[)qXL;g^-/I?tʉoWبbwpz+uWAWd:q?Xc`n*qEC /^B yIՈA^ ;' *QC;sۂOaE x*v7v*+Di)nN*Œ B)^!RGU]nSxU*ztrh#0=dGuPl=WAWn9,m7^u>T/ykn`nZ\ĸiv?P7^m[ fjsx+|nBJ>z ]x^]5eI+^)W)V0WՎ#YGJ%6)fcR 1}zJ.zh9?$R *a??RIa=x%^-?֊d׃W U|P> >uLeE˿EcjoFxK3[ʬ0qL3l_Y9fG?VURC@+kSwJ?@3W{k}rgh&K^u!Ub=IT=^M?e>X=Eh"s?^% 2/L-H}GJU_T,fˌ^5o,uʱWߨ0 MC۫1cVGK1W"[9Pk<]p^#?4Ħ^> m[F&&ifcvw,ܩ|@6Y`iwih{z.%հJ.84JXt3 ܃iY2#jݫGk)Wk%KWJ«'$Wubddo_dU&2^se97֗|^)WsgE^)WVæJ{r\JuSS R^ pX >9AxnJK.?nX~+ՖjKn8PjPJs{͞91YΝ3Ux*v('8F#0W'øQl*K ;!P* cݤIĻ0W#-_FւW ګ=޿5ZJS{5h8BGCm7އKW ګW ijE+ R^U9^HډqE+^)`jvh#zW!T9p*xB!}8Ox9x) ܃hqx_R W.$x:6]EQ5Y0W^׊Fݭ&R^=9{4~@K+LB2cshmc0W ӫh}& Y)R^n59+-t~CdxxƷ}Teuw!x Zcmq&t2 +LUs'%R9qksCS1t*xWVGKTqN" ӧ{0W= U{c10W?~^?;a\`B,|kdۀ+ҫ>h+l^Yt#OyϽWƫM(P xi:sMX\*M&_y_5&U+0Wǚ]ҋ\DXIR^m4v<߂kB?oQ4Je:Вnl.G7m^t"W{g*,hgx+9ޫPQE+.U~I}>85 y;&K0WEK3kYv^E; mRsAeM$ܫ4۫W{ҎlyW6yVUVWmo^{5p8F ]> d^~0ëӫSib^E-mRrSNRO:ׯӫюDļ%땚ҫ}M po@q赒E 1ߋxJ.}՚7Uq"uڝB8]++7}CRO22vҍe/z~hjw~^u]L;kϬǫ)cQ o@n#Ogj~^ݞI;2ox%O7P*+Cba׫e).sU~ݴQ:_͌qQnuCp9_ֶ6k|~'RE%3[㢕1 UV8xkWFίJpΧ9jGTcQ A+gLM)}BbH6+_ʮwQ r*`mCz^L&B 3{ $ѫ3-*1XWnR˫؅QWoM%5W6SGhGߞTbQx%r쎣뼼Z3B, t+핁ld{yŒTOjWmבE !3d*]jq^ZKzȕ0Wc{Z0Pd(pgG+x` u.|Pg"G)^t,*uV(iI3vF-jWuwEu]~:W&*?p{emP2"yO^({)B-tFeCm\=C\(4uWTaܨjSoCW_:ԫ[=7DΪu{9K=8[՝ʳNm XW+g9Vzukڮ9]^+_vyWpݗ W˫ɗ#glP ^-i{UBѫsrvyuyOk:9*WBѫk(l ŧSm<6W0W.y&GBΫM hhOdk~CЫkxjȇbH:^!teX-;szrX}٫>z8j gX^3[؇Wqxu>Ўxbwr'""Bܜt{%" õW'_?߫ն '60I+Fm8zͫpqy7&G6[Nvl^ݯ1Bh/`o@Yrt8[WM!7~/^ur צsPf \OLt)NʺΔѫ+EB914jf}wm's` YO ėW֥spo`^`JdQx7h/>8{*.@aNȫObݜSUIl7X.Y{%nu >.sV=@bj^'197m˗Q m:("եg\cpժ'ΠF pI+t㏠W֌3&eWѷsI>B m2F0*`䥿^\&\F] '[ù5΍*Q_y|froaD^W/]WѼB(W6BoԱb^55RF `{(Ghz%bq ļ*z:ZH0^.}PtZ¹bZUWvjkEs6Ab^=řYԧD^]ފГeϠS"ӆa:9ԊW6=>1W-q#RS4Hjs]b! k^X:*zItEmoz.ӤJ({U]lsq&kaSTiAq(&y_4`Zzȝ^{?m91,Ӌex w%aѩwW"t@XG<}Uj+Zftq!ZXY.(0D9GWCc~ (x!W Q'}a _r( : >1./ZHtLLmS6 lECpsLLP#V+*Ii >]5ĿM6vLqiXd8.Nw2[a Bgv&o`,ϯX e>x/,+~a^ |_X3W2 ge>x/p xHԫ6Ch|_k<4iiC´{ŴVu1mu&6t_=نWiCK;Ĵ0muXLj'bUIjiC_Ǵ!|؎  Sӆ^ xJ3 +̀W*4^ xJ3 +̀W*4W|uZ5 ׀Wp݁.?sL;R007Qo&e 3bżV6!%D,`5R1|`4%c+(9v.a؏iGgE,,5B,jy )O5/7ca?hS<!{:.8b. ߋׄth„RAj 5vw˴FZ2nxPX&f +G%FdAhk?2*&\νF-b2L#86c?۽:/L >}CfA|j?f҆Z1u=!a؏YBuo aJ7䃾F܌,Q a-ue zuC.CNp5mTe/?EKPX kv䓨lLa߇4Kߟfo^#FwE4a917i?oW\ A ak.6Z8cP έXpƍD`Ictk ^̏"8]q\ugXk\`:/KoCd> stream xSkLSW?>Kfv{8cMWD,MTZZlPD@PoȊAq 4$fsK4qm/璳eԹ}þ;8R Kws43FzCcwTQF?Skp26IHAQvWQP̱xn~nI7sk-Μ,3y%ˇ_V{+> &ux`P"6U0ՃXaEYlŦ`Ro4!s?kBCdg/G Bj+y[2Y^ $*-WqW$$_i B @%(?ZTV3ޯKkKipFk] БX&ʤfB8`ԫ5Zzendstream endobj 180 0 obj << /Filter /FlateDecode /Length 3841 >> stream x[kocg!!BWu#H 46HM@Qd7,^'}h{gKrxMl-ai̜2/S .o&DO_O\L6wfz3NɷgyoZX/ =0J '{ȨCGIzȂZ+\d$󮷺H5M2x"wWBQ5K2rrƒJ?˛秠V馾F$O9+==zzz380wݟf0Y'td6gaLo[1nw`+c6R*ݷ8@{%f=6p&PSl[ƜfNs;Ϝ@ӿa[e9Kⶾq)~6pɝiΧddj]}hyֳ.7/rk[WO^4(\ǹșK:.RךOOcljzo~;0Eç݇9gٜ6g?OLNY;0nO@'__Z^-vӛn~P]^ Ϻ'a{}{U'G[nnjvYYAfMk(B'5q*]c'# R;)҉G@c4y9/,/Ya&! y 3^Q{BLu0L(aneU/BgP ml޻ ֝v2fLE@8fVXE H;&`a݆(Eqy1)a̰!nVoI 8TB9:7{] yay LΗ jk=k]wWWM?Zj7V+\6_4x9wy lӽ=KPnWZtrDFwdrm]HmbV/v8L`&e4Of&+]p}'fVL<1eeckFlB?k P4"Vcn[i4}T$)!oL$upDDzfhgKroq1Cpe^rwHTG&g*r 8U Y nk=87|;.9 ȃ0eʴ+5{!`Y5Q!K=4O{dۢmrYފvxdI[Ѡ>&U܎C`xc*6-@e0>F90$>sv Ru"~$\BwrP&χgPus{-u^!y+]TBbfҸv8UK ibg=_]e»ο_Ə\5E;_tzi\ߕv+πxy. ] 9PzA\&ck'`͘ kG#}`In!Q&@@xw]f)Rv8݃A M~l{αHi+7-X@rpīTfhPDӺU{J3 ]l'HJ]jM'Xك+] *ftxNSy7q,X홭bXu-]D9$1 ].3#.pqXGa G+g]N+V#g,6ɝdYX0lBY(h?z_cYɰu$(s>lCYY2Yғ UT%h|[2Ǔ(s=atpR* 3:_!^u/e> Qkcd5n6k~rȫܻ_VeD\bLgn(wqG6SM|wHk[ hb)|=gsEc'": ֓)7z!Dapg ?i>5˛mcmrAV,`x-io-x*4Y-tfѵE/ΩMs^:M-8{ɱB<+*T }9Z҉_P:ѐyf)cԏBJd("ipZzEĿWt7?ݴGendstream endobj 181 0 obj << /Filter /FlateDecode /Length 11531 >> stream x[Wr+> |1w$62#cؾ8 HhߧzMm _סV:_{_ؤo{o^pSn6Mu*Żrm>_[yۗlRj>Zm7I{R )Qeh҉eXGsoZz\긭9_pvi~+UnZ5߬-?zQ!wgz_Bܣ=|gdg;o%-=?}w/w鷏=:.Oqˍ]ϟѯ(=Xd~ug&l̓y{h1׼~%=Ҭ?{г=KwN;"Q'\z*7YGvןju񲶗5su>>ݧi#i?4}}s\~0SvwӚ?6_?{<){|)u6|Iכ? }sMټy2eU4}廭M^a]ǘi}O_=wۯ9xO.un=c?9Ϙ˄^?k_>zC?r㾅Yv4 ϖ=Xy>o=>i.?ygΫ8i>{EZGA/>9>C<>wO:sypئiyp{btjd/O|W9>=tG.}|bL DE?oxxǜ|Zs{:>}_ϭ}ɑ~?#.~`=ON9Q_o ¿m 믾x%r}*9囹pٖ{˧nR&40Rm/_d(Ͽz>yz~ݛ7 ׿ȷ1S۬*?_͇? ;C^vO?ؓ>sKjv|*ӻ}9$f!Z9Rm*J ɵՄ|*$V5rVڪq*$VKw*$VVɵGsK?A ~˳R Zzom?w~ZE>/ץ-YGNrN^ǭA K!61RE^kЕziV-[Vܵm@/$ji̗V!kՊغ䮕F}iu?nE=}BKjlkaw1WUqW_\R7Vb˸Vpv,pE3NxEv=6r7}CmܷAy .I6[wWWl860!=k6%6}rڄnݧ۳jָ3}P<џe{}h\J'>*ѝk7ʭ7֗: iG&XC1\bWmH死`ʤĴ3s4T%b7@΢ruW6U.B_ 6##"o`}]2p;Ѯb.d&q[fp$'?)>,J歹mMlLˮUvw4t~ &VjY]5.خ.E5H Z #EcY킂AHb5% Hîy 0km%umA|DA~t/@YqN\b%q8gYśO tU[DM'*:%um7NLAm]ʦmK:myL]mۤĮrɄ=neRĦ+SR],.2]߶m6 } L+nT7S1ECm;A]oVS2+'VDj2LlcZѫI0lcZqЛi͆կ1iEǣ:TaO['obgSdR)mMS,[iGRW}xVk%6| fݷ~kj:R(]Ͷn-P$ f c` &Uӈ] #4;ԨBfk-;ֱ :1)pr6/j VQL!lV;>~Z](hдZpƦ@+4ՌPӘjj6.kckͺClPj*a*fNIVLy[6E0M'lUVVmT> ;E*EK%7~s6#豭7sAAw47bmL'H6 ^f"Bٚ2fokdDDĖF lVLjf~ێ&ApσVf]k0ɒLl8w6vBw~3ub*d3MRH̳0= ͔3cL! o-a.CL!̉0ɆbsA2:.\<.j;;mQ38PPj'nng4WĴH3I̹ЯޟYZˎ]!0VE.;N@@@teZܛOKuӉ1y%;~d=:lʑ3SC?ʆӣM%WfIp$|a4{gjF;E]wS &jT!pu+r)4t8+4I`jqEuKq SAY[)eǝP7&xV4絵Kj}7,; C`J]e xcnC)Cq!Ot4LL4ÔPMFomӆԭ؟+5D*,daUi:Æ3p6\|HꆃZ Sq oa6IIHjZ fú9h c7@NBS\2M/gL*zӴVqjNӊ3w׷ WKPĐOYsIǎx⧘E48Z`AK@@ntbe1KXMS (<*4X4Ӭ-, \ZIz,AAG(bT9,׵lFGa)W? Bqdg,O 1'|Wxr^qbBײF9M% &' 4d})M7 fG5 I9Lpy3N^SK ;M;~B@Ւ^k`pvʇriC@<L'j)eij-SCv8v1SiN,N'%(#t̷mp Dk8i6\U$b=~RK{&%$U76 6=.Y#Bm =[iȢx,)ɶ/r(mg߶&ZmjӮaCEٔp<6UFjAM'慄)iAu%<÷D|M@cd3,nXpjyNNDQͰE䁠q>5$662*Z==B`֫mLnMi$W{aDu ˶ip  fV]2%;HgGmduen 4Iw1ɳ$aycJb*UAy9|]k6+`)Tn"uB+PFp?\Ӡqc+U:s2pejb~s!m 1;k&կs &yUK2\VL]VMR&d-Ữs$~ WcS (NwN Up_={{NʡdVE#&n8_2mZu,@va uu۬d{kMDCm. $WY@ftXRi ^i߅wKf 8߸Q2dx+=QmCAlN1hMMݩūJ fcA}C,Ô h0juxc,^(蒹Yv_k+L2o V$r=^K6"X|ZbWnLҙv4aFn6.+7 + &pw$+ʍK:k{amؿKsY] $abPp7s.6 $- |Z'o*ҖP4xysViQ`'%Ջ6&QPɂ;W/4T:|ZM#&N?+MWtMkMP״}6ce(YgN7THNt95-J",K,S^ip5KT>;F@ܵU˫JMMhݸFv!N+TPfKMyҵE@%^TR0e٪TϬ,IحgJ4M`/,>Mdy@a`!ڬezeMiuOÙ*>ͭLEq2p^-h%$ԖxWO)Ν=, -B.L 8MEZN, q+ ӄM/)L־X+2H]…U 2n3`e6dݘDEmXAHs@;ӟA^M %^ǩ4q(l 72;Y~s䣰p#D.Ķd k[C:0*6 $,,vuI<9a60<9M셛)KaYv 7MNXq&a妦pڟSNPz`~Txܚ1qi17 K7Aңֹ(6fflV MCŒGKY% ZK5nq0+. 7i(PZB.|8`(ԧk"qL:]^XUJ~¹e=$_/)&,ϭFҲܹg4YZAHWh7ؙ=c<>x \Iw< ]Z5d-P *pٙ5E^TE/d