laeken/0000755000176200001440000000000014554452120011513 5ustar liggesuserslaeken/NAMESPACE0000644000176200001440000000312614127307134012734 0ustar liggesusers# Generated by roxygen2: do not edit by hand S3method(bootVar,indicator) S3method(calibVars,data.frame) S3method(calibVars,default) S3method(calibVars,matrix) S3method(plot,paretoTail) S3method(print,arpr) S3method(print,indicator) S3method(print,minAMSE) S3method(print,paretoScale) S3method(print,paretoTail) S3method(print,rmpg) S3method(replaceTail,paretoTail) S3method(reweightOut,paretoTail) S3method(shrinkOut,paretoTail) S3method(subset,arpr) S3method(subset,indicator) S3method(subset,rmpg) export(arpr) export(arpt) export(bootVar) export(calibVars) export(calibWeights) export(eqInc) export(eqSS) export(fitPareto) export(gini) export(gpg) export(incMean) export(incMedian) export(incQuintile) export(is.arpr) export(is.gini) export(is.gpg) export(is.indicator) export(is.prop) export(is.qsr) export(is.rmpg) export(meanExcessPlot) export(minAMSE) export(paretoQPlot) export(paretoScale) export(paretoTail) export(prop) export(qsr) export(replaceOut) export(replaceTail) export(reweightOut) export(rmpg) export(shrinkOut) export(thetaHill) export(thetaISE) export(thetaLS) export(thetaMoment) export(thetaPDC) export(thetaQQ) export(thetaTM) export(thetaWML) export(variance) export(weightedMean) export(weightedMedian) export(weightedQuantile) importFrom(MASS,ginv) importFrom(boot,boot) importFrom(boot,boot.ci) importFrom(graphics,abline) importFrom(graphics,identify) importFrom(graphics,par) importFrom(graphics,plot) importFrom(stats,aggregate) importFrom(stats,optimize) importFrom(stats,qexp) importFrom(stats,quantile) importFrom(stats,runif) importFrom(stats,uniroot) importFrom(stats,weighted.mean) laeken/data/0000755000176200001440000000000014554440370012430 5ustar liggesuserslaeken/data/datalist0000644000176200001440000000001314554440370014152 0ustar liggesuserseusilc ses laeken/data/ses.RData0000644000176200001440000322116414554440373014153 0ustar liggesusers7zXZi"6!X7=])TW"nRʟ$l9 |]ToyaUF՗u o+ XtgSlS'p' $Qч!ϭ']ԝ3˽9>\i.z\!jEJ蝼bicbxѕ Д4H8TfY͔HTWy r`I.ۈc%XR- [!y?"IL{0sUo'$arG5㛡f _c~>R Ъ>Ohߠ?n^i/ǚZ}.ڔ0}m/6@lAiE^G/B78nUxiEqf7t8U> Z)aK RO1)׉զR=VE%h˘g ֎'ZւOc1D)N]t/ YùTwG/YO+t7+8wȿ NAt%hMFq2'965 }Q֛uFwE%WdDo rtli@p̶n#I {(ӤzK恩],`ޓ߼ͨ\9ӍX>V;gqMVݞ\bXsdHUs.dn:+ 3!bK~vT'm˄tFWź- E\5𮗺6wN.QZ:1\Q@=UrA(=yKb|t| 6s3HTT]'ZpK$٭ tGoFWbF 8qﴠ)JTm$v>k}J^)펯Bv7,B8&Hōh-&um10C(U;X}vAoK PjmN{Q}o#o NʏP&%f/lo{N8PPHUzQgs "/6C*8`?äBPi˦ӻRHbh :krJW!& 㩏Os>Q4Ja|ToCzR{gud1.9rÍe/E u[ L ,{"ƙ +]Vݥ{&lͩAGZ<)A #2o_(ʀX,fQo{߻c\kH(Qs*Jmšj@wktЯn~H 6א_=+IzrDx\.da%`Wy F-ӟqF:|ah!k5ʰl4P}m\# ,H<LLKo ?`*hQ_xτ\R  ` ̕P sYy֧)@Agp) v67`.25Wè C:-M]$rcwf@ ΁v%z*Xl<Oɒar 晊f *sF9G ,*Z-Gpe1*-K\- x*Op,h2p3K,\֚}['8 Rt;ɤL oYLk"p>-a3-Uhp\{(1M M8 i[Ҏ.F zB |]EZ@H+klI]wt /Rpܹ@%āܼW7r~i2@EJ)E·/9*ma>%E1z4>P $g7MJ=l`#z[ËDtIB >=ŝr u@^nD~ڋ`퓩p'"\#ʂ!MƞdޫKBi'-RS`y.= &~##(X  /H,#hwe &]OXĨľߖ[ZX/U$2d5!?~K ?cMF_M7eQKyapςo8 }߳Ή&sG?mA|"{Ln.rme!! WVo!4/I!Vdz09`7l}s s_xKʐiƕg<7 ,TG{}f^*j*$| H Gyitm$s6zu ` =L*f p%uSF!FwF$W9 Xy&(HyUҥ}tD6Ew[B-Rܴ)h텮dC/,{-/3> 77;J}l"7R?@/V>eTB[sks5uʎj@d('a ׮.e<~k}з В-1W^i}&8PJp}Pϱd4˦kq͆vP D1~>=.6%PI$孌"dvĂ2cVW?+`UQJ3ՇPne4#'TQ$HWnd IŁr'7YNv?S<]'Fʅ,!E%[ |"7Cڻ{aˌ#fB9tCX_T M~1<ЕX'к<@oD"< F騝+1B/O돊57lSJ~Alugpr@fiD;,u^}hêUWzr͡? f(Z}$r/5s/VCXe V) *uoV|&k䴇~h sm^D}5٬s06@hPyjWseDV|#,X אKL?*dů)DvΏ=I Ց%RjRo}U&VUsJ32q(YW؟VCC#I[$AwS z5ATXuY,D,Q@8pͦ(Жh~$1-=%CE|'b.{)do){YjcWtIs ;C875njkdTvNZm^C@$F'v4F{,:dqG"09IQ6N83K]PPՖ}ΒyM('A^|aKtcEQaJ!;Ry_fԫa!udSLlwۛ Nsü NsQ]EZ1=$?.)Z (j:;Yb&[ GnXv:`+)BqL[?Xgu:\͙MZRoXt%Krd|<ߋW@PuKŦ3RdPͪ"[uGރ6]x uh03Šm|2b5MH5gѐxyv#0>LVL3t{嫥_ ޼O[BZfgoE * ~˒(E|J4α7™>8FDw#X{`p9dJ1$4B%O3=Pw;6 !lgկ3ʦl*6խ$ c653G6@d>/ z$\aRTZh`ۘU1}nbWs8=CQEr{ > gdlY [D!Be#nz ̀&>򀙡I_Ѷ 7!7l:1sS)=$: &G'\w\)j*\҉KͶO*2?8ƨŤ\"QV(M"$T;E>$~L̄H? eڀcJN~<$+=([͎7Gײ̓4=Pk\Sw]$Ͷ{3F*rbdc( m7 )49$%h>$ hujD2n6ɇ=4Qs8 @q:/({߸. Fd^*S 8mHz` c3q(ᰴmj@ԭ r:ʤ< UInu3(O_8{_b) uC1B*?.u" mi/DPߥɭBԟ/db~'k^&?cT*+ӹؙ[DCbCu`/LV"dS37BF)9* )E^վ<2/}b. μens:,hQ&ڌg3C>K&F?tO$WzVĜ ]yyɳl:~Q$pj [*S2E T_HjA ,K7f=G"?;S۩$nN7h_@-[DwBãE X7!!KcF?Drli10qiLJ:UH5F J`^34D9"@j~Q-j4DjVaC{]3,3uT7( gv0 gqkWv,T z/WLSӯB}Mۋ"jH1h]ٔ ;SzЍ 8m< `inF<[[8[{{#Xגhiɹ,Ȱg$BcZAzv%ٲ@^ V=+5|KR(?xʀٙ1{x"!r%ץDOwrlQӶp60\)!'S}Y܌pb4mv`Xz D9&[ w>ޱan:g/,]] }3QZ55RWS'T0X!jN-V6Dc ~8B^4f|R)rM[(L_b0 S,kŶ`6#qBU@" +TFg=NQXe0qzI}>124Tيù7VOt~D{kˣ+D`|‚A/"#=E +&lhKJt>Ď[j!VV_ 8L}H0=_"qO2OMz#D ēPJzS WCv|@ha26ݰyIU#ܥ }lc0w?HuU@Cau `ٴ7-mH9ʝ%|P뾩R\mZ)}>Dy y0ξp wb.Gf2tF2VV5 Ꙇu]V5|IEt-, OoUӹEY٬y~*Sl,IR@{E. s2(K@>O,Ȧn D5'3ҲQlUFir,Gw1HXcY;G/;pYU^)65KñRKJ<FgYd oF9taaqҁɵ= Fc2iҭ8o/ /n%r)E ɓDE9c(^S"%ĵ&h~1t0T"'n>dxݨJY56eU92(A|Q;. ƨaRp@R*P0&s4UϵЇ*;Yɺ(^XlHsSJ4Րe sٖQLpÖR'nh@ vN:(=WKt]nVzCweūjڏrG ȲovGu=_>jd2+Aӵ^2>59i {)0M6(j`$] ;^D0ŏj5wsG U¡,rrڂr$AB9[Ͱb7+$ YԮ̧UYwatj{Xqw:V"1bo##4qçN1~dW94ΥሚS2#T:c)W W -WeZO@fTZ0 ԗj`3 ,1Ւ%$`I,| gC׾~bXPC֐ !D Io;b{ܐ<ذG 5 @V43[v%6G]^[ﺽ%?\x-_.,3rSaحp,n 0KvSDt_wyjKg\3|"wDݬ~:~8.r1lblrůH j^0($'CfҞ&O[LպS8"]%a2GⷕaҸy7ow( a_8>\|)g,W~X/H \1Z[H{΅"y'>2x gxښ8⣫ߔVJrSIiJKW,^pSbVE]M1@8I( c"t<-%Ža/ZYVVB\#AK#7^)d^wԅ[4kh ^4T`@!nkw!Y偝 ?U+nNs _&wBYD^VN*#i`BC rŤ@iny*C.iV% }%:҉Ww] a!>4Ż8EhDJ+ĕ6okD28y{?FλOL/m_^ءӒЩ+߅m CE6FsE\YƫBuMIX:Y]• U +I88y*Rmv&x!bF"~Az`O*='C蜿ĖVqxP=bGU} 78w6j6 IDMS7j-c/Ɲd,wA7%CZJ}0mƍh>z$x',gpg+x*$NAڿ*97aC$NPb܂Rt W;b&^s2/4r=JeڗkR@=6'#kaIp zr&O/|圖rc?b4،fNKaS=s[ü3'mc.L} \&W2pT4XqiDMu0-#`:k$vMh$(x}=Y`^~w!˹)[ٯ ՠƗ]ˤl2BYpLS76pܭZvQG5qXfU"!6we>TQ X4Yq`8t}MTA\ux * caww4$=\ÌPZ@[Ez퉼Gy}>666Bt~R5êQU$a&5uZ'W fApߒtW\@oC2KTTJe>czY (Xo٦|[чB:_6 2'QCXRK<ۨ h/k}S5@m2튊e @eIaV@u>#0*%t1 slK"i-^J#Dws#]*'15\Kpt"L8{ l=kކ7>`fHRjS0x_3r׬4oKjfz1fY(k5]>mg3F1[^d %o+TWp~_Їh)-dP+$uHyuXᛌMjFؒV2;SU#B1cܞ3qXvVo.=ZD/I2se1 o:VNȕ'>^#N貖ftiwA}$^?3(,iə(~+ZRQi6Wiұ鄑k&ԗ(a]@BegMk./s;ԑveMlk}*!xd(B!<:oU;cGȖwb LW מRlOwudk|M.QQ@UQmX?)( >Ovv;sIb=E(&c2/>uA~1 Uг0hergJC0d ۊ߆@el;xЯ 'sMW;J$N72 {ޚs:b\s䢭qDr;)FQLj03Ըڜq{2GL1~ bŽ@vx+}~G8f2+bkE}I@ S~$4o=_LX(Z]Ȉ\&rpW2>:}l w f, _ 7{i$j;j]fףhEc0$U^>bjSi 5>wDiuSe@ tޢ!6v#Q2,:_=v &k)8zZ@ 7kGxL2_>P7Bl/ƿ׮b 'N%! )0M<^;,pp#`zퟧg]󃌳K|'[+4'*GIBfP_Pa*!z]E0ʘcL`r|y"d%HomE׮'Vsxaf6ZR(`3N%݋7ML @-SE4 R(ZR]jsPwbjx8T{ʌc.u#]jʢ"l_]I\f!)iuI:ÌKE>/T_N#|F?$fA4E+#e][OC!)7\/#e-'[Ҥ0&  <(t`2D{Pҳx\+Qt|o^}Ү[Z*ߐx<Zb)ݶ?pѲ:+7g}E\',"{@'eF Cxҩt 9[ByP-0u 䚋/eNpӨ7dQ x Mp`kL]6lp$r&!\%r0M =#gLUK(">4 9!X [$* X,&R\pO36uZНJ-#F@jUC܃kȲƊʗ=]Ȳ9:jĊ=Uâ\l+~nvkw1b~>M*IȮmпAͣm(5|*=e&@t3* Zvԁ(t@YFQnnlDKDR%oIq0.# `P![@b|mA.cI藤D$Vp{#CAqgԩGf_]IR!!g>˕+o"ViwV;8WD~(sGcqdcd7|`&OtWz͎4uNP*&=z1 W?`prk}OZxQ^~>+@xh Kt;7Ҁ?*O7$W]nSM8z)6̠PuNT,/UCì $n% ^Js#mWYhAKtM=+@,sRһ^cY25OKgnCol~y۟HU |2) M2d9MHV[Oo܅Jq %E;뭚 v%}񮈜, jc*gk _*ICX+%jR@KZXnpy~|MHB&ȕtCػ?Rf_q/dタ#{+ī̪]5/kGQHJqDv sKC#{ʊRe0^*9VyiRbC5h}VݯdZ9Dh,w@:}&|Iqb}d&3 Q5N1=J,`V73i߳\l-ۼJFi:Geo( 5yzؙqxB.ܓ9/Uu`)i HM@t0oU3 [aEDKEHkV\P]E|-uuj6 ;d{1|DK3o|9# CC%ǦP[8RznӥAyQNqKAK)uYՠS  MKAVz@t3qOfڪ8֩A?ǷNEAM[_F^75): xeSc c7d,65#8G}PqR .zصWk1/Pc4VV-LI=y/2{Ӹ^Wv3U8}ʁ#Mpdj׶Q \ᔌz#+K_MT;*Q{1 <=̟]AnT^_yF5Q XD8j0VS/,*/\_ң6IEbf*v vc^5+S >_;f^T$XXwX@&b z5ʯ@gL,KQԙcՄ\AI oQgj7,(Up*DæQYsQ/<"01uC򶦀SlRW맞oy>p_څ!d6>:G9Jp%GfAA@e i؎ov;7m&Mn5)IrMB $OpM,91Gp*ux$s rP'x\&KA>CowG3q(50]} O3*ꀡt%Cif'Y JZKbhL磓¹J-hebڳEWɹ *w6*k7¿EJ ++Au|$S)+-vf$|OZKd֒k~ֹ/3C^k ޏBBދix5:Uj-n(0m}i[*ڣ H |qbBSQ]mn,$dS˴,~YiވQtRMBo;S$,%8 Sv5 `uɟ̗В8Ϟ0 VkR9#Tf&wN>UaYѩRsfg4}¸ugce7W k֯jHnVH63qS %mך p T,X-A;V5k)O웽c1Jebu%.hN*D"zRq Л?J 7+!|u'1WR*`*L,Rm:ںӛ(;.P"/)N)7`mLM{C-sĜ~}6Rc r/"tyaIѠ6+1.\|ffU,̗|Uo=WLexRV ӺE +&,ei|+z𪞦$jb-K`> mC4ŖAH2|ܵpk_IadcAMTh]Fi07䑽v~cm&cU\MǽP}m!AӔ?+b'Q1L|v!=4Gcd=`Yb`/ y{q ʢ󁏽S=gx\NetZ95$f~d)_w컞W*Eqaņ TD+4$pfZKm@Q4lzZoQqٱI"?/:4MpS|]SxSϑ2vƸ4M.i38҉ Guh*YjP=G%^RN =/#VB8H=[tkʟWRp06"m 7f ֋)Y wq_oS-ɫ>^/`W#Lt7Zqۊ#^ 8OZY98A2@RsHeyr`2~6Ŵd:OQ!R:޻1Һnt,~P̌|i !k3k^95$Mr{-җkCmeW鑽sfz5@1:rWs5ނP&vρ9eOBM~8tpbl d4?7[DEKoц8l:Zo4/Z'owdaDx<*VœuAeڲB"{-OQ(" ;ua'vm i ܇Th_ο_i_X\I rKХꗀ" cTn ~ N:jy=WYf.9b)u\so%rU kv+~vJJ4on]Ӥqҭ: 7ע{G= 5MzL:/!*2HI!\>%fVZiP~)s_RذF%M2ŀk 'mȵC m'-mħoYBu.-3A3A/985L`TFNcDrb)k9'po#z(Ro&V9_ɋ?:RZ{ [ H[PhP`Nٸz#i{I8c5¡x5x=olnJ܇۴-eor0 iO};F +hhB8lsN&UzwvHY~>a=BaZYd W`` Bxsb ߱I_!%C^6b'"]ы_@beeiF:OJ"' ȳ -|сaG_ yxF&9"@iIe57$I&Pi9 t+e,[t ? ިli.r9a3uMԬu;+?mBe"|BbT0ٗ}ir7ͩꃓ.)~Dxx!G488~Pu1vWI>PZUE2CP(7,*ح|d>lb%oyPshf|!cS~5i#Msb́rdZ:wURC{cQ.b^dxC``]o=K1~JaXvko*"sʋ(n!IpwwY\Q,laHX9fğSѧ+ H7*)l jl?3l*k _pڃQ^ ;$-ɗCnW >#;gJA-JcE6A!mHѿH!.3j}pKxdI {2 K?f1Z, P4 ok }%٘~׊`t 2d5!]pL.Kx=-ȓy#JP'Ewr{MdDrw{0-U~U7Ő)yCF{|||{)f.)-5:m[Igέ#ӛ>__ҵtSliݭ~\[8j8!Cud`t^4-Hg]LPGTwmy-*jW%FBr^תPʠTc-v@K%'~p\$_,u52GUGMc6EJrb|sy侰\`I y'ޚ <0hRJ-B̷ _ <&{'PbZkޥ}{y -f<,-T>5/;[jޑ,({Z_2C_E SFGͭCDBՒ_21Ipv6H*δ *X)~ ڲ Ҕ0O  p ݧv{e6 K;k9B#z$@{AڜFQı|dr˓8]= }OtQg̲!\ܙNxIz?M\F֑xqӘmNӧ fMQIUD--{mRƩbdiulk,?<0NVԈ:0&}ڹ>:PJB"ש\_xVB`|eKnI{0*- D~^R5kYL}\waYbx㵍2Ņb-zCvBLmV Ly;$S? .1 Lv yf 0 }yUN*\ LV]  내n j_GMZeGZ5|%BHUŨTsdX`KGqdBYA/QT=5B6C.&S3϶d 2ш~ Jg a_xAeMfj<-ҏmM`kDF{|=R|!B@4Z_ <NvƎ:xIuD$SL٩!x(ہ0Դ ;еUju&G ra)54XielF0_Ɏ}ǶlO7 bTe5x2VjNs4A4{[`V0Q;A| FcJc͛0 DZlA_E zsO%1,2?V~!d;sk3g;yGn)5|ԭdB6NreEVoD_Z;5t@;o~/xwʌp# -YW(Y@ Y;e*SX-v>vtLxͨ.'m˦ԞY4~&þ6$-UU'Ҕ% jUx ʑZ&ڈxVk 5Do,Gd(t)8fNҁDq6{(Y~@@$\ /.&,Dd 6 `ʫi%9nU_@QMmNEoP]Q{EÄB^{͑$7zER9р j9G܁)t*^i72c9p:b_@s]M7PD=]@. Y1jSm˔޽ٯ/eD9],^&v |yhc:'_F䡞pIngAѳNWyL.JPYoßUX h;eS vsn61)>UnW9%nn3H9YL~#p"\d/پ>i͍W< e l/_Rgn2"E̶oZ')+[,LrLW-&*]r5^9"1Nd7goN檃\vUlj. l:, ݘ=`3K9|J$0ҪR]2[M"t2 12Yl1e޼՞ ӄ3>36Ē=@,U_N>w'SXr}ш[MQӵoaϫ'R'0r*|-ri 4o|3Еgjh_Rá bk< _,d9UQ~b̼n'N:`pY.|#@B}9K7r;2 2F>j$;OЫSK\[ҹH'ќJ<4,cPnۡGETß1G%;тM֤TDtbd(b6#J -&T:HsS?zDhǛڌlkje_)? BL/xxsz\nL}b Z1v "Ϩ]\&iR %0鮶6jYRP=q9GYc_I=UrQӆӉh ՙr>_XEA,pֳ! i:Ew@MP9=ށ:ocpm4Iw9#H:N?,37pw8527/v" [~-n?5YW;K}8[G;drz d*JIFeߩZŰ׷;fCR7薛,p:SA}=/rX\|_&-bK0dfpcӰ6s<{)}إMc=ƍNz c\ҿje4=.P`[!$-!̖i]![E^W+ me6hW֝\٪pI/nن kU]S1{'D#|μ:Sڍ^jNsiy-;`=IY h` 0( FEh@Dǁ^E:Zi%&y"7A8%؍nJt EjI~@d fb ˙K [[yz t H,ӻdGއlyy!L<P, ؃JQƌ蓠ēX*ˈ&H<..Ü!E(/h%em8x$"=.д^J|PZ&ҢZ\Lj[(a(bT>fs]<~YM_38Xa=rcB~'x R^ϔ`x3iu[}adH4?P1RV 0(7k@=h"d݄KN+15T%6%xw7zsFFmSoU$ns xG ܴOC]怽ӟD -џ'3X} i=h#eV2HnpÎ4J"R(/G='@KK)j):H[kش x 1ՏC/{xLl^:Lph$j!Օ}*}>D )2;ui-6׿tDCv,>^4&ӘYߗjUHdBͲ K&/(AN/F0x\,)H+0-\XټdY)zw}R!E #aRRx u3~O]" XŋoԸũ)kQW#uB)^TNS%\@ ggM94O4osjߔ=dgWZ/C(}]M!whN+E{4=+M5םu;z"9rEgfL p}欽R녳U,%K`dk9X Q%~YjF-# {&Zᱹk4ɡ_>T5K051m㡙Z34j? F?GXb"Sk-[W2FG;,5cfx0a4[Ƹ"mڜɪR#eez>նr/Z4 $Nd0pDvH X9 $EtORZivF#?%Ƕ̒afM0ɤ#2=6ο(H3ݻxVU'_ drk.HUe#U%XzƖp8vm!x(`Qb J$0sDnLMY SHi S|֯AVĆѬOab#E֏"~KܒD_x}6筠h}YErgy> wCԟ4]y}4娅4Hځ8!4< !nVh( 46[CdOtA5Tyln$C7EI/W'Þ9`%AxZ.57H>|)DݤܹyF(-I-q)d( @(#nJWh;qZ)T7͞jZ'%%̐)>!Ma"wkrgQdjfN^װs?}FDDpLPEIrzz>NH.i)D!9IA0۲/VH $=:wOrP3K*4{%FifupJڛawV="*t(>P+( yƚ_μSw˳ÆۋZgot"MA D\85gn):5t PyCcj@c{=ѿ2S/Ty< vxfpiN6nW䉸X^{ָN @{˫1VSpޭB\Vή= |ؔ~9y>8(JlaZ!͗EO=@a-fH#B>](i =̟p%~<>Od J!>ʟcx?k&MaHti1NN?ۼ?sٮ=޺G4xΗԩhJC`v)FRz48SϢ}ަnȲ]r9Z°-mNol\5|_n) S/=ڞ˗YfSmEx8[8RyON,).I X9@XŲaڈNAe@W_ 'hc\;ZO4'IAױYvXe͇>Ov [5`X'ǑPgL[#V5r筶$Z1FWn1\&DŽU2|݃Zhy]މ<2]UV˂,%^Nwr᳹0bnÚjXKc3Т%E &өK 3z TJ:5d~7'|ctjΪ*%av /{zSNBii)B\~y̗(z2-y~=ϋE,'$g %^D}ץp[[ ys:.z]t萮ݜ&hJqQ DEӢEd~c _ij9aQ_i>Y!ygSrPiaeI;?zM/`AZ3;v3Mk_4MDx0 6@ 9]Nh ( ws9G3B%2"3@l5%> | `qv~r hsTJ[A.ElH3 3{& Y0tA_=y"mPfR}=#0yfA8m9fMHꊼIELp2Bnhwj2PIAO+CAwP?`146p;((bΕrL%Ekg hCwK~HItc:c%Ҧ5)qa1u_\8mzD1eA84;g;rwkF8%a!cf t|*m[>;2z9pe@@Y6 :J&J;m; ]a bhRxbn!jq9 2зi1/({N_k}obCvVms~1Oa%zAZEDղ IU;A<3$~QL01'?KÉc4@҂:jH ֮P;~66mpApfKN.ېHwnUN]daTe"aZ@l5ː1#V#D+`.Y 0ِ~3Bb\7fo)O6-X$`X{Rh?4-ghm.nUotm®s"dɚaFOhI|c^䎂Eψx+v$Ӱ+ډY{$-?#n-j^^%X^erGUs+B8-%`gc=K5 F&Ps`ۣ֍^ڨ"Y7>H7x 77DXn: +!WPI_gDd/veVQO/ϴRr#˸g v)0JT"[& A|[mmǩphDz 먊uw@2f(XXqPFgy?nŢhE~JI^hDYб泇>^ס}!'O!G'p`FS 3]`i!+y[Q,)r*"fsS4 ;>=G胕ϊӤS&oOw]j{roV\LMmY!7en'mo'(b5fAS&{ Qyp 5PS?1`_yʿ\Oˡ$(`3oM3FJ1BB}[^#|x;luF% #i7xXs9'LAV_ K%h:D\,%#M X,E<޴BN*JtzKʶ1J^e%o=.uH*.n⤖=do+>L&vXwM>I}* SnCLMe+kMTi7Й,mn/(a4,"m |&d;u6Kj_^i;ůgZgiLt  -EMy ' QOौ~jcSbwF:ȗ3P#ZȌ0w_ocɆ ]+E No {m'3>=q=K q #}TQ`A.P(V %8C*eG"㦝UzmYwҏ?~C,ˑHѼj٬ TnIJ,`^V}Jeߝj1!U` 6xܗC %u F{N4F}^#c- Ofջn]wuc;yVzi50 \ J7GrNs8˯ӓHX|EyѢ.Ey a眛FApqVdy9_qI `ٕ8X50agw_@~66 !Yh`_y԰:4Ո& .%1+L"/Z )+D I^'5S0[hyAHyz wuv4] t)* A֪+F&oQu5$# _\5!~2M 6M0@Vp޴',Y~(֬}h'&?i<sܰ.Bn7xC㛞(UD"󇻴 jiO.@KTH"+I3m&[)eTL4GtXG ##AB^> 3lsEgXzKk xMA =;eDk{gN窗0D2Er$iO5Wqމ9SVPt oL1[Ko'}Rdr@7G*H.B<(8Lqv> jѠǮ*vcRK.D r!cSI`U#Ai~1>QrS=?F׭)} g& Z^y~r1N[TS`j Q7iYh((vQ&wV|bG7{*JxkvJt7; ,N`%jN!l 6[cp*'{%Zj2M^Ywt@-WKj4U_tK]3sʼU 'l@LTQ.?P0#zJE)wť{M >R&%p?Pk0 xPRt√p[<g AExYֵVȠuH)beחd1g߷<|m6$r*7c49Ɓ}@ N"P67 Uj̾"(4P e1=* e9xnW!.mdl/P=v4ȝ<_aJF כ /7Y%Q!]x|IU*f{pBn":F\dqZ7$Ty'5ǥLa ŘJY#]7·ޞvЬ+&;G%w2+PivHLMQFtIk\\ )V\ }"t5Etְau^U.._Cf!8V =~^tC7z%s!P`GݓQ Lp:VߌJ˧cuv"/*%E:YC-}d䓹^)^#\K v~ b|1+v6Vm̟*`-Z ]~ڍ.zN·-* ʷi1 0etLMخقkZNf>oCb(^Wm}IUBGF[HTQ !6VޙyL׼aW+?QD"ݷx-{ [سcn9},2[ U'1>n8wv˜k?*mƒ<&s%Zѽf- 1%e`HT.·!M+{P.9a3zvkNf i ɀ(Doj_!v؇(` _mvs>Wx@dԿ?SԘ枚x}H0JIec*J"4+T\i}!yPmzTuϰ@Ĭ'='F_b`FMжLd񴇝lza[450Qkf,g['<$p?qdFL'[ĿLA(Aվ \.#}NZoU:Rbj!`q:rk-&{=<>njV{23o2 x/}tUљ,YJzz X%עV3|j~ j1 u~.9{QZG7^+8į}OT9^.l4 Ga.C2V"}$pcP ą!pVOֺ틪$;cXvaodbl}K6{!B~9Z")ajY,Y5}%nvҼy=Ytk]djQ01(M;1J0+^]Fgk&62~%qCq~5O,}u|G\cnF>6($H}eNbYMxyB9#@!$+n19G`lha%j[DIӪ;G#c5˞@Hk?)05YE6^陗 &i6~X|{.l]6mud)9/.E>?PΠ8a\a_kŚqP|·u@T-0u~vsFl LS^VuHcdb|xgB1u/g@v dV#~N[U3Ѱ |' cN*P#z˥jGZ1K!|1NxV ,HƠ8TkԘO%?5[.i, [G4y@"1bSJ<͋:z>'x{&#{BU!| s[w߂pIӖ rBCn<֯.w]ktDzy}:5ͬ[AqD*ChtlkKFwǒ>x:cBMcf2DXph M C/Cb"x!7{dHnO8zҞ)ɉ4Vf"veRCevH-Hh 2nz@/F3[/mF˼4#џM\PHz w*Y oBrn$ @Ɋs֟eƕt""L.ZhqzWM-yU Ő\3#+`a ڏ?L吅D~QdK=L,کlHHL Q#m_GYҥ7I~ LoHU'N}0 JgTT2]̄bUKG2 tN,?W"`py !$[vF1isZ"wSaFOՐYYw#$+ǶpBZ%cpNc疟CxjXWCrdVF&z FQKǛ<A5T0J.m&ez9b2CSF7Er&l" 3{Xh 34ډg}7ȿjF:k\!TV'cdi?Y-KYF85S\RPzG.9*f{crJSRh;wyr,Fy]qQ$fk |Y'T>ȕ2 IN)bIu/?!J˄L9؍due+(}Jd4= S=Jdzյi'|p^i%eS7(g{Q I !aBz&lSD-,+!4kWB9$g~a]OC"z}|. hB@v_X\,j|g4WlV=D;10(d[`N(^ 9Dr6xnJB;Q6--x  =ɁiAms._sw1 w=o+Cy.eyhY+~o?;\3xX5?MHvZQXXRPɺ?sȰLdKSn* R2 '~drS {]Se@kӱaoK󛮜6(z|n>IhI'k|lPz^ C!V.`ƌ1f(h6R+OOkCN=_ڡ5UYT0=HCDV `2%<4SS&T yL +{N~}r"]܈M#1'0p=9ǍtR$ߟ]%jPYѼm+ct]db+OuL!~Wa|X@ut7nQ"aCF]V %|{!:l)?Г0u,7CfX)9=f$l{_¹ЬqP^s!5"chQU>=Ė%>,”_LidtEzXHM ses-G3OOqey{Izv>ÿ,`9~ K=>bpM x~*Q̈O >L6ZICƅ&#VHBV\ShwD(b``V[Vl>TKYf$3 BVZ&Nz/5HܗB[sFBR^T^:U"p2# wꅗZc6Oݎi&2$ Ml{Ҍā[}k$TC.ZOV0m-_wZ:6M-(]@ɏ ľ)Dv|=pi#x :bˑFC\IUiD#$=2x,z,>DgsF-^t=kn {^Yw1`"IjR<9"ngwT|,X6ISf͖dێ^lt.8o{| åey5.D؊j?]Q(ks,],wjRH ﵀ m*%'Y7`au~׫nƟZ֝K:ũ+R~_W%_)"eWHh,xd9yhZe  k7:{qG0 3CuJ6;VnɲfGC4K O!àvNVy]LWGA&jP̧rNi(z0/N[փȅv%bW1RhmU;z`%q $Eʯ+u(2/kR]02J`MbHH;lPLȯDL8?_jkA\p0<:p6bIkBuY[pcyLvӻ1eYIV'hxtGDL!X0Q+ 6+x*W@ßFmakZi]& Y_ĐtVt ͱH]]آ!4 >fEtPVcx/L 缟`c}%"Hlj{5&`C/ 3}=>h]o3?v'Ye#Z@G+D ~ ^rj# /7" y7f6^`7ÀoY:\Lv ɊR]Bf.2@NԦe[& cx ~풾$ \,v8QHKf#cxWr08 pR duF-giOr%&:(5,mšg0S۞sZ<&ǕiUAQ`XĽ6ˆmP< P[*:Hū 9tW(@T^zp?E r78"_ܔpqM([( YXugF}Z>BJm'̻ImNE;bMʏ!˺"">Γ iV3YKeڎE:4;zj=p9LƧFWz1YᓢDX]iOeìËj@vrTNfWғ{ n)uvY s)`u];6Rehϓ1jeܥh'x.Wj#o1¤VǾ"{l-EG x6?-=)ZЧ]Z 0+=6W@n@]i"\UHn‚NVY{D_ !צ^SSg#)ȑ xo@+t]{և.|,'] c!gP츤_iiroS+u$ C|i:ц*8yl ad$_•̱x~>ـ @3~PAd]JiRꐂgt8:ɁT }zRvCj(>x$KG j q3XvN 6} ZLax&=<^Av7" U\Ycӂ7]9z4{8@n( \7?{k[!P:J 4'L,g)v"CD^Y@5^xs5vWVN%xf=vzNculݼ <.9M;,,x/6B DzBܺUwqźڨO}1Hܗ)#kB'R~;{6" qD_{2J*A ^&ZBNao(?865Qs*$p@%,Zγ:Pgm[w:-vJW1? %=- O؋!qO*ilXGt?g {u%s  Yy0#C^EW~}x?~:ҁTNc)vNW++gfKX< >PFB60Dx6 tWT5Il-q>Lܬ,Dt8R05R9xʅ UNzƚL[nAwK9pbX-yۀ|Y*zt]#&~YZx"O.̟4 {ȐM5H *Y'z ڵGpyR TM|/daɡ,(WiU)zvG;zo)r kuu+%7R 9 g! :#MD鎸4.uјA3 kdL@R͒ {V}sPUVi7>S;f PcQ/couBҀYqXvHI@)$7~u*<]"ެvY\F0@ל;^y8FMp CTsfAinHвjt]ՁR8)j,CS ~AϮ?a@1N91H=+ZKSdw+z݄(y5Zvd)󲃊2\ODt焺Ew~|ub^C`☪jp! )&4^ηCvB[;!{% h+XYH1|+ZD3JU`=.:"wVZl!A/!E] ;rΓ!S֣YiSԣgn },S5W(@|:c(`:fNHncvtQ:l֗\>) -X##՘ɏ :8![94/ډ'>ë.Ė+mj&œG#ZCEH坴5OXGx@7l3U]{"vS1ӽMDb63@xB9JWi.FMCd2Ys5ʒħdr~<[H1 3jM ;aHՠ9"1 VCIadt1 }n,vF)LQɈ|O#p&c9DCwj ^zwcevKfFcת<|٨lH37fA: ? =;ڼVzx;<'ʫ?J>\UW1ɦMTI 35B)E;mGSs!-j oאڔ/̧l N"Q3B殺>}9X)l |>zaA̞܊1]{WF[k@c=aJ&Aep^3=`EK鍘8ߏxgeQ4&kn\-[h!o/ c(*npY1jQKgl !ެ^;Ji+ Wr̔IGҢn"wywvV]M6e 䢋t6zn"3:S>9]cUUcl.u::cd&Ze ``,G"뛠&Bm0@-ҝ74mz)%SehkޠV7j.w9N:/,k[K9`1蘜t"ƢyۄV `&mM݆)ͨl13QEW7gR$WBX){Gj-vt 9R.1~RYqk2Du:vʯf+JL)|=H弗BCIs*xyQTt3<".3aExgԦTUNw"QcY1{E f>3V=dai?ϝ/G%:dXfR=_4Wq>Xf%p679cPνxϳ H~nk\_Da`^MR-L}j%AEߌFc -E'k++J DrH@ʥ]lky{8TاP ygWa:#7D3창HAQH#б?9Pp[m $Q>L>'sTvA `[#RUU 5'VoF327 7È+5힮8hqhsIj2]:ߪ<۰ρ! D~ G&4%V:BT9Ɉ#}dk}=L ҘXPQ}Vt(Aj5\P:T  gj=>* /bcN(v}.9:7֑m/)*=2}D- wq(;RYȬ1Ƿǔ;86QTcVmpFr$IVv S d8eQPm޵~6l#lZB@얍5L?s- b3!Op?j8AH1iD"!MA}6{>Z,kNlZQ"}כNm]`pܴ䉞A;i9W>'<#:Mr?FFa3jɪM|7n :qSZqT3v~wvJK>OI@ jAK:V]rN;w rL针Wө!=Ǝh2T94vAmvp~3AJ>.ٸUw? 8d0Y6hIp9d#,YuCmiHs%LvؠF"PN'g _K Qƭ[MĘPVR(b??0O֘meVmpz=d&o ۴9Ѕae&7D$#5wDU.1{T"K_Zi\n7~Zi޿I4'2t {)&4}cn,E!-|Ŏiw2!pk8.qn_So 3&"}+1971pʐŐ<[-,JjYR(wp7I m G{|+&Ls'[5k[8}E4J~/F,~6^ O~W_T/{œU;W^3o,uH.%_JZV ,*(Oɢ_$$?+QG!,Xt+YG n} z^ը5i+ .?n6Z뾘N,=Lih")RNhA ?`4q0 2F}~&ru}l 47~()LxJ[N=^aZԧ-nTVxƽkxq(;n4˘ӈ&V{<mhF'}˹UC,"ˈ"u; ˻lہ^ꐚ KNh ~* 8p1 !Ʀ)A}mxM69pA[;|{zyn# X\ $x&dCuBȧQGLw4)TAT1>%pgZY-q˩ {z-+hq)&vpfC_,7&[`O`tq4_%,3.3zpdð*gE Z| wVl!Ɂf+St3,,R6ѯRe[K> 磆wDx-]HfaoN|Tn)?!i}!;b?\k-VzW$/+ْ#NRsM2>>$XK L&zW+>^J܈ǙfyHaǶ#3mmUr~hږ`c߼h:Uְ[/xt+s((= KK[?=i+[]ey~qL+HWse0lMLϰUlt ɿ-?q3 D))nR`*̭GB+>8ʈkY`\0d&s"eaeXnKzhL_YSXqo:6uq32!`&Y"2XxDhZYwX_'d H &_겋.tAiumzظV~no@%a DA[X]P*e~"TԻc]Cfߏ 'cp/tWFԈY Kh*rI.9+!%/%RR)tez&i fP㙄fysꍖHad5?]bl(g*K$UuQD8~pwIKO5Cn%TJ$ǭsMZ>(%uRϓy; @x1UNxǐ9l \`X;<֫dO(F(H=$x_rG?3R,k3%:Z~x^!o:Z#I Lh$ć~:VTj9OIr!1R?cQٱc _̈́w G;{GXk|˩1h5ƶ:$?Wtl'"u|s]EvwpjtD9?qXpEEF-;DIRw-HH(7*rϸFE_Uu |O!d ArYSH r*Ƞ*AFNT|DS."F3EWALL8M"TJ)f/{27>VBPcH4΁ЯR7^tzYx0vb eFbsJ@jWK"Ah_DL7EA,,f!!IC6OiJH 2/~vk c1) Ime # }Pnxiw+LFϦNj0h,^)$)2bJz!W1Z̹,U t;I72*Ē%#湖w`x =_δ-i@@댄3mPU.;7iց=] N[NH/~XBd %2="ENJٛ~ywgz/s^4G4 gXJ׊- @F\1ւ>8ֻycra S~4kQS|1ZAaZk|ur GU,ĘTy:"[.xBWI鼢>a5sH >f-^Cs2hyK@\Woj ڠ&KnIrWOg]!kkPOk%갼O S)s[>UQrB$Uji?ǀ?hbH>gʹOra[7)5/ 6))c<ٝ%Y$1]j~A , yfc 㐰*bwc\MW%_0)I]c߫?/L߱I^Ga&]#pIAU ogHx; g\_*A q?,7k9q.Ճz2E -zRH&A L<4b x /5.멠OV./rl|˦&jKDV+lYs9a76ghNNL$haw\֣ʹͯV;0sb v藩 1@ |T d||8w{;VRs9q`mAfbHl4S!I2 =; wD[A\p>o2iMAt*/HOX_^PRS%e'Hnp1y`hmp%8bڦl]ԙNro}QGhDE it{1ڏ;~ɚs?X3~e\N!&I` [5rR>عm%dY_c.XA;Jhy.`_^F- d4]!ht\ .AlYs)P%gow>(wt)/HӿCzuc,O\%&YCٚV5kJ։'GbD18s-xNkɈ~Q$"r/Bmo J z:2诚N^>ljZwV1 %Jdg"8_ 'yFGL| ú m 9ÅL JA]UvDi+7>d,t8[>˽vfw/tOhR.nn!_uChWl͞ i/SZO4TtJ(FX4QkN4lJNe^P)^^A6b6d{&9Bz|v=x@k꘏a,dsJk6Y ,kYrM#&LrϼiuuxGQ=؇V* #F F}~/k*zx;dZt?DKX -XA:w>n>I9HEP Ǜ\F*OP>-nC'i")ƒCu^Mnm>Y8ot2vh?UZYYj*sTKh a%B7~9K Hk19ԻH2]`>ec8njȢB1fYh3h#U`C C jX~2b-kίWLm\vPkѶ9)AAD`v$p@z Ajc]Qe3Hw! D}2 GGNгU;=24=?MNYgyɤHKB@Aw`c>$:3)R2Y8r̳:{ԍhxw&ǝ]K?rqԎ,wҎ$ZJfnY&1₻0í*έ^ZNI:̶8WDiY,S魈{l]T'pԥ[#cx: /{"|ҀOÉg鲞Uʮ-3)@id-`fAC3tLqꈛG& 4")E)Ql"m50n]_ 8y-UI2a!Z@n(ddҨ0GP 8:j iȤRqcY140)r$z>1Kd7v8dVuz&Ö7w7OLBO2 g䤔oG;7ѳ"f bNI0ooԽKg~pυ! pqn31B`( %t%ooJdށt9 /=ޢ-Jb7\N!iUseGxV#tݲ~@8+1й4 bdSru`Oan>3?$]$k la>g#0X̟4+?ӝ [-WR͍PuJDkC/6i-OLP r൧Ur<#L~! Y*+['VE8`S LHkQxD1"|vGa,\yKXT?njV}L 6\nMIj+rO0;Ϝ H S'D9αU9m›ΉDI|b Ev{Ί?tD}?n m o#ez#,$n<wO tV-u6u-$nűKo1k l@gɾOD&/pXmZ9qSaw=A?ֳ,`7A5KȬ%E' Tp{gt)*VNof-Jz5=Eci]hH6tH[83WXWe2{uPV^DIt*/mcUNGN X`/U\(!%`'i<-eIrD 䁁ѯj,柍^kLD:h!Kd tw~o*iv!{{ye{&vG8Ptt.~+SA~_!F.RJ]>M@`Z=2,[۳$F C lO\ woqpZ'Lߎx O'QO`Sl pFpkY:TE$x9Ėŝ[+nֻ<ż(?!ܤ/Y%|Io5Mg.|&̓O={P.[*{cú:V[=P+WG 30]&DU&Roe~Oأ#JS3Z~,~Yh =K OCz FȐ}`Vy2ZAliG(/|A1R3V'Wu< SEבNt독[ ,o  =6tڊ_iDj E:`A>Y|E4'_[YhI^\JrWli !F*RڸoȀbP9kv( qQWK䣈Zea&Xǎr?-?$QL2ygWmu SWdGz,KNAVF1rYڞ/=f:-{`W6c.y5ZuZ>=>0q<A-S#j?.jrHg\j8@Ctrht9 S"yO#/q/.(2/\$G A X#]zB[0/,b'a#)9gD 똪?i3{F"Uz,ss3^!V@1 zMnj5VCT)JY FTW8.B$#_XC+oٖ%GPb zđvӈSyw.Z0Lx6_mѽ/ 8{\g-7bQ;둸=)}5~(NGc1 a|z wjfRZs /0ߠ֠Қp=k6gCf7t#UHxk+)Y゠يF*>Qǁ%y6Wq#r(79)vNaWjy=jom#9 ruά zeDu^_3OWMߜcޝٟ [o-K5KoVWi@j"dC;я8Ulo!n Ryt@pa#p$Hru:ҡr7)MI$Tt8jWZF2y,Ӧ "a Y\/ff3 ׭p2b>p(I5pØ_Vppwc p]v%{./JKn#4?qn62j)kGËqs&*!I#f?"vL5VhQ?1@ntDHIʭKiCGPg2ǂd`o}l)`t*Q6keBɡG#;}+ 9ċ4WUQ3 ىS"<ԓiQ?Frx Awr<%} ,/m0*B;x=Coph񃏦f*ܒyBx O>E*HیNYRġҡmځ*<|SţjgrƬ7 W^<^ܞ7⽤CkT9jwL ^5?Xd(@R##JǪQ / qBjnq c[JSh¹Uni|@[>$%Vs_utG) oO~ra6LjTgnBn)ĔULҷGM)|+P%5GG\>eR匠'M.*tMaF=s0`-grsfʗ ( &B"Eq^*DT9OmP.]b߲(J,HA%vhup7ϸvPIB(vb!ƃLvϻLUC^GYtL3W\4=-.luvCm!/T~ 14R% v8TXf+y2YlC_Gzɕ(_5v%`/YDR yCs5,'&Jrrc$6%:uxB2RcFW5b+s'UIOPI1}ab܍uHEeVDLXPFc+ Ê+SkEXܷ5nfqG^|XSU%cwTSlOgxL`1?ʼn8E+9q^6/ >I# k[d%VtA45ȇrodJH26?GNG$*k]`[}NeMJf ]TMJR$4Ks/ ^8RCH직f`g ؍y$υ+ÅLU6v7BDO,@fTkJS.~}2>ۍFuIOf[f /%dQ3B[EK,*[­?G`!EM¦=C o]&Z:[r'm*%_r):)39IO / 0#+,.M 0B)/|ΫX Ey:*$ E3`Uּ'J*::[탩yڗjee@{D0aJ^VC ";0==–:/eqxY_+Za)U@ǭpNww]'??w#:Cҁ^}PF/"#Oss\( s0<1sX+oVJz+9ҷ:ƈ VT6x@^La5sip\,^r= [Cl;N?E>:Rz3'|  jD:lzVHAܠD g:=؄TޚZ!o^=E?v9MriV2<(N۪=s1PJ+9;=,JzrN$n2~Z-KL;]5D` StŠ@MAY*^y=RCYLa?|#wKRT;gHwNs2+[XϚ V3B$m S1 {!7'r9E0k#2s(qGľY賰TyyuqUe3렜!%=ܫ;wW׵e&]nS&EQl{3(Xia`-)2߄5[Y-S=j\Ol[gLkʗo+\s+~QMU0В7?ȣWv:W@Uzu&ړNc-@؛kt[њ$ܢmJ%%0-Y N[#2}brWl]+ȋ /Eahs/#ݜv \"{}!"8a|K\c|UnLΰ*2q}Nh==. tijw6.$14pw71)U,!ZQ C+uk̡>6~V˪ֱUPFVFFSgrWb-)d2w>:K]Mg3@R_r+!Jtڞs_ž&s U4b_J;=snCBWETui%K05((L/7@}{6(}5xCˡuJ*kǴPLxoyI1p@|DhTқWm>4a{oo%53H쉋p\1]׺>(m }(=k׿c |+hHh˃>puG;+=(F%= |VQSk76/|-\3! "~~jSlsZA.Z99a[';L2'1hxLLm7hD7gr\lޭEZ Y*C1c#9F~Xa\̼aWN4lG G,Y Мۡv:$"QDMڏҥe}hgkT-mScu3~_Н3/"UrrM[ye}үUQ䩢_nzjg! L2I@`4)ڎpnzk]Mc^;(׭6t[E r9dN{6IX{wƜ߽Y|O:UcJb)/8 ,k#uw[n+B'<'< aq~= k촯7ۗ˱U8\yXsKb˅b)Ĉ];P z#W4ʇZZN{]f(`J4=yTKA;bn$V }]zV`g1:&jh*0ܴ\s46=G5E,c&*8ΛB!44P1"3e\%($hQD&NO;\ ۯIA_ï'C+'ZئFULcdk^]M*# аü%<\n]{1MeZ8)@~pT_&O3Drv|*,>׈C?^۲,RW h&1\1;hn NiNN`g+b. +j sJO8'{QOgykV^ wDꥫ,_$u>[W%ljYʧ4:s[?Q|ݸ:Α;%K'0 Q-<9_#vݪzx9uK,qAWyWƼtCt $>SSb*Y] Ji,i8#^ʄEVPUJh r|IZ!a9oF}zE3Uڢ.HjJeh| 9 +$Vy#]DÓ#u="_Sқ)guMRj2, Ќ#Qkmpȴ #tdV?VGb耠zBJH\Qw(diwB2ɏO?YB))ŮL" ɁM 5In֑Ϋe.9ݵ{UaI 55zaLXx~"0%7OE)]鵊R""wsnN>5l.`%D},IFOPUjQ{S*\]+! `}0zL*"cMPk K+JzُdEV~UB IiP8)۝wzT=#Szޤ*p X(pS,GuMG"@vGݜV@hXxR^߅Uj漘y2|6b0k/@,>"u=>q B6Dv2lzs4(u{]vS 8[mpȇo;]٬n|IHzZGē 4a# Sm+nO.?١(AyoPˣSV$/ONMgrpI߂:NQ2X~#J ހ#OlH.KR`YQÍ FI25|(A^ "Yz;׈]@1qA|E{a0yF )B ŗQ48!ՁXe÷3\aF* "xC*q~T(2ꠚ/io.ϬZ9 Ѣ!5Q q)hӛ|ia2(\*ۡ<ҿrwS+ؾւD?_2u_w¿O^W"ܒRI;EVDv҇ڎYY4#^pvEg$.dC̝(?< #?Gk1F+ ϒC!Hqfbayj"RͲ 1=ѶU /bVWzao=Cik`Ԗ֐PM*6DVQZq묐(*9xaUä_$ ek83)sF4 .Y,gbCwr<O͘Ե=VŶ<%o֚9\eVL`hX#&EmA2B6Κ1<ۉ7VG_V$zJ R$)y1Fj"؅欤?>W,;86N\4咉$wuݰ43s0fuH7*7.2R2ƚd/3 }ao =)QiEg,ϸTTQȵZZD8/ߒq]@B Lpber^ mu`B'aRWbCV~q= VPT.z]yyBZdPo_gwd'xadµ|X 0;Ւ5e4P &uփPh F[|TbcXaT@Ԥs= 9,wh!X}M`80[G2(8EPPBHYy.9EjՔXV- Fiv,vyD:jwNɴa~Z}[d҂oj#o.'kٺE /H/LtH^e@</[1k IE\"^,DH=/:ۗTga5;]kHGr%?sޢ*d}oШ 3aCC=un'>wU{x̀7g Yqu!Зj -GYɕ̍C[VM6Owz]NODے%gp[ŐћlXG ,UI†juʽ0%sg;A\mYWz3D-MFs-^6֣;lhnA֙{EjňΪM}lw$02.nG>_-+ݪ>Vu%N%~ܴ EaK|#`QY`@1N&.=Dˇ*=R,8Zy߼Nd݁ۡ$aʞIm-c=*^$ }c] hgw2|ږb}ŗtuԃfAt/COeKtJ6.v+IZ5W)=#n.@y& k'ں͊LL$-Fy֗^BrW?" jDUB {VfCܡw`+F͕`ѓ}ٷub*564;,Jxsءe.$7eU}"#RnWӵEy{*WPKZ8#|qmnûbmި&b)}m𲷘5L IQY@6= 3Ǿ }PG4UeM>1 \fd\אD][2qSa.+1HN׿a$,,˯Xt@)>MT gM.D}\ Do1[ lQa-4¥b..eg*9Wp40QƤs•bSެLk ŧzlAxՍ#O$2zc_ITH5"!p74򀄌pk{B4mgtI׊Q (VVu$jK) BB/rGf02ذq.l}gȘ~#צXtN|Ht TzV8ct1 nD{r23^tT8({N Y %|,J`W>2Jf7<ߝo(޵af_ $+s [-Q́W]SYvҔ0i%۴`P0fdmIXQ`S<@F0 7c B1ր 8؃4'qzeo=cgp }u[\hBִwֳ+z@aT[2`!=* v c{w1ZU~/j J'"xG#"IP泗 ob}Wjh%\$dn&EDg EL.ţzUʻvx5߅D+Nc7N'}|BiB*b^L2d PTWcǪJNŸX^#F-n3F+٣iS"mwJtS0pɂ[<ТPIC}#}dtJ!j,7jqjc-c5iϓ^#GT)%-V-Ze|Bt걩hib̤Ҥ0$|PfE3vύRCR])un FbBڎExC^z?:j3s8wr1bNl2ݥBb;χdy7f7eM|-5$֞$k5%dEX>Qm r!q5 xܭv]$W4u v5l_sv/cq8mtr1`)DΞ G|7-յ}sZ7cpkj<~3v6xx)>i Vto51)]zRpwz`a$zz bwk) nb)wgؗ|ڼyGZD= |uXO4x1u. boNtlEYeWjyѺȺbTRjvHoC;?[bp2ZP  1-HǼ௿QR['~/zI MrۻrY7sqЧT ^a2Si}`|bcORzZRI;iM KarD? hDs{[JeԶ(!x$}`cO_Z 7?GPǕ,0RP+pq334S5AHb2GHSAx?!)-?ݸ,(Kr{ݿ.~?6~DΗr?K𶐂o\n"sM̅{P}^:RJ֏оuXa|Vd]hdQT4({z/`K@- 'A>- uj=B?"QMPש͈)0c~Nw )yj&PgOL6HTfeӤch阥zc6W-+KB e3K) E74Ƨ&4WjX/"#|,Dt|&r ͱ2mӲkAM=ByĵGeYr(ۥro;$d'NT4%oqUV3~U{"۟*k)PThJ39/o$ Hj9)j {ct$ gpmdo7{pmyWɰy}j>,a`d;v %D:7K :|9;rYira;1&vCbшtbx ҕsvlKs8Pm琮p'QP̿Rx 3()R>7Acߒ:: fp,Dl1J9*!j3* vG?I|wwxid9f̶kU*.jd8Fԭl"13)+@ILE5ŗ&AHFT8ڇzyi۷jȑR訧УD]7GZh*5EqKٮ# G@T$4\$i?%O }U(|.w MLJ XO^̙臁β89Gb4M0 p6u,\=i\e]9g$JQ)}^9@*SP\>C1.dލW}؅țq_bLF*ZY燋u9+yF9#?M:9i[6? 9Χیewy*pMQ @)7\i= S(viY ivK89כPӕM֍Cp::PoN\E7hIdϻoi?o[v߅~Q"ey@KhhIԚN7uȶs t0/"?S_QŅhZ f,Ҍ0yN jb^@u[a]VC(:ӊUc 4!ekfh: ȥZ^_lpYL - Pp%ɖGM@@MHɌ :~mAi1&g%SDM!,ζQn AJUP? ?/Vc]f6.iWJL8lzrW쓒GEƩxV4DjS$HӋ&%w3=EQEyt9qAi%Ō |H9j>m*B?k?sUBڌ2 L0S'&:HKSumdb-Wm=AF[7 n?jޗS%z7-vi}0$]t,C/Ac퀽^]d = 136R97Bb0`%c'!k MנY|@OIK8@{949iitT-1+&W. ^ծ>v.f);/q`/~BdVm󊨚C8#_8y*G{5 qVf>|0!a 碆g!ڦo eبW1}P5܀Yu vCsDѹ"B=~}U:edGh#ɞzb Yo[.SؗHHeV-d(Q~;Yt}=bC,hY(ȓ'qˌ΂| A{WlSqw"y?bd H.ҡ%% ^Cʔ S[|݂͂ˬG^{iiL%V5,tULz3Mcv} 8 :Z(oR0 SQO ؙzaƘ"x:p)b(" zX .d]vjcֆyX5\1Lqwf2Uv?f|&YfV1^lNňzq~]ϴ[٫EHVU҈Df{ /]A47!,'}k07p1Ce7b;P{5Gt ,~D)!N,|47`g\dc.Ե7R=1l4F>-tI:T k`eC,U|mmS+FyszopMH`HQSBDŽN t U M4(wJNB"Vg w-mC瘘nkFcY7ғ֩)U&DDuPɹ~KȷթcPԑ,NS^f?Ά?n{D`Z%=z-OcrZ>G A1)2r8U[} je¶mǏH5AaaPXbJل2 w]…2ǵuPFާs)"94QN`|"~Pz R`;n[! p cgG%ePV4b 'k7&bõ:>KW_Y+GTOӉ>u: 5{,1X۪jDBVdRu[e$`|&J_ëcMdN"]&%dlyn̈+pKpU#IT5Ȏ#\56}y}`RI ]b.#H:.9[(09Qv% u)7azi:_^Zy0sճRaO5r)e1|Z>psوmIUGZTC5q 'CQnAo!#+JwB)͋0E!.!!8v5~l PC HOlb`IxsJqg+PJeѦc3eI+E ? \`n|&I}_3ܯEo2ejfg[6ℱ:"MYG%+x+xC.>׶QuQ8:f O9j6Qh &IOeq?*k.C̡ʼ`J`b{ 7sJo8r`omָn XUV%$q} {>)_ryf+Z{6un .-r?Zt DJҕW|TcDyR-ƛL0ap;M<:v~uh\ Ռ&-vXX Y% \Ppnh9f" >1,sVʍVǓk( cNJu`iڡa= Qlj P7Wmpj (uzԪxu|L՘ce2``GqU&(4;v/@ ՝92Y [Le;4Ӎa*t=U]4dJ_ j>kͩ_A>QI¡lD b-u7 iC{%SqT{Yꉗ$m@bm_2qU*2@g+H熁1?"p}Ke/oA88*#Ҽ. nqզ7ZJ  p)3$3:zdlQ;nrhVDV>arȯD7z4GkD6HYDX0ry]6,͉N0Evl <̳6Vtzcn8^R()9ʏ9j2(_@3F^2b#y䆳ha#sә\sӟbh dVДqi}i̕3!GɁQISZώOqg1J>'⢽Q6a#Fn0&N`XhK{zVI@\yɽH0AHHfsM[P.Cx]@sB&'<Wt^$֣W͕ͼ3] >*TP Olw&lX,=BD>U@<}iMȳ,[ImZi,mv|U$Zc^v au鬔;t߷B{TZ29@44VDK{] "lO|W+{>o8`O@yb:kď jx{j<(S%~HPkW`QȈ S p ޹f*wq齹9S+ɢpؽL*WA iD2l2$QxK(;ϰ͟;Wϝaa"F%CDPp20R\xׅ۽oMvܶԹNް IA):_KW̿֩C /ϐHouƵv8pK˻&f/ R%Ǡx}<;:t!xزs9V ( á:41]ib{V#K,1i#eؘEv`JP$I#8\U)oT Ų3>V~afw#ENEŒRV<+VB;,9?_ҪuH q]UL[!kӊ5=PK!ވG@59R ֌9~ÌxoWV0,ƾeDzXhoZ!^7/\7Yf9&ںPQxE)Gv0?LgQopPF;61z Io7*3^]DLlFSY&aNҙpW8 Ph\[5Hvc.q+onj໅K*8|)65#Jk! P7NQfU+HV +=jl6[?WvK;fJdUybȀ^d<[1=Ͻпv4`-Ma4"*)צ\@qS" 櫍6'-g6wͲ5PB8x3xf&K1m9!Ź*ܯSug m{ҋ^,K?U~&4} *&{ UD-z& T[ÍK`i/ P>`lCT TQ^]clDF7&D#FD UopiwT+QϘx <[%EϚ6 GҘ~>?t*Iߐw|נ P%m g7I@f"⤀rxnl6Tazb"ua4wٲr_VvucJ 3=SJ^ `QێG6uIlnuțM: 6uƆyC4T- s}$|kɛ \Y@1qu@1\j,˂H8Iq">wvIo3~,# ('/<8ߌ*,M·*%bX^Niw\.kOv6Y nmυpI7rm~ҺF4&s*}^^p1烁|o< (*%FLZڏ=#[y6qGk)7x%U)/okJRxWydg£ .Ff|f-(t39o:nTO:o_UÆ9Sr̖vacF7a#ƾBná?*lk J/St#ݮ @.DX]kUtKgN[W;qj"׻co(AZ[o3,e$hbo"uZeι-眙(a,p~6X65xwhiq@#V-}R^I_HKo?8 1Bon . )%uʩЂ%3V2 #<=,vn fꆦR%Cyrj uGJ-lb)$."Wu5sׂyՅ- p+=]oW`2^_NǨ!ҵJgBvs,wC"9{b;Ԣu:kv=vWhܛT_+U zRvEVe2F'H.4S=X!Q*[{rg z]*`6R@s pF{K 4-RR[QGxqZ7f#\˖b:[HI:?5xyϩw%}RŲg'. n3Yzߙcv:$ Nm|_΁<@#fE|0o!C`ɜ $D-%`e5Cv]c@@<54@0[( RF;u!D]<ئF)1KYw(OP3][wB 4 2Ѻ{$X'ҡZs=rb *X>4>&z:7qk& 9$眚sm<.ЛZ,e*yA2pE͙Cz۞q*jse&d8t<@ キ DD]ؗV=akK<3 t㠧N([S%`Ҏ1Ycjs8xrƋq\%LK|<[;)%`r!a,)j)xzVԷV`3 }>7 q%w.p:oP$`6Jac~ p/S3]s@{ǻ w'8TUA WâЅz[5SkDU|@LF!_1SwZueqq XO31l7pGJW]'G(S'B>t L Enǽ96juaGhb#] TN5&݀scCb?`CL łkKs{S}3B"^rwPE UR04w<%f Y=i/ut3'DZ,#wre7Z٭_H`>by6Z5bqyۄZrU&uO_ǓMA}ҝw4XY 2h96ITLk/֚t"> Y>oԝ7?2ȏ :l즲*Sc~}RɚR/tW:g!mD:ƈ[=yEw}9E KKt|IWNи J+#U{(V`zɿc%)0m&׶! h!3!Befy['/}*Ig#qgE>[=B lmܦp/[_:_r rM@-7]DfgK,!\)@N//ABjiFT@Ub{ khowN%1_%:Z?rߕ?=[lΰ֚)gHae J?L5U7exE?a(VP+pYMHd[F<%ҲBlNqΔf ˳CYRknx#>*h:"SdĢWe=$ß餔*l :Rc+Og1 ~V]%˗ufNEqH ^E9F0.u}m RK99J u>+װH@,]$3@ʔ eu3Ғӭ x 9IC*5&Dc|27L>-iu>dMP0i6=xkLQ܊Xk#Q=7èЬ 0#;`Jy;֌rR&aװ`iNRZF l1Hl9>00!q>3A4۞Ƙoyy)^tn>{vFTA{Ixh{]>.Etv H=5+U:(+'f$I4*Z\7P`UVQ% \-ob{AʰDž69ytE=!Vؽ%'>oBݣ0Fo<;юYAF _c,z-.Qq|} :=;hŠ| D!Lq$@6KVWl!ѥڦ":΍LX&/݉ .Yly3"3`(W \v.*G;c~D0񎘊&W@Qlͺ!; nhtF bz3w0ku4}3JiEA+s~".) t5?&v:5ʫC \}Oo }N1phkP)CU}o wn㗌"\v!eNf)m2&ƺ8 l$-2j\dz*;Y5-vJV7IͦDш9’vN7aE0N)i0=~ xL3wIu/Cص =m 2WUo{z9>*іO2 =Ǖ'JIǵ>c.AV+~j[rdxi`D(E "Z\+3M VIV,)4BRp] ʤߙ,=UTV l86mD/z%VӛÖȒ)+lܒԑO_PW#uM@(鰩f*rϠpzcMf+O?ᓻnIG-x~.oc{^ԅ:+/wJ*3z8Zrt |hs!m|28Ż/wjS ~HǚHݥ߶ ,)`ݾl" ʐOM-{ޔaF~'SQ+lc[>΁X2.7< I6Ӄl#!tt>Tr!Oو`u<NU7:m'pQVMmZx- TŚdQ竳V)|.Dɱ~vy.%}'#0xku*#hhx|7%l*<]%<^jW|T-R#ɁI/{1r[ae;#lGb:7c6X'1l{ړo$ zuhX?wF%Z,Us̀J9%oqqw:ݷAO-R 29my 0Ә5mu=\$P%*o>yc7KC|ʦ֝ߺ,ˤ'5lFa-o] 99o~]kװ '_! {K`Z$~ڠC{4IVd e&zTqځ4Z1v%)Xh*`T흛+99-@Q \|(am aeQAo)<`> s$rۉgg{q콄xtӔtOM/ xr?RlP 2;`Ty5Yrܑ1:pG \7zyQF'jO5WZ ЋL'xhCk9Ge_HaZf ėE J,{yYSŘ'Ajޏ4|=J.~PF+5q h<9c6G!6}ۍ!, ;Z$iOJ&7nA "944.˟=e;1/Ю:x IKs$F0}=^r!`0@곴9ª-gVSfh `T`5=Șȏ&M̋ロ+CߦZ!Ƭd9B}9$ ZW,@Z_>Awp@TY v̓Ǎrg&[9EjYٍ,jVQs9197 2ը{[9w&̡MU#e('Y3z$[XaI۳{˄6D`>8g*ϰ<Б}<RˑUEwhoϟ:\,Z\sIȓ+*j ]x#:DY=^1^;V9W!.@Ć˽~XV} G=AB4hwD9 (ҟ%54(i<+t8K2@EhE XBJ2<RV'#p]?mjjFЦW qh^"eŭ]NGm{$( Ϟĩ^0PV=tEX\ktrK]0FOO.bg=b8aPe*dFϋ  q+zp; $`"گ?Ẓ <㱮K8,A8|0ed${^jۉ_Lw!!KK[q )z|l@fV\dD!7~ Tb+la-|rtF /LZjLL!'šר꬞4ͯ5DȬT-\ OFbM( 7"v64@I90"HZq)ZKnNYÖ*R_y1oY 1P] 6Z zۘ61scScʥ fPw r>amA K~;ǯ 2cpK hrn$S17}bLq?P%5& \,dv`B~9*ʏ 5 Q aGOkeV8+ε6,g+{ <پ!ȧկ b1ob?^ZJ^2g/xT}->|.z ZLmT GAڭE2}y9ëoj|E6enU=;"h94tqܩg#:$L+!cMԱ"jgԽvDSs4n8+C?&/ud&G4~^gAY$Qyh/T0)[KNNiΗFZ)NnLύlBq<֟:p*_BdNuL D',L@]kJjY&΢8b 3oAZ GvT>E6+fj|!Y)ɫ~nvzgb)H g(UkU nk ^k:zrj`n/3T&bR/R*>:Eyt*b\|v0[(]kֽj.֘WVy {4؟jKzc { ǻVT&b>KI. ݒ9FX!؈~KM={HԊE#soh;uzlEV,gJ%/O*FCup"ǫDW&>3\)VP+bO]P+q!-@}+G1E1c.e޲>%(y[hud{AŒt~HPe&PKn(LM0 4AdZĎl b-ob7}r.zdS*sBDX |ؼFs]Rv4iSΩl`yƽP߶\e2 6 [X iv ^>!T-S@I2bfh8A'Q@DrG%N"dy 9ە%6VLVt5&OlPۼ? 8cYhu_%c9);?=NuqL[ؾ=3>37D?/gVI\a݃oι!֙8F[mƵЄlIk*v5 {). }Vqׇ)D<,u&z8z!8q^pspf9 PTsaQW BI){.ly5^VZ[ #3a ɶ$4:~O('e]0=;`fff)It.>5Mm|ȯzumB)ږA-2YW; 76\,ΐO鐂(j%u/an_z+{:bjA2Aoΰ}~60+ PlP1Ή*cm] ,J@cpt<+T9w%2/09w1YeªJeW|1z5\3k`%`?Ac^!LZkzdZe>r6jw >]!&5ݭ~a:r  0CVuNߙДC "rEE vs}y"RNi k(iVu7gWUNBylb •-*R릕m>U,#~OZR8 ;D"Z13xD?#E;.Os2݃G>K : -1n5L" 4< f'FߚN1-,ZY嬎ht,$zr%Ӫyr~渲mx1᪉R)0Z(#5+̻%J es&iX2V6<dBzptüנR}Q#n'qJc]W&Q `!-O=5xQe7/j"TC?P6kfp1u*VqTu˷i7 lW7a`&y]Sϓ٤==f]A&G^/䣵{#d-@DQ{ΊrBft卙8e u jMQ_?PqGggvZ*V SCഴR0{ B6[=c[ hmYCE$_է8d}lh'[q/(D/.k>L/KgFQ#Nwis\ol١ yDoO-_!0Vk)G$y-t*7afq-mԀND Y櫥Y7bH wA!-uΝPkOL3} y$X#_t'C[JNU̫2\nЋwxA g7`ŤՍXV. uc'/Ueps:m)E"+@J.(L |L,@UWًNӑ'MLG;}x/ʠ6Ν1#-N3wK&V~寴)3j y #7JT/ mb`I^9apVFi݇塳<\&.j}a8'Wlxm~z#:9̽)8}HCY~gRqXdVkeѢMCə(b n6a|e1lӟu]ټu3܄?z!σYD~QA4A%qУŌB-5'h/ٶg'fO'VKJH=UlT1TX0/ &gkɝd0un]}¯]fܜIbG} X0UE9zsW6ٌErg{Gـ7t_֘bL(; S~9ϝDa|$Yf1?{C>6?hy1t^k8BtM-uyTw'#A5[%L2 $i0dLn@V-nhph5 BzLZ5EȒJrZkoaE=l4% wH( {&6U} `J%ZC ;sFo4P]9RHIVsDA- Ҡ53.EOwMåք'VgO{M@Onkdw|+08-XZ8Hy |XkH- |Jg,,&zFrKc,O90Oc[hUH1Sq*ޛbI-nv"& J:R^$4u9xϞ -ɠK/wA5N$%[IMRH qQt곰  mnz4JѲLg 8exqdeC3%@UjaLۧ!O6Lxd@\u($XXVgB!P-۞3'p+1h_C.qNGWr,lA).vSnv'/@D`:g{ pN5~9 :6o#d-a]O U3b;⸭ qI:q(tVǔ{cK%:J>z")DK#/~7 7,{|#^P ed6Ӯ\WJr=@_k/c)OAqgS`N=>Dؽ8f9z-0BɎr1ߋvyt@!NU| rm&]@]_4MNʯ'R:3x=л* %kYqUC#4) hbQUضqѩZr=eub-`݈\0e%u]*9 '-,f W `"L~O;1;c(±6ʱ%Nf&@~ Dnܴy1R7%vHZ CgE=!۝^n4t#b_ҝ "Iz}_>/0pU|o0 =`ͪ.}O9 7(K䨿P)B;ƐؠGT-Mo6= A+RB/@RuE7+L# z4FY"NV(""2)_^>A `QLxOS?R@$EQ?9GQC:%CcÆtڡep_,6 |7ZO*yromK(H\2Xv9cx9| _k[nSrvaPJ Ӑ%H5>Xbw_k/$Rp@E?5^KЃT-[ǿwwj8͔ACA6-&vPD쬬7 tj.{K @IwaVM߬ 0GH܈@+mQwtuhOę-mF- xB44B W%D]i=9BYB7ʒv% Ec<GniP\)$ /X t$2sQmJRƪ>s}sEН/15dTPu$|C}A*DE}=$ko)e͋poXy!LmM PJQF&#@DrFЯ_R F)ҼՕ:UR5Q։I/[wwMmA2̳jb2ѵ?ɔӦLd11Y(H#Y"7v-fqcOn^}Mw | l\gxGYLBEȅ`!bW2AH 4^"0z{ma0YYuj|0Pn&EvAw}h]1Rqj*vC]PݒZS/^֩{{RV> up X_92q* igV! b&@aa`U ;:.bT 4amLO1ˋ$;$0Ht Ɍu &!uey.xT\";δfG^7Tgwxϛz_r3[dV@C ouDikڧYq/'w- cF.g[.%{Cǽz9f|L(f&K]%"*zLH=gǯWOKvq]:F(DL¹KoDs|=/uc,l-Xm.`piWD@8T ?KÑ qF|D9AmKF_,Awmf9l!xWN& ?7,D mTPμ29*lث9PЬB5HۭM<}bh`mW21kq0Mg N$NqЙsGOF(ky8@+t1T ;ԉBq&KnʮbJʼn0 x!`0, ?RzxvIWdaIuI&Š5tu.r28e$Ch-y>iO+3]m ݶͩr<}S&Mg6wvSTvXHwFb d,B~C9Ȁ-?fCFhfkV.~{[n6lnys?lZ&y:H3_BJСJga`4UTP%*?덯#vN~D _BGS5ARw~z^jq sۄ~lUo>CUO V̘v[OS=ޣB.*H?<ĚAL;h}"yyKi0-Ғ3.Cߩt oKs`fcHF[7О%8I|Aux2 @U$u2VdP,nxu7@I.>TYRVYa_\QhDV!(~Avǭt{Z;\{Q˫#4Byb4HEf5{  JЧ~ ;WA,c ^>`Z05B5}}P◩YFexM^e%"% U .8ftuZP7/) Zq*Rw9]pXx6$isS|G$<2VȽ\`F?(Aiր6SFLÚ$t~jFncW`8}0(wY &Lôw؃}QyhRyJDx/ SsiZrBJdB  '%Lj2 c0s-P1=[ʩ{(M%ȋG9 ʼ}$tQdXZLs5_к}}q}䉛V?$YcğSC\XglE׎q9ѣIbؑ`JΖQu_7|?=І0mFI@Hll,fCCT żwTLPKO{[IRN}h jìCyߥaVEI4++5UDx p,SO$v19} TQc\1DR&Z\xb0|ɖP eqTG#R[[H*^:lFʉ:2Fog^Yܝ@9{JF~%@Փ ߘ]%OH&*Ap57/+Ng?|Qq,8d, a)yP;He[G4b_5AZPYևwlSP6%C@U:]? M@g>ƶ@yA+$ǼHё̇Pnm}F ,C \!%E˗]G&ydKh |ra#yFy(yhel3aDвm*3a=fP$g+g$C%_:gJ 90P{WՖqZZ1m &g@s1MHNyťى&ߧG7:82'*I |cDOY|I5n&h CodFHr%) 4l*zCHHr򹟠"shGujݩ&C)y ?De; G9gY*ؖݵ>O3%3#9Q-g.mMPs٪)J~^V o42%^lP$Ԁ{?'0Ȯ/t x۪.!Z@X"U>>\$=g(Ǡ9Rl ɉDwdoJko 2E*Yc(HIM#ұڧdtkLlЈ@9鈔VNA;ٖEï@ALܖjU(!Lqg-G550؆&zܸ9GFQ(WE*fnG^gBc0oBCaRw>]@Okp-}d!M9fMZTa8 t 74h|!XaCơ/:)z`(Jx n7 MH|k5d\vZ$P +{]/ϫSk?6O4bSwo ד_ u:.P֩^G&#$SxBcQVDǼWG0Rt*Z9:|$;UT]i=vԓz<`7;^:}׍tK>-#YKjKIE@[hP6?~Y%B6s|0ı%;'C}+޸Qd޶U;,hnKp}úw\fzc{w̤G ~/h% ļx #wzyaql K l4+5܂eq0^V\e ku*UsimO[4Rs-|;;) c G پ+u6NSeOk:y3 D!Y਒JpZ$^9lR\=kA߯-3:A싹n`Zx a6( m٦>D>􃱴0ѮefN]| 'nzҺ}O5- p|YԒEI9-&n%M=U~&S8NOrN9eaW6X%jGx޷Ħ+_~v&G4y~rH M!,%>4R YtLLk4 BB[bBS/e db utX\.FՋ2"߻<xFȩReBm+f=p"Nl"(ߐE[V̚y)=PsZ N.C_ ~ѯ+XX&dC;3|9*D 0,7{F[IbiYaZXz*@ !SE1"o\{z1ч!'+K|]wdiʫvI ~0hp(K}z"l''|,\~LV/rЬȮMNWֿ1RdiM޶40y5peU^*B"VI.*H``„T.g J qv%j Ҋw!ҥBIz4l5ȭPJ_R"V9)B*dW)y^+Xz3T_/I%y.f)uPթ#a^/$,~clOLӔ (?N^LC<듏mHm4eٝQƥԄ!{"M-|dB!1C4-W^).+#_XC_6m %{a8I31  Z̃TJ0 % D2IJQ¤&~6/rE"W̸Dꇊs?WA3J p`HUңʭ~cs~^8("a` [ [YhڇA0b3?Bs \YE#󯔔Qy|iQ䣞< &^CB~&a'n\@Zm\bz74qg,!>.՛foා:e@tZؼr92 ɛtN΄+0j{H9DD;3 bwsپac2ZMDݞl!B۾\v4l)EUE+s/ٵzNU)AP @0o4rm؛V _`b 6{;J 2T<%.Ԩ5熙g.٩/16@ޓ  *4Ï-8q*+RDs Y?ဠg0 ~gew#xh k,Tk'K$pq\HT9 ~= .:|Z49#?lHaZq~p0h(HIy5qLa~->eG/4x|ahw$'p~4a,Hf;W85WE¤ٳK`̭( $;>pFg@Rߋu?5n,A@>!<F1Yr 'i.~Xۑ: {p º$aL-rU~bU>=wL[hf}[3́VY(2Ehqg ')70e)[LwqE {g_iNpȽ,;?PFm(NT[.j>ƇuN'쟱y/+Wa!irY䫋iC;\A@3EӸI[ $ǫ`ܔ0Bkf8蓎 D[O&uݵ}&lğת;"uGJk1<mi:\=[SDui#2@e-v$xh&@~*a~,x ^$VI`P#$Q<*'3qѶ) KԕE[\"$*)ΐ%mm0a@%) >j Q#~, Y*xܘ\-V)E~!J1!@3ކ;&P!n6POŋƁ~j-xerhU|gBǩO5;FqOeRjcc@{v,Q"C;Y*آʈCaѰfǁVH\Ͳvl`_2jk~mKu}X*˨Y0C)AtX댻$xFF$"8\e{݄۠r1DM&kGcЃD<Z#&o} {z:n>'Se#I.i6K-R6w kJŚ L< l f4V(- ]ߥ_r'*[íGnd7_Dlg:[>@80O]ŕq5UW{Flj nnaFܗ|?qg{ę?ZmfT&ZaʠT4cɝvVV=TRw|crVm&y+zd&nqj=sggq { \I\UW1#cz3(K b n,i/c`^ ŠzL]hwZ=x8{Y6{_Qe  a|#奝i%uA+* 3P_#^Dh*T ɸ_Tswp̜m]:r S5Ϲ⛏@2.(RXYf~Crt%㼿5y[3!ɞB^H1쐹e 몿æl( D~KlcK^OTx)X\|'8 G`o3>ӒTH`?V0w:0bzz`+Ö́=6yE#$I \ў e/kW'/lj(B}mbaɧAN!s:-ʒ5ǎ>o9pqlnvQ'-Ó:bFMʺRSw.K~FpUvRN8H03iAURܲaģs8tK"U(.Xzg(+$#uiX~-ׂn\~oM™<Ӂϵ2[!qĈp L\EZc o&t'm3$;B!?1Ho([]ELO)A?ˆaW*qKj8tt]!BeE6|.,N]̝i\[޵p}GbEzc=,DE^e^X(JJL@yd*}sJ#gDzB&lp):y',<~l,)"-^ V%3@q3(f=(P"[ [qM\W:ॄ 󻏐So.Ӈ(W,d<8@L$|K ͖iF.3 ψje#I M?[oUݞ%HUҪXhFkR{Ԅƞ(D΂{/m|gsx~{:˖H[ZȢ$ރ'z=jRBQKH-\lW#5Ót4ؼ._ 8{E&f{&r#hUF&)%UBDO@Fpȕ#'7) ٻ i\ U-~Sb\d9:,kGCgal~LЧN<.`n:3+:Tuo>6OٖqK|LCDZ4e"8L^s%&9M*~D_*̟[87d~60֔82vH^kP|Â^&CD|wJLWJ=8=4d9 ZitCxKۻ ^ɓĸ<_q>p(:: M_E)FJIf82K.f,}G]|1&Ih] ArAqJX."y(rͬN.HUE`MQ߯K҉`- I= 4)MSc {h{N}ZȶΎ`fU92&ƠđU!zLE_l8y02p4"r1MŴWh~JƆ,◍i)y+`7Chy-DO:][i1H 0'}mi%U BYxzRq V~+=t(547$PtuETrAgk[͟E;B#~և9,28u<bXJ6k" xV|)8=cszaLjO1?(I<ۥ)* w+LQr'j'i^jsg٥tc9[bŽ!X 5=`cij5.7sL8G/}틐v#1Bfg%$# Ȧ#l殎!Gh p*[d(RQwLiB%hcF\3 l@<" pa-( nc{\0J& w9nq< =NNPY5g^Pa]kpc``.T|5(D'(iCظ); % =BҧTT0"!`2>x c ߀qáo vs"{k< 8eo 2 =[)G,xBkjcL`2XfK I ֜zW@nCAly)RF ; #}$rGğOv,ks͐Xz$`KOeOiL1NB! nRoe\KT1qPPs$L jvD3*^1[WjƮ-L֣1HB ۮHwKl"; |IGHJk%Yd) PF?%Qpg.0;vP?#040`Vj >ٿ;;!a bGQ s*]o7Ʌ1Kq.*6cYq9J<GO,YP_mLxYR4M.=ImZ|kʰŵPCˇP׉?@f{,y^bk $%ރ\u.qY-=ygY# 'rp-! %t6 C &nxpt*SYf3]XUWk4kݑI?b$"k8`pZcV\ ^@UAt'RcU_@= JWv6U0 ٬d0XeZEc BQVSrP)4MjʀuÎ {/mjhN.A zy%%;'z-8߯`o^"Npz !Q>~pZ3Awiۋy$=9Cà5 fu!sI/iPAҸ.QTvPPngh>- u`]Vw#".粼?]KeL`tXpH [A+!oa4g\7ki=kJnٔKƃeFD1j8󹽽NKD͇Rຳ$ϯi9DޟK+MԖd7X_o# $ Dj[2'^C#Q>薼FHscpc - Lnq9]˨;nUTJ\T@@ShԴ "OQDPw7)Ÿz~O0m{m;YȣY C')3hBN6hݟt(W~C) 3jܴKQM(?*j_21@画% TdrqI呞gb87Jjol& 8*MPp;p!ˬmea}G r=vW^Q(wX 票}ml6])\D ^9lt7 ~⫁6YF/U?F¾hS /T%*0:Y2`;qoD)1(x&Z@;uMٹ+F QTA6|52>ʌ).-*#}{`)S?{qgr#E%4jQmr:{_~~fh4`[Ź a~gw>U YC!>3eOwUߩl+q9wǶBJ]8f` 9ȄdXFolvK`EwvULc{8>ݖH 1p=Bv yϿPPRssbJdMhN~S1 -J8Kј\屍~gbVnin c9׼`0T<[_8Šf~{TMƵZАʋ$Z[*.<eX\nI楟bTg:^\zd/B -\m~FlL,%sv^5Xyv8W 8_ǎ;H8-OyT OB h. } ʈA-Zʠj#}~P6 v7 ܭ4^I.?%e4ODB%H?/ j#l 5ESt 4`tv: aYHطIbbg 1P8HȎ{heM:{5ɳ]fmc Pm/rnt6\(NEm{t\BM 95 PՌ@?$@J5X㳆 I_+NP.gt8[ˌ4RT1lx^F< ^ɐ+}f]]y'1hf+sx}yqby0 k# >#L!)fCܰ<ǖ=GVY/B4-&!$zdu0 ZvoX85 IJ` 9m_PGb3>H#";M2U"iiSa${;#hPIbjBĽ  ͡%}@"l?:. g]Hj[-?(kJ`8,5ɺc.Lj>y:d|FyF3#PX="(vs%lH'5kф(-}OSV\&hġ^xPycvo5# r͈M`ƓaWR/~*7/t9Wy @n{#ٳy'朂8Z`#i&b[fgϔo Vq΢L@+$Qp5v.U߹=}ENmy5^ҒyIizuWqi\ZrF{Rv/-V]Wf\&mwjDU"ΠF-eM5BOEYw}H$bWK&A:q 4Ϊ`ӉEQ|!R$s`@@#qʬqoEa?o]T]')Bbi8jE_2d5]IA:zt~ȥ&~?+9IZ.XEX/oX)% aj #RTZ[vڏS{,g}m {6xH < :mf{RK@wvi v ?5(( ~fra=]g]ќSقzGtf049; (}պ޼ ES;bCS~KvFȀ(wt@I",ؑ*Ìt }u4OWeeBOh4OP,D֓ŃSMk4|n w/- `x X w(9а2CjU_69͘J.zo>OeQI(TX69I\"|~ B޽BBrZ)G+ц~)p@-xKS̵ +cAsJboag },ٷsvCnvvmgٱ4ήOoL'.Mt [$'S'4>)8` y xR"ip5РG! 3)Wpr&.߄>KV֩jHa$6nm"Fl9p& PxLdLvThyJƏK1S_h`+zfI yzL)`dbuA/n`IE~C/k& n qq$e<@.u(<=^G퉡Gz%1؏˪!0o';[axdw/[&rmB |NR5>UXP}txyUOmk`'A9gQ<Đ灍`7˸IwѮBLϝR.UEAM-7tRu2/U!?*!Rwx櫸|^7fD8+C F!`S(Nx=[Z~?wa]&U rھ~ͮPP˦O 5q A$ 8)P n*WrYA_(2Ou wRBܯ?}S*B;v; P| <qek<@PtPYӡ ^n^xw9p>7a;43L(FACUCG4>&w55's(cFغ ~lȘQ^1 |3kUCs*1oTWNKDgޚ^' cW<_C15l|<ôo̡tB3ti\/'6Uq"-p f۲7=,j5 e}ͫ}uCZÖԶx'o5{ n̳odORC@‘q@O$_ll mt $[o\/`~E*.ыghӲ}~,9 b({ca/.:D14\.817Zb0 u]!eOuq?Wlw5dҸmbj APJά[{aG(ѝB):s BAc.b;#OoAypz-5nl]x?ePmr.U }ϛ.wh!WvPs@Gy,4\.5'Fo gꔫա| tIî~ƫT0[Eʱ$f/2|am^uƢ,oʪ0([Dpu.^ᎽSbswt<%-o!Ud YLJW8m#Ps(kTՄ~FVvxJY3nٸJ8\irw^E2 aZyr{Ke98@ o's|2Kz5|9Jv# `փH0~ 3-LQϏ4hz6}J_ oݟ%2u{nuɹ?E&eE TxG)ldtužp}gIEĝ6&iN]{äz(ɦ:Y :IY.LDV0EN|蘒4Ʋʿ`9C PVКcy#01s0i'5>>cgPr4eb\ hyn7۴v4^ DT C Lty3LǴ;e"K$G&bhs0/]0>a5$<܃^J5Zz0xTUTY s#_''u?_9+F*0ⳑ!v^'Q_P;6##d4DӼ/sAb]9f̾[6~#KWXjw Yh8p 2!#!Mu`I 0Ift>Gh;J'I^g-ۛ; G"Kze y\j=ofȁp~I?% sf4)|74ggdPB K54D al<3q5Vэ/%L"dvɂ!> ؘ ʂܑO)zDQgrm3'9ȴO#,*mr.`"?#UJbti=#~HdD?Z ck/FlԮt&ljeM+p4MN.}/uRK(dPxjdزFW 3ڳ-#\P 68|ݖҺ.DXja1fl)œkJc{O0dR^Pik{fKXI /ya*8Q58r-\.'(f2uv]ė'cfԐ -\Y Hxv!ovB $T^2|PbjD#Φ@'({Ds1Z (X(n 8s{i]~/ܕw*tK/9h5yOd|!نe5>0qBEIeM{@ĺ?@9w5HE vi8joWu ~Pn,F7B}w`P71\>p ҙ"L,G!O=Q:$ñShIP`Cɒ!Cj}`۹.ɄaTٺ:tg4BxچS1i~/>E\UXu5ڵATaa'k*/>_r!scO}4$KuA>֥xisL)n"'M XwH"mgI𠟨HMy D>) tڠ?pzB}[9@s\%xoUly\*ߊ \ pEH!MNM,I!~wHqhNS=Z wtNtj%nD@ϋ $`%01S|<8Ԏ WOU]I(OȆ7ݡhl^))qPjc0TdMi5~AwH31Z8c˽ b[(g -ǡRϺHqX<⢙wfoOq1 چ+Lդɶcpީ{P9RZƳ9˃4߰Ehrnk;%[iM|+{sYt|O8:k/'5 3S)?U64PHϣRS?X=J .K1N z$5ܻY*z&1) ]iJ1Ep0vC y:JwּN'$ke/IIz25w+$LU9͹&+<=1L sg:)c@* |b/\c#ڠT`CbͦDR(Tc!]u1S;a It⪷jU{dU0I$SA MleuAݫ"vzCRt}vb[4ȝ b2OaT__vvZj{70 }qʡO\H=_J aW !%Nqh)œr[h~ gGkhnjH?[#_*.k^~cl8D& M <9Iu}A |o Y(w @dsFf7ط %=/؎9/P[OmR5zy}MMU,H 'c=;Sy9{2Lj%Lj\ '.Έv;`$6~xVUC/駛ٝU_ڝޯAX^}_`Kc@=%%0J94~ue~G &O]3-zTΗJ.ЯbL߉&"uzOK+Ǽ"cKɩhۅl!Ǖ&\7/X iBJU>Y l%#yU;3i?z?Jp¼4T $Ӫe1b _no4M(iAlasO9$WSL fCn^> [Gw#8Hn6o*x|u]嫥GζiX1n)ly +2ya@g(\Rq}JNH=\>bQ+@/Vdč8)&fyEM.G ̃k[+֢ÑnfX7xCIZ y忚膗J`յFZU;lFsU6.ts#6H}μa; egХ}l_:isgrPbw G~NnZ(.(#{ Y˃-=1>&-NP[ -Iڄq93X겔lh sY}sO-GywB7B$ѴHjLHcHjpɳ}:c>|͜PbغOeD`7 |f5Kh 3H̲m,J@rn'mY_AGC5J$k%66~w  Rs4ߦ0k).r3lF) o 'Abs/Ǚ[?X+wT ̠9px'J];z+M5-L'Qrʒ(`-^֘h:uFXi:8i7u<sph容W0ɹhY!bD[-4ˣ(<]|?ю۟Q+QZ x5!*hnXI@ 0 sxXsT&Ǖ6v5_1 S r]>$c[NUAavb$Har~~"fOH=dp8:&DQsŢ(Ҽ㹝ȄJ([So6q;"\ .~Cw +V3f+ Y]6"NbEb*֙o|HO+"CxX#f∧aav,ST{=O5 p%VʕLͦsXrYȔT+kBCs;.*EqTgjxkaɃ]WR 9I_x@ٍw*U <=ˑn㼣OREY0%([#WMr"neMsD`iݬP"茑C|I#hF:$"QDN#j`] )S4/OA!-3"]E GyXHǓsAשH}ϳL^ؖaXMd's $;J`s8 0 )݈$p<rt0W)/ha܏ziꂸrV?M;](>:>Kg9c9Hl3 {pBwË9s BS8h}DrEN2_$TL4fNGƨ*%d]u&G?IQegI;ܙܗtтa"0鲏Lp4|ɕ[gU9STMUR4~:b!KVۂjɳTGq{XԻ^_2Rdq82~Lek,ѲJ!zcd '΋u]ҩGA}4E'Aymޜ7>ZTn{xZʗdBqEg2#X[y]fA\P0v`h =*/HnNaf 3m|tO]̓ kd@l Lm>_Bvgy;xW1R`P/Y-* {PTpϘ̽b-(ÏB0ԊI~^NM1ƈZW}+051? WUBnޡn!8$Wnlv9:&h2Xwܓ`_\cSuW.D s|,-f~fļP4cs.QZ-a0>J]M}q;BIW>:,B9ߓ?W/֑p7/*k!JNWXg PR: J@eYB/\*/iV!p9"$՘G&0$}D^x& U [di|":daf/i6[܂w_{ƭ s]#'Dfdd%ѹ69ì:.o%Bb{ MjTi7<\GtEzbFΦOl86js +rb%R`^ΉWϓ <Kqccͣ6>6yR!|w1y1|/.'׭yW.ZAK) .-#q7K%NtdmH3e)޲mw!9/7frGmEW||Ҳ4VdvanIe~P-70uk{y[9CV/;%Q ؝O^Pa(IV 1+Az@'sYYYre6Ήؒԯ@Y(Y@Ta6" IuI-92Elu "lK@kOڢW<:ei`-=>D0PtuLRɶ9c'|[EN8uo(XL @AjvѬw])YN|MVl6D(&n[=隫% |[?Д+a$M"Aѭ+J.U55`mNK3ˋֵ$CZg/ݺoeff0Oeؕrwz>M&;JQK" m^FҴ~wLS)|9V T;]͗ς 3\!r g#}[23{>5OI @ Bcl2'} f}{` W?ȐPoy~zѸ}:#e7ifR|\moO^oX zQb=h;Lm䟝kL]ۨXS>ģV|L&Eo~P..kYJn{r8U\bL>)kC0<@hquoܠ)tqA(1>yhP1u L]>4qBBFn"EP4m>#/Bׅp9<_$.-߼AЃmD7GϢ{Gg .MS8ok~-,TFVrα4qt?d-?433ii\R;C}kn` X!9JKr)]jPU'&պ(AI2]۟ĹOc I^BBU#VҎl2{:'kp&xH4Ծi;{&bUՀx"9{i3則jmjTJH'9{$JlPԝ5g[?[¡(뱱``0 ȉe΋-Hb(M_M!RFc]ؼ}ϱb$|)9Sfk[Yl*f" Q6[&3"vځHpaoYD<\'2YW6]cZ[*n#E2ioy\Z }܇??mP\+{D $"ohnqi#VĆN#Lwc[o]Kvآ5wR>r ]A=̛SkJ SvMjHG82xEU#A+JoR.JoܐPFKTd>!Ϻ +k̟A5͙R'kB?-4)8B!ܯ =)}+h.kL ~Bl3%n̚c-&<3~ZxH.uu /0,bJ,f(Kau//9zcjRqn:=L՟$Ȫ.cyCn e^% fe-RWa9-aÝ 98 7[0 w6I꜔Z|l3T!~BZV6]f: TC;\80~'IaI f@6nDZsf}TDjIh#TRGjڨvʌ# m\ϋD^ ']ĹwL9 3xXjR_7f!rxՀATz Zu6Q Q& 8gtF}+ԋq9uٶt B.\rX1H.S61JmZpӐ\}pE3^ཷ\Ջ gӋ$V/M@9;v4>q` "cRm֢OV=۞?FB~4s̔&j+ӎZ]e,APt*t^: qew,omSS!V_RL^x-GTL\rДɣfHb8+5=i^ &@V"y1 1 k89|)ַb%דӔҽM6 Y,s<EcewbPR~'-0^ &21{=@ 0:_ q Ԅ f{zwq>J[æv 7rnsDA% tUgAT' 6g=࿘n.يyU/!P('Pe,ɷ(f JXd\MW#̐=m/GN hIs1 %L*V%˯&SS5%pcHY}`K[\GCQxgLKjp cj2%~yX#3+ 9cbt߫(KnʈY*0*> VP [SeROC"E*}r@_/Lc_e^ntB,nKЖ[d币ZP~M!pv-S` uyKH.WxO[|ܚG`h۞T05@dGʘ{QC@eR1=]2\yZ-4zgv*)+63CG04> 5ht{%6`ɹF0~*>ƋAiEZLb,/R[F=:ÎϳQh֖#+#}щ9eK7.!sEZU"Dj}XfG#̛f!-h-a_&ʸ;&"wl\h_YQLSv .?D""6kR}cf)}&E,Ϣzە$97L0"=pM?6T( rH̛JiK"Q/|c3er_KudIQZ(vG 2r"`6{1=#)a%6XS) /;v̴r"G( 򿽬/bBA^ 1㙤HπQq[XFՕ+km"E Bn5X1<ҰbSMfn4%a?*qwuX}ĕN3ƿVQf8-HVNGD@ƀ1+R }hْ 4tƶx+ā]zy3粑;ɐQ-ӲjH3KeY Π_ ֈS—fʉ|4j 5qKMUnVgӸ]aI*BUס7 ޻27Ig%qy5??y7I~|w9I""V^%%^c8LHsWTWrrx\ɥZ?iU+r;9*y$! &5.Gl~9#kܺ@V4&9+V^0_M*8IVia@77t_VY2\|HHu_<2QhǼ;ƝN91,/H~ppJʀ҅l 0{YS\HX`G0K|\:*ic7P6H8s^q5MFoͷ%|UgDZ=zhmIo5 Qe`]A f55:dӔo6 @.9tjEaCw{byY7/8x49c`d[o2 /tގpU J 4M]SJbM?,b4_@F9oV7( %Z}KMav`=ub7駃lBZR8**uK7`&G zN}`1#¾A& F%|eR$޺Y2; K#`Yz e)zO5ߨP:{ՂB!o23I=}7)cOξʏ{ZZߕƠpCn";w' (,ӦVWePWHZ+I,Ń/:3>{?iq@/%(sM-6+o)1* uVZGrI(|o,ۉ뱘Q{M&){Ya|YxtPܣ$9[=A Zbc-l¿Q0q<$4߲Q4R'PVB7 q aZ&XĘҰ9S(΢*'}4}fڜ+ 5uZC ^$ /K, oID s6kh.ÄCO/oSj3\nk8\<~?g]K@Ұ'1(6R˗*xf8̘^XjXF[kbbʃ0\iVxvܻ.woNb/F EzK mef19  Qa iꞓ%a?DW{ٟ1Ƴ?a?K2~ ?T6?RmvM^Թaٌb.?!xgot.څ HsaMYuV3/<*=c<+17§O{T7&"u!Ux7 40OlE4+i&&;?9&(ʂ0o:{#{`ute::QBR ><߄<$j4%>Fd7 ÿ!*VJrntKERf{:\zܑ}05|C09Gӱ0_-~;*dtg~rYW.Z'-k:A\>|lK5L&&&,KޙkDjA1%YB8(j5@+XHKCoWwRѣݬ+f-Lw`&ʹ0t]e&d`.F=0hR@CyP/\De;ta:-߷uƓa4>^FL54)(ĥUN1|*WMĕ֣;Ez̤ | V*D˵-lYo;z0\h)c"v5>'Prrt(}PtGs̢Su| =\'ǰU{ap"ݵ `Db!'4&0h޼qUyd n vHC ڛ W3nata!~HEuޱFD@JL[@pA2$% ӡ(cZor?R _Y<)+cGeV!; J  w6y̎n7UT& fZB$R?zQLz :[2r#^zQ/^a9!aH2_І2BvƳsH/:%O-y Z`h4ܹs|;c< K6% ]S1oMEڄ1}["iSWjemj Fm]7%>wD1r1}ET`Hosx㷧{L=v| 8]= ʊ&@p@qx ojXf25v %6&H^7ޠ"JXoտ࿲#qcPodP`?l\j$B=s#9#h[IX`ry%.0ҠXgIW}@xw$D,Ygfg:=PLx p`[M{}0G?:ųIN≺MLTkݡ<[neWmi= (Bg^q<|[/V0dH41Z@]g4r4^ Wt5ύiJ$xH# 1MNt҅{L^PW[TT1ygD̴fH, 8n"Rx6tz`ōP=.u63s}b3ugvE`i R{~p7㹤li#ɱ3t_ӑ&sX"KdcdvHj - @ѿRևy' 9/I'#:p@QK9@ʩtKfkp|S?m %CDNX"&`%>31P1wAlݓ!Hps*d6#!9u2%i9p:HeEuLgPZMRAy=Wq\Tՠv _pVm=E|J%6  pA!Xb#,/ª{slM4\/PiNCfRP[1r٤fEIRC; N!& KT8?qÒض4:cxAہ踫U{ o#ol]`'*R͢X85 :3r?{g1 @:S)Z⧝E`̂+YU)=䚩:CyxqS" /#U+H> i.,t+OT CކǗ2m* 8bO¢ `OWfO\zlS/IUU5QOV} & 31鹿w^ø,mgu>xBh8QT<_#7!ه3Xono0&ԬiWWpM8O%S.4қHp!I7xqL7jP8 !t!·eҺx[)gX;fAWo[ lj܎ ƻH.y1Ǎ82XU8WI =TA/ RlYݱD,?T (ދ{6ޅ( } i iZ7pzk0Z ҧ&+ g=w*iŭT;!sf^@ $u+F >G[ԦMe5)<؍")Ԭ]oGG\sYw^я:.ԾiPGWPh9JJ{m`EH-QAd)O3QݸIaP֫ ۷)$f쒲OUi+4\" l/PZ_n߲`VC5LfG~f9B3* 1t,`H|}dڷP"C7⢂i+史vɌBR^41r;<{ySy[Ebwg7Q(a~UĴL8gG0A7PNE+ f(*usoܾV(V9= e&%*#p'+*ffh61P־9s#UdgӌUw-?8(VR6aOZ 8 XסE1TeVz"sʯMScg2m}qQ4]8\OP~3~inRenfL%^7=I+q}1x,O5=[s$&2[ͳ:hi|U"1ч{W7: /[:Se9MXoKk4CGHzQh\^n xi4uQDEiH:P$ViӖUA2R,k*"G3~+s毻jgeU%5i2y.3fbN;̬KSvK*$c!`9yWP&Z~v-:#Ņ/=X_ft`9gM|D/edhW*mSVR"5or]^)5/Au!Swj`_oQ3K Qz쭔T'}R yj| QbQ؁4IF?˹ 3py^u@[b$ ~#"xx R7p\'.pnjKu}]A0vҏ:'>`e'U OGo d̤ыpS!\ʹT5]euӖ28`Oa^p`eoV.)# OE Ƿ@5V!=u~MIgRKqĢ&i p ': OPT>#ܒih~Q J4bu(i|t+!V[ua^/o| AW*1U A <'ӲzvRUOk/u .ŏC;A$3pݠ|쇟I-͑Ƃ {+;=O޻ONNC)itӄm LmH?L[jcXsRjHϳ%rə5u4\uU_l E * A|q )?N7$aCEs`K-aasU$^ԐX?$vedsZm:$Uwxo+g ,bfcц9biKn&y܎EGA:^JQ`uj>nOސ[DCn7{*>fdYD_- 9r: Y] ARXpVY>L.a6TY?CUiI*Hkj.`u>9IH[7u^(q_/Foz|R/ԋe/S0't5ו$4Y 0\Ge@5宯ק-C՝ 3xsn>+xX$UWǙm#_;*s!|b%Ƃ9@)T9(9xB헚od?:URgo猼ƒ'iCP%mEr!~fL; oִ dnc: P %!۠3d.}zTqw#F_@+- q&lϮ! %!n9'q<&'[ROBٰ:B6^(oNU8GwE6sSmu>)\k[k02DT1#1ɐ,ok/YKʴ.hXaز-odHnȜ_2V֌pc(֢!?s=D"Mi19RC6mW4HQ]6dfi՜\AT05/5 D c\wjw"tqDQXs BC2qk/MJBAx^gf (S]=Y%fWuOɇ_5>", P\9aU37ԃJV;y i-m4o4:M~{!2"Pj_1[5H0'>s.+P; 6L>mMCpQ[嶦 )s'nGY(H:NXP@nF4?~L±P⏚3-(K̜$'?=pDTeϱ*ddKӮHjۅKs1rm^8@Cow}:m4ჸlIxjk·@8s"8Tx -fZRjr 7-L @Qnf5)~4ɮr>~8pKx LgӴkޒrBUb-%7(&HEq6KY&kHG8RpClbF0E೉CߺJK`5iBdb뒙kmjaϞ>C漏$eԌ>qF c@dװ+ULE"\rJ94u 1-q1.t5q_D0ey\.q/(;)oGrw$E8(=9d@Wcc[eRX4/o.;ځ2gfQ } ׬Χ~]EMJ?`c :EUL&*-2J4]:ӂ}a&bta.SyzW(Z2\}7P9g+j2Y%/G=1Y@F*TB j*E+Uy =|mb{[4Dt*bS7Tr끔S@3TrÅLMBg$L6a)ԋ߉@ nJqʠ HNq4Jt|fam EfCWH!$_~DdH .<ĘM~P]#j-I8lr+)P2aZkmuSߡY6U6]In՝/֤aVCٴೄYHvOvk #m7k]g Z PX0'\ĢB78klގ(])!% <:zqmUb?fr9Fe|A Err:U#A:˜ 4y?j@Mtf&XB\{qxKx>C< Ռ&}Fg& 5NVG߈BWfmXws #^t)7+#i8x"T|wRڛ"v8˾j#:&r32㔻偃.gN@DJZNR,=Q8a34جN1ӊf( pz  &!9"ēb6w^.ob X:|?(~j5m-{EVHcŰogl8B}cl]x}ks(m7xm%cUNl{CDð>cT_2;s6;j@ Y#?) 9OQnq)gHE!('JGS-Ȩt^XL ŗփ|1B|ۭZW9-Ư ZE gfs6rjz/t>+4.b/"W,v9mT8:*EwmԦ+vey c9²(wՏ@!zZ 7Y.(|]4EK'#kQftPyz5!om 8ݔؑHQͅ!r* ?P> %1A^B)%`q6n7L-wv4:O_ \OB*K8kj{;nȸ.VaK$u`>K Zԭ~.@IG°(-(r[c z@僈÷xs []^hXbX5q>;<]g dg^Vc*s*jrQVn8˦jyCВ>yFb #R2Iaf='w%LF!QteDI?= W \Z>NF+Zxs %,JŪ?`A S6sTvzvucW2,h&QG*22)FzIRyn γpxBbd]6k)]!s?bCPv׃P$(16 +A8my0zg5[]VfgTEjG㿣 %Q?#AltPheUt,?'˲CĘxZ/8CX/PAv8|W1j6}lk=P@@ED3?%&w.ŁC@bW`W+fKʇ(rX B>BoG-+;kو]U]TVۙ[xP7Nk-~j10PSq)$us;d vG|m[[ QڮӋT7JoSB?wP4ZJsߥ2\ꢖkZY  8o65E y1Ғ؏_0^x6xaMͻu :E6kW?譳 fFSՈiwF7$`$hXBDVwYNТ<gkMwb3 !;򇁬OInB ": 0q=֏deNsp5=%!|m J| qmO8` AG A(JDs٨p fTz' YS)QM$<#%' *ܙD89q($_  13s #HS)jLC{TaձnvgBɑ.)=|AF#)Ghq鲮3kd(C?#._C,z bڂuv=.^c U@ Vfw8N`V3LfIM ;Z&2,Ԟ VMDr6$,Ww/j*(^hBȠ2 3ޞ j)_f S4_hlJ`8t:9a>ݎi~Khʽ#>ΡpWRזt d'!5;{s>:{d`$OҊFkZrVe?B=6 7K7h#_3 &A/6yȮ Et.--@gOʔ"\>Loϥtn1}9hlE?0nR6-&~jpg5TiΒ{2 ?16BWVCCOqj7\TiqFxp%͸]O#8Ϭ'UyH Kkϡv5QTfbR o9ynr|GV ɮ<;Y ukF>Pe{Hy墝 Zȇ2*费dU9:q]V{IKgMU|L]gvr5ZzO6b:ꦉ|X\[p?;guGVu09s}DAu[k܏LTvpBOl{^Q0;a>b#pL#=B)n1Ymvxy'x:goŜB -mTK"'dKWrsQ]g*_G"r|h,,9CkcLi%FSGC._whF^+ڒe.W;j"ۖjkGY^tj6[-2vؚd \WlFo\ANuVn?H7%*.iC O"rWlM^k4xb;;)e!7iu?x3Ēߔ3\u5!:e6uIH o9@T-ƦAp/狃YUQyǗ0Km ?A:'ǗMq!K921h/8RZ~nJyis3ކ18pҜVꈍ2lH;|K],ƍhI8/T \]+qwH]܍bG98-ᨇ> +~2yoap*Z1 Z79'V"+g o~i-W{,c܎E #M Z36wOh+GFܿW *[}D |^آ}*&ݘD}{^y&| mD^o"\h ,T[w sƭ!jr^/m^ .2t~$I.v;pۄ:bq"TxJ\E_[6x)FHל-weYɚR-7$d<$У4EwxlCa;iYza0W\jHf)yXi 4 ."_ &' `=l\w ˍFSdi,&pGtxoPIG{)4|TΏr I?|8JSTȯ[2T|>˿T4l)s.+Ps@"՜ZF̤ez'蜣(Tp\x x:\Nb@' ~BLu3$vk}b^a176pr;P^6 r史5+f$tړ׼mqN*G 郪Di%% )PjĪkɘر+ɽ'l? SڡcA\XţTRX0qbmO}g$:J! #_Qq$|'̚O :v%iu{c8O"V[ʄȘ8>^xFDѝ: yK|r=@s#o! Fw⿏1$L]-Nk טbו:Xߜ ć1?iaWAkEݔn%c:Oq@M7wo>RVqB,z{(ri( H\CcNx U: oЯef+`A\,ONY>a \{&g~n_:l۱L o \HoJ5D*\cԔT$&"hŇ_9n%a\ϻ Tȡ686}1$Z%Ȳ3&mcN*GVa) 's#}X[kWV FRDV`gy2J3T+L$#L4qדyEV-hI$ZhQbDM2t.] օQ@z2uyIRJ{~kqꡣ,[_>ptZX~'F4e. _eXBK8>[Wz;zCT3 ĥo)-lFL 'rݚ#й/Y<(ȏamjwTY!;E,FjtQHib-dCiW}.󥼠63N_DsAxG'pK ib״gqy-F4|J^PA}>Ry/C;G1?S tQ[+Fլ~B2uu9 n#O]j)qeh^@,NsXT81fi* "b@\>*P;G覽 c B)#WC #h&6shSBܴUr15A>sXeSEQZsk-fD<1J Va >V^"E6N /awG12H#籄9 83nv< ,GO@4 j0̛eEdakpy{qVQd h]r y ;Z4|G!I2Y d߬| >S 3=z:ʜ`m]Z+n1GG1+v>Ok}L"OC7tjXPdSOO○=\..!0W.<h͐8._A4_t HpAiW 2~=V&UN!Vj{;B'q[}t!AXH %}1wRG:?`iH!+wXɛ8xs 2Ut-y%Q[ox7z@գ.M6*ewjw1^y3Bd޴_>xx^eQ9f"s;CM2Zs\ylb}|SK{^{~n 3HTc\:p tS »ڤ'{նEP2l`u H&u̵\R> V\QA_!5(CNnC%r5KA\rH#PPYŘe؅`a7o@4*/ J|m3_8t96G۬} P)E}[N6ԠRr1: {e|,6:\n^1-s8;mr,G 7߁VL{CuoMŮ17VENrTD4 RR2I t +m% hm.ctM@74\=\3V7U6Nk]9[|?bxGe@٩Y(蹕a44MފD|&a_Jc/n1CA{y2[N]2GrhL1b"~yzid\֪GfۺpB&~fk=IJeS:ҐiJ}su =xC"s Ɖoj .lU&಍=]C Ycp;X[σډ@|Iwژh0^VCQ@w" ]ΖIuR\#|H~KOd{V{FcY*YS*wN_^in-_wHr~bcm)xA;f—m{=R8Tl*Эlo_ܡvP+D=z̍)EH0 u1`b?e5~iO!}Eϋ#D] qFX9_HLŎ-[R[7s5[x2lZ~"RGO5n@E-<4Tx^N&ȵT+cne~qfMzzR(m%XʳlDoyX̶ Gw^C9Г|>Yo:"4H:Y+9֑wOr#k月:jj bj0q&2[f 鯟PH^ 'SY?Eیx[IJ!td. Ɍ9]4՘YokMVfI@wazar|ڍ 7EFj? NvP2 x<x報|-.Nz"VchIb)n= #o<2;6;JAV;㓋R<$cY(Aô /0 :ƐlX |sOLEz]N|Lq`ΌozԺ<7眑[ wT`\Zu~#z/mcޓRs Ztςn^<+J#(wpog6\"׵f51A=>O:L(bXX 2o D唰`)]܈=`BC!O)xCJG61eS#JMPF䙚W5a2"O3+fఫʇ`~8VUE+ahA܎䥬wW蒷NTrjr!Wur%VѾG~Wtn ;lS>ڏfD1'ܚkd\?o y^u(PM[0 Q>[79N_ꦣ~ b+nlnT:$6 pfwI[`䐶VS(\\]ͦp{8y &:"*/Q~d". DO!{ɠVQMi yGTMցk"b.ʠ ,R%L|&0-Y븖&BFr҆(?iZ$dʪV Moáj~üx*ڊX:|Jz#f 84\o + f饸]яGE`A._E {3 ?Y۽=V܏tɉiwdyBv$IQ[9N~'u,;*oEDe|Y^ŻY6QU[3 \-bh5PaH9_NWUG}uٸ Zftu<Ç$ei܄oToBj8<=Z,piy5\D 01_fk4枉[( Z~{=c{!ֵyx SroeLZOBws)BJijm1OR<y;Z1ә'CM&Zj>;J'I{%㴑+bWa0؛9r_zw8qK]2GP4넿tr !7'/zg7_KjghF#K?*>>Yͽn[bW\>E%<tI+Ӓsl9 z%+ɘ\4 e rP)`B @K*2P&wlbHP!٨b{,=2Xˬu5`S2\%$G΢R >VI: (#+Qn@uNŒQ[n4A.we$nUw 0,~L*4TW!CsW# _~gC4Y CIES.YS#EԸAF4&a((z=CÊW~{uIYd~re-BX[FQv~qvpTKFŎV%FM1Rֱ^x<{N뽍 XPXkJ>C~Jp)SU^WHa/;dݳm+tSָE"/>Ȯ(t5f\#opez$lux t/>)j=4? Ʉcb۝no0nVg9j%~KƔ\OI.E6Bw)d ^ C@cv{SgL²?(^_" 2 oL|b 2%pvq/6q:1uiu>;vV( LX onN.t%txVquM1Ͻ&[C+"?.}Ff6?eaDHM/h5f$m!I vG0bPw8#m'\ת9"Q\VoO w0YX~-ʧSD|ꃊM}M)t&&|t1Aòf 2NPAp3&|a?q)PVpLф{p>@;A~lUQNfbSIy=B8#|<fk!SNӕ!R+ueiJۼk@ɯ9 GST!*s92fE Uv#Ōܒb"^: muLVUט=}KlH qy8c(2' ϔ<tEIBmXc*.k%\'9*x #dP&F ]P.2:^V.Hgw3?fžM6aRMy: F|!cmu 1I*##Rp;dW<{FommA.Z'p>9+;o84Y.O!}8s-s-p|J!Q-hmE؃ՊsXg[\8_+4'S樻e>8lIn _*>yam]sQD6şy1-h繁Iڿ/-j]VQ%+,M(\a O0.Y .SӂWp9!^pZDLW_Al& A h<(/T ݱ a$1@Psy|25Ut Qm.ebPzh1&( 6(cPy u4 6ż&Y'^#4 EğXܽO<7YEOutY2[S7:fgE\vYܫ޾9 .QTXwzԓd9@z(͘eI^f'5gLqWt[g;>LO}fr,AJz.鄋=.=@j-=RkFJ(܊҄ugC c#Sjdg}N8CUEži %J5:&lx-,1Om}& &dMZEr:%KYzX+ڧ߃g(/=ռ*19>fr%6MK͆XK@e=^ư6#f"44vq( r:,N L/m^cCJI[Rti'&,%MӁы݌]|c ^v.7z1duwGXr*Aִr҅1 L~)U6S9]EiSQO[lK&U3 ,Н5@TO5s3&<&\-SE;P@H;l U\:W UD:$*Vd/$d"CyHH"'fѴ49>?^W,Z_JzN[/RPwR&`Ɂ@fXŻة*I{c#lmGC,z#<]vHr:8>lm!HCqҾz-`X dÏS@Mwm5!JڵC!ƖKټޠ Ƭi Z$]/yg Fߞz Jo4o*@Z>>5rc]c# uΠjtSRẇn) K'\0?,*̢ ~p(!}gfr40_2&NlOt8yxp,}9 :p~z?x& W*BB}%or0*hhv+C+ۧ(9r҉}@hMޥ(MІ顯IJ'6 X_ }ܑnMlKz aQd݂g=yA1&z2nr⽽%ܼopMahޠ+DOhDip\"|eA߯<eѾIm/^D_MtlF.Ş]9cxe |JUt'&AȋG>iF2:vSjBDIƋp4ڏ} vm AU?|+wt*51#+Yk5mwKFbLυ.k! jUݜ Kb)f6w :p QwY0ϳ%픰'x:([*޿O2ƙMBi$g#i9YƵg7Wq*+t!N%N,Q,޺(ӌf@g{P7~WQ~؉ V{QZwN= svFS T瓬ćSFeLEE F.b=jx:݅oZR+DX_ 2^O"[:pIɞ#]n<};&n_3BAJzoCa=Բpu[%Qn/Zh nj,|c_T@MwV]e?~|7J]/ݿE_&s/Gi[T,ɺ69قW_\ ~P8ٍD5ʧ6J 2V!5ŘXnInps5Ek[*Z; u-lV$_ Q]P|6sÆFgidD;#,DAѲ0蠏<#z@b> ^te}5 nr^pr0H[c+zU_6T )\lclj[ŎܺբEt|O,oQDK))Ic 2w\$갴 Oΰ fh|aV9|bmpSqQU KKn#.T+)BW*F&BXYfl[}S^r'*!֚dv DZ, ]תa]Lդ3S҂;,q+DYHL7uE9TS Ne`iqS}+&; "iٝϋ?d&mo/T%uL}rSh@8ywDs'HvPfSx7!qERKsJx{5 O@füԄgV{٘\ YT3NRKa(uG̣,ĥZp3v;fbӓɺ Rvx^ }%f8$Z}’W%@_gm(:ix [;`xq `r)؉h*A HJo_:nWVQXP|SJQi5 rFyr5תC!G:ݢlAeo5 {N\"ve3AzHH{Yxk4,s@HaŖ8G ˱wcPH,qJuA}BMMr-WCץh((${Ny(E =Ȱӷ4{Hַ(qf0~Ju$9pC馐IE6Ay}u-5Qܞ3A F~ㅿBI)7˞)>.p'Kk~JOx-11ظ5x7jiuF97MtZUJ@?ODWҔ&Z2^}[mjDr_[Ċ ޸1mbCZ@ 8Vw>#,ފkDac'?m9Ph2ORPN#g&[qoncvS"}Hm_1.|en?H03ʈ+z(UٙUCW{Ax;^#.ZaN+HӸ4 hv^XVgh!M8X,Z]M)#eDf,9w&~}R,ɘ9@{TL ,gP#*JU=)X ݭjEǫ؊_)5: azR}2[Y]5Ie-hTid6IXTeUbX:޾#臗H9P@Qlz@R GfnC*/#+"Ia b@ݖ #u@YFm`j7SL'V`= zi(ּ)JcT2/o_tx W,"ݼݫ`hE<u;cN矯ph|~{JCgk͕x"8uz$U "ZG%Tڌ͏a̓[^[)J4_'4-BjKȏ= m>y{ʛ=16M%^,ݛ!7ٸWTPZޝJY+&^#7me{Gx'! >WXw# Ř8kTLnC8KJf&"ʡ_6OIi C쳑ڵ`a3Ab,iqc"%p.D0z碙3?#&9K-G$EB `\nO-;i >fXo鸷,rRBW/&ݴ+n),gmKnxf (f>GOq]lzFrLI!u9qT1 j9P My;bQiu$6*j *pm,j'xyY";XGSJ~e1>C"^.Z™ 4)@1gzvE2NBΕ$Dou ˷6)Ωn^'=!}DeƂU B*D*?RYBPǣR1`ޘ<$0o8FKHa9%Aaw)}#'A|0<‹f(;6ܡG+7ܤkأQ:|%i,ɑOu==34)v }#nOIo{2Oç%~rY7 '@qAd\PrEk`tt MYJ*KZiפv ^`U *lWQFl$Q7GsuUT}^= ګTԆדj¸Hzm(oq\T vp]EGMێdZc ʺNϐY܏)ݔ/LrB/YÒӂ|[0uQYt7Q끬V |mن+JNRGV浐M!bhIk⣹"}fCR:8G뼍sW@RV5 M/iY{M_$.n*p+T6du;i#*Rf9Y<bzAa NfW1c~%N'~Y_1jR.MTSlrBJ>集lӃft{0G7ẜw,v]3ߟPNM/R~-WDLxk]\cMPq3:ELvZDo=lz-" H T"[ʖ| Bu=d!Y%qh2lwyO:7f;"2c2^hD$H[^̈́j^)7rxAB#u GM;a|?GW^3@uf 9rwFqFih^wXL v_Jۉ.2i.|zn^ ^NNOj@K4x 3gfaO){^0NbưS^@&Ozg,hGcwuEgԣ0eH n)q9c+|=@` TxL˂9yvH}:p7F_$k_1Ȕ󔞀SLY"}易GyP(n{U^ YESO>vkݮ~-n@fsFe =oŵ='>+Gx j$ 'et06_P]Jt`(W${:9I 2{wYЪ|uG óLN+Cj&, dc>:-Qrw9c(cXvߓJ]0>4&:I{*}85V$e$lt"p\֐NXԩ\%{43N:CE~]y&8u͈oKu,X(R;\IF]pri Yr<;*'uq )bFmSwET*)nsɫcTH=L5 }F~Ez+!70AZWttJ}îħgcZk dlGdž>]Otb+4"Un݆!+gx6#]}5:wozC"^feMHLk9ps6c 4Y.8yc}nGjBӠSP`P\A1*bc51US#ǵD`1-'^X7zo)Ͱ`CRuKKo|ۙ\ʢ~JVDέ#-q6e_9: /uԛ] ڑBo_a>CʸhYfg/OuơVP @0#%eH/2F|BĚ$T0 `Frwjj*ɔm@])9j߫=;ч X=!{!'ZBht؝̅E;Ws5;ty2oiICVZhXTC<%ѦEGAy D)^h[(Wea,JӲlޡ 'ɐn\ KrTU(=أ`J}l[CͲMd^^~Ml@J =9ѿ*&CM>j霶a{] vm -NMe*f~Cv(|,lrg"t>*SKL}@QnrPVs"-h]2!(7Q:s70OӨžqPMѕa@O'* FR)w fbA7pLG,-xrƅUh_kSHbC#o6ոj݆ |3 y%syTxO-k{2RÏ%sa%Jrx bi0 t:zH4ڎͯR ޝH ȦŸր~di{|W‹+c˔ɜnv0o3>oLG~}c0,!;ob35ȁ_@ t7dKt.Mc| "AىR(Qs};MY¹jAfnCWqF״(v~.f_m ⛬lU:b6S!|O5N,.QQ`fi_`j$seWsYbGG\;'V aPMG|LȩKO] ?ڊρۜn\) I=͉j̓ t]X UmכJ̟N9q/ΆJ: xk~Ċs]hu!\Uce' qb02D}XV m1DԏW2z&u)[UIrjFd'O\EXg_6Lh8`$GE]YGJњ6+D1y"I9'Qi lkB |a8gg`|{I7KIBːEDZU'5tأD^t4L榃R*a)$_][Yך|V-8(Oܯ!I)$SʧYrK%CJ豞ۦT>lbzܬzEb:!lp>G/ŔΎ+_bOHޱ"S×uQg= */ Sv., CFa"yR:|csmB}k}~[(I8Ib.'1Ox?vmTlMq'xQP7 ,RAcm <η)K!-$>^Yf!n]&6~r>7.Tը<,jhE"쌃J3U<aݪ7P+-r^ 6U󏉝YQJaR@WGaH ܠT=j`Z{!{d*"Ǘio]tK:qzi;P8U)H[vRɞgDC8/Ub_S5_.I˄Tzk9`PDSǗ#|.kxVX bYa9A t. 5gqzƒ.G"ƥlT<9ʃU<;]0(5[3fxΌ- !}q嵜XMwyZtVyLgAA6/{W<듅Md[p7n0'k@wZM(OD%9 lWVWlӢd"tt#T7cȺNqdGhYA ji&)%Stئq❙~7.&TD *'m% $kAKC~~m%>@ }3l~}̳NhyMQLO.4MB\ivsgW_t\nt=G:&!nu d@=K2S~ I*_|Fa, m=Tm CQ L|q퓷)T4*]֣aɛ0DI"*miA[ fn"B?Nefi} XR㻄GV@jveJ]%%cį3b} UeLh瘖NcKTV= GO+ҥRLټuߨX}]4P$_vyZ˒7i7G@C1k/rW4?L-ٗ N8ZKt]t [ՙ9քS}NN'emÙ#OVDl/"xy>7CS;;?ZX>IqM|>>}I=abgtk]H %$/Gf[h1ҸY:\yMV"owr72QuF:L1^ tD-ln @Ą t3ok@QTBՂ_V^w@}p3g NАO"*,8ρG,^NQ(Nxт;瞩&G\;Cmм9KXCŦ/g1_ZpTz/V9֋ 1R_B$m8˝X }m>:ATQW`^yX'0f'Z Vݹ4~G*EWc3fWz4Ѧ0-O_%em Xo[ XJ V,w}+;.`ػApc`ZvD~wY >DŽ%2jJ asُbJIˈ&^gMS 2{)DnG:/3۵Xfdɽ:l"nC59ڭN·w#施Mv q(ٞDh3OfmozțLps(2nZq O.hqG%1YTf7Ɉv5ѷ[`7"U&XQ3](]v;?H]TfzC`Fo H.  ތ>E[؊CВ`W= ,K'c63t,aO&ʌ01~4Ec'sij*_/h+DX!b|Gds .< q4.RXNK- WG`{Ӈ`$0/TlF 6n3泝- SJ* zI#5M&M#orpT 6$WΒJ9\|eQߵKAO.IYmVŗņ?Y ;zq?n<3k_+C(XP|utv} (Ot.F]V{bA{E Azg7dLmG\4A5Ϙ.{#5;]#BA1+Д)Y-} Axz {%RP|ym_*t'5= :Pz|f~,tr!fK+[W:CJN(%ItU!9K4r Y ؝}` -&^[\IXƹ0@W%cdzbm@2bFH(+NTljcnUd+F?J1z?e顴Ͷ3ɘ57a N]lUD >\ STKH/m%[>[5/%f8 ະ(pƿپl ٜ,Z5R"_S_sP'3d DgA] YTY߄.Wo I1LXkm\ٹ蘷">w5܏& az5Jt)}̂QCp Жw|Zo<:eĨޠA [maI_0{ -hY$ if.x|rYL?]*wڃmNrB\:TbNGM5!G Bř#cMB)`f!,EqE*uZTZiО/?oM@YC6QitLrP ^ڻzdߍj9,g;JEM9; Pw{AixG{sJZNB-YԹ7_|a~bK;8}TW >܏X& A81+MUs~J gg|  ^) r7'7+Ͷ^x@4nQ<80t#am~=DsRWeBQ`$6(V'78*荃am|-H#XӀɓ 5rHYxM] [Km>z-cSY8 b2͋AQ1R ŭ9Ֆb"[t]ڬ 4h1!mZbmӴ/v%u4ߓhʝxgJ;E&Lֿ"|*}R+}ZQrkgf4{l(n$DPɷA;1~lrҌ vii7YZh \LjKh@$jޕAl&>&v;li<qŹ7h4J2ei_-%2fK$^&Ԣj->ck)@`(OdMa4 ǩ]7@l>x _=ݲf :HYiA,+ xʰ8-=չ!պs+(ZaJ0ݺ/Z6ӒȈ ѝKF ^F,SFߣPn/5w)HD5Bֻfw H58FY5~TU-42c5T(M'?^/Unoi GSEatjϑDBn}~ ŊQ,%J"`e. ePP+ 4T!}A<CBQp|rmI%e"ZrVS-WYXJY{/.2 u/,xihWHM?Vq$MadN|Sp|ro15*wӹjyS yeIy(mɅ z:D͎INR&@=_" YU8yNp\V |]U8X3L{lzTdURH!LPwsR) ZDu`x(?0xEe04W:27Jy鴢~bC/"8LlNfx yśDhҤy#8}"d6y'uWC߳K .+Ѵbă;)n>tVHԢa 5}؇bT@UywyPٖEL1$n&&4EN$Twݛ.!Z\j19L/Ln{C, Be*1khyZ&\E1,(}qDA8a`cL?pH>5$Džir 6IJhtd ޲ZS4zɩQO2%>Һ7 mlEö+^ we`R,՛E$!ۇO%:9A+<~yO 'a]. oF ScFv֡QUh@ 'uu3ΖSㄾ y<-JGVBE~\Y_W|\ޔ|"QRHZiaWA?S_s5Յ'%; ;ř1@PJ}CbDk'\j C{s~9%nB/Zlcuu*C4DTNxځڬCrMN_6ˍHGG>WNy+# /M|?w|D'0)a`A1i!īAmR5H{=՛ؗ M :ĝD1ZJWN]3YRI$DN|JZXjD'))^mYkLXvGs%Xu5^bg=M>eիl8vЉOLhy}W5v!'ߵ뵨㌫N1DR RKe"ţ% T;[olḅ]tXl$ ;*)V9G0ee!MO\-&O|6A8sX;^0Ε5<?JnͤeH͢koG/Oow GXĥ4HӔ `d72| _n=[_q <(>yc$@u EX0`<<62V.)BHE^7rAQPc(Z5"$Kh&3 $^*%tCg84MU(ζCroB{Ҵ(g||BBt)Pnjԯlg`u#7qLL(y',9\Tr##7җ3L ਕ:sl-*Z6@)`k{۹<֢^rNz]cTIM--YK!7$X[/r P&x@_ܻ#Z`' csćD1`vǶT!,}ha^Dg㝄LۀN^tkt=&1zn"i|0J~79{ќ㑮@<<IdF]g͛!b[H)ζ&-Wd90{>[`r~qxL-Ԣ r^hIePx.\2iJ WK\!&0E݆iv;zσo(Tjmr[->=+qX@A O4:Eyzd4{jmy8Y-Eh@pʐs^,eʦMat_X}&Xkm !Wd,*B.Gƈ#,UT- u+Y  J=4}x736< <oCQUZOq=xOXmV*:eln]݄ &OAY<Z r. .7¡5D&Hbu2y"M/~L~)EĬa))2b\|vHrqrNQCMR j8s+H?#BWV3xk-v7ӈ޷Ս`jl~w5xr* ]l|1v}vq0z+WtDFLU.4)B:Y³5UQG %ux("n`_dU;6ǎ~%NU,-X})O?xZ^}ޜԊoffH@G]WB,H>UГoƛ >qp~:XQRa* @Jh21"mF3`8{Lo|YA@7„>|sQ!I? H mzmr͑07SH'9] K[4 zCiI6xU^8Z>#isuh+UV<9 L'R)viq!둑0mzNs=R1xXck*wEF/&Q%#ɶC,˺/J t=?ۻsP"ʔ0 hX =|J>΀P: j-'puNJRR: v͎1>)v ʸHnjaDPiX%?UFm~ڿTǺڭY$TH#>HԸb.jK[^O`(3`ZiByn ~;x^2RQp t6Ž05]R4 ͮO$_d_{Sxj::nV 61^dH6@{'/}t` , ANH垰t\?!FirwB=:zg+LMrm*mcm>B?gn0eLgۏvιEP#9ArN{*ZbSlD"k!}//E)05GS䀤Pu*CV;_ѠylHon{V-#k5,^QxȒyg۲W<G;& 97~;8U_uiz/Nq:i4:& $l Vb3/ayӥ%`'L9ȟٙr .4`0 n=:O$J Ldq`5S,PO,wb1읰6#oWulѤJrXyRKL/T០+HƎ]] 7߆h;=㐃Z z"G.T`i<A'z_So_`[3)R,֮G1]"Q{~ص9oq;Inz[D GGCc$zj4GQL'M*s<ಋ | ;ois[";1ȑ}p/h3U+^J+ M_N˱o-!zED_|G@7_5ɝgzgϕiIllmW_ v} Qnen3' m_뭖WE/% 7"͕РƝ ķo6kg"I?含xA^: IHOBUӶkPy]\ξ?I i_2 ,ygѽ~0뼼^q0iH0R&!:-w?˞JWfl&U#Gd[g4QV|euv%otӽ]*$֛E q% 0Wp|GWBqFwUd,S߾{ Ӭq2e@{)!`V#ui˲ nF2'4g {K9"u2BȔ)T.Y߾u`j> X̕\=6k`b>ۂÚ{G&b"vS86OPZ¿ k-2M䳕T!aEsLN2l17iJ QX\Ic/ڒCoF )Yi7-7|ᥚPc(T8.naS-8hA8hs0Lϥ\J]2ճ^,Xb]e[NOS׫LemLo*j~'Bslqqs]jbHOU'%WPj3;]!VR8UPa^bV8n}㔓k+DO<DZ]Ia.p{WD4&k H^oC W'[s6h%hx.6\J0OɒZ3 >Pߍtz6L$BYmK?d'WW\UzWW%~rأ~(uƮ$q՝kC_I0JO Cy' 舐2+>N `;"څ`je S"6Iq~3H #ɭ-E1HN3AJ{析3hզT_D4JwH(ѭ liCщbo~){4]6~N,1$qϴpXgw{-G8s𦦰R?wQҺ1 VMZ ෢Su0=ڿJՉ>=A\"%5:DD7dHc [R8a=泲SUM!O Zb6J,V$G&l O$.{ldOe?xPZ񗈂x>FMS?5㝽"H0լi,/Qq?HGΑ-,M9O O*H?wW@:qN9ϔB{"Mg -%{_DspAR*RYC /֐SO"TEDJ`ܦBZڵ+RIw;h$S^F9,0S2-*žY{Km}B3,/1)zOE_URs@foX^9)pDQ]d{8~U7/'B{{_MDp 쭣̺ _(W =ǡ~QRJX7{i!\6F(ߖ~30蝆.CĎ)\dTVxp [2˜-~P]k~Ω5mkrDCb.ԕ݃w asݰM yrPKSvݘDV*$ ݎt݉bF"A /e:8/ uhcs>y8g4;0ۗ",K Ħd,\}d`T Ժ23*w^;zNז3OYe>wY% qPB~=_`h|T(3Gu>c:=JJd}\FN[t(YL#56$ceҥe d JNFhBR444ﺐp[A!D?@I -!&7p|js`c {HGHGv6JlKGOrm& Txxāآ \r1n'-z?&^q.l.N0yTlUu9cnpByӰi Fm[mؖ YכV*W.j!n72^ AeVwɛ"`PMK9ܬ}(h4Ōdqq` hAM^H,ctqɕ=FP#5>ǿɻ 2?EviK| p\Sܗ(qSL-W˾hu7A ɩX/MG1H<'PS e~ɽ%`FWPQʊ>"ŵ)wZަQO!NV* | 8üz`oC$tY'_m e^<90ӄB3fya`;*q5^bpj&q ^EtcRHw"E>MܒIPZ:C}rˌޮ\,W> )t^_2@wԹkOJ~=ZUb&PNxS% fLCThHa Bzo''S;:}m6#͗Rf.;[p=5 rIr4:k8[l UB x \< ֳr2!I1< 0j_vaEw0e;,fN\(,?Ws@5yƌ xmvʓ iXPfمXeQxMoܚK\Kzi|gOl'=-0vKj/vn'rHgsQnwWFPZ e l`\impR9AC4?$0xl3oyZ6鋂|Ff!G;ZtHc^6(0bg'%р߳ȥO)&xӨث=_N[ wՓac:@z@qsర=cUqf95|&3e޵̸̈́o2Jܷ(Pxٮ''%k; K½eYU~q&M$vO6b3#L~r๤K*Y!'OoaVp!J`#n:}awͣKxAAN>ib?r4 fnA*{Y\i)1{}1@|#c#@@w_bh~+ )CK:x!ݷ/h__- [ s.vW OO yx_ڲ~nLIU[;]Jα.hGA}p&ZjU/&Q4jqQb`QizEy`-뉗EX(w@`OrV 6 YBW=_uyM9G_y=(Cg!VdHT_ &6/ .WqT < lX*o ݯ)}34JYn$I3:gtN .dy[擨]l!^Qs):ƴS=h8ʼn[*ɪBs"vb:ڪG p /%\'핅k}GbJ Dp@`HKѽib0l$蝮gU&СUwwUu/T9`HG/A>lP[1hC᣺10.E~dMS PqƩ) q+A#Pӝ9`T$l`"Z;{?`@[ wmd{ WsqHpIAQU.SWjK-W2:u0= )*ޘU8gagdl(CP5COw3)I/V =]X鿏B`;Tڍ҃Y:ȊY^Iw]7LЄۘÙ,ڷiZ +-ѵov-g x(ܸ+dqaO8@ɔ#Kp%) ytS XO8|P 2rUà&8k,*^Y.)C^-;ARbW!TXDc#%7|~xY`%ۃkKFULEfPM' $hR #i=gMOdvoְډWHYQ'7pZtWqdZe4.iÜ>42/R`kf~L8'̺~M>\/ -SB#ˡ`?4YXx=o#W_5(GQ_V桪9"UeG# FVDU5z |ۘ=V{Z/wݭ>ѠG,eg n3H";`RaI?k17Ɲڂ,  "GZQ;!ZmMsɋ5cZ5"5C<,ivk%ѶWy>Ѷ62iҾe1ݝ#F$o /xJ- QrhfN:zJҐ !^[t$f:{UߒYaI5&4\K WPWf'=d瀲<.GHFӯ0!Ň|7&"rV̖&Bw?݁㖏PFI4Ybm׾e>ZDg.+ic<cڼ2`sY4z~ǃ YITF$2m%s gTڇΡLL֤@b/xp&ud*=29+|YrlLlt]wqLc>@c 4Cb`lV ]KЀG%#rZ|s%6(8j< #Z[ u{1n0wKmOtĕ߾ dYGmFUa Ho{ v~k~|.A"IJZ 0j67@׺xљO(J D[LE^m'ܱ(=ܥ)1N#oM8۹s pQl.E;*3-.(4#cdQG*E!OϦJ+iw"?$sT2#AOl Z7 dwNȟ_9C6ʱ^ r' V3VY?o㬎\ #~wydlO,}ϛ uKM]6yRCL^?w ̪Sc *k#a8q]"G8Y#$eՆ`UGe*ƣN9a_H֕j%WF JnXdL WזjQ["ao)[i͸14pn3eSmvTtVkTYsSaQB{` 6 @ْ 0=/\x0; ,ScFq21 Kȿ-o\x> J,=RkcOæLY=FIҐIqI@Ʒ;BV?ƺW8:M_$Rn'-a*8V[ nQ:B nwaѭ i E-qVmjdAJ7LIE=yvXn 捥ߎ4J/Tiቺ!<%cvI'bN=Ls> t+^>,T\{N.mv#ӕl?ry4,K(&pFQS8@A ?u^E>'difM  /B.F  YS)x,xjf7] JƏ1$sd6*4bЦ=3Ϫ1ZH#[!g=Y[16Oj=O))'A cs;13&rHر M QR׺ȴbD:&XZ6f-"4 /ܐF/D+ݬHr lCǵg7wYUV#~I^&D=oA x>S" maQ{dzHvݐDě*!̝;3H&0g w /{@Q'L;h+@Ca]4KҢ+Wk?);m4Ka TۦZo$le]inq(.[")wN,66"b$׿K@\ꦺI Rg5ltqx ԥ ݍ ^-ܺ>b롴P?s)OΡJV\ԓMOlNtL@e=>g9 LCi@"Ȩb҃UAͦD1zae>F ?  @B:fsFyld낸aݶLuG;0Jb"SKd ]avT=e>p?q͡BtfQ?[$úB/3=zӺOKT[Qh)5yd&-zmZG m`6t,"BPu\1UB| 0,JtYX]$(]0AԓٖQ!mC@_*حQm$N᥿Sp3Č@Di-u9"ém-4;+*7tL Ȏ~:b>֞=\n|4BMK_G`8g2 2j^Iq5 ԐP-9YhmPYD|t3K$tHKqT*rPW%9k#pڭ惤IȤ4*z4rrJ[!l}GA0'1 |'*õJWD mwiR,̤t ."tņ,Rc'kNF u[\@DŽ{WZ({x0alvs"k~n-&EKSMY8_ VW;Z6Gp:d&q9~eWh>0٧|t8 )1֗xRӼ>g&@7@o7ɠGJtM53MDog9$pnC*b9go|4o)[ԿoԖ5X/ה8a~?ţ$hJ'sDok8 +N/hR%P)} e}j ҬA DLoq CN{А-:bDE)lbVQҰ0g\ 5""(xsV39<=X78^}"` \'tX)]_";ؤcg=i ]M7*rfGnI,qڕxK tIHQz~A\f2r֒8l7,Epc]HD<SoPqWNf`Do9B{tOa{nW~DhZ rn!ž6lt+ٹ}Wl'>菶g5;ٱ>0GB=lm!_c;Z?;׎N_Cm:#]%Heyq53hND45Q&دLY:FA 1jSR|6[`<.6ҝ3\)h+Rj"GY-Hm"B+_ų$ lvLڢϨŌrןak5WU8ֲHphnϥOmq@F#EfGAezIE*/ds'uxCT &خF'!ɨwk%\?iHIO GbVvVt9B:ȣי|VeՃ~r+ӯ([jyC}uT!i[5|fyo^n-}(G3Hb*`"5jD7+g>qmr{1N"Uk6`o-b*ӎ=2 `ej'OP-껵B ʼ<]c{4wCK 4+<1B=HP ; KO['́Gmy[#837^õ{7HEjY i=*aU읭xq1B]F*mKy *m܊ɘ"+[mtS,كql|E\LX)v#^ÂW-(Te8p7$`sn|?i:uU3CumAViq,:'9|H(1|JqZ*D-P9RYr8B5egqvUTR`כB7^窇V ndhxb̌Z.s8gTW$@c3-\*II0R?h8`L&C~ll7N7\S.`Sx۝ԦXKVr`;ux95-j-_D?잇~)Wl5Ou!Op1ovhH֩hg]_G-pKjB'o&՝{:lR e*<ҏ@Ry|b?>B<^OՠxB_jV#Cs}qh(x.tkpadGE=(>^ 9YkLt Xp#dEI7˹w]^CVxErrV{V#wJ Cfa]]a*x$)JJӷl%ݚ<{oHbI }@V`&\蕛O30,ofp_k;5EN ʳG#k,xhg[+vuʊU q6_R٫*t X+X(ߝ…MU\fKJ1 rl`:iVz%|B"LkTG ZzJ&iL}@v'V׿Qf;'7HG7fGr ΅!f xc y?Ճ=pFXW~2` ”3cJO܆X4.퀜 u(h8lx`ww=qk-}c|:\INߐQ=.樵sG1 ],"GH7XWW 2|M !Wsh*i'\yn ]I@FLfʟ-OդMY|Ӣ3WY}+Ad_5"&>9#h ҴB5ίN ~JzC_5%aʅȦ4^/hK7peX9x#ׇ[Xlr&2稉߼[pb fţW-N]\1ZƆ?&> y ?"=3Gw|Y6aWJۑٛc;jRIgܔ H{4V]B{m1{e1~1i<{ lؿPƞF#Izтq**EsH<} һ_k~>cޞ Ts B\A]8^rҰΧ+X pA YxP;A{7i W4ΜUDG4Z@q\lSح{Lx{b4G.1 NL `{2'wERź(wˆ!:QVكB=, DS|60U%pBW"fzp^E; I(mͦ^MNL7-#cIP  oxbڪGw>zND<JZĒP ME:\b]LS(>OPy6zhW`1iefGCjn(ηZXB KYt~pv&J7N:ԕ]ҪYq #6eĦ2dXbL3~>eϛfnAM=38WMERK7sW&;쒥lJw^d):SA$= EH N>i](nYN (;9͊=ӟ~jLB Z WcϷ&!x6"KZ何\)b #_]]+fgRt9;$$.Dn৙SG`CꮍgЋe-Xkr38e-Bq(P! +Pi!хgV`_9~j7TH6عuE|}p]'Tso)7M$Z>R/IW˵x:kjt˦T.DuJewWس7e1]@ $mQXŶ1G[<d4ev4D׵6X͏dÁ  %^94FS,jG>Qj"^D %㵑eqTw)|* ,$TӮtzC2֎*&뎊<۶^ ןi%e7f[RK" 1J")JAo1^J{LϪd8s62&ɷa .j}/vVB|w^_dJ-O[drHKCfFp;:tl\s-7ī8`yN1K~Q5R<u?cT`W |0 $՛K^Dp*[x9ZODA7ՠqo| )6r=Z ׃trA1^>22?*b076 iR. kk_B==g>8Hb8G>AJVأ\z/6!Y*׌či#*̶%=T{!" M ΋$W;\ߝ0ǔft-\=\a`:00+ ELvthVqe=w `\V XzS 4?eBFǍ4$lቆn~3MG c&R͡e`&C+TI%W*sqdZr֜^'_i8jBXK#-QѼ/$v~E۸: v Ƕu=PJ-e̠G\ !9*ax,1+Gix!8%bQX/ O _ &|R>œY8)5n7ԬpCR%k֍1RLGFqY 8=8ET MYY" Ƣ Oˑñ%8?%JW1V*-*. rNMSl!oghL®.1] ZEIQt@@F,DG~F.ٍ=iZ#_M; H3H]vKkK~v6cH#0}/`;$zԯs00Q2Cfe DciK\>#UB,h D\[ə>eRaTT]:R[GP g؅3|4٧FdZT}n\ZAʧ5S8s!h2n\uiDC^`/53Ekjcsz $dڇ钾rY .|x{͊ 8(^%'rin%3>,cedlWCmLM KI^b,fO q A Q.)&K0]sr` 3 cNJLP4LM ؟mFXd( k4٪2`MWSSGA6 VLH)Bl1a5-Na56u.eo)vPi5=nxq{8^]Ѹ l iP=!{IʄH~y"ЁhܽI]2{c3,&-kWJpDA ғH[Sr !3w&QVz qB/莤 0}t~lyJO'66Pu=+kX6ܻ t?\*&1EX߂YI#c S(5x{RUSf/U yK3xC_Vɏס92d 2-xSbC+bb`VzY/t⡏TWm0Ij'XI!jctiw\>Qafbշmi@.\AݔJAS ȃ'%6(H,X NMd5>23y&YI [} ]$=؞SO\6߾u=-k?u߆ &dM<^Xo?;`|Mi3)u-28BP@̔ ҄X{h)Ues4qd:k6mhhk|5h¿hL3lf姉\\"py)-2WL+j_cp/tR#䡉1͔xL?TȾy̶ d]˅ò+GL"\BT`0·oںIixW/j;cob+! u}4tc$s:V׈&3ܦ4>/ӳSaͩ C۲mI{sa&FR*qDe]T )"GE"33=f=BvA0"뗲EhvD--Otc@E&NtS r5*xzX `@gsŶ?Ta܃ EE{1 .:7ټ{٠k>[g\+?sd QRkGߘ& c3*!#VnM)shg/l'@ENl<<*f" n|^ 3M4@&ylɨDrigPX:.i Bsu%[h'<<#c0bXG)cE.bD 2JDk*BG`&A`pzvF+ R-<Ƭg*p{Rw`@f7ɄX IfCDK .P$yt*n@x|g_pj],)FYo{<5Y\ϣ.ڬ~o$ɹ(vSv="k=  5 >j\&ќ 2C`^(ǢL2t:LuE 䨯KfqAõZ߁jCfMI[f.g]YC%zS 5͛%q;) tj:RU hs$K<1 h<3X?F{x8zxX\2"#Ue=pנۡ 5SC|.@6T N.\u~CY}ݔ'oVo>b kbAh~QN1UGLNs_gb6J&+=/[`^J7co܏#Ԍz}zՆsϳ%,5JP8뀎'wqu /M%[3Y X-XO bx3 xv'Yom8y%#@b(thB'6 i3OqfY9^"f>wi2I^q{9*p,qE֮J#y(ljm{CZ*XO߇?8bǘJ*@5 Og k?q'VZ]Wu^8BB w& դqas(J !gb&E=חVez7?9? ; *HsY] L{>DSKP~ĸ]ȸ̑Wyɳ_$.8Ց&zjK:$BqSͪ4<⣑Z7goj99A{ZhZr@YrΎ$|5}BylXj.FMLUYD 1y͏pj :?A^ЊA{C-s0'-h639VI:84vE~y<ʿ?6{"F9U ;섳D\0k߿NeS0)e5c8j@Yk&ѧ0 }TDTx2>jľR5$OL d|quq_{"jBi;ֱ@0_׊  MRtеhΨ'=i*T1wZ=jQE.V8hh ^Nut3RGh%laǶ.ԗ|ۓZd̐f1',zH+,*}A2X@ -CI"~785 $& S 3jg@%RKPϰMa;V %ЃErS 5"N/2D x 'sZz/Rb\fKgԉF cY.-RFKs,$(8vҡ]Jc*GF}u.*-1t!97ھ&t ;7, 9o٥J 6jO(LK}Xzk #/(Elfyx.r*;y ԭX`QN?>ᘃ;+Zb' |Tu|XJ {wڵp"mt(0!TNCGXa, VHM`GqnVj $,[ɑ@V%gT[t5, )?xd@!9V%FǤw݋efH`AG\TŴ1ǨUC8@ML | ] H=w7. e&op=v7虀;h4ɣ7xb|/LJqVɢSS !q[1#B#>u FՏ׿ 6!>CFUhwŒRKwۤF! k=sTk7%Ql<\k"MP1Zm>|PӔڢA?gHܘ3qm޷",N14uMQU4 _N5m/IHh9oN~ʗp@/QLw0JLvGnړ׹6*A澀vCr ue1nZ&򅁀)2=y"HA]Fh=Ynu^ZH; KXAj ,r0‰Qs]/`9s-؛8Fׁ%nrY1lKE-&'T(Ώ St@5, L?զq8䠺d A}FnJ/A<&ǬS!.¥+d"&rgdgYTQc T[-ڎbiXh :J7'H>º5G%$=4i:cC>#LuI1~~'`Hniϲo[r<6vy]5Vh{ze|^l}d׫ȲU H5kfq,@n\Yo8zbf=ຎllظGjVU6=PXNAA;_CG*#oڜ,S}$FBVĿS7$RI@axaNCQg;A$Tuy q}TqZT0}=P U72̓E"03S˜y侒֑5iXfOɫ4s ,zZco>on׎02lR2ljdQ=YW;oja!/_qYe@BB}6vγXm{(132=%?1=^i%>IJ%4NO>(йny/q_7u6~Ǟe&y&v71m!e `yB2D@P`Aj/R^!sNH(4opNYӽ zA|xNG|B߹np-ǚrhH7xr^paM9s b}o[5{V>`*fy*-=6\ Ƿ𚷼 wS4|,m&h~ɥk!}'Es~9Y:XP1O4:ǼBaJJ)3폝`J]D:ť&RR {Q>ec@!g7C$3+E5@BA7bk&Y rœ7*ֈ$ڧH?f?RqPMz(l }MW'U2RVxQ2~p$8D N-9"Jc*Xq{^꧅uO_yv#{ g]L$Yx&= ~34x5oj(ujTaXiI) `=@Ӭ2Ik bSY욹3W).#ziaIgPϿW>hS,{Xrԟ/doWPtJU'?vKʰS;TWhЕy}ٷ_o[r۱@2'h2jiVC=螕gQjW_0Ş1b҉}slG_}B$v+@s$ %NƓ o.m1T"cX;2j +I.9>= k+=fnb~@eqJ̌LH$k SfEtWF'Rkgý[&ӭIř4d &Wvr#"[IA_. 85jPOZdZtZVyPτNswgI ;u%. kU+iǩZM/07&VNo&;5 =0. * XEij_^_o#/ݗSo(ACf`SbYȵ[)˷*8YbM8>{%V aM A :WBpG |M[hljJn%dߐz LV~ /Z㚤&Q؇츫9=Ø~bXWD޾fC>ۦ)CZ@fAAgzWV6˯UO ix-_0-9{7/f:~x)(CTFa ⥁Yevl s%+> x`7Ԋ*q.LŤHbmޡR>3ZP}yTk|.%,v41}H!r$m>y ᤚygPV'jIV[V?C Ƌ|a19 ܛx<8gU'@ܡR+QȂԷl4+SOR8W<2_%w*;ӻ~=`0M!wؠB♶n}.A]^2Y Iwv<[>28H/wd`8mxk}&ŽwO{sE< h8d8*)ʣ[g:Za͇0hBLKi]٫H7Ҁ@_GnTz;s5#d@_Rxh-w S4ۅ /\ܖ7HHVi ܜ~Wl3qݿeB0(<U,e0~.ƥ{'oΣxn4l q66 ;hc$]YN_䓭1Qd05ff?g";쩷zd{b4W[.7ƍ4nN:lG'%JPg33h{c} 3W#]avrb9b7ϾV[@UdER'k,!ƉdGm. 2"8ߑgJq q2mmlUd~p-Lyфýܛ/38sѕP$gP}Q?ſNc:|dW,*Ts; ]&mPt6 Eq'-;C'ރGl߿Db؃秺2.E(U+2c4,&r)BUp|zhRrPtBLT -:| <#@ oƵN4 RNUF߆lO,0PŝYHFukgMA>)qbdzX$k:(H {(.Xb/b/Ґ@yZqFF4O^.xCBb ^+&VabCDcѓnm.ji yh>An;O {\F RZ.wx5EE{l~HV$kmbܵzW2 # 1`DS\J#}qIQ՚!>]ʐF ;Ųc{Bfx?ڤzsMξqHi,1uo+Q>2M`ТiEXw)]՗pAzp>; F+"0{4x̗!Ǜ;Ljښ rm[I?w/q4Wᱝ1cZ Hp{R#&?o=l:ZAk9U虱{/x-2 zL%(5(Ʀ@ ,Y\j>N{*?t =R \EaFR^KVY dԠw6Cm~ h[Ds_5m6)C DeU" .<=0ӣsȌs_i^xЊc/e {cG022IyոwDg >Ȼ}a[-/o +i|RuGz ãg ??ɛXHwbWlim y]lw,* 25L[#ƨ:K1=mgpl᧢,EM#xo{.nCCqP%4oi`eI?Խ4 *dEw>=#fkbY (+qxF-` f&ɡcOڤ=:[27_Ɍ`5&hTNfϹ| {={ǿ+6bľ;AoOhȌPۋch%&~~+ds:n&VJEX(Pr2l[qf &|yT^'C#pŶ]ʹE"PA0#v&o,7F߀ ?o#/zTw/EecQQI eu[<-5e=i2_Vc|3`v{K6ފGPokĪʬyKX˘fX@6}D9Kn!hRr`/79fBDm?.h& Ҏ%يRD_k\4xMXC4_mH@?^馁N7 oRR[mKޙ7,aMF5hʇyxTXqe`;S'C,]ؖSw,|xݎ l$ݶcoſ4)< Kiz`zo8hFrL̜IXJ4mñm'(i9>8K&x[:B#YQN/%98 2-눴ơ1ql`Ԅ G~nK LHԄ*>;m*I>:&|+] f0Ef' ulQK>R؊&vo7:r5 >83f ZEXK`)c7'b';+GNk! 07ė-6_-9b (8=f6- L aS/>uY\%@ӸbbN5,qO"kBD1L584Ɨѣ(e?PF}4Em6_m}X>X&_U%dh;?Nfo՟R_[sX~RЈ(#^8e3@8D\n1.A^wXstOEg-ؐn%W6vh Ůl9%!M&ܞ:GOG7q|lWOu?x̡=?[g^CPDlf}&2j6$Q-/53@e,Gu͸G^(yL&h  U10D?. o,͘1v{ I?g:eŮ5^lʱ;Gmd@io8x*I˓=%Jj™nɊ>?)PU9q6kr`}jCss;TB` Hx)0_;gR/^@.Sr"#TSߟ~30f\r)õ~WE^LZ%/  ĦHnD{̈́>R_BJe$ fXET`J7d9oH]A~eU;v8%.b k=<]wl~n 'BY1mZT9oY?ėyR5l[) ާv; dV{?AD(a̭N"yqjOI`_|S܇ېl&,M}^n]o5 rθbuK"Rt6eVXYJѲv8eBY/l$be#OI:G</ϽPL7GvsX+AЌv_ؽvy.OI޾ i5?'"\o0ס%(fW,ϡXN!'ZO h~|;cBxlj׺$ǜ3Ruҽ$9l`bmK>1efԬdnCHvtޤBiibheүKٌ_3g_ Jdc@aŎ"R%rT8q-'g[ICp*9!6iS)eh1KV\TR4d֩H@Vqo6BObXZ֛]qLHkb@(@MaX S}8Jzޛ+lYNژEݿCR"/_8%+iމM.ji-ߴpv0Syq<Gou:5(JhKZ"=yntx@ %iزO%I$|\ Mzm;FvhmRt_YztQYgsX[:X:F'h  [=AQb͋[AU^(sfݱ΃t!m/%n_(4pY?'f4Si0'F xvRR\Y>즩(,:04RdrY,ruQH&]eDJx@%iZ{1^c^K7&GAT:Qvn=X4L 6 )C&MT% aD1$b8'*x>oLɅa:[^&åوk5}:QGd<0풌İ Jv"uttLH\GP&:8 ڇfnYx7^o#A" P +z)F8D x5yWdne+\P Xӌ9D4.dK=r1x^;r]lǎ+BVo^fK,&%֕׷ .I+3NnBK0|1JkS!2n3/jbPEO&jZ[ ^5ݖ1)^Zc;SgVv+ 6#ϪZ(1`*dظ^2G\EQ :p< ^"9.JԃZ_[jCҴRAx 8Ii%yP?M>Fnv+j3ըY& zh>2, Z}%#A.(Lb$/jj&%١a}~UZq9E`pjѦ sHîo_\˳Nq0vL^XOUyPHPhdaNjxdx(E qLgl)|~\ G˱r]z'yK|#2c(Ҡ9ʹzyl¨[ hų=[VX:ٵcWt6t<)j&|A2Sgm``>՚hؔUYVyqαۓ` NfWS=gyk8KKZVy@KXzl'Ҋt0O6 HՂZm%ۂ`gO 7+ ;l(1_<PY%,C$?JK}}:EA]X!Wm[*R?Mr /Is!dz2!ȑ tfRh54<1N԰ҧg,[xp,z< ~[ bT'ҹ18=~)I+>*c9tjp&y7>+_Ok>wFAcWn$#p#X)0j`ZAm{m4.}홼( ?dX ',cfɳm_)kE7 @8 B{oEh:=QKƉaD&^%*+N(rG6Њh !!01H|6X.`e^ISt1(*c"f_܇(&jZy&U0qx[ʡC?}T!yRE:",=,3 GSÞi5_\U!q^*i&-nlQx5_} "l@lh^KNU &oJ _ vS2Av7r]9|NFՂF}֏yAc,v4p%3iM?eM: .8;Xt B2U4.RJdf'%!DDuSm6rePY]hυǺ_+۸AʄD86@g=X( JjKwgkW&-~؎k6n+|Ck\4EDy6Q`oq-.*! :<-?8R)Ye-p}f GMk[KV= :,X)Nl-:d+rpe)=lj:*@I8qܛөCcXẠNpoѨ<,\+#nG jEM+j^5uNuEIJ`N4mfڱ 5nOX|ip~ۭŻf u."KːB5H75E Iƞ?t!hz 8?cMm_Q4 MX!K^G~#-!#}mpTm "J;8V*Er =:PXM)@łg!y]0G驄 CKEM (+XG9vQtę* ueDgbz⠒"4ovS1Caཟd5 Ii8M,/%SBu(_D>ضJ!™Q1pU 73pz0I6Nɋ vɈT !yGa{^V"Wb|:IOr+-FI+jW VB(}'rlLsFEJLIkmQ:R5[)tGO!\:d9LĘ4'^Erl?qUɖe AIRu]܂rAd'9K "/]['l/*FBX~ߗNͦ~$*<٤RJ*G\cgEuZ9dVa u|V Ciu gqs$lc֡H_qCÿCF|4>f'.,'·ro hjR y,td3/)_-eeLt#[oļjթ *vLO2 ]aҮ7*wGr SfT1'"* ڲl5$HJH]+rTPxtyV|k.(}Hэ3m"N F2fhdjI_3C}pEGRK=ŷf֗R&4\#'NՇAFa"׋ ^1ƨ7zk"_Į*"&H)ީO_]ԬTO Now I | ?H{ҏrB9 }*qs,z"gX6L튤-8[2ϮxM0ft[}8d)-Simr@ew=Ҷ%\Ҁf(A:)mxEC@6̅M̸6} ]߿gB8ﰶO?ޝ8w [|B r&~IGYAK6UkKy|rF.JHXodИp 6Sв<.ǂDxĨ2 mH SWc'/ ,D0*"jHWxEVG_FHx35_H"y &T/iiUyK&i}_-K=9r8:"UwFjn6 ;9Tlo8sҩbi*(ܲ̆uo -a#U nө'ө0vȿaB-USВo J3LۨQ3#CH%:v^np2u'hx8E Lv \/]f-vEBLB2bBHNk(I459D%/| CZsüKy%Q\ L9 ޢG'}^ħ:6L] 1gׅb`c3QPDk-X>}bh7 *|Kn ; ^8r-h8xY)ÙHqwޅ3YWq$p sNhNmsBd[ȤFxGQgoa-oZŻw$XN 'N%8x@- u%łzT"CoT$0֬@S_uF8F2fi$ӗ<~! ZI29}f.B345y_ćˆsC.>hivz9z({kWǃ[\|gជ {IskEi{3lmESքi3,}mtFG63䐥yB64jNGeaӿ[:~KU*V(RgtcꘆMXY:a*Ml-"?vuRa3  i4&rU?R(2ӎfp} Yb򰡐d\A$JݐA{аф(iIQ$kNrW&+u^Dxn p9WYI4Z՜X )=:B\ ?DĖ&3Cl3"#  k-u8q#GcY;^)ivS^DӎuVr`@ #3d^V))2Kb?u-$/`DXXuIqr7if %+,z0 _aԓw}//sS_ǜe+EcXsJ"m(Wb.$yo _VIy3 K"5~>fVQ}=Gy!|7/ SB)QAEt[Zqxjoe۫"):([+̄8],5)Cx<֥x rS]{,p(<%W5cWgxm8[R߿$<|bX:z-8WQDꢡl X lOL:Fė0 6\'OMUZԍl@}r3꽙vAw&RJz|'[9iU04LnC֐]Cc2UXqZ>^ޮ#GuPT .2-D @9UJϴ"1$?QM?XkGg^]}D|WlQs*O\#x 8z<-{E{\ O2lJ0s;3̪{S$X\([Jzq$`'c 2`#''S`Z8Ҥ.u3qg!5Zǂ[L!x>65~kFO aY~HgB~_ђ)V5Mm~ ^d9{*X3 sK\0A0lO4HQh2pxk.31i47AGA_W{l"Y)O?:?pɦM*vӂ*2iB`SOs-7׹hJJ֥$HQ~@C>Ȁ(uM"?gĖjדUskVjR!s|d{FQ<6Tcbհt@u&+$(yߨs[WhOGsooK|-uy#c˄C D.3dWc-t,p;CtNQـNxEFӧdUzL?-j6lԲY9Ify4aef{k/֫ܟLOi8 \3 akZlwoʓ@WRcJџu oHx}tr}AyΠLx{[굛ۊgzT  -^_FxqVɑ.OUp0JW*ĨC`qH3_/76 ѯ]LQp َ>uw/O}X^gߙ@e$((H8! y̋5XʁH(*m*ox"|E[MT?7e;˧=Ie{m|`؂*~ԡ5u~1fQY KxlW:PXLJ&-Pf= l~2*]σzSqD7C9{_*r~?><>:c ̹Dԗ[]e_7 = 3ߖmտb3,on֧Ġy uSS8hH5ܖI Ե/gMEQ}2VK.z_X4ML0={bvL?/9=JˠW嗱9EX5i9Oa#|r=lߨFύcOPrpۢh?! \aU/D lXr)J< AuƧl90سb\.ALwogƼY0>2-geJ#AqEKu6Okm86ڄ6 Z%-ڇ qʸ=Is 5m}.N7TqIAPCl@>tQEv3 ?17UHry t|imn̯^[_N'PMK^2|M2Z_}';}a6U7TÌ'!Sm'3*n{L/1HVY3hV*ڗNbPqT#wD;' =˘HZZeOKn? Kݻl f=҃C c{RvXǶ:tr s&q=">ǚ* -rf`j.5*\.-9nՙ( Tv/D.ܱPwv`h)e8n_ұL> a~eRQ-@}y!K%fmʧ8`0$4Cjۮ48OŗXZ/28Y'(#. G4+dڜ:P^F*jZԴ97Д(4gq0I^ ja2\` zKIA% *j-3G%?S)\!%perONhL+vFEXt-2r6*XPY 5{/x^/73 .)LV=0v6} t5V4TcX&s#A럏;9zdۮx7_HuNx(.q4!;p C~ĕC `0UQH cdM_@Sґ-w$躪EL*`3eghu50-IœA\ V=:?68GKM[/34-;_mX$!)V_Zt0]f{BhuJk7-9Eö( z/(0$"Hڢ9q8GnP"GJ3)‚Qx*X23/JjCC Mz佳G/;$[*ȻTV$F\EVFYg05(pg}Rg"B򓿥.U" pCtz*20]̓/8Y<໑ ֎^> |8[} z[{lw'Gc Fc#¼dKԢ5$勼mjX;<;U!75W}W+(kA 9aRN$K, r&_gnV=HrUjmdPLkG8HY?3)L4db@,1x*%_`\4ُCV-"4_r2K7ȗ RߟqD08rw%*QÔFF׭wDl!9nXa P.oG͓GG8ZD FT5x-eY3Bq̯/ɗ!~UNdR1Ysek lDYOr g =&iFЂ P1췃"-ft|{ղ}]DBf ^zl[2CKzatJRfH $b홀fFqԴKGOjS"O &6cIW3 !4g4==`rGl7ُ]3;a[kN]Ȳo;Vd_SOJ|qk)Yjv@'j!9=c{볁A2Ʊp Pi*w#5Gߵ%#e{ɓ [ 4ŒvUb>czJ.bee Q_8D()!3v`Rw-P^jmÚM^zOEx!0ҖRg`%rr,mEo@׵扐wR\Ƚ'xUlgyplonIy\ Uo#݅ ?ٲS俏ٷCW =f.a<-GjКf`%ܒ12Jx'Eb*kSX42f'jh1glw "=e?L, k38(m>j]F_o4!%_<&1yA@9ٷv^M5Krm, PH 4Ֆ: } 9GClAKXޤ; z1sS~+%;f5fe7وȉ7*Ueqr6PzeN%\~>wUwt|3[;$,5K2 G$ER ϔwhb[f q D{إaɢv9m>v3V;՟!xy8@ eqw&4vo9_Mvt˟1f#i4@٤9)g>2$#)V;EQ `+uC!!!K^+1FMD1|/9'g%XY߽﯅ ;;[^d# {LҨw0Vg J@ W؆/QP$Zi{T^G[Scz+2Mϒ#.vO沽yRj)r#$ib|M\~N)JD~s)IrIhB|Ģlrf[ 8v0L$ѨrDeU: KhN;]~)2.`$x]-dici)2.Y[: ܌R\giL`F/g1^->Ʈ"Ñ3{%&q{co\KT,l><(:lxhplSD[q ʦFD2Mq$ }tQɗMua.d\?xD~ 5" X utPT_ ۝ܕ3`P6HT3$ qT,Qh}TJOur2oZke򝍊xА{tK`%pgxMkZ+$ 6q3{SǣdOdb#<w d&Z;#"湼>/Gdu+M'-^dc&GXY'"ӧ#<0gb-.>Ɛ+3Cc\ =^X<`?҅?^@K1ژ52_Ό>F`֥[^m{l8 *GSc%_כiTY%0 (FߜΥ2_}ZH0rd^0dlkkN~<ɘZkЈ";+e30(bia?/ϖ }Ʋt Ԅgj / (vYWN pC&)~mpSpި$TDܾIqzz=\J!aB<](8}toZY?lZl|ƥՅXHv45$nAB5TR6XyrD]N:1ilQ*W KH"`1GkJ^Z.$;7Xls;B!a UF_.wNqMwyTYoVE˚b^]}W},QfƄ߱ S7E4L=__3Q†_,qo:~ ֠u1聳.m*;t fs  =ql%!l*$9֏_,<j C^3'$$u!d~'@G@nyvԏ?[r-| (VPMOSQ$e,L{ NobYTCi*58 1WL_g ǡͺ~  ܩrbކJ^DeMWYJ{+;Hc83iTܣ?aYBiE@RmgvV[*^ ?U m"ҸEOq)F|r\=]4. j*~)yvTT\Jj$M%^ǂ*,#8FjnrtxH(W[/r4M+#[?g;)/rhuRpQZ?}y* * U Yvf&-x$|Һ{X|RUgH2UlS z0ƨh.1;S~txǼ4g]0ʓg?/A gFc,R{)~F"doiuzbBIW/NTܯ졼틫5KԏG_m܇5ŋ=jŸ[2`POwo.l4SMMjq&-}3۪-' ^n'h6nk7Y F>#X;d#6 ^aEKOsSJy@Gs3`,)ЛLի'IK#!x՚F9!ޅlqnJ = KB'ӌ]jݛ&dab7^X+y|}T7?ĵfJhVD TS$}ћ$fHZWK`bDʶzn\~WY|w-7kL#u_cZZK79t^& c30~d ]r<f)';,t_)RG:UjC~stEKշNBݵi j U&; \V*6k-4_&:Qݬq]_' |  L $ *`zE>4v]Yă? F,{-J6Cg4z ,}ca5$jG=bQCUxG_o޲uZkV%T+ yW@sgW1Qn_]v`6yN3 =n.D`rP(}+YsD[P21l6,ޱbƦvV%oDy>j8 |ˆ))/:c   ]Yohس1٘4cѨrxU7 ! vi/Td.)]-tpg#d`I1~akf?ĔuЬMߌ8U$di!ۉx^뱂Фrv=R'*dـR[~R%SeP k ~9m/Ez;s)L];qxVMu.  j,L($kwx"'b EkU_/0_SldGٕq.{:"}&j04Vo>*Tol^$]l442q>WVc gBg0xѲH^t^"CYeNפ!3 Av>-ES`+pJ)D)ajΑy-S' Ŕb Nם(CrדC2E&7wظ|$pI߈"n4]XxE|,<3}; =Dd/oIw0ƈG^DqC u-+67J\fM0v%P0dU …l8 NͨbޥgR 0CuGQtca9nxӸ8qqJl)gt`N;uoSpB29P~LȅzٮP;@I8bpwj ~#+{X6[Eh4!ֲ./ۊy6Dmh̕jKc --hlbXL<^&ۙ L W?QpYUQN jW@ Zp;4'`K/qJjW7N1A0`L?@sQ`0,8zht3kg5DHm|:K%+n.Иޔ ^c8-{a`GJܴg\S&(^hQlJbƔ{H`;Ikq5L݇\uJY/{!i%F=8:z.L~ar)rᗑ .aqE](zEK3?T c`(zHKLz68YbNF_&-v.w' GIҿpX[T!~HlHY [v1;cYJx Axi%u)K,(JG˸\Sau'ɖ )g3>_Om:]&6_ is ^kUÎs_6vo/@S ]p,XxVwcHJXY"Iͦ>jFˁ|jԤ~FsPqh)@mh_sq|ψ Dq㠁9m DZV܅]j%|<>bЦ#>+1qDhPw`yU3c9@NZ-@`~ [n'"idXB#I7wD7Xb>=+xczFl upprڋ[qJ|u]7H`+W(ҟtY3>8͑C< Mg7g_7`5Oum](Yr/,Wi1w!Ǘ_QjuIB5O'-r6c<8" *@*΁UL @tS77~1)tJdrG%=#DP;(u̒A|!!"Tz\6)O-`A gc ]9RqD2nwl4wjOz&\θ3gmDZ&CBbuMJIt'HҶd䵏:ص}'[ִU]0fwƒKKx)NaNrG@6;s^t(RSI._eKK5vs_d'ilcijGY_q{Zu<$MyO!/!hk ƿN<.V]d.V0Ug_;5;dcu-u%ڏ 69i'_D8U0&>KȘ_2(VB |ϲ ^PvJTf 3Y/㜀g^fs7=1IW: vW4\g<$d!*?m(a^7fX!u&{)_sX"MKLn*0&7(hM'kR>_4L:^'ҷX,8lV=yFkN&YhI.]Q`m•UR@V-5OFyGbßԪxJ"Pmq'.\ U*TB0ˉkΘvF#uz_OzA&_#J9'&5A-NOX:j$UO9!D鰭]~E^c$DegIF\ Uƻ~_&*-S)]?FXs==i>.$ GbGR?%V[MΠHEE/.]Bܲ@sGٔ h{w&Z$ؿ3S Uןf |z 9:xO,B8MξpdNeMI6N>uxsp[ BM:E, WNPc0(*ye6n#GȷKuPɜʊFAm( 7cT\`u[K!5$?51_ސ?}C=|kFܜˍ ?}j΁p x'<ŭt7cYVLRYux,|Q(6TA% o괏Dl;=f;P%1L$V]}`!رڍ mX|ۘKs|(L,ŹB }Ŵn^=+cKKCA2X86 4a6-:xeg| 4ř]C p;0 jx2Ӛ #yg۾р2y$5\`s=KzD%&I- S("͓ J$eDK/* 5J C]{ Da7ٲ@K bW-$_TZPP@:ګ5H0}NfMhf5:~;}fkryQ^a▶Ks Ԗ:hZw0᭬O*$,v=\ ~ϊFf5Qߥ:R-sKXKJ ~ziODU)'P# +jG {:!o:H XhDf&-3 n2dF?b# [ Mڢ2iu`~26.?巋~ΥͰϧtv~I. 4E6n`ʃ|HT#z +bU'έ$‹"'sJ>P^B,j_'#CUF⍹ty^a# LQ011a7R)4X $(tYZ|쿹ൔJ>Q ^Vԡ> {dǭs>!dfF*:p^x~ѻJ$ʡ&G9ĭF\rt )e_ lG*o v5OKqrtY ~J3'gJa+hkؿ飴)NfRRKٮT`A6g_=봤:ԫ $fA6[{Ok%gX`m6u7vL&I?:AXFX?9O#ɓOeO }uDt"}F9)i'0Z-d5eȹfIk=)Hc˨^ד".RN~s\ E];kR}c)FH,i[n{Z98U*iO8 b;CUz׼:^FK=.h@]_ޙ`bz1b^vϯȕvo"s_͵V\ͫ8z*s^!u9g΁oyE:5 'MUQ7c#[^ A,Am5R1t*RsO~~?Ov[ڭOi!|{[I)]\tKyR`g=|(I^.Xf5GV& OEn^ ^uT[0n>֑= MꋁSS/} :\u"HV}zKWT%8~⥃'"NiԳh}T~\!~:ANsǾ81&[CV ݘ2fN3]wap1`vᢌ@tE~6:qsRylN΃;:7s:#4'wtS`KBU 0xEݦr3ւs.kqc-k]!Y+oA #:WȏC[+^m2dcWԜsFϗ/[$@`\n13Uwl;X1s.vi:~a(ċ-鈣)d |\^#7ށ*%^ꚦFJ  f!k,z0?,:Y!ynQGJiv]ɥ yf!R}sP6_NSޥ7'1aEH5 ~`%cd!;ml؉(LԆߴw -[1B;vVgk"˦>Ē>j9:-gO4f5'UEIEWxոAfi ІKOX[Qi>Og-ulqдҬ2B]BƲ;3uO,9N[ƁߟJ&Pam)Mh!X8#m\[G9.Bl%N2uf1x! qEW:Mb[n0NA_f]e+ ^){Zq$ (PŇʋ:0'O,/"nL7:siJVBYN#[ϵe/L%&k!DO'NscRTkkhʪAQ֖Ư;-uW!T˺Gfns9ݼ7JlZȿ|*HU3a&mV? i*rgkGiF<]Mlh6-R`J}nzt|n`7_D$$!(PvYPn!Pp*slncsrZ)̽(h>@(*mj] 7U*Ҡtb̂V[.yZv"ox^2INb{NY/#֎bi &;bb8'I86 ` +fHyW>ϰA/=$A' %qd )މ (V"с IoAuONW&Z}A1n )";s~ Rrc?׏k\}O.T1>'BZؤ XecL'q-Ԯ3 (-z]ZgjBC@%+|պ5!8шgԸ dQzB{f.uQU R{7qLV4237m>2Dhw$]N?t=,w]@>][FwP$>rh-17k{՗ϡH SK|eݣt_"r(3"WZ/0,t{Vi=4SU8͙ x6i5anf2'ΓYQejw=C<ը3\yj!M2`Zm'Q/ pk,T[va:Ӧ.Zat6wfpA.bc9mm>}c퀓Zy##whil͐rT:ezݶ>496)u w FuRr#Q_*0~{ 8ucYׯv)G|sAcITL! FŔ4'Ve\ ypa|oav.,'[U qqU| JLYFS4N0ۀiA2ܘjY=ПxiiYk[ag>LD-A?,NG*[l>O,گ=.f0艥 )c!:CQɃMi `%$;c ])%;?I;xAߣ1s;SOC*2R%>|ևD8g+s24гޣ¥9GçԿW5Շ`ldI ?&^x]H<F;PQ5fP1{?p7<:z ֨P\ˍD)jwE %j`;:~lC5s줺JEWWD\#|Ŷ5bE_7+V pKɴAHn!8EOf`el%%9%CbNZ! rVˆ٘,ԁ1[ UkV)ƬVN9+1V <ٟy09h2@{ WYd/M/Agajr\Q]"b|#u$yފ?)}hd7P1>yq$$0 X@#ӛjT3&.` ^k2S8[#JА87dܭ12bc`s?5drĦ8EERC"Gv̼oħ4Ͽ%Aِ_Cw Ło+_V?F,K 5qAeݮ{mHn*璀({:e4F,ITCv&?2nBQ}'VsR 9^; (}`AėSB"&'JQ\od~SPgi,>Fi/?Btk'OF,S^Zo8 <1qZY»R(qϡ괄 Ž-d3i}iH.7K Fvh֐XBM$`p?HO'=HM5p;!&"].R\3AcKw"ߑ`c6Uöz69uz^ I.w% RX8O*g|X,j)Wr k3`A?JeT`{Ӱ䨇W*PaQSQuk+YFFsxc_kQp m`T;LJ?$h͹(u.W"Rtwdf3/=ĞKP@G T#*?@X߁W*ܠ]6[ԑ#ިX[=x \"[sCOΡ,d\3܄^-Y+=#Ɗn 7FK?ւ'o&mlo))HG x@gǦ>n|ZOp_|0hOB_x K 0i d<$DlVsZMLJSUOɉis؝:7. upJfYǪ#%_]BFxY%~Ds9sInL`1.]$)O?MTI=ԫ{I|0 W*â5~O=wAGcR*ed* ٦!~H(PbSx6 C;79pJ¹kNLo$%K &d$۫yQ^34-PAz9!'#;g,h-~ޚ!hk%<.)0Lߤbɤ5F3nݪ-3ZW=(ȗSVv mpU$zϓPs݄IkK6%䏳|IWƓsi!MW|[X@w{ _>.FR!eq_ s|Eƌ -+}seV!{@'bH,Q*(Rtf=ڕlwdY[~j%AFP+cҁ#niq5t'I9?lY (rWhJ{M,SFMVo8D4;۔ 31[ԥ)'5u6ؐJ[K0 {3܀evHielcA\S{zEټ:C׫*tlWtq_B?-;X6tM9+rW`I7sk,8g`xθ;?p~h& (UMҳ%<@[`tKn{]ݍ)|la 4vdڼj_Z.PsԾkC,8wyۚ;;'*bb@@`[wm_"b.۔lpϟ1y{GI0ZQj Z6TUy(<憸O"~6p!s /U*Jo 9# !|n.qWXtbW\Q_ ^-=HVaew3[pM?DioMNu+qѷy2 %mk$2.[-#"˦%sI*c>ML5yr =ʓ<ޟrHl7q0T9d[QϲBѱM?/NѼe݆եo"F:Q(8`yx*϶ մ×,eM'?{{ᩤbWѣ=?zKf6A0M K {]( ÛNփoI)LvS$D{0/WO2CYߛj0 y|o DYcQ$gQ.mXͮb =Yrբu0 #OZ Q?zudu1CՒ^n#pd+4f9 яto LDRX[`%F !RD=bivZ?;iO=|;ۧ%eQkơ+=-%| 5aҋmʥ{3"t)+ 0 œIHIeT!K2O=mw{@c7+vT]fwNߦз5?l@cp IQ (t!Cc !f[(ӳq~9T v)D qăѠw4\ %gwی}IH"rS9!#~!)?d=E34-kU)R#G/Rd.5 _q{`NURba!{MJ['04spҪ%[]ӫZYee[wyz3V^"T M"OM6 P0@}ZNw!@]˖%y=îb: S-BYlJ-z} uQU' >*شZi'"Gy j_g՞WPC0CyN}0/X6@ٱTb:fl^Cֆ/j7N˲7$J7aÅĚ<ĤvK*f+ߓw:&ʻŒMRX f£玐kyƙԻx(?iQ(o}OK>#6S1ZVEcw6^I@W-)QNO":.SN : B2Ұ@BOaW71Ͼ8XANdaY_%Uh-l4~Nrْ#+r<(\1ꀖ14Vɷa@xmm闭Ј3FXNv%%- y!CT&-^=lc x͗ț:xHL%Aw_җTNiF#Fo'@n(f66QOL3N(3+?),QŴ 5ܹ|A~[ ~5+/x|o@֣v; ~v .إrO-PN h&zF(k(2 F0m+GBs׹Z.˰/•,Ni-} #T/=?T E5k An7 1,#ջ%4ҵ}R RxۮX8#D+QHNJ?sa,{R JL,> dl~sy9$AўaT"(Gu7h臔a=R#.I_ ^LLс`d*'9bmlkd8XBEL̛s3~SKk @mS|lu.)ĺxB q}*z )Os.~K=Ch{Pƾ/YBWxߏ[BqMvd~dLu L8(\^!2w}ө"oևa53E]Q#nYz?ͧ8+8築;ҴhCwٓY*P=cIDGJ=V /a|ULREum1][7<46Ks߈E]֭)v f?//.cE`lY&a45PӓEmhWE1E`ve cׄ6qj7C:-@GȃE"v#cO߳%bT 5YF\ aK*IJ+!ڥ!kHT e DB!= PE)> ʟ\TK i*,_9h,6픚S}wte\ 1dUDbBaGqRyb̈́}$b ߹[$V~FȽە^qPωf)M^c) |W{t4jEI~d(؞my&b˙ ,sOsmdPތ;%dG%qWARqb B aB976!Fi'f']<( pcmsZc KL5#rK18{VķngHԤK6KK`O$e?mW\ ?1ٷ2[ YL(i %[7{!.9Ho_{-BˠXIHb؇fAHf3Ji?]S1&Y F@?*5atcBgK5trd DloDoAjsr:SznLtd([&CXCmŭfkf&`ԑGN˚ q z=b^(Rc$ Oϫ `ԫD47/){cZbf]?o!زj*:}MhSihC j7D[*-`g |ƣFߛwոR& +IE ե&_!1xl4lDo?,ͼ`EBH_\%F99KI"`6g zL(PκTj|sf}ܪl%ne]ЇT싺!\}AL7մl'9M39{D[xy}$(0QبKи6+KǸ&eUԧu9]qۀD!ic!5Udpu/x@`-bK] \~`(%y"N5i  RVyL-]z<t#>M5D\Ok HгD:7E dTҎTkR%~i .|9zRTdK,,H 1"G&92ZQ$b`a64$ҎPr,&Vuۻ`Yeǐ`l&k0ġ+,+c1lR/Sm_۰[Vlr\JV xӁJ'aAܛgdV:Etꧺ|XǺk4͛ y`<ӞcuQ(s2oD䣑! b 19oc*_vWrcn^@(#L'NrA#X$Ŗpw[1unYͅRfg tO& z-7zᗧٟD6H=#JvPC;`Eq++5ti|}`22OEԭ7z8"L;vAK 5#׳# oMHK^.`碷 Y/GB-^FâGl^al=@N_ʩ[@,_ 1EЃGwF ~7#VQ0 ![ ax7Z h(42@cRRIymc)QAVqq՗™G$X$7n_mg(I _`ra&就 m&q`F$f$ɽl8E_⮱-~9.f/[*`%纬{j!,GD3ӔX܁g I sg‰lՁ B+&(|GBR_XݖU򎖴FUwL,xn!o"2-5mc_P6Hջ/͔H &+'SD<,c^ EajD-mni<&xO\[pjGe2SxŸns8_w>j2y ]Bm-bi}4dj&v6Z%#>jV 4 3"R\yhKߪzw#cQxK٩Sntu" V5€Y 08!&f8pTVxO>zgKMa?H'WBV5Qq6 C*p}@*-clQ ӏnr'S0>CLE2&K8\Qopf*$\OY4〜];ȯ*o6GE:,Glg;Ġ2 LƘ::S!2UwaS,b>ʴ|du;Z9ZJ5]D43$~2ʖU+϶l0)x)4 g89~DKv)}^!Ñ;"oܦncBDCu?\\ A-1Vk<_s8i30H;]CPa~ԦaA95W[OL$mI㷰lZ7~ގ &'ٱڭg r؋r9V 3 u{ͬ*r4MO}~094f_iNUW!ܗ#9I8W͖Z=po`3|~^pZsUnlM"$ /ԕފ ILO$^RvjSCb|&# :|CCzl~YM2/xf&&vTxp_bYVѰEe 6Q/ Au]0ڠC .>bA7 ޅwIRJY0&>b&9 %:ko*/ʡ8)|8ʙ;YmHkK&qr.*05?>U_0zQ8x^)ҢjŘȋFЮ^Z?8'&`my~drRY^[z4B!%q+?ےwkt<'!8w{QLt -: JyE?{Lx##C6DQ6pg.V S<%DjQ\HwѠ|yиĉLJw"mA۔t>Z0P;7iAx[;!h#F+%']3{(%o:|ĵ<&֭8raZ*}=je`d6QQ:#B^V AWM%rL6&gW*1$`//' GF oUUDAwv犘@ Y=(^ɰIgtz}X k ,= a 8I;%^A.UL؃m==*ET+#t0y Nڈ݇KIh^{MG!v msyl#['}h2ďa<_d[-3Y A]ŜO$BZubZ("~t3[Pĝڥ*ܽIy˩C{!:6Vֺ݃jN.YToЗQ$Fr)O5iuX<,?֪zW)1O K!z.= l\Ue$~FE9A-̆sX~8 @}Sp\x?yA|$VXBJxxdZPcI,[_5Ꮸ+*= rxۡ.r>E,B,TJk់Po`c-fM/m,\xv*cBm{.ADۙHm1UѡT~SM75 Ϯ2̒8]~.4br]ҾhB%Vζ]b.kn&j;b CSv>] 8fpSk,\⬡41X(Z-ܴuI+AƐp,w(Pij$8i5j8i%nJ\[N&?Wh4l(iz6&N2;Q"\p-\Մ: yNtP?BI,}]<:HlN~FCNNM:3(`!z=jP?㺞#%+ەKs%GiPp\'V^VKA$s+Ej.WJ|%m?Mlߊ58ؖ>AD_*&Y 0Maf$~ex>R5l{ wN/`~7whoQ}D|⻽tk𐅞j݈O*(J'h<5+ ?@ZWjo81XP8V v3nf~r ,㥟1ϊ뇗1:̾=`q;<0]S8e]P;+rIAFY*7߫wR j)z60A#rwe!>֑M qD4Y"`PBW[c!?̑^(DDd@tt hЦĚsD#-v 폞_e&O[^˅ҟ-Pnk'z@SS4$*i\2]V ײo%Q/ܹcխVWd\Xm 0Dz l,kP[3/-wDr'(QӭDm }yOrg}=Y@˴"ǰ;]Ot4`w/*u&Z3c/\TdqnHpꍦoA黏LRE3q9 ojy0݄KފD.Rțs!ɠ R8] i1To 2x2y 8eQ#Z9eW0_^v%ݡ\w{00G <V#ahr~0g> h"Ft|iBzBqd'^ƒ@ihGл3志$}>*X5fgB.\0k%k5DnD|V$>!(QBK^ 5Jۉi2q\h 'y!HBkG$PW"<@9o"t 9#=wԐ*{N8Z]v|gOK7{W`01F7Ȟ,JsiKd.Lj!颚Q8I-EGKXtEcW##N`u4>p<$ ;p ^œ8fh]_⸰dz{[zEYQ\eZK)lrXJJrzO14 ;>[y@ҁ0 2>/q*+&'k80Ċk$wQ~.enYaj) >8 ⨯#Ib{l{.gy_f:niX#? Omo}q(Cdg$,jJ%=T׷p=16O(+ GybpZ*/6e:"sYwDb;`8rˢ%2%|`|lz:\vV^eXx?P,Ir>8Q+ul/ku!wa-Mh6Rsa]?4Fvj,&<oYP_dV:Ɯ7ܟ[r,75RTSؓѤ ~R"F-5d//|fItی|4we۱<A[r' YHf2^yLW}AJF& ZaሻxJ͚R&~M73H$QH;Ɵ.j"tS|5HĮWu)*QnV|kr^OPs@.q&Rotv - ӆʁϑg{ͽ@Ϊ6gIM1B&q2.'SK$p1C UЁ2DjL  ClOt*Clk2VmC[NNI0IXtSM6ʔ)ap"]QI6E9cdD她zp\hb!fL]ţ Fi[:_{ Gbѱkḋt.صcsS,Ɔmjs|>G $~dzB[ Btje0jsMjYG>_{=ySH '\?|zURXɞ5V: CFҧHG |pm2 \5 DOv\En|,A}?$ó]~ (}k) hr٭Tx`*&c;jƕk<LLo*ēఇ 2.eUa^ ;<ht|F'6¹xBU?;|>n.VH\RvO$-%okXM/ا?H-*tdIG}@^Wik!a+ktS=a;`/gaiPkggtg{}zCOS:/~f;'@@=ή`ZmIAk$-Na) AnEGSOS lLV7OX+?v]exh}?m*l)!Uwfq㞧 1 )~bt Ghd. *$9~":i( h:\G<=lZ `$xeg. i}CЋ-gV,uQvh-NjxG ωoa=!rh]z EXJ.=+C a9[šbc[WU%8g[TۡUx\!wV^忏 9 '.gYJ:E iiJ(0pS+t%'ǢހpiuT -3}b-͟Y^pc[AC#X~{9U=vWS-޸P'on>|NKTC jxK6l%D终NIJ/ބ*i_kw@~[<0IjT5m{4}jzD93^es xoLmoos U0ٕd vGz d&eEP}a pjgA9>o<)) ܂^?"Kߙ9@GHPE<Kh-,,7=h0/֊si#Ou,L>!,NqNNhܛvezCȻU:vxPL{!\Ń_G֫Ǿعw=_e>kV:hqTI8ݴS(]WW@,5= EI{*4nx3嫅QV>3uH6|zcfI0fIj9dPG֖ s[xCȺ͚QIqβ@pPl]B-bO\2,6r/C>t39$s Lѕd$rFuC}kLG:M;=' MJ%R_ .bbk8P`D+' r%.+MZ/+ Kѣ k.̈|]RL ۃz DzbMߟC/1N6 33~W fr>=|fP#H?Zݞ;* '#`ڶNZX.'=ߵ(t qNYu5T,_Tʕ9[o,Fn@1 L. isߚ%D9 Z@οRn&n8a<7 [@$Md9QC6ri c.Wlx$浮J*]8c`xʯOks':QjH$iy0Dx;tT Oxf^0nAȵH{|TI=γimĥ5i~e7Mx+nf<骥Hx99-DťK'Kw+'^=@@Pfh:V7چ=Uy6,DFW N[Ծdl"I_eR3wf.yAĮ1p(WA\! @讬H0(]K=nhf~prVH\.]MeRE+[*5"M[n]?o 6 &S?tbz !/Q]:k )doŁ0)K6sO|}6 i. sR>w;(nHqYJ?d#FCY?kcEV r@{dTm=7/B\OGQ_V|@Xg)@[xβEvbOiKuDG~uN}&Zq0(Rt"eO ^Z@QSj nՀ=TX@\w{s>Ne?\{#EZίv!Pݥr1cP}EB/y{U8*Ÿl%GrV|LJ:d*UieUQ.PUy~Mldg[@L!>k{/TIyIw Xc'I LGZx!V%a,ԵmU .w*;su]STJ#O2 c7OA1LI ;:Ǐ;2#dh'ADA9<Xzh-}s%ʿՌ^%8;4]t3ߑlSL[Goap%{zOFw\ rC?1>g{ VH8U1K?v e8@XK#ЍteMuրzOx5=.p7/^i,LE2Aϸ|\h>Q}`VU= _*4 >/ySCyk UU}3'_6+,Ê%`L,Pl9Ӹ-АUhrᇷG>8h#GvP"/eTliS)qY wUTO`úk|z[Sv<"Oz-lOQ$2+ %f$Y뉯{)O|n-冪;Wen 4;rmrs3 J4۰1X rl wD("a~K܇b&hr)+QFa-^Me6%nR0Mâ>tCCc=bLߍsväXA{UeIl("Lv܍VkJ IFP??|8JfGߌ.֗*TE)s۷SwhwO!ʎvDߑӓ6\+mHXdH%+trH|s2-f LEմ Lf˝KĠToNE4>V13-v4 a]j1B%]"yP?1 )EمjtkR)(NHpsxnhgc W 3bPOľHyUsmP\;B8+"y0{ <-WS-FDD•$oqp7Q"'a/w"eafS4/IYa-qT;) 3Y [Ŧىp/.iP6۱ZQ g.}.1JW?Ň_rE%# G 'Bm&J~Cm;a$͊rwpquT 6tXsكe`MAv!d Vh1ۦ.|Feh;&@iҺT˅ ;bI->*j UPFLyI8{[V|@NC{Lz,+E"4D%w:[X;hd a+jB\n@4jnl/^슻d<Z -见b$/"(rk/,&FP%MW`Zu*dqUT_ڮMe=z:b;^ـ}:dS触F.'ZIk^w,W϶oE>ɒ ;  |&+ N7G1u'0?qjDm] n(xi]+$3m/P E'tߨ'b2 l=s[>=Sc;3ZX6 s4ZsT\dZun=iOkYQr 5=O=(i@ CR!Pa3jY-k*D T?SW* aWs>81$vn7Zz[.p!D4ғu:^{;vŬ}7eppH`e]!o4pѦ\YOA|{$MEΝj(L$nlt<D \&\8M ?V #?b鰅gc$ oݕm TuN⹑ҀP77G }̏Ʊ.rt,m"y"օ7ᵶmy"E 3,YKPGO%/6ڮVis>wgH,Z@Z֗VhL ٯu <5a?qʇc\߃9=pV3.{sH,b-AL/,=/c]@U$fA63Mfe%c)ra J`x5.I.G`cˈ+W'۵F㰴WA0|]I%-<̯BpjOVLf8IÀ|I)O<2&I6`;fpH3ˆJ{h#il˓B\GEcu[ .*l:`i\(,ՀX9HB?J:0 BH{ߜة\ٳ)[Iӕk/9"\}T9+WX#D| K L&q ?UV@U y%ckǖ.`_"<(jںKb^Ng! l.3g,mggy41k"o.=ܱ3YC}<ݯ(>-jjw%Y,tw!ZH1mkw(3MC#qǐؔYaQCilR=wfߙQ\!Z!wC!I "fEBq(kU>Z*?v>K%8+~3{U 3Zp귵# ۷+0~S1/WW p=ece~'¯og(gbléQ jƱ  sv]G-VA*A"]f_=`` fGEO΢E"?Qϧ}@M0i"Zg 269'"fCa=Opp0L7.XipŷT:KHwIe(TQt|[It%Olj]1lpo=L<5cZGYçqt┏62bCC;*E^I:󈡞!veW*,m ./4K%I#(@s,m|!H;:Y"{^@W.X4'g RzzƎU2mO\qm+I 4b[Բ%=d`eEwL5|wħ51Fhj;W\:RYlX/DNjf>HyR/;F1JW#VsLxo2,Ub'>7 n"gT'vaIza3N8}StlE9.p۸ -aM#ֿ[ߛTq$\^%J-AX}77C x.3 3 Itʢ9PO߼5Hxc{zÆh/2N+a2e5oJ0tj &CDA5p7hl1 㤛sQ;|W2ǘXj`a3R < Zµ8 ;nuwF. kR*pEbEU %{w 'QN\M}3fZ;c&, ÑƿsDCW PLJ@I%G&07P\=0xmS™Iu1ÛR@?\mx )*.ء=~a w,>5/O$hm~> +WAagJ(}rQ8B[R:$TNܒp0 FH`3>H2VKvm\; Dy%_e_8A&w lBȍ *UExF[O.}nPd raɚ*6}ș~^Ol l"mE'܆YxFzj.iMG> Nx'xq㯴 ] )ey4%b"+J댾hV+DmatA _@  8Of&xlÌsfw`7b-+h݃%F8Ev*TוvLoG L/]|'6P# މ@y`}?)[[x8uk\/fH\?:'1%kXIE7(/hz}Ԇ ˑ H9 @~=),rf?5YWչ4&q/ԡf>;;vTX q3J&ӂH@9",.F P-KyKֵ!= U;afA1yxGjInCm݂I- "sqQ]FUK2Wm*1*x)#νM/U^73tІ9MM+Ho@RvKGWeqM TMydpNe7ָI! FTS6[l( S-ͷRq('ԧ4NKSQ;Y/xIiyPRK)Ty8>:Jl:|=V[]C55kذ59 $k*t -^y[tF!iW@G3YC3<*͆`"J}`mb\+!415A$i^sP#-9 O\V!ۣRZl)h0pFB 8$Jjݠ kԉk| &B&\J|DZK@sO;cy9V|t#mӖIh +)BDVhOWIWa.ëOzIuU84A s?R T2dDS]|Y@s4jE? 13D<=vE*I˨x}+AbbpnZܪ/*>h26qxa Ff#Et3 t'QE(K/K hKܽO8 3[Uj=d}ۜlwW wVՍNdtu=d'y/jE DFe::ƽc3 I{\v-VB;B26;EM캃azȎ1@Bs"}-e@T7}ƁEFLoQqˀj(ПPH̋]tI﹗ ['%yIzJT"t |VJO i늛 J`4p zd?p4QeNu/t}XDpz1'aB{ƬG յR-٢*l];Q*R7w nN2Q(a%EUr~h0H X[hh{{vR&FiWeoSZ]- b{-Ni[m}xb;(փ,3V`G _ۖ'^ Cy)[MH46L ۸Ѧؾ*d7mE<:4;>Us-e07 KDEnIAP}">Q}}+}D`5zfjJqZ.v6Z^D÷@/c$[Wߣ, 2o{bYvTtUƱ\b.vr$,ޖ_ͶEXl5+}LV.myo؃4H]Td-ⴠQS{@vNHWTzuc+&y UI$W !ML#1%EW@I[M)\9׿d;Ujp<4-b-0s ms_Zdc [vooը:UfJ[T TPLr@չPst('9! *1I@(ı$syMm3NԦvOzCķuUX۾n$Lw'Wω#,Хeyg8~.&<0Xwâ^5˓LoA>7Zb _G3=T2p5?_)`&"x?8udЃӸy~WP'w#]FyZLO5%4;:N,f"{8)ٮ#|ἇkދoG>JwJ)I-8zO'ىk/؛Z~z٠6 rBltaHDx}e3 žJ  y mUp:xNÓ>k WώjEn?Z,OZA6=8ࣦF3ՃŤNSf-Rk 9˃#4LMzj#JabNRJ a|K:՛5u,*jWXvhy^]#SZVEyRyjPϯ=m lVN`ʼnO8A^Jw}Uo\4oT'KzZ<9۹me;ca ,:}l G4ck孚Bws򌊊jjxȰtF|YGE#MUՒ:@H ĻG z4:Hdu!+w|5Mo! GL8}0DIn׾'(BN,T s@HYcA~EճK:6kh55сTsqN>3(2B?5z{i@|¾bJClw]dmL;^($#SAPMs۬_ a8^ΪWPnٓcDGhW \š#7vǞ56PQ #jc5I8wHL+M)'9?bOxZen==}}Ye0o]n|a#  TܐNdL-eeы(.7 |s$g7:6l%šJpWYɿ2zjArR~0*K|:sU|>״ˁ~r*WO\c=i wJ4]CRR9Z&6.csĭ~ Xԧ~S HkC v|җ,wl=R5"HKچa'0!X$qԟ1MR]ȽbyY?"%M9)қny\q85T`4̽meۜrs½f<0r@O.lԽJur[זЕg7tdSt bÉ)V:U H-Tl41)Pv1HvRˣu5k#,v3䄖UfOzk۪.yjv/CXMo Zŗsc>DE kcB7\$$X!ZE0<^O0x1S>2E˄PAn> v3Ŋź lfs9x~_-N( 4HӒ|hf3 FXcr֫F)j?L/~q6? kv~8CD4֐D ^œ-{.ԟ[ۦ,/8Jw 7__mԙ^|AwĶnc8 ;[E_oE^ /z`2:WL =r (>!(irذ˾gՎ3q'~*ɉ񵋘&C>v|޲zCYx7`($KU?fʅ@m 2r-XS agzǨQ(݃?5rk6Iρgm@f6Aj)["9Ea!d!K֠⊥p]nt8QVL҅[zIH#K;2uOrTU\׊W~pV2iz⢈JMXN}nI/ZRRĖ JZ)I.Zwh&@ BDG$;#dk14I<BL@=Պ{h8sϐ!Z%? -}6yhM-0W|I5!bJ]ˉL޾ʅGMɜff߻ _QJ|yΖI81" -w u&u#CҝU^΅6bz=X{y쭌󔶧m>VPIϵ!H9Ŧ*V_3 +"-{C{u+:3TA05z岯H9րċH U;g[EYO ;ڿa})ov.PN 1$Pn'JF,F ^OaO=4T>@r4USW|||#q:/.M"̳p]*\Y`Ϸo1TQ[i>iېtKa29Nmj%=[QKuMy7bgTj&͑ޝ #i'\ !NU M l!x9T)cTs~Wd"슍r[[Hm'@Ǒ"9ZܵQiE7M&)taxu—O@ɓ}}*~ma,5xVq$idRium 0H*M2<B(bnU\4? ǼbZ ":Uߋ+ Kł!.ǝDc% ?-vzO'Q'ؖ.DNB** ~ Rv NտR$ n`CrTr(L_5%uXɹuO_cPE/̓`T_l7IoHA_y(Ȁa ^;Gc\rV!<[9H)Zw\=GN\Rsz ,?|j5#[K=ނSX69MT ia2'oρsUp$ (=4%:lt(B=nqOr% O1\ Ru&NYvD?.~]4xXSSƦ#kA5Jf Zb_2UpՐC* =l_&luP9ъa%ܿWSR[oP.hk(\\/ŧc3q0_o[}䤂S+΢{BipPej<;$΄j\A;"&}yN|.u{ղG+ lLk>OF:uMNOˁmOp"MeQlC 3Ӹ.bRg*y yf?'*9WU2-( {oP}ֿ֧2 o]+}Qf s=MF)nEu8~h85+|x+fzk<Gj#,6qM̲Ed.!BlmF7l-AO Lo=D:5'r𝶄qlʘL0Rf!uK<7ppx6~GK- 꽦|ȳTTՊuF)eɦxO6v;7 ˏOW˦+_֦}bH>3}[3S )ȐI(/U-@ s=J)za(\@ЫW?,x(úfsT{2 hϪ!#K\^/pJL*O1$Z;b)+N=&yP 1xUgYqXve &6jȤޟdԼT~*uhj[~XR/_`S)e%*omLm2!TB. "U~3U zg8~"+Pܿ(~Y*FurkL| : H4'E =N(WZ>Q )]veɯr4Um+I(Kꁠ`fAP|.jb}1_~( ݋tJ*{ZviB r:/ݜi=C޶L@})6Sl7ajiMR'wk~&)_#h~GS@9  ܔq1+{![DVW;ܞabn92’P1bgA m>L*岾CԲka,n3%ɆKX+cMtf۔ԔHӺŊE+eFe8NnᰜJK+}|,%=ǁ|_{;f Oe<:usݘkO`XPe4Z+n|d;ArdՀps`08W3oThL]_иV̭nQ>z >s^`Y.055ȾeYF:ϋN  5jiKhS]mm\$x < L;ε۔Q|x~«ȬўsΔʈόVpή"c[2"W>=Օ]Z3 JzY{|MI˳B(ѱjl\b0RVv&TI^MF{OPEl'!_``Ƒn רVcD;ٓ:gSmĚۺ=T|-&5^mQ5?9+q=E:W,ޠ+SWtvT3!nz,X[Tdn G18pp^Hx9w$;Tɋ< g K^jFi6OG$_ŸY"-HŜ:?:2/X@xCfʝM i5RO0U6"Q;}Ⱥ|ϧ*RU9%}5#47=M u\`k٬ Ed;Mi U+x›\7ECM!xUFMv=#3"(RΈ䡂S[1/FCidMnةn8rlVeWtSj8taRzbCfwdk]' pH"\Ve75Y\Qcy!#6L _7%~)$@.䮧]<'Bj]aױɡ߭.HPEq0n2c˶d ߃@,>A!:,h3@n@81! Yg e&( j}]Rw 2OpeG!ٻ'q_b@rтIAtcpO]/i Hzφ($Sԡ "[v6 9AˮPA1y \uٌb&+DTUieY{qئZSKFhB􅔍/BG`(0Xfmv`"9xj8JVK Z mF媇GQMr7{m2u'B0AANƔ,g\+sHr's$FYh` 4+DV/o`[t_Isۓ5ʹyێ"v~D0e˖M9tڅCdcYr(Nߔh0h Y|zbsxIs lDQ5HNdC_RG,6NpoG$kOoF N&,`^pT'߆ڋ ;1.nn(!`q5.?ܘ)USfAnM!̚˗DJbVWdrfUMfAƔ1?j?a ńTJa;G(w{P W*R/N(iS*){'< UD!܁m4[8S%~)`e8&9qHr:Pʬ)]@NC5_G[/2?L@$%.i\@xrzHG"7dmͽIÈsP Pә-@Z3$#!t`45"sq #Y 0Oӫ@ nlƋ}[ q{X6_GTh)p|rV12 Rd= n*1PHʊ#C_X>?mrx!שؒ !Q*sV06=¹6jH^@c @(AXtu2"Rgf$bE֘BE*p5&lB 6C !TW6& ~ E#5v9m77( p - U ;ʙGѾo *&A{%cϯ=*.`YܑzxD~ -1!Bqwa MJ,עX>Nj̏hjw%52b2pe$aaM5!/ I.חaW9v4^7g ev,59C,) p՞B|y4^h6Cu6; *[1!^j!*zY I7n]LJzX,| & `FŞ*BF<2JMPSGX/.M?Ont9uU5:/L Z9NOn<Zy1ۆ>J:9g4q>ьeNv 72XQ?pHSlF#Cpnɒӭ,ON]=J7!5ٰϥeW_6_qwLVV[&CBŰȡd2V1Tu܃gn߼V]ك>em'䆬 vh{*VleP9 9MDG.Iee x갠ȷk7L(4 F-}d܀A&R5(\f0U48~,RceNBGzPJ8vacj;0}0,=W7,G+'=JK!ֶY,(>h.?0א¯3qj b^֩hLO q';6w~O 1lӶۈB{-gg{( |2xQFfܸY)Z(!7a2yaKÞT*r?I@^gb+4ɮڹRQ|M~Zynr1mU"k*V-/!SS9i!=?dl y,`FZ`pU %'r Yԍ'.P9V9; C0=@1,oQ8^:@$&!C3 {鐭0f1ך}CIU8Wd:6V)`>_**{[Of?d գ5ҏ(P>0kk'2` h=~byy6NV+( ǁ'坙.&vHmΖ57Ap1-2¬%tF/۬SSMC?~xhNYmģɭ *Qz=XL^MPw&1f Ϊh ww|1PvSVly=@K;`M'}X+1'gt.LaCI=Z_hLP-#B$*m J}S攗R6i2$rD]򆭄nT<٤4"`Y;ǰUY?/I ;#݌4;^!C"f"wHˮ27.e<~cv,\wʘH{R!3Yzr_+P(Z?UQ΁pv(1GK+ٿk00}בSAe؎Z58B'D#!w=ky>7?4 |Mm!Y{l*}QLpCF p,.Z#u|S=Ðy.$$Ʒ0+ JXuG^dUyU$)Ƚ'Ei`"" blڞH ZOUϡ@QqC}~4=ZJ 5gM>a3м3L?a՞(a';p6%S__F=jyJC/6toz{ZJM)m#N9)bԩKf-B ;0:ʣA4%`6aLƓg%DY;8xvCb3 _!8 us PZ5nm7]ꤸꥪ-QP*p!BA-ꐩWdf,:3wq )/v&CXӍr|"HO.& _Yt(u2Qq 茷9C"HJ8 iB:d.Cc>qZ;߰)~/mA7'4[_Zow?0}9ASOԛFiA"տ)І0=^e:|5]g@qjP~ |$5>ZB ǮX>]ļk7\ޣx37%Gʇjzi :$7ٞQSHm|o{wqR9t#rۜn~aʒqLd5lp6rfoPUbg<8;gxzfp.>SuI%lSLsa(,ߝ[E&X ƆT-lS.ЇvC PjO;Vz} GN#%>ѫDZh!ycދ*<)f ,k)oI^-Z6u&@$L7}{j Bb`dc@FZH>lϡ7>2ԇs?F$kYVyl8QYrAm;n5Ҏa溭\$YmYpo߇9Ό" dFSE5-ll7ѩ[퓝$w"?X![UY/QALB*DVC&m%ň7ә*oX*?`,j y 8~"텉(]hP6ي)vrVG出i}5vSCAr]WuIVB\Wh'| v'snG +mKxi0Gl!d,l>o"Y`o֊TWT<)S7& ¿e]r+X:n#Mt{|ͫvMXgܞn/ &;^v%f ̼Bvg1foj-CEm/%ZKP@K`A!G(Rochފ*"\--gDGao_Ft|[KrI~nvWoZVM =!GOs >ٛL=)*1Ȼ@X/}+F/tF_rh# ;s܁qYFTEM (uym d=([1H|4^ho%^ksM\7 LĪĮ89O)"ڇ zjò,d༭<͂pkZ*:I~=TAΛ FU3:Hv4'^mqD$l-Ƽu2Xn!ГI+ ]%'N`aDUk!`>fBrb J$1{3e"vɓ|8e?J\R]>Ÿ Ԑ޲IDUJ 8s/$`g\B ;oZ]-wp0s 1 X!E[t n>flOvj]``c.+S n/Ƥ %ʯt#\GG9*5oْygV]Pury rHd2LZZQBMK*`̑fiuWnȬ|\.EB@hxuСau n`|\ 8XR㜨X ؃7sYFCeWhx%Jk:jN-m:j@\|Wy ky % KsݲpSxո X=PTi-`[^zDNmh'ZT?4% cG7G]A*ww4>„wĬ~Yr łE5.`tά+u C\>jXF132aCg6DNPba6vp8^]DRT"E "!@T*.G5{L6[+\*?a y_۷=l 22@;3٬i=^0ړ&xiu" 1LQ<4Dߩkp+kd@+ϞL&-FjqWdK,o2{6)bwFG҉K]S )ˌ̞%MTҋIqG _3iSʰWIN"xIB1;N/b=tZInXt>Tk(<#s5wmpeX&d/ zV}"ȇff'͊z @v/B֛IEތrzc[p);Gއ2I$ ?S֑yN\O1So6$=@ '^Pg~ ($*з5yVϯI]t@*ݹ AQo/N`D EHDwCHέ ty~N9rel.vmE%+v6*ZX wiSW1Φtꊢ/\-9u`#{[Rz&Ny~3FӍѥ1[xW"%3!}Đ5nٲsgY^kEu^:>XFrm(vP|=owb igՍK;Qu8npMd{2cDp#2`Cqw ״1XX\߫"FÛbFCz˭,N^K6SlVP;ɥ)BvvOIyw? sd檚,$_1Cڮ=Vmפ4%4sebG8gϱ0tsrq*{.MI:NG !"an ('jL=a0RSe<`MsEB}khW{ٛ -/cm:U67lszgfF)K@F/$߷^o׌^YO*2hI#I4hO?ĮaYhZWxjYbӔ Tyki}bVY/ -WGm/?k+"%;q8KsW&h-z#ս%Xe3HbLN,A;BK)| cEև JrJgs  ?@FO BW$XgD#Y˯Oܖ_K.(| E DSS>1C׌4/ތMY}DJ֕5G,0#.R1a45IT)!Ó`RzŨCv:3boWiD#IruB].)P5nFSD4:%[:L/M0ځ0D\W nUf4ʓ J> d>,"@1FVM Z⼂4 6k^7mo˗6XnBDR?`$~&P+`bG9Z*ދW| {okx {K =x?gZ$4B BhQB5~w=[;A'6[+~u Q1I3x.qg;nxDP|; 3)6`h^ ]oZ' U@6>4%0a[>I _^,>}O`XDp0b&5%9FQU7xCܲ4b!nzn[R7ćpUɾbꊎyTMDNo5(,`FBd}{I.d~.gWN>B"\Va՚>o]! ( y~Pw 3 6P>MH2ٰ٠=r Hi*_3s-Ao:ERto<\U.*t'|ak z$v#؈L*ēO5Zc+JW>O-v趏75](V6*I<ԈQZ`v<"U}3(J\]df('cxIrBxFÉυ6\Rz+y? lrTv6}i;LWL;}Hc4ypQ?\cƹQꪢKjsfka`? kT[LT͎^:Z"Ԇ F`3C,.DcU͡s QJ޻'m߇8qWQ}lc+ -.0#%3Pʡ_Ni23ʵ,ܱ\HAnp\35#5n;Omv )`4P9 /t<-J~!B?ffe嵵ק rڮ7!W\Ս:] eN*Ih#x'#7Ue17sA_h%6pq*l&ߙ &AXk#  Hg$Iߩ, ,*u[?Y+mvUn2C/R9p31NvȾ"]$1 ,lxT}#Il=4|],R5?K'(Mfm8*i!EowI _'YE=)caЋ8St^HTtOz և:2&gK"Ib|6`@˭_2nR/rEZN:EqBu}M%bEjVQZ]num8Ƨ8ku- 2/xktA$ GӏR/6m"KxЪt)E շOw%AQu'VT*׹F 1oX=C.?#t"^fFQ *uo>h$Mc5s&eoSh>HE(?dfZbZR[|\ 0:6f^At̟NI$ "F,Mu566ւr}v uCIMj!`=J֪i=čDtE'52v F8Q?r2ыzP4EPVv7ʭ}$Ѝ8߲E7Ǔhz̭}oYX:8|\ ;7U;SzF9FUI^Գp40L>cL), %%0V 6q zO*p\iYIRM?}i1%*^7!Cȴġʿ"b7 YAV؎od{r^AnS*Dr2=*X7/Ouaw%ésSRV.I) phP,j;*113߅cdO~-L'7[t-KCW47WI1lz~Ţ#1sV𩺼á2j1!vp#}AQ *%Pb -ta*;}+EܳDa>eN I"l.jAU=/HMZ#YM5ЅCQɨδ1Pw~h?[F,w$q.)Yc"x@CɦĈq/N!U&(vo hIvٵ_F/Mg FGqRZ'I cޫa`ʾ^\roP` )FdZ6]dC w35I-ľ7{!!*CY6b>x덥⬒+%;}!ODN^5:,dIgFt`$2(zBWI'xDf{Iz(1j%21D6pB U6!fBҠRQvI Q' [=] TT5u1gƬbi(LGԇ7*MB}jS_h3iH`yo¯ |Mݻ;K|+*0b*8J^$LPsN/C)ɏIRj97rA!eXB8G @Aw<%cv\ O3A<]gQz v6+V{*fAR~Jzv|j(Uה!ݙkKiItHL: &xz. lrkw>Tyǵm~uȆZ2OmYjH\7:0ˬOȩm` TGEoy*4V{asɾc;opުRuίȝ!jĕ%f4J!vrYYjo-7Ei^lp+*Z$Zi 3BMds"뉼o8zTiߟyM [y!`NaW|f# Wk4R>:<w\徤p) 66eKZ BHL;. WJR'Kbs tMPmhq ?hquS][Q!^,ů?p W@O#T$f9ʉ:ޚ~+Ͻb`XR?vF[i˖P! \W+|M^S7촜 (WOXz)(h 8F<.:gSrh9Io1*Vt'WJJM Yz-$h$16޵o 8jQx2wIYՃ;0ѿ:ML__{!>@de$xd::$c))zͬYf N:BG/a]TZϐ7 .aއ7yl{գ(6klQY6%s>.s'Me?D#DR$"un~31E_t~0JTBcnX\j{D ׃&5'm w%h jM<I䪪(CIOmMgGmY R1U+^IW[فnF]:+}'"K2]_6fLl\gXmG-ڰgȠYȫmYHn≁*(?)uD0_\\pmæiX{w4/ITjض=4@75EeYh"%PwS޵*JitJWlDP2\z f}\&E  znCg*?JyNC`6`3:|k@˽X+h%~ wOߝW+fkF˿EKAkl\_"JL pJQM@?6Cl-%$rR;Ӏpzzy}IoXVi;xN-B _焽 |y#Ӥn.[ L߭yAW Ak]*\0:p<!\}.7 f,csKvX.W*5f" 9Y @Ą{zA$1+g'Ԩ`*] kb#mpd } T3 y+įcDVFt$V8[0RdICg$-6pmzeǻJB|uT4mc[[XoU >T jwb6-ۗ|jc'J?*>xjqv؏, fTd'#d"Ayfvn'gZ nHv1=z 0NxY|\ iNW~̙{̳#WWmkh-g$>Q&6t:K?9{Fwtʧ[I:c{y:SZŠ&im}3xwF*?QIגMPan!RhɌ IA p 'vԮS>w:,w*EXtq]IGFEW:ZzוLaE,͵j{Wy#z R7:,Bnth<Cѥ+ x:m/Oww3~ 7rH@>W" k&,E3'D|XGzDOG1vժuv;dc[:2~gADԚv7EIdw 8'ʠRƓD4$Nh2 %V8NHn|/Wf]ur%AIPʃz4TjIԟr1yA0:)U/nOkB߇z]V^'@"EP_ [?z`SܠYS5>'{U%?N 3}#Z %NzlOq2FQE*_H>1|u9ˍ0%eX#V^\+2զy$+w:Dѿ*rV&YAīYVVF>7ā*K]=W*@ûw|FA8?6sssalTn)FbPh)Y shWv~[dlض[#  |bN]1"q }mc5Dm{yxS;ɮW^qv,ڰ{hQ2N4< shŅM 7whӬX=DZga[g7&ݡ*KZ-9z^cun-Z.\\Cm)u Z煾S7f6 z5ޗt a ( f\̜qL٨É8^_?eզo;XgGc&1f#(MSjoqzbQ]㒇eR cDɽ DU[S?=YudJSQrs1Ѱ+Aod<*V<裔JZm=#&_~3)ٟ52oBD45r}NkwȘ%'a3&LO9I-y6ljcFKFK~0gWijR8 JɃVʸ0'Ԇs,,H-ojK\ V$2d̃^x|#́ Wa RFBF)d09F#-mWfl԰P ؅ ܥ/C.(Y}LYuޝZ~rkn@xLk\a)v5"(F vhxXKct< )KˮS\aOE~}WA=z |][iBl#4E w4AlP@Vw?R1iU),˾d/%K ꫢܪ֥NFJo9v Yz UT?`~cT 'qϬx#Yh;;;KiAX,{.(wbmG䛸i6Kն##)̩$jь^K䣾F/-88 ^H` ,!NmtDd .+8Z^+*Tyub:(=zZ2Cy @P_f^8?6yEm (H 2Mԍ] ?oh7T+q,&5/@j~E5=bRֹ9mVy4L\/(_(|A/)vEcc'CӺ9)t W=)Z'( 5K3t TR-^77a7 T;s)tȯc7@ߎ_/*߬qcՠuS7Y23pb:+.W/b Qv0ԾxkVڵTGaGkuI Jq\07RO57נgl:uX–5 O׫x )iX^gD˴ ǕT8c>0?bٟ:mYF#hj>} BPeǚw27`"ݻ)-sJ<:Lj ѕZϨZ@at"i UKj3-um,4K+ 3a=hV2B׺љJST)oc$`NauDHk^6 J3SʹrJ oq˛} G܁H}[Fϧ!-Zіs`/T_DYfoney'HmS.=7uʷ;'~k1t#&22jp=)id&Pp7VŻ2cne|I>Nu^)f1&(Ux6P)FQIZ9I"i1#=Xob]}*9L*/`|L܍ŕ_h19xq . '.&1@Z_4v4x-<]Ngw2'toyd U?Hb`pD< O@ xW (dr˺!9Ubbw (J_mf_rYqdA[uD% VFG W []~ۆ,pp>xởV=^YŷioơZ==M=4h yv㄁I˴Ąs0O~*v <"MD< a!< =Nk68n[0}w>եc>X1;|B O)ג`jUbCfNKiUyǿ&ܺVțh3CK ʥ@F=i,[-r/O!tBTna:zw 4}KB~[`Kg8ihQQSS81Fj\kAZ Rw+ v|6ZC(7@(?Z3/-C=f?ҳ>|m% b evsm0mt0 {І^ZGL6客|0J>v+C D]Vfv&h@8$zPs|HT& JW=8n02[Fa4g\-m $\*CWs ?QHr R+05.;_B#2(h c@?P*3#x: ?*?^j6f5zuvOZZP b]ΈO{˱Θgut~oGbݭٿњbpb!@ XAv3_{YVnqsDܐkעH" ҨrF*vآW;7w ۦ}y|7Dq1h{5T1wGӰd=&e’~J|D6qZhcU|8m\ELG'}XmY|Dbq_>L 5x%\m ]74 _PaW3ࡂdGIVDު&T>ZX{x4rWOH8q|qG ƿqD1W껼)j=\feaz.f蝒C8q ؋C}VTFIZK7ٴ hp.ϿN0ݺ%o9(% Z 2ҷK#oQ wha$Јjc>Am2T<.$Lϕ>)Ӂ >*c׭[ [-W˴1>ig>n4\宊1m5~ئwEsсntGgt qb)x:QZ Jx׮r2#oΚrKjo0xuw5H1RPiS%] 8KN5kϘHao2sdit;Y ,Ё,q_Jb}ka8͸ټ2/A*UZgG9g{@`&6Yz(15FtS}@g$#'-!@ $>y xXxIf5+X5<_-Gs1}&B rgs8T5sP)Y5( stonK v7" ;2`O^7 nFjYw/n>Һ%JqF|, fIf- Tg֠|Y59YP1/%i| [2S4H?"c$؏RbfoU| Z6N#iU_ 4K(:+ re6Jdd]i<5@tK`RyP;9e~VbCy,a:hCm"%C(pr<(ޭR {J K7$0;|-?5ا:&U$aA_31`H}AWY \+˝R~MxiueNc S7VU }jbU]63^i𴽗3εw`Vb!/A^߹K&4նߡE*S>-cNa)t>q{eb/|ʵ[6pF椳# ~hLcDi\*K:th rjfƤWX:h^Zw3]ӋMroa Pq]Rq$-/@M2 pTР$ \@]3i#)e|jrL?Baw1*yQika7* ޕ| :.<{m)$1\5=NP*Ep)3rL ÝC`,3iG@@d-PiḙNNrG;U?Apd4T!THIcCKd9s%vwҟMrrӂPqQFt0Ac? kŤ%h1 9ӆ(36rUcS\ao'|rОp@Ol!G&{ہadD&@s!ERuL/ 8Ҩ G1+:=1 >`7_dܔX|FWeC'!S[krL&&iQl>O͆4:ꪡ uHgb&d&fk…9/ؠsB"ӡG 47lLOc {;8,J_ɂ^mMj TQ֕nƞ(g:L[[p$-u ,p65eMPrwą1wR[4}HڀCbxF6i'r꾦]S|Kz#4,]DsxIuSt gS$QѹaI 'btvWNDUZ95{t0Fd,Dw49SbڑU&UͶD;RgAܢKʧbza;hjq}>8{Hta)]:f$'pӖ-ƈu܂YkN.-V~I3LC^ p;5mr6܂5.byCxyjͻ@=1]SqaFzT5TwU)0^ΞkL%gD Nͣpg,kB28fL;&@6|p ) bA >~]n8 %4݆ HJz7v;(T3sVg P pO}ư8\0~a'-=(HZPQRFwIzEjkC#~o@1M x!'[r\Ay" :3.N5DG \r;%h1ex,}~DmvCE1 R6= _xRcxh,QP^`BE٭ Y11ҥ ǂuȦ)} \!:ѶW_"uƎ+FI 8iEe eO?*_&~fvNE?J{3"N)L9bgC̅ǸIާDNtPv{4Do!4xם0d{7.1i'ӊYs )zB4x^bm y,>Yۏo(@gPA Ɖϯ$#T1]j1l(Rϖ*U)W~[W@~PAr)6Gq0y|Ƙ9(0?4#x릦ŲK]5P3b!`Ew8MA0Ko)LSHf+=Б|7kI#=ݱA!9ľ?k%x0+C<H($ԏ!:u b0Tokɤ[ ; "{Ɋٶ2'$ty9? ,~vpb m2;Z8E8m6rVmPѥm5؟7*Z z }Xw쐀z.5uLyoʵ/ԓf*)}.Q. a8>CS`֨'89֯RcT_ԁ:!i+4NF')SD Iq<)œGZL簝. msTsA,+(KIBROvZ)ɗMuޤU[28mmVIG- 9obNJEWGZ?x ᛼0~iyk^OjC mtb^x ir9 \ɝ0ƀQ`?b/ŭٛ/=X`rҩ/Oj,DIv#CnFW1Y{,y#Vb6Ub@Ȩ%Bv5N iX=Ha7gIWGm)QUS@xz0υuI˝#=!Ogw*}QZkkco]N7Ic?ayJ"8n:X+C5$5fj#쳦H<U#*tN'V)3B쥘ɶV-S~wF!]""rf]U~qt_Zsph28!/vR{ˍ~GY4nq[XN{0M7 |:G,Oht)}h&|H{SઐcAs f\?FOg w'ls\\cu<I;1I/wf*qb` /g};0РG|PGViaw:u|tDqtS?ZKg2uȘOgYyһ!Ğ![ .7Z/̇kV/*vImB Ocg#LHZhl،wNf(TJkc*b򓯄q5з8.gȭx@ܽ;A8nf mE%"UoC2'tJwWB)IMnxأ};Cm!*6j8oݽt8Z*=kaG1\ T+#1$xy݋}tHZRW(/ ̭RKn.A B=v57{ϡ#|k<_/'#GhN5X@=:arm+ΧuC%B2yT{I=/ C=g]JQp,9+]y)qbqae$aA ޱ—5` >NSN[X'mIk׻),sW$.1YE*[+`,ΐ+ӂjpO =u RN$@kr:Bo|%#~)m*VICkAdo?uJj>%@#69iaKR&:9T*5Wew'[Q0_mTX8 wǪTBlm:&J'B}:{/8ävO'q}ʭmD#ʮ 9pN$>VcyjlG ÂJܨЀU.~O~ ;~%w&e-\l!G߂l\@#uM] X+0_ 6п Py־Lĸn=D-aOBsF),d4\_}=eAJ.L'4es\,<;NsM6r_{0yF*&- ,LIdp6?J+mm!!{HO*4ykBSbOy>۔Pʗ̬M˴xG{ݱg9ʢ)ZFG4!=g*ˠmQ7.~%C#{)5:%u|0-`rϨ}KNYdB 4,eZeÎZ}pLu Ij!LݘSxT)R)I/"ffQ2~|%`d)xxUj~Vڹs|+h2/2r f}Foo%2-6nAԐ:,UZP :g\/ϗG͆1d6c {!|i&@Ir^[^i<֝ Tuiƿ#ivՋ3M> v z|c WRlA.` ʁ8^ޗҼp ¼TYC/T3Zr^nT}y}"-Et! [T}WWKIܗL8mS|F\]dZh Cx[d:l6S5뢩vZzK:JUl d}n>Nij`: dٯ)[#2?"1bOUXF_yY9m(f$)Bo%~:U1$ p:Q.}goז>CA @j2]FkN=m Zءg3C7pi˵/mtG?e ;Mq7$GǣG 0#/*w0H)ڵc 9rJM?P{! 9s ]wR?my@Gۆ|zt.x>ge)';UUeQ/z^% z3"iWHEMc@'ZL~IAeWJd;pMeQv قrfhvA^ZGL'3N ?qf7 $@ށH`T?&Uw3?:I I ѻx-[k_0P$,mc]6w}o{v[&C$_T֬Fe - %З~2XTfp bnGvc8厦VIέhvd٭hdLIzChI T@賭s1bLB{bK•/t,U`۪YN_$׳h8}\`xd+yȅ4L>X"gڏW KJZ=IO*J8@O.;~>n)aO+ۋrХ)D,, 5.6]wͺ- - eT?lhrIMnBSnSRW) I@nvdRK+>[N)YrYlF;al %xGX 8jMNL$xun}vR/RRr@ڷ+u2 */6Ғ)a*|KʈA,VI_LGwׂhnh̼׉Q۴P5^tnc]O]t*̐kqy߉Uݽ=:(wnĭuΙA[8VYRxo3$K^55C8-Mq SfWnm?dMKFxJYoXy{bE5 Ucy+ϡOXoy?f.c9J+O8Bպ$ 9C, {C*%V hC]ۢHE澈6.ϥ|xɾ?S*17G8b% "G3if tf#eC=R!&u&ΑYuKXeU_!,#8%X!d:I>"Jλ5Bvw r_Ow!Nw; 7!ZA"l۠A8 GxDYoH|M7#♁`cq nRguϢ`97O PX/ yܟK+~!d:b5 g0S6JÞcZ/q:C<@9ɖnـnvƎc(3*Է̴OmWTdXDvzdb6Y(@wŖydE4u0aBj cPHp7Ʒ%Z .Ly_ P}/d}S0 p}#EFŒ8G:'|ur?MJi6zv@ӑm)$;2t0ߊv^`I.;0-N:b1rJϸư~IL}C;Ŕ !ԓ k>3majv3l7PpqC4$i;1Gxx=ZZ_\\k^#8٧#1*rz4pT`_\kZCNJ+X]a!zfd#kra8 |={UHݼlف&8N }YHMԈ;wE=^/(_-ġ;[c ?yuȈM;soVsi7˝q]ftG i#AO/4l`,RX*`Hh,]8lڀljڃ\TRg\ˈ1tC]듡IRrr9.sYx}B T *TyiBQMDsI_]b;wTĀwgntts&&P}A _<ɳ:)ڰE7SA=q v O o QF lFׄ=s~yDBL!&+Fjd'HydoLn X@VPߏ~1-"B4Gܛ#A@fu"c?]w ^ )_;Y>*r>A]cVּs::􈕻`A5 dh/6o̜ueB҉ɧ5i@]zu*ժU*ӓ__Bb*uM3v OGu|Ӭfɛ)"S5t y,tF>*VN6"+,z'ټTZI/Ssdk#-5Gno> Pq~ 5Kef$)wѸ쌫;y|驭M>M`Hk%U P;v_|ɎZ^7<(9[B_x&%FWVb<]wt^\gP'n%w/ڤ:twg-S (3I=|מWc][itm#30p]{S筎.mfwF|BgaI/zv*&XVӁ>̄wMN{~AgzZcƝalMƢζeI) ~&Ww# eR-v{^&`+jHز !22{^Lm4[_DaQZrk:Y-tV ?0Dc?8&sUҍRs(=˒FJ5 Ʈ. n)E0 DOY1wO@7̅!9 v@(\]Z[,ngY0,;g^`InȽ0XvP\!i7 :ΌKM8I(/d6ip#CaoM_d'}tIRh)v%W -zvūl7RzA$"+Pűe\)쑛#KJ)in+{:1\-oP1ēa!@KYAΰ4RHrvi˭USGfiL,ҬݦUֽ48 caX!.g_J#ګyvKMy^ltܣ6PM_S]9*|2k9)&/iL rb\0"a9Bܚ|t?4 o2?UcZ)"波*ICt=#PP 'Ykɺf 9#\RЯ= Cvi{Fi &ז70PBYܞcfF`ejI{WG%2׽Q۲s[P+w6'͘n+'!O60xU x׫073Qx4'Bm\7 辷-0+Sv+}Ԫ>%Wsku+ ]q.>@9ԛm<4XB{VƱ&ꂶfضq 0zK/^|0?s1)z`Y,HH*L6Fʴܵ7hU#.|5H_m{_ MgrNF@ 2-l8=G539ՔOW/} `ƫhgR#or2tI4 IEte:Rm˵p6Uԛ-2K|AkC%umw?K,ʽ^ tϴӑ]k9Fhw_*1%)]w+D 3Y6Fyb:m[⛙Ci죎_ec_V9ahCe) #y⎭q?ٟOUޝl-3MFpsSreFb{*m%%*KARZ{jO j,7U *X_NԈ C=ސD I$ sʉ#ˈy;x8 V.ĝU}]A(k|Ш}j6_X h͋M@:͓Ҽ*.DQft x5>2.E RAFGH m:Nբbձw45ޥ¡>+C$?Dd?Z{ 4A06R&UkBiWsr- ^pL²ƃ1+FH,^y=cfHw+R2L_Nj@ԡl}.IhupܵqgVV=$9qB-svݥ8/i{DVMK,3T.b+СkAYH 1Q)h.{T%׷*z(OIOGų VOةttmҪ VO"&T 7#;i0KEr~rqJĄQj)"&0KaCM<JNjTȺ;16JL*Ͼ6 ukb/ %X/0>@HSR|9#8dbܬh AD憨=Ao([ZO}˅hb~ |.&l(UupEi-):M ClFY*s'x8`[Aޞpp1,XةomcUgF+GL3~C|x7]&Ƀ" X8Ǜ@GG+>W9)9a9>[y-i NM'ZS-UZ@ X3X\i_QJ5kyV-@FL+*m '繬ܨYȈ/%-˻W/>jOuKӁ%fh9ç*¯5ƼŀA )ֱ+O#'$\?X|enqݓAj~qd 2\ˆ)K43s|i`N߯sqZm2"{ *Ί6!EɁ;N{ٝLa ވ4^B\#MčJΦ(o r$|<46EE r]dAB>n=V/b:'!?x[3`\T~; ž#BFAJ&c IIcqft(qAHQUܒ1z> yqԽV;ُv dc8If(Q~ǶvA%$_/: |#)#O︩J@>Q?a5QxE=" V0sJ^c:mUr7ɤ-c:ܫ &`96{;~d41E|H+P;S > q+ͮ^,ܹGކ1OMGzɔHJM k]"sE  wZȿK?0ln͘z"H$o}@d'i֙>ܰ`$}7R.)OT}f?k>Nkt\7fgd=$ryIq?cZRIgq˟f$Yh2Ð%ˡ{Sܑ6k'u`ʣi*y>/*qE{ƥ5V.Q3w%ڂ;`s&qqTm<ʺ>p{/2՘~YdH >|i/h+ŋ u>azF(ì$g  Y5|9\1O=79jAn\/v2 gU{~TV\=uE/B'mDFΝWuӥ "YW}Hqd=ԭ"{C[N'xoPHk|s7nںJkدjHFp`阆 ̫XEGYRw~5ixUO.Hu5U3n *#m򭞯cdH>ғ"Tdق127sbl2 YS4#{9S (<,4Nތ5B*Dh6rϛjFJ  +@zyP9 ZyzdLjBX:7Y3 v`4!cbQ)JN><)J8i}ȅl8ߺzyaiL B4Ĉ*N^1S܄MeSIX㇜n0?GL.V ؖ'h(5"n/E:/WF1:~~x/;6 }%ن_+F W= )ʁZŸ 6ֱN(#mOyaWIpb;*:.اɭ=i>YdpA3B٠<h^n&0]-] ^ב+PibgbN`_!6(!`@ iDl)u񩨯'M^ӨjM5K;8LPp3 0¢@y;>axdoY~N,[IZ;TLy7+L)-x 5N0Q 2i, ڤvf{ɀ)rJ&ՂQn+N{kl-o ]1i*GþjRS_3H#M?A"{}F&&}-u7 fAl KEG6~3A[oJ}$:nJ;9X /#$ehZ;qVqNU9S27GǍ6Ci) 6M:]9 ?Rc$A:;'Gt`L=(Qs!chv ~^ld|B.pՕod KB;v$ʍW\{oJrP}A);~5xDLtk}_,jYX9xGaLܢd>\g@XyncBg1:O%KOa'& LuvO,m gf1h_qRkp5O4K :b?{z9T==Sh˙X罷 ?ENh+Vax˴D&y@ׂQ^\̊ZA˘[T'jQ+NCRQwEd!Ck?v(BO}zͫ砨Wp ̵p ~@wq@]?5Aiz-4ͤտI?q>,8N,(*)t?PHOLT6t4IvzO:#v&ɽX8ή`IUi驇m˻ާT|H$AFY/8A='\1f1*% U*dST]J|g~M-T]XyPټ:JuOY"Ҭw%wr_w?N:FLmۈv< -58da6-]w{ڤpesp]j?h$^T\`-KL>q~a!9o ƌ/1$vcհ`:7U;Fn~XE>wL2o T^)ȎktQp-j9s^)b.7J^ )Tvcn K (H87L#S(uh~\3fVV:O?/ Wβgzq9-Ddvzg22_vX= m@BHVSeeR޴0^*ttagEy4Ѝ^Hds<:/BJi>vKCAhΘ gwS!ZnePxS7>Yg[}0_ zݓFh`NUƮaQqo_,s1uh^{TjbX&pYZCRbNOv!*iI*R/qxK-0~ x(Yej$t1\OghbW}5-sj )-r;td_N[2&* LvݬB p;Ӫז53$zjȉFnB#0O!d}f}!#ެU\w,~.d7@ eźLig0ZB~8sG̈́m |^3¡(Q3g 2Hu!fS4> 47 N0{-@MG>U(-t~q.L9U'-A}V܁hG_* j5kԅm%aP%HU*oc7o^tiq@dzˆcEk݌R0X xU\U:Mjz6 KŲhJ%nj=M\ăsyag4}NfK5Tdb]g$>e=:5ӯssg+B{g{2:!?)Heї̹a}d?T B9X8VyRy `|nf#Q[>CW? 6_`lTj]iWIڑ*Pm@o8?Љ*Q1TZCh~id{bc]H t*9lY:H7OxNZu:Lmxf( `Ⱦx%}Mln9dC.a@XeUnC[N}TZkc1__.c.zmAky C;/(Tk z[<ϙua8({ =3BzOTO/~[lȁr w3#uRv=(bqp9 2@V2 0i(R 6d}J[/|!M@> to9a)e/lua=af[?Zijy{Y=(m]آ|Z⡖@xfTr^$~^гxr6FW>J #7rγaqT:h,"!FyOYU#hq>* B ʯd.ֈEQto(2lɪrM,g3`zC!Ǡ(N[9YyL) Em^wxג hDՆOY3oXqi$K$Jj3ݣ>mzk|9*-&AR¡/0ZRҖϔYC}2,Ե-gh w몠p$Lk=&5(k  w_"G-IW+Y5lp*_҈"ئ%wyA(b24 +2؍C&͖5?ŶWR"JghD*~π7;Z3T]r _bgM' F_ZT꾵 FLF\!awyX|T4khΔ_!crF)^c:&j!!+:RC^.; JDR|84kHb[@"]xNߩc-܉|WKUgBj/HxF"Ez]0txScL(<":1;UTk~=0zME{x!  ޘe^ }w4Dp`R:S025#3ko%u -9pvnO^CZ"\c ɰJMtCExW(\$|t$о˻w r~L&0#PHDr0R](1VZpx7vH9+ybmU \JP# h%`aB"oKd`,.bA/ƺ7yS CX~<$niN'BO' ~=`hFJAZyLMD~F.;jnD  k^8lhs5 V =«ơ7F/F\oX`@(g\k^$c %3#ݰ^s! h 5KgJ <4{^FW?K%/K#n4b  y򇩵\.Qac ijb%*Eȴi|-Q:eSAb3l( rTN,NT1WF GRF q8| {-(##{GQ%q,=`Z%| =7)lz MB]*oX~_ jYye\ݑ3y#*}uoKcI#:{gM~ N,VglM$w~4(NCٸ2`-}yeJ v sWiS]^[ d\Q( ΟEǘ.d7QɃO,N8(9>;0hA5omwmI@<i 5a` ?xNU@W~Q 3֜ݦ7ä9sf˷K Ц}*2֍H"ec쮃L mn n9o݂^=W hG,CUwiocfɖ5HyJXC@?o:!mvJצG>=NqN77H(eO&Dц(9^g_B?qM]/AƝDvY%|/B1!1O7?dLSa1~+kjԿ1#°` [<:sޖkC>_Q^5Pϯ6H QW53x\N l|ҩo_95q%mM[Žq7 Gx'ǜ@iM=T t ϧ22Nt=AGOf0(2r}CĻI:9`9{/~}mIhm,ɻLv0(oTEZ$Ui7 gLK?Wʲ^[B^wAs:ssAp.Nj bC =uT<}jǍK1fs @^-ʰ(U!BѺֹM#"j_PAs dQ ʪ -AJc}rbN6!H m^SAJ^C)$>O:EJOm ce|eRw#e hfܒe(hZlSP"jP0ٍ:-0.)}M>ÁuUu&|r%uJQ0RiQǸ1{nOBew~,տхǦ2;Pt9)f W: 'v/ 19;־RsiGr̴%)Q?2ך7NF?Y<$=$@`_J[%P_1<UrDY ձ;ރ@!uV#ݮEi%'U@/w_yѪׂLТP?$s=ݾPN{ ~ΔU)O%hٮhS(o;` &N:,3qx̾cǁb: kb(3%_^J?yN7s KO%_pT/c8Saq*glAy/pă0hgW|vP ,'`Z܃AkA{@xTg69zf \1H!3, sKXH"ȕ33-E@AWl <>,a>M]S1`cִ_L}R0j⟂?݊DW#OsFH>-~m~'h7*t$ U;k[Wg7;Qud7W.hYBڑx`a%D[Q(gP8'҂{W"PF˹ZwW̟Aa =vz~ hMQP)#n\Vt&_Mw};Q @ @:s$Jqßz:i\ ʒقH4iM;F?Z4m_qkQ.*6hC;&ATo NUH VeI\W{gr(A;BSgZ/ aCt"wB \M0IL1iGr`PRL˿iamhg@M1 5L*ՙ% Jb[r*e6 @RL+ӚM  ɢ f#rV1@Yl6I6$,e4[XKp2'O=;P"oϮ_zl+{-y2ђcRK'`3 =k﫻c݃BiRSJ ([wiZ8+vہ4Xt/~9 8oKc1m҈6ν]i5 -K^SȸWIȒ4 4[簂 "J"@擟m)kf3&aTXi<{@!V$I8׏JW5 >U$I@F0 Pb&`ʝa)p0{oGk#(nx/` iz102CP`wqi ? 6#+jw)J\k}s6w&:-t՞@Yh-]6|P[F>л}%údeC7_G[fLD}kKs]0jt/Xer"_d[^̝İOxrc.%cPvN hmLwgi0nJG:3UZ}ѭCoQmWB5oy~3%FVPږ׮߷Py E DdK}-xdV{3JJcWܟb@ htމj[@#;xȖ QYtYsW%c'w0A]kR㞶P._^֤T6g|is%>xLM-ee׉lbBLMXpJB9ZUAIY%qfo  0l@ޫQ1ij4-3ty{v6UR”#69 SQX&ldL~)f+-ؑ"u-MjRp#oZ"(V)0{NuAL;Be)O![xV9ԧ#Uyv5U9|9`Æ iD>uXF n. @zHgnFx];hX5,ݞ }Ȣ5-Z%!;!_ 3Vr?s5F| ڻQL:o~G > \Y7}Te/({ =v1rNɓW]’}-ejgZPr9ߖNhASBm-hֵU%ǽ3n<{;+1UL2Sʼsr1`-$cCp9}<0u7wʹϫ??b$]3Z8:0f9oPoQRl^e;G1{LYHY sw]?c gh@bJTHt) > -$;'1h"(% b_1ue\Atz9W>4H\e?pC^AeywY_%쳌* `Mўa(_؍X`YvkyyDW i&4N$#ɓGvm#3.:LxSr7r~AKX a}%t#DI, mGQ< W1wMk|3JJHFB{!ᇋjO?LMԳDz"M:3h5ءw>(BZպ2mbdx5-t/Y0.{)&_,f6&>l/ <\shDKwy~p.r5WhOY9ZOTQlN4``wiOb\ !RƿW>v֔wЍpuWܪПK!\ vzOd.\KƠ58/Z"_M"XSqx9;u$Iɲ ^`e.ّ{cn0ZF@'xZX>>٩1a>J2 KbMb!nX_[Q0r%h Ej)y6n`ֶhСڗ>`ZH˘f8\ ( QWt/F3SKi/[0h+{ &ᖎȺ@j lYs5fĉNBaNr0be1ɔTy-_gŔX^OQ/"ثlD1#@c9"5v]i5I֙GdYѡox;.B$0@%X{~,yV-te%^Ƅ̫W$8hCK=+юd 9-]m@Ƭ;Pc-1GM`6*Q')bL{);^CߊK 6,y}   cL% {%bqB r;F}{;j~GU"weq&ˆ^3F'OzMȌ~Һ *=F> FtbK7VOSˍ;#zaփ1] @ ᜨC'ExW{\R5  k~(~4~lFZ'֦Wd96답%6shI1:PI4 ^f3͔ w0DgE |$v_W%hm쏞&& #÷4,4mp7D k^xRZe5Խ%Gq-hxd&V ׾W T1TÃbĿtj5PM}c ?nWF.PXj-qs:!L)UQ73`zqcx ^%gE%v޳}wJC2Iј CU)zOďOs,2_T#Jc¤{(h(&Rg5JEs̉KhĴBEڠ* J4~}:^v2};"OYU9[/)/P:[#sNysxD_TNʿ6Te_*I掋ߚ~EDj"F+[m 4ԏ k|1G ||+-KV|TȌ1p׮#zt7=M\@?uQ%3P9\kH\ܾJڶ'X o&\5f$\F&Yl_"6G}#>HTsT q4OJ8=>6sY}Rgf~,@OvwL3:`;e+݆K c搖V:QwR7Iys?-Lʱ}/Ȁ)nW vV!6m̐h0;Rk;Ŕ $;Ef[XN0$MniAAMwYJ #z%ƮwXQ_mFp3e䣅R`́\Vu+錯'0ᯢ&YtcR5^-JBdZ2YBh=5 zЃQWlxBCTvO{;ҿВ+ъ9{`:d}<3p *e &rvD[w{}J]Wl-S"F26D*)隙puEsvHG-KkcsTC 7=pNR%omAF[~j+שx/2&;Z{Ƴpbv #!{!-y {oBKb[rU8Bc<lħ=ygJ-Gm۲&p)* t݄kr a1mj-7m&v=[3VL8љc3Y!#τ̂O)!A{tKoƕ8d]Ĺ0ӂZ9ꁈXK2AМ C@1Pĩu'MZ7 -/-^M q9:aQ$88b!7ocf,XqeUx>]+a&hmNqk `4Q\ڣhĠtAZiZLGq/"ع]8J$暸x8bDL)7ZƵ8ZE;t fk2yߑps$LCvz7J=W?NιNV+).޸-־:Ɵ9-@@COT]{,@i V@+~*sHG)mxi@|m3[oH#^u|;Qb̺7Nl~Ҡ/Mv|#Bz@LMi-sKMOlRbII'Վ$RjՕ7ENjȤm&^V<7$)y[=w.mEhYǢ$30SiS"+Msx9Tא*{:vr}iCrvNѻ[feN/?3˅E w1ϟ󙺻A} tJa[}cIQ[.(l#y忏<3' :p^=q"Ir$o>Q/~!ªi~)]7շR[^=BM& :K(5&E-u[`s7L{Xig)u7|JP\>C6jvw0_yj.p'(@LPyc,:z.F66aV7=Sp cElo&YJbD}Hٝ.r0A| SsMJr,Ԝ' O^)n.y!gH)r{>SZd^=b.^d--TZԗ6Slv2tID\+zNG].ʼ8 øfHח{ɮDOGF'] h4 yEć1)0EuڀDAy>w./t_} db 'cB|b)'5VRl-J /:"Ad yN {ց42 :#r>J\yQ-K2ϫMCp>2٠1"/"ƶ&MXH".,O&?B:ϸZ(y`ֲFޥ1oVޚhbP%\*h܃rJ\~yxD럥.aCFЍ[R Q?\ D`Rf7MQ>%VrN|pw9F8S/C`,.~Mf*@*5u7a4!dUh&DQo\(V69ۻJw;63c~a{A \>#Le3)/Z">\ N 7;TɃF#ixu\S}~Si"̍-YARk%@H٫GLXL!H`YG^EjhC'.>\# ն_"\9b'~+M<ٱF%6;fd?#fmRH{T hX..3pZ?vq(" TsN V2"ִ&)wɍ 0Ǯ/'#Do ǩĒGt l7+>Q;c V+A 6 -BTAB8 qWy@BZ~'FjnoClSh " fA7ƚ  R(sP:-LeYxsCVxbPGˢRɲ2V[碦rBSR߶ՖS~RaOt Ogn1l B~gDP>M5ZI~8#40.X{4vKe٣ofm~*f` j%c|^46J!zok},k"?fiHa%imT&N>r4Vs0GOD ڛKˍXji!ǚ`.FFDŽ$XAd6\ϡdfZ!w<3 jaqW]Mn}2fcu&ZR&JcxD$W|$黒mqNp4] )8] Ęh폳i*[O^| K4y-b?=$撈y OOV.ohɧrcDX1rnT)'j5bfHm̦^R໣D`c4L:9R0>,`d_z &a=6V0lŒ7H ox՚HLom?Y)S:+:~ު<Xu(d뎢4J8lZʹe׵cTFJ%W1.jc񰂀xv6n=@e[>I_ N1-wy m[JTP8Qy#2Z^:tWĩk Y~Dׅ1wfrD¸4h-6 ^d^uE¿e=y>j}NzR0G nʴK%_%=6g1Z"^EvwNŜ~q8#d &a,o(NOf k+%L|wA.8+dT(uem*>YQgu~zLQ }˒ZNS/sALO(U:u[.w%':mYv&LheHDNU_p!I0Ӥ 7Nj]TB5<%!k=C> =]j]ԡy6(sؒ;i-Hu#ZQ:l[ s!n.O6?- BL?Rͭ+(#Nqt*Bй]2:BM3 ^r/:&ޓ `oQDSt,T~p.U[+/&*ֹ6l ס nOz)}DG\[ImRscks*̈ .S"Qnz5Zz_:!0b,sx!Ը]*nI\-!3[ۮn UZu(~e[b90k.n%.6 ߑWV .Xe=me^ Ah>I0XmBDLUJ<< COZҥbrNf-Hmw4Iz~-#){q'bD!yi ƺN+…1l_-g@ɕu>eƒL~ oˌ'XöaHVpd̆h ef_) oS:FMg2fyV7`Fi6NM htRRIGUȺ\"u%c}cq}0, )zTs2Q?t*Σ3F(Ic],$܈qSBS/E0M}~2P֗1F6ׯ~ X9^ıJ9KD6"PA'ac'ah xmߜ,[F%n6,sі׿q1LnUG勖aG֫UJ&O@- È]gB-U^bՕw$GGrS+Pj[,TzmGu#5(hy%x`;̍5׆1ՉH>2e'"뱛\.*whJtAP=vQQ{̶./ jL\̲`t"+ z:i0}A;ea{N*3ʫZUfT߯0c~ߙLY3i:~ 6\K l[DZBz/F_ M4jW80kO{! !"" a0iM$Q(Ia/S+؀/HqӯlyMPeP$^ Γew0]K&WOzz9*ۓ Tr0iG^y5%mܜ d8S/c&bejXG H#sXSjx")bKp;,W(|]2SPdzB&)i|Ӑ-R<4|Ō**ra3y@5jHQ=]4RVgBVcp X~=l0حj0;*ûo(rɐF,n!,qPAD`SBX) E@R[̇um5P)Lj ZҐ )ǘ)TAyuJ,^YX H%J߀$E mSGz{~9:&^= {7ᛦauqMށde.CR`{/L]7*-)ݼ5W␒xoRl"t S ܨ#B0N;4m RD2B-ay_RQϴU\pt+&{7_{:o 5(r݉j$d;FB?{;Iߠa)Ϛp9Ȫ2%f~c,cl=#BMDKdm fQ#+*19As%D,Dɂ2N}+iDܙQ}(cˀ{f+lHþAţ:7}]p1 <NfL/wA/ 92]غyq1^'zWez+|G(]T'*[f e~Oҙ9t\QE3Q[D_SO6@27YH+VǛj V|kpJLe:VЌ"6"^K 2rX^1|%![T^v{7ČfR^R>ʻ ~h*4:rX!VIwf>dQ7/vV#Fc'F.}֘â yR# uA= =\bVM]'K-`Oxh*JyʹDyd:c֯Ӹ >^K@p4T@Emk޽fe/\{5[؞J3E7a$FK8F"R/2J,عk & }UqpeST: ]Qy#Ȃ;7>{\B HyqGbnwRz2{-2Q؞ZF$HŅ+\U-7Z\l !We6}wQUAY&@X#z#ٷW*69I狀}܌e.vdު 7kc,h0m|S~˺wET_31\O>Ne<' 0H?FR]R,,0Q'Y=Ybm*)_f`W BI9WeYdrba馽Ǭ~hBn1]a --#\"{yVϷLVķ .(XW+& 𻔫A10MЎƩ0ژ̮x OԒG\yyR$@M)NǺpY5df>=eم73.3ˋ$g D_1FUC uedr=3I8?/nR(rT'{O|nNjy:lRI8ѭ|xYO`m], iUŢ65xPa[ >M'M>BY6!H&j[ "V J8#шH/Ys 5BdtyÝ!YOѮVϔn< ag[Y+1KusڭJr?9EgAHٔGwNwn!6^t4p9 @D"+N!uçӧgw<'m =ǭD_;ҙA O܇st23# =p87Lp/n мGS~sޓ<mNIdV\0srAr]aSh#3I;D]0c^2f8hddܰfI:x=nPB)[mB0w9^$A{1pKv[[ [Jni^yI,;Ʋà~(/{>7 hJؙ0R5%|`˘ϭnBnudE&v P,W߸NmtlkQ3P:UT< mVX:p$X#%.7i:辔&`!o:tX2~$NFε<@{ڪcv;j"lT5"00ճ,*:O쬉c-42 ,̜%%Z%]jǬJɧ7zdRz_>ԸqRg6r\3(s8u˱;+]N;3gh=|D(TCZDfR.8'%ƶ3?q7uq WkX>c3=SlqR>0L:`aUOTɄ] ՜0Wx<^-ѱ @ڌ'K{vmTl8ڝi[&`jL>o,ɸˆ.e|)P~tZH[2wttf(Z(a䎍v b KVc(#~8p>1wC^2*iH͟JlRY ro( 9%ӄ<ǓMbl6FԺeYǺR"(ek>toMc!1%@!%p$2STV9%<#5>Hc3w)6 b] ]-{D'mo:\8h2k`-+Lf7c6[d/ƳK깹}S-IiHhN;9]^mF- , /XH(Ȩ;SN|v0B,?azeŖÖʝŸ壛D'g*\'~PA\-7G,qIpmUC{H+js^L@卑uݽI#?H d8\sq%uJPM~ݐ-O2 Fz#ffiqd,grxQ9s (Kw]=u$E=/S~^+(CC^To* euXCZYf8S0 ٯdq@_:qmm͙sEGW4x[ Z$SEF&}r1rcŴ4ծ j@Y2&ج,vSeaUA0rh鴬 1Hl!F< udj4:֏3C% %FX% V›ӰCy@_مiq% sUS٭{H.[jicA@>`b}uq(h]{I؀>FKYWwl8ʅL2};4aG }*VnZ'uŀL,[|K&On렅Adbi{`$/9mJx$e#ZY]}O3lV=$B;ϊP)6WoJOmdv{t`&!r˘O^WٗKnyQIѫ롥ucS/4DR5Ti?#<^Sڿ-v?5U'c혶DQ.BT>0p&i,cR[uPs  )Tcg鎵K Xo<3ג 0A6Ϡxy^,ͮB,9.-$"} 慈tRka3""4S=R[QEĵSxjJ<دqn8 YkiS 񺤈heu%q{,AOZOZ 'z-}xNbtgls"4}ޞ#K[x% _qbpbl͙\ [n'~3v&upfu$[YS]*}˘ʦaݱlG3xq mn I"F5JbrJ[ȥ3BA/A9|SdtV^ӦDcUfD7 >rnۏ{Úc. vj&۵R3>y#kq4"ne V~%sꀺ (ܧ> -9cT`KTG(d|p3*zq?mgDēE(1%ȕ9 ?Ӈi#L&{+ p(sSpOݢvq}|:qJ, 3kR{y#>S#ČJ>Y!Jc r[#J|+ g\KY#kΰ`n/N1GfzT]S2t*t)tteZcXbW7E VQSX9ƫ~p+ gL؆:ԃ|_ 70a:nƒ%7RߪuJ,YWhHM|S##he3 M )&4pq•M <X8Z(&ֳfEF.>[`愬"?mz0=j ~G X}n%X\=LOfO񻲖QfC霦[4Q<]}mPbHzLlyɫێ-NKυO*G>\^jͬC:)HjyJ9Xy=}k։|ڽ;7ECx~Ǜ]z-,=vD.kT~s(-IݷV}x" Ew!j'- %?3~?ꢺ|wҥX.>,K4x){ z;N->B%C NTX Nk 6=F"-r˱ʠ~=1Cl:h!kkLzH_p"(DH+}UZau( %[Wf93)ɻTdAsX 1,J1æmRAewto>; ~n^F`` Ė9/S^/창NKª9 T'D I"!79H>`/8%k@eɋu}6pnkŐu?(ayeNfq^{=£Ej2hHթ&`.ʿ\\g)<߄1KX^ QSw@w{;Z!(8eYwхe?N4JJ̴;۪yN+ԅ*kzE:= H9`XRWYXhJ/$܌޹uKyBim#z{vcvv( B1aɴ h1gWP*~ȞcD7o{C`w~rNy)jbVЉ:2'O}p|p͢bh8STA3K&)_صW/}H)g+fTuXwA8;4x0~ʧdvI$4IGA C}[Cplz7- )Ah w`#ƷМ3Xp O_bv`Yr IFs/4i+֕]HYBPB;wsx"'\)Gc383a Ar#_3~(}QSScޖ l0xd'挿YˋOia9`ʲR푟" wJpyoHc0ii礼D. c(D1FhzJ*A.T/OnW {i=g37 /nV-z/ڝ6JJNX7e-m\lVa(s.iTiѽ:Z27}18M6U+M aiL[~S^N컭PM17huj10_XRwTnWHtChhph(S[n'C!"!>ĽűFO-Z^"RqޱfR.*?>8H3Ad`-pw2QgDlCDwco[^2A ,̩_&-?[G{<;}xJ#сve 8D_Rˠ_ =2XCKIEx%Dt"R-#X5 hgK\H,xي |S\t\̩cg t2 S 2Iik㫇ad G@=#߁%Kp Ov;uvNC;(!P"mhz aEIm:+hX3tR'D =e]yc4.rZ#N HIzjWd#UϣScǯ2C\f׺J}a*]AhU 8Hw4U=F02ꚊWr\P̒jh\їw5fouEַY!Z7YK2Ŗ9SRzP,w+ߜp6q.5l\L q55Dn]\Ro} g2%kH^8Ar*UѩUmu$4N }  T +R"NK﬩x=b vPi:/($[GlEN0͟B^XfYO>>Tcv3#053+1)c! _KllquWKH"jY/C/MZ7d 4uSjD6UXBEe ;jJ-9)P͑`qascm(2\xfjla?to`qm9`Ro2-BLϊi.\˪Fm֬snk>WjwT-YוRRyfsgy龒&iOĿfVP2=ӆ q@ N4#MԌQE|#<'r莠uYà&<$=Vr*WOy=kյ(㬃w`ϯ{&"i3_SJj/_ Vjn Z4dٖlqF.&K9MrL4_ۙ5)xdwԌ =CTA9͵uȢhrl3<nVV%Mܦ k"!VUkfOߙ ^>$`%TEܴ8Swps5:2sə;0z@D:!=w"jmdrS;1YIqJ'/!d׵M4n9@Z'o4508EFAu-CɥTyu!W$MGG`Ll_v٭JO ldhSyLPx`Nj|&W]QM_qoQ(j:SAHj/W%"&\ - @M rx񅳣mUU)T.9&^lwRI:nSk1O$44gJCiF\f+/F+0C@Mt %>݀ȩp`Z`6VSH=n-?v},Mm!!5n0^}⺞ror :wp| Uh_AM9TYp$"o\9t.v 1ez!W!~VWsΔQbtLPX!S!1+?:%{4o[]3?@ \O>v3>)GLΊL$+}+IxNDv޾K~ث eT&!༻nBe-tw-{ժP /; 'Ⱦkm 8Itf-1 x[vaqRA AJ"U/U !~B- =+0A]p5ޑf5ou 1"ד2IM>?Y W1m*,:jQދ$b,o_0!uO {:_jm8uiʮ ˚?is/ӳQ"-ޠ\'Mī5^^Cų^i eÙ$5zd5H.A'#`^v#Ŷ}Ita5_wc&Ji_B&YjG}PY{5:1 \fd̏"} )F0DT}#t|2psق; =r.\%e6sO9N.(KkVP  QoewO+Ǹd(Q :2&'m.eYu"Cw+s <- Z3$ƈZwePC*%J;ӏG4A)QLVYݺɂwH.z`\zTǧ9|ab̵];KȦС@3R)z%Zi9d5Q&M;tV %`܌Xx>X3>grWSoZ0a:||r H; |񨉻a%QA(; .at yݰkAIp2RTvd\YT/YeA1Uc2iTLVTRȝLoNe=P+%aZRUzӢ*q}vBQE%SV~>^wUzV%=mmb!yá'F#MspwJ"1k Dpq"y0 9^cY"W 6%*? 3P>>rq/b2t5Z:I+>B, lKyG]5:Av֨0*GT N2 ~e;>q])%\˒9'ʽnDRrTl j`βx4P3@EfCl}Jc߲$+`Y=/96̲kYKnFۍ8຦ 8|a߰%0RAT RKj54ˬ/[՚Buq6&$>KlYrfnx`tD]۽E=W!r-Eu2OfМUr6M.g!2hu8vU 쁼 ,ۤ_4'Rniٔ:ǹCG@~HR8FzQi+ Xp 0׬ʐ 11ee=V[D I;! U_.>@ g1CSZ 0 ()^?] Q݀= Aq:Vi5W؇A'o4GO49PS w]>_N 㑎eS耄[02 ~.a<,ٷ$crG6z7`M{uk3E3? *d]Hfa/:'?Qʴ1Ѷ6:@Լŷ,t␽,KMtGYSEM_Qey !*{N4(9㚤9H;uHK V51"̢^MQZٲDaړJ( [Kn6 Kr'Je9`Axc̺9d#wpGT/1 φN i,B/ Ufp@2PcU̟۹Wv?j ?j]@R)X47U 5{pfpѫnB:i7q eޡaCy[_w;tEi( STsi{+.q+qp&qg @/cDVJpqQZpLc"m*Vg3z|82 VmP>;gq]9RX.Hm! )G I_[ݎ۳a`e ?4D|ex2#|5zmM30N:Ñ_3,`"|IPWqfLc1h1LD. {ChH z] }ɺC6Bۨ8-ܭzq*qR`#wGcAL(l,+"kٰ\5N!WNd!HWsLq*d48y3$uJ]Y~4t4l.((QͶKIgV?:%^g9aWB6=\EWL@Rv3S m5vZ1x*j)X_]g.Z+}n􃁃/P@Qt@Ě!f6A8+Em[:JX)4OzH܃cb~}H sBEۋ5I2`tdR=zxhpVH]`>2 $IjΔMK0[D.:TL7BgS[BNAk^\ͩWFF)H5$a{PG-DJI>X=l;t)YA5h@' )4WOq-" <Ƥ6P_fM0`d1C_k|1[\{|ڿ89<^V,m#%. _bu CD〕)߽tR;=e;f>Pә|'ŠiG @!Sy0o-Sc2phudt. >C>wy+~4;^ll%A>t7m]E)̣ [.jMKk9JmQ؆p);`;m;wL}n XW-ݭ(. H)i1=90NQw 1힬ܺ@u (6߳qؾΦLeeYPjdvmC6bw,;nq*piUO :hG9msц^r3ɛjer53mry,K!@NC}_0M%*dC !ꯠRFh.yJQ؊"{-o 9-A.[op!Pܵ^GZ /h~۵.eiRЧ$4s(_ϑO#NaK{Soo H hQR¹#]ɺ{SkР\%˛{}BƂERvoNVҳUUs`sF<ŷ3h|~Eg{CZeIִ9|}UDWV )Ќ=\Xq}'RLP!,jąlGrdzX6gN%Y:*<*v&K(:ix f|uG=ϵ1<*H2ڻ=XJuѡ3 lb c^v'8RPrEbo6F1 c _$ߣ@,ˬBaKMR @;;1OE!^^ps$6X.@/V-u ݘh,~ݯ  HMGM[=ՋeY[Sq|$o %s曂*6mᑈ| Z_1 Pr z=܂[&-faynz0b~p~0`0T68,˛֝k6ㆢ'KRv8UPb_p@q(<Y4T#rPڄ>wrVPU8M@=* 0T}c rN! Ka$GYm\L艋&kW84ks|:}W\.y:.9\پ!6NC@j[|~|s> hTaUJ;1o97X8wPhBxFa qk(((aK 7S;$Y$8{ %t\yOdI1[\nv$\PnjX]8V86Zqdg5"2j&|6 ̓~=kZqFk(xtWZe@\K`- `GRSu02ޭZep׉ijCQ}!Bk6do¹}yp+OSN=e7#@UZ1I@z\r 4Y^.ڏm# 2 aYCę42Y>$K %ƄkpV1,4'jDi]UڟsZ{=e>& TK)!WrmEtnϑEb+B dߧKkBqu{!ޠGγC"[z a\BRC_Hiwd$;w[cvK&ȝ5Nsfv+T tke"n%F@nߐhM FԞ/8o ~Ħ/`,TD%Εp6g #5Y:pR< [daZ!׮pm6{zpjַ(T ` #Wѿo=IqK[ ~t:UqzJҳl7hʌ3  Ȅ9,33P/r,VBVun;C)Vb#iqB;1v:omY睊Ak*DC\1dp…7qbdL͌?l '6OSXZPG M!xSt2|g\igoJbH&%[#?-[D Q f֫6&NbmQ~Z il%i_% .WVCIp>~ D&{ҭ^pd8n@3gau bDF'4W7]q9jvRHiR]گ Gjӳ7d3I~[I |cwK+t|WZ$q.y5㞠8DyVBK%6na}´GpT H|-\mb n_auuWZ2NXqvI[T9+РQA$;[r[ ãT$sF:qfbZr$-d77jʅԢ/* |nE| - : .!Y]k[j@2L$Փ"%,w^F~|{<|Ug`z m-V'Ajf\שUy֜k Xm|*i3E*q57iP?Y@fӅÀlj 'WtW%D(vR;Q Z /+zhb%sm\n:ZڢޖgFE('B8M #א*5JyFMLa tC7p-UcgK !M|#g=r+ 2I)ش Ͱ6߈mߦtvQ 8v 6˱[4%;N{VWh '-XX{.\܆r[jſ<d;x}INXXd%OUE쫟rl<3ZVޡpx\m2?(({,9>s]ǟ2RCJ3sAڸ_aw6W!VI8"bֽ/ ]Wf HAne/9V36fe9*WnW/.۔䞽@2k7Zl,v&0y_|(\SA #侪t24e8l;a˴:ltY&ϦIl{آ>Lѵ`O4KG|)Ȇhq/r,qlr4LNn;9e~3>Fu3:/KfHdq63'9/%lB"1B`;W/7BJϝM%zɦ9^.CFPP@yD2 e^ݞl2,GɚY$+C=^*YI۩۾kY6NxVȞS"`gq&LR;0]zmٜ+L+* =7܉/JژB^O c8XhxV8G8 \x>QdH(v7V,tRµl:KnZ_#I)lGjYyP>0Y!QNǠl l|㹚!jгƫ^dZVe֏{=iѮܭ:q?TWTlK}"< 95O,WKnSd=pBd>CH?.? TBuwδrK]F< {Gݧ#uLLmǀɃ)_jB| YT4~/=tJlhrV' G0CJa^NRN<U쨘ͬUf$c8Ʋo{)P6'l'%r9),?vLlp:֤qjZ<+mi;sQ_n>}e =ڔ{쌩/ ~M/쓋 #BnFLD7}[8u+voF ||h(b, YBYը,rU#@t\Q0 8EMcYw2d'ht}gHK֋{WF?.DS嗦3WSf$>{4n*HF{,4oV<>Ah~;Zj.UJMjМ52^Y|).B2C{)XN @?d}WeTEΜhXYDvP±=SUN%f)G41LO<YTZ#9Fr_@Ir@9+o7S >?8Y "v0DsҴ!°j~K%xCF Q5_=THys?7^6hwv_pc6Ζi|.O_J.g@PE@bn1<_u<3#xm8Z{10ªUzJZV̅qv&8 N:׆dWnU4ٌ|pC&@h! jOIu&2$^ B(2_7 3MKc8@4"#)6ݲ?2<gMN^ڎ\1 dbux%5 X䚛>*a'D~wt$(̈w*Yݞ/sL+b?w%LIl W2oB;pKdx P;dc1hW@Ύ/ܲ:ujc*S {zKiV5Ǧ-:_k%֫#6n ߭&"IW"Eԣ VGν`v2vbwBcOoc\yU 8ZȤ4%gjo\&EsR @!Jڹ/RqtfaƸ<SAH{~Tgt>/>쪻 Ud߅jHrn2kt4W %;bB j}* ú:px=Jı&X>XcK'= eZ6Txx\\:d0P8PnTEӅ` Ϗd±q~3DP~-ݞ?C+nȤ+3ͩTF9C 5 N=@ ]ǝr/[ d.X 4Is\ߋ(Aq;dTZK)ͽЭ^Ė+KƥDEY[XEB{b6uIfu^X m$jLsc>CjUkM/8 Ib M&UUaHG/oV/L$G_l)OFVua K]f  N!X(*w|S8PxF )I*rmwRSjyE2T A9A:`[UJ{ڝYTts_ݘdɴFO^n1:^؊O:LxjYl[l=K: )fr!\)FbCS~"l/n2 qDnG,I=-RȣXWxqYC>O"aF'iԸfu%v#&rJu xw1桤3: ;Y]8FI}ۤ7 jT֦[w9^KN.g~L%4&,3)CRE'*iR `7R yI`G (594DCL =W\x<568™W @JjAVɤ Q_׬=&Gpc!uk 涗7 &`Q_y­Sjyiqj]wALG"_/vjG6*mextv!͊U_1GQ-BY~ٿuGㅈ aC0TߘҨs/Hete_&uF'SNov@ҫQhBC9%JT.P{Arm]Ʈ;+}s;YBD1$Rp)[l%VZxZ4S%:wOڳ0eF}OЋkݢP+ѿZ"KGЦqWfEBbG,8bMXV= &wdaC9Rd L֕)[ԸxȭsY~`ܜz,P4dw ̢7Hk㣵a%%F\aerX= o{1o*ыv-U߻\,fWi/8 ٦H279P m>!h~\䦚!!/s( $D?3牭W4Ի:S8@u!a}p%t'g1^3 cáJ7 Hj~^SPA5!U赞-9ӺBK/Ӽ}C az2=Gݢ 3,QB'/+;M1Qd!]xr&9_3{%iLb<(Ac `>8P,T.4& ڸi&,P31rt.aß|\ (ɻ[qo8՞RXuSۄj@Zda`߂rBu,cDI 1.7y溓,eH/Єp4knd#ߪ0y-ŬP !e.4WI\~Mt~-n+#-DyݜtیI{Ed#>'GpK+R" |M[t'Qw'[rF_%A>m¤ ;X|u=0f4x4$K.,*U}:yR5JVSg"P3+~h7>V" @(ǞێH x k@+x%! Ɯ0V2;/7VNf@7+Vcx1^@]Ay}x[If8Wwjh hBl:O-͘4c)?~:%U}?d~5֩<Gmx5f9>4:k&U! eI򍭀X#s¸"_Th0[bae/i'JXIdq/6kL +0jH+䋽%Tpy]4pqCb5/F1=R~FbӧpcL1_Oe͠1KXWPQʾ]%ȹ+*tIނ17u6ҍlɚ;:zP%MPY Ӳ/,2I٨M溦ՠ o~϶g~[F5# 翉ۅa>& n$nt;rbNR!ƚ<o0KV('#qewühu5aH@;}.I `) KmhvxP+mjtNjخ agN5j38T;x:h@BV57l]ULZܲAeҥY"e1>~ݽA?Ճ\lG DԒk:ډ&7Xm\aD]g`")`p0l~ -AvJ$X=& l<*OLǩ)r.1"x7 dsv!]f <"7Jk=Yf35Kiso3̩#岟Blfdp$%@QL:[A]":l!\$a*B 0߆q//#W(~'BN"u{w2eqʍC B~ˉGTPS燡ukiY*}V̌HX4TٓDq|)+D-clV G;A_K `A a 7B?mi 3o0pq$y[Y?td'WHPi$pm0y3O 9>%XɻpeQ~]ӲgO0T_}fߙ/V?l M,[g&HuDB܁ʃ~3 DIq}kp'j5Ђ61 (M@WkВW"N5Դ!aaV2Jj )A6|RV]OO1 ]Q44? G4lx\_Z 0!?wگl3"˳jao2[GfXVߐ.Lx cyR=*F}T?_;/[qT k6v;d5Ot:_b}~MH)CڦR)5պ38f_ O"OԚ ܀Y?@N;_1fccu;[EsÎ Rch%R|C)dhRHꀉzckTY'@ #S+d( ?C/eԠ FEgnth ;HL#UsӻʜoL1DZ*`sUM^ g =0'P {;ja~d[1nO9G  :Cp^9) p2AI˥o]WC8dFbIȩnuZN-PC.&7U`C!ޞY6aSҟII *+(V6B^TKW}*I+~b]k؆Ext1a:Sx^awf9$Қ"'.UdaGP ~wcx힧;}] U-U>+p|&yr=f8 +-%(3IU+˄dʳ&H7wxXNbw-2mؒ -gʂ.̀kiÞ]HFY_bzcnH*|(z ?w(I_͘)V@ q{l_e]LlI5z!b- 8|6<02b˽ʬ6|^oО1q}Aȋ{ǯ e9WDar۷Vc/ݫoh ..^>ڱllQTq*4!x5\$) btR>Eӷ;1b @2j SeH\ U/C ܾN` ]}FEz&{utKҧ}x:4X(ktNeZxt,z߹L Kn~,J~.ʟ(HxɦLhfٖ{2 :) ~ؑ/SSR}L׷M6vLJh_NO-1Y8)Bynjw[<D󟏫q h.eyTyLg +f X8"plQOSıuef@9.vŌFLOzJ'9qSCvaȆJ(yrGpJ%l5-SUOIOiCQ==ٕPbb^y7ak,1/;g% tIqYk2)ڕLt8z,ę>rKxhhm?PjIA@sR,柀J9q1'ȠVetϱha_pc\T n#䌲HQʪIڄS\60t}ozo l̤heRѷm/+!bR~Y_U{ʏqjeJ!;K;47(u:`,8o2*l~ssX-K,cćLo,zoD86 NKq=d,gJ18bal,ѐh^H4мRsސ3̰]xIz۴VPQHN=jnfI9n@ >ߗ< dsLߺ^_߈h!%I5c L-[k|OYN:˼E?# c7\HDaH{|tݗ0>9Acg H585k{e#@*SJh%󜤇\ʣ7K?`wX;@-7ijc?)mFГt>ijNɋw\0L]|(i%^5O^V<-.T"eg|vgyg^$[卂JDGH'SV84W׎ą=͓c.un$(;ӳXc3OWQa ,s˴V3eEK8yOe %?!+|v @ӸHT:pP"&5r}mVD}gG#!c }thVvA34MAӨp2 gdoe(~zfJ 4g;&mJjZKs|CgINrX).P(T'xi0"UA8JM@fgGr_H:(* ɾA&?%*˘//c*:nXɶ7}b^-LIiSzA,;ihŁy)P@ab~Mx7G)׽㼗w睰k^x g}V ;1ALV!^\r.* 9ūAL6> CEIW-㧚I*1qA&lH @&0->.ع7ڊ./"͟9e֮z?ad$%"[WU NxD%< y9ϱ)=ׄ.HJ {r9 $<螩fO4Ll^bL0g*u0%c"ަEĵv/{q&3jU"$B$x^ I=.TmV0a2Mդ(R<;3I#|]g}Pכ*_{ds7_H,f#~A$=T z,g7|-=[*2P~L;ܤ}AiӌwY:gӿ lLޯ0A96Qi+f<H g%:*8 mD~K/tY{Z TN'0*ȺX*koQzrH{8 ܁qQ,!p#VҲW|Mz%Wt.1`r`x{j?ZOuzMLHu :^67ȃr@[rf  #W_ԀcyBQS/NB6q?.=9B 3)NKm?\"˦>=nF×liz(HjWA݊APV+Yz}*Ѽ!jib yV$r'U.Q#|^Fc2PV}鎕|M4n1hGu8H5xj"g47bTCoA 2Y-)Lp7FPÚDI#d!$ٳ`oyGz8n6[DD*$UiLE~;2qmeO,ߧ#SӬ$ z^G/q 6|}!7 _Z]UD2""8 g{!gѡA!ţM@x_j]ZN\!!w;WXv8i(mX?R(X] 3 lfJ6c1ai8gt%I0*r3Uz-C%b,p*fa `['o; XtSDX#Uȗm)V{m਀ӣYwFz묩%u5Er6Uq"DVQP89yiI0 nag恗F~v1>RMjn]Pmv_&.Mgk&#Z#P=6Yܨ@8WPح26ĥHO#R +/@]DF}9UW4 >QxĔC~㛡qyeB SSe"n|t_c\lKs=9Eߨ`cr 9\wwkD0\r@5k$Pk\Fow)-L5QD>Mi3;sN!ĸ[59RWۘ,K.cBX^Z&U8-3pxPېDI̊:dgb M%3JaOm+37l@IPZ NҿbL Jг8U;Y)#s4W &;/y:;Mؖ @{#37 PJ< =@B5J+5suz{) 7=OօמbDCUN3J4hB` t+ i獮G:źW{KG)ˊz%wm'i1 ߬iahCϲsRYF_ ߁HzHpͭF%=.y*eB=lj&ӕG>Bgu#c2 {#H4a=fa:zLЬfM! @۟?KQMO+B-^u%S8Tk։;A\xAe T”d-5,KN<_wn.[ʸqSU\$ pbΉ$q\2<5A|.gd:PC&DZ֎c1#B6bpe%g e1Y,Ʊמf.s>Rٜ݊Ց| tz&\ DI~9+wqVz+㩊QnlTiݿ $h  ]BC?~ٹJlOjzfwnJ'n8׫N.STa͘YH"}Κg80|՘҆猃oBӖOnLca6c6k:2B-ډ) FƬɅHHm f1+˖;%=h t"F7(yr `%(Q2H6ֲ&/Et^) =H!zt1]OQ{t{u@pչicJ\% n7gy&5vWt4Za)>g](>̓?A75/>9[3D 8nVYA˟a (i]g0 ;"51:;8Z` Hx28w#e#"cu0y:!p>LH?BHo'hI3 E]n:aeĞ-!T(bCD~-{iya7wJs,`zҭ S NFd0ZY-خ_gk-e%35o뤥WC8"7u'iϠ_:iw*\~ߜ*%ݱoňZnhaXHRas rm;JGhajXLŐhO\ѻ;0Tku!yӯֳDQ'Qk PI:($=I4rdB#^pb?,~[n7- LkU5D!љm3.Ρs++ݙ(R_XO-qu65#Mʻ24?Q9,# .fl03-Md!s'~N`i\!7re^ F+a,c_ {zCzoK!ΜѳaO6 AXjbp| 7Yʓ!Nw! j +@DȎ|VE˾:,"-Ĕ/DWXrɎ3pAϣz#'N\c#aN= L *uý g1BC#H@;2SbGwʸ66ju蘞̀<EYXSaeVtCS5&Z$,`0N+o:EBfz7hrZY?tPd&+m.x~8uC 43)9,Z,7@nfy><^>A80Z"I﹒L;ms|רSZe1A3[:4g3)J}w79׏g+ʰo(lI$-(TI2%*0W~~k-i "tۯO±s1Xtƛ^FbG20'$(oQ`2 aj0lc>(_] tQH8F'Y:ar@9 TME>կ]! I*2UF17︨qy*NpOU!=nNژ+6cf3x$ t NStm\b3Ǹ}iO$k{QidȠ 3@_UTpIq01ZXx MK#\7#tA8^!;x m>bWoF|= {ߺt%\wnd _5*G>G+6i4z"lSxR?yX4:TVhsRI\5uof[07ߑGe^ |5A-Le I&Byx)Uh2hp򴔠VϪ~H1Ϥ#1+,֡Ba>7ݳ-0)qŝzuf璜*Zh㿏3iuY v[㣫g"ǣx!}3xV,~q\OB =xOͶ/ &l JL%)>EjP;/^'O\WI;+Y6Nq9 QpoVs`v`y*DZtʈP ৫vp V%LA`#$ÝT?5)M: 12_yTTځc>I|{N,Bi[R̮p^bqaSg8 XnŻ=^;MLvBxHˉ./tg4F;I)UqtqT't8y#ߙָiKfyNFjmwmͳƙkq"$6}'YE.lOm @6  v.Đ qaS3{[vjEйD&/RچlE,3B3ޒA(b#Jc@7z"E={zSf9P̒g`E`d@is[(n>mb|UNlO?>gK۪x@..FpvXΡlL8([j= sH'i|.JިsN`*r|dw>TUDT[.ZlCEgʞ#x/ {۔?dq=El7V[L97M{zZnw#۫U KF8͒^#szGBNa*1rgs~W3Fݷ:?;W/^+lCC1ۜ^0z( B މ"\:iNM ꆺF< R◐\JYf`eUPόNJpTm-Jh 8 3[0 @LG4ws!'Lң' 78=NjTP6̆u/u:UOh`T2MSD8놎 J.r('+Jtv U_B~6"c_2*:IsN2C*ўX;mkHi KJ=C bs+My#\,xW4ci9;?%AVA]#oۖ[rhwwӤ(X6 ըlЪe>0dg3z_WZ.d- 88>,l?LJ[S 7U?#͉i3B ǕlvnSsvbk Z6U#xj}?FW~+@@Ǹ`PDI6\j|'oHxt5!¿]ܝ,61K>bũy!Fפ[>X0+x;]B\7#7LDw lO=Q.⧺zvDXƱ%8DzW$۽ѳNS}{;NJ0u7&cT@7O?+_^tEݶt|nMᄬ1gR6)عa]Z}jvʮ>V#o^C} R\`|Үpjv=):rћiT#J̄!д1XYLhM"b~t "5qMqwכ!ٔQS6O"ٶm~*80z-C~_v(ScoEC8WKJ2YW VzU Ѩ7:0œ?h}*T,@Kgh} fvixʗ5X,L.t;.!JY[㊡p2-S e(#5t u>p-rtaizˢBnKìGpWBֵ4q:pbTF*j'+_o܌⣬ ZKI@G.8xM:4H̘9AM% C)-ҮځIUj(#juOTi|_Q<~q]O7e PuWwOJ]D# q?RS VF\CX x;OGin2o*Zf:r4s{KLZ.]#h4I jrjJk r-j-lOFm]W #3f2kITD275qGF~ hۯl<l:n\[ay\!/"WR:;r6qcܾ%Uz[kة3F3]9Ҹ-ds&@W JK/Vʮ}`pmy fΪ݅iVhUQ%NtBCAC#YGUU|\i-Q ] <&.ױ'=rUevrOS)$FE֟(fH 1^c|nWG9kC05$]\\KI``ނc\EуΓCqb mҼ ѯjLJ+.$ yĠ Rd`?X)|BGXw+6tVx=!Ph*ZNa38_JTJW41 g:Uh]'@l.X!\4S"fRgvlI&-?a:ɽ^Dꎤ`w!o ;4rbw"nLwzS¯Tv*e^[3i178]J$Iʰ|S )F?G+:z_scFط1*u<1{;ןbd!t- /F !'zY#fr=+VMVn?LSb wpszE{dhȸBٿo{ly33͝6$lyc-@ "(ћ SgĢѮמA uY aTL9p "nB3ocM 28xg>WuKkNӥ6])nYvZ W.oJ"BY)=S('i2-{CԴߛb rS7Ӣe"b'B!w P,2/ 蠋dy:¿qSé osT잤~ w4ִUXw]:,My %n^^!8l>ҊJ!/A^׎9`Q#?CmK-KQAS˚pU OL͎~$fNe_N֕G[pOJ6翾Q=k|%`&/)i#ҕ-?<3dv-tɢ&(FNM9̰wG ?D]9Xۯ tt4^؞鱗JpG3Ls MF^ ^RȎi{~жzu5# 7!y7xks}WAQ䜶^󠰰BhNnbT+ON2{x<kP:4VgR{HѢqP܇=U~̔Ky&`y`uT.9fL]~H"`{`# j#{4бUV壧-E P9TUeB7Vvep%E(Y5__xaMd\R xqb,P鮄LHS`cGBLf)va-zOK4l\V &SϳӯS@T7,|ޟfж*|ͪ+>) \z"O#|X'3VMP}!XIIu2?ܧ uй֔6=&s"vhVKmND˽pQSH@j3jizZ^kad; ]Gǫ/uk%4'EMsA&e%e*\64u(vanN} ?,`K$o?ʉ{]-fh=NrӤBLx+Ͻ*G /vT皋z{g ` Yi:ǧx]NN'Qʘhg+D5 ڊCv'Bڄ!Ů*w>Bl xZEXNDr.&5%dH%!0=tXqߏ.8`&ۣfw"ύ A W̉+%p񼌀DOd\P,ot{5ȒL!E_ Fkx{T{ބSlgdσ[/4N0f$›I=ѳń.JQ{8 Xy %($=_ʝ>0 b8L95TF21Jm><.5(쨒\q >7Y\|#.>WbH@H26Ͳgi 1$Es{g䔄GX٬GYw}2:iJ<,&\jޗ$wD$X $sBZ+ Ck>?fd?@B X v(C@ [n@4ev+ Vq(j~<&:";AsC0|xS!C8q"s2p@|Q ),ą\ #%ƅ)N)}$CȽ:3@޵sP2扊p`7ONw#'d,hL|´m{ݸdDӿ>NX@KђҢD?_rHWTH#r&ƶ("[+qE%TGR9n>; ~MZ)˛{鄭N?P(Ң'-ɖ:X*`1wLaz?,XDI ߒ\ 88Mζ FG5;}Ih!mhv}6hUy U3e-rXcl?T;v10^B]^&@e@\k|;jjE_fOPAUmO˪фׄaVԖCWDX{<} G('QܞUũH- bUa+$gF3yy$G&3Kq׽-g X*pXwg(\qs e1/fA8]߃"Ț%ӈٍ(EIpS A9))8o-G6i^eUI _ REfBYsͰLx;b<$t["lԯ[z ?z)-ڛ{ׇ,ҋm'JLNaN ;)tjAbƿR\i[YiVK`I3Yg词i;2J>.u4_Wo@ة>o bqm|.9Uq{?q>G30#|q4 / F  d^9Sׄ4WyL3$'C{r?70k $]94QZ=u 8U["24F֢V;ٸHsaaRSƓG9Z+%\}æ3y7Y:G!ݶY;9iY|{Ǖ@X ؅OtKSUdb҄vA0[vx׹O tbۻ}0ڱ}cK/Uc`c:y[C¶HT/u?Wd-锻.cH0(c 8d?KUwVl%v2L!PQN:E=,CuxIggaZaH8SUԀ&OT 6a05+fҘ{5@SX9 x/ح UFw6k+cWV٬6l_\gxD*W0L' V5aAM3P$on[6&ʈKÆ84E='~ƈp_|!P^jo#O/mG6]噎8:X<Ar?oh1y1pkJhCe/c?>өӸ_>qWyR!r?Zٕ0&ZVJ꯱j,YM*;@ɶٖϫ ㈞ RA[ȮVŒ!oyL H"Õ^ItHj!hJs.r$gx/dɯkػ7;uA$xi R})`g4YvEdQ޻KhZh1 yln ^/fO _(/W!xm@(,ΰD:w2b1a{$K8=$Ji=K{xiۼ1dO+}sc~o,7HCHy&ɠ`|yG,c-a5k$Vw˳]Jʋ N6^WE!}ZMZb)u- @Gёb^R|g0Ml-DV,Up:bP^0C&so,'΁;mPК^ lYʂ;Fi[NbFq6*\I'(]` zdQ{I'_kO6LV\Ҭ;γH#p6Z;+ h 8?G~[Mzڬ_ g vȟ?/rbGfFz_p?-aڱI XXKb, 6Ln> ݁~VɃDWؐ&.57 xӪE$ТTT7isI8\\*:foDZy DÒ&cy_m,N'K wdRx.viEF1L-~MiV^+eW}{˫c<]%[4|=\lFE.E-!q;] pw"u*EYLfhFw%d@z_̫v9Ә ̔)+Y u-h uуWCӃ_Byk Zk#5F-E;1JS 0 xO^_recɂ'5\Ѭ@=|؉nhvPKGk(ep5=rcD/WJ m0A̓?Hzn#aRp~uf_X=IsBx rJttdx?!ů6rǭͻQ2 Qt4qOm[k:Dgv=T e\U+!.7Y%`¶PߖxG؋®ҟ[ iC N.;4wY7Hj9Tח͈;}mF #AL3~z%^u.m*eDWH@H$'t{*1 z&\+:${) *ڵ^!X3#nTyƳXgBDThFt{$XtAzKR0٦=ܥk$!%c<$!*.~K(]_* u"5BNb6.V8]"!%惋 1bRFZa3&0+sP'F@JBWhV[d̈"u?SD~dV-=`%Tv5?#{F|9T`uWUupJ\f݋{Tvs؂7 ~9"oT`j%m1]LN(r)y+;c ưzYk;7jbn{atR<*.3 B1pfwOB&< ]}>PvHG)ԕ4IC`XS^LC~O>񡿇~^x0gqڣ4[/v68:_\r}˚Eݰā9axJX$3+x&+6YOA.mm##Ќ7L4$۶gBqʜ㗻 "hfQ1@nT1R1ĮLR;ng{UhKv*$zިG„Ar*& ԆSeźFRidztlKg)*Gu7Phzշ\R3kx;tESyx%' Π lwJjXb gkYpmR~)|9?DMʿ綡a-?ֽ%P" 1 >Б^*l. 'ZAd]&)!w+z-w''{+% q&V2gA0h {6/O)S rG<5ңfy" rOk. T\.cO "UL{ F*FYj=^!Ĭ }x2O7w!K A693c3IBW;Lo=G1ߧoc cU;a P=rrOBN>!xפrΩH>UdSWwx9 x1P3J3\(|U wd8t&꘭r-2V:4m$L\ǡp:6LÉɺ'Ge辬 &NSA2urQޙ4)5zOĊ,)Ma =F*-W$6-]#<_2\d~5L ˛='33Ii e(v%vFf\MI >B#߳6RnqI r[bY!g\ja ݧɜ-e{V(!ƔDs_s3n ilFnCE F\{n[Fj:lb~qUn:ڰi#дiՍs_zUGDn&3bSMD->ar;Z~s'efk3Ӥs-"giĴGq>3Ȉ>:^ST‹Wv3lu3'gq2~ן&;lNM+(\I̿q^dߥÑ]_1e;c*:JT(/ 2aJwܘ5&šY?+ԅ/Ê>m d|tNOgՓAe0E5xh,b$m$Rի㥮D, PIԤD҈m9{\',ǎ||(Q/}P= BGqbu>=>c9ڊh>XgGm9ky,cy,!ƍYOI{2!(1u g"Vk' #]S) */{) V8F{ eܘ/mjn΃`rۭpPA;^kēZ4Zנ䲇eZŊMCe𫅑5|6.omX 4'C0pJ|eRoI,YN*Io6%0j/cVKr_/naO3 Fdc-'΋CpddV5P ޺k. q/1/i;gTC^)9AC7AKP-d깔b:(lkU1I_ He.zmm/j;{nw8MroUlm9sQ[-XI@Q({|4g5kv)G$خ2 ر齉7#n"+P>_HgM صz0'7ȉC~f_ g#3ViӴ4[\&!vA`+_0Wy껙>V]'G}v<*mછ;BDäQSУVNjE٧;THze0Q7\QѰST(,y 3Z~2❀1hjsZn48)70 *t xc5us屏 hfY"0Tq;^cvIF*if21/3XPAYn,)V3+{BgQPy ,㾅rs.Tď.Z:l]MVGVRCn]~ǰJ'ZN)vcݠ} *W)Еo@ Ǎ5i6SWi׏c>ΘDhG '+Jwy ykPmJ&Լ5-Ι|9Lms ׯ#z"v̥xDQC+z`ס5_Oݺl' !si鐾j]I٘1|#IJ:  "bE.䃠AYUR"A餁>~VGγx677MMm"~lpQ:@)43mKy~ԫ{O⽬T̓}3e8ʰXMO] Wִ[QJ2<sg߄'~/~a O.V\ rR\xO-ڒuWceQ/^[Td2g.0 fk0X :+BϽ}$ /EQRCKrǁkq )$o;h%1n 3:wf8(hteTy?ӏIMOV)Mԅxhf,I鱞W_\<4q?5#]A/5YdXMv{1rn(VZMjBxP!䗤vR"e^~*xm3-N9(\ 9IDqicɄM :2$iUfՖv@ Gߘ(JXf-sFns\z/3!)%oOŒEV׳5L8 &޻\S7[J1l$Ƨ4Hn@.m nXU'wF@rt|A= LAB9ѝ?w z{uH0[dhi dstzk"[=pp[ހ#60 ^s϶x8%tz Oٚd1&EɳE@k`hZ.7% S!ݕ@WB#YwIJr Eq+U tA/^[ȾfCp-ageQϠtq($=h+f$S( :Jv^&]Drj{ oIB8Ï)Re@,{ e0wPXRy6i  vxoyögc]ΦmR c˲K]QJ%j"(OvC2aPbGʺA|sHooztd%>rE5T<>#9Tx}K``L0^ S"";ݭM\n iC .QSg6(t0DfJfXmޱ3uUnx8JALG mGfړ韖IE,xk$m2pm|綹!aw|dE\zG/U۫[Vj㣘[>UY/Va%aidMlZW+[Y~M̵s jEO\ ?LBT Y|aye#t,b܄ah$UIFDSIB|[L_{=\%"Iwq&>ɆϿfhpA5y+[g+@cݱ"!O wSt΢CqK#@o:\2Xڣd5=+K=Q=)˲Z:o?ng4qDZ7l'L/ "ZgZCb6jVgt뚎}&煞|4@VOR2sB]=k)!VQaP8/GP̋wLq3Șet?s_b9|p^!à#q9- Nw7Bg֏$`,]n)ȕ1Eѹ}=n] Gi*|&nS(AwhIPe2 7;WȀjv>9uܐB~< =1愆T_|c VXop-a Ꝼ4&ŏ UbdĚ_RH{as$3!W7?j%Fw?cg˄ORvFm_M*]]Z5R7CR9_ȾO *in*ԩgʝGk~3eOgbN AEVXub6! IM&&I^w&PgB=Vtt| '1$w%xR/lyfҴY]a%SoQAYFV͞@Fu_\,rB!UaԪ`tOH{LﮉASg`;La4d:ӈXc6l$̐)ӥ=YIUnZR0O)eh0Ӂr+2yW>oO.KyIRpxʻ(B " ub*WS#%~j '˜-aĜ68E^E0M?2aA}Eg'V M4B@k 8@} (,'xp e#[& ?6ƴ2Bn@2X=gس9Un.S>m\i z7u5*8YgW9g^dc^AFc̪}(A%Wx~V}(ړѴ 6zq6*2Vp#uXnqx"H%jDD{t;s$#s]JRx-N56Es&Cp#zh|a1/BnfI1&f" AEF;d [TiUg5 ԃX?d;~əs)G*P=רͅ|N1) дX{ eħJ;iPu: cxƤ a%f I/!‘FiVUVq1g'nuS(Bhvo{IH٢/_rYqqlZܮҵmԾ'͌mFd##dا|z%|1Ə_Vw0U8SzPV* ټQߎE=< LĂbIӮpaz܆j\a{ODAx#&8K#!'S ?a'Y12z=殕\K <0w%Rlja5 U%:uu9- v}T}/؁SP\tR+]z9U6-Y8{ 2Tg8gX0328Ÿ2Vl!d7U*NP1csA jveN1idNTh2Xc᎗{ =X\ʂ 7{k$827UW6e42n7HޱY)ȯw@#RSO|53<+iHM]R, _xr,y 9?^I}J϶Dڎ ̖{YSG{א>z[Ԃ}qcEIuu#t;ZZ׉T |:?m㝴\fDC3•;h%"^|~Ixdvm,H7 0wǙɿ*=*ʗ 60lMKd(dgyƗI0度W`MjN  cxVZi4u^Wad!< 2+_?9eg*?Ild@W[_tPjS9нj]q/.͙8Q$)J8Z Kvx{[UkϞ,>1"WݒRv*{OLK1)3ZY)W4Y%eC;{#VK;m7d^s8vu)/O̗2D`u0:yP M!,Uou1P:GG3ME&}9I }-P(|ذlc OwH%I^KSlOM_tcUý9fe&3ՔD9 7a,U&^E&Ӿ׊W4L!H?~gDT/k̲dqE!`Z2GuYa x oQ@SR@_nF$07&ؿ\SIಡFc=Bb!dmuڬGlK D"=$>>哹cGR)#.ָsWiS*GX>5"0HIQҳS=bO02#"81,cg-neَ= <fP)ԇh#jŁhdv-nڑh l /n'c:jD0Nhzx9 ^+dΙ${+S)CcP(A4mb@rx¿} 6v m$V}ū7 COzSՎ~s ~F= ;כ&'K3 w CWzv6@r+k ;_akzG$ˡJttƣvi}3a3{.ҁ?Ya6xd $cN4%l?0tN1@x4:Vϓ`O@$/<0>0rN&c D-RbW|[kJ<+}G*E عk"}.!-ڼUy8RhD`+;|Ԡ;eL+6A2|&D+"xFaS{= LLaPdrj' c RSNʵ׌Lx5ꝃ8-$6Jȸ~oͲ-sA#_u9MOIGʠDgFM/f\'Փ*2.FF6Ka0s;oji*ʪ|3p0BrୋR%P uQX8(")GQ1[D\JC7# DE>㨴ÈRZnrbG*Qs4.AS(BD$ 'ۧTb$~ bmh(i_QVlfX0?Ys811{kLJF22/XN+v]:BB oR#IJ덠tMKPJ,;|̟ZH8xQmiF\䫗vqK L cj4Ekvlv!`Eh$i(ƕ>ADŽJV?%_# oكpUB=j=8GzB4ZgXV%j!Ȕ&"+KWw{"X]#tRatT`n Ʒs{v\&;fkJzҍ<`$ZLk&[G߿szYZwaW^n=R^l[Xwg =EF*LJW~~mej6Up^%vd꧝Z=re%SXF-͜ϮejrGYbX%\s,[Ey ,5`Af M+?j:4FILqDz *܁<~tb=4A-33Dȓ*9 &{t-bVZ\c\/*(i<&@]JW,J6QZճRu:֡g\ ^PzvARJ sa`y1 J\"$ˎ>xX?mDh&Kx[L#tFIEe2#'=_VxOޒI!6bA zUg&`ΗK$@ӑWё|i^3M 9{tԐfy];udO+ֶ,vi8QɭeWnG`9\8Db V,s25*K ~-x2)\_7. 2}kL !ԶIbUZ,>-_@qIPă V5m*LՀixb $z?(5wdY,Z=/ {GWծuX U>S "_.R >Bi7\~au +r+a` -B!n{=2Z5(x-+y2iiJ~'VC MojVe (7|6S(DkjmFI) { Owg!Dޢi3ُOLW+P%l?GS@%pꊫ.4@0'8VAPwJ; AFe׳">!#תj |G}ӎqF%%|([,3 11W %g=cy<@ O#Ʊ܅K>DW˪PYO=~bT$JH7a?i˜ sfSac0 _>KaG YMPl8>Ѐ#vx/-j[VrY#5 +1OG?Ŕ(axH [.ϗ%rt( QEhCmDBmٷʃ5i AK#NjW~#w5ahPGS#,fH@{fN _Qw]x l߿;˝hCG=v3dDne(|#mc 27(X!'t|1_t+jMۤqRvwȀ(u5|ϺkAXB} K==8ȴ(>CY!U^U{N%{Ll6y$rǿo ;X7OU|glt/IiXV:+L)1ytT6~ĥ24H?@L891`{֖ݳEf[E_^,=0A'2i50{1yI.7yRLK.g$ֶoaY}<׏gfL=9c.tcN" nʜ2[=×i?h&/(݀_~t9?.aV0ï'u~4UNbms#|}.BhCj5=uTHύ7Zn"LL Н`ʺ0,K7G"ޥ^EOu( 7aT2@rߎn<΋{nkM)]qS'k-)2ז4F{Ib$!6FitqH4zVTkg*L,#>Mj7˸,v"QI6y<ԃ$+χU Tς*adx'xCqG%H3r"xpѲD#%[3ӛB־"@r@3Gsxp3h 8ߗ*vu%HB#ߴIEBbī(qUi`嫷+2;q)A^ˆj0"Ň  a^)a%ȃBqQ`SzVXjÒ}j;.W_Ì45$rhl >nO'oɹ[$0|&EPK}g:XuySZVaU}^aqjoʕt[,`&{RZ{=7 $v$Ե(~ Zp/!#CBZc)ȯ)n2^'=ou($dZx^Ȋ 7N{Ax*<_g EW#;ͨMzT uj xRapˣ;]W P_W;bxꧭӕC8ϛXc`QXs>a \ޒbRHe- f%Stq$4f۴˅Rz>2j@z{ј+#i#M]>sb"P9rӾ8)#r(!`r,eAЄCNӡx=ЊNN?l}}|`:V YuE"qrVH _Nwd 2$/Q" CRfrlv^D$GT9N݊y:MJ} 8t!:R7tď䁓D0Q)WȖ@a4ҟk=a:",F|} ~l]>09~vPE[iE㗱H Hݤw00,2x!Ny;IA6/,M-/sJ5Av-=}pi6;lp,w0g$M20c> ICTl4pi5FĽ"z#ݻ |R=?YGhTݠ #(I!eaɮ&j.`,T=ދ$IO=`8;6 cAIl jqy.v=lE*YᖯEx  5B_x{k2Z̍<H9g`[`IN./  ׀ m+G'"+ֽxmTa>ڬ+& c]Z35"c!`pSKJ^J UV B*G<\zef]ᨐwH.ޘ"{el EPcp;`AhO-/k!).^iޛZ{]HDdӖCy)(^WgNst±_{짰avvoA 2YI06$D=n/MmtOT"u\rqLc{x6tLߑ_mmIy#!{YL f̱pD`e1dFFK[rf2̭>3,$\5|6\:1 LrLu"%t,sb~Ɂho^CGIIզύ&F*\`,N;Ɉ", O:RQEjS6Wضe>h@!\Q=moNbKBW|ZvD6hfZF;P\#Zc8> k ƙHHA(C5<"2.`LEO2,V(qbs#(z}-fG8ΪF<֯^1NB`-u/,[YY췱1/zL]0ZXj(. Q+{_`'TI++Iv'*w= x/s +z=u'?m2&dET,==w=E҂sqQX:t\/$u))݊Y7%~pBFZXR.bf3Zs'X6ȉdD"Tpc'D\~Ԭr ';<f{F,jsr{I˳Lҡ ԙj"w$yGYjZq;S[ 9(y1 :V7t`eb$-qFϕ;pR̵.Ĩv t85V6v ,"UXrH6n\= S61QRۋqo &u.FVI}ʓi=GPU[fd8oRqY" R9C8i@v2WMhk@i^?)F@-TG:vVg%LʿDf.TʉBO_qAW":3gvɏnq%ㄟw;]L%ƛy@G }MIe!<Ş p:Q!ۊ?f W0B\QeA@RQt壳y*JʿՇ+"d+~#/wu}vأWqBA[$ns9Bo-؉׶iYǷ-['dQB>\qt8oygvNxW8Dpy$J|3UPbY41T'SvR+;1wǩfqYQUoXC#t~dGYnJFp^~ƞ(Ue3)t^ˌ!Kfx][$0+nkqeVLY5zgӷ+w/T%Ԓ3.&B#W>%+  T 5M)U e-t`e+Ƿ ߧJr[Bkf Ġ8@i!1%NIyYSP*% 5$ YG<z&ZN@kU}fC),Ir-LFLl-p'I<l=eNth)1W9)9jZ[Y%[t1܌\ =8~JCrN["ˊA&^| Mpt;9gp+VY`.#q/f/zۢ%EF= q5\0fVw0&dBeq^{: r/2&>%[ ydzBI9"J5x~ \QAHhyݛKO%HXAQ]Y6 w_w7?uH:e5JGCvPZ^RHqg]> d f,XxXLsjf쓑RjjcuoD CI"܍BH{U-DH qApy"2:gfƽ9av:9l!)91Eӛ=WҢr<TFXTF$И*xgXcM-QhJ(?K/K h+Q! VꊥXH' nɯ#éb=*(Ek ޭZ=,n#~d{t --tE2E}ǭ8"m傌lG4yVxl;v`z[ UT.Xĥ 6m˽@}̓nZ3Lp˪Nh4mmP`|ۓ- +|9 s{Y[CDdਗ਼Fg_`/Ciq,YynNd\D}tQ`K#!71,성#9}VM'UV2:U7??٘\Mc&ڐʜk 깾S:y8gW'Ęlϱq3J QA c)}Fedr ?;TT/D>g0RTCsbXK>sU٧q!kKA ;/]+RA*-E"]aPyc:*駝pzUgW~<}bcdDKB}uKN݄"8xh?0R a9I5 Ozw\IG9K4SZ3(p }:rtAo1@zRz ֝V8 $18-;ACaK$S@5gm]o^'soVS면~1h}O)C"aKi/谽KZYLB'lO9IR~{T6 "o"YW=2A]91 [k(›[!%Xփ)HpC0+MO!lhZ ~-G+:gSO(å)'+*X+w }=GWkBr7,6#R N/nXqQD.N=Fn8 |vf}8~Z3 ]k?!aW.L(pxPѝJ3P^(NvO-FwU'1x2y8akfbDLml{4;QZ`kiC̚p80Ga49N\uU"0/ZAi,z9* ]s`?ső|-qKCv+}7{@I!Y?4E18LTmsGj3aAWƊ+zƹL ag BJi"hFi+uWs,GK$Xmd_ފ^s%^%XT-BӠ8 jd&/mbm{aZwb< iQF<|<MZ-$z6[M=rdBXl{"6t;c7V;@H#n04!Cs^^q.>yÃvyY_@DyEhWn*)b@y\{95PoT#k-Y"vwbd6ɓGs4e(@ ,Hs"ma}Unm-$I!M}+YXO noNM4%>[R 彞-=a-ɊUy=)b꿺zF My:hRo| LHз e *r"Rĥ6=`mRxdˬA#":룘PϙPK@$ݠl8> *H;qh?sɩ1)6~KRrHIeel ȎD(iNHdgE8&B؇KEʲ&^K^IcR3DP/6NiPX|lkQC:-;q m =Ou]NEM]MڂpFrR\!6m(+DH^D|i4:qZ3|H4) $*c˳[?﫵n;O ?e7&<ki"G,g#VAUF:T". Oxi:aHN$t|!L&v~և;FF8059~| 1i5uз5ukA w9?e@$_`rsW:h(ZͶ)`FӦI,IYͥxP6JRUɴŸA Sآ*_ d |Lv'NcdiݩFL#fִ ƿojLJR*K2 6@1/E$ƴ&$e1:~`?I;+,UP׫5C1y馺ރW?Qq&-fGshw;4bibֆk9a Q'"#w>e̋yS[,5\~ûʠAt2U=dv'Zg9 aX4la#E~W]t> e>ĤOpxBn(^(  MPnOQ\y}|a7#?c*9 lFD!%&o,T@:$ {+vStjF)&@Y׼e/r]k & I+áx(1iBrE ?Ƕ~'oL5)9W^K,rP@U灋^ʸ"ɓfq ^?׮!YX3H0~仌Lx'XZpKq3y|XtZ">Q_6  ,qцطj[&V'REȿ&\H6$t z1}2nv_F [`Z!κu,! _6bd$L0(K"%ck/)f.E'~ȓw, `!Q?tƟ?R2!D#Hs^g) %gK|j*chW`kIB ])Sv é!|wco;9¡Td0.6ٖ~Vh0pU(Tu3;*A[bo~6DOˉi`cqؠUDIf@rmičAb{RUtRk[zU~idF͗]LioA%ϚAVB1 HZ5.k!IrCbNQmz[i)!Xg 3'%Rmk&Kk2IzPݗq,Ps-;j"yYS9tQ )Q4ٯ|-h@ ޔ/^`%\7φ9JKέ}KKy}]Q5uOPHU%8 BlJ xɕir \U ݞ,.) ԒZqk*ٵTJd'p[D.KqOϫE K\Ep ]%,?*: -b3ǞԽ7ÎJO^oA lcΤov޲Lڲc2tJ2/6ώ@a WyS#g15]zͦ@;^)P/=@cuvAWf`ͼl\s]Z?"鳨 )jm: gq2:_ԞL-9r *Iӝ |I|*H lk{x_BCmn{OlwM>wHF ?(5c\Z )N5SS̢u8hS7DWP: Q4n_Z\ptQ^"@k0\oZIwM.Ƨ/p0Okk]YbJojPݐ>tXʀ@%; [f+lu,M. @p1Ɲ3=^N%MlvjuX:{O@mDeaަ;;a%Df9tDoF q' To\%) {ZvmvsLO=|tt1[3[m45iL NED-1޾ 痣Z{ ֵjK!ކM+y1T@ڴBGv#RG,'DEEA[IێvLapwWw]SaLI}y aTh5zj`,T^ 7 VWQozpEFy).C~=ij)߅Q%r)g1~1Bx{4ZO@~<гq,Sٱ'<{)38+[׽Ip.9.n9db[/ ]-@z/CV'lm }PN39ϚR4A0y0Sm{y*檂N$&mܞJ9Nw΁ؕYW]\+kwO|[DׁUV>Wj3qmq=ht3ڰ"G$*ޯR@dS\෮d÷*:O}[.%5A4@b^,p^"o1:(5u ZF%6Ix$m$7,2+:VɅO:!{5ABdyٖvő2()*#Q7~7*l~CoܜsZiq<ԥonцdSy0}e=^%XEN NDo%S양7WsRmpʂc_ra lK9Ls#}t9oUi)+yy2SSUr۞ѫ|#*i# ;ʃveLa`JYC4Pt'p'O2cHZ\dG> W`R3C q;IE'owcSnDaXD.@ : JH\- Fa?R ʻZ/Z'7ԫ,l lB2gd{R7k^h'(Zçvwb R|nAϿB %łԸWIBKZwuvNmVfI]CxŅCUu!fY-yL \SI9c 'n$C?nH$).9yBIS~Ui ʙ:MV {0vJшķZQѰ}#yc>I M4 9"zo00OIMPR|3,^aM9 9d05J.~匽TAg__QCk%vKXӬk8gv^3oVc3ZXB+b++W0@T*]BpCxRhv,/n\V-j{XRBRSddhXod>uB\V~G,c`ڝNUPܰ_J[ɾrc{~R)&Xvi8Б. d㝶~^OcP>pA@mVx، MۯYیW[3{cK4:b)/cJg"ӳ#x)ВEJ6iQ|]7W5WEkOO!ROcʕBYpd@dXԴ( g>xn{"S!hY2 ŘVjNIiu=H s 0gKe0SNz ͊E^DdO / @8%Y޻ #ǎc5b"Q)ӛcԇIAR]W489GT7m2|:Obo^ ]t>V"R=b~K , Oc!M67adF\;]+LNbGڋ_@$1&K-o]TcZy\xz.*/ڒ{+&Ž™`ji)iPZ\JbUWQ `.g~ z⣔E.+[!l%5}8R}> P~ D{f5xᅤ!$jML\Rq7K8GkVO޷jfKcvZVv1\B͑]l]ASDLe"x*NZ'Lunn(|sW(ճ3/)]%Pdek:EMYк<^amCnz,nQ̘=-|ʘ%#-CD%$Ж*I%"$ԃl v -ܷ ͈'́#%<`${YF{bUpnd\'xsGE‹Bܚ2m>G,8T1{4M q`xXswӺQJ V/L η7 33[K_.փXqzt&õ~ ܎܀-!z^7Bqq`xY5Je8R~tp~n?!B8E_F{&'Q衋K1c'i GU 8z)tLVv'2$kю L#G{66@ dJZ%؉EkKψy^z,>u wQWuTKppBVX@WA]jS?@+2ɯK ZIا>2G2nL*>Rp[ @׮'&60޳fO] Ʊ˅ tQeCZsC:~,R4SЏT$JbtԩbT""@*c:n > c@d@5j4҆*{j6 YrfnCm@:㝏{k-&sgbXF٘ aE(28Q#s^yKwHIUuS[LBHd*A߲Yh'c4>'! p&b0YSŀxJ/$oo_m-[/цr1Ը,C)P] (tyALE+gɏ`P/%\*)kQsN"wXY(M1`nIi_uA޸0W5$ p n>z 铋X!}X^ª҂H\OI #a͊ iY#Lpto"n쩈 :;t08lr 9ŊNˎ}7~*þy}Vx[F{m :;.Թo?&bik<J4~Ғm1Iy]+Idtj(T9Ji-tWB0=&~mæhț]jRl gu祊n)8xoƆ>k9Z5mBPHvl'sU@TԂ(LMʨkH`EYe\ⲕ3%Ul #A Ջb 'մ'6Lb6Hc_g $Kc;'l5Pf-7مΚA"m׉QQi6tKbb&!_ 1`{I4Oge'O!%TLV($PC4fXцNE:.  hAŠk񇔐3 %AՌ5r|p01ªA2KwIb+tn>ƢNn6t"jBM͂If@dz>WV@*+* ?zv:~#=G 3dkؔw!bnj@4ԟA68qߕy9Q牕}tCTpk su)LNa1d8`Vp\oJT7aݎJ>} b,i!}9q"YΦHft5a-1kxsR 1fa ?xyy?vץФK>S9]yAd#ŷh412 3я)TrzY9$7,N-Tnsdmڊ MT-eX|c%Û_qhx<#]lu`G^;q-iWV+EfȍUQ0f;zyLF3r`q+,Dj($-{L'@U.!ڛ \k4* +:zP5J\x@ٳyk{Qs<3d򣣚\ `E4L!2&#s,Zެ%5Bl6 ,F26bkR _SǃY9\p Q!Ju?u'ڎn*P9JG ㆛"sG}GͲݿv m_ydi\~<t)\.IŐ) lX37d6V;7SX% $岵y}ruYv/ 4$=/VwI]+PE[M2%Lge "ԧrtl OeC\K$)?-@Y04 E܈*L<[ISkU4|l;_Z-V (+} tɦOZތ g,>bû!ÝA4333MhM[·*ws0:5캻CYB':yhh66Ō2Ol<`Ѩ¥$M -{ Բ}f/`_1EI reqT*qcWx>gQj]\MEZ 3M̀fJs\Ȟ7+xP'7S->aǹ#S"TPw+>V4v;c^ǔRQG[zO!7HB!C7N,lE21O &}A0/^FX   1oE˘0`d Y7<%٣E=)m1StfX\'BLtCh ՞|XlE XA,^irhuՍxWr.`\n,}:M.;rBGqnk_WWYֳC//pg/HvSb*WwY\%v&18}]9&|o[q9!C'{[ p\n;[92F!TkgyNSMLۇ[lꓻBv|:n"t9_g="tb(3(j5-(+~Yߙ}-9IkYŵd`d?a쳑i#PPc%5Y)dD  l9߷w'fZ~RrI~@NiMx`Pf⢈T .1_];`C?ߢsƎ2ྲྀEl /3uرOņᢢ퇇3k6j~"P6ū,mخ[ TЁ 0C<3ݮ"@aZV@0"ޣ5^F' o8]h6 j199N]#=DNK@ȣ"?& h*dtX^vɋ|})ь4J:DC|c[' VE=Ǧ.kY6k ^ J'C«YQ!ܭk AItM(b"u=1fX%QJCZŊJx:cGu W`3+b{`{"ߋOTYbϮg-$SYD;ibod Nh8++@ފjkD͝E;vd ),EQg>I#h% OBLS$퉩'ƮofrLcT"E/yxe(LBʕW@'>ݯ]KX"Ff"_,n@v50ver,S8ӹjrmRӚWtsaUvױ& /kȃg3u2BO0^O/dx9: kZ:fb^%6Ϗ,toVwr)İ*`8byɇ.+@tzf-94$U2]ِz܏þ/*dqcDvvA6@_J[p pm%h[9`uH"ڤG:eQ.x@f S܊m}XYFW?d5 _wҔHߑ唉T{@Fj\VZ.vs8R8 Ba`,M5Y9-gi+-Ӧ,9kp`vX>gz뜅ea8E@Y!~9U¸U퇐b !^6|8RPT,Zg1a/r,M ; nb^N-C=_ΧN2{o&Gn&xn]C;C՛52+G(%qS6E["Gɵk _$ޘdtObgÜ}[lWM20hoo'Z87\0S0F!eކP@ur;(UK{w|ƥs_]o4$R9a7\ ?׳۩& sjIKaKod“U9u!4v;YUA&+Dxc:B.Hܺ:|u3pow+ֶ,Ѭ 걨+~zY~TuZw0_G9R18%]%EA8~1Q\=&lϾqT.L$BiXpOAf\T_^oxFD Џ>yJ׆fޞqAh_T!o& S7@ݮ-]î]0aĮsx'%g7_Rɢ^t3_.YpHIpH׭qD_xa%%OzfN 1Jēcڂؤ T! \QY ; X uT^k%]= _bE6t&zAE]=q9t]+F/bQ.ɾݞYK%4Qu N3G2/|Vce:L9\2$|FΟ3^Qy."ͰB1O1?σ`/ur_e,SWM]Nt1n{~%*Q*R e<@^/?I]Sqj.? 8Y> _A LhFfbޘ~ LCo #e&SM</$1!h:u6Р:} Oҟ#6ذcդ9OQC`-d_.3>V"1waA s:.Ćo;g*w΋}[N$쨟EkWz1yNe83GH.:44,i~15"ﺂ~pt[ny uIf3%xOoygXNQɘijağy4:wؔuL`=vD, 3kIcxV(HotwYK=]JpUt;+ .`` &NfF9 ˅"& J373Ҳ.hj6%DW FDk<DCUw#wҜ2HFpx5^o.~?݃Yմw 7yj #]PbuzuZki>`Q,npiwbRڮg3m ,m!q}dnYr\M;Ŧs?bط(d:Z%:o֢NedЬ <#di?2.iVJ y6\YaI~}A^dg󰰳68M;S4`PL?Tx&m,D䉆_zB+CX`)Nm4[fr+uDvxꀯQ-qb[9:DFXZ_*~ـ]B/>$kh 7]vr8BD3A4ZѿGLz-BI=Vv[?_"Y[9Hj)fV ~#ZBcN21W7@w<7q"ȣD, YlѮyswr ߇| \|SZB#3hD_ZO]"4v)ZcGVgk>VNNm]!~0yoW;: ,݄ /^)HI*q<Dd)h!$qÒ+f@Lo>fqL3̱NʸHY[CpϡEw>-.cђƧMX {j GD/0TcRgQ0xJm'2E;bkA hK 6Юq!^={A~0kZ{|.8kQ *U@Γި X[x(ys.? F E^$#m1zpMm]1bp n$QuX06^[UEcߘ;(Yq&Y5 [rpb #e7%n?2)$dDD`&B5vK).Qp exJϓܦ㚚;Xeaޑ,`6I7f'T$jQ" Z&vN.;in͜~WMLq=^Z_^n`F>?UF1O%va&! /Iďz<]Ä8/VL;m3Lt9or%ʽJekvTLa{ 竎PygDOMA#]f"w4_eGwϽO%ZgXK a,YZ22Ljyc c%Qآ"RQNc4-z~u:_ eEeΦE Mm^7i]|\TKug(]OΨo0L,z!~Bty2`)4E~l6@JpEiAW9V/y{.b@i1y)Op.bfll|PmH\UO-8?TNXa Cwv]bڡu۷8 M?2THh|@lB6-6oor^Э/?"$b~Qdx,@msp?BDsXnקYRdKA- Ѥwq_W.^3&;Z$T%rZZuCuD=ۿ$"7tptK笡xz+9Gw$S)letCnkJ_='mB:A-(w`X= e& l!prڏ:]VEmbxޤ9k uJC7Q:g|.R؞LL +RF0zS<>/L8LyL\΢ǂkwRN44ykF;bcIIo>t%(wzq?' V䢿k8;uc*v`7b4\Gl̥2-k(UEg7IiIJ i,x#DUu,nA}TPq; A|?cr.Y@ =NGO^ $*ά_9OiҿцtZX2r/ lܰKpa!{~%8:إR ;}'b4fM) _EVf済ޫ:8oI~gjQ "x;+@r%BҴx(,Nu7K 4pU0 LξߜGz9(\wxjg:9k4+N}|& S%@RxI!n,"/(pF4F!')LN^R7 'uGF# ErнsJu!X+ɁH _0>]N cvYתчܫ9CGmlehSMhs*RvPd^&H dn}T;{Fg0z3s㱅3q{2mf=A 8ԕ)|/=rT0 98'>6) m<'ɭiTl"5IUCY)w:2j ڂ?`Xϝ(ODymr[vM@н)(ge4}~|Yl`+{|2^`[[7:[iaޤD1ט޼IuLoZaH^V^$}-0AhX! 5k=aꁒso{eCfy?Xup;ѩiG{57<݊;UێaF;D/pgiTdCTG"^|P#-'C^'Z/c,JXkєĢ7j'4cqμڰ@,!ZwuPg~/\+VlV/z9epo_atbzqWQAwtg-Fg5i>쇗Ȇ-`&_}q_sMBD ,P&  +Aq-Ƥ((a9LtG!}1H]0Ϸk9]_U#k8x tK3n7`E*Od݅[ R_"YيG6@]n/ ;E07!gskg'emgM,ICoU~CRƅjg*0r7\TYh)N/2i q}1<ޟ˜kLyS@aFm12 . 2*{j؉ӄ$`as9rJ*d+k$=`cO-ζ%,$hF[*wq-ƍ +SUݞ`/M}’jf{E|'x/Y0{s*jv=Z&gۢesz֔t@O=$#;\{ܬ@qǹ֒qrG9֐}HŀP[s QPMĦO‚d>:J4m/Qޒf3s=!L³sG$4mjD>2w|q6WLNZ" j 1HK۪$.8I50s`vY 39*#S\rMeJqiGFEl}^6VY D{\YֹylwivALYN`㕃C\INldAnyOMeVtFɕoS>@n_U|A(8+:\<3 "ir8L;J tCTGyW:ԥ̞IOvtq 4'abZ"/2)gD/&]v@$LAUAQz?"AOAŸK_cLOzFl԰~!/RnH3]߭Co%a;zNQ 9eh=\66QT<h㯼Yo"Hr^)7VۋЛ,־=[ V(pQ(=%/[Y&Bj-àu(|ڽ'~/M`ƤH@X$6X4ٔs[NE8LzL53JqAO1\}`g(PVOm)x[9d.wA#D0Bk "&ۿco*Zčӏ%?kH5ۺ?nQlOܜ"dSLBGa;YhCu f\%n~vȻP݈ LޤYPI\%b 1=3@s3L2p_ODQ+nh"tt(VA(eƐM.X*AlK(V153i(9N||`k!3z3ĮL ,p.iž# *'KqhTt$՚a%WyP=90_CH~+] >YVL Z౷_<׀|;narI_k˅y so4P;r)ca)F8#p62fr)ϴb&@%AtuN"b) "ZxfC4+&F`a)k'` g DWsɟvxjY 걹;J*I+4&+K\r:M1 ?iůc Qh(nm>㠥)Pܨ-1ua&XG8IpSzRE YKrYll4BKAb2se}Z=Ir']],j~1<0j6*V|@Efb5zfӢ~QBh_A&\lB6]w:G3)I{I iHTN_?( J}@~W!nC!/i3fA<̲ #.^UZBFʜ c.W60 g 3'Pȩ($&N"I##t`x %C9R>6+OWb>-iM+uq!ԗ14E'XQ6BV_CX'ȅZ}z3Ծb |ȹQ}]D_R_ 7߲+L p߬uwdZM!V/o#K~@+ȇΑ5Ά>5g9s ~44> t*f+ 9jC*/nnB]D\nMݶ1 3@wq0Ax+-&Bxp)6 w qR6qpTOw^w' ZhsY%}V(MF_oaУ{9 k m4_UnV(SY'`Q1W:tkn0޼mӡ1-582:k$3?c>Y+cCyGBՕu?&Ka9 H @nO|o{H=Dzix,R~r!7B(.ѰQ\oN6Ohȴ-!SD[ <[ :uIvY M}C>,@r@N^ '.ʉJcMo".'^T]Zt>N {xׯ L@P wÍB\XF DQ\\umo)h sLc7pũ:+4F?oӏ HPtɇ57" A~}Mחpά<)r[XKJܜ:cO[ejmBOWȆLgC13y G+#@@I*uevv>@XBy,T~.9s "gY)v-[ M=ay^"e_++RǟS~gUi1/ *-dJzخV4/ .ujWb79^h(Ek|5LC..u}~9Hv 2|Jʧ/_:} WzثnxH5|Ӡ6;} ,od_6`_t?U^2nO*u1.VXm ?9x Wjc 2ZV e(m^Gdl,t=,gqyR- L]%tQV+,qZ?}mYU=lU8Oҧ//_$"4qQAt&Wvl6mfya&猱 =Ɋ^d%>(\_VɀcԀ0Q;\ }_\q.뼍rʼnŔoܥ뫇| 9>l/bȻa'6]'wZxCm)%@,ZB;+>vwI-*z]t&Z-5(y#öM\H(-+!@-BqGH"t&yaU8{;(Bpmziw14|2H|Yh~w,58]1yՠ'8EYquvY^RLPRrnb6{<&f餞m4;.hM70N7(٤)D5ֳĎgF1 0A `9L:"E0ClGd5+o<'TqJZ|K/]pǢY$|o]3QI}Rd]08bw몀aUvP,t;6OI0_GmE nWvnLÞ&] ,JM_Tys ޣ>WNS BKi|Sq!]Nbwf\p^ `cn&]Ēƅ[[?)((Pnf67AK/\>;TM='6TEpЊ;g?k(f*G0k/`~Œh 3p<9-pmi[TXuABL>`1ݜ7t}k^Qt%TfjtA?#(M#8Le< ÈxYխ)Tb+W9vqqɏEgŘ2ׇB)G2 #|WjӣjNr!t9E'.WK@ 9_,`8dł\&.{iU!PY2I$BG<7m:nnfX~49VkΑy,DFN+qˎ΋7am]g7> ]`r<aI,w処j9&a:5NgGN?F0גÚu2T%ݚ=/] r<.5Jnk9ݥ_+m x9; /tmj\;0̟DHUy> - 0gխ4Wz> <\/#i yn"LҀTHEy"op:):ZtFcmչLq Q-.@[džh6)ISS8xAw=N4&"ki-$>)gƂĨOFOt\#SN̟y"N9rɰ>kiq[m9MxhuF ]֍lIfrq+%#Xd}]1ؗG =~&P簏A?RɘHMBgOP)l/Ŗ5múGK!sQByf0]o Xd=p& <4J]8Z=co0}wel*[d(MX^0* :ǹ.?E}yZz. oΫ.)60<=DXr/SwkĤDbw7в@ڹ.8>v;ѿQVyk_|7Y|bWhA@ZI9P@Pv}@x/۫SZVvsd>6.NOBabVTH-͒36ORliayoh2oNۉ&y4z^ gbЛI{TH[#U6bQrӦIFU,Sʣ8?M\sUchbtDJ1^V4.ZSyPP#[,;})g}p<ӌ<҅J6J3~LIB7bVI> Uf<ɈV sL \ϔq0IGS/ڸ:*c ]籓dUh, fprqz pNP 'b1g HgICIU꿦Cr#t'7EA1+9F]geDJK}S0B2A9u godumAM2Ɩ*Ŀܚqv˵2ҡ(R!XW'"oKmZ(w.fko$aU5Eƨ{,$EE"&' zon*= GR/wm[ayt`-rsWo4?qأT%sf1F%%ԙk$xwDت3H{*e25> ^[UR 2_a(~{W g6*`-)V^YŢkfMAWy=s~*x"$0M*4nr! &o?mug8^^!qЦ"=~ZSCK#ks, TmGD0Nr p,_x67\R$Pq]Q뒡TOV?SRƒ{xWU /P2]pUZjprΖn@OAStѡ;,mg@1j D MgW臱%N҂%$fg2]f[pe^{ F̜ ٠A!q&(j@Uݠ%M۟5&+QR61^nUK*†%ճqP(Iz/ Ś;I^!UW #PlT-d`? ELAá5AUUiQ }FjX]ߥOdx#]zW˙YMpCd/,4r*йj`V癡0I##6[E!k!Ŝq}GDA@cWEÝCrgve/q0@L9R!uq/ F4 "^2-`wG"9ɭ5=%e+oCLWo)ƭ{|ǡse ^z℡DH21ܴ] ^ %RC" kɳxS"Ux@_BDx }<BƐ׺?NsƫLp܋Ior%dFw[6|,f0J cKمo%C]hd-@/ l2-:ۉi(<2_ NF4rt߿`?mO, yp049jPzIH3/xqݱ@S>Tי0&r\#KŢE>FyPVLr.M궔ԧ#5ZOP*/6ÉkL _~~ng#>?'Q OczV ZfKe|YXӁꄈ&E.Y<fyGVf;U|OF Q](f){0"q{s> ?I]a:"#(OWVp@qIFz *a %:Xq'_):?ϻ{N[2-R};rrCleo?͡zs pL'ڕq{?8I48㌈OH%`G^ Qk%h5x] g 'H*֏/:S.{ωZPT,fƋ"~88m'68P'9N[Tk+ϳF%%hx# uCX 1ݮ">10đFI#g0\ % 6rLzl:G ?|mcg~l;ͤ|wL pvEA?];,K &T-7EyXHtѾRE_y;-1Lf\k>o6FRՆ/Wz MVg<,;R$g"$p\R7&a%o͏9DV{X}AZ_h ]coZ?=5a#/'8W^AgsQbPٍ!N5ӹ.PՒ!QEKMfx/%EQP6>>\hgGU]?ek۟>l6VztbzG"'z##Ulg'J:Cqv\H+ !;v]k7TJ]mߏ$xя o5).Ӏ#Tv)iپ~]ZiH2A6O{Șʙ V褟v.Gǒ?/[!&i5Sžd=e} 4' ]ߞa3gsc+Tl6PӆjO:E=B쫇ԌAZ$$iވ%-0ot)!Xq4hǁ&7.NCـ϶heۡprg󢳪Fg19g]?Jhٮq/$Nsܘh sbs݅%|CL D'\3GLQATdN{3Л aN{TwF˺<䄟$o.o U3xh&Ȧa"i2Du@Td?)5&l} 7-LLI% Y1Yɍ@0##I{EcTTRb>NQL2/Ϗk󛠳{Mp~f"[zEɪ+iOs{w8Vq&k=47콀p }yW7"q/*D1HD;\eϪ"lN?RByFir Zje81eoyjIMQYewbv2dG3rhƽ!`*q1c.;1`s+ii2lY&Q29ݵTg(&QQh$[[+KVX@q 5&q@(s3љicˈO"]_ oF'L2l JId`dLV&D' GT%j7Aֈ1%BR6Pb9@,*ĵ,X3kd0on3k=h'@WП3v;dT;?A+]d65T dEC샭2;jlUރeJ!A4ek"Eon}{[θAt .r.]*R60bC7\b'ie@WzI!W?9jj=* ';TiwZZM d,όLqiZ=jIlo+/kUDe,xِJ0pu'~H'EA_LvK”0¤DdLE냯fA%)AY58Wi, ^Bq-Ncnb$C:<ﴞ aEe-:L9$2$1.ƋhdAf&7?n>) k~)rU_Z҂Or|z5/et% 2 DJ̉3lnk_$x/ɐ>fBjW㚶a9S1VgT+6xkyԲh?w(j8(tYGPI%l{spH`i1a(JU4ϭsS—O}cl4jx [ +q*3XU$N._=i9^۸Uv=9uC^gj]S&Gsu{7[j"OoS.FWhi0Z~T B߱0? kxbC о \{} v¿"_$pv"TSw|Ax4mp5u`F@ M2mi-hRKBɥe''ڊ-17I<3F E_1Y?Mx,:-?2P&ڞO@O2Co$"R,&wpKiz˘2ڬ:1j "Ynh[jv}2pE7_#LQ%ÜmAkc_La6zVT+g|ӌ+/l 9{E`XtE!QF*xvIq NDP\δ]蘽'Lfъ '9:R# rR&I_ܫSXy: @.j}R%u{]RYVc֢ S*op#^v؞&98"|-e V<| 1"U38צ;ViӵHEe6@[(6R,SSN@퐤wRQ5n-;e.OEMKWY-WCHWg~8`@[!NB6zn<&1_l+d8Wr@p%99,K> 0? {:$&6R?*`tܶ0} ]z9]T!D&>|C rD/yt@| /e)?ޛfv[Z@~JQjiV,ċɘi/+6\Kx*Kyu64bp '=/f8zbmkB^<4()).'זkB%ݢ_|A\wc(# qo&mx%wdm gs8 xB%H<莤dS㍫Wc % y`*$h~PQvf;q Me6\M29/}h`MPSb#jy>B#IsV -0W$I87>CGTݣې2_^/WdoWvǥ_n|E,"65k5=1fJyrX>^=nƹ 0{jYhUvAj,iSxؤ QJjx}GK+1MD/WğIajͥiwR,HQ{ c>ap\2)QA6t9E:e.w7;XJl֣dv0??24BCG= 8#b*:6 })gDufqvt-@{HSF@zcՑy9f~ y?ЯDUk(>'M{z53fJz[3+{QГW4kæc U5EPn<'g39ZMYWإrz1[qދ30qbi: jgT8•Tٕ ؤ G%{TIh;(cDC(Z.L^HpFhv"khgER#=إ 2Y+4gƬ^A߯0S-zuYUMC,A[=Yt1p󏦯Ñ= oϰ~-' V dQт)h|MlH'p.isk i!wBڨWk~=674s[F_Wؘ\kޓs1eKldUW ǯ4bV4ꏟ> jr*ȌCҥ%IK]vӨB1$'%ĽpYs.1Y}ф+'ƨ,dGi1%3s} pX Dnr> Ը@.M/PʩB\.Ccꏟ &!\|/'Z/ )̔?筕Sj|ƖrhE=l*23=+ϟEi")a F\mc^Wt[&F"=t_bpj2&({䬒="aQSj!3e2}z}Ns痋#ؿ>EXq8Gn X6*9}j1dqm!K7@ w1̹ڜq+5x*eWYRqfo kڜ=}N "L>Ix]zuB̔2D %o;OǩHL` @iO_HܐcsZ`_{oX0ƨ3 iTb߈w1CpeT"-uţhVK>Ce'aV^ Dz.z%N.cVj°$Tft?4'Z"X]jGA6Bu}C.e:`d$X>ZwLO6Hj(B,u܄Q[$ۑ/n.Au),rrDbs[vay7ջu{?!BEcJ*oɥϾ?֋9Yu[!Yl>bٜ$MYT1N9,CnN>)xaD("P4V<~yc[g<8:^KWCZCČlE|c gvLkb7O/}d=KA:a[a'NV#ɞ8Q]A$R׷"ae '>#y@}邕_WbsmpICdENаBnEZ3ZU,xf QcsA_3sv R$o_G * h_JcTNtayxJ*'N (GA>l4&؇w[c8GHKT!?C"-a،=PQh]+f߽ d&_oJ^Vnޫ=@ R2Ȓa PRBt_Xi2j̳@WYZezlSCpwHg^RWWa!GϏ'n-pT4\ `lG盔MCN1 WT2‡}7fhE%qfl\G {>>-!WKDU !>n\QGwffϓݪۢp'z kItE%i3'uNgMp+XrZO !'7+32GH`{z8j+FMPX4gL,|cn@,n/ߖKr>PFqN>1@1fQ8*7^lؓ>A;?qvԳ_v*ʎ'xe؋t tƤ43LS,lVhS:r[6(WcKpShD^8j*$ `bKi)~cԆ֙]gQ t&SJd\ ҤqJ̀^  F#1Rz fș{8I9 ;MD\Ab<,WkmyEDLRari1Ԃ$@pǡ?0hȄLȿv˥(l8~$%c/"wamEV<neL/a;Ta@\`#E_wNlޤp39PAw'g0AȾo7rm˭jWSc|1!ƄYK r)k]}(a'FqM=jk}ǡQ|OR$w4/K(4ɷdVL.^b˛686]Њa?l!O2~)ؼjđtYt]_@Jڄ!<1XC<Ћ<{$%܋Q.D x_M2dq12$ըKh D04W5;>=[ EDEܕK0ڜ|l옹<;B(|jC&pQ7e eњ#JW+PAg[t2Vd (ȇ~L7Ox7!V<,\mF?'34B B+ ^\Jܠ} k>b6 o'<1Zpi5fggehak:C:|zK%+ټM _lr*Ś08=XV&]zntTk! TwJmcyIԇ]5LZU@js$ŧ7ڳepA0aSuY%aCcE_NJuhT} q:)-Pxin ?і CN#_WTlk hwo2la+ x#GmM/T`8aW]+c"aPD,r?k_y@UsAP{kUi*2;l:*JHg tsESaB$+ֽދJb5٪cbJJŏ÷.+()3= ÓrqE}~4kPP -BM;tfK\9v܆knvU'M|}(P{l!3 M!oCGU4B }iV" rpKiLJ#U pO;t+ʏ)G ]kD8>t>`jI q,7ϦJ65 tv;(8c&EA4}XHܒir{u;g(=*ܺgo 5/B_JBj@-'b l;1@n^=X6 ӥ@pHd I g XZS{~%)oxM>LFOI邿O(gA$WQX~LDm]2W0-Gj 8Q"*'닌JE '5?Dt3+}Xb6w'NHݨzH7Xx*9d&\#r/Mz)Ų~TuG"RT: ׮* ~cָ&&Nua=;ÈpUSNAop_I Hǎ J<%xi{i-"P)ZLQsHHY1aVh| #47@6 s0V`V#m:> (DcЅ3(`sC]p-4⿒Οˣ;:9+E 0׭]Ȫ 4WO&uٚb0,)]Ȓ1?P@!vD5;/*ƼĊQghs((Žh: u/Fg̤<#}0n&;rUB:9`4Lӑ?ƨ%JTzVH9{0Md%Xzh#93|ɺc1wW *zԇؐ*%~؟'7';(P_ j 3VN/Jjok5D+ }"hkNt׭Pi@C+7G(E'U,j>%<њ{C^?jRԲ/#W}y<IXje̕e [%6g] M3H|-`Sn ?h i@Ue+=s:ly5!BY" 6YM~E(;~Q>cTȔZK#lYIz 412?{ "bBrhlMF_x#4 o ]\Yج ?~5IOVɾ͂["z ڴƜ)>纾aS&Yv4'"2|f7ߖ.][-^MHZ'o^ʭz77딿ǶsE7ޒ&lSw OC"Ҫ2jL^4 *aoZ8(ᚂU~}n|Cߋڿ<7Ib˸uk<M } +\rUMt[qrbs] 0^gwY |FD.+Pٱ *އ !QL8FAx-f}؅5 sNw]9]u[o":BW*._IV^&7%mPQ 9S\(߮p('eӉBɵ v _ɥx_hrL/.JAzN4|5_Onw)gIpƤ?>AC_^!5hzVڝ˒kêbaQsB@|MTWGl0Pfϗ _K̥`y:)-CvCOn$")Ӱ9h0KT"hr)A&UbP_4NA71BbGZ%ʜ6B`{n.i唱ܧ Yw),"zŭ {"+=ު $@$ j _twe>(Jeqx#A<^F:> ]5 `,8W>Zƍ8dvh:jq+ F?׶ARlЙXwxg䇂삢F`9y~5v+n0}qp42(5[_~@~ʘQa:pC??4J=yI܄l-LGřq'wl:`艩X9%+t|נe0''>xS2UI#|l۞$d-'NaXf} N=?jxujճ`1ENgr]S h_s' W,(_A0P=|0-џԏ,|v0gugÊGKpx4˝Ҫ)}ӓEo dD ]@O߫דGoMeD3rGa@t wf$ƪ!ShKOxDlr :7@TBŃ duc!;xDT<s> >Żs|Muw۹O]K X6$=\ Aڵt`>_[`eX8,僄QTB}'o%8x91G ms<*RQ@L$MF̄>bizEt{_CeuF\3T _ fbuH8EA*vܻy; P$7Iԫ6D81%03|f*@AYX[31(pUqVe޵GX83פn_5 K'wF7~ޑԆoa^}X+8MVYE#vo,/02;lB>b5,9CíCN4y~;XZkvBns@nƲVG򒤕A;Y3Ѻy}2Uݵ-zJ)n@dbw"P~ "ɺdܷZ1IjI>sX;UnQη/n|FˁK=)D뫯*eOyѲbR1oF9OJ`부-YY뛛Pmo-&B4!_S3Cc՘#ĉb W{Uwg]UBo?o&Jx얤!+CV_ИԥiH713lƯY\ {VRns*h!mՆy(/ZNv:6VoEk VduqǪᰨ0\yNzb"Qr^`.dJ^ҪruЮi ecjyJK/uFmq%Mô.a葒ϪVt]Fi5췬,&OckQAtwqгrBdt,ζ=~Vg ;۔!zi8:t~ =6/fLB=͐LF{}k\J yGj5ܞou⹁&u|M"ȣsf4?upR)+Fl2QRSZꐞ'w.F/k.'4g߿u$p;AI J?uJ7@\p@s(k6UH8"qt5eC4(;皎<*Ó\9kd-u[żHn;Eբt2'~G r^M%o[&S1a)Rt => "g?hsƘ2Oǣ0qǶ1UƄ}P16HtE-rD wwg(6݇XJ2 d>#_rt6)?vB~(7(ɯ3'읤KIgQVӹx|󞸾k =wT@Ϥ!þE \~yWXfCh'w~-bIit''0ᑔ%g`҃7 ɗbn˫9Դ;7 7nn.0 Nuɥ<➗e%\YGτjf(-#2C˥m$R "`R&P/ے]"I J ~tG;/38qՋHFA2ī,یZh*r oȤ#iq>jD#\O.j`h&'$$qXLu! imIBՏF8uI'̵KqW^(Ojq9pӺ!"J-^Y}[aj:lBinUZn} Je^鶾(cIa _ihWЙw6 dYb̦*zGJlqL։մ#ɗ$iQe'܋yWlLVhTrT6(#:v[[ȡ|ɚ#ȁ'MjyN?eVkEͶ3SEzwab~^M5"%d} PW>`8l<|Դ]pDZ[Hyy2 QݐXZ؍ ~+KڇǪ60¸aƤ([W@2_]kP(^v_aQ !y>#՚M~m vPyu18eri= "!fn:rq]'i%>ԊXN7%BsfWjbqx/4.V?֛!H_ 79|Sr'5%5}UX Nu p՗mIf H- G ߍV|T'A/IbŞ}%[Yo̮TnHwz%d L9lgcTnJLI[ OkwSM}6Ƥ [vu%}h!Y() J$| K)gWz .U}MuJ4'~^,|~u#L Ufe,NK!c'"Xnc"[>ArՎd]3Bßu3,F5 ^Щ _)gJx- Ž?{cEjVLHDb~1\M?9%=nj)0A=eP?@~#4wgqpl7(ɪLI v-aOhh@pe=fpZu93 p"cJb>[ gQKChnѥl\Iש yiWLQPdԹZGwEgϽcW2ːZJR{.7I0ae c}mEd4Yc?35I~羠{`EGdn@ՠٴ[ mg2n݊D$Ck:(Z%(DUQm6-rĔUQhFl&З ӣdi< ir'$v$ zq-:' yL_18 O69hO5" 4O\FRLX t9pyi ?NyJsǘ2CjG19ܜ"eeK>J+{G3)f{/-RSgs%@Пhl2 O o8|llHGnNIQ*v!#vhKBxc&D/6qp%uˁ߿rS%B=xjN+'7WkuCw=' ˅(̄2 ɞp?ş E 6~ut#z jX{fٵ`LTC2V)Ӌڋ2e(pҖ˭ jnp cʻ!s;HZƠ 29׫4u-jm ?RT]P 7:}Ulbz -7s!k:1jA1wHS(xa橀 Ǡ֬vďEqDd%%3wm'}gg\l%{e\ǒPfIP'e< o SvmLqv0-,lm[qFTuD.thſ/Ԧo*g6Q7XSQvy"8!Z5g!fWTFD^2 4d`m#j"$LUi-za\Ψl5ވ;9X?Xox%׀i&dL?.DZ'-΍}r?eQy\BݢZ^0Vh8Mmt;>lSs/G-}jU2pANu˷egO-Vr ff̉8.و!Pi(Q}~}ئ9e?pUF m,4Ts'8\QA*RoLIg0Po1AtN*02@Z' G:5/b Sg1US}ݘtWK&0>|Tdԏy;тMyaV+u NC\<Ծ;9S^nNe ŏHsa4TqR2"[E-%L;3Vt{=x/A+8e '`cu];5wjj]̐}\|%X+ ԖqRgzD`ދkL !:HWbdƩrի@M.2ۀ>%j \a vR9$A.&`BhYn'FrfKxq1l8@]ǟLJ|..30,j(9r7"netm)-aaɈ5]ޅ%rwFΌ9B$E혗8V-{s'v m9`T=s& Aq@h]/СEdq_Po^2$F(|1M#t.E;AMCF2skgckgIܣ Ӹ4ʸaCQ^EE,5¬o{%)wj1^bkwACƏ\U"vN.'fzh)|\˖ل"é G)#ٯQ UL+,vhЊÐj_ny5 y=۩Fbٺ-m]zmB@j7\VnI95 . p\S B{gmf̳OT#`mN5 ?m~st] 9IB!:ϡi2ir=wnpD_`ސ,Epsyj_EU iDۏEOG #!z .zUi17&,vg6dsSl.K { A#&k* ѥ+-S1KPS=+urv2UO;x; LBiж׆2HL:Pi]45=U֨& :ĥD!W?^߆|%-C(9(!r'~KqQ[UFYc-M SE[l.*B64MZ*o '*k{AQp {2p+R+4JcH\Erަ͝,)U9N0GHef0+663[3}&fJeW ^km"1+0?񳂣ko=f(,mF2zyʃ} CE/ ٩pэL:ݰ߄P>^{pi0aC y&yQhm [옴U)1Z:^FҼ ;ɛ%\mЏEφAdaT O^'Ww=%Hl-JBo MHn/wE Rq?i+# }Rr^o'LBlK^ \in[Fx~{XX5΄ЇQ]%?Ute۬a37{ qZ Ws)^Y`wMBx+t%\[b{*tp&e˶)u6D&NbcH+@Dǿ1 CҩYc^l =dfq7fUkq/G~_rJs?XI1~qke}TFt3@ONoR0Wq5ˈR5AT_q ER7]sżTf]T`!=ڇЇ{Mdsܗ$zYW$"ʇnrJs)@ɂڸB9qNOiŜDtm߼ޒ+ @.ۉs6Ϫ90tqcfKu9S~Ys$L^v?soz{R ؆bx\#,,י<I,6O(:6rr&A݊bW,/i']$G'&<_ňLyT):FH:V-ysh6ðwDnjG**V佗7-]hgXlo(<- `/: X_ nbAoqނ`Ēބ i 9B )V "OzE ~܁x`jLY`m!RHb*=~d1 ٥rD!9 %bCGڨ.5"_mIuZ\GȁD3~3eqځ Id>U{72hdwzq'fuv15q'q~:,OYUU8}Z@WX΢ $?Es@T!r21e!(A' &첬"'` %vXĞ7R&_-z8Zѭ}0mGF3D\͞@:Ƚ{9Tȵִ͢f+LMw^e)~ZaxC<i;b)އxX@b Q3'w},myT) ~&2Ɩ*b9rЂL|CQ3&u iwKWZ<;;^?Øk泂j6Х/xװK }y̪߭]m &FA"H|k+/[r͍ xl3y虒{8@mrL+UdГrvdOz+n`%UI&m@FcE-1/LFQz6ܒh6[.= XTG/BTDeGxHS?:8-ԥD'OV^Q\c\Z N.֎l>pd̪L# o\?*!-IIPO[`hwc~7c9..>g;Dge]%Ʈ ,ϏQaUvflD7z?VT]d`0}bW`P^j߉a0 .Kr:(l?l搫+ca`!,LFnA(g:T GȟsN/ӃgJ.̈́vlL4H*Qd53GD}`&>Dp=9BO}zwen_}Tf҂14M@ș{6:K48jA*FՖӬU4U;<i79~~<9𒤜RU÷;Q,'^W=B9} !ql_͇ /Fܮv(nbs:ArϣksZUCpa;ǚ`ϞAݮïFPxFR0g;x^P]i))iY]'LyّCdL $8H2#9N¬4sJ]z0#GJje4(b E?R+LrXoUS O&2Lo;"}_VNeJdܘ!p]AN:*/@ogkxgoYe\Jt'+jʀ*⿱=cbc{h("Sނ*;!BS,Fr5QU>w3ʡ8HXb/](؏CeEx8Rsٕ=4*Cgr84 ^S+jirK%ejdW6QP!Kݏ*dN@DJp@moΚV[#^*%`(ި ^`yH_2y69*+orOOE.3 9#7 5eҭ< umt7mĘWvPfqw[ޔ!f۳:;Q=ϓ#Z=+ '<`Qn!Ѡ8lc$rΐk1}gyu :>s8 aA 1)fArclёd͕V&$hr+5ϼ-I-;>B/w]:eb$e5Rul=<,toL Re0SKQ~S8  &_)N;j쉶bL{7k,3i Έ=9tY!yDbɩ_̞3 #G);O_4ɡ"*n8Rg}$4( ȍG CF C`0µ|D "I!TX1BT6LFl. #R8dǭtb47 }}㌄ªwNbY3m-'W~X-,dOƦ1T= N)>wY! :{!nEP %є^h |s)FZ0Eptyee 4s꽘+ $íu:d@;"$7MDs|qї\kT #p}ݓmK(aẸ P8L? tqDQz_ P_I B4%ިeXv6up20\5W,KcI1pRk KUY'AZfNX4e0(wvޖ :u*.Oic q5Eڷxt3WP4|@U=?]bAT wP}dPR~ΚX!@Uf8)d'T^ΗD)FloLЪp/q ng`E<vJVOJz&;Ǔ?obZtFAյXRVFI >s!/-y u쯧KPoS2w,rX!0pq;ry'L3|)l{R3e&s0n~\Kߐ9\;ݢBԠCjutK.td7\C${2 +IL8k´30ۥ*X0)&2J\4*;BYM4S>#'9M5) QV#N??kz"6mGP)G U HXjD3-v.ڑ!_?t/j3N'C3JmΕى(٤-Q3[*ڛx2zggआCP3}ow1^X>zXV &&3\u9"#? GDӔ;6ls?J,bXzz!jFټ\ fsR|RIh# wL ]tQk\v('Ս́5ؗ]8Gy9.튀l!6:3,9"j8AQh%-Rc~B2<4>LQj PQN4'<ξb_9@ :"xc\ h"3˲Dje /jr!R0;y{J9"xU Ѩf=g[jˈI~Ix=,~>A*=X뚂3ǯyb`e,ˮ&$&":t+KdvIduMB(z @z&-+O[nЏn*A\Q? Bn!qQg|.R ɼ Xbѩen铝;wxüUIX|I1b~+P W#g5NŐ{ZNr~;p>h5q(Qc4" Ō]H30b?pK5^x̍A?u!'4#") ,0"'2UנLcomnHY@p*/]= ZJ:Sجw{(OmoD9VU4OD Ur@y2

*ιX۬ L3IwBFO|(jXa˕Mg֋6km? Iql{KVx(9g= @2"L?BChD8(|Q%B{lJ7͏AcD6RAօ},Pc鰭\Nr/\G m/!),2:22a0 VJ]d$`(-=PNWt:]J=m8˵EAh%ЬYϠ?2ձ-YIGK*@"tpQ?֔zQ]jZR\z%L(3VhyZ"P]>ܧv 8.}W[~.u裑v!H9dTUR(&X6};9S09%-/ T,F. 7y-B+Ǚ~95A#}lg~H2e`RӨ}d1h5nZd5&]0Rw9=mҰU#VKل3z;ΙFt-‘Ŗw!]-U (@o}ҸW2p=]k2ڰ>/[QRɰUge1?BӱOQYwy2Y!aj1I(i5cQIFޤEb&& '7+E$L$樑WhrxzAJ1ί^_Jg6LA"SJu+lLn.ũxjbVE+#hT@9\B^|D.2mQeC9; NU"dyQQ[+Zžϡ%*}:KކOC4ȸY;78#(vx<+.\iz;Rm >Q(%T6-Pvp+n!%rhcN{-nmqЋ{@ S-ndbGq` A+W $C;+W9j^4'9AǨ%"G*.\dl%yLǴyHbN*i2Jה1*Wo͸vY72#0Wy S]D!pSd.1?03h p+!%o$d_gS5ȶ(pHkNjʝ;)l\jwͨҒ~`Ə&"L7H?^)t؋ҙݱg<!n=ux@+Ёݿ $)BAҷ~Ěꓟ'lZwgO(=0fM3mr2Ș&W ͙ :F53Bb3 X"es!),IY F@7Rγ$U2?6/gy_}tdUJf[qVd#:@HpkqzX KإQU( k˛^7y(^Ue!/6T' /]a욼O/99 (TAtX(1;N)!AH11X iX?dҰSZb.̒V,"K:_ 9y4pނv;};)8p\Cá̈rcјhڕ3̩%sĞG*`|@>pcru#V6α(H{ѣz!7:MceDp)A."^>S$&Y@4*+^&<'CGYq*k9Q: ͞ 9:h޻uxF!i "  sgOoUs˿/dݭ6u) VoH۵wVkw+b'OG5#|Kymv.,I@K5O*:}2AZHyQN%0*$<Ñ$<h|Y.)]`H-?=Op|oRvxG6*V վWTR51W]ӊ|1zd{ ۬m`tQS擱y$󤿇QeUEza~Z 0Cj;A^^aLkgBP&‹kt"rR 7|}Jـ +@a)=,x=xBܳhXT>D`xI14U]jD\$$ -D@6i"%-CFke|Tی2=5A٘#m8wt˫ %W52@+;ToǴ54<Sސ&dJ Z%"j,$r,${o( _7N&xD '`5qtniT3W|7S'j4ܵt^ir4caU\Ie]}B=-$e^F$^˽C[7gw+QlҼ6}W*W$RmtoX'+~ Q,wb7(9(BJгc12<"von:`܂x!Y \Q4|MG*@TP(s<dq'vsCLr&/{#HxS =B?+ ;17A >*v ٧Y =H M#|HUxO\%t74ޗHW ֟޸*LS >F>'lE|v+7ZIƄ+ñ> q SA.EP4Zjw}WBtpNbY!Lzj+]|_l4a`nI ᰝ [3p+p x5;@y>WӱXЋۇƘ>fȴ! |Jc~ +^c_H1#תo3~` kcE6E(#͙߆9+@A`0Qg*sE:։HD)RR"5]N_#GHl~0>gMBFڬE _tT)9$c[AWmq Kem 7fRDB^͟wG,ۅSg*C1AynKɩ1SzĔ.h!Omb;[|~]KM%0P {731l:y32.Jgz } %)#NrH?=G+T߉TV&.&qCeU]y-B9v NМ;Xy^r8JGeV݄t`luH́дjXIy 3W{^6]R_?qvgA!\y2A9 8(Th#X|cU\U{[ }J${ljWƂ.__lΝm){#mCR)1xo(qP6ZVIWtv fA˸4䤬}G8,5QKXTێHEI,X Y\)m-P;vcpAg;~ UEC7{'vy~rb9b2nt5Tv^ NuZq!H8 ͊q@vS}%4wũbt:+=Sa&v*q|ޅefOg[qVnXIUR#俑~x\O7iQ68f㇄ $H_mcUG>T%7RAr4-fXAG|w-Dx4, ٠z]K1c }6/rnРNahHtӕ*+텅6O*nkGYaǶ85FiG|OY2"QMI'wG eҵoK"{WLYXw ^8s"J͆-eO[DޞSɒhUTo_y&BRL3l< ]zv] 8 77rya쉔IoZ:؄㘙3c䎮ZeJg((!. #ə7 y;O KG]]^l<~5.VEuV;Os]/YwPڐ(CU7eeK. ۸vEr"*d)[T!t6O|W{żFJ"EqGXx zqi~|ɚb3s0LJɏۖ!][7'TzA2nv%#s%s$ն}K{uϭ"4VOQڌJ4uS:蕩pD)X-=vA "-6:;z0w(FN*y,ޔݓ*+7;|dzuvWU*,)!u NFnA$6ӕs:O DBR|*.[|d9uahƻφ*0B_+H4ʃ3vvMRSvy Ul+ %!W}VʖSdu{öέn =K`2dWicES=Yoa$FlheHon|`F 4F q !)}.;A~2z?0 T(coP"eEZRpIBt_@pfW2BHf³w]"a1jZs:5 >+-bwZ&Fu+Y⃔')z3uebqC6ZK&G0AmM k*+U!S`i$`eEW3:HR[Ԁ$fLD8 RwLugαm&]Q 2Uf7(w.{Ds %LJj*&XKN ZҢ)tb٦ӂ^{uY~@ ][\;蘣qp;f+j?9a ]Raa7N`Eq<Ʊ!t+v,Hޞ%F"˕Qae))=\S#6Q# e<!6hN7v[Y6kQ%P'~$J7>8i't:`ab k "A-e{Sf+i U귨*lȿr!s"r˔ ^GfW*nyʹzzNaP %zkbƔ#ijm]P[`y8@pL X|1(4ejqvq@0C URUA3r.=8cN5+ݖo ʷYi>P.CmL]p_k@.Y/VldRhIE^ڡ솶߇ \V6MHlhMu۰ ̿^fsUㄌZ,L>3Ѭ'[-vil诶KSѐRV;W?& 0܉w} smS߻ N{\$cAY*#n-rbgR=Q#Xм/ZmlJI܃_yevJkԮ-<ixEfPv푱i=sRR5M'=̓m_5b6纉]O߱tGm'g"Bn!Sc#m^Q4 \[ݽp&Ck-xRJ%`1LM ity&Eh7Yyl$%eBr8,>g ?kˁc̙@nn :*^rH;թ>\C&"h@n倧/+dww0ndŹYW^r$o3<̣,l~CR;QYUJy'jxKCc( I=l?=3TXP%"Glms2$4DI€LhfK W;ҏjaxM\ùdR.& O)oq*Qbh{D}@*Z*{)k!Vod&,kQfN9a{E$ ~%h4{ޤaKy8[U suX XBxڈYT i[4;Ad|_nץ{ӪO@#ikH*&Yk2 K\VE#[W͗4zۃՔ OWX&Rop hEMTU۶ЂZ,6Ej#?{lmx[0Z3jc`uqc[Xu 0{-?DIw< {,2L2?{C[]'1T>"tv!/#O`:EaT{ ahDnVb58=nIVR8[Lv&&CVtuAyWi;+718Lo=3\Zb2IuR> 謍Zug&}a wF5Mؗ,pՕ9q`pZ硆3S :< ԜvDhMD niT" ;pG }pf>VvA\: XIC1وk[RN l{K>̂;e~Y hM]XRy#^3E%ZH%b*uzco |g)&a<— 6gtu~{|ReOD+GcH?Rn sNr^UsA֜= V^޷zR꽬k&82$11wH/_OBǖJU%'Ns62w9~aYnx1Kj*]{$>@h#&+3jms3(ðYnzZΎx:Y] z2ٞ/ 3}ԫ{i ˀZ 8Y:+j/r_R[CIDxpGbxZz9 C|V[4TN,ʢ 5͋TKCO:|" UrsYv ~x׺2#g=pr?9b*uSfc}b!b6hnx9/c|=ZB%ep'u7VgۚA2NOoz@StD7O(L (:ܙ""O45]o$s3im`t~5KW/z&L\ʠèPQq+ډ!!Fgq~AcJ^cyom9%Osμ뤛Wm#fAϦ*9I(T!ri3~O: m7x_H-޼{)FHhE)4'\H y;3yQ+7ZNFɉ6'|Ɗ%}Y<9?~%ҳt v 3Jj%- ݕcsU8=ctI%2?+) >Gl9O?-1zݵ@?g D@hu[a2U%Fv; C>M^$k*/lkT3zy}%jzURq9KZ %m0 s?oWi FtȆ $lTټȝB8 謘g7S5K7ioge8hO N0w{c‡sڠӷ7q/h5v4v`œ+]]u}^] (=Ͳ~?O 2l9خ1q<0AItRN k8?Izf!PuOO':B,/e)7ȜD22* n;%7Ekr\Vx8chv E+t!yl"͚!AZv"-dHqPvXo]ǝm !gl|h},ɘP޽Pa*;݁Vl)6*: 4 aDN1s`T-Ϥi/L MdgO+'"tճ/2fJ땰9EznJ^M_z?\ėB.jpEru&i]d3)<4ݭ &0oؚj-`UO26S}86fx0qLT)\6>7X)ObRb\ϴFMݭ0eV9~;pG] ceGT.ԝr‰]BLA5ΰŭZ"uckҼDpvZnV"]P/swA}5aQ9 ^` ejq%4^(N#D&4 Cx*+J\3o&ӻnk|p"Ԁ.&;z/PŢ\_H Mb%XBl'05˪xL>Snexn G >sȩ%tpl2ۀ m:\ $iyv A|GV8DYqwG(4Hɻe%tv% J]\%^f]֙|u6o' fT}Jc/c(5xuU}g6RGVYX`zwO^o`4-1!BWlDSxBqK%[d؊;JY|f0L񫦸J qbӜ|? HYë@4~K asmaSFMPv}7!|PY̱?dсM_۔/ϺC sq9GDOL&3*Wi<&0}oE * uԵifl+_7;q M2>XdAHdlЬ:vBDy| wc`;5G]l^ۭӔ/ӿ[ ݿGm`9]Nd!40Ԛ>O!EY7ju Q㓣aO}~n0^,o.?Gu 9CF;>8+Y.ܛo`vLsH5KnR#WzՍwcC wEKͼux Wrj+bMe9YacnvXA@*`X<dsϟ'"V* Pt0.ҕ6ʩJ9Al!m3b|ﻇZ1A9 weESdtz7>1((Y ф"9,B ٸú2*om f,\09n t %ʖIx=yr&>s| JZ( ^ $ vlyh?LYU]ZN [cר q';b?m@őVRv~q\t0ݘC-c>,y}9,#r4&ě1K5,ސ[{vM"k ~wҒXTF/|_:|䬢7슟d*+|_q%54Aoo |@Q9-:Ig#P4D3`TAxd%[2&Vi#Q.;K5V9^3yk,W ϔa^J9 Hb`1h)Jpr˵*=0YmT,c2z$^Fӳ[k! i׾=%~|题n^N(2F>r-$vʻd3jb(z,*-K 9!LYrq_ Y7Ѝʴ\^ G)G*~@{P[&Ϣ(~BbN@;T9%y=.RsEQ>ũY` O )yI @ޟmNE(N@KJ W]~]/n(yҹQݥ7|zHeVХW:`}-E X'j* ^ 0Sr%C@K^ Q]$eA̙s()>(x&JWOpwXk|n^jAxmi.+M azvM>1ޅzs{>*#YG!Mwx)@Et'JxO23Lip~08D-_Y'8n4P*:O$4c5X9)0E{]q(#v,"<}f>mG%6Oo$xqRi|,_Z,CMfi@*@;{:-Z6*E_pn1p'y{Z?n&Je+C3R[A26VWlC>(aV|0ZH>+ з⬖u k7"i+=1z [zhakՏ L!3 В>G~LgjfA:뷒I&gZ7': ; d>%L:u=?(bYF~%颤.m}Mx.]3Lfd\齅-8𲌵x* ݀=>u k&UIJV<9P%~ON .Պh)Og8C&B O/!s`ljV|̠46aw[(b";P.|#k:)!#D1Tk qnpZ|MTAF-R&<0"~E++6,jajp`VkTnY,S4A[ %X])Z4!<.8S GkӋG$1Au,ur$TT!?_y;ScnΨ)dGV3π5_K?=Eet7^ t#~O6ҫ:4[. σ@7:5񽮂6WxqpWt6|xǚs8CN92୫ea=M_5iK۲qU!1Avt"٪-]-EuK4Xe]F$KtUDb?rJDm!w'w~j"4 ȀO/uH`^ 7ni|T9܅Q]QꍭSWCpJKXiPٲai UEXk@A<-Ƶ,eg%Z" h+"YHs蚘"uNF5EF;7eK\bm`:OG K,iߵPP#铑LV{_ |f$sy59:oO`4M̮*$h*[Q  &Ŵ!eBIڭw muv'17i%Zw fKR̋JkdAn_yD!a=ѻY8m<(CMǎ9RJuuص">+w%Y G'Ù1tUXTU*bf᳗{eRT視b_aiHuXaDŽe5l}Xay6(N 5k<% ĢIEܗèN?S iکZ%yEN5Z <-&, Emj}lG/ѼqrYsls4w<4Jԑw@ӵ-€3)KDᒟkPI ?sѿ3n;}X~֭`oy4;[ASppmEKB 欏Ct"G`NuKnf2S0gJT+ݕm>Вe֐ H'DS$Q3n(:Kl- ke O&dp 8^^fѴL#ohFu˒nj)ttdbeAZ7i_} o᥅nT]UqET4AP {L85wӬQ l:gڳ`&0̊ w]NUoXw־/h,v+߮DfSBIAX#Jde"؍[c/fs Rz(037cQz 7ժd"1lf<ĹGqOK~5@U` 9hQܲ Fjuո缻:Y <=k_ JQaxp8 |s cT_ܩmÉz[#<ְ p '^6u > !4/KPE){"%'֞1CB@( \i>˥_w>tBd57( GjJXݳ폗BZöҽ+^~Xĉɏ%)&Û%c[(nVZ?C@fՄkjHß'K{J,itt3/Mz´y4Ώ0ktc 0wuc_8rϧ^ؤG׈FE cYk ^̗OK'U5f+s~BSܿZĤZ }o\Kh6y[Y>!_eܻ@^&&˷oNt|7/aԹOPٓ{;E?`l*%n\Utm,'ȩ&=PӒe~7=].(*F, o45\\I})Xnpun3#NB-QYX( T!ʼnJz/qL`E la HxKm/O)C"̣ɻrs?PͽN%MUCMo ##ejPEW0r4"$zȑ& [{FJg.4a\5v Vtb˪/Ũ59gm fq>H+<&&jrR h?'\qNxVrZ)j:|~hfڿzpz`OޙrgV 1: uOre>- ob^]#-m J?羽FOQ)+ww9L)qst*PN[8esŒ/;esxpc-s'JMUz5guNbrӦn'藳H#"+pO % p@G9؄YՇʾ캅t LbFzsm4o PRF%x* ItC:[x k~>J9 iϪx=౉&WC'4*nx106>{8MPl\Z'%s'O%?x&tVV÷ÞU_вp??(BU7߀xY^Y`H7pv kx%9ݠ8L;w!Q@{m䋗$<&z &! ;F?/'YAM5;}l_#ۀBE8{7A#{akcs Ҧq,0Y i(`)RsX:S9)ep65K@DyF`kUxmCIAVd*a~"xp W;r,[s!<0sP0]Ew{ap͊BXRde6y&01pJ϶|$!&9,TS~X&e2? 6dv?{TE` &D8+w)}w\‹qDTP\:ә<KW%7XUH1ڇ(Fmp+"sd:-)O/l3%R1Q. '2oK+1hيSnIt5X 1奧#S}+ L٭Y_^6*4A5AN|*_*ZܙMyS:I[%TY7u|z:c9x#c#cLE(@KIcЀW,zڧ 2W2w6kc<]A΂˕΃0Xy9X9)$"A> KTL`c=ǎ0:9; |ؾd}a9Xi%*i~[f8+TY>6W8Z^Nw$9 pXs傼d=P> 9QDx^e* 6q+2=iLy{Ee4):ͽ곲ONw VoH3vW"䴀Ѻ.mi%ic ?L myK@{z$Ic*,WP}yDLb4HS-?KbFVTJͺ{OY%yL~]r 81'!W U= iߣ^ e~ $ddѫxHc5(6tW`1xd 3 j$&Aoh_yv|BW]JS}C|xT=,ˈq;5fΪv=c GxzX]\?EMtȳgo'խQ"a)ҹ.f*.kEAd ڿY,t9[K~*g=xjF)wG8%sHPQ%8w&5DDHqUG 9j:n$hr ml!\7 ,ikeg~&0@^>Om )_TLڒr-2&4яzfOIp}I+q3lo^ ᚉ^;8.qߩor @-Y&a\42!%60=8ИEf8`q9~$p/5 %61ijnRD{ }Jvޮf>=ܼv/ڢy ێr!,"m1UWUKR;; )l[G~! &9CA&}@(s)Uң8?mNF0Ir+5"2KI_t|8\*z3K YwQhUID<ŸxǵME*`Q$:3^"2gE߆}! ڕx⌋*~I*kPAmH.$+! QYQ#]ԕu"WQLO҈W/эOИVvm߻|?\tB>=EFӈŠ [}=_Ul4rOIUkJX if@ȷY2o~ѵӁ =~ɘs+b**̼Ky= Nu&OYAY܏ء'?s"* n><QJ^^q9AW~MAnEs h_F,02띁ȹg3F2ko9u7h,d  6+4Kpk& 8q3;:Iې~7\@{Ea=U;_/Lrljh5o T^TܴK<8!0. AqlLbcY+1WYX fkF(Ab3\GӿAdJ .$9_Xm[ g!w\lM_Ⱥ/qoBڶԳytqwW=V ʎF.A|rQkrJES'`q6V1TDz}byS:Eϭ?N%g{ {).8yoct#Dzqy럍$S#3c0UQ8iz[dAnkO pFkb焞EӑU|H:+fAx'{-:6e9P΅la9yfd+>-}4 UK3jt@>~~@rN~Юw1Њᤞ@D9'^?F@0f|0~V@P%9GbC3r q[;:FEYQR{| =Pv}Tl8=d[.qEIBtUa hX ?sUxM I @㎄Ώ`Y yӤt BFQTp Z" XDC WA)/oiN >b}PP" ibT]~So=I7@>@kBXhO @pm' 1 "1ǍSp2RT9[ V(^{CsZ)s˅)96-|v^Uw9ňҾdKݑޮ>.u2Gm.X=s!!@FWZacpxsgDkq Q/4H)ϣt>FFcŌ㨱H?gˍJBZʁkC )(&a-İ v^Nozl4TuO,Nl79(Y 1 L:l 9%y5aʼnqX=XyS k*E<)zg-oȟDIO@Ζ$Ss~Y^U]M (z&*!DMo!w 9o1|La~&Tp)JNZ':&ˆI09MC:x4:dH*BaBX@S.ܓcȓI>r= 4g2K1~π)vN~٪H+>f:d ?SG.VgعYe/"}B~P9ʉ8^岹=wQ(07nFTb,%ڳ1^)ciŚhm$jC[W#}"皥nGaB9M@8dEihB3E]KAnq9 i] Zw\c8Gֿm.G&ȡ):m>++7kV^3@"f71BDЦoer@Ћ0Ѓ$ADyZH@׵8; ;2m>Ze4V@/kf$Z$W];1UÃ8qɔ%h{ו.ge#qދ`ZMA3  DaM)샰h1vmżG@]ߌkP` 5)H>:^JN~ycF^OFˆKVz̶hײX!v Ǩ$rF^9xA l g6<75X̧.HcQII歖IR~e-$C{C"#gADF+'I H-h]*f!!R+ F_{m(qa)&vu(u~ . fn>At]Z Py%! 41gH$0ZfHu>Lol|&Is]"[gY. dYߚZAp`Cwg!LZ`eTY$mSwj҆IcC6:`?( 49^ˆb')(E/V6".6p Fw4dyv$\q.;oz%9BW22pQ!`65+jj*M?bo8aCE'OD&8?,(VmY$nEшnies&3ZLX̝ S{&8F: tRxe$*""+ne_Ǟ=@nápwM5n)Yka)ߟ-=b?7u.HעXv7Yx]M, 5R w+AmמͫGw:cNi=w6 5?.g˼is-} /{FTFKE٪)QLS3 Ϡ@!m奄[y[ovN텭bډ{ +\ш?Y+LMs9yʳ2'-'̜мKd1U#Bj|Tp$jmZb& JwR tmy[996;5c'Br%i.5d}x$|Q ϱax ݋g]⍵PO_;D}K4^M*)x_m봒bK = jFJ]D5nNv3)>hcmw9e-PDx@JkPDGGtBv\‚Q_ey "N%1l߂fAԞZJ 1bag@w v9Xi@ZP)Sߊ ݜقSDtn ;Z Z=B%G_^iKȁ:\0v m=sgOJ"RlF ǓIF$ `K.@tEJX"캆wZJSυ5I(Utv"la)AuRF7!v&u.]5ISv%MѝG]%<=OD̙kS d 'h[vXQT7'~_6,=!$4BzOWW)7TAFyY=y1h?ECcs5MK_|/6mE#ZxP \X€/_]9KLN- TrN}p2KGƣzΖ,)gv߭7GSlÞ. ;_G 'NRUŦ/ǿ^:[8KFsk`kDHp2Z`ӿf%=6J4ݎ6!uLk<ٶ4\b\lԽ )ov'r-*\;oPIED7WvP?QL"]:^Xts(kԬj.8Q6E@1RKKfXh"fֶJ ǻh-$͋ΙXzԹ.Nz,vBJb,=m~#XrvS"a]}@[>yCk%>yOHt_JҟMzHڷqA}) /*`}hh!> {qPJBɺYh!\.B,ОKI/_&C!1t]ÆqV P3z~_>!?6hjq޼ENR^fUB XkGK ~ :<{Z?:+"yݰ&Yx:N'~ X a/n"7mS^ٝ0FF֒1 a\s_Y4;oۗU3Uٵg\;vgHc zk\f\;a%/4Hb:޳FzE!Ҿ/u"YRGuO #}p1-E l~#ҟmRj*e:Y\&hHB}va_jRBxMJr\M6\<⪈9J9H|f+Qd2Fk޷Pz.='=p] hŚ\yfrM٦o.0?bTO{З vFL0!woՍ~hl.ii F^tu}ijl*M1y#tD.g߈F̀8JU:xG"oTC/;=qd㷫Ӑ%u54$)/pkN1^iW3RLL/oP6=%h?4o}qw};{7D /v2|Y}YUڻzNxkq9`"̺\RvU z_JW]I=}BغMs3H}!{[ihFdU=4y Z*hHAwY5BJ7Sg޸2Ӝ30V r;`Jt[zO_b֛;MMs[t^\/gV] ,akwĤWZ*b22&H2GwO9LH ,ҞD#$aroD7B?,m {ok.(xkX|#t-g02ISiɘt*ΚXQ.,]sqvpaJuaTiLN Ya_z!لc7E?!6 թkxVN/(+$ QBoj΁ّ3CG$ <ӣ 򙅤\.4˸WhbhtH2F"/k_!IY Rج S:pa&VrmQ!|3Yd.̈́k<6R pEzӾ-p$`G AYi봝ώov\}vG d{ ŏ eol^/S3+Y;ZIe7b5e7D})` ohT[4XDvc݅)  ݉[-CGCu#Ecm{{Lw;sJ"xGtͰ#yA\t&j93{wb%e.{}xf/ߤMjS@"O-4[W-E9V8p#']'&e+Elo,`'{dUgs IpA?R_sJpkeed9Ȉ 9ěDK|Ju䤬 rTᇽ[Ԕ:&Ag mfF|yaD4ɪqDD+l}&n21o򑥁/tN46 :F!7Uqt Oup\Mo[it+ϕ4BܡX!y35<^IPxgŁ's}cguÃ9h݈kzy–>\V'CyɏGgA̸|+~[vfYW UE>SaV]Q'r8$kȇo"e{w 6~,E"-A~b&t;mY ovSH[1 zU)dmͼS{a#ƻ{9ofjP35t/Ⳅ mJ l 313Գ괌ӑlHC_{Qs͍C$DR$]vdsm4VJήҽHiAg.+T 4L=j~ye+?M eHqD2Sxb>O] P{FH5tzpqJ :l9ǿn$;}x6QaTЃOo)eh?чq7o7ߐZ\ڲ8! Kt"RG&"-sR͓!0ͷ0!LoHؒ70?"韊Y<רFyWMFZw3[Fd kΑ'5M X=5Mzw 7wqC_K-=G>nV {F{NɶsRޱh^' (lE#]twuwlρeyj>̢L^!H.Qò}Ә? #.{?ji5-;ځ ܈ Bl[K E2:> %%Иľ䅱QVW.x>-)E)aC^3Mz-9Pzm+js&L>eˌ>/H`S6f^#vOI!2qB|&N@@7hD J])3Z^ dc%nG 6"hOEyaK%~>[`ҘHe5õf=L]!Sŀ{N7uJ98A"'R;c:_ܞqQV7ָ]'%WM5nZCa?Ցj/F$8BZ!sZ!ϳom7EIzS9.ZVpyM)zY,0ϿNO3J:r XڊWh`{-מNF:Xw>mkN jjoŃ尴 5dAB'=y%Z渴rƽa-!_%B9g ϴgJB\BGoɾt$ ^_Pf' Dԅ7ɭ _'ZΔKtKiʰT6|78 cM.~']d!m˲lo%S?2ꁳ+XHp;@ 3=O5=j,l=:f ''ó|Cƃ7xcO[V|f}z^}t)!AqBJw,Z'>Q`y0x"2X<_WC뭻?5Enz"`ًe9n:¥I䇍+.14qG&! D@/U!@[8^>2r$9t8d}jn7SM %YFauc\Z3ʏq.-A!)UUɲ̚/𬬨 *P)eGzh5s1%U@5~K(Պ]+`45 L/36E_=L4ץb;'f S]ax*UܾV|IfȊ& SZrLv݈ĜE 4_]iJAR& s\8llh8F]hn ^d50 3 0pӱ_. #s4AA9<)K[ (I3'wG5 xDc}+ p'DG.Ai$}! Uٴexң0w2YD>Ɲ|.FgjDRXP8 hMvkE-_!l3\ ?{+Z.Le#; #; c xbh$@׵AA°ѳ57e/ B5w;!4~KsԺ:=i Ҽ!|n`=OSq 3p |sr j|OY@G^y:WzV 쒪ɓ9K +7T:kB }dQQb9&X5]J1W?D߮~qo|3cvߌ˧Ug,Xb5v`W5h~FCf4jG1?58ErLE G;.զIU2o6t!Mjq/MK@)-ߋS=OI_j[Dh΃dvP E`E9vQx?W"ˠMĊtZ%⇟c&At榏y"pj ]̨7T1I>өun\i;; iNgך,id:Sc1`clB==P|fq =*붣T: cN\r3&6"sJ{Wcʓ"wpKfBÅ,,ў68\ªk8tߡ8*CB`CtnTZCz>9qFwd[>~ͬ?)/V.ծ,knk}(P(x܅~)jk)Aq|Uae`:8;zS*O:*%wpp.0"ܙp*E Is\߾9 dFcٛfX<'vFPv 2sx$`="Yk;[ Z-~gAEA_.'j6JGߓt}$ISX*~+0@pJ5Fyaz%8(bX:аłVb)k/ȎWk@?"H9$gzK-'{|ѰW'CԼUYXj 5e4ĥL 9>GnC',ܰ_# {[iմKIX4b|54cDb1Vã )e4L(u!2~tiqEgfC/ɤ=_v 5*Ke0+s AUϲBUܘWTĥQX7M4s]B슥|.hBFNNUN҈i&fzEך[57|fTFM0}QFr4B G{SΝŨ.ݸjVBkD?",h;)=`\s!'#m60U ~߼忰;)$d=jnJ[.wZn0 3:)T5[}OxW昘ƞ!o|aH~ktbxVpzX(/z#b)*b`X!Ƕyq SXܬ! htaWfpl`IFwȃ:@+GŒ:`dFN ':}jj7_!zٯoBtQl{k/l#Ga;tFX}{(Otd\'|`tp< NrFYZ3IԊ-e5edY`ʴ1usz,I|3UulV3kTxS,jR JV<=tagQj"0-3lXD9S|ii߈ƚ馃obx\p} ";G$ּAߗVZeoxqB:9`"t%N9\I3Awj'4Gy ke D ?!=׾/7("Wp^qs|s{̡nB`ÀuS@] 1HQhDA/$&R0ŝOxٗVs=5j9XSۍ??\?BXoLԅ| b\*ι1b7~+bk:~dpCǛ_`4z0%'&Fò]P'B<xDKqDf !x<8ο`)R;/T ZO=}0Z %!Nrh4s KwK<0|툂fuGt%nIbKZj:gE4e#ƲxXi=S óSn8DT%W72gN ֟ iS*d[@el(b--M<-b-HKZ#5d!^^nm{ioZf(Q^$ci^ +=S1lv G2/[ÏcTMtr`z2P޴wb)gܲg.y9-L$RUg+O_BUS/Әc$z'dѴ]OK׿o}(X;AZnd Cn#V B$F2 f'&dW-ݍ?.Ѣ4&tCOzm2cI4_[*[&J P _H0xIC+XTh[lAkP$o(7?1| MBIYjϦ`²)P1KڽONn٩a Mx4.6*\<:%$.E{L0IJ~+"o;Dv`j͸]fVq2A8ߑbH{)읖&Dا:3" vѹ-/gܥPؕO{ޘ1 s]8q)2Eos֒ւZDgH2j.k˟FH@EgI'nld*"*y׼+ޝt5 i7ƿF$pTO.O6=@EM[YS_U, jTu\JgU sHGS9I,]L^\2 c`]Ǜ]b ߍMM}uƎ`/HWC @lyUjg1dx?Miq%vSrT>b\·Φ w>:(TD\[LIy$(!-RD+|x% !tǷEByN Y~on\KZuC-km:툉{Ҳ8!'4.陪j>v@4 }6zi)JTNSmّL ,*vrWwܽQQi{XsԳ}4rt~mBIb=x@wDirX}ۇa1j{>&_0آFYU&ګܘ~bN yدfm۟\zgpr_G"eTIOӚa_gz,¦+RsƼʄ#VT0}-8l$ҧ%D\;_p6&dq?tҗr$ Pu(4|$-HBrdC&q_U:0um$|J U@]6r H>ÎXͫGBh~ސ{9#+B P=[aͼz {={Az cI~Z?az 22eyycpQC ؛ԙb9g¯CMu)-WKpjrgNl8"-ŝR[ȊrhCsy)c1Q_zP޵pBr1ǰqYjK >^KjCG4\0EQ"KįT^]UJP-;USh-"XdfA=hn) $IɜY>r5F:MA8a}P?ۀkh ;B#TJ5Zwӭ!2@CpI$I!˪,.%<5e-އ50F$y:ylgԩk._uF[]rǽa"9**jB-=l5DJVNAnfƸZb{g4dOy5sC}UpX EH;ehv,}91D$8L=R/=e(TU:L9M^A]U:75jKS!ړd*n\Ii?=TmRr2d\|xtH`ʊ'O[)аp`EY1D!7i:Sx}™վg(+z|w\[Ɉa 5²h']{[Se>9K?suTCIBSlfj/ xIn$EGS 7,|KcnSldGm9J9T y)س_xڤߦ$':!k1 fɧ4 {$kHǺ ԰=Oet 085A/2KiˎJ-1m][` v,rac|^,'̩ )@gc:'j)boΒ|JwLJБ 3G܂{9SܿBIZ^r #)g= "۲Yt|#%B=<|g( : {O{((рK$ U v}j,b;>\@4dZ;[}ZJGݴl ~>)E<@UZs^ƗQϤHq\H} <^Q'P )mxK7MKK JVNFJ6zNM[>~8J1p5Lu\%"I94]ʃ|B~z5';布!%LTQYBmAJs4kg!d-Ga~b?'EIJBo`EZx"OhTA*L_S+l- .}RzY-'YUbfl?^7Od5 ָTU}-jY3YUw2a uH~i:?gG. K\ ST硕 ; }苂H R:Q ]'ok>B Z!m26L6)w>*aC,)fHƔr*?X]ce1>: :y94u,{51lIS}v'VoVS5^>,ƿDJܧ6ܻ.vJdd ɿdz ,\Bt!>y``U[w !# rnSZKcU0|E; tzBXdcnB$DּzqHTBq]_4l)2t$msBĻ|4~_4b߹dEXUͼgiE<);3JHyq\rSjc m_IVvyu4e v:`gG7,H[atڍD˪?U(] uhU>TvH3QU]6X<簕(/}଄ױiuIr m`)vSVSO43Ks+uq'v͔롵{;J qi{v@1׸1ܙ_,׏3o޿'#z N 8l4Ow$H0fХbh(M;yH~*{u{ IǜPY5|BםQ_h\?qό-^&\O%`:p=-لc)U9%K ZrMF,_x@ qyX+2,.$'^81HU TV5h݁>BT?W /$<A{_\D>٥*UѠt uhޏ8&n+j~环UOWRP:sSECC8x<Ɏ=ZvY"8ڦikXTS((|I}S!|t^ @VDrtg 5|W/~2JB3{r?N'g޹IDOᣑmKp͇Rք5\8sj:} ''NVk\zIL;"\9KiۜKDUPLy*<[{oπGmHpQ|}2f/vAXQatRSD\К܁2f-WUÞ;#%N@WyGD?^p!r[v^!|~.$MQ/DZtRg}!kRFyxzijf%yXxg h煊@!Us)UtNUO bqkoU=~|>o]+-fZ2FrӼŘb ;.) b=wti;=t`jW}3Sy[Оiqov]>mB" ĜEut6kzCt{0z2P35>L;JZpB0tӴOEh/q~v'9ꤵ'StHx)g޲ꠗM@Gr4@7%Á.KwƇxZ 5=fWmL%aSR,RZWy.1H Mrō *)S;09*k!P JoٷnJ\?j_ D@1q6W>7xe1-ˍEM jh0z$0Q,v'9b_~vbھmi~8zt80h]Fa(CaHZ"l _o G ɘ/2MRn|((+lfGgtU#iXuK< mMi byga( Zݥw?R\lik3h[IloI:]~+H 3K8΢++6D5y}4RS~%ޛ`7t=Qq7P='P}C%\3Yn_[ w됰bKw0'kRm ῞L%3^TM˞͊kiKU#FsCrOKDM,0޾Dri'SnS?6S*<,L>#y'Wu{ꕰ;6U i+}!˵Z"q!#lk 'a0HAJH ewM a< C7g-6wAYn5P,ƟSv)qv0F"U?' son'r?ф_ ,O=6- ]4'ʞ +-نzلUatԣ]~Wp~ҝM! O%`x`\[q?$r6BSq? L֣d{_+I#)}O'Iq&f)HN;Pr *6"KO"MkCnRiЊ~ mQu4OtR܃7G^BuIh32{ z-J Bl FaH}oWm>mԆ*jE] jS^q?=3P%{wl}*b |鳕.B9]ja%XyTt1!d Nj)s oLϣ9m~.06k-^8G_CZ|?gӷݦߊV&5;"Ǣ.s1oi+Nևkstbt1 ߥ ~CC0i> urqs9@:ﶋ[mAJ#(v hb$Fh?Sf"~v(H2 ܞE XV"H:%437d<=[X"o&M%C PrNO1nA hBrpqO^ƃL,mn3@Yf]X֓-)DAYg-A誺kjާh9$' /:rN~ԩ#FM` f+Wm)ўQ2&&YKy^xL)fݹXikg:'vPa]}w@ӊ'`;DJ~ !=el}>Bֶ9=e& CN)ۧ  0RAliKx "t?FU'$[GD! q>@l-guоǣۯoR=m&V#7?/M6WW 9 I_%) {'ٽ'jBBKM4Rq`C鏞!,sv*>1\R{Yr-ǚ+?,&d4,d&zvɒ_KZDmiŨq@6Re N|D?ikw1 /ozP,Cvv8m)셔)Ԇ?\h XNm)/d(,{IB4QFc|)[x!y|+.q׺,v/t(,^DnEh`f]\rIIxoֺz"nݫD*4ga[HMJNiH^=-ay<a:&a|^Op*NFQCH_0xgRΪ) )?~0SoHjb M`+xOBW m6gOU&m3v8/Z'/H#^+OCt[p#umE)b{Ao$jdܽn%I-dn:ݾ}@W4h}$8 :!&k2.z9;IŘui9=ILd vZ:|OyZ$LJA1m='"ՙ,3I ߹ۮȏ{:q~Whoj)7gSX 1Dw7st,a SzJ8B, 1U}qs2=rD* =m3PSMꇁwhOG7J Q sp^2:" h:3 T[r!?͊= 'Rfd{[%̪oګu^]:{bLpx#l2Ìc&' gG-g#w$n%դ[%ہqס0 {|뤇o+\"ږ,x]497ۀvԤTP/.n-B?/ocCb$Z!8`7W+ٌ@78ǯRJXg 3 QZʑp.mB3콩NJϡ0Pz #YU.)m/hi yx tl1T 2s:npEZZ *@*%(yq3.&ސ(/x&9N){֪ ]М覐a9|b)c#},gr֡7q֥ZzIɊʄ B[eP3>Ľ3cvm@KZ#eS<6jQD_Yݶ:Euq"$ ':*Мp{«/=X~-U)\OSu PEο<J~j"jNɩL] ) 5eZP,&`-ChU;mN"Ԙm{BG|Xaτ&$ڼfN@h{/0lVP?eqpPdѵ,D'T']]Bf]^5Ge+Xw,^I")ZE@fY=R Й#]"UDY %ټ@w:?k:6O.{0]6n R|Y|-k+vmaL>wG&O AT! }v&-,Y㛬ٶ5G2~~ZE"!1&inxQRD#SQE sH@|`A )nN#(ܑ0Fˮ*!@.Ma 6KۙB]HSϾau /&OXRm[lz!d(! <ϟxo$٦e wBԷvyӗӵor#%?-Ǩt`(˵pp蕈@Ѵ-vCЧd^7D3ьGH(wk銧\|[-ZQbNK;X}a׮Ɵ8S{UnT ׍50a(V=vSe%e L,kD :-CHT$/hpuv!O V_jku, O?LtS9 G_52cb"ǹ8iZN +X/% j`<E בκcvsH;|Y.,%_~Y]KTy) 5ؐL._P2p'bjv-eAF^KT`e¥oVn#Q8%?R60:f4sh#z6=KB^xZ Gj:T#{T| gVr^x`I1t jDBp ;wkbS H1RQF.#z 4A1l*AǧP5~MͤX9TSń&./6>>=lx0-vY`67Z$BM+Qz Qvz;S@ZS#}^S⁕iOぞf֌[%S犎r+ZQ=wӔ1 tta"a,GU#,S*nwݑ398fC(} Rd](!7_x4!?e-]m $TlG X Qj7ҕD~&!ؽicF~l^9FKlcr^ L{g@;)[υN+C]GwXTN uʷH"BTa!>!QQ ,uuH> 9@ug˶hvSf?z.'FV<],OЏe%(^Ut@r͓BΞPģ+/OQ7SuMNv1?b`~}+[뻨 XZYY^N{]ExJJ)7Ps+wn'Tk@c/0'Ž~KGk[mݖz{AE<9Q/IͰ ҡ eǴ]HwjζX$qM|WPyx Nimjq` 6c^H'#G$`,L6Pr˛-~3!Xw#y젛UڌPYbjF[t>5bW6~P?av/Efu ʻ"yxːşbx (<{zX1xyRy_~,Pyu jQKII-8g,.3Ďg+|=y%ǚOlEc=EJSd/0zDGk g 00 > {~p )FgElq~*Vjk"'& KLE^S {,N -g:[QvUa9' z3s! tAWg5jįm3DyO 8/ I@,#Iw.zɥ`x[1S.ed& 9Qsal%rLnOGD s]̌-SMbV:g|P"RFj_xn ]r:3-<6Mdo #%@m]0K$@3,_y ;X[{ZXĥ6aAK_Z҂ȉgp3BĘ˝W<.!3ht EbXB:~TFdV{UұmPT{zSF>S¯ox [|@&tbw ܝF;8)vR5hNi g(3;wO\ ~\gk}j#FzI#srJz L-dA3#nj ݯVxwP V@jԙC@J^+XV -eIG "A(!BiIǏYYyc5-5dD|OmIZ F΋FӴi3Φ@,xo?d4r-:@zP*>Ì*b~ytq$JPLi&a<,˻Yn ,VLzE27\s00F\W? qlLpҦ{% yI96zbΠaг_+~)Tq^Yܻn| MG.3dk'&Ɂ6vL]HAj$a}uG#uB?D8ZWJzq#hSYUqM/ ?GV]?$ iN6N'Bv\5 ψoM$=5mC"[dؒKShv& C)zfAѷ}g ;*HrC"G}6e$8㳟I`=)S s%_q.P0ښǷ3.2BL¥?Dk@V9,OEh)G)i-8dA _¹dd6 "j (ҝ׉X _07,@xoZy5j֜zсtSeM\{~ZnddRЪ|#Iq%V ܝowcEҦ!icOc,1 ѭta_ rh>dp7nL}@p0 !}t;L[tD =#)(4&3yI^-sHJȠ}zGRi8Iٳ7e`d=g+4^zjyk3zyMfI!3-!kZ2Vqd(Kϗw{"6#Kpf]Q/OT>RD7oJ]?g M+`n+룳@ pr'_D\+Le@`kWZ/ ec],X(7{,D7Q(}|v/9ޥCBZ?W&=I>5(O(6j}E@ x! jBdcDv+leFY[ƇZ%t%@PDb'cb={=qE"91cZVk>Pㅸia{|`[vHA RXhG- 1Es<[2e1h&bG-P,wW$e 4er3 [5!`E@Q&)0[i̸%D#mT(.S&>dMiO:EAS.gB?sbܙDl>Ud@@ajuXvDxhCgɭYoCv:Wd-({LAZ/L0ȶP'Au8X|+c3'ɫ+~)a/f.8o4|yt Oԏ_U^4ܦfJI(ˇWFZQ[w~lh1%6j^8kƂۿ}?YLa2=,yo; k;[eyLw93`J`C}R]z|\珞$Mr NRmh]8mjw[sgl|  ϗ@Ah%Չ_O Sn,:VPa¦,=_S& ,,lS  Ճ87 owXB˞ p? %XJEl:9i\?)zGdMg@/D_caBDU5 djMܦ<g];_-ŽBnܑȉ0X:4s/%7')‚!>B%PoI,d2btdh櫹WǙ] 5ҖFX$ʨӋ~4f$Q)RֲdāSz 8 4˵hd({SW`w _`2 'dd$u> 2~aEB-ZnR\*f>hP+x֢ ^В2',WM^pMM&G"GwuUcm INDvјU#;b`G+6~3O>??ԡM܃wcH.A@.P 0( \5VnIݹOD)>DM0v x)Lfzyώz.Fb(֎3S?BNaγA1칋G1/tU0uT[.Pkc¯GRrͦ62\Έ!u^v9~̊"H-a&Sf7#h?``| lC3&tUh)~AZC7ిnNO9G\R)Y:Ky2Whi/ʤs8k11nϥnA쑞Ɲe@Lyp'jxN5K<ݯ>oD6o}wy(Q3\E/vQ®4P eu%cxrM,~4Ɩ- Hۏ~֮0&w'*w k{uћ^xS^@k^Y[7B#xp>]|KU43zcctUVPzwXzC@U+* f 5{(\xb+1(7IC0VO*N,=?_4C3 Vt38DX24OjM1-}FF lt᫾ 2e a=ݳx)O}_TS ;IW,ݕ@̟w ,,>fmqgvBƕZБ쁧\f覌]Y}$,TJ NS1ק?˙l _Pws?7zrĥ&Ь$I,h"Xnm #fÄsGw&݈Eb)~v-2]=z1r y  Dx yмBL7UX+[ 6Xт_1^b%yN P$H#!ZQ#!?JʨC94a!F@Y(&gwia$='4u=Wƅ3eI+ڬ1O#Y g~ѾaN qQ)Ӄ߅|S@| ff@^JKSYv`D#YrlyQ  #]z2ou$06tu,fLEp.¼e:&Q.XB/9Q3w."-P'fhC3T&%Ib|- \ 6.6_'CGBQm^ǶŰCqR"h%.awYU^@RSW+rYNomXj[On|켰HfS.*hPo *kǽPu(Ԋ^9l"MK1ɕ"-ie.*0KD z~lڧO,6ڧ ˁl.<gyY˂bє:'>SP_x]hkﱈޮJQ4#6 ;iV5DO`m&W% Nm8q?3hÝӢ @O5\&^okrO׳0=V;֚vMepG#v'ۗ,TsrjlR*\Fٻݎ ~؛b1Ory ZEihy(;[=7p ¬"2aĺЍHwEwKFXjDi :]>/^`QA\tQ,vt\ E}z_~ P$7J̮)BMp^w?}PjY7(N~Sf_du<ȾQOoW镦~Ng4}<'u;CB(_']]́dAFB>zc_J hJlݑU7]4щEh~F{]16_`peN:Ja!Z [MQjh6FeNdu{8t/;|E-Aw6\&*Rmo{iPYM2"l ~,-v0pv-hmqEj4xB3l{nk0' z׍bP@Z/|ojmEܹ s!j}x H 2X8E|j;dY dxF䯍M/<3>Z'ʳ;R˓j6-KIޡF 0|WiL LEtꂈFЍcݿqju/ſ;07*}zV =%Y|Q–\4`)R~JC|'̔${ըH(VJ| wy.i΄&9*/JLj3tfK+S h$ &n/n;U$wi$/ʮpc( :\uř ~7[#9nC:h9#ݛ+9on1V%\2G.AU}ucjCƛśZ6@ud\wL $MyqX?k~'eכxfvݯ<)/?KeܔHl*Ll8At8Ap,A o;[@XTAqwbqթ(.x~wj7U1!^'d+lU9{ۢ;N$R,LvGjLGO`ˋ:z~ؙkER'p.U'9I/ҌDl.;~/ b6=JPOޔ15*c:O2*2IKP:N͍E1u3h.y F ف{_2QhScc:{ R{JWorư:%J sb33ӨRnDu4f_E{TF?|1(̆xЉk!M(8Mn32FC/Z?u:#.P_ςӖ?~mmO3I@(dB zs.SMh;B1n$vut 6pSy!YNA*\=x[:S$A V@v/RlTbBF VK_wSä㔢Vb9) okKn<JuLZ@۬?B&{ZS==ekS%)|c''iЀS86%ӦZ2d$N¯TG~_uwXs*O JR4` Iiϵ+ hg5B#l~7欥{ґiS[Iuuلie}\ ڊy׎&튛;e7+X<*=:6SўR#L5 E?a6ŕO:8w2lC6{|If op3 ˍ#Rs.7~n 0QL.R \M@lJ h+9W^r-9M]Fm瑩YGU6tf%c~BN -^K! +썡)Y+H9Vx]1_q OWn%9mY+'K]cފ߸vAɁH&ev 8 %BsC"u0aXy4ClqyA@XI6w)TUʠ=:bf6wVq}Ǵ~dd(ZxGhA, S8aiDK-6D־ݥQ IM9'ݷ Zơw=ppJ);Z*uЙ^0J[UN^F\tNmwmܓhr^:욖)0UT ,BV2es+ 4V}0PT '5 ü*k1u!%rjFglOQacKoGS{zaI;"v~Y6Ve$$~2{ovabhZ3"`HePQ UCm<,n7/C"ɕ/t-ڰ񩗺YС2(^vsSh1Ě<4$q]~ )#rKny"N߿Gɡ0hBG: ȫ)m60V$g}UH)RA[^<܍w6/9Cs!b C3#-3>#Ws|(a@RK!+xg[QE#?OZ[˺TotYp܆Liidդ@EZC{[ ;v{aow{6[Rהrylykӏ15:/Sl PԿ,|\SkK~כXEFz*CQnsh0xکH |C'D,6EĖ|;8e7K3t 8^&|.|xnTK}uP ֶIA*w(JO qkELW2 hB/9/8zZ&ѦXmӞ-;K2yogDzait3MSD)MU:m^UCf50~z0u;K+,jrh'~*z"*6)pm?}-zà_|x^v-CtnJ}IC4,%$YVC([,Oڧw躴jA@F_j[ 1Ґ8RD| ǙUfvەi_N֚1-KdAlL뒌 Yߢ&}(6g f9>E`MqTuqkkSf^ ?[E _Iu zGusv@ԒJt0Ew({,A0pI FabuT|.J]GG Ӌ뫽*z0Cp#~3\UOIJ[f)cO)yXˋܺdR3T7\>D 碍ڶ1$u?خw'g߱qNPuWTxY6 erFQC&J~ߧQaq2E84Oe(m9(4RSM&6n٭:@ZLm΃GP]``d+É=b2)ؐ$;2vP?vr<L75{@B| b|r,IfBJ~/- C<ĨN6>SX 湍ëCeN̊"EAҍA?% )UܟfR`8 7vnT+5[u(ۑ.N~|3ٰ~nIgׄW/Yӱ13D;`m_ALתY7 뮃6-:!ۤvJd he;ӛ 6QP^DSP- UXEU• oq7NvXx 'ywb7};G<")M\V\cyK_1F@j %#~{,[gAފ<&,N@{{GZѻƳښgBŞ5Gyf`&f9Lbd.2TO&VƟz=ԝ֛\|Ed>(b6ep>TnmփXv\Fk͆a^q$OqH&Sd h,̠XU`4z!օ H3T+m^ #~"!V姶8? &#4knXGr]ʣSzMc#9qjjҘmִzLZm?Z ^MUfS#;׉ ?|9'{^}xOư#K87m n$*yfp.y^C &5N҃WI2tPW 5DfWq79Y&,4K*{8_LB=U}>ZC9qkS@c'_$BgǛIK(S4X=A_WdDUQ+i+G;R&NlpfM᷈N 7=ћ03 pӵc(5i<{ֳK~W9F)*`fZID1jEݣ .W-&ҋH$ݫt圬;|TB|@;x(i(k;</;65b'`C-Dz @{hyYzkP/Ʊo# xG4)7uP=¸yzD [IƫIc7:pmpV#O@^7ȳTY6{|xܾծ˺ڶX T:\)+JFy׻Gù1akw*U(lC@G8ztv}u)-Q#D1$ A^+Uғ01%HI35.O7+(;l e=Ê^nqY0T 8H<QR2_O>m qş D 4|g:n[oGOl$&޿u>cXEf2MVrɇo Xa.aƝox4 y$6ZF]n"Zߤ/i]Pу"YwGK^cEC3`UEdQwj,x /l;5]*h%E j[܍j.䪍IvsƍdKD8tҏ/|V7˂ A'#C?ӊ=/B7/n^1XRe |IL~yM2pl,@h$Ģ*20ʜL> ^ڪ;^B׮UD-*UJ԰xbk3GJ}^[t\dKէscwr=e)-;Ed>w}g[66cV/"whJSP>>ݼǶWB;moFh EYo6I;5AnZo۝%l .dqK1 53mmO#s ,ieEr9HL?X%Ev as0 h_u?Гi,o].35u4v@,.(v#7w!o\|[8VJ۶O0.|0@A JaV1KC~$;)GA6O >qˆ|EB=otf Q>sCukowS`ATzyMN>/jȖc{AGj7jΒP2m&]vl8@i&-N-IHoBls31r3IXi^} .I\4PkiñL&|{\oქelBu7Jw?;l}O2E!En('v1lhFӣM`4\ͬV T2P(,?OtSI!Sf8F@Ε X ^nt pi!UOKBo B`/l "J;+ _P>\?^ሓ0V/{0f(tGtv]2lO l] ̙ln:-̱k./lka(Bq=QCe{gR*}{CNDT9\ݤ V#sufk}_Z9!5 -(*=NFR4~9\~_l,lozx3z!YG[n4Y)t_#wkF[/X@ܨ=X8V%v@hT&c.[ P%:OtOa0 uW Gc |a* c`;C1S39Kxt^3>'dJ-(SrdCjNzj^QmyKhlPdQ*fkœ}2Z"ӳ5ēee405h3+j#5 –Nr m#f> Ua=9rLѢE]sl) (b`U B};WEP(oؾt'gK~3ܖR jʻ$P@ɴg+W+DҪϦn%2$abKj:1™ۋfciGFqPm"TU9AbkF&n]bRU[FѕO#cd rx/㆏=\= QeI>&YDuYBk(1^ZZ4a?4XXk{@ *_\%_YM`-|:[m cy1c+z8wh7cr%L$+LlMx"7"lt R vcP[ lt%t^*o\Eٳ]g7'e,Ygȥ҈ I!X TxKƕ)M'AGf֗_dgEB7%glpЩa(wR[nOљ9&aK/]_1ׇ>g+:a7*e:36m$T@d2}ԅ8sq6+T(LSw:>g*ǖr>1c-fNžEWg}dDh#,',*O;D C3'wM7"=g/%*grT54q_ڣ8{)ĞQ<2=0uz {ΫS;'zhZG^\Cw`}Ix~ ׍sX|+1x`U@'(}7vYH|m/FۿXB'je[+=7V _|"T|'q}0w.|)^@W |z"bݦf vR N7ߺd*$c}%5l(%>֍6YP*GfdCд43//ʐ6~F2EGd?1tz_~`}+s|L(i sٰA(.ӭ-!l ڈǿʛ=Dϰ;dG,>QeD¯U " 3_눣nS`4Ж:HSEg=R44wSMi! )rjI2?eI#8Bp|8qO&NF ֐j'em1$Hs(56#Xu1Jaߵh?n ]l=VQ|j3ڰhtK Cݭ/uOVÍozz4`y f2Ls"m~(eӐͭAS6*#f\w7VoQLYSAdG+0U)CB^cw3@?@ ⺢5.hlv`r{O # $tӀXA'm  7O<.@59W{T?.Mn\˳N y>j:T"VżSljOqE\\= 7=8`~/fA֤Գh%:՞A.^- VJKkS *S2Ii<7QEa벬_3KBke;` I.FOR3ѯֱ߬prGWlԮBKːJ%`8op *-PWh&LC9 ; WȪ[![СOl(:Gkد pF3T੾*=Oksk®< X:aL3p#Ǟvzg*T4 E[w [:>HIYIxv2CoSB+6Y*[t>$RtvF֪N"Lj.ޏl%hH aaщB;OERcI1!2d-$&@a-}e: ZDR_*GH)͇ՠW(8籰Ȁ0dl-k=p(5sa񀩚s rt{^AZ>T \9 @W?j bJQ?=|Ƿg&>GƉUҒrӵcp(͜@}A[I0 <';2uX"~{Kyn%4Z30z%,/Bs}^<t@|3T f0A@ 2=lSfwL9)BkjUCrz(<̓ =C!B>8!t/ m<7]L+;U@ZCf}bn`(`Ҧ~q^894`_E3.)[dπ*^J6bR]bGqA 8j-F%Ea!LeǭOHX@:#Ր 㐂=6u!ND~:^ )MϮzlCQX`^A4U]v!LV?޵IKeY[_ލ2i&փ;GQf?;.tʟP bjdc]xi$./LWHY;v F|ɟ\v6((i@d6pb(wCMK>"բL5ȬU[.#υeL?W f+h˰ EڗMVA?",N.΍1nzôVnjqa,?bT6:~0x>;_ y+n9(˼癞R?c,13&;IjnM~B["x٥;ph~el) v\#ݹTK0گ|'^Runx8#ܓ Cg? 9C)ڳUF؞rIG`w)̖C/nUSL ipua8u:uqXqg![NNH편__eI*f)G@nVh|_IP G7qXp'?tψtr-N!& TA}-OH#ii,aiBwksl?ڌӫɤ#es~y?jvYٵY5m4L5bkC&]l&L?렍tyj_: tZczDл1<=קnNCA\]z2gt UcT|,=JRވz*?tÂ0fhTJDm [I1U M^k4[4SJ)益W2P#K{=&D ۪$䮘фKi~{]UBuNxHIK"4Z^ĊrtphYmwGuM4[19 tWEB!NEo)?'or 0 :Iԭoh_0|c C]_U;q=9t"Ks@?3.HD}a$pg  ]idUXfj\vU*2i+yK<|.lu|{r\E:WLB?R~HF&( |R*1WMx''ȥcM Ҍ.qi pISjQ)ղ-- `~L??(v}%O6ѱޥmD?1~Gd WM_6Ws-NBaYU~ED"ڛX8دvSPcY^ z/ߞة .46C #좻`$C<^V߅#l!tSxdO&r7TQGLdnr\]D_ `'`›Htv)n'(qP(j]*ѥCv%&x-#&.K,ὶ󷍇{,^V#pQ,3Ŗ#ql3+8W۸B}J7CTu1vZax }0h|t+f΍SS?C9k n"{?x ]J_d5ji( ަk}Jo"~gI:A(G]ch̘i~AdZ"8?dÀC &ej=נK"&(>{`{b;Cx GY<=Xp@D m.8oKOrYuCםGڅls|)s/V ߓXZ|1ijZYܻCʚI KvY/ S>܀]n~oC͖-vQc8(# nZr-C%^ 99Y<~}8ĶjIòÜ:ovktmb{u^1CRlJDymsx7Od ZmV RWn- N$0|f/j0\Ɩ݅Bh7^H&h{؝)ФҝΡ`l(LLS;Jk %;2j݁:6h$ Ĝ3FOkEFɥgTudlgr$z)NkUO#qǜ*RSy}pi-mc=~b"jͥX=p+`-MƞgfsD1]N<_lMI:#ިd#oimWP~VҪl_|\~W+5^rkޔ~^rﶝ{POïHT /T[653p}X(Gxaa.k¶-F3b,SZeG$tI^u,V&0u<}+>sO;p,a q0- `#aO$)Y^dXhC^{r8SQ Gb$w!5~6<0n3'! FkЁxC:V)Š\d% NvZD"U4*`l2<7[P 9=m& Ξc%T\>U<bh>S%&&K0]4Ǿ B˭2R+a=.֋e>)3UmM Tz= kW@J<58Tq V? ]Xe NR%(PdmU>O+6}OnZsOd7 ̃ToXh,.!;bu N,0d՞ Z;V$,YB >Ъ;:jmfZ~!$}̌Ӂ r˲ ÅA! yҡ:/r//M9_ƥ3qgS8«1 x^S(xfK&hSJkF5ڡ.o͒?}ؿacT (O/0*?# ,IH鹎zs5d]8):2ZޕfJCBj|.?<هkk1̴Dfb(#dbrJ hEm |(TR1FRXc1`r5ddccۚ3rPPa>nH`a }_1$uEeخ&B6\%xseDuj TSu[ܪ^qQRɬׯ2G-K,O2i~u2rp-]7۴/cla`!U 3l~:m+v>s%q]p!pYUEDr5SPj<{ ]\)>mꄜfůX,2T s97yƽ$9A{V 'Bc:‹Š.lJMe)w;G-vJ@D,Wr6Vʉp6mUtMUI'i֞קpO Tm|6Gx>!}6M_8QiFܴ@U=1X*8k0#YX-5m+mezKi0pD' vN >*չ mxGScPVSoU475 ѷw/ӁM. qOM8)YisԎ]W@]eSeq  Cǧ#3yb߿ӂA@TLW<*,h FbVM CbA$4-&H\^WڥVgt;H- Gf}Fb i, w;4l% Գa{P%(o|f[TEOՍ̸;4|_z?>نl))8,2,LUw>V:w/pAxB} h<J:rˀn{י!Uh:`2˜Ln,)H:{2Q7q4߲5+HJ_q7%` S*${=1PXMimFqvpa;E^߻!Q)7 q*A0S;Q莏;m})%¬#ҝV+ [(pGcMzb'! w64BYɎ ;0Ly+qCX"YN_|BYVLPo8iqƟ%1LkoHQ`W9Ipw\1_CZB5V>qV2|F@e }vn%~|bjy:aoeǕx##D|:J9i:Xf`Dd}WnzFXiC3͌eJHXhɓ%-f>\?81z{AbO4 hƊMN"WkUPq]4<6-ee7t0FW",YmD60i~OD-*Ev$gRZ蹾I*6l)Ge.? 5%҄ױjA2䬼N8,{{a !)CS o6IzsOsa:P+\>Ֆ|3xw/B`tlÚ?hKߺtǨp#NC ^Cs\ &>pHe>]e>48i6"yel*CC17҈pF^ߕ҅>X,^2x y2tW7W;Z b֭W TtPV_[&2xrX ZCSvF˅9[tыJyů,W(k]f|XR_$*D=3'oi8]lBz8*q䇾W``?HA͓Gs{ sיHn%IrQ =q gXhpLʘwſPbw0=Ha 1 Hl`>ux6I6`FPVo_Ȼ?~;hqĺFn 8THٗGbo+XT9mYZOuKCܦj|.x$X`eHd;}4g'om$jIxU3H_nLp[wmhf+*a~?(80ҙ7j7|-F6_`ڰ*AOed]K7; s8ۏs' dnx`SŠzXq0!tZ ABebZY99D@˪?K}tgY+ L AK;m(kW]qdU$PE8+< GԄFJVX`5Os |4@HR[+J2*hHN0y- +Op枌i;o"곞I#>\^PŌ Mj̲OHK! $D)8svY^8և۳,v7b.Z)Lc08NJ.‡.*J ]x$LZjMtVgR5a%V`f BUgZ.u(Ŭ6}%Qyj__Pͱmc L5sLJ耒i-w+!H,Ƿ#'AThEG[=EaoOпM |% frl|J\q + ͞f?`н+q-ؿT3Œensaأ(lC:m[gyNc%>ݠKz~c]t+:n6{|L/ū+1) BFa2I#uv.IW>Rfw b]h9a i/z~@ٝU ߞ /uU3p=X 9\IС B@0ȍm1h~ vZ"RgADfuVޘޢV~9 9{y7:{V^zgsoiɂ10Ѭ>լ `U]I<:0hE]ܵ#&6-ҁܥ C~JJMb5+pۼш5˅H.z@yt ]qM\]sDz/˕!=umPuk@Ξ^:77`;ϩȇ0sܢ}aL2\mOLe_qH.u%H2 BZ^EH1!ǃrwoVE$X^z`g{ֱby1*+#8(*r[ poW,,&.Zc:a.Y:w(8֡WZ+Xj1,3{;Ts-Nb2ĉ~]p,(=C GAgi "}KF9'"=&{Z+y0]ʆCEX4*`3Ea 'iH%HKdoFZdL&Kfkl"ݾ?4:`v_ Sr>Mg2&ܪ:[8DBZŶZUĚ8yF:GK  g5l\Cљ q* O`+xf̣߂+ z\#_^ m*b B~!h)ՖŷxAT+}vx\;sR-;i{l4{'/XgJ9y(h2gH*ƍ`5(h%{̷)8?Uī|c|n&s%1Ȉz #s?[M,4 jeN |l<;yibSM ẌppQ*V~hmi>]w<0 >qYN;yQBQvMɴĶ{(ۮ:Fӄlbz)Fgt0B,`}6]hdXA 09⇞ jF\FIOplkD+^$B%$_Yj2ĭ&tk@nq7xж_= _c:Amބڹ̑^;_%~$'mB.nyEVPH1c9d-j챁q@dT^WhըvG<3F-ؗuM}7ߐPkI"ibi9UZ.RBv!ݓnbfNhTv,g5OA:eUXg|_P9s'h R'O9}dJ;θĻ^it<<dA"ׄ9-ȰI9sy'ܦ_^s5v1eDTuӪN;p\!Q4b0gPogl%K֊V[I/[_):h$fH~XjCh[ǧbH5 \r LȶxN"t%zn;l׫]Ŧ曉_'T;0SSiYN-p_F]W-c?~t\a˽]@lcNąw1@q17IEbXw }_܏&Mmr\]6g͉O_՜Ig"*W2ICSe1E॒T8<!)x@]uV/|JEnMR9(k-(h"HfWzʙ Rt;\bرi`g^[=&e$_ҏU/~΃Bem;^!>3|1hwIz?L{CNԐj"tS {c]lՀD;ItTW4Jt0yn\ݺ/~S.a{?V:.mzmΫ"݃Z4]*ٰQbGLX%{%DBzṜ( d{ c pUrT_yN{.MVƏDy;;I-ϼH+̈́ü[9`P``:#{LCoT!3S+J7[4? K=ўɸ 皯Idq\F 4@_L ا| Z"/)MjW`/=G [ _3d09c3CfF AZkEv~Epۊ9g$~eN_trV fc8޹o|mzR7` Saw<bG)A Y[(W&弮xvP`\A[ w!%:Dc"Ȭ rJ@lϗ3l}[|1?V(f@W& g 2Uq"Qbupmֹ7l.[<ڄ%Wҽ\dٿUok?PaC3Y0˘q hq2<}TD8?_=VSGz~Լ!U):h7t[s̨\aQ4| A;x7mDk8g34(ܤ*Z7FL V9վ>sa] "Getd[$;g0&Bp*M/t_lQ}Υk90K[xos.%QeP'O԰;P @T'2 >ūV"(ܤ%X=x (xI6E(7??¬qt6rXbJaًJX@rEYVcnGnйܡٺ3آ5 kqz'lF&sD2G;+j:|B<p`R0-2bI\8TQ]2AKV~Hlk'Z#RCyGsm)Oۢ_Pp͗J!MJoB9@BJvLb4|x]`H:x\ YٯhÀ/dȈ̜!@ !e3ư"į*“-L ,K{Xa.+IQzP?ꩥӀ2rHIV//'xfWy-4NϟW lM)& *]7`@cDY'/}T%O{3o¬iTer6PH1B)<.% K\^GW!G0O0l<ֺߗﵧw䞄7\$]vs q+@*ϻ@rҸ&KAa.hx J1vw\znhš­8Yjm<"_7]80DAۡ(iZiȝ3IJ17*O-:^Z7` ?Y4˝`ǺPSx2ҒjaMw@h[&ԽK?08_1ݞ(n׻ΛnwԏSLӂ21Ss*֚DGe)G% a0)P@"@-zCdjQY0Y^ak^$&-PF`%`7KV.A!IԼ3okiyIv-Ψy>tze &=0eCD`B#ɂiB)H/ ڱIIib$D(KF!)tʣbf 0NM_o VU8Ụ}c'fKL',wK* e҇l,kE Q7,; =WW',4>,8<1Z \)R5ڧ]*^@Z'4ۊהM•%.B[)(ތ7*`r SûMnhxapoK(, Ҙ7z\Ha,/D_ ̽s_r*C7,"eok1y1UU|:Gf?ooH L"N` ]G*? VpD֢G죈 r㠣=|à~Mn.kM5pmΰbR.i*3oNw P*%S cC+GbwM1|O-cC sZӸǩsp&=C4'ei&4-R;u†[\:6GA7")0lJ[3w='##R,6J1qe'(PR.NiD~PG##Pƈ*0*nԍQK58 ]MYsnv!b&oeaW{oρ 0+BGWlA -9N@xrhnfDB[ 2>u5皩 3Ij8'Օben`Z=2'aq&kbPNo;B5OK\1.%]_ }ӈ͔ZF@`AY6QP~7mNbxa[ BRAVQ <[8=Zr|1ؖi37flpW]f눞Mֽ=s|KDE#fw]ٸ3G׎xj:D勆 ;ܟ>}Cy賕hEk =h(2T7|^"7)Mru) OcX*:sрaՈ'*a/ܔUZ&,bۘ ֎/U9 ڬ`؍.UO63qτpe8&Z{tͭQTYan47 dEV<3sA2 m J Wƹw W5,EM&sCɭd.< `f:\nv2 7f+B?jYX$<>3T|ni)?aȠ1P,l)]fg3)C)l|YW֢0leXeWbSU5J2qCiLѼr,۟>n ۨޠXĢuXB;R{C]lXg*No t ?~jH\1Ht:^QGzk %ۀ#AsW DLz|dqk2Q(`kIV``ل5aXp;_b׫'trfxHǙD7D7:3TJRo qJ3c9y..~`'VT\6lvATmE}2sW {Zhʸӥz Cl 7&zm\wSIjl2I WKsϮ)`n @&m6b#>>NevDb҉t3.ឭ Lǀ ɻ؉A ʤEׅuB(8:TN<Q`&0#o$kأ=2) 5iDB 7Z jj JٜW@DLvČDUzxNLWy<#hgo#midRƦd} {=%7(0S=)Q OPK}ZM(5PRsw`*%mZmg{nBk JL/扌6Md: 6.ƯaLq Bp[/ѠhXAdzz+Qnx[xRcc2;k3m`)?ߑyu[=dxglE|IAa_eYlX`1!;d?̫ UqhuQ>w.c~9(ajY8-VΓp9Vec~(X+y8=ES)3|~TZi^$4oi?z ".㬯<Ed$euT^hÅn0ÚwoC p5饜ymAڗ/Ej%aF%ANU^ =o-tMDUiM l#j,4_u+r& xf,4_(iIș="q矩-R܌~R4}L^e'J=X 3KO?/h<:/ ͶRP<![yGHaL W(~z7< ϵb%Uifŏ}vP^%dlzJ2ѩbtL_dPX/>\4["SsPB穻"(j]! Z5.Em[kQ|%S97\ m{W+mhڕn^w YUl0nh,l: ژ.Bch"Y4v65̫?\_Kx\Ϻ4G0T9 8j(#=C@Z^s: l5O{m~ݢUvNԵ5b6§؝3kz&z5d̦ѪM#z65͋NJS\ٍ@YjEP8v`{"{$zHiD7L2}G/(YkkBY $Mgp rӦ$[f7,94Kϡm ޞg^kNT)1Rzs m;X/e1r^#-MAo &XW4KPw5T-~-,J 2Ux9aTzWپWNglhz q* .#Ra`-P4XaHC')l&o%ӻf̖8M#gΕ <vBID,$uQ,8x+*&b6Hdo)DX(az5b;_vesWڞ)b \rl SF&lqW D8z|et|>2R2y[s&m}6&˧DF~|,{"z76! 0bl=<@gk9P.}dv0rb;b1;E4^z~u1*62ُU C)PlJ]W!Y}bwZ L5>9 ϋO e՞j&ظgYԳB*P?,҈w m(pj|VsFȂZ.eNC5`9x08Mͮ+4CeS3n'qu T vq6R]:^ԉ6n&C5~YH_$mY:M$˛$,I[/?X`Q.-di2R ~mY=ȕ e{9L3`WvRw#?۱kt9^C_cC1CAC^ۚ8{ըxOR&/Vqh]H.+Ѿs7N <T(`MXb5c j2]Ö±Ц2rzԢ,% TH>br |!VfL[F^"]\^BҠ[JʻVgd{hĩ9`1އ[T+FjxWBs3d[OfMNj_,6/{.SԤ_ Cɯ@6"ASx7nd%b=)nkGWEܱ/D=ހ+jZ8ҞX9N^S~wsrv^܍_N DD]06Sd?kO2[\NMn Ar:Yc?T֌]pE.<:PZGhDM=8ˆ7@7uyjشψ jPm4,} өFE:~NΞRW/!Nw^u4wMX|j5/dKOY2+Ms]ZpҠO$mG3|r̬:E:#cpS& %4a1["-.=V"wXL O(V_hӜHvlD`7OaCc3z8/ƪKʼnh2ľQ&xR~I rĺ̳|r@=i&oF-g iy,R[,@:x,3o/Oq|5>/6lj00j:2X.#Fݜ$&{- WYJE36|R&mY'*.^N:od9-otXt8TU9i9I^bvL pvr¾7Z e7ͻNG]wWx2בN4>!]š9F*jyNsk6_ N| C=WmEhPO_fJ'U Ȍe t-1 #5_ʳ~PZf9Ln-? dN qABGpݰ[󶗊1>WE'kt=KgޫK8E#?j(.k7GT7UB[mLf M=<|V(u50əھ(o~e{o)~JӺif '!{)ovLı<|<*8O{ @BG~ceTI 1$jfmt#y qË=H;Y"sYg.ޚWϣuS6뮫)P*]i[eʺvDXT5րA!ѡ7!`N _0=*g(ߡ\@Osj0ynsf1T jCB((GQ|RK<02~WذYjQkp\%˙H]hhiާQ wp}@}qj  3bAxvQk%!+ R9$9am/CkM`@z%B xd\AIPoPhy]էՇH -s0= CN)"kROEs+ =sv֯’'zILllq2 uDpߎ {BacYQ,i?lh=S?⅔*T0NOλRשB9eIn/:ʰYT=aI#MkK?Fɬi^f{`+xR;CA}#R>0+YϠb'nH4=r? N uXF+@fҪ,,V',dFɭ݌DX?PP'&b0aJplǒ4c}lԞ廀ʡP3zP`ns'Eq$܆W>#VhbZ/RSВNGR.>|fj? B!X/ͪ6G @}bȣsXO"7HS^$#1dfEҫI$  w(DsP Fiecރ}0, SH0}'{1k"cGڿ#z~p^oP)d~EQ99f#[y+M*oPM3n,iz |VpeClB}%ka$SNJ >5p|eiPjt֏xYqmEh"0Ӂ 7=fnVrqFPN("OKھMw%8z-$pVct@9~И?7jj;iZמ:΀Al51M4\Yb>^dNXnˈu;4%l! I*˸$8NK*4]2*!;"uJcV*\wYԓ-Uc=3^E 'EKW!t4~u!%b*oR6>> ٸM ʤ&9@2I}w++dx蓿#2f(w"nϕe-R],-~X{P2iV9!/۸v3#Fk2*AwQIJS{Fw.pz#! zؕr&tQvhI½X!uU0ZEe t g#?f;4Eޝu8#Q[^5<)bHyAٓ"6L,/Дg J| N6"@VƗH8 <2fY}RQ\1QC]-Q V::h#a9O療>7'"Q_`qntuc}&{iSKPz]}<_5vsqR |=3P#D Ϭ^d :l80AH_8|Ơ8tEsS+9>9!'C9Js0%^';ʮ'ua;RLHhee7ƌ\ufAՠPFݑTm:r.Ώ scr̯UH `6Lh"}o8|dСM!0nR4jGk9=0e|SPGh{zO7'KycE0͗`DJܷMc&CLRYM[k̖q2BY"sn>ǬsTB`RBIqut8h2 2/}N"_.v"OKb E޵eR҇la| 7/$1{\?O< Եr6 ڛ=DLW)u7,BIc)x_УN!LhiƮ}ZO'Ln2"J*fI˪Js ,U ZSyj]^K_cN9(UY^bNч&eBD℗ɛ?Gfvu;Cr-OB$ vN,rWJy.E?͚f>bI-+`^p AC$@|ΆA) f[h⺬(.S'6]QMYvfЮO&]ٲ}+gYh\`K3ۃT3=-u ,wn! avgZfp)Tw)lζ oc@JPZ>e}'|j.:}K0rȲO93oo$GЯoC39ԒMc/Ywx4:K8p0,=;FS#z> :< w*M;aK+FXfH V9RϥcA+YP" ңAYt31f[b"H^~[Ԍh^yꡖWFw1[yfoM?a>Kh&-l||g Wp1LCRإxE/eP!ԥ׎JNo9a5!#ۭe]&,leZU%f~%,aIjfqSF/*=]nź t*hyfp)z-ufSRL (ĵe O/3yjpWVt.(=Pq<_^ݍ /ƀFtGm|tN3vMBd)e^dbBK]DpxOsX[54VʮK YF wKֿDl* R x“qaqmA啐ߖ ?2*љ PXqe.eeM)ow;Zkzt]d@Cu '~ECd&=56c2kn#(bTz!wT ѧNP*_w b>Q97} iZD9IC؁˶BܢmD$S™4CzzwQ𼺔 ZȎ,wR 'WS5#;RCp0}>ϊ.t@j[*2ŷ2La}DYd]F!gjkb2;%+6fޤ2*gդaAwg\Dm=VC,J?\:[dnYfp6- ilybq F|rjt-ݠrc mB`{(;G.=ӆٱy3PliRo/֔Q{F^@8ةVe`) 6/gCGmq͗"UE@ZhP_[^S/_(vL_/ Ch蓂2}~2'u5!"~ ț뭃WFnQRNXSyZ\GJ-^vd!y ='cGUF|r4C(.NV܋}캣U2O Q;ƏstŠ{}]_;i^)a-g$w9Q,rmY5,R,_Xœ @]2w Iq?֖޷̓V+S%ÑǏ}oicM҇1cnd7 UH QJ1TѵEIäl[wЙ"z 4j\.S,ġ19j}Qu?Y8KʐkRd2:P(L,4ZM(N Xnu`MoEʘQ鬃7vL_E wɾ\(w 1vuε6/eC]5lC_X"1q+M~(9YJcuWGBIRߵi OwU6Wv9;>8.t Was<'~G∠z^M ϔ1f1Oh?Ekh}۽$vp[]e;7~u,vQW[E'O&v"0ULOZmhܿzWP{([=IrubշQ̒Wl짿w ⤒^!_nG Cf&NvJ't) <7F6 EU:_'Э5gZ[vҰ[zry0uaU@(1c2=~An|ȋ]0B@K #h.J}rYV`P*8Bp #~2뎑O=+7@$TW$P 2b3:3ᒥ}zB#v^.A\GC^P(Sym: LlT5`7TJJ$7HF+u`yLRʳUj9 /*=I5 ÊI+ %dޚ,Jx|/Dop<{xxh4 ͮ08^G |j4^{0[DD6:5:q$ *A]K!Q:CJu_ŹeQ(0=8/e1 átmE`   u62nk+Ӊ֕Rl+]Fu^YC`FȨTٴ=>&j5{fR$fy ~5,zr㺼WzWΔrF`V n~cxk,$%3sb>b#mjDSaP}Sd''XaQQW&)kk`##_ bujǩ<ٔZeZqfv۳`!Jo)$NKbchI:{7:,XA(5OX8`>Kr yMiͩHX-dǫǾjE+w+VJ<Q ʲʍ涀!FS,T&hE%wr2Иx"ˮ@qbVBL96w`"D8{\PIQ" p'A2ER<]5i<ظ I++u-fz'860#c=4R֕ht|I=?lP6$*1鱬}Z K( +6j73Hnl)UҤw}M[lђyKey۾v }CK Âܥݓp7~|i[M / K)^ e{O7MS{#Wb dzz|:&c2|{c7Xy:Cj' ?V۝ .}S-_'!b糜' #[;s'F47`RH{+?q3}T.ҁi<)&h(habP<7:)"݌6DT5uͷJQ1R0Tqϭ ŷNyYT|GWWHTy&[Iҩz3Aؿ:4rXAsD٢t`߿QzǴj6Gwk|}?]Nsʺ:YRKrU4wd-Czq`۸9(՟hA>+FE!thurM4!"'}IUvL@}=`~;XLsLa8J͸.N>*A'"A. ը#K ._H3͸褴A=?1\K &FN{"iڠIHg.G%uY$#@/0Juug}rA-ι΃C(m(O8=gH(w@om[,G} ]`U9kRpHsr;B;rFbSFU̱eq.-Y"Rܵj١]d}ʡ'HՀ;KPUc,3,BiK\Io^vaTv&P3(7Iz>AiD_ցAH IPiT5$:6 ޵;K^'w2ƘWm[@geӬXdμRCE>0kX8(p,nNh[^e>F\\$1>Da#;[btD֡g<@x4%yKd航vM쯷H2]\y4mM;CH{(ctU ~hɱ>U ,߇t+gvܳI-Ѩ$J*eߐU8}7$ԏ{}{> v҅`[gOsp@cmtso7!n_z,z+e m b6ӥP:CLu3  F_dD}hj,_&7a9Djl4o|6+@I:/ÜEzCru!GTr85e;Hpv[ܑO%=20t^٦}nd,ZBGe'8F'?g:mb=& yC2-"IؾMK٦l]F-@(>ù~{̽ɚ)!ld TM#* ^Bx۫3x *٢%7e Mɳo2AO`q}! jglP@NT(NUHхA9~DDa F;v=əLZƆGAi |#Ms(OW~sVX7ertf?* Ix>WJ)ސLvbY%"xǚ<.gO,f@`Y'RpF=q&rTHg5=1PA|#PĿf^kT.}Yװ9K@Ƙr9fe (r rt= rMH.`Ћ)Kun.,pFɢrjp&&.Hi};g&%Fagi\*ٵQ߲?w=,/lmݲvWv7zqP'ms[G|e!EΣSujoC4wz1O5j@!#6I?4leIbCxBSy~ۜj4Igv?"ցڈrխ4 ,N hHS{>M6<{trX_ wO *a:Gy-r8 Ur+³J $d3Z iʣ|8_7|ނi:>?8\gU^? ע7 <2֙Mz,.J6\" 9Q,8SEAUA\ GJ@- I8G^M a\xbBqGWQ1?Y}3n(1|f|!=sb˨/TFvLd C(KZm"lF¡7 "v;_.a/j/mf(_#IvՑ 51' V_0'#BQyF}8h]*(j8qʼn{[o" w M\C|a[Uw[Sk?cN e˯+#Ȍg1 8.&u;x4# l d[}KdM+s ڮS*A(H ̜vNT2!TCy屶+EX.$ h E݃Vt+j9wYL> l x )h`61A=.ڣ/wTN#)T_W%{6c?u;I{~% l}P҄ ^w㾩*@#Ea0ZO@_h|^eaн3u^!Q [k{^f)W@pQ'NP'ǝY ī' G!@(mSZ&&0z^4@&D @Ui\%l/~ F>>_/JJaV_~=FŦ$kN[`)찎ɺz``(*MTJ/2rol{kQ42|@m~'U*+s6Q~xh? nja x(Zҡ3e6+7,B/8ZRXAC^mm랿$DoǺ3 ( .;;6Lζ0i8Xt#(7bD0Pr[qE[ĚĴ0qzHYlNi6y&yVrM+S<%L=7 zkf˙ Pfh~mN󽪪'eR 嬓K\ӯa2?U4vlf[S+w#4o|t^h#4̋S{ /KљcݿXY*W8O)`9W?Ăϖb ]Ie!ҌC!] B3N3CЁ"ALj(N qZh5] :$W-E3# >y֋&"a^i)`?P'i2|s&o{fy= D%wԘ- ޲E([QRJiy+1 6l6-);+JJ*]f2!dU%vd3'2L4unp \"`ʪ .Ԇ8t^͸B:P=Ǯ=eLANQGJh).;-s(x7KUvi>Bj< XMخ+?KlX%el%-a4 )s}gDNev)kPK;d1 9Fxֆ敁gG(}<{AѲ]Rx$vSt9$bvdPx@G7zg%![M9G3'ѹX K@G(jZjnCI6|qo.ͽݲ? S%E'xWѹh)AAUek9Jqj[giU߱x?dyﰚYa%A1` ڢmRMc3[pM=G:}P׉R; ^mcx8N䚃n Ε[ )vYw(+*ogS9qhUiPI]q}mWYTPȩeY<*y}6 M1"|/UeFd@Gz=Q%`vA B.u]Aw)%CnҬ/ l Jr;؎fOhLICS/:vQ"rc=~WU13y ʴ7ytxyCtL 6Udї%@* |.<܍ov9 Ri[HJH_~wڥWу~?,p852nT"?KU(ඇ }|4H4V"w 4rf$9lJKC6r3:t9Ur?40 E/C0Eh\ou*J 넜,Vq?t] bݠ<+^<͓:ut]$ZLĝn1 x8*wjӄ0z0t iqI.UX#]<ѩZ8laTk?BQa3Jki}!K=]n lr-1-9K8LBBnjxXdlZ?߅B:qf]+Y,65F7@n.3"D=o%3Dp]coXDQ M\j5!  (K[ 6%oVdQ `2/nMn<:Z}Q HDOqc\&.Āv/D@1,~դ0U@{f2A)KH=qW`/ZK+8#c@:&u%O$|EJҢ&Y ψo>ϳJ{0\*`d`gfڵIKF»̊F |݁Xj]mB Itݩ47C;_XJg]pu$yz]C;5 LsKqcJe_*2SuCxuex ^HO~G!!y2_tS\$БqA|q` |#sh6qg[??lb/)+Qb\v@R0+N`4s4E fx/].v,''7j8L]RF6DX^}cBEz@ԎMR&>{b_d"2^%'7l:3d뻷CN#?f:Mqx4=1)UIU7aŐlޞFyll^B*2+k@R;M?)Td.HFn9Jسn*4m, ]W"mf1\my Dg|f*IS0@ >S-//ief[m jl!$i$۬;չ|8h2-)wNpz.Y(MݡץO7?ZXRBN%K隼r |]ń-FӢKZ֕(3#y; 2?3b*EJy^DuU9 Ggy_$4]u)g4bO_;,0Vs3G x]43*pJUj!q1qqU_ɂRlt*.RZ("`&b휔Y$̆0j\/|¯/^ʐXeU"VE \'dU(^d  b[TCy.L EVQjs iYR t/~GH)n5jXgheK#v;~9n1 Zn<:mv5Jy?O\mB3(..6362qG\V/Ct~Cg%RH)sZssu疹y$\AK~m1{-M]\cgWqi0HHJB;V.c+ Zk$C3o\VȦ*YTͲ÷zn̦|č-d'NzJ45ۮI_ˎN_6>-AZ[,(K)|0Uhfsj2tyT XBS_WZR%Fe Wn7o]Tsw/N..u!ڌZ pfW* C5Nw,i Q3U0#Sມ-ןOmRs@d'mS KGܗbA { xY5AXba85F9pjN*UyJ%{K뉳܎ޫ/Ȉm*E,٘g+am~%yK}p|XIYBrkW)xqUY'MN@%=nNг*A婃\U+'ͭtKq' v;yB'PC-G?ʓj;fk4IsY9COH{Ch$n3ޅ6#CO[`/l@!skɑ=4"_f]Q%t]ugbO5/IžĔL9,C͗lnm'(ZE)]BClB6J*XW~K4K0=>1"O'j7Bwݾʷ$5;Frd9wa133)d*^g*IzM#JiKW½(΅d]e,d0:Uz n}09f5D/ +- bΰN`g׆ZYHMJ$z6%^i%~.AU2}n(it^w|!MJ=px-k[GS}l^3E<ţN+hڝ7l,ڻ)& jAPZ،\^_=}$Ğ%rvZfe:@ t8 nYTv՘4!F ǗVƤK  -U! qMMM,B5KU]fhziR\ dEάփ# b#e!*b+x[W =n *xC8,/5#M#Ƀw&cr-+R%LlDp"Kt]\sIz''kg =&a9 QX\$I3g vҒd& "s-e6a)q6E0Jk.AAsmހ3Ga4+m>':'f;?`&|5\TXշ!VS攺vWHXo[Ǐ{)Eܰq{3hؖHGD JBJtn,;gHGQ8a;wj:6 Qq_m+11!#RKp\}u\Ç8:ߣL!,=oް]?~+7$K2QQ-L,W" MЍ`L˻:E߲ i℁Uuq $*n2I788(B4M; rԄp%\QX13gWV;ⲹFtmJ q(Y %E)K;XD  Ow65}]3uY*.u4YO3yv2`w'<Q [ąR (iTXn[ ܏\&ռQMvFi6T'LtYp?']b̀Έ_N |k]'G/ws%O$^Ry_lN"\M>!" /5o@s qsj܀)%$BglܽQ t<64.{!R8&5ҧ4Y5$-e澎Nrl2z}ԭ˴ILvXKA c0ipGh=ӍI][9M;QLC#Z|zwnϫٸ.,Gwd%,-k9f"XôEX~e glCs~`׭8P敤&e֘`VAL(#0#IQSd7 ~L[=']h].j ҼBȄʡč&B/!Gjtl*.otD4q=9ȇK%;<}q;ƇQ_6ޟ  Z*p$^r&.Dr_t l͠ ]j&T9➯\%~mS!q{0Aa@Wu')p2ujxGL[?<$dvT/o*W|KY^4*O*kQX69o"k~wT3~e`Y"9n-8b#߶uTjhIlH I/b%K1c1uʮ*94+1@_ECOgI|Xj-m DN R(ʂO K;rcbK`#9D\ gOg8L]݀ |@z2rCrE^ $] ~wF]ݘYsLpLPS,:Ռ 5 oN+ cRBLjή' R[KH`<`JWJWm 9)ȿ'}:M5|B!W{r+d7]#"T̴kK  O[5׋j"Ĉ,yP? :pq+Ɂ fܽ'gN+:ؕ*j~Sʋb/ Gg<ƹK\?hԕ_-s)gjHKS6?-J\V}$f[#^-K)Xn+Єghէ(%9ϔbV<|^lKN#;m,(+x]2 #ئq`)Xb_וּ Y9yߞF2[LT[GLXRkT$,s*L#r4Fjc 1h5>_nvW*J؏]BޥN-\{@cndc2]j H@Vh> ? N3="1gHll " ˜?/@{dnlP.BqѬf'Mo\6᳔{쀷δ#=KAVqFU}xrf J;h{PLuvFk}D>Om DWh]*]?Jh*G|56ՖL>|Z PV> aɪs8I]tKEsϤu)J9dHL_gc$ f,]EWC/K@a4DeGO=a[[| ^Wk@Hur[~H}%aX4@aXH˹ |M%`Rv\a30$gw=9?ؕBP@zi \ ʴ^b֌QPI܅':f VrX{k1qG+n(7IQ(j#{- Б\僛%V+jQJs bt{a{v?dmvaBZw8BH0OqrhU冮-6E8%k.tSU !dj|ȯN4)ӕ MfNES砩3qm1z#E1@ۗnߣ@:U/w |MH1zȽag=CF6PtQilMɷQ)Cs͹1+6/5+ iʫnH# 9DSv XW !=O6u+L|dh}Uees]ik Ld$ku*l̫DOyZ] 2Uq.([oߑ H_'՞QH)A ,8ʠUi\(p[$*\4]7mp#惀cL>[<{*8YPI]x~drLm%,bp C!{ⅿKS]T>ބzZi 7;"[0/OL͑H sQ׶DHy㴞cr{H+d>1DM`fƌejkw&GƐ+*H6gʭ$K*[ۢqgLx!;*^G 1.0&'Y#Ȇ03Qh!q*oYuKDmOCf_&N a^˲294.2?&tX LUVSwvqⅬA`nIEM8XR i+`>Wgc*guZ4#Kx?ZWSk*'&JF>J|W0D@^Fd' EnΣDZ!Ψw҃T{5ppz3Z]}׿΃<1H @+}j<)鎤J?AeFk.~Hݗst~E]VO `j;VI0',-FaZ&-" DQMlF sN' Ch2;8B6|?`#Š~Eۥܿ*]3v#L%kfaQ%7C,}#nUQ4 |?SAf1/bPMc=z.|ऄZp#Wb<!a<lm.SŃ.S Dg zź Rٌ"D3(5BΘ J*&{;n=#we#y!,P71 9ywe|:=CXTkl$Î84-״>@eSp5mk]+ Pv@5dhZExTBrz/5%ՙ{UŢ_XM S<ݏcnԊl[YE՗܎_(VC [I@,Ǫ}2+xX 372IPUĴq_:V{ |3=_Qpp0N|h) P ESzh 8#$+'( f^bFf{RxMd}CԒ5Ѳ̾D85~E&9@}Յ*5bҪ;ZKЋ|J$k1ܾ!Z[% >5^= ؈a`̕ ⟱ɴ|uUBPS^ U9Tb-F-FOrfa D»C-n>HuvbLп=E,v1W=20;r &3`V&'ZHLBo4K5ܾ(Q Sߓ->"907X?v7<3WOة1% oyǦA// y[BcN)+%ATz\hW79|S*0x 8H;p8"*ˇXNC1S(\V?WZN{t@u5dN&K]iQcl֝6ő;ki4[ UHpzH<  ȅlPP>ڲ'PZI] aq5{TWU6NzE^}fJ8H=iU/)K;pIyZ<s~S[!oɮfJ Q6tqwFU4fmGov⾶ To~.А6i_ʀ?}.Ri` ŴqU:R瞞tƉ4oHOp536miר?C6QJOU+4:@2ض(f[˃ojmextY(ZwsNiʵB.1 nFU(Vr6|c$5Š\o( ۚ, /сAI_8^Z5 [aewrnV;@wUQLSĒUP'7o K/~RHo<_M/?;W _>}w$T!yD^Fr@|t^1; ?MXB\IbL7U!6>SjLA^| &2'6nl:,HcyF4Wrb&,,C`ZR8!\,L,keÎx:~ jM$xK Mg(0}Jr@+i5!@!kSn2S沫>3y JYgMC~l5WhGo½kIґAѪ(7R]|2D"iPNޘa 2:=;U]7.T|e"$eD#6CD|`DpQ?S 2!?/7UɥH8A͠@w3 Wr>p#[:31K"A؂ؚ =C0[As=Aڔ؍hRݻWfJ"r\mV ^ԁK֓<)R ͼ|WUfK/nXR̪JP6LY 2>Y{RS-Q5^ WɈ_[dZ"7qAj>i"ETm՘MfPj4ga%FCMvdIN_벳45L.t߫R@m}\Zt |̃j A:R|^ Tܼ&03!%0.GY8{dy-*bo?vd#MN]ſIjRx{HYnBF8̮ f) rf"qMS= #(3o@1f#}]n\E[7,Ȑ@0utݪ +[P*χ\5Wqq}'wwxet9B'"Yt+;2SCS%ߘBR7*WŅ .j؍'; 7 reA T ,&!K:̰U-k9bbh|x?as%<*N}סz1tڂj`cr H£ "5VС ȵEcΎcĠ"BJ_  G ݦ+K`I`VKifct-Û -u:V|K_IG r͜& W%Xз GOc+5r TᖼoYgG&KT҆Rb*Dv8$M5Zz`Wqa$EX+ lw4+9J"c ❈lW1b!H\@@xoM_!o#w^nR6ӱ+I_Ň8!|Hѐx/f/ %aoܴؠ8Qx> ]xw:ED.=m3( h@.>ЛrI6عY୆38W| [<+v~!W7I\mW9e2APqhC7%٢]oì-PRG7,5k*JmnDtf' ,V A R|O{RM-;4|l7X>jIs}G D4aCH@QJz޿kƟXUI\FdI0wƒ4={d8x.%;U{(]]7IWγSmC.hZ[cq_ O;`egm9 (`I#/Hw+Aa,n%<:b)b?ZYvޣA­'yݭ6->*Z@DKxW(yJ!@C} IXO VL'2< mZ*;}V;F+aeT[K%0 isXp_s? :3%G8|welg+W5 /@k*ALNŢy1, cV\V] h vdH1|7΢:)B`Q-j65ٱ bw1P RALJ&`$g}1 &iةJWQxOY`BwNCېxTn?ێ(O}=?8S7# y=J~,4?)M4rD v mw\bAj $ZOUPlǨ6df & ˾-UFgVaDŽכ*}dDu5kdhXvdLeрd`cI=hZfh>y!g4eD@i\?w6CשzEom FG730B4u>bd uc+pwAδJ4;q%av?ywp|Zl.;xN1'zk݀mSufg cT2 T3%75eޗ*k벣%7aJ-8ݖE<-* ștӥ-0qkVDZ- \-h$IFSʼnq^R>2gȱM@/(fh ?xq5!Q5eR(Qp9`Lۮ '3dzTNldΗ ozZ+L3:JHmBJ/U:1GzAy8'W&=4>A޾hM bRT$R[*GFz&r$Dp׾{{+c#?GG fy?>p"r3,(:\Un%\,{$&ˌ1'zy ]:!>.0s5H&,|Uڤo(-8gS<8Ռ%l,J5BF}◙!XfF㊋kS>dLd@ aez8HnmOD4]tK3wVB䲫^\Sy34}f.dcsX黚(4/a;5qOY-jnUƇe`Wu91kQ ~EKL6yT Y8?cE 8Т"(*&l(V3b5Č^WBKɗ#zf޽!/`奄3Fᡓ,4$PTB-[VmNy-MUmW"R`C[ޘbX,kq:g.Mjs9FhA!Z}ja:bH),Xq/fKXVın ;9B }p#cGt>Ew ) mIv^[(Zg~_qRTxZxFȖt̽ccg#U&2 bj}ES^j5M!^CVn#% OuIF) /-/%cR߭JSN1+>5 8~ 84K?r0n6jF r@S3%I0/4޽gg==&~"X 8 0GRh**)8G ֒z륒Qhu8餷 "tjol=bzJ7X0jfgi&Aʩh7ME"E\])ۢODR\6޻K8wf\y^ĦE\V}_7f$ߦ _KsʖTS+Y2v_NXjx x2Uk }0QJ{жԢs :{YߞDWLwIHFQ<"%X/(,oԘ| yr.9V1i;114z?CO˥4wsgyrww{2D/NlĕvuJQ*|#}"Dp\k_/^{jH0TVYs0 m㇯Tηi"? F|P0XuB;i3t##tbvƍ-y B (Ω$}j.v=9^f4":^aG utu%=Et3u2)27"ՋQ\ËUr 'ԊE#̡+Pd?,IJ! 2c{nٙS&lfV?+Fxկޞ"O%j"2`tCrǃ|1S#AĠ4tw~NEvY>?=& %#Y(&@㐯3C b4Ȭ.cZ4`,@I&m0ݣd;BU.3:^K`L^ĎaAKm6+PQz' ~,^J`Ltʣ2P}KzȭpٸzJp e;N@e3)Ehr!A)J|S {js/Ww=&~{א b0l"p]TNjë [<]W3?#o;?V#B1ŧ&JGzoG>k2 vj3/\&[$CD5&/zAQ7V^W+wN,hZUboa:L,6sd^peѢWx+eB ^x ^TkݨG!J]'G:'?kLό삯ט Fqݎ_L#F$u_q;ăV*o߶tIb:,ST[hi-NÄS3ލmgF93up׮efÿOc8|G kð n|#nFQ-;>{Pp@S5oBVf*zl@OS*dwۨܿLaPpu!Lgd;O$W%}3 ;&7xa6G7@ D]ļO^?2nMa0 |+e'8^`J ] SirZj l0(1JɘM3M*:CzS-Ǒ]$@לT|pxʰ8ąiLY$#{4x <% d ՜R`.Qϣ5k뗴]ݯyr-{FBO[>(:nl!`&GMѭCE\%J"4K DXZʠ'f{4#o"1yNr|)±j ;bI T;6] (a\Cӧ`x"pcP[JRy-Y.%^x[< d[ٝz% u=[}Cm5ANJa*#\T>+8c#ύ< xy!`UYAh!p^R&5Wcyz(Q4#=Pv zKJ%cd"D!qꞑeBLퟅ0adZy%99qfi@8Ί;j+X(~Px1ԫdWmE;6K=HרH4v(Fë" t]=c yU)z-NX0St?O` Vp!HB& ^ q"3>QR%KZ PoEb,Nʼn)}ЄNk>Df -}4cMׄlɝ_u7`rBm{˂(|ώmKkIV>(I?jLcz?cFn?X]nog*[_*} TkgW^ٸ0KGo-n)gk+!JV#TL/8JjHѩ И}\J\l۵}LvH"t:b\)yx]Z=rPwdz׼zaug,fvS<'ؓv;Lt!+ ?fby={d5cnkf>bëf#MbEnT'9P~k:ܖ EƪqTG«expGdb<HT+uubWuTS~ʐ+0tUOhF=whe@;iHN? Ixp ':'k;Z*`h[*j'KWd7hIO-cX27dd8r;1ۺn iTZM,ޕ!jC%AN眈L1D|TrcI)Ɓ\r0f:7Th[WGK,=mtWusG mCoE% -u0;<%B鸷mתF6lj0He7äJuۆjbUWܙrItCE/SDfA}5eCm;r$mB>lO LUqsHCTTt\)d"LE-lcoS24WDTHOF\E0{19T {Iޙzyr_R{9 'ۀ7_0Ao˽ՔA_ >@?^uB6 ˟$|"7/D/_uBp-۝NƱ dwLA.3Hԓ A_9ѳ~YPm;v-?e(_)ںװ~j!q3˟؉yi6[LJ=^s3%כZjлǿZ/LƁN3, d2jJho嵥fxxvѱ~Pb+%͗F`Z.:TyG؇\},"Bf!3OkKI?ޭJΛO$Q怜('xt@ _ #n*+;ojq",gY"(5TAb, $*筊^br]N?ΓFi$GΗK(iDŽ5 wݦh%XaBupL"]Rx-k'j PGA^/} O;Z aP %Iڊ$&T&\$LJ&[嚂I%4tBT"w'Mc[oq.ݛ`t75~Ni$kxO(kIٺv228XOF#g 8,ޘ1=5Cp__gUT2 @L瞅q*6L8m.鏭7u%?9pȓ`|ʬWyts!;-3KR"|p ;2бCn{ S _ XlYKcSҗd1}3,ːu _vbΧUV.x=& Ang]9{], f-~dfFKV\rt th4YpQ N:K_UjSWksD 6\; `zI+'ıl9{.00WGx'3;r*d$=) <ܐcrněm-VmL@]et= S?Uk'_dc9l~/hP׸3mRKV:oA> LZZq Lxz8xN0*!yq ?UGNa?_.0p`$CD1t`8vw}K*b6OD~\f,篠.A_;'vv ,)+r 2'!Pk p&x:)cH \A;'4iQzn|+|ZQra,p([3ܲ ȹE1ހY?qQt (qYX"(<[h Iz'/)j7nM^AXs{YGυA<^E/tTܵ h ;}>Y.&.o *~,G7񈫶}P6(s-•_7Mf*2h,rXN&u#yi-H)ͲUN\5{[_d8zM`Yʣ4իZvZY~o3*4L)-FJLe}_ wG ^5354_83ৃM>@=tvqIJ NL2 zD<v%y(77cyL=XqrC'iΞafsnznbb-پ3Zq9آ$վ'~8y*݁,(,)8^R$c .Ya JdHys}c:^@C^j\dM޷!S}4ZcKPv0nZWOyG_^xUj勪 %g +AJPϢy٥9O*XS=z\j:6ΠS8 WX˃ dG/zuzn]!)R|TF:#5o.SU!'2n)/:f{[YW-%!=謔Iy2:*nZ6W>l{wu(~!QRvP?ЗgWXi7OtxD¬2`a&Kzļum}/p!3˜W3@Ǎ8 *ף/d3ًrm=cK8t%>aNs|XZp|/o[JONOFutR?[Rq&'͍9"UXq$Nc爹+e9Bi"omWp λ0kd0bC㻉xSvxᓾy{`I e=c T{TgE|* ǐ^ET쀳]f^OBdA4N: %3pXq;= fV2)Xß0s"R #9^--2y.sT1D\LH!E?<7y3}Wr_͂ATI_>9N| j`$0*j2bTVPT?%itIeuVacR!,B< ?SJU3,p0xRISX*J: ̆"D<1@2"`xoF4Srn࿶S|{T}fw^d̖hUv='-6Fl<ʲdz/$Ȱѧo|u/J! 1Ձ轿؛j̺UW@tљօylsRؗձfY?ͶtFK 72>}o" |hTn~i)EaJ'6T)1UZ2i=Y @~rjZW8>&^Y.Oc G b\)z|eZ)L}0!}d (y֡0RIY~U3FIx̋#~RLG%5]cd;~8g{@ϳGǔXH;lVیf[&Ih2vMIi_ sf7߿pEVdlL|[AiiQxkkQ<< H=!![b]}LJjnl;$4mXR-Ms8`o+Oq|/Ĩ3xaee囲I)cX^8zRgGf^{nqZ\nÈX`,m"Tu-tÿIbz=A7 fݴ;وJ6R_+ݭd;/$T<#.KʼñVvk麀V8`?z1yq<qɁ&ZPĦ0!̲-QڪTX=N}ijG'; h $3'-eKNT@m0Ps7=ם6ف8_U/ƴwؿs;Pӥ9YGȻ[ Dvfaf$Sso 9gq"%·D_BG5 eaKkr)q-g 8m=^'#eolA^)XkCEI{L0)nSfpX@6Wg]DB X!KO}c{}yf;l}.˙]<ӚP.CP`z2<`yլ# etrG; [DU,uTBs>W$a=_VT]uٙ&-Z8,"Q|-ZX>jdr=ZK3U / У- ̟tX9À{BEzCT笸ˡ`/-@Qw@4fƻJw~UĹm{dYR'++φڞH{m57(l{v!g&/!̎[j ǘkiIG]P #7ƽ.-a{RU̲RM4q g NK$I;ZǛ%E[In]أ8=ElH- Ȋy0AI6*xjYp-괣z>ܵ] faF@o^M׽c3pܼxMa187 "LfIiGu%hv,%;P?,CKo%>hjvUPp- 4ᇩMY>pltXGy1 d.TɹaY[ų1]thIv 7)_DbIwt|l=t~ễ<j~y:,( ,bJr2:\݅g5v@ a/d?yLꭱ}&<ĀɟC\xO҈pz}41vvMJ\c 6JItYYA}O8Cɉ#-.Fٱ^b$gI~ HY&9媧a#F1 Q䋴[3g*p#m范bdz!Æ{DgZ`z,Nz?VRb?Lm5DƵɕЦDnF8KVU}yŁx%2^nNj UqrIw垩4Az  ѭ3 oogC, XDJ ZGb?#I7uYS D* u4,#t)&BԱH4"Ќ/?61R$q~I#RBZX Ы-wٟ)Cbbޒ7uO~a­ѯMn w>Ľyfpi3TnJd?Ij[oU){W7 7HyݼQg(@9dQKioHO3cG vӱov&7ƥTx$AhTW9zK*f|*J2Ǜ,+8Kl-`یQ jWtR ?hzi wX{ptk4\*!/@JN@=(ZAT;s?“H8lfI$|߭:!:ƅVdF/:VcN I@яGy~aw C!zzI ms=n5Uې*67LYB6nK]~mE/o'/;FME%NT|ȏ5rCԟi)_ZK 50eT-oO-\Fմa)!74E*c!NG6Ϛl]`rH,O,(< /,_%+E;|c2zm.b%6IS /Q2 /! =ؚ]=N;"7P]L R xT X^~GAǵ;+dG#"r01 )`ƵĪ ~e_,u1#8+hnPJZFY?H2AqQ^>U%C[;k( K)+ˁTeEyX`e<} N%<-&_ e{e E ˖u%=Bv7ɃĜ錝u f~\cpFƊmw`),eL.ʉ9gxDG{hBB%Xp!P>Q-ddUiFpug?{[ְ\XM}W)=[$9fwZ:܆na*Lt#/fbD?,z-Xe\]zoRfV<#I7!kiOXvSǣgF}pӋLٷw:3i?n̠4u(MUѯ7ȳ;beegkpצ;v~n1'fHOZmȷ9\iT!1^7KfJ,KgHjb7YmKЋR|ѥ}3&0 O#p9X=Qf9g/CrZ+J5lh#tՠy5ٛ5CG1t6F7Y Dk H!a$]l56+-bq6Y"4eTé*qw5o+C0{SJb a+e¡+,-dh_ \Ϻi{Fm΋n*T8\g⒡7ئ:OgZ"va!Rc0ǬLu^W]n2}ÃJGeov0^{/4b*{ܡ>Dee(Y0s'C{L>|TӰ~mSrj{5Ok0]rIl搄]oxu\)̀Ѓm9nHF]S[7sƋ.Fa>.±vz[ v0~ӺV|~܊.{ IXd^\si3q1s\m`pʊw1۫K\b}A|֛Kwg&EBp 6 ڊI#{"sm^Dx_] &w%;*xu ͼ;A'!u!=9b0Sx=s'1x#<6:K"Wi#ݪk&ͻ{NGR,Q`ݎI)6zk+tďT7o4:y<ׇx4Qؼ~ OU] 1O_H-*;HWO4'(izB•ɮٶzi@HA^}5x]/xsAU b⦝1w mG*"+ngrHgNí!+xeen\-*GdU >AQ6GdUti.e>R?Jq  wh9OHFE$if#΅RdozYuVdJ/yȦ,p$Y\djGf_ CQep;fT޶stAF5WYa hB(`lPm}.9IB^ E#V;Ad?h٩wPM 1Bs=p֋ GƒsSmR C%+DBB%WHM_rRo%I -"k-)8rrf_D/[:iB"0c/ ܕlV)=. yK_Bd[~sʈw1m`A]壖U8dE]ܳ[$SZ>FȉcNm6V9EJCM7V7]bQD+EqfngbSw'W9 ?!B8vt~3YNZ2Fdze.2=U?{2]61/GhşY,ONvU 5D^+ӵ"%"_"WЕwEmobJS9QtGJ6VzՕ/tK7'VfĨeht/LNہ=kc?}pA"J.<7RKuS*SHMU[6 g J$qpѥF;nkIxySRwF†vf Wޣ !"ȁ3|0,yIdu~2u0j|QypU/Y2wq P<#f:C3I/aQyBawPE0v o̿!H7V%I/ a>e/Ul۝vzOlSmHB&,' Y3u5P#}z@ q9M1{DZYB3c Z#v<̀[Gj`(Ő2Jc|d ^R;_JGhz0t݉g=bWTL+ɳagYeˑSoWfd_f+FlJjn&k[xjB؄Hi&b V-6_5$5ҷa#)G% e30 PLacY`P(•l@M +yQսբNƷU*"6&[3,.ޖ.*7En(4ggRq-3`+5}g1M@=R[Yqobig%`sk%U YĂ q?2p?aR9䖺 $ߥl$u_ R-v'wGfb)ERRӯ O:xja #tޥe=LGiU;g@ -L*W:,|o6iAv{qmifjZ0(VB~9 G0*[6c-Ϳt3pL  _Ip'H8m^Jspn]_ɻk[iw~Z]tJnD 44`\:"V``k Ю]ٌW\tlr";9G.w󍒔JEj> -8P x:,OL Ώ}Vi:Ȁ=@Tmn*5XoElHZHA0_HҶT"̺6aGcg3WfPwF>J#a%< } WWi<)-3_'41lx/ QvX U:xrBU-ʫ:- @mle HkE)5,%&bkBghcM+JC.Bpi7C*oNL4 R_ @mzbS2W ebD1pISTj =g齰бSL\jk٘ޫf '%;L!k):!Ӑrzୟ Z\0cjV!g ŇbO[b8c.Vwu!0ALc؇/de Tp.졯 {lėݍ*Fj@>YFn Bq0jEasO/_.)q-TZY:e8'264\N*ì6 W`DH[u˦4_!O>BTǮq;6xv٧.*:2LV)|bkpN}j:i ,sM`p1rBUBzUCi6fՌ衑824XK/k\!E3}dS؋`ĠHP̢uP.LM B<- E䷜&{Xq,U-n׶;mX!pI1׿mdJ ,hMEh9E(> P%i;/QF0oj"mS㥀:AU6ԶYœ;\@ޠ'1>ZϳC?/Pȁ:o~kz^Td_Q;C K4,vChbw"[Z( "z! s*Vh)~Dʑ$#>^BO1fz @Cݷԗ.do}4OHu -ɖ`ŝB91V%Dh 0na-Xţҿ5-OR 3Kb=6')e#kG%27nDAGw˂[e믭5`4F QAI 7 ΝIhONjpgX)歴ta+`hR|۫+c ڟ-I&bU.z6D-]>'C~o >(mhDؽydKMI =&t >n|&Oeyѐ Jx t'Z1zU^z?Zmk 2zG&Cm5I{T ,W~XQF<Y67`NH{kF>,`jj%pH0~u赩~0]Y">Tym4Adkhwsz@<%xBJk4T ~]!EZE?R?W+Sմ8 Â_)k;K3׈lrTeʝ_Qu騑N8+muUBЀ y#7Lk辠R'Xm7>nb5Y#y7#(TFJJg6!/w)uߥaB_~p&0z/4`kxt7F,'q^so}DSX O)y/vOp ZhGQ1@ZgAL5613dT\V)돘1,H0wF8u] -5LygykF^cJF*83J:l˝&6STv("j1$M&9+X .u NƳ%,fΖЪxF3gqet &lldAsbnuvE3T S BiqzdP-T=Bd$x3r @K>}Aև?"`e'cy0'`oA}"$MӼ LUW"GI3K[k\?-țxҕTAY>+ԳM7{F(&zp.WGO; A6>V]$tɴ+.8uV>kZ=HhP+~c3 5 ǬEjڻ6^F2{8Twlg cyҐ2}VDnJ8si|mg60˴2hp7efLA>Ox;dc 1>Mj[8%L|~=G_Ser^o\mm3M }N(~pᗠkxdd!{&\-! :c9]SHJhv(-e2VsFuc5Mf!9I׈0>@{~w6IP,Жu- WڶH]d"YƐ_Vcq2Ә?98]'67.D1^D07B8կBV翾mSh^/d?pTX|U袛פ 9ۚ{u;3a8f%ͳ]b-v)#s[~B Mڱ_lC }*(헗}E]F !t<O *W^P\ӄ;vi[1OaoQ?v]Gfovm-tfCoT AES?{٪[]<^~nFZ}6in#){u$I}4+dV /_j J2uy/+' lnikX ޮmD}gJg[3Q6_5M?>.*]jh=!F'Sĉa{MڝAe&+pZT˓5|w ݽri7ͯi'Mдcj`(J^8W՝P`">{#4~Lka5=xN{\4tk##Pq{LډKEœy;jwHqrʇi^Oc]D3,uN&J@-VI/{}TÏ>C|j"=} fpٔ&cEkz |m\<Ċ+!+MR}5+tm{|6 +X\.)\`%l4_>dGQӚR\5̻{J8bt%# ;ĺ$5#SmˢV_Sȅ|QOjgCKcƽ: +Y.coRǽnj=gP0|+OU9o量xWOgwP7[v7߯CnP O]Fr8t^Ul@IFjow=S#\_]oBųNͪjM!pzM AoT׫,Jx<Ĕ sJhJ@_ 6g՝J,o=CٹW@ p-RMN vR@oT Q67ŵ(Yb¹y$m0JSZ]/tjqS >yÓL{vÿ_a:Ŋ>VK#/g"ŽNU'w&y8>QϽ!fᱪPdb~5| EƂ>G<T| 9C#;3%b]|O܃eÇw;X h_6Y#i8WNyo+ET/[OZ`kaGGٰуs#Hu!HR~57S]c"p-:jRPW]mVD /-Dmຊ=!DL!ANz~Ͳ4 /ٙJ0jTkr"n(}Zz&Gڋ]Zk%dϴ r$juP8Яe5$IoqлI]]>lG;, #mlXb&NnrwyʧH{!Ѕ4䣨1dst+u2mX7:Z=ydO]aa`Azp2ɐ&sUkL]ނ{`~1Hא،u16DC>}tkpL#{vPJmolx;[[.IQ+t~%کM&W+e;~dd ODhO#0@j@ O1mι ,OCa-}z#^L|:o"B?CTsa  ˮh}%^ iL.z) @{Gk]S)^#ODiG k)~r>}|!@ƒ8qW:!*߽3zZmϊ~U_Tr#eNlV=6;ՠ\Jq}o~6u⍽?)1~9+HnFw^|["a˛""<)ai-09X;f_tC.SM:R,lEw I ?rLbr鵎h.16tط?OΘ"kݓ# mh5i9m]u-$P#{`kmC%2udb_EBf!\]ZjVt_h y q1٩uwZ>u2J]jo*I͍/| {ۙ(qi5.\5Imo֯iB7 7Af |!_b9i.v`hʝuz2=5Oݏ3RÔܠBV\*d ݵIe! MlL1F@TDΪJb)tYuJk2`+eL()) Y2:KFfQk佫\y Y`:AyKUVd[a(9(D }u=BBяђIg4#ĖwmGDo;)1MR~"Toq:l}~lNHK3y q^(^x'97GLj! (Eح'?UCf M@C-/6Lx19TOD$G LPZ /kIDzso-s$D<^gpfC12@fnZ Er BRNa-c/f Rbs󟌥@l:٘i9/^$~ H.BݝTH"mst@ϞSU%ԙ!^5x,:ԽE!U/(Wq@j}p?Za~_hw#rW/>p,_|ݑ3Xx6zY]oyn] HSy1RNqZ/"Y# %>!|ENsR1Chba3o(RO?WcF$363$`e'|B+UμUV mUj`X4ƟŊc Bw4`B!Gp#Ή6n6 "OPaRB)gCXG  ߲BDTBF2ۑ>7Ao>+텩&od8c6-b5 i\S`&)gyOy^|׻{|p̓ݮh'l!@esaEqUwqVF,3X6Jc O1L-mN}u5:y<>E7c,Fh'{ZN5YWE|zKbd)]*ֺ6{t%c1uM01F69=`^=gm5Gm+'0 +ewkXx~z!a¼cG-.\ϝy?"~MSit#E'?L2{dQ8r2z9 ;?^<-EV?#_SK4Ղ:ɩt4V0R\ ڱuRB! ^j;_1^S|0˙rnl&ų(LneUO>t'zʙDXVj߂ɮuq7ˁ>}X6 Ǘ1XЯ \h+'jzuZLfzD.;IQΚrÐ)w ]DI A"L`ʱQz.`hl$At[Yi Qf\)<$a=6c|w)e28͂bKOEckB7BlԿSLUd`Cx.4+KSzU!c]Ոa-I ֠3=0oY+e@zu*v , &TN3~(~&A1,Jvgwqyi!Zb`tѫU&,W`7`>g-5 {ɞ)hqE7oUh;&Νҹbd=|CP[>ӅQq:Nd Ofh8Z#I[Curt4Ձ Ֆ;Dz -֒bg0C mrSE*n-(TU[ ԩPwʱ!L=*Q }}^:iH1}#T) YWC?Ee@eTpZ'D`$'e|AF|k}* JY\qpϿv}u]=L6r#mMI䩤٭[q]`K.Oл@h˔U ~)O2b$P-y vr2m GJ鬦3qvQ:&ZϚ $8Ӯ#k( u3;@U^t<ݚq׋H.o6,s!a(jOGz3d0hf|S/u[KLƉm7|ǾހU}$zL_ 蔞vd1R&k""z:\خDZ!̳~{qtoQ1G/of~;07bϓ+d<+D2]X`dDfF=l#Vj.S^1 à7D+l6 eM4e9g"Dmi^39QSS20WN2)? Ӧ.bʖ&a;g rkщVi>jk7/}w³;U`ՓXd7nM]j3@66),$- 36ޗb ՝"oaw4L^QS3}[ڜvlF*J9);F]JKLuE31gAl -e7TV-DBkMm6c/K @.{d[qXd.=$1{о}oŅ^)?Ω':4xѴm0(.#A;}43MqecNbMcN2jV ĹDYP봅2XýS;m /ԃwO~2YڙQJf0bxF6E/Ǣ@bPf mWu[u ֊hwi) `yؘ~^X%fu8IV>e!г1~ǔ)At{7и Y}Yۉ q>Vxysغ#N)'T<;yU2_]qTl}xP3oH+kI;77:a-\V#c-' *U=VVϗmhьg2B;xDe'a_5=Gx6Hcԏ;"Z-%D~:y';P61 ƑR "T%`iH%~>P_TsMG^I9@S=j~$[b1xg+2ʩʑ >SLuhA6@EfؑKXŵ* R᯼WTv |1<9$vրڮJ$7YQql2,b.uG^ rG噈K:HhizbQt->vr7м|@ܜ X=VINt}WR_ͫbh0,U>4`mb-iKb}Ao?4[׊d[Ճ}} b~V,FϓӨM PDY#]0@6Gk@}րj߳Yjt^۪o U)m5!oI$=)UbU0Eрo{`Cwm{gH%)#d(X@qЭ#e3m,4߃.vΐbkJZb@Y vNLv L̤ {w|~< @[c:\ޫp&$0ϛi|98\:";J`RYLn_+7[!:d|a a#i 2^Uٮbϣy%K k_ VD!fZZ9)^fig]Lګ 3PKYuxO!V& ]P뜛*YƝ+8q6Ž[t ᑥjaLZ@y‚uZ2%<\fEqMGw1z~]us HUF{6׊H C/@P_dp_MXN#nwm+oИ x,&:{{ T{;_&oB[ER)6¾#E`W}8_بMulEKzxV2ruz\0>?Кqj !%V q|P(e֛_$np/\sJsehDcPpqUsޓ@ $n YYjֈ_~qa/c}E^p :: fDdY]EdTNE=K=\vUW'.qߒqxU}S><, [aq" 􀝥7 Geϥ96D)XqՌ'߱MrsZxu.%_+'_*OrgvD3`+D6Mo{l<g_)#z5W73T1* j-ey.e]u oq*AE|P-tX)@+ H y齶}ib7"|``'r|H5g6[k0?Q͑>=q@ eïn@l;T3N4AH6+W8|(lO4YY56NfPք{"(D AnX$itapiW|6y)Z5e$~.M'MAjF$3(Up|PHHt5+=Ge%=q}142U21eMӟ5(a3g]fJk?P/X9uY܎iu_WCJ)46 irihnG/M%ܘ]#K5B'X ǒ,]Z(+'ϸP=R+K`F0<0{o<0S"ΆpY@&Xҥ(V6BΌu}x\K݄}DЮrr zJJQ%Z<ޟ3W%M \RAt5mCM:jU_K[}V[ך?3'Gp!pyFTW$4I nŚTdhxҰ'$?p * ^EC8{x#f?zم 1m /4x;'㠫BFt B[ q $׊SGI\igtgWt53{W>j(M`ĢU(D81P"$W05j6"BDr-m+=B婶x*Ӟ1*Yx_ρ3L7}S֑H0o>ū8sd @P7U[7r?xAK#pSW%@H"['Y#@d&gXFhYG% T3ę \cth#6%CѪlf߮Rawۻ㩾)؂Zpa7as6XЖKFeuў+C ɠЀ3M,:[: &{ VEZ:.p n HMUB`QKCntiӀg*Ous:o@pۘˑ аkW\p\${ ]^K-Ui 9B=u ArwUCN@4ھ$Xխ_9@~h\X"r udO*zx戀SonNy5?kЦ+b@ ype־-ܣ^\ɕ!`V_$wS{q퍔T$oASk ,Vf*~T )={sn=23JҠ.|߰l{Cˋ;Ak*wZj)':l:3O&G#Xi|t_052i=. -Fj[ڹ<Tʐ)'8@vGf#35-b.!VILi 5 Q 1៿ٱ";M,[b[g@iA3G!IFqY+D"x琱m?TSi. AEŎn53q_\'`V?Aa!_P'q5r360WbzVH%G?hh$"bP%׈%4z .ĠJr&k3&wW2,6 ;_&Yn)#t ѸyoVT/j!.(.W3gZĢe;Ϟ7IrNu㮰eXq@|iS&;:~ / "J._ JʡϪ,?+ Q4ޕwXW6VWB(rK{ 3𴤅mymj ikf>6x( f6Z$*h6m윣Θk*HQ%l53iGI0ʅBR1W}G$B-VSҫ|eU1#fKQl#qT bg#X iAa{ Bs0񜱂@&hx{)׭ƶrrR}'hW=ily\\]sy+r üڑړV H>ŏZ]<.00罵-Šl.fASgn`uU|1~S8ϘvB.Vk0_JT1oGx dʟP(jB1pݖU!fexV2nh Dk#"|2FXw\(vmiu89ªdyP\SjN#Z[Hfj4tim}cǻBe0ĭCM(g+Ӷ[,dRκ5aߪdXlǀW_͊3r#W~*I":-ջ(2-u[cABkg-y}=q/:Zm3kq~Ⴗq!`_ [At=xj8(g/ti^on\F""!)\޹՚!3O>JkS >d6aD~u+L(;)h!p! |Aìd(%ix$1\bMo-t5~.3ޥ r 2~a):U/4@DQz'VRd0gBn9h9̐;Q[1΀ KS9ozmH&d2NYpq.UH8 L]k'<P!8=ļό[ku1k* }M%-ĕB'yA5u!7f Y`P 5NVw&&zIFIlg x7]LIMsC[Da+ARф05 ,]T :(wwmGo,7dcK2&f.j2U~槂D[X@7d0iC:y2[/_5.s'yNWPV0xz\n2oy]sv WC8hf6`R윽m<,M*s+ѦU;_T."hY=wؑ{WY%ȞyprڮwQln]$yި_bJaRy ?n_uʊ/4}ǩ<t<,ݺ2 Am̈́$`+ eR%L8/k<6D| ݅,ہOQL*bD(֖i&NKl!~Y 'kug-ٻˋ4 O5jx] "8-&>5ygI5dFEzEltɏ![AF}ѻ~'pUFV/pKlh L&4b,,+6#wcB^| aͤcpK-, Q[Ufۉ9M,~^#.-Sdrg(">8Sqx(jB.Y z ~T W .)]z̄|~ XٿGֹc{;6fɴj,m뺇q42=l59 Ub@upP.S#NAFqŻ:ϰnm%N&71ʝ=K\"]@yy!#t镖~;1h=\lǺ, _Pqzb9uzY͝>PdÙLqa̶f (nW5cj?}ltj7Dͅ|^rȷkjb0܎Pw * Q\!U{3)2GXW~0KvʟmZDn{G.LPSd M. =g=9N-O/3Gg-"z BEF'O A]x.'krx9 15ҎR0?1lDww{f(OZ[ ~>0xyG,'ڢ$4Y& lwfصT j`*SAgD\QSzCj"q,շh=ۦ1FB ]jdtj)l5)H*ûIoX #ݧ: ھjm㺌`!ZB$)aGQ(X2> }Jd&HS%ʈeW GpO^qtgi\׭EDYJKW"?*=\M3 4hhiNJK_; x|F=}7YL#OS_K,آ?** }jMkKIDQĚc14uǨh5.fM)5.^F"!ᶰhx|XC}noUsҌ0s- TWD_o+BM`q6;yu,`3Su0Dc w_TۀAx|aEcXiȸSz?[* j =HWow 9%PƜK22q yoJ <9FGӬ%Ukk9 K{X6!}unY s038TPq Fi&pˣͬ H8bM} $MV:WyuJ-|cLN'Ho z| +$*(B9#X"]Qw>>] 7c3{=Y3rkE9<.lS 9L6BdÍ3`6;ыŲ⩙f ZRki>]Tбg5?e[Wr *h51RւLbo[b/KKl !z~)3F]9x''ɑE6!ytŌq4Z*H]-8È!,>U.k>麒&NqTZo&eDѬw;p;V]Y22^_NƻwZ%Ai${& pi1:ؖ=9]A Hʴd;Մa%^wBz!i&]X,P$m>>Giӷq:0,>W@Way^ǒ=r UB/00i9 <>( tČF?rVJȨtkJɵCZBpڭs8`3EyF)Jg $ŒxJ e7'B:;/A^EϜ*V'W6Ti+Nrx-i킢7i]#dS%c`2kjaDjAr#~*LoJTĘWJsXfmN[;zG[[4ش B 2Ю!A5(dD-U\MMR`%()SR,5FuCR1Z(ey8yeHL;A p6 9cXG>LEf?6nˆ'Ö\,xuȭxEТ"p*,T5~'%⧠:7QŒ(/8Ǖ]qhF9zyXHŝLv.e!,Ӏ&($ѿ~o;$B|HMg<9z5*$|`z ?Q/l]EOHRs"%sI,WeJ{ B q hDEL) AVGE>MY,hf& 'ؒo|@g|VC&lsWg7aQ:k䎿<A_ "ic*4A`{W6y]>w6xNjon}Il ~o#[%=p俜JAoFC` T"Xsi{=J q6-wb&S$ T~6Sx79S y)b$'SX4w(:+[tRM=`ŶEދika:ľav;'!ĭy{(œIPI)*]n`&h0*F@q {*T\N+"ȜR'[ͿdrKbFn>hFC b"9҈^-;xXUxFnZ3-3 }?_xZ)[U kai㬼ҭ]/`5O n؋rhw6;D6 zx=玩Z ,^V/p _ ^tQEnӼ b)|&}qzRCBIs2GhVBJ8`.w_Ӧ,lK*Ҫ?UBaЕ-knDbz|BrGcDɺo !  H2ֱUL>*$S$ fH4IN'1~L3;l#~|`Q)MUr#s ג~hk6ރC%%a5RVe:t\dHRӭƍ.zh;qnR1 Ü HBRaR9!}qe{\(O` buTX55*PG|sjDgg$);=沨9JIp(HyL_ wfRd33 K6yد΄{bG_FʭE_X <߀FE(dJlӤʋ1)H ,Ӄy3|qRdC c91Mk%ʉtI 8oovPjhoGWb xg !vwh׸)r^#4'`ے*o'_|ՑkNrn NV$՛2FB&Ii_OZm'Cp8uQ+hc0]e<_u6Bυz{hVWS}{,N^}*,0]u8\_oJB|k#3.'-]*qО=$DB]qO Q >{ʂs>RLЭ(+UBj5P Ւ.؏0f(cY@)|=ew|` Ag#=_YwZ2i~T7C"R [ܢ5]^ǀf(rͽ l/.H{{ğL Ns}ꤘΡ*;m|8E !Dfa˗/"ܻ)ׂ ă=,}@ګ"j̺f裎bܡ]֤AkFIm4pka*]&6iȗD7 ||JYzr%u6;v9 TK%a&ylpڔ h>d1Mc汹Ef"Օ7$R[aӔ5t^,;_ j&Q0c^hۺ#/\e YRcuWɂcJ;NI{vvVxBk<%Ss2Ss~eIͭQMWOb`X&WO[H̡Bgx=ůnqWch_AG-Ѭ~=RUAkR=ᙱ/~Fzoeu 2K5%᤟B}1񉔕 nj9- nn⒱SEӦčUCwH'So=f'Qq*L" xSeUi6hB;-#g .{^?Uccj,7Pr7n6{pJ>?m&iv"$MSzj0ASw`1o{_\L+-|@MDF-|gxp)X`B<,"ـf]~z,y5Rq&S]߰e6tԳafA#<NTc}HETl}$[- ɂ]Pwͩz-r )uݖ5lKv+a_#$Xw,oY?/ t]Ӊ!w&ӀqF2nNur[2e#u-Ki,l+?-"nl3{甧K]ԃdXuL`0^=v 8Bx2N̼Fq[^iH0lysh8+?UAXuZG~lF0R(d\ 1W 9e^!/},u NtJqSBm\tyU<F&L_s'iE-W9qHaDZМ׉+שtw.HwW?'>,(ib'Zc#{\DaTW&jL'i$n=Tih4,ޭڡ8Qi7?>PaF0])#U:B("l%h0S]v'CW¼Y.A 1,rJ'3GLȿ5$M{u]OAT{}~CqX~΍b+O m)`pвlyš>SOJM,"q-AFDlUR]1~̜ʹ^NS4>3v\@҇n@s˳7xwkl} &J4@&aՃt9,;ю@IGҌ?PS@X&;gfAtu h,U(נrӴh41b[3bWѪ¥CnF85V'W]sCUm)[`gIp4ބVb͂` P7rȏ5)(  &˴V꼔dW{\%ommPIKlJ*HPX)D ݳ|8Aeͣ +t-akە2*7@Ka[2RhN xA+/ET{fL"%pX;•Q5HG Y&"^LRN,MXo|\_ +:1YJΓ RrEƒ_n44FFxsWT'< ;+L`j,NDsZ/P)[EpU@/BRuʴFCh[N]]Tu*\~2)Hd7Ǥ*-~ht>@ݒRަg<)mI?&ծO|vlCcL榶Y-zD49N ;wdLHח$Hƶwy =.ymw"yf'<3ԣZbeݧ{}kLJcc~H.,\Σ/ *kUU]Đ#$I΂ܤ<&vX !L<``F$/t7 G_3gZ!"L,^9)d$ǩERwnlTұ`K3G=+PWLT\[zjΒ˛mdUflQ^z^IcPhԴ hxcR :gWFM2w F¿r?e9$"iF6JMt/ Y)&v|3A6:Ij^]U|rlH8\TjV#"]03x Jie~ڞM"m i+yC1Vd+ V^:Zo]ƒ0}C6'4 `@<ɠfzۮh85G5-!i$yLZ %vz~@/ Bk$L wX^]?HoS[@S(&qbIimrv->3RBD^ey]:_hͫ (/7p] L/p|Dg"XaV!!Ck5THmAO̓ܫO:+aQ;'|&¦QYB7x@p[Uˢ|o#iHzH2|?LiKWWt)˝Pp}>RYE:Ȩ+x-!:牒9,;L!%$vX"1À{ g-b ;=UeXqB8W)wsX,m/oDum"'aJ %Rct(r[w8߲dw%@ W9 D,Kz] !Y_=?+CSՈg:Mfb~3 &\rX m<2-GY[e Qֿ!iYzq-h-Gݾd$lZ Ѩ}jvf Tjn=C:b ['TŁI-\aEb?u5YBzc 6-Hm.u ,!$oA ȣ?҈|ܢIlr@B:)!uZ?xKTwG*PolV QN Kk klt2@i۲^0*beY[V-jGVS;jEjSSMlx>RS2K4)ٺIo8V*8"TCO.0tF3vp.y ~Uygݥ|w '>*y=ʍ4OlDt^%A, oW09>CIfAsЮe lU(պ3h&Ț5=QfZ!gKfsݫzsWJqx?g?grDAIx &:&! WP }&gn1:ֵ!>'|;q>:< xVhwg:B|8}y8DYk8*I7W䭡$5m Z!%V~<'6ٚ@"'<#I%j&KކÏtIU"SφhcD;` &soY6[,y[v=)F{'2@8Q,cHZ(FgV H,"4s8R/!R&VAzDIJ0Ok^$+ʇb13wax ޢjFe:󩦹z>S4S H90 u%BOOʘ@vMO,](Vy)WPfߕW&jYIps i}e'QTPG 'fLv8k)`fH IĨ9ui~QԐLI y&4܃% BFtg~TJ9B6Atf=YQpI@ 8à|A kvm*j,J=D$,'fd@ 4|t!spErlpl+_f|@~~Q\Ny\WD'h`#V3` lRvE5`5_{Y?$%\Q==4gXU6|@R >fw 9Z,tCrKe`c*Q 9ǣ;*6Ne[CV~BuځFƱ; Oh&^B]Qa#N{Ao5,nZ۱P<# jwCP=A3 d>n6r#dMvwFq^=PcR96X<ϺUf4xyԞm{RpM,9 >v9K|V2e'?YΔOrY`m&N爰P8pˬ$ njatZ6/'*N#K&`:cPXV~lm`}DRQIi(:o@ _Asўq˶,fAa\?AmImM~2~ >4nf4̷V)b:^vĖY޶bs-& ]wfL >OɜchQ*CȜqk'wrʖ#HQhh4 [ 5ҥ=^k? jI|%d744Q=7̳̏\U6їI e+GGL`"u 5l}/bWɿ*q9v^%e[ήY_Wgk$I z彜gG?K0l:ķ$o|#둗ۭ(4K"@[֌Dd$(k@A*f]'yIk ph;ۣӕu !ᇺ@%!0rr(Hknfn77h{Y >cXH8,ߦj3S,At#*&^2:ayx@?N ϠZߑcY ި t>9n\7̟ ٦ ֝3chx났y?/D%u|]EjwЀQI+b2e!<+v'}ꨟF8+Q^8(Os1KrapiL1 4JEtϔ CL<9Bm j,꠯fঅ=3$xDP+XE$3]f)'~gy/5 ݒqn?OSCz!%R /p|yd%˾{\ (R)N7]ifh>}nzg ÞuRNOj.X\%zAҊ1ډ(OM$"a3&C7#8;ޕwM`!~SXԋ+cn#է6p֋G*U%Hv׌+DH+ tOقZrV[KAS)+tTTؐi$MϦ|/_O:sݮ)FPNSf=i}zct=C{YEl9>/鉈q&kmj?]bw \|CRj-=a9N/9GM>+防Ҩc"L1odc!LxkďUv?'Zhw)t^nwr5e^H4 O,ۜ1kGde qvALJ @.5;!PlɼʏDP0'"Ptv wż{8,D GAm'r?\dj HjZ9vWS]Nh%{ ]%Poe.JGF#^E^x{K]ST!" ß'QiY-J}oS2D-D5Oj%PDCTư\^Ts݂Hck/Hdidzc8e$)*IO45-Lw:-?F9wq6p~vYPa V2 >5P(31$x".L,Ӌ>沜-Aڧr6n[pS+2io @Y!4{gѠv vOd|>P$g/To;qw)I 6*3MN`m)i"1<( 9gpQ m/?g3Oѹ#`l @6cl7Rq}a 9odwW1‰ISBT ߨ[߅+}⸈0|Kh"{ZE3y~Nq)Fq])#WYC,F?Ե }vZO\;,02wO: R [%P=_DkoRμ1WK'= ODk9\{$1aq͙{2m;Կi&`0@K2;[f)N6ևY2Zn!&&$0, Iӫ|[Ki zwXU "X6mUڡv1ě/c0lozSS߾.it<KE[6bh~mHDbF̌W>gU@SxJlߟ{2< 0)I2ȶ[<ڹL +Q4v[>J dI{GPt ޓLw J 3oMmQ]Lo±UZ45V_eӂ>ɐM1Aiq` N7avpj1 iSqY}He|\N%<<.|f:4 *np|Ԋ\&W}іP KCY =.puZ[2ᒊ3g0z\VMF}c\0`kTPD`mT6Ũ3wdrcM& WUtP̄>%H7תs [*-X_K}J)EiuWIu!*/Ssԏ.<*&" H/բ,^hmYh`nR~o : 8-(9!amC[Zy占GBM}ZVr#$PW<=̮4eji=D=UI1 :5iN?Zq EbՒQ{/CBEsEo4. r<6uoSIe~y.(a@<}~C}eszo'H~b pO4l,oh$[`($a LL1(fr5`֙q@syމ06KȔbc̓ū ùAil$ɓ ј-BUHWfJz/`f Lpu!Q- |Gej؀8]ʘ Vq5Y0aHR&0O%l U"ϲKBA8+kTV86`~{\=.=~8&A!Ϙ:h+N]?,edPNt[L.R?ߗX8h1N*TX ۀMK5eh|p;@y:&oڿEKPD-ֿA k=;t~E. 9o'tXnw 8>P~_ N"un:'=$)lGқVK){$AC(BO>.Nj϶>׻?D9&|H$W&'3G-r'!ig߆Hp $Ρ]i~%yE&1z$?5۰ B?0LM`p]曶S#]WNT|MG(*~g~ ޽:WDbOsiu=Ѫƻ=ց=Q߀ `xEmtOÿ_,֝D e__'} M~$q c_o]RktY ˗%-s]9_PUQ l$P B(z󮛺Oq B4dQtY8m5P-!2)+1&6t ^u|Sh&|l{Ji*b,#MP+Yg;f|6-,aѕ;zA"L(Ϳ?BQV;ayfU\RڭHU sYXz^ׄ:7pbBI-F"W$fœ4 Axo*@,;`YkQӫL 3`B[!27߄0~£<~YԗM(ʨ JpyM a!w"9'+p>0h"4 k^24qw~Bo[]"g 9FySnꓲMɌ7'j#YmH7 qӷinW%6 o۾5K@9%5n 1(,+՘9iNүPBJTOoRcxhIXvD}p26qe~h(ʈYn[ʺrQ}1mT}yqr+cmֹ'Ke|lim|m=EF'ϸc1Ҹ>ȦW0!ZVXRIԔi2!$~0WM+e;Ğd[i2Kn/nP0Hr &b4}/a{#3'kN*+ 9̚Nf{#Iy{m2iI[Bi| #kXni_ե2!ē*=5Ġ j,F8@})Yb9f/Xu=mS`P6n0LA_e/j 8/)?RݑHkfeMw63[E8rOַST\Rb,`ݛM/&:Puc/V>\r[=o\zC̘>g װxفX+X4d (p:ύ QQ"0/%=Wiw='FPW+2@밫h}jJ |Ah\ / oa!ģ#8 Dg nuߓ`A5xWLx7om&p>mŅ(IBYtKsO+~/qSZ4󜎩 J_klqvݞ/0d x r)K kݺVz2]<]'N|S2"sb*aAp^6`PGs2ӣ v^fN,LYC\ѻ!0ovlWst?\w([0BpaZټxU>lڼBÝ`vn7T%Z]~5"< C*h_F,):pgfbG[!K;ylRȱϐO.Q Qs8ԙ*KCw ؕhniZN(c]]#zkgB×A\5΢sKR|'][5=kDxŪz?Zh),XS(H8?].l$pag20n>U;=ž.?8}fyIJ-ȫALׅ^1}TF)NJ0y[T~b+KwaܺhF]{y—V^i֔2/09AJs u\R]'OJL~QT^~ O$^S)cּ$ccN*6ѳ$%)D`s5Oao+; +vz"Ou-bVrWhK|ۧ4R]E_0F vOr{1nH.6pYHe3JYա {碜6D[Ɠfa;fd㦼}"{2i|;dre0fX_[cpXrF#Jg|=x) k]B_jkK͉-ܹ<rdP#/o Y ā*jZ,9}+8A5zGF}E?58t# "v+`۳^yC*u&\_ߌӢ6cE ȸ0'raOm_YSTRc$GE-_ҥŬj8et)?8 }BJ.Zb~HwRѾKcNi6x/@JHz.-mtE0;LS{Bh9 UIw nܨyY3rx۠ƕ gAҀ;Wv$ЩP)Hɇ.2=LƯ\딟R.s־9ˤY WL"~o L( 534X~\Fi1i) ׎aMm%+){}3)*Ӽ>YF>%Xpx%mA^Ī O1mdG@byS[֥sNZr~zQu\rnM2냌ޛh Hu{K # XiR=dKxBUe Iʃk85!xFi vHPB~ ejAGfuӑ;`ysaBQy?,u.  RuHżrz`tBmnD;5Y>H{$Egr5,P1>㈚hp [j{r,g|N" i4zJ70Q}DObr M.D*!䗨&(Cex?cQYW׹~_Fy| MG!9$_[OpTAWA «ʉ,JHEnGLUg -&ߋJkMPXJ;\% @}:t,NVWTq6,G)#wjc}k]Anh=|Gi(>`x$\Uh5Vχ ϑݺqJ%ԭZO8D$Q~W*NϸbΑsD>{7y0J/Ϩvi8A+ B/s#va䫳GY;*|0P51ef+! M`'{bex`t]MX9Ag q*׬p'>j1@t?hXӆ+€㒍4]*cN2^dյ$9͚̘ QKSDyս^Y,Mޒmp^èp@t,Ԙ=*Q֕.CVҒsO_uy딸nʞ O]^lȥ_Zg5bE74t}ȃ͒RoyFOzA'%ZϿ!9"ɇ6C z[ȖܩjfL)cWqv "w5o-/>G-1Aͬ}r~x Gݽ:a~dHvk ⲴwP-M𵕅5͡.PK!"8.Jx8]êf^>fKdRUГdOZGLd F{ĎÜcRK{26bXuVCg 8Ί7-LLLOhlTQ4s vRZڪ%5N)ۙaK0Djh?ZJYv˜|L%[t Ot(:C X#*ЬѴEO#vK/2Z)ƗQ{kćH[7͝ΒF׷L$/=z!IP?TŠ#y6e%*.ACΔK8_`bƒ@!-7B)PXќy6dX^bQk`}XY׈}e:4W;SQ8I9ZE&vWD@6@jKG(<O@k,$) o:$j3:Đmj;a7{>UL]wOֱ4fYHkkvs Z;< sw+&-`CDDAM+ȹ,).ڭ:>&u!eAb/_&l[1f?F굉߼Ac9ͫɗ3kzv*|턔ZzN$*`Ҫo L̯%a'qȨ̞|y}sfLuD=y$/G!bf74Y3\U઴],~z#!P~}PM2s*3d>櫳93=20$|3TfA+lRdzl7ÊS& 􌸁5zo[^ DƯr iY+SpNp v(|wLаΗȽ)3<ih/V\zd(VݪPo&DL1eŃt`׋`~[SD(vعx"LIK|~Q o8*aەfM( 9OpOBS4+by`5Y:0/#-d5gZ:u Vf31\-5fowpYqJxB'.O?-le;(o~Th"No(ّ>(ڰ gol,%E1C }E_x,nf&fGjGf(|/xF]!4&E6@w[)^pvr)k5njZbڨmdNyp)x(AVyfDR7 RxF, "FތzxOGA]qv;9Ju,xHϐvrC5N[7ܖ TU0S~jf 9?I{CPs-\@E5Dح|]]W9?Ձg3ho"$ qᜇ$0*jOu&z MY];]+4GARG@<¡"FF26?Q!^ 8cEo/^S>'_rƼ=6{0pv~ aF &䷾Alq_ZUhQZz-0:{c8&_PL3 o;R—".\>,8jw g^`4Em^axT7~PN~ߺ |Ȟ$kd: FjvӢ@;LlGo@ib35itVgd9S[˱s_&D'=,OISCBAa 9nFpb8Z=~Il.3 Qo 8" cPG"&Y15WZD0C}sLϽ *B ^f$C<㎓vU3M"K\fNdF8~]wX|U;qEb D[e jH59t\㥆:u6a}:].@~3:'tOZ< Ю%R^r.<30h% p$ǥGv2#C1cFg(Cz/^k(*Df`:lTc㛏;,lK8D*E@%bIlKY>+Ѻ&c|)S5)ʲ uAx ~&a?1NrsZ,{[y'o[ܜUwjVP#r.Oxs9DvZ8qJc >ZS3cƱ7NGD.D"b`%~^[eZ}-ۖ;t`Icu6OBE|ser 3!ILx<9!=QSB0R%ńldKZR˛BCitb..μɇcŻߙsD4hmqZ[zLzf(%_+WR*VyiIzD*p )8Oˏw?Ѷ!hc ^U' _$c{lO.}/@%Ag}TK}ɷmq&=ni'<@(Ԍa&/0cK*7z(]7U7acإ M`xX ǂD'Qp/Lrk=@=!*eIt%۝-Q ܅^BFop&F^y ;(<Ày_{ڨIc@7vX\# XVǓIS&鳉Rd֗֟Q =3(ފH:'f.ɲӁʍOv:},IN$ A|n\@l5̢@uJT;F$gMÔC|$1o}cq>H+O&~|uI+5$/*\cS[Ɗr|-hHIrB_כ 7GcYDPIz">xo)d_OI9m!RV/r2n#u6nP~ɮ3ۥY?{$#!>#W'a̿$$@=_rs5t4 #ֻp~.;hҺOC') gFx8*k)uнϏȑ'\,Qd)Vf EXSi!q*\!8Ń oʸW P_ȒU8@]O5zSX8RksFT择x/Z (8u5v/J֖pѹ71v\x$rO2H:{Cԙ@_%oPy"5{"#<JTE+ph&$M/ͱ6v`Z4i1;YijM'KE*v_C'ajq it̃@-о}Ru.V+Q<ɺ< P9 t)e4dIoCbEnҫńIdk[hY^T;\.JO.Su ?׫I懟Ɋ _\.f_^H!U.ɛ ;Yv{oh,l gOW-6't+._Vp \EKiYQiw|uq"wP֦]ԣN@lGS +wAש *J{w!?8$**/6N$(!003H3e<#4M~ܴAx9zfЕ{:]z`Uf*ǗwFFFd tcnAat '̓guÃ4.3#lx+Ʒ ~ZK*vKGPv=rLn:2a^NN9D)O}i)Azd5^=HH=:ۀ#qǓiZEb,`Z(^\'}P!7(EwVR Pz /RWR(9*dμS.p*YPg]Q?\شYL9^wۜ(5qߡX+/,-EvWd/bT C LL~ p |U!={Rq$Z (2+ܢ v Vkt]q#@l19H及E$ meL&rmJbg[ c À J]Gmd 8QΊI&o(<&ϲA5K Pj< CV*|S:T|WeF9jn[l"f`)hv|E"y0^mP -wiW!h::(28Cg]l66\]S:Z9r{ V#ب{v Xڟ%`Ɉ~fQdM/#ee)\䍎>L\储 ƢPͺ,?ܼQd!p8[(tAܣȆ_'Sx}q֜5Km}tbHWDcU-ujz&~9R;y-q̓\nQ;HH|Po>"*ۂX7?} ɮͮ\_ΝBm0pAk#6y.쐗t<+A:(Ĵ YwـYE_fB8Wk}c-] 1, *t [ 7wx\L9iM& Lf,/ .F:`@=?2B} cQR/m`ڱrJT!pγrYLl !|`mfTMIP}35^O0P9Bfxš sfj܏1"h F[o K.r[2}Ctgiq«ZPԛp:3uԑk6|N,χ"7nq67 "b #:JF(ThD˲*rBBv~XwkZn͜lnj9c~ܻ8iGX3d|`* L\NB4!$.[wꪺ!s[:mfa/6`J qķ-y>f-C݈|s@Cҙ O{9vbcXod `ҹ}ڎ ^k&T/}-(b[ɓƬ./R>C"4nC`^qK<3iB:8l>-MocXvBa}F郝-iRiC-D#OSf+.qc@1y@JQ-|R›\z_ݛ:= Bbz CҾTP j/}ಙAk/'6_ $#_G*lz$'MF( _.ONs*AK8[ lE6ld3k3I4ცT #r7p$2FttJ@|.űܙ3F]RY"S[?jH# ]HB ߨ¢aeKY&VC?38+;rީ] t m?W0AWs<~2Os>D,}Qd͜q>Wk`OD=|ÍkXj(DɑOYP<&7i)ڊ)ꎍʻ3|(o=8;<Ά2o ##~¤E~O7D90_'fZnQD4Z2RđZ>a4Aoq3K]3ֿ δ9237卫`+.% laRl..![3O;җ\ց AYe/B;Dj.JͲW(W}s59P!5&&:GwʀȰܐNVڂL 8[5QS+n#ϑn~!҉HTT^ ?TiUYtC~_kkJ1{X9D kQGXIs_񿑛+2J'Y;2`0嶾],sRp]h5l,9ө44$)ƪbmM6|kyN K1~uD#6P]Ev$-VS1 M.Qv}͟wE==4ˑ8z94k67ƂEߧZ{ |X[-_$FX߅hz|1ᒫ} Ff+!ۈҐڕq\ndE rER7 "~sBˈ<=H1CP(Ewl-Xu%5AK˚ϤJ݄::jv:;3E;#@TւDӱZh(>imBVX W v~eޚ`NFCgf !zA;TPWi'!R|r[ W$swЅJm͒ ЦWΎ5KV2^&}H%<1gYntHB9n).Z)wiٖ$G2TN* 1 |,O4wD(u f*pi&G\d9G9)V> 6j] Z4BPI!M-rh}g׬?=P.vܴܪmT`{3PY~ڵ+03_: 5/UƝ9+M&WX'[Fmʩ4^W 3 j{i둬{Gʹc )V6aJ>ikV!ensX3KC7ߗLyQO.NTk@QiJ2lz #Z+|QD*ThV)\vk^e_*gVJqAgCIS_C9iEmL&%?p\.r__{Iٽ _ Q0 ,wdf'LZ}"Иjy.vзBWD %R|J ,=i+Uc3P_hD˼L@ůS (y;4W=z^YFihV^w1$cT$ɵkBU zPZϧ#% $57}w~Qh(.X恜s|c?b/AFTm?6nf&FkH"gzMJ{fG hqY6/(06ۉ}`thϘ D@][Gk) bF5wg? + %b|Şjt%';2LO57EH%~-8l.ͻ8?F3_#kM&ZT*O!^qWIeéG&7|T5hrQmc9ǾJgUIʧ푼2PܛzP\uegeOp54 ń~؃u!l#qaюȉʋM;yEfYT_{沖s/`pz3*z>w6;2e 4rKPG AJ^nn<gbcT]7jiLiښó,$]+~:<A<4KN~&jy 5sSNl7*{)2܌dZ%jaV;Vݽxb0z/aWc2Ex:sV!{ t s&uVf(QbZd;ˢ136$BBGk_0OǗ|~,V3 5יׇ\'pAK/̃ɏ'9v.+)2# @m}Q~-C@Y4=*~TLxRi6 ~ϩi84׈{ly:ٔ<|(292<W=kxlC#?+͟KSYOߍafJ; C &!_!Ҿ|֦?PlQ ˆ &pW⡛+sFn?oň%:+d9\Q6I:.[<ݾL6XD;⏆ґz7 ~xH{9eaJRtdJiR+MJ_ ce^)fV݃d"s4#\~`3}V6 q [T5 lXyN_xUy^&7cW*ۃ>{=E4I>Er3麺 mu*[Zn:׸ld 9P䪊fh%ŗBl}>*_׭՘߻XŸ8Nj bs#yc2Iɬh ?pGY' Oq0wd@zMdON#3S%JTn cMT\GQ-3h=jljuTK@,{ߖ8W5bϸ13!a/>O53E-?I*`R^"]s-2\g͖rr'7=MobÀ!QVts#n~Up R̦4/V&87yc,ԐU4:&At^gI`tAiD=GǪAr\V)(K Vhy;Oƚ놙-GfTIZ)xڍM6 [NFuc(bs۪[׿Y,n9cUU,E@[.1NkSVPAo*)O-8؀e(덽ӱϦcT 5~cgr\XyNRpNqCcK2uBP(5y#&179'O¬'4d"6*JhZ6#|<3nR'?57Oн]ZD?wxMLXZo4@ݖPǯ`Y>$ l)@\ m-P,l:xIoďƷ@1+9ɻ Z6FWƤ^>/4cҖtۤZ-tN{xR bٽ58kgeNΡ{PzTG4 M6{ǿ ~R\źX4əS d+w̯OD<F29]9@&ƋAkq_5ɗzѺjxRyI`d_ٜmRo C&[g@#{'NE8-5h0Dlh$}{P/Qsp:r/dMصm]˽Obt}Ao_(fp> LGIcvϙ!h /@zc iۚJC$|ζ :D٨##T"35أ3X&HY;6ixGr|֐/C_ J?始,ȭraOA"\oP&PsO30y[L˰66lJ-xܩ2I6 "f581ITzUfJ3prm,h7J A!dvjL&Cx9p.$8fc_d= ]Lsw~](^ts+Pr%Y45W |<0rOXo=,YZ4 -n׶tq.2;%)[N4;``˘!RX򿘆7M M4!~?Vs*AE?6xfFwpN4c~_ҟ1.i! =k"0$׊)^XR*4 F4sCvdU/(#^ mͼFG#ޠFCWX̺sNTM,ܛYΤ_<(~ܢ mDN0U淌BJ/RRV$=c/liZ%GuW?uy yGEl&PC?uS\#Q5+XCtygT )iܹ+"^ˮiUsoas!zdLizWbs"\9rj휮88R͛KU>p.ҵ8BnJ37'wlNx#JwAi 1bsE({ٗ8X$_9#A1ޭ @u v$>zYhN}: 輇e8f4o6"L?ph ~r1m vDaYFv<ӦsAC=% 򮚕}L %Bn4 ?pDV 8;_z(b&!OJ4~ǷBiD/blnBrH~סgbz3ԼۖY{D 9MFnpe7kUfPē}>Qe=>?uuȣm2l+w-{-) gom֜wJ8FmX&8wX,/Rnq^Nvr?\8AA/LԈ5YF H&s+:QV6LpL" H* iVj\ ,P HfU;yN#K ݋}a7!gZؒ Z.5|-|Qq"ydܥzzx"@x;Y% HުbVqLĆ\1Mzqk65~SL̺E>ںVs%4)E ]*`A0oe.oԼTtww4T]zNO1A`Qbm/_&SaZY507j(6uY&x%e <8Z?E'X 7Y͇e?$d;^o-BD|?dLD}(Us &˯ޑk >#KZ_UDl$iW~)Ca4U-ͿWDܚ-z~7 ~0+v4FwS`̐ٺu[:=ϓ4䀁hπO+mm}p).R_.9vl]*7g-k[sp*;q~}+S bDY'A{"\N^)>]ѧ49[z#!lժք(ax;żG6LfiN${OT+˫p2fCHz PǑ??&ͷS-@ROpJ;;>&j}/WgmB E'(! #o_T;'{/(od& {h/'pG~~5ӳ tqdOo(AU쟅^1ZC$@\3_LP cUM,z?4>6uyq o~/ i kre3_ RtmMV%`Ce%bfQ8&= KJHq9H98uѰ>wcCO'G'5%! LS*bMLi?por鶑EeiKyW[׉Am5LC\rA.(nm2okn8C'hq8F2hMl7>j[;ۭ>+4 iiAL7Do;n >eֿihO\*+$1Rkc^=;hƘjp ܂LvބD)^Zg`feGGоdQJ NQ^ݒ$ma/5H=iAt9c$,u[45;x-qmHL Tv zzR9-@1i@TKbM#hEY#YmVwb>eQLBy_n` Q ^ ұaq;w7co>,˵kȼS@޿1ϳB>S? CN|q3AL1 A(RZt=n=ȉ-T֑In:[On&?ڿb+ XȪJȮOڣW|]u4{]MkCL3N:L÷'0pMg\]k y-r=fֻ9i4XU`Lnj^Pw&iwVڷ/CK,Bg" isVk kp` O]CL)1/pU"DL_q2e:'*: zq*!J^e4Ð0&UFL/ACH*7|k;WuؘgQA O;Fqy ca;30r#n7EIshA`J͓/xkgXُAJifDAʽBVxE> d~MK19iNXC^ N9兘&Da[ӝ5ՕG[=-L i θ~b{Z_:_9ukj\xf |#_e"ΔҭMePu>"뉞\i_HƘr #yQ '<}x7K1 > V]rGs|5cLkSM%1肟2tvkS#SfNʈǡ飵axȉ>w+tw |M*~ܭSj*j(th5ՊӠxx\Ν'po\jԥhU^KL K/QdjtTh djz1rwT﭅9p@VN-Wp<^ن^OtL3ŀAAk>xc>u 7D|N,q -VGǠң{8qAY Et@ p&y eO\lt4.Q]?ReೆM]%RZWn*uigvJq$o|aр-,(FjeCCw*^Ocն88JwNv6T["WnWzF/w3kշȈi~)?k&azҰբBiabքt`"~'}VBvKh@rf0ZP(qiP$BiRMlX ϶{01zar@FIvUByL4jHi_M,$R ĉ$%&T)[*7_<2~-AJZϺЮPN eW8q-JqHC wU) o\\}Uu s7~@ja|Qv o5he@M߄&d7^CbY{^7U6x#%&^5mB2T=CE1F@ط(3p$0)ҭ`1>q6-_6M:7xwX@[<*I$.9q^;Jj.lG~ci96-zBi.>-=!Q@i* *,xorjFVehMӠHQgW݊Fp̌]>` 7@r+13@"6fRӦsBvTՕ4Ky9b+JC1A+0aGE"zey nӆ(ʐ=5U!EP2?EemMcvW: "ַ# tK==SPԌδ?ȼt=؍&dn7hc۶ O!00H][Hݨ6~2РrS,+J nn?hXøv*0ؽ'e1rĪB.hC)ɩ5$U[-MeWVtM>{0ʅ dR:S/ # aS8./xE ? B9 9Fv@*RN1g'Èܶ_O.U4=\MڷVkA$q\S q J5Ҭ5?9H Boϼ CPy`X3rIdZ<[5љ)U!;C.RLel̤>_䰱h5;a^c* ~ ?%nN(pAƜ\VA@T]ȋsbԢXQR2B(jj3 Vǚ 'eXԊS9-3,s0'E=Ov ;A@aZ_]UJ_aZ~L4&`|Z Aq[B<:IM&A;H@t(I уz>83+Jj t7x)e"JN^ݷ7MkxA,5KvKʇg}h>A]V|Є\$i;y!`ϟu{"+CcE^,rԳ^,, Mح "Y$. SAkqr ӘA,*lR-jAQ<(*ޡZKPuƷW+y^V\!4*ZBhQN u!LTւv/ڳ& ,}A58Tzo:9{[nJ *1X:bUEwc岝6b5Imdq]\#Z[:봣ތKcF 譊 H3ZD¦:Ƒ(nzlo ͽHJ{8"A LU*h^-HM~tɺw9a=7ƿU38ʤEQ\ ("W2ʈJ%M0}}JcJ#Bw͈1^>LJP2]< /s Low0كK?>vyM봰^،Q|"M $09y!D}!YJE/^HnX=W1+]LG Sk3Yd 㯯& x넖_Ci_ԝYL֤0OjccZN=y&9 \%^?Rﴁl"W{s%|.-"`!S6&q[',L\ Ȓolv_oHSz4:])3;4 E7o+߿ZԯC@\ǻUoEWC]@O9!J>< * 8U W/aexʜeֆU9#LNkN\4˰%Tҳ k86Wklc] UlLM7\oj#ҜbKy|U=EDmDq1>O ))F.uWg|[|+FC[9Ec 8꺯4ҦcZ_J=!بA}E\B30awǨUᵔ-zY2?|d1C;jU4dW*@!z@ɋ8'QܚX\`f>'@%ԙPeM#,H;r HUɦU#IݠںesP液½D٣\eʣ2pgf2|V<<naYFED-tj>}?\]E:[+^0ث懼M 1X@G۵f#&Kn>dӗx!.ib f\@4SjCjNOt*vp5B狣ܮ'?X9?w\7'k3NF=be̓z>wrkƒ0+S %}8ϺVqɅ7H`nBNX !Q[BYQBAq]/ Rgw&= h,ZTPȹu guMboL?r%55.;"T3ڮ jz}c{=lH2} qm|7C .$KuuJC>x>tM<6h<Յ44gwpn7F0`4~NCO9mIGNǯHxMe`Ƶm-T3ix/f\9v?:r'xx:\ʝk;B@f:*$Xwq[!7̜=Wmdy呴cY%!1XXۆ%$vtd45E wأ3dOWASav0!_0.Ot$JJ"7W;A`A8h(ܭӘ޻쌆Y=? g<3$wE ˿ ɢJ9>K6SA `pL>ԙ&Rk^XY+b;M璂[Nu0g4VpbVc~cܻC9 ٱ֜Qui>[6oi*ģj'~ZEX[h:3g&rLl>nw{8&-^Ssxس o64AEaF Ŏ9⧣בɼMt~&kCX!/G[xZzct"uh2oƃݣXʱ#V  njgi1 PyyژH4<|Ϙ˃Θ#"2*R5p"RWlaH^]F)hTX+ЗrzC0GONŷB&z@ ֩+)znOXB|!ʗ˭$ą̇̄?WoR}}+-#Z&c 尩d AdN1h9"0fFT)i.?9aU?V֩_){ 9W(5wk G1m‘kN! Oĥf!! b+nn0gge]bԥH0,D/ҟwH6 fyrꨮ`vC_\'gs1!=?y4wsgXpn4cT#mHSPypZ0ܸߗruaPvfڹ;@WqK2ikiN(cѮ@/`w?Dwk+բma1Ă? :'w7M01ջjybG!D(- K7 ϼR9$b<>rդhñ)дV;&ÓҔ[TMKF98`bmGhZjΤHuؑ GmFC&%OpꩉY{=ײљgoOB4K,@ӧi7-5k/a\H~r"YLefMZ ZLp%\ɼm?Eȸ.9erk<_&Blwf';vWg0(oO$|^/i)t>8d30nZU"&qN2 㹇U'3EܶXV\]IMp8s6^ wHL{>:ucK7g'7и Ƨ=)пڔ]܍4⚐zZ)~g% ^!M~>2ݹAu T;_ d'^ޑaN# c8߫q0Ih(py#q1w%󥷌RpPGf2)6L(;RY.4p% );]W_ A J+݀"q"<լMRgE~@PzhAg]Ev$&y/+/qڻamYƒd˵~"'hm4\~oF <[s@d9\#lr@ǻбj}K4EW-AUf7&X2 Ĉ|Ȏr OAY%+Eڗaq;OqbgeG,^4DV]g Ϳɉ@X?K U)ݖ~p`ع+?;"JTo@ F犥- Gt-M@!\o1A:n|I*fмBPQc(s) nlg6hђ/e~n8Nˠ`>Htci)exA*^4eeukRn`6ej 9r0u L9!@"` L t_K#di2Z)Ln7Q`)6^:wcloM@c^9(BaYTR)qljUwl1JDש>]FnIϒfu&59e\Ԛq9wc3`H VGk?k5C߁y [H\os+S3Ijl^2cZ > &d(w{@u?Nk" ХiedTe-@BHXzDNLMQJ6w'yԓt ã5aa%cu+B;;6[+, A9`VJ+B@ gK$^=Q^9Kto ȴꭻT\*ҷK鱲<$ Y >DkՠUҮ⍀g~>q9gW7֘7f3w3n,lf=H=XSY'6@&2 UI%S <(^VcMw4I2VsHڲ{Wcê w֣tdb϶nYuCő6 {z]۩ т"[rL~{#1f?SvK(ۦ:c| >Nm(ŊHr©| ':];`i_on,F6 $zQxON M"hr>6-@S^zÛ9[M ɟbᧉ3-]);#{8J@^x/teS$]^,1; }>]D &!ޚW~7Qt_TMۧHϯP=|3JwB 磌z{*U/\iB[H%kTV" ZtQWOoPlsE7yp #2|> M=/sˉ|£98C,:)P:,zOco6V/!k4Z0Ej?^ u!\)EJW;D$&}dUu\"G8H RuzɢsL(y}Wt)k,\袐>ArOuN pׁI GA}g5CR7,خ&'٪Y pfE"ĔEZmP'6 +gpa@Q.y_ԢX1p䡹dt%<Pֶ0Ӹs :HӶ9}Ɗ>~f3&;_RsYf$Nvy`{(N烼DkZ5{#\ƲDsձ۞3/Qxn(:M4ˈVO1F`Y0+SP~O Xb'_H q5yHı׌DfFh3ۗ>3d,|C\EazųF! L;8@cL\"N͡e#ɲ*wS t%2i_^J- &w?G'aGf lV9nD۷B<яl!Zgs`!iPS 5տ1;/[ݻwZP?\OWH gW9*skkcZu|ok=D$oG7r_loc9x}f˜56Bg2\/Gh9fv"p̫ڶR o94 %=<0vDL68:H&dQDv}AkiH4ljf/\Jѷm 9rr,?~ Q}lv?+x/9c}S:| ȱL±߃ۈǗ_$ЦVemm<)[nĉ2:5$EtH֒NhQ͑&ycȃsֶvb 'Á] ΪpW#vwܐb8Xs0? ȏ@8>Iyxe\A;NHZy1 gNڇ~SkB!0㕤N6zGnz4AAxٳ;'cgd0|qs/L`-IgE)yרAWɅhY6ۄfǴItFF|~9QahƈH,{AmtD '^I!nts<* ),˓m\D ,@sVm Q5Ekb,|@PꫜQ(\[CTA[.} D0kI?ˢB2dA_[ۘC0i~ W|= 4o{MX6(=NJ:{Jg *ŵzvR,/Qs 8ZP{ON Qa[??#7'sW%U@CHy.5k^BgݐԦF4uGXa+J;e +HxaD$C\K*f-& )'#S=& nUjzjM:2yyjcj) <=D.*"p0;ʽZWAבSqn"Fwv̏T#0f>'fƙ}`Zo蠱kC@3|J&}cN"1vTGx ӳ"֞?&(" l᜶yJ!26<ʼu`gϫiM4 Gນ \4_Gs/!CR6QcbWתi|ɟ][oa7.c]v2@EϽbdMm:lB{" S!x(L>ֳ)!湱8:JT'KM^ͿJK֙SDiJ1YKf=v{0}$ԡE- abq 8. gS 6d#gDY( { 9޶Y5|bM{?ə+2U|<9NǾ'!0g1|2H|7nn# ]쓿PF~0/ҽ#E=! @5 !<<NjO#v+Oj%8/UfmO(t|yGv "+_ Fﶧ'=fPW9SUJ/x$ML!ϽxÒ SS,;QIh]G-OW#^%[6rƞL,j.bo穩}k,Lz uoCafuiP&+QOleV5c^OBkKXE\iP 3/:?Iypxy!UOPD_[mZOLߍkpxL`#Y7.>%|(8 h\Lذnʈ6:hћs הz+ J6\Td8MdA!'͋=pVAҡs*@khe!t*{@?-%S=L0Yg͝"j"Q 4ùE"o!8؍&TվkGbX[OܙԢK=II0ݸX3%RKB-Mvb,f2s!KcӢO_89l d 1c^}yNCW2oO+H/tg%VW =ᆠ)8;{`کj6C :LN:?s;rFCoa&X2Z$5w:}7CgRR3qާ8uHCviݕ$kj9S;xuž|JR A-II`?ڠ'shPz$tC4ՓVxZ^gzW)VY@ɊjP4ABY drP|5R;\ ,7!R tެΓo "& lY W,MF:lhњM[>o,i4ygfTA&.6g憴:ȭ٪bPct@V| Of o#]H2zo"""YL*YUAG:Djܦ/28QW'$KAVNh-c+i4F#Y{˹rU$2nT7g ҌXmeDN#V]󄵑恸 N!(g/3EJkJNb8&lk(+'{WO:xNxמ -L]*jf±2YǠl :8"ؙ7ѳc߿ j7=?;s5==:#X f]y[*Q)tmfMI< 5

z5\:[X=P삁1syqx›qX'3# !c?U9j`Sc2o ';3Ҥ҈O.1? hnD0k,Cl՞ߠCMw `Jc>&@ijى6[3y>(3 Ix!ff$8A*m>0wDO,6֬I ( \P')ka!VޓI#/+2m"96-g( 3lLF^?fF&t7@X75,|V,0Fc B)qAfS\a:^Kt Z?m1f>}2&E06%cRLu԰n$+2 4.rs{M5B92$w`6 w;h5&eM -dmr0~we]ybV}TLjnIeUPb(kDŽtWzHUs ~k3B60[^b֣l5:ң^rLWo ˀ[cS8@ ppN?B%9[pgR%b^3K8}O"pU0gJFv#vO<\K~vtk6A#`OH\"0W )TUֳXX-#lw=G(#άg[6=!]s_0}"E|)@Z grbiab7 h!XZʹc\ըZ\ I('5hO> fGTy;̞ J=b;~B]/0L |*.dR )+opwT_[1\v!Wꬋv N$HL㾗?p򣷪# jds恀{FJ[![v=[sl%jNpwag~U?+ADW3 uV iɸ!^xΪ' U: ?<~lz=#vP'e1 ~I*ӆ#]G UqApwgo8gA"#Ua CMO Wp5:rtmthӋrpԄT8y,u$mxP- iPʬ!bL![i0 [I^D-?&z7 ^dy#֔Wy|&L'5Yfc:RTѺ6qﹿ‚w< aQY-yIzoJ АQRG:.Ls$S [ +BF9Zr~N+S݊~"*tB Sߢ6JF/YXrYhIJ]Di!1HQ&!B jz`s 95>z ݋t:X: [Xr1ymřt@o* x Ioctrpw a9bh *ÝJn@y9dWfd'D]Ğ4qOv1Ҍ_][y@ }wƥD&i.bFJZ:)G0H-_NT@;e̸{(jq9ߩzI/Po7! [=RۿCKQro^7U o[sa'` X˥H,G\S +΢V\UQsZ@>EZSnvP_1Ѹ/d%h3r#fοhhxä+GG9Ϟތb]>eFayP]O a,vsS,@s1JQ~i8u"75!Jw 7} фY+s 曫<E]ɖ"-̑ (tvG/\X5q-z^'wlCMfӝF2rɵY=Cv" qz4BlTgHn0z{-f٭O cc,HȍY&Wt#r/Hޡs\ ]f밆}Mزkc#U*K]-;UiiP&gM鼣_4-]b"RsN㈻Pu~񷬠xq,-JC$F~"J#~UMYkT@ ^?Xb=(Ϛ1T$`&;g%xDPŅb9Ա!Y]49 F^p҈i<1LKHd!ݢ 74jAUI˘~ODj9l2cbm)RQݤ;tyG܈v6J)>jAy"Ÿa'ةr-Μ|z XQ[<+(?>5i;OTҲʝ9S]^|Sa +뮓~k&DR ҲA_og{ʇJK'O0E'@R-o\RbXaQ UQh4z>d~C_=u KO-,5)Fo }#R@kN=ڏ awIXV\ZU248_.ד!& y-HdH -ooA[v[bd[/stP"z%4mf";ӧnqqKbn+\IU [GS jN\f2oĪnb %k;xq(?mk|cPyE0\)b4oVAj(EuOlZ۞Ag%1UN39UjmG2`"{\ދ7Pn L(}3.u˨D|:oEkl4w_RR%AtѴzSV5/N9 P׽V@)[?B*PZ)"mC2Em QQ@-a*QBX)hk ac(li )xh#Y,^F޽^GoK@n0 6Y91w>jh5^!}]?F&p DTXP0k B摵%/F=kЮ/OescDݩDA}*\^Q|FA.W_9lx0M6sƳZ-:/^>B5kpȁN!~'k`qiSxGM_®*񑒙ˣǂZhCfD^Wo|&jerU^PM q 2\D2ٚ%AGBOp(w++D=oخUaŔǃmj+fA$dbj2@cم&xfU%eg᫇{y >fk̹ QfdYHGV;v1xPAYP8uBp3$H1*#-b}+Tbhf aV7yӴH##nGC+O9JZ \CZWaUL3?j'HS~E3>B/0*K/|(\*vM#qܠ.[:ư;k$ v ,(n;uD'ws* =#ê1H*:'}~TU .g)ɗc)"\Z1;e)=S K22nfwך"7g=gˉn)==mHpDmBRƣMɢ>"XR)c*ac8xy\5V@_dI'; 0i.)3H}/h睳{E+(~W=/H珉eM~^(Hu->48tO%wK>Q8y6T{J}2ȹtg duNE_PAR$cO;i:YQxrZ `v.#CrI9A74Y9~3Vՙ>ft)d kJ6[[JORA3K )!Qݑ^2BuQ?] J%-۞ u[0|&"1KT{~/o{ip|\zW Eh & bkzҙD@{qԁ/H$CaIsk-BG%,ȞIVI [ nk﬽,n˨8=1Kgi aO w0*/G%Ab*bVСd, ^&Yl1]EOmL !s uspXTuFƟЦ HHƆlp-roE._:׿*,/w\hCj&S8Hq57M~l)Ӄ2rЀY~+QxyignxGI%-F<2̇h |ΈWϸG m\["u; ?$D"M '2~;s@L'9\Geg4٩0_=.N_1k=BďTM1iDr,AЋM@0)zd^'I2 H5&0MmI\|n([m7%u#Ck/eThf&`pf-~y JuW7>NJ~ҠP(,]o}voWhT*1B'RO}f k(TMLjMB˄1w '|@LIWj#j.d{/p֓9 [ so71ɡ~{Ͷ\RYK4ɽkLGc%4oB!dUwl X7g 4y [Ph }ĈЪ'TɅVϘռ3og2ΞAàkF'wECo%gGHMoB06Uy~]|sfo%ك+d}X/-T>ԥ,Л'zc.#0LGt*qΔPOW>=mO3&3Ј?r2;DKNa}~vL^Oar6򇐢x^-N2q;j%jn9%sω8[svqer4NG I,ܬ2MvͺshPX}x 9uSڒnO?SGDgA/1NX-pA%Ak}%]}Nbuv]w_EIwTǸ Qsh8/ %T6Lﲰ&<[BU's/N(-mauw&׽Ԛ^ItzeҀV&jо2ϼdqD0'aگ)0 [Pas850+>,+t#v {[JxwE!S#Cx.90L1dPTRIL ճfN4@,&K`H%PZh_pˬ(E0hsٟ}ASNsUl6m}v%M zy嘣>"Ki1/la°̟O.[:2A(ʑf'ZS @&FUFz!+mEfz?D|R \e<{~۰Mc1.V+#I[yc#CD&ז녘rASbKq(y(RE:p?"\bN랫5zaJrx F8}\8"V[Y֧t7H{?- ?-1׻:DiB 3pL_f3! "&PCM|Т* CX +8N +(("ʅ0&썰z7mmqx!XTPSjUYm[:[:i[q)vv.Ŏ{onr bZv<@0M6 &xk:;WdҡcYKS(}7o (P11K)@0 !ò0D(P]*-ly|܋TE &4Y>7=-&lȦdÓ>q)-y(=Җ^= 8 5vr_X}^K PG*9VG(!mC"]a3|6C晢"M`ŤVji[ʼn 6kޔgaY{\p.6>h_t`E\wa)&6"B>܉ljOn\hѱu=x'љ(gIȔ5i}\q!S2*kəf)[-mu81 vPQg ;n6a]U eoU2$<~,̖po5z H:3s>k\vK4X~^qo8h J`=Č9E"`ɲŒJn^Aٷ?U"Ϝ ?Zu8U*ŊEg@93T#Ԭ0S:ĭ3P1Xٿ"fވ-;j˴ Y鈠H}ѡPV}[eoΓшFDnk$Jo4l5xOz!;T=O/^>Bޛ nQK눨]&XV]'ޗ]}Trؐ *^lRd|=*[WZTiz0k^>!8M9Iatiݣ{ljC`Ei¿vY.br&[5\lX/;[[oʬ-ƄÊ_V( J=%f?5V4A'g.t)c~@(خ^mϕzN(֫3e075.2p’dA2h +@zjd.(7q-ROєKFO5: O-́?Elm2)Y~=Ҥ'LY 5V<&U}Qi,?*ܽE|,xb['4-6L{K6P*~}HUiNGeڃUܧЎ$%‹"~8o&"" ,q::bAqݐBlD8S%i, S .Q;kR@zbȗ:|XL98dg:jŁʠ!y68Ӂ rజh'zo7}@Ec*2YSh6){Dje36 !*`Z_S y+P.<[RǛVb=Aԉu.eaX3Jdkq #3T,$ {}~ "ڱdR}SƵ4H>jNEHGG^9uʠ>0EYiTXk+X=s,riN(kDezʏ})t9J5 adumyaDL4,~NT;ۥG[76`W}Gqrj#}Dac~̘X]L"}' Ê_&!D/MZzayj]eRBb7 j#5 Y QቫW@S,N+&eN(R Ox_2[0b? ˒f"nK]Ue,.h/ؖQ՛5E@l1ʫ8 .>3PX~ C;ޏIo~&>iLWΦ|`J?;#C?=>?*`sU2z:J8{!ͰiL+ ))/X2D_ wt` D[i0F9+6(G`l}Y?D w \;Md1wB4{)$3[_mh"qg\:+| v3@-b. rGQ~t.Gԁ I.A&Cr*dߐ8 *6r3% 9J+_T o@!?ɖz)мM(n3T^=iF,ս!O^e,b(qƦaP+|I!VOW y͖:SYOSFP8 i"ݻCZm{rFQ+/لШcc _CVȻCR?Q+HRB6l ):{0"-KQ-Ӻ1R>M`cXly/#j,~!Q~S{ò-`î.Zߟv״Y@.WmBEm57,TkT{jZ"CW4(ܒ u'lH-թ7-L{ J#{34||Rƨ/|-|TjiUy\g8^z)mTw2)/H<~@`1e(I?} g!=]k\CYٜA(beBULd0u.)#e! *TMF+Hd{}MRpD!`!oZ/|Zж SKiDF(r;Gv}-7g\+׋eI}![ NOnlm#C'lB;QnOLF߉GV]\k(k6furvKҗu5Z80Ҕd~7CȆ\Bөƶ" .28fM-HK){+L8UKm IS#1>%,3kmfé0Ia E+BcId)2ܙȳ ZQqA`_Ι$op7@9 [[5K[F\EAtM&ĕQs_]TDf}?C\j.glNE؉óYQ:-Ç KpM#z +JE <]esaq(a2 'aD\+w¶gHR) rtyǭ3xw@b+p?}a26nbgZ@8rey]2,Qk &̥[z32<8vr,;LjCh]-DOާ th%Z0t}$7]]2Hˁ^iڏpEP Os `~ k711* aVE%E/+aaΧ/]E)1”sƭDiJ͌v7:P㚒 ˄\`>ɥѠiZ:gR2:GFǭ\h<ۭa2sۖ6Ԯ1pG WƯhCWs.^ph>j"c'46D?Ku}!ʦ_B^ޕ;EHmGF(>in>K%pf_'6u؍vG" vcD2m05&ucjSwoߺ_6JEK`wy!AP;"zHCƀ?8gw}̬cl%Y\xTΦ D s1X Dg)v\(7uzl`1u]NvPc@L'{w^TsXռoH538teUDI3ZYێ-cx~VW?ԫ޲yr9 1hAk⚵&fo&O xK"Qx)l ,(bJhYؽig*Xk_P27ԏ~CM*0LmMMzl'rK6w %"٥gn~mFF;NgGca;1 R@{q`r XVo7ugTzj-?cJTOR=!hK>T~h.(:^HNqyeX|$z~û*|NhE<ɬ|2, EakJSz]/d xlb;=)U40 4T]L1>GsqEhUo5En}†̢bLVqbzЌR:]WBv.ooy܆c<5< 7|Q*mU" +]}~(+IRwo]E[GB K-u'Y:_ uSSV4|9D)=jC_'6RxW"sK5eӦjӾq-溤3zQ<`QjqYJ2 sJ~$$=K!?eԛQ(\I8CMK.M"g[ 1M RghܭD~t4VKZQH7@r9>W~hl"kEAiJON"0[ 4o[ѧO/lvB Kjc"3qk`%q/`kmdYi!Ez/ֽzx`p Gu-~\pÕ}>/# ~qTl4p8>- QݿT # .~Y+՝ `S=g+aF߹%}W& TjܾR".xh-_mFĹC<΅N+C.Z)PPzC83rυEJdF7X<E`ᣡz3,cp10v,_'"=<9L.|D"whjZT>7z}9=1dE]p-PMPƅ+Qf_4WX|Xp-k| go0-(MT2MV#Zj;|>"==ݧ"1`"Aн%?1}njz87lDÐߠuP uRg~e!笥ZHkSmfZeѪӻpg\܃F=4]wSF>8T[ǿG3Hc3V׉=9kDQyD#E{M>YF(fM,.nV|3ذ8kؕjq؝3XFbA_L~GVk۷6sxa5I{ "ؐ/[WytΌ茨};WW 9=j^W` DpIih`C%Or)?)Y}0n׽FMߚO\{s1*Ye袍 .^N@>-fn$Soxu?y&ЂWC2x Ӥlr O k䕭'w8^kVc( I8[(qϟ*?6/>juLЙ\[yRP]܆gMof<4 {t=B?bK ?ɨ7PXt5]q3SMړ]wϟ>|X#y&q]teԏFCVT#q~zhkkf'89d,x!F{ Ca2EP\°N;p_E5hpkodt;j0&=i8}ƺF=a~t@σsbWs`-j΂.YqVH=f۞~2sz3BZ‡ɎYAV c=8+=t )##:*bY{<:Jm ~/L4֋fAřMAMu3.V8,7f!񞿵[hrR uiI_||GbkB|}Nߍ3[ vv{ĉwƭآV>F+6ŧw19+,"J;ۆx{ZŒgRQKǸ >Ǎ. 'Gl]9)Mʥ"}O 1^u.MyxJ*~7S0o'Sb Ih03`J8z۟|W8 ׻|ξNN1jP%Zc0?ѣhc1Ƥ`ڶ_ 1 ^I?Ӆ w#qOPGOf=Lf aM@UL6p*BSg[_+w%"sfEFbU,K3+oh'fa<ȭ ?"К,i-XFWs,,:TGvB T$ұ &&&$)kPTɯe,O1s&*AQi$s՝F)-2H M@1_' Ju j_33$(H%A?gV]`xA;d}CeI+ [҅VF{Z%6̬{jnzi6Tf>K_SM]]A;>_yb f]!tGyVS{uc H4uG( yr3 ژc)=n)lq=edʥ8h/RTVmtk WJh E& Sz!ٱYG$*KUfӁ% K]JgyQx)Y M'l-:iu0J#+19SG{ᮍH$X,g)п{z/6i$*"HN 0I&'uĠ}|$ptA8H^K#t4ᨼKq:I0C ̊ z7̩̍u#(6sJjjRo &iF~/rf/88O:Lb(e2#p0p 3z Noͱm-3aB BIvInOZ19*o@XÏ7;DD~µA۟VBqĐE9|_TȢs,s{cpvF;u9L_6eEZ'UB摎gL}k7)hKJ9$;Zo1 mN֗eU(Y8#y?$+{uba8ʪZiI܆2V*KMh N!b.^?s8<Ikw2d{(s ӻ#ྨkHgitszSMZ~!k1.SUI0Sg)+?^eso";!um=y)I_ A HxEQ=x Z{kOd(2 eSf)9 YY,,6(V$fve/,4%dAp2 ^A'N>߿hĄɥ[H׵K6bs^Ⱦs Dgp'̢=`šWP0 16fp訇+~!2]?%\! i*rpۭ04ZIU-$phr W*j6luԱ"ǂ|ov"k} [7x9.6U)F{Sz$HW&5ݥ%#K" 잏Km!BȐlT0c0X yʾB7b 5Sbh] \]$"(A{Y Z ZY:9)7 \(O((5_E9޴Sl`XDVxTO~3wcӍۃxR2Э<8D"05>vhJcPw|ʤ}#LJ;xE/ZBi\)y߱\n޾4YÓ; -1[3rӬOyn/T<ך`@5Sw?׬;e%^j<0S 2T}Rc-{Qf!)b}t S?!$<{5+yo't*^n2zpΡ_[U$E;n ]ϸ*Jt!Ge "q#.t5zZc~m֏K:Ϋ ט~Q;;4ۥȊ=rg1$8nwC9M]/M}xDx8lMzyB nROE.I-'Q\j>X_`G' 6+@=`]}D/}E{ʥJZ1VOH:h@m|\쌨w@xhYvV~6\gNYau<1UlKڢ?Wd @ 0v/7ŁapfCg{ d8_;F|c42٠FA"CnTky[NBEfiT󬱈6HYpQgkJXE3icb\Ew `&>zz fvx a]' S.)*ҨJ ُzʺ03(*d b"nK4 qS[DO|pGaό :s^4nꚌu 8vK.f9hVafk~V?T'N:ᇓ7;Dazb)6( +EdҠ$( >wF,Hc]2&Tra"pKiƭ:"= 5Yt#57쬌G7m{,کުt`jK9C }ڭ҆~Ŧ~7-O4/)xI.wj'WT}9%঻[N:%w| h/yt33\\utzv?mQ :]Mo>a-D&sM-QLe`ǒAZ<)W#@ט.qaRjsaݹJlA]mR F5>78W~)Wc9xy9j dP6{(lC zuH22>ƱQXUsTWdyz͢ϣy+udhnM85 ]]ߨms&O8~p6ofA/Fb`|(Ԕ5 8/ۃfxWl=Ck96ixlbK~D,-I+F!v%gҮ }1, kaM7)OzEV(j7P}ZFpϚn1^fwO n.Dz㼾tQGMdcnGͪ-Sjr:.`y.)GgmP%鐑": !i[d%ml٣v[R;n^?~ye"o,R]>Xrc@jGmd\g^5xq W 0Go`8);Ч>WDg-Xx9GG\>Y H<ϷtNtEtgA~ C߄/8#zSkC?$~8,Q҂#}/htC}j-,$n ^ˉ=#W0%ЪIN͊{j5I>mqu!1>fFnSUunv1c,JlS+ P*`6\ho~4F`89͡w#hhD{s$xC匵4< Y~R96Vۤh OvZҏ,`*Q4d0 |;ց %"#AO=Hc?$˴3Τ^Eҹ䁃+[-[5F,.4p,? TGvPG`+Ĕ౭A=@cuE0`f8_:tH~1Gv|g&ً,aI:km\y[Pfn%*[,S*Cs9D84g=!bE2#+%yvm+Ѣzm0PUӞBRn޴}l2 h2"?v1t^ Eq8u}?&dr VScN׭l%mE;v`;C): O!21,gEn Rz"D6ZQ6{nc`uIrІK#Ȱܷw7"yL]w]!2c ÇlMV8&[o<)R"0 )#$`+)Y>F](#I.7!F@:Ν 7eښ sN!7`"3ޞgcE(Q4OQ`mu3Mhꢐ Zƞ%2|1ΏU&wME8 Dx0wl0| VƢc^rD΃?=*J9$;\-Ὥ>\ KVj"`9p`G: =\;I,yɘ\<;|eѺm39=Zh )KGY)6f14ч3J~GT9Tf1?-G1%YjfIv#sdN̼N~/Bգg;{s2V: 3̧gPԱcYtU]6HHM.V1~pG6*0SuUnڳEc% (k̞v|1lOF\Z?y!rj݊vkX%!jaet{a x#A@@U+SaIɾ#3\C^;Kfo kqNcMhv6+[>SP0 :sp`[%5`'iM#.>~ĹCG4k^]l0_ SI֌)rS<27G/7ͭ3pdu\ȻneթR坚pK>g^53ב(yP+UWBڂN|3e{~/R<{̃S:4/-˝s\Ćo*{yi^?fJ2"~T`0FDz\S\g̪॑pfG #r`-33NS8=՛ PX`jl7HMʍNA!DvTt%jD6Q+ K&E C,3Q;KG}yPD 쭀JF!i ,ݔ/F" 8IޫͳJ_miS#]f߹֕ЕEDB(_f4oxil-tuUkK6ʈt:H\:\U#uW7҉woLt@l{|#O15B(Mɴj@AGOy3V !E$R[Ž O!CW}PMRnsoVrHJx"1{*6GB5N96FrI6t6nytLd&GSVY*{&qB .+dCfh I)^ܸa5<6~qB6XacmmV ^ kAYax_PGg+S>iyS+TpIRHvAS?Pw*h*5Mf˺TʿYֶ>V'#ߙ,=\b²/p-NCQ)'Vt{s^H!) ٯ X-NXݩ˕X4@'JL Jj6"# dMY.WƾoM?h6b+97U K- 4,qs\.m_QuN@"J?\N#^xǑœe%(Mz1Ag]ZU2"lB RV4zcN6Τ>l^dv&JZ$g+j1~{/F24Xuk 2{>oP.˱8 m6vU.³=%J>ɨ77|E{ lh&{U> bdEY s}h<םzngտl%R>\jSX[ƁCx)[\Hp3y)iR dN&r4ꄖDMŶtM/]<2l-u j(uY 5o&1xw 8 i7=D0?Oʴ{8Bjޕ։񠬵RbQ$(w8e0 =j7S\%ކA-łH;SsLcj_O%Ҥ]}f9&^ LG[WU sn)!qU,S~fpڒ^p׽-)u?FxgTtIvI0i&E^P=ɐbUlf)usy!|=7 FD4lޗ-XqTSu ]WZ z1g JcD sjdm@%&ʎ̮bkД綧'J]=;D ^}5zf|?P^:awrcG.xDA:ve+'ePCyr3gU%BOR:yLo|g1 d0B0=W> <0>kARRL"A9'(^LOy=,$ ()I+GqtlΊZqwq!լ RŇb_.0?N-⠍y)F >YA8IqGѿiӶ ୯]^,Ɋ!g0pNM3ooj4ڊ 0An=ZҾM _αf\)Խ}l?rLy't-#?LoM!ogylɰb9~ η#6`x8PC7۫:3$L&mN6n*۠CLwĦEVRde#?SuZM(m0ijM#\ HYbIeR)[v5X$ҙ,M=y F=F)G`F4"|x !O}~$subK27$4py*Rbܕ7A\E8:2^@dԔuFkr\"gd TkFTmpCJٲ_8T0S{hBwlV"Cdd:YC{1&a ̈憢`&eRWK.x&d5Ix>Kax48>kOD<8 0VmE (^"aP,@";~NYxYr2. |e)w?_?xmȡW*2"7Z sBBёHpx:5U!UjƠbW?Pd[S.E0u(c 7}ZaEH9]}Дre)0gӣh}!sONUGOӭ:v .(Ŷؕ N9T\>xX1'pbk^vTjtpCA[%Zчl2"jL b7,!\Buf}GCL}bZkz&.H`]ulsfuſGW)@d Ȃ-Yk.<`TuMճ ڈ\y\3O̊o4Ո{q^֯–NY`lh tmmR~8s=A{*´2aհزnqDon&ǔ Oj)#`nOc3"D%@" ϯ消@%7Cl5l,Q5(M_THϵ+W~WsO^`!cZU)DxI:Dwm鲍Rވ]08f ՠIY&&؍/-u_3Ԝ[5,2`F$ԕ:~Rjz%B~4#bNPV򝓑% 묆9:IrRU͍u5s*c̓ V]9G딫sPpg}\dҟ2Zo?C7TfaSxH/u.ߖ0ѤҚk|*V /{+Yz=:j#BڒW% 'jvPL!l1Uhδ3 _?\ [XxGv%2}YL}z2i`=ѬTyOh}'tlw˜/Pj9y| 3 7݉pz[sekvȀs`8HS93G+tw~&ihO8h&hUk8v*M̘4"6EKؗq$Su|w8zbfswS0 f R10uQEY{W Y?!+Kdams12XoԾ:<|kGj%ZUvVfB\:*͸3hDK +")g0'UpmXwe.ԕ >UCjO)uCMrНjzαuy5Q `Z sʞ gN|ܨ}(VD Iptk3y n݆N1AFǓ)XP] 6bDTVaSo).JږTǰs¼Ȑh,yr<kMXnN =f“c2ǕH:@v.%N+HV$́lRnw0 V 8. A 8:Ifj'g듫&(\hgc,c*C=&@!XDrI:enPJ;8s`9M>Rm?Z\OAި0yvw8Bx;~e#Q i"iH+ߜG'UGnLnȸBe@ňWaý:u&Qb8o6Rj9^_ "v(~tQDDOi>;)J*O haNJq5z4^}m& <{k'd[kNV bCaqcPk)Ll"ZRSr8#'`%؃RR n"5rr5k[Ml\ܞ<x8WXWW} V֏7`j%[!K w⏘ xMg~ͥjvM311Z`η6K3=fx2id7^+|\XyI-#I7?(*#<=4߄j>Xî8+L2-c(yZ~O'lZOIZD!9BKQkQWDc 5F'g$4Gomif`BknJQ8.h&|7 ڗ>B{*Ȇ{Q;0JuPXW"@nF&=KF >,1:tL݁nmz'A 6Cf쯿k}hxvTzo[Qx\˄gDoشZ.l1#Q5=>x2n.gyO={5sChEt `!rBPDωՓL+֍ֽV ^V{%.D,7}ihNyRg@ բA&~`dJ-B׮Qh\o'lxt2M lV3 9 5V޽}p=N|MLsuw.6Mj>NGq|)"1A8;&$yAMiAHI8Wު~{[_@@)-xu-_{ѫFOE̢讥*T/~|1};e/B5.+LglK(]7é:\-.ڂwDAEmWZpTfF2n9kjSEL%|/mVFpZ"c+$#.gj;>~['W[d˧ DED@Y'J‹*i_w]#8}L b6 < *&YRڪx* |qG=Le MD9qykZ?`ZC#WTM l %=HF b &Q-D3\z_Z2]KԚ^:?*zU%t34Gqf>3pWZ)% .S}&fF#Jis ̫ ) AσùJcx֑˒UiE+ACo ۧ)de~a<򁭇'-ӀKMUsLFX :B&",yfW4ZsRpb8c`qOQs,*%S`];7@ M"{B${uS #Hp=KMN X"l0 FOE`!G .f$OrE/š^樯3$*/QfH4v1W/ 5LҴ.YlN!9Lv5U9ݯAKYGKj?@Ŋw? v%J1* #Uٰ bd,9/faf6Rwm'q_qw&VҞ^ȘXm{*~ Lbi*FQ8/E\MꕊnVTW-|/] A[%7&N'8 ]5iJob&7;4-c۶B?0OJm>Ah"*\ "Df̧sSAؖn.(32;h?WFu&(q9&B\^x#X3xڨG!yU a ~Q·~49,NUU ˫UZY5Q|H v '\z=(=#׎߬==u#^\qi>_)Uk,o +/CExs&KUA6F᳘wTI;aWsAi{@V e'f6egI!lc Jckݨi!yI6EqvTS<RbpH3F±R1KArl (V5+T҉bOԃ/*8k. 䌀ڡ. h~onFiLa&X Ҹo-> m:TND",^0(ta Q Z⛚ԠV NӺbߣx#YT5 H֧p+Sxl2%`Z!W}>z|Eֱ|j+?V%i)x$P)'1q[NV/ $kV£:>͒9`ԏKDݒZ&|הdH_UMWrS,A%S5&AP9&_, x-dan֛ED"q~U_Ro1K8 jG)4_Qoo5x,bCcl?3ɰQ=8?1vahSϸ5;IdU\OcXՋ;h-,xl&1gBgelj(@o(5Dq4B6S$ڒ߼Q@0obߚ|z`EUߪTL&DL,Z&/!{`y.v݂=耄nPg6mj#d ]~wd0Qk {~a跟XXz?nG*-X.~>/$~]-p.9,7˹>VTʸcSm &ٺrm<ˍ Yz(8lXipj::8R~_|2p d|{?J_|Aگ6$lےOO@nk^"DZ;8uA$ njBQDiG!5nIYq6ǫ\Zzk(kfـK4WNpbhqAcL2EZJ^+f)ATȡH‹0M}?Iek'gsJ,6'f2zgI9eoArj 9.I-TсML"IVP$a$}'=ӧazH6%F Nʒf`۰Àajp\vl} 6Rb uΕ)$Խ,pЧC&<9W*):)|M JSefv(e| Fl]R8\XD[h'ۮz![s. V69ÿaq$P,kgѴ[hAYsarbPΈq X pbjr :h(ڽa%4d`}ш!^L>ǑYMRkaƊF)VPƏYaEg/:_IA0iI,Y1P>4%^z OhOXW[ gɒkcDY-Wts>a=C !Yx;p7VCb 7^p^w0d ^4hlKSܡ C1#~n /1.|A[}%(M$))Y^0gW%CH TkI]4TU‹ה֜I.h Hvw ^@lajLXmdȦ* 9Or) ]"I_bnL UJy[]hAS" t8f$'wx1gKF]uϩ^2%MM/mتح.K2 HD,KVLavu2-@<y8AB ټӑ{[JLsBOq\дX9IⅰVnV>[0,̖́BH(F:lt:Ŀ ۏ-ȓB yFyEɟoh9[6HP9E a桼btcۊү;:?s\%BhvGG|`hAg獹*K[g4]E+i v.VU6I~7O[RAa>K/5u q?=q7AL 94$^uz,8 82`/?'lsЮV.q&Ʊ>ӝnƺxЏV@Bpwih[0t-TкTv%.p;X6jLjz]JpHW_d}>$ѽ k]Ov p½ꆁ/vٴ;:mcʫqQAS^%z b6O1lؖWrܐ{ yUcM~ysKFݴ0^r6x ygZ;B1 <qϞrx.g|(V:e&~酫Yxfi/U3C=֥ (3cT>`#R-|zևj "DfP}Z Vzz٬u\א'U- ¾?3yi\Cm}cg;iGj5ш0gew\rr:g`xRʎ O}Bbvһ.\{!#q>ilOx_|{ /-&k* mƯ$ٝ> ֈihLJE[LZX5WkbKwjwc2d'޿{"r"+cZt{dꍏj T$ͅ&BG^ Nկ6\y : <*)4z XUXYLN%!<7UVyqgB;f2$>DGS[cVoOks}j'c [&"}K=')=WI >tFr!7Sr wZq>];7,ԳՌq3gEx>POY/Fz[yp؃ݖ-KNƼS`Qk]oP9(:!G5;>*/@ Em)>Wv)?VrhnZr`O> I:|B;X .Av]f #~n"2jHR4 r3q.1T!s@ Cv6/z G-g+؉ޕ}Qd\n)4ișԩH,Ml(HPϭvC$x~= c^츋lG>ԀU;1d..Tx  .gfly9!8dN5Cm}>^{N{KJ70yfNáyѢT?%[U=XS(z9s"/A̦YB U9rVdfdώOQm; xn&=eY^uu38 ;]0=]%0 :nl&2%VtJ/;4z'9I \(29k_Ҿ)߉zwy% Ś@ZmЌ$9Z ^}JӨ+p 5;,jwU>m~_[(?C߬U|֭ЏPM9~C77Y2/\N.4*(k=K|h#G; F <-?oZZ~=-dlٹ J #BYDyGqUa Jsl20c8[e) }yxy+cr&'$2g-Qx`!Wa 5*?A`MG"zF/VB6چL҈ZDdPXzhkזck rAGS'Z6'v݅`02A$n]αo )G@.J{3'%q1-TQ*}jޘ!ejs59yً<62P2X6?Ȗi 7dnZK+fMpFzx<2Xq=jqcwPV!' C.-~Q%t!I J'G3j7;bFʕ꣄à'žjA"3p'QazC)1b ЬiG hSGSZR3^+0l:D!(v|mxU@黂׷8os?Y`=^9aljikL O ߔ8#4&X]yeY_/ĸxFqtrxMYP 6XCEأ3* bRcX#9 6LsN+٤֮z-p6/[{u7-fC,a },˦+k }1P}u0^cbzƒCH<(|=tIw"Y|&/Ie;{/R{KCvU;B.2}2TK^8AYzf>0r^t>+TpDcE6ā.B  )mۚgIgpI/ug’Kn`ZTU=F/2y Ѯ&C4E &Ѻ\$ FA8zkJ;ďÚ[euV9 \EsLg+n.+8"&pq{P9h̛ 5N OVH5@yLd9q.mPW ,mZ/r0;4sbWɕ8flMwѕOPj<|Ewŋ;( gC %.u#i z.2ATN7/lİrXlK萱YԶʠ bҕysL36Hs.]GM 5aP(Jzm"kJ qf|]'Vclcf[hY#0ϥc+ v?OSJT NZo֗< $JR'r++ՠ^|P|'h:k{˨^z=-m$XNS2ׅ}hc;UA# zdyKaci?uN N+wzRXj]Q`R6u^l)Hr| _FZ ˟j"i؎Fe.EV7'Vjw5M ;?p r7W=)6@rw_5,;X#h$\mG@df1MY-+̂ذabs{O I_DAHN=5CnT/آZyk`I,8fR/a`AI&_'/(+txutߢۑUVt|3U}ˀӀ؍~90!6@7"8`#N#[tʝ&li r+ۛ}6b$!V򛀞F? |>M<44H^0_%8׆`u# xԚOz2bBbщFr}|Va!ɦ/ *О:i|Ovf}lʩYxk_`!"[CO$'fHSJKw"͑'qoH?jZò:r#=O$5%wtSżqJR7Bk2sNlX*wI;K%jdӤ[, %cъH|jSbGM]KgIk"KW;Y55%YkDI~ΙA5` D#K m60 攂 uc:iTCګjl oϛǃ(#NI*?ŜTnR>np%>cfaIjQơA3į$ib_#oiI(æH =lh5UGr0  U'Amny3E,d|1mjsfW> 'p8Ag7N Á 0rD3~=GF3 NVYeTxɫ|d}Nrd *;W%:1чm~:_*4 ;1Dx[Ua5nLkd'*fdihy/wlfoyΛRdfY  I; iLWVKOUŁQ~4^Gh+DvRR'(PIj~-E*&)YHE)XN<@zy_s ]5m2O7fe | &s;LRћ-p ~T *>Dp45Gj;X۶ Leϭ@}z/ Pb$bM[@؀kTE^%g5E˙93siI ˮ7{6![D5!98a*n Jp5z'\ey$uZA}m*؉ $KiOrl)w{Ua;pDB+d~𙒞Tz&7C'ʼnTB XZuM.%y&Y/I7]m10Ju7 CߘVܦʒisH*8AaO5ώ80D%)ϗ%8=w`%)c@y-,ȗlj[pqbPZ<Y7>x6X] eO$AlsFa4%~v,qĞ=11Mj"MF-%7 orN"w`E>t< ԺDrc}6k3r[?j`8 kV OQ26dG.^U~EbUjYk0y=myy d.r.|Ÿmc ݮ.E(U֏bQa˙v4_rYo fimXeM;{rj-24d1FsN7+Ƨqُ 2#:k,,|y^w4A w?EWJS5A{ ^2%*\(f k|9W&4}3mŒGإ}'4^Ϡ|XЖ2 t[mމ8UG+\~bԺ!1h?UVl p&9:K$b :3{r+{}ARP]3nƱ#.in9W$A|*-Mb4CV~܎zG o;qJ(!cIYiH'΄" 9t(S$lmq: WS<d3KOGIq{?ii(t랶Ĵͫcݬ.h$X@AReVo|]Qޕx-* y],+7QhMyN_.!cŇ)^[oqWry7X/zmwt_@ H3̲:QxpFD$=׵|#%YZʳ%|Rk(4v+# 3<̐ȭsOE2&u6 /R ϒ)D*ENV{&'5z~]bԭMJPM\M*$!Q-PP/Y;|"/1xރFE!(5ޝC|z X;QB haRd>WPODr l\1q8JM&T6GS'&Q?' L}YmC~#>E"dk7Q'6<4Xve 15'Cv~1pşZK:x~ < j"oҜϐ=t'Đ5n5w?53#&#]K T>Yd]0U7`"4Mpʜ'Ѯ(v9}^FhEV4LZoe'xg+ȸ,ו)I0{ }3.Ԉvf{/35%,HT`_L놹ac\2FbёK?z` XŒ2YVwaQB=)OrQf<0{D+GA:EoQXw.%IFgSF~\_ucx5@Y%NWY~Tp8F$sC2"G>1 6n^* ; K,6W~V:(=qWrUPˈK6=Lrsa虊 MA)R+- RM5霻>WB:eóiqf,Y)"O~At7UףnO > ' Dǽ80T#Y*h 3+8*dfO*m zcK;Wi0Y CfKeh2E7&,ܩ'Sgp}*ǹP̮dm̿؛-h0ET%Wvk$Sᐹ `m)&dgCʱ1G?'81_*“ވlXclc =zb)jza/7ݪriҖj95HJ6, ?7Bi>2PHқ:'67-b*$a߄g^E9k4.["(F¬P]|O Z 0e9K>C2xui,FLUY7fg%nE B p$tRr};/M##=d7':)%P|wn!sfš"(}^gi]ڡ8{{{ H$?J@a?hpWa?dթӵ~ZnVH &gQ#ݤjo.ni>jz"ܰ;X.W& ē3^X;gv#1f>MTb`8LE.;4!^-pLFxgyҩZoG8/7DX:EР++BoX\vM7h7hJx5:p>* I 4ͧzx0Ӝlz5,Jy4dɭ1!v#&7|`>v2Oxm.|GpʨxK-hb2-Pv /5*naFͯptKlr4"ևP7Fȸ`VMXUnΎhN! |'X"%I2SriA0@2u@Mnٺjm gb0bBE&9̙?oqpI?5G*g_uǗ]( c7~L^k3i[+?IRʮ9,*y)Ը'8kz .VLj@Y\AjPkD kPS/#WPDRxMyZ%w6Y L`:+"r˨*!JP&h,$KF[QbSg0rӧwb'eC&4 Re% PǺl8MZ x|sj&(q3&xex2߇aSj?} :}YCφR^X;h@_l\7V&^ OGЃNc+koF ܥD(0dUEs]]J/N3nnl1y_ȎO:N w/FãK+IG)#W 90!gDyȳ(RT@2ϴbVϨgH<731 J4JP,Y@^Z.|0bkFh=N;c9&.iۡ"zTuM& hN6䄒4C}#dss6e]{uk5Iu1yIhEz 9 o"'-[!G?HqD ۱0GpGP4 OӔ~t,?'j9 7K1B!$מwvyBy)£U R^3;\큗dj6i,_Q\lΛMr3us6#oK='yHg".bΩi;}/ ch^#Q*՞͕(:`lRhMqAː,v,P蒯k䈋pW~ߵamN Ӆc'!۪Vh~1GJ,f$ ؼꃈd=DTc!QO8.{|͕rw}ݗe7jr9I/vﱿ-蚏rF_-P!P2#o<w-B bz j=L${Q IמCyMꑁl*g2Tpg`&v4bpm^KHj,*M.]u犇b (}Ӿ)z(=KgVߢz&h`冎ׯXb:䮀kv`# !l/$9d҂>2FԙD?]ߘH6!q!( iy4uoU%j}#QH]4:F i}n`)eQS_ERa'?>< XhMbm6U}hmok* fP :)u}CP񞦑?mMrQ"J;Uj\J!3]0]aO"\9:{K0M9ЄJ-(7 h,eFeEQNIVDzΖhòc4XǑ%[udFf5s%e{T-oM?\th4?_E.J ~ѥwY ,XiGZoJt@fn>T=]9ϰ-|am1~딈.vDG a?!-Ws*7E1 S!؟beN l!Mk$Ι-'7L[;eu>q`F9o:lEdBuh|_zz ke `wsךg:;G~v Q*M_9g Nw9<{8c#JM xh4= eT^e9ҺaiׇI\&^(ho%FpF Be(hFj?uW{{D5 UNof^en1fyrzcj.'0reIHo7|]`#~ $A'e^}szً\{"1#bPV HNԎY88$p0ʩL89t1VNnZ<=]L aTu֜ MVOy{:)o ;ou_w0P4zKt*/2j& #;`87R-bfQ6uڞ̓MX1 lL0OTR].CX~td)#dܵ+)B= 0v#w6M+%%SlXZX/ /58=5U!I5Q(dgxԦ"KF΃̺PB{wi4a%5J|`f/.lwsXtf 7ϙP_vp STӋ4!pTjL,OˌC&V'Qp>$ kVYcF0Q'G ]琳 j-U^4ӴSe9H d&BGӟFw# g4[u|9| 5N->$^LpN%-ZX&(ƫ«jѻ͇G_5љwkH2]n,yXv*\#IbgE>GTz1ɦ)6c AbRXeFq/G{W?@ Ĉq$7#y:|KC=W@^'qj1cyUN7 { ǰs P}{LtF'(.M]QlqB)J6˽Te!T~; Wt~kMm+?gm*[=`YmviDD*^a,D LQ*96roWeVt#44˞83*lf|'5Of3pGRh%B X lWן[4f4UcZZ$lZ~_A964ǔ/Ƃ;(7 @'Y+DI\*V*֯e TJF-{Wv3aRT@:#䖛 6(~-25eR.GsPrѱ/O@{1|g9FTI!}]J~qD`'K ؁a ſ}(' =ݥA:C{\&La50ކ99DFe:I*>kiWM:&[xqHz{̋GSS92qy\8ogӃ#prbiz2Ys*1 FRLo-* 嘾Phqwo8EUcM?7I5Ou3':ˇs [6|Y7_+#Fz;&|d3(} 1l _X񗈜4 FerU]uqVIzokAM6.C` U'+9Q|7HA/*lf`WՂE*)̜WFlB!wun혙 -4&Cr M4*KCmBHnd DF^ 2#K th;TBɒJP٬~^cpn(iB,'u5B?c#t5qel L8]ELD_(H8Clu P'.2'Fg([B(ԫi8d hޙž>o{PQ/@:Ƃ6tHR07erݘIv1١8/nDߗ| ֜fE%1P>#^yݯE|OPo}3ţP̏8\ &c* Bzr77rV*bXowbsQ|H|y^sp +(\խ}DJ1_#C1>rS)٭q: 7UAP40m$mlaQ,,|E+|ȯu)1|e:e4_ AwY6hZҶuƩg L_g5y^ɩfGl +ZTVQ3F 8) +lթ:'+Xg;Bjm(03z;7n~aFwza)s53VixwnY-g:ol<'eP|}e0cuow')i5Xզ2]>d ~PދIs:1fY-ҙ%[u`?wl@Eb&]EOW+rO 6!$jjG`抙6i!uЉCdKk{;5zk!5B}5~*"O:QY9왧~pS(;UR2;ZOfݫՍUm;dHKmi{sa'r|UI1M BR<90l3f3;RϺT'{_M]_SH04+1.RZe'ÐP0"wܛ"MumHyUVm[$^>te,b>ܵDm|Qq(f`XۻoW=+jh\'h8f TЯxfrz@}f%1dt69YSkaՇ:9ck6R:FB*O9՗6yW]/Wrt=[܏8m(ȲvyT?]|sȹxm^2sS2?5nԃ; p1a}s0~PR%TmApsW;3JawG%Tu#@6 }[$7Zl naiKnf R H tpX,S'Ou@Vc:˥5$<ANߏpV5c@i|噊a+݄,M"S/Bz6Xil%㴃 DkQK `ټ6=I4qn Hg͈nzt}.k ?6oW;d oG*Io\OZK/h!ɽ{JT$iZ,st*XXӶ]/&GiEc`"Pz:x47V.ЊyDV Ya[It26OUpϳdT 6aRiPwI᪔!avqlJOl_ 3`naw=[`5(eg7`dvSTcIWo!ѤZ CւMXG'&!/9fc[qOE40*zI\ᗉA|:B\ #V|t%.t^h&5,2Q: p^ bHVwf_=>} ΃rJ/a뤠@Y'١zfV1'쐃2B9hM]4 r]Z~uf֞yq}}t2LF1b)"(5M\eOLʷ/Lu4RHFyd!r4Օ pE'uR1ꎂk(-| >DlcyZa9&5C.[Vn4>Xz_A9ŞM݁ղ`((ջ ~}d\raBUmywARм0h(=ܘ @kWr1af[]&"w_iAF R*8il܂lK*WYKуc()3ư+2۷3 HSd oTIㅁ5q=ǚfG ,9H<¢#OAb؎"}cHէnMU^~OQbWJmlnoPaYg$'sZ6e*95="AIj'e[" /g(AҕğDfT.(\bJ&7{#ۖ}2fN /8 }v}ۍ UV·oG xRpwvEA% P"ǀ`/C)R$MBFз ,7M]<Z^c8MS[ZG9'g7maB0e'1o#BMPgoTVh]0fveFw$1EC ]aup*UUr0,cȫ^K9[Z*.XyB]_٢?Oq+>&#g%g?|NR x ?rfM`6|0 BĘVj GDYn$,1Wi-2caWCHɋ  ~Ӭ$!Ffa=iAl ln=f^I&e{zSz? L$PR$L5EUe&wjR`EcaZbe盎504³鈵r0]t>/'$uU`K|aݞ=a(Ͻc GAC~ʖĴ,5+"#di%K>F=V DIQ2LZ04 `FQwerjӌm=CU;ƏB{?n/X2\+MтQla W%Wyg:XI vI(r3hD2C N cg0AfFJ vF,^nפ%){7VJ+i)kF(ݹ~bSXϓ'twsF [;,̆|"fr+ 5fy =᭷QӗI$bv$k\;Q=,+|!9ӥ\߈(Eyu@ ?xUm-x&Ft!x[51+5ܣM1*~N *F8 ߻&0z X | A_JLj3'Xͫg/oN`j+_A~ƽgwI75#q8EakJZgXvZq\6#̅>$1uSV DI7'-jxhӀlU{ed7|4+:R7oטV>vp8'+5@ohKL2g7Ʌ StqN,@j7VtDJ WS:bpjJ%0-5ڢ^6ԡ̥:SEx _u֭_6#{WWx΅j_)e1$}[ *^NfON.`)UT`VDAoʂ0L8Bf{bTP`c@Z9juN$ꢴ}y#A%l1|߂QڥjY.0K[ _Ƃ UnS/ENbMOh!TR/ϷǙ]3gr<ٳU<wfO mva?bagؼ:N'UҼp&g*٭2A3P~dAsg8@$q$@dn\Pѭ=+@g*g=K&&_.dzb W*xQk@WGHYԕXv4?BCg=LMYU`;"lOxnF_9_g tucV<@"? ?⡫A?}&:%<زrC_wy5#,q s[-iCD)ztˣΆ j@pc@oj+61#q"]ыe'-9 /}*ϒ4WRm47^}֌&i)%b`L|2SA*ZkvkWe nY fT9 3m"E 4ϙPè^~5D֡j!T.mdûp8.&ÚJ@Ćzy_n?M׃|)ޞXi |2-S!.}>g:Q2 '1r Nt +&gbUww5g/ ;/"l"7E4 !Ek"e+5F$'@?` it0UPFHkf7ÓMs1,w kbD v=>UUtAfY_j[W,T :?W{EiCo0MHRt`Z9Vg鉸!qÊLY_%FS4 -FᩋTD /3;}XoL%0Έ/2q@a<4vL)ѭ{#qp֔c| FeҁWe͋m1O-Hq H4`KT0~wGjVwDY_6*;*Ŭ6Q!es00RqQGbeeRC=X5}Qo@.՜HKU}bm&l-wN\2D"T":$?X6w=8 ]pGSF-Y/d2(ss J_깁 fHK0}_- :\ObrmIBѭ8]S7mOɡFg:J*bآT)e1ƪ^ð/]t Jq+uwG@iۘC\\<-U)V= {שiοR([=J)+iuƼUz2˖;5=S G/.t9@pw^"M ܌c[J;u_S.z9N&U+#,19OB>$di GyOrsJMƎ8Dȓj`Wx PāX D5=p-34 jF\F9F]"þ؅WV^ SڐH) _(4 '*jG Y`A'OhAQx1vɯ YygrVR,T7캳KDřR44`h ېWɲ=_H o@ͤ5쐒bCLCZP%q mY-5 '1~n`g'ӴTeOI@<_Ex#;.3\/vv f"mhoZ1rCQSJL z"fOSs{7ުU=Tk.<JߺG= z~'@ZXFm ģÜ%CI$rkkP ;iS$M Qa4}0[<4/eU9` z9?]=1S<h8FW]>ґ4\PQvl6x?c!4 "sӒL!SyV x% ӻ!\6u6ը/g\SH羉pzCfQF\> eFLRMC^>u&t#HGOR*h18UYw f̖~861?j ƗW&/1^߄e]y!n<@2/*U'ry;Ƌ9-˲ᣄ!؟i']b`J/!#S6݇Q$3 .􈅱FGPT=<~Zs7Sto#\*I)iMAPu Amډ:#! :@8!) d݊폷ßgcYa mi_|҉ lñ{Y:`'$߱hI0G5fI>ob.qO(7B8) wNPG09sk̞ D/sa[,"~Ǖr}mzwXg,ƋNȎ11G6:ҍP ƪMDIoEKmuNX]sپ! LrDMRή7/k6ecEFtWdMmWO=9FbƇ_4N y f9)!Es/fօ"fL%"w.$G.w?" L(Մ39i췴'$6֦If =T^~'oǙ?0Zs4z_Z9 nYqvjA5PɹV{poo椂֜X<ՏŊH敓@?@.c^h]g8L,ĔIКud`^cbAKURM/hT)/~@Rs/h\) %*5l|cѓf\!z{6?!I idtӊ1a$M>㣠׬;1rT񮙰W^~śV\z;6n/?"2wǍ6E# Ok]Wzr. *?缥~Sou[T X5Ci %|iI;_O*)<&29@M3x7nr!@} orN~QhBFW1ESm;CɋMk_1c?IB]GV T7pekTKmxpeMfKZ$ d 1ovcyrz$q׸U3xj7="M~#-b\K2š&eJ/d`zТ̓TPo y6y Hnl.Ew=F1^jȐb&]avlѵڹX=؅4tک)mc<ldfy[}N2o:k~%+Kު`(|B:U UfI~r*$s2&GMt7M%ּ=ũAzF*kvKoYIw5"V~({BdG1ɕnu>*6f0J#lV&3c"_1=w( eia|zhjE; IKs.lenR)鶇!E6;l_s #2=>w?g|keqj06(&EVwu0Q0SKg_{ wDU;IBG*FIc^97Eۗ*[Y"6;v> nO& sR0Z>my ߞe_~EC~;<i{O(mt[5Q?P1j^63!HЭped%z92򤟏9}FskF,J!?dxpƜT%|; ʊR& ld74(HxR㾼?Y9ͳ-^No&yt1EH|Ae`yyKZ&7@_JLX(dU!(g`N1]D QEN݄qJcJ/Fۖ?&8If{? G-S ?qSDe5N?4(#!c5KB,+]YRDʚ] {fzфOiV_؝ġ R|:BwϜ,TxmE#)5@aᣔ}4!Q6㎚kDӤlw0vn Cu#j1C6хY;MN}*}A?J,H[, H =HIzf_Ei(Ea=ZFZ["=$wȌgzs Y))p.Aa]EÐZegVM(w+w*2%Ϛz'Dfd/Xgpʢ+>in-{W (?/g0+58Ή~;4Wnc.arG-Tg_Ҵ}^ϟiGBdXgUNװȝj.|y?0k9{b&JưjdQi9U6ctFt:'"~쵧 ' <}¶1}iQF~ `͓rw%}cZ>`~σ#X1 ij8kȐCc 7z=E@|Dɦ@9*BQ.zPD1wiW#[OC! .ZP"C-뗅(znȰsq<8z:\QfyVmFU84%f{JR'Il^bNf_[r 3jr(V$-/Tckpx 1тB<e} Zh~Yuh e;W }]oU3d/Bx(e\$M{hr4tE1cdn)\W|Ü)k.s p Wf6[y Y;c~i|OYGqyM"tyZ # {!W'68 /+cCmPbS/JL{T.lpmle_7A t/}E]3p^8HG^^] 9qh™q䬏RS;+ۓx*XבfqR[h*0Fql:NDTOI$/( ʾ\^jvsAΣIݩ {b6Pc'§Zl{U }GSa*n3k1 #`SW*/j :kGَ |`Y^F],giccҡJ?o${E@C} ǥ? 0HrッI0議l0'K3/-#r%9Q&d$@~csICϏ$MhPdR;J_;OD$ o,7TGIhylAۀ 3ݫMh=ҷQH҅b8P8;6P]4:}I'ma-t󴂾^O<tN܀u_n#mfPh#N> D{HWԎ*kU~{ݴv %m3\X[4P2 3֜?YR^xiTeCܖ F}%!d-#J n;Ȑ|J嚄e~\O Mv'b)Z̺nU$Mf:p:o""Hx [1QEQ6j.[G0lULa9 fF",7T^T =Wd?p@͡ݬ3N3e"4Ge|]|Z̼ K/ [6fi0Bs G9͉q47T7gz?uX*clBSwbqW^Ceg-~7߲pjSi=3E۠ca6Wތ.ڽ G? "FA^H̽ЁXd/f@)7_C&o;8I*&M*:XPg}z_- 7fDgjS~F/ V~So !hZYf&?t cwIvMZtV(@؜r1.bGU@ܚBb* S]u\%,,6f`*! ns3꜐@E'Hz~ 8v[sdX/@2y!-cm4bW) 8նdAs]}8TƠQ.QP8.Ps@ Mw|41a"\2-})Ł$v'' F!x} V1Bvډb5GQ]ON7jWOH#ۭT}Nڔ|']Q& ?q `P5EB]14d8;؃}lջd; G·'؊$x\b *#=0J!R@ !M8A@̕P Pp(_fү+>RYDϸ8&eԁPnlՃ,:cBf= Ӭ2.,yI&H Kh <[-&UG807$ߧ L.|ZY032e~'hGsUpN@zpa5gdUD+Ɂ%Q;Zot7070mS; ֜f.u/g@Bj|i|TC*Ґ%"oQ~ʹmii&dm"f[kTAHizC33-5z7R+MCCW߄ܭiءҎʧֿYiLqKMŠ3CZ؟E! F.zܤݜz\X!:wYPk6wBuMM]89||}X9]m$L y>aDD䦌n$5gileL@J+9[Ύhu&O Jp@I$ƁGwGIqo`k\DwZQ7Z 8’"Bۗ;}-(8iQ bS'ToNi@r^@ OR .iϣ/ɜ{ WƄH 񓤿TNh o+2-̒w >*B%G_fay,Dl0ȔS>σYBR%8Ҏ ;P|ӛVÒ %qx#X/ OOv[3%"&^y /J,設7ōC*p>m j/7kۉܻtnȔBQY!bE1 !74Ig64n.vCqWf ju Aq 'J犌 x5,# ׭\:rZ7l@j.܏;案s5DN:WjG&}F9Uiyx:&c]eRݳX(ձF/=%Fiۂ'.((bZN#42{"S(,{!?Ψ`vWZU|vj5iCnMJ;_lKzњʿbbsG[ĥ-l}kK̄ͮdB@ *%II.wΖr/j0t ^(ZF~B^3sb-0d3:u_vtCG&sJfЎJp:zN4Jܧv$TFrv}4 D󐴣V ~mF*w}2Rӷw0Ir&ionQ1BlW1qq;Qϒٻp2hlZ%G0Kwr~֥(㢅ZnF3w J4J̪\q-R aGݻ vsN;3xS[s=|+#觔,E\ S\1}%f xp:]\|TNY9,RYN&{Y]|t8Uqd:b-}fEHUо:ޮV1;M{UŰW1AC<2cY`vi9?JvCW5өyмi㻬Y_ kU8*?dbUp((3NxᯖEL{9EYvˬ7MCfCFm 8ttK\ٱ[%`2M J섣IZf -T hh^'c7P7T!L v 3K0;o Veؕb\wsNW?Dz~vݵ {72n7t Du(:/"Z|/ #_@-F2sP^{{OG>{ *ۭkػkrqV6R2oh"ioZ6#V?oͦ'Y'Wpvt4W΅#@Po\$i>8 F"?R w~v66;@.5W6P29^f` #p1{=I#Ju,i2~3gB2x 7d@`Y@x*1׭mC 42G.lբo #٢>VϒUj 1sf*}ߏʪ]ۍdS^DȮsJ })bMvU݌\B|GU82XJzI׽ WaګoԮlQ_iv莻SY3`UORIQEn#}89WZ^T͜Qs#a< Q $tv٢ k"vY7Rfxe+=S|yYr_/+8}o=-[C^ 6yKuV1Z|ݎrzfdbÚ{{3QQwiV)"E5JYAcUqVy/N) K;MïS{W^­T8 _] 6>Zn*4JTTӈY"U&tt%Ja*QjH6>wҘ3||7v˩S, \DՆ K`=#˿RJl:}?52p* вrذǁa^vLDМ|@g Ҙ!LL.]g쭹M}l}բv$:lc[楲|aJ5yweyi!ƴ?i6oա^-&!iʹ: wXT_(tyh18l}Xw:s,.9,?qr|䯅7[kZ\EjG7t qs#Hw{YQ Ҍe0ȴ%nΩ{1r#bh5Dn@&r50mBzkێ+@U>+CbU/2(b46Mximh'5]/X~JBpD`ɹFH*"8?ѴY_N~'z;=0iRz\psʿ`4qjAe#T/,[sT;\o].٫xkd2fKM:nfGyʢѠvhVZƚFLO-B]2w e{uÖz3څXd6bkt .K4yK&OyӍwrԓQzh6sh[\JL 9WƓ.{։ 6ln5UT$|7*4ICK׈l_ӽ2ژ6BM~^GJ }t510!Cah8=Z/&8quEr!3mGY8P![ 45 8)}z#c7-Laxu k2݅08z|m}tgɡ?J0ޯ:Tީ=l. Q&ih67%)W 6b+ o*UuMF'2~3čnY7Yrvס(ß$Gu6guGk1?8Ck,Lgꯊp<; 0Ls&]_7e8ٌy\ٿ[*UꍾWR-HSZ⡈P_NH7E6ݲ8>Ah=:bz6);?(H\W ]= 24ZV)ĭI}5N9uʑe'cZLwE5]tij/L`P/cɉ6J#xutR^q&{G,(-QF@nl#VW{h1$p)l>ITnq{s[RD+}Q}T?i4|pPg [%zPx%M* Nug朗_vyj%-sTuQe&}yd2> >k~u1->MES^0vC?EW]OiRWI2nTJ7ʜF4n[wh <թG=36%$h P:46" VoQoOFĶJD?8qxf$r`c撅@qtbz~dž,ht6? O gq^np|X2d['C+ [k/6,%GS5Ӧ Z`~{xD<tmY,ZZ;m<^9V%HGO:.Z`޵uXCɊ0Y P{=A*NJ!+M\ g&y1aglZwXkdZEUF]ZfJ`}pT(Q zty23VKH&,?).*0"U.01PWo{;x,FwĭJ?cH꿊,}1N3N9\tW녶V!*)zwxӓf@,9CVӕ_8b"dGBwW W\Jg7z|)[0`E<,zQ#]\q2yh&]u$u})t#W\:)+ǁn[k6dSƪnԔ_Y/}*3BWk r&ĻA0El*]t| D!xE2xO”0N{\h ~9N* ubJ*b@rgu(1䛼O-y}WpAJ+.JKL}uQm*1do 3nANS]vKnM$߻0TKǯS\隰 yJmtsdmDLbBΉ|e<1et7iwwVWGitnKYmgVi$PuؒiPv6{dW6$xW}LỶt&^1.> H~ewu j^apI'WC%3$ # LgGFI6)#/u>Eyv|1W]QZzTe`rA*H)o2pPo]SrEkgwhz(W<sJ'кQQ,m.(QjШerBNKG@ƛ^ .;%bD<B%z!|t3\ @z]E߲)k{1m~OcQ3?  -Y]쟊樣irJ8oX&Vb.,&]K/2nW{8<kuxc)эIܭ[N۠*g6)r‡SW_?,"/8er ⴦iAځ}!: >M(Ey? _O]2?s|l }7H  b7qT܅WgqTJ0^ 0JtV=䍱ުIzs0gPtt_iyB;.]z>GɊVg\:ZR:G[6AO!ً;w/>sN%fD0|CZ IŕƎ*IH:D)a'sd᳞CWpN 1)Z=L\javu LJFR[@fN(yWA=`LGnq}my/DY[';jvvZo5}b۲ rՌ) VKmbšj7>`HPҸm2/9EW24ҕTǩ9AA*&G^Z΀J,Nʄ EfJS\/XD]{?}A1Dh߇fZ)#G&l ThϏw yVh(MZHؘjUaO;KW4wչ#&J*IpbkljP+&Yͫ8gtm;;z&Ⱦxsdb!v3s91;)85b&M3ޝC̉ͨ6 kʹ*B`:w,ig%Mg3A^# /ҭ Yb2/[i4 t ijap+grm{4z4S:wCAKծ#YrSŬlO)}nVFt>~)JtBI>.;K1 1Uژk\k̩kW^Kb[ 4-WѷXŻ/*ˋropN,cIiṅ%hl[-LS"w{#VUkÈe^Qu4&38r bb& u\w+jfR1Ƞw_[vn6#FvH%t6 F+pxJzR40 lT "!8Y a:g# .Ww ZG@-+-oG@ܮ_8)ҙ\cRP;c wv#b"dC$.8:?pQZӮaGj%C,m`m T16NOϔ]d1QM]h0d8/켦nzY ^8yVPTѩkS azM]=kL;/uc[Šo?N镥{2_/KY*?&U4^Q7eDJ-\HBP=thD0J(qo/UAf9KaWY0aZ\CHe@W+ކ|( #Ijnc1a-|5 t"!_cF>-9,H |f2v2bTs٪Ƣ}ޞΓ\s/vpԍ &V 6 @U_Olp ~ձXxJF>6 es}) S0J*D/Ño~ <ڏW>EQgB8 ʟ:z.[ۊ*.%fBٙs^,uU9XFw+I6̪p[ +NAjCN@9\?8 z+6F؆&n^ _,Bp)flZ: m=ڥ@dU N'g~XN'=4TUaL&QPI! BY{#ilUfg4ÔTRhn{u.vx8k1nZSc%ٹA3&5t|3dz̐3qW$1f|Әrɑ#7z,3ޭ3Rhӑ0{bs;fP _lf槯-u6ρKJ"v8T@`̋2F#kz]b g?oE pv(} em4~-: c>%") )^#g-`mcAЖu24K=vݪ*U ~S)T:V: FF<7wWUHP^iγuc8$>j)È u a,G?}y =IOO{doNX,Wˢ_0Be ﱎK.>/66`Lټ]]AsڹGh,T)aJJ VMۼr n(EVL'GS߫"y9lCh+D_RN5)Mw9=NPw B9A1J8" h.Z(_*ɼ31,akKz)٭Hb()x4@ :}u덐{.yԲw}?yroT#Fht+t!tO&(/ߟ' ({2f\? #9$wY5X!%_JZҳAZʻ1fe+5HOY$0=|B,+H/D3p9{?HFMQ*&;=)!Ͱm/#B$ W G4%$s&5Yve@Unn>XQ,!!3ׂZC& 4}&V!N*TNPDb* V6A#'͜ӈO{'w:H:4O{4O| \ vYTa EsST,(iy,a?ЉIKNuYlO-$E2KkEQBn֋m.%Hbyq,-.B[hA -;$nt۸!a۫pٜUW3RADAB$We@Z@'cGۏվԣ.gzYn}*BчgYZ^42E7@+d}hlK"Q>C!MU<-{J/üHcb]enH V,ûŀ:]z=SZe5 meeSa|!.v.'zJ?wlǪ`zL 5"ƈVv<84z^wf*Ɯ" څ` eq/yMfcYŖ (<^b2h fUa,I|_AOc2Yl@{?6CF* )An(O+ap٩u3g)̃d~xAb6L1;6<%L>tѯ:$`.Nuȭg!AE0F: {"Q/ޕ4:yU/ȴ/˝ :- E`ۺ|52:UBMe =6ql,ȍ'/M0,ܼt.͠D+!;tD74P%rl?v8J=y ffX(nxRb!{$z/T`o7dҽubaZ{h5+;u'-zjАoLxMM=f~b&+7pJ3]D=r6ؕ c <8tH]/<FS`>=zs9H ԑض\FD-Ö0jP3^V8Q!KUE*JǎNB9SaCNU$ )˸Y 9&ChxmOWͣ Fy"`N޵v>G{!zwG{RˌPbIP%gJOϱ'T8α2!iA+S蓞 9+Az%S/69&jaJA{k'6 'KS6GZCĮ<.ZݚdԒ1-;mˀT@".<ȻԖLrinŦ,aacTusvR 5[)LxVN.2, k0eV/&R #~~w"^f# :]H!Z٢`{s)\nv&͑MqL X_݁s܊[X!2^d&'ܩǨ@a$vK6fS>dU '!_-|O"QS웨S "*uyE\=vFb 痴\ج=HgY6&b(T.z;)ԓ~dTM_s8sG_KJ5? h$Ƚ޷M`lATjnRzn;R{Skw MK#Nd龘!܋P#sԚ~#m|frw1xNO񁛚܋C< *$ ^,gg/q5ïm#Rє_d's93WrNJZ\4sfQ|4; `SKeLȐ4CD o{$!gu ~~m&]9ԀNG4ќXXݵh57l5^x$Y0T?\Bfe;42O4)N9bx?^@f3AS'35D Mtw hi8\҃/-?rZ0AuU;LDԴ^!S/!3IފDhg-1 n-wmcqL Q *Y77S߾0Ms>R{gYzO w<^?)Xцlh ; 慄7d/kH-Uz? ~]orbZG賬#Aԉ|%ўyD6o6Gt<2ta~KyTG?rHh#{$2Чr\%ֹѺLX,ӹi仒 K\r j-g Ɛjp1rHBNr-H Xj= Y]I !G^#^FAJ ![Xi@! n;V1enx7C>7lfY3F{ {7]uPğ?mF0Џ]!sɡQ &/*e둨 ^8CۣJ6s) 2prIip0*35s?~Tc-{:萑֯(Wc5 5YFt,2xOM.@$pXҟkJ-{dG =P^L2U *:b)m!!ɤOdyV,SZbi@t)xD R^Le(fwQO&[.`V. /Ᏽث`$XlZ2_m)Os0ZKî1wG9NfcܘhYXɳ`8ʼni1 ]+ȓ2ML̜ɸ\g'Cm5:g  IR?ۂr\dwT|re'GsSܺɋ{l{iKU? z T,h .[ҜmW("gFnPޚN!g_remcv֕ukLe |Q#Y=j nڧf^$. .JyOyMAz.=f VQ3aMC|Ӛ+T*x2T\WZ Q3@Y\{iXM{cqRflz:äN 5׬d076)hBSݫHJaO:1_l|0,j ÈH POa TXU:YbSH)@=L-xGGssK7ߣ"dwv]NJ LoMKCQ|`C8#׸ļMe+1-F-VظUcCܠw P=8/w}u -' l 2#`v ^ᨡ/.lA6 4E$QȳA z&re8?alLc]h7}"+i4k&vVz% ӣ&]T~3#5_ #W6}5 ZX(;R 9%s س SN ?F nDXʽhs_| _1)5E֡ـ !a^eIƓ}1Z6H*?mrx!9Og)l}߶U>%*NP=; >>!R;DxRsKqa(a}ܚ| d /gؔǰL6 >=Q'CwbdC&"~+"YW{~K_e>*+4fQy)X;d %<C*%fWN@ו ?+>7cM*ielnc=yC`gIV5QsT|WG+K^H>)y*S%#<}}h-UJN؁ d+W=1LfI](N"ZNUQNXtl|}{ I!T_]6(Le4Bg-ʡ?c>h 08|xhݚ[\9^ [3rx F&QiQU'|5^1B>cx|C@wѲy&s![-Q @d݌ 4 *J{1)1aE:i,j #%ΜPㅄ_D5v xcEC~/ .l/= y/^zp`*V i1:߅©An$TjQ{l&3jT4Py:b]fbwԄ"xTT>4"#сey\E޽RNU 53(4p> jrjny|#aXՐcpBFm}8p OK Ta,G<ݵ[w+-t|`Bn㘥7߈_$`}iNN=xR/q g9}-tALT[wH vǓaq5KӯC,u|<(TshF!l?LnNJ|:l&W_Mt0?29X2REZ;)X" GeI}Z&]hg9xŋmb/pNha\zxWT"!!R)>[̎9oNJ$I,2. k0hly9ZTyP0*=xfLN0`p 2W<٨}eW'a O6~BͲm6o!h."$}ZRdW>{96P,g rbcAK :' J/epi= 1 d=M}xY5<ģ~dxm]ߪ ς-.7˝[yx=}mB#ۚTf޻t1f $$#*_S F#O} 'xu}d`B̫PIpq6-zSJWkCca=B0E7~$خ5p0=Wt9wMOFsƅKf|d5VCO64_ &?K ?+.k84b|w`"c(vx\ SD뇻U⻰"ήz}#FB ̂lPƒ3~I'U"8]MYbJ.:rc$VO7xl\>_fsV3h$Ybl#k3 ^_bYE"D955 ,dӱ#g^ s-|F)Z2Qv%oK5Wԛ펍At~X[UgW_/1Nz+,qfkW FԓEԢZ0h`B:#{'PlU WK 쩫u~4.}j:,:8+:ZUChٞ-R_5bUl}YC Z ЬOȐ'<ɇ=qv0^c_M]G~?az`kŵ9s;k{ߑ{O߸+#sKq*75R N-hdH: >o}1w aY<}"G;<KD0H_p{TtЧސuS [1qW^kU^l6n uG* ϔ}|O`.δ $ CD U YW]Wj٫ԖG]_I=I2 i-xy%pZ2:[gQ0O];mwOA3EL9xxA:(yڌ#~.nApiӘ8O bKNJa:R zt={".` zxae?a=/k/4̢@aYd!Æ݋?DtZJ]i;5iLT٘Kq`dMӃ L % B̍Li8(HΝg +Bߝ7hԦռX e~tdEkT"n~H/㪢L't7N4lI-$8Gyz ȝIFMA0ɨmWHG  [N(ҺQwjQ$d#cf{Ip+In}-3 ޕ]_|$@E8&IaX5 o3-q 6Y v})|!7$AMxpT`OU|Z95&>CU+uJwZ7N1k{I@$Ls. GY;_KxDE0k CU^R(;ɑSz^)"w?`8)R۩p% ɳ+HXgeI(Q%KQ)yfs`yŸ$V.șJCmk<] {*I 1T3NKE}\ǿr5J碊rlQ" ?w3_ _zQ3{@`tMЀM𘶡!LPɗ ZWEE\"3\50-h`".o~6 4#{ ͙o qUwI^%±HVvSK!sqBj|h_Mkoq?ҳ`J$؞85iW@zb: -VaTxJN-]V|ʿwkq*.~\[ᆃe;M{ ]3Xfg*F{#;rpR'l# 7@UJ:ۮ?-92t5lʽ!Z(ReL:r%HLtwaMưԡ8@5ϲ%̪Nu fv֕H1\9 T6=?m exe-, 5I_g%s]yG ZstKX0C1B}82sh˴'XJ؃iПd--Ƒ`y_JkkzB-"r/@W~8cj?FzzsEÁ2@(i$Uח`.PHwơ<_ M0/Sj+b'׆114R1ةŁiERR(툭aUh]3"(M+J%)/잨#M!%5ivq 8 G9WaS] H)3ZQ}-[q:V؃?0,;}"]%m-T^Bd˼I.!ib 7E6^#tp/ ՓtGҠtrYVGx-sU.#WL|xBZS[ ~K9#ݒ̷0SLwYxq JLj^󏜕KTֽ)Y֛Ifd N} m$0fڌ;K8S^lCÖ7 Q{mC}["m۵1M^t:l؆s3kem+Vls{7d!7ˈo+e}S[&Qe6G6t%1YE.P(dNF]Z| b0PvVC)FYH!+pS&-!y2)Ӽ8rl9Kh~i MajiFdfs W/cL0R_(>Gi<,+f;/ M6Ǿ$ҀgØ{"!cRBGT\R)31svwd8@ܢ@Q=GdH^ S֬DCNj" pаnw'0U&wl:vFcJ$oM)aS *`~Wo$"۹?L 4qEyJ*ofZd%^-5+!ԷtJ0zUr3nuC"<)P}c)v6tZ5Uu"VAhH9>9 9ԂA(ѓ)]y#cs9ZUJ L뀝VٹG_ڝ,t:v%VvQzk|H6>d_ꔑVݴ.-Ђe][ZчC>$.zH:$σ@2iENl1)nxL2?.C6ϵ7|MD@vg5WoV]S?$ ~͔ziwG_܈-Q:pY!t`xΔy5lnE͵K2eS+$1E)9#+3#݊= %pB-?`9$KR&MN(KB2MfV7•44F瑛Z|mNE@%U0{v>^A`6io"jZJO=r[[>~>f+.[ItDgښ]8p^uU)EUDakd%Ad|GM|A}&bm^f9?AHd͂,S ܒVCE,Z4INA4뢐D^@N# Z']1*6'Cl%#ɜA.a/J~uL( "sjwHC1{̓(at<12.hIDءvy48g)"gx_1_ ?n@8_7t.21#J>X#n߀{_ꧼㅽs#].~{i ]U*C(a>UݢN!T1ߌz_,3${icΏ-/d?U"ә 7cZ,Z5١&uuWf6_X}0?Ü. r|I+ Io]o+5rb8}6to\m.[bxG}Rqi(X 4wJZCy";u2ywy

l4ۋ{FG@~{.@8iyn?b⅕ d !t n{d%O47b92 U@ؤ,>ţvQ;gPfٶs]Q#Ot~;8[$!#M'uhona>TV{I=IP`k>麨0ޏ$LC2:z>U<85dx#+/qOh= @xRg3XT!å`{t1&oD,b)[2L'fVΨ1 FtLGE#kU4`:UT3/)'@N*0ģfH(- Xy&$$OoFum;9 OJHl(J}ߦP:U޸/Ef[=QL?ueS"MN%{QҚHB&ZEz=Dؒ`{5H @R: -ĺREfvLsD)<**C*tFԆ"d ڪ'`KAByWv\q#)m3x : h0g}}qH:16kx1ni:–g}1:8_6+QcLZ6jm鑙Zg4TҙŅ Ŋ ɉ0XUoAWh] J L?!p[o*MTAUq2_rL{fO^ff+wG~sJw?õْ=;Vej.^mbرdHsUbD ;>ofr7c*3ZUI n2Tqh)\Xg4aϓ>nydgz⛇fɽ>+A%[Yp \Vig](G$'# ״ny ߪ3y0x2L1{[ȤRjW1B]DkݺPAf@Υ h7V4ً_M2/)z'EW :0o#q4 NYGc`qF4?!ss&%/ .*5귾sREcI;Ky;7_GǾ_Bڭ`o_m㭸[.iX;~sڴύC/ Ykj:0S~Og}\}`{Ϗ@4u@7̎imH$$ѲcjV(^읿cI~Q  3[zZ<vonTy1:}5M2G8- L^A]vgak =@pD=_|uM*}"{lu4z_MHtWrpNE"sANБ[UatBOk|^8xs4e}=YCS6[h7mbx !u@}h7kݹW; k }8ϼmF~(V_9Vp T+cIQ>žmF[7'l{ w {_ցnd/fm (Eng >)/JWuhӦ;T3ML*n}."C]/Bȋ5xGXKH5:@mEJtiDNH7;p s9?̹1k٠rd9",LP0IepކvZ]m}-b<򿃉t-w!jf2] P?0T&5xgD4tzq (HαKzp2:-G]Uz^H7ܗ_q|l\?:˼}cm딶V;õ|=qʲ}u[ HOpTqRY[PHcd7P"rzW6 y'1Ju6~nx:4 ٨;7ɤy2_`rB3`xuR0 }>7)=hv >2ȸ~OiW vjO^̙̝L-6EC]g/7.`wevBaTu P1v\رZR/f# N &UѢ@Q 0O8'5c̍;]g5k7jG[ɦ<6]ćA2VW9JCۑ\ ^C|yQxt/XKdydTꭦ}0In_Ⱥt",^t+>5n"k!wتZT7ƶ"vLaՌFKyREs rx6o CZf@ӃPXmPz؏n(3@ aA $%:wD%h^X o8,q/g # ,5(FQJRb9qVèAHHVTr¢1VsW'咿*4X8-ltv{&G^_bs%sAʿOF\KN6l#,6%/lsZf jQR;?߰sD,TȊ%z`T^ʨqeGT/{e6Qh#͢/M'|ǩ!8 ߻Auh'cq.&i8S*Z  }m'9qw{vd2͞=Ju/y`?p@3i)EgP:!E ,hHsXWyQ S Dq@i1otW"+oxQV6o݆.8 tioJ:0/xQr)[k"#`@QNH^RMjdXh(FT ѫ3kpRFqiZ~lU $uJ/'[Nl?eL0Z\E>CRϼSY ːsSE}TNЋ+ָ)놼&Z 5-bVAFLb5kUɻ2Zd4+%*@ Ǩ-CT\q\!C/Ky-}/׬g(6w{\*JRh5V>xWpM-Z5fʕ@O5cWYJqXU'#M?ML~CÎ79voYrP?GҴ'm_mԆy9Y#mhUrA n;WHXnJiMӛ)r_H5GG5~JZ2w5HojQIè+xpwA{M3zo6^Ar}]u<]sIgB{KPV)_3U AAabǧJ`~V4#h7ä"^NN+Ά˽,9Ƥ7;y6$-T08<"8+XDPEOt؟@w:b^A^PuGf?^l.÷+YHĎ[} )ci단%#n&O ?2W_aïOѐuGct.XH@9㓕7oń2ZQ!ɣ 6]fsXSK܄9XVA_j`v4G~aƀyoNxm%,tCDmTb:fRyZ}m/gx)/hmfAOt8E?ԝT ЦJh:VZ(B&bf{*R6clWt)7soCdY,\QYK-2wx1գwnY8^-P?;<] \5mHuyj_Now Nݙթ B'q|'MNk4j:V #m^[ma\4&MЊ=Ր KR pa`$1\ ||;uV A8#ǡZ@0r or sE+E :&k|Z03kH<_j=Yi_ HfiԒD$KBA9P2 4K'G ~.LD('G9+GLVr17 agE}e*AZ*np<5F!# MVA` I.tB|k/s[62'JΟxIpi˫NGO YDIqh]4 JБ*FωPƕV,8J̫+z aӈٝ{S!;LexP!phY;w;MEb_;0X, ,J*-P1P"~8L2ˤkph>[mR뎢6ã#GKpИl) H i*nWpO.py5GSsP$9Mj">-bFg5p; Mn Qw6\Hf6lY..kQgIvg}: qUS{.=&xm⣝YXYFXr,YmC^b6:B ^:}g_q\2p_^7>/gRDeG1KFUFubd݂I!kY/FNC%C(h O;"콻t=ӧϵi%݈7^Yq \9{f] ĸIITgHy 3TGnzB AZI5=e6 ȅ !.8`7]1.es3FSnd_1 'tlU|r<:j$RPwF8ו51nƒkH=LX^F9ej_. sgTX-p#&8YkɬYR/R֚!֐+ 6nb츏%NVi'^#o<փ)rAhZ#hn !\ w!}Yl$\K_7DCRCMg\х7ؽdTƓ{ Ԃ :^oԊx0E:U9ڋذ3 [v +x Ω;av8WC{$LJdJ~`>4>jQl_KI"ڲ֦6mftY-$Fk_93vD_Y[/;"uVwR6IW}wq3t^aWS r/b_K7 )^ av4= _NbdxഈQwZ>iŅs>dRwf/ Z{a:\uYn5 QA|`X[b=mVxV,iɬ㮴rmm,k(y0jX8QM&Y}\C~| թY=& %W3\ P gKKmf B}E L8b&Kl^21z%R(xtP哲37Q5Frюw V߫a mgYXo\q3R Yd mG ;F}U;3#Ds)^5ڎh(*@ajpNy5)b4tVTzÇ1*+bSS'['`[^F K%-->qߣh.y"a_=[hwΒO6!3 ӕCA67 GÖQ{p[#ہMHGr9 =\Lwd?orQ#t`6C`:Rn’«5[?ݮN`Ngؾɢ,UKնRWjnaf6t=WIG._]%û!G.Ӧd9z>uN fZ⑃ Q{ <&h(pZ2ٳA epf@}!I3wHgonu(rx;]Ze{39 e҅DJzz5Dk+|wGg]P3;zrn(<[̕NqE\G*hN_"($ j2Hok+ZZ%84raIM*rݤQ8ǧ'`:ѩ۰AU#v䧠=>ҲiOڿCkB\-rs\TiZ*Ч>cܾRĜb٦O ݮj4]+~9'5ˆHMG6(7ˇiy8O0"ܻ%A2-#vW#C\Gǎ=X" /6M<mMљvXf!dM? 枵R^'t6Ta9.|C>jJ"nJ!qLcn JZ6_y\t?n )NݨewI$/Do,e/cIUUJ~rjBTTJnٰ(MqXo=o ^%!o9a:Et/|>3K_L}¦}_I WQ^]`(Z H2׏%8#(%|z"t)5J0ą5Lop>P1wr:Uf(eq rY^Pdڜ*.p/|O.)E'~;4#)I/G4PbhZ T(|BA˷<΢iG菷L.Dt;ʬbܺly uUP3Z snRO$d̆D&0qUCE#&ΝpZsr>F YWWa0gP<ص,7J.BoLP]K{f%FSyh~HP=* ,A g՛3` ?fCKtQo,`MTkT3gja<ƟV=TZXvNx;3Hi\zPps65xH/WGm$f'7mrmML2ӅiE hwi]V(rG@F!ZU01@S+;N8*=6E*1۶/5np6*4tڭ EbPvzM [Mҝ ˪$dNT[%׃e,j[LbRT|9\;(Tj_OlG%Q8e][Fh&-5nz"Zm@o(la :vJnozYMue\懌BfqP5en+zK{y* @u3q7p>&!/ 6R@mI`;  /h$: x+gr@Nxkc+020 z>kld&]| 3c<rw5\uY|yѯ%}#U=H8=txI.i.]>d]APBĪjU?sE F <8N:7+ҍԏd{_<*XfBMIv \7m9ú Ag86!3R+aT5ĊxΛĢ>v3U‡BCjB>xa%"4:Ύ IJorq-hB^x{3hYd[py]u)xtzH:eMY2 Xg/9 !Ǜڥ;#=|>>dW05%O;ݒMH Q<~K=#Q7.Z 3 2zOAӰLݵBCjWqoi9@7>P֮2#38_VU7; %%R1>K6TYf1??'Q!/n.DcIpjlp.W&<ӥx.QZ{WnVO'ݵKh?XVrNcrurx>IrmH.U.r &WUYo}ǰJV=T>Qqts a;y K56%'S5"#ʱ_;g}$^ш^=2G,yF$DR7B RB3L6]Z O@ }}OYfjIT&<1Pdp|BNa kW|#_}ol_K(q?LJ÷ev9i߱RwLU:FKC`6.݆ŅsR/!zP2*BuI0?O^U{,P1'Ԃ}rkc]CP#KNt"#V>/Nc$/hRԡC7n݆{_d?;p=Ma L8j g6ZNEچCņ1Fs,Ndz>eEr# e\F {nUNg=XH Y *h۝/kCᦐq^t}sofS"6gV!rJg=.f3蹥THor@'e(~1 ZŇg}4௕"@-T"y2E0,ݡq̊ͲZV~|Na>hW3PZ xs;DVj:q7(Vm.`TGYuPjpʵj #[(18}k~|ZeCd>o trkR`>(׶Hj8pjϠE/42i4mĊ@k9,8 搋:^¢XH N` U;=(b 6D]`_ j+t&TUa|X΁ne+{OՈsf|&KDuD 4/?!V~U0W}dHmy[KEK)e/cfose^sW'iVhkb"?TYda.ކUGk=Wzu jxO+x-,"m*Ff}"~x ZI38L77kׯ vȡc%! A mo#w7/w1owa5uI,LB,Q+-*=嬺"ܩ_-'=VPcaK'@`79<&ֶE-݌eM]fVJBzK> QUb?H2k65DwNq azV̡ f.wJʫt# 2\XrA0(nVfJ'˺ծJZZ"bUx;Ķ5@ͯMMãV."ф1[ڵd6*o#aՉG -\ns;W4gY ?<ܡuw$bwH۬ u5`8gn'?b !ad+Ze@~nQk.@Wܶ15)Li: Ϸ)> p ܩR}4FB ȒXXmHPLK5UVq*߱HD)."T(a@tDFg]f%-% Fv|kMBך .rc?0nu0,k!”%I: tgq)FsX.btkD&k!9k8h"P[K؏ sU٭NB%4 ? ڥ7 nNEVџZ}bQ̣W_ 8^Mǣ۰5'n#!:Q0o},bV.fdlѺǭvOU0 IC \ >^(.xs4.JTብ &!>qK 'it5- ߩX|_* C#nH` C89#ie^ 3D|1 10Ӌ͟D+NJFid{F i<@k-GqUM [<- ;!KΩ\bn;SAc @tqBGH۴] k%v؈º'3&; 19NcƊ 2PA[z{1Ӊߎsƥ:ԉAc:?Xu<}ʅbp|pS@@mm$Lu N52K2-lմxBd[ІI 0a_)SVPx삳Hԯ zhZ^IxuJwJ ^S6pocPgU·9,D%ߚ5#|djh߁fh&x'xAތܱ|El_E%'q58U$ djȟu~F` ”xqL}; 1#i0(5%ۂPHJ2S:q +pe@`o[>CS#K?ߢ"Ӕ4$LRIߟ&VT$YvTO2Y=Ak,e;_,2\.t|bO]gBQrHS<;[w.ډ x2秬.,p~\o2 Wa,Ow?ʵofeX'vGR.XY㈏'Y +̨r ]+>8] V¢"ҲJK+|$ɡ" wYW Q3-#o;*0ݼ{hv5vW8cqk}fp+Ŕ֤4AIB{:{28S߼{>;|:]U{aܑ"I=f_c2E7_4"`ҥR7=ּ !?裡y%1i"Ar  5V0#mҥ`l_= ڰLKD&dbȖ4fE\4ݺ_)5\Y+TK$E}r$-KX {)s%N $&pu4.5(^Cbz\ji8ӛ-]ͬƷ6 # yQz58DNFyzmQRDʇ*>[MB(gPnf,r0amݳv%cunʞ9k6@0%TNty+椯10;ezF/^09 òD ˯sI{k ̺cHǿ l"x 24dw_DP!ڜ+ڥX5M΀b-:IpNxЛn1 9ADJO"%Ur"2hm~ϓ&JH}ujXwkR~Z]}Db+A锵"eW8 '^f-H`9,BxyitHd cX{@#Xmzoa)+/NtV>9 4)$ %ڍ1TӰ`K'WTjx6,nHh풛6[$)22'ťܭ _H 8GGLD59`i1Y`;w.K06`Vݗ+pR'eq\3] Z4vwN hJ^5yXI;( d& $gJ8M"nyAK[uΎ}hv>U#Na-Gf3M !C%o~lXV[% )Kʅ@ptۣ=K8d-%[$u-INzf׾3+'T;|odm]LmcX 4䱬~dF'j0D&^D:oD9Y~܌k?r>ld$E>Og%{~X6cv@ wXoX).^:NN6?]ݠʻgP7W|uMJ?ZX5y6%ީ IμL^LYly5lU9wU]n@:O‘ћA^M;Mև$K@t1.qăr RMYK DA ժ~ml<u=a͝LR*ev/NQƲ~hǘ2Sՙ1#5?(1`Mn}쁍qWw`[+XV Y4:}2t.~.抭X=w:NGO`y7~WRAX?P;5󖝓|-JEQhYV蝿[6MP~86JBqu@.Q|\ĚE9> ] M_J0tk0Ͼ]MyS/xC aJD͹=@Q21vXVvVm3mD ؃8QY30ݼɻ,;+A5cEr| }!Mv,&r-ؐS91LxBOX~gD(j-Nrz^<5UjUPsZc<Hd* Z30~&֐/Zae@cR;R=]d(۸?v> YW"R/̾diw d>C}`ƯLi_vPODISpP&8䓮9'sӂ.gs!5M3>0DN8Av2{%VϡLlLz t+VR|Eu_))ePPYu]i{|Jm]2d K,A^ۊX %*.S{. C9v3"NkrGkB65,USs? 3d-S:Ѥ-M%)׬r;զ,(.٥CEZ+>vP\;?t6OP*#8QΚe1@,x\E~܀lv ]eWVI t}NRSJr?7-c5[{uK+q\oݟ0l]ė'2!略Br[EaŀnG)&yNzk!ؤu,/d">\%& 9s!1@B"E|~ث<>:?3J^Vy'Vt[Jd])kBB %Hܒ@=txA1} KŚE\xXg9g)Ruz;٬x#ndߎ8άRYQ0x^GKQ?ֈB?ui :9UՇG  yq~ jJy[~P{1aJ" >'9Tbj ]d8--᯹emv!%_hw4Y1g(L&ldc(b,r2 6 Ғ$ fQMRu d-Ja8=)Ȩ06Am>t{X톬Dxw,Y9q։oq>6a\› k);p@r/gy*+"lhX%u7UT_) ;(o\;TpTJ|Qsw,tgHd3Rj WCOYvbfH|QzǑ|p]GJJZm[;rd5_3ZjoYĝ60:'{ذr $~g\Cصy Õ!\ |2V3! <*AMe*~N$+/ U(1W?= G}t6M\M ]Ԣ[9U$Iqz[Iׇqe+?#@'s>9ǖ헇tκJlʽBAj]T++I9dNM-}{(2=gd(U/vϺ [91 @ dddؖntYNX穲N.zivrCk`ΐAqi!U-"f2t_xW(?Y"s UD%P@s6#%j;o!VN@5*g˼~Z /C1̜&;. $c@Jɥ-RPWrŁШ{_ r7|va#qϯI,!^L z{o7emZ?s8MqÎdBeq餒 "6LcGԮO1MQ d]\'*jC՝'7 (Ȏ=f[ TbQ%fd/J90C;d[!)TnL?lÕ7n­9Wcޗ2D~H/гNd 啖ov!!~֧sU'F-iKoBKntH&|oUb, J92~01iK7$2t" K_${(Ϊ#ſTI% X-":_r:=ї]r~%:P#][}!NeYꜗbt| pd1?W'Y 98wmdRNdzDkԂI8C[HY\POwTR8p#M]ZYBah\9.xԴU֪QT@.Ǻɢd1щ۫#AJǶQc CsHcO/84\d`m͒Xㇴ)boNj}["I6.?K.^'.ZOpM{@,ИWUO[\## pODLFM/'NW}{8 :s[|'XL,Y!msS2rhع[W86 !xdӁK{R _ٕA]/!ՒE(p|:EL W ëg6 z"6%ҶªrbB/"K([+4 A b%~}'/fшegU1JsOx-j$l\4D-;SGP臎!j{1YRGX`֟Q>Ƨ3ĞY`!䙏'}A÷ouֺo~jmQOfvH~[ptYBl{=0oy g.aNx'"Ӣw)J==JIa7 A4E`#fYKpwF)kgܽb 2Hк@FqzLBE ArLEb&"[FZti52덮N[:w;(.wd"V6 v:^.>^TfvbtQyvoʦ!&Gơ8Q{*ߤksQC_[nMhAtm h^CSce8F*Xn??F {EjNN.fӂIۗh6Ks;}XB4[).ϦD?jkӬ␍ p,52n6|Q]zņoTjDA 6Z[ydcݤVzӕ0-p@*ۃQhj#OW!k# .?ƒs>4 ;,:`jcz*]\\qja -s诘jg\AqplDٝp-('M @]huz okf%xRy7B+h{n yaxԏEF~Ut O CUsW‹?/vFuf"E:C` ڎC_`z76CxH}齻-+fw%0"kLpL^d{n7U=zT$Lb?wa䥛y mz6g؄YMd(ɟ;Vd3+ UY-Hr'ʋ-pt f[5d1g;'ZL(I.@H@3gW xA}u%ߩԔYP`taU:S!x|]xt[:pa㨖 rHɿ?"K5(WLO̓a5^A@Gui`OA>pp@c&5JyG"b_DUwA@ps>eIi͚*'#%"Xm>KI(FΩȊY q IGΔ=^v4&QAw`ti ) bf " ?Bv=?[Ua+M Ϋ}wMMv+\>ep9;o YF=y΍Rp6qeٙuq5+Ge@ C++ȯG̐j<*U]%VƧw,7ڿYa01,9qSTD;cK*h;ϲc^f;N^D 5\ Y XaX9Oq~Ft+MQcR)[XU_8F=FPw]R;ɚWMt,~ ِuw_! U;ƶ Ay<}c.)fZl}ǦG@&` Xm:DmZHCm4y-VnM nk%3>AǞp_86?}v) êIT|Dz߹F.jLqff8̡>\zLAo7Ph+: plqNd'VބL~Nj27D  <"ˑ EjYۥg [hվẤ.,;_PwmRpV*)Pz{0#Rada,zl__1x"<6,cON ޑZUxSN.<la ԋ &ME.׈V(\Mɇz.G>7b[6Kyv2Ɖ8/*{s"" i 0$X-dl3VOKUV'dC3wy,hQ$.D /_Pa& =^@,6iчp\QEv}^dJiw7s4&H /^mXKP+/$ +S"C>'Sxv³=_-> [zwt|ppi Ay''[U>BT]>nԭ Ft!:Z%ڞ-6HSڃu:‚9W!ӯEY?.AXmnq(^EODdʚ?|y欝 }LXMYa, N6f  y! kcӾ ꫥ\ŖFS ?r G;l ۀdbO/-P Q_699GzS%&Qyʷ/U'#aIN4?ZGeXlJ'p)_h(;gE nψ8K/岅VlŪ jYlG|xDR1?O^ԭu]o&/)NA61TU#z$@g97DXYU[= D3Tm9|~zؽ =d3j >ץnZC#p΋X>LT3%w+>uX*󻓿 .%FPNS6)5mq5u.Xvݦu p0QiD.[}mK%l[.E5y9;C˝)gzՅxցBmƱ ꦁ9D{-^Kܖid"eMG1ԓoFE)~Zi(I&@H@Sww)%*UƼ~?@zT[`Ѕ;R6G1#CzՕ`@x&>\9Xy.XXс scE},:᭧=y|MGld13XdOM7FD0 ' {4蚺}iP%P0WTV0ޒ&d더jL_Y^ID^2$A)ˬE*x~c2=|xq5u#u0<v>j[?P"#7CE8.XNt)SG2kЀiKf2hPv1Z* .qnKiH.8+YdkX'y(+4&fĜ&l53Jdn: Q|n+ɀ24nk w21lQusv[5~3'[},q[ۊ]b!(݌Eݽ4CUj-DB%$哿dSV>}JRoC:I&ڿhMA ij(lTOKPYhbgU7#>]*\"yX߿7{#XEK;f+tqh0> (uBn)Qؑ:6CY){) _[E{Gkش#x |TT#LG|")/vi@/IJ˗:H> ޕ\̓zNZw Ʊv)ʦZ&}6*JN+ 9Oodඅv[FWe T' }cG|V䬱JֈRol5L&ĽXOmOѶ=6dD8!rF e78T͉nAz˽bJSȯi1Hs )Ԛ0#49[IPLsv聃=4Cہ֫񃎆F Vo4Xfʴ8Vp_>!+l+ر8I=zz{FT3kaB=[)LƄm9QH3)2`1=Jˌ!* IB+\`o%Eƣep9R96t, p$!AmCt 2}}5E%|M.V[Ӱy6W~_'WUKz{l{a4n'z!r<+EP_r#uʱ(ͭO3ŸAd3{ULLU3. Ɖn윊|  H:cF$an;bN'\zKq| /7vr/B#0/CzB_&/tĴ*9n0B Nػy*gB#ntP xY$7['HC|w_Ty"M ar~ɋUFEZyՓW r)IpU&MQd?6Wܐrm+h3rnq~(_]aTpWJ|0{"8_@WQ # C@YSz]A$敁 e^@%??k;sՈgX>\8$9~𭺀4ij}oW ;SrS5W*G?FFnyY\ށ+.}VǾ BP`jyWwsm2<ʫ>Ͱu}]3D4tej O&%]e҄5NR]=,B&@x@A@bN_= 6H$ ~4lsڎQnhc Y+ߠ+ϸz96NSFfYa)nq QX!)&N$;tkK79)8FzGm{oq]$Yr}V2z9Ia{k(X!9 8i~<Cyp_# GD39[fIXU Qzp6c. #$D[O?zO} &S߅D6Ŭ2a(-Y^s_ĐY-5~0JQQzLsiO P t} }y v)(Ŷs3_R;LyWbyx\Z84 ("7;=D.=g+5%.,19 |K*r 7W gGXV6鋺"BcVZĀs8<4!:mв*͚y=z§"hGՠIx0Fx֧ħDQ@m*!UUz(|9U,:q5!Nb.W /K;Uq*],bzCŅ8%?C$3%H-j%FA췙$W x!K);EݦrzkȚgoeċqzMUuvdf ޙl7e>a2?{J BE/T :͐E60nBIG׳ »Lv]S":uw[ A?낒%&wXi^/O,poEwAfŭQ7[MX%61xN@lc>t A ' I";u+4eA>זOaNJLJ:SHJkh.In >978 ʊ^DeR-d }JZTbqYnmښ|07nÊJ[ct`#P:tcfBYrD%)*a-frd. 3øq r`($ޗ([*Vojzk+̋6j~8+yLDC{/"jݶo^4E䣪F'߬{_Jb[Է8C{oJMGXJpw؊|%T%#.yx?xF8\;~n@Xӆpgp=儃UtO/~mu"obߍU =o^q76y7ow*L2LMT忞FrA`[Fv.+ja[f 3>w Sؽ;) ԉC_Η!FO\͇݅e>3l? UI'/ЙQ}F*\Q!2ݿ#pzJlLyz>vn@Ϻq-Џ]}  TU!k2I7: EÌ8r,yR|QґN/NKftߏ«ϠPsò< *L8+ CZԃG2,RW$)_%%N-RJ}i7QTYnY0 K'HG1jM8Sy*F4[Umm  =I\]Td$*˫Z7Rbx()jX1YCm.L12PaD`@*S**7M0?y$Q9JGۃIn f[=7µ|Vxԫ@袕94YUa4K2dei8enDqkl2c#wK-EHKqҭQ'N~A+s~k?TАLlWiN}4Ѐ6'7TXr8Ɣ=~r(_#( ~@tKF?1{]m|_4vewCphb0Ѷ"Tg!y OZy=?3sl{_6֜ߟ'3ha1K/KykH^#_ &oj{ p'|)*puU m&3ާ]k@uY%B3!Xι=*!HY c>$C%&eUjy@!{mݎD ٺOmUeu)ʛsjez[J˒OQ&3.!LIKs-MeT)[Yw7i(N8cw m_%vgUhWwIm֙ҙ$,DKz\wO<2N2c2S9 ;%HePX|EZ'#ފ(OD)46|+)bPRA:wo=@ЛA̤oAzHDW0'ǟd wC?a5w򭈞"B6K%x%};̓3EŬI@<\W0{T4ockH[)"Z ʊNrв@ȼD",PU$_~t}卮m>NM-z.eS)0UmO݄([,2't!ڳ`FI`K֑Up 2 R YشgmdOE;xn83Y鍃'oe/lOɜ @tl?MCŁ= \;-0Z=]Aeٸb^Ŀ5]M8FJ,]0a`יHs BGAyXduT5FMKG7K@^aHJPhBx%O^o tk`XǦko)WhlLJQ+QFyiKYBGC/8e*Jqo Rɷ14lÙYy+6dfV7-LjIX=гN6fp`u.FI :_|6tCHTyj=QND(GM45ʍ4a:2 lH*쒋ռ( ao־huik76^Nd5Ɩ6@G`0v.2T*)hP7o$~yUH-:l 6q>͊כI={z֏E:y. 8'Xײ)3w h}c3fXco ."1)spE{{G+HYhd̔* CƏ e*<}`|?`E+GUd[l74vA, L$+ D6ZfBK"tmbHo-s΍ fJJxTbʻyk5~ hIuY|W.XYIˆmpitH;_WY2>WO W>fDSKo,`19OFd?yc|;m}lNm $>]t']on܆fpĩfs[}̵OH!B8HlѾd4׿?cWv&< Et̀.94`jTDfQX-qIX˥v[5{ >;U* 8B"V(٩/2Wl7)נXU"g73'?æh emu =x صIQ|ו7"ė `:. 汛NEqL.xsijD_(4ABvIr3 *g;Ibjk9>fS ?M ZxFnۧC /yu~ǣuĔz@SHk%;<'œaGBqx: h4\emK%IjZ")tRAE犧H'mʍ~؈NG81XSuMI Q4SMhB4.XNWzaje; Qtrq17B*"g 6Zډɐ}>Xrxa]Ǩe* a\tj!V-(xNhA.NKˋS/TUjG:|[U[[Jծ \lef:{Fja;yU-'z"ɀ|Г˂)!+qybW*bey[Wڱ< K0OG+/_c1݆EFC=g"UkL]|_.ԑJ8k 'rex\*OOZ Cȵ|kLG5Cعj>:rާC= *q7R& ɫa&f8δˤ(Ӧ Xǹ?D`"b\t40TqtGZ߇?XY 1/1.ݏLjfC ds] 뜏-!; l>+p2aYӟy +bT+C4`V/a/s`W۰o3("7<Py/ɍrqmJ-Q?mL1cҚ9j͠ľ'ri|s#@ X!&IѢkC{VX;#]G$E_foxcG1k` B^FlCr>zf)Z/'ǣZ*&8X1'ƥ~x}mݕTS<4㖔|ayW"o/y [0Vv~opyj ]ƒYz<2TEGF<#)N@cꐱfrY] s8I@\iO~_vo1xjYjJ -~[{-1~-X=~+%-S%.u Z,'6f/f:W\XEr䠙ivbh;ͱH}=;`n8ΐ֕>;&d8QMGVM36_&e ; {%`)F>׷6ڄ(ZU3n B|-Մ ) Y`O 8kJ&^=OUsi@ jT. ;T7ģ\cmj6.;p-:o&盟,@e?|VڨQAE>B/&펬w|r$bgfL k˧<`],=3֨=8B"R I  ྘ך-2X-!"U׫tC['ya䃾mvFW3E_jl;Sh*gnr7VJX鎘Yb?oRrS7q+_׎1 oL༢y?afݕW)?nPyl+7uL=E܅GCzGs} lX簀H45'5X@ff4lvjoawDmAOJ0m9obw XO_Gy}}zn LT i`Amyn`tw7 辴9vҊI[P\ |̎ƈ|qJvu d] ĥqCȑOɬUψXܕp(Ɵ=]> /6@qu𮩵aI˥ztJzAzOa[@$M*YNa.,srzǿS'n+tWWdRNrl\pk[Z=]~Y6Q G.y[}P2#s mZD^hC/v|x8-Oޢym+mk0a^$F8'.\$yQu(2|zP,ƑS" |hX~򕽗^ \wD}f\'U!N]$0$-NJR&$ĸ,u}-?s2i]7>D#OZo}+%FN;cR?dѪ2&x,f$ CP1ئ-%E.y+z*"Ik-%W618uɷ=0x;:;LNEHJ\BV|+UT)Rw3=3&g7T苋a8ꆜ3u,GT(6.'h*4&+cic̼(۸kF]di\s齣Ǯ { L7_@<m#c =R'N1rr8f&m--;=2&>ݨ&*j)Y,QX^ba^wEHhj w4h7o1|tѺ/UҔ9c d B!ה>Z7ZMkW0=IE/3"Zt~;X TL^ L卙0S(za̖JtnĿIG:1- bR9%O%zp;5Kh`n%c 6|VM[?"X7-ˡS:"6oҺZF"# /ߊH-Uʚ^Nis?bKlpT,hd:D.XIOdzbD}RTu22p^ss;Om| _df½8=.+7L9s#Ls[A輆AG)N}CPWj+h¼t/ӿ4fOj NJuCi}h}Vu˽1jMVg"vpB>SZPj$#>)[}!ur<Ί> @1]LK.wUOd;\Q Zٺ)Èd$6]M)ȫ=E\ 6n4ud Ӄ%@{^9‰wAfFTG@my[-N]ZT3DFg^}c͒k##I\fM[R۽7IJ b+݉ 3ټjxJ* k?(h  *SaR\_Q3|kGT"GnP˝ [f~-"lgbF @čZ zq)DȰaj&jO ]D(i jurw*Y=I8$>a'.eFҝtm[^p%tixq!:[#ׇʝF^ ($O}6;t\Uۏs 7U,KhfN"<7՚7}\6Ι` $Ҕ}*8Dl0{nq[WĹbyI kM90fQ^ܤG]w9O7\=Lzi&叄mXA d ްć6'"sfzWTh.©s=;nO4MתpD. 9%Ju7k[]6`m䴧^!QkMdN9r`cɺ!*GwZ_$tjQփн6X8LDQ7U*A : 1sP!_JX=T>!4u&C(|[圑Y9/2e FYH ~9J,Hy3d>ŏ0 0if7 GcaͅZJz)j ҮQE z=m(/:};gZ@'9-1 3],)F=ECfo  ML^EE (&?vzWp<0lI"bmr]0FpLHd*t#L Ć |Xc 6R_b@q!eB슇Oi ýVM#i_E7z~p<`pSPsEN9*u:H!J謈YNk$Sxi#HTTvº)q,Kb]3 ƀpBכdft*k;`2*hH(Lڑˈ`ʼ|EjL_Ha+]?G\j`pWYGAfM |FTW\wTz"DKR '*[ z+IgsjrD?ձutՊGjIZfCX8+s_ZьQܤ[<)>F{c~:؟Z?,;)qԡ1}gRƕ/R /h7)O )~̜‚5/+Fwݠ d_A"W~! ĠbhxwDi1wZb5JLA^b{Pc`ۀʛHӠE><[Zr!UXH(1@xXO $+s"UȬP}Z9{l$l ƀx8;i4O:d&!b;X׵^!lwu׳ư.bLnS?HdU@ДT D4E~0$(!0q=8؁L LK3IigJ5R~8.W\z š^Su :]^+E5<d8ָB- C@teNÕTk]5oVBq-SX2'M L?RO&FMrDuu_tgRu]}*po,) x!r4OlsfD1YWU딉#Ra[=`($FгRJJf稚\u{Jt~ fjl[>IҔ)DS"tՋVCaPb"z#ǼjJ\PT*tC¦/zKXj!xKBW^~).@M<@[/GxϸU󊿠ks{\Y.$Nsںj-S$W&=ֵyabFաJiBxȌHzNA_6m(jҬEac nѿ^/^nK|HV  QΗ@=&;Y3ÌWqNJzWHjsO CLHcr:f:cC07[IpNT MU:,d"['&jI$UYЌ)~ '{WW\|lY F켌 [xS+ڶks XR4mwwJ- BC͖IĦiwK'⌁ћbG+T:C% zλ3 [~M~5O<7,S؂O16$-6j3lթQF=6Է+wfRY&\92LKmCMNq9Zo(erbz:$=^y! ͟zb5*q ύS 2L|NL_.B i״|߬+sEP=s%b?>pannE pf6%iJ q&yken&= !u.Ye]VFdWŚ/07HZ3߬{kTxwܮtexKhMiD֘V(&ؠn)dJ 2Ηmd 䅝I8F*0j@@n ?'s ES'gݲ-}uBk iu|kdl+KT-.$)^oBT@$3M GXrY`BQ- $u{pKWqd ``oƈSIv|MIYRgIé[Hk\hiWݜ$<'&OT u%z>kL7o5y8-fٮT#~wj\J{t/VmvZ/$VЯ8mqvYwߢXzL8akG`xKL{ ȭ?s&{+:N bX,|r;+EZ֖; =hNtZ/@Rrwd(c\}~KX'x6ORc s7㭰k\ꐝ #d%f1%:56ZpƑ1ADg>9uQ+lQ'[HWȜ> W@˽)(\#`YO ,; 6#K7@̴J&T EMڪPi$-&׏la JK lL1P58xcK/ lS48"f~_\S^@lGz2Ǝ__1qN?DOj_]-ǠZ w'Iu[QN&N/iqEi^$COz܅jq{`,٠APfZ–Ӽgf9wZe(HÒ[ &wsk=TD7_sD;ǃn?օ*W<\ZLmD8̋Vёz/,5GG\S* st UT^ V-F5y$3%"(RNA"m!asD4*Q#VØ82&W]Ag]JVS!7sܖ}{䈶멏AN3G`G@v%R уǜe t:k$]: 5b V:)Yf_S B+䄩!K_KErCHCa}ɳ5Ļ"nr{(LY QuUT*x%ßt%Aԍy^q0G\c_0F b}%E:j\kpGҵmHvmIG7t2$"}_S.=Ua}4i Ц:L4[(Z=Y2^/^n `YaKoPПS>&;5oD(iSWʙ;m %QGԀvU&")JC T 7/|R})׊U=h3mF 17f̈́w,RHoXQ^\]ЌYg!B#&^gS+o1ukVou2?9)qV{dQH£kd?443< bR+mf֭ˁ0[YݱGd"D&2$=V-w,jkBIg2ŦIw,*u-G ת > ~E>{Ŵ+8@`Y7 9fgi>FJ;>t#xWT\VzFY-G=(XtaE#46 \c3ނi+fh0 k0lODĀ$-~X^=${]Uό)MV )QZN12P* 7!WHgevc.VX1CtT6 "^b%%14 E{ 5'9+ Ȕ܂NR5i4Y=IeK?xeu!tg/:b.,FBgⲪe^PM1aFTo^[`eO2]Mܯ?YfnsQjdW,b>ga}3 2]K ֲ0s#b(0qҰaԕl P?4B:|bt}ov;ծi`S~BχU$1-woS)l7%“_ӣ /*KA|~1@uL1WLp(蛾R& aъY+t\ש&y/yh_PKtz#mkZ+#-k!v:;NŃK*G=BokDiJ6H6G떥#/FԪEnQ2s*I4Lq wyt(jƔF -ng-%Ҷ/w^g{I\ݽߑ5dN}I8x,9!Q~zlXئ{X,1mavHKkzL w-^k,۳xhuã\~)>tf+0:[[nH:1zgOvnjPK^-6A|AD0 lf_Q  6o]%g[C6U(Z;,Q5Fd-TN$K; tc"AT$(z8 sk0X2=O$h'zq"s&q1'5"A Dl9ו7$VǑss,1`EG+c (?$l8osx4lu})v_%[ V<||SܦvJcYTPO![CK4?+8fvNxt,8X=$<pS5`oBhi_M{'Pӿ%t0㋿0s8R gg,^zVph$},u`G@L@XJT=ЕNGl|K#Wn ~FVŐ4uֳh^qk}.p-Ԛ/L.&t/4'R䋲a/N1ǵx#-\2#qG ]*f-C FۍkX(} }אq̒D7|2|fLA\JuV܇ ?HW1J5NyJ٨ @[5ZP/)эʠ[x6N@̳E536)‰hvHNe#;oێnHlHC/Hݩ8z~\M΁oH`<^?>Y5nީ%}VЗ>n;h`nvf ֜P؛,CS{24/v\믂R '0#ӂirk(4*QEHMFl@_`|QZGy>09w໾SZڝ:c7eE{h)7Oa虿KTNÄ<*GL塕% ݕ>[ 1NNQ, JWf!H\j z<·~9)`>eL` SӨGyiHIT5Emڪ BRHQzyv)o?|Wl`n;vp2Sa HR'CB4atϾ\-s&s‰ްM15}} !ɟD 8Y#W!A\ʤ/QDΝTˌ,2bN$]]t>e.(,&9uiw/)~HBAx_q[Jʆ#k47"?4YM hxL.tBzZ`U*W9mX;Fdxff̫u%p9!E}lLnfŝ\94q*Zx&`nsM0vq3h2TP:?$X-P,y1uWoNuNwۄle 61SK+XDA{rK@~?؆ Po[bknc r"T&B""&;8-qvBjva͹¯!ishFT ֗5 ]AHr|PUi-Lژur{a:5mZ} Sᆋ_{ݾ}1Ǎ㎸\Hnnt?7ptv }㉄^HEpȳ3u}_VR*3ήٙ r'OP%&'-;4J59q|RH8sŞYEOS-%! wdVƼNn[!])WU)y'y{!{j`I%KV@Ʀvf 䁫j^~5drfœtRk'O]sG PXeg i~]`7ukVh;&b4wg| (c@s&+6?S@L?ScGަ5M&:<ƀk [dx {?[ѷ!aoLA(ՎIƧ%^&з#X7wk?cB" X졉@@LZ wKԢh$ͦ2D'8bO%&bq˸be_Y cϷrk[j洯AV{aȹEUɷ٘Nx6.aQxƼ iPߐ?p;XASY\U 溱f[nO}1(MAHf*bapQ<+2Ctܷ8o5 d>h͵|9ڲABg6sC//EQw.Ϛ~@J o9 mā[U1ʭ9 F]Ћp)궢ʢ;QO9P҂¥N=*hrV.s(:^nLp٩[58[Ivb+mABl5nҒp|E w' ɫhpeMlz?hb`St2ݏ*mEE@:RBGO\% +v!EPVq{<|3(fмcS.44`(MLc&F38] gV f&^wr5_^ZZ g+xuLzBC](>ʔdIJՐOlʦb{ZeF~$ S (Ws۾P+)9۵ Rp{)}IKr35ӓ9JSg~y~d|2fKԦOv~wqbU40YӒ>.v)v7-/aBj1^-Zv2 Uӻ`SuqunKh qUM!:7vgiMɫ5g1\?7BDٲnP%/wp)<\b<7XBi~&PBcOK4L[AJIkd"ׇ'\XӫZl2v M7Ƚx$ a!߳> %b ATQ~ Y5}W7^J~U}R8c"pk*CvuL- 4&4u4I:iC!i@uykYBDK?1D@#+T:>lTQSp_Վϩ,1۰"j3iuZ(YAeY"P4mĦ6[԰+B/=opM: ,뷣4M.r1 />,.Vː] |Kt30s}е|X_RRV w/i4RCCY7.K4+M<)GZ F H_C޲Gi =U~7+&XF:9QF1Wy/܍?և=LG4b^̸B+#95aFV,(-MmﺓI`=FiޟD\TR6f!@SOdjj,`Hҧp0t3-F1cx0  `f?"Ͱ+R b9>~aG:ONW+CB?; R N[t萣,]X!VCP_ukU|Q+=^WژEPskRS#$UnN!@np?z:0cP%߱ T Q7M iړvsyX%wC^R:9!ewXBH푟:Lcq´*UyTR'k N[#K .Cʑc;`)OJPϰ AxL4&C-az?[A z9śTct*^ohkȜMR}b;jH;)a%U YȮ{.S=峼ݒʦu{j 7s]phĀJ%S? fsS-Y͙bۍ sSo,tj3~KH8KŎ,Ɔ#:U} ɫ9qEΩk ^2 : "= v3Ũ0c\AlKܣņVD&TZv7tq$ 3ꥱGⳎni_$u) :gVTxS.>$גR'|40.͞ԗ2 A?9jRhS^}x̍_ء`D9AS6x ytTfmYC4F6dMat*oȇjڶRq栩ԧb",/l9|@O7t@iQ~B/\Mu: Uc+.B' txf_cBOVZi< [̰5X,l*3g^aY:9*π#R:Kǜ߻!F@v:oxOp1zBE?oWVW wr}s*g :G'Aqb} $t%uy0xys+}jɵ!0Od@h`, l-K-t`M \3្̍^_:n\TFxRO(FY=5oxSWߺm)YG'E/vR%*c$bA͎zD$"mazђވNmtxm`AKqR4ȚmUo[m.sV/3;5A^ih8-^vsy0=eH])@Xk40g,_ۡ]!ӯ!!25A=L0`8Xv>?\E}7_ + 8 NxnBev+bNmr%#`Y4u_%}2FWri*Re_3HrC2j>n`XWRqQz*'tF7UHQAS?h--y[!ܣ<ئdd\m +/cؒ^N՘ִ)V7.1.š';n:,~#DcػJA[*WAϖ(Q )2Wv?+ O8wh)vLR#(ELH;[Ylb}8Fx~2Rf#k .sCN-Khj@yP[7UPgnff3@oxite,Vn,=ߞEاzBsG錻,}@ٽKw)@,A" X g֡IJǁЦ Unta<_#]Ct{剶9̾r9}?0Bec[-,L=[ <^y)e'pW2#W|)09?G_DϽDt>{~iab8W/ dEz|-#,IsL0m5{[_Vx\bQ#j8mlc|\MQJeqx>)ǚ!hb?0? ,?-Duma+I[M!D]y5lEʪuN:Xc 630-J]Z:CF!60<o ZdjR^o %ZrV6 l,ZhSt73Dv:-p$fp-*wy9e<[)?e"rU|ZǐY ,wAXS9,59z)F|06Gg34093({nm)bcOg;_Q XDa 8@ڒ#jZD6_gA1? 0(,RcĬO "5"rJ| %R;q`'7;atQ+(d0}JiھCv{iW-0=j #r"!uW1 v&Zi`>b!@ϰQ@ۜA_2P9QH혇$G`>VJ'т)^n.mr`4Jޜ"R޻4gUe3S.{.RX3bILn`8G'T' N*W(iX wD_ =ʖeAIʶ Y, ZwNsP:25OB) U1""VqW&F4/[~aָ,3" ;#gvlvB v-HCcЖwJ,,@妈l#s%nE"(ݬ?e3Shk#ރByEtĿ $\5zދg*d{K@qePɌV %x]3\9?y!UwV3M'&}w+ c5K[h> < fv:z@y5V isC'&ȥSBT( 6v⋴)Խmtiաt.TN#j2ҟ3)*FU'o#'r3V?EXl`ۻG|wSEg*#}4Rah gҺ3N"6=Z&G|hucT#w,YvtQsByMf(}DcW[I゙ƬEΠSnnr>BfQט<#26?3=t=tD)%*2:J^=i C7}p*oeʍ0<Ж& Y=>?xmXw :?tEyZI=JHd'0GАp` %'J @)hF^<xH  v)R)`S :}*F<_+$G9䯮*&C| ݃fX95z/`}cp'a: !4rykB O54ƶ? GeCi4 >Z\;'JC:PrHi)OP.ro9Wq)^ V?퐭^lc?~``"5h%q=6F]s±t^̐w̭? tsI,K(˛blf[ۧО:2-Yc A0#͉ +攮r"'yU#A/PmM t9jƶ[R ќ6MR['5I !ߥjIɩ5~smC6LVdsxO]=W_p^E .^ڝmc'<-i6`\e5=BAZfA/* w~P?90}-ѫ*w 3$ejfFonL },07C*Q?qsI[Aj.^!`#(a T *2̜[;?#0c1l[ mÃ>U12ctKHy-^Nz[Unk;!톽G ]|Wa(r 3rث\Rq@ۖ+=oqV;5<`Yg4+@B)e({bq󑢝N;l?̛/mOe-!*WkMs@deg+o)P?2#{7r-!DcL5ڻzYlfd!Xi#eG 1>+RVhBL^iHLqk/qۓ1xl_&C0 (poD2Ƿ5v 1 *Ӳ g"0]Tc]4C3Anae alyj߫ƽߖHCSD}͙ ¯f$*Miy:3Ob#Ƹm쾯?)g^˖<ܑ%K`}y$ Jh+ȶd 1TP@_s#\Xj~Ҕ9u;q'" uZK@8 yd,2Ȕg-LLwJAJ!"{8Bԛ+X 7ݾH/U Z]fLGbĔ&|ˀxֿ1!B[ڍṚrbq R3P7"?_eD4~q7t֠d8u0VM]d6 Jg͘da$xv^/\"GG jN/|~M\c$4%!Y*7A~.mݠg} `sg^heX1NKKy"\}31 (t5.+eث)l2u\`"Zym@ nxD•ryqk>F|h9w 7*Tݣ2 { ͪi遈U/i`Ż Ж4#޽#7;[i7R~(xH<n;ۤ_2vj])|CC/MK)4iY; *]eW֋ jBPS+ c"ً`ol8D$UtI}ї1NNqE`L,`Pp&֤D6ի=,x>*]Pu@pD=I>8]b(yF-ZWeVHdWyGM{+badw͵^]1~1:qsY FI1n78e0x?wsE&ִ#aPqUldΫ_6o"e]:%VRdtb X~U4,suiku`;/xᗖ\IAaNä3W$ԙIIl.oYQ)5mM{•~G`!Ͱ2XfI% Bs+}`yv<~^ҥYd9ڢ޼0\}VKl(IPn{Z 4d^d߄W48ⶰ;$tI?\FGWΘ0ܸeVcI6K{ giDf%3;p"SCaD=5q oـuvƍEh=`MT  #,vb"K$zcx39"u铀4dwﲍd+y!W\M` ud~i4w$c~*^[Ie&Mh㫶3 0?-5cC*cG6R= ih5$KF$T׌җoӾ檟czݟRXzPElK:Y0G KvYlX3G1uj#rA, _I3JʁJhB}[^:,i \,T7&X[Or<0WX`r񂞳VlkAGSA#% ]^D}=vwu/=^+avY9C? XD6_67\%Ֆ^I9Ɨ X\!k\D)h@U >*ж4Jjb& }uN0[{Ԅv,W.E0F)UeRQj21{ׂ& R#U3xXF}a(/;6٤}+p1WIԱaM=O -KKm*B5MH3muPH.B\U޿>f>f6uɉ E΅ C6oxj˟L07ACb!S εJO[psN܉d?jbK0LWj,atj;jN2T'~(7sVe{I;?Я](`]G'g[/;'?Mn.bYn0{⍟ȯeʖzC!TI1dY`U%a(F~.. Ukk9Dۋ`-̀`2PmWDL{"n? 8|j&f38 م*[>p*?ݞ&q7nohUZWL'ԊF2mJ)ua0X>gWhߟl_^|:=%~2cfztA)F=90Y3$s:j>A4^ޱq+lGbVpǮdc.qj]27rs*\9vcQ&L=܂Y/];L  c fYe"w`$rq`w9.+~9M欭d6a\23_H6@?'_N8Ɨ.8BjRQBtH &x9U%6|MjR0?PP_եpoZ C2@pA)bxw'R mbPȺz9Ȧ2ɵ 䆼FÖ`x'ľmf)TM|>nl.^w0s-o|>v-_+}ԐTEB"rdoxzξ9n B՞,(qf>STeAs%t8t 0ū 3S+*Ჽ!2>jh=Twa@ჰB-+_~dNbˬX?I)5xW#L䭍ʣfJ#q OTnFG(L bKv<$N"\'Ο(rui[fsD/bLWyDl*vzFHup7yf$i$*'lo fMN6J.&ծ%-wnx(^|#MnZ^է5QnW(1je1tR[kGQTCKxd('Mړ]wUsr ;ɹG%/9<\yM{p5?9DDxlޯTGG.$nq9zǼ%~/$NӻmjUbT9E^~Y| xdywp&x9O:CM{JYofK;@LC"$ nYN4EԩD@&/)nh?z_Vk_ LJ8;MyXA@`O0,{iH㫣w^T}mC^2?3"$ <שx|~Q4RNƚ "³~ۯEF86f#,l$ؑ˔dv")ܓ;$L|DS_*^PhZ%>UEtͲCƯyӬ&%W>KD Cm?p:hmvm4M.'0Ѫv"|+H&W, MAKh~3p)! ULylmpWȱl\jŸ;%Q))R_G}4NM t.%8TUw܋EsQ%BS:mKոU_lֱR} c0'3`rIſYeX)I# A^sW.QANPG5,l07ҿAfB=h%ߪI0DSJ.U$SN?=9Qn\,q_0s?<(2Ky_}?b}A +1\ ȹpҍ*:M63_Zɭ[yg@gN{Oڋ\H7/#ă+.bTTv77Ҡ=kEq̂kڧCrfRQ>cmz_7Fmrx(GGQ܅dY|&*Vi>p:g=ipnaJz6$2|Bq NH?ǹESo.`(cSRѬ2`UcǭR%TpsQNڣ#G'Vuj6#[W49F,ھ8SZޏ\Rljeӎ zI`߉y鲤p/Z+1`F~FX,~p7T!o;h}d2|e9*DH`88Sˆ~Lv]{أ U#I/nX+y,LpqdzID)!Bmy3UUy o&;[rAS{.Lk&9x(ʻ?2S̨A}_`GƫM>ۗe]⾚z\ zY$Iۡֈ^v¿+rw(]ٙRgmhܟ7rU*Vܪ,zz;ɼ#>`FiP;.B$R 0OyQxd7qSO Gp Z!Q8x$&:-VKB*сfWL]sqԿ*8Ϣ(-.!]8N)?Td3LƼTϴ+ٓDX\z?(Sp17s&^s Joyhv]TkdI0۫vM71+f6i Ȉ/Z*usHTטߐ<,k`S}Ј}"m?I@[ iΝ-d1?:u:]|,"m6`qv.S&3qp!"}}%1QԅToZ]9alto4%Cd<.Z]qj)T;k\Rǩ|g4=eZPN0I~5_ boZy03L[QtgWBj_@a$YϏt%{KV5M 'G쩬w)qGN=8pGi-@18hwB҉!a]ڐ{ n*̘,z'P%y5l:H|fP]-P_J59ד ~{ %D٥uwɖ?BhX`%d )Q=hbsP4>hS) AK9:{AdCS^#`ؤY+㴜ugPU+SFPO">m[rŎqh!-`D:w"vj?-/@F0NMs1dd5ɾ̖|>UD>AwBtd2 |ZLH;20ZC>H:kwUNH ʆ5oJ\B9`y0+nybuтr{ &2r}9fFS⓴W1d?2^Qz4 ԉl)K ֦CXh 3uj^Ϸ%#^zTJUE1#p[H!&[l|f!$(ev;H&~u AYR(Q>]D 52GHTCSfW3A*q1³-N7''}1 5DQzi9=i6pp|ؗ⃢yA08a=/"T:&ʣ"_ZN1 ^?}nRؙt8TxBȹGw[riUUNO}ET'0>1UBG.pT9dnH *g lh!9?SGD=-٭ܸؠ2v}"CZ?iTD9 D5 FjwHlP"/DK*|orl~jwiU'`>CUK\?-K)aBa<α6Ƥ&"~0(u\h4Ari{] ^\&;lHDV&LJ^%􄬔mC0ߐ4g:آFXskUnQ!@j .T$j( by!FGdlݲb_}GʞHW}ijûTO>:Nn3uS7 p6N~f Ӆݡl2zVmvvURd8w$=,`к?:[nGEYhO 5|V~eZۻ soT&@1R: 哋NHُU+Z%gOx[JQ{7^~пyRW)o);\;J?"<l/U ~hv0զUPݶxwIĺt!퍫NUiͭv&RJ/ss7E !w-$ z=>)[R'f˻6q+^Gnqޑ er 't.l찁NF8t  8:IBm4%0@OܕInϟ{jdxT{1>kBq6FljI((羻(-[8RaG|[9vYu6/ͯ 9HbBk%tH>zfK3[LNYvᴷ:uԲiʧz_ʅ$8 WD]:܆2hڋ-yROH t/g$FAPbXgIcšE,zO><]s(P}۳Z;K3mʭ;uzOQR8QxF˛yhThH,V~(Ze}C3= ƭu9WVe]vl' ٿ gVU44k_&+[i7)ڍE. @R̄f$ C;'tQ?RۙƔ\f&xV'bEjܵ^eCئ"h{ Gg2;W_[Lgt[hԩDL=s9g4?VՖDH#勹{M[D2w]Y/Yq?\+9e/ sƋ6 c?lE!=E$6<u{iE{y{ IwP<2bwfP&9FgIdQ}SoFZꝤJ,Z~\V<1"%~sZ~ @_oܺ~Ӭw=H|4 .ISΚ7@<ӧe~)/sOtIVI _obh(2xrJ~N2k9G89)ȴ)m-gi͂{s xzwcyz\ٓ`av:@q, sϏbHɄLOkp7݃QmHwK?i ͎d427/SIuE4Rv 654: LG61dh`ϮR|9Qrx%~i$^(*Ĩ6CDc!6C\42ҏ6:lF [ОebH4w1?KTI[F,rڪ@.mAGkݴp8dD)U*\VCN>+~YNRbOq02DVPEW x=;e6i?172D8b1>` ő7v1AyW&9~ĂuLsEf'VHQb5@9 ~|4H;Ehji^L DSWY˖'w֯!N{f3'^|xo'dvwXVG”ВUWb);o|SL)=-zz)‚hYnk[TAB %7NmVA -_+x%'k+WtUkӉ-^i {֢ S) fe&U8TJU XkRUWe?M]BɑK2an\$Jݐ_A\R0NbG,;]M >\]6`dI'=o$׈ Wvc8iwDkD2)׻$eĂ\`P*-ʰQւD!ǵMkeK0TRǼo]" 6 J >|J %ǴGPk"67F?JLb!T=a$$D?݁ދ䘻^u!:<=9er8#@q\76XUW؎xfsCۨ%e>`"eh9Gv<]΢Dcʕh]3,kElG#:.y#,k..FoLh$ )Ym\BXǷ h9#jߏT4d8ǜr"+'wgo \N=\8d*RO@k}ӴmF4Û3V۳~LY.V23b{Dc* xۄt%^h^4%Qolr@rqoMDkYeMlumHP8$/ xrcl#U~[Wi!{OR;xi H/L+Lꋊ-ec3L,~pVYRoJ?`4C u|dȭF7fp^4Y":T;N"P;a8>ˆ܀@V򷰑4QYy ҝ9AabP֣ !hLSʥ`l}鳹e>ݦ(0˩0EUnB.V(}2aS%Es?[}Ox+~Xųc_ڋq:@]kc;2&)SUqZm"J4 P8B- tQJ]̄T&m]'Go)}&ubјf㿘h 勞yafN]m$Uқ/c)yp叮Ev%跌!Ho#3H*y󔼄+T)|^f Jڔ?ꂦ^:\nX"{styлzI@ȃfcQ8=q.Rj| iX(G<#g{򒫳줔D+ srLO;u&f4;ݐd˙*݄WDd>  %ZF D&^vKrv6(ZޤRX$1֖wA]Y5/a)7v@$zLb#0y` }I<6#`8p- ?4#Ъ.#@)|}i6UC/,ʾiT _o8Pl'dHVLx sOPU8@OJn@WtLoγo4 "&A Y@f@x'*wZ+KF }ؚ!5qmRr; (:ܱWw 2FCH D'^"5~Bi$]:iz=baiMa>VR;<3kZ۹l>\v~؉OĴU^h)nI=Y4v9qn@~hi .H'G04I+,?lGpّ@4EKv!)և~0ʠHj_4?Z= vt"נ:cm3.(F8u)o_KKxH kbIH^;`sCƽ#?gur<ߏ @8]}/L*>-rcITJ{~邜m,/UARy!cvO˧eN4v,ީذ};ڞ[^RW Xկuj-E=1{>sխLDZ.m50?Mz9nMԴ9ԠUP{J#ZQ=(ʔ޼j&3<)\?b nw _9=S{n1jĖsMP.5P9Cr q4**e`?utÒף_R!D5؟=z0ތC@ugyB"bD1ԥxaOzcEbcxXd-,>"{gh&crU ZK,:.dAiWn(k{z;Lkȥ6+O78K~FkB:88kz xQwkq@&820v[jT)i[=s0ٱ.vݟ۬h>WY'[sgg`e],|/.tQEh340l2|jnҮp+>?1'м7x0$)´.xb|j6^{)gwt"'v1.BtgD60+[Bz\f?0WUúּDA"4cھ%hmލUXcCL )l!lјjHRȉͽe=sA; =f0^)}e3Liq e=a]hڎ<dqm.܊T s컣+iʜfyƜf Ac&c`6dSX øSV2.IDNw:W_ԟ`4 ʗK=v͕LEq irĠ_FN]~E{̼˗ԋ]^pe ):Ad'7n?Z¿"wb`s G9e`nNr"[(S6ӗ{tŢw8U_&+鬕TPSU009N>n!ݖטek@r_PR'2iO {5hq%T#܅(o/{I3;v*Ð,ZFpHjDm̏b..-2WAɈ7 "~@@k zs_#dLjLYQ 6j\[VYƩ篴@& ou7=$;1뤂kX";y焽_O kvإ& NT ÑQ̲ ]Txvtk~o R1:H8  AloAOb P- yMJ9aUDOYaI{2@$0q |`kNjn}+9v'%&թPPWjDᑧ±7]AResIP3yuKpb j܂ݭ#.ghTrl]g&OHZà/v4<8;hmSdv]3KʘPHlhj'<{2.4o[RMU'=(ȳlͯ[6 qQ$̵.a:[5O6dcKh#Xr]- D{o|g#BU"obuq^ߘؐtb WQ 1Ex!0+BB; `-zͫ^Eo͜"΋9Nj)`_HnV+vmc)-t(*/BL?RpG9D!S.mDք~O- Dud?˒FG~}Ѣu(%Ys@lTK !Lt}+Bg[͜-ILqA:cҵ IpIkJ͌H{~xF"&s !__UWb@wO41. +Ɖ$kR~W™{0ތA5 ı*\^s[{pm)7| s#U(k[OB=RSR￧7WJ /3@>xϟG'"`hǡGqRM2H|RޘC7뮜[ +4Agȝ=MHD͡KX0 R,1 ~\DbhUxb,Baf[b`(O3;m;^/Oe'^kU%U#۰ ԐqfRѽ@ ZZ|(ТB4 4ZFjM N&DtTk$s) +$AQQZW?T 7]kYԛf/~8 $;"YVHw◥ښrR@4f4>ޭcrge9Q>n7HC?nwe\{E]M̦ة|3 &,G _UtHҴԮ>MI@@6 3# .JH12)d?ylga/7A.$?{qY_5 4[JؿdZJhs[uVʭ=N p$`=j+:8|$q{\ .c!gL=]#Bm R:cV5[}!Rhr@D2!D l WVVr8WcE/*T;֩Pald{y.Zӛƛc褃Aѣ9ȡr{ ̓O;jpؿU(ad6gOw>f(xn Z5_⭟,5z!Q+t@bIt 1$wKØbfl)7JaYyF _]f n7:=ok]>﫞];Cj4 Wb\J|/ȪF5nhS#;ۥt]0 "³jn୊¹Ku8c&|Χ#=$vRʈ3ǃ6'iW۵ռz.}FL 1@ɟ``D5AʭXJRW ̓ԏ/a%8TJcbJR{ўei$eҦฺ`ZԉJDܤ4[uQ$Pf R xDhZw]$~A=]%r]ڔ6Dv0Z!-T^;h>=J)ܜv~s'ԐPinpjLY eJ<?GQo&Xq9 n/:Q;MDN\d~ř?KEBpV+o揧V56C[T܇h=gpq?\NjȩE!&tx3C.% *a3rNJ]`r;c+RI6o eoo᣸~hץ} Qy$]dqhpt!&*T| T#L֛ o6';/,: C8v~-dOw^l*P;lJgE-퀬~&(:q>Yڣ]v4_;HY>}l/Ȁ)MҼ~c#LVOu]Bkץ>T%@4?xeH9hW4 >R M?aw@ wM7`&~ޱ#눮z8p}Hд"}['zt'V5*CV!/aw+e,a&T;! H3iEc;`UxϥT1"<8 pcK9[ٲA'j3 "BMz\1bR.LAk"7\6TE?<_*49XA6Ro;&~~#!RkЈOW Du`;;;rYJ X֡p[ ^$?9{^j>NTǂ׶Hm"-w]GVf zQBfE{ )wW}]2J SE,ׇNUۤB7Ax(1Y2BQ(\X,>< ! Y0YG b\N:Cy<%ޟ:W}=GsHPa SMETG"T$3<]YȳF+g 6k`=M/V#QK*HTaKG 8/z=L^6x/OqPJ,ӱ.1R7Nd3%kUlA˺吾FO=M{'Pz58rLcs 4qP0"[1Yu?☧R5`|^UH}hokSwjG3]Z5,},+I2v%;M;r19Yd6߻-`sᩳ{a˳"bXtb^X,IC&Mlq"#%dX(l A6Ч*}̼@T{/bV~XI %Ǩ|>R>sYqWTCǂy]E 4e2~&*a !2Qj?'jp;`3(YZ֯ccV] pN;NJ;a7mwDSqE`N+{Gzm$Qʥ@=SOp:(`2dVȮb.,V3V&`v UAÁ6}MynRD+]=b>(qf_}:wFgUBk3;9ԝ1Ja3UMm˱m~AWE_'k"_652b2A>e-axAx Rc8YXTj}Gw/[ kLA{b\Y\)ٹRX4Rp䬭TrĄk3lEK$.׈nL(_Q[4*A4aYoHHӧrV#ۢUզ'윿;srRfoL_jl,t{ |a~ed#mݑ|n"9"0>Oއ4eC`ݘ-R*꬚ҏ dֳaMy#dMHVm1p(zz/K[4BB+ Wh}^@/.182j|q}]fǗFEbx?c΃}%C.49rݑMZbW'rqdyl2GWBAr."硫lY$]E֛9:|)$Ma _!cTO=&37S8_kWC:8Z@cݏ@%w mfAQLIxZ*Tvzdi:ѹ6F>^$G#)Zh3cKCk=Buݒ>xv-jc@':WiEm)FޟwXvqRKg;cQ.@+Xҿ/!O¿" k!ʼn6Ά`go*اS{3.%&]^ї:ˬ҉ASjqss B]OK#E(MǤq1Ľٿs=lm۟]SK6&\@~zփQ VjVv-$$.fVH؆liVw')U"Nre]Xυ21˙:{2ZnONy鼝&m}qS=W%P`rTۀA"4LWJ! A>:_&\ezRXbrL*i1iR]_ vy_q^P F6ֳNbF:*]rb ML)Y<򰊸G7:?X7QA;0y#zȯ4KH6>=}ٳǖñ":kbyD}T)=rJ4DvmBYY ׯw&^JkY~fARoRx9dDM{dƕ~ڭGaXr[׭epO5ڱǎRn;I "Q#8ƴ[%i,B hw-twj~ d5ǚD׶=v ~|,NyG'cޙ&A|%Key‡aܹ4&AECyyktF)+ |; mPDފ)˩**1$ f kS4Q'!$RA@i0xW-Oc\F )* z\(I#ZLu=3ր- /%r(Z G)"Z+dD4 SA/\7w'|w Ă~JS?݊}L)xLr{N 31۱me2?L\iD1//xvW3Ϯr'0UL y?N'_Y7uM-rKU x{Nx;4QdRӇq (1B+:V~FSN;2 Wf o5]`qa&=HQ~_YG5uS`m=UĽ AkEXGmRC@j D"{0#(+,NyTw䯲&Y`.5ڷ^|CE~ fM-|Je|=1Wao@F1˨"ɭ^(? ՁawI|umD#(N$-S@YXXsM~Lw[! tP1("J-~'GX؅Jjgs>Jd-+? ץaz?9( Zs %VvQ!T! H`.f/^K@LtF$+O7G̘.O<ߢѭԆ+>Y⃴H@A*;Żh&U;ₕ08Eֵ l$u (8*^Zˍ= ӓiSuGnd8=|tEz4<< |Q& iTʼn0gk՚+Kuhd4M|Q-Pax5L>JQPP}M SmHݷԒ>J߼U2L2uH^) x˜ad~J^+QMnὐJK nWtJaJLP0g\}:NcaC߳gCPwwბwjk#|7 _ӡ7gteV ql: J3* #Իy Ϟ h(iWUeJSCS‡`=.-C pN:?̤%Z 1>LpwAĐ,GP ,ת"?~ %BDPV' 13mБ[,/ம bB"T-68M&o䢝,,Yi$jNuŚѣQ@p]1(JQb1|MXL5"S AI8>[2Pm4|^쮡>#Vܒ*?bdӅ|*lNU]68I-#򩔗[xVL!uQeYNoyr۹_~pJŔ NH}O$AP!WO#Yv~?$'>-"sq,s䙦tnY@MpbYE@^Kl2Z/_4%0B]xx qglG4~!q}R0ږ7UV)d{i#k=H#-B1D,expC]2 t8 e#/RCcA`b ӂ9vBskܝNIOJXC{ ί .mO>Ԗƫ)KI.e1qne.!C1\Mf[@ WO4]67 y# d~=#"=} zy_%(}}-(0s ǹUFi(/S|z? Z%K$6: .7OUfNg+bƂ{ۊ3 /a]@JӞj$m9Xwۖ ]Z2W|snq%MN)ۘf2~|)dX&gR6؆DGӟ5}(ʡ/3q PTl=ˢbZЕ*=o #'^hRz&к? دPw~"+F .D>\LXm|OY.ߝ?|n/b,?=h9֭ HxtV/x6j=ICY ,H%3$-&ۂMW_:6eFXtRQ:VǶYQ%Ŷ<%#Dr"PџXy|9Hcܭayzjh6Jͤ=_:ՄӜb|-a+dR٣?[{~`S~"V{+5Ɯٱr6y).DJ}Xzӹ󵷄":Фh|P;<-lNgi.ֱsߚ_ПU/a9ӴdOF;ԫ~+XZ{<sQ"59 *owׯ M ZP#u δkzd f{w7E1v6*XgM]-l-ɰI>@ږxXY* Gt@g$`Q?6o|j9! X َ?.ymo4x&]r 데/Rӽzlj}YPcB # چyHݧzJ߯f՗\ZdMO |l(|.{7)atK*)Bf<T9&QQHݳT ODy2!E`!z#J ;AB2:o+uaT0xx$ʙ 08bKBlob0|§ś ?)֩՚@gDY>)w wir v#hRNK/y WdCs<y/]Ӏw&>#@_ReR" ~)9s5O ;fIRj,2N,a`5Eh"XLB͉x? 7+h`qG`lbN̳͒Cե3*F77JDF6:dDR?obIT+qՈJPtzrZżnNў ۦ;x@֣iVJ"|ay|@G :<;;1fb_02s|;C7LYL॰ [$JO'tqkgK|ov\.Ra8XMKv 6B5Γ&B Z$rXpN<0mJg)K"Z=8]{9~ `)ּAA$NS [tgzIǽA;AezW~L`Zg ƨ]kxoЭpmМO)y+\ cA!4fOa/;ؐng0#w1^д8IVS6 ֻ\fxG*p{CQ5Ѹ: =pҸeݏ' {GXa%54rD%^ϫV / OK(^=Oj$LU|ěFxVaO+f$ϗk4'vj+ &Er9$E" P*qs)3RY&:Y/XѪMwFyFAMh5,m_{xv֌sЀQNԶ%OqWu68䘳"3gl}RQ=%Vvr[ӤT v d1.fY92*P/i-Ak, -VO MĞN${Y 99ޗ(*#*oJ.V]7U8 ۍsx5GD>)m;ݬ uaD*%io2bFf$3uq°z ;V@oZ|Q &l쾆/{N`}\ S  ,P);N?qer Dpu._L] 9)UF3It}5(=߶P ))厩V W!î\ />H$c5R`Lnncoy(Us 8p q`GGekl`M~R5;f> 맷1D W-,9mimflg!`}0;4>IX9r Uq\Ut*7yNΊan"Nk%>HԒL&x3SQ\yjMOЊ5+M]4P$FvU\aB$Vp! 2# 7Voܢw+KÎemVߡJg",##1D.G,%J81 p|np pzنO^0l4ZF7?La CoCZ ; F kAwf,Eda@W`$+K3Q$vaJ3b 㦄謡 Qj H4 5yux 99 .۴x /PTlir+ZH6Bp@[(TkC@0Lu'``{SdЍ i_uj;BP^%#irDmzJp=J0ΏOͱ5͐eo[b!&REZd,]|Tѷvz$UGP+cSX*"iJ Tk\gJ%6)'6ne>Cr}={w |bT$"BC(d +z>ab:ѹa Zpn!RD?%RS٭4;3-i" qH༨sI|py^2դ=;J4Iz¼Op\uh$_&b$@88OQr(XrbqSmo3~KA@z*ٳŎGEfoIi1LO^Dԛ;jekzo j9èshc߻V M*Ҩc}iH>{_Rh^s2ú9 VofeOKidC=] Lt;0\*Q#ohfYUaLJ#X:+`}D hy??%̢zwC ?mz҉M.˳Ț ^lcۇa￧U-2 ȋ߹X&gM]tbI3i d=*5ta5qz=2(AJ\ qrъ_R5Eu?Ci=R~ҎWA,0FJ(ІQ7O/N֞{=Z9y7&XJqZ~`iQ] 8ZhNk`Kv%@<^d-wdK0,;/.yAqWJ3t/VlHgOId;?:7 K] I@ \W8)q\v&&3 r%P> j=͵>Y}L+T9z;ϖd߲Gj`|k} E"jΠ E"B\V1>[avhOCGԝ&{E@` =v{}|Z`gS I?O[20$Ѩ9gy@t2p n)}^@hIƫpk/?! U T.e;}ڝ!:j̩Yb|'׿&DF` ݸ1;W0zٻ ch6s +<윜<"cv-;RޓgGe֖ԄmbIW?[ C@^?Hcmu0A9ץ^k-wJX cW_o$ϽěO x"6+Xz8Vds]-3h^L,xF^ 1\rbaQi=M`C̷1Wlrr#?CټwG)5qfF~L\/58`{AnO1Ml b}k~pف5!WDLo8 F/2^j/ y15)$~XҼKLuu5UNԴL^_E(G'J1 "1k#/7M'`4~H{z]kq-=4aQ@YZlaeken/data/eusilc.RData0000644000176200001440000062675414554440371014656 0ustar liggesusers7zXZi"6!X .])TW"nRʟ$l9 |]i;HmeJ0Yj1|YA7LTnoQ6`ȶl@;6Qyʟs ҙ#짤O?H`f; ,:8PkgD+CXa#cv?&YAw;F$/9SB_D_H˫v7˼Az4FKYy:gKudb錟>OxJO= u^W%Wt~QE3Y,9l:}˄@sPXtz}C qS ]0湤X_ 0Dz5$,, AvF639>C?K PUN*j·NnqQUHSq|v%9alޖ̝u/w%!8T`RKv;}zv(rj9Α>uH~RCA=)$ÎPT)O'jOt,[Q`YF^+ZmnEp.+sם;{c]xC4IX) qHIܶI?m)Y=b\,&A=&`C[F7ү{:pPŃE NDA6som\[.QQt&:Sg*ITdrv=Z0(4ȽUS\}9x uϿh'G;[}NZG}ɮLjϩ{v{6_ŭμ~KU)UAw43&) yuP`@=͖pۄͿS99h>2W)852F1mkLlfD7Ĥ 1RneGŭm?%KOE~0K;yHQtk1K2/uzEdʅ/t_v#_f;ͥ*>yvPBM.g Ym8ΔiGNqrG'f5jD%Z9͎vct2WkYcKw,5ifTp2miZxU BoZf_r [~ 0J 6߂'{ |˹vܣdc?ڏ08u,vm-Ag3䃨62uA]8.ҫtYɉ l~s/5wLiv:IĠ/U5ebFt\n Z5XtGHTnBM,B̘i#x0;x>\E;3^ Mq?̱ Ng(,AB%IburRN4X+|0X[1 =JpL7a|I+IGr(~ɰr_T/|.>r xv_r)u@߮SWxW]4x{`BDޟ7(9dkXYHWK,#j`Jv@5CC_$yl+4&^O2֋|"†k j7%5}iU7D%'Zkaϯg+En:Kms-)q^Nt-]x3^]~`|#kdȔ#t£2]ˇ^hL$aa- `)uѹS'WDFqޠMXNho;w~nh[$ӫ'̀~Ir23m0;Za"CjFVt3^lgz.B|@'%D8M :Adz :0m*hm 9v%$jV!ʈ)U*wd腔yWo=JߊǶݥ7 l\F-q]cL˅ۢ K< zZ 7ky inX<>ypN#Z\)X/j|8[~SA2- )^R/" xUOH͔ [lzp 5gJLa|)D@I|,>'B`.ĒHWƟR도%Hmˑ1?\33Ewjr_9[)J !~/U͓_>H+G!͒׃uF!F*%K3P|Qb`qzi/k N v%!wPuz2l7w r(ˆ1n W`r-^A|-ign#&YetnrF9) TlvQ;%1=Fpap 0nlJv>$t,h )oqqfxnv( 8Gׯ?vSyɸ0>MrFxŷ qϋ.9zW} dwEOvs P h۟pLzjޓv o *S3l?# Xgv RO>6l#J/Ҵ(̘s.≳<ӟ<`|\1-szz=mCRNea!婺-Yx[[$5מmgפA{ܴ9ۦ0ۆm6Gx:ġ.Cҫd>ZEdf|C50,YON)5h\&ܡlT#IPhC!L6^_U0;c N3ps0ÃwADe =Y.ª n45[{qLz4*%s>\.KE_,>SD;izUybئCw#aLc5V1>{Q# :T?;毱gׯC),iR$ZDFc{"jGM-I=~NTѶ!꬀˱{c 6zGw>GtX,.]-C¼t')q@|y͚u24d8$R &xIR_&Zí+of[eN;Mjh\N3Ք$Q58$T%g$N*(2Eo[hx"b{hHύѿkQOfrwpl(w.ScJ !<#w<KyR+H57:~$E =:f8:I.c2}N٨{jUNP]G%qK̤SYdz[͖KbԺ"ZtN2X7^idٚru CiU{l/La ɴ,F, ibmnށLD gVP[XK4QϖF-&EEm3UBRdD: PC \fSN^SOֽڑ\ Nh"Ò֪_J \yFOV1 o_WB(U"pRh?q豢vSv Y ]+7} u MG4z]ƩX>nNP9QIn4~`ɪV2ssrFoޱ.&[;^0>P bq׷ag: xӱ-5Nu[N&اvlF6.-0  0w*juw+,@[Nݟcް"zR uL鹝"J͔87f+uP!cicr|G} 'U?Ze*;[sVIFz+բ%qvbY.$bG }c (3u}uFBlxo쥙q@WSNTӭ̄xJ޻ Q6YjroiX5{IƻH,~X05GF'VHE[nr##J̅10/9q 1q;0%ȻWGбXF=U4EOIZ,7Nr:ϭ:{z/v1׊Y IM"&eN^px 'Hb,:փκpId|NPw=GܻI}W.8;%$] lw~%fA*N QwCzmEcHt~)[5.$H^ H4z/d\o1pMe{Q `kGƬ?Ȃ9UM\T.GtyۏNHL43dk3ns;4K%"Ẋҩx"44zVzgѭڕ{N,0,Vl9n?s>ds?~)Y 8q:=Sd(b,L׆&*#yvr hA +*Zz c<cإGFVo ^)k'#toc"RU]:QM( )J6A|((qS5nE6n" D%OJm,PM B`"7; V$'Ղa^Ź<7JcTf䡿vީ9RV$^\ D!V #^Ψ9 p{zr҉F{̄rh}u>2z&*]ت } 8HBP7 *4ћhn HviLw5g=W@]Psz5v[>9ӁZz]O|[':USap$d޿V\ͪ#Ho2*r.#sB=+ڋދn( UB3s"mvZZѯR H*e`@#Hk6Q9T[TBdn.YoBЕj*A^/.Ԋ4wjk%=Z{a4G9"rGUHo`Xk'hDQ*9ΛN|{{?#Mc#yCf/GuTivia "[< 6'+K[{L.p*ʍJM!>E u{ #[^)r*9Bl*Ah#T fu7Ղrc%&<u&5la OYWZz24q  ďy(H==m7'ϴ㩩Δ$VFhvK,"|0IHgX;5ֶ(WHN"ys\ݿJʁ~܉ZURK{;)Uh2TWhZc(z2|ܭy ZcN>0Ewk3촫1SY@Y؞^/yqRt'[z n}+شjeю ෲeQ,I+qq\6qL SP65O:NB]e}RΩkI|`3q!Y(Ӆ 6A/>7swwZ;fl|ʱxP|}+ӶT-1|_k)u(k=S9Mql F~!Dln4rO,X=h<)\OrH1jME8aygKF aL$fɊ26/ },06EfW5{~yIb/gcs"Sr99:pokgd"~m[5a"823s*܄A [픓>ɭ-ٹm)k}4PoQ! RwZ*laL쌬 /Y$o4~7r-?g]<~5Yݟ9yאaY&M]itfɴX@G-U _W-wvsCPpn'ʊRxrS¶ Omru%I _ nOXU<Ķ{Lb1&lO#:1wbO9cVK$}cG' 1!e8Y깳?_{'hD*Dݼ~V#n[MT*EV I5Db3 z% 0&VϽ=בySa22͗w ͙6_n'mi*^51!I ]V̥iۚ`xS%?>ć²D4Ә4Eع̨::؅&HfmjͱA^Gb2;DWw@^Sہnp4 |9j~ LseY{wlRhS'?u͹q{{ 5| r̀=5NayWxّc-h'ͫr:D[upi-iJ}•CU:["4qNۃ& Br С[ H9b:H"K JqnlƤE2%Q9󕋀 O%,KGrIp}CuB4s4 +/WRp/W2sjб78o)C7t9rOgy&**g!#` yS0x$DHWĂ&,_E9OF⧭Q"]h7SNNڋJ鬱(崞DA#EG;$坥!.Cz@$Hg~q7d"ѭポ./7IYcE y ?R\G-#6v'QdV+ 蝀t4Dyk2UU楕z'c*^*S,XDGͼ銹 5IHd;?ņ+Y 5ZP <;htL$P )⻼b>]M*ָ^%߳;ΫB5# n|j4D6r5 |MvDQ@˩M{}X;)-ضcIzQ':%"%t a1,V;MH@b$rw_u);x9]V@Bv_w%AU F,%͔  v[ K6 f,IYQ'Kx `N͟[7}P( `_q c$;ѹ G0CF)]&bj#6T  3-+DYtsCmx`7%cLVF_=bgUX࿰s: 뇙tc̿Wsr&ٙ)BTHBu}i'L6.@ n/u/qխ$gC}5s3Hng_/ x( *mK-_QQW5Ɯb[\~ze\+Xf`E,L_94ݠf{ _'3}vom]t?N&(Hvrh P䓎Cǃ{́BƸM˫3+Ջ &(˽\D;'ttp U|Xtnq5M3! ꥄicr,}cK[4 չfGP@ g7TIЏ3OP6+D!Ct*ؽ8]OGW5s)CMsp+\*լ^shۿ,z'v1q 7@$jK5[ZZBB!֔4P|*нC@ua.*tl?W:-3H粄=a-<,v:fF[|nEJt0( a)M#-lUWքl_kUY%=p\ O}iqmhE gm)%ǰx~ g_鴚ctS=1fHI{q1=5φDH`B +fVIDNWaԺ gL@qႴw*K ^kJF:1Q:M6' jUO:<>{ JY^ ֍4 "sɞ -L*2D w=7? ORtb\_X~(EKmb(knY8ٍґt<G?.Jo+W9[)܃.dW監f\~EIIOl"AL6ЛQ!׮oZ#^/ °e+o\ nzg d 4% *M :y%!Wm]̦|?s-5Y˛mL*{:Z"dW|eIH1^4ځE#ܟA蜻vCc%F G©4jwX%[5ztzQpSHc<# 5ll7~czotXi.5x{g^Ղ|=m*cq,fe d OUc7á*O34#tgLj?pqKa$fg&O,w LK',.,m˛̈:67or SCeqQ-7P+voNz)"ޘ9O̎ U"yH%N9d);tĶt/Hon cfeV7 Buy ̪?NE`R64Hi:<=sl!mEdca eQe-A'9f1 OsP+p R( 32 O~C ߳& Za z$PZ|DnI2A92?'B@sn+ F ĨSMoٻ[u˫J^l=G:; C߀곣,X Q5HgYa_jwCNxW &U$s_DufQÌLDj@\|igh yӚN['5.bzZ#r7uN[ 8D^$:4s)힙w^>ۦ[,/ೃtG˃#}f =޽1WC> !B o qp.=z3ubd9Hèf| >Hb ۻ0q&z <"Aw:'-:\oTHט >H{wJV {5&:"1"DJ6Di].]&y'BL˙2)VG4w r+LA:j{~u^rTV[ŘRrV[_Oa犂ksKt#{5qXH&\ɷ1 c$ ⑬wo?aFӎC:tH6Q%sE~YVibaC]r:?i 2+n莛Q k7ߌoƤYW'˵] NX}KA1B;WFg!i ݋sH1Odw &|Uwk9n6 X*_cН:ߊo5&CmyݳoOp2xh_#>$% [6OwZyO+.P|'[{ڙPxNfS ;gV>tnp^{NJTY6acdnʿd5V.ADz"b,vut4 -=2G/{lÛ`;"hU:˟WJx\PE.q|N9=1qܕŵi=1[9EII>Im9|"#+SB+o*kT\N Q -I`V]n=y߱|w%as0\`%7>[@ Ax*ߖa Un֑GyU^j fϡ  lTmqND6Gf$lmt=2odcJR 7Sѓ9~ &M*X"՗76Vm ;5%yl`BP"/2M\!]aQgٝlH׌kM~ iv#H;>ے$1LTվ ֧ }'y(A{JaveIgu!-n}cx$#L k{}R7=l t8jq3uwRZMVFY9ٽDzToTiA - EΖ,ɜ{+KiIB#yXygpIP4>)DCPPYsVR_ ]U#r-EA*6Nm>=S-βfؑ\~M^dymѡfxi.5\nPR0.?Zf+-X}>[LH=Y̼@0s'^>`^`{[ Pr~`=c'O|ޏqE)|8^4 ^~|cL숮VozJC6&Ý+Zjջfw|zGbmݯl0tЄܸoo\b(I{kP'`V4k׏3zkX ;ܪ&*+9$!jGPSĠpEy(k@ⷈxME3EgBͻ h ꏣ`yP/34a҉dmyWggZi2H ,ki i>84zkZ h)!<MR=\X*.vpxuojԳA䋌_=qKu]w׷-d"heӎ&K=F,bWG`fXpXs.)Q.^'G 氹LF0 [%^my)\̍<5kmI͖6O7zxv|p"oPK>3aمgxoU94O?HlR\a/ΟSt{5 bMҲw0)t^*S( EC\'5_p.$lN\ )QLZ΄#Rlt,fHw,Mݧ#ymU6VZ j`ކ͔9$ `+=dt{Kfsb/O(Κ$FR n##Yg%QʫbS.lwt&29k Bo+g}|kf#PԚm:b;8*ҽ(JVeO_9Ơn;\Nv&KfӠY@'|Cܓ Bۢɩywcƕβ_JYY>Ybs 챼 &[6:Ԙ(&^Xrsn|Vo,& KZ%RCi7=Idz6OF W5>@z MXǣj,!3̀3ͮ_ قgxq!os8+zF̸AoCūN[ B lWZ=cZ~\`omӄFg9YH}wW"]t'[I!AʝWNdݮuZeDUNTN= TIa.ᅐ^>1Ƨ4%4/)6&][!$B_BkS!R BJ ̼1 {bv z(Qxzs1qLbV(= eP\_3,r *hlVh/}Yrt%liX `Ġ'\IW m^x/xgKzۿĝ10á9Hk++)${<>75)ArLPO|-C_ޑvP-N+$^U8 -Kc2xY݃Hh`h"]pq@: vdRW}'v$M"pш"e%JXF}HT[sMdKήWs3~:K=U׵uqrBo[aNDP7r)6YQ͕z5IɏQ깙HvɼONv [Xt@*-ﻧv5CRcM ͮ|mzph RMJ${{:L|n*X8)$nnDM]k}RQ; i8f8.G9D? B8jwQHpcBE;05h6I|&Z2*&#%Ja>}*R^oK>*Dԓ:g C;nVr9}jG#$i4\?kK&m(\6ƍL)NC9ТYݝ`ۗd3VbdZ)%d\nM+*vUEVHھfu Cv[Ÿ2H1| ݈np;8[+ď !qd? ^Bc]McO}H@Q9U۵BY@4sقə@trƆ<ͺb~&\wkR7+ӡ iOSJ#*B7u&^q]Ghԡxp›Dn|;inj`K,)v8HGRJ WrqpaEo/.t-TsF#g:##`H7xѕAz_ĉ 9C)@ d` iW䦩"ItTYqBQ ũhc.q`ї<0@"8wkҖfvW-RVw=e<)PVS@5({KU!riu&>_d>V0qro<4":8d^j)XfyN1CT0j; E*oԄ9g78pN31OMo^SU~Y/U`.܉ nr@ͿsGxpL 2^rښQT0B{=B!̄#6tֳCXu 8I a\{F8Vq*ϔ^fӕK kq6 4)aք&p6u}Xvos4u6] em؉}Wъ* *Ѱ*dx5>V5>D6$%<tO=Aw:Sd6ddUH,VY%S s/?K W-Lڇ;xj GkO򣄇)mbml2,>q=N|Cgå앞  (rTDZӚ!\nğVF̟8/fk"œ Z]=y0˸ #$[a3XKRn") `I& GF^J^BspT RB#h0O.݌߮~INXp}e@9ݛ=ZFwO`q lOU;ѵ P4r9W&Cѵ-E M{IV+NhRNH?Z VZ \eg". QE-v:NE$ĸ:zn[%[nT 7"8,G9xb.Cp12ׄ%ɖ3Dc^VkҪ$6{3lb[("1@k'`iX bwtLpfiA<Pz$դ_c/.ؾp{zZ@ܵiG%>a d 8 #Yû5ufVwWYh&M/@b}QPfUE#+v.~cTu*eAm e+CE௞:0ΐ,@߲!!>uBLke/# 6sz<8~9퀮9`tO"XnfԮ OloUPr,^Od-[EV f@*q}9y&*[-p>'p Ռigm>Qg&"qnJ |)\~ri Ix|OڅQÀ,ꫬ  0j."e: }Z]VSd@n`F!wJ&.e5L)[M8/"Wzy21Kݎyl}"~NxD\V&񖓔8-3}eyfl/ۄ"rĒyP [ &SMHQh\/7"J vmW{?-o;[_N>,0zk(&BaUvQc֐3g;r9|r">؝W'UMd ^0,.)Wqy kO< mDa0U<+ NTPL0!:wzwIixFk*v@tF j3.~f#7[$\&ػHcuWN(ƍFBd_9|)"o_zI@i0=L'7`HiGy#YC|jgrX]E4Ğqʀ{-X, ֥~!k@NcRf([^sU, $YZ&8$K5yph+8Y\U^\NcK%"jt|)'AK.!?ǤlW'g b DI:?TB!kVny| ,>[p=~],'rjqZIG!2d+,On}}ŀ%%贻}+M-;pa]QJ]sKc ǑԷj|ɷ]G, ݒm2ext"mҟ!bM0-KnbGlV03Ǧc]6պm,R(e^цҾ`\_+6,*:YF6P lrݩ]! 9a耾 ÃIe-`+3 RRgN9gY/78p Jzۑt$GKفDEv!ey MxUŘFUn7cpBR5/Y:ioi|mY`֦LK a(pgp\`ˠ": "6@UӵHËVOTxt%@ \X4l+)>qJoX>rsrN[2EZaGad.f4 Ɣ}5/P6K@$9& 8Ա ,-9[`\r$䮂Ky%s? m<;L <]+4SꅧMs%_pSNR(-]MΖTҋs #lܫC?~׸hX=c/?ht1cѡxaCҰĦtFF,mZKܣtζ.SҘ< B>oˮWYmo?QxBz. ֘t2UG=X= sA#\ ' ,oaVn#>!!5|= \IO㜓7 /3"Pe7c-pbG@ꦄ'vO),Cm)%vOe4ʵ`8}I~˞[PchLgvmvK]~9qÌ$ݥHδ!s"x# lkcpy&F;a۟mҴ]]ͭ)E Ȥ AYͬw#1<b[4$+{Ը{y[9 f;6\0ue/}I''E%S8B);Ȃx^KiVEb\w]ւS^Ăǡ7}]ɍ~bo$ѡ_5@fn Lv#,4ۿG54!+fjaysmwja*9:XI2LFZ]V.o饛3"KPS?D B#Al?Y)%C==6߄ե>xg}M`N2%҆C) B, n2qbF3;Ww1'ҩ®$V9,71w9lta4dS+(MtJڹ_?s=I^Uh n7۶m 8?9*8BiGD5BLBS`)0iP0i9) J\C V6*0qQM7 x46fy|HbkeiK] OMVAd.y;P{c*D6Xy*z0(WrɻY: TYX8y*Ly"Lrs} ۘ!:6-^>ЖK٢咣\  mZ>rh^~-!>,*c򑜾T3Krܴىf 40hH :Diĵubv6 b?}#RrQmknN0F/JaZ͏v*{IQv~BMq+|P[״^J\MOIa{2kfI閍|$=cwT0-G4yu8$ ߸% u9DఋIg0lXϫ'.^P,Nq~4.R7t" j;'2ԧ:d;FxaA'?VgHxcӁn%ANd[&bF[@[>ʟAKq7Isƾ;48WW<#Ž\Sסim]y 0dؗ`΂צG3ǹ:FsOux,5v)8&4InqwӴ+i"_x05 |>Pp>h}HJl;CMjh Y 5,U_9=M5zNOَ\Z3Mna{ÏQWWz+?GOazӼ]<6؜qr(ƤjǦ*:Bv;㨃\ R_*: XB9"98WF@~Yy6J9lUQFG~*G1 eUV&GW8V7jꁦ'>;T'M_n3gll (~nmMwo.ֆ6km Eib1Weyf < 0:<#ܬ[r^=xCrD93U?ώJgҌB(-f8㇡wg$)vΕ۽ BRt([80Aj DCD#ʲ[}x,e bߞH|#;0sB`UԪ†tSc@8ZFp,#gvD!H isq#A魧p$ ^}z;UP#++APzSD7$%j] ;70Hz,56!!~AP|sgرmw[ Bĕ­NEBC;j݈6;/i+YKAfkmd&e'*A;"(B)ȉ~32%c#4T&'E q:vwb}gYEIͅ_DebWX!2t+;bڗRGv7Tj)0&u; g>VIV ^FD⑋‹]RD)yr6"RbPnڿ`SH#g"?i7c6&jctyO=T9zDA@S g! quy!~q=ӹZE,z!*A2rCm%eچ)L٬~8#i\].c~Z FGWӱs9NXa/JT4h4/+2I'Ez`AGpY3km̑T%ܵbInp{F:2UÕ$ "_7Œ5tMh.90m(Fӕb_ʇ`HԜ*8`\&4tَ5幨մT`E) ]qVDUj/* Mݡml<xJ3#Q ݘ uG#E5н&rof`(?0 hHgرznE uw҅G!3hxteIK dDGmz%f5Ѫi)yxy=wi9$x T܃U`av,)YC 8alн3 Ja*r$Sz0:g6 N3Audڧ_rz[d(nHl's[AS8vɇAE@j !tKRubcqsBHTg9Ww]$+hg b;td3Oɪ{Po^[ )9 ?Q|@sr~?+Rxh!`#qd&/H>[8KJ؁ކ–)`B"HղzkT vؙ̜yLsЂ 'O.o.6iCۥwQ"HVYxV7P _`wx9ڍdEsa=v.ϚrƗe2,&u>axfI5I!yE$!ddzՙBhzmܬJD8xPCHZ0K~dM^$-:޷)ޢ"?3 9 宝\ǰh~fGe@Gտ=Aԝ[ՕZ+-)ژ]d3p:1)¸ML&azl)Or%Z:,7Gk#QhVGȚV? J^!F{Hݢpa<j^q%Î1EP u{}InݔJOwv^sX+Jp)}_/Z(ѥGђoUX6_/ su?> v|/p{kszlYfDكHzj&Sq<B%%r^ś'>;a2.g07_@{;F@|R(Zƻa" %co(6# # 19 7ל.k!4GoK~eD;o*ި@DNHe#joP;>wuz T>qnٍtH;2|qf8Jq *0TA8Ů*g]p}%i9Zzk1ׇj>HVlpʜ!Ky qQB5a_\ٓdڼb} e=1ٹۖ kJU}/zx/3";u|Hs躉_ sݫUK|R kpV, ƻӉ㣪uH*DŽ7o!I^7~h>W& o't <腈;yi9W n<ntϡAx^ ,IR \ xYSsKF&89j \B2gsAaCUfZ%^[A^OM\$1nQըgޜ%s3*火- ?402rpA4!uZ /j!1ݮJͻa4_}5\=酾6VC/8⊾}l4/*;R&T\ZRwFTh{M`L}f&x3f!*ňZѵ0?0<o?*U"0_]3QţQ%?vT!҉m;0 be"q7PCsLNپ%#]ԠI*c{ c֯-!&GzcW&Eeé99L{пPk< U~R94ņGj!ڲU}+)i>brXAg00ܹn>]l4c0T qm٠/6ݤLRKoh#gy!Y~bf¯qTB[E6#}yAGЫjal+H*Na\ 2 d2ܳ,l{@C'Ձ9ZХ\,eEf#+l8&T`Qġ5k$94d2#F_ Vt :](jm P?V yAYl(ɻ7pS-<'x+1 5 #cNfT.ve_G@~7;ƙpvun!1I^G([OdrmpU^Sk$ I!Ԛn2Ay]0#a[ޖQ_ Ikpϖ:hZA}mӨ!j=:؟y}%hs1@r_S?P*G-J|؁)˃ K,ujQ8|.0DD26 Ad^ի0DY"TghHh8w.3/֚33|ǹ3K`A}3: *З f6bF5#C{|Z8QQļgh-Z iH"ɈV/ioث.S:WWDu%LƠ;OREM4!'1 )zh9O N8 5]Ase5>w~[L3Qԑ5~9:mtxˍ.dfF+ZSY›I)+cCU!u!=$UE7en>iwE LI'8;?w ƭO@Lm.vrۏGFP!^[y}bZ$c`߾W5I= r 2/;+Jrׄ=0C&IjjjZZLBfqH)Ew w \ڇMWp" *0"3wP0-/IĒB_o&p_F4U]> VYbHm;HcJ7l)Qb<3ZүCPUYK@VρɈekŰZKh&FY\EjxYl%B r6UWP0, w3]8l*c[KAܟ3 c5Nm7f=ف',ja*{9__5G~Ǽ{pq$5pHu^ЗAIU3ϲDt/hQYNd:{ދKf[!6.z7Ŵ mvuQ\_<]yq@-H)f |pO{wSTdacGHwiXg4Vg l"֣PmOqY !*H~ ` ^l-}FKQURu|:< -ŤwjkC<]t\CKVž•E}ȣ]1E ~?){uLft#BS~kRc\抴}Tx"$(x7nkZMS zE& %'׳hhqL8[lj3_M+&_G;G9U{⡧Z?)$aD#մ޽|e2;u6H?l}C !=/~Kۭ0:{A94bZ_u,'ye.݁s3ޱ1-hNLGP .,`?$nW=Tp &a`KU0 (eu e'*a7sNˊZi:"j:`;陙fU?h]iSzh9qX ~t !x1r~i{RJ4g< 7_6[Еj2O\ fy;>.)-3PCM0p7uT/Ͳv '*T =H5kld9D ʑpòZJm-a{l:"OYBTF&BVxbKJgw?(J6V4ݤ14zfr{&D <4&DSX=d[D^锴,b`q4Y[L54FF*MK\4\jFhJ=Q#̉>qӄTeb ?hLW78)|;s0q33ۗ*5)5c՝QZ)W5ceԫw;Kf 0篏|Ii ę!zNZvjr#sIp;o-1ath 뵌b?'\rRdbvʨnQ~Ց7&A(( TmF`'< tHî3|č^GZflXH`f"Z41AӇ%ʈ\)d9z%Wψ 4THJTW)C^ߕ Q328>[{ݖV4wР}hsT9(AVDS{z9_xc7FZ0R$ {b{QOW701 L PD}oM%1`TT6o$("MQ䧨=ηzt"UQ0Pxd]9GiLR@e{nM%v^yl `)/˴JūͰtDA̋$vƤVsq,\%t5{ɤNF<씙3_ = |%29naPʜI.Ē.tt0ӦC`))(g2T U"JOTƲ:{Ph_6dȮiA9:#=/ Wdpp\ff 彪v]DNYۋ;Bv0^k`x1HhA ] 1ry/ FWdyxY|%2H#b!Е/JCLcOYƩj[2`:hÏ\Y}WлM#|FmHβ$>,b6_2vSڨz6Ք@BI}$%.0`x]emw{e2Z3 vE-8J89XFmNƶI302Q/{t0M Sx_%]1v0<9`3)ovB]:xOH`6eD.%(A,"bZί`zuVbb8'})@.= P܅?\rR.:(aa'yڶ4q}8~D@+1 KA[X*L:)tpkp4ު~ˬ;AkK1p9uK^^ר$FwceO J<'5U-~YiKj(0a \hZaeTyuށN.=1蝐)(T $MQAɌ"gڶN̲v Š$Ҧ"v)f$ xtE8vJ'b`gq.D|!ID C,͍C jOvTj&9%SNFS5[gwHT"#y f#*iuF}(:ѲҷU2C}nBuYS/tGt2pGM7qoوApʥgr17cDg?BsBN 4fϥ 6GIJ b`P9s_M2z )X}QQn>"a=@a*4VRлEX%,(w0~Zcg nLU/M[$ ڪ^bԡB bS4T\|R cz.e\v..W<堨2-5;KwSc~ﭴ(3qFTfQECNpGuZ.;)70$1ɞST .9?$?+SfIa4 >I)0/ zH{Iz4.}TO8E+&.N A[9,xb@+ ~*zzV˻(IeT9f:ޛE.W*NUC@0 fW>%[/D~KSlN[W.XQ+iJ7CX*oo\ (_2^7d 8 $іZCiO}fӥ%AkBP 6U8$Q\T]zՈ׫|}YWucA^v!څl[DE&64'" H,=%Ȝ:ROlb?~ gccPŒNڶ t V>A;aUK7r~OiJ]a`> V}j6*Ř Vzak&4;آ*sէ ~-rȏH ,瑌RÞs]zdABj)V\ȿ F_P#zCup*[$mO!) iּ{pKǷOJ(Q> B~('xG|#Vޖl],g]?ْODuj@{k$kLQ?|/ o3Y> 7 "\ )7m&@9P[WQwNzjRSt~6Zo&mR9[ee{{rT뭲~"rNevTFO.[P[U&/7 =+UxvĎ8M[L]&& 7>p$w?=tuFzC5P2{uIU*1 O?m®ł6?S=Z*̚ 3]NV1Z ,0ub7Ɔ*KI*y;X 6I UqiyXR+xs}r E q2F#9$SUOaoRˡE<)y ~|0bWW$1oL 9+0wC=GlLlץY U6f:@i &e|T$/AO gQ_Rqh~ lTR4&;!bf7sXULƻ.j<:ZH`E'g޹!=h? s w)R(e{=X_cu52o,e {QWzzWHKڎnL b5X1v_;zu SՑ-u9inp;l;c{MS"'୦`"hxfdsʛ5pCKeI6yQ+jG/#U_t >ٽ,Wo@6&5W0@A .'86./=Wʇ)ܥRҿ)*W #H:r`z|`2l| 6C=G?HOjR0oh-@,{>} 4_k @\ނHYvZSjLKN4O{~VËֹC{]k(5g%mnEf`~ *B?Njg&P {8AQґO U'GIVAY*q9)ITNŷH-oM|~,צ˧U )gE$%#'[{H%}>'9ؽ?! K*A?BSqxa%vA4@,yGlJh4}~^yz͝Sp"l5 UUxd<7ZO?uejIe #D[dFF`w}?}{kectC[4ZaR.*[)).0;r_~.)} =BoQ/Eԯ%hc0(A 6,?A;x7ZYJet곢t>Ùiҭ[4NUqzI[ _#zi'{3]?m|R-jڿL=6vsYim䠰 7jcյ/vY:VIR!͓}J@yth-К8ݷ-u"OmC*AUtKC"[vd5ƭs"wTE8C@bYN.UY9K/[]Vx獊)t9"Oq!w2MK(L _1&H^g4ptxS9ަ,n1I;RԮo䁠JW3v{S .Ą>K&#ZTy(!k:9f`)-fa (l=mLɧziԕɧuS{ےnMBD@3=S ʏQ-ωt6@2eJ%b wdP:&͜ڹ4pl;*Ql gBDQ'}yِҚkXjB/]00I+ZHXFr=$v\T);\9z-etƬk<'}8@Mn"˭5 g]MFt/@RddՇ0pu:j6bo<ޕ.Z~Xዒ#xɸLYkZEpv*1'2;gX\\NW>t9xǬm)04F!lg!VG\ͤ% YO 1k;|rWS.ݯ2@!2K. }pއ`xg.ܐy9hVȨ("ГsGPbW_.7JISRÓèG g(ǣBcA/Du 1.7Ձ{Astt<ԆmwZ!+*)<77}i/q~b=2gl!u# ͥ [}?7x<:Ywjx xשTr7%q}<@.w;H(Y)`Lcir̢ᇤe5zWP>Ue(2L*]Opfr8 ToEMl|KUͨƑy 8dK,fN>7N~PkxXq2kت^@s7Oߟ(+8f ec,q\'f/m˔ oܗi<t Jk%?]%G@‹XO&| g\D]9}?=Az@'M4^^EKqpKG&/絋i =_a9l/T_&< 3>nmJ9MOj}J6'[?b]Vݐ6m#AGj.Okܪ1R~ 5W$]'3sEz? *FlLn3 %HYTֻeM^ᡛ(鶃@y§Rz<Ɲ+@b$Ѧ;cFGU2C:0;g>~l2q>?Gx\_btUs=sxU(/+pGp0}'E%WBXzJJ~X"zʹL)Ws6\6t JUڱ K=|N {I 'zde!0I"RiP]su;" R'4a2 B|~{|`" tS\b) p:l gX𵕊rvӞJ)0[lۅ,8hG3 ӾoCe1 g Q|;9Ux*mKԊ1)YΐQ gO&50橻cQ4L[j#^d칷L5*I?Q6'R7E=1 ؎;M 07]:{LI`)m,íDŜDaBx< n~@9sR1'gr ʱMhs3bt-xzo}_>ΏJLj_bm,cgBD)K:i@Z?F|XJb02E[kB9-IÉT1/1}SH/DKEdqK"nw+"|Z{cVbNL?cϺ~' l wS8 *gW?TE5x"D?_4;L} 5C |]Ȇp.w afܢ4ꤿřcL)K8TMOHu/Yᯗ| K MbÌ'WKlSM0VzO3]aЩoO:F<+),A (-)>0|f❮*|:(HS$dы>: x"wE̹QBiOS O&SO5#-}EGYV뽪b `0!(JpRGIn6M ;j!9u%G*`J>*To7f ƫܜI^ frV9;s\cu!:TѴ(Q|;Zwݰ.&+Q1sηMSd$gXU`uX9&BťyKמ#*j,:њƧU:ӂpekNABcJ*7dV֝VOc ^[MLbn'l >Vm-A^Qy Н8 Uj3$!61IJoe+h>_ RŝVρ@߹ms>hp*@W8a逞A> rݣ zj?\hה18FNu4XQ,CCKsӾҟW|G_.DC<̏rA6k`]ўUw_ROH1O^4!=ȜoiMd m(R1lTh=8ى[ދyqS t R1^',),{,xTH㢒|P0pC(ֹ*Sz^p֕,7k(#LJwH" 5_I 2NL& $|wVngJ9f}u4SHqT?BmIoaPуh9I,PlS I;aX@z& -eŢRZ_+ wh&-` Z WG0Tޓsuؔ]K9E*SN>}5C \{.C$L㹑Fȍ-ڲZqwܢmL(;͟?_i_Wan#ek~¯J0&\\]1H?`mUOyIo,rE@|ld[7{sYrFO6 Fݧ) F7Gҕ26]~-.Q:L"챇JMM~^POJfۧ<_o/1?R%(hW犋 L02FIHE^8НV;v3nLE0yu}-{y> RبM.4WӾr:h~K|$a#?lAhݑYKl%zTm3X>ik+gi +r&<]}k6Z2bDȼuUyٱ"\ ~;d_c:,\tU?Zf<~|qێT1XRdؗ~'AA/xuC'BI(UDZ6|~V־O-UBs\ɶ 0"A?`Kd6""2{vǞo{S(o:DhE7b wJޑe!(OXhOTA>6<^L^ElC'uy ȢՔ T\a`FǢ"7kP߉h4\ת`6fM糪kkŭoڥ]\сx57σurL])P+gqGY(;,tp6~aYc|R+"-`c'&0yYhּb˂u&@55)sZ I=^1@<IpZϖB/[Qe%9YxtH 6reNG/NCkh/lCTyUGWQy4bzG0?n(V޹_>7FXpHZ4PMXL |K?ca¬3RZI!/e(8*K,z3ȁY/fЈft٦W꜅֣|l1M9O {v 5lo-~ 2G~YKL\ T[Uno p-Y:Z0) }}垣-lgXR1GSXߤ/QJ+cVS/ O/'e'zmH283H`cn52ݽ =h6%$+tN6$-&*ΓkIl@JW|.;ӴehhV7ʒ=m=MXqy{;i3` ] T&1OI<%&Fkk'/8rIѪ$r$ʎV %e{^hନ<^">5SU>IzmMjg2|1PCVK0[ J/~0m,*47sPQ9U}wB0[O)!Ƃ*uHH"N84HeA),l[(x +B'dw̻ Yk;jsX`xO'.ҷ}Bl61;BJCb RqU>,C;b6f-\{6u0蛄.* 2~-Ґ~|͚73+ϖi)0]3վ`qvLfˊq]cX/vts^W}c2Ph2E\~UwmR<09o{~LX,/f#CKhr6 ؙQ]m7:Yr/9/8Ix0Nq#m>ϗjFA^e$D<u}>&MoXcxUUM%:tEp$ֿK.11Du)ׁKY B{J/E*@Ei:e&G Ac(M>uĦv;U:_HͨMF;G0 xs+Pt)'D$齛hbq"\kHQtE{ .dUްGRn/( ! <`̀[߿KSq꺕cxe@[\ٞpHĿ@E8 NL!-Jtc$xEs(KNx+BL"I~%ac!IK(! .np\ik?m.±S^2;•C@a_'{MK:G幟QY1{+u~rq( z W{q0GV\G2y֣)ҍS1 1!㾘o) m74vsUa65w6o>4l scX'5[#Z aSJ sN>ns~D7 pn 6/!O1dV}Ce}Ha5'HzۆXBTd Wn243^yruɬxyAp> Wޒƒ*IRSw5$2Nof}>Zp.L%.o,{H*kqM㉖L ˔G--lk'd>8M_`G.)x"#0:l:n}:"ቩ&QUDzpIx }TFɿ:d$ wj3<ǜIQIB(I3=-QW,}6J_ H)Bt|dbP|H₅an,^ ;˪:wSb*Y :("kVnvV~LͯxDGl1y/ _XbC67\84׮0L\ol:]_k]^|1TFxj풢:1$Y~{ab͓ S +^!n06l{ZV?t5 >N#JNъ9o%\dF4)R3*†9_mGbjQ?ϋ6bo٨P}ĥs`>YIPwx wndkl'GfA^pWY;baѿ0&P(T0YA9u ;rO- 9 4SpiVKLyYvvIQj[ `ArNT8ڜTc qҜp(w{doL 2/K!/OS745 CO}ԇ ihNƺDpi:5ÛchHeYUu,il1d._|q8J8zvUC 5EK_{^ Zn?:,_T 6T-A FcCȊAfaS}iy8'AC}J1<ص%/(+Xא|bNi&q)N5>V֣7L,;(ʛ՘MG,2hGwA'/fC`'~ؑqYQ"õB*&s5 1x˫ 9޲ 0Zsp_=%wAai5ŰL_4 CB½P4S,IItaGSܯJs&5c\f1:b0 03M7ÉH-*><9(8-z{MWNCQe?6LVw|zq 闝HrBh oy.1j#g?>EJNorvi5Ǻ%S$^g~BKўqxu=ŇH]AHn@6:8xڑ}HMőj^'}B+Mtn5ۀ Ы3 ZafwYަg?*7Rgj臠 RJq!N4oE>zĺ&^ypVǟ|U`ή=akP^ۮ|FG`t X`ڙ^]HZ  GarZ#bl%RU 6{rx=>fbRD]B{O_7I64 FˁHJ9Yۄ4˺?x%S"eрQ$3vj4&NAHc3 6LOG(Zɪ?m3z[L;$1]*'6ǺZ&ӈǐm ']N2SY %Y[;`tAH]k7]Gkݭ">N >/*CChΨQŸe{~t)<ܧuw^HyMtBbbo,~`-* D񙅣jeF@6mJMdQ-^[ K{drIA9k3EdgW _Hk k"X`3'bIteCض PQ^./4Gx|TF8Pg\̇o,K'0ۛ.lQ9 MسmbQ, -˛Y\-Xq/z 8ъ(#_ra&XKidGĶHmMǓ"08[6ɜ[]j*L0|4B#6okx*ďw .ߴ^ O)Ę& 2:$86 td1I F />D+]!"#j_;TeϐN/Gy UmZaN+*ZxCCC*`In;eɫIb3Qp3E#RAt"VlW_m@D™b5,;nm!r\@k]4Z8R%X#֋] k:(8ޣV[F>WGYT5\@I-q_y\,X!cϯNZv#4vhJrKFHYqVh /ۘdNdn4ÊR\p" @O˙Sp 3%,X m^6bShK/u~#e_yVXH]X&^qX'` w. CV2hv(c.Jb7 ib=7&ʱIjZt;f\$WQ&5858Js\z#h(ZqUW9Yk?ET`:q4c}<f W D)]ЛA: YAa;`9 r,+g.ʢB~{4Bbiw. &g_du[3not?g0|to]XfXO 279N~cz *,Si,t Bf(M& (rw9gYTrf`X[?ƯSgTǼX{tr6B/~JRl x['IEJkե{'ISE;6ZxB"Ŏ燞hF @Hƣ{70ZWX#蓬!K|؃Mi#K .Z E[H^b_NPL0wıuώVh ^Y'/67z +OrSy2º]^4鉶 mPfhTy_mi:ipX| J&ԌTʚr٭R=X3Od@eUp^('UiVGQޢ!L@["&4R/yMzLT%H۱ ]RLuy* gpz5n_:1 )|U:-U~HFhF^^>.4D7IaJI%+GhMcHC 4bP  )AYڼE2S7W\dCM:,WdA]r}Eǒ(ӷ _$mB +N ':]bTzJaM90=a;d- eS.P1Uj/Mx)I`!+7@xR3T$%NnxSpM(ƲX?lHvmDNdm0J%Q}%=Dh/$! UVqJhY-/8: SsVŃ{KRuN&_SFǛ4 R1߸E[~pR2%_YϘ"qXby14ϼ1-u#bF|B>3;~v~^Cƫ)p(LG3 ZZmL2MdE%p ,hNE+lW Oz#hqMY#{%MG@)-7qz|6"ZO,FkD:Nfbq"Tm~1kۢз(o¨ ܊]#Q1Cy![ C;{|ufCkY6Ǟ! zO8+St(cmx 1,CVʋF,0wD'c\K 3GfEz~,! <ӌ{^)xSkS)YUoJbcz6 d>(55,;˽]`4C&.,P1>v!`B$۩{7`$>71אɿ= ܉/\F ];&swGpbR%i$.٪R8q7ٟ%˘N"cYD;X>i9VҞ=iy؅6865 ϭQyT\llS O. < нke?u(_?g>!f?KdXبDwո6ʾ$x^8r*>y^ EynA Ib9bhf^K*/؋R>xnCեb?f]j+n^qCx$;K#\ekaiASDς75[跀}I+S8U>WpL E"D|  BEk%hÌsFuCMߑ% fgi>O'2v=¦"L#-IuAmՔf،NQ6d ItW<~6=*Dеb.;D5MɄ =Ǯ⦑skB>An]BhzO^ ʼn%mnpՖ{uh/S 4 ɿyUmڅd)"A)gB0zG$yӏ`ծ8iTffW^ +º,Ii,q )lvzE7$(YloE6Y$:t> =Srm}ǎnz@KOyĂ{T B~z2v!FZ*uXGmLR 󶲀( fS!vOmsZzX(!\SQӹ4Lݪһ;o8W8Z#)hNzKr F҈$PJ 'S_=!jznd""Xj C"I_^k-6KfJSMOeB,:0x4;AJ[nOG~$MC |a炕+"!K!}PE{6vT8,ā^{P1'K5[g%E _L2ZAL$P28 J!%yIⲀ` ix7_ *ك2.4XHF5~%MtZ͔:MZ>N Qn{fsfw}c$K ડA_(%mkcqKi†޻ʏ ?bBA2ᗉfR&SEt-8;"v lAB9bNj/k#ZP8bH(_xӽfzvDuceL"ǭ}glV*/.n!wJioeL 4k7*U_i1]ɡ?zz@RM] ShFS̑m])I%#LSidyJ>ez0DIPLjw/npg]e#-{q0|em~ѓCx[ųAGߺIr IhC6`t]zgr)mJJһ'R-8І\SRb={*2<3˰iQr_%Z;0-"tq]c)DƈN$%l+ק([|%Ǐ LɳyA߽.>u/"& x5$G㨜̅j3J= c[T +Ll7pTj ԚӂuOԫx>3hsv;sq&ՖGqO ,]Tn\ =_+Wn%ƣubŅԻ/zJ( ت[N?f:$ˍ4|.LB#+Gyr,\-MD_+؆a&+@/N-Wݡr:E)hMMTYSl0حI{ǩZ9T&P م]&0O6S0, O؄&XΈ԰gH*5åpDCPQ Stea۰}>YhvS\C22K8j_.Hb 3!HOr{L59Ud8"N/-mk;f @xp3_kM) i/̂^G3Ftq2ONH!.±l_NflO9Xdiml֏@  6&#h *J\MBaҮVuszޛKw4W4t>R3^G/EE]W|Jaqo+wDOb k7.Ƽ۲IY!=-1=9L3EkZԫBE'a|z?dUŎiݣ+HLpUvAl>5f]žBl~sߍ‰_͈%y# 6#.PTr I7b1vRx6^0SM;[>&Ӗl>0"&Ue%/ElQ)D=?}̨Y'ƀ62#X-:rWR#[b5 D͘ ă&yt ZM+pxxȸ%5'@Փ= F^rN!9lR:rMN}% CgA;on6qcD7! мvh#'9vω&l=}"4ԺSb=ijIUrTkNvIs0'N} }"ҴO~ϾKDlwo @Df@7~K{j<aۆӓ!O8SR N.]7v&ZgI0UNm9c7orKE!cis۞tNe1MAk#ݕ=QrŪUw%0,M]10"(Ԅ'tX`3RץWqDEnc+ϡTS=d2x{!w;3a#ayB%m%3ݓWH<ZFP1E0X F z ׎/*1OC۟ʤ6I^M'C&gk,J~x%L(CTiLBZ[JؒP" `}ӈc8=5q06(rc"{\ uNEXe5 9.K΢0UDlyt&>kvmg`.AEȧ"%9OfgwcKr%!"MߊL)rf_] UzyI,!&Ծ5pO"yG8bv McȀ`M#C~oTY28HjqXd"(w%@מz2*=tTQkdiz,Pn2Yp xpyD7;)y{MfuhI7M!0AC%$eLv5 &YcD#Ժ>_1ķ{Q(t,*)-$m%_eݺc?bZ"v!\k2_ЕR[&1'/)֑04]'d]4Wpz`EDhx_ vnW n8  E^Yo=[|lO/z 6fGy`VFq$Q"F~l(lV;9J dM3*J*xkJ;U.HBIIE@TZDs˕.q;Rt/ DZSfqiTESK!N o"/|zEC2${f V boJ}>4KMy_ _==N܌rK*xBh*|) '>npHB ׿:9CVK)Rw-8aAچRa1(6 Ei=bV0HW BKոA{kwthc )+ м($)Q f/g4k*!Lٟz;l ^UvtdW+ggy|*lj(Jן!mFid(lȤOjl\ͼCRߔLVxdԘ/hm-x;@=dpjQv.6nMswguN#h17qm7"j/b"'sfUp de]D /Dž hh/nq=2˲.gzw@MGJxAA|=b={lҹEK"p(Ӕme5E0sUXX܃Z+]v]\=ݡ`2t;D,EF"T/NRNdz臊Nli)ûގ#$ \՞Ĺmg4KpRy vhNeE1+Qԗq]N0u5a: Z&b+&S,)C;].Kv (D4#v;j$R/WG%! +*:Xl%&[C:oȬQ!ܓNCoWx)C^]ZN@*+ExH \gY{azB7vkƍp g6GVoJMCʡ5=o/ΔN-zU<ÎQd` -n3Ȏh-}IG<^Xe!7y:lqo5t6DdMVZ|IBbzӾ̽11zt22`NR(iGM#G$v1-[Rj}3-'u4&s#yq|3u~C㫝cv/HⲢRnaEr(K G{j BԋR%wM.e<ɱwv?ً秊ȹN 96~PѨ:V(},z1C,?m]S]u53mF@ =XhkH؟.1Kӻ!43йi̅)}g㹽gFJپ l4j.Tv w:)'_VYW)neVϘ9~ n4߼@Z4+J#A.1KhlIFPxȷxFI'<8lJԷ=Kr5C=wD@/]}qESy[\^n)SJޓ otV@˳{iBdv>b*$99Uv3ujZ5 =sJ{EVæEtYek[t;X+ (wQ|ݿGQ` /+~ F;ydCi{E8f#w'/i\JDZm44&1)ڰeN9-pN3GX8B=ț_g]b'-Hczz&T|Ph$?rWYpUB(eVPyt \h6gʘa|Vǽ9+,-c}98-E/>Yv獽9V9J7uzTm”={koRlӒ" 7/&axsҹ7^e邐/hNMŚ6 u@̛NT$e5 ,!" yPȢ|4PJo1i2|Zum'@g՛ 0c4ʦs~!9 %A|WnaX, >zY61w.P! 88F L /ڵt&Y 4Ol !i5]8]ģnx1H ocOo@\/6xp 밁l'|@E=ީL456VK.(1NE wDit6g=pNӊY\]7vHٹyoi a:du:铤pZx<3G2·t$W{M |]4,6-tqDCE!1#n% Est !P' x+|קdp Z|># h"Lwȧ.sklqFklh F`wή 2vD%2^j#Gev}q_4Uf7<'" *.\Dg0 hnxf\w! /ma+3Qm1Mum5tlƼ$vX6a E˔ J +j(XH:9"D&C%GVm-;A+r/w˭) ~]c[Z)V KvfoSI%^FBP48l2;<К};[5Z4Ű(8D! e/%q?$8/V]Am(5Y].%oځN2;"6FEtGoӉ2ĝl87/ARN^Q5!v]gw&EeRC~Ȗ{eHje1֠ dkfϥ&)74e;|"{[ Mwj7\Ouo

wY"p $ҽ<6 ?ܬK Q /o dxy360eݛ5Pn^F8`vGʜ>7!w8jAba Ocftrd_6ӊaNԤmzxJb6%,٧|]z> 129J er4t/9x[o92[A~Er2$`Ud|{GHA ,h[ }=露ߵW#گC4(: s>V9XL0ez_"fk܇3s^q2x0G낍"}ݦ@?;O z WEo)2bz{wvjV\,npt$J73-wevFEUu>>6G{[`ni-7Kh vlDbD;Ht_8t[[$[""}2]ǭ@[d.u|1YOȦ?Ѻn~cp'ΗZ ᓘR"*~dO@(X[f׼-aT* 8D$SJgSPLv=Pz]gk""|eY3ygǔDh"o%6 b|np.o 52F<rch0 `]0J}0';n2Y2 z5+mN|H.{ݠ1+CV|[BofU,@A#Ք꯻aWt'ʿ٘Pog9e@4h(ϦfORsoy rs=4x)tlQpi^~rEp/ߩ(\йVҬzHMt==C$ DeK!.,k%r62zv,㠟'l%6ƯJ"oy/\7SV}ﴭxS cG2~^8Q~!W+n/@pq/fwj ^CqƷaυAXfK,Ϻ|迼ڧe] ƙBD.>uRꗓ*J L˙T/z+ckG0]2fH5/4wH]aYeT7MGs!rA f;7kZR'Aagl%v+$j%A%[%iRM.sOQ[ ]-3ѠUg@Bۊ&g"h-Pz>mT6N7i]ݨ;=1pB)`F M)˰\{9B"۵ 5_$o1BcYu.nb?$b %chІ[ Jzh]E <Ɓ&"eMd=bMc}`qXܮ(3} 4<{ 5! 7)Tٟ1Cdj=WD_ި7 jv&Ã,H IAPmBrKjƹҝT*Pe5|SLg߈;qHgGMyYЈ~M "XL`[TFyc6:f"b<6PQ<6c0`6qWGBڲcM 55 Y muJd_]y1O^"0{ٜCq\Y3ỳݴN:!2[y1+q={'xCoOi=͒6ߦ4P꯷W./˄XZpʟḎ%"PzKֵK,ᱚIJSO' pH9:2t4|é:UB>~['3弡0/t[b)h3P#ԝwEKrbL% EGvذFyo'0rtF؅ ]ƄJ3>ıpa`r7%ɟ3cDAebAj\(tXx5( ~G;ۏiN$x$@ސ&,Цa-&ӰCcm1NfS-&j}Ǚhw CkZY]icRd3l yT98;GRoHb\>i8Ѣj u<_֣nW !o-Bwڹw遏:C^q ȓ q":lkN-6-/!0W"aݏ͋R\2 h\ @UjFYe#BU=CQ@NL&v0 w 5B$e^L *q\9EcPy~dv0޼ŏaS2sI#2АEz c)(4MRƵhs^<Di򺅛U%.o@ؘ63i =ȗu[=6~LGOj-j6:(};GfW}%(+Px3ѠsQ c2#-*  2Xhȉf@t߮IAQu&b=v;:p-K*A|x3IÊN!J//~>!h#.ݢle@E%Od$^̭<$$fU`,>Gu$aMU\ 8K3[x|5]'vp-<>Pq8q\uO-CQo@aDp&ΑOJ{yT"g2eF?*g?ՙjz -4>$be5ؒLÞr^Q{,eRu0i9-3LC,p A b`,'#ma㯎B+N1>=p:A) U_>&7x)tAqhUj+C5IHbsx轵 0 5$c.xAt4 Dt&jjeGhі^dL} NnBzNQhm,|D1` {CO^Y"pkg8RW+[\2ԭG6_ RYgutefOjqn-o$BAa` hίs!Rc1Es2tNa1G͐Ԃ/]91N 2oOe[g<`$\,A6Q=n&i͡_s7?#*Hmqf^3USP2=sZhCfE`c#P}Ay<{|̜sP+QƁA&qn;R8J4#ɩ2F)fx|DA(bKQVLTqƻN5g ce2)u}\NdH!/LKF$P#R-ՙ6WqAld 4pY:[HIcϗY99S=pPhmTޯQpcvXn%d"ٞmLi*• }oS ̈pi&SNM{P.՚VJw !֙ms}WtFO R\YrjՀyΑݩDiM\Hu;HdC j.:͖n/u޺7SNfPad/2.eg#^#QIhϓjRؖ!Li ;>9ViDawJgǡۙ9B/BwcUцI.$q'W_rߴhXWG4-%YGCmQPsDa`,l#MCn&vDZn IɌsn:Js b-Fsȫ.Te{H!q_E9{mUvПs8櫬mV^^m膕. >Z8 ?U}.tqN%d,}s8I!#*LG:՗X[o^60F5qT<} +AllHY֢%%KV&d+sِrph GxL՝kH4%Cq}TVL^ąils,dD@pnC!R|.}/;5$nV5uhKVVSi&ǞzQӆLLf r&n@aht 7HE 4aϽ|F9ԁ xٴ22!^HsXPF@8[ ׷s$#VT ΚOOM%9l92ڢ~ iͤ:jX&7j_g~ )2ȷ-b7+S&sOuۨ'UB5 ~̕8in'”298|SѢxNK&ԒU<o.RíaŖW7s\D)(ܠstr=fd+y8ߦ|BR~!u{8?2ӁgB/s"Pu@%K&: ێ+TܱYmR͆HA)d"O3<_ZK9-er]~fsgUIFӆLfJ/x :AM` śQAC.* H)w))6jXA(E!M..<7e D'*cTMҏ:}">14d9د5N_ǵF.EjQV =ty*%d&߈_fQZ @0Y݃yX$Qڣws".(".HIyFp-I .l97 .5tQv`].[{߹I }^HjE@ ^vGָDzx( M1a2»:I4ffQ1 2 ?DA?pr@0Z [4w꾡I`r0Wî[է !=]u\3,Mm%å谰$ĀB1GuthnwIQn6Js Cc/܌<`ym ,՜.P g>i:g1CX\6~)sҁ2XBmHe˔lh\VQ?Q^W5}&ikAf޼ I]T&yC{&Un A;7t. x\tƤIBX`%63921UⰑĦ @"k&^/Y7Ux۵៽Z8P{d~o~!ݓŻKx@&]F2ϭ=Y`ղ 56cae;^/^H/]2vɰ2X~s " >ڲmTp@\8REg S.k>XqCU)5 Baz謟Ɛ5:%(9#DV/`̶ͨN[!A"r6[H CSߡ+kuԑx8dRwTas qlX->>=81ϚF_W2 <aNoC޺mBS&R9n뵀~Չ pWH(zu:*ڎH qq}wg&0%zϕƇv8jzIkg㗮hH8-:͢0#ksO,Nqc"ej@^$}/J"n J l"j:J?8뉜Bm?CjGoT9m؍ Z4oHN\ȶ/>2) 6%äQ?K>*] 5~R%Qbd AoCΩ0"zw1oߺs@OW6cx)FkIz]1@l |o=VSuSy@^24HTdB!x`>x/8ユv5 7nؽs-_c%?)_(A/͉İ; |lWy,3 p ]ĀrLіK- 6XG8XDy[yCh2`2K[['#R`Z"&xa<;wk5  ?[Y b\E//% F̔-] eKq ֦3)FK93?,D5-EԡzҲkJUn$2,HgXo#̉`N+%pZPBKή❢@z vpn;`5l6p;h_uo1ݘMWƶ,ӕ-SZlJ "_ԱKN!rHPcq?Ss91w鉪CsKTF0S<!)Ae.=ZD`?lUX|7Ne0B7߈cD]uz(9w0p-Kzއݰ>!yet3]ӰAҸ(Y/Nlyfk9N5!;O},ođ׮nR(#jĕŴ#ɶZicVz֮Ǻ~QG tݞ: mEQM"#[iVUM,(z| J~>YY.XK]rUH[ Kܴ=/s@AH yU$hxz[~?`+̼$E<]5 ރJILl!$/UDHixlg'909f%ZSd#Ȇ3bKJ+'YG~ur ÿ~eo-'0 fI˯8ֳ7Ð .x}Jow@? g!`_gCcj²KOpE._xè }챁ƴ*FnƳ~ &@Le{Rl`L:f1X}3OOͭ,Pw {Ugwuy]Оbg-y&^|BM0˾sjbH7"e<*`(jqlЗ$%GsaSA]\!Ι>D0/ݳ9ji2Yώ_?{NΞB_ t@mzyS=}[mЕXXWCDASiuJҸAmVa`]SQ3]Ai Ak yjqQ^Q D{$jSXBOPI;hº/0LCMZs)D+ 6 x#ow=lȧKɯeu툅im#lx_Xn)9l]{Eq'>qzj,Ydc6*䶐h~@bD2>vD1'-]=|Z{볞ķ@~U8{e5sS3] (z{n| ,ќ'"'J=yPtU.gnoސnD/hk0&'^qRw~T8J}%g_fHg]54g<Ub]Y(@ \{gqjr!Sm?< +`cd$"o'|c jAҘ1 'l.A&W`I?ء.wQٽ<gY=&NBsَ]ÖHS2Bm Zg֕ k]nT+Y @58|UY h> )wx Č ~KD[gW YPC(!COt ð 8/H7)tqw[GC0}Jt'VUPH2}x>Uc;W){|:'f0Pu =O(X:Ƅ`$Dj THQHD} /m1d`6]mPԐy[ {?69"ϐyhlUd9$yKz-M*n\&,zQeJ)N8K7I|+XSضYw‘[:)=K\<҂ W:[!.V3, LN8eĕLy!>| /G~˅ף6Z]CM'Y9 ۈ| ߁z:T] EҼ\sx_dE9%{&1JfKS-[am {>h %S8e2} w 7-2ˇ_,T"C!>!FxPտ(-:fQE{ Ċi*ċ>x#C 1Y,hۘ?Va7l˱q Vm*YžXCcM%&' pY (1ɈwO ĞGX@j̴wO)DDOj>_WzڟѶ^9)!N@4 o#_MF=VEY8dO0;À<[~VG.!jWG5.h' P'iM/'3TG0u#ao~ס|P 'F%g6(˯na*4ʻX=r@uie,Zw }SuwФG=U}qrpQwXw[0#8?֮kuyТFmbdo-uTOdsT0 P h>X&)_Qe8v1n:9$2+"K*QsbbH8H+÷~>΅GP *# Os@R8/e K͎l'9VkV$5r;# > M|=% T5>z,+u0ǿ ;n> "-泙]ku, v>KiS/Xl_K=2YSd6:v#vJy̲\Bj*] ʢёf'uz2rB;^Mc8Ap3 2v'z홄DU8$E#&F2M kJflG]c'fl՛/!;`!VJ Dyvw }d+sk=4Y MIXb`Pfp|P͘vw?O43Jd{E,C|S`3NLa.ה?ceL&xAo_PkceTuOW!هH_~N6 @LL}Xo6rb J̽5VجTK]S×"֏%:{9?7g29ɐ.EFs j^- +D #"Vv@/9Eب?I׷:=U<`%<+5P0`[:%g:AR "}Lή+Z9qg()y< & |xߺLh&!jK|1òލ/kd{?=㵸x 淴EUߏ'=[@ݞ8 f!U߲N `"r tT{yt RH^f)6kwr-P[)*5wD@׺ӉK[PAeQn`lĆѦWx;-/\qJ+m˅8һ~g# PYuZG{-T(ytHXMɗ}5剻ĠM v-΍MU̙n6]Ƙ-J/WWFU u.Ss2VDNk KzUIvrRgRhm:R_v9bXAt-ԣ35=edσ䡏 [,# \լq:=,1MAٓOU[luxX-~ゞSk%dEXo/]ׅ1K=;)M"? kp!D%ʗ E)S0E^vu %acxi?#2R(!lKcDiݙX:=dwG4:ߓ9~Z&@c%XH~yD;I'W=VDtcw:p|]v~]])5#%/'lGhe6&C,iʠt/6khpEP&%H쿗E"%Bp҉oBhF2OB !D>폹hZ~naj5.A}9mZPވ'FG~\ խa.;3C{i*T2aseWya$Io *E 6[rzeM} J+۠m/[S P$_뻪$5 6jq7|)KKM@7Gj2 2;Qghp/(χ8|{v%sG>ȩ~S_YtuӦE[LM|o޲qHǖȳN N8jSn)Yjrxc :V^nspŭc?^ƟJ4kU,kW\,Ђ l>Nq|\YtЗjWNnbl > wS\fZ2X#~KpF-3w'&^ wd˛,1uxh;]u&5hSdK[&~AT(q^rJCVY~0ZNWNUX1yl#4_*lUS[MY3VM/RW?IHgZs8`m?!Q ոhm6ԇʘmZ>8Pz_ib}`\h'<Zv_'gg  h.t 0jjau #<>1: ]rͭ{>X؞`Ņ6-H'yz/XoMUd"ҦlnU`JZ´&e+Z̀p O[䗺>q=cAщ΋;\" p kjY򰍱=CߵaT(AƜ!S;R+/?vJ% *"\ #GC?̀uϚtd=<3ٚJ1H;qF^^to_}zCsnb@:_\@ ==ʼnPbVSV(=mu]L.a$4O+Ƕ=GZq59YD*hϼ 7$|[F$턛!c6FF ㇟3) (ime-LVΞG& D F*6?oE`5pF8-ׯB`_(W?>m?q-7#`QUC]N1){}x >.O bV-EoDm<4b]ԬJf#au<bjD']/ݣsFa(frQSyrӑ>ŜM:lVHh^ ɰ7ϱ 6ePA*v|hxaFC*kd`ӳ`+Kќ2J!,iOz:I.Alʝէ_,Syxe/]D_۟_aXI (SK>w݄+OzC3<+5 bהuKOxWJ'? v4Rv%[L!1__NaOR!XzPwA=nٻ)ϢWH^Ma> 8e*ptʚ4)SXf?Zg/D>Pӧ[Pmft8XK4{ٳ. "[Gz:.CLEk4eUfYfL&w.vL=`97",JTaDqrs>5\J*/aTvJ2Q@y%Lng{hVK&yjuhup~aF٩4[xɿbHMpnhE!\,Tœ~4J= :;ZhRN⥃c`@E: @ ~cf&_X^=uHe*{n80ިqЌGZ?.̰8| ??wČ⋞6fsx^LD#,LzF{SWuI 43lڲ&[+E%G-O{{|4H+&c\-8]njJL\' FbKd> 8͘N`iHCږAi.Mvxnmd",T.\^Nw!&-5˟]- XO:h?iP\h0yog4Md<ЍlW -ݕ!n8}Ş V^  RXr3'"{$ A?!x[5QI䤅أc5V>ц[tNLr@첽5Ei oKShߍhxt V%³elBNs`(1H" Upi87h'gNttt2x3IgQc;S*+sZj)Q{gF-C&$Cq .@uz7?,$U1 :A`sdeJ LsH"]4Mq rbtw ']D6's"kh?6hRcA(KK :wdCmg, f$l ) x۱s5ͧR.MՋ^$9{SnD1݄z zJlg?5mj0n7 $(Xa7-dX͘u&&]PXJZY${s^A̿M-KL%,a8 m4 VƧ+g-['R_^08TW"1@bǣ T1࢕&ބj]>Vg@7H1! &xZj:؁SQl(Su?c+;F*.[$ubI2BI07`)[lzvù]ɛ} ~2.|֯eUrKL츽i+ yِ7ǬUh˓ ǼzXJ)r5U*J@XF-9:e{H!\V2-]szyIJ6xJU7][/i'B?% xsޠȣE_Ib9u 0o5ac9t b{S]#zڻ[O8>Faۋp_D P*p:IML$d#ql>I Ve DgL&\_B7Ħ|pjDkolAH53yKǓA?zO5J 7^fG&?rMQjm^C@:l2 Ɉ86TԿhw>9#.LjΈ3QA6clv=-E2Cm+{ WCW saR\:;0XXfrnd\ F=ZH@b0j }wpFY!6 ;)qL[h_:SBoP?-}W¶-Np a'a\ն۩.nǮ*M!ZPIڴV5K<h,:x~o)pT&38Z#X6s@X] Z8Z/_7Runڳh#'u8Kg3H@z1QX_$׆E/<(9"XĦ#0U`ΐ6lϴ8ѳ 4I]fxm߬TBZh`t ޽ ()|b) ; k{8 *3:q/rH@wܑ!]Jע6t/A9`vu0"1bwR e%Wqb"]d"3`.2t&_h{Yߡ _X=Bz/uȩ) Ib熐%b[]9H6]y3#n l=:5 iRh FL``(4?M( [/ XB:+d}A4Oײ= \?Rv@,V O r>S{x3%R?BˡûEkPmkҕa"ȗ%į֝peMZ]ʳĥchTH &#J7`m\|IQtMXQRd< z~Cyl]HphO"ٙ>XӘꆒI bӳXC,`":F69z|g 16G~]c^jokN#|۩3tJC \|V|wÞ`̃4݌ |vʲ8Ӄ![@jȮQ Vy<)DrxQ` @λɫz6Td +tOLq ^x#Ek1XLX;ck7ST7IP݅DPf-Ym9-H( [">Y>0QٙX<?T{[D>n&&eLH Z333 >0͟9U*\v w T-4(A3]57E׍RSIyvKaI1ڰbCwbyi]up~p~Z@ ]/22үCNr<_@q'NWӢPa XjߠbS%T߉"d 2x b| vWF+BWcp9vd3= ҸB[7⡥ow2Ib6yPLmxpaVtO\jQNY>4E99oʯ6w֞,vh]\0Rѭ@>W BX 9A_+NbZaBq~q0R)$U?JLd̔*d3vb<6(9D9PzD*Z Hͮ`ɔwj$3(WG*Q{MƤYg!XVaBq$;n1`t´ƮO2I?:UFQZctT86<:Vd@>shLϏeT %ii]kNN#臤 6POf7X?dt$o>Q>lkdeA(aӭ03V)],ш|8 c  ?9_e4Mthi5Ah[̜<]q mp} }J/ItKh9(-88[O+L\~Z_Bmnh]w)DSm&Q?9U ۰WU͵\ ˓x,KZ*9mhI`6"~e)?s?ahy# Kb±Մl:0XdRLC`cj(Rm9 =&jCX}4޼I/G{Rx)b6/jh^,UOhyeƭc̚j/ߏzė?N"`F Ã>OPSx!b,Юj7, * Z2k,, gAtДy<'W"^gbf 0ח&Kf瘈lb•?bBwiY3FTu:Kj"j^5I*wi7Q'm-nF m5ZSȫc'Gi%0dP@b#'軦T ?Db-uSQ[1 o£R!V/o`n'z' \: ~%cU @x~a5K2e a\g:ͮ 5i!/> Shj\ Nr)1tݍt}wtr(q8Aj(L6fp:ؿXO CW@C>یi{5KwYeU85V7ђNgj1plMDygb&~:}HÑ\6w4w| ɨ($KSnجZ>q>ˏ#YJ|?w٭/Nx;<p%yǎ60%ys;aR`fI=T[\6 )m]XQLnBd:F" >fbO?^DF|BXH@63>?J [9?"<ƣܱ"yYg)m+u 34 DufV9MO˅g~+!o yJF?~[m)s/ :_x+_[hʴ17ovy[ZSe[e÷er;gb[&l4G{z M{PǘTΏPAuLA%m|8](BS UvXi@*a gW^ vRpJdȾCaWؓ Ϭ|3rYG%*[0)zsCLDBP4ŝi[w{<\ƉuBv^\lG6ZdZwdl+kޘ6*% =*Mj<S{f&&~zI"ZloA.g"B'!0q`BT:MAZ, gpک3cNJb:vkܰ}$3TF٘/[;f {Ҭ֡$g<")j/1EpO?S5! .3A)@5d3k?]Id<{\ț#vCt00^>D9 A-_̬׉qV†N+Dhn .G3:0fPj{yjp-$Pw(jqy,˅̈́s U`)BS<kAQq*ߓkFC Fx&zqa!N\#Z?e8FwP"4,"[RߔBfd%Dor#vnHkt# žL"g~EM RNj´.Eڷ\r ǣó)v0Osxp y+`RA~v~KMvf0WPV)8 PŘe4|~b\fΙk*gI*k^Y34v%nqq9vzCWE8:v$@uؘ'U X)8^; +d;)V'$z6hƱ5RsIۥħ*Ro7HE$3hў_R]ޠ?S1 /3ӛyr#%@=L՚U @MƊA&JI)T%Lj|淭*@ B8ޒv˄Dy]ϵ9۝hN$Gs9 ZWaw"ȅUȣDTcmUįYٖFcy'YASxNzu3$xaΌ8'SE]JY 9N xa5w> oi& W/}uD6J3ҧo4o-mzR"ǡ]"J'^cEJG/X =6(s|6T~רV S-vvɑΞ/y:F);PWX9m:LgXOze]PL"g(V_:A_9޵3ae5jTihp3ow,`x1 !5ЌqUO"yo 3 ݴF͊v{^͹N9)piduyF!OTI'>|V22 37g]7CbN%s.E_тa!pq$=Qӿפ:ZM0x]hCެy2)YN!Εj(c ֲ0F!)i2^?Uq L{3vG^2UD@K>f`cEt R*ɜ3]f7ޔv?sW3C>ZZ!)rf8B#srxU$ŻgdvC`" ',Fg 6D8x[|SJrӘjxHhtч9 Ӹ"xXLu'b1j5}!<1U?̠Mva9|Rjj˖D |D+ ]iz?P!}ELb`sf L6o<9?9ԝJ_?Dœ+h}Qq(CKcqaDgs'+;^a_ SN o zI&‹PAv;k.LWV| jB7~4VLiJ&wf@loqφx U^P _b?&mQ$:/ d.MMhhߴF~U=7eCً 9*MU( tX#ፗRѸ ϧvZV*NUa5wuuVF@i0y`@V3U 2W)fߜT5d/Ba7v_!<҃{gXB8T p)*JQ:Ӹ(}UP oxw2C(/aBQ&K-ٚ#([9Tu&@T[ZPT)U c4g¬> p@Hk,jNWZcZbr毐զ%S" b˖2vb;̷#w : 8J(yh [`ᙺ)XM[j ]BeF樿}9W ׳&Ԇ~$7NNfМoP qw.ay]+e,Sgϑ;fѪnmVꡈ,P17%.{7ÙPS*olNwW.=Lk NfLM 1ȵǛ=K4Dn c0$ H0r$Q%H8N)2d/>;. =.0%@@T TS9 [9ɘ'N/ < 屈 L _4]'E adm1Ynߕ_kڽ[wEqޟS}A9x{V?O\`ĆW9s8®kl`M>iSELO. d>1hdRf^ws-U K{!9A |$'QIxܢ(0ơǨi2%;㟩ychɮ f TEBnt.5) 16(b _8|sN: "*`3谭(I)Z9 HS |Z,1sVú䊵f-c|WcpxqBp%Ђp6H qA5,lܨX%,2p xųX +{LA&Ojr &JN39][Ց2k:Jp:S{Z#T7Ri:!S_Һ:OecX3`@&V~(ȲézJddKdi! }}OF^X[hwF!;ԼH *;;pieF jW+E;bhE~ q-'Sβ$؎JFZ%#"{ah zvgw&zZ}"AZm\Èw~k1;k8R[Q`cu1.WpXb6!E{-d-ڬX\;\}>`S= T6zu4tsnt&q4nݺS:np"O]`3ns8Lzvq&M$ B3{m1|Ni9t=RqNSXAaDBӌ6fQI3#T[fg({E` IZ*h"A*n32 #$z'g*umқ&#ٸop!ϻO@unUw}mB6',*$h5`ϿHkHʿˡH6 xٲBrJLwK*HJLU=Mo[;OH'2]vRR`Ϲ'Ac`03]T,&7*_C!ɔ+jb{m"xʪD6RF7tITPESwS!9tsy/"CfJN(%k갭uRǢiw(6x>,'D, Xj`s"GQ6 ˞L7:>AB9)Ք[:4̃:r7paeBed|8 Tc#OT N\S#C{!b.?7 !WbE[E Ygze2ëFX:p'}sǯ],!zK>zRdy'aKc>@Ր vsPz}<9Fs~H ,caNw?/٘{4•zmE+f}b9PoЗ뵒[0)R +a&1x>K.x/1={yv[-H[.nP%2K,ʳe`8Hw;)A:}$ E^.ϯt hv1z4n/9p&~ВZorI@hĹ0Ӥ S1ţ,C,S֦{+'s=2|!{p萍xyFlHn7HB}I)?զSN ]vo+IxJssM)ko7r#-/)j<~ Akfro`Q8q=ܵ[<jyc#У߽+?^ EVWQe[6=uKJQC)9 s/}Dǣf<@Á/f㯔?Se#_c!mS P!&1MKAIPI2 7EZ=`.RjbQ4%K;(|k bዂ#.]}_77 lD;^oK i(Qm:V/fOwӎD{+#j- $SG)ԃQ`KR}oˆm[JN=FF0b{Y )$z98q{]N~-iNg:ר')L3%WX~ś3dMC:wSʄ ! r647eSԎ3hey {t;/iFFbdu/@Wh|֋Ez[授ﶱf1볦fW^5gRlYw7_'䐮A{43}3A~7g pZ+Tk[z7SN57k.i/uy<5B򦛏Q+a"nrr&svq_7c>tU Uxi7z/QלّИ}53[PFFr%,$WLx%>2`*[lADαC Z+L|g0"Q%/_J~_8$NN%IfhqV}[{m2wvu.a=St}= O;!bdVD:,]nENK(./?UL^}!<&SuABztCi+fj8wHZkL_|iý 9NpuŰSiJ}̃hO}n:Zkӓi1l1f;^P a?ޅ5KZMc0ZJ&`T bAx\/ ࿹;Mn6 -E;t{9]l}b[cpԜEDUlS%˕x$V='&1MC^=JIu6K9Yxy_&_e*rXʇpVvzٳddD-f$Qrk蠡Yu =ļ28L>D  :`kE;i oVd& K' bӿJtQ;k֙.+ī*a$`EdHisɎOaѦoR]s-3#FOں6yhzKW֓l.f1wsTǸ9.rA&_ѡ˯i!\o<탋b@NjR^/RG%Ԧozp#|DGΘh9/?BUR ^lFwPd]D53PYkܷ>,.lC=0; !Bȭ֡NrlpMqieĚuΈU:ˈ YL&Nn@c];8ov2jN{]sfeT*x^;RܕϠHDs!J`AU` n-JIY. l'c8KKaMu΄ΤH4r TnJ4 =ҋ}v\Pd?JͰ7f=X(~[b|;i^w?fx5Sh 2L1켋=׷w?N: .|tǣ_oș,lGŸ>W2&X K&FRn'Ixp8*s&K"0l9+Zbv"X=@Y jBGWڅ VA 1G;Օ'sP8%UȔpM`f²W}<gGV#FeЮL4.exϪpCف7aI ev'؝Q 9UX X@6v)q(Ft:>.,Uh=)JVyq>҄w ,: &J{UdDE=7w(@Fknhw>O|Yq>XZ~ĝcAak&6chH|ldM5EXD\T]Y{QX.b fF(dp-bn,a;_P%FTHxsSҾʸiܗVȧoxG N`T.TgC ,Ve_Xn-SE'OZð<o|+`]V4c^zhNge qAY8:Y:a~Kņ3̓w0NQ|2q)D}@2, U'K;N"9 Bnů)[7OXe#*7 v{y*_&z-q e1%|g%476 a-ڋS2VIâO.wx/:m Eu1 lxo@|HL_0[k̂ ֥ P\jkڥ[@N?Օ*8t ȱ@NdĆG-s @#|ȩWg):'Lh4GTP;A' &RQ~C0]i7Pi>U0M:SE9Ԗuٿ{Q'K5L`}S1\U x=[qv>0 p;lk#8IM`'Eω ] ~oMxJH+eOw6/_L[K" vtMtb`&yx贴\GL=P%U~•唊w+CeC$ak'` 9iJ)5 iQk5k}_8"'.*OȜ0ϦAT|f B &㰲 LX" JbȣLI(94 -4ny43)g8BS7ˑXZr"aNx =aX3@]l8 U Q3$yp6 "cgB48`d6 仰DP|*$:K#_*HēuCe]}.2/52 ds*1 Г.Wi)"[Q_!Mp?_z qp|A1Vv\'seC6dTŸefN-oe (;Ϥ@- l Ehx<v}U4{ggq.PnZ#ȑLjy{ Mh]uT tKhaذ@SL b֏u8uDZ:H%Icc"8p]A<OFR<ԝM +q%"#vQ }yAO_(6h[Hddi||=` 8X*CFVgO2Y/T%~F]BO|P]Ŝ<`Rw츅Ǜ gń!~M訐 `Lڏ%K ݘ7)m[x]jz y̲\T혛O~;ndyVtq$tj2Ek(ZdLR9@8;Ӓ{\>U'lþw&y +s.bŶ2sY#A3؀6>eOD?``ʈ3eM>NfABpxŵ\ >hG9I#='TToڸn@%|C9NÞJ,{}򴼹}MC"oZ!Y!ieY{T;*yV[Oc!0[3.4*f~8U2q2HFY[)<74ڰ$|$a0[y:y%UychRf;:ɱyzVMŵP/Ǚ;#cVga4ZUVn4h,@ٌ =< S]cBI6(%y,y&k b7轧G`N6Ƚ/pk9/6*T24=[AZ݅fm{^%?v`M %"R>l:P9 2̡^JIMPΫ1ZFog8Ndä+OY!:ɾaΏ1pS{ĩ^9P%UT ŀL+ }VoC?j j=J?px #ERtL$zKMݫ‰&sy7eoq5dz"C`p3)A9:WA[& зG,X2~+[tey S87pqb)/ThZ44,PȬ0b*$wr%"f> Ỳ\#ͲkF`ǧ(["}fβP'jv2?tDDtwЩp 6Opa$q jwmЕ҂Mq`?t "B Y-͎mս3pl mO(dGg~Nmji2?^Z bQBlCdnM;a)0h ct3V^0GյQ`B1GSa29+c L`kK:rglZ_鋣LVS9K"ó&rg+nYu,5q?GiI&7u85lgƕv,!̓ cyaX+ a.zԴ*B-pHC@.atP>*t%խX}i`DhC-[pcxK;0,,H M߭K؟Lg@~0`f~}Dx;US `"<k"?.(UTE>5@ua) mC'B,o%;E."MyQ2Pr>*ja2ŷ0&0.W0(D60ZCEec&:!7PJ}GC ,ReiuUŗԍ-;({PX hH"OǬU{@L9{|>F.B~_䔙C\IYvFÂkݦheqpCzP! :SK x[dhfHU ^YŒ܆Wϥ2Pթ-jwL/4c4RFO[){c c.=O@S trT$s u*)a.*e;kDMX GTITDV-ZZ#VWܰyN4'W -Y';y 8B[쎕ڻ ^2eŧKY;?.0UM - unz\P j|.:(EyɼJ)S'0 ۋފN]苏i>v c9"2v=3hNv|ɡgK% uW h OޞT82{B?@_"uDuʺnztVȵS%D)<{C%?>&J^yM(׹]ڃorT.3 U * %E楼, Fr็hZCHɀt>5Vfnӧc/xiY+FF#ƶ׆ꁾ>`'wNcI[1})(+aUe`ЄmLMYV } H֝'Xe) k;8Ӻ>>3~vHt;'=ilCeĖXN{Ӵ0)9€t4Ls+R==ʝ8(3! T{KSkŘG)nYIc砎@ruJ+{g]W5v_Юҽ`b<3${,eHxo"c| ! dsP%N\F2}z'#b܅AB :Im ^msV.^hmYr4q_ƊMu"Wc`rN! (EBGn#x]W3 8J`˅NjsEkU,8Oy޾Xe,6F ] VcоHW&i$ڒYo$9zOr o؊ QHK_r©m6ʵ3Ep S ySDUh=Ȕ 9&">}`dJp]xJ(ˉ9[ߩLFiD;T{D:"BVՊ GpU=<"k]=66DrP{F q-IIz߼oӠdO<{4EA,kZ.GɃX~4y?iNϧ7;uaRD;KoGcL |v6 B4s:G7ҋ~8Qw\̠NXNA+zt$cVZK,E]!q3޶Z}TLbȠ%bDEI q|etLHrGmwv<64'Nib i>h Lc9 uHfZLԦ и~tcv!h'y/6S4`mGX!)Ei20O27?oєDM:ձ,t'W=H6+>j*cfr7jhCӞmQh/겑dR*LB,U=;" ˡ8Td"Ѓ[[sѣZPjMbJ"͉.TCU׃g =^2]ځ$r Wy0%PuPc|G {Z(Aq dRL{tZQ_ܓmv”8‰C8%kNl`4<뤯e ]&lE5ZA=aLeo;:3'| yNctL"ovlK?mj8}i Vl #%13s7ȝ5ļn/rPt_Pjs8?Ʈ`pa\5N'Y kAEB%|Wd Hc]L%!m849rb }K[*# O(aU`DLebiZϳ.X}g@;}Z.l乚1/]LE?hXx@zv1o+ ;aE%R2UL AXI/OH9KFUB71`%g;Y^@WoR1V@- $~&Rg?¡ab;dYzyu-\"ua!TۜSn1U97r^ONK13D"\IB N>(h@=ywV:ENv`c]H8f.a>mdd9 T?D3(3N`Q.wsݳ4#%/j5@ H`eDlS~=+{o7p*tS9Ղm"mHGRp7A1_!)QV*D6`;xԓ8^$,c0@=4ȔG.XNq_Y"t詇C)P#`S(H#-P,)wR!!y]cOSl/2&1X"r| xcC4*EñK(]Jsn4Oj걭wow|I+6NZb.VwY^H._ܶo-E?ZRu;ELkb~5sra%FR 0C$5fmifDL7 ׋ҦT. ;;',hR0!' j핥FW,i?eD(Wj7Ay{ "Edl7iw/ٖ7XrX, WɅBc㥄)05Hz{Yw~bb#^G06ɇ$|/uB:4N"[(yrX#`m ^S$DxV[u=I%~xggIL9iNaO3M ZD H٥U9 k`A,TcGDimB.x$#r9C@>τJ<ߛ*'}DcoVWJ\M^Ff2$__mڸ7or|:\F[6*ct9|֭I w2ZDSM8Om5[,i#!Wqd`WKj E`)_`i"v 5οx8ῳvLn+۩8^)\'>FYcg|:| HyJ:菷G \4:0 4$苴4!|یT2>kh(/q D{߆0zE?x+\sܒd44U6`j&9 lx'& Z^vqsm`b~lIj~mw{y+x Siei G *uƗEmrɊ O3͒ ,X}'Iȡ.^FAQpE+``!^i=~A MJ\'RILXrME+@/ ū^z`+^SQcW[1gؑAlkQQ l.*8CC)RI9Ȑ-;"NXKSt6k &Re" #tv\ɁC7=?7ISߒ;+\Jl?k!o7!۷ӑ2"h |1h#vuE^jN,NW;XR[kmބrqs8Fh^iSku% l L][_*>1n, $!CZܺN.>;Gb[":)*PdBzU4W&dOݯԦ'z#6J~/qA6"辎 XGJyRzsiUa_v%O09 c}WٍZKi*m3Ea=aHXS)YL4 %M-_Z ~2W ykK2!+^UNy&3n9#,&MBy+W"ZpT^QYM*HBC498B0$^tABU̗L4>o&/a߇5 5tJ*GϨu{x)F4h)),y +ʗݖLKDn;N T|FFqlU!D2[Z~a_˩jiKDTDg_ք'ZZ۾:Z Q%- i+):g7YD4A :+M6M""{<]sq prc; s~"E+FQFehCu'{ e!.+%@o11 rC/[߼ ذY _Zh5r{*qꏹ Wu1'|v~{_ +O?/`un|&fSkwP ] OE0cDиeYځfX82{&|rx|E4\C]=N@,}0O!pӽ ZhN `0`=d"xaڅ r.728Uoʽc5B=/&륱k$ aV/ iL3f@b1\'*B3Te;#[k=G\m/meK?1nLb MW V?vV)_T HLKҚ[w Ҽ"qޭU`D&oi.fHϙ\3Mp?)9~a5"Hhp(dRDgVksׅ; lF[$IګX6(;(?D.5^*FzTePG!x2l`7w{rsLfX̕&ǬItPzWHu:xP.Up9p2Pzn-VFDehs55K_OV `ѹpݿA̳ܣġ4xޠpmD exfiu8U:nEU?I2 p;>/bWe zpR(Tu؏l*-MJ 3CZPCgY$_$]=7,8n֊ø2S+% G(nO!G )Wo{рp0%(eL)竏&Wu83z6v-޾IgL4M M:&5=%aߌ_(jaZvi]u'Z_54>x]y~wk0pkfUOU9[ڌ6gl5V-[(1*Y뗩yA_76eX ٙ+AozvKTFlԝw MAs%k%8pJ+#)sT7JMT&"4ը7m&;T^ @7c9}fwAr@dX<<).?W/',bJAxXqC*i${+ :ςU0Mk<ly:W4 |,fF$fDi@1E ][&j•^0L2*|6ޠ7o"ûoӂ!fkwC&&^ +%V n9KG&X_2#o CyB[-5oWuL3Sm"ذ%+eXP3. LVxJ=i<1h==b&}MRhCyTr_4MѰw5~@DgsRjDgD$&qa9gVWs_/3rKf G]|sS(HN>]S>N5S hy 3&ßbJ̷FAI[Ϛ0ci-8Q t`p **qp @Lg$Jx)׼V|z(*ϝ1ܴftqidvJyǐCw']w!3I N5KT+`V+WvAVn7 ٬B|[SDU&F*2^ Q=SVF4L;Z&&[f@/gUlg>a)~gF;&*Bnm-p&B'Dr\ 118{F-XvEΉ6/\t%2d?I}ל7ZA!hUj8fTl7 @N.tEQ&I2;s+T>^hj4!`- 5֖޵|OC‚lޖJ@r Y<WZ"u8\_[&^ JoD]*, _([ɥWbLMAXG]c䠷pԕɽFsPjWcjm'5.uiO5|KY|T]wW2JJxR,f=&Chz{xc>p.#*C|:?@Bz(2&|喰l,  ?I Ώ҄#·T$Amu3zbEp~f##_cJ@~GXpCtv_ ‹`ӊk$T-aP_FʿtYd{jqFՄܹ} TŰtT#Gm%.Orݤ(Nhэ2:"r>g^=u }摓aFjt%cǒ' ΦF;qd&Yl >ZF@ʭcM}iEmflV13TKBop9nۖAaE52r@M В2OrSD%J4 ݼ-τq\t2Y(!a u$rz,`<C6N >G4I3@( 1l/&K䩻6?Ч*U'O=kG6!m7~\8fs>-\;tҋ =ed*1m)-_֐&}j^Ge1=`WUѿ#~y\/̫6RҔbÜ3gk% `{nO!O˝j 2TڷOQb"< Y'KV*n8֓9M!=aإPi'ǜ˩C׵(tHDan0909"5,j&P\\֔.pZG9Fh_|wD˛%TG,Ht~[XU"jPPŏ_#<$͢]`eL.=CqB.|b4Yޑ 5YoAӨ^<nՠ8{E*|_V Փ`= ]Ҩ ݠ_V߲5 Gl SɳmaP ~GxrŎЛ_eˆӽ&>i^Eq(&u}bQsp[V˒ckW,#|{m=~w08vH.2dI x̵vxkCIApFF&5ˉ@Hg%zן HYײUBA.g1*v5BrYgus#_Fl> AV7r&R.8T<JM iNk%#l|g\~Wwep=.T*";e+j=94CϪe} Z@fwǝ{8 KЗ!LÊ|ap9L9~"EXffSΉ]uO$7;8N4{?ZE7qahWm]]mv9]njfK#HU<$;%K(\D7\rJ1 J싔)'>/م m0a^T|Ab hg)wKy=}'5ۍ;zZ ^sDW<'[暆 tpQ-lb5SZ%A3q"}en\Od0=xxi(֟+"+LX9ǒ߿#;m,yj b/}18:oYud=V< G@㷄^]J82OM;wmW%z5kȓjYc68˺uN'{G`Qqy;ϕh=@jDQi:dE~>F>zcr]MGY)!.ENCUE{%ǰxqa6Ȁep]ؗNOwj, 4 ̖۾Aׁ >E )qN~CBj Q vMk;}6O)2TQ44! I$=&O0s&X%]sWĩرs2D xȓ(~Fo"H^0A;HnHSDۨzDpd3ï W L{] dRF>9 >Ǧ#e?MYFCvC% zqkQ^\;WkmnHdK0B {a/ b7 RȓwAѶ\ɒN޻i e}Ս/Y%|!_fYe CLzPb xO!jOwRE.~=Rlit"L*'_lDCk0h&-1I*4-s {KlߴOg[wYPq%eȬ 84)vȒAe GhX#:U D[)!U1Z9~kf@_|BR)#9(&ڬD@ڌ/_#q%SK$BI lI># }?a׷@gDq ٬<1<#S/݇zAꇴ5S;)q,U BC"űk`9cKH첡^sX&1)˗Lw5i4` z܆''b<ӫ_;n;$xRjKw118lIBn&;ތ$x=bǒujC΍:ީ1`k8/׌ sE ܛ͚eeW9R{4dmujs~"\V|,7ȅ =Q/C{j>;/z^Cx) (%w:+XYVa#ulD {DaVЊ=>yIJQ\ q*HK绗,U_}z?DY Ԗ0}lNs_X@Xki6)8lw?^Qhv谋Z*VD}D2dc f. |OP, ,3tl9YeOd^\8NHQ(},I!bv^XqtM gldw t }~mG7'"z}Ó 90W]XGEcQl۪jBfz?Y H\a Ӷ45Y|Tܜ-茗8P4dqfGw BQH͠DJuҭ9zY0 &ݛ[qǴj㦏!45/Om2'J5&x6@jSUő01 m=H8F|^Ke]:N<{ h_=RgRžl h,HzSM XȕZJkDDĴ[-qi8wWĀ++0kOqysAQ@hh%>DUdtp1ď)H m5"뷱|C J=q۰t1v[3Oz-I'BۚtG3:*#ȉ,QS$1}9W޳כ:jc{[2;,8/,G*N B7#+ 3L "nGuz=} EV'M! n pDf8x4BR & |$\1cg:1+iIDEO,``FB) yp:EaxT{c,}Uu>^X*/OFUĈ8`Icը@[tN Ƀ+e4 bOcфcd)ŭwwÛ;3vʷ[Ɠ].EqE #!H ]PMf䷹W/6)ī=qξm*h}CFZ+(i(5Q"I:W]OZ٢Yƽo42LS>eh8θPpۗ;.W_ 6 :몎{ QnTⵘʕųJ0`S̤JubL@|m  ZnBᢌE%X/=轪ӱbJ=tfkÛP} \aJ[tGQ_O^O$2ZAZ\u8UuӜm'%Mh휫^uYJ :6Y+6!€sBçnve)kƼoaWU\^۠QO^PZ3L0›<o:\꫶3~3nҠVm~GvGiANw =䋨vɞ.lyv]`i_y6;NO6O;rnXl\Go1 ѝ;uQD: o\xkuZLuQǕifӌVz[~Yo'jf/݆v:Ag ?(J[$ NYP'4,7m YQ?njn=[O-07{| S';rgBUhml4-de#>v0Z9a vjtYqrq@ YP">up'*\mbWuijg:%ifaw8-E NLi0V=*}J?YK9AFfvHz #͘Ѐ%LueHPXr7e~+)Є=/?E㌯Ңgj̫JJe" Ċ_Ds`J+֗"n ]M*X2hh̘.p?Oatf/abt"\.]*'%?u*=;zf)\A|af*8BIw^l1mXI$y"`0J F`xKhdm!{G(BBR&@OĕM"d[pKaC*ML@`s?!5Y06IqIEӁb7/M"^}Kv0/2IsKp[ge0ߍ*ҫa ߺShRIJm~Xd7G`/Awn=n٪R&վwKMf@j7H3mNƻ C@#R3kUnP١oَcb9;éYo5iD¿ܕD Y\ׂC:"R/YVpᦖmtW+z#h ]* ~o!"C2 تwY BId@B'3Iy]zzg끤Y;f(K_z'Mzm~sNPVtˆP+>>@=ڣ,)0j1,pXWrLVy;\XœMtiMC]70:" VB PѪ3Pʡmzb A¨N˴"jJ7"x6tNL T5N߯ (k]3Kb9fT'/ "q0 ~FW$ΒO©6mm: {s͟ +O5,={9*-6X@6S/5Gl`\~0 {2 *K}c6+|+KXҀt*/AޯI虻–kL3-ULw6#"-k@vtRLFQYw TEdN{J Wgq}{BV$ m9v~ kRgx̂s|`ŸOex{Ъ0^ܒuFi"9dd@1# ezMC#W4BcO,{\v](!m%X J>]ͤ~*2c]랋<qrQXiwaKJF,KߩiK}]dh{ 2|deiBQ}_hdAm|jؓԚ;WI]]>l>% (W6GAE0aƱdk Llǩ)tFWRgcܮU~uTt_[ ~oثEU'ta~'b&ӦbTdVlNԠBI$Ug<)8"ɰ;42Dbe2AM~-cA _{Q~nǶ5uXOɍ"&eJ0.ɘ OC~M^uCD pZ<<'g~G"p.X̀('ݫ!܁6Ȭ{vQ>Fx Α_tFkŨDY0XQ @Vc%7GAӖ 3}VlUvG*FT1b6!JEP9$a[ZZ_sApa%&!u\(Kwrm E 3&\qUQ52nK&1C7BoqW.G!i֋?*{X: :5,B"H9gYozr|-Ʋ';eÕ(LId8{Nǀ6Sz'z+d,wta5d0E=fH˩dzFf4Bd~kcY (a )t-2Jٷ T0K'#(^:XBue~%}#GQ$5=pa-KhqWJ%s:[PvfE-pM?7շ+^ =RvTX"e<}(YUDԺK;ۊ5 ڡ >;*t 9ʯ䗛ܳ.t;$F'RzQBڂ7j2v`fz3Dܭͪ!%?< Ґ$FeW}$0h|*}_w,98(E+sOs/az{gF(VѾ7)df9,{Y58.}۪gs $S>T?Uɲ0RM-C]7o|{My}2^a\@G0*vA0*l2Vܢ^LX 1Yvw}~>m%֨;K'jzϩw I˅$&&廢؝(4~hjG[6`#sxPЕ;zd=k!4`4}Sll/ҥ'CLbsBLHHn2ɤ57 F* A跑.Y^J'ȋ@/eg5i+ 91l2ґu(A%I pB cOzL4Ino (Ig1$[ikb"V1؎6c^& k6-CN]VV>RM Y-[ev?k*@,a\ϲ҆mm3FuvaU0Ix,4o3]Vpv{'M@1V{8|Uzš3*+Ùl逨ɠtDUn/B既 o|<ǖ }ApuTX~ןÐCQړL: xb_1u^;ַ\6( P+ "/j=?紱8,w^mQw]HȋZI=vGNuh"ӷWd5huZͥI"IchʹYLPקJW|9YS }GܬF-yle[2p_40Q!2z)AވB_C =xqH Sq%,D2Xdi:u/[{i 'wy/X/▗k]z:b?i$0K/!đCq@&Є0kw„K=/#4XK8j SL0 +f3Ⱥ`NK9] 0Hu2+ !6J+L j9[fT`}p_NpH{)eʲ)0`bma"Vա3v%=5OɵQ3LX*/r8NT,l]8:%ט Q*83[B+R]= (mጋ4OB/÷{g~+ۊd, Z8%guDJ:+ЏE0>E 2wgтp 佒)P4;{=z+LuzցFs+~a@'tZ %̴'Ř4aV{ۘźǃ8懙Tܻ~cay>= U4 ^.{j-g@VM-9IfSFic-6ZNL4b۞N✜ vŞ##Z/1Xc"J,\l=s}UHY@C[¼-|GHY\(p]K}]$$|>Q!Z}h;$In,Ͱ𭐿;[gHvD/%z3N~ &&_ry Z5ܕP ">,U:#1Doo6{j M%hs!87zC^(hwV 1[=rd y++4hpSjA3/D+?x=vZ¹d6}{?f;AX,KW3&VH3i'w o8Kdq4_5?gqVTp=6QI6D-Є o1lXzdq: OF;puħPڛ\A]b-"o冠ʑA8Gc[LJQdjz V%]'Nl .6\&宅* 4qt+Օstq 6ߋ¨DBIDzˬta HР /}lB.hORcjYzBW#BPNs6^3>6NqEC+^Wo@V.X;c{ ﺅ&zOUzl$!iR uTV|G:-a#'w6ix8a,~ud[$%W/9"O⽏R8mI,G7GjfT{QZX-NT<,@*V@Ůakn^soHsU'Gz*M(F'y;BJ|a/?uU/](i\ƙ *:qg;{oLf]Vo犿uFg~e\8+H>^@eG/%7uV(GF3JsHgf(UpC 㒟qIk[ +x|Y6 &"}5x#(E 13Ha\l7Kٶ9{DƦf0bpB!H}47FN=~ⰭjL-& +YZ1ɗ/x]o #N" i]>&3qh>6_Ze2 9i3'v%/3O bvM7#XSߡR}/}Ed]rei D)|}-RJ [7f%8,zcfuϟ \S` jl_CwQʙf>OE2cb>Zj}U~7ח2v<ُFotGU콯q7 䈷ل;n \ɼʫD%AB;4}* :rS]jk]`O(kUx:*dKMag-2w(Wh]F+j`XS[j nm츁b@,U=CSѽT$w);Ҷ-@2狰\ %F f)-d,ܐIvb^b\;hW-Gge ƏR7ŠՍ M1}>|n Sݳ8/ew_pW}G}|/=ڻ9p\Wlb @?rRC!lL% *!9Xm 2kJ]Z2JI;(h걞.Që.gDBy>PñåYtG6yҬ"R[,yӳ:zu3iV*@b'żZAL*O\;w2_O" I&b74'Ufa5qĥ ,8fgKBo fOL'iGt@aVԚg c*)6!U3=~ %ү .;x|9&BIto/61Y֚4-7#rH )'֗=ée }8v)dIssёDê ׵L)9#/S} ;/SۚG@D#q^*Xs(`LJ@ ꍘ"w0RKM4bᇑcԆ(bil"M=At;_Ѫ&vy.ip9X6 B7 ??b*2=bz}sa̮^0Dkhqؒ X@ڣZp,Gb%#ʇiLͤa,KtST2KqlV~$?vu v>Bq-QPP4K=9Yk { oiH8mj=Dܚ(sSXe"}Q,.͇_ǔi׵LϠ]B}n{gƤTtu K7P8р6 ` 9=-VrF> ']M,&?*bir^/ʚKie$'d eq@dDRaWS C+<ٌ\Ƴ'NdݏGivQՏ_Բw\pjĿ|<(>-cÉ(ӌ4H<`Rڟ̈́aZoW"(ϳPw5aGt5N2[HU|;ηJI&ٕukOm h99C_5nĢ"]0d !noA#\y| c[ ֜"&}{q :oLX+M&ʲlk-M/n$E25ez~A'hF֟ݍTWM!^u{"SSMJL8GTZ&6D1=9Ub}> .A#uR$pJWMLYSsU~0_Q𐶿ckm~;Grl_rq|.`'X=Ѐ-hF;>rgPlm5ȁ~j~.\b}IL`{G\Ч_%ǛS JU+nr61%F}ZT~͖WƧaV6{o\_]($*iBPd߉pUE(Pr 6Ø &w$sqX̃ an|o|5S1Y맅|5ʰҞ ۰_T-zj ݬ^eoxw$ə%ܲm_o(FHG׻FjxB'6NoTNt̵KcG3tn0)9A'r0JvnEuϯ@;"@PDhLC|vgО8.|b h=zSx9Z#:Ʃ'G~ F;^ 'ީ_q鈽D}Mq#N1XJ 6P+OlBS90G/ P"뿮/֘R";a6㷁(ed>ga8+U#=EѰkGwhN6%@8PYQN}86O^<$@a.Pn b <'{qP2 VN'lV(ѡ!Z9D iN)uCQEPd(8$NaTR{Iz5B{}q*r-^gD$nNyA.$&WGɥW@. !T"klEi(;h]n?7%F7ra{u.ϙމ>gz،ti x1*/_BV~ FQj=H SH(_L\ ?j)b{is'{4')#VGB k_ܣ%DFƂ]LwUjf,YnS)SV֧^ؤ ^JK9T0IvJ~eKRz團6NJ 0M;| 14IifEȋ+}ř¼7ŅCt/"zw@i$8}GC6M.^C]WF_߆2S_l^:=?_k?:n ,^ܗmuKc PdQrGJM@rk] N}3%&#{Cw>2("k# 9Sy*Ӱͷŭ\^o=K=>s&ϛ-7l ~Dx %QvEX K/HFSWI&hGY]Iq0?iY6Df>oġ(Ћgxbw{Ɯ#dM3L<>IwA^R" Ab79w=p*զ-}%5fX w[4ڨ~8O \wawrbb R\i/p ggI-#Ng)%th:7N=ffEZ#@}p&ɳ^LB(yȥӰҕkKLjJ{~>f:s]*Q󤯊ͦo ӶWy51P`$.w]l{ӆ$Zr>NV盩 H nTATB?n{Fp\(_K9{VY%ōi>T@3S SŘ)6woBٖbCiyx 1Mb$+i 'P @aUEX@_qHӫQx_ .i4Gk3JO\=:mխ#dˑR}+(C;]1n\(BK"eI 1I9T=#Upelab۸_%I":2sَ]zm@xݢyUϒj=ȸd46I2xyfe0`_@b޷#Ek߹ٙQ{ŹYZ0Ud볖xq ]ۙ_~b옪l ܠ.@"Y++kEdn2+hH_VKy̋|L ar(@F~H]:,u'qUdoܔ2./vBo|]eMVYIl8(<#Nt8_.޺b젓uLEQK[ۺ(o:EY[Ꝉ w0lhwzLI2U tUV! ָ@6j>j+~|45)XS }ح륣u`׮J-p0UW|Uy~I6e`b6EѯVNG35$;NRO_H%b9nY۹D6-LA2Z?T08@`t|$+M Q$~j*Fv\#P>eo<"6>P@hy(qWڨZ$G$JMC\Ƴvrc7YSץ[r.R5v+MUHhҙ* 0F2dMb3Ui*[Do{!Ni^8x~&XL^2<.wE2ceeZi)DzЈnVV/ un ͨe?>m{U9pO^x%5ݟTҡ"hzkQ.X+ku󞙎CYs񻰷I I T 7@K(@{oE$ݳQTwږPG5=UϠ,ZGawN፱ :+L(woJҖ]I}O0#CRoYD?&mD6kmichΞ(; ꂡK<@{WB,}RA5J,Rs3/TSfGD F1:p,ܡsC*LxeC}@[SYsDτP eo m`:0Zbwx|8߄'T`sL[e3RiwyCQ^n]KwI~~+uo#y[ڪ \$E˹3j$$"gaBA Dw=n1xoϸHZѩXoYh(\mzE %}ڒIr5H~r EggaD: qIRKö|RHj'c-NLfZʗEDŮRgbAplʦ#/>(]xsW%, >CԼ$?mhхU Tv:WeA^E &fD+!\N ReCp qY9M ozgӠ#O4])\ LR{`;1ةnwZVGl!Swmx_֦Yݣ|Bngܱ*3.B0 sK?ھ{u܌$s* 2k=bvZjNO~hzq+8l<HKKբ-Z@ bs]:S#gE $1mC~vQª0Ɋl lxyi\GRxh]4X,ٽ11()"y (ucMcaGSH[jp$֙3@2q˾֚_Wv2DU9E8e1Yf" m(-(Ycl幪'Pz`1!fHV[-2!KqYZXWd*|wGGT4pŗVc|"i!%޴hjww|1ktcwq, ^nFT2i9tLQ+~<-rsX+mXʺB)¾^$CǍn,E O@DNG&O3 Tl)aiG%\.QY6AkGɩGhUĒ؅(6Ռk2*(-6Ux"ubaw)vOmB\"qkJ 'ux{ jVSH iӽvT4CQ'oggipq0PAL7J:n E\7鵎ᴅ>5q8\;8dlͫ1'Dwg7y-?Ǧ١F _WuPx)WK}L~!5e_D bE:ݥ;6)J:~=i/@ن7oԚJyX yWXKEy_xzL hk3=l*ߍK貥T*CǏ|UB &_:/z̜yXD v <κBn,r9$2S%zthk_ĥԒ6PAAɫ,iگG{D}l ,[t{WY.ώaıou.^*83 `} @&x}F.1j73MT5Blg $% ns}!䓫b0R=}Fɜyu]Uv ²7Je#C9OPAp.oqk RH! \3mHQƵmsп""[dڑ1XT8-* zqhyk5 DtYlegőfkOcFKاj~rXKUDStswxzCv1;P?$jHWMjyfv fJœݟQ j141I%c=H.O{[s=J wVl"NzZ(¾>]wjF1"}_Wpmv+_ԴԽѭ/G*6c'"#Q'QÊ c az; c|@X$QK%Pu(*?)W^$Xd W]t\BCɹԎ"?.Cƽ'`@E]_\)~*16Do<2>爪VmI`jޡ7ŒhaF,疮Y (#;Dˤ?Y] 1EEf"զɯKhyLbowVx%*ޜK_]z{4nݐ}l{!P_Y@Nn-zyɜ暆Hf렖yhiL}|߭;9RP9 QFT/Ә$ՙ% ֵs^~CO$PތC8w l0 '*u\Uݷ<1GVI߾K9oOɩ W%̈́z}OŎ^P }([@[n#ȡWkGnW:-W>/Xyޛ}xX%zj-̷_H0B$}K7*鄖pCsLt27 &{wZ,a"5 òoh\$/BSZ-z蒊7cKYۛh\}TAy#vg]WnOϺ }!]K-"\FMOTRg?#QQ.w1JY/ǶKC~T/?hG!?6daX%"@ѕ J/E+3+SRtie Tְa=[s؀X{R!.vky 5K]>Eh 4J>(<3M_OU8Һ+p\d _U;i*T?}tz#<)"ӱ7k hHԧe50Թ#r ['1B.Ciud0^L@֩>5N쬲|D)i-'ajBY5YWƪOj3#wQS-𝐸fiTX[NlB$=P#h4ګ3J ׋aC4=  %;%%3G!%AxS]gVLeԛ{W2 " Ϙ\GPs G`N^UMc Vp/0Rl&htcw?pr|Ou^@EJFM-2vWU-$Q*@.*u>l{ %W}HU5 n!YK<2ϫd;0Y GxI>េ,a*7nd_*b(t(ĕ>:RS f1z wPru4`7SE@|'f`6  5!cWX ff}='\D*i@VQdyUBAE)&t'6Ks|?Y2_~:OmY3(D07‰+%#zR:rf#9唔X*/E$YZHz|,U@LÕwt5ra UQ[Q[ ѝ{͉1'p*V /ړs@EJUྯ+aCsTg_v5B8ϥfLXchY}_"<&HNĖқAǠ)w s47Md(",[*n0VBXv\ Y[$đq*R~X!^'_ۯ M:};Avi׫eu%==ݥ1/m5"D3S~2C5P4Erj+6pKcӉf%{O3ꦊ:s!36b˃\-e >g-є6`Hښt{N*f&4p*3v*}pPlԉv >lO2[;&/aVuX\+ cy>VkJ LG9F$SYvV*,LW*>`%RE890j<'E8Z4UWoE&s+tvWΠ}ɈhH:a@"OUlq.b|2uO_rCbj&z>T:w9T [cp=0tIzp7B?}C4E?yT?rs ([A(ʊ#>k {t9cn(UB 2zc\;;!hG{T 75LwA ՈԱJyF E:= #/Щ= T, ˴ NhEfubFlU(pxZJ'[rG@7z`63d(ю_(XɺOw+vTtf>PL|nN ս&JKcһѕ2Hh\JoqM E @e kp& oTN+5*:'qxbj] -ۜjv,ްr9k-Ò{n*Ҥ/\2۲UU,Y@E>U=g8;NbWEiA1'odMҸ&5"/ ꩒9B}:xNJ>jkj}/DzD+h߱Ox=VQI7BB(SGm `[hvɞҊLxu9YTD*X%2vZ(bO{CN<rc%`ŖX J'bm"ߖx!Hwrڼf{|lՌ 8so5GG+:J2_ID"jZ2%V8I:?4V0=2k(?߬{? Ҝ#wPH y]i|K?)1i6_OK>w#X㝮sH‡lN9|=H\c]ͼ#_ۮ JlXefc),8x4Dvٴ>eA֚|NzNgC:VULQ(UoniT2FxqG^ǎ?5g8ۺZB6^r?ܑ<)m s- gR@ w͟l떴V{s풍E8xxQ$svd=AgN*s & b#l+i0 ˼R[|?К*X>4rΔ㬊) /ήnL+UmD6nKng|fWq^1vK!Σ2") X6$TLPnYPKt<܎5 >,dV,o $б24bf>4(ݟ8.eAQGx(G,ӥV葤ʓL[B4'ֺu^;NakzΰcGth&x abG XKѵ^%d7][hCWzd;^0q FYeѧ/TEU9myP2$ d–ZvZ.>%4Cfrm6A>܏9ZMR]|}ZneAӄ@s))uxZx ][QK:yEZ|Amh1zױfM8NB ~/-3FO0uI3JEE m;X<@n6r_k|'w6O7{ٔnQ4%.5e Wy;H' 1pdON?̚ZV諸U8nzЫ˵7!,  rΟMɒW`xy@>~dFwԔ@cw'@R~̢3Ӏy[$,ퟨ>yз<lMYʁn導`À)< DB޸2 4!{7m7y?f!\Ĵ D5xCtiZUQ8=Dޒ˕\&6IHȓ_k[K|_`K׍82l\QRʹ؂6&=A-4an%h]*r^A8Z?o/ 9DXC3}(1i=%'jLtHK`H fj bXhnvnxKhZUuj7_-*g8&^}Y7k1To, S{`xN{n6ǯǸҍj úU3 نC=|0tkc硲|QJ]ENnMnRc5 .Ƀ`uu^i}U8-y~n1dDDok 3Po4}f\,˔CI5"x)-2] xIvR*aaPF1^Z"7_o;aͱAA\KMqX+n%dOjG^<Íta"dI̍Yd%R{%hӔ_PfSѝ-f<[ T³F)ZL^{W8~ӗg \X>LکyUFVKʒ*NMJ)֣MEj8}@ y(˛^/P0 v@?05da~`.J, 5=@myp*Yj@R_Y#jl;I|e#jpcKґ"on==2 ԓ ~:n_>:s4;6x'N+Gr)9i'^ V:o:LmlQqӹ 4ӕU‡OQzv ftt'^v'7jmPx$W=^W}3(| 2Q5VKKǂ-ExK}Hd*kbHy1NF}mkH-1rm͍HS?k B!(@q#%Y rRcZXx՚Q[xtA̟X4W\hf1mU]kd{t=)z㻀OvNă4DkL/kQ"]aU y C"O}t:#D11QkD00G7`qC|`"($c%' /ޗ=m*aM~gXV'[BH }EXA͵İUZEOjKWڲYN-,}zd8kKjHrYȊ]O6[ΜL-D}Fs@uzE28v2~{=`N 8ĥq*_8稗W? ^(ޑN)"@-ֻ<᭓Z4?;S^dM$q5;&Ӎ7)3*õWR@_~cre,y{2Lb[w3[.ܱТ2S=Y\? ]`la[`(zߟ4K5PvU9ٿJZdZSVb%MBK64X"o=fMQ>aCI}(O5&Rtc.h9Fr` l +\ہ]$l8sqFP7\CzI9u[|BX$OWWJG({O!+ 4J;g[ jQmZ; eG ,|]RM3ɖl[MW-GjA%҈K3|IJ{J:}@5:??Sq+iULlDt nS# dp+\͇SqN?86;$/qSΥy@G6Z",i=W ;,n_ !~^aq;bbiAX0kj 'RqX'R|ajMnpnGZejɦ>iDٱk]͂b R'yZ0%.SL➏۪rP+&[5OC0p$I,Q0RrIO<<8z!?/˼9REXہ':\o3fUޞk+C)% 쨚yT6vBʼnUNgZʳڒ|w "NZ̈Ӂv )2Q#FJ6ߛIL g8%P4P°̟OԬX7|?bs3M>c3CDebGyi{v!u~`@XuWj sMi'3nھ SA8(S|«T QS7nLʣ4F4јS\1r )-2g^|`1&plc 38Fq+O)iI~9KS`&Τa)jyk*4tc)E{ˎ{RG L+#ŒU/.sb8NL(=I1ױ&Vcm(tkfOH}jN6τ I "@7e6QY3+5r CQZPj"Dդ"LZ>^2mY7r~EH:uޜ \GW;##-qz?'"D׋[+ދƈrO=L'ReAT&,TweTX2 ͣ9+;&2]ٚbDH]ӱ`Ԅ)?Dɝ1~lGzQ-A(C2)y:awobJ(o5 ^;n GyHR8_K$#2 ;rj.EђBF,KJ uW(?gdƺ^]5i? ȢX|2G4$X&öǴ|`Ym?[|JO<1/_)Y_pWYS@qv 4^!7rOŢe8Z/Kh!7Q;eZ jnXsGpevj? h.If-wQ8`f L_( u^F8 51@Ґofz&{%'Y@UeV8>71&Lv~n Aݮٽt+: S[33dPXRH26Z>`JǙ98vVqU`N̂ޤӚAA7A}A5 4?(y6,K a<_YZm'3Tj[ѱE5"_þ('ڍL'%8_Wc.|N"GO'3RVYlU:lI6or橧HJ9:>B"YF^opS¾;d򾓢zAl>S!ԕrqGaQb-H7T߾%^>%I^LP?`4C R wX&DR9C^iXUX Z̨54Ki#; *;b֑m5~y3v :YOaAnOy;˿+nB#U{r|?I M Vz7cjxϤΠI)jWaaLz] \;ӤJ;ֽ'9Y&؀@<oMi\]7ҿU'OՊ`*%2$[Jo}Lgy`樖jWE#LSRzQ ýy7Ki3Lg;eL?Rwr?lCWC<0 /@|5pJYr؅,qL 'Ϫ sLAfLe#0Vw \ۜ}iDUar JR (h` ܮbƪ֪YiLp03pa8'==Є\7pax!56Yc]IH<E.cg@{ ҂.?l |#/\߉ț#BD(]jռGNVȇ3bGYȰsâ|+][PC]⽇H*HU5GW;࿟"0r>bk1DfoJZh~',su~w[ٽe^ک´y0M FT[ݓ֧M>j`Lj͉WD;2%@rj`=[L-"RXx'[ׁEЎ;<Ii9U[3-#c`'tte*5ܤdX/kn>ٍ2~Z/OtP ӥ>C^I=j``C% xG^~PEziw0$|Q \@.g?~SDokcc'-[TܚoX@dMu2Ϳi4wf i_2uH*+ 4]gKnKV }ZMgpxV΋4bY.?!r ?{nW\sȯ;c7vG b+<@PaN:^FA( r[84&9/U޹(%)x(tDŸ i?!Ք$.qܲܝ}5WZ][D iȿ/YS{4I$xt%-DT֎Y,)0y5Tn^==V2aQO@o[^G2xPr^q 39!T\S6Y1Nmìu|}{)8Έ*˗Z) ҽv3Rʸڐ#cJȹwmbB0Pd1D{YQ+yݰlESKM{~Rs;3Yg*N$ 8o`tVV-Oaǯ\wlܷH 7 QRqcMp(N`zµL ADŽP=ĄP7o i3HYu L5~zjG >1-.z&R>Qx jw7^"JrUΘw~Z:I o;<U0j~[>H1^&ռHgʼ 蘯dxi;Pk(1Xfݐy^yy)AFZc`ƴ\9|̲/9"\ܵ+2wK; tA5{}Cs:J[6$Jm@bG?E;42D PimZLR^\+4p_nU~L:4xX\g -@iԒQKͺA8I n8Vc!QX,DžTJ`pgJ Š߭ >]@p a)R/ڏB:HaLpzmS3VN4|GhxZ|+XvvV=35ZqD'\DA'銣7ᨬ "xyB$\Fĕ 2kv$ヶ5OQHd('2GpۼG оu1h{{Iۆe^ξhIƒ $ԝS<]ĆF#t6BoU'p 9DZ"kl7&_"OFac5`,J*gFX:͟Uo,5E*kSE W,@AS6" kWR; Qlk^^D um/a-'E2eTG:5@Q{ئ`jCoC>(N0B_ @K)cS~mrXZآWǪӘ(A˨yeFPxbnOj4B4Lgꕊ_T7l9.a#5M\]~H#j(.cdSBv>By44j?PU0]ظ4Xt* 9*P4.CFpuwloU'PM{-UxQ:oa=zO,SlPS[5cuU81i]%5B(|0LS8AE{aCJg-8h_Xgowֿ3=G'o!f\dqdK />WTII(fPŸ@"/x_f7;лȉNi$j WmtAΔ\jojiYM QnBG4KՌ3-f}ssnCUfG<{CpazBx9aݖceºWNbM`e$nLEGuʼnCY<(<^ϯM#nmmq1J:Z%K/xG;uEB:'oW ÒIc!2=FFWp] Qcq]2BCI,DZ"O&z:GwΖ˂j]o# F )B|N)P2ۓmG8K`e*͠hI#:>Go)NLA=17iL qc|$=(e4.M9 PW_pIuboAnW?J'jd oRPG_ك?"]l|."= _ }%͞0DMVM~ &39^Y tL纈cg&KX;o]\B_M7D!L<\EeFfq~|vT)F0Ђ}򙨁_ɣzAœR&<4q6܎%iS;Zh8)o5~aPx4jgXN/}NEzAꜢOC\9t`*&a>V= +pHTOK Xb,6Nnfw6j)Roز +ռe)NQ@P$X;$9u2Υ}UFGeDĊ$IWԌ6,]G/î4/B}u-֜Sپn)C6E9κ mC#rx퐥|`SOjҁ]0gb@yA  AܰYe?+GWzn:ɯp- , r$ 4\AvXPdEH:%#S [4fP3? ,BLMGq˨ C&+XPpz1b)Uf.\ѻ6EJ6S'Xsӥp#[0-E) `mgƖrk2 D F!,ow`bSTնK-E4Rڰ7RLmMKUWI"O DcxRf,Wɔ='+1%Z78ոGS5̴eW04y"twn%ɺ>PWjyum?WcY;i'!B1.RNYL&PȞFM4 %[b!=cVoҋ0}.{Q5=ydFF-S$?} ̂9a\4!y?S՟^kN1;bH  +}`8}\%Blާןy6x>EkT>YF$R}[G۫#'{AB3$6&(~G,("5 t;Q=.0׋|jcf] Tꄨ6%Aˏ/gDbY/}v2'mK.vA}^?0t}ɌK"ȽGq1 KFWN\*ђ sY?L@H#A1XȺM{LFg+h=dOv(]Q7L1ug Wu:S& a>V;+]7obd+?sDt@-.ʧo.FQ?Tdk>޽QcRq6soœXH)?A$*u7R-Y]["ɼ3b:{ %R 9z/gϹZ+ey] .D4Vc;m&z7oj f0v9@ݠ1?0+; IqZG> l+0 ;ck҆I0ĂӦ#s;s'r>]cemU6l{%LĽ yִ9!Յ `{ H+@A㥛{Q4kb' chmhzz86B,+ 3Ezc5ZYzRVT"W #,s۵%HJ|=x$:ׇb4㔫8"^\#ú' e$q^Q$2);־QXD5,ۯKtK-׉<6y&{!JͿug]dry7{4?xmPՏ:qWBpȘ:B +M)GqMup,vNz.ɬטI/JG~Uh&((FQD N.TUaޔ&d 7g Rlb?٧TJ.v${qƾ.u(7!n PZlAX>#zf'#غ3BNR7]Z `WO*(/N=kʥq wW~N@*򵒇g{ הޜva_HE>Gy%)5}2wT\jhCH% K9OdE4 2WOdF'i #ՠ@u5uH:eafj\*@#s8R"]|챛}c!3d곅<ik0d۽=B!cs< BBu-똑FTsHJfV_/ęة3" e YYrKLTMARij*3ɾwHN֨cM kZ#`=/OAxqao6+ AbM~g* 8$eo%ϓp6]vElLM1y};ꔇx?f3Ls!Dߡ\z, Jtydq@Wz]tCYmjz\41i&Yc*/䗡*n5 wfC$klʈS<ԅU*RLKo!K`B!$%.J^S*3 AH g çz82]6Vhfчm|%X` 9ܐO޻EO4OKݦ̦GXYɬC2ыXӌ N*rqD)=0@JڢxE%$yڮE=qGXّ*@[;1IF|OC[ge@(u*Yw -.OQb?PREn)9D8nNS;1 ܊ yFA rC,M MZwCIo#%tq1`@^Z ]RfV7$C_+g`oG0 G.aMEky΀h ̕?J%YY)rA_E{U ^]#[?/Xx9{؇fY]J*xXF1Pn½ωguFH ډaxQ&o>ĝQcʘ~n__Ȼ_(-ݸF9?]WvTRijp۠z;!7G/2@݄JCNH(fд) 7+)XZV}r1 ~IѱSd3$q*,u JdBaTO)R'@y욵Bڂr/ j#ҝI#C U rUhG=,/ S;?ѻvnc :3^fϫ͟x!vǀepwA53M/sHJ)"ױ4`h2$ LJ?J x`26-hEbg XirSa D:!IaA$ d qH]=%,׺ Yoؔw1AI|ĒfbzCV %x{(L CZ5=6 lQ6ߑc hn[;9},+dX{PJ)Tt9 k3&D,wubB81gzT}7Pߊמfb;;K^Ml-rB WtQ蠝4O)2}zUcIB[ I0_ *Nr|kb:62BMԳ]>=>%RhTlcha- 8e: W??.]d0_T[;{HSZiPOWS PAÁch|W}HC-՟oCalԻI$s'HDC!Dnkkm˝inrku%ԶCm*1Sjƛ^`xVL7XDЖsFT4 ȼR\ƪ&BKҴ6uw+˘[b2}zo~Q32o  }Cַ0 d~!&\eV 5\H9][ncWBՓkqXs)J >C@vVoRH7y=v%g zF;mJ-bt޺l,EK72&ȧad.JX? 骠Ǡ|:ΫR*iz&d҅B,eY&0ɵRA%5`3(C|14&| 3O qpP_I\|nr .L -&(K 2$8+dt}pgHϨKi*-Z&}p&)^>_e*l1/Y5SjeP5Z;5c\.hUsXpS^3(,Oj _=9wSz_y:0'aA09޾RZD Zh/y@ҵpYkHP>Y3F js9I㴌"q-ҰOw]-*J'L߼J~Ϯ [=L'-LO옥X9R8g` |-Էxg{rbo)+Mg^m«宲s@&7B5R\ԘGJlա,XЫl%|+"nT+#nB(BܠB^6$uIJ(V=fV0XO| V{<]}TH*L6̹[9zd8;lSkwHH ][E\8~xN VIibȣ-^^pMj ",9}s} E_mmS[)pO[޴&Ӊ֢Ù|ԱeݳH!f.'W, SEt3 ' IR{;b!cB_@ AZCbmkF\C+@#:"Rs*1@_ѷ{pO0Xno#VPYp%&j)Bij?IpvxIjjɤLt1}U48 /۵!kn~y[\zb8]@UzٌG  ̔m(Q+ݠ@XAИ*_}u6;KC8պρ?!Pܯ%G 4;{2jn6h;lgleDXQ_`|ɤ~AC]-Ƕ:kV@S\tWC=yS'~%_S5 UxxYq5Ya})kܓ=o+h%*Y&AJIJ Ag6t דI0ڡХ#{#M_IX,)rE>|}D%E18*㤪]K͘ûƛ( vy`+3ʅu}ecB30TGpX*Me`W:Xpo8b l_Zh73z9J#*/fܖ;ivd&'mlAC?nP׃l1!$ۋM,],3@ڎusJc&XQks+qkWJc|DiV`˶/W{QSa@ ؠn1C؏~"IEl u6h7'YnMz !44W3 UFByF#cN`9>GDNïWl&^EbPo+c{B+@=<]W^#!J RcSy~~A\XqQ?P1wK UB t+K^_˭(D3uL0`*Hs'H9{ોrZPzٿSgF~ ,8ALiوw1f@6I}kR!&!Pyl)yb@ '~+|IM >Vv{=,ÑP˧/Q)dB퇆"1w{[$ Efړ _DRk _Ԯ&y-mV$(`Ik%z:\tA?h䝝Mِ%%XC՟nh]ΩP1H *IIDzVh1qݠPQFږŧOֶ׉"kQKщB@NUnG#d>$vPkhkh=/)"o ^@1HOJF+?4TAt?;&XÚd.A*?nG-nEI ޣsmKId[X&"NxE9~&ߨnxr!1ɂ ]S 4PAA>Q%OSqBZk]=ff?3 m X%F\)9`PV4 "3E (uUA۞6 "ء1/"Koh+X͞MhK1~H}n\&qkN͡'zVJ5 A[+V5qW.$9Ƕ<'}lTw oM |b؏'vӒb:A!,RN>&1zGٯ^М u /8+Ѳؾ08]S^n;:n T{^#/YـIEifOR(*ȯݢU/6 y-06u;oA>2Sʋ@>̔%:yvH^\8_k,EeIj@k%azukm}~/ &{Q T/.JtX TlKlݧE<#FV] ~:q7iW7ʎ.~@ ~: SeaHLZHep gT3^'He[z{Ժ'f&.:?UZ)1k!c7Ѹ8? s1Aaz.#QuZ^׆H PYd"ˠj&Rb3fgYc2BٽQɡ DnfIS(YA]7kGī6Z7()S$E*qd<,z& yDN=ueiK᪸(;夾({gnわ02OD UgEu̬rFU|sOlHp9P,|omr%RoΝSu%{D mlˠpMAwn2mBGPQ*b5z?K'aM _Dz T #,#A<1;qRC_Lxg_[5.#vW0g53+E'[KEvmV#YUk,--L@C"n#:y֪()%4A9fiv@ Θ̈́$ ^XǠ{[ʼn؎U+;&IgtV,C^U[RzpsRӯU\hW 4-otA'Θj,_Ϝ?I6lyϕzZe\6)v7M<ɝLaT)G #"j}Cjo;u> "cʳuQX,GYx.fOyҨz6v1cQ4y3ךG;y v3fZ]f6H{-j$w~m|7Y0f,V!pK_Z.6z]?x Jxa't=<¨)BS%׀%Jbv%8ε.Z. 8b Ex7V¼w]sew?gH!z|j &WZif@H>Vf4)rNDG8Hj/_=L`ہێRiUu ~Z`^b<T“]>b6_w}}#[c%Ƴ0!q?DU~5WMO5v\ `ҍ&P2ahC XsUi߰ $Ck0GzdֳD-PEwJ~xfOjcU*Y}ـwS}YB67)lhuV|&rSt͙樢s[2ǞuvLa}9M4胫Nu.'l2/9܁[2 pXb&a`s {.V̀GǯoMͭj5D-bgي~yW9!(%Tl'N>NбO5l9k 9Og\9ľ" ʜJmd6KlUiE]-*Fۯ͚:/hPg >e<!Ynʟa7UА|LU]IFB*;xg4;bVVXA&8)))@D+O;60Ɲy8|'3KmC~; ۰V30PF_sK&j =`TE^]h%gd Flr QTǖ;<{~0&x~c2؁ ?~jdfqjv?!a 7n%zcF7l(|LՍZ kuRN#7A%ưEHKIJ/ot0Fe}| >1Q *ҥOa h |p^vM(?8! [Zư=]~U ƪ[ ـGZh 8_Ρ{"#Rdϗ )Bd6t*.FLq81ڍgk|Z2os! saIO,=:_\iZcl?y`IP.u̳!$07"zq`!&i|b'~5_${Vbk#i z -su\Xy LrIl]L*J9\kdi=gE]KF 7aMx'i*U/DqtJXR A.&^[˔.1:wuطstxOj)5hUjR) hz+TOQZEkZY؂{W  ϴWZu[2'f1NF{ \uFcDc'r|E֘QC*>X ug_][_1ߦ^ % sA5ܦ7>v4GQY}yr]@8䲻p^ ) Ǡ[KN?a Y4+vv-)O֙7JQVY6ؼ,iy4גϢe}4z xqcb/~_$7{3͓|Nخ[ȾɲqLa r\S-HM[O/[+Y#IY 892!9?1Ou+WVol$2u<,U>jR)R}8d wfT}5k7j?QgGy˥XN%#]𨲌%<;-aX wKcƳI;HԹdQvծz+?lNJU< J.\ƭ ˊb,ojx^)l$-˯b#dSqH0c,x)Q?r>U sL$EÉpt6BhAq<^aAG>E}UhgMtWtǬl᎚La7ѳdn?T2\)/Sp.jQ)'GQӱEB% 7Dj60P@! HݻiIƒw #gMr3- ]?UGb!37GZ1V )x78eEh,RƍL]bĄOUw\mW&vkFsUf0O(ʱ&QEk<ұl 'm('&p!RZ23sblK:. ~C0@8*>5e5Ix{l&>KiB/tht: y;ϻD9?RK%4N(/X0v^l+6‚[cC:`#+"Ap+\kVx65n:ፐf p(raZZXK)-M| EW!!F%Pl#I+nUL sE+<Py^E =N^- pD?3/-*ۄ{A[(J4ʶq7!42G΂jAb.0)ˆV/$f9\E͊t DŰ*˞RZ_PHuUV՛S]\wD͈oHH@?;KۗImWpXE-4 N* 4MoRo̤`\cGaL^ϥU|IGyEZI8B([,, %̫ 0H8Qڌe͍cXbc1V5%3JnıR *m Z$%UВ4V\@&V)n}#(? 9o`E2NH0h`Y˜{NeT[Zm#@d4KB[c g%}U1"#%ZM1%>:Q4'$ƿ(-  9*P:;SDP\0:ad '}S o>HDSJc'Q&#5#v?P6\%lYqƘ[[sf?k|BuEXIFp &bwGѧ6r$eVS,ReT>ָՠxD]sUT0:z(PqSΣV"WBXI$LA+}tkV'ڝ%ުr]$;3Ϡus+ X0I:ȋ+ IuKW ^Ttev96#%$Sg.h K֛Nf ɦFVes7Kwtbw"5@=e`zJ.gkiLH`&2Ad[G퇐_v}!WDlBr8 e/Rp)q^-Ÿ";$>|jct: 3.{{X"Lc$ lcT [X!O'b>YIe1phFd'ihY}bvhC # 󖂻y?v,+A^V5{Qax:n=@YbHݬzg1= $k$G=II"^{KVJܛm,c#I5{0TrlF%&% _7u"F*ozdu< Jp{&/\ab5¤[JJ?z^eO,S3;fi_TRX|Ț@Лih{=ƛ$Jp+XL rd_TvyF]Fm& 鲺rrPaNEE26*ؔ'qJ;*|L̞l cyCnQJFzM%Nm~;hk: V4ĕ t<<ʽVe4N+\ %j}`)<)_c֏%z<+sCs|9-nÅ{tV.W>V*.~N,t?wkP4"2f1zo/K]7hss#:NXʙLO@MOg]v؏@kڛܯ(/ IyW*?f.`ƥGl;m ;Sߝ-V Zgӝ /AR=r5,^7-|7i ':ܻ!:nOoVbg@h_RaeTà9xBN㞌۹L l)چiYuI߱~aiHK!g&։CzqL#}ҍnFڝX/-+-R񌡖:"a/Zg}VO/]GfXUe߶ۚa_MK~yX=+}]>0_Ћ\kX1WP"&*:Y>'q|L:UW1MAϪ-B``dR<¬{#jm$kӅӟDa1߲6 ~9tʝmp͞v<2뤣^ ·ImIVaZZ E?RV婯6)̵/fSz3)Ԏ<ΘcunǗGxG8,IzV@Z~M_ULSi3przO$ '[̞n_EZP=qmbQU' $N,x>$@jfC˓&؜1gҺJ fO#%Fo״WxRA[Ӌ#)alQOxBOSR=£d"P!)ω>=i6*\Ymsֿ1=5*-;'VRW<뺓q}mI4;<4Y@ZU^Tđ8/(SFt&bIy]J*AK2`l,'c]6}.cynN"e#xsiƧ̙ϙ6客(-YcSWTZi^O᮪S?cv Z\­F75E3s۟+s~1o NLJAk -#Qc<^ جԐ{V匴UH=( тI€ɀsR:ZyJC ;W.|QR􍅨hj )!?:W ȁ+J` Fp;U?}Ab"wɄ;Vp#ABűhha*F4.p 4"`=nfbwD:_QBND`u٥Moj!PW`0/:y<ʼn`[K( ϣw KYe>Z׺PW4/xL\A\Ӛ6 Q{kQA+oy= gK&30IJp16AqS’ ;,y% 㽎1Ic1(Gu2Z藅` 8 nBj|5r3 鰦>g#"r^qs'o!Kfw2* >k$A.ƉKF8 vdU}?3|I$gTƋ2ɖVDf'tϗD˖sa v]!cg-jX?)4HNS{!v{0"}g2*ل*1&+ +9<#C%": D`vx͋c(PkJ n+c^ }I:f`#h.O%HS]ƀt:@n/GkaZìuCS%=0;1bׁFPPR )Iͻf0Q 9ժcͺ,pX7 *Bſ \ztrUk]S_hvX i~ꟄoxFg"9{+ŔnA@DyrCnϺY [&[l@L{<N1Š/\I}ŸȩQD(wiTY&H!⺉b'tgY:#Y h17z]b&a'+?TkbgƳ>?fLMpL0i& c:i=UV=2k9lx 0Dv ic!rc8#gn,'+7f4pG 3(u8H҃MJJdJ&=9w47 Q=;[V "x1Ql("S,4&d[m+>MT,M髖 n[uq֏Q뱫ݔĕ IH'l_\pW (teD.# dǔg4BbAϤWw䐐UḾ1tʸ3 XC|,VA"5H֑p!:cuJ$H7(n輧(KꦂSw}oUk4#;F^&?kN:UF'փ"O6(*BGȽ] Lw2 6䫓O sh/{i&EmvDfvܵj*Ԝ/QÒ֏ DcJjNL4?3;:x׵Mw{VC >̬}-oR̾쳫ŃfF=)D 'E=OG`?~`\)jP߁`xՉ@G; pFݹe҃-0'F[*ipik/(/}[#ӗ7q϶x[; *}RAEJf# Md!>Ap4iJ?#kBˉ6c: 4F9,_>@Y"QS #J>FإhS_G񭮫P3^YW Kj$\ZT3bv鏛W xM#ZbEac Hl¹_^l8Qܗ&VG5Ylc6wLFX2.*(93Z/12abKNߙKBQP#7`#4Y#=.6Q3VO8WB@ 4<`rֹmO_ U2 9j@&2l& ѾzݴRZl-ko^B|[vf ]̚5|]ipGnVaE `RN*Zk_D VehL۴h' :Ks AwSɜsSU?5?, hV7(#KbG F5ؓrbϳ3lB[ {bPf1}6ϜS He:^"SF$7@)ORcO0'4X]R`BWg^r+keϥPG B Λfz%jSqZ%1p ;#A+Ȩdz޳Ȁiװߚ_"< .^-6ֽQO-i?- t^6#Qy|kᑧ/s}v:ˣX!ѳS_ض:E[!%;tjCJJ&`,떗/ESEInK1+70T+Awԁu|9L}E[>6>~cF(@ KRv1Bk#ԯFEԒJ@~Q?g3'p.HWT3h=z,?<%FYGI; (>#&԰yT-0W&[E|.0AVKuFF-z Fs]9Z ۙCJ`r| }5A5(7c-䘉۵Jn@RK>X=feO<'?b2f~"ctkNMU\Y0pmɽxJ6L,JwGTFz"}W]}[+wS#Z%z+e'!s925e-iK9FuސX"X8pf-N= nzHˢ!0m 9k(:TB8V_)I'یefR`:j(4_ (έ՚6wwYdȟ~4c9N :SVv /s>`ͽ*rߔT>_c{p ]iD5m"0Ѡٞ; -^4i9#q y8T@K~oZgEՕ@G-Z[+1džg0eC?QϹ h\$ lit;#}͡?]Fy4D<$ ϭ^.FbLh=2jՅIJB!Ȓ4|CwG|A9EcuHF^w7Քv=Av oGZ*%4(pN8ol案#)N B1`UlaBA7="<>-*'bd6ijVʲWSXjΏLadT UǮGz8x9WmԿaB[;3d8Z؏5τ:}/tHTkG009RgwVm;1R?z/!fHݻ6C7r߭yK+ǸW$ x4qCst/@[Ȗ8"|ci,`yy>AqyZx,@IkV"Z4O*+ROS1} Q 5Z68bާ2>VVA6+zHVU#/iE&WI tHBS۳/([,J|gOlHC%d`/g~-K~Nxt0mv^{r[#iyRKZ ά=sDNcsr%g> `H%M8Z5̘{CL꾒m&-Y?b'noKDUAGmz;p4e0doy}~<A'w|XhG}*%fAy l[?`c 1\4-J>^zD[Iޢ,Lc3_,=v=Z0?y#^wo" 8}lWruG32O /(%\Wkeй Jw^V RvWR,O2 }j hP|FK;RK㛞 @σ)-􁺙Q(CEW؋o>:+&%i)W1F5Ygkw$pb{*I,E ,Ћf8\Xp~s>U~oܳOY潅rP ~axjM-"Ǫ_Ҵ>rldn1by]0xH{7OsgƗ e%UP?:a$D;mm4KD`uD8RqTX7SlvE>d2lU7Z൛Sʈ9"Z f\X;8v,*n4 : 4qV)y<;qCj#)P_cbC2Bg6GH{>u;z8"|‹4- Lg/zJ-jN3hrzUcF<,; :o M-#G}̊v]y@z/mrܨR'•ʗ='ZjH%_dS6Xh\͡tG-B(W)|w vkO_O1\X˄❖)`%G6 eC4*|}WrJ^JԘ1"X9)ʄՃmN_v:h@%]-lIJ߹x9,/yVtU[_M)Dv4|s튒H%Ȭ$zVYB.u0h]EF }8xTl#£_S@A7u^767f~_;{H֐}3M2K)ek-Z@1mrIENu/s3Eʡ\;O GF5ȟIBى5qypLX^y:qRMDX_UȓLq4u<ôyQ7i&I`mD-Z}/弩VGc{F"&&T1σ(S+ m'z:nps4P#2( Bba*OA+ÎoI8ڢ Eʯs(pKkPLWmXR=V,+(Os˳w5~DMi'IT o iG(b'3| EҒգ}" -=QRlIsF@݂ K^"gX^y' @@3 ̷cxB4>Ё_WFObSω56ۙ곚2} lP) 濭("eMtkeٛߢvaM LU-#e.Sz۲* |?ˆ{.?.5"xRfü/jv* R"$HS~{JiE#Y5N«/Waz%nP1hpV!n2_U :=M]\J ЗJHY[2m=&O' 4N=Pp0u$QZ%dm爐 V@ 9}jni^@翟@EfR. #21T nX\!h7"`}ޗEVS-ʽ0Úm@${}=F/xEq;:Q^CD_(q!ZCGUz*;nٳ `m5Ƒ,?\-;!DĂgA?n;L@<["'ڏ9L$v7X5Y,VaOQwUXRz*-gMhرfMɻrꫀ~f{vig0ـ-Y9kPMhF)F4Ne-+d{胛&0m5@:8fmҧSdo+lb8,q{ oc 5^?whx{ >VO\o7p {1.>hһ}@90aF)=1zi'maX/ٯE[Ax&R|cC5;xi?>rܦ4r4ʧ5I:e?\\'%`jv9pg|A4 Х=Q-5 TKOGp~m>g}N-[=Wgz n^wMS.$;mbDw^/o2>Untп;eDA?̢XJy4ȓ}W@ gjK~{ kT"2%-QRV⮪H:k&vCe+Ņ^ ؘC4eRt"3l[pr.J X1NOZ˪Xh‡R𯛧Y)Hh t2K4NWd*N=ZJD?g-TF^ZXM~ƄĊ)SJ08sd޳:wh =>_=GI(Hdt l*\=Rڲ.}SeE~q6t: !Lpn:g3cBwb68\ ir ;bn\y [mqHc-6qG^#h8#@dߥhHHo\)d"?z O#39:܌RM`H}z~h[QD?RAEe:Q$5rruaFF yhUj8ٚ1}w- gMh(Vq>u'!izˬk7W]ȠjFUgq;,B|2".jMBRJ9gT!b.ڵ#Pm׈(YZGYY_ͳWk)p}*; T`{HPCt:l 팃qϥR,w 6E,QܯÀm$t`ߧBYijwPn ))uP3B>s-0u4=P*B8Z|1yW=FBؘo R~E:M.>pi ʲ Ega 0:g烨k7\zFrl"ϒvUl4L=dâs)c.,*M4T;iz{~g@ȣLnńRpSЊ63왌~YS8bt!{0D5fȸL}xTƈم+R!?_q'>ӍL.}Boui8!X~7lO%߮5i]CJph;?;jzl81Y׆o=j>b~U?W0:?}aPYy? gtB;lqiDaR>y9|!uCs{}>n2no=W5yڡi7E"jFy@UTPiĶL5~X;Z ()O{D]8$Naѐw&@S;gYC% b޹ 5pAWkf;]N$ UW^7 Dݡ5z{2\+ clk[PM@PuF:9@¾Nݿ$fH iV~_vROJ*Ew#z60agi)ԃPTO'}r AmDAGT [!r:,OnY0 ) `76`XG`\ݧHL>GHKniIE>+ʔE"=3I@Wh]Y^[ZjRkUޫ -ZcřJ;$m=SmA1׊TjDNxgaIDjH9ׇ٪ ]R׻bʦϖw9]9߬pnMd-%\O D:,] /p7뎡{Q2.F.r5MX?jJD:2;s_q(.B>SWͲc"dQѐbw(w҉/8Y:^4F8(]A__k]i@ӿ&|UFaKS*9q3)ˇi>DKDT/;z͓۞s<luHST}ct]^لD,}b&*oK:^+n&pxŖtƹDٍ\JgV ,@F>P]6 7ڪ h77OM fae2"w n{ Bv𬚳XQl`/e1g?mhO _D$D'W!aIt!ŀ~ ;.rߕ9ztss&[pD l8qģ, <j+RTsymS̆JpqQHw{0=8i)`)  *ɕcQ?S` b+Sdϻp 7=sSF:121D|—Ӕi9&,;cel^[>ͫ AgwMxD*S{۷C8F0WbD9@+$,ZFݻ>9kax$Sp.ed¥6ݖlЊ8{6%qk&'zV7o*u#%:}0U>7B|Yt:46"kj6VڰdlCɺa)b8TUr6[*Riݓ}v;t[m Ogwڤr'(5dXcVyٕzmksD7.5Ag+{? Ktp~jhSa]*fmQKrTu_@>rꢻ]k~ic$X '!LO]n)3}w)v]`J. aRrO ,R s!LT&93DKUl[Z'NK5CQf:tT= \K$蓂VZ ]mſy`h75:YAOtwA!IBP'r-Ǘ>RXi#G40񸁏{ V-x(d@r X,G,^#gZ/|{ mPkZZKŒ o@·=%C9ñ61t}!҉ܵ  Eh%0I3iv"Ŭƒ,:ne76]Ы7!%M5w?i}Bm?j"k_=DBrh5ts< 8i z,(sRglLu&0R-9?2?c+d]wv|8hrK~Ŭf$@̣|>h%QTvYKqObQ90{ꅱ+ X_#$a_[t)䢕TÁ~4'Q&6G# 2ѪX|UZ9S Tq@|?֫ K.3dD'2}nN`TݑK|D4FeF(3WCa#ǽ~˅ YcOs+BJJ}\ɃfЬ.G)`s ) Iyf捲b 3ldˇ&՚h()ٵx֣äк ;ߞ-U^xL쯨'@P+d>W{H%SRoFy->7iPw&= bRW|v  UFvs:+( U N"[88wR7)s0{̝heXL2NfVs/>z(/9ܫvI^UpU!"('L v\2|~ G6]$##jE_|Y=D/mib8G? _-2mAz VA ~{\+5/EezMh^(lLG m@vO]f}ҟce-V㿒d&cIߙJ>dct=+ \sZ;ܴ#J3;mU K96e-.oB1 sxD[DX;K==^X!Gȝa+֍^yi; چ&hu#Hw7$rcmEX~4t8_ QI ꟽlYV=BՈov\ +=kMA}$ݛg#H^v@{Y43;ԮW勦 2 ?I*'l!i%*>mr'ҷ"X=lC~MkDAVijP`Fy~Fa~ \GB8 Lsk8Ӥ<0Hy6 M$t4ʲs" _r6Yǥ}\R.x4ZAdJϣt?) _jڕUJa1=Ύx~doi C+;c <nF.+IE*^C?Rb=1t7<4Kopܬa@])F [1@.DmҎBj Y&AS:[rf}dbUF ;z犊Mczpn.g>?ʑKBjY|-䆉>u7ƞƑ%m!|*YX«lO /0+xI-KaJζv‚)xJJ΅C@l󄛃yq|3N Q9vya\yytA?Q6mFC&+wsR$H{n(e5]TXQˈ0\I|Fi-8~κ.H^@P/I!CQHF.{$@}sp-P ! Lŧ4aNNw-+YpQ4 @őe?=G :ω]2]uh]{>eW>䇺@iw3Gj$5vs{ &?@aod+J+:ATqL4!gm`[.H^G〣wC6z[ZɊ@:Mgl>5 x7Nݚ -2C@'cA؏Wn{d<7MG ZXɰψKA~'h=_FE1= (vgRՊ\ȱ,M 1ʃDv6Ov;W!b98GzL3BGq kUƻpu,0j2XMxP!,U B/In@ʥ>2oEG? Lm,*Mdv̸urwKrDsi({l`[T~dtynӀIJE-A\E𶻵L2 `%@9~ R}5kt&*Ɓ)EAtgwy(q_OuiUv9E,/9a<2 <#}t}/邪ŢBKRPqp.S<մGR ܨE`k % JI97FooMP;HU^zǟe[g`5E$I ϮZM+˥%c*7kov/<=}m2d0$F+Ԍ/0 >ASb{@M+8|W-߱_RWlu|l_|^j`PC/2ȉ'M2mRHMe #Ni}w*&?OvgЌmtcMHU+|"SUǡ'!tYpK RMh0mSGS}  BWl/Dz=q ƨa? $U+EsQ {x| GCDڝDkln=9.6d(`CoyB6-f]zΜY?ܱpJbH0dvjPQ$v {f*>D_oy O/NaQijB-r0KH!\-{lMm'2 tpk"*Q``ՒrvuIDD dR3~UeNY9&ٟfEb̕^E k #_DYpypC ` v)Nic$ڟw[BHhQe+N-e692)[ :z p0b\D[r BW?޾J!Ox_Cϒ R3Yh5_ 5G,1kL(7K]әnt'\R,h y|WH\F^:f'ν+n|h_7:2lJ#xNbvN/i>5hy{P!'rF{!pu5*/%sv+Ӽw~!1b9BMxvX^ ,ar7m,@GB &ݢ!X*SzK2G))47Wͥ?O8.]FXJ3!aw^[0*'1۽ߑ, Kf"4boƆwu^| Y+Mdc9/lM*n9ݑgQGJ[? ?G+F*g7Ӄkf.fڇ5W&:'i-sz4(6²$"M U7`Nuzr{Q"z|1jgF?{j\+YLfLp \?Z#HD]4I3y))CKS \,s-RssFʦPXk˚FR/ m)Aqivh7TvmyK ?6ڎ=3T+)&uonj`jH~[=Hoi\Òk@f6ck炍Y0\RSw$|sCyI⻼~x"^vcckC} 3z>/rg_H#7(m1*"$SaUUe쇶護Wjf;^&ԗw:DL'<ԎysJ~ Y,&Yqp 1>_ SP:MH|䒶SZ嶺iP\VQ7nmZk,bjxc跋"0pZh~dXd ZG؆4RX`1K9;pV4-y)I[B;/c+Z^A%:G5n$K9Syllo]><˒Cjw[T)1=Dϊf&jT8S De: nb@jr9iCTϋ$?=ô 6 خ$?zE Ħ9_DZ'[ĈEC$|W>7/@(]7:,H"f"ݜኊc}qTI'W)Ee R ;K=$EfI_6rvJ x$LO.%e@Np}+Z"%_nkfrf$~wZ#03ƟlI%ܥ-ޓt*yiMI=_"q Ww_ +RY>#ɶ=G,X3Dc#{}Fq*uV&1;a6пT< .Xs}>zIAoʺ_X0䠐mV$ERgh=AmU}S虅W;+h; ,@CZvu+nJBt:`oR9{"57^Omy6L"#Ha]ktG@(sZ9GLBTZˎ=;Q= 1Ҡ#њ,kAg6Z˷ՑpZ 'ׂh)ɦ % 3-~J3ҺZ{ֆ/fm]#WS0 _F{ mut44LɆpe(`y/^"wX;2I3UW2ep߶di];LA߄wՄze|"at`u[o"Z;q1;0Tr[HTجEfQS즯0 '&ҬAK&Ĉr?!×O UPFa3@g査o^Njoq?w,)|ZS!o5q6͠g-ϱU${1ptqC)@ kq&S9u;HsN^_jo6LV[g~ݡj>A>B[YGpž˿FFtqԣ\p`Zmz#ϵ9C5zHu:.1FпFm)ao!Gq&)2Gepkv٫+~9CIĩS;8hx΁b KҊ#!L۷&6Evs @TcD3U۠0~JYp["\ôx-s%}Rfs].kHP2+0PGNx@X܀tC֙cv%N0k.8#hmx\kl XRl qX;ZGyYek=JK(zmMmGl_ױ=Ḁ+P5bc @v EP(1hqؿn3xxeK21pM-,)c5Ox?ӆbVu{Owk8ë2LC=xKI3Q, +D(KtgDG ^ (Zl~kԶ>a/=} ҺCq~3We \^eQbY7KOc.Ւ{8 Es\6vWŊy|PG%R]=&ǭJN_%J4In 9.rĽj'E7IMb F P'|k&?_sQZ!&g|AF 5q뵛%}!줣=LisXY:K-'Wk?ڐp\dϝݩ/#fͮnp}E[q%S3m%&wdv{ؘM|$Ӊf;J[JdjE#tDj3Y;IV z͐$K0Zlb'vCVykGPYCj24unz_(:Ia)$1LFzD}u`D bj37w7 !c۰Z aʌH!H0ל̇Es8IM݋u-x%ؒʑOXHq%e\-Vjޤb0[PR\|i _z ϮMuF:`J y_peۖrX}'E^|;lz-:D>zSѿր78nYz$ZN'wć)=l&bhOofb2C8q}12p'A6 r#!p&¬x 5ܹhG:'JI af3XFYHn@W,m{XأsjI—Bѣ~żtމMbh,N\^ y5{swb8v4ށ%Q=HJ:B<%1FQ2`5hz:"X)p9wCMTmP!{j(B`ygQ1EͰć6f$`;Ljw -d~>,.ݣV5ͣFE>+aNp{V /?zԒf(-;]^LaήAhW-pEGC0H!ox 1c[%xVnE+a)D g`:XO)2Xίppv -> 5_LkZe學QinEu\6JUIψ/rjkIjLۦC>CHӸP*L90G}e|OВuW,$ un_=И.tQ2Ju=Ha)-/%WqڈPl1[~~P A5R6`ixT-&N vbnHa KZ&M!]׃E ݈Z{F!]B)}FO?7W贐{ 9sMגz!;)'2|9xLHY7RHVڤ&Bףp>yTbqUȿY|"H!O1Af)?ߧd.UwrD5[`j4rswuB. UYt .=@H&+!SOVlpb#1]_6I{RcG\s v;w%oPFsH&ffוHB's,o=" a*;FAIj">rn&9URA 9_)~݆·t_' 1,I+okhBz (k`|%2=Lg`p.4B\FgRK^EûmqóoRJ*,RS<2M9pՁljH7jds,IIgmhqI+Μ㰄δ)%{ -y T=[cIkvFiM6k)^"Z5%;> hˈ.X%We[0^^9|1dREqk+ߖ{KB4 2<OwdzU?H~>DZ)HŘ'Q[uȄgUmRt:-t[l\bXJ2QrAF ~R*ّv g:Xo ln7 @1ڒ|U0ږ`$V~Il3NY-E;| Vǁ&@cy ise.RB"_AY (8ْ~بLВ{z-'i/t_r>H6&:+-Z]~ϥ&W3xjƚJg&S\Y8r/,Ȫ_HÈr01\ *D81VJ=iaQN /8RHs&: YZjy'|4-2 o .JɛߎYi!+Xx7Chk= ) @X b 9no/ܼ`w>m8]^Ցk/K- yVMpuG;y6ʤ";YZ+EE7)CV{#m)mjK#KJ;=SP9GV UJdd4zǯ" A Fc  m%^/,iwOfV~<K8hHV^s:xoqtk@)q0->-q~ M Rl?R]ua2>q- Gv]Џ"?o\ʏbrcS4ͫ8d0*ߵrܧŮxNlks}c1qG* UAp#7UPzS=myA޺ `9I Ϡraw@K0`SƻRVWWf^6UMv5#S1x瀼/5Nmb ňog aoyc n:PuQ@ aHov(Lj+?U-Jy"x}1F Bb3^s4Ĥ#2ɫy=Q@V#(cAX?P$\:;]qt!!Z36aJ ~$ǮwUr+Pa[8jFYޝ.= ÃUC]%5'iFV 1͖ϼ豾##eJ}ЉM:gQ`̳1FlnewdbRUxo鳟4 wlcDH;ڄ(`'tS92^"أVxzb?X- b,^OwtjsOȻ!>HG.w# 98z%1z}*L_<23=ѐI(B(`5s/TkvzBWsMth`2IP2x_1;7//xu"k^ U瞧u7&"{$L]FuEa% t!I]+ "Ҭ:Ҵx5_|y؞R.X1Giv%L 1lM-W̫VOGu'+zs ǮcH!"ַlz!kkHILi2Z $~PvU+˵ݸIasP{ؕZP_*I"f'N¬nlZtS‡GcE2l|!Y*xZY;^-â}$Ha#jp~m caRהM 9D.aBken±ԑ %⍿(o^APa1zJͫ}}rP5x. %i8_ԟ5sstMMSqPGLb7h1e,pG1|YA&RDqkj'p<}x=#ɾ}Tb1_ToF]>.ӠXB7cysgAN w0.PN|Bf_A= D 1/8>́Pw!=]X.n|d^:&&4Etv_?Mo3`Ј}'`C2%B;H(*8"h5S^[~XN"M/h:j [;[ʰN[*H+!cws2R\orq 2;Q =&f'|F|kUQ;0 =ŝ~DXR_C+*ݹyl`I5I;gN `UR|˶_#UVh¡$/D\jzmHw<"S,&Yf}r q#VK/m\9٘wBY:Ú #Ǒ > ~j8k`Wn.I 8V+BH'=!9VVWpA6jtCR =1XNۥɟH}0 @|d!P{":>)cmaއy@f0^`T,k۠{u@R4Z=Jor^txw|5<&&T1w+ ceB$Tmw3XHߏl1U\ +},l~;?kFF4Bk()EIrf9CXcw# m ^UC>2ų񈌱G|GCq JODfA+VX3oXXک9kIv04B56j0k-+fރm)§ _V'3bXFh߼M:ZhFd5]辣!H.zbasZPv+'ZmIceŝ݆Fn)Lֲz \Ke_+YCIbӥ#M#؅HKyR$ϸοS`p}*?M+$0C *kĊ5xA;D fd7>EE=\o՛RȂwyQWwefYṈ;N[P/GP22u8,0z+ /D6eȬx$=ay_+"~X}PGZ&h-k \SwrzĂp s.M;@#6Ozs<+⃯Iv^$7*x.%I&KU [6s)c-ocRJ!OY&f %b o^,Ç sʽ_;kVa'kD۾hjbDɎ|3/֖f}1y# Sg@S1I =pz]ײ֋scg~,SFe/k;7sm yvɖy+ٞn0`4$L6z˖:$ll("55@3~^Oiwȗ7e:]|wDCVEְ^g3sk_u{Y#nT l!ZNՒ#g䥹uǂME:z.7a ,i%LϝiEٸ"Em;cA&(G7=_Qm,5  OwG/?ѮY a۱AE/ M.r Ci,bYȭ`; U.W8KWT<͊k^kb /bຩ'RV./ 3OGT׎IF]𿶎Ul2nw*yC,Ը zfF.wN)X2X;eNdX{u$Cvf#  bA^ dY:Ē 7Ǔ*n!w;o'zD7ytjh #+xϞ'rX:f|ƭENXv%E){2Gh1b<*y;D {E˸)#㫚4ɮ5N0 7^"dhCqKár-̅z4,SE no !pOƑ}qg=5CN G2xN`>OF+~s';4m|=[fKL9¡KrPz:7ODe[U71&pƞ"h wKi?8Sm_/jb%vhP">!߁* q1Sۗ{bWX5=/خZ's{xɌ$]WO\y'7w;!U;gɲk_?RX%MRZX6n4)YYUv/f)nwQyR+u٭D#gWc*),#,]P@jV["4o>A/jhQQ8|`\O򔶆#zld݁n)PҘȩ(|I]{F$CxVzFoZ$7M!.xU(mV F AoD]gu\'lm3/t2+G ['M{WY1:C^8O/QAS.ƮO&4eQ4.5~#}iD /<ڠ1 )^w27uT!tO=NBjǟ(hl`I«2ΩN[4焏%kb^h/jB];o1k(zDšS:׿vt`C!3kZ./[C:jf]a *K6lAL/:1ĸhY1չћmlQ d 7G(K‡Px!Ex[^"IXY|ʿpdqit.ZNJ;^{2aC̙+aq +ǧ\jwYGA l&oеf0]5|9] =[Isayڼ馾%̣et|vzP=*n\Nia?Q6?wGI?z&pM5$8 yf-M#|Ɖ֥xZ<\6ym0t P!$23 3|P=/0N;a J=uTjױOqqf%~č)pзh8:BȔe`44,-V2QPZx2+j 缡["_9+7EDW!"Jczck=I/`>Wٗ.zu!5>c1hbȏU)&'43޳sO-j !\6Izgj)[Ipȇej vQ R*GLk9FדO0arfn*hE| v%,v-UQW=o|~X|5']@R:PXQ94,}M?q璆zX3W5ǝ{bꟴaCpd7E07v9[IevHRg+Qx3kdx(&fti`yZɔ熲ysN܇KzテOey#/2v"ln@UHPWxf0ȮOYcS֚ 2v_TF|;TWjy얦 ]\0njm(\ (]) =7g~Q@YZlaeken/man/0000755000176200001440000000000013616467254012302 5ustar liggesuserslaeken/man/thetaTM.Rd0000644000176200001440000000445013616467254014142 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/thetaTM.R \name{thetaTM} \alias{thetaTM} \title{Trimmed mean estimator} \usage{ thetaTM(x, k = NULL, x0 = NULL, beta = 0.05) } \arguments{ \item{x}{a numeric vector.} \item{k}{the number of observations in the upper tail to which the Pareto distribution is fitted.} \item{x0}{the threshold (scale parameter) above which the Pareto distribution is fitted.} \item{beta}{A numeric vector of length two giving the trimming proportions for the lower and upper end of the tail, respectively. If a single numeric value is supplied, it is recycled.} } \value{ The estimated shape parameter. } \description{ Estimate the shape parameter of a Pareto distribution using a trimmed mean approach. } \details{ The arguments \code{k} and \code{x0} of course correspond with each other. If \code{k} is supplied, the threshold \code{x0} is estimated with the \eqn{n - k} largest value in \code{x}, where \eqn{n} is the number of observations. On the other hand, if the threshold \code{x0} is supplied, \code{k} is given by the number of observations in \code{x} larger than \code{x0}. Therefore, either \code{k} or \code{x0} needs to be supplied. If both are supplied, only \code{k} is used (mainly for back compatibility). } \note{ The argument \code{x0} for the threshold (scale parameter) of the Pareto distribution was introduced in version 0.2. } \examples{ data(eusilc) # equivalized disposable income is equal for each household # member, therefore only one household member is taken eusilc <- eusilc[!duplicated(eusilc$db030),] # estimate threshold ts <- paretoScale(eusilc$eqIncome, w = eusilc$db090) # using number of observations in tail thetaTM(eusilc$eqIncome, k = ts$k) # using threshold thetaTM(eusilc$eqIncome, x0 = ts$x0) } \references{ Brazauskas, V. and Serfling, R. (2000) Robust estimation of tail parameters for two-parameter Pareto and exponential models via generalized quantile statistics. \emph{Extremes}, \bold{3}(3), 231--249. Brazauskas, V. and Serfling, R. (2000) Robust and efficient estimation of the tail index of a single-parameter Pareto distribution. \emph{North American Actuarial Journal}, \bold{4}(4), 12--27. } \seealso{ \code{\link{paretoTail}}, \code{\link{fitPareto}} } \author{ Andreas Alfons and Josef Holzer } \keyword{manip} laeken/man/eqInc.Rd0000644000176200001440000000573614127252664013636 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/eqInc.R \name{eqInc} \alias{eqInc} \title{Equivalized disposable income} \usage{ eqInc(hid, hplus, hminus, pplus, pminus, eqSS, year = NULL, data = NULL) } \arguments{ \item{hid}{if \code{data=NULL}, a vector containing the household ID. Otherwise a character string specifying the column of \code{data} that contains the household ID.} \item{hplus}{if \code{data=NULL}, a \code{data.frame} containing the household income components that have to be added. Otherwise a character vector specifying the columns of \code{data} that contain these income components.} \item{hminus}{if \code{data=NULL}, a \code{data.frame} containing the household income components that have to be subtracted. Otherwise a character vector specifying the columns of \code{data} that contain these income components.} \item{pplus}{if \code{data=NULL}, a \code{data.frame} containing the personal income components that have to be added. Otherwise a character vector specifying the columns of \code{data} that contain these income components.} \item{pminus}{if \code{data=NULL}, a \code{data.frame} containing the personal income components that have to be subtracted. Otherwise a character vector specifying the columns of \code{data} that contain these income components.} \item{eqSS}{if \code{data=NULL}, a vector containing the equivalized household size. Otherwise a character string specifying the column of \code{data} that contains the equivalized household size. See \code{\link{eqSS}} for more details.} \item{year}{if \code{data=NULL}, a vector containing the year of the survey. Otherwise a character string specifying the column of \code{data} that contains the year.} \item{data}{a \code{data.frame} containing EU-SILC survey data, or \code{NULL}.} } \value{ A numeric vector containing the equivalized disposable income for every individual in \code{data}. } \description{ Compute the equivalized disposable income from household and personal income variables. } \details{ All income components should already be imputed, otherwise \code{NA}s are simply removed before the calculations. } \examples{ data(eusilc) # compute a simplified version of the equivalized disposable income # (not all income components are available in the synthetic data) hplus <- c("hy040n", "hy050n", "hy070n", "hy080n", "hy090n", "hy110n") hminus <- c("hy130n", "hy145n") pplus <- c("py010n", "py050n", "py090n", "py100n", "py110n", "py120n", "py130n", "py140n") eqIncome <- eqInc("db030", hplus, hminus, pplus, character(), "eqSS", data=eusilc) # combine with household ID and equivalized household size tmp <- cbind(eusilc[, c("db030", "eqSS")], eqIncome) # show the first 8 rows head(tmp, 8) } \references{ Working group on Statistics on Income and Living Conditions (2004) Common cross-sectional EU indicators based on EU-SILC; the gender pay gap. \emph{EU-SILC 131-rev/04}, Eurostat. } \seealso{ \code{\link{eqSS}} } \author{ Andreas Alfons } \keyword{survey} laeken/man/calibVars.Rd0000644000176200001440000000146713616467254014507 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/calibVars.R \name{calibVars} \alias{calibVars} \title{Construct a matrix of binary variables for calibration} \usage{ calibVars(x) } \arguments{ \item{x}{a vector that can be interpreted as factor, or a matrix or \code{data.frame} consisting of such variables.} } \value{ A matrix of binary variables that indicate membership to the corresponding factor levels. } \description{ Construct a matrix of binary variables for calibration of sample weights according to known marginal population totals. } \examples{ data(eusilc) # default method aux <- calibVars(eusilc$rb090) head(aux) # data.frame method aux <- calibVars(eusilc[, c("db040", "rb090")]) head(aux) } \seealso{ \code{\link{calibWeights}} } \author{ Andreas Alfons } \keyword{survey} laeken/man/thetaPDC.Rd0000644000176200001440000000606414127253311014214 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/thetaPDC.R \name{thetaPDC} \alias{thetaPDC} \title{Partial density component (PDC) estimator} \usage{ thetaPDC(x, k = NULL, x0 = NULL, w = NULL, ...) } \arguments{ \item{x}{a numeric vector.} \item{k}{the number of observations in the upper tail to which the Pareto distribution is fitted.} \item{x0}{the threshold (scale parameter) above which the Pareto distribution is fitted.} \item{w}{an optional numeric vector giving sample weights.} \item{\dots}{additional arguments to be passed to \code{\link[stats]{optimize}} (see \dQuote{Details}).} } \value{ The estimated shape parameter. } \description{ The partial density component (PDC) estimator estimates the shape parameter of a Pareto distribution based on the relative excesses of observations above a certain threshold. } \details{ The arguments \code{k} and \code{x0} of course correspond with each other. If \code{k} is supplied, the threshold \code{x0} is estimated with the \eqn{n - k} largest value in \code{x}, where \eqn{n} is the number of observations. On the other hand, if the threshold \code{x0} is supplied, \code{k} is given by the number of observations in \code{x} larger than \code{x0}. Therefore, either \code{k} or \code{x0} needs to be supplied. If both are supplied, only \code{k} is used (mainly for back compatibility). The PDC estimator minimizes the integrated squared error (ISE) criterion with an incomplete density mixture model. The minimization is carried out using % \code{\link[stats]{nlm}}. By default, the starting value is obtained with % the Hill estimator (see \code{\link{thetaHill}}). \code{\link[stats]{optimize}}. } \note{ The arguments \code{x0} for the threshold (scale parameter) of the Pareto distribution and \code{w} for sample weights were introduced in version 0.2. } \examples{ data(eusilc) # equivalized disposable income is equal for each household # member, therefore only one household member is taken eusilc <- eusilc[!duplicated(eusilc$db030),] # estimate threshold ts <- paretoScale(eusilc$eqIncome, w = eusilc$db090) # using number of observations in tail thetaPDC(eusilc$eqIncome, k = ts$k, w = eusilc$db090) # using threshold thetaPDC(eusilc$eqIncome, x0 = ts$x0, w = eusilc$db090) } \references{ A. Alfons and M. Templ (2013) Estimation of Social Exclusion Indicators from Complex Surveys: The \R Package \pkg{laeken}. \emph{Journal of Statistical Software}, \bold{54}(15), 1--25. \doi{10.18637/jss.v054.i15} A. Alfons, M. Templ, P. Filzmoser (2013) Robust estimation of economic indicators from survey samples based on Pareto tail modeling. \emph{Journal of the Royal Statistical Society, Series C}, \bold{62}(2), 271--286. Vandewalle, B., Beirlant, J., Christmann, A., and Hubert, M. (2007) A robust estimator for the tail index of Pareto-type distributions. \emph{Computational Statistics & Data Analysis}, \bold{51}(12), 6252--6268. } \seealso{ \code{\link{paretoTail}}, \code{\link{fitPareto}}, \code{\link{thetaISE}}, \code{\link{thetaHill}} } \author{ Andreas Alfons and Josef Holzer } \keyword{manip} laeken/man/weightedMean.Rd0000644000176200001440000000147013616467254015174 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/weightedMean.R \name{weightedMean} \alias{weightedMean} \title{Weighted mean} \usage{ weightedMean(x, weights = NULL, na.rm = FALSE) } \arguments{ \item{x}{a numeric vector.} \item{weights}{an optional numeric vector giving the sample weights.} \item{na.rm}{a logical indicating whether missing values in \code{x} should be omitted.} } \value{ The weighted mean of values in \code{x} is returned. } \description{ Compute the weighted mean. } \details{ This is a simple wrapper function calling \code{\link[stats]{weighted.mean}} if sample weights are supplied and \code{\link{mean}} otherwise. } \examples{ data(eusilc) weightedMean(eusilc$eqIncome, eusilc$rb050) } \seealso{ \code{\link{incMean}} } \author{ Andreas Alfons } \keyword{survey} laeken/man/incMean.Rd0000644000176200001440000000257414127252664014146 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/incMean.R \name{incMean} \alias{incMean} \title{Weighted mean income} \usage{ incMean(inc, weights = NULL, years = NULL, data = NULL, na.rm = FALSE) } \arguments{ \item{inc}{either a numeric vector giving the (equivalized disposable) income, or (if \code{data} is not \code{NULL}) a character string, an integer or a logical vector specifying the corresponding column of \code{data}.} \item{weights}{optional; either a numeric vector giving the personal sample weights, or (if \code{data} is not \code{NULL}) a character string, an integer or a logical vector specifying the corresponding column of \code{data}.} \item{years}{optional; either a numeric vector giving the different years of the survey, or (if \code{data} is not \code{NULL}) a character string, an integer or a logical vector specifying the corresponding column of \code{data}. If supplied, values are computed for each year.} \item{data}{an optional \code{data.frame}.} \item{na.rm}{a logical indicating whether missing values should be removed.} } \value{ A numeric vector containing the value(s) of the weighted mean income is returned. } \description{ Compute the weighted mean income. } \examples{ data(eusilc) incMean("eqIncome", weights = "rb050", data = eusilc) } \seealso{ \code{\link{weightedMean}} } \author{ Andreas Alfons } \keyword{survey} laeken/man/variance.Rd0000644000176200001440000001070414127253311014344 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/variance.R \name{variance} \alias{variance} \title{Variance and confidence intervals of indicators on social exclusion and poverty} \usage{ variance( inc, weights = NULL, years = NULL, breakdown = NULL, design = NULL, cluster = NULL, data = NULL, indicator, alpha = 0.05, na.rm = FALSE, type = "bootstrap", gender = NULL, method = NULL, ... ) } \arguments{ \item{inc}{either a numeric vector giving the equivalized disposable income, or (if \code{data} is not \code{NULL}) a character string, an integer or a logical vector specifying the corresponding column of \code{data}.} \item{weights}{optional; either a numeric vector giving the personal sample weights, or (if \code{data} is not \code{NULL}) a character string, an integer or a logical vector specifying the corresponding column of \code{data}.} \item{years}{optional; either a numeric vector giving the different years of the survey, or (if \code{data} is not \code{NULL}) a character string, an integer or a logical vector specifying the corresponding column of \code{data}. If supplied, values are computed for each year.} \item{breakdown}{optional; either a numeric vector giving different domains, or (if \code{data} is not \code{NULL}) a character string, an integer or a logical vector specifying the corresponding column of \code{data}. If supplied, the values for each domain are computed in addition to the overall value.} \item{design}{optional; either an integer vector or factor giving different strata for stratified sampling designs, or (if \code{data} is not \code{NULL}) a character string, an integer or a logical vector specifying the corresponding column of \code{data}.} \item{cluster}{optional; either an integer vector or factor giving different clusters for cluster sampling designs, or (if \code{data} is not \code{NULL}) a character string, an integer or a logical vector specifying the corresponding column of \code{data}.} \item{data}{an optional \code{data.frame}.} \item{indicator}{an object inheriting from the class \code{"indicator"} that contains the point estimates of the indicator (see \code{\link{arpr}}, \code{\link{qsr}}, \code{\link{rmpg}} or \code{\link{gini}}).} \item{alpha}{a numeric value giving the significance level to be used for computing the confidence interval(s) (i.e., the confidence level is \eqn{1 - }\code{alpha}), or \code{NULL}.} \item{na.rm}{a logical indicating whether missing values should be removed.} \item{type}{a character string specifying the type of variance estimation to be used. Currently, only \code{"bootstrap"} is implemented for variance estimation based on bootstrap resampling (see \code{\link{bootVar}}).} \item{gender}{either a numeric vector giving the gender, or (if \code{data} is not \code{NULL}) a character string, an integer or a logical vector specifying the corresponding column of \code{data}.} \item{method}{a character string specifying the method to be used (only for \code{\link{gpg}}). Possible values are \code{"mean"} for the mean, and \code{"median"} for the median. If weights are provided, the weighted mean or weighted median is estimated.} \item{\dots}{additional arguments to be passed to \code{\link{bootVar}}.} } \value{ An object of the same class as \code{indicator} is returned. See \code{\link{arpr}}, \code{\link{qsr}}, \code{\link{rmpg}} or \code{\link{gini}} for details on the components. } \description{ Compute variance and confidence interval estimates of indicators on social exclusion and poverty. } \details{ This is a wrapper function for computing variance and confidence interval estimates of indicators on social exclusion and poverty. } \examples{ data(eusilc) a <- arpr("eqIncome", weights = "rb050", data = eusilc) ## naive bootstrap variance("eqIncome", weights = "rb050", design = "db040", data = eusilc, indicator = a, R = 50, bootType = "naive", seed = 123) ## bootstrap with calibration variance("eqIncome", weights = "rb050", design = "db040", data = eusilc, indicator = a, R = 50, X = calibVars(eusilc$db040), seed = 123) } \references{ A. Alfons and M. Templ (2013) Estimation of Social Exclusion Indicators from Complex Surveys: The \R Package \pkg{laeken}. \emph{Journal of Statistical Software}, \bold{54}(15), 1--25. \doi{10.18637/jss.v054.i15} } \seealso{ \code{\link{bootVar}}, \code{\link{arpr}}, \code{\link{qsr}}, \code{\link{rmpg}}, \code{\link{gini}} } \author{ Andreas Alfons } \keyword{survey} laeken/man/gpg.Rd0000644000176200001440000001351414127253311013333 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/gpg.R \name{gpg} \alias{gpg} \title{Gender pay (wage) gap.} \usage{ gpg( inc, gender = NULL, method = c("mean", "median"), weights = NULL, sort = NULL, years = NULL, breakdown = NULL, design = NULL, cluster = NULL, data = NULL, var = NULL, alpha = 0.05, na.rm = FALSE, ... ) } \arguments{ \item{inc}{either a numeric vector giving the equivalized disposable income, or (if \code{data} is not \code{NULL}) a character string, an integer or a logical vector specifying the corresponding column of \code{data}.} \item{gender}{either a factor giving the gender, or (if \code{data} is not \code{NULL}) a character string, an integer or a logical vector specifying the corresponding column of \code{data}.} \item{method}{a character string specifying the method to be used. Possible values are \code{"mean"} for the mean, and \code{"median"} for the median. If weights are provided, the weighted mean or weighted median is estimated.} \item{weights}{optional; either a numeric vector giving the personal sample weights, or (if \code{data} is not \code{NULL}) a character string, an integer or a logical vector specifying the corresponding column of \code{data}.} \item{sort}{optional; either a numeric vector giving the personal IDs to be used as tie-breakers for sorting, or (if \code{data} is not \code{NULL}) a character string, an integer or a logical vector specifying the corresponding column of \code{data}.} \item{years}{optional; either a numeric vector giving the different years of the survey, or (if \code{data} is not \code{NULL}) a character string, an integer or a logical vector specifying the corresponding column of \code{data}. If supplied, values are computed for each year.} \item{breakdown}{optional; either a numeric vector giving different domains, or (if \code{data} is not \code{NULL}) a character string, an integer or a logical vector specifying the corresponding column of \code{data}. If supplied, the values for each domain are computed in addition to the overall value.} \item{design}{optional and only used if \code{var} is not \code{NULL}; either an integer vector or factor giving different strata for stratified sampling designs, or (if \code{data} is not \code{NULL}) a character string, an integer or a logical vector specifying the corresponding column of \code{data}.} \item{cluster}{optional and only used if \code{var} is not \code{NULL}; either an integer vector or factor giving different clusters for cluster sampling designs, or (if \code{data} is not \code{NULL}) a character string, an integer or a logical vector specifying the corresponding column of \code{data}.} \item{data}{an optional \code{data.frame}.} \item{var}{a character string specifying the type of variance estimation to be used, or \code{NULL} to omit variance estimation. See \code{\link{variance}} for possible values.} \item{alpha}{numeric; if \code{var} is not \code{NULL}, this gives the significance level to be used for computing the confidence interval (i.e., the confidence level is \eqn{1 - }\code{alpha}).} \item{na.rm}{a logical indicating whether missing values should be removed.} \item{\dots}{if \code{var} is not \code{NULL}, additional arguments to be passed to \code{\link{variance}}.} } \value{ A list of class \code{"gpg"} (which inherits from the class \code{"indicator"}) with the following components: \item{value}{a numeric vector containing the overall value(s).} \item{valueByStratum}{a \code{data.frame} containing the values by domain, or \code{NULL}.} \item{varMethod}{a character string specifying the type of variance estimation used, or \code{NULL} if variance estimation was omitted.} \item{var}{a numeric vector containing the variance estimate(s), or \code{NULL}.} \item{varByStratum}{a \code{data.frame} containing the variance estimates by domain, or \code{NULL}.} \item{ci}{a numeric vector or matrix containing the lower and upper endpoints of the confidence interval(s), or \code{NULL}.} \item{ciByStratum}{a \code{data.frame} containing the lower and upper endpoints of the confidence intervals by domain, or \code{NULL}.} \item{alpha}{a numeric value giving the significance level used for computing the confidence interv al(s) (i.e., the confidence level is \eqn{1 - }\code{alpha}), or \code{NULL}.} \item{years}{a numeric vector containing the different years of the survey.} \item{strata}{a character vector containing the different domains of the breakdown.} } \description{ Estimate the gender pay (wage) gap. } \details{ The implementation strictly follows the Eurostat definition (with default method \code{"mean"} and alternative method \code{"median"}). If weights are provided, the weighted mean or weighted median is estimated. } \examples{ data(ses) # overall value with mean gpg("earningsHour", gender = "sex", weigths = "weights", data = ses) # overall value with median gpg("earningsHour", gender = "sex", weigths = "weights", data = ses, method = "median") # values by education with mean gpg("earningsHour", gender = "sex", weigths = "weights", breakdown = "education", data = ses) # values by education with median gpg("earningsHour", gender = "sex", weigths = "weights", breakdown = "education", data = ses, method = "median") } \references{ A. Alfons and M. Templ (2013) Estimation of Social Exclusion Indicators from Complex Surveys: The \R Package \pkg{laeken}. \emph{Journal of Statistical Software}, \bold{54}(15), 1--25. \doi{10.18637/jss.v054.i15} Working group on Statistics on Income and Living Conditions (2004) Common cross-sectional EU indicators based on EU-SILC; the gender pay gap. \emph{EU-SILC 131-rev/04}, Eurostat, Luxembourg. } \seealso{ \code{\link{variance}}, \code{\link{qsr}}, \code{\link{gini}} } \author{ Matthias Templ and Alexander Haider, using code for breaking down estimation by Andreas Alfons } \keyword{survey} laeken/man/gini.Rd0000644000176200001440000001150414127253311013501 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/gini.R \name{gini} \alias{gini} \title{Gini coefficient} \usage{ gini( inc, weights = NULL, sort = NULL, years = NULL, breakdown = NULL, design = NULL, cluster = NULL, data = NULL, var = NULL, alpha = 0.05, na.rm = FALSE, ... ) } \arguments{ \item{inc}{either a numeric vector giving the equivalized disposable income, or (if \code{data} is not \code{NULL}) a character string, an integer or a logical vector specifying the corresponding column of \code{data}.} \item{weights}{optional; either a numeric vector giving the personal sample weights, or (if \code{data} is not \code{NULL}) a character string, an integer or a logical vector specifying the corresponding column of \code{data}.} \item{sort}{optional; either a numeric vector giving the personal IDs to be used as tie-breakers for sorting, or (if \code{data} is not \code{NULL}) a character string, an integer or a logical vector specifying the corresponding column of \code{data}.} \item{years}{optional; either a numeric vector giving the different years of the survey, or (if \code{data} is not \code{NULL}) a character string, an integer or a logical vector specifying the corresponding column of \code{data}. If supplied, values are computed for each year.} \item{breakdown}{optional; either a numeric vector giving different domains, or (if \code{data} is not \code{NULL}) a character string, an integer or a logical vector specifying the corresponding column of \code{data}. If supplied, the values for each domain are computed in addition to the overall value.} \item{design}{optional and only used if \code{var} is not \code{NULL}; either an integer vector or factor giving different domains for stratified sampling designs, or (if \code{data} is not \code{NULL}) a character string, an integer or a logical vector specifying the corresponding column of \code{data}.} \item{cluster}{optional and only used if \code{var} is not \code{NULL}; either an integer vector or factor giving different clusters for cluster sampling designs, or (if \code{data} is not \code{NULL}) a character string, an integer or a logical vector specifying the corresponding column of \code{data}.} \item{data}{an optional \code{data.frame}.} \item{var}{a character string specifying the type of variance estimation to be used, or \code{NULL} to omit variance estimation. See \code{\link{variance}} for possible values.} \item{alpha}{numeric; if \code{var} is not \code{NULL}, this gives the significance level to be used for computing the confidence interval (i.e., the confidence level is \eqn{1 - }\code{alpha}).} \item{na.rm}{a logical indicating whether missing values should be removed.} \item{\dots}{if \code{var} is not \code{NULL}, additional arguments to be passed to \code{\link{variance}}.} } \value{ A list of class \code{"gini"} (which inherits from the class \code{"indicator"}) with the following components: \item{value}{a numeric vector containing the overall value(s).} \item{valueByStratum}{a \code{data.frame} containing the values by domain, or \code{NULL}.} \item{varMethod}{a character string specifying the type of variance estimation used, or \code{NULL} if variance estimation was omitted.} \item{var}{a numeric vector containing the variance estimate(s), or \code{NULL}.} \item{varByStratum}{a \code{data.frame} containing the variance estimates by domain, or \code{NULL}.} \item{ci}{a numeric vector or matrix containing the lower and upper endpoints of the confidence interval(s), or \code{NULL}.} \item{ciByStratum}{a \code{data.frame} containing the lower and upper endpoints of the confidence intervals by domain, or \code{NULL}.} \item{alpha}{a numeric value giving the significance level used for computing the confidence interval(s) (i.e., the confidence level is \eqn{1 - }\code{alpha}), or \code{NULL}.} \item{years}{a numeric vector containing the different years of the survey.} \item{strata}{a character vector containing the different domains of the breakdown.} } \description{ Estimate the Gini coefficient, which is a measure for inequality. } \details{ The implementation strictly follows the Eurostat definition. } \examples{ data(eusilc) # overall value gini("eqIncome", weights = "rb050", data = eusilc) # values by region gini("eqIncome", weights = "rb050", breakdown = "db040", data = eusilc) } \references{ A. Alfons and M. Templ (2013) Estimation of Social Exclusion Indicators from Complex Surveys: The \R Package \pkg{laeken}. \emph{Journal of Statistical Software}, \bold{54}(15), 1--25. \doi{10.18637/jss.v054.i15} Working group on Statistics on Income and Living Conditions (2004) Common cross-sectional EU indicators based on EU-SILC; the gender pay gap. \emph{EU-SILC 131-rev/04}, Eurostat, Luxembourg. } \seealso{ \code{\link{variance}}, \code{\link{qsr}} } \author{ Andreas Alfons } \keyword{survey} laeken/man/replaceTail.Rd0000644000176200001440000000421014127253311014774 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/paretoTail.R \name{replaceTail} \alias{replaceTail} \alias{replaceTail.paretoTail} \alias{replaceOut} \title{Replace observations under a Pareto model} \usage{ replaceTail(x, ...) \method{replaceTail}{paretoTail}(x, all = TRUE, ...) replaceOut(x, ...) } \arguments{ \item{x}{an object of class \code{"paretoTail"} (see \code{\link{paretoTail}}).} \item{\dots}{additional arguments to be passed down.} \item{all}{a logical indicating whether all observations in the upper tail should be replaced or only those flagged as outliers.} } \value{ A numeric vector consisting mostly of the original values, but with observations in the upper tail replaced with values from the fitted Pareto distribution. } \description{ Replace observations under a Pareto model for the upper tail with values drawn from the fitted distribution. } \details{ \code{replaceOut(x, \dots{})} is a simple wrapper for \code{replaceTail(x, all = FALSE, \dots{})}. } \examples{ data(eusilc) ## gini coefficient without Pareto tail modeling gini("eqIncome", weights = "rb050", data = eusilc) ## gini coefficient with Pareto tail modeling # estimate threshold ts <- paretoScale(eusilc$eqIncome, w = eusilc$db090, groups = eusilc$db030) # estimate shape parameter fit <- paretoTail(eusilc$eqIncome, k = ts$k, w = eusilc$db090, groups = eusilc$db030) # replacement of outliers eqIncome <- replaceOut(fit) gini(eqIncome, weights = eusilc$rb050) # replacement of whole tail eqIncome <- replaceTail(fit) gini(eqIncome, weights = eusilc$rb050) } \references{ A. Alfons and M. Templ (2013) Estimation of Social Exclusion Indicators from Complex Surveys: The \R Package \pkg{laeken}. \emph{Journal of Statistical Software}, \bold{54}(15), 1--25. \doi{10.18637/jss.v054.i15} A. Alfons, M. Templ, P. Filzmoser (2013) Robust estimation of economic indicators from survey samples based on Pareto tail modeling. \emph{Journal of the Royal Statistical Society, Series C}, \bold{62}(2), 271--286. } \seealso{ \code{\link{paretoTail}}, \code{\link{reweightOut}}, \code{\link{shrinkOut}} } \author{ Andreas Alfons } \keyword{manip} laeken/man/paretoTail.Rd0000644000176200001440000001244114127253311014660 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/paretoTail.R \name{paretoTail} \alias{paretoTail} \alias{print.paretoTail} \title{Pareto tail modeling for income distributions} \usage{ paretoTail( x, k = NULL, x0 = NULL, method = "thetaPDC", groups = NULL, w = NULL, alpha = 0.01, ... ) } \arguments{ \item{x}{a numeric vector.} \item{k}{the number of observations in the upper tail to which the Pareto distribution is fitted.} \item{x0}{the threshold (scale parameter) above which the Pareto distribution is fitted.} \item{method}{either a function or a character string specifying the function to be used to estimate the shape parameter of the Pareto distibution, such as \code{\link{thetaPDC}} (the default). See \dQuote{Details} for requirements for such a function and \dQuote{See also} for available functions.} \item{groups}{an optional vector or factor specifying groups of elements of \code{x} (e.g., households). If supplied, each group of observations is expected to have the same value in \code{x} (e.g., household income). Only the values of every first group member to appear are used for fitting the Pareto distribution.} \item{w}{an optional numeric vector giving sample weights.} \item{alpha}{numeric; values above the theoretical \eqn{1 - }\code{alpha} quantile of the fitted Pareto distribution will be flagged as outliers for further treatment with \code{\link{reweightOut}} or \code{\link{replaceOut}}.} \item{\dots}{addtional arguments to be passed to the specified method.} } \value{ An object of class \code{"paretoTail"} with the following components: \item{x}{the supplied numeric vector.} \item{k}{the number of observations in the upper tail to which the Pareto distribution has been fitted.} \item{groups}{if supplied, the vector or factor specifying groups of elements.} \item{w}{if supplied, the numeric vector of sample weights.} \item{method}{the function used to estimate the shape parameter, or the name of the function.} \item{x0}{the scale parameter.} \item{theta}{the estimated shape parameter.} \item{tail}{if \code{groups} is not \code{NULL}, this gives the groups with values larger than the threshold (scale parameter), otherwise the indices of observations in the upper tail.} \item{alpha}{the tuning parameter \code{alpha} used for flagging outliers.} \item{out}{if \code{groups} is not \code{NULL}, this gives the groups that are flagged as outliers, otherwise the indices of the flagged observations.} } \description{ Fit a Pareto distribution to the upper tail of income data. Since a theoretical distribution is used for the upper tail, this is a semiparametric approach. } \details{ The arguments \code{k} and \code{x0} of course correspond with each other. If \code{k} is supplied, the threshold \code{x0} is estimated with the \eqn{n - k} largest value in \code{x}, where \eqn{n} is the number of observations. On the other hand, if the threshold \code{x0} is supplied, \code{k} is given by the number of observations in \code{x} larger than \code{x0}. Therefore, either \code{k} or \code{x0} needs to be supplied. If both are supplied, only \code{k} is used. The function supplied to \code{method} should take a numeric vector (the observations) as its first argument. If \code{k} is supplied, it will be passed on (in this case, the function is required to have an argument called \code{k}). Similarly, if the threshold \code{x0} is supplied, it will be passed on (in this case, the function is required to have an argument called \code{x0}). As above, only \code{k} is passed on if both are supplied. If the function specified by \code{method} can handle sample weights, the corresponding argument should be called \code{w}. Additional arguments are passed via the \dots{} argument. } \examples{ data(eusilc) ## gini coefficient without Pareto tail modeling gini("eqIncome", weights = "rb050", data = eusilc) ## gini coefficient with Pareto tail modeling # estimate threshold ts <- paretoScale(eusilc$eqIncome, w = eusilc$db090, groups = eusilc$db030) # estimate shape parameter fit <- paretoTail(eusilc$eqIncome, k = ts$k, w = eusilc$db090, groups = eusilc$db030) # calibration of outliers w <- reweightOut(fit, calibVars(eusilc$db040)) gini(eusilc$eqIncome, w) # winsorization of outliers eqIncome <- shrinkOut(fit) gini(eqIncome, weights = eusilc$rb050) # replacement of outliers eqIncome <- replaceOut(fit) gini(eqIncome, weights = eusilc$rb050) # replacement of whole tail eqIncome <- replaceTail(fit) gini(eqIncome, weights = eusilc$rb050) } \references{ A. Alfons and M. Templ (2013) Estimation of Social Exclusion Indicators from Complex Surveys: The \R Package \pkg{laeken}. \emph{Journal of Statistical Software}, \bold{54}(15), 1--25. \doi{10.18637/jss.v054.i15} A. Alfons, M. Templ, P. Filzmoser (2013) Robust estimation of economic indicators from survey samples based on Pareto tail modeling. \emph{Journal of the Royal Statistical Society, Series C}, \bold{62}(2), 271--286. } \seealso{ \code{\link{reweightOut}}, \code{\link{shrinkOut}}, \code{\link{replaceOut}}, \code{\link{replaceTail}}, \code{\link{fitPareto}} \code{\link{thetaPDC}}, \code{\link{thetaWML}}, \code{\link{thetaHill}}, \code{\link{thetaISE}}, \code{\link{thetaLS}}, \code{\link{thetaMoment}}, \code{\link{thetaQQ}}, \code{\link{thetaTM}} } \author{ Andreas Alfons } \keyword{manip} laeken/man/fitPareto.Rd0000644000176200001440000000745314127252664014532 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/fitPareto.R \name{fitPareto} \alias{fitPareto} \title{Fit income distribution models with the Pareto distribution} \usage{ fitPareto( x, k = NULL, x0 = NULL, method = "thetaPDC", groups = NULL, w = NULL, ... ) } \arguments{ \item{x}{a numeric vector.} \item{k}{the number of observations in the upper tail to which the Pareto distribution is fitted.} \item{x0}{the threshold (scale parameter) above which the Pareto distribution is fitted.} \item{method}{either a function or a character string specifying the function to be used to estimate the shape parameter of the Pareto distibution, such as \code{\link{thetaPDC}} (the default). See \dQuote{Details} for requirements for such a function and \dQuote{See also} for available functions.} \item{groups}{an optional vector or factor specifying groups of elements of \code{x} (e.g., households). If supplied, each group of observations is expected to have the same value in \code{x} (e.g., household income). Only the values of every first group member to appear are used for fitting the Pareto distribution. For each group above the threshold, every group member is assigned the same value.} \item{w}{an optional numeric vector giving sample weights.} \item{\dots}{addtional arguments to be passed to the specified method.} } \value{ A numeric vector with a Pareto distribution fit to the upper tail. } \description{ Fit a Pareto distribution to the upper tail of income data. Since a theoretical distribution is used for the upper tail, this is a semiparametric approach. } \details{ The arguments \code{k} and \code{x0} of course correspond with each other. If \code{k} is supplied, the threshold \code{x0} is estimated with the \eqn{n - k} largest value in \code{x}, where \eqn{n} is the number of observations. On the other hand, if the threshold \code{x0} is supplied, \code{k} is given by the number of observations in \code{x} larger than \code{x0}. Therefore, either \code{k} or \code{x0} needs to be supplied. If both are supplied, only \code{k} is used (mainly for back compatibility). The function supplied to \code{method} should take a numeric vector (the observations) as its first argument. If \code{k} is supplied, it will be passed on (in this case, the function is required to have an argument called \code{k}). Similarly, if the threshold \code{x0} is supplied, it will be passed on (in this case, the function is required to have an argument called \code{x0}). As above, only \code{k} is passed on if both are supplied. If the function specified by \code{method} can handle sample weights, the corresponding argument should be called \code{w}. Additional arguments are passed via the \dots{} argument. } \note{ The arguments \code{x0} for the threshold (scale parameter) of the Pareto distribution and \code{w} for sample weights were introduced in version 0.2. This results in slightly different behavior regarding the function calls to \code{method} compared to prior versions. } \examples{ data(eusilc) ## gini coefficient without Pareto tail modeling gini("eqIncome", weights = "rb050", data = eusilc) ## gini coefficient with Pareto tail modeling # using number of observations in tail eqIncome <- fitPareto(eusilc$eqIncome, k = 175, w = eusilc$db090, groups = eusilc$db030) gini(eqIncome, weights = eusilc$rb050) # using threshold eqIncome <- fitPareto(eusilc$eqIncome, x0 = 44150, w = eusilc$db090, groups = eusilc$db030) gini(eqIncome, weights = eusilc$rb050) } \seealso{ \code{\link{paretoTail}}, \code{\link{replaceTail}} \code{\link{thetaPDC}}, \code{\link{thetaWML}}, \code{\link{thetaHill}}, \code{\link{thetaISE}}, \code{\link{thetaLS}}, \code{\link{thetaMoment}}, \code{\link{thetaQQ}}, \code{\link{thetaTM}} } \author{ Andreas Alfons and Josef Holzer } \keyword{manip} laeken/man/weightedQuantile.Rd0000644000176200001440000000256314127252664016075 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/weightedQuantile.R \name{weightedQuantile} \alias{weightedQuantile} \title{Weighted quantiles} \usage{ weightedQuantile( x, weights = NULL, probs = seq(0, 1, 0.25), sorted = FALSE, na.rm = FALSE ) } \arguments{ \item{x}{a numeric vector.} \item{weights}{an optional numeric vector giving the sample weights.} \item{probs}{numeric vector of probabilities with values in \eqn{[0,1]}.} \item{sorted}{a logical indicating whether the observations in \code{x} are already sorted.} \item{na.rm}{a logical indicating whether missing values in \code{x} should be omitted.} } \value{ A numeric vector containing the weighted quantiles of values in \code{x} at probabilities \code{probs} is returned. Unlike \code{\link[stats]{quantile}}, this returns an unnamed vector. } \description{ Compute weighted quantiles (Eurostat definition). } \details{ The implementation strictly follows the Eurostat definition. } \examples{ data(eusilc) weightedQuantile(eusilc$eqIncome, eusilc$rb050) } \references{ Working group on Statistics on Income and Living Conditions (2004) Common cross-sectional EU indicators based on EU-SILC; the gender pay gap. \emph{EU-SILC 131-rev/04}, Eurostat. } \seealso{ \code{\link{incQuintile}}, \code{\link{weightedMedian}} } \author{ Andreas Alfons and Matthias Templ } \keyword{survey} laeken/man/meanExcessPlot.Rd0000644000176200001440000000570414127252664015524 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/meanExcessPlot.R \name{meanExcessPlot} \alias{meanExcessPlot} \title{Mean excess plot} \usage{ meanExcessPlot( x, w = NULL, probs = NULL, interactive = TRUE, pch = par("pch"), cex = par("cex"), col = par("col"), bg = "transparent", ... ) } \arguments{ \item{x}{a numeric vector.} \item{w}{an optional numeric vector giving sample weights.} \item{probs}{an optional numeric vector of probabilities with values in \eqn{[0,1]}, defining the quantiles to be plotted. This is useful for large data sets, when it may not be desirable to plot every single point.} \item{interactive}{a logical indicating whether the threshold (scale parameter) can be selected interactively by clicking on points. Information on the selected threshold is then printed on the console.} \item{pch, cex, col, bg}{graphical parameters for the plot symbol of each data point or quantile (see \code{\link[graphics]{points}}).} \item{\dots}{additional arguments to be passed to \code{\link[graphics]{plot.default}}.} } \value{ If \code{interactive} is \code{TRUE}, the last selection for the threshold is returned invisibly as an object of class \code{"paretoScale"}, which consists of the following components: \item{x0}{the selected threshold (scale parameter).} \item{k}{the number of observations in the tail (i.e., larger than the threshold).} } \description{ The Mean Excess plot is a graphical method for detecting the threshold (scale parameter) of a Pareto distribution. } \details{ The corresponding mean excesses are plotted against the values of \code{x} (if supplied, only those specified by \code{probs}). If the tail of the data follows a Pareto distribution, these observations show a positive linear trend. The leftmost point of a fitted line can thus be used as an estimate of the threshold (scale parameter). The interactive selection of the threshold (scale parameter) is implemented using \code{\link[graphics]{identify}}. For the usual \code{X11} device, the selection process is thus terminated by pressing any mouse button other than the first. For the \code{quartz} device (on Mac OS X systems), the process is terminated either by a secondary click (usually second mouse button or \code{Ctrl}-click) or by pressing the \code{ESC} key. } \note{ The functionality to account for sample weights and to select the threshold (scale parameter) interactively was introduced in version 0.2. } \examples{ data(eusilc) # equivalized disposable income is equal for each household # member, therefore only one household member is taken eusilc <- eusilc[!duplicated(eusilc$db030),] # with sample weights meanExcessPlot(eusilc$eqIncome, w = eusilc$db090) # without sample weights meanExcessPlot(eusilc$eqIncome) } \seealso{ \code{\link{paretoScale}}, \code{\link{paretoTail}}, \code{\link{minAMSE}}, \code{\link{paretoQPlot}}, \code{\link[graphics]{identify}} } \author{ Andreas Alfons and Josef Holzer } \keyword{hplot} laeken/man/calibWeights.Rd0000644000176200001440000000560614127273146015176 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/calibWeights.R \encoding{utf8} \name{calibWeights} \alias{calibWeights} \title{Calibrate sample weights} \usage{ calibWeights( X, d, totals, q = NULL, method = c("raking", "linear", "logit"), bounds = c(0, 10), maxit = 500, tol = 1e-06, eps = .Machine$double.eps ) } \arguments{ \item{X}{a matrix of binary calibration variables (see \code{\link{calibVars}}).} \item{d}{a numeric vector giving the initial sample weights.} \item{totals}{a numeric vector of population totals corresponding to the calibration variables in \code{X}.} \item{q}{a numeric vector of positive values accounting for heteroscedasticity. Small values reduce the variation of the \emph{g}-weights.} \item{method}{a character string specifying the calibration method to be used. Possible values are \code{"linear"} for the linear method, \code{"raking"} for the multiplicative method known as raking and \code{"logit"} for the logit method.} \item{bounds}{a numeric vector of length two giving bounds for the g-weights to be used in the logit method. The first value gives the lower bound (which must be smaller than or equal to 1) and the second value gives the upper bound (which must be larger than or equal to 1).} \item{maxit}{a numeric value giving the maximum number of iterations.} \item{tol}{the desired accuracy for the iterative procedure.} \item{eps}{the desired accuracy for computing the Moore-Penrose generalized inverse (see \code{\link[MASS]{ginv}}).} } \value{ A numeric vector containing the \emph{g}-weights. } \description{ Calibrate sample weights according to known marginal population totals. Based on initial sample weights, the so-called \emph{g}-weights are computed by generalized raking procedures. } \details{ The final sample weights need to be computed by multiplying the resulting \emph{g}-weights with the initial sample weights. } \note{ This is a faster implementation of parts of \code{calib} from package \code{sampling}. Note that the default calibration method is raking and that the truncated linear method is not yet implemented. } \examples{ data(eusilc) # construct auxiliary 0/1 variables for genders aux <- calibVars(eusilc$rb090) # population totals totals <- c(3990798, 4191431) # compute g-weights g <- calibWeights(aux, eusilc$rb050, totals) # compute final weights weights <- g * eusilc$rb050 summary(weights) } \references{ Deville, J.-C. and \enc{Särndal}{Saerndal}, C.-E. (1992) Calibration estimators in survey sampling. \emph{Journal of the American Statistical Association}, \bold{87}(418), 376--382. Deville, J.-C., \enc{Särndal}{Saerndal}, C.-E. and Sautory, O. (1993) Generalized raking procedures in survey sampling. \emph{Journal of the American Statistical Association}, \bold{88}(423), 1013--1020. } \seealso{ \code{\link{calibVars}}, \code{\link{bootVar}} } \author{ Andreas Alfons } \keyword{survey} laeken/man/incMedian.Rd0000644000176200001440000000370714127252664014462 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/incMedian.R \name{incMedian} \alias{incMedian} \title{Weighted median income} \usage{ incMedian( inc, weights = NULL, sort = NULL, years = NULL, data = NULL, na.rm = FALSE ) } \arguments{ \item{inc}{either a numeric vector giving the (equivalized disposable) income, or (if \code{data} is not \code{NULL}) a character string, an integer or a logical vector specifying the corresponding column of \code{data}.} \item{weights}{optional; either a numeric vector giving the personal sample weights, or (if \code{data} is not \code{NULL}) a character string, an integer or a logical vector specifying the corresponding column of \code{data}.} \item{sort}{optional; either a numeric vector giving the personal IDs to be used as tie-breakers for sorting, or (if \code{data} is not \code{NULL}) a character string, an integer or a logical vector specifying the corresponding column of \code{data}.} \item{years}{optional; either a numeric vector giving the different years of the survey, or (if \code{data} is not \code{NULL}) a character string, an integer or a logical vector specifying the corresponding column of \code{data}. If supplied, values are computed for each year.} \item{data}{an optional \code{data.frame}.} \item{na.rm}{a logical indicating whether missing values should be removed.} } \value{ A numeric vector containing the value(s) of the weighted median income is returned. } \description{ Compute the weighted median income. } \details{ The implementation strictly follows the Eurostat definition. } \examples{ data(eusilc) incMedian("eqIncome", weights = "rb050", data = eusilc) } \references{ Working group on Statistics on Income and Living Conditions (2004) Common cross-sectional EU indicators based on EU-SILC; the gender pay gap. \emph{EU-SILC 131-rev/04}, Eurostat. } \seealso{ \code{\link{arpt}}, \code{\link{weightedMedian}} } \author{ Andreas Alfons } \keyword{survey} laeken/man/thetaQQ.Rd0000644000176200001440000000351013616467254014137 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/thetaQQ.R \name{thetaQQ} \alias{thetaQQ} \title{QQ-estimator} \usage{ thetaQQ(x, k = NULL, x0 = NULL) } \arguments{ \item{x}{a numeric vector.} \item{k}{the number of observations in the upper tail to which the Pareto distribution is fitted.} \item{x0}{the threshold (scale parameter) above which the Pareto distribution is fitted.} } \value{ The estimated shape parameter. } \description{ Estimate the shape parameter of a Pareto distribution using a quantile-quantile approach. } \details{ The arguments \code{k} and \code{x0} of course correspond with each other. If \code{k} is supplied, the threshold \code{x0} is estimated with the \eqn{n - k} largest value in \code{x}, where \eqn{n} is the number of observations. On the other hand, if the threshold \code{x0} is supplied, \code{k} is given by the number of observations in \code{x} larger than \code{x0}. Therefore, either \code{k} or \code{x0} needs to be supplied. If both are supplied, only \code{k} is used (mainly for back compatibility). } \note{ The argument \code{x0} for the threshold (scale parameter) of the Pareto distribution was introduced in version 0.2. } \examples{ data(eusilc) # equivalized disposable income is equal for each household # member, therefore only one household member is taken eusilc <- eusilc[!duplicated(eusilc$db030),] # estimate threshold ts <- paretoScale(eusilc$eqIncome, w = eusilc$db090) # using number of observations in tail thetaQQ(eusilc$eqIncome, k = ts$k) # using threshold thetaQQ(eusilc$eqIncome, x0 = ts$x0) } \references{ Kratz, M.F. and Resnick, S.I. (1996) The QQ-estimator and heavy tails. \emph{Stochastic Models}, \bold{12}(4), 699--724. } \seealso{ \code{\link{paretoTail}}, \code{\link{fitPareto}} } \author{ Andreas Alfons and Josef Holzer } \keyword{manip} laeken/man/weightedMedian.Rd0000644000176200001440000000220713616467254015510 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/weightedMedian.R \name{weightedMedian} \alias{weightedMedian} \title{Weighted median} \usage{ weightedMedian(x, weights = NULL, sorted = FALSE, na.rm = FALSE) } \arguments{ \item{x}{a numeric vector.} \item{weights}{an optional numeric vector giving the sample weights.} \item{sorted}{a logical indicating whether the observations in \code{x} are already sorted.} \item{na.rm}{a logical indicating whether missing values in \code{x} should be omitted.} } \value{ The weighted median of values in \code{x} is returned. } \description{ Compute the weighted median (Eurostat definition). } \details{ The implementation strictly follows the Eurostat definition. } \examples{ data(eusilc) weightedMedian(eusilc$eqIncome, eusilc$rb050) } \references{ Working group on Statistics on Income and Living Conditions (2004) Common cross-sectional EU indicators based on EU-SILC; the gender pay gap. \emph{EU-SILC 131-rev/04}, Eurostat. } \seealso{ \code{\link{arpt}}, \code{\link{incMedian}}, \code{\link{weightedQuantile}} } \author{ Andreas Alfons and Matthias Templ } \keyword{survey} laeken/man/utils.Rd0000644000176200001440000000646414127253311013724 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/utils.R \name{utils} \alias{utils} \alias{is.indicator} \alias{is.arpr} \alias{is.qsr} \alias{is.rmpg} \alias{is.gini} \alias{is.prop} \alias{is.gpg} \alias{print.indicator} \alias{print.arpr} \alias{print.rmpg} \alias{subset.indicator} \alias{subset.arpr} \alias{subset.rmpg} \title{Utility functions for indicators on social exclusion and poverty} \usage{ is.indicator(x) is.arpr(x) is.qsr(x) is.rmpg(x) is.gini(x) is.prop(x) is.gpg(x) \method{print}{indicator}(x, ...) \method{print}{arpr}(x, ...) \method{print}{rmpg}(x, ...) \method{subset}{indicator}(x, years = NULL, strata = NULL, ...) \method{subset}{arpr}(x, years = NULL, strata = NULL, ...) \method{subset}{rmpg}(x, years = NULL, strata = NULL, ...) } \arguments{ \item{x}{for \code{is.xyz}, any object to be tested. The \code{print} and \code{subset} methods are called by the generic functions if an object of the respective class is supplied.} \item{\dots}{additional arguments to be passed to and from methods.} \item{years}{an optional numeric vector giving the years to be extracted.} \item{strata}{an optional vector giving the domains of the breakdown to be extracted.} } \value{ \code{is.indicator} returns \code{TRUE} if \code{x} inherits from class \code{"indicator"} and \code{FALSE} otherwise. \code{is.arpr} returns \code{TRUE} if \code{x} inherits from class \code{"arpr"} and \code{FALSE} otherwise. \code{is.qsr} returns \code{TRUE} if \code{x} inherits from class \code{"qsr"} and \code{FALSE} otherwise. \code{is.rmpg} returns \code{TRUE} if \code{x} inherits from class \code{"rmpg"} and \code{FALSE} otherwise. \code{is.gini} returns \code{TRUE} if \code{x} inherits from class \code{"gini"} and \code{FALSE} otherwise. \code{is.gini} returns \code{TRUE} if \code{x} inherits from class \code{"gini"} and \code{FALSE} otherwise. \code{print.indicator}, \code{print.arpr} and \code{print.rmpg} return \code{x} invisibly. \code{subset.indicator}, \code{subset.arpr} and \code{subset.rmpg} return a subset of \code{x} of the same class. } \description{ Test for class, print and take subsets of indicators on social exclusion and poverty. } \examples{ data(eusilc) # at-risk-of-poverty rate a <- arpr("eqIncome", weights = "rb050", breakdown = "db040", data = eusilc) print(a) is.arpr(a) is.indicator(a) subset(a, strata = c("Lower Austria", "Vienna")) # quintile share ratio q <- qsr("eqIncome", weights = "rb050", breakdown = "db040", data = eusilc) print(q) is.qsr(q) is.indicator(q) subset(q, strata = c("Lower Austria", "Vienna")) # relative median at-risk-of-poverty gap r <- rmpg("eqIncome", weights = "rb050", breakdown = "db040", data = eusilc) print(r) is.rmpg(r) is.indicator(r) subset(r, strata = c("Lower Austria", "Vienna")) # Gini coefficient g <- gini("eqIncome", weights = "rb050", breakdown = "db040", data = eusilc) print(g) is.gini(g) is.indicator(g) subset(g, strata = c("Lower Austria", "Vienna")) } \references{ A. Alfons and M. Templ (2013) Estimation of Social Exclusion Indicators from Complex Surveys: The \R Package \pkg{laeken}. \emph{Journal of Statistical Software}, \bold{54}(15), 1--25. \doi{10.18637/jss.v054.i15} } \seealso{ \code{\link{arpr}}, \code{\link{qsr}}, \code{\link{rmpg}}, \code{\link{gini}}, \code{\link{gpg}} } \keyword{survey} laeken/man/eqSS.Rd0000644000176200001440000000277513616467254013457 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/eqSS.R \name{eqSS} \alias{eqSS} \title{Equivalized household size} \usage{ eqSS(hid, age, year = NULL, data = NULL) } \arguments{ \item{hid}{if \code{data=NULL}, a vector containing the household ID. Otherwise a character string specifying the column of \code{data} that contains the household ID.} \item{age}{if \code{data=NULL}, a vector containing the age of the individuals. Otherwise a character string specifying the column of \code{data} that contains the age.} \item{year}{if \code{data=NULL}, a vector containing the year of the survey. Otherwise a character string specifying the column of \code{data} that contains the year.} \item{data}{a \code{data.frame} containing EU-SILC survey data, or \code{NULL}.} } \value{ A numeric vector containing the equivalized household size for every observation in \code{data}. } \description{ Compute the equivalized household size according to the modified OECD scale adopted in 1994. } \examples{ data(eusilc) # calculate equivalized household size eqSS <- eqSS("db030", "age", data=eusilc) # combine with household ID and household size tmp <- cbind(eusilc[, c("db030", "hsize")], eqSS) # show the first 8 rows head(tmp, 8) } \references{ Working group on Statistics on Income and Living Conditions (2004) Common cross-sectional EU indicators based on EU-SILC; the gender pay gap. \emph{EU-SILC 131-rev/04}, Eurostat. } \seealso{ \code{\link{eqInc}} } \author{ Andreas Alfons } \keyword{survey} laeken/man/thetaMoment.Rd0000644000176200001440000000361613616467254015064 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/thetaMoment.R \name{thetaMoment} \alias{thetaMoment} \title{Moment estimator} \usage{ thetaMoment(x, k = NULL, x0 = NULL) } \arguments{ \item{x}{a numeric vector.} \item{k}{the number of observations in the upper tail to which the Pareto distribution is fitted.} \item{x0}{the threshold (scale parameter) above which the Pareto distribution is fitted.} } \value{ The estimated shape parameter. } \description{ Estimate the shape parameter of a Pareto distribution based on moments. } \details{ The arguments \code{k} and \code{x0} of course correspond with each other. If \code{k} is supplied, the threshold \code{x0} is estimated with the \eqn{n - k} largest value in \code{x}, where \eqn{n} is the number of observations. On the other hand, if the threshold \code{x0} is supplied, \code{k} is given by the number of observations in \code{x} larger than \code{x0}. Therefore, either \code{k} or \code{x0} needs to be supplied. If both are supplied, only \code{k} is used (mainly for back compatibility). } \note{ The argument \code{x0} for the threshold (scale parameter) of the Pareto distribution was introduced in version 0.2. } \examples{ data(eusilc) # equivalized disposable income is equal for each household # member, therefore only one household member is taken eusilc <- eusilc[!duplicated(eusilc$db030),] # estimate threshold ts <- paretoScale(eusilc$eqIncome, w = eusilc$db090) # using number of observations in tail thetaMoment(eusilc$eqIncome, k = ts$k) # using threshold thetaMoment(eusilc$eqIncome, x0 = ts$x0) } \references{ Dekkers, A.L.M., Einmahl, J.H.J. and de Haan, L. (1989) A moment estimator for the index of an extreme-value distribution. \emph{The Annals of Statistics}, \bold{17}(4), 1833--1855. } \seealso{ \code{\link{paretoTail}}, \code{\link{fitPareto}} } \author{ Andreas Alfons and Josef Holzer } \keyword{manip} laeken/man/thetaHill.Rd0000644000176200001440000000416613616467254014516 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/thetaHill.R \name{thetaHill} \alias{thetaHill} \title{Hill estimator} \usage{ thetaHill(x, k = NULL, x0 = NULL, w = NULL) } \arguments{ \item{x}{a numeric vector.} \item{k}{the number of observations in the upper tail to which the Pareto distribution is fitted.} \item{x0}{the threshold (scale parameter) above which the Pareto distribution is fitted.} \item{w}{an optional numeric vector giving sample weights.} } \value{ The estimated shape parameter. } \description{ The Hill estimator uses the maximum likelihood principle to estimate the shape parameter of a Pareto distribution. } \details{ The arguments \code{k} and \code{x0} of course correspond with each other. If \code{k} is supplied, the threshold \code{x0} is estimated with the \eqn{n - k} largest value in \code{x}, where \eqn{n} is the number of observations. On the other hand, if the threshold \code{x0} is supplied, \code{k} is given by the number of observations in \code{x} larger than \code{x0}. Therefore, either \code{k} or \code{x0} needs to be supplied. If both are supplied, only \code{k} is used (mainly for back compatibility). } \note{ The arguments \code{x0} for the threshold (scale parameter) of the Pareto distribution and \code{w} for sample weights were introduced in version 0.2. } \examples{ data(eusilc) # equivalized disposable income is equal for each household # member, therefore only one household member is taken eusilc <- eusilc[!duplicated(eusilc$db030),] # estimate threshold ts <- paretoScale(eusilc$eqIncome, w = eusilc$db090) # using number of observations in tail thetaHill(eusilc$eqIncome, k = ts$k, w = eusilc$db090) # using threshold thetaHill(eusilc$eqIncome, x0 = ts$x0, w = eusilc$db090) } \references{ Hill, B.M. (1975) A simple general approach to inference about the tail of a distribution. \emph{The Annals of Statistics}, \bold{3}(5), 1163--1174. } \seealso{ \code{\link{paretoTail}}, \code{\link{fitPareto}}, \code{\link{thetaPDC}}, \code{\link{thetaWML}}, \code{\link{thetaISE}}, \code{\link{minAMSE}} } \author{ Andreas Alfons and Josef Holzer } \keyword{manip} laeken/man/bootVar.Rd0000644000176200001440000001336714127253311014200 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/bootVar.R \name{bootVar} \alias{bootVar} \title{Bootstrap variance and confidence intervals of indicators on social exclusion and poverty} \usage{ bootVar( inc, weights = NULL, years = NULL, breakdown = NULL, design = NULL, cluster = NULL, data = NULL, indicator, R = 100, bootType = c("calibrate", "naive"), X, totals = NULL, ciType = c("perc", "norm", "basic"), alpha = 0.05, seed = NULL, na.rm = FALSE, gender = NULL, method = NULL, ... ) } \arguments{ \item{inc}{either a numeric vector giving the equivalized disposable income, or (if \code{data} is not \code{NULL}) a character string, an integer or a logical vector specifying the corresponding column of \code{data}.} \item{weights}{optional; either a numeric vector giving the personal sample weights, or (if \code{data} is not \code{NULL}) a character string, an integer or a logical vector specifying the corresponding column of \code{data}.} \item{years}{optional; either a numeric vector giving the different years of the survey, or (if \code{data} is not \code{NULL}) a character string, an integer or a logical vector specifying the corresponding column of \code{data}. If supplied, values are computed for each year.} \item{breakdown}{optional; either a numeric vector giving different domains, or (if \code{data} is not \code{NULL}) a character string, an integer or a logical vector specifying the corresponding column of \code{data}. If supplied, the values for each domain are computed in addition to the overall value.} \item{design}{optional; either an integer vector or factor giving different strata for stratified sampling designs, or (if \code{data} is not \code{NULL}) a character string, an integer or a logical vector specifying the corresponding column of \code{data}. If supplied, this is used as \code{strata} argument in the call to \code{\link[boot]{boot}}.} \item{cluster}{optional; either an integer vector or factor giving different clusters for cluster sampling designs, or (if \code{data} is not \code{NULL}) a character string, an integer or a logical vector specifying the corresponding column of \code{data}.} \item{data}{an optional \code{data.frame}.} \item{indicator}{an object inheriting from the class \code{"indicator"} that contains the point estimates of the indicator (see \code{\link{arpr}}, \code{\link{qsr}}, \code{\link{rmpg}} or \code{\link{gini}}).} \item{R}{a numeric value giving the number of bootstrap replicates.} \item{bootType}{a character string specifying the type of bootstap to be performed. Possible values are \code{"calibrate"} (for calibration of the sample weights of the resampled observations in every iteration) and \code{"naive"} (for a naive bootstrap without calibration of the sample weights).} \item{X}{if \code{bootType} is \code{"calibrate"}, a matrix of calibration variables.} \item{totals}{numeric; if \code{bootType} is \code{"calibrate"}, this gives the population totals. If \code{years} is \code{NULL}, a vector should be supplied, otherwise a matrix in which each row contains the population totals of the respective year. If this is \code{NULL} (the default), the population totals are computed from the sample weights using the Horvitz-Thompson estimator.} \item{ciType}{a character string specifying the type of confidence interval(s) to be computed. Possible values are \code{"perc"}, \code{"norm"} and \code{"basic"} (see \code{\link[boot]{boot.ci}}).} \item{alpha}{a numeric value giving the significance level to be used for computing the confidence interval(s) (i.e., the confidence level is \eqn{1 - }\code{alpha}), or \code{NULL}.} \item{seed}{optional; an integer value to be used as the seed of the random number generator, or an integer vector containing the state of the random number generator to be restored.} \item{na.rm}{a logical indicating whether missing values should be removed.} \item{gender}{either a numeric vector giving the gender, or (if \code{data} is not \code{NULL}) a character string, an integer or a logical vector specifying the corresponding column of \code{data}.} \item{method}{a character string specifying the method to be used (only for \code{\link{gpg}}). Possible values are \code{"mean"} for the mean, and \code{"median"} for the median. If weights are provided, the weighted mean or weighted median is estimated.} \item{\dots}{if \code{bootType} is \code{"calibrate"}, additional arguments to be passed to \code{\link{calibWeights}}.} } \value{ An object of the same class as \code{indicator} is returned. See \code{\link{arpr}}, \code{\link{qsr}}, \code{\link{rmpg}} or \code{\link{gini}} for details on the components. } \description{ Compute variance and confidence interval estimates of indicators on social exclusion and poverty based on bootstrap resampling. } \note{ This function gives reasonable variance estimates for basic sample designs such as simple random sampling or stratified simple random sampling. } \examples{ data(eusilc) a <- arpr("eqIncome", weights = "rb050", data = eusilc) ## naive bootstrap bootVar("eqIncome", weights = "rb050", design = "db040", data = eusilc, indicator = a, R = 50, bootType = "naive", seed = 123) ## bootstrap with calibration bootVar("eqIncome", weights = "rb050", design = "db040", data = eusilc, indicator = a, R = 50, X = calibVars(eusilc$db040), seed = 123) } \references{ A. Alfons and M. Templ (2013) Estimation of Social Exclusion Indicators from Complex Surveys: The \R Package \pkg{laeken}. \emph{Journal of Statistical Software}, \bold{54}(15), 1--25. \doi{10.18637/jss.v054.i15} } \seealso{ \code{\link{variance}}, \code{\link{calibWeights}}, \code{\link{arpr}}, \code{\link{qsr}}, \code{\link{rmpg}}, \code{\link{gini}} } \author{ Andreas Alfons } \keyword{survey} laeken/man/ses.Rd0000644000176200001440000001676614127272443013373 0ustar liggesusers\name{ses} \alias{ses} \docType{data} \title{ Synthetic SES survey data } \description{ This data set is a subset of synthetically generated real Austrian SES (Structural Earnings Survey) data. } \usage{data(ses)} \format{ A data frame with 115691 observations on the following 28 variables. \describe{ \item{\code{location}}{geographical location with levels \code{AT1} (eastern Austria), \code{AT2} (southern Austria), and \code{AT3} (western Austria). } \item{\code{NACE1}}{economic branch given in NACE (C - O) 1-digit classification. } \item{\code{size}}{employment size range in 5 categories.} \item{\code{economicFinanc}}{form of economic and financial control (levels \code{A} = public and financial control, \code{B} = private control). } \item{\code{payAgreement}}{collective bargaining agreement with levels \code{A} = national level pay agreement or interconfederal agreement, \code{B} = industry agreement, \code{C} = agreement of individual industries in individual regions, \code{D} = enterprise or single employer agreement, \code{E} = agreement applying only to workers in the local unit, \code{F} = any other type of agreement, \code{N} = no collective agreement exists } \item{\code{IDunit}}{ID for place of employment.} \item{\code{sex}}{gender with levels \code{female} and \code{male}.} \item{\code{age}}{age in age classes.} \item{\code{education}}{highest education.} \item{\code{occupation}}{occupation with levels \code{11} = Legislators and seniors officials, \code{12} = Corporate managers, \code{13} = Managers of small enterprises, \code{21} = Physical, mathematical and engineering science professionals, \code{22} = Life science and health professionals, \code{23} = Teaching professionals, \code{24} = Other professionals, \code{31} = Physical and engineering science associate professionals, \code{32} = Life science and health associate professionals, \code{33} = Teaching associate professionals, \code{34} = Other associate professionals, \code{41} = Office clerks, \code{42} = Customer services clerks, \code{51} = Personal and protective services workers, \code{52} = Models, salespersons and demonstrators, \code{61} = Skilled agricultural and fishery workers, \code{71} = Extraction and building trades workers, \code{72} = Metal, machinery and related trades workers, \code{73} = Precision, handicraft, craft printing and related trades workers, \code{74} = Other craft and related trades workers, \code{81} = Stationary plant and related operators, \code{82} = Machine operators and assemblers, \code{83} = Drivers and mobile plant operators, \code{91} = Sales and services elementary occupations, \code{92} = Agricultural, fishery and related labourers, \code{93} = Labourers in mining, construction, manufacturing and transport } \item{\code{contract}}{type of contract. Levels \code{A} = indefinite duration, employment contract, \code{B} = temporary fixed duration \code{C} = apprentice. } \item{\code{fullPart}}{full-time working time (FT) or part-time employee (PT). } \item{\code{lengthService}}{The total length of service in the enterprises in the reference month is be based on the number of completed years of service.} \item{\code{weeks}}{the number of weeks in the reference year to which the gross annual earnings relate is mentioned. That is the employee's working time actually paid during the year and should correspond to the actual gross annual earnings. } \item{\code{hoursPaid}}{the number of hours paid in the reference month which means these hours actually paid including all normal and overtime hours worked and remunerated by the employee during the month. } \item{\code{overtimeHours}}{the number of overtime hours paid in the reference month. Overtime hours are those worked in addition to those of the normal working month. } \item{\code{shareNormalHours}}{the share of a full timer's normal hours. The hours contractually worked of a part-time employee are expressed as percentages of the number of normal hours worked by a full-time employee in the local unit. } \item{\code{holiday}}{the annual days of holiday leave (in full days).} \item{\code{notPaid}}{examples of annual bonuses and allowances are Christmas and holiday bonuses, 13th and 14th month payments and productivity bonuses, hence any periodic, irregular and exceptional bonuses and other payments that do not feature every pay period. Besides the main difference between annual earnings and monthly earnings is the inclusion of payments that do not regularly occur in each pay period. } \item{\code{earningsOvertime}}{earnings related to overtime.} \item{\code{paymentsShiftWork}}{These special payments for shift work are premium payments during the reference month for shirt work, night work or weekend work where they are not treated as overtime. } \item{\code{earningsMonth}}{the gross earnings in the reference month covers remuneration in cash paid during the reference month before any tax deductions and social security deductions and social security contributions payable by wage earners and retained by the employer. } \item{\code{earnings}}{gross annual earnings in the reference year.} \item{\code{earningsHour}}{hourly earnings, being the quotient of monthly earnings and the number of hours paid in the reference month. } \item{\code{weightsEmployers}}{sampling weights in the first stage at employer level. } \item{\code{weightsEmployees}}{sampling weights corresponding to the second stage at employee level. } \item{\code{weights}}{the final sampling weights, which is the product of \code{weightsEmployers} and \code{weighsEmployees}. } } } \details{ The Structural Earnings Survey (SES) is conducted in almost all European Countries, and the most important figures are reported to Eurostat. SES is a complex survey of enterprises and establishments with more than 10 employees, NACE C-O, including a large sample of employees. In many countries, a two-stage design is used where in the first stage a stratified sample of enterprises and establishments on NACE 1-digit level, NUTS 1 and employment size range is used, and large enterprises have higher inclusion probabilities. In stage 2, systematic sampling is applied in each enterprise using unequal inclusion probabilities regarding employment size range categories. The data set in the package consists of enterprise and employees data from 500 places of work. Note that this is a subset of synthetic data set that is simulated from the original Austrian SES data. } \author{ Matthias Templ, Karoline Geissler } \source{ This is a synthetic data set based on Austrian SES data from 2006. } \references{ A. Alfons and M. Templ (2013) Estimation of Social Exclusion Indicators from Complex Surveys: The \R Package \pkg{laeken}. \emph{Journal of Statistical Software}, \bold{54}(15), 1--25. \doi{10.18637/jss.v054.i15} T. Geissberger (2009) Verdienststrukturerhebung 2006, Struktur und Verteilung der Verdienste in Oesterreich, Statistik Austria, ISBN 978-3-902587-97-8. M. Templ (2012) Comparison of perturbation methods based on pre-defined quality indicators, \emph{UNECE Work Session on Statistical Data Editing}, Tarragona, Spain. } \examples{ data(ses) summary(ses) } \keyword{datasets} laeken/man/reweightOut.Rd0000644000176200001440000000477014127253311015070 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/paretoTail.R \name{reweightOut} \alias{reweightOut} \alias{reweightOut.paretoTail} \title{Reweight outliers in the Pareto model} \usage{ reweightOut(x, ...) \method{reweightOut}{paretoTail}(x, X, w = NULL, ...) } \arguments{ \item{x}{an object of class \code{"paretoTail"} (see \code{\link{paretoTail}}).} \item{\dots}{additional arguments to be passed down.} \item{X}{a matrix of binary calibration variables (see \code{\link{calibVars}}). This is only used if \code{x} contains sample weights or if \code{w} is supplied.} \item{w}{a numeric vector of sample weights. This is only used if \code{x} does not contain sample weights, i.e., if sample weights were not considered in estimating the shape parameter of the Pareto distribution.} } \value{ If the data contain sample weights, a numeric containing the recalibrated weights is returned, otherwise a numeric vector assigning weight \eqn{0} to outliers and weight \eqn{1} to other observations. } \description{ Reweight observations that are flagged as outliers in a Pareto model for the upper tail of the distribution. } \details{ If the data contain sample weights, the weights of the outlying observations are set to \eqn{1} and the weights of the remaining observations are calibrated according to auxiliary variables. Otherwise, weight \eqn{0} is assigned to outliers and weight \eqn{1} to other observations. } \examples{ data(eusilc) ## gini coefficient without Pareto tail modeling gini("eqIncome", weights = "rb050", data = eusilc) ## gini coefficient with Pareto tail modeling # estimate threshold ts <- paretoScale(eusilc$eqIncome, w = eusilc$db090, groups = eusilc$db030) # estimate shape parameter fit <- paretoTail(eusilc$eqIncome, k = ts$k, w = eusilc$db090, groups = eusilc$db030) # calibration of outliers w <- reweightOut(fit, calibVars(eusilc$db040)) gini(eusilc$eqIncome, w) } \references{ A. Alfons and M. Templ (2013) Estimation of Social Exclusion Indicators from Complex Surveys: The \R Package \pkg{laeken}. \emph{Journal of Statistical Software}, \bold{54}(15), 1--25. \doi{10.18637/jss.v054.i15} A. Alfons, M. Templ, P. Filzmoser (2013) Robust estimation of economic indicators from survey samples based on Pareto tail modeling. \emph{Journal of the Royal Statistical Society, Series C}, \bold{62}(2), 271--286. } \seealso{ \code{\link{paretoTail}}, \code{\link{shrinkOut}} , \code{\link{replaceOut}}, \code{\link{replaceTail}} } \author{ Andreas Alfons } \keyword{manip} laeken/man/shrinkOut.Rd0000644000176200001440000000333114127253311014540 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/paretoTail.R \name{shrinkOut} \alias{shrinkOut} \alias{shrinkOut.paretoTail} \title{Shrink outliers in the Pareto model} \usage{ shrinkOut(x, ...) \method{shrinkOut}{paretoTail}(x, ...) } \arguments{ \item{x}{an object of class \code{"paretoTail"} (see \code{\link{paretoTail}}).} \item{\dots}{additional arguments to be passed down (currently ignored as there are no additional arguments in the only method implemented).} } \value{ A numeric vector consisting mostly of the original values, but with outlying observations in the upper tail shrunken to the corresponding theoretical quantile of the fitted Pareto distribution. } \description{ Shrink observations that are flagged as outliers in a Pareto model for the upper tail of the distribution to the theoretical quantile used for outlier detection. } \examples{ data(eusilc) ## gini coefficient without Pareto tail modeling gini("eqIncome", weights = "rb050", data = eusilc) ## gini coefficient with Pareto tail modeling # estimate threshold ts <- paretoScale(eusilc$eqIncome, w = eusilc$db090, groups = eusilc$db030) # estimate shape parameter fit <- paretoTail(eusilc$eqIncome, k = ts$k, w = eusilc$db090, groups = eusilc$db030) # shrink outliers eqIncome <- shrinkOut(fit) gini(eqIncome, weights = eusilc$rb050) } \references{ A. Alfons and M. Templ (2013) Estimation of Social Exclusion Indicators from Complex Surveys: The \R Package \pkg{laeken}. \emph{Journal of Statistical Software}, \bold{54}(15), 1--25. \doi{10.18637/jss.v054.i15} } \seealso{ \code{\link{paretoTail}}, \code{\link{reweightOut}}, \code{\link{replaceOut}}, \code{\link{replaceTail}} } \author{ Andreas Alfons } \keyword{manip} laeken/man/thetaLS.Rd0000644000176200001440000000415313616467254014140 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/thetaLS.R \name{thetaLS} \alias{thetaLS} \title{Least squares (LS) estimator} \usage{ thetaLS(x, k = NULL, x0 = NULL) } \arguments{ \item{x}{a numeric vector.} \item{k}{the number of observations in the upper tail to which the Pareto distribution is fitted.} \item{x0}{the threshold (scale parameter) above which the Pareto distribution is fitted.} } \value{ The estimated shape parameter. } \description{ Estimate the shape parameter of a Pareto distribution using a least squares (LS) approach. } \details{ The arguments \code{k} and \code{x0} of course correspond with each other. If \code{k} is supplied, the threshold \code{x0} is estimated with the \eqn{n - k} largest value in \code{x}, where \eqn{n} is the number of observations. On the other hand, if the threshold \code{x0} is supplied, \code{k} is given by the number of observations in \code{x} larger than \code{x0}. Therefore, either \code{k} or \code{x0} needs to be supplied. If both are supplied, only \code{k} is used (mainly for back compatibility). } \note{ The argument \code{x0} for the threshold (scale parameter) of the Pareto distribution was introduced in version 0.2. } \examples{ data(eusilc) # equivalized disposable income is equal for each household # member, therefore only one household member is taken eusilc <- eusilc[!duplicated(eusilc$db030),] # estimate threshold ts <- paretoScale(eusilc$eqIncome, w = eusilc$db090) # using number of observations in tail thetaLS(eusilc$eqIncome, k = ts$k) # using threshold thetaLS(eusilc$eqIncome, x0 = ts$x0) } \references{ Brazauskas, V. and Serfling, R. (2000) Robust estimation of tail parameters for two-parameter Pareto and exponential models via generalized quantile statistics. \emph{Extremes}, \bold{3}(3), 231--249. Brazauskas, V. and Serfling, R. (2000) Robust and efficient estimation of the tail index of a single-parameter Pareto distribution. \emph{North American Actuarial Journal}, \bold{4}(4), 12--27. } \seealso{ \code{\link{paretoTail}}, \code{\link{fitPareto}} } \author{ Andreas Alfons and Josef Holzer } \keyword{manip} laeken/man/paretoQPlot.Rd0000644000176200001440000001043514127253311015027 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/paretoQPlot.R \name{paretoQPlot} \alias{paretoQPlot} \title{Pareto quantile plot} \usage{ paretoQPlot( x, w = NULL, xlab = NULL, ylab = NULL, interactive = TRUE, x0 = NULL, theta = NULL, pch = par("pch"), cex = par("cex"), col = par("col"), bg = "transparent", ... ) } \arguments{ \item{x}{a numeric vector.} \item{w}{an optional numeric vector giving sample weights.} \item{xlab, ylab}{axis labels.} \item{interactive}{a logical indicating whether the threshold (scale parameter) can be selected interactively by clicking on points. Information on the selected threshold is then printed on the console.} \item{x0, theta}{optional; if estimates of the threshold (scale parameter) and the shape parameter have already been obtained, they can be passed through the corresponding argument (\code{x0} for the threshold, \code{theta} for the shape parameter). If both arguments are supplied and \code{interactive} is not \code{TRUE}, reference lines are drawn to indicate the parameter estimates.} \item{pch, cex, col, bg}{graphical parameters for the plot symbol of each data point (see \code{\link[graphics]{points}}).} \item{\dots}{additional arguments to be passed to \code{\link[graphics]{plot.default}}.} } \value{ If \code{interactive} is \code{TRUE}, the last selection for the threshold is returned invisibly as an object of class \code{"paretoScale"}, which consists of the following components: \item{x0}{the selected threshold (scale parameter).} \item{k}{the number of observations in the tail (i.e., larger than the threshold).} } \description{ The Pareto quantile plot is a graphical method for inspecting the parameters of a Pareto distribution. } \details{ If the Pareto model holds, there exists a linear relationship between the lograrithms of the observed values and the quantiles of the standard exponential distribution, since the logarithm of a Pareto distributed random variable follows an exponential distribution. Hence the logarithms of the observed values are plotted against the corresponding theoretical quantiles. If the tail of the data follows a Pareto distribution, these observations form almost a straight line. The leftmost point of a fitted line can thus be used as an estimate of the threshold (scale parameter). The slope of the fitted line is in turn an estimate of \eqn{\frac{1}{\theta}}{1/theta}, the reciprocal of the shape parameter. The interactive selection of the threshold (scale parameter) is implemented using \code{\link[graphics]{identify}}. For the usual \code{X11} device, the selection process is thus terminated by pressing any mouse button other than the first. For the \code{quartz} device (on Mac OS X systems), the process is terminated either by a secondary click (usually second mouse button or \code{Ctrl}-click) or by pressing the \code{ESC} key. } \note{ The functionality to account for sample weights and to select the threshold (scale parameter) interactively was introduced in version 0.2. Also starting with version 0.2, a logarithmic y-axis is now used to display the axis labels in the scale of the original values. } \examples{ data(eusilc) # equivalized disposable income is equal for each household # member, therefore only one household member is taken eusilc <- eusilc[!duplicated(eusilc$db030),] # with sample weights paretoQPlot(eusilc$eqIncome, w = eusilc$db090) # without sample weights paretoQPlot(eusilc$eqIncome) } \references{ A. Alfons and M. Templ (2013) Estimation of Social Exclusion Indicators from Complex Surveys: The \R Package \pkg{laeken}. \emph{Journal of Statistical Software}, \bold{54}(15), 1--25. \doi{10.18637/jss.v054.i15} A. Alfons, M. Templ, P. Filzmoser (2013) Robust estimation of economic indicators from survey samples based on Pareto tail modeling. \emph{Journal of the Royal Statistical Society, Series C}, \bold{62}(2), 271--286. Beirlant, J., Vynckier, P. and Teugels, J.L. (1996) Tail index estimation, Pareto quantile plots, and regression diagnostics. \emph{Journal of the American Statistical Association}, \bold{91}(436), 1659--1667. } \seealso{ \code{\link{paretoScale}}, \code{\link{paretoTail}}, \code{\link{minAMSE}}, \code{\link{meanExcessPlot}}, \code{\link[graphics]{identify}} } \author{ Andreas Alfons and Josef Holzer } \keyword{hplot} laeken/man/incQuintile.Rd0000644000176200001440000000431014127252664015046 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/incQuintile.R \name{incQuintile} \alias{incQuintile} \title{Weighted income quintile} \usage{ incQuintile( inc, weights = NULL, sort = NULL, years = NULL, k = c(1, 4), data = NULL, na.rm = FALSE ) } \arguments{ \item{inc}{either a numeric vector giving the (equivalized disposable) income, or (if \code{data} is not \code{NULL}) a character string, an integer or a logical vector specifying the corresponding column of \code{data}.} \item{weights}{optional; either a numeric vector giving the personal sample weights, or (if \code{data} is not \code{NULL}) a character string, an integer or a logical vector specifying the corresponding column of \code{data}.} \item{sort}{optional; either a numeric vector giving the personal IDs to be used as tie-breakers for sorting, or (if \code{data} is not \code{NULL}) a character string, an integer or a logical vector specifying the corresponding column of \code{data}.} \item{years}{optional; either a numeric vector giving the different years of the survey, or (if \code{data} is not \code{NULL}) a character string, an integer or a logical vector specifying the corresponding column of \code{data}. If supplied, values are computed for each year.} \item{k}{a vector of integers between 0 and 5 specifying the quintiles to be computed (0 gives the minimum, 5 the maximum).} \item{data}{an optional \code{data.frame}.} \item{na.rm}{a logical indicating whether missing values should be removed.} } \value{ A numeric vector (if \code{years} is \code{NULL}) or matrix (if \code{years} is not \code{NULL}) containing the values of the weighted income quintiles specified by \code{k} are returned. } \description{ Compute weighted income quintiles. } \details{ The implementation strictly follows the Eurostat definition. } \examples{ data(eusilc) incQuintile("eqIncome", weights = "rb050", data = eusilc) } \references{ Working group on Statistics on Income and Living Conditions (2004) Common cross-sectional EU indicators based on EU-SILC; the gender pay gap. \emph{EU-SILC 131-rev/04}, Eurostat. } \seealso{ \code{\link{qsr}}, \code{\link{weightedQuantile}} } \author{ Andreas Alfons } \keyword{survey} laeken/man/arpt.Rd0000644000176200001440000000432514127252664013536 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/arpt.R \name{arpt} \alias{arpt} \title{At-risk-of-poverty threshold} \usage{ arpt( inc, weights = NULL, sort = NULL, years = NULL, data = NULL, p = 0.6, na.rm = FALSE ) } \arguments{ \item{inc}{either a numeric vector giving the equivalized disposable income, or (if \code{data} is not \code{NULL}) a character string, an integer or a logical vector specifying the corresponding column of \code{data}.} \item{weights}{optional; either a numeric vector giving the personal sample weights, or (if \code{data} is not \code{NULL}) a character string, an integer or a logical vector specifying the corresponding column of \code{data}.} \item{sort}{optional; either a numeric vector giving the personal IDs to be used as tie-breakers for sorting, or (if \code{data} is not \code{NULL}) a character string, an integer or a logical vector specifying the corresponding column of \code{data}.} \item{years}{optional; either a numeric vector giving the different years of the survey, or (if \code{data} is not \code{NULL}) a character string, an integer or a logical vector specifying the corresponding column of \code{data}. If supplied, values are computed for each year.} \item{data}{an optional \code{data.frame}.} \item{p}{a numeric vector of values in \eqn{[0,1]} giving the percentages of the weighted median to be used for the at-risk-of-poverty threshold.} \item{na.rm}{a logical indicating whether missing values should be removed.} } \value{ A numeric vector containing the value(s) of the at-risk-of-poverty threshold is returned. } \description{ Estimate the at-risk-of-poverty threshold. The standard definition is to use 60\% of the weighted median equivalized disposable income. } \details{ The implementation strictly follows the Eurostat definition. } \examples{ data(eusilc) arpt("eqIncome", weights = "rb050", data = eusilc) } \references{ Working group on Statistics on Income and Living Conditions (2004) Common cross-sectional EU indicators based on EU-SILC; the gender pay gap. \emph{EU-SILC 131-rev/04}, Eurostat. } \seealso{ \code{\link{arpr}}, \code{\link{incMedian}}, \code{\link{weightedMedian}} } \author{ Andreas Alfons } \keyword{survey} laeken/man/minAMSE.Rd0000644000176200001440000000720314127252664014017 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/minAMSE.R, R/utils.R \name{minAMSE} \alias{minAMSE} \alias{print.minAMSE} \title{Weighted asymptotic mean squared error (AMSE) estimator} \usage{ minAMSE( x, weight = c("Bernoulli", "JASA"), kmin, kmax, mmax, tol = 0, maxit = 100 ) \method{print}{minAMSE}(x, ...) } \arguments{ \item{x}{for \code{minAMSE}, a numeric vector. The \code{print} method is called by the generic function if an object of class \code{"minAMSE"} is supplied.} \item{weight}{a character vector specifying the weighting scheme to be used in the procedure. If \code{"Bernoulli"}, the weight functions as described in the \emph{Bernoulli} paper are applied. If \code{"JASA"}, the weight functions as described in the \emph{Journal of the Americal Statistical Association} are used.} \item{kmin}{An optional integer giving the lower bound for finding the optimal number of observations in the tail. It defaults to \eqn{[\frac{n}{100}]}{[n/100]}, where \eqn{n} denotes the number of observations in \code{x} (see the references).} \item{kmax}{An optional integer giving the upper bound for finding the optimal number of observations in the tail (see \dQuote{Details}).} \item{mmax}{An optional integer giving the upper bound for finding the optimal number of observations for computing the nuisance parameter \eqn{\rho}{rho} (see \dQuote{Details} and the references).} \item{tol}{an integer giving the desired tolerance level for finding the optimal number of observations in the tail.} \item{maxit}{a positive integer giving the maximum number of iterations.} \item{\dots}{additional arguments to be passed to \code{\link[base]{print.default}}.} } \value{ An object of class \code{"minAMSE"} with the following components: \item{kopt}{the optimal number of observations in the tail.} \item{x0}{the corresponding threshold.} \item{theta}{the estimated shape parameter of the Pareto distribution.} \item{MSEmin}{the minimal MSE.} \item{rho}{the estimated nuisance parameter.} \item{k}{the examined range for the number of observations in the tail.} \item{MSE}{the corresponding MSEs.} } \description{ Estimate the scale and shape parameters of a Pareto distribution with an iterative procedure based on minimizing the weighted asymptotic mean squared error (AMSE) of the Hill estimator. } \details{ The weights used in the weighted AMSE depend on a nuisance parameter \eqn{\rho}{rho}. Both the optimal number of observations in the tail and the nuisance parameter \eqn{\rho}{rho} are estimated iteratively using nonlinear integer minimization. This is currently done by a brute force algorithm, hence it is stronly recommended to supply upper bounds \code{kmax} and \code{mmax}. See the references for more details on the iterative algorithm. } \examples{ data(eusilc) # equivalized disposable income is equal for each household # member, therefore only one household member is taken minAMSE(eusilc$eqIncome[!duplicated(eusilc$db030)], kmin = 60, kmax = 150, mmax = 250) } \references{ Beirlant, J., Vynckier, P. and Teugels, J.L. (1996) Tail index estimation, Pareto quantile plots, and regression diagnostics. \emph{Journal of the American Statistical Association}, \bold{91}(436), 1659--1667. Beirlant, J., Vynckier, P. and Teugels, J.L. (1996) Excess functions and estimation of the extreme-value index. \emph{Bernoulli}, \bold{2}(4), 293--318. Dupuis, D.J. and Victoria-Feser, M.-P. (2006) A robust prediction error criterion for Pareto modelling of upper tails. \emph{The Canadian Journal of Statistics}, \bold{34}(4), 639--658. } \seealso{ \code{\link{thetaHill}} } \author{ Josef Holzer and Andreas Alfons } \keyword{manip} laeken/man/rmpg.Rd0000644000176200001440000001233514127253311013523 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/rmpg.R \name{rmpg} \alias{rmpg} \title{Relative median at-risk-of-poverty gap} \usage{ rmpg( inc, weights = NULL, sort = NULL, years = NULL, breakdown = NULL, design = NULL, cluster = NULL, data = NULL, var = NULL, alpha = 0.05, na.rm = FALSE, ... ) } \arguments{ \item{inc}{either a numeric vector giving the equivalized disposable income, or (if \code{data} is not \code{NULL}) a character string, an integer or a logical vector specifying the corresponding column of \code{data}.} \item{weights}{optional; either a numeric vector giving the personal sample weights, or (if \code{data} is not \code{NULL}) a character string, an integer or a logical vector specifying the corresponding column of \code{data}.} \item{sort}{optional; either a numeric vector giving the personal IDs to be used as tie-breakers for sorting, or (if \code{data} is not \code{NULL}) a character string, an integer or a logical vector specifying the corresponding column of \code{data}.} \item{years}{optional; either a numeric vector giving the different years of the survey, or (if \code{data} is not \code{NULL}) a character string, an integer or a logical vector specifying the corresponding column of \code{data}. If supplied, values are computed for each year.} \item{breakdown}{optional; either a numeric vector giving different domains, or (if \code{data} is not \code{NULL}) a character string, an integer or a logical vector specifying the corresponding column of \code{data}. If supplied, the values for each domain are computed in addition to the overall value. Note that the same (overall) threshold is used for all domains.} \item{design}{optional and only used if \code{var} is not \code{NULL}; either an integer vector or factor giving different strata for stratified sampling designs, or (if \code{data} is not \code{NULL}) a character string, an integer or a logical vector specifying the corresponding column of \code{data}.} \item{cluster}{optional and only used if \code{var} is not \code{NULL}; either an integer vector or factor giving different clusters for cluster sampling designs, or (if \code{data} is not \code{NULL}) a character string, an integer or a logical vector specifying the corresponding column of \code{data}.} \item{data}{an optional \code{data.frame}.} \item{var}{a character string specifying the type of variance estimation to be used, or \code{NULL} to omit variance estimation. See \code{\link{variance}} for possible values.} \item{alpha}{numeric; if \code{var} is not \code{NULL}, this gives the significance level to be used for computing the confidence interval (i.e., the confidence level is \eqn{1 - }\code{alpha}).} \item{na.rm}{a logical indicating whether missing values should be removed.} \item{\dots}{if \code{var} is not \code{NULL}, additional arguments to be passed to \code{\link{variance}}.} } \value{ A list of class \code{"rmpg"} (which inherits from the class \code{"indicator"}) with the following components: \item{value}{a numeric vector containing the overall value(s).} \item{valueByStratum}{a \code{data.frame} containing the values by domain, or \code{NULL}.} \item{varMethod}{a character string specifying the type of variance estimation used, or \code{NULL} if variance estimation was omitted.} \item{var}{a numeric vector containing the variance estimate(s), or \code{NULL}.} \item{varByStratum}{a \code{data.frame} containing the variance estimates by domain, or \code{NULL}.} \item{ci}{a numeric vector or matrix containing the lower and upper endpoints of the confidence interval(s), or \code{NULL}.} \item{ciByStratum}{a \code{data.frame} containing the lower and upper endpoints of the confidence intervals by domain, or \code{NULL}.} \item{alpha}{a numeric value giving the significance level used for computing the confidence interval(s) (i.e., the confidence level is \eqn{1 - }\code{alpha}), or \code{NULL}.} \item{years}{a numeric vector containing the different years of the survey.} \item{strata}{a character vector containing the different domains of the breakdown.} \item{threshold}{a numeric vector containing the at-risk-of-poverty threshold(s).} } \description{ Estimate the relative median at-risk-of-poverty gap, which is defined as the relative difference between the median equivalized disposable income of persons below the at-risk-of-poverty threshold and the at-risk-of-poverty threshold itself (expressed as a percentage of the at-risk-of-poverty threshold). } \details{ The implementation strictly follows the Eurostat definition. } \examples{ data(eusilc) # overall value rmpg("eqIncome", weights = "rb050", data = eusilc) # values by region rmpg("eqIncome", weights = "rb050", breakdown = "db040", data = eusilc) } \references{ A. Alfons and M. Templ (2013) Estimation of Social Exclusion Indicators from Complex Surveys: The \R Package \pkg{laeken}. \emph{Journal of Statistical Software}, \bold{54}(15), 1--25. \doi{10.18637/jss.v054.i15} Working group on Statistics on Income and Living Conditions (2004) Common cross-sectional EU indicators based on EU-SILC; the gender pay gap. \emph{EU-SILC 131-rev/04}, Eurostat, Luxembourg. } \seealso{ \code{\link{arpt}}, \code{\link{variance}} } \author{ Andreas Alfons } \keyword{survey} laeken/man/paretoScale.Rd0000644000176200001440000000601414127253311015015 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/paretoScale.R \name{paretoScale} \alias{paretoScale} \alias{print.paretoScale} \title{Estimate the scale parameter of a Pareto distribution} \usage{ paretoScale( x, w = NULL, groups = NULL, method = "VanKerm", center = c("mean", "median"), probs = c(0.97, 0.98), na.rm = FALSE ) } \arguments{ \item{x}{a numeric vector.} \item{w}{an optional numeric vector giving sample weights.} \item{groups}{an optional vector or factor specifying groups of elements of \code{x} (e.g., households). If supplied, each group of observations is expected to have the same value in \code{x} (e.g., household income). Only the values of every first group member to appear are used for estimating the threshold (scale parameter).} \item{method}{a character string specifying the estimation method. If \code{"VanKerm"}, Van Kerm's method is used, which is a rule of thumb specifically designed for the equivalized disposable income in EU-SILC data (currently the only method implemented).} \item{center}{a character string specifying the estimation method for the center of the distribution. Possible values are \code{"mean"} for the weighted mean and \code{"median"} for the weighted median. This is used if \code{method} is \code{"VanKerm"} (currently the only method implemented).} \item{probs}{a numeric vector of length two giving probabilities to be used for computing weighted quantiles of the distribution. Values should be close to 1 such that the quantiles correspond to the upper tail. This is used if \code{method} is \code{"VanKerm"} (currently the only method implemented).} \item{na.rm}{a logical indicating whether missing values in \code{x} should be omitted.} } \value{ An object of class \code{"paretoScale"} with the following components: \item{x0}{the threshold (scale parameter).} \item{k}{the number of observations in the tail (i.e., larger than the threshold).} } \description{ Estimate the scale parameter of a Pareto distribution, i.e., the threshold for Pareto tail modeling. } \details{ Van Kerm's formula is given by \deqn{\min(\max(2.5 \bar{x}, q(0.98), q(0.97))),}{min(max(2.5 m(x), q(0.98)), q(0.97)),} where \eqn{\bar{x}}{m(x)} denotes the weighted mean and \eqn{q(.)} denotes weighted quantiles. This function allows to compute generalizations of Van Kerm's formula, where the mean can be replaced by the median and different quantiles can be used. } \examples{ data(eusilc) paretoScale(eusilc$eqIncome, eusilc$db090, groups = eusilc$db030) } \references{ A. Alfons and M. Templ (2013) Estimation of Social Exclusion Indicators from Complex Surveys: The \R Package \pkg{laeken}. \emph{Journal of Statistical Software}, \bold{54}(15), 1--25. \doi{10.18637/jss.v054.i15} Van Kerm, P. (2007) Extreme incomes and the estimation of poverty and inequality indicators from EU-SILC. IRISS Working Paper Series 2007-01, CEPS/INSTEAD. } \seealso{ \code{\link{minAMSE}}, \code{\link{paretoQPlot}}, \code{\link{meanExcessPlot}} } \author{ Andreas Alfons } \keyword{manip} laeken/man/eusilc.Rd0000644000176200001440000001123414127272425014046 0ustar liggesusers\name{eusilc} \alias{eusilc} \docType{data} \title{ Synthetic EU-SILC survey data } \description{ This data set is synthetically generated from real Austrian EU-SILC (European Union Statistics on Income and Living Conditions) data. } \usage{data(eusilc)} \format{ A data frame with 14827 observations on the following 28 variables. \describe{ \item{\code{db030}}{integer; the household ID.} \item{\code{hsize}}{integer; the number of persons in the household.} \item{\code{db040}}{factor; the federal state in which the household is located (levels \code{Burgenland}, \code{Carinthia}, \code{Lower Austria}, \code{Salzburg}, \code{Styria}, \code{Tyrol}, \code{Upper Austria}, \code{Vienna} and \code{Vorarlberg}).} \item{\code{rb030}}{integer; the personal ID.} \item{\code{age}}{integer; the person's age.} \item{\code{rb090}}{factor; the person's gender (levels \code{male} and \code{female}).} \item{\code{pl030}}{factor; the person's economic status (levels \code{1} = working full time, \code{2} = working part time, \code{3} = unemployed, \code{4} = pupil, student, further training or unpaid work experience or in compulsory military or community service, \code{5} = in retirement or early retirement or has given up business, \code{6} = permanently disabled or/and unfit to work or other inactive person, \code{7} = fulfilling domestic tasks and care responsibilities).} \item{\code{pb220a}}{factor; the person's citizenship (levels \code{AT}, \code{EU} and \code{Other}).} \item{\code{py010n}}{numeric; employee cash or near cash income (net).} \item{\code{py050n}}{numeric; cash benefits or losses from self-employment (net).} \item{\code{py090n}}{numeric; unemployment benefits (net).} \item{\code{py100n}}{numeric; old-age benefits (net).} \item{\code{py110n}}{numeric; survivor's benefits (net).} \item{\code{py120n}}{numeric; sickness benefits (net).} \item{\code{py130n}}{numeric; disability benefits (net).} \item{\code{py140n}}{numeric; education-related allowances (net).} \item{\code{hy040n}}{numeric; income from rental of a property or land (net).} \item{\code{hy050n}}{numeric; family/children related allowances (net).} \item{\code{hy070n}}{numeric; housing allowances (net).} \item{\code{hy080n}}{numeric; regular inter-household cash transfer received (net).} \item{\code{hy090n}}{numeric; interest, dividends, profit from capital investments in unincorporated business (net).} \item{\code{hy110n}}{numeric; income received by people aged under 16 (net).} \item{\code{hy130n}}{numeric; regular inter-household cash transfer paid (net).} \item{\code{hy145n}}{numeric; repayments/receipts for tax adjustment (net).} \item{\code{eqSS}}{numeric; the equivalized household size according to the modified OECD scale.} \item{\code{eqIncome}}{numeric; a slightly simplified version of the equivalized household income.} \item{\code{db090}}{numeric; the household sample weights.} \item{\code{rb050}}{numeric; the personal sample weights.} } } \details{ The data set consists of 6000 households and is used in the examples of package \code{laeken}. Note that this is a synthetic data set based on original EU-SILC survey data. Only a few of the large number of variables in the original survey are included in this example data set. The variable names are rather cryptic codes, but these are the standardized names used by the statistical agencies. Furthermore, the variables \code{hsize}, \code{age}, \code{eqSS} and \code{eqIncome} are not included in the standardized format of EU-SILC data, but have been derived from other variables for convenience. Moreover, some very sparse income components were not included in the the generation of this synthetic data set. Thus the equivalized household income is computed from the available income components. } \source{ This is a synthetic data set based on Austrian EU-SILC data from 2006. The original sample was provided by Statistics Austria. } \references{ A. Alfons and M. Templ (2013) Estimation of Social Exclusion Indicators from Complex Surveys: The \R Package \pkg{laeken}. \emph{Journal of Statistical Software}, \bold{54}(15), 1--25. \doi{10.18637/jss.v054.i15} A. Alfons, M. Templ, P. Filzmoser (2011) Simulation of close-to-reality population data for household surveys with application to EU-SILC. \emph{Statistical Methods and Applications}, vol 20 (3), 383-407. Eurostat (2004) Description of target variables: Cross-sectional and longitudinal. \emph{EU-SILC 065/04}, Eurostat. } \examples{ data(eusilc) summary(eusilc) } \keyword{datasets} laeken/man/thetaWML.Rd0000644000176200001440000000637414127252664014263 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/thetaWML.R \name{thetaWML} \alias{thetaWML} \title{Weighted maximum likelihood estimator} \usage{ thetaWML( x, k = NULL, x0 = NULL, weight = c("residuals", "probability"), const, bias = TRUE, ... ) } \arguments{ \item{x}{a numeric vector.} \item{k}{the number of observations in the upper tail to which the Pareto distribution is fitted.} \item{x0}{the threshold (scale parameter) above which the Pareto distribution is fitted.} \item{weight}{a character string specifying the weight function to be used. If \code{"residuals"} (the default), the weight function is based on standardized residuals. If \code{"probability"}, probability based weighting is used. Partial string matching allows these names to be abbreviated.} \item{const}{Tuning constant(s) that control the robustness of the method. If \code{weight="residuals"}, a single numeric value is required (the default is 2.5). If \code{weight="probability"}, a numeric vector of length two must be supplied (a single numeric value is recycled; the default is 0.005 for both tuning parameters). See the references for more details.} \item{bias}{a logical indicating whether bias correction should be applied.} \item{\dots}{additional arguments to be passed to \code{\link[stats]{uniroot}} (see \dQuote{Details}).} } \value{ The estimated shape parameter. } \description{ Estimate the shape parameter of a Pareto distribution using a weighted maximum likelihood approach. } \details{ The arguments \code{k} and \code{x0} of course correspond with each other. If \code{k} is supplied, the threshold \code{x0} is estimated with the \eqn{n - k} largest value in \code{x}, where \eqn{n} is the number of observations. On the other hand, if the threshold \code{x0} is supplied, \code{k} is given by the number of observations in \code{x} larger than \code{x0}. Therefore, either \code{k} or \code{x0} needs to be supplied. If both are supplied, only \code{k} is used (mainly for back compatibility). The weighted maximum likelihood estimator belongs to the class of M-estimators. In order to obtain the estimate, the root of a certain function needs to be found, which is implemented using \code{\link[stats]{uniroot}}. } \note{ The argument \code{x0} for the threshold (scale parameter) of the Pareto distribution was introduced in version 0.2. } \examples{ data(eusilc) # equivalized disposable income is equal for each household # member, therefore only one household member is taken eusilc <- eusilc[!duplicated(eusilc$db030),] # estimate threshold ts <- paretoScale(eusilc$eqIncome, w = eusilc$db090) # using number of observations in tail thetaWML(eusilc$eqIncome, k = ts$k) # using threshold thetaWML(eusilc$eqIncome, x0 = ts$x0) } \references{ Dupuis, D.J. and Morgenthaler, S. (2002) Robust weighted likelihood estimators with an application to bivariate extreme value problems. \emph{The Canadian Journal of Statistics}, \bold{30}(1), 17--36. Dupuis, D.J. and Victoria-Feser, M.-P. (2006) A robust prediction error criterion for Pareto modelling of upper tails. \emph{The Canadian Journal of Statistics}, \bold{34}(4), 639--658. } \seealso{ \code{\link{paretoTail}}, \code{\link{fitPareto}} } \author{ Andreas Alfons and Josef Holzer } \keyword{manip} laeken/man/prop.Rd0000644000176200001440000001333514127253311013537 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/prop.R \name{prop} \alias{prop} \title{Proportion of an alternative distribution} \usage{ prop( bin, weights = NULL, sort = NULL, years = NULL, breakdown = NULL, design = NULL, cluster = NULL, data = NULL, var = NULL, alpha = 0.05, na.rm = FALSE, ... ) } \arguments{ \item{bin}{either a factor vector giving the values, or (if \code{data} is not \code{NULL}) a character string, an integer or a logical vector specifying the corresponding column of \code{data}.} \item{weights}{optional; either a numeric vector giving the personal sample weights, or (if \code{data} is not \code{NULL}) a character string, an integer or a logical vector specifying the corresponding column of \code{data}.} \item{sort}{optional; either a numeric vector giving the personal IDs to be used as tie-breakers for sorting, or (if \code{data} is not \code{NULL}) a character string, an integer or a logical vector specifying the corresponding column of \code{data}.} \item{years}{optional; either a numeric vector giving the different years of the survey, or (if \code{data} is not \code{NULL}) a character string, an integer or a logical vector specifying the corresponding column of \code{data}. If supplied, values are computed for each year.} \item{breakdown}{optional; either a numeric vector giving different domains, or (if \code{data} is not \code{NULL}) a character string, an integer or a logical vector specifying the corresponding column of \code{data}. If supplied, the values for each domain are computed in addition to the overall value.} \item{design}{optional and only used if \code{var} is not \code{NULL}; either an integer vector or factor giving different domains for stratified sampling designs, or (if \code{data} is not \code{NULL}) a character string, an integer or a logical vector specifying the corresponding column of \code{data}.} \item{cluster}{optional and only used if \code{var} is not \code{NULL}; either an integer vector or factor giving different clusters for cluster sampling designs, or (if \code{data} is not \code{NULL}) a character string, an integer or a logical vector specifying the corresponding column of \code{data}.} \item{data}{an optional \code{data.frame}.} \item{var}{a character string specifying the type of variance estimation to be used, or \code{NULL} to omit variance estimation. See \code{\link{variance}} for possible values.} \item{alpha}{numeric; if \code{var} is not \code{NULL}, this gives the significance level to be used for computing the confidence interval (i.e., the confidence level is \eqn{1 - }\code{alpha}).} \item{na.rm}{a logical indicating whether missing values should be removed.} \item{\dots}{if \code{var} is not \code{NULL}, additional arguments to be passed to \code{\link{variance}}.} } \value{ A list of class \code{"prop"} (which inherits from the class \code{"indicator"}) with the following components: \item{value}{a numeric vector containing the overall value(s).} \item{valueByStratum}{a \code{data.frame} containing the values by domain, or \code{NULL}.} \item{varMethod}{a character string specifying the type of variance estimation used, or \code{NULL} if variance estimation was omitted.} \item{var}{a numeric vector containing the variance estimate(s), or \code{NULL}.} \item{varByStratum}{a \code{data.frame} containing the variance estimates by domain, or \code{NULL}.} \item{ci}{a numeric vector or matrix containing the lower and upper endpoints of the confidence interval(s), or \code{NULL}.} \item{ciByStratum}{a \code{data.frame} containing the lower and upper endpoints of the confidence intervals by domain, or \code{NULL}.} \item{alpha}{a numeric value giving the significance level used for computing the confidence interval(s) (i.e., the confidence level is \eqn{1 - }\code{alpha}), or \code{NULL}.} \item{years}{a numeric vector containing the different years of the survey.} \item{strata}{a character vector containing the different domains of the breakdown.} } \description{ Estimate the proportion of an alternative distribution. } \details{ If weights are provided, the weighted proportion is estimated. } \examples{ data(eusilc) # overall value prop("rb090", weights = "rb050", data = eusilc) # values by region p1 <- prop("rb090", weights = "rb050", breakdown = "db040", cluster = "db030", data = eusilc) p1 \dontrun{ variance("rb090", weights = "rb050", breakdown = "db040", data = eusilc, indicator=p1, cluster="db030", X = calibVars(eusilc$db040)) } eusilc$agecut <- cut(eusilc$age, 2) p1 <- prop("agecut", weights = "rb050", breakdown = "db040", cluster="db030", data = eusilc) p1 \dontrun{ variance("agecut", weights = "rb050", breakdown = "db040", data = eusilc, indicator=p1, X = calibVars(eusilc$db040), cluster="db030") } eusilc$eqIncomeCat <- factor(ifelse(eusilc$eqIncome < quantile(eusilc$eqIncome,0.2), "one", "two")) p1 <- prop("eqIncomeCat", weights = "rb050", breakdown = "db040", data = eusilc, cluster="db030") p1 \dontrun{ variance("eqIncomeCat", weights = "rb050", breakdown = "db040", data = eusilc, indicator=p1, X = calibVars(eusilc$db040), cluster="db030") } } \references{ A. Alfons and M. Templ (2013) Estimation of Social Exclusion Indicators from Complex Surveys: The \R Package \pkg{laeken}. \emph{Journal of Statistical Software}, \bold{54}(15), 1--25. \doi{10.18637/jss.v054.i15} Working group on Statistics on Income and Living Conditions (2004) Common cross-sectional EU indicators based on EU-SILC; the gender pay gap. \emph{EU-SILC 131-rev/04}, Eurostat, Luxembourg. } \seealso{ \code{\link{variance}} } \author{ Matthias Templ, using code for breaking down estimation by Andreas Alfons } \keyword{survey} laeken/man/laeken-package.Rd0000644000176200001440000000141414127272467015417 0ustar liggesusers\name{laeken-package} \alias{laeken-package} \alias{laeken} \docType{package} \title{ \packageTitle{laeken} } \description{ \packageDescription{laeken} } \details{ The DESCRIPTION file: \packageDESCRIPTION{laeken} \packageIndices{laeken} } \references{ A. Alfons and M. Templ (2013) Estimation of Social Exclusion Indicators from Complex Surveys: The \R Package \pkg{laeken}. \emph{Journal of Statistical Software}, \bold{54}(15), 1--25. \doi{10.18637/jss.v054.i15} A. Alfons, M. Templ, P. Filzmoser (2013) Robust estimation of economic indicators from survey samples based on Pareto tail modeling. \emph{Journal of the Royal Statistical Society, Series C}, \bold{62}(2), 271--286. } \author{ \packageAuthor{laeken} Maintainer: \packageMaintainer{laeken} } \keyword{package} laeken/man/qsr.Rd0000644000176200001440000001175114127253311013364 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/qsr.R \name{qsr} \alias{qsr} \title{Quintile share ratio} \usage{ qsr( inc, weights = NULL, sort = NULL, years = NULL, breakdown = NULL, design = NULL, cluster = NULL, data = NULL, var = NULL, alpha = 0.05, na.rm = FALSE, ... ) } \arguments{ \item{inc}{either a numeric vector giving the equivalized disposable income, or (if \code{data} is not \code{NULL}) a character string, an integer or a logical vector specifying the corresponding column of \code{data}.} \item{weights}{optional; either a numeric vector giving the personal sample weights, or (if \code{data} is not \code{NULL}) a character string, an integer or a logical vector specifying the corresponding column of \code{data}.} \item{sort}{optional; either a numeric vector giving the personal IDs to be used as tie-breakers for sorting, or (if \code{data} is not \code{NULL}) a character string, an integer or a logical vector specifying the corresponding column of \code{data}.} \item{years}{optional; either a numeric vector giving the different years of the survey, or (if \code{data} is not \code{NULL}) a character string, an integer or a logical vector specifying the corresponding column of \code{data}. If supplied, values are computed for each year.} \item{breakdown}{optional; either a numeric vector giving different domains, or (if \code{data} is not \code{NULL}) a character string, an integer or a logical vector specifying the corresponding column of \code{data}. If supplied, the values for each domain are computed in addition to the overall value.} \item{design}{optional and only used if \code{var} is not \code{NULL}; either an integer vector or factor giving different strata for stratified sampling designs, or (if \code{data} is not \code{NULL}) a character string, an integer or a logical vector specifying the corresponding column of \code{data}.} \item{cluster}{optional and only used if \code{var} is not \code{NULL}; either an integer vector or factor giving different clusters for cluster sampling designs, or (if \code{data} is not \code{NULL}) a character string, an integer or a logical vector specifying the corresponding column of \code{data}.} \item{data}{an optional \code{data.frame}.} \item{var}{a character string specifying the type of variance estimation to be used, or \code{NULL} to omit variance estimation. See \code{\link{variance}} for possible values.} \item{alpha}{numeric; if \code{var} is not \code{NULL}, this gives the significance level to be used for computing the confidence interval (i.e., the confidence level is \eqn{1 - }\code{alpha}).} \item{na.rm}{a logical indicating whether missing values should be removed.} \item{\dots}{if \code{var} is not \code{NULL}, additional arguments to be passed to \code{\link{variance}}.} } \value{ A list of class \code{"qsr"} (which inherits from the class \code{"indicator"}) with the following components: \item{value}{a numeric vector containing the overall value(s).} \item{valueByStratum}{a \code{data.frame} containing the values by domain, or \code{NULL}.} \item{varMethod}{a character string specifying the type of variance estimation used, or \code{NULL} if variance estimation was omitted.} \item{var}{a numeric vector containing the variance estimate(s), or \code{NULL}.} \item{varByStratum}{a \code{data.frame} containing the variance estimates by domain, or \code{NULL}.} \item{ci}{a numeric vector or matrix containing the lower and upper endpoints of the confidence interval(s), or \code{NULL}.} \item{ciByStratum}{a \code{data.frame} containing the lower and upper endpoints of the confidence intervals by domain, or \code{NULL}.} \item{alpha}{a numeric value giving the significance level used for computing the confidence interval(s) (i.e., the confidence level is \eqn{1 - }\code{alpha}), or \code{NULL}.} \item{years}{a numeric vector containing the different years of the survey.} \item{strata}{a character vector containing the different domains of the breakdown.} } \description{ Estimate the quintile share ratio, which is defined as the ratio of the sum of equivalized disposable income received by the top 20\% to the sum of equivalized disposable income received by the bottom 20\%. } \details{ The implementation strictly follows the Eurostat definition. } \examples{ data(eusilc) # overall value qsr("eqIncome", weights = "rb050", data = eusilc) # values by region qsr("eqIncome", weights = "rb050", breakdown = "db040", data = eusilc) } \references{ A. Alfons and M. Templ (2013) Estimation of Social Exclusion Indicators from Complex Surveys: The \R Package \pkg{laeken}. \emph{Journal of Statistical Software}, \bold{54}(15), 1--25. \doi{10.18637/jss.v054.i15} Working group on Statistics on Income and Living Conditions (2004) Common cross-sectional EU indicators based on EU-SILC; the gender pay gap. \emph{EU-SILC 131-rev/04}, Eurostat, Luxembourg. } \seealso{ \code{\link{incQuintile}}, \code{\link{variance}}, \code{\link{gini}} } \author{ Andreas Alfons } \keyword{survey} laeken/man/thetaISE.Rd0000644000176200001440000000604714127253311014227 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/thetaISE.R \name{thetaISE} \alias{thetaISE} \title{Integrated squared error (ISE) estimator} \usage{ thetaISE(x, k = NULL, x0 = NULL, w = NULL, ...) } \arguments{ \item{x}{a numeric vector.} \item{k}{the number of observations in the upper tail to which the Pareto distribution is fitted.} \item{x0}{the threshold (scale parameter) above which the Pareto distribution is fitted.} \item{w}{an optional numeric vector giving sample weights.} \item{\dots}{additional arguments to be passed to \code{\link[stats]{optimize}} (see \dQuote{Details}).} } \value{ The estimated shape parameter. } \description{ The integrated squared error (ISE) estimator estimates the shape parameter of a Pareto distribution based on the relative excesses of observations above a certain threshold. } \details{ The arguments \code{k} and \code{x0} of course correspond with each other. If \code{k} is supplied, the threshold \code{x0} is estimated with the \eqn{n - k} largest value in \code{x}, where \eqn{n} is the number of observations. On the other hand, if the threshold \code{x0} is supplied, \code{k} is given by the number of observations in \code{x} larger than \code{x0}. Therefore, either \code{k} or \code{x0} needs to be supplied. If both are supplied, only \code{k} is used (mainly for back compatibility). The ISE estimator minimizes the integrated squared error (ISE) criterion with a complete density model. The minimization is carried out using % \code{\link[stats]{nlm}}. By default, the starting value is obtained % with the Hill estimator (see \code{\link{thetaHill}}). \code{\link[stats]{optimize}}. } \note{ The arguments \code{x0} for the threshold (scale parameter) of the Pareto distribution and \code{w} for sample weights were introduced in version 0.2. } \examples{ data(eusilc) # equivalized disposable income is equal for each household # member, therefore only one household member is taken eusilc <- eusilc[!duplicated(eusilc$db030),] # estimate threshold ts <- paretoScale(eusilc$eqIncome, w = eusilc$db090) # using number of observations in tail thetaISE(eusilc$eqIncome, k = ts$k, w = eusilc$db090) # using threshold thetaISE(eusilc$eqIncome, x0 = ts$x0, w = eusilc$db090) } \references{ A. Alfons and M. Templ (2013) Estimation of Social Exclusion Indicators from Complex Surveys: The \R Package \pkg{laeken}. \emph{Journal of Statistical Software}, \bold{54}(15), 1--25. \doi{10.18637/jss.v054.i15} A. Alfons, M. Templ, P. Filzmoser (2013) Robust estimation of economic indicators from survey samples based on Pareto tail modeling. \emph{Journal of the Royal Statistical Society, Series C}, \bold{62}(2), 271--286. Vandewalle, B., Beirlant, J., Christmann, A., and Hubert, M. (2007) A robust estimator for the tail index of Pareto-type distributions. \emph{Computational Statistics & Data Analysis}, \bold{51}(12), 6252--6268. } \seealso{ \code{\link{paretoTail}}, \code{\link{fitPareto}}, \code{\link{thetaPDC}}, \code{\link{thetaHill}} } \author{ Andreas Alfons and Josef Holzer } \keyword{manip} laeken/man/plot.paretoTail.Rd0000644000176200001440000000370314127253053015641 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/plot.R \name{plot.paretoTail} \alias{plot.paretoTail} \title{Diagnostic plot for the Pareto tail model} \usage{ \method{plot}{paretoTail}( x, pch = c(1, 3), cex = 1, col = c("black", "red"), bg = "transparent", ... ) } \arguments{ \item{x}{an object of class \code{"paretoTail"} as returned by \code{\link{paretoTail}}.} \item{pch, cex, col, bg}{graphical parameters. Each can be a vector of length two, with the first and second element giving the graphical parameter for the good data points and the outliers, respectively.} \item{\dots}{additional arguments to be passed to \code{\link{paretoQPlot}}.} } \description{ Produce a diagnostic Pareto quantile plot for evaluating the fitted Pareto distribution. Reference lines indicating the estimates of the threshold (scale parameter) and the shape parameter are added to the plot, and any detected outliers are highlighted. } \details{ While the first horizontal line indicates the estimated threshold (scale parameter), the estimated shape parameter is indicated by a line whose slope is given by the reciprocal of the estimate. In addition, the second horizontal line represents the theoretical quantile of the fitted distribution that is used for outlier detection. Thus all values above that line are the detected outliers. } \examples{ data(eusilc) # estimate threshold ts <- paretoScale(eusilc$eqIncome, w = eusilc$db090, groups = eusilc$db030) # estimate shape parameter fit <- paretoTail(eusilc$eqIncome, k = ts$k, w = eusilc$db090, groups = eusilc$db030) # produce plot plot(fit) } \references{ A. Alfons and M. Templ (2013) Estimation of Social Exclusion Indicators from Complex Surveys: The \R Package \pkg{laeken}. \emph{Journal of Statistical Software}, \bold{54}(15), 1--25. \doi{10.18637/jss.v054.i15} } \seealso{ \code{\link{paretoTail}}, \code{\link{paretoQPlot}} } \author{ Andreas Alfons } \keyword{hplot} laeken/man/arpr.Rd0000644000176200001440000001271714127253311013526 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/arpr.R \name{arpr} \alias{arpr} \title{At-risk-of-poverty rate} \usage{ arpr( inc, weights = NULL, sort = NULL, years = NULL, breakdown = NULL, design = NULL, cluster = NULL, data = NULL, p = 0.6, var = NULL, alpha = 0.05, threshold = NULL, na.rm = FALSE, ... ) } \arguments{ \item{inc}{either a numeric vector giving the equivalized disposable income, or (if \code{data} is not \code{NULL}) a character string, an integer or a logical vector specifying the corresponding column of \code{data}.} \item{weights}{optional; either a numeric vector giving the personal sample weights, or (if \code{data} is not \code{NULL}) a character string, an integer or a logical vector specifying the corresponding column of \code{data}.} \item{sort}{optional; either a numeric vector giving the personal IDs to be used as tie-breakers for sorting, or (if \code{data} is not \code{NULL}) a character string, an integer or a logical vector specifying the corresponding column of \code{data}.} \item{years}{optional; either a numeric vector giving the different years of the survey, or (if \code{data} is not \code{NULL}) a character string, an integer or a logical vector specifying the corresponding column of \code{data}. If supplied, values are computed for each year.} \item{breakdown}{optional; either a numeric vector giving different domains, or (if \code{data} is not \code{NULL}) a character string, an integer or a logical vector specifying the corresponding column of \code{data}. If supplied, the values for each domain are computed in addition to the overall value. Note that the same (overall) threshold is used for all domains.} \item{design}{optional and only used if \code{var} is not \code{NULL}; either an integer vector or factor giving different strata for stratified sampling designs, or (if \code{data} is not \code{NULL}) a character string, an integer or a logical vector specifying the corresponding column of \code{data}.} \item{cluster}{optional and only used if \code{var} is not \code{NULL}; either an integer vector or factor giving different clusters for cluster sampling designs, or (if \code{data} is not \code{NULL}) a character string, an integer or a logical vector specifying the corresponding column of \code{data}.} \item{data}{an optional \code{data.frame}.} \item{p}{a numeric vector of values in \eqn{[0,1]} giving the percentages of the weighted median to be used for the at-risk-of-poverty threshold (see \code{\link{arpt}}).} \item{var}{a character string specifying the type of variance estimation to be used, or \code{NULL} to omit variance estimation. See \code{\link{variance}} for possible values.} \item{alpha}{numeric; if \code{var} is not \code{NULL}, this gives the significance level to be used for computing the confidence interval (i.e., the confidence level is \eqn{1 - }\code{alpha}).} \item{threshold}{if `NULL`, the at-risk-at-poverty threshold is estimated from the data.} \item{na.rm}{a logical indicating whether missing values should be removed.} \item{\dots}{if \code{var} is not \code{NULL}, additional arguments to be passed to \code{\link{variance}}.} } \value{ A list of class \code{"arpr"} (which inherits from the class \code{"indicator"}) with the following components: \item{value}{a numeric vector containing the overall value(s).} \item{valueByStratum}{a \code{data.frame} containing the values by domain, or \code{NULL}.} \item{varMethod}{a character string specifying the type of variance estimation used, or \code{NULL} if variance estimation was omitted.} \item{var}{a numeric vector containing the variance estimate(s), or \code{NULL}.} \item{varByStratum}{a \code{data.frame} containing the variance estimates by domain, or \code{NULL}.} \item{ci}{a numeric vector or matrix containing the lower and upper endpoints of the confidence interval(s), or \code{NULL}.} \item{ciByStratum}{a \code{data.frame} containing the lower and upper endpoints of the confidence intervals by domain, or \code{NULL}.} \item{alpha}{a numeric value giving the significance level used for computing the confidence interval(s) (i.e., the confidence level is \eqn{1 - }\code{alpha}), or \code{NULL}.} \item{years}{a numeric vector containing the different years of the survey.} \item{strata}{a character vector containing the different domains of the breakdown.} \item{p}{a numeric giving the percentage of the weighted median used for the at-risk-of-poverty threshold.} \item{threshold}{a numeric vector containing the at-risk-of-poverty threshold(s).} } \description{ Estimate the at-risk-of-poverty rate, which is defined as the proportion of persons with equivalized disposable income below the at-risk-of-poverty threshold. } \details{ The implementation strictly follows the Eurostat definition. } \examples{ data(eusilc) # overall value arpr("eqIncome", weights = "rb050", data = eusilc) # values by region arpr("eqIncome", weights = "rb050", breakdown = "db040", data = eusilc) } \references{ A. Alfons and M. Templ (2013) Estimation of Social Exclusion Indicators from Complex Surveys: The \R Package \pkg{laeken}. \emph{Journal of Statistical Software}, \bold{54}(15), 1--25. \doi{10.18637/jss.v054.i15} Working group on Statistics on Income and Living Conditions (2004) Common cross-sectional EU indicators based on EU-SILC; the gender pay gap. \emph{EU-SILC 131-rev/04}, Eurostat, Luxembourg. } \seealso{ \code{\link{arpt}}, \code{\link{variance}} } \author{ Andreas Alfons } \keyword{survey} laeken/DESCRIPTION0000755000176200001440000000177114554452120013232 0ustar liggesusersPackage: laeken Type: Package Title: Estimation of Indicators on Social Exclusion and Poverty Version: 0.5.3 Date: 2024-01-25 Depends: R (>= 3.2.0) Imports: boot, MASS Description: Estimation of indicators on social exclusion and poverty, as well as Pareto tail modeling for empirical income distributions. License: GPL (>= 2) Authors@R: c(person("Andreas", "Alfons", email = "alfons@ese.eur.nl", role = c("aut", "cre"), comment = c(ORCID = "0000-0002-2513-3788")), person("Josef", "Holzer", role = "aut"), person("Matthias", "Templ", role = "aut"), person("Alexander", "Haider", role = "ctb")) Author: Andreas Alfons [aut, cre] (), Josef Holzer [aut], Matthias Templ [aut], Alexander Haider [ctb] Maintainer: Andreas Alfons Encoding: UTF-8 RoxygenNote: 7.2.3 NeedsCompilation: no Packaged: 2024-01-25 11:07:36 UTC; andreas Repository: CRAN Date/Publication: 2024-01-25 12:30:08 UTC laeken/build/0000755000176200001440000000000014554440362012617 5ustar liggesuserslaeken/build/vignette.rds0000644000176200001440000000074014554440362015157 0ustar liggesusersn0ái^`^`y޶EZ*!@U/f`ؑmWKĆ$V*o7]7fn5f=znmwgiAVH}SdB Ƣd3 5GS.Uqkcy+ j cspb?%1Z JR%/6&s 1^܋_Ĭd p .g0U[p.pPV2R) ٹb& ;\mEn^)#eq(IU}fZ {+ք3z)p Syyw- ¤\xsaM|6aɍIn/%lƨ)S4B_C:2Fzz_EA{˕fIG2 &&`Ⱦ+JI6kݼ :jo OX `Tn bolaeken/build/partial.rdb0000644000176200001440000001170214554440304014741 0ustar liggesusers]VHvC\:Ng:d@7@ IȁtOδ39B*dIQwgؗٷ30K%$[hN9//_Wd2]snH~Gd^iuѡ=AJG5 b}ʔ]3.n_QyoKUmUQ5 /͸tr__L- `]6Ufե:&6ߐWA[RݤFOͲ&][3lhZ]Jw9R$$+W14[$grsU(Vg*kSs۹]7W6ɧbP5E,Ҽ2Pys= i0s]iͮ?]W[u|=Xѳv;5Ǯal1UHDRʒJ$sr9m@9ʮTՃTtGNA%L @GYzU_(RI$4Rf<V e$[5tdTКdA!V?Z@IWЖ-M5uZ'7nF:ڮVG슡T#=ŖRm'=ʮʏr]1]J.@DT*Kb`),C'1WWZN+~O<q=yH"hkZz{8ouzڟ"$ %UCuCʡa!\7UQeRw:~-&ĥ#ݾgVJ[neb:ȑtOZ4 [0*lK;&~tWEwYNM)>|83MJVGDgyb83NJS9~(̞.egR)o8V$:㨨0]OR)o<WuY(#l!;=J|6V7 >Q׋=6JT[nJ)]F>u2Y=Fd]NBqy:0'-z~aר|V莫@{C}!F0XÚlTe䰁 Uy'#i2-$,SJvfEdtckV MI7),{b[$Kt;s3Vh}5lIfE:'Sˆ,iU 0LՐm$d[VvT]\Eh~:(8 Zt ;jI}!ňHuSh͓5]xCCSXaL-HTf4?`74K]ö*_Jkˈ4=|ɖҁeER jkWm0[GfFt@* \u;psU*K ߧQJf6n`Iv:&u&s +j4ٹ&y M,)Wg`.DUt *G TT@&/ꪾQZv!9Mȇm-˰8<<^ƢNR8 u51%rvJĹMJuL\ÊJ|$]=<C ZQn-ass<0EE7,ANRҨ봉)D8舚AQ g"[$C;FG 'f|OLhxf~cׅԪ;KE&bx)<L;O`@pp4Jg<&5KwCq;}J rJY] k0L#by"ml9lGױDlAApo}þJܭ 6zBܩ]7oBTʠ!ۖZ{`)ztk Lu4ȯ6iLZ_`㕆.A J9Wyc_sH7 Q*mp47-a|:} ze_ϐMɰ(OS8gFJaG-|^^ɐ#!OGA-UkW¹(6=KYo,5^LB2Dpsi +~˨e|D%O!8uM|$hd+?QzWQ1Vzw`;şw;E?)ufC7Q39FXz.LabB.MDOqyse5[;a+l\w[re6[c#7!Ak;桽n]1~0O6IE/TS B ͱvcЍ*5З,263ѳ;w;A; 'PdQ\Ηug$M1|UnTV?)mK.+h];?ó~IP0"[CO #kZuJ)@G4vE^l Qǰ+yQ.iD1ap*]SM Ѹ"~_( sT!&Ayi$d{aZ`?sLZ&ȨKumAGh,Ylዾ +@qLF- 6# d36菽#cgu,SMD&R8w tNFiDlvDZia8 t#} KfTlaeken/vignettes/0000755000176200001440000000000014554440362013530 5ustar liggesuserslaeken/vignettes/laeken.bib0000644000176200001440000004425414554256270015461 0ustar liggesusers@techreport{templ11a, author = {Templ, M. and Alfons, A.}, title = {Standard Methods for Point Estimation of Social Inclusion Indicators Using the \proglang{R} Package \pkg{laeken}}, institution = {Department of Statistics and Probability Theory, Vienna University of Technology}, year = {2011}, type = {Research Report}, number = {CS-2011-1} } @techreport{alfons11a, author = {Alfons, A. and Templ, M. and Filzmoser, P. and Holzer, J.}, title = {Robust Pareto Tail Modeling for the Estimation of Social Inclusion Indicators Using the \proglang{R} Package \pkg{laeken}}, institution = {Department of Statistics and Probability Theory, Vienna University of Technology}, year = {2011}, type = {Research Report}, number = {CS-2011-2} } @techreport{templ11b, author = {Templ, M. and Alfons, A.}, title = {Variance Estimation of Social Inclusion Indicators Using the \proglang{R} Package \pkg{laeken}}, institution = {Department of Statistics and Probability Theory, Vienna University of Technology}, year = {2011}, type = {Research Report}, number = {CS-2011-3} } @manual{laeken, title = {\pkg{laeken}: Estimation of Indicators on Social Exclusion and Poverty}, author = {Alfons, A. and Holzer, J. and Templ, M.}, year = {2013}, note = {\proglang{R} package version 0.4.5}, url = {https://CRAN.R-project.org/package=laeken} } @article{alfons13a, title = {Robust Estimation of Economic Indicators from Survey Samples Based on {Pareto} Tail Modeling}, author = {Alfons, A. and Templ, M. and Filzmoser, P.}, journal = {Journal of the Royal Statistical Society~C}, volume = {62}, number = {2}, pages = {271--286}, year = {2013} } @article{alfons13b, title = {Estimation of Social Exclusion Indicators from Complex Surveys: The \proglang{R} Package \pkg{laeken}}, author = {Alfons, A. and Templ, M.}, journal = {Journal of Statistical Software}, volume = {54}, number = {15}, pages = {1--25}, year = {2013}, doi = {10.18637/jss.v054.i15} } @article{templ12, title = {Exploring Incomplete Data Using Visualization Techniques}, author = {Templ, M. and Alfons, A. and Filzmoser, P.}, journal = {Advances in Data Analyis and Classification}, volume = {6}, number = {1}, pages = {29--47}, year = {2012} } @article{alfons11c, title = {Simulation of Close-to-Reality Population Data for Household Surveys With Application to {EU-SILC}}, author = {Alfons, A. and Kraft, S. and Templ, M. and Filzmoser, P.}, journal = {Statistical Methods \& Applications}, volume = {20}, number = {3}, pages = {383--407}, year = {2011} } @article{templ11, title = {Iterative Stepwise Regression Imputation Using Standard and Robust Methods}, author = {Templ, M. and Kowarik, A. and Filzmoser, P.}, journal = {Computational Statistics \& Data Analysis}, volume = {55}, number = {10}, pages = {2793--2806}, year = {2011} } @article{alfons10c, title = {An Object-Oriented Framework for Statistical Simulation: The \proglang{R} Package \pkg{simFrame}}, author = {Alfons, A. and Templ, M. and Filzmoser, P.}, journal = {Journal of Statistical Software}, volume = {37}, number = {3}, pages = {1--36}, year = {2010}, doi = {10.18637/jss.v037.i03} } @incollection{alfons10b, author = {Alfons, A. and Templ, M. and Filzmoser, P. and Holzer, J.}, title = {A Comparison of Robust Methods for {Pareto} Tail Modeling in the Case of {Laeken} Indicators}, editor = {Borgelt, C. and Gonz\'alez-Rodr\'iguez, G. and Trutschnig, W. and Lubiano, M.A. and Gil, M.A. and Grzegorzewski, P. and Hryniewicz, O.}, booktitle = {Combining Soft Computing and Statistical Methods in Data Analysis}, series = {Advances in Intelligent and Soft Computing}, volume = {77}, pages = {17--24}, publisher = {Springer-Verlag}, year = {2010}, address = {Heidelberg}, note = {{ISBN} 978-3-642-14745-6} } @manual{simFrame, title = {\pkg{simFrame}: Simulation Framework.}, author = {Alfons, A.}, year = {2012}, note = {\proglang{R} package version 0.5.0}, url = {https://CRAN.R-project.org/package=simFrame} } @manual{simPopulation, title = {\pkg{simPopulation}: Simulation of Synthetic Populations for Surveys Based on Sample Data}, author = {Alfons, A. and Kraft, S.}, year = {2012}, note = {\proglang{R} package version 0.4.0}, url = {https://CRAN.R-project.org/package=simPopulation} } @manual{VIM, title = {\pkg{VIM}: Visualization and Imputation of Missing Values}, author = {Templ, M. and Alfons, A. and Kowarik, A. and Prantner, B.}, year = {2013}, note = {\proglang{R} package version 3.0.3}, url = {https://CRAN.R-project.org/package=VIM} } @techreport{AMELI-D3.1, author = {Bruch, C. and M\"unnich, R. and Zins, S.}, title = {Variance Estimation for Complex Surveys}, institution = {AMELI Project}, year = {2011}, type = {Deliverable}, number = {D3.1} } @techreport{AMELI-D7.1, author = {Hulliger, B. and Alfons, A. and Bruch, C. and Filzmoser, P. and Graf, M. and Kolb, J.-P. and Lehtonen, R. and Lussmann, D. and Meraner, A. and M\"unnich, R. and Nedyalkova, D. and Schoch, T. and Templ, M. and Valaste, M. and Veijanen, A. and Zins, S.}, title = {Report on the Simulation Results}, institution = {AMELI Project}, year = {2011}, type = {Deliverable}, number = {D7.1} } @techreport{EU-SILC04, author = {Eurostat}, title = {Common Cross-Sectional {EU} Indicators Based on {EU-SILC}; the Gender Pay Gap}, institution = {Unit D-2: Living conditions and social protection, Directorate D: Single Market, Employment and Social statistics, Eurostat}, year = {2004}, type = {EU-SILC}, number = {131-rev/04}, address = {Luxembourg} } @techreport{EU-SILC09, author = {Eurostat}, title = {Algorithms to Compute Social Inclusion Indicators Based on {EU-SILC} and Adopted Under the {Open Method of Coordination (OMC)}}, institution = {Unit F-3: Living conditions and social protection, Directorate F: Social and information society statistics, Eurostat}, year = {2009}, type = {Doc.}, number = {LC-ILC/39/09/EN-rev.1}, address = {Luxembourg} } @techreport{EU-SILC, author = {Eurostat}, title = {Description of Target Variables: Cross-Sectional and Longitudinal}, institution = {Unit E-2: Living conditions, Directorate E: Social and regional statistics and geographical information system, Eurostat}, year = {2004}, type = {EU-SILC}, number = {065/04}, address = {Luxembourg} } @techreport{SES, author = {Eurostat}, title = {Structure of Earnings Survey 2006: Eurostat's Arrangements for Implementing the Council Regulation 530/1999, the Commission Regulations 1916/2000 and 1738/2005}, institution = {Unit F-2: Labour markes statistics, Directorate F: Social statistics, Eurostat}, year = {2006} } @manual{RDev, title = {\proglang{R}: A Language and Environment for Statistical Computing}, author = {\proglang{R} {Development Core Team}}, organization = {\proglang{R} Foundation for Statistical Computing}, address = {Vienna, Austria}, year = {2013}, note = {{ISBN} 3-900051-07-0}, url = {https://www.R-project.org} } @book{chambers92, author = {Chambers, J.M and Hastie, T.J.}, title = {Statistical Models in \proglang{S}}, publisher = {Chapman \& Hall}, year = {1992}, address = {London, UK}, note = {{ISBN} 9780412830402} } @misc{hulliger09a, author = {Hulliger, B. and Schoch, T.}, title = {Robustification of the Quintile Share Ratio}, year = {2009}, howpublished = {New Techniques and Technologies for Statistics, Brussels} } @book{kleiber03, author = {Kleiber, C. and Kotz, S.}, title = {Statistical Size Distributions in Economics and Actuarial Sciences}, publisher = {John Wiley \& Sons}, year = {2003}, address = {Hoboken, New Jersey}, note = {{ISBN} 0-471-15064-9} } @article{dupuis02, author = {Dupuis, D.J. and Morgenthaler, S.}, title = {Robust Weighted Likelihood Estimators with an Application to Bivariate Extreme Value Problems}, journal = {The Canadian Journal of Statistics}, year = {2002}, volume = {30}, number = {1}, pages = {17--36} } @article{dupuis06, author = {Dupuis, D.J. and Victoria-Feser, M.-P.}, title = {A Robust Prediction Error Criterion for {Pareto} Modelling of Upper Tails}, journal = {The Canadian Journal of Statistics}, year = {2006}, volume = {34}, number = {4}, pages = {639--658} } @article{danielsson01, author = {Danielsson, J. and de Haan, L. and Peng, L. and de Vries, C.G.}, title = {Using a Bootstrap Method to Choose the Sample Fraction in Tail Index Estimation}, journal = {Journal of Multivariate Analysis}, year = {2001}, volume = {76}, number = {2}, pages = {226--248} } @mastersthesis{holzer09, author = {Holzer, J.}, title = {Robust Methods for the Estimation of Selected {Laeken} Indicators}, school = {Department of Statistics and Probability Theory, Vienna University of Technology}, address = {Vienna, Austria}, year = {2009} } @techreport{vankerm07, author = {Van~Kerm, P.}, title = {Extreme Incomes and the Estimation of Poverty and Inequality Indicators from {EU-SILC}}, institution = {CEPS/INSTEAD}, year = {2007}, type = {{IRISS} Working Paper Series}, number = {2007-01} } @article{beirlant96a, author = {Beirlant, J. and Vynckier, P. and Teugels, J.L.}, title = {Tail Index Estimation, {Pareto} Quantile Plots, and Regression Diagnostics}, journal = {Journal of the American Statistical Association}, year = {1996}, volume = {31}, number = {436}, pages = {1659--1667} } @article{beirlant96b, author = {Beirlant, J. and Vynckier, P. and Teugels, J.L.}, title = {Excess Functions and Estimation of the Extreme-Value Index}, journal = {Bernoulli}, year = {1996}, volume = {2}, number = {4}, pages = {293--318} } @incollection{borkovec00, author = {Borkovec, M. and Kl\"uppelberg, C.}, title = {{Extremwerttheorie f\"ur Finanzzeitreihen -- ein unverzichtbares Werkzeug im Risikomanagement}}, editor = {Johanning, L. and Rudolph, B.}, booktitle = {Handbuch Risikomanagement}, pages = {219--241}, publisher = {Uhlenbruch}, year = {2000}, address = {Bad Soden}, note = {{ISBN} 3933207150} } @article{hill75, author = {Hill, B.M.}, title = {A Simple General Approach to Inference about the Tail of a Distribution}, journal = {The Annals of Statistics}, year = {1975}, volume = {3}, number = {5}, pages = {1163--1174} } @article{vandewalle07, author = {Vandewalle, B. and Beirlant, J. and Christmann, A. and Hubert, M.}, title = {A Robust Estimator for the Tail Index of {Pareto}-Type Distributions}, journal = {Computational Statistics \& Data Analysis}, year = {2007}, volume = {51}, number = {12}, pages = {6252--6268} } @inproceedings{terrell90, author = {Terrell, G.}, title = {Linear Density Estimates}, booktitle = {Proceedings of the Statistical Computing Section}, organization = {American Statistical Association}, year = {1990}, pages = {297--302} } @incollection{scott04, author = {Scott, D.W.}, title = {Partial Mixture Estimation and Outlier Detection in Data and Regression}, editor = {Hubert, M. and Pison, G. and Struyf, A. and Van Aelst, S.}, booktitle = {Theory and Applications of Recent Robust Methods}, pages = {297--306}, publisher = {Birkh\"auser}, year = {2004}, address = {Basel}, note = {{ISBN} 3-7643-7060-2} } @book{davison97, author = {Davison, A.C. and Hinkley, D.V.}, title = {Bootstrap Methods and their Applications}, publisher = {Cambridge University Press}, year = {1997}, note = {{ISBN} 0 521 57471 4} } @book{efron93, author = {Efron, B. and Tibshirani, R.J.}, title = {An Introduction to the Bootstrap}, publisher = {Chapman \& Hall}, address = {New York}, year = {1993}, note = {{ISBN} 0-412-04231-2} } @article{rao88, author = {Rao, J.N.K. and Wu, C.F.J.}, title = {Resampling Inference with Complex Survey Data}, journal = {Journal of the American Statistical Association}, year = {1988}, volume = {83}, number = {401}, pages = {231--241} } @article{deville92, author = {Deville, J.-C. and S\"arndal, C.-E.}, title = {Calibration Estimators in Survey Sampling}, journal = {Journal of the American Statistical Association}, year = {1992}, volume = {87}, number = {418}, pages = {376--382} } @article{deville93, author = {Deville, J.-C. and S\"arndal, C.-E. and Sautory, O.}, title = {Generalized Raking Procedures in Survey Sampling}, journal = {Journal of the American Statistical Association}, year = {1993}, volume = {88}, number = {423}, pages = {1013--1020} } @article{horvitz52, author = {Horvitz, D.G. and Thompson, D.J.}, title = {A Generalization of Sampling without Replacement from a Finite Universe}, journal = {Journal of the American Statistical Association}, year = {1952}, volume = {47}, number = {260}, pages = {663--685} } @article{kovacevic97, author = {Kova\v{c}evi\'{c}, M.S. and Binder, D.A.}, title = {Variance Estimation for Measures for Income Inequality and Polarization -- The Estimating Equations Approach}, journal = {Journal of Official Statistics}, year = {1997}, volume = {13}, number = {1}, pages = {41--58} } @article{deville99, author = {Deville, J.-C.}, title = {Variance Estimation for Complex Statistics and Estimators: Linearization and Residual Techniques}, journal = {Survey Methodology}, year = {1999}, volume = {25}, number = {2}, pages = {193--203} } @inproceedings{hulliger06, author = {Hulliger, B. and M\"unnich, R.}, title = {Variance Estimation for Complex Surveys in the Presence of Outliers}, booktitle = {Proceedings of the Section on Survey Research Methods}, organization = {American Statistical Association}, year = {2006}, pages = {3153--3156} } @article{osier09, author = {Osier, G.}, title = {Variance Estimation for Complex Indicators of Poverty and Inequality Using Linearization Techniques}, journal = {Survey Research Methods}, year = {2009}, volume = {3}, number = {3}, pages = {167--195} } @article{kott01, author = {Kott, P.S.}, title = {The Delete-a-Group Jackknife}, journal = {Journal of Official Statistics}, year = {2001}, volume = {17}, number = {4}, pages = {521--526} } @misc{alfons09, title = {On the Influence of Imputation Methods on {Laeken} Indicators: Simulations and Recommendations}, author = {Alfons, A. and Templ, M. and Filzmoser, P.}, year = {2009}, howpublished = {UNECE Worksession on Statistical Data Editing, Neuch\^{a}tel, Switzerland} } @book{little02, author = {Little, R.J.A. and Rubin, D.B.}, title = {Statistical Analysis with Missing Data}, publisher = {John Wiley \& Sons}, year = {2002}, address = {Hoboken, New Jersey}, edition = {2nd}, note = {{ISBN} 0-471-18386-5} } @manual{survey, author = {Lumley, T.}, title = {\pkg{survey}: Analysis of Complex Survey Samples}, year = {2012}, note = {\proglang{R} package version 3.29}, url = {https://CRAN.R-project.org/package=survey} } @article{lumley04, author = {Lumley, T.}, title = {Analysis of Complex Survey Samples}, journal = {Journal of Statistical Software}, volume = {9}, number = {1}, pages = {1-19}, year = {2004}, doi = {10.18637/jss.v009.i08} } @book{lumley10, author = {Lumley, T.}, title = {Complex Surveys: A Guide to Analysis Using \proglang{R}}, publisher = {John Wiley \& Sons}, year = {2010}, address = {Hoboken, New Jersey}, note = {{ISBN} 978-0-470-28430-8} } @manual{sampling, author = {Till\'e, Y. and Matei, A.}, title = {\pkg{sampling}: Survey Sampling}, year = {2012}, note = {\proglang{R} package version 2.5}, url = {https://CRAN.R-project.org/package=sampling} } @manual{EVER, author = {Zardetto, D.}, title = {\pkg{EVER}: Estimation of Variance by Efficient Replication}, year = {2012}, note = {\proglang{R} package version 1.2}, url = {https://CRAN.R-project.org/package=EVER} } @techreport{beblot03, author = {Beblot, M. and Beniger, D. and Heinze, A. and Laisney, F.}, title = {Methodological Issues Related to the Analysis of Gender Gaps in Employment, Earnings and Career Progression}, institution = {Employment and Social Affairs DG, European Commission}, year = {2003} } @article{weinberg07, author = {Weinberg, D.H.}, title = {Earnings by Gender: Evidence from {Census} 2000}, journal = {Monthly Labor Review Online}, year = {2007}, volume = {130}, number = {July/August}, pages = {26--34} } @article{chambers86, author = {Chambers, R.L.}, title = {Outlier Robust Finite Population Estimation}, journal = {Journal of the American Statistical Association}, year = {1986}, volume = {81}, number = {396}, pages = {1063--1069} } @article{cowell07, author = {Cowell, F.A. and Flachaire, E.}, title = {Income Distribution and Inequality Measurement: The Problem of Extreme Values}, journal = {Journal of Econometrics}, year = {2007}, volume = {141}, number = {2}, pages = {1044--1072} } @inproceedings{leisch02a, author = {Leisch, F.}, title = {\pkg{Sweave}: Dynamic Generation of Statistical Reports Using Literate Data Analysis}, booktitle = {Compstat 2002 -- Proceedings in Computational Statistics}, year = {2002}, editor = {H\"ardle, W. and R\"onz, B.}, pages = {575--580}, publisher = {Physica Verlag}, address = {Heidelberg}, note = {{ISBN} 3-7908-1517-9} } @article{leisch02b, author = {Leisch, F.}, title = {\pkg{Sweave}, Part {I}: Mixing \proglang{R} and \LaTeX}, journal = {\proglang{R} News}, year = {2002}, volume = {2}, number = {3}, pages = {28--31} } @article{leisch03, author = {Leisch, F.}, title = {\pkg{Sweave}, Part {II}: Package Vignettes}, journal = {\proglang{R} News}, year = {2003}, volume = {3}, number = {2}, pages = {21--24} } @manual{boot, title = {\pkg{boot}: Bootstrap Functions (Originally by Angelo Canty for \proglang{S})}, author = {Canty, A. and Ripley, B.}, year = {2012}, note = {\proglang{R} package version 1.3-7}, url = {https://CRAN.R-project.org/package=boot}, } @book{venables02, title = {Modern Applied Statistics with \proglang{S}}, author = {Venables, W.N. and Ripley, B.D.}, publisher = {Springer-Verlag}, edition = {4th}, address = {New York}, year = {2002}, note = {ISBN 0-387-95457-0} } @manual{MASS, title = {\pkg{MASS}: Support Functions and Datasets for Venables and Ripley's MASS}, author = {Ripley, B.}, year = {2013}, note = {\proglang{R} package version 7.3-23}, url = {https://CRAN.R-project.org/package=MASS} } laeken/vignettes/laeken-variance.Rnw0000644000176200001440000004121514127275501017245 0ustar liggesusers\documentclass[a4paper,10pt]{scrartcl} \usepackage[OT1]{fontenc} \usepackage{Sweave} %% additional packages \usepackage{natbib} \bibpunct{(}{)}{,}{a}{}{,} \usepackage{amsmath, amssymb} \usepackage{hyperref} \hypersetup{colorlinks, citecolor=blue, linkcolor=blue, urlcolor=blue} \usepackage[top=30mm, bottom=30mm, left=30mm, right=30mm]{geometry} \usepackage{enumerate} \usepackage{engord} %% additional commands \newcommand{\code}[1]{\texttt{#1}} \newcommand{\pkg}[1]{\mbox{\textbf{#1}}} \newcommand{\proglang}[1]{\mbox{\textsf{#1}}} %%\VignetteIndexEntry{Variance Estimation of Indicators on Social Exclusion and Poverty using the R Package laeken} %%\VignetteDepends{laeken} %%\VignetteKeywords{social exclusion, poverty, indicators, variance estimation} %%\VignettePackage{laeken} \begin{document} \title{Variance Estimation of Indicators on Social Exclusion and Poverty using the \proglang{R} Package \pkg{laeken}} \author{Matthias Templ$^{1}$, Andreas Alfons$^{2}$} \date{} \maketitle \setlength{\footnotesep}{11pt} \footnotetext[1]{ \begin{tabular}[t]{l} Zurich University of Applied Sciences\\ E-mail: \href{mailto:matthias.templ@zhaw.ch}{matthias.templ@zhaw.ch} \end{tabular} } \footnotetext[2]{ \begin{tabular}[t]{l} Erasmus School of Economics, Erasmus University Rotterdam\\ E-mail: \href{mailto:alfons@ese.eur.nl}{alfons@ese.eur.nl} \end{tabular} } % change R prompt <>= options(prompt="R> ") @ \paragraph{Abstract} This vignette illustrates the application of variance estimation procedures to indicators on social exclusion and poverty using the \proglang{R} package \pkg{laeken}. To be more precise, it describes a general framework for estimating variance and confidence intervals of indicators under complex sampling designs. Currently, the package is focused on bootstrap approaches. While the naive bootstrap does not modify the weights of the bootstrap samples, a calibrated version allows to calibrate each bootstrap sample on auxiliary information before deriving the bootstrap replicate estimate. % ------------ % introduction % ------------ \section{Introduction} When point estimates of indicators are computed from samples, it is important to also obtain variance estimates and confidence intervals in order to account for variability due to sampling. Other sources of variability such as data editing or imputation may need to be considered as well, but this is not further discussed in this paper. While this vignette targets the topic of variance and confidence interval estimation for the indicators on social exclusion and poverty according to \citet{EU-SILC04, EU-SILC09}, the aim is not to describe and evaluate the different approaches that have been proposed to date. Instead, the aim is to present the functionality for the statistical environment \proglang{R} \citep{RDev} implemented in the add-on package \pkg{laeken} \citep{laeken}. It should be noted that the basic design of the package, as well as standard point estimation of the indicators on social exclusion and poverty, is discussed in detail in vignette \code{laeken-standard} \citep{templ11a}. In addition, vignette \code{laeken-pareto} \citep{alfons11a} presents more sophisticated methods for point estimation of the indicators, which are less influenced by outliers. Those documents can be viewed from within \proglang{R} with the following commands: <>= vignette("laeken-standard") vignette("laeken-pareto") @ Morover, a general introduction to package \pkg{laeken} is published as \citet{alfons13b}. The data basis for the estimation of the indicators on social exclusion and poverty is the \emph{European Union Statistics on Income and Living Conditions} (EU-SILC), which is an annual panel survey conducted in EU member states and other European countries. Package \pkg{laeken} provides the synthetic example data \code{eusilc} consisting of $14\,827$ observations from $6\,000$ households. Furthermore, the data were generated from Austrian EU-SILC survey data from 2006 using the data simulation methodology proposed by \citet{alfons11c} and implemented in the \proglang{R} package \pkg{simPopulation} \citep{simPopulation}. The data set \code{eusilc} is used in the code examples throughout the paper. % ----- <<>>= library("laeken") data("eusilc") @ The rest of the paper is organized as follows. Section~\ref{sec:variance} presents the general wrapper function for estimating variance and confidence intervals of indicators in package \pkg{laeken}. The naive and calibrated bootstrap approaches are discussed in Sections~\ref{sec:naive} and~\ref{sec:calib}, respectively. Section~\ref{sec:concl} concludes. % --------------- % general wrapper % --------------- \section{General wrapper function for variance estimation} \label{sec:variance} The function \code{variance()} provides a flexible framework for estimating the variance and confidence intervals of indicators such as the \emph{at-risk-of-poverty rate}, the \emph{Gini coefficient}, the \emph{quintile share ratio} and the \emph{relative median at-risk-of-poverty gap}. For a mathematical description and details on the implementation of these indicators in the \proglang{R} package \pkg{laeken}, the reader is referred to vignette \code{laeken-standard} \citep{templ11a}. In any case, \code{variance()} acts as a general wrapper function for computing variance and confidence interval estimates of indicators on social exclusion and poverty with package \pkg{laeken}. The arguments of function \code{variance()} are shown in the following: <<>>= args(variance) @ All these arguments are fully described in the \proglang{R} help page of function \code{variance()}. The most important arguments are: \begin{description} \item[inc:] the income vector. \item[weights:] an optional vector of sample weights. \item[breakdown:] an optional vector giving different domains in which variances and confidence intervals should be computed. \item[design:] an optional vector or factor giving different strata for stratified sampling designs. \item[data:] an optional \code{data.frame}. If supplied, each of the above arguments should be specified as a character string or an integer or logical vector specifying the corresponding column. \item[indicator:] an object inheriting from the class \code{"indicator"} that contains the point estimates of the indicator, such as \code{"arpr"} for the at-risk-of-poverty rate, \code{"qsr"} for the quintile share ratio, \code{"rmpg"} for the relative median at-risk-of-poverty gap, or \code{"gini"} for the Gini coefficient. \item[type:] a character string specifying the type of variance estimation to be used. Currently, only \code{"bootstrap"} is implemented for variance estimation based on bootstrap resampling. \end{description} In the following sections, two bootstrap methods for estimating the variance and confidence intervals of point estimates for complex survey data are described. Furthermore, their application using the function \code{variance()} from package \pkg{laeken} is demonstrated. % --------------- % naive bootstrap % --------------- \section{Naive bootstrap} \label{sec:naive} Let $\boldsymbol{X} := (\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n})'$ denote a survey sample with $n$ observations and $p$ variables. Then the \emph{naive bootstrap algorithm} for estimating the variance and confidence interval of an indicator can be summarized as follows: \begin{enumerate} \item Draw $R$ independent bootstrap samples $\boldsymbol{X}_{1}^{*}, \ldots, \boldsymbol{X}_{R}^{*}$ from $\boldsymbol{X}$. \item Compute the bootstrap replicate estimates $\hat{\theta}_{r}^{*} := \hat{\theta}(\boldsymbol{X}_{r}^{*})$ for each bootstrap sample $\boldsymbol{X}_{r}^{*}$, $r = 1, \ldots, R$, where $\hat{\theta}$ denotes an estimator for a certain indicator of interest. Of course the sample weights always need to be considered for the computation of the bootstrap replicate estimates. \item Estimate the variance $V(\hat{\theta})$ by the variance of the $R$ bootstrap replicate estimates: \begin{equation} \hat{V}(\hat{\theta}) := \frac{1}{R-1} \sum_{r=1}^{R} \left( \hat{\theta}_{r}^{*} - \frac{1}{R} \sum_{s=1}^{R} \hat{\theta}_{s}^{*} \right)^{2}. \end{equation} \item Estimate the confidence interval at confidence level $1 - \alpha$ by one of the following methods \citep[for details, see][]{davison97}: \begin{description} \item[Percentile method:] $\left[ \hat{\theta}_{((R+1) \frac{\alpha}{2})}^{*}, \hat{\theta}_{((R+1)(1-\frac{\alpha}{2}))}^{*} \right]$, as suggested by \cite{efron93}. \item[Normal approximation:] $\hat{\theta} \pm z_{1-\frac{\alpha}{2}} \cdot \hat{V}(\hat{\theta})^{1/2}$ with $z_{1-\frac{\alpha}{2}} = \Phi^{-1}(1 - \frac{\alpha}{2})$. \item[Basic bootstrap method:] $\left[ 2\hat{\theta} - \hat{\theta}_{((R+1)(1-\frac{\alpha}{2}))}^{*}, 2\hat{\theta} - \hat{\theta}_{((R+1)\frac{\alpha}{2})}^{*} \right]$. \end{description} For the percentile and the basic bootstrap method, $\hat{\theta}_{(1)}^{*} \leq \ldots \leq \hat{\theta}_{(R)}^{*}$ denote the order statistics of the bootstrap replicate estimates. \end{enumerate} In the following example, the variance and confidence interval of the at-risk-of-poverty rate are estimated with the naive bootstrap procedure. The output of function \code{variance()} is an object of the same class as the point estimate supplied as the \code{indicator} argument, but with additional components for the variance and confidence interval. In addition to the point estimate, the income and the sample weights need to be supplied. Furthermore, a stratified sampling design can be considered by specifying the \code{design} argument, in which case observations are resampled separately within the strata. To ensure reproducibility of the results, the seed of the random number generator is set. <<>>= a <- arpr("eqIncome", weights = "rb050", data = eusilc) variance("eqIncome", weights = "rb050", design = "db040", data = eusilc, indicator = a, bootType = "naive", seed = 123) @ One of the most convenient features of package \pkg{laeken} is that indicators can be evaluated for different subdomains using a single command. This also holds for variance estimation. Using the \code{breakdown} argument, the example below produces variance and confidence interval estimates for each NUTS2 region in addition to the overall values. <<>>= b <- arpr("eqIncome", weights = "rb050", breakdown = "db040", data = eusilc) variance("eqIncome", weights = "rb050", breakdown = "db040", design = "db040", data = eusilc, indicator = b, bootType = "naive", seed = 123) @ It should be noted that the workhorse function \code{bootVar()} is called internally by \code{variance()} for bootstrap variance and confidence interval estimation. The function \code{bootVar()} could also be called directly by the user in exactly the same manner. Moreover, variance and confidence interval estimation for any other indicator implemented in package \pkg{laeken} is straightforward---the application using function \code{variance()} or \code{bootVar()} remains the same. % -------------------- % calibrated bootstrap % -------------------- \section{Calibrated bootstrap} \label{sec:calib} \cite{rao88} showed that the naive bootstrap is biased when used in the complex survey context. They propose to increase the variance estimate in the $h$-th stratum by a factor of $\frac{n_{h} - 1}{n_{h}}$ (if the bootstrap sample is of the same size). In addition, they describe extensions to sampling without replacement, unequal probability sampling, and two-stage cluster sampling with equal probabilities and without replacement. \cite{deville92} and \cite{deville93} provide a general description on how to calibrate sample weights to account for known population totals. The naive bootstrap does not include the recalibration of bootstrap samples in order to fit known population totals and therefore is, strictly formulated, not suitable for many practical applications. However, even though a bias might be introduced, the naive bootstrap works well in many situations and is faster to compute than the calibrated version. Hence it is a popular method often used in practice. In real-world data, the inclusion probabilities for observations in the population are in general not all equal, resulting in different \emph{design weights} for the observations in the sample. Furthermore, the initial design weights are in practice often adjusted by calibration, e.g., to account for non-response or so that certain known population totals can be precisely estimated from the survey sample. To give a simplified example, if the population sizes in different regions are known, the sample weights may be calibrated so that the Horvitz-Thompson estimates \citep{horvitz52} of the population sizes equal the known true values. However, when bootstrap samples are drawn from survey data, resampling observations has the effect that such known population totals can no longer be precisely estimated. As a remedy, the sample weights of each bootstrap sample should be calibrated. The calibrated version of the bootstrap thus results in more precise variance and confidence interval estimation, but comes with higher computational costs than the naive approach. In any case, the \emph{calibrated bootstrap algorithm} is obtained by adding the following step between Steps~1 and~2 of the naive bootstrap algorithm from Section~\ref{sec:naive}: \begin{itemize} \item[1b.] Calibrate the sample weights for each bootstrap sample $\boldsymbol{X}_{r}^{*}$, $r = 1, \ldots, R$. Generalized raking procedures are thereby used for calibration: either a multiplicative method known as \emph{raking}, an additive method or a logit method \citep[see][]{deville92, deville93}. \end{itemize} The function call to \code{variance()} for the calibrated bootstrap is very similar to its counterpart for the naive bootstrap. A matrix of auxiliary calibration variables needs to be supplied via the argument \code{X}. In addition, the argument \code{totals} can be used to supply the corresponding population totals. If the \code{totals} argument is omitted, as in the following example, the population totals are computed from the sample weights of the original sample. This follows the assumption that those weights are already calibrated on the supplied auxiliary variables. % ----- <<>>= variance("eqIncome", weights = "rb050", design = "db040", data = eusilc, indicator = a, X = calibVars(eusilc$db040), seed = 123) @ % ----- Note that the function \code{calibVars()} transforms a factor into a matrix of binary variables, as required by the calibration function \code{calibWeights()}, which is called internally. While the default is to use raking for calibration, other methods can be specified via the \code{method} argument. % ----------- % conclusions % ----------- \section{Conclusions} \label{sec:concl} Both bootstrap procedures for variance and confidence interval estimation of indicators on social exclusion and poverty currently implemented in the \proglang{R} package \pkg{laeken} have their strengths. While the naive bootstrap is faster to compute, the calibrated bootstrap in general leads to more precise results. The implementation of other procedures such as linearization techniques \citep{kovacevic97, deville99, hulliger06, osier09} or the delete-a-group jackknife \citep{kott01} is future work. Furthermore, \citet{alfons09} demonstrated how the variance of indicators computed from data with imputed values may be underestimated in bootstrap procedures, depending on the indicator itself and the imputation procedure used. They proposed to use the method described in \cite{little02}, which consists of drawing bootstrap samples from the original data with missing values, and to impute the missing data for each bootstrap sample before computing the corresponding bootstrap replicate estimate. Of course, this results in an additional increase of the computation time. The implementation of this procedure in package \pkg{laeken} is future work. It should also be noted that multiple imputation is a further possibility to consider the additional uncertainty from imputation when estimating the variance of an indicator \citep[see][]{little02}. % --------------- % acknowledgments % --------------- \section*{Acknowledgments} This work was partly funded by the European Union (represented by the European Commission) within the 7$^{\mathrm{th}}$ framework programme for research (Theme~8, Socio-Economic Sciences and Humanities, Project AMELI (Advanced Methodology for European Laeken Indicators), Grant Agreement No. 217322). Visit \url{http://ameli.surveystatistics.net} for more information on the project. % ------------ % bibliography % ------------ \bibliographystyle{plainnat} \bibliography{laeken} \end{document} laeken/vignettes/laeken-pareto.Rnw0000644000176200001440000011610214127275361016751 0ustar liggesusers\documentclass[a4paper,10pt]{scrartcl} \usepackage[OT1]{fontenc} \usepackage{Sweave} %% additional packages \usepackage{natbib} \bibpunct{(}{)}{,}{a}{}{,} \usepackage{amsmath, amssymb} \usepackage{hyperref} \hypersetup{colorlinks, citecolor=blue, linkcolor=blue, urlcolor=blue} \usepackage[top=30mm, bottom=30mm, left=30mm, right=30mm]{geometry} %% additional commands \newcommand{\code}[1]{\texttt{#1}} \newcommand{\pkg}[1]{\mbox{\textbf{#1}}} \newcommand{\proglang}[1]{\mbox{\textsf{#1}}} %%\VignetteIndexEntry{Robust Pareto Tail Modeling for the Estimation of Indicators on Social Exclusion using the R Package laeken} %%\VignetteDepends{laeken} %%\VignetteKeywords{social exclusion, indicators, robust estimation, Pareto distribution} %%\VignettePackage{laeken} \begin{document} \title{Robust Pareto Tail Modeling for the Estimation of Indicators on Social Exclusion using the \proglang{R} Package \pkg{laeken}} %\author{ % Andreas Alfons\footnote{Vienna University of Technology, % \href{mailto:alfons@statistik.tuwien.ac.at}{alfons@statistik.tuwien.ac.at}}, % Matthias Templ\footnote{Vienna University of Technology \& Statistics Austria, % \href{mailto:templ@tuwien.ac.at}{templ@tuwien.ac.at}}, % Peter Filzmoser\footnote{Vienna University of Technology, % \href{mailto:p.filzmoser@tuwien.ac.at}{p.filzmoser@tuwien.ac.at}}, % Josef Holzer\footnote{Landesstatistik Steiermark, % \href{mailto:josef.holzer@stmk.gv.at}{josef.holzer@stmk.gv.at}} %} \author{ Andreas Alfons$^{1}$, Matthias Templ$^{2}$, Peter Filzmoser$^{3}$, Josef Holzer$^{4}$ } \date{} \maketitle \setlength{\footnotesep}{11pt} \footnotetext[1]{ \begin{tabular}[t]{l} Erasmus School of Economics, Erasmus University Rotterdam\\ E-mail: \href{mailto:alfons@ese.eur.nl}{alfons@ese.eur.nl} \end{tabular} } \footnotetext[2]{ \begin{tabular}[t]{l} Zurich University of Applied Sciences\\ E-mail: \href{mailto:matthias.templ@zhaw.ch}{matthias.templ@zhaw.ch} \end{tabular} } \footnotetext[3]{ \begin{tabular}[t]{l} Vienna University of Technology\\ E-mail: \href{mailto:p.filzmoser@tuwien.ac.at}{p.filzmoser@tuwien.ac.at} \end{tabular} } \footnotetext[4]{ \begin{tabular}[t]{l} Landesstatistik Steiermark\\ E-mail: \href{mailto:josef.holzer@stmk.gv.at}{josef.holzer@stmk.gv.at} \end{tabular} } % change R prompt <>= options(prompt="R> ") @ %% specify folder and name for Sweave graphics %\SweaveOpts{prefix.string=figures-pareto/fig} \paragraph{Abstract} In this vignette, robust semiparametric estimation of social exclusion indicators using the \proglang{R} package \pkg{laeken} is discussed. Special emphasis is thereby given to income inequality indicators, as the standard estimates for these indicators are highly influenced by outliers in the upper tail of the income distribution. This influence can be reduced by modeling the upper tail with a Pareto distribution in a robust manner. While the focus of the paper is to demonstrate the functionality of \pkg{laeken} beyond the standard estimation techniques, a brief mathematical description of the implemented procedures is given as well. % ------------ % introduction % ------------ \section{Introduction} From a robustness point of view, the standard estimators for some of the social exclusion indicators defined by \citet{EU-SILC04, EU-SILC09} are problematic. In particular the income inequality indicators \emph{quintile share ratio} (QSR) and \emph{Gini coefficient} suffer from a lack of robustness. Consider, e.g., the QSR, which is estimated as the ratio of estimated totals or means (see Section~\ref{sec:QSR} for an exact definition). It is well known that the classical estimates for totals or means have a breakdown point of 0, meaning that even a single outlier can distort the results to an arbitrary extent. In fact, the influence of a single observation in the upper tail of the income distribution on the estimation of the QSR is linear and therefore unbounded. For practical purposes, the standard QSR estimator thus cannot be recommended in many situations \citep[cf.][]{hulliger09a}. It is also important to note that the behavior of the Gini coefficient is similar to the behavior of the QSR. The data basis for the estimation of the social exclusion indicators according to \citet{EU-SILC04, EU-SILC09} is the \emph{European Union Statistics on Income and Living Conditions} (EU-SILC), which is an annual panel survey conducted in EU member states and other European countries. On the one hand, EU-SILC data typically contain a considerable amount of \emph{representative} outliers in the upper tail of the income distribution, i.e., correct observations that behave differently from the main part of the data, but that are not unique in the population and hence need to be considered for computing estimates of the indicators. On the other hand, EU-SILC data frequently contain some even more extreme \emph{nonrepresentative} outliers, i.e., observations that are either incorrect or can be considered unique in the population. Consequently, such nonrepresentative outliers need to be excluded from the estimation process or downweighted. As a remedy, the upper tail of the income distribution may be modeled with a \emph{Pareto distribution} in order to recalibrate the sample weights or use fitted income values for observations in the upper tail when estimating the indicators (see Section~\ref{sec:fit}). %This is highly applicable because the upper tail of the income distribution in %EU-SILC data virtually always contains a considerable amount of representative %outliers. Nevertheless, classical estimators for the parameters of the Pareto distribution are highly influenced by the nonrepresentative outliers themselves. Using robust methods reduces the influence on fitting the Pareto distribution to the representative outliers and therefore on the estimation of the indicators. Rather than evaluating these methods, the paper concentrates on showing how they can be applied in the statistical environment \proglang{R} \citep{RDev} with the add-on package \pkg{laeken} \citep{laeken}. The basic design of the package, as well as standard estimation of the social exclusion indicators is discussed in detail in vignette \code{laeken-standard} \citep{templ11a}. Furthermore, the general framework for variance estimation is illustrated in vignette \code{laeken-variance} \citep{templ11b}. Those documents can be viewed from within \proglang{R} with the following commands: <>= vignette("laeken-standard") vignette("laeken-variance") @ Morover, a general introduction to package \pkg{laeken} is published as \citet{alfons13b}. Throughout the paper, the example data from package \pkg{laeken} is used. The data set is called \code{eusilc} and consists of $14\,827$ observations from $6\,000$ households. In addition, it was synthetically generated from Austrian EU-SILC survey data from 2006 using the data simulation methodology proposed by \citet{alfons11c} and implemented in the \proglang{R} package \pkg{simPopulation} \citep{simPopulation}. More information on the example data can be found in vignette \code{laeken-standard} or in the corresponding \proglang{R} help page. <<>>= library("laeken") data("eusilc") @ The rest of the paper is organized as follows. Section~\ref{sec:laeken} gives a mathematical description of the Eurostat definitions of the social exclusion indicators QSR and Gini coefficient. In Section~\ref{sec:Pareto}, the Pareto distribution is briefly discussed. Section~\ref{sec:threshold} discusses a rule of thumb for estimating the threshold for the upper tail of the distribution, and illustrates graphical methods for exploring the data in order to find the threshold. Classical and robust estimators for the shape parameter of the Pareto distribution are described in Section~\ref{sec:shape}. How to use Pareto tail modeling to estimate the social exclusion indicators is then shown in Section~\ref{sec:fit}. Finally, Section~\ref{sec:concl} concludes. % ------------------- % selected indicators % ------------------- \section{Social exclusion indicators} \label{sec:laeken} This paper is focused on the inequality indicators \emph{quintile share ratio} (QSR) and \emph{Gini coefficient}, which are both highly influenced by outliers in the upper tail of the distribution. Note that for the estimation of the social exclusion indicators, each person in a household is assigned the same \emph{eqivalized disposable income}. See vignette \code{laeken-standard} \citep{templ11a} for the computation of the equivalized disposable income with the \proglang{R} package \pkg{laeken}. For the following definitions, let $\boldsymbol{x} := (x_{1}, \ldots, x_{n})'$ be the equivalized disposable income with $x_{1} \leq \ldots \leq x_{n}$ and let $\boldsymbol{w} := (w_{i}, \ldots, w_{n})'$ be the corresponding personal sample weights, where $n$ denotes the number of observations. \subsection{Quintile share ratio (QSR)} \label{sec:QSR} The income \emph{quintile share ratio} (QSR) is defined as the ratio of the sum of the equivalized disposable income received by the 20\% of the population with the highest equivalized disposable income to that received by the 20\% of the population with the lowest equivalized disposable income \citep{EU-SILC04, EU-SILC09}. For the estimation of the quintile share ratio from a sample, let $\hat{q}_{0.2}$ and $\hat{q}_{0.8}$ denote the weighted 20\% and 80\% quantiles, respectively. With $0 \leq p \leq 1$, these weighted quantiles are given by \begin{equation} \label{eq:wq} \hat{q}_{p} = \hat{q}_{p} (\boldsymbol{x}, \boldsymbol{w}) := \begin{cases} \frac{1}{2} (x_{j} + x_{j+1}), & \quad \text{if } \sum_{i=1}^{j} w_{i} = p \sum_{i=1}^{n} w_{i}, \\ x_{j+1}, & \quad \text{if } \sum_{i=1}^{j} w_{i} < p \sum_{i=1}^{n} w_{i} < \sum_{i=1}^{j+1} w_{i}. \end{cases} \end{equation} %See also vignette \code{laeken-standard} \citep{templ11a} for the computation %of these quantiles with package \pkg{laeken}. Using index sets \mbox{$I_{\leq \hat{q}_{0.2}} := \{ i \in \{ 1, \ldots, n \} : x_{i} \leq \hat{q}_{0.2} \}$} and \mbox{$I_{> \hat{q}_{0.8}} := \{ i \in \{ 1, \ldots, n \} : x_{i} > \hat{q}_{0.8} \}$}, the quintile share ratio is estimated by \begin{equation} \widehat{QSR} := \frac{\sum_{i \in I_{> \hat{q}_{0.8}}} w_{i} x_{i}}{\sum_{i \in I_{\leq \hat{q}_{0.2}}} w_{i} x_{i}}. \end{equation} With package \pkg{laeken}, the quintile share ratio can be estimated using the function \code{qsr()}. Sample weights can thereby be supplied via the \code{weights} argument. <<>>= qsr("eqIncome", weights = "rb050", data = eusilc) @ \subsection{Gini coefficient} \label{sec:Gini} The \emph{Gini coefficient} is defined as the relationship of cumulative shares of the population arranged according to the level of equivalized disposable income, to the cumulative share of the equivalized total disposable income received by them \citep{EU-SILC04, EU-SILC09}. For the estimation of the Gini coefficient from a sample, the sample weights need to be taken into account. In mathematical terms, the Gini coefficient is estimated by \begin{equation} \widehat{Gini} := 100 \left[ \frac{2 \sum_{i=1}^{n} \left( w_{i} x_{i} \sum_{j=1}^{i} w_{j} \right) - \sum_{i=1}^{n} w_{i}^{\phantom{i}2} x_{i}}{\left( \sum_{i=1}^{n} w_{i} \right) \sum_{i=1}^{n} \left(w_{i} x_{i} \right)} - 1 \right]. \end{equation} The function \code{gini()} is available in \pkg{laeken} to estimate the Gini coefficient. As before, sample weights can be specified with the \code{weights} argument. <<>>= gini("eqIncome", weights = "rb050", data = eusilc) @ % ------------------- % Pareto distribution % ------------------- \section{The Pareto distribution} \label{sec:Pareto} The \emph{Pareto distribution} is well studied in the literature and is defined in terms of its cumulative distribution function \begin{equation} \label{eq:CDF} F_{\theta}(x) = 1 - \left( \frac{x}{x_{0}} \right) ^{-\theta}, \qquad x \geq x_{0}, \end{equation} where $x_{0} > 0$ is the scale parameter and $\theta > 0$ is the shape parameter \citep{kleiber03}. Furthermore, its density function is given by \begin{equation} f_{\theta}(x) = \frac{\theta x_{0}^{\theta}}{x^{\theta + 1}}, \qquad x \geq x_{0}. \end{equation} Figure~\ref{fig:Pareto} visualizes the Pareto probability density function with scale parameter $x_{0} = 1$ and different values of the shape parameter $\theta$. Clearly, the Pareto distribution is a highly right-skewed distribution with a heavy tail. It is therefore reasonable to assume that a random variable following a Pareto distribution contains extreme values. The effect of changing the shape parameter $\theta$ is visible in the probability mass at the scale parameter $x_{0}$: the higher $\theta$, the higher the probability mass at $x_{0}$. <>= x <- seq(1, 6, length.out=1000) dpareto <- function(x, x0 = 1, theta = 1) theta*x0^theta / x^(theta+1) y1 <- dpareto(x, theta=1) y2 <- dpareto(x, theta=2) y3 <- dpareto(x, theta=3) @ \begin{figure} \begin{center} <>= par(mar = c(4, 4, 0.5, 0.5) + 0.1) plot(x, y3, type = "l", lty = 3, ylab = "f(x)", xlim = c(0.75, 6), panel.first = { abline(h = 0, col = grey(0.75)) abline(v = 1, col = grey(0.75)) }) lines(x, y2, lty = 2) lines(x, y1, lty = 1) leg <- expression(paste(theta, " = 1"), paste(theta, " = 2"), paste(theta, " = 3")) legend("topright", legend = leg, lty = 1:3) @ \caption{Pareto probability density functions with parameters $x_{0} = 1$ and $\theta = 1, 2, 3$.} \label{fig:Pareto} \end{center} \end{figure} In Pareto tail modeling, the cumulative distribution function on the whole range of $x$ is modeled as \begin{equation} \label{eq:tail} F(x) = \left\{ \begin{array}{ll} G(x), & \quad \text{if } x \leq x_{0}, \\ G(x_{0}) + (1 - G(x_{0})) F_{\theta}(x), & \quad \text{if } x > x_{0}, \end{array} \right. \end{equation} where $G$ is an unknown distribution function \citep{dupuis06}. Let $n$ be the number of observations and let $\boldsymbol{x} = (x_{1}, \ldots, x_{n})'$ denote the observed values with $x_{1} \leq \ldots \leq x_{n}$. In addition, let $k$ be the number of observations to be used for tail modeling. In this scenario, the threshold $x_{0}$ is estimated by % Let $k$ be the number of observations to be used for tail modeling and let % $x_{(1)} \leq \ldots \leq x_{(n)}$, denote the sorted observations. In this % scenario, the threshold $x_{0}$ is estimated by \begin{equation} \hat{x}_{0} := x_{n-k}. \end{equation} If an estimate $\hat{x}_{0}$ for the scale parameter of the Pareto distribution has been obtained, $k$ is given by the number of observations larger than $\hat{x}_{0}$. Thus estimating $x_{0}$ and $k$ directly corresponds with each other. In the remainder of this package vignette, the equivalized disposable income of the EU-SILC example data is of main interest. Consequently, the Pareto distribution will be modeled at the household level rather than the individual level. Moreover, the focus of this vignette is on robust estimation of the social exclusion indicators. Hence the equivalized disposable income of the household with the largest income is replaced by a large outlier. <<>>= hID <- eusilc$db030[which.max(eusilc$eqIncome)] eusilc[eusilc$db030 == hID, "eqIncome"] <- 10000000 @ Since the aim is to model a Pareto distribution at the household level, the following command creates a data set that contains only the equivalized disposable income and the sample weights on the household level. This data set will be used in Sections~\ref{sec:threshold} and~\ref{sec:shape} to estimate the parameters of the Pareto distribution. <<>>= eusilcH <- eusilc[!duplicated(eusilc$db030), c("eqIncome", "db090")] @ % --------- % threshold % --------- \section{Finding the threshold} \label{sec:threshold} The aim of the methods presented in this sections is to find the threshold $x_{0}$ for modeling the Pareto distribution. Several methods for the estimation of the threshold $x_{0}$ or the number of observations $k$ in the tail have been proposed in the literature, but those proposals typically do not consider sample weights. \citet{beirlant96a, beirlant96b} developed a procedure that analytically determines the optimal choice of $k$ for the Hill estimator of the shape parameter \citep[see also Section~\ref{sec:Hill} of this paper]{hill75} by minimizing the asymptotic mean squared error (AMSE). In package \pkg{laeken}, this approach is implemented in the function \code{minAMSE()}. However, the procedure is designed for the non-robust Hill estimator and is therefore not further discussed in this paper. Furthermore, \citet{danielsson01} proposed a bootstrap method to find the optimal $k$ for the Hill estimator with respect to the AMSE, which has less analytical requirements than the approach by \citet{beirlant96a, beirlant96b}. Please note that this method is not robust either and that it is currently not available in package \pkg{laeken}. A robust prediction error criterion for choosing the number of observations $k$ in the tail and estimating the shape parameter $\theta$ was developed by \citet{dupuis06}. Nevertheless, our implementation of this robust criterion was unstable and is therefore not included in \pkg{laeken}. In any case, \citet{holzer09} concludes that graphical methods for finding the threshold outperform those analytical approaches in the case of EU-SILC data. While this section is thus focused graphical methods, a simple rule of thumb designed specifically for the equivalized disposable income in EU-SILC data is described in the following as well. \subsection{Van Kerm's rule of thumb} \label{sec:vanKerm} \citet{vankerm07} presented a formula that is more of a rule of thumb for the threshold of the equivalized disposable income in EU-SILC data. Is is given by \begin{equation} \hat{x}_{0} := \min(\max(2.5\bar{x}, q_{0.98}), q_{0.97}), \end{equation} where $\bar{x}$ is the weighted mean, and $q_{0.98}$ and $q_{0.97}$ are weighted quantiles as defined in Equation~(\ref{eq:wq}). In package \pkg{laeken}, the function \code{paretoScale()} provides functionality for computing the threshold with van Kerm's rule of thumb. The argument \code{w} is available to supply sample weights. %In the example below, the household IDs are supplied via the argument %\code{groups} to estimate the threshold on the houshold level rather than the %personal level. %<<>>= %paretoScale(eusilc$eqIncome, eusilc$db090, groups = eusilc$db030) %@ <<>>= ts <- paretoScale(eusilcH$eqIncome, w = eusilcH$db090) ts @ It should be noted that the function returns an object of class \code{"paretoScale"}, which consists of a component \code{x0} for the threshold (scale parameter) and a component \code{k} for the number of observations in the tail of the distribution, i.e., that are larger than the threshold. \subsection{Pareto quantile plot} The \emph{Pareto quantile plot} is a graphical method for inspecting the parameters of a Pareto distribution. For the case without sample weights, it is described in detail in \citet{beirlant96a}. If the Pareto model holds, there exists a linear relationship between the lograrithms of the observed values and the quantiles of the standard exponential distribution, since the logarithm of a Pareto distributed random variable follows an exponential distribution. Hence the logarithms of the observed values, $\log (x_{i})$, $i = 1, \ldots, n$, are plotted against the theoretical quantiles. In the case without sample weights, the theoretical quantiles of the standard exponential distribution are given by \begin{equation} \label{eq:quantiles} -\log \left( 1 - \frac{i}{n+1} \right), \qquad i = 1, \ldots, n, \end{equation} i.e., by dividing the range into $n + 1$ equally sized subsets and using the resulting $n$ inner gridpoints as probabilities for the quantiles. If the data contain sample weights, the range of the exponential distribution needs to be divided according to the weights of the $n$ observations. The Pareto quantile plot is thus generalized by using the theoretical quantiles \begin{equation} -\log \left( 1 - \frac{\sum_{j=1}^{i} w_{j}}{\sum_{j=1}^{n} w_{j}} \frac{n}{n+1} \right), \qquad i = 1, \ldots, n, \end{equation} where the correction factor $\frac{n}{n+1}$ ensures that the quantiles reduce to (\ref{eq:quantiles}) if all sample weights are equal. If the tail of the data follows a Pareto distribution, those observations form almost a straight line. The leftmost point of a fitted line can thus be used as an estimate of the threshold $x_{0}$, the scale parameter. All values starting from the point after the threshold may be modeled by a Pareto distribution, but this point cannot be determined exactly. Furthermore, the slope of the fitted line is in turn an estimate of $\frac{1}{\theta}$, the reciprocal of the shape parameter. Figure~\ref{fig:ParetoQuantile} displays the Pareto quantile plot for the example data \code{eusilc} on the household level with the largest observation replaced by an outlier. The plot is generated using the function \code{paretoQPlot()}, which allows to supply sample weights via the argument \code{w}. In addition, the threshold can be selected interactively by clicking on a data point. Information on the selected threshold is then printed on the \proglang{R} console. When the interactive selection is terminated, which is typically done by a secondary mouse click, the selected threshold is returned as an object of class \code{"paretoScale"}. Another advantage of the Pareto quantile plot is also illustrated in Figure~\ref{fig:ParetoQuantile}. Nonrepresentative outliers such as the large income introduced into the example data in Section~\ref{sec:Pareto}, i.e., extreme observations in the upper tail that deviate from the Pareto model, are clearly visible. \begin{figure} \begin{center} \setkeys{Gin}{width=.75\textwidth} <>= paretoQPlot(eusilcH$eqIncome, w = eusilcH$db090) @ \caption{Pareto Quantile plot for the example data \code{eusilc} on the household level with the largest observation replaced by an outlier.} \label{fig:ParetoQuantile} \end{center} \end{figure} \subsection{Mean excess plot} The \emph{mean excess plot} is another graphical method for inspecting the threshold for Pareto tail modeling, but it does not provide information on the shape parameter. It is based on the excess function \begin{equation} \label{eq:excess} e(x_{0}) := \mathbb{E}(x - x_{0}|x > x_{0}), \qquad x_{0} \geq 0. \end{equation} A detailed description for the case without sample weights can be found in \citet{borkovec00}. For the following definition of the mean excess plot, keep in mind that the observations are sorted such that $x_{1} \leq \ldots \leq x_{n}$. For each observation $x_{i}$, $i = 1, \ldots, \lfloor n-\sqrt{n} \rfloor$, the empirical excess function $e_{n}$ is computed. In the case without sample weights, the expectation in Equation~(\ref{eq:excess}) is replaced by the arithmetic mean, and the empirical excess function is given by \begin{equation} e_{n}(x_{i}) := \frac{1}{n-i} \sum_{j=i+1}^{n} (x_{j} - x_{i}), \qquad i = 1, \ldots, \lfloor n-\sqrt{n} \rfloor. \end{equation} The values of the empirical excess function $e_{n}(x_{i})$ are then plotted against the corresponding $x_{i}$, $i = 1, \ldots, \lfloor n-\sqrt{n} \rfloor$. If sample weights are available in the data, the mean excess plot is simply generalized by using the weighted mean for the empirical excess function: \begin{equation} e_{n}(x_{i}) := \frac{1}{\sum_{j=i+1}^{n} w_{j}} \sum_{j=i+1}^{n} w_{j} (x_{j} - x_{i}), \qquad i = 1, \ldots, \lfloor n-\sqrt{n} \rfloor. \end{equation} If the tail of the data follows a Pareto distribution, those observations show a positive linear trend. The leftmost point of a fitted line can thus be used as an estimate of the threshold $x_{0}$, the scale parameter. As for the Pareto quantile plot, a disadvantage of the mean excess plot is that the threshold cannot be determined exactly. \begin{figure} \begin{center} \setkeys{Gin}{width=.75\textwidth} <>= meanExcessPlot(eusilcH$eqIncome, w = eusilcH$db090) @ \caption{Mean excess plot for the example data \code{eusilc} on the household level with the largest observation replaced by an outlier.} \label{fig:meanExcess} \end{center} \end{figure} Figure~\ref{fig:meanExcess} shows the mean excess plot for the example data \code{eusilc} on the household level with the largest observation replaced by an outlier. The function \code{meanExcessPlot()} is thereby used to produce the plot. Sample weights can be supplied via the argument \code{w}. Interactive selection of the threshold works just like for the Pareto quantile plot. Again, the selected threshold is returned as an object of class \code{"paretoScale"}. % --------------- % shape parameter % --------------- \section{Estimation of the shape parameter} \label{sec:shape} This section is focused on methods for estimating the shape parameter $\theta$ once the threshold $x_0$ is fixed. It should be noted that none of the original proposals takes sample weights into account. Most estimators presented in the following were therefore adjusted for the case of sample weights. \subsection{Hill estimator} \label{sec:Hill} The maximum likelihood estimator for the shape parameter of the Pareto distribution was introduced by \citet{hill75} and is referred to as the \emph{Hill} estimator. If the data do not contain sample weights, it is given by \begin{equation} \label{eq:Hill} \hat{\theta}_{\mathrm{Hill}} = \frac{k}{\sum_{i = 1}^{k} \log x_{n-k+i} - k \log x_{n-k}}. \end{equation} In the case of sample weights, the \emph{weighted Hill} (wHill) estimator is given by generalizing Equation~(\ref{eq:Hill}) to \begin{equation} \label{eq:wHill} \hat{\theta}_{\mathrm{wHill}} = \frac{\sum_{i = 1}^{k} w_{n-k+i}}{\sum_{i = 1}^{k} w_{n-k+i} \left( \log x_{n-k+i} - \log x_{n-k} \right)} . \end{equation} Package \pkg{laeken} provides the function \code{thetaHill()} to compute the Hill estimator. It requires to specify either the number of observations in the tail via the argument \code{k}, or the threshold via the argument \code{x0}. Furthermore, the argument \code{w} can be used to supply sample weights. In the following example, the shape parameter is estimated using the largest observations (first command) and the threshold (second command) as computed with van Kerm's rule of thumb in Section~\ref{sec:vanKerm}. <<>>= thetaHill(eusilcH$eqIncome, k = ts$k, w = eusilcH$db090) thetaHill(eusilcH$eqIncome, x0 = ts$x0, w = eusilcH$db090) @ \subsection{Weighted maximum likelihood estimator} The \emph{weighted maximum likelihood} (WML) estimator \citep{dupuis02, dupuis06} falls into the class of M-estimators and is given by the solution $\hat{\theta}$ of \begin{equation} \sum_{i = 1}^{k} \mathrm{\Psi}(x_{n-k+i}, \theta) = 0 \end{equation} with \begin{equation} \mathrm{\Psi}(x, \theta) := u(x, \theta) \frac{\partial}{\partial \theta} \log f(x, \theta) = u(x, \theta) \left( \frac{1}{\theta} - \log \frac{x}{x_{0}} \right), \end{equation} where $u(x, \theta)$ is a weight function with values in $[0,1]$. In the implementation in package \pkg{laeken}, a Huber type weight function is used by default, as proposed by \citet{dupuis06}. Let the logarithms of the relative excesses be denoted by \begin{equation} z_{i} := \log \left( \frac{x_{n-k+i}}{x_{n-k}} \right), \qquad i = 1, \ldots, k. \end{equation} In the Pareto model, these can be predicted by \begin{equation} \hat{z}_{i} := -\frac{1}{\theta} \log \left( \frac{k+1-i}{k+1} \right), \qquad i = 1, \ldots, k. \end{equation} The variance of $z_{i}$ is given by \begin{equation} \sigma_{i}^{\phantom{i}2} := \sum_{j = 1}^{i} \frac{1}{\theta^{2} (k-i+j)^{2}}, \qquad i = 1, \ldots, k. \end{equation} Using the standardized residuals \begin{equation} r_{i} := \frac{z_{i} - \hat{z}_{i}}{\sigma_{i}}, \end{equation} the Huber type weight function with tuning constant $c$ is defined as \begin{equation} u(x_{n-k+i}, \theta) := \left\{ \begin{array}{cl} 1, & \quad \text{if } |r_{i}| \leq c, \\ \frac{c}{|r_{i}|}, & \quad \text{if } |r_{i}| > c. \end{array} \right. \end{equation} For this choice of weight function, the bias of $\hat{\theta}$ is approximated by \begin{equation} \hat{B}(\hat{\theta}) = - \frac{\sum_{i=1}^{k} \left( u_{i} \frac{\partial}{\partial \theta} \log f_{i} \right) \vert_{\hat{\theta}} \left( F_{\hat{\theta}}(x_{n-k+i}) - F_{\hat{\theta}}(x_{n-k+i-1}) \right)}{\sum_{i=1}^{k} \left( \frac{\partial}{\partial \theta} u_{i} \frac{\partial}{\partial \theta} \log f_{i} + u_{i} \frac{\partial^{2}}{\partial \theta^{2}} \log f_{i} \right) \vert_{\hat{\theta}} \left( F_{\hat{\theta}}(x_{n-k+i}) - F_{\hat{\theta}}(x_{n-k+i-1}) \right)}, \end{equation} where $u_{i} := u(x_{n-k+i}, \theta)$ and $f_{i} := f(x_{n-k+i}, \theta)$. This term is used to obtain a bias-corrected estimator \begin{equation} \tilde{\theta} := \hat{\theta} - \hat{B}(\hat{\theta}). \end{equation} For details and proofs of the above statements, as well as for information on a probability-based weight function $u(x, \theta)$, the reader is referred to \citet{dupuis02} and \citet{dupuis06}. However, note the WML estimator does not consider sample weights. An adjustment of the estimator to take sample weights into account is currently not available due to its complexity. For sampling designs that lead to equal sample weights, the WML estimator may still be useful, though. The function \code{thetaWML()} is available in \pkg{laeken} to compute the WML estimator. Again, either the argument \code{k} or \code{x0} needs to be used to specify the number of observations in the tail or the threshold. Since the sample weights in the example data are not equal, the following example is only included to demonstrate the use of the function. <<>>= thetaWML(eusilcH$eqIncome, k = ts$k) thetaWML(eusilcH$eqIncome, x0 = ts$x0) @ \subsection{Integrated squared error estimator} For the \emph{integrated squared error} (ISE) estimator \citep{vandewalle07}, the Pareto distribution is modeled in terms of the relative excesses \begin{equation} y_{i} := \frac{x_{n-k+i}}{x_{n-k}}, \qquad i = 1, \ldots, k. \end{equation} The density function of the Pareto distribution for the relative excesses is approximated by \begin{equation} f_{\theta}(y) = \theta y^{-(1+\theta)}. \end{equation} The ISE estimator is then given by minimizing the integrated squared error criterion \citep{terrell90}: \begin{equation} \hat{\theta} = \arg \min_{\theta} \left[ \int f_{\theta}^{2}(y) dy - 2 \mathbb{E}(f_{\theta}(Y)) \right] . \end{equation} If there are no sample weights in the data, the mean is used as an unbiased estimator of $\mathbb{E}(f_{\theta}(Y))$ in order to obtain the ISE estimate \begin{equation} \label{eq:ISE} \hat{\theta}_{\mathrm{ISE}} = \arg \min_{\theta} \left[ \int f_{\theta}^{2}(y) dy - \frac{2}{k} \sum_{i=1}^{k} f_{\theta}(y_{i}) \right] . \end{equation} See \citet{vandewalle07} for more information on the ISE estimator for the case without sample weights. If sample weights are available in the data, the mean in Equation~(\ref{eq:ISE}) is simply replaced by a weighted mean to obtain the \emph{weighted integrated squared error} (wISE) estimator: \begin{equation} \label{eq:wISE} \hat{\theta}_{\mathrm{wISE}} = \arg \min_{\theta} \left[ \int f_{\theta}^{2}(y) dy - \frac{2}{\sum_{i=1}^{k} w_{n-k+i}} \sum_{i=1}^{k} w_{n-k+i} f_{\theta}(y_{i}) \right] . \end{equation} With package \pkg{laeken}, the ISE estimator can be computed using the function \code{thetaISE()}. The arguments \code{k} and \code{x0} are available to specify either the number of observations in the tail or the threshold, and sample weights can be supplied via the argument \code{w}. <<>>= thetaISE(eusilcH$eqIncome, k = ts$k, w = eusilcH$db090) thetaISE(eusilcH$eqIncome, x0 = ts$x0, w = eusilcH$db090) @ \subsection{Partial density component estimator} For the \emph{partial density component} (PDC) estimator \cite{vandewalle07} minimizes the integrated squared error criterion using an incomplete density mixture model $u f_{\theta}$. If the data do not contain sample weights, the PDC estimator in is thus given by \begin{equation} \label{eq:PDC} \hat{\theta}_{\mathrm{PDC}} = \arg \min_{\theta} \left[ u^{2} \int f_{\theta}^{2}(y) dy - \frac{2 u}{k} \sum_{i = 1}^{k} f_{\theta}(y_{i}) \right]. \end{equation} The parameter $u$ can be interpreted as a measure of the uncontaminated part of the sample and is estimated by \begin{equation} \label{eq:u} \hat{u} = \frac{\frac{1}{k} \sum_{i = 1}^{k} f_{\hat{\theta}}(y_{i})}{\int f_{\hat{\theta}}^{2}(y) dy}. \end{equation} See \cite{vandewalle07} and references therein for more information on the PDC estimator for the case without sample weights. Taking sample weights into account, the \emph{weighted partial density component} (wPDC) estimator is obtained by generalizing Equations~(\ref{eq:PDC}) and~(\ref{eq:u}) to \begin{align} \label{eq:wPDC} \hat{\theta}_{\mathrm{wPDC}} =& \arg \min_{\theta} \left[ u^{2} \int f_{\theta}^{2}(y) dy - \frac{2u}{\sum_{i=1}^{k} w_{n-k+i}} \sum_{i = 1}^{k} w_{n-k+i} f_{\theta}(y_{i}) \right] , \\ \hat{u} =& \frac{\frac{1}{\sum_{i=1}^{k} w_{n-k+i}} \sum_{i = 1}^{k} w_{n-k+i} f_{\hat{\theta}}(y_{i})}{\int f_{\hat{\theta}}^{2}(y) dy} . \end{align} The function \code{thetaPDC()} is implemented in package \pkg{laeken} to compute the PDC estimator. As for the other estimators, it is necessary to specify either the number of observations in the tail via the argument \code{k}, or the threshold via the argument \code{x0}. Sample weights can be supplied using the argument \code{w}. <<>>= thetaPDC(eusilcH$eqIncome, k = ts$k, w = eusilcH$db090) thetaPDC(eusilcH$eqIncome, x0 = ts$x0, w = eusilcH$db090) @ % ---------------------------- % estimation of the indicators % ---------------------------- \section{Estimation of the indicators using Pareto tail modeling} \label{sec:fit} Three approaches based on Pareto tail modeling for reducing the influence of outliers on the social exclusion indicators are implemented in the \proglang{R} package \pkg{laeken}: \begin{description} \item[Calibration for nonrepresentative outliers (CN):] Values larger than a certain quantile of the fitted distribution are declared as nonrepresentative outliers. Since these are considered to be unique to the population data, the sample weights of the corresponding observations are set to $1$ and the weights of the remaining observations are adjusted accordingly by calibration. \item[Replacement of nonrepresentative outliers (RN):] Values larger than a certain quantile of the fitted distribution are declared as nonrepresentative outliers. Only these nonrepresentative outliers are replaced by values drawn from the fitted distribution, thereby preserving the order of the original values. \item[Replacement of the tail (RT):] All values above the threshold are replaced by values drawn from the fitted distribution. The order of the original values is preserved. \end{description} An evaluation of the RT approach by means of a simulation study can be found in \citet{alfons10b}. Keep in mind that the largest observation in the example data \code{eusilc} was replaced by a large outlier in Section~\ref{sec:Pareto}. With the following command, the Gini coefficient is estimated according to the Eurostat definition to show that even a single outlier can completely distort the results for the standard estimation (see Section~\ref{sec:Gini} for the original value). <<>>= gini("eqIncome", weights = "rb050", data = eusilc) @ For Pareto tail modeling, the function \code{paretoTail()} is implemented in \pkg{laeken}. It returns an object of class \code{"paretoTail"}, which contains all the necessary information for further analysis using the three approaches described above. Note that the household IDs are supplied via the argument \code{groups} such that the Pareto distribution is fitted on the household level rather than the individual level. In addition, the PDC is used by default to estimate the shape parameter. Other estimators can be specified via the \code{method} argument. <<>>= fit <- paretoTail(eusilc$eqIncome, k = ts$k, w = eusilc$db090, groups = eusilc$db030) @ The function \code{reweightOut()} is available for semiparametric estimation with the CN approach. It returns a vector of the recalibrated weights. In this example, regional information is used as auxiliary variables for calibration. The function \code{calibVars()} thereby transforms a factor into a matrix of binary variables, as required by the calibration function \code{calibWeights()}, which is called internally. These recalibrated weights are then simply used to estimate the Gini coefficient with function \code{gini()}. <<>>= w <- reweightOut(fit, calibVars(eusilc$db040)) gini(eusilc$eqIncome, w) @ For the RN approach, the function \code{replaceOut()} is implemented. Since values are drawn from the fitted distribution to replace the observations flagged as outliers, the seed of the random number generator is set first for reproducibility of the results. The returned vector of incomes is then supplied to \code{gini()} to estimate the Gini coefficient. <<>>= set.seed(1234) eqIncome <- replaceOut(fit) gini(eqIncome, weights = eusilc$rb050) @ Similarly, the function \code{replaceTail()} is available for the RT approach. Again, the seed of the random number generator is set beforehand. <<>>= set.seed(1234) eqIncome <- replaceTail(fit) gini(eqIncome, weights = eusilc$rb050) @ It should be noted that \code{replaceTail()} can also be used for the RN approach by setting the argument \code{all} to \code{FALSE}. In fact, \code{replaceOut(x, ...)} is a simple wrapper for \code{replaceTail(x, all = FALSE, ...)}. In any case, the estimates for the semiparametric approaches based on Pareto tail modeling are very close to the original value before the outlier has been introduced (see Section~\ref{sec:Gini}), whereas the standard estimation is corrupted by the outlier. Furthermore, the estimation of other indicators such as the quintile share ratio (see Section~\ref{sec:QSR}) using the semiparametric approaches is straightforward and hence not shown here. % ----------- % conclusions % ----------- \section{Conclusions} \label{sec:concl} This vignette shows the functionality of package \pkg{laeken} for robust semiparametric estimation of social exclusion indicators based on Pareto tail modeling. Most notably, it demonstrates that the functions are easy to use and that the implementation follows an object-oriented design. While the focus of the paper lies on the use of the package, a mathematical description of the methods is given as well. Furthermore, it is shown that the standard estimation of the inequality indicators can be corrupted by a single outlier, thus underlining the need for robust alternatives. Three approaches for robust semiparametric estimation based on Pareto tail modeling are thereby implemented such that the corresponding functions share a common interface for ease of use. % --------------- % acknowledgments % --------------- \section*{Acknowledgments} This work was partly funded by the European Union (represented by the European Commission) within the 7$^{\mathrm{th}}$ framework programme for research (Theme~8, Socio-Economic Sciences and Humanities, Project AMELI (Advanced Methodology for European Laeken Indicators), Grant Agreement No. 217322). Visit \url{http://ameli.surveystatistics.net} for more information on the project. % ------------ % bibliography % ------------ \bibliographystyle{plainnat} \bibliography{laeken} \end{document} laeken/vignettes/laeken-standard.Rnw0000644000176200001440000010667114127275434017272 0ustar liggesusers\documentclass[a4paper,10pt]{scrartcl} \usepackage[OT1]{fontenc} \usepackage{Sweave} %% additional packages \usepackage{natbib} \bibpunct{(}{)}{,}{a}{}{,} \usepackage{amsmath, amssymb} \usepackage{hyperref} \hypersetup{colorlinks, citecolor=blue, linkcolor=blue, urlcolor=blue} \usepackage[top=30mm, bottom=30mm, left=30mm, right=30mm]{geometry} \usepackage{enumerate} \usepackage{engord} %% additional commands \newcommand{\code}[1]{\texttt{#1}} \newcommand{\pkg}[1]{\mbox{\textbf{#1}}} \newcommand{\proglang}[1]{\mbox{\textsf{#1}}} %%\VignetteIndexEntry{Standard Methods for Point Estimation of Indicators on Social Exclusion and Poverty using the R Package laeken} %%\VignetteDepends{laeken} %%\VignetteKeywords{social exclusion, poverty, indicators, point estimation} %%\VignettePackage{laeken} \begin{document} \title{Standard Methods for Point Estimation of Indicators on Social Exclusion and Poverty using the \proglang{R} Package \pkg{laeken}} \author{Matthias Templ$^{1}$, Andreas Alfons$^{2}$} \date{} \maketitle \setlength{\footnotesep}{11pt} \footnotetext[1]{ \begin{tabular}[t]{l} Zurich University of Applied Sciences\\ E-mail: \href{mailto:matthias.templ@zhaw.ch}{matthias.templ@zhaw.ch} \end{tabular} } \footnotetext[2]{ \begin{tabular}[t]{l} Erasmus School of Economics, Erasmus University Rotterdam\\ E-mail: \href{mailto:alfons@ese.eur.nl}{alfons@ese.eur.nl} \end{tabular} } % change R prompt <>= options(prompt="R> ") @ \paragraph{Abstract} This vignette demonstrates the use of the \proglang{R} package \pkg{laeken} for standard point estimation of indicators on social exclusion and poverty according to the definitions by Eurostat. The package contains synthetically generated data for the European Union Statistics on Income and Living Conditions (EU-SILC), which is used in the code examples throughout the paper. Furthermore, the basic object-oriented design of the package is discussed. Even though the paper is focused on showing the functionality of package \pkg{laeken}, it also provides a brief mathematical description of the implemented indicators. % ------------ % introduction % ------------ \section{Introduction} The \emph{European Union Statistics on Income and Living Conditions} (EU-SILC) is a panel survey conducted in EU member states and other European countries, and serves as basis for measuring risk-of-poverty and social cohesion in Europe. %and for evaluating the Lisbon~2010 strategy and for monitoring the %Europe~2020 goals of the European Union. A short overview of the $11$ most important indicators on social exclusion and poverty according to \cite{EU-SILC04} %and \cite{EU-SILC09} is given in the following. \paragraph{Primary indicators} \begin{enumerate} \item At-risk-of-poverty rate (after social transfers) \begin{enumerate}[a.] \item At-risk-of-poverty rate by age and gender \item At-risk-of-poverty rate by most frequent activity status and gender \item At-risk-of-poverty rate by household type \item At-risk-of-poverty rate by accommodation tenure status \item At-risk-of-poverty rate by work intensity of the household \item At-risk-of-poverty threshold (illustrative values) \end{enumerate} \item Inequality of income distribution: S80/S20 income quintile share ratio \item At-persistent-risk-of-poverty rate by age and gender ($60\%$ median) \item Relative median at-risk-of-poverty gap, by age and gender \newcounter{enumi_last} \setcounter{enumi_last}{\value{enumi}} \end{enumerate} \paragraph{Secondary indicators} \begin{enumerate} \setcounter{enumi}{\value{enumi_last}} \item Dispersion around the at-risk-of-poverty threshold \item At-risk-of-poverty rate anchored at a moment in time \item At-risk-of-poverty rate before social transfers by age and gender \item Inequality of income distribution: Gini coefficient \item At-persistent-risk-of-poverty rate, by age and gender ($50\%$ median) \setcounter{enumi_last}{\value{enumi}} \end{enumerate} \paragraph{Other indicators} \begin{enumerate} \setcounter{enumi}{\value{enumi_last}} \item Mean equivalized disposable income \item The gender pay gap \end{enumerate} \paragraph{} Note that especially the Gini coefficient is very well studied due to its importance in many fields of research. The add-on package \pkg{laeken} \citep{laeken} aims is to bring functionality for the estimation of indicators on social exclusion and poverty to the statistical environment \proglang{R} \citep{RDev}. In the examples in this vignette, standard estimates for the most important indicators are computed according to the Eurostat definitions \citep{EU-SILC04, EU-SILC09}. More sophisticated methods that are less influenced by outliers are described in vignette \code{laeken-pareto} \citep{alfons11a}, while the basic framework for variance estimation is discussed in vignette \code{laeken-variance} \citep{templ11b}. Those documents can be viewed from within \proglang{R} with the following commands: <>= vignette("laeken-pareto") vignette("laeken-variance") @ Morover, a general introduction to package \pkg{laeken} is published as \citet{alfons13b}. The example data set of package \pkg{laeken}, which is called \code{eusilc} and consists of $14\,827$ observations from $6\,000$ households, is used throughout the paper. It was synthetically generated from Austrian EU-SILC survey data from 2006 using the data simulation methodology proposed by \citet{alfons11c} and implemented in the \proglang{R} package \pkg{simPopulation} \citep{simPopulation}. The first three observations of the synthetic data set \code{eusilc} are printed below. <<>>= library("laeken") data("eusilc") head(eusilc, 3) @ Only a few of the large number of variables in the original survey are included in the example data set. The variable names are rather cryptic codes, but these are the standardized names used by the statistical agencies. Furthermore, the variables \code{hsize} (household size), \code{age}, \code{eqSS} (equivalized household size) and \code{eqIncome} (equivalized disposable income) are not included in the standardized format of EU-SILC data, but have been derived from other variables for convenience. Moreover, some very sparse income components were not included in the the generation of this synthetic data set. Thus the equivalized household income is computed from the available income components. For the remainder of the paper, the variable \code{eqIncome} (equivalized disposable income) is of main interest. Other variables are in some cases used to break down the data in order to evaluate the indicators on the resulting subsets. It is important to note that EU-SILC data are in practice conducted through complex sampling designs with different inclusion probabilities for the observations in the population, which results in different weights for the observations in the sample. Furthermore, calibration is typically performed for non-response adjustment of these initial design weights. Therefore, the sample weights have to be considered for all estimates, otherwise biased results are obtained. The rest of the paper is organized as follows. Section \ref{sec:design} briefly illustrates the basic object-oriented design of the package. The calculation of the equivalized household size and the equivalized disposable income is then described in Section \ref{sec:income}. Afterwards, Section~\ref{sec:w} introduces the Eurostat definitions of the weighted median and weighted quantiles, which are required for the estimation of some of the indicators. In Section~\ref{sec:ind}, a mathematical description of the most important indicators on social exclusion and poverty is given and their estimation with package \pkg{laeken} is demonstrated. Section~\ref{sec:sub} discusses a useful subsetting method, and Section~\ref{sec:concl} concludes. % ------------ % basic design % ------------ \section{Basic design of the package} \label{sec:design} The implementation of the package follows an object-oriented design using \proglang{S3} classes \citep{chambers92}. Its aim is to provide functionality for point and variance estimation of Laeken indicators with a single command, even for different years and domains. Currently, the following indicators are available in the \proglang{R} package \pkg{laeken}: \begin{itemize} \item \emph{At-risk-of-poverty rate}: function \code{arpr()} \item \emph{Quintile share ratio}: function \code{qsr()} \item \emph{Relative median at-risk-of-poverty gap}: function \code{rmpg()} \item \emph{Dispersion around the at-risk-of-poverty threshold}: also function \code{arpr()} \item \emph{Gini coefficient}: function \code{gini()} \end{itemize} Note that the implementation strictly follows the Eurostat definitions \citep{EU-SILC04,EU-SILC09}. %In addition, robust estimators are also implemented. Here, the focus is on %Pareto tail modeling. \subsection{Class structure} In this section, the class structure of package \pkg{laeken} is briefly discussed. Section~\ref{sec:indicator} describes the basic class \code{"indicator"}, while the different subclasses for the specific indicators are listed in Section~\ref{sec:classes}. \subsubsection{Class \code{"indicator"}} \label{sec:indicator} The basic class \code{"indicator"} acts as the superclass for all classes in the package corresponding to specific indicators. It consists of the following components: % \begin{description} \item[\code{value}:] A numeric vector containing the point estimate(s). \item[\code{valueByStratum}:] A \code{data.frame} containing the point estimates by domain. \item[\code{varMethod}:] A character string specifying the type of variance estimation used. \item[\code{var}:] A numeric vector containing the variance estimate(s). \item[\code{varByStratum}:] A \code{data.frame} containing the variance estimates by domain. \item[\code{ci}:] A numeric vector or matrix containing the confidence interval(s). \item[\code{ciByStratum}:] A \code{data.frame} containing the confidence intervals by domain. \item[\code{alpha}:] The confidence level is given by $1 - $\code{alpha}. \item[\code{years}:] A numeric vector containing the different years of the survey. \item[\code{strata}:] A character vector containing the different strata of the breakdown. % \item[\code{seed}:] The seed of the random number generator before the computations. \end{description} These list components are inherited by each indicator in the package. One of the most important features of \pkg{laeken} is that indicators can be evaluated for different years and domains. The latter of which can be regions (e.g., NUTS2), but also any other breakdown given by a categorical variable (see the examples in Section~\ref{sec:ind}). In any case, the advantage of the object-oriented implementation is the possibility of sharing code among the indicators. To give an example, the following methods for the basic class \code{"indicator"} are implemented in the package: <<>>= methods(class="indicator") @ The \code{print()} and \code{subset()} methods are called by their respective generic functions if an object inheriting from class \code{"indicator"} is supplied. While the \code{print()} method defines the output of objects inheriting from class \code{"indicator"} shown on the \proglang{R} console, the \code{subset()} method allows to extract subsets of an object inheriting from class \code{"indicator"} and is discussed in detail in Section~\ref{sec:sub}. Furthermore, the function \code{is.indicator()} is available to test whether an object is of class \code{"indicator"}. \subsubsection{Additional classes} \label{sec:classes} For the specific indicators on social exclusion and poverty, the following classes are implemented in package \pkg{laeken}: % \begin{itemize} \item Class \code{"arpr"} with the following additional components: \begin{description} \item[\code{p}:] The percentage of the weighted median used for the at-risk-of-poverty threshold. \item[\code{threshold}:] The at-risk-of-poverty threshold(s). \end{description} \item Class \code{"qsr"} with no additional components. \item Class \code{"rmpg"} with the following additional components: \begin{description} \item[\code{threshold}:] The at-risk-of-poverty threshold(s). \end{description} \item Class \code{"gini"} with no additional components. \end{itemize} % All these classes are subclasses of the basic class \code{"indicator"} and therefore inherit all its components and methods. In addition, functions to test whether an object is a member of one of these subclasses are implemented. Similarly to \code{is.indicator()}, these are called \code{is.foo()}, where \code{foo} is the name of the respective class (e.g., \code{is.arpr()}). % ----------------------------- % equivalized disposable income % ----------------------------- \section{Calculation of the equivalized disposable income} \label{sec:income} For each person, the equivalized disposable income is defined as the total household disposable income divided by the equivalized household size. It follows that each person in the same household receives the same equivalized disposable income. The total disposable income of a household is calculated by adding together the personal income received by all of the household members plus the income received at the household level. The equivalized household size is defined according to the modified OECD scale, which gives a weight of 1.0 to the first adult, 0.5 to other household members aged 14 or over, and 0.3 to household members aged less than 14 \citep{EU-SILC04, EU-SILC09}. In practice, the equivalized disposable income needs to be computed from the income components included in EU-SILC for the estimation of the indicators on social exclusion and poverty. Therefore, this section outlines how to perform this step with package \pkg{laeken}, even though the variable \code{eqIncome} containing the equivalized disposable income is already available in the example data set \code{eusilc}. Note that not all variables that are required for an exact computation of the equivalized income are included in the synthetic example data. However, the functions of the package can be applied in exactly the same manner to real EU-SILC data. First, the equivalized household size according to the modified OECD scale needs to be computed. This can be done with the function \code{eqSS()}, which requires the household ID and the age of the individuals as arguments. In the example data, household~ID and age are stored in the variables \code{db030} and \code{age}, respectively. It should be noted that the variable \code{age} is not in the standardized format of EU-SILC data and needs to be calculated from the data beforehand. Nevertheless, these computations are very simple and are therefore not shown here \citep[for details, see][]{EU-SILC09}. The following two lines of code calculate the equivalized household size, add it to the data set, and print the first eight observations of the variables involved. <<>>= eusilc$eqSS <- eqSS("db030", "age", data=eusilc) head(eusilc[,c("db030", "age", "eqSS")], 8) @ Then the equivalized disposable income can be computed with the function \code{eqInc()}. It requires the following information to be supplied: the household~ID, the household income components to be added and subtracted, respectively, the personal income components to be added and subtracted, respectively, as well as the equivalized household size. With the following commands, the equivalized disposable income is calculated and added to the data set, after which the first eight observations of the important variables in this context are printed. <<>>= hplus <- c("hy040n", "hy050n", "hy070n", "hy080n", "hy090n", "hy110n") hminus <- c("hy130n", "hy145n") pplus <- c("py010n", "py050n", "py090n", "py100n", "py110n", "py120n", "py130n", "py140n") eusilc$eqIncome <- eqInc("db030", hplus, hminus, pplus, character(), "eqSS", data=eusilc) head(eusilc[,c("db030", "eqSS", "eqIncome")], 8) @ % Note that the net income is considered in this example, therefore no personal income component needs to be subtracted \citep[see][]{EU-SILC04, EU-SILC09}. This is reflected in the call to \code{eqInc()} by the use of an empty character vector \code{character()} for the corresponding argument. % ------------------ % weighted quantiles % ------------------ \section{Weighted median and quantile estimation} \label{sec:w} Some of the indicators on social exclusion and poverty require the estimation of the median income or other quantiles of the income distribution. Hence functions that strictly follow the definitions according to \citet{EU-SILC04, EU-SILC09} are implemented in package \pkg{laeken}. They are used internally for the estimation of the respective indicators, but can also be called by the user directly. In the analysis of income distributions, the median income is typically of higher interest than the arithmetic mean. This is because income distributions commonly are strongly right-skewed with a heavy tail of \emph{representative outliers} (correctly measured units that are not unique to the population) and \emph{nonrepresentative outliers} (either measurement errors or correct observations that can be considered unique in the population). Therefore, the center of the distribution is more reliably estimated by a weighted median than by a weighted mean, as the latter is highly influenced by extreme values. In mathematical terms, quantiles are defined as $q_{p} := F^{-1}(p)$, where $F$ is the distribution function on the population level and $0 \leq p \leq 1$. The median as an important special case is given by $p = 0.5$. For the following definitions, let $n$ be the number of observations in the sample, let $\boldsymbol{x} := (x_{1}, \ldots, x_{n})'$ denote the equivalized disposable income with \mbox{$x_{1} \leq \ldots \leq x_{n}$}, and let $\boldsymbol{w} := (w_{i}, \ldots, w_{n})'$ be the corresponding personal sample weights. Weighted quantiles for the estimation of the population values according to \citet{EU-SILC04, EU-SILC09} are then given by \begin{equation} \label{eq:wq} \hat{q}_{p} = \hat{q}_{p} (\boldsymbol{x}, \boldsymbol{w}) := \begin{cases} \frac{1}{2} (x_{j} + x_{j+1}), & \quad \text{if } \sum_{i=1}^{j} w_{i} = p \sum_{i=1}^{n} w_{i}, \\ x_{j+1}, & \quad \text{if } \sum_{i=1}^{j} w_{i} < p \sum_{i=1}^{n} w_{i} < \sum_{i=1}^{j+1} w_{i}. \end{cases} \end{equation} This definition of weighted quantiles is available in \pkg{laeken} through the function \code{weightedQuantile()}. The following command computes the weighed 20\% quantile, the weighted median, and the weighted 80\% quantile. In the context of social exclusion indicators, these are of most importance. % ----- <>= weightedQuantile(eusilc$eqIncome, eusilc$rb050, probs = c(0.2, 0.5, 0.8)) @ % ----- For the important special case of the weighted median, the function \code{weightedMedian()} is available for convenience. % ----- <<>>= weightedMedian(eusilc$eqIncome, eusilc$rb050) @ In addition, the functions \code{incMedian()} and \code{incQuintile()} are more tailored towards application in the case of indicators on social exclusion and poverty and provide a similar interface as the functions for the indicators (see Section~\ref{sec:ind}). In particular, they allow to supply an additional variable to be used as tie-breakers for sorting, and to compute the weighted median and income quintiles, respectively, for several years of the survey. With the following lines of code, the median income as well as the \engordnumber{1} and \engordnumber{4} income quintile (i.e., the weighted 20\% and 80\% quantiles) are estimated. <<>>= incMedian("eqIncome", weights = "rb050", data = eusilc) incQuintile("eqIncome", weights = "rb050", k = c(1, 4), data = eusilc) @ % ------------------- % selected indicators % ------------------- \section{Indicators on social exclusion and poverty} \label{sec:ind} In this section, the most important indicators on social exclusion and poverty are described in detail. Furthermore, the functionality of package \pkg{laeken} to estimate these indicators is demonstrated. It should be noted that all functions for the implemented indicators provide a very similar interface. Most importantly, it is possible to compute estimates for several years of the survey and different subdomains with a single command. Furthermore, the functions allow to supply an additional variable to be used as tie-breakers for sorting. However, not all of the implemented functionality is shown in this vignette. For a complete description of the functions and their arguments, the reader is referred to the corresponding \proglang{R} help pages. In addition, only point estimation of the indicators on social exclusion and poverty is illustrated here, statistical significance of these estimates is not discussed. The functionality for variance estimation of the indicators is described in the package vignette \code{laeken-variance} \citep{templ11b}. For the following definitions of the estimators according to \citet{EU-SILC04, EU-SILC09}, let $\boldsymbol{x} := (x_{1}, \ldots, x_{n})'$ be the equivalized disposable income with $x_{1} \leq \ldots \leq x_{n}$ and let $\boldsymbol{w} := (w_{i}, \ldots, w_{n})'$ be the corresponding personal sample weights, where $n$ denotes the number of observations. Furthermore, define the following index sets for a certain threshold $t$: \begin{align} I_{< t} &:= \{ i \in \{ 1, \ldots, n \} : x_{i} < t \},\label{eq:01-Ilt}\\ I_{\leq t} &:= \{ i \in \{ 1, \ldots, n \} : x_{i} \leq t \},\label{eq:01-Ileqt}\\ I_{> t} &:= \{ i \in \{ 1, \ldots, n \} : x_{i} > t\}\label{eq:01-Igt}. \end{align} \subsection{At-risk-at-poverty rate} \label{sec:ARPR} In order to define the \emph{at-risk-of-poverty rate} (ARPR), the \emph{at-risk-of-poverty threshold} (ARPT) needs to be introduced first, which is set at $60\%$ of the national median equivalized disposable income. Then the at-risk-at-poverty rate is defined as the proportion of persons with an equivalized disposable income below the at-risk-at-poverty threshold \citep{EU-SILC04, EU-SILC09}. In a more mathematical notation, the at-risk-at-poverty rate is defined as \begin{equation} \label{eq:ARPR} ARPR := P(x < 0.6 \cdot q_{0.5}) \cdot 100,% = F(0.6 \cdot q_{0.5}) \cdot 100, \end{equation} where $q_{0.5} := F^{-1}(0.5)$ denotes the population median (50\% quantile) and $F$ is the distribution function of the equivalized income on the population level. For the estimation of the at-risk-at-poverty rate from a sample, the sample weights need to be taken into account. %Let $n$ be the number of observations in the sample, let $\boldsymbol{x} := %(x_{1}, \ldots, x_{n})'$ denote the equivalized disposable income with %\mbox{$x_{1} \leq \ldots \leq x_{n}$}, and let $\boldsymbol{w} := (w_{i}, %\ldots, w_{n})'$ be the corresponding personal sample weights. Then the %at-risk-at-poverty threshold is estimated by First, the at-risk-at-poverty threshold is estimated by \begin{equation} \label{eq:ARPT} \widehat{ARPT} = 0.6 \cdot \hat{q}_{0.5}, \end{equation} where $\hat{q}_{0.5}$ is the weighted median as defined in Equation~(\ref{eq:wq}). %Furthermore, define an index set of observations with an equivalized disposable %income below the estimated at-risk-at-poverty threshold as %\begin{equation} %I_{< \widehat{ARPT}} := \{ i \in \{ 1, \ldots, n \} : x_{i} < \widehat{ARPT} \}. %\end{equation} %With these definitions, the at-risk-at-poverty rate can be estimated by Then the at-risk-at-poverty rate can be estimated by \begin{equation} \widehat{ARPR} := \frac{\sum_{i \in I_{< \widehat{ARPT}}} w_{i}}{\sum_{i=1}^{n} w_{i}} \cdot 100, \end{equation} where $I_{< \widehat{ARPT}}$ is an index set of persons with an equivalized disposable income below the estimated at-risk-of-poverty threshold as defined in Equation~(\ref{eq:01-Ilt}). In package \pkg{laeken}, the functions \code{arpt()} and \code{arpr()} are implemented for the estimation of the at-risk-of-poverty threshold and the at-risk-of-poverty rate. Whenever sample weights are available in the data, they should be supplied as the \code{weights} argument. Even though \code{arpt()} is called internally by \code{arpr()}, it can also be called by the user directly. <<>>= arpt("eqIncome", weights = "rb050", data = eusilc) arpr("eqIncome", weights = "rb050", data = eusilc) @ It is also possible to use these functions for the estimation of the indicator \emph{dispersion around the at-risk-of-poverty threshold}, which is defined as the proportion of persons with an equivalized disposable income below $40\%$, $50\%$ and $70\%$ of the national weighted median equivalized disposable income. The proportion of the median equivalized income to be used can thereby be adjusted via the argument \code{p}. <<>>= arpr("eqIncome", weights = "rb050", p = 0.4, data = eusilc) arpr("eqIncome", weights = "rb050", p = 0.5, data = eusilc) arpr("eqIncome", weights = "rb050", p = 0.7, data = eusilc) @ In order to compute estimates for different subdomains, a breakdown variable simply needs to be supplied as the \code{breakdown} argument. Note that in this case the same overall at-risk-of-poverty threshold is used for all subdomains \citep[see][]{EU-SILC04, EU-SILC09}. The following command computes the overall estimate, as well as estimates for all NUTS2 regions. <<>>= arpr("eqIncome", weights = "rb050", breakdown = "db040", data = eusilc) @ However, any kind of breakdown can be supplied, e.g., the breakdowns defined by \citet{EU-SILC04, EU-SILC09}. With the following lines of code, a breakdown variable with all possible combinations of age categories and gender is defined and added to the data set, before it is used to compute estimates for the corresponding domains. <<>>= ageCat <- cut(eusilc$age, c(-1, 16, 25, 50, 65, Inf), right=FALSE) eusilc$breakdown <- paste(ageCat, eusilc$rb090, sep=":") arpr("eqIncome", weights = "rb050", breakdown = "breakdown", data = eusilc) @ Clearly, the results are even more heterogeneous than for the breakdown into NUTS2 regions. %The results are even more different when considering household size %(\code{hsize}) and citizenship (\code{pb220a}) as the domain level for %estimation. %<<>>= %eusilc$breakdown <- paste(eusilc$hsize, eusilc$pb220a, sep=":") %arpr("eqIncome", weights = "rb050", breakdown = "breakdown", data = eusilc) %@ \subsection{Quintile share ratio} The income \emph{quintile share ratio} (QSR) is defined as the ratio of the sum of the equivalized disposable income received by the 20\% of the population with the highest equivalized disposable income to that received by the 20\% of the population with the lowest equivalized disposable income \citep{EU-SILC04, EU-SILC09}. For the estimation of the quintile share ratio from a sample, let $\hat{q}_{0.2}$ and $\hat{q}_{0.8}$ denote the weighted 20\% and 80\% quantiles, respectively, as defined in Equation~(\ref{eq:wq}). Using index sets $I_{\leq \hat{q}_{0.2}}$ and $I_{> \hat{q}_{0.8}}$ as defined in Equations~(\ref{eq:01-Ileqt}) and~(\ref{eq:01-Igt}), respectively, the quintile share ratio is estimated by \begin{equation} \widehat{QSR} := \frac{\sum_{i \in I_{> \hat{q}_{0.8}}} w_{i} x_{i}}{\sum_{i \in I_{\leq \hat{q}_{0.2}}} w_{i} x_{i}}. \end{equation} With package \pkg{laeken}, the quintile share ratio can be estimated using the function \code{qsr()}. As for the at-risk-of-poverty rate, sample weights can be supplied via the \code{weights} argument. <<>>= qsr("eqIncome", weights = "rb050", data = eusilc) @ Computing estimates for different subdomains is again possible by specifying the \code{breakdown} argument. In the following example, estimates for each NUTS2 region are computed in addition to the overall estimate. <<>>= qsr("eqIncome", weights = "rb050", breakdown = "db040", data = eusilc) @ Nevertheless, it should be noted that the quintile share ratio is highly influenced by outliers \citep[see][]{hulliger09a, alfons10b}. Since the upper tail of income distributions virtually always contains nonrepresentative outliers, robust estimators of the quintile share ratio should preferably be used. Thus robust semi-parametric methods based on Pareto tail modeling are implemented in package \pkg{laeken} as well. Their application is discussed in vignette \code{laeken-pareto} \citep{alfons11a}. \subsection{Relative median at-risk-of-poverty gap (by age and gender)} The \emph{relative median at-risk-of-poverty gap} (RMPG) is defined as the difference between the median equivalized disposable income of persons below the at-risk-of-poverty threshold and the at-risk of poverty threshold itself, expressed as a percentage of the at-risk-of-poverty threshold \citep{EU-SILC04, EU-SILC09}. %Let $wmed_{(poor)}$ the weighted median of the people who having an income %below $ARPR$ defined in Equation~\ref{eq:ARPR}. Then the relative median %at-risk-of-poverty gap is estimated by %\begin{displaymath} %RMPG = \frac{ARPR - wmed_{(poor)}}{ARPR} \cdot 100 %\end{displaymath} For the estimation of the relative median at-risk-of-poverty gap from a sample, let $\widehat{ARPT}$ be the estimated at-risk-of-poverty threshold according to Equation~(\ref{eq:ARPT}), and let $I_{< \widehat{ARPT}}$ be an index set of persons with an equivalized disposable income below the estimated at-risk-of-poverty threshold as defined in Equation~(\ref{eq:01-Ilt}). Using this index set, define $\boldsymbol{x}_{< \widehat{ARPT}} := (x_{i})_{i \in I_{< \widehat{ARPT}}}$ and $\boldsymbol{w}_{< \widehat{ARPT}} := (w_{i})_{i \in I_{< \widehat{ARPT}}}$. Furthermore, let $\hat{q}_{0.5} (\boldsymbol{x}_{< \widehat{ARPT}}, \boldsymbol{w}_{< \widehat{ARPT}})$ be the corresponding weighted median according to the definition in Equation~(\ref{eq:wq}). Then the relative median at-risk-of-poverty gap is estimated by \begin{equation} \widehat{RMPG} = \frac{\widehat{ARPT} - \hat{q}_{0.5} (\boldsymbol{x}_{< \widehat{ARPT}}, \boldsymbol{w}_{< \widehat{ARPT}})}{\widehat{ARPT}} \cdot 100. \end{equation} In package \pkg{laeken}, the function \code{rmpg()} is implemented for the estimation of the relative median at-risk-of-poverty gap. If available in the data, sample weights should be supplied as the \code{weights} argument. Note that the function \code{arpt()} for the estimation of the at-risk-of-poverty threshold is called internally (cf. function \code{arpr()} for the at-risk-of-poverty rate in Section~\ref{sec:ARPR}). <<>>= rmpg("eqIncome", weights = "rb050", data = eusilc) @ Estimates for different subdomains can be computed by making use of the \code{breakdown} argument. With the following command, the overall estimate and estimates for all NUTS2 regions are computed. <<>>= rmpg("eqIncome", weights = "rb050", breakdown = "db040", data = eusilc) @ For the relative median at-risk-of-poverty gap, the breakdown by age and gender is of particular interest. In the following example, a breakdown variable with all possible combinations of age categories and gender is defined and added to the data set. Afterwards, estimates for the corresponding domains are computed. <<>>= ageCat <- cut(eusilc$age, c(-1, 16, 25, 50, 65, Inf), right=FALSE) eusilc$breakdown <- paste(ageCat, eusilc$rb090, sep=":") rmpg("eqIncome", weights = "rb050", breakdown = "breakdown", data = eusilc) @ \subsection{Gini coefficient} The \emph{Gini coefficient} is defined as the relationship of cumulative shares of the population arranged according to the level of equivalized disposable income, to the cumulative share of the equivalized total disposable income received by them \citep{EU-SILC04, EU-SILC09}. For the estimation of the Gini coefficient from a sample, the sample weights need to be taken into account. In mathematical terms, the Gini coefficient is estimated by \begin{equation} \widehat{Gini} := 100 \left[ \frac{2 \sum_{i=1}^{n} \left( w_{i} x_{i} \sum_{j=1}^{i} w_{j} \right) - \sum_{i=1}^{n} w_{i}^{\phantom{i}2} x_{i}}{\left( \sum_{i=1}^{n} w_{i} \right) \sum_{i=1}^{n} \left(w_{i} x_{i} \right)} - 1 \right]. \end{equation} The function \code{gini()} is available in \pkg{laeken} to estimate the Gini coefficient. As for the other indicators, sample weights can be specified with the \code{weights} argument. <<>>= gini("eqIncome", weights = "rb050", data = eusilc) @ Using the \code{breakdown} argument in the following command, estimates for the NUTS2 regions are computed in addition to the overall estimate. <<>>= gini("eqIncome", weights = "rb050", breakdown = "db040", data = eusilc) @ Since outliers have a strong influence on the Gini coefficient, robust estimators are preferred to the standard estimation described above \citep[see][]{alfons10b}. Vignette \code{laeken-pareto} \citep{alfons11a} describes how to apply the robust semi-parametric methods implemented in package \pkg{laeken}. % ------------------ % extracting subsets % ------------------ \section{Extracting information using the \code{subset()} method} \label{sec:sub} If estimates of an indicator have been computed for several subdomains, it may sometimes be desired to extract the results for some domains of particular interest. In package \pkg{laeken}, this is implemented by taking advantage of the object-oriented design of the package. Each of the functions for the indicators described in Section~\ref{sec:ind} returns an object belonging to a class of the same name as the respective function, e.g., function \code{arpr()} returns an object of class \code{"arpr"}. All these classes thereby inherit from the basic class \code{"indicator"} (see Section~\ref{sec:design}). <<>>= a <- arpr("eqIncome", weights = "rb050", breakdown = "db040", data = eusilc) print(a) is.arpr(a) is.indicator(a) class(a) @ To extract a subset of results from such an object, a \code{subset()} method for the class \code{"indicator"} is implemented in \pkg{laeken}. The method \code{subset.indicator()} is hidden from the user and is called internally by the generic function \code{subset()} whenever an object of class \code{"indicator"} is supplied. In the following example, the estimates of the at-risk-of-poverty rate for the regions Lower Austria and Vienna are extracted from the object computed above. <<>>= subset(a, strata = c("Lower Austria", "Vienna")) @ % ----------- % conclusions % ----------- \section{Conclusions} \label{sec:concl} This vignette demonstrates the use of package \pkg{laeken} for point estimation of the European Union indicators on social exclusion and poverty. Since the description of the indicators in \citet{EU-SILC04, EU-SILC09} is weak from a mathematical point of view, a more precise notation is given in this paper. Currently, the most important indicators are implemented in \pkg{laeken}. Their estimation is made easy with the package, as it is even possible to compute estimates for several years and different subdomains with a single command. Concerning the inequality indicators quintile share ratio and Gini coefficient, it is clearly visible from their definitions that the standard estimators are highly influenced by outliers \citep[see also][]{hulliger09a, alfons10b}. Therefore, robust semi-parametric methods are implemented in \pkg{laeken} as well. These are described in vignette \code{laeken-pareto} \citep{alfons11a}, while variance and confidence interval estimation for the indicators on social exclusion and poverty with package \pkg{laeken} is treated in vignette \code{laeken-variance} \citep{templ11b}. % --------------- % acknowledgments % --------------- \section*{Acknowledgments} This work was partly funded by the European Union (represented by the European Commission) within the 7$^{\mathrm{th}}$ framework programme for research (Theme~8, Socio-Economic Sciences and Humanities, Project AMELI (Advanced Methodology for European Laeken Indicators), Grant Agreement No. 217322). Visit \url{http://ameli.surveystatistics.net} for more information on the project. % ------------ % bibliography % ------------ \bibliographystyle{plainnat} \bibliography{laeken} \end{document} laeken/vignettes/laeken-intro.Rnw0000644000176200001440000016232714127277276016633 0ustar liggesusers\documentclass[article,nojss]{jss} % \documentclass[article,shortnames]{jss} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% declarations for jss.cls %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% almost as usual \author{Andreas Alfons\\ Erasmus University Rotterdam \And Matthias Templ\\Zurich University of Applied Sciences} \title{Estimation of Social Exclusion Indicators from Complex Surveys: The \proglang{R} Package \pkg{laeken}} %% for pretty printing and a nice hypersummary also set: \Plainauthor{Andreas Alfons, Matthias Templ} %% comma-separated \Plaintitle{Estimation of Social Exclusion Indicators from Complex Surveys: The R Package laeken} %% without formatting \Shorttitle{\pkg{laeken}: Estimation of Social Exclusion Indicators} %% a short title (if necessary) %% an abstract and keywords \Abstract{ This package vignette is an up-to-date version of \citet{alfons13b}, published in the \emph{Journal of Statistical Software}. Units sampled from finite populations typically come with different inclusion probabilities. Together with additional preprocessing steps of the raw data, this yields unequal sampling weights of the observations. Whenever indicators are estimated from such complex samples, the corresponding sampling weights have to be taken into account. In addition, many indicators suffer from a strong influence of outliers, which are a common problem in real-world data. The \proglang{R} package \pkg{laeken} is an object-oriented toolkit for the estimation of indicators from complex survey samples via standard or robust methods. In particular the most widely used social exclusion and poverty indicators are implemented in the package. A general calibrated bootstrap method to estimate the variance of indicators for common survey designs is included as well. Furthermore, the package contains synthetically generated close-to-reality data for the European Union Statistics on Income and Living Conditions and the Structure of Earnings Survey, which are used in the code examples throughout the paper. Even though the paper is focused on showing the functionality of package \pkg{laeken}, it also provides a brief mathematical description of the implemented indicator methodology. } \Keywords{indicators, robust estimation, sample weights, survey methodology, \proglang{R}} \Plainkeywords{indicators, robust estimation, sample weights, survey methodology, R} %% without formatting %% at least one keyword must be supplied %% publication information %% NOTE: Typically, this can be left commented and will be filled out by the technical editor %% \Volume{50} %% \Issue{9} %% \Month{June} %% \Year{2012} %% \Submitdate{2012-06-04} %% \Acceptdate{2012-06-04} %% The address of (at least) one author should be given %% in the following format: \Address{ Andreas Alfons \\ Erasmus School of Economics \\ Erasmus University Rotterdam \\ Burgemeester Oudlaan 50 \\ 3062PA Rotterdam, Netherlands \\ E-mail: \email{alfons@ese.eur.nl} \\ URL: \url{https://personal.eur.nl/alfons/} \bigskip Matthias Templ \\ Zurich University of Applied Sciences \\ Rosenstra\ss e 3 \\ 8400 Winterthur, Switzerland \\ E-mail: \email{matthias.templ@zhaw.ch} \\ URL: \url{https://data-analysis.at/} } %% It is also possible to add a telephone and fax number %% before the e-mail in the following format: %% Telephone: +43/512/507-7103 %% Fax: +43/512/507-2851 %% for those who use Sweave please include the following line (with % symbols): %% need no \usepackage{Sweave.sty} %%\VignetteIndexEntry{Estimation of Social Exclusion Indicators From Complex Surveys: The R Package laeken} %%\VignetteDepends{laeken} %%\VignetteKeywords{indicators, robust estimation, sample weights, survey methodology, R} %%\VignettePackage{laeken} %% end of declarations %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% additional packages \usepackage{amsfonts} \usepackage{amsmath} \usepackage{amssymb} \usepackage{engord} \usepackage{enumerate} \usepackage{soul} \begin{document} % \SweaveOpts{concordance=TRUE} %% include your article here, just as usual %% Note that you should use the \pkg{}, \proglang{} and \code{} commands. %% load package "laeken" <>= options(prompt = "R> ", continue = "+ ", width = 72, useFancyQuotes = FALSE) library("laeken") @ %% some references have to many authors to list them in the text \shortcites{AMELI-D7.1} % ------------ % Introduction % ------------ \section{Introduction} Estimation of indicators is one of the main tasks in survey statistics. They are usually estimated from complex surveys with many thousands of observations, conducted in a harmonized manner over many countries. Indicators are designed to reflect major developments in society, for example with respect to poverty, social cohesion or gender inequality, in order to quantify and monitor progress towards policy objectives. Moreover, by implementing a monitoring system across countries via a harmonized set of indicators, different policies can be compared based on quantitative information regarding their impact on society. Thus statistical indicators are an important source of information on which policy makers can base their decisions. Nevertheless, for policy decisions to be effective, the underlying quantitative information from the indicators needs to be reliable. Not only should the variability of the indicators be kept in mind, but also the impact of data collection and preprocessing needs to be considered. Indicators are typically based on complex surveys, in which units are drawn from finite populations, most often with unequal inclusion probabilities. Hence the observations in the sample represent different numbers of units in the population, giving them unequal sample weights. In addition, those initial weights are often modified by preprocessing steps such as calibration for nonresponse. Therefore, sample weights always need to be taken into account in the estimation of indicators from survey samples, otherwise the estimates may be biased. The focus of this paper is on socioeconomic indicators on poverty, social cohesion and gender differences. In economic data, extreme outliers are a common problem. Such outliers can have a disproportionally large influence on the estimates of indicators and may completely distort them. If indicators are corrupted by outliers, wrong conclusions could be drawn by policy makers. Robust estimators that give reliable estimates even in the presence of extreme outliers are therefore necessary. We introduce the add-on package \pkg{laeken} \citep{laeken} for the open source statistical computing environment \proglang{R} \citep{RDev}. It provides functionality for standard and robust estimation of indicators on social exclusion and poverty from complex survey samples. The aim of the paper is to present the most important functionality of the package. A more complete overview of the available functionality is given in additional package vignettes on specialized topics. A list of the available vignettes can be viewed from within \proglang{R} with the following command: <>= vignette(package="laeken") @ Even though official statistical agencies usually rely on commercial software, \proglang{R} has gained some traction in the survey statistics community over the years. Various add-on packages for survey methodology are now available. For instance, an extensive collection of methods for the analysis of survey samples is implemented in package \pkg{survey} \citep{lumley04, survey}. The accompanying book by \citet{lumley10} also serves as an excellent introduction to survey statistics with \proglang{R}. Other examples for more specialized functionality are package \pkg{sampling} \citep{sampling} for finite population sampling, and package \pkg{EVER} \citep{EVER} for variance estimation based on efficient resampling. For the common problem of nonresponse, package \pkg{VIM} \citep{VIM} allows to explore the structure of missing data via visualization techniques \citep[see][]{templ12}, and to impute the missing values via advanced imputation methods \citep[e.g.,][]{templ11}. Even a general framework for simulation studies in survey statistics is available through package \pkg{simFrame} \citep{alfons10c, simFrame}. Package \pkg{laeken} provides functionality for the estimation of indicators that is not available in any of the packages listed above, including a novel approach for robust estimation of indicators. While packages \pkg{survey} and \pkg{EVER} require the generation of certain objects describing the survey design prior to analysis, the methods in \pkg{laeken} can be directly applied to the data. This allows \pkg{laeken} to be used more efficiently in simulations, for instance with the \pkg{simFrame} framework. Furthermore, \pkg{laeken} can easily be used on samples drawn with the \pkg{sampling} package or preprocessed with the \pkg{VIM} package. The rest of the paper is organized as follows. Section~\ref{sec:data} introduces the data sets that are used in the examples throughout the paper. In Section~\ref{sec:indicators}, the most widely used indicators on social exclusion and poverty are briefly described. The basic design of the package and its core functionality are then presented in Section~\ref{sec:design}. More advanced topics such as robust estimation and variance estimation via bootstrap techniques are discussed in Sections~\ref{sec:rob} and~\ref{sec:var}, respectively. The final Section~\ref{sec:conclusions} concludes. % --------- % Data sets % --------- \section{Data sets} \label{sec:data} Package \pkg{laeken} contains example data sets for two well-known surveys: the \emph{European Union Statistics on Income and Living Conditions} (EU-SILC) and the \emph{Structure of Earnings Survey} (SES). Since original data from those surveys are confidential, the example data sets are simulated using the methodology described in \citet{alfons11c} and implemented in the \proglang{R} package \pkg{simPopulation} \citep{simPopulation}. Such close-to-reality data sets provide nearly the same multivariate structure as the confidential original data sets and allow researchers to test and compare methods. However, for policy making purposes and economic interpretation, estimations need to be based on the original data. In any case, the simulated data sets are used in the code examples throughout the paper. \subsection{European Union Statistics on Income and Living Conditions} \label{sec:eusilc} EU-SILC is an annual household survey conducted in EU member states and other European countries. Samples consist of about 450 variables containing information on demographics, income and living conditions \citep[see][]{EU-SILC}. Most notably, EU-SILC serves as data basis for measuring risk-of-poverty and social cohesion in Europe. A subset of the indicators computed from EU-SILC is presented in Section~\ref{sec:laeken}. The EU-SILC example data set in \pkg{laeken} is called \code{eusilc} and contains $14\,827$ observations from $6\,000$ households on the 28 most important variables. The data are synthetically generated from preprocessed Austrian EU-SILC data from 2006 provided by Statistics Austria. A description of all the variables is given in the \proglang{R} help page of the data set. To give an overview of what the data look like, the first three observations of the first ten variables of \code{eusilc} are printed below. <<>>= data("eusilc") head(eusilc[, 1:10], 3) @ For this paper, the variable \code{eqIncome} (equivalized disposable income) is of main interest. Other variables are in some cases used to break down the data into different demographics in order to estimate the indicators on those subsets. \subsection{Structure of Earnings Survey} \label{sec:ses} The Structure of Earnings Survey (SES) \citep{SES} is an enterprise survey that aims at providing harmonized data on earnings for almost all European countries. SES data not only contain information on the enterprise level, but also on the individual employment level from a large sample of employees. The most important indicator on the basis of SES data is the gender pay gap, which is described in Section~\ref{sec:GPG}. The SES example data set in \pkg{laeken} is called \code{ses} and contains information on 27 variables and 15\,691 employees from 500 places of work. It is a subset of synthetic data that are simulated from preprocessed Austrian SES 2006 data provided by Statistics Austria. The first three observations of the first seven variables are shown below. <>= data("ses") head(ses[, 1:7], 3) @ In this paper, the SES data is used to illustrate the estimation of the gender pay gap. Hence the most important variables for our purposes are \code{earningsHour}, \code{sex} and \code{education}. For a description of all the variables in the data set, the reader is referred to its \proglang{R} help page. % ---------- % Indicators % ---------- \section{Indicators} \label{sec:indicators} This section gives a brief description of the most widely used indicators on poverty, social cohesion and gender differences. Unless otherwise stated, the presented definitions strictly follow \citet{EU-SILC04, EU-SILC09}. While quick examples for their computation are provided in this section, a detailed discussion on the respective functions is given later on in Section~\ref{sec:design}. % ------------------ % weighted quantiles % ------------------ \subsection{Weighted median and quantile estimation} \label{sec:w} Nearly all of the indicators considered in the paper require the estimation of the median income or other quantiles of the income distribution. Note that in the analysis of income distributions, the median income is of higher interest than the arithmetic mean, since income distributions typically are strongly right-skewed. In mathematical terms, quantiles are defined as $q_{p} := F^{-1}(p)$, where $F$ is the distribution function on the population level and $0 \leq p \leq 1$. The median as an important special case is given by $p = 0.5$. For the following definitions, let $n$ be the number of observations in the sample, let $\boldsymbol{x} := (x_{1}, \ldots, x_{n})^{\top}$ denote the income with \mbox{$x_{1} \leq \ldots \leq x_{n}$}, and let $\boldsymbol{w} := (w_{i}, \ldots, w_{n})^{\top}$ be the corresponding sample weights. Weighted quantiles for the estimation of the population values are then given by \begin{equation} \label{eq:wq} \hat{q}_{p} = \hat{q}_{p} (\boldsymbol{x}, \boldsymbol{w}) := \begin{cases} \frac{1}{2} (x_{j} + x_{j+1}), & \quad \text{if } \sum_{i=1}^{j} w_{i} = p \sum_{i=1}^{n} w_{i}, \\ x_{j+1}, & \quad \text{if } \sum_{i=1}^{j} w_{i} < p \sum_{i=1}^{n} w_{i} < \sum_{i=1}^{j+1} w_{i}. \end{cases} \end{equation} % ------------------- % selected indicators % ------------------- \subsection{Indicators on social exclusion and poverty} \label{sec:laeken} The indicators described in this section are estimated from EU-SILC data based on household income rather than personal income. For each person, this \emph{equivalized disposable income} is defined as the total household disposable income divided by the equivalized household size. It follows that each person in the same household receives the same equivalized disposable income. The total disposable income of a household is thereby calculated by adding together the personal income received by all of the household members plus the income received at the household level. The equivalized household size is defined according to the modified OECD scale, which gives a weight of 1.0 to the first adult, 0.5 to other household members aged 14 or over, and 0.3 to household members aged less than 14. For the definitions of the following indicators, let $\boldsymbol{x} := (x_{1}, \ldots, x_{n})^{\top}$ be the equivalized disposable income with $x_{1} \leq \ldots \leq x_{n}$ and let $\boldsymbol{w} := (w_{i}, \ldots, w_{n})^{\top}$ be the corresponding sample weights, where $n$ denotes the number of observations. Furthermore, define the following index sets for a certain threshold $t$: \begin{align} I_{< t} &:= \{ i \in \{1, \ldots, n\} : x_{i} < t \},\label{eq:01-Ilt}\\ I_{\leq t} &:= \{ i \in \{ 1,\ldots, n\} : x_{i} \leq t \},\label{eq:01-Ileqt}\\ I_{> t} &:= \{ i \in \{1, \ldots, n\} : x_{i} > t\}\label{eq:01-Igt}. \end{align} \subsubsection{At-risk-at-poverty rate} % \label{sec:ARPR} In order to define the \emph{at-risk-of-poverty rate} (ARPR), the \emph{at-risk-of-poverty threshold} (ARPT) needs to be introduced first, which is set at $60\%$ of the national median equivalized disposable income. Then the at-risk-at-poverty rate is defined as the proportion of persons with an equivalized disposable income below the at-risk-at-poverty threshold. In a more mathematical notation, the at-risk-at-poverty rate is defined as \begin{equation} \label{eq:ARPR} ARPR := P(x < 0.6 \cdot q_{0.5}) \cdot 100,% = F(0.6 \cdot q_{0.5}) \cdot 100, \end{equation} where $q_{0.5} := F^{-1}(0.5)$ denotes the population median (50\% quantile) and $F$ is the distribution function of the equivalized income on the population level. For the estimation of the at-risk-at-poverty rate from a sample, first the at-risk-at-poverty threshold is estimated by \begin{equation} \label{eq:ARPT} \widehat{ARPT} = 0.6 \cdot \hat{q}_{0.5}, \end{equation} where $\hat{q}_{0.5}$ is the weighted median as defined in Equation~\ref{eq:wq}. Then the at-risk-at-poverty rate can be estimated by \begin{equation} \widehat{ARPR} := \frac{\sum_{i \in I_{< \widehat{ARPT}}} w_{i}}{\sum_{i=1}^{n} w_{i}} \cdot 100, \end{equation} where $I_{< \widehat{ARPT}}$ is an index set of persons with an equivalized disposable income below the estimated at-risk-of-poverty threshold as defined in Equation~\ref{eq:01-Ilt}. In package \pkg{laeken}, the function \code{arpr()} is implemented to estimate the at-risk-at-poverty rate. <<>>= arpr("eqIncome", weights = "rb050", data = eusilc) @ Note that the at-risk-of-poverty threshold is computed internally by \code{arpr()}. If necessary, it can also be computed by the user through function \code{arpt()}. % <<>>= % arpt("eqIncome", weights = "rb050", data = eusilc) % @ In addition, a highly related indicator is the \emph{dispersion around the at-risk-of-poverty threshold}, which is defined as the proportion of persons with an equivalized disposable income below $40\%$, $50\%$ and $70\%$ of the national weighted median equivalized disposable income. For the estimation of this indicator with function \code{arpr()}, the proportion of the median equivalized income to be used can easily be adjusted via the argument \code{p}. <<>>= arpr("eqIncome", weights = "rb050", p = c(0.4, 0.5, 0.7), data = eusilc) @ \subsubsection{Quintile share ratio} The income \emph{quintile share ratio} (QSR) is defined as the ratio of the sum of the equivalized disposable income received by the 20\% of the population with the highest equivalized disposable income to that received by the 20\% of the population with the lowest equivalized disposable income. For a given sample, let $\hat{q}_{0.2}$ and $\hat{q}_{0.8}$ denote the weighted 20\% and 80\% quantiles, respectively, as defined in Equation~\ref{eq:wq}. Using index sets $I_{\leq \hat{q}_{0.2}}$ and $I_{> \hat{q}_{0.8}}$ as defined in Equations~\ref{eq:01-Ileqt} and~\ref{eq:01-Igt}, respectively, the quintile share ratio is estimated by \begin{equation} \widehat{QSR} := \frac{\sum_{i \in I_{> \hat{q}_{0.8}}} w_{i} x_{i}}{\sum_{i \in I_{\leq \hat{q}_{0.2}}} w_{i} x_{i}}. \end{equation} To estimate the quintile share ratio, the function \code{qsr()} is available. <<>>= qsr("eqIncome", weights = "rb050", data = eusilc) @ \subsubsection{Relative median at-risk-of-poverty gap} The \emph{relative median at-risk-of-poverty gap} (RMPG) is given by the difference between the median equivalized disposable income of persons below the at-risk-of-poverty threshold and the at-risk of poverty threshold itself, expressed as a percentage of the at-risk-of-poverty threshold. For the estimation of the relative median at-risk-of-poverty gap from a sample, let $\widehat{ARPT}$ be the estimated at-risk-of-poverty threshold according to Equation~\ref{eq:ARPT}, and let $I_{< \widehat{ARPT}}$ be an index set of persons with an equivalized disposable income below the estimated at-risk-of-poverty threshold as defined in Equation~\ref{eq:01-Ilt}. Using this index set, define $\boldsymbol{x}_{< \widehat{ARPT}} := (x_{i})_{i \in I_{< \widehat{ARPT}}}$ and $\boldsymbol{w}_{< \widehat{ARPT}} := (w_{i})_{i \in I_{< \widehat{ARPT}}}$. Furthermore, let $\hat{q}_{0.5} (\boldsymbol{x}_{< \widehat{ARPT}}, \boldsymbol{w}_{< \widehat{ARPT}})$ be the corresponding weighted median according to the definition in Equation~\ref{eq:wq}. Then the relative median at-risk-of-poverty gap is estimated by \begin{equation} \widehat{RMPG} = \frac{\widehat{ARPT} - \hat{q}_{0.5} (\boldsymbol{x}_{< \widehat{ARPT}}, \boldsymbol{w}_{< \widehat{ARPT}})}{\widehat{ARPT}} \cdot 100. \end{equation} The relative median at-risk-of-poverty gap is implemented in the function \code{rmpg()}. <<>>= rmpg("eqIncome", weights = "rb050", data = eusilc) @ \subsubsection{Gini coefficient} The \emph{Gini coefficient} is defined as the relationship of cumulative shares of the population arranged according to the level of equivalized disposable income, to the cumulative share of the equivalized total disposable income received by them. Mathematically speaking, the Gini coefficient is estimated from a sample by \begin{equation} \widehat{Gini} := 100 \left[ \frac{2 \sum_{i=1}^{n} \left( w_{i} x_{i} \sum_{j=1}^{i} w_{j} \right) - \sum_{i=1}^{n} w_{i}^{\phantom{i}2} x_{i}}{\left( \sum_{i=1}^{n} w_{i} \right) \sum_{i=1}^{n} \left(w_{i} x_{i} \right)} - 1 \right]. \end{equation} For estimating the Gini coefficient, the function \code{gini()} can be used. <<>>= gini("eqIncome", weights = "rb050", data = eusilc) @ % -------------- % gender pay gap % -------------- \newpage \subsection{The gender pay gap} \label{sec:GPG} Probably the most important indicator derived from the SES data is the \textit{gender pay gap} (GPG). The calculation of the gender pay gap is based on each person's hourly earnings, which are given by the gross monthly earnings from employment divided by the number of hours usually worked per week in employment during $4.33$ weeks. The gender pay gap in unadjusted form is then defined as the difference between average gross earnings of male paid employees and of female paid employees divided by the earnings of male paid employees \citep{EU-SILC04}. Further discussion on the gender pay gap in Europe can be found in, e.g., \citet{beblot03}. For the following definitions, let $\boldsymbol{x} := (x_{1}, \ldots, x_{n})^{\top}$ be the hourly earnings with \mbox{$x_{1} \leq \ldots \leq x_{n}$}, where $n$ is the number of observations. As in the previous sections, $\boldsymbol{w} := (w_{i}, \ldots, w_{n})^{\top}$ denotes the corresponding sample weights. Then define the index set \begin{align*} I_{M} := \{ i \in \{ 1, \ldots, n\} : & \ \text{worked as least 1 hour per week} \ \wedge \\ & \ (16 \leq \text{age} \leq 65) \wedge \, \text{person is male} \}, \end{align*} and define $I_{F}$ analogously as the index set which differs from $I_{M}$ in the fact that it includes females instead of males. With these index sets, the gender pay gap in unadjusted form is estimated by \begin{equation} \label{eq:GPGmean} GPG_{(mean)} = \left( \frac{\sum_{i \in I_{M}} w_i x_i}{\sum_{i \in I_{M}} w_i} - \frac{\sum_{i \in I_{F}} w_i x_i}{\sum_{i \in I_{F} w_i}} \right) \Bigg/ \ \frac{\sum_{i \in I_{M}} w_i x_i}{\sum_{i \in I_{M}} w_i}. \end{equation} The function \code{gpg()} is implemented in \pkg{laeken} to estimate the gender pay gap. <>= gpg("earningsHour", gender = "sex", weigths = "weights", data = ses) @ While \citet{EU-SILC04} proposes the weighted mean as a measure for the average in the definition of the gender pay gap, the U.S. Census Bureau uses the weighted median %as a robust alternative to better reflect the average in skewed earnings distributions \citep[see, e.g.,][]{Weinberg07}. In this case, the estimate of the gender pay gap in unadjusted form changes to \begin{equation} GPG_{(med)} = \frac{\hat{q}_{0.5}(\boldsymbol{x}_{I_{M}}) - \hat{q}_{0.5}(\boldsymbol{x}_{I_{F}})} {\hat{q}_{0.5}(\boldsymbol{x}_{I_{M}})}, \end{equation} where $\boldsymbol{x}_{I_{M}} := (x_{i})_{i \in I_{M}}$ and $\boldsymbol{x}_{I_{F}} := (x_{i})_{i \in I_{F}}$. It should be noted that even though Eurostat proposes to estimate the gender pay gap via weighted means, Statistics Austria for example uses the variant based on weighted medians as well. In function \code{gpg()}, using the weighted median rather than the weighted mean can be specified via the \code{method} argument. <>= gpg("earningsHour", gender = "sex", weigths = "weights", data = ses, method = "median") @ % ------------ % basic design % ------------ \section{Basic design and core functionality} \label{sec:design} This section discusses the basic design of package \pkg{laeken} and its core functions for the estimation of indicators. \subsection{Indicators and class structure} \label{sec:class} Small examples for computing the social exclusion and poverty indicators with package \pkg{laeken} were already shown in Section~\ref{sec:indicators}. These functions are now discussed in detail. As a reminder, the following indicators are implemented in the package: % \begin{description} \item[\code{arpr()}] for the at-risk-of-poverty rate, as well as the dispersion around the at-risk-of-poverty threshold. \item[\code{qsr()}] for the quintile share ratio. \item[\code{rmpg()}] for the relative median at-risk-of-poverty gap. \item[\code{gini()}] for the gini coefficient. \item[\code{gpg()}] for the gender pay gap. \end{description} % All these functions have a very similar interface and allow to compute point and variance estimates with a single command, even for different subdomains of the data. Most importantly, the user can supply character strings specifying the household income via the first argument and the sample weights via the \code{weights} argument. The data are then taken from the data frame passed as the \code{data} argument. <<>>= gini("eqIncome", weights = "rb050", data = eusilc) @ Alternatively, the user can supply the data directly as vectors: <<>>= gini(eusilc$eqIncome, weights = eusilc$rb050) @ For a full list of arguments, the reader is referred to the \proglang{R} help page of the corresponding function. Package \pkg{laeken} follows an object-oriented design using \proglang{S3} classes \citep{chambers92}. Thus each of the above functions returns an object of a certain class for the respective indicator. All those classes thereby inherit from the class \code{"indicator"}. Among other information, the basic class \code{"indicator"} contains the following components: % \begin{description} \item[\code{value}:] the point estimate. \item[\code{valueByStratum}:] a data frame containing the point estimates for each domain. \item[\code{var}:] the variance estimate. \item[\code{varByStratum}:] a data frame containing the variance estimates for each domain. \item[\code{ci}:] the confidence interval. \item[\code{ciByStratum}:] a data frame containing the confidence intervals for each domain. \end{description} % All indicators inherit the components of class \code{"indicator"}, as well as the methods that are defined for this basic class, which has the advantage that code can be shared among the set of indicators. However, each indicator also has its own class such that methods unique to the indicator can be defined. Following a common convention for \proglang{S3} classes, the classes for the indicators have the same names as the functions for computing them. Hence the following classes are implemented in package \pkg{laeken}: % \begin{itemize} \item Class \code{"arpr"} with the following additional components: \begin{description} \item[\code{p}:] the percentage of the weighted median used for the at-risk-of-poverty threshold. \item[\code{threshold}:] the at-risk-of-poverty threshold. \end{description} \item Class \code{"qsr"} with no additional components. \item Class \code{"rmpg"} with the following additional components: \begin{description} \item[\code{threshold}:] the at-risk-of-poverty threshold. \end{description} \item Class \code{"gini"} with no additional components. \item Class \code{"gpg"} with no additional components. \end{itemize} % Furthermore, functions to test whether an object is a member of the basic class or one of the subclasses are available. The function to test for the basic class is called \code{is.indicator()}. Similarly, the functions to test for the subclasses are called \code{is.foo()}, where \code{foo} is the name of the corresponding class (e.g., \code{is.arpr()}). % <<>>= % a <- arpr("eqIncome", weights = "rb050", data = eusilc) % is.arpr(a) % is.indicator(a) % class(a) % @ \subsection{Estimating the indicators in subdomains} \label{sec:sub} One of the most important features of \pkg{laeken} is that indicators can easily be evaluated for different subdomains. These can be regions, but also any other breakdown given by a categorical variable, for instance age categories or gender. All the user needs to do is to specify such a categorical variable via the \code{breakdown} argument. Note that for the at-risk-of-poverty rate and relative median at-risk-of-poverty gap, the same overall at-risk-of-poverty threshold is used for all subdomains \citep[see][]{EU-SILC04, EU-SILC09}. In the following example, the overall estimate for the at-risk-of-poverty rate is computed together with more regional estimates. <>= a <- arpr("eqIncome", weights = "rb050", breakdown = "db040", data = eusilc) a @ \subsection[Extracting information using the subset() method]{Extracting information using the \code{subset()} method} \label{sec:subset} If estimates of an indicator have been computed for several subdomains, extracting a subset of the results for some domains of particular interest can be done with the corresponding \code{subset()} method. For example, the following command extracts the estimates of the at-risk-of-poverty rate for the regions Lower Austria and Vienna from the object computed above. <<>>= subset(a, strata = c("Lower Austria", "Vienna")) @ It is thereby worth pointing out that not every indicator needs its own \code{subset()} method due to inheritance from the basic class \code{"indicator"}. % ----------------- % Robust estimation % ----------------- \newpage \section{Robust estimation} \label{sec:rob} In economic data, variables such as income are typically heavy-tailed and may contain outliers. To identify extreme outliers, we model heavy tails with a Pareto distribution. In the survey setting, the upper tail of the population values are assumed to follow a Pareto distribution. The \pkg{laeken} package includes recently developed methods of \citet{alfons13a} that allow sampling weights to be incorporated into the Pareto model estimation. In the remainder of the section, we briefly outline the methodology and demonstrate how it can be implemented with the \pkg{laeken} package. \subsection{Pareto distribution} \label{sec:Pareto} The \emph{Pareto distribution} is defined in terms of its cumulative distribution function \begin{equation} \label{eq:CDF} F_{\theta}(x) = 1 - \left( \frac{x}{x_{0}} \right) ^{-\theta}, \qquad x \geq x_{0}, \end{equation} where $x_{0} > 0$ is the scale parameter and $\theta > 0$ is the shape parameter \citep{kleiber03}. Furthermore, its density function is given by \begin{equation} f_{\theta}(x) = \frac{\theta x_{0}^{\theta}}{x^{\theta + 1}}, \qquad x \geq x_{0}. \end{equation} Clearly, the Pareto distribution is a highly right-skewed distribution with a heavy tail. In Pareto tail modeling, the cumulative distribution function on the whole range of $x$ is then modeled as \begin{equation} \label{eq:tail} F(x) = \left\{ \begin{array}{ll} G(x), & \quad \text{if } x \leq x_{0}, \\ G(x_{0}) + (1 - G(x_{0})) F_{\theta}(x), & \quad \text{if } x > x_{0}, \end{array} \right. \end{equation} where $G$ is an unknown distribution function \citep{dupuis06}. For a given survey sample, let $\boldsymbol{x} = (x_{1}, \ldots, x_{n})^{\top}$ be the observed values of the variable of interest with $x_{1} \leq \ldots \leq x_{n}$ and $\boldsymbol{w} := (w_{i}, \ldots, w_{n})^{\top}$ the corresponding sample weights, where $n$ denotes the total number of observations. In addition, let $k$ denote the number of observations to be used for tail modeling. Note that the estimation of $x_{0}$ and $k$ directly correspond with each other. If $k$ is fixed, the threshold is estimated by $\hat{x}_{0} = x_{n-k}$. If in turn an estimate $\hat{x}_{0}$ is obtained, $k$ is given by the number of observations that are larger than $\hat{x}_{0}$. In this section, we focus on the EU-SILC example data, where the equivalized disposable income is the main variable of interest. To illustrate the robustness of the presented methods, we replace the equivalized disposable income of the household with the highest income with a large outlier. Note that the resulting income vector is stored in a new variable. <<>>= hID <- eusilc$db030[which.max(eusilc$eqIncome)] eqIncomeOut <- eusilc$eqIncome eqIncomeOut[eusilc$db030 == hID] <- 10000000 @ Moreover, since the equivalized disposable income is a form of household income, the Pareto distribution needs to be modeled on the household level rather than the personal level. Thus we create a data set that only contains the equivalized disposable income with the outlier and the sample weights on the household level. <<>>= keep <- !duplicated(eusilc$db030) eusilcH <- data.frame(eqIncome=eqIncomeOut, db090=eusilc$db090)[keep,] @ \subsection{Pareto quantile plot and finding the threshold} \label{sec:threshold} The first step in any practical analysis should be to explore the data with visualization techniques. For our purpose, the \emph{Pareto quantile plot} is a powerful tool to check whether the Pareto model is appropriate. The plot was introduced by \citet{beirlant96a} for the case without sample weights, and adapted to take sample weights into account by \citet{alfons13a}. The idea behind the Pareto quantile plot is that under the Pareto model, there exists a linear relationship between the logarithms of the observed values and the quantiles of the standard exponential distribution. For survey samples, the observed values are therefore plotted against the quantities \begin{equation} \label{eq:quantiles} -\log \left( 1 - \frac{\sum_{j=1}^{i} w_{j}}{\sum_{j=1}^{n} w_{j}} \frac{n}{n+1} \right), \qquad i = 1, \ldots, n. \end{equation} When all sample weights are equal, the correction factor $n/(n+1)$ ensures that Equation~\ref{eq:quantiles} reduces to the theoretical quantiles taken on the $n$ inner grid points from $n+1$ equally sized subsets of the interval $[0,1]$ \citep[see][for details]{alfons13a}. \begin{figure}[t!] \begin{center} \setkeys{Gin}{width=0.65\textwidth} <>= paretoQPlot(eusilcH$eqIncome, w = eusilcH$db090) @ \caption{Pareto quantile plot for the EU-SILC example data on the household level with the largest observation replaced by an outlier.} \label{fig:ParetoQuantile} \end{center} \end{figure} In package \pkg{laeken}, the Pareto quantile plot is implemented in the function \code{paretoQPlot()}. Figure~\ref{fig:ParetoQuantile} shows the resulting plot for the EU-SILC example data on the household level. Since the tail of the data forms almost a straight line, the Pareto tail model is suitable for the data at hand. Moreover, Figure~\ref{fig:ParetoQuantile} illustrates the two main advantages that make the Pareto quantile plot so powerful. First, nonrepresentative outliers (i.e., extremely large observations that deviate from the Pareto model) are clearly visible. In our example, the outlier that we introduced into the data set is located far away from the rest of the data in the top right corner of the plot. Second, the leftmost point of a fitted line in the tail of the data can be used as an estimate of the threshold $x_{0}$ in the Pareto model, i.e., the scale parameter of fitted Pareto distribution. The slope of the fitted line is then in turn an estimate of $1/\theta$, the reciprocal of the shape parameter. A disadvantage of this graphical method to determine the parameters of the fitted Pareto distribution is of course that it is not very exact. Nevertheless, the function \code{paretoQPlot()} allows the user to select the threshold in the Pareto model interactively by clicking on a data point. Information on the selected threshold is thereby printed on the \proglang{R} console. This process can be repeated until the user terminates the interactive session, typically by a secondary mouse click. Then the selected threshold is returned as an object of class \code{"paretoScale"}, which consists of the component \code{x0} for the threshold (scale parameter) and the component \code{k} for the number of observations in the tail (i.e., larger than the threshold). \subsubsection{Van Kerm's rule of thumb} For EU-SILC data, \citet{vankerm07} developed a formula for the threshold $x_{0}$ in the Pareto model that has more of a rule-of-thumb nature. It is given by \begin{equation} \hat{x}_{0} := \min(\max(2.5\bar{x}, \hat{q}_{0.98}), \hat{q}_{0.97}), \end{equation} where $\bar{x}$ is the weighted mean, and $\hat{q}_{0.98}$ and $\hat{q}_{0.97}$ are weighted quantiles as defined in Equation~\ref{eq:wq}. It is important to note that this formula is designed specifically for the equivalized disposable income in EU-SILC data and can withstand a small number of nonrepresentative outliers. In \pkg{laeken}, the function \code{paretoScale()} provides functionality for estimating the threshold via \citeauthor{vankerm07}'s formula. Its argument \code{w} can be used to supply sample weights. <<>>= ts <- paretoScale(eusilcH$eqIncome, w = eusilcH$db090) ts @ The estimated threshold is again returned as an object of class \code{"paretoScale"}. % \subsubsection{Other methods for finding the threshold} % % Many procedures for finding the threshold in the Pareto model have been % introduced in the literature. For instance, \citet*{beirlant96b, beirlant96a} % developed an analytical procedure for finding the optimal number of % observations in the tail for the maximum likelihood estimator of the shape % parameter by minimizing the asymptotic mean squared error (AMSE). This % procedure is available in \pkg{laeken} through function \code{minAMSE()}, but % is not further discussed here since it is not robust. \citet{dupuis06}, on the % other hand, proposed a robust prediction error criterion for choosing the % optimal number of observations in the tail and the shape parameter % simultaneously. Nevertheless, our implementation of this robust criterion is % unstable and is therefore not included in \pkg{laeken}. \subsection{Estimation of the shape parameter} \label{sec:shape} Once the threshold for the Pareto model is determined, the shape parameter $\theta$ can be estimated via the \emph{points over threshold} method, i.e., by fitting the distribution to the $k$ data points that are larger than the threshold. Since our aim is to identify extreme outliers that deviate from the Pareto model, the shape parameter needs to be estimated in a robust way. \subsubsection{Integrated squared error estimator} The integrated squared error (ISE) criterion was first introduced by \citet{terrell90} as a more robust alternative to maximum likelihood estimation. \citet{vandewalle07} proposed to use this criterion in the context of Pareto tail modeling, but they do not consider sample weights. However, the Pareto distribution is modeled in terms of the \emph{relative excesses} \begin{equation} y_{i} := \frac{x_{n-k+i}}{x_{n-k}}, \qquad i = 1, \ldots, k. \end{equation} Now the density function of the Pareto distribution for the relative excesses is approximated by \begin{equation} f_{\theta}(y) = \theta y^{-(1+\theta)}. \end{equation} With this model density, the integrated squared error criterion can be written as \begin{equation} \hat{\theta} = \arg \min_{\theta} \left[ \int f_{\theta}^{2}(y) dy - 2 \mathbb{E}(f_{\theta}(Y)) \right] , \end{equation} see \citet{vandewalle07}. For survey samples, \citet{alfons13a} propose to use the weighted mean as an estimator of $\mathbb{E}(f_{\theta}(Y))$ to obtain the \emph{weighted integrated squared error} (wISE) estimator: \begin{equation} \label{eq:wISE} \hat{\theta}_{\mathrm{wISE}} = \arg \min_{\theta} \left[ \int f_{\theta}^{2}(y) dy - \frac{2}{\sum_{i=1}^{k} w_{n-k+i}} \sum_{i=1}^{k} w_{n-k+i} f_{\theta}(y_{i}) \right] . \end{equation} The wISE estimator can be computed using the function \code{thetaISE()}. The arguments \code{k} and \code{x0} are available to supply either the number of observations in the tail or the threshold, and sample weights can be supplied via the argument \code{w}. <<>>= thetaISE(eusilcH$eqIncome, k = ts$k, w = eusilcH$db090) thetaISE(eusilcH$eqIncome, x0 = ts$x0, w = eusilcH$db090) @ \subsubsection{Partial density component estimator} Following the observation by \citet{scott04} that $f_{\theta}$ in the ISE criterion does not need to be a real density, \citet{vandewalle07} proposed to minimize the ISE criterion based on an incomplete density mixture model $u f_{\theta}$ instead. \citet{alfons13a} generalized their estimator to take sample weights into account, yielding the \emph{weighted partial density component} (wPDC) estimator \begin{equation} \label{eq:wPDC} \hat{\theta}_{\mathrm{wPDC}} = \arg \min_{\theta} \left[ u^{2} \int f_{\theta}^{2}(y) dy - \frac{2u}{\sum_{i=1}^{k} w_{n-k+i}} \sum_{i = 1}^{k} w_{n-k+i} f_{\theta}(y_{i}) \right] \end{equation} with \begin{equation} \hat{u} = \left. \frac{1}{\sum_{i=1}^{k} w_{n-k+i}} \sum_{i = 1}^{k} w_{n-k+i} f_{\hat{\theta}}(y_{i}) \right/ \int f_{\hat{\theta}}^{2}(y) dy. \end{equation} Based on extensive simulation studies, \citet{alfons13a} conclude that the wPDC estimator is favorable over the wISE estimator due to better robustness properties. The function \code{thetaPDC()} is implemented in package \pkg{laeken} to compute the wPDC estimator. As before, it is necessary to supply either the number of observations in the tail via the argument \code{k}, or the threshold via the argument \code{x0}. Sample weights can be supplied using the argument \code{w}. <<>>= thetaPDC(eusilcH$eqIncome, k = ts$k, w = eusilcH$db090) thetaPDC(eusilcH$eqIncome, x0 = ts$x0, w = eusilcH$db090) @ % \subsubsection{Other estimators for the shape parameter} % Many other estimators for the shape parameter are implemented in package % \pkg{laeken}, e.g., the maximum likelihood estimator \citep{hill75} or the more % robust weighted maximum likelihood estimator \citep{dupuis02}. However, those % estimators are either not robust or have not (yet) been adapted for sample % weights and are therefore not further discussed in this paper. \subsection{Robust estimation of the indicators via Pareto tail modeling} \label{sec:fit} The basic idea for robust estimation of the indicators is to first detect nonrepresentative outliers based on the Pareto model. Afterwards their influence on the indicators is reduced by either downweighting the outliers and recalibrating the remaining observations, or by replacing the outlying values with values from the fitted distribution. The main advantage of this general approach is that it can be applied to any indicator. With the fitted Pareto distribution $F_{\hat{\theta}}$, nonrepresentative outliers can now be detected as observations being larger than a certain $F_{\hat{\theta}}^{-1}(1-\alpha)$ quantile. From extensive simulation studies \citep{AMELI-D7.1, alfons13a}, $\alpha = 0.005$ or $\alpha = 0.01$ are seem suitable choices for this tuning parameter. Then the following approaches are implemented in \pkg{laeken} to reduce the influence of the outliers: % \begin{description} \item[Calibration of nonrepresentative outliers (CN):] As nonrepresentative outliers are considered to be somewhat unique to the population data, the sample weights of the corresponding observations are set to 1. The weights of the remaining observations are adjusted accordingly by calibration \citep[see, e.g.,][]{deville93}. \item[Replacement of nonrepresentative outliers (RN):] The outliers are replaced by values drawn from the fitted distribution $F_{\hat{\theta}}$, thereby preserving the order of the original values. \item[Shrinkage of nonrepresentative outliers (SN):] The outliers are shrunken to the theoretical quantile $F_{\hat{\theta}}^{-1}(1-\alpha)$ used for outlier detection. \end{description} % A more mathematical formulation and further details on the CN and RN approaches can be found in \citet{alfons13a}, who advocate the CN approach in combination with the wPDC estimator for fitting the Pareto distribution. For a practical analysis with package \pkg{laeken}, let us first revisit the estimation of the shape parameter. Rather than applying a function such as \code{thetaPDC()} directly as in the previous section, the function \code{paretoTail()} should be used to fit the Pareto distribution to the upper tail of the data. It returns an object of class \code{"paretoTail"}, which contains all necessary information for further analysis with one of the approaches described above. <>= fit <- paretoTail(eqIncomeOut, k = ts$k, w = eusilc$db090, groups = eusilc$db030) @ Note that the household IDs are supplied via the argument \code{groups} such that the Pareto distribution is fitted on the household level rather than the individual level. By default, the wPDC is used to estimate the shape parameter, but other estimators can be specified via the \code{method} argument. In addition, the tuning parameter $\alpha$ for outlier detection can be supplied as argument \code{alpha}. \begin{figure}[t!] \begin{center} \setkeys{Gin}{width=0.65\textwidth} <>= plot(fit) @ \caption{Pareto quantile plot for the EU-SILC example data with additional diagnostic information on the fitted distribution and any detected outliers.} \label{fig:diagnostic} \end{center} \end{figure} Moreover, the \code{plot()} method for \code{"paretoTail"} objects produces a Pareto quantile plot (see Section~\ref{sec:threshold}) with additional diagnostic information. Figure~\ref{fig:diagnostic} contains the resulting plot for the object computed above. The lower horizontal dotted line corresponds to the estimated threshold $\hat{x}_{0}$, whereas the slope of the solid grey line is given by the reciprocal of the estimated shape parameter $\hat{\theta}$. Furthermore, the upper horizontal dotted line represents the theoretical quantile used for outlier detection. In this example, the threshold seems somewhat too high. Nevertheless, the estimate of the shape parameter is accurate and the cutoff point for outlier detection is appropriate, resulting in correct identification of the outlier that we added to the data set. For downweighting nonrepresentative outliers, the function \code{reweightOut()} is available. It returns a vector of the recalibrated weights. In the command below, we use regional information as auxiliary variables for calibration. The function \code{calibVars()} thereby transforms a factor into a matrix of binary variables. The returned recalibrated weights are then simply used to estimate the Gini coefficient with function \code{gini()}. <<>>= w <- reweightOut(fit, calibVars(eusilc$db040)) gini(eqIncomeOut, w) @ To replace the nonrepresentative outliers with values drawn from the fitted distribution, the function \code{replaceOut()} is implemented. For reproducible results, the seed of the random number generator is set beforehand. The returned income vector is then supplied to \code{gini()} to estimate the Gini coefficient. <<>>= set.seed(123) eqIncomeRN <- replaceOut(fit) gini(eqIncomeRN, weights = eusilc$rb050) @ Similarly, the function \code{shrinkOut()} can be used to shrink the nonrepresentative outliers to the theoretical quantile used for outlier detection. <<>>= eqIncomeSN <- shrinkOut(fit) gini(eqIncomeSN, weights = eusilc$rb050) @ All three robust estimates are very close to the original value before the outlying household had been introduced (see Section~\ref{sec:laeken}). For comparison, we compute the standard estimate of Gini coefficient with the income vector including the outlying household. <<>>= gini(eqIncomeOut, weights = eusilc$rb050) @ Clearly, the standard estimate shows an unreasonably large influence of only one outlying household, illustrating the need for the robust methods. % ------------------- % Variance estimation % ------------------- \section{Variance estimation} \label{sec:var} The \pkg{laeken} package uses bootstrap techniques for estimating the variance of complex survey indicators. Bootstrap methods in general provide better estimates for nonsmooth estimators than other other resampling techniques such as jackknifing or balanced repeated replication \citep[e.g.,][]{AMELI-D3.1}. The naive bootstrap in \pkg{laeken} is quite fast to compute and provides reasonable estimates whenever there is not much variation in the sample weights, which is for example typically the case for EU-SILC data. If there is larger variation among the sample weights, a calibrated bootstrap should be applied. We describe both approaches and their implementation in the following sections. \subsection{Naive bootstrap} \label{sec:naive} Let $\tau$ denote a certain indicator of interest and let $\boldsymbol{X} := (\bold{x}_{1}, \ldots, \bold{x}_{n})^{\top}$ be a survey sample with $n$ observations. Then the \emph{naive bootstrap} algorithm for estimating the variance and confidence interval of an estimate $\hat{\tau}(\boldsymbol{X})$ of the indicator can be summarized as follows: \begin{enumerate} \item Draw $R$ independent bootstrap samples $\boldsymbol{X}_{1}^{*}, \ldots, \boldsymbol{X}_{R}^{*}$ from $\boldsymbol{X}$. For stratified sampling designs, resampling is performed within each stratum independently. \item Compute the bootstrap replicate estimates $\hat{\tau}_{r}^{*} := \hat{\tau}(\boldsymbol{X}_{r}^{*})$ for each bootstrap sample $\boldsymbol{X}_{r}^{*}$, $r = 1, \ldots, R$, taking the sample weights from the respective bootstrap samples into account. \item Estimate the variance $V(\hat{\tau})$ by the variance of the $R$ bootstrap replicate estimates: \begin{equation} \hat{V}(\hat{\tau}) := \frac{1}{R-1} \sum_{r=1}^{R} \left( \hat{\tau}_{r}^{*} - \frac{1}{R} \sum_{s=1}^{R} \hat{\tau}_{s}^{*} \right)^{2}. \end{equation} \item Estimate the confidence interval at confidence level $1 - \alpha$ by one of the following methods \citep[for details, see][]{davison97}: \begin{description} \item[Percentile method:] $\left[ \hat{\tau}_{((R+1) \frac{\alpha}{2})}^{*}, \hat{\tau}_{((R+1)(1-\frac{\alpha}{2}))}^{*} \right]$, as suggested by \cite{efron93}. \item[Normal approximation:] $\hat{\tau} \pm z_{1-\frac{\alpha}{2}} \cdot \hat{V}(\hat{\tau})^{1/2}$ with $z_{1-\frac{\alpha}{2}} = \Phi^{-1}(1 - \frac{\alpha}{2})$. \item[Basic bootstrap method:] $\left[ 2\hat{\tau} - \hat{\tau}_{((R+1)(1-\frac{\alpha}{2}))}^{*}, 2\hat{\tau} - \hat{\tau}_{((R+1)\frac{\alpha}{2})}^{*} \right]$. \end{description} For the percentile and the basic bootstrap method, $\hat{\tau}_{(1)}^{*} \leq \ldots \leq \hat{\tau}_{(R)}^{*}$ denote the order statistics of the bootstrap replicate estimates. \end{enumerate} With package \pkg{laeken}, variance estimates and confidence intervals can easily be included in the estimation of an indicator. It is only necessary to specify a few more arguments in the call to the function computing the indicator. The argument \code{var} is available to specify the type of variance estimation, although only the bootstrap is currently implemented. Furthermore, the significance level $\alpha$ for the confidence intervals can be supplied via the argument \code{alpha} (the default is to use \code{alpha=0.05} for 95\% confidence intervals). Additional arguments are then passed to the underlying function for variance estimation. <>= arpr("eqIncome", weights = "rb050", design = "db040", cluster = "db030", data = eusilc, var = "bootstrap", bootType = "naive", seed = 1234) @ For the bootstrap, the function \code{bootVar()} is called internally for variance and confidence interval estimation. Important arguments are \code{design} and \code{cluster} for specifying the strata and clusters in the sampling design, \code{R} for supplying the number of bootstrap replicates, \code{bootType} for specifying the type of bootstrap estimator, and \code{ciType} for specifying the type of confidence interval. For reproducibility, the seed of the random number generator can be set via the argument \code{seed}. An important feature of package \pkg{laeken} is that indicators can be estimated for different subdomains with a single command, which still holds for variance and confidence interval estimation. As for point estimation, only the \code{breakdown} argument needs to be specified (cf. the example in Section~\ref{sec:sub}). \subsection{Calibrated bootstrap} \label{sec:calib} In practice, the initial sample weights from the sampling design are often adjusted by calibration, for instance to account for non-response or to ensure that the sums of the sample weights for all observations within certain subgroups equal the respective known population sizes. However, drawing a bootstrap sample then has the effect that the sample weights in the bootstrap sample no longer sum up to the correct values. As a remedy, the sample weights of each bootstrap sample should be recalibrated. For better accuracy at a higher computational cost, the \emph{calibrated bootstrap} algorithm extends the naive bootstrap algorithm from the previous section by adding the following step between Steps~1 and~2: \begin{itemize} \item[1b.] Calibrate the sample weights for each bootstrap sample $\boldsymbol{X}_{r}^{*}$, $r = 1, \ldots, R$ \citep[see, e.g.,][for details on calibration]{deville92, deville93}. \end{itemize} Using \pkg{laeken}, the function call for including variance and confidence intervals via the calibrated bootstrap is very similar to its counterpart for the naive bootstrap. A matrix of auxiliary calibration variables needs to be supplied via the argument \code{X}. The function \code{calibVars()} can thereby by used to transform a factor into a matrix of binary variables. In the %examples example below, information on region and gender is used for calibration. Furthermore, the argument \code{totals} can be used to supply the corresponding population totals. If the \code{totals} argument is omitted, the population totals are computed from the sample weights of the original sample. This follows the assumption that those weights are already calibrated on the supplied auxiliary variables. <>= aux <- cbind(calibVars(eusilc$db040), calibVars(eusilc$rb090)) arpr("eqIncome", weights = "rb050", design = "db040", cluster = "db030", data = eusilc, var = "bootstrap", X = aux, seed = 1234) @ % ----------- % Conclusions % ----------- \section{Conclusions} \label{sec:conclusions} In this paper, we demonstrate the use of the \proglang{R} package \pkg{laeken} for computing point and variance estimates of indicators from complex surveys. Various commonly used indicators on social exclusion and poverty are thereby implemented. Their estimation is made easy with the package, as the corresponding functions allow to compute point and variance estimates with a single command, even for different subdomains of the data. In addition, we illustrate with a simple example that some of the indicators are highly influenced by extreme outliers in the data \citep[cf.][]{hulliger09a, alfons13a}. As a remedy, a general procedure for robust estimation of the indicators is implemented in \pkg{laeken}. The procedure is based on fitting a Pareto distribution to the upper tail of the data and has the advantage that it can be applied to any indicator. A diagnostic plot thereby allows to check whether the Pareto tail model is appropriate for the data at hand. Concerning variance estimation, further techniques for complex survey samples are available in \proglang{R} through other packages. For instance, package \pkg{EVER} \citep{EVER} provides functionality for the delete-a-group jackknife. Other methods such as balanced repeated replication are implemented in package \pkg{survey} \citep{lumley04, survey}. The incorporation of those packages for additional variance estimation procedures is therefore considered for future work. % --------------------- % computational details % --------------------- % \section*{Computational details} % All computations in this paper were performed using \pkg{Sweave} % \citep{leisch02a} with the following \proglang{R} session: % <>= % toLatex(sessionInfo(), locale=FALSE) % @ % % % The most recent version of package \pkg{laeken} is always available from CRAN % (the Comprehensive \proglang{R} Archive Network, % \url{https://CRAN.R-project.org}), and (an up-to-date version of) this paper is % also included as a package vignette. % --------------- % acknowledgments % --------------- \section*{Acknowledgments} This work was partly funded by the European Union (represented by the European Commission) within the \engordnumber{7} framework programme for research (Theme~8, Socio-Economic Sciences and Humanities, Project AMELI (Advanced Methodology for European Laeken Indicators), Grant Agreement No. 217322). Visit \url{http://ameli.surveystatistics.net} for more information on the project. % ------------ % bibliography % ------------ % \bibliographystyle{jss} \bibliography{laeken} \end{document} laeken/NEWS0000644000176200001440000001251314554264274012227 0ustar liggesusersChanges in laeken version 0.5.3 + Bugfix in function 'eqInc' if single income components are supplied. + Updated CITATION file to use 'bibEntry' Changes in laeken version 0.5.2 + Added argument 'threshold' to function 'arpr'. + Fixed DOI's and URL's in documentation. Changes in laeken version 0.5.1 + Fixed documentation of 'minAMSE'. Changes in laeken version 0.5.0 + Order of factors changed in function 'prop'. + Bugfixes in computation of weighted quantiles and quintile share ratio to strictly follow Eurostat definitions. + Package title now in title case. + Packages 'boot' and 'MASS' are now only Imports instead of Depends. Changes in laeken version 0.4.6 + Estimation of a proportion and its variance (class "prop", function 'prop' and related changes). Changes in laeken version 0.4.5 + Added references to JSS paper. Changes in laeken version 0.4.4 + Updated vignette 'laeken-intro'. + Updated some help files. Changes in laeken version 0.4.3 + Bugfix in 'bootVar' when resampling clusters of observations rather than individuals. Changes in laeken version 0.4.2 + Bootstrap variance estimation now contains an argument 'cluster', which allows for resampling clusters of observations rather than individuals. + Bugfix in 'gpg': arguments 'gender' and 'method' are now passed to 'variance'. + Updated vignette 'laeken-intro'. Changes in laeken version 0.4.1 + Reduced run times of examples for 'bootVar' and 'variance'. + Functions 'arpt' and 'arpr' can now take a vector of percentages of the weighted median to be used for the at-risk-of-poverty threshold. + Updated vignette 'laeken-intro'. Changes in laeken version 0.4.0 + Added example data 'ses' for the Structure of Earnings Survey. + Added vignette 'laeken-intro'. + Minimal changes in 'print' method for indicators. + Minimal changes in help files and vignettes. + Removed attributes from variable 'eqIncome' in example data 'eusilc'. + The level names of argument 'gender' in function 'gpg' can now be any character string. Note: the first level of gender should always correspond to females. Changes in laeken version 0.3.3 + New plot method for objects of class "paretoTail". + Package roxygen2 is now used for documentation. + Bugfixes in 'paretoQPlot' and 'meanExcessPlot': order of graphical parameters 'pch', 'cex', 'col' and 'bg' for the data points is now preserved. + Bugfix in 'meanExcessPlot': computation of weighted quantiles no longer throws error. Changes in laeken version 0.3.2 + Package is built with flag --resave-data to avoid warning with R 2.15.0. Changes in laeken version 0.3.1 + New arguments in function 'paretoScale' for generalizations of Van Kerm's formula. + Updated author affiliation. Changes in laeken version 0.3 + New function 'gpg' for estimating the gender pay (wage) gap. + Fixed function 'bootVar' for package 'boot' >= 1.3-1. Changes in laeken version 0.2.3 + Corrected mistake in formula for weighted Hill estimator in vignette 'laeken-pareto'. Changes in laeken version 0.2.2 + New function 'shrinkOut' for Pareto tail modeling to shrink outliers to the theoretical quantile used for outlier detection. Changes in laeken version 0.2.1 + Fixed help files for 'meanExcessPlot' and 'paretoQPlot' on Microsoft Windows systems. + Fixed package reference in vignette 'laeken-variance'. Changes in laeken version 0.2 + Functions for fitting a Pareto distribution now have an additional argument 'x0' to specify threshold directly instead of using number of observations 'k' in the tail. + In the graphical exploration of the data using 'meanExcessPlot' or 'paretoQPlot', sample weights can now be considered and the threshold (scale parameter) can be selected interactively. + Function 'paretoQPlot' now simply uses logarithmic y-axis to show the labels in the scale of the original values. + Changed default axis labels in 'paretoQPlot'. + Sample weights can now be considered when fitting a Pareto distribution using 'thetaHill', 'thetaISE' or 'thetaPDC'. + New function 'calibVars' for convenient construction of binary variables for calibration. + New functions 'paretoTail', 'replaceTail', 'replaceOut' and 'reweightOut' for improved methodology for Pareto tail modeling with a common interface. + Row names of the example data 'eusilc' are now given by 1 to the number of rows. + New wrapper function 'weightedMean' for the (weighted) mean. + New function 'paretoScale' for estimating the threshold for Pareto tail modeling. + Totals for calibrated bootstrap variance are now by default computed from the original data using the Horvitz-Thompson estimator. + Added package vignettes 'laeken-standard', 'laeken-pareto' and 'laeken-variance'. Changes in laeken version 0.1.3 + Minimal changes in help file for 'calibWeights'. Changes in laeken version 0.1.2 + Bugfix in 'thetaWML' for bias correction term with weight function based on standardized residuals. Changes in laeken version 0.1.1 + Bugfix in 'bootVar' in case of breakdown by year and domain. laeken/R/0000755000176200001440000000000014125312655011716 5ustar liggesuserslaeken/R/bootVar.R0000644000176200001440000006057314127253256013473 0ustar liggesusers# --------------------------------------- # Author: Andreas Alfons # Vienna University of Technology # --------------------------------------- ## TODO: support estimators based on semiparametric outlier detection ## FIXME: do not use 'p' as argument name for function passed to 'boot' #' Bootstrap variance and confidence intervals of indicators on social exclusion #' and poverty #' #' Compute variance and confidence interval estimates of indicators on social #' exclusion and poverty based on bootstrap resampling. #' #' @param inc either a numeric vector giving the equivalized disposable income, #' or (if \code{data} is not \code{NULL}) a character string, an integer or a #' logical vector specifying the corresponding column of \code{data}. #' @param weights optional; either a numeric vector giving the personal sample #' weights, or (if \code{data} is not \code{NULL}) a character string, an #' integer or a logical vector specifying the corresponding column of #' \code{data}. #' @param years optional; either a numeric vector giving the different years of #' the survey, or (if \code{data} is not \code{NULL}) a character string, an #' integer or a logical vector specifying the corresponding column of #' \code{data}. If supplied, values are computed for each year. #' @param breakdown optional; either a numeric vector giving different domains, #' or (if \code{data} is not \code{NULL}) a character string, an integer or a #' logical vector specifying the corresponding column of \code{data}. If #' supplied, the values for each domain are computed in addition to the overall #' value. #' @param design optional; either an integer vector or factor giving different #' strata for stratified sampling designs, or (if \code{data} is not #' \code{NULL}) a character string, an integer or a logical vector specifying #' the corresponding column of \code{data}. If supplied, this is used as #' \code{strata} argument in the call to \code{\link[boot]{boot}}. #' @param cluster optional; either an integer vector or factor giving different #' clusters for cluster sampling designs, or (if \code{data} is not #' \code{NULL}) a character string, an integer or a logical vector specifying #' the corresponding column of \code{data}. #' @param data an optional \code{data.frame}. #' @param indicator an object inheriting from the class \code{"indicator"} that #' contains the point estimates of the indicator (see \code{\link{arpr}}, #' \code{\link{qsr}}, \code{\link{rmpg}} or \code{\link{gini}}). #' @param R a numeric value giving the number of bootstrap replicates. #' @param bootType a character string specifying the type of bootstap to be #' performed. Possible values are \code{"calibrate"} (for calibration of the #' sample weights of the resampled observations in every iteration) and #' \code{"naive"} (for a naive bootstrap without calibration of the sample #' weights). #' @param X if \code{bootType} is \code{"calibrate"}, a matrix of calibration #' variables. #' @param totals numeric; if \code{bootType} is \code{"calibrate"}, this gives #' the population totals. If \code{years} is \code{NULL}, a vector should be #' supplied, otherwise a matrix in which each row contains the population totals #' of the respective year. If this is \code{NULL} (the default), the population #' totals are computed from the sample weights using the Horvitz-Thompson #' estimator. #' @param ciType a character string specifying the type of confidence #' interval(s) to be computed. Possible values are \code{"perc"}, \code{"norm"} #' and \code{"basic"} (see \code{\link[boot]{boot.ci}}). #' @param alpha a numeric value giving the significance level to be used for #' computing the confidence interval(s) (i.e., the confidence level is \eqn{1 - #' }\code{alpha}), or \code{NULL}. #' @param seed optional; an integer value to be used as the seed of the random #' number generator, or an integer vector containing the state of the random #' number generator to be restored. #' @param na.rm a logical indicating whether missing values should be removed. #' @param gender either a numeric vector giving the gender, or (if \code{data} #' is not \code{NULL}) a character string, an integer or a logical vector #' specifying the corresponding column of \code{data}. #' @param method a character string specifying the method to be used (only for #' \code{\link{gpg}}). Possible values are \code{"mean"} for the mean, and #' \code{"median"} for the median. If weights are provided, the weighted mean #' or weighted median is estimated. #' @param \dots if \code{bootType} is \code{"calibrate"}, additional arguments #' to be passed to \code{\link{calibWeights}}. #' #' @return An object of the same class as \code{indicator} is returned. See #' \code{\link{arpr}}, \code{\link{qsr}}, \code{\link{rmpg}} or #' \code{\link{gini}} for details on the components. #' #' @note This function gives reasonable variance estimates for basic sample #' designs such as simple random sampling or stratified simple random sampling. #' #' @author Andreas Alfons #' #' @seealso \code{\link{variance}}, \code{\link{calibWeights}}, #' \code{\link{arpr}}, \code{\link{qsr}}, \code{\link{rmpg}}, \code{\link{gini}} #' #' @references #' A. Alfons and M. Templ (2013) Estimation of Social Exclusion Indicators #' from Complex Surveys: The \R Package \pkg{laeken}. \emph{Journal of #' Statistical Software}, \bold{54}(15), 1--25. \doi{10.18637/jss.v054.i15} #' #' @keywords survey #' #' @examples #' data(eusilc) #' a <- arpr("eqIncome", weights = "rb050", data = eusilc) #' #' ## naive bootstrap #' bootVar("eqIncome", weights = "rb050", design = "db040", #' data = eusilc, indicator = a, R = 50, #' bootType = "naive", seed = 123) #' #' ## bootstrap with calibration #' bootVar("eqIncome", weights = "rb050", design = "db040", #' data = eusilc, indicator = a, R = 50, #' X = calibVars(eusilc$db040), seed = 123) #' #' @importFrom stats runif #' @importFrom boot boot boot.ci #' @export bootVar <- function(inc, weights = NULL, years = NULL, breakdown = NULL, design = NULL, cluster = NULL, data = NULL, indicator, R = 100, bootType = c("calibrate", "naive"), X, totals = NULL, ciType = c("perc", "norm", "basic"), # type "stud" and "bca" are currently not allowed alpha = 0.05, seed = NULL, na.rm = FALSE, gender = NULL, method = NULL, ...) { UseMethod("bootVar", indicator) } ## class "indicator" #' @export bootVar.indicator <- function(inc, weights = NULL, years = NULL, breakdown = NULL, design = NULL, cluster = NULL, data = NULL, indicator, R = 100, bootType = c("calibrate", "naive"), X, totals = NULL, ciType = c("perc", "norm", "basic"), # type "stud" and "bca" are currently not allowed alpha = 0.05, seed = NULL, na.rm = FALSE, gender = NULL, method = NULL, ...) { ## initializations # check whether weights have been supplied haveWeights <- !is.null(weights) haveGender <- !is.null(gender) # check whether indicator is broken down by year # if so, check whether years have been supplied ys <- indicator$years byYear <- !is.null(ys) if(byYear && is.null(years)) stop("'years' must be supplied") # check whether indicator is broken down by stratum # if so, check whether breakdown has been supplied rs <- indicator$strata byStratum <- !is.null(rs) if(byStratum && is.null(breakdown)) stop("'breakdown' must be supplied") haveDesign <- !is.null(design) haveCluster <- !is.null(cluster) # if a data.frame has been supplied, extract the respective vectors if(!is.null(data)) { inc <- data[, inc] # make numeric if indicator is proportion inc <- as.numeric(as.integer(inc)) if(!is.null(weights)) weights <- data[, weights] if(!is.null(gender)) gender <- data[, gender] if(byYear) years <- data[, years] if(byStratum) breakdown <- data[, breakdown] if(haveDesign) design <- data[, design] if(haveCluster) cluster <- data[, cluster] } # check whether the vectors have the correct type # make numeric if indicator is proportion inc <- as.numeric(as.integer(inc)) if(!is.numeric(inc)) stop("'inc' must be a numeric vector") n <- length(inc) if(haveWeights && !is.numeric(weights)) { stop("'weights' must be a numeric vector") } # if(haveGender && !is.numeric(gender)) { # stop("'gender' must be a numeric vector") # } if(byYear && !is.numeric(years)) { stop("'years' must be a numeric vector") } if(byStratum && !is.vector(breakdown) && !is.factor(breakdown)) { stop("'breakdown' must be a vector or factor") } if(haveDesign && !is.integer(design) && !is.factor(design)) { stop("'design' must be an integer vector or factor") } if(haveCluster && !is.integer(cluster) && !is.factor(cluster)) { stop("'cluster' must be an integer vector or factor") } if(is.null(data)) { # check vector lengths if(haveWeights && length(weights) != n) { stop("'weights' must have length ", n) } if(byYear && length(years) != n) { stop("'years' must have length ", n) } if(byStratum && length(breakdown) != n) { stop("'breakdown' must have length ", n) } if(haveDesign && length(design) != n) { stop("'design' must have length ", n) } if(haveCluster && length(cluster) != n) { stop("'cluster' must have length ", n) } } if(!haveDesign) design <- rep.int(1, n) # check other input if(!is.numeric(R) || length(R) == 0) stop("'R' must be numeric") else R <- as.integer(R[1]) if(!is.numeric(alpha) || length(alpha) == 0) stop("'alpha' must be numeric") else alpha <- alpha[1] bootType <- match.arg(bootType) calibrate <- haveWeights && bootType == "calibrate" if(calibrate) { X <- as.matrix(X) if(!is.numeric(X)) stop("'X' must be a numeric matrix") # if(nrow(X) != n) stop("'X' must have ", n, " rows") if(is.null(totals)) { # compute totals from original data with Horvitz-Thompson estimator if(byYear) { totals <- lapply(ys, function(y) { # extract current year from calibration variables and # weights i <- years == y X <- X[i, , drop=FALSE] weights <- weights[i] # compute totals for current year apply(X, 2, function(i) sum(i*weights)) }) totals <- do.call(rbind, totals) # form matrix of totals rownames(totals) <- ys # use years as rownames for totals } else totals <- apply(X, 2, function(i) sum(i*weights)) } else if(byYear) totals <- as.matrix(totals) if(!is.numeric(totals)) stop("'totals' must be of type numeric") } else { X <- NULL totals <- NULL } ciType <- match.arg(ciType) ## preparations data <- data.frame(inc=inc) data$weight <- weights data$year <- years data$stratum <- breakdown data$cluster <- cluster data$gender <- gender data$method <- method # this is a bit of an ugly hack if(inherits(indicator, "arpr")) { p <- indicator$p # percentage of median used for threshold } else p <- NULL byP <- length(p) > 1 if(!is.null(seed)) set.seed(seed) # set seed of random number generator if(!exists(".Random.seed", envir=.GlobalEnv, inherits=FALSE)) runif(1) seed <- .Random.seed # seed is later on added to the object to be returned ## calculations # get basic function for bootstrap replications with definition: # function(x, i, p, X, totals, rs, na.rm) fun <- getFun(indicator, byStratum) bootFun <- getBootFun(calibrate, fun) if(byYear) { # ---------- breakdown by year ---------- # get more complex function for additional with definition # function(y, x, R, p, aux, totals, rs, alpha, ciType, na.rm, ...) funByYear <- getFunByYear(byStratum, calibrate, bootFun) if(byStratum) { # ---------- breakdown by stratum ---------- tmp <- lapply(ys, funByYear, data, R, design, cluster, p, X, totals, ys, rs, alpha, ciType, na.rm, ...) var <- do.call(c, lapply(tmp, function(x) x[[1]])) names(var) <- ys varByStratum <- do.call(rbind, lapply(tmp, function(x) x[[2]])) ci <- do.call(rbind, lapply(tmp, function(x) x[[3]])) rownames(ci) <- ys ciByStratum <- do.call(rbind, lapply(tmp, function(x) x[[4]])) # order 'varByStratum' and 'ciByStratum' according to 'valueByStratum' tmp <- indicator$valueByStratum[, 1:2] tmp <- data.frame(order=1:nrow(tmp), tmp) varByStratum <- merge(varByStratum, tmp, all=TRUE, sort=FALSE) varByStratum <- varByStratum[order(varByStratum$order), -4] ciByStratum <- merge(ciByStratum, tmp, all=TRUE, sort=FALSE) ciByStratum <- ciByStratum[order(ciByStratum$order), -5] } else { # ---------- no breakdown by stratum ---------- tmp <- sapply(ys, funByYear, data, R, design, cluster, p, X, totals, ys, rs, alpha, ciType, na.rm, ...) colnames(tmp) <- ys var <- tmp[1,] ci <- t(tmp[2:3,]) } } else { # ---------- no breakdown by year or threshold ---------- b <- clusterBoot(data, bootFun, R, strata=design, cluster=cluster, p=p, aux=X, totals=totals, rs=rs, na.rm=na.rm, ...) if(byStratum) { # ---------- breakdown by stratum ---------- var <- apply(b$t, 2, var) ci <- lapply(1:length(b$t0), function(i) { ci <- boot.ci(b, conf=1-alpha, type=ciType, index=i) switch(ciType, perc=ci$percent[4:5], norm=ci$normal[2:3], basic=ci$basic[4:5], stud=ci$student[4:5], bca=ci$bca[4:5]) }) ci <- do.call(rbind, ci) colnames(ci) <- c("lower", "upper") if(byP) { overall <- 1:length(p) tmp <- indicator$valueByStratum[, 1:2] varByStratum <- data.frame(tmp, var=var[-overall]) var <- var[overall] ciByStratum <- data.frame(tmp, ci[-overall, , drop=FALSE]) ci <- ci[overall, , drop=FALSE] names(var) <- rownames(ci) <- names(indicator$value) } else { varByStratum <- data.frame(stratum=rs, var=var[-1]) var <- var[1] ciByStratum <- data.frame(stratum=rs, ci[-1, , drop=FALSE]) ci <- ci[1,] } } else { # ---------- no breakdown by stratum ---------- if(byP) { var <- apply(b$t, 2, var) ci <- lapply(1:length(b$t0), function(i) { ci <- boot.ci(b, conf=1-alpha, type=ciType, index=i) switch(ciType, perc=ci$percent[4:5], norm=ci$normal[2:3], basic=ci$basic[4:5], stud=ci$student[4:5], bca=ci$bca[4:5]) }) ci <- do.call(rbind, ci) colnames(ci) <- c("lower", "upper") names(var) <- rownames(ci) <- names(indicator$value) } else { var <- var(b$t[, 1]) ci <- boot.ci(b, conf=1-alpha, type=ciType) ci <- switch(ciType, perc=ci$percent[4:5], norm=ci$normal[2:3], basic=ci$basic[4:5], stud=ci$student[4:5], bca=ci$bca[4:5]) names(ci) <- c("lower", "upper") } } } ## modify and return object indicator$varMethod <- "bootstrap" indicator$var <- var indicator$ci <- ci if(byStratum) { indicator$varByStratum <- varByStratum indicator$ciByStratum <- ciByStratum } indicator$alpha <- alpha indicator$seed <- seed return(indicator) } ## function to perform clustered bootstrap sampling clusterBoot <- function(data, statistic, ..., strata, cluster = NULL) { if(is.null(cluster)) boot(data, statistic, ..., strata=strata) else { fun <- function(cluster, i, ..., .data, .statistic) { # retrieve sampled individuals i <- do.call(c, split(1:nrow(.data), .data$cluster)[i]) # call the original statistic for the sample of individuals .statistic(.data, i, ...) } keep <- !duplicated(cluster) boot(cluster[keep], fun, ..., strata=strata[keep], .data=data, .statistic=statistic) } } ## utility functions: return functions to be used in the bootstrap replications # basic function for breakdown by stratum getFun <- function(indicator, byStratum) UseMethod("getFun") getFun.arpr <- function(indicator, byStratum) { if(byStratum) { function(x, p, rs, na.rm) { threshold <- p * weightedMedian(x$inc, x$weight) value <- weightedRate(x$inc, x$weight, threshold, na.rm=na.rm) valueByStratum <- sapply(rs, function(r, x, t) { i <- x$stratum == r weightedRate(x$inc[i], x$weight[i], t, na.rm=na.rm) }, x=x, t=threshold) c(value, valueByStratum) } } else { function(x, p, rs, na.rm) { threshold <- p * weightedMedian(x$inc, x$weight) weightedRate(x$inc, x$weight, threshold, na.rm=na.rm) } } } # the argument 'p' is not necessary here, but is used so # that we have a unified function call for all indicators getFun.qsr <- function(indicator, byStratum) { if(byStratum) { function(x, p, rs, na.rm) { value <- quintileRatio(x$inc, x$weight, na.rm=na.rm) valueByStratum <- sapply(rs, function(r, x, t) { i <- x$stratum == r quintileRatio(x$inc[i], x$weight[i], na.rm=na.rm) }, x=x) c(value, valueByStratum) } } else { function(x, p, rs, na.rm) { quintileRatio(x$inc, x$weight, na.rm=na.rm) } } } getFun.rmpg <- function(indicator, byStratum) { if(byStratum) { function(x, p, rs, na.rm) { threshold <- 0.6 * weightedMedian(x$inc, x$weight) value <- relativeGap(x$inc, x$weight, threshold=threshold, na.rm=na.rm) valueByStratum <- sapply(rs, function(r, x, t) { i <- x$stratum == r relativeGap(x$inc[i], x$weight[i], threshold=t, na.rm=na.rm) }, x=x, t=threshold) c(value, valueByStratum) } } else { function(x, p, rs, na.rm) { threshold <- 0.6 * weightedMedian(x$inc, x$weight) relativeGap(x$inc, x$weight, threshold=threshold, na.rm=na.rm) } } } # the argument 'p' is not necessary here, but is used so # that we have a unified function call for all indicators getFun.gini <- function(indicator, byStratum) { if(byStratum) { function(x, p, rs, na.rm) { value <- giniCoeff(x$inc, x$weight, na.rm=na.rm) valueByStratum <- sapply(rs, function(r, x, t) { i <- x$stratum == r giniCoeff(x$inc[i], x$weight[i], na.rm=na.rm) }, x=x) c(value, valueByStratum) } } else { function(x, p, rs, na.rm) { giniCoeff(x$inc, x$weight, na.rm=na.rm) } } } # the argument 'p' is not necessary here, but is used so # that we have a unified function call for all indicators getFun.prop <- function(indicator, byStratum) { if(byStratum) { function(x, p, rs, na.rm) { value <- propCoeff(x$inc, x$weight, na.rm=na.rm) valueByStratum <- sapply(rs, function(r, x, t) { i <- x$stratum == r propCoeff(x$inc[i], x$weight[i], na.rm=na.rm) }, x=x) c(value, valueByStratum) } } else { function(x, p, rs, na.rm) { propCoeff(x$inc, x$weight, na.rm=na.rm) } } } # the argument 'p' is not necessary here, but is used so # that we have a unified function call for all indicators getFun.gpg <- function(indicator, byStratum) { if(byStratum) { function(x, p, rs, na.rm) { value <- genderGap(x$inc, x$gender, x$method[1], x$weight, na.rm=na.rm) valueByStratum <- sapply(rs, function(r, x, t) { i <- x$stratum == r genderGap(x$inc[i], x$gender[i], x$method[1], x$weight[i], na.rm=na.rm) }, x=x) c(value, valueByStratum) } } else { function(x, p, rs, na.rm) { genderGap(x$inc, x$gender, x$method[1], x$weight, na.rm=na.rm) } } } # function that incorporates resampling and (if requested) calibration getBootFun <- function(calibrate, fun) { if(calibrate) { function(x, i, p, aux, totals, rs, na.rm, ...) { x <- x[i, , drop=FALSE] aux <- aux[i, , drop=FALSE] g <- calibWeights(aux, x$weight, totals, ...) x$weight <- g * x$weight fun(x, p, rs, na.rm) } } else { function(x, i, p, aux, totals, rs, na.rm, ...) { x <- x[i, , drop=FALSE] fun(x, p, rs, na.rm) } } } # more complex function for additional breakdown by year getFunByYear <- function(byStratum, calibrate, fun) { if(byStratum) { if(calibrate) { # ---------- breakdown by stratum, calibration ---------- function(y, x, R, design, cluster, p, aux, totals, ys, rs, alpha, ciType, na.rm, ...) { i <- x$year == y x <- x[i, , drop=FALSE] aux <- aux[i, , drop=FALSE] design <- design[i] cluster <- cluster[i] totals <- totals[ys == y,] b <- clusterBoot(x, fun, R, strata=design, cluster=cluster, p=p, aux=aux, totals=totals, rs=rs, na.rm=na.rm, ...) var <- apply(b$t, 2, var) varByStratum <- data.frame(year=y, stratum=rs, var=var[-1]) var <- var[1] ci <- sapply(1:((length(rs) + 1)), function(i) { ci <- boot.ci(b, conf=1-alpha, type=ciType, index=i) switch(ciType, perc=ci$percent[4:5], norm=ci$normal[2:3], basic=ci$basic[4:5], stud=ci$student[4:5], bca=ci$bca[4:5]) }) rownames(ci) <- c("lower", "upper") ciByStratum <- data.frame(year=y, stratum=rs, t(ci[, -1])) ci <- ci[, 1] list(var, varByStratum, ci, ciByStratum) } } else { # ---------- breakdown by stratum, no calibration ---------- function(y, x, R, design, cluster, p, aux, totals, ys, rs, alpha, ciType, na.rm, ...) { i <- x$year == y x <- x[i, , drop=FALSE] design <- design[i] cluster <- cluster[i] b <- clusterBoot(x, fun, R, strata=design, cluster=cluster, p=p, aux=aux, totals=totals, rs=rs, na.rm=na.rm, ...) var <- apply(b$t, 2, var) varByStratum <- data.frame(year=y, stratum=rs, var=var[-1]) var <- var[1] ci <- sapply(1:((length(rs) + 1)), function(i) { ci <- boot.ci(b, conf=1-alpha, type=ciType, index=i) switch(ciType, perc=ci$percent[4:5], norm=ci$normal[2:3], basic=ci$basic[4:5], stud=ci$student[4:5], bca=ci$bca[4:5]) }) rownames(ci) <- c("lower", "upper") ciByStratum <- data.frame(year=y, stratum=rs, t(ci[, -1])) ci <- ci[, 1] list(var, varByStratum, ci, ciByStratum) } } } else { if(calibrate) { # ---------- no breakdown by stratum, calibration ---------- function(y, x, R, design, cluster, p, aux, totals, ys, rs, alpha, ciType, na.rm, ...) { i <- x$year == y x <- x[i, , drop=FALSE] aux <- aux[i, , drop=FALSE] design <- design[i] cluster <- cluster[i] totals <- totals[ys == y,] b <- clusterBoot(x, fun, R, strata=design, cluster=cluster, p=p, aux=aux, totals=totals, rs=rs, na.rm=na.rm, ...) var <- var(b$t[, 1]) ci <- boot.ci(b, conf=1-alpha, type=ciType) ci <- switch(ciType, perc=ci$percent[4:5], norm=ci$normal[2:3], basic=ci$basic[4:5], stud=ci$student[4:5], bca=ci$bca[4:5]) names(ci) <- c("lower", "upper") c(var, ci) } } else { # ---------- no breakdown by stratum, no calibration ---------- function(y, x, R, design, cluster, p, aux, totals, ys, rs, alpha, ciType, na.rm, ...) { i <- x$year == y x <- x[i, , drop=FALSE] design <- design[i] cluster <- cluster[i] b <- clusterBoot(x, fun, R, strata=design, cluster=cluster, p=p, aux=aux, totals=totals, rs=rs, na.rm=na.rm, ...) var <- var(b$t[, 1]) ci <- boot.ci(b, conf=1-alpha, type=ciType) ci <- switch(ciType, perc=ci$percent[4:5], norm=ci$normal[2:3], basic=ci$basic[4:5], stud=ci$student[4:5], bca=ci$bca[4:5]) names(ci) <- c("lower", "upper") c(var, ci) } } } } laeken/R/thetaHill.R0000644000176200001440000001071413616467254013774 0ustar liggesusers# ---------------------------------------- # Authors: Andreas Alfons and Josef Holzer # Vienna University of Technology # ---------------------------------------- #' Hill estimator #' #' The Hill estimator uses the maximum likelihood principle to estimate the #' shape parameter of a Pareto distribution. #' #' The arguments \code{k} and \code{x0} of course correspond with each other. #' If \code{k} is supplied, the threshold \code{x0} is estimated with the \eqn{n #' - k} largest value in \code{x}, where \eqn{n} is the number of observations. #' On the other hand, if the threshold \code{x0} is supplied, \code{k} is given #' by the number of observations in \code{x} larger than \code{x0}. Therefore, #' either \code{k} or \code{x0} needs to be supplied. If both are supplied, #' only \code{k} is used (mainly for back compatibility). #' #' @param x a numeric vector. #' @param k the number of observations in the upper tail to which the Pareto #' distribution is fitted. #' @param x0 the threshold (scale parameter) above which the Pareto distribution #' is fitted. #' @param w an optional numeric vector giving sample weights. #' #' @return The estimated shape parameter. #' #' @note The arguments \code{x0} for the threshold (scale parameter) of the #' Pareto distribution and \code{w} for sample weights were introduced in #' version 0.2. #' #' @author Andreas Alfons and Josef Holzer #' #' @seealso \code{\link{paretoTail}}, \code{\link{fitPareto}}, #' \code{\link{thetaPDC}}, \code{\link{thetaWML}}, \code{\link{thetaISE}}, #' \code{\link{minAMSE}} #' #' @references Hill, B.M. (1975) A simple general approach to inference about #' the tail of a distribution. \emph{The Annals of Statistics}, \bold{3}(5), #' 1163--1174. #' #' @keywords manip #' #' @examples #' data(eusilc) #' # equivalized disposable income is equal for each household #' # member, therefore only one household member is taken #' eusilc <- eusilc[!duplicated(eusilc$db030),] #' #' # estimate threshold #' ts <- paretoScale(eusilc$eqIncome, w = eusilc$db090) #' #' # using number of observations in tail #' thetaHill(eusilc$eqIncome, k = ts$k, w = eusilc$db090) #' #' # using threshold #' thetaHill(eusilc$eqIncome, x0 = ts$x0, w = eusilc$db090) #' #' @export thetaHill <- function (x, k = NULL, x0 = NULL, w = NULL) { ## initializations if(!is.numeric(x) || length(x) == 0) stop("'x' must be a numeric vector") haveK <- !is.null(k) if(haveK) { # if 'k' is supplied, it is always used if(!is.numeric(k) || length(k) == 0 || k[1] < 1) { stop("'k' must be a positive integer") } else k <- k[1] } else if(!is.null(x0)) { # otherwise 'x0' (threshold) is used if(!is.numeric(x0) || length(x0) == 0) stop("'x0' must be numeric") else x0 <- x0[1] } else stop("either 'k' or 'x0' must be supplied") haveW <- !is.null(w) if(haveW) { # sample weights are supplied if(!is.numeric(w) || length(w) != length(x)) { stop("'w' must be numeric vector of the same length as 'x'") } if(any(w < 0)) stop("negative weights in 'w'") if(any(i <- is.na(x))) { # remove missing values x <- x[!i] w <- w[!i] } # sort values and sample weights order <- order(x) x <- x[order] w <- w[order] } else { # no sample weights if(any(i <- is.na(x))) x <- x[!i] # remove missing values x <- sort(x) # sort values } .thetaHill(x, k, x0, w) } .thetaHill <- function (x, k = NULL, x0 = NULL, w = NULL) { n <- length(x) # number of observations haveK <- !is.null(k) haveW <- !is.null(w) if(haveK) { # 'k' is supplied, threshold is determined if(k >= n) stop("'k' must be smaller than the number of observed values") x0 <- x[n-k] # threshold (scale parameter) } else { # 'k' is not supplied, it is determined using threshold # values are already sorted if(x0 >= x[n]) stop("'x0' must be smaller than the maximum of 'x'") k <- length(which(x > x0)) } ## computations if(haveW) { ## return weighted Hill estimate w <- w[(n-k+1):n] sum(w)/sum(w*(log(x[(n-k+1):n]) - log(x0))) } else { ## return Hill estimate # k/(sum(log(x[(n-k+1):n])) - k*log(x0)) k/sum(log(x[(n-k+1):n]) - log(x0)) # should be numerically more stable } } laeken/R/incMean.R0000644000176200001440000000566313616467254013437 0ustar liggesusers# --------------------------------------- # Author: Andreas Alfons # Vienna University of Technology # --------------------------------------- #' Weighted mean income #' #' Compute the weighted mean income. #' #' @param inc either a numeric vector giving the (equivalized disposable) #' income, or (if \code{data} is not \code{NULL}) a character string, an integer #' or a logical vector specifying the corresponding column of \code{data}. #' @param weights optional; either a numeric vector giving the personal sample #' weights, or (if \code{data} is not \code{NULL}) a character string, an #' integer or a logical vector specifying the corresponding column of #' \code{data}. #' @param years optional; either a numeric vector giving the different years of #' the survey, or (if \code{data} is not \code{NULL}) a character string, an #' integer or a logical vector specifying the corresponding column of #' \code{data}. If supplied, values are computed for each year. #' @param data an optional \code{data.frame}. #' @param na.rm a logical indicating whether missing values should be removed. #' #' @return A numeric vector containing the value(s) of the weighted mean income #' is returned. #' #' @author Andreas Alfons #' #' @seealso \code{\link{weightedMean}} #' #' @keywords survey #' #' @examples #' data(eusilc) #' incMean("eqIncome", weights = "rb050", data = eusilc) #' #' @export incMean <- function(inc, weights = NULL, years = NULL, data = NULL, na.rm = FALSE) { ## initializations if(!is.null(data)) { inc <- data[, inc] if(!is.null(weights)) weights <- data[, weights] if(!is.null(years)) years <- data[, years] } # check vectors if(!is.numeric(inc)) stop("'inc' must be a numeric vector") n <- length(inc) if(!is.null(weights) && !is.numeric(weights)) { stop("'weights' must be a numeric vector") } if(!is.null(years) && !is.numeric(years)) { stop("'years' must be a numeric vector") } if(is.null(data)) { # check vector lengths if(!is.null(weights) && length(weights) != n) { stop("'weights' must have the same length as 'x'") } if(!is.null(years) && length(years) != n) { stop("'years' must have the same length as 'x'") } } ## computations if(is.null(years)) { # no breakdown xn <- weightedMean(inc, weights, na.rm=na.rm) } else { # breakdown by years # define wrapper functions calcMean <- function(y, inc, weights, years, na.rm) { i <- years == y weightedMean(inc[i], weights[i], na.rm=na.rm) } # apply wrapper function ys <- sort(unique(years)) xn <- sapply(ys, calcMean, inc=inc, weights=weights, years=years, na.rm=na.rm) names(xn) <- ys # use years as names } ## return results return(xn) } laeken/R/utils.R0000644000176200001440000002277514127253120013207 0ustar liggesusers# --------------------------------------- # Author: Andreas Alfons # Vienna University of Technology # --------------------------------------- # TODO: error handling #' Utility functions for indicators on social exclusion and poverty #' #' Test for class, print and take subsets of indicators on social exclusion and #' poverty. #' #' @name utils #' #' @param x for \code{is.xyz}, any object to be tested. The \code{print} and #' \code{subset} methods are called by the generic functions if an object of the #' respective class is supplied. #' @param years an optional numeric vector giving the years to be extracted. #' @param strata an optional vector giving the domains of the breakdown to be #' extracted. #' @param \dots additional arguments to be passed to and from methods. #' #' @return \code{is.indicator} returns \code{TRUE} if \code{x} inherits from #' class \code{"indicator"} and \code{FALSE} otherwise. #' #' \code{is.arpr} returns \code{TRUE} if \code{x} inherits from class #' \code{"arpr"} and \code{FALSE} otherwise. #' #' \code{is.qsr} returns \code{TRUE} if \code{x} inherits from class #' \code{"qsr"} and \code{FALSE} otherwise. #' #' \code{is.rmpg} returns \code{TRUE} if \code{x} inherits from class #' \code{"rmpg"} and \code{FALSE} otherwise. #' #' \code{is.gini} returns \code{TRUE} if \code{x} inherits from class #' \code{"gini"} and \code{FALSE} otherwise. #' #' \code{is.gini} returns \code{TRUE} if \code{x} inherits from class #' \code{"gini"} and \code{FALSE} otherwise. #' #' \code{print.indicator}, \code{print.arpr} and \code{print.rmpg} return #' \code{x} invisibly. #' #' \code{subset.indicator}, \code{subset.arpr} and \code{subset.rmpg} return a #' subset of \code{x} of the same class. #' #' @seealso \code{\link{arpr}}, \code{\link{qsr}}, \code{\link{rmpg}}, #' \code{\link{gini}}, \code{\link{gpg}} #' #' @references #' A. Alfons and M. Templ (2013) Estimation of Social Exclusion Indicators #' from Complex Surveys: The \R Package \pkg{laeken}. \emph{Journal of #' Statistical Software}, \bold{54}(15), 1--25. \doi{10.18637/jss.v054.i15} #' #' @keywords survey #' #' @examples #' data(eusilc) #' #' # at-risk-of-poverty rate #' a <- arpr("eqIncome", weights = "rb050", #' breakdown = "db040", data = eusilc) #' print(a) #' is.arpr(a) #' is.indicator(a) #' subset(a, strata = c("Lower Austria", "Vienna")) #' #' # quintile share ratio #' q <- qsr("eqIncome", weights = "rb050", #' breakdown = "db040", data = eusilc) #' print(q) #' is.qsr(q) #' is.indicator(q) #' subset(q, strata = c("Lower Austria", "Vienna")) #' #' # relative median at-risk-of-poverty gap #' r <- rmpg("eqIncome", weights = "rb050", #' breakdown = "db040", data = eusilc) #' print(r) #' is.rmpg(r) #' is.indicator(r) #' subset(r, strata = c("Lower Austria", "Vienna")) #' #' # Gini coefficient #' g <- gini("eqIncome", weights = "rb050", #' breakdown = "db040", data = eusilc) #' print(g) #' is.gini(g) #' is.indicator(g) #' subset(g, strata = c("Lower Austria", "Vienna")) #' NULL ## constructors # class "indicator" constructIndicator <- function(value, valueByStratum = NULL, varMethod = NULL, var = NULL, varByStratum = NULL, ci = NULL, ciByStratum = NULL, alpha = NULL, years = NULL, strata = NULL) { # construct and assign class x <- list(value=value, valueByStratum=valueByStratum, varMethod=varMethod, var=var, varByStratum=varByStratum, ci=ci, ciByStratum=ciByStratum, alpha=alpha, years=years, strata=strata) class(x) <- "indicator" # return object return(x) } # class "arpr" constructArpr <- function(..., p = 0.6, threshold) { x <- constructIndicator(...) # call constructor of superclass x$p <- p # set specific x$threshold <- threshold # attributes class(x) <- c("arpr", class(x)) # assign class return(x) # return result } # class "qsr" constructQsr <- function(...) { x <- constructIndicator(...) # call constructor of superclass class(x) <- c("qsr", class(x)) # assign class return(x) # return result } # class "gpg" constructGpg <- function(...) { x <- constructIndicator(...) # call constructor of superclass class(x) <- c("gpg", class(x)) # assign class return(x) # return result } # class "rmrpg" constructRmpg <- function(..., threshold) { x <- constructIndicator(...) # call constructor of superclass x$threshold <- threshold # set specific attributes class(x) <- c("rmpg", class(x)) # assign class return(x) # return result } # class "gini" constructGini <- function(...) { x <- constructIndicator(...) # call constructor of superclass class(x) <- c("gini", class(x)) # assign class return(x) # return result } # class "prop" constructProp <- function(...) { x <- constructIndicator(...) # call constructor of superclass class(x) <- c("prop", class(x)) # assign class return(x) # return result } ## test for class #' @rdname utils #' @export is.indicator <- function(x) inherits(x, "indicator") #' @rdname utils #' @export is.arpr <- function(x) inherits(x, "arpr") #' @rdname utils #' @export is.qsr <- function(x) inherits(x, "qsr") #' @rdname utils #' @export is.rmpg <- function(x) inherits(x, "rmpg") #' @rdname utils #' @export is.gini <- function(x) inherits(x, "gini") #' @rdname utils #' @export is.prop <- function(x) inherits(x, "prop") #' @rdname utils #' @export is.gpg <- function(x) inherits(x, "gpg") ## print # class "indicator" #' @rdname utils #' @method print indicator #' @export print.indicator <- function(x, ...) { cat("Value:\n") print(x$value, ...) if(!is.null(x$var)) { cat("\nVariance:\n") print(x$var, ...) } if(!is.null(x$ci)) { cat("\nConfidence interval:\n") print(x$ci, ...) } if(!is.null(x$valueByStratum)) { cat("\nValue by domain:\n") print(x$valueByStratum, ...) } if(!is.null(x$varByStratum)) { cat("\nVariance by domain:\n") print(x$varByStratum, ...) } if(!is.null(x$varByStratum)) { cat("\nConfidence interval by domain:\n") print(x$ciByStratum, ...) } invisible(x) } # class "arpr" #' @rdname utils #' @method print arpr #' @export print.arpr <- function(x, ...) { print.indicator(x, ...) cat("\nThreshold:\n") print(x$threshold, ...) invisible(x) } # class "rmpg" #' @rdname utils #' @method print rmpg #' @export print.rmpg <- function(x, ...) { print.indicator(x, ...) cat("\nThreshold:\n") print(x$threshold, ...) invisible(x) } # class "minAMSE" #' @rdname minAMSE #' @method print minAMSE #' @export print.minAMSE <- function(x, ...) { cat("Optimal k:\n") print(x$kopt, ...) cat("\nScale parameter:\n") print(x$x0, ...) cat("\nShape parameter:\n") print(x$theta, ...) invisible(x) } ## subsets of indicators # class "indicator" #' @rdname utils #' @method subset indicator #' @export subset.indicator <- function(x, years = NULL, strata = NULL, ...) { # initializations haveYears <- length(x$years) > 1 haveVar <- !is.null(x$varMethod) haveStrata <- length(x$strata) > 1 subsetYears <- haveYears && !is.null(years) subsetStrata <- haveStrata && !is.null(strata) # error handling if(subsetYears && !is.numeric(years)) { stop("'years' must be of type numeric") } if(subsetStrata && !is.character(strata)) { stop("'years' must be of type character") } # extract years from overall values (if available and requested) if(subsetYears) { ys <- as.character(years) x$value <- x$value[ys] if(haveVar) { x$var <- x$var[ys] x$ci <- x$ci[ys, , drop=FALSE] } x$years <- years #set new years } # extract strata from overall values (if available and requested) if(subsetStrata || (haveStrata && subsetYears)) { n <- nrow(x$valueByStratum) if(subsetStrata) keepStrata <- x$valueByStratum$stratum %in% strata else keepStrata <- rep.int(TRUE, n) if(subsetYears) keepYears <- x$valueByStratum$year %in% years else keepYears <- rep.int(TRUE, n) keep <- keepStrata & keepYears x$valueByStratum <- x$valueByStratum[keep, , drop=FALSE] if(haveVar) { x$varByStratum <- x$varByStratum[keep, , drop=FALSE] x$ciByStratum <- x$ciByStratum[keep, , drop=FALSE] } x$strata <- strata # set new strata } # return result return(x) } # class "arpr" # TODO: allow for subsetting by threshold percentage #' @rdname utils #' @method subset arpr #' @export subset.arpr <- function(x, years = NULL, strata = NULL, ...) { haveYear <- length(x$years) > 1 x <- subset.indicator(x, years, strata, ...) # call method for superclass # subset threshold (if requested and available for multiple years) if(haveYear && !is.null(years)) { x$threshold <- x$threshold[as.character(years)] } # return result return(x) } # class "rmpg" #' @rdname utils #' @method subset rmpg #' @export subset.rmpg <- function(x, years = NULL, strata = NULL, ...) { haveYear <- length(x$years) > 1 x <- subset.indicator(x, years, strata, ...) # call method for superclass # subset threshold (if requested and available for multiple years) if(haveYear && !is.null(years)) { x$threshold <- x$threshold[as.character(years)] } # return result return(x) } ## other utility functions # get argument names of a function argNames <- function(fun, removeDots = TRUE) { nam <- names(formals(fun)) if(removeDots) nam <- setdiff(nam, "...") nam } # check percentages for the ARPT checkP <-function(p) { if(is.numeric(p)) { keep <- !is.na(p) & p >= 0 & p <= 1 p <- p[keep] } else p <- numeric() if(length(p) == 0) stop("'p' must contain numeric values in [0,1]") p } # get labels for percentages of the ARPT getPLabels <-function(p) paste(signif(p*100), "%", sep="") laeken/R/thetaMoment.R0000644000176200001440000000664413616467254014352 0ustar liggesusers# ---------------------------------------- # Authors: Andreas Alfons and Josef Holzer # Vienna University of Technology # ---------------------------------------- #' Moment estimator #' #' Estimate the shape parameter of a Pareto distribution based on moments. #' #' The arguments \code{k} and \code{x0} of course correspond with each other. #' If \code{k} is supplied, the threshold \code{x0} is estimated with the \eqn{n #' - k} largest value in \code{x}, where \eqn{n} is the number of observations. #' On the other hand, if the threshold \code{x0} is supplied, \code{k} is given #' by the number of observations in \code{x} larger than \code{x0}. Therefore, #' either \code{k} or \code{x0} needs to be supplied. If both are supplied, #' only \code{k} is used (mainly for back compatibility). #' #' @param x a numeric vector. #' @param k the number of observations in the upper tail to which the Pareto #' distribution is fitted. #' @param x0 the threshold (scale parameter) above which the Pareto distribution #' is fitted. #' #' @return The estimated shape parameter. #' #' @note The argument \code{x0} for the threshold (scale parameter) of the #' Pareto distribution was introduced in version 0.2. #' #' @author Andreas Alfons and Josef Holzer #' #' @seealso \code{\link{paretoTail}}, \code{\link{fitPareto}} #' #' @references Dekkers, A.L.M., Einmahl, J.H.J. and de Haan, L. (1989) A moment #' estimator for the index of an extreme-value distribution. \emph{The Annals of #' Statistics}, \bold{17}(4), 1833--1855. #' #' @keywords manip #' #' @examples #' data(eusilc) #' # equivalized disposable income is equal for each household #' # member, therefore only one household member is taken #' eusilc <- eusilc[!duplicated(eusilc$db030),] #' #' # estimate threshold #' ts <- paretoScale(eusilc$eqIncome, w = eusilc$db090) #' #' # using number of observations in tail #' thetaMoment(eusilc$eqIncome, k = ts$k) #' #' # using threshold #' thetaMoment(eusilc$eqIncome, x0 = ts$x0) #' #' @export thetaMoment <- function(x, k = NULL, x0 = NULL) { ## initializations if(!is.numeric(x) || length(x) == 0) stop("'x' must be a numeric vector") haveK <- !is.null(k) if(haveK) { # if 'k' is supplied, it is always used if(!is.numeric(k) || length(k) == 0 || k[1] < 1) { stop("'k' must be a positive integer") } else k <- k[1] } else if(!is.null(x0)) { # otherwise 'x0' (threshold) is used if(!is.numeric(x0) || length(x0) == 0) stop("'x0' must be numeric") else x0 <- x0[1] } else stop("either 'k' or 'x0' must be supplied") if(any(i <- is.na(x))) x <- x[!i] # remove missing values x <- sort(x) n <- length(x) if(haveK) { # 'k' is supplied, threshold is determined if(k >= n) stop("'k' must be smaller than the number of observed values") x0 <- x[n-k] # threshold (scale parameter) } else { # 'k' is not supplied, it is determined using threshold # values are already sorted if(x0 >= x[n]) stop("'x0' must be smaller than the maximum of 'x'") k <- length(which(x > x0)) } y <- log(x[(n-k+1):n]/x0) # relative excesses ## moments # M1 <- sum(y)/k # first moment # M2 <- sum(y^2)/k # second moment M1 <- mean(y) # first moment M2 <- mean(y^2) # second moment ## moment estimator 1/(M1 + 1 - 1/(2*(1-M1^2/M2))) } laeken/R/thetaTM.R0000644000176200001440000001060613616467254013424 0ustar liggesusers# ---------------------------------------- # Authors: Andreas Alfons and Josef Holzer # Vienna University of Technology # ---------------------------------------- #' Trimmed mean estimator #' #' Estimate the shape parameter of a Pareto distribution using a trimmed mean #' approach. #' #' The arguments \code{k} and \code{x0} of course correspond with each other. #' If \code{k} is supplied, the threshold \code{x0} is estimated with the \eqn{n #' - k} largest value in \code{x}, where \eqn{n} is the number of observations. #' On the other hand, if the threshold \code{x0} is supplied, \code{k} is given #' by the number of observations in \code{x} larger than \code{x0}. Therefore, #' either \code{k} or \code{x0} needs to be supplied. If both are supplied, #' only \code{k} is used (mainly for back compatibility). #' #' @param x a numeric vector. #' @param k the number of observations in the upper tail to which the Pareto #' distribution is fitted. #' @param x0 the threshold (scale parameter) above which the Pareto distribution #' is fitted. #' @param beta A numeric vector of length two giving the trimming proportions #' for the lower and upper end of the tail, respectively. If a single numeric #' value is supplied, it is recycled. #' #' @return The estimated shape parameter. #' #' @note The argument \code{x0} for the threshold (scale parameter) of the #' Pareto distribution was introduced in version 0.2. #' #' @author Andreas Alfons and Josef Holzer #' #' @seealso \code{\link{paretoTail}}, \code{\link{fitPareto}} #' #' @references Brazauskas, V. and Serfling, R. (2000) Robust estimation of tail #' parameters for two-parameter Pareto and exponential models via generalized #' quantile statistics. \emph{Extremes}, \bold{3}(3), 231--249. #' #' Brazauskas, V. and Serfling, R. (2000) Robust and efficient estimation of the #' tail index of a single-parameter Pareto distribution. \emph{North American #' Actuarial Journal}, \bold{4}(4), 12--27. #' #' @keywords manip #' #' @examples #' data(eusilc) #' # equivalized disposable income is equal for each household #' # member, therefore only one household member is taken #' eusilc <- eusilc[!duplicated(eusilc$db030),] #' #' # estimate threshold #' ts <- paretoScale(eusilc$eqIncome, w = eusilc$db090) #' #' # using number of observations in tail #' thetaTM(eusilc$eqIncome, k = ts$k) #' #' # using threshold #' thetaTM(eusilc$eqIncome, x0 = ts$x0) #' #' @export thetaTM <- function(x, k = NULL, x0 = NULL, beta = 0.05) { ## initializations if(!is.numeric(x) || length(x) == 0) stop("'x' must be a numeric vector") haveK <- !is.null(k) if(haveK) { # if 'k' is supplied, it is always used if(!is.numeric(k) || length(k) == 0 || k[1] < 1) { stop("'k' must be a positive integer") } else k <- k[1] } else if(!is.null(x0)) { # otherwise 'x0' (threshold) is used if(!is.numeric(x0) || length(x0) == 0) stop("'x0' must be numeric") else x0 <- x0[1] } else stop("either 'k' or 'x0' must be supplied") if(any(i <- is.na(x))) x <- x[!i] # remove missing values x <- sort(x) n <- length(x) if(haveK) { # 'k' is supplied, threshold is determined if(k >= n) stop("'k' must be smaller than the number of observed values") x0 <- x[n-k] # threshold (scale parameter) } else { # 'k' is not supplied, it is determined using threshold # values are already sorted if(x0 >= x[n]) stop("'x0' must be smaller than the maximum of 'x'") k <- length(which(x > x0)) } # check trimming proportions if(length(beta) == 0) stop("'beta' must be a numeric vector of length two") else beta <- rep(beta, length.out=2) if(beta[1] < 0 || beta[1] >= 1) { stop("beta[1] (the trimming proportion for the lower end) ", "must be greater or equal to 0 and smaller than 1") } if(beta[2] < 0 || beta[2] >= 1-beta[1]) { stop("beta[2] (the trimming proportion for the upper end) ", "must be greater or equal to 0 and smaller than 1-beta[1] ", "(the trimming proportion for the lower end)") } # trimming kl <- trunc(k*beta[1])+1 kh <- k - trunc(k*beta[2]) i <- kl:kh c <- rep.int(0, k) c[i] <- 1/sum(cumsum(1/(k - 1:kh + 1))[i]) # estimate theta 1/sum(c*log(x[(n-k+1):n]/x0)) } laeken/R/arpt.R0000644000176200001440000000567514125312655013024 0ustar liggesusers# --------------------------------------- # Author: Andreas Alfons # Vienna University of Technology # --------------------------------------- #' At-risk-of-poverty threshold #' #' Estimate the at-risk-of-poverty threshold. The standard definition is to use #' 60\% of the weighted median equivalized disposable income. #' #' The implementation strictly follows the Eurostat definition. #' #' @param inc either a numeric vector giving the equivalized disposable income, #' or (if \code{data} is not \code{NULL}) a character string, an integer or a #' logical vector specifying the corresponding column of \code{data}. #' @param weights optional; either a numeric vector giving the personal sample #' weights, or (if \code{data} is not \code{NULL}) a character string, an #' integer or a logical vector specifying the corresponding column of #' \code{data}. #' @param sort optional; either a numeric vector giving the personal IDs to be #' used as tie-breakers for sorting, or (if \code{data} is not \code{NULL}) a #' character string, an integer or a logical vector specifying the corresponding #' column of \code{data}. #' @param years optional; either a numeric vector giving the different years of #' the survey, or (if \code{data} is not \code{NULL}) a character string, an #' integer or a logical vector specifying the corresponding column of #' \code{data}. If supplied, values are computed for each year. #' @param data an optional \code{data.frame}. #' @param p a numeric vector of values in \eqn{[0,1]} giving the percentages of #' the weighted median to be used for the at-risk-of-poverty threshold. #' @param na.rm a logical indicating whether missing values should be removed. #' #' @return A numeric vector containing the value(s) of the at-risk-of-poverty #' threshold is returned. #' #' @author Andreas Alfons #' #' @seealso \code{\link{arpr}}, \code{\link{incMedian}}, #' \code{\link{weightedMedian}} #' #' @references Working group on Statistics on Income and Living Conditions #' (2004) Common cross-sectional EU indicators based on EU-SILC; the gender pay #' gap. \emph{EU-SILC 131-rev/04}, Eurostat. #' #' @keywords survey #' #' @examples #' data(eusilc) #' arpt("eqIncome", weights = "rb050", data = eusilc) #' #' @export arpt <- function(inc, weights = NULL, sort = NULL, years = NULL, data = NULL, p = 0.6, na.rm = FALSE) { # check 'p' (other arguments are checked in 'incMedian') # if(!is.numeric(p) || length(p) == 0 || p[1] < 0 || p[1] > 1) { # stop("'p' must be a numeric value in [0,1]") # } else p <- p[1] p <- checkP(p) byP <- length(p) > 1 if(byP) { if(!is.null(years)) { stop("breakdown into years not implemented ", "for different threshold levels") } names(p) <- getPLabels(p) # ensure that result has correct names } # compute at-risk-of-poverty threshold p * incMedian(inc, weights, sort, years, data, na.rm=na.rm) } laeken/R/incQuintile.R0000644000176200001440000001122613616467254014341 0ustar liggesusers# --------------------------------------- # Author: Andreas Alfons # Vienna University of Technology # --------------------------------------- #' Weighted income quintile #' #' Compute weighted income quintiles. #' #' The implementation strictly follows the Eurostat definition. #' #' @param inc either a numeric vector giving the (equivalized disposable) #' income, or (if \code{data} is not \code{NULL}) a character string, an integer #' or a logical vector specifying the corresponding column of \code{data}. #' @param weights optional; either a numeric vector giving the personal sample #' weights, or (if \code{data} is not \code{NULL}) a character string, an #' integer or a logical vector specifying the corresponding column of #' \code{data}. #' @param sort optional; either a numeric vector giving the personal IDs to be #' used as tie-breakers for sorting, or (if \code{data} is not \code{NULL}) a #' character string, an integer or a logical vector specifying the corresponding #' column of \code{data}. #' @param years optional; either a numeric vector giving the different years of #' the survey, or (if \code{data} is not \code{NULL}) a character string, an #' integer or a logical vector specifying the corresponding column of #' \code{data}. If supplied, values are computed for each year. #' @param k a vector of integers between 0 and 5 specifying the quintiles to be #' computed (0 gives the minimum, 5 the maximum). #' @param data an optional \code{data.frame}. #' @param na.rm a logical indicating whether missing values should be removed. #' #' @return A numeric vector (if \code{years} is \code{NULL}) or matrix (if #' \code{years} is not \code{NULL}) containing the values of the weighted income #' quintiles specified by \code{k} are returned. #' #' @author Andreas Alfons #' #' @seealso \code{\link{qsr}}, \code{\link{weightedQuantile}} #' #' @references Working group on Statistics on Income and Living Conditions #' (2004) Common cross-sectional EU indicators based on EU-SILC; the gender pay #' gap. \emph{EU-SILC 131-rev/04}, Eurostat. #' #' @keywords survey #' #' @examples #' data(eusilc) #' incQuintile("eqIncome", weights = "rb050", data = eusilc) #' #' @export incQuintile <- function(inc, weights = NULL, sort = NULL, years = NULL, k = c(1, 4), data = NULL, na.rm = FALSE) { ## initializations if(!is.null(data)) { inc <- data[, inc] if(!is.null(weights)) weights <- data[, weights] if(!is.null(sort)) sort <- data[, sort] if(!is.null(years)) years <- data[, years] } # check vectors if(!is.numeric(inc)) stop("'inc' must be a numeric vector") n <- length(inc) if(!is.null(weights) && !is.numeric(weights)) { stop("'weights' must be a numeric vector") } if(!is.null(sort) && !is.vector(sort) && !is.ordered(sort)) { stop("'sort' must be a vector or ordered factor") } if(!is.null(years) && !is.numeric(years)) { stop("'years' must be a numeric vector") } if(is.null(data)) { # check vector lengths if(!is.null(weights) && length(weights) != n) { stop("'weights' must have the same length as 'x'") } if(!is.null(sort) && length(sort) != n) { stop("'sort' must have the same length as 'x'") } if(!is.null(years) && length(years) != n) { stop("'years' must have the same length as 'x'") } } if(!is.numeric(k) || length(k) == 0 || any(k < -0.5 | k >= 5.5)) { stop("'k' must be a vector of integers between 0 and 5") } else k <- round(k) ## sort values and weights order <- if(is.null(sort)) order(inc) else order(inc, sort) inc <- inc[order] weights <- weights[order] # also works if 'weights' is NULL ## computations if(is.null(years)) { # no breakdown q <- weightedQuantile(inc, weights, probs=k/5, sorted=TRUE, na.rm=na.rm) names(q) <- k # use quintile numbers as names } else { # breakdown by years years <- years[order] # define wrapper functions calcQuantile <- function(y, inc, weights, years, k, na.rm) { i <- years == y weightedQuantile(inc[i], weights[i], probs=k/5, sorted=TRUE, na.rm=na.rm) } # apply wrapper function ys <- sort(unique(years)) q <- t(sapply(ys, calcQuantile, inc=inc, weights=weights, years=years, k=k, na.rm=na.rm)) rownames(q) <- ys # use years as row names colnames(q) <- k # use quintile numbers as column names } ## return results return(q) } laeken/R/thetaLS.R0000644000176200001440000000777713616467254013441 0ustar liggesusers# ---------------------------------------- # Authors: Andreas Alfons and Josef Holzer # Vienna University of Technology # ---------------------------------------- ## should we return estimate for x0? if so, don't we need to re-estimate theta? ## => iterative procedure until change smaller than a threshold? #' Least squares (LS) estimator #' #' Estimate the shape parameter of a Pareto distribution using a least squares #' (LS) approach. #' #' The arguments \code{k} and \code{x0} of course correspond with each other. #' If \code{k} is supplied, the threshold \code{x0} is estimated with the \eqn{n #' - k} largest value in \code{x}, where \eqn{n} is the number of observations. #' On the other hand, if the threshold \code{x0} is supplied, \code{k} is given #' by the number of observations in \code{x} larger than \code{x0}. Therefore, #' either \code{k} or \code{x0} needs to be supplied. If both are supplied, #' only \code{k} is used (mainly for back compatibility). #' #' @param x a numeric vector. #' @param k the number of observations in the upper tail to which the Pareto #' distribution is fitted. #' @param x0 the threshold (scale parameter) above which the Pareto distribution #' is fitted. #' #' @return The estimated shape parameter. #' #' @note The argument \code{x0} for the threshold (scale parameter) of the #' Pareto distribution was introduced in version 0.2. #' #' @author Andreas Alfons and Josef Holzer #' #' @seealso \code{\link{paretoTail}}, \code{\link{fitPareto}} #' #' @references Brazauskas, V. and Serfling, R. (2000) Robust estimation of tail #' parameters for two-parameter Pareto and exponential models via generalized #' quantile statistics. \emph{Extremes}, \bold{3}(3), 231--249. #' #' Brazauskas, V. and Serfling, R. (2000) Robust and efficient estimation of the #' tail index of a single-parameter Pareto distribution. \emph{North American #' Actuarial Journal}, \bold{4}(4), 12--27. #' #' @keywords manip #' #' @examples #' data(eusilc) #' # equivalized disposable income is equal for each household #' # member, therefore only one household member is taken #' eusilc <- eusilc[!duplicated(eusilc$db030),] #' #' # estimate threshold #' ts <- paretoScale(eusilc$eqIncome, w = eusilc$db090) #' #' # using number of observations in tail #' thetaLS(eusilc$eqIncome, k = ts$k) #' #' # using threshold #' thetaLS(eusilc$eqIncome, x0 = ts$x0) #' #' @export thetaLS <- function(x, k = NULL, x0 = NULL) { ## initializations if(!is.numeric(x) || length(x) == 0) stop("'x' must be a numeric vector") haveK <- !is.null(k) if(haveK) { # if 'k' is supplied, it is always used if(!is.numeric(k) || length(k) == 0 || k[1] < 1) { stop("'k' must be a positive integer") } else k <- k[1] } else if(!is.null(x0)) { # otherwise 'x0' (threshold) is used if(!is.numeric(x0) || length(x0) == 0) stop("'x0' must be numeric") else x0 <- x0[1] } else stop("either 'k' or 'x0' must be supplied") if(any(i <- is.na(x))) x <- x[!i] # remove missing values x <- sort(x) n <- length(x) # if(haveK) { # 'k' is supplied, threshold is determined # if(k >= n) stop("'k' must be smaller than the number of observed values") # x0 <- x[n-k] # threshold (scale parameter) # } else { # 'k' is not supplied, it is determined using threshold # # values are already sorted # if(x0 >= x[n]) stop("'x0' must be smaller than the maximum of 'x'") # k <- length(which(x > x0)) # } if(!haveK) { # 'k' is not supplied, it is determined using threshold # values are already sorted if(x0 >= x[n]) stop("'x0' must be smaller than the maximum of 'x'") k <- length(which(x > x0)) } ## computations z <- log(x[(n-k+1):n]) zm <- mean(z) pk <- c((1:(k-1))/k, k/(k+1)) # regression parameters ck <- -log(1-pk) ckm <- mean(ck) ## LS estimator mean((ck - ckm)^2) / (mean(ck*z) - ckm*zm) } laeken/R/weightedQuantile.R0000644000176200001440000000642213616467254015362 0ustar liggesusers# ------------------------------------------ # Authors: Andreas Alfons and Matthias Templ # Vienna University of Technology # ------------------------------------------ #' Weighted quantiles #' #' Compute weighted quantiles (Eurostat definition). #' #' The implementation strictly follows the Eurostat definition. #' #' @param x a numeric vector. #' @param weights an optional numeric vector giving the sample weights. #' @param probs numeric vector of probabilities with values in \eqn{[0,1]}. #' @param sorted a logical indicating whether the observations in \code{x} are #' already sorted. #' @param na.rm a logical indicating whether missing values in \code{x} should #' be omitted. #' #' @return A numeric vector containing the weighted quantiles of values in #' \code{x} at probabilities \code{probs} is returned. Unlike #' \code{\link[stats]{quantile}}, this returns an unnamed vector. #' #' @author Andreas Alfons and Matthias Templ #' #' @seealso \code{\link{incQuintile}}, \code{\link{weightedMedian}} #' #' @references Working group on Statistics on Income and Living Conditions #' (2004) Common cross-sectional EU indicators based on EU-SILC; the gender pay #' gap. \emph{EU-SILC 131-rev/04}, Eurostat. #' #' @keywords survey #' #' @examples #' data(eusilc) #' weightedQuantile(eusilc$eqIncome, eusilc$rb050) #' #' @export weightedQuantile <- function(x, weights = NULL, probs = seq(0, 1, 0.25), sorted = FALSE, na.rm = FALSE) { # initializations if (!is.numeric(x)) stop("'x' must be a numeric vector") n <- length(x) if (n == 0 || (!isTRUE(na.rm) && any(is.na(x)))) { # zero length or missing values return(rep.int(NA, length(probs))) } if (!is.null(weights)) { if (!is.numeric(weights)) stop("'weights' must be a numeric vector") else if (length(weights) != n) { stop("'weights' must have the same length as 'x'") } else if (!all(is.finite(weights))) stop("missing or infinite weights") if (any(weights < 0)) warning("negative weights") if (!is.numeric(probs) || all(is.na(probs)) || isTRUE(any(probs < 0 | probs > 1))) { stop("'probs' must be a numeric vector with values in [0,1]") } if (all(weights == 0)) { # all zero weights warning("all weights equal to zero") return(rep.int(0, length(probs))) } } # remove NAs (if requested) if(isTRUE(na.rm)){ indices <- !is.na(x) x <- x[indices] if(!is.null(weights)) weights <- weights[indices] } # sort values and weights (if requested) if(!isTRUE(sorted)) { # order <- order(x, na.last=NA) ## too slow order <- order(x) x <- x[order] weights <- weights[order] # also works if 'weights' is NULL } # some preparations if(is.null(weights)) rw <- (1:n)/n else rw <- cumsum(weights)/sum(weights) # obtain quantiles q <- sapply(probs, function(p) { if (p == 0) return(x[1]) else if (p == 1) return(x[n]) select <- min(which(rw > p)) if(rw[select] == p) mean(x[select:(select+1)]) else x[select] }) return(unname(q)) } laeken/R/thetaQQ.R0000644000176200001440000000700413616467254013423 0ustar liggesusers# ---------------------------------------- # Authors: Andreas Alfons and Josef Holzer # Vienna University of Technology # ---------------------------------------- #' QQ-estimator #' #' Estimate the shape parameter of a Pareto distribution using a #' quantile-quantile approach. #' #' The arguments \code{k} and \code{x0} of course correspond with each other. #' If \code{k} is supplied, the threshold \code{x0} is estimated with the \eqn{n #' - k} largest value in \code{x}, where \eqn{n} is the number of observations. #' On the other hand, if the threshold \code{x0} is supplied, \code{k} is given #' by the number of observations in \code{x} larger than \code{x0}. Therefore, #' either \code{k} or \code{x0} needs to be supplied. If both are supplied, #' only \code{k} is used (mainly for back compatibility). #' #' @param x a numeric vector. #' @param k the number of observations in the upper tail to which the Pareto #' distribution is fitted. #' @param x0 the threshold (scale parameter) above which the Pareto distribution #' is fitted. #' #' @return The estimated shape parameter. #' #' @note The argument \code{x0} for the threshold (scale parameter) of the #' Pareto distribution was introduced in version 0.2. #' #' @author Andreas Alfons and Josef Holzer #' #' @seealso \code{\link{paretoTail}}, \code{\link{fitPareto}} #' #' @references Kratz, M.F. and Resnick, S.I. (1996) The QQ-estimator and heavy #' tails. \emph{Stochastic Models}, \bold{12}(4), 699--724. #' #' @keywords manip #' #' @examples #' data(eusilc) #' # equivalized disposable income is equal for each household #' # member, therefore only one household member is taken #' eusilc <- eusilc[!duplicated(eusilc$db030),] #' #' # estimate threshold #' ts <- paretoScale(eusilc$eqIncome, w = eusilc$db090) #' #' # using number of observations in tail #' thetaQQ(eusilc$eqIncome, k = ts$k) #' #' # using threshold #' thetaQQ(eusilc$eqIncome, x0 = ts$x0) #' #' @export thetaQQ <- function(x, k = NULL, x0 = NULL) { ## initializations if(!is.numeric(x) || length(x) == 0) stop("'x' must be a numeric vector") haveK <- !is.null(k) if(haveK) { # if 'k' is supplied, it is always used if(!is.numeric(k) || length(k) == 0 || k[1] < 1) { stop("'k' must be a positive integer") } else k <- k[1] } else if(!is.null(x0)) { # otherwise 'x0' (threshold) is used if(!is.numeric(x0) || length(x0) == 0) stop("'x0' must be numeric") else x0 <- x0[1] } else stop("either 'k' or 'x0' must be supplied") if(any(i <- is.na(x))) x <- x[!i] # remove missing values x <- sort(x) n <- length(x) # if(haveK) { # 'k' is supplied, threshold is determined # if(k >= n) stop("'k' must be smaller than the number of observed values") # x0 <- x[n-k] # threshold (scale parameter) # } else { # 'k' is not supplied, it is determined using threshold # # values are already sorted # if(x0 >= x[n]) stop("'x0' must be smaller than the maximum of 'x'") # k <- length(which(x > x0)) # } if(!haveK) { # 'k' is not supplied, it is determined using threshold # values are already sorted if(x0 >= x[n]) stop("'x0' must be smaller than the maximum of 'x'") k <- length(which(x > x0)) } ## calculations logx <- log(x[n:(n-k+1)]) # lograrithm of reversed tail h <- -log((1:k)/(k+1)) ## QQ-estimator (k*sum(h^2) - sum(h)^2) / sum(h * (k*logx - sum(logx))) } laeken/R/arpr.R0000644000176200001440000002503014127253144013004 0ustar liggesusers# --------------------------------------- # Author: Andreas Alfons # Vienna University of Technology # --------------------------------------- #' At-risk-of-poverty rate #' #' Estimate the at-risk-of-poverty rate, which is defined as the proportion of #' persons with equivalized disposable income below the at-risk-of-poverty #' threshold. #' #' The implementation strictly follows the Eurostat definition. #' #' @param inc either a numeric vector giving the equivalized disposable income, #' or (if \code{data} is not \code{NULL}) a character string, an integer or a #' logical vector specifying the corresponding column of \code{data}. #' @param weights optional; either a numeric vector giving the personal sample #' weights, or (if \code{data} is not \code{NULL}) a character string, an #' integer or a logical vector specifying the corresponding column of #' \code{data}. #' @param sort optional; either a numeric vector giving the personal IDs to be #' used as tie-breakers for sorting, or (if \code{data} is not \code{NULL}) a #' character string, an integer or a logical vector specifying the corresponding #' column of \code{data}. #' @param years optional; either a numeric vector giving the different years of #' the survey, or (if \code{data} is not \code{NULL}) a character string, an #' integer or a logical vector specifying the corresponding column of #' \code{data}. If supplied, values are computed for each year. #' @param breakdown optional; either a numeric vector giving different domains, #' or (if \code{data} is not \code{NULL}) a character string, an integer or a #' logical vector specifying the corresponding column of \code{data}. If #' supplied, the values for each domain are computed in addition to the overall #' value. Note that the same (overall) threshold is used for all domains. #' @param design optional and only used if \code{var} is not \code{NULL}; either #' an integer vector or factor giving different strata for stratified sampling #' designs, or (if \code{data} is not \code{NULL}) a character string, an #' integer or a logical vector specifying the corresponding column of #' \code{data}. #' @param cluster optional and only used if \code{var} is not \code{NULL}; #' either an integer vector or factor giving different clusters for cluster #' sampling designs, or (if \code{data} is not \code{NULL}) a character string, #' an integer or a logical vector specifying the corresponding column of #' \code{data}. #' @param data an optional \code{data.frame}. #' @param p a numeric vector of values in \eqn{[0,1]} giving the percentages of #' the weighted median to be used for the at-risk-of-poverty threshold (see #' \code{\link{arpt}}). #' @param var a character string specifying the type of variance estimation to #' be used, or \code{NULL} to omit variance estimation. See #' \code{\link{variance}} for possible values. #' @param alpha numeric; if \code{var} is not \code{NULL}, this gives the #' significance level to be used for computing the confidence interval (i.e., #' the confidence level is \eqn{1 - }\code{alpha}). #' @param threshold if `NULL`, the at-risk-at-poverty threshold is estimated from the data. #' @param na.rm a logical indicating whether missing values should be removed. #' @param \dots if \code{var} is not \code{NULL}, additional arguments to be #' passed to \code{\link{variance}}. #' #' @return A list of class \code{"arpr"} (which inherits from the class #' \code{"indicator"}) with the following components: #' \item{value}{a numeric vector containing the overall value(s).} #' \item{valueByStratum}{a \code{data.frame} containing the values by #' domain, or \code{NULL}.} #' \item{varMethod}{a character string specifying the type of variance #' estimation used, or \code{NULL} if variance estimation was omitted.} #' \item{var}{a numeric vector containing the variance estimate(s), or #' \code{NULL}.} #' \item{varByStratum}{a \code{data.frame} containing the variance #' estimates by domain, or \code{NULL}.} #' \item{ci}{a numeric vector or matrix containing the lower and upper #' endpoints of the confidence interval(s), or \code{NULL}.} #' \item{ciByStratum}{a \code{data.frame} containing the lower and upper #' endpoints of the confidence intervals by domain, or \code{NULL}.} #' \item{alpha}{a numeric value giving the significance level used for #' computing the confidence interval(s) (i.e., the confidence level is \eqn{1 - #' }\code{alpha}), or \code{NULL}.} #' \item{years}{a numeric vector containing the different years of the #' survey.} #' \item{strata}{a character vector containing the different domains of the #' breakdown.} #' \item{p}{a numeric giving the percentage of the weighted median used for #' the at-risk-of-poverty threshold.} #' \item{threshold}{a numeric vector containing the at-risk-of-poverty #' threshold(s).} #' #' @author Andreas Alfons #' #' @seealso \code{\link{arpt}}, \code{\link{variance}} #' #' @references #' A. Alfons and M. Templ (2013) Estimation of Social Exclusion Indicators #' from Complex Surveys: The \R Package \pkg{laeken}. \emph{Journal of #' Statistical Software}, \bold{54}(15), 1--25. \doi{10.18637/jss.v054.i15} #' #' Working group on Statistics on Income and Living Conditions (2004) #' Common cross-sectional EU indicators based on EU-SILC; the gender #' pay gap. \emph{EU-SILC 131-rev/04}, Eurostat, Luxembourg. #' #' @keywords survey #' #' @examples #' data(eusilc) #' #' # overall value #' arpr("eqIncome", weights = "rb050", data = eusilc) #' #' # values by region #' arpr("eqIncome", weights = "rb050", #' breakdown = "db040", data = eusilc) #' #' @importFrom stats aggregate #' @export arpr <- function(inc, weights = NULL, sort = NULL, years = NULL, breakdown = NULL, design = NULL, cluster = NULL, data = NULL, p = 0.6, var = NULL, alpha = 0.05, threshold = NULL, na.rm = FALSE, ...) { ## initializations byYear <- !is.null(years) byStratum <- !is.null(breakdown) p <- checkP(p) byP <- length(p) > 1 # prepare data if(!is.null(data)) { inc <- data[, inc] if(!is.null(weights)) weights <- data[, weights] if(!is.null(sort)) sort <- data[, sort] if(byYear) years <- data[, years] if(byStratum) breakdown <- data[, breakdown] if(!is.null(var)) { if(!is.null(design)) design <- data[, design] if(!is.null(cluster)) cluster <- data[, cluster] } } # check vectors if(!is.numeric(inc)) stop("'inc' must be a numeric vector") n <- length(inc) if(is.null(weights)) weights <- weights <- rep.int(1, n) else if(!is.numeric(weights)) stop("'weights' must be a numeric vector") if(!is.null(sort) && !is.vector(sort) && !is.ordered(sort)) { stop("'sort' must be a vector or ordered factor") } if(byYear && !is.numeric(years)) { stop("'years' must be a numeric vector") } if(byStratum) { if(!is.vector(breakdown) && !is.factor(breakdown)) { stop("'breakdown' must be a vector or factor") } else breakdown <- as.factor(breakdown) } if(is.null(data)) { # check vector lengths if(length(weights) != n) { stop("'weights' must have the same length as 'x'") } if(!is.null(sort) && length(sort) != n) { stop("'sort' must have the same length as 'x'") } if(byYear && length(years) != n) { stop("'years' must have the same length as 'x'") } if(byStratum && length(breakdown) != n) { stop("'breakdown' must have the same length as 'x'") } } ## computations rs <- levels(breakdown) # unique strata (also works if 'breakdown' is NULL) if(byYear) { # ARPR by year ys <- sort(unique(years)) if(is.null(threshold)){ ts <- arpt(inc, weights, sort, years, p=p, na.rm=na.rm) # thresholds } else { ts <- threshold } wr <- function(y, t, inc, weights, years, na.rm) { i <- years == y weightedRate(inc[i], weights[i], t, na.rm=na.rm) } value <- mapply(wr, y=ys, t=ts, MoreArgs=list(inc=inc, weights=weights, years=years, na.rm=na.rm)) names(value) <- ys # use years as names if(byStratum) { wr1 <- function(i, inc, weights, years, ts, na.rm) { y <- years[i[1]] t <- ts[as.character(y)] weightedRate(inc[i], weights[i], t, na.rm=na.rm) } valueByStratum <- aggregate(1:n, list(year=years, stratum=breakdown), wr1, inc=inc, weights=weights, years=years, ts=ts, na.rm=na.rm) names(valueByStratum)[3] <- "value" } else valueByStratum <- NULL } else { # ARPR for only one year ys <- NULL if(is.null(threshold)){ ts <- arpt(inc, weights, sort, p=p, na.rm=na.rm) # threshold } else{ ts <- threshold } value <- weightedRate(inc, weights, ts, na.rm=na.rm) if(byP) names(value) <- getPLabels(p) if(byStratum) { wr2 <- function(i, inc, weights, ts, na.rm) { weightedRate(inc[i], weights[i], ts, na.rm=na.rm) } valueByStratum <- aggregate(1:n, list(stratum=breakdown), wr2, inc=inc, weights=weights, ts=ts, na.rm=na.rm) if(byP) { # correction for data.frame necessary nam <- c("p", names(valueByStratum)[1], "value") valueByStratum <- data.frame(rep.int(p, length(rs)), rep(rs, each=length(p)), as.vector(t(valueByStratum[, -1]))) names(valueByStratum) <- nam # nam <- c(names(valueByStratum)[1], names(value)) # valueByStratum <- data.frame(valueByStratum[, 1, drop=FALSE], # valueByStratum[, -1]) # names(valueByStratum) <- nam } else names(valueByStratum)[2] <- "value" } else valueByStratum <- NULL } ## create object of class "arpr" res <- constructArpr(value=value, valueByStratum=valueByStratum, years=ys, strata=rs, p=p, threshold=ts) # variance estimation (if requested) if(!is.null(var)) { res <- variance(inc, weights, years, breakdown, design, cluster, indicator=res, alpha=alpha, na.rm=na.rm, type=var, ...) } # return results return(res) } ## workhorse weightedRate <- function(x, weights = NULL, threshold, na.rm = FALSE) { ## initializations if(is.null(weights)) weights <- rep.int(1, length(x)) # equal weights if(isTRUE(na.rm)){ indices <- !is.na(x) x <- x[indices] weights <- weights[indices] } else if(any(is.na(x))) return(NA) ## calculations # estimate population total sw <- sum(weights) # percentage of persons below threshold sapply(threshold, function(t) sum(weights[x < t]))*100/sw } laeken/R/weightedMedian.R0000644000176200001440000000250713616467254014775 0ustar liggesusers# ------------------------------------------ # Authors: Andreas Alfons and Matthias Templ # Vienna University of Technology # ------------------------------------------ #' Weighted median #' #' Compute the weighted median (Eurostat definition). #' #' The implementation strictly follows the Eurostat definition. #' #' @param x a numeric vector. #' @param weights an optional numeric vector giving the sample weights. #' @param sorted a logical indicating whether the observations in \code{x} are #' already sorted. #' @param na.rm a logical indicating whether missing values in \code{x} should #' be omitted. #' @return The weighted median of values in \code{x} is returned. #' #' @author Andreas Alfons and Matthias Templ #' #' @seealso \code{\link{arpt}}, \code{\link{incMedian}}, #' \code{\link{weightedQuantile}} #' #' @references Working group on Statistics on Income and Living Conditions #' (2004) Common cross-sectional EU indicators based on EU-SILC; the gender pay #' gap. \emph{EU-SILC 131-rev/04}, Eurostat. #' #' @keywords survey #' #' @examples #' data(eusilc) #' weightedMedian(eusilc$eqIncome, eusilc$rb050) #' #' @export weightedMedian <- function(x, weights = NULL, sorted = FALSE, na.rm = FALSE) { weightedQuantile(x, weights, probs=0.5, sorted=sorted, na.rm=na.rm) } laeken/R/incMedian.R0000644000176200001440000001006313616467254013742 0ustar liggesusers# --------------------------------------- # Author: Andreas Alfons # Vienna University of Technology # --------------------------------------- #' Weighted median income #' #' Compute the weighted median income. #' #' The implementation strictly follows the Eurostat definition. #' #' @param inc either a numeric vector giving the (equivalized disposable) #' income, or (if \code{data} is not \code{NULL}) a character string, an integer #' or a logical vector specifying the corresponding column of \code{data}. #' @param weights optional; either a numeric vector giving the personal sample #' weights, or (if \code{data} is not \code{NULL}) a character string, an #' integer or a logical vector specifying the corresponding column of #' \code{data}. #' @param sort optional; either a numeric vector giving the personal IDs to be #' used as tie-breakers for sorting, or (if \code{data} is not \code{NULL}) a #' character string, an integer or a logical vector specifying the corresponding #' column of \code{data}. #' @param years optional; either a numeric vector giving the different years of #' the survey, or (if \code{data} is not \code{NULL}) a character string, an #' integer or a logical vector specifying the corresponding column of #' \code{data}. If supplied, values are computed for each year. #' @param data an optional \code{data.frame}. #' @param na.rm a logical indicating whether missing values should be removed. #' #' @return A numeric vector containing the value(s) of the weighted median #' income is returned. #' #' @author Andreas Alfons #' #' @seealso \code{\link{arpt}}, \code{\link{weightedMedian}} #' #' @references Working group on Statistics on Income and Living Conditions #' (2004) Common cross-sectional EU indicators based on EU-SILC; the gender pay #' gap. \emph{EU-SILC 131-rev/04}, Eurostat. #' #' @keywords survey #' #' @examples #' data(eusilc) #' incMedian("eqIncome", weights = "rb050", data = eusilc) #' #' @export incMedian <- function(inc, weights = NULL, sort = NULL, years = NULL, data = NULL, na.rm = FALSE) { ## initializations if(!is.null(data)) { inc <- data[, inc] if(!is.null(weights)) weights <- data[, weights] if(!is.null(sort)) sort <- data[, sort] if(!is.null(years)) years <- data[, years] } # check vectors if(!is.numeric(inc)) stop("'inc' must be a numeric vector") n <- length(inc) if(!is.null(weights) && !is.numeric(weights)) { stop("'weights' must be a numeric vector") } if(!is.null(sort) && !is.vector(sort) && !is.ordered(sort)) { stop("'sort' must be a vector or ordered factor") } if(!is.null(years) && !is.numeric(years)) { stop("'years' must be a numeric vector") } if(is.null(data)) { # check vector lengths if(!is.null(weights) && length(weights) != n) { stop("'weights' must have the same length as 'x'") } if(!is.null(sort) && length(sort) != n) { stop("'sort' must have the same length as 'x'") } if(!is.null(years) && length(years) != n) { stop("'years' must have the same length as 'x'") } } ## sort values and weights order <- if(is.null(sort)) order(inc) else order(inc, sort) inc <- inc[order] weights <- weights[order] # also works if 'weights' is NULL ## computations if(is.null(years)) { # no breakdown med <- weightedMedian(inc, weights, sorted=TRUE, na.rm=na.rm) } else { # breakdown by years years <- years[order] # define wrapper functions calcMedian <- function(y, inc, weights, years, na.rm) { i <- years == y weightedMedian(inc[i], weights[i], sorted=TRUE, na.rm=na.rm) } # apply wrapper function ys <- sort(unique(years)) med <- sapply(ys, calcMedian, inc=inc, weights=weights, years=years, na.rm=na.rm) names(med) <- ys # use years as names } ## return results return(med) } laeken/R/qsr.R0000755000176200001440000002201514127253127012651 0ustar liggesusers# --------------------------------------- # Author: Andreas Alfons # Vienna University of Technology # --------------------------------------- #' Quintile share ratio #' #' Estimate the quintile share ratio, which is defined as the ratio of the sum #' of equivalized disposable income received by the top 20\% to the sum of #' equivalized disposable income received by the bottom 20\%. #' #' The implementation strictly follows the Eurostat definition. #' #' @param inc either a numeric vector giving the equivalized disposable income, #' or (if \code{data} is not \code{NULL}) a character string, an integer or a #' logical vector specifying the corresponding column of \code{data}. #' @param weights optional; either a numeric vector giving the personal sample #' weights, or (if \code{data} is not \code{NULL}) a character string, an #' integer or a logical vector specifying the corresponding column of #' \code{data}. #' @param sort optional; either a numeric vector giving the personal IDs to be #' used as tie-breakers for sorting, or (if \code{data} is not \code{NULL}) a #' character string, an integer or a logical vector specifying the corresponding #' column of \code{data}. #' @param years optional; either a numeric vector giving the different years of #' the survey, or (if \code{data} is not \code{NULL}) a character string, an #' integer or a logical vector specifying the corresponding column of #' \code{data}. If supplied, values are computed for each year. #' @param breakdown optional; either a numeric vector giving different domains, #' or (if \code{data} is not \code{NULL}) a character string, an integer or a #' logical vector specifying the corresponding column of \code{data}. If #' supplied, the values for each domain are computed in addition to the overall #' value. #' @param design optional and only used if \code{var} is not \code{NULL}; either #' an integer vector or factor giving different strata for stratified sampling #' designs, or (if \code{data} is not \code{NULL}) a character string, an #' integer or a logical vector specifying the corresponding column of #' \code{data}. #' @param cluster optional and only used if \code{var} is not \code{NULL}; #' either an integer vector or factor giving different clusters for cluster #' sampling designs, or (if \code{data} is not \code{NULL}) a character string, #' an integer or a logical vector specifying the corresponding column of #' \code{data}. #' @param data an optional \code{data.frame}. #' @param var a character string specifying the type of variance estimation to #' be used, or \code{NULL} to omit variance estimation. See #' \code{\link{variance}} for possible values. #' @param alpha numeric; if \code{var} is not \code{NULL}, this gives the #' significance level to be used for computing the confidence interval (i.e., #' the confidence level is \eqn{1 - }\code{alpha}). #' @param na.rm a logical indicating whether missing values should be removed. #' @param \dots if \code{var} is not \code{NULL}, additional arguments to be #' passed to \code{\link{variance}}. #' #' @return A list of class \code{"qsr"} (which inherits from the class #' \code{"indicator"}) with the following components: #' \item{value}{a numeric vector containing the overall value(s).} #' \item{valueByStratum}{a \code{data.frame} containing the values by #' domain, or \code{NULL}.} #' \item{varMethod}{a character string specifying the type of variance #' estimation used, or \code{NULL} if variance estimation was omitted.} #' \item{var}{a numeric vector containing the variance estimate(s), or #' \code{NULL}.} #' \item{varByStratum}{a \code{data.frame} containing the variance #' estimates by domain, or \code{NULL}.} #' \item{ci}{a numeric vector or matrix containing the lower and upper #' endpoints of the confidence interval(s), or \code{NULL}.} #' \item{ciByStratum}{a \code{data.frame} containing the lower and upper #' endpoints of the confidence intervals by domain, or \code{NULL}.} #' \item{alpha}{a numeric value giving the significance level used for #' computing the confidence interval(s) (i.e., the confidence level is \eqn{1 - #' }\code{alpha}), or \code{NULL}.} #' \item{years}{a numeric vector containing the different years of the #' survey.} #' \item{strata}{a character vector containing the different domains of the #' breakdown.} #' #' @author Andreas Alfons #' #' @seealso \code{\link{incQuintile}}, \code{\link{variance}}, #' \code{\link{gini}} #' #' @references #' A. Alfons and M. Templ (2013) Estimation of Social Exclusion Indicators #' from Complex Surveys: The \R Package \pkg{laeken}. \emph{Journal of #' Statistical Software}, \bold{54}(15), 1--25. \doi{10.18637/jss.v054.i15} #' #' Working group on Statistics on Income and Living Conditions (2004) #' Common cross-sectional EU indicators based on EU-SILC; the gender #' pay gap. \emph{EU-SILC 131-rev/04}, Eurostat, Luxembourg. #' #' @keywords survey #' #' @examples #' data(eusilc) #' #' # overall value #' qsr("eqIncome", weights = "rb050", data = eusilc) #' #' # values by region #' qsr("eqIncome", weights = "rb050", #' breakdown = "db040", data = eusilc) #' #' @importFrom stats aggregate #' @export qsr <- function(inc, weights = NULL, sort = NULL, years = NULL, breakdown = NULL, design = NULL, cluster = NULL, data = NULL, var = NULL, alpha = 0.05, na.rm = FALSE, ...) { ## initializations byYear <- !is.null(years) byStratum <- !is.null(breakdown) if(!is.null(data)) { inc <- data[, inc] if(!is.null(weights)) weights <- data[, weights] if(!is.null(sort)) sort <- data[, sort] if(byYear) years <- data[, years] if(byStratum) breakdown <- data[, breakdown] if(!is.null(var)) { if(!is.null(design)) design <- data[, design] if(!is.null(cluster)) cluster <- data[, cluster] } } # check vectors if(!is.numeric(inc)) stop("'inc' must be a numeric vector") n <- length(inc) if(is.null(weights)) weights <- weights <- rep.int(1, n) else if(!is.numeric(weights)) stop("'weights' must be a numeric vector") if(!is.null(sort) && !is.vector(sort) && !is.ordered(sort)) { stop("'sort' must be a vector or ordered factor") } if(byYear && !is.numeric(years)) { stop("'years' must be a numeric vector") } if(byStratum) { if(!is.vector(breakdown) && !is.factor(breakdown)) { stop("'breakdown' must be a vector or factor") } else breakdown <- as.factor(breakdown) } if(is.null(data)) { # check vector lengths if(length(weights) != n) { stop("'weights' must have the same length as 'x'") } if(!is.null(sort) && length(sort) != n) { stop("'sort' must have the same length as 'x'") } if(byYear && length(years) != n) { stop("'years' must have the same length as 'x'") } if(byStratum && length(breakdown) != n) { stop("'breakdown' must have the same length as 'x'") } } ## computations # QSR by year (if requested) if(byYear) { ys <- sort(unique(years)) # unique years qr <- function(y, inc, weights, sort, years, na.rm) { i <- years == y quintileRatio(inc[i], weights[i], sort[i], na.rm=na.rm) } value <- sapply(ys, qr, inc=inc, weights=weights, sort=sort, years=years, na.rm=na.rm) names(value) <- ys # use years as names } else { ys <- NULL value <- quintileRatio(inc, weights, sort, na.rm=na.rm) } # QSR by stratum (if requested) if(byStratum) { qrR <- function(i, inc, weights, sort, na.rm) { quintileRatio(inc[i], weights[i], sort[i], na.rm=na.rm) } valueByStratum <- aggregate(1:n, if(byYear) list(year=years, stratum=breakdown) else list(stratum=breakdown), qrR, inc=inc, weights=weights, sort=sort, na.rm=na.rm) names(valueByStratum)[ncol(valueByStratum)] <- "value" rs <- levels(breakdown) # unique strata } else valueByStratum <- rs <- NULL ## create object of class "qsr" res <- constructQsr(value=value, valueByStratum=valueByStratum, years=ys, strata=rs) # variance estimation (if requested) if(!is.null(var)) { res <- variance(inc, weights, years, breakdown, design, cluster, indicator=res, alpha=alpha, na.rm=na.rm, type=var, ...) } ## return result return(res) } ## workhorse quintileRatio <- function(x, weights = NULL, sort = NULL, na.rm = FALSE) { # initializations if(isTRUE(na.rm)){ indices <- !is.na(x) x <- x[indices] if(!is.null(weights)) weights <- weights[indices] if(!is.null(sort)) sort <- sort[indices] } else if(any(is.na(x))) return(NA) if(is.null(weights)) weights <- rep.int(1, length(x)) # equal weights # indices of observations in bottom and top quintile q <- incQuintile(x, weights, sort) # quintiles iq1 <- x <= q[1] # in bottom quintile iq4 <- x > q[2] # in top quintile # calculations # (sum(weights[iq4] * x[iq4]) / sum(weights[iq4])) / # (sum(weights[iq1] * x[iq1]) / sum(weights[iq1])) sum(weights[iq4] * x[iq4]) / sum(weights[iq1] * x[iq1]) } laeken/R/gini.R0000755000176200001440000002154514127253135013000 0ustar liggesusers# --------------------------------------- # Author: Andreas Alfons # Vienna University of Technology # --------------------------------------- #' Gini coefficient #' #' Estimate the Gini coefficient, which is a measure for inequality. #' #' The implementation strictly follows the Eurostat definition. #' #' @param inc either a numeric vector giving the equivalized disposable income, #' or (if \code{data} is not \code{NULL}) a character string, an integer or a #' logical vector specifying the corresponding column of \code{data}. #' @param weights optional; either a numeric vector giving the personal sample #' weights, or (if \code{data} is not \code{NULL}) a character string, an #' integer or a logical vector specifying the corresponding column of #' \code{data}. #' @param sort optional; either a numeric vector giving the personal IDs to be #' used as tie-breakers for sorting, or (if \code{data} is not \code{NULL}) a #' character string, an integer or a logical vector specifying the corresponding #' column of \code{data}. #' @param years optional; either a numeric vector giving the different years of #' the survey, or (if \code{data} is not \code{NULL}) a character string, an #' integer or a logical vector specifying the corresponding column of #' \code{data}. If supplied, values are computed for each year. #' @param breakdown optional; either a numeric vector giving different domains, #' or (if \code{data} is not \code{NULL}) a character string, an integer or a #' logical vector specifying the corresponding column of \code{data}. If #' supplied, the values for each domain are computed in addition to the overall #' value. #' @param design optional and only used if \code{var} is not \code{NULL}; either #' an integer vector or factor giving different domains for stratified sampling #' designs, or (if \code{data} is not \code{NULL}) a character string, an #' integer or a logical vector specifying the corresponding column of #' \code{data}. #' @param cluster optional and only used if \code{var} is not \code{NULL}; #' either an integer vector or factor giving different clusters for cluster #' sampling designs, or (if \code{data} is not \code{NULL}) a character string, #' an integer or a logical vector specifying the corresponding column of #' \code{data}. #' @param data an optional \code{data.frame}. #' @param var a character string specifying the type of variance estimation to #' be used, or \code{NULL} to omit variance estimation. See #' \code{\link{variance}} for possible values. #' @param alpha numeric; if \code{var} is not \code{NULL}, this gives the #' significance level to be used for computing the confidence interval (i.e., #' the confidence level is \eqn{1 - }\code{alpha}). #' @param na.rm a logical indicating whether missing values should be removed. #' @param \dots if \code{var} is not \code{NULL}, additional arguments to be #' passed to \code{\link{variance}}. #' #' @return A list of class \code{"gini"} (which inherits from the class #' \code{"indicator"}) with the following components: #' \item{value}{a numeric vector containing the overall value(s).} #' \item{valueByStratum}{a \code{data.frame} containing the values by #' domain, or \code{NULL}.} #' \item{varMethod}{a character string specifying the type of variance #' estimation used, or \code{NULL} if variance estimation was omitted.} #' \item{var}{a numeric vector containing the variance estimate(s), or #' \code{NULL}.} #' \item{varByStratum}{a \code{data.frame} containing the variance #' estimates by domain, or \code{NULL}.} #' \item{ci}{a numeric vector or matrix containing the lower and upper #' endpoints of the confidence interval(s), or \code{NULL}.} #' \item{ciByStratum}{a \code{data.frame} containing the lower and upper #' endpoints of the confidence intervals by domain, or \code{NULL}.} #' \item{alpha}{a numeric value giving the significance level used for #' computing the confidence interval(s) (i.e., the confidence level is \eqn{1 - #' }\code{alpha}), or \code{NULL}.} #' \item{years}{a numeric vector containing the different years of the #' survey.} #' \item{strata}{a character vector containing the different domains of the #' breakdown.} #' #' @author Andreas Alfons #' #' @seealso \code{\link{variance}}, \code{\link{qsr}} #' #' @references #' A. Alfons and M. Templ (2013) Estimation of Social Exclusion Indicators #' from Complex Surveys: The \R Package \pkg{laeken}. \emph{Journal of #' Statistical Software}, \bold{54}(15), 1--25. \doi{10.18637/jss.v054.i15} #' #' Working group on Statistics on Income and Living Conditions (2004) #' Common cross-sectional EU indicators based on EU-SILC; the gender #' pay gap. \emph{EU-SILC 131-rev/04}, Eurostat, Luxembourg. #' #' @keywords survey #' #' @examples #' data(eusilc) #' #' # overall value #' gini("eqIncome", weights = "rb050", data = eusilc) #' #' # values by region #' gini("eqIncome", weights = "rb050", #' breakdown = "db040", data = eusilc) #' #' @importFrom stats aggregate #' @export gini <- function(inc, weights = NULL, sort = NULL, years = NULL, breakdown = NULL, design = NULL, cluster = NULL, data = NULL, var = NULL, alpha = 0.05, na.rm = FALSE, ...) { ## initializations byYear <- !is.null(years) byStratum <- !is.null(breakdown) if(!is.null(data)) { inc <- data[, inc] if(!is.null(weights)) weights <- data[, weights] if(!is.null(sort)) sort <- data[, sort] if(byYear) years <- data[, years] if(byStratum) breakdown <- data[, breakdown] if(!is.null(var)) { if(!is.null(design)) design <- data[, design] if(!is.null(cluster)) cluster <- data[, cluster] } } # check vectors if(!is.numeric(inc)) stop("'inc' must be a numeric vector") n <- length(inc) if(is.null(weights)) weights <- weights <- rep.int(1, n) else if(!is.numeric(weights)) stop("'weights' must be a numeric vector") if(!is.null(sort) && !is.vector(sort) && !is.ordered(sort)) { stop("'sort' must be a vector or ordered factor") } if(byYear && !is.numeric(years)) { stop("'years' must be a numeric vector") } if(byStratum) { if(!is.vector(breakdown) && !is.factor(breakdown)) { stop("'breakdown' must be a vector or factor") } else breakdown <- as.factor(breakdown) } if(is.null(data)) { # check vector lengths if(length(weights) != n) { stop("'weights' must have the same length as 'x'") } if(!is.null(sort) && length(sort) != n) { stop("'sort' must have the same length as 'x'") } if(byYear && length(years) != n) { stop("'years' must have the same length as 'x'") } if(byStratum && length(breakdown) != n) { stop("'breakdown' must have the same length as 'x'") } } ## computations # Gini by year (if requested) if(byYear) { ys <- sort(unique(years)) # unique years gc <- function(y, inc, weights, sort, years, na.rm) { i <- years == y giniCoeff(inc[i], weights[i], sort[i], na.rm=na.rm) } value <- sapply(ys, gc, inc=inc, weights=weights, sort=sort, years=years, na.rm=na.rm) names(value) <- ys # use years as names } else { ys <- NULL value <- giniCoeff(inc, weights, sort, na.rm=na.rm) } # Gini by stratum (if requested) if(byStratum) { gcR <- function(i, inc, weights, sort, na.rm) { giniCoeff(inc[i], weights[i], sort[i], na.rm=na.rm) } valueByStratum <- aggregate(1:n, if(byYear) list(year=years, stratum=breakdown) else list(stratum=breakdown), gcR, inc=inc, weights=weights, sort=sort, na.rm=na.rm) names(valueByStratum)[ncol(valueByStratum)] <- "value" rs <- levels(breakdown) # unique strata } else valueByStratum <- rs <- NULL ## create object of class "qsr" res <- constructGini(value=value, valueByStratum=valueByStratum, years=ys, strata=rs) # variance estimation (if requested) if(!is.null(var)) { res <- variance(inc, weights, years, breakdown, design, cluster, indicator=res, alpha=alpha, na.rm=na.rm, type=var, ...) } ## return result return(res) } ## workhorse giniCoeff <- function(x, weights = NULL, sort = NULL, na.rm = FALSE) { # initializations if(isTRUE(na.rm)){ indices <- !is.na(x) x <- x[indices] if(!is.null(weights)) weights <- weights[indices] if(!is.null(sort)) sort <- sort[indices] } else if(any(is.na(x))) return(NA) # sort values and weights order <- if(is.null(sort)) order(x) else order(x, sort) x <- x[order] # order values if(is.null(weights)) weights <- rep.int(1, length(x)) # equal weights else weights <- weights[order] # order weights ## calculations wx <- weights * x # weighted values sw <- sum(weights) # sum of weights cw <- cumsum(weights) # cumulative sum of weights 100 * ((2 * sum(wx*cw) - sum(weights^2 * x)) / (sw * sum(wx)) - 1) } laeken/R/paretoScale.R0000644000176200001440000001117614127253151014306 0ustar liggesusers# --------------------------------------- # Author: Andreas Alfons # Vienna University of Technology # --------------------------------------- #' Estimate the scale parameter of a Pareto distribution #' #' Estimate the scale parameter of a Pareto distribution, i.e., the threshold #' for Pareto tail modeling. #' #' Van Kerm's formula is given by \deqn{\min(\max(2.5 \bar{x}, q(0.98), #' q(0.97))),}{min(max(2.5 m(x), q(0.98)), q(0.97)),} where \eqn{\bar{x}}{m(x)} #' denotes the weighted mean and \eqn{q(.)} denotes weighted quantiles. This #' function allows to compute generalizations of Van Kerm's formula, where the #' mean can be replaced by the median and different quantiles can be used. #' #' @aliases print.paretoScale #' #' @param x a numeric vector. #' @param w an optional numeric vector giving sample weights. #' @param groups an optional vector or factor specifying groups of elements of #' \code{x} (e.g., households). If supplied, each group of observations is #' expected to have the same value in \code{x} (e.g., household income). Only #' the values of every first group member to appear are used for estimating the #' threshold (scale parameter). #' @param method a character string specifying the estimation method. If #' \code{"VanKerm"}, Van Kerm's method is used, which is a rule of thumb #' specifically designed for the equivalized disposable income in EU-SILC data #' (currently the only method implemented). #' @param center a character string specifying the estimation method for the #' center of the distribution. Possible values are \code{"mean"} for the #' weighted mean and \code{"median"} for the weighted median. This is used if #' \code{method} is \code{"VanKerm"} (currently the only method implemented). #' @param probs a numeric vector of length two giving probabilities to be used #' for computing weighted quantiles of the distribution. Values should be close #' to 1 such that the quantiles correspond to the upper tail. This is used if #' \code{method} is \code{"VanKerm"} (currently the only method implemented). #' @param na.rm a logical indicating whether missing values in \code{x} should #' be omitted. #' #' @return An object of class \code{"paretoScale"} with the following #' components: #' \item{x0}{the threshold (scale parameter).} #' \item{k}{the number of observations in the tail (i.e., larger than the #' threshold).} #' #' @author Andreas Alfons #' #' @seealso \code{\link{minAMSE}}, \code{\link{paretoQPlot}}, #' \code{\link{meanExcessPlot}} #' #' @references #' A. Alfons and M. Templ (2013) Estimation of Social Exclusion Indicators #' from Complex Surveys: The \R Package \pkg{laeken}. \emph{Journal of #' Statistical Software}, \bold{54}(15), 1--25. \doi{10.18637/jss.v054.i15} #' #' Van Kerm, P. (2007) Extreme incomes and the estimation of poverty and #' inequality indicators from EU-SILC. IRISS Working Paper Series 2007-01, #' CEPS/INSTEAD. #' #' @keywords manip #' #' @examples #' data(eusilc) #' paretoScale(eusilc$eqIncome, eusilc$db090, groups = eusilc$db030) #' #' @export paretoScale <- function(x, w = NULL, groups = NULL, method = "VanKerm", center = c("mean", "median"), probs = c(0.97, 0.98), na.rm = FALSE) { ## initializations if(!is.numeric(x) || length(x) == 0) stop("'x' must be a numeric vector") useW <- !is.null(w) if(useW && (!is.numeric(w) || length(w) != length(x))) { stop("'w' must be numeric vector of the same length as 'x'") } haveGroups <- !is.null(groups) if(haveGroups) { if(!is.vector(groups) && !is.factor(groups)) { stop("'groups' must be a vector or factor") } if(length(groups) != length(x)) { stop("'groups' must have the same length as 'x'") } if(any(is.na(groups))) stop("'groups' contains missing values") unique <- !duplicated(groups) x <- x[unique] if(useW) w <- w[unique] } # method <- match.arg(method) # only van Kerm's method currently implemented center <- match.arg(center) probs <- rep(probs, length.out=2) na.rm <- isTRUE(na.rm) # estimate threshold with van Kerm's method if(center == "mean") { mu <- weightedMean(x, w, na.rm=na.rm) q <- weightedQuantile(x, w, probs=probs, na.rm=na.rm) } else { q <- weightedQuantile(x, w, probs=c(0.5, probs), na.rm=na.rm) mu <- q[1] q <- q[-1] } x0 <- max(min(2.5*mu, q[2]), q[1]) res <- list(x0=x0, k=length(which(x > x0))) class(res) <- "paretoScale" res } ## print method for class "paretoScale" #' @export print.paretoScale <- function(x, ...) { cat("Threshold: ") cat(x$x0, ...) cat("\nNumber of observations in the tail: ") cat(x$k, ...) cat("\n") } laeken/R/meanExcessPlot.R0000644000176200001440000001432513616467254015012 0ustar liggesusers# ---------------------------------------- # Authors: Josef Holzer and Andreas Alfons # Vienna University of Technology # ---------------------------------------- #' Mean excess plot #' #' The Mean Excess plot is a graphical method for detecting the threshold (scale #' parameter) of a Pareto distribution. #' #' The corresponding mean excesses are plotted against the values of \code{x} #' (if supplied, only those specified by \code{probs}). If the tail of the data #' follows a Pareto distribution, these observations show a positive linear #' trend. The leftmost point of a fitted line can thus be used as an estimate of #' the threshold (scale parameter). #' #' The interactive selection of the threshold (scale parameter) is implemented #' using \code{\link[graphics]{identify}}. For the usual \code{X11} device, the #' selection process is thus terminated by pressing any mouse button other than #' the first. For the \code{quartz} device (on Mac OS X systems), the process #' is terminated either by a secondary click (usually second mouse button or #' \code{Ctrl}-click) or by pressing the \code{ESC} key. #' #' @param x a numeric vector. #' @param w an optional numeric vector giving sample weights. #' @param probs an optional numeric vector of probabilities with values in #' \eqn{[0,1]}, defining the quantiles to be plotted. This is useful for large #' data sets, when it may not be desirable to plot every single point. #' @param interactive a logical indicating whether the threshold (scale #' parameter) can be selected interactively by clicking on points. Information #' on the selected threshold is then printed on the console. #' @param pch,cex,col,bg graphical parameters for the plot symbol of each data #' point or quantile (see \code{\link[graphics]{points}}). #' @param \dots additional arguments to be passed to #' \code{\link[graphics]{plot.default}}. #' #' @return If \code{interactive} is \code{TRUE}, the last selection for the #' threshold is returned invisibly as an object of class \code{"paretoScale"}, #' which consists of the following components: #' \item{x0}{the selected threshold (scale parameter).} #' \item{k}{the number of observations in the tail (i.e., larger than the #' threshold).} #' #' @note The functionality to account for sample weights and to select the #' threshold (scale parameter) interactively was introduced in version 0.2. #' #' @author Andreas Alfons and Josef Holzer #' #' @seealso \code{\link{paretoScale}}, \code{\link{paretoTail}}, #' \code{\link{minAMSE}}, \code{\link{paretoQPlot}}, #' \code{\link[graphics]{identify}} #' #' @keywords hplot #' #' @examples #' data(eusilc) #' # equivalized disposable income is equal for each household #' # member, therefore only one household member is taken #' eusilc <- eusilc[!duplicated(eusilc$db030),] #' #' # with sample weights #' meanExcessPlot(eusilc$eqIncome, w = eusilc$db090) #' #' # without sample weights #' meanExcessPlot(eusilc$eqIncome) #' #' @importFrom graphics identify abline par plot #' @importFrom stats quantile weighted.mean #' @export meanExcessPlot <- function(x, w = NULL, probs = NULL, interactive = TRUE, pch = par("pch"), cex = par("cex"), col = par("col"), bg = "transparent", ...) { ## initializations n <- length(x) if(!is.numeric(x) || n == 0) stop("'x' must be a numeric vector") if(!is.null(w)) { if(!is.numeric(w) || length(w) != n) { stop("'w' must be numeric vector of the same length as 'x'") } if(any(w < 0)) stop("negative weights in 'w'") } haveProbs <- !is.null(probs) if(haveProbs) n <- length(probs) if(length(pch) > 1) pch <- rep(pch, length.out=n) if(length(cex) > 1) cex <- rep(cex, length.out=n) if(length(col) > 1) col <- rep(col, length.out=n) if(length(bg) > 1) bg <- rep(bg, length.out=n) if(any(i <- is.na(x))) { # remove missing values x <- x[!i] if(!is.null(w)) w <- w[!i] if(!haveProbs) { if(length(pch) > 1) pch <- pch[!i] if(length(cex) > 1) cex <- cex[!i] if(length(col) > 1) col <- col[!i] if(length(bg) > 1) bg <- bg[!i] n <- length(x) } if(length(x) == 0) stop("no observed values") } ## use observed values or quantiles as thresholds if(haveProbs) { if(is.null(w)) { # no weights mu <- quantile(x, probs, names=FALSE, type=1) # compute quantiles } else { # weights are supplied mu <- weightedQuantile(x, w, probs) # compute weighted quantiles } if(max(mu) >= max(x)) stop("largest threshold too high") } else { order <- order(x) keep <- seq_len(n-sqrt(n)) mu <- unname(x[order][keep]) if(length(pch) > 1) pch <- pch[order][keep] if(length(cex) > 1) cex <- cex[order][keep] if(length(col) > 1) col <- col[order][keep] if(length(bg) > 1) bg <- bg[order][keep] } ## compute mean excesses for the different thresholds # this could be done much faster with C (incremental computation) if(is.null(w)) meanExcess <- function(mu) mean(x[x > mu] - mu) else { meanExcess <- function(mu) { i <- x > mu weighted.mean(x[i] - mu, w[i]) } } me <- sapply(mu, meanExcess) ## create plot localPlot <- function(x, y, main = "Mean excess plot", xlab = "Threshold", ylab = "Mean excess", ...) { plot(x, y, main=main, xlab=xlab, ylab=ylab, ...) } localPlot(mu, me, pch=pch, cex=cex, col=col, bg=bg, ...) ## interactive identification of threshold res <- NULL if(isTRUE(interactive)) { nextIndex <- identify(mu, me, n=1, plot=FALSE) i <- 1 while(!identical(nextIndex, integer())) { index <- nextIndex x0 <- mu[index] res <- list(x0=x0, k=length(which(x > x0))) class(res) <- "paretoScale" if(i > 1) cat("\n") print(res) nextIndex <- identify(mu, me, n=1, plot=FALSE) i <- i + 1 } # indicate selected threshold by horizontal and vertical lines if(!is.null(res)) { abline(h=me[index], lty=3) abline(v=x0, lty=3) } } ## return result invisibly invisible(res) } laeken/R/thetaISE.R0000644000176200001440000001415114127253205013506 0ustar liggesusers# ---------------------------------------- # Authors: Andreas Alfons and Josef Holzer # Vienna University of Technology # ---------------------------------------- #' Integrated squared error (ISE) estimator #' #' The integrated squared error (ISE) estimator estimates the shape parameter of #' a Pareto distribution based on the relative excesses of observations above a #' certain threshold. #' #' The arguments \code{k} and \code{x0} of course correspond with each other. #' If \code{k} is supplied, the threshold \code{x0} is estimated with the \eqn{n #' - k} largest value in \code{x}, where \eqn{n} is the number of observations. #' On the other hand, if the threshold \code{x0} is supplied, \code{k} is given #' by the number of observations in \code{x} larger than \code{x0}. Therefore, #' either \code{k} or \code{x0} needs to be supplied. If both are supplied, #' only \code{k} is used (mainly for back compatibility). #' #' The ISE estimator minimizes the integrated squared error (ISE) criterion with #' a complete density model. The minimization is carried out using % #' \code{\link[stats]{nlm}}. By default, the starting value is obtained % with #' the Hill estimator (see \code{\link{thetaHill}}). #' \code{\link[stats]{optimize}}. #' #' @param x a numeric vector. #' @param k the number of observations in the upper tail to which the Pareto #' distribution is fitted. #' @param x0 the threshold (scale parameter) above which the Pareto distribution #' is fitted. #' @param w an optional numeric vector giving sample weights. #' @param \dots additional arguments to be passed to #' \code{\link[stats]{optimize}} (see \dQuote{Details}). #' #' @return The estimated shape parameter. #' #' @note The arguments \code{x0} for the threshold (scale parameter) of the #' Pareto distribution and \code{w} for sample weights were introduced in #' version 0.2. #' #' @author Andreas Alfons and Josef Holzer #' #' @seealso \code{\link{paretoTail}}, \code{\link{fitPareto}}, #' \code{\link{thetaPDC}}, \code{\link{thetaHill}} #' #' @references #' A. Alfons and M. Templ (2013) Estimation of Social Exclusion Indicators #' from Complex Surveys: The \R Package \pkg{laeken}. \emph{Journal of #' Statistical Software}, \bold{54}(15), 1--25. \doi{10.18637/jss.v054.i15} #' #' A. Alfons, M. Templ, P. Filzmoser (2013) Robust estimation of economic #' indicators from survey samples based on Pareto tail modeling. \emph{Journal #' of the Royal Statistical Society, Series C}, \bold{62}(2), 271--286. #' #' Vandewalle, B., Beirlant, J., Christmann, A., and Hubert, M. #' (2007) A robust estimator for the tail index of Pareto-type #' distributions. \emph{Computational Statistics & Data Analysis}, #' \bold{51}(12), 6252--6268. #' #' @keywords manip #' #' @examples #' data(eusilc) #' # equivalized disposable income is equal for each household #' # member, therefore only one household member is taken #' eusilc <- eusilc[!duplicated(eusilc$db030),] #' #' # estimate threshold #' ts <- paretoScale(eusilc$eqIncome, w = eusilc$db090) #' #' # using number of observations in tail #' thetaISE(eusilc$eqIncome, k = ts$k, w = eusilc$db090) #' #' # using threshold #' thetaISE(eusilc$eqIncome, x0 = ts$x0, w = eusilc$db090) #' #' @export thetaISE <- function(x, k = NULL, x0 = NULL, w = NULL, ...) { ## initializations if(!is.numeric(x) || length(x) == 0) stop("'x' must be a numeric vector") haveK <- !is.null(k) if(haveK) { # if 'k' is supplied, it is always used if(!is.numeric(k) || length(k) == 0 || k[1] < 1) { stop("'k' must be a positive integer") } else k <- k[1] } else if(!is.null(x0)) { # otherwise 'x0' (threshold) is used if(!is.numeric(x0) || length(x0) == 0) stop("'x0' must be numeric") else x0 <- x0[1] } else stop("either 'k' or 'x0' must be supplied") haveW <- !is.null(w) if(haveW) { # sample weights are supplied if(!is.numeric(w) || length(w) != length(x)) { stop("'w' must be numeric vector of the same length as 'x'") } if(any(w < 0)) stop("negative weights in 'w'") if(any(i <- is.na(x))) { # remove missing values x <- x[!i] w <- w[!i] } # sort values and sample weights order <- order(x) x <- x[order] w <- w[order] } else { # no sample weights if(any(i <- is.na(x))) x <- x[!i] # remove missing values x <- sort(x) # sort values } .thetaISE(x, k, x0, w, ...) } # internal function that assumes that data are ok and sorted .thetaISE <- function(x, k = NULL, x0 = NULL, w = NULL, tol = .Machine$double.eps^0.25, ...) { n <- length(x) # number of observations haveK <- !is.null(k) haveW <- !is.null(w) if(haveK) { # 'k' is supplied, threshold is determined if(k >= n) stop("'k' must be smaller than the number of observed values") x0 <- x[n-k] # threshold (scale parameter) } else { # 'k' is not supplied, it is determined using threshold # values are already sorted if(x0 >= x[n]) stop("'x0' must be smaller than the maximum of 'x'") k <- length(which(x > x0)) } ## computations y <- x[(n-k+1):n]/x0 # relative excesses if(haveW) { wTail <- w[(n-k+1):n] ## weighted integrated squared error distance criterion # w ... sample weights ISE <- function(theta, y, w) { f <- theta*y^(-1-theta) weighted.mean(theta^2/(2*theta+1) - 2*f, w) } } else { wTail <- NULL ## integrated squared error distance criterion # w ... sample weights (not needed here, only available to have the # same function definition) ISE <- function(theta, y, w) { f <- theta*y^(-1-theta) mean(theta^2/(2*theta+1) - 2*f) } } ## optimize localOptimize <- function(f, interval = NULL, tol, ...) { if(is.null(interval)) { p <- if(haveK) .thetaHill(x, k, w=w) else .thetaHill(x, x0=x0, w=w) interval <- c(0 + tol, 3 * p) # default interval } optimize(f, interval, ...) } localOptimize(ISE, y=y, w=wTail, tol=tol, ...)$minimum } laeken/R/calibWeights.R0000644000176200001440000002213414127273134014450 0ustar liggesusers# --------------------------------------- # Author: Andreas Alfons # Vienna University of Technology # --------------------------------------- #' Calibrate sample weights #' #' Calibrate sample weights according to known marginal population totals. #' Based on initial sample weights, the so-called \emph{g}-weights are computed #' by generalized raking procedures. #' #' The final sample weights need to be computed by multiplying the resulting #' \emph{g}-weights with the initial sample weights. #' #' @encoding utf8 #' #' @param X a matrix of binary calibration variables (see #' \code{\link{calibVars}}). #' @param d a numeric vector giving the initial sample weights. #' @param totals a numeric vector of population totals corresponding to the #' calibration variables in \code{X}. #' @param q a numeric vector of positive values accounting for #' heteroscedasticity. Small values reduce the variation of the #' \emph{g}-weights. #' @param method a character string specifying the calibration method to be #' used. Possible values are \code{"linear"} for the linear method, #' \code{"raking"} for the multiplicative method known as raking and #' \code{"logit"} for the logit method. #' @param bounds a numeric vector of length two giving bounds for the g-weights #' to be used in the logit method. The first value gives the lower bound (which #' must be smaller than or equal to 1) and the second value gives the upper #' bound (which must be larger than or equal to 1). #' @param maxit a numeric value giving the maximum number of iterations. #' @param tol the desired accuracy for the iterative procedure. #' @param eps the desired accuracy for computing the Moore-Penrose generalized #' inverse (see \code{\link[MASS]{ginv}}). #' #' @return A numeric vector containing the \emph{g}-weights. #' #' @note This is a faster implementation of parts of \code{calib} from #' package \code{sampling}. Note that the default calibration method is #' raking and that the truncated linear method is not yet implemented. #' #' @author Andreas Alfons #' #' @seealso \code{\link{calibVars}}, \code{\link{bootVar}} #' #' @references Deville, J.-C. and \enc{Särndal}{Saerndal}, C.-E. (1992) #' Calibration estimators in survey sampling. \emph{Journal of the American #' Statistical Association}, \bold{87}(418), 376--382. #' #' Deville, J.-C., \enc{Särndal}{Saerndal}, C.-E. and Sautory, O. (1993) #' Generalized raking procedures in survey sampling. \emph{Journal of the #' American Statistical Association}, \bold{88}(423), 1013--1020. #' #' @keywords survey #' #' @examples #' data(eusilc) #' # construct auxiliary 0/1 variables for genders #' aux <- calibVars(eusilc$rb090) #' # population totals #' totals <- c(3990798, 4191431) #' # compute g-weights #' g <- calibWeights(aux, eusilc$rb050, totals) #' # compute final weights #' weights <- g * eusilc$rb050 #' summary(weights) #' #' @importFrom MASS ginv #' @export calibWeights <- function(X, d, totals, q = NULL, method = c("raking", "linear", "logit"), bounds = c(0, 10), maxit = 500, tol = 1e-06, eps = .Machine$double.eps) { ## initializations and error handling X <- as.matrix(X) d <- as.numeric(d) totals <- as.numeric(totals) haveNA <- c(any(is.na(X)), any(is.na(d)), any(is.na(totals)), !is.null(q) && any(is.na(q))) if(any(haveNA)) { argsNA <- c("'X'", "'d'", "'totals'", "'q'")[haveNA] stop("missing values in the following arguments", paste(argsNA, collapse=", ")) } n <- nrow(X) # number of rows if(length(d) != n) stop("length of 'd' not equal to number of rows in 'X'") p <- ncol(X) # number of columns if(length(totals) != p) { stop("length of 'totals' not equal to number of columns in 'X'") } if(is.null(q)) q <- rep.int(1, n) else { q <- as.numeric(q) if(length(q) != n) { stop("length of 'q' not equal to number of rows in 'X'") } if(any(is.infinite(q))) stop("infinite values in 'q'") } method <- match.arg(method) ## computation of g-weights if(method == "linear") { ## linear method (no iteration!) lambda <- ginv(t(X * d * q) %*% X, tol=eps) %*% (totals - as.vector(t(d) %*% X)) g <- 1 + q * as.vector(X %*% lambda) # g-weights } else { ## multiplicative method (raking) or logit method lambda <- matrix(0, nrow=p) # initial values # function to determine whether teh desired accuracy has # not yet been reached (to be used in the 'while' loop) tolNotReached <- function(X, w, totals, tol) { max(abs(crossprod(X, w) - totals)/totals) >= tol } if(method == "raking") { ## multiplicative method (raking) # some initial values g <- rep.int(1, n) # g-weights w <- d # sample weights ## iterations i <- 1 while(!any(is.na(g)) && tolNotReached(X, w, totals, tol) && i <= maxit) { # here 'phi' describes more than the phi function in Deville, # Saerndal and Sautory (1993); it is the whole last term of # equation (11.1) phi <- t(X) %*% w - totals T <- t(X * w) dphi <- T %*% X # derivative of phi function (to be inverted) lambda <- lambda - ginv(dphi, tol=eps) %*% phi # update 'lambda' g <- exp(as.vector(X %*% lambda) * q) # update g-weights w <- g * d # update sample weights i <- i + 1 # increase iterator } ## check wether procedure converged if(any(is.na(g)) || i > maxit) { warning("no convergence") g <- NULL } } else { ## logit (L, U) method ## error handling for bounds if(length(bounds) < 2) stop("'bounds' must be a vector of length 2") else bounds <- bounds[1:2] if(bounds[1] >= 1) stop("the lower bound must be smaller than 1") if(bounds[2] <= 1) stop("the lower bound must be larger than 1") ## some preparations A <- diff(bounds)/((1 - bounds[1]) * (bounds[2] - 1)) # function to bound g-weights getG <- function(u, bounds) { (bounds[1] * (bounds[2]-1) + bounds[2] * (1-bounds[1]) * u) / (bounds[2]-1 + (1-bounds[1]) * u) } ## some initial values g <- getG(rep.int(1, n), bounds) # g-weights # in the procedure, g-weights outside the bounds are moved to the # bounds and only the g-weights within the bounds are adjusted. # these duplicates are needed since in general they are changed in # each iteration while the original values are also needed X1 <- X d1 <- d totals1 <- totals q1 <- q g1 <- g indices <- 1:n # function to determine which g-weights are outside the bounds anyOutOfBounds <- function(g, bounds) { any(g < bounds[1]) || any(g > bounds[2]) } ## iterations i <- 1 while(!any(is.na(g)) && (tolNotReached(X, g*d, totals, tol) || anyOutOfBounds(g, bounds)) && i <= maxit) { # if some of the g-weights are outside the bounds, these values # are moved to the bounds and only the g-weights within the # bounds are adjusted if(anyOutOfBounds(g, bounds)) { g[g < bounds[1]] <- bounds[1] g[g > bounds[2]] <- bounds[2] # values within the bounds tmp <- which(g > bounds[1] & g < bounds[2]) if(length(tmp) > 0) { indices <- tmp X1 <- X[indices,] d1 <- d[indices] if(length(indices) < n) { totals1 <- totals - as.vector(t(g[-indices] * d[-indices]) %*% X[-indices, , drop=FALSE]) } q1 <- q[indices] g1 <- g[indices] } } w1 <- g1 * d1 # current sample weights # here 'phi' describes more than the phi function in Deville, # Saerndal and Sautory (1993); it is the whole last term of # equation (11.1) phi <- t(X1) %*% w1 - totals1 T <- t(X1 * w1) dphi <- T %*% X1 # derivative of phi function (to be inverted) lambda <- lambda - ginv(dphi, tol=eps) %*% phi # update 'lambda' # update g-weights u <- exp(A * as.vector(X1 %*% lambda) * q1) g1 <- getG(u, bounds) g[indices] <- g1 i <- i+1 # increase iterator } ## check wether procedure converged if(any(is.na(g)) || i > maxit) { warning("no convergence") g <- NULL } } } ## return g-weights return(g) } laeken/R/paretoQPlot.R0000644000176200001440000001705514127253177014330 0ustar liggesusers# ---------------------------------------- # Authors: Andreas Alfons and Josef Holzer # Vienna University of Technology # ---------------------------------------- #' Pareto quantile plot #' #' The Pareto quantile plot is a graphical method for inspecting the parameters #' of a Pareto distribution. #' #' If the Pareto model holds, there exists a linear relationship between the #' lograrithms of the observed values and the quantiles of the standard #' exponential distribution, since the logarithm of a Pareto distributed random #' variable follows an exponential distribution. Hence the logarithms of the #' observed values are plotted against the corresponding theoretical quantiles. #' If the tail of the data follows a Pareto distribution, these observations #' form almost a straight line. The leftmost point of a fitted line can thus be #' used as an estimate of the threshold (scale parameter). The slope of the #' fitted line is in turn an estimate of \eqn{\frac{1}{\theta}}{1/theta}, the #' reciprocal of the shape parameter. #' #' The interactive selection of the threshold (scale parameter) is implemented #' using \code{\link[graphics]{identify}}. For the usual \code{X11} device, the #' selection process is thus terminated by pressing any mouse button other than #' the first. For the \code{quartz} device (on Mac OS X systems), the process #' is terminated either by a secondary click (usually second mouse button or #' \code{Ctrl}-click) or by pressing the \code{ESC} key. #' #' @param x a numeric vector. #' @param w an optional numeric vector giving sample weights. #' @param xlab,ylab axis labels. #' @param interactive a logical indicating whether the threshold (scale #' parameter) can be selected interactively by clicking on points. Information #' on the selected threshold is then printed on the console. #' @param x0,theta optional; if estimates of the threshold (scale parameter) #' and the shape parameter have already been obtained, they can be passed #' through the corresponding argument (\code{x0} for the threshold, #' \code{theta} for the shape parameter). If both arguments are supplied and #' \code{interactive} is not \code{TRUE}, reference lines are drawn to indicate #' the parameter estimates. #' @param pch,cex,col,bg graphical parameters for the plot symbol of each data #' point (see \code{\link[graphics]{points}}). #' @param \dots additional arguments to be passed to #' \code{\link[graphics]{plot.default}}. #' #' @return If \code{interactive} is \code{TRUE}, the last selection for the #' threshold is returned invisibly as an object of class \code{"paretoScale"}, #' which consists of the following components: #' \item{x0}{the selected threshold (scale parameter).} #' \item{k}{the number of observations in the tail (i.e., larger than the #' threshold).} #' #' @note The functionality to account for sample weights and to select the #' threshold (scale parameter) interactively was introduced in version 0.2. #' Also starting with version 0.2, a logarithmic y-axis is now used to display #' the axis labels in the scale of the original values. #' #' @author Andreas Alfons and Josef Holzer #' #' @seealso \code{\link{paretoScale}}, \code{\link{paretoTail}}, #' \code{\link{minAMSE}}, \code{\link{meanExcessPlot}}, #' \code{\link[graphics]{identify}} #' #' @references #' A. Alfons and M. Templ (2013) Estimation of Social Exclusion Indicators #' from Complex Surveys: The \R Package \pkg{laeken}. \emph{Journal of #' Statistical Software}, \bold{54}(15), 1--25. \doi{10.18637/jss.v054.i15} #' #' A. Alfons, M. Templ, P. Filzmoser (2013) Robust estimation of economic #' indicators from survey samples based on Pareto tail modeling. \emph{Journal #' of the Royal Statistical Society, Series C}, \bold{62}(2), 271--286. #' #' Beirlant, J., Vynckier, P. and Teugels, J.L. (1996) Tail index estimation, #' Pareto quantile plots, and regression diagnostics. \emph{Journal of the #' American Statistical Association}, \bold{91}(436), 1659--1667. #' #' @keywords hplot #' #' @examples #' data(eusilc) #' # equivalized disposable income is equal for each household #' # member, therefore only one household member is taken #' eusilc <- eusilc[!duplicated(eusilc$db030),] #' #' # with sample weights #' paretoQPlot(eusilc$eqIncome, w = eusilc$db090) #' #' # without sample weights #' paretoQPlot(eusilc$eqIncome) #' #' @importFrom graphics identify abline par plot #' @export paretoQPlot <- function(x, w = NULL, xlab = NULL, ylab = NULL, interactive = TRUE, x0 = NULL, theta = NULL, pch = par("pch"), cex = par("cex"), col = par("col"), bg = "transparent", ...) { ## initializations n <- length(x) if(!is.numeric(x) || n == 0) stop("'x' must be a numeric vector") if(!is.null(w)) { if(!is.numeric(w) || length(w) != n) { stop("'w' must be numeric vector of the same length as 'x'") } if(any(w < 0)) stop("negative weights in 'w'") } if(length(pch) > 1) pch <- rep(pch, length.out=n) if(length(cex) > 1) cex <- rep(cex, length.out=n) if(length(col) > 1) col <- rep(col, length.out=n) if(length(bg) > 1) bg <- rep(bg, length.out=n) if(any(i <- is.na(x))) { # remove missing values x <- x[!i] if(!is.null(w)) w <- w[!i] if(length(pch) > 1) pch <- pch[!i] if(length(cex) > 1) cex <- cex[!i] if(length(col) > 1) col <- col[!i] if(length(bg) > 1) bg <- bg[!i] n <- length(x) if(n == 0) stop("no observed values") } # sort values and weights order <- order(x) x <- x[order] if(!is.null(w)) w <- w[order] if(length(pch) > 1) pch <- pch[order] if(length(cex) > 1) cex <- cex[order] if(length(col) > 1) col <- col[order] if(length(bg) > 1) bg <- bg[order] ## computation of theoretical quantiles if(is.null(w)) { y <- -log((n:1)/(n+1)) } else { cw <- cumsum(w) y <- -log(1 - cw/(cw[n]*(n+1)/n)) } ## create plot if(is.null(xlab)) xlab <- "Theoretical quantiles" if(is.null(ylab)) ylab <- "" localPlot <- function(x, y, main = "Pareto quantile plot", log, xlog, ylog, ...) { suppressWarnings(plot(x, y, main=main, log="y", ...)) } localPlot(y, x, xlab=xlab, ylab=ylab, pch=pch, cex=cex, col=col, bg=bg, ...) ## interactive identification of threshold res <- NULL if(isTRUE(interactive)) { nextIndex <- identify(y, x, n=1, plot=FALSE) i <- 1 while(!identical(nextIndex, integer())) { index <- nextIndex x0 <- unname(x[index]) res <- list(x0=x0, k=length(which(x > x0))) class(res) <- "paretoScale" if(i > 1) cat("\n") print(res) nextIndex <- identify(y, x, n=1, plot=FALSE) i <- i + 1 } # indicate selected threshold by horizontal and vertical lines if(!is.null(res)) { abline(h=x0, col="darkgrey", lty=3) abline(v=y[index], col="darkgrey", lty=3) } } else if(!is.null(x0) && !is.null(theta)) { k <- length(which(x > x0)) index <- n - k # add line for estimate of shape parameter usr <- par("usr") par(ylog=FALSE, usr=c(usr[1:2], log(10^usr[3:4]))) # change coordinate system on.exit(par(ylog=TRUE, usr=usr)) # change coordinate system back on exit slope <- 1/theta intercept <- log(x[index]) - slope * y[index] abline(intercept, slope, col="darkgrey") # indicate scale parameter by horizontal line abline(h=log(x0), col="darkgrey", lty=3) } ## return result invisibly invisible(res) } laeken/R/calibVars.R0000644000176200001440000000320613616467254013762 0ustar liggesusers# --------------------------------------- # Author: Andreas Alfons # Vienna University of Technology # --------------------------------------- #' Construct a matrix of binary variables for calibration #' #' Construct a matrix of binary variables for calibration of sample weights #' according to known marginal population totals. #' #' @name calibVars #' @param x a vector that can be interpreted as factor, or a matrix or #' \code{data.frame} consisting of such variables. #' #' @return A matrix of binary variables that indicate membership to the #' corresponding factor levels. #' #' @author Andreas Alfons #' #' @seealso \code{\link{calibWeights}} #' #' @keywords survey #' #' @examples #' data(eusilc) #' # default method #' aux <- calibVars(eusilc$rb090) #' head(aux) #' # data.frame method #' aux <- calibVars(eusilc[, c("db040", "rb090")]) #' head(aux) #' #' @export calibVars <- function(x) UseMethod("calibVars") #' @export calibVars.default <- function(x) { if(length(x) == 0) matrix(integer(), 0, 0) x <- as.factor(x) res <- sapply(levels(x), function(l) as.integer(x == l)) rownames(res) <- names(x) # set rownames from original vector res } #' @export calibVars.matrix <- function(x) calibVars(as.data.frame(x)) #' @export calibVars.data.frame <- function(x) { res <- lapply(x, calibVars) # list of matrices for each variable res <- mapply(function(x, nam) { colnames(x) <- paste(nam, colnames(x), sep=".") x }, res, names(x), SIMPLIFY=FALSE) res <- do.call("cbind", res) # combine matrices rownames(res) <- row.names(x) # set rownames from original data.frame res } laeken/R/weightedMean.R0000644000176200001440000000267013616467254014461 0ustar liggesusers# ------------------------------------------ # Authors: Andreas Alfons and Matthias Templ # Vienna University of Technology # ------------------------------------------ #' Weighted mean #' #' Compute the weighted mean. #' #' This is a simple wrapper function calling \code{\link[stats]{weighted.mean}} #' if sample weights are supplied and \code{\link{mean}} otherwise. #' #' @param x a numeric vector. #' @param weights an optional numeric vector giving the sample weights. #' @param na.rm a logical indicating whether missing values in \code{x} should #' be omitted. #' #' @return The weighted mean of values in \code{x} is returned. #' #' @author Andreas Alfons #' #' @seealso \code{\link{incMean}} #' #' @keywords survey #' #' @examples #' data(eusilc) #' weightedMean(eusilc$eqIncome, eusilc$rb050) #' #' @importFrom stats weighted.mean #' @export weightedMean <- function(x, weights = NULL, na.rm = FALSE) { # initializations if (!is.numeric(x)) stop("'x' must be a numeric vector") if (is.null(weights)) mean(x, na.rm=na.rm) else { n <- length(x) if (!is.numeric(weights)) stop("'weights' must be a numeric vector") else if (length(weights) != n) { stop("'weights' must have the same length as 'x'") } else if (!all(is.finite(weights))) stop("missing or infinite weights") if (any(weights < 0)) warning("negative weights") weighted.mean(x, weights, na.rm=na.rm) } } laeken/R/prop.R0000644000176200001440000002362414127253271013030 0ustar liggesusers# --------------------------------------- # Author: Matthias Templ # Vienna University of Technology # --------------------------------------- #' Proportion of an alternative distribution #' #' Estimate the proportion of an alternative distribution. #' #' If weights are provided, the weighted proportion is estimated. #' #' @param bin either a factor vector giving the values, #' or (if \code{data} is not \code{NULL}) a character string, an integer or a #' logical vector specifying the corresponding column of \code{data}. #' @param weights optional; either a numeric vector giving the personal sample #' weights, or (if \code{data} is not \code{NULL}) a character string, an #' integer or a logical vector specifying the corresponding column of #' \code{data}. #' @param sort optional; either a numeric vector giving the personal IDs to be #' used as tie-breakers for sorting, or (if \code{data} is not \code{NULL}) a #' character string, an integer or a logical vector specifying the corresponding #' column of \code{data}. #' @param years optional; either a numeric vector giving the different years of #' the survey, or (if \code{data} is not \code{NULL}) a character string, an #' integer or a logical vector specifying the corresponding column of #' \code{data}. If supplied, values are computed for each year. #' @param breakdown optional; either a numeric vector giving different domains, #' or (if \code{data} is not \code{NULL}) a character string, an integer or a #' logical vector specifying the corresponding column of \code{data}. If #' supplied, the values for each domain are computed in addition to the overall #' value. #' @param design optional and only used if \code{var} is not \code{NULL}; either #' an integer vector or factor giving different domains for stratified sampling #' designs, or (if \code{data} is not \code{NULL}) a character string, an #' integer or a logical vector specifying the corresponding column of #' \code{data}. #' @param cluster optional and only used if \code{var} is not \code{NULL}; #' either an integer vector or factor giving different clusters for cluster #' sampling designs, or (if \code{data} is not \code{NULL}) a character string, #' an integer or a logical vector specifying the corresponding column of #' \code{data}. #' @param data an optional \code{data.frame}. #' @param var a character string specifying the type of variance estimation to #' be used, or \code{NULL} to omit variance estimation. See #' \code{\link{variance}} for possible values. #' @param alpha numeric; if \code{var} is not \code{NULL}, this gives the #' significance level to be used for computing the confidence interval (i.e., #' the confidence level is \eqn{1 - }\code{alpha}). #' @param na.rm a logical indicating whether missing values should be removed. #' @param \dots if \code{var} is not \code{NULL}, additional arguments to be #' passed to \code{\link{variance}}. #' #' @return A list of class \code{"prop"} (which inherits from the class #' \code{"indicator"}) with the following components: #' \item{value}{a numeric vector containing the overall value(s).} #' \item{valueByStratum}{a \code{data.frame} containing the values by #' domain, or \code{NULL}.} #' \item{varMethod}{a character string specifying the type of variance #' estimation used, or \code{NULL} if variance estimation was omitted.} #' \item{var}{a numeric vector containing the variance estimate(s), or #' \code{NULL}.} #' \item{varByStratum}{a \code{data.frame} containing the variance #' estimates by domain, or \code{NULL}.} #' \item{ci}{a numeric vector or matrix containing the lower and upper #' endpoints of the confidence interval(s), or \code{NULL}.} #' \item{ciByStratum}{a \code{data.frame} containing the lower and upper #' endpoints of the confidence intervals by domain, or \code{NULL}.} #' \item{alpha}{a numeric value giving the significance level used for #' computing the confidence interval(s) (i.e., the confidence level is \eqn{1 - #' }\code{alpha}), or \code{NULL}.} #' \item{years}{a numeric vector containing the different years of the #' survey.} #' \item{strata}{a character vector containing the different domains of the #' breakdown.} #' #' @author Matthias Templ, using code for breaking down #' estimation by Andreas Alfons #' #' @seealso \code{\link{variance}} #' #' @references #' A. Alfons and M. Templ (2013) Estimation of Social Exclusion Indicators #' from Complex Surveys: The \R Package \pkg{laeken}. \emph{Journal of #' Statistical Software}, \bold{54}(15), 1--25. \doi{10.18637/jss.v054.i15} #' #' Working group on Statistics on Income and Living Conditions (2004) #' Common cross-sectional EU indicators based on EU-SILC; the gender #' pay gap. \emph{EU-SILC 131-rev/04}, Eurostat, Luxembourg. #' #' @keywords survey #' #' @examples #' data(eusilc) #' #' # overall value #' prop("rb090", weights = "rb050", data = eusilc) #' #' # values by region #' p1 <- prop("rb090", weights = "rb050", #' breakdown = "db040", cluster = "db030", #' data = eusilc) #' #' p1 #' #' \dontrun{ #' variance("rb090", weights = "rb050", #' breakdown = "db040", data = eusilc, indicator=p1, #' cluster="db030", X = calibVars(eusilc$db040)) #' } #' #' #' eusilc$agecut <- cut(eusilc$age, 2) #' p1 <- prop("agecut", weights = "rb050", #' breakdown = "db040", #' cluster="db030", data = eusilc) #' p1 #' #' \dontrun{ #' variance("agecut", weights = "rb050", #' breakdown = "db040", data = eusilc, indicator=p1, #' X = calibVars(eusilc$db040), cluster="db030") #' } #' #' #' eusilc$eqIncomeCat <- factor(ifelse(eusilc$eqIncome < quantile(eusilc$eqIncome,0.2), "one", "two")) #' p1 <- prop("eqIncomeCat", weights = "rb050", #' breakdown = "db040", data = eusilc, cluster="db030") #' p1 #' #' \dontrun{ #' variance("eqIncomeCat", weights = "rb050", #' breakdown = "db040", data = eusilc, indicator=p1, #' X = calibVars(eusilc$db040), cluster="db030") #' } #' #' #' @importFrom stats aggregate #' @export prop <- function(bin, weights = NULL, sort = NULL, years = NULL, breakdown = NULL, design = NULL, cluster = NULL, data = NULL, var = NULL, alpha = 0.05, na.rm = FALSE, ...) { ## initializations byYear <- !is.null(years) byStratum <- !is.null(breakdown) if(!is.null(data)) { bin <- data[, bin] if(!is.null(weights)) weights <- data[, weights] if(!is.null(sort)) sort <- data[, sort] if(byYear) years <- data[, years] if(byStratum) breakdown <- data[, breakdown] if(!is.null(var)) { if(!is.null(design)) design <- data[, design] if(!is.null(cluster)) cluster <- data[, cluster] } } # check vectors if(!is.factor(bin)) stop("'bin' must be a vector of class factor") if(length(levels(bin)) != 2) stop(paste("'bin' has not exactly 2 levels")) n <- length(bin) if(is.null(weights)) weights <- weights <- rep.int(1, n) else if(!is.numeric(weights)) stop("'weights' must be a numeric vector") if(!is.null(sort) && !is.vector(sort) && !is.ordered(sort)) { stop("'sort' must be a vector or ordered factor") } if(byYear && !is.numeric(years)) { stop("'years' must be a numeric vector") } if(byStratum) { if(!is.vector(breakdown) && !is.factor(breakdown)) { stop("'breakdown' must be a vector or factor") } else breakdown <- as.factor(breakdown) } if(is.null(data)) { # check vector lengths if(length(weights) != n) { stop("'weights' must have the same length as 'x'") } if(!is.null(sort) && length(sort) != n) { stop("'sort' must have the same length as 'x'") } if(byYear && length(years) != n) { stop("'years' must have the same length as 'x'") } if(byStratum && length(breakdown) != n) { stop("'breakdown' must have the same length as 'x'") } } ## computations # prop by year (if requested) if(byYear) { ys <- sort(unique(years)) # unique years gc <- function(y, bin, weights, sort, years, na.rm) { i <- years == y propCoeff(bin[i], weights[i], sort[i], na.rm=na.rm) } value <- sapply(ys, gc, bin=bin, weights=weights, sort=sort, years=years, na.rm=na.rm) names(value) <- ys # use years as names } else { ys <- NULL value <- propCoeff(bin, weights, sort, na.rm=na.rm) } # prop by stratum (if requested) if(byStratum) { gcR <- function(i, bin, weights, sort, na.rm) { propCoeff(bin[i], weights[i], sort[i], na.rm=na.rm) } valueByStratum <- aggregate(1:n, if(byYear) list(year=years, stratum=breakdown) else list(stratum=breakdown), gcR, bin=bin, weights=weights, sort=sort, na.rm=na.rm) names(valueByStratum)[ncol(valueByStratum)] <- "value" rs <- levels(breakdown) # unique strata } else valueByStratum <- rs <- NULL ## create object of class "qsr" res <- constructProp(value=value, valueByStratum=valueByStratum, years=ys, strata=rs) # variance estimation (if requested) if(!is.null(var)) { # bin <- ifelse(as.numeric(as.integer(bin)), 0,1) bin <- as.numeric(as.integer(bin)) res <- variance(bin, weights, years, breakdown, design, cluster, indicator=res, alpha=alpha, na.rm=na.rm, type=var, ...) } ## return result return(res) } ## workhorse propCoeff <- function(x, weights = NULL, sort = NULL, na.rm = FALSE) { # initializations if(isTRUE(na.rm)){ indices <- !is.na(x) x <- x[indices] if(!is.null(weights)) weights <- weights[indices] if(!is.null(sort)) sort <- sort[indices] } else if(any(is.na(x))) return(NA) # sort values and weights # order <- if(is.null(sort)) order(x) else order(x, sort) # x <- x[order] # order values if(is.null(weights)) weights <- rep.int(1, length(x)) # equal weights # else weights <- weights[order] # order weights ## calculations ## bin to numeric x <- as.integer(x) 1-weightedMean(x-1, weights) } laeken/R/variance.R0000644000176200001440000001175714127253303013640 0ustar liggesusers# --------------------------------------- # Author: Andreas Alfons # Vienna University of Technology # --------------------------------------- #' Variance and confidence intervals of indicators on social exclusion and #' poverty #' #' Compute variance and confidence interval estimates of indicators on social #' exclusion and poverty. #' #' This is a wrapper function for computing variance and confidence interval #' estimates of indicators on social exclusion and poverty. #' #' @param inc either a numeric vector giving the equivalized disposable income, #' or (if \code{data} is not \code{NULL}) a character string, an integer or a #' logical vector specifying the corresponding column of \code{data}. #' @param weights optional; either a numeric vector giving the personal sample #' weights, or (if \code{data} is not \code{NULL}) a character string, an #' integer or a logical vector specifying the corresponding column of #' \code{data}. #' @param years optional; either a numeric vector giving the different years of #' the survey, or (if \code{data} is not \code{NULL}) a character string, an #' integer or a logical vector specifying the corresponding column of #' \code{data}. If supplied, values are computed for each year. #' @param breakdown optional; either a numeric vector giving different domains, #' or (if \code{data} is not \code{NULL}) a character string, an integer or a #' logical vector specifying the corresponding column of \code{data}. If #' supplied, the values for each domain are computed in addition to the overall #' value. #' @param design optional; either an integer vector or factor giving different #' strata for stratified sampling designs, or (if \code{data} is not #' \code{NULL}) a character string, an integer or a logical vector specifying #' the corresponding column of \code{data}. #' @param cluster optional; either an integer vector or factor giving different #' clusters for cluster sampling designs, or (if \code{data} is not #' \code{NULL}) a character string, an integer or a logical vector specifying #' the corresponding column of \code{data}. #' @param data an optional \code{data.frame}. #' @param indicator an object inheriting from the class \code{"indicator"} that #' contains the point estimates of the indicator (see \code{\link{arpr}}, #' \code{\link{qsr}}, \code{\link{rmpg}} or \code{\link{gini}}). #' @param alpha a numeric value giving the significance level to be used for #' computing the confidence interval(s) (i.e., the confidence level is \eqn{1 - #' }\code{alpha}), or \code{NULL}. #' @param na.rm a logical indicating whether missing values should be removed. #' @param type a character string specifying the type of variance estimation to #' be used. Currently, only \code{"bootstrap"} is implemented for variance #' estimation based on bootstrap resampling (see \code{\link{bootVar}}). #' @param gender either a numeric vector giving the gender, or (if \code{data} #' is not \code{NULL}) a character string, an integer or a logical vector #' specifying the corresponding column of \code{data}. #' @param method a character string specifying the method to be used (only for #' \code{\link{gpg}}). Possible values are \code{"mean"} for the mean, and #' \code{"median"} for the median. If weights are provided, the weighted mean #' or weighted median is estimated. #' @param \dots additional arguments to be passed to \code{\link{bootVar}}. #' #' @return An object of the same class as \code{indicator} is returned. See #' \code{\link{arpr}}, \code{\link{qsr}}, \code{\link{rmpg}} or #' \code{\link{gini}} for details on the components. #' #' @author Andreas Alfons #' #' @seealso \code{\link{bootVar}}, \code{\link{arpr}}, \code{\link{qsr}}, #' \code{\link{rmpg}}, \code{\link{gini}} #' #' @references #' A. Alfons and M. Templ (2013) Estimation of Social Exclusion Indicators #' from Complex Surveys: The \R Package \pkg{laeken}. \emph{Journal of #' Statistical Software}, \bold{54}(15), 1--25. \doi{10.18637/jss.v054.i15} #' #' @keywords survey #' #' @examples #' data(eusilc) #' a <- arpr("eqIncome", weights = "rb050", data = eusilc) #' #' ## naive bootstrap #' variance("eqIncome", weights = "rb050", design = "db040", #' data = eusilc, indicator = a, R = 50, #' bootType = "naive", seed = 123) #' #' ## bootstrap with calibration #' variance("eqIncome", weights = "rb050", design = "db040", #' data = eusilc, indicator = a, R = 50, #' X = calibVars(eusilc$db040), seed = 123) #' #' @export variance <- function(inc, weights = NULL, years = NULL, breakdown = NULL, design = NULL, cluster = NULL, data = NULL, indicator, alpha = 0.05, na.rm = FALSE, type = "bootstrap", gender = NULL, method = NULL, ...) { # initializations type <- match.arg(type) # call function corresponding to 'type' switch(type, bootstrap = bootVar(inc, weights, years, breakdown, design, cluster, data, indicator, alpha=alpha, na.rm=na.rm, gender=gender, method=method, ...)) } laeken/R/eqInc.R0000755000176200001440000001115214554257667013124 0ustar liggesusers# --------------------------------------- # Author: Andreas Alfons # Vienna University of Technology # --------------------------------------- # TODO: error handling # TODO: account for inflation-adjustment #' Equivalized disposable income #' #' Compute the equivalized disposable income from household and personal income #' variables. #' #' All income components should already be imputed, otherwise \code{NA}s are #' simply removed before the calculations. #' #' @param hid if \code{data=NULL}, a vector containing the household ID. #' Otherwise a character string specifying the column of \code{data} that #' contains the household ID. #' @param hplus if \code{data=NULL}, a \code{data.frame} containing the #' household income components that have to be added. Otherwise a character #' vector specifying the columns of \code{data} that contain these income #' components. #' @param hminus if \code{data=NULL}, a \code{data.frame} containing the #' household income components that have to be subtracted. Otherwise a #' character vector specifying the columns of \code{data} that contain these #' income components. #' @param pplus if \code{data=NULL}, a \code{data.frame} containing the personal #' income components that have to be added. Otherwise a character vector #' specifying the columns of \code{data} that contain these income components. #' @param pminus if \code{data=NULL}, a \code{data.frame} containing the #' personal income components that have to be subtracted. Otherwise a character #' vector specifying the columns of \code{data} that contain these income #' components. #' @param eqSS if \code{data=NULL}, a vector containing the equivalized #' household size. Otherwise a character string specifying the column of #' \code{data} that contains the equivalized household size. See #' \code{\link{eqSS}} for more details. #' @param year if \code{data=NULL}, a vector containing the year of the survey. #' Otherwise a character string specifying the column of \code{data} that #' contains the year. #' @param data a \code{data.frame} containing EU-SILC survey data, or #' \code{NULL}. #' #' @return A numeric vector containing the equivalized disposable income for #' every individual in \code{data}. #' #' @author Andreas Alfons #' #' @seealso \code{\link{eqSS}} #' #' @references Working group on Statistics on Income and Living Conditions #' (2004) Common cross-sectional EU indicators based on EU-SILC; the gender pay #' gap. \emph{EU-SILC 131-rev/04}, Eurostat. #' @keywords survey #' #' @examples #' data(eusilc) #' #' # compute a simplified version of the equivalized disposable income #' # (not all income components are available in the synthetic data) #' hplus <- c("hy040n", "hy050n", "hy070n", "hy080n", "hy090n", "hy110n") #' hminus <- c("hy130n", "hy145n") #' pplus <- c("py010n", "py050n", "py090n", "py100n", #' "py110n", "py120n", "py130n", "py140n") #' eqIncome <- eqInc("db030", hplus, hminus, #' pplus, character(), "eqSS", data=eusilc) #' #' # combine with household ID and equivalized household size #' tmp <- cbind(eusilc[, c("db030", "eqSS")], eqIncome) #' #' # show the first 8 rows #' head(tmp, 8) #' #' @importFrom stats aggregate #' @export eqInc <- function(hid, hplus, hminus, pplus, pminus, eqSS, year = NULL, data = NULL) { ## initializations if(is.null(data)) { data <- data.frame(hid=hid) hid <- "hid" if(!is.null(year)) { data <- cbind(year=year, data) year <- "year" } npplus <- names(pplus) npminus <- names(pminus) } else { hplus <- data[, hplus, drop=FALSE] hminus <- data[, hminus, drop=FALSE] npplus <- pplus pplus <- data[, npplus, drop=FALSE] npminus <- pminus pminus <- data[, npminus, drop=FALSE] eqSS <- data[, eqSS] data <- data[, c(year, hid), drop=FALSE] } ## calculations hy020h <- rowSums(hplus, na.rm=TRUE) - rowSums(hminus, na.rm=TRUE) tmp <- aggregate(data.frame(pplus,pminus), data, sum, na.rm=TRUE) hy020p <- rowSums(tmp[,npplus, drop=FALSE], na.rm=TRUE) - rowSums(tmp[,npminus, drop=FALSE], na.rm=TRUE) if(is.null(year)) { names(hy020p) <- tmp[, hid] hy020p <- unname(hy020p[as.character(data[, hid])]) } else { tmp <- cbind(tmp[, c(year, hid), drop=FALSE], .hy020p=hy020p) data <- cbind(data, .ID=1:nrow(data)) # add ID to original data data <- merge(data, tmp, sort=FALSE) # merge with original data set ## order according to original data and extract hy020p hy020p <- data$.hy020p[order(data$.ID)] } ## return result (hy020h + hy020p) / eqSS } laeken/R/rmpg.R0000755000176200001440000002350514127253264013020 0ustar liggesusers# --------------------------------------- # Author: Andreas Alfons # Vienna University of Technology # --------------------------------------- #' Relative median at-risk-of-poverty gap #' #' Estimate the relative median at-risk-of-poverty gap, which is defined as the #' relative difference between the median equivalized disposable income of #' persons below the at-risk-of-poverty threshold and the at-risk-of-poverty #' threshold itself (expressed as a percentage of the at-risk-of-poverty #' threshold). #' #' The implementation strictly follows the Eurostat definition. #' #' @param inc either a numeric vector giving the equivalized disposable income, #' or (if \code{data} is not \code{NULL}) a character string, an integer or a #' logical vector specifying the corresponding column of \code{data}. #' @param weights optional; either a numeric vector giving the personal sample #' weights, or (if \code{data} is not \code{NULL}) a character string, an #' integer or a logical vector specifying the corresponding column of #' \code{data}. #' @param sort optional; either a numeric vector giving the personal IDs to be #' used as tie-breakers for sorting, or (if \code{data} is not \code{NULL}) a #' character string, an integer or a logical vector specifying the corresponding #' column of \code{data}. #' @param years optional; either a numeric vector giving the different years of #' the survey, or (if \code{data} is not \code{NULL}) a character string, an #' integer or a logical vector specifying the corresponding column of #' \code{data}. If supplied, values are computed for each year. #' @param breakdown optional; either a numeric vector giving different domains, #' or (if \code{data} is not \code{NULL}) a character string, an integer or a #' logical vector specifying the corresponding column of \code{data}. If #' supplied, the values for each domain are computed in addition to the overall #' value. Note that the same (overall) threshold is used for all domains. #' @param design optional and only used if \code{var} is not \code{NULL}; either #' an integer vector or factor giving different strata for stratified sampling #' designs, or (if \code{data} is not \code{NULL}) a character string, an #' integer or a logical vector specifying the corresponding column of #' \code{data}. #' @param cluster optional and only used if \code{var} is not \code{NULL}; #' either an integer vector or factor giving different clusters for cluster #' sampling designs, or (if \code{data} is not \code{NULL}) a character string, #' an integer or a logical vector specifying the corresponding column of #' \code{data}. #' @param data an optional \code{data.frame}. #' @param var a character string specifying the type of variance estimation to #' be used, or \code{NULL} to omit variance estimation. See #' \code{\link{variance}} for possible values. #' @param alpha numeric; if \code{var} is not \code{NULL}, this gives the #' significance level to be used for computing the confidence interval (i.e., #' the confidence level is \eqn{1 - }\code{alpha}). #' @param na.rm a logical indicating whether missing values should be removed. #' @param \dots if \code{var} is not \code{NULL}, additional arguments to be #' passed to \code{\link{variance}}. #' #' @return A list of class \code{"rmpg"} (which inherits from the class #' \code{"indicator"}) with the following components: #' \item{value}{a numeric vector containing the overall value(s).} #' \item{valueByStratum}{a \code{data.frame} containing the values by #' domain, or \code{NULL}.} #' \item{varMethod}{a character string specifying the type of variance #' estimation used, or \code{NULL} if variance estimation was omitted.} #' \item{var}{a numeric vector containing the variance estimate(s), or #' \code{NULL}.} #' \item{varByStratum}{a \code{data.frame} containing the variance #' estimates by domain, or \code{NULL}.} #' \item{ci}{a numeric vector or matrix containing the lower and upper #' endpoints of the confidence interval(s), or \code{NULL}.} #' \item{ciByStratum}{a \code{data.frame} containing the lower and upper #' endpoints of the confidence intervals by domain, or \code{NULL}.} #' \item{alpha}{a numeric value giving the significance level used for #' computing the confidence interval(s) (i.e., the confidence level is \eqn{1 - #' }\code{alpha}), or \code{NULL}.} #' \item{years}{a numeric vector containing the different years of the #' survey.} #' \item{strata}{a character vector containing the different domains of the #' breakdown.} #' \item{threshold}{a numeric vector containing the at-risk-of-poverty #' threshold(s).} #' #' @author Andreas Alfons #' #' @seealso \code{\link{arpt}}, \code{\link{variance}} #' #' @references #' A. Alfons and M. Templ (2013) Estimation of Social Exclusion Indicators #' from Complex Surveys: The \R Package \pkg{laeken}. \emph{Journal of #' Statistical Software}, \bold{54}(15), 1--25. \doi{10.18637/jss.v054.i15} #' #' Working group on Statistics on Income and Living Conditions (2004) #' Common cross-sectional EU indicators based on EU-SILC; the gender #' pay gap. \emph{EU-SILC 131-rev/04}, Eurostat, Luxembourg. #' #' @keywords survey #' #' @examples #' data(eusilc) #' #' # overall value #' rmpg("eqIncome", weights = "rb050", data = eusilc) #' #' # values by region #' rmpg("eqIncome", weights = "rb050", #' breakdown = "db040", data = eusilc) #' #' @importFrom stats aggregate #' @export rmpg <- function(inc, weights = NULL, sort = NULL, years = NULL, breakdown = NULL, design = NULL, cluster = NULL, data = NULL, var = NULL, alpha = 0.05, na.rm = FALSE, ...) { ## initializations byYear <- !is.null(years) byStratum <- !is.null(breakdown) if(!is.null(data)) { inc <- data[, inc] if(!is.null(weights)) weights <- data[, weights] if(!is.null(sort)) sort <- data[, sort] if(byYear) years <- data[, years] if(byStratum) breakdown <- data[, breakdown] if(!is.null(var)) { if(!is.null(design)) design <- data[, design] if(!is.null(cluster)) cluster <- data[, cluster] } } # check vectors if(!is.numeric(inc)) stop("'inc' must be a numeric vector") n <- length(inc) if(is.null(weights)) weights <- weights <- rep.int(1, n) else if(!is.numeric(weights)) stop("'weights' must be a numeric vector") if(!is.null(sort) && !is.vector(sort) && !is.ordered(sort)) { stop("'sort' must be a vector or ordered factor") } if(byYear && !is.numeric(years)) { stop("'years' must be a numeric vector") } if(byStratum) { if(!is.vector(breakdown) && !is.factor(breakdown)) { stop("'breakdown' must be a vector or factor") } else breakdown <- as.factor(breakdown) } if(is.null(data)) { # check vector lengths if(length(weights) != n) { stop("'weights' must have the same length as 'x'") } if(!is.null(sort) && length(sort) != n) { stop("'sort' must have the same length as 'x'") } if(byYear && length(years) != n) { stop("'years' must have the same length as 'x'") } if(byStratum && length(breakdown) != n) { stop("'breakdown' must have the same length as 'x'") } } ## computations if(byYear) { # RMPG by year ys <- sort(unique(years)) ts <- arpt(inc, weights, sort, years, na.rm=na.rm) # thresholds rg <- function(y, t, inc, weights, sort, years, na.rm) { i <- years == y relativeGap(inc[i], weights[i], sort[i], t, na.rm=na.rm) } value <- mapply(rg, y=ys, t=ts, MoreArgs=list(inc=inc, weights=weights, sort=sort, years=years, na.rm=na.rm)) names(value) <- ys # use years as names if(byStratum) { rg1 <- function(i, inc, weights, sort, years, ts, na.rm) { y <- years[i[1]] t <- ts[as.character(y)] relativeGap(inc[i], weights[i], sort[i], t, na.rm=na.rm) } valueByStratum <- aggregate(1:n, list(year=years, stratum=breakdown), rg1, inc=inc, weights=weights, sort=sort, years=years, ts=ts, na.rm=na.rm) names(valueByStratum)[3] <- "value" } else valueByStratum <- NULL } else { # RMPG for only one year ys <- NULL ts <- arpt(inc, weights, sort, na.rm=na.rm) # threshold value <- relativeGap(inc, weights, sort, ts, na.rm=na.rm) if(byStratum) { rg2 <- function(i, inc, weights, sort, ts, na.rm) { relativeGap(inc[i], weights[i], sort[i], ts, na.rm=na.rm) } valueByStratum <- aggregate(1:n, list(stratum=breakdown), rg2, inc=inc, weights=weights, sort=sort, ts=ts, na.rm=na.rm) names(valueByStratum)[2] <- "value" } else valueByStratum <- NULL } rs <- levels(breakdown) # unique strata (also works if 'breakdown' is NULL) ## create object of class "arpr" res <- constructRmpg(value=value, valueByStratum=valueByStratum, years=ys, strata=rs, threshold=ts) # variance estimation (if requested) if(!is.null(var)) { res <- variance(inc, weights, years, breakdown, design, cluster, indicator=res, alpha=alpha, na.rm=na.rm, type=var, ...) } ## return result return(res) } ## workhorse relativeGap <- function(x, weights = NULL, sort = NULL, threshold, na.rm = FALSE) { ## initializations if(is.null(weights)) weights <- rep.int(1, length(x)) # equal weights if(isTRUE(na.rm)){ indices <- !is.na(x) x <- x[indices] if(!is.null(weights)) weights <- weights[indices] if(!is.null(sort)) sort <- sort[indices] } else if(any(is.na(x))) return(NA) if(length(x) == 0) return(NA) # preparations isPoor <- x < threshold # individuals below threshold x <- x[isPoor] if(!is.null(weights)) weights <- weights[isPoor] if(!is.null(sort)) sort <- sort[isPoor] # calculations medianPoor <- incMedian(x, weights, sort) (threshold - medianPoor) * 100 / threshold } laeken/R/thetaPDC.R0000644000176200001440000001522414127253166013504 0ustar liggesusers# ---------------------------------------- # Authors: Andreas Alfons and Josef Holzer # Vienna University of Technology # ---------------------------------------- #' Partial density component (PDC) estimator #' #' The partial density component (PDC) estimator estimates the shape parameter #' of a Pareto distribution based on the relative excesses of observations above #' a certain threshold. #' #' The arguments \code{k} and \code{x0} of course correspond with each other. #' If \code{k} is supplied, the threshold \code{x0} is estimated with the \eqn{n #' - k} largest value in \code{x}, where \eqn{n} is the number of observations. #' On the other hand, if the threshold \code{x0} is supplied, \code{k} is given #' by the number of observations in \code{x} larger than \code{x0}. Therefore, #' either \code{k} or \code{x0} needs to be supplied. If both are supplied, #' only \code{k} is used (mainly for back compatibility). #' #' The PDC estimator minimizes the integrated squared error (ISE) criterion with #' an incomplete density mixture model. The minimization is carried out using % #' \code{\link[stats]{nlm}}. By default, the starting value is obtained with % #' the Hill estimator (see \code{\link{thetaHill}}). #' \code{\link[stats]{optimize}}. #' #' @param x a numeric vector. #' @param k the number of observations in the upper tail to which the Pareto #' distribution is fitted. #' @param x0 the threshold (scale parameter) above which the Pareto distribution #' is fitted. #' @param w an optional numeric vector giving sample weights. #' @param \dots additional arguments to be passed to #' \code{\link[stats]{optimize}} (see \dQuote{Details}). #' #' @return The estimated shape parameter. #' #' @note The arguments \code{x0} for the threshold (scale parameter) of the #' Pareto distribution and \code{w} for sample weights were introduced in #' version 0.2. #' #' @author Andreas Alfons and Josef Holzer #' #' @seealso \code{\link{paretoTail}}, \code{\link{fitPareto}}, #' \code{\link{thetaISE}}, \code{\link{thetaHill}} #' #' @references #' A. Alfons and M. Templ (2013) Estimation of Social Exclusion Indicators #' from Complex Surveys: The \R Package \pkg{laeken}. \emph{Journal of #' Statistical Software}, \bold{54}(15), 1--25. \doi{10.18637/jss.v054.i15} #' #' A. Alfons, M. Templ, P. Filzmoser (2013) Robust estimation of economic #' indicators from survey samples based on Pareto tail modeling. \emph{Journal #' of the Royal Statistical Society, Series C}, \bold{62}(2), 271--286. #' #' Vandewalle, B., Beirlant, J., Christmann, A., and Hubert, M. #' (2007) A robust estimator for the tail index of Pareto-type #' distributions. \emph{Computational Statistics & Data Analysis}, #' \bold{51}(12), 6252--6268. #' #' @keywords manip #' #' @examples #' data(eusilc) #' # equivalized disposable income is equal for each household #' # member, therefore only one household member is taken #' eusilc <- eusilc[!duplicated(eusilc$db030),] #' #' # estimate threshold #' ts <- paretoScale(eusilc$eqIncome, w = eusilc$db090) #' #' # using number of observations in tail #' thetaPDC(eusilc$eqIncome, k = ts$k, w = eusilc$db090) #' #' # using threshold #' thetaPDC(eusilc$eqIncome, x0 = ts$x0, w = eusilc$db090) #' #' @export thetaPDC <- function(x, k = NULL, x0 = NULL, w = NULL, ...) { ## initializations if(!is.numeric(x) || length(x) == 0) stop("'x' must be a numeric vector") haveK <- !is.null(k) if(haveK) { # if 'k' is supplied, it is always used if(!is.numeric(k) || length(k) == 0 || k[1] < 1) { stop("'k' must be a positive integer") } else k <- k[1] } else if(!is.null(x0)) { # otherwise 'x0' (threshold) is used if(!is.numeric(x0) || length(x0) == 0) stop("'x0' must be numeric") else x0 <- x0[1] } else stop("either 'k' or 'x0' must be supplied") haveW <- !is.null(w) if(haveW) { # sample weights are supplied if(!is.numeric(w) || length(w) != length(x)) { stop("'w' must be numeric vector of the same length as 'x'") } if(any(w < 0)) stop("negative weights in 'w'") if(any(i <- is.na(x))) { # remove missing values x <- x[!i] w <- w[!i] } # sort values and sample weights order <- order(x) x <- x[order] w <- w[order] } else { # no sample weights if(any(i <- is.na(x))) x <- x[!i] # remove missing values x <- sort(x) # sort values } .thetaPDC(x, k, x0, w, ...) } # internal function that assumes that data are ok and sorted .thetaPDC <- function(x, k = NULL, x0 = NULL, w = NULL, tol = .Machine$double.eps^0.25, ...) { n <- length(x) # number of observations haveK <- !is.null(k) haveW <- !is.null(w) if(haveK) { # 'k' is supplied, threshold is determined if(k >= n) stop("'k' must be smaller than the number of observed values") x0 <- x[n-k] # threshold (scale parameter) } else { # 'k' is not supplied, it is determined using threshold # values are already sorted if(x0 >= x[n]) stop("'x0' must be smaller than the maximum of 'x'") k <- length(which(x > x0)) } ## computations y <- x[(n-k+1):n]/x0 # relative excesses if(haveW) { wTail <- w[(n-k+1):n] ## weighted integrated squared error distance criterion with incomplete ## density mixture model # w ... sample weights # u ... robustness weights (from incomplete density mixture model) ISE <- function(theta, y, w) { f <- theta*y^(-1-theta) wm <- weighted.mean(f, w) # weighted mean as unbiased estimator of expectation of f pf2 <- theta^2/(2*theta+1) # primitive of f^2 u <- wm/pf2 u^2*pf2 - 2*u*wm } } else { wTail <- NULL ## integrated squared error distance criterion with incomplete density ## mixture model # w ... sample weights (not needed here, only available to have the # same function definition) # u ... robustness weights (from incomplete density mixture model) ISE <- function(theta, y, w) { f <- theta*y^(-1-theta) m <- mean(f) # mean as unbiased estimator of expectation of f pf2 <- theta^2/(2*theta+1) # primitive of f^2 u <- m/pf2 u^2*pf2 - 2*u*m } } ## optimize localOptimize <- function(f, interval = NULL, tol, ...) { if(is.null(interval)) { p <- if(haveK) .thetaHill(x, k, w=w) else .thetaHill(x, x0=x0, w=w) interval <- c(0 + tol, 3 * p) # default interval } optimize(f, interval, ...) } localOptimize(ISE, y=y, w=wTail, tol=tol, ...)$minimum } laeken/R/plot.R0000644000176200001440000001011014127253044013006 0ustar liggesusers# ---------------------- # Author: Andreas Alfons # KU Leuven # ---------------------- #' Diagnostic plot for the Pareto tail model #' #' Produce a diagnostic Pareto quantile plot for evaluating the fitted Pareto #' distribution. Reference lines indicating the estimates of the threshold #' (scale parameter) and the shape parameter are added to the plot, and any #' detected outliers are highlighted. #' #' While the first horizontal line indicates the estimated threshold (scale #' parameter), the estimated shape parameter is indicated by a line whose slope #' is given by the reciprocal of the estimate. In addition, the second #' horizontal line represents the theoretical quantile of the fitted #' distribution that is used for outlier detection. Thus all values above that #' line are the detected outliers. #' #' @method plot paretoTail #' #' @param x an object of class \code{"paretoTail"} as returned by #' \code{\link{paretoTail}}. #' @param pch,cex,col,bg graphical parameters. Each can be a vector of length #' two, with the first and second element giving the graphical parameter for #' the good data points and the outliers, respectively. #' @param \dots additional arguments to be passed to #' \code{\link{paretoQPlot}}. #' #' @author Andreas Alfons #' #' @seealso \code{\link{paretoTail}}, \code{\link{paretoQPlot}} #' #' @references #' A. Alfons and M. Templ (2013) Estimation of Social Exclusion Indicators #' from Complex Surveys: The \R Package \pkg{laeken}. \emph{Journal of #' Statistical Software}, \bold{54}(15), 1--25. \doi{10.18637/jss.v054.i15} #' #' @keywords hplot #' #' @examples #' data(eusilc) #' #' # estimate threshold #' ts <- paretoScale(eusilc$eqIncome, w = eusilc$db090, #' groups = eusilc$db030) #' #' # estimate shape parameter #' fit <- paretoTail(eusilc$eqIncome, k = ts$k, #' w = eusilc$db090, groups = eusilc$db030) #' #' # produce plot #' plot(fit) #' #' @importFrom graphics abline #' @export plot.paretoTail <- function(x, pch = c(1, 3), cex = 1, col = c("black", "red"), bg = "transparent", ...) { ## initializations values <- x$x n <- length(values) pch <- rep(pch, length.out=2) cex <- rep(cex, length.out=2) col <- rep(col, length.out=2) bg <- rep(bg, length.out=2) ## extract data weights <- x$w haveWeights <- !is.null(weights) groups <- x$groups haveGroups <- !is.null(groups) if(haveGroups) { unique <- !duplicated(groups) values <- values[unique] if(haveWeights) weights <- weights[unique] groups <- groups[unique] } ## define graphical parameters for each data point out <- x$out if(length(out) == 0) { # no outliers pchs <- pch[1] cexs <- cex[1] cols <- col[1] bgs <- bg[1] } else { # allow for cluster effect if(haveGroups) out <- which(groups %in% out) # initialize graphical parameters pchs <- vector(mode=storage.mode(pch), length=n) cexs <- vector(mode=storage.mode(cex), length=n) cols <- vector(mode=storage.mode(col), length=n) bgs <- vector(mode=storage.mode(bg), length=n) # graphical parameters for good data points pchs[-out] <- pch[1] cexs[-out] <- cex[1] cols[-out] <- col[1] bgs[-out] <- bg[1] # graphical parameters for outliers pchs[out] <- pch[2] cexs[out] <- cex[2] cols[out] <- col[2] bgs[out] <- bg[2] } ## create diagnostic plot xOut <- qpareto(1-x$alpha, x0=x$x0, theta=x$theta) localParetoQPlot <- function(x, w, interactive, x0, theta, type, ylim = NULL, ...) { if(is.null(ylim)) { ylim <- range(values[which(values > 0)], xOut, finite=TRUE) } paretoQPlot(values, w=weights, interactive=FALSE, x0=x$x0, theta=x$theta, ylim=ylim, ...) } localParetoQPlot(x, pch=pchs, cex=cexs, col=cols, bg=bgs, ...) # add horizontal line for outlier identification # observations above that line are outliers abline(h=xOut, col="darkgrey", lty=3) # invisible return NULL invisible() } laeken/R/thetaWML.R0000644000176200001440000002017313616467254013543 0ustar liggesusers# ---------------------------------------- # Authors: Andreas Alfons and Josef Holzer # Vienna University of Technology # ---------------------------------------- #' Weighted maximum likelihood estimator #' #' Estimate the shape parameter of a Pareto distribution using a weighted #' maximum likelihood approach. #' #' The arguments \code{k} and \code{x0} of course correspond with each other. #' If \code{k} is supplied, the threshold \code{x0} is estimated with the \eqn{n #' - k} largest value in \code{x}, where \eqn{n} is the number of observations. #' On the other hand, if the threshold \code{x0} is supplied, \code{k} is given #' by the number of observations in \code{x} larger than \code{x0}. Therefore, #' either \code{k} or \code{x0} needs to be supplied. If both are supplied, #' only \code{k} is used (mainly for back compatibility). #' #' The weighted maximum likelihood estimator belongs to the class of #' M-estimators. In order to obtain the estimate, the root of a certain #' function needs to be found, which is implemented using #' \code{\link[stats]{uniroot}}. #' #' @param x a numeric vector. #' @param k the number of observations in the upper tail to which the Pareto #' distribution is fitted. #' @param x0 the threshold (scale parameter) above which the Pareto distribution #' is fitted. #' @param weight a character string specifying the weight function to be used. #' If \code{"residuals"} (the default), the weight function is based on #' standardized residuals. If \code{"probability"}, probability based weighting #' is used. Partial string matching allows these names to be abbreviated. #' @param const Tuning constant(s) that control the robustness of the method. #' If \code{weight="residuals"}, a single numeric value is required (the default #' is 2.5). If \code{weight="probability"}, a numeric vector of length two must #' be supplied (a single numeric value is recycled; the default is 0.005 for #' both tuning parameters). See the references for more details. #' @param bias a logical indicating whether bias correction should be applied. #' @param \dots additional arguments to be passed to #' \code{\link[stats]{uniroot}} (see \dQuote{Details}). #' #' @return The estimated shape parameter. #' #' @note The argument \code{x0} for the threshold (scale parameter) of the #' Pareto distribution was introduced in version 0.2. #' #' @author Andreas Alfons and Josef Holzer #' #' @seealso \code{\link{paretoTail}}, \code{\link{fitPareto}} #' #' @references Dupuis, D.J. and Morgenthaler, S. (2002) Robust weighted #' likelihood estimators with an application to bivariate extreme value #' problems. \emph{The Canadian Journal of Statistics}, \bold{30}(1), 17--36. #' #' Dupuis, D.J. and Victoria-Feser, M.-P. (2006) A robust prediction error #' criterion for Pareto modelling of upper tails. \emph{The Canadian Journal of #' Statistics}, \bold{34}(4), 639--658. #' #' @keywords manip #' #' @examples #' data(eusilc) #' # equivalized disposable income is equal for each household #' # member, therefore only one household member is taken #' eusilc <- eusilc[!duplicated(eusilc$db030),] #' #' # estimate threshold #' ts <- paretoScale(eusilc$eqIncome, w = eusilc$db090) #' #' # using number of observations in tail #' thetaWML(eusilc$eqIncome, k = ts$k) #' #' # using threshold #' thetaWML(eusilc$eqIncome, x0 = ts$x0) #' #' @export thetaWML <- function(x, k = NULL, x0 = NULL, weight = c("residuals", "probability"), const, bias = TRUE, ...) { ## initializations if(!is.numeric(x) || length(x) == 0) stop("'x' must be a numeric vector") haveK <- !is.null(k) if(haveK) { # if 'k' is supplied, it is always used if(!is.numeric(k) || length(k) == 0 || k[1] < 1) { stop("'k' must be a positive integer") } else k <- k[1] } else if(!is.null(x0)) { # otherwise 'x0' (threshold) is used if(!is.numeric(x0) || length(x0) == 0) stop("'x0' must be numeric") else x0 <- x0[1] } else stop("either 'k' or 'x0' must be supplied") if(any(i <- is.na(x))) x <- x[!i] # remove missing values x <- sort(x) # sort values if(missing(const)) .thetaWML(x, k, x0, weight, bias=bias, ...) else .thetaWML(x, k, x0, weight, const, bias, ...) } # internal function that assumes that data are ok and sorted .thetaWML <- function(x, k = NULL, x0 = NULL, weight = c("residuals", "probability"), const, bias = TRUE, tol = .Machine$double.eps^0.25, ...) { n <- length(x) # number of observations haveK <- !is.null(k) if(haveK) { # 'k' is supplied, threshold is determined if(k >= n) stop("'k' must be smaller than the number of observed values") x0 <- x[n-k] # threshold (scale parameter) } else { # 'k' is not supplied, it is determined using threshold # values are already sorted if(x0 >= x[n]) stop("'x0' must be smaller than the maximum of 'x'") k <- length(which(x > x0)) } xt <- x[(n-k+1):n] # tail (values larger than threshold) y <- log(xt/x0) # relative excesses weight <- match.arg(weight) # check type of robustness weights ## define robustness weight function and function for root finding ## derivative of log(f) with respect to theta: 1/theta - log(xt/x0) if(weight == "residuals") { ## check tuning constant if(missing(const)) const <- 2.5 else if(!is.numeric(const) || length(const) == 0) { stop("'const' must be a numeric value") } else const <- const[1] ## some temporary values h <- k:1 hy <- log(h/(k+1)) hsig <- sqrt(cumsum(1/h^2)) ## objective function zeroTheta <- function(theta) { r <- (theta*y + hy) / hsig # standardized residuals u <- pmin(1, const/abs(r)) # robustness weights dlogf <- 1/theta - y # derivative of log(f) sum(u * dlogf) } } else { ## check tuning constants if(missing(const)) const <- rep.int(0.005, 2) else if(!is.numeric(const) || length(const) == 0) { stop("'const' must be a numeric vector of length two") } else const <- rep(const, length.out=2) p1 <- const[1] p2 <- const[2] ## objective function zeroTheta <- function(theta) { F <- 1 - (xt/x0)^(-theta) # distribution function u <- ifelse(F < p1, F/p1, ifelse(F <= 1-p2, 1, (1-F)/p2)) # robustness weights dlogf <- 1/theta - y # derivative of log(f) sum(u * dlogf) } } ## solving sum(phi(xt,theta))=0 localUniroot <- function(f, interval = NULL, tol, ...) { if(is.null(interval)) { p <- if(haveK) .thetaHill(x, k) else .thetaHill(x, x0=x0) interval <- c(0 + tol, 5 * p) # default interval } uniroot(f, interval, ...) } theta <- localUniroot(zeroTheta, tol=tol, ...)$root ## optional bias correction if(bias) { if(weight == "residuals") { r <- (theta*y + hy) / hsig # standardized residuals u <- pmin(1, const/abs(r)) # robustness weights F <- 1 - (xt/x0)^(-theta) # distribution function deltaF <- diff(c(0, F)) # difference operator applied to F dlogf <- 1/theta - y # derivative of log(f) d2logf <- -1/theta^2 # second derivative of log(f) # derivative of robustness weight function du <- ifelse(u == 1, 0, (-const)*y*hsig / (theta*y + hy)^2) # bias correction term bcorr <- -sum(u*dlogf*deltaF)/sum((du*dlogf + u*d2logf) * deltaF) } else { cp1 <- 1-p1 cp2 <- 1-p2 # bias correction term bcorr <- (theta/2) * (2*cp1^2*log(cp1) + p1*cp1 + p1*cp2 + 2*p1*p2*log(p2)) / ((cp1*log(cp1))^2 - p1*cp1 - p1*cp2 + p1*p2*(log(p2))^2) } ## apply bias correction to theta theta <- theta - bcorr } ## return WML-estimate theta } laeken/R/paretoTail.R0000644000176200001440000004626014127253237014157 0ustar liggesusers# ---------------------------------------- # Authors: Andreas Alfons and Josef Holzer # Vienna University of Technology # ---------------------------------------- #' Pareto tail modeling for income distributions #' #' Fit a Pareto distribution to the upper tail of income data. Since a #' theoretical distribution is used for the upper tail, this is a semiparametric #' approach. #' #' The arguments \code{k} and \code{x0} of course correspond with each other. #' If \code{k} is supplied, the threshold \code{x0} is estimated with the \eqn{n #' - k} largest value in \code{x}, where \eqn{n} is the number of observations. #' On the other hand, if the threshold \code{x0} is supplied, \code{k} is given #' by the number of observations in \code{x} larger than \code{x0}. Therefore, #' either \code{k} or \code{x0} needs to be supplied. If both are supplied, #' only \code{k} is used. #' #' The function supplied to \code{method} should take a numeric vector (the #' observations) as its first argument. If \code{k} is supplied, it will be #' passed on (in this case, the function is required to have an argument called #' \code{k}). Similarly, if the threshold \code{x0} is supplied, it will be #' passed on (in this case, the function is required to have an argument called #' \code{x0}). As above, only \code{k} is passed on if both are supplied. If #' the function specified by \code{method} can handle sample weights, the #' corresponding argument should be called \code{w}. Additional arguments are #' passed via the \dots{} argument. #' #' @aliases print.paretoTail #' #' @param x a numeric vector. #' @param k the number of observations in the upper tail to which the Pareto #' distribution is fitted. #' @param x0 the threshold (scale parameter) above which the Pareto distribution #' is fitted. #' @param method either a function or a character string specifying the function #' to be used to estimate the shape parameter of the Pareto distibution, such as #' \code{\link{thetaPDC}} (the default). See \dQuote{Details} for requirements #' for such a function and \dQuote{See also} for available functions. #' @param groups an optional vector or factor specifying groups of elements of #' \code{x} (e.g., households). If supplied, each group of observations is #' expected to have the same value in \code{x} (e.g., household income). Only #' the values of every first group member to appear are used for fitting the #' Pareto distribution. #' @param w an optional numeric vector giving sample weights. #' @param alpha numeric; values above the theoretical \eqn{1 - }\code{alpha} #' quantile of the fitted Pareto distribution will be flagged as outliers for #' further treatment with \code{\link{reweightOut}} or \code{\link{replaceOut}}. #' @param \dots addtional arguments to be passed to the specified method. #' #' @return An object of class \code{"paretoTail"} with the following #' components: #' \item{x}{the supplied numeric vector.} #' \item{k}{the number of observations in the upper tail to which the #' Pareto distribution has been fitted.} #' \item{groups}{if supplied, the vector or factor specifying groups of #' elements.} #' \item{w}{if supplied, the numeric vector of sample weights.} #' \item{method}{the function used to estimate the shape parameter, or the #' name of the function.} #' \item{x0}{the scale parameter.} #' \item{theta}{the estimated shape parameter.} #' \item{tail}{if \code{groups} is not \code{NULL}, this gives the groups #' with values larger than the threshold (scale parameter), otherwise the #' indices of observations in the upper tail.} #' \item{alpha}{the tuning parameter \code{alpha} used for flagging #' outliers.} #' \item{out}{if \code{groups} is not \code{NULL}, this gives the groups #' that are flagged as outliers, otherwise the indices of the flagged #' observations.} #' #' @author Andreas Alfons #' #' @seealso \code{\link{reweightOut}}, \code{\link{shrinkOut}}, #' \code{\link{replaceOut}}, \code{\link{replaceTail}}, \code{\link{fitPareto}} #' #' \code{\link{thetaPDC}}, \code{\link{thetaWML}}, \code{\link{thetaHill}}, #' \code{\link{thetaISE}}, \code{\link{thetaLS}}, \code{\link{thetaMoment}}, #' \code{\link{thetaQQ}}, \code{\link{thetaTM}} #' #' @references #' A. Alfons and M. Templ (2013) Estimation of Social Exclusion Indicators #' from Complex Surveys: The \R Package \pkg{laeken}. \emph{Journal of #' Statistical Software}, \bold{54}(15), 1--25. \doi{10.18637/jss.v054.i15} #' #' A. Alfons, M. Templ, P. Filzmoser (2013) Robust estimation of economic #' indicators from survey samples based on Pareto tail modeling. \emph{Journal #' of the Royal Statistical Society, Series C}, \bold{62}(2), 271--286. #' #' @keywords manip #' #' @examples #' data(eusilc) #' #' #' ## gini coefficient without Pareto tail modeling #' gini("eqIncome", weights = "rb050", data = eusilc) #' #' #' ## gini coefficient with Pareto tail modeling #' #' # estimate threshold #' ts <- paretoScale(eusilc$eqIncome, w = eusilc$db090, #' groups = eusilc$db030) #' #' # estimate shape parameter #' fit <- paretoTail(eusilc$eqIncome, k = ts$k, #' w = eusilc$db090, groups = eusilc$db030) #' #' # calibration of outliers #' w <- reweightOut(fit, calibVars(eusilc$db040)) #' gini(eusilc$eqIncome, w) #' #' # winsorization of outliers #' eqIncome <- shrinkOut(fit) #' gini(eqIncome, weights = eusilc$rb050) #' #' # replacement of outliers #' eqIncome <- replaceOut(fit) #' gini(eqIncome, weights = eusilc$rb050) #' #' # replacement of whole tail #' eqIncome <- replaceTail(fit) #' gini(eqIncome, weights = eusilc$rb050) #' #' @importFrom stats qexp runif #' @export paretoTail <- function(x, k = NULL, x0 = NULL, method = "thetaPDC", groups = NULL, w = NULL, alpha = 0.01, ...) { ## initializations if(!is.numeric(x) || length(x) == 0) stop("'x' must be a numeric vector") haveK <- !is.null(k) if(haveK) { # if 'k' is supplied, it is always used if(!is.numeric(k) || length(k) == 0 || k[1] < 1) { stop("'k' must be a positive integer") } else k <- k[1] } else if(!is.null(x0)) { # otherwise 'x0' (threshold) is used if(!is.numeric(x0) || length(x0) == 0) stop("'x0' must be numeric") else x0 <- x0[1] } else stop("either 'k' or 'x0' must be supplied") if(is.character(method)) method <- getDotTheta(method) nam <- argNames(method) useW <- !is.null(w) && ("w" %in% nam) if(useW && (!is.numeric(w) || length(w) != length(x))) { stop("'w' must be numeric vector of the same length as 'x'") } ## allow for cluster effect haveGroups <- !is.null(groups) if(haveGroups) { if(!is.vector(groups) && !is.factor(groups)) { stop("'groups' must be a vector or factor") } if(length(groups) != length(x)) { stop("'groups' must have the same length as 'x'") } if(any(is.na(groups))) stop("'groups' contains missing values") unique <- !duplicated(groups) xx <- x[unique] if(useW) ww <- w[unique] } else { xx <- x if(useW) ww <- w } xx <- unname(xx) ## check for missing values if(any(i <- is.na(xx))) { xx <- xx[!i] if(useW) ww <- ww[!i] } ## order of observed values order <- order(xx) xx <- xx[order] if(useW) ww <- ww[order] n <- length(xx) ## start constructing call to 'method' for estimation of shape parameter dots <- list(xx, ...) if(haveK) { # 'k' is supplied, threshold is determined if(k >= n) stop("'k' must be smaller than the number of observed values") x0 <- xx[n-k] # threshold (scale parameter) dots$k <- k # 'method' is expected to have 'k' as argument } else { # 'k' is not supplied, it is determined using threshold if(x0 >= xx[n]) { # compare to sorted values stop("'x0' must be smaller than the largest value") } k <- length(which(xx > x0)) # number of observations in tail dots$x0 <- x0 # 'method' is expected to have threshold 'x0' as argument } ## estimate shape parameter if(useW) dots$w <- ww theta <- do.call(method, dots) ## indicate observations in tail if(haveGroups) { tail <- groups[unique] tail <- tail[!i] tail <- tail[order] tail <- tail[(n-k+1):n] } else tail <- order[(n-k+1):n] ## flag suspicious observations (nonrepresentative outliers) if(!is.numeric(alpha) || length(alpha) == 0 || alpha < 0 || alpha > 1) { stop("'alpha' must be a numeric value in [0,1]") } else alpha <- alpha[1] q <- qpareto(1-alpha, x0, theta) # quantile of the Pareto distribution if(haveGroups) { out <- which(xx[(n-k+1):n] > q) out <- tail[out] } else { out <- unname(which(x > q)) out <- out[order(x[out])] } ## return object res <- list(x=x, k=k, groups=groups, w=w, method=method, x0=x0, theta=theta, tail=tail, alpha=alpha, out=out) class(res) <- "paretoTail" res } #' Replace observations under a Pareto model #' #' Replace observations under a Pareto model for the upper tail with values #' drawn from the fitted distribution. #' #' \code{replaceOut(x, \dots{})} is a simple wrapper for \code{replaceTail(x, #' all = FALSE, \dots{})}. #' #' @param x an object of class \code{"paretoTail"} (see #' \code{\link{paretoTail}}). #' @param all a logical indicating whether all observations in the upper tail #' should be replaced or only those flagged as outliers. #' @param \dots additional arguments to be passed down. #' #' @return A numeric vector consisting mostly of the original values, but with #' observations in the upper tail replaced with values from the fitted Pareto #' distribution. #' #' @author Andreas Alfons #' #' @seealso \code{\link{paretoTail}}, \code{\link{reweightOut}}, #' \code{\link{shrinkOut}} #' #' @references #' A. Alfons and M. Templ (2013) Estimation of Social Exclusion Indicators #' from Complex Surveys: The \R Package \pkg{laeken}. \emph{Journal of #' Statistical Software}, \bold{54}(15), 1--25. \doi{10.18637/jss.v054.i15} #' #' A. Alfons, M. Templ, P. Filzmoser (2013) Robust estimation of economic #' indicators from survey samples based on Pareto tail modeling. \emph{Journal #' of the Royal Statistical Society, Series C}, \bold{62}(2), 271--286. #' #' @keywords manip #' #' @examples #' data(eusilc) #' #' #' ## gini coefficient without Pareto tail modeling #' gini("eqIncome", weights = "rb050", data = eusilc) #' #' #' ## gini coefficient with Pareto tail modeling #' #' # estimate threshold #' ts <- paretoScale(eusilc$eqIncome, w = eusilc$db090, #' groups = eusilc$db030) #' #' # estimate shape parameter #' fit <- paretoTail(eusilc$eqIncome, k = ts$k, #' w = eusilc$db090, groups = eusilc$db030) #' #' # replacement of outliers #' eqIncome <- replaceOut(fit) #' gini(eqIncome, weights = eusilc$rb050) #' #' # replacement of whole tail #' eqIncome <- replaceTail(fit) #' gini(eqIncome, weights = eusilc$rb050) #' #' @export replaceTail <- function(x, ...) UseMethod("replaceTail") #' @rdname replaceTail #' @method replaceTail paretoTail #' @export replaceTail.paretoTail <- function(x, all = TRUE, ...) { which <- if(isTRUE(all)) x$tail else x$out k <- length(which) # number of observations to be replaced res <- x$x if(k > 0) { new <- sort(rpareto(k, x$x0, x$theta)) groups <- x$groups if(is.null(groups)) res[which] <- new else { groups <- as.character(groups) which <- as.character(which) replace <- which(groups %in% which) names(new) <- which new <- new[groups[replace]] names(new) <- names(res[replace]) res[replace] <- new } } res } #replaceOut <- function(x) UseMethod("replaceOut") # #replaceOut.paretoTail <- function(x) { # out <- x$out # nout <- length(out) # number of nonrepresentative outliers # new <- sort(rpareto(nout, x$x0, x$theta)) # res <- x$x # if(nout > 0) { # groups <- x$groups # if(is.null(groups)) res[out] <- new # else { # groups <- as.character(groups) # out <- as.character(out) # replace <- which(groups %in% out) # names(new) <- out # new <- new[groups[replace]] # names(new) <- names(res[replace]) # res[replace] <- new # } # } # res #} #replaceOut <- function(x) replaceTail(x, all=FALSE) #' @rdname replaceTail #' @export replaceOut <- function(x, ...) { localReplaceTail <- function(x, all, ...) replaceTail(x, all=FALSE, ...) localReplaceTail(x, ...) } #' Reweight outliers in the Pareto model #' #' Reweight observations that are flagged as outliers in a Pareto model for the #' upper tail of the distribution. #' #' If the data contain sample weights, the weights of the outlying observations #' are set to \eqn{1} and the weights of the remaining observations are #' calibrated according to auxiliary variables. Otherwise, weight \eqn{0} is #' assigned to outliers and weight \eqn{1} to other observations. #' #' @param x an object of class \code{"paretoTail"} (see #' \code{\link{paretoTail}}). #' @param X a matrix of binary calibration variables (see #' \code{\link{calibVars}}). This is only used if \code{x} contains sample #' weights or if \code{w} is supplied. #' @param w a numeric vector of sample weights. This is only used if \code{x} #' does not contain sample weights, i.e., if sample weights were not considered #' in estimating the shape parameter of the Pareto distribution. #' @param \dots additional arguments to be passed down. #' #' @return If the data contain sample weights, a numeric containing the #' recalibrated weights is returned, otherwise a numeric vector assigning weight #' \eqn{0} to outliers and weight \eqn{1} to other observations. #' #' @author Andreas Alfons #' #' @seealso \code{\link{paretoTail}}, \code{\link{shrinkOut}} , #' \code{\link{replaceOut}}, \code{\link{replaceTail}} #' #' @references #' A. Alfons and M. Templ (2013) Estimation of Social Exclusion Indicators #' from Complex Surveys: The \R Package \pkg{laeken}. \emph{Journal of #' Statistical Software}, \bold{54}(15), 1--25. \doi{10.18637/jss.v054.i15} #' #' A. Alfons, M. Templ, P. Filzmoser (2013) Robust estimation of economic #' indicators from survey samples based on Pareto tail modeling. \emph{Journal #' of the Royal Statistical Society, Series C}, \bold{62}(2), 271--286. #' #' @keywords manip #' #' @examples #' data(eusilc) #' #' ## gini coefficient without Pareto tail modeling #' gini("eqIncome", weights = "rb050", data = eusilc) #' #' ## gini coefficient with Pareto tail modeling #' # estimate threshold #' ts <- paretoScale(eusilc$eqIncome, w = eusilc$db090, #' groups = eusilc$db030) #' # estimate shape parameter #' fit <- paretoTail(eusilc$eqIncome, k = ts$k, #' w = eusilc$db090, groups = eusilc$db030) #' # calibration of outliers #' w <- reweightOut(fit, calibVars(eusilc$db040)) #' gini(eusilc$eqIncome, w) #' #' @export reweightOut <- function(x, ...) UseMethod("reweightOut") #' @rdname reweightOut #' @method reweightOut paretoTail #' @export reweightOut.paretoTail <- function(x, X, w = NULL, ...) { # in case of sample weights, set weights of outliers to one and calibrate # other observations # otherwise, set weights of outliers to zero and weights of other # observations to one out <- x$out n <- length(x$x) # number of observations if(is.null(x$w)) { # check supplied weights if(!is.null(w) && (!is.numeric(w) || length(w) != n)) { stop(sprintf("'w' must be numeric vector of length %d", n)) } } else w <- x$w if(length(out) > 0) { # nonrepresentative outliers groups <- x$groups if(!is.null(groups)) out <- which(groups %in% out) if(is.null(w)) { w <- rep.int(1, n) w[out] <- 0 } else { totals <- apply(X, 2, function(i) sum(i*w)) args <- list(...) args$X <- X[-out, , drop=FALSE] args$d <- w[-out] w[out] <- 1 # set weight of nonrepresentative outliers to 1 totalsOut <- apply(X[out, , drop=FALSE], 2, sum) args$totals <- totals - totalsOut g <- do.call("calibWeights", args) w[-out] <- g * args$d } } w } #' Shrink outliers in the Pareto model #' #' Shrink observations that are flagged as outliers in a Pareto model for the #' upper tail of the distribution to the theoretical quantile used for outlier #' detection. #' #' @param x an object of class \code{"paretoTail"} (see #' \code{\link{paretoTail}}). #' @param \dots additional arguments to be passed down (currently ignored as #' there are no additional arguments in the only method implemented). #' @return A numeric vector consisting mostly of the original values, but with #' outlying observations in the upper tail shrunken to the corresponding #' theoretical quantile of the fitted Pareto distribution. #' #' @author Andreas Alfons #' #' @seealso \code{\link{paretoTail}}, \code{\link{reweightOut}}, #' \code{\link{replaceOut}}, \code{\link{replaceTail}} #' #' @references #' A. Alfons and M. Templ (2013) Estimation of Social Exclusion Indicators #' from Complex Surveys: The \R Package \pkg{laeken}. \emph{Journal of #' Statistical Software}, \bold{54}(15), 1--25. \doi{10.18637/jss.v054.i15} #' #' @keywords manip #' #' @examples #' data(eusilc) #' #' ## gini coefficient without Pareto tail modeling #' gini("eqIncome", weights = "rb050", data = eusilc) #' #' ## gini coefficient with Pareto tail modeling #' # estimate threshold #' ts <- paretoScale(eusilc$eqIncome, w = eusilc$db090, #' groups = eusilc$db030) #' # estimate shape parameter #' fit <- paretoTail(eusilc$eqIncome, k = ts$k, #' w = eusilc$db090, groups = eusilc$db030) #' # shrink outliers #' eqIncome <- shrinkOut(fit) #' gini(eqIncome, weights = eusilc$rb050) #' #' @export shrinkOut <- function(x, ...) UseMethod("shrinkOut") #' @rdname shrinkOut #' @method shrinkOut paretoTail #' @export shrinkOut.paretoTail <- function(x, ...) { # winsorize outliers in the upper tail out <- x$out res <- x$x if(length(out) > 0) { # nonrepresentative outliers new <- qpareto(1-x$alpha, x$x0, x$theta) # quantile of the Pareto distribution groups <- x$groups if(!is.null(groups)) out <- which(groups %in% out) res[out] <- new } res } ## print method for class "paretoTail" #' @export print.paretoTail <- function(x, ...) { cat("Threshold: ") cat(x$x0, ...) items <- if(is.null(x$groups)) "observations" else "groups" cat(sprintf("\nNumber of %s in the tail: ", items)) cat(x$k, ...) cat("\nShape parameter: ") cat(x$theta, ...) cat(sprintf("\n\nOutlying %s:\n", items)) print(x$out, ...) } ## utility functions for Pareto distribution dpareto <- function(x, x0 = 1, theta = 1) theta*x0^theta / x^(theta+1) ppareto <- function(q, x0 = 1, theta = 1) 1 - (q/x0)^(-theta) qpareto <- function(p, x0 = 1, theta = 1) unname(x0*exp(qexp(p)/theta)) rpareto <- function(n, x0 = 1, theta = 1) x0/runif(n)^(1/theta) ## other utility functions getDotTheta <- function(method) { if(length(method) == 0) stop("'method' has length 0") else method <- method[1] if(method %in% c("thetaPDC", "thetaISE", "thetaWML", "thetaHill")) { method <- paste(".", method, sep="") } method } laeken/R/fitPareto.R0000644000176200001440000001533113616467254014013 0ustar liggesusers# ---------------------------------------- # Authors: Andreas Alfons and Josef Holzer # Vienna University of Technology # ---------------------------------------- #' Fit income distribution models with the Pareto distribution #' #' Fit a Pareto distribution to the upper tail of income data. Since a #' theoretical distribution is used for the upper tail, this is a semiparametric #' approach. #' #' The arguments \code{k} and \code{x0} of course correspond with each other. #' If \code{k} is supplied, the threshold \code{x0} is estimated with the \eqn{n #' - k} largest value in \code{x}, where \eqn{n} is the number of observations. #' On the other hand, if the threshold \code{x0} is supplied, \code{k} is given #' by the number of observations in \code{x} larger than \code{x0}. Therefore, #' either \code{k} or \code{x0} needs to be supplied. If both are supplied, #' only \code{k} is used (mainly for back compatibility). #' #' The function supplied to \code{method} should take a numeric vector (the #' observations) as its first argument. If \code{k} is supplied, it will be #' passed on (in this case, the function is required to have an argument called #' \code{k}). Similarly, if the threshold \code{x0} is supplied, it will be #' passed on (in this case, the function is required to have an argument called #' \code{x0}). As above, only \code{k} is passed on if both are supplied. If #' the function specified by \code{method} can handle sample weights, the #' corresponding argument should be called \code{w}. Additional arguments are #' passed via the \dots{} argument. #' #' @param x a numeric vector. #' @param k the number of observations in the upper tail to which the Pareto #' distribution is fitted. #' @param x0 the threshold (scale parameter) above which the Pareto distribution #' is fitted. #' @param method either a function or a character string specifying the function #' to be used to estimate the shape parameter of the Pareto distibution, such as #' \code{\link{thetaPDC}} (the default). See \dQuote{Details} for requirements #' for such a function and \dQuote{See also} for available functions. #' @param groups an optional vector or factor specifying groups of elements of #' \code{x} (e.g., households). If supplied, each group of observations is #' expected to have the same value in \code{x} (e.g., household income). Only #' the values of every first group member to appear are used for fitting the #' Pareto distribution. For each group above the threshold, every group member #' is assigned the same value. #' @param w an optional numeric vector giving sample weights. #' @param \dots addtional arguments to be passed to the specified method. #' #' @return A numeric vector with a Pareto distribution fit to the upper tail. #' #' @note The arguments \code{x0} for the threshold (scale parameter) of the #' Pareto distribution and \code{w} for sample weights were introduced in #' version 0.2. This results in slightly different behavior regarding the #' function calls to \code{method} compared to prior versions. #' #' @author Andreas Alfons and Josef Holzer #' #' @seealso \code{\link{paretoTail}}, \code{\link{replaceTail}} #' #' \code{\link{thetaPDC}}, \code{\link{thetaWML}}, \code{\link{thetaHill}}, #' \code{\link{thetaISE}}, \code{\link{thetaLS}}, \code{\link{thetaMoment}}, #' \code{\link{thetaQQ}}, \code{\link{thetaTM}} #' #' @keywords manip #' #' @examples #' data(eusilc) #' #' #' ## gini coefficient without Pareto tail modeling #' gini("eqIncome", weights = "rb050", data = eusilc) #' #' #' ## gini coefficient with Pareto tail modeling #' #' # using number of observations in tail #' eqIncome <- fitPareto(eusilc$eqIncome, k = 175, #' w = eusilc$db090, groups = eusilc$db030) #' gini(eqIncome, weights = eusilc$rb050) #' #' # using threshold #' eqIncome <- fitPareto(eusilc$eqIncome, x0 = 44150, #' w = eusilc$db090, groups = eusilc$db030) #' gini(eqIncome, weights = eusilc$rb050) #' #' @importFrom stats optimize runif uniroot #' @export fitPareto <- function(x, k = NULL, x0 = NULL, method = "thetaPDC", groups = NULL, w = NULL, ...) { ## initializations if(!is.numeric(x) || length(x) == 0) stop("'x' must be a numeric vector") haveK <- !is.null(k) if(haveK) { # if 'k' is supplied, it is always used if(!is.numeric(k) || length(k) == 0 || k[1] < 1) { stop("'k' must be a positive integer") } else k <- k[1] } else if(!is.null(x0)) { # otherwise 'x0' (threshold) is used if(!is.numeric(x0) || length(x0) == 0) stop("'x0' must be numeric") else x0 <- x0[1] } else stop("either 'k' or 'x0' must be supplied") nam <- argNames(method) useW <- !is.null(w) && ("w" %in% nam) if(useW && (!is.numeric(w) || length(w) != length(x))) { stop("'w' must be numeric vector of the same length as 'x'") } haveGroups <- !is.null(groups) if(haveGroups) { if(!is.vector(groups) && !is.factor(groups)) { stop("'groups' must be a vector or factor") } if(length(groups) != length(x)) { stop("'groups' must have the same length as 'x'") } if(any(is.na(groups))) stop("'groups' contains missing values") unique <- !duplicated(groups) values <- x[unique] if(useW) w <- w[unique] } else values <- x ## check for missing values indices <- 1:length(values) if(any(i <- is.na(values))) indices <- indices[!i] ## order of observed values order <- order(values[indices]) indicesSorted <- indices[order] # indices of sorted vector n <- length(indicesSorted) ## start constructing call to 'method' for estimation of shape parameter dots <- list(values[indices], ...) if(haveK) { # 'k' is supplied, threshold is determined if(k >= n) stop("'k' must be smaller than the number of observed values") x0 <- values[indicesSorted[n-k]] # threshold (scale parameter) dots$k <- k # 'method' is expected to have 'k' as argument } else { # 'k' is not supplied, it is determined using threshold if(x0 >= values[indicesSorted[n]]) { # compare to sorted values stop("'x0' must be smaller than the largest value") } k <- length(which(values[indices] > x0)) # number of observations in tail dots$x0 <- x0 # 'method' is expected to have threshold 'x0' as argument } ## estimate shape parameter if(useW) dots$w <- w[indices] theta <- do.call(method, dots) ## fit Pareto distribution valuesPareto <- x0/runif(k)^(1/theta) values[indicesSorted[(n-k+1):n]] <- sort(valuesPareto) ## return values if(haveGroups) { groups <- as.character(groups) names(values) <- groups[unique] values <- values[groups] names(values) <- names(x) } values } laeken/R/eqSS.R0000644000176200001440000000515513616467254012734 0ustar liggesusers# --------------------------------------- # Author: Andreas Alfons # Vienna University of Technology # --------------------------------------- # TODO: error handling #' Equivalized household size #' #' Compute the equivalized household size according to the modified OECD scale #' adopted in 1994. #' #' @param hid if \code{data=NULL}, a vector containing the household ID. #' Otherwise a character string specifying the column of \code{data} that #' contains the household ID. #' @param age if \code{data=NULL}, a vector containing the age of the #' individuals. Otherwise a character string specifying the column of #' \code{data} that contains the age. #' @param year if \code{data=NULL}, a vector containing the year of the survey. #' Otherwise a character string specifying the column of \code{data} that #' contains the year. #' @param data a \code{data.frame} containing EU-SILC survey data, or #' \code{NULL}. #' #' @return A numeric vector containing the equivalized household size for every #' observation in \code{data}. #' #' @author Andreas Alfons #' #' @seealso \code{\link{eqInc}} #' #' @references Working group on Statistics on Income and Living Conditions #' (2004) Common cross-sectional EU indicators based on EU-SILC; the gender pay #' gap. \emph{EU-SILC 131-rev/04}, Eurostat. #' #' @keywords survey #' #' @examples #' data(eusilc) #' #' # calculate equivalized household size #' eqSS <- eqSS("db030", "age", data=eusilc) #' #' # combine with household ID and household size #' tmp <- cbind(eusilc[, c("db030", "hsize")], eqSS) #' #' # show the first 8 rows #' head(tmp, 8) #' #' @export eqSS <- function(hid, age, year = NULL, data = NULL) { ## initializations if(is.null(data)) { data <- data.frame(hid=hid) hid <- "hid" if(!is.null(year)) { data <- cbind(year=year, data) year <- "year" } } else { age <- data[, age] data <- data[, c(year, hid), drop=FALSE] } ## calculations i <- if(is.null(year)) 2 else 3 tmp <- as.data.frame(table(data)) # number of household members hm14p <- as.data.frame(table(data[age >= 14,]))[, i] # at least 14 years hm13m <- tmp[, i] - hm14p # younger than 14 tmp[, i] <- 1 + 0.5*(hm14p-1) + 0.3*hm13m # eqSS for househoulds names(tmp) <- c(year, hid, ".eqSS") data <- cbind(data, .ID=1:nrow(data)) # add ID to original data data <- merge(data, tmp, sort=FALSE) # merge with original data set ## order according to original data and extract eqSS data$.eqSS[order(data$.ID)] } laeken/R/minAMSE.R0000644000176200001440000002157413616475005013306 0ustar liggesusers# ---------------------------------------- # Authors: Josef Holzer and Andreas Alfons # Vienna University of Technology # ---------------------------------------- ## nonlinear integer minimization is done by brute force ## it is strongly recommended to set bounds 'kmax' and 'mmax' #' Weighted asymptotic mean squared error (AMSE) estimator #' #' Estimate the scale and shape parameters of a Pareto distribution with an #' iterative procedure based on minimizing the weighted asymptotic mean squared #' error (AMSE) of the Hill estimator. #' #' The weights used in the weighted AMSE depend on a nuisance parameter #' \eqn{\rho}{rho}. Both the optimal number of observations in the tail and the #' nuisance parameter \eqn{\rho}{rho} are estimated iteratively using nonlinear #' integer minimization. This is currently done by a brute force algorithm, #' hence it is stronly recommended to supply upper bounds \code{kmax} and #' \code{mmax}. #' #' See the references for more details on the iterative algorithm. #' #' @param x for \code{minAMSE}, a numeric vector. The \code{print} method is #' called by the generic function if an object of class \code{"minAMSE"} is #' supplied. #' @param weight a character vector specifying the weighting scheme to be used #' in the procedure. If \code{"Bernoulli"}, the weight functions as described #' in the \emph{Bernoulli} paper are applied. If \code{"JASA"}, the weight #' functions as described in the \emph{Journal of the Americal Statistical #' Association} are used. #' @param kmin An optional integer giving the lower bound for finding the #' optimal number of observations in the tail. It defaults to #' \eqn{[\frac{n}{100}]}{[n/100]}, where \eqn{n} denotes the number of #' observations in \code{x} (see the references). #' @param kmax An optional integer giving the upper bound for finding the #' optimal number of observations in the tail (see \dQuote{Details}). #' @param mmax An optional integer giving the upper bound for finding the #' optimal number of observations for computing the nuisance parameter #' \eqn{\rho}{rho} (see \dQuote{Details} and the references). #' @param tol an integer giving the desired tolerance level for finding the #' optimal number of observations in the tail. #' @param maxit a positive integer giving the maximum number of iterations. #' @param \dots additional arguments to be passed to #' \code{\link[base]{print.default}}. #' #' @return An object of class \code{"minAMSE"} with the following components: #' \item{kopt}{the optimal number of observations in the tail.} #' \item{x0}{the corresponding threshold.} #' \item{theta}{the estimated shape parameter of the Pareto distribution.} #' \item{MSEmin}{the minimal MSE.} #' \item{rho}{the estimated nuisance parameter.} #' \item{k}{the examined range for the number of observations in the tail.} #' \item{MSE}{the corresponding MSEs.} #' #' @author Josef Holzer and Andreas Alfons #' #' @seealso \code{\link{thetaHill}} #' #' @references Beirlant, J., Vynckier, P. and Teugels, J.L. (1996) Tail index #' estimation, Pareto quantile plots, and regression diagnostics. \emph{Journal #' of the American Statistical Association}, \bold{91}(436), 1659--1667. #' #' Beirlant, J., Vynckier, P. and Teugels, J.L. (1996) Excess functions and #' estimation of the extreme-value index. \emph{Bernoulli}, \bold{2}(4), #' 293--318. #' #' Dupuis, D.J. and Victoria-Feser, M.-P. (2006) A robust prediction error #' criterion for Pareto modelling of upper tails. \emph{The Canadian Journal of #' Statistics}, \bold{34}(4), 639--658. #' #' @keywords manip #' #' @examples #' data(eusilc) #' # equivalized disposable income is equal for each household #' # member, therefore only one household member is taken #' minAMSE(eusilc$eqIncome[!duplicated(eusilc$db030)], #' kmin = 60, kmax = 150, mmax = 250) #' #' @export minAMSE <- function(x, weight = c("Bernoulli", "JASA"), kmin, kmax, mmax, tol = 0, maxit = 100) { ## initializations if(!is.numeric(x) || length(x) == 0) stop("'x' must be a numeric vector") if(any(i <- is.na(x))) x <- x[!i] x <- sort(x) n <- length(x) if(n == 0) stop("no observed values") weight <- match.arg(weight) kbounds <- c(trunc(n/100), n-2) mbound <- n-1 if(missing(kmin)) kmin <- kbounds[1] if(missing(kmax)) kmax <- kbounds[2] if(missing(mmax)) mmax <- mbound if(!is.numeric(kmin) || length(kmin) == 0 || kmin[1] < 1) { stop("'kmin' must be a single positive integer") } else kmin <- kmin[1] if(!is.numeric(kmax) || length(kmax) == 0 || kmax[1] <= kmin) { stop("'kmax' must be a single positive integer larger than 'kmin'") } else kmax <- kmax[1] if(!is.numeric(mmax) || length(mmax) == 0 || mmax[1] <= kmax) { stop("'mmax' must be a single positive integer larger than 'kmax'") } else mmax <- mmax[1] if(!is.numeric(maxit) || length(maxit) == 0 || maxit[1] < 1) { stop("'maxit' must be a single positive integer") } else maxit <- maxit[1] ## check bounds for k if(kmin < kbounds[1]) { kmin <- kbounds[1] warning("'kmin' is set to ", kbounds[1], ", as this is the suggested minumum") } if(kmax > kbounds[2]) { kmax <- kbounds[2] warning("'kmax' is set to ", kbounds[2], ", as this is the allowed maximum") } ## check bound for m if(mmax > mbound) { mmax <- mbound warning("'mmax' is set to ", mbound, ", as this is the allowed maximum") } ## Hill estimates of theta for range of k kl <- trunc(kmin/2) theta <- rep.int(NA, kmax) theta[kl:mmax] <- sapply(kl:mmax, function(k) thetaHill(x, k)) # shape ## initial estimate of k k <- kmin:kmax # range of k to search for minimum MSE <- mapply(function(k, theta) MSEinit(x, k, theta), k, theta[(kmin:kmax)-kl+1]) k0 <- k[which.min(MSE)] theta0 <- theta[k0] ## initial estimate of rho m <- (k0+1):mmax rho <- sapply(m, function(m) Rm(x, theta, m, k0)) cr <- mapply(function(m, rho) critRm(x, rho, theta, m, k0), m, rho) rho0 <- rho[which.min(cr)] ## iterative procedure for(i in 1:maxit) { ## estimate k MSE <- sapply(k, function(k) MSEopt(x, k, theta0, rho0, weight)) tmp <- which.min(MSE) MSEmin <- MSE[tmp] kn <- k[tmp] thetan <- theta[kn] ## estimate rho m <- (kn+1):mmax rho <- sapply(m, function(m) Rm(x, theta, m, kn)) cr <- mapply(function(m, rho) critRm(x, rho, theta, m, k0), m, rho) rhon <- rho[which.min(cr)] if(abs(kn-k0) <= tol) break else { k0 <- kn theta0 <- thetan rho0 <- rhon } } ## return results res <- list(kopt=kn, x0=x[n-kn], theta=thetan, MSEmin=MSEmin, rho=rhon, k=k, MSE=MSE) class(res) <- "minAMSE" res } ## internal functions for the evaluation of the MSEopt criterion ## x is not expected to contain missing values and is assumed to be sorted MSEinit <- function(x, k, theta) { n <- length(x) x0 <- x[n-k] # threshold (scale parameter) y <- log(x[(n-k+1):n]/x0) # relative excesses nyhat <- log((k:1)/(k+1))/theta # negative predicted values ## MSE 1/k * sum((y + nyhat)^2) } MSEopt <- function(x, k, theta, rho, weight = c("Bernoulli", "JASA")) { n <- length(x) x0 <- x[n-k] # threshold (scale parameter) y <- log(x[(n-k+1):n]/x0) # relative excesses h <- k:1 nyhat <- log(h/(k+1))/theta # negative predicted values ## weight functions according to paper in Bernoulli or JASA i <- 1:k hv <- i/(k+1) if(weight == "Bernoulli") { wk1 <- hv wk2 <- -log(i/(k+1)) } else { wk1 <- rep.int(1, k) wk2 <- h/(k+1) # second weight function (first is identical to 1) } ## define delta functions tmp1 <- hv^(-1)-1 tmp2 <- (1-rho)^2 tmp3 <- ((hv^(-rho)-1)/rho)^2 ak1 <- mean(wk1*tmp1) ak2 <- mean(wk2*tmp1) bk1 <- tmp2 * mean(wk1*tmp3) bk2 <- tmp2 * mean(wk2*tmp3) den <- (ak1*bk2 - bk1*ak2) # denomitator for delta functions delta1 <- (bk2 - ak2) / den delta2 <- (ak1 - bk1) / den ## define optimal weight function woptk <- delta1*wk1 + delta2*wk2 ## WMSE mean(woptk * (y + nyhat)^2) } ## internal functions for estimating rho ## requirements for m and k are assumed to be fulfilled Rm <- function(x, theta, m, k) { mk <- m+k # denominators 2 and 4 do not cause problems with floating point arithmetic Hmk4 <- theta[trunc(mk/4)] Hmk2 <- theta[trunc(mk/2)] Hm2 <- theta[trunc(m/2)] Hm <- theta[m] log(abs((Hmk4-Hmk2)/(Hm2-Hm))) / (log(2*m/(m-k))) } ## internal functions for the evaluation of the criterion for rho ## x is not expected to contain missing values and is assumed to be sorted critRm <- function(x, rho, theta, m, k) { j <- k:(m-1) l <- log(abs((theta[trunc(j/2)] - theta[j])/(theta[trunc(m/2)] - theta[m]))) mean((l - rho*log(m/j))^2) } laeken/R/gpg.R0000755000176200001440000002576014127253245012634 0ustar liggesusers# --------------------------------------- # Author: Matthias Templ # Vienna University of Technology # --------------------------------------- #' Gender pay (wage) gap. #' #' Estimate the gender pay (wage) gap. #' #' The implementation strictly follows the Eurostat definition (with default #' method \code{"mean"} and alternative method \code{"median"}). If weights are #' provided, the weighted mean or weighted median is estimated. #' #' @param inc either a numeric vector giving the equivalized disposable income, #' or (if \code{data} is not \code{NULL}) a character string, an integer or a #' logical vector specifying the corresponding column of \code{data}. #' @param gender either a factor giving the gender, or (if \code{data} is not #' \code{NULL}) a character string, an integer or a logical vector specifying #' the corresponding column of \code{data}. #' @param method a character string specifying the method to be used. Possible #' values are \code{"mean"} for the mean, and \code{"median"} for the median. #' If weights are provided, the weighted mean or weighted median is estimated. #' @param weights optional; either a numeric vector giving the personal sample #' weights, or (if \code{data} is not \code{NULL}) a character string, an #' integer or a logical vector specifying the corresponding column of #' \code{data}. #' @param sort optional; either a numeric vector giving the personal IDs to be #' used as tie-breakers for sorting, or (if \code{data} is not \code{NULL}) a #' character string, an integer or a logical vector specifying the corresponding #' column of \code{data}. #' @param years optional; either a numeric vector giving the different years of #' the survey, or (if \code{data} is not \code{NULL}) a character string, an #' integer or a logical vector specifying the corresponding column of #' \code{data}. If supplied, values are computed for each year. #' @param breakdown optional; either a numeric vector giving different domains, #' or (if \code{data} is not \code{NULL}) a character string, an integer or a #' logical vector specifying the corresponding column of \code{data}. If #' supplied, the values for each domain are computed in addition to the overall #' value. #' @param design optional and only used if \code{var} is not \code{NULL}; either #' an integer vector or factor giving different strata for stratified sampling #' designs, or (if \code{data} is not \code{NULL}) a character string, an #' integer or a logical vector specifying the corresponding column of #' \code{data}. #' @param cluster optional and only used if \code{var} is not \code{NULL}; #' either an integer vector or factor giving different clusters for cluster #' sampling designs, or (if \code{data} is not \code{NULL}) a character string, #' an integer or a logical vector specifying the corresponding column of #' \code{data}. #' @param data an optional \code{data.frame}. #' @param var a character string specifying the type of variance estimation to #' be used, or \code{NULL} to omit variance estimation. See #' \code{\link{variance}} for possible values. #' @param alpha numeric; if \code{var} is not \code{NULL}, this gives the #' significance level to be used for computing the confidence interval (i.e., #' the confidence level is \eqn{1 - }\code{alpha}). #' @param na.rm a logical indicating whether missing values should be removed. #' @param \dots if \code{var} is not \code{NULL}, additional arguments to be #' passed to \code{\link{variance}}. #' #' @return A list of class \code{"gpg"} (which inherits from the class #' \code{"indicator"}) with the following components: #' \item{value}{a numeric vector containing the overall value(s).} #' \item{valueByStratum}{a \code{data.frame} containing the values by #' domain, or \code{NULL}.} #' \item{varMethod}{a character string specifying the type of variance #' estimation used, or \code{NULL} if variance estimation was omitted.} #' \item{var}{a numeric vector containing the variance estimate(s), or #' \code{NULL}.} #' \item{varByStratum}{a \code{data.frame} containing the variance #' estimates by domain, or \code{NULL}.} #' \item{ci}{a numeric vector or matrix containing the lower and upper #' endpoints of the confidence interval(s), or \code{NULL}.} #' \item{ciByStratum}{a \code{data.frame} containing the lower and upper #' endpoints of the confidence intervals by domain, or \code{NULL}.} #' \item{alpha}{a numeric value giving the significance level used for #' computing the confidence interv al(s) (i.e., the confidence level is \eqn{1 - #' }\code{alpha}), or \code{NULL}.} #' \item{years}{a numeric vector containing the different years of the #' survey.} #' \item{strata}{a character vector containing the different domains of the #' breakdown.} #' #' @author Matthias Templ and Alexander Haider, using code for breaking down #' estimation by Andreas Alfons #' #' @seealso \code{\link{variance}}, \code{\link{qsr}}, \code{\link{gini}} #' #' @references #' A. Alfons and M. Templ (2013) Estimation of Social Exclusion Indicators #' from Complex Surveys: The \R Package \pkg{laeken}. \emph{Journal of #' Statistical Software}, \bold{54}(15), 1--25. \doi{10.18637/jss.v054.i15} #' #' Working group on Statistics on Income and Living Conditions (2004) #' Common cross-sectional EU indicators based on EU-SILC; the gender #' pay gap. \emph{EU-SILC 131-rev/04}, Eurostat, Luxembourg. #' #' @keywords survey #' #' @examples #' data(ses) #' #' # overall value with mean #' gpg("earningsHour", gender = "sex", weigths = "weights", #' data = ses) #' #' # overall value with median #' gpg("earningsHour", gender = "sex", weigths = "weights", #' data = ses, method = "median") #' #' # values by education with mean #' gpg("earningsHour", gender = "sex", weigths = "weights", #' breakdown = "education", data = ses) #' #' # values by education with median #' gpg("earningsHour", gender = "sex", weigths = "weights", #' breakdown = "education", data = ses, method = "median") #' #' @importFrom stats aggregate weighted.mean #' @export gpg <- function(inc, gender = NULL, method = c("mean", "median"), weights = NULL, sort = NULL, years = NULL, breakdown = NULL, design = NULL, cluster = NULL, data = NULL, var = NULL, alpha = 0.05, na.rm = FALSE, ...) { ## initializations if(is.null(gender)) stop("'gender' must be supplied") byYear <- !is.null(years) byStratum <- !is.null(breakdown) if(!is.null(data)) { inc <- data[, inc] gender <- data[, gender] if(!is.null(weights)) weights <- data[, weights] if(!is.null(sort)) sort <- data[, sort] if(byYear) years <- data[, years] if(byStratum) breakdown <- data[, breakdown] if(!is.null(var)) { if(!is.null(design)) design <- data[, design] if(!is.null(cluster)) cluster <- data[, cluster] } } # check vectors if(!is.numeric(inc)) stop("'inc' must be a numeric vector") method <- match.arg(method) if(!is.factor(gender)) stop("'gender' must be a factor.") if(length(levels(gender)) != 2) stop("'gender' must have exactly two levels") if(!all(levels(gender) == c("female", "male"))) { gender <- factor(gender, labels=c("female","male")) warning("The levels of gender were internally recoded - your first level has to correspond to females") } if(!is.null(years)) { if(!is.factor(years)) stop("'years' should be a factor") nage <- length(levels(years)) if(n > 12) warning(paste("Too small sample sizes may occur by using ", n," age classes")) } n <- length(inc) if(is.null(weights)) weights <- weights <- rep.int(1, n) else if(!is.numeric(weights)) stop("'weights' must be a numeric vector") if(!is.null(sort) && !is.vector(sort) && !is.ordered(sort)) { stop("'sort' must be a vector or ordered factor") } if(byYear && !is.numeric(years)) { stop("'years' must be a numeric vector") } if(byStratum) { if(!is.vector(breakdown) && !is.factor(breakdown)) { stop("'breakdown' must be a vector or factor") } else breakdown <- as.factor(breakdown) } if(is.null(data)) { # check vector lengths if(length(weights) != n) { stop("'weights' must have the same length as 'x'") } if(!is.null(sort) && length(sort) != n) { stop("'sort' must have the same length as 'x'") } if(byYear && length(years) != n) { stop("'years' must have the same length as 'x'") } if(byStratum && length(breakdown) != n) { stop("'breakdown' must have the same length as 'x'") } } ## computations # GPG by year (if requested) if(byYear) { ys <- sort(unique(years)) # unique years gp <- function(y, inc, weights, sort, years, na.rm) { i <- years == y genderGap(inc[i], gender[i], method, weights[i], sort[i], na.rm=na.rm) } value <- sapply(ys, gp, inc=inc, weights=weights, sort=sort, years=years, na.rm=na.rm) names(value) <- ys # use years as names } else { ys <- NULL value <- genderGap(inc, gender, method, weights, sort, na.rm=na.rm) } # GPG by stratum (if requested) if(byStratum) { gpR <- function(i, inc, weights, sort, na.rm) { genderGap(inc[i], gender[i], method, weights[i], sort[i], na.rm=na.rm) } valueByStratum <- aggregate(1:n, if(byYear) list(year=years, stratum=breakdown) else list(stratum=breakdown), gpR, inc=inc, weights=weights, sort=sort, na.rm=na.rm) names(valueByStratum)[ncol(valueByStratum)] <- "value" rs <- levels(breakdown) # unique strata } else valueByStratum <- rs <- NULL ## create object of class "gpg" res <- constructGpg(value=value, valueByStratum=valueByStratum, years=ys, strata=rs) # variance estimation (if requested) if(!is.null(var)) { res <- variance(inc, weights, years, breakdown, design, cluster, indicator=res, alpha=alpha, na.rm=na.rm, type=var, gender=gender, method=method, ...) } ## return result return(res) } ## workhorse genderGap <- function(x, gend, method = 'mean', weights = NULL, sort = NULL, na.rm = FALSE) { if(is.null(gend)) stop("'gender' must be supplied") # initializations if(isTRUE(na.rm)){ indices <- !is.na(x) x <- x[indices] gend <- gend[indices] if(!is.null(weights)) weights <- weights[indices] if(!is.null(sort)) sort <- sort[indices] } else if(any(is.na(x))) return(NA) male <- levels(gend)[1] female <- levels(gend)[2] if(is.null(weights)) weights <- rep.int(1, length(x)) # equal weights incgendmale <- x[gend=="male"] incgendmaleWeights <- weights[gend=="male"] incgendfemale <- x[gend=="female"] incgendfemaleWeights <- weights[gend=="female"] if(method == 'mean') { wM <- weighted.mean(x=incgendmale, w=incgendmaleWeights) wF <- weighted.mean(x=incgendfemale, w=incgendfemaleWeights) return((wM - wF) / wM) } else { wM <- weightedMedian(incgendmale, incgendmaleWeights) wF <- weightedMedian(incgendfemale, incgendfemaleWeights) return((wM - wF)/wM) } } laeken/MD50000644000176200001440000001206614554452120012030 0ustar liggesusers1d443850ebcc44294fd79a3569d525e7 *DESCRIPTION 65f60aacee7db61e9039ab4be1378854 *NAMESPACE bfa4e8af060f2208a5814cc6e7fab796 *NEWS a9d7d998591b0cd70de041218e2b7a2c *R/arpr.R 5e584b2239a5acf9b73388675bcf71d4 *R/arpt.R c37aab63a1da76d2b09c3d6795131a4e *R/bootVar.R 69d945da73361ccc435046c3ffa1c2a1 *R/calibVars.R 0304a11db7fa4bb9f39d628a5a1669ec *R/calibWeights.R bd57e28885d283f8dc000fd60b077275 *R/eqInc.R ba1b69039abc858bc2c035098cf58bf0 *R/eqSS.R a013363363f809b94d224abb309e0de8 *R/fitPareto.R 043bbe394838261f51ce2b30dbbc802a *R/gini.R 0eb669e71d88ea77f57b2cb0b36e54cd *R/gpg.R 56a793bb738661fefe8ba5e543ac3fec *R/incMean.R b09928ae5d1114dd1b4df93b0cf426e3 *R/incMedian.R 6be540a2f1b5be5689a4a0cbab168119 *R/incQuintile.R 620e6b8e13b091987418044eb76c2c73 *R/meanExcessPlot.R 8df70ce9f8f5aaae5576967c3fe1ee73 *R/minAMSE.R 1297f244b6395ba2f9d48990cae68462 *R/paretoQPlot.R e838256338acc9d1301d0fc9af825883 *R/paretoScale.R 5a7da9db47383025a9d5f395d3797481 *R/paretoTail.R f5b476ae6369df1375cd175f743293c6 *R/plot.R 094bff049ad6e9a7cf30426ffabc7865 *R/prop.R bf58748df945719a5c9e4e489b362224 *R/qsr.R f9273363eb9fc996e8ec7efcbb9db8f4 *R/rmpg.R bc7c1647cdcc284ac16e29a3cea11fbe *R/thetaHill.R adc4eb615cc84848edc71cd987d08fa8 *R/thetaISE.R 58b357dec6ec4d551bb1ded1fb72abb1 *R/thetaLS.R fc6f5fa2ce6153cc4e5adddede7b0791 *R/thetaMoment.R 28d1ecf62a2b7d9d89af21bad3f40f0e *R/thetaPDC.R 4948859323c6733f225c2b46446c276a *R/thetaQQ.R b8f1bc9a0b87eb5c149e65833ad58978 *R/thetaTM.R 37e88fb1ff0b90bf33a4e6b58855bae3 *R/thetaWML.R 3ad1eabba95ce20c19c0e4e05c2e4271 *R/utils.R 767378f8ca2b6f1f20d4b1eee4088828 *R/variance.R b77a2f26cc567fe936bca914285234e8 *R/weightedMean.R 5fca4a3c3ca39e5ee4200a9e3e6f5d98 *R/weightedMedian.R d2a355cb27513c8448a07eefdfaa23c0 *R/weightedQuantile.R 21bfe47559089591c12cdafa35e71c24 *build/partial.rdb aff59ce7774f194c05f8092617da38ae *build/vignette.rds 8c8f30f8b99d9b7f952acf210d136637 *data/datalist fcf7ccc4f64ac3f200a17c7c920bd893 *data/eusilc.RData 90bc5d0acc8c7d08e01d25bd629a0196 *data/ses.RData 58b3a9478a25ee7e30acd3c5a8816b37 *inst/CITATION f33a1c88b40d51c77ff20c2469f818de *inst/doc/laeken-intro.R e2e029a7289ed8b65ec3fd1157e1d2d9 *inst/doc/laeken-intro.Rnw 824b64c9244906dafdad61b633d0cacc *inst/doc/laeken-intro.pdf 40c0efe50b0ef7eb3cd0fde4d2d9ec76 *inst/doc/laeken-pareto.R ea5bb0d650430ecf16b20b6b160c9c0e *inst/doc/laeken-pareto.Rnw e21b899d88868c5cdf26339bdac246e5 *inst/doc/laeken-pareto.pdf 393b9caafcd39c14e36544349e2d598f *inst/doc/laeken-standard.R 9b366076eaac00037d8d7fe68f7a9695 *inst/doc/laeken-standard.Rnw aed1d14a27dd1f0521458442056cbcd2 *inst/doc/laeken-standard.pdf 414446a0945fc843a8169b0acb85bd09 *inst/doc/laeken-variance.R ca0fd52bb7095caa24805867c9c4f2f9 *inst/doc/laeken-variance.Rnw e7a82f6cc3db119cb09bff6d73c12c24 *inst/doc/laeken-variance.pdf b587d4d4ce816da2d1b2ebb95e87d97a *man/arpr.Rd 2cc8a8a217bcb6c96c87751dd807928c *man/arpt.Rd 1a2b6b77fc84dc90c680deda78d24a72 *man/bootVar.Rd 1b31be5e53233490696c30bfd86347a5 *man/calibVars.Rd 2019a77dec22efebeb20f410f55a11d9 *man/calibWeights.Rd e05a9a1532015ef27c020cead1246fb5 *man/eqInc.Rd 6d52d900e41402cd1bc4ca03fb5e83d8 *man/eqSS.Rd c40735ed5cb68c8ef4ef05adf02b4aca *man/eusilc.Rd d91eac4e5d277e6342d171d8f6634b10 *man/fitPareto.Rd d4bfc1937dbcf7890b051a522f3b28ae *man/gini.Rd 58dbd3a30f97247d8f89aa16df1e650b *man/gpg.Rd 4a6afab71acd5cc0bedec02bf868e6f7 *man/incMean.Rd f0c7dcf83dbeec1f58fbac8906bdbc10 *man/incMedian.Rd b8fea8f8cac90b3989523b93085b6304 *man/incQuintile.Rd 33076a7faeef30247bb772e29b022eb5 *man/laeken-package.Rd e583cc16465172e26213660cb43326fe *man/meanExcessPlot.Rd a0cf0261776ceea599dde4a1d92cd430 *man/minAMSE.Rd 144f962d042de6e9f14d0637fd2f2a1f *man/paretoQPlot.Rd bc791396c2078449b5b9b03651d1dbf3 *man/paretoScale.Rd 46855ce412291b4ad1f2df8f1243ff6c *man/paretoTail.Rd 4db5ac60974277990f694414196b7752 *man/plot.paretoTail.Rd d1312e19dfec6d95123ef553a955ffc3 *man/prop.Rd e894c7c9a76fde5db83a0614e6247648 *man/qsr.Rd 36001dd68a39ca49d9017013468b900c *man/replaceTail.Rd ddc5c9620431ded8edc388c004b08ebe *man/reweightOut.Rd 55503a2ca8df78ca402074d6fe3c83cc *man/rmpg.Rd 109b1748556e6728569f782fef42dd36 *man/ses.Rd dae8f8bafd2cc794e8a91e55b5f999aa *man/shrinkOut.Rd e8d4072ec0476981ffbb82d565d49140 *man/thetaHill.Rd 86ccecaaf9fbd553500f2f9939f7f2e2 *man/thetaISE.Rd 68da7e600aaf281cec8482f8e0bed9bb *man/thetaLS.Rd 2028c2d64074cb8f5f05de81a0f06280 *man/thetaMoment.Rd bc7f025ab1390f2800856070e8db2bb4 *man/thetaPDC.Rd a32803e443821de0d7ec15e50817007f *man/thetaQQ.Rd 74ea959463dbd26055a5af2fb7ec7496 *man/thetaTM.Rd d4d490c8f2b3739df15d87b76e9e92ad *man/thetaWML.Rd 2cddbe8379be0d285a35191931e38a82 *man/utils.Rd e0e61b590fb76a695e71b0cc088a51ec *man/variance.Rd 4f008ecf6d000d556b272ad671d8efdc *man/weightedMean.Rd e502bc1aa87ac3bacfb7d055bdabb4f8 *man/weightedMedian.Rd 1cdeaeb85da2559e3d9cd82b25989ae4 *man/weightedQuantile.Rd e2e029a7289ed8b65ec3fd1157e1d2d9 *vignettes/laeken-intro.Rnw ea5bb0d650430ecf16b20b6b160c9c0e *vignettes/laeken-pareto.Rnw 9b366076eaac00037d8d7fe68f7a9695 *vignettes/laeken-standard.Rnw ca0fd52bb7095caa24805867c9c4f2f9 *vignettes/laeken-variance.Rnw 422e19d841a0f18a97c800c4c19700d9 *vignettes/laeken.bib laeken/inst/0000755000176200001440000000000014554440362012475 5ustar liggesuserslaeken/inst/doc/0000755000176200001440000000000014554440362013242 5ustar liggesuserslaeken/inst/doc/laeken-variance.R0000644000176200001440000000347014554440362016416 0ustar liggesusers### R code from vignette source 'laeken-variance.Rnw' ################################################### ### code chunk number 1: laeken-variance.Rnw:52-53 ################################################### options(prompt="R> ") ################################################### ### code chunk number 2: laeken-variance.Rnw:93-95 (eval = FALSE) ################################################### ## vignette("laeken-standard") ## vignette("laeken-pareto") ################################################### ### code chunk number 3: laeken-variance.Rnw:111-113 ################################################### library("laeken") data("eusilc") ################################################### ### code chunk number 4: laeken-variance.Rnw:140-141 ################################################### args(variance) ################################################### ### code chunk number 5: laeken-variance.Rnw:226-229 ################################################### a <- arpr("eqIncome", weights = "rb050", data = eusilc) variance("eqIncome", weights = "rb050", design = "db040", data = eusilc, indicator = a, bootType = "naive", seed = 123) ################################################### ### code chunk number 6: laeken-variance.Rnw:237-240 ################################################### b <- arpr("eqIncome", weights = "rb050", breakdown = "db040", data = eusilc) variance("eqIncome", weights = "rb050", breakdown = "db040", design = "db040", data = eusilc, indicator = b, bootType = "naive", seed = 123) ################################################### ### code chunk number 7: laeken-variance.Rnw:309-312 ################################################### variance("eqIncome", weights = "rb050", design = "db040", data = eusilc, indicator = a, X = calibVars(eusilc$db040), seed = 123) laeken/inst/doc/laeken-intro.pdf0000644000176200001440000260017014554440365016336 0ustar liggesusers%PDF-1.5 % 1 0 obj << /Type /ObjStm /Length 4409 /Filter /FlateDecode /N 81 /First 679 >> stream x\[sɒ~_otoĂ3s=3Zfd5#9~֭%Y2 :̬ud UXWBp S)ma /\!/RzYQHVB*ug E#bs!cf4,?|?]#>C,J{2O9:sO⩝kof>%S*!%ZClSk&LQ=i n*:zhNL0ex%| S<КjV_L:z\'qZ_U Y{AJh:HYҹe;7ɇլKo% KLbr1ԻԡqْNN/NitarHDCCZYC< s%IbJ{ЛUq/>M hү)H>7*v E#B ‘h 3d+ ?,kEBn4hHV%Pim? $CI!1h*)L&E0Tӳ =dS%;akeX}d}֯ Xņl83Πs씝9Փ}b/FŦlfjfaٴXf3¾=+1qb($8Ѹ U3w^mUߧFSpx4AE ^5htpI;ףGYtTcTiͧ 2TkSE"V5U1U4v }qjm P,ZbS4'ŏG{&3E8YC`=lʛxO!09)x@sS }aMX]kL`МMWH,qpt.XbBdPOבaӑ!5V߲;BNlUkdXg6_l^2b~} Fմfw3MK6_z;UAov٪A6b6>g0oH`F쏹 XY;jؤi`h KET'mOwiQ1¶cBӞ'dt&)x*4`A%iTzZ۱)WM>pG>wlg~'ȒT=?f}]Mfc]kS1ΙRYyYRZtiQ+╭t-(i$@L֤ץ{J_&z:(t N+NFDsSj9PwQ,d -\V&Òt&bAS]2I&1ŤMPl6c6%69&MS%1WI*Sd*'G(\ED6\fד@Yktz\u§DE'*:QщJD$*&\[5蜿Oԯo߼xć0o^|4U6tK:_VXQ2e*N%N\p}no[j-ʼ W\9m0;ew¥o={uո7ivZw5t4kSIVkHw:ߦUʶGTQZNRikJot(w5rdMw8{üކ0N]~ft7MN;&꺍%G溥%Gނؽt0Z2W弯>,@9*t@9^s*R@ l/"HzuX_i~o߇fnW]u[Ã53X+HY/kĺS[[$B(5bώ&RBd, 8Lz~*I}]Mp "3*-׼-9kW$MxצQ]dA]7)!+#B aHƗF9$/K;`` aHEA2&Mݵ1 XIU@r)op.VsP9 y8s=e8/ܔ,f;@6W<@"[M%\ܞ5^rsP"p7J2BZ#a?⭅$P4)-qnA(]Pvк$.!dFֹJ#KQ0啴~{ ҂s(ĕf^%aihqE~i`&dRdMco<'fUY]L ԗ~C!bzQ-z߲ 7@Y  ^ǕBRTt{ƒwTcQDy8i5UǏO?F+VFI_z]6baV.}>S]|.G,J> stream GPL Ghostscript 9.55.0 indicators, robust estimation, sample weights, survey methodology, R 2024-01-25T12:07:30+01:00 2024-01-25T12:07:30+01:00 LaTeX with hyperref Estimation of Social Exclusion Indicators from Complex Surveys: The R Package laekenAndreas Alfons, Matthias Templ endstream endobj 84 0 obj << /Type /ObjStm /Length 4090 /Filter /FlateDecode /N 81 /First 751 >> stream x\is8wk+}UMMU8dI|Pl֎,9P$QETH#k$Stem`-G$NjxA` ?^o71}pzXg'l:;[ cމUߧcWJ$ŴaQjuyt)zϛwT6 LCG1 +Q p@ C$>rZVs*d6刟ā埯GߜNF4+矠!]|_|ȧM"t$XJa7%z1=v dvex5e(acfIo?}VA &k] n˭ɭ,nzU~)b3 Ɏb:0z{QM#7oWB6v] =14IyL -$)1R`SiZΑiZ #\KZou(B]͈xȥŹ#M+Ml9Dg6?-="JB`#3ћ^O&(?|p(me" Fe5{-2KcdQ rulf (vicH)9/66>pI$P+H YyxƚLKE/Ћ:k28i2OĢ+Pca }PVݞqCnf֣e3B(^@}̌=`V!fdޙ SĤ$:G(ِi"j2*:vW/-/YbT:+3H,!ˀSR R1{ʦ8`fH×fJexU|M(b>B?[ M|IE #C$&f)\"qDr|~"pI]Nf!߾rV>bT{#j_#`Lɧ(܇dLF rFװlB,d< RM9;l-Dq%ч_nU Ll XÉMA;Eri`dU8_`0zD2R ),E46|!KH"-1RPŮA(F1_vc<ے0kܕ玄'^~MOx AfW?/yTQJ4CşOOKr 'r|/gW^y9^/4~GHϼ׋n]I~GồOk!BPAq&٤ѩ:VRV`iEXAR=qہ=bmZNW'A7#G7\Р@F2$!x!5 @7Cu^/>;3l {=x}[N!⁰6wc<4Qk*lҘV ]ە\Eo7}S /yyJ3xǧhzV(rBڐ𶸜Wrս6vJn.çowlũrӦ]Cn ZgcN(ߓOT3E؜THgDCwD7ﮣ qʣ؟?׻L7#8[vQ)ؕoƵY[/ :F]:(j_-3tUT w6& W*#֩F+LoJח۪2YtpqR͌Mva(j-WVI[hm3KVVnۓ'Z q Cntܠ;:oL~R2+}bSk-wcz7wdˍ,hEHU"E(Dˁ$WtIB UGYh@yX"XZn'&hwxPIԐ֓}BfP&Yf 6Q ,c=}T~A)B>UʦO_@>(Ro7#ɷ50{vE!GDeoŠ}oڮODא {!E nmo=OO߶jo0?}>)ęf=K$%tF*{̵D-/ZW-8(@ j?ZXgsl} $ dYc=u!m6BĊ0YpwOc+3DCl4[Q=Mj*+k/Ȳ΢+.+p۩]AtZ݌\z71:km%#L6tWIvW?4ׂ`-endstream endobj 166 0 obj << /Type /ObjStm /Length 3141 /Filter /FlateDecode /N 81 /First 744 >> stream x[ko7wQ'PɶΣiXXEr$m1= P}K&_obzdN)\YtWR2P$ LBbZig5&]Be61Qeόh0fWpS~$7YW: C%ltcMnsp;E Y.(j01!-%R DͼO aL2$8+?,H ,`,L,xJF A64CeeXTn,FQeXMy}"AWihK ,YT+t"` OcʘD>LdLE&%S$+d&Ȑ4o~t\g4]gtYM@JLT/ԗ8d:hqZ-fjh-Y~b>;{Y-ѐx)hp>T(ndWv&>4D rd` ,`D.$\5tF9xk@P@:Hj:wՖk.ԡ\c04*WCzs`Mof(VIڢ\bP,ECh(AƢT4JWvkn/} {Gy5/ &ZPCEo8<`^O&T:zr<7gve,-PeFxQV ېt"<=q3x/7z!:E/=@N3,usZh !y#bVÄ4F,t4 8T7cW员]@"H08ijn)Rԃ(A%PQ,qJN\z n T<]|P&P)yNI f>;NNby9e2P(xmjÊRےd-blKRDV޶BɈj[4aLyIlro޼=7?>J?zMgLOf釜f9:~A7gr6tӨTRI(pfkh~//)Go=>Fn}Y[rT3tܣǀ62;8మ6F5N*i|#Ji>,t2\5Yy ߏUM%wX  8oHg\TB\\q).?_]VS1QLL\OlYͩQ1 rϏ(O' fk d$F$2z`+&~#NƋl.b$\VY75g~== \q݌ö5Z3h+QhØ D`_-WuDGyb3-ޤ55T_vɻAPV飣4Gi4ra†2)–Ӷ7%W6 9UPFH !NyWW#5wrl,'#(s–OR^>|w$d..9h+z*jg1i`_Sa$L}!rqoXPS例ʢw1THM+;YlA{QiL'ڏ-,f즙E^6]A`ZiӦB}u !1E*Ni#yXFc$$7MF7rteUXwWxQV7<׆ร-aMWb]+PNq@}eXW@"k *$nMDC@ӃjٱЉ<9m'4hL! @g ,‡chP")ӂrjCwi},qˀ?vvB$FK~N_Qin'#!v nŖ ;ge'MupjW6pq/<8/ShmC"*6h #,Du:E@^܅ 'vL[A$|]s7zrDl:Sz¥ʏm7$rc`b|>oAv,UW3kOe}W/"%[dƵtaq J Vi;fJ%n,ɜ.v?T16z1)'_KTڀ'a[Wдl氫*LZPqP]5j8vp;G7YA4)N$Z:5pМp,ֻFn ֻ ;-teK't'!K:aM\)ZUoP`6 "@;)k߿v`yZFͳjGzR93-Tn-#+vC;xU>Xor|R{ߕ꾾ևXen"fʝ}XK.\3R\̮R$1MA' )/XYs&lcfVcE1d[l9ҲŮH1Bo9?W=:M1Y>S1]KܼkWo!NHY Xa՚UmoҮd`4q= iedt5۶AtZvtxTw`-KlRb{҄A }e¤)uH ]~j2oM~x2uܹ0/bw)Y⢚WS:b9`_7VOt93Ptbi\%J6QKaendstream endobj 248 0 obj << /Type /ObjStm /Length 3171 /Filter /FlateDecode /N 78 /First 720 >> stream x[Y[~c%0N:@.KHN~]c w!CRD&IopDb.*\5 ^j2a4pL:I<> Ept/@BA  $*8o1r#^s$( }( d%PP$D-12k(􀄯0ys3J | shb{6D sh?fO-{fT|&X,O77X=2ޫYɦm2ev.n1ߴ, J 9Oؓ' VI@~a w09MBաE31qMށN/m>[gbO͜<3y1n\W7]w3O:#\La^]In;+ ]ڊxAg.QYiIhe?~;k[L~u56/nf;)բk^f1.+Qڞ_tѻ~6f *U8Μ/&++Vl5V9jV"{:-3ƂLƗ{s3 bbhThܯPy;:nJ8NiAx8܍@:^ʶՃ+.%_A!zCѸ+^.db7u8]ך Ⱥ`b+ ovLkUd I/Y7r}'d#?FS[X}5t&3~Q\b>FؐRYn؆{1Və3$B+nb?IjX?HE*}E>9Qt\"\o/wvHB)[UMz*uMD2y`_͆A+T:[Hx!﷊/$<yՌS;}12}d8F^&Foqbe孪:ĺytS YiEw85 ڎɯSg6{X] JT< ̀`=8I^{TR7Uzϭ^l۬/tU6sc2[[ȽciD)sAC,-z#6miN5*5/*jnE.#Qin#ZB]2@ɨ}';֝Hj݀PZ$Ĵ\C6ЊfsU׆apV[ftszq=[h4 mA F+^f[.6Oņ-f.o$/?Iށ*4=YA6e,8Sv./my5D6Ḭtp^{0:9H%1zH; :.z]Ut1*7鷉MnfW欅 M?۩!m>'/7 `O}x,OWW9&zlraToA)ڗ5h-i5@BЎbOe]=K~v,R:TFC=҈yJVJ9g4 oAuG'VCP±$@JI-L"R^(LI߾t BT܁ 3BwB恮_Ez).@z: YC)EL҆VςxZAA(Y<2/Lw,~N!tFr);#cM32UbTHa<8J:l>h51b VPm\Я+`I `H޲_ x>d,H&̘4iw ~Ѻ#}Bnsӗ/{z0[GէRR> stream x[KsHr/nhF=ڛ!;") nB_|PIɎ9 ]/JuYEuywۅO/ק矝TuW.xE*k.N]UV6xL1vm+OŇVu{8⇮*WLѪօr0vu}w՟.CmA5 xMδŇqg2tS3n着|KA*.n,_a1>%Q. H| YU}l3Z7E_}H]K e^{ŁoOsa.7K9]8ŇQɫP8& Jk%l|Axq(>m{|i4m*:VE-+|YPڣעtսxluQ P+igʠý ۳zBcz*>? TG;HMj,.ؐ1MY%<]*A73W=ȘT]l I aGFզ4RR&!)u/?voP:V>j&7puHJP'h%b"Fc 9LN7~9J(-Y S1vKv,JhM U.3V@7gӋ .Z,̼R>IנJ0 4te{l6cs(w{k$܀C􆱳{D 2!RBZ\cdʸ ?^Wok]6_a}0.ƣ*B䒸N V8Sd?a<`pBm4$?`pWJp.s5ox3?E{e0/闕׮$)]ct~B{ =S;+T<%?Jx;3٥/}gCZ$bF*س.hEɵ?gyAxEZ}X(wX*6ȇ,"U.ЫĞ ¼ j9[7k_)@:+'^/Ns$Jstsah.8cl=ɺ 'E9֨̑Moq:ʹ *Ny8|87f [:%xD/wi7X:{TOM/\ETXI}2`J6SR:"& OGeؑUL?T@zVxh7x̣o?]!\0>>e1,P@>HnpSiG =%"Ht\ (Yzw.6pDF*đ*UvROAxG=p'a\y0s(@!`l@k2:S^wpvIfs,Wi ?n,e6=lUB5w w|Hӽjlt6wI](>(n+ ВYF# ډ}ΰLBQ/Z[F6o6ۅK~TX8M<<;j̻, *Æ7]V>/PŰjwb#xz3b}^&&Lޡ^@'D"=jZ\]|g,+}lKߦ:gL, )˕i㳢ѹA+-cwMO٠J]jSѮl@,AZ}F3FÛas:l M-?S4وt$^)~# TL63xbj̋ĵ {|Ѐ=(*@k%5A'&!ʙga1YiLH>͓RovS.1UW޹i,LL8{blFٓϗfOp\bNg'̨j.u5>+h+x  y&mN )^۲tJ`i? ,^.z2{}!{J@F ×Hn;bsЀ;|#? *\YMi~7P/%֜]. !/iX.xlF .1"J#(bl,֕JJ$ӵ"ᡧoHN:a({Z?NVFY³׆(t\(`L bKsOKF$[Ԫ&RZn*_[S]2zr!d6)p ;i2Eߟ#]}$@J c_$O\eT<.f]:/'{y58Cb]fVD~):+y8F2Je? N P H#Ýl #I =§98fy!#7'L$#~+ei"&?T0$'[sPt(twf $ :]1S<ވZq#7=G~2<(O2YG+&vǮ|lwY4M@RSNfHY;Wy8`uBԪ̷yG Hi^o~>6鍝'iAr?mP~&>]UK19%Xc'\뒜$P74[.$_ Lȏ_4J-8r@BUpwJy\siJY-=ΗC"jY"ng,:P#:O"F3K`iq6>npm"<͸3-K.Ycޅ8GH8фEfqDŽsiw CJoPf}ҁzfb4];~!N"XD 5I4y_iѲ t<xc3?@DZeCҢb(@;~K@GSW*# i#MXs36 e{K#ro+f!¯ Um^X)Ma , P8lEAyi5`n=D c&M8K&1_ibU{aB9~AFt.T 5=MǚU iriBm{?o hendstream endobj 328 0 obj << /Filter /FlateDecode /Length 4688 >> stream x[Ks/ r]pl8BYs}hUV7SՔP IɜA( Ǘ_?zuϳ1|m9OMznsAеl] m:&/>C }1g f镃>-ďg /#IO]ӂ0} \k^亼Cxyvsl*ιVpFʋzhkyV_iƊ_&to.~mχv]ZBkәSݹW h¢]iyKRg{VP^ pb7ў~Y&({6RU]8Q3YKZp$'.>fѡJjfg-1nEFtH}ǡ@lwI_6W9y>)mh]!>Y+8»RqsФ7qsȾ-E`>kH(ރ[aHӐ6Wdhis tF5 ߉M$7֒-VnaV >71JCT;WoCZs cq4uC~Ha %l=,&nןrٳI}/12|f jVOV> C4+"vq&E^jPð)[-+u78!5O5fkrx 1>Z٥y|+oGPœH%,HkP-Y0N睒OAHxZ;<$~09xrgt)3_%̷'tc ~}د#N0ۥr:8J>s&C=pf8W4Wѝ{Y#L6IQ ]Y.W'&42&zH)T`S!3!Ee1a q#epQ5JG+j\:,if\>ݖK>%Hm(fS%Ø=~l+xH+f KM1 Vǿ裦#/i@ qFZ}`IXmFIN)m_qII Sqtxyz>K/hU3d}TjPb| g5$3?r*<*W,.>ڱ?g"KL@Q1+4.@}Ze#{VwUE0*q1Woc(c%IJ zE M (/Y"#R2B;Aheoy}^ܦZw?^Yĕc?_]wJ?yD xD M_52Qoqk- "#ý ̠4 1w+4E[Sň1:s7C+T7+hWe}^Pi4G cݔYai z> o1c0,V-u4ֈh -"WE6U NVq#?7))NPNhMZ})tMő)jwsE]W,)!gsRq]yC$+r`'0z%Rkt؈ f55)q/6FsՍz7Uh+glVP/kI- RxXq6J$NU" s ˫9ZPAR =z=ZWĜv[O5bLQq0۫%Z[KZ(sj'pLKi5iqҬ)VFK;?}cNc@@A#)ءJ V6;PnOPmv8BEiacES j`Cᦾ,@Pǎ Y&k8l#<:m3#zČ_`̌GItw(Ixĕ/ϊ'f-g) W1Esۗ, .J,,tfx߀a>lAsǣ@yHOXjHC"zssEzQԤZhM!P }xMb 9rC1x85I"gOCME1Rnnu*Nצ˭ζ@Xy>ʠMɠݒ*8,i-(kAēH[-a7GN ,rQd'3ӪO\*.TO[ESkv`3Ts2/;H}ssl,8 TH\>@nj^my?Elz?vDn^ VxPt6tU i? SuW ]55Pt\:ٱj,D?H1r/8ͼ߲>iA:6[j_HqOQPh/_9>;"pKlvzbar&uO&6>ђḪV|~8 N'F|aTNsIf4XGo~:;5LckZetW>k&PPd9ދ'x/~򘵚O6 >p>X.P9ұuYAI?_;yT'1. 6|Y)'r߀w)~?"G9s.!I~]󉯯y._rzX ӥ'-\|%2ܩR,c:atĥiՉén.5xWs4K¶R?urHrnOD8Y6 z1w8_\n#WHtLpn&ѝ&]|NNv{(Kn`@Xۤ;qesteb;3;9bW5H@4LǪnMڒS^2SС:oĜzM. qv|ߙbBh$ 0@"Է"b2yؑV'Y)t*\PsLK@,q"(1,ߧJKendstream endobj 329 0 obj << /Filter /FlateDecode /Length 481 >> stream x]=n@{7) $ȥAEn",0+!uݏ:v,V?Xs},Mox{86oZ[w}xuSXnVSו<.?k?;+H]gs:E:"iE=Z`p":m 6hHI; v5drLS1אi52M\C)טkOE% v;݄owKuNX9c1#p5s  ߉@w;! o $ APP0( B"/!PбHGZ*Go?E=ӢPW= v)_H OR%K `0L&RI\ 0 K&p)$`.LqrMZvܴܶZ@evx|Ѧ>endstream endobj 330 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 5325 >> stream xX X֞7@(:wq.uAqbEm qa-9 P6D(""jo.]vͫso[d23wgd]F&Y9aS#DW88Hd@v_8@{x?&E~\&%.*dS6'L4v,?-0m8Eѡ!n ns{52 q1X|*~_dߨqկ4;bN疹[EEoYm[ՍA-]2I_xq& 3Y a|Rf1˙JƃgV1sOf,ˌc1/f>3Y,d&1 7"La^e2<3Q1N3f\p/(L2vL2PQc~fOvv ?ERv'S=_Yi?ݾOwF:i>3?Rǻ|n:i}΋#l8&8ư$OJao4D!-%:Sv!2#*#b*߁0ZIeʋdbVYgn˘"}tjq[(u(s-b o>B#PȌ= -nlАlC8D=xagEH/jޖ+l2}K(oAܟzCwwgd1]]+Rⴛ|!Ssռ @Fa.TT65!rS2ƿa 04}D&^|*;Xr#U:{2L<8cq"N{tCj*`[oBy%6xG 3&Iah,F1&{ES= SM ($1D? So] 4쭫%s(̕`+ 3FwzAlp!{82@E754d YEYf1~Ba7wUlz ˷ٿf#/29p88\C0USaZw)usiB6͡ȋl6K|i8f| 4&x#bz(CXtG\/k F\TټؕS[V-C^ ɐ/%3xY{7~3p\@WS>ycZ'_Kla͑Ƣiќ?i_*ROF sn'`y35XSJҍ|'(& EtLRtLmW([v)QZD ßsę"j?rn74Fn(j&TP=/,s%AfKrv yY pi09NfAcrcW&~wQ[zh2in3|J/@ q@ï B,5{N ]h=OdW'49djC}Ǝ7D".Z$-`L5{++'eH؝2=54 I{s9@9qUJZȵJ:*r- K֥܃!/iY-.-.-:в\b#kmF*:X&)C$CO=S %7V۹NKI]%MI A@Al.d w9Đp32RX+9IIK,t KK_5!ͦhea5't:{CD]KG̠棽\ .HFcB}˂TǼqsFȈQȎ}n6{G>K#par(]F~ ҈SCΓ<'FBX=$CtUh2属%[ 8iO:[ѧv e4A9'3XxobvR1Cv|m6I+=Bu7mD{JI3HWY a:6/ ᓈrTƟg=_խJ)o~Bv48뒾DJSb)yvgm42ly` 5&#p/|)tO0K%dWhě,LJL%"[B +VG wʋ]Ә*l]P@AfD׷4xV\ U)7֞-È#qio<*֌GIVLK뎖1XhFWwK F[ex rrqiS Dp°_4'^?/YFC+)yuq OPʙNP؀]6 O}Bfd185POPC /' qwZSxh5Jwc{wEq<|k#(31b8TUWTnr%W6hvl ]F[TKNٶ97N}Kk 0 uH3is Ju["45EY4:s_Z&5YspIWVCm_UpRD魆KPJGk"jݠ3|p~}]tA?9ݘކǬXi'y:qW3_=ۍ)F!0}$,+{\']YGPh)`)l )?wb.|km #%[2XpgԉTˍKKS2Jkjն|Ci Cg l>h"pz^^)54YK&E3m߈^w;rQ|YtX=+/d29>1);*/Kw$~hd6β'W~3RdĞxsq#tQ9n4pT&:}nӡQQHT 1e."B7 >L|(ESW;ލ8qT >uD$FڙwL9X>S" 8=GЕ36\i:\z :텂"iIuՉ~ Mq9Ü\$АTiMyB_4ؗ=a ƴk,Lqk&:{ , <<Y?$%'<ҭj=@y\'bËj-ߣޢ>2jcHmVwZ|L3@ r}n›T#! X8zk?xhy]")@FM0Ge yNm4-ٟәÅJ:Z %\DX-hܪrr}Et^>8v?]8_mɣk}*"&Pm*"j|xÆaְǭjs]M{#tfLz݄K#8i ; }>1bkhU롊s|BzkfdaMOp[m ֐@1<-1vr1FQ_cPab"|oז*Bkv>h,4+~U'o~}pg̕O\ zI5vӸ_[ѝX tP! @cS*> stream x]=n@{7В;? l4.I. S@)A>=)R<C-7˗t߯g i=^:>qϥXЗ{ַ?nW|ܯwKieii> stream xzXTrԜ޻ƒQ( Ez/"0a{D-&1b Ē}߷Иě{g|yΜ9gw]Z[e҅Df+Wx9xO45xu0P$ "'vºߔ1C =LN7LXFkPbh0]nS&M:~<{c <|Ba>!.Q>ޖn.>.7Z.\bcmv􄿬llZy"K- ^"qeӪ;W;[q]f}z =e}ߟ1sg趖A/&(jeM PaZj8eCl:jeGSc Xj#5GmPBjZDMS%dj)5ZFMSӨtj%>AfRKT*2d5H $M1.+Սz@]7ՋzSR};eBQD]<|#_2eRi:4EGD5nwϡ^1M-DП!"UQ=[Meى*e|vj^i!Zeӛ e:MF+?MHxMV ^yҵ`?0J 2AwL{w: xWP9[)T  !Eka>l᳊f SOr\L+`)y 2!ゖ*ʟoz%Άoe|9;ntMy3$oFanRx4g=-~`Msm]`Pَ n"t5RӞNj_NI7䅆( J92t,.lQlH:j>ܟ[@ it! ,7fRA|x^tW:EH3 5Rh5Z"`VIt mw Z&Ermr]EHHXnKc[x*ށx2Zfo +Jիk%VyVtGEI.QQ8iZ9@7|SC)ޣ/0dUq$PEcGythӠZ h~H{䯋]߶;ڌ9R?x Čht"aGw@Cƀ6sd[Ej?J ͪ!cٙ Bި,iiKvT}o'EGQ«x vhln-Ot)tH˕t}RdEqP  he ;zH]·P5i,/ Lp.Fō\G̣}?Eџ?2J(kR^⦲gn:Ƴng ħP,Hjt_nA Q;P.:s}O* oJ(6!=G&i[̟p@h;"c90 ;{r%7&Z3z]W\1I\;tr~UE\_uXF0 b!YFiX PILHP i2lِ`QV8b4^Z O $)=0d)l w'e stG^J7T2 Y2YL~$²IpnXrL[K?H7yVz&;D K<;֧G. ]΂ 떟n~v+Ӥ 9p먽$Pˋ ZĭP`1Z> A plJRm@y=H#:K̈LVfzNq(>1 D@fWYr.ֈ6%9GT+ %),AgD+ZVpϮ!(OͣfU$y"Y[zRp8C[ihz׺3ke^E* ʲ⫷i539~n QHk. a_vBTpt`񥜯RV3n.͎5'46Y)Bq׋oѯ5p -EViiM'X|O]uJ @xttlOЍT\@#uApqJLz$DYx$n`o%hYM̮0m`%d{?^Z60dى^j?H Y6kY>,<2^jlΏ1FcbE&;MaH@>jKe[!q͖kY}ҎUxunEF` >!#1d^YIrИ6M:+D 4=1ey!A^'4;Wʡܲ+'5yF.:g,dO-ކ'ba*.͈De"=ay 0Dь{MWԮ5rG "έ){>pw@aLtuRYV 7;#PDža2%ѫH$x+}a0C]~}- )Krd2E&Ғ2LvC:t0@2#ЏeBW0Y݂cn =3E/;8|XĪTX"શ1 HxT=Y{<ˣ3bI-f: k3EhI{(3zh,QHr*|I*$50HTf-^A;rkP^<\> 5иMVVk8BUA,EG]ք?B:W]Ҩ!i+uRTQr8]G_roUw1:IT&rn&C4lu^2JAs$~C^P YHq$o RT,N0' <'lj5lIav3(Y~cht&5P rz75Nymö́mlweG9HG13=a{0ryԤG: HS 3R1qnabOF|yWvus§w.,Gr8z{)#ٵbGb{6"+&l@@[\/4{[18]IY&.Iܧ`ee^B|}K+0p{CzE<_ ٫\E+Z /ݛQU;O.ӗx} Q2F8:*stlBZ/ĉ9lvNARX$\{"U}.Tg( B"{Ʉ@yw^t˛zI_=s{p-YN-q%T+%n ю)M)`V̀l88zx0b0y*$npVK; ,uKǴ;c=hQO-V7h?=.#^.VLTm2l+h9}v905cxF_&K MVeC>hsP@SW^[|][*ㆯP0M)ukyٍ)ۑJT{['"w* 5Q ҧ=eH-1"x;;C~ ۬tA{M )>mmkbtِԤl4KHm)-:2Ld+/8w0 Ɩ]AB =J6NKs <$xRҦáKDn-dGS6;kĮh2ɞ,30,j89u)\: a3Fݣ^010.S[><'dwhS-7 G F7;˳_[s7,_=zO\2 ^*yMBI&Ž)'@_PVjW|{p,91|u:.S#ޠVx Bmh3^+ԳcG̵'?~-3Am{m٥WǪ V&(R!;$Wd4{y53E'} Po  jaR մ=VfI̛=BN<ny9̷IQY/0eG+6,S,zmv*9NvxUH搥0u`[X]q r|؜T.%̫;5ö<N K0z4O/FCŀ;|}kr2RHEj5d)H[r<*컊KNHlu#) )i1z؜m#!Ex-!\)MOړ]zn{ML$.B$H&شz+27(܅NՋyG`Flqzxpe!mXL$$ ;v$X~%;+5d$&xd<aE4934ѝI;Te4ҍb=QHu˜JVqع18MdQHOfsty hdr| AȡUA^1;v|<HgC:/sE8l+aupi8Z\W~bv .ջ.n:i5FGd/;g$p=4W׊kZ4L[FW|?PUsWږ%]a*OO)~kU>\>ӌ|0*^ތ*ɽBv!;tr`+-]TrD9IU_,2&IOW̜Y)(/3gm8,=!>wݝ"3x@72z̮6.QXLߜL 6{?\LJ.UpFZ?FTAba٨sx*`b6LS^N.YH znnO}[]:gY7xVO k6iipgq`9_`( }oVu;iAALpꭣy|a ۝,@~Fm5R4іiv/bńHT'BqЊL%l.כֿ,>θEj8,OC]m4>(%hdZFfFz5uddr}VoߪTՐОtY_}?@+ [AvU&Zq$13lr]𝩻0Oݍ`#_pt(h=JyQ&*Jd-= ҄G(M/!8HE5q0քOȯYJ -+ۣP(8CPԴL2zN8+z?9?>⍅)=&3')#Cǡ6?9; ҷf,vRm?sk8cq%Mn{pUד`f4K+񲇝"i$.UvunjV8*J uU"^_yz*N.KAȭZ1^ [>֋ڳ~KvvdE{mOq8mf> stream x]ANPD>o;{0Foe‚OUX̢,;'u\^/{.ki)Yƭ9ϭ?oN_K2m,uڜ.NM]J|= ޅ!{18)`"PhFZ l5ѠVZG`BV%Jl(UbTCV`\``^nn^n%_d4  a0MF}IߨoP7 &}Aݤo7vx&P8p5}m89]N}iq96.#e4rظF.Wte?qEFVendstream endobj 334 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 4551 >> stream xXTT׺>̜46Thb *j 6, !R4g"E(0RD8vb%}F&>Kx٬˽y뮷X 9md#Ɇ.1cN!H2i4Ho=ː9XZfbP|߆17G̍J uOϩu$9o L s q[4i$% 0qn7-rnVp[tղ|W1 nĜȹQ17n Yy˲~a+?iߘY=0Hf),gV0+UjƟìa2f23YLa21SE4ƗY,axƞQ2#83.+32vx3Ƃ\-5M0;kfY.;?h`!Yv!}衚Pz}yyGZ.SnVSZ'Z@kG~DPYiv, ")\~#66'466tt+pl%}'JSM ] C fRDP}-beOWu[mޭ!zOh&එI@7ڗm˾Ә}=qޓ!nD4!<v UD&BFUa.xMCeOiM8 pd;W$=AZ#XCu <6r9\ҜjV7vqn+^ܗ_u&<t땽d,hWI KgW3VyG?Nv Wf0nc*ѢA:e.ݐF(E6FOndhsvG YQAl4Da/8߲,fJ(1, /Gm".=F8CLN+R!UXXQ?wS[45=X4ˀ ciHa>m%vxa߅}eP"U'LN z |Ax^*QV+}j.} c۸aOyA7@esf-2mYl=Yy-JC/Y$đMN Y~oxB&% ͈<ʲᅾf%{#.}Q13==~$笉H}EUcKE'V=pE'/X jXq}z8@]{9coX0 Eih]ږubp|'JiSshu؞PZQ+vh3\^. | Y.a)2C^Mi& bi􋤟^A,/evMt1#8TkYeԍ+\5Օp]xT,is^Yb(}C_pCg.}qm=)y7f?q68~ *uUF^q\;?R e:}+I2ѧ "5yX-DƨYG4tj81} Ya顖RN7r6Dp=u*: zAs+mPI,|ͥ :DI/CS*UԖkkNWWͧMEl/q:R5]$Sۮ?ZspG}(0Y(yCͥgʣ[g&ȅ1ɿ+dEbǢWA[(g&B"ԚprŴ~Q'pa؆6KiJ4?d?tM']^ЇErWqx8̃w tUx𚫢NqybEQ࣭ƭvXt;LKU.u}Z( QeI5ﺒQ+glܷy*24ᩚ9z}n~rP慅-,05C>0 $ooA[FwQ71S*T*jrKmdsਘʤzOTnS㨩p.߿ 7Po8˵==^r)PU/+N3]SF X9N WHېnWLa~8$Պg??TRJ 9ꈸm29-Bʦ s}Y&PrF:a脍'܄PH9v,N~mrIf 鹳D+ez}M5G~?;,15F kwBSvvuv0t$Kv1~\Gn{VMNWg\ #ꄼXо@v ,*@&Ν0r5qk[P{:[mޔIܺy=SUA~xh ^R3zz>_Cv'8(S2{Ep:鎃&/ƭNW^Z\xo&*]y7š_RMQ&YNܝ44 6+#vNi 2C`]{9L9ӡ`3W/@ީU}?vOst? f}df~}9u;q6WHTQA9&ڝCrC1FVh2ߙ ;Us器sQ|kMceS;jOHJY=y44BsgI*]Վۯv[@U  R.TBo]/j t!+){W 5RulFVۥ2MzR T |sL2pPעS.޿:9,0RT  Izd&AwLin<㥙m~dN&_ߓȈm3|7p7pJE@Fb[iNw A8ґ?N;^?q5j؃9r|4vVg.Π.n'PnvOn^Qs*K,c}.gƦg,y4M[f84GBH\#V0^;jPQU^}Kh|Ys ݫC>Wː%9I dv #&f⛟JU 9~:L{z^N.s&=;ThG[)@)Čtåh*h (e/e4'ҀWuIIdӓY@˔Y;'[aEm굌w腫ptك+%p:+вfr"ei i8&aIZ(NBV(ٸ>E?ˉJ3<)pҲbPSRb0be r`s-ZZG(? V ",endstream endobj 335 0 obj << /Filter /FlateDecode /Length 555 >> stream x]=n@{7ޏ ؍A PPa"HNb7hח|m?^{|SmNNv8>Zz6M~lTq}-ORu)ێrvZ(Rb;bCMXa""Ӏ0TbEi"V$XHNDR L5d`HD""hOP-:6lбgcφM={vtٳE$rиDA"r9h\DN"I-T]РРРРqŐРР">ТP:B .X]Pu\@m%jKU.L&RI\ 0 K&p)$`.L `0L&I`u4[D/Z]4e:vZendstream endobj 336 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 7967 >> stream xz|Te ETHPAi"P ^'uL2%̙˄  &(" +@W}W}fyeV?|~f2sοs!F 86nMKH}~Y Q/Lx&<`?xE~0 cF9iV8ϘǑQpB+ӄy qYΝ?{6sq`d^9"DI сl)M83-502&>"960-6p{ۂn \5xmX? WH[)\Z9Ds#7Em̏9.~k¶I;_O 7,\dƤs0y Tb31BL'3mvb&xx!%v+]Jb6XE!A׈jyb O#^ ^$6 Bb' ēx"@L$F)XQ1qbaU\vb$Qy㈐׸##OfШL%gt~裇,yd#w>yq[{d 8)MDդ'T/83)4L7>}zwg㈯vFݞ"Y#\J~!^K{y:(4Ji@xL }Zf %PTBOqp\l\]'ʔˤ+-c!#tPmpiR 4 l mB[D\.ty34PR  gm2GWVZ稷Ovptk=Jy,9@%Nɍlg;\׻T啪cn !U&fr5bz{Rҩl*+u`vYj.AqW4vnCh0(ZAwn+eO|+;.tN]ٚޕv4G,b/2\T f'R$q}ir}CS(4;:}_tG h?` @n:V'[ϼ4Ahz }e?r~4TZ4 *X>)ioo =S!<{ZRpu_GܖSt<D;A|.Mz H9Yay{[wdlV.4DAG*%(z'}|" ?\CFЗ@~Iо: 5x-u7zn5r=VtcR) 4*LNPA4 t 2 b9b7 k~] zDhQv _-[6hG[oDZ5)B>ՀY[YGSS9ڂM/T6xӻx iQ>{U xz'!2\z+Wz t+8vŧ)iSz Y.;cAoеFZTe:z),0֖6#c ^M/mrls$M8rЗ70gz =Os&+[LNFW%խd3PP؃A`F.1I&%JwA }čz}ex]q\ Cp#LbL"r `*Ffx|Xi]e|1`,1yj*o8KRET<ܝѼ_dr,Z'1%_`{c4rh[\Sy>|2ҞfA h'QAN,*ꋻz#eGG>ʥF-2IҴ-bq$%9YiĽ@c{gsJ6Bg4-]<4",-~hW7LW`GѶK d{4[Q9. ty *oOԲ@ FCwWKv4T Ț|7HaoJ-eX`Kνz܋qe.SϷ8Pky@y1u^C%crm _4 d^TlWVxkw\4I6Zm= (s㈒a<h埸ލryJĝ}n0zrŒ&U)Ĩ*t9E%?tJYZ]$H!$3[z hegl~A4N`'v6/8LPܮw59mUvu._qr`.$tJ KBo׻ #8*u4[X6CUcVd0EC[%\]gKuj,nyb 7jk|CSiPD2MGA1ztt }:Lx(Qh [nC4b)-6ĤG44B;Ռ&S6K}Q✼ +:H>gnEOhxPQrE[S'ΕSv2|z;>k9/7 OTnʊʔ. 2!f2>"I>{tGsUo ?=ABBÆpLBNRur\c N\G J951H,<4FpXsքxuʪuvyqDaxr##1J*i^8Ks}a뾤:io8>cDd X##QRq%~i$Zи&gPzᗞqDfWRBŰrOav;(4Z-3|׺N=Z-';YTht:Z>{&=gN6(}R_[mY.c쉝چ}c뇇g~oex"su^z?6T1D4/w/lѺV' HCL[T4ZKm=,r$4y5䃲 %`Z^2;_po>=.:]弈7 wx kOB8@lSJ&AjVS؈gvs^9/UQ[%j1ܑ[/-ϯB<|Ȫ fjkjT p"X.bl۾g9Εr;=pMTiMCO&(|s =a}_2>M\~@^oa%naCĚ9 Lě d Ճf`Ohm"EZV_{*T:=3n0f J]{PR=s^[ <U(s>ic4+8't0x!u&:;= 5J\?: z?,ŐHТoG&_n"޻f~鉹6y6Ѣ߰6$Ţl8Vu,we@)z^Ac|9] f'`4S=n4'&lןY9+}2AI#-H)/VnGrIH!(+k6jҕgdCrڿDUXOy!XkA lΓ@`m8E] "2R^^WWF4wԣ_p;-yCqhhz~Dbwcd]F Cۼ+lDEwy |3eHZ,E*l6ٍɎbgY}xWgq1PK #A謶TTRT\՞w߹^EQabz^wmFku{*hpk`75)5NU5%N#Յ-Fʖꖮ?..t=Γ8_}ŷj-N-em)IXRz>c=m5wC ?M9ps{[+OP`xL m3}q !wxe!STB.߹|7Qybٱ#%uWj g6 Z ȋCThߏCO>x?ޡT᳸CB}C}v"zdS;;9PLY2NY;0FI*y~lk \)III9M--jpm=Qr*C3%-5>טkN e-I~?ݺ׸zyNɦt~?Nv jNVDn~w^5Q q~FH[Ls0Ds:!y˖`t,Ž$*u *b6Y\(iq\4Z4ú9ha߲4ߌVM`g~OÉ*o3:{&;ꏠɍ5d+4J8֢"|-b0?i 8_U;P@Đl` ͨ6A)%4Mo34@n3|3 CkXi]'%\>r,vf,VZf\z(A 쵥55 gYeTǃb`p5Vv絆@m]+\ fk@Ga9EJ08Ȭ<_\8dtqBl)'c=I,@lo2]<3~`l$ss=$@4zHhtsCW@Pʌ܈4x?NBj^?{h+St9B1ާ^>hL!T .Q*F6]ۧZ"i~QNO_Itp*bb ޘ8XZ)>K(@7 X;+מl7Nc ?7o[ KTB0NLx104uy^Y TjulyӯÍa&FSmxcO; +]kUaT2hT]6,vA@,{3L 9TZ1n)Vw( ~nPd4x‰l+Cpe,8*;59&;8JW9ĉfq3BSzŸ8DFYimldafju}?tW9߹OQKO-eg.fC׉,=71EmS4z-e$ %Sc'o͍hl"v gnB!A eQl0lak< -(˯sg?p C.t}+k|\U׹2O CW۾k;s[>t#vI^̐`:-ፌPviJڡ,g>| Ը1#jk۳I-Uء4SyʌՀZߍ^ HF>SϤ5TdE}$!uc5$:Tgq|4U%TRaU,2ļ dALj6,T⑴Mv6+ 4 Yk 4^*).w#"o.D]w8Wr=jTɿv7"Sc^4@SV㞍20VMBюrQckkUU C`Z޴7Yc{ꔜ(:lX,'uuldkUSm4+D9iE &~:6\BF|j g6cr;gO=GG,շV6v6/~~vL6;H!}{ +{#·YzF/ERdVv]Exv(z{Oz|S5hQبHdSƴj:4͑ ݊-kpU=tJY6덡iuVu MΠfeEZyjʡTj.ie]VFc#3hd{]0 >(^_LӉtTb;n4MoΡwS{MZ9F.  L@gCp&ѪԹG6v&alq|GL w^"N.M;r)(G#@<.r,2;a (vEt#Dw;<]ۯrbe<~y{ |X}US }QǓ`כ|u8T&J+RL R2j_z'c*;fi;B* P #tt?iޤEk\wnM&Z6_~~L6&~ "tHrw~>(6R1$ᵢ`V;VrPd1޷jju^Nxe{o.oU?QZ* Kvcy͆_B.с/zP z:CZki0]Pf dX I˪Lʆ o NyV|7:(@o>@ lge]> stream x]O1 y?EKVU8""d{C[|zz){_u$XÖ4 fIRt>TeHxS@qj}_G d\JYbLBVpL#D.rvRlD\=K=j (|YRendstream endobj 338 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 571 >> stream xcd`ab`dd N+64 JM/I, f!Cß <<,!=3#cxzs~AeQfzF.THTpSJL//THKQS/ f*h)$f$))F(+k; g``` 6f`0f0a{!5|Z2,(~_?~bܥ;~3>,}}Q\rUl<<> W>,[7b=PL1{/ Yݟeb~wVYCքq-o03qsָjMX^4jaVwgAKr5VCnמ.w&y'o<('?b{v?s=uOq<8a(>t3OtKߓW+w;BHXo;7u>o /| pB\7XBBy8y7> sdFo_20endstream endobj 339 0 obj << /Filter /FlateDecode /Length 4110 >> stream xZKsF=R-Ƽg\É8xDKIB!%߾3$yv_3OʂOJ?]8:.'Oi|r 4'VK=9Y0!'c,,7柦%WWӲ(ʹ|mMV[YL)Ud_ouW/nVәڰ> cL N3qgEh\rg*kj:Kzcᯪk4U WTF>6i1I]8cŠÜfxD)unت2rb~v-uk 8Xf)&3! <45SNx5=t1m+K^YLZ*ê2ْ7 ر@馮pqؽUq gqӸ 6ﻄ_ w fŮgC%xQu>L mUjR29,4v GĎj `/<]wSE]ͺ%t]RXJiQ%DA5B-C "p*o~ڍ @4 (x|ODJȉJ>LZZ,zaoؼNw*WXB kH##E]g eWC#TLie o#r5.Kv\/H}3CSJłS?SHj l6w,c\v ?US0u\@nXMy(,J$v/GD7 &4J3\.r (,e|vEӞ?NqDSLHXZM40RpjVK~T0]',I,;B6dO?3)NC8qMG(j8)wHrL&~h_et&jg^M)QVg4.1)0C9=CzsL5'ȟRJH= i ʫHBm%sj ݼP!5S5zv7!@u|D"Tno7o>u Ύ[*4Dt0a-11{Ǝ8ZJ<7#rOH[H>0# tK(#T W$> >uTQ.† p1YL01* hoVżC=~r Q4u 6!2cbL菹 w0nEdr];!b=2{Yut ZqB Y;^EXjs@,(*^_ [XR( JeX|F,o}>NL&ʮ\r|Pz/yJGB0.@<˻cKb򾱗zMl&C}LnFy#;pʏ0|N^:zB/*–zTbkY̎sX/ obS|B{bQ,23tMl(_J(t0,/_ζ Y}3zoֱ-ǿj:Y6$QwaZ&̽PoV |-2;NzE1ғm4@ O[FQ%f]ačbg<ɵ e-')1'" cy 4By.r T R|$'B t1cXCBTD"XVk55}$5TRў,tP#vɳBD,X{%ҟ;.>RޚX |~ȓGid[h0G#eR|i]aQjW 4x<>+##E)o³V5\кc/RSŚd p0{r:<%^)뿒WBq e"X4rR,E`XH:-B"]"BbB(!(} H Q~S$nS}AftFќ}3lu +SOyiJ~qzں=WY}QtCGc`Ә(2,jh YR 'U Y]&3T`2Ȃ{ BX &SLfp@!E B*,͗!2豊a@dDH(D2.R )|dұKޫ>G@d]Rm,tCd) X{! 'O9>:jwWNb%RDvgjݶPVmy=veZC#>%4caKoEQ~ 'R&yu_PŞ`!!kb/z?Ufo߬Evv~; IdCN%U>tr"fL Kৎ,R*`'t&lj¯-XV+𓕷Mbb]0&ޚ}ۀqAq?"^1蟘5_OQWʁK&}ŧ:v-IyCO%Etr]7~`{ '!SEIÐ;"gu$E>Grm ;n=#TڪMY/qHH5flҭ"}T=#GCl]ZTA˺:Oisu LUnZ†n^gAZ>O|-2tvq k%g`:i09\D+)}_“4 PI$$GVn̍1i#$۫]XA}g%Q?Y?Mendstream endobj 340 0 obj << /Filter /FlateDecode /Length 6080 >> stream x\[u~&t"$ka%^hP͖խnI;9V5=LA=ݼ eR-K\?_(2fs7*Q]޼.2uhW7m۰.@ۋͺ{wêUk_ֹhCǾ>kWӪo5cfuð|6WƘUio:C-u4jc@}Ԧysu|h~͝[Չ~4ͫOCW.wZض.[;4٬/` ⢛v:c5c3t.=R@j> S|=,y+(F ysES|a=A~op"wTXXRZ <}rfvi[6U&_:9AQ_^7;liuhב{1X7D]vؙJ2Ɇ%%9GI 񳉋6R-7r86|̀> ?R[xܞMЗ Oj2'XA1p# > ­ Do3G>ۂr-r:-eF CI$wDVMu:MhgpSu G wW۱fa"WhLرIhϔG|ț83Lׄvr =i "h: 98?qjuAGr'&8$ K-47*I,gl& ja &/t͢~+B4tzM6'kxv :y`Ba_ߒCM E430\1;o@(Fd"8) h 6; ^U)l- !2-CQ0oo0w ӳKvn6B9:r*]m'QCaѹF%F-<+ и'>IkZW+A!&Oi4DiR}fk0#&"xmΧQM@ MStc0yӂ>™JLq c)ۡqHI -׀fO 'CQ+c\"^sy9^cSԯߗaFaDyi`|lF,:CPo˨AIM w?{ꑹivi_%ꐣg2-p9liۡs5!"ܯ{ 38 Rj}3[nds4OmL`+87EA.@P?9# $4 h q6lCHBqs>w:ki-/ا# H( "0ڷK),'QƠi ~،s ਀Ԥc$\;68E;L3cZ0GեANi^Mv;*k;9O2jd rb$nJw3ɑxL%w`$VO =_XMGQ2ڑWJa m4:0K o(EoZ%Z'n__X gKn69-v%*WW!iŎBD.鼠y2*Abv?| 8hE*N8 8դj<:f۟(8"ƖN ZX 9B$C&8É. &}%!MJP<5t`|5^G'?CpcBGUXA?:\[RmN WO_%jl;Đ DoTJi_P y"m*a(q,,êրj{ ,"@?ezE)S5S8C;s=Oŕsh:(` /SFc[Bb-ĊR&u6lm/|_ UaHH2bdĖbYJ_RnR]B(]jki7OXCϝ4f=cϷz^?O7I3YˢJUujA_*L2[zr6Q:qřfM5=äU; i')P[.&PϢEliA%7z?xZnE]0lN 7_24 nQOP 3DZIPa,j5;. 5M*i'4jgǨ^V%,v0(saˇSwZuSѤinCKΔAwl+YcN:*_u+Y׏>CίOyUd@FdV0 *.qCFRrkeLfro,J&#ǚucHUIo1L)3%5ѲgFOw-օ.8#V(gY=]6\ܸ+zqL]Nf<Ay76V4 tOD><8@2bP4Sƣf4 nqk,cO3c~p;~.bOB۹TR=f-!b).@V)R t_SaQԝb S(I%Ɖ>[&:qTϛaAӂPH§p] q9]4W(k$s9fk| k6,j ׭j1ȄpmaQp9rmWӶNUyGhѐay:G30p%0MAٔ+S,;,eCyǖ">ux^FhW/!>FQzY6U1 tu~t>k$In2&92i$ [' )d\Z_f8 >c;cs_%CF0;^2q{wh9!cCt*YC^H.4S#rIK`sE05E'TRw~L]n2S@iM5b=l e v\u^-/3{ϱ h2fh'2*Bjz7Ӧ!6ag0 +BJDBg)vTcRWzV52 8; 95:"״>-㺙bDVu/S~ ό?#WsT9)^[bgaŷY8J]\L ГؿBD _9<ރ$t3sF (K:g\Lb"9""CoՒKVq%~^I\e9ߧ\s|a"F Oiajᤨf+_zQtO:UFUR~_R '9zT.3{:(uRK„IfF]egʤI%q|HϐRP8ZdGozբB6b*әoXw$ \uW\ϝ ]+E-,)i#.\6/Ϥ_p6^t'ϴsx΄v\t G`#0ׄڄN6izmt=w5~U̥2qe=>0řvL3X_ѕs:PttU@ta}%EZ|̊ct\s4G<Av[)8z3/GE&똘3dXo=: WCCߵwX!g㽦<n)>@+tKI/5q]MnQQIK3z E.!;1=f;Z̡TnSÑv7vVsu}~_x_r^T$:_zH=gD{<-Ⱥ zc^8饔 $SyqcӻtAzD. -*h.x|Jqչo+4??;C(:Jg\Lӻ|K偏`0A*>EWǣ`9p66[f!gFD1 }|q ;sUi|6=endstream endobj 341 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 2858 >> stream xV{Xf0V+i^ cS ^PS. " eX]ouYE.EVKN)5.':'L|mn)C'lJٚ#Ȉz ~oh1_j9[r3R7d韙O/_OK/ GЛ) i 'G-t~Q&ao0LPZyaY5'E&/MIݴb3,f"%2f5-a TXs{M}]ERS4 "X}kNvޒ1dfR5LdVK,xUNLW797( j?Ie@P?|<FKh{*mZT Xh 1Z(ly͙텝A>k'y2bdGX q`~ մv6oBB4漏z)GcpOBUR$Z22yX6p7W08aQCl4W87xa6 aYw8|ϗ?Z[҂[S? B`ܐUmJK{AMdZ$Dsfy̍P `v2% AUKe,ׂY!R!dJ, rAֻ(2{6J?(:) (zwG霶î-I4d6{`K(xIA'8/&<|}~S`^B|UŋmwT,cjϹ[7szVzoxz>rkPfp>pt6VU 힭$ycLz 6(>b:Wh /\#9`,v 2n)%*uYuU.gMKH?5CGUVK3.|<. ș]o?8D9M'-*ސX|_{4Q"H'<ۆh͎фWjIb\|jx@ׇ,b}:Pp #ad/ԧ9 AĆx?߳/J$ǟO6!Y:Ws~:^k18H))#O;uW.%[C!  "/UtyE} TśpG&2nfA'1jaKg6hM9ی`aĠY"{EZHyr@Vm7hUYW5NW('CmۧˌhQ뽸Iۅƶc9m~hcZzgEY tC2J[KRǁ׬7?A8:ZXvcQW^QUeF&^IߎSV7 4dXfoXàM^ޔE`s:vոs@:lfI4EƞOB.9F#KqHq-(coW$~)ޢIJ$3 2ȁ>zlgƒq$lgXњm.G1.a`D%tr8a efGgua`ߗP\ U]^', #p)Q]lUۢvAŁjv@XKL)u@CWQp JC : G98JMso6k-dKڢt7$؂!Bu-]%' E]5_w ,j8~Ty221?;o8 cD<_ŧn />w;ٛ|4GF~jXܑ;`um /43W;us`^[)+i]zЯт.5صA{,,BSL.OgDЫT{u4JZ8EZRڷd"4XDɴBsCO>bht{m]+rŚnJ-s!*1ye鵙b*jѾv--؟װCrd{*9i~tt?]t:ʜr:-;;]N/&Lendstream endobj 342 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 3049 >> stream xViXSg!rU@6%t:hqV** *f$ {lM. ȒHxY}vZujLc]z|jۙ?<<~#"HEljiSU ϣ '^^#_1z<@QH3DR򖦥d$'&eϘ6m)s^%SWƽ&-<>-5x[|R"!8-!x}`yIJap &$5-}YL]q'$%GW̟Lc0b-x r"H,!6SerbXE"f5DG1juyXʰ'ˈ_[KC8~k?Q '!àB&xKdƊ<VS \L/7YD,&rY l|ЛF=Ktkp&T$nHN @#@!6@gZQĞ;V.)MmXK@}uݷ2ZL(RC(0:"Y$s*1 固^ zBl4 hԁw_a4>(Kw'a hj^TX"ONڜ b αxѪΊn[wˎpU11mHMv W s5ہ()_ ް6Eg2zZB)U[ІEIWfd:-4ymwA#xZ)5loΜC0 ]h鞖6KxlЁ.pw84 }UBc\ٮ@uydfIK@ ֶA19X_*+EvGQ$,t X؊x*)@zgEڐJ2p)${jmLW?N;"=P&mwN /GK-ʖ-z%C1Eb0Z>A8k<'حn4Us}Bl4UE:>. uTmmȈJB4cEhOLmrUmzUbmԳOckMjA~^.v4o|ashq6:mY٤Z+ZZ16nPs Cncy1QcQ 2!רL}f<+]~3.v٨C/dg]0!>%ѧK$' {?1מ@ =Ib'IL *هV%KIQ'0u!]j$pt^ )5$t0'ZR֮X(?Q ESgч?FC &CX( Y8ztSX ".M3a@w<$IkN&0n|DBf;,dﻛ &3vh& Qbu7?1p IguJ-q3YYakwj׎-{_yJ]Jm`qm㴽N3(m2Êf~rM4E#㍠^8sE/34Ğr{ܢzr䨠͐Qճ|06j4M^+\󮖱(DufwWњ& 'S)JH Bn( ŋdkb37YsMD6 ' YՔnf(@+\۸AaЌf֞[w< ,+Pc0d(iL`L^e܃" 2*OX>Sb"b ْ*`P^iod&rA#dHY/sd8WqU}Xw:`\(3PLq%8VzC,uqӡ6A.I{/]J:Qe(Dpg MƆT4bB1v w]5 ANh+kzzzW~> |\HK `JdΘ]l!I$0e7IZGȅm$/3C7 "aIO;SgOأ)g3u"s)#yݓПz}EL}5Y(؅8{](Gif(D */EvxbѾwÄl6E__WV,kendstream endobj 343 0 obj << /Filter /FlateDecode /Length 3714 >> stream xZKoF|[sZpdVD8`cy$%[{Uݜ(FQQ/;r_GlgDY%ew; 6*U[FgoиIc&qpvU6e6]PJcsq_oEaC㉔2/ =]uڮW]\'B*-3씚6['l.0MVW3׹`e2&Mf5aJқ gy) QNYJ a#Oȅr!1'`tl_p !h%u,S=Fapʭ0!~6)Y2o$y%%nN[/VS=*El]ЉZsy]6L-eU|̄1nC7.URtÒ!;!)׭_3t`:4ԛw? sVgc#/,ZoC@3,Ϭ|x7$3p-rVή}X6w@D c[E c*(6D$ SA$a٪&Jaaqxr[f77ycx]-i&y64K^wbd1^GG{x=B_yuoiPz~Pfwm,u*eK-.&qQBpt$̜bV?&%9k}!:Y[2]k8rvH$s)Apc86JaeSǡ]0iڜm`- ؘ&lL{:ۛM5ORv"-vAQc_;VҹE04V_F"  {[-< k)rS61jWUwuz!" q @o#: 'g,WxKvkC =DtKN!PȏdC̛seAC~0ZцVL?Cx>~OM}"O*/Tn'Nsg~n"dy4pAAhM,0q g?%$?}Stb M~\-0 XA ]~3ݒ#s~ cߩ\Kx|$H#NOkaV΋\; 5tBL[@ ҌT Wi?_Qm]d{ﺺ}(G?c@3`Rr0Z^p;#JƮQ?R.$nTc 9l ݑ $Cs!9!P R݀ߎCQeG)yJ/.=|DpF;uBܜ$ٶ["䤣5 @sFl(fLRUڽ8V\|i{v|WZ N`UJ2UiA[a+\AHIAvU@%}EHfu˽kabߟ)!yy(5QFQ,\Txi#ׂt-AJL8&u:0Ĝ1*T^$ _Ú-=g3)!iՇْ-Dwe$cPHIOY w úEKV]Cy$GY k"-R5- I0AEjIp)ڝ֑twx.cO7X6YρU͎fnhL4;$[lMSR`Y^9:Tuskv[J墻J|$ބ6CcmY5&3ӏ>#i1KWcsj;K3Q za+r}v߳eZl/#]B&kWl:]jH9?~V){A;y~2|F}|_8n\=RW@\ 6D׽bZ{n1 9#CdXy>+{n#kqGEV]mZqsֽn;0endstream endobj 344 0 obj << /Filter /FlateDecode /Length 4438 >> stream x[Mwrk,fVy`j|5d!KL΢-Rۤ4Y4fS9^IB}ܺU~/ _rܿmӷΉṩ•>)|_YJm 'lLʢ)k%=KKd,eu7J) g%;Z|L\Xwdbgz},k8f+eY&hF8[T.٧R|*ua ~NꉰEɹcM2N%ׅSO]Y8 `Îg9~R*iZ;cValDPk$oaE@Mf%Hqge$[_ϛ? v4`@] hxYt*Qb2UMgq&VC MW󠍪boo{"i;%9BO,r¿k4.xcY%V{&y:V7i06脎)o)hǪO!@0&$8b1QV:&/TiS\&ۨa:y(',@s*$c GYYT *c! @,ߴ kCv=nuD)$ila~, : H^&J S0~CrKLD.Y* G6%1 %/YTZ@69?XUg>,p ) O?" X*[> ]`R팞'bJ*($@y@-d@Otj˻ 4Cz-1qc\ZZp5qZ4թ.kҢ%/QPԋa:, 0BR? _8-z[$ =@QŴPSyN.<5U'ǫ0(ÄnloېhnxZ۰8mnD,|Fgu7& @Fr~;^ 0:},{/ ` )&N$NJ/E_u<@8SX{$o7I69W Df~Xx)Kf/ަdY}8iUV4촹?Pnv  |_X+E:ՆSQzjMɨw{ dO9<":uk ,8;ϓȬ#pLC.Ai@D}YB"FŸA~>cjJcrsU'$Qyj"z@&U*[{P,E@=;T`IN23MjPIJxOtu{cb k4/) E>bAczp(0r3Rz+mWTsլvw=BuvB[;@>szBK\]$zLԠdE(K~J;Aa9pދ[ǬYZ"*nN +-b#e()+*fXW1;/HD6Fy̎w_PFʑVi_o roߖUŇ DZ~~%43SABj:˫A-CM 4>vg| 1G4ڨ3'VAI\k}3x;,aΘxۯ3/xA )[txӺQdM!8ߖشcMc_9tn;,T9cst7uv|'i!"p|i#l8 /1"u!r᭚ vPjFAe$i#/31 l)Wҟp<^HX]ݐhy\9 [9 t@h4em_Ooe?sr& (owP{3!r"Km2bu.67RE>~rtb\#}MRlNڭE xZrpxVz}F/ Oo?ɇ$d'0m>kk ow/zYݬx"̱ᖭ 6ז.wxԾh7f!U *~(^-?$^ؠ%[VRAozR" k ~ثt)d']ws ^"0|5`=8M!wu;{˞&!60(o?tMUT /QnԎtw#uO }aK7aNYrhcwTUDw+GU! tsgW<ޯ{eol8oD!Ar]0v-᧮+ӊ}@+o,0B<}G(orqU%f* =rFWnsS*e?bkxJ[iIw< N/R%-mU~N{<c(eGM݅|AOEM -CUu4=C{P{H Y8dDTgQ d9߁p*7gZ\l\Ψ>z{tY#@"xa2/@q2mq%ݵy<~L`;gEAx1ӏy/Dom4XM{畽y?D}Z׽;L endstream endobj 345 0 obj << /Filter /FlateDecode /Length 588 >> stream x]=n@{7}?6 lc7.I.@KC)>3#;EY`$?<,[]_͗ecnew8ve}6۰O߆ux}xkֻ~:_S{_mvyLXljUAuև>>Vu ڪX窠T=NCUP@(((*ժj,,,Q`ͪ&+   Pԁu "B"BAhd1 6&#dd42ؘF`c22M FI`51 &f#lb1}Gq |SRp*8] NKw)8.ߥTsUPϬu1;! F! 0F#bBAݍTl^FnxCACc=R)`䡱yh'F{r הo7M&\SI߄k7pM&})ߤo5M| הo7$FO7~l[[nZJ\F[lu[ 2endstream endobj 346 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 6238 >> stream xY\]Ȃ:K4BlQ@A}iKY:\:HU@ FX,W41h$`ߣrg{9w?SBްX%U]38ovH_ieϙ q '' 2_fa|;zȠsvK;Œ Bͽ}}|]|vplimί-OFEX{'|c&MdԖhۘX/}~>[}mw pt 3d+Wzs׭߰5KKnEͦRk96Uj;5rQ|ʅAFR.ʚMC-ܨRʝDNPf j Sv ]j%eO7)GQ,52Ĕ)GQ3(EqORP $j25JSI4(}*ufw[Q]~AG{τ6}?00L`hQD_L:S&O靺`G+?gv3}6N>~zɰ8Q|ɴLldr 3ftyo񬭳fu3|$ )~V asتgv2PrQfA4JDx" N;& F(Íb9B9)(I҆j$?*y_, iAu6)a?C0pQ s/d(D]'m8Fٍst,׆$Udu'%f¥= TkW['Q_`3 (+PeDW'W%sD) nF͒xgЌ:[V4`)5ƄHbA+dL"Q)4`_`z37JHT=oH~kmͦSѠ#ZڼHڇ:ɥ(01PA W_69Jہm+8@ p4ejL|\UBR`.}x*f[ `w)a:XZY9Vѣ' AXb=_sEƶ"QSCMv@Տ'%$Lvc&nڍ(H\!f鋙V#F#)xOʢ1TBZ/j󪐈./>?KJu:DgpHFBV*v|}-8?rYu#H.BavVp~r:u~Nc5sNQH]l@~Da Ǫ1ΦwC V?Y?S\)/os 0VwGuX.YR^8F]!]T26Xj&L"_vF 9huPahAБnQF/RF;1{Q݌{tM+-1C;iK x9P:<6@ 13>6ZjcxCv?z|6ƅxQ;h,t8n:ig ֣fT~sG p"~.8,"%^O rmIg>.G)1w0VK~B2&7PaTAqdz)ZU4"^<0"U^TPStĝWwWa|^ d| )^E o.iLh(Pi^^C~U^%*C^ (hIct.،&^/蚘q"2p>~W0plp.vك fOihX`pj 6PM]b5 ښPN`)x~i5A`l6=.4v1<3XC8/5JT PbcHM±cC_wl#Te G0T 6؍<m˜IqtV}ZcFR5h+LE"$}3I*b2B]rsERXI9dx|\/OP:{J}Av̄Ԝ .3I Vss$f4$y$ji=|o[۹` ?jѴF5 >̈́i bP˅ݪ `V9 sP{B3CI]9ũ-R$G"g$anܰ\B SrHsCy7KaRiTOQFqzEFDUU_Bq%QpZB#^SC~%Ƥn-ol+@G@^h!l|!cbsQi@tS1j@բ.k'6_<]F"$Ld'wp›,zƭw߹uf̟ @̀+e(,|vĂpdY~*WŇ`?]_ۆL;+ IVЍހi c&?Y\z,޵#- Y" _Xz~<OX4O0xҏ'Fz+weFI 'b:v 'ppv8ٔmLّ -G DT^xj=2G,`*a{_e[( {Wp;Ʉ>tJSS4:vh`G _;yb?$uߛbPC!A! G胖#unSGKcxiM$U+Nf\<[' &4&#),,::,)c7xNyV -&,w"xxub tVt]0^\Dg6tbM;y gnՖ3GJ@nTwd~u߶uan9'rrks내 [2x"&1iap7 &@^ߓm4!b`#p`"CQr~b>)bDU1io`{`tcI )t:Rh=V /UCi-I c! dׂZkcL`'LANTGx^lẖ+Ur7Iu>Lk詽e8ڞ<*~rZ<^ab-mnqm|Smf_0¿ $>RGN餋buc%S^0{<?{n/vƌF#ـ'픽O%0{֦.M̾F̶4L;=C>502mG|52. Տ WYD<,;@x4.yd3'GB-3=Ė,"Bl_sUB}=ä2ElC U,6q8f\"gn~jFIpݚU)͵Yi%\]W{orn"1-=3 MUO(9ҌhHQ@MpS:T9ĄP> Ytwu΁:ˢb!6n*oPmXy(꺫nIEHsr&"*R;C3^\زb5E-iTtbв﷓13mQ ~V  ح_#\rb .NKB9(VXAt}X9PͺR] Xz,Dum ~b3={Tз~1O@`DJ[w+bԖT%q]bP M!8VpZ?3kP:hK˒ plj(0WZ<)`/ET4=ni~tUhC<nәݟDp]˘wY-|s8i1GN\8ë*>kc뼚cV(>U{G38+%Ml@iДJ)K,@.VWþ>Cs5K£0b!)cy`ŋ}T$n#ѝbƭuz}w࣓Q$-EdT'laT=x볽!mA>`Έc]]k䓫a dœAAɝ_U>Uw7w>d/غ Yr`jN0$ԷԕrCE}wnv|KYOYXrT_]gee]ɗ#êjS*xoXTTRKyIe)7mU$e9OLJG2SDfʀ* PLM}E:ʮw1KQRtRHb@@rWU^U΢eyiH K8m1MPU\SVWV#_V6[e,(S c ojK IC]a1.μѳdڊJ'zOL {yr EXx%Q}ϰHLMBð@Lt:ɋ7gԧlGJFOJzB`6O8,W?[v+pg'S im6$l OzX Z}{n<̕Om_F9D,H[bwjYeos`NWi+ .N=ʁL~ZNqŋ]PQF=/ێ>͂ U\{UK'@qJ #:#1)Pm2rJ7oh*,lJj*5+}rPU8L8?_2ǟ `vM9a<k$L"/U[|-d>\Sd9 19(L$˪+>v^k!{ZrZa껄GF穾 z K]>rh"E?endstream endobj 347 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 484 >> stream xcd`ab`dd N+64O,,M f!CgnnC?܅ ~#_PYQ`d`` $-*ˋ3R|ˁ y I9i i ! A Az莂L@?SUe/>0K|o﷾3{i V[Cs/~7b"Dk\~sU> w5.@+J/|_}?,WG g/d;[%$$P>+{z{\^^endstream endobj 348 0 obj << /Filter /FlateDecode /Length 5002 >> stream x\Kqyξه]*Z k9=RDq9,mC;3T#1Rj HD|Xԕ\/vyR/.N>HzH].~z?TM黓8E.\xF0ӿXo:Tz~ZlKZ/W˺mL>ʹ~յs.WƘx~(˕=tiFl+u2wYA˺JlADnZz'6lsSw։WO.Qv_Ɲs Xi[%TӈדȿhMXV}{y]䟌Kb5Vas"͈oK`gg:Z<<ʁ}W8}_y!}``^-Pj[Ù;v$((Z !aF-nf5Yk5ϋϯxjyQONuf':iU1KjQ[LEm OC?ܾ2EPވrb&?;chw{͚g;xq5'xr~~zǓbXLziYENMWZh _+ ɭjR5OjPK_R#^\%>܄3%ӌ@u3 4C2KʳjxRi\0bSFl 3GQ! ~Da[Ӏƹ~喻)n*O>KqG 6; P蒈!*6?.ʉv׵o ߜrK gZ)}nYZtHv%6%Z[RxX#)Hz {Hd=<'+kH#Dk:ג;r#=,N}(_o;=Bh#G~dc5=ED௎x^Gx5ӛ2FYNm -P FqJ݇2joz<+K T D߼Y.'~ݞ(IzX!?W+t"1 sJ/ASݞ #Z%iT}qj{ٝګ̑gr}u _Uw(h?-ctI|$BE*4cxv3 ~Xow]]W{|B:=GYGA'3/J\p8 SJ\c:^^-0LRe$(Tؖ$;F9Ԙώ;Q L?lQ` &6jnĺeH֘r34.?2MvYz* CDiX`EǙ㠳G8A>fo qc!G7%|0.7?RlH@OFl 1v!gvf7Py'qĀL)Ƨ):J;bܝ(̛'C29 -/~)Hr mtR3H ιaAGЕ' 7m0[tLl^)ėUqUىj&$ ʞC#S/V>vyWJǧ#m3;b,F̖5t\sds2 wbfDdB 2NŒe#+ H@#2A!m {/λXDҀ$}z[) k$=IƸ>>FIYJmul»4AM&KaFC$@۶Fd nbɨRω{;m^e^FpeudMB:CϽkzJQ r ˵z(we.i~u%IGj| e:`CeQ ڿpp5A 9*a?S6q/8n=)QeC.ki$ưL˃m;D:Db-R3;^: &0QYnr~]~}Xƌ]ZU!8,fVhc(W}rb r(_ */%_Qh>6 | {-!Ybr/쒄|Jp}g5 9& xE=[|W9} 5XCI;r6y%^Ia(l@ǹr/g=e*/EN#0繶 ,WJhYx5mƋ}i*S4)M5)=b*tQywT}PPivnֶ,4x$c #]Xfl ec cźxkRÚ\Sy\{ST+q\AGGe)_6`z2L'+N2X+svGP &?aDY. ͝ã`2)dӎg{Aikxd͸DcՊXN=,Qncuv+=(H(,[@ut F{%&R M'1 r 8I+Xt "~zr|1G|&꓊n?3Џ7m}뿎2|SDuZjB,$W-hpD{&^=i5.Np> iA C9Cy;uu[]Pk?e y ЩGcWD*7 Eڐ?L/;>zWoXìs&Mq&۾Z0b!9^`uR`*%!V ٟaysŸɚ,bjX4|gkj\mJ-Y֮ ΤZTz:+@iXF^:7l*5dYȧglat*/o ̧-x5X@)@W9ɥVxUPMS)ZmeTAy-zn'Ex;yzxOq\d%ս)D}CpKc hjȍFY;bJHNeIzgmڂ&XPl7/Y,mQgjF|h觓D56שk^عu(~%^!F\w@xkL}e[S.EQ=̈˫J,;PĥEzh~\23Ԯ'Eܿ\-3 BD@ѶE>.-6@bN5ڠ,Qf{9dډuW/uäI꟦5o X;MF* +ͺ@r&Ǩ_|-=_O=%P5͙ N;P#K@)0TzJ}IkҊއEKC9)GMce'$gb*uǣ71 ЪB!҃}Y&5ddJ{t@Ԁ>!=Ӧjվ$bxp: @]À4|d=F7IMW: {;mzz}h. %ԾdMNU=$)m$/26D0~|D@`Fz~@vu0տ,uy)ŷ+gZQ#iboT$?;>7anlw<ۂ \Zr?k,^zLRS3޳aCJb~ݗ6z׀8ML2,rE 2<-ۿDt^y.@ 1;IJ}7C';x@#G~pM*|;MϷ@. 9)P&ԃR>DB" &Ӈ˵*^[A^ʭ<^Dkk2P9k2<ˠHC<Șԃ+9`oggj֟NM1~5, ԧ\ҟc?f'ܗЬ߭Z8kg3|9پ>ֻ~;Z'Si\X"I0 UOWŷ?,A߶dO/cQR;D}͆mWPX3Zޥai,ᄘ^i~[Lo=K.6X)Hȓƿ> stream x\s3v=x6|v%UUʩrbAJ"ژ;+Q_0`0KR҃_ucZu-[u/[m~:ct{q<j27Zʌ 0B߄;KώsJ 1S1B H\A쬋'k+1Mh"bIECA?"e/+g_E|\pGr\}*rӋo()6.˗4s¡ĶC$ Hʠ Hţu4;!GIt.ЇVxᬲ?0M( k{U~'J'e*Ussug$$Wϭ hȸ^=gW.Bi+egp%WB՚5y ƌߜA4g>ٲZ%KW,Bg]W6՞ DbR ̎Jb2ՔwK2_1=f>! 93Q= [=F4Z0JshdyRz3M9XIYӨKnTE>TOAI:j˽|-CW#"1`L҈\1{)?lx,Mncédt =NƊl^0x)iurRa g݆ p 'b8ŇYt\i<@ ^u|~W #gv%?-ڪ%iȝYqŴ¬4 V1 m5h$5%#5A2tB!ɴ4HH]+917Un(/%t&ҭI%dά崎bwĵV]mrH&)MQi4//nwS68q9SH;ie uU/&'ŌדFHi.sBV5lWؕp6U|J~+Sdrt N40ԡPwf'B:圚Әvh)j| |N-<]+Pjѷ1i rK#VyX? [I1<{ˬ%`+C6. \N[[ 2!V}+6R*ʖ|+g-㢘5SKZ֕ƶh^p!Oϧu׊`ߵ2KXY` S: ud]iL!N}3hVH*d@pޖcJLYO5۸j>O.! (ʼn A IiA1s\xX u@Ě3pre9LVQCGnWH0ډF&r.U4NGgcdDzJ=:n(M<*m+-V9}kmHɄSi^jEX &Wy)}ea4hr4 _;2+[b# Rܡ[eT`ߪ,A{(9y†ٖY2> \C(mL (BY&WOep/6q>#} 7AR*ZSzuuoڶ0-b6qWB bD5)G5Pvm$"\= *dWg9B_bB' Uq{{+n^O8 ~&tG  `]eNôDYG\`8rZps05|}ehX"u5Ǹ"FwT.dK<piŊ dcT 4ySQ)pn,{ϟMqj]ok0^su&j ^;0-"";IL8X-R؝jqSEi 9 %R@+h蕊۵މL!jC+>ijƴbkM\"!tͷ` 8S MpH;/ΜWR ~iL>x(gn-aj1suz)1F+[\;6ok$ÒvTTw.>ӌ1tT\'#w9%@D &ǐB0>v%Bzx:X#n9 Iƨbu{֭:BCmWRBTl;Eعe%u?;KJ^›  bEjeps.~Y߹{_V9dCtqu?ݗ9CB8)Pk; 3 U)]F%U/L@)1>֦F;LCmah3x5~Zf_ag _?Q<^ނkat);L#l5%Z?r /t8g@@Q7i#!=Kb Dg<36#3TcdWnIK+5?9^5k MC;\([1!{^$) ј>E+X") 'SiDc3l} Vx>7ÓIU;@Ch ơn{|5Lұdj,{6T;DS\ 7?M[pgqZ1l`ﳖ,~|' dF-$6k֤;->Jw ӲNdvoOaB]sր;Byo>@}K Ks5*, ZqFb–xؘO.H˛KsXŏ7nҔ|^5 @ zIżQZ3&0 %>}1;F9xͩ.J޹eݦ/cTwyqw K f/fȖk*o5k%2w"ݠ&^ƊDT BIQ!z 9]`OJ.UE/ Fq$lo4ZF h f[ .›tWAa6/;/" -WnGŹ SUp>o!mÞ<欓 *E kW[/!U{MCY_ R4F@ErEiZbOƼYx~ KU<b__ Y]'? EQM zM@' r m#bz__^Ԁsfy{)ze܎?h`NP9{zσ %Og1&/q yžeT\ʑrNE^LY#;k0|KsnY'ef3YYy_Y-!̥(g;U% ) /j A(/$wsʍ&u6`8;䁴'8xYaD:XD]\sX׺Hsh4v%L{-bdTZmL>c /_)-@y~!jǪgwٍ0Cеz }pwVX*p=*aK,5d.(ޘBG,S_2`L7B#Etbe,>ބUy"~+8MWa1qc~ACeS#u(Ʃ&(s_qD#~fO?rQVy2LZ{() o2xX0ߏ7te]爭_{WsꅋѽطkL;1IL!t'v] dzK90ÿ4Rށbɫ5/0[><7+_¿`GJU,B掠~'ީHj{\ÒfJu$ T3t;1 %#y_s߅D! +zC#_*DA-W=p:0Y¬vɒW+y[rT3̩is:)®պ}ئ%Lqi_0T2/,f>u}y$>)?Cendstream endobj 350 0 obj << /Filter /FlateDecode /Length 5220 >> stream x\Ks9r3kfG˅7a6۳3/8DRT{QwK;3T(T);sP|~HԇEײE/oϺه3Foſu-ߝ.la(:g Ffh ?-m;&Ms}N)'߰N Ut.}\I)ۮǎr%h>sXm~°5Âr-6~;wdcΚm>&c_%?]%#~J,lʡ sjZvRtg4Xl~ abu>&LqqŤj Ea~JM:H= xlnz{8YػC/ ~aTg~&#la0&}J%NhټKM]8:i8L(msq7q9vY3Я7WayKXs{}pSkmwҸF )mu6nAt `ߞEs Ԩ B9QBVd)@%3Y?vHv3qt &BqR{H͵jWs\@d(Ч ȖfI#}K4)4NpF䪰vɋ{m*`+O4Y-vEh+ q@=S]AFh ϞEJ\*vؕ @y# Nް c]}hn]\kn1̊ z=LGbECO՛Lzp &u Sg-ttִ?ioʮޛn ?7IWMj> TafB_MDhڥ@iUak(7UrKT-qoπ mٟnwl 0D]XQ<:Qd3@ze?th R u)d'bν y]wfBᛸM)Q  D1RLsΙvSqY&2F`K}~/zG(X`2k~ AD(\sbܫDF}(p>jOrqط(>(𦝆0k /[ >`HD\)7( /Gn8H"[ŀt۲\B@/M8ʣ8Z)Yt #oR ^@OfbBbZ ZՌ7}E`"dލTɸX)?34Z#\j@OC; DZ6hyW1 Zny,B:#=瀷c!e4!@zB$|eD)2R#~X(<_ϙ!jA ?>SHۣa >ԱoB*,P|0&)8 2/FЀߢ/2T!1BXAthkKw*5" *'%Dtпau:_ u2d䷛̗ o.PG;͋{՟̠яLj0 ..pm E}/!4@SY|oQ;)1x hbLMLS;҂`4Q3kTGny^E%5d0}4उy-uq_c,ݴ_0 ^4C7nD<`;H}3ltϦgqc<]?e 䬖A2UC3<ѯQA;{UsZQ:*"v2]4LM'Vp d0\uBZ@`.OKz$~J{t*dB3#Ok ֦/+XpBA((W|ljyGz:Ϋݺ_ZZ* -K| ,KTH|{>abE)|v1AH!GXxs.{1`7Dx+`/Q"8hc1,eȕ£ϴ^<$@xt^ëp5Is|T=/oREUh.v<*b- IËPERPL:5(Q_eqTi+ +R%C%!5Θ}*No,&* ;>0F"lNp`=cEnV1(E3 ĺӣZ>,]=L^D!$-s-h%k )1h̼)侶Kw%UVhJm~)@UW, Z%Apx)܉–L:JB⯙cfRf-0 lӤծabǩx~6)UV%GL]{x4n'dle 9ETZDWak{*X4` 9 v ]t~Ҽ g@"TInJ h5; 3`@f%UO3-xt t.%_Pt۪FFc15Sqi1V)+.| ,k]KG'fl:02" `a&5y~ wϠRΰ7J]ѧ |p 8_R^<\[1AG-k>RO_n=]u<0:pgꦀ\+l\ahcLƘchR,rG+OZQHQgKrOiAnHp]1_>*krrW;.xP9Z;5s_̉Y4mbZaL5Ʋe|)ലmR5DaU7rSSҳ!+?Uy9eǹlQ !&eܨWgP/˿K%@rf};!JM(77Jm@cP][xgJ, ;rlt1L Zi,zDVxY$Ә#bdzY,v-/s5T2kIꄒ+Pyu, b3c!Qɍ.^q%?[& WQ OaWGR2y^~HzoC4T)u~CZ]Q_+ !K 7?HDI D@Hd~pX_L!m=r$"rxXK=;!Э]\DZ:+Ms;} 5MpMO7_:ov۹SbB"Ml܇^EŖ*V4^͢0: φ!'%SHR[\}y-ZC(%Fy&_Nyw&~}88dViVSz8gqpRZ)fc7'qEHj#ߍ_|o`1t rRd71tzI9E:Lr\0ݑkdla@NZѺ?l#^.o6GbIϏvj͢k %\RI׿W_Dwq~}??Yxt??"_*l ∶y"f_`ƹX:_bZF/JCu8= =$,g 73_`0Yu`C75qܟ<׬f:"yTJPed$0/S@c$_8Thx]jTݣ&pߦ&ӯQ+,ThM>1V2};Āx.9#~%bMzSr0Sݎ@:?[endstream endobj 351 0 obj << /Filter /FlateDecode /Length 5582 >> stream x\[uv Ư~SWiubcm뉽iDjfsYU]MΌ$Ѓ8du];] _m/]///[u-._]G؂s -F ^laXJ G^4 מɠ$%*1ܬg!0iw(_$X+ܛvn";agh8tRz}]4q;^* Ϫ c~bewB M*]8d~d{&#P:JEh'NFMssS"i4,P ^nA6+7o?X˛@'H ֤^)+C߭5]ķ^,$?L">W]aQbgio'$M__^Cfr "Tfij TC/?%$؞$/#PJ$g0~m'j;=~F#=C͕\M%8lGUdGL֫;tEҩ@K5W `SLľ ߌ0`;dZ>OM`  <0zM@kݙۊ'G9P}x>z&QxQC7MO! : >[XYemY˚A>0!C dL3 x uSi~!ck0& 4O,wŦ?8%9Ƒ  Q&s:*7 >]_XAmi)Qf" HNƶ/Y(7T4{-n6>ieAQ#O  !>0%Y2X/9cF`!&Q~B C:VC[&Gc]\G$JV GjJlU.d:MDWpчX O 3 -.|BOX``+QH H&W"*TSO6uʜ̵Fwۅ!LfU-9#A~KhAyބY30)#~(r,@MG5H!2V (6˂lqss ?ŏ >j1c.[ b@|ǷUְtT2i؂@ (WH8kj%1pQ&L"#>7WQL !6֩3(i69/R($^ Y]eZT+Ӭ8ȟ@<Zq{`'1׮ETc!ǵThhf,1F77amkەJQ!t S.)@$!qWaJT\)a J-DbSddKP˕tX @6d Bŧjj-/lFWj` e,px\nuRD2g4~RYM.6esqeM5Mk j)⧒ງyǐ.eY"쩕nAnuZ*TGT&ds3̸VE-l pXl1}W4RZ(V ocdtҪi򰇳c7{,M`Yd}5.D"^=໚C$ ;ĿR)i5V;mQCP#0Q? ;. &p#Y~`mg6[LAEBY@s ~$8MiAu %Gp)|~X,9SD* :Cր1lS_~1 |(JD̀cBWO\槖RaQsعAQ#2y' }ˢ2 j$%I tJqM#Qr:Uh:3Qj JX?SjNh2F1HއIP4/D's5bƜޜY$>;ʲY>DO7z.f@&lJ4PT O(eԓ,KefxF#p@ؤd?ٌAhd(poqHͺyaǙd3c3&5'05<)+屌]J` M|shZ) `̥+E/+T_ ڈ0ꔴ"!hwt Ko4XY䕗;ӦU:цLIH0IGM%Q;ɥ+0*f,~7c FQ H0)̜ m}bcz}쯛MF?HR 9;Mv&Ϲf/l_=Yz3Jhs %Vk4+b?9L6 ab X .`d a;w!]kp P]2< x.E l~ŁPHb?r>f&RW$0cA^,f~\jԄ*B";tK6/!'eOg;w!![g _'ݞO[O2Я7>G3/ϕXDl%Nsߨ[g!UnŌӺ8Ul-R:m>StH+ FF&wX{ 3DTpv~:׈e5k)&ϱlU*!h6I^T*qE5=ff2S dwLzeeZ72 F,q{?! 0[" 6u'ZI$Ӕ,4v떀 _1a3WEAffz}>g}'b6M,EEVzlD&b4ԀiPsd+?@`NtMH&$d o 3׺dkgS b^̤2,J9.\30 {ukeNvgn.tShDQeÙ` $V:O4D=] q:/4)VVmե)⿣($׻aKx;K޾vKɬ<vi"a^ @$FxUiY vQn`0q C&'L 4go A:L=01>LsoNǀ갔5Nd0gF9OQKnܙUQ9]תڸ;0/L$Ok0)KV>^jYIQje 0 9Q'3.;LNYu %=E oNgÍYb% xQAf4bȑי xo5_zRuQtR{;^ xn 6>ŸK `iv" R`?:8?6nen#0بQcꁠ7F3?`t!/-M foF$m&V[A \90(AND1x#zOD}_i)RdΆDd1 g"ٽ(gHSh) Gl$l˔1=}i/iciƚ\oLjn_+L W;FdD:Wa&յ!=2&7(<$#0̑@ߖ[i\3L;/ JF^5x.KLoV4%ȫ_$L:Ô ^dOB< ,H>μS|:|H׆1rV5U K<;W] XE.MUr1T؊|4>6)?CXôS{׻8[O}p lzhhەFhs]g޹ӈg@<$UuBr<'HyM=lRo^cfuP1KCIþ$ڙ|s3u {GA H'YA0~7u!,M+@Ԝs]ỦG[sa<.]9L؊&2!QfMÐcZOV(iÐn\3o SdE F7 ,!n Ct[뤼:xRH YZ hm!y2^T )-!Q& mh}R}SL!lnՉSs"#C o ǕF8 yhxphx,.`tФ2$^8޹b4HĥƤHH͘ D0^ЛPC?=LiuTIKJ' nlh\I\p`R"+O\P D\bY|y$C<:Q@ b&K :6KW ?Cd"7JDv.Emq\!",&vc>kl  '/Ot~d0mg 1@P2*3mOl69ǡ1lHuꄧp4F|PA!^=*\gh:2dzKwI&#rwrMZ>ؠuUȮjϗ'w<9u`ݿF,@`!>r-.!)נ5]G9_~dˍХ!|sD} Mj S"~Qඨ2_zd"?P& .UqRDUdL<ХU7*AY@_2}hO7Nf#]St/ΥϏfwZ8;pOπ6zS36g/ʔF*4=YpOO9Q\qZcZT> stream x}VyPwaf4!gbB<⚘Jֈ`EQDdc8r [dDPcGhCLF4k[nH*fwu~'NL&Zʰ5&yqքٳWӓbR?0IxR$%E΄gwn#j܄ܸMizM9::*+5Б\X6@jYD =n@֢7PjQDLĝdoHy. Hj.P>Ek׬N:|$:lk9߹]#f`)d'uRN8χf4 P89y 𸎴#R#B7y](Ra;uyO >9HKOˍfc+܁CE2&4ka_ `7/_6Ǻ ]̴ ߴuq%R[XiDX$^Cћ V@oS > f%yOmGt0Tl)~X,DAWQ2v|K ,ФZLdww75G>K:q?68܀N dmR/QtVeBavqB.uJFPซ-eCzt&DKcz7kjf7ؐw4I)#$)3JcC[3!")[tu)Wa?r8VCؤyJ\x69wHg>)|ޡhEQʽY'J;yGg)!c96f7װ^x8MѴ v@*z`uڪOA8þ@&Qq+MpL\Q v~#ٹmU*^T\ڬY3Så{a9zB_ 㶬<-SP ҟ̎ꇼT6ou`wo4n YEoK/oj.xlsiV?|rJ /su}% z7|5Rel48ߐ ˠ,^շUrH $":,Y,)zdS=%KыRl y4@Iv &vU{͎uc:'XhJ:*.B6墚fId+ضLT]_oRjxX6:l(URo*((6k*PaDnJFƍaPb9; |s`'7N7/n2_Td1RǰETC~ {%?mTqȏ mbEj"΢1upZrK+}+u֛FY9f!bG/$ ht [!n6.D1*=#[NVQU4?'(V\eln-ee5W𥖞ҽ%*+E\endstream endobj 354 0 obj << /Filter /FlateDecode /Length 554 >> stream x]=n@{7cq HrZ*L \)R#xw2or~p:ǥ_>zWp> stream xY \S^w6rijڪuպV-Z7(*, l [H@bVV5>kk]m_kO"}m7w̙s T~ȕ^^{"ׅ}}ڔA!q'xB?~c4N)!0ƬqG9h/<Ƚ ѻBBcݦO6c\ nyĄr ܳsTU2mBAnn>A֯[v{{un%QKcbWy%W&ع*huwȚеFL/; Nx-SN{P72zZKQ>zUʗHQFmj ZB-^QӨ j:A͠<7JʋMX9JH8H=O(5zM Q!Pj!5N9QΔ;՟:sxo~c?W t31O 6!o99t#<.YN+x\6}\Fy%ɝpr󟈶_yШ|FU9/6Vm ?f%CZ=Zg4 rJɰ/J3a$ArzZI!T2UZjz:J.}`h04J ʡYalH@9%PC0A9 B6E_cqa1l䒟aW\5;…iᏸ?X?I&~`8~_`lUO>g4br3cvƂXy/49(5=1Ί`ohb5zo\h2otfbFRB_^Fsb}u$2Uj =1zO]`B"|tH@ Q964W-і An^Oΰ/S( #` jӺ? *F([Ê&pEU Y6]LMJT$sX'˧>݄c聐CKw5Z*4ڟTJ"n7ȅբdx

D奂i$f*L/4;bAKEK䳰Њ GiXW6QW\ֆA xWdku> aM=XĮ7 ʏ*֮;jуw-M n@qf`Mt≍bSxXXԡ+#fk(hZl(N\hvmR 4RWVӕPHORng ݌(fxM\3BWNah@.l/?&GhIra'm`\+n*gH-=*H R9QّEN’_SE#ۣ~W_|ČF:˲T Z&U$Kbx*xin3yQ6I&(,m=r*t8E.ӮׄY->G$n,ԕ+Ba7Dwj,,I}5n;4 ']ce vƓ^K&ҹ7zBc0>k&] 7(hMĜO7t<ږ{wJfU@ C(%"/0{L)~ ,fQXB ,&=ӵ>V9Uhj (>vBLw أ'ϑq(N?ކMI>!< GrבR jL3B TGޯaRDA$#ϭ!G%b~)!h]ёĿ5h~dUZFk~䎾zX j7;|EuRie*C &s݋ +LZWfK!ZXS5;o53bAaPp.ڎ/˰ ^buDY>rzSvkVNffyVafIO-\/bnc$/Y eldXEuvȖx/BmF@&& i"/m6k:E6h67zI84FH텏g!$q?vV@5!'ᙂ4[o 쁁_h8w<e@g4#sŪW fˬFD#nfЕ;E@o 4I> &E=l5\_Y$Zlufy{ͲGy-! 7Bf|m>;|W]u7.&D.yPYe M:QHIh}gu':McXg*BMSDK윝m* pɥ"^$h;Nc8cJIԈti+$Ah*bEj\w"}s @"YBBZ"GP [\B +h]IO^BW}d;N7'#냊+v ʪHjڦz]JzFEl:%;_K:3b,2uv%{@TFkຼo,_v^Lpm 96WmW's`$Ba"NWz5!<`bh1FܾLJkFʡPeJ3Қl2:8.,~ i7.ڛA7D&G|}M0 ~e _$\@>ddƣ_i|Lmۛik!4{0HgIyZm=iL/i! C$n!NXW u QqHudi\AMe'_tsKź^ PT{RnG~XKN )q򮖲q]41O#̘Q#{Ipi *zˠE܁V棳hžK'[ӕ1"`[JNEstn0idiI AfI8.~O.ـs쉎mEU(܉\|oF:tӻCJ;'P_s3WG2XA_iGԭ]?᥂ѐ0 ,7ut*F^BSSO/Hˮ 8`h@Z Ex^Mҥ-DOV_;_U+91_&q'S; P@FSDB ֲ̑1#mř&f FĊ(" 6CqUr^FN&S睵s`^.YxpKjveKlBN99#֨0pu2& BC# ?:'ά";i-a ُحkڤ9iJ6E[ f`m1kl*᠉&8,Hy뭔E *UF}~J_'.k[s.D\l+֍֫j] >:*'wg}EC~.lM`5|#ԕsRq.U䑟]+sW%' I xJNƧ&%jA\"+D"__esջW6Yhl G"A $oM~00Qx2ddҿi&ԡ#Q`hW Tyl܎8I Y#ibyiJ=8|{ȔV\5%bBo"O\fs_/*Rq/ck_،FW)gedh,6lnJ;:\Lѫ֣}WQ-Wא kƖP,ʷ M 3Bb [lw(]&CD~Z8Y@@2t%Zk{7HʠhhɊژ$IJғKHO~Ύ ;*ǣ:L~!VN3ѫ8;}kGB}_v]F%I&rlng8^9vQPp|dV YxX[Ѡj4a7Icz> stream x]An0E`p &dѪj{cL"YiYz)Η4ny3m0Nc)u1n1’װ|}/)i-Rq(K~*Eq} 1auNa,M괯GA4kKQ\8 z2@;G9R 4@+SMJSD-G@ϐ2F 1E@ϐBL{%Z#o̵e1SslRh vsTBX jHTU΂] h2@ Ӱ8m=}SǺic;]K)u2/*endstream endobj 357 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 3180 >> stream xV TW֮XD-TDTDј(Q( E Ⱦ*-kӗ.dGFA@ QOodhFWd 8swo{~-G.q1Av˖D%Xܛz[BTDM5f{.J qa˖XL:JGɒ"A[l]lxc:.V3$<(:T* !CkB׆mA|{+`oZ_oE6ƒp$ gb B|ByM' ’"Dn! 9aD|H#f%MpKC _șG)Rj#HLFS[o,5u%@37B\|AyB$L.;!RB=#7rhˊ$3M"+ tIVR_Ty38Wor [MB. Ehނx \L?] ѬYUACxzC 4O< Hz(|nB,(ҽIs#tGt{cs`6f*JDl/ @RJ:WuK-)~r(UB)ˁ*)K_[Сۿטu\EWݜ}:уtK,G _HXϮ#>@9Fڶ_Z]W"95X]%G1#C%ށFF\z h|fllgЩ ;{GthUs%bW÷W U `qV]w_@ #c vPѤXT\; ܳeǹ2Kۧ.5:T-WYHBr!-|]m[q*ZUVOakM{Y`Q!Ʉ͊WRb=G-ydf~Xs}3f3ks5ݐӱKP3cygPbeq4!TH5#* =)2z:|+{xGi|3>KJSuܠ>קh՞̞fIʁUʋ CeW673 4+rめz5(JmV7aAM^N 8|ឣ,sN4ag.=H컿؏m.{D I,}e^½(=Gqυȓ3ۓZbcbc[[Z|MlC4Ԙp^T/ w~89y*'S_xorwEy"!. uN`C<+ka RPa7|úŴ_rwC>2RUZUpTA>‰4"t`t80}vd\i:96ùN/)'P*r w4Ac~M6 I01ņESKS!Nlf(; dFp?A-,fQ+_//dg8T x.2Bnr<l4f;,U^ۄۘX/ y_[gxJJrL):u?C|~pMfy"W4{=@(1] ^8P~fsxUPEe1H +&aM QfE/l~oE%1^W)F ['$A 7Q6XˠNAޯ2W_d᷂fQ093d) u^A ;m65ԮoWd041(VUӰ6?βq]M~_>ʯsp*F c֕R/E]q`.STHd W@̿s#9vLT ] V˫͏2nI*2 N?BM G©%blSM&A=S' S,0$pdI5,ʃl&2Z~} $mKrDKޅ~?ۍOe{B*YR8 Hd-uiЀb4"Ѹ1c`b&ƚUJURRML}leٽe&oۃտendstream endobj 358 0 obj << /Filter /FlateDecode /Length 369 >> stream x]N0DA& \8Fi{Rҋǻcg7Ot7o)K=NR4WͶ|%/_>RPDzyNۡ|ysYT|?^yնn=Mjl]٥HDP%v k\ c.LDs hDTTkV FUnKع""Dň3odc9ќ`L2'I$3&qq'^ߐהِ٘הِ٘ה٘עKH;Vs _fHdJeLeK^q N}|]2_45N4i]N OP ӻendstream endobj 359 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 4881 >> stream xXy|T>CxdQ<'jAh\ʦ#,d!$2}933Lf'dvX-Z ~Oz{ hmgΜ}yy>)["ܝ5kU9*vg%xL4,xJ!}:`LQ)0jIKǣ[!XT: *&fQI,W,ٙ3gO_L۩J[8#mifVa0?-8;m錌io(%i;s2w禕䦭ِvkVZvi3jҼLYf,/GIēo,.XP2ٹ+V_pݜy 9i!c=1;f(9me7RRlfjWU$-nj/t1@zP4:ʹ-A# anA&QЁҕwNprV.f|VIZ@)Uy\!-(jeR5|=? D4@$A0?) $ }.cFc_;N,9JuJ=i4C3^nJ嬅x]=] ȉ#WܒPKvP!"%E];.qpzǞ!*Uv90?81MMW Air|ͭH^LƑj#/ԇ^6▼@"=i~,?O\ ho{\\>6x[j%]( y+VrhdAJa~aA^)D%NYU*NgJ#ySɸvpCw7O7l-f2>^2,kƦ)Yl5m7Z G_E易=ѯ? chQWaۆ7()][{ N4Uہ&]ᖣ 1 M5: %+J ^;I]L]t ND ~Z"ٽ~i V͋ v$|9_KqF)C=&e{n]Qw vg;K%RR%hB.'6[O+Rnm`(}K# -FOCFu5S3Rɪ*u>LOT}9>{_U|`J;%vتj2=޹Q_݂:U-qyU~U7Q/ ApާCmԑ {6>O6#8[gGaآs3`e/uE.Ax#كA:/u *TV` >zѣ6 |dBza.3K5kVۍ4`11`ˌ!?¡GT&9.̰wHhŝ):SZ.+Vh= I7HlD3c}}Wu!+u;DECEcVnJ1W_lxm H69 &1' }Q(,3HJ: *B>{іJ^)k4?x+T6N ^$O"K]YA妍rϟԖ@]}~ֹ%P]K!In$e!],w$>U:0e"7XQl'z͜dZT++4~~zh-{4~7_+*~>O2)ђ06y - R\"OOo.õ@۴qƒ}[;x =KD\Αk@|Qw $aIEf̆B8ػ$eR"=CoO~# <8!׳upÅ qT wB:݌ujvIWF:bhUxd {7=JQ y\T,)ME#ծӘv[dĘ r'(N)g UT_U#+-*#x[>(xsKk@W_n I'+w[: p?irfa90Eү"Ք ,q=_\+.)Www m*PPE]iT2$GڼJzt}R,Q9Uc<%^>mC Nt9*INՎlռcq;uWa= @4.I;$J=%f?qIpW`q[ƃyS- ~a LF`h\vi eMGs ofoI Y|H˴JbA W5~-bo^)ö[MJ;lv]2g}I?d@ )6:xɕX(ۀ{_ vG]qW b {o>l7;uqXGuof٠24Xn+j%1GB]_NOfB`p?(0Ξ|7뭶暞x(xvK_K8c ˛,^^ghd@DSj4>ob-Y;I@LJ%Ҭޚ2pońAR./Woq=l鬽gE|#攨5ik|@)K":` 9 x~=c ;dr݃'QDHѨ7-3A2[-` _JۃnB{/ohI,mw..PK.X։Lz%oyAflaDRc Q+EɔfP;êk/ EQ~-7뽿6_p16 wí=XB4bz0#*R ?f8 8/⟘~Tx݇<~f/XryǛq>zt#sa%N 4ٝ:е꼔؜`DT WMoS>COgP/QE|0z9YjiCTX(o?(/=g<_y5SK, è(&IfQ¨1'a18F5:;q=N6aG&&endstream endobj 360 0 obj << /Filter /FlateDecode /Length 322 >> stream x]An@ E0n$MɢU0Em.#=̌S.4nyS|~X^)+K[d];7->bSoJsMU&iA2=uWJ֔x/:'^> stream xW tSպ>ih<@-7F"tuz(CB6IӦifI3 !m*TADpx<]WSOzzoe%k${os QÙƍ3s.y61ki~0˓c\ku4p!f©]{|駠D4/UhK9/\gşK3o؛WT&ˉ(a EeaNSEY2㋲e߾umo:waF~-KAU%u"+eemNݖWlŋ+'?LM"J!ۉyNb51XK#"6 1&r f<FNFK K& E}{`9<;44y1Sbsb`JԉS Q('Pr(3b} m3ZԊߍfgSTFťT7J3TFKU 4@*=-a$jo Cmve\ZZr`> .@H[-hv2Y Ec`rg |ƪU*#%Z/ HTn}GpԻfYRrV!=k'X/JU%jZD;@:R}&,f*uB08)oqVLS(tؑ@6HRedZ :PNJG^ v`wc1$| ס/ߔYPHITU; xޡ@8"Ad-dl.ٞ;`2V8b^wtȓt:'鿈a]On8.p}E2F Y}˛nooOVnkfSAg׸MK}㠗7J0V'%HLy#toyn`Қ%D93$OK/PevG 8Tg]hcq3vm7{ԺlPum#oȎܪ#!4qEz"c'ΐO Rj͓*@Z:Lutj0fǩLU@B*oCiD^SH*wH4`V</ K[6YTl0kprZS(X}ѭPJ#UR,] ܙv9a{nU%~JlHAHJ=Fg Z6f<P$3ўUAg2zةe*mZ}MP! }FmU Z,eK @JPZcoxN*腼^4 ́ sWhӫ|66i^9& u&V\DΩΣý῅8a">}|YFOȁ48xtJAF㚶p 60~<.HxI+u`+,΀Շ wǹz,@60~K#Z{ mHIQQIܡqU虢]v;R3;CGs 8-e0MIPg)SPzFz7M]7)wiOe3c7R`TbFHwnr«o»TpE ܁=]=y.u3TNh P g:\Gmu9^#\gN>ﰞ?yfG6}~1v%( -ڄ,yȠx]({He uůx@_Wb ܷq>D{A c˺c TD%E%`+K5fݯoqwR #ϕ~vtReB|dPi31~[fWRX,:$<{Eȭ9#B~=f9> ZI*Τ7j@GjAEϵ{3@`lٸFuq䩰ky&5Sz]UP,γlc 7f#?`f2Wap56GA;_"wuRH-y]c؛hƆDNn[G{ժZHnQ-I-*qcEj?k]l?X*|@wuFCu!7GЛTFI[#{h xC]ƻȲ#}$#7'u7SO^O4Hm[=L T)fcu;-n=4|$y`iH'J ؘM mws)Ĩ Μ'@\ΗEOD%9ҶvlbdChi&j1zp9+ #f(q.GZ X^-o8ӄ{7Pl`ǷTU^^*>~8# V*Nx!77Ǐ@*Ų_ fq(Yߙ;Ή#7ܑI%LFe PWBӠtlj QE7ĘRKK,w=񙸝>|UuÖw>WlhI/}Rz'==v>|~8 -&]gwa {e[Jb ;]vCoѓhjFl>[;o @edZOeӖ\> stream x]M  K qѦi{ ꢷ/?ix$̛kskBO i iZ>N5JGXsrHCW9"|ųIM=N*Hւv("`)J$쫀%$EҬklRzvI)S7A /_endstream endobj 363 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 685 >> stream x}RMLAP+"B!4A~Դnq -Vh`&-N.iHSx0޼q*n%7_&@ ӜsXj:iw2X_!6.H-CjǢʼn38\CMvvL9M(3S;rPjڎe.iDDscJ]&%&9čHNң 2'K75?r0Z'~?d:2_X Q@-/, (TAɤ?zX/ٹPIyG4+ yyD)_wbۜPU6TFzԧz'M"x$YQwbt<OE#U8endstream endobj 364 0 obj << /Filter /FlateDecode /Length 279 >> stream x]1n0 EwB7lIu \%ClӲ73/i*|[%iʹAZuU}|Of<>\t}) Z:3U~T֢{R{T+ؐ T ؑ "i\LNrD*T֢=^!^yxb0oЙ`*U`R6; 鐨dr LiaK5K_Xendstream endobj 365 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 2325 >> stream xeU TT>9G@3LI|5iW^hZJ.E&3v%'&eB gUTKT⶧5ɪUAkTk0Y5]R'6G6F>BbKE_XEq˞af]Dg?3fϡ(j 5IEQs)|)?JIR<5r)Oʋ4LPwdjg%.Ct.D,f1?il'wʱ;ewrG$*PՕRD >jI+ߛ~$ҺC p0|ݫ6 !}78y_Vh{ML^N=h )8S /.IڶzGX}AAaVTЗBaVJZV,Ma fI\Rژ+uš|f rYrQ >3):=lTȀT[^<(ҽ/ ^^&k1vfnC6lcg|ߦ|crE8 MVfȕbEAXԨ${wJlx.9XUXm?T+-8?mm<6h]Ӆg%ҧ ;vLJr?N"=U) \vsg3C*C+“-@HOpúܡ1 l3+%)]8K6x<';pFWNY]%d^|_5k{.e|RD$e=5gJ;qrHFcٓɒҖoZ(aO:od򡸾Xa+Vv=yG׷~-*4!+$}4EA4N 6Q3Yt%u=48$naK9 E{~̓KÈ+//UiAK) C 9]f\CNT\xb7Ý&yE3?Wy9R|t,/ZLKc6:W-m@ISeM_g=|ĊX -;mU7˝Қ ΖCs.##p*z޽*AF.Cs*H5 Ҍ*"+ :F'DnjPcV }Ox,z1*!qxg @r{;1od0T璏7f3rQ;6pYycA. LO>7T?rdžJQ]~!V˛c֥Kܗ鍙osl!?avxgqXi*o1> 9F&R#d^} H@(i$P8rG5L6ޝ YY*8$`~~݇_K<)(0)Z'DZn,Ȗv)Ȗn]٭c?gZ@ NYLh/킖 @ 6@T?"aij¾%瞂~:pg!)vSH嶜Qpn? \|mpX +~Kd]$&@WwHO2zcmx>`]QBw: 92+5ʹ 7y}uǾ*cEwNôTQU}> stream x]n! @w?8pH+E^%Cp!rŦ۲=ǜ6=5|ҦcKzL甕o| @_hEa]Z|LjO&`ZycfԎ(uB P0M'Bkm\oXw(s s>&yǮ:jɅx{IJ lendstream endobj 367 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1030 >> stream x}mL[Uϥt&EY{cSefٲ˜ 1d]JCi:K_om|WOZ@{<@ڕ0D><p\4; endstream endobj 368 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 864 >> stream xmmLuZ[-Evw&{1 e1(q ,@k +G;(c~'4 b ӡo41Y2hL/^dƘ~pL8[--&M\_RtB ?Z5Uxc{](G4qLC}+y:欩w],cr1gZV?,ss0=fna8 a62 Ls۝^_E`Fo oњz4;wsp,RbP'JA˯67eFp%J+U!MN.7@XR J%9\ KVjސ I1t,ERJXpD ^pLD.{!ҨjJ3\Zχ=4E"(5^qy1%  }#-AOk^,P( 8*G:ՠ g~3kGC :k\n /2+T.kr7.C\YX(|$ dBL { [ߨ\nu<ߥT)OC"L!gsׁ`=`"/~l6>wp퇛VQ|JfctҩKѩʤ ]M{0 [ :Gթ<XhXpCzN\-(F;JERW:@lhǸfb" $O2,状{ԲisT5*_uQFBH>R8uTOX!(ˡLڝj,,GQ9>a?Bendstream endobj 369 0 obj << /Filter /FlateDecode /Length 215 >> stream x]=0 "7hS* , \ Mm4 e00(_bwf]/0k qكj?$+Gw0)!?HCvk#Zq6%0৲JvK+(rLq;ƊƊ]tm[+"wø"š>i#oG2Uggِl~KLS&7!p1endstream endobj 370 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1985 >> stream xuU}PSW7 IDwVlIv]PѪ-[QaX CAK0/SWnP+Wv:ZujvSS 7.s~w{p Gyv}Tђ&ϒ>ޜ$Svΐ#/Bv@Q otu> f\&WƉ\6"%w19!_1W]YRD+s7d`~fF>!)ŘH&mmZI6fc\YsuFsRzZR%"GHH5 QHmh"i 0ˀ}@SFBwiSh-cK=J^Ga`̀t+f7&z%.eU*QНHEe6 @+Ih35WAU]VDph{nMg0ăԬ!+'714{)#HL$b8naC"%zhV2r0~YB_|F^fB77d H#irPV7hk|?\e~P!EG-13o)4)U+T}E |6Gt6]OוЛAie}O؄\;V 5_D#D{qfы*8b~f[վM]QS\nYK: A Q)nqTuujjZw7ʧ5{7}k54Z۬;Cf):t@4^H&A_:UD];ćJ(ÍoK|F"5EZf8{DK'f;t^F+>)ٰ̚ hy"o ]WBUاojhnM5ӫ#Aun H=zB+|/C^xj0ۋ%=fi^m>4Cɻo#2)k+H"{NU E.0P(Yco+I\Yb7Qɉ3H'1B&H{jtn[k 8|0D}s2qP̬`-{IA`)j2&.`iy{IL`+?mCMg3_147Ce&` 4FX4}jaX8,ԽRnuB,XwV%K !D"WASwI&НX,L/mil:"*[O-[)T.lLv4aO9y!&`MAٽ/7k)HSf4WȝT&'ߖ%7_@p.:Uu c?Kђ矴|O <N`g QҖè)gfI(X(r^zt4q\P, A=lendstream endobj 373 0 obj << /Filter /FlateDecode /Length 184 >> stream x]A EX6vMa!Eo_@?Ƀ?3H?\k"& "ƪ[> stream x]_HQL]ڜl(LkŦ27-ð6i~1s 4qfe(a-+)iOnP 륗缜9`1A,5UP*'t8τfzl; yLcMlsBQCPn$ zJE]1Ko11q2_H] "U]i(#WtyQ_8">f/`1U_~>iu_<y6?/)S2؆mhѩV 3=f ^45$sẶ{+nx}R# ^$#&`>$Dq .! bJW!LQW;{G?t > stream xcd`ab`dd M34uI f!C<<,_/݇3#cxjs~AeQfzF.THTpSJL//THKQS/ f*h)$f$))F(+k: c`````d`bddi?S]?b\8b\|]l̉uKbPca=szK{kwg{wvͻ~vfJ_bnon}:XwWVL;iߙ~İ}ck#`S-ýgҤyxvM:cⴾxx4endstream endobj 376 0 obj << /Filter /FlateDecode /Length 4626 >> stream x\Ko[nZwea6)R )@K†csfrf\QR <Μ9=5K7'a !{ij{g'g9^9]gi9ro;nRM6g 0{.W^ts'{Ƥm&_N}~]o^tz~R|wg 2{&۫贪Fs[.fXUZ3ûf\)v7)bb:m|q N+o az6SJ Sc;nJ|n s`.7q;.bwnsA4cٴXD FZuM\ԓqk'<>dWY7saQ TwKd)K-{%l-ih sAi^Wbv5 k k;j+2`V eX&eyZ_:Q,@sW'qAGJ9iiΰ ~Tp :\QKCZZ# m*4N166o#[neL# Gzt饬vry.9]~tu9K U"G`~su92t&p;}Γ0V_84NLg͋ "iap9bbܽRDk47Lzdgo¶^ȁ Zlu1:,4V/ҜٙD=Ul]e$O. z|N.g 7 0RUxKdoxK\Ҁ7ceb$C$9'4kH0іg>DRUdoXp0$XivM"jYMz2,eO"#0sIv-q f?HZEi2!Nρܒ0e"N%% _noҒc-8Un/{::[bnﷹ%JcDy}λH H2]q5x6c@ oGoȍ1܃]ĠM#d D`EM|^;A:T-8gB1h_Ha6jmGV1*IRp+/J ~0C}! -r-zt ʿàpU!d/aYOU岼w0ZV2bz!57Ѣ<,VSY6hP ?5|0ແ`#Y-ii2CyNKjٚ*~ƕy:A#JER 'f p5x;)3YQPPAޏg4ݮ5C P+J*n{k|j?!xruo$߱rB[.A6xzp3%MtrnY~Pi!єHk(t͵]ѝ L&^Qu175K&8:O^uIOhkzJj`KJ.WTBp %_Wev)6{$ ]Oޝ|W+Kfn sҢLKA,HV0Ԡ=( ı$257 vz/+7^nX7T!\bhzv V\ˡJLŒCRpP6R 0(L bV@/72cءxK%nxg$78=}="C/_͟UU.F%*uwj.z|7qd ,)wS7cƇg0r"7`NGC)Yᰁdcmt\(zETʺ&48Wz Vz&kEŴ@X}ۤ z'R.ư߷toM; ! 9Qt(U!q+ES8 Y@um4!TG=M ./BŇt8X.橅ҡ6`id'1)UDqYP  h1p[۠o*g]s,wo@љD(ױ%ɉL$xY6Z9Raw̑.UEdxSV:=Pܴ~ıeq 91΢kIcYt6ٚű@[*B2aJWDY]]_=|GA"7 T`쮗U_۪ Y:k=MMr@UIl2+"B3!rǫ]Fj)+S&|/u@b}+^]:e= |:dx15\ HrH艾C?<7vXY8$l&Jo߶ YOA NH]k䋉^RQ(-gcXAt])3 d :5D$ǢBm]$VZ82w_eOy)yrK%J|nI,ߴ!U yqe}Ͼ7ފ:)${Z93Cw"o>8@fbٕ@ N8O-*Rh,,"(W݅!߱:: "Dp;M7﷫,1} @ J&uPIhpf;$HCɺ.9S6w㎘pHqp[XW{GS+d0E!nYگ# 4H $U֘ Th1>* mT5 CH$y>Q<'Q#"mZo$Uoę@Ö߷4ˀAGe(zީ}eW3?cs\4X Dr/p= 9Ӵ7 LQBw" $$VX|V[]o;5zH1|||<t]گ e*}GFD/~?uubQuPgޫz P7G B~H:wF,5ꦝU|FEi_]zzIxgǮǮRcτGCN]>x={_%T~3GǗ6vؑ3x\6K kt/Rnh]% 2?4pty.ey̯TE#-Kj[:\VI P + 4Mp>3uidHt=gq[,rOC" w D6Q% ɦLR+jr$A?nAMv!3bSg'RiX_ O=ͦ\pCBS=W,y(a nO2V3*Q.ZJ,+{ϒZuZEr07?**@L *p62 #vbL{E1 A?0~e OZnBs~7Gպ;X p}(J'|R@gFZMT6ht.~N4잵Ȫ1pC-2h_U.C;Ce;ӃE^ 4QW!C"9OyY/|Һr|8SJ'g\[`o?9['|ur k $&>fh8rLsu>n>]1+3K?g<2mqR i5D1AӖw.o[I8?F endstream endobj 377 0 obj << /Filter /FlateDecode /Length 3925 >> stream x[ݏs!@Uh@Hr/>Twd_ܿ3CrER֝(.9$39_f=L{xy,LsVK=?5fq3\'痳ͺ_{!\Ǹf:Wx7kJܧV)1&ݢ~uW{j67VJyXf5?Di9f ؽyhθfկdm/Űیn5M&tQXE Wlwp-6ԝ3&0Aa@ ?ޔ-`L]?e 0;#%?y_$'ip2?.Y_ *߬vqS`6w_#2v f8e "0sQȝ>]oo"HwyORu$ C={ɥd8[~u@ x۬V9' )V^ $nZedD8 '@IW"7vaeR-YuX]yqIp.Y5k՛ =** BA O wd:w Z@m/3._f\{C 5} 3vu<ʺP%WF;;""V\0 + S^UH`O^٤4Brf H*& m\rKaH ,^4{ڟk>рf{YLdnYIP%Q#,DeV!:b={W0e%2dz"pvK2L٤j怑t$>VzB"" Qq`n\z|\b$0em=0`$#Hڰ*_dܘ~ǃ YJhB ~4HTFq?X$ )˸}DiGH?v=q6gl?0pCƑC`Iףœ=x)rwPQ0s}R‚Q% ;c6'h!БjY8hZ\N%ں_brJ *a@|#l o hv X`c":7W PL !:N1=D4sGh&ܱ02>]@LpɐQBZsGz DFSD +?rhVH֗v;L?s"A3lYN:oW7Y#" uPdz yptхK/!3 $] s9r]~£I0JPM8z;TZy@X0:x:M+%\( C'adjh G6c@SX1Ă=+6(3F ԕ ѢamaWqFW!ӅQh}|v#l05> lDez-Xk6\7UDX;*GR~[}GyɅI0'P6d~p/RX"8΄!v۲,O CH‘Ϻz4,>)D s4\H;`߇S3ψ:!$JLUa(>*\6N#!HEs]Sq>H ?5?Ő_!\8FݥQv%FT %`)8ƒCѰ4R#>]5bBH Z"j2=ϖ XAˇ] wI.l&݃~YB%wG ).Uڒ|n#߸|P0NYݪ j0K4_j~(,qf88SOO`ՅOSI}s%BCȐd8R~>=ꨞo[^t̥b (G!dOv+B . W  %qލ*1Ti=ڳbBU*+MMm'JÖ &D!P z9Bh[4|r1сWՇ"/[Qǒ␅}V2W\l,,̰ u%8&,44P~Iy0u>,v{-ݫOؽu"Zi*6jgn}4B K#!E`ZH&]^`mF 6ˣ8Ґ1NYU91A_4LVJQyY&ıH΁kmrZL}qJvu 6G?,ZMi>,4<\Y/dk@d5Ga2!yլjF@ɑZҝQ:ʞ)+;I9he:)KS0WM 9 dBf{iCOLSubwȗ5Gk N{֋ƅb.MmxlះŽeA;"NZ MlfX'sTeQ}eARb0ؤS~B} u-EE5ALIVTCC(h#+hyKC?5J?u|#QA% *4<yyw㨢Ie쓠)*aPt~LuhЃjI庌Jz1(1 $x [u8O2GÝjDg>ӑoH*Ĕ cL8V"5c%UBtt?/ƈ5{?~K5+0g/#ky^9=~ƤT0ES娅1,Ǥ+z&IIQ$n$SáUġ+ _z>B;ǼOz>Bv"EKѠ/oaN)Cj o 6ё1U[LMNyN)RV.n!K`3 ou'H<UȖTω~"8CBC1fDK}*+դD(~˔f~"G)cML ?;-:**ZuDxP1J4T9H'yG> stream xZK \uJKZUÉ8 x3h,o~}zZMfHH}C k(_'0]?'{i4!:Lp.в1'T3_O.g7SJRNZ^gauv9_Ymn:gEl&[ 4ܵH&s}f |jTf}-XMQ.׆;KРjҚd&%kfB5h7ivA@isqg'`.^]a9Yng錃5+lw|݁]%Mq֮]tŢLBnixwP _|7kO;jhV)A[LPgVʕKwn5b?vf J::O*YRXFa\q-8{xt6i8m`ڬpg `ۊ[}~}oPiT n"j㑡K)2ʉu110/Vpv2v-Μh+<:hLYrnb*`~֟ k57 |9(p AɵVpb@v!3C=!:$+<"R}-0b1z2JQL8X,{Fs56ABodfjhr< ;"x ^Ip 7YV"@(",hiߗ9:g*r[nYט)HMeA2ml\Ty.SaD0meRN\3f*| nį3c~ 7M&:L`Ё6/#ԁNopdG̅ˇ#1s@ʜ+GxLSAy‚0q.b 4| A/J|/ $C/w0K#lB2$Bl!vQBq1!K DZ1)VjC_P:-ڧ,WY4r$_X,@< ԍ:"X {( .AWie'QgTR;-Ώ.)/݈c(xYk{yI eWo*PS1)R1*/F5j'C?0sxN p|SVVAP̀@ύPPE53N$EPA| 'VH|]jȒNp˫| 24w(R^ hvY.!>+BzU`"8FCL&"}mXmh/t9s;+{Ɗ@c #! Gol5wğІ›D8߫G Fj<k,1.'eGPD*ӵz}! -Dy2U낑gCgPf1*Y:A"UYN@1HQ/5}Ô ј0Aݧ(Rۧ(=]/DIVmX 2m؇ 6S3C2Íb~54)@bl -83dT#`b7n vPRٱ|}M/Z.?%PUMᾷs|2ͤG~OYDsCv \zܽݬzU_M-Y)E$" ~a"$TP}-o>^}]XŠ`f2 BH A…A8uR:kmAdb!o lw˩]1/ bc*"$.Zl>W$;d6Eq%_l,cAYdtl@~Jr5rPWQbDe8u.`u>`QB$ s5`d}Ƃ+nbqIrZPLc & uۄL./0SvwAD{Kгpsijݬ@"H,m[0ȎCX`R}Ԙ083WT(b+O4tzp㯵i4%M;gwB63y8~.; xbF5Gފ!'`FoDE(<> stream xZݏ۸Ea.֪!~h\qEܢ/{Plǧm%62)ɛl"Zp7C__/=ݔNۻ?4~)\͍WBBj2)Vw{.Y^:r-FJQ8+ًdO pec-.sP/ f[[YXv] MRi$0p.5j#jMSq-EXOTB`Қx\qUH(\m.,w3Ux[DNt?klApgHXs8 TX}?۶hIyC8AT.-k:x F<؝xQDv}"B"8>Q @Jbs=֗ l\ʹ6$lt%P,Ϗ"^HKGҒ D6>v#ջCP+POj `g:md8(ww7?x8R0$CB8Wq0I,́AI3H .- u1=$fV慴JՍt1-=&k,}]0f%êh&P7GR >Psw q %WLWY*^Sr!L')#OAx[HTBJVY"s3UᵵM7nBLhT\>nYWJր,޴)qLĹrc1Η$RkiVA-w]+ʅd4yϳ1Ų !{ rⒽ?Q5_uVJߧ`8fc~LK*r#Y^)0d"ӻUȔ[~vURb>2c8Mp# V CB%UyM;4CalpB.47bz8W9!c,Z(~QꪼBx0ɕe/!q u:Sn$s`^HiQi1"/Bxq#yHZ.`cVQ=/2]:3; ,80@AIc5tY$t;,a]:JЄ "W>k.}DdcXǹHh,US2\\drh>t*KlrPS36?zD9H-C|2] U">5koJWT7O 9M RF)p%C}Rc u5byM!w4ҍXpd>-۩[g3O()&aO-)+6r󂐺ħyP'!ٲ./'#IVe~h$IB !ej{2E<%LpHMՓq&BӘF|.}9B/4 TБJ+U1=jR>Iguᠲa6Ă$%J03n9jXTi25Ze׮=E-.x٩[g )T6MJyWF=. ge ^&tPW w yf Htɽkˑ>ۿx|v^oF*{]VVC%D{|ѻ'ЌPI#18T?(Lش3I(#6+o-335jbР_U: 9ӭ^p^e*7]|< 17^7:ݣ>6=՝u{JFEuxtW[l2jŎ4W붿DY%Dp,D?;óSAF㙗 2L/VN>G]uFIiɩ5𺒟+z`\c{,9U9vWwjQOE]N[}b$6|2ߚ;,i.ۦYn2o%C=qPO3[ovbzS!FG@~܈ŹAl'-Տ9H I#C־P"cBbOG%&]8CVzR5[/0ԡM'ĈFrWl7M:8J eɗOO.ULT/4-BPpR7ͅպ@ ˯X<$WO/)G#0\BH%tCj ~UE `6(X 54z!%fhv;1M vO(q/ 6~j8cL6Cõ}xe#;`XjrVƻ$' WJ.B[L.h5KxÆ ?s$`X#@ƥZj=/u <j!bCM|3F\ss^m&2{R-%}q.p^ǷKcs noF}rʲJ|r4~'Hfح\#\ID}i&>o aendstream endobj 380 0 obj << /Filter /FlateDecode /Length 3459 >> stream x[rÖOؔrR&R.AaAz^o7ˋ?G;t XtU:7NjO0R`.ˊ xP߼ [2nJSߕT27v*wӋũouߴw۝t[,`kxECeř+Nv[n-_fJ9vx:%+.z& 3N[VR $f'ui3Íh: .$lϞ̖N1!-PY\q]qcx6wۢ w.pNM,rl*uef'`p~|wup̝>x!cf^ XSpStqQ)>Z/ -@u:c?L\ ߏrKW$L>"{ )-$/nZe*hM֕\pUh *rzUFo'm Zs^]SEcTo(h&ԳX5Dt*X0d0$phØ﯍ݪ*D& ]^* c7Ahc1<}vtDYY(p*Y)s GWD|iREɘD?O*@E 71(dTHxrUu _ )ؚfaWvhBd&"r-ɐ<~ۥ]ӇW@ ;-1gJ:hN56 "D:aS\舼$>04Fb(.j4x诼qk(ʱ>ZS<Ҷn'ѸEc=&/'+mmҺF#*‹>?Y_J,?X\6"ebt`5ͪ* qHO4O#ů%6/bGaE+Q\ZWձds$(sFx%3@R`ozo쥾 &y5avԂE}l>-ǯS2SOV^{3c+5q;GN%z谙)o`3sjaKⲳ7\,`R4ͩ/l 2ꆤ~2[;bW٧3,bF=mۮiRi"QgTr.ZiK@pͭs+ lSӌBɘ I۞9z5TjV/-) zHb(v W2txUBkY<2T:ϘVف^ȴ؄+Ø2 %pKB%1^{ fJmPNtf x5Z|]{31z*~+;T ?% цo=yq kGFe[i>rlq`3&٩u1J.8t CEgيc*n6ê.>sXY~586Oard >yOt +:@\QE^\NywWJv?ZB5Va#)fٍ+S0j$ ("(KV8mz??@ @=J)FSA _>7'_6jϳ0*^,a.@OEi֏\hsuxfwf$wf 4̲ gל(kc6o(S }eN}}aTv5h:{*<{\G~KT›PEe6t3E. bv==a=b& 8>~:sttu*}fI?N)ЖM@GpNϑc kr$F ᪻lstvbxsMB@xE_mΥsAI{` Q9G=rɶE HȮf,/'g<~pd~?Ö~b_GF%tb?7?] ED~S|Vki3v«Zto(@,rUR8[kÊCBpʸ|IoIWؿp%uA=wW21UoM> stream xWK6 Wx| ƪ3N;Nzh沛lkJlk#qIIitvl04vuV7JJj2CSSxʥ\nrKnIfyndm!MMS-5)d9Kf{>G1#oEm`0H4O$f(l_!܄0S%DXOFCt:yD[d3a/1O3`ylȬjwd9æk{=N~g2˳AZ l>{z (Osatz| 9$uz>3RjK>*őQʢTf!|DvMvɜ,#ҹ {yhدlP=p ~*jm" %SCl\T7p*=-dms .J+.< h{-g ̕A FHPS=:hLS3XWc <>^!K6J]J|W}JRۙdMltһ2 M@먨=,۲#PbsJp=sߕݦF ^b9S:`rWҫ{P"@"%VAP~pX&qeܺWb}@aV &@he&C( K,HTLpCVzCE>4FcIH3: Mcl0 3y#zY(G dHtCds>۔4(ׄf:%gR #HmY}C}F̨boILgŋQ苜G[4]|h7آL@ω1+m70Bڒ?Txq aLNԙ$qzHo ĽG5tITx. #H@G^ SCVآD4D % m4wL#4@%%A&XNK4|?vE8ת/ {ל<[~ɉ" 9Es x7Uq"\UZd ҼǐewD| Mg Oo=y9s731B/\G ב>bU$:f}lva;tޫ/"j342Ö,U2?ӞPcO?j,!kɯƮ zlaCՃ7oﰆ2:P8 L' Ovv銉d䶏T];Z+X4穒e#nJO'0}s}p%P[,\T)yR[]=v\͹-=z =D=ꔻO6xj.Z> stream x\Ks9rG|C# o`ֳ{Sͯve{z^]^hT|Kk6:ş.ѽjOmo@wW?} W~+Hܪr.%Z@.6~.ί>77pRVm'|uv8 Иnw8OjoQjxMÇRVlj|^Ee(:غѮU)~wq<% o pUm׍5JARO%|]~!v4D})Wi^lϥUy=lo8:H7T+ӂ-* R^:x%1EUo=L4J;]zUV: g]mw/x<#HVۭGA&J܌9! ]u82}>|A4(JŬ_'yErZYE%Ө}dXO|B\{lI=yNUOREſ<̼f"pFHQv!xzt2jiuw#b?zu2\[DsTI!''fD`HAHqk l]!y̪o=1r 0̆oe)agYbBxۼ ECz;*(ȡ`PTۉ\쇳D̦_G \3Q|q HD'Ɩe QkM/dRՇ[ 2=zqY^p)Q8 jɤ&cɅOݾۄz;W]Q_KlASIܲ>&BL7h]Vxpo Oy(<-Dž&M^;xo^Z+'Bo`ĂySr^ *I wj}Vz,'[{dQBr^Xe)LjeEw~SN};ZъHYT`0K | :vLJp.R Q8]:)>].訰pH@;/FqʲDà5xBߝ l O L]dh< #\I( ёL 4i aǶcVhV%t5 cהr M&ρ Q#ac=z5k5CLwq@GiPg,KxJ\;?Di|#1RHB~ |=0`ErNbZ1|p;X*3DQkv^eL_X>L:(.ߖ;aoE a~Mti},P*LHS޴lŞڹЧI JާxKA`ɄarxYNFR9 L˹@READ0jDD5$Mg.\ÌMx$ vb13!iBG'fS 3<"3qg.b߂ss0Z}<1W?QڛcD "?xoʨM1N_(7( 0f*&lhSJ2Z4JM?S4rH{m#Eɗ# [603y` ڀڸ&o9WLC+YjdE\-VհPd6v&o2`GMpiVˀ;)|&Xa?B̠'V̄I9GH8omg>[[V-%Gr 1rkN qT:قJhкcdIj4BB]v.<|RK~T'Q~P;BU$e|9`;1C+-dlAXK9/O0?ߍn\ &цh@XYcp[պK>.}r:D"!u ݉ᘁ$~b%qU=$d!o |Id&IC|z5÷_-wʃyAٌTg&΢5H5Y2&|_|t`*)ʰteLMP IxJȋvnBl !n_|V s#Ɛ1> &1W%%c<9IcCUQ+e&4L \'Gfve*ʣSZU7}wV+ d1m&_sد(DuobvrbKm27Fr`RTx$xD),nL(2pcMY^άx=դikd+~^5@R yiSi~mPù֚ sBppfхacf|B=.rkYbeZOnw _LjCcOwh~,:e[2*;P^7s[Ѹx|߮~hdRn\P%9 p ?}6DJy*^FET{ O: km" *Zv%ZXͫÒ+V>=?"RbX+h&6ePJtUSPm4ll!OZA zr22HCwKqZ\fiiK3=$?؝i&$Ďfzy&& FqS?S{E+.<0?"2uzrd~ ÎHN*&PsT;LQD(k%rԷ1C=_@IZa )~2cn!ƌ2pm? 1kH# -Ҵfb(jPIpuAݎ)6%sx>VfgϵBCl}KnуN" 9qH2;TбԻ1؅ꎏ!iyN4cE"5˛G4,wMb|ZîdzҪv-46om2uFy.w 2] iaK[*b&r+v6 b-PlP7[QGTIU+0#,oʹ oqN*)b Ô2=z8eTE5ۡR~0D(R!E=18Ħ߷ݱV؊"lU\ q4`p0aK; 'kM:OD-tC vBg@9Mʸp9|5(u~a\2 fz8WLxU|3!U>y1ʹXci^ӎCd h#GzLn_^O4HW0˼6%<*)$B(YXp~P!iMi9Z GV㽔:F"cC=ɣvXUǦnh`DI/Kl1:c4 3KT]-^2tZ/so7;'4;ŵj=k]Lv x*PZ%̍ʅt" $`ej!gJY7`⊕N@ 4Y0+(lS |5Gڥ?2PA-Z rhF_]qR&_YZ9@(#2#X3FN?&i+:3lb g/@pc;8c@4W3sѯ RBT5 "iz 5.p ֈiڤ[3tJY;2Z-3ւ!W\n3A1=wdKc_΃Ee&m#J8K iRUT\8R bf,ƨ<_ύ`3|PCaR@d##u5؆9K뀼raG-`'-\-|37{E|+i.5N0>f9` גH5OΞO:Cis܉>cVveG  nY7'4ϫ]*k'6^f#;mMCEaFdG LWN)@V[ @D[Sa97Xks~+5U}LdHsIиIxc.MUݧINdy m2ш!qtH"5' u H絔aT7Rq&ڍ}nYZ0U9%)Wu1@B]{3(.ޔLh0!b%KadCQ= ILa_%旺xgbj>p 3Z1$-}fҌO2*BxYax4;e,J|+4yFN6]uS5dXϹKX;~wbN&.ݝAx01m̓]ቶhcl)_:WFPFTrI6=;Qw~Y#e*1kD' Yao"r]fB"7= ߕԴYxrzjIPNmև 3lF raN+q AS&Kaȶ̣͒_Iln0+ٝŰ*H4.Ҙy&2p.,|r^jD,ƞl֖=Cĭ1DJ{ )/B1 ͣqȀpY$jdyTV,| e0 M#4h9ONp`>⺿lGw4<F#bGPLߓX[ُ@uӫ_O hI}[KqԱD#`g`.`Rʼn "LSK{%Y?UqbDIV{BÇ@y2^R2i?)dt3i@+.Y02XfVIo)d\ p*5|kLpM10@Ej.>+_фM,X*2EnlLSD30٤@OvU/BGcjw^K{"CwӭYC5y>*ZLМ ɒ7'uTgԾ %Rs@qWru0|8n?\0ZYk<4h^ȡzB z욦f>\"&kEW=׮JZ$m* S|+'K&~de")y?ZPendstream endobj 383 0 obj << /Filter /FlateDecode /Length 257099 >> stream xMlK7_n`K#K*@˃ruhOC"ߗAFCP\$2c Ϗxw]叿][Wz^3=FT|)S)_o~w?^L#g럂qT?`^Z⮳dewrX//?_忿ǩW3_O^7s=%gKszy_kkK^߀s?_ߙw9]%]kY].z/\/h%Z>+2GykpAHHk$*?JܣFKYN`B6f|_(Lãɱ}뛱-:qw٨qG-PVd[e{luԃi0JZ(5 tߧ1?fl"m4al`l#Biwd(al9~KI9y}SXdF+`Q\Ѩ a Rx|揫ZgȜ NA6иÓGFGrY6O2Ѧ -Dckk}A6iIdOk=5ȃlҒS:tF " MrwS~f>enO=Ni{ v({|@\`9|O닯hw}YT=<0 # ,s-#/z . l8FH\YGVh^[s`+R`h-. -`%OV=lҏ 5Hx J򎺹T=1 DmS|x{n\2j)L4"ɸwL>\6a+po" 6h J9"=V"zj^lŖb=1C݊sVbŀ $Sdw "ꞀK$uC&KIlr$Kx|ttȼY= "AvL~ݿcָ!`P000=tq]8?*p0u&Ğ, T1oPfewk,UYlbUi6> LΨah9mh2qɾ# Z CL' 9=U!(( >^HxEݽc:e%[Kl^,P]Ըv(RMB*KcHqC( Vx*MY0a?7ó]!f>FA FI dLZ5نZSl^l/(<0}ؠ(i!rl?ҳէ΋j{?WeF FN f2m誋aؠal9"[F NvF[֕c|2]  vMƶt_O2$ j,Dc㝸d/ rm%V* 4ȃl:_:ࢅ;PٳQQB8؊oY~j cfcqj*a ~.ఒe5 D`YOG«=ru:Dڀގ(al9-n-jyl]h&6hZ>&-gl+P9(i!ru ;:#[奈#ƈlkl ?6,Mtl~m5[ʏdR%ikg+H3Aʁ ^odl9;8*{6j0JZ[9!W?>5L͖W~`h0`hϖ-0 uqd\i״^> 5ٯõ\#@yٗ;'r@yoe6irl+P9AQB8؊m&[9, ȹMlM} t^;Pl5%-DcI͗h fְ1I$+`Ԥ;f 4$ DA/֦q&[Xr l-Va`Y`9*[g/1P` R':iLɼ&id?M*1Dbat27z tܙu]&l:փ`JM'z A&AP1B8dȪ\L=]@kjZ8.{l{((i!rM-yD6~DJe6iԫc >T>,D?22ݜ.iWrVBkj8Z"Wclu5ۘ`+W5ck:ll el 3!dчʁ Ɩl&$I-~htH?LhS`z2t.TN1}Lp-LCcOҋZ@Y}MZCm-X9MY+ Zcba2TݓW0j D #B`#QXjbPАjIsǫCд)M9dEr$7pjeO5mNce9PG*LCɐ}Mr3hÖ{w2%dF6l̐mD*6h0JZMŁ-뮴\WȖЁ5 (Ѹ-]W;63 j,D"8Q#ۨ'ۨ;zqqF6Ɓf-89Ma[xpUA1wF9e,iз}EP$SmsikDecOQð`GJ:O -!]s1]QP`!r-;a"2wҨL?S2xU}['6( ҊHSS.IaE&#>|nH!9^Z߬sC!~Cjx9jxhdlWB>^8\ mE. *d w+X&qE^Vd (Wǖɖ[d "&Uo='[ekϧ_`G ir~`~zV0a䁓l--wlx,6F9q}lD 䑃/uݚ*z2|yy8Jok:$VIX0gmR[` PsbH@j,Dc{õ,Qvl ?`X`=kѤ \y" Y=Ⱥ})AuAfۻL4YF#.O&-W\|NVwd@6h},Dm@`CM#:ml]֚ 6aˍ0 cal:JV C[HaKu*ZBlԐ#6iةhl+ؠi!rl;=ld9ɶL`v>Ziw27> MFi!r MhZ/ CH@f\ZU{iՠsCRn3ۿ3)jw4v8,{& pdqRl2[[3M]r/!2h-@a" +ֱ~vWWh\20 C劍ƾ4 v-Y+ Fa t -ZRA]ny%+h[ m۲?XMAKZjIn}p;2aiܑOg |YX_-j> M0(B8؊ [mlm6X06Krl`|a[ lmsl4xh2L%Che&Y9  "5B-{5&?ϝ8L>*AtdoRdH{ w0)jI7ۨ$,3Z}Se0hvxC[xn렫6c[qr®io:.v׊Y8Zp95{ WⅬH"X:ҁ5#W?$aHNFyHUnڟ;Fi^k5o]EԺ?7\b7Íi8SkͺǻⰘpp쯇4} m 5B6mnUܻܳCֻ2 D #[FƁJ+XB=wOk)ܛ1 όӮb!jex}#a#cZj:4j:\'((t` 7)^Ș~u Z7ݗ/X:d㯙v{{ٓHޑ*uC Sy>A'[{)WQ??gx*T@Y}KZAf:.AVqq5 pO[1#[Y Cdp4Wnj6`t\C7wS\Ph+\OQKZU_Uȁ "qae٣ b-%=-ERMpEA%?fB}Co>D@GqOE"oVNVoܶRH>Dspd1L i D#/CxXX t!d|oBõ5 w&Tn(s`އ[tdσdͦrB&=ٖ<%~g&$O 6zphi88)lNv{t |Zdm.r,,P޵qآ3-} "w6[]ԚȧBSñwmj :B06R &+HZwJ"deV4@Y]MZd ی@Xk~N#q-LbV>+f#1.g\k_^Ɖ'ɒHk[JDBj#BIpbjʏ#~ yptv (Z|ز9e֞jXL`ngw@/sa1|^1j:2sަȣCi努}@>toD ㅭ5ϥ칤l=䵟lm^li8yuǖɖ{޿c (6؂6ɦ+]rKlź:Pñdž@HxBe- a RdŎ&85#ٚ'ٚERPQۡϝh=~ְD'҄ķl:ބʁMZj{Ah- '$VVbd͆OQÑlH1g } 4MB0n+?\C; *{X#O^K9R6$GN,"pJ۟30^"7re9k)}6n^%4D;*L(\ *)nCsj׽F%RP &>X0XxCe4 "aI؛/urd4EOlA,7Zw3%,M|̎l.Mg @Dn,04M@a6%Qq:OZ0XxCep4Um\6rm/#PcƵlx9lH OA$@x<=Zd47H )o֧H)$C< (Yy*HtSP ZV7Qp4,D1*CWvlqZK:S m̓m( >TDaK#Z`X&?\ ķD|lF8M PTBS7YpA'" S7Y3Y Y M7FDٰD`s՛L:%id)}N̔<#( PV Wԝ2H@x!$m[69\ l: G#('·b27Pd8 G02lg]m)R <0%YMG%wЋSVЇ-iPf f҂> _V$AC zޠZs ێk\ }bw,P\+9\ػ_Ș}lW- xudG@yAEY3!D,Dھd]Z--9zuoj>v6~byx6_׬xAe5zTҒ6}vu.TWq " WJ_qh 雬j| `0)wa_%j`FU֐t<4z(IKFA}cчʁ "V/r`Ci7F!-똁 V9 1XH9Pl; cal2.K613ZJd[$oBul =}@Y}MZ2_95,Dl߭Wn]ޠDCjS2t9o|/cCGfu&VD\ WSVrd Lɤl34&!5 m۸]h@tU݇dq.p-\\o?mh PV…]%`LЊ"A֭ɰ䐧f5l.3i'Yz04.Zd# 9XHM[ Y1)DA cc}M?-aoUz;dм,Qۣdd# "A6 a6ZDD CcʊlhMKlarXkEm⮍b6q׼dk:*dw-X/dㅬ痴c.l:?Me`[d_R>T۪Nñm8"OeU%+ja=5x>4da@ H L+w.͉{BleRcS)! <:R6dA5 LO3@ g{ېށ5eA4k=N-vl `!rPAgh ah0J?;cb *88%6_SRIU>0tSTVprZ_! D+P:4>S{ɐ;&:J@sύ FFrzB4Ò3ܚd=c)>mk|JZtn[<} ܝal{Γ+`KaOֽxYLl|liSrsއʞ" [i%f۴o alJ;*:ceplu>NN<[E%9ؠq}ճC 0{XX%&[&U>{D2m T>+" X\(q/fzF,0sB U&bsH}Լ?w@7}wtM'n8}s'Ґ&w}A>fp:Do@k ͧm F$36pHm:ET`B@#\" T s6YL{G) uj8#saA30 j,Dc[X$IvtkD*Vu2 'uP-7*y9 `%k!{&cjlz:tQu?U4bpd :@fͦ- ̾l4ݶR*ŊmCM7axDJ6M,e6-|||i3Z/lvlt}9M-Vё0,Pl: V0c7{˫#Olǽ!44M2 g}'>Fl:~z F )u ?4#`&jjM!7?& o9$u|[#5kRG,P޹0l)( :Q–KdI[oma7K 02ށrU/MNA V7 D㒁@{2-J\`2yAv0-eu=ECH6qHBVǗdG/mԞ jAs4XFDFA7lս)dqt6E -䐬*4h\{ȤLF]X!-D2l{%lxza5&.W2[bV&kdD7?\="ZEUZK@y }nc86B06,>"YMjl`)\aȵkTy*UzHZ'0 sU?T@3XWsgU{y) <&2?u!ohZQmwx_NYh>:$o_ă@ R'S/IB%lֲUPQz>~L:|J>AXg4)@ts/+zEM<O93Xa UWSnÆjʆEHB!zwV1-S#|j2וet=XC>T&pRFSqٰJlNq  M+%1vHad*ShһnCud H9MHs35.@Q¯EAL'R4) yE0,(Ign\ĚN_QgirV}%XHZI$ivWijioL"qͨ:#X9O I/ROm=Ė>ʡZxj[>55V#Xyrd6ɦ%4&ilvB8SñlG_]py'B06&õpqıU,6V;-Uuhu8;ʡ J "Amj~-$p lzdXYuH@ Goqet: Sj9h!rCYvcȌY-`("n㯦lIll+$㣁`L]+XJ퀚6e,ȤF PVHnk9*\I>2p$׍-k/lMZ# a]_kȴHo![lhcdXYbg=@_!!6 VJ="j\}/0iJFݘpj:Lj-̓H^ q5$/om:eֱ"t8iT1FY>H%q5]Tq\>Ёۓ(i!riե7=K7lX^la76, Bا2 j0JZ/l5-%id`9ύkr?nYwoE*yL|;dv-AgŸO*`,PVXޅ'IBIq&4 1$[r>Sp`0 HTXoNÃdsm<-CXQLĈ%Ϩc Y X5aCyvC > oy*H7&PNRUGrtt7PdQ @߰d G<ش y0p\ 2&Ӳb!Y/h/Y9-Z>Ȇu8zv>M4323s'|Ȇa~:8m@aDA V06Tl,ealγֈlkd tJ9Jl(f9$ Ǧ6xadPliD4N4"[푭m liF'l[fCf 'lnO}6H HMEFȴ 'X{ # (2i+S2-,/d|EpFdúHQ Z._M<5ްeGV5)\,k|b?Sф;&#$j-PVdCeYǣ(kCe4%-Dcr)wlU޲ [-[9^z9tq=kLDdjll-l >T&rmal[?H<=-r/ 44ȃʻ[B54X.((i!r|U|'uf㮈# j8:#['n bl(f}&õ 96)Wf|<ʻZ[Wd >vV0& " ۪'n[m5C:Cl@4=776i!RDd3#:A*&Z5#O%X>&- 9C働`!rtM-z.o4.PwXPаwyY]KPr$[[ki8'&æB{QZŹĎ L>h ([6%gc_xf::~`4q.Uغ[}s[a'n(&0 j,DcqB`[=e (6iyÆ)o؂ʶd|lE5ޱ vK*m:wlUP.?\ʑ56=Z> --i6c >T>DQBxaƆTȻ5xD5 l o\2pM7^l ٤ de (6iyæSޱ mMWAΆl5:VcU}6TࢅXBXD`cg"|OJʡhÖO؂][DZi"s" ['=ul6nn2Vc͛8M H;n_UC+b2yv$~B%(G2ԄOַhBxac݁ͦ6E6t&QÁXw`MX9PYQz[@UPX"-wXQM(aA5 SVfq>TT߻py$x餒}԰O?p`yDN0=txnTDah!rV(-WdRظh^5 qڢAhŖZ6yإ  " Y'<9J$ÉgY|s>N2bGV#|0 jx89M@j/ZٱJl3:Z@Y}MZZnͦ`!rm|Iliu, 8BI&]a.TYNÑ92ݍحZϑ A% qD#@(NJMBl,D_ȦIdߍ~]y 䓭%dm]+i8V'fCբk1]-]́,/dd%{H pd%r "ZlY_pd=N #\7uxbYOm.'Рѻl;]-Z@~q纈, xeԫS`hV2\ T0Fѕ) Mm  ,\IB^Xg"Fv hb<8zx( qW$m` T> ^9ʶNo"ցfD+PáyƊu"}S`4)LZ"p,ȤK2xG D,߿@QIU r+N`2[z2Ѧpl3?NcJhǦU.R2Xlҟ:M؂~#X/ll]T͘]8Cޱ㖜c)p.-\jc+D+i,Dc(2֦7d.iwlle6i kӛm4C働O`!r|%Ig7g󧎓s>6]ȅ+Ce4[PnVn[ hZL `P#\Qk>5x}W#I;$ˑRI9$in pP .<]"~]eA. , >T> " 뜐粊FcC#jZ7p8HZizeN4;Fȴu Kc:>Քz\` ]*G?fhE~X}] [uk %ΰSA0Áuaட]L4ld śjko)iffh. ulǮtVE `<б-|%EvnɀMW4q|+&QPñf>Ŏ:2d˜lӞM>&[@Y}MZxc >T>&[9 Mm qUdgM N^rCEр#x5Ѓ]Ñ툾/џ@@=EP'&pž z$8}DZ=G4& "O,Aa#xVGz. 湀=v`7|! o5_{-׌`+Q"Ҕu]źΆ2^熄k i|5#֍@3>☤+i+p9]-w.H ꚣN_ic# 6>&..{lj/ ƧCWˆh!r[E0{Kfm4{J.lؠo:pyi~Ŕ=t WXQ,LGVO=lh;`r G ނ# W'WV,Iq]H;vX~_s: Ǖ#V'V Xp2$j8'B?v+rڠGT:L.kHoVhG RI"5A6U ٟOJ/iQ{ wF[GulXw,DQOzGkdî&+ck9z 4,ܑ{ɶcqr'rm&r`7l6zdsa=ؤ\Ko6.)Gcul46T]ƽ\ӹb ظs؂ʁJb+;`!rْ݉wؽFn_+ETO(=z}ɛ &ɬc*qoLrᐃ~I+9rdБCŖWy@?n& S9sީ:QM@r*hR3Ya8@R,ϲzKAtO? .aZYPS`ڭ/:Nm@)A7BugY!qh; `'ҖwP*rycKP\M ;6l ZF_+[x 4j.ڮ L1Bx!/`3:tԑ͈6NY"Y`Kc=QrPxcSF9ZTeO% JW݌jJ2c7U< Pq9bN׍ŝKwhaq+pP>ڮnȪG+pVN6K$+ԾҽO+.L3B`zlH(lgR ڮ:H⅌$:ƗJlQNԀcke8]@2 4Ykbc :u\LTp\H9Ah Fl+ؖɦ沜'ْ=Gwڮl27 ㅍ&7%'$"[GڬNñc!7Nm<|]QB0NL=ds˿a (6iFglޱ mmq Ƴdpk8Y"/lY~c֗4<|ƦC ;6 UP)l,]-<(ıymWmul`!r[}fV XNݗ1{AUxCݓm ۰=ʤ*8I6]PTx9euAvSgSQHT|C%q;6IY¶a[߲moַl`[oWlill;wl+il4ޱ6;m`"dȦʧdB> lbl6^#XƶǝhaB]F-N+Z>&-j,o> m9 FI ㅭ~qV$[+y~"؟a5Py(i]ha*gϬO[c<㾂-'rh!r̐TQlHX,c $Mw>18Id5F9MI:T V7䃭 Rtf> l,B c6yK @ L[Cܗ[#@yg̰ټW߱i1l+}oek;~MIײ*2m&l`ء|"ǯ`K[/-~o|6`[_ibUв>9 eƪl|ؠq($ٲ ȁ "VP&yIRC#[76]vc[ճUN[ޤ'*9,lp06X&C-õ7Ĩc4ѸOr(2l{7w;_W)L^5kA}bVuZ! diw]h-i,y.\uӋF)~=Yߑo ![2IYmþZLHB>2~i'Ƴ2Am "+z!V:lPkTd@['VS :ъSpd v%|MblDV#[)/l+iq66"[)'[Mtlf9hY]sl}sM&l,e6)WP ty?X?wlyVXe`s|(QB8dGON-llVrme&>6-Q҃`!qx89M7fM6Oش,[A䛭}ֳ[ϟi~vKl|(? V`L/KUЃȈ-US5&:D9tSlC#ږ4>q!8ň4-Lƚ̿&c) L? f. !-8&Ht PF7;0I>O⦅al?:1ypD^@K^ch2\m3r*+0j/dd=`]Z-V[2h8#Zm'nw@փDNñ89mvfKN؞?l!٨1Rٝp;/[6N2aO`!rll6LOϱٚu )84]6?@=@YN` RlP@G-:~lHr$p!dhC7m2A߿ D l<[&2d6~J" WzaXIcҊْR33W>"1i#-EcWĹ$u} i$/m$ q|GbĮ1(l$-}"6` d46q 2jli>Ncd=F?߱ #[6ɶfd "MyZQl }Ǭ&l G>Vl_ =$[C,D_Ͷ4-h=d͒O"Md`lr$  آ >bd$&Khð:[XzyԱdXI>]̻|e5yAoGQΏ0A~|.x c9w@O H6QAZ?f|{"O7$i8Bm\iTɤ'>5+ E rX\ Ϫ#NCxA6ͪ(~F6lnYwu%*llyԾe[Ï}&φZ9AqBxaiZIW l ];C9@-pP{ 2Wώdkw`1:*a=ۧ\5…<Yv-XaAÓ͈ZsK)pg# plgӼ/ m}˶¶a[߲m}Vɖ62qlӞm; ǦS84"$6plzT>`KdK`[,@liDV#[/l+ 2;u-T)m3h\ l6=qy~1X/l}&i`7=5 haîO:*yC [kl-XJy6wlB0Bg@I&UjJ&m8+`2\4F%j@Q@x!C*O".l2.YNيd,A8# d:I@dlETBvmd['[*:ϰɛvMHmm;>g[k6N6ޱͥz,@lmc+W-XlK6ާus{m}Ŷ[24ޱv3aYd7R&oL>*`2|MZfy|8X66Jd+=n6[9I5#قl}˶~3gwUY= -RsE6y#d0 ؤLlR > l O`!rX3!߱Q4KqUܷ 6=;[H96Ҷrlm|-7o2|midZh}@>9~ ;ܾ@[ߡu|%sNdr0fB2XWr0k aH H-A@!+B&sPdpkeoX;PA- LL4ޡq;fUY -f]ҽVc(jd6#w@ӌ D2N:CM?yw渪x*5~¿4I' Uwg-].Ȱsx-F&,U܂ -ALvF K[lcwA^UwN XJ7ԔEb6VJ3 F PnS$Wbd7kvkV[ {[ 'ˀbZ8\x5t$J^cd%u1+ɫpѨ8&?I5sl\8ݸʸV!tUS?KI*sO%w!xQ1f$5@G /,b`2xVLV5yʀ5]AnY`s#4[X ЄQb+揰_8Oo`}K#^`A%6bԡ4Q6[Ŧ ;.DW  ݫ*n? j獨MPk (=UjuŶAW>戅dM:Rk"E&0*V^FQvu V3xǰ+٘+Bj>y +jCIjՑ$\mGR$]'fM_#F2*覘F f.bԡ.BlV.w\l!>N<^)ah=-!lA*_8Y,`_2 ~䁯Xhm.w [X*?yNT`WOXC1OGPU|IR*[ErEcc7TaWj+X`z|lvPjJUN?`5Sk*ƭʝث'U'; .\V셓*7,B Ա۰aucl<ĜL cgu ::\v ˟: ΗBo'CUm~Uǘew_ITRty5$Y "$g~Ow5٩6?BQ:{k$]M'U+:([i'#MnlmM. ض z\G Q.bb+G[S=Ѳ[,O6Y-qeS`CÃv74Hl !Ep(2ez@;MT18b/OU@֏&o2[E&wOWoa=ѐ)ah,4Zig$ 6JU1d8T%/n^jdn): Sd@_^o\WPNYrj#|W=H/Ջ2i(?dS {rDU,C c:-&W^6'ˀRۨl.w [FOGm,Ջ/l(S֯Ļ~ya_vH#`O*wZZ6l$E͐SGe^6NYxr".4(LXȇ&*v!GˬLUyxm's {< cgKƚwŞuQ%|UMQ17Rő_|lΘˎUI WS5\1+BU,VL 4;w]Xw:gs#Ϯ@Gy]e}>o̘coe9^ԷTVY[*+Չhg@: Gdkaن:+M mf-'[BcMd%6l]1l[6*B?>6^d*Oz?_90E6E:S6_IťYְE}A)`T.*ZY Q-5n(a`=W Y7N瑱E|<,B F#/2]p Ᏸ/{xU(nPEjv'"ՓpKlv %{ݟ;ݴb$Sgt +wb&+,tc=t-\M?}6bXlh3h,ut#Co1D-h6Akß\ŷÖ)gX-olƦZimE2r6} l]K 26p[05S5lݷkMz/6eXꀭ_j[V:/6_ظlzq^*<(d.NVF$s e9~MMZqlzyīa6PL.2tt oaa!| 8*2`*+xyအD#Ac񶲅aC:ԁPbyrF<$o cTW7ZrW[è&1~6^Z1J[k?c F:}!|64yW\kq+Ch(5@V0USf@0ed~)pUVV֗me6NV^&kv2+U0"txZ NWŰR*wϫr:pW0r6pm ӍM?0F%;.Vl}\N[6[+6:7~5m+h|d-ll%k%^l ߶b  _\ul% &n{QW۰AW&;ߔ,8aՇBx^,w2[Ec,~m,ukq1% W}1h0TVŐSͶdpc7:ՠDc$QRh2y1 W&/Wb)V 1l~f[OXN6yǴ֊Ŗ“-s"O#0}K iP0_5W_8_Kqsk`dKs<`ctJ ϼpa}G#w0zsJÇĞƣf*@0a1atոhŶhхFbVbFNT~KKDkɊ8=L^KXl5^kd=R 4zlHxkkl8`4Qpkva=F?#AF4z 6tAW`mOVZF|V-:;J#wO"Gl uv;KEHZS\ZJV,X"C C < -a!Kr1h0VŐ'w`?ૌIhd:ݰ|z` xײ~U>Gw(6F&e5eXꀬ_|F&`̤5t.w\l)>$S꣠9 Ɵ1lV~liKB\FjK\&^&/?q J~f2.(FWhw_IA. 7鱲[GBoFkI]i'jed@=ѵy0_eZ^mɰXp%h,UDJ1X@GYEo Kv4/qp:7vol8m9l.yods69n#V9%|J1l\K&G,-Im !Ք@|,k(_dk{[Xi{Y=LUUO({k?dUՆHH$ %WROBXLU̦*+fXPIâw*/0ȒK,=od,.˰_ VXelJ<ɲad>d{Y'ˠa2xŦ; 1au b5V */l kTVPSL]EXn4UWUygռ7؞YM.o0٬3a{ǃ Rrؚ8L}lLSZHb&,*ȣFWh4醕V/hK5M$/ض31eg'Qي:&6egR[>F)(]uc~YnM07uMiJc)_&W\dmake-* (8PBZD~aj:%44Lϯ(:YbN҄&8C7UscKj˲:nN[R͠ԡ6Flΐ\Voml76PcZ6'X1mf2h,u֯/8aWiyցxet2x?3V>ÕF'Y 2ɖw2 #ÑgY){Yt 4429 / DtM=4g+"Ƴ>ց6ݎYv`;M*1V4KPvȠ[ y,o4@1'd/lTN[Z9ɨ|/+N^AhdYIxEyac(lad)ʥ4d044k=1lL k1m|,m6Ҳl| qtoc,266Ɩғb̦mzǟ %6dy&ccoZ6ݼZm=vԼeov%61AIB"] 2ƥRVx1z+.2ݸd\5O  Z2yv% -Uo%IʳCՁL ckgu [PGO"O4[ԀERm]DyRlC[cou ^l:*d&|0Ia{ c&aPtVoRdWbb1%V[ {\MSl.w\ll S-DB“MʮİdJlldQ@$^jS͠ԡ>6eBilī /;尷%tﶄF;[FUc@k>Fր`M61eXꀭ_l.w [G-#SAʈaPϠ[Z?#çjcSb i:aۛpK%M)&wndWbJ3%-1l}lN6Acgs-e- c@_\ ަL]j&jʮİlJ[?Cl%/cO@26a%xuK4:M|ZVJ_.W\d d3cMH#ѓ$2%Lf)ֱgd4ցL K1m,J6%|zIz A J>R04nWb@Gk1߭Gaoƒ#"a0|܆^DWb)V 1l~dckds4vXVN6;6^m}^cmb#oWu,6yb㋍g/ljgVM]}gKi#dvct ;[˜4J'MYkLK|aM1lJYM^`VSu VF?c2F;v`=Vz5SϠ[+2@ [HZimaT1e M}Zcl[V Kj뿗8mċ-ct:;[ӻ5V Bަ/q7qڒ4L4ž~VEmndQÎGvQ1%60tzD[b)[*oMT#eV3]}pnGEs 4*' 60mm k^>҉鞦gZ$ӑF\m}[+gG-Uo 2YM[3;[MjKVYf&ω5xHdňƦ@KP4:`Ѯ6[Ŧ;|m|M6yVeRS^Xg6mZhF|Q^qGUgɣzH Ns|I2Q1*e "Ȝqϯ(d쩒;ϡhXb*zb;g2EŔI_:CVMO睬yz;Yodd.W,a RDK鞖ʉ~FiI֔FV^gJA).Rd ; SeA 2S]!i(,+uBZe!eN2hd!meNfx2GV'e1!:{Y;9cE4Y$ ݰdM0&å,, &?Bd lXc1⣋]dtƋTW[HWaTWl;at,a"̂QUt/Z|Pa}^j`q́[2%6` ] %6-Ֆ1_QnlOM-c$|o|b2xPO6 Q8BVwUA&[sOZ!0aݝnf`1`P{L~ T:iE|8סwaJbS' E.GR̦ϒlǤ>nRGc3v &G[Ք3h,uaցM rd1:VƧ%-SI֞IliZϠc8 D\e?~3eaxq]ueٱfK<9&nL~^Ae%&Uӟ2BpZ 1-OMUĠB.Z2#S Gsi"dJno(t [Lw(:|F'Z.rƚ,uċ,Ah,U@0Xɘ}8d9xY=E5+c۞=,Ȕ2d!t}a|o ƅ?Ŗ5\TCtkBP"{O#?Tq]W{SRsw€%'ҽފL𵀊 : Lz` LP.?K'."ړh",:hѳ,EFB÷Gv2~_KXyZV=lA*od SH lвlh=M.AcG ܰi-XhJ5c*FsS[w$eose XCc2h,uVEmr8cXMG;.6ledlEh}X6B66/ٸgFF%{\χ\r00;ݷZ\MKQg;oPm(yNة7nM;Ut/*|h/lFYPf($kH|'l Yql~@d H+ ]Iv\&BNʌX Va- 1l}g ZV[<ǎ֧EְZ#E“e5 s:FɔB 2{Y; mmޮvB]/$v]5,=T)$oHvOnd#)0I9,$c ݣ;xQT ju{"%JG#Sǿd6ޖjUQ~Q==Ƞ%e{FdKda3зQk [B>F [UAc>m7ցZimMvMRhk{Z 'ZNPe= z2:M{UYy[dV'ITYP֢8xUOJp^d'2%v4~Mf>6>hl|bbKds_ -mI":e*6R&od5ܽϲ[-kOFܒ_"+$^d.Rd c6-4[ۻ -_E&l}o#vmٔ":Y %1lh,UF 5 Sm2WdQƕ5c\WF֯j%CiO7e/H 4* Syf7d)/+k+.2O(/G̻ĆᑆqցL|bネ6^l|G/6x5M?'ZlTM cSboLFr^lo0VlYZB9̳*mċ3h,utl*/4g+A!d9z ]dNG?֯Z.<$C5x!gXꀭ_0Y&#1Z7GVAO^E6}c2~V͑d/ EkUQM j>R\YvFnu )V 1l}JlFds4v6 'c3XMJ6ݏmd36ml셑]YД,ke)ek2Vhc㋍6>xmj 16yJw+=R;ܵS(AgX-7o :&sP6Wbk+g>IIlhrFݸ2{W[Y_N^6Dgi 4 FIvP*Ō*OeXKze@]6'[lJE5G-#>|*$^l.RlȻe1{bAeaygk)cbcos4v6y,bXm7 q',2JpG} ,eKyd r(!45Glu4L6.[E֔f3xr[Z('Z^֯QB9sĤa=F5ϟ'=j$xD- L.C1Ax4ONJ,˂!@cUПs9VI6}4z2[S?l ukrg;&ڣX% (V0r1WҘGAc\ī 4;jmz[-os4v6r6;.\V[`6mKڴq6<1u662m\W?cxCL/ec#t,th}ynUyEQ|THebHStT)H*fU aM{(T@2hܫPoaY $w#U]F;dU0d3ݚW4<ԢCB sB%o!f@cpe#qu .)U+YMᏰ)ie|^ JlXh!:+L c֪u֯1BM9nWo_ڰ:ӮK K#mċsrhG;[!dTd,MO0{fP*y7K, "pqb|@Ktx%axn[b8YSVXںJNVTڛDJ^n@cSp+Sx¦&Ƶa9N[vJ K"iXEXGf@eҊQB[b+m>YQe[&ӣmNQ~dOjcSZYÖj`*vd92hlCQ{J`gsbe{+1(al%x8fl}-@ [ S=[0F_0ɻ觭$û9 K F\ցxe“MT-M  oĐɶiL9ddzɊF/Y1նX qċ @c~)35 ^en^,壌~M-mm5iW߮T,ə2nIL=c5ild{';Q|IPo(yTR\uFwFYF2xb믇;$ - ٔx}f@66%m>w6{['ˠ#['`c ײggަg;);zlzgmx[Ϋ-yK#,UV^YÓ1S#Y;|LhY_VVQd.S*`3 ݌^!/l75 G^ /{FDy j@ gA mfK*)L jYIGH,.Rl C/4U ^i^qv/kX8LY_f l`=ؼ BFgW3_W<WҰTeds`2h`=cd)bIda×GoI4Lq,#9]cɯgl~4YrG2bvrX8L11ِ_H- F B6M MG KQtWl(ty@ɣ-q6%I:TցX]lJ<äkuo djYmmlѴ6>'a!{(al\m5_KnȮ ĠfJZYC'硿~9I&(FֲTӈY//Ac~䕱ؤ:/neaSYgE-oKaOs 4v~Ђr2+tѯitl|,m6ކL~f3xNXkd{֏lll.mods6z/kX>'!`(Jp4: G-alu Va#_b cb/c0ݺȻʒ-~6@6ݘdYrA i!Hݒjړ[Rh${]H5It $mQm&(Kj[zŠj?zgo[bȖ0+%+n6.@ca59;=.WW|B0zCE3XFhP\AdJXiCFo1򶈞J+olˠԡ6AցxE|\Fx1S&ɿo\Ēǎ/aGIMR€FÔ0Vr[3X>Jp4:G^_\UƦR3x?+[G϶\V[.qYmecm\V[2xǰJ ktv6AcgGlcosbdƒ9$2ccH#6%M'laŔ0@?c>7*5Gnl}z^XCceǴ|N.Rlȍցx$e-4F/ Fmq1yW\Y ]?h^%N;+G,3HtM+${kDO -(^PbǢ{Wĝ@ YĎfz~YlHdb;\a,]ml.w\l%Db<6g#n%W-Juu V~x?DXHֆkNAc68K¬BE?@wG\`` /70]q%6JO0R) ޟlAkgG"ˠ*Kv-e,&w#-&zeX.RBǑl֔Kp4: Gnl:/6y}[DVlzM6➫gxaP'܌hĠUS`#cup]e­,ד%W㮲\2+Y7*c!!а|L._14ywdցXidJ[?Cl%i#%? JےϠȫekW[[R3x,-j6d6^m22[bZ5% -!Xw#7ޫ/OI.Rd!llFNQ|!|oetQZWZsJ,{>BR-&dw$耢]\tQF mKMh f5X*O?2[&ިR! 'UkBY_2wso#%SϠX@T0J7t QB[cr^m9mO6Acgyo| 1l߾2ȼ_s (k`$LN>Rh={U0y6 %8..lor{261.JL ˒n`m)mU4bxMO]au 'VNDAECizz *AhCBF_%EYǓ0FK|ZM k֡.ሕ>w,wla_ɳeztlסfH볭qbsk,֏/Cxp6b[4a&j0+0Nɦ7O0#0zU<X)-;=-5 LVИA=h82^Vx ;Z?bim9e؂i{U٣9O (e/ dbC/(H νa*,ݔTM%0̎@?OKs2ƪLa ,Ɨn Gn(B/^r[ ցxQ ul ''[w6dƩ6[rm܌"g['ˠz qd [26S26zDSbc ?g@ ,}A-iy-϶O6yK-fo3a3¦;z Ej/YeǛ塕;PS?sgkC0dLe6Nv?u@ e[~֒,co%8 KɖCFlUƦ6r\ GldV^Q9-=*F*imآ[*=v6' KU_Z:;Jh+5wW|llF'{ZNTUU (Y|E־%Fd?Wn@& wkcg ~L5-ߐ5/m&EɠT*\%Q:. d8%ۿYu}KW\3NߣJAJZMMVSD͛~DM1{SCݨ<ъ˽*a$eċ*ar4:GVˏy\TWU\1NQ嬪M .SWaG_ՁL ëۢvnl8blx[I-[Z|!641e%V m2VY{Y K#ϲN2+y LvW_L m/*ɥu%wcJG(GbURM291USS K^^lTċMgߺJ98|jr,/:x].Rdl2x?ؔ'ZL6(xf+{&^gc9L' 1');Ǖư K% C5f@dF}J|(E6rWWRܗH^e2NAߌ̓g!N2r0d=Ý<]|!u] `،cw{&xRxpuH [Mli~4<7ObJ^*ZG3^xj4S Ȓ8cԝU&jglS}.ÑCb/xŐYt܌Qղr4AcGG y#r qmMVǘV)1`٫ڨFfcDjJU*?`![U14E%[UsU\$ UߩoTG+, FKd -,a͉ m" ކVX/6~a{EcwV|F<0֊)ah1{8i}C_Aid4B YU1d2ybQ$}$N&?˸dyQ Y)L+12'S,F&[[>i, uxy[)f_b=8d{[E{[{҈c2h,uVӽ!bct.w [ oKbۚU{X +,ek `XrgX_WX{XƦ?o`9jg15t2h?j+xc:`(gXPzV-:$v6VjVNP~K߸w*#5eɲIF5J2Y|Q3 b=fe1z~;a]6}WˈAQefX> FR3xZO>3gj֖V|Mue;-zd]v}[G46X87Y`aqӰ%7@ h +EW,EXtt4:hj#+bXWZV^72:j-#zmO6AcgK2xǰrͷq\m-xˠm-xGoC+eʓ-sJҘ76%66ΆoCbB6%66*ӆ!0#w(j["qK#7065Hg\N#USFdn};eeL Cdiy?i Zş<" Y-'Y%,\|x`w9\64^Eco͠a xdx%_ĠdJh+5wL˱e(GH)&RX%[NBE&S3xſHhN\htɍd(J~ZmնJ>7V[hVv660^@j2KhXt{~dmX'<=ݵJ'aZPc8єرUa:$)Ѵ%tMi26aEuPundX-oeUHh(DY4+"vvahl#leFVCqJ0 KHZL m:l|b㋍6>xV1iXnVUF`-adT~VŐ 6,/MELW;]g=\Pg6OOw?$Yy!պ%ey# ߓjYHlIIt-x&']Ϣ9~.OA ҹcu9 2CbR3%,VǰZ\-edklccoim.w 18SĄcbc\xe .w,r1zÂIv6]I*(al:}4u,~fwk::L cKguL˱Ije XÞqϯ,F'0NwwR {R,#Ų'-ϖcH"|rǀJs1T)7 Kp1FoWBo!ȔVjɄpdc+eg7Й #qdc+eok>w\l>>'*FWamw7FWl͔R>av6ُdycdFlcjds 壍m㓍Q@7ƑcZˆۧħ6Èb:$^l2o>wL_lm/6J[l8-6^ll'W-tb3lXO0R{6Q;#t&j[;ݷ2ԔctmXArTVAXlRlaR`=vlQ~/r?CX`XJW?d!ml6_Jlmd_苯CbdJl'gj;ѵʠՑ0*_It\.i/bXD-24Q7oBKZ?cheia]ȫTUG7 jBry@Qe2ػ0zpfxE]ehv LEH@<|VMgNdilq#%LWBg@`R\G6W0Wxd?˔vTZp8=;}=W@hx75j<=ݵIIw-([ԭp$+BQ &TU?T*[ī~f5W|!|ѯitQv]V5t, R=&Y2Mt c_w!tFJԬCUtrUHz mQ'VͿdռgצ>tOWՓɞ>bgGBÆW-ʝCgNSz Z0aaVL_B94:B^gNVNdNfJPVxE,₤_Y YbGEn4\)O=ݶ_~?-m|mǓ.xlYж =!HҶ<3<B u!#պrvP<)'H$vP=iLwJj{R$oH~~!Q%ITٛ. ZJ` #:&ɫW!"%;-Ֆq6 zZ JKӪQXe\,E/3,4ڴbネ6^l|G/62~ϯYC6n- #v6m\d06n-og2;.6Ώ6|N9{[>ʳF]MU͑wK[.OeDYk!1lgOmKnӄMEa͔Vj6[Ei5=X i+b3W5}USCpUgEs&|BI`ê?OS%I,(y3]vaJŔ0?`dS꾀9Q}6[vo魫0@/ܥAu'A? GycbbC@g(a- ;$ؙʜn{SN>wAr,_-yP )ɣw6:` 2Lﱫ8lSS&NE1i[5 GM0 İզZ^N[5~mkek?xgk-o xnUt[ڹMݸ Fqgv6`õ#'66ʳenYl1ζj L M&f6;[)qxnb 36ml&uL[*ޖpu¥?MhT<&KS fhd & &+r VqQ8PkJFFJw:1Z(,YN^qe>Y|Et 36~$W ـe3cJl l:Ìƭdw6jQbML8uyư6]Cbod5 % eдV-|a Ġ%@BxyŔu cqӱ}vWuJGB"*YdK' mԐ D*=S.#Z Ŝ` -f,5@ o5$4R-F/p-ɷOVy)v,bf]dhdx!1l`Z([N/@ c[qӳP )0 |G>=ͅMא0PRね䭍l㝭>LM ?HN~9(QJXgߞ 31L02֐Uˑ:Xlڑu$'Y%I5|4aWK d근~~do[CbRV-F/G똶&$䌽×L:EG(jҧ\/C>0}'HV!7R}"H}qzxjH5\&LQ89Xd]8yXq.v0>d+8GrUH:c/#3`JH`ቋvi 2:U"8raOYy`t9eoaR2'E"(!䒙 N&_->Id ӱhظF [AbzF W@ȍLBU`J6ײdXŔ ղu+XVPlUգZ`MK2 )SL=I;S{ v;G4 C<Ҍ*y&Z5,ࣈIՐxX4]1-b U['N>1e=t(GT1`|<j^jZ-46r ʌ !CƤZL2XǴm)k[Fۚ364ٹyњQ2ALh#9,%˸0s,$%h) eF+䭋 ,DzaUvbMœʍ8h1':jHT\#օ : ?aĐZ\˒Xzӹ+oY*-+:wKoVհQWUU U&)K1տ |kҌCP*Ÿ_˔ع* t(Y~aOYY>tLnlK>C66[NxxQ21m U)3Hh&7Oh6pk ߎ61Jebm5{[4`Ɔ+˨XI`Sx/721mdd-]/eL,F+S2Yo+?hg ўْC[;I#rgܳlYL*}(fɺ ad,ߊ4c&vYg*E-hkH]h1ze2f坭sezkpo _2JÖ1oʖp 2cgK2Xj13Y!l&v4v/Hp+ L Yj;YIFVW2b%S)j0X,/c Sdc b.yV3*PTlU|PSeEJɪEKGo"Ae|49TƕdEVѫ^#CP,UH/GX~l}N@QmTOqRCdW{8Cѧ ygY_"_޴d*3"QYf,5"}$5$.\ 1mko+p$>$-l?9WoUJ#M!CVj182Xed鏰sUq{7#ʽo c[Œ%`RƾO.C?xŞm X9X d f,dV 풋ޅ_!1h-/X6ccm*i^ߺN?]ٖ0Y,+!V< 0^ 3p5`jH ZH襲/l 36F[`V0drҬ-s35jX<_0gTWouK e#"j1zlg߬q:Q.؜6>vmj 36~f2XǴY*]?ȧg,8oao¥ŷ* d c\6$%$,Ubqd, YƇԿ?(Y Sƫō,K>SBbrQ-ndA],2#-McŒ= aR6w%RJgN,+2V,,`h^6i>Y-6eネg!_xkSflm,e֦3Xƕ>Y1p4H,)*hVl A)h7~ӱYYn^ɾ?J``deTb’ȵ{3T2r/6Ud%d$4Y`d":i ϋ~{&ťmWvd֐6Y;-rPx3~yt`n m,aR.lƯKe35_M]w6z4yHkY ^ýLgp+ka' b0f6ele@I,2[f'[5Lg[BbT2]a+euǪ%k$nYXr(V%\ h ׳>ڌ*aOu>c)UobTZ0RN_+&stjH# x2\2J~R:V~ Q5@p"akp%RRx 3E\T L 49-zdDK+jiĚƎÊ1|~L A)G#+Fx>NKjt8Ȃ1FϨZ4]YV𪄑qK5BbrSdVJ>c^N3XA5t,K'i§#/x`*^,Ur8p3%*UB2`9ԑX$4vKouK OJ)"C(İZ^"sLyFEEC5%xAYŠ"B@sZud]J5ݯezm­n^0S m-W >ax`uNd ((8}SF+dWeԀq %$L%p2yxN&7 w2yがdd8{6!^vX()`uD1&|2QPE}5QE%GPm U E=cd\m-Mg#7Xv69\l0Y|lo{ze (L aMeu mrgyJdh<9Y^VQ22)?LGY٧n@b%CouK XdVڜN >4=ey#Li8d3[ߛxkbk⃉7&73M'ҷlSg4Zhj7 qhZP-N5u~d@_7Pp$dܘL s;ZDhg6f0A Te8k}{~B!P!Pֿ)RL-{>}ƚ-{>H"o4jCUW٩ȳWanEr9wZ(lDǶd Xt#'?[&d)LLIK'߽2r4aƖևʉA mS`;mRl)(Mag[çK6yb8X0ccGbÆ0malY&;]#-vnH360c3:amކ1QgpTmoS\瘩GQnoq1XT2WCouK &5$-'bRLaネ76`㍍6v6-OֲrF yKpK+2XL=]aנOfd*d;7+35$]L'p,K>>V uy)ZRE?X)͙HaƖLq5;H V1e\r1h)ߎ3 1HVl !U}DY{˜sƑoV=- 3V6 [(m%F/965LW[_fjH [˪ŝ-o|{dhm5x[n֦3K nVQ69 &@G(}[vŠ ci;ΎJ [%[CbX5}2]ؼ,b˸U^]4aƆ15\(F֦38Ǵ%. [W\vwxaR6ٺ]L D8Z:R˷^Z⼶MWiallmxpQWcJ_hl\^1m +@5ʖ0:s%\tK dm}6c35$v/9R{;,f+J}ڢVبY[e¨i _ESs,tT[g`0c1h,= L -c-h\J㲣ڼ$Odd\pұiɶmǎP72Yr! ≌i7 4zn7smɏ:rb_">uclmr]|;[kS\wj agM+-QGJ/HֿD|8cg 3ƄefjHl㫌opnuZpnpx5v#a| \pz _BJV F,(O֊ϲ+`&e:9U EmXuAFmmlmAnn*(_>YihvE+d$PRLG|g8Rt3fa4h9w.`)!jq-KmB2yZVN3BռN YIJu'+\&_IoeQѵ-*˰ɓG*⌝) 3xn35$v638筍l㝍s[C% Z~eQ} L| _eOb_BB/.u > TlC-J3OѢZe.\dd/]^laGɂ;Zx.rGne:,{nEUZUG$p Ȣ! Gnd%ʊI0c%ÑkYh8/dxK[乑;Zҹ-k[p/;XY^Uw`Mᒄ-ԏ$'Ws|ב^q$et~ A\-ʜњh.h+#GG6w/lv9possn߮~$ +.1Чϸ+ TeqP$v,Y MK۽ƿjܩ=VT)kUģSE٩AgQ)[T&քʤX4e*G (3,Z-r5 djH ZH襢)ǴO+үU ;:{UG팔wuǔz |1L/tGnh?_cZFo\`d6Tn9{Qsv0;^6" N>OJƏeb_Ũd}?OPgdSAaRa;ZUWgpikUX6yr`*/l{TYd.A)Zmۖ9;[+-d3aos^H\o#|8c+R2 dNeNqheJ@VVFV?`c/l 36q֦28Ǵ19`$Us!`uqfYáCjX>LH|OJo7$~FJKypTgHccKR)wdN)dKj͐jr )$K ɑB &Gj͐B#`NCPZUf$tG$p)"Ve-ld:L6O\`Oa-`|gp5wD>IPULjarߦF!m AZhr,i5U\Q갨 3ҳ;[ϟ&+[~ԑ%<ɑdKmưպZ|{.e|!G3fIol mkHmh1z qm͊ωlyж-go K!m U ecdamreOh\v4`F& Qe'bdO_-}̦,4-+x&@(ZJ0C#+(jJYhV38AVL r<^>7/e ĐN7FL62w2`FVýL NqU>`aadFwպgF@](\ :|y ቉PgUuK !ac6?_?Y3>~QԕxŻN~dԀal / Z5$-b㉍v6YomFWml:Ìp9;nRt8(_ >mj%FgjH [iō%1H휖ӎdSYN;ռ_eTe*arN{V5s )CtaaibaY ; [ [L"aiba]xm(F4q 9ռ0jp͒鲑v+m' fldȍL'p)J#WerV<$KflhH 1ȠhhΦ38<pg᯶v6Q왭.?BmޔflÇ0c[JZU M#&sL,Hc'qC`O]36^-=f,5`f!q%28/lAh!hNq]nm' \ˍ f SƧ2wA; Y CF2N& G-cU㷲Q#J.Y\ah' S fh`Yc02)/GJo'Pv4]WXdںS[(;[-+s6fVL'p ,hYZɞaI[.(wR46rڌcƔ܆-`dwO>Y>~S6j; 3l_+ç65$Ub`+2f ȝi+mRߞjm9ZXlVm a-BZ{yǴm1ڎ,zXw+R,Ym*O6ށ,5MBBYs9CF4SCbg-F/U_V_a= m%t6Ը 1m1msU,OjjvT0t~ Y5@IߐdfSRw u)E6(ڪȱ 2r4:4 n'+~mOXgi%q`R64b5$-H/ER4ӱV Mhi\<-!jlc3#1Y[OK3vHaR6B7޶fjHlۊll1Vs[gGkr ?"R ZxdQGJ4 f,E*ÌHGB;|&s<ю_ih\I2dZgd$?s&dL LiU)2g\>T4lXɌu G+răFiebm-{[4`ƆU+k˸XNS#DFq# fld qQFq' +*VDT9OYV MKҰ5\u5$6bP6`eO2ue*ޡ5KRm'̟ʾʄyN4P\ 6G(wI/!D  ^ џoV%?n}-I3jѻXJ .A}͑!pE` bJRoddd+jJ2x"k;ǿ8nifo[;0cc5IE= qq*ie/|q8c%Jާ1T[U1ުdoQNw?R%6 Oq_ZhؘO{l ߞ{P_1m}?YJy'gE[>U  u5v[?BIdP鳬_Uj|E:v(ڪL 5"QGJI'gxH(ZZbK%0=B%׬*H W+#8ŔBu4 *Y0c+듈83 Td>"Sdw6:'nhLӎ%=+_JL7o~LHkUL,h/2E|.}oQ0jѻj kTPŤZ.NTJ>+S49Ml6zVb[˦3iCe`ck`Kʖ9QP}~@Ζ-`75$-7Ɩdd[?RtOi)h* dGYJ;u%[~ߟ|څ<*@F+>o=18,0#Xzϳ=#P @Ÿ]*d?*}GC<>g0yE?-3F4~”4Ϟ1Q71ś/DGdQɢr9Ȫt'֝*?Rةj}byst@aʪ],eKwuظzl ۰cH{v- =t>Bq%LU8uH{ΆPGUK Ff b5$bきΖ_ml[;y.9hdijk;;eya`rɖdU=v"_fasT_>JH\}0V5yXImv9M[h`ZY0uYnkgriՙju&(YtP {,0cU`dQFQ-a6Y-=OQYo-b4f,5j¥kHetx`ug ᯶v\(z{[;0ccxoKqgcQ?40.,v*VEOkܐb;%ռ!k~G$:h.h+#G#g"s:Yü 2s'FLKNÑߦ2jkH Z[ f)hG鯴4zn FkUKӊgh`j<_j.֥8tXQGyb3 &} \e H\_$p߻8o]Wd˒[XɨG{HɊ "Z$~c"L:YTdY:uNh9 ay}˪y{[L!V[CaBbzyǴɗe Q6aƖ1T'L(ZWo dm:sL[uoF#|Dz1 3|n35$v llWdc)X 簠+H`D fjla GY}Xn;a%K` xaoa`|+XFcW9 "W[-Yk^֚i!Y0cCkB469eĖΦ36RT2N^J,+fld,+J2) K21 ㈒U,lxXd2Q2f(!1d5ClbNڹLn2Zэ6xkcgネ76FʆAߟQ4d6T܃E^c{B5L ANFyLC0rGK1wmN[Dl{3F};2#IՐa  bbXZ,Mgɟ$Kk@s69ظl5V-%oK*{bdQ<ɀwc'Lm2~k+Q6B9-oag˖,8`7Swkm ` Tѹ&Й0Ч}蜤ЁkuN{fv`)MO:m)P1R3^1>bzOEY][,u)to adȾ:R,!؋H:ÌT@ɡt = )3,U+/YV&>jYJJje-R<引_eX&wjiU1'ZSN/#UL"Ȉtv ـ܈$K?woIME}Duz$_BJ\ ^t4PUyѵVi'6^RaeƒиZڸkjZ2)~!' tN aG' F\l_:ԑ[.[bg-b3f,5mly;4&sFbkugF;[ɯ깭k[ HcZ!C.W#?X!t:Vi$D$OIщУ.GjSG5Z'/LsƢN6^CNCCڀȉ@J3 S4~0I:cn9}RT-j܋65$,ϳ e V%b.ax!3[ޖ1{'6!^tiCN1eqYV& {W,1dfXJV^- 1\ʁq0Kkߺ dA#Y0HGWر#4(~4:GIoH#+YT‡t}ҌZ|{Mj YԐWKM5~o{&ېmz[Xw~U Zź5#ijlmEhL9ddQFZF ߾|W,E|9Q f( |.3%$v˲d-^hG ne>(t-c\U|"I8NgCѩ0`={ʤwRA P4$ =q̷xCeCPٺϿBAT7 dڨx-l,&ÌH(TE0rPmZgl 3ɂԐR1きV_m%lԞ˒KGVkc3vJL3 derL LĠS'o(_>Y#E%AA$`R4Y " Ce}D8.`cz\mh Z!YrI92$mi xe*nTޅ1\t$`1yYV&%LwǞZ&[W%cV8RSjm4Eʪō-+a05$6^-lI e^P~ԑd6l}nXCǫd2XjV0(8;c`$v4紴U we\j,+ زdɪɳj,)kٚTI )"񦄇֎ϞI6Ԧ%&S&S&Yc}gaR{'[[\qEEToc\-V[W ]GFh'feԼڽ,Vi'6Xxظ8X2czd2XjdgPCg5L6_`2>MWoHg4 İQZ-l,[VNodE ]vR*e0\*0[Yk^V 36Kʠddd*sL[*ޖʽΦ3RQt瘶-'mX#lkfll9Y[ e`OmSJ֖H54!)[x8}@;z:ʄsÐ7a|] >R~$ߔع2:3,.SѭUIn k{<`ZD6f,5gs+=,ﳋ8!~w>I...;W܊˽56ϪڎذkVh,}#LVt~ |"0cW?2\#CzfjlmW-pn㼵kezak[%k+Rhi: Qhe)yYV8Ŕ XiVV!5aCT&Ìh ZİմZ^*1l|-3om*Ì [j6Tx`k;ڸq֞ʚL>"S#GYc&NmK[I0c)=c9[h&SLY(^֏h[Z-6n0cC ]RStx`{nmTb6Y pmkigfll1Zt瘶q3aG>= Bc\q 34V-l)HÅNZg/1XWAdp#>oXޅvprZ- q ha%r:W7lMa:qMBgR@ Pnɷ bAXnS0%jLXoEI(\hRfle$= F[lWZ);?߱w}͏:r\A[je=.G!JScFQ,MgVVQ>t8BuIvJks ҂jlܬ-oK2`kHmZh[/>4-dkx 36~D8z[֦38Ǵr!+p3,\NJU@ .a/֣r|c.9N8>9ξxcM s<&Dm|"H0)ʔع N@v0.qcW%i*YXq{utX  FV8ŔeH-=DN3FL紘w49Tlk2l!7Tl.SCbr]-lIͦ(z[?l%[[Y0ccldm)z[֦38Ǵ9[{߫G5%)'G_>+~>}9[R1TjH5\&LQ);9Xd]);yXs.r02XGj?~:dbM/f,;G>iQo+$ fאuՃ2._ȗ=床*% som4zyŔet`Adٳ fl`3AV,fja:SLY8AH-5@b-z46,XJ@qŢ*Hd}Dx EϷ23v6Y̖AKE):Xo>t%t"Y?Ht0F1r+AUScEV9zehtmm}ɌUli ֚q}}J9eZ,dp +,cs #uƞFbf,5`uG%$4 *S8Y^ .dײRjq)ͅGa(ƒZt-.eU߫:RL^'.=n?V R4 f,% E[AbbY-f)Vj`e=62RNdJ@VFΖs[~̓빗 /:դO8],JoH$⼖#'>m3vkY6k ԐƤUo?+[[ 366z - l9V[[i綜mMmig1&Y^r8[rlV1р7tiN?j~'e;QG>} ͉P;SG}5%DW=,7Q {W_>"S,dle-9dhh|ll1gznw6hiZjBм,[Ym;Y #S)1#m/+tl8e%[Y+[Jdv(q'X0`e(߮UCilYqԀ,aЯi֐Ф%28Ǵe 5[ݿ޾X^}X]0M5H&-c'\oSA h1N@VF?0fIcKM*?HqG-*SݎX]0 aR!s{~t8بz[~cv6^Z([ֆWnN[zS$0^-,`j϶OTT&È 8 1m-y[K֖dmd#ӆ fm:sllSl}Y҆OԐ\V;opoKag3Fllȍ-Mgpe 6=-#2~jL$2Lepjb,>%+*3oV|$bX]k$3nEJ6Èl,CwjeH֐xhD-ȤLpVʽ- #V6ro &sLX 5|Lk!`9Oٞ>,+M!PS&$$OIpE=ɜ>bM=In'S5S ):锔5q/Lu7WOk.p{V/5M׀-5oKMۂQZ,̜>bKj0jJ[Uw`pp_2FXQo \f "eaR\j1{ll%y[?riKnf2JƭMgp6wj6c-dpo agc`ckKi#gm55-Egcg'~ywBrYkx%ebLYk62)0n

q6}AiG FhdsYN;ռ_eT7]#,YAʖ6(U;Xϸ/#സ̎Mx aE#w0F;Y.2jz 4:t-ed?FkRQs7Kjsވ{bp')H~)N D,Ch,p + EVSlr;7JXAޑ247(%wB, D^keH$pɲgii-cdCmmZf2,辳 [YX}ksܯkeg6eOVɍuqV%q=*D֔OHt0EyylPTt`uɦE]`t x,n9䩸Em>dS&dL L.M8Z >~Y~Xp-Z^`xAP| (?Fs@Pwg:jSz"u':B{OztԜ2顜0E{?g6fky^ 1#&}r SLNC+C2#]t ƚU\$bt_yaA22!8m6n+6m^wpۑ3!qhsluш6h+#rAdl߶傶26F&;ō*w3Fv.%{5@d^6!q5}P[g#Z0ΦGdm}x[ lh -`cmg_H)?8sw6yY3( l`Gl`GӓZ{qVl|aXY2ϩu֋kQ3X,5VtSZ×h[NJXK&˚$J]aXe#0RCelG%$2턶X2 cnVg2p/ᖖmMǖ6d 16VpdXjsԐ8dAfsr׶GM~-h4@+AAGټ<؜C;xAAsY2 (l(}NFH i,hkNj 3Vʕ귲9{lTfzTm\lNjHw;[)F%HG9;xb+&;i&S[)O6*;Cp|`kmf]בug5&y=b6Nh99!z-V/ j6癍m2X6#'6zjzs_㎼zVJ:NRXi6e9[KI#z'(M(*v`8ڸtψq3z܌ufO[ڸɤ\vYdIP6S?l(fXjL6Qk@KՐ8Rڽ qSYΦ,Be},k!eR[x͞6QD;֐XmLm˖Kroɖ3rmdW'[8[Q˼~Mefcע؆m&[#ަ<ԣ5$V[ꥳ9DzHkyu}"O0ҧU oL@Uuة(" FQVsq-R{eIEHg:ez[F$XJtОoq2!1ʺ^AdO0Bu^OxWWTe)1 - hX=t,_ⷪUD=z4te[r 7nBف:}SUzՀ HXPI E)ҽ?qj%&!GB!l<߁8>t}e@wj_DESDEFGYֱt%QFz6lx2X,5T JHd23|XRL. eTAAV*zA(cBK͉ hd6k%i`t-9jq~AAV'%krV5t%LDݏ_}nI}䡥((cơt]7 2Q@AEȲ?eS/)(ۜAyg'spkzޯm]ʶ.4zGۜo=z՝+^%$W/s`P[ަM4!8mh6_kyk m{3DzQ6h+ZhKH2J2YUe>APF"YetA'ڨ_;íMVm^c$Y-RUULU.q\rPP0r(xJn0TP1((H;2enқH⨚eXjL5א8_-feK5RE|mm5MfL-hKm5hn[hse9ڲeC:H֐K`1в~Kua:?DVATEAAEQUP4d#}˼6َI[hq4u} I .MÍ(,VMa.Cp,[V{1ڸEۨh mE[mhm6F3s|`KF6O4>5'x/ϐyorMbkPu%K`Pl4e`Un bze)= m.e)=|@VʣL'[)F{Y~q'*=y'4gENJ',՚ 3X,56i2*iX4_Cmv[lHGGydNg+-RE5bɾECWig+`cO# CjjiRWFCQ3P&hN #[,d-+"R K U9!qt-!8ƺgМqG^=c`YWݖVԌ ,f Ya%痁$VXoꢜ $S< a3Fэ6~񣍃6~񣍃m^H?Q6jw-nl‰5$VΖLSh#ZEdliUq1|X6_䱢_:D ,YqshO2!(27Hgf)M pljH6VJCEfc@9'@k+e*sQご)kGߓāđ$~ q 5i~)z AZ] *5(NPXav-ɄKtjg~sx'ISb|x2X,5TOPL֐h[^jXޢ{\yk { m缱]wfɪlD(\lbro3DzQ6 6t1| AF:fS ( e>CPd#_OJEŵl+Yq#gu!LŝlLF4~ Mo.6~ l<:ꈴܐ&(mliܑꈴ2(s"e\wAX1W)e_E!,o7-wDRGt fXjL9sG'бlD[!{%h%jBdlr}hm<0vf>)w^g476}`̦c1텵cc9E[Nli9=l',B00>t& `am`1Xz*`hl>:h+,}#FVzF` NUU[;QW[EX[WW0qk5$AW6yl-uo˺(e>J2(y[hkm-GO\? >##ىWҢ9y*ҊõőWszIϯg_beZX-6,nх]>H#Y)6z 8M1SdU 7|/B0S? # QA FGA4:RQQD@I$9<3韑J'{l}4WJ'ߓZ'7RN?%q $=~I$O)m@|KIJґ0%tD\[q5ԕyRGCYB|'H./#? GD?@N:L֫лގbsmEb)! ݨi +Ċ"h PdGqR X e? *Z.eJSCfۯOhMn!ȵղmF[_"4H5zBO`!Ȳ8٨QeKVr|+$ ,Y2O2ȀLl^%]ݛe`zw)7mi6[ضmC/dӦ6Wt,[Q&a7FVE܅eUTOHt0UXtpeh/GտҨ>Atvg}uՒѹ޼վeI90RBeMGlJ(, PdFYA6j M W fHh M^&쵭d6uۓ _FU9ߪtA5*'"4ՂH:/U(&Nh2T-"4%i RӏeNRmt6$Kُ/Zv .I9GUd]O0zEډ{q6F[і+ `;fml6Ȁl} ,v4=ZѼ,cT,YqɒasU#l6xoηP k-8d#c4,ׁeҫD*!˟!O|ӝjDD_d\ $6R5/HM|~ $b5&z@ѣj8eht-m+=mԣWA&YWQ?m{.|nglLfi/Nl9]dzv.qGNlM㸮8ؚMJہ9A .&wemUo!{! X F^@ *ԢlNtfDȵp4kF jH\\ oXi7Nd(cb ?ɺKUt쟳&e[84Q7.:f@ UkqŹHu!7|{TɜYxUM)kBC K up ] e@DzfX&\r{A&c]r{At|`f3nYk[d(oWo[kh) X 4Ajӂ(k eG_ɺkqGKvqk^\;ۺ)+ҧo⨲9bbT(55@5Wwyt*U^bUZԎ,Se;GmUjHl*v-5Ԗ5%/ۊ|o}Օա33X,5Ԗwo!Y e@DzmMn,66`1rA\+}c  ji2wpG$۹lkYIQVҽL +V& *^eE"b6zzCZ[t3IϡӦ7^6F[J6Zqh-8R 66>ꈶ:mRcHH u>6kH] e@Qmg?F6^z^OQ[++w1yӲ::ӥ-ޯ,jK:~3o!(Kˀmネlh`ネlh`MTz[hci! X <ƈ4F$@'2zWZ/46תF&$i&'NmԞl ";Hto^|h%jA[hr1 `%m\-UAt,[҅m>eE@m$*]8kwXO0G1^r`RyW\]6\>(?J:>Lܒqs.] v]cܻyK]2sڏU]rʜ;'!,uњ4lm,lD5,ևˀe+P.6^us[q6ڶQW zn6[X/9m^Mo2Z;J64dl]|vgpvAt|`kmM^Q,G,:Y=EM.d46]4m\ٴsvuG5V!Dn=)7~*kV}Xr3X6?#(S?D{-Փ*zd4u]vkw9|'FѫDYzΐW0Fg_0d'3ʾ1 *diIW9ZQ5k(SeyIs*H6P?GEj*$3IV]`ajNr`:䞦C#K)X[uprajo] ,W.yXG'.zQ##>5Bz7YkNf:80mmŪٵhߘb>Î8W _CbZX/m` mzyT-{[/OTWVjOvN iʨ]ZS2.( #ASF6.h 6&k_6>Yw]^q K jHl280:~m@fӇn)+C[h+:wVFhme /,58m\t,[ՑUvfk2+$ںlڢ}cj;e!1ش٠ZV&@u5 m ،5&;od@/l#iI&_E5,sp!)zY)(e^&)'d=LnTf,RPPe:d|*ﲼ K'P*ePB KzP {Zҩ=d ftnzm#Ƹd m{[O6ȀOldK寶TmZQC[h+-rBdlЖJ6бl0sVSn̯,.,&8{R$#I~F"$=pMj鎔t7I\Z#$$=WQāTIt#4}#q $:$7Qm"t0dCr 2I>VV\ybC2P3֐`ZX/-:-h6ړ 2X m= :66늬mrl۰FFnl5;CXCbRmlVJm+Dh m6Fi/ 2c.MK'dlr-'dKl:tr]6Ihտ@kl(9B)`0nԌ%$VXv ewKo ʷ.s-܂pY;$@rWLwĹtw~kI&_PZ0٢hVP<`Π#dNdr6JGY.(:e> 4e 2bfVRZH;e`+>ݹZE%@TM洲Slq6T v0ѰQ ٌƁ#FA=ip&+쮂Gu08(;׭w©EVI_;CXCbkh%}EXoxΗv#˄iWVWlE4RcH/=讆6[X/-:>d)tڵmmDw2Jml6I3X y KQE[*.:-h׶D 5X9!,{tbKyQcsGM*kpOͳ{GToEAEbqPqPQUzTv??Aj]6e.B`^I,]eKV[v+$dFY2OPKr Խ,RK/2B2J^%@: *L?ƚ ~Bs.U4XKYyPI;'*dXKP alܽrψTֽe ,F}^uoo(b=iG 2X ёf2F@#At,H.4"gR+--cgQEV\v}}84#Gal+'2*("m2fXj(ukgkH.[-bK፪ݣ{K~ٮϿBLB[n(rdt{ H (b#m3xE bɒ,SٜzU}A6[ ,*K\&o\LcTB/.=Z>tpOѸeG1[綬+s`P[6!qKgj+9ڊ:jpCH([1usQ.nh8(\N2w`e]Str--fgkH>za-M3cc$6ZEYҁ%Pab];*~b>J59o9X;2oL+dXjc5$ :~aF鉖uDX'4@U6kq#+cR2v-A&lYJQҭ'Y(s%;5rRA8(%]⯝FtQAWvamX?]tXabd+ k:b@ Uɵ^z{?lm6vcmG[ёs'[i.`+:~nd+e@Dz&*swdْUWWk*fXjMrٶV!i/٠Ưm FѓLV}&keMe5/+h d,Z!re1Mk-Atl=]dkҺ2zƦ ^M7h#miֶAևigK`cAt,h6ڽ-'dlr{At,`_ǤHye9-ejKٵx2X,5F:ȃ9V!p-WӜHq6۞]W4AU֚kq#zSq ӭ'$@ŖA#ܜ&Io:GY3X4ᘾvoh)|t-sw6'WJl3٢5`Ԙ6#hLd̀eK-R 6F[oV `K m Ы-Om2um! 6g6pa:p1[.hcTefcs`P6~Mny!d m{[NO6ȀmMG9OZs1[6b(7o5}%Vs@֞`fWװtL\4KG9GV y-^݆ K M]JHl0r-[T-'ddne=|T| Ifz,)kYʊD YnY+{m,v2Yen38Z+6i/-:-xOّmv:oym mTն*;omF9(J~AFV 2cWq4gJocmFί,*>*U@L>/I=?)R`=xj`(@h i#mXhzJEZ%XBeFY c ÿZ,Z cb-Hqms9];G2lO&×4_+Am,ږuLݵpKs2( cAs1F6h Xi^FOY^EOi~]zc9I\$DA5jPQ`E522 4:ڪdڑU[0^ʪY?CE%?9ϯVRq$8bOjoHp:zR$m"Pl3hβRS֟\ Y*yAՉ7U.;U_;Ýҩj\ ,eht6o;rh-ZE[nh=MvضV6hmq|ec{FnTi76ݢfgDō-m+5nؚL66V d O .6m*ʴNV*ʜbjedbt+$a2Y*2ԯ֖ʹk,YCXVȼ1f8rQd3+iP(m6ȈqG8biNo@#Ɓ{ Eb H6ސ[ $@I4J hdd.@5$8bO:M I={R(݃jD)dߋ j@%EN؋(@jHp:l(e iQ^qTodXj/\Q#W=t ޶m 2X 6}VG4Y2= ']^ۑōLw:n$dZ\ʚkĖYk2 ;]q)k^!*,xRɒhΒk IfЕdM:fS`PYQ8ԐXicKˀ_ؔFe0y]ksW׮f:d02t]!ۆL1RBeYGQcA-[{Y-LI:h4-ٱi/2{2AVƽM! :~Iӏ),L7~Œ)gh(?1@:^Wԁ-( N֤ؓW-R_Vzkn'rC7$8H]Nf: n+lj!]Lȶ9ػWZz ,: c Uka 6>mT8xl6&)m_٪t|8Z\:;-nh,CXCbUF6ܿ1l`&8xAA6td _m==ٸn;V ]Om6Fl m%Gll6h^86X69F֤&' "JnsO=à_cB I_$^rK(H@?bg!MN_lI1ty?x1&݊%.P65$VVv YRBerÏC;؜2yKW 8YWI.RBeM(LK&gxYAFHK5Ҹ 2X ^ih6Ȁ'}Vږּ,í{Miͩ]J? 6m2m-烍&W&vxh9jE(hseH{Yy(^UP&:!MR(:,(kaHze߲9hYZZu -+MQ]YvøG\~Y#'?BpjpA4t3#Ek5J ,t0cJAXyaT,Y^1GlG$oa]{Wjr-ϱe) *KeU|(!Fw-NK#,*ƁEBMITQO@t8ESDF`Qtq. 0H6Г =Zn`t_$MU:]),Su-Ӻ7[, +avϗ]*s뢃Aa",uq0B$\5Rj9 Ȫߺ^ ,V,+pÂXV2UGTb:lVFѓKN򙫥j \xWw 0B`  e[k?|Ѧ#\sfGπe:46[h3K4V4nūb)>אXi5>:xwRU xDOVi{Z6tdlB$3Xe)~CFY_-(!d)NnTP(r/+I,[Y)O2K:uE:e'|i&co`P&OjJXCbZX/-:6+k/іG MG7_;ql>:6*W6tRVkqCrE+5$Vp ndҺoWM:6VMqJ#m ]UwhXԢ+6 (-jAY.@8HD ہh F_m-=٨nۖ ڸm,t6F(m6_6w=$K8W]J+V[E 6,RAeڭϮ%.큵j$lX:ͯz)8F *btKde)|T,ټY:neܟd^&{r\˸?@S,ٜ`+ޏ;eUe~%EXiT\;m81k(UZA Fٜ[O6Nqzh|YT6Fdl]GW"hK%JEd@Dzmr;ljF[FZ[AF(6X5#k$d9fb9K^UnZZl~ba2>A m_0Ȁl퉖_i6MuMk˸E/V[|`1XZvG@#qs'[IdS[]-5uIRe MK M.s;A/$Vبu2 bRnaޕ*ݣ)%4tbDMPu ,BWEF9(_`|j폮֞\9+Ū>dG< ,eG_lHVjbܑf8PCbkat6R萖۹ 2X b?Q}Xf/˲5q2f2`1jENp2KkJ Cqop]I E ${('Ucܿt [LNbteit&W%JUWRJڢ7L`0aCQrC*bz#\NJHpug @:Ѽx &Fh XQm{,A6M :>dJ];[HƱ.7(%Kْ-4[,F9#洂 kյ.:PG#'`ՠT(&FRHQA|HG9y9DAT*I4_;GQT ;ϛ? j+tL`2=r&5$yQ0*,(K5Hib٭Ռ^` %'[;5ٷ,g,6M9 F>Q9!* E9JAP*Tt 6Q$AyzG!G;Nqr9tH+_ ]DtB4[XgW٪#jU 2X *W4 8[Ap9mu"G[裍H6}6za-nl1mٚA&7lZбl=G[h m)G#'io¦1RP&oSB6^YKy9mf3J9 ie5,l@׈UzSP5!ji9#'9C.:VTEQܷշUW}j"5IٖWl,r-`,Sf; %$V(uRb ?8 {?e|-JF:6)lq#]J2t'lFJŵ,-Kere}D[LޮeiDY Y'q1)Lv2yl'ddl'O%+%E#_IyJ2`1ȊvGi<бlUGRVU]ecZچk&XJ(&iS}G'9ʚʣi5Ƞ'[*継-`hye`ネfQPl9mMGFe㽷|+VWע`P[hcHfczlPCmE[oԞlbvoKбlD1n΁\F> `:uhA 6Ȁe#lF4Y V,+ ^Y E;(v_Rd%ː(3nؿ2!f~Сk|'Z F>c ß}^ =9,ZN3x #7ǐѓc#.\&6viSDW"\;tm#6d,3Xlzkm ok˖J%mҪk,[іvG%5bre#= ]Wd>*2F (k#8 cde\QƟ?zgMEGTtWcŵxO~ PVY@ o- *-ʪjsDI,YQ.hܞhtDlM֮I}Xm\; \ 6jH6yY^:6&l7]UdBʺF'v-M&_#mоjյp6_ѱl=E[1{N<mK)x 2X 6[ ΖR+s 2cttEskIlaNEXtgPf`$4ꝈuZ A;"Q=ͳAvm QA tH6;ߢT@Gt"Q $jRI&Q $#T=IߤE[P3>//+VUNYd:*@ Uֺkat4@W֮МqvZ8Uo5-KH^] G_Q׶;p&e-0*F sgƁo8^H{p G2;oO#bW*GHr%+ۄXMX,צGNG+JP]^%7۪|94`:rnɖˀe;OKB-%lΡA*uϙ|~% Kw S u EKoKEJ=J(RH3 r-{MdA)#ȟ?dhZ(jŝXcEׂeF[zdiK<ͦ,ZH$4Bd@Dzm]1W[O6`1غȲ-'d@Dz AmU-$钴bOk3X,56ehXCbZX/ j"P2J]Y*x2MtBc.vj,TobPiΘba.X Kˀem֑V{ͮM;W@(L%vz|.OѾv{fSِNGl4-/-0;`]FpPWgs%*!l~~(aF>RBeI4* KU8ȒA Pqkw]yhܱ5>;3ӡdGHڥe|,9V] k(d]qR_B% `·o@Y(%2hJյxwi05$~l(_@UGUZF=FFd`#ldQ0}EAt,[Vu$_HOl\lbɦ%6O6Ȁl=4z(ked+@hbɞߎ66yAAt,ᗭ$㎰/ZGwT* QM'd].D9.J+k ]\tgȴAV2ےM3s|(Q(=BuΝV}JKٵ~I`TP'y'x[hPdrg˨5eϷ`T\FWkhX)pqu7/ %ſt.gGFO^>5Z4LX(.38TٮѻRnLe7e¿A;[0Xd-`ӑ~+V[Űwo[jRC[qאlZX/9>xֿlFsۼ++7mibɫW'%ʸ bJ2u% + e%EYI2JOQ[WK^Fp޻.dZ,F@_}OZX/-'dKs[&4{ge62dlU_;8mtlmjSmjZ,jk mc$ԐXmyKgj%M&)Ol< `:qnKбlCR&߶Ӝ}/M+~<nPH*yŞfXU?߾[s'4`uyŢZS[WZba0״ԐXmKˀlM?9mkz]`+.%ш6m6km6e6`1HǷvgiagcAt, m&mj;fb$`P7-5$Vl4-5/o(qGc|{/++6u>RcH9ԐXmKˀeK)RBe*omb:&2 :6~񣍃6~񣍃<-qB `mmh6ȀOld寶^m2J6ֿvom:/_O,,X/#\_GLDcc,R1AmlmmS_6[x/j[6[euln6e[Od[ORi6[ul=TQmw]=F'C FygCI6|S՚lm-fmt| ѦVk ضm.5i:F <&\L2&RQk4?Ea&-pʍ ?=;MB76)φmao)[[V (dO_^'CՑm$(;M0MF}l0a# 3)h|ckvmŰZx/-8͟ʶ^.QfOk.m2fwH乭6Ő"qikeT,bZh'Jp7`Tb -x?*uhOxEMBu>*}v] V[˅Wu`QLq&)%`Ŗ +֭_ekXʮ~_A53juFS3i${1IWRKh/H6( # 4xI-ft -} (*( cva_mq i ضqdV0Vd+(V:ۨf736O6{8/6{8Φ{[0T_w`YϱI϶4J1j_;AIgd[k^xL^ʴ~QVlKaݺnZrYv;42Fhaԅ~wk6-L=?i9>iscL"I$P2 ˖10L/~iG2lb YesArݥIsu`-'B 2$KX Y;ydTճluڳ0xL VU{v~6l``, +>0aT1V.B6BDJ- Sv~cIrirͥ% äY6',Tu>W^u=8ީfy_0X%0"nM ϓZk{O@͇6I"$ -^SZojO"m$SMXddzi!Ci²ŰuAv?r*ʲYF<&Bpu  Xe%1+Yd2Xf;G6>d,(̶f^ >bc6 B QKְ edY <0I{Fɮ9psʮe;bд# 枹Zl2ѿNive`ǶmvPIa\揄F<&[YlBTlRFرmwwm^hBpy!`zW~`?7 X, -K@ZR) [U,*iIP=+OPJZVde ߪ~J ޛ~ S/ J#lb%JKV*@Ҭ*ҤҬ*Ҥ*y݇Jb?7qL^y հɑe5~^berEOj82xLy}[,Sزq7`-Z6 7*\ 7ej@6G!~22[=# e \lɔec- iKN@eQ(;MJIa-:Vͦ 2xL6)l5fK2p=8>]sXc`'sMSmF5,N?3(;MW)Fۅ7W4 <&~Jh}ed'ZkJk#M~kxq'" {-50}˱]- [˶l'Mvtm+]i1m'Y<?{|8cЈ5Ͽ{)DnW{27$}J闤k=y-"J$9 &i%*4*jUEUG+yif&f'&Hm%R[?rgɞ6v>9#]Y^>Mt7S׍LxPUe&U11]_'CId1;~cOVGަ,em}ia1a1ls` g^nzC=z)+~~p]]a -*뺋 \Wn{hಃVo^CtfJq} |u2I{n2hIfKleؘ K+d([uPt 'ס+", {o#V]:V0Vy.{رmfxExmbȗdZ2xl5`gD6gaqMLرmvim뻎M{6;l_hmUigzl-8͞Dۨl+#OMF <&ڨL(C2J-@^?Mj7}b}Wp͕a2x0~5,,e3$ DvՖ\X j~*lTWVB+Jn,a( k+tWKKL2g:l뗲:>bIf{]IFXexg:klk;̧|n{ˤ IcPb -A#J&h}oec eK̏Ǘ⩧$dv3'VvXY{h!ߜWѓ!ƺTV0>ᶂA [vC7t콅|slZ_'cMa1lj -V1Tڞ ~j/{B9Vڞۨf`3cZɶlMlITM{HL+lVLEvQ6UKkx!X{Wf-xh &o*a%C'1bI?$+ct·MWC ctSa&`2cƕ忞qU\=˽6-O)V1ئVWh 6l6{[ilcV'e`Ƕm 㛭]Xull61'CՒm2fSDSHDM# "M3m$&eL[Y[dcQem}QVl7$ÇtMcǠZt2xl5@Hڢ;MC eQˆS˃ ۜl-Z<6lml3ڄ3/l׌O?ަ_'[/lVJ6l%bel/͒mRFqlz~iͦlѦɦw?+9ؖ2m QV`Z,tk,||-аwE5,vol:^WOEVj`?ueUB đcm}r2<_6[x/=;͞E[om>(dM'e`Ƕ6 J=Ilʶe#4t t°80a&fOl&h6d54O4J~/A/?GǔdtO2wdW őc+m=Ȩ,j[F-g:Vϴ#4al mv>>j(d'wde`/l?mfQCk" V&M;P&(ޏ 1C-k; pXrc VRIfX\r H2ɴdde8c>t?iy!̷wo}dk٘oe㖑bJϲғL6o?12xLҙq (;ҫmǷ=;UWjD~ꮺcF -~zN<U @ TbdKmkXer)ZfRVIFigTcS-I i"qQ&|PԹcB*'J' հxJL>|<6kM\3Һ DQ6qZֺ`P 6_ M> ol֛:> Oպ tpkEU1@;In&aH&(G(I*]> @56KL275Hm"cbw c_kgcQ N[3c۴g:~m{,yo M{-yg 0~lcmf[ <4hefٜbJvƮۏ> JVV~WcTaSyMꚫ$uRk u7(I ^4f(ĒK>LMd.Uh#~\\=~ꮹcF-~zN<Uh<:K vI$`Ŗ##keX&=feedYY&=t,&`_l=[d- }x {##qӱkk\_3N]&`oc3}dRZ 2)Yf[hIfGG7ZǮ{q,ӛL-fij=s$fhb|TX6 ʲ:Yev޲:YW2߲H2?3ml~[-^Կk|5V%LCW2=4ȃ̏G-㽬sw~)㽬PVlmeCX6[21 NJ{el(;Ͷ}Z&md`%h0ml,2J#ӛLY-&DDMMMM[ip&V%4nue6Zvav bOmdK]S-'j[Mo#lteMGIeelC\_;CȶFرm OON? 581mZH [ FK6|*jH@ [2بld.6V'el\m|Qvlʶ֒MM%4fS$f[kɦɦwui:>&uyxƞ1s=Vd=[T/߽{5Iޓ|B%K-1i,"Hq$icR-D-"#MZ<|M8nU|pԊk(@ Eͯ '~dl,& +G(b e&0 ~  ؔ4HرmWn+mWcG\;fIc+ZYL9AdT:?;$4&941* Z9lZ6lm6Qrlc66[rl7ksGKeJ00ol'66|-xs¶R٦%belm-i6[rlǦ7~G$lmlzm5Ju<6ml m`5-:^D[Qvl6sd{`p㲭J OX! UNVK՘&j#$&=$^!8DjHvg&fF4Y4^+6mXPT9GC`Ho$5VVϿ{MZ3IǟDuhѻ=(LN z7 y/*D}oI~Ox% bE[1T54 <`Igd #>Lkie,&SQ5єmfl -}dwy'»mY>oNkJ, ?Cv O\-dqpAJUB q 6a؄isf?*q%he2LQVdgqk*\'k3;)bDoʮ=k v+;lm:ضzMQV;&V2,زV̶y-AF <&YoeR?(+' 7+}`+\*eT~>'+R5Q)Dk>1߂Jy $70IIIz2 fIO,4$.Ezu٘Oec$SPl-}l*,@d6>YPlY6ǰ.e>?d3(K,X6#Հl,[dm lOͲ #˶+vljM)$P#ƤD{QɄkcSʃeTo5i2T(&M&YUp!uw%XME,iOlz uɦmz uXm:٦{?v78^mV'-tBM{Q6os?ys<-nT.ϰEM_59=Ԅ([t(%)$0lAfؚ0$h3N7#+BK@,2 eMw@I`#1=!VRr6=y||qA ƮQ,ݥ2Ђclsh=C+͖D۪l Ͷ dz!l ϱ M:6mgmǫ`fsa&`_Oౕm`@} T1dvJZx=+B6 VG x[YmeWW2 NRLI o/C[h!B < .S)X1d(5 Xac5He))B3x|v ǗvG`NZ#ϫ/VՑU2xUO>~AUGRE*z;JZRI{j퓊2xUvKUkUv"l=kac_v_XSpXa*T@ 1&S͖dzDDMm%flɦɦ ~Cs6VyaW6X-חW kbc.~RL[(gj\6$:>1O n{mkf7F[ms|QV{lf7F[JV˶QF<&[Wql[-d2chkm:&fSQJ)ۤdQvlp]A&VT|';N!Pl@|&VEP[WVفCP*]Y9:oT} TU2প%_wDpFuň9 |%lb+;m`LiN?=N/p4LX91W Ƶ֘ wbN-jUT*qT͖TJҒuRۉU$=8^YU {O!2xUn!APՒTNR$OxM1T%xtZp2oc Ā% e$L{Y[d[#5H*L#|bic_8g5bDQvg>96ZB}bd`yXmsFzmm6g~{[)V ۤmlmc¶6KIee`ǶU\}.CkǠB}sCb+{h>`m x,(̎2ۀ6Ȅi3gF<&@{h>472cz˶NW*cӖmKkt-e6-,8ضieFf,f VJ#h A= }?cGMN ƽ(Zo[ GkÏS1`-4>zVlٜY6g l%F ~7Q6g鿇f;&l ضճmu6[mvOzlc6VxF[l 6&s\xG <$`XVxQVlRSrή'RRiFi2)nLR=,A5|@?FW wo!@/ADBDI'In(aUI%JK g{\°13++Ƽ$ʄ3b F専az%jeg1d#4 <*V0I8qo!T2Ͽ{ئHe}Y$7(aqC#8ͱ7s`·ٜyq7hZ3{ n(p&\#'>6PTv ꡅps! })\{)\YZx/=;lmEئ3ۤ2xL>&m:(;ml֯l[XF<&ʺ&6xo O6W~{٬Y6+ZcY702xL4;.Єmf[kl 6 hsbY( V= 4xlU~w̏^B/b~'$ %YUzRIb% +=&$DMf 6yNk-&dv5T'e`Ŗ]+OxE=sp^.Հ\wGc İZx/=;~a㓭+}[ƕk?ᕟ)ZumLBvcE+뚩=5öZh ضb/kFG0&@}[$*8L-eX(0NS+D8*]RK2OQ Va}&d$D&ңͦڻ=*6qN ~vh[fS2cfsݾX'B`ZF#_,r)vQC '`v]ui\uil.AC1UZozX 8K T,B t1FwZ>|2VdkU-VkK`-Gtb5|V#H.M`.3&Fkz1 =?9B6_>qOplkms ضղm5ڲ0xL՘VXV[2J-']]&Ln+;N25 %J@&,T@eL Xqdzao)V=dh1LfI6Ͷђ-f`Ƕ6]lm}e[l Md[_6 (;~cO60g5" -vgStpM6ոl(+Lo2p*⊖dzD&m:LQvlh6ꈶE9dSQ6ZO5V(;ml䮙+VJbelv]6.q `-o96cӛM?MMo6`ӏ6M6ۖ_궵quưbZ(4?P ĠdTeVڿJHdd ɶ6QvllmM1]ZMF<&=(DҪL-f X 2dl,k+zdu6uŠQ2hBD? (6H+o~TGhW"£ @ *+J+FcX +3îWl4u%YY$ -#ky~cˑIͲYXfێ"$^yt 'y4i k[:6gvl5iEM͂ [V5i[h [ B5Vjh #?2(obEM͂!N5,rb[f [ Ƒֿ9>P N{رmu;'æfmփMձo,coc9@ [3cl8 Xeۘ.e $OY{}Ő6Z2xl5 [얹Q Đٓ~NU,keȤdʲK%%!aB@8,p_3s ~`ifmw` 3 KF2m) fe'T:D&]7ZD'4inT1h%4x#apru m0a,2xH6ϙ 07g%ue}^9 5&2-[6,S|"b -A[ '>(dil;tn+퓍2c03luMX2l%fVmgaۿPT=Pw~W~GiT-^Ͽ{)[x/*De߂d%'˛k$D2="x᫡~xdY$DooO~6`tX>v U+昇}׀˾Ey\ #E9C el81N2ybM9[SǤSۨm3c|\Ja(h[:MCGv V SȏC``XYrcuKKhѾ)7mh>Ek0mEزҳ̞L͞ie1IV:f0,زZrx~jc٪70Ͷ ;&ZX_;CmVkmkRNkQaOU!`~hvcVcj^hS$\v;XWkGUz'pUYJ vG-3:k'-j844>adW<3l>>lñQvl6:lQ5Mh3-~&2[pd[6q u٬/djuKqIfa,dINGc[ Zc+ dh} 2*Y/Y1\3@OdZ>bc T哌&SdzIi鍦&ɦVZi6VŶZM d-f1bs`[-l ضϿW M~c)ڇo[Gc[ `S \/] V 2بlejlkmbbmh V[6MK-u|L^"#63 %CGhe-eRH6Zɲ", vH2;oȊ,eG7Fk3~ ;fZJ{aӏۦ+tmmu-f1Lcm}e,l g>^-^6TꎱcZ;-w ; [ç2N ]&߽\#운I'O,dMU?Vkrtm6'`믙KƺO{~a, ;`b ĠI-F5`hkic*S nvLZ۴2f6hdӛM?MM6; (ڊ6e ŷ`m1'?bSVYpSU#X4l*=>gO`vq;5 "+;mlmeF[n7'nvL3de`Ƕ͒m6-6vr)bmb hg>b 6cW۶)&juuǰjHɮ6a|ak5^Fm6-TOβX wHKh%E ذ]vNNti=% k=|af  &,{٘d>|flJ+. -\?e} e `(UK ldAa2?#[e#|f`-{|. $fΪwpGo}l$Tئ L?4.]22a؜wH0`؜&lخ:!%Y6j?vLacјlu ضVUdl ;&[lXm:Fرm=y]{W]gS>G>CЁlOH~i6ڷY@z!W:3[\vl5܅c4I5C('Rvlۘ6&ۈV* >20bmLɈRZQVlY6{ |i1Î6;>9H4ae`Ƕ-\x}mU5|L Խ`bjv[V0(bvPZx @1k6ƚfVB_v3j }ͱ#ݔP3$lN8J.Ta32Lg)kb.,&1Ze}~QV@ D0͖HDZ)Î7KRz6_dgG,48zɄiZN_K0(_Y^B'B'QvNYMp5Y%4RCZs`@~AI2aǁ={⬛G΂-*"\OhVsZ-|U1ÎIe"ꉟ`e,Qvl[?|{m:&%&ZaZ+f"Z e:XfӿG֞,62b ]9~{3j8M EU!@ em+mVm}e[_ɦlӕm~adocdSQvl6ꊶѦm1Îf[#hXDmu2clS봎?{]t,6??߾c+W #ogVvwQp\AQUM}a[N*NNXm2Q>W[lf{] sGVXT]seO ; ƀc9@6 -fE>>bM{[l8NY^ 韓Zv OygpR[ˆWͧc İZx/q lgh+m>ugٔm1ÎVJ)f6ve`GCUpg6ţw6 %}}I}Nodz)˴$fII7l$,Ӓd22;!(Ȅekel,vLH6ֺɄe1+adev>4jX< C:\1d~߽pe ;5os5,/@ g`Ƕu,m:~[]m;v ;lqj {lT7 |jX= x`}/ ; ѱbj -6WŶƴ2oŝhs1oc 5QVlYp\`^}/aD[V&ΒnLFQvll6_Mu[˶Rf[mYmRV Z6_o6il mS6-ljEm"UJo7R)C1H-sD5dڟ&];= ^ Dcn/"߫|7#;#+"ٻA "v Id7D}~ (w/H׌jx4ͦ#-?h|";T1`養Z զO[;LOGk=vl5`p a=yO7-H-0$ZF52&aRǓCb3DfL_zVlY6zIM*mu 6$>3K1lZNGg=vl5`'agx<@ [3cV-β;Lص2k%jQM Io&eT %Lq$\a8/$zM2M4dfL i3-&1xC+imf`%`M/a:abW8*oXzTړJ1]3$T'wQ58ۣlM0ܼc :F& (|RVUG D*ܩ@;*1FaUy:fN*L$70JjBIVTXrs L02I&&w[Vg)m1ÎV'Fgۺ}jl ضֳI66bʏLSaZL-3\q_']=CNGc[ :.LQ [x=+n_ >Yv\zZX1lolmn&n[ؗ%0_m1lZ<5ov]ZFرmim9\ 2sǰf1Rզ#<l:1j1ZA++n#+l,euD#Sư2l4itɞ=:5:afɮYJa1 a²R5زa]$F5F.M.twkV]]kk=QY٥+JgW1"WJ'2e]mdY-,q2x2´vV?lF6nŴovnG!Ǩ6 M.6jZx!9`tme%,$1lowx*׶2j{m?H o[p^.)OBd -`:$$ef}~RJRIy7Bj4)%yZ%,$$/@L3xΒPqkfSnLiu8mkL[}/k0l-ŖoQ&=Ʉig8-fiܡ}h¶!9M[d[V ۴Mkie[-l5d6l0eL?҈"QdedʤADyL~@uC\@Lƶ> V}y%Rp-Ġ,xy2wb$4^,AhsfhLAI$T{~ʍo۔e#;_H2{a5{dSV _⸨z}rd(Z/ķC eo>Xzi}s z26q g_Ɖ!-#=Ct쟨 Ānj5k vmQaxȰ5fam`e9CQdEpyjkY[gu7.״{5N!l꽘bWY)ڝXwYU6e9CQL+L5;bJ+JfgHE>&ɊI+J<.. lɟ@0}ɬRB2f=IϷ:_ƠmϿ}7? lqƳK=TlΟc> /Wi| هxg-j1J1x@xk\^3׬Cu>j$(8D1wY6'fٳ9ct/O,Ȟ>$. C[aM\(.ٯuG, F˜5]qh;_\P?I0$}Q  UuI k\ag`ZeKIojUl6]նrn[m^6c[PafsU4J۝i绕?,Q\.LHAd7CQlf$k3:v̲|iֱM]m+'( G8]гѓ\0m '8|육ze8?T#iSZY*0<.gCINˋ $*Ʋu0pMQ K4G6>-ƽ6֎> ;' eR]f;4۞vgζc uYmc-g(.`ۜlBSaJ /DlN+KYsP; FEx̲sd& %3-)2{ɴЬEBbj[RlVlVm( u|)/*]ƫl};wİɺ- 1xl~ ێ/;QD w[f֬1ؖ3x̶66|ٌm9CqKuanmٖ3x̶.lm[M7rjr%6mVޒҘMʕ#UMIcue__.UvΑnJұKoL;#QiW&N>hm:vdlkmnFq1T~>O١Un GTTĬ:A%UM^*cU<V-)*cUB[U7U<VT9C\TEl}fR`ư K<.6]4POcUېbK#lm#b|>VvĠk94Ŵ(9Ġ>j$(٬s$@Ƭ4PpZ1l2wrfl6T~ v׶ųa=gM1xlx$|?+QEqsVm`oqmlƶc5\&UV=ؖ3ǵfl^lVm6+6{ٌm#66ffF :.c"_g{G }ρ fs;٨dVwΨ*ĵ6_{St?1;5 5|ݜȶoK\̛86pu!l;g߳K:o5cېb{qF} |-|F}6[M\}Ϭnv62 &ϊnv&o\leZIxuΝ]^*ygVT gz٨ĠIjβdkW?!~%Z?Η&~6˒"d{VٞELi =2 EMٶ'ے#l8OmIfl]VgRh{~O;Z~ Z}?wo9l"LRAigZ1!5Al#lWlmW5 й6klkb[Pa&N_VgNl`~#t_NG`36ӿƜ#JFj m-g(7f#z{6F rfuDz1l-E%컲-,%L۔L#lv6ؚV[SiczMؖ3x̶lm5ٴ-g(jeE&_z??o6_6>Rlvm}U[_lͶ͗n~uD ۾ x.@\ ðsyACFՄ]_.eh {>o v@0e*k²I!lٖL[vŨlL_ҪؓcL>ãgH&WN\8/[SK_n0A6N<} '2|;eZ8¶0DvxM`y6>MbkS 3x>`[+4֕İN-|F}G=km]1?xig,ၗX֥d,Ki+g3IɔiB6$1QוMa8c#9^‹r~p۽O 5֦)g}bVK-|ٖʹL6lWmcf3e[r"ll}e5Ym>6 g*h9Qlm2GؚT[Ͷ%6:rքmmIͶ81v[Ǖ@gȹ.=w߳R :.%(b4Au˅'&UY&Xq*O>L8>R`6bY{K*wtZ|\6dGfz~T} v>dKYmcm٬zm9lmlV[l#lSm*,d_?r6qmq?rN'gu:ʻ?Q-F3x>`[>bL-|Pf/MجΦqYfl;D͊޶yNۛiG}{P*ר=>;~eG-|ȉJgQdܤYT*?cRdUoYUs*g`TavU^ZMb3,qR}췞UVUkdբ LU[~Vo*T[jU`@0M-|WF=@f-\ݞ0]{em}Īek 2JŴ5o_sȞ]+g.n 6nw~ªGuq#Cqutf١M̴}zU.z$ 3LP?[vS-/*r ~}ljW Lg=~[j,TuYVz3ݸ  p_$Ggv@ J |ʔ%e2l ~(`0_;:lL v)B0dl{DՅr>]1d_>gʝ p1БkĠZ8†npZg52\wkuUUR6#?Btp2N 5zAYU]Tz3x\\v,\.02Ef7CqM0fwl{=Ο =*װ=Fbة֨l'u՘U5&pt녝;v6ƨ1vǍ \1ٖa&%ƽhDg2-'id*l!3|*bYNP!{U-v-fމQX*J:y#.Lả7?T:cϠSхpP} l>j$(Ue{2Jk´cŴ&LES 6զgl9lMo8f vicF_zm9l3L 2mJ[-deϦ3eOcLQ2hR&*|}? Qx,A6.zϺ uCFzjh9Z18`.ô[jY[U0ٟIakUؘ LlZU76_63$c 7cR0&?95.fw˜p_90y쁙<]|1Uzs&L2}21{ӣU˹&Qf#3;>dMBѥEM-z GYA*.E;rSmmIc[書nنOɖ3x̶= C5mc-g(T dHZN1TVd"U6'rfٶlmYmmf6^mfeYm^ڼJR26&l#&elyƎYm s pk a[1J*!i5ٶ1-%(uKrYM>G;<.J9.$bJ園zeX滅ޭX3x2i,3i2.tYJPWf/%}=֪l""Hv0쿗MMÿN6qG鷐OBӿ+}Pϗ#n>7?1h{Z|<%=@6pmOuuez[Ĩ(B6q]7q#n>7K3ū3x>`MU1l~;!F4jG3x>`BX>vna1d>f/ M+mBBM6giYY[m=#_Vɳ:mG ْԢ1O?K?VyJ.;Lo52EFYvXgubJۍi9l G6lkwm9Cq [t6glmjgl۬ɲ6L^,cdլYLMRAm0hg~{:^P}9O A"lJOR1L i-& *"$Dk&*"!P~6>@{.WHPUvLmJx͝h,"rA^Hַ$?=&Wy-IϤtD2AKd1XXa3Y) d>gzCѣF OߩEc&Ÿp C1\1nd(P&P6'646)ǙGM檴eEf~IEs ҳ!'9S!EcH \an;IQxwQMoo2]^{2r{v6 64ɲ}+ [a.,aZRFu^Iޤc| ƲG nYI5#g}50ʭ7ev[ĸ8v϶9M3m{KhlbtmoeMY3EΑY:dYUf Ka3zuɮµCUX?{Y(W5}=k} On{_:'fg(L-c/ES cH l^k&1s|oI~&d[}0M=mt:FPzr|%As˄]"< _nq'ZrB-Ɇ2ɶ&f6ɴE <4kXZ\vx\\Xc Teت-jL*}]ڊK+l, 3)*02mE/fMF`k!Mm"&¶U!f 7א)n2a-G Ԡ/J1m4aʁOnE:ɨZW4f3g7̪!"rR/CfUMŸYC gCf#2x> e@2-bܙmj[m&v,?ݶ&֬5m16l[mln۸ɡlt=bZjW~B&8n`"ƌ.R̓sn{ɫԽɲc)fơgxmnsMa[Pa]mٶνl;_˹cfJ͵ٶr Z;g-yl)wG 3E)QIvL@6-balM fےjm9lk¶ضf[PazcNVmi9LieUNE_~^Gv͏6mn]mͫ_j¶cff'[Pa+ɘlkmhm9lmZfjkm9Cqmb)Ju~Hy1mbk(Ñ3GV'Z{ٌm̷l75Vm}mF}^6c۹lVm͊^6cbj;w͊޶mJpEKi'h9L~!i}W`YNP!Ye:L&Қ0-gi:քi2_4e[PaP6q%y6^S'->G3x>`]VKiF@ \E6nI6I56f٦B2&VIkd$%aY BF5N-RǁaҌPaq#Cqaꙹm)ٳE5՟6_=-tmmEdİ1dKYm}6_Թ-gm\kYmؖ3G||uկfl7B3:dʮ'٫/2 ۻES]lZmm5|mD㙦is1m\Lәi(PN"ev{%-+vv6YWcNۂl}vʶ5&mm W-gmkd$[&m9Cqe$m vgDl3^mcF^[rMCm: l+%WCyo5?!+j4cN5my6*&(_ެ5Xa*arєdq`{m9Cqmj Eah^P=۔i9LW$kU "dbWv^UPE* y#Ec)AskZXR)I&ȴоt 淨W/+ldyٙd7ݶ˶y1oQ?۝q|fr1l~[]j6E k+c`Z +[. "d֫ʥoP{d4+h M6z-lY8R k끵>c&7p\@*i O_mP}%gAgxg1;ۙɁ D1U-2xL2usEe >cV<Q46_WOu2x̶BE _>wPa^mfmګ߂cIgZy+j2, "d^W{"3S} |`00P܅8 o?īx CNdŏ3{P!;O72GG7<#3aQİ5Ze}6qkAQ,mv[ĸ8;m ,Gϝ(sK$:lIC%'UUp}v%?aUbWcm31;lKV؆-g(i)f+2̊^2cY[EfU6˔aUK*1d}g\]pB#I1r]fE;44ܦ)lFkRmg6? d8$&V\:`ع0 2jU*Z*gU &jRaU<^*c쥲eU|ݮ껨x6CFj!2x>:g/ _c v1hWQvh6]%\}YڽߵhsT@u} _} ~`^{`M)CqmH xmL~ 휺|3[o86[ƶ.iQV&A:rֳl"34+Ic#ߝz&fl#llۓmcjrٶ'|u>m, s#&^sW~bYj9c:ǟ5b-bPa{>fmK6ZͶcYc[lږ-g(kض *oAB͘˯vYYHI殴_WL#6ishmF#lmV[uM׶fƶ6nv7zmjŶ6o[jCYוdr֥ʕd$6ؖ3GĪw֎s_lOaK׵vRI,Yi?=B}2FbjRrY\Va]v./LVban~YsLf( dۂÈ;b?lD`qůƸ-9KCɇ-٨ngԶQ_Qb9 G =?G _#?z2x/1P[jk6l[Zmc-gmM66ۖVv /QL J}@dʢ‰3&ר?(CqBɆɶ6W'@ix$β檴eE| ͗FեQL\#x -%(!;7~6s׮zg׹i@s֨*Bx -7aZ.Cv1+KVhyq+SXFLdkLe^Rod]ouXf`e@2,e@Kf,K _MiM.MVZxֳ7"5*B2sؔ1wjamFٮ.vKٵjW67$}Qf|dUe]C U6Zi鿱=;Q'[]lsflfRm&lmCwQL;ۆTl_&+M~oe=6\ce\Bf9͏4?'ed##=6mkÆWZ(B&gpmJ@ "Ɲm|sZmjb4lmjkJ%QlƶlKYm}6Fd>`mmjͶ8&RmgK<_JmQL;G?x,Sa(B60a1NYz]&?]f9(pIOTo2NJ?{KB`3Θ a0'RoLJOi=i5R ;kn(}Z|2 FpӸW."Ɲhl[mcj( ݎɶ.l[xsemcn(cZJi)AQ#Y6!yDj˷OqS2m$#u)E ʨKf,[Ȭ|2+2{Ɍd]l"3[v29K;_U&2ʀe|Ȑichʴ8`CdCMdۛmKmUg@mx$Fcےj;ۄ2Gz6Rs\6ʀmm& qmxgwQI|i5x:dwrm<P]UG%L]Irs}.&f/r$O/c99=0O:ŨWڞæ `5^|ŕ@|`~7%2GئT99ps|Hm1ۦW%F`rjvNl1Vo8 NfLLѩyvj -,Ҭڱ"IOӈf]@g-D"_@DOGLYˑEJttb7TU[RF!rs .~I"SP&ٱI9SM :?Hi&&dzۨQyǂF:g &F#ڍ ϸS!ہ P,C\D>wZζ}>vl#&mӪo6rI}kdϦWֳ5*X=-dsٹ ι('YXh>A "d}VY,4wiqZL`GrLŶ>ٖaCs8-+jqJtQrOq`s}]س?ɶ9mdrCOf'Ȳ9l,(B0tu)C4/kQ)bZ녆$6E;٨^";7lW\ +bծs袊;LrLa,e( & ?.m^bA[#xN=@vNU^_"׸s]fE"dcTIhF)2|a.:וCi9GqY|NU8e@>@;g*?G>嶈q#CqmY6T׵0RsԋY&nE$@5qRnhhX({P> {4P] MZPR"ͪeړU:\/Tcjj_T;9Y%  &FIF1Ilz1Y4/&kl:$9oQgT1YB\L$ʲW3+F,%?$kGRęEaݧq߼H;gɵ8X&)q춈q#Cqj;N^nUm|V_[&fgZզmm-9vysGۨ%bVj rL. n!y[ĨLzu˼Li{ɔiҤUBSicҽ6lKkZYQ܇یmnjZY60qyer닀ɵ(i|Zqlׁ g%xg%D!݅]E#lsVۜl;ۼJnYge}6'۬gͶٖ3GؖTd[=G'=],wؒ{NO&U%UEݪj7V aUoEϱ bv#xުmr6{ٌmU[[ff/bjجmUDq p1MvuaZN {Lq8 u 3d8>r ub|PI$+|͵EWM"d \|{ԼleZ|<'@ k.CJd2{Ɍdڋ̪W!3Kf,5deڋ̊޲<ƲlNYq:٣хAg` Faxd{s.!|nHyDҞϩ40KlUFdȴ_46=m#lmT>e=w)\˓2 ֦>vne^[Paݹk-B`ۖ;zދضlwݖa5hdž_(QV5bN-ΞI66Q-1$^u1$^dv8%Gƪ$EDUi{2m`)4[XE&ޥ[\61W`x}Z=1d*h``3PC] v1jd(֕6d}*ƲIz2k,kbĹ,)B+lK,c&ծ]LƦI67 L9m!2"a*ov!$}o1p:K2it(*9bmc,K]e'Z „]s+u v ƨeejQ g'=5e)蹇$l*#ˌ2EȚVYwv{q,Qs5Ȑmfζ8WUlƶmQl;G_,mؖ3Gߥ6l3#bؖ# lk[>Ra3-bF}6z Lv%M6նF 3휼z,2[ze9AQ KPjxE4'nvf!ᵈjr<9s?G"h_}S΀0 u+8v6VH ,ώ#=ci9rʀ}VI@ pk8vζ=6&ƴ-L;gd9<1Y˒"d}k`SOr'v hqb@ ۔"ƍ m96| 6ʀmlsl[m9Cq<8=ly0_YGGOϪ9_*K-|Ğjx檳/ƇԳsuIO %-UV r;'U*t{T$ Dʤe0Hʦmd&aW!Q YE#&cjڃM#_#ƬQ{dln4WJgK0_=-* Ï1/s52<#O} s&6Jg\g9XRG l$֏UdVelbvrCAlzmCS׈2 }@e;@2K-|܉F}fRm&l[m~ڄi`H4 ˆTٚ, 'ZήL2cdi3 4<B}mg3e3iYUЬE3UiZdVd5̿1]vlzaTOρSTNǝll"&6emk(b"M%Qvmj+&L6kնF 3m`,,,ƲT.2{ɌeM^JB ڬښm5f[نd3ae@̶fyQ3zma[[m bf<1s1m3wlS16J-lm]؆Г2 foWKO.6&(;¦ڴl{~MU?OicXB\` >]egq WMG*mYN2.2t|Ġ$4[L>;MS w%l=v_G_^l[Rme mFcےj+:g`ǿ;d?os|Cڰ_s׽emF7}pLVi&ڥ*ed,fɪ,YZYUL$2jM؉rn/O ֖sД1˷x.ʨ|elyA֊W<1dj aY`կ5bH-|ܞa[Zm WLfmal˕!ۚVtQvmjۛmei +Kۋi{U9i >V^s%EtT"Sɨ&L c>@;'Z\Zxєma;g`CMLU<1lcrOf[ǹֹİ͕Z鞁 ÄUkjPQ+sV[f)BqJfh& g8pn'.& E XǶ]g52O ٔb,H61־] L5 zpe}XF<&Y$[e{T-*;?\^K2ɴd21]yꙦi^o(;zZgU z`U{*uF 6}r }QդRv(.ӷlAۧVy:^s.1*I4_lLU^hd} vN-d>`۽vd;6va6ͰͪޫJv^TZQx#{!LRHqU~>B2]4pl/ER~F aT~>ަ*z **j;L׶ڤL01lMV` {_ #_}lv!g{|?Sp.A/"Z` UB]MJΦ^IITXԿ ,"-$_8i~6|*,kťo=9a2lQQZĠ_OϑSObɞ@+llcTlFޯ36e9҆T)ҕ]%2"df]k=#31paOLsB@lō+²}-}e~{mZeXL[ViXִRLKTlƶ>٦qeliFrfl fb=&Rm\ETRɦjO$4yMQ."+TEιYvDUhU\ ^hUT XqesXIT;zOybleF׻$uhS~xNO2?OHdJ_rL9I8T>#C/DLaRm]lJQօmk;w_휭smaKp4^%ZİshҘ7d1d6S ?{<ɨ ]{0SoAzρwTUeZ >8EU~  :mZ__z==k/HBZ'iA&f-5 dHt3J9$H}NҒBZ$DjRIF$zǙtBH$#RBA$z:?HMô#P欷 >:Ǒ wo>C6$plYhVimZN1 $*φp.e ]a]F<&94`]&3arM-|6=A^gĐIK->M<>}@fd7_1dk~Q p'}e{l̲8If8ʌeUY(+^2˴UEfEf/O̪L{-+e9F <&Xi6'0cW~>%s2 Ya2R vNyxN Yif4);vHPH?gpxb|9ez+yIyfc[٦/1lkV,**64/^$cRD.\VZ-TVXr|`[ffo#6E;VRik2J"d{VL'DۃiOL=DESɶ=߶Êl6ۤW[+1YۤW(hn|x%XjV\| ϨY."֘e\DO+f)vQieIhc)ˤL>""*_?Öŝd<^Ġi1?8ǧgL?|uJaDFöڨ#Ŷ5m6Qp'2dզmaJ``0aTJ+M I_&(ąjҗKVjL2-4}kŶ4{2s%hc1wf(+B6  >pm,jˮn~u2 ^H@R(xI+DO8>Y4bODOif ߿K1dWm&i3||Peťop#H-NǿO?Oƹ#?!Pt|*HڙtIz!5ic"ƢF t~ AsYs‹+&U(?cai iAmn2eWAOcG U_/.vmvu>CZjᇈ'Zr# $lF϶L<>}@%xt$3gx>oG{vltU?dkuďv/f^ bZO-0d>f/3|fkiJ1 LyDJ2K Xeg%4ӼF_biԊK;'JdsN4_> Mٶ&ے#l[zmc Fspŵs%sF`l¶mZޑoɍf!G~TĵF\S ?t;ْ#l瀄l;4x!=Ue},?CI?>"AUa] p#ɥ |)s`~J`~Åᔆex4pvH&Uքd:Xʆu^el˖T5aYR JwK0Ip͝AGxagzʏ(_<I2YF"JZRVYTʬVLVPV &d Z?spOb8abQYaWg0=taʮ1R5pXGjXkڟJ5;,Ce k>FOgD^,jUeUQb-""NŠo G#IR@ďh&bNMQ3voy-5R?'d%G\ ̢&~sDᲖWk ;2xLx{ˬvl{d׬6ն;dm2ٶ;t UMے#lli&rI|B}e&(+B6.mer(j|,UA`iHKp\Ar!k3=+^2cY"ҬEB6.ffoks<+YvİJ- >`[ tℐIGj=+`ư>c01̰˯}`ΈT9dHuvQɥ®N,šXl&0v9vj1gw^1hKR ?^;٨džò $nl|6g8#{Vm3#l oQnk%L+E-5#͗q e[󉂃}@6K-mu.lŶ-6;(d¶ٶt2#l fo˙nE4K->xxzL0WEX1d1g82%$}ZYd2{Ɍe{lUȬ-\6p8z5y{QoF,->GN<>}6p8?B;mZ ۞adQۼ_ܵQ6'BSl;?6Vm4Q^ [SEoODec;il2-0UY߳jQ}Ib b,Ւi K Tqe8Ke[2I=Z7|7&fgؖ` L`Q1`+lWk k+jSةpa{f؞Mam}`[e{,(\f# z&vWG2Xd\(܊ȴ9&e^ ҵYm,_pmomѲ|E lMn+}kV6>CޛtߠoE(ckƧظDG[)@ ۮl.VZ6T[VfSZf[m\̢-8ƥh8''|{o}׷7mb&20>}qNj/Oįmk(`}jfPF e2e UdѴ2t pߢu<.E^ojzSy(u.UkrYȠ MV(Sd<6|)fx3|.B֤.SS3N ]a0 j$*\kmLZJk5JQd`,*a*}OIu2T6>Y] 3uYfR UQ& M[Q1PckƧ !ĀЀ#,vP]:JmiEiƁv^ޔ6懶mjul"9Um(M0Z ҁTX<^ zTu X};; AMQ7?LMHtբ*6_QNv"Y"}LwNQma=v\\[a+;5.crv)[e6lWI"19؇VdPNwiox噌*fϻ;ٽ1l O qm㏷$:B lfUleRWkVRʪP[U5ZSR 'gmnڊ긜8pvXy-iƧvWjbz -X9bmg-&Lmmfeh ŶxCH6SdP۬gqر͡޳)<fT{͡2!* Cwox%;!]pr{@ j5;li*EX3T%}T*^S53jE5DŽ_6E]Tr8cQLգ',bE8bRYuO3[L-@ƧNߏ?lbYBf$P\e˿`1ǐ`z]֚0`k+*]ʰ9&3Xߤ s(l/mU*pU[>DϢ3>@ՇތZn Uh&}6Z Lwa|;]l60 խw i;_-]dP&2fQ~eb͌{1hBY4lp>vA V66̻=݆.qW%6}_fg1iG|PvM;1\=4:~7MS]b=.*MQNU|+[oj pEIֱ)QoVKh1f`|\[Źw `Ӵ6fh&}6T6lm͢FXUUM$S(4{$lddfǻuDLjKHqaQ=v 6˶U-fPʶԶ̶V̶@(Z`&}<66lkml:ձ58XMڸNPۚ 3:%*[VXr}XYU2jwE%ӿHcJjB+vb+Ͳlg$ۉ6a]ar8c5̐ (G9vv!*9\+U< BjÖ O0ޑ>aB F6Qm`&Yk6n4mM204S;؇jSdPVp.Z:o ǔ{uCf'•ƹu( 8zGw@1c$ؙݰab+ + 90F;2J :qc7c} 5'|`C:wu^1̦ .2<Z1r^X.gHkKunXe O`p4PB7 \=fF6 j G1Zb܃E_ԹGRPaᶂqWTg{#l"ңkƧظD@ *-X8ؤj϶ʓP'ڦN$`,?\p/̆NK$P>0q|s]>\#<`[eTV}Е%ؿ\*+Eel/e+[=e$N ,iuf}'BaO`~3@uyIv?IjCH ig6̖}@V:νbv -Xʤ#QxV̲. +04+3mh+Lmkej VfWZM2mh-*]Z6XlmYS[Ţ˵Ium<-QVFXc,d`|mdû@ [kA}llV[Y`~8UaPYTU%U̠WMRu6B6"ey bG38ɁKQy(|7]4I0M!L}*5EM'@PE+tZ˨>U%T*+Yu B5zLUpT^jtUI\}TgZpjCY`Y$ TJ^27f`h+7֛gmM3mg#M\ۧWmlxW6{BΚJ":,9ZNYd"j`уP8pvXM+hl998kT6ky9$KU,^>2iʶi.>fSf3xOyX<ޟ3Dl+[m\';v:,\[6|xOyZΣ6xP[j mٲm6>6Sd`,6ܸVZ6ɠ|[^V|[~Oyn3Ѷv-d}LmmlSmCimfZJitSie(}P$P g)`+eU`k>h=d`|0&&=Z.3Gί jW)׆/ba[qk×҇V6.N[)ma۟" &`_#o`YG%ΪTx'B5ҳ3 YrjpWU: ^XLP`u*<]8* pYYzq+=RΕ EֺJΐ.{]dP2+aC\]e#:AIsT$GNQ7hbvbpR.p^}ʞmj(ҋg'bT"?!HgA_.wҜ4L""Gќ*!2 H;hZ=jJ^8V"ڳh I;iD.`Nj586v*"-Vit!2~'YIDw."9qVQ"y"-2zPvBh$z8+ڨHxE]O'ҊTk"tڙ~6|ڍ-ZTK"բʧ5!ժO;py1 H;-miwԒNf>24hl\j>f3xK[OgaNC^fc3t&Jqڸ~G-͖͔&  Q͘IUleRWkVRʪP[U5ZSR3ɸAT/ Te~f~강e=M28wxPۀ<(Ν?("l1}*ޥb -X5؂mֲ͚P[o֔&  ͚Қz˲9T& T{ʦ@PFvAs,i@j5VԳqma"ƷZ 6˶>-f`wo<+Alm$[̠qڸ6S\kcR[Yv6^>v3-8Z6K$3fUd`,DI?͖$:11[{}G󭖶ol;w\5p1N%4XI ,]|Z\W32-nʸp_&bYqߌ -X 6bGl`l,ҸT4Xlsbmfj p)طϘ`k`2<~GoߑKƧNQ@`>Vh:&}v E.jCm|l6Xl$lCmA׆,aBܕhpois?%Ceg1m- } mЂaAk}b((7}Y]헋sQbhƧ cyu@L-XCSP/NY?;km5-ۺM20[_"6[q6ɠՒmg]ڬ+{$cբ6^>fUmAfEJ0˰9>0S f [IeIe_UU|]݉6Uo %%cyeܾ-G.fPF˲D퍍O~ZhSQv+2^702S6ʂed,"7ed/) lʗR IU\^\f"[.=/ ^b a;Pv1`=4e 6ntmN a0mw_ f`|D!:^>C 30~W52Uѫ(g ETed쑲aD7(c<\I#Įù,>{M*pJڡXQ:{o|K;ܑvCCB8snjhVGȠm_)m"$cs;uk pAܿm+w1c:l fU|!?}Ϗ;DS4jorQ{(J0)v]{a68V% T jM>sF/,hƧ&t&Y1i;(=:ܶj6Vڪp[5ªjͪ6U%U;FUSK$㪶v6m!3WԨj ]ܔP{{ol&`| +*W1`34xe(dx%ʶFϴV#jƁ_/Uh3͠m%M56kuIB+:*5P$P>0 kb_յ>xs,vcmmF=mI&TP&ٞjN8&ΉgIf_öCU5hڥ] = ЂEEL X[¶5 nrd`y[$`|z<:W p'UkK$cͭ0^>TJD_e ƮVښ_ӶFXl߶zhc32mg ox%ٻZx06IƧ vW>Ab!#` . ;ϢȰl*#J20yw"v~}m6Y qloU͟w 1Q-( ncK,$`|Ϗt>C] i-ɣ&WϹ-{,=&[>^J7@L pyox%6-v]cxgXM30>}v6ޚ>öWh&}jKk]m*V2Me6T֪ʂe}eYTB)*e+$cuO'4[Bp.-&PL+Q6o o6$"e|1eZI͖e Ē kJҲ 5ţunZ%VQSoj%,XXD_.T֛bUl,ۘomsemet( E9APfk:4ɠ׆9ތwy~`۰?l} Ba~2–6F6.[ $ڵqa'9hul++ ۩qa`3Ib+,_V\vh 6Lm&e[_ffdl5,k8OG.Os_nN kƧR۹_b h&}[u̖ẃl{?M20[lYpfYS¹6ɠmm*]m6Xl$E[Jv6ɠky:Lmw.9͉a+X]30>}fj8ca;͠dF[m.Ԇvj\y66 mͥpnٶ|Sme[)jUmfۮj+Eme[ji۸Zqmұjc3Ib3l]mAofj[3=hCJ;WKPJ2Kl0q/Z}m]1~1^/A-Xx<>^;bvh:H :/yes픰v1'lwܒE6p.Cgh*W&=@Ւ+ eUGf*UefY*3eUE.ke ]~1AwͥC"kh*hFJ2,dP:fK>66=mb [jۘjm>Vvh&}hmfZmJ v2`k]m\95:V\Ђe&Mmd8:eFfx4BA3R+x qߓ G/g<[At~.&ɴjT[Yօ'xZD_e;kZƮezږ_Q- Om˯caZFDɠm  F'V{/.ƭegY*[=$P6>,vp,66li"6S$`,YfQ]OIUldQ7ܫb}C^y87=M${ϐCt8r<:r>E@u #/HgA+&/EAY%YK$kJKH%R-BGҩvIDKHr$|^$ib:7kܿP`mMt6ʌ]pZؤÆvA}d`a}&%}d>2m'%}eudYŇ)AMmL]iΣx([#3pYD2KazR[\W<^ ׅwѦL]k۱㔙`Z<]ev1`54+vX5VrYaYSd`,f-¸Le1*\6G͡6UV/)i> q_.T֦ʦ1]l9ևZLe[a;LYdV:>S77,ˬ+f`0++>lY&6L3[jKb_VLJM̴;@Ci3ҹhKef~Wl.pȷ2 ++b -0klWq6fj VZf˶&S%+ڪ̶-˰9&3XMSm-SXzpٻ$1kZM]m 0 "k¢2eg~ɻzM2N .cP,] ЂLȊ2i͔6C"[PGծYBE\²kk'v/Fδ,I.J3JSJik*4mqpy0ʳE<˻6}AN W ,{+>6fh̠؀mYgLo Żl!QpOsF1> B2{hGFL*)^N!}D0TsQI3iHW̮Tp%W/DŽI+S`]$Xp٩eѢ+]lI";le6Ue=zta?k+gTWV)\RQ3VR]k%S]3ήkgWɥӫczk7w%lpv?/.Ium~֦JW[]r8caEUgUKsKWccUUqqQj0X` /cj>mAn8C{mc`o~[?ݶ1h7LI2Q⏗ Đ񯁅A.e6E6̲VU09(kUe}f\* !7ox}= Đ`99w^t%鮭]Ujv*cz@JMS(-L2eugY$L织K[;ε20[Bsn҇VwȠqbfx9ZgdM|! %L1?H'R1.Z"mg$ME[@ĝ3Ի4jۇTtQh$ $ $jҨJwR>pּ #,l*%6d Ԋf8:9k$)@&:$35"0/ Y$i6}:mcjhl-0>]16SD = kЂ%#@.323ͦnVd`,4DjmM26}mLdQk[ZTE bW5L:oa[%`H[V0M&6\Kmsdۨj V0Uȶ&ᶊY ҌM=NLJw`w1d6B dU,k%ȰGes,&`(S5V.*W&TᲾ/2[Yb";5l ʲRT&Tᲁ3 ecBұ32^-~0<=@vj~]/f{] Ђe#Ld/Κ# `{i ጋ&G ',~z1 t `P$bp~;J.LM0rxcR+"^eT+SziT-XJ1Gܵ`Sme/iPxQKh6ghQzu[)j[]m|l6Xl$ml[]mAn+xnV)sJ"4IXh'*I9%Me@.{ga\"ƽ=G14^I-687>}v4^Z,l޲𴕮6M20[ofj:6ɠmhKd†Ff Uj&ժQOHφa:l(J0yӞw\XԎ2I -߬s_e\X^אogN/mu#`1h}8lZ<;|<PUIb7Iy9'x} 2qӰZ 3e7";*.5i\4^&珲g6l_۬j  jغf`l|xiHWmh+An+=JW۞j=FQd`,6f϶=&6%hFZ+ 8!`|.#(=;*&`,̑o}}($WL u}Q1EN!)l_Y[.gs; d5hSdcIۡ 2:69m@C&h [\20>}6N1lO6mm |m(l֎6>֋$:ܶ^F5mqoc53Z;tCmgر ĀЀ@ 2|X.7|d|4N}2J/B s[>`+; g.j;Td`,S7yR|?҇vQdP̶:Զf6Xl+6LmAnm>"v϶4IXh$ԥ-2/d@.֫Jmm+Ͷi@Kj4Q[l6ڪ6l"!fy4ʶ(mmgBl5Ͷflm^xy彙6'~mFw"lawV>VhQ2:ܶpl1:cJh;pIt)AuixOb!#LW{S HYV.!cm̶2NelMm po7͢дRl6^>6l-8`kxJȶ֣mjWuY5͠mm6?m(M0ZiJ*ٶ$*\~|{7d{[H4F(-ZMm`>f-(M>66n"lms&%}l9Ԇm&͒;cue1ȶ&cTj]Mm6>6SdPw[HDۮj 6v6l2!&o|ۦ6Xl$lCmA׆:+#3gɻB[H4Ga=yAfKC.^>5An;qFZɶVW.6XlkWdj p<-F۩8*o#*o"|w d`|0[:ʩ ?B ^ 6fѶ4`+fj%fqm8Orl`Sr-tkƛ34Lď} m#eڠ 2n4%lK:+bvhQ[kZuv6^I&5*8m\dPۺe[ nVfmk<ډ qw2Pv-e[Ƞmgڄ6}P$`,4.GM_($pYes+\>ۯ gy×;am } _ jrpjٶ0W*6|]m\' 6Syma-`?>ֻڸRfPvmq͟~`&lkgVC~E t`E3ό3Ql׾Q2T$}mD'%MNA;Ѡ泡˷W}HƊ􁘴ZpnJ˶I.i6[hԐ &BmSHj]m\ YOvfZUY꿲ac),>:%Wࢪf6QCEgy?PXPm|YjU*$ QA~V}{máֻX []8,} #eo7 gл;K[0t߰S!&`|p JZh0~p-8F&PdSYSMi|HMAKSȔ#eF P)8PpRVI-mE30J@P;VfPJ~Pss̶Q&}筏ml[mAnJι8w8)<4h+I1d6B 1Ȥ >0 ]eVW<0F)jb2KiM[Q lIbcx%ئ> UlbȊe>`3Ȼ;/ƍ´20@aoե1oUܞ7Pk `+Emyl',aނ py<2RmcM20J͊$:vnǏsK\c΃Xl -=>6S[!:v&m܇ڬe[:%%cZ:# 5$Pg;+2۸<&zi3FI4a 4FUlg"J5Xas.VcglLm\8DbJhQF[ũbQ8 +~CgkauTnܧ ;iDMI} N*UHr8HMI NKHrIVɊR/"9qYQzI1$G/b.„x]l@B 1L\T OdaB 4y|-_8-͠6@:–o(o\7-hƧ׆W~Gk̍] &B  Tڲbnk ĕeL20Y_i\'M2md[+jc3Ibk%Lmd r~la|>>`Smw*U@ڰ[pn#HFJD۹6Xl\ \W#ٶ$:6[ͦk+-4B4΅n>v~~m376N\ly~kEmlظP]gl;&o{mslSm3T[Md̷ɽԶ? ~_Sx%* wf̄(m|\l )SN YG mpo篭sru$ctN6S,ٶ$:>6\/kܡ!vh;$`4Am #vYYH qJ2m6թ:3Nͦ>6.nk=çqk=VmZWJmwa3` p-ʆ*>6^WôGr(73}@tn=e, -8JfPF϶ƛ/Gۮj 6v6oi p۬61/PixJͮ:% கYKT*_RiER ^I(ih}A3x+[\RT jOe^=M/ɠ gzYX*=j]Df-SWV5ʬ>7e!iry"  XSS&Wjp{CpU]} lma|; ˔ūbv -0*e=u-u.%N(]WzZ aP/v6azȠK_eVmmIbEmk͊ڊ&YB!CIi.qWp'a(!3~5w5mBsO;<Hs$ D.$9q$/ɺ$.w™_6MO\@XO`Y?pZp&]@9\'e:_]Ztl;pg} >51:f+N`3mM20-?l6ɠP.J6^[ 8ݵ6^ZV5:VKJDeEYVɶ&ӺnXj[%۬M2p6̖SK]m 4rr=G3 %fY*+%xAIYLPdׂ 2ɠ+LfWS;8LX0cPXO4ˤ ʮԵVWRXi * p}f,ie52YfYfMe5Ͳe#2K> u ԉ W(E W80gzM9 18f_}Ht2&`]6@ZOl|&N2KC1ae%+˳2?i:U}`Ǿi|!xNjTpCq ޥ;a.4l{c30΢3>828ΰ\7x1;7cKt4ϳ[15Z\==tE5,У\qaXa]7xv8.xΏ1ol4ZOa /2<} #eCWl$]se OͮsUޤĤЂ 6Umavl]i* -&`(eOg*5zWdPβE6vաx}Ѕ9RBgc>SfG p-֗Z϶R&mwֳ/Iu6jCmf[IB$5P$Pd㼀gy/ߛOC-dW}hm,~G̯Oe9q, h|B7@ c&E{.eDҦX s\9j3vV"*rXt܃GiKmsfۨj VFUۜٶ$:j[wTcCafXz 0ڭMf 5Iz&uq h'E}HHibmSgvvJZZ+M1'TҼ;19R UIPAgx / Nv!FOFnXITT!:ʭ բ0SX`9%PyeWЭy|P7Ϩ- LX7۷w0B~l$ U SUYU$㨲EGR .PVߔsjQCd`|U|=x- * Ug%`l/ŵS4\ĐZp&}VWYz mM20[ŧ@@^>fEmAnk8AaR?},kǷų|[4`3Sr*6:hQ2:6^clgz/|cUcgO좶l$ 1w>|т 66Lm-,cYهfJ;f֒̒̾5l|ꀙ˪YLP` gz,\XL2e˳P.x9jZ<+7 Me] lЂc 22,3L%_ZL;&p6P-ںelj m}-mx% ﵍m=f`MmceYmiu\զ#uVHNJ,<c. MepBϿsCJR5|h>^{vFͥvgI\"bav; zlf :]Qԧ̈́*b*M&ޜ-G𶼷^w}q+CgУjtѕy>C 2Ђmeljk]mef:Ctlk]mAn}ڵN3dYk6T oŶ`aO`>֫xi';ܶ1 mO Wd_5y=V>_f{{Y-8`>^Ƴ`׆W:+^FͶVHO_yh5挶6޴]oiUmO +S]lWeR:3NeY:5bEvʹ\LlM2mo5ں^R._%yOcNDž19Zp&}6v |0{ #mO}w\ewWZT&TճluUVڋC&U|]mIUl?+Yjb- իxH]UV.CƏ"\A. ß o:k egLãg芊/iL[Q+vFP;zr [ɵlgjXw+QFn4^ZJO/ bI[G6>`;a`g-Yf϶csCeg*pY;/EXSY7e+福n~ZB e-4)l-# (t^/CY:n]bQfTZpml]m\R<_PR*F:Ct"Z_q29R6҉(]@Kul/4w-Űw*c+4xFgxC0&h`ȏ(.7P/iL[Q\JN/*.5_}.ۉ6kvoga_[oVbf=ӊ޲m,Iu+`]_ NF$^[Xǘ:][K'$m3dul+[mm~I^OVʶƋ؇vQ[j+d(}ك-7-^j<[jiq1LmAnk8O[Y]z؋ΡZ<oMi Znxbb6ZpA&]@-ξWVʸd[i1Bh[m\&ᶱm`kHxi֔x(6P⸽ZvUSdP^([8κ&a"뵰7ճӆw)ft~m:B ]m6.^ö{hQA}l> ?Zjm!j5d+؇ڸ궘Ank+ڊ+wl&m1bkKmR}D[EV$:ƛkCme۹]3x,6hӶ˞k+SmAn8OǢmbwg9+fo"yٲP\)1lg -8JfPǵfj4SfDڎK!}(-,+x'l$gﲳ~ci &SSٴJ4 Y|dтCdE8< a)̆VK)x:O\TjeCY@ jY胝e-mX\ g`GMa|aA|`uaϚf|}y3)z@ WZpYvlbYUY(Zzeu,&PVɲSʸbn^H IbEJm]Kp;, &e;s6%2c.T6ʶg}l2Kg#WuId}>Agܖd6Dp6u@ w,se+Cm>_WE^fa1ev[-<>}2>2ߝzgĠN,J ͠kf%,H6K6Lmc$eddC|wdl${_畁{`'ϰk8V MTc'v0Zp̠a+#{4ì%عrXڬmVmu-fXlפ.mM2w6`[[mce[oƧhh)'X7mkG; $[mV99jZVktNtNm{699xŚ?;Rу a f:%Vk^oOVl`aw5 $mנ5Xwu C32C ٲm<&஭lYov~0YlSmV2mVI[*됼@k؞ī3쥮uß1GUQvIU/Q_0 M{*j͌Q1:OtaC]1ARz)Ǻ{5b=TYL vdX FQ{=>oF>Bw=+d<3☲`N^rb+K%)0 &S1u*ƶ`LbTlY3al &S`?B^~ޙzVF9orLC_xOwRd U ]1H% M)-3v5171|~7~PΎYe{aV.+ϘCO4a"42|>V-(!9v*D۵VxmQh[-ڊ_>ֶVW[pml;t?xeZl+[m1bۘkx!9fx/pΨXkڹJ!j Z<#<>}f8f>6KhQ"Cr*2ƺ2?Bk^cã%qayo*~PZAIH/leCa1;O8lkC]dpWû8&]mGs5{yb+Ex} ʅ˼%] ~e,̲>T.l >x~𻤋$3#rdadoVHK4#(}>5#SڪLYieg'R-ZEv6M>dپkաopʰ^UJُfK0"iV`:TSg\ [p2H&g*(mwZ*+FĔPXleijKmtjQI1ijEm6mc-fH<)p}ۄhZx?w= |&~+@ [p]:ډu2::/QW v2l'Iv]La(,$P`)lag,fH WOI4Ϋ+cu~GH%RBks83lH$RYB{Iρ3RnhNjktV"g"5xg*DԴHs ɶH~#q''*fx3>&{|I8HBZ;GIn M=o[x?az PUEq0+@ ֩\0]XoTgVq8EUj3Z :ۄjKUA*]ombcz<ny3D nE-Crm*I,j]Ŵ[5@6 {ĀJ_0kvqeaG`#6F)!<6 V6^]qh!9VRYe09?*UY*)DlO;D'rvUHc .%-.%)3q@wRd7D{& =$ZvA_ȯ#xIndT}fZ վǕfT(ٷďSm k VeZ0CֹJl4Bp-x6[umMAcmplkGm1CrmM:>mG3{ƑFgVXȏ~İJn;%X+Φ6N^[j<X?!8xm-fHذY߱%lX6^ poO7W,vwsqfhzڴ~͞Cv?q8=5΋tDЈQ;SCi-N7oP:ϱjac6|uufk7Hvۦ+scQoi&X@8w7{ GWX=bGb:垝Mej5vFq娝Ti*6v X)qa8`k+l `[2x`\qa4[!'l7 nܹr3Rsw]Tv0ޙ:vz(V򏶆ܕsC`;8-fXl [p6nZzm1Cr^m}lm-fXl}mWme-fHWUmuFh<۬jYCmu-fH-\2h[Ov|b=~lS%-_O:`['~Rbz %`:`3vclUm;Pl{Vmcm>)u<61lu<_VNƱQEڑ|,Mefgf eW6lAq.;'CgZJ*ց6N׭7JI=b{kյqB[ZWq^!9kut(lPI+V{j4['$Pdc}sV٩*>EY7CRlءV3ǻPmbA*臞8aWف3kl93QESIe S"TXPlҵCfF7i)T n-Vl]p`>İJȐn;;>j28EumfK*fzV onmĺ6Nc{Y~6lwcx <*I†-&QݥŰ~K [3x2b'ci;[ 3Ol P'm(-&Xh҆8ue{,&H U%AY-*T~ܯuķ1Vh$vİي,`+Mꀍ78v-Ϳ6%4FR[[֖FHѶ8xF[pl[q`hk<[>vv!96q-gm5g"_Z ٷķ1VlO:Z(VZٶzQ[]j~3x,`aő:֋bpƵ\56@yfW1h߆Z m6;VB 2d8relܕ(+1A#QvT6JvmɐWv^-h'Jca`d۪2$ȶ:Զ֫CcաԶ^=ro ᶆuhkMm\{1lߖVZUd u P powfævJc&vڸ ᶱm{bgC˹NS[؞# PT@au+OOW-\ŽZMU &/>x|ܸ%*_{UzPKUAT1TmDUvAF mB<-CB8H)GѨۇN:3T܊3ZSU౸l>ln ڎcѶqe6d qq1qPۚцVMnv=+{c~ vg(, 6.GU+vWT8_${`>Ej rOA#UN*u ~X'~|~ÑD\i1`;|u=Uu. 3u9hcf+:JkfUX!jWTZ2mEeVT{1G/֎beNe⦘zcmÆ):bjm}7 6ލ=S0bx76qbNUobaz̐f[ym<ҚMp[`۵qe&<6Z "sE!AR,o]*3FUY٨*3VYH.uQfk﯌Soqu!_c jpqfaK*B tUjV 4[!-!x>rIRQx]k+kUoM8| ;ك${ǖ7[[ Jx!5$lyH8HkM?9S8uT|A $wI {ovw {Tx"OHke)JRf&IMak@Z5PRԆVv;u;TH"ۍI(n0DP4Sn7qˈK*+KfvyH:ͷ5-B%Vh(/`1dc *(×ǜ.36K{)u^}CgǷ!m1b `]gdO}2fHWKmclO{6WOd p$TۨJvkkEmfۜцVMn+VRܰ<3~mǰJT>~me{$uX ۮ2؂mxaT<UÍ~f^N͆O~nM=^ X ٷޒↄ:58WUTzSU.U#j @{ hg$P^Q32V dSlRT ;곁ik>zJ) <*`q$uX W%U@z-L>=ծZ.-fXhzC&_ )\fϨ?ӏH H0߃V Dc]EV=l Š86%W&5@fOGm],Ke1"547Ci*-fH:^7 ˴ NEߘ=% [ GwfRŰ}Kx+ֵj6[m%6IPZL*SZ2N[]ٞ* e-Ztu-c;TWSV˪9U:gn g $lluI>);2bϣ^wmeG$6 i<jO[jmf۬jkMmfj,LeglkMm3IW\O>-׶R\>O"CWO'?lv( m0&9N{3c419|~O4G0MoxۨnM{=%*_ [ Ghũ9F""k`[el,Se1"+[e}l,%v{Ocnmc8zJT>o<:`_NRŠq^ߤƐ5@Ku۷2d{Q3x,4hr 6{n;k㤛ջ|NW[RѶ|R8-G[̐n-6lҭ@ݱ +K-<:`#ڸB:,ͦ嬄2ؤvɶebqӾk)h+J <FZY+Yևb2|2겣?zǐjh[2xluvdbf%xl G-ml ڎd8p|f[FCm'ڦdHmͶVOi(mZWaXzlPբ* b'iQLP[ ͕>G@{%\O8>S/)wh4 @EHt#i4%HIe )wn%*YB{I(,!H )w4-tgvP:,Q$ت^ ,R~rݴG61FFբcA=GEQmdԘӓ*}|#CinNRN\IJ=-y)bxf%qȐ車w:Ie)i[{;[ߐss~u; WlGc"b-m poN`gl,㨊=<T!3Uf7o!)\LW#T2nv{ ($j9d2H?24%A&u@`.6`ʰ@MfȦ\3n'P !)\lbl*sē>!e*~"hFfp%@s)>ij=3SpL)xmSMznQI!#*rWU1HrIG6IUEmU.Iڡ@+|D4-i[ 2=NI'R8cEoaٓj+k'S8= \5^W^*g_.,]cqxXCd0 )\: 8f>yYWů>7uC5/֘B8P_jI/syj cuu/I!9ܶ{*kKmg[j<j+Umg[_jT52QTSRZF)': 7 g3$ms}Dc# w#qAZV^XtJ[Es-3rjϩ? < {g)M]9YCC Sn!)\E .=jG\dW;}u| ʖmF-v+y"%3x,[m,80YY ;*mufW[j+36ͦꊳEXSUiYՆxA['ue9 (|yX?YG4X^CS(8fg{+ca2Ja֐2 ql .w\10l09|86!eED40l5eةl2}F<(E=v*eqnO6;ĨK'vjKu%FMjNSDm3zKa jGFGZq;v*xh1:lg6* JgﲞPD$~x:,˦2Фvf_v le;jd}I͕m 6GfZqstm&.ֺ~l+V[̐n-vSH}l+OJbMm%ֲm>3$%xHMXga+>}U\'bf%&u<3m)mLi]0LpjB[QV$AR,+Ce͑i(ti+m͑ipծնv&qԶZ&uN~nnp_l+ȶCBknlRdqW$ _&`}Cf E+%`h56c[}DŽ[ۈ I2ް]o k]eeF. a0(Ʃu I2aCl UߙmX!rd`lufpZŰrc+Dp۞ٶ1pV[m؞#q$s$%uml 6 96jmC306 V6jmU2$xvm9m>l}*dXQWz]]UJy̬Iq\K20YMq^V?ce<.ݑ; F}ᆿeJ|Sw uSwM( 6iCe5wFF 5M=jQPxs̞9Ļ45aہ`: qb.nopg.67 oĄn o%2$ێ*2Lbl<uuTUqd5\}5 [RӘzDMM8p$ZWטIpYYf+kVͮ,{6z@L_? ȇVͤ=TMfj! 3ĭ↿cp)@73ss 랛jb~`܈3gu3"CI+̗騩OE(jڌ_:"l|ۅuIB[_R(>weu,&H [lk/VRʪP[U58GRiL[Q$RpWe%Rzꈼys~m~8Lw_ĂXM4U^XŰq&&ldHذ?pʹ޵q82"G'7lբ׈(drQۆIjfSlڎxU.e+P[m6{RٮmVIbCm3qvbp[G郶8L'}w+öB4c.%h`#>w9&H+;/QڼD;v^h;Nq:m'6G͡/JX{moh 6Gm:֖bp~ȍFU[+Vu Ŷѣf\l'GU[̐n;VfL樂_/scKVlgFM6 aKm`H6[m4[ NW7 )\lkMksMVqO֙@Hj˞~>Mvxq\pVrqv+>@yJt!.9 b8e#{2Ђmfv۷S6M][ٻО#ߧڏ'2]]g(;&H 6yp$87u"go3E30:<ƫtB٫|mɐnǢξԶZqxBd`,6{88mlKm1CrlkM_VPѶKJHXh =rKq0Ŭlr>;宓]+NleQ+lk,>쭁mmfU65D/ž6۵A_;nYdHM9hMm v^ZϽ錭f0-[TRTd:MU69Txh$c#0<~m6m-fHm'qGզzc3VȶqvRo:6ksuWCU8l"!h5ڎdHՕmumcM20[]jCmke)jm[<ݽCS:O *D[oj[hacC+P[lRld(j5ڸ\d^袭V'ʶf:Vڰ{@ͩ9mh!6dpmZn6;1]V~9tO~6H+Z >wqBdPIsT5N*U0]Iu8mܢjVUKxTU~(2X 1ʃC8E {~@QQ1ı#uպp)u@fi_٪Cvz(VZplk;[]ޙ$cK[Ci{ ]$PFϲUVgqH;EiK;徟[թ6ɠLxvexRw#H=;j6 zuõ4(uC,WLnvP!ATzHtꄧ'VX!>aNGW[e1* E4ViNx)}ATAفk8"B4"3*|l]z8I20UWj$0ɠ=jNĽƬV6[(>&VϢ2LIuJJ[/ƍM,Ԏɍ/Ga>Yꀭw:,~l %`:`+R[4nSi5~iR} ChUe@.pVS=qi) ˅mmID@-k[GJWOOյm%  +"RX{uǑ..!"vp!']g ,0@qՋ::SU=Qv-ٸ  1 Zz:+Z>D+.wsTyߕjۼI) xN Z Pa~cY@ ,PMdE8 k}؃HU{fj3X\ ̡==[女;kSx}Wor`K30:^#JZ3(V2:6K͢VVJeSag) kUa(, p!w'l-ǶTߕj GIO^ٚ^hKlۇRŰ$J UͮQ6?GԎRY(GʈB`Zp`qۥ3v!M8:HQry&Pjϲړ,V4=H V8t:lAn{D]d K+VQ7ydWWj"g=7AT̪I]ufW׊0na'˜l1ۅI`KeA.[5VYo*UeX&d1CR6ʐ jͲT&T᲍x*e}Ivp zoパ%cd $a%`+Anõւgq0Bd`,6;6%ͥ6ɠذ`5p$P۬#hƁ#U6keSeϡEUBqfXDcko!302pYB'7XgpDKQR!3:GE1PPvr11ܗ1%KojRb^iB~MN])lSlS~x}&P60%3[u&#iCc 7inD*9т􏏞m lq8*,&l$e H1TZU0{5vXUWk5vW0˞]߯p$&)u6[ͦƩk;Gm3Pl3sɧkk]m3I = t #I(3BwXYCuI5:JG3{1mxY1C3_ ۡdR#xȕqՎeHA#AaT!2GlkU:v 33JȚ}!Xc<{rlOz nkgoC'fxAo_PoEλ? A$3")>1KӥN$N<||X綠4E"tM]35 t*ʲe G0pO %F .d b8Oc[3m,lٵ6\%IbUmPHbSmAn;;V۬j;8IJI1j !Y&V|gV'ɪZ6MZ}Sڒ.y$*\Vq%ǤV \_U,nꀬV[ŐDJW&5@ve?_PesL20Y"Se+ЕAe}fYG_zmeL20YggmWie+M2mgU iEv$cͪ[E M2m rv0ڰvTǏG#kw/8Z@>P,3cfҜא?5_mVSSǧx{Xl* [`dYoeמ|`Ll,Gel+M20s$Ҷɶ&[C׆#66;5`㣩1!yhul+P ;#GIB+PX8T6_=rIU,'ʸ'ϕW4Xh(Cx#ظkϵIumhj++ڸ#Oq OHm.HcxClem6qfɶY֪Jɶ&͞SVJ6ɠ;j3[YYbt͞S}VF gbz %JfPwo8llԛǰJ[KƑS 6auiHq^m- G-m0[ pX!*:F*j\)dkd>( pY]^\y]4~S0Y/*wTd$*\f KÑ+Co<O1|V`c)_buVa1`5` Kk`S6U9 ʦS6{XhwT- 4N{\ZjC vmgVH׬eXY ڙUUZFtdW*IgX0J ?5u* 5]ahWo~ʆ&PjUu׋Uɮr+uƕ]*Vp>z >ȿ=<lPb>b᳴!ǘQdumlf@oцMeĶ&  mdsaeqۚ+CLe Gנl 5\gXȎq[30:@[#Ґ᳴ak'`+Mml m mUivSZUYkY6$*\vN|L3yɖ$c|s3[?6$:`*`k[GWQ?f`l8lmz95:V[զzzq&6gM2m r7ښIl)]Ԭ}llGA.[]edY; <|DׅՎfɬ# tUWfUL9-ʬ1UgHXd33v3ZvTf/BU,-ʖ=hf*JUifs$VQکJC+7?iCe{s`y~l-h[ଞ=+S6h &, &XT}8{@dPNMT`5]YGUU//LdV}pj̬rf`\8[J̞.טYrm͠՚mmOmCijUP٪Y$*\vew,Silͥͩն}LdPF϶Vbv!bUmFWێ--I)6[rp직}j`m٥z - &{֢r_6N ^2m%V[/j[mտi ŶvU:֋$:fKXt޳V6{.NS[j=Rj ؎U/p(KNWWU qHt8upe[်p U)p$ >>яSO^\=Zw:X 2NKSvB 2Ђmd[v|fmKizQR)*;>u@YOMld`s㿘y'20Vzc[?7C,Ee#$ 6Lzc+;7J"CeGzc Kq&ml{և8/@ 4IXhE%2N\YOQe}6Qgx}_CN1>JRŰq~7;Af< 61vfkqk㔛ԡJ̠ՒmUm(M0Z-JKWm,Ce@Wv^2Iz$*N+ V4gHb;-buv6[q`+VSd`,ԶrmAntii7J6W- FSRŰq)V<6ѣGVҺWH6ѡֿp!u-$*\G2Ά62#$c46q6ɠذ.ظ8zGɶGXWUWR[J%8Qb$4I|'Ie)ih,bp1K#Ιi[ee,(\jcWvRG5fQd`,V6SG5TdP#v'AXyuĥ?_+uǓc9zqBE@wb7s,8L90* 莶 C L eMժ.& mHh!6&ᶝiհ HeXY #&Q#]x$oH@٣c/;C30:Q0xZŐ(V:jLC79fwl+,PXBkӃjeKG=M 6^{1Hs錭>56sN4ZalOWǗ OAau{,jIتkTubI  dRdsg*kEeegٙJ 6T[֊$:ܶf-թ6!VꎡؖtGd:/#ΫGtg[ٖh:$i3"W& TYSVSJ}qdR8#(]zȔ%EG{!ip$Pێ)eXA?k")`1LgleEɲv {jGJ4Xh(m%M\w6ɠm736!S&͞A?tqSKatjaxUﵸۆŏjaiJY20:= Y*B 6*YQU[YUR^YvUU,(`H}LPdžPq {!cQHy_ uX \[ p5VЋnXlށʏ% |7gkö[(V2:Lk =#_$cʞkW9j phm=`ayj;-Qd`,>ly\dPlghGm%'f# IB/HCBK=Re#PYJGn&'M20[XZj p_ͶcmOona1l&J\20:`;&~B 6 Td|S-amD G. aQ&5*q8-6J(l6 \!yG,F^Y;YfYʆOP;2{l(]Ưc8lle,(\6FX8il7ÌW"]dEq2lzD_*uWo)1f`lufzR9lV[lRlcgjk}~8,&M0JPК$*\zd[i$m~ 4Xh1Cq&!ж$:ܶ_=r?VlIbO ^=rtIuzj[J;ZW$`,ֺG.IU@1_a6SMi}&zVVdPb#\Z뜘zr:'?XFVBzS% J;U!#^rl5Ͽ$-;@ti?HX?՞=~Ñ`FޮꚀUp$x!b [谢U@VwKS7¬W6$cխ1k2mAnk3݀f{f۪j ؝l{2mAn9x#ϫG6XlҶw5Q6*&s'|+$cq;Vv6ɠq8'mmL[ [ . [qK`1dclcI⡯+Ñ [Ee2NpmhƁ'.RVgjDlϑ`;m&  %.Yv$*\_W3}|$]j+$cu?'!NjhEIum^itL,|e|(&bAXC0 ![Xi>ZŐ(62*\N#^.MevCye_}W0:QAf4Q֛$*\vF#^.Geve,&`(3TV(GeAa9R{~ GlAR~CN($`h5<2>ue *,lPmtY:(;/SdIvTv^He$I󖵑eM{A_Y6b"k7Φ=^2ɠ WoLϏ ФqǃH[;JbM n㋑ 6ɠkÕ\N;J%a!\g6$ OSEQH EuKHNgEkDP}$٣)NӥN:%:3YK"$9q$t,ڍ#iV!~n[_ibĸ1Pm ; Up$/MbV(6:L.-jSٞJ[5FQZJ5jU(J[5T[mj h"6W3l.5ujKU[Qh@@%?Hg-@S,T%k`nw!GY* p|]/ik]mQ۬j8Q[ֺ8m㺭mkWi ŶvmKbGJuZII}r#W[ [ ~R Uv#!3`Lxdk5ukGזQ+>7 RTVzfSd`,:6Z/* p[l;:\m)M0y(' (CLe#ÆjQ{j(jdPҎ:ceP- o|u9Ԗ5I20mCo_CdmL2m w}l+J۩W'UiEe {;uN ;Fdžv%v[aGaH2{د5<.b9p$RYooI2֕HWZQV:Mnkvmdc+*sz]B!^<o#tMqZ=XG0C] GqM1fPl F61dؐ] ?5ϓ~_gPq`lѴQa⦀ #9f(WqUJNl APi0ӕU5EIuʏM%+%g &I&4˴C E5NRf ]$?Tu$U:SUkd, U"5LQBpU'tew]y ,3O :oc '5F&P&uPf 2PV|Š)?JҚI;[lRld=m7rm+mgَ_Kay&lą `L]u$WLXeM} v2m&YL Ȱn;P8dC).ЊI$m"q>c{v`Y&A j,{Fy-ҠT_C;VP%6/CVh w M%uX `+An5FU[徣A6Xlmr!&ᶹmn,Ib[mglkUmAn*@v {4̑}|!E30~lq=?*!q= (qǽ-62|W Q=*"-nQ8!!Bygo8AÝoY9(&`lUȎ 7C)Z@PmdU,]e6꽴3Fغ,Q[Ifw =OoEG_6ƒJS {Ch66ɠ}.<2mw.lg]ι;"AEܽi+ R_ZmNxaSfs_e m_%c.{σvKCVf(V2:6K͢6;1RԆdžM20?6>xhbk pZٶj fK _3VWGmAf{[ZJ[\"z˶iU04lyG\7rPmdUty\ 3| *#PBj(S FՅq?SQkd, e Eak2ɠ٤hnOӆmIb;[y6(86ɠ߰uN a_ qĪRo:,ml%3m6<[eW& V Ζ@7RjC 1Ȥ#C=A-A6euDZ  [mG3m6*l>XGYIb]ƕ>}݀wQ"kd`luV KZleImmYj3VSd`,6ն̶gM2m&>3hoŶ$cM~fpߪmM2mT[WZMq$cihۺ$*\{1zGivWZ}z6ɠR=~Ö펍*h|/b5cذ ϣuX *[ p[V{wmg|v2bMmQjC+vWGmpεeP`a6GhӑCZNBeQ d%w\#ZZJ#抶ᶂimRb-?_%cRm:,mP 66{E[*h [|'ژ& WzpmݛqpaKpkEJpwmUzbхPo? 8$,bV(Vwf#a篾xܣM20ǐ&4d64@.TY^[>zM20Gm#++bUleRWk:T2j&q`Rg-oYd^PQT$cA!UsC-LಓaZU(9w [ra6S36r?l$epYɰ.;ѼY}*dT͐IvzIEDTGU NL]5O\d`,AqYk @._}Ջ([ 멷Wwuj^?a?zlK]Yٵ$c -Ceʲ1*\Z-џyIRYM?x($c-l*Lk(RjKU?ur@ '|8Z*)fmE a-2F&8lK@1T[TAnk/ιxW3l,0X|闱Յ6W UYC]WD~ǀvJl`{0,{ Y[hYmm>6h+~d<֪fQ[pml[KmQ[]mRNՕmQdP8b\qʧu_O~6*OԘ<.is`樎U4G)X^׃ QH9pmcHq9+h=8zlY=+ v;45\:e߇VB]4c}jG 6]}gWOtX0X`\8*DVp37liF豎S+,&`lUg 5X X0YX7KO;ag#裁wB1d<jVǡaK9n=(? p뎶mw'Vd`,6]~m}m=ٶ$:f󺣭2̶ [ o{6~m 4hX79f곛?1 IX|:%b~Lz/!)$l=6Xbsv 20:jsPSϦ(긩|E~" W[3.$:ܶhUƫ66G20:`[Em< I [lRlq06A9kNIeWM0 IGH4blJ̠ n Öa'<|idZ 5lb}W,YfW)+@.+2W4Xhu)m khEIu&536Æ6T_>vqr=,SkfUWO'<.w@E(j3PJZ20:E]#uX [hRlse\j<,a` 6W!CmIum+7L=C =6hM;',+8AgȜ7CeF5 3tٳ7I"+]el,[[eAnæHߍ>ǟomX6* k&L @#_deGoT6Re#nQlDau1{S7lyi1oڙ=  lq{0П>1dl#llb"+ YYV$*\Z&UV[ l5uՖ]K(8󺤞Eu{[ y,=S)3Ln?|<ܩpVak/Q [&"gLw3<qc J̠՝m6Yww}'m<3x,6{^}3j㛭M2mFS[EQب _6j6QUFS[+RUTUgRTؚfs2k3z1{mfuۘjp6 S/3~VMn{v=/mUmmj{v=[mmm|6ɠmemoͯ$R2$Rͯj p[ewZ`.#+W򖾓ZNN\ `+MꀭlF#NJ qlXcu|s3ti6ɠJ}g1߰%*Zn_>~w+ضSt'6w1 u [A?eA3F ې^'3x,?i",F L2m2QmNEb[mVV6[(SH^o6"嶡_}x TmD4,^1GlU~޽*,kl"WJɮ?v{xL֟lc'1Tkdaf`OM5ᶂt??1f1loclƵ |a3`+Mꀭ=֞h[um?6ZPl-\jۏjk p귁O}Im g`Ѷb6?fp[j puo| m=6%uuIumso6~ ywi+߳e1locΖʼn*,m< Y7l 9vT!k-?C2xlu\YC !3`#)Zd65 FnVe͝Y++l2 \s*JvWW**?Jf_(feDX/ [a|3|^On}=iSۗ(6.|p"i lưw33 ٟ<1h-`@.1й%Y9^j (6(gf,,V[Yfka1hcW&!;Qm1~p  }K9 ϴ۬b %JfPlxiR} ކžg|9tBXqwgç6crF?ˈl!3U)se>ym63c-;&تdi f,̞eD T6({Tl,3x,66mOm& |笍I%Eö[myMʘ?wfb %fj[UQUQN}bEu!~ΪwOWmcz"􏝅h9YΖ,>c*[#,3<mc%JdH0=8Q' #<6n 66l2ڦdH՞m9Fm}v SFlR[̐nv-nGNֶ>[my[Õa(Vۙ._m{9h4H&Xh69nBʢ;3˹@uw/nt4|ENѳ/Ĉo.0%6[P^uX|\`KBDYo*+#cٌK۱f!9܆_2H;? fNI Qmv؟ ?cmym-P~'-tam4ËS'~ m@=>A,֙C{4i14-67&ت%̘= ,NPM\]7l s_j<6N |,EGXu\\]ZŐ1`#!S˞e68ǺѲ+&S=r*E=,ȺF˰ )\V3,4<.k첫f7/ +[av+c+*~zq6ZW^=6P{,l[mwY*[:,NP 4d͂3#mWͮ\[ƣ6;_Zl^ o :k[m5[5k<§nw-!W!9`{0kv-y&.džǰ[kH[-eᶅ%k`1dl#$ ǿv!Xw&qY@q~'50=фgc]p`3|ocڣ#(V6ʎ6/0h#;g|lkM<8'Clug-,9*,mPI2{>( f|d[e&`(Va3Υq sb :# ou 52lVա2{i^{mV6[N+-8fk{Aol2%JdHqumV#ma i+/i})mHCB*p^W==lX&4Mn61nߘ DXkyTFK6-D0ߣ7l 6^Mxr DcتIh>ZŰZ1V[I:9:mj烻-FPcw%Zn Yk -:,~mlJx+!96z6Vp0_4l)k|EEg~ k]m6|Tk/&PR`-U=豘Bzؾ`37lyW |*^IқPJ&<:ϥ|!V"CrdZQj*f.dVQ|$VSTQS&ՑM6.jbUf5TVY̐nzMǐG;V- a#x_2xlufB~޻a7ChV-DpjٶzW[mj颁x,4[47h "]e1AR@yA-׹H@Ö:6wɐn%jQNJ  V=}\%vWYL.`Oʚש66uN ֞kZ a( 66i޿a_ޑUK@lփEX}gJʳ~nKV-Dp4|ʪ04 < CHꏺ_ 7߰%zlE{oB/:E{.RŐyKx+-8`7535n΅v?F3B ޵Mp`׬j1Hµ-&b%(b_3lծ3v͢UVYJ lfxJ#mWmN<-7g4VR ٳn^[j+0_6b6{qG[jmMN1֌ ̥n Uk2m 2f]X,k5Ҧd8а%ZU[1[ bp͠6wm;ڬַbf"^[j5vW[̐ni65|$Z(SxlUV,܏VaYPh'zϮ߀a#l? <Xo@ DYJmɶGmˏ} m>Ѷ%u o;Hzo;VS~voxWC;x [f&-.00 %GaWXDZaK5a1l<nZlgfhv}Nal(>2xluVq>20(}a dHm}E[&pEgcm#Њ`m #fk4;K3Sk\(Qdma0En o%2$6cӶ)O|ӂŠJ% <*@Ki ߡA1Ȥ#ûZ2zidZ- <2l Y2̮R6$ARBfFv!#([2xluV''D2M1:=%zMJmɶ97g~m?6x,4[B汷s5d1AR,SeEzDJ3x,>h+bpNa+uYCa)0NA?׏qsђ"~Kx^蚝i<0k &t|ܽa'fwYwzVr-Ľ={"9yv$ML;WΤ56IZGvUuX W2cۘ7vmқ]9͞mF[ 2xl]6{qn44${ [\/GX+YռT5[xP}-FSTUUFX5" *DVBpʰ3v!doLzYOꬰ?CAaZ=j6[am8%fQIgUqpaK[dٌVxKfO>,lٝUXI=6=aiTRTdU/Š_ɸ:,TWO"e gajĕ_Rd ry]~>>x*h泼c!3>Zg.?!PI]#ZwHG0=Yy®Uh(?wKI0 xl|3`iw̚=vof /kw̚0+vlxBdw߰M[7WrfIDmW#{|x9s+Mꀭlh>6+M20[jClV[̐nOGmcYںdwOuUq{UjVZY: ;f)0:78ذ%f^k횁qaKխ^mJɐn+LS|~[p>ҹ*l;,Qf`luVobjgVa1hv!Jx#-AR,k5ʕق$QfoL20Y"3E2>re!AR,n `L0X\?7PȪbpUU֛j3L 4XhF2Z괞:-fH0gaoײTv~DIC0*=rJ:,nmDp?Wevfʹ(M20GXGif]!9#qa6>B5۪jMme Ҷjqk,ƑmᶉYh[m.u=$'yisyѐPdA}k{C|h#ڸ\> Y.>}s't n )<2K-%|#33& Aqwm:Mߚw+Pkd`lue{Pa1d%Ȑn-fS[]j+Mm 8M206dҲ. o;HVo;귽VR~voFa-a/_֤ߖf`ll-7+VH~ߺ[ʹe|ʾ:m Uu̪Rjߤ]<W~TK20WLJkAž[!ARlfTǻd^ʚ5ŴJ&q,L:[}7l QE:ux=ݔW*ʺ:\߉D! ajݛL1?H{$N}շH҄SO ҄F"-)_vIHK{i^K8 ݝ%aC *#i^ڲIES|N> 6> v,ъf`luUYf(Uo o%2$۰izw]gcsZs.+ZBh1::{ Vaq (&b%jZM]6jSfջ0aF2XmYfSl5DZȭY'?xDUN˟VG(Ѫ$`h5ɝ(7AZŐ'`A.OGdv֓e g(%k=e7K]').?ϧǟ.hJV`v7d=|=JA&u@6,jWYyTXS+kJ%Syv5[R1a=_x|cLO(њf`'3+^?=?!Lcg{h{l߰%6~H=4j(t%:]UB 2le׾y4$ Ou8xOL>CklE3myUo6N6/džXeckVl aq:=J&u[gEV۪jBoFW7g~:`6U֊ʊ0+ffͨAU2jߤ]6^JSoQ%VLPTu?7A`ꩳ$* < ׵R_j#FQ@ن`L/%]Uei*2bfq *>^nR펒O?1d{l%3m=zm̚KY]U=抦 T@]=3I̦ʮ"ļEC)&܀tk-Κ-uX Y[h6 $m[ Is1n!h -uX ㄥp6i<\_bmd`lu Ü>oZŐ}<`+An8\qkkGڵթ:NV:68h @=*m.sտ{q>3#B0*@9<^bW%F&P·0|h!Si>=k!c?}~C4bJL wm|sl7}mcj(Ц&`lUf'x[kC T&Rؘ"-M8Ȱ%ZWژkUB&eoi>s~rw_%c| ӥA#`+AnN[LJ8ްgz _%c?7CiZŇwEpWQeu(Tm?2& mH.uIuk8D;J5IXh6zLK2I 0yod #^GC5cа%(RŠJnZl6J6#5mV@d`,63j#VgȠ[f[Ö`C }ǘH)pIت^u1CiZŠPm 22{e c752J*\%0X` 傭l[mA-Lu9ϱ-fS엍}ak@NjVت84l #ZŐ|`]& Xzev2sevhx&m$f\dPWu5NG}z}-kz﯌𯬧^k<__9/Wf믬̥Hf`,1ļOSMzcAnOGm669M20~VRofx$:`6\?`7:ǰJ[dž-oa;`+ݶm5j[O6Xl5[j[O6ɠm-;ml[UmZ{[Um{6ɠͯ~jƽm~Wo[ u6o?m}J֗j7yVoKo Zz귕m~{>>`6疾Z?[p`bx8% c>(Y?7AZŠJH ՞el/e.Xw-A#M30:@KiC{|\dP:W<~>WޙcV %z :~C6f{.PŰ}J̠Mx1[[ KoVc2qx %cVl8Yf(]6O ݲmSKY/V&  ͦW3e@aBZaKkEZ :6zmh+An;_tRBx2c6{߼SCZl%3mv6ri+;ښm76{>k-ښlaڂmvw*ٵ6w6Xlv῁՝m=dPlllsmlk%چf`lGvmml3ڪfP -} g/;ͯ+`w$0B☁[^1Gn{UL(V2:ktk,q~Md`,^#jmAnߣvLMO&͞qf2~ Œ  ;CR."Գj;g:?*lxaW*?!L3ǽ*=l CD'Ϸ!GQ*tE{Iv;>jG\I{%2Ajdw-%.$烙z}ğY4M\~ِ/mԖX㐁;'UX XpjP[ lȬ-f`P0*[ Mv˔uX F&PdiaKKCsxC444sivh4C[Cs o<ɥԯml[Jpڏ'TدLe_IX 47|OޗjOTټ`A%6E=~~I6 ""ٛqm|7fi@ HD/h-͖@=!fKi~'2M..l!]xt.6U$,&`(0{R 2ɠ ^ngJoǙfAoęE,d`luv#8[ bJ̠_p-_Omⓠ7W`"$`h5o,?7AZŐJ̠ Uh[ [ߕ=?C=6[\R\fר*#4}p;=jl۱ݬB`el: _=6oqzK곂Gd.M20g>εSdi&!h4lk9 r:h/ο .р 31eYǜmGi3v-9w&iBk}]U 3]cjC T2AX.,>?vh7?"{#0u%Mfx9m 1g ٩w0U`BP )d,G L2miٙǎ꜃lme d`,6[du}ffB_dPٸ$,}k[观x [FCÖ@ߗ`1dkl#emdYa䭲=l6IBkCim&khÚbKm#u궑mhCbUm#~[_!b"[7fk}L22[24֣?w{7Ż;ՆήD5Y*AY6O.\fTVª5jUTժBWes/+5Q*t*f8bPb4Ijl *,Pm 2=lOGemfY* lO6l<* 9, m>c`GjOmE3m MZV|@uN9bN8yB']i Ά C 5𸊏ma`PTcVQ*8l폫38}6j.WTU*8lݎ^ դWLZKUcdUQ5p*W AիH -tU$om/Y:?xA~xޡռp!(U 8kMYeEV3%]#Ɨl$6ɠm S *qAKmӾ &fIuߛv׍^K}1g<ĘqlC2U>BƋ [ p9[ઑcF,.*, @F uX|`پ u~Ӱ1#(;EÊ8kE%/;f)(p$HN8$x DZ$-?$)tL)$TUWRgO.ܒhK<_g|"GAj>fĪz$-Xrn#-iVb6bV65tY8ȻP~MEͤ *4!RUlL,إwV, qexwg|518o OQ6+=[=I<~Z⤝H;b?I ]W|)U^SmN{8\*^8 UuefuM[8+%Z-[pUxu3CZG՝Qdul[m5Җ_۽ݕ&  oi˯^ZU$P~~_Pxoc6^jm?{g*-ڪe=BK[lRDZam`㊂!mrm_[jk lS3m?V[]1Ϯ=vQ-#Fq0az~n#f@[ ΪYUӗoeT_jTUԵnWUoO&ݴqW?}SKpY-uT5՞z)A5*02Pe5DT{54I:Mߞi}U1UE30:]nl2>C a6.vmܵ1?fq{W1mPdu+m #rxXe3U0*@x{w"dw_ %F&Pl;7lkDwl,J(p48n:C 6{B2V[/j0ڞ6Xl=Sm,^[/j 3golvvhK <@iVDZaK5ZbcrgAnk=x<ژ!pfUd`,oT}~n`】njIuLW7l ˰YlxԶ:,P 66[;G#D!mFl9QGA$mA%L [މF7ra~8%f?C]Q;Va1`+` @ ϱ7l F5\g8%0/lWD,JA&u@vzYd[\iNjs$c-uVY!&6|W&mӰW?;]GhZQ˒Z(SٴSw6?T]PK8a/ɠj ZZDžY`?,pNpHo!Lv<.wPkYZ$U/: D՚ʖ5*4!jpX5q\]XR-0$$c um4dp!/M2_>&65`]kI[;iu>f!hƒm=6$cGmcm=jC+M2mgCqmeFhGmzWێ:V$:61"[e{;% 6d([leIdž-lmj V棶eIM2m}9+m} ?%kY \UZJ۠HVC1Ȥ V2G~em(Tq6zi(mL[%Ґ!limmUlÏ ?6sHym<][;y7,sЪxt /^6OvlkePyi{dJk־h-fF4L2I }uTWm:USQ;6EVM\nJ` eq lmGnQb%F&Pdoddkl,-XҸ%zSٶvM͠LQZCY]U=V썾)ӿ9ݷ'=ߡsmk~$Xb]Pb}20:yȭb %JfPll/umc gl?{Ƴ/h[كwb%` ذVqk8rumz4@Ö@*(V,6liٵ(k=f =VQd`,֕vWZlAn3T[{B˹U?gM20۔od32ClQdPlX*ظ2V|p'ꊶKIqNR[mhۚAn+˧Vx@X(<Z(rꀭt&uX hvqku򍶶smlSmlkSm{M2mv6huu.W㼲_+ʂRێ6M1"@uvfR@a8'6 tҙ/alZYp`ӓٴU8f+ٴ -H6)R9R7ֺĦc?o)aTRm6֛wɉMi[6|'ם4,8Gp/TbuXz:srJSk >V9_ϱ=> ?=4,8GfC •esG%7Ɇ6ܫC5nȪ\лG 6!L[Y Cbd4!3)ڥ;joEwR^9qi$cK뎅{$IA1ʀSYd="5>,H64{8b3 l[ζQ cQnN7p3 .ֺ012 _ux]t uϐIyVLƉOV:DՒ[y 7n,O'l,J5 &܀dXly? :;L,dYBdg?vss iL-As52P^'9d97ڝn q(`riL޺Ll dkM~(([l9vݜsD 1M -Dz7Z2p ['8hzl-8G`z0M]!Tlql9HHwrOd}Z]{=` =&Cw/99H3s$n tz 9Y3^"Mɖ<,HIv L,Mz.JNA2%t?d#-7 9% '/2d 8Eu:M.q4cmT|?8oPiF嗢H”p2%ξRYIu&:}:F1_d-~" \deX hlzߨ4-HZ̟c ;L0M4SdNdevK!M6FVds8j~l)7Y_NVLbz!+FFW"bH0FV/'d,:m+*m`Is+i-HMƖ'0a`d!%5,8Gzݜ *fqܭ*3T6gj|#7 lwsNlELllulUid%g$~@d-@ i\TZBb&TJ<)`T3 f0"ş ՝F^IB]bMĴZ n9P{$WX(sGX鿩WW &F1}k{: >6[{njP7ɶVP.q~/wh/-MвFܕj@E"SCf"p6%2 ǽ2Y--'.lLv2eqmvyp4 =>m^Φ:,8GfJlclk9Yll8ʟJl:Yp`[MC#\=F.y'~` -wTp] !!ې|!Ցw|ؐ0>_HNHŻ[$)ZXM/#4 a@7t❲aйb\k7SKoxJ‹b4`r0Jr6 ȴ[au}[5L.+o ( Ndkp9'Ȇ+r`usg WſEbjL.6 f@bcK/1Yu Nd|q' Sƫj,Xx]7aT:3e6y]" <=ep + Nߨc$5b7I|@&Pdk-:llIl6˛Ɩ_lٖ1`3`k,G[w-a-9oX(t̆R#&gUmJdkxt`s7p3 .69[#w36wW;j(Fp q4q7@-q,9oJc- >6[bXxre%[$Y_ Q"U@#0 vK sdU ̺;D?XO>e`?1 İ-oX3ՠ5eYJ܀d Wlĝ}@&YM Q"ωqzg|[ D#~D7rh' E) A6kJojy`a =dr4h!d9> mΤ(e9aklƄ"ƶ^l26%-9lwڋr m".9ke'm;u8 Oԧ$X'DDu{I$C$RS@,q\dKb1+fRl^G.2|l.( m̤(8=* ,,C-~}d*5)0Ĕi7jջCT-ZձV}saAW`-zw2lA6&HllyXYm9o2Z3!'4 (ldio?a ak3#[ Ɩo`i:5ͬ #νZLFQ0nx*Qy4R䍦^PľMæز 4 BbLKl5jb3 l_vm uւπ';S1d&7sCC}:d"a! N<|"1IDBbKB$HxozҴ!'$$z9ީ3fWBjn$Iuaq Ks4JBC6$ {ӣ8r4$ǃAZH5aľݧ%ѝh7虈݃֍:v D:Cg!L0" NoiVmaW N )b!p4Qp`q@p,*^3m_4iuc2NdY7΅wMJY|~B`D;SLŴ3i!»̍'l!d ..]/,>  W(iAv44$u9xO/`!QT 5r?fPJ*$3j:T{Q?X53=$.%:\̙SK<g"9!s[ShBA9J\@&ZYICAdӱ&"Z6=o!|K01d]hՖsM>M((/iV/'Oaٔ e !PVВȴyԒfwq4L"!eiP0F6{P$s F[D6?);l'B6rfdw@fѹ%/ kw0G].|1X];WzsY @pAL۲$kIA1d'mkxBOMDs\UW5 !F^u9Jsj(JZxqG!2{Qq^P9LskuSW2y8VcQ۱-ȠbQ_? LY'8( \A2rf/n]/ [3EuҒ1ɴUAūp3ud*hccE2E Xϛ {5o\fjәu,lLc k7*ǀC!d($2dZqV`8X0!q)'˜~Eؓh?"DEI sG <[>6E5S\4L٘49A46$4~ږļ[MņDQ!" b 'v:2C &(@Ӂr3&hDM}ad<Ԓ9Ud\hm‹#|*ؔ簭fٲNgt69l‹#{sKh͒58O7.,m`7y`\c2"ޥ'%Pp;$vc%܁cc.r'  acP=),## '9o(RBAC&S|&ɅC%PlXNmrq0a_e ![[ΆMaGbÖ-8m]ou9^ƭń lhJh4&Ôe/ q/幜r-c9Yoo2!@?f!䃦'2Xr8lþ,8nZmp\_ȶZfSҿ}L6~PCQ&6_KllIlvludF9%l}eGfF' m7ڸa D#;s $UA$ZE&JB5"!F}hq7L'Ɵ#|bz1r{Jȳlߥv d./ MJjNF/M0&24lbUctldͣ1"*?IVLT~O`-oBA,?BFћm^# lmo$_ybB6^3-d6 8l‹#p>a7"زmugC> ɥ[ [|%6SN2zMw!cK?G|AU@9 gejuzAaz!x'q5@ҬoɟǞ0L*թp"Ae!c)U Õ (HVp>2>x$*`i0@&Y=BR$odhD6%g7[ń`xs\*D6zF- dÎad17FDٰsA7<&*G27>3i|#Ba{l`HdhD [acKb{V7M.]rbcKb(a> ;gbcfLQ~S`k՘v4fi#d4g !ٰ{ܗ? DӼ3 ( {NojyR{7a`I$[>HXn> o4؁FDI /`[FޅVGew( d`&o@pAşJAdd{N-nѬC~{{+-rBcKIۛMś‹#*u bzsNL@}-i|ǵӃ% ة'E>pDdc)5Z6~N%l!dCp32]Y-xQlĸ̽(0r³@λ(L2|<=rpj $áGGd3oc%El4& !ͯ?BB$a~r4l{IvYĆ F7x2(i|#B5Γ&~qjțM'x&,8m26ujܕd%ظǺk˸ S:3FDH @*^oK0%zf5w$i('n >Za ddlyj+s1<@&G#bE?d F p'Ѳ 1\$4%9h"lL'*i3d]5i<>H!$2du4"C(HMc~+s˼XĨk{r&rc)͝B^DhD6lߦXZ]fyJ9B66ʙȷ- m7V6lmd6 ̶e ![ζjf([6 zCd ms,Ӹ? 3k:4[$T+=~ im$v6gmN~)9u) !b7; \@&جG#E&ClƥBAƣ(F6/'3 #W&iE,xQ.Ge2:4'cDC6lD]YNͦ K$Dw@z-U7 9剋9Y[o2" ,ҧ bʱx{+i$h(:|9^1+Y,f-8:}jw^*=0P-w%R݂d [qhqԖL65-‹#"Ba{aΑrB3 mNGÖr"^$oeGN..;R^\zx./g c9 $[ш aEdELR4O!lΤKF|F6Ib. o2AiTUd92Q&/L{:°rшi@¢Xxoj72 ʳLZFnA2|l4|#ϱ|@&N@#Gh%2]L.ΧL{'J։3i![[{=`p[*`gzICjI00Z"ނqS9vSCㄮ0+\G^ODe%2܂dTZ\XHo2F;%-8 i2N5m7[/f$-^m7ۚΖ-8mo}*6\[\2VK̀d nIh(FCT/?2idȲ3` ֪e / 5^:dl9d;Yove2Nb"!k&=1 3 Cn=3M-"a=NGYng2[L/Vi07@!"L\\ş6n'kkq]`548Lv'RZA6$/IXHwywFbaXoH#@fH:T@Y=76t6BYn@2\3@Yb ԈiEdmlxq~^lIkCK>62Zl~8d=4"f>&Ƨ;j:66ieRFUOZ|ԒJu6gl(,6FllhJ::}q!=:!P%>nNZ'r;1xT2  7yRa1sq\J$Xsuqp l K‹#&?96]ܳK1Є NU둴 >Ȇ柝>,|da&o6$mak5]nArbcKbk24 /`VWfcʔĶ֛mvg3 ζ1Ė-8m^o_˞"g\,H66\b k,M>6g^de~i6tV'q鈇*=Օ4PzX -.n5U|I2f=%-8 7nn GL(9vT:GnAvAJ H#F[5 D2K@}> Xk$ T>$:K|@&YFDI /`ۧZ W?GCH7!k3o%4} Ho\]. $hDdq< F}ɊؒZqQds& ( NdHtLWg/[L=T&6Qǀd NPS28Yt Q""k#|?ht@hah6_loW!TI9GE6XFn> o6F! E) lm061ϱ1"d#]I. >ȶun{`vɆM j(JYp@bS@7&)" ]H& 7616܂s M-Od#kwc@2\r7S> o4?Tp Kd3\mȋH ٟ"cNݿQgI%i5cgnI10ؔ MG]nA2|l24rUd*l~ 7jT įBλGhxj -27CF6A5j2>(8SpEe$R& ;Nd3 Aœ;QojF6"λ½7n7 .6[iSDIA1ʀS3Y1u9ښo,H64(' mMGf#Tv\צ{`-׿#r3B?E'c\"ۇHZSH{2z͡,>T5C7 9a.>G 7hIC1ʀSYᗓhjyc =#4khJ{H hz,<%L6=Uxd9 ! :&x{6ULf$dV5bHdf)HvjEIhH`I[{֪w-o6$xJ\y>x:Ź -vbe% (9c-a̕0b1ebAǼYa80䌁Y7w-;1L ՝ 6$ ;F/\kQ`C(+atv:Ӓ[G90*/.qrg uȷUGF)dY $Bvydys)<5,8G FhΆrf/+2ʴߑh4QFlda32%`[Ͷ G3 H65 '0df)H ;&U hquO1Q( ӪX?- 1:扻D"v[C:4i!ۇ_B7VSwbA4a)&$4`w'F%#UoRoR3s'YTá̀d-k8֬Υ| 8E ~'FqJ yic'?Qª}Oɏ-(} ĆyP;@chzwɇH%E 7 yw?j{!ՖAHF1$.9#a bH6ɺ[4 i G{U3 ɺKHH$l?#ːOS홎;^#c˴ǝeġRh csjd͙4$ 8E!O{N1kIdLْƓ'`׮& ߸M$i#p [Mu'ڇ*z?d+B"M֝ 8ɰm ;䄵ۅ["Tc)nۏ6$["̺ϟXl$J=0Xx0Lcޒ3McD{E;L܁c-Zj"Z/ԤS=x9A R-c1ZP \l2f|Ndl+FMx%ڿ婤xJ|2ٴz5$fc7C- Ͷ9X,8G [l4SޱU,Rf@"H4\,bZsɅ/5,8٘ۆ*2&ot ~H&۸F_nA2|l6|#e\e^țQHCQʂso DhlZW H4΋-AFFCfd_m67uy񌐉VzZLPwj Bm2C E) l\b++1d߹B&[Ic|܂d N`_ٔ}2f䍜5x']f%J+SѺQa}PYw'T9UNUۋf$JL^al}8YpabSAöfn>6[[/6ƛmkitdC1Yfs>@}cA2|3]Njs7ی']d9m5m8Z]o4VF[c26l-'K$coŧڊmbLjkLymI o2^b 2lrFt7C6^d02Z20dE6d*mz{<;]7$1 -7IBk^P.HV:1dƈf¼e]i g >.' x<> CC&6[qܪ |}L6hSc >ȦA@d!*5,8p_%!.&W=dp J`UF9%S71B TJ:ojGXa_k-e{-ͤdA0\+n,b.  3 i)lԣe,Cȏ.Ѫ%d.ǀd j+6 5j(Fp !S:d3i(JYp`ש"6^\<}ƝDxLGK.+mrb> o4^AbLddlBc;=Ɍb]W驰EaTiTw'{!뷘(7NVɇ[Nаς8!6*0~|O%܂d ??td5$ 8Tk2AYwknEo`J P!MAj(H @2,9g{7|cs냄ھOISyEhA2|  e|@&ZICQʂsMZ [罎^C&[-Ic^nA2|l6$J6lc& El}4Ъq [(K9a>a%oĪv--n([%̈́ 7?Rg:D[r&‚@mKgIJYo@Ic7$pG!դ>6[VV`s% Eh}t5u&Ӄ#k]@~N:qgy,*曉DxA["4тd 7  &Z]k& (X9Z b 9RKc >6rbf> BR#:Pc_|F~| 9RKEVAveYw|@&Vw(e9ȦJInU}#yqeoeA'j >6[@/Yi]6#6̨h97[Uƶֆ#]QX[lf9mD=h'UBݒƬn@2\m 7ph=)(Fp \IYw5L6TZ -,hc@ E) lX Sv7ln\H_bDw鎣OBs@:( ;8pGGM-96VGl^ǂd Ndg'|K2ZOQl*5ah>I3Jv,*4#X -vv&Yx%2VOQ#mf:A %6kfgQq@15iT0噡7TjDa+-x?V\d.6Î \_ځVd\oAFGg[dWEeU3tdΤǂd W- gwA0fLK`&0n$ +M 9%a`D"?]`O ,H60Z'& Q}60uw:h-1n@>c#.7ȡOiL|Ӏd\z]ȁ! *p/Ibdn Ts?e):"ډ]u aйbMx)5/T:k ̉ȵk%?E'w zuǻq؇HVSH|H:He*%ӟAbCB2 IFB҄ߖ \`^ŒŲOO {DigWw}DWR`|oiaQIt23$'.AS1mEWXo62$'66m72#fWhWLzeSy)5Ȯ'Le~Yp ncaUm+\ܻ,*RGo/6[Des`3)(Bpכ;?dIdZF"3 _jT׶TDUlf9v1 acKbiU. ɉ-F Fs܂s[U[5 5~W l$U݂d [} e7F8ll|x?LOB/m}܃dE61U"S,׵D67YϟjnArBc6oGcv^d{.b&X=vzyczfRT3jLϧ N%1-k$ayFTrTX. l EV\, 6Db.Y24Vw d?b}f> o4F! E) A6f~‘ԂP E'KjJc >6Xflc% E) lell8hsFs43 pghs9g23A6qUU+d.4}F>^hцf|'}(c5eb3aG@U =;y|XOb8c1D[IA1ʀSYodzوI![/23 vK"[F6b!2̀SC^dvB[|1@f)lEoUe,xřUFc\8Z֟",%tL ?ם[ԼO!g+Z,$>dd2Ќ#x\FūP?mZ#l!dckd+XIYp`[֋ö?lŶ^ldR[ŘDE{!1>u6[aA |@`3YRbe* 5q^uĕ l\}e.ZPU'3NA2.x= 8'B&ⵓ[2:scY9p츀VL~"X72UL>s 2{fU˵F'l!d P`\Bۅ½hXr(=6Zde<äKaV%U6}|uyX*AAX,I$5,BP5rZ-ŠK՛=xB0۸s(ElUuk L3+-0Ya ay ]QEuM`wY|;K|E\o,f!Lw5^Ps98Tn9 ogojQL:"j|y2|m0]UT;?_((e9v찱%ٰZZl,xZs6,Weue-8Gu1_ZǏm5B&jG В "c"3a5Brh2$^wh`!Ɩg {?{|̇,8Gaɶ o6 !عnW^,(b)T|6cB0N޺%D )yv7cbL`d,T ٖPO2cpOBA^LVF䒿"cK>7XR-V:+(!k (ό"J2\l45)0> Y3` &N>1Uq!hAqˇqzd‹l o6,"A~^ ~S`u[ņoP9w^cZ]ᱻHMCH1UaǝK[ KPrvy'}Rłō,{'Y"]ԢL-\DUW1 !Rc.֓$+iDvANf6\Ud%^VY!6'\ʾVy [&&x"B(T|@lZħG?lM[ظN<%dT\ɺK /k^ XʲUC-t2pZQ~T`c%qzsUoΰK0Z\ZNK\@ɵd!pe/ dզM-sblW<]!4jcBZBir`3)(D1WeKbDequ|2f=Oŕ\:a. o. H\\|q+v63 ؊ɦ?d3~"QYf "~ȚBNdzi;FXHh2O?o`/>ԢrTʷ|!X\²5y ddX`qy)˧)JZxqT\7$A+L6}cU0ɦAWNl} kĦe{] Q&A6bojQ5;% ;[dmkY>j% 7ڈbdEdm7pĴia,ܺ;BBr ar WP8‹dAei'w1E{&VQ7e^CObxFTpr^(+67CFH /R|cK[5u3('2$4822يJySu%VZ7}J6 !vKm/cXNkQKְ[笞$Ry\J,qDtF7iV?+0vDŵe·rs~0|0c8͖3GɍP?@5sND5񃤛(^}!BHI[!bÓhw18h_ojIDM+(0L՟Q =CVs%̀DxdlAc'US r ~/٨{gND>7tdgob7}-YM!iƟ#8Jh(գQ‹l/'N\C׉8QC9F݂dllAҬr .5N}mOi O(mW0w 2iAMsٰvlq9m= ;qrňCOdN؂aA2pـR##㹻öt[oƋmaV}$8wƋma Ħs7bl7Xzw - 7Luyw'*,qExv"^JG|3Q$p=q")-:|P׿ 8xSK"xXOLVFmnA2|l4$^Ah1+ș6dhZX^3d[%i$n<иl8vG1ud sʊ3|#OM{"\;=d.;i$fc7ZTM>(o6%bboHAם4j2b~҇g%F>(([ 2}X_(Zp&N=ϴFl}&:܂dlJ=ȧ-M3rԈk6VƋmq!^!YڭQ[ d6}P&[-I#6αua݂ha!8P}L2Ѱ8D:݀dhl6̀e>(m%ȺFNd%&2$l5=k>R@cA2|mp{!lָ@ E) A6y.$s6[4,c2B'(e9 Iojaݱx#=u~kF]nA2| Dk߈UT M P4$e=dlIds9o2R -H>dj9dx
Ցh 2="YyTƛJ # w.E`?~-L.-$5"[Yp%r)/Ō:\ѸB&WI]nA2|l0􅋞:VAh$VF l8Ay1s%N+k ̟4$pr!3jUb T ʛmZRlhuhD~*lm'E] >60,Z|P&ۜICQʂs~M o^|J ̟ڭm?E8 u%7ՊW[AJ'cT9Pvj#C6ՆC7Ժc qp("ߒ3JeRFk襪4Kq\XǢU<+y1GPąM?$y2!fMϽiPE}ƹ!RAȍWҋ_]-JYRJ;=b je) n晉 ^.* qﱥT) IgmmInipmqUV嗆v)4tÎh_+z_J&g/p޵H Dx@m.* &H⭐*Kazս "SAu#(6ۮO楴*:kE~EF?x}8# J= Õ'+p6??i3H<^' aPw; mO2@K6aF :AMK[lljr#5Dlmc%b5?q8Ju [%6Kc?-YK&ؐ&Y:{H J`"O_4AڀݟWR1b.r62vg`3iȀ5>`hW 2DžxU,$9?8N)&)#apou#n;i\ ???ذl~5,%VA4l?iB%4dmnk6JĦokXj\A*n]GA;Z mȘ' Dҧs oTjvhWXQNP qPa, ҆{}cҐQ/gm Ƨ&X=wD að^piYyA$4dM*lw64I`yib=H,o؂ b߰u~O̕;YB/\k mlƷ/;&`SףMg a+v컱AtVy3$sO߉4TJ2> jM7/kHé;V0$VO ڌiˉOJU1u@gƍ<=) mk \ޓrP4@K=)H;"T}p=5*ܡ߰lO[D'dAOװ)%"oP;2bcvuC;%}}t҄ :D ̈́!## {l #j ĦΤv?KPf"~a^2bLaψkd\jwu",rpDXeX#byx DfDc]+EZ$We}IE^CR" > I{Q̈b̀{MYXdBstה?$cIh"_NA< y) iQCG+S~S W.ѯA4l6r#^v#M&4QBNRAF|GbM++ "Y3@tV,afD͋XRQى\aGP Oi. h FC KiBS~-plx%ljAwє\,(ތ@4LZ knWAZJAFAd} GV'{_սp0` :2DVod^\t`% qpO+f a،t 5x &6U4dveqVy ick5lͻ9kphpbCTQ U{^t`EUK(j ~N 5x 2`\B^JCAl76rE%imlX Dl䠑kL4d89;2kx׮+pMlps+j&tvE-h8x!v] e)$O@p8\ָo8a#<<# κU;XXċUYf \G.q1,{>v(!! 02P8xl@h.2JAh ɧop:-i&T 5xnMp$n8XY˞D?JQh0T7О,iFZMZ& Yitܡ`R^3'$T>rVvm%NKA4ljϸ|Q{ MT N?Ǒ+Q]2WV逌4l2rz%h43$8%DV%:2U`ׇp=3ߑ欐UP而~5Dhghᢠñ!n, }@-`yM&.hPB>JCFȐY9s"D5sTUS; p}Du~cvU+̵#: L !/! 9([ta;*ql'76ޱKǖp86j4" ɟI*UvGViP8ԓd E=MTO Cհ9j<N^ JaDZ2+)I8(Wx yS2V6lYh0h  PylfAn䈍⨴oװcNs9UK) 6 9hib=HKi8묂6"2]xw]J\XFc2qAG6BzA$d6o_!nFN@6gFFld 2r2:629#5df1XLV ު,YuN*=H̑5 b*q5mfBr&!! ƫ%F9G^Yh19wuiڰ*"JϨifT$cK8MK[̬ iBuKX@4M<#Noi&T\AFSAFAdy@Q5AoKNnZ ڙ4.kN.s$93gs$(0ГӇ/Gu$p @5>OH5|>OLAkIxWCxoƕ>C=I"R}YL-O; lNBs[+i=nLQ茪5K 63O ocDaIs)ͩ-dXH+M k8˫4m &H^!8A'gȳ\嘻 TydckdˑgM{%lË́m& #6"Y=]R$Zc-AkQ "6vٙ苘twZ (G 6q5x7JJojxAlj6ûr0Cy9^$xfu & 4}V@7(,W9:h:sTwۑʕ3wZ+X̃ѴATW7lY!yM-75 6=TOزB͏}aZ;֘_җi$ ið6aymgޒwV'Ol蒠$=+'a.gԟAf0%.Zw/-N3p/#H<^G ipwAg[ebh\X$/*^7j D҂!#H]{H'$|U6zqv&o4B'n$:[A["xk >yj3@A<VDa%2V]8^$ rq(/ l,/ BkڜF~uyŞw(-iMX'#ckZd In> EAv)(,'%EAʽ j7T=ibG QUor8*-O"D{j7Tj%T_2@:f{zyjATQyZRx#$DgliwZ\Ƶff5 Ol?E3nfѝ&QDL44a h>ڑ%Djv YG*Xi K:8VԒH6"֓76`mcdduԼcTX>رufF>P5$ &GG b18xᢧɔ|JI DG@8yH2j6daI GC,J7ca 7I^w^K*Ih 49\נjҲA:ziM o8m,qT~|UЮຢ ZژpdZ2 "c1e pKȈ w6:Bvs' HGd,W.#iUyߞ98ݸakIǦnZ تbUAʳ8;2t8W o, hp"B PY_ks6ʝae@H3JU; H!QiMY m!K(Lw7k.ljL@[HGd/;KYj ld D6kB}ha88 % HM=K-1iAl[5 2ȦyAcImoJ84{ N6y'l*A-l at pbYQߥdXu #(0ևoL%R_jtpNVҺPD u{`>9|a5HFH6; yuϏ4$DJ\UBկUe)QΈLw]IɈGvu%p 'B 1BC034}:@%5 FwȒ߲A:ոñLggi0/Q ξ\6`3zPdu͠xBS6q嬬+ML9p|s] l\g+ҴaAqf`ř <9[Ґq江D{ ̾I'7ܧ(m?זnCw9˵mT8џucDa|mʖ{ٸ-i $j4:Y-)%+@AT][2džA6gcӺcS7:QW%Q{@6mΈMͽP\6HJ-eo[GfZTm!}% HÂ#)w\zؾm$OhŸF' (_Zkup۰eAW2ne+gIԙ5 AjmA݂:`9܏Ph6AYiX#A?װ<6H AB~KCAlj!^+>.燐K+ @;oޘ]߭CGG~{m !O@:}܄j=5 E:8ql&ރñ!&bC⏰1[ƱLظ% 3656n8C3r!vhX1D7ϖc8Dv$-2rPX`40p(K y- ٖ@4aA{)P[Y Zt'̙8* Oj}8hDIϭFQqYMI fŜ؍{@u QsT#jY鈋sddz2RӃۿIAFAd7Kvn'"B /%3H5m4Nã %coZll^+ƒxrԸ JGXUҴaA+נbN/yZҐqVQ匍 DDȭ\ mmjz$2xR; ھ6g9ee%Du uh$XҴF6;z6HMN&}mh˂V9j6iaLfVQJ eJ7qFJARc],>\*$TJ' VAWˮ]df1f[X¨4m.r5СlV$4dĦ[9jС::¦T7aY鈍>\v$?|\9._;b[x;~ng`A4t0g4\Ƨq Ħ&!! *ksg7w\{a(fdn=k M+ TP&Hl)%6dl*Sxu'BI&ڐI%H4mٔc5cUz2b+<1Q1kͬ6^pl5k e"WdjL6"6]5dmlS&W {sĐ{יT"k}<\4 :[AVHs+ A]CA`ի1P3u*KL,i$DÆa >\9LN5g(PY8PmF5dĦ4=+  zHVh 1σNhp6r$cݥk%<0< R8>ik$C{s8^$,cXYÇ#W[У?9 d<$ql י^4^$ly2 v mtA^Jdžtm9G[и\@;dBqin WT|oxّ10b2U(/cvs/`O'abדƝ&=7t UvVopqH7Lz"[h#*I/{st9g0' gK ,`dt@[g 7D&}.x0qyC}C]IӰa+rZ#`W= ܺK7D#>o7:~*.4mx >/D4ymP&8W^M/L͈8IRC<Ո~kzV *}KGixCAd'ٶ+p֭Pv\>B /Y[I⺳Ѱa7]~A]RpOZZ ML޲.qA4lwa^Gږ3jxAl7LY<|$Ч6Kz 6 چkPzl澗T1E o8X>cvt!K M{ q@$,WbkpL8|7D*Zx:p8"{]:_[z%qͬA4lr +- ym y) o8Qf< ; ߾{| IG 6rge2in%4  Ld^A]H~Ɠ~u~ҧY?|9'ɳrmBR&_~U¶B;W`ĺ~5 U `mX[b6eQW0w;^?6i$n&'Jh0lLVJ`)in$k8*-a lK ZU<ɭ$5 ݸeUi1%dD'K9g% 0d 4_PnwDÆ!k<'' q]`<}c\]>(NҐq[IֹW0rߒu4_Q$5 BTTT)aF! 6T+EM;0Xe2LQ|9 i0ImPSMwwMl'GKDҹPp,)>׃ǀ..q}[ԙ@@B'ÐuSڄ= EBWp`i|Y$&,VP)`Cw7 ! 2p8c8.o.-"^G.QK 6 9g^hGA;*x-PB^JClz=y+p;UfC`?I^IHo氿Ύdb7.!! l # nhe /#[(Qk 6 [+s=޴i$4dv{as Lj+D|Y$jD{caආkPޚl¾G" y)  iF)7xJEU,mstxDYh0h'}v"Dž6H G)(2I⑟s֮"8k[5[Ab"a`MKAB>JCFAd Oyh9˱ [yc*Aά@4Lrֆ!8X Z|w RGq6&r(."۰sV wpʨp$!! ɪ+9GI֪dy;͙S?%T-SD{k^+&mּ y) iVQoYY O+3k1AS_ kqT_ŕќ%ѸUvo8ʎu% ͍#K( IYobmN4[h-' ܃砟$' q +ʊFhNXMSqNDÄ"i\: ͽ tR Rs ,= 5Ykvv!Y2b,p3K9kk##82@HJ#k}lslSʺV^&C[!8g/Lƒ!cSN"C :縐vϸhc.!/!&e[YNXẕ]Ymc2jvl⦄xܹW(gW(^xe!Tfa s\ o;tn %dDv!#GDGvw$dl9Z :@#gݶp_]l~twQPQBAQjFUT?М-G3 DÄ#g੧A +G)(zDO;ǑqGqM ZIbHFaqhG=s"SB^:m|Î+ڎmDl $\;iAx6_ZႰ%6_X5[|Dlܷ5Mn/!@T*[Î׵A'9Fc5s kI̩HS*6 >;mߨbwFRD78! {~%wFâ Y,~%=A$ 4 +CYS$FDÆ!Thd41KϽtd%QP9Jë7Cہ } y) qFQ>8aڰM.)1f ;*98$v7rp y) i6zNAݧd9mejP~%5J9*`ݍ$/\B^JCAl+D#1؞gaeDF??7IJ I@4,0r$TVBT0A˻ tQKz }ZS*bejԸSbYh0`Jc41wABNRAFAd+mdo2]`T= Xi#X?bPZE q\E`4wVycT8V3L^hqG԰iղSo V e^HB^1b,ps6';1X dWsQabmh.f&:qci}"4iNuW(%$ .=֏ǯ?]B;-s%qq؅.Ep`WPF&629!dOd1u/"S2ɽV~f\LU+RM‚!#&@s`/Σ ">G&oaWƥEp5n6}E`q٨'C *-"S۶- JjIAaӰaT[YmJH՘ O3ㆌ3|)r}f$:uNB'[p޹~q-2+pV뻆f+$ػq:%|O DÄ"Ò  2f"[88i Ӆmش[{? NXAtaAVրcm4#jLҐqW(ܦ%KX>gf5[>ٌ$5.l9]pmfT} !/! r0r`c.<`lN69Mk)#XcK8uBo5pjPش V@ßt"&YvX5haoGu圆g ]zL+0ֹD@%ɴ:mFr29 .u6UxRhٶϿ= OK$e7>p`UX`fx6al&7%jD,XnV eۄ*m'$!' 2fk &Vgӗ+$`xIԙ,l9H ~2+k ( MOjȹlۊ>޳9` JJF5pl4PdSB^JCl'Hkz}x覯+[4'{IYhGۼ\6e II*(z2rbg?=&ZV  ckk8z:J%  2U19]oڳ;|h#kosZeض g^HB^JCAl+'Wl}72!תe06OO"MbD ac8daҐqzȹOV/V 'މ*Ac +IT)A9'ۄʴm'$!!N( 'ݖzaX}Kf UxksPsk@mCEҐqw{-s6[=V7 Ҁ1^$`q]=I?H'3w7GGw7+ւ hC5ßErX$OUXiۗ:`'n3oJnVH ) 1A4ldphæҐqto}af]NI) @2QB>JAFdZ7q`y/JYw 6 94m&.`Om:14hGwvsA/AbDÆa#4[\daҐq9FccmU.l9F:`#DZQc^86zbcӘt=3V6lg66Sbx¤A&N9- 66z2bCYdSg_6?+qa34KF*V$P863[2hRQ7,T q8i?(%dj8kl@=8jK|& Up;ts#V]MCІe$1G 6 "T5g1YAB^JCAlnݜu:Gh9K6:OL7S ϵE n'*nɂ6PÒ{ 6 90԰,F )!/! 6VfEW<},9VJIܬP- zsVC\6z{! y)  Imcwrz>cvl,xjeW 6q*h7g R2bcqgm6Z*/6ױ h6DYh0h\6ae`4dDƺ Z(|.46Gy PDE,t4RԶ IKi8mm)ٜdzujONZoVx~u8PѰaYO^J6@lE/$!/! }9^JHvn^ $%ZZ6 [Nk5pm6lBR2bkړFrỾxŸ5X$/[K4͠}yEw+ieEoNc 4&Fq꠷i!#bB$z UHÄ"Gvd4#;EJkrtG{?񚵭B8I55BƗ4R |%HKi8VcGU.6.[DlnMM^HB^JCAl)BiGY\krձ9M6}7icd að Ү\Hia$4dĶQt Y'0O{}E%/XI6>I g9{z< ?l,:!bO9 ;' օO[HkvMMt@Ot{kLu64tOHJ̞5 E.l f2-Ґqd"Wcs5u Rت~:YSP{AӰFsYE |3HKjxlMY tRv#ң'au=`TPF6/u]clÐM|\0nkੰ|멱!]7Ka6$ւv+pq.{ං2 Іln/H o(l"L1c\e}2o4 D CFNJkƾ-Yvw9ѝHXT>Sު31sᢑ$O}4v#.8;C|useE8æ6'~ 4=BHXXĩ֟m+l4g!e4 (  V>YUw{l]9y> 1'hVDѰayb&ӝ ĬA DÄA#y5{^aɼIi\vx!YW ;|ج+[gJ\Ǚ48 Tr5Fhå&Ґq,Cqgl;ODxS8o9; l}lLt1?=|θ,v}v^m >[1mN2Y}霆zKmc/?$%5UYkE:g}n6 LuH.D9acYyw ~%5}koވV >\ŠH Fd> *`@R>R `8'xYOD=uz\ɕ: Dw:)rR-g>(2Tn{B`v5QZyviC6}K⚌A4l4rGG6@6]や{I o8 cq ˊ|֯mvInYhX#ގ+V5fm56l(SGA4l6rxf! :v,/\B^JClY▶scY"7YIv%V A4l⬈OG;S.g@cF,,ƴ̵~Cj4QV30$/y2Ukǁs$@4>OH`YL|e_)hNH$"{QnN1(Q&vp ( U^-80+Ѿ 6OQ%&r\iX#j`=,& - 5$+ <ct~%m6=J:{휎 T%[؋m Pdn!is5].YiX#Ibi{n wڦP'ִ9+tXMʖ>iIV͐4Mt+$h=& y-8.ߖJ}>ٝ4/~YhG<IiwǼtXTXu2M%/B%ݷ \Ǚ~'c -M-AB? =aE_S)`c]8{\F~]P2qH H z[Kُ&H'\B^KCFd-6m%il\4᯽L&9$pm<kҪ9DQ?H{OwÓԮO.PHk^J.Ht $i.6)P˦y`kZ%4|$Q(!n-HE*!ΚW0^qV}.*.A|xFTWe3wNn'b'X}d ac g Dt3(~+pjў3:$֎kQNwV 59j-5|p 2 khtf0* /3Hzv2~̶K '8 㝄%/Ca_h}璄<7 Գö֜n-nbVjDH/?0n]xt'"aa gŨ ? mp ( qXCEss|USo+zm $Q55Bdz5yK< ͏ϲ$!/!u'Rlf9넠/V0%-;P%fDJ֞dk@mCҐqJ2ιlCh=Y՞ng%D58]P9,3O-^RQu?8Z=W3ovm k$" K;笖 M^#$4d@6g~8–>E7+.9 !]% `*pqX bLNP}7l^pN-E^;mUy$VY)Ȥ`v k|U<<8Z~5oo 3+=+M7>ѷok8qBR2^va~sEe<[!NXmzg 6qV^zҐq,l˟u-eǽ9Wj~/O| W×R='W~yT+)f[&zE)qʦѢ8Qj-ʌRD7_A?緯/ӿ-ONՏJOT#/z|]Ab|>ۯw˿jʪ|ꬎ>+98QS)qT;A9Ij=Z'J;$#O˅W__*z?Rq}ܯu#L(vC8W%NujpPXbh3Ww+R8k㯿/?/??o )ȣbu|~3+w?`7g_Rau>wc~}_֒?Ards%<׿B럠eί?FԳ}]J_IQs֯>_-9\a֌/"ί+=w/?J=+K$ ~Wsc[q)~zO7[z?ꜫJ??:??'_wV i}׺<ѿ& ~wTpׯUf_ =9zr?%=~g%O(C ][g ?p=~t=2e_cVzJgH_ںWD~?guDOQ3`Wq{`oCWO~x['f-oOfj~a:Yן7gP}5Ϝj#֊[ӧM_E#=OKl?#)%_6>௞uk==`_nϟGc>}FQu3?z{᧗O,?}XD?8ğP?LOϋΏ?X9O3VyL}"< 8Z8 ;G~B"$8!@,^Z64myqc;J[6u9Y;a) m T[.|IYw٪k.)_R8&HaͷkpHVP6`ҕ '_̑㒦 /d7Znju]#$/CP΃JbO߫TAWU㵶4F| _5yf\;ڪ&  J֋'wPumB#q "F!֨ a\G0^'C3 &> 5%ӠEӅX#!Iߨ8\( kQd۩jM(+`nN_5&Psؑ_=Ja~l;_6(=E9j$=pۜP#Q'k괣r;r(y6 J&Jñ_v{ӆÏkpJж"|Zpʬ(Y PH{Z n݈QP8`?L O /~+O%]Xށ/"Epy@P,2Ni(Sg?.U!f[r ֖`/T"׋IMcG>J&OKb $4$vlI"c#Njh ֟ZH3?VЬ݂%s'[݁4iN9sѓVYة> stream x[ݏ#Gy#xHѷr_hvc7g6\BˉQvBMΗgկoM(夵}5Zϧ32mn3!x~x< 4UgH&jdv"a<ΧVM#T-2y`14ʥZh8Yg3)d&TmƯ//3ԍV͔ۺ1\T[܂-*lNZ\nMcN(Y-uآj=`1d&fpX-7OEztfSy$\R+JQޥ+na7NHͪ*?n)?4Z῿d,ۆck572|E=ބCxPMt|r_M7 Wun^I7 zk(W$]Nx5mD+~VjTth+V+ frhR zLnr!Ftض?C't>VTS)cvv;nC*Sl-nͲ#8w L MV14&jʧ/ )꿫U45EQSı^T"AX^gΏ#y` /AA7EZ 'D.~bkxp,Ζ|hmw^`@m8 >gCBqwYf3pk:dڹ&K][ 5?4҃]D\,!sϸԹVl k7}q_rn’OHG<"s1zIB\ #M9Tao6Mނe%A9_PQUH*&4Dj@tQvɔ% J(H (J 4n zW*'G OHbYkޘ@L޽c܂6؍n<567GcPRjY!Rn!@0.2̫ȴC;uCr5׀O,iN `PY_T)RP{ҮV`ZS9~TT.y>`G`1,(WsX7\6OΒpj7I,X!;qW[}?@-Z'Qgq#<5k?kY'j˴-(Uy 䠪EDsqI)&q0% Dt?D:XsSKx>1Έ_ $˖L3AyØy@fƆɶc_/y ѷzhVAq51DI@m(Sr2[TKX{#I |\һ(2;k?*. nhJkv]6I@o@c:sA' 0׿L&m0CMٽf "EJS09>HϷSoA{>z棫XVאA$;M 2*6Jʘ]ūi=i #XDT d]_.H4H VTyvZ2DAe~%m\b߮﫹;j3A LX jNqTKaYy(II?`$}NQzԂu=L(q23PM߻&)CX&X550xG@#䑩U|je}h&ַUj,C; YU * dE;T^ :H\Jwq0iS'بE5ҔTq4y87jz>/~cc[O?ې/OU3 G]zJ~kaq$I LA}%D>j'hw\3DA41ti0*=9'='XQ- 3Yu!Ec 5mKu%G@'Ws/][0 Jcѫ?ۻbؘ=5F`.ⶴ )jh[} pH'`t>P}|0)s1K9@bCޕqi@b?&}텡Y4ے)T@?]k=yj Fh+g%1IDӑYs ZXO3f]0?3G~N` >ϻaj8H1.ȲSQ9 }-L݁Ma"."g``h|nxUAw vA%lvj8cOLC`fcK/s%Wc~kc?4 جk}B/C\XbSjB&-tNm%/C&Ok-wij2p8іo}׃s ͪ`[, 0hgl# p~<+NT0]6 &faK|2k^:j؁F9R=D<9·}q 厶!sa7C-p z$ɳLMBuMbtQWәуm'Ͽr?DԲWجlŸ ."׫׍o ϸpFCIԏ> sO9ϡC 'e kǼj]^c^ Rwr9yބAFB;PWq42F%4v_^jSmQA9~Oq>Q'n0zAIG9?V雙]R'B֧Nd e}j Q6,mM1'jh?U5n'QU 8/ 8)FrMH'iZEz&Kz}\!o$phxq6\W7&G$:f>ža2*/\Rno8VP@hNYy!.'=+gXu&uNj#˹SUU׃I]('`_> stream x]An@ E0@ ynhUEdt5qq<?-Ʃ_u1=NYYo/ݒnYR4l]RQ?ۥ8t16k4~yxɘD9XVjL(%8Ƅ3kw1!Tǃ1@o;<BiتVMe rc ŋbb֎;c;`㈮"#/TW1#lFFh$n$`tĜ` 89I(> RP]P!TT)rJAuARP]P!TT<_#m}]tJr|)m2/~+G_{endstream endobj 386 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 4127 >> stream xXytSuih`-X6[TvaQ@ -PRMnI6Mo6[6MPHB)bC@P2w0s9ɽ~?IazpxQvr΂sV'g SFIE=F=ӻ|ddg8D!bǸ( LEalk@L$K/3|1fzրQi1 P`#Zg}$?l oa ԗՑK2k֗UC6!G)3Kȥt,`)]ʚzOAAaZnQHۛlAD$e/Egٔp_֫t$E?AϢw7"Qz $tqawiDI:ŽPX)@S';ItB R,jlʈz%{c5:9*bUӧOi.k `-xzBGkIdoz?Cs L⦿G:W`m.Ź\; ?a~0=NfS/˹_6@ouX+3: Z0KAByY}z;:mՒF?_k, 5٠la<Uh_xrű4l8&T˯&5#6U@Mp *oMAC>{E)`?ԕe ڪ} bJ2ZsM=q^q}xcBL'!0%zMᔮ5tDԭ&za@ pq":Lׯ" SyUM5n=9'?a* QB,4c.͐n "ר6trڠX8XLҧWZO#߿~=' Ul74.(جգ,2YVa/4:b˙CMG|ZMgQt CKxw@Fk+A+pyHtJ`6$};! *Ye YW3Plr;ȋh0`[Esz-FW%h )I/5YF0iҾCʘM|Ω YDEj:>1خRKEZIXF2W d~z;5}ۿ?K*!um/kPVa$\i4RCyG{ۃ=-7Y U3Hx5LF\dOqq^ 5fij3W\TZwS#V0~_G :.13b]{f=pMɨrD֋|PIt=9P[m7{A 6 @Hы^:xGayؽPƀgRXd 1Ȼƾ.ۧy\}%(3 u2CYuV%e-u)[ПQ,B3d繬n+rC_k|"2m9cSi\YiJNo2[,fd4ED_Ema 5`HA@!& AYOҏ:Ikc'NtmnG v%$\@w) :^ԩ-+[n%.lgDxq "1['|kmN<`Z<.h, Fm0,b䂊Mh GS.DosyOKp7cO2q:IXJflꪫ .ebzbN4 uOY£U*_.؝1gcxH̦~:.=3lHX(DqD^h;} qmX dK nOg`rg2ѴkFicƓʲJ=I:*Hl5%-{kң(B zeHo#C/wcJ!~O7iGE6uԧ+Gyo:HԫTUotaf^spЃ([4| r͜čFӮ 9 8׺3֏.@=`0@¨ػ4TZd&,u1'hAϜw,}N2~X BkTJ2ӺxJh&s5ڌW6o3#M(;7xZ z2rDC'E:y t쑗-\Ѯכ*!߹soh~Rь%(&$z7Ihn*Zr|Xuqh>ex5UyI4KfرyO\RА˛r%_G^5z iŭR( XY{ĕW[5yWv=p1KhxUʲF_GQr-qﵹ7/u^=p74dd\}NNLgk ⺥_rz>J_XQ#זB;{<#F?xYnJosdYKj\`}Oǡj([>-]v%$WjڿP1 3RL0Ll6@ P^ggCcUɰ%ٽRM&7' F0MmEO(*լ1Ж~-XGԴ΍౗ґ3_#%@x4^!ǖ ~<^f3R[b2oAo1;cUMD f3 e_v]c'OMn3VlvW%atHCd v#g#gUV&?~;,FE3$ueueusoCcNA-Rԭx!g lBl8.W}{t>p2kwPTc^64»3 Q@;FO'чHYIIPǂ]<.mf4b>vD*qRqz0m9CG#][(uP%q{R<(儦 OLI1"0۳juֈVjYVGWĪendstream endobj 387 0 obj << /Filter /FlateDecode /Length 161 >> stream x]O10 b C 8QC_C;ɾ;,ڳK X&었Eu0Sat@vz"չ-4R> stream x=OOpmX;xKM($d1!LcAnF0GM7[qYGu a/hx0&? Ƙ_g qHIwpL_8Nvj-jnhI%t`(ݸ^]CcWUǽH<;Nm7mMݖv\v8c㝜Ɨ]f8y~ ,6966!dp~n8>y8=uܜiCakxn"Vazx^].Y@A_? Rt(~PpJy)y ^0-B93QAD[́QnIy@ΛMc*fNW )G-#<3ᅹh"a c(,K.KKN9[i>""I9#5FL66¿Ή@jA$Pm@6ir('oV YR%(ؓw67 b21" d5mSw:ZX:h-$\M riH2~5U6&rzMHϦ41oC|&&u4\=rR^ZKHь̊gV-M&r(Er̟N4PY(u ڋ,_ҷmʒTe Jendstream endobj 389 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 309 >> stream xcd`ab`ddd v54~H3a!-eskc7s7ˊ+ ~.ȘW\_PYQ`hii`d``ZXX('gT*hdX뗗%i(gd(((%*ݧ&]KsR2K3SRcY~tp{|FVEe~3.hꮓl諙;UN`߿&wuK5mzKOu<_~'Mgõ[|>纙<<@uhendstream endobj 390 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 376 >> stream xcd`ab`ddM,M)6 JM/I,If!Cwϛ?XyyX|.=_{LFʢ#c]] iTध_^竧_TSHJHISOSIP v Vp 8TќF.&FFk3;aW?oS7aŸ7Hx}ӔHΪV Wƶj~>"1{B7fdYZ]'pIL|l3t/kyO-.býzBOό &OY3wv}=< endstream endobj 391 0 obj << /Filter /FlateDecode /Length 162 >> stream x]O1 yA2D,钡UĘ!tpw'y?\2G yh kB&Y#8go:?`3]ğU0ZFJO:!Tgb͟tF{8VUH!eJM5%6MJL `0SS9endstream endobj 392 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 283 >> stream xcd`ab`dd M34 JM/I,f!Cܬ<<,7 }_1<9(3=DXWHZ*$U*8)x%&ggg*$(x)34R3sBR#B]܃C50\``````(a`bdd?3qG߷0~բxy؜u̙[r| 87mBU\XBBy8yL;ódKމ}}}&201g>endstream endobj 393 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 945 >> stream xeoL[UmU5dso :Fd0IJiv+P`PZJCڡoYi( [Q5!F3; >1t^-込99R(I(ʨhx _3_kjbN|+BR S՛@.yGgcDFӑ7|jnhq;w(OUpw79ViT~ޑ\.oጦFCK=s: v_!$kٍ$jU61U̼G҈;lJE8F0^};Hq?Xѳ 2F]~I6,!z?>nsP]kw*x DਏlLJ։o:U{8ugaI3Qq "ns{pC7{ !*aR{ä4pC )8%I˓A9 x<ӞР\>78z<g| Fendstream endobj 394 0 obj << /Filter /FlateDecode /Length 297 >> stream x]Mn@ bn87&VU `"!޾&颋7҇=t9_ҴclnҰ}~Q\/)ee)nO3޺%OoC;w7?ۧrAKeU(G$ BUgjTUQl@ר/,+6+ŚMZ1 l Kn49jA+&WllQ&X‘Mbd0* 8 d}I^C", AK3+:Pu׾\|Ͷl[MI~e^_!endstream endobj 395 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1697 >> stream xSTSrfBvM2q`"L~@䗠b UtVD)?9 ` Y V9]w}}"H\+VjsYK7wΙ֯Sk8UmýiK [ pk $Rvo ?PRگme~xE( sT+Q?Vjq9B,M ?( ij9yޕxxD<@$;d"E6"!6;1I8aO8j3t$ZeT5%/d6q6Z~9hq]H% !p Bղp|߭8mvQ:#z4-f2Spka opy[!fK) awuxmb$Ac.9w#?D:rapoB6g,68 Lt~}M)n5ق61+ @3xfu'u<3h]+$-:Z^y9e39NwPfNV ĺ kRo}Nie*/\-񥓭^3o"'i44WQSG{П[4U4kG8!rDy~v~;BE0E3pJ$zW"FuU xjY%~&8g: >j}Z|G3/:o%F Da@w 3a+圷e &9N"Fz)I>@WЧU  r嗗hs?LCLaKt ̏7{_jTu6xc` \nl~^-?+1^ɣV'D ?wfTPLPjq75 nۣBPۇ>jdN f7!:RoBje)& Gtk%h؇ nO@-eGxe?8|,֚Z2!qtV) g)B@p#&(V/tUNq<@ ŝ5?FEw~fP_awͬWݻ@y< aَOk]K N 5V%Jn//Ǜ<2w#a|qgq4srbhK)yw +.F2]~f7qo^iy1[-1<ٱԵ!~cn6dH/V$<qEoW=YBȊ컟`]wkawVIB ]> stream xmLWӖQJhb_XV$d EM+b8gxq rhE 2`'`#N!s`1e-(yn}ݷ{w/$"0r^Ai͔kXg--i FX)V1x|N*/AᦒDjCH4A "8H %ZO\Lrx1SSP1,'s熁l: _J, Ѝ\ր1jJPα,7I$%tM?u=/:!CkO"DA"c.\V_5 c!dSC 7 9>wrj PϛsmdK{tsgk/ XVU[?Ʃx 60aI񼁭hXCx&q,}JsݙVՔk1O :yB<,t N E2$WFT/2"I[VqYpf"g= .(6n@{h&f TA~S7fʌeGVW`XQ_kYHӻ-&ZW! aRDY)wU}N,2 ?TYۈOa;?e" fɆ0"!Ϳu7PEY8pN '';aܵ*<CX!-JI z) B@{HWfJjyCg}Qjt`0 +wzszjy=ͩ< YpCrsRXԾ QП`/ endstream endobj 397 0 obj << /Filter /FlateDecode /Length 4818 >> stream x\IIv|xI[̉}i =mUErE")UEK:[R ߛ[]tsIWa _8ڶ^fyglU1ro^4Rqe~ZW_qJU2~\)Zd09˕4Y\3 3+B67>wtm̸-u*vit·p<-]KB)XI:c•ZL9}yI`+ZyNpɋ-Xk<GVXm-QJǘp}+[܃˕`^p˔hZ쮄eY!,|05Y'I{[oYC9A\xʷ8 EOm6QI˫!؅h^)l8cZGH԰uU[̴Y㐷iH~x48BVY^0a6ӒTGT g2YȀcx5 /Pw m<;w9'דW _3- t?),u=ULF0o &I<+|TZ򩶵!M\W/΅^#_.kHz7 j4+2Zeh@QVP6 f*8|k2[?_'C"f&_4vgl=q0T+V^2ahwa߭Osނ |>}|`Ӟֺi 8S>xC\Z) xlMI>p UadWh@-$8~):84Ɓ Dn:pI@B/5#W:is dғJ&?i@wXqjcK:$ZrqtD%`(5h.EyFlMmeϿJ?4f=mI9m3ݝLzz 蚨 B5U6dS-@^D`:vL&GM}sSxwXhtKB~(iD+Ü!.W@ ^T9.47ëN}_vpw٠] 3h )7Z"vj]γM2VE.F<~ӗ/uŀğ vŕwŷ= 9O̹ e7$x >]E26i["ýRUsDG _O2 Xf{RbSiQ/Y/,8]6D Pi}ez7y5 6?RnLLpt10?.X@Rfxt 8RkVK-lĜ'k,Ϻ&ƘcN춓)M!{B5YUΪDŽj#<\,<dDm\~3tf '?/tv%$sPlYO75C1uFRqzrM7M|ǐ4N@-!49.OGEWh Љ*Qޏw_b8 Hq ɘa8yHV9G)0q]f SmyN 纼* xm"\,$}1J7>כ̙ѹ(%#ʜ-é ĽC* w-k2Wib8.~F\z..un ϫoicLi. mb0d@#xsAFXb%X+Bmn#@r҇Q;jLdö{19=]n]̯.DdC9eA 6]i9 jF*c~΃Ch =?o?> :&KcQْyf4klrѩ.]cʿp ]x4SPv!XFBP ;s`:fgʈ!9LL5\ 慤 U2=3ǒ(wٰ2 26yOBz7 0J4&)>O|) xg})b DS0[`ܧt/$Ռ޿*ūUa)FUz'Mψ˚je˚/ڢ`jXPtB=9WꉔhPƁGQcMQ$O7єg^3ċ0 Þ8OۯCyhŝkGAT M`\BOT]Q>qfG-:PFbח .֒,]r? yߵZb]Ś~QzFXV}=WZ%PXMPf)9nV8毫;bhlʶKF?Þ,tc$v/g9tcU,%1IB1 @[ ˯xYlLcxЀܱLp&N_6_ uVöT UzbQ`Wr>f\V5<œ@ !C$@Ƕa& >_k𘺠y}O-ܲGLQ2435H!kH}"ruґ톀6nU^B͔+Ic2w0NБ?쏛w X$9GƇ#5Z y*Pхv6xfUQi5A?{ 1f`ȩ8&.jWB֚Qip2N˂e04D+ʾwAiZliQȃ]XR#]L'kU-=N7 'ֲXd0d(zơ`HZ#RZVR^΂ԟM y[MơFR TEYl`eXEg@_U D"XUJ #$_*288*jbq@4,.ef˟gi 6_`Y q8VXO)c)z_$Ln˓a2kFw-TXB>vmHW>eD'\fR|!̠G1??%h2>d~}!,˿np̝}I@w)>;~McxF\ \ FK} }!b"沱8F!+GFFPwHүK+{p ~8emJ0R7BoӇb hrͬqk8|Ȝ?ʵXo!)̈0/{,R{8q`=!CZ2q+;EI3)tɔ\bB589~Iiq1$3Vܥk/'RP\W+WjEx`V|f,f,͗+ +!rEVпTr&ޫuJ(o p|?CjyұQgo j;'vXV`MƎ 핞vࠋ'1D^{U]oR8E+D O3{4^*MκS:>2T f!w  6̽ tƣi'Y{R <J> stream x[K> a` 0'0ۆ(8"`sv֛֜ߛndAMUMׇjs{Ӆaˋ?0ޔbs"L'6+<\^[ UZ!aEJWVBb8**~i˪RWtn͹=mwJқ8g ;|q$*;|]6]\ dk؎enڸB՜iʙfL:}u]h i'Og -07|ߏl'>ñ;9uB{+`:楳FDW嵈̯7a).M9,,u-m__y t[ǞxF0?/.} j`5_9ۏE˨ uG>ݒXU)`&\R #xd}풡Nt*]LYEYU|8[*qLv* ;ɬWh8AAW)<W+]vIko&0XaPT }qN2IHzJlu$ȝ(kّ:rRi++6By}hd ѝqvEfO+ { 씫DUFl_֢DQ7N>|@|gT8,)6Ο׀b JP ;0RJ,3ZZw1&nD -PQIQ gDݠgRi$L]=4ofz&߂ LK'gjE+Yg|a}"ZqE<3v } 0/1LO]OOp}{En$"U|1>~_AF)>U\U ޜ> 1hAB#:@a(nshbv6}1v|FHl>i#mN"AB*r셕(4x_MfS:I'^(%])i-4JTTav16*,dU{UCw MYM<"= <!kG S!I~z}n3rƗR/`І?')6SJ$p`p ;>Zֈrs3wD ΟrX'܅ Yn-5,‹("edۦy׬cg3bw:9"nSY !_OmØ3 GnPC2&흙nSHPvpv 0Ā >4 ј0!SCQ`1O>|A+C̓u&HĢt(pD<^nN>PQZ8Rm(M%T̢+|Bt i*Uq +v _א2ThDBf-3n\ܨ% 1 6.D^k{gHG z_PX6QWk6ӜYwTQah:Ȕ65<$Qόe'ǂJ-dLU,S i蠔 O1OŃ+\4X%_??L5u Q]@qǝr'۰GWtiT:t@X K3Ic&bE&u(q=tv\b+ KHTLDv:%r Kp0ĜYچ2o#kID KVr3mEt%(.lƠ}X$Md6M& JOuH~xs|X?ҍWfNjšLd3hq BK>'-etVxrHs<̮)$jCUA;[[BW^y?R^xQPl$zex3'E] 芲xKm2yJr@8v#W!!X+,X?U$Px` *\`@8j$]U.@)J)H  A}3?;= Gh{.ӂ8BV&iF{](h'Is ζ%)ȘۑjgBm)`'Æf7f,VIFN>Ą1lRlwKWWLsܹP-e|:[91ɳ|[4 c!/ &,dFv]BA&9PHظSN HSK3K:qj?o!IFR}H^aM Tu\vKuE< y2DfREL/S0 y{q/cKjўg|cNvV-\SOZF=SkԍΤmn*_w'ty7xq:@4YMX2a@3)ÐCÂcu#6c,Hk B@l{#GnYe-pݠcAn0JH;%Pu*ON*)X+4AVEXXb05DF ,(rri:طxhO)LRy,e pL@#19Z^'i7,קTh9(akv²F-޶ǼxJc+.7)JT_S4\_2 ]w  `$6MRTPkY2*EfLb.D|t^Z(gɖ7;s*mj` <_*2OJ곆 1$yVydhQz^X#j1d{w(e6R R)i8w%kz*Y,k_;K =K 1(/:IeR!ʚ_`ÖDFcsƿ2ؖ l6<~>xܑfK][OvpDg24j`$6 WWaKkڮKCe ˭< h$EN0?AÝ9 Y"EGLlsU*n{r!rmR@ vZW~禥<\gw{{@+"endstream endobj 399 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 371 >> stream xcd`ab`dd N+64uIf!CO/nnC/ }S1<%9(3=DXWHZ*$U*8)x%&ggg*$(x)34R3sBR#B]܃C5P0000103012_i eO_^Pw*ˋ T\)S^m. =wnw6/ i^O mӺvKc?{oi~}/.cA<_qsg.a][9\Ğ{z{&>&20endstream endobj 400 0 obj << /Filter /FlateDecode /Length 257738 >> stream xK,M7_Qng11 XnIHǖI/ZBmF1I>+"3.d+=߿S_?ѯ\^9cJ{ןڪsʿHw4J_k?RyOZZ73_fz>Ksp뿸 __EӖk~/?9?]w:Kk ՟[kGi}=#־zz~?5ҥ]~?\SNgJ˵.su=W\.w俿D }[F*30{ .  `0)OW$5ͯgAև02Xpd͇Y> W hqrl/~flwK/_#9qw٨qG-PVd[e{lUчʎ4%-Dm|W[Ә_z6606X06Wm;2`06XVXڤۼq)agy@Y}MZZ^_\Ѩ a Rx|rdל NA6иÓWFGrY6O2Ѧ -Dckk}A6iIdOk=5ȃlҒS:tF " TW`4)l0~߁7rZWz\dnrp#pp]?N%k4  M|x~6ǶЮNcy46ٮWZ_5m\_Ȏ49-l ٮoٳQX`!r5ik5d|V!zWrbXLxMO޾ 3<^He*^CWܮkxՙT5(uK,\z2$ j_"خp |4_[Q]}9[\W;g]D/wG~33\=s=[m:*h9 L (> Talr;iu td 3cń:۾G8.Ge-P$ RX )&)WfB `V# h!&g1ipu}m-;< h`b4@Y}JʳF*;2`9"[{ٮ1ͺoޫs2i0p.<-уV@0{[½9<[LDA calёYL k{ݢП:3WCQDj_h_2hpU }Eﱙ\k|L\$w9ekY]aS4@Y}ijZ FI `O`&q{ǑUN5]q022g22S`4udu չ5ֱBP!+֢Br Vd)z.y^C7qߠ$福Kepc@f8ŇV%$NX`!rqd[sɥh^Mhи Ȥr Hqudwmv ͈vLѺMoo4n2fw,Iad2 d9'Y09Id#" "Av?5%h?O6q-ad`d|Xrgc!sf~\)t6z =NմpjE2D4iVG_чu5tWtm{[=3rzj߃L^˯h}p}#Tr-`C .ٝF9PA[>%Nyl>Ȟ,D-U)5-ըN`ز{X1222іphqRY61Yi{w79A;X>@&u8\@d@4)2kY,+957,pq lfad`d#%lS hi: Calj[aմ vzOSlԸ"(5 ml#ؠ(Bl[l.~3zٳ[m mw+E@[X'Le1^#F&c{.G E,%ɑ, PV ~"# d (OG098vXdA`W\M'u}RH5|xb7 ] . "A&@6r[< 4dQІܜv"Ђ>=5%-Dc1Ukװg XkM9 {I (Mjr`qHV:/ByD_=59-4.Ɔ:&r`BlE6,:]VmYWf-tE&Hj,}L|4ҹvZ~=`(al9MwⒽH˝<[LRlи"( |逋d(CeF FI `+idN~R7l%m2ƅ{`ۃJI`4Utdy?@C)se=Z( !CKXp)'A1@8Ⱥl;'I6m븏 mh/Z2$ j,DcK'Zd3E~~lw$Ǖ"V FL@ՉiPz@Y}LDzчʁ "7lEٺu 22c[mo!I:ZH#H{;B0G+}ٲuɣؠѺ{hpWCG¶6[sJlվ2c#u%t$4!бUIpl)?NcJ_^^ D)6h{qlҒT|٨(i!rlfȆ\k0uF6[_<[ DRFf+=ǂHad5C2'::dr$  PV ;(*dd# DY;2w;?7,\nXkF)n,o_D@|nLtԣWST\PnhWiho|]k"9u$W5 *9PCKXrc炼 &APA@x![$ӎHw`v;,AԵ;Uq-a\z`2d/r=Je_~P W9 ؤzOųC FI `+lM`l."6]6: Vl+0ZjVZzCeI`9MG'6_7l%[&ٓ4ȃlR%Z.Th`0)zw?BXƭS/ oW`)8N[^ՌT5V`26h[I#%̄-G*6h[C*F'Ŷe#WZ3hM6Aba;Pdc8 hk2}w˵3E=I/&hhe6ii؂ `!rl؆f߻s6uT/#[g+2`h0`h͆RuOV^ad0)L }+-Dc!sī)y@ICC%z.b@@Ӧ7ɑCRLi8=մ9C} 2M'CjA6y-̠e>m0#V[ɔ=5ڈ(ɣv`0C}ؠ(i!rD6r7?\g#[rvC06XGƶt]tll4(al9^rl؏Fllz6Ɓ8P#jmV06enAV[xV3>AbSCsCl LMG?ͥ1=e|D Â+?-t tMDA Cal:,rKC_xI*0:\NYK:V mؠsC/H+"MMqL&M>diG!r"Hx}k~v گᡕkd] Zx(p5t7||-ܭ`!rv[Xƭ~Rza[-X^[J'[n-XTl ,o=Z~!5#c[flq}@[N؆dN@ӳ}H-PVdGVuk:\9C*2Z&aiUJo +|XBω!U> Mkal9mA/ײPDٱ50`k{b-]D&pZo/d R@^2{@dF.:Y;n2ɦpdqR<\q=YiȂʁlb٣J,Dm@`CM#:ml]֚ 6aˍ0 cal:JV C[HaKu*ZBlԐ#6iةhl+ؠi!rl;=ld9ɶL`v>Ziw27> MFi!r MhZ/ CH@f\ZU{iՠsCRn3ۿ3)jw4v8,{& pdqRl2[[3M]r/!2h-@a" +ֱ~vWWh\20 C劍ƾ4 v-Y+ Fa t -ZRA]ny%+h[ m۲?XMAKZjIn};2aiܑOg |YX_-j> M0(B8؊ [mlm6X06Krl`|a[ lmsl4xrP2h2L%Che&Y9  "5B-{5&?ϝ8L>*AtdoRdH{ w0)jI7ۨ$,3Z}Se0hvxC[xn렫6c[qr®io:.v׊Y8Zp95{ WⅬH"X:ҁ5#W?$aHNFyHUnڟ;Fi^k5o]EԺ?7\b7Íi8SkͺǻⰘpp쯇4} m 5B6mnUܻܳCֻ2 D #[FƁJ+XB=wOk)ܛ1 όӮb!jex}#a#cZj:4j:\'((t` 7)^Ș~u Z7ݗ/X:d㟙v{{ٓHޑ*uC Sy>A'[{)WQ??gx*T@Y}KZAf:.AVqq5 pO[1#[Y Cdp4Wnj6`t\C7wS\Ph+\OQKZU_Uȁ "qae٣ b-%=-ERMpEA%?fB}Co>D@GqOE"oVNVoܶRH>Dspd1L i D#/CxXX t!d|oB˵5 w&Tn(s`އ[tdσdͦrB&=ٖ<%~g&$O 6zphi88)lNv{t |Zdm.r,,P޵qآ3-} "w6[]ԚȧBSñwmj :B06/R &+HZwJ"deV4@Y]MZd ی@Xk~N#q-LbV>+f#1.w\k_^Ɖ'ɒHk[JDBj#BIpbjʏ#~ yptv (Z|ز9e֞jXL`ngw@/sa1|^1j:2sަȣCi努}@>toD ㅭ5ϥ칤l=䵟lm^li8yuǖɖ{? '`!r|Jܳ;#[N5plb!xZ#> M&[B0\mMeLA*cF5`+\ldV`ӗuDI #=زֻvlcEN606X>z76Vdqr;St$9&iv ^ժ3x0@Y]M [i0D\^8Oz+kY% K_  D #'X\2\k`[/`يdyF#<$bfTlOsy"- Bp2BX"ҊH ʶRҪijUO Fe%zZ-bqdcBIbsMmֱ"ϤW+jLݲ2d|C(6=R)P`i0HYI6lHI'kT}2Tvhsgo5=krl,5,hɶ4!-7ar`^-nC@BI6@&)YaSppd [=eY3G*M#ah9ۊ/Pp<(C^jaȓR< - ׆ F\YZJGyM۾y&zp9euD?̈́κ- GJ 2[uQT:V# %Pl8 calX-u"fA.MS x(lIlI7Sp}6h B"`؞sP՚Pv\jcZilbF$djIkv#8;-LȂ &z`!r#jmYѫxVOl}G!5ްUwl߯+óxfÍ WbrP=ی>Tl`9dal6=oj^8lU\(-P8ilN@6:al!tUr _I0Tl)Gax LwNy҃ Ki0FF&CV3XYXzL5=~|E-tg|sfGMgTl`9zLԌ֐U0 iY 06X0Qe}Bч`i,Dcq}\ݷR"B%xc[lҒQʱ||-ܷ`!rdn]u m'RA1xC;~Z?03;7YV'bN+'rryl"o`kQ :j'LHVۉV[d) pocg+:<[9lnvZr2`kob&rV#2`kM}dHI0 fh6Mv&C"jطq8ЁF;1P8]$Z*2~ږ.9. -J#ޡ D[1)a!O]j\fhOah\G@ArNZbRBu+ [ %ҡv(¡yYBG-z;$G,Dl$m6ډ& 6X/۱ق"Ztjh׊"]my22qfu.T>&Z)^ YC/i\mt~5n&} Uc[plEtBKK8VUW< {6jG9|hс  " X'V\\\E:cRCxulJ2j80- 6Z~iBxa+=#Ѧ3Q`~wNA Tp`q2W.Kr-Mk l|`-`hU@U'B刵p$B W:t.ui}_(!>wLu "iq=u.w_yi%Og5 5zR|֪ݶ yP\; FI :'W:X,cÞ{؊ t;Ӧz=5%-D"K/Ew%:iDh=(C?iy>r-߰ H"&ch>ze >T>4e-D6n;6y[d>٦^d@ ǖRdfHi| TcqrNՑ'kx6c^w@&~ #6^b?qf=p#醔Ȉo`f 0q|W7 :>՚5R (\vXNqd(Bxa%/ƭ6ٰ%j^r9*&b' "q@=J˖{%0 ΈhYGȞ"Yr$C@x!G2#ݗxjOa5ޠ=,܋y#8}u qrHJ4dR&O#ي.Td" 6z}6td<각?q+fbgh1+3pS2"̛_JJ*%X}b>7[}{`!rRu\&5|WHW*|Ӽ}ժS@|ۏH$l3$l#RaDݺm?"MGL`~wBTDqDyMy9Ҫ*l@~<:7tDqRcH d3 K: &Ԝ,㰄ƫ)7VaC}b5eCy"F$!Jɻ~+˖^Q\W >{5PF`VJI !I*l8 Fi))8ڌlwpl6v8C~sljU;L@02yo)l]:ɦr$ӹ PV ("YAH)F"~mȁ37.[DbMpEA4y9+r^ ׇO$l$|J4+YҴ yufTTv,y'@)'6bKZA-|iA-PVX,<92]JBxadI46;L^lsE/aE<[QP`!rKZ8*ecrzŖ::yt% 65~fB86=n2n:$#782~j:@EyFaS9M/{DKW~J,1dƬM0`k|oWS$6Ԋsrw~S@0.u,xv@Mu~dR#( uDȵO.$D\^JK5xVO`~-ˑծJ[ȴH!#hg6l12jIJRҏ\+Na%P5bb>y4|%nL] t8]5&PaA$hH^jd7Զe2XI:4`,PV.8cOI9Mwh ִ`K 6],Fe6ְx!}S 5%-Dі4 |EEƵ{X ,㻷"Fdְh FN {?[L6^ ۰^Qcqrwm6]yb+$׽eӑ(,PlrGg馍†s^'n*mYרGph%a#5lr .vr7#qRYF52o2:#C󉬘v*{4j er9x6Kh!rnlF5"696lRNR". mYN6±8^88#[--V{dd)qC=![mq-VЬق-?S{8__)" *R-qSb@02-t<C&ȂʁLZL# " Y.?%ܣQ"ٰ.RF}xˏhS#>vFA7lE e -Wd:<˚}6T4NeE PYFh>Pl99 FI ش\gk[Ļl;6x,D^N6]\Ϛc74-ٮ$j8"[/'Gj [ɶcqr[f:)8OlE K+`.P  *0 j0JZ/l=l24rݱٸ+Ȃɦ`.#wE j8Y'ɨA6r-tMժy*l`ق]-±I¶ɆVqjh(к,f$[52> pύ#i0FZF6Q ̈ePʡVS@` (IKAo-P`+X/l5E6zSd ]04iAp6ɖZqIɰ^tVq.#c,O2<ڂV od_xk!NMg@$j8 Vn(VXɯ! dx&)yoقʁMZްx`!r&"_}e4Awl'RdNcԆ)/rErdxiM4z(aCKK؂6`9^p!.r$:86-u6t:)WrdLɧߐdHp| -D6lm`Z`@a5XJu6ۄT!rċ&Tp9eu*i/jCeO5 GN*yL //8 GCw`G80FEv\N"iɘj"rE&iU-4z(\lizl]Р a RzɓM28֑%X7$C!}d5Gd ԛ6=oJc ؤFl*l| " [;nN. ͖Z#k/ddBe4Y?Ț#݈݊);TM;ozxȎdZJ.T>Bx!+l*$PNhוa]J>^Bߺئݵckqrl6T-zsˣMdU6=OuX}gɰ>7Octr kӃa!RBV5n9~ɑu x°#-M ;}D2βUD0,z9lKZqlc k PآȂHBVIQrWdP1 GV"X-'n-uu: G0u^'і~/rp `ʶ3Aޕ3{GvuY 9ihOdn6ddc?`lVpRc >v+6g;Vq$t=Ul2c)| ֝cqrn/V-|V-~e&2X>M`P`} "تZx`e&p]&...f"іS]wŒ[V@:f!C/@@c4] Jܴކ@ @.u*hdF~o lP,#ߌè7.`)}EsT޾R+P9r%|傁µ%_(jd:wQÑVh e?aኜ,ei,Dc˨{`kF4mUl֡-wU%@ d-;*d wMkBx%[/d@[KmhZ/ jxmlⷢpl8gM+mq)&5Nh-P`+X3[ll7ٸ'wb;wl ߗe⁶z`>}#48^F9n.o VJCCTX-Qœ]Pa86 qWZ&R8QLU> :` Vh[+G9^M$:(cj8>X_Docv "~IOd]NߒHȂHq7P6*72UN;Y`i,ZԖCx_XC>T&tmal5X -شJ}\eU[K@Y}MZS[o mMk g;6Wsܒpl#E"e+rYrlŞh; calEZZff`e3m-X>&-=amz||i,DO>Lflq5 pE| Zckqr Cm d-^ }!}`G¼F}H`IGt? I$m\%VDUï+X>%e`qBxacu\V h,s2uhD CniC bŢr2$ j86]lشQAl3moڳ} (I sl} "-!^2`)KTz#pz0k8ҿ!hTr*Ҥ@ӶVDz rHGHFDbCb]2(lъH<pUGߎl/D4B5c͏\3͟W`KSu:ʘzݟ5UN֌DX7jCr߻2cFZڦY:xgw4xw?ܹ k:}//TLTn 4GI \w`| # Тal!, W`*+Gc X޾UsP!WSʾ)?aMD=,4js_ĖO2Y=YȂʁLs_08x 每 /\\Y$u!aM}4WXX /` Z{F \bi*X =Pm3y󻬡Cb# h)QIVhGoz tPp'Hʎ4ʻN#[-{Ƀ:F6;" ۨ'[Wm#5aWr[ñF=dȽd[Nñ89mmlb-ؤ [Fl`=>w]ѡku%eplӳƆи˱5{:W]`!rznY߳-Xظ'R? -ȖNl5uBf`\)BzB Lz|=q3_ʁeNeAj:eLvW@b^ǁ{gy@[{}<gt Bzҝn}etjeHN ; mC[ޡ,ʞH[ATƖ=h"#ڮ(L`!r[k'[Cuɹ؂ʁMZDwlBxa[de'=C`11mȶ jت%y8 6'iedMk/HT[K@yWme  qlGU[[-X/l9VptٸU>~ӷ`w:dP4Ped6F%-`2 bM7>+^NYj kP7TCT`|<U-d0|&I˶^mlm}`[ް͟<&RwOl :جoicm"3wڌDHMwOd| ؤ l䃍F9m!S;¼"$r-[(-W@Y}MZ4,X|@&r" [ 6HV W K(Oo_E@?dkPӺT τY+&TxF }[4U7r9O2yBxay]Ù!70٪- Xl3bm<i&[䃭[ flއ+شB >GZĶi"IZVCE6}m;,PV`;tby6B~ok~b{T?GMʄal(3Ve+@Y}  ϖh |@l`9j m6Ky?غ4۪r2&=1PdaXB062hI_eu-4&F|}3@qgsɼ WFޑMHadR\ ҆dԒ I$[N~s(BlO3`Cp #^4HLר IޒI-mm>/d$GA(N;1-ߐyoc)^ PAf]':ѴZׁV#[qRd3YȂʁL,d@x![$uWFֈE*h84vG@+ȽDN`!rh'hr,Plg> `j[lzEM|#zV >1zY"[ٴ8fd`[&Q:6alz`aL9&`+ټ[G,D`[-Ol= -k 1ı{䓍,Y>Ȇb@s. hxH0)~l|+ l&1eҚ Յ\qOxՅpN`ug4)^XxeϵU"ڲ2yZCXz0DaM{ll yy}'TʁMZW^?,D`[KOl>[Ƴw8TE(yE:ua_d[N.*Pٰ';&TVp f LA@02i_vk"yxcMu9)LS6x$ܘͳmt xd(+S$փ`t &H3tRy£MaZJhY嶉4QvIP^(Br5W >I! FI `3G6$8'ށsl^OX J[ʜI**Lk=i+Gz0 ^ X0^5[TAfoR8 G6NxЕZ`2#6#,˵0؁i'lۗ.,PVk}@>e(i!rlQ`ӣ''ofs+9 Ƕg(LXid8xƦmC7lZe sd|4 m6_Hq|`ϧlo zq*{~ĽS(~jҟmsHpD2<8g[`j~ &OXJySo,Y 'HHD N':1A. |ϓi!riǸNC8\a~y;ѽn2В) @x~\-f}?~= " Ym'YApVhՖ Vۉ362Ѧpl} l9 M mM{6gِDñِҌl䃭Ȗ0O#ۚmM[9zllkF`!r[Aٔu~wjy l~%ϐK5t Bٖem'~YޱIIY̕Md$dw['ܹ "ola-gkڔG<FL8~Cd3绋C'L?X $,$2D{?LWM&$' $P4~xşT{(6 #M'MK؁e hɼ YƃF6I6j$+3ɊFY9 ցVpʌd@zdߐ?6?|irҴ$O+96RDC}KC sE ad0)ljhvJ3T&t\o;ӕ-<޺`d`Wa "-mJu\su|Sx`u|:boU ZʛL5 !!@Nyp'fjnpIL'WOoar&0Z`GG~k$tyS4fq J \f,yBZH&9aLSFVP {2܁MGK@[NqBxa!M $%84@tPáH"Ls FO=%ȑepLDF2tL\h'vn2DQBx!K M)ui^͈Vеɺݳ5FI{>{O&-?,H(`%rI/XZzZ׌`Z%rU~>5yAo~GQΏ0A~| C<j<H=Ҩ iHwtCV{T[D$ ?#OHk#_J?§fz%xh"4VbY5{{4Zz>ȦY5Ȇ-뮮d[ X=ڷ `kP > 6h0nZ/l8M˱u7JD * ݞO'T {.+ p|B FM <يdɸbd9d+&{|X&EbR9 ىmll`[&o5a#;ٿgkB?'g[g6N6ޱͥz,@lmc+W-XlG6ާus{mĶ[24ޱv3aYd7R&oL>*`2|MZfy|8X66Jd+=n6[9I5#قl}d[m}bzUVC\MH/%|5 6i"7[Ó;X/lyD6Lȩjwl,j԰ c|l-> M,DͶ4"}[&l[ d[V5ll-D -'dndL&3]m֑,*Áu(ƿ4\)r! B)d2uN6 Vh?"ztĚNcPв^n6%kտ"ޫ-@aC]>y48@x!䎬34]#aLF6$.xC6;d h_eNLHBV$f%lzR4F  .S24kh0nZƖɖ{> .qUWTjiP=ۓO a:ξ[rcRm1m-l.w\l:YM%1YwR8__hTYQNw$xܚ96"0xa:.SU-R=SXXe Vgr&oLmLNT_p8S?l5Oi?g{# ]}KѳM\6.'ˀ9ge-'[]#R0%6lNցPM-!ZvUV;[֯5yebgG8.i ?#Y>=3.n\iee\A*RTߍ)知$H͹ȧQiF_jHBQɣlN1j0<+ &+ǚEe x_hGX~-,kh(G/ dkȧ]}7>/1PI({bӉ[{eiU7W5LyF&ԪZ݂bۂZ+VQsB&5fJCE+K^Uq(:+L CclwEoF<Ŗe QleT?mċMu;?ROit>vRe<ϞSVM^6MV)Yb~.y'Zōy'3jktG qĠA$KSFxzvljU].߫]ۧՑW&si?!Z< R@:=Bπ؉ȻY=baI5r1%l :0.yAEU u#PZ.ŅΎdtUv%i6yƽOnm[GX(.bde/>wkŃW P<Sx_x % D Nߐ1\J1l)=MVh6B/KsdYN2xEFVj%FLnij£Lo Pb##+ KZ'=_BG}[P|m!5|V$Hxu.C䉶b#)DS`G/đOEAtSL#^T 1PaaċLG+;.V['rZMVGAٔ04J eĠESbYC֯[EFV 䁯Is{Z?bhWqu,46;Oe H<'L^*_N+'ߘ#@v*$xjZ ^pU1 ӍfyL,0yk=a6;bR5%*U0TFVNGUȓ*ƓʝU.JIXFxTn`fX`mX016}bN: I_.B}  ZuK`7١6?Bc̲$* w:s Lv3';T!HZ=ߵuu`tfM&x6&Oydl[al=V#^l(1M`޽IU ^hMYhO2uSolOYh?7U`ˀϲ@r`dW&/5wKӭhg-',rc8mm|ײ)A$Đ"8b~= G&*FijS'@* G 7B"@'VY70hȔ0T3B}%SϪ2*vCei/^5ugj2 )/W_k+(,}rI$j&G&+EϒxQ.+g@:E0[EMrb]N[AїE}ej)alM_x9mNCnia{"cY󡄱qYÖj+gՓe@mmTO6;-#6S}Y6)sa_Z]\ư/;jH0'B;-c-_Vo6x"f)#FβP/{OLQM`<^ 9a_qd,C W;ŐɣeVL˪<L_{ձԳ% cE cͻ`wbϺdV󪦨S?K~/>zgLeǎ*$).sT*fwFOa@ V .,ڻ\r3]RùgW<>Y~7afLᱷYβ/[*\-DK3 F#50lCƦ[3xŖ-cJ2ցL-in/A K'z`ɜXE"_B")]$ZM,kآTԠHU0\,Z70+ϛe'"}m^!q  l .W8gkG[] 7("5I%D6ɒ=ϝnL1|ɩ3`sƆy;F1jM_ AwK1,CK|6f4:G`[呡ԁL rd }cO[ˈaٔh3h,ueujcS6Wb"^eZWMNd%  kMIg]͌A)alMa5GBk馍p҈2h,u/5-+lQg/l\N[Z=ɸ|/KaɋBe2@c'Ka+p^ϲIF&86F<ưbum :DwG| k巰VetD Q~0}yakqpPϠXx[°!@h(V qռR?#[1-al9z[ͫaTOb/%1l#G>y+8gh!r 4 +me)U ^d ^N2q8b^V*i+Kض2@C'i/5n;C*k T<-Ocrk` Q_^٫bXUx; U9T n l9F6ަZ1hhh,U(=-CI 3:EEޕډhXz;Vj[;.,0(xqL jٻ..ziѐ)am:Wq%sƖѻ Kb]8=WsnQ-d5X;1(֙J ]&G>-$wQ,@ C qd|oe|,},l&OCjB KYe)y[UHh8#ua[Xn嶇XTqD75ƌ},f@f3x6>J-)[7ed.N^AxE*Y$n8O1dJ#ֱd;F}vu VV6Ioqx1:~AcTmċo q^m~*+ࢾUm㽮]0\j೻qI#F CU1d\5y ;SY/x|\2F[bOu ^h[+O .{]-o܏BGKmas?ۚv4mvq665/o[1 J I^:a LLXW_ uɽmX+o fxba0X|G!RlZ\ %ʑ;'lÁ#lccZuEd:wu^t"F$`-[)5 l~FGN!ei| J[-F8}l]m`i|8~VPE-ݛD#t~VBWD|e! LnX;o$] -0IB ^ɲlT=IzL0wn|IZA|F W.Rf@d0n>w\lV[.ggox%Oc,OU0%9Ձ` Y?bU;U$s 4v~nXq=N0Q #O{0Wwqf:E;.W[D)QhL cR^m}ցXM c+gu [r6y}Ǵm!^lm.Vb#o qm.w [Cyt b/8%?XMTW+ v`XAʭ#`E AO7q$ I5v2j ž<2-6ndXUe ׂ 4*"R[%Ձb #W7c;ܗj8d [Zq}q^mO6Acg㼷| }L7Oc%d |\mN#ݶĐjJSFtѯit-vѽ`|E⪪'=ߵIjCW\$s GB+'Jvd,*ufSa3h,uaѻlLd%E72ve܍@GYEEWYAh@26%d0H2wQ㽬ՓeӰvOkDsbVj:M^RFV}P5{U?`\ܩd",7*ʫy<[3ojDٛhlϬ&l֙꽉mML9lMO>6&)-$Y1O?Q+l4}tJJz%J&olRYDT_{MX3y(QUl1lT(gݱz@gG-{.aOo^p kɠԡ&͓lN O6οq>{[M[Լ-To!~\Vk=:-5osb+yo2:֛ %6@lielt Vvyt -_XUkƮ:TZx7ҏ&4Rre+.JŵUVqt!-"?K0rqBыTDUF`QXXvӬ1d~'iSOfrF*%|eYTS-fXPemċMgH.w|adXO6|c(1` i-z“Ou,Ș^cx34:`+˴<@2Fy l+hrJod;˅ȳ,JgEVƆFZP_"mh&JX]EclYFh@ n,;^& qGtyckb%(bfdXꀭ_[Uu ^lr2x6*'[-dT'a/k s 4v~u,k$s "lR1HU^VSbcKV1fS6XF[2뤰m0(al:R[K7)P1lgu [ MVJl.V&v6;.6 OϩƖFW"FF&OGeWbR2%662}IŨ@ blYQ/xfXP[2v46SՆ_rn:w[]-m *1{[#kbM[2h,u֯UnlċMGj;_ulj#ƀϩNeİc(AgXꀭ?-㟑r[b)V qdcSUذMKƦSb; c1l>w6N{[N'ˠ9Ɩ2xņ1/o &ܮB kcoaKjn5eWbj6%-!1'H XFں% K&G>-+ Tx/+.2lmdo 㙱&cIF&dXe32|n@ ZK6c% Km$[}րS=Mn%@cBi䍌 e1hd #W#7cXRnA J>RhcnC/"weȔ@+GXV[?r ;[,{[+'W>6Zlt+:@x3x6YS]&ˮ@2gQ:\-a{&U&%pw{W6%&/j0+V):@+F K1lQ;o ȞHWL[֚)AgX-okSu -$S6W0*2>1yċ-LK v6[Ŗ1kDcc+mV[!oٗڸ8m {n&ZaOK?"öJ7(aǣwvU=1`xv-[*2>8ֈEec#jKpvNܶXzV̈́5|\Y?IDtO3-cH{[϶#Ɩm_[_~ [i em},c3aĚn6>r&OY<+2)/3 -4O#s>BC(/ ͸#Sl~*ѳQ=$B9i$|ƨ JdN׸WTkTĈЊA4, W=3"ubJ`$/l!FS֧N֏>?/p8-XOցX`X[Ӗj(76'[&Ζ1qq>r1 ['(l~o+Ԫo'N7L30t{~Wl=Y& *] 4HՋ">л0B%)y f~"Bh#)fS@gI6cRZH7)#sj;lV֣-jJP4:EҰe@ YZ92x?} 8h^h^볬O Uϔ+՚uU|H.Rd M˔:{YşKvsX&XSWHߕE%u6j$i.?H}nI2}$'5>;&']/WSR_go͊0Q9*@ W)ۙ>Y+Ӓ [z^ҩ$k$4-AgXꀍ1"jkF2xVWZbnx0`<ݸrX%J7& ?KABBsd ˲vO!8}Ζ&I*UVlbPpSI-҂)9۴Y2%L7:X|H;T>w|a-r9{Y@OOYecMNA:E q 4* n{ցd̍>W\dWY ,DSȚᕱmHiwGHdJ 2xŐ >07Ÿb.*!5$4($O2%\@h;ݴ_1\KS|GBqKqgk<)JBqOqg(G6B~%bDBS6A6?Br2}|]~;.aIzVeFIхAAq4{sjBU6ޅ70:l'[̿|6y o[QfyIVz,u֧76[Ŧc<4m񅭯R-œMV}cKx(ip$yUAccxЉuVޖ|mx[ -{ZcGZC["kXexYȌ" IFkL h9ladJll!Lۅӽ`|66oWU;;RĮQA}Z̞J*P7$^HrbU~Oɱ؆Q Fz xυaQ=ցxhm|[[GoKuɪ(_بl d2ٽjzj2xǰ|(5G-Jw sN#ESϠ[f@m kP6W&;&Y)=-` B'Y(ҞeK~A&,~-JHb+Cσ$X`(kՀPm *'Y_%i8/;?Ƌ&Pbg3{l|b㋍6>xplΖV[$[_m}2hlcdԎfx72^gY݇5u #nI^֯jP/?Ac1B ]–֯"~e]XwܾF6lJV`G,h P 4*@iCV)6Z2ƨCʚ1.+#WEȒ42K<3vf Y•K'YgMZbCHøf@ [Mf>|G/6`㣍ol즟-6R[uc7&#Co9/`J[?,W-QV6KP4:M|ZlLK cOe=^.2#hlW-czGbZFd3h,u֯SҬbgFW#'"EQ1R\ }ؿHL2䗄g Ȫ(UŦ5Ac~y,a#Co7:CŔ@+G>w~dcp ;[ {e [,&{M6mDMci M.WOhJ5_[Ym2ti+nhmbネ6^l|e EO<;)ZÍ)3h,uK~pFa9(VZc3$ ^6F4{#n\,B/W'/_BEwc QK$;UY(ƎbF2h,u%bdUu ^d .w|ad[-mZ%"#{[>jUS/?GAc~ݲցx 2xǰm}p ;)hAXaD }LՃ1\1JlS6yn*">%y*8 -bh(5@0q2[E! ^1e");LIb%O?nՠޞ0e4jPyL׃1d2JhM/0>Xar7%,=,GoBk|`+j#1Q E ƮE`J Ƞ[? a".qI+F mfazKm*P8xU|Hn@C%+惼ϨlZ} .*4UrUZ >~G ƦM[2|ZޢZ1J9 bRY񰈞^vi#ϓ5T}"&h JX''INHeI`*ϹXx`Hɋ؜g$>B=\x65 Q,[}j9ye+Pi#^XoˠW.SUFqQ\- ;Eo R\mz[.Mv06%mڸx^:V{F6b1l!&̗J|::/y% Mz|u,BY]FEk:`&y/imXSiWc%}wR6[V9 qUJڣѐ`OUN22~&k'z{=Uk(Տ%wVxq\orxp1> %ycrcBru -)al뀭`h/]ևJXS]c\ #.f@t2xF&r ƖFɦFቆ7[bd[4O22dP@j[d,8EKTY?Jx2|\BQFɖҚoWX*L $&̞бI{vB=J({k$a(7 H<[S)xQe a.R #?ċ,wc?{_ӆ{_lJ<ڊ>zc Cu V6[;ս-Փe-Փe1kYxoyMZMv^b} qZ-Ֆ<%CK^*\ɘ)Ñĝ_>SGe%e'/d-ekl-}o rHo6ˁdzmd ӟ:&RX_m` K._z#\T"ij Թ;?2ثXMxVQaHmHwJ#^`Ļ.R`Q.j F"W\dŔ%|dCp_%,/SFV +Y6"/YC+F Cgu [(PWLvi2)Ua nFA/ʐK#p#"<5 Lֳ6Q3xĀ% &5,^#^i$Ac*4|lZ5,W},/Z36`hulޅw[ ijYK jWiX2]PŹr04v1ilid1ˤh2xǰKF&8VFٜWV36?,#XL]G1g{Q]9,͘lȯRWly#S!^&OB& #(wWƎT6{i<8ϤO*FG`@.6%aRllպrmZPN6yhڌbjc l0m= 06.6֯n7dWbR3% -!_?$#kYiċϠY?DllZC72xǰƢӖڂ;Z?bhRXexK_J:4:J6XZƒ6Aco&?@h [ '[zjG6N6Acg㶷v \=}5G KTX0p%8 K݆#Ɩ0:M m少c 1rn]]yeɖwg_BZnL, FnI5It-)`4.$wkTjh(6\ %5-`T=QaEa=1XdKWY a7KsŰsɚ˞ Wͫ+cf|>!{Wܢ@  #^(Ġq2%,~VǴo7 y[DO%H7eXP Nf@"V.w\ltO#do)K 7.zbcG旰~&)a@aJVewc9h  %8 Kp#}~/*cSB[l}x壍mg[.-o ۸6 2hlQ6.-ToscJZm%ml5:;ˠ#O6Ա qq]mi1ƦGSb qİbJ[1l} #7>=k/ѡc >'Ac~f@t2xWHԇ}#k 6ݸ+m4jIEtIԇ# ${Ǝ&y=ݵJ'Sυz[/(cѽ+Iqu ,SbG3=G,q~$Lnll.0ɋ쮶N6;.W[KV"1S7`Py[Mq :L ckgu [D mG"Kjm,rr}k5ˠamaV!";#.JO0YZCX'ey[KutOj 5#exg%;Ӗ2hlAeӖje=2xl,)ȍM6D{akr}c%8 K݆#7Xg<^>wb "+wvm=&F܏dq3<0(P6 M^X3v0^KԠ>0UnRU ^dQ3xŐt2tWm#,S~0a= G ,۰U Lmq5R/dJX-4^iZAQ 7~G X,+,zks4v0ybc =̝ q1FƘV`Jg #]ca+q5%VǰMXHzt:#^l \" Rlȫbiu ^l ;.V[X2.)ahRXe]HE_h@e=(ad!睬L/܂8h$@dYU= &d!G\a }Hk3` ]1`!;C'0ZdtFG/6/#oiTN LB" xj'˟טH d_md^1d_2ƴIFؗ%e1]m_;)u4fX@42%;;[/l ]v6Ya4cn֧jz$[xݢ8ꀭ{b cKfVmolX8@I$KmX90l ci1`9M(tm)˲cJ+ϵ ɞЁzpBNJ"{k$]M'U+:([i'_xZ}Ggk MnF4WbЪ):2XDVIhdȫqWYKm1dhhXBIZX;N2|Zn@42%-!nl%mgp𲵫M[jco n?gbc`J 2X6|lc1hVŐɃK;YCUYç$Scoe ċLD#(Q>2:(-+ 9zW[Yy=C~VGoO]Lt@QE ..:(F϶Tnm%ͦa4M ,'XO?oTLU5A~/yٌ7֒)gX,a *{[b( 1l96'ˠ強q>\o_CY׿OdY/9n50F'@c*@ <D 7q=V%}EeI70*1J<&wzU]Quk 'Ru"ݡ4qtA J^!lt΢c{%>5PpJһFӻ ްزL=ol:P3~Yhicsw hjYH95 G^f# *yīIQxT*~P:.weS?B8ZՓ+]taW572LE ;Y??tLC&75G Q^kI{䱷e`}d!#t| *cSB9eL6L c+x/K(Ümu_ߴ~6lQf- ;J|^L*ƯV] %;Fb+>6L=-'U**ϪYS,Pk_Òu #2ٟqOP 7 Y…;׵1}3g~a&ɚoHѿUW"dXPF.ْ֨LW2 _Tٺե+O.Q%ܠYt%&D)foMVS?)ċɡnT^h^02E0Z KP#VxQ< .*Ϋa ߨrVUQuëK@ XmĄmQ~;761VՖ-`UZVY+V6S Y,%gY 'K&Vm{wX6R:Ei1 R#*_&Q*yċ)M UI//s6*[&CUo]\v59ƗKV_e?F.AceċrlJ{Q&Kw\leaFY"+)JK$/JՋ jeb2Ao3tː Y{rp'jl9mZNtm.:tMlrܻ=d |^ITP gAYPbJh Uq!F<2=taKGLc cIU{<=$g-ċm֡6:$^l_؎4.q9UVV&Nv2@c'm/K6X4+wx8[YSA(ah%zYZyfx\@4<Fgu [+aA)3&-:Y_ ,U&`NCFh2CQ1d錕ccGCdϠ[?^nc?rk/Y_J>oi$+{Ua/ s 4v~YIxŔޑzȪ~Fzy*kAcCik:$&SB[imƴ}?a{wR1% M]L o^/< 5iyLF)`dVdIf1oz* 3VhMٌL6>REȍ!UW b:nƨjYi9yˠ#ᅍj\B6|d&cL+UX`mT #ZAQW1Q5%*U0TLԭȪj[-9]UL*WċJ\|TT|Rq^7p*#˕ LNftp`2xĄxնxVbcoC+?۰;+>#jFckŔ0=MwWξ 4}2EϪV<1(z>Sc'e\ܼ(U&ϕYZ)Fd#I--Mvt4J:<o3/ll~kpcQӽ_ iċ1p4:`x1:{;ւm1\lm*k =,a0y ,a3/+,= cӟ7am`3:~4`<1vP03h,u( =w+|;Jh+5w|a+'Z(o;Z^Fm2dYNF${,Ȩ^1d=lھeĠɏ(ز]3h,ueydx_J#SB[ ['[3lm~k}pdc+qok>Ʀۺ?J۲ob`=bl#T,[٬il ̢x`+Vn ,:hEFmjmmiizZ+-VO+cc/ˌh5VӑFR^m v6'ˠ%Fdscr\m9Z[8er2xF9miL^sg÷!1l!iIi_Lt#XXKsg#@Dc4K'vmFP5K1fyrdU3='b&Lgv D!9Ʒ`vԯZź/oˠԡ*-*W cxtq% vɾ%*yh\1zWXKYJϡkʈ,uF.LԱd]dx_J#Sd뀭OcG_sꈬoF16F2h,u֏\/6e 1l}~l@1f<2m)ewaSd0W[2xO/662%v6~‹V)MCuL:X!ηr|,6޻g: }zkT0ِ? KVI~4W OPq^񅬖,NZtU<߻IM.I /q"SŷfX0<2CbZ2%;XҲi}T#^h@CAe,풭sU!"F_d$4 'Z4:2lmm%?6y|j[m%{[-4o+jyq ly_s 5 V4\`,w=?X[v6epAl%ѓ0-1hJX0\C͔h:R&4 ڰ"b:l({72h,u7K2_*$v4F"W_֊;YxA0e 6u|rI`#!ڸ_f %}rXh$-wuH [H\j㋍6>xmj+Bb4,v{7L~F C+^*# u0tm02*?b AF}fmdZz"+ÝqVXɳl.3I}I{,⼐jݒ^ߑI,ZP$wƖ:[J?3û5z[}I:ؤdbh aO׸WKmepAav;=)ߑbٓjg˱dq$LW>9c@Mϛm#PƷ+odXedJh+5wdll8L85;.Tl o+0Kl;[Uo+fJllN[0;GM2Ѽt #vH^t ƿF{[(ȍ1kaċSraRl1\/67;/66NW[i_lm-6^m/6{W:j 6vo?R[M=L:Sj{ɝ?L}e j|6 zW* h,yG~)i0ba(uH,0,A mflB66V/%6~/!1lT%v6V[A-|4,Pc1gcoFl=6a(?f_Risc*:X5di2̱lKpow4[eMs~WUBVX-?K k+d;ggK~.a(am:/6>hFl|bMe/Bk$3$ $cq/%> F,U&K܊ l h5W\d1yc'Ɇ$ڀťĤYL M~=AWuH42%-1l]֏lll_d{g[*'[oŖjmGFAm1֦RXmvhdx_İjJ[?cAZȝ #ON#^mlK 76[ī =_j>6>jFx\9L6,+O/-#-Y ڳIQAS9&6h h4o+eX12 BERjj-F,uK'+:$v6VjF'J½2 dGjƾ,l;Y?nbyɒ% 1oRjZi^hdxU_J#Sd3u1XaldX.%>-bu!1l\M mǰ&S?(l6È(l.wMv$,&s坍1UЊltoa尷񉖽.>r,CxeߊY~DYc ,`Xx;V羪K.!L!TO]@tQD .&ڡ"gU/)JͣҘNQ%,%kdxU_pES`* +u,Qd6yi;K>?->$Ň$;OZJ4KX:ZDOKL cgu xMp/66-/6f[o6N2xTU݆ [[A?c:,- ξoG3\@d~5Ow˝|eHsm/褌U:Q.P‚1u,"^M~A7Z% ş1lJB0.ZYUrbҊ*ѣțt5Q<2F]h=3 " 24 \$VLi kn'G24‘H+ 3^\ ]M0b.#+OCbKs 2ןéOV|BY*-YCR_ѝ>➿p 4翚C5wmV;QރZ-V]8_qċaX {*OAE?+Q>4:(o.BO +:TV &skkܐ F#^LA j֡*e*$^\6l (_j޳kSC:Sˆ'ȫdO3#aC+N3H٩d=q^a-z0bZ0 Be/ll[d|/3I'+q' rc' Fd%nda+s " IqA/ߌ,"[laɔB|!+,0t ue-W +*ZzCADG>/B?& Y{U9UW5|~1J~ʄKwx(YnBXe9[&OC0j2xNk d{&?R>l;-eՖd Wsc,`eJ^a}S-"_pɲ.7 3 Yx7;g$h[lX6XI]C& 'h\uq2Y}9VsNcWTٛ<[Iv٦n ' ~n/?@?6I|<6,h[sɞlli[ A u!ؑj]H9;R(B œrvZW;R4&;%=[L7$y??ߐݒpjM -xQ%0lKpE|իxJÖjK۸xV=-OKai(2.^ſKRekmmڊom|G/6`㣍_mV[F?W!x֖?f;6Mxq.23G>-iYbgd#tƦydwH;% -26ħ6Èdi& "_İfJh+5w -h,Ն4BFܫLʪ tGȳ9>$aUZ)$ .0bJTU0T)u_O>yWÈ-0gP$[Lw K.b9;ݷM9L2 CwX_-Y|QVUyql֠2q4UH}"CQ‰N6y32lm%{Ko<`?, jv'CH{)/,񮴘rmi8a<,CHxh3h=41L02!1l=+wl˱lZSeid8r-k^\ GndmʲOV_i<{[jі0zf Ol[֒ɳʵYԌ ںKk8uoKde-,[)M/[)x|ۤŧ9 K 2HY אV˕;l3AjlIrYZzՐ63-nl=mہY2zWXluTʞ )) :^4!I?.$6$>p%OP*4.\8]el2xdfk-yHfhhpe.WdԢLvx|.Vt[XHFi@kHhdZ^ ޡ xm~kg Qam͠ԀM>\ bw [O6NqzM֎g3GjXr_[ûn*/3h,5`+C5$Tbre 9'qVex_0( ĜB֐>UTv~ ]#@* iY^ @{ӏ/!H5+`bjDZ@QPсEޕZpQLrk?uVYjG&XJ@FG)!qBfo\台\aL6κJG2c.+N*~ K ȸN[*4yx'Gӣa/wn`afJD4AJĀ>F`-Ñ{YV[Yg2de:V;ZqVLvgĭL;lQ(r󲔢=̜ޕRt].7kDpR*PTU|PqPg*ūGKh"AU|45;TŕdE^9^+CʮPdlU*@تylN@QcԄ`O׸4y{lP=&տ`R}wY0_MYI4"Q4PF?UGMMP[u%>g` 'Ayt$P*@eoj$Hٗ6LǕ+~/IV+O޾u5f\HrX궤q;h,%lKѱlklO8ʡ*%5g-K.^dkD~ VĠbZXcX 8R\Ԇj?uYcg1\Ʋ%/[Ԑbre/l;Mof/mHqBw4@C'KQ;;*˸`Ou!͋⻬=_{ʒMT,7/ŗxشX}42W2O(I{Y)QVpAjtND4vKs'GGۼk<q`ZkӋ ,@cOG~ß.p'(b@zQɳkWcfXj%ׂ!1hj,lGd= ?lP[Ðmih`|ÔQ->=4#FEr5$-'b\Gۜ~˹-4mE[oԞl66R{ ޡ99+s9 N[Xm-3Vt$P*@60yaCwUBbJ7-VW8RU|H2-nd)]CViq#K6fe9R޲4%ii K ܕ؆)1 ;#<`X4v;XWAcDd}Y-cネg^f2hm,Uf ;ۜbiHn))hmvT| A릁 w;N``u`eT^& ~ʲƐ7ٮddrC&ꤑ 2Y&џXd- ]ת+_p=Х*ihT|tTQ[UHQ9 ~x5ʹkܳ*"w, 1(1HZ6Ѓe؊C T.Cpl%E[„2Z߭k~4.yuV!H"ȓi`Xg%JԾX 21d K .VsKF$ e ]3VFXCxtK&->4e T-;Z^"Cpl#]ds޴dcl+,hXaYeZq,9 2mɁk=]c+Hq>ɣw0! 0> <AXbd4-nm|iϚ!ŝ #9s&H F0Y! >6P5 >KTʦ}7 CZ3#'(L[5KeXj,j35$2Y30\[oۼ Z˞naiĖ6֎Æ1|~\ A˦ ٣~#c<q' 4vyRw2 (a#3b\-g*91Y Uk)zZVɯ@P՜"[UTUt{UO*b\I >xSifBLseM U9s3G*ck\# L%n K wڜ)"CjİbZ^"Cp"e FEE"oKR"X EmOM Ⱥu [ F&O=3N|`Ͼb cKc:E0& |DmF2FMWy>4)/HũHNii>/qc6Ƅ#7&y$2odk ~Il[2&hy?k<󃕚g5 6 }uϘl~r \nIܓ[R.QIt#㗋2j,U נb\)tʹ00و} FGNdWJ{.RNeA&G%- C^ɠazrbg66L8ΰG[§4z 7l-l6m.[Jōm 2K./por08{@C<4eSB kDlBO2Q}9Kv%yb8y͠#y`CdPj8[f3dHo;R7b3h,5`}['֐80& 񅭴{[ou5 4:Րw1 (R.e3EhqG+劖6`eh3ƦōjvǑZ̗qQMcJ->7 4 1Hv4| !ݴX}D9疭#9{Zq466[(mV/!86 Lƻŭ/mys5$mTۖRI=Ro4v_mfmø=c v1hrXZ̎sƞ&{א46 V̖,(*ksպ&W7f2F %_lP[۲ q-{[e6$lċ K dv gs5$b``K-dzƖ&7]Ecc\)lq{E*F+@75V0:s8 6R6YA\ f/ls)l',Rms)ڲVhx[ehX 8߰E3 :H6s:j`sX i3h,5g)y!qU 6Cp|a+O4nq{e}DYDžI9Rs K֦V&;Rɒ IVqӐF:_[9/ﺹil ?zl $Zw Plk'HEd6L *PٜCH+2|' j Y >ݶ 4#$xw{4SAbz7-V ( 242|+k.F#ײe%_QetNFhv[(گm)ҽ?wJJޔ.IBH"s2Ix5ǻOu!GR$J%IOYD(zTQ`E0zQW6l^& ým_Ϲ- ]@+2A64\bF_aaOx+ Գgq2$,Y ]Oǽ翩z~RZUjPjUjP gklQz&ބdx*FJ UG%ygvOk򰚴d5~\ AKŴX44P[&_e2gСhg{1_`A"_SKoݑV瀑iI.0O ӺACyh8 /u|zMf>+-deS86RayZUfmB*l<9mM=+xlmlm|`lɎm6_;[+-=dWd1輐lFx-Yc/˘R2JZ2J2WA ˸RQ2BʣL'[+g|aGɠ녍m&Cp1nꌃ:~ފTc5ó2C@}uϘv =ԿJ} wפHݝ&/Iݑ;_IR4#H5;R*J I5;R/4#IG4Is2 j=ߪVLnaarߦF!Ŵ4K]5Xj5u\Qkl}YLƲlCelg3d|?sUz@OrCwOe0k?wm!OzZ^"CplFۼsm?֖ma)2_Cecdo%P6lmC[ $dlyq{ A2d3ae Xe/3 4tVe6CPd-_䙀*Ox|)H%$lvb53e٥L:YO2yNf3A#bx,5-vEeN\Uwc $\(kUmr֐80 x50` ;k4/<@]o_dw4 s!EAİdZ^"Cp|c',Mf6F-Wm=lp9;nJ{ qQ5|NzZ5pKb׵-'Ր6LKhc\9'I.E[Zd6CP^료*'YʪL+#lU~ZZaP߲N[aI!3 N}Q<pǰQ<10{'g,~tΠ67/v44%l_;û65$mtb`k-*f ɝ!6Ox o21^;Cξİ]halcCm9E[ND^#,߻+'2/XƟXm߰}lPYU`%;E1cq͛ "Ros5$Wm;Cp|aK&&ˆlok9Z , ;[w6Ը 6`u/Sb4\0 >޵Ճ /!P1$Yٰ>ix~G*$_`=(=(h΃wV۰ﲹk 1(1AnH2_62j|^dh2h,5D$GJ=R Ր8Hw =j+'}/K$K[OeKIϜK,s!7AVlٜ+6畆?ky4ѳh WQՐxȴ06^ѡ\m16n6juO 4v\={٨QlPYQ6.M\hƽG'MYKQ6Ա"Ye3^2-, O梆6pאxЋdkV# VFVWzS$Hs(L7)/w!H}D_\z !UhE YwJ֧$i bv$XJ,.As͕!υpe` BeGY72Ow2كwfdc 5d{Q|#O4q~mF[ǯȜoR} ;(/-'+26˟w0Nyz.>P*6CQ5*[-U3v* BjϨzɲ.M“E?/-,lM&["çll--Wtmepwբ!`nW("l}_BZ2 ?IGUut=Qi7\m-OVL3Fܼ&-h5!,-ݶCbcj}EdCKV +YkPxf<%nVo?CgL "g!w΁PUr$XJ|NXGJk6$k4b BeuP9҆\l^u{$"z%R! 2G$/dTeg=٨|o;Ђkòw^պWQtFHҪ 5):4v*i1{=khgU*!ꥥ[VzQ6Žmy[iVɝm~mq y֡[֡Q6ֆ 683{/ы8Cms"lGMlMĽB;y;,D9m>tCeXJ=굩hjXZcjɛZ&̄&YQ_rt}q)s{D2ԮPlQPCi*=F, UsVfTUGDUU\lgאL CmszY+#mMC`ll nms5$fɖ&[{[nޖpxlmQ2[n{[WωwRl !1lu7b~&$Y{J+fhd$5>Jy A{YkO]}-i?g|օ<*@N+=O L<?#P @ź]*d?*}GC<>g0b1Y@r]dbhX""Y| MN6CpFlvp\Nl`ږ\ GJG,&b۹6ޖ0ʏl ך`y p=HOml J=4_Cbhj)/[Ƙ< c?1ΓmAcU2Q%}ܩЅjntµul,Y qXcF-f9vbӰ5$,%bl ꈶQ{Nl58XZKV4IY2X-auaϮ-#Sa5'S!NU%kY E{xش<2n2h,5Je$dאQw %26O:jF?`co@HM@< B} G ,(5 ,O1d)&oҰQ6ƃ, ( w@F FږMV0m=Umkm-Uzxx9q75$6Y^qX~g[wm_jڼΚq9j4vZظD[Vj;|lNXͫZD;Sz59phR~e/ 筩VN)f`J%y;$H# ;n!=|c0>d? gDE^nies\JH\}065lDؼNZm0&-b0ֽlD,7xKYE٢8@MSD%7`o4- 6J[9=T50ezΚ Ee9s˛5[2h,5ekHelV-RzrQd4v6l6Cp#- zCccb:|`zT<R^Hڧߑz>'5&z@ѣ.zѣ~dYˠ# ̛* ,9g}ļv0Zh,%& G|ΐ!1hc7>"AP|#'Z-HmF[hMBiFZ2s&ۯ7iktQ. 5g`u9rt5Gػf\J摣8d ~I{Yr'VqQDOEDm`!LyTYwNX [ap~TҢ-ΐ!namCmslC$ Y23l~or(E^VErTzWNXŽa48ȲJ4M͓ڥh(be|2&e8)g+b/%W2;L iq{o _UNyqjZ2h,5IF<| w %2zm=zޢM6𼶥dEfjmo+sbdZ2h,5` < 5$B{ilFݎ?2767+%F4^z~/FpC}mW4Rtj*箒\6%xlz "x=cedgl=cd&Zښe&[N"Cİ[X[6cI}bo􂺬1l Keco] ai^ZۜU^L#GVolWۀfXj5GjHlkh376~W[6֖$9ғ< #skG۴4Ac1mkՁ} ֐8]Pljmby'Y;nlD[Mf3hl w{Ki&APde\u/#m6:.LWەStɓI桜deqtp 4vֆi\[mi3Ԍ٭Sg۞B.pyw#rn%IXXIT5"͠Ԁ-!qda>a<'Jlne飕ldH`d9GY^6ZeW?jZ&go8q.E1'SM/a uL"ȉlvՁ܈"Kw6oIOCe}D}z&_BZ ^t4=QYGevb%MfܶiGں)h6Ǝ=]WѺA vYcCg> 1(16Z^l((-:ˠ5brCm  eKV1]`eXj& 6WC`Je/l4l-6g%F:,R5-nl_!nqg+fX,Ef6'n?kzu\l 36!q1F!8~a+BVdC>'YޮeFYNVeYWz^,)h*͛z&5I"‘h*xh`xчs&{&ҚʏO.5Θ\ߚdE ; ;"]b⃋\"Ϣ/ToĒ',zrn]-FvaBO2^F#h ="/`[K4mNWL.R6n&y %fd]40W0Y ɜ6 cH/oX+>0ʼnڽst 6ͰAJ&P8ҋ|34jO{l%XJ0V{ Gv (Ѯdh~5212-nhx Å!1lTv;hۖ#-?QA?I=,j֞\v /,^6Fe6Nq)ldmۨ=l{'j%j5%F6AcgF6.ކ^z:hKJ񶲾Lz:HRL8-Yø=nYig#'2WCb/% e󈕱iF ;Zjf36OuOkmDd4v\mlrmzjH{C 0.,W>boKR-4ʽ3vK}Z8{Rرn`HB7&LQX]E. 02XüGz?.~:dM/4#lAs˷]b 5$?z˗,}nebշj4\[%wv<`dI1v KWT,(K ^&˞yM%Y^#Aq-Ƒk*uGf6lXJ@qf*Hd}DB&oeg=daw"(/Z9/Ja%W(**_€*.7DYc)AT\aXVFF6N6XW=MGn`cx'˟W5yZ.ņIPXXɴ`XI]GfXj&޿1fKHiM\e{Yiq)ͅGah֒Zt-.eU?s70csOJX=nlh,% MP 1`G$ ;Yd=yٌL|$}42BVʣL'[)F]fXϽeVpgx+t!}*sFu@Q|M"9Z6|SthTײYCk,Ր8֤~Ph?{[і ;uoKJ?lƓ- ?j} 6m^۸FV˓Mvܶ;fymی`+Wqa+M:MNn  Ϝ9SA-kLՔKZ{XO*$d}D2>F 2>(8@@`h%8[Ɯғs}adF֯e,ѽ'Y^Fq+IɌBes6dez͠6*kF;LBIe=?x|-+0[]~~)W|-,+뷻 sТ-5;n  ,;^"CpbXy*ӻ|O 뷻 o+U*H9a-H_RyџidK?0fePVU^!`rUgbϒ!P9ka8:|4 1u]_iT` +p5 ֐8Ke3F=,}0 ;C cM>_@b+ T[Tu s}JI2ةZ>SXjO0!86Jmex[.V~`\;<6d0\ o`ze c[ì͊766|*İն[\(E{[IO6a6Jz m|aƠJq% 4`^/YVQJ A{YOO(I9%k]fHWŔk$+nE)>Êl,Cwjg(אxh^"CpdRfl8rckV}Z%!8&;EK>&̽O_V*Uf1ߵ{dD$=$s!tKN_%tKdO&ͿOפ6NIH%7$.IC&0a=XZ ֮\|5$2z^Z[V%ay;}Va4<,y==UCn>$,prC{v;@V1l%|1lLR}K j6§jH [껅\ ZyVƝeXrgC[_r}md{[O&,dsVl=Rz m|lm(`#o[F] g+98ۼ?@kzw5R~ekZx'ecx+v1ey!W E:`(c!^6`6#:RLw]K wRz >"APdL2|JnU~)ZИh{n{F꽭 +66mۊjK9RѼh'cGu0N%#/ܥAe]$/R;Ok06Hmql4A꣌L'mP#NwNXZw J/v~eU+_BEq &U>A; =\Xy:J6B֫kQ:nPXWWC +ǫN~žw +?+1#rrq}-Uաs'U?ɔ禖i1S߭kPt r@J *-!oLԝ =Qsˤr:ۘmzq68ӏ%TLGn099 4 Ɍw5NDHkVq|ѥe䩇f8\Xa^668X,߶ɮ{mGlѦ9>d9٤絭mbf$syE(WϺXm5(X,%F:8o Z-V5AP,XU!,S^EWdyխi&#עؾb4so ˾jeX 0]ݣ;[nΐqni}6t?)#ʈNT8Ş&|esPT#J.wl\pH2kldoCōM,~bIǚ# mqgkeRze6m2m -p8߷hM&{ 3Dzw&]dM 2X 6ل&~l>Cpl=]dU/ɜu]4TXeڵ-+9ʊeFVK`1ȊTNeNVN[z^t+FmQfXj羆Ӧkh:)+zG6`1تG6!81.m9偶.76]rb#f6ƶm-o8 2X ۴@utuMuҷm~OL]׽bيZ RCm]8fA 3Dzm#46Bn1F0BUNQUA ]uiJ9F5}Y3j95}¦&%1u]Jmgz5,fsԐ8ت>Cp|`kɖ_m?ZF#hhmb^|ۖ 8m>Cp,7ޫ,~ܑwm}dM,j{ ؠtCmMbM8[hk%J6 ;qJm 2DzjޖFC[O 2X S6!8~a#Jd&=gpk|ng/l|ml|ml/6NOjks[VtcJf< Se3V[/E!`P[QNi݆_Bbn:) bɪ.i/kzd*u]9cZ K  xʴburˠƒe.B[4ýv[Z45[r3t3g6z`1Hz&<;Cp~eԏ;Y+I8IٶcٔlQX,%&MwꝠ4l]j5?# q3֙=mqk&rKHl0-ndmlYQ7%[B*+Op٢6nb2Dh-5WC@KkR3fOe9"mk9Kmm6{.kXGoXCb2ծ>Wt,[.і˽m'[h9rdmαlzL`$LDžd gnbnI;Xǥ KLqa8j(ҳ*˩dO1/쯜 PJY ζأd?}Cq&9WU6¸GY Jv /K_QdFY1y^dPdbVi3 Mk|_mln;3ۏ;lE-U7]bmlFʎxP֐Xm6"M,?kHr?W';I|01j(Uic2xEYAƁbkOJK>&e#Ж"mqSb)2A{Aɠ(zQŒɂ?w3RV Օya<_U\Qu,Ħbб|ߪzWhCʖIo9*Z&?x e NrTU2 aR@[S'%JII׆d !SkA| j_ɗ bQ }oDHHMTV..BeYM&G+o`PY2(!q| bJ2L2&Q^P,Y eT e.APB6'J.sLp}8ѵ(^A ,Yͷ2O2 (ɡZ Е3W`(v?~!jgWS $vToBPNud3DE!f+O, @Ols坕l\m3í;Gzu(ۺmsJeUwxxڒ\XW!RCm{f(kH6`+X+K_~ E@m_{xcd9%㎌o8J2X,5T:Tѥ|PAsJy3g%^u[ZڊkP3&XJLm\4d_Xar~0Ə66>Ə66ze#FEۨfݵV '>ԐXmv;[6/3&OL9hkmbVhcd!oNJ6'dYe=|8J>Hh(#֟iyh6݂ٚMC!ڸWt,[)&e٨D@$h m ʴNŒU7?ǚa,U9Y,mLNQ> vȧͯHcYҫ6s X2 ׳0JGXV:zC .8UrTo}`D%?_nam]\Z\lԐX`U[\٬-bԽ-Lo&(y[hmZl9\mg?r6'㎌4g'^IRūlJ+VעGzF_]1%1?]~Uka H,:HE.zt #g\3`W48OU߰J| QLuF7h#DQ* E(JDGi $/lvHhμF*[I\pF*COjH9ݓZ%%{ +NdFwAT,YQV'd%(? *2YyituoEUܴla۶ <2OZ8(_ѱl5*RFG܆ݰYUr!?RFTES=!D(zTQ`E0zQѿiTJDYUK6G+{zW%K 5) jHC<$@Œe@Z&77 2X ^&7k m 26yRқ׶v[؜mO/T|9FW|-7Tp: "T J V(H:ɐP D.HM?9IIZӡ/e?~ >Jj5$HGUut=Qi'6=mG[h -W~1 :>d+l}|jralzճ9c:Z6&ȫc_\P@9 а\J kT,>OwQTχH|A5s=$H$ 5U%T,$v$:EX0zQf@`cQ^,fݶ^F`cAt&ʺ6M 3aƦ8tmٹ95`k:ւ6v+nv5$#os,іUm4H`1ZFyVYj(8R9ʚuğ]N_h"d6W6!rq-czߔ:]Qү2.d$. + WѱΚ8mtFU[ܸt 5$VWIť+"9VŇ.S%sfU5ъ Uk@3X,5TZ/k2jHl2v-&aylpm,lum񁭎'ͬfEmu|n M^mh 4H`1dM 5ATe|%:>ox^KF/iEzq-lZ H添W薊]Q<",H^Um"wīTzuƊUUkQ;fXjLUUG!ص^nP[ߺ̖wo+UWVlڢv`P[NVf-˖K6Y"m@dn `mr5&[od@/l++'[?M2n1e%EYI2Yz#[m)Ghm`hK)8h#긷xAVǽǓ 2``c¢ZxMwKp6_;C] gбl]Ga""_YYBӅx8:cںqX ԐXmyKˀFoE?ي^ c a4־%VRun}_g6RւGg6 2X y͇6v)jAd@Ƕ6~q6~qF{5 'ߝ=n4tN[j;J(mqC#ԐXiɠeD寴\i[qd md P[㎌"_Y^ﰯXm%W Ki#m>"3Ю!zw-F}mdsۼzy=uGFo鯬䩣NzhLxgXj-PjZX/-:6~񣍃6~񣍃6Smy6F4H`1@ZkH#e_imblTAt,!hz51|lNCXֿZ| %J;|~ *\>`"DP*;NEEyf0ml: G] OV↦@В~$PCb5FFy˨G[YO2H`1ȨJAT,(diFZH +rFZ@d@ TQ~g1Uu+ΓhZb/ WPk ,+(j9ȉOx@o$oRˁ4ٺgCI3)]HJF!!iWRF}9@"@$/&S h'?';XM>S@"`5] 뤃 *\ :,s9$ lywi? :>xW[O6ިm]ߢmTm X R6PFe'X>W㎌#0#/:5Hr5U/L^`:`ɡԜ(?'pkA蓼gUM "vj I|vABP8^k[3A ,d@od$iINhd5TVӹmhޖǓ 2X 1my< :>ѓ-Ry6jF mmh mbQC[Nh+-@d@Dzh\iZ L]p3|tI>$'Zs5;R-$=pMjDx:8td^)GAR!$-Мā4 ߓ^TD݋SPp]3H$5XZq-޷}_;CXCbka Xܢ-{hO6`1rd 8بGЯ+>}gmÒΪj gmmز 5c &KHŲit,[)V6* 2X ymTЦp6Ȁeۦ7/mlbɝk'd@Tlc6Ɠ-ut&W_W2jE-| HNP3Xa5Z4,!.|*ߺϷ\r e%\ 5_1ˮҡ_ޕ)j&t~U[4CidYAa󈃱;\ 룓9ŒMT/۬*+e,l/NK2Ȁ%^f[Ii"(c;_CX._t:jE% VR5NŦR.P6cFÖoDid3⎠#  ,yl gh:`ȋ_Ju{R\ TY%} 5c Fjc9_㎌.6^u[]qͶ Ki#mlla 6ͦfi׶?mrߵ++Ur1d#$`16_38[/Fm XMn^-xb,G8#u ,}ҷ5GY6K,ή k?5zXYLQXނAAGUQ%-zt | Utnz%eSPP³tEAT,YmQVۭ듬Ve˸>jCS,YQ2RK-| A2(yY( X2k2[ ͹WѴBck/qgWTwhgƒ^B%hM`&.A% H9s?#BSY'Y:y[ֽO%j #i6c4`1FG-бl#պРf KRW ,Fa_Zq*Vj<ҰmuYrl֫,KkﳢwE˘b k!n^Zt-}l7v*^TS-2eg> !o2unAȢ_"/wȑe"6`=HMQ&L%K:BfOesUl7$XJ,sqYkH2Y| P YӿHk&iw4_;=Fږu l۲8fW!RCm۠6[X/ jh+: i#̟o!ܾE9 tp;zܕuMɵ2Bnֶhs! 녵X6̀eӏheIBUtʪ**%@L>`ח?j:|08ba.%FԐ8ȚӃ m^'s'Zу-Eˏ;eC:>)KwcQ)mъ\:ڌGc9Ԑhõ^:s,`67a>/IiTTK5PswTEyi*ӊ7Eg@R+I1RK\ #+n<:$DSTQ}ȥ+gK*Q:K7A;ݩJD(>EU(XU^G֮aאdZX/=Ph{o׶ڟlͶq6nڟljKziȫgo]mF[V1ΦGC}hf@Vƕmx86ªU`T$Vhō-K9۵ve)EYJd))SnI]bbtvvE]ٝrb|wwѱbZ, \65$V'zimd4ڍ?mEGmԟl t& ~ܑeKoW]Y6^U.nEb6efZӦKgɂ;FO2Yq5W\5dhMȡ6\qtek`KXnin6tb[{kH6ٞO[zڶ>`c3Z,[ަ-бlEhܞlbvoбl}]s"啵R-es`PH hZjõ^Ztlc\ٚ~Ns"l{_v nhc\T$VYkōl-NQ^VӃ X 2Nd[ps(' de`1tcm`Сs~ܑۜ\)EW8f0Rcl jHl2œ1:-hK-mE[-h -5Ղ6Fd@/lCh ׵mn3h4Å-lRZh]W!RCm5$V7zlPCm%E[Iޖuy۶Q>,!gGNl\;c="m\ K tǹ_ؒ~dYh;[_;ímfYLCeiJ٢َ/b)a439kH4v KG]@'#i M654pdKMich<&ہxIb 綍jܗ `MIFm g X>cGNlz`8R3j^V9 qԪvb/B[~\to4iYYGkOs^l %gצ'GvUkdAv~ʹ[ IA*]^w c{4Y>iܐ ,ZH4Ycie6mN 46j&kM湶 2X Q&sT&켭vAt,h|o+,{[O6Ȁe_^ƑҜ +]W];8XKV]3$@O<H=LP 㽫a.zѣsg#6z L`G+iG[b e)kAdh) =Bd@6ry\tɜ>U8L_"Шh[0ufT,YQ3ʸl䃌,Z΁h9ڸ 2cJ{= Jd{= uR$'qڧ_GkLPPըAEE!l;8(h:NjGZRVn(z [<+vd~> hܺL>Z VoH]]t=!E9zFRn@J9Dp^3@)PnϠ9JYNEkQ{oHsNL" IɼH"1 $J"_Hˈ$4Tse}$ҹI}Is}'TAtQ q Q4LPtPR ,:8atMFeM/w麖l#Jkjx2X,5T6lM/A Uֆka2y {qG^N6K7͒mdM!RCeȻc4!q5 :>d+'Yoʚy۲͙l|fZekXCm)ҽ?8{Xr%d߫eUW'ިj?WɻT w*Jy,zp 2X D0zQ&ۼ-mhkmMx6bZEh-w9umES57[t͟y7hbk2qۨF@Z)H+8Y(s%)jqzAAVӭӓaJǰ&UJ@bm"F+&C헣 #JE^kt;N Rd7Z zCRolw$/($[X͒t=iW7e^3>'{v:IotS}/6A"8b/D M/LEyQ=ba.pG^Ct,hG^=r5xVG6`1X8Z|Td_S$LwzunG72e(PBbkq-+k^[Gnd3Xdwť{YXI&K:;K-$!.CWm4M-J RCeIGF_;ëPCbZX/-:~aS'Z;=lwY]]_-+]Xul2L4K eGq$>ZTlde]r22'hh|1dΦ66>ʈ2m,[6Yxg 8%M?d0߸K:䟡xx=_)S@$8bO:X^}P@JHp:Z VnH%IpŞ Iߐt"uD:H6'r׻,t1!`^k5dXjPF3Ԏ5$VYn2c`cRIghll|1xG,t66~e9hYq}씶~J c V]p"Lj I ,\ǃ bɨE #i 2X 4jHKih6Ȁl?r-'[XMZ\* 'ym3Ws`P`_.!zu-5mŊW9[Zniԩ{ 88_Ȇsj6YŵL96*ٵqv2>d`a#0FXmFGWѕka/Ȃadž> }t2X2eYǶAўhb 6ړ 2'[Od,n[)6t=Q>m5ȶm1(M{lrsۜcsX, &*T=> FjBu|K%$}xyr- %t79}&e]#<8ZT,le!-H4`1zEz :l-[yk[Zr` 255vm+63\^4ڶՊ6F\Unlm#-hm9"e FȢ{UyBt4T #HJ#" 4!"ƖM挫fiiM7\h66*F5Zw nd}er==g)ڟ`| :v Р.4K8!+$lC +a`ePdI{ňٲau!F^ɵ?ǖ*,eU*ݵ>:S,Y .! UT4F$QERFQ>AD@HMm!*BVE9(#BO^/\kkgѹj~*:6UwLUzXLVlfXj(t>_bwϭVkՊ5]bpՊ.JXp6j;?'#~z$XM{: FbXTQYif"厦_I=D;j59K$,?lzdw> 26y,'cw{xgXjK1w!W$cCyut[)뷼/NbZt[2X,5Dq[:;6ĪU|zil^seӡ5^Z\v:U5jmm ]KPpFmG[h Mnm[h=h 2c+ڸmhHiՆfQ6jqC죓9Œ-)/+00*:~vhXVe9WAEѥpOKtJ:0"Z\tO JH\KUJNE0edUGReL2rбl#fҗd=jZ,j7t ME$ ^Ixq>i[XM_; ,SXMװB0L/aCr-KlX/zGzEs,wmöV[ 0r`U9EUiQ\3iwZ>QKbYfee LΧde-\@leBQ+I-e4P+ ddvbmm= `vo񁭏'[dC[ds qG(+P˜8yյ,Uנ&b)1i\lߵ+H\ %@Œe)zzAAҭ'$@AV˕3SBNf{n74ݣԐXmT\[-ۖ#-SqD֒qA(i(2N('q]#zEO`!}53bJneԞd> +^FIPdULVXI&˷fٹDMbɴX(TV dƍ3dP㷲j[FO.y;g%p]Yޡ+| RLK,ATld:ɫ'OhH,Fsϙm>:l}h,eXҸC@?7_CbdPQ6gIV6Vm>Y e|Nk ľbZ ,* dI*p:ePAeTʽ'ddTne<|T,21&vdU]W!RCett3G[3X6ݸ K 8ب\ٴsJ1Zi ԐXi5ѺJ_5=Xտ7m6[ [(K2\PBbtUaRc0(e Mv }I38Zom2'[KdnHn[.h㊶Q6FdlrmDWAt,|ژ~J2P,$_c_u)Xm}]6ذJi>xz Y|`6꽒-|/6Zq Pdf긕q[&;|xq- eNdse̯x?W6cQq-hǬVFk5$6Kgsl?8ɖ^MneZ*R9mbuE^0-h+m6RmmimMmlD&r|~`ՌK.,yUVѻii=dz]CA5$ :>'Zj45}.er(WwRBZmfAF4@cDje@ޟl%VғOmYw~gqG(W֡$Iٖ-4[,&6AuwWXaEˀK)R{WBVtOД҉&Be4Q@Ձ( *:]uE񽫵?Z{r第,}*I yZarGM@ F٠JCZn6O6`1؊Fbj,`N9. dv J8v|T,+'4' ǽJv%5/*(W|%2*Q3 +:6VJ@d@DzUJ5[MVuXijAb) OZX J<,+k*2:Cw lf+l汖6FMDA ll|5j6[9qXm\]>0RCmmu ] 륳A mR{A۽-'d@DzmCǸ9ZrAdf mueO5V :wd-X ,{e% @We~J3vg-C^pΐaʐ sl#C9w` ßh10t7 "y1xdk1rs 8bC/FO'B tr NLi;]ZkHl.r-h{HηM8h5j&8f#`g+o1at,[*іtJڶ^6FdlIG[ HnO%)r$ Lw]Fz2>e\ ヌAFqq 2F.kO>6Qz7S`^Eߛ+k>,WCYekg%$QV[X' *(:'ddUG5q{At,[eT6YVd&bQr-`/hs5 H !ezlP#(Gٽ#DyQ* -"|RQQD@ӡD-ݒJ'ɮD5dKR$F|vnA[|TXU9d=+5$VY뮅ѠC6^Y~@s=klTmo,!zu--Eʺ_۲ld+ثI 2"gdў9|<{"IUS5e2>d=K{_tMZtvg[ ɕ$|SlbX@b5k`_Q:(WCJntyl 6Lvb -_˹m'[n.:M6~?8g/e 3oNxWl{Y:g(=gT.]-G'|L5hg0 --)(H!J2Z(`lzO8:5ke> :H+iw*b}] ];mYQz.I42dh#擠mkuŘ_Ol> ` "ˮTl6t cdUȓKҊ=<ƮEg`PȮg}c Vkat664BY(+f7#tQdlTˈ"4 ILک9KPUQҊA-:cc}xXL[X/-:{qG[GZ&76 X 4H^ k 2IV>F at.NeC;ٲP& ηp숃Ut]XB]I͕tP=RbK %Ө,eWA K=$@A6"i~gtŢsǚ;ֈ*N_Z(4O/!#iZXZw 7WuIJv~ $/?;I:>QzdP/ˠ+We ]PԐxϣ|UUJWhmabF=бlF[Ցl~!=q}A&bϗڸ> :>dI粖e3<YA&{~;شбl_P";:hUQ"$Du4uT,»(8fw)v s9L!YKȀOl|oK:6pom%SG9wJZul_OC+-eb%RAenoyJKH:\ e@Œɝ)/ PVj?BQEXp] aUӃK޴\3Uӓ3^]W=zTF{RHjTz0K`1XP-F&rgΛFJ9޷1{P; 5Tzlcْ#lԃMG9~"XmamjK m _Cbkat6FfSXnkm" ln*x6JuA&Ÿ_ l(2H%+9N֕҃$e%(=JFSl\i,{µ*xﺼbk1fXjMG|yUkHƏ66>Ə66>< mcD[kh -1 :>ѓzy綢(f+X27^۾uX[;dGA mJCOjHѤ+MGfGl3*-EQ6:4~*^lu2c@Ӊk~'kl+fS2xL!JͶ6[m[R-N[,\^'>ŮU}khS$Q#$N|$v]4 H.M0df̷6?($^%`GٴiGRD :#Mz{mS )m!bO:aXFB+qhq zF,l»]ǯ&Wd$Dp]7b')l`uNౕ\xe^ FU8gRVlYɰbjU:捥GH*LKn~2AUs*U3j'* c?U #bHMe2fN[P=XSZS0]SYlʖY0va;bM!t{ɞȣ#y|*>cۚoOyȞ'{cTg7B=g4΃o=ǻ=GYSyJ 8ng(kJɚ:XC Bƿ|h$M5j/M0uXkk&`t(zI2eĎAI7F2DfY/,[ [O\wd׌#,+ec-t 'Yΰn0M[fP㼒I&ewx+kL&ɂblh? 9ѱjhC.枻Z<i#ϻP !+NUd X^ 9X6J7k# 7WZ6+V M^ .?bņ!CdxaQ ohWvl[Yf͕mHmc6*D5&mVq}wՁ!ON࠷{|fs-{XT%]bT>j'~eNVQ" TP뽩' 0L42i&F=^*dUi D8**}*M**ҏ*M*}W,}$s\-̟P !;XY60>_3%Vv`)W(DIe(2eZL-{cepc`µϻX@~Sds<'c !Ch<2jY0o =LYF<&d4[i}02cۤdck%l(d6\l(; ܃s55V]q]-=d;5ܦmTd+32cteb]i}eZLc)d~ WM X|>䷶g1=+ұ] cb-ոlk??6aqdG ضEV~"UCz9kzW~щ: Zw/bOv7,zCҧ$~IS!"D۟jaV"Hc&PeXY%yǞh{~hi{~ i"V"I#'+y Oi3ylG㙃8|%j#I?x olxf'ӳcEz̨\uu6)O)V6{4X{%,;2< &V:2xLѢ3j2cı¶VͦlLY6LVJΰY `>Z?`ףز?vӍNk"B8Vei0:װx,̞D言 ̲XI!>KcX7l[f;Y_' edɘX bd]F%,NQ2bYh?Y6W;0Y׌O^=w=sb+j=;I ?=iߑbqN;{,Cp [xϐB@V }vl-v$)}xA7Dl"ٰ]efmM\ 6g01$h K[V{eQIV[d1+e1$AxҵzLbf -pd 9cհ43cz%Xt`zs  OOϠQb77}ϩ@zGB[}I ^F "s0]GRAI0 _QL b+Luoo1P1&t] dqF0?[ dM a1`54>l,|$]L+=סQ6S$u2Z7be`/lm߫ŵUYy\wO)VU 9KŰZx/j&&eL%%UJ$OHw:u[%YUfR  u2Dd٨I376d_mmR:610Wsέ?= [ tS6Wh 6qp|릭:3G= 02e+59`HR[u5v|V.;h58:NglLG'Zi_'[+ ۍdVɰ亱jLV_LHpr'"bϛ(~X62xl5ܵc| c`7jX2 -fo^WD'&|;NO)V6{Ft}ls'̔fGF[6شg۪l6Vev;ۂc Nʶ2M(ڄic42T Y,زӤv'w\! SWïi2ͲX6CBdWmU0.,g{*ALqUQ j%8>v)ˏ.0{ʮB*e^=jJIرmn+;ް5Qj7tCK.8[7gjV0Ju2v ZmO)V4;*-a4^ոl8+'c)maeC/3c)Pަ퓍2xL۴}QvlnmȦlLY6LCJg( LVkiʆi鍦lAZMM[D4h2{t^ytLIvMgT-sIv[ <jX̲? Xekd?/2aZL{vi3mL[=ڡL6X;lwcmf2xL6|rjOQv6GM?FM1nu?4&`e$OݾC|e`Zn),+=Ʉi(D+i1m~2c*.fz|۳.XuL;mc[q H5,Mfh ضieY&72eVK*edvF56ߒKސ'\oIHun_AOM;ʟ\-rX}P +1JsmfU=/`NiaelWe  [l ͟`?͟`Ɔ_o9m3T;`mO'(~N~VT=[T/L1fFdyKT`#$.\xLp_S{?&> q< .Uv9@Zx/=;M{ٯ׶261ٴRw6QǶ?96jHk@+X6jZx=+dXaj8>nᣫ0dUI(aGq5F6$}AzzLR'& Rw2Id{5IIn&*I,L>$nKr[ňv=k.;mc[ň&_;bihDVl?B8YeҳlVQI) eҳLbV|_jsAЇ71'+??eZ [ :_;ãbJ -ۆTiNeuONvsSkȎ F߂'fw< ZtIf2Z7bLbXQVKI t^Үq WmϢz=7@|4Bgjf&dgx<@ [[3cVg[qݯԭmǰ@%vKfh>b-A[G&2),eKYd6ydAqdzuW׸2$b3Iih!+gLe,eX+l-e}e,, - $S3>#ۖ>LwYoX4x%Mc?VAIZtdTQ1ĵ3Dl+m60c\ێݦtՀmdçrD İZx/j6KJb*Ol|Q61V'e`DZͦlk-4TMMo6eJillz-\ficZl1+?XkEس!@rݻL1_='_ $oII"RoT G6&Bi,"۩7Rd;kaɣׄC@vnXu0 Jb ĀZ pRyGF2\Ŀo dp:ٗ>?($^%`dm̏X/cbaΡiE3 oc[c7Dh`|6JcJlY lQQe[C f˪5Ye$+ ~QO*TՌlʦIc1)n=+s2M}!sk06sM>*ꎓj!غ3xl5\tJ5'Vi`رm ÇvmYf~6Gh!v:>!0@|Zg_PQ|^Q.ٵz? <$mr| DaGf/+L?ʤ|{|^9 ɸXYTAOB&%*@f7X1d  o]kjf|o*HE H쵲AlцE|kn{4Y vNXXm%O~ AjwNߤ5itIIT'l(Z_n8{$wSMTd[_Wi VCUCc+tfOV1B cQ ȴfVβ^o2eehZMk6GvwW7}Q+۶;sxODo °>dǰBgj_OZ%^׀lFM6gQV&QI4a%`Mzm?*fZ{F:웲+H4s.bIhl]cj϶٦mgd%h3ml,2J-k5l{2dcV&bn}b}?zc v%RFQza"UASQ}k-/@r 4$'0Jn*aĒKKLQWTvM->6;N2v2ϦWb IfcŖ͞e bYY38.*@6ӏO,e30R VͲUIja0,9lbg jɦ6ش*BI2/5RoLjI'oߏL6f<e6H_/ǘ=FU7 [E_#l#JMRa+|K!AQ +JIRB4mO6y3"!"ØѠɠ٠l]t'-O+ ;hb%ź1.!h39aڳw玡l@m"8Q]Zx/-866ڮ31lyN61l`y(Qe?T^Eo'V)icf |8ee;u]'JeBpZxJLo2elI7J4M44Vi͖ll7*lm>Ihӯm6}eÁr}Ox%`&6zG .ŴZreMS@6 -6lvxc6'eleFرmvxcU odmlmcU qʶղM(;͎oVئmRn6eel$MJ`e`_ wdbeOw̿>kx{PuFPėjbZU_YU}e8U)ҕUتvH0=AXU ( nZY'u`N- wjk$[_W _F/v`2cƔ4{lD8ºnǎAԁx3x|l`\mY.`!wq'ؿ{DتْNP:YUM GlI*-Z'[JRٳUJ(QJU-I+D8*KY,ĉCUbG5N g)?@ Xl}X2YY&뭬O2J1dAF Xe:Lq_3 ´>2'FF<&s0}V#H4ae`l89|cmeO\-w)F_ 6׈56gF_Vh'꿷mM*fɶF<&[)lmdTQvl[5؇b>k1v O(\-7=+κM\ަ`1Ȃb츿( hL&=|FicN~ (;lt-86mٶm=]mf[OWRicBcj m6XVkifb`Ȩ4ˊ&͠Z43p۷]𳋛M,?v}tTho܋&HౕpXfrhEePZh [ w:WҹAؗ3c̶>Vm:M*(dmR٦3ۊ2cF϶k8ζlc]knC6_d'Y͚e5z (DMVj6mü6-u!kB;`@ :ZQ~%4@)wLPPU'$\°Ln2M2I4df`h6?bIf']Oem~QVl[]BWlckOy9W 'Z [ lk>{gx<@ X39>ڿ'h\ ^⯫_7?Fݱ$x|o7fj\4X1lKm+RNf;|d a] 7ERk4OK%%$de`EgIII2I4l"=l #ml91l/ig5n6e[!;km6xn~I1h+4Pa1/b5z6lW/[~[O.JI/*<ñ]%Ư4pM*-@k 'CoOfVkպ4 rDO+&\cg5bZ 9lbD&`Z#N#dlYG6gm[-Vc[l- (D[ieeY,2xeR^궲$SPdRBYȔG7bCM&3x4!hdl-bvllŶYW61tNm276d͟L/m~F\#Jْnw?umAGG4 Zh [s6;-V0涂!{k+:><h[ 8_X1d[x=+,l2J1jy+[哌&wx,hI7JcaSk9ViiKpIq[[gg~1l8-B b=)Tn 66d[_m}m}d[l+m:M (dmRئ#de`ǶmhXC6eel%[TPmu2cfɶA Xrld.Qfߕl?P c 86M?4f6hdӻm5n[mW+[׎/ZǼ Z<],aqN~ @ Z AF%^&h+4MF`ۘlk#jael+V ȶ1Fرmc59zٔmcCN$ʴ2mɘ +A*FɲGVgS'P[ %V A€kA®GU1<}}%R,a*<ذN ĀIh] XJ2l4ɰ23zFc\7XE2{?27ָ,e(2xLGp,Li:Zyk{[Zl_Wt,X ұa:_ƉvՀl+zΌ-T1lK_>k!_*W۴,XұT"_*᯻nm`ic @4 -fx^+:lhva=HT|B<MV86oc İZx/=;ͦʣ_jdM Ujd[mmi²Yn0eK2KJY2wF nBu@`-H@IVT1BpqY%6jl~ ـװkbjWmM\\?U1`9V0kѓuJ v# ^ 5Y6zg8ʑFϲ5RVlYYV0\6'edY?(;FK2,[70,nVΨdzFI5$J*I,ac%d$D6|3fv<0j3:˩w/X Fu֟ЛAM5.c50:8V1mίaΊM Tnz[x/=;lֹQ{-yg ضQm +YcK (DVGֱ&d%`Ŗ~ 'jcWk28*JFƨɦ'?TÇSPS{߰AZD|eǶΖfsmlmcŶٶͦl ض6Nr[ӳ^WF61`*lgFرmeylM[ (Di2mYV:(+l,c&6{N,J YQ60u.dXm2pmvͯ=ꎓj3xl5ܦmd ضmbfqfS^,ɞuel)4>[k)(;ml[m}l[IQɶv0`[l 6i&O61٤Fرmkp%Z6VzMo[o!PS$$\?^3^Rg1pxf i"|۩ \FV/ O^?E1T~ zP [˅Wo#c Đԭ=m+# k*mO6<&[}zN[VqXfMGW oO)V2n@ =G QZɲVXfLM,K+YR2V+  5;fvV1pxd)ZmW6|B3OduNdzBF5VB7GL!Y62i,<-xn#y |[YY ?#\)ka!Zoe 2'K dAe_(zB+2xL6ƶC>(; 3 Zg[єie+Vr)jf,vV .kz): E JW{|wF(b~ w/B%2MT{-HV ~r9VaLH$3(7GEB{v&l6MGcPZoyXw [0R!3^Zpc )'Q۔3xl5e{Lj<69;'u-ܡ44Plyd`%p9Z=4V%7X9D!$JczΏlTmR-f`/l6ƿDl+Q5Sv6[h<ɴ1@4 -F5`=/6lc&2chޮ'ߛ<4 bI1U)JD+2bˆT >kdUYnF Szg,hb#_0bj5Fn bϜ5`FHcFakP#Zrزճl$N4iczOlT#фm&6M*:FeU[Rο,*A -޽`ߓM̉7$yBߑ:v)Wџ?'i)f!PO:ɣѤQI,Ew VcM}NrcG\3xl5܄+b %k2C bژ3x+SV-N-+=Id6Xdl0l 2J-5*.k'6z lJ˰cU13D۪٦m ضf/e MTwяn7v`5VZX_0Ne_+10]-|NawpT:}* _u٩bwih} ز>ڿf~ڢCH[CvL0͖=e`Ƕm5M\#ڔi16:g ,EGF XePBV'dͲK@6SY9,Lu:XY+l5A%SA-6LZQDnRb-Z ZOI,1~a5`~Qe&|r$8l|J^ X6M&":7<4ߝ0Єmfۊz嶑cۊd[Ia\'b[YVd\&m> 5Ȫl?ц[Gh6}m#tcŶ5mV ;&[lmkd.Qvl[eZ6e[Ka퓤4xt<&ر5߱K&X e5D,&1:]OeZ>(+Lo2eYiI7$&hhlm%&mceXl% M&bm, =G 6mkpx%9ل7}Xxҵ`Zx/jZƶV*f-f1V6le[[l ٴd2ZtM9o-"m_:k3X1d}[ 2)Y&d,+²`$󖎬ZɲXFXqdza=GZȰc6hرmMfa[_Vb$::W6pf5ܲhOE;Ӣ}WʰcqJ5|*㔰erݻa>®I˟k}B;Xs {ZOa)Gf3+&o XT2H̰cXi ++@ {lT66v6m>඘adm>AkM(;Mo6`ӏ6M6M?4nhS0>qX| |#ֈ0e7UYu="E˦lS}digX7οX-McF˶Vfvm>{⶘adm>kLQvl,fb?Ykg[)7-f1&ƀ}#`[l 86\}mkQWw Ϟ$nGVC eiZfrM$,em0,[T:Xa] eDs\°3'f[ nNa@,`2, I g^L12߲ 5IS'`> ގ[f;/N_2\Ubf-A&3 _9UY62g ւ1Bbx<wpVN.AmLL2E0l/-͙a}0, ͙a.J#XeaD6:ihVGmk5ZeNI6Lp[̰c65ئm3-WIxu6a3}di8 Φ䗶n}e $'R 3aV]>&NIX1dBp(e`Ƕmchu##-&1dH{)š%%`Ŗ͞e'0WK3h3cDQvl…חVe[t͠K &fݎo߱l"fG U/TQFl#o)ajk%$e7~-?L~}1?Bl~!M 5I2*9A56+Þtf⺿&>?bLqݯ\%`d8/J lDi28|Ckihm3c .V*>k\*H\1l4xt<&رTA+ ldTe?i&*V1`5$dZHCU2v([e(+,ke2Y6cHCɲ~ed2x'[e,,d% !ڳ,]g;$X KW*ilخ+owJ?8Ұ2B±"ţ!`&dbj -AF5 ?H`0dNv{H,]_CdT+$/PR0$N w X8p,e`Ƕm+`ʶ:6p}lkml[#p`y)V؂c||*m}l+m1În+mg[_l mO}{BOSOLd1ladl P-t,z8_ly\ѝ98 WSȏUBy(55vZ 44+szAv8#8'κy<,تڲ!fWۚlWl6]7nvL68H6ee`ǶmchX!mZ3l5iEV(;6%N^QapH"+l;M p?1;b-vlmwU 5K*UդvL495(;~a哭6muʟ=xdz Oe8:]`̰c` h8oc n{رm_xo-f1tFN딕?`9mǰ~'eرոlx%|;@ \r׀vRS^wM3l$mlIoQv|=X zfS(kD H.l7 Dv A|Id'702ptXgIUS8k*$$1dNfڧoqdW'`Ŗe'DsHƴaDi"mI;фmR6q\poCcj8æx|֓aV6{2yvGc İZx/=;mebY,Ôa]+VR)nشfRFP*wPIb%c"L$DӻMfd`ZV:b͎9ҙf QVd3l&Vw,};lnG=c5CX>I{R1*{e[^=zϦ9D ;&LilҀz (eըYzT @ XѹìcVPa6T¤Ir3 &dUI%%70,dhrՙmu&m>3lumtۧ&6mk={*lm-f1x`I42;E+u|`}|1d4xt;&رܿ9Q&+e8̥;Z/ii5VZhV)(f| l"අ}Y 3x̶QSmaוhmv{6]f 5x.3w OjcԀmN]mZxjf'D;&lm'3x̶գM&l 6f˾ck5 b&Xz8;/ZͲ>XF XeaʮuȊ$&\\°'6YD%7kKt 3La-]g]l26\&?Īa]xY! Cg4oRT:" /C4&qOT:N7 $Mo*4H1*@@Z%dM /5( AI١+cM$ܤɄ'@} Jn,GuMbքa~[kDC DBm#m.0\m:1l~˦,} lEZvvGGcQfSj v`Ցmc5K=Qy:fa[1*FI镳͞GN ɱme[kmcfbض^h[vSlZm1-&i0mL &,&H#6LV!yUYkiMUT`Uwo4 Hc1ڳ(AnI4dI{Uws"m&A%͑Hm!A$;".=&8`DjHMZ7i56uGmǮcԀk"@ Y;ШlRM0|]3~ʶV,IeׄEK*@l,,@ uQ2D9H@m+󹭶6Jδ:VlV̴EY:bYPleғLz|bf&lc۴eOmLmM+۴fV¶^mLic[p SV8n((%N([FLпAɴD[7D dlbg}a/W"X;N ,((a 'sL~k JBaq 2[Id6gƴcɴј6獖l1Crl[f+ Mdɶճͧ3x̶QB5ئm1Crl[{Oc&-fHm}l-2a3}dV)8*}^O>~@0Ԅ >UX |=`YI&dZwd׼[a1d>!0=Ds}"iwȪkx*=ć4=7)*}OmrlµFuͰ6*:Rì3l,g(l|N2C-`= {l&߅Z`v4MS 8+%Y+V.ʆ,g(i)fgTV[RRiE)bTLR7Ǥ0Y1iEQP)Ņ-/YPa3\H ײg#3\T'z|2 =x:6|ICrǐẏE*?ǝx. IGddxh0 E;Uר"?TY+m ')`y/2|"?vak3L|)#ɴmUmئ`[1|mkMfl#lcTn8} fRi3|gݐe;*K% 0,f(,dmfY.uY!|a4:Mvrz6zT-~`3T '8`Yညpy> ?sJ+00[f7El(iydVeXnF\)j"s^FVҧ׸fdBR,qg>`۳C66ٖ3x̶sRᵵζ>ml 6ž6lm"Vh*LSsPHɲeI2kUvjg;hrYv{~~ld9AQ\dƲ%Ef/hVhZlVmK͊ͪ %n/EkxM~6YA`k,6cۚ6r&`ۚ/-g(u.lͶ-6;rօmmKf[PaVmR$6٦[RRIw*2i,.9@I[:vmigq>*-WdG-TGNlmvm9lmt}5 5a[ % %-uYդא5XsF0hT2TANUGfGBա(n1#ʗ ;Ts͹PZ꜃U!dKe{%EejRU2X3Avs_T{~V*g(MϬC 6c3!`)ņ|bjRl)CqM1㺹휚qDl';ʎZ| <']%g|3 GE2UvH2cژ N1l첵Iu֪ qm7 mؖ3x̶D*pjնr6{ٌmڋͪwff/wfզجch|w{YeL]dkvA9cZLus4q'j\_6koC:~g0f`fƘsmky3G.S6m;}{{Q-F3x>`Rl;Ψİ/;٨fkܳ|wm}6Bf{Y1ΤK> 0V 1 ι3= Ke:o ڊv,cY/4I |Yl*[G:OsPӕ=$[g2FwYRl*۳Ȕi}2ma3`Gh_)d[rɶsԵ6֌m9l;^[3I9ؖ3GجUqNFJiva'G}kT=p?pY,Xz|fAzՈy[æ+q#Cqjgr϶ 6Yi2[U#t_v`IQҘ#.)6NҗI3J𝂄z.*-,}akX vdZholφgmigW4QGZNvM6GQdi_*4Lb5:˥ a-,^eMX6:ɒ"dž99۲){ˮUQI?KZ{ҳy엃 gx $ʉ dze {*|ҍ8(‰W᯾Dq>R 72G& ,gIQcmxrlkeƺ26٩;٨{mcK5/%9<˺T٘,ۃeI2Uvvxl}f2/2_(ئDS\:&JB2)l~3ǵylğ k[xQO n 2 |]@ j;rV϶fjmllKP-ټ4ͽƶ9WǦlS ?]X:>ͲmR[jk¶ٶFg[1ۚmt-ٖ3G:n 9g].{VOj5ctZǥ:@ >b.{px6t:KK<.0\pi'ZPa̿5&ZlvN_y'*ߡsl g@ [e3U4N6+6{ٌmS`HY۶1i{3m`oJŝu~'?X{gWL7?_9rP,*T27R{L*U2jnV L 5̮KY~\TU%=N*<ρ֓٪jZ j*M%j˿V]TmժjLBg{LS]dzM+eSN0uK,(Wuψr[|;g}@vj\n];ѨDMmئRm-gmʵ6jŶ8ۀ6h-ܙ6k/mYmimضpJ͵2ͨ_m>.ܙɶ[鷠Oֿd**Lgi Y`Vae첷:mwCÅȳfT)װs`s0rʨ֬۳ 7p Xlc3ߞÞ#CQiPa;[ksٳ۠ 7p}%bm5cխ{9OX?.U>nd(4 5;O\jåP0a bN#B4{jEY=Wqv/"OM@ z>oP@c`v=kpS܊ToנĜct9H n[<BBRQa}` q#kGia.#E&,mqpZgK"lkLc99:2| <R 72GN,SFav| n~ SfGNI2![/(Jo ׎kfUff( &nmϰS7G@E5v~0Y ;5>⤢$ns':`6QÁ6&ے#lW9ٸ6ÝlS3mbT-d/QeY[, "dbtvʲŮŬ;q1ZEIgb7oąi4L9{4JG|tJ1pz=`ĀGEl"SUiM3x̴քi}hʶ8¦tl-gm:~͖3GجWa.m^vK-gmo"A^i%SL44&ii?JMפBC! %EYnȈ3QO ->GK]U۪jb嘺`v7~zkZqi0-sLTGiM+J[燛;l~|`tz |Zt?d}<,2|<o72l{n<{)نG Wo?ی2G||m{mjLkiUH Ve{^YRyH\UP+<=n\Dvr; 3&?0*>D!R%s$?$97d.T5bs[1,_d#1Td/Svad1sPU`dq`L fw{0N+&?==0oX>7&Jo΄iY0<_f8Y&ozԷj97Q$yrf'?Z(ݣEc(+(W>嶈qgXs*U6ilk|m9l[m`4 s*Uɶ'P)rٶgyaF}ml 6jSaۜlB 7$}Paۘ񢝲ZڛOk›/?!P~&S$9G|mLxuΙs=F>Fp)Y!N} ,5Q#AQLw)fȳ;MvjBcLd/pޘ3.6uOγuAa |0U Z9n;@ عyZİzxdӓdu=.䕝̲Ozb3 | iƴL;70q#CqavnONձ[8 evsl]足b-"Ɲlԇe3YiYhZh),44+2+2{˰ g}k` yV_![Zt?ig=q ߊܤ~aH} k"ƍ $$f\&#&%8H`\SY,/)hNUz>$g*3$2x>@{I9Mp/)1 oN6㿶6WMzYf²_2cZ1z/4cf¶8&&Yֱ/zeZak1L%%ZUʨ=ы6ɛ|,⑯A=XqCv8-?靱` C5_>n72GΡ61GP"i |6| CML-])r9>V'Y,kʌa2luZ>ٕCy Kg/ Oݣb != >uKDЌœiWblтechr=rJd "IW!uv$Y?=&b-IϤt so7i⯧NLj*_Onz>hNpWแ :~1DKP%P@&d&(ǙGMX6{eB "dVvKn k [յ]> W/K[qiŰc5eXUȴels9~ٿɨ6lr 5duMDض5D_l62> ^C&l^~(y?SAE &mk-9¶qm79s;y?G ZK qy\M|W [Ę¥V]yrNcMs/y7Y3x4L8mζ)l#l6Vc۹mk9ז3x6l;_s9Vc[PPc%m:a;{h7e}<6?*ΞPfE;lI5al[Rm-gmM6ۖTl#lU[olɶݪm2-'i1ml*ɲ( 9(?4fMmMvy5k]m[ؖ3x6l6lCd#lu%mm^W--gmcMlYmm-g(M6{[C؞#V1l1nd(5L=364{h拺Esҵ,6"Ɲl>Ob۞: 휫m }ros]o]Y{ٌm&@ȲqQTWc C;{uS^`Za{hʶMbbӷm&ﶹh^~ަZŤ@U՛U\}0lW}#3L6# g)J 2ޢ+e}fi(iz[ĸxll,l{mj-c3qK[m2GZsD>[+QxVٔm9lk\%V6l#l/ZYgٮV\/VQc(*Hz¤iԟ$_=-t;pW`kgT*YU%TJ*]?Ӌ TcT QaO찜c0'} {-g(^m(l g2-'ic?Ppdj9AQV\®bb띸 ZEuab7oh,ez]7h~Z uXʰ<:ɤ7zvyeeml^_4/;l^=&vy7[ /̖!(~_ltj/`V`ZdƲw]V^o^9? xAxUo!~1lpQuf1d>iF9&?gd?7> 7jF &n-( e>n72G|q76S?{ ÖD-09;bd1JP.Ϯg!J 3x̰{&s?m  64elEfUVYKf,kȬfc2Lqc*s^E#B+NQx$:fY춈qg>v46ר~mS,A gĄϊkP ;wrAYFPVUJUUPV PVVU*UKeVTVUsTTsU㝯U}&tbH-QTTk̹Į"*ͦ>kYW-s1?kع̫s)e( {ocSo&~k3͖3Gf%<ʊg*rv΋6dօm9Cq\3o{s6&jMXĠL-Qхӌib6QgYsz]dƴz%3x̴sP$~ьm9Cqm{m,Ymq[1dNgŶ8v[}īr jO6K->G3x>`S\F@ E#l!٬m Fٖ3x6klmU qmvY-hVh|`.2+22TI2T92cܕ6*2xix$ц0mͲ(Cqjk<)Q֬1F7#CYmPaRmc6+WLc[1ۺ[וrXڱyykt[m9lc*W-Kx_[Pa>U5=`Qz=¨нnB%nbT? ?.aE9MbosPҕQes k5wٜ$K-ve2X֤|M粜c-!\֤d,%(m|(d3m i 8lvtN*%9-GԸ_T\PƨYLVQmXJ6*l.ե~ɪ0_9L1/8kb.)t 6ô6l[<{QzGYL=0]6l|T#w%DZy[~(W>г%խ;+J,"cHkZ~=P=%PakZmM٦mKml )fjζ8W6c53*i9Li4viƲ(B&sŌRЗ|1紜c f5bN)r/mO6߬|{-l3p:mtPԻQqo'">ټPί*Py ?YNZ`2`OYbMLc?w1Ck:Ug'eS4CjF7s2H&GAQ}$ꖸ{djVhb'򘃡u2hg!Mڙ41P3ODs0_ uԹU&G2֨sV]LYt_8qF<~Dpe(PH"P"6檴r3 $Y]\Qo\Y\T֨4ʀik}$/YE/dO?o.1rW:7r5P[saE0Lb]"}eI2*2/|eU(bl-̫@_YJP!+󭮐lU, Ye HzɌe)AQ Yۿɴ22ߢeJz6FFES| F.zY3b-bHP!%®b)6vURVaf/2jڬB`aF+2-47gG?Vdk{۹pnw{L̈́msmH6 # zgېjm9Cq ۚo5zllK/]C Q<$ZuduF?qmذ6cJ_rQ[ 2sn3 \Irav[ĸ-o^[+W5]mXm]m\I>֔m>Of۞ն:(l}muYmٖ3GDMBl5ykS4JiHOe*,WEf9l45@R:KL:%.") jMIVI{/Z}IVH R~:b&SC}!lDI< -'Mݴf19YJ{ag3OQSsu2ev[ĸmKmL E1օm+on 2sm EaLRic2-%(=}$&$=ZQyi9nʀ}@da.C6嶈a_2{ɌeU/BfEf/W^ Vd2{Yf|=g{i+DXF2mM3lݐl)l{mI $hl[Rm{gP[o[jnkFb3d8 6|BܹC5*X=-OG4UW1T]B TꜢI+WnNE$LEW =e9gV?ss QYUsؔ1lvƋroᦄP۔j;'g_n6_ٸ2 f$6 [Pa[2 fj?Z͖3ǵaIЌi):5׎UUU;V$) a1, %7BI7|9HBRL~+]($_΀tQ9Is Y#;#)?6giO0DdVQTֳqu5J:X(X d?d{hDZw1d~;PA36eH6H6N6ٶCNmx$dmZ cøF#Is|t zv[~FklN ;w9e$ b6Q#AQ*ew.͗4Ni}TZLHi'ے#lvqE];;.^iע.Jx):Z {6#?I Sd{jH d\)|'rd(B6WM̐J$"Yv5qe1&f AZÙVd9AQl*[ȔiX=K sGBS ݙ&xk>09dz.ݳ MOih(S [mQh(IͶRnAe%P|+3Q_E18}9܅0,C)ɔ@ ֺ bHP!UeL6VIge@4[Lδ^4e[P,AV‡g=6GLSN xh~ڌY6GeE&.2}v- X8e@>@k>æ㶈q'ۋVdЕ ab\u]T1}Gҗ WU΀=L 6ij6epK>1hk ΩP$w춈Q#CQl*#ɼ٨2eX~>B#/Le]^rb993.:>i^_ T hLX5bغ1nd(Psb`=ۆQJ|z1+dx߭~"$&N-+edVf $VI J_]_]^YWUU{cT砓պ=jlRRku6w\5'dTUAQĄ(6(9ɔ̀0Y/&?FdMd:'4*&+W zx=$QYjfH8⇕dH*78hv>4nw 8#w ?2?Xg}< ?9<2<#N} v1nd(UmkͶmvkkdl[t-%G!bHwܷD J 8XsɥA1d6ouQI.tɽ2m/2|^_JVh6mlB&mqmZ+6]^6 pmMZ+6+6{f 10qL}}"9-VO 1 m:0!{/(K(Cqmjm}gW6l bdl:7rےj[6lkBh[`Iդd*?B[Uƪ!ꭨ9vaA,n/[ a[Pf/mbjkجe3UlVmm(N3ɮ.L r)Gwa!\Cr 'U.!N }ZJ0$r )CQ=:Z#oWmRρd^b|R),>\f/L{Y*4d2{Ɍe]L{Y[wugXwɲ!zgsl*ƲYF}@&dLYʖ,'@2,[2/,g( g!ޫkRi12 f`hnl3aێn#lu m~%rV."1f+6xl۳n_zͦBNc i:B 1fYIY}s\L]`~AU#~d-OqŲ 0OTxIo1ofgO YfCKs֕T8<^-<<_x S/EqgCǷ7N2>kI*sD=8wA_q5=1<男8N'{4p2,6}Ĩ3RLcoe; )hsW94Tsi~ͳʈ 6٦ǸOuj;SܧL.%ٞkyQrέk#l;wmE6lzg[{۶T .ے#l|P@% ۪F ک3&}&ʶ9ċ8ċnCX60[("h*mOQr L7E]=frĻt& /ҹR'L%{lbJ|( "F E2ú2F/^eX:VYfeWY_,8%Evmr`כeڤ"`f)-DF$Aͮ?$-NgI&Y?@ ּ b̙e lTZacTxn.aL-q3õf,:%=ܐ3^e{dQY*kNCδz/40zsƳmތٖ3GضW6ʀmker&m毓~uD ےs1{mg[1lE;٨Fnf6(bw=\OeYuK,'(a ja] ȹ]"pd,$@M?`'gwGN6sav}2Gyٶd[֘ilL;\ZcYU6&`YR| Pub=I^.s1M1;N sar[ĸ8v^7gܶۆV/F͔m{m-g(繇30c؜k|y >HY5Ke3 T \uezvμ.鉡=8١jª]1T{>JV7P7oJ$2aѶHt,&BIٴL$L#*?|"/(RoDcUXdlYM{ikĘ45b6|M\# Tߍ檳԰[yKA%a 慝}FgİZ=;vȶka[kQ!!!KDF]ilV'bL6l8:R ?936aj V2jeb*cˬ52EC^q8Wd gŤ;(+BضbBZF!Z<>}@&fڷ ĐdQnbU($dl*Ų!^e|kI&LYF<&`K:O=Ӵ3M^e`G^/`Y, ۛa]ljoVYEΨo^/2tX.ťV]Z`-ht*/Wǫq%F%뙍) m#N۩llW.Lzgf.3,uئY{Ub.Ӌ:J+ os5$I )4GH&mHϨ!ϧ_TPVU[EUYoWU`ZeY}cUmgV`cU F<&-I`cU*2co?kxkQmA;!dlOǵq ~ş5s`WTp_D 00!X:TI +2iW :7}EXk'b/f/;Be ':LV 5j_=J+4i9r6Yl?s}%3ӓmjm~{FצL;C\ڐJ4eS2QWR׬Kvbtz#. vNH0re]XV^o^/yMVikW*3˚VT Yisj'4V4n 6H،maLS̴绂^b1DJ1Sm&6Ew9W5ΑW\zkcBTVj9+ 3|˞q={vQ8O[<>}Hvz7O#IUɲKN)g8rdȴshi3#l] ۞sqZɶ61ٺmKu2#lwn6Լ^|x|M= fjg'u2Kwf-H/9ʸjLSӇ0U(*/`O#Z䞁a`6_o>?6/5~`wQ=?!llk#3MvʚEeYfcR%ًdLH؅*_ ^.crlجm;{dh@SS2ڪ4_9mca"CUi²SVl*=)$2h{0퉉GBh}hʶ=ٶ|XM;bjkB<&9ZcjB6{]@|m/ /Z^S͊/!5E웋i,e.*,)x0e6^]dZdZe8xt𣸓 gc04_=-gX\A^ Ո~Tw6[bضF61."2Dl[t2#lRi2,&ʒ2ViE`I!ˤ2RUTZXr)*"BIoxM֘fYoNm,lUZc%`E&ޜ"._ØeP2|ٕMzON H*8?/B}Eg'@WL4 " AGɳfZde3e%]]âQ#~<-h1MQ-WpZYM1d s%~PN~c5no9pJ4$ǁɾ] l~@7φp٨sjrmQaJse`6 Em gm'IX6{I5Nq50aյVv)= jΠ) ;Vz/\L#|xzFބ[ؔO$}Q~3/:ժR2V mn u{ns7k1Sρ +9bz^e'M=zmF*l4mvYg}?wήdfw$չ'}4'nnf=﨏8秿gȝ4999/|w}i9Fܜ̢Jͤ2mFOꢸ-󽼸.zdI;}?Z8||'Jw?3ݟNAI;ݻ I/F"m,VDX$Ώ;h ;CznQxq R{L"=?C?r~"MaR~:?HMlZ*t숡+~eَ>ͮobVK-DKp$xdۛmsV9q쵍ζ9ml35s F/@lKm2xL}"eKL'(+B[2)(DДmU (;^666͊^6c*mP/۬m󝵽&<;V^ nNaےZL?<>}&ΊxUrfhmj M`3bдSO4>f'P!k;=+BZF2,C>,'d+32#(+^2#hEf,ÉYf,̲.X6ZY[w2eYUքe9$;i\Y)(+By>MfJic)IAM^3mF6j3al(d;'&mH6c?:gM,Scu0oG~z{`kŴ%kX_Kl5IN% =;<(..c*()[,)d{|-)dٳZCOOcIBOzG哳Ue)ǧo~F@ /-(q'=l ?CC.#C<>}6|!@ [멅&lԇe{&8#^/Ѭ|-4M 6{jn'[rm瘆/DzO{Hs4ׇW$Ȱ*l.\x$asT/eO`0Ґ` q/f)B֤ʚL˖T0N֫u cْ*&,K[af9 S9O~8 LOe=58/^&˨VDZIkPʪ5JՊ *s,R9;@㾐WKGb0Y ?S'<,BwC01+llQ淇.L5FJ1.랾X~(XmwmVS fgV%qw(]cr^\`7}%Ylj1\LEVDIoa6$:Y؄zZ <>]I3j.=ExbFjgX2Ues2MFuiY t3LF2Jޗs05%v_7VVQ'e{ρSOώtF} lԠ[aLFOorU5ӳd.a'ƞZ̔sw)==8}H࿿׹4#srOGt>}j@qEžR ?=¸Y1&Ų| 1'/vQ]6E .%=uia9^`2,C$ x}wXf7./YN!|wefU(+B6W2f^.t̯3$K4"^ߎeeŲo<'H89+؍췷J<<`%ΞrfL79pǡ,VO&)$TVTR'Iu a2KQY5[qirQ ʰV^1**ot\o<-`m6S\?Iזޝn3 d`l)6$[ܶ1jE1l#5x|xh ;6Y1d{~tȄ&2SYsw[wedʴRpiO27m*lk=e`G؞ǵ +5~DY0co!\R7X=ubz~Q O0=`o.mlcuצvgLM&vgN]b[rm[=7ZN!ɞOq7e`E&ޥ_^oWQ1hL?  <>]6q +H1dm~'`ŕKf,RdUhVhf֥جm[vtgڽ8~ێ6[\l W]2iHm:#g#'vF<&؞co 30 ;g^؜ .J1TՉ%RXs̈́`v:G9\c"vN- >V\K} mIjk'pXvdۍmsWoU 'y$|*ݲmpv-*m )uŹfİ2Na >`k>Qpp/rf.օmضfgel]6;۶T.QvM>6lCm9ӭfsO A] 7 GRV\dd#[=Xf/l"3ؾ eoB7b/j()ǧGH~v>MS ?a3#lsVۜl;?q˶61dYum=Fݪmc< ٨YwmM.61|b~lVi̥2KW|mc^gMUfTc™kV` ^br?a;rp.ť ]a]vF0?.MrWVzhQS6B!FXN,La{ 6m%p,3̒S艛]YY֊$cqn|s+J#TdPl(lx%wK6f |AF˶m(6q`A[)j yo}h6[>`m`1lll\f[mkeljSmuf[jMmkemq1pJv㜜زM]UB[9i>>ЂAn6TVz˔5T52j$Eʠ43*|I{%Ҿ NޢUPWe!*\6q[lNa7z}Pd-Ɩ{? @ X X: NM:U7k+vv^XLP`N* pٮY1h}*L+Eioxx嶫>&64S٬*gu)eeKU7lVE$Ll37mEqȆ>@Z .j>B֣+Cu +Q6fiy%zSژڎZbll縧VͶ4IXh3^J Sax5S./j⧳ `c~ 05E05!=G&~W|E1;A#ډd1M;GūErYrmԸaعl̲]U&cr/cJ+[iAn;.ߥտg2c=dưYh0L0>]6ǵ?ޒb-X TᲕaK]~X[]KY+VBmUՌjMQKM$i+r< ae>a`^J!%`H}g`3mM20۞j I#LmAnm9b6z϶ >0fSYY6ʬ 5 [xtGg|:x+1`찥}V(kaͤSUTQxN̨]UTA~fjtQEU0 TTòĊᰊ)wJgwx >l1Y>`;~?[JAw0g% %@.kr}Rz-ŰSCB֚wXkè4?|{ܱ7_W0kdPZ,xOV7euˬn%;]f/_Pk%EFe]]2J),W6gͩTVʊP6 #faH(+#R.%6>ߵ;Zɲ0IX` Zɰ$PŕGf*+.l'%gmKliƯ^ffن ?ݟ)+e m;mr/ߑE30>}6>V_^< a۴vʶ3:VZʵU\d`,v.|m竗k p[-VP*6&   e{Lp2S]:-q_ǖX-f OY=} Zhlkw{ +PX` 6*tϡU%Uso֫/CV>tUZx3j= >*Vh60߅! wE ]&37T% |taAwEa53Ơ -f O͢6é@ -XE8ؤ0tf<]&'}P-OUNpBA5p6aUU5LId쑄N_}HBoU2-!iE|[68,VMAn++Rj3FS[j+3`Mmsfj;u$-8v]&i0C2l a%U30>}V&bleIh̻B]ۮՐ[Enޢ> ۧ[k!:v쏶Vlgosh v \oQbj+UmAn; $BhH wLpgƘ:W,-pU=9h؉{ uFm[P'nG)'ٞя?* WTwQ*wPUjըj~NUYջVS% dTb9%n'6 7^Հ`V9 L!Hetq/ynR}'Q-fODqX[1Nl7vbfhBL r딝J A{CmZh1f`|ͦޢbvhQFXJYT4`c5k:UCmk,& pۇdl}`[aaeVʨL")M2 jډ?4JeVl'̶IrVV~?slv0CF(a[مpZT"G,,&c 7y[[20>}ֻxG@|` -X9ؤFͶ).f-ڸX6XldOHbjMmAn[9(ùtjp1lSCte~< @ W{'0xXiǿŌ`gŽ>vVENa.6lSJoĚ(50y6ތ}7 לt y[ia˫zl0&`|p[wb_hL ya!M|/}ֹaa+>?BѼ @ i${s!( 4%Lj)*:%Ζs p"<QKIeBMHE ]i+Sm狞uU|HZ̮>`m'[1l `a`>`=*O"NfCm绞hJ;5|s"Av 2*;/@.U]umsvzX|mmSYAW`rlβ޲TWlvd;68hg׹{ =!`VϮ3~uϠCUw72~'cI& !&!3[=C0%L]1wY%aVQLoE1x=r89_H I;N ID*SH{)iDKIe DEH{+IƳpdέo7욁.\@?ű ĄYhH P8JͥѲ(Cq+.kUee\QƔeA ې7˜7bY)"8b!-`Y+( G {YI22~ ,f`2%؇Ҭ$Z̠G裭d3mM20[]j]mk}l6ɠG裭hXt6kٶ$cUfMm.&ᶁtFQ[.o<aiw䒁Q J1lqlmeXm fw TyB-gQYVՖT1 \5qJթP ۈ1Py[$j.E]`t$][6҆05B{8AQӯЉj-TdPd)l2UJRzɪU%TpUQiq~lͳ˲SP0V&Fef,&Pd(dx%ʶʴߜqM\ZoJ v5͠U6qisl^ ?r87?X\ ! ;kSR+th9igF3BIc]4eWmXpuVP}۬_o,nTx@ʸZn>`+:ŻM]lE?mayd`,{*m6lqg؟pY舶rmuFke?mik;Gj%{Cmu 6f˶ֺJLmظr6S[iֺ$:ܶ>mzU[Mme?mk;ϴGѶ=2̷=mO ie(m?mOnCe@.3x}W}jct~ç4lbvhz̠:96l_\mi߯ _Jj[=ںfP۸2:m˶Q {mƋ44xnF̏PXhBUbd gP;zNP* Hrΐ.f]ufW [P-7&" ﴴ}#eQKƧZ:&ߛ}@ʸZkIqL6Sl.m=z: yJ͏ә(}ƥkboD7[6S$`,4fKF7c:T& TᲕaK]~X[]KY+VBmUՌjMQKM$ Q$R2ŪV4ɸ L2Aql8wZ8׶jxba+`` Y6kjCme[S$`,4kJk*-P$Pd)Aj*#ۑIܗƧmml[Qʶnǵdžj),LzYl1:EkBLmsei+KmeeyxuH6SY̸p[k֚,}lUm6'7[j p[\F[ly&ͷZھcOql;`% [,3޳tiqre\&cȸxn*=Pf*"yV|ᛈg}3&`%(}@vIHR$c ̵^M2m`z>cWт[/ -~G.>`;E12C@ [[)m$clVIu\Ӳ܆r rW}}X- Oa3<#YB eurU#;2}1m;` UfPNAh;e쬵wl6Xl:vSl%n$:VKuk6_h Vx}PUIu\}lm+,H0K0Las$)l%%}UghkTu̓ew w'WwT=x[:&`xzc yr7\\A.-F76>iY hΣ.;O Gyx{d(ʸNh* ͒ekܔe|,&`(YT+_J2.S&Tqe8C{q oٻj0{eǞ/l{Cu= Ā#.8?ѵ9I6`fmBo^o߁%wdxM@L-0JϠضj \(^6T G=+Q)GG1jJ;?s%.n5)} jc`EȲSオ{.sGyj [y3G%[!:jmZk ֪>vM2m_:i~ p;ܽǸ 넲*r<“,cTq_A3>?^S-NѴaȾMD(IXXuDXU$P&Q6HTLs/=nL([>@_nedĤ p۪ٶT[j  l5TWjUM-cڊٴr̘_Q*jivqSBac jh*邬䪘^ĀcX╡f(J=Z|V64:Vj4P۬֕&  l,[Ce@.0}vWEi>7Y~xT]Qx%i+,>slwK20VVLo1$ۉIfm̶&d`,SAVd{;\dP:'ֻ '~{  VOjw)2B  22`m bTz׀CmN_.U[h <^W?Vkg/ 6xPY+Imm-gb4S[jk~O!c~ΏԶfȠ5wC`gjocK=$ .@]i= lЂU8L>2ß#îl+JXh=f5dPDZU5}~2|dGxWm//'O>?Z 9tUB'Ҿ?^?۷챳lozlf`|xQ|w+ys1UZ&3mw{`۴w5ab5yxk@ ^o[v.ٯ͆vɶGZɴV6UKPY* eS. VD q>? l w@.;O3 Dڻzۼ1d x$dc ĔYhBW&=@6[ͦ6TVKg,+J˦6ilZEMd{$caY~PYo* TᲽlc~'͕e\СL20A1>6$:>>_{3l]m./>6 -X [^ۜj-۸sl]30hƅ؇挶R`4lƅ˯"&`LTk6~Yqm\ڡM2c3lm}%%}lͲmdd<>U~}9w91l/[>`Km:~Ia;'{[o1[5nslֲ 6Xle™fMm $:6J;t$clm +EV$: ,n3߹Ė7'mbuAm} |7mʶֶR^qmQh3P&3ʶ6ڂmeNOmmWmm}mnjŵfK;&+";ό^mtIu\gm%δ vm+\/Ci+,>Ľhwň<{ bXf`|xi|On)ۡd"*\Vj' m̵SŜQBqKƧJ@ ٞd^WKk6YW٪V՚eTjYW}OVY5̳wY6aYi{+;\ZAn֧ , B54l}mcq@ [١fW _?g[^,'Jh;YCƧ#y1lugPV-/Ե2k%j]QKMw ?g![<+a*f{_;|KƧ WE.^bce,>]\Ѐ53@.;FyoSKi)M20y`wQGe=J+A6!aĐwؒS5ap5gh%. .ɼ5e65f*5V&eM{,;_Js]Zl,]e fI (#mLۦ4ɠ5v6.,챲ǰqQmf`|uqQ԰X_|wrA 6i¦&.5Έ:J81}O.(-clUe'NQmeYjImmvkBk[~EXS30>}6g-} k%:ܶz-L&[VvEB[ Bc՞e}l@.,a\ k 5v'j^4 YѩقM.'/9x4cDE/^™E88t`P?jXP1pL8 tO^ç`duS,PjEqN*8 `29ˤdrbz -xeƧ f a.U}CoU<eK+=2XdYz6v2Se9&a}``~9P}ubWf`| cso >'hL ?A>)AaEXK30>}@tyjK)ЂAnz֧b}9wqİl0o}և|[@ YG 2ڂmd,j#ڰLifQEw=:T& Tu^OuFpg=i x4-?CO~;M8x% ԏ 9q8$eїd-)i,!HIgIR%"i,!2~PfMaV 3pY6TY*34l9l9f~UPY*:ǤvɲX*k#3m2eY}(k L1"#,J8GPvDLfdP3l-}eZM6f3$4K-gMy|^ ڻ}>N #4K3t\cA[3(mj_Ƶ vWlM20[ifj-vWdPNh2қ,PX`5M9LaU'ڢjg(v=k5uy0V4'= WVȠ uRy $781d  Ce,v2C ` 2S#+x;o^{m_4S  oYCe^Vf qa ˮ-.S`#a`,i;Ӳl'2ۻl+L+Mi+g󦭩ҔV燶ڂm؟w+,$91l\%XHƧγבֿgxF@ ۘJ2:`d1˒&׳DYhop2?mI 4$F? 1 (x!;9v!M8rPQE}$Τ-"9^ *3΃S`\0^& L6v`IeWG̦vͲYT&<@YTkTYL х@>Q]M[M$rI]D[I&gvLiv:J]&N5>k`rTT4q Ddd`,ٱxK3_ྴ&9gW[j+]miv6{UU--9\ZUUy[F}$c*0T}KIum 흶Y Int۶Ǡr0b6&D?^.Cƿ ZzUf\*3ZUYLPd\砬UesL22,ȿ+;K,sCC]xVPyeb>ZvWUΏb+5N(;2ɠ ՝e3.mL;VWXl  uIj;_P\[!:eIZfg'Cf;j9,r5q'$d0 HGǸ$kEtޒ7mYwpP wШ 4j#nRyjFIQ(|/@MH*IY.s 36fT%P+8x笑[9qWmNm$>[CkE-meۜFCNlmu$clYmuIulma[tJ)ɋd$cUP$K\4IU~R rxcx%|yxxjq㳰Zbz6Vڸl6Xl%V$:6JfZf/ 5TkۣTFQRޏ>!'>VW눲(IXXO{>=CpaQ;Қ$*\6}uPJs]`y2^C-69սVĠZ`ޯV_kg/N@V=&B$dD) @O hz̠ D씆j פqx}Ld`,S\ʞ?ʞ!ڸ}mM26T 6lkc뚁qyk!m\پhul+]m{mlEmJW(j=TdPi-ʊ' ㄀m!?U|Ix$b~DŽI`+hx쨘0G&9\1*\qrEY9Sen P4-v OuL>#} &m,2 pͪvg=ol;r۬j;%İ?c 2ڤζ֋*𵡴^Ib[;XGP[/j p{9mg8q]PgM!;h;x<`a.6BVc5aC=8!{uĉ!k%dOlc3b-X T =;ǔb(ξbV -XmUl+'mlSmNݤYzKHjEmAn3L6Sۚ6$cj[c3Iuwza`=ۖ$cPTʰDIUf[*+ig4KD-6Vl{Glm|fj2۰vmk+Σ׶ea 4Fm{{ fH[l>މ O) [G@ [[G pU VS[lػ6a+%hե== Ђc 22v_Oa+l#d~d[i 1 8Vm42m666^CfKm͖xP,jk+fj#Z^ 6f4:VZf̶4IXh)ml~f*p^J$o!|dg㢴h5Ͷ@ Ђ 66,ڸDY͙llL6S6K639WPf#VSd`,RQu5LmAn{?6ʊ6n!mM20hj5ڰɄRdPg͢:V>m$c͒lRIu\SꀯPk$ o!|og1m- ex@ H&ʎJu<mk%V[]ƻ$c6^>mM2mmT?HD;HDM"%L6l(+b -8JfPl;lx%fW(E Dml=ںfPǵ3DI².^>NDI P He~4};7^^ !+bvhQMn+- &ٻJ\lvRCb+d N!"}mwqd?ᶚiUegV\_Q{j_RfD HCIr8cAg>"kIW0>DY}2 "^X`+l } >0iA 2؂mfiVqhJ6p&Bj6X ǫ]3ZUU(4dSM%ZU^[! )N)4&)4!dRLtP'pL ޾(3AR,Ro}Oa2)d(ib@MeM5ͮ!Y4Yj,QL-#Sf@@KY%Qv)8+fBZETAn+=Bͩ~VK|υk3FUd`,>g9moIu/ +f8tMt lO$Đ-8 . 0whLr\}X[]x˜JbU/ 'm7mE*%mbf`|k+Wn!+Zpml"R@7^6^ 6FXl+#ײVƼ Ts{A75L_|R<~(zX+)TX$9b-8k wΤTȯddE_ƆT՛?L_T,%άڕ% ks\gΰa 36 ͥѳo /gcj+ږfP i;m߻07~ҹ1k+uOA>Qx 2؂mhKmVԶV6Xl+66+j p۹s?mo/qm{di;"c5|P0Lmm py<2Cqkm锔h錴2ld@.v䯬l"K襍l%Ć-(VlUmm+`yK|=X-[>h3qU<}(N [+GmfJG/>9Quq7$sx<\i7%%$._;T!#i7%*$.n;/!2~'YI$+JCH$hQdEE %- muٳ! a'0q]`S30>} 1PАQ:z>J|]>^^27v4 -8H$Pj˲-WZ2XdcZqٞ4ɠm+w&d3m\M2mmUbi(4kOߩTklQ[pml#v+mF$cqs_dj pl6/ӯl;6| }6|;UPu4ߤظ:qm ]z꯭_Ib BuZ,_dPgɶsrO|Sm53F:'R7}O`; ܙap3Vc SsJ5OL6o81lg-8Jm6fj V9Lmdj 6pYr@ۙ6F퐀ҰQ+pDۙfIf!*\E++ɶʴٔV̴:6жڸB[pl;ƭml[iIbk]m+ͶՆM2m( x] ^ʡ l5|Z?bP2C1gb̩ADL'ML睍 G;hZ8_WߵE$Dr8(Z8W JQIԧp,LASδfʱ1T9˖g)ž|Į| ZO} v18d|[XO$ZTW'iOLlwM|%fϨ"iWMQP;YMCUq 'Ujcs1T#4$`|}(|0a3i0Lja@^vͩ=-pTKN :5=+,?:WJ5ѹ)Vb,(An=FWoO,mM20j5P_l)M2mfļ@U:Vj 6x*5P$PVf-Q~!HʦI/Bz%=lQpImfSI+&`(=Ugz4$*\fe]dc,ivY,;O^YM&X*2Lwޔ7l5>a.3 0`M]s&N\E] UmLwY%Q޷2,SZc%V5b:5xK\\;Wvw绚_fg/Ik-d`,9VCUh=۸M[!:?'c/V|Zɶ&6+j+KdPs|g i %^5_xߡ״! /=9\^ ͑H&2ɺpƑt$B*#LHrI g~4N>r5{Jh`]0>]ZdFGh1tpO|T|v'k{ұ%h-Ծ{F@ tW pl;5W6XlG$:`C`+ڸb{m=64`v֋ڸ{mkE[ p[-v*Me-k[%Rd`,O뎺cml6ɠkyں0[N-3ww(7ɍ(' e/c_V pȦM.>mdjʊ  e,IUl앲Dwru0zcxl O2^.C%luLl,Ed,%e1C͢2^ .T֪$*>2a\^Ma0cdM1CBa=,.Z+RVX]Vb[Ka)lL2eelY[4Lg}f54g4,22ԥ 2R'*V_g|hi3~\b_H54AI!i8>qti=M`;,> ~_`l.T)P]9> Q R3xа88`x hXHZ,V,f;f`p=P ,MG/Ѱ?ڷo9XhaxrzOOjհ@bpąafN3w -:?ƘhaS0>]P% <pL M]ٓ wExcΕ=Z\20>}6Uy>C 2ؤVͶفwժ4T\ >,]eA.;TXV PX6% sox%9EYas[c [1 k8c ۡ貮}@Vj=wW٬Yַb"+\[ef* p^28}\FQY5Vh;x<7=P=4gݳ 16~1;kvd#-ٙ3zjv쏧Tē|wDo)0Qp`!wrTc!KƧNaGNwaa -8JfPFͶQV[qCh$c[D[mj p̴VUV2 ꚙ5U+_Q*jioA;ON\ǯjuAH eڞqy@L%3mvW[_jk=JUd`,VZ϶&S'ڬm m&  ͪҒ,Ce@X|o>}]m`;m3?EpƝZ a\ 48: UegKbxcrA.̈́YP|asmKm/͙mM20[jUmsf^j p[vnݱS a=G3T|h:[4M6$ tn]}>HI!Y"MMF?Dua*ijgj6gWԗVzlgSIǼH-T?*&B1T[38١U*?m@c%/_PIPԢ<*Ro6VLUr8cޟVãjCUr }s)c^-CAZ<.2aPoNWo9 T6T5LU}dU ʆjUI5LTrBY czW~SΥѲGU|S j+0B.W(cWkYx .N Op..^>C[hQ[]v[g)`_ԶV6XlUyPIu탶)rJ5NwF}̯1l dmOxG p{JeuGHyPT-=Bl'D,G 2ؤc3DL;Wff)\eZK2K2Ȳf*Cd,d1C-M=pau|`2ɠ m|,Bn"@zYhDzl7;vC 1Ȥ̲p2Z'i2\P^d`,6ٴChmM2`;+6V!nW7mgᶊrVΏY!;)Z<<~6 | :c>VU+Ix5=a$aH fsh J8ZF :7*걙Ak(~uml3ڶfPxvmumW}޶>VTV2Ou}޲]UJ̬:et\l<)ri3c6ɠuhr:z:K)^|q[(Bg=z:NhQ65 =x(qEq^ }4hv} &mLԆdk=ۆbV0 ͞e{LeTaM]?g庯nʺj S/G >,ZxyU袪e2.6l'ڬeyiE<}me[j<aPL+z˶&qlum|%V:xmMF>cEc6>tm-\lHᶲl9'y=I[Yj++R/cjEmes5ve4߸xm-fXlum`3IujQVMeA.[x'{lt:뚬Ί^TϺOޥl Yb -8JfPvɶ]6ڸxm-fXl76ɠ6[j[m}e[kj<-mnIuV}`[#z.<6lml[rN͠UF[M_w%+F1mv[<#Emj:'y@ Glm,kƫM  אݯcjbulk+ڊ߽W -J1mYi po6nvQ[xM.j/{LIum<rY2{t}DTBg1ǧ&fBs8İ%d(Af-Limh;.,$l㝜=l^HA;W3ҥ}Ε>C 2؂mS6/Yzm ;Ԭ޲^Ӆ䪪x>볬} Ӡ rZεሙrDO1` RW2g!IqQ{HbpoHw.]o h3ڕVZJ8bIۡGlVhcUk5ۦ-fXlmvUn_dPzu2˰޳[ޱTeU4f6 ̑w)z-"KjGS1fX\g'Ota,e5An[| Uy*V_3lmbz-8`>`ۙ w KP_Y˰2g(}TղiT5eE6ɔg6աcQV2uƕ [Ces+5?rU.ڢpyQ{m%VRBU=yu1dVB ʤ̲&"K4_ٞY,TY"/(Se|e1*\6j JbWjl`Q1ʶb6x.D׎E+Ca@.{UE!/ּ0e}]vUCgء p`<^W?VkgM  lnLe$N[{֗T+.Py&9-d}/oo=+60ޅb/!%{|:xE| I=oF ,Lզ0[-kZ^yYpAg1ǧ:ΤPBx1h\U< k]ecdyꊲ鋡WfUe1"CdVljե@.[%N+!z!e/$)<*A"0v2.)Res6t67t6ٸxP(*z6-,\E|% P-q[:CYٸ1d\fܱϕI e|w\zyi=ǔmdx~w>;ͳ(54:>6Sdl#,c3lmV͒;ߑ,l}W6Ͽ?Î{|:lZ'6Q͏'(h!2"[콯`apq Q\9]5rIE8w6Lag0V / c;ˌ&᰹2l.-2v6n93l3\;]XYҩ8a&lS,&Yb[5 Z<#?\ۮl|<İF(-8kYKեc^Kͪ6ɠئІWmmmEϧ\`6Vmv,le[MN6jU[V999jV?;k}k~srlKmG2x,E'š[i{iQ?YᲁE);{+^|_#bAg1ǧ1 P6b-8JfPf˶3XR͊f<|fgRNZȠaZ%mCޣa{‚ϰn~|UE'UD-`|g663`D .^?f uI2Yf"^ZTx,[ " Se1AR@r3aa`-u/GeHG|yELOj98̈cV̮;axL<9\ /k*xxcNeԩۂY3afL<㋩S1 f̈́-xxcN) oxg{gZ uVng1ǧ :ΗǿC ~Q9>5Ke5TU.w< i~F}ЄP@ XЂDp۩mlֶjW[KD·㵝GMmh+~}P[j[]m]|+iVl mcv݋_>6bpa8cjB+1hp 5G("A2\yvb#uG u]eWk:Sae, <Xk Eaeؙ*e;{ҳC=65 k)-fXl}m'Fn{zm1Cr\vQZvc sµX[SEQH 4G *@p&xQ4N })w[ERmBj>)q$F`Rmԇ~'6: ۥR;TGsr~'Hg)in!HM;ޙJ:3lm%5x}&B-.HII%);nj_G{!ּ$wöx+HaV*O2%^TUQ uj(&W@87zbUUNQզ̮: GC6!RU7yW@sxvFof[}; vFak[Qːng6*n;l!j1m|*mz ^1`lbą Ϗy5KJtl[JyEh;Ӳ,$H e'VZƱ"i1B]i:m-fHjM Gm2۫6IAocNUGGİJ&u<6llFVUVuqHmh+!9f+ᣭGa׽zCU!FUYbpYY֪xGjC򎒲C2Q*T;Jbp+V칓:R_\j Itql}\DT$~K|*jLUmXbj(T5zMxݸ?IDQm*IB>j+jg~]1zSVmJ(Σy;j;ޮejsYlQ$ظȵͥ;} mH GUWW+ڪdH|::TqpY2exO~JUJ!@q [jӵN;jꉜDk'ҘBKIr@KIc iDa%nf"aokQ垉ġ#Ht#{p+)w4h4U|~Cooq嫲Y>U5xe>{`,(d½Ud2x4̐unm'8趐!9f ޣV}][;jCm-fXlkD\i#Q[̐nxl65yۑ឴qYk4#Ʊ_1l}leNɶ?NJSVbv6֏g6N/^lj6lwc4SSr>E>3eJ5qİq)ViQi+kR^T,f7VCɝJ Đr1`!)\p%ǡ?=sx}pY<&ߖ [5d\6'Xp滓ڿ8=!.`=obaSE + ;aG` .,Xu\X,L+mvX_ ̍~:6\v[[lRle'shþb;Em1b?%ڸ3iե!9ܶJVڰH mh[Xrmd[ojm'RPZ[VbPZ{uɡ )\veg=,6H-[c3pbAQ 6u6ksM;ml+ږd8p[bKmdۮ%CrwVڎʴ1x,4ށ6ʴ )\p%w$s'{N) % o]i{O h{h`+-8[Shs;`6{ܳZz6'mgG:lNOͿ"%5.48sNbmuqPZKd-9s:<~hX% _]i{ 6~ݶ XT{ڿͅkc#_sg(*Qc4Ng_~fMQ{9j'~8n ͪ`;VJ\ 382ؖ k\MV!l 0[) G=w܌bxgU:.wfĠJ&uf/=wܐ46h<[cw–93:^[̐nfF[j+[mgfۮj<[jUmgf[jm'gU[ц;3b6xP[jm ײ V-nnAoWꓡؖɃkԁ^B 2ؤ̶Xjk3jUN}2۞jUmmfXj۩OJ {w6qwlkv$ǁ#=KS٨YٺwFApY2[Pze{& +i+G2xluV8u u+lRl8kz9gum3x,FCmע-fHm qҊ՞ik+I< <YcߜUvʦjQ͐.v†8aL."onn6'G'v%hbv`orpmqFT|fBqH9.۸tPz3=.-~ZA3U[FXF1ll%2$ζ7 6NQ])bU3D'X^f u^qm_˟Inwi1l~$V  4XbN(V"Cr-=IkJ <2Nb]* e cPVl-UyB+~(mxZ-1l" %`:` εm k~ 6QV6Q;RG-,ο6ިn#:Vz2l".Fb񷲰OݨCme-fHM\hEm }Ɨv-my,j;蓱İJ&uV^Vڰ_G mh+XXq!9ܶq-WmG Pٕmx Z-ķ!VdiM@U lPmD {x\=wed'JLaHee[2$ŕah&ɴ-dXm2>؟d;ٶj :ꐣ-fXlum4W[m1Cr|ZS7W^y ,ķ孪UV6Ca;3`+-8kٰgmk-fXl m-6nym1CrmlYr)3x,=T|(+PX ӓU Wq/VSUCoɋ_|7`ʗ^ժ^TGU}+@ U7 p]g~m?O Aghz}?8v B4-|m̦35̪T3x,.[~a),[e1CrvXb|+hCl\Lpm8:Զfnj]ޘ_ Qʨ;6XO#ڬFc%j= jExocֹI*)߻p0Wm6cZ *{]OlUekݯ <L|dAᲙaz_yY.FȯiL[Qٴ^Q;XCaٵlegF/z&)fi)-fXhaxiJkطbp|3 Gwc Ĵ6ލM\cS۱Xbx;63$e^f(38vmjI GxHܥq~nbwH.+3[W̲QU3x,2E6̲U$*h]+~\cf(cG1\{o zШ}>]Uڪ VEeK]GXme{\5ff.N -vl #PةM3Srp'JMTgܞI%8]|ȿaU=`ͱӿmfG IઝQ[M%\uTGT>^"e(o~h,ǎt`~#~Dw;豥͸ֿd8dH [^dON.!">FE]A6AkDP6I|o6DՄ(豈Ztb|'ImFR|S1V 6F&NoHjvd(J*539iQ99,q[8?XYj>Sm'Rjk+j{mjMm'G{m$66 96jm|6>;~m|ZQۨ6gn 宴'7,όw1l}O_[^le:Iö- p4}؆:OGpp_WSa,{{uWBu--D%-!NM*ĠUU&8TUAe澪KpHZi$^3TWԌLU)C%9Nl`ZuJ fx1InocpIe StCxi+maK<P l+-$H 3o8dg& l(QdlW|.H'"@ oI Qvl8q+;RYlh}gڬJ׃?# Gm2cSQ7fO$VcÑ`㝙a1lkJuZ͖vn} sR6x,԰|VWbpY˰]oXά9Քղ)jNUmEu##YvBᙂ= "["D]cOb-ᭌXlh][= #Hb68:Vbp۬6ZS[vf+ u6_j+5ZSLfRl'W>O˵'׫O.l'{+>yp-i qn[3m?: X&Aa@qvӵ ) _'6v^O-Vţ‘画s3|>Zpqj&9H/V.*;TYVY*;vIhm6A+s}G6O[*@ƁTa1h;71d e- ?^ ;s3#mi1Cr͞ێ6{n8f.r3x,vz-6N3$&z͡6t/zwuK6Pai9+ 6]mGنXܴl-ڊbѡAJ ) ̳l1d% [=>EYn oe:*kÑo˰ay'~o o2;NRYJ7ܜ{D£@H} x,(\+6ؙ*[#8vOnϺ||@$UL͛eH =uCq5 < { Rŏ @ ocI==Xd(;2dSY)׌ Bdm,fH [oش:#ʺ>dOn?bi Q0,v=(ge dC,lL!>g 'hT_{mT4zqw3lzE+wRőMRU&a[Cv(J<&> b~ A`)'iLϟ;鳓hgNXQ[h>`NOWוsʇ6wٗ K*&X\+^,Y>L,&H N¦8Nمg^UyMePME5(b~˄>8sڪk*dX]F+.?=Kv,dHmR[VbŶJU[֗b(j6U;jUTԭ)EʉB`h/ Ge w\,sxH@u\bֹ%nhVu@\ƌj9DsOȞ#Yp|WNPŐqBԟFdH `u|v}cW;Վ8xku +ee ;Js+>Aqt | lhb !LV|#Ȏbp|]ֆJMa)llTUZV*~P5q jEcN9 _i/@xOfh א{4 x{''0,gس`쥌c/ec5dqcoe6 1W`& 8= >fNvzj|s&!mv-6 [z;v*LqF߁O82JQFfY[`Ψ+1RƉji=0RF]QSS-TF9bnpJ4>Gn Z ǃc1a6"CR7lW[:ZWYiYb"-!e ʆq*k]e1CRwXPƻ;pfU};wfph|[{kr3|a1lJx+!9ܶgm /\fq4Fd`,w܁IIb1Cr- GmNmD GmsF[ 6ޠ]oi۩O.[J+*+Vէ^lWeRެ:3xRw\/l EVSw;lթqϢKwpæ}_p/Cq*;!~lhJx+MmdPYeQCM{FSϠZ43ޜ9gN. xMv fꆡtCn\,eKln(uf[[7K͍p21!gJVlbu5:,[[ cJ# k6=↿Du`UU\!Erͥ#Wx_kA#4fFQS0, 5fj )\VkZUk(˞!SO:U3i5z١ZHj.j>0q>y 5 OS1º禚>67"(Y]=u PJ:e:jSQA*?*6c>vaG]׹?ʆ]Y* e+Ö8Z답յj%VU(NԴA/VT? T|"Uv l$!:"oޜ߶?C6γ=-`hS30:`;MmW)a1l &66i3wmf6ƇȑqIu3'mh~5& نovԶayf|oᯚY~$ۭ6~} VF[:͞ykUmP۬jLܵ!9_Gq1ε=IǰP-MتKbI<-5XȺO,} KvTƹ6d;N$NmsI͑msŋR&^[1$cmoŤ!9ܶ_=rCqQJt$cm[{Q3$UG,&8}X咁YjG:,Ͷ0h$!9`Xym8lkF= O G͞oZ֊!mqJ]*6$c'R*fVVڤʶ<_rНCa;uȡxz7RP3޴%ov>% xiZUԐ Ymj-LMM20,v u{!9 vj kYA@^i;ҐӴA뷀1N+eM0UۺǠJ4>g 6n'JӴI۷U52:QtsRZF)3: Cw 3dgJBcH8UM;L9'+\ƁeK4>ei{ծ'uXLھ%nk5n 2vͶy&l4BF`UmTbp[Gw9V`y&.|ø'$[bkIRo oeI͞mhqv$cvZqKh[m1Cr^4S/ȷel|eH`"% zTa1lJdH#Ѷѣ|gC/$cmg!/3[6bp}+pM qCi.hVl&4bxwfw3&H ȰXwF|n6|'ÓDhV 2, !FR^:E]+TVRPjSM+NQj3Z(il]Mvٕuզ읺Qfo]v]Y$`,6< .,&H aӚ@fqn0Uuf(l?0߼nO*,#DW-녬\GuzPo ':{8B2_ p۩fo]6ԮsSזh,$`, sWW+N Gw7 2Mlș %z /*PŰqmdžm GZeUmPcunU306>f6{n1v#mue[]j;Emkej VPZvbp[jmOw/öJ(ѫf`lu֛Z.uX V(6j6n/m{m>m>WqhUm#Im.٤ε6lsml3uͦ}m>n۸ufq_d+{81ւ@nxƯ:,]ܬsU*C5LWuvR*2tUUo@>L5VBq8f|Q|ByPceTT}L 7qoyH@vm1\&Jt>#~azsWoanyǐJnk;-Vmw4IXhDPB~nW& Tѳltiܭ-NQd`,4{NliuM2m+G<ỵ]٫;?sM-p^pm%$J#i'ӫTHU^8j+:ɵ{qOd`,>aVYL lߡ3 fk}ZC8y |_yU=Pv8-iPͣHv̢/~m^&Dh EUU C`(L2mwZq/1ջǰJ|4[5zҭs)[l%3m#F0Yˬ5T52jiצ  p˳ a[4L;Ku[q e;۶^puqpՔB[-[q:G'<_ޠ,p4Xh[,j 6No6Fm|И6>{m|zU U508fF[-j۩GmCijQP*Y$*\z{PM>j˦}kp7Kt[kSOtGd۬u[PmBp^dِ*.3%Ọ-φ-vf怜Ѽ FRPJ ZT՚yfZdԫ^B\k kU{d=@mȷຮ6ԅ%kc``- k#8I@dPlX\'~Ñ`<-g>0*. c%F5,m͕a}L0YY*CiseV$PZ˲?~̩⩎K-fQd`,(mL;SmAn븒Kqm crcQ`%Oi:`Em<B 2ؤʶV#TE}_$`,f_CZU$P8\Tfv\ZmJr@[G:@[#!j4{8VRl#7Sumd[I=rEŠȲ^qKȠ\IY%;L=!Pu|bdzTUEOs +g6.n>hh$%)EDc$ъK!4Utgw6o{Rms%:SEVTX9:5`Ak+z R՞Y5 3WCskOuuEui80{pߕj8% 3|a ;J̠͒mUmgm*mfTY +%ZU, -\ [Ka6ű6w‘CDӪWa1l6 lelCaCUjdh+gŦԆd2cXXv))}E0 >ig\ Tڳ$K3c$cծ4%dP^4q+;6’JUuM.*EzuDU`H~{2*E,MU;jRjp|]յ"[8EI0&`(0[vaG:!xRdPVͲUE֛jUYLPd2$Z7IUl:Jf_w¹`)_m7B bF %JfPxpmm.m&Nc ClsM26,X 6 56kH;qHu͚ekDpshQPVbјڛ@ L \ %gR;G{&T`/QQ.#9=1\1G eri қZTcײrP_SzW [[攁yn߆ ́r{錯ַ=?oݳAiv³b Gھ[>JN-+㣧_%c*[62?~ :pmel eUa)@VZv C7 3 xL% Q !-`#LjxdXrd8T2N\YhW#߆ퟛ!83siD p[mf^j[-Qd`,6V˶3&ᶆkY;m0/ܢoİqkd`lu֎8L:,~l˧hlsiuml#Nqߥhm#Pl#IiIj;jOJ͖muqjQL}2L}qZWL}RmB>]Ce5C Н:VcC]@ :uLw^L/:^kwLj ,bv(66޻ye8renbe*&+aHq!UQ&ۚA.+ ftz)Ϟ<Y~[ a:8-w[m,gs.B錣#zOEtiFF(15;i/!tFH#]n}ע@L H#]Jl}g~Ñ`, 9BQ4c9 >C2d p.6[vm}s0A mvURTdPζ66NvRw uv8)umVIu#nx.}jƇVMV*KI U\1)Ue6Cs0zpU+K[20: Ud6Va1d6lI emGWf?Eٜ* EֶT tehDpYYїA[egfٮ* Eٙ@UigfZJ p|Yf{ڸGQ6XlĖ.Ffk pµ46{'#k%ghЛ6և4[ Lw],zϰZ0 Ua`KeA&Rlv{|%Lsb׮pu+ &#|z[̈́ >L=?l47CFmq<񓟤=+s!d lO;Dj]Ig iDUHr:Hh4vO$K4hn=դY[4C1#YR;2K!38ƾV1}m&̘4'5䏠}͆Wt串{):?*[iVX-Yjٵg߷%* 'Qh*k%J vm4IuVPHͣ1u8hq umh+An+- :ŽC;Ci ;#WCe@.'2se#9'M20Z=J^6smAn6ʊ6m6e6e^[Yj麍\YmRlIbTlmM2mV5:f/V隸Ni)-&`(oWYƩ$*\_W 6=Wv^_ E֋,U2ɠ gp'8,Sb 9UX WXUX X *#8h?ԦMqN20Ue֦xdۙU65kV¶vfmUQ#]&Jҙj:Ve1LuchO @nB OԼSLnZWEqFn(_ě8U$jBU5"%UsijgwT7d͉,;cH4;szv:zTs<'O Ϋmzq=-Lr?EӴ>ό779|9r>B{\B8|_0NPb >(;no&-S30:=AY=CCw(V2:`Án[ L YanRs^b N7<^PN2{(Pz8;Q?_I" ǎRJ5#&͠ eYq,qZU'ڥ >L2ePַȞ),n-c1dw!K% Z 22]g,g#Xm 222lv=7.6ٳ +b"]e2T!2󿲩dZdfrY-* '\JeHdd_J1(\_qkoEemgYIqkoܯ޸TY{ƑzNqz'eǤYh;@=zmM8жjWX/d TᲚaU];ubmurJqenzāD7>/t=|g20:kf,b1f`+An%۵FaSmIB\XeܶІ p5([Ce W+?c}% ֈ4d,b %`:`-lCkCme[U$`,ݔVUZ2I e{̦~^4Xh"g Oͦ6ɠذ/ظV#{ԏ[ojGN͠Ֆm^=rIbMmmj p[õ܍&}[|5wa+kd`luRRŏ۠[lRlcd@ZF+;ҶMg _ Ef =.C"+[eA.-fY*+-QYLPd,QYiYֺ$*\pOlutgFX4o` laUX YdRdgd8ȲTv7 ;Ce,'Fa_qAVW,YN(1;u@`Y2kB%gՕYSN 2k e0L V @.-zeکzUZ UvЊ`Mm6CPYޜX{9ejixv 53<1;8g I20mO2\62P&ᶓiGeS//XMdQUՋ 5:j:qĵz'3\|ֱ5f-\[3mf[jSmfP$`,Z6Tj2I emGA0;Td`,4[Asismom&ѳmt#]vUd`,նc}Kh+GJu7inx[vy_%cƗ:, p-`֋V[oq$cmտ6ɠh;]mclUmVz϶vڂccK;RUujk)Cd8d=]5N\ٖv8'!eCg72HOuTSbWfGSRŔP p[/`dR$`,^TvʎOPE* /\/f^.~; e'jQ ,X|NꍒPّX|*?Ro6a[-l޵6 fM0jf WSopF_}Tƙū^0S u3a1l?͎fP¹Gml㬝ٚf`l| 8&ul%3md=>m{mlJVU[%P$Pŕ)n~eɱbJCRNKAn]e%ʶ&-{\dP>]Zm4qdǍR,㕧_%cƱa1l(yJ&u6OM(_$cMt/lHBK2I e{!L㈅4Xh{( Ch/M26, 6.6ΆQhUՕԖF$N s4IeeRYJ*3tD>((<\xLzsfVYY* e╝wʹY& Uwʹ3&]:bI{^qiGO3JX|cGw}6+XM8.S c ->Ȑ:,l#ef٪*kSi*mKIB[5҆?$uMIumgڶv5lB1EkVu=eeH,/ [o8PpoKbl% g/&޶a1d1JNZl5Ѝ:v]e #К?Z~'5QFSßʹWkp^6{z z:cOŜ:,~X53U)e}f{o` Z0*U]XRC(6TY6ZQYYv$cͭ3Vv6ɠmKFlu /dc%lKm+HeF"k%$`,u)GڌȕIU@֔ԴR_Ԥ+Jj*82eIl^y7 öcg /|Y6cϫ|H5X xYQv(ÞAfQM20Z;J[fƝ=M2mcd v {nTIbg=a#R=]ZE*{-aZXڃm lmϣm ,PMJCwVqTVVծTWV=G]Ume8E=' >J<v>v)'=a1Tc=%AxT8RW7gk6W(V2:E~wM.9۷wிpc4c6{y9ZŰJ̠=ZbkCmmlȗ6Xl8:v$:f;G[G:XX^N˶u&Os3ij~&6=QtɉYH;CilK;#PRpz5T֧jۿI Fm:֧$:vi-~*XS[oX ɟ- >*,mPDU@wTeKaceX5Ñ kCaceXt =lᯩ. lKW&5@NhSq<|eNg2a[@Y;" e62N,v+Me0=FnQ|<|e+ $8ї Ah]eQd`,΄%(Lk]iAn[چjXhk+mڑ V_qlglNi-}ꏧ+i3}ǔ_ƧƛЧ L< IVSBv @g Y\9Ɗѹe_tI"礛!v$:v}o٪&~+6;?vzJ̣[ٺk㴔m|,V6Zm4I68,>-!2I e'V' @B'M20ehI6ɠWOll+[m6?7CW]mAn;yږδ֕&  lKe@` Ɨ_enZ=[:!б W,I DK oC}gTi6nsi۫}w|4n$rBG8q$t Vgp"N@N6;cfl:fUWxМP௹gYdmƆۨbl % [J,, U+pzPPvQKMM36:]H.ͬy#d`,nj; &Pz`ljnXfezhV`f͖,lPmdU@7߈~el,3Ҋf`h8h}ml%ڶfP*ա5ߥ\]cf %V P_a1l`+Mꀭl\X_N6[J|m:>n2uw6ɠ |JXj ,a;-XE30:`Km-:,P 6ղm5V1X6XlE2[m֖$:ܶq-im|xaXYZ-3~(Fb B'jlO;D:KIs DjMHr:HzRkB+. /$5lK U=%@ "i9H~Izt㭓Hc INgI|撆vuT!~' *7Mm*fKG{U J(20:!mwGV[ p۳=CpWj7&xeŰ)20:`ݛs Ak5`#@.iqj_Y*kM!cٶ绸f3oa/lC(jijwl,C]<; 3v!û#ȎSz[L:+*\lxtpoo%5K(Z8eᣢ͟{h+1 \wVٮloYY/3 Dշ]$\qUA=lV]+ mqKd`,nUs&ᶅH$Ake:'k֪9$￳ydz ${CNjUHr:H[/wN $9]Ogp$x+Q)oz(&`lU<, ,^XpV)6:h՝eҔ+0m𕍩4Xhu+mLFxLdP̶d7oYٶ$c5vs3۞j+~LdPƫG6ot{M20moʴIumjkGm%I, 6XltmM2mIj$95VCKVh񒆫$5X dR#xp$VQo#FqɳK!Ujus$Njd[IBkEiIK2I ULe}IWJ4Xh EdZlAnW6{D= _Jbl&%֐ &nczVa1d,J̠ ezSP^Wߕ EN!A,M2ɠ eQ_FYm*  զ26QdPdXԞ8~Ñ+[_ŐJ) Z Oh]YC ![#`]ִK$;Y6F,1d)IvemdYhwWGͦZꍳllL2e;cs=4i Vꎒzn?7bkC+M2p%ӎpIXa߿>::B1?qQF vQ"+GQ%TEhtiNILwV!HINgI`% vcHUHrDžۖWdl)1n TŽBlU<, K j˲TVʹQVjʹZ6Vʹ=Vڂm/ȸÕ KaM]-RVP4p<;8j7UIGue8d:DVNZ]`)l. &`(e^W4u@Û]G܄bV%֑ P*,~\'w̩T2[Q+M 6d&}'hO =䫟?!T ?}<[nzm4~)$zY:U!pU?Ӆ*[BTZ;t8oUMQqDe_So4J k i552Pb4cG@DmQT+BW-UIUTY5$㨪CUj:STr\ dDr]omqGSb4cX kf` T lD _ol1hb{Jf`lu6fbN(V.f_ikEmſhJY#ado EaqaCo*X ?dW0VzS_?7CLI2Ď1w|Šq)f`lu|%v * ۸C\(J_dOk$'Jo|G)vqo :_UC,kdT ;Hf fh'2NlPxgqsp[zVlJ [#yPa1P;`@.=jWz/mLQIB]i6-Zl{mAn{.,_.dM\W8Т3~t)/wı?'aۗoݶYՒ Wunbc^Gu oV'͛u%?e!u?|IVPdumlEmvb|m d`,6{m|:f&ᶵm-Gmue3&͖gl$: _Dm-Ҫ&`h6 4op¿߻!g>!Y+XUGh* -jP $F ~ȪYT%6[dAnIS1ܰ5 /j vfm|QpGmAnS aK6~&75VfU5c ϣuXL%JfPlyn7l N 7>L [-o`1dlcIGz [l>*3ꈴZj3mfPlU|n|^mymf[/j fxlfۚj p[E_I[}+4}D,rꀭ>j:,>6%`:`k3T۳Զg6Xlmm5mRdPWM|gkІ7ފmoIb6U7jSdPWIB[3Ґ!WuIUl,]ec(L$c(LCmAᑥz-_UY)^>(kVDZaK9-GUB ڳh+XoV϶eۉV棶ՆV[j ~xbm/VXWWϬT;Z&=MI=uW2J̈́$;a{a->J[pab%`:`rl8=l_` _vİ kl!c UX ZpsRƱ t;}k. l,* #ص"-&FJ p ,l Gv]C302l VGmU3mݫf9\ۂZ [BKVl(uX [lRlhTVyVՠKVZN:d@.-:~ι;>6ܗzM20R1fp@iM2mtJTYmCV(5 [TmL1?HkdjCQX:$ca-EXW$Pdx'Ȱu;}$Z/VljA- ,{7ŸOd=PՏn~E[zB/b~h*Υ.j~xlYf%See p=_mDJ]GqڣgQRGq9kkEm6{)D{? [Z!mk%t_O_ [u՟c*,bp-ev_:UV&\d`,hfZJ pͺj;-a,YĚH]P%`: Oa7|ńk=x7 [93l;ںfP۞mOUj5ۺ$c=Ui]ef*pYYVvFίod_J VvoF6ɠ^kO6u[OݶJM@Zl=[~m6{RzegXK30:`3ڶO1i` 2ؤ6-mY <M} ;c|!;O13M` 6 0l %ں7–j]]}g׊ ,"Ģ o))4W~;%.[q IYRŤP 66F_}فk9Gd`,6!Mh<&mi6i1*\ݕ"|ye;d`,2 !iGWVRpʰU'ukjeԺMT3Z"Zߠ=Ȗ62t%IƂCT碗5TW\ӇZ\-e'î7fS)Pbs20:=lDgmUL[f%HDᲒaE]vy]3TVQUɨ"&!qM3$7,xIkd͟&XTU69P\1*\ֿ=%QSo_~t=+صX5jQ׳kI[ʞe5}cUl,[?~6QI"[OUZmҗQ26`=Ԗ&~s#O=pTtSl!( ڊ2¾a["e+eliM,qٖjMQc|4:2 _s/ lgX ;$`,1/c)l m:Շ Ht1X9z:]a<*YO2C 2Ђmd,jkUmQ[mQ|m>VD[yU͢pZٶ7$c6h+6ɠqĸH㘕O|%Qk  `m|w?U1￳y] QA h&jS,=ǣ>rV !n?tԑ4ϝ+sVS{؝qؼ@zVdcA.wRE=hjt\˂hVXgKyO ,>,>l"WήUű aq,(U>* Tgo҆?c#VX`Mتl/el>=Fݢ@GY*6fbo? 3c<<<}3{. [=Oa?|bZ%F&Pŕ/VxlgY鉶mѶJOmIl;6liӆ|ͯ^ [y%4*lv겑];kkdX겖T;l-WO]1` %-[CR(J&uf~/s{>͹ UX X B&PVϮ-sWV{Ge>^n@=PdPlxaaKT'ꌶaKUKIu*?ij$i  aiN Jl aқ届BssdX{")&aɰ\_[TUsPڣ pU_&rK[6zᓿ/|@wJlsAVX6<8t3< Os텍3ax0 L odvv~YCdK30:@)&!ӵA4`+MmlCmCimd .m^ UlHյ IU@WLk6`ZЦ؆fPʶs[c$Eh  7⡏fiT \!Uw|ov_6GI/*5DY1CO{0 {(62*\6V%U,qf| E6VhٳnIUl,[Md,+ 3j +-zW$P\SQ81puI=s51Xz'Rf;,x;#S-^,h<:LEϘfx?Nޔ3K{BEfTK17AzSdPdX_\Lg5xdd-YY6϶fPlwF2a0yBfOu`MUmPo!P6Cо`A8#mEա #WVϮ# ,k[e$\V|7^:?V8Odcϩ ֟lkh%3m~h+]mf-cbF%ޖ [|kJög(V[{=Ʒ^~m.oZ극Զռ&o䓠;mW mS6!&oQ[j߆h<zmAK[j po޴mx VgbJ%ޖ [--۟UX xB 6 T׳`odsjWC֞[d82lvKC6g(FRVl&jϩݬʚ;FWVcadaF!VWUWUT~6f[zQʈ^`gmG xN9_O{ӄ6/15 Qm]D2Nča2gg?ybZ(62*\fcs7l;Kʳ2>s2ԚQmSQXXȷNrbxfh%36TZT53IۢLO{,3AwK,cP`ď!4,%1落=,vA+h,ZJpV-ew?vOg'^?=RGČfIE8 kKaE\{%{{,ԵR]EY@ Κnf/|Çٺz 5G lQ *jEUu%[B-#Clm: 3?v]_6^`\2iKxh.SXoƳ2u_ *UT.V:3UEl*Bꩳf&d"/!f{IGu ~IfQSK=վziO͢ ]aC]s!YŀJ%Y5 U l)C UUQ%Dn; K9s-Y U}n1VTFYhfx?TۺǀJȐaB{q3`OlG2x|mlmms÷7h<[ŧ0;?W!9f>/0 [܆7m},c+c{OQ 63]ls4Оi<6Mlry:fgfZUi#$l([Ue=Z-JT@[EiH[2n!CՒi={m3?Æ@C' -p6z/eC AUa6X ؾB}݄E}wfx=s8_"gi?6g_\daZ9Jm <*jCY,6TͅTVFIGi1BcH+Cm1Cr "ev~ 8:?C~ [T+ڇNZh d'NxÄrx[3xlu ~!+`+M86P(ǟUmd[]V$.u3[/6Dp[P/;}kx|,1Vle&b%`:`ѮsvgeOf7CAa7,u7= Bֶ;N9JwN|;z|2Y33-xM  ecoٙc|hbh[mnLUK1{>X h'8o\xlX ׹7}U80l0 !c(FB =-lccɹqueeYWMz0T{0Yua+i7ARfXhy\QeW .n._XV iWVYUXv5l2;zl̷X *cUg%uX [hRl6umgF (F]#cGmv~ټkm>u>T׶j귆k3x,OZ Cկ~k[m1Cr` [M\  a@א <* [m KnbF%F$H h7a>=9;C6:Mh]U$ ;ݵNj`ES{ λ\_g"%V [pG]?RG'Q 4ѳmtmxPlm. u6Rrd1VH&um~kMm5[ɬlEvi)lN[_Vt}h7ly_` 6Gv4(NxpN84ZXvs UX i e|Pt95Xͨ |ɶMP\gKZM]a@`uF`kdج CeҼH]۬j[Cm|䵝V[p:߰%x2ngyohocRa1l<9%`:`[-VS[[ji mÏ mh.u- [UǷ!R"L4_g7:Ǵ-";8؉*_caV5JgHCT33a1Tkl%2$j6I Um, U-fH~CmeF[SŶSoz-:Vz_JR| ÜdKMA|O G,!4?™2XzKO˙>1@Mv;D*|so!͕H /܁8 _\ʺkr/IGr-sE&Q*Zk>5>UaKq~.q3a*fS^!@~3$f6ymmt-l1b=ڐ!J϶63$6Ƽ03]<{Z lYn1Vh1<!9kgb 3BYoYL-qaK4Q/n\!fHmm^9ȵcƳk]m1Cr/76<2>ލWͽole%ޖ [խ6Bmc{(V[ֻlE]c6bp귙Uol3) V~ۆw6>l.4a-7MRFDChGFͮcaյ$uI2TJ~*\gx0mFYv/~ϔcBj :쯭w'pN6\RU+-_ZX-6:$jfŷo< *,Pm 0l&mنZXmDvgP!Pi=zEEj_QTl5RW/מ*Ca?ʖ =+-U묜*\񝸻n<:`k KJȐn@q@PN???6hSmRhSm :slrm6mS6RVyx,4CZQYY3bpJ5GeugYJ<\ VwGm1Cr7o.f?1ZJ(Qd86l)fxayĤИ!9VgٝtڶY6bVfUۚj>ާ-fH JMƻ^YxX)~8%J [Gm}:,[[lRlsfħLU?Dx(ϼc0ݥ qOY̐.MJŃSo},,4lj,cu:,m[[ a6GolvǛUecR%VDZUfK}ab6ustlՊw['ǰ(J2 [5uZ.uX V"Crml]m6ʧrϵahRbfo6[68hbJ6ڂmHg%m ^LR=왡@>Zzc1@r }҃go6 nU75(M2xluKU7ChC6-Dp[ɴT63&]XQWɬ*sH~AM#l.Qf]Y5Sw ]k !96\! wZöG(6dVwn:,[[ ղm5fE-&Xh*$ioDֻb 6 [z?se}eYk%ǁ-5\-umh+!9VKբzmlJ <zxiJ )\55>Sml9B=Bk6cC+P[lRl6:8ӼÖ-#-`٬\Δcg -:,[[ ᶕi7^%Uai}x,0[[*u\eoB?aKp Z0% o_9>uf\ץ!VZpfojhgjЫ b ~jgx񃅀 kcY&Ic*,k[MJpUQ˿>S]g, ]agX Ea :n;_=vŕFں\J3x,6[cwomh^mgƽVRal mhۏ!3$6c_a1l%xיKm?J72`1dcsdRő5̠2l 2XoYjMqaK>c 6Am6vYo E6k!9V\'m6UY!k;.I,Q$ت׿Y#67Ow]/;+#fF~3x,߀2!23$mQ[+j+ږh<|mqK[+jmv귑lvo~k_6Rov^6^M [\`pa J®h[cÖ`k7bx;&ֵ*z^ 6fP}-dꀭ|d`~Qhfotɐn+9 M\6vm1bKm'PG3$Fiv>/5׸P,}aa1lJdHmxǦm/SA-(KxlU*C6oocIGwߵpevMfɴe[xdd]ad]slHpY} ) C6F(Qd3?7Ay  @ o%H uFY=';U CC%V`y'(g[ŀ~Kx )\6Wͥ2;DV>xTڜv VVٙεV[pmN6RmUi*mL;[}HS^~dNn ^NO|NN:eeHclu{pK5a1l%nړm sn\~m*-&XhcoGk2!bpYY֧ʊz-fXh}*mI]VR 6{V겆.Ra%Erj@5;uxDfҔ.S9zv[`'=gip,ydoA8Ia,% b]Sh]3RZKM]3fY*S%5K~dx3`L\K{cO<[8{{|92Dr"I 65vpI-kl\m\E?%*۩Bp.>n oeIǶ1oڰ7ri=zb_d8ذ mLhh%H ّ,? _ g̱z'W_y`jG!P? x.*5ZF:"M竪tU#ƗkD8 UIᲕag Bޘv]5Ya{@l꩷~#q^5qK@YdUΪ–kFɲ{$Mn+F[c͞X}. S)Yٲ;czlk7{w/zɪ^D qaK]=uX:lEVԈ+멿 f:.||UygyrCvg|C'ϐ]B8&G<`z7򴽅]*ІQ~nГ`>A]C[v?$8f^5ztn^#^K5aV;߿an=7̒d4ckRGvsV[fV} {mWBd`,;!R؞!96ljWDzu68jW?.j-UGUu&v&l [S`K-u?j[Km[opaKcf[5`Ö`[mf۔~+!9VA[^鷎|BsU؂UwXvꀭ0&bBFZpYYj +I\d`,VEfSgVd|BpYY*5<a;u$`,~nUIg7g&hV4di=uZ̐ab;߰e=>_,Q&`lU_{t3uX pۈI2~#͚iQd`,4Hf4m1CrGk8l|Z6,k.U֛z6AmhY#ڂm6}+\|{I@O,Qy*@ D!{-a1h1Ȃ238G F@qN}@׳\}>06O3.Sxd[VKFvg9< g>YM@~'u|':5H)l3V*,)j&bsKx+!96[ͦV.q\d`,mle[]jmv귑l+vo{~k_6Roߺ‚ [^;I-8ذ%ZoWHui5Õ}u ꪙUU5R3UTIxL3:N5|U+ud`,;Ns=Bp̰.wYiɬ5U53ji/5LX) uoH us{x[]Q{P;~%UX W۷7‚2,dһG,d[302ly9%:Ɓpr1Crl+]m{mlEmXlm͞m{-fHg߰m|Jk^tma"KMꀭ~/a( 6aRFW[-{>^6R:`ߘmVF7oYXN+Nxt,i.f`lu8=^n o%2$ll҇eSmvm %G306nڣ4^9#mIᲲlkTd`,ESͯNEe!AR:~M/$~![;hlTaM e6q8lj%X {s;N,9JB`5e~5\wwt;TBċ@{SxE#fyݽcKYK)eKb 7$/WE͖UkJ2$۾hhRGqwDBFL[IG$BQa%%'K?j Q=UV_Ҭ?7CZŀ[ۈI߶A` 0| )a^UuCu6 BԚ7/b~Ho!H iACI D[H;uS0풰!Ƚdp@*;K†@3UGҊewm*&|Cm|Xꀫ^Pa1d{JdHaB= N\V (xc [ u t%ǭBPMJpjl2uզ0̲ 0wav-V0dڲ̦D]jJ cU[óN◉>?=PUIj82ޓ;QnR !O(62*\V,',P`gK%znB_$P:NRCW]>?~O?1\<%Z n܅W{,z`Ll>Y6ծ,WH֔JdSjc1{ÿ&-5,s۫ǘ"TP5O3gVݽzBƸq|GiaK m{~=iP=J u@U+a1\{leID}KQ?>Xx ۚ;[u| f.* G3mgjKm6XlG2[V$:ܶm~ړm%Vβ:}uHSNܪÖ>Ty|hH֟뚁qܙ|x3يfPq߰m*?l(^ _ %Z k7ctz`+MꀭlMmϊ6<,US:`V6nmR[O&u63maJWMu̚Q݃dTK64I6>lj-Jꭘ6>nj_SgIU@VyfkFd; ^HKzU CQ' _e9Ųc![pU|Խ %hb %JfPz((5zFu5M]A0 6}䪓PCKVhާKcG(V2:ݝ}qb5aCKVh3nҴ @ T2PZJ~d M20ڬW]Zj pG qmVwkl ri%Zݙd@aX;G߰%F+1hmmkVǡaK5PA[-`+6lmG1?0pmkd۬j;Xlv(f5G ΐAn̜-n,1SᒀU cҴAkdRdv,XojCieZy& wuԛ!j˴>&֕ 6l YֿP4k`Smf6{x/-}8/+3]k1l * жJg~>~ KZlS?wJv^ÉK[ k3vWʪC}UՕTJra>g[]ַ$:`[rc [ͦ/cB: UqhhGֵ!)(6L.h{e6cxe#$cxMH6;^Gع6ɠ^k`h[JWk+ۧ_'_YOx s^&_YmK;Xhcy=6~m5"':ܶlۏl4|msm%ud`,~hIum~-6oXutak-E30: [b6w(Vmk'jնl[mj귾նl]mAnk3Zkw\۞ٶ$cT;pmAn_6{'N6Sͯ~߶[mj귕/o|صoߖֵo+||0l-}ٵ`Hİ(qJ[V}P~nҵ A-`#@.=jW^*[-xn^YmYV.Ul/.pY6Fh'`٭(a WVɮ]`m Ea w7.L20Hi2Y-YӗQ2Ǟ6l >2J5M8а%ji3M Uf({|<\Z6F(ћf`luV(RŇ`qSɠu}J[/]y}3]ǰJ[ul\hya`+Anb.1eQ߷>d,J lqPa1l3l%3meƧnW^*M0M7 '2#f$* Ä Ö [[ezuvim|V4:vf5m  ?蔁1lsdVl0gy7;:,>6%JfPxm6Ь]TjUWsΣJ*0X`v:Gp`V]Pa Ѡ–z˪x 0(n!*z˦)廬qn4MLO\\ ;*~X|\\`%B&P)]\mtu=IXLP`:aI"kCeA.;Δ߰3 3)6̂\ 3XoOlyGqRZŰ'`+A-i [޿0 zh'Ao™E,1Ij82lyXn2 ![#`A.жBYAA7+k{ 77$qV`u+{Rfm`0 FͮQUFhvwGaC{,H=cYPH=&u@6zlF8g\d`,|kl8M2Chװscu_'\;2>ާyg3cʴ9'8ێfgL [sLT;rN9',\"cmf:,kl#e]X|~@8ohEFhaJhnp-r3<1;8cd :C S`4RO:SpY82_dPlh399ʶ6Xl갻lmë́6ɠqIY6;"׶Oyg [-/b%F&PȲ6B9[e{dlJ ֆfSbc+M2mFQ[ц5/ŶFm#u^ц:VFmSFSi5u[C Eo)EeTdPdLeaiLwG]}gW̃nww u].k"U60l,\X%;VͮZUkfժUUŅ8^V0kUU\ͮqzŸ)hUX YdRd{fٞ"̲U0ٞ*+]emfxT&Ts 2.Yc|2n}_306lyסL>6l5ڊfPF]#~sŜp[On A_j8qo;VU-QɭSUqTWgPqlP"*]563[ VU5+TqTٺ&u\UIյdw!@W (WȪ^j U WQTkZHpU^d'0[u~0l)'^.C/y@55 ~B~ eQ @ph5ʊgKF/H4Ib+KmAn[+NU₆[ڦ}M20lue[/j +87yʍU8:Vc6yB15cxdګ}:,AN ms*" U#ǀX]^$'/-wjYcSPHeqvIhHZ~IR8RI2cv%+ [oY Ud[ Y՛0m@m5LQė\%Po" ٳJaxr^I@}dQ7t!`–{ GR̀BU*j/ʨUT3k7ݮ" ߞMMi*~ZEI-S꧖iQm'Z5k*=STUjlUUa*djji~6ou6=0;b_y#,1f`lu@Ż{ ed6a1`}l%3l\|k[[mcf"V5`6hmcfڡ[ p[zWFv+돏8_f(0&`lUf78;DX0JL w:oװ~  {'XPᒁ-hp. a5a1lul%3md^a=Smk{8X^&ۃg$ĩ߰%8 &x%f cÖ`k:,#Ǝ$:zx1Bͪ6Xl ߨ #mi pۙϯola8N#a4cm;)uX [-[lRlw}GC0$$c٭sʣ6 H$:`Koeq K̎mVa;p?7vbV(2e |coBujΚq& K;&`h5f ~_TaqqY`Ll-b1Ӛ/Ib;[­yCleM2mMRYca!nv(0򃵢 %-P =iKQmd:کBp0I"Ke;uql|;;~m(X_A 8 ?BX߽߳B6 y]ZֲH%^Yu@L$  5Q%-kpUhBPறk/㌩ƩZpaIIh4!4C^dPl o6l 6um}fMmjƻf!6wF[ p[}CІׅzm,IbRzԆVdPz6[ʌshۏ$c{uLIumbD2:msOzwʟJ̩[mPa1l %`: 3' [+fWxh[qas3xmhAn=j6,lg|&vGm˒^dP:rVV~J),C4cA:,lcIevP .mlVQ*J!Cِ+P۪j ؆h~l:g>xt;vv206oX>U^mmp[b8ȴٕ}ZCixye@.괩"luK]SY3v SmJ1\2gX0ǁ- [`ْ-ݢXpJL 0 Ȱ%VY[(>qK9mhAn֣3)ۙzFu5}+S/s&oOz&C_;ItŸ)=d`lu@em{i93[ŐJ̠_~g8ρ%_rm':`ﮍ? RŰJaɭ`_q(bhƁ-UQ֕Xmt* kQzA{4Xh+m6"$:6gͩsѫ`+~Fd`,)gdRڣ6ɠذLUqeb+`OmE306ly✊d۬Ѷ5:VЗOt6|Qx45P咁[jM6 pmmG,^6$c6V5^dPm<6TJU#6Xl<˙oClEdPx6g8ȶZ'cm *YԪ6׺h񱶟0u6_JvQ;Y5`2ugŊ`?xU7ݶ)6~R2pOTbuXz:{r 5uZ d/o[xEBR2~!j 2 ZǛВ m+V?ݒDV3X zWoh \`ƄEv`Z\Oɂd :m kP,yXdL.9PK/|h/·ʁCHj6 .[ʪ_-3L2 Q2$+/,լquhɂVOu2B|GlBpFv̶P cQnNx2 .zFacdAA1d|avU-|3)W.œԙ"/ZOV:DonbyݒP!_8Xj kـdXXly ::L,dYBd\7YG5a:@' a*ZB `72P^OrBp_U;ݜ%<\cQ0޺ lrdkWf3~ȋQHCQlle6$meqs% hN6ZlB \`?l5lAr`c{6Glm$-dg+VȦtͮ[fK$'6\ylNڕE`K2rfGdc6̖,HNlT##% -6:o6~gM }E ـd  hQA1bB cK/^ʉV6-oJNVlVN#[2`z0Nx*QO6?6]rs$]Y9w7gbDMWpbwmW;z`%sd3es*AT~:?» +sx5/Ss07pAί`'24L۔ d 'F:! -L%c(͕qL-'d@2\ oE6ƕ<@&fSxj@ [L6H6Ɂ-ld2;l S8Y珮 \ϯ-1ߟq%/[ > Oi WQU$7G*3"FJ%G$\V>~DWBJSDt;feX &hlzOT-HZ̿m ;L0M4&SD8V&qɒɉD6J&TsE[>  -(e!s8W-[ߏUe3esy >vɒ|@&vѨ([A:O:#ϼm4D4k )6E4$mh2E6duf@dCfYƇ6dCfLWȎ2!>flʹzV3YO:#ЀƖ>vگ"Yde!S8Y'Ylf,'V+JXf,kf=Ll(+_pbrFItiL!T`t('мOo#bꝡJ$'/'",Y`S^f$ *`%w/,6Fh2Wxw$ J\HR.9"at+w$H{ߑu +##ēJ<)`T3 `RLif4 O2w4&kVˆb+L2}2W-p ʝ -U*_nL01+ЂdXllyAA=L9l2t13{EZ"YK$2Z2rƌdw) ;`p\,3]'Z-Y =>2]Mu 7[9Vjdc6gfK$'^2ی碉lfd!s8h8F0~> p}biV"_"+/ @# ]FbC@#!u;H%wO; MH_񅵰jG[^iT$):o\kaй;8ֲo~CKoxJ“b4`r0J 9dZ-OXb~f . KKC1Bpi'.8`NR3X/1M`fj'\@f WſEbO.f?`#d@bcK`է Bp2>˸̆ͅEU5dH,Pz$mP#3eN! *0@hkɳyj {.@WL=X4c$&5M$Iy5,d5m6yY9zbcsgfdQ:[pr45~`Ѣa"ƣ4e l_(BȋMl(e!s8qVeEl7U<;XC4 Oɀd qj7Gv!^"^e Sj CO l(e!s8['[hb\J~llтˉB`g[bK251.6ΤC~,"7_"K1ͿOC$TS?fg8-psg;ci'H 3bnn;~4Yg"KFa>p9͕H8TfKLУLdG/"tjs!IM0hבpD#a'dQCQl l؟lD6 l6[rb6hٔ$ՒْgS ؍Z9ʌl%Yp9ި+ m(e!s8v"6۴fd%E .'2[/6-% ?q]m|1Vd3oтAve6cׇ l٬lo 2k٪6b\Nlo"Gbk5% lVvoh lC 3S24sXlw64R$6,h(JgKVض!y9 ~ OiD`S DCͼ-<'ڥRP2)62WgTv\sn7ꑱ}R 5]!ԠSON2TL|)Y3֬'t||$366Z a6o,63'Zk%.4wZ߶F?⇪e S8قmGCF He}emL-#u3c <:q]NV|CKX_sEo;~+S:PUNdr4 d 'ÆY{":e[eiT(тA4lm4 d4e`K>ke6Y_81ZD7VC9 ,O0m0 3sa_TYkt[ G-6mZPPJ> /4lcِMo+1E`\lтˉmF Φ,^-Ydc2WCK`YQY[y2\,44ΨI[PN(n'2ޢE6Iv|nߙmMbK2~Dd-{lDm6=-pKޡ,6ʹV&d!s8.P7koa-x |B3e@]i" ! Pp'D$$LfG#Yr@bK@WF;uDJH-[;⍤Ѻ8Vm9G% Ŏ.'$ {ӣd$,m$hHBߑ4-F?FDDj.<_gHkn7 &2@$:C  ܪ-  dA9D,. .nL#6EE\sdE[GWFd=1%YOd "3JY|2V?VQ3x`3SLbڭ4t]]t2| *J>  W(i wg44yeqO/qc!P 55b#THPg#evPvpYĢD`aZL _51 /2F! EВžfbN mjM7[rb6Ъh@  iGs%Yd>4L"&iPH. I)lg&"2n_l2+,Zp9Mf%>1OsY&  'kw0GU.|>ɘ];Wzs рpAmR$kAA1AA2zj醳)~0ל̕ hY~deXhZ\.Bidag9D{-* f_|]%.XeDelEB#bSz` $0dAˣ4lp9(ˑe>!vEXln9Ψw@,䏉-o "lm%ԭѯ,  -ڍ-H  ZPNUN(;icP0dj-p5a]֘'*@p. LC2ȔQHd* fk%r!K96 (lޜgȌߢdB0@Ux2|EZ5[\4L:lLkmSbTSoEņ@Q!_"lY9QI  ;!D @_@xƁbadoh Dz2wn5ޠ-C{ E&v Ja b cUV}p6z6 VNF9%+il[Olel81/`e0:QN`8VJgIZ6z &Αjobw|U,fc+cE4~I..J.032}m7he Xu%Lփl,2a6K\ll lfZpp8[ WĦLHtsHWؤ|˔[\8TB EI yaiOl:5"6`dþf\Nlmf6l >NlhpyllRlz%6n-h6F^',8(Hƍ@Ɩr˵z;8$ .o4qǒÁvl$wlya"5ȣlefAbcP-/l%6$xkɇO/FW0T#~mB^Af.o[(=L6M@PJD2UWp2ziaߦDز4  -uZl cL> ͶHU~,+z1T~ݮS}7x2|do[(#tfyu' H}df["c1Wآ[MGo"nlhp6lX`ltp`d[Y$[rb=!>Koh [ƕߊohq6͔]&XAp>+ST?P ю2jLu@0HG$ D\ P@z2kJ0L{*p9aL RO.LH6W4pP2#oh<n>0|& IqdeXhl J7d3%-Ά${O*&~TlD- dÎfdI> /6FA 2%d|ohy+U*G27>4ȣlX'2j%-dktll lk*ziqJl[F#aLlagkSohpӎ, cLփy2| g}m K N\EƖ6w Qz > mQl( MX#Y9J\Nl(cȷ- 6Gf+u[88 7"[uD#͚٢[mFQhp6 zCdmlU[Dni]^Κvb Պc?6;;}^61%z=.V։W({峒b&lS˸$ P)=܀)j +h-Hu~6OmfɆrWpp8ZdNl49"PhɀfѰ%=vExic>leGTZzo`r >[6\@&ټ 5~GGY#Kq؍iC&YD|݉H\@^d &KHQ٪4n}P& [HwPx%0Odf2jmkx4p0(= -YAyyw Vk(=[  -OdWȓdIhxpp8_+3br~>Xl jw Q?lb|zfSM͆w͆7VjШI 7Z[ Y# Q:[p6NFX4L%?=NEr}D'Iq/㾷J%#?8SOΟ~9'3g&i_\&3a{[88]\KZShB}HZ dIA2ٰ@QA6mƖf3V#ە-Hll lff3Ypp8['[)Sۜ'̖,HNl٬g93llvl_˚"g\'[ 9YeAljlA6^&l {Ljaz#XFVg@mA2|,6<]jdrXs T$:K/Lro g[ -opƣ!鐵7[$VW d5[ȌM,dz.5,dgC|C˛P.?}ߜyTF^D,HWFYk4,dgvul{M<"-Yغe#}$6N6[9m`Ell[r9IlA2|m^M{Wl Eؒ[9c [e@3~%q;qKOȫ$"cK|H. FP)lNd8NklLȢ G7"1@,d '$-tcu1,ȐHdGE"=% d,MB|NGbwW^:l_=l c]1) x> Mq՞O2!]d%jzwbْɉ r6Ȧ+M6[9fZllcfw 9t"Yl>ZlVA6ի/SZPH'>Pw[;Ԩ#[ -BIYx"O> mXP9 ;ݱgCB'5nD-h<'hBCRP,  ^D2n<* N-2nd@r" U(}k>Yd@ Yc·>%[k^6֘4 ͢ƖV!%fwPֲE2Euqb X-Seaid i@-_\ăƒ[͟wu[-WPJPcZn<drm܉5$>MXI%*^D_TZߣpȴv!! qGIfQC1@p2,w -(bTLߣ$$e%Y D"J-<'lm061ϱ1"d#]AlA2|mcR}@&61(e!s4l}lPۂͦv!,>N6lbmd ٰ_o7qF{rIV;pAyq?;XR@p2t\"3VZpaې"#9?E8 C+ǜ?QGI%i #|G s{rxl[ѮlA2|,24rUʒC(l~NU!"qU8{$,VA"*#UryQ1ixm$p*'1>(f?SnE,HNTH)s#',(l?u,dM]R̘x]]Ghw6 .[ܴDe S8#Y2uei'-Yа:,iM6[9M m1>6P^kmK N)>S>DBkI-Q2śF HXlyZh `zr4 d '+rrM-o`,:z`q#O` >7*»iXdZK2a9$aYޤoВ k2BULsL1d SՊ"p'2t!Qxx)rum1y0pAb'̈́1ZH%G ! C*>3FL 9vz8+ GF(9b m֍j]K1N1L ՝v 6 g_rG ̀3ә /.呧lQ6ZfV93eо5t6ۨlF6ZA2ٰN EM;٦eѪh8ђ mZFÉĒ}$ɒLA2e`1L S F@uP?LFin!T1O\o%iZPX%oҶO&} Hh!a> 1z)6o4R HDԓ\I52T2 9a52̥|+N6%U|]K+)UE6O(J ה|[_"jћ(_@\@l'S@DKDZ.)(Hc bG@%!#J6( icGJS4Ɓ4FF{U3m#M)uIH+~DWBJSDWA6f$@VI3Y2)H5/'n.Pm?OLq~)O&^aeD$i'Jc8(\b-c%i#Zk.Qtev;E@SM&y5~NHCP@\j&K?2Z 1%[`&ɮl@r cK+HI~f"l S8D2+qw\kZPv1r%KTf@T86F/Qj;xk-xV>[Mx%V\է?fvlZX$bcڡ'b,,dgl#i<g;cXF@VK2bL2D~jykm ږ㒸4pm  -O2FPP2)mVU?~ k9$l軿D8 Udwׁ E(Ru_es56d~F^s '2|^5Y$(f hXh>ʌhk% [+M,vlXl~/X fp+xUd a!^ucEdޚTIgS5E,HTưVri=DR@*URu*612U'U#U$o*6z'1՝''UMT7lCeU=IU*T3S1MUK= -ðdUX~ *%kzKki$#Qp-jLz E) l\ I]_=/nኞj;ht^DJ»؃dcMEQ Zhjpڻ%ي?VF6kxl% l%M8jJ aId 8&QDWF# ? -&+ :N~ed!SۢrayLm2z }a~a%`ub%V VtT2uDP[ި֣Ck5]&~K ;Y  ಀ| ]e߉GR>5 % e$Mu߶Yȑ($8-UхEQ;[DJ;R'V4č: 7L HNDg"kNdC$>R|W'ܧܲҩɻ8j<& Db)Z\RCQB 3>m(-x OPC24$bc** }@^lBR2~ ~%o B3Գh];6Z4 1 ~V^lp2HdxdB >m-o`4{gL҃b-HZ*& eɆj(JYV8J[yOO6]&[1>قd N`m_Wy)*5e`K>913>O`2X.9al"'*l=8l'lLUAK$'0,:Gb#% l,nTqMlcl=~_Q-]bcK`%q}2bl;ohƲ6ϱ/@ҧ~KAV;Y-̟t-^l(ob3V牦Цe4Šh2~LGBlL(H̟OŧmbLjkLymI*' x> CCwl"6 U'lxѦ(قd ,nɆܪP9Ȇ* Nv1&-(U&WƖ;N=\cEBV> k^Vʖ[fA0\+n,> \@&gPCA@pIZR11!?ŠpGZOl`⓫ ;yL0PC1@ m2l~F$kـ@Ɩ@62dl S8#='FbdȘ;% =;\ʂGb+=% &\ 랛wTUqZS؂as釔|@&[([ Ɂ6ߒ6n92X 9al`sD|Y̖,d1b_uO>xv(3~W/^sdk-HƖ֑R> ,h(JYΆۯ%"6^<}ƝDxXF .+8 I> /4^Ab d؄~'"6Wkb]W驰EaTiTwp?O$,-c5JL'VX-?E_HhXvvw{lI5Tf# ЧI$JɿcV}RPh$K\P+ړ)uO;T3M5#MT3[ Nr`G Id*eLPEƝڶ< l\A# >jdXryi{ Rd#{ 绽 -wlws{n~PYwZ)AÔW$ɰh1P R_d R2Tj M:u2j ve c%U%6,h(JglV1DGG.y'VGj/qA?=HX Hwq{!эMzKDX0mX#QK@w@IkZq<eB4PV6PbKjŠ> fP654..9azbY^/woN(do#x[fh"wIZE3|3ѝ&/$R3Si􌣟OB@( 9pGG0Dz3:őcmk ׶ >ȄklFo@&WAB J }X/['zf _Ɋ|=3Er\ŕrl cleg7]B > mh!s8h :6pe.;,R邳A@d' l&3Կ7}BUP _A TlK6}rY\*D ۘxo<(p}iں{ $VYx".=C8N}V-oMbZǵۂd =(Eݟ"i q^U!^AH[֛ɼ9k+hCb$.X,Q"e  NtdYp?k NO:3 va1ѿ*$D;3̄c+ 7 D,-l,6d d<٦<<ڈlw 9vZ0䣻L4=ԕ}  -ĩm }@& Q25;VqAd'%ldɀDZLdç"C,N6AV3mhm&4Zhߙmlfc1`#$6@@A8ZO2ʾl7=]oDb|PN?*멫Z 'fbK+CuKT8Dsy$+1JGKɆsB Cfkآ[#[ۂMtHǀؒlml`5ba~̓mb*Ƭ72d.B؃mL޶\pvyYSLTHp˩{%W4r3rтfd S ^o:l <6ɂ.om8]@^dLdm,Y*&ʹeV Zgw2|l(0.paB^L4,{PCQBr(ge<äKaV%U6}|J򲿰T&|JwaUY  Hj(BYHNH=h/uT>ToNF'R ƕ}@^;B^`%Bjn͂~yFyzJ CGPUU]/k)){WDh~ڰ(e!s8l˻f -*\ *Uc+dwv`Aơ2| iD.u%2QCQB l> xg O3R?Æ~!=;;mE+~)b(b4E_V1mTn!k m+F.yJ7XR-VX5~j1%dm1/R߯ Bc[a$e S8Y!L"D63Y?Y?f$^Wdڦd ?d[E"ȰPH%4jL\GUdÆ.5l)G+Ҏ@ٗH0lQ./ˍW:SK\PϿ+VJ fi? l̠ ӟ~5s2ZX׭jW x\!z Tӗg65#-N6f&kY=tjL6f"@VA6CMԲɰ13}܎2zрȼ\@&7Eve$?d=T Mx&nȐ77!h"1@CvהN-8؄s{,5= 1%AVdXh*˵NFm (6bj?jd:\VV4+mhJ^٢n/R~C[h(3Tw"l epĕB"\ E\kk&\öƸz4"<,0#ȊL-Nf?dZ"y@6*2dCfl7-Hd ~*Y6[TiVr"Zd#p9n a%'YP4pP8v#EV9)OK-а.4YGE`54Pqh*qvƸ,Yp>\UdK65%-VY!6'\ʾVy K&&x#\(T0شO EI 12umr[i/1J֕¹b)rW8VGkґWȄahkzIPQŖß=Su;:B.8jsi9-pE.'NL% Υ8,8(HUZ0d +r5I\ZZXS4L0 lcI Ϸ,._!xWpAGryq!)x hJe?\vp+Mvff?`h]2Ef^Yf yihd-\dzi+[h7LhOcm<ߑO< PX}r^.:FX}@^li* }CK`d!XdÙjw2|,68nRdD8> ^ kĦe{]<ٔmE .'1#[G`fik剬2h LB+< .4`'y[h-~j 'L}C|8e64, D2h|%F-CclX?uԢ iȶ"+߼׶4, -R6j[2RA/ a:au|%_dw#`р \p0z`Z`AA{]@{U W&]kQR'.;uRaH.\BtTmX*o:!qU 7`т kq[pcE ."l6Y2۸2[zr`cum\'J;$ yXC"<آ26LlE`21I핑ҏTNf|WlZG,eEެf!lkx|whL!G9m$|=e-\A [Eӽh {}Cã `lHiݠZv"l+Zu`mbX >DB{+(>;dFzQA1KDwSGj4VAh%E\W恖|ǵl,^itM;٬F,k[lb> ._D M!Z[#ۚ}Tt0.5nlg<-b'2e` dc ,&|C)Y'_k.MQ>ɂP* PІ?'Sm ZVeӦq39:s5'p5:%=]@&f^CH QʢyJJL ]J]^py_ŸŠjI="|_Om.Q?vP nDլ Bbpd}k~C at-|D4+- ll7-̛|PpR%-66kf=Ճwm̈́v;*,8(HW E.|8n $"c j3K !UN1Adƶ:Df lVhrH!OۿK--H#[Rˮ0}P&[[ãl/7O\CW˃^|]قdXllAҬr .5v3 ۚ$6>nnU cٰH q|-Ş% mEI bKkd/&AmXm#;hԒ-Hܯt * &ɆP9mm+U֊mlm$߸#60Mnve1Ok%02ؘTW K-+{7/ϭ{7O Uh@2\  IhA2ՠe Sg_PZ4 e4j$BcK@kE2\9 ZXMKb_1LYFmقd ލ ˆ|P^ll\I2B-Odɳiokg]"FقdXlly"[%hAb 9j(JY666*T|Av/c+6'}x[mx;22)هat%4d4$bSjnC&Zx#Lggyh!s8`[-b[%B=]{KlA2|m$6o\Al ϻْvx =?5 똙daqղp6̀|P& u20T"nGHRu/A1Bm&Z5,d<{!䮃~xs)^/"̵uf cyJ*;V&_H$5,dgnҺl -;WoOO[ꇿ6jԙ-Hah4jrAyi 2wY7[L6I7Vj!ɛL- /lf$@p2':-NG+x7_A}xDuڥ/cK S#4I V\\ v1\&~iKMQ-HT5t "f4,dgv)͋~OZ).3BUmжv]`⢚^j)(>ɘ q6Լ38ڈPE 1@aC 5? _8 8NBJZLoa ny5ϟRv|x.N , U<+y1G8ąM?$yMsV{Gttfd.~9p.|TP+ůĀW)^|Mm6 HԼJXqI5ZP2) n Z.*qT) A: Ha{\40]P^dBjL}(Hoh@BV\JoɅ3]򲿰0>xeu%J5CS^C؊nl%k/ lw"6,7ñ5OC&vӍl2pNU"' SfEd6@(rS? .`L{ɘ : 3F#OŭCJxA(7<$\ ctO Y_"$\eGgM w7,,V qPS5ldi2䎡b_NnIOnB$V]A0ddd~m:LBP8/p<1`0҄4%TQh ,(e9íZ| YW0 UcYH`ޞ,0P[+ 6X/JAiKP.XqBOWTDkYh0dHF h4 Y[ pdc]}e@.Ҁ>Hvh-k ^AjjAڠ]J y) ^k9[˟SPf A4lwًEUg' X҃ش~CWਠǣGa]~SW.ѯA4l6r"^v"M&4QBNRAF|GbM++^E`f`I]m͈67 Î^<\^$P'@#  ҄&!/[:KTS}DSpɳ:*x30Ah#Vܮdy| k80>OV6"Rkǹ{appu>2̬.v)*"H JA`'2;Mkux4WX$zD,u 5x &6e4dva QEyVy ic L耍M~ N48I*(L ݪQE=ik5}68%5 CFNp'm0.!/! 9pmɮ> +RaY耍u M_e! ޱETvu^3hfL\Q3Iô;\-hA3@G' sPDMS$70Åk3 Qu Y)^|ݯ/2Cp}hX AWi_d\ @^7W3eEs+dx a&߾K@P =% p#isT%wZ&*Qb%DÆ:p^f&H3@9IAFAdV29k0< ;.1J 6 .VotAMjAZQ#HKi8*O"lعQbUDݠT Vcty) 1疽#ph lm^:ñUwPML~&ʋ+UnN YUDPO!N4=k[ eî9||8IDR`e:IBA+'~.8JjwHd 4ldF : #' Sh##3"YCج'dfU_tk҃Yi ޭrZ#iTh3 - 5^-2S0G<jD=I̹ÏMӆPQzF \6H3 ![Alw<*WO ' <&Y9 D9<6mf@n4dDZ4}[vrJΤAtFvI]CoCӘ>yB4d-T}m@ Tu67կMN@3 BkTƽp+T%X xR_n~U< 586'"!]K VJ Iƛaqh9zA0Ǥvl cə|"anDlQmpd\4'iƖ4d)u#YaA9ơSԬt#sKXA4m6rmr1'kzJ?Kks6*F:riN%mhPӹܙ|lrGBڿ~c*E]HeKGĠ#TSs9">2!<#pTmꕯ61[ѳܽl  Dq9iFZ@ewRQ+ks<9}gvx84Ͳ%DӆA#] ҌI(=Hoi8 ([;36@rl=it'[J/۝mJ<2/9|e0ipkKqt 6MU 8Dyrm*( s@Huɔ-8n%IXox{o@MNo\ddQV?!O>?sk|&c$ a+zD[lw@ٜD'HW7AtF՚%ֈYo PYc-Q5J8Bk6p$ 63gj)wٸ:,Ol+:>$aWFu6jRi$3H- 6e%ؔbTXj&`#3))ʆ32nd,5FR&-93yr93ce DӆA#5T]'j ĖRojx40!bvK50#acS̍M7 4qC%zy#zτ|F@RAi aaJ0`S\[$WNECA"1OH3KI:ɱߌ t-nIyтĥ-@6 9cp Q_ɨ$ojxAl,@\(3b#yGl-kZa4vL6!ycR lWnf$n.ll"nl}flSDaY鈍9K< Da7 6.\%gccDktU|%qڼI0lΆMfe ҿљpt~cS=ax?`%|6kFMlU% o8 nl*-`1>gqwlelI錭'`C^X@D _ks6ʝai@Hs>J; Hj!QiMY m!K(Lw7k.l"kL@[HGd/;KY* ld D6k)B}ha8y J)&7o8E7]big`JH y- ~Fw23>ΈL1LȮdDF#8F]D@F'\PCFAdhksI:%5 F)et8q - cC*``OW1;Dqzwќ π3vM-5 M-rSQ2_8M2euq1riAVplHӆa"ə]%g6HlAB~KCAl~) 3>&ip8Ymc$tүL^mm l&nks#~m$nI攮AvONs*^UDU6HRc~KCذ#llZwt5WcFg15UIԞ5 b3bSq/- <;`K6~"k3{-*kڐ>۴% HÂ#)}CHЄ?aN+|mraͧa3F`RΒ3k MւU3O# ̓ - ufks%Ph6AYiX-A?װ<6H AB~KCAl*!^k&}UZUO]4P {c̯W} y>M\~<8sg&Zks MZOHLԷb]v'# n4'I.Hӆ"_\iyAB~KCAl)GRc|6 [HGl6;J9 4dvyڳ)&:uv֚,3Ht^0FC⌆Ԡ$Aؔp$4dvTym殺k|`Zn;9[P7I5 Fr(y6r 2 G6C)q<;3CN:Is% ȑDYi )ƇkPz@ ͳ氄te=ll@[y!0@YAфA}Aʈ-zAB^;M|䥿!k Yξ#62MHGh3M`_5G[2bc7؏0I^?&-'u$1T@&V qFM|jPC -;k)(l>ذYȊh" k̭ICRR JI8~Y/7;|^3J31;Ī 4HcIP*^!ndw{d4JsYCFTfx=1[9WnN (3\A0 #i23bJki($ ݼ6' #鑭?%1jR@ 9rq9 D6 !Y6~wV 9|V1 vVhYi0l͟Ky S=Hoi8zVUМBDO"a1 9QtQ빮qk0- o[gAbA0`ɇR@o|B<1ѧl 8կQӍSr9͹1J?~eXq+⚜mdt4d+f(HrhE&Y|\ldũ5y8 1f 6tc 5xO)G3bJKאq[H ӊFlV҅wK$5Ղ&S+U yJ5d6n_x0Dx89PbYh0l<sl'{+3N(A/7m|Ť9ms;A:{VpyֱAtVxyF62`{.D9, `@yy& 6 ȨӬib[ڸj8d7՝s^NFڋ7'#w 6  #uk+A3fe! %iX:`VP&bEFd#ba+YC&e6Y] +.m0orYѰAloŊH6Hs(4dĦJK F_i6KSٳѰatxb0ayf̠KXOj8+pVϱC]gRQlޚ\aP *X@[m 2]!<٭Õٟir3498 1G 6 [/ `4w$dD:E7w+sp RĪ փѰa-a<װKل6Hh! 6լ( Civ*EyyӦqkA?H@+y?! )'y;]wdjNsZqy<a`c՟?\Js|pq)q"qM`D\c $ N`Q d l{C'blo;+pt٫5̰j8j'$V<".̦QOsc5@al 8 +,lv;TN+3 6L$q0Z\S1`ܒ {l?1úrH5s%QDrʀR,;m ۍ$=5̊oDŽp3ق48 p׶\n<invaw"LpcB܁O.E&nAIHX0dï ,7 ͍qn ( o(q(Zx;p8f>6]:_uf 6 xd\Êe6Hsl^[B^Jb~k}0yMlL{͗A?I5k ?"I+pWuZۚ2\iQma 6 Wa]wA;`un"h3ka zĴ_Nsg( að1X+]6Z! ¬'K8kb`[NHע?[JYh0lލ+PTL^SNJAFAd|2sVi> ];fJMnYh0d$ӂa9i.OWJR4dVyu+pTOκIQuCu{d að1.Uin$k8 Jke2VyL(Nm fjLt"u@ݺAqSۉR7t92KGƬ@1 v8dKlxtu?P.E i0d^~ˬ6!lB594hE;'z&"8˭T XM"r%k(nټq ]E@%jDÆa#l€v$aR2`ٯA4T]K>>I^IH/gG2 v ҐQ.6SpMnhe -5k 9۞wmh4WzR2bX09[ƅc5E,Qe sp[5(nM6vea#8<=Csʍ(&TQ cF#=+ Ėg'b\ht<|*/9gJ`y0 NsT*wXaAHX0`আ+X~GRgҐQYu^<srlI|c5B PgV &9k+j,KAB>JAFAdݾ(>kS#ǸGu&(ՆB+PDLþ ( Mf9 ?V&i)l K:]a2nc=IKi8M H}/>Wfe2niChe=$wF͢`XK{A 4+CQSS1I5 CCéѨi.c{Jʟ!sWoNmղ4.,(E að+Och4$4djGxxq=ra\$Sb̬AWTrQqHF n6vE%yR2bSzm Oks6y2t5o(>D{E%G0FncWT.!/! YgϴgaeDF??7NJ A@4,0rX$TV@T0A˻ tQ j[ k(bejԸ9 ļѰat*iJUw&Hsc<.fy&Z1]@YDd䰜4lh +5:+k8QWZ7\8?6h{=) LK*X~G1W !! ( !&8*2[/W+ s&"GNb&`bU# qUes<,w9rP 2š67g[kf?w;DVِ9:N&oWda .! U'd(t#́ ⑅)t@vy6{dW&2r3:?Jb*xpgTV|g{` Iė.@>OHAǪ_1a<1%mao7r PSYe .DcltYιP|6[8KGW.kk5l6 9,B& +$ ͭ y) u^?9 Lx~i~:mZG&+ҢS7oL}E`qY'C *-"1)m6!Jj%IAaӰaN ,6@s%l̅OƋ3↌3|)r}z$:uNB'[vs޹~q-q^P6 hoVjGKzM5q;g; oLaꡋxvx7s;H\5k ľo G6@sU`;A;bNKy39u;+@6VղѰaY7:m%4 6hW\ (U!Ki690SA4l6rNu:m)rvl/SeEsa̺-䶭䜰i n&^A>.yՏ6垝& QO!#GPUn Xʁ^dV<@d"kF.:Htu|Μo,V ۪f@n}AKVorI τ' Uc=n<_$t@4L rPy`k8,(` dD(PD-0`wAU DDun 86@sFR2b} [d/t[جfSD=хE7k6[· МU_%HKi8m26+ϯ{ǶC@tFcSaml6z`{Ne͹N К9`z#I:2;vG A訊1S>!J){:wbI2m{1O p΂9'f^@V޲mLZrO͓t@͹X&u`fq<MڳJ9۴ C6e II*(ѪŊժYeteu<lDI| \Y_3HGi(lzV3#>o8n+Yg}Ahch;hkhN@)O y) D"8S7=bCQ4;$Aңmm lP$$dDvyq9^MWdzFI.9mR G)(Ly'j lmWmAxT{W?q`i!6J9evmP~$4d֙r"{'iAV.yz4u5BBϓ І^HB^JCAl5b#>[5U8hV%)Tpt[N iNHB>JCFd8:vO<ݖzaX}Kf xkssk@mCIҐqw{-r6[=V7 Ҁ1^$`q]I?Hj'3w7GGw73ւ2! hC5ßE+s Y$OڕXiۗS󌀨:`'n3oJnfH ! 1A4l ephæҐqto}af]NI) @2QB>JAFd\7q^`y/M:%1A4l4rʁRi8-"`m&.`Om:1a7hGvvsA/AbՀDÆa#4[\daҐqЀv#z±NS68 `̇qlh#`^:X4&`#G']OU ۙ M)1a zcٖFpl*vC !@},/xqa34KjF*V$P63[2hRQW, q8ibP)42tON& C.ݜU,mW>yaZ&Ȋ5 CUm m本 !/! [7n:[I}jL,\bL&Q\Y/VMٜRQ, gL]JKi8~rcn`MV+FADSeu3y\IolYo 7Gn'Sk0s'nK;FT{>' #hȋ) up/UޜCdzj47d)(!q>Ш7\EmeAB^JCAltE7G#>ZH )vB <-94l(xk8lt%!/ u˜7Gуi@datІF)qwv6 %­1 МnIKjxAls/:91>b5XPwcw)q-ipb)6.93HKjxAl&. yI@4L4rJ& u99; P/&+pNA;Om&VfV ZO7y1O{hsׯ6t7ԝHo(MRq,Lq5rMۅ7HhX-A ;nAS%%50lkTyQmYxCBd,, A"U F0Q4#g rZgfhṶ^d,hq:,g a@ YC bp)R2bcf6\zγ `,tٶzm+%q3C4eYև( m2BR2`;F64Ƭ ٘$QA4l86eD; 7g R2bcrge6ZU8^cm` ,ڳ0aȹl0HÊhNjRQJ+pjhv%@I#kIgҀKQۆ_r/$!/!Vds־׹S y X%|u8PѰaYo^J6@[oE/$!/! }1^ Hvn^ $%ZZ6 [Jk5pm6lBR2bkړFpY_bt(,-%fjfo?:ҕ4PmA"OҪ7'm8Z {-bୱA$wV &V qV hN:?l1H[8 y[cp1 \s*\ap#\G23;EJktG{?1DCNMS8I5BƗ4R $4dv+ܱ#*Ɏe 6m [K7v&/$!/! ʰ#չXwv!Ag$MbA4l6rxA5)m6lњ42%|A֭ FBwhSxd˝i`sjga l^Tc_.' kI`ީ=I7D.|BZ͵H kj'ϭ1x98oiwYtoHJ̞5 E .l f9薇IKi8m219ՒXO~^)m(:%Qaiˊjo +m{Ґq[tΩaᴗ q;VNfsK-ip6 9J6@[D/$!/! 6>ت~:)K(Q=iX-Ĺ,kրh p[ulVgE5x?.bEc6l(48 ڷs{*ھiz! yI o8h'8w.dg]n9ce>EB 7yI?HE$@>OH]SU1)'~Šb>%Ja6jp6V qV͑uP}$"Y8N[U&'1եY)ІF-I+w#ڝ̟[˷ hp q13*ˆKAdw\N󕲃I8 92 ug# C6s4DFκ:n^rtݼ.@X ڭIXX Ĺ &@]v#5C<3hY}m-2˸9|$ց46 lV}[`y@T%p T rC=6'@;JGV &V qK6@ýz6u5Ak`6YU jl:ӵ7T @@.C{-}-Ts`~v$@>OHٷe \Nw)<#E뙛6K^ X߻~w@:xt';*Volլߔ4@+驹hD;Ao!HGsj|'`hnNH^3k91hG M#@jٶ&@R^FҐQY9q`œ9+z׉vؕ緽0m*FI;k dzf+50 P$4dVbEM8 SIB %iɧFou,i.pC5`)m姼72rRͺv%S](g4l45@I0aY,֏Ayv) M^v /xY_{*+u:`uC䤀>y|7Dwz@m׊Nٷ$Y15 F\hæk\p/ a[_07j8oΰ8N M}`ziGh$5BjYc II*(wj)y˞R'J,@kYNl-IhX-vxm6\sojxAl6Z,V^kXsLS|$hM8mP\ŲA)$ojxl ,Lpy_Iu@^m;bp b[>H½7@64P&kJvÝ'>n !is9].YiX-K0bi{n wںP'V9kn'-*E6;!QiX LI i{YMZ 2 ;qt3+/䓡.OR>?Nڑڃ%O@Pk,~7VQ} Nƴ|ZD󴠵!t&Ws椡KS{o f"f]yi;Bęǀ pqe@%Ƒ@ǭ5ZKُ&H'\B^KCFd-mnju6ut^&Hsy86KiU Ϩ߃';@j'LHZ$Ɖ5w/ 2"I #2U"%,"cuX+]Ԡ g>HO7lryŖ@m3Is$ NZTifz҆p z) o8m \pmuit}qMzyZ \gR4L䬕ԢJIE`q۪Ή>^ ]>isz-qA4l:/Koi{%k8m%c9b>vbBZŸ赛>C+x1[MP]esu?vpS|^'80wmn ǒ#k 9ce` hUE3/^Slf?i>BbHFze)yg}Q#Θ/@۹.A]AFd WQ9+2`JCFd&k<+ܼ9;֐_r^v$:{ѰZx:oiXGY$4d(bvNjs]rYOWL A/)]bAߡtaI6Tn{! y) Ik)$6T̏fɲ\]E?v;~-"颂*a =phml p39Ȟy#̶#IhFJlP (sjBNHB>JCFdq)6mQt`ҏٕkp V'aa5`]JM^%GjxCazbX1ZVXJ29ew0zҐQ璇To-awfU%wiʾ G sVw 6N^HB^JCƱ+Th]ص5g*On?٧;78bK?}<+rՇ(>?~Ü#q?oMY_a^ D&R:szVZ8A hQ(ZeF)qԛ u|aH_wU)*T?[>cg6}wob~_5/owϣ)+/߫9껒KsZ)qT]G R$v ?t)rԚhQ(h$㯲 ~n=uE~^{<x~kO;/|/L=?Ε*|թv럥zz),d~wD̫Z|>Ͽ?o ãwea껿wOOo{`Y7k}ZUn^_?@WXaꗿ _~9v/kZ4w+eZ}Wl`a +_R__i~7oӕc|?>Θ\ecP}({j.>VzQ+w_<~~fw׺p/3M? zSoqJx M>*_~_~TҾ͏Np-?ގ[?/?ѡ#Y9bzt$#O돿RYJ'UJ|o?r}/{u X_}OW?OmS%}^nϬG+3VW_%?.Q?hnM;|v\翥z+ENko~>XzgXKS|v|JIh~|>UyGwݺͲ˿]󇵖l:Sc&ϯRW-Wu5oח_1/Gϳ7MzWvڕKE-<[.g<1EX2}{ί+tkFg<}|f:7O_rהsaXݵ)~fl15ڗ߯_=ZYQ#S\?6&߻/b/OiW۸ D jqJvQ`EwMunΛ!%I9͒I"oޛ\ bC8[;\٨ pV}0?wC@T((6)q!D0)pg؆0nzB?7|ed_evnFdX,Q.I(b-> EZZPz0 P.zWכy~#GW{=^x[8x;"ژ-tn_lw/:(Wׇ[s3UL]QFa5d ]DiL)A7Tv9RfTݺ\z9heX2hm4ll})C +|sNć)j9̵3 ņaaPԤb{F8{ uzẂwTrSo&*lf]x{FLr~ۀV[GEq*fVI2 ?[j(F:Th͈Ş`&|wR%rˑ4g! Xc< j?]iȆVo%AxLSf'KSQp)#ga,Uӟf\ +&m8a؊- B+oC:cC5UV4j\ $sRY ^K#ɓEvVP5˸8r:$&d.c,1}j:3*!dj|G' };j$[Y$67xlbTd'MGwA8\w֍g 1J廎mZu$O=tfź߄04,2mlw`l3)凗~ԨA8e$AjH*hUEQ۹}eCOLt "$I5i"L#"21n.8dkj,:}LB{9͛0a|ә3'l4Ӫ۩BxLR-C9;#@;CfgJc);SKӆ4\BU׹D/$ L@*S k(Ie*ӕ!H_,_$w1BȔW0mna)6`b.S5eqEgHB$&ǒx{2 L;:׆d8984M~Gjpچ%{XC#߭PJ Ѷ9uXJ*[9(t [Ԟ).z|Ԣ[___ʞxBEU7%b59"=3sUgAAb e,(+d2't9PPӘq.})ZԜ\zx PFѝR{wȑ 9sp~)`m+D U 6FM'u"d8.ar2K47sCSϮ'>'"^endstream endobj 401 0 obj << /Filter /FlateDecode /Length 2772 >> stream xZKܸ_H!@ԁ["Iiރfg{ږ4;Oj%u{ |F"d=؟WUV +ޮ_Wx,)mej{姰aZեj=\̬$(ka]ovܔu{\We\_Ee)eYU4 qBVxfk7TԬqaEq{Ì6ED2lɊOw6H5ñT&AQR6BFk~EiE4.vŹEίgvĚc 1]aطd8L$ج;aA.],gӾJ4*,N.7bEf`] KpLd/S"tO> *bOvR.5M~:$+R Їv4Ճ+ t?WRuFiO{T"}ڨ,D@h}k]؃=Z=O>(Ѝfn]gY>Hhn}3 {Ʊ P5= ,"Ų+'ǃ<>kG~1CHDQϋn:@M f|J$问mb}FtMs*u;(TǮ;,a}7k?(`%[d$Y#<וdplzklS r5U< DDZzGyNfbƔ,ֆ;,@#>gq)SB%Z3GH3u(缀Ê`1ij}25jj0>y%ѳ)V% zמgQPkfa\Gs5Ԧ}s3͡i0Mklzpږ ظc_琒.5Q BYK tTϤ%*sqoot#p@uE;F <@[1Ё.?ckRۦFI5jydL%q%Cq&F~ QU9Ue]_ `RSw ܄xȠ47#B^+B}Ǧ\\_7!)E#uЇ>DJތ0fUJiI/.FŜ7GA^Ե_`8R %%oBc 4 N3m9'Z?g/"wDC5M)|1h {KK#Lö2ΒXT P|-Nq9\&j^ yүcَ-VnKƆVv),,,CĐnXŒz>2.fQ9Pvx>&{on*Y_6#R0ϯoɯڀaD*?6w)b *f#(f#/ݮ<tn8Oi(+^APf}!.pPxF [*e9#kY҅h}"J2 R^*ʃ];v^B\ i r54h<`eψ<րLPA4ힴ/1?-7Ȝ0x87#*Q(tz DTu@(hLE8:1p{hMDq.]Xx~YϤ:3.iOu еϤ:,LohZ5x  9 ѻǰvEMęTIa^JwJovJG0`5"~f>m4gqzQ·E\I 6 ན̈́ԋ-s|U[igKstASZ4A׿4WS'; c[:N~0 ,@#Fx9Bc^K^X5u\ɾ | 7Mb > stream xcd`ab`dd M̳ JM/I, f!CDZ^<<,~ }G1<=9(3=DXWHZ*$U*8)x%&ggg*$(x)34R3sBR#B]܃C53000d002xg~} ƹ ~S.zΪ׻W PvT/wv.$|v+O/er0ӹǯgd^lwSdmz7 qLl w}S*gWu}&fk-Qfw{eo޽{Em0_n9qbVJ*p=lksqpvp/ zz'Y7kYI}&Le`cLYendstream endobj 403 0 obj << /Filter /FlateDecode /Length 424 >> stream x=o0w I?=5Aa; q$A[Jvh;(=LP>=sN'"fMOY 1DP)Qjr:[™-!B?9VijbފiE|汴Ǘ&>M3{xk'q))gfNҳf-khR:bSZR9#i>[!endstream endobj 404 0 obj << /Type /XRef /Length 324 /Filter /FlateDecode /DecodeParms << /Columns 5 /Predictor 12 >> /W [ 1 3 1 ] /Info 3 0 R /Root 2 0 R /Size 405 /ID [] >> stream x;K`єVm ަ""T 蠻XtEI')'t2"xA"ļOACH}Ormؖ1ele`jݲ64o< Lq/u҆v}q:Z XI6ۺ#b(&>]'%z!|JiK1Y8sTo^!=۱^̭#9&Y'$Eψy4;FGLvh RyiOb˕1yۦoBտ MNoЯ%JSYe S%:9&n~_I]=U endstream endobj startxref 720417 %%EOF laeken/inst/doc/laeken-variance.Rnw0000644000176200001440000004121514127275501016757 0ustar liggesusers\documentclass[a4paper,10pt]{scrartcl} \usepackage[OT1]{fontenc} \usepackage{Sweave} %% additional packages \usepackage{natbib} \bibpunct{(}{)}{,}{a}{}{,} \usepackage{amsmath, amssymb} \usepackage{hyperref} \hypersetup{colorlinks, citecolor=blue, linkcolor=blue, urlcolor=blue} \usepackage[top=30mm, bottom=30mm, left=30mm, right=30mm]{geometry} \usepackage{enumerate} \usepackage{engord} %% additional commands \newcommand{\code}[1]{\texttt{#1}} \newcommand{\pkg}[1]{\mbox{\textbf{#1}}} \newcommand{\proglang}[1]{\mbox{\textsf{#1}}} %%\VignetteIndexEntry{Variance Estimation of Indicators on Social Exclusion and Poverty using the R Package laeken} %%\VignetteDepends{laeken} %%\VignetteKeywords{social exclusion, poverty, indicators, variance estimation} %%\VignettePackage{laeken} \begin{document} \title{Variance Estimation of Indicators on Social Exclusion and Poverty using the \proglang{R} Package \pkg{laeken}} \author{Matthias Templ$^{1}$, Andreas Alfons$^{2}$} \date{} \maketitle \setlength{\footnotesep}{11pt} \footnotetext[1]{ \begin{tabular}[t]{l} Zurich University of Applied Sciences\\ E-mail: \href{mailto:matthias.templ@zhaw.ch}{matthias.templ@zhaw.ch} \end{tabular} } \footnotetext[2]{ \begin{tabular}[t]{l} Erasmus School of Economics, Erasmus University Rotterdam\\ E-mail: \href{mailto:alfons@ese.eur.nl}{alfons@ese.eur.nl} \end{tabular} } % change R prompt <>= options(prompt="R> ") @ \paragraph{Abstract} This vignette illustrates the application of variance estimation procedures to indicators on social exclusion and poverty using the \proglang{R} package \pkg{laeken}. To be more precise, it describes a general framework for estimating variance and confidence intervals of indicators under complex sampling designs. Currently, the package is focused on bootstrap approaches. While the naive bootstrap does not modify the weights of the bootstrap samples, a calibrated version allows to calibrate each bootstrap sample on auxiliary information before deriving the bootstrap replicate estimate. % ------------ % introduction % ------------ \section{Introduction} When point estimates of indicators are computed from samples, it is important to also obtain variance estimates and confidence intervals in order to account for variability due to sampling. Other sources of variability such as data editing or imputation may need to be considered as well, but this is not further discussed in this paper. While this vignette targets the topic of variance and confidence interval estimation for the indicators on social exclusion and poverty according to \citet{EU-SILC04, EU-SILC09}, the aim is not to describe and evaluate the different approaches that have been proposed to date. Instead, the aim is to present the functionality for the statistical environment \proglang{R} \citep{RDev} implemented in the add-on package \pkg{laeken} \citep{laeken}. It should be noted that the basic design of the package, as well as standard point estimation of the indicators on social exclusion and poverty, is discussed in detail in vignette \code{laeken-standard} \citep{templ11a}. In addition, vignette \code{laeken-pareto} \citep{alfons11a} presents more sophisticated methods for point estimation of the indicators, which are less influenced by outliers. Those documents can be viewed from within \proglang{R} with the following commands: <>= vignette("laeken-standard") vignette("laeken-pareto") @ Morover, a general introduction to package \pkg{laeken} is published as \citet{alfons13b}. The data basis for the estimation of the indicators on social exclusion and poverty is the \emph{European Union Statistics on Income and Living Conditions} (EU-SILC), which is an annual panel survey conducted in EU member states and other European countries. Package \pkg{laeken} provides the synthetic example data \code{eusilc} consisting of $14\,827$ observations from $6\,000$ households. Furthermore, the data were generated from Austrian EU-SILC survey data from 2006 using the data simulation methodology proposed by \citet{alfons11c} and implemented in the \proglang{R} package \pkg{simPopulation} \citep{simPopulation}. The data set \code{eusilc} is used in the code examples throughout the paper. % ----- <<>>= library("laeken") data("eusilc") @ The rest of the paper is organized as follows. Section~\ref{sec:variance} presents the general wrapper function for estimating variance and confidence intervals of indicators in package \pkg{laeken}. The naive and calibrated bootstrap approaches are discussed in Sections~\ref{sec:naive} and~\ref{sec:calib}, respectively. Section~\ref{sec:concl} concludes. % --------------- % general wrapper % --------------- \section{General wrapper function for variance estimation} \label{sec:variance} The function \code{variance()} provides a flexible framework for estimating the variance and confidence intervals of indicators such as the \emph{at-risk-of-poverty rate}, the \emph{Gini coefficient}, the \emph{quintile share ratio} and the \emph{relative median at-risk-of-poverty gap}. For a mathematical description and details on the implementation of these indicators in the \proglang{R} package \pkg{laeken}, the reader is referred to vignette \code{laeken-standard} \citep{templ11a}. In any case, \code{variance()} acts as a general wrapper function for computing variance and confidence interval estimates of indicators on social exclusion and poverty with package \pkg{laeken}. The arguments of function \code{variance()} are shown in the following: <<>>= args(variance) @ All these arguments are fully described in the \proglang{R} help page of function \code{variance()}. The most important arguments are: \begin{description} \item[inc:] the income vector. \item[weights:] an optional vector of sample weights. \item[breakdown:] an optional vector giving different domains in which variances and confidence intervals should be computed. \item[design:] an optional vector or factor giving different strata for stratified sampling designs. \item[data:] an optional \code{data.frame}. If supplied, each of the above arguments should be specified as a character string or an integer or logical vector specifying the corresponding column. \item[indicator:] an object inheriting from the class \code{"indicator"} that contains the point estimates of the indicator, such as \code{"arpr"} for the at-risk-of-poverty rate, \code{"qsr"} for the quintile share ratio, \code{"rmpg"} for the relative median at-risk-of-poverty gap, or \code{"gini"} for the Gini coefficient. \item[type:] a character string specifying the type of variance estimation to be used. Currently, only \code{"bootstrap"} is implemented for variance estimation based on bootstrap resampling. \end{description} In the following sections, two bootstrap methods for estimating the variance and confidence intervals of point estimates for complex survey data are described. Furthermore, their application using the function \code{variance()} from package \pkg{laeken} is demonstrated. % --------------- % naive bootstrap % --------------- \section{Naive bootstrap} \label{sec:naive} Let $\boldsymbol{X} := (\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n})'$ denote a survey sample with $n$ observations and $p$ variables. Then the \emph{naive bootstrap algorithm} for estimating the variance and confidence interval of an indicator can be summarized as follows: \begin{enumerate} \item Draw $R$ independent bootstrap samples $\boldsymbol{X}_{1}^{*}, \ldots, \boldsymbol{X}_{R}^{*}$ from $\boldsymbol{X}$. \item Compute the bootstrap replicate estimates $\hat{\theta}_{r}^{*} := \hat{\theta}(\boldsymbol{X}_{r}^{*})$ for each bootstrap sample $\boldsymbol{X}_{r}^{*}$, $r = 1, \ldots, R$, where $\hat{\theta}$ denotes an estimator for a certain indicator of interest. Of course the sample weights always need to be considered for the computation of the bootstrap replicate estimates. \item Estimate the variance $V(\hat{\theta})$ by the variance of the $R$ bootstrap replicate estimates: \begin{equation} \hat{V}(\hat{\theta}) := \frac{1}{R-1} \sum_{r=1}^{R} \left( \hat{\theta}_{r}^{*} - \frac{1}{R} \sum_{s=1}^{R} \hat{\theta}_{s}^{*} \right)^{2}. \end{equation} \item Estimate the confidence interval at confidence level $1 - \alpha$ by one of the following methods \citep[for details, see][]{davison97}: \begin{description} \item[Percentile method:] $\left[ \hat{\theta}_{((R+1) \frac{\alpha}{2})}^{*}, \hat{\theta}_{((R+1)(1-\frac{\alpha}{2}))}^{*} \right]$, as suggested by \cite{efron93}. \item[Normal approximation:] $\hat{\theta} \pm z_{1-\frac{\alpha}{2}} \cdot \hat{V}(\hat{\theta})^{1/2}$ with $z_{1-\frac{\alpha}{2}} = \Phi^{-1}(1 - \frac{\alpha}{2})$. \item[Basic bootstrap method:] $\left[ 2\hat{\theta} - \hat{\theta}_{((R+1)(1-\frac{\alpha}{2}))}^{*}, 2\hat{\theta} - \hat{\theta}_{((R+1)\frac{\alpha}{2})}^{*} \right]$. \end{description} For the percentile and the basic bootstrap method, $\hat{\theta}_{(1)}^{*} \leq \ldots \leq \hat{\theta}_{(R)}^{*}$ denote the order statistics of the bootstrap replicate estimates. \end{enumerate} In the following example, the variance and confidence interval of the at-risk-of-poverty rate are estimated with the naive bootstrap procedure. The output of function \code{variance()} is an object of the same class as the point estimate supplied as the \code{indicator} argument, but with additional components for the variance and confidence interval. In addition to the point estimate, the income and the sample weights need to be supplied. Furthermore, a stratified sampling design can be considered by specifying the \code{design} argument, in which case observations are resampled separately within the strata. To ensure reproducibility of the results, the seed of the random number generator is set. <<>>= a <- arpr("eqIncome", weights = "rb050", data = eusilc) variance("eqIncome", weights = "rb050", design = "db040", data = eusilc, indicator = a, bootType = "naive", seed = 123) @ One of the most convenient features of package \pkg{laeken} is that indicators can be evaluated for different subdomains using a single command. This also holds for variance estimation. Using the \code{breakdown} argument, the example below produces variance and confidence interval estimates for each NUTS2 region in addition to the overall values. <<>>= b <- arpr("eqIncome", weights = "rb050", breakdown = "db040", data = eusilc) variance("eqIncome", weights = "rb050", breakdown = "db040", design = "db040", data = eusilc, indicator = b, bootType = "naive", seed = 123) @ It should be noted that the workhorse function \code{bootVar()} is called internally by \code{variance()} for bootstrap variance and confidence interval estimation. The function \code{bootVar()} could also be called directly by the user in exactly the same manner. Moreover, variance and confidence interval estimation for any other indicator implemented in package \pkg{laeken} is straightforward---the application using function \code{variance()} or \code{bootVar()} remains the same. % -------------------- % calibrated bootstrap % -------------------- \section{Calibrated bootstrap} \label{sec:calib} \cite{rao88} showed that the naive bootstrap is biased when used in the complex survey context. They propose to increase the variance estimate in the $h$-th stratum by a factor of $\frac{n_{h} - 1}{n_{h}}$ (if the bootstrap sample is of the same size). In addition, they describe extensions to sampling without replacement, unequal probability sampling, and two-stage cluster sampling with equal probabilities and without replacement. \cite{deville92} and \cite{deville93} provide a general description on how to calibrate sample weights to account for known population totals. The naive bootstrap does not include the recalibration of bootstrap samples in order to fit known population totals and therefore is, strictly formulated, not suitable for many practical applications. However, even though a bias might be introduced, the naive bootstrap works well in many situations and is faster to compute than the calibrated version. Hence it is a popular method often used in practice. In real-world data, the inclusion probabilities for observations in the population are in general not all equal, resulting in different \emph{design weights} for the observations in the sample. Furthermore, the initial design weights are in practice often adjusted by calibration, e.g., to account for non-response or so that certain known population totals can be precisely estimated from the survey sample. To give a simplified example, if the population sizes in different regions are known, the sample weights may be calibrated so that the Horvitz-Thompson estimates \citep{horvitz52} of the population sizes equal the known true values. However, when bootstrap samples are drawn from survey data, resampling observations has the effect that such known population totals can no longer be precisely estimated. As a remedy, the sample weights of each bootstrap sample should be calibrated. The calibrated version of the bootstrap thus results in more precise variance and confidence interval estimation, but comes with higher computational costs than the naive approach. In any case, the \emph{calibrated bootstrap algorithm} is obtained by adding the following step between Steps~1 and~2 of the naive bootstrap algorithm from Section~\ref{sec:naive}: \begin{itemize} \item[1b.] Calibrate the sample weights for each bootstrap sample $\boldsymbol{X}_{r}^{*}$, $r = 1, \ldots, R$. Generalized raking procedures are thereby used for calibration: either a multiplicative method known as \emph{raking}, an additive method or a logit method \citep[see][]{deville92, deville93}. \end{itemize} The function call to \code{variance()} for the calibrated bootstrap is very similar to its counterpart for the naive bootstrap. A matrix of auxiliary calibration variables needs to be supplied via the argument \code{X}. In addition, the argument \code{totals} can be used to supply the corresponding population totals. If the \code{totals} argument is omitted, as in the following example, the population totals are computed from the sample weights of the original sample. This follows the assumption that those weights are already calibrated on the supplied auxiliary variables. % ----- <<>>= variance("eqIncome", weights = "rb050", design = "db040", data = eusilc, indicator = a, X = calibVars(eusilc$db040), seed = 123) @ % ----- Note that the function \code{calibVars()} transforms a factor into a matrix of binary variables, as required by the calibration function \code{calibWeights()}, which is called internally. While the default is to use raking for calibration, other methods can be specified via the \code{method} argument. % ----------- % conclusions % ----------- \section{Conclusions} \label{sec:concl} Both bootstrap procedures for variance and confidence interval estimation of indicators on social exclusion and poverty currently implemented in the \proglang{R} package \pkg{laeken} have their strengths. While the naive bootstrap is faster to compute, the calibrated bootstrap in general leads to more precise results. The implementation of other procedures such as linearization techniques \citep{kovacevic97, deville99, hulliger06, osier09} or the delete-a-group jackknife \citep{kott01} is future work. Furthermore, \citet{alfons09} demonstrated how the variance of indicators computed from data with imputed values may be underestimated in bootstrap procedures, depending on the indicator itself and the imputation procedure used. They proposed to use the method described in \cite{little02}, which consists of drawing bootstrap samples from the original data with missing values, and to impute the missing data for each bootstrap sample before computing the corresponding bootstrap replicate estimate. Of course, this results in an additional increase of the computation time. The implementation of this procedure in package \pkg{laeken} is future work. It should also be noted that multiple imputation is a further possibility to consider the additional uncertainty from imputation when estimating the variance of an indicator \citep[see][]{little02}. % --------------- % acknowledgments % --------------- \section*{Acknowledgments} This work was partly funded by the European Union (represented by the European Commission) within the 7$^{\mathrm{th}}$ framework programme for research (Theme~8, Socio-Economic Sciences and Humanities, Project AMELI (Advanced Methodology for European Laeken Indicators), Grant Agreement No. 217322). Visit \url{http://ameli.surveystatistics.net} for more information on the project. % ------------ % bibliography % ------------ \bibliographystyle{plainnat} \bibliography{laeken} \end{document} laeken/inst/doc/laeken-pareto.Rnw0000644000176200001440000011610214127275361016463 0ustar liggesusers\documentclass[a4paper,10pt]{scrartcl} \usepackage[OT1]{fontenc} \usepackage{Sweave} %% additional packages \usepackage{natbib} \bibpunct{(}{)}{,}{a}{}{,} \usepackage{amsmath, amssymb} \usepackage{hyperref} \hypersetup{colorlinks, citecolor=blue, linkcolor=blue, urlcolor=blue} \usepackage[top=30mm, bottom=30mm, left=30mm, right=30mm]{geometry} %% additional commands \newcommand{\code}[1]{\texttt{#1}} \newcommand{\pkg}[1]{\mbox{\textbf{#1}}} \newcommand{\proglang}[1]{\mbox{\textsf{#1}}} %%\VignetteIndexEntry{Robust Pareto Tail Modeling for the Estimation of Indicators on Social Exclusion using the R Package laeken} %%\VignetteDepends{laeken} %%\VignetteKeywords{social exclusion, indicators, robust estimation, Pareto distribution} %%\VignettePackage{laeken} \begin{document} \title{Robust Pareto Tail Modeling for the Estimation of Indicators on Social Exclusion using the \proglang{R} Package \pkg{laeken}} %\author{ % Andreas Alfons\footnote{Vienna University of Technology, % \href{mailto:alfons@statistik.tuwien.ac.at}{alfons@statistik.tuwien.ac.at}}, % Matthias Templ\footnote{Vienna University of Technology \& Statistics Austria, % \href{mailto:templ@tuwien.ac.at}{templ@tuwien.ac.at}}, % Peter Filzmoser\footnote{Vienna University of Technology, % \href{mailto:p.filzmoser@tuwien.ac.at}{p.filzmoser@tuwien.ac.at}}, % Josef Holzer\footnote{Landesstatistik Steiermark, % \href{mailto:josef.holzer@stmk.gv.at}{josef.holzer@stmk.gv.at}} %} \author{ Andreas Alfons$^{1}$, Matthias Templ$^{2}$, Peter Filzmoser$^{3}$, Josef Holzer$^{4}$ } \date{} \maketitle \setlength{\footnotesep}{11pt} \footnotetext[1]{ \begin{tabular}[t]{l} Erasmus School of Economics, Erasmus University Rotterdam\\ E-mail: \href{mailto:alfons@ese.eur.nl}{alfons@ese.eur.nl} \end{tabular} } \footnotetext[2]{ \begin{tabular}[t]{l} Zurich University of Applied Sciences\\ E-mail: \href{mailto:matthias.templ@zhaw.ch}{matthias.templ@zhaw.ch} \end{tabular} } \footnotetext[3]{ \begin{tabular}[t]{l} Vienna University of Technology\\ E-mail: \href{mailto:p.filzmoser@tuwien.ac.at}{p.filzmoser@tuwien.ac.at} \end{tabular} } \footnotetext[4]{ \begin{tabular}[t]{l} Landesstatistik Steiermark\\ E-mail: \href{mailto:josef.holzer@stmk.gv.at}{josef.holzer@stmk.gv.at} \end{tabular} } % change R prompt <>= options(prompt="R> ") @ %% specify folder and name for Sweave graphics %\SweaveOpts{prefix.string=figures-pareto/fig} \paragraph{Abstract} In this vignette, robust semiparametric estimation of social exclusion indicators using the \proglang{R} package \pkg{laeken} is discussed. Special emphasis is thereby given to income inequality indicators, as the standard estimates for these indicators are highly influenced by outliers in the upper tail of the income distribution. This influence can be reduced by modeling the upper tail with a Pareto distribution in a robust manner. While the focus of the paper is to demonstrate the functionality of \pkg{laeken} beyond the standard estimation techniques, a brief mathematical description of the implemented procedures is given as well. % ------------ % introduction % ------------ \section{Introduction} From a robustness point of view, the standard estimators for some of the social exclusion indicators defined by \citet{EU-SILC04, EU-SILC09} are problematic. In particular the income inequality indicators \emph{quintile share ratio} (QSR) and \emph{Gini coefficient} suffer from a lack of robustness. Consider, e.g., the QSR, which is estimated as the ratio of estimated totals or means (see Section~\ref{sec:QSR} for an exact definition). It is well known that the classical estimates for totals or means have a breakdown point of 0, meaning that even a single outlier can distort the results to an arbitrary extent. In fact, the influence of a single observation in the upper tail of the income distribution on the estimation of the QSR is linear and therefore unbounded. For practical purposes, the standard QSR estimator thus cannot be recommended in many situations \citep[cf.][]{hulliger09a}. It is also important to note that the behavior of the Gini coefficient is similar to the behavior of the QSR. The data basis for the estimation of the social exclusion indicators according to \citet{EU-SILC04, EU-SILC09} is the \emph{European Union Statistics on Income and Living Conditions} (EU-SILC), which is an annual panel survey conducted in EU member states and other European countries. On the one hand, EU-SILC data typically contain a considerable amount of \emph{representative} outliers in the upper tail of the income distribution, i.e., correct observations that behave differently from the main part of the data, but that are not unique in the population and hence need to be considered for computing estimates of the indicators. On the other hand, EU-SILC data frequently contain some even more extreme \emph{nonrepresentative} outliers, i.e., observations that are either incorrect or can be considered unique in the population. Consequently, such nonrepresentative outliers need to be excluded from the estimation process or downweighted. As a remedy, the upper tail of the income distribution may be modeled with a \emph{Pareto distribution} in order to recalibrate the sample weights or use fitted income values for observations in the upper tail when estimating the indicators (see Section~\ref{sec:fit}). %This is highly applicable because the upper tail of the income distribution in %EU-SILC data virtually always contains a considerable amount of representative %outliers. Nevertheless, classical estimators for the parameters of the Pareto distribution are highly influenced by the nonrepresentative outliers themselves. Using robust methods reduces the influence on fitting the Pareto distribution to the representative outliers and therefore on the estimation of the indicators. Rather than evaluating these methods, the paper concentrates on showing how they can be applied in the statistical environment \proglang{R} \citep{RDev} with the add-on package \pkg{laeken} \citep{laeken}. The basic design of the package, as well as standard estimation of the social exclusion indicators is discussed in detail in vignette \code{laeken-standard} \citep{templ11a}. Furthermore, the general framework for variance estimation is illustrated in vignette \code{laeken-variance} \citep{templ11b}. Those documents can be viewed from within \proglang{R} with the following commands: <>= vignette("laeken-standard") vignette("laeken-variance") @ Morover, a general introduction to package \pkg{laeken} is published as \citet{alfons13b}. Throughout the paper, the example data from package \pkg{laeken} is used. The data set is called \code{eusilc} and consists of $14\,827$ observations from $6\,000$ households. In addition, it was synthetically generated from Austrian EU-SILC survey data from 2006 using the data simulation methodology proposed by \citet{alfons11c} and implemented in the \proglang{R} package \pkg{simPopulation} \citep{simPopulation}. More information on the example data can be found in vignette \code{laeken-standard} or in the corresponding \proglang{R} help page. <<>>= library("laeken") data("eusilc") @ The rest of the paper is organized as follows. Section~\ref{sec:laeken} gives a mathematical description of the Eurostat definitions of the social exclusion indicators QSR and Gini coefficient. In Section~\ref{sec:Pareto}, the Pareto distribution is briefly discussed. Section~\ref{sec:threshold} discusses a rule of thumb for estimating the threshold for the upper tail of the distribution, and illustrates graphical methods for exploring the data in order to find the threshold. Classical and robust estimators for the shape parameter of the Pareto distribution are described in Section~\ref{sec:shape}. How to use Pareto tail modeling to estimate the social exclusion indicators is then shown in Section~\ref{sec:fit}. Finally, Section~\ref{sec:concl} concludes. % ------------------- % selected indicators % ------------------- \section{Social exclusion indicators} \label{sec:laeken} This paper is focused on the inequality indicators \emph{quintile share ratio} (QSR) and \emph{Gini coefficient}, which are both highly influenced by outliers in the upper tail of the distribution. Note that for the estimation of the social exclusion indicators, each person in a household is assigned the same \emph{eqivalized disposable income}. See vignette \code{laeken-standard} \citep{templ11a} for the computation of the equivalized disposable income with the \proglang{R} package \pkg{laeken}. For the following definitions, let $\boldsymbol{x} := (x_{1}, \ldots, x_{n})'$ be the equivalized disposable income with $x_{1} \leq \ldots \leq x_{n}$ and let $\boldsymbol{w} := (w_{i}, \ldots, w_{n})'$ be the corresponding personal sample weights, where $n$ denotes the number of observations. \subsection{Quintile share ratio (QSR)} \label{sec:QSR} The income \emph{quintile share ratio} (QSR) is defined as the ratio of the sum of the equivalized disposable income received by the 20\% of the population with the highest equivalized disposable income to that received by the 20\% of the population with the lowest equivalized disposable income \citep{EU-SILC04, EU-SILC09}. For the estimation of the quintile share ratio from a sample, let $\hat{q}_{0.2}$ and $\hat{q}_{0.8}$ denote the weighted 20\% and 80\% quantiles, respectively. With $0 \leq p \leq 1$, these weighted quantiles are given by \begin{equation} \label{eq:wq} \hat{q}_{p} = \hat{q}_{p} (\boldsymbol{x}, \boldsymbol{w}) := \begin{cases} \frac{1}{2} (x_{j} + x_{j+1}), & \quad \text{if } \sum_{i=1}^{j} w_{i} = p \sum_{i=1}^{n} w_{i}, \\ x_{j+1}, & \quad \text{if } \sum_{i=1}^{j} w_{i} < p \sum_{i=1}^{n} w_{i} < \sum_{i=1}^{j+1} w_{i}. \end{cases} \end{equation} %See also vignette \code{laeken-standard} \citep{templ11a} for the computation %of these quantiles with package \pkg{laeken}. Using index sets \mbox{$I_{\leq \hat{q}_{0.2}} := \{ i \in \{ 1, \ldots, n \} : x_{i} \leq \hat{q}_{0.2} \}$} and \mbox{$I_{> \hat{q}_{0.8}} := \{ i \in \{ 1, \ldots, n \} : x_{i} > \hat{q}_{0.8} \}$}, the quintile share ratio is estimated by \begin{equation} \widehat{QSR} := \frac{\sum_{i \in I_{> \hat{q}_{0.8}}} w_{i} x_{i}}{\sum_{i \in I_{\leq \hat{q}_{0.2}}} w_{i} x_{i}}. \end{equation} With package \pkg{laeken}, the quintile share ratio can be estimated using the function \code{qsr()}. Sample weights can thereby be supplied via the \code{weights} argument. <<>>= qsr("eqIncome", weights = "rb050", data = eusilc) @ \subsection{Gini coefficient} \label{sec:Gini} The \emph{Gini coefficient} is defined as the relationship of cumulative shares of the population arranged according to the level of equivalized disposable income, to the cumulative share of the equivalized total disposable income received by them \citep{EU-SILC04, EU-SILC09}. For the estimation of the Gini coefficient from a sample, the sample weights need to be taken into account. In mathematical terms, the Gini coefficient is estimated by \begin{equation} \widehat{Gini} := 100 \left[ \frac{2 \sum_{i=1}^{n} \left( w_{i} x_{i} \sum_{j=1}^{i} w_{j} \right) - \sum_{i=1}^{n} w_{i}^{\phantom{i}2} x_{i}}{\left( \sum_{i=1}^{n} w_{i} \right) \sum_{i=1}^{n} \left(w_{i} x_{i} \right)} - 1 \right]. \end{equation} The function \code{gini()} is available in \pkg{laeken} to estimate the Gini coefficient. As before, sample weights can be specified with the \code{weights} argument. <<>>= gini("eqIncome", weights = "rb050", data = eusilc) @ % ------------------- % Pareto distribution % ------------------- \section{The Pareto distribution} \label{sec:Pareto} The \emph{Pareto distribution} is well studied in the literature and is defined in terms of its cumulative distribution function \begin{equation} \label{eq:CDF} F_{\theta}(x) = 1 - \left( \frac{x}{x_{0}} \right) ^{-\theta}, \qquad x \geq x_{0}, \end{equation} where $x_{0} > 0$ is the scale parameter and $\theta > 0$ is the shape parameter \citep{kleiber03}. Furthermore, its density function is given by \begin{equation} f_{\theta}(x) = \frac{\theta x_{0}^{\theta}}{x^{\theta + 1}}, \qquad x \geq x_{0}. \end{equation} Figure~\ref{fig:Pareto} visualizes the Pareto probability density function with scale parameter $x_{0} = 1$ and different values of the shape parameter $\theta$. Clearly, the Pareto distribution is a highly right-skewed distribution with a heavy tail. It is therefore reasonable to assume that a random variable following a Pareto distribution contains extreme values. The effect of changing the shape parameter $\theta$ is visible in the probability mass at the scale parameter $x_{0}$: the higher $\theta$, the higher the probability mass at $x_{0}$. <>= x <- seq(1, 6, length.out=1000) dpareto <- function(x, x0 = 1, theta = 1) theta*x0^theta / x^(theta+1) y1 <- dpareto(x, theta=1) y2 <- dpareto(x, theta=2) y3 <- dpareto(x, theta=3) @ \begin{figure} \begin{center} <>= par(mar = c(4, 4, 0.5, 0.5) + 0.1) plot(x, y3, type = "l", lty = 3, ylab = "f(x)", xlim = c(0.75, 6), panel.first = { abline(h = 0, col = grey(0.75)) abline(v = 1, col = grey(0.75)) }) lines(x, y2, lty = 2) lines(x, y1, lty = 1) leg <- expression(paste(theta, " = 1"), paste(theta, " = 2"), paste(theta, " = 3")) legend("topright", legend = leg, lty = 1:3) @ \caption{Pareto probability density functions with parameters $x_{0} = 1$ and $\theta = 1, 2, 3$.} \label{fig:Pareto} \end{center} \end{figure} In Pareto tail modeling, the cumulative distribution function on the whole range of $x$ is modeled as \begin{equation} \label{eq:tail} F(x) = \left\{ \begin{array}{ll} G(x), & \quad \text{if } x \leq x_{0}, \\ G(x_{0}) + (1 - G(x_{0})) F_{\theta}(x), & \quad \text{if } x > x_{0}, \end{array} \right. \end{equation} where $G$ is an unknown distribution function \citep{dupuis06}. Let $n$ be the number of observations and let $\boldsymbol{x} = (x_{1}, \ldots, x_{n})'$ denote the observed values with $x_{1} \leq \ldots \leq x_{n}$. In addition, let $k$ be the number of observations to be used for tail modeling. In this scenario, the threshold $x_{0}$ is estimated by % Let $k$ be the number of observations to be used for tail modeling and let % $x_{(1)} \leq \ldots \leq x_{(n)}$, denote the sorted observations. In this % scenario, the threshold $x_{0}$ is estimated by \begin{equation} \hat{x}_{0} := x_{n-k}. \end{equation} If an estimate $\hat{x}_{0}$ for the scale parameter of the Pareto distribution has been obtained, $k$ is given by the number of observations larger than $\hat{x}_{0}$. Thus estimating $x_{0}$ and $k$ directly corresponds with each other. In the remainder of this package vignette, the equivalized disposable income of the EU-SILC example data is of main interest. Consequently, the Pareto distribution will be modeled at the household level rather than the individual level. Moreover, the focus of this vignette is on robust estimation of the social exclusion indicators. Hence the equivalized disposable income of the household with the largest income is replaced by a large outlier. <<>>= hID <- eusilc$db030[which.max(eusilc$eqIncome)] eusilc[eusilc$db030 == hID, "eqIncome"] <- 10000000 @ Since the aim is to model a Pareto distribution at the household level, the following command creates a data set that contains only the equivalized disposable income and the sample weights on the household level. This data set will be used in Sections~\ref{sec:threshold} and~\ref{sec:shape} to estimate the parameters of the Pareto distribution. <<>>= eusilcH <- eusilc[!duplicated(eusilc$db030), c("eqIncome", "db090")] @ % --------- % threshold % --------- \section{Finding the threshold} \label{sec:threshold} The aim of the methods presented in this sections is to find the threshold $x_{0}$ for modeling the Pareto distribution. Several methods for the estimation of the threshold $x_{0}$ or the number of observations $k$ in the tail have been proposed in the literature, but those proposals typically do not consider sample weights. \citet{beirlant96a, beirlant96b} developed a procedure that analytically determines the optimal choice of $k$ for the Hill estimator of the shape parameter \citep[see also Section~\ref{sec:Hill} of this paper]{hill75} by minimizing the asymptotic mean squared error (AMSE). In package \pkg{laeken}, this approach is implemented in the function \code{minAMSE()}. However, the procedure is designed for the non-robust Hill estimator and is therefore not further discussed in this paper. Furthermore, \citet{danielsson01} proposed a bootstrap method to find the optimal $k$ for the Hill estimator with respect to the AMSE, which has less analytical requirements than the approach by \citet{beirlant96a, beirlant96b}. Please note that this method is not robust either and that it is currently not available in package \pkg{laeken}. A robust prediction error criterion for choosing the number of observations $k$ in the tail and estimating the shape parameter $\theta$ was developed by \citet{dupuis06}. Nevertheless, our implementation of this robust criterion was unstable and is therefore not included in \pkg{laeken}. In any case, \citet{holzer09} concludes that graphical methods for finding the threshold outperform those analytical approaches in the case of EU-SILC data. While this section is thus focused graphical methods, a simple rule of thumb designed specifically for the equivalized disposable income in EU-SILC data is described in the following as well. \subsection{Van Kerm's rule of thumb} \label{sec:vanKerm} \citet{vankerm07} presented a formula that is more of a rule of thumb for the threshold of the equivalized disposable income in EU-SILC data. Is is given by \begin{equation} \hat{x}_{0} := \min(\max(2.5\bar{x}, q_{0.98}), q_{0.97}), \end{equation} where $\bar{x}$ is the weighted mean, and $q_{0.98}$ and $q_{0.97}$ are weighted quantiles as defined in Equation~(\ref{eq:wq}). In package \pkg{laeken}, the function \code{paretoScale()} provides functionality for computing the threshold with van Kerm's rule of thumb. The argument \code{w} is available to supply sample weights. %In the example below, the household IDs are supplied via the argument %\code{groups} to estimate the threshold on the houshold level rather than the %personal level. %<<>>= %paretoScale(eusilc$eqIncome, eusilc$db090, groups = eusilc$db030) %@ <<>>= ts <- paretoScale(eusilcH$eqIncome, w = eusilcH$db090) ts @ It should be noted that the function returns an object of class \code{"paretoScale"}, which consists of a component \code{x0} for the threshold (scale parameter) and a component \code{k} for the number of observations in the tail of the distribution, i.e., that are larger than the threshold. \subsection{Pareto quantile plot} The \emph{Pareto quantile plot} is a graphical method for inspecting the parameters of a Pareto distribution. For the case without sample weights, it is described in detail in \citet{beirlant96a}. If the Pareto model holds, there exists a linear relationship between the lograrithms of the observed values and the quantiles of the standard exponential distribution, since the logarithm of a Pareto distributed random variable follows an exponential distribution. Hence the logarithms of the observed values, $\log (x_{i})$, $i = 1, \ldots, n$, are plotted against the theoretical quantiles. In the case without sample weights, the theoretical quantiles of the standard exponential distribution are given by \begin{equation} \label{eq:quantiles} -\log \left( 1 - \frac{i}{n+1} \right), \qquad i = 1, \ldots, n, \end{equation} i.e., by dividing the range into $n + 1$ equally sized subsets and using the resulting $n$ inner gridpoints as probabilities for the quantiles. If the data contain sample weights, the range of the exponential distribution needs to be divided according to the weights of the $n$ observations. The Pareto quantile plot is thus generalized by using the theoretical quantiles \begin{equation} -\log \left( 1 - \frac{\sum_{j=1}^{i} w_{j}}{\sum_{j=1}^{n} w_{j}} \frac{n}{n+1} \right), \qquad i = 1, \ldots, n, \end{equation} where the correction factor $\frac{n}{n+1}$ ensures that the quantiles reduce to (\ref{eq:quantiles}) if all sample weights are equal. If the tail of the data follows a Pareto distribution, those observations form almost a straight line. The leftmost point of a fitted line can thus be used as an estimate of the threshold $x_{0}$, the scale parameter. All values starting from the point after the threshold may be modeled by a Pareto distribution, but this point cannot be determined exactly. Furthermore, the slope of the fitted line is in turn an estimate of $\frac{1}{\theta}$, the reciprocal of the shape parameter. Figure~\ref{fig:ParetoQuantile} displays the Pareto quantile plot for the example data \code{eusilc} on the household level with the largest observation replaced by an outlier. The plot is generated using the function \code{paretoQPlot()}, which allows to supply sample weights via the argument \code{w}. In addition, the threshold can be selected interactively by clicking on a data point. Information on the selected threshold is then printed on the \proglang{R} console. When the interactive selection is terminated, which is typically done by a secondary mouse click, the selected threshold is returned as an object of class \code{"paretoScale"}. Another advantage of the Pareto quantile plot is also illustrated in Figure~\ref{fig:ParetoQuantile}. Nonrepresentative outliers such as the large income introduced into the example data in Section~\ref{sec:Pareto}, i.e., extreme observations in the upper tail that deviate from the Pareto model, are clearly visible. \begin{figure} \begin{center} \setkeys{Gin}{width=.75\textwidth} <>= paretoQPlot(eusilcH$eqIncome, w = eusilcH$db090) @ \caption{Pareto Quantile plot for the example data \code{eusilc} on the household level with the largest observation replaced by an outlier.} \label{fig:ParetoQuantile} \end{center} \end{figure} \subsection{Mean excess plot} The \emph{mean excess plot} is another graphical method for inspecting the threshold for Pareto tail modeling, but it does not provide information on the shape parameter. It is based on the excess function \begin{equation} \label{eq:excess} e(x_{0}) := \mathbb{E}(x - x_{0}|x > x_{0}), \qquad x_{0} \geq 0. \end{equation} A detailed description for the case without sample weights can be found in \citet{borkovec00}. For the following definition of the mean excess plot, keep in mind that the observations are sorted such that $x_{1} \leq \ldots \leq x_{n}$. For each observation $x_{i}$, $i = 1, \ldots, \lfloor n-\sqrt{n} \rfloor$, the empirical excess function $e_{n}$ is computed. In the case without sample weights, the expectation in Equation~(\ref{eq:excess}) is replaced by the arithmetic mean, and the empirical excess function is given by \begin{equation} e_{n}(x_{i}) := \frac{1}{n-i} \sum_{j=i+1}^{n} (x_{j} - x_{i}), \qquad i = 1, \ldots, \lfloor n-\sqrt{n} \rfloor. \end{equation} The values of the empirical excess function $e_{n}(x_{i})$ are then plotted against the corresponding $x_{i}$, $i = 1, \ldots, \lfloor n-\sqrt{n} \rfloor$. If sample weights are available in the data, the mean excess plot is simply generalized by using the weighted mean for the empirical excess function: \begin{equation} e_{n}(x_{i}) := \frac{1}{\sum_{j=i+1}^{n} w_{j}} \sum_{j=i+1}^{n} w_{j} (x_{j} - x_{i}), \qquad i = 1, \ldots, \lfloor n-\sqrt{n} \rfloor. \end{equation} If the tail of the data follows a Pareto distribution, those observations show a positive linear trend. The leftmost point of a fitted line can thus be used as an estimate of the threshold $x_{0}$, the scale parameter. As for the Pareto quantile plot, a disadvantage of the mean excess plot is that the threshold cannot be determined exactly. \begin{figure} \begin{center} \setkeys{Gin}{width=.75\textwidth} <>= meanExcessPlot(eusilcH$eqIncome, w = eusilcH$db090) @ \caption{Mean excess plot for the example data \code{eusilc} on the household level with the largest observation replaced by an outlier.} \label{fig:meanExcess} \end{center} \end{figure} Figure~\ref{fig:meanExcess} shows the mean excess plot for the example data \code{eusilc} on the household level with the largest observation replaced by an outlier. The function \code{meanExcessPlot()} is thereby used to produce the plot. Sample weights can be supplied via the argument \code{w}. Interactive selection of the threshold works just like for the Pareto quantile plot. Again, the selected threshold is returned as an object of class \code{"paretoScale"}. % --------------- % shape parameter % --------------- \section{Estimation of the shape parameter} \label{sec:shape} This section is focused on methods for estimating the shape parameter $\theta$ once the threshold $x_0$ is fixed. It should be noted that none of the original proposals takes sample weights into account. Most estimators presented in the following were therefore adjusted for the case of sample weights. \subsection{Hill estimator} \label{sec:Hill} The maximum likelihood estimator for the shape parameter of the Pareto distribution was introduced by \citet{hill75} and is referred to as the \emph{Hill} estimator. If the data do not contain sample weights, it is given by \begin{equation} \label{eq:Hill} \hat{\theta}_{\mathrm{Hill}} = \frac{k}{\sum_{i = 1}^{k} \log x_{n-k+i} - k \log x_{n-k}}. \end{equation} In the case of sample weights, the \emph{weighted Hill} (wHill) estimator is given by generalizing Equation~(\ref{eq:Hill}) to \begin{equation} \label{eq:wHill} \hat{\theta}_{\mathrm{wHill}} = \frac{\sum_{i = 1}^{k} w_{n-k+i}}{\sum_{i = 1}^{k} w_{n-k+i} \left( \log x_{n-k+i} - \log x_{n-k} \right)} . \end{equation} Package \pkg{laeken} provides the function \code{thetaHill()} to compute the Hill estimator. It requires to specify either the number of observations in the tail via the argument \code{k}, or the threshold via the argument \code{x0}. Furthermore, the argument \code{w} can be used to supply sample weights. In the following example, the shape parameter is estimated using the largest observations (first command) and the threshold (second command) as computed with van Kerm's rule of thumb in Section~\ref{sec:vanKerm}. <<>>= thetaHill(eusilcH$eqIncome, k = ts$k, w = eusilcH$db090) thetaHill(eusilcH$eqIncome, x0 = ts$x0, w = eusilcH$db090) @ \subsection{Weighted maximum likelihood estimator} The \emph{weighted maximum likelihood} (WML) estimator \citep{dupuis02, dupuis06} falls into the class of M-estimators and is given by the solution $\hat{\theta}$ of \begin{equation} \sum_{i = 1}^{k} \mathrm{\Psi}(x_{n-k+i}, \theta) = 0 \end{equation} with \begin{equation} \mathrm{\Psi}(x, \theta) := u(x, \theta) \frac{\partial}{\partial \theta} \log f(x, \theta) = u(x, \theta) \left( \frac{1}{\theta} - \log \frac{x}{x_{0}} \right), \end{equation} where $u(x, \theta)$ is a weight function with values in $[0,1]$. In the implementation in package \pkg{laeken}, a Huber type weight function is used by default, as proposed by \citet{dupuis06}. Let the logarithms of the relative excesses be denoted by \begin{equation} z_{i} := \log \left( \frac{x_{n-k+i}}{x_{n-k}} \right), \qquad i = 1, \ldots, k. \end{equation} In the Pareto model, these can be predicted by \begin{equation} \hat{z}_{i} := -\frac{1}{\theta} \log \left( \frac{k+1-i}{k+1} \right), \qquad i = 1, \ldots, k. \end{equation} The variance of $z_{i}$ is given by \begin{equation} \sigma_{i}^{\phantom{i}2} := \sum_{j = 1}^{i} \frac{1}{\theta^{2} (k-i+j)^{2}}, \qquad i = 1, \ldots, k. \end{equation} Using the standardized residuals \begin{equation} r_{i} := \frac{z_{i} - \hat{z}_{i}}{\sigma_{i}}, \end{equation} the Huber type weight function with tuning constant $c$ is defined as \begin{equation} u(x_{n-k+i}, \theta) := \left\{ \begin{array}{cl} 1, & \quad \text{if } |r_{i}| \leq c, \\ \frac{c}{|r_{i}|}, & \quad \text{if } |r_{i}| > c. \end{array} \right. \end{equation} For this choice of weight function, the bias of $\hat{\theta}$ is approximated by \begin{equation} \hat{B}(\hat{\theta}) = - \frac{\sum_{i=1}^{k} \left( u_{i} \frac{\partial}{\partial \theta} \log f_{i} \right) \vert_{\hat{\theta}} \left( F_{\hat{\theta}}(x_{n-k+i}) - F_{\hat{\theta}}(x_{n-k+i-1}) \right)}{\sum_{i=1}^{k} \left( \frac{\partial}{\partial \theta} u_{i} \frac{\partial}{\partial \theta} \log f_{i} + u_{i} \frac{\partial^{2}}{\partial \theta^{2}} \log f_{i} \right) \vert_{\hat{\theta}} \left( F_{\hat{\theta}}(x_{n-k+i}) - F_{\hat{\theta}}(x_{n-k+i-1}) \right)}, \end{equation} where $u_{i} := u(x_{n-k+i}, \theta)$ and $f_{i} := f(x_{n-k+i}, \theta)$. This term is used to obtain a bias-corrected estimator \begin{equation} \tilde{\theta} := \hat{\theta} - \hat{B}(\hat{\theta}). \end{equation} For details and proofs of the above statements, as well as for information on a probability-based weight function $u(x, \theta)$, the reader is referred to \citet{dupuis02} and \citet{dupuis06}. However, note the WML estimator does not consider sample weights. An adjustment of the estimator to take sample weights into account is currently not available due to its complexity. For sampling designs that lead to equal sample weights, the WML estimator may still be useful, though. The function \code{thetaWML()} is available in \pkg{laeken} to compute the WML estimator. Again, either the argument \code{k} or \code{x0} needs to be used to specify the number of observations in the tail or the threshold. Since the sample weights in the example data are not equal, the following example is only included to demonstrate the use of the function. <<>>= thetaWML(eusilcH$eqIncome, k = ts$k) thetaWML(eusilcH$eqIncome, x0 = ts$x0) @ \subsection{Integrated squared error estimator} For the \emph{integrated squared error} (ISE) estimator \citep{vandewalle07}, the Pareto distribution is modeled in terms of the relative excesses \begin{equation} y_{i} := \frac{x_{n-k+i}}{x_{n-k}}, \qquad i = 1, \ldots, k. \end{equation} The density function of the Pareto distribution for the relative excesses is approximated by \begin{equation} f_{\theta}(y) = \theta y^{-(1+\theta)}. \end{equation} The ISE estimator is then given by minimizing the integrated squared error criterion \citep{terrell90}: \begin{equation} \hat{\theta} = \arg \min_{\theta} \left[ \int f_{\theta}^{2}(y) dy - 2 \mathbb{E}(f_{\theta}(Y)) \right] . \end{equation} If there are no sample weights in the data, the mean is used as an unbiased estimator of $\mathbb{E}(f_{\theta}(Y))$ in order to obtain the ISE estimate \begin{equation} \label{eq:ISE} \hat{\theta}_{\mathrm{ISE}} = \arg \min_{\theta} \left[ \int f_{\theta}^{2}(y) dy - \frac{2}{k} \sum_{i=1}^{k} f_{\theta}(y_{i}) \right] . \end{equation} See \citet{vandewalle07} for more information on the ISE estimator for the case without sample weights. If sample weights are available in the data, the mean in Equation~(\ref{eq:ISE}) is simply replaced by a weighted mean to obtain the \emph{weighted integrated squared error} (wISE) estimator: \begin{equation} \label{eq:wISE} \hat{\theta}_{\mathrm{wISE}} = \arg \min_{\theta} \left[ \int f_{\theta}^{2}(y) dy - \frac{2}{\sum_{i=1}^{k} w_{n-k+i}} \sum_{i=1}^{k} w_{n-k+i} f_{\theta}(y_{i}) \right] . \end{equation} With package \pkg{laeken}, the ISE estimator can be computed using the function \code{thetaISE()}. The arguments \code{k} and \code{x0} are available to specify either the number of observations in the tail or the threshold, and sample weights can be supplied via the argument \code{w}. <<>>= thetaISE(eusilcH$eqIncome, k = ts$k, w = eusilcH$db090) thetaISE(eusilcH$eqIncome, x0 = ts$x0, w = eusilcH$db090) @ \subsection{Partial density component estimator} For the \emph{partial density component} (PDC) estimator \cite{vandewalle07} minimizes the integrated squared error criterion using an incomplete density mixture model $u f_{\theta}$. If the data do not contain sample weights, the PDC estimator in is thus given by \begin{equation} \label{eq:PDC} \hat{\theta}_{\mathrm{PDC}} = \arg \min_{\theta} \left[ u^{2} \int f_{\theta}^{2}(y) dy - \frac{2 u}{k} \sum_{i = 1}^{k} f_{\theta}(y_{i}) \right]. \end{equation} The parameter $u$ can be interpreted as a measure of the uncontaminated part of the sample and is estimated by \begin{equation} \label{eq:u} \hat{u} = \frac{\frac{1}{k} \sum_{i = 1}^{k} f_{\hat{\theta}}(y_{i})}{\int f_{\hat{\theta}}^{2}(y) dy}. \end{equation} See \cite{vandewalle07} and references therein for more information on the PDC estimator for the case without sample weights. Taking sample weights into account, the \emph{weighted partial density component} (wPDC) estimator is obtained by generalizing Equations~(\ref{eq:PDC}) and~(\ref{eq:u}) to \begin{align} \label{eq:wPDC} \hat{\theta}_{\mathrm{wPDC}} =& \arg \min_{\theta} \left[ u^{2} \int f_{\theta}^{2}(y) dy - \frac{2u}{\sum_{i=1}^{k} w_{n-k+i}} \sum_{i = 1}^{k} w_{n-k+i} f_{\theta}(y_{i}) \right] , \\ \hat{u} =& \frac{\frac{1}{\sum_{i=1}^{k} w_{n-k+i}} \sum_{i = 1}^{k} w_{n-k+i} f_{\hat{\theta}}(y_{i})}{\int f_{\hat{\theta}}^{2}(y) dy} . \end{align} The function \code{thetaPDC()} is implemented in package \pkg{laeken} to compute the PDC estimator. As for the other estimators, it is necessary to specify either the number of observations in the tail via the argument \code{k}, or the threshold via the argument \code{x0}. Sample weights can be supplied using the argument \code{w}. <<>>= thetaPDC(eusilcH$eqIncome, k = ts$k, w = eusilcH$db090) thetaPDC(eusilcH$eqIncome, x0 = ts$x0, w = eusilcH$db090) @ % ---------------------------- % estimation of the indicators % ---------------------------- \section{Estimation of the indicators using Pareto tail modeling} \label{sec:fit} Three approaches based on Pareto tail modeling for reducing the influence of outliers on the social exclusion indicators are implemented in the \proglang{R} package \pkg{laeken}: \begin{description} \item[Calibration for nonrepresentative outliers (CN):] Values larger than a certain quantile of the fitted distribution are declared as nonrepresentative outliers. Since these are considered to be unique to the population data, the sample weights of the corresponding observations are set to $1$ and the weights of the remaining observations are adjusted accordingly by calibration. \item[Replacement of nonrepresentative outliers (RN):] Values larger than a certain quantile of the fitted distribution are declared as nonrepresentative outliers. Only these nonrepresentative outliers are replaced by values drawn from the fitted distribution, thereby preserving the order of the original values. \item[Replacement of the tail (RT):] All values above the threshold are replaced by values drawn from the fitted distribution. The order of the original values is preserved. \end{description} An evaluation of the RT approach by means of a simulation study can be found in \citet{alfons10b}. Keep in mind that the largest observation in the example data \code{eusilc} was replaced by a large outlier in Section~\ref{sec:Pareto}. With the following command, the Gini coefficient is estimated according to the Eurostat definition to show that even a single outlier can completely distort the results for the standard estimation (see Section~\ref{sec:Gini} for the original value). <<>>= gini("eqIncome", weights = "rb050", data = eusilc) @ For Pareto tail modeling, the function \code{paretoTail()} is implemented in \pkg{laeken}. It returns an object of class \code{"paretoTail"}, which contains all the necessary information for further analysis using the three approaches described above. Note that the household IDs are supplied via the argument \code{groups} such that the Pareto distribution is fitted on the household level rather than the individual level. In addition, the PDC is used by default to estimate the shape parameter. Other estimators can be specified via the \code{method} argument. <<>>= fit <- paretoTail(eusilc$eqIncome, k = ts$k, w = eusilc$db090, groups = eusilc$db030) @ The function \code{reweightOut()} is available for semiparametric estimation with the CN approach. It returns a vector of the recalibrated weights. In this example, regional information is used as auxiliary variables for calibration. The function \code{calibVars()} thereby transforms a factor into a matrix of binary variables, as required by the calibration function \code{calibWeights()}, which is called internally. These recalibrated weights are then simply used to estimate the Gini coefficient with function \code{gini()}. <<>>= w <- reweightOut(fit, calibVars(eusilc$db040)) gini(eusilc$eqIncome, w) @ For the RN approach, the function \code{replaceOut()} is implemented. Since values are drawn from the fitted distribution to replace the observations flagged as outliers, the seed of the random number generator is set first for reproducibility of the results. The returned vector of incomes is then supplied to \code{gini()} to estimate the Gini coefficient. <<>>= set.seed(1234) eqIncome <- replaceOut(fit) gini(eqIncome, weights = eusilc$rb050) @ Similarly, the function \code{replaceTail()} is available for the RT approach. Again, the seed of the random number generator is set beforehand. <<>>= set.seed(1234) eqIncome <- replaceTail(fit) gini(eqIncome, weights = eusilc$rb050) @ It should be noted that \code{replaceTail()} can also be used for the RN approach by setting the argument \code{all} to \code{FALSE}. In fact, \code{replaceOut(x, ...)} is a simple wrapper for \code{replaceTail(x, all = FALSE, ...)}. In any case, the estimates for the semiparametric approaches based on Pareto tail modeling are very close to the original value before the outlier has been introduced (see Section~\ref{sec:Gini}), whereas the standard estimation is corrupted by the outlier. Furthermore, the estimation of other indicators such as the quintile share ratio (see Section~\ref{sec:QSR}) using the semiparametric approaches is straightforward and hence not shown here. % ----------- % conclusions % ----------- \section{Conclusions} \label{sec:concl} This vignette shows the functionality of package \pkg{laeken} for robust semiparametric estimation of social exclusion indicators based on Pareto tail modeling. Most notably, it demonstrates that the functions are easy to use and that the implementation follows an object-oriented design. While the focus of the paper lies on the use of the package, a mathematical description of the methods is given as well. Furthermore, it is shown that the standard estimation of the inequality indicators can be corrupted by a single outlier, thus underlining the need for robust alternatives. Three approaches for robust semiparametric estimation based on Pareto tail modeling are thereby implemented such that the corresponding functions share a common interface for ease of use. % --------------- % acknowledgments % --------------- \section*{Acknowledgments} This work was partly funded by the European Union (represented by the European Commission) within the 7$^{\mathrm{th}}$ framework programme for research (Theme~8, Socio-Economic Sciences and Humanities, Project AMELI (Advanced Methodology for European Laeken Indicators), Grant Agreement No. 217322). Visit \url{http://ameli.surveystatistics.net} for more information on the project. % ------------ % bibliography % ------------ \bibliographystyle{plainnat} \bibliography{laeken} \end{document} laeken/inst/doc/laeken-variance.pdf0000644000176200001440000031341014554440370016763 0ustar liggesusers%PDF-1.5 % 1 0 obj << /Type /ObjStm /Length 3978 /Filter /FlateDecode /N 72 /First 594 >> stream x[isFIluƲroCA`ߧg@:l陁bi<3L9,1a\,gRHLJɤA% 4S^xo1i+}`F3]`J0Def 2 D s["sL#b*09 D`A:4 5ił58kcG{= 9tQ$v88 z]&hrR8PR.\e,$z]X d$ e,@ %Y=eE,(+x(Q}ʁC *=Kσg*(F2qh4@F?%?הIZڄv66uF6IPH#U}6p|xzv[eǑuʵtJ@nrkxf1M 7CtlyqtHVmqCK8uཤ[vmQw䰥}ߞ :hIZۉ+U_->^Y.NDxN&h I=35 QEӨd7# zkiosgn2)s7ҀwFÃ׿IƘmG=֨+sTُ9cYޓ i*ܥZy hYluU.E*Ci-$B#mUCU]^x8 s.BJSSI ֡- J/vm( VPީ _oߢwᖴ*h7ѺWS&T5s1UOu}ѡކhlv O}oct^ ΢I1 ?eDLuLMX-MKcaٟiY1mX/SaMh[COpm#uƒ䝌24<&ۉjG&՝6%m{6~n}}Ϻ6[ݖ|UnZ+;r%t<Ȃ4,Yӂ~|gZ:oL|źPu&s:ڻ[Wzre"=hi" ;irk: |'=yI/q{R:WEU؀$-WxA}8(FV׌Ӑ9!<ש&-:BL%* d&}LË8@s ),!,+e^\uξ̆d]:%#-$=YJ7}y183od/~D&u4L!Ǵ`oLXʹm. jmF{C_&kYg)%U-p=:pe;;?ڕ['%Ihy;7]Ar'zmZnI-,F;QDK;s[.MS$̹ǯr10mwםD-$kˀ J71=g//&qy1B†i~EqzXFTimlգk=I翼8؍]cȞ:]"=UlPhZSj/ܽ`Rb\@5m#?x ^48o2n.u#|x2 [d95Tb[DFy'Ѳ !#tϼs!wy[ɺ.yB7_jZ%Z/̒#`,nP|JcEe3ڛMxSKB~[W}xXPx0Uk,}=V\Sq^WC8.=,o9 xpM8ak9.dH΍àM:)A?!sw&;f6O GGӛ8~x(c}@`0@68aH~^K =FdtB–>Xk4W>>}Z}A+S ^XÂiHmeH[mܑߒ..Y1'pKN"ڴ65j3 _\(ĨIj1@kP j@yyUN~ endstream endobj 74 0 obj << /Subtype /XML /Type /Metadata /Length 1387 >> stream GPL Ghostscript 9.55.0 2024-01-25T12:07:35+01:00 2024-01-25T12:07:35+01:00 LaTeX with hyperref endstream endobj 75 0 obj << /Type /ObjStm /Length 3188 /Filter /FlateDecode /N 71 /First 629 >> stream x[ks6N&md$uUmMd+M_炤̗l:LR${ wL0Ga;ǂdRx˂bR[fO0LF))cJȴtEEɴaY, 1jvYP'h&3dd՟9,ESds( G+Woh`4NCa7X3mtR+XtW<֐-H(nKwSTʲG'Sh|þl7$f'Yfgy6g"[dlMv}6q"$l Y_ !f0*!xW{t3Ϧ{38Pj0x_I־rh4㍎`|@LwxZm t$rLZ8IБߏ! y:z|5o]ڰKy'X9nC`c:Ǚt/ZҳtԊƣjd:P~^ 2 |uqwgSئMp-d3]ΗE8xy/2_͖'5!SJ`)f1iԶyaэzZpp[.W'\B%>J(-] gsDF4dFiN)3<`4jN}+{r 1!O+LQr__+dmHsXk@3QqK-A{ L*JLZ8@{$Qt G8A .JՍlY`dt>Iǭ%(O8!D bנB=Ӟ wYNF@ŰeTyPP*h[PrW]ŎǞb(p"t'Bv}QT8zkTvR^q5h~u:8. DOK}|L&(V,بjX^1Q%pG9ydz^(M,.B6byS[^NT+t#!+s,;ű)> stream x[[su~_HRAA߻d^W;ZoUv,H8c\q]y<O>\/"ſMzˍg{X?+JҬnxX r2/Xn~V"A\+*E^h'Y RJ`B:Cn{|@t \9I(S{Rgh FXw?"RFYk,\l+o6RNF<nu|laȢrBZ+4>knKu=B NHmz#IP%<]CopG ~ުZQZ)i';?[hmCv|Lkl.X}K`,(.X^keܱ5"d?Ai(Mx-vŊ+sDHk#W❖h+z= z ,泻 kUڼ g&.+J@Z\5*V&+. Nd wkOB$p@хwy p :*Z R \m?7)0)jWۮFʰCr0q8=:V+gKQ8O@CŇBƈA]D m{]ib>zPu0 &l40gfqU*1&,p85J6%|OFo~E9A(˾:w]u$ y"]66 y6󲅍CjZBh vi%jn.m/dN6+] DwVg浯j"?ہʎe Pc1pBA,4Z؂jHkbW?<{H'q?iC@ lL%_0IUOzedٶl{],; mn>~&1QE-y0=5A8 y'JI.sPTSlS"-K]2CW/BR8-Ӻ!' ہwe0[Cr&uA6&U5*A:\W7!Ñ`  zg͆:(q|b}udL@s;fv*pcXk'A$k֎d8" Dͤpg4'v퇮=$^aQGh! lSȁMI3D ~?5 &=EeUWf,xNIZH!x&fP,8 jR#цqP`6bݶH6KcRS,=x0"Sdd;'eZČ'?Bs-&W)N1i6#RcW%>y*Ī]!@31Bf"w9Ƹ8 cp$<ZQS-#D׆0b NA D$ 8@iwS:S~:PɏY"D.7.0ae$ h ԏ92i0J (j>mzhO6=NF=Ͼ؟e"ө4X&`f,jOD$ૹB]<ᢏŊEEEň~̾&&RNA.wCK*'_{Iͧe}{OcVʺ\(ܵ=%H]{AlFK8l̉J7piUwos.C~\cTTnfؗ,@qRPUY@NE=R.|u*/b͙RB'PQ3KZDsz`~TA>[/}P [ yJ*p6,R1s`P.rYpf[PFQOe*TyQ~jPT 1QQ?nJ5V6af }~ RRSC.B]{Lk.|oO{B ӪaZ"h 5"! žΠsĄ9TSkJ> Jaj[آnOt3M+ yhkY2~хޞSGCEo1@rѥZm*(%T/g{!wF $v-c37o76dA;XXYo fWTcNmWNeO/y).nNyaҥGIIb:b .@;oavh'5^$RW j1g|@H }:{нwR"\K }1LP8zB؜-vLQJ`%!3qF.ٌ0ߖ |GS=Tv}c9#m<%Jl|ER 1o;^qL@ٜZDQzϦmCr$=wk N[Lӯ2Vs0.=ATǞ|5lY<]TXhYXyXV(gpdJ#E캠c!ȣ/=f*=[[16Mxؑ# ^P:97`$ʗC۴tgmM1K8sJ[\yn}72iVb3ijtYPۀQe 2nO!j8 ;uhNl".jqlgp Y?TfST%?./vqD@CW> IVAHMK\p/F1 p d/WõҤzZ]-4Ut+/*P6c])Ō}מÇ451!sQ3?n($ޥwr⊄G칚p2vnWFmڄzc, ~WU^|yL4r1endstream endobj 148 0 obj << /Filter /FlateDecode /Length 4367 >> stream x[mo丑p.4K؇iEH l AL w˶2ݭmT3sXZ-Xz"*M**]]}vl]_CfWeR&_]^I.IR 'G?glR77]=ToU^$M3JtX]y]uб~63Ү6O&7$כpIK~aPoT{KyjCRzcrKUwQ>UU.~Un]mSO}~sy ˕{YfIYƫXO ҷ21p6KOQ(]βӻXw>5WO]u"Oxp׾1'y^bh㝖 m0VدPsqT5qKrx ;nCҫm{Ůk\wZj 1 D]mqyVSSO2m3W:hHΌK$t`,KU[Au˱"X3.d&fF4jHjs0Եlj m׽Qz豫ÀP>8ggz FqA'EfVyK;!+fH?KHW$٨;MBv2GZvbpSM=)Zeko4մ_dɱS;[9|^îb\$4p_Mf/ 0L*wqv;B#}<өˬb#x7r .3:U{.8i?|+Ro0熿`g-&@8BA35[ ezqzh&u/?y:a:n", PX!|7SYI?20hJ0 f dh}S`bw e%Eh8=o?aZסyBI>p/b? bx4D5Q $$1k%"9YM.jJȮ$ne^АĿ}cs>śUb[-e=K]5z&)Fûʎ<*FyR䑳Fb`C۟#8;{VbȥYAkF< d؀^,;ȗuABG{Y6qMIt"n)X3*)lpP7#@["KP@7+J&^= f~y)Q!72 gqE gf+2N"cK>Ӹn5 5ZwPN b'vj'fܨfL`N_~#%8yRHQ/9Y3&П0D.VhFL\]^RA6)0T6C`{YnN$͔S/Frh2/AqX}_̙R0ђJH2/g*qBs,!̓'\{ J͌9+Oq2pX+9&ɤ36[/p mJbD_F]7ڬZcYDͭKglކ-sa Ycle8QQa0UC3q>w=A fgwSx88s:v0ۻP|+W/'NycUoqv% xckJ,㷺A<3@n9ܰA7i;]̹ێ$=^ĖsW}b>fo#Ɍu5X?W)U~ sHh-[\u?AVnmC' Z3a>9&gs6jQ9>MrkM՝5Cb3!b<TJ*@M:=PXDDcj\E1l~QxS&ky*C`xwl #jUu\T՛p[TM2=JT5r$VK;a#dGj1B%:L96/udZt>Ĩm't1BqZ&6s ; \=SVG9htgb1E2rXИCVMh ^@Vzc.eJԂXFB+P91DQpꡯA7 ]Wu3ʓeAsXߢ$p"i¿~RM!O;S"7~7U/#Y5sV.^aDpO30cfvIn"!}BU.νh0czֆȸ^&'Bj1pVL'sb(a1k .ϋʷgFA,N\m&<_lRJTm#I:A(JiUXaCu g m>)Q Ӟ,\1Ez2^+x$[2.u:RYL~R.2:…[]}RXj ֗jB͟W@Uu lKq|аygof7KX_ Q3Wr7e:QrPiL,^ ;4ҁvr:.pŗ󹘞 [ZЦ3Չ&̥iLl> ZN`8j7 VrwC8y+ 3KgQIQh \h@GKMXn.4])m>rG)c?1] kKϡ `/V夡ӭdcU(m/]r7Dظ9 $[$ԩ)͒fDqs>&-rB%/=2^(;4ZlEzX!w@ )S/s nv;)!pXQ9a(J+SK1^ے\P@xܫPֆ kV;{i*;/XuQ.a/bx?S@_!Ny̻J7s}6t<p (."a9<B5\vU2tmeʱR,7PEm"`+}>]k3aY\oDû@1rXendstream endobj 149 0 obj << /Filter /FlateDecode /Length 1737 >> stream xXvFR"'\.I("! 1 ([ŋ -aA؝3s9 {ǻkXΞb7̗׳ϝLz>RQ/|)jU<ϖ8^_gdS*lzOww sIu XnjTjǙ]M~!zg2QqpG>wmmDaGk9cELՎ웛պO&S-K %JUe>)Q#l.F&ɫ>_@2AB&4b0ʓ+XR@!!-m!@+*2'4fSˇތQOĎ+(u1Un{QU5kʸax1nfsU 0(4RLP|`I\2?K5c<iº 󕮂g/,{ڌ#F7mSnyq5(P39ZxFɜ~1h]gނ\~6B60œ"e`oUźioߢpկD>eq هl h u+F7jՖua>-E/\uyy(>أKR 7bJ@2 *UCJ (CqVPUx"Ӥ@eR M6]X#g3]M?>bDAK$YՏ&[ 3$m|kmjAA [ZI+ޟW+N}Vwɉ]\:F1!/zP20GA6J1.bՆ+ZG7Ldz.HL|C2OR|:Mn%|_ϷyU rl-TY8~.c"GG8+~'5=jPZ cq(*|#񘣸DHӺ\\,wb[t@(!w*@X!MV=6y!)iH18a7cs $\.dY  y4wws̜"j+px8t7n1RT0ΕKl0KG@_w}pQ&C39\2NX+#o^e#RWD п]i-r:3J70 uyPI8Diʠkeã,_|D/M 5ap,}6NR)yGB9 WF}71¨܀v"I,Ts ._AA"ftTyyȠ?xSDMi1!q8*]r*OE5:O(MŪq7dC3_9]Dg? Vendstream endobj 150 0 obj << /Filter /FlateDecode /Length 4898 >> stream x[Ksvs]RUғa,$Y7d9fH9?Kgdc4,*snzg<,?9Lg?ru+ oLSWg\E6u޸j u /*rcqZW ]N胲Xq?ԳB| ΄<,Jշ0@e|UǧdVHՋY[]H;ׅ]bBBN}Vop/d{]Jn-ghSsaF[A|rWJCn:4S/7USud nڨMшd&ؖvʍעAYZۮZ=/#Lp 0'h)3DJ %ۃ0l:ilib݉>r3ꐾp|vX Mo¹xjʀ45տ{BC={ݎi*UlW6{ qāǘnNϮvlO]Qh{*QL{F]8dX ?Ѕ7?7gv;S=wޣG(Xi m4a kUi2$o[sP̼I|s"`!ẀH+ WxMSG 'Xfe,@ϜVrQ?de+z#}ݴBLjW lMnc#7C7+dh2 :Uf49U"2s% Rk'XI U(UJjM; rԷ3Qyc eUP@z}ہ| J"HՙQf?] #p'1X,j@&ͺ{+P ڪEd0S"r4s*ĂiaBvbrlKtݤG- = <TDԖ]gH2֦JxXkթ1\Z &͠QQ,wf~@YUp_PqO6mh%nceP̛yS?I%BêBLPf=^gSu!m))kZ$ݨG>ڠ(,,AŚ@=7v#s6C WÖ4MկM\ ;R_bsLΡӒh)_À*Ð'eZ:/HJ3!}=]4 ̡8sB^, j$W~[O!ZenJu?iubӡ! (K6lclPdF!P E\10@4TR`an"i=JpW;jȟA,f*^iXo&gd6T'fmi)+IclWfZ|z=tOO=tc]JLobfS# ͺʾ~S8 PxE\5H>FTE˰S嘩*RUpv+q.1Pq6"%Juz y<ޓn'66E 8$Iv T!D'g6S,߶&>.03nZ+EHhZcؖ=~ 5C,p|CTU VjL%p}Øj,s%JGp9OL;1::o1Q$Ez.;۪aQR476^&YTږ W_`5V 5RkY W0fݕc:ҥqғ۾7rzK-1A>}qzuy,pqwPz *JSioG-@e3C^0EfVj'6"13ěM\l'kjca\Q>JApxzs{jǂ^bGBE\XSi1#_=)^=#?Щ .SʒlbTL]y=jHyq{Y"̇$"ZILZC{r8>q Gb~/l;o J;?g}f,Vt9ØK-ݾ608.SdG7fF>{uϵꎂ|#X6BRyM`IZ&jr{gُlsqĝCSL%n.7dBWmD>cZqXRzx_v+SxDDּҾ^}%PQ)AGbl_'/@<ܗ}8a ki#! MeJ=×WtF~c!2gA-*%ƪFow!`o"Zr >E8ME)EbOʘO A2|BjtF\j6݋ , , $؆PwBgOaA+*|WNu"$Iݨ @NۉO^`F |xKHjIS* pjؽڋپtUI)T 1f .+1|~8tWv J8I%S:r~yˉɽfBa_59|OG!勑aA8 &"R$_0#4D@qɶt6ݜ7_ ܽL Sp&f9YyE@oQE8#>])rad};77³V9~վ9äyok8=52nj~ߎr04%.C5S.ILǜix/RBwگΤ$\(<8=1iN{D=FTVO8_UnH+R) ¬C _gGB49m=tK*`*M9K]Cw񫧓޶#7朝ih9&1=iȣj͐}Ϭj=& YV{44#|io;y+\0ogG󹗳KuO$|楋EUb`!̂`- yq>rHxUf|Jfd=T#d^F&Ix"}t#S=%xɻBꆻv1T!Iʜf'DZ: D4˨7n<{T w]EM6ۏƺtzK8("[h1M(cxJnLl=)ۥ:)KO^|S7]5I! §i>i)(xtT'ĆH<ʟtex<$E~D*̸v܏MWoxWhr:\q'\DOKߤgQ[o|zo>FfE̩ s4B'>~ґ»\Zjl:\Xd"\nTOGml;lI/^ xϨO4!.J}p՛0rصjb S%LQ1w ٹ*‰„A_c5G7JSp7W񽒓#gL<zbaVt)%,n X/xj:5Çq|t c|?uc"yC ™+E4}Ctp 18Dќu= iWǕu$P ]9 5jiʤ6}x >endstream endobj 151 0 obj << /Filter /FlateDecode /Length 239 >> stream x]=n0 FwB7~ .ɒAD" 3!CG٢~ӹEwm_)1?[D}[.:r\~Mj{?5iKcikS>jBq@aI>Yv\Ѓ=2P%=@z t/c UR eu :;RHVe>@Xt {Yrۆ䶠t|ex%>N-uܥ yendstream endobj 152 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1502 >> stream xeSmPTe{(EX,ii4Y*eb+.,*,\CRe]?H rJtF1H]_~t~4<3=>yCS2/i6:&N@Sĩ G!oe'Sp4)MvDgdZ͆E4K҄Fh:!)ѤIuDTk3 :U8_odF'3) ,zM.KgޤKּahV$uG cfEgd$̦zEQ>as^ pV(SI?@mj 5@{(dQV{:+Y¸dSezhWvCC:p=sD# E %GwTy"cjt5]ާ3u&PY!Q6bmܵ~m7!'n4`#9(aS:V _B{{"Q}g=S\pBq;HAz7O,1r9AVwޯ.&/;Q5&_bxlI^gs>VIgHjcD *S= Yp_Cv*ç!-Tm5.wc:ͮܠ3b8̗^H!KPTQX͙TA^:|]Q*$6?w>S$ aNJ3 88{k_mFEX)y6KDo.+< WWZ~䵱zeoraCgFF[&'5pGLs'?!ݘU\[ȣFX툹ї.Kc0aWJhVɔe2e=ZWwT =IM57;iɠó'ɔ*+rQ1JT37<O4 [#ح!'iǦ=T+IQ8Iq[dػL@4\8pǸ}qBœ 9%DRXCᰠ%n{{i)pCw+:xG(E߹WWPXX`j% : 7x-Oʊ+WX\z[T]ΠW92pkt.$Ic:{?{q8ba^߽^E- ?tO5mǯ}?s$\aeA~7E WtUK\VBX`I2[P1ߌM6VRD=u",{ ҀKx:p#)<Ξr܁f whpZ{YZjEY#7}na #NC$OHP9wNq'l=6HD~B1xmӄ@ Qml4E+vѕh*+vdC=8a,=U}CQendstream endobj 153 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 3463 >> stream x]W tW-٦X&6f:݁N;ICBBBcc 6xe[-ڬ}y%Z,!m!$@&CgaL2/Nѓtt:U蜯߿i)[1;k& *Hda:jnoaL9St8kgreɳQo[hZ[IXq[rFϚۧ'zmZhib@ݮֵ89Nk'xX?`0?QkJR,җ'IՆ$R]XIdzt?!ϑq"ONcmfFJ ~ڨi ikzt=ҋmL9&Xr9 SIel||tfP t-r6Sr)oKR=5,#k?|??9uOsɿy4"/rx=$ghFq7sϟxɮCle뵂񑱘{ES-xleF5]~>:{|PyE9E‰OQ=G2ݸZЯneʫE7Ł>JBΐW6xX@xDxfݘɡs3.7?7?p!S"@+kkEҚ~@[L.G z>K5S&L˴I&c]EBX^W!tZв>%{X0yސcc`G.)L6_08úW(=ĭU N#X~ "-UkcQ!+BcxN`THpͷ]38"3>TX,+0q!n&>F/0DLaCxɐE&JljR$4 nY4j$֠6ie{A^if֘tڽn#5E2:8z{c:0u=ts: FEBUNid_Oϯȯ jv@.l6??:vxA5uRQQiK_yY?ysX0m[Ľ"l%b7.I+35((U`dUVڥY`oݣe#08<ઋ@OqnXf7(p[ࡧbK,sW..pz2G\mc$0nѤXΖdYBK<4٢ba vՅrpO]Vk}9655hdHXDSҙh_uX-tI@ ?Z5YB{j1C<7%WѲy(-P/V](fKs96XжC{\U\wp@08 6ƣf7Ib2ހJ5 jga>;s›JEM-Hh= 1wFl7ZHT"2i$D)lY քN P-fe*.C3 Ŗ{n+G ov9o.?BOߦAis[52oѓ~wq6P"v2I{L>aha7zum}ⴸ^cJaRi44.Tګ~ Ie =kFF AaRzKByB$`Wp blv7=cF )4(2ލ&{PΨ9LJޫ3X%K7'ꧦlW&u5]oŽb0 % :-?m% 7@|-})dCnxvrv჉,vZ}̌J Mj)HAgՁ澡ʻC zdOw}65hnGN&2Zh ZM*9۩Ҹ1!_{9D̞{ _^,r)ZZQ.L_k@),9P2Xo c@m .iTɴR΀s|trtb*#R{JeBNPl)?>HFq ,o3ఢ?Z<;ILb^'<`,MS,gQ3 FC+eQ\1H#_~nϥgyY[!G\Pl!+JRIJК,!(|%i|L)Ym]vo'{#`0ZYI~=o`97YhӴwYKɝ^tXYgI~o帷_ UZX6w' Pme%k̢Tߺ% 7endstream endobj 154 0 obj << /Filter /FlateDecode /Length 665 >> stream x]@D| e$?`*  v׫6y{}[.fcꭙ/˴6\/ˮ2Nǰ/߆6AQ?Cҥ~x:u;m9se88ϏvHm֋ԶSK{.RۺS4 7tS`3m-=={= V?)ؑO`'Z<|E)j+,æH=m*l"-Z`I? !!E`4IDD 4IDDi(@FZM 1-ŸBLK1.ŰRK1,ĴR2̥deffeffef⭒`   AEI(UXL\\L\\L\\L\\O(UXw*YTXTWbu('(U@bXCAk7` y! o5 xo7 XCAk7; v-%`7U!+CV$JUjF1'œgHlƯmMJ;kʻhuSU=endstream endobj 155 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 9019 >> stream xy tS)9A@bl( **( 2C@4m&fwIǤIЖ2ydEEy;z߿NW<{7"&&Ǣ ^=z4фnс)Wm: y&~DLJ<Q~pPRvjP0havz?>^- br)73-,lĂ s SR82g./J~1cǽʫ'6O?;'GpFbM(Gy|b B,$abYb 1XJ==9gC/cȩ>D.{ߗ>u5cg~N ݹu,mBO</tdAXl|Zg*X>54oXaO 3,ugW<8|;|c w s.DWKbl!?Bf e౻noɷ~@A 6U`ד[ĔT奚a}DyyT_-[/-  zVMLB-Dq’Lհaz?/L(7v;xnrKt_F65VѨܐmZGrYyV&W[c:RW!dښiM&Ssqce\0gd sR ??'c>s)6R2-C.LJI(Pm $oPܕ d'ػ$SAS ȔW_J9 I,qǻC lI[\?b9 b1 @aVcrPjL`x(. ODQ(.?~7`!{:>E^n}`ͽ3'yQ"iT}>W Db;^&AAr/цRr;]rSUhj6l֧|'gɱ$p |~wO=Y˩f*dmDNjZ.L V V VeT^IXz֥ug䮻RUSnJګ!@9",+q}D$ϱ;GQK -F/h%Z _@ y>l6`*C_bt0iՑE;?ssV0(ᡡt 5^'ђ|!wo1" Wy\6gJᔚ %m`}=xeކM;$@znj*JZRCy[^): |& [Ń~lAu@k1@;0ccwg{9t_G3"PXHHՠtR PX:$Qrwu\{tv+U ߡAXߺߥ,{cFIqƥٹIQ&IOn "zgB4*Or$] {g{Ph, YP&H"=k0YGC Ö# }]">UlE7NȒC1|M z%YiXbsR0ؗW @ބFVsެSؾ1žԱ 3Vɒ1.t쨋$Tf3v5|gg"Zu1޻=PUޑ4%J C* ?vƾc"d (2jym/ fX% a5sՅ8B@=j 08kܖ-6י[2}Ko: CytLt0O\2ȷ=G]xwJxFɍk54z4Ayk2\NTh+__ytVT1k{v3NeV{=6nSR+8lK }rQ($ohu&mBcHt(@WF?? [| '14NֲA[a K9f{9G=vs/۶9`7:h7aڜ>>YYo]d)b2Dh)DssUb`9FT4QE$0Lų߅ã83!<@%\LWPqn@jfrK{x0}4&]F`KcŸI'XvѰFdJ~/yc\`|3߾F[> xq*]u4RPIhm5ubE(Ձž[˸2d=h0:pΕ@A$0+uN=`guqz1\8Y=4޿YEbENI">V\xG+ߌVKD~Lej3R3㸏GHa/ӱ6fJy(HLU6IdM[VFԀe` 7|&8:OEy2mNF g)xӠҩjj5p һa9瘧'A\D;Dq֪O$I2D^fkj+l(|(}읕ݺ}?ςC]A6WOwF3NZ; ,pm k) _5U:R}w~\Ga2zYeMaAT\)z֜|xl/L%l]-^'ŗZD8 Q'iC 0y@Kv- M*Ҡ^pE"MVݠI q=Sݵ`G-(j:8F} kxv6}z[q#M܄i58i‘:mh[{kedn?S_#; G};ȫs^c j+LG8CI0czJZu?m'?¸;V= JuRRvY@YUYz|xeʼ=svr*r2ٚ=-?˝O~b0(3 \ws8*,ϪSBu:cF5W=-k03M{ 3 ʨuD-z7cc΍1؟a#ZIw!)wSXrV{cn^ï{tZ9f䠡"m/Cݬjd&X)QI$+3H*kS (Y(~qp>̺ ]jm_܊}'(X(trZ03wFJTuRb@}>e E1`Mp0ܿXJ srbMT5yRy,}O rοrmqݘ%:FJixy֘_tP${ < +LsNދAG+9{v,B6cNn#qI\FIWќ(ѦS[*.\pwV*׹)Y2툐Fye1zp ָLQv0WfYZ,;-;0VcY##/F:s+t<< ԍ^o|@e]׿6[mUBpPq1`RN&1oj(zdG'D&XЋH~um'fN ߽YS0h42܎*sS V.y%u *k3H tk:f\fo\tTED> fhשtc:tmi{γO͢L!ߢ )۱;rNޟA1רC?Mku0\[ 7Vʩ8f(<ڕddrR')ssc7T=C\jI?c_%ۗr^!陣( #7ep 0Dgt&]JЇSAH`<$Se-v q>rY^j,hK#W+bq'CG0^q[t! i#Xqr |BVmzFWS*(T[Uܿ_QV%;r og5Z QžRy(9D3z 3]:+ŸJxţ3|YչM|iuFLbohRAydo(}oT'xQI/: p|1g 7'Lxjc~7Fdhv.nalկX3LZ>9L/FMƼ}1g,24£Axc[ʞpCyNsN^%g6\sQZ9=F/qr+pet &>M|dm$Mjڨsi%ҴW+,$M/nm/ٶ/+ h3فv F4vSpr`Ew'7ek;>sjRȬ@k*!haPWQg4+)ZR` a@qP!U#f@ESK2F Fd̐eұKu^})"tbt""g[Q%t85 0=%=ػ'tnp5n⨤ g ߚ`JbGIRMcZXSX@*H*_]0q1uГ&X'c(.ʏ/'c#Dop-; SuKBk;!2fT) J]c_v4ZJnj[C?jKM8R_Pml`SH_~rεڋoħ2Cuu5ՍQ5k|"aiW? X5oLa8’u6$9mG.&l8qɋ7  RskZ#%]" #~eN#؛c72WTC P__G~|3|X{{oV53(L!m؄suowp8pg!MvM P'P|xUYtV2t(*S ݌gCd0Sbu_Ý]Agp1]O.54n f$1Inn< hz=ـ69χߛ{^ gfԓ!/ {cF ɷ"|xXbqy?oRi~N0:&/ziKy@o6=Xf: JM  7CjﺛL x18Eofg ŕ_OՅᢚ|qqV/)p4#ь1Ϟ r 9O =mx&l"ϏjȽrv6Ua=#)L1ܹϾS9!%DVRc_2A7 ̻-2߈&ۻu~2n38S`f悵+8A@Zn[ =S)YڂrMucvz&³GȚM˓`FYbpـ1asWIo<h++ZV+[3H>3@?pT3+RJX_/MKΝZ)CNQ pQv$:sNB0{+|P^p*NP"r4 :a9:NlޜG?fW|Mp9fXnulZ&ɔ7\%\8W7Cp HXv33~;%k[z4@gefeҍ=.mʄWk.RL{bF&[yMW 귅IK@7Ȕs:*TJKa 9`" ayk _F-LkU}vuN8"XkZ[u(ZL7v6pBDr)|WCCo ?Ꮠ`Br@Eֺ=TX_B8?4b ddǙ>P]Uّښ^[_ш[!` ~?9EXٹfނnҤJ)x'ڶq AO0xԖ` (k\QaN^U~]Maư8EǷ%G1nčol)LrPUv^d)4SŬ\H6J<&/kN~⡼ \ xvh0&AbșNuy_yT;4c>Q]rK]:fpFcSp+lM4;%OAKih1פ37ZW,Ƚe`Yb5:gN8sa¢vnsؠhAKH.svʖcypXF%{J Ys/Q=ӗ%o5 )nj? }m]`SKvlzgU$1 @+B< =Kiu0Ylԃ*25MZTd̘T{i5mp*J Zu w)0Y#7詑uf3stW(ؿ 9A=&'W~P[Ɂw`ҳdEǦ 0+f*̦).e?`T,l#wR5.\i9Omnf0C)A\SoiP> stream xcd`ab`dd v 6400qH3a7kc7s7UBߙ3``bdr-(-I-ROI-SN+VN-LCa``` b`0ic/u ²O|q0-Ugt~w}v)co>bs-~WRS][3_~ݾ;(!1".;lᏀ9߳{g,;a{r\y8iendstream endobj 157 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1587 >> stream xmT{PT>{U\^vH K&L'mƖD4 Jl|n\>`vy .[+.0./a5hVmh|DMk)t~K3.j:霹{|!#Qr"Ryy.'+]3I gnŧp2$ˉ\&Ӯ|͒_hf%[E ɖes{b͔w|B &$zI&)eJ6tKXɌl:7(&$jRceUkj^^9AbXPW+@:zS "22m/_p;a'цebF6wq +%WSQ0Ơcq 0]n].8\?O.MRzLs`Q@eoH.vr,jȴY-9`smx}q{DE|&^~Jg3j'#,@acࡠ U?gdڻC8K6@AHOLݰh Ⱌm<0ܬF y٥jR KcX5AXo+8h;y@WA16'CbH[>VaJ,Ը6pL"`c?Mt4pW>1C\QW:\ sW+u,-TjkCMl.+i,ԁ\dxb?\u!cqD, -׬6ѥhsYwi;R͏&uK0{Z-`"ˋ"MDHi22I)l~WNݗJ\[,]k+VvÞkX?8t)6E e`rxuܥ%Q(f+k^1r͐Žo\OTl8{5@pM}"$Y=lL%'?(`|]nk^b7l5߃=Z{fh\XHGSh=r&=|Aa*JT}` mU6 7O[=uyZ %5̒eA胒@CNq#Q׏W~U+/=D,Xsi HNSboEJXTb5T]w3=z9t3]{bv;.ȵ]oCPvF0>It1X~\DwG~_$u)bz8,?uF3?CyHp<<S"u%偈M.,<a{Y~F:.\4v\ b4}nmPD77)d|zTo`mf,+0+UO7]b\ikz Pw>pu+`+?00Tq0ޮ7`c-K_l_)IM g]A/CZ.>DXqt]"B x:endstream endobj 158 0 obj << /Filter /FlateDecode /Length 351 >> stream x]n@ D|Vh/%VUDCICcwFvq<Ӹ:/an}Mwv'LvɊ[|,^4S(JsoMŲCY0̦Uu E s#C lU@]`mڠ>RE hh܆xgVxG?$0(4)nR`PhRܤHGBW]I)`"L}# #G!R@L,qa_A=¾2z}e #(+#f=zMje22/^C/,endstream endobj 159 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 4212 >> stream x]Wyx&PU옶%N|U) @HHKwzK龽}AوBg@E':ۨ+,3Wֹs.=xc%mzu֬y.#7Fv 10atsIhSϓ)( ˲K,.)QP:-)d׎i yY+ʲ ~AE%ʗ E۳VeYkw^__Gb5xXK$ FbLl"B"xXD,&ˈJb'&3D,1 A ٣c=z1 c]j+=-;~yܘq +&tM,xfRqOy}GOW51Qk"12_S%[{{1b*V*Z{Ij:9MQ/b苤z %h 4g)lSQ)u @A@z`jq7^mxt,ظ[\\ڪȴ3vQh2ڄ&O@#O LPm' @J J⩂1Ȝ$XAQ0Z98}ձuP3@GK\z4Y_laQ=CRlid~QQI y'P_Ax{q-49#;k4[7R}RDtCLy@sZA.zzoVt4oZK%gpq9ٮRi舞}Br32x,BSW"T_y^p=#Yꌵj[cM:aMf*ZD-KNJgEލιNi8.>ZVbu,+2+ZЁD? 7OV/.1("/ {"I%%bE$a 7j;$p={uN?gJw3Hmh Nz.Q Z?ֿn;7azc`b !BLNL'CHlb&ե:3` %ZA25 aopOA;$6=K;b[)[ >/P_Cy1h vU p$s)#sWn;TYuv=(,2bĠ6VO_]hʵGټݶ<{# rtq8$;g3 v}s5fdٷC_1'мh&"21)iy ?>~92\SSzA[*4>ӵәcɁ%&,*y^ᅆi/'}ky68$FHpI9l:Q'4ѭsH ~Q!ITTTx!v ˂z0kwJը;jRb*%:!Yc,ң*wUYn=Q)d_i5&mD`^E9Gl f<4Y0I=p&QZ'G|N]qYz36iF5ͯ3P>nan"ܥIw՞Ǟ.4Oad$N2㷂:_PP ˊ3 j W3i%Q'|XC,[B_ $xr]ĺM=>}C!S8Clq8vx{jQ*NJ)ɛYJLJiP.]xKԅAM.h j,la,M&OStEz}^|R2Xq2śR%1UUvs:=x-1wm :j%c=f9xQ8>:{Ϫ:2d0hbQA7VC*L.1omV9V3-٣ߢV-O>z=o199k9EX%'"5`C á?<4eܬ뤻1 Gj! q7tQ } I~p7 hۖi$m;5񼶐RߤlxB#3D'%3L2V6In^VX<+zSl! `fpjaKiWFD B&|j1/?~ƞRevC@ptę;ءv~C^j.wJM0;6`Rgؐ*[`{iwjOY,qlzNכL?Y[ّ?P{ 6hhC܄ g(;S_(ٷ$}ʞuE=cUa1;1/R\BUl^T^8Tq[ONcޛƢѸkdJs`Ţ9ѫn4MF5qәidnK%:l~w4h=e]_x t:Chlյӵ h0"5fCcͭa݉7#rSi9;]uVԲ JiĎP) 6>:snrnh=9;D9[RR[@U:zHET\> SBT. П 4o ͌ SN0~?NCkLN(k+))p3NW=^8ʏgMu8M6[0 tܮN#iQ\I~ XAR- dfGGnĉ袳afxAaўtў3A-e^ r_f XNKLq Kn PpU(lrU"]n>`zWJ:X/ţթZ7a-[x͟GE:.:{\~MWS9=;` %ϴyoKi1X> CIt$vꕫWT*5 3U^ua@6RP1#' 426$7"W!є?GȄXAGSq_m:hDM?ȍML߸@MWv\w5X1Ov/YmR-[jʰt6p!   ybVya=~r ,dvkH4wEg2)1?uxes 7 CQ r{X0"3ZKDY_gZ8mRRxhXJk4 pO{o9.%h~@= }3MD5(6G&@+jl kD wԅ,w[%1duu--n8 kPŐoUS%[pZպ,WYcYIX2;(p(6l_I(T*0\}2FG& m VnUP* +2hq @U5eZ t?&M/+,eڭ&BhըnkKO">_1\nxf\ c Rendstream endobj 160 0 obj << /Filter /FlateDecode /Length 544 >> stream x]=n@{7}?2`lc7.I.@KC)>3c9EG`lfI^_˭خv2m;˲;2ImXwo:͟?yҟ7שضaymǾ\wmW8U"P5c S Nj\5@y,`=A<0A,V5UQ5U)2*4*)2*4*C )2*42 @h4BLTF*HeT:CO]9q,DZĵȹȱĵȹф gνν&\m8p4jنuS?BTAQ*H QD! U(D TU*p>3 Q|Bg<o9(5Tl~H!C={> stream xz tպn@U1(M ZrPЀ "@@P$)NܙHBQ2HL$=N(mνoW Ȼ}뽕^ɢSk7EtBdeeu/|eÇ10%P Iޜ 6>4p^>D''V (gl\Yrp5~? q/-X>rjXRtlWZj’k}t3ώG'>hÆ hQb1M!' \b1X@L$&Cdb 1AL%^%%#׈Qt9b<1( B@D_" DPĞ ]w9dvCױ]u+iBt}Rzq珽{}[|[}erm9=v 2ᯏ4!$4|iF1 I6hx8lğ1θ/eh1?I*DUe("c V0<"||k3,j3?yI{)8s>΅x{g YBjtxhT:2c6rY2jDA`:n"eRSj&v&ḀѢ4jF#u5>0LGRӑŸ T\HԩMRr@FDOs`g^T+ƒ>,Lf5dHXhQ@ktţ{KSpfғ*Z*  ICK.sE搉j@-*,lBME<"MlqI5k^v^OTG2(Rֲtnv74ӌTiBd\r U2i I\W%}dvS:k; )Z>C'* 8=#hKVG"F*4U~!7dՐ_۸_&XvMt^^薂<6@(X!p野>k}=Xċ+,?P38=e۱˝emhBuK 80vJE3E ;'9[tLɤ#$67w\)l S0~>,bUv|/0d8L/d+t .lOO2())?;cwc)n>zZӴ<۰B=Qֹ`#wwߥS&XԓL(|t= Yf{N%erZUCoĞIz%E5.rM/ƪjzS_)_⃹LTQB εӑ1ߐ @42ҚoX}{z*6(RP*ʭ|o^|iGG|NG9Q߆^l&6a:!sJ-RY\ƀėhA}sRY5,xa{T*(jr$7Wx:!`$ T |+)GƂhs58Am Nb=ʐ>pig#SМa0sgO$92ɀ+7+p}…id&EJD%YͰXx,\xBS%8>\ "ɥ.x~SPgu&ڂ&]D/ Ve ? /vnW|3{C(/>IVakNl>kR5k[pϮ^:mI8&w =I;KW]#tK+v [wc)mRMje*p UW4~=Hom޲ܵS,|5 l6'{GK0/e;bw9:p&zodϵ{f` \5ҕ: ưKqerqk9MQ|{W:,wdrS)kQ 3{ۛ+Tvau4#=|<9ƻNy6p7Pyub`=]K"L5U:E/p$!Ca/$Uz,,eRFAleN) QH$"Z-omO66wIٺRՌ%Dg'̧FU5<&nZG6h"\ϫaw$RbfOW9ƭScmBQڴ,'tƴ 5uP";渝Wd_ |OazPf>EVee{螆O=M 4j́c4)nBTðZ6w\R4[4sp&pJ:\*ɀBa@e&{ c{ݽ"D`/^BC[` )fY@Dz؝^$/0nކW8lEv{,` %Y쐱"R pɎ;Jv&'VK+<__Nvl}+5-ȡXe.BCAV6*>-IRU#WavBMgY^Q@j)x} 8~h`Y FX {q&qWC@HP M"sfYz) @ ŪTb`dj8JM(Lj =ĈAd\ Ɲg?8qǸފ َkE}7"fMfWzF(hgEnP"K-Ak| kn,[c8| 5pua?r祌 yVqXTwL?X v+<sW.1vޏ Is&e2CNj5sH#6N 4}O&pLʼ?GPѰ:DAan! l~QlT2rary~ (w{q˜ڃx7f7:P\,qv[6ln`q@;evypf`fhw5XlV:gsCr}>t"iM _SO!Jr\YLeHg"$ϰY^ @ү5V_O0Mk䁄'榐̦'wcd?*@Z9ѡ?iQ' QVyTO4^, 7F->{yܚʵk*,S(%:PM',=c=A%rXsΙ۹U84"R6OV͚`=4i3euI@o!Sg6iIt0X?m1aZX<"gw< ؙ=$չiX]xw߇=|DO+ۚkt{7>~!>NJe8d-ɖ&:ى}'pvY\x j"9;K+Qʵ: Ԛ9ζ H)lOQ;af_8R.Y.%`kP8Dɜu H0Ķ5nl=S'? ˗շ 9'QL>&iR"-u7$e_ A]$+ n: GwzE }Oa/JA4\ECM1k==}&znz E hC=gtX='i JO=eSj\uN8é0n8 S2D"CM5MVFlIk=` 8^C"r+󫕺*2 >-rvtv _ 'O8ӓf ;^>f;;tp#O;h-9 u3ËO8WPKsw:j˜Nn%9qc%{X5u9S:oo $ecx~µ _]?"ub *`&Ѿ0϶ԶԱ&4 V(硘m. 2'1Ѵ3 /{Qs^l+[L?8`;89up{>A K*g_'l04Jzlz rH!|\sUX,J*]c '`p:P瞆uʹZ W&&mٵɓN?sS΃'.OYslFn*)NOdEw6F/zesvv=NvXٲEկnmJ0K ƬS%(p95di6ViB!]f-qM" l!m4_Z_ǝfo'vfޜ&Pը4zWQ>@rʅC`&H>>3a(~WBtD/BYSt!/F}1ASA ]T8]QkJ<$ŏZƥYJ<0q#efԠ E 92EԨ(qF&7(|cGAW0aae} 6uu?)I֞N~3[)DSM>FçX B8=Y@%]SCu Uo@q`3$k֖,udX.ׅ@.D)7qLK)-=5F ,)_=n zqZc+Jj Nڮs fgs_OO$zߓЫ;AO]fendstream endobj 162 0 obj << /Filter /FlateDecode /Length 431 >> stream x]AN0D9EnФoʛaBRAY4BYp{f4mcot7/%k=NךK}*\zi~6ǧ~y^Jxl^R ssYTIqLUui}tMR`' vO{J6' 6I`:QMMlK A5k$@FA[$H̠܀̠ܠܒ$ۡ~'Q!QAAђkD4"aoB0"1meP߄`D0jٸ `$XE)Άn݄o7t$|QA"r9h\DN"Iq94."'cl9Gs:4."<˳?uZ2_uAtxݡ~Dendstream endobj 163 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 5531 >> stream xXypTU!aC^jEAG@`d Đt}K/}߲@@@"o)Gg|Μ]_w: ̫zW:I9~wèk)x֬Y_~/X|.F5yxlg߉KRm$jLYZ8\T-fˍ-UtEQ7jj[Dϋ%/WʶUUԾXW^s]9}Oଇ)j%5ZE^PZj@-6R9yjzzZN=FGMnj5MAQ:VtrؤaG.~{߂I0:b#kF~6ꯣwXǔiSr[cx/ sx#y"g'L2)53>76SjO{+Š|)ۚPFd+t-9\ QiҰ6 'bڈ\ݾnOƕ:z,6K[fVaz UeL̟IB2f3pig:G{<{^XkZ^V6ۻO4^?s|24VhXFt& Qhł9|nS 7T;qD V"4M{vOٟ@{(Lj-X}r)()^η->8=L`OAp# T4noq62\+&%1]٩ԒȄCINh"hf WeR1~?a v| < }G!̃7~ {'-gj}>S?\+~gYV!26+o\yiw 'z.hQ¤)E0@M*œ'aշXj˲jy=p?Z7ǑdgܡlWDb [mfdfykW.'ƫcKVJ+F d(Ohf=pĜqgӼop bRJ8\܄ {[Žc'=t!< VYjDu 7VFp~;g7߼oUYlg@ ɳQm4{u~kfjU*7RHbe{Ҟ΄"$"7Hݞ}>v6&TvrN=m^ۀXx\O񴃼 'mF$u~g%},[6 2:xO?}gJSLj! m /wr,_geN)Q\rz) aUdfAyL҉v ;I[7<੟.a#o6(ZbYW@D#h2?vXyxa!ϙ& ^U9Ie1m( 't&ti~XwIeHB o*42 *ɜՆպզ*u5Mk'Ӌ;Y4-p5}aWLT%,BVVH(R GyU E aR+!H-qq~OsW+%]  Sꀀ/Ʋ0閔)J@Y}F˶7P? M:i'=7|1ۋ\6/Xp!!=Mpo,JH7>_BA7,Ex⚂@9ggœLdOqR(uׇYtz\~[0$PB7'" zkΠ>ԓ>f 9\5Ene -JJ:-|! 䵦^Xjȃ$b=u-~ r]qGO ?R>t™@&25+m}$xD/i 6yOpC0dPB!{@nڢ]%"LH{7^8"A`-J]An 1#'1N:O˾ɟ.> RҘ6ّ9B;׺t-ҡ^~Q*8 g#{J"1"A*Li1 ' {<{{`%uEbq9, Ylƥ'HDViq{g{I9܋ⴀްXm=g'IwI4 ^^$d\0x9HF Rm nTL!tA;YaJ_#NNLKiv1fqhA/ W‘̌.M[ jK…<I Wo3K@,׉8ǂP(89R7F7Z M*n.lKRd*..`:+'>Qc sƮ`~4Ii#D$-Tp-J{Hxl9Ur,±M,W0;.44!;y+J -yXGF=Vb/'ù8 Ώ RxiЏoďƼ~< ;Bg )!s{`>4Y=7}쇻v)SKA6B D>j ýXpoφPz6?[v Œ(ap7yiYg"-lJ*d&Ou~K'b¤0E+4OfjҠ6KܿzaKؾȴ>uXKvGT̩s?Q};Z{.0-)Od,U2H4*YS1:J,z6HxGC&{\N}i"f `ʙAB귋 UV:ۍKQ$DYXRҘ`y f3.nn(ZHm;}%,]-?p WZ"k)0) vﹹ|7F kXTנ=$*h7f+g-B'־' XfY9n8i<^6mX|W_AЅ+τT>X𛼸/q Ǐ:(c\ m[TU:eQe*J+jXѺ!]x$KAEdHV Bx\~&Oa1 *BʬM LT[ *uvj('${0 q*??V~!FV;zev#1|| F8)g.nҖ6jB >E2Y`> stream x]1n0E{B70e3 IYٽLQȂl'l 5oD^k]o4/V?_[Kq.;i-_Z[> stream xytʂ lB0)I   EdIV}w|[gJ[$e`Y ؆1$ROIsgQ})n&***%=1o<مi{]5LT (w{fB hZQѬ9/4*:{eu[HآZ^n]J|ibrB{{Ԯ[߰9?"D٢բDkD֊mmm=*,zLT&zIEGŢ^--=!zUL4_\hh5*QH,^tq姹-[W`*>{R?;:\1}kߧZtgTK|? +-~9k@_{Ko-}6{|_zP4ocȝ*:_ئY\[xcG$Å8J@s܊YL:YRݾ8r 8ƒao,b)7ƶtKF_SiAy6J\npfP|S&Rn5^)M MHg(&91fi({{WN ?=/[c>)Y23Ea7Բ||=xh6nb8p[uIŽeZq2A}?1KlGIjAHb[ɋ%lz;nذyK+{E _6|1K2Z8'uv%Gle6v0CYi`nFgqh Kn-Un'6a81:dr?3 ~ p%voR2z" |bR| K[!o* dwź8sRP1JO[3pUZ TX%??x ѧL1xO/ao >hi8h q wÝ 2oDpG6m՚6b+, BP,&K&z=?ݺC =IE7ibr▀+at6|!Ke%6D91*g ϛmIWh2'[uˍn*(͍>*"BIqYG0HS̳Yۿ]>3Xг_vYvwjeivڀ wv+5F)߱dQ3$"2q{@h#>g=ƿKSa~*< eNR/U^ӵ([   L}4 g|Es$AhDQGϻU3'G?.`2_3{.vx]HʺP&TT :Z?lZ ɨJo`&`YR=Vins(H^|syGyPbA8Lf$/`(=9}& y)^c#[v# XU:3[!tsErt8J> *;*&mzAn|%^1kQ-RD7OU_V^BJTЫ׆u\+# vTC%zZ! KRL<#"#6Xҁ%|FVX^rgN8:A3 g^;tN,IRN{md 8'vT&vt.1㇇.X5ZЁ#d_"{~m~I^W\/Rvϖ!3"[B}0gC +1 4:$@C! 8}v.PjAFeK֩#U=Ue˾E}>/ x2vMqikj?ҬZ0]tk铌/'.t # rBW>(Xe"lmZvJVg,yI(2j=.v^17Q <"ag(PJ enO9CN4w6JL3Z)8 :MF/.LFkrap^>*);u+p˓Gb'tMa}+PPRX^aX%gɃrrb'CR2Z2C<] ̛hmG&,Hf/ uɀAߠ77- |ѝ>'E9I=gJP#h@j@7etZJԒZrXJ̘ՈNy}h\A/ \6cvw3H2v*ȸ G":=y;Mq K*|ׇz?,l.?&v[+ (y(=m҄ygRq2(@ڟ>|aw2tFE(ʾ DS; ]2^~- 1ApڟO>H&JkЙ HVj͑g0d>Vד]ٮ^үjDJ_to!^i:Йx! M+hw ;KDvg.x *]z*ۂ<~_7AǢcؙgK3bQ ω.׷&TT7Wk]N= if٫+i;@L?~qgKƩqHVcܰQ&g_+P(z;}߂=gJj[hwj4ഘ;NËIqa ،/9θ\gv77RWZ]xqmɪtΌ1g0tP,//nW>c'Ոr nCvncVBf*W;ކ|Q,lK%4(oR*`'j y Ƭw8&<(ؽqo2+dd>A:ֵ.INT)U~hp"'U/(z}XO&5^ҁU֎5}sƍ26Ȏ?o< .KU#yəTd+)7v!<R퓛>2\<@Fύ!Kٱi X/=R~y`?,JfN"}X:HVQJB_ډnKJш'Zz S 9${K7{Aɛ b2oyC09҈a RG:h3k֬!l*?*ݙCwR~-(nhBDq!bXwemS2Q׭Z– |. uĮ@,'6\ޏ/<8NK#W)(R!nĎ-*_Z㡋oCA=Rɭ2B8K5R7$|IHwScR[+R&~+/ zdbWy +yΪO:\KűK~2EZ o[%$GQs'xZj??mojୟA2 o]]T韇i[%y22I0aqLKeslfhJ%_,S<,Ze~y'g eSAV1, ]"!@ Ʉn`7r At8俴]w.ˍT*i*~5X]6`ŧ2sF ‹ xU _-aX ?_=?l?@49WRYڠjés5Tޡ:ہre3#ȹ)x(.8A3K;esq_4^bgd;ÿ?s<=dUMe#n+#,q|uR]xife{NɁ@vޥ*Fَtb1aB..No @Ad&u=`R5+_\}x_4§;0+NXϗ nbhlZnphuD<܃=@: /ZDޮ@$lyB( 7V#ݮ2KZح'pFV vSϯ76նڲD4A=Wh6ՙn;l~Jtmy9T$h0@?[kO}Hyx",h^W$/ϥ;,G%-շJjwo߷ӣo |(h?o2NFO;(fW:'|=wl>,uZR\wݴEB3H>Ȩ7zScp}ԕI?!Iz;ٍde* L^ vĈˬ?חMEK֝\EaivrVSS],>>MZO =zdxp> #^Re]=ݙBrWiҩ ʽOPnE# o?84^oEl[: ΢?CkCWdаL97| B8qs)Մ al.^\*;Fm WqA#;w@g߹5qPR~ Aa)H|AiNS~kL#EoZ:fƳ3_E qv/Xa-.G)$z9se5 9̱~ prvBZQ&huh?as·dS0A@ UGaV-ى)Քک9"cBQqMeDPxdD m2\ "-8'߽fKH>QqpETOv|\8Qը3"v$WyFUKQ\=,__AXeM+qP#{~(\"+{Ե~W Zpز\ZqWo9߇^ݡSe۪rAnGQHQSlO zK֬]gbhN@_%i%MyFOŒt֥+u*\Yt 96efb9hx.oi=۷ׯ0N:QBkTSH=dž f{~]!@%\/V]*ZQ;u*ț ܎=zu1>`7|[Y5dH?6 PNUYp`ƫ h7- %m0iqJwB31اބ0;4Jȸn1`s_.CDޡlׅtWYlP4ԺPu)+t  ptSju:!%`-r$[b6`_LnT]R*yRi}e0=k guZQ٩omaЧpڵq9X} u.wTV> stream xYK۸}nԜRPʢ9gf;3ޭT-%){?'k9E5Rr՘яnr&,$=[r"i,؞==yx̙OU gy3gloY2Hfst,?ifNj)l2ɜgJ\u>7_m,6(eҋWq{)M,WW>0Y)mYm~+ZiE[Xի͕Kroͥ7m(?]m`dg8mGçԛό;]ƚ}[#I>[C.u&3%^#e[-fY (wPtP\_UYX[ͻyYxze48Tgu"Ɉ =814ヮmӁahJtD+.y(•t4k n,RW]}y)^3X6jQ@w'kQNeټ;Vbh(H83V>c=ea]}ϱd0W2:Վ5 25#Խ(uȿ9\9 S̆La˪.n^^\s\6a9\S|E{"X#{|3׏CȄ4tqvaR Koi⏬ tHJSz<y\qԠ[#W56$hi]Nt1nBrp! Pb]&"4a擦ئЉ)HOv 55yT&K"ʁ` Fz~8bha,EmEInlf ngnUB2c7XP:Se Q:n+)~#$x'C38&zJ%۟ml(\(lXt)$JipvPӆzi M9\YG~:jO]E}XNek#$ѭ/jvr-Q{=kuJ.~6螙ΉLz̿4o{ <Œ#Kp{yf3dRZt%T,F䒉 j躨Ϻ.ɹunٗZ*Dg(^uaA ~~M v@9؆71 !kj9 mgD肂5ʶXt(QUaYس.Xr?@p rQضR ^70 ,F0@30$3G U;:;Lxt+K9FO.H`rP8RCyӀM @íwK3mrQYl(@"P)Q-ҁ[a#Rn,(W!fuUNp>MR}_}b"]P=IJ.^K|H?o.c{/Lx%50T p}jL b{DW'?/C>2M1gNZ{Ǐ90ч{G蓦]/Jep+cl6HE3S̘³]b7IݴK%LKB u!_sOL\0|=[?rte0㞺Z =jnԿ)[.ytt}Zq{1~ړ;fݰ8JOݻܓw-e9q 0ؤ۔PMZ y.L D0af`&~MAz||( }mt0\^2|cmCϔ%-:Lvŝ'|;] & $9V~r!{ gr69*]r翀2M4DޮX {?Ch@2=,loL+lGq-mjnH\+(@ֱg3wa~\k!JMee+nG7"֎*aswmx[S)arR:x2~C6]NR3<4aDQ}M\(C4󹮛Mbm#l(''ۍendstream endobj 167 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 676 >> stream x-MLp[62EYk Y"0D9'Z aۀk@DID/HEJmo\s y6~aLBR @B^;,c6s;)6mEߑV%˷ m}"NcֵJ}8hHֵ ν: %7 1E] +F2J`@?E7'D,[ƆD̰d>|Cq/{{dfK h1;"ǖFf?W0%ZϬhu͟S܋> stream x}oLu+wW,C8wGY&d lCbhg[g9l-VHg-`(aDlj2I0!F7&d-ϕߖX^7Oo2h 7j֗g͌A{̂xiQtaWۏ^&Z*dGmmvn_(AMnh>% =UůhGd.שׁBj[W]k>٥!UnP4y'*GhДܤ*6Bw*9G^"H112b*p#CfL3X Ì')M0hɡ|ŷuɊ4c9mۢB'yj쫜xݿ; p{\!Lc,αY=\~]cѭNj[)z8, \p3}n~:;pU=[R"== ?꽕4=[e8:~.~;w@ݕKʗcfGé #3o[aOֱIJ[zA(8 cR[GS Jh!ϭ Y|oRg_*, h<2(Mhvcpo|偁D>FzO"G.=ˮ?fg*NZMIѣ ȝ,n̊n]@h,J( FZ|^a> stream x]n <ojIêi b*%laҗx>K^uٖN ˣE^sQsˤ[;~󬨩p lCq^Cǔ2e^S['qW@:zdF4Q#@zԒ WY)rtE*)q*Gg:9*?c/٣U8\/T҄uendstream endobj 170 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 2454 >> stream x]VipS}HC)M$6M e ,,klIiקiye˶0qm-'?i2&Wc&}N:_wss}bQ!Hܴak֬I_VVf_oY K3a颁߇W,{ 䡵krŪmerEݪ 5e^(ueU5 {Zx'v@l"'~Ol%ۉe"6BJ/y%c]tsl>rP#?H⻉e?d8$S%;/rMG F1c氁 B!eI+~56- Zfmݺhb"HN͋eݱ/sib908Y6z468S{ ׃FґUxX= ^ gKQb,˚d;Iɷ8TNjNX!</n{Cwv^]aFx#sS TTeV=Y,HTR:xD`40YKb@G6ni|+:֨[e\x2+Ն%97ni@(3yILux/YW^aTӌ51q9<'4;Vk8bI:om+Օrz-ªvWBԵhwE!נkL92lYӲDQ,iϥڲ[k/lTY>{.?=_ɼh4P"@,a߇׊>_uvז>_~28x:˧cAGs%>Z8;?kĩfY]6kz'W\Q"^84T:zB}3݂lO)wUV)DHztPKpIjG:Rkdz󹀣/lܠ/ ZơA`zU*D^~wx]6[+K UU7i`\\O AƁ#%;ux"kv.4jW2K-k+}Ysv c~2 &G֐za:;R}L=7`iCaHY(\i0G"_qOOө8ZUPVUcv}kV] FLC_ 3-k6S;BTTdu2LFnVw?:6=ZI?LT_59y˛~3gqf; -^fC~t_Aaeaw9H3L*7]-<#z~)|/͓sh|z/e;\"EUPWQ%u{,<xD C>it;%jqZW K]ЖLE\LJ .S]tVq7\w3E s m:DKZLBQZ׾6j^%brL\'j=^isZ!cO0gNc]ݽ;=,SV(h66VlA<܇{(ŁWLgq1DZ*% #EF~b_ኡ m6'بa6Z[)MN%lRSwl$N~D.eb(ŢysEgE>]D@"@ ?w|AEѽs )B^01R\Jr|9 -R ?S!u%]HN]_]8v/Sai2joyCܿj@DU<+&8Kc+YEfcT AreEڐRg:GCSkZ¢[6t );„maG؁ ]:,)Ԟ:[}:6OxiR\G>Aұ0wARt3|j"TWz5I}Zjtõ2IWVϾ";rgF8٢4[n kSAq<ޝz=q%@AE͡b> lrv> stream x]W pWn! -ʒCLU* ,s>6uRR[16I8-6@ LKf 3ݲU'!Ə#$Ʉ%)?Cq74rg$?&Ka=oNKwI$ >)+)*,tVJni嬔[g-.+ΟTWUP_eIUkr +ܖ=xC A%s"H#6DIH"Kˈć*b51XC (!'I^R%/%.9DeSEw'pQ9+u+kzܯ8՝頴l/,ޑḿlpD˨IKQ q*D&Y)Fǣ: 8N}@`lG+>1T4 RW1+kMPy ͊M\8a=3>Ik%bbl6\Ɠz@bZ F9:Ѓ)6yt: mKd%" |u~C\{},o;~bEč E)qóyPXFA-ӰJi;OS2`iUs `϶հ6|F+6|էK@~քUt0 Ie(tу{](v["=gt{8/+T8Ey&HE2`1S:% YNq~ШiCG@Av=жҘWUAG믍D^3BkYRHΊ~ȣT;2c \-йI0jFZ4$+`nO:q 3?*2eI\c|or?|wZW{\z(lgP7GAӫ6 •832CnQ2pe p/rԫrw-OxM-@_!=!3e W6ByGl9RxPnsx۵79~hn|:YI,TTTu:AĖW4k[0N(6m^,x0teFfjfABQ\&ۀv@8E^!y5vY[T|Y5s&0c"FCo&q7媼uPiwـvvkǜ{y? C=~1d 6CZxb3Y fpюK>65r͖)6Ėi}{̑ 8QҸ͊/tc#QOXIjvGksHC7Mߣ<!Ca_:yfi5VC !;P]gK.6-X(]'PKLޱdXKY[ҳRH 9{wp w nh"p:yVuHݖ.ףkpzӼIN-h\ZqTaQIHjtig.&^KXqlvCL|H`4j7X-,ؘh: i7 `s68qRBCTXoڲP`/T\Bݗ$h3Q :$CFB mٚsny1RW% g{QAӡ=Lph^F(4f1:$h=qQ 6Q[VxYJU47[`8tVؼiEmk/NM_уlp]P:V[Q&4+7(JTH{-4N5izZ͠_Kv rxPY=!Ov:u*ΒQj}{ǁLw6EiW0ƀ$1&C IpvP,9'SW{Ŵ;}r;2g^GtCn%O?01ד|qjv/]q M x$TtM1agf/_;r9ni,U8VѣoSub$\0ՂH+3VL/aº @skTScو͍اÒ/h`dl9ٚ>67yc169+w~wAa wܪ_Ϟ=9gQjH <w?Ÿ%Cx`Zo! |ܒ,&ZkpPN3Q'ʗT !ޜCAGCgW4Rẑ/9(OJUuvR :w0fz0)>v39q^Pc+_؄G t11L'6Eb9/8d+F^?%z<^O G|1G?&@C&o|FfPmN I:rWoer}C#u\fDǷh@U k^8\)q;~)#{@Ѽ!vXaw~6*5Ew箊wuXxZB֩Sd*}D5(Fn{8Li+Ԭ L|XmcK%.mKDo^D<)~AcC{[/{N<_K6VdXLVdQt %XCOՆc Dgz'( ,< QSendstream endobj 172 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 2027 >> stream xU{PT˲m"F^ƶvlӨ>@ᓀ(. + ,}ò,, "jRMcmu4YzhJ$s?50J$EII|#>ͼ\1"铗&wJPE3"/Pa"O+)q\n$.+.Cf//dRevbnޞ}ſy&*LRiT:Z@Pkuzj!H%Q3h((Lt LV,w&qH0>~ 2<-GzvkyfG ~eh[ 4 Bl=ȹ)k;MrKU,W0+T.Sq|:^16kdl#ILW׭\ NuRHrO"Py@%kSxxpknCK48}~ (8*^Ir ZͻPJʨIl xzopJ{w2YJfV*`3}il>0| ݆@addJQ#߄զ:ڬm'hIXkR1V[3$+z&Bba}6; So g*Bhy%𦮬#(ϼ%-2cG<'$MR9?x@.ؙuZkŋӖ?9+|"pC|%2{u8݁x;Ãj]]5R;}no[p㮔!UTKQm%ڬ†&'r2x)xpT.Q TW:<_G7 }$R:66B=8G ag=}E-cӓˤ@Zv$fjv 9;YSzb{Ie4A66Vu#k5S8fX_(8+}ɁloD8pQ'P_M I4) ^w-R>c91> ,Odʑdo%DD |E087pxx]ptį224⣓C]=tawc$HKؾuigu BF|k#&?RV/IZB$D7NN+zMYUgWFY̊2Oʈs4Mm~χ^] P#pϊ1\)]}A{eF<r2[wO_u> -sK_ՠn@JXvPKwi1ߖ!\dCN]T/-2S*ZX >M٩j!߄f:T !VCvi]KT 8(ˤRAN&s_Eo09c{2\ ߟ\, o 6DCctiQ) S~[+3! q?ϷA?@6ގeNƾJV+⹞iϾoX;moz2Bq;gYNqV!egNK?qܖVϷo_Ò:a- Tp 63+M/]65Ϗ@AI(=RTgzVF-9YAPk3XZ:=Nw.KW)KVdgUz+ܸ$DD"(zFendstream endobj 173 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 379 >> stream xcd`ab`dd v 5030q~H3ak7s7˲> %(ꜟ[PZZZ&dd ? |1l{;X7wwusħMX/8IuM5r~-|e 8;c)n\{帘[y8Hendstream endobj 174 0 obj << /Filter /FlateDecode /Length 355 >> stream x]n@ DA6 EC@pw<@=kt<ÚҚ-6ݗs cVnnX㵝?sq ~o,O)N]mLK;^Rք`M[_ճ?nQ!;c2 UkTY5PQұ6 XQ!+#<\0.yQ 'O {{ekp1QD(qop$i!HBx$i!Q@d(PWWYݳ¯ҳg_gu JU#*={V ?=zM˒ƕe4{Weeendstream endobj 175 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 3788 >> stream xW TSW>sѢXZV-ӗ}jW$yvȋA^""ZZkVgj[ގxw̺kuʂ?͡&EQg6''gvhFThwݽuwDØI ޏblt jڦ JyBA#J)XX~h%JY$}I QZ^/Y_Y_)JM(XUba^TG׸~0weDb.Gx^ ~a7fyВ9ƽCM\^0(y#\~,.&+##gI|PD:`U z piNz̈́}pF<B3щ@=g3a4}1A@?N`\Jێ^O/d2co7)ff5̵ce"{ǛzhF E/y#]v"%lcy ݏD{^6L@ߠPӈ)LYo|)7C&}Ȑ= `zW?5,Xy.e w:e|5s3}G[Z!Wɔ嘓$~l>MnF[meCzyeu+wo۵μ2x1B#(@NwM-a<:{|/:4+7=xS2Rfc8X C^yCfoj^M^(}Pj  KyP1OȒW$5@ dV++sӞ{# "$'t4Fnx^=|::Lag>4/2=4PmQC&W [.O\Upcn͛jX^N;-Xk~iygyuSԧ̵h g3Rhq<Ξ&XUSWWNk H̴¡*+lR$͑m/T4?X3Y,۲l;c*THRX40ej`Nt (!11A,Cz# z*?o+;7p5 s+r͙'KC?7. zTZ947Μd=Od鑲д#N4Q u0;X5 NPh3>TpP{w%^m})ͯHlxϩ]m֫ep2H. 'jd';l8Zԁw`]plSP6z8knyfө#B hyl\K4l@iAL.K+L답%n|&V2`kid dらl/$m,YdؕfF;xw({X[7%Y(A O{wvmo2A$ZZb()j no6:ІfUIr\.C8Ѷ# M&o6.%kvԛd*Vܣ H[d("|:ÃL.Sx;pL7qt/@YI'H4Q B[AgM4Ci OIYŷ/>rU`ww?u(~^8hؗk%}C֜Ϧ+}Гyڨn8X/?xVmMym8hF&+BtMi G&*LV42&`)7MiPN󐫮 2-zX.M\r϶~#=T{Og+~!Q{L^.җ3}!mY"JN0U]y'JYa3>4+:yPth6_ӔB9#n,׶yn.6:h!R چ!0̯* Lf38=u/Ys\D6\Dmy?M {398W' OL'9_XmV1zȔֲ3V?8";j_^չ LZiUCu:$WdR D4ELd2dRs>l9UsFfR{}b8+p&7J`)/8,omoj\|\:Q((p@g+o?X[;γd29ى" ٺH`P[2&R$dAJ ~wj6%;шCnsCSoO@Eƶ 2D>#SΆ|(~LRB4ϸ-5 %T?ʰ]RUl8܉yN VWӟIŘg*CQr\+[a0C=V$ oih=Z 0U7BrmbZg;hZS*kQb።(FZQ4N֔SLYdendstream endobj 176 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1703 >> stream x}Lb U&wfҰHE麼y+MJBP` `~ۘw6Ư9^2#RT-%݋?2iGI?=w}}p,mƂy_^S[6jtȒAV-~E,uM@`ѫkTbG嫊={w*~kŁz^]YUV*e}-})N*Jڢ񖊦|uɔ[QokSaR*EҠUwtZZ^ER/RohzEJV5kejͪ⟼N`al7{weIgҰἬs: A|df4P2R)hcdsbܮv9NƀF! dY/wE j3Cw <򻇩vLuDgvE+>.PW,u1`&cW,L-3ѱީd; ̐qѢ?/Tqk', {n;x7|N\mdF%djNO՞Ռ?B%s/࿎_˯,%nqz{%]es565@/5:=%s g!<ܒsY<SgGaamߒKѮ.`)QL`.hKdVۊgqtg]X4OAH݌,D[z/v5W'GdBꚓJ7GigOjkq}P&,ni]Y5M$Ѣ~Sۓdwrߐ'qq`坪*61-)[ywI&T+VtlG9U.[@X O )cp[?,j.Gtqj)V-VPD4'̀r8\@y3 !O.{)G/%\n7 mKkDjEլ(p鵓e@jO:JG+uVkk9S#ŞvOH 9 HOG]lzGl6!YG:W4&!8xAsǹPh(a `)RwaH5!C"14KuY1rp@*/ro ~)b1$7+m)uЀ0um@-g$,Nfߩġ{2@[^Aej~JlJJ /盥8U]A+TiXHhy-!mh'A4)^ʣ37G]|GJvPZ9Sf|CY:,)nLܛ-nRP bEhcrӭLrSZ~> stream xmSklSu@"^;!8'6t9̄u[ [[u]v-mmoki dl1 3!1 dF z_49=98V4q\\QYl ---<,؟$E'\<X ֨SluMe7m*jSTMr5U)[mrZ(ZMJAu[[hZƍT^ܾ~eP-T]P4S;5j)gJ MVO+tTYS[-r j]{b` >XІaW:ќǢI]R8YnynP ЁmhO~֟_ d@ʟ ?;{y_uiE&GCQ?4kCQ }Ioihlch,ɹ'px}6滩FhBjpxc9eb NW+zX41Y~i ^8BOEgfĕݣ9<# )HdzXvgXrTDI7C8CE̓97%?bXعpi'T=?Vï&kN H'XÀ pOsKۀ@mL%xcd% 7 !&x2<¶!KOe-vY?ru ۳g{p鵹Ie#2)_V cBQ͉NV [$")JQG [=]NI>g"(q-5E$'K ]W;".VHg:BZi4:T%oaݏwL[˯ƙrD?,2lDh0.#3+ZV0C8bJ~kv1Oݔ]) 탕-QbHrPib!T<:|r^QYR2w'`_1'B&endstream endobj 178 0 obj << /Filter /FlateDecode /Length 176 >> stream x]= wN !bI  `""d gYϤ.w[ [M5lI`v1CEEDW\<ȝikݤ5* IPG쬕0ٟ*l*x*(ʤS۵W׈G"GY9WcՅY/endstream endobj 179 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 520 >> stream xOMoQ| QjBw@hb*j4I<ؓ ]Ȳ|hJAQ"mA=/ră'-҃+$ !4O % Hnf ZΓ9\FRab)1 XF׼޵t<'lY9񬬛ZaNN!ם,n*fy-+H !81mBTFYCq9>9 Ns!<=@< imw$ƐMj% !dfN2Ce,vq&5Qlq:2.Ι!Z<]M:_3tWgKǶSlZioJ |RTbtz7kp$1/VC即U>$۶wto uB&_)UXj7#aHf9> stream x\ݏ#qO 6oF/w8X^$]+W3=,{wrdÒ_U׳WW?__RB뻫8Ĉ3m]?\}Qzc~}x|:t+="B:->ࣨFJ_}NU];oPc^TqmyUnXyOb)XCʠf˫0a6/@k;5up$] #Ӕ)hHSD1Ϥ6[غq^YQZ[C1pag6<$_V4:4'f);-e4V6`Mn0Lpl3$1121? pB{c}H{8P)/$O~sE2+i ٙ51kҐW}p .n,fhASǗ!ޘ_ \M?!7KG@A[a" F -<]iCc $ cF\H;FPκbd-z#6Mc(Td]PҌSH,Prdy 83ra,D3pxF[WJ;(}g=ǂX1( ^/%QGzIa>#t@y<'$BWNWp"}j CJ9XZ#)Z0 dȓx2"CآpB7^X 1N n '#`s^3c:C^!La,"d)x[=Go㉩mT1و`b*3\Sk1 )&]FBvHzFPoLfy;!1/mtK; i|-J vI$xB/CZ_el}xv/  ۙJ퓐ocdn8cei\ s%/Ri'F$|o<𵗹p_sEtnsXqRf|4d G R%Jn&IZ{|A}"3>p䚢NҔXUP2dĦvHJI1R7M32r BiF܇SULʁ253^Fmn\@5N/‰_ ~ Ii.ѱQDU@YcQ }*wW`^PBU,x=N-<j`T$j kǖG7C1/GY>/#xFTp>-:wk(K[Dk4-kT:0H>glSBbA>Q~k7W#+v%̩ƻBvǜFzMj,<&x^OXXl5*pʯ5AΩQ$ZKD(YRv3Y^]Z; 8,OiI&ELr<3r.vFHi`q@Dt*0//wFFֆT$3:g**_ v HEzIKn|8N=cc#5C H!<,pPචI~B6A[AP|xaMEid( UMndxVBYOcMy]{SLFs"#X%Ž5 ;GOZ`D8xSR놢!iSӍ3R}m XLpv|i2䁪8 "l B6ԦyA="lqqW] h&&__%Kb^C]r/w/v.u|R͚t/ʚȿMP%Mu ,aU>0I44ӪK' nꨪ؍_÷1l\9fY'jFSϲA^42p@T'U^Rr:]J15bsjƴ|8pg0!{zqth7LnO4\HCt~h$L}W7xECo.W{9]=$BSȠ}Pݮ>~ Zl yYE&ţu+ ֔as|%{^Aoɺ,OG7i<ǹUD9{گַ.$zL7+C5dF ȊfL]^4g \J"^Ԟ_?إ}5x}/iq#BJQwB=~߮?>yPQFkt9g /ACܭRdñq#m%kzk:cNc}6Po> stream xMOjQLj#JMr74uS"H]\X7]mHfҙI &5҄TBdڀ"rG7P& Gm#BJƇl#,/.b'>AWoM@;)h3q4LϠljD(`5d,.HтaDO^|2;k(4QQWgӳ5ְZK"ThNR(tU95 < xxϠT ~6'ָۦ2ʹS ڤ1|-Fb>8Ȃaz_SjG0.~L^_?Wy8=9GݰueYdvkG^ġ1ڜgͽ=qYiߨ}EgޡU٪}Qn3Aufl~lСAVàe|j]'ޛl1zt,pwy] _7 )endstream endobj 182 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 774 >> stream xUohw$3M^+I1ZTL:ЕRH3 6xLUlm=TeRa0Cr+_2 @U7։K7ة}}q0wcsj6bfyׅYxu?, 8pH=CQJh8jaW}}]@][[/r3CJD3RgTTR`DQwTU&KHr: Q%"+v ǥ" D]ĚwQ%zQ.Q'B+h8!:/ۀ6udOM,)M&C)a\B$Zy!%:1]dFY) {|an`3G>ÿ7Fw w7`݌gq  n|ߐs#\L\Ӛ?>D hjR.$AhX*=tXeϫgMDE+ k8FmodP}j{Z|6ʻTm&/#~#6`1-A92+/t"t]+VC~tnǽc+]jzwοm"%]U';;\}~5o9t MXJ9W3~t3iጋ_)&W`-pXbyrLIu^=E /qp endstream endobj 183 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 596 >> stream xICMMI5$J  c^ZnsCopyright (c) 1997, 2009 American Mathematical Society (), with Reserved Font Name CMMI5.CMMI5Computer Modernalphah IQπ$|{zzy|t~˝Njڋn`S` }h|gzWgzzxzT^RYt\%(QLjm%"!ڻ}yvt9\Kql~) /:)&:_`ˋα~~}ifvy5odo/M MPᬙǯʋ%PvVOuCoa  O i#endstream endobj 184 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 367 >> stream xdCMR5'.   ZWTmqCopyright (c) 1997, 2009 American Mathematical Society (), with Reserved Font Name CMR5.CMR5Computer Modern2u< ַ UaxM{7|Xͼdzŋ #(=)Wqlũ΋Q)7QK>JcmeuCnb  7 mendstream endobj 185 0 obj << /Filter /FlateDecode /Length 4806 >> stream x[mq6o|CP~g|7 GD-II5Ii8>F$婪"WX=|Qv%6տ7ڮbV *Xe;|mZyQ "/^gCu:䅊ݮ~ZBv?1ky,U62J9ngpUql*kFj"`JCsټ8-r߰ag~Crx_Hڤ.WxW p ޯq:{Wy6CsQfp:U.ڕ͕uFGERF"58~i.f+C4Q1El*bHʈlϵ*$A(lcPw71hnl5Le&po_TKyzhs=0u Ӿԫ2'Ϛ--QcԠLEiiWӞznzz.Ӷ8Nb3PoDc~ ڕξ>N^m dۺtb̒L}R2¨Ygn~]vyy.]}WPgQ"%=dcaf>MuYf |u*16[]6B}P=BDl?Cݥ5Hu;JTue!TxS81t0> {$kAnfD/G [^yOZhD|ZV' ĵU "W3w}ˆ򂤂c/AK)_@(o<m"Hc1bWVXK5gxBfhɹa#:{AQXxUٹO_o/eRc,& <הdz:Hb|p'q!n=.6nB% =Zw[Fe 2zK" *s,SNGr.\\x|IQuDCNE%ZKI{~@gta-PZ &d y?e$E^6;E9p ?<'C^,LIrEWj){Pt&̼1ނ%bQk]UAx`v;A" 8$t&#’2()+%b$`%m>-u*Sm-6!-g+[Č 1$lMwz1DM=ގ$^HÉ2<%۔c8 CXwC%y$<}S@[??ګrदORe0pRۦ:{C"HϝhO-,dzR*ݡvhvt$+Xr4o0f//WH+7{7$?gM͏O1-ٙ03/!̀[&uV|NǍ>4,TR'ټ!hȯ*^AQ&zU"*0"Q@ZwW ?di~dZ f1q{"snӶ8@h Y{C@ "BMIrY- @f),7h D)Vx',u:1xm b`3<8ޖ#<Ӯ>&grHabP$? +J]m;*8gwOϼpneE BΤg(jwKGA5m`Z F.ԟ7 fS2WRp<Jǖ)sH:mtC5XeUPo%L< ^QS%4 Zx&ڌ]ڬVAT90Kxm0r0srZ=Zh#fgLzn~%J1rxipP*Ʀ)OX'ui =~^JNPQ2~eT|Ң4 h=U+œű`O(!ي̄f" DB㛶ҥZhHܪd;1*(ILِ$  iS"u*/ǥ hȅЃEOP9qxCΆ!;r@LL،"Ww`#L6,"tI#.FY>1z4P0@kGEJ%Q SB(eבll aTSܙѳNLQac)4ʾK(5}H4hhzKmr#xS@`BrZ<i0%NzMK%t 6ΐuZj4~,v\4b'#ܱ0xN_p!a,gEVsn<8 &!c.إ] bsHե [<:" blpW> 7XjB_KP )- P7$FnFYUIq;.H& YW]5;q(Ki^j3EOSx #hO}?&OTD "!QWXSB  TiFGU7X̚RCRyL/tK9}@ ^gA(7%_9_ #qg}jK2ý ޾,=yWF4m/Gnc j MiKp[!~qWë6\qa^qy|ܤZFsߤu Zg"Nr*Gf@.*KH7.Ѽt/^E(b vfhAC ZoQa>U /πSQ`; s,il+ܤ y k~ᤇ:prME;ǡ6fmh:MZEˈǺގE_ljV> hA^$R9taHKZGW!aAr=u: jBQ/ `"5 \gTgj.$'y> stream xcd`ab`dd v 4400qT~H3aӛe6<9 0012*9)槤)'+e)$敤```` b`0ig/u ²O|q;zVzmrY{ɝ~~nw[$?fܧI /qtGzuM]ă;߬A|e 3cnߡrq1$p20_mendstream endobj 187 0 obj << /Type /XRef /Length 188 /Filter /FlateDecode /DecodeParms << /Columns 5 /Predictor 12 >> /W [ 1 3 1 ] /Info 3 0 R /Root 2 0 R /Size 188 /ID [<5c2d62f1d2384b36ba58ba968a0130e8>] >> stream xcb&F~0 $8J?@6^Pܽ@gPd ŗ`$d"9 DYHG LLƂՃq؄`5 RFD2b@Qv/ͫ VD<HΏ`^n`e׀H~uL X'؜$)TV 63^&OHa0;ڙ"I endstream endobj startxref 103737 %%EOF laeken/inst/doc/laeken-pareto.R0000644000176200001440000001224114554440334016113 0ustar liggesusers### R code from vignette source 'laeken-pareto.Rnw' ################################################### ### code chunk number 1: laeken-pareto.Rnw:74-75 ################################################### options(prompt="R> ") ################################################### ### code chunk number 2: laeken-pareto.Rnw:149-151 (eval = FALSE) ################################################### ## vignette("laeken-standard") ## vignette("laeken-variance") ################################################### ### code chunk number 3: laeken-pareto.Rnw:165-167 ################################################### library("laeken") data("eusilc") ################################################### ### code chunk number 4: laeken-pareto.Rnw:235-236 ################################################### qsr("eqIncome", weights = "rb050", data = eusilc) ################################################### ### code chunk number 5: laeken-pareto.Rnw:260-261 ################################################### gini("eqIncome", weights = "rb050", data = eusilc) ################################################### ### code chunk number 6: laeken-pareto.Rnw:293-298 ################################################### x <- seq(1, 6, length.out=1000) dpareto <- function(x, x0 = 1, theta = 1) theta*x0^theta / x^(theta+1) y1 <- dpareto(x, theta=1) y2 <- dpareto(x, theta=2) y3 <- dpareto(x, theta=3) ################################################### ### code chunk number 7: laeken-pareto.Rnw:303-313 ################################################### par(mar = c(4, 4, 0.5, 0.5) + 0.1) plot(x, y3, type = "l", lty = 3, ylab = "f(x)", xlim = c(0.75, 6), panel.first = { abline(h = 0, col = grey(0.75)) abline(v = 1, col = grey(0.75)) }) lines(x, y2, lty = 2) lines(x, y1, lty = 1) leg <- expression(paste(theta, " = 1"), paste(theta, " = 2"), paste(theta, " = 3")) legend("topright", legend = leg, lty = 1:3) ################################################### ### code chunk number 8: laeken-pareto.Rnw:355-357 ################################################### hID <- eusilc$db030[which.max(eusilc$eqIncome)] eusilc[eusilc$db030 == hID, "eqIncome"] <- 10000000 ################################################### ### code chunk number 9: laeken-pareto.Rnw:366-367 ################################################### eusilcH <- eusilc[!duplicated(eusilc$db030), c("eqIncome", "db090")] ################################################### ### code chunk number 10: laeken-pareto.Rnw:424-426 ################################################### ts <- paretoScale(eusilcH$eqIncome, w = eusilcH$db090) ts ################################################### ### code chunk number 11: laeken-pareto.Rnw:491-492 ################################################### paretoQPlot(eusilcH$eqIncome, w = eusilcH$db090) ################################################### ### code chunk number 12: laeken-pareto.Rnw:539-540 ################################################### meanExcessPlot(eusilcH$eqIncome, w = eusilcH$db090) ################################################### ### code chunk number 13: laeken-pareto.Rnw:592-594 ################################################### thetaHill(eusilcH$eqIncome, k = ts$k, w = eusilcH$db090) thetaHill(eusilcH$eqIncome, x0 = ts$x0, w = eusilcH$db090) ################################################### ### code chunk number 14: laeken-pareto.Rnw:671-673 ################################################### thetaWML(eusilcH$eqIncome, k = ts$k) thetaWML(eusilcH$eqIncome, x0 = ts$x0) ################################################### ### code chunk number 15: laeken-pareto.Rnw:718-720 ################################################### thetaISE(eusilcH$eqIncome, k = ts$k, w = eusilcH$db090) thetaISE(eusilcH$eqIncome, x0 = ts$x0, w = eusilcH$db090) ################################################### ### code chunk number 16: laeken-pareto.Rnw:760-762 ################################################### thetaPDC(eusilcH$eqIncome, k = ts$k, w = eusilcH$db090) thetaPDC(eusilcH$eqIncome, x0 = ts$x0, w = eusilcH$db090) ################################################### ### code chunk number 17: laeken-pareto.Rnw:800-801 ################################################### gini("eqIncome", weights = "rb050", data = eusilc) ################################################### ### code chunk number 18: laeken-pareto.Rnw:812-814 ################################################### fit <- paretoTail(eusilc$eqIncome, k = ts$k, w = eusilc$db090, groups = eusilc$db030) ################################################### ### code chunk number 19: laeken-pareto.Rnw:824-826 ################################################### w <- reweightOut(fit, calibVars(eusilc$db040)) gini(eusilc$eqIncome, w) ################################################### ### code chunk number 20: laeken-pareto.Rnw:834-837 ################################################### set.seed(1234) eqIncome <- replaceOut(fit) gini(eqIncome, weights = eusilc$rb050) ################################################### ### code chunk number 21: laeken-pareto.Rnw:842-845 ################################################### set.seed(1234) eqIncome <- replaceTail(fit) gini(eqIncome, weights = eusilc$rb050) laeken/inst/doc/laeken-intro.R0000644000176200001440000001515714554440322015762 0ustar liggesusers### R code from vignette source 'laeken-intro.Rnw' ################################################### ### code chunk number 1: laeken-intro.Rnw:107-109 ################################################### options(prompt = "R> ", continue = "+ ", width = 72, useFancyQuotes = FALSE) library("laeken") ################################################### ### code chunk number 2: laeken-intro.Rnw:164-165 (eval = FALSE) ################################################### ## vignette(package="laeken") ################################################### ### code chunk number 3: laeken-intro.Rnw:244-246 ################################################### data("eusilc") head(eusilc[, 1:10], 3) ################################################### ### code chunk number 4: laeken-intro.Rnw:269-271 ################################################### data("ses") head(ses[, 1:7], 3) ################################################### ### code chunk number 5: laeken-intro.Rnw:392-393 ################################################### arpr("eqIncome", weights = "rb050", data = eusilc) ################################################### ### code chunk number 6: laeken-intro.Rnw:408-409 ################################################### arpr("eqIncome", weights = "rb050", p = c(0.4, 0.5, 0.7), data = eusilc) ################################################### ### code chunk number 7: laeken-intro.Rnw:431-432 ################################################### qsr("eqIncome", weights = "rb050", data = eusilc) ################################################### ### code chunk number 8: laeken-intro.Rnw:462-463 ################################################### rmpg("eqIncome", weights = "rb050", data = eusilc) ################################################### ### code chunk number 9: laeken-intro.Rnw:483-484 ################################################### gini("eqIncome", weights = "rb050", data = eusilc) ################################################### ### code chunk number 10: laeken-intro.Rnw:526-527 ################################################### gpg("earningsHour", gender = "sex", weigths = "weights", data = ses) ################################################### ### code chunk number 11: laeken-intro.Rnw:550-552 ################################################### gpg("earningsHour", gender = "sex", weigths = "weights", data = ses, method = "median") ################################################### ### code chunk number 12: laeken-intro.Rnw:589-590 ################################################### gini("eqIncome", weights = "rb050", data = eusilc) ################################################### ### code chunk number 13: laeken-intro.Rnw:593-594 ################################################### gini(eusilc$eqIncome, weights = eusilc$rb050) ################################################### ### code chunk number 14: laeken-intro.Rnw:670-672 ################################################### a <- arpr("eqIncome", weights = "rb050", breakdown = "db040", data = eusilc) a ################################################### ### code chunk number 15: laeken-intro.Rnw:686-687 ################################################### subset(a, strata = c("Lower Austria", "Vienna")) ################################################### ### code chunk number 16: laeken-intro.Rnw:755-758 ################################################### hID <- eusilc$db030[which.max(eusilc$eqIncome)] eqIncomeOut <- eusilc$eqIncome eqIncomeOut[eusilc$db030 == hID] <- 10000000 ################################################### ### code chunk number 17: laeken-intro.Rnw:765-767 ################################################### keep <- !duplicated(eusilc$db030) eusilcH <- data.frame(eqIncome=eqIncomeOut, db090=eusilc$db090)[keep,] ################################################### ### code chunk number 18: laeken-intro.Rnw:796-797 ################################################### paretoQPlot(eusilcH$eqIncome, w = eusilcH$db090) ################################################### ### code chunk number 19: laeken-intro.Rnw:852-854 ################################################### ts <- paretoScale(eusilcH$eqIncome, w = eusilcH$db090) ts ################################################### ### code chunk number 20: laeken-intro.Rnw:919-921 ################################################### thetaISE(eusilcH$eqIncome, k = ts$k, w = eusilcH$db090) thetaISE(eusilcH$eqIncome, x0 = ts$x0, w = eusilcH$db090) ################################################### ### code chunk number 21: laeken-intro.Rnw:953-955 ################################################### thetaPDC(eusilcH$eqIncome, k = ts$k, w = eusilcH$db090) thetaPDC(eusilcH$eqIncome, x0 = ts$x0, w = eusilcH$db090) ################################################### ### code chunk number 22: laeken-intro.Rnw:1009-1011 ################################################### fit <- paretoTail(eqIncomeOut, k = ts$k, w = eusilc$db090, groups = eusilc$db030) ################################################### ### code chunk number 23: laeken-intro.Rnw:1023-1024 ################################################### plot(fit) ################################################### ### code chunk number 24: laeken-intro.Rnw:1050-1052 ################################################### w <- reweightOut(fit, calibVars(eusilc$db040)) gini(eqIncomeOut, w) ################################################### ### code chunk number 25: laeken-intro.Rnw:1060-1063 ################################################### set.seed(123) eqIncomeRN <- replaceOut(fit) gini(eqIncomeRN, weights = eusilc$rb050) ################################################### ### code chunk number 26: laeken-intro.Rnw:1069-1071 ################################################### eqIncomeSN <- shrinkOut(fit) gini(eqIncomeSN, weights = eusilc$rb050) ################################################### ### code chunk number 27: laeken-intro.Rnw:1078-1079 ################################################### gini(eqIncomeOut, weights = eusilc$rb050) ################################################### ### code chunk number 28: laeken-intro.Rnw:1152-1154 ################################################### arpr("eqIncome", weights = "rb050", design = "db040", cluster = "db030", data = eusilc, var = "bootstrap", bootType = "naive", seed = 1234) ################################################### ### code chunk number 29: laeken-intro.Rnw:1202-1205 ################################################### aux <- cbind(calibVars(eusilc$db040), calibVars(eusilc$rb090)) arpr("eqIncome", weights = "rb050", design = "db040", cluster = "db030", data = eusilc, var = "bootstrap", X = aux, seed = 1234) laeken/inst/doc/laeken-standard.R0000644000176200001440000001312214554440345016422 0ustar liggesusers### R code from vignette source 'laeken-standard.Rnw' ################################################### ### code chunk number 1: laeken-standard.Rnw:52-53 ################################################### options(prompt="R> ") ################################################### ### code chunk number 2: laeken-standard.Rnw:135-137 (eval = FALSE) ################################################### ## vignette("laeken-pareto") ## vignette("laeken-variance") ################################################### ### code chunk number 3: laeken-standard.Rnw:150-153 ################################################### library("laeken") data("eusilc") head(eusilc, 3) ################################################### ### code chunk number 4: laeken-standard.Rnw:252-253 ################################################### methods(class="indicator") ################################################### ### code chunk number 5: laeken-standard.Rnw:331-333 ################################################### eusilc$eqSS <- eqSS("db030", "age", data=eusilc) head(eusilc[,c("db030", "age", "eqSS")], 8) ################################################### ### code chunk number 6: laeken-standard.Rnw:345-352 ################################################### hplus <- c("hy040n", "hy050n", "hy070n", "hy080n", "hy090n", "hy110n") hminus <- c("hy130n", "hy145n") pplus <- c("py010n", "py050n", "py090n", "py100n", "py110n", "py120n", "py130n", "py140n") eusilc$eqIncome <- eqInc("db030", hplus, hminus, pplus, character(), "eqSS", data=eusilc) head(eusilc[,c("db030", "eqSS", "eqIncome")], 8) ################################################### ### code chunk number 7: laeken-standard.Rnw:408-410 ################################################### weightedQuantile(eusilc$eqIncome, eusilc$rb050, probs = c(0.2, 0.5, 0.8)) ################################################### ### code chunk number 8: laeken-standard.Rnw:416-417 ################################################### weightedMedian(eusilc$eqIncome, eusilc$rb050) ################################################### ### code chunk number 9: laeken-standard.Rnw:429-431 ################################################### incMedian("eqIncome", weights = "rb050", data = eusilc) incQuintile("eqIncome", weights = "rb050", k = c(1, 4), data = eusilc) ################################################### ### code chunk number 10: laeken-standard.Rnw:521-523 ################################################### arpt("eqIncome", weights = "rb050", data = eusilc) arpr("eqIncome", weights = "rb050", data = eusilc) ################################################### ### code chunk number 11: laeken-standard.Rnw:532-535 ################################################### arpr("eqIncome", weights = "rb050", p = 0.4, data = eusilc) arpr("eqIncome", weights = "rb050", p = 0.5, data = eusilc) arpr("eqIncome", weights = "rb050", p = 0.7, data = eusilc) ################################################### ### code chunk number 12: laeken-standard.Rnw:543-544 ################################################### arpr("eqIncome", weights = "rb050", breakdown = "db040", data = eusilc) ################################################### ### code chunk number 13: laeken-standard.Rnw:552-555 ################################################### ageCat <- cut(eusilc$age, c(-1, 16, 25, 50, 65, Inf), right=FALSE) eusilc$breakdown <- paste(ageCat, eusilc$rb090, sep=":") arpr("eqIncome", weights = "rb050", breakdown = "breakdown", data = eusilc) ################################################### ### code chunk number 14: laeken-standard.Rnw:591-592 ################################################### qsr("eqIncome", weights = "rb050", data = eusilc) ################################################### ### code chunk number 15: laeken-standard.Rnw:598-599 ################################################### qsr("eqIncome", weights = "rb050", breakdown = "db040", data = eusilc) ################################################### ### code chunk number 16: laeken-standard.Rnw:650-651 ################################################### rmpg("eqIncome", weights = "rb050", data = eusilc) ################################################### ### code chunk number 17: laeken-standard.Rnw:657-658 ################################################### rmpg("eqIncome", weights = "rb050", breakdown = "db040", data = eusilc) ################################################### ### code chunk number 18: laeken-standard.Rnw:665-668 ################################################### ageCat <- cut(eusilc$age, c(-1, 16, 25, 50, 65, Inf), right=FALSE) eusilc$breakdown <- paste(ageCat, eusilc$rb090, sep=":") rmpg("eqIncome", weights = "rb050", breakdown = "breakdown", data = eusilc) ################################################### ### code chunk number 19: laeken-standard.Rnw:692-693 ################################################### gini("eqIncome", weights = "rb050", data = eusilc) ################################################### ### code chunk number 20: laeken-standard.Rnw:698-699 ################################################### gini("eqIncome", weights = "rb050", breakdown = "db040", data = eusilc) ################################################### ### code chunk number 21: laeken-standard.Rnw:724-729 ################################################### a <- arpr("eqIncome", weights = "rb050", breakdown = "db040", data = eusilc) print(a) is.arpr(a) is.indicator(a) class(a) ################################################### ### code chunk number 22: laeken-standard.Rnw:739-740 ################################################### subset(a, strata = c("Lower Austria", "Vienna")) laeken/inst/doc/laeken-standard.pdf0000644000176200001440000045105114554440367017005 0ustar liggesusers%PDF-1.5 % 1 0 obj << /Type /ObjStm /Length 4026 /Filter /FlateDecode /N 81 /First 667 >> stream x[[S~?bޒT*;[*U8N*X@$b'|=+v%!0SbLO== 0L>2Ϝ,0 L I1.I&}a2e#q3exHF"3H3a/ efLifGSV-΢1ǜx9N@ Z<K%h|ti͂1x5(AZ ӎhҁ`^dQ0E(,jaQ,Ah |;V&Y zǟ:g-(aA=MB-ˣr:7u?&?.gh -Ű_`ҿ8x<xzzC~:䧐J~IB|4IbZ^jʧO[N$;{g5"q t 7D^.ʶewFg8=L@CQb ?2!Rl@ߞoaG;`qa68ڈ6m:zr,?^w]2kq\xrc+N_ѦaZ & ;("Fw.c~^s>C~G|!ZN>S>Kg O@6p3`$RZsmuб <i5j Aޡh)d#vgTA3K;#]2iUP0iѤٵI#m7>ysg7S {Vyys{fsV=9ϙl@:XNsغ)d$Nషg(J Ҳ4!&Ӗ|vM :-+&U)q>RY:PaM{z4Ƨ`)i K=)a$\5M݌ڦ~Zrm9wQazG>*Kn:JTiq@A@1֙#J  Ai% CS 4`&5EpʋUٱUԪL.0W鬮U|]:sOuG1<&έ܊ɭ܊ɭJEYsPó}sCիmfĵM[:'ՌRS]ou+}޴?r[_j[~L!^˙{'nGޟ^}9KTuݩn\Z4gVIӁ˞۰Nw߲ n?\gɟʑ}[鼩0Zޛw-4~,`۳@G6CHu8`Q:J{N ?WiCGi7'GViNnm^_۫ZJIwS4 Ud<&7gA~X+*.}NUJJQR~'74eC-g;gVn;g s? E1+ -F)b5s/hEzNS}Ф%S4>^QFP2a 芈(J)ZL404UUa)u/D@4@-u""Ɗ-#;'ʙb9QQ9ɽE,sԅh&~|[/'B$xgK4/54Ug,&Z,4~i>/*(ߦ'36BI/ x1h4$FiD!LVB轍rLrAS&;uC|nD(4!&DJ!e#50&:.@KɇI Q枈ؑi` i&Y8KTP(+LaiE&Di˪J5Sa}b4Pk.UVǩ7W'pbUAѝ L %Z`r4-uAءITveܳJ!wZmiG޼ŷ`ʸEMN]l^FJ⽟W\Jͯ^yYE <0.s HAm/#D9rVIyZƴ螣N qh "ۖgټ^x [CwIQ%@QxD\7WvRuePTA/bz*Ș;j%z*JAQJ3=he%+/C%g:3l|s9'M|澳0QeWg1(+jfp`IBݖ,-"P}RR֒'=<.(}8GPP2z@A!3š(>-o|w'v| AX!jY_PIrM^v0gڥ"yAB[' P&N-O u٤9M]ԙĂ&ʰjs\T MS4[L*肾݊TugT/}}>]N|heqdLN˫aBT^9p"䘹0h!uKO.F0.1E>\ uvaK@lMǏ B 8@b6wC#=Ž9vskgo e ߪQTmK᧧؆t> stream GPL Ghostscript 9.55.0 2024-01-25T12:07:34+01:00 2024-01-25T12:07:34+01:00 LaTeX with hyperref endstream endobj 84 0 obj << /Type /ObjStm /Length 3679 /Filter /FlateDecode /N 81 /First 742 >> stream x[is7ྶRҙc%2eJ-$V(R&)3CrҔDk=x~h4``1%, R`x"EN%Qz*͢fJEǢaK-BcZˢgX LXL;FЖ>F2ÍbFx͌R 7%`+-n3ie%3Q[Y `V_)%Ơe~,aN824H朢=s! ;0/ DGJ0o+|v2@4 K@ *BLب  7Ou X )J ɢHH _hMeMt$"MԖ - o[sxb$i #C%+MG2T&лC@T$ FBF@nhw4NKёH%T"1zB+=QR H$;Kh42Ja|tgwFlL"X\}y 5WthЊ*7~_ hjh3EGf 8O+knrO!:DkId|~??dey~_nsj*G1hik98SΔ3L98[kٞ5n_=xzxtp0X|z>u ~Y5?{?Kl4@{9DPDWy=]2,X+Z+ߵk0|9 MZi++쁦ʫT+H2.WK4wE Xt1`ta^EAE|#y_>^+~o>7||<-'|ʧ|ħ|gד)?itx8Urkp~yFTa`~⽩'6=dB ~lEĵDz;'XA׏NwߢquZ[dWMS5dbs\RqQpϖ *;kh &)`a){̔ EŻ?fM5Do613f&5kQ44ueB4<-1MƷ(XmW-801] \AcbIIGY%hc]Hi?%ݣK+͖kx`ˆ% L * Q_I;GޒO6/g݄:0FEi\ lXmbD,u& &[ \q&}!/c-Ǔ|R8Vr^ Sw,L@޺ V~IM{9UeJ6]f-:>_K>]Kn=1 1aC/*smh۹EL0 2Z"VBi3l#cd @6(2~a(muHr%(hn{YZ `3S)12} 86IB}0I%=&L:(AvPiWbã&12< ِ)TtD-S`"?v A( S,z OYrH$ia(EL(QsĪ%^\X`fz齢Jأ^>v-aUi{eu)K-۷g=R_l"/ymݛJ-ggWmS5(νwYN0_ḻriH4S;5-sj(*S:5kW ^~CQVĒe"GPto(h,z2˨g,F>gq[rmE9)(wg?Z p1{5)5r6C\j6``jj]|n0Nw}l{) ngOYgp `]-k';YrCqͶ鯞|u{5Ժjw /k6<[IޯfW/b+ DScL*s>\<=mF.Ҏ{ɸ"*IoM*9iJx[M՛2Imk{ioMjJziΓtNi=յ([*u^̥hM|īBMl<}G- zo^75Pl:e<ʃv "7A]ѹ!\ (|D QN9vWWw>riv[Rk0gK0 ?'yVE È&͜~ >l>})׽E~c|>jk;.9N[M[N{]_cm:zkSilIk}oc50y/^q*0VHӥ].}ĊMI%ŅON6OS( ߄j(wjHd@i o{Gǻ5CmoJ7v6Ʌ" 4cR$80违ά床RK~5||*iE{EH4HQibN6I&'/ŔTiEOI-ok6R97mĝS5q3u l(nR~}7n@KX9ّAQ|АphJ.M\w~DY:-Cf!f[,e5l ErT&żwp:KM'2OT,KtPߣc`Q:@8zR̴Z3}E::fAӤvէs}:9|v:/SCj~II7-s2^}8'3:JL fH Km&PT.6eAX琬ؓ`&ff( bZU ayX@4+0I3sLe?ӃHh!t t ła9HEқvV? ʃْ-Qr13jѫ-_ʡ|d+*LY32Zh;eUЋKt TK>E.% L3z"Lډ-PmQdS.͈02ܐۆ$=6i@Z>@)2TZə~1ϧj;Jft4o}j*-V@,#_/AZ6"l;?`;V+ƛtL鯗@іNʁ2~;W8z𥇃lz7t68f#:^MՃ1?Fn%3sxZ~>~}oopycBLq"F` tiBxIVre-R(4a| kXRZ> stream x[r7}߯cR~Jo,ǡbN4XH-I%v~OcHQ,m`F1΄Ljk`Zj&g+\s*Z_o,\P1)9pԪuYe֠16<9ę#s ؜QrŜ($׸c U̅@Bl<2Pye J>!!)bKY+ ʖ JX*{8^I\jLH&>B*J1 n]B"v.!{04>5B"PCD }Ȉ2"PC*HX*!;!- I2H@9IQ4IW*}(DRH#}hwPqqGoa|;|\w1&|7MYRp>:?goYy0[&͒Xٴ]z^_ǙK/ TZV1W2[WsPa2ـxĭϴ;Y[;뺱Goͷo;ƭ8~87lC{Žpo=;ƲnE  37L 7%ewTTZO>0-lE9ȴ O&h029C-B} ʭޡ)*Ҵ _G]6h6uM3QBzje<2}ΚU [Ĥ)[K|ilʱhMlEŔ7nlZ|w2ma넑lr6x޶~Ml%S0O6\VjI% /m]K9ʦ6dTa@yslDe& l#OEL$'.[ZbLc-m`>_W@Na!(tէkmK5zoA5bQV'{CO~ D^fc&jqAH}r>C C}%Cqq'vS^dKWT=ӕ׭jr2ᬾ&tM隀'ѿ,!fy&}<pY-gPӶj+7!:N[6_o+lCZ9Xu![i- F&]3&TZXOa-hDiWXD*&j6}6ƥDiSx=[G_\Lgſ/l*09]}&Zp EsЊv$FE; [;=?]WUc:*wg ~8'*'qi3#CɦLh{f.;CqC.Ҩ'9)Q0!'[Cـr^w&L )9;xGSOVl75bG[r Aub*2 XB:lÌ7??!DJP!e(L`)%) w%m࿝H&Vߕ 4D}pܶ7)/|ApϠK)o~7qZ[8tMndk>y)[GI8h#Ƌ?Gp`x!hEf1tI]RDa PNBb2Zs+흨OH"/lܸ{T~OO%{vP[2zS1˘PaڟF##WDミ::xT8'D<ס7mgw*^PQT \̵5ZVtM C\EVE9-9c?V&5P,^{@kWy!g0cFRJeRubQ"zd "yFCF|!l (#+u^?sʹMtow"NOe5ͦcn'ԃhLmmSendstream endobj 248 0 obj << /Filter /FlateDecode /Length 3046 >> stream xZM7KÔc>1JjRJK v V(Yy3Wvr$zf_w:M:Jw+߮WZU8nȵIsRNoIHmM& zVF)%E+6ҋE2V\|G_L\uaTfZ} Yi&v=-Inl!cSfJ-QQ4ߏ bo1Je1^KhR%~MQƙAjajn6YՑ 0il#sD&P+t>&cv&xF:笩ɜzͮ.igRp74i.>OBkfB84MGe*X o+!.g rV9ͻPC* DD}TPŗRcжC5Pbس 9+f eX*XhL顳vA Iը"Uy:8CY䕡v׳%THI|< ߵhV&9]t;G#TW@KxJJ8 qm( ^ԠDzڎ*?RL}:xQց@*މég=7١@ Dw~3CGcb# ~X]2cZm~xsn;>"㩻MMepQԵ}H6[$tc1DqyŐБ9(lIb(p2t14EC8X#Íb7έCr`!^&ɖ`VnkX\#~UwESjT?J ^$/9ÀS)_ZS蔹썸z4Ue˿<̇}}FvW".H&áՌ>s쪳"Rá]{߷'Q9>ȫ B0ɴcuȝyB'C;vǶh9!Z=ǣb-ŖGY*m Eg"^ wUAQNE p2hN(PDk8 ÞЋ:YK{+o\ȫ;+> Y1B%z4,C2t!ݩ))C=u~\$@Z9d.мRhdyhQY5Qh9Uxȡ$]՟%hh>{W6r2}MUʺDʠ/!vL@0H;JcHN*‘hϵ$ѳ󮇢 v84'܋[+ +jvxL4{.C$]q0RLb|(lsWrOn,yb=7E|k(yэN^~0sAȍ;8(E?HݛC@q_29vn91TT@IdIS/O{&$Clq B͌ͣHCmܝ00?k9ή^G\P_oϽCq7؜&DP7x/6y\F=n%T=eqLd_uADWNRNCcr.aWog̨OL>0g!\ Ũ*e .tAoP1 s nW'%UF%ҳ~1t+KOM]Y%0 ̎mCf-ik-ZͱVILhO6L*ƟA&Sg3}[lQfʎfRf*6uZ o@xE^˶)83RzP DjoZŕCirz&t 7#;1^K$Xw< es1+IURRZ<.X2aOE/baFw;gRCW4] +jVZnl*n"2Sq]Ռ*4ZЎ XfoaMSnƿ8bwOU=_q@5ˊE]QΩG={ -QS1X֞U`aC;վ=LQ)84&Dpƛݗ%TqDFjK5.<~dֵ#PŨp,B(= '@]jU`IpFbtzEgY/vE)8i>]_N#nO`ocz}:__tph/S8ԇVi :ncqa<FE;;| {)0P'l]GXo4/]]4#th|B@~UADb*n4+GO!|nxDxx6¥Ppнn֫T+/^vVަ\z\)̫7M_,[45ͼRzt1ܕǑ _”,,x|]bm O6xESU[.r$ h͟ (<x8|aC_uՔU(ybI ]mE}fկD6D%e07 Op_bFpÃh¨|t{ZbDLQAH\8nL:?GF\ REIOaD]-> stream xZK㸑_XC-xfzv;ޘSX3XCR.l A5u(R@"/uUlw*VwW^Iu펫ﮯ *W׷WC:ȕ3{>^PUoYݶmc5w/\۬7Ŷҥ?x? žg,:qsNB #VdQw߽GNOQ/ž`<͒vqu>$JE5͡PIʮ=tjӮޮWR¸ƭ_^]+񷶫[hbL}u6UԷGX)U5z? 9 ZT( ZkG{O㤆P4vpz|"El=*;jNk)@ /TwдRIúж':dTē6E E+?yZF>~ĸhDfBDu`'Jܷ羾o'0L Z$T+SGښ 픚eDE[&ڞ50 Yaqpjo&8x:O+>3S06l"fVh 81޼'+-i݂J3r%G`RSP ;p%5A)nJF+7߂<7mOS!:)(sיHQ2v+}T6 Χ]DuWh֐^2Ґ^r0ӠN/TVC$nWːמ{Fs b?IMWWWJs)5sF+IA1mׂj jH,6ݜͮW5K>3z8υ>80|{xh>pc4 ,h+6QqEI,̪$ rxkq;#^̇r-FyPCp=ݧ!GlQJW*BD6]Ф6}|'7 JP !7z е7MshN"1æ>u`4&ݒ*!8CC$['Gql(4hq:5Z'D1nZQ7n2NMҋ>-$h 3!^<Yg-^@&BCbDKԲ061ClB|u|c 9H GBg2_s+;[~i_4 MP HA6gIpXú9HQq8 O޴ ̛~Z7t6#a=! 0F1'~ˋ=GA4 ! Z#ÊPff}yML-W ,DhA{(2UlCT}zFu2nTp__pũPIUY/+nD* wMqptp/GdO R@?â7O3qș.Q#AdHKg)m hYlPF 4q 킛+]D{JZ l RiFSWpZЛ7 t;Jg .PbD9F-7W|9P^rJ=a'R; ɒ3G2/nRu[2o歂G֝{%M퀘Vkylp[%ٚd5!}X7:VS=]@t@01\{Dx"1@щ"`T80{gTL[RE nheT@ɑ]E B $\[Ci("W:F5F b,dLy%FDB0xQ)_Δ+ Rl BUĽ"8a Q_;bJ$8ZdeDdȵıM} څgl\Tyi]ADGbGǛ d1d)U [m"Wɥxwe)qAŭ^g2b^D_e$L.16V01^CU)6Y18-a_+%DbVo3`Mzϱh 30UmآϷh RQLݝ{TY2OپTXmdg'`cn0@dq_BѕLdTܢJ+HO*IFj:C#;Qu&31ʠYYcLi4:S8mҫ#_DgpZxC1yJ;(''zm-&h\4%0mQgE6&%r2Bq51sߎ䔇7pDU%1u]'쏫9QݖQmX9> џB-SJ;T͢^/S[ PհC?ϒ}D^,Ę`/x{T¤vlR| C * q._2bJ` q qz|V,Ӿ|k߰\Wpѐ)[;Nm| =a%%j<ʜHkj@bu$x<+;73ן߮jnM{yX[b !o >FPї`azi;rDo0MD{.J،N\ukEY?u?f]i!ZЕ#- lڥzH"v,|x6Pk @'y˰7gYakmA5q;~W=,iAW&>vLJԠԍ+Ѷ*13]̸S2ZY z}7BOEwH‚fuĮawާG` ͩI`hU %W쀆 Kr>YLUH6Oʹ413W|HN'I' X.dC0hq)O'dLƊUF9O+F,IkVh=\f`|CPat1+Ɛ@l+g2a *@1u3J=Š~T ozo|L3 I<9}μ=sE!!o=%C-Jgtpv<_CY9xPJ%@vv 8|2Iٽ^eƋ ]m>g1%%.nŻ|A+:.MHST曅F7SI : cݑyŕd/j0y{Ɣ)w)5 E÷=^"nZʋTtOxpp>.8Q8q"Vtm{U4@Kc.ױ'5Wz?RM* Sn RgYsfu~Agʐ~@.QYÆo8wm~:kXYL,'p/H P\_"i<.H .SUx>N3]]3_1$d|BſKu:^o4z03h@\D:Wo>{endstream endobj 250 0 obj << /Filter /FlateDecode /Length 3932 >> stream xZKyB0o@؎ 8b;I>h5Ӳ[/N=H=zY'>Y*"\發_sʯ\Imן\p]] ylB^{Jlw@<357+qPL&,W:hJ|Zkq|KoPFa@KզoZpY8}[9%6 rE_xB**0Ŷ:nPkQZYW+k-kѽ^eoor *\% *HMۗ}[ÂϬUьE3e_fwmyY9dR ryQE>jڃvb'n H*mi JI}$Mؕ zS.lA}&s#=cݥA;,T˘ʱpNLtFyL yp A,yS(MT\R`;k%Mr;S۪lKJJ5ZK<3w,w81ֿ*ڳwO'l- -](Bwj#GU)Pblfۡ/-=5!zĮlW9jC-7Oc Hy DrIA׃Kf[qm[O\G\֪ &,h=rC]~ycEsXiEXc_mЙ[R@\}pzSFLՋ5=MHn}FIWa%>R.šY JaEMb#w}^zV&X^P&lddeUڊT[=M>3ƾ_Gvc0ځW>M8$ 6Vl#K&g&ۨ28튓1ީfr :mKeQ5гq67P&.3ǥZ婕~4:d{!V< =#TkbڃnR}daFOu/n hH@':M=Jxjb "3a3qL)B1TB;miW[9jI eH$_o#MM X@ Jc bN]՟3 eb1aА. . w)UOQXWHAF.RT6 bp ]H$'4kN-UB؛&:۹x(h a^}h"x_CH\0>puG$$-2%b63Zâ9 Byλ"WrMk wL 8|X(#e 1L/ӑ2Xv Fq1Z9P*(Ps4ID_<{]]#E3̳&L1"mF~𰯫mESWc ,=ϳƝ4V/UmGsVESˠ8,3 9ŶL8%J(rȈ   {TSJ*ӐR,E|gqAͥy KV˧ɧǢ1T!?'޹MLѦ̭C<f1f4 x8x3CbZ1{`c { $%ULA컧b2}t-0Ot V \gڪg%vetG[^ ,D@F ȁt2A|҄ok<*5"#VBp :Px9;+HC.5U&ìAӃhKK8mjs56SWK`9y,u5Lu ϶`liBhƾ ˝Bg b8򬷪K𞃔 9Ec>i,DQ!sُ#Hl5a& Fk0 򴄺?d.2A>,63~aӠ*˦LMИΚ/6lՠ/wT %D=~wC/vR?by)+S7Z8/IJ+&ennZ7wa$v1҅W`c(v07gP(!݌>/~z-z8\f+<⏾(5V*S~{.-P'{"=R?2j, MN vKԌbX*2óP$nhk1V! ,T%fu*EM;M}uD^gҚ')={HòK-i[Vi rQ 9xS$&~;43`כa>OnzLL4ɏfOl(Ll+ :4Spx[A8]Pq q{frj}0y nFfsɱ8Rc΍;ӌ֖{rі8;93M !k\XgDO5&V) W6bun.33Ms~̉G:Ļ DWBx-jUV*](#l_7E;ݴë e+=8%ėl'mGS?ݧGy4^ E6}|8Cm$(CqaG|2&%BM9X\dΏ %ф9;Tx. Ɠ6%5O/wKm0.9SV)E3F/9 X ǿ# O+\zO}=8sJ76~wRYG^W̌BIck.}CX=l6M%i6NVC|0(93a]Yz|{~X> stream x[ݏ8r\ ~{6zwZZi+\.ڛQA\;mkeƩ:xWP]6uiWu zFkS}?VUǢVyY 7j.rV6T0 ܦΠa>^hyo1uɆ>&XkEu\܊i3k, wp@MZ\K!jY3֣5 {{߭k(=óVr)ت3O,xZEC@AjnDž5U?.է4Do?>Vn'#p6,IaC YpX MS6 DM{-fvE$ (1w{,h @1TF":{,{nc&ⳌLp!V;aCQݮr/,vE-qh@DVFn"xcG|p`\`o]Lr/W۾E+H㎿~wUĀӠQho e ]gtČO~w^WB#6UFǪ^U?=kR#?lT$3BM `RЧXW VjI:"nn7m4@~ 6?aFd~a`VFCQc6I`aD[Ú4ݻ Cq nNFesl +V*׷=dXo1 +M d##)708( 7&n큀5#n#pɄT?lbO4K&݀#+5JB1L&K^:9Փi =!}-NtvQZ'Q"4CGxϏ"L J2MtY#궇H$0,U ]]6z YT SVQyoKXe,kwwحfϰi(j[e^-X'{Rzflrg6cqFdwʄTUtMo">&coP7z:qiI{ߵK`>V{q٭SuLFE P Cb`QE{hWGMywk9@RD& r'I)Zi7f'xCj Dv̽Nbvw?4u+#6wC':VJ$ˉӚጜ?pd8#>\/n r%?%-N l1;u_FůD{@8Ce]Kɣk&}.#L[E`x%([]+[VltXGd"!*KqaЅsܷ_-C()H;J%g{m*y"BTwAs߮k2iNJeIW^O*VdF{G%DCYM`9:0~J}!Û8s2NʰH7>%ۿ;Q&07^G3䨎0i<$ LRpjs~;,mM? +fE$mmyKYq6KZ$לqQN*,3 Y$Ȍax( c :VOMZZ`FؚCB&1c'uⰐИ;ġZGTE#Um7S8X$V<'t 'j}9#j~IEʬ5 ivˠ 6" s~BVyHüJJ13sp 1?SLIL`tG\xB7ZyT rK㋘:¯UKV'AU&h#Z o[5j0 @ZStqղ<%Q´_M')meQ,qĪEV{^q$!>e:k6cpo `×Rmi#Kh:_OLP9\9l\&25ގɥ淜yQA8$im Mn84q~N.,/@AJ;vv=$ou;mXao><<u˚!WKj'uXҦ P5G҈L(˔W~Ў*E7Qpmz_{ ܜ1POџ*G-G -8Oۡ cEJ Qf3뾴T.gNŴ^Ȕ7EXT[;ܷx;} ~3%G{n) g!eWdhvO8**E˛DY]pyEߩ7ʺ**r~>Ђ ;~YD6iB+&3sOh?"@! nd-](D0E,GSK@h$ssC 1Ոr; O0e8(YF05q_<8p2q7:66 ئcj0ݖ&er];qLtśiAg`6QA31[ܡ;<5YDҶB;|䎯Sv,y'>/hum@x'9ߟ}iB _5&1NBJȾ(W=#s ;$}YJ |ڤe%MӉ5mM&Ȃ V,A MK˝jʝZwJ\Pt!Ga$cw l5u 7YlK`!Xvl.]F;(!]l'Ob9;oREtb5x7 o-j{]p@FoWRJU (of}㓦T4De8ejpӗjQ5\Οx+a SB"\( ? rU`&˻dL6?ϓ3,rp>79b΢LBIr+iJfeB$mGF3).2y-6;q|ؚW֡g =DQT\O2&gNR] S._n\RK{/r>?}0ο^5y9*.s13UJ#ܜRkY*-*o{3m}j]\pLut3R]-2|ǥ;/KykCjcD#@&+e'2J5 2c]H#SzWJs{:  :gፗ늷}@hc|j9*u>uVenjQ JF$Hr|zԱ?GwR[=x N-U`2zP|Xq4b;5=3;}؇Q nqHr7}!dUh%;by(9T`¬(Q{ǪщN_J"aPSf!ZU;#q>*Ԡ7 ӟcI޳Z}E#Pۤ,Yk h?Zj.'x70wI5a|WUS˛ע?C17W ׌QNJL|PQKhd%|@LZV`f!4BwRAh?4KCy4G~N73ҝoyj,>Gq)̊mz ^B9OP?mqktx ~4R7c_|7bLl۵s5#U4K0CMdc;sx<]ؼiI8_yMcjWGGo2TZ[ ߛtI-V|J r$B :fF#.g1'ןUKN+zU SUUTb n@LO2],Jw kdk UT=+snx^0v~ [o,ۆkoUEīB*h SAbmlEYnmjǪN!yjaV\ko4es9^:}K𣋞"yrA0V>מpGTΦtccb@ŨF~y\K@Bgp`2!DzKf??h̏"1L jp`EM/bTAUTd6}#s- GX~!endstream endobj 252 0 obj << /Filter /FlateDecode /Length 5663 >> stream x\͏HvO}-s@#]5Yf `i {fzH=޿~GɢvwA[bի~˪*ŪUz{˕oW_6+K\]\+bMY VNzzU8U몬ڪbG+.*Q^b?a.z#ʪ8/:[Q~Q^q#|/k`Q[MQ˪hx:z~l#QEo6cCvܩtƈ40g*HQz|HI.NAXٞB #| [~ ;O@ 3y{hN'D4]zl$ F|ݝȶ2a 2s)ƱB4p޷i$W{nE& E]Ӎ[qhGffm~t]'(x̪:P Lfx߹- 3JdK5d-M~nvRCdRP{:4M0KJ߁`OATI7&@ p 8LJN}6 0i_Q7 28^Emяg3 )1QD=8s4nizħi*LGг9k0yh.e` D(&5iD҄+TC74*FM= ShZF7_*KDDcnwqrbxrොt/J] ?wGT?!QBg>_gJg MMgTk;2ic%J',Xdszӱ+\)$DeVJ/r,T"^NY G??LI Olgx\,FҀk:zJ ʑA)L99ϊh:mth߾8DHjEQG<aC*SAȢ{F * w &D{rtxLq;$H<*f5'o0:A̢0ݽ6Fj,î,)HAw=9f9ˑ/) h5EߜZq\D$e.<)U}z-qhaXJh[G 7ή6X>8;,. IӂW9X"3b FIޞ<;Bx"+$Ҧ0O\j>"s%/|*SlV1_N1s&gf^=9|Ϲ:Lׅ_Rc!hqIGAW`tLXGjK)m0r_"=akJTi/E}F&ipZ4Ed=ae/vιta-5-fUkBަI_/^RDHtOM? @5Fy_Z೘4@4m JFuY3Gwq6o~µɯDmK'boڲAP|bnܐ?P|Xʯ`8=&IN$U_@ӡ6>!%\\j Yq8sy=`JBRĤ !L @2q X[ȕ}l j8Nm5=fتnjhշIY5 &1ep-I,NH+G%1>$f,!A՜bA#1hԺ8Oo=9 Ga3._c@PrC&~֡Dlr~{AOP"OVy~1G#2ʟ[1eFc6Hnp XJD|P*MI5H82RJ>.Ƽ_Ί7 R8;ݠl { ޖN0eobnk ,'e_b@e?ϑI!#p,-#@\l9±bbUjYUoer6y.jVKFśpsj&;\)P-~wrߧ:ab|[ ,zBܗcc7HdZi Ç_D`Øj.Cw}6oҵoil1N zUQ{W<њdF\>27l%Lěmy˓BeX8V}Nh|ˠۑ]xɬO^2 -J]X92dc*|3{Ck;I8K˫m[&CX O{q>Fũ`B _ȭ=9 S.sG&dNPZ]q{|B3nU&<'^\(Mm+ fNd? kx] 7cYg/6r/@g"L1:=8FQQ~PO#]pr_s !y5aՠm:o7H4&Yw4dd)giƃ/fP4&ҁa.~{FgӥH]q xad#xaƘ ˘8I/qt'm32!DIJND l5At^;=;d/ϣ.'那.ކqZ~ I[aXʖp~lt7 [՚\g~B,9;9EЈ/ϑ]ƳbK:4HMb;S숝4&&)u\czſr|S:!hWM~+R]M@pGMR,Lѹ [#& &AkvmSeznr}tpMo{0IS"jm))@[MW6QĞt{fLyCA7Ɯ>ŇO2/)GAUvQ-(| >%Y+2,?4E?)qH  ҔC!t)lfxj!qi[͐4x !~(((@5^fzjcy$R(޼Y*f;]vmlgU6L')1/e=_~c'( 㯿$_x M7(hA?A>{$1zJ!&Q> stream x]1n0 EwB7,Ŏ \%Cd 4DgCIDj9Uu߸rx_գr__&\i+?]ݰ2(/y._9h u1UӃ5UґutbA I-aJځ@ڱH +ʹ2\;@:A ݳFVu :i m \1**Ki>e)ܥ aqendstream endobj 254 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1746 >> stream xmT PT˾ػ۴VlYVJ0@ ,a\!oX8e*ײARET&jMl2Ogzfv̙gsw%r$$,BSK-s~(br;J,g'ˤ!nX]EP ddd):wJ2 7@ViS5x]JtEdFBJgPxoH2׬>, m/WRSu)UJJT)ލWyC2ԙ:Vj(r{k/.JQ ʝ<)/JBXj5rSn"0% MA'P( 9~"JIij.6<{im2ewgߡ/c%IBAk"~Qєj1G&.7DI_\ Ր)夒c,J*{K ށl_&R;o]!a48I6/qiPu)S .Fjs~X2>*N<19:};>6Mst=X<%TG),FK-=@5TR/P О2S5.|99'5@YˡZml`=lhKMݴ@xV|VbҁXyWL5F{my)ko Ers}27L=극 <3R4S#V һ m'?ud " 9  3_d~OͅB.} f+Z C0 BH]!duxlhB.{7A-tѤJB\J}bVC{̷1AR+~"|Ξ3 ..;`*zJ+7z\<[s0w &;m'5~xܩA/\7tz7D&!x{uܿ-g;y߳%L7ذot~^ѣ\4Xd%'M4|}ӤJcc%ʅl}MR "> stream x]1n0 EwB7bT\%C.> stream xeV TSg~!s8舘c;igMiK+bae I$, =&d{LeUAGťc֥ΈcRLgqvsrΟ{aǛtɒ%OÂ'G&,> EsPlQ41"{Bvyt~|qvh~H6?)G5w;+edAoJerqfyVvN⚼I/RXH$k$b=!"!bT]="XB,%V+x"ģ" ?N^XXI?^:B$Mn^ ))4N&>ۃy|JQőeAB#TWS}(BQ6@/溄G-q[dZG-}~AAi06w}wygB~IUW^~O‘MgGioE8=eozh15[>KW%ЪuQN]H&v>Ѭ$0NJC08nnhlձ* Os΢G(v>#Ѩ͠e"vjU>ooie|q- m./{ 4m[2 Na|!ս*. :ᣊC7,dHf%w1&j\S^6lӲ@ &_c'1ε?ځnq^hܽesgr_"'w:X@V.N\/Lmn?8l.N#kFQkdRF-b毨]MM@E&IY%ԗQiD^ļzghXȅs\gOh=uwp1^9=/A$k6jFP -O9< TרqH\w 12r(0Ѣ(>ez[Q8tT̢:jڷ ϗLbk1R:v;*"w@:дռE.)^PStᆦ~Rn+0hZ.IJnx%Owp&/ _D5/@s S =9PJ=V[WMxrݲmY)e)xڶ .R Ev5S%^by'#rm; %JU5BԈfPpܻ]Z [}Cnf6E9!B*xgƄH) >-D!UҲ{9 x5i6zh}re̚p][S9얎 6U6UAZx_3&@GsP-U݌@vY\э΀ivbڡ joP Ɇ]6VaZ etnlg>o'{'I{؎x[B4i0-_hLNˮH57_)CL v7;Na 6C`Z/2M;ap?yK#C#C,|/K{w;8V҂^ub? W)f2IiG/4DZ;w,epAOrrY4u(:{ scrkۀ>@;,jo!țJSiAUlSJ*x'A] "V#Bx̹scc|`I;)$x_܂%K3.`̵]q"xuuo x ~K qIkصzZ6ٶ˺ALY>!xK+ X\#0inAטZCaL٤+]z -[:w={44*lN )Emt4iF(K(]߈m[YRga[l4pe6ĨIFŸE?,IT =/OFaqh>o _$JEdgScl*b ~EחJ2&,K[0Ya Tx+|&KBC?RfvD@ݝqt&35 <4endstream endobj 257 0 obj << /Filter /FlateDecode /Length 642 >> stream x]n@D{}@$ookE P`a""Λ.c굙ukkszfZ:~ m~j|߇zNuT?aémiˡ_ߞ8[\{.RۺSh,h"fZ3>T"'">> Vb;b;bXE)j[\a"2{Ӧ"&Z+"~B"BB$DE Z$%%$%H- N*9sC@SHcHC@SHcHC@SHcHC@SHcHC@SHcHC@SHcHC@SHcHC@SHcHC@SHcHC@SHcHC@SHSH,ĴR 1-ŸBLK1.ŰRKXHR2K ,L ,L ,L^$Xffffff:999999999MckkJu,otu(ou*YTWbbR]: *6Xl5 xo7 XCAk7` y! o5 xRUĕ'(acq5׾Qge:NJMendstream endobj 258 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 9015 >> stream xztSWAXGH  z B1lr",wɒ\0ŦwB' ɤ\olLY=/{!=s>{s.DH"""徭+㟋e12<,2<<* REQ= fQ23E#3'g GH* X:G87c^ s*ZD5.҂˒v,߹bʔU֦'>)S_xi_5ޘ?17qRshI$Oˉ(b%1XE$D^Дcg±'rNKO{1]F ͌G/D3MAqqn.M~&σ}{08. /0mc7eds~#m4~~^(ȱ10K[h"Sz]ޑ̲00ƖJ6e`Vq=̳c S"~B&`|jw1܎]xM%ݠMbTMTfrZ\?G|oLg$gu*H"ޑgmÞDxp竓s^z>nѨ"(bfq <IXj)/[xq̄Mr@=`xRQ<=e<4X:I( EGpp0BsF04yxHnHۇvf"D==nX*䂹`Y{/(5xc#o#B]B "x2+somY[Ph5zMCj8͆a2&;b7i(7\V}p\u{?p""Uj F\qZO `Oaݨ:-UdcoV3K'sY,psS팸 'ސm' +}dp큜* J)8^#usߵZ1ju}B]Q{ǿj#|KB.;:chTpeR<1cJ!j*'r΄$pE-;F`/skcN-)yD;T@mT6wjnD^P|lZ;EdF.y2 Ό>غ A'EE}>E}# *O<$OfWPh n.eF93o!0]GCKAC9߇fc-z9X3("CN3b@s"s#`JPgٔ"+qkd[ P 3h؟s{6&7PANa9z'+= gц82Pl*-ӆigyZJIFU.FG5TU%w._v1eS <zb_DZ[! >z;d oL `/S` *tsZ8ؾa=Ie߂5'bxpQX9ýcءۮf4+8@RVgԽb2pT:Aϓ&Eo3RfN9(o+P&eJC%>zN-`+Fp|JفW3*M*tی0NU"m@Wfŷ ĖaN֨ߢ0@I( rOn;0""v֚9h@ psk٢)6{Ki3KT5v'"=U `. ,l|o[K+ʓU'OJR\Ζb{a:2z]eUn?Q,̯Xz]6dؒ2 ӔYE[$R)DZ΂6 mTsʹ$w{olZA%$ڦ*RЫV|MP]$U5($E|]Vwm``NV0CJvq#܉b,8jǑڷhm[L6Avo _& K}{ ^ !")ho4 nXDG8al;zς9 Eid7'ՉQ*aQ*eUJ</,2<#KfRF27CO@ \JY֋埬xFc2y@w2oB:UVAATZN ;u zuh`UUW# [uNkT*.aا%Bd))+)9.U|֡jH,i* AI,pɪdevH=,ï|ա, jSXUVJU5J~nPN1oa)v1~Xy'ݝ 2oȀ[h6slЗ 9F7eo:><iyI`.]P{<HԢ3k3;`p%YTӥBHܒ}m_ m%r~}E!yEFCh4:O!Vů  e%Uj_R)2S&v\M~ Wm;K55ERT+c/De%s0Zfoqt K 'd70K D^!dPUuzN*nXq#  @v_cv CkSKR5}[ /{|PH7䴁lN]Y]x/FԇFvX% -r5 pvbxu-r ujJn„wpYa4=|I+(Ӿow.W0|^Qoɔ)#N}Aռ_h:lهř<j5̭¡w&`iSD PS8}۷7tKeQP!sϲY)'[t+#ڑoon} !zOkfp BRn9̄HtWF]\;T]RIK NVVdm"܈[MW PJ2ޛiRa-`ٲ~'V^W E?Zu(E$-~rց,絋sHsL9Q~NFߤ>Ibju ,Npdr05r y0i̺C凴;W0j^=[ Lv=/}E|i$ #Ywup8\]~MiF0Q^ 1Lq;Caẅ́/׭v.+ p>q]Nb(hXJ+ }D(NP[448&G^PBw '+ܥ @>U]YdtokK?l{G ~y}6IMaܯ/<"A]L92ZNS,JOٲB ZW(xpIѻp'c_aܨ:HMOuށtom:PA0%*fnM4yn՗˴j}yx_1uյ,FFR[\^QRZ^'gJ)ezN3bSk?Kҝf:6՛^Xu-FkIll%gy&PIR"SlۿU@qzwyO[iH$" ^Y7g= I1mtF ZJaPiIjg.eCPoo:~;oIqP@LZ$ɲxdt|TP*JERRϡ}'^bYoL1Y¬l*;陡uzl@+mcF={R |wk=i3jV"m=`0%h]o"30Ǻ"z ^T YRi̚o/:>ƜFΣ6Mw`J~ :۫Ǧcl(HJ2)|IrvI(/%)I)j-޳Ƭ1Aje!mAC$?Xc_־ϾXFJrg!=#8陖V摠МӒռŕə+o\xUyL(mo*ٜȋ*$_D+ΣJ[%Si4Y#pq88.lm9\{AD@!D2U4`GV ,[E&\%}{! [Qe;2_2UWf(2U-=$ {Ԭi<1*uAR,4m *uũ+R,ۆGWx/i7[d[=~dSıϢCA}IW.fV,nbRFA&qK8m 7cdBp__WW|7`Q sGdk|uZ6U^=hcvk HUUiȠ3PTV]ʫ rٵè/>0"k9|%_7U1YfQOP%(a{ډ i˘< `>&h8I0z'}H~> [Wx''&u|Z 1$нCCavߛw3]=΃UmC"],GӬe0}^M}r5=F dP4& P!sׅaG!VN}!c!ϳF;|?bp^/ؕJD2 hFrVݎ`3iZZRAgK)Z֢5Q`ۤҢvx6]Qug>6xQ0,ҽ0+HU/ewo;;ӂB٧Qp3r}54u,ԛt@|qVV֢Pzy>?̓}Q+K z& aBCS2|_G7ݽyb<ꓮiTn8ZNԘa,嬝jM܅Tz6sjM>@U&G^[]ZUZ 7% ^?,_35 vaKOyrnW4JNπrG:O9ȜrԎ۲{{ߜ^wa:h׏>j5۬6icntoηWֿg#6]k>ٵz2}r/4_95pd!2ͮjp Fߞ%*Pp.~`czdA'=TjTͼ֦&NWR,,Mqh4ҦF|ԯ>!A ;DXt 'Ȳ0JkFP0Hfۇln[:4Nxs@w5M ɥD9Uu5򠙱慖\]"(ԯO`}|l+|(a?q{Hn#IeRTB[Dq"r"؈"x(p=nc7OKd ح 6.;rXuTA?:?tܓ0o_}jDxBPAsQ9ڨk{~Eg-쨼g߆[0"|o}'=h1zMQMotaO:]xhMX0щ".iJ>s O:Y Yvܛ&nSc#$8ێXX}֚uc$4 A:/D4DCp%/k.w> mzXEnOl/,4t=/4c{~t|,\ꞢF.EHýCG/d=g\~|Ui URMdVe~mcm),Zjءhq.sL3 b`sOrL~pdY@/hdBvWS5Xs=-ٳbP߭ !>ҹ [(,{ VB[Ak#яDnߗ ([endstream endobj 259 0 obj << /Filter /FlateDecode /Length 175 >> stream x]O1 y?eX%CqD DHҡ-|>0FgeSDu:Hg\#MKtʰ@pW HC?Ԋ)Z^Gq 0* 91897g&} 3g˵+WW# {R,߫ gYDendstream endobj 260 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 603 >> stream xP SFSS1000va  *Computer Modern Sans SerifComputer ModernRS334rM@vKJ%Au[ы'}}}#ԋ뇰2R`aUxf~dd+kv8rqrypN7?o󊒊ͱǏ{iy\XV+V%.EsuFOYGEGSvMŋdRK[SO~spsNпtTTC^E;=J\rLbˋ_Nʯ)7>KhK]pzvPk`  ? @? endstream endobj 261 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1587 >> stream xmT{PT>{U\^vH K&L'mƖD4 Jl|n\>`vy .[+.0./a5hVmh|DMk)t~K3.j:霹{|!#Qr"Ryy.'+]3I gnŧp2$ˉ\&Ӯ|͒_hf%[E ɖes{b͔w|B &$zI&)eJ6tKXɌl:7(&$jRceUkj^^9AbXPW+@:zS "22m/_p;a'цebF6wq +%WSQ0Ơcq 0]n].8\?O.MRzLs`Q@eoH.vr,jȴY-9`smx}q{DE|&^~Jg3j'#,@acࡠ U?gdڻC8K6@AHOLݰh Ⱌm<0ܬF y٥jR KcX5AXo+8h;y@WA16'CbH[>VaJ,Ը6pL"`c?Mt4pW>1C\QW:\ sW+u,-TjkCMl.+i,ԁ\dxb?\u!cqD, -׬6ѥhsYwi;R͏&uK0{Z-`"ˋ"MDHi22I)l~WNݗJ\[,]k+VvÞkX?8t)6E e`rxuܥ%Q(f+k^1r͐Žo\OTl8{5@pM}"$Y=lL%'?(`|]nk^b7l5߃=Z{fh\XHGSh=r&=|Aa*JT}` mU6 7O[=uyZ %5̒eA胒@CNq#Q׏W~U+/=D,Xsi HNSboEJXTb5T]w3=z9t3]{bv;.ȵ]oCPvF0>It1X~\DwG~_$u)bz8,?uF3?CyHp<<S"u%偈M.,<a{Y~F:.\4v\ b4}nmPD77)d|zTo`mf,+0+UO7]b\ikz Pw>pu+`+?00Tq0ޮ7`c-K_l_)IM g]A/CZ.>DXqt]"B x:endstream endobj 262 0 obj << /Filter /FlateDecode /Length 3708 >> stream xZKsFtJ D`V;Hr` 1I0hE?l?f@@l%ļz &r?¿^랤jᙱ$djz&rߙ,r ^VźF3;Пw_U0jyS2Oy|)oj]igU\t#m.)ox,]Bs@yUj"2xH}$W՚=03R &CN +vDe]d8"\=CVp^3,rhujxs#;ov x(GJ֋z]!1>9lGhHp{^}. BB_ow8\wtl 2gQA|sn. Mңtyރ6 l]6gA@A,nZ hW67$xJ(jϟRx|ޙQ8c3C\5mH AϬrF! lɣ)=8IF gF`AsS fk枲 pvLx ,ISH*G䡛fU;d6,~P=YbSxt0-c<YٖE$\`v.jRJ;/G`ܭ@Ȏb 6~_mCk2~7"< ߇QmYa,2\i.ޯ+'Uh?PBh1#t{zYӐVR<-=vmP5@ 9 䁐Q,E`8i kbAV bK :]lj4ˌ<2-$Dl2q.#-yD(c|(d(KtT '?8jRm"\Mkk}K}D-V.btM*ξH$ $K˕`4;b u?ʀE zBmb+؜pͪXm[-RjKZ>W^d pʀU!CFF\*mS0GA̛6,좩ɩl:pvHMr@B5%0D,*N7"7 q4TPP&]M݁bqT#5Vaˡ܂烐ZԠL RQ˰,U:sB=CrT$5<U,.V_A5MJ?~˪wuSteX {,>C.x =E2XvcHA5gUa@Ԁ].G94$r5L=G8s>C&i͢q)N6pELHuR3 &7uͪEO'ԗ%5붤m=A͹3=q@R՘)6(@¡S[qtߖciThƱ?$fih8∤Dƹ} @ h|sU#Ѡ=(~<}qzαerW5,ݖ'/pCSxv"==Ac1nNC'Ïlԩ"dVwX2 K&JJgq@DM=cxNqr3о;isw1Pj U%hi]Nt' zZ Icp2J{s4/!oj# f=j::f:Ev)dŠEJ U?u^tb?W9T|k[qzMi-ܞ$v.m80x썥AoKUt*4t!",Ͷm}2UOR諌%sG zÉ<)|Z bL1 Uwc |rӞQpc;ftz;6 spdŭYA St*BxטI[Y;)6I:?wul.!Kʗ"o݉_{".mT a2_Piwe̾ʱk]I(d؎-,d~x6 غ2J" ߤnD+܃/} mu4X= 4Kj ~9vty3Ɯdox'9Ll±.|z_ydE;~{/#TꙜ듾 & mIZo:|¬;r x` lqhGl8NPk;v]a p>p+G2n~kcJ2{XE i?^4Zendstream endobj 263 0 obj << /Filter /FlateDecode /Length 3845 >> stream xZmoƑ8M{lg[jx$g7ʯ27땑iTWW=]T5Ru_;^eW?\)zss_]e뛻+yC].LӢ(oW%ֻ6F66[4ʤ9]5e7#/u|Q^oU!إ-T5f La|Rw}Ӟ0kkϧ= PPˠ,]fi=ضw 4*mitB=L Omn󴴹dÆ"y sx9h{^󬼾~3_Cf2leL4ɤNߤI^R-{\-K"h"N;~5>yhz%ESLpiZNi}˒wMu6:wS4@ LRu>MBv(fvxs&9W&,I r洃=}]s{_CS3-c׆eg6cא1,Q +9~2Jsҕїf&_uFW^qEx$ok,h(I~E*k,ԯD&RW8-O'zT]Hs[RK#⿚asJ 8Hj$}Q2We䋺Qncלw "&\}u{#f*-SbG(q4UWݎYiMeN:~nY3kx9)еf«2CU> [󛫯t, gZͯUF8]{e5PFDɬdN ^L&IG5ʀD2 -nt?|Q>|R2+ar&#wWG+*oKV-r7Jړm /^f,gip-O]V,,.n f:lrzPDm"Lݜ6]{b3ևi56L )a2ՙ/'y1QĒE.R^_;8&?:m^]-! Bׇ(!0S߰Wb\RfC-\xPRCٸ=<)q7\.qV5ԑ[sXD~S=0^Ptvd5"hba0RvqQnE>&rG/"".|Tݵ#%$X enڜym)]zd'UEgbHO .zA6@t D[1H<\c%/A1f$^\LܥLYD0B%|×*a}zv0KJp6|B.B$D #- # },ŹYw3(há᪊PBjPσ6 /7^ۮ!za,`zQ~ }zlҟ`X:y~m[^zVECqS(RGQ(ԡB 2Ɨ9@4ѰuձypNR'PA\&ZzD@d"~ ٝ{JSGBH? d~wQ@Q,SQ@k )3E`d}N허!;d"zpd)b<}u> YT"wԢ2IYz+ &'~9k iti.p\˱'Ia"&76.á 2b?Ȩ(eΧt¾ cmo_rCf6(KMs$Qʥ-HRGa(mWf?5Q+S b]nXOJHaLT%m}ebg#m3äCӓc(nGR/*˅HeZx RĬy%3韾)KM3$/¨P&N`<ꢅ25{ˢSH>dg`ZS#Ӿ0 Txp 7Z!<:p qpDiOlE5EACl6T@.B7jԇJ3֙8 KvVf{2%Wywx=vDEAP&R(099h⨰v*Q#dYs_ NO"#x8|p-K2֢Jf D&li&O)& nN`r;hW8_\N8Y[ >/޷o[ӟ K>61& eOG %VZxBJc|P^+\?EcJ}Zp6s0sOP˨9G̲#DfQ'{yWf!dJ#/S0Q)3c7ԣl.%'?z*TE6q_pLcht=:N`k3O EIhO]u7DpN.3+!âsnQ~<s|%=̊ǘ©]58SN׿0eїe6j(qO*cuq_Oc2c;Scq?_`gK~a-k5YcO[;.0ϙhrm↚ x?#X{aDxغٸoY5z}YSP@!qe 4heY3o'UZLSy)M%"mɑ^"Ag|A69d83qSsu>ߡTr0PNcQx> A0~j r&|7Yw| *"g{qjv}s^.4㷬 ̆ߢRvy )]N0gz紳VȤ@*CѓZa>u`4B*mGĮn:9DZNG÷W(9`]aꟴSY? }"醨2#2GX2I]PM6hL*w4DN{Ep:#Cێ-<q[^jBVs=&۩WU:ZupJߥyc*BA"ɧ`rdtqەo`F>F.*,^o jg>ʒW6cQFíNu9.11=_\e9++xc ]>?nv}3NjlH,}b֭ѱ&֌endstream endobj 264 0 obj << /Filter /FlateDecode /Length 566 >> stream x]n@D{}@aq H2ThgfdHq -3 e>߆2tK|,StǷi;ӟ˱_ǩ/WͦOe8>5f'C >0>6 #4ii;i70q6<Me Èa4M4M4`c224##LFAI(h3  r&Ae4rظFȁRp*8\TN* É@pa81. 't9s(D TU*q`d2q`qh#CA٦7yMo|-L68&7bN2':N9RH)TɞzN\skɷ[p-} %ߢo[-|גoѷZ-JE\IO~__6}"_0},Kojt9mt\րYg$mendstream endobj 265 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 7524 >> stream xzxT7El{EADz  NB${dKI)'4)2AZJQذp7w}}f3{{{2yΛ7tȐ!MvH>gɭw2A!## e53JW'*[#n@7v e)|AU3īgv9n+W4W_6#=fW 4xP žfc9\E,`/c Exl6[ –bػl6M^æbðipl::6(i=ec9XO,ba4`Xl &${ eaQ0;1.RQvdN1OnxNEOzl}~j؞yOdS3W^=s?;/\L̉}z}OF}}gnaO pt"GEmAPD LlAj"yX۞ MrBoЛTV6֋3 8U0sl@9F?ǭqjFWoٗ\U"LdjLN^oZYH%Pa/` H'sc\Xc/3ʼy%p0{#g:hF.&k8:ʋgpp Է=9NocpXS)P<7ITSJ-VĖ]_va3njmc8*ُoi6A&O1ss7Tฒw%D֝v̅=KQ!YH$j>CAEt&i ܦLaK$4U7̍GCsk&)\<씙]<-bT2-T69`r)uAwlv Z*j)w%-HFD>TlBOo;rۉ2:vf Ĵ~UV2y@b!1U[MffR~j;hd;f,1$sB9b3!bT|;>\/\Eh`r^'}SV,.9r.bDx"N3|"hWK;fOeHIO]=EUhfAjS4R|TPBZLsjSIY1Iz"W$aMXA"G1ljyt˘7&XUNFnP G,sA PEtwޟvqw]{l@1<461N\u݌=pFymZ4)0k˯מC}} eS-_+^Bp)ndM7xN#G%-Y^}x%%mDLH Jf N=M#!;N7ޯu^[I^ȷ7#;/Bg @+zٓJd$ )8ᱰ]̺G磜vz~(˨  Q-h HDQQ(V5`4q4DNi .=s)~4G^&gzM@>9ͳB \6QXm|LL4ҴjZ'.zs/}pay }x +K,JY`woRԟE˗ ʔeb'cGONY')MlW%49c++9rWJŁ \eӛ@G+' zZmk=kftG*D򨏹n׫n8mNQT vGb1%Nڈ+־'hV_Xȣ'{,d%.*ʪa| jPu{z!YC?|do[u݅1%Uh*RDWmi}? pN)uJQxcW;E"6ʪHQ* {O=ܦHj擖W~41V  )S0?X:0apUh֚5@CV M@IkAd%oP )o%MqŴMsGi8DGdK_U hj4sʪ$G¥z..TLSiSYL61캍sx1净?]ZznB3 ]mNZ7-D; SG!HU~W].0ǛFzyJ){!ޫۥVŔۄuk&N[9cꠦhBZ -C>jr8é|OI0G1l@h6 i7 r+_UF@:PHbȊ`.b nac`$aavЕ9̾/.УgL`泑˞S7Jp멣?%HȌ ʃH$2[J yH #ݩǤ-!G>&:~ qRɗ_%/Sљ[F\[E4i r ͡4 r"HU{*c;,cTyoGv`GzƂEBdt`z*x\3R ;96Z8V"RNd3u9#D{ Dj"= ".r @JmAnrȰ)pGZ4c/FZ-Tp_[ %GW4s_l*ԡ3N=ui> e3،06 (\h@M]Sw4C^;0EˊHe5$KAA׺i!bpP+Y+-܂ n}$KU̞h" N? Haq@ĩo<ͥ-ldQmvi&n[4$\_.3Jj_zj*Cl=a;[L` .np\:go&!tN(K>v8h?o؎+ՂQmY/Nk.FSk竰*ZJFF/Nhɾޛ}rs?~G~ϒs ׼VziYڋk[s&9.J:D{h[?y"D%s⩑Yv:$̢,:A7X8  Hx<'"ˈڇγs+e S9:~is.Kdmk1#Nqsǭ,ɉ. h(3;9b/pœ voʉgy ˻Hz+tjbS&NuUR⇻PJ^k9vt,'%&ِ7wRI̓|w'cw槫nCB6^Z$#P=Лt9֕fn.@6v'A}n=f>j=f$s0G8Lׅ,VP;{sCR,Jx1M@\|cɍE~O>x d{S9j\a:󤘰}So.; $v(LKs`@v r>̼{ @^ ZAeL(L3E۟s >c}T,(K&6Vi1 2Ý,{I; IYډ68l̃>IԈij?{.=\ V70WfhcJ#Y+`gV?ϽLT%=vO 8G $ eupfpE*S J1_iẒ• m l(rrHVh!Ty]- ď]vdzua/ETeendstream endobj 266 0 obj << /Filter /FlateDecode /Length 530 >> stream x]AnP D>n`'mdEd;"8޾3㤋.(`l3Se޻6jr>ֱuz7}7]u|۰7CixhM}ƶkۜ.i_x|uҫ )Uy> stream xywtUU !n-+7]Dt!$BBi˾F%4""@Gaf7 ț{o?~kVHS}o1x7d+?~|eeG I7p~\޺MK —MP(h]P^BX!Ug7+ &Oo47,'qd͕KU/ݲn_݋/=8iS_~K|jό $K2Qb91XA$VO5 b&4ExW31V50~Н*k]ܽ䞲{g}_ֱ?62GQϋyTe1GGǰH\P{h>}u옱%c>0 BֻQ&fϔ>^>u #)j&Md8 %⪐f뭆b>߼oonX۬]֤%S Z_ y*^',5P!&h!АbQ)aQqb>zE4 ,`Y nm}ܛd"esA%!XDΦ@(4R\,'E XRgh4LB:,KIg/w*#&-`M|/ZMJ$j d:KA \)G*r][ݝYߗ\W7Aj޼ϣsQ> `ѧ0*H"NhDp=ߙ%cOO_~u{W%d5B5YoMT͹Y[ϖ[:r|ձwsӻ.5Z)cd=҈_"vwL7jZELS/z]ˮ;1١4!5li!_فʷWEh?HauXF݄̓O<;eϸ3#`[Cpv炁.(XL j8{ FbqU@D&QGsm^AFZTD)h̩g]{c,7W ֭ݸi7n|m 34[ۋ6a_HR)ٍbw{<6wqv,[G\$Fe2 0q Uk@-hƐ겥*=>i]& S;e-FkIvY$joM f^e"pw:\m_:Tk2J9XGyJJjxjPMOZ9PuHJ^&[ƭ^ED5hTTj\*~ۜvVBTj3b?(%=x@1CEhX[ES#14ngGA{ZTC5nn{϶m= &(vShqQޣ'U,*L2!KmRf0\!3ho|OMo7j0GT{Kޖ.YʵjMҨ*;V**E ٍ:Kr33T3-*ʪj}iR n $Ҫ@wG'Oz e@H3IWڑqfl^@-mfJ5ìZww$JӷwsxAy&6I 'wS:Nu2ÌČ]:RHȵ~ yP{ѐӳThB}T/-,5j*HKa'@j #^k>RՋYnT^EBd bRtV_"* %LuafN"ZxbLڷYx ̅BN2J?GSzM_,W i!B%4+k͛ރaDb׾+{߁__nqx8 ڽb%fAdZ4LGGxPxbZ7A]#RYSiE=ܓd9 Kif,)Veˆ6qeХyʲC9i{ҙ[zfFhjlh`]PK;d݁ޟ kr]G*lJҎe?\Gܕq*UVM~R`[F39r*~ÖM4,|֞˳  z9 9I0ԗ^.Vh5mWi;}۵c@aXR3Lh&,LRs7}vo䳏W:د~J ~UZԙuz%?"@2 hfV[ [`gD pw_Ō.pm&|&Lӈ/YhupeQ@R)+jQ4>ޓ3nƍ׆љX21~ %RJf6yehq>) nLXR{8}5;3pp+Ҿ2x^AɌP32&TD;yr:} bNU!Sio~)Xo̩Tz0 aOH1H TE"ˇ5*Wmwowx0 q=_+ ؃FN?>z1_0*k*(76-5S6ʛ  _g8Ӝ%Ų>[V@YgfsBȼPY{1B&f`ZImƔ=pojw`5@0b#b_`YI{G>ˮZҒ{$L!b"8G|CPR{iWޟxn7åuuKySUl?U5I5Y^eǥmm'is \j+R5M㸕`P64V=7L>~1bp &"X:t8>~y9q5|HG[l ?Ls0U+invMH-i;'SSxcX -uڠ%%C<͌=hPqvZȼ|r~${=Zo0EU9}^ұ@*%Z. %0h b,WU%ml(`7%fhTYbG=n!huIc{k$Rm 8=CJJc#Kf> !#g ,<`fRTrgۄ)žjXw&cd89oQ@WM,Iӓ: =Cx Ĭ1֚rP)T8crnʮu`f_ ⟌`a_b& |nհIhX5&TBXK=@ទh@k,B4&X_sօu~nP&ৌ1KIJ7;@e>x%eN Up8Zܖdk%q=.7NTfp򑫅¨.M2#_. ]0d/r}]x!)Q*8+% p#xQ3~&S9j0LqKٍHb&fkԏMx#MngdpvodEvC)+Eb{"q4ڂ!mI&qIIv`3$*$vcȼ aUeV2"|zlJ>#wN"_gNgfq:xPFm&%P@4y5qP"enwn %0 S\kչj)ƬjИgZV; \7+dz]5kedu@PgS$O/\k=mѥB=r$hE+5M#VS[b1B ‘0D\4Z}8tfx]H:<]]txKQ@O!]q{ґ8\{cWP+ln\[tZE4Z^B73?RKm;&Sj}lÉa 9|\ Q0{fSD aҰ.GiXw'w\9~g+g'w>Ĕmެ~ꯛ>E"u4ט6;'Xw)z93AFC>\qhʷvnlslaV8P+ZцZ< i 7@\v ]VʻF=zidlxmĜ$(S a408@IP;ڶvEcАp  brO` SN4-'Q} :3ԩO!IyY9HpO-Wjփ?-4[tױkS֩uL%??kO&01U| <14qek?8_9ڎZ8yl*O3;Nz Ef\[e7!z7x jk̴ɸѴɪf}pqǂǃ^vk)e̸ߔJ|Mݮ-~}[IP)+Va8].AiNsplX@γ:.É_o9,56t;wʱM9JJLӆ֜[UG5+o&q%s Y©/ZSYSQ !/z\)\`$SxT>只M= mpLT-j迅}5W(,ZTByH]=̋O21ʡ"(1# lgQzzChnU1l In90'䠼sv ]x,)譱** EoA=X"sbciO+va8ƅp߅hU/ZK}aƓbQWDpyrL"'$eݞpSq4(gm"#-VRY~E>f;0 )13Ȣ} |3zQl(RByP?Ci3Y>ոˉI_ͻ9L?*`r&evԛkGoz=]9k``Zv+gn/yj)Ѣѣʑ#4pa]Df0ɞt6+V[POлحr3OdyBN,RuʫVjOӄe4\FiO5 ͺ10jh~C?Xendstream endobj 268 0 obj << /Filter /FlateDecode /Length 196 >> stream x] w7(\MаAcp4  WkG]~x8fsÅ;lLL,L:?xEg=auAҕ\lÈBu)=5k~* TVVf;E45(@6"h"Z )[<> stream xU_HSQsnEt=1aDB<1v^smSۼ)jp ^"z饂^"8wݼpFUckk?du)or]\,-kCۍd`#=Q |_m|op.nejmayYnvd6Qi{Kt2X.0ω ex>1|Xe9 {Aiw7oB"|*>b/)C?FtdUw@t/KJZͤUKw-mVGKĒ3_xjnzZ863UH< -QH*tZJ&)s%C5D%sB:%]iuiiuêMA9k 5endstream endobj 270 0 obj << /Filter /FlateDecode /Length 288 >> stream x]=n0 FwB7'&@%Y2(^CdCq޾C'?J,9M+?du㔆,\TTnfkKQg 2>ITd8r_(OW)a4Uo'.㶵^؀FȆmņX hP%6gW؀+cjg;l@kՆ hڲm!=BȂH!dAA2dHK'htgzE}gk@.>rXml:)yS > stream x}{pWpLr[;!.i7$@dАB ƒ%˖+YZJzZ`[_e£P4P@i4 ۤmoͺ3'NӴ?4vvw9_3P(W^0!>4gtJ.ߙ yJnT3 mP*:J}XGk*{~Ѣ%Kzh…KVT+v2i˪wE%e&KѼ&S3͏}Toܳ|#E hCYmLSJ3h*GVkLeƢb̨#BBWcXix %/?K b.XOl &$6[GEbqEMI"f*9DbӴeΜSKU#bw|0c935q2h{Fz.@ϣ/hZv6@  0;۠3p.׆bb4}T|}\zknqz_7^`{'A"k1,x7F(lA h r/IiARnwQ[jng:B bobRL ݁P ˜@Wo۴fL>W'nBXn|eV ]pO8Iw99򝝇W.ںHZf;lTѲ<#|"~%qrDZYڭ| zd2p_)jg׵H'DCzCSE&ҲTnӥD$=3[TҎ;'a, Z`9=E:ߟ7Iہ<ܣ]Rn)+VYj7=Wfi:.ݺFf yxI#7Q? < yoV` UG^&϶kЂL- M}ȯZ.Y1B炋G0V&/(k7UȤq+$@$mFV2F~v>PZ[d@ ^]qEF!͐#'1;xh`uP S7x -71”,UVXd abN7'Q!>eqK_u^CddnYfź^K\WsJj!\k@yrt#8Ca }UFHgضCp0շ.` '7k5:vRQ{AnaTŴ{f\* qߵ'>A>iK*ҟw>Sߡ7b_gAf#ԒMц`7+kKM6xicDd1tχyzKC@v36P.M];@}[_j624rYSy t{xf,zCG48=FzuJ['#ׁOY#K|`kPLSLv{~UCvL}m>_YDz6;bcwcR ˆl_.zgO@79Es#ꣿ=T1*ywW"e2PB?>`Q\q-W3ʹ|-w;1T0u.sSW Hz ~h8FJaQY1?Coyu.{\^4+){>KRRzQTBU6!B/kd"/E9(O1ƬechI&t=NKxQZs}R^R/T|q? .}xl^@WtMf>vuK=|#/5|mW%uI\3IFáϕLZG:an@^AJWѴJ ҪE8*LKE{(LAo; 0=I]xe| tV/\4SiGٹDL9I@y/m>ry)㊝& +]Ct`88x!S!єmB?Q|xy%U'Zjj 5 ƞꙉ> stream x]An E>70v R&dѪj{E0""qEKgq8O%lKU\F"3]rQ9OPϣJ+_dӰ2ӭH- u{>%Q fK["GEZÁE@>5i N^;tei ^ "g%k9k11@r_N*;01PIe88~>/7QYe۲M^b.CR9~endstream endobj 273 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 2074 >> stream xeypW-/+({04%L .KS(|H%K}u[m>$D8 !$). 4f`mc2:4<{Elޱ=v]^Į3\Jeœ=YZ%5om Ie*ɺׯ|ڍ]nIu^_:%͊~I6BU*՚5RyU%vEdosoIR%VH~Z,/n6iLhKMn [e=5{ۏ߼eAJ \PpG m CڕzJ`XȖ[8M)3&4;P{3R Ap'x3h6ϛO!@/gxx[Aq_T@`nL@1/@]+0a&Ɍ `/@{\48.ܞn4l/֎mUYKˢ'pEۓFlzVZ[? dzw[+ȭs 0J̤n~7i 6C)`&F=s@Q0nm H&PhWJ#WW7ruv2r Ώ>9VS;Pd:θ7C+IuJU@gHtN]%!CZ*D2L6#|8\w/7P٣@"Bp&<<3o<-<_#u6ȡE ȫ1ɝ\]7r_ iNhXuˤ2mD&rbD=5蝈 ASGU=˗Ѣ<N?F_z +=xr7Qg/?&0:N _x# 0 n8{0s:w7֟r> stream xXKoH^܊$#c_v}Pwkf%Ǔ_9L"EYEIfS.o~H67FWrۻxC.*!數}h+Sڢ,;6C{<,785#ʢU"qry-T2|%ڞ蛢ᇯOKkqCjQzLH'Mᵭ2]ݼYj%|9 ڇEtv_\Ak0bKʃ҈O/aYVXsAcU 9]􋕔EeOZ:lM=Jkw4:%3h^vz:bP;NJ4i7Hџ0(66{E JUKH+Jl?Yb"nfVU reU{/]k%mx%t+ 0.*+XTIopÔa)1"]SWLcBX^)ӫh?c4]}:~G7WЭ:d]ii{׬ʑ>FA,kCW=YY?ɲ\"氃f>kL3g-#1*ϺkC; +@TI7I(G'q^0z5G`ZΪUԢHRS_ V^ʪ&5}ꎻcSf892')=o)MJ5 ߡ"-^dzd]MTK4 {é5/Æh*q<鸤::4p='<7l`s {)~ϥiOx88ϼ"O-Iʗq|V;QpRA+̉w1{W>(MR hy.>=gTF-^%TD5S3V7ڨ<+h/u(KtRAI>?Czx|i%P#نW %-<͊68-(RƁH:rw\j0#khstYhHˀ8q#?q1;;C47w QJs)r,u S}L"m|?e%؞ۙ}Śs\ |y1xc@%`۱iM c<2`0{ A@CWb_h!y;_L9-TؗѠA[9y;7āvu@"ݟw(WON~G3(m&T(C9.9r?4xf1֗| z2(9z|8rtj^},g#lC2)#aX󑧴q~33hT6ԇq UC`jf)74Bc3fX;s FF$ @M R>?gdE} fHbd g}\XǤHO!㩼7+[u?ũAFRpምA%LpsrùsFRY_Ŕm I_ń(ԓN6O,Sz0$ {6YNdC\ULFF(# sj5:C> stream xZݓ۶iGs/:C|@f7Iq:MŗKLR9:~8],,j6W8?˫~,elywvY.UdrBq>?p+"] <^ҍ6ܩ٢w &^έ,], l[^\5 l(O'Y{m=}@OϹdwMOOv6m<$¬Yկ/1Y,zɍ"W7hP*S:K߳ﶨ ąa끝Ia.1a]ƭᑉUs cf>@ uf9ڀUaq fȝrCdo kDە\ CL\|!KNR5tAtЌS!\9ٟ>HnضZ!r]jE1gةMZhz U98RBk> Un[f靎lHrc6jrNUWՇKfrVB[8,4Cɥpd$8Q0$&`]`u/s!2Y\qĒSxU~ՃԙRv6ѸXv5k &|Ca5Wd 2=tvվ|蚐@=][vj?PEZL гo1( HMԐ,7((3x=Gv#ӱWkJ+94{Wá ϔ>鎒L\4Q 4"yvYg٥]f¤2CU]ϚS ~[ߣTw:f{+w'?w@mQJ$i! B}d[1\ }M,i'̆øf,Et^JX \((UBx,韛LHU"Tz*8Fی-84^Yw+^@d; RFڰ(Y9}lhK(C9|. C ;y*G K@PAк&-8l[&2%rE>5u$i50,JBHCjǺR@Ѐ^Kr/ $vF-=w3?jbTV~M'k߮w[h$iĀW?\ny7uʈLZ=?2HەVH3RF@ Pc\,  ۦo ҃ 140?)xᩍ.U:1:ŎJKh۶PW"MfnW-VO6kH0TqaE?eZWM{1aqP'@eV 3-@lY= XQN<EaKpBE: [I"[AM-bz|LrW Yzmܩa yh?)e' (s"2Pa4Р{Ǩbmu׫:˪EEn \ "C!r<͏(B*L0EEQ9K޲_.*z-"6ᓅd,uôg`4il[m=ѓ@|`uZ\DHBAf>uDG*З;d/-=u震i6PF@Nphq"۸ THzjލ9{1yq!Ҿӣ; rPwrjr ZUЄ5Rjq,r;-aIN>4FP%SPџY@ڼd(i܇9x١nA)$*Χ:4Cקq?;4KHp(?N=ԠǓ8DCn(9kUtEBGtu6bE/Zfɴ}o~K_XEWh6LJj\>|̑f:D:Hhkȁ^!&HZ0t=D(ІGf+>:G桝 ʹ 䊾 i 30hoצRp5F4iĎ}vh(a4>%gy\<$hBs5^-+.@#Hr<ڕ}- r=s#I@|I\4UۇF+ߏgq>5 g! i0Zե'sgs9¡G_\o7a8\UYߩ!O<[*ta9p,T!U8; }brA,uEW:I i! 5: +P#a-x` ? (cSo>:^҆lV}/6u#TkUU/^C5UcP|Цu,$EMb|("SR%]@eI4tF +-^}x 2<7xuU?Wam[kbGߏbww!"P{эҹo1gXpxRӯM_bFUtEC$g6|A͡K&<7RBJ3ډ$o+(oW_+=5P4F]A_T^@vs0.d/Ұ,ť<ueתG尿Çct4%GM!)De_~/UHendstream endobj 276 0 obj << /Filter /FlateDecode /Length 397 >> stream x]N@D{ NrMhP\ıL({f&b,=枼YZ^K~+z~)%T>ƩZo~_3Z{.5ݹ^7{׫mSsrYT0DUOmi]]4x77m(-1L6`KPFPL(I*J,J(I*J,J(I*J,J85ē>b_-(iUԲPb*2JLE"hd4{ 6&#Td*څqA%S(1>`O, qxp|NiB%tȹ9S!t :\NAK)s :r.AC%.`Q{:-Kr 1gw`U#endstream endobj 277 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 5387 >> stream x]t׹Gf,`ωq1#z *hյM^޵5d0h1Np n`;8w8wN7_M&N&H//`umŶa۱g4l Kvb˱ ,[Va5:l=[qxX zZ$|4a[w&M4)g <o&~C|OVLN|{gS{-vhflL̯fu񱶤.N ܁9OP56 ?=5 ಫuxRnAXyc%J Z#JRC `hۜ&pH&ʢ0uD4"IύOfG.@k-)qSxF& u}zO|Pj67s1ex|B7JZL&ufNzt9XM22`|(vfo v&=@\q|gwj@y 52 ^MUu}>InO@99r.]^ _b`~Spĥ߁֯A366L4ek v:!|}hY*ri< TP_f2. ŹZ1ۇY"/.%\Ccs#{T&.+I@I<>%zKG%axT8N9멛늲)(evq5hc k[۹&4@K2G!ğ2DEA["d.QjmxBUIW{sU`(7(ClF0Xd`b \?A;8tIzUYI*c/ aIw:`\(!aG Ɔ h(4,t;aF|ƽ*8#NّߊwYC1hYǘtyS~>;œn)Ne-qMN4NrhT.f I"lNርt;;h=i'fgNOo}=cH zp' ͋Yc;F´Mc2(Uk90 JX-bt]SIᬫҥR{#zI;9hcthpuvoNaB, c¤oT]zHSD#L_Ny0尺(#V¯S )@kPh̄x[NqB5$sk4H`DbQߩOƟ&<8=W< YP5 mtrQxF&HUgSp#|j ^PT{-̈́ VliWapϼ{2 Eln@^@gu;OҫJAXL0CgW_s8(ˣ)-+]@DLd/ /qW/JtAzAW߬Y6Fmx x PiY5y,i,KUVuF Iщ_6 JQt(*zLb]=y?،G`^8f=l2Ә )]|iGg.Fi%Qa9Zh8D-/ UZA=Ye۬V52t OMM|ذ6p[ME1ce^Wzz /V䇸p/ơ3UO^& i ڮuPE[opN!P g!A+Z9ς$LȃSn+EA &Xq>y a@# FW\H%זP@;.4#(}i9- 2S3(]p̿vTCS*Md5xdgPg'YfCP Jn-T;^Yo1Rcj+~ݤ45#{>{spЧk<z!$jgUeMaٛ)W ORB,r(5I9]Ҭ*l< xtX-6͆QK P+ jsLڟ}_'Ghޡq/!3-v` Kjsx̗w l®Ɠ入+ܼJ))T]vɑiFhN,TRUH*hlh`{Al)^W6.g&}& hA4҆7Xq*#= =2o`g`P{ugKi܇`+o4Q<EtDH f-+a38UYJ!sӛ$SKdVSSZCUw'XԜH.< Ȁif&%[փ-vY{S| N5la"`t@a% (Zݮҭm\VL|K;Xϙ*Aj .j>ejR pi{ )d7*u8٦5R6̀>ى. 6w(S6?l&}9}{) ߀Sr~͗V]$_S~~s fB 3WXjmcqCa0 FC#+Uy->d1}ٮmggkriQoҀ*Zc-B#W3Ia2KbVU"]AaDH5 lJ5Fa<,H~|bt u(#+K%`]}#4dPSm )i`Ytnl.DxP) 1 GW3 {M/KO#: g`Ck##u9U $VU+K0I̬B&I],e Gpn.ꃆ§ʀ +"kj ybfVzɯl/e_u وT*v)!I.MFedww*j aG||?||>z!{~7O(Swϟt?_~MbF[F@i$l8ϭђƊsbgԅ/^1^qz5M !}PނVڐ9 P`BtӔYz8܌OO{:}e;) LqQ=CǚD5֮զ\^Lr)<2csͯmM? L$o +#{N H?{S.U~:NQH"}"L|o dcus1eAe@]y]J4 9Lگn| 6ZMoxg0ϩF-HM0)f렑DtB rH.o`,GA/ߵZ @%JLNlh/:wZ ލ:D.HaQFF.tɮn?׻ś ADroW>HAoKUx9`h~G6) W# 9sqT[Mנ=JbuPgs=.P@BO+r$O @~kƙl7#S)޷MưW*endstream endobj 278 0 obj << /Filter /FlateDecode /Length 433 >> stream x]n0D|'t1bQhwfHߢt.1gN2nڞۼ4S;z#}X~uex]0t܇eP6,oC4.㯿bOۥǚnM8f8!+!`mxJXO.+Ĕ`"zVN "ܨ疬 JFL&@L*X2`RĒ J&Lh*a4k5̙f9Ӭq g4 ncVT}p5}.+;"Mz)v LIߨoP7 /[SV8cc\K)s :r.AC%tȹ9S!t :\NAK+Ϲ7smuCч?/^VNH fWendstream endobj 279 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 7608 >> stream xytʂ١9؛Wș )I bl{eMd;[f3w-VZ ;.p cI(7CIo$H??sT款y};Eۦ ظt'x 9iŭܞoV.w={}&̀} ͚rscG[~aV C feb)%_!Mwޢ|arfsm፵P#loevC-Hk-!E*+c)7.9 N<Nr*lA{h5qQ+>}v'hOp[%mZJۘt ҄H z].<|._i D34`=pǺ]+'~-/kGc>%33Ea'g:4qk4D=n:S~'RBIu@d_3 NCi]Z6,l[NZVЂlyoƩy{ 峪X#ݰ *g,Kz#Ko$/0Y/ܴiEӶϬ/뿘%+7uy EGʞNcVeY"e;]ZHINtov;nZ%aIWa̅q0_g NjUع5H؏?n` cf'Y8 yPI #~S_/tU珟_H]R|ߊַӮb1C݃܃?{D#(?y!D쬦j5ʗ*{LV BO&.e/MIbRk*.7 ""7+o-ͭs.}57}_X;'"n'%.楀zfߣ<9+ 6\ %_k֒.;MnfQXyS^hƪZ'S6^efaYp؍j>1,_ϯUʤJ-},,U.'v;^"4:vFTOruҨi bzhJl^[ x2@7'0~' @MҘ+ apė' :`عߺR_^_S)'!_H؁P6?IdG ⤛EnCͅbӉ0Br˥:,.ɕ6Wփ*PbŌ]GͬEE#pT y +jMO> /&ekiK F7aFg|Hج=_aC`qP~1UCfDWL bnkl5+wƈT pXA xCл qI_  =JUOh">f=ƽĉ+b^*<(v&_b2*d:DmV^ Szɮ{5¤yr 8v)y1q)zBgt.E=b)iZ' Ä7Ü.AC.ghqm>"{TK0Irmhy-v,(0Q?f(ɞɜ<{ZVmMTo}) Y{Y:%aFm&%PVF=᠗guf߲:Bn&/+ -<"u* 5am/~}U~KtWa=[# $/v^^:r>"2wdJ$`u(ZJhn`9,}j%^-gvqLY-.ҹ.گih|]kGvЎB!@ebWR?~x`Vk@=\۞ڧ8 \yXJ}bLoo@ u)-/V@xn6<;۽i&ɶINB+{@s7)#嵇~Vi(CKZlu5*z=n$"eOO^ 4kYٹe`nٲq'_1G_9FY&dz/$˔EpkAD5垓6]=;^Y0PtlFn|;:HF@RI!ǀa& S>EEpp8/q3^0x6zPb6dГʺ$w q&'@B5C}n?LYCkQܑS3\^D6\ρqjog+.}Hß`qaɢz fQ94f+t*.y(~oC8h E'--rF3:'f Ae}fUpiLE H' 3N=Xlb t};<6\"&f 򕕡ʶX)z2. B=`N])mmaܮ^Ҳо,աCz t0qE ʎX&wNI{b>":=uۃfua |ɝG?,l .?'[+ yxZ=6[h´[WS8L O6 ;wB6Z$yEO%ݺz]VW\!W3CH4ZF=yEDZ}8 "pdG=k]~[H['A'ޮˉ&HCǺ1!>8^梇ˮYުmSydx<:z1H:"f9(Hi#I|m{r_EuSTkfں! "tI:w#7W;N-in(77:mlkY| %bo{Pϻ'7=`Zh`%Mt3un^́z:Ρ;%1lo[ހ3k~}&>P쬵Yk_Z_a(-2ƳdL ijfL]ٝ횂tvA.%Ub)_$ 42Doǒcx8 b8ʛmD Wl!'3G'B7Mb%쀷̇r5;7)@ࢴpKyb/[ܞLwoĪܽ}~܇ue2]qk\%Xqx7o cChh}" ⼼H-r KθzkIahͮ7POئŵOmR8sJ[jR*ܨouSXqaWT60THW\GEbhoE39oظ ח'3D~fA%/x~&E؅|e9 !N i]W*o_8'P!RsVΐ:=y꾠uy(߇s,u޲ZE|?H4Qo>&bAli#:M+ӕ 4>1M-ZvdDp>y cmNT)'Vt].BtCWh4XS/0}7)zCD #:+?4t^oedG: ΡD>CG<Fm$!uOzl>qBE(OL Re'dܚp&Ւs|J?yn̈́:A6YCy($ . mUK\(.u ĿP#\Ё@k$ܕ|z(9"L%(::\ <$=.og|Ywy5zMa~9{ԟ!W:E]wPK~NW`B H求OxWz^ގ!Uʡf|Qqu dDPxd"zdy`ʤѓlciN+m#iڣ v}穿@7!"ȳ}$~DQdH2@V6rwa!LVtlŲtކ۔kN W .^@2"?|JX.~rvWaʢ߼Q GoCuz!"u4js]I>}a*_K={[xd8"$ef(/T'szy \c,{8y,|wJl "['߽K]}bp &AZnQl%Br P< J)oȞ=}]~dkA3nW*V }UQ779#N+27W {2Wߤ -nۺoκUk:tvr톨Z1(=q־ EQ}cC!pUtp 檽ꀚpM\    dTЙ9CT\fWi;z{.-l^ʱg°ִ.m8Bが;ў KeMj€&dJTg%]K_,G^: Ļ0nΉ; C _:(endstream endobj 280 0 obj << /Filter /FlateDecode /Length 161 >> stream x]O1 yK%]2~1!C@3]H_:o-aMH0צI)> stream xcd`ab`dd v 5400q~H3a#ewo_ 0012:)槤)& 2000v00t;gu`Í ʅ|(YQϡ;çg /xk76i?~뙱wh7{r\-< Fendstream endobj 282 0 obj << /Filter /FlateDecode /Length 391 >> stream x]An@ Edn$MɢUd"!$޾?I]{7~c=|-i|9֔C>NsQ0xS[|,ą> stream xXy`TC+ H)նXA}U6! %/$}9;{fI2e LvE! VmVQ볿7.K_y6s}gDH$z0}^ʩӞ{NaR"uD$6>c`ȭIlɨn<:~!=3}Nyi&jUeʪ'WL]^qk<|NEU,o}톍N{~fʳSxxXFL&D4I "KF# iBybXB,%# 1K#E'! &\#RF$%%5|ydi#T94}aLzcvgW0ޟHb̟D؟F*kdqڄfJ> znSM hqN3hR4?g]uPjMS)+xf??fL6hy-t|/G_Mkvm3CˈF+&&HVKѐF0: @dv1a5ʢYC<o3&ɑki>Bs1 nO7IK,kJ֯qi 9?Cm8vTHI0.ׯY*G5’kd}{oOk.9諁@|L蹉Ѹ߾_)]ULUmYr;W"JAj[h)OE&_}U+\nBg֬ׯZrm:# xgV(Z/СG|&ػ3eh|vp ?-u*;=)ڊTCmHt8zYMm/Y.Ƿ󝄷鿖Ȕ2HoXכחWm]ֽE/P H? \#&flB{Ps!EP[^(%Jm%;,vGEO>OIgߦF~"fOB8%B_KBˍfaPE!XF/2.ˊ^X8 JfY,[|[HC-dsE-C;)ϛp+KV;5eF|}v OP<Ȁ4m3ʿZs v^_@9W`)w{3Wr >?ċ篱E9Cv]h 8-ÿAZ015l6snO qMʓAI7K&ejumMȅM]{p漜KTFZk3RL_ :A5@DmJ ɨOCaLQﵥhb_TxtDK[Z<^xlbnj[R0*+)P;Ԡg̛wSwE(kXWR+r, Gy3}„ lV.B]VY74J_)RR-˴SO?)!{̶ۮvn u{Ҹ@WӕR6O-V.u:?O( (GJYg2/<=Zڼ?ƢʈYXU:S <.|k sV/G-Z>}pBhu}!i3}H#$1 .-{NE(5-vsMf H̺qUf0>^;ΎsE5ߚ_UZYˇMP"2{nӨrY{׽хX}vWz=J,kH.zN={8/yO ^-hVf5R3C xe~``5քlfF B&Nq\~!GH.W*5erkx>E}`W&QE@}ށ[&Kބ ԂT^o(7h#⚃h~DZ~6Яݟﲸcvp8!FW-rlޞ~'\=2)xY+9!]`:嫰%hx?J,ѻ="#g7{{2sR\KE0 sJvQpWMۡ[+,ND%960ݶ~K? Mcw&!WI .AGpJ6o +ar P. .ڹz_x$hx\.g瀳HBHk2,ff]qfm:̇9}oh1öe7!kӓ`PP-DNe d毓 W #V`I؋]uP@;;n0v0j9>,S(s$QÎE⼊]u=D?y$}7-$B3߿*٠zQ~M@iw4yf:8_m NC bM((weT(˾'ƾEmc(א{LjLJ3KW @$+|/S0EҪڕOSwl##\{n 9s:tKYVJb%%-q_} dhMW`p;3Lfk ~{/UJGs戡 A6s&ӷzF܅M)U4߅&n?7߮z}]*M5;zw#{(}XTa=wHBAZŞ; s%~eVl¶DTsj¬FznEdUѣft]1Ihw{(O>}O]ᓟƢ7v̙;*R<҇TOuߎ@_8K+V /Xp^6QIa}TQļNKF~%09AS kؖ'$Co‡p`Ζul|%99@Gy>e>4X$wھi7Qj1i#>y% VV/=:P5ϦK"(#gg;GhƙwvJO^wv\I^-9t ML1%QC+6N&+y: NCSY sFkzeֽyb(BsY0n6|-JyMDOY.W# \GwF.+UtٝhՆ_1E@zPsWgCO=,'/ !6u$nVSW{Ϳ_ ^tfd3V xѻ~14 %h9K4J1!>o2ͩ: n(g!Ok($>P  5♭@%#jvm*)iĄd7߹톮$fJS…55ُ(+hkaN~gI ~O{JU4,:'*RȘS+f2zvu L|љw ;{?SXJH!¦w%miG:p868*X)+sdWщWIO4ӳ: }fSy)e3 "SQh@#繩*Ps*56Φ6 X MEP^A ŰX =FH(񞢨 mlꕻd0VޚXF3fԛQI3> stream xcd`ab`dd v 1400q~H3a~'k7s7aB_?``bdr-(-I-ROI-S,H-/000030dg&,\{cO$ZUUY!|gWwOq{ڦnOe~{Є={vO\X9q).k/4{NKQ-endstream endobj 285 0 obj << /Filter /FlateDecode /Length 3570 >> stream xZKop"@Ɍ,>EI냦[[j4v&> %vfYcY,V?]./_W?]Izz;CrwWd:ϐk_휕iSf  [&?3Ӄ5`JC^})f>*߷*YqQ d5Dm pl7ƚ *>8XCHۡtvg\B%9-R7 x^32&m8j#Z$%d :)ܗ\<:T(E%ЩPT4Ǒ`- 2cֻvyo"ˣoj-)Z{hO{ΜkCin][2Cgev`̩A$ hq(L$ċXP#Ɍ~f)PR* 2+g42 ԒN&1&]hr)f?[,P!"'O!ZiM-lJ?4 ':\鰙iKwK&6'{yZDkMVpV}\~t'2ڋ lĵ6ĥf@M͚XbE_j/ެ~c0}\<@f9!i@bnCQFٹ8/T#S7 ?ifqnO}qm8T_@_q$YJCBJ وSL6h5r2>Bq#MX X@f߃aRYL\~acB!*U>X,+R4p;QԆɊ\%_Ə~Xi*S%4_0R,[!6{VE՜9y\JLϲ-fX̶ypv^l=GPr01ԧN]zf&Mᶇ~ OL&7j>&$MO"GUI.w! <ڷoIeЗ*K}2dIû-px*婸åg,px% O|&M72d:=qC1ND8ܔlkM>#ι'\0cǬ5 ͼ#"y L8˿H<%* A=,0 C皠:o!-'/H!VtQUYBir9˅sv|T9|W?˵j ΅KTHozi]L籩4q8W!]#1vH6Vx#?PBa XnJt,8޲ߵ̊>OIקK_MgGBhө|u_yѦsJ_U%HVU~\e9?ڝVC[ 6c&wO)䚊?e5~ -*#?v5eI*]=E85TJʘNk>q )}PM\%RKtM?Y\qyJ*4.lLM9ר: r`U=dM<;娔dp<2jjܧH1endstream endobj 286 0 obj << /Filter /FlateDecode /Length 184 >> stream x]O1 y?8i!bI  `""HSU|sB[ 5鈳_B:h@Uˇ&H]dx4fW9aufR^(݈eLNIfdAZވch `uVS)`|_{@-;&7\Dendstream endobj 287 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 531 >> stream xUOakRQ>gMي{ [}h )07h(0{3ef[2um }F{;ݍ<<PGfNmEh\3.(1椃lem|9rv@0a%&F`p‡ E(%q,GuHhV%0YB#ㄤne2T:gԇ2 G4C$AQc{V"*(sXMb 8I$ixa1*Ԅv0~![XÊi7ab~~M,xrKcN Yh`^nvuNΝ֣]{{?aZ!Z[E0B7WW*b+{0>Ndj=c ?*i͹t$׼|w1- kݚ׭uPWb~Z?].endstream endobj 288 0 obj << /Filter /FlateDecode /Length 222 >> stream x]1n0 EwB70n \%Cd4DgKI>wXj϶oZKjt]n-蜋qަׇ錗PM^rOBݗߎܶD"PdF 1͏Pix:TXGՋ;TXw *:pp WTxʻ/HϿxkʪi#RD.Wj]lYpendstream endobj 289 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1177 >> stream x}SmLS}Zo3QP#-ѠNH jƏ?UK}XJGrAEEXWHE0Chd.n3E}d{nIN=\J$93ƛY4R.fP *Q]()PJLv%"?'"Ird0\Ja*Y8cV/2z)zs{ B?ȥ,5|ɒ4>lo&ȭ".Rsk zn񢵘KJy˱A(xcEۗUk"XM$oɄ` %1H$&#*RCH$I7JP/w]&qrW(&TE5fdU)s+iY.J7^aC\=ࡗ* (L NPY<ͥmԗU8&w=y.бy ڡrfPsA Wɟ7PfV_@c"b^~zlVQdYSzl).-R(A&={D_uWX+b( {y+gnw'*Xm3w\M`օiK{GB/.5IGu*&7ä1)|\$]~9h-7CNի92 lfWESW)2VT1QшW)wQB!gW]{1, |+Ű9Ɛ 6 4{}@=1% (qF 콖{9@<ՂC:}*!aVHY/܃ȝƯkȭȄLg]෱;? L~ A>藧9dj|.&V6ξ^>.>A[ŧk}2> stream x=oHqYB.0:{#J9Ȃ6|!ynn7ss~6]o,]fFBKzM"#<>S0 xDwKp)W&!p"@)bIAӨAOarw A9fk!URVV.e5'1V2Zx;AհVEł YE,gZSt;uMuS&:(#Ds. dB'̘S`PuHIgR8R# B:/"C0Hxg@%Vx+vhAvoV#9">T-՞7gra"D&$Cr=m%_=XG:lOמ/ սEw i /q{ JTliLds2p6<X93]s-fW}]ھ*:A[6;@OHx샾{u λ@btiz"=^>8N.&af!#T]S4_FY'l*OBJRa rAendstream endobj 291 0 obj << /Filter /FlateDecode /Length 184 >> stream x]= wN B~*%RĒ.ZUm/@D DCg~hM#8H* N0Kʊ*#AX"<)@| ϪcT&^H@zx5'`_ >&늣t [el8*!xᨄ.?r3 [`#sZcww>hv-^wendstream endobj 292 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 918 >> stream x]oLuŃ/RYeLcL(hڱ*+c-ٖbɜ_H܋+1шAm4F7fϕ,~|>M3MgWZ7{ig2~sm4W2/MğwWOTMÉ_.3JC^,{ -!ҐܲOeSAϐ(GC>Y75E"F1(y DdpR B/ C6>A(,@1ܒ؂һ΄3iyC7 rh JGREQ\'=G* Ft/TNE?K_cL23hduSs|UjycȼIOHEV^tM% B6Q]_/hdU G 슑nqY ^w΍*'~3ϳߛQ;)3.fbSi-3Jջԅ ǃ+ģ@f0Sx]C vic 98a?3cWFӉǻjv߿qSW1|#ib!J{AIXItcL$eҙW=X۸?gjsXa#~|\U dl ^>pfqbFOnRw3[d!I,{l*6ِ۫xyo%_+&ڰ'> stream xcd`ab`dd v 5070qH3an7k7s73~-(ꜟ[PZZZ&\\ a-( 3`hZC}Ў;f~u-u;9ZU~{wͺq3}[zfΜ0u]'Hg5U[eb[_Ѵ ο+3ɷm}ٿ8\˂,^k7I,{c_9KN(t@?8[.vJką}G&7\>ugf)Xzgճ\oCFݵ=ݵI~5G}݀]x}3aYgIBk_^s[\ˁs؅߬^+#9+YNKkelyE}k_yѹ1~r3:j!}wZQpWnn"߮%p=wbqSsbfb(endstream endobj 294 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 375 >> stream xcd`ab`ddd v541UH3a!\-é1k7s7ˊg~O/Ș_Z_PYQ`hii`d``ZXX('gT*hdX뗗%i(gd(((%*@\KsR2K3SRTSt cc73##mˏ>|w> stream x]10 E"7ڡK.Re B=[^خv~a)OB!+;7j&U6]߉47_hTMS43YG;{QQJscQ` E(`W)`g4(b416-Zɲ#˶{Lqew4,4j>endstream endobj 296 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1282 >> stream xleǯ;X B6 [$㇢ 3 ebe+ۭ]{ҭs~ FADd1@$DbmDMļyo>|> LS(xeuuiB(Y$QT;k@ U%:ծ Ej45kJtm{qn˦MtZ :}Zoi0-M`ԕV4X,m7nloo/׷)ӱet퍖]l00vS>}A |!VR-mV V È]7jT܎akl3[rl̆+ Ӣ5b ~)M4^J*~S+6`Kϕ}Y#p}ļ q. !AvYg'3< #mJ'UFCREʡ-}dLf } Fc40pimoj> ^K/{H87:>D0-:Q^)PwH&<' :|?iDpa|=ޛ9=Jd1< b)gw-[q.b{?821 $L09n*oL'[BM8`<Y˒ S jPDvWILbC0#f> ޠO £hv8rX,]&t2RK 1endstream endobj 297 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 297 >> stream xcd`ab`ddd v54~H3a!-ýTnn }=\19(3=DA#YS\GR17(391O7$#57QOL-Tа())///K-/JQ(,PJ-N-*KMQp+QKMUOLe$g100000v1012XʂUeX_|,*+w~UGCWwdIr2뿇ߡfv['W>> stream xcd`ab`ddd v54~H3a!-eskc7s7ˊ+ ~.ȘW\_PYQ`hii`d``ZXX('gT*hdX뗗%i(gd(((%*ݧ&]KsR2K3SRcY~tp{|FVEe~3.hꮓl諙;UN`߿&wuK5mzKOu<_~'Mgõ[|>纙<<@uhendstream endobj 299 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 984 >> stream x]RLwA;`slw,1Al[F@؄, B[JK+hAGB$DŹfc1?Cod;K^K>?{$"HL.)ھ'EV"Sx G@C&iO[:JQϯ*o8R՜UpYkk26P:ji=ZuDOD *C|NSULH'w:Te ʛ3fvFʼnk]Xc_= -7/ \m A{wxF,\MD/v/N2]f歓f N0q1{oFT(:#~L"4#r8r| 'd"*>Ovo^ElBgftʚgEB;Q)Y{yz&R`>$8*+ZMh}o`X \+0&C~$lHO4<~NI-&(D9\Cg(/P,~,fҭ3 y(`[lZPSK,Fn_Z?twȰU'N%j]+wgC67Pn)āAOXCWbq h*6l )qj].;x>=5Հ_,/c}iu@k 9ӷ-L<"M,AsD*y7DcYKR{d endstream endobj 300 0 obj << /Filter /FlateDecode /Length 3567 >> stream xZKo[r h~?xM,&k4hF"9:>U|hٲ,tА쪮}XpKϯHEw~W*,BH!,~qr}m^x~Yv)mdPj+ila*xky7B[?vOΚLUҲu8p !mp&VB3I,8ljE,~L2"(+` ${mӜ^umկ^JZj/'?z~r(jyVvzٵ]-OY?W=zF>KT \B0xRzSpؘSUe)K)8pcoX4f+98B20/fCf hػz{JUѠ7X|a]X" Zpp ̵BL% Yd>Lvi.6URi&/ϱ$nzBo]Gl059V3^nyY-яV/X(5(]S4ju|j|-u8~cBxvyuٕT F{K$g6]34 >nVd&Ӄn]ɀcנ4E1bqɟހI.4d^Zyx=kin&$x]۶iz=&OʐJ,3,xƥ8U[uNYoaqW9?e+qM9'M?3Gvt9ԗ_uOOҴ?G(#A$}S]uV}| ԰`V7O=y9e[hwU}yյgO3wt$3ŕ ³9@ɒ?~U5ȑHбbr,xhoďyZKI$*$yg5;{?h#l ħ=p=ڮ)5go-͔ED mހ} KJTƧ'u( _jiSiCb 2!8NzP#q~6>hzbuwz[cSsқ$/)Qx;)l PeBOFSۏ,YHGS)=H)=Ih!@yrAƥ`Ha``lAaXI|)#D/Fp>sNmM(N8I_ODgl6-"<`E)Doj,X8v|ڳjo ITXz<$&2j:bL"㇓2O`wFb>,%)A?@hr_o;09B7LCKtBKTZ<,[d wJ1#%~,Bݢ$*AkӞ "i%i A@KOׯۣLa6dv Ѩz#%{T鸖 Ez ;;vl:&PhBZZ7e7[6FAJmL7z= Ϋ:ֿ 2uB5hߧV%&!-()0j~C2||%ߙɈ=X!&薷қEY\fu5V:L`ghȉ%3j "x#RjKR$Q~R} jCڲ=!-drhL'U-.p/}Z7+4Tho˪fՒWmK`Q ' wo:²wThJm#*`8Ub>JaBcJ-;<5Xv|l-=0dIbHDNri\G%gs 4WQA.u+-o6/W˘oƹ+N~?~%Xc \ڂ=W1ރ  FF"DBH * \J)Э2'; -r-FPOK(ZȀ? tṙӅ A]yf"κ&VJ_A.} С|nfbԘ>2o>{Ct?˧>4麗^L탺_i Ph}M7}, ױ3pX B:%1;8kRFT/H %h_O5'mKnMFLN-V9͟kF <0s .nQ!б"%9(W^ W|ps ~jVo `+F8` ?R` Ӌ\#XJ D72d r/'%$%[8Fx9li0JHe0·KDb?bVGVXaH9)+;i7<0[lX- '&DJOn.&$ el2`8yu1|z  KZ\)mmzo6G?QbDxJ#F=5|ṷ|i>`T!>W$OGᡕ/DzΚZR{Ӱ=uOk2!dA~J},hX]TE:,+msʢh,dCYP`X֘B8yPfVt)YSE([vEG-f1 NL:M@>#@LTlr'(ڜх=`{/u sE]ydfKw #[l.ն?foE/#v|O6?Kjjlw0шkckcsxƍVnh-(k+\98To 9>F6<_4endstream endobj 301 0 obj << /Filter /FlateDecode /Length 4471 >> stream x[Ys#Gr_lG ǰҮuȲZv4&$iCzU}w7@t̬/JUU/gݙෳo췯2XigWgqySV*Ӷ.gŏ|>3!`]|{v???ύePepUU/LIh(V[,z.ʪ VsEsЈba=?UXx҄|H3Ɗ*0@38tfUo=MBÆp,1viq*:LURŷۻYOa-E Uz C+C^$f9UP6s$$7]܌rV("jA&=ŕ7rcKEHmLԥ j5 q$Х~Zvӧ*^5ArRMiVn dYʸgE$bw=\\Gv,ӣP{,?*+8Xb߮&v7uǏڢ#ރS^ݎk4H⦽Y}HTX{CY aKlWC)m]4AP3*!Og'q%|+2 ~f+M`\j^銔lY|X x$O=2)|jBYJh8vvEG*$@gzgSv -M .2I8FEU<]StɅ&nuӏtŲ& ۊ^VEC| BhktX9WwB$iaΎ{6v3 ]ZGnkv͆+XL `Adʑe*Vn{yr5ݾ]m7X"|ӨdqStl'0$-SƮ$;*ta,I8"DF'fݞᄋz R{0ҵ qiAI:[#UlvYo`{:&h%Dp?61 ]\6vsݯiBY7QBA;h[UiV|>K#bPh@uVSKld"99yj\B;fU8S4+Et Nv=iooWTb粛[v5̀~{`P [-й9:W)BiC=LHH33U(s9*%bCT&)X)\Uz̰ɬ0lJq'{zIgkJ-SnV xeټ.e[o3(OyG۫[ #zeNOS_׷(@c*110n$IMv~J;NI5!{pվWnn ,bEHK( @oA''(6aM,"h`1|< @0{*{1,eOMװC*feDW(iM.n l #֣nbәjPL ]d܏Wۉvho©gYm;Ep7R=3ORޝocrkhʕ#_8 ?7(ze.ZAY'sjp$}O= '[>"mY]QV_&@Q 8q X*Zs{$3>rxFc_t0#L % _0A8䨀?* _24W*=T  I =9e<ڙV:y`<[ӗd+&_L_IT'bAMm;ҟ0څ)0-$!El4ң{H"ݷqGfhۮǧ>% "odљ3 Ldmѧ5\y'$CLgӾ|=?XvXN2ɝM=Oϗ`Ϣ6#B%#*+#aɾә<~ !gԋŶ[rί)ď_5DDybo~p(~QOb{ih^a7Ľ .F+1 8o.+4WڕB&sn 2Aʩ. :]sj#p<8ZKVkdK !ZZCEq\YsphtEXKJ;.s.FJ6\ڧ[IŎز$ J!qɏK4wq]mvN&[7y") C)1^>`2ˍVP`fT.| TaR]LkyMal; H֒&CBK7rF\mJdnp4Vi{腐2m'DnHiiWMDoڏXmܶH3>OS}E\J ,OzRJHw*.#%vtBI- !7ӻ&S iDO)-@U XQ1j$t3Q,DIDRM'm C.ǛS;a'4k#2uIGKV1@b7 ⨞z(}\ <}gg><3޳OX|1ZRy.a1,+*T،ScJ Sv}}Ȯ-+`Բ896,Ӗe > KZˆJ0x܃E{MK=˚)bÂR.;k1:NӍM_.'i@ZB{r8؇,HiW"-!ciSmX=07qSMʫGs+8wnz;g N{;OX,w9s9Wѐ̼DD9fߗн"R_JZGzh/9+#FSM̝t{$1~ egi‡&8 K8(O C6;9Vd_!:_As@:nZJRH$7NXr)u;%XjIc28*S[><\|劲7+JEV WrZ^T% [*9 ,n smb%L akGXJ!.. -l9/AQNACu=QM;9}Np~`gi1D8&7c TJOi2?kO~1~ֻ'YqGY)/ON5[%yفGxY e3DSW UGu#?ˎz"fw_IKԐHl>[)O ެ<5w)ZegJP$Hw%4H 7s^? ,kކDU}.g+f픲D$p ptD`K=%w>Fmƀ"UMj>?W͂/P~[Dj$ 7?0b xo[\Ż69vI8kKŻ6CIZ:j2Mi{}W\Ǩmn{ ~IC_[hW!U1N8YU|${G}';ncy>EL3S;nܴo{8wTUKھ;R6©mwDv>Xwuw}X&F0ٗm؄([UnjAPg髻(HJw tޝ1;Irۚy* qyMF&) ĽWxܤnT .X5uTP"=,_8yWmJ/mHg馎LiIEmz1hfl4pvI=3i|i!~G:pقCGy3-g- ;|ּ&q:Wަ OJϺK8YlNsصДwԬvojHv*З T r}RGTc*tP;ݲhq7ۍh~~q]b;iX&-_O!IRI$9^fZźTca׌VE AUu]vMr{9awOA.Y!`>% նN?E//5ki]oQ[Max́L&ף{(~$ݴU n%Rp%f?HMR_SLy8es Mf>/WN6 B#tendstream endobj 302 0 obj << /Filter /FlateDecode /Length 2656 >> stream xYoyOFZzPppCcH9Pt2}cXQjr{~q31/zq&yo}6{ȹ˜f~v5 bnuƕ"7v~:]0"s:/gogg9gR_^!Ie>[}`Wg\dA1l[*ϖD/S,L)-2E^wmb|8ƻ= ~le8# VOw` 'g*&L<$nZ]],<}˷_],OQ=Hcbi$uU !h0! M|=lC40ߗ0&M:xEAelK:ljǦD r)=J@(;ȳ £:i@o %VaC@{0 ꟽ;=g(גϥȗNY&,|#rm$18rdT#dQnrXg*B6SK6kZ+vzHօט-4nUlk,$]̫l,|ch~ĸ7 YT5fZ_AAPvB<ő̈'tO刖ȕqXd g:ZR--!d<P],$׀]KjCs ޲6Kv=Iy-$Nmvm}ڡ>BC]3ѡJ@c"ץnj M>mx7RǙXey43OC QΥ,$(F&K3F6$@L'rb~(cob6&?b⒪b9]PsFОD% :ZOpdt A5RP)_ (Oc<~}`NWO[ƽȄ ΃P ֧O933T4[Z.s̎P~I% INZouFc_h=aȄw(~)Y3%? )~JXQ)̈3qKLK fi2ɑDk`9/W"LȼF3 L9Pto6 wQ٩L'VL%,=jϞʑK';⳾-*˔<eU𸿥DwB";j9@!ɢgHLaLLZP).NcZCA(DgTa7>ag$pGFtR"X!UٿPendstream endobj 303 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 3519 >> stream x]W pWn! e L0Ldق0K>6_V>|ۜcms !@1$,IqldH` 2}2Uwߓcd\w~ěicbI!ÅI0Q |me Rz221F"yse5EU3R* gWH+ڲiŠj : bQUuMҺƂ¢M7nI+)-#UjbFZ-b""b1-1xXA+iE8$c$>14Yx$ "(Kmq;&1^ҿt~G 119ljجBOж'SoTAրI'fGfQA{9K^kfH'5(pj"?̢(}ܑ}tibeᦊ4Wt?AWHQ[llquLj1,5NZGCD>p^KWD;bٶ9IHLPӶn5A.Kz*pBIIQ cIT牲T֥cFƢ 8N}ADlVG>T4HkD&<&d3x8Yլϵ am!Щd.HJ1&_Ckq7%f5jR@g#S(ohg.(BF (x|_;"{JqnCl(8`%a9ݔ"nx˶i6fOGK_Twv6B9m Smvⵀ칶:Άh}淞D;ON6}p}QS8 eρsFB=C;IMk\ӎm <D4{)JeȖuVT'ArYg֍SsƔ wZ\4G^mX @`N4jH ,flџe"Ly/8yxLgA7Ƽ :X@r->Kiع_;Q:~L]jjO@{Z|Ҥw^wFy1I7E#]6xvC\Uи:*;.5"`2}w+CH` iŭg6`V*lW6P ?cafK~r5Y؝AzpU5_ogp~w&+j:yN,M#6Mkzl"Oyg^Y83ݽ;Ŧ~\_{ElzΡKAC?@7+LB+cV:lT'Q`pSr{O3ADOQcl52Łxtf|_J=yM)\)oa>V/`wgSO,'o#!5R"o$7!Baw`Nm9%ZUP m&Jߑ(~4GR$G2-ćd JX٘1,`枼KU} Jxp(x@LQ')_393Rvqeekчe EN-h\ڄU'A >")id @I"뽖0sl!6F>C05V 6v.BB'loninݰU;6!A< ee9ˀVƴqce^hwp w Ac1ZO>4)r[vh_U[#&s#|v[1^A977ŧr ټu\6;MLe<Yth?zG\=]PvuQN}Ġ~tJo:P}B=eEr]J1Gc:LS*& 6{yJk BgʀN3͛A[((P[bl,⊱g tDOe۩Gijl/‘VU(Nx:Ǩ #" 43Hg6~ .m؁Z$ȷa+;Cv>%(%躘d/Umݺ/[ȅXP\}`A$2 6_|mN->'[W{;}@9]ڦYײ#!z/zM'ՔwcHV?#4c] OT*>N;R$s{!}KimTC"@AF0Mv̜0Kpwn]A*զ8 '7$GKrrs5 Kc:omc6js>`˳mԼNK~vm<}@ Dͼ2H U2>ۛw 7q8&> stream xU{PT˲m"F^ƶvlӨ>@ᓀ(. + ,}ò,, "jRMcmu4YzhJ$s?50J$EII|#>ͼ\1"铗&wJPE3"/Pa"O+)q\n$.+.Cf//dRevbnޞ}ſy&*LRiT:Z@Pkuzj!H%Q3h((Lt LV,w&qH0>~ 2<-GzvkyfG ~eh[ 4 Bl=ȹ)k;MrKU,W0+T.Sq|:^16kdl#ILW׭\ NuRHrO"Py@%kSxxpknCK48}~ (8*^Ir ZͻPJʨIl xzopJ{w2YJfV*`3}il>0| ݆@addJQ#߄զ:ڬm'hIXkR1V[3$+z&Bba}6; So g*Bhy%𦮬#(ϼ%-2cG<'$MR9?x@.ؙuZkŋӖ?9+|"pC|%2{u8݁x;Ãj]]5R;}no[p㮔!UTKQm%ڬ†&'r2x)xpT.Q TW:<_G7 }$R:66B=8G ag=}E-cӓˤ@Zv$fjv 9;YSzb{Ie4A66Vu#k5S8fX_(8+}ɁloD8pQ'P_M I4) ^w-R>c91> ,Odʑdo%DD |E087pxx]ptį224⣓C]=tawc$HKؾuigu BF|k#&?RV/IZB$D7NN+zMYUgWFY̊2Oʈs4Mm~χ^] P#pϊ1\)]}A{eF<r2[wO_u> -sK_ՠn@JXvPKwi1ߖ!\dCN]T/-2S*ZX >M٩j!߄f:T !VCvi]KT 8(ˤRAN&s_Eo09c{2\ ߟ\, o 6DCctiQ) S~[+3! q?ϷA?@6ގeNƾJV+⹞iϾoX;moz2Bq;gYNqV!egNK?qܖVϷo_Ò:a- Tp 63+M/]65Ϗ@AI(=RTgzVF-9YAPk3XZ:=Nw.KW)KVdgUz+ܸ$DD"(zFendstream endobj 305 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 379 >> stream xcd`ab`dd v 5030q~H3ak7s7˲> %(ꜟ[PZZZ&dd ? |1l{;X7wwusħMX/8IuM5r~-|e 8;c)n\{帘[y8Hendstream endobj 306 0 obj << /Filter /FlateDecode /Length 356 >> stream x]n@ DA6 EC@pw<@=kt<ÚҚ-6ݗs cVnnX㵝?sq ~o=*MqmncZ&k޲4vyt QZB@͚-q ,QXo XqᚇqI͋jH0U8Y|O++[[G%bPwFw{{G$!LC< A4$!LC< "F2 4oUW J~=+*={VUzVjPWYݳ"'eV_ֿkmx_4\6.0}ٻr(gendstream endobj 307 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 3788 >> stream xW TSW>sѢXZV-ӗ}jW$yvȋA^""ZZkVgj[ގxw̺kuʂ?͡&EQg6''gvhFThwݽuwDØI ޏblt jڦ JyBA#J)XX~h%JY$}I QZ^/Y_Y_)JM(XUba^TG׸~0weDb.Gx^ ~a7fyВ9ƽCM\^0(y#\~,.&+##gI|PD:`U z piNz̈́}pF<B3щ@=g3a4}1A@?N`\Jێ^O/d2co7)ff5̵ce"{ǛzhF E/y#]v"%lcy ݏD{^6L@ߠPӈ)LYo|)7C&}Ȑ= `zW?5,Xy.e w:e|5s3}G[Z!Wɔ嘓$~l>MnF[meCzyeu+wo۵μ2x1B#(@NwM-a<:{|/:4+7=xS2Rfc8X C^yCfoj^M^(}Pj  KyP1OȒW$5@ dV++sӞ{# "$'t4Fnx^=|::Lag>4/2=4PmQC&W [.O\Upcn͛jX^N;-Xk~iygyuSԧ̵h g3Rhq<Ξ&XUSWWNk H̴¡*+lR$͑m/T4?X3Y,۲l;c*THRX40ej`Nt (!11A,Cz# z*?o+;7p5 s+r͙'KC?7. zTZ947Μd=Od鑲д#N4Q u0;X5 NPh3>TpP{w%^m})ͯHlxϩ]m֫ep2H. 'jd';l8Zԁw`]plSP6z8knyfө#B hyl\K4l@iAL.K+L답%n|&V2`kid dらl/$m,YdؕfF;xw({X[7%Y(A O{wvmo2A$ZZb()j no6:ІfUIr\.C8Ѷ# M&o6.%kvԛd*Vܣ H[d("|:ÃL.Sx;pL7qt/@YI'H4Q B[AgM4Ci OIYŷ/>rU`ww?u(~^8hؗk%}C֜Ϧ+}Гyڨn8X/?xVmMym8hF&+BtMi G&*LV42&`)7MiPN󐫮 2-zX.M\r϶~#=T{Og+~!Q{L^.җ3}!mY"JN0U]y'JYa3>4+:yPth6_ӔB9#n,׶yn.6:h!R چ!0̯* Lf38=u/Ys\D6\Dmy?M {398W' OL'9_XmV1zȔֲ3V?8";j_^չ LZiUCu:$WdR D4ELd2dRs>l9UsFfR{}b8+p&7J`)/8,omoj\|\:Q((p@g+o?X[;γd29ى" ٺH`P[2&R$dAJ ~wj6%;шCnsCSoO@Eƶ 2D>#SΆ|(~LRB4ϸ-5 %T?ʰ]RUl8܉yN VWӟIŘg*CQr\+[a0C=V$ oih=Z 0U7BrmbZg;hZS*kQb።(FZQ4N֔SLYdendstream endobj 308 0 obj << /Filter /FlateDecode /Length 1888 >> stream xXMF/46E _(3b"2I`SUMRcM`I]]]u,r,_{\Ň_qzk#>Ffvy!=_Zerr}\\ֿ.8ϽVva;Pwq+~Y2K4d}W{}d"/4\ 42 <xV^E\Scy‘ZJbP4zwi3fw>!6W'dU/ R@&Z\.r? ɟsȭ_ #L'8"Yc̈́q*Mq*i8uo3ـ 8c/BkG,hTZPns^G *M4ZKؖFR(Kb`"=-OS\q[V"\Յ5wA4 _ m12t& 5{fVnUs?wx~7ǻ. AlcXȲ=)xeSVĻSd>ʘP^ ,yuD8?S>|0(5g/^N6HO?8~ E)t1Y 8J6]9ӷYuC}v 68Ӂrksz؅xj`>WppHtgF OhD\»!T>a$~^lU{wN>OHMa9ki~Q.}MRS %1jth%Qq@ &ԃw? Cs4D,ht>.gl8bXM:Rer٦x׎I #;Щ!!e kjק0-bAq05 Ǟuatipt >i᰸s銨[B2ac6oh 8%1BþRL PP)BxlK|2q!KdRtQ$P(/AgBpFr<#(R$gfN幖摦ҥH>htn,Q8322W)U(O~^ pu .%d;k!??ꙧHjz~JCRBKϼ>!$%3wAb޴uw_7 .`Q܇jv>\szaf%y-M۸z~ޓn.73q>dqߏ?CF7bZ[|W.*ER3G66qmq)q Of&窚g A<^R)}Yn^vC\ hDCWgcwv#Oߜ۪9aCA\$_Ló¤k2F3pF"'hQddS'NI#F' My}&SY9t?.${3Bendstream endobj 309 0 obj << /Filter /FlateDecode /Length 183 >> stream x]1 EwN BH[eX%C1C2t-=~DZ=FU@:d,9UN,=G 7gÚToM.^i'$cZ5zw6əX (J3(aqǘ''>RXC@Y%vNk,..D\endstream endobj 310 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 641 >> stream x]Haşm:,F k ٖsLV/DmpkJK dDX#Æ')!&"De97w0!`83|oET""p )Pʓc{M[9&ˢdNtl&G1EvmYYi\ r+_z*It(2l1lLLp1:X!$ɻAh?VD+H<=k Y]U2S|Gszۭ;Z#bZ/7V'ɎФYNӲ(GC wF'ǗrRAA-m~-lBt33;%pxL҄cK.Qsiщ䕐 $-p>- Ǖ˫ugsi{Bc.R%ϴh2G7zPD ' aC_#%2{lQ1 mX[0'L D4@hp  @ 8SD;,Y!dŮg5$ $WxB{=Axj~0"YߣpT%MB?endstream endobj 311 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 360 >> stream xcd`ab`ddds 44~H3a!dnn }=I19(3=DA#YS\GR17(391O7$#57QOL-Tа())///K-/JQ(,PJ-N-*KMQp+QKMUOL:)槤&000000v1012uw ~jgnO-N1nFMk{g{_Zk$k6hĬnY3f̚0v_;Yy :{Y5-juϖ+^~!o쇹s^ļ @]endstream endobj 312 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 2454 >> stream x]VipS}HC)M$6M e ,,klIiקiye˶0qm-'?i2&Wc&}N:_wss}bQ!Hܴak֬I_VVf_oY K3a颁߇W,{ 䡵krŪmerEݪ 5e^(ueU5 {Zx'v@l"'~Ol%ۉe"6BJ/y%c]tsl>rP#?H⻉e?d8$S%;/rMG F1c氁 B!eI+~56- Zfmݺhb"HN͋eݱ/sib908Y6z468S{ ׃FґUxX= ^ gKQb,˚d;Iɷ8TNjNX!</n{Cwv^]aFx#sS TTeV=Y,HTR:xD`40YKb@G6ni|+:֨[e\x2+Ն%97ni@(3yILux/YW^aTӌ51q9<'4;Vk8bI:om+Օrz-ªvWBԵhwE!נkL92lYӲDQ,iϥڲ[k/lTY>{.?=_ɼh4P"@,a߇׊>_uvז>_~28x:˧cAGs%>Z8;?kĩfY]6kz'W\Q"^84T:zB}3݂lO)wUV)DHztPKpIjG:Rkdz󹀣/lܠ/ ZơA`zU*D^~wx]6[+K UU7i`\\O AƁ#%;ux"kv.4jW2K-k+}Ysv c~2 &G֐za:;R}L=7`iCaHY(\i0G"_qOOө8ZUPVUcv}kV] FLC_ 3-k6S;BTTdu2LFnVw?:6=ZI?LT_59y˛~3gqf; -^fC~t_Aaeaw9H3L*7]-<#z~)|/͓sh|z/e;\"EUPWQ%u{,<xD C>it;%jqZW K]ЖLE\LJ .S]tVq7\w3E s m:DKZLBQZ׾6j^%brL\'j=^isZ!cO0gNc]ݽ;=,SV(h66VlA<܇{(ŁWLgq1DZ*% #EF~b_ኡ m6'بa6Z[)MN%lRSwl$N~D.eb(ŢysEgE>]D@"@ ?w|AEѽs )B^01R\Jr|9 -R ?S!u%]HN]_]8v/Sai2joyCܿj@DU<+&8Kc+YEfcT AreEڐRg:GCSkZ¢[6t );„maG؁ ]:,)Ԟ:[}:6OxiR\G>Aұ0wARt3|j"TWz5I}Zjtõ2IWVϾ";rgF8٢4[n kSAq<ޝz=q%@AE͡b> lrv> stream xcd`ab`dd v 4400qH3a.3eByg``bdT6r-(-I-ROI-SN+VN-LSI+IMAS``^?5 ˾_<}a0o-[ ɽ翟g6;S'wf-Youq~?D'-[Կ`iGg5mv7wert~mf(Ye~]\4t쵒[ݒ%g ?x txn͓ʭ:jKd=o߲ݿ%}7.]|ZoN#MO;g=g lCsbnId`/hendstream endobj 314 0 obj << /Type /XRef /Length 279 /Filter /FlateDecode /DecodeParms << /Columns 5 /Predictor 12 >> /W [ 1 3 1 ] /Info 3 0 R /Root 2 0 R /Size 315 /ID [<5e30a5dcb4206eed179b4d4f0a4dd1c3><547fc60f364f92faa187351fba4f353b>] >> stream xcb&F~0 $8J[? u/(_p'3$l= ƽckA) D  DH&> "U&[A$[?&@Qn?XW4 0]fHR&@X؜_ RN, Lʁ/o v X>B؄0y,. V i`F`-A:v*n`W&F` 6X!ޏ`' 1 endstream endobj startxref 151551 %%EOF laeken/inst/doc/laeken-standard.Rnw0000644000176200001440000010667114127275434017004 0ustar liggesusers\documentclass[a4paper,10pt]{scrartcl} \usepackage[OT1]{fontenc} \usepackage{Sweave} %% additional packages \usepackage{natbib} \bibpunct{(}{)}{,}{a}{}{,} \usepackage{amsmath, amssymb} \usepackage{hyperref} \hypersetup{colorlinks, citecolor=blue, linkcolor=blue, urlcolor=blue} \usepackage[top=30mm, bottom=30mm, left=30mm, right=30mm]{geometry} \usepackage{enumerate} \usepackage{engord} %% additional commands \newcommand{\code}[1]{\texttt{#1}} \newcommand{\pkg}[1]{\mbox{\textbf{#1}}} \newcommand{\proglang}[1]{\mbox{\textsf{#1}}} %%\VignetteIndexEntry{Standard Methods for Point Estimation of Indicators on Social Exclusion and Poverty using the R Package laeken} %%\VignetteDepends{laeken} %%\VignetteKeywords{social exclusion, poverty, indicators, point estimation} %%\VignettePackage{laeken} \begin{document} \title{Standard Methods for Point Estimation of Indicators on Social Exclusion and Poverty using the \proglang{R} Package \pkg{laeken}} \author{Matthias Templ$^{1}$, Andreas Alfons$^{2}$} \date{} \maketitle \setlength{\footnotesep}{11pt} \footnotetext[1]{ \begin{tabular}[t]{l} Zurich University of Applied Sciences\\ E-mail: \href{mailto:matthias.templ@zhaw.ch}{matthias.templ@zhaw.ch} \end{tabular} } \footnotetext[2]{ \begin{tabular}[t]{l} Erasmus School of Economics, Erasmus University Rotterdam\\ E-mail: \href{mailto:alfons@ese.eur.nl}{alfons@ese.eur.nl} \end{tabular} } % change R prompt <>= options(prompt="R> ") @ \paragraph{Abstract} This vignette demonstrates the use of the \proglang{R} package \pkg{laeken} for standard point estimation of indicators on social exclusion and poverty according to the definitions by Eurostat. The package contains synthetically generated data for the European Union Statistics on Income and Living Conditions (EU-SILC), which is used in the code examples throughout the paper. Furthermore, the basic object-oriented design of the package is discussed. Even though the paper is focused on showing the functionality of package \pkg{laeken}, it also provides a brief mathematical description of the implemented indicators. % ------------ % introduction % ------------ \section{Introduction} The \emph{European Union Statistics on Income and Living Conditions} (EU-SILC) is a panel survey conducted in EU member states and other European countries, and serves as basis for measuring risk-of-poverty and social cohesion in Europe. %and for evaluating the Lisbon~2010 strategy and for monitoring the %Europe~2020 goals of the European Union. A short overview of the $11$ most important indicators on social exclusion and poverty according to \cite{EU-SILC04} %and \cite{EU-SILC09} is given in the following. \paragraph{Primary indicators} \begin{enumerate} \item At-risk-of-poverty rate (after social transfers) \begin{enumerate}[a.] \item At-risk-of-poverty rate by age and gender \item At-risk-of-poverty rate by most frequent activity status and gender \item At-risk-of-poverty rate by household type \item At-risk-of-poverty rate by accommodation tenure status \item At-risk-of-poverty rate by work intensity of the household \item At-risk-of-poverty threshold (illustrative values) \end{enumerate} \item Inequality of income distribution: S80/S20 income quintile share ratio \item At-persistent-risk-of-poverty rate by age and gender ($60\%$ median) \item Relative median at-risk-of-poverty gap, by age and gender \newcounter{enumi_last} \setcounter{enumi_last}{\value{enumi}} \end{enumerate} \paragraph{Secondary indicators} \begin{enumerate} \setcounter{enumi}{\value{enumi_last}} \item Dispersion around the at-risk-of-poverty threshold \item At-risk-of-poverty rate anchored at a moment in time \item At-risk-of-poverty rate before social transfers by age and gender \item Inequality of income distribution: Gini coefficient \item At-persistent-risk-of-poverty rate, by age and gender ($50\%$ median) \setcounter{enumi_last}{\value{enumi}} \end{enumerate} \paragraph{Other indicators} \begin{enumerate} \setcounter{enumi}{\value{enumi_last}} \item Mean equivalized disposable income \item The gender pay gap \end{enumerate} \paragraph{} Note that especially the Gini coefficient is very well studied due to its importance in many fields of research. The add-on package \pkg{laeken} \citep{laeken} aims is to bring functionality for the estimation of indicators on social exclusion and poverty to the statistical environment \proglang{R} \citep{RDev}. In the examples in this vignette, standard estimates for the most important indicators are computed according to the Eurostat definitions \citep{EU-SILC04, EU-SILC09}. More sophisticated methods that are less influenced by outliers are described in vignette \code{laeken-pareto} \citep{alfons11a}, while the basic framework for variance estimation is discussed in vignette \code{laeken-variance} \citep{templ11b}. Those documents can be viewed from within \proglang{R} with the following commands: <>= vignette("laeken-pareto") vignette("laeken-variance") @ Morover, a general introduction to package \pkg{laeken} is published as \citet{alfons13b}. The example data set of package \pkg{laeken}, which is called \code{eusilc} and consists of $14\,827$ observations from $6\,000$ households, is used throughout the paper. It was synthetically generated from Austrian EU-SILC survey data from 2006 using the data simulation methodology proposed by \citet{alfons11c} and implemented in the \proglang{R} package \pkg{simPopulation} \citep{simPopulation}. The first three observations of the synthetic data set \code{eusilc} are printed below. <<>>= library("laeken") data("eusilc") head(eusilc, 3) @ Only a few of the large number of variables in the original survey are included in the example data set. The variable names are rather cryptic codes, but these are the standardized names used by the statistical agencies. Furthermore, the variables \code{hsize} (household size), \code{age}, \code{eqSS} (equivalized household size) and \code{eqIncome} (equivalized disposable income) are not included in the standardized format of EU-SILC data, but have been derived from other variables for convenience. Moreover, some very sparse income components were not included in the the generation of this synthetic data set. Thus the equivalized household income is computed from the available income components. For the remainder of the paper, the variable \code{eqIncome} (equivalized disposable income) is of main interest. Other variables are in some cases used to break down the data in order to evaluate the indicators on the resulting subsets. It is important to note that EU-SILC data are in practice conducted through complex sampling designs with different inclusion probabilities for the observations in the population, which results in different weights for the observations in the sample. Furthermore, calibration is typically performed for non-response adjustment of these initial design weights. Therefore, the sample weights have to be considered for all estimates, otherwise biased results are obtained. The rest of the paper is organized as follows. Section \ref{sec:design} briefly illustrates the basic object-oriented design of the package. The calculation of the equivalized household size and the equivalized disposable income is then described in Section \ref{sec:income}. Afterwards, Section~\ref{sec:w} introduces the Eurostat definitions of the weighted median and weighted quantiles, which are required for the estimation of some of the indicators. In Section~\ref{sec:ind}, a mathematical description of the most important indicators on social exclusion and poverty is given and their estimation with package \pkg{laeken} is demonstrated. Section~\ref{sec:sub} discusses a useful subsetting method, and Section~\ref{sec:concl} concludes. % ------------ % basic design % ------------ \section{Basic design of the package} \label{sec:design} The implementation of the package follows an object-oriented design using \proglang{S3} classes \citep{chambers92}. Its aim is to provide functionality for point and variance estimation of Laeken indicators with a single command, even for different years and domains. Currently, the following indicators are available in the \proglang{R} package \pkg{laeken}: \begin{itemize} \item \emph{At-risk-of-poverty rate}: function \code{arpr()} \item \emph{Quintile share ratio}: function \code{qsr()} \item \emph{Relative median at-risk-of-poverty gap}: function \code{rmpg()} \item \emph{Dispersion around the at-risk-of-poverty threshold}: also function \code{arpr()} \item \emph{Gini coefficient}: function \code{gini()} \end{itemize} Note that the implementation strictly follows the Eurostat definitions \citep{EU-SILC04,EU-SILC09}. %In addition, robust estimators are also implemented. Here, the focus is on %Pareto tail modeling. \subsection{Class structure} In this section, the class structure of package \pkg{laeken} is briefly discussed. Section~\ref{sec:indicator} describes the basic class \code{"indicator"}, while the different subclasses for the specific indicators are listed in Section~\ref{sec:classes}. \subsubsection{Class \code{"indicator"}} \label{sec:indicator} The basic class \code{"indicator"} acts as the superclass for all classes in the package corresponding to specific indicators. It consists of the following components: % \begin{description} \item[\code{value}:] A numeric vector containing the point estimate(s). \item[\code{valueByStratum}:] A \code{data.frame} containing the point estimates by domain. \item[\code{varMethod}:] A character string specifying the type of variance estimation used. \item[\code{var}:] A numeric vector containing the variance estimate(s). \item[\code{varByStratum}:] A \code{data.frame} containing the variance estimates by domain. \item[\code{ci}:] A numeric vector or matrix containing the confidence interval(s). \item[\code{ciByStratum}:] A \code{data.frame} containing the confidence intervals by domain. \item[\code{alpha}:] The confidence level is given by $1 - $\code{alpha}. \item[\code{years}:] A numeric vector containing the different years of the survey. \item[\code{strata}:] A character vector containing the different strata of the breakdown. % \item[\code{seed}:] The seed of the random number generator before the computations. \end{description} These list components are inherited by each indicator in the package. One of the most important features of \pkg{laeken} is that indicators can be evaluated for different years and domains. The latter of which can be regions (e.g., NUTS2), but also any other breakdown given by a categorical variable (see the examples in Section~\ref{sec:ind}). In any case, the advantage of the object-oriented implementation is the possibility of sharing code among the indicators. To give an example, the following methods for the basic class \code{"indicator"} are implemented in the package: <<>>= methods(class="indicator") @ The \code{print()} and \code{subset()} methods are called by their respective generic functions if an object inheriting from class \code{"indicator"} is supplied. While the \code{print()} method defines the output of objects inheriting from class \code{"indicator"} shown on the \proglang{R} console, the \code{subset()} method allows to extract subsets of an object inheriting from class \code{"indicator"} and is discussed in detail in Section~\ref{sec:sub}. Furthermore, the function \code{is.indicator()} is available to test whether an object is of class \code{"indicator"}. \subsubsection{Additional classes} \label{sec:classes} For the specific indicators on social exclusion and poverty, the following classes are implemented in package \pkg{laeken}: % \begin{itemize} \item Class \code{"arpr"} with the following additional components: \begin{description} \item[\code{p}:] The percentage of the weighted median used for the at-risk-of-poverty threshold. \item[\code{threshold}:] The at-risk-of-poverty threshold(s). \end{description} \item Class \code{"qsr"} with no additional components. \item Class \code{"rmpg"} with the following additional components: \begin{description} \item[\code{threshold}:] The at-risk-of-poverty threshold(s). \end{description} \item Class \code{"gini"} with no additional components. \end{itemize} % All these classes are subclasses of the basic class \code{"indicator"} and therefore inherit all its components and methods. In addition, functions to test whether an object is a member of one of these subclasses are implemented. Similarly to \code{is.indicator()}, these are called \code{is.foo()}, where \code{foo} is the name of the respective class (e.g., \code{is.arpr()}). % ----------------------------- % equivalized disposable income % ----------------------------- \section{Calculation of the equivalized disposable income} \label{sec:income} For each person, the equivalized disposable income is defined as the total household disposable income divided by the equivalized household size. It follows that each person in the same household receives the same equivalized disposable income. The total disposable income of a household is calculated by adding together the personal income received by all of the household members plus the income received at the household level. The equivalized household size is defined according to the modified OECD scale, which gives a weight of 1.0 to the first adult, 0.5 to other household members aged 14 or over, and 0.3 to household members aged less than 14 \citep{EU-SILC04, EU-SILC09}. In practice, the equivalized disposable income needs to be computed from the income components included in EU-SILC for the estimation of the indicators on social exclusion and poverty. Therefore, this section outlines how to perform this step with package \pkg{laeken}, even though the variable \code{eqIncome} containing the equivalized disposable income is already available in the example data set \code{eusilc}. Note that not all variables that are required for an exact computation of the equivalized income are included in the synthetic example data. However, the functions of the package can be applied in exactly the same manner to real EU-SILC data. First, the equivalized household size according to the modified OECD scale needs to be computed. This can be done with the function \code{eqSS()}, which requires the household ID and the age of the individuals as arguments. In the example data, household~ID and age are stored in the variables \code{db030} and \code{age}, respectively. It should be noted that the variable \code{age} is not in the standardized format of EU-SILC data and needs to be calculated from the data beforehand. Nevertheless, these computations are very simple and are therefore not shown here \citep[for details, see][]{EU-SILC09}. The following two lines of code calculate the equivalized household size, add it to the data set, and print the first eight observations of the variables involved. <<>>= eusilc$eqSS <- eqSS("db030", "age", data=eusilc) head(eusilc[,c("db030", "age", "eqSS")], 8) @ Then the equivalized disposable income can be computed with the function \code{eqInc()}. It requires the following information to be supplied: the household~ID, the household income components to be added and subtracted, respectively, the personal income components to be added and subtracted, respectively, as well as the equivalized household size. With the following commands, the equivalized disposable income is calculated and added to the data set, after which the first eight observations of the important variables in this context are printed. <<>>= hplus <- c("hy040n", "hy050n", "hy070n", "hy080n", "hy090n", "hy110n") hminus <- c("hy130n", "hy145n") pplus <- c("py010n", "py050n", "py090n", "py100n", "py110n", "py120n", "py130n", "py140n") eusilc$eqIncome <- eqInc("db030", hplus, hminus, pplus, character(), "eqSS", data=eusilc) head(eusilc[,c("db030", "eqSS", "eqIncome")], 8) @ % Note that the net income is considered in this example, therefore no personal income component needs to be subtracted \citep[see][]{EU-SILC04, EU-SILC09}. This is reflected in the call to \code{eqInc()} by the use of an empty character vector \code{character()} for the corresponding argument. % ------------------ % weighted quantiles % ------------------ \section{Weighted median and quantile estimation} \label{sec:w} Some of the indicators on social exclusion and poverty require the estimation of the median income or other quantiles of the income distribution. Hence functions that strictly follow the definitions according to \citet{EU-SILC04, EU-SILC09} are implemented in package \pkg{laeken}. They are used internally for the estimation of the respective indicators, but can also be called by the user directly. In the analysis of income distributions, the median income is typically of higher interest than the arithmetic mean. This is because income distributions commonly are strongly right-skewed with a heavy tail of \emph{representative outliers} (correctly measured units that are not unique to the population) and \emph{nonrepresentative outliers} (either measurement errors or correct observations that can be considered unique in the population). Therefore, the center of the distribution is more reliably estimated by a weighted median than by a weighted mean, as the latter is highly influenced by extreme values. In mathematical terms, quantiles are defined as $q_{p} := F^{-1}(p)$, where $F$ is the distribution function on the population level and $0 \leq p \leq 1$. The median as an important special case is given by $p = 0.5$. For the following definitions, let $n$ be the number of observations in the sample, let $\boldsymbol{x} := (x_{1}, \ldots, x_{n})'$ denote the equivalized disposable income with \mbox{$x_{1} \leq \ldots \leq x_{n}$}, and let $\boldsymbol{w} := (w_{i}, \ldots, w_{n})'$ be the corresponding personal sample weights. Weighted quantiles for the estimation of the population values according to \citet{EU-SILC04, EU-SILC09} are then given by \begin{equation} \label{eq:wq} \hat{q}_{p} = \hat{q}_{p} (\boldsymbol{x}, \boldsymbol{w}) := \begin{cases} \frac{1}{2} (x_{j} + x_{j+1}), & \quad \text{if } \sum_{i=1}^{j} w_{i} = p \sum_{i=1}^{n} w_{i}, \\ x_{j+1}, & \quad \text{if } \sum_{i=1}^{j} w_{i} < p \sum_{i=1}^{n} w_{i} < \sum_{i=1}^{j+1} w_{i}. \end{cases} \end{equation} This definition of weighted quantiles is available in \pkg{laeken} through the function \code{weightedQuantile()}. The following command computes the weighed 20\% quantile, the weighted median, and the weighted 80\% quantile. In the context of social exclusion indicators, these are of most importance. % ----- <>= weightedQuantile(eusilc$eqIncome, eusilc$rb050, probs = c(0.2, 0.5, 0.8)) @ % ----- For the important special case of the weighted median, the function \code{weightedMedian()} is available for convenience. % ----- <<>>= weightedMedian(eusilc$eqIncome, eusilc$rb050) @ In addition, the functions \code{incMedian()} and \code{incQuintile()} are more tailored towards application in the case of indicators on social exclusion and poverty and provide a similar interface as the functions for the indicators (see Section~\ref{sec:ind}). In particular, they allow to supply an additional variable to be used as tie-breakers for sorting, and to compute the weighted median and income quintiles, respectively, for several years of the survey. With the following lines of code, the median income as well as the \engordnumber{1} and \engordnumber{4} income quintile (i.e., the weighted 20\% and 80\% quantiles) are estimated. <<>>= incMedian("eqIncome", weights = "rb050", data = eusilc) incQuintile("eqIncome", weights = "rb050", k = c(1, 4), data = eusilc) @ % ------------------- % selected indicators % ------------------- \section{Indicators on social exclusion and poverty} \label{sec:ind} In this section, the most important indicators on social exclusion and poverty are described in detail. Furthermore, the functionality of package \pkg{laeken} to estimate these indicators is demonstrated. It should be noted that all functions for the implemented indicators provide a very similar interface. Most importantly, it is possible to compute estimates for several years of the survey and different subdomains with a single command. Furthermore, the functions allow to supply an additional variable to be used as tie-breakers for sorting. However, not all of the implemented functionality is shown in this vignette. For a complete description of the functions and their arguments, the reader is referred to the corresponding \proglang{R} help pages. In addition, only point estimation of the indicators on social exclusion and poverty is illustrated here, statistical significance of these estimates is not discussed. The functionality for variance estimation of the indicators is described in the package vignette \code{laeken-variance} \citep{templ11b}. For the following definitions of the estimators according to \citet{EU-SILC04, EU-SILC09}, let $\boldsymbol{x} := (x_{1}, \ldots, x_{n})'$ be the equivalized disposable income with $x_{1} \leq \ldots \leq x_{n}$ and let $\boldsymbol{w} := (w_{i}, \ldots, w_{n})'$ be the corresponding personal sample weights, where $n$ denotes the number of observations. Furthermore, define the following index sets for a certain threshold $t$: \begin{align} I_{< t} &:= \{ i \in \{ 1, \ldots, n \} : x_{i} < t \},\label{eq:01-Ilt}\\ I_{\leq t} &:= \{ i \in \{ 1, \ldots, n \} : x_{i} \leq t \},\label{eq:01-Ileqt}\\ I_{> t} &:= \{ i \in \{ 1, \ldots, n \} : x_{i} > t\}\label{eq:01-Igt}. \end{align} \subsection{At-risk-at-poverty rate} \label{sec:ARPR} In order to define the \emph{at-risk-of-poverty rate} (ARPR), the \emph{at-risk-of-poverty threshold} (ARPT) needs to be introduced first, which is set at $60\%$ of the national median equivalized disposable income. Then the at-risk-at-poverty rate is defined as the proportion of persons with an equivalized disposable income below the at-risk-at-poverty threshold \citep{EU-SILC04, EU-SILC09}. In a more mathematical notation, the at-risk-at-poverty rate is defined as \begin{equation} \label{eq:ARPR} ARPR := P(x < 0.6 \cdot q_{0.5}) \cdot 100,% = F(0.6 \cdot q_{0.5}) \cdot 100, \end{equation} where $q_{0.5} := F^{-1}(0.5)$ denotes the population median (50\% quantile) and $F$ is the distribution function of the equivalized income on the population level. For the estimation of the at-risk-at-poverty rate from a sample, the sample weights need to be taken into account. %Let $n$ be the number of observations in the sample, let $\boldsymbol{x} := %(x_{1}, \ldots, x_{n})'$ denote the equivalized disposable income with %\mbox{$x_{1} \leq \ldots \leq x_{n}$}, and let $\boldsymbol{w} := (w_{i}, %\ldots, w_{n})'$ be the corresponding personal sample weights. Then the %at-risk-at-poverty threshold is estimated by First, the at-risk-at-poverty threshold is estimated by \begin{equation} \label{eq:ARPT} \widehat{ARPT} = 0.6 \cdot \hat{q}_{0.5}, \end{equation} where $\hat{q}_{0.5}$ is the weighted median as defined in Equation~(\ref{eq:wq}). %Furthermore, define an index set of observations with an equivalized disposable %income below the estimated at-risk-at-poverty threshold as %\begin{equation} %I_{< \widehat{ARPT}} := \{ i \in \{ 1, \ldots, n \} : x_{i} < \widehat{ARPT} \}. %\end{equation} %With these definitions, the at-risk-at-poverty rate can be estimated by Then the at-risk-at-poverty rate can be estimated by \begin{equation} \widehat{ARPR} := \frac{\sum_{i \in I_{< \widehat{ARPT}}} w_{i}}{\sum_{i=1}^{n} w_{i}} \cdot 100, \end{equation} where $I_{< \widehat{ARPT}}$ is an index set of persons with an equivalized disposable income below the estimated at-risk-of-poverty threshold as defined in Equation~(\ref{eq:01-Ilt}). In package \pkg{laeken}, the functions \code{arpt()} and \code{arpr()} are implemented for the estimation of the at-risk-of-poverty threshold and the at-risk-of-poverty rate. Whenever sample weights are available in the data, they should be supplied as the \code{weights} argument. Even though \code{arpt()} is called internally by \code{arpr()}, it can also be called by the user directly. <<>>= arpt("eqIncome", weights = "rb050", data = eusilc) arpr("eqIncome", weights = "rb050", data = eusilc) @ It is also possible to use these functions for the estimation of the indicator \emph{dispersion around the at-risk-of-poverty threshold}, which is defined as the proportion of persons with an equivalized disposable income below $40\%$, $50\%$ and $70\%$ of the national weighted median equivalized disposable income. The proportion of the median equivalized income to be used can thereby be adjusted via the argument \code{p}. <<>>= arpr("eqIncome", weights = "rb050", p = 0.4, data = eusilc) arpr("eqIncome", weights = "rb050", p = 0.5, data = eusilc) arpr("eqIncome", weights = "rb050", p = 0.7, data = eusilc) @ In order to compute estimates for different subdomains, a breakdown variable simply needs to be supplied as the \code{breakdown} argument. Note that in this case the same overall at-risk-of-poverty threshold is used for all subdomains \citep[see][]{EU-SILC04, EU-SILC09}. The following command computes the overall estimate, as well as estimates for all NUTS2 regions. <<>>= arpr("eqIncome", weights = "rb050", breakdown = "db040", data = eusilc) @ However, any kind of breakdown can be supplied, e.g., the breakdowns defined by \citet{EU-SILC04, EU-SILC09}. With the following lines of code, a breakdown variable with all possible combinations of age categories and gender is defined and added to the data set, before it is used to compute estimates for the corresponding domains. <<>>= ageCat <- cut(eusilc$age, c(-1, 16, 25, 50, 65, Inf), right=FALSE) eusilc$breakdown <- paste(ageCat, eusilc$rb090, sep=":") arpr("eqIncome", weights = "rb050", breakdown = "breakdown", data = eusilc) @ Clearly, the results are even more heterogeneous than for the breakdown into NUTS2 regions. %The results are even more different when considering household size %(\code{hsize}) and citizenship (\code{pb220a}) as the domain level for %estimation. %<<>>= %eusilc$breakdown <- paste(eusilc$hsize, eusilc$pb220a, sep=":") %arpr("eqIncome", weights = "rb050", breakdown = "breakdown", data = eusilc) %@ \subsection{Quintile share ratio} The income \emph{quintile share ratio} (QSR) is defined as the ratio of the sum of the equivalized disposable income received by the 20\% of the population with the highest equivalized disposable income to that received by the 20\% of the population with the lowest equivalized disposable income \citep{EU-SILC04, EU-SILC09}. For the estimation of the quintile share ratio from a sample, let $\hat{q}_{0.2}$ and $\hat{q}_{0.8}$ denote the weighted 20\% and 80\% quantiles, respectively, as defined in Equation~(\ref{eq:wq}). Using index sets $I_{\leq \hat{q}_{0.2}}$ and $I_{> \hat{q}_{0.8}}$ as defined in Equations~(\ref{eq:01-Ileqt}) and~(\ref{eq:01-Igt}), respectively, the quintile share ratio is estimated by \begin{equation} \widehat{QSR} := \frac{\sum_{i \in I_{> \hat{q}_{0.8}}} w_{i} x_{i}}{\sum_{i \in I_{\leq \hat{q}_{0.2}}} w_{i} x_{i}}. \end{equation} With package \pkg{laeken}, the quintile share ratio can be estimated using the function \code{qsr()}. As for the at-risk-of-poverty rate, sample weights can be supplied via the \code{weights} argument. <<>>= qsr("eqIncome", weights = "rb050", data = eusilc) @ Computing estimates for different subdomains is again possible by specifying the \code{breakdown} argument. In the following example, estimates for each NUTS2 region are computed in addition to the overall estimate. <<>>= qsr("eqIncome", weights = "rb050", breakdown = "db040", data = eusilc) @ Nevertheless, it should be noted that the quintile share ratio is highly influenced by outliers \citep[see][]{hulliger09a, alfons10b}. Since the upper tail of income distributions virtually always contains nonrepresentative outliers, robust estimators of the quintile share ratio should preferably be used. Thus robust semi-parametric methods based on Pareto tail modeling are implemented in package \pkg{laeken} as well. Their application is discussed in vignette \code{laeken-pareto} \citep{alfons11a}. \subsection{Relative median at-risk-of-poverty gap (by age and gender)} The \emph{relative median at-risk-of-poverty gap} (RMPG) is defined as the difference between the median equivalized disposable income of persons below the at-risk-of-poverty threshold and the at-risk of poverty threshold itself, expressed as a percentage of the at-risk-of-poverty threshold \citep{EU-SILC04, EU-SILC09}. %Let $wmed_{(poor)}$ the weighted median of the people who having an income %below $ARPR$ defined in Equation~\ref{eq:ARPR}. Then the relative median %at-risk-of-poverty gap is estimated by %\begin{displaymath} %RMPG = \frac{ARPR - wmed_{(poor)}}{ARPR} \cdot 100 %\end{displaymath} For the estimation of the relative median at-risk-of-poverty gap from a sample, let $\widehat{ARPT}$ be the estimated at-risk-of-poverty threshold according to Equation~(\ref{eq:ARPT}), and let $I_{< \widehat{ARPT}}$ be an index set of persons with an equivalized disposable income below the estimated at-risk-of-poverty threshold as defined in Equation~(\ref{eq:01-Ilt}). Using this index set, define $\boldsymbol{x}_{< \widehat{ARPT}} := (x_{i})_{i \in I_{< \widehat{ARPT}}}$ and $\boldsymbol{w}_{< \widehat{ARPT}} := (w_{i})_{i \in I_{< \widehat{ARPT}}}$. Furthermore, let $\hat{q}_{0.5} (\boldsymbol{x}_{< \widehat{ARPT}}, \boldsymbol{w}_{< \widehat{ARPT}})$ be the corresponding weighted median according to the definition in Equation~(\ref{eq:wq}). Then the relative median at-risk-of-poverty gap is estimated by \begin{equation} \widehat{RMPG} = \frac{\widehat{ARPT} - \hat{q}_{0.5} (\boldsymbol{x}_{< \widehat{ARPT}}, \boldsymbol{w}_{< \widehat{ARPT}})}{\widehat{ARPT}} \cdot 100. \end{equation} In package \pkg{laeken}, the function \code{rmpg()} is implemented for the estimation of the relative median at-risk-of-poverty gap. If available in the data, sample weights should be supplied as the \code{weights} argument. Note that the function \code{arpt()} for the estimation of the at-risk-of-poverty threshold is called internally (cf. function \code{arpr()} for the at-risk-of-poverty rate in Section~\ref{sec:ARPR}). <<>>= rmpg("eqIncome", weights = "rb050", data = eusilc) @ Estimates for different subdomains can be computed by making use of the \code{breakdown} argument. With the following command, the overall estimate and estimates for all NUTS2 regions are computed. <<>>= rmpg("eqIncome", weights = "rb050", breakdown = "db040", data = eusilc) @ For the relative median at-risk-of-poverty gap, the breakdown by age and gender is of particular interest. In the following example, a breakdown variable with all possible combinations of age categories and gender is defined and added to the data set. Afterwards, estimates for the corresponding domains are computed. <<>>= ageCat <- cut(eusilc$age, c(-1, 16, 25, 50, 65, Inf), right=FALSE) eusilc$breakdown <- paste(ageCat, eusilc$rb090, sep=":") rmpg("eqIncome", weights = "rb050", breakdown = "breakdown", data = eusilc) @ \subsection{Gini coefficient} The \emph{Gini coefficient} is defined as the relationship of cumulative shares of the population arranged according to the level of equivalized disposable income, to the cumulative share of the equivalized total disposable income received by them \citep{EU-SILC04, EU-SILC09}. For the estimation of the Gini coefficient from a sample, the sample weights need to be taken into account. In mathematical terms, the Gini coefficient is estimated by \begin{equation} \widehat{Gini} := 100 \left[ \frac{2 \sum_{i=1}^{n} \left( w_{i} x_{i} \sum_{j=1}^{i} w_{j} \right) - \sum_{i=1}^{n} w_{i}^{\phantom{i}2} x_{i}}{\left( \sum_{i=1}^{n} w_{i} \right) \sum_{i=1}^{n} \left(w_{i} x_{i} \right)} - 1 \right]. \end{equation} The function \code{gini()} is available in \pkg{laeken} to estimate the Gini coefficient. As for the other indicators, sample weights can be specified with the \code{weights} argument. <<>>= gini("eqIncome", weights = "rb050", data = eusilc) @ Using the \code{breakdown} argument in the following command, estimates for the NUTS2 regions are computed in addition to the overall estimate. <<>>= gini("eqIncome", weights = "rb050", breakdown = "db040", data = eusilc) @ Since outliers have a strong influence on the Gini coefficient, robust estimators are preferred to the standard estimation described above \citep[see][]{alfons10b}. Vignette \code{laeken-pareto} \citep{alfons11a} describes how to apply the robust semi-parametric methods implemented in package \pkg{laeken}. % ------------------ % extracting subsets % ------------------ \section{Extracting information using the \code{subset()} method} \label{sec:sub} If estimates of an indicator have been computed for several subdomains, it may sometimes be desired to extract the results for some domains of particular interest. In package \pkg{laeken}, this is implemented by taking advantage of the object-oriented design of the package. Each of the functions for the indicators described in Section~\ref{sec:ind} returns an object belonging to a class of the same name as the respective function, e.g., function \code{arpr()} returns an object of class \code{"arpr"}. All these classes thereby inherit from the basic class \code{"indicator"} (see Section~\ref{sec:design}). <<>>= a <- arpr("eqIncome", weights = "rb050", breakdown = "db040", data = eusilc) print(a) is.arpr(a) is.indicator(a) class(a) @ To extract a subset of results from such an object, a \code{subset()} method for the class \code{"indicator"} is implemented in \pkg{laeken}. The method \code{subset.indicator()} is hidden from the user and is called internally by the generic function \code{subset()} whenever an object of class \code{"indicator"} is supplied. In the following example, the estimates of the at-risk-of-poverty rate for the regions Lower Austria and Vienna are extracted from the object computed above. <<>>= subset(a, strata = c("Lower Austria", "Vienna")) @ % ----------- % conclusions % ----------- \section{Conclusions} \label{sec:concl} This vignette demonstrates the use of package \pkg{laeken} for point estimation of the European Union indicators on social exclusion and poverty. Since the description of the indicators in \citet{EU-SILC04, EU-SILC09} is weak from a mathematical point of view, a more precise notation is given in this paper. Currently, the most important indicators are implemented in \pkg{laeken}. Their estimation is made easy with the package, as it is even possible to compute estimates for several years and different subdomains with a single command. Concerning the inequality indicators quintile share ratio and Gini coefficient, it is clearly visible from their definitions that the standard estimators are highly influenced by outliers \citep[see also][]{hulliger09a, alfons10b}. Therefore, robust semi-parametric methods are implemented in \pkg{laeken} as well. These are described in vignette \code{laeken-pareto} \citep{alfons11a}, while variance and confidence interval estimation for the indicators on social exclusion and poverty with package \pkg{laeken} is treated in vignette \code{laeken-variance} \citep{templ11b}. % --------------- % acknowledgments % --------------- \section*{Acknowledgments} This work was partly funded by the European Union (represented by the European Commission) within the 7$^{\mathrm{th}}$ framework programme for research (Theme~8, Socio-Economic Sciences and Humanities, Project AMELI (Advanced Methodology for European Laeken Indicators), Grant Agreement No. 217322). Visit \url{http://ameli.surveystatistics.net} for more information on the project. % ------------ % bibliography % ------------ \bibliographystyle{plainnat} \bibliography{laeken} \end{document} laeken/inst/doc/laeken-pareto.pdf0000644000176200001440000261530414554440366016503 0ustar liggesusers%PDF-1.5 % 1 0 obj << /Type /ObjStm /Length 4682 /Filter /FlateDecode /N 82 /First 687 >> stream x\[s7~?b6T;*IٖvVhr$͚"kC΅(N`@wnYLeΤ7~e6\|nxqeyƍPxqgmGL΄8Lxͤp8L}C=3]hʙVeUV:3\8SLog[8YЕ༰"22oϤFS jR*hDaR:Nf<l=R/N0_^e(t)(p)@D/ R 8iP|jPޡ#t{ (+PB5(+ 9 [$ €xӀ BsMj@YCIj)e=;.$ZgIHX_n ƍ#ـ$%P:#enA!8>#R4!.9Pv駌h@P޳YI9ކnR᛿ˌ"{(8Y\NgwߣdVtx(SB\hH|P?΋]v[-.KОs?/F@d:l:|1ΪEsrTqIWGӛɂ̍=p.y8L;XD8Ǔwnz)v'Qweݺ#'邾/RDפ-XR:t8i87>=/R$]KRpIKRM,b,H$UD'z>ѫ'z>Oj=H* "e:]M[gh˪#*"*~NE*6_$#|]s#ÚE\b5I(ٱHv,dBkW(؆0s:6(/BǮ0MnburO7j|UbR[j&6E*I2I=6v}IYʇ4ּNt6kx{>ԯ FG>2Tg޼zG'gpIؓp:&a<හbt -A5:8F=*ivRjFj gmu?]l*i$6&-{ׁ'ݿH9ns P=vjԺ>׿e} Y&|Nc |Q_m6fÛq "f0f_%; V1bW /MؔM'%& DU$y=6>,٢}b-gZ#xpAQAЊ B@K#>%bʄUc`r? '|:^WW YoyON7%9d c!]kqku-+HQ2%ڇ{yh@¡< `p@Lb 8Bwl}#M^jJà*%,yh݋hC~-uF>Mg:Tp6h[kjw۠Ûs{̞g ;fs;e3aoo_`x( |0lh8+kdKv_?qT a%bU1 Q^]ЫQ\MGOtQ2`n>&5nͨ*g弚- o>)~TE,йmKkzȴ k;'o:LL ]ѣB\!@E׾Z2=ʇ,. W!V e7#,:6j͡ 7MQS$D 3Q{KwݓVARޥv)y_/9z9HRrEWbwwmM[!ތeh;vR%NFQhL @I 4Tr4療Q_}(~q&,k@Bg(L WE215\2kA7m ^g@Gh ZPW P..XY@W#Z+dOgr°loRRNERV9%Qg(+o^xTȭ aL]‹j.D2YW"/=;!Ѽ!U6q%z lD3^'uq_kh-]L)GwaK ՋAh+ m=770N6nc] 6U,ӱTKn,7]$ֈzXc9FX~c|Sͳi>mfYg+_4f3hQ$1`F64:FyAS~RG#(&jbC}%zVUR8:99n_],-iً򯷥Yi'1ׁm)zz[-E~2Y;RKEVȃn <+穽G}ڴ}kӴÐ8NVaD=F.I4E5(.PsqY.PB JWӬJC;k֔68xǿSV6GUoe/|DM&[ל0~yl~Za͋3>uP`V47!<\clm)熂+])oZ!zkz?zNʷZ\š^N_j"&zg` MUuuf+jk J'{Y.ՅQښZ-J%u"$ۂQV]&O|aUa[10[ 4nY ST]l+ΐiw̳~_o1R`f/v]-v}6.9wM:yllRK*()SL cA+TJeixS@^m#:i-@7[4;戟 qjq 3ʹZ;܃{uEhCz1^OE*;{gǿ?=yjg s۵_l7Q,e^$臷I0/l\zbuK=GXtVN+i4{NƢly$>oR?-l.NwsR\9 pF49͓YsN9}O, iPKK<|F^B.6L@sjɔTySK˔t9f i0h&'0 ~V N(p]"hOw M 7Qh0Os$њ J'Jɜ6 Y]f(`4{eJq>Sr€dBIgjV}rb p(N} =]R `F݃j`TiԿ L~i@@zbʛ\S(m^Q0EkMr|70Ic k:LIr 侀t$_5W:wF<)$ X,Ջy,Yh O5P6l0.O!`[SuF9ܧsv|]M)zL+Jp j[AE:W^g 0ŃcֹjQXM|ŒZ.|ƾKs'%h6 ~NhLu]Z_ץ4}0R" w=gIC 6SL/x@ 6W\pKu-9/98_Ix.Q/)> ׭i zNS4:YAL`}r,s`=eRv=e[Јua*F¨:coώ/ G].2vtv2?z6?%Ogz0ǃc9>;\c!(BTQiG ۙ6SBE%  {A7Ӧc8:;-]ak#euC mi[U֘#K{6-2$9_,8C{!Vs?YkN73H VHYcHe٧1"LSJ{jACfϫ=S7fD^$ ~VYmžfPhzs| P]dOv6U־Ț [V-:<}3ov?&{#%Dzv}duv8o_Y?N+\^5^U0SU?۷jdMvS["endstream endobj 84 0 obj << /Subtype /XML /Type /Metadata /Length 1387 >> stream GPL Ghostscript 9.55.0 2024-01-25T12:07:33+01:00 2024-01-25T12:07:33+01:00 LaTeX with hyperref endstream endobj 85 0 obj << /Type /ObjStm /Length 3729 /Filter /FlateDecode /N 80 /First 730 >> stream x[r7}߯cR)cpf+X8q(qC,n$R+Rv`87ҴLG>`3e, X(-%+A3I!+JͤIk+-^cK*dB04HE7xK~fR8S6Pum`Vɬ' R1'%hDi3#e:1񆔞г AK!VH捧żh4ԣ BhPjXCNH$*PRT5Tdt_Q?ڒHӚ!H0e0MF-@8# 4TDPOx@o{%kA#( Z ZIғq"=$7# dHN$A )\;bI =2 =exF\ #IGl+ /dŃb)V|Sw +^ˡ? Y\\W8_%<"6aJB.]]WoXz|}Q/Ϫ3yptt,K4B2!==O׹Sve}L:u?b_}* g't nLY@|2 xHTjM}~IA0!`KaFcV!6Z,VeH0~vt? ~`Y{EFq%8+֎ؓ2It?!*lW5;F)Ƞ }(? *m3CBӹO|!_7j<;KG!q :ȳFqe+? Bs{FIbw6h܌"JϖꊱK>;"]uhXW\QƷx5WĹ WFIu:_--Hl:8V˛Ybc$rvR抧CfR+Wu;Rޖ<+]1.0bH''6 WcrK`8pKrKJ6~I6x: ܍#DC2]jC5882ʮ771Bwg{B-r.rQ:0BA2n%*\`yk7>o2U:t4hѥ P1 #ܹ5hΘlmNF2p4H+`1JSwkcd11[ Wv;Vgv mXmRS$Eq[2OY}+Zһ§ L[LDٲ&uB`sA3A>OJkծF3ʹVv"ۋg~ rb`rARxX<.OIqR<+Ŭ8-x]⢸,Ų.Vź)<"}OًTQ~f!/*'щn8Fx=ώAdZL#6'yieEUԐGtt)7yAX# CԞyϙS ƫ؞Zx#Fv2!☑2Hg0nl! hϋ/5Ƶb脚y:;iwWUu=_6ߛmw7)a2MG.pog(͛PPd/OTkAAEJT+s"4)&,>p fHXrIQ?fxPqZ끂ڹ'dPqd{ a2q6>q]NVQU*^rW)` cF5X}'tP<ʐ5@mA=5% MY_"'0ػ.YPVn@;_0%8` KD8qŠ_&|o}v9_^-Uūk}g緂,w2 uU\( /].W뛷j3>] 0,LKqO;^/.xrO4 Q:ro:1͟R'ώxT]uTNyiߘ't_ g8wTvx$TtG&M{37˫)Ѓn6ʙI9gpwL^A`{P93B8L<wrJɕLDrP.955%Tbji|CH+岴 :MK4%_L&WydBoJ#}l$Fo {}h"&;>9pU[N`=-+࡭Byg"qhP)Ք4H\Z $}w & 1j@!($+($t,Ts>-y Ş)=@D[B?(+VŠNLuPr1̏n%Xp^ָ !bC2OqL<ȮLX!L: +p _3ӝJXǵ𴥄U5ƻ$)X#@6!l9%ӟgD!niSVpgvqpH>MX&Li1NbU~Hhִm6N &p̘,M$45<LT^e[3V|#㣧Ǐ}~ܛj8a5lSTabeT}]9n./4F.Yڥ]Q顔q٪W!S!v0Tm)%<\͜&R`{DAyWQb5dmgO $&p"uD84hNyN݄lT)QI3$zـ2L0w *N@ Qh'[6F vpL;.K $p0 FTh:w qɘB娳 8ߠJR]SLTGzHc^Sadک f<#@۽Y"vnp,mˤR'&1ǶeqLfΪjASg|ېZj+6y;Pendstream endobj 166 0 obj << /Filter /FlateDecode /Length 4440 >> stream x[[۸~￐lJo mFyٔ85[{6U-)S=_,x3 \s@[\/nͻIoWﻛ߿fʢ]=Қ+UQVruwy-^Ӻ,JVPZEֺ(Kx7D1R4H^{XK}$[suFUֈ=L Bϴ3.Ji6'.ti'-hRyPn*T-*GX,9Wt' !H+@\YتT+[F\vma\6Zmc^y#MQ*?43kޱa\ۑD#M鲲n lԑ|lT(kd"h3cmaopGI+0?; Ը?0smmZyGq6Lm3ǨFTE A209dI[>5H˞htd3T(hن4C+6t~ot@XxQП֞:D /kNT{o)A8RDRV|x)8&3ˤ}iR`bЅ' i(sI8GD=*4#a𼯇2vO#ƄvKsKr|+*/"sۍUtf){ޗذx`kI˃'j3Eoķ^(x5΀\k7" by{wy6x*NDt =p 0"xCM%P!m3`,-EΦx,c\:K5kL6e)>X vFz%F&\Ʉ\H1Qzdyߴ?$7Pm}l$5`Vf\Br5*|scAcu+TCmFXl IEYI(#cAibZ"Rrhi-w=+.R T\sҊI3l fY"&U'<<: j.iD*K ӵm:a(Y͐"JdZzrIs0@A|L@ D3ʼnE<\\΄jM-=$jcv:SUrm附e49ܷPe 3^dD$ ɖGC'Y)LE7Z>C8Y$ߟ=7_ehjg&E!+8=\S4+a<%;~&>7(2V'{P2fpb7醒1 9Ruv49mVnH5 CE>!"PTIǧ! B}7lъKM/24[-7S_[4I'OFl&]VZ9#y,`\ཚKRNY2$ftdK69'@x6& )A ӈǚv@ĩ0/\Y]#PqJf=GYT,sc,dOD}\!M;gE}j-Xs | s[b$n1iuQtVE7l2 ,v^Sl(PWK:ĢRPؗE^R $ cXN=RÞKk%~ jm6Xz2*SӀȪSyj <5ŜS[ (><. A><śP:5S6Daʆv n*@\jU\~ ncdc*rJFJ#^@2o7]1UVbiK MPn*odӼ`m9\z {bsW/(\dQQe0^QŁ".d\(uIƹ6B8zC[<p+"o'9p A 0dsJ ZG65 M&JXno63"Ƭ.GT[Kt*&-̈́ykDDH8O#Y_nDA378~?)3 ą;KJXjv8]Sӡɿov#tნZ#u_WvJ_%64Cn܏cFژ=r` ȍn $ES_Arh8&j*,Z ;4]MP- Jf /e6_t+DT8 XXFJ*<%֔AY"60h|}yw2ǓʷO !Vq.!*!]l{6^3ܸWNvl1xq B|Bl~KSR .lx@}XN(>f i'aFtg'+I rXpG5H_S }>p5JبS.vR*|Y'e|F7{>ShUߴQ=i~2BO QB%(3Kw vir(#Py%)`ǭm̂qΛvyo@o/T\BY UiN6;r%&0ǡ.E(14+jrKF:5尟$I;RO7[.Bp.7WůDġhN." ! ~^ K_RHUZUЈIg,ѫZwr=H>\k>[wrf "U`qXLtdA;/qlm}E  L-R<Ӆ"JZ$+09Ejǵe$뗟Җߠ{ݬ>rF-.!W>,ҲD (%x~y*p")>k8~QoDž.=(tB?MW'a)5H!^S b3_YeU??p!}5YOs7E=kQ˖m~R2o@ȍ%$@ UpPo]> stream x[rF}߯M2e+*Ib'PNVV( H{~OHYŒ0堻!]`Ivz5JDU1)GA3iC*Լe2*8dj2Q V9FNL[A1F:X0# icFŀgj0Bd􊂙 [a0ETsVk4Yeijxf zSxA%@ (!A%PP9L , y)c^Gjw XЉl RB% Ҡ,*EK0q:B*U]pJaB)B7". QtSԑD`j%1A 9}h1rxIT?T$|%x!94怠`6#sK<$`# F !à!JₑIf 0$Y+cpN'%ޜ|pD >{1MϋUL&by㰘˃$5G⪜blúƲUβw/K՗&8/?ٿ!!~[AtzmkPRUF$-*yDl5+]Y[=&Q3X D(ǛzXv0zP(gDdM6e,ex:}!+qvMiv] gd/Ҍf<+7,#nt*K/PDAiQ= ^a1!6^֛eF:^q1ڛ\s͎ U2 .VY"&IMu_Si)/}T_H#5IQcUu wBgi Sm=Bl%<&<4zH}ݻky5݅Oz9^U֒bf;V6=s`PvH mnؘ߬ ,0bt0ІNb*EljU3?`xZzZA /UxΓfx_|ez=.I]Aja'ټ Q~yV5+RPhBڑYߕٞDmٴkeaoTn`ѫ}c_#v' ^'A{5W[U 4 = t@OCtX,dhj8@Dǁ^;>+'[ {.хۮ6|~*&?i_Q,%Zf|>BAyv5+. BOo +|miYYO5 G9FŲv>ei]>?+WkUSKjtwlUѿl8>/WE?Kk#*+]XݖճSחòN4%Aq0ăDȮD ^wJڈۍ<UBq*CٓqRHpz<|Zȣ3ǹǶkyNJZz]L>6&iXX`u0aF.p`Q+ܓWqeQ?&0m0N:dt{myUS Aͻ€JJsr I B؈R\6q O \[a4i@vbd: .|O5@($k;Q> (@!HTМ|j6=2f\k2Z`R\`R%q><5zSsԨT(5'> $  ,%J *,1ltXڸu⤍gB5Ԧ1tPP!1>&g*1I@di.")zdPG&lq*WBbd+ U̓I(/\F `hC*áP^vAC¦zv* RkJ ;SeWcՏdTT S\"ΫugJc#Orm4wXv* Wi Mh-0AU0,!(0vAA[] [+ٟ-c,*k3hg[:KÛӽώZ舃GTcu-Ճ. |ι[0V!WxXU<|}lg& \*zwgM=?9y\UklTTc.s25#(~W @\jKh1h^m{1w'D=e0,#`x( )qqM g$9v5vxz&i(O'T}!I<2ty" ;eqQyt8}]GՎk2nI ÃvIqbihCњy,l;VGh9}-d`WY>:]c mI-%v&}v o~v|65qW6~G/7٫TMN߿P1)>e׭ @;kO'BWDZ~U}vnP~B7adžmg%CߘWЮQ%&`E(ɖvHf#n ,uj`DٟխS? d|~=òP9瓼Cmz9)+TWxQ`MtFËz\oJ`-}'}J'MϤ ݕ.rS[Q:[|OFyrRXCzm2 Qr&@Se{A.xHCD54%3J(ΰ1endstream endobj 250 0 obj << /Filter /FlateDecode /Length 6309 >> stream x\[o$u~`` @3;]* `+6]yML3\3ZKUuuI.L`v;YSYY39{w&,~yϯ:XiggĈ9mkr{]w~!:]mxჵ n65@o_8Rpqp :}Ewn߶xX_x\z5Odz]]a}\l.hdFJZt\i~MqU{ā=,H2y/9]Q=iaͪH/Se>I bY_6!C#nݴ}DGYW.%LԵ!T_H$s8`S\󈼀UHVGa]#-sPjz nb[X(6]?t]ZjahUE>/~:c8P]*DlWPTf@ SUtSzBJ hg-IzY-|_JVȡE}T KU cmZ0試#5v){.H=莟{~ӦSv$cSe3o>W3>-$W5n F ƀ4L b89ld&9* [ҳf`hG  8?́οASJVW ],ӇlC&CSxq?0ҍ N_ #ёNk|8_Xm%@SF BtDsʰ?q`k L9WQ߆:f4TqҊZ4"/zȤ1S%=0@,'a u-8ay%F6c)ߵa+E?ǦVEυio,s[i9hd{Kz^Zvuhlt!a Z}Z$_/F2̀"KE|%_H|:Z:U:u d.W{v^8zjq&!"^(Jc@_Z`B4.n HÍ3%Hʄ,44ЍLyfpfP!  #nᄺʮ6`Fw_P4}ҷoȂ*.>qi1TCĴZU qhG!)A0Wx1.tv r1rQS"u'w{ڬR+.[=;>p0ښ:Sސ{Hϗc_/`/#堄>n@2A۠*^ <` bxٕ|hŘ^hu, ,j YԹ|iak]Dl{.k8iQ 1&;iA`C#؞f16AKjM4G2x}D&`XCiɺEgՒ玑l9Lz-beK1CdR|4;GlWoݽcoG]jtఓFc`Cb3F&y:ȜJBEqzVBCM/Y|2}}]c(#h^E ]hQs!e=(0%`k ZL ށȼ-z > ihȿ ,qCMBz ?ٔ|YCйXj-Pbt)b` Zjv`)@Ln)[3tK1gK 3FԾpEM&] j圶9?xՏrm.*Ms_$5NW%$Hmo ItoRAlk?~*ئv75 B~MBYlCgQg }H͐Hʼn3-"b *\ϾO|l "' )j$B}D_p,i4$MWEQutvZY#UIF92 b9i5sLclY m9b<]R2/-ZJVh ׺po*Ao\Cq}֩8L 9ATG-i[XeaVȊQ׬ #`9Ew$՚O?ɌK~/#:[eC >B[Vm/0n_%L-#К~X("aC:pj7PPr!Xj3 +[6%VLcg+zbmv4C)ȍ{A\ KV"^C {eeC]]7}p]{y>5Nx =p49`-XS?@'[rEA(҇R^#n\OlSHLheqRJwoGPeQrL#;yAw& cXiu+,%z ^"KOq) \-nDh981uKܒZp!0z 785?E ;}8Q L]PdJM_66V N ɦcP6QcO V-0J%0M9_t4qRV˞ ͎G.Z`NNew1{nPh&qhB^ pRf\.'zr~j1zG.sq|u۟5L8xPj||{ ;jkI E[ -320»{=[< D7rs]f vthًDE+Du[leO=Ox))U{BaFo*Y;^ZBYυC%Дch~HRzq3X fww</gy;VHt,lC%bsZs> *bRO)Ք*at )hSL{_>w}yjq:3#YSQHǰYy /d4P!:DK>89*|VX],9virm3D!'#st]El@X$J !Sr_+)]TXa:+L-0zm㉉WX ?1 gL:XUcGo7}S$HH?ZD.bUn@1oiT߫15^au^֠ϰ|I7 6ҏKnXdREyV:PII]H {O` >H鈉}֮6.0tv Q9Ŧ(sJ~(LS:;$$G;̋?mrHNfm{Jm6|/lw" o1\}1 MA BZ(٨!cq3Ãk3a>I9.+pMxP=t#s(&{ : @6oSeFJ`&|3 E>C;7$@#fԭJ nO^.;>)-B\EzNF㡬AK:c0_#8z$X\/6Ü{ۀ>5_SP &{ܕۧw$RtNLzHфϢ@KL6S5CئA)9ނ|eij`.w1"PA/{m -8"2ɧ:yȂ8U)MRG;8 D MS]D? |GM (31F?3a02Vh&wAp/DW5s2cVv@u3> "!8,Gik%>YrU4FgK9$8D>L/BcZE)oD;0W3)(aA#}:%s2QO$bDs9Px1_΋nP5C(wb,7qeqx1}&9<1tmO\m.נ » 59I\lendstream endobj 251 0 obj << /Filter /FlateDecode /Length 5233 >> stream x\KqyN6-_,-\*!F!2hX>Rv;bOl?~̪Phv%ٱEWV旙_%Br!_L,ޜIH]._2jԍSnq,`k!7VnVSPnBuumEW幨mHg.\x]Sk0칬McڄR6rV<y! e=zϜJ8K듚׵R^j'[%wFh4jnUU~WM:ƬGMQ4r{BJU} si~CYUMJ^+4+?ӛǓV>^8t;3ommDz\:_hyaEݍ/lho斯B-e#,,&&]XŔmmjÑjgkhr$`4 XhJAZY8#hjm #dȟmdAӸXD3Z;'J/zK$cb#7Ռ dS |>bEJ +FdQ'0Q2ƨ#O%Մ?Kai\z".!StƥB&`Fs:F1`O&&]*h^L#`B0MT#ORឯ7+6C֍r$ aq:6KhjZwDciv76TvPZPuY WWBP%iAj<4`/e(,a lzN0 ׇ|_x\}<0 d* ]f1 0:J(ͿxH@9Ą-)'aF.o{ƾiSXvs<U^v\0所Y1TaRDmL TYCJEH(d!|83/q~wQ0lh =5o.ξ$ >0Yx|L9Y}}2+>yLt`\?Ǖ?LR.AuF/ԙ>Ai'sVg~~n(J\Z+"0MtNԷKr 8cW P 2XRj@73޾mγ,g&e=(87!-GP߳qg^i/MZ:|EQ0n~_%g}EJOES"ׇ%Fkz숱"#s\vr4*K?I6+aŇ凲j}`oF:h{=>;~߮ݯ8wg8Q!u`]`SS_ۊ;u g'E6@Miϗn*K94/ VAzcOf˥͇ꎯL5*!`f`OԀcu J5\=cjۭ 6=%uzuy]@/ϊٱS npC> OAnIa L\c lэXZt{yy"ekZ[]:7q@u+Sj׫?8gwO۵0/@1OJѤxIgVYNѨQH53c7,M81ݾ]gLRÚ`zX? mtNZPeׂ#&ƎP!6*nzEKͰv}$#3O"Rbno< igWǣ)0q(y )$ hs{PD](gY*U} V`O$+t4] )7x2Q75`C(ln&m vɲxяD/Ƨf7TX3y46}5dnb~7&SOxJ`J k W1MdM4WnH엽uGF@㳁6`&aw4y|-EΈe);x<}RYwv3+u|(|1B,gH@m G.eS: aTkʧGmО }*{ŸvF mյ&ǧa >Z Slcs ߿7@E)s )'ޱws9:vC֬cTX$ 5cOUy>ҜEBp=C+dNzG1 x<@&Ӊ -hd8q]r"eV%a_p,|tXSk'ItHAP[fQTWpDˬ)vٰf-Fj{ ~</Pq|SF3Ѽ,E+\ 91}])rݖ36bI'OJ`ayG3dFcb8|}̑I2xRXh pF؞U\25o\lbXh h4P>c26kitR;7̻y86(xM+mb&Q p1׼ي5Vr|/j0ǗD0WɌmBA@VIhS^F#"Uvd3W@,ys&#@5q .xA5WuQWn| A5uxv|^UIF|DI1xܵڏTHeыkRHrn!De19"DӰ[>ES^ϸtbTkqz>]9ME9C@L| B \ت>}u" yfn~dӒSU^l܄!]wW1tR#*fWypbgTM1P#,簥 ;z]>zܛjO;Ҩg 3#/<d?!2pV=RadS?p`¡Cm&$@)T@TޛZ{",숽hnG$&T~1*mSFu;a(#윬W*wO]jD+VKiÅo NsL_@}{վZ 9-nm\8gOCIılvy9AZ)3czK0@094ӵk* B$;q8W!JՊ4Ǡ6eTF>"Ec_/ϛT'=%=l3bh`xyl;DvqO*i. $&UsŲ6joV7#?Qd8WE@z"TJ :r*&2 ֹRͩ˗ƖczkoWklO6qOYV8l2dJ}pۮm"a+b5pn<&o e 2v*~}^EZ )lʨZZ^ }.6 .>jF1)Y"MRF lq*LnǩA?.'Ivs͕t&)~hnǶeyO[0Yi5dnQŴ@US GD6bfW 5-9W⩯n:*5Cro+uv.ԙQMx>N@C2vNO1SS[^ZB>zun5 ϵpXX.t);g~I"~_8x/T1COK"Eȋnp"D@ =/]ݦ(Dk+} ї!Jc Qq?D|'_wynoog,ۥˆfv{Dv'4HA,Gl-0꟏ Q]1J\2ae?&f>T|?l8 z+'5~X p 81.SGRjIO^ә#L2e&o5e8P 8 e]/o)C{d6A\P(zpA/GL8 _͆ӊfJɬ eS@+@&ysS}gijzoh-s_y"j[͟ io8Q'T>h4G5 :tQGGeٳ 4@ɵS6ߍ]ˆZcDX>%A ǭ6_ O5_OeTR<Һqt$@40dOK pn 0=-fendstream endobj 252 0 obj << /Filter /FlateDecode /Length 20279 >> stream xKIv52-Hfr"Ÿ1#jGle6dCEU, ȮJ*T(u|z{ιY~6Z!NFGw7~7^vϛj+|uE;_78__lw-=G޽u;R/*wRZv㭎tWTn~3f9ΜݑrP|P]iiܚv׏pv%ݥ<=ݵݕrGGwteSJkm*vwc|tWwկ6r[E2#g-cm;񡦌JGN[kwgqߵ!/|l~wCI njFgR)'wzvrw%WtF"xÅ} ~wHJ}q6j6Si?|ʸwȪ:j$<4jm|UsՑpoaݯYvY\fʨ9Ϯb~XG֧3h3e4ӟ۝=da,:F'Y J6 +bLQ&)Z ѡLb-Q4k05fWgy%i^oJ(}+4ze.+.G x1 Q,Q^b 9Ve+ʎ|l= W>HͫۧSfNQSVr7LTF9{Vm6zXNe.jʰ5>loFqC2kyFYZʻr7khb?5lny ;4ެ_L6rʨJ6UtNSaw2]7MaR=YJ]gdWQ̯5S{F)XY{r&cɌUaE74xV 7Sif(Paײ21̯u3RomFM)nհj`(OSֽ"ϳd=r f߫pat ;H5[}Z(j enRіaz Y"ZÖ6jX:6[e5xdղ {Y嵬Ff/Ú 0k 7~}:&5ɲ=d5ގ/\V^+ঐ&S)l(mmtFwiTyMČysђ^*)30|dwT6̩۲4oJII_b,nk<+FvZ^u\(%o!faآNix^\9G6_hRҽ6D#ܦCk/YQ_xڰkCa£bBAaBCɺn2<`Me~OQPЅC"ԡ1ŢYoiڬ%Ɵ;wn v!YK˩)a-7˩yߙՆ.ZܘQTZRtl,C *<>PuL4lFMEg4;gm촜ސ˖Ujse>a,(xWy#lw&!ȣ+XP/3 o' k gm6kMکkvךRg %!>#4{ukKx5GޝY^+hZ^kf{-efAfR=᧲ޙk}Κμ6xPldgkS>ա4kYY1oO6kY]6[\+)PGV}{k;ʰe浡Y_ksIY_kw \ag( [^6JSnƳ3*G7\΄iTVl4+6VmvYANObrxhbƷр;fqY\{@#a}L( >piwf᫊әU^St0 =Ջu/:ʆq`1ۛ]9u3P,>ln6J+&zl*nʰRLΧTf}+簾TԩdL\,nMQ/fNF-x͔iϪӕtk1C.@Ϫd*Gip9еxϯTWp$G~ %PnnC=%8L'wE:i5<ӥ%fxfDMHiX^s3xqt3[:oIU3m2U .VaSpW4C)rv%A1Պ۶6'چ0^L%Ci30ߥ3"ʁwinѪ .lxh⡰֚xoߡ4wYSliF 0mgZƵWʹw1aTzyTSq BY㚏Ba\+ B'Ն=+^ΐ~*/\ WloO. @-ijzYe[)d(ťVbvw&̾FPlSp$v&p(4ǧjTА5b;2z޾%w/CcVwʶ7}0fsg͙nPwEGꊏ-hhO_7{5_Ǧpm⮤ۺ+n|FaVpO@/;˜[\pK*l5J\F5[EڼUN[?VQ͊L_\͂M_\̼N_\i|.[<>]AYMx|h~1kŌ: {(-C77.43\K7. -/e7tF٢ {}w{ +_$vL[5~]$ &[ikhT"i:M1IҖ .w4 6~@^^|nwflm:㌀0ry=ya }qSJ6}q(fyU76ˋzZ,QG8'J[F^ӗ%[ish4J[F^DDyIw~_f9v9$[f%al<LCL6LB;<"Tɝf< xU 9yUޯy܀"ۉ݀*[{Y Or7NVb7N“-Ugev*'>;Π#!rO֐NoW弃P"a="49~e%~xx \/ft[deQ!"- O)=8!H6q|IU~Ul@]9/Jqo*ۉ*[NW%61vU##7P{E)(1<){cl홒OtW(%ׂd lZB9ZB)wn(.+Jg 7`J/l-/%RC>l-RC*0(f{V)(JCIŜTif~UR( ggl_Cp2t8L*[!_*|U; J ;.gJ3d-gʉxCʱΘsV$uQ2L(( q Sg%Bi(PN8)倃 %`VܿH8)**d8 'C89Ugke*87fC90`I@[\kE978PsP{O/MLU)pơ4}3'.mOھ_c?%!RC1RJc» >&,%c֢`֢`֢ 6`%N[W%ᒥTX .9̙_,⢒T\T _ұjQBj>Mfkl,/( 6`- v`- v`QۆX-X-X縳>.L/BGP%`cWYAȘ0l l%]dr dXXH϶XE6E6P*, v`- v`6 VUEP:v`- v`-ZvwElk^lbk*%6, 62nW%RXTͯJʅB*l`qN*$~E]IumQ-mWmWg ]-JK1k{ͫ&`Tٖz(Q\?JL`?s%<Kʩ6-QPjT*P|U;^-JƘ6Z ޫlKk*`բ`U(w?SjQjQ|UfsYͽ&(X`?a=3yʩRN(z(zJ֫E֫E)Q^PɹP9\9Lm֫EޫE).T& |EIpǡPJ ʾ!%!ᎥF^sA: KJїR:$lX$LS*1(y?gT *]mYk^%'Ss*'?*%= . rT>JUA\]^JWRUZT_yY _g ld`+r8Cޓr=Y(8v ޓC8=Y`=SN {I=Ϡ'$9xO3"pOl8lDS)pOy7< '`L 'vdw9`L.'዁y2̓a<"ɔ\͡m 9)(n<1O&0O6U80Oxi~¼tm0NxM 1Nր0Ob t@b`NQyN[S$bċ#S(-rDT=t E)AO'v%KvESG"I*S'M$SWUD=uIzď"ꉴ:Sq05HO.QO&_'ztB=uX9@ =uaHzl"=u$ Sg/S'GLSg#Sgx!S = 'S . IOg橑#̓`z<5!yjD(^f$̓p<5yj8'1yjYԴyO'!Dyjll<5ZQ;(O*Qm(O O'yjS ,yO& )OM*R :ɲ( S#_FC&ʓFS<5Ѥ@y%PFz!OM(B4& ES &2)OPJ!OU (Bj`y}rSl#a* Ya*TyJ'TyG'Ty'ƃ8c@*< S( =Bǃz 1cB!=I)8 S(=II=q8*S=q|')=Bǰz ' =qPz ' @O!rJRqG S(=I=BS(]c=BS(=q'( )0_@O$E=ᒘ'\FBy Pyy"S(9Oy Py /qB!)r0pB^y$EPy\NpB**("=B{S(=I!)|h=I pOEZpO qOR{ӂ{ P{"fS(=Bܓ0B!)"S(=Bܓ0B*1*څ+{¼ۂ{ PNr! qO[pO$EP{ ߂{ ')=s{ ' =BS(M'0ܓB)_pOR{ P0B!)➤ IB@$YӅ IOT IOׅ$EPHz PHz,Bz %})߅ IOtBI.T ]a$$!T ORy %=y 'L^/P !OKA0@B*(*ry %]&?]')<-JVaQ=-Xy<- `- `- `BӢdӢbC!iQkQ~RʩkyZ|<-ʩ_`BӢ/0)B`R# TJ !O`<_} .¡‚PsDxwZC@4+; w_"JzHXIQ +f^b&93c)@NKbLf V+QB>Rb%D0VgSb>3bؠLƊg+;/bcYoDDISۦO/#c>#⌕<cF@̂{5Sk'XEM@Xx)bS o ; Xuk%~jkIV`(XT *wBaXٺ l]V8(c<+[#pA36@XbyU0+f_*lU_Vp*X1U&[ǫZOab3v U" *fF bS')W1otcox]`)*[`e@W4e/*y)9U2?lD*<-J9SU8$$Y%BJU r*i"b蝻A<,UV*KF`UtZ`yXeeUd~DV!Yegyb IV 4*OuBUtXdYB-OdEVو}YeuYeDVqJ֊/Ϡrʄ.2!#8\e(}t i ]erGPNW4LM*V\*Mrx8]eIU&$tI'78]r.HW*DWtītWs«tb3«4bX-«3"^P* WiDx\xVTUk# =WW $` ;BJʅJD"3oV2`o_+8Xa`060( ]]VXXa YAXaC {lV`X)dcX)<,J"$ +gEX;vx AUEB!JVY½ŁWB@Uc5+H`ĀŽ!a%_"V2 yUL#IJ"I$X+BXI*R"V+DV9 "$a%1pa<V; PGD( 1+XD#JzQV#*XI,uVD``K`q*_1_U r`'AVg`E0V<"6+rZX9T-`DarЪrC JtX9r@X9ȿa Jg 3^egOq ;.Uv.Wy,[pVىl"[exSRـ١U'];2aR]TL)SHUNEɤRIq)X*HW1{Lqpx5 UL9.pu^*A"\eW1@Ǡ W97bDpS*p+o 6vmOC\%PCH *A9*&&W1ſlbJJ*8-ps*F#TV1UL9@[q|’lSNq ie҈l*1UsD)n؉V1()V1Y0R@V'}S㒬OAV1eUN5ULY{\E%UN>G"*gSJ%U\ p *. r9 rV~*(=rƚhP)`M[u[[$GpW9I\@pPp[E'U rL%%I*XuBbAR[ *P*`lbR\ *H r$ɑ*m_p~ WR~]KtN*Xt,,wDWb?DWtZkU:^JJU`*XS~L۪`*īJ/@R!]p@`SU *W<|'JY;UzTOVU:O BVU:BVU Jr V)tSWNqJr *DW!+*'EW!+*ǎHW!+*=8*zW<#JQUH)4RWiDJ] BJ*tSī4^u7WiF!] JVt.x& *MUH^BJxMVib4OWi 1sIJaHA«B@⫀BF, *Bg "t*a*i"*R"ަ*/UD$]eWSxni !)ʢ8]%8)ʢR_EOU_eQW) WT|@WYU )U _EPU|JxaEWVTxEBz%Ja%ȊУ, +R (X*ȊX*ʢ*=OMY"̊¬ǏCVAdETAV ]9W( Idu\CC!VDNbeQX) X]XoUVXY V I!VQZXUPXUq[XY V)+ (@*Ċpb, ++"H+Ċ(`+J %+ŠP"BJa,Šp", +Њ( I+ʢ"H+Ԓ H _E\[Uĵ_eQ"Э*з, * ".* w^%UD^eQ>^EL]UxQvWYh_xE^E$^Uxc0*d[eQV'%dB WYV J(X!8+B2p Vn J(D҃(@'Eq ÁXY s8+ )āX e"V%beX!8+Bnq V+ +@a%V:VS>EFґ(,"t3XYVTʢBʲ+ AXY VbʢB4s0VPX!9+ X 2(` $ XY:)V( @xtV%T_b_ BtUhV hEZ@, *VZeQ|9ցVY h(؁Eֵ*!BuU *h( *jZeQގYZeQkQV!y;*wUB(ZC+Һ(E~wU݀I\, * WYUxt *J(pE)R  *DkgO\{o7?ͻ{˞Ͱxr$pq챴߿'H{>?|7q|W5r׷y{atqE itW6Afl5u̸92pQ\#ak=xkۨ߿꼼R^o7H"-Txo?Z}K/mEn/m=_xrɓ%;y4+3R\ nM^f q|"lśk6ZqZ+IѲ?<қw~Ͼs罷~km÷>/o=3l&X[?{?RvzKHvph7- ^as3qz<2nz'm?cӷKYay@_jvf7/Mnl-%n잗f6Ɓmqͫ3o̦5nigmf`)Y?--LJOަQBcZ8KzaR㙖iW4 }~|wy|QNՒKvfOmn.*54+FPzdvޫ2{JK` z"..emO q6õg?Kam mQYpֺWu1^uX^`vBPߨa@kߛ#n)aӛ',[ phDx=c:n7۷>|GjPGwӣUUoޯ{o٘칑hm6S|w9`Ams3x1 s 3|0_? jm*w<Ӻ]A0:^~]?E~-@(oUPgZG}1ǻxpvn9?dzlû m$lPF0a8̙h4|t}c}_Y3ia{폏/cͼVFl'o߿wgo~O^ϊEyZ#qeQ,^Bl枻Yrk%̿,92)|c? ÀѲ^"֏Q.i u-k[`b+ Yǫoџn>+2mxͩ@gF wr@g1^Èfg8sٲh&R{|9[tB>^gReCXed6VFF->>|xi; 0Mհ̶ۥ0Q1pGTfR]g&oc+>^_vl' ߰5V147O?~Z*(y4eɢN;K?igyᗯ g9fF;f2pC/わ?<ݿa1y/SÙ4sG3: ӛc0vYxے{5߽vo{wo?W1/7/̬OGF s,˙Y]e 2}ߘaݾo_9]_?&D8.ƈ/vyWqr,83^m+{ݞ}ak= X긴>Mf~xjǃf$>5h#An޽`7ưJ8g4 ;FǷ%z++7S[)g ?ha>SJ^vT]_1'xZ>{ȇW~8lX YBv LS߾vs=I,`.;Gm8-YzV?4xy{k⓯'} ן-.|cmւ_lhkrKڑ\R-%<來5ƘcW=te)gDۚSsz<_qͬXt\f|dMW_tna/8?d>7˯`=xbſfznC'2z *V96vIkmD??4Qr.rؿp˿gqԞrY@#lf]|ncLOf?2CH>iV]J_OyU39|@5]Q>|s%s0~q;Z325? Èkv>29NWYN|U=|gy} |/Q|طlmcD2Kfچm`;`1ת8$/rd.j̺Of?hZw9κ{W.N 52?QY5Z{amkJ:)&E:[JߞG+_>rK1z-_^w6i OIX 9Ӭǧ8xϦ#5~xϧm@3LwߧGw_OÛ|zsŗsч<ϜFn#;+/=}b#uGFiFjvџ>! ?=cJ~0-~ibQv7voǧ{V6ݦٝ\½nҙ\3_Ɣ钨_v~nsk_4&kW55LbmföIo5m |F3B1I.::^htw0 O!ٴsf͞>=c8}mu/'/[1B*!lyGwϤ7~@a*TOA#=~d7j1o)CM}~AMgfesNY~zwU'e3ovjn?n6wg_t9Zn0+t}H敁Zm4/?Ҋendstream endobj 253 0 obj << /Filter /FlateDecode /Length 5586 >> stream x\KsFrG;'X;P]lJc M6N?4~̬ MJ UYYyhjh_{ho.]?7^]|ՋnW/ nL:Ƹxԡn/LPumLw]qz]mcj-ihN}ʓwKy ic#5ltu h+cc_\)Uܯ ' Ցa6oi{sw`SLid:1f]嫯ϷgAW!oD]kOv|Ѩ ݷӂn^ƀv#.2niAT %jmn59_j^wקQ}I^C;sځU~n b}+{ƪ?ܜnN,I5NgT r/I+`s")%)CGa1n+vqO-u;zItV]LW@+Iw-6mVoȌzZ;cZt+ 62Y/N*UNjy%վ;08:쌵S{U;v:%zڱQ"k m:t;nyH4Zw|tDaΩĩ6^E!ڈ6I0 h|p *.\^Au@%SczX1c`*a c`C(/'O `CD״\fޣ*;n~HɍRv8n+*m'b\fὩuPOb!ݾ_^2ASzwAWx:0a9)S"Ks|pw'/HY ʨa=xdk-w)fC;*-JV^^ ѡ&oM%0OyR\ u=XY'IV}1OـstۛIz +}Z+9C1bb=8 K!paz(Ov(X[uL =iߟLhGZ_(AT Bt+&"J[¤=-Β_EEĞ1?d nٝ:d:S.<NvlKtZ#$,ui2hcl%E%fGxux_Qy?p<.GZ*l,e_ GҢ$B锇36g@e(,o˕~nbL ifl̔!d- 9 ̗ NNHEۜ ryZ =O؅%cp40)3D&lʰ Ϳ,hY#e:|7GOiGd K:%:xC6\x`-Dev>+$FIwT *:5qP_"ja_V6| "50Cxd||XD|.tS#|d[ &dMlTH8&B][0cN&03Zt8y#z%"BC̍um $ZL#CZPwr aޔ-3kPh$V;75>u?dgk6X XY(1)EA5xfе~HU| j- $^e"H'8kA~ @ cTܦ]KA~o),)77y\'4EQ!OL{3 J1T3渺u.{Wz$K.<Д!ƒE7Ó@(w/_uMuǶeg<};8, Hal! K ?"Lbs;,c{ ||6O0!\s ;-Lb 2L7f"VBf J?+az]{%)[mVn6)Y{q9V-pRBqd% nh;#F"Ht܃mSaN•QU*~"LOZ*#>+:EL1!Z'DKFyPF &z\VP\pAti3]oXlι$JJKKOKIoi>rd dY8)u"?#d~OO&M$;'߽yPE~hOFsBbiL&匈9g?-/GiHAh(dRDL N0KTQ@% <\(jT;gd !/)4ll*lї a~RSO~=Up!+)$Ica[_UHr9+v۴7_cfo{ه+:?kcJ5uW U,um @*Yš 1DӾ3}/Qo$h8TmRRé> qL1a B"yzV>a[ݯwţ94p#R\3Kڅ|_:f8'Te=[3q:WLq¸̞ӹ Gߖ#s斦Zn^U)ag8 H5qh\ah-*$cCMXir0mH卜";3.< $ۧsԆ' fdƪ˚o-7. 2O4k?vǑg6l9 37Y'(3VO&}nVTE̔8T7ܿ\IR(^UfJR&gT+2xFWe'Տ{_nPw&1I١t# Ų'원8@a]␒$x?qb8*u^`_M4 j} jң覆l-ǺUyy.|'uF'Deܥȧg2e!1Y| w֗V-Q3 Ͷ>kXla8)N9sy;_D lD$0R<΄ڄӿz1+.jnCNSqBUd*͖ j_AygC7-P0mgY[`ZVQs\l.4` pg}(jjrД Qog>Pzbk+h{ *Rb9g8 )k59$X"MQÈ`RNu\J!2?&):J#D~p[bԘAsKNeP>9g@nhF~Z,`rB,ڈڑS6N~!]VL'04L ptq:ڍPwn-_OJ͌vcQ[Jw:-~Uf՘ԦʗHuu36()=cȣy8 Y>w^>1-7䖌v|2DzO?_sMwBήS8/"q^3Mr%jluj-WBJ4gG fOf_L8n-2!.mw|F :(;ٌ! μò۹ZhRi*Px&ٜJXN:ǞќHCR=Ae=H=?spX y$_<$\B H!. I{IФeU Ѝ΂&qY+NZaqJ:/O ds3z{N(?dڭpFc. OPk ( 8+k&O)W3̲{^s}gSn֪q@M8qո91zcu|p;u?'E̟z\'ĵZ4_@ cj2Ea[$&2%5:R@q^/9% Y/¬5]lmM}CxkOt,c } [ؘQ:kj3Ù~N9j@M|T"škt̼QԬ8吅|pD!B]hg2@ 6\6z7Ea. L}7%%V'}"G9 ;+8+=:ZSTn.{Mendstream endobj 254 0 obj << /Filter /FlateDecode /Length 4873 >> stream x[q?  ".[Zb礧aʺvA(! gL;jYNkePnӷEg1ì}vϯ *- (lUO &$ 介zjBH,xHτ.6,Sz5 q t 劯h0P[EMk_#e;'2{$b^f~&}1-oSߠc&sj(vI !ؕuFsʀNnBOJzEZGI9`'[}mlA6'eQfr o Xhؿ%ֱC_Xq=$4lW#mB5VC%dugyEM̗5n.:T yщM̎]wADb[;X唏6- m3O86l,B[ YhKSЈ8/,^s Sc+p[$= sd+r6Z>fn&u$4ں-z>smCjzϦa1$G}}~3{K$`ӄY_F+ lcMA !< ,qgɡDMf`/y9Di7Vut'HIM vvF=aorL˜<(X(ԗd7yxQ۷*=^JdkB#hqezfQL㻭zbJAn]񂭛 Y;"9TB`$YX Oh~РJ=Z̖u_Z ;65h?2F%;NډSSZ7œ?F2 2LYc2ԭ2q}?foy B C[{ߛٟ"== `a *KxAÕ}ڗ|]d}D3RgAa_B{1GPC(w5헐?֩M ?TĤ AEfP=Ce5H>Äm˫H`}YVLqmh[ba\/7}dtK(nÒ_鍑O)T ᄌ ͦos-sP=p 7ƟD: 2[Jb4`]ZgypmS@`0ƶu%M0Sd P;K]N@'Ka5xpdBBgvn <2V }uݝ d!_V? HT?Q&\3FPͲOOp:pI).tz.)wD5B(qs 3 M;/&I)֝H~`4tn#0f6X/QzNDc9,T_mˀn` m.D\z'a贏 8Vm2de%YM)Eo]JG1O.~=13E5M94`4Gh4bCgN|e}id7{f @ :%t+ioOжn6ͮ^-=rW"?bp&\0V f c s3@%A)tC4|dJAP5o{K+$;4\'uᬂH-bG;6;{: ݎmh ɱc 8 S$ MH!rrvMQFA1$|J Ehr!vOv>,ѐzݩO(}BjG?'3V1H˻{6Wmsp?f '\ @g*SCƵ z##V>9h{h X~yE9$+]g+i쇷|y \2B"埭cV)OEyjmT2)871笳- V *k!##y= !}8NEǧ>G'FҀ=Gtg(0F,3CاjFa-ǙeW'ƺWR PZ.Nў+'z[.ܚ5`(- @p}g]#Cu̦{Yi//P&t}A%eU+鞂P,ɽ:Aj:zJ)M.FwJ*SjJGC]j pZ(pO}V;CySd/uwxͪYUHSKn,uŠU AslH3Ư @tZ|J8>.hSG;F G 1ɤxZēp/NewDqk>4,$Hc3iuU. ,37-6<111c)cyʞ} `eNOrkg ʉNӚJy߼1~$_7ݑdׇAuYɉ0/d9WU}H&RܛA,1CY'g;WE"AKKa{1 [VPɠ(!7y!ns3VYʁCu4'( w<=LLPecvw>M$woΊNaEge "b6`bnd.YwH'ck|on7lv֪wKa68 n33źsv٬>X}Ұt?ͮ\^ZIg:q0>twU L#a>h J4N2-bWIgW re u?<&(A9:IOƮ^RPign8.-$Å^i{3̓(ͲR6eQv|@Tk&tg ĸ\,endstream endobj 255 0 obj << /Filter /FlateDecode /Length 4119 >> stream xZr}7)U&"`..'U|Yp$ab)`W>}`vd,bAOOO=xs^?ܜU7go=?.†seKc>>WyDu+]0痛[\ޔ1qqQ:Sеu*XXkO$ƺ&hxwڔUb}\~]%k.Ljb@wE1>r.[J .] IR$-KPB\ZY5[Stoe}M֪ 6g~Y\-1jhm\hlqێr]a XWo8Xz' *bծF)W\oYЮKy3[pLǮhtGi"ucvg@-F'ˮYBLBG\%chή_uiv Ӹ81~;Hz)nn~IءA)xL#)*gSє:XYbq*7VQLrPDgkkOOќ鋱03zBws; ιvZJ)1hh9\Zjls|#d<݌T R>6! gRp0J~&?48o /h$a;r^(O{h( 8%(i9Җ`S4!+F|aX)S8$\BhyQSвo |d=N! 9G@G3^r.(=JGP VEppĮ, j[Е.9F';+Y`/MbrLL#ZClHo j $ h * wu=Z fϬ]g%w@+W1rIJ$ 04=*&hNh`&U2,=WSɴCf~AQ$qĆ 8rrY˄ۡfB>/tP"UÂEP CҙC^>y ~הm Jx=E :6@֎}]' `. [>g~V܈x u06P8xki/s`f$xܡ3ˁwYJyLj&ϥ8{J <0pMKQ`PG؀EXJqL H\G mrt˻$GMu3cmH"\άۯaL BY$큦^o* RX^< AHc֮TP@/zVkwi~0sOs&'XF&;BuLJTU(j.JxۧSiH pA8?Kϒ[G]N*?r9MEn"A&+ZjĢx;qm m y6peA{zWŒ %!OLa41" V5Sx4fXZ!UU3Rui&$W+TktUۈO Zb[2/\ ~@ܪs*>jF;ݫiy&>c{7B7M}:\Uu5VԽV#"7r;jqi/~} +~Jrcc-ū*DTY?ք2a/7F.ZHxL}\O}ܬ z3uAO^ _RsT_AF=c@5#%$C}VVO>*k ]2$g |)gU,%Z;`SZ鞞.&/PegU~Z>in}텑#`?$VQ] EQ0*@>X p"]^( (>#\Ջ6:R֦9H%@©בGmle1M1O ǂݥ#v f gg2*k?\2Zra[<2iZ<j배oL:>7#' ?lraO=c<^,#>l(5kәN9调N1r؏L')nN]ϧE^L 2'#k}x>6j9 wp Zc*{5U'-#&Ʉ_.Bf@#WS`T{W*ϜKJMx*Drqhi<Xl :Ҿ|CBP]ȁxd|R4# qKk]vOډ qt0զVBPnb=U7Okn7s.3!Iy&TB[T؍~6/Vi{\Ug2̝~T9M;X47jc/&VZ6dh~}=@ @ @s+ɺuS?[7W|yV{<5D[saj^_CH YکLq++eT\Rg.A7?V2aJ?(KT0^ ^yVw5+fݤ:L@n #.PqOsf>[w1 v6YK"<vM'?Y%a?4Wsg&CӏhQ!V,2(:LX Oɮ Iό9agj`lh02utba7nZ h"P̛732?ri2Y}zQ:mneE4Vװ"ŋQ "%!Hu@ZuL P2AEZag< Ig1U ȋ!މ$S'8G4tn$cɣAx`6'C{bTl*,RR<0PGj,åL S $TCi߀VR$9D;Sj:YnUWJ߆(߱`NtTmAHSYM0܅>yK YrAA)-=\N_sk*<>YCEǐE ȿ&ϳ*;3%]_:|Bkt͎i{Ij>:< 'oKfHBm.OYOCQ;5͘^N\/d6|@&Z)":`?A~N'M۷CÙq uj[>- \qjv!g_^AME;ҁ045k//"+B : 11cF> ɬ2K.TYMJui?zs¦U ;Z>g:_c\uJE XV:+`S`` Xwg<%endstream endobj 256 0 obj << /Filter /FlateDecode /Length 4121 >> stream xZK6:LĢ&(H@m,+rw砞UEEIڭ?`ࣺkL(BG"$22Y.H.bbw녤 g}X|}{:K.rJ !Dq"id].yu,^.o2rFg۷ >ȿ/WFY'T)]v^(usAܔiiUr$)hSxELv)8Vʊr%s^eS{Ȥxuq՝[6NV(IbDLKeaLOKc`L("ՊmtF\/V3?4As쫒ަbw~U'YsQ֜vj왥nw*xK)F &QI<< $J"ҥ"Q? '6!"d>Z*!ޫq X7m{|C0'3jltN. 9ͷKKCc \d)%!,$Q N)W# Rq Jy0;rApHxjRks`Va']HL)F(KةB7o8LɘLv=B !>yl]\WasmΨxd֠%>o<8E.moe:j+0vM4 z?e2NGƈJ8Q4T5PCTBO:r"4SL2y?Byħ"5a`9 Г-5ļG.=#:3x@Pi|W V{Tyq Le5 s.`h Ja;ԋˏH )n8z}JXtLU61ﺂ }F xԐu,({: 5$v('ƚ!C伎f軆vMrPkp#>@ɡ1X5İO82?\ =x3=p7Qc¤$|n J,^Q| @ 6UQC -a7Z hArSt)4f)#Gp%/mH0G:6tpA?!Gj89r:C~AblE |/0Tu|Qs" kD@ȯ#7]P4;; N+oKv8(QyN_C^a"8ܱUU\dBDvS (:\3? f* &!-;[օgCJrȋh@[h9)ߏ~9V\ .srMnf T#T c72c)Z@ w9N9U5U_Lsy>Tṃ(\vŨkBDb qD _)Ӵ0r)ǓBrNώ\9VYoZҡ8A !?K'ϑFC Z '( ԏ2-XH\~yy?2(LD$(: a:I^ǡ/s诛ÁsbB:-v3Ӥp7*[F@晨*9@E箖 z>NXtqJ R SmOH4V ϤTw󻄻Ci?$G7Bf>cRhKD6?ʂ )ȫcL{@8 f#ex48Ö?8áo(?K'JSʼ+X f62kmdTby1">QRcb5El5RH@S)}v25Dܕ@z`={]wLD 1siZHպRa~. eQf|fHx$QHUu3 .y=6] 2-|=w3䫷opN؊4bF8jِČ!d< dOĦݓGC:n0[,>h94 2V2-Z_0Dc2t^W;H3YCqZĺS Xݒqsٕhpe&]( }/_Wʨ;'b ][M&|IU@(X1cS`lK>u}8 QxZ_i1{Z~&5-CrV*%&vUm)%*m} gi].~ñbҧ?B%OnC`TS gK9NCLt$! {olkH:? Xs-7apwLK3Q І,z_ 1~9+I6X15~s)68n^@qJ쟏=`n$z4Ʀc|H2)!<ӡB& FCa\Xjlx(Gb2!8رĭz)Mn? _Mk.?> :H 57s9\}Aʚ\ٶ~-δ/5'#B?}9 ;|M$9ibr'7OBKCrjͶP|%'HdnR~eH)!֦)_L@I /]}[ 6, i'{2\1w]@aҙ>*DJp3}j.xUh֤y[vCkIY3'TCOȓy+Sn17r=SJY$ {:~ }M_Nt}BPHěX70kQ[ʾǗVo;qoQGKdǾuqX%,kg>jWp/|Wtaٰ t7u_TBQZ0`84pbf~<ϳ g`ܻb:!b(?C v3.AP˱]QP6O 3=crE[{s.dZNJTٽԙ6s w K$ȥblr|Y|endstream endobj 257 0 obj << /Filter /FlateDecode /Length 343 >> stream x]An0E`Ll)MɢUƘEtŷg> stream xyTSw_=V+ Vm)X U+ua"kXB-HdMrCEv$ ˠZSui?f<9y~f{pY2}:;7ck'&-6ێأ(iaEťgG$IBBe;tr\dzX( KeMWtPXhuL%qҐ;9&Bw҃` Q2ǭw3ghILL,uKŅ *Z)Yl?|gߚC~M%.Il#7b/Lx[ !2A#9\bq`4’PVj†xMC/P3"dnkBh,dɳbD`imaYdJnuuuUڱ`d-lG =q 駀L$٦90:>i#Q">-޵ u3HpvphJ8į*,"Ia煙DvRa`yyFppo`DHXCML.B;tP]OC_ zD|}@}l1xx?@ٱ^D<12qA8EȌĢiWf+NMn#LU"L>\P2JuBR5r}%)Aj:*}EowyA+G/t^PC`?P5ˮ^vi"<|Hΐν@n$%7VK[}5/ 'NQ~"Y& ԪOLtr۷qرuӂy%L(n>~|UޯdJ |{H I֨ A >fΚG!Byynfz*&&wfQ{>m075j Uuϫ%^Y oj *JS 1j*l :ͪwARiZ_8m-Z+J۠9/ $EARn6 e1T& S4Am3KY ѱiX*.#U+rF%U.Lk Njrް=pPtHpR139"(;նS{VI Sw-#_pt2߻XdgN_`Ax}nt^*'ۢʭ6h{ьrtt&:2>&6Fkl4Դ03;Oy?GLnm{jNn H ߡ=ũ7 h` =}h)-ZE1z'1\$pzme[IW}R}h JP9nX;=Dx'W(@qsOYRЈ,lIayf&&2 Y=`ߍ{gOBL)Mùo7ˆ|}p}bQo:r80RTיx4X;L)UgTTaJ8P@%#x(uCEmF=ctQqKnB5Z4u2RDxL\m~S\1t[Tq 7Rg qqb}q:VUZiK6f} }$8v-|g-u$G/ 3 +:/2i+>:D.pC8'B $ʓTQW[ݪ#Su>!Olکa/ v.*XUCUiN5%ҒP$PƼp=ʜ"LP^mٍO(YT|Rփ{d'J֗m9K_\l`oPF/ҳKZuH ɔQ+꓍OŽ_n&&G&ja fiLֹv]Ͼ럡ݘࣝWUTW>zLGiW%qIEkUUvUh 9xÓo'5tDHM&BBB5{ch`k?;vtJZ/Mfb* Y$1~W|xOA~iHʬP?5I=kkyxѷ8-&W>m BK rY]>mlc3ucQ3y|֍`7pUlw" O4kť@ed)AU$qY }??zHx9JTa陓L|TgNLx?$';5ׄtA=(Q BSW+yء-9%5@~|5ǐV Ӯ]NyaĄG ڵw;B;/.6w~7jWh*h*΀F,}jX.^ϺW|/!V֌JfTgcKbendstream endobj 259 0 obj << /Filter /FlateDecode /Length 655 >> stream x]n@D{}@$ooWkE PPa""Λ\nv[3_iׯm͹_C7eݝǰ/߆6λ>|&}ש~Xay-\u*N~kv\`Ej[wET$L[xz=~j۞w^$XdeWSH)ؑ)؉{v.,WخHDI}`{T$DkE5Z$%%$%%PA $D$D4 vEI' 1-ŸBLK1.ŰRK1,ĴR2̥_%757757757A YY!AA!AA!AA!AA!AAx1+R]: !_ Gb:JcR]:u*YT6(U@bXCAk7` y! o5 xo7 XCAk7[*Ue *Jq8xP|muz]TxQendstream endobj 260 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 9181 >> stream xzTTd1j4N2cL"bGƂ0P}Oo a6ILb&&= us,3s}}7QDh"**g=Ă1oF ;ӈYTѰĬ"Y"AKf d͞h~W %,.HI,ܺ$5iv,O[2c`ufL4)/N҈gF5бO㍟ ISRib1XNhҤojE:27}s烗y@lԧ0dj.M%-I\3/ ^XIn;"5DC#JCDyp_|>a" (bfr$:$h*ur$ K)n!6OPE G;*Pkl nqCEd% O{ BP4~ Hso>A za|}$AH[V11XM*=qᨓ?D> x үnn]] Ph%zMEJ8͂!׏33R-y湩(  [_V=p\v] g?p#¦2Elt Zcѡ;1,ZȦF#ެ\r{AHXdw28v)i'|3 ^.wv-V O?gx5l[;5>Rp: f#goCq@gֳ@{04E'F>p y9w>S ?NG EBP+CII4KT P9yN&"jw6'}s\YrbQ"Yn[ߥ6,gADtWȬ\N$e'N%- xQOQ/ < >hcEeD*FY +LbјR0l Gk31[ V}",^1Ee fLqTlmb`} 6V J$l T!X)±RlZ7|@MK r΀`j:*ɂbLQW7DtDL90G @ed;0 "TC7v0i3)iƪОWR1濰Lc0@w8vx#LBs!f0tl{MUR% l%l^^Nkۛs 7ں+žĕ[浄*yUZ#rsqoy=j\Iq_,deYkN-M'@ciE~yYSh4z%12҅gыp5嚃X^`atBpH0yț/D$ra `>@}X~<.""EF̥W0܃a4&=χa[Sø:N#7g[;X J2%ͰNg_!pf"arw7N!A+Qo :UVN%be0Ӊ4[ovIw)MLsPRh -Jaӊ`?[jwy]^[e"ņedzm?I4J˽k1.$gN}qg,c>*-z/'R v0ma6a+K,@>&帆8 .&J:ZfPBnI"QUJrإY~yjAP ߆)й@)@duz9#Z6(3G[UNn);[اE"$1\1ٻ`xn_ɲ|l1( Gk\=|tu@YhSY)((+Ro0A'ODk6YUN^1,1J%/PְH1o P L*KJKʘr8}욌Jķ]Zb[dJQoǾ}jb+r]@y:ܰ|Yw 3r j[5P\v,[+±b釕cݩ ,< ZX+'Ll| a4zf6"dCL# bFpK6#!tf+)y1#P>sE4.%PZJJ_.H2 u*Jl>@RlE :vLu~ݝ Wk?CE"NW093tQkԁs1Zfh=uxKljB[nH/$)YTvU~}Syv/a~t04~8wW,;2u\KnݒyH}T0K9`Q֩'A4ދa 16rQnwDy_.}eɼ `^Ƒ,;8..? z~J{( 8H^7ž!w/կt p>~MAf*hG`?+L}3c.mNИ[t 8yO~PBw 'z8K'&+ @>S]Zh޳tOkw M{?l:?޲Ȋ-!ܯ/<&A}J92^Rvݘ*L۴L \ (At`qpλ-(aZ\:XOOgܼ ڰ?fIT<'&j͔]u^7*jcyxOvu;lfNr_\^QRZ^/dH+F`0c[oVd3Lae|?:\z/dK"l[dge0<~ |~s+9 '4]V1NU >>|@>g~p@k`)_F+wjN+hx:f }cR 5 }ă뼞=buëڻ[:5; tIxa)kkf"}PPnC}] ( fύ&qH.HN^W.@0k%7zy/?|K-̒,P^'GoLYNdJܞ[<f.K#Sf5AeW5z}H}FJ~88!SF>{R1{Ezʤ(Z2_M;=.Æߞttѝf#NmX @B7a,SеPC5si'/_\}D?N,Mr/i|$ƒo?fnmm;m;moJn # 8[S{َ±q4<;; akmeAd8".siVz 2_Q0=Hwr FŚ0kA;_,vm?Ǻv )P; \$ b&3G)"= ڃp h#;C-hџ4{1BA mJ3y O\>lݼ xf{~mtci[ ̵f=K/`;AsDawAOCNg|¡Í;p8%\|&^ {cӱ]@6uogLYcИ4,x,u ;eiEݏ5057l h1 k;c W\ 7HMn4Ӳgw '3@ M-9-<)`X, ,I$Rܯcz{rV欆<B_y,Zv-wDX±6m`9#zb ړͷiZ ;J` :J0L,[*m ۶IkҩE+'D:K*nUR`-ѧe N)Ѐ!U!'vUP5e6Vo(N 9V.OWa6}D|Yrl";"Wݡ_#Ǜ7~s/ gLH|!% 6 [¹lK{Ќ/b` c|bnj3Lhi Y*0=F3CΚ*_ BTUQ6qLjR=ZnT.ŝ]=|YQփ'NL}ŒJCמ/goݨǃ??6nc3Maqـ0 =q4lb 9f-#۹J-C.ФUjqh8x4\Q"耎jCc}H츴>24> rruaa_4;XSؐWӾa>V uL&.dƹ .6g1@Nc>y0RR;L;U Zk;ŜsW<;P,xʬ7VN4RIWVV}|q 9$`k>,C#%S3e0RQ^%K𑛩'gcnGm]g?7=?>q'לہǽg7#'O٭GڔW)ߝ: 5/͝y%A<yΓLUB `7 &A ؓܒШ}eȈíbADë< L6^JVzZFRy T})TX')52jr5e8=Gp?qiB:ǘ="nN>SF!44]L^hDfp8((Q0\Pu҆ {h7VC$?RUm xV=[`AƲL8AH:Gi3)̴rìLuZZs-> V,/ͫQ/LJE>wqG[˼xņg$jA; {(m`q4^р<'f pL+oy{[VUЇSKLz42ߙ[g Ɩ3q{8<8IIl_u\hrN/;;v.jl۳dX[ Ĝ1LFhB/h@3P_Wpw蝴Sb))#p&`' 5ءf|NT#?YUG/U{UՑ*pF8D bUC@dN%Zu =rHvƾ yendstream endobj 261 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1587 >> stream xmT{PT>{U\^vH K&L'mƖD4 Jl|n\>`vy .[+.0./a5hVmh|DMk)t~K3.j:霹{|!#Qr"Ryy.'+]3I gnŧp2$ˉ\&Ӯ|͒_hf%[E ɖes{b͔w|B &$zI&)eJ6tKXɌl:7(&$jRceUkj^^9AbXPW+@:zS "22m/_p;a'цebF6wq +%WSQ0Ơcq 0]n].8\?O.MRzLs`Q@eoH.vr,jȴY-9`smx}q{DE|&^~Jg3j'#,@acࡠ U?gdڻC8K6@AHOLݰh Ⱌm<0ܬF y٥jR KcX5AXo+8h;y@WA16'CbH[>VaJ,Ը6pL"`c?Mt4pW>1C\QW:\ sW+u,-TjkCMl.+i,ԁ\dxb?\u!cqD, -׬6ѥhsYwi;R͏&uK0{Z-`"ˋ"MDHi22I)l~WNݗJ\[,]k+VvÞkX?8t)6E e`rxuܥ%Q(f+k^1r͐Žo\OTl8{5@pM}"$Y=lL%'?(`|]nk^b7l5߃=Z{fh\XHGSh=r&=|Aa*JT}` mU6 7O[=uyZ %5̒eA胒@CNq#Q׏W~U+/=D,Xsi HNSboEJXTb5T]w3=z9t3]{bv;.ȵ]oCPvF0>It1X~\DwG~_$u)bz8,?uF3?CyHp<<S"u%偈M.,<a{Y~F:.\4v\ b4}nmPD77)d|zTo`mf,+0+UO7]b\ikz Pw>pu+`+?00Tq0ޮ7`c-K_l_)IM g]A/CZ.>DXqt]"B x:endstream endobj 262 0 obj << /Filter /FlateDecode /Length 445 >> stream x]1n0D{B70-ǀ&iRdd2E*" S;3rb<[GeZ~[;˸Vj{vNZǰ6Ǘai_G=u礟K:u(u!~rSb߸LG5+!sMYVB !+!`mxJX]VĔ`"zVN| x %#*DՈQ,D9aOQ0dbɄI%K&L*X2`RĒW048048048044 {lo?&}Aݤo(3KV"MF}Iߨo8cϹqmssr.AC%tȹ9S!t :\NAK)s :r.Al]狕W7Bkr55혗玲וoHl%endstream endobj 263 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 7986 >> stream xzp\ C{B1`0-Tp,un;lߕHZk* nml1=܄K$[OHܛ?ϝ3q9>SOe+] |?Vtsy'密KWp7ᙁ]?+n\[Kڶv޲_V$Lmϵ?B|~׋ʅjŚj/_ʦU-O̼n-.Z&C\thheJ,*ݢբ{DkD֊='O^~Q<|уE DE E-$Z"Eʮݏ?we+Wؕw ?kvmǮ;?Ö\Kf?:&[^MoX9xǛR[n۟{Yh߯"_ѪDbijFagK?Q2VJ"YZ k%Vb謬%`L~Mf>ZM;#%oq|CJ:F7 nhڇ[2ֶGi9l&YJA7Xaxni؟d/هdA. CB -AŸTdɕ~++mUyss'U[h!~1k42uڝHDa@,s 6>̦+k_/(osh8WM_(/F~E" %`oXCf`#1[JZ^4y,4/l v*g\@m69h%$Tڛ>,?kLVQ0Ib%h- لdbE&OF@`r{? vM#vsK?{V9U^%^u]qΕ?H^Bl?SQ hgwRRwRz{uKctT݅ hfIˋFbU-R/W,C|Q~Rye0Z1o/t=6$!0 UxYG &v=w_ m Zd_{'OЁ֣N]`sGQ, 12 zXv۲jJۋ(-9sZH#"]Dw}~{WUj[vZx4wZy. gȞ1 YFZK?խwk VzIa8/%r !S0FB Ɓs~˂P:" uK kafyFFrTEd."h"!K}@n.Og1']*+]Y92]+u_I b$g:u|QKMl a;y9\O 9 %M5i}@z<xdi(59~Byu~i-a|JHRbe\Y v+d~ J х=Ce=bԴŲټV/LT66%9Bn`,#Q@%߳/"2|uL:FRL~$fmJs Ӽd>vn2-26Rަt6e;M]oоpx88aO&{p#JES͸0fQ&NON_{By<ݳoP@[Y7aBQ*cUC%ր;^w:duALW4w84/ټi*,ɂL+xCyDr{OBf`9[v4jlb|F=k^%aGF&#b瘻ˬ5m\ V|AVĬ#ho omO$_DQeY$KKwKN6_]kZرie3X@<~P+cw\H'Kos$GtCΕ0 g;;Q8#2AtͤBMrb^PMjS<3 7!]QhLTuO|C -:PϾmufLPW5cEbi~uJRkEpwqC@MsY_H2÷[@v=л֮uh6GcKS5 DeP?݋n8I I-Y@O>nYϟ={?m%zS=c0džÜPw%ZUZSCl۶Jң$MO\|#y*P26.gO͊}=X F Y 8B@FY&vbGûd>6Kf̜᠚<6Np`E."v6 <__Pѫ!Ao@6C_!48/&KOK$#xD!# dk? qQZ6j/͗ϡ%^|}K墜3dkiqC v~8]>gсO mJ_%Xf`ypYs^$.? GrD$@rb AAh $Yv=*ҩd\@:+|qp;(R^/{XH4N 28 AGR'1fpMNC6ƟApl\-˱عnOCOkX۟bL&\&K+9rN偗&2i\0y>(k?)K%C!4 `; ;ޖ/>G'P&A2n,EDc46YRrĭTx+*򸍤C,9b\Qz`eXj{`_ *8?mHiQHlyUđp췍6ur/ڄ9,TV+nkw(j}/a pd=6ɒ渮ݮS:A8o\޻||;4&!KJ>zz S`L97 $T|,Kv-fCVrFG?B Δ?)Mmɶ": l~cz(f϶gtX 9&ʾEQ_1Gt]FM)ʁj[ka]x#xpʍQ9LvAg2`ն?LGE%HJ'4RK*;wm4t6$TWÚ;F>y/w/\]S֮ÖMu$b' !"iW̢T]L?iI^Y^]Zt%ؒ}sǁ- [7Dc!*uh714. gzcʰJi1&&bOP,no `N}'Y'cY=`ܭ62yMGѻ.Qqa! ~n.omЃsz[A@jUo,a:N#ad>W 0W#f:% sa3]vBfR; S3LVY7q,$H*OA !_4Ʀ1M/9@ITC^ &+'08eVr ?)\4 8ł_-0 ^*HsNh[wA/Kڒ$[j=>#U6#L aU(X^ uW*#o} $pS|5Qdx0aVcZ2WڕRų*!ŗ旮wT cώ\aU;VW=tlo>}o߫{P co{X;k3-[_nY W#@hGυųӑ z3h ;EA2Dc[x:UIggpwe!\7Cɢ=HڗtzJ$TkqU ic!Yfl$K}JTAH`dYp8(i!>&%ٕe?~#D;F2fi`ce;dz=AsY4S݄[#su2S~Ri$os |N,ɁJ.Hj؀! QH!hxK%V3~&PS@}x +sư3‡p)_Џ@6AݶV^(-аs#z?QEt}{k]))7'c7!|knr^)d1[H^n?6G\xI*u2nh:⭰[Z- )!gۖoƞ.`OJS'Ղyc}&AgJ^mjeN%n%[Gm9D;yDEΑ%? [ r+9wx/ 5@20]Ԧu+j^rA 0|{t}q-%*eRɷO|qޖ{S<$|VzN0+*Iy0R*rz.m6c0pH>M4M֎1/b54A"I`S8ވgr9FCgB˩`z BaOmBϚV "Dgb%tN"ЕQT1ON<ΐ]F3}D&1hr毿t\jBԀp9qh̸>;f@pxO. ;h #Q~i|| Y(KɯO.|f;ne|Qڒv Ql{>*.r>qY , v1xzxd}\IyXSV z"(Dp)S̩;u! ao@&[ilMժ|zƙ SRctFuG6Ec!&D"t⍞SdH?1[ M Lk鞓HE"z?cb]cw{ NO,,šE7idpo:z.T1ŶyŴ [\yυѯO$(GjoE;Va`xNMn7WN)sPDGr⌒E }}'5U8O*_rG;}||$!J`{#2HF~+!|!zz}¢>y.s6}.qTX^#l~|bQ}=]S8JS-l"skkb(v.FT"lQwYڬ]fJԨmz&[sb3̮OW#{=y1JoO#^{pD CxמE(rUj\%9cH) ʩK_<6t  E= ,ͯ>.{3F[./!Bуh dGil٠TS ok3ktI[ʝr^pY7O Q~Np^cZ=5|̋B`ȉGM]X%XZ\q /V5;YjwbPصphp Arִѩ*fyp*prM~'~IV/n(u˸w` 0r'@Po| ET?G8fYabJǭ'tNGKś^PM 5~NktWȈ"}ɉ͵U1s0ˆC{?\ӥ@;C†pg5=CC] T +o7xHUT{vK|y0Bj 3cDpN ;X7~pdpx&1LaOFgs<[-bRA:('LǦ`c7b^uR KwW8 1~*?+zޠq.UwKwR$C},V__BW^mfJWޫp'! {͓2ד?qyaCi[*_Zۊ-{ms.?ğIr΀M)SMǒ*AW>gX ̱q)@?e˟߾FNMrNYzf`YilyN*EĒlޭI*M@Oy佘{r7-K qы;/yJGڵfƍ7ݽ zz{3nc\v6c;GpL(㠧5$Z\g|%JVyT@>1s7|́=r8f$w) jA?;7Vvu&n!b$ ;q՞X03S0c2i[6/U]7Gaۇ>y5T„p˸'>-tc~=K٩z)|դhwnz3t@>46iHw[ﮜ@ˎVS56<'rDL[y\ t/& lʡt+yRc}ad=kBH:)'w@uL>Bڍ*TI0t!wvPߦӰդѢjfEϩ",@SU!oYaؑ;щԅD| Qv8:kdn~j։Ak,ttľLwѰ rNq"9xxO!w4tqL=V-_ڲTm\j^T8<]$""ܫL.ԟwC?yƪ4b笍3Nr(;xy/jNkmi\iquAව?AytWDZendstream endobj 264 0 obj << /Filter /FlateDecode /Length 4610 >> stream xZKsȑxV;J>P# 5Ij`vClXh@K#v*<(oĆjU_~eVzG,$>?D3fQg.rVٳۏ'BeIk'Rc,n'j8Ǧ&vAЉcOex;itP y.pͤWk][#h* i~2ql<GLl*hjGq"U-W*-bmFj _c+&BboNpbgRF.1vcB'bbT[)NEwl?ӠVd>ֱ0]).p"?rfU}|y}uѬ_'dVQp4rJb*ytd[ @YQk)8ԉ?YLk;iQ :?9I|D* j\8VZ*pJ5fZTߊ6<&xs9F+˴iJU^|*?΅xZ')X%` 6˝x]ogݴa* fSR%'.TnUL -`!M)$V\W^p4֚D'xL:‘bZ+'6v@O3`.ev{58,=F|fNliͧ?ɄM41  9 pM ;d r٧UfB`FD1jD 3p"3@ث ܊EVp`[9.z8~ e6e' U ?dO"vSĢEաYOM]7'ul݄,1o I!ݎDB9TMQO xX }[tIO{DZFlnzE95QsBތ܃yjcľhc5{t>ࠇ;F 2Zt[0{7zOZ~F[ u @=⳹ǩI8jũ%" KI0 {E u}1{.nj1S_0oS@۸8)$(XIu,t 3߂9 S_ [eͱ"u.*a`C PNj q灑H=/r롗M0 i1YY HS_ =ZE}?ӛ9^DچS$l+ )m;! -Jx~=E-P.G,[qb7;ĆXv6eau9%6x1Y.Y1Y~᪃~?m2aE8[vH̢c՗\wD:F>vrfdO'-!Rh[Y=Ӷd'N"UDD Hup,14-I݄6'I n]f`~A+c3$ `$bkfYQH>FK#E< \c cik70S =wU_V2[V)Tj21y.)D%Tg#Tƫ* Xf`D& NbPM}X#mF,-1/N?0%1X ԡh4gg8zM!N`;mKi!H-{\i#ZK6^ aߌe[T:8őQ Jjwj,$&hC!S"c QVrEKE^+No> G }Hq'hDbTRW7" uJ-+};-}ș`_+I}~: @H-ϓ3bE!x5*ӱtU~Nid8yknawgByi2ꫲ-f!1ګ7H)*(xHAb>NnxެeMG~~=f! 2x1LTp[3M`=}OaW)c2y*1:1 g/W@naL"o '?i]Fq> gf-$#}Jf$>x E]2wN}怎 cS2iBb̤TL|VITP7Qmyw|4NiX+X8쀨T;;25Cҥ!9n=:߇K}"ut! j0YD⽘3>a?,GW18+*&VJm(X19p(Ǖ@TM6`đ]_L5d2I]'3_>ø"c2c5;]IWJ[c&@ `hb Xރ+\5gƬω[ 2LLT=iƃ|q~D]c[!ŏGOxCfsko|^u7iNRxr~[z(Ҡ%H$Tv~ݵ=̀o.va(8:سQy@ir Ǔk&w<(e*Jϛv.aQ25&?Lrcw߭!ν)/T#v37 !X8ٓQ7:z-1FZoG.Fj*"놐 fW{D=LC ~Nn4_=~3+p|"&yҌo`&L)< = fpYZ&0څ#].#WTs|U0si̛V!% teKj&WN~xu`)T~y@0\=70 : d#_:S28q>\|A1,ϳz˴\x |fX:]/:K0PTs個#P ^LyQDh)2MmQp!5C Za%("f/#|2>3‡ >^B$*ctl>JE4btE/q:K9OUZA1T9T! ]1UTO!J8'_[Y~)hxK/uyQj(r']cLߴ\ܬZc/M|Q ?貲=YCUtt۶zMLPz/LJJ-$Y5'e3\ $!5>U_ƟO 6gxCjڌCٳ> stream x]=n@{7}?`lc7.I.@KC)>3#;EG`$^_˭خv2m;˲;2>۰O߆u}xk?:u6,mq-ݟ8ϟU">T jOc S Nj\5@y,`=A<0A,V5UQ5U)2*4*)2*4*C )2*42 "@d2RLTF*He@0a1 & #TSb & J5k,PXcR]:u𺘝̎R]:u |Sbv2;Zt5lUxf -T]B#@a1- 6h1d ́C={B 8s@ǡ=':N9M&\SI߄k7pM&})ߤo5M| הo7ŕ_ק̏)э֖<2.KwוOu_RVendstream endobj 266 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 7571 >> stream xz xUnbQ4e` ufAAvMltw:9C&2,Q32.{O5xt?:u}~{j(ò}9Yvՙ|8o^DO^^&WUTECgUZX9tzT /TVM~fZ4 ʙUޘzΚk筛lAW*=S~f̰ώUB ~nWEKLoθ};HW؃Cjz?p7f;g'֞l&{Yu2Y@^t.n ,-u4=0BZKW&v[]W@K :6L"W/_Ͽ*:hjp#ʹrAN<4Vׄ @W7ߍ3(Y)SzтB4z6+Ʉ!\<*T12S($a}Ec@SēJ2vze 71r )ѩ1❥¾dT⫪I\%1C0gLޑS7Y3@p('\ާ 4w'3'Q8:A}O>1_ILt-9Uw~}&ώ~ X׾4t{D?a-7Shk~xyeKJo^tW!l#E8[lhI뗰sQ*i6H)W?}d1#JY[qWҘ^Bџf|AL!El`[=Oir0[^piO Voݫ(ݨ,ns92 b$ff}½Rc~?qOsgPB^/ƴ.IJQ++r))q@ov%b߸D G{NZL IGVR]{ r\Պ#TDy/4h,K[qgYnMɔ[3Jb]Epv]Ε4rHC:1S$h'񂬺 $0;:(㺙1* d06[Jab~:@U!fX~8Vquea/ w7)Z& 蚙K8"o 'cOA.c qCܯI @7b75IsysA\Wgՙ<$%#zBUGXRP4 b˪Q? FÆr=@W+m/I$?}دp_;`iJhBa@'|D*%QCi!hUuEc[Ǵ?!1-o~w}PR- b H&T\^z5:-)^rVssKDE#bRVgJ=eqS30;Ԏ&9mT$TJᑲ]k]= s0bCԇL-`j E(HrT/ ( I>>8Vpqeh|v fOzh Vr=媏mڬ6R6!UмQ Av1* G2-A$zR.j-xeiZeJO4 hi3+f"lrv7A reMzr)sIbBwaTRWm&4mJEUa~7 lqR^X|xdC`/ R`)W4N ZNR2VMzI5=WE\nЊ$U*h UjD0G؟78~2yWxA^lA_⊺"ΨB* q{GJT0 SI 3KT^ ;ҔR2o>n7hYJi'1/ 'hJ2j?mBS{HYb(VCꉗ|ٻgI&n&ړUFG{s MŘQWO&(6.fEuu!W cEnvB&wʝ(j9Q# kjR`, ع%EDS%S-zQO5KZE-Vt)wl Dxm.s:.SU>'؅ ~r87; c`} NlBHR61x̓J|Rl$!!{8pS4 W`$Yu[tb>>v,]ש$YPKM3meO8/#BM xg@~X8W iq!oq[#^vO=c6u;sӹ`}`{9Vlބ}~ 66xy=L^9V)}kab!iY< ܼ׃w#TRW4zFRZ> g\z.ptmS4*Iq:6RM;l!pLvTgy7s3µuK,_Klmۨ[8*crρ'T33?$?ԩo} FAT`,-r(Y`ΤѠu1u. t$rpŧV=ޟA[zoE0<h" DCϾʄspSRqĐbYȂeKպjXuszrchC\҂R^m{Q.e4Qjg<3*wE;V3ՈAVŰ/ P?teg]]nfOkmC;pf60[f+e*(|vۢI0>p봱E6,Nm! 0A{rW֯y])2^6hmۋ}11@~ev@HvEmL~\׸օk mBw:AծThW Xbc \;܋?;GtĴphaJH8bҼRf^޸ ;9 aVR9XE`hEPT(숳 A]Tj6*ԺfN)h %jEul6TRkR fKi7/0l SM/u psctgy5*h%'ᴆIru."9y'q3&yy5w =wY{"<#.tOlxGV^ӎ*$Eכ{.\a` BD}"ˮ4{l%l߰Om:fGIxf{S ( bP~˕ P1k vóVz]JYk6 |/~+MJ r 'dGV@x0'sܑ;X;e GWuX"^)bJjH5|cCd7Ox@;/?F ֽo?;%''ӛB{|weՖmh()}H*4H- 5ŏ_#vnC>*kY4eYkk; R9 %>5֢鄝ULHw.!|BABU0Of1>U$I_4Gg_ǞTv ID0(f"ƀ{?,9;SE9*+̯Kh6P$_ʘ9 [Kd;saPigȚH]<qod~gM ^$у%X@\B;)7oSr;q#MO%Jޅ1CwDy@ܞFOq:3-q1AU&R{=ى%//NӁLvdJs$*8wpG$t[=x5̝ *F) i֗ BqW{B0DEuA Y/5;7(Ŗjn~OH}'q_|s3w]W-T;ᾘ+nq]-][ QWɈ/b>ǚG=K]&ӗ`=<]vA^7$*ɰEϩ@;Lj>EZ{K2~%Q.~FSj0e@.7T>^: 0Al0ռ'9`.JW=N£=euBj,rR)f@ׄv2O?:xacV-V:I!L..eJxB>\ǫEWc|cce*kv ­L أbN]]ۡͱѱv짒QOKoKAl*`ˋZqJ`$8?ĸ]P`.RLL0O\XR퓰S-'erDѺ]b* 8=xzȡo#O8WUĭ͉dsXRZ"h ..^2-P]^"Zj"*a,N2iU*[w%fOшlJnnz +ܓs-^]k+( i )H S]^3rK&/}%йmn)ŅeZaٽQw=I4?ů%N}[߹]&s1q%kZ&ǖgڟ>›F9_ hYMib{0/#pVž/y>14PdJ!WzRF> stream x]n@D{}@vokE H`a""Iļi̷ncڭecZwi;qnNO?k6[C:<ݩi-_E2}xR {֫U}}#JڡJX%ؑU D&*#De2iR%B @@d2RLTF*Hq9! g# r 9#ӕudrLW3ק*NKQFEkQDkABABlf`UtdGV@TDUH s`n 3 draB 0F#0[htB CK C8 O00jhఉQS&MKLLKLLKLLKLLKLLKLLKLLKLLKē:nضk?/_z]VIWendstream endobj 268 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 7519 >> stream xř tTźw 4t  *2̃ HHxXHJ!J!r rg*'/oJ~OBrr'ghPw9\ zhy3鴊sqBƚ\z2!Zf<)f1Dz?rA',SL ho.,Efٿjٶ{NBܮK-Fh6ksN;/UHTN4]ɬ䙇9nA;yxP'qCKiC;JwJ|0ľGXFu3݋~ z͙eK=#@;C=KM/r.9y" d0h5@Ee四P>30H3ߊbc.Zs["Cদq 2FP)?ʥУr$o*"q(˹ Gc*^ l{:cZ]وiC^i+*v ! gaϟy8ھnCEbSj K 9?/m[Mӝoh}`v;ZԳ@TJhv$lnUp#ku[M&^Iu@db P`њ4PK dN.8+P'7Vuf3Ff >yLB ړI=aЗ{퇁̬C9Y3ĩ{ȀeghwalsK5®_|O4H')v҉Zϖ]X"[, Nb( -gձ߲kgdu\lL$);wܹQżB ;;0vjU信~{Ki]zhg-u-6޶ôh1A#ޡq6z Ns/$PE.JR*4+dBcS; 䰜r c*IoMTB$VNZF Ԑ҈*$c{V?uE5<8ifIeQjԓ.~ӻ?⭛R  dWIʥeU3f Ӂˡ˾+$b)Gs\ki^Ad|fYZ2㑄T{St_'Z13{jNRqDMүx RQ2)߷t}A;R?̖.M[㊀qb09xj Mv.);кq@oȗuή% 89F֒OJ$ub/J׏A"7žڼvqy@ېt {4;)qKWKGt' JHQD4: @F Iе@ [yAި ieހE$w(Vh|]:` cF-]OD (i1.2pQ<b=_& irhBn6?:ubt8$+o" *8<7zqN}dt"6~j(ҽ/w.,v{cFu _}{sQ0*@&4h#KW&(t9sp:Үpp<ҙ=žB~ H4H`v7KO=* HFUTȟH*D*T7# ep'^U*{v1c.\g,45ՋX\^C((-KJyEk~ =p  r!\hM[S"NέBi 0O1BԷ-ѣΘ2M.eXDə$ ۨSlE,5ӗJ27&"ӻ(-!vKT%b>%nm]7N$͖;z&#;u\aYY]Y.N^ LP s w>w~06B|z.ZSaYʠnm\.MZeV S\Xօw#dw -rf\UkqtgL3OjYpZW7%ic vݭ\@Yl6 nFIcL-lŸfrm])iNHNB'+㴃Iro=s+/?jiց-fh뻆FΜ. %ځg;lC ?L (s'n,ic2@D)(s}C& _=u -`qe9__A]E(J0K %bX)҉p2ckYÄ/;\q.M|<4;/V-_̌ԏ -֮,4CyϏzС/hБݐ fI #2[ ,u;- .,6uJ)(Wy]ԙhՈ}fg6zwqQQCK4vќ-˫(e__krMZ3F?) PaW6]w/e~'2aIH]hHc˧A+s ?^{f<^j݄mF૕QHO3&^d ,[8U6%TI4I'hihpfaP!JѺyMR=8UWQ|E"/4zgJjTGAOx_5 b79뵲ޤ.*cLǓ=%Mh64|Z]8VR y'N[Jی6PTzQ%Pd$:dWN-\ٱxt;m FH~ `E"cXR{N;um~B4;q/sWr3]ӾS+U.Uŵeu bDxkp \/:)mmlI`MTD[DYJ èEѯiQ趒9fksæB:֮=<'9}7Z8!pad$Z^VN4=7G~'Q[M!w @@"0XJt l7~aZ~|i{?] dF"o/5fҤ2+-y:$=T_QmI@A}Hm hCi}Z743z)&bfqD'w1cyCcSC ;72 9$D(1ÁH#c9`9^gw4ط:Ar 16HRy3Jc, i/B3fibdrIža2[L*8bG9\qLq ro ٍ,N[ K{⾳4<5jcƤJ=+*-bU}MO3,_ 82Ml:$OmcB(vJaHIh*ц@su$C o1N ټXZ$`5D @<+]LYbꈧ<6kY5&ۣ@54L"LEod3i#SAI]_`v1cA:U&b#o^BFOGih `Ru%%ܮ>;dΪ qnC1ODnӁ~'B2uf^Z(RtY<*u5[rע&GVQ DJBGv[1w  P\liQ`Sx TI}v2$̜k߭?3}_2S̔3& x&I~/8DCN )n ~gKMz @$Q$aLIN 3>/}*Pyw{h rf_z{\֕J38-<(6D+BjxZP/ȅ}XA2/LvyX.&P;rX;.s "6KDnQX̷֤56KʹqQ;xP&ߴeZ늩~CX~VީDS PD&u`4 Q{O=/`~*ʬ5ikdS*{">Ώ+0 3Vs[3wFSC) 4lNIݒZ3+vYp3 αN=J12jLj&ktc"h=m67gJwV 2.PA Vb:M_O.?mZnZtۂALH]v$bU~Xoр{ r1/MH"oJ Kj>8HfMNzvu gdW %(a| 9VrPº5 ?\1NKFKA/KFԜw'pΠg_E _ߋ˵:0\8LaWy:Q5l26aЕ`j{vBǼ8qt@  E6+˟u'=7z#;p $dW4F]nݺ ຶzZ[m^mTa9YTrm&6Mk*{@xԭ>y" ƍ9{-vG*t"p2pyc:[ ! 96_NK8AG+&gO-e+|ӍϿ{hiY2e]]z-ފp?Bʏro4PӤeJ#(ik={΄gRRS7Rs.N߉J{4mrN'r۷ޜvpGگ.[j(3>\~Y3->f]@,̇sgZ&U8gwE +m'|f${[_3jU}NE(F}M^"#T36(ΟJЛeF=$h~- $p$&*|CsqHeb DW̌L:%T'"ϣgQsAwmf,򪼅;NL|oq[SBRQmHK_X{qŵuDVL9_x+#}2U>;y2!2էǑq Q[_{oГh܀dSO},w}hTP*֯>} Wa^d/ר P~EB@!/hD3K"ֳgIv[u &㓺vϵ>!z,͗UQe1ORk,c?qz,,Ƹ-h݈ vcs&D+:r}{3yOƞU`&L]-JWƚmC}i c 7؛nJe*1` ;"]tcOUAiA3QbYeVYTw}yO =QWl(+(F(> stream x]=n0 w7#1.ɒE,b3}|I:tx>K)<[^|sJ[>S|_cʻt~ۓ].?Kq! ~o+O#)}-mLk;]RvpNàYG3WJ)Ww;vJ:Uʹ*Q)ۆI)]n`TU2OL5Ġ0R@1+}s@,孔g<\o'NC1J! *L`RD4D4h=` Z79}a b- [kA`AhC̆`iMCvJ\  ]!ړ^6yk6.vh>.bY9endstream endobj 270 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 4424 >> stream xWyxUOԏ8  TY J.imҦilMI&Ҕ.PJEXd+,::'ÝgNKs}G6}=[5tf?81q>}}jHiNNm80jhSQtacY1lv~-HEYiSgΙ3{j3/R⬌T1K's_|xzj^|קL/扳dd2e?,p_ Q|b~z/Hy׉SY,_A -]VX"M+I\3ys|Qk%k"k.k5k +k2k-yzV2-FR2,KY wXOh l3+5q!w9ʡ## cKFLqy䂑GUVŎ=9ό=2ng|tQCl[E0:-F:˹ykiŠ>UYSA-AGa*r7@sef'&(ʨĦrPPڲ@:*0( ˲*ѸC:W BCunk Zw|[$R@VR6`;P5yvA!_ zhw.)WnT'/QB A4KO>a~ |,?GVLe9MC9dvY{!qcn֮+Sq,MnAkV fp,e_sOq rljZ|!˚GMApacQX1XktX O9|Xb$ZE+PcS\ ?7 0ā! 3(|  .X .cU 1JRYB^ۆ&V^AS}gyF QNjh?^IVBr ͮg*MYGBE[Ɔӳ[k3 Jy`w} A/a*MUmpκU# dcv&P7XdkUyENt}t1fphii9@x 'M9xyvF4j}@Yɴ@ ;uҍ`=]?FlA>h=#OJHuZtV%_ZSj F[eӁ"ܰ yR iF-y-Zo{˦G7P :A[8mUg)_<ƨ3Hzvʳz&qK4JtUfĜE8f[7!4&c(U ]Zuq1Ńlh)yNr: V& Wa;BIjf f#q`JRVE5FPY$:)>rgKZ*ɤPK^WRb\q/!~ڽU V׸D nXܻ쵁km~3[N) fİ \X`/PUNn儠9 `ƨx~\ Ϝ@"n4g8'ߞO4܅4=6z~PYg==t8׳M o< j@tM2]$Y Trg{4!ʽVgw.stBOMKmךiNxg oj_Ndžx!,;tW:va)P2&srQ"$SSϋ>mzpD>nuT^>,4!Y?W#Ht`4vUAI/V V/7CsCN2~ :NRAƾeY]=?Eq=zT] M8I# :ڼt}44;|PCHM=H)a)A8u.t p?ji=cHX(wh]jڣF fe$h>Tx}VB*ᠯ1!tءjb @U>ꬵrZ5+/i,L/@TsKLibVUۃD5:ey"aN +lO ĭǙʨeD=K[Zz&qjfׯ-}bRLEu\4_lo˶.YzEw~֛̎=6O:~) 6A6Q>;Dו'2)P%wUy.w%tD`SK7tg6D"Zov{ ]N4>:[J.++K@CT+ƺC:O8<OyrOhx hTk1ʁzGpgOͷgȉc{% g(9tcO#`>s`'Qc0ttƢ(*_*͔E:& Єԝ2q[g/Μ=~YkHX<:!p0PߟD5vʨI6QTيl@p ev he\3岩*c 6iu ]PuТQ҆X)7n&:g[iaƙږ}dt6:K$:)e%[VԆcoDN9ZQk1 "A _BrsX^h՝g)Nj' o9RuqU @h&ayQyfTAnUGOp_Ը浘Zc]tx\U-Ȁ-ze(quy!ܵ?%tr-2( IQdzc|H/0%vBRD/]X]tG!4/۫hL0gs0MNt^> stream x]Mn@ Fbn5RMɢU0EDȢgtgl0z.fu_q*ʷf6=_R5=HkvKU޺gaxr^jCyt׮\:ZKqVx}!i4X lHl[[D`D4rhⴑFn pzGkQ4@/H z5{1{X :sAÁIc(MTUṲf`DIJ2U»&}_To,[}>g}]lt]r*_," R!R]endstream endobj 272 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 2358 >> stream xV{Te`fTP&AHD&Ȳn4<佻]BDX D1jhM<)֓|v@O3̙o~;A) ȸyc wy/ O4OĆ0QL@ 6{g.k{FfP+,7C@TѤ$g* i*mA^d(u)a2haYFdY]zQ QcHS&mTe.Ӡ|%YRq{vfm5rqTUN&EQ#E^^nO$fD̛`Aa*ZMS!:*ZNPs8jOPOP@yS>/5]QzWaps .ub\q]d )p(jiw6&8H3u9b7h9@!9BDu3Zuխ}f?)KvF cao 5qoI K<N=0Y;esj4\u ~2.|}v/n]VyY a5Qi?F븝Θ]dс׉㗢=Jc7j.U )@<*Ka,u;{ 4V l5c*߃>@W6j8Q$=R:xt; f޲dTZ"c&̥y!O(l7mCU@sCpjڢy5s\?MPWБ0K3I * P S TdO4îL\[`]^?U[YmuUÃۅ'ǛoHˆ3\}x~Mw'~" BUQ(w7G.#_9BKx1eDV7K͞$w#Y+<(';grXƒ1pHė<2|:csYO胬'FtwhYtu֎AVjvQ$!\8B8(XY?'.zZ$̠ y4ll(e|M-X#L PVM{8 Fҽk}pC2b&%y]6L >pMׇscYti</s9c}i۪O%VϐIpUB=1Αy|vn/rC^\ҲifsEeS sj!>`sg-P[Dy䃾 Zv׷u(n` Z |l8q8O>I.H DK+y \3MqHwjX]):,ưXO˟xى4=k +b,S0 j6 *5Gmpy|PP_36JYhdH.3+s^ww7x> stream x]1n0 wB?0%r \%Cd4DgKIGLxz=627Nt8o眶iLXMw|/}~)3]kLb9p\4T)woL@?= 'QB=p]{/p4cQʙ٠Y2G ImMV'XÀ 3?etkʦmsR*,c~#~Yendstream endobj 274 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 2082 >> stream xmypSƟ Dh{ M`(KJ˒@8 !lƥ [ֳ,YlɒY:ڭŲe2 l &,,MJ`0Ki:I}Υ3}@g;s{|#<o洴w : . -ZIeܾw5pD=Qw{XI ۳1ZLd:PC6F-kl&R d%nlv%m ݕ+Wޏ@6(J ef'Im!3ηëd* md9f%)`>y ewX 4ʬ.*t>^WK/p4Pd vGӁ;oH$@rk ~45-],ch]RȃjF%Ko4Uk3ѓZѦ t-߷w@nw9v-`#~+vnciӋ%*J9pbe ~ Fi[} kQkvli6VJ{utߕ:j`V}YPqN4(}cM ?mݨ7[M6 1oC'8kW?Z%{ڿtG{--A ״ݖ7 ˡj"Oㇱ^h?}¦/@9X|FO]*h%۔j.(ATi&Q{a:b@&j$7Aimsפ +(0P-P vH';~϶kBo<8%+j&ޠ֚]Vԥ2TK*ȼЭr LY8gnЕ+f-/xӭ'3 pnF< r2e,1ejkePLjKZ8jW@ ϐ!ʾ$,4@I2m?lh݃bS_Cd Ԇx&T❺B9y*1 !d\vY桤T6*cJJՍx"N'nn kYy4̒9*scx tAùGv/ug`yw Nx` C8EamSȘ2p?)TxPй: uΪ9pr]rFxG|2l;jUk V9eilPAjBe4&k_{r\Vί HC9\WV;uG]hJ3UlǑotv+ SBbggKoildt,Am@ͳVwE{w̠ĹJrԤ7# ^ŝO>ŝ&5x=4#9a43.e7}aW'.<ɛw!g+f> stream x]n <opd"_Km/@TJM{g>dt<.VSn˽z3]RVtH~19\.gw^<٭/ny._HM#*ߗ5[6,at략 5Q`(3(V:6ZݵJy$DjYJҌzgpsendstream endobj 276 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1048 >> stream xumL[U岶/kᄌ-!CY,YtFe6&Kj}YXZzK[[vEۄ'h'D?/\fNsyN!:$I١ u{RꨓR{g9)hQS'(@Ή,o|ŀs벘,}p>{zSve1Y=kfzV>!°^I3ˎpǻ.ӋG;i5o2͌ҧ~MogcWmp&XEu2.cc쌃5|\lx5pGmNjP%0v{@#%-2F9GILMAD=I|EFzȟ6g3ԤmA0_*IsK<=z5=J/x 5-RTΓER$; p W^d(D`F [?i;J؀x{z|en~.$dg`zLZ`+*@ThX @Y Lˉ17-y>`RaFҾ9}eM#G>UBT0P(x+|^x}m.Y 55Edƥ8֝?`{f3;*ѽȦI5 [Mf~/*! BUpLM}[EG֙彵;ee*ǔO*~F@t[pn=;ӢGu |rۏY(j=~Rd IN*hTDs?ZiCq0>EGjnVS Oja>= 8h*wqECC0Hwbb(l_&#d"I_Z[)>)Y_vUroR{Z0΁1 3r.-hKF*myك%4ߖA,s$'w~yIV̫`pNQހXң?<WVaI%m^[QRl4FsxY^ߔpEendstream endobj 277 0 obj << /Filter /FlateDecode /Length 437 >> stream x]n0D{}(܍ӸH$E*s",0rޒ<|}{{qʯzou~8JmuݚoNM{sy6r[BOݹOZ1<.Kn6)kWCO{ϧB'%K!>e V_Wf, g ;,Fڔ% bDƈ#2Ff J;g vM *,&L 0)dbȄI!C&"QRT6VV6VV6VVVj561;O62mt%=̀n7[l$L0Np\v;̖,ڌ9f圕t8t:\N@G|߅y/ys>|[>nw==u~۹-Fendstream endobj 278 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 5898 >> stream xXw|eޟ)Y,Fg8;xҔЅ!$-Ig{MI6$P:i" YSgLl';b%8?D&D埁;X0ebǣA `<ek*g'Nί.*4o[9 Þ-I]_J[uM^~m KJ7{{_0mlK’),{ۀ=-6bK My-l-a+jl [q1.6#I4,.f2#0Cv5A;-w=z聿#|<`$lk2orhʌxmjԟUM'9sFrrgrg:ϚK+l/ذAј+鐌k~" R2\ & m)=(Qf Rx%b @_ޡtg5M`  ]/0ځjg5$:{fLyc4f':;Ğ퍖sVWffm$YV5-GҮ*/r`d,z{Fv)s7oc"a+y~:& ܝTuaPGY$Gb>DgJ3/sUVRB0A@6S7 3]u"sgu #>)%UXMA)VT Yc _&>r߻; Oդcdl&4mbgYDRIڄK76`Y]nzAl-XVd>)9Hߴd$\q8Yr)1TW*ZAAVޭݣMNrPM QppEۅNJ͆I*zK,.h 87nҎm67}M5Eߘ'ٔx:^ SQ׫%Z4ć:r}*{]ZhO&hmZ 4}QgPu.Ѫ~; 9vzӑ {Q3"s8ʬz<xMNXL`&;46\ĄyGŜ3w`-yU(s@ Hrg\tTx y)߻8V4שu˜4k`s#R{&y s`Ew_oaj Ƃ62VFg [6nxaX-|}4HuMVziW4uþCⴘdDҮVIZ%W 52G9lmk PgrjT&uBH]BO%6*kpD9pFD=,Fo8-ZyιȢNLy郱p38BĤϦ~pꔷ0]ֵ8n9lI.B }5v|CBӠC[r6bv țˈu#E.g c㉼k8!S}k"v?r|29 I+R&Wï R$iS+زIWLHSD{t:FgB[ȆP5Hn1&ûxF֏\wq棭ѮCmHpp04\}>,[fA֡7 [!@BZ@DF3Y c`'|wzW٧o4tzYDF)*3 $gQ9@E7 zא%LYjAS֛tf UzƜAM1d$8 `m|)e:$jEP74F_  =R0* W޲/C9ppZ6d*ͤAUT7j|~8yxp`@/ߦ L{-dV;R*qjlb!z0;zʼY?$dfcپ+l2MWێӏi gMcC<ڎ7Z;h;jBjtM̴̤MtH. HC:*[MYM\ D|g k=}`ಠa@3]}$g{x#G/D:5ǁHhw(%ٴΨk¢+-BK1Q33I% [fXQ:u  PNn vw)8gZ"q.e jBn1l};){skzZhBlq{B7͆b?qpM7tf׼W/^](b0,;x?}'Cx"V "*ZҸ@]f0BtwkyK|p/.T˛0 5|pR,,p "M{V .߻2XaW"rŏoSj~ס޾]=`8D8ǙcB5HU=vX=n<<>ܚ5p.̄|I^ZRc&atQw>lw~uOM# !ADFClwר#: q9]5Y-#DD::*&=ט?bl:Uvs^ֶuhx򓥷j Of xcd=]* (ylz>,]v]1k7_sژ'S q3ϱu9(ΡB\oj tz(Ŗ2sj2a܍o9p rϰ%D%÷"\Wȍb秈:vkaK}6 A@gXVvv`SXtyHi[i3oUN%bGBx>ʥqеUާjl6DG;04d٬&i&12((j+7egfgf='(M;e\ZLAX]TRt'mx'.t_ E K7>1Mզl[ &TV#JQPԣ Vޑm3xr$'Ww>L1u%Ֆ=1n4^qmnxJWQͧ1Q. ~ܷg_{x'yvt1Ľ8絭N'5vEVs\b{#{ fjJtzkWQ**v3U$u ."dh+Bju.=cע}W<YoF 856mj˰ft%nڤVI@AJr\noАhTt1ת#R ABc0\PPI e *ҀH> 3"Fx'.)EggOŎz{㻅E(}Tν;aҐ*a'PӁ䂝dV0hh)G"-hjœes[7W%S@=аLʉFe:| =s#ab»Cxl4<0- . B|9KԠ<-`v6Q/;;GZ<݀ػl^T^IdH$6k* ;EIҫilsyI~zXqx7{xy`5(bQ*~]_uب5 */g85§1ɩ5Z6A*W YLʮvaL?¸ 釗(P(01%3 :`a‡ۜJdK[mFkau*,R,7uρMgљ|\"l 5Xn:巙);W3cVʕ2BQj *>Z6_s8 5p=;8Iإ Q|M0|^|m?X0y~T%7gc,R6Aձ>DFEg΢YƊY4wGJZ&e4< |GxDPS95:c q~GlC ٿ)/@2u|RAn;X*{bN&%hbygfEC-z+tLrM,&$NFQVScJ1n$o0sx<m ףseO9&>S@r}ePlBȱ,[+ [?ltѰ2Bac!otXYͪ#u| Ji5"8{Bji }D&0Un ,So™T@|;djRg1Jendstream endobj 279 0 obj << /Filter /FlateDecode /Length 183 >> stream x]= wN [)"tЪj{vP@ }I:tx>gaD^܃SO|XV\wҳbJxip|ChͤKAX_G ka} ;$eƓ %h&ZC, ˽œs^tendstream endobj 280 0 obj << /Filter /FlateDecode /Length 655 >> stream xmTMs0sSg)$zsǤb@M}w%pHor&BNipplN. -Z갸 |MxbE)͌1a?"2 *`QR WfP1Z Aq!`ŜT(-a쫦&tM586+D eS cݔcݵ/-3rvS D!ݵB_ieʏ߫LV߬욇^IIc vXoi)&pVùZDi9z0)%ʑk77!| n65>*j"W*9!endstream endobj 281 0 obj << /Filter /FlateDecode /Length 271524 >> stream xM-˒56bEaFH4 FB2}2XUϹkmHw*3##}>_y}_wIKes}"}3}rY9g/O_ߥ+7?w.^ѫ__3MJǕJ?ǿK{B??(Z?~>KH3[mRwVyӺ\K٬?Pۣ9x0b /kZ!n t$p?ZfHKsӁ43?vd6xTsz4d[OR_K٬ L=7u]ʟcŏ ~cn~ 4%$05pyr9esIX7YXHTzhj趚E+2"Ew3`K﷭}l a2DF,)]^N&9-P6֯GC _z-lW"=&ߣU/$˃/JOS,P6${4HffKT.yu 8<4|Y5GL5 5-A_TKV\`fd=I6mW%n[.(EMN MK0JZ-/)[JKv?5-W~!M4[l>m+k>k6D%B R?DsWmW@1+TBfHKsh|^bd"M)h!H<4~V{~~/ŀeah_NliNUL`(i!B8xޟk~fLhrhCJܑ$(e1.c(M| 6(i!rDqݭTu]Oڷ_%9-8lO l,,9w${Qnm'ոY^EZl.Hhz, va"#Ձ@WlS}9M2YX!BwabA` @l!/ܯbݸyxWAXY⎻t@|liҴ^yA&%-DvF l/ݕHϧb5lّelw'g_ w` 96k}h}Ui+ybҴ= 7P\,Q;C"$4w^95}2Dæm@jy>n;@# DRY`!r8[*OQxDKKonh,q~jtx0 Cu7Y;-e2 -8`q}7_YLRQ`!r8۵]lKi"{cX4+e'vyY^A@pGuȒߴGB`u!(+wNĶ@\k=ϯG-^K Hk /(״m1=3s].Xp16NC ߻\ʵdp,%bs(3K43mW% ȖΦd>Ld((i!rlݻdCGxޑ:6;}F`ٺtϿ]g2V,(i!r8[Yodi%lgS%lKm0edEc   ҇Й^#Q5݅U#Э ͎lHSzհp׮["ݹpyp^Mtxsnix r jJ~=#Knr(ieU= K0DZ O>kiZFuk(nE`(q.@|mipτo(i!rDg:uA5dfGN κ|([]׶`c'g,,9m> K ^,l^\/ añCV.`06ִ?wOU~mv+2 %Xl>hMjhQB8sM`fHm2;uFlHͨt-h-I G3F'gx?֣UyK-S񂋬d,q}7Qy  3h^!lG)IxiRmO@Y)r=eGǚp OowwDGkw2P%o1.2Qcz>8WU:8ݸp}d|Z3[1h<h2#[\Naߥ%}eqWڶYO{G-("vEzye]z`<,T^!B8VZYV<]`uh`YZ ~EV0xbr̾aIQzʥGli2 V3qȅ! U89r =u KR6U[rsSS;@?tkڰmz60~Vpsu9WEb,\Rh+ p6XζZ6jK46>l,L K0j1Aa>69 ~DW5 e gty#H| f}#OT|zdBd-,Df }XwE4wmIG*p_-rBb0, K:ʞ]|h,(i!rls{U?Hw44'˼N3\,qA}YHX Oj ka\9J0DZX*Wϧ7:XchZ.{h᮷SQSNv)N>O~-͓!63-* ]ElvPg.v_\ppgn:pUK(~>g4 XeVߝ ;\ v`"`>28׀퍥yn@%( -3r[XI䃬E D=}@6>x2I.lH '38`k4pqzQ%lN VCK4#٧VgoRYXޮmZc>:J0JZYQ#e[EI]>1U#l@|h2 2V,l9-[ dcJκc^ihˣQ.TXlH)+&`~R&j\Rb%|X#` _yBU_<=,T^biOjR yPQB8 _|Wkh,8c`rX:8$sB `&Ǔt ؖslm $mgC M `ls8_+>yXI٪9jzز9Z% 09.`ܴ9h%=)J& O od3#]9VZ_gJVWʅ5R9pqi^I4j) -CaZScp`5? *8MC9`j^[_s5A08,@.Θy}dpVL6X*P`JDs]Y6V?~P⎼f@9yr 4 $ȁXn!rlѝ KoO_ͻcly"R`.I„YxF#S62%YQBp6ϋhKq' d}Ȟ'nQ6Ѭ,C@yYK'R [l, i!P8:ĺԼzP䀅w] @L[ɥ8eM4䀃 >;Hrgٮ/iegM#ȶ<(ϴMKpC&p$X̚v*&sC fYEYh`)Y&;|cdb!r8[/Qde-kywCU^dѓFEIERb^+=&%c` H 7iaDDh"؈dhV=pK)*mJ Akph%!l[8sDl>6ѥYv=ۇɁ %%-DmɁ[􎼡'[zF`V?Ϩ@[AHd^?qH'-.ƙ‚&q7ԃWCQXo`:\-"^g K a͆G&E^,Y K_=p6k"/4 61 &6`95Kتg"[eL4 ΖC͕Ƃ,0lSJ0JZ6?KL|uѯeEB+=_%l%-Dr5u6 IJZ;2}1AU'd[wFfBVd+p-Hp2k64OhVY倆}ms-P>"OŭVS %%-Dmz4ا֖0t&u)i٦g 촐юuB,l9jokwy2]H.$XS< 9J0DZNc!*oVسE -l5AĂY;'0 ,ش.G ,PmrD^8]m R8Y9liz<'%Cd])2xRhbrȨp%䲢q5$۰^zn7ZUrk> Hi@X7E^`T<8U%B\GY\P$ܫeZʲ64y}om/7°xa fyoWۿU J0JZVQ7^-Ma2 _ijt󯩹a(j-jdfGI `ܦْeP<+F48y&AGKѺoF ϛ3sSNz-Ϛv,Gp2p9ePzLLDj/L}meӛ( S6k`_ 3Ֆ?R?\/5rxV Pn{:hʴ x0 Y D:&VȘ$Vy̦5c_d Vn2`|ra?^KL A/(rA;, Y@ցq<809 Cqen`rF65l>ܑf ^g` %,yC  MͨG$fjJ-P6:]Ȇ>Ld( i @DC,I}F`ԓ`JAW K D\130\:|US {es`n&>Lؐ"Ȳ}:hFNft& 2z7^O<lij,.LT.~! VA"R$av P\BEnvy}I%!oPTh;1VHcM5F:N*6uKAp s->%Q0Z+6J|lK^؞  3D^!e&**Z}7LjȕЦJ Hk}啫_涸R➵x]@r*;eۯ?uyO!g8iAַz)4= wкemwXYa4>l.46c[88> X1@p24hTT0GVw 4 4֮pCl5ɵEiq[]gEb\\\n/ٴ5A`";\UUYPwKȣbAÁ8U4h@"'+ْ8UlF"0B .s ڪ-Ű-lr졂zv-(.JW t\)X!B`pnuGX oVóRhr)bjI` DW1|XR녾 .ij/#ꎾJU\+%bs1d@(Afmnw@|liW+G'+JZm\ ٰ_YIw\D6_tele[} Bpg<. G,8zn 'HN"E"_x@yuprK> mJ FI 쳺6~%Y1LOoȁ %z5Zl>VKqz%[%J0JZolF6~Ҟ'#[vh?id۟4c@:GD%OpXB~f677D3A͒ںeuE2eq JZΖɖF6{.Z:n@F=DHVR555!C j`*XQ{e?e8o5@͎"k JFz"9MD#ll6%l $#/5q1E/-͏.Z̎4uj9[;ƺYd.Zl>4=#yx֞k*mJ FI xh5l;PwK(lC V[5_mUTHdV7V/]K*+%&N0i*lJ-a(YRR1Xx}l&%-D76lzE6m*lFzEN6KlE66>6}Eގ&ͷ6q)ܷK\ PBqߦ7_mEB-Eq|}E95mx|ExåFrb 90nWaxLnuRWX!t"nORK/[C5mYN)lVl ~")ٞM+=-@Y uͷH:Ά"7tJ˱wu>VE>qDi'ۓ ,6'ҷ DRa@x#߁=J-%a,P͏`;.D]k~jsIu8߰-*ˀ\7L+=Qn2|,c,mh l_qBxcdu֭m6P;Tln1!l6@7BdYJ?l9kM^\Ӹ:ނV]>ج#l  [OL۾$ ׅ{fx3ް8-nY_53k/gQ4g&s\>ŵl`#7XAF̶+e-@!ǤWeI./R*I\R$ H+( vp HwCFhvi7EFH3HoRBl;p8[Z]yD_= Z"llf" Kn56T}Hn舛"W o6[)zw\)LRx&< jFƖƼV#C :ִW 5يwDl~ |H5>Ngt܈4_gxky`ggsªP AyȺSaI,x\{vz U `> `V,D 6M7n:4`\U`\>V*\6nd<|@lGܴ9;dkԕ՞͋5L[`ɳw#Vkdlk7Y?s] l:J<<̿v)0 5- 'K^7jq%žxV.ھh+qb_4#mnHw#Wk'WC W?pO]y*P\PܢjCuLc3z{/ P|ujkrYιNw` v&`'9jv4)I$\-ab1abF`њ'n4d@8Jpy_[&Tu ƫ\2D¾Ā(Sq9܁ "/i!B8fGG;D[W `H]B cl/20g׿^W\&K4k*r58=*rP\ͻ2C:jG _~*+4 d623-M5[ol)5=s|瞸ɸ!3N.kYG,5`Y`l"fph*JN-,I;G_{c-ӬAHZd )@8 dm*+fG$K5*h9څj1ld6O~]^U Gg)`{$VOr/դ9^G s4Odlo&i#@)N)F8U(,wh0p+XCC %,H7 ~˕!{2~MZ~h^ +U`4#NNƤr C ?ZsYS$c}!  `ki52l agkLkc^غ!"Ș˟ Gt{fCNkEcy.7=PIB P6ະ.kp@n R8(+~F #ervZnX=m'o%VC5ѕnwm O`SJ8,8;ZGp\yK8[p8ĈtOҤSEʁ %$(TMݜmuH}^ra @ψ"q6r#mŎ; pϋ1#b ^5@ z?"my 73|ԕ >Y+ ɀM&,#-Tn@)mP|iL=j?jHg7cz޸MkY{Ch\01"ƅ-9@ A*>p8%V/|VpD> n% lm{ pl{/Vqf99yؒND#llaXXXcSvp638K4߷ .޷-lXV"-P6` l"I'*(Bp^[4-ݲVTlSJp`[l>N<1 [WG"l߱̾FCMD#l_%pKUJ6g m Ye(9x֩r C>hH*=v6Y-䃬▕$"e4"M hEݠ'5G#Z'ٕftzX-` ^E>ǕG &fSm .88͇;Z19gVqFm̾'9(ZѤAG˟]ډ92,Uc"F U1{hqD>Vg*(Hzr C FI ㍭>4uȤA3B=aܣD5顄&NvN/pMf-aa lEu6 "JZ[{aƶr^wl<)&Me #WdM+]J8,DgA؍q4kwLØ`<'MKa;і;2k'|Cm`9mЯm)k*VQsd1$<-T9YP}BpƜ B ⍌K7YF vwi˗jڲ hH[4k _yKK['5Mm)2 _ZM4+p5q9G?ů/AeIm(a 8ӪL@"7EjK{Pb\G V .ϟE|PA@=•%#W W;XK.{J{.xM}#vL| :,"ؒFvd5)l 2غJPamʀ2inKTxF#<n  PSז;Qe,isD#CMgrc6n9ruܚO}i‰Ntg> q}dx*o\W\WJ] `DVYf@k֛r}`f6EwZ-BzHf\{r"`"M>l*BDxFK+Û9*^mF QgXU°̼yz8cwt⤟iDf8gDRI_| Go˰|2,+9y"bc2|$A MId`fGI `>StM {6;,O1|E0N墨M|ߡ8 us{N\w,,Qr-ey*۶)[v6Rr`3fd6<̂< wBY.&V P"Gj4.ӒĶ jv>M0ONw#4hGtD3eF(/چB:`,q=X\kbN\ӑS5;F oX:2[\oh(k^'uMA,!d89 )ɜ3ENB6U䃌5vdYK\~zr9$LMgXJT"J#9% W<~@3Vx{br-٨y&>n O{x ")>FWQ-L!%F"7OjN5d{E?(vųL7 pm ݢ{dMmʗ l(@4 6fgqYɰH]*ME˞do@&)9Z=Yb!r5",bkI,D7߰P=|ڱi8&p}p-a0_6XB 6M5Ԕ%iF.;ڊa@| 6-}!>–xXl}YՏl l3Vp\RQoZx;+tҔ[7)6@&(y%>"VL."`KhߡxAKwhhk2"fBc 5JF44E2}$mRJ`\/1)@ 3VhPs1Jw[jbqaUոG4)Ȱ᱐ d+o1#Fm%H*HU*1 6;l%p8[^B͓k#[ hbyR^5]Y|Y5B'VՏ`σo[maꃀM4D>&ZSMs+(a+EŇ[ӗXvmi-Y2e6%"[o'[o;|[R͎R؄ NfJz6lP2ߊ"pJ;lJz6UWeceueS-oƙ,r() Ruu{1D^*G7O.2YZVK:Xw3r~r50`a7e, \ Uv/ ;lWLy{ .5/s. \! )Y D7k.BW+r]']L.<댁%kY USS`8eJyqlXZLT 17Np5$o"3bkɃ#3PZ2xr3BoѴ, q@|iA-pKS0l7֐yt9[C:uM|MY,P6`pZUqă Ury`w\oҸ_9 MZv j=J.ap댁*ꌕpֲ%12Ȫd0@\6ɛ82q 6cHF$hiE$dw&Yr{l{>X^t*mE¶,Dg;k66JE>:nȶd6(ćۅ6&d[aJk8 gzU]>~M~azGmK0JZ`;@e̼S #@Lk*aw<mU,lby7Exz<'RD#zswSf2޳`$,e1@9%dTo`3ٷ"Y+'YÇlmNٰen,!hD4si|6a,MJ[>NgHz9[`+q$(]H J~fq@f3D^!en%>W嚞Tcډea-+%Up0췱PI(Yẜ'v~MEjX&M!B'QIȲ$e)U| ((VLl..FZj~ZD"}@ QI#@(6P' |mii%sc^(DI ㍍m6muylLo몉l3~Y~[2خ.%f|V^ +Q$daFBrl5G6X& U@fsJvRaL` CVx 6PԸgEFdx&ټf[RGntUe,%m^'f[~!uu""` i5*YZPDXq ҅cWG,~6ҟ@S}HFh :AD5IM!Eep]XvH/`Ͻ};aڅV"ڸć󶢤q$۴l[V l3!ZΆNh'8aw&6 4?߁l `Yx5نL5[3׃qm9j2ö>Xl>DOoY|nK0J-p7J{FV,f 9 ܴ9W`caF89jV=(Z):*4rai+D^ޮElH@8OAj|1 齈f3DcȄ]xu.sPH Nnaca])Z"R*\]bRpfC|1meln4-M6q[];)2H&(=$)Ŏ CQqu_B6TlxX4640@-f NS]{_TQMg\H9ȵ ԔdYuixWd6 6y>wb I:#<[Ys`Ƕ ;Ogi8k'<6NTV[d|\x:jxG8Wi!B8O]K@EkMlRh/bvX UT2) ! UaB5:nkT  ưT D*{ʆj9*>^E(!x MU FJ^]UD=Py}QYq8ԟ_-G*IvXP];? T5&`==G2dOJl|Vߡ. Vh{_Z]-^y_샊1H57x%"('ЀC55J89XX߅j揓`S7T{ *T5"N ֯66u(5kM|M$4HXry`w\oҸb˳؋X k)PUURb?hl w`k.,k~sӾ%< W[-riY P6kؑ6.`Af)"Ywu?!dm`cf͎R؄㍭m?j~A=ou&phu}r[CKlBp|Ⱥߑ̓l͟Ⱥr|C#X8nm.y \#E.V-0˹oK(<˹8 6߳ݶ,M|u0KqvyMfi9]Uln6~cvE$KW$c6f=fdd vE"0\^ \Kϓ352נ) ΕxJp]xvlZ#5?NZ߁3b?MO泙XspllH  ̀Uˊ{ }&xNF[Ul5a =|֮e:΀A3"[3k%d@ׇ{S4jxN# Fzػ1? !B8._ &nJ{x8Ⱥ&͢l-l 6e=q#D"uSysj)r f"\s iDăUb@ސɄp=\ )jwPP'օA0X(Xbc]\tC*XAr C;nf&"م&dwhUZߏlk/;6|h<@4O`= U,Dg+㪠yhƶDI6wؖه)ݜ_vS{E "X[Ys V ` zs0`{ vXB,/@8XM'XM?m kD OMyjrfrjl Lj6ҺHPlxh@Up`k^Y 0i!Bli=UQd9**Ǖd}mD6Fg&M[6۱Y֏l^F,D%Oc6ߴg;G_䃭_)l@|6i6Ň'-#JZ[m`C5kd^IbY[6 6|be]ɔ O`usf䗎',BÕD6Q|=te6n|V0` lhu٧i\3al3,0af[ یlslQ p1d떗5y-BG~ĀkHܚYKNEmm Ґ aLȓXoiUJ0j!|Y◒ A6&M4;Jel- G@/l9͒SK I րYNFS]d}`=E]5;F +jAuQ? UQW+>_`z:wςXA,S6 Z1/:E$ԐGj9 Y W%r[f/l.P&doWb RߒіlC#lZkN~f7` XOL 8qUTx\_3( XXW۞3,K )|9 ira2DcQ{WnjjV30`do{Wn¦oЌ~` U;7@|,c3Y#YćYƒ7X>ᄡWıICj m?hLhRQBxc'ZOVˉVKD)l(lc:cbJo,_ PT-7T UB`p,j+R;ZXdPliUj@tbo X! %"7T kXntTP[N6=CR>%6mjQa!mUKį, SXX3 r;r`+'iu;Q#ר'mG+F +[+),óaIO#r %p%̶dF\C W>N*!/Qan$Rv]^)K5+\׉t= K *_^V,re,axP$#Xl>4u";g}|UȆrg]bCO]w`o0=~]%`kIO*`Bi] "W&dc hA7`DFh46ePta2DcHFI0,|[{,:V02њpƆn+S@|,a=y=0$=juodd~3-iMV-RBZdd 5+?W( Q/gԱDJbr@P $2|Գ\C'2f!w< DD ?"V)!d3}6!!law% ʽjVܺ\$,Ƅ1L?7T-K H aca5;ٹk5P[,P6DòT"[ć[Ƴ7Xol卭m% MM6Z~dr7ʐ;E&6J_R:mG1O6WY[:A6`xhȇX"!a`f}`Mdp6T\EW`S||QO,6F9b`;zgE [Æ(=}&$߰I<<6p8}q*ӥFVB6ql-O=uldf(`G˲v~[=`,|?]*66~b;yp#j)"_\Ң6zdd\RXxV8(XBؖlLemu-l- E l]H6 Bp6Kl܅gwjl 66w$?lyCUI80T; ok*;.=#t!~*RWx Ve7Wƃ(rb QX`܁580x kG?…l'5h4ȶRMXgL-d) Z`-2,PeVXl.6,"lb @l.׈ x"HZ jjXWX ^I< ,? ~R+D%WXrj/KyFe\Xg(^O<,ŷv=5#csrr#`;;Y",ߓa/:o-qѸUh|~ 3 7l?3dK!MojD'YL0K%4qH/@KDFL޼߮[D8 ,HNv/ig^A?.k?}qqj"àW!Z6Y ;jxV,lAkXHnHzΓq$ E!KE$mO-Ĩ$cLKJdqK0 EϪe\AiJǚ>k3~gM>ke&^@C)0H_C6+4G!*LV~ǂxݒ=8AcBe((뗬CMV 2oW1u+K6?,n?_.~PDQjøb26r Fȋe.z8*N{2縓!:`8Zi\5(>M %َ41`Vpe.as-+K!:N6<4pecdΛ͖4h6|D}Ǘ0{h8 J[+ -Vh }FZXGywxxke=DnFM;GE>|KmmF4sF;̦E;-kfs"scˑyDjkV#R=XI%x$ Blh6fc7Yoi&cBe|%+Ca $`ō.J64_tl7oэ) Ac2-1dee=D/lR)+ϭ-϶w6jlR{/msͅ˽Mg֖e6%P},\YMjΖ!:> sk˳-͆m>v[kllؐn<֭筍?Zl|g+g];Ʒ6d^ZpW<;MV$&Ѓ& T8ۜƦ%;x/l}_B时ھilk@fy&g o^P:(K6DOs]#< s,~86'Ld%o~MNO.wcKhWhz jLi}Ml QiTA]Yz1`!m53[8e#ǛMڱ=h,cVsUƼ@R{/l-e`( V{VɃcgo0_ 5_ut k0N\8]y ùH_B vk7U6<>-V:6ύIG3: eݲAcr_Ñx.k ĠɹθBls<8jڂmx/pݫJ`u)ը*iuxSɩO{*]5_u`vÇ)6{ci+V-VWa{N Wp>*-XPIfG[k ě/]aY/شpfAgk>igGmhsۊoYY:slْ$ p گ]ò90EIv`𪡝OѸR,y}ROn;G΍,sґlr-qgk0 :)?7 ^s_9'-7w`P,Y\hx'8l({k͟lAo6-dGV-{[Ǹ8B[IOR>Ue&.{M%;-@ ZshN&ILs!Qǃ.Wx2`8iDX6jx^U>NvtX7GMܹvtjhء/o`("ZC%|\U LPI/ƣKEk; 0L7,sc]>2~mk&Dqy;a z&eU[ŤH2ZVCtlTway\KQ6-lq,iC6kGpl*h?Ґ;>h As-3V\͖߲5bh+4EE*)k$!HRf~QRkzGyz4b}%7U+ ZRidc3HnYQ~2洞3@$/]mzv_B]_0j)C^[Ye{熏 W0-Ac2)Esyɤ0q9Yf+&d6whfic&X zXƀMR=KA ] B4߲lVL,e [f&2 jcwɟ݂l*2+̼-V+R9q"#b{ÖBlVm.1vVbgC˃InlD[+6mdLKu{O`ZƻSdI+kw k-69lxɟX6syjk~U}oYY:s,llRŰQ>\*rv!z6mee=Dfkz0ن)Her5;s2[%Enfn++,y, ?(S"xffQAc6)gV䏟Vfxҏ_B6&ɲl}l6>8Xek&u͜7>MesɢmⰕ ols7ׂ8ؤXAŒInl6'[-d~i[[)걠d8t8p-ҚYe[*H`q VQ矯 ̵xXbYӴ+MSz˂ AأE϶镓)4F]q$Ne ae\ h}SBl ,A˱F['śֻAc_v/56,MO@w>2d}רqoSh)[}AQ@g_{Ww ~x=C1\c{OrP|H]Bbuq1ՕD+߃R-cV߲\cUSCTFSB?Iz="O4, 1atIF+w<`tP[|&d;xS5,Le aJ(aDT+a}R{0W™L.,mW,9:8Җժt߲R" X}vt/]{,OtD8fRDm~2`zlz<)] Q`*=u>^ǚq`͖{}rIND |ô9&\)=”iaF]a2ʻ41V i~ seCD``'y)IO7Ͷ:6Ovl rhp!{ኣ$RIpGbCLHL;)Fv$ @RLX-3IRlB=\JΑI5金 p~VGx@9jieq_NOIy` ^Uk%4YV~ZfέFU:P^t I !?5O$L>R@U{ `=ǀxΤ[9ܳ G{j3 |4.m/ex:>{K+,3+ /d?6w;}ie_ L\%Jr-3q6{X2)>V83'l A0 7%#JboəzUR̀pN*@; K_,|Kdw \ [Ye-Epiz \ ػP!mx8fL[jPFK 5$\!o/r=D%Xsԙ _qIi&;Ѓ`9d5ŒwN]uܹȁ5}(g1 މzrɚ+;ft F^Pmb'ChؾPxm04l [6mRt$79ڝM*n2q6Vkyvg)Her(ܗı0SgXl=80ˎk)Yý:N*V"3<"+Gd1D`YL*R2F-\|#l.dMd#dm,F{V`+e$76ꮇ8 yyHkP[msإM3c!8 w_FG[woK-Êe *4e@lB T|?MF9ZH&gm +kXϸE~P>;|JQ{:JV+s1>.MYH,jZ);2jޒ6ײl;cemxZm|gur1lsϓ`soHIV P-$ۤef.{fc f?lV >6м枣gkK[&Y|kW,%l18G,Ͽz%Ӗ}\, e\yXmм06`O6)lrꮷɹ6dݧgَGG󆀳#l[2c>- wœ%춪76NփƘInldm̼EZSjN633>ln3l׎0XK;+% i#,"ln%r" GN\Fs3Ld\\O{fciCx:y![90[M%ylsM ,6$76]gqqm0͝JGG[ߵ%X66^u cwkJR>Zo*ifb!ƪr1HzoQUr"`Tv!>y &;TgԻ05pNics-+i!" Ǽgɔ`3b̊_Rj#@V#Ln Z +cr_2fQ>\W*6|WQ.U%?gTGrxc;`2d,A 6 ZRr>Ā u̴e΂I%},@ N[p|cO66g6=J&G}2^1l֣m5&{@'[wY'idk)GNFB Ȧ{X K"%lװGR51n`>W%t1h]iu!F snj%,v +c}y|eTŷ|*!+YNU`جXZ%$o,1u5F&Ŋ lX$J bzX1^&e0$3DU>\K@'Pq*7{TIjJ5'XVYf ][-*9--A \kX;JOtۜ1ϻoG>.XL;eb l9/Ȼ$TkH(OREW<_BW0xrSL\|\'ֳj!UrJN0ͻN$-V˃*eM&VTM0*mŘ ]BځAa$y!jKˣ:jeDQqIBs|Ѳ>ŷDo6m~[fsb g+;F 2<*I\$JFSo=!ϾFj%.'6v&c [I%ߑPRP-waW `F(^ߠj+j<;T\j9,'w$uPXUe&ݲ`1aVgJAм0x-WiśWSdcӵfG`߶9~aWhs-G덍mhCi*(k]ɚJzC ^%8oX.J`KNzGs} Y!;1dR5p^eQ1c B [zUWe..7 F-¨0jϰⲻfS}C!Db^X-m,6 ̅G͌^h>QxVJr|affs`tBϘWS|qoً,+_óMH^ަG/|XR-Z~2lŹ -Ζ{RM,s֑GԠ>dGكBe,yKV&+3 vW)K~NTN>dշWnUsebf\$mދA#|c=Җ٠w-3 I:C&Xnu\a1`]YkQamreW2މsbXƜFY]uO,E)}&mD׼)JV@J,Lsς (=dUATd2)dG?Wjk #m60{h6{pQ^lwc-փV#g8a)F*C5yo*>8z*=y\ 26R񠢸zIrznk C{Cvzr$GL +$8Q}̌0]G?j6_qփK֯r.k @"\ykaw[6zv[o6'mαq0ӷɜ">Y*(,˝Bo cw&=D2MUaI|Sيwls_`1ƀMJcenO]0aSi;R#ɮTe=w, aղ;;z9 g\$'m@`ZgMF;M mxY&Ϩ*ƭ9ږen2L s㑇 08>g5EC`095ɖ#qd4lG[M7˜"T F'E|` ki-U&gzv`>q `%Em0LI\0|Ka=y3vٙz~lm kɼ*5wlhq9lmmD[gCi镋V1)xmf b25j }x1 ]k3Y*&V"٤Zkl*:ebd.z ׃%/i.d=XmskK 8XfdžIsu]KQ6}}fH* bs/EkG:v3o0ǬXbfZ ZJ(U ~C=DFwIK]n`vV(;p̽Aч2lJ @>nͷHd=X1FYԨ@ lfud6!R|]|<]p&=DĂ O;m2:Vƛl|g~2fMϢ׶ncdSx񲕱xF=ڨ66'mav[ż/ǫ6IRq[eY_N1(d'ͽ>qXWWĢ] fj%WGXo.{ QrqY# di(s/d?蓭m=%m@(Â$Gџaq뾇0faAFdUL{soq2(~E6 (.Ɨ!Y_rZq-Y)9Q1@E?K* uX.:5Eǹ)ʜ2e^//s1dzfp;olRkRm=ۜ&K9ɖ h#5P|l`1ƀbk9t5QǠ]60S0dCnW;NhI̵ZNcJԼuu1dN+ 8uɤ8ʜ2ZQt9ػ\ JXk8>fXc:V1NVm99pfDIzNF1ƛMZjQiϙf"-L1*?w0ίaѲ` m6H6HfIvlakaqi89rl)7(%yVZ-e@jxUH >*;\[+ON욛.s ,Xي ;O27 b[:Yr8@1ds^yka69mUʎgsV\|6,69._<уXmm=DٚjkEdrPjɤ԰hqU%sodL4&'{8lsMx,rd6'Y!:&{lGasڟ88B:\Jב\gH,$x^Iltط8{aKX $ G!EI.&P($w6l|u̓V>mnO|޺Ű6emm|ő1ZV'Y69IIEm%s-&?M+,TaK|p [ɚZ} ~nqZj82fپEW;(Fssm>z*]ar_QjJ!+FcxEQu5M?:x~M2ƌ9laL#&o 5BPiNU c*\)k\~rR3Ӿ G0)5s|Ř80͛܎1kx#u1:vS%^c TR,'m{r-#=8l9>Ss^ ɫ?L{}a`IECd_4\Lu}?8M§Ii@3PoԟP$;v4xzo#)[R'u{~DBɘN;+T &מqr9>q֣BGBy'P7c IT/$|AH,t\gxܓߨOJ:?}̜"lҲϴy T9`m/jnp*N>T4=X,#(%YL!H-|}Q7Sojn2ɸR4UM`=FQ,yxP.$'fזC ߀doI'P7 \hљ !HJۮH\,t7fX8^ ǟi_m sMx|3!r-O z˟At#[F7LQT** EvX^+k5O-gjrFi]=.xV G1@*P!$`7`H"]69rPI7K^,ey&Q7T4:SSo)5'-T"N*+|(LP+k#,ՙrK6 K*:y|w9ŝklz/eR;eRE/i.{QAs-3s $s&փXmmrm`HƘ:\SGUYoOZ]Œf^#@9dM r-"z g߸斝\垍ykytLn5šM#+`ʌq/ێ0#x%̉sێͭTNz˽ygyxůLq.\_B◴邩- N.` n1i9X]a V]92wte.]{N'O@&!v :zl2ĄTJ8Ǻhm5vbUѢw:[͖1}9z2lRa'jⲍ@ނrb=0cJi6}0Ɔ蒛4:]1l[CEёULDY̩1=쎓;y4J_- ν`FRNϰPo3Vx k)Za-=  '(;c$6)͵[o6n!-sl6CRsW8To aXJC^DYM0?6V,C ڼnl8U|dߢI \tQ-NbȜuG7ƈ2bYmydsH(Zfzi.1`=V˜B9Rwd0Y`a.aq ~67dsbӢky|wFqW<غO66J欰6/mRgB#(m6lے-,mbBvF[xpsa^*L6%[k3|f ʵoTtJ+QR[>\:4S51@>+"_09Rw/`{53f _+y iNm1X=#Ӱ029f,c&%L* ǓP W Kos16[V||c# #Ikn:gZqäiB! 6j< &O7KGWW٣.X*6<-vR%\2zX.W5❦1vɆ4/llOrsg-6}NlGa6{NM3b&gh kK5%qI墂GP[LcDZ29syˠ0)Mm9]m XF>g](@QGX\.grO.9/Ytձ.و/Wżi}uO,֕b?ŎM'#eXXae=%112eӯa@aw-ݖ76wMۜƖr7Z2qަM ˲&-&oi 22[MOYF-2\!IzXv# f0%g-\l 7 =Ѵ`I!Ɗ\KjJ;KX++/`rZY[|n]5Wk\RǬ/]5faY9jLRji끦 J Jil T w9tbgz.e HTxO9apA\\|CjzXq 5L-_cT)%L!-+,zt,/YDZfڽEXo6`Ea~ޝ> Z8Yzsְn1`k aH״~/˘HFWYl(p`*f2X!|$nKR+"z+yk.Q0J;y sL6a Ӄ<|~z-͵g[˟asc U;xܵ$f']+8 Tcc tt|0vW K;1nk3&pXƀM9j^c lޢ9~aKhkؚX0B 皾]8xd,(i}x-ƑcxYv i qxvzm=kol lNC]W;bͺ7yoѵX7˝a2ܭߪ?TcGhj9&"9ӆ"˧!Q5.PhK6#J)=|7U!#`MZ.l 3Y~EZk6h]{(Yɤ2dA?_a߻&FJ[dҹ} e:fF*~L-!: ywě =s8FVh3cǬ2Z,K;̆z4Q(| Z+mqi-P[eaWHV5暛Aͷo Qk%Ț=U47IP~m/&H)5H17ll`٧@4l h\"d1,Y1`}m9Easڙ9h۸E[cDk,9~ax`/i|/%Z r+oɓi<8^BֲJ6 \`,Yb>m b.Œ57~b09'+yxd!dA_jds-i _j6n)Z6g͵s]#,")F 0&'x9ɝ7m4vIE^uMb؜vf.4\`2)A9ƈ6bYa6Mmgƻigs3IoB)2M֎es-;i7mv[6Rw[6'maqGim9;(ue!o"Zt]bj6yɁ#]x\…)P~Z=3ݾ4J4kg:x⨚)r.:X Ut/S,0t-cdr7t=0w @\2x,CZ4^ol^elxUK@aG`v|ձ3CFt-F#m0POv`ULr6PrKy]z5Dƈa*<3[dـZzaȎ\1C>|3kUK:vJs.Zfstb(9K}z8R@@svɒ*KcXcs~2`ruL*`2p +Cyn8u`%B= n%Z1 \y,W+#XPŹ؆P_˨1o2{FXu#N0\ Ygdw(syQZVFN'HIhtQ-Ƒ}&%> G㢴b A&;d2]b<2ʵTƩVgX%~n80 f\MYe.P3tԃ_N"[<JW9adCѮJ^JXdwi&; Lw['&ɞSuL.hclV,c&uQR@&{9)5vǭXAi UʂUٵq@bTIlI&4!4gْ.e,ّp$)lݥNGj5`c6Xc\ xc%|2o.vc|&i%=M)>l8۸d;ZgА;a2QXŠ!=x4Tbi/ZV`6VmX%YKs,)rO{.F#-vW8֮_u}Dvdn.mN椐s/9B'Cm(+-%s u[kGXhsDKL4"bCm,ہ|1V,ݱl6!39XunEJ~t9Fc6)QeBM_t >GX;L6ot'XK0K5L֙j%qa 2FU(|Lcel r0Kֲt60.4=M*g+] ,R3b6)155Fu=㬂*blk[Om!]7>nl|o5ܯR 90GTLj6yMÊe *淁R3o.m4kYYJClUs%wYśԬ e𿜚bI`;h}JQz Ʌ8_ b_RMF6(4s]:\ZVn_8}_\76-a䢶Zu,.lޭu|chxke)=֎foI{6CaM.`Er0T9R@TEԫd*~f #L I[-Ez0`lvtv\ǵ\AA?o6/Iʄ,c&6Y:IPD >Yr9ol,6>uoQm6︠gG=Ҹrڎkg˘#换w6+ndZfil#@iײ@ X.ֲRt0X0>;m2:$w6l|oiQj* ;ͩ`+%jmRZ沼d&S )/[MaڇM$rر%ϛlT܄8aʐwmj +G`W]ۣ~aTars L+>iӣx,ՐBc6eL~6z82)Xv- ,M*S=قl.[f/DŽlx?pXJ`!'9ubtU]Ř/(YNWdX_c i2΂g[?dC ٴֲQlmZeٴn F ۺpl9h3b/O-p'S4^fˣ,, B.wo7>,("Pb`i[ 'Q!I`C,W6Ul-$j[ǐW؛i6_+F ,o[7ܻbg ,i_ڢnx9?(KfmTir6=Jpnش`bgkSeb=oll^ʙ{[‚3%6+mX{=XǀcaO8Vn2̏)w&&ϰоׄ f_$P.3,Oa:`[ 14,e1m\/cQ)̬&9,V!$ ]m#a?Źjv<]gKla>erQG=Ԓ^8=,yJQ;M//X2-='@ 8K[VqC1[m76L 6Q8ϋlzW׿b fy-ׯ6o#/l㮣Wdszm#e~gk[Lq2sśM&\奙[c6ZޙdxR{1ndO6QMX?dٴJ׿f!a%1mMcݔmG2{Xa&ʕ3cx,qɝm/߷l;3jyɝ2j1[K&døe%JîpP7v+b0-RuJ"cvX/aG`5q_xds"gjm l90[[\vM9L66Dzlc \f O foGfG1D^:lZk&m x `WL-;Kf ɤy&/kZe-zx]F-+%#Y&ײ{. g.Y$\(9QJa l{a '57a5^U\tRK (NRCҍ0A3XǀMK4]6Yc mawLnhcZim9NL2=ed aͻtr օAğ0ݨ iX( a|*#XWv 0qvb0-ق5k޽NXcG;X=+W+\%޺,]6iΖG[Y- qױG>{Yas㽑0{XiS>%>4ɞu+7W?7.ϺRa:UYYzѕc DKkȟiqunU斕#෬s7-ʖ͉u^'Rv YygR E]rdJ&[yMG Ɯ!Pa'?ͻWUX>#ډPe%ɲwl~6VBcع؅\haWqPQJ`0g 6~ii YQVwW}d%KN,yfU^I=kX7IY<#x)#V\ o`b2jy|G3J`b#C=+eA56iw±W-:Fh-+WqyOG֒u¬IFv;W)A$`вO<Ζ J|YokIQxL;Ab" d 1`2$]7(-5͖YjdKqml/o-6Z+f?7hٴGml9؊gw*TrRɳ ¤r<,̂RfQGc0Wr(Y-k]c ٲ\0v6[ ml9|a ˍMQ"/\"&F7[X2ǀk[k ě埕%qY e&Yw3OҜJ6+alseޣ97g ,1mk0A˕ _7(mђ4ǀk &"1a)I_.]babG+԰RwPaJ0[BFXtT7XƯ^Êu aAۥw [{Om1yŰ9`6iMQs o%RdsQ7r]ڵMho6'cÆMpDED숊iU(s79'2w[Ų6:kMN6f+vemlC&-7oy;͖S+@SkBhjgpcmmæ~ F蛍nIkmdbo0v]HrcQw9>ٜl&ւ6?^,ޖnK(9dfk̯:ȦGǛa:lZNFt%bZc l߱ttf f&m~[56|-X,PgK-)0(o*s+tS:`ZPFps]c MKyVɱ,1m; Z662$M6i i0A :&I[@)MlYYӦ O8R#36-8lz<| 'h#@_Z1*2Y pHGqLciwZ8L7 lks39-c\1ZFb&i%|xUPH-C@U7^3&PwX-w~ϊEI߰t7kwnБ0ciݠ72;E12eo g} yn`t\qf+1 -!c=p0jYYjcB/f#<В>YZML8-φLG:e.Ȃe'V.] ӥ'IkwICI&r{V(Nu6J!|l}ˀb1mĤyrZVg":n3ZFZcFc6` 4!V#Ą6Ź<&g Vg7ָHzbXyŸ:T:+m%Lk1w1V8HXiWu+(0Z~<`nRRS$" _!2fÄU^#8RD}v 8Z1jhh9nØRfPrУBo`BUSa%;{WM;XL1%'xYȳ]L3Q&&lҾȄv Z.l ś-bkZcµECʒl6_j5޴!먾T1dl]q-&ÌV1% y14-3I`C|ti麎KKwDҥK^ ֽLH zeyp2`Fg[ƌiraR2~x9lRmZL5%vO疕%qnӺS]3ם V٨ٚl6m p9#?y6 ,uv0C2Ϻ׹^f Hst3,}t YB;Vq݋cG}bh]3K{IJmYjclձkdK.2a3x۪VcsX-s146ᖕ;~a3kD?ؒĹ6άmrm+ޖnKM>ٴpȲiaiݪ|m6[uʜm]2l!&tG6s $n6d0ưQʒl䘶v[ ަ卖-)1,yU$JxuHpJ$JL4AiJܲH#IOu+{@$8ZCvKHA[,0yi*S05p2R'WHHVkN4B n^vKk%F5}O0?I7˴VoMA[-]?KmAM8ǁڪݿBGI7ġqJJ &* J>jv7S&@ ՓB';Sלct8'<0;rnəڜϖgT_**iMO]ztZ\}u$Hbʰ&/wb_dƳ/+h 3yaôHG "ex͕[kG9Ąݕ=+dϢxLX95QL`…;[0]1+ V Y3$Ru zx%,CcȨee=/lF2[^aˏqǸnqA( - B'MUƗ@CFel|lOēd3$wT򦐼)3OQTM0Q6 y+*cRЃ+#džt~MXX#@ YLCh ]h%9<>v ѦH6v RG%%k)d! zX0٘>'Y!F6y&X(9UOC,r!bʹ;1`ԲdZ1>&dszɆZgZR̍>`|f\--!Trټf >bfqVwʱyTs"&xxV0K,1`Zl;B0VJe=_J66CZŅm</}d/Mt\w9y,1 -!sH@ch~K=쎓Mn/?bKtԲY%}i=6璑J6ЎkR 2fĬm%Ԣf9,s)md-+Kcdg7мmΦ!Hrg&g[k5o+(鏗11Hl-dF-+K{踯slN?m&?gm\1[ƉNǸ+l?',1`wtK!ۨcYjcti5YV1 g&tESЃ:l3AfDch ,[`M fTďxQTDzjYM tY=퍧#ޣc8xȷo~uOW$a#F3ɖE dIKb,`'d랑(_"%)9פ%R,H _);\R,;ɖ%E#c$$!R˞Njy#FODUHI _JFJǸߞ)0*(,1`fC&?+KawLYf+)"*6[PuYL[`#NvXMo`VP \`-9XKL9̟XLC,+rxZ$s +[*?m[%ۄƀViեe6?ސlCL62_c8,FMv,ZwIt ѬHXGzFDM~V'-Z ^&?b*L $8/jcT&Ge?Ё:dZrj45"fv+LOvkCVh0Y~ Kit+c-cmh#hlղR$!N,pKD%A%A@v[2il1i#t6Zlؒ]aĸ F, dl)/fE-J?PUeN5J?`d77}d"#LN}$7TUݱ(5cijSs/NY1W`٨Dd<7WY);q';uޕgZF#er L{wMX ~v\ Җ -`}wu=-1d^O(Br * M{>[8b&ھ ۦ\[FI,_"&å[śW9VծTmδjh6NUӲ> 0Y?xLJPp 9+&ԃ:0? A{l14-3I`CⳫy?g}Y|j)y2\zYs zEbX}su0]Vƻ%}{/YąB_psX~u:He#FհoT>*]+O0. 0'e"`Jw Wx 1Th p We\0Yz֒>~%JP^xLi2b0- PVͼN6ƐiiѲvǴ֞e9&Le95k7Wl86+ظŹrف˕0zM,&X~RuMj JXSÎ`cE$uR`VZ>o1䀃N,`:xá-b i w^gc$6ɛoۜ>5lyXv[NF1{do#Vhc@ x}VneȻU/kR+MGC[?FQ 7V2`ך"g!.YHQ{ AQu 9ȝ!Ig|,+RF`a0̊-0jIjbw~\c+đl9-LWjewuLz|Qglii8=l/Ȟ_ 7PQ6K33e}uXw[T?=^ l}zzA1Ȗee=oll^Ι{[$)l sl`ou :&,lf S=i5Fl9y[oW&tEjlIl<CcبeeI6r|aFشfwY/%/#)dΞ{lL]2[$6r &2/e=LdhyN&MnleE.lxMl[2ρleeI6rl1u`m2mjq ȖnfviR1nvOW[+v6\:},tyk{ >_=y9MMWoo6?2boLQk g;ƝkM%A6˦O^L2t-6jYYMh͖n˘KƖu3'rv[\bJ1l=g+gwVc6<(mRm$B9֞RfLa2bLklҶˌ ZV# u6}e|P"9Od+jmzR_fI-V6[x͖mZ,vkInl<;-aġA2mEWNcLsi}Y0K[`pJ`6"<ӿ } `ra!0jwٙB6aaf-c1OlK68lKTb6Q[h_y0&i,qY}'ڐVY4z'F-&fMKWL\OBjf+2[Le.jj媢J_ddb- -j:x 4C%-+A`'Lf*䨧1c2PB,1@*&4ƻ |iKY9Mtb=J]Utw(鏷NسcLs1ZVÎX06+\L#ŀUw`Yc{e1lԲdz?lkX۴۴XDzQk g%z?У:_j |+̨+`[<k4%@CVoܾ&dJ(S58.'f{\#9׷>[*&0q%'0u<ؔaw%`S]yu1aI s`)i+uPG =Q#Xg姷;xv9VsΠU7Κ.ɳVU= iOedȂd Ώ>ZidCx%@1`.W!g*' :UnY96gVUUxDIר4>/NnLeDjz L=;SϛgS@H+3ߙ02Ce~BΒ %-(ZrU9;UXݻ钴$m.r2[-1+Z~#X;.H!RϞNji%LpŋV{̓-`}/dcxt/ і=c+X2foЗNC-G8 =XC( eEDYI49޽ j̆sS75(LMHz\-/zxD鹌o1iP7 E6Ƥbߊ3PSͶBae oHhK7J "eO,%Z7Q?7f҂&lb!dZJ\\*LdȪrFge J jܫpңU:G/h X([+׶Pl >.k!:&jJۆY6L%^e9:N1T=8IzW2$#^(QF=XTi|"õ .08p">`"m.l1{[̻-aѵ̋&R0A`0-ޓ8WFαs5:PGbݳj!4`z,rvŔELvZH&wA1df9ǔ4G%/[!46jY95(,W֟eHKY,E'OӧLX:dۏ7ez`YNe2`K3~bc8p.ԃ:0%ӣ'e:p$:f<;v-.''e}ҍ _0W9~#] y"Zok.!FgȮNfUsks%zZrG8̨MB=Xc Z [JF-+KawlVlٴ0X=%ģesg= dȦ[hq0xf['! mq.?cjm5{[nMN6񶐼-f&M/[FikimxYasm12_c8>_ A$1*&H7Y3P&,FCM1A4Ut˫&qH-Bӕltlb={V2n\v`0dcj:&.c-#=+9X{L[h ka,&4lڰMף^(i `iM}gInl&qoldlcIZ.lc17wP,ۈu ش٦[eJly766]pئKҲmMM ,ۈMnMF-+KEM'ӓ-6,jMʍMmcC_j92y)±-h>*y}#0FM;Lwb#EaGQ (KR&'xaiC,j]MO6`6BllKmmӈ vWOuiѢee첌 {t=-a~L0kIHi<{W.0]s懖w^z>rE,<,X*[ז_0ŗ4; _2_W ja5Hrc B?l2!=U410}t5H Sga#3\i{'e0zLRt#T#O/#ihӄ1y$O.*yFKyPHUpV;#_jwZ`Zc>Fe-e9S1u!&t2e,1@K fC<V@fOw%8auD*s#I6Dzi."c4/nw=,wdF2͉}5<w.m"ŀ!a1GԒ$]KNïV Awf1z[!FsqGL\:^+ث#`t\q$-KϚNch|aYH`F+gWpe+]뚗;( փN6Zb"|g1`}uS8 r5L&p`j0}aZߣ`5,e_0pQqaJXXdg9UbBbm*ٱ+)k(M9 ߲ VTĒAHX#pFWK~vŔV-4=6#mƠQ<b^+8'\ zika"6lB=XmF-Z[9ds_Jlm5xYas㽾mؼenc8[ M6mڌ&:.ŻMԒ:ǀ-k[!Fɰa0[m֣/!U60Gvz2ɟ!LVĚ~v>ڗ0&#(`~M=Vq6z!XblY0[ & oSyVY%ɩl=4 IMS%תo*pQ X}a~4;lلhӍŔlNO>ٴvl_ؐŅM^lY6[Mؖp вnmVن-ql66[FiKVFB6>ts1lBWoReoy[ϛ k1l%1m6'/vX2FVB6ԃ&/z I`lк1mKof+! eۺH_fӍ_ne>T?{lcVB;"ɉ$5bxK;j6 Uenc8,&b2iulqua-Tbg R6xF=xǴZSvużb2!l]ܻ.}{*~Q]]wrU˅ݓӕu:x*NT_cSux#zUZe 1hZWXd#ǴvIxQ|c~by? FY0B|uا?`å} kLN0=9xdD21&Mv[ĆQ/|%be>XQH|<,!@-1D!dlO&thxŔB}'XV&\zWgWĜ\]G Ő ]plԁ:` Scm߶`8becnn[E:]A<-H[%y^T, ;V22gmayL+l:@#@ $'~H _{Xoaէ} {>e~̲ggڥ&3g hڻ! ,^h !@4 fyɵTb'ld 9dz/le972[17&1D~lL/t:€%f^-m]V2teh{t\޺XH ?l7)NVd^9-Gf_F1`#ʂړlպGtmBѨed`[u ^WBch ®,;l29YFY~뒰8pDɅJd riBZrufwLk $\\~6ra aiFX`Z1 TmCu?M ԰pˣsExW6Cou D'!!DQ] ߧ/08\-(͙]K%¦Zg+L5WKT_(uh)s@i9uf zicFֿrnZ=f;8^ަ%'m [i4ƛM"K V(z M'6vA6Q|'b/+_Èq~GXmg+wWeЀPkb,֛hLQL<*U▕#,tj5/YZV\Ych,oF/ u:{-R\B @qh=xŔ:SOVj4yc1A3lŒ/zXǀM0=m;s146'[wYpi# ]`kֆ̥{VL®x5? Y0-v/+QtWNӽ1p!k=Ac UƪR,r#m,YY.ieH,L)R b3 ɬ ܸe$`Z8lXIbFvei=xǴ|R^z,xZtzXǀMO 8u 1MQ  Ɖ_kXǠa΋xXŇHkB #-+]ôE3ax146²$9Mc鎽ek ;AlӃenc8[+ަƲ)y,k7B t2_~"ť OX,ѶT'K40$lP_(\S8k kWdӷ,1 ּl3i A_cGe~i-`\M6̏6̏K=Xcu*D.[!FJn Iylڞ0`=ֲq6ٺa0B`%^òn7/ Z8'jyx &$,[Y$a¬l n9xge괢 ѱH6u شCEe>3%l a A²ctcK-% 5Bfk uPGlLM?a @c &'xXLF1`D&'Z61ZVlƳwA-6YXr O6Y6]rئRл.l_:JɆyÅ$76]уw|cO6'&`>9&пR>8v5u|Xx+36֪L=Xc >B"6ưi!!\aYZ1mz-3X9v6\q쭊ަĞX˕Mh w>_zвczm رUb؜y:X\6QJz/`9#lTwX)`ZWKfu.[mZ2W.-R90{<8k2Y9S.f^F6Z:> G`Rw8zac&R=̩Z'MX; ߊ5> ) 1aiw% Y%~-KN0am 'Y,yXpa2aZUcǛLu<_^z-gNoyVI4l\md~F*^&eI27p͕wzzx07h Ã5;Ļri?K@X. >uUflBѧ'3 [Jw}g=0TMBVnF-o aiU{Inl5z[gxXҳCgCzO(zNL ZʢQI;B[K4:x'=Μ4ZfցU3r)_JOZ5+6ϊmg"o~oYo-O!iM,xzh!\h a%Ke{^35WK(;dU{ٸruȴEqS&R%: *yYC47kαqlNW1`}Y%l#:p *xxhOQfšY6(q(PZ^h33&̈IMa=(#V2bFL*E53QJzp_>d9?\,+֍s|jűZX<:#nXz2Y%A.~@Kո HeOL)璉)$ɫpɱzY=9ۆpм,e/#ŔeLV]-%iՇ5̤FvuӘnU}ʹuKaX Kz +V:r8dlnPɦ]cZXȨIaRt9^%^eE?׬>Y=nY߰Rp6V ,Bܰze, KcYGYij\6cQJXY0!]e.aw0M[7PC^prdd=xI!scS_wwY^!l$2d\^L5Z)ԃVFK[siEl,CL1lL=Xcń^3HCdR= 00y._lY0[A5 'X ;LK/'nC,rX0] LOWL a`U4]gH0B,`a!yWC  OY%zV;čսo^ J0vX0o`ջΪVU$8rU _Bh^)ja`rT9ۃ࿊c$=xĄ 5 iOe.odȂdⅫ`A^kY2Y7Z6*][i6:x,}) װrJ+!-J2)a=HәVpq{ MKwOR)gR`L6gS٣r>l]([xգ(6 ӽ&]C-+3pԤI㼿׸\/5)`Gh$xӌ+ lB=XC /DC 6@ցC,W?eCeмmc8,m=iehxޱ%c8Ph1h. YO?blY2[h{ZebXvX,VXݻl3˖.Zusb֠* )Q%LZuB4dӇwSL`J1`B(߉[/Mc G,1@/g1F-+K;`jū(ʹeSI%^r1Z$ɥ'cB{ [+n=^}he .OatŅ'R\igxjZJFY0 RLE-#g->,1_z_s*}+,K;Mahygʵ@;kgInlz z-1j՛d̖; [-&oKa%L$M ;MnkѥOR]3˜3q0 7~` &~=vz4XFԃGLXb' ` Sn6IB!1 -d 1lԲ$9V' *MvO`LZ5m oozikimyfobm1l6v,ҿJds/m|oG{Ygi+jR1EM&sYaCcj+$:`.u.6q7񲱫=*śL'!@%$o5,pei=xǴܼl6{o6/M\v[.21ZVd# 2O6͉[mxf9&tŃldOV<,K;N6L6K|4OkS& ֻd gY]bF v`0[P̖\IqǟOոj0`R<|blY0[\Vx kt7B*2ܨtED^TrR _ Uԃ.X#뾱=̥m#,0`rKV05=,×-d{O,l!JĿ0Ra9wJXhZ(U1-zYjԁWL.5Ɋ[ !S4)JU8ed/Z 0`.IF)ӃX6ZHETHvuLCL4enc8>u^6=l1mz FK)~Q|c:)n\:Goī2Ʊ=jN3ʜOnC;e1pLWX5+*K˨݇=YaӢNJXguZG*`WS.kɪ0G?>\,m՚waz]|?'Wt0)9gX钴$m.r ֽL YdgYߴ귶0Wa-dz*5l5w=Xū,k Ut7UNTrRɣj7՟aĸo`Kf?NT?2/aa29,pfNwރNL-#Z=9`zhVXhҟXvRćC_.q2k4L%^x&'>1<kY}NxNA*_8G+[5VHE/T~Py|时Pl.6olMM^rCe)ïyB^s;CR 9~BẄ́؞lǀE-3C$@r _RdcN6PNPuB ,. 1T. Yil!Y.[j]+d ygTЙ'U'U sAqbMݣ_P 39tL. T?;`ZQzꏪn*+wתex?;alE󋅭9*פi)1@Ka!@CհR$! į`5 ݅/2Z,bG܃Şo݂o ,=gn'X~RgVXyVn;+G7WaQ:eZOjB ZKWg2GϚNnN3%FE``%Td+ԃHl[u# w9NWU R0F85߾>[q~gJWX~'fo012&*=1Č0.U00z@WqOLrjrdb[@1OE}#Ȝ#Q+^҉P<(c e2I>QQe%ǖ~9.؟$zC-{_d dA?M{(TzGջ.`lzP#6 Ӧ;?ئ{C&Mvw&!&Z21MM,9NPlr-ӑ6teC9zͲ+l.[M"Pmشzȑ]Hrc =xǴcؼ7zJ1d*&9,BC03$U=* 5n9:D՗&+OrCWp]IMՍU]\ 7\u ͥU2X8*"ܽVAMUE=0YmKX,r:V+UrIE-+Ebvb2to D:.PGpLWNsr0KeBc ]a9Y22$k[YK\ndȴ0,+YFKYˠʜbld7Ǝ!a4&LEu _1[<![ +E#N0H`vj0D0=&ӽ$lz,s,llNX6S;[t=m ! fk RE_F:PGaLpph=xŔqWL8}hi;3`u|#6T8٤ٴKwZȆf̄xᵙ+2b4x+lҖMbGYKzD mƻ ԃ:lZ eK47 ]qGLg0=]10ntZHM/]؍ˣe:ȳVfv |y87ʣ|m shy2tTfj9rF IBqboX fBch Zte61`mUҵ@;pFԃw|a+hO4%|/:X{Zeô|‚iai+UN]#Cra:fGh-*1=L /a&jJ2=E 9bB!GYiɀGmZ &6 MmdwfO˻,{Kp=Lb0aMQ M;81֯mo/"MhaS#3|SԺ6M߹HcL`)zXǀ`vLh7m웶eaWXփw–MQ>h}e|Qt_Zo\Be>fy P+Գ+2=֢'XSfr.&KXL= 9{*sʏT$j5'UwY5޷U!_JzPI%^S-$T>Ygsi &g-2%,Xq)iœmRI n%1m6`6]1#M_OxB̪/tTCcgWY=Ąo:%w鲉lwŌ7n?F]1d.xu`XVgva :De~|ã-k[k6[e\l2[`1kcmx~1l# ²$94!]( `av2r:uvrY_W.M4mLc9UJͫF1K[0WFX4X,-EYj9U.tN1 ֱQduP̎q_j!T;Kw%yYIs Jd]aYNsL[-g[l5x[ g[l!z9DLC,ŐUb/sG|%k 'utxyr9?\.d񝫟`˴‹KLpJǒe2-V`20eiU6GShAk0;mZγrahS ۸²$9Mϻ㷿Rubl?]1lΨЃ:lZse& ф$сWd8eQ7X2l?eev!f=h8iƲ+vǴnjgYKz״fSrbzВn&R ԻS"ӟvREf㜑wٵ,iqnؓ0#ZZVrփO ֭&-?\—Ե ǝY ƃqE3-#s=c:J,vŰ6d`?quu!ǖF;*~6Jmrmm19.6'vu0W=m?oalI^!+xg=J0[]6)L[`ofGMf٣cԟ0[^m^w厣.~ U6X&@ =v=7 !ƀ)f Lkݔ;N%trٷy]3;s3er +H%?pLMD+ U-XYraSf1d,(/1śe劶 E#:,J>JW'9W |Xe?:xLd37Z ~yd*`MhO!769M7]Vۦ<ڋe^L֨dg`;v5`7@. 7<'ǀ.+J}ZUl6)ƑEP86r|ah#WHh[g #, etM֪MsrJ%^9p}LX`}w}rXRr,3Fp XxT= q'|'$,l5ϭf}T #;UbtR3صF/.c\^_# ;^6f>-Ǧ'qamQ3`8?%ش{~lfLLGNۖ"-y٬^F1d\de{٬QF#H/\Xuw.'g|re,[nrq]SذuO+ʡ1d4֯`5dYy6CI ªcr܃Ma٫FѢj4Ve*xM=={վ=kIi)g5 rHœf @冤V`L9_gT/0_-m5G[JS?&YasGhM_F1l7˱L3xǶHkeIE&ex!k^Z ucƂn}A\Fj)+mE1\O@׼e${Ld!r8YMA6m^mG[JQ–`%.6N3xǶ/h&&s\-os[oo6mM$o+)J 66FNd#>ٜl[[o;+{*u<^Mm/VfʅfXs 3*׾_a*m86fhކ ?:v5`, aL7 WX6G&{qa˷&G^Aּּ֩mW.CchTm۔O6',l&6߽M, S"qak,dh4lkasyi_E9Kt?\A6sl=im$o[mvXmF tq`XSd\`I^K^)5ayokrhl O!&9mbm\w=f]eb؜|N,v5Wp49EbB6>_`[%X/ݲk0{UZoQzS{`itWRݏ%$U\aiFi԰ro ~6 jVM Zgꚟ` KX$qމL$d6ioid= uﲪG%E хM_X{GӘb:m9̪ Y 62/d{ٸF'x%6ңtoKz{/pfYYV}H`ɻJ5?uO/{eݡgᝓJʭJ1Sd+@bal%>"vw?E4'衑Sy37g£W{)ޣG7{zti[6d†劶 Ugu7yQMjNuPclRU{28U TʲGIa|?YO]-bXƻsIapϩo\WWĚ߻A2Q]%f=7+e[Lʠq d2Q&XUW?&&V`UU?gi4r^lO2gV6ڗ2ěIBoD#Z&'ғ#&CL?NFKGo@AmPoAT='D e][%[`ۙBV:8ᲪSE#F+FfLh#tm–kʶزm^lFQm`6 U-Wo#Ƕm%_f򶙢mw’tZ:?4i.W%jh= 4K_T2|@i?Zҏߠ΀CI801J7_ (L~7 ֆ 1Ȫ{}n3X9 n D6CxZ8$ªc MI?%Yassoba也ϙhMR ir9`۬rCchTI6rll6B!&z9{;Yu_7R8X~o5??l~/8FzֻPV31h4 fXsV)r! βæ| f 3lg"GoE[Y7f خNh n+D#L.0,!I֏ FPwc=m-]6(mU6ctYNkȶaX :O#=LϓH^i# * V菭>R`8V 6Zq>{-v5RER{/T^_=:~*zH/$>$=gIکl<:;xGRߨ*a9X]my]8-uMMQ`~]Ys6lN{lK`z~3xĆ3 s{֧;潬ʡqU,e0ak`YXq ٶ.@4fXs,F@nbpSf }`ջjd9x$RT=FVUCQޣt7w ޘ-רQ#jTj=E5=KkŎĚ5uFl. -Ed觅hkomkYnGVم&@j5SYt K1\V%DzxYQtLc&{*-uRLrh t$g0׼{/duxYQV{9^f76wS ~0ӈ &tXy/IL~so #,OQ6=5k-Z]vrl~z^>qa2RlYƚ҆2ƊSeo5SƱ&]1Śy obD69U ޱm% *0Y2g]$Lm9HVydIr֏ue/>I,vduU $K%hTi3x6*.jڃM9}h>6i&\j6rl[қZ}a=qWԏ+ X6~}KW?Jl6[G1-IC+_mӈOl6+D{1fXsFND! y#ưȩfm׊ W5e4u `a\ T6(/4CδakDV;AcƘbY„d@YfWX6wl6m}b[c+-J6Wp69Um'U~om6.R GWvl6+oe瀭`C1l*F^F [rF[[O9Ƕ|lzO(韕 `a%3Br8*m86䕱mmb= ŰV&:vϝ>*υrh *&M{ٜl2ڞ[=Ɔ*fxagϱ68~aF6m}e,ya.ۦNaV;\2V%V NY.$ʠ F řa|Wװg``-v0m'1˶ F#D#."Lk4h;FgKrՎd3R* o9d~p x!Xޥ_bw]l(9fMoCdȱml%{[ROmց_YOO;dʲK[1`- Fj"uð$65/fI3X9:2XaLvذ:#̖u a]М,v0?Wm9)n ӵv iJkU6 ovkRZIP$jTy5_䃫bkXs{χ5WlY R2ɱɄh=vz 4T269Uv9G{)Fn 2#xP5/0릋L=;4N6zz'CI3xǶJ5[ަ['4J'/[:ZQl6llK) !;D/` +̎oar Ӟ{XV LJFVѥ ,dTpL{ëfaljb.)5 e;*Ȫ&ig&o1`V#HK^^(~%/Lq+{YmG&&J(G^ݘbgkxsf ,F#J;._EMfbGze%{7ޏ-hK# ӏc=z6W64-͖cE6dfց^͞v79VfLn#]ύPhG/fGm,MCxgJ_@熝Mo-ʇdR$){s7W/df? Oeڿ{NW6R㑋G{(~4/d[\Ix!R߇E;U27r]i3 X$ e?vrh s+JczoUMTi-흝'OzclՕd6[ͦ 44{rl6+Ifoy-`Cz|7rh *FMm54=ċH͚2d[3M-ʵ<2{Y.d=Gn#W`?a ~Fڣ{`ZF`0ҏ +ҏaV`={ +,R2R\d%Eٺd}wpdq\ NpPkIiK K>%/ӆf86r'ʡqϩir]-w2,GsܣҶWVicQmi%'Ϫ=b7#0Wepl،dd֚a3ΨWXjfK6b?c);Q}ٖ졡':0`_a &{=lpH􁆡<ǎAUH4ŚW?~1(Ƌ" +xŖe%yY*,+,]N5|6cY%9VI7,,VZ-pTofdMKa{A*O*&U[UN/T%˞0e cg,6vǒX=m0[  lXmgw]XAjJ7$8*{F_tKת3/*RP_̺UB55/хTA6w{[+ 2`B #&CI+(GC{.f VD\`8%l|r_]=wYR[(i ׮VugyRhXxZI.2qa]3f kZ=l׼&P9Ŗe ^Fɦu_C,fݩhԧCqRyK<;I*]qG$#c7 N,uIWN'J&I%SK*˖{hHCNIR @)QJKI$zov$ Rz <#uNZD1Śj &xS)FthxŖ5MPغUgWKlf4]VQp4 )f_H"$ "M# h" n^ T7\GNt8@h(&Z˶̪ٱWԼnaQ:`c%]XG5v0(M0eU R(.x~}ywtbI!\*$q_]k~C\8/clr lzY4NVn)wO'*̞(f] 6t=Piqũp;e8:Q̫'¥[~O!ڀ__t|Gţ`Y\< /*_Qʱ5 `Waףr8̬*t;ovC#cWV7NTڌ׍,PiOuš[G)VL8wa`90{L80s$ayn)vN#7 &%Xke+V߄ƚ5`sM,z&fw[+4pJ=bð O +ճ:~_!:b xtM ,)%I94Fv\^5Ő9{NdD /su['S% j<6ɞz;xIn''Ͱ4,^) PEL<ϬS !SWD K!G䚁%K=;T7K fO4lWիs\rq`DX*&A&Q=Y^F-XRpwm Bzey*N~j8ѹOZUV Z1^ 'w/}-woە 69U_'~Kfqu#ORi`aCndA6M[&%ʤ4&Vi5xnhۤx9dsFְ%alldJi-ʚ-iP9āMWO&4L4ӒlF9(6q>P7?ٜl=}ϙM miyAs?Av=z0W X4["bnTXm ?٠zҨ{vF'nأ[f2Pzc!d$6u?cx3g{;Pf?&?)5zJԝ}JG3{Q5S-VzmKٞ_Hq6 :^ F1`D3xĆ8gl&5> h3Tӳh,WBR5`yQͷޱۺ 10EW\غ.vkֵN_ ޺=KkV{`M犿WUzUa]~=+` Ga=kwr9 %Ȭr:]aUۦÍm <6S+4Bقu|`zlF3xĆItgYϲ%/su[']$K< [9awfrٙ#j]rqϙyvbo; \ ցadft9ܼK{R٥]F ǚB ۥK)䊰lz~x`DX/6 2]VNf% ^AL;)44;cٕmuNWN%Ƕmkd:9sIަlcs[ mضilrJ&A&Mv+7cmԺMgWSZ*gWڠ-֩Ͼͮ1@4r|T{$ISP#Y>V͓E4OrD#8"QjÑ62~qe/^o,;l}\(fª/lMmk6=W~k+ަmV^o[rB6m)E[J*Vm\m#҆e$ٟuKE&^N֊ 7.佌<,(㽌dhrM-8FƯcs&ǰv]oi4Ś5 TRh "1W\d-°>vzqY/8WvQ͟s{,Z vO0l=p~!͹V洶_Yu\ `({J1`cV#HK^ۼQ2`5F[;F\m$U!BfV.6 0 &feK F#D/`RN?ބoaRaڀnWV~@8q<нȪOos瀭Oo% o_z3spɞ1dOM& )y.D-FcR-H4IE-;|"J3XHotH${B蹜Mwf#zLfGF$t㿒i5He'Ѣjt"p)xŖe-yYn^F1d>)9+fv 9PK7 ăJR"ȑg~ۄIbr\ݖɴ?deZ&`/=q/[p#uNx#UʹEUUNj N<:%wlMGI)sLXtOv! oG6`&o'VuFFϦdbv#YC@xH*m6I&gd6T^=FY0W%p09%_Fsa[ب LU~05o\+&JV7Ua ˢ6*>,FVdXeW`z# J.*y*x+(k4g0GaL"Qr3pJ=b{y^FG}$=!X]̌󌍅X3,F˞'ps\dخ^us`3ʊBX` /|w\k^\AQ~ W]'Y_l%.`룳u hڽ˙GVٻvCYɭ*]aԠa4ߋ(~%@h("@MgK**Z793'9|//I6NZn$|E#Ai6B*WJ1T. Y5)\@9.{ܻ'VmU[d5>g*|UJU~JJstukzX+4NְlI6rJ9-hK6ݡشum=-eo#Ƕ]hA>$Ő9n 2\ݖhdI;֓7lLU|&집8̬Gcx;dcxսm94^2S%&kx?؊֖U.8D- k&VH;B,R0)n 5j 0 00G-äD-azB/lۆ}z03#IiydcZ4o#+lN?~mɆ-m-{9GZi'H ? Lm9/o\eeiDYex%66[G2Ci +8ͰGṝ , eWuϑBchh3xŖezD? /JRm)LlV/#U&/d nqd@ᑷ2y)[uOY8laWdZ1Mԏ8ShMbKL4v*4{-{>?*2Qs4Śꑷdʡ1T4rc҈4MQ ?*z޽Un9FNdKjf6 66T>mxrxxf#&-t˅_Y~H#6a}eWh*[{Ć&A_qzH #l73X9й߅  fmMضF(~e`MH¦; 9 yS6eB{3ǰv9n/k6B6\OFaS%ۄr|idKM~ om%k6}4M9h5balrmmx<6rl#5B:M.66mW=6mm*J6 66mf?6=ȱmKwYXդ{dYZchdUsU%Qak*Fm)&IW?f#YasG&@d(K7ાlK`ڿ~`3 q`r{ů`36H&&Whm#yŰ9ڽh\hTI6rRC#d[HGBV\U/kugU/AH!`*.gخT+u.rFE6=gbXCֶ]WXBxŖe9yd,І`ھ09%^i& KaγI=h3a6P&T8^6TaWXl-]7݄tKq+N3X9`XB֦lʡqϩfm=lq "sGR~LV{dXpO4|`5w]zW5/0φiMda m{[fkrKf*^EksG^GV)y[J;l)yU-V+]aUۆUѰjGZY)2mVo83X)LjE'lC X M]?]ɵmo]}v!kj{ui= ˢ*ΦMhض9moS*tO+=JRZFջJ*rgՓfػV9&5)nU׾9?+ 5|?4B0usUΉ^LE6,W+̖#EMe &lzL6Sh\ [S%ȱmde /նKgdSLXf[>ȡ1d4$X o(NgWW\䏬CfֆQ`LJʵ3CchTi3xǶm o]YK ᧠XL4_5.2Z bz^LL"-RT,/0z2RlQ6eL<-'O)r 46tm4r$9dsálxfe~Dn?ڮx-A&;ˬD)VW/Q!&Mo*F,b2" -F躁I0aհ4-8aFBzlWl=xaVI9aaa[6f0[laL<')z 0q9  F/`>`\L0[,sYGLs6(jQ35jW=)˅ +`80Rbd*ӧmG+m6öMaK)$j+#xomvo=fo# [Vզ ڔ<*[w=g:6j3X9`[#-aS]:>rhl6+J;mmlvӻm3`HKؗWn9FN6w|a+*%6]o+-hdU<-EYܼjߞRԷH3{̑4k^JR&Җ磢XU-e[S"q {f0yz7XtXM֢+J,bvAr lzr8Y^^`5.06~^%aZL`10Ғv k&-=z+",UK5R}wK^2V= w+ͱ7>.x5jC?Ad׼B3Xd[W7m{=92f!md%/.se[9h0BlDxȞ/=2 .zm_ǑL\[W+_C]/dy ;#}yLh6>C#dX =!df )t_j=(ƀ)`0i&-$.M= Ӧse[a"  #]mvBb[#ύ"ϙ`cDmذ,%xM(m[&&;vB94FNd#_ބHdsziWMʽ-76i۸&lw[mׇ#rm<6mL*rhl®*&6]٦ +[M=ѢmwĒ6{xVZTjg&VQ6bMV|Q~bli>2], /deLRI24FNGFγr .ZF8+7ⵋ˞Ix>GEJ[ʹ[X)F)cY+pG#Q#N q^)h/4 }劶 US`I`Ʌձi> ?݁#mmeQxdNWeUM,p5*$K>ru\+.'Ȱ]D״lx&/+f 魝lq of/ldsڴ;-͖h ,u*zWӃUjQ T$8**1g:HX-bª_epLhPh65/őQ[/lB941fhӻXJGшidhk}tߌǠ ]@5WlYjQ]VCLWb'x3ڹ+k~a#Ga,'#Ŗe%Q];2ǐ9M5mU@%elxwbdngKjFִbWU1Ƞ1\4rj$`XuzVΞE1X.=%=;+28οg UO(&di[Tya/Q ȘjͫѝG)mJ+6 οT!ժ/DB3M# רթjyaMJŹRTk،2=;z^l`%ME~O4L t2,mae[Ӎul$#6lF=`9l .\ݖt#6o\} ˜Xg`\W燪 S C5+UReaX\#SUEUm^5} ΰY莵>m"`94 nVng-c)XǰY:n#F1\&-x\ aVBc ]a5[fkV/0[֎چKф:`怭bX;rɔCchTi3xlòWUCҰ-r5[I+&TxP94UQՆW-Sȩ^'ӓO6;kU~kto͖̖F+H4#idUޛs֛i'[NqD7)H\P{Hr!'ID($L"!rܮR"ɖh 4Ŏ4_7Tdu/lH4h`9X 7/NH}#%a_]`0^fx3)ƀȩfM+[r8Ȇy 76\Oæ76IdM$o#+lN\Ɍ6*Φ{MM6[͖im(u bɆVtI^Q!|s"|lLoD?*ORTUn9Mf#Ƕj,b6[VRN'6swr6T+69U6SmyŰ9O+QV<̕m FN#0s~sa[6F L*\TEn2E?ڪʥ-]?,}~2`B#6 i.+۞[8?m2Q&\H`UwaZ.[tە1lF t b Vqώ&׼٪&-9zҽbMOKRmz[F#JV+jNIܶiv]Ɔ~Uކ% ⍭cÊ\hX=`g٩mV!{ k a(8rh Yt 6{AsGyxX-62[VmT{Ko\ǵ<;1뱉pʥSD߱hWdx,:oq5 k>X;]?.[^봵8*~CEXo>F4NU^zKGve#&tīQh5hi[0ʡ1l4rmH;Pа"S Ye3X)LOG^P!/&]+v rrkaUk]XQVqf>]*'#TS\5'kAcQ@UgVUS a3v$AZH t͞0h:X{l[SfOIxUUenA:%m>a6rcl9=F#r)4Ś6CV>99MqUi3DFᕴZ2Bﺅf8ʰj١nd:|e&؎2헽VF^uo 10B2}FQ 6ݒl'~&?w9?2aRF +s~U,sF!z`a` -jPe0#[oidm/{Mh< kشkh\(ưȭfI6)6GQ [Fah [`[%٤mlAOPB 6dzφld-e 0`;#crl$ۦ6^<_$p5m|1O#4r*vkve٬(f:ªt[pMM._dMMF{m4Zh&&&+my* ٺo/ASvaO l1meC vՈ Y$V+U3K"\ĒbI,2ViJ`dIf,`Y{'߲K"K,[ej, WڒvYE,m sV(2/eU]uΒwP!4BpXCWl~ݍRhl.#F!*\fՕzVҴѥ&mi`+ltmmx{m6}w6GY{-mki'ޜWZƙw\է+k T$*y$f wbkGX(2, & &Oƚ2|aXVNS;ch&M`aa֞1dq~4KFvHa+VdYgVj=P;d ®Bih;TACej)5؃2h מth.68*{_kp&D/L\dDh~jgPe,5Kb8ݳCܯ׼XȨe+|5[RM% ,[6W5WMzS;;~7>?XSQ6hm BUVH޲c8g'ɵ3DTk?`;z ![+Y3"ߺuʞ9`G|[B5F:#xj$ d&Ϩ3'yx$zz ˃R'ብ#K/,m0I0y0[\ Uy8 DjbFdۃv̬5kHTuDUYUGTӎ5#j'V e9Qio\xٵz'XSpu~D e8˰߶CH.eRl(d;z^2D6gȭlRIʶ4DY|k6lVyц-Xv76+VTUݧTQjA+㫰|6D!bdq@lBQ S :|eR2 6=ӮJ~@w>4zr bv>mmIsklMGXu1^-JYxΣQ#]E;ܢ Pǂs# F8`L?>wPCp8n~⠪pt~!2:_nK#Cxip G;@:ǚ,mr:i3 `ȭfCF ߚU:|-= G[;C L3,g'GoP$F-*г>C*xT4}GФYّ,}D2t{+(6D.m`b8KL{d vn#vv#(ĒĒK"#WH%Մjx:wP["@H@Qf.,y'6lte?**unȇ9wc ^2>,T}<'e*5^5}k*,I,,-FK+m"K}Y%ViubcIdY$,%WfȭJYX/db7O(|p 5jɪ%j!'"&X j%ԊPMO&@Z kTߎ*vNzu]#Z3x9L~^^m94:ªmme[[&FVX|h3P61f˴*.!pV9K66Ɇq,ưEGXd#l%6[Y(VqHglyn#6{ØOvVklmDŰ]ye%Bٖ hHY>:NeB{?8̩N9*'&+˜o0.3بٲ|apO 06Jyg8*eI;mNm)l;Wi##uX foʡ1hsV%6i&-]6ֿ+5zͶ^-Tn9mhm YڶOi#5Dą&vn b$ڎ6F#JVpn,"gvp aPʜwO &֐7ƀȭHWt%L*#%zVS=dasFS"F:7r)Eoo5Xq? I}HGzuZ@GECiX:da n  #c-m)unvzDr\\gk֜5gbz oK]6YJ۰*K3|ؾSlѳ=(t:cMUjQq&[gQ]l(3(6َe-Zr3hH]0.#b~ʖL,m9l(O\Xrֺ*>iKRX8LzĻ> k:.n|CF#J!:~a?oPK_:O{_y/ 2#O5?=cw֎elhnh&>ʳ#Q_-}|^5=㠚X:F\#),[/jcguCcE>Ê]$W0%E?ևގMYjyD$Oa2af owŽ@k\ò}zSd$3xd&6 u[ %6nlEVɈ4&{ZIfkHᲁKodk `z(]oi 82 (&:j$)\6qM1͋zGFFV'1d4r /` >TaPaU ᶕi+F2BS$rhd8ªm{f۞6KQ ߕmmd[*F#Jm2͖7m<2llc [2rZl&fK6lJ6ۚ֊6&6Jm$DvFnn MZm|ٸڬծHmҲɴʋD[w=In+%lI6S<l<-GI6} qm}}/7ghkܬSnh3x9`ӇWnlٽ6(dž*fՕmu%Fп+mMj6}FrDD[]VFme%dyN;ɖoW6הg 2{ǚ71r5@-ӣKaډkEh5ZfX+|?ஂYUp6ˊbS{ĻY|O&u؊/J/Va% ,Ɗ*?@Ce΅_ΔO`,,+6J1XW+wͨTr;kK#WCi={蝙֢S6bkJ6Ay  %V%a} 0mĺ6A} #0]E/'3L7$؎`]Xv e[10B8LIyFVܝW^c l5DZamSBvn#/`mc`m6+]aE1j=$j=,m7uV95(E1X ]ǝX;NcpY$%cOakbR6qwV`wZ9k-M94m.:ª$9&-ۤEFVXh%zP5MZI6`ewGЄlR#Nrgo&, 2h nt[Q|2/d " @L~;V@cP(2IgX+FJP]>X.lcPe*2i`pVU Y`IdX%j%%UGd`նZ k4N1iRwݻ׮]l2`pPWfknQD#*h?˝hXڢ>dǵ!onhkN+YoF#r&s&;ڬrVmB9`5lUӭ}ld3xL6{x@6&fKmsdW&Vzm'$d[_6GmNG7vZlA'ǰ^jȰ L#;pӣ `*k=''lB۸Gwbmaa^6;aUM(lMVmFSygmd9Fnd#`xc?4}4wśA~K۟lS ;A$YQl4Y#mL5$~Ђ U-8Vq.i״Ob }pe"ˊa~[!.$ցV>C-bz}Ǣ-m`Y߰$ϒXRͲx.Nk+i1X4r3p]zg;4/Bb]_=t#ߡwM[== >y6B٥kV :w y_MZC"n'_H=6y-hixbqdXr݊tq GX6CtMZmma+V|#Y"l'l6ceX;(ˠ౦0ֺ 6ۤCF#^M?)GrvSuaUs|(euVE4rʮ+aVP ؤFmJ,K N3av_^%Z}K: CѬ7lek+N౦L3?|/Y=*e`mlbl2֌2M#mDȰ\;̰t+a0mhU<]ۍ,C k mug=FH k?`;!WF1dl=W͕esEYr*:NMb5jZ#B{GҌ:jw-Vc9kM9 jI=ECBFHfuE94LEir6gMOla+q.Hm;Crml[=$$Xh-jP6գn۸mc9gfƽ]:m#ޕrgXsְ0>$6UbpdDQF1dl?uKC&QAF#^$~viޕQ ue}eY_QAF#Jl[~M|_™mJx?6v\[cD1*!ưȭm?M~momk3|om֯klbImd*&&+hVI6r϶lOl6 a$+E.Z-ZK|~c lƂ `-$ I(䡒Ȫ%,b;ά#+mKo!KK0[/s{V e=0 F$c?0[.6aaB!&F& &[V]#-KR3 e[#f5f n%u7ci^.ȩ , &J1`Ha%b0y$f06Z$ڎѢ$͒llG~K#!67K8N9V et5lgmQ-- `mkGʴeG쌐lE.}]"\(#'m/kE{:=Pm ^hz[fH_"?B͟J*Ѻt̍V1W]$T>U{ѵ,ۻ1m&wpX]7.\{\׌}ɮ U"",}(WJIj{UFDQzK#BVXSvFfu e`IF e^el3N׀P5l Fnq!IذCI߆ )Rx׹ kE*?h,ưȭmB9`;l9;g'Ű]yw`C#hVmkfۚ6"mduegYQFѵfttْ\'ֺc=]v֪CsP dpY(Fޅ&#ed.;ǚO Y_!rh *1Cr¶O6-Tm$°6_Uݧ}g8p۶fTJ\y|56Q7L&,c= |m4 e8V"fHRvm`|C\_Q6gl(0["jϮړk'2"l [-$()lVm&+lG.Kh\ ȭlm-bJ U9g ZK9-w5ɰ-ducj#P$&sҒa`q"\dpbobx胥z¤:UTO@FUl 4dS" [l)v"I$ɦI`A $I*3JES%?yb-,!]'Y5kE#ZX-Mrj(MV#HᲝaX.6`EAc[ GB}FFu[ - " cwiA}S;pn+`YVnY8K#Dvm_<=i ʅhT M:ǚ3~,18~.LϭD [0&?}c&DE j ޼6Vō7e &wΤ3x9n8ZݛRh "upYEVU*c^u+c11`4r^ѵ,T+ }+.$$JaSe1>EgCŬ UJbIdɃVb=/X{F֞,B|j+zl\i6їWތp)[ڝcҰM ..TS9.:ª 6[4-gڡvmڙW9NSU::~t5DZamD?mdKjm^u_mE3>n׫r kE-%nJYً?!XwG #5p&P*PGw5VfOZ{RA[%fH_}Gc<2 T6̖+de`>) 3ꌲQbI{H᲍UeGi; .8) k3@znBcȴ)GX$#lM2['5"i<v+Hf%9`þd76HY6SJtX@\.>lj#nũ]!G_0dsmGVް$rh *&hmR猶9mh [`Ӿk++:4a-yj^qP-,! *)H%zpnC7,Y1~j &ic^w M~B-$ I[~HŇ#Sa֧lM[&׺_mGYacr42P%##ąC Oq-GlrgH-a^uKs*k;RkCl1[5AtՈ ei \7L0DD{;#tOf^cU ;{ GعiB!XO(ӻWF eis3$d;ڝCYa?a4rK 0!b-{mlv-{'Q6+pz I%4C7ɢ Vw iSU|zհW_ v^cK~`)t+>3_byrShצ[ ߸~k-e u۳>^\OXvg8&V 6foa{dZg .Ƴ4oxWKצAZ8mlVn8>6TaGXd#🴋\_љ]o-u8-w5ɰul0du5ˡ1d(Dul/ ^QW_vfKkV׊!dfmȸ{ !kD)4ϭB =FO.I0ɲʰQ`!XM.y$F2Rlʛd+J{KمERl2G /`Yϝa4|pCa[%fHmlwkd뾡Xl}ekX EMmʿpm_VJ) k*V]F;'rh *1Cr¦͘XoP6mmlX!7V)FVX;ְFn8Dfhΐny;h[3ycݑSyo֛瀭dCePaFNaU5a6mh#+lW>JmD[rlCn mDh#+l?K&*&-JR>6%cW[ 4r*mb-u[cCvUmv_f mݣml۝m+Vn9MV#~&?ְkUwmdʥ<6}daB#6]iupa}_![մ5Q} ;*{jԇǪm& J-s oF#ZN9*rh vAmB9l6M]9]ۘ6f-G ۺm-8VFmM6^gLP6턼2n-jFUml[{Imp[5،ְ>y [{,_1hX;'\԰h pRhMjw͞]DHɵe< [`3miۙl(2eUJ-GшI{׬?XoPYv|;l;pjnUZh;pZ1T1A"8V`lj#t^i݁Svևg&X E/Xk؎Ѣl,-vlۓm×UjaI;n٣b{ʝ NStxeҳFHL׵Ͳlq uekeZQ$Uik/2hT; y7.c){| @sQOfl;Rh 1CRl,[}ޏ.*F1hW^ǝ`X9tGX[`[%fHm'$dۈ"Lk-FC&Q{eRLjeL"H%zI46c*Fk^ 7ɔX$FH4FP{&?`vCÄR? PWf 0~m(95ugXs@=*cѝa*8!LRϭD;pVfI0˞#Ȱ3B0.R$0B8 aS0y$V2L{T&&. ;pb[t'̽vptO I}Ul'KzuhpV/QTQUQE)#OxP<~Ě-CP-3DeIfI`Yw",m?!\V(2%Up4EOz?Ds?K4W%D>H O;õ#  [%$ a"lG9bj.`Wu[ vYDkXbwN8N#ktO_68:|UYP,+<:>^Dhi<1~4 )\f+֕ٚf2r2!ca+V`m[ef-,AceѲwrl L8>222ysapw7FN{Fמ=ˊ^2h `^8X8ƧItY$X4|NI=?$[6фsz(m(0B*@cSm:*$5KvM,c+`;h  k3h䖈axUiYˁ$eK.{'QfuKCF#^$e]bB՟F˖ 4],W=j@lP5R֌*[ImN2KzvIO`; -z:Q&=ʤgdۗ4tl%ڈa#Vol lxjY5(Nӱ.[ k ᣂ>dȩC (Du–eKh❙b:5W9 +ʬ2)ƐȭirVgU,,L{*vk^qP-m'PYiGOT{lm[U -v $xj5VHEWUKٞU*_eK3x`EP6UblAO6sv^6^l2RkNuvĻnI2&(X7twjVV$e0~ΫCOzYDI! ZzcadNcmڵiöMoJ\MȶmgvS]> 6}0ڶh}kvuuoH#rqmڅG6B6SB6K$!&%ZdKK,*)gIT'Pa9'% Vq`u +)Kd{zBֶu}7aZuS6l7hr*n+= sg66۝`X>G'[wp[mV[Ɋ6&ѶJm$Dl[%j{ Ap Y$L$" K0Ң#k{(;fY u{ [%iūf ǰϥ! hu Ẃ6Un#H6I6ɶ )̆l!Wn9Mmhi >iz&ʵupl6#^zgXsV9a+\w,xfv ;« wޕk7Ykhh+:6&9X8{۴c68f+صwzGh3xlk^J\制ѣYۋFF/l޶Wm+҈ Z o3̴6# l(#lud~ghf#wXög(fo"l#u?FCz F7x#~ikz Va1!rivH2R,kX=!+?v{`ǒaWdpWǥ\%ֺvEBʖaR=`R#Խ鴢m¨IF eFYQF^/GTUq6u$-H~B Ky~L1t#6B-Gȭ3$öWoڬHɶW vc} 6msg6"2#L+3Ҹpi#掲5l$ۑ6lD]e Z3؈`Z#ݳk\Xj=l$=vl5a2Q6B]篪Pj?TmcAY~msk CށSvֺ';eoF$#zGjhk;|zdٲg=RǷ*Aƣ ]6;iejqcp&GJm_TNSV? m|vR$H~WٴU\%*J~j'Up^5҆ߩν_m=X^zD|I v #~['U.,nE?UW.k`}UM! .m{1b(kֲ%֎13Fn#/` øaL0U#l>^3umGL/x5ll6і.2>3H-GLvβW_2oQ Zfxd/J{nl,Ⱥ@ UFk7Y,çps29kۥ9@[%ָ)4鯲N`~m.R%K"1XU#K; .K]g~jPՄPv=.MJ(y]7z t4"$X[6==!6l`~ڏڦ#^eaxJoę*FL[Q]CWR,[L2>bFa~2eueY]l'~̶Ub؂Uywa[H[N.\}HO0\F#3j/R[pYẀ\wx]6>,ۏZQE$F 4lۻTD-V-3DX.K95TXfT|ia5h /@ *1Cr&?vZL}Fwڴݦj/;xl6#^~gXs_n !ӆs/'t->OzK#,趩d}US~'yF5`xJ]9Dǎ`pTm灆AlzkV1cdb۾Xd[`K'm ӧ0 DjqDXŕu^y jyN |]X3ϰ)x xp7B -fK`;ZafX֒k?`;f2Rl,[*֔+d;a#.D1CB过qٟF=̮ fWfղO/0ISWt٬nİȭlplm+V{د,#ʸn]2Kfv-_̵|];ga7vNq ;YɵͲ+k=7md6[0[&vuFND,Y*_@ {WI6rA .]I! wݒdIqݖe n̵eLXzd%_u7گA&7Y u[(+%vVf9=+!A+W{= m( ':)XCN7,4wMGvgXs@&ttl!-V=« 6[Vs,<{ [l+N102}֣Vصd\({Z>ĥw͡[L<$ʴaczII̵eDI! WeEYYYVVqݖ#$ۉmD#ȴ:d+'ݳlcYXdi#Zxd ?L2I2Y&52M&Ki$Dޏ`*FxQ텆75W)Tc̶chU>ǝ`X<7"l[%fHՑmu$$d[п*_-V˶բ+&VG񴵚mmU&ѶKm$Un9ضyVI6r-if% &mتk%sMVors Fnd#ǵÆYXkU.q>ޟ!}Ֆm4r 6]4BI[a?8ʹV'!džY`*lp6Glm4r*/= ldIImsDO^lӕYȟkUYCY0%b0y$f0 w;+F#J&"2,xOC#ǰ\3x9`;#p^y7bhV69l$$ۂU~F϶ѣ+&l_n+0[Rڴ0 L%WU=c3>i{G#Fnq!金Ku#UR6Zx:K?8 N=UX ëH/Qor Fn!!.L0a`cGIm2VgkUMV`km^.h`rc *|HSgYsAFe}dYI#!K0&=äGXr=Y;.2k)o3ɠ3xL2 n)"H'+\6KeGI! W%Jvm=f Y,6MlEL;9ּj[Cmya%^ԺaJMd)_%Mu&S[hLOԞ gB5hj=ZI!ڑg IO$[7?Cu|sd+@Qr8 ~ytjm+kǝBe}0Mw E#D̐1Jdme(cw5$7D}:1X4PCjG!Xn˚3,.2Dٵ:3re$& ^F&K 1uFLO-M/ms:*ǯw- m,Hz,wvJ[NOWU+}FWEU\w"[F#J̐nKdW(kxiG[~AyD$Oa22m?FĐ߰+`2k?`X/S_{.?fdYa3+.RD`'H B%axM]3j}oN.#ʰ `XyGl} kBQڝsQjGU+QJRU;n hxY,?bާ4tm2*<ݹL3X)uM;Ng.7GX ".v(idڡÂxCL F_ubM<}Yhf@ ٵ) { e0lSv(iD>Л;y49kWfXs[jwDll]96#J̐nӻ8l<&+ah΄koM&$dh{MFUl+(hnS~'lglV} 6u)Gd#tbnV6u|ζ6B#hVI6rl3ڪD[-F#rIכlmDŰU7rml&,&FV}Ah?Yl0Y[QC&QVJeDDY{\l4rɵF_!YQF1dFXͮXmEVJ`eX$ @#ZNm)k`uf@ ,\rWb.kE) WmFUIfPq;u|P+Q\m*[PP;BC {nkS-hf?"lxbd  #2{U4Ł6puulRÕ2 6[4-gqw7#i3@6##5~ F Lf{_ -|'~vI6 dzMMb>eoC*|M@[ icJu'H em$َIegI&QVemD)\qnޢeD{#FNR#MMjY:^"Q2l`_A t{';ۘ"ggL׷gO3==g3]v6k+V7{( 7bhVI6rml[#F, WݵGYYV{qݶ yZ#ݳˮ}:vk&8'׎0[v֟lp]sF֣Q#k̢[e,!ڥ#-z)DŽڌ9#m@;^g""Aiwjj2㗳kȩv{x'L " 9e8lGqF}#a˯h-+dy dE]o jc/UK^m+ujۈ{hm=R🷅/|5QadUܽ J^!Ow.]&:=mnrlG~M3Xd]m[l3t]س98ܦ/붅m򍸇aW?U~_ݞgb#dm7aaӶQ%ᶝi;f2B%!(} -vO\Od/e$,W1A_;\Ői!9&3F_(¦_꾶>m$&36Fg޿46ͷ{XWEhѢ*xl;rt[pl3^F$f,ucW{w*1Cr KK]FQM)S|giMliƏh O"x IYan!/`2K0ԥODZ]M69,_uE3Xd Hrȭ3$ljlmE>hj = ;mY@׶mm|1l4r$9[=ֱWM>lml}D[ŵt|M舶k9`lV9V=«$96ZmmDYa v!&FƕFFm=m6_ޝ gYa #`qa%Ł+ʃhwQdǵ!(nhNgoE>wmV瀭h׺96=«dPl}6[OOlaf8*>- F/l.2OvְkUls%d[ֳhlmsEf#lO4;۝-\Mi^a3}kpD  F#Dą&F1`6Nh}k`[%i++ۊ]l2\JQ n6'`qM\l;mRFn!9Vrlu VP7zTCzTYϋ!3x[qGs-z=~(y=} jn3\\niu@ CB\nP_Z6,0}ccHc myu1F-7Kl%/-Ը6a}3< <y$IQ[lrDی K۶v!W6zBCk~Q w۳;;2jyMe)djcl+"K#l66je!1FVD ς_yԚmYḳ7&'K#lg+זƶSc†J&l;Nv]nmõm#ö!9v^ZQ#Џ:O&?݃u],gק Gz"@FϨTeE'j[HQR|q5kf6z2qrU0WI1arSD ]KY}`1ibًe⤣(%2$ Pme R}$uTy1drdڦ1`3T,jQֆȶ66nQ͒ll3,^KyZYyoԃbX@Ι-?yTV!9`C͍=,lXgg\ftE6J(ɆϟIB䵿qEd6ql+EmQ N!l6ɯ͗M0F1lԶVͶUնMmZnd#˶3ͫ+`&lD{z 2-2{T[`sTƾ^4CFmL9稜-*j)5KX*x/xQ*PQMTD,{t]Y%^qu,-wYfIڬF?D֙:~1Hu*:OFyk6'уb+aq2Ө&y:H-ܢ[Sa ]b[~':UUŸ^}Fa: :C~t1r2E25v;I |Uf\`YM,ZCYkNe"^eͩ,B*)υ'SVo'ZNƦ"dJϟvcv+唼kp p?(Xb+7X`"defYJq^Ւ/l`c TX$ftgI6rVbr[5mge3ѳmddlۛm%Qʎm䜚5w<<gsx^̣L4l4AaOӪ1+%o8];}VanI*V55R5pFey_!6奨Ԭj:AH>UBU5Ydh+%4Z"giip^`MQWYjA4(jy.*TԦ( 5fy|4|=y+igVE5҄J= a]8Py#[<>CUN(Qnb8kwL.J^UkSW`[eܸ՘.1jQ청A V3l [Xsv+#^3lK=cRf=\ fiugSWI\*UdUMdIߜ-2eqQmXVUTU~Ze-TY0QZ-Osi99;G?i̪:E3WU5ҽF&-&{zؕS=u=gOh(YxwH*~zXTP#fņVZosg\i*[̭DŽ5p䌌[ PUg13Rqʅ:EzEV?Pe k,xµqgq/qMa} '5̰56ѪޒO ,u2Tf2j9y[Kf*]eCv2SƅmmL2CiJшy1 KeC]=Evm|}hf 0:X\9݁Nщ:eBj%̪UYEL]kZ%L`6 F3??87ana>v7g3pš0[R^1`{1  cj+zQJ0,uml[Em6jy2JYVև(l4U~+`XHi!Մ8K6i];vc N {PG|6_ ^U(Mۤ<[20qκduF-7KAa|sJ44]igZJģ0Ӗ|u) ClE-f8 EwѣnD\I|T3hmy P {PG|6_v\ŰT̲0I;3Zn#ą f f-è$lh[mFcddlKmim+JozkK޶Gaե2R,kXDMD-Mݩlrcf/V[ԃ:1vq[o=;飸dxj&>y†+jqLYÍlˎOI)vͽdȻ;bm³&)o7[ݶj-, 4PYa'E1z@_"GAbUo=Ze{$P~m\{bȞ#IOmD6d^v(܋+<+#EfGL,?΂?Pۀl^sڞjd{v ZGSh6ږbNEX!ﰉ#lIvf9k}]O t1lwZGQ{;bȨ%q]q^^6dc{-ekLW64{̶6V(~2Q'sm{Pf^ldܼFm}$%e?[Sl6<ևx|pǁV݆ZJc `Sm;bڠ+R4+>J= uGv@ ܼu9 mfv^Es6{=O:8!F 'N Znރ".^0wWn&oz@hXBPUIjL=vee̊(Osl,Sd$+˨}e\ango@rdmV!Z]D9s"x8~^;(%JkB9\ 2]hWpN &}Y^e=ߣUTe El5]5Y6jWSm$oiU[XtT{eV퉥Dk`eԖ13(`9b|Y|:@Z<[ν(\ܰ`QWxރ*B6GMϫPd=Äɻtz=b,K^Ŗa]]sVK}4B'ZUUkUBҥj2]3kWe):k)eUKSUr3&ծQKe]T7߬wbk+LҎҵ =, amJ֛p O}ҫc0>ȟ\ÕB_M"( gD_EXg?=F]aHF'rUzFJf#l3ުĚz@jEj)/U?(RʬGE^uҫ"AW4r^5v'CDj3ۨMR߶-ɬb>:N'~ɶ$o2j ;F-#`-4! y.i?[HyKo 5ܤٵiIW ;Š?I/ey(YC:*QTձv+;vfUGbU7~vTeVj%׫Yu*bg1| <2ׅvmՙ`&M0B oam@xN@}E-'iK,!ej>1`Ț`Fp~e,eeYFDozi ZE衴ez=bU,dldPךz5kcucT 'Z[SYk1dFy먷L6]ya3̽fn3, ϖS4PİQ˓y/b[ҹĜH(+v6+F-7oAa=jgͲZWSjٶ̒euv#l lnkig>斊=!yr˓.b19 ^զ6&1:e3IQ0m~ٰm(K6&1pz@6ZP@2lk%6J6̦g/>1l|uM}B69% o?%J ϛl6J6{Lml+-,,Rj#GV6_bT%Ya8 = V[lY\ol6|]WvװenEmi\[?Ony2oJk1dMa'mÇ1`\If/( }L<Ύ'c%(̶sٌzPG|ۗa*M6jy2Sm}6| ϛl䀭$w[e`s ]Q6S۬bM5aj;[@F-7oAaInm 0u>K]+kc8u?a3& ^*cJjPē/Vָ&0{ʰVJx̰=4̰RX[oXևXM*,ʲY֕UUU3nE(jX8^j%*BrB˲@\;V ;EI^v^5uK=FFA'sr*\d⛶;]I{Wmal'g)Wv*U1-dۺc Znd#G6ƭNHlem 1/!`N=:3۳ G|>IQsI ~  1?7O#D:vrI+Meڊ:\)I^jgJ5a]Xݧ3Tg{Rީs z@,sڍ^-TgD(Q<,_Ig oc+:'-D-˟Wy3 )Xc γ C|Ҟ4b&=("`#p5TmUX~;6^8$չ(Ue @_G xZYu/ -`X;61zs؜ tI*+#F EC =gr!\gɵlgYWXm -jSXOm2RW+Lo1 Xi kdz )ml]5Aamv6C\Ű/mr&9`Cayk;"uC ~l~i5P$evY ːuDtTdv6{邱hC@6 Y뎀eFWx$#E*鰊6PH0|^G3b L/iO{;b&TRvG-xZ= V~GO*#qU [&jpK0vVme,)|lsY{%^2M:j3Zn/Xǔe 9s_a3l-CF-O64ʱ7q槜D]\y{X+޵1pSG|v ݼaϭ}/F@ Wx#D|Z_O|!aWu̪fL*\^sY3.p%z@1YQb!2;bب=#l{eOU^8l&ax= V[$1i/{YQ{PٿD?$|ዛfҳ mFW {[Ɇ˾c m-&9`CT&amfYz$m Ðtqa|u[Ty byv2,7@z Q'> X*j{*),˪sR?Ҳ?N*!܆drO4 ݟV?v  _y\aIAau*으ra)˰sT?vq>߀HOɦ:Cs!szܯ35+~gmQ7mg*/JkUQ˓xb5L/UF1ds*WVJYQ}#H ]a=$i7+ՕeEXD g0PHT7Z/rw7!S\D'ZnbCL2e'ޫj%)bٝݗI1` v}0&o;&{UYI6K6{ʶf #(`B}K93lNI^`TEPՑU=B:Xa KHó leGk Ǐ)Ͳ4m/\*0jIfu GLa'q),l'َ1景; ! 7i X60:*g/b>IE]f8>`݆\#PXWW,.]YgVQU]Ps(Z-VKT2eQ/<ɬS(X][`)%vQؘ 0njTY{RV)]TE„-TbTrs7X;pVX$nw ĠQ͛mFcf;lmUQ ?pm=-fܼf;k#yW^eb=:֎%oTfئ{z5*]]6%[el,Me{'ًfSml2ZFV,͵eKa&x-Sբ0B %a2ϼVuuny _-4?BicЪ|rY4=|~W5TBV矴m(F !b2s&{|Okў)awt(dcG]ή81lm͚m&6&OPV0OD̽P۬ԃ:¶2mlTޓ̒^2SY*#dl)lƵ_YTFRɻ.ՕeuL*%v^szkyoj믹֛$s6Suk,r{u[ض@ EݶO#͵Qb FkRqLej~6qdZmMe{dz@dk5WF1d++ԁ k`2A6ʲ,#?vlm^>m^<<5m ank?6$[j#G|6_V|nb]܊ڬYI6d~k8c^`ӯFL*CeC&oid2kZ"kLWF1dl T YqG@ מt'.6'Xp5,lS˓,A<NWxރ*B պ~ пyoqaz I $ԁ k`[eal)Z [+bҴJro/X(Go 3QGpjUDݴOPTD:j  \NT/ Յzv1|.<鰅)/ -1ZW#D|Z_O|ǟk1vY ++Re֛|q!^kM qĺ':UGfա,bZSQ7gi~G oL|nMa4PDFONYYVTf%˨{͑es<}eCv2EFnÿN(^2Sj*[-VS% H!kqVVp=[jd-~x_I{C vd]1\eu]CzRݲcMMdIߔvPIX4f0զN0 H>m;gNay G%'g#Ð1x`h쩍C)߉͞m'%e?ҲLpmS|3~m۹ݖͳ6=1l}7doPOng;1lrqmfSŰy&l;O$^d%F-7ovJ='&-Fm/y7Ϧ(x7^\W|koO1ƀ<<_ PİQ{Pl8Nl8gWdlvm`oI+)͘6b1jeE,gYlosWv8dy&Le{eyR|)jeEjɲZTfCeCF'殺]KXĈE-7"eًeb~Z%o; E&y{Q< ni޲am)F{Fj[ x*lO=ewpQM!X}$V:<_Vͪ(K .Iu+qh4f#:9hHM;OP@&Ϊ6U5 `͒Xwe,K$TQd%ԻfQ,o&Zہ2A ](߷\?ٯUcwmyڳ!6*]Y3h ʲTI!T+b8ZB*[:PE̲=l+mfTX k=ZWT|Tמoa.úB ݉Cj[׭R1dKW_Fc֤+6v<{ӣ݊~ICՊ;bf+<뺆`YREH2%){]iF1lةj;vT4&6SObel8zl8lkbFUxݒ&mlw6@/ j+v}>W|٣N vN)~5֞0jI{0{LaF1`B_llh[m9Pܼfo[L2PẒ:D ڼzVz$wm[nd#G&`]nkXH* "- 8~l8ٯXoѫڲ~Am<}mfUmVjΓl79؆FQyycW۱r'sQ%R4v3tD_H%$A'8C# 'M2Brl5,m+& uCiDI VZ qu/J#hCesQYFmC ՞a+,ݎqlu.2kcu`g;lT۱r˓w*k5ƀ$1ls76+fX[!B ]YGg)_2K2˴T6Z`]Y{YYV0ΫNޕכ&'z@pdضJ644J fhCnIѿlk[QoW e@Qw :x-} Jr;@c@ Cv6aív9Y1`6ϼ;b]ya/_JTLθd)bвG@2㎁6jy{,6zS[F-'sK6{LmmbzS,j76{Lm~upmee[Yj̣FI6K6{ȶv6{յkm#ݓSvBgL6a<Ѓ:`+ {ͯ¶;lJ1dCavkwĀQM:`0{La)bM|'~Ѷ$6jy޶3S6+j6ѯg! hv kiIi[mw İQ͛mFcf+lm++c<>3O4A*2R@CIÝYh;˶FW6¶%..1*]]6 KlY6LۙT[j+mky.C&T,˖L,YƵ_0vdUa%Ͳ-O{Rw2lcu:IafXMM"d>vϒsЁ+379kItC<2gIyqqUl,UembmR2Djk3ۨM6rmeR٨*=˨mIf/wQ ٨*[ [q#`[eQa:6̧R.3YQ,2SYYYF-7+#Esk(bR,`9t`R%2Q'1b%Rqwe)5EQ £vZx-Ph(I91ZnҤ˿ B^TE1T^ {OU4̪1=!X+߁k(2Kka{jKڔ%IG2aPz߄G n⚸Şmc`+ű [[W+1`(l`j='`ĀAWx#EȬd2B&%3IQe̊ʬdY~KK%Ө| n&Ùûbضc[mv~ i VͶUf鎴tGzɫk#{n[[oT<I{kG`mVȹ=bS3& ^*LCZDUZR݆#N6ԿF1`$QX_֗š..vGfvܮKj:GR\uf^ h-i:肵6_~ KCN}):d2˿tVKKUyt]ģBΣ;_^!vdJktQ ?i׭Sa5M1Nc򘝳)~J_I| #`uL oPl^ ?jkĴv{]{&2jy>_]٨Y6Ni{mSl;_в<#GP׵62 U;%pYW t`լ"]EHMz'~$(Nv]^뺪oT*Z|XO;:2k-b&ɘUj+k]ZycOVr]U@.(ܹ0׌3I?H'RJ3˴uT(k eMQ;vfթޅߨ>(2|(3wBEIQQ)_|MiN('UVBSrbܤI_ߪ M\}9B!U"8NX2]L*Z^/)fvs7}osr\'j[Tk1T I~@*+Fw>2/m5X֪`f?i]2l =lSXkUaXǺ?V-b9xs[ cfKac Znd#Gʶ֊(M#dIQߊmr&Xoςky2P/Q [3B= V[ 9WQM"drk uQ 76^.d5~s/nFR\sZ׬:1T9ߔ# js,ELIOaX}*KzV2ekkŬN=  "Q=qw ĠEWxރ:|޻͆(M̗V-IQar&!.^0cjV8LwmM2O׶6{嶶V0s->Ryhԯd1`ۓm;0"^GDZrR.>c[\i5: S9O%YͰ>jh5Leɻ7K ]OZ=<˿-ߜ J"V礍Y[ϡ}1ƀjC<^a+ulUm}m,ǶM2"Il]m׷%e wEHerIcmyqBZ?Gʤ=P> s>X]U/77]oQ(Nk$ לqBnQ>+ʚ<_PՂ ~8ntC@uA[8mF]Uw*{6Z[QZ+֊TŰͮ6_}Fiivz^E>y'.s*ev:Gr{;bV+w /VVA;.TγhF vrYcAIg̔l+l ac(lkX..1˗nEyEj=c@6tk홯q@ -7*VU^yohF-OP1l +†c;Փp=#lmg[j+mT|/m{iCmr&9qᶎ6QԤk(H|%wbبcfmfn厁jt=#lgjk+ecn8m ۛ -ldlkKma-fS[j#+ld^JɶR&c 6|5Qĭ]%+>WH{6]If/)l0_I^6<*Cmddml+LmdMjSmmf[j̣2Lm{mdcB-.-U^l6*Xms]Mmkeܼu'.ne >=c\;>M2ig7IP“qaՑf-è$lh[mgoQ}EO"%m>ɷ͗v;Qďs˓Jښ1lK7n/1ftM6rlkCme'lն{llmkkCm(6PŰ6%U":2ZnD/ 4HBP #Q6;z@1 Ւl?z?~umlfZl*ߤ<Ͷφ_?ld[j;-uml[CmCi#]jϲ8ەF$ uEp]kYF-Oޭ,;ϳ]I3*-l#KxGIcBUm{eېl&5!&*mH2!6r#swm׶8lBO|lǀbCaϒmpmvش!ZՖ$CZbjصvvdB0E$tiGᇅ}ݫ nѬoa]X769x`pNOXySrI \s >qmމLi% I}x I3q1HV5Hn3H)Wp8HUhkiW&ݞID*I:ö YRp!^hq"M|(,L LO{郴}1ir7"=_'2iJZ+n$A<5PRN ?lIIahl0'D i>l2O_pOaph68-dac2 oeIY-4j䥒cW]XoìFf(hLް52!vLZ*.j1V%`3X5(]hY# Z8f,Ky%-!;Y&}lam6[fV5,>F Ow- KHj#/5V^ 5pl\kOYDc]z¾x^n_f}a5w$j伇lK3-#MLP1HcҰUUӬrZئ_%}1lYn6[ f[,٥a^,{@le-Ps]6e]n #ƨ12l}n5)\&&PXPҰ =XcW|P]y}a{nݬ=Ϊ3JJ^*ɪ3ꬪUIу}Zԗ&C%+:4nyrb*cs=@ ~ i=d۞֟zޯ/^q˓ VzƀME`BG@s+I0B8L02L`-Jۯ/ XtiP0ݯİSv J3{a# V%%/dV 'gbd|6$Xq=XL>^ <#_oמ&&q3`mTXƉ۵& & gc001`[c[M[P7@ Z$9v+fYFRȒ]:bL^2ɲ7Ȳ=f}TP[>ZQ YTB'*)o$ɨų6m66)6Ua[̶pm6ϠTlf60Y(`L?v޹|lǀmlX[kaEOX)Im1tĩPc ؍,1`;X,e-c ď לVJzSmdH ŏmlf`mYnu6$0[?+g,Ye2gX~>EwV]&.Э`,;@HᛖՇKi- F-{--zYas-le2Ym?y-sg5^qZߕw2k>w,;Xf2LFLegU6{ Y&#H22k!)oy-dwe٪U\7k[E!# Bkt5 bE/ m]he],ChXdUa׻ML+)>3ά33S>='+c(qnjY1 -4o;ypI&< N=XH9DPEac3aaYSk`L2 L \,iK0j$hs ymԹ=(,ebszd>b.[D88d'>u :~ԭo 85UmpƻqYw3p.s-&$XXO1d2 F2RL^2˯I!K߼Ͳ}l$Kyۭ $,,׷e²G7o|22Y ee!Tƪa vL^2ɲ;ws M*LzJ[-ʶmkgR;W%Ie[%K2iJoا*"HmlY֘?Zdd[yk%o-aϴV޶Y|-e@?&ȞEpL~r ڢ~=F! =ː1b]z9.VeR &;6lVXX'0jF ZLQ&~3 MKml Ű^lB=dlWنII%o{f~i{fY[0audpW\}Uà%ߜOϪӽN*$Ħ$5zeZ&ץW#L*L9h*ܛA-JͤQf]YoWݜ`)&a0UvJ8ͭW-Ӄ:l燕M%@ xCvmaͶv M\k, !3?3b }A?r"*\ *'6a[[`4Penv]ÕYwɮ.%RvDrQHkc!1\&}zǀk䲬!E-$.7ّ,;vk욫JYd}?UIP=K>TbIvA=X\YL2vd=dm_,Hb'~ޒe[|ȶdc Z,Iu\ۨ,CyC=Xdk`2 Mn,p6v56s-Owe]v۬b(Impۜ6gSlI6&ؤؤɶ9nol6}{pU[:Qɢ7x:ӖoZVrL~Eu 񄕎2afO͑`ߴɰv* Kiۅ F-"0[w [k u1hdWcW]k؅æW$9vWgE&lmcP'JK۝ɶO? qR1۸bL>L[>d+,vcĀQ`uZQ X?ԃřL'RvgFQx\%oU;UNVd'罳jmPI*ɪvH[WUJꌬ:𛩤$J?{*p.g[4\80~Dz:V ҞMXm wxt/[:^9O1HmV9zW9gW v:9X-j=X$׌Z"> i=dt%Jz$hE Y  1;6ZQ ؐ Ç3*Lkp`` /8:SO0Lw2Z mq BnqoB?/-~JvJ[M/&U[SN}ρji/ޫ y=ZzؙuX˓*u,3c`MOXE!+\{dsfI!c7֒*k-RvG͙egoM򘸬dL43'z8:>:ĥnd{]mwg۾zʛ6VUeceYy^پuwv`w,݀ :MzZk:\"4Ҙl=>';2;ְ!49Rd!6{M tb ӿiK2>K7chl.'#,YYdƒ-F+2K2K)2Zhg2tAư*U~^}f96z |ttY:[LoE'GAߑmt!;6o͛mI/lf69&'̶>Z$uɮam%k3L61`6]*aֳ eIIL/`^$a2!$Y]TEwQ]z*߼)ilaE(DzSi .lkP6[}ml-mWU5O-cZXE׈ѭpxŠgS=y_Exto$)6G&^Iy9}'UIwe&Q~Mw ̠]9we,822G]!Z={c@6{fÉ?iǠMOXA6#ZȦw'M鱍ZͶuml3(M:Pmᶆqg3[CfCzkz"h8Π,ny;^>hic ~`c+g/W"џ˰Yu{㤺f"A"n97VMeSDdT)'H0̚-,|,Cl^z^n~ds| IձΊC5:=2|Z=H6dk/K(mi{|u c r?%'YHgf-[Q3H>l*oҼ/ͨ33:e@cSxvV BwDOUDpTVB~L7՞UE-6qbڞYF1dn2 !u_e7 ӿiϓaT<"vح+z)k!>BzkH[Z.dDc Z$,>bĀQ0RL^2K9cW MFQ˓уɦN|(~lvلzv| 6[Moggզvs~BIO6)"C-Mpb}{M1; AI_Z8=cĀQ=dXSAZֱ.dvvGu31H1wg,2bH$lq i6FVmYnol#|oy^oۿyV}Ih@,{i=|x}6꺣n*[6z^ag*,#H2=*_PVb'ϛi͛iovBexʷB6ɴ+Zδ+mLӽzA4aJ,)\NuLǎZ^bȨgW=oV $֐^:?,Iofֽu/$'E-#y k:,Y Kvbn=s$ּ/ZY#F5UE> UВ32idZyʹ-)\0lm|n#:Xa](M{.=p-Mf d+K]j5727 c Zec Zo-p|U4jy;:Xmb Ժ;X[A􀕲CE }~eF={,݇l,C;XsDpVŕ^2'ƺ7X#@Uo .j`°ߞs&~hmE{I6nV>ӈ_ԠcсljvJ Ľ\?ӊ>XRRL]}UV~|x4jMcu8'Q㺱ǠMOX1;Pn:hX'a>'fp_T'y=xC@𿹞$1dbIZ,[=(/ѱ,ɲ72j,m B1lntoOtIkaPȐ]dpO+vfуI6 RٻDզ&3z(شHP.dwfŐ-ɲ%U$Ny˨Œ #…yn=_Χ|8/߼ɲ}| 2[b ĐQghƀcJ3[:z~xhtogk=ޡ:XcbE o㱺12ז3{̞=$EU:VI*iU%-r^mYn[VdLL^2ɲLZ,I vl,F 16l1d- y^eGRX{u7>u :>}3bV{TV= *6&6ZqiY{DmTxCqMZI˶3mj\M^6ɶb6i&جnZv1..fO|3_+tא2#@ xnUmmT뿙mqm(l)s/lmme[[oji8:n&'nt`a]MY{y]rmOEL-I5nRVq*ޤ[e0ZM\duL61`ц6O6ac7s=ݩ=xlz3F-PnEއc lT8ٯ1lĝfCc<=FaXJSb İKOXY8mUiٶfUmd3WYϰ2b̰2L2l #(`LEv_m)s6BG6)6y5!Ri~*-{dq?N/Pǫj!]h8@;!'ճluճ`c nzʦ-9+gM(߼Ͳ}l,Ky{Q%ɰy?=Pß`[ώ 7?|,ܢyKqauy(G2!#ftZβѲbFe$!&F1FQg4r;;lkHMa762 62 2IUdBO GeY2?ҾVSe$[qu4'(mL*\kYδp[4i),L%I9_a89J T ԍAd_괌(fs+**uE-#U eUuOQIUQ˓ށZX*=G**-o;!dpM{gٺ@]ORfISP'L?)J‡WSnI&1f}wB]Tw3䤽 R#vd(F2+';3"<,[:ɨۑ ZcK &&e60?"{Mu-e&ؤ^>bu{-!m-`l?L>J8e]t4 =x<~fŸC;f̊eCCs{^=#CaR $Ǥ1$f(Hݑ{OoJ%^ma2=sz)w C\iEפ[4z2&2?9߂/ͬg虵oݗfV~ tqhTIuqh,T#'*պEu,Efٺ:,ŐxwY>8ho-,%F@lKOXE1eZ9C-JǐQ˓,r7@ ؞R aZ'aB:T:(uq֋1iWx( Co Y)]=AAᢟ֝*WZ+0t+f&ImV!_.ziC&mLŽb^*l6lp(A(T~w(fЄ:Q)e-!Ƌ4ͻ}G׭4 7mYу:` 8P!kz(-smaM=#BKk f.=xc<6FB6N) a96QZ7;bMIqb5ŅN'V4X,TYeE-OdV?OfX[fIqv15n]`dY72l,21b =,FضOm_ dfl[=z8^GJ+3ZX{f}}p *7+5Zu LCA-fp n ٍ,LB1`c&-S5<;ބ焳U4nd/^Uo,9ۣ;=aEyf^Œl!,{aFfȔy3eB \H,2䕂(v|PFLх)Z=b9tQ}n'N9 b1'~Y3{r1p1T즠<LO}1TԢ)9}fv7%$IT*jyr^'zXǀjam|_c PI'z(lB܆Y6H1l;tFcvFYScEg6rmjmƱ$n϶۫bY xlmU6['ϫ 3ȶ-OrM5F1le3Tl-a6[-nû2r6jM|`cm`kFO7@l6'B6[ ab6.y^6ɶ޳j$橶yV۪7Jd[ڨ|D&Һ(VQ ؞v[PL2 #(`qwC6wiœkvˑePU AeG'JFv 2Nesz2.4{q)6٥'?O#v i Z|$Fɷ2ͬ},K1X‡LW41F M݀5'u>}1K+=A5ve d%VfWUw=N*{p*PV8nBiMb}q8J<v˳c="(VǞMZzfamY1w<6/_`Fb0X& hp^8Y$QNA1 ˻G\J˶=C@vF!hh,oEg Lٍ5t; ^m96֥'A=xcuHR;( ٥¥uE⒗KuQ2$\å55kU Tkg${Z}eQ~/ 3cBC=B_"'^H3>"$ԛw!M? ᜽poRQKYnBQ%QԢIKFIEIFQGFl/';tP(j7WB:ʨ]iE-"N7ϟ!?.[1zpQ˓3p7]?6ǀɊ'>9rqV7fVي4ufuY\n #>2_`7̲3߲_+rMv7~NhxO>=i` ųO?b'¨I{XaVkKI`[魅`9pE|iNޝ%lIy7@ DnK&&#(-]}ml̽oQKd6ylIGۏPzm(C;}|0.D8f iR|7N8}86öM "Ck!Hdpj\zH%\zD]vW }e Ќ5E9ulm=qn18nJ!aдB0K{1`9.;JU`Ra>:N8 38m]`+.2#tP֩0jysOCթNQ YvGe"U&dgdŐ%yl,㼽qQKH2R@b>?M ŗ1T(~s˓с:h lR=oAxsDE>c6N+|3bI=xhqЕLl#z( |\6wkq-8Py-O7ӮeUzfa# \5oU"Y|q(*]}=x\h/(qq̰hp}>7jLC[o=Z>^Rc 7 bpמյgv]\YFQem-[msg۞ٶv+fٚYF1d'Y֥ʺdZ Oڳel{OQ Y&#dT3賝B"]d09QԢ9KQ`**Yb POhNjԻz0󉄵qpV JZUQ˓Sz8oqnUC%TXCqc\^b-nBZ['s=6=Ѳp[؆lj1?6%ᶉtmZ7s=:8~loB=Xcv1 /Ӂi, =GePxlڨ\XM7 =lF1lD6[ a66aKaW Zƙ{!llk6rׂlm99O͓m"lm!lIa[eNڊ59fk2'(]{x/71`eNn5b İOxd#l C6|OZLUn-NufXv+ ஆqs5A^yW&{H'ݩu 6DYw*9ĠɎ'g*)6–w(I_ %8maVq6`Eᰉ7Z f)D*9KLmԗg0gH.2˖s"CVs(U=~Xvso53у:#C73=|3+@ gmpIsVjnny2ozXǀa6Y\F9 =>qI -,ɮ~.=[G@ ׎'Yu:82qA¦i>Ynҍ/Jvv;zmq ٟ']/,! L@]byc ZP#"e違KA`J`0)ej`Ș> ka=ּS[4gaxF&]OX}9x# \SY`-(*n$PqQ UŠ%i-**jMۮJ -RTRUf>T\EWa%G4sЋ~CƉ%W#(tq eK+;7Ʒ'@Y (n`ɔILA8jz6ޫgHzg tL,jynzX >IR=i"=Nӳml#+lsg[o[msgI`[+N6rj?GQ [f>`q |SQiIjE2v fQ`-C>czg&٥J7# H<)l";L.`9%mp˓nԃ:hQ 7c Ġ }³D.օmVl1lI9vNmya;YnluV5le['M,ZQ [lӥpp(9ܶ^srl'yX?\aKj&OQKdI9k|z.*^=_jpuȚPѿ`EC䇗ADpjsx hַaah1h h:Fd61`{J$lKv8 |czm"F {`)I|-,֍֯6Nܞr ͞0ر](͞y%fH^/Q-qZD;H ̭Y;H|lyo İ?vDdI6r.d߿Ig=hf>6j{=lv*ې%fHپ mSf9<=F9vˆqa[Uej~Z9`O쑩YF#I%;*;]e_+ҳ`eR8>$?K opM3›}=+@/ţT6 ~zϤ vi6Nz, q!LKI ~NT z>A I]A4?ď³4T-Fneʊ5 +Ke!W1d%6ٶS/d6ZT9Hʐa;-ޣd+hfދzɶ^6(m E,vS)_:K39:js~":9T5GV͡S5,a#*2kYuhŶ bKXgfPGؼ{q_!n+_ =7}ԶO>l[\o İ˒lX6ZQŰƶ nCL66m4$9p_,MG6;-{"Fn % +=Ҷzc#i_jӀek66q:Z$uQz67O +|oާ= ;Å %ѳ˯E-@F~10љ$֦ۙ_vyeW??E ̋ Y fTqHKeQF1`BM.ՕiuM2l%=mOͭsNY*k=ZWY:i_̶$<מ"\#.w L*7ll(ldH[,&%ѦxkbV:a + ?,i{>/_ͮu}5uNFm%}]Z# 8ɯ 6dR+TWNQ"C[ƛq4e^W ě)j:%Na3,y9>3k$PT#hrN9uU(UE 1/Oij5S}nGq-t%bh7郗`m:qxbY[pCGx>:¶z-\WmJejfXlqMl'Yf3#lP?o]l_G1d4rn<ǶdvV[𗷽2xq =#O в`vQŐ]$,O&yGR2h}hS6[_౭D=wF@ Yt' T2'jhY67O4+!݉22na'O6y%dYylKa;i/`0ifUvvsU ys W=t\,/`IiObg1|}>beY4r|gu;F~hEخgoi1X4rl~DAR͏OgPc/.=EN4J ^FSI`%͠0mg zsZQu+ޕIۂsy [?#BBy DIYk kTeY*kr00A +Ď 셀1|šq6Q=$h0y) XVìg/)E Tښhk2$Ff5\]{nu*ڝ>ﱨ6.I& Tɦ-6 C:E= Jlԙ}4;??Šc*6I#GؾNF1TF1d}cUTA{>UfװF"I@υ3d Z)ͻ-k@֖&%,˞?ٵi C&W}{l>Y:F#7hm l;Ƕc~k m/:³6cUy7^1lGfn0ǶlaG/ϼI;F#/KAvlȬpϰM#7s8<6ݶ3<[ڼ!(͠Y_\ك7V6ۃvZrF1luy6rm/Fqg3#l{dj4vFnv#Z϶6Nl[m{ff;<ŰٞgJY660y) XYVPmZO*UʃI3x,I|j+fPG*ᶊ1{uߜWzlCPCfPL/Ӌbpl{&NH'ToG*GmV>_mMzF^>*B2lksGvMa(Q Hl)l}6&~%wc~ͻ k@ֆ<!%3 k%6F3x,rf,$ɶv͠*)ޖb?4Bzh;J1lyGm6˜Xػ[&IH[I)b\J+RK;Z,×7LH6Byb:HGnk  i~6 [3EZ HX胚~ws_ 6Hvt߄O<5@:y 3n筁0yY (6PŰ~LMUM%I˜ZI4#($GqR?J^B+Eݳ#O6a#lT%N+bhfުZ5`kUm筬b>v<;"9vNt>h(mM3x,if`=6yY mC#dۨF Js_lI#d[ :ǰCGxaGj˶] l4bF5ܯ~6Xvζ񵡓Vfܶ$ۼ heI6rd_jkJ5j*3vJҞEZVk5ٳO"gϲٓl+LcXxeI5zl[evH{?4Bhh1d4rO+\QkoĀNGx#D"`\&*`&TٍR5JJm4$9`K}{Hk^F/mP q&˻bh"dX6!֓g ړx-ď9[1d4Ix,.xX6ܼ-GŲ]692o=Hh{Vv?ggij+[mVzW963m ebx _eO/{2k Mp}D=.]7՟Fne [3bFǹiumۊLqXo4 ۢfG/3BOtYSe٩YvQ첣4IhdZ/v6W˒lm(l=Y 'Ηj3F1Tw_\oi>m y<౭ο/9:,}ulkmܶ8vQ.j%vI6<=%6WxBa/BF~i2?4ǶP; ϾN,a,}umlKmbD?Z 10B6kF^d#G6Z:l'hf^: ~;1N6baka ⶁò/ M]-sM*yO`P:pP}wSi4l{o<5 &6OT}SZö Y Yvڶ҈ ^G>3OIXCi[egO0²DiGi*mL5ю YMa8"Md_-sn`M3xlkPw70fkh#(쿘@d;ToU vR{`Mle+@U [V*7!jA3T܊4ԺZOօ4U43Ⱦ_>О"zd]=$$M! Ju6Fd0 Hu&SZ,:srrWtx:URΫ  TThvKXSᑗQt:~XyZ)qm [bCp3("`cg kU`/vlW=jWXF#/E"`sf؜ G`$i8'֋(ͩ0Bl [;X V}cY3Z:a Ka֪3("`G} —sD tċHYk'^ְ2#$xtau%VuOF1db:cEf>K6?.YF#/KAaZaUӳ6aGmv'6#ֳ۬F^d#GؼZJuՓۼY]îVgیw7H0K7amyYaGLVQ͕(̭3:{?k3+X }1kCXm%,Mߎ7=V=u2-e1X$:]YeVʪ[Xu'VCYeZGYpk5jpU)6MU͢U\T;C<)=:=$,{Fz!Bb#<ǀ"dgM/Ctִ:6smڎGLfրm,xv:Y [i+kxLvWY;0Cl x 8hֱuK#7Sim __ŐIGx@!8qQXC164ѣ0#fC'!K\˳p!Xs'5h&]L2Eի(j(jnA_h5(jyԼi;"m59$0TFR孯ʛOυ׷zfUy+;JdN%7pfOٕSɝ9yJS4rz#7]KB(|>POxĒCN,hXf>KXg%Yʒ}aզ,)^1+*d+J=:Ά!Zwco:bv r-鴆ŠIGx>:N[8e?l{k2# 3xlK@VL3|~xK7EP*6ȭ2Fnm  ۮ`,{`6}\w&!ogFy=F5Ma X_blS4,&L*;CeC&߼Q 4x<SU76auUcϏT$UkYP(7:6U+}cQmԡ}LL⑗\\Gc k1#4B[,o.:ǀNGx>"6p g\]c)]ebc$=qam+ѼN5,#Hղl5y9LxJ5jUZJ4/X*N6rmlGmml]mmlk[mbVU>j#lFhh_gm[b"N6qY j=5>BzwĐ{6k@6ʶgi A;,FL㼢)˼%֓-yula Y) .U%=Аơ#v>7hm 6~Gc{vߗXb'PEFϲѓ(bD/vrb{,αFW)B6kMhe,x)4B+ַ9g6l ǵ6WAtR[]VF:o r]d[_mغ %~6aGm#uF:on$F^aGآ^ۢ;ְgܣ7֍a nOȃgovY Yn6YÞ&Y#__8OkmX5Wj:,Fmmd;jRjfPA:NaiG_zE1\e=ٙhg-2?Ű˒l}g}ٟl-uB$_/& Xˮe؀ϫ!\ w3b/ X0.]?7練+US,ĀNGx#Dΰ6(L迉63MI澆heI6r6T6*bŰ-Jx, m2y9zVeN}q =#~Ӷ{fo`mŐH$IJ+k6&n/{cwl-ekQbe+C,ۉmg[jUl4 <߲ mN"d3æZWWUw1#SegYK86ÅNflͻ,k@V:ְQϒiրml۩hͼ5m-8jԶS=*TC%y~Z} QR )p"9ihROp:fXTiݝ'WCd3#lud[lRv:\MmWSIuxR" ա6r>֋ WV> 'lH +X  F;_VV[IxVF1`$I 8;l;z5ZEO+A _<5 #-豑12?n;tg3#l~<_'P[_F#7ZhVQN2RŰ6V _旊VQlF#7vF1l/Wj 5xaEJ_,l6|/Zb:³ 85pÎO7j!L.~ogCE#/AL g:لRDR)HG,&PLÅ~N9 q ;TfC:N^#iNY]^4jҞ6RǶ`Eh{1>KXgWCqi>6n>O۝=O4t]R|c[0z v)pj) *tw86jb[͇cMR6-=6bp}h !H'sݱo!6jĀMNc7D*^Ix [dv/D;h&ޛl#+lͭ4A[f鳑69L4 *2OfYf۟L5DF#d\ ve_ujZq5Q}R)T'Wd'g'6w<1uņ8s|g؉5LǢڙq&Xxڕjf!X^ H%L=d(ͶGdl[MQ_jۮZ]TD}5i&bjK.mo-fqH0R ?ZwرvpcI}n ܼ-YBixd2Q#O s n2?bܼPY6vQŐCGx>:l^L M>Y)bŶOGۄF'< yE6^䶂,BնwlLS-c{Ma3T[=j%hf~ȶ3V(6rml&P[[F#Cn @|F1l}m$GWM.dGϝY6jr4M3x,^є6Jr&PEȼZü3b[*];ջVפ,kS=P%u(TCf2M!=3F^nb3l ,LeXҩ*-ӔEe!fe/VPTvUEQO>i{_@b*[Mm"7TTY%EKPXSS።]yQ9^8ݫ:J~K7u:bh0Ƕf4|kLͿ5DW&Y )vTŰe]ac+l "XihO> ͘07'w2XQ[U TZbv#1b'U-Sosј Gx>*Bp-wia?w]Z/Fn޵ %مhǯ͝c+1_SQ D&CF57'lYE#/EA :3:Z%h݇H>e\bQ֙zZ-6~_.bw:bMF\ ͒`HvZbh0Qf^32F,C3xs7f W͙mC#$+8! JܼPٍm H0ç1d%6p6kд}oj+h7catU3bPuj U ۬mm4r3{Kfwofw7Q (jv9R۬66<wp [Y&fրnt3fi?D-!BAɁEmv 5WM68m :³$9`x06vzg6/U fXl $KF^@!++1k%)E#7iXvYv+X(JD 5!&gE7f՗jWBYI+Xl(܄s=CI~eXb}"ىu$i_AX4r|g52٭f7m<4j0mg"%y?HQM^?0 V6Ce`qkj1?PMMߺ}~ X8yx]΅mNL;xm7౭4`ǎډ*a1lϠFƫ#ʹF1l[i)mLMi[e{g#<ǐ"dfYE1W7F ';3h&nw`1B;K0(6orl U{muIʶv4rĶ56zlnHmcD/_f <%._%љ&t+X }Ul,Hoc_,x)4B+ȅ͌mbP۬4:¶v6j7VWե6<m46r|Uj"WE=gMm${S,j_59SMU3╸>Br7Vİ|%րm\5^B8m:³ 8_uͿ F1l|.cMI찕̣he3#lUwamc*&F7~ Gfv5`ۍ2>#zzحῥF#Ya-jm26B3x,Pf bجѳ׿`{m5ݎ݌vl?x3xlk}G晗FkX ,F͕m~EKͼLc|S|Q [?j+6grJmlu, Q J'KalE< l4C߯]<`IZ s] `1`v'Gx>"f!ߎ?4B/.e'bhf>D>BZcf.,Fٓhm-Egǖ'0qw`m ذ7>o[[gGx>:f=f)L݇{4Ŵ3V(/"dme}TŠ4 exȃE$նn.hH0B,J8L):my.ŀNG&ަڌ5@k 25,F^d#G6l+Ӗe}l)lejV\;*-bT;fNϲI=qc9VY_Q 1 *B6e^]rvy7%/>Ƕƥa  aXGzGY ʳy5k>Ű~8l+Kmya,Fm6ܶQ N-_ !懫&#|7[ }%ut^М"GEdQ?*SIkdbt㏷A{Fdzyw*ܜRXTcj5,:³|0vlkmwV8]m6o3lG^d#Gzɶ^VP[_6F@6aMmoIy6an<&F~3ld[K5U=jٶzɾբZT&{Fy>Br7)FFM~wV<[۱lmmע5,F^d#G8n;Ɂ6 g3*F#7>im :~sQa1lϠvNH8௭7v+M~V<۬lm77scΤ# cxð˳FߥQ#Fnu*X:f7='hY9l#-}2Vєj%ܙF#7^iQ?bV7Sel=6joŐ;<8d.ְ2$ƈ_0\%hS3Fns==k* {xZϞŃ2Nj_PϮ5{0o7CyɹrOӫzjWO#7StJ&M!*SUCUSJ^UV\|VJߺ*SK/}Q7/vJ7dHD#7ڔd6{<eomcmep=0+؟7?FCbPz{`b2dDZf` @z>@oOM:K-@/tO{lCemdB[ O`ٳ̲5&X/t}z..C2F^#D.ԟ7?a/oshXއfؖpʨbO?-q2?-@UEh*T|Z2Fng  o|U+"`V6]Fbh7m+5ԙݶs ZtgI6rټlbD.cY?$dF#/ILoӶ_b1`4rnSamp)⛓Vy,l|,ߥJq-UQ쪣Q2jZMZ+h3!X^}˯ʮڃ~ǚ1?XSU5:o1T 2.b5׆` [I&y$k; ӎ%fXlvgnڮm'V[4:6dL}~lBV8}v,F^#Dʰrh3kruiUPrb ,Jr֜;ͺUu]kluQ ל Rv!ďz&~r,c+R T)<»ag͙!Log)wDq'IGE'vU =fWЮ:s 啱c}w}!Cu6 @)އ? azK L}'Ԫ$/ -t֛C6\wTU4R,`ypbQ VcƷ4>HvF(^G=A(=U).4~鈍hl_މNa qma2o !{/E"`zaSا 0ŽeV; fݑqEnl|l%bhm`v|l=wcơ#w4<3P%{:[8)b[<"d@wG&y JX5ZU`FG>6e4r$)B6$!+ߍ\t}{UzW/ҾM!T}H5r+rF!ؾmpͻmjm}Eha^2VάX= ߷vmv!CUzv3KfS:el$V %Ue2"_Yᑛ:*['la߼-q.%ȐTϬSYIU3J uFF(NۓII}5fUTMna\oH0BleRH'ݕY'+`z!XCRF(A\a1Fnm  f'^<ړ>v|sFvh=WB6OO1`Xo٣9lmb~W0W\ +l.Eְ4yYa+*g}@Lǃ dKH#̵$T`Efg"(nwj+m֣Y4Ƕlx7 _ǰBGx>:6{ͮNo#mɆ6aKma%vQ=l&K`vta FQH-f0BGȶJT^ҽ*:)=Ff7iU+j=FWJ ro!˰#lբW[ ^toKi+Vl)l ,F^#ă/~vwt[`G,M3x4|?1A:ǗcvYie}+ڄo \ IoB<"AS͢*+T;g'@H* VUE#/ǚ?X8cː{ݾX XڛfpfkX ڨtg3#l{f۞j[m3ӦZWYYֺʦfvͭ=E׉-_gl%48cW3"I@᪰{{y oN} Z#h }#\M?B׌U0x=^!>)J:%/  `G^#D6̫g'H{!` {o{O@V3Uy/#6oN-\*CYedVJQ}+jNE(Í3vU'pIG݊Z5 kEe6;Ya;8xzڧɨɋW[ <5`(ƍ=vc؛} a8³^CO6bضfSl6Ҷ춦ːcDaHkgkr Y [fX` -`q_y##>/9 }W{Cw?_}6ܬ<5ڨ?/V Y 6R[=F#o܆rێ[BgX ̧fTFR'ǀFGx#D0{Haގax=W/fڼaɳե6rD궎jV+ ~n;to $vy}F#/ILYЂBHÖXbh7m `bͥ>\vecz#oѮ$BWANɪsr^sQ ]yN X{Vd}E6U5V$w2/VꪢͧsL&/^"x]RKMR"͸f:It<]{-`!<{"Ռjֹ6`-MF((g jgPA8fuDʁ(]cm c?VAyZ#F^@!*Y2rXWnkAL]x,=0ڎ*y>j'2*=TR=1A,fd=PӦ $?~{ C5;/>DGVʲoy$ϑ\ ;Ioo9q(mfXlܧcgPG0DTBžX'N,Უ2۴y.|kX|e@\TY9,2OVx潇Ȳ=X6]v8R#lth"y߻n;)hb3Dlk\F~3;WZ←\Ry0/&{ƒF1`m(7Cz{r>o{/E"Vq6JMՑa}F G`A24U4rEaƃ%Kq ٻ,a`VZl(xNюK{N-M1Bi Ae6{"]/xL)ٍ!bYz/GdZ#/KAaW"ޝlkEٍg[ l;mj˶֏Nlֈٺzʲ4.CL2̾lW: UT<_=ɞYaJm^K?*ǰ˼7CĶl+{igrưgPGؼXmsbR[;jk'QXj#heI6r<ղFn}l[mbvIl' ,Q >j[Umf۪jGmge3Yhry닎Qa8/ޱl[Λ-XkC~gI6rmlCmmeȼ̛?Yj[]c Z%a[eMࡸPw\}f}E /Bw?-lw_m"5@k]ba++uD//FzO]!:6l4AZ,om &goavOW/:x~g3#lug[lxhmcNWZj[+f;~#/K#lg[ǵN#7 6aN3#lNqTYOMG ]ؖ2d gLZb @\ .ldPWlYecjMujv55gͻe~Ces*bP۩j#ln#!s ۮg:kmB,X ,&՞m?C(VljovGj>ێڐn>:EKX63y}쎄̷/lp Ym*Kpace4jwbyo'kEedY;*&FYC#dG5n;fJݰ%F؆̥݂Ű˒lU ۬4:R۬[-mwDXr0y)kX5e6:E[j $>fTb7x)_[瑗Ϡm}n;=[ʹUvz]uu!\d,]]va4_ab.]a(loXq nڭXN s,kn:3$ۋɅr[I66k(k%00A +aCUfܬT֜5ӏSF U*F 8[<ᑛ 56=>[ <:62;kWŐTg"HV{T&D̰(%դA˛Q?Wb%X_V jom'-jSYOؿjq,!r~!o?!1d4rn4CĶd ލpD![@> &ad[a;Xl۞Ȯ1%YY %p1Uj=nҳ)kXٔ.pEGx#DZv5fy 6:-ITd֢" 9,@3:жN2 "= gMĪ%h䥈"`cd kKa'*ߦF0GVO k P߰_gs* ~F롏%v;Z ^xO`ƗU%sh0KG{pD+fBEkX нt=EQRW˰8\ ?5>.#c\dVURx}5= $M*{$M4c^O lJH Lm 6E%y/*MU)lp_rת1o|Ү%j%09%-ܮ$l5풖wKvZVY5[f'֊Wo=}VɨU5.*ٵoVJW%poa.'cVl*׎kYf)6qm?m#T /oX;z8pA=MblT=\ت_/ RJ̵T_)G˶| F˶y{dBg):,!_hW# C[+ֺak) =R|a:ak:fW}J{cq*!\7˞88"8k܅dV÷?K+C8uɬ#@U2ʳ^2pIK(0A8Ix6JI+B#iud[ofjRlp/"ls֪(ۼi3Z=N2+F̪y(sg*vClL3X_)tG !k b`v#\?)qI[%C_)  obwbсIw4ma1vB"o nO Ba+S!-:̝2d .>SJLY2.UӟI 5VÒݥX ڢw [`n!Y:^=c{m]c)*(gP"cX *rqO)ի| &ZNΣGP eߠ'8!L{ϙ"Nk)dMm7vf}Vz }jj\,{0s`YuQ?/BlcZU9=Kư0i,&zf6{ 6Wvr6a=fͶYm{޶"dĿR1"6Fmmɶ=MݙbC;J5/5)-'ޢjOkr2Kp9&˟m_פİ뚜6o̰u]߰34a}MZKq>F5ekʶN{p*6!2W d= 2bi YqD-g06x4`Ɛ,KZ"E 0||6~kĶ Kcxގ$^F్Z'A=bbؤ%Dm~ٳEltʔ?_]aw{Kư!G0K6: -la0i9i{`6PKI|`SU_WUqNUmI2񙋾-e~yZjU#UBIC$'$II0r H_^уɴ>`v3Y(^壥ܢBբD!ZUKBݦLK%Ɵ2>UUj+\}$/_/Y K(^V?|]_)M63lpFa1hYMAlhi3 w8$YVoeغ]|P_wrJQõ |l>l>YGI|l˟2VJmʶq{?_[*--'5mM5Ն]^f ;!Km޶QlW .Vp'n+6{F6+VDbmsg[ֿl+3ʼm7['5oYMn+_[!# Q)zƀwO1,MZ"Kp9`qml[I|dڸe#V0Ua;.s#x9-ȽҤňrl~f=+旴'-b+=۞u۞md.ml{f#mzI_~f϶oYK X)֦!!k׬vfϮhmmHo$,kkϟ8]XVҫ.iÅ>1tΰƒTm%[>i+۬}a1lŽ,նe [ĶWI B%fidβnDe k)Jy*J5gkV322/ Y˰3깳'-66h)J(զց6`VlG !NV{8"8^(aj#]κCs!ZUWrEW fO`&Z|k$BՙalӀ`^gl]3f >aG2avVav[7`s'ؚ,"E%þ\/ NKZ,=xYzO*qv8oTZ`=WVp`kga/1`ώ#-ܶd[lr2ߙoVNĀa >oX-I XJ7 w@ fc$Db&'r6qAe3e{J=xg^J్[&-%zn[m%lfVWuʶ޳m&-[ŲEl뚷i[Y[vz˲a_sҜ!Cw%s >Dl㠊pcI{F &H{dVB8L.?iXQWGAsȰ5nJCNV3erl[6JՑiuܴ.Ɖ;!ZVVկYRl|MY֯Ik햵v%_eeYk_63l~xN/z)?RyƈnWjg{lCUߤz׏o1Pc :`@Xhe; +Nɮܮdל&1`|8c0谄pسn؃O8A쑓=fq \EH|D aϊ.0c3mi9'zƀmc92Ű9?%znm}g[äU6iygqdžUӚ2ŰYmI/d"jƿR##މ'z YŬK2ŀIKhdX36M5kVI+5j;PQum+|Qz%RD*`Y-x_YqMz2k%-ଂ/]cB˷|YrOrGl>fs4& }NlbNȶWy=d+]eSclO2Q[y-VW}ӤFR6Db6{2ޣ5ksg(myYVm++IL$ 6wͯy;]VDM۰a# 5o[-H%-YV!Z*BH*:_'o[ۆ@X,i A80vbV=QPG#w֫ej>\ |jmPXbpp]eW7LZJ/a L'PY$1HeRfJw] OZ9m ,T`q;VD'q6p.0\ %r m ;,Yf్ݨ{=b A#, bCV6a-rm}flٶmm6=^*'a(UO{6>'z-i8“v҅"b}Addwfdn B⹉}s Au > Tc&Ab2@܃2@ɠܠzPf M!FğmjL!>TDʍ0m m؃&Uě=\" /#l=N$ՕmuݶM3bIKd)6qzme7j8lJUz8?Ѫ'KXPܜSx]E X ~ozіN=CUZ Jf w^vjQ3 -*zYak82k}M*Gj+eeɲ͙Db[1g,5לv%_eeYlgؾ\@(OZD𝰱7bȖ`/sMQ}F0.2pIKHXV0MLWW6kPY /sYͰjㆵeegYyi{,O(rY&ItIL+D kyۤ%DmZfDahg_󒚈ak]fJm =75 wFr8JIL 3I_RMj5luʐ0WI_?$I4g&I}ߤ3֥  H #9'ᶋ 7,HZNcI4*`l9GGa;sY0+g)ꨐ.EX8YV=H sճMU[VI U~{K7jPٓUIKYk{5Qq!cl{kQplr>c0+{>ZXV_qg/lOZ51A o_n`Gb3Ucf#5wt_FOʐ,JZ ]zR#ЁDJO|XU["Gqeܲ^,;dN|K2dEeCV{kDᲱnXI֯9;_1LZNeϼe̲VLb5gce(\oZm܆$UZ #>遱[ìu,hEư6i, _UMbf϶>g͞m6i,ݖn+Ն Bi*\-MZNf۬>lfƼ-G*sOQ`p/Q Sr PXjzq(:@h#{R{) oL(X7LZމ/|sD?ά &1lmepۂw>']wVPayʹ#@V3cJ,l8S  3Vvr]mdXLOrVe o_ B56f՗3$>05`v1,] kG/-= ^~0&IiG1žav1,]럯9t-8_1h#ڃEд!1 -b+a1lYMnEmv9=^FI []VIV,S H=\^ m.6k%-'o 024+ Ġ,[3DKW|oi{ 4i9kz1@׬MZ2ŠGxnKR$,68dlCAuc$x #K%`Lk&F%4Wˮnjbib?]~lzɮ' B-LZy-z?Aպtm1H?YHS⽞E@+ w=ֳk82/w%l2i9y>+!R՚e}]u6^ƴa;VɪnlYvV}ΪٲJbVQV`Ɍ>T{eQ5U󚪝Mk%r *\2 K.TzExUqG4'}V-λW#cĎC?Y`}dݘYd;;{>Y&1dugY&R /&+}߸16o[Vq|ɫ'zİkxAs;&W˟m>v'ʶn[]6jI |4mvms߶lmsgİ-YfmrIuMJ ۺəi [ HQ`b _%NˉA7'5|P:,oLQ`pX7S;  ﴱOg,08mv 0 ~z2aV 3~q%U9yV[8i[ư6i,&z5ip"lwk-?l횷#&-ۃ5&OZޙld8*bؤdޗƀhvt*ö,CvV[\ [%Va( іOT"pUQ=jɦrWזkNDV-| ߮1nY֮%WǪ -X_v%w}-;]ugW6deU9(}m[ TC&-'Q6di# 3b X5l9Yp[i+%]4,ܷl,Kys m$V] 섵eN9ax\CNһg>X+ |>2`|%B /  )wZ 2`fՍ㵼ύp}F68#xĠ*G3=j1`=۬<\&-[bCKPC^ۘ$mldO< =m&-%{=ޅšea[]h]Rxb%R,WJx-mYG Xxk3TvpX-"U"p"?T0 QL9MLH0\SK!-L )OZ:J~V5V9a3n읷;N-cᑖȏ=dbBPU}ުQ3 uZճd7d$ɶ}3IK/^ %y ֬r;qۗ=01@@eBfLg`XY)`vx-?'mv-Ÿ~1`%0Cw%x \#t޿$-'kJ54>022apX:&iղFG@C a1dV##{ ^\2-*m&-'Wv;؃$jiC!;ƫ%lh;sۤdnT6m#lI k6qm ycu=>d6dgҶUA"X|`|o&`!# 3aeB8hl[ʜc$Dbfmf[mk3JɶRn3lmfݔW[fk &߶OZ6}5y䈎Mf[=a6WeBf%s(0A *ʁX0[eqr ٩AZb-9ٙs8lk=XX Jb.^ ׉˪e7c1æ4Dx<0*J?\m‎x>c,Id=|^1pϙ!w͛5_njt!ZZvI Xd3kZZt **/x$]{fl[BƒBs'LxOV$aBQRvstug 23OV;>rrSNgl@5ptlVSfmmɶѳMb̶Vwm6i,&6v Zޙy]m]ֻ8:+y[_Ҽ!Kn+Rնġb9//X+r2Oǀm>ٶ1o,ؐ`bzq(ʣ5ar2_+ֺmk =d_պv6PmWW}ۤ9^Q -&׭lWԵ˜Ю>XQ}!TՖyɴ#@V2̶{h`1`G0E akްa;Ov!0NO)mfٚAVKC٭I \vɾ`-\eW])pXvW G/@Ā&G|DCz`lcfl/[0>U[ưs̒=dfx'-a)ODck9C*c4ۼekjAyyճPjg ugM+{<KZNޭgY>dg?dj r8`+~VZw'6+S#=0N?:5MbvW[mu}5m`%Eȶ5njCn[wV%8mmf5|}xg&-*hClcZV0OcV,&y5on+MZNedZ7\KI %׬ek5k-~II]־f]6VI ڼl5kտV+-mdWʶn[_ٶZI ։enKKk:襳R{]gelj6U?=Y<:M~U ̞=*[Irrd|2oWi Xiom'-\ܮ>:&HXdhZ-VMd~[Un*YG)k+jV_SGa|הkfɰ5geX}Yll_s6ύ}M4 m6$ٛgYd}G Y>heŰ!G0Knե[۴ ˶ŶfyT~ִ%8i:'8ѳȯB-W҆86Ubx,&kk<&1lf[dWiiqؤ%d -b3׼md[/l;׼MYfp۳o۳mlճml붍mgۮml{vm^FW@ r>JGQg?{ 3[XfZ0ֵ%Rdᰎ?Y OU|6T1h|+l{G3`-7PҟL4M3zI'kT: E'$g٘Y& -խM§ 4i9v遱o-.cX $̒=dmW9۬MZNmIccM- İM-=dlXpyojX6׼vEb#>؃;NX|`C["E{/mj6mK㓨I˯6ܣ#X D +\nʮQ%-'mU0U0U0{2!%VۅUCx5c35ck5c3׌ٍbÒeeݲ9c+2J&nƉf7[oˉiQ6%d5ke[lÂ`mkvUٷlk-ۀ5o ,ˑ6:G|K86bڔ1,MZ"KmݶuۘmyVm׼m6fk6hh [E^b1dV|#>9; y;eᒖH=$n٢OZegL__b1\Vx#>{cGl % )0 & H=Վ֙!q2 ^,ɶ+?K3b[Yp{bR@R[\kV,LZ"E aXz#WSo?Rg^eFm Ncℐ?g<=#=3 :lx Ȯ6|ȮYKư%0G2,fZDfT&1hke̲yfv]{.inU9SU,놗H|\X>#>LCz`|laưp{֖$zXFleP){T< ?]Le&iA8j^He ՑMJg]geSڍj-f6/_(^=5mșGՋ0gl#U)(`hՆ!?ghdĜ!cX rt[rR,fRجvImr2Kz`lqw6Ma!;ݴ5[7% /r2Ez`lc1oV'lC4 9YpNuZ6aMmOuiC,6lkIKd)6q1uHm*b;{%PV́G0GvaƖMEd P$1d{JO>3* P-i #9'TM*iXngͤYoҬds @@*-$}'YjzR5>* )=0NY:pC2@Fr<15KeRTMw;$n$nV HMgiL1K-W `>$-'a+Am ȧ22ŀٳ[,CvWI[_6mgۚMZNɶܶdMb.m'|Vm+[m,ꡍ%=CւI|lͩ6ඡ'leg8ݴmb뢆ư=[ 7hClcZ+]ư6i,&nJIK^o-֪ܪ|c6򩶼=zUTu?8Yp=W6m VRx r İ-ǰي6N@lhq[WؼUd„JaTe0:wRW2sO=_A!4>&M qQݓ = /OR` u<(`_jt3ZD /֥CwrVɮ>2Lbʲavj+]}d*7L.?iʮYn׼f k㖵iYn2^ʔȆ_(rFV:ǠII|\s6ڸfm1-cX rt[r և4U>nN[/'>ymBm _uç*ToyABJx1>YfMUV2lwqm|m@\]eg/g{/ M(Yf=Ӗy%ϔ{R^D聱9-BktbZ#5nۺfmlmyVm״'$ml[׼6,ZK*lk5o'[Ǽ{AlkV7dm_"{˰-*仭?V9!dt6`ֱx#b=26%Rd0B_9a&X H;m=w>Gbxj͞dO==·6^2E m{ | .02U[>?e aS`!;ܶ۶l5۬Fmr2h_ 6FI ج `X(0k5gろ/ٸh뚳)mFȐ˒e a_&?rQ a%D-|[t"CX|dK["I.uLWXU0 0p>cR+V0{#lp?40!+JU2%-ᰍ 9#FOTP{PYUB J@an頥/_xR;.1`s3em i"p`wc AȒ=d۬f|~'-n㻔&y=xr;e^b) =K%>6d#^n[Ǽlg?聱̛&-$: h6VuLzpt*-'gf39\L=nu.1\#c,{),{BA5fV}$me<CEYOWsgPU=$[>.+Ya,.+3ìwou=89pIU^,!2II|k2?g0 eAʱj[?l5YoNae *rF3耱 (Aa1d[` +\V-Ee| i<)s֓iiɴ1WՄl؁-}9%nU'pnYGX1 :`lC9kXX0KcVeڶ(%u3/ŠI;q6Crޔ-Bkd A]`b6>X0[l}l[)[܍*G3o]z`lcxVܱ[*,'MZ"Ka"5Mbζdxnxml[IKdp9TX86md>8&Ϊ4ඥ! PnbgpP\"1lϖ#wkAmlۃy!NY4Dƾaƪ^2&-'gIGĪV,BzIp]3l II k_3J`6Gakưwܦ-ۘ澍ﴤݯ_3^,ݖnwoV*mkFebIm9o:%ymk,%,'>02acܰӖݬZ|C'/,xvƐ]ޮY nKɲRnY)Yfu+"[7l56\){+i#3r1~xǐIɻjm~7k=$l9IkBkLbVa0+Z ʮn#Òeg9/>u$Xqm9iw-؆l~Sz"%,˾~ yv8[EX_,ҎU䀅 N\ OWJETȼ~e{ DvlM"zˤ$n_DKI ^ BҞ?ič:aKfEl< x=+'mu]D Űb ¡6lVQT:&-%{zX*ַUn{4>6hOl'Ƽ%xmCl[["KnN[V1OEYw}OE`Z=LZ"E aV0[]>  '2VZagYJ0^)d;#;659abAձt\5ƭtJ[w7 Nuֹqk\Uk}͖N'dଊ+WXA&VLU+hk4`ˆ1,u,8YMn)(Kuȍ#9`5|m#C-c?rULgۜDM@ gK Vor*a㫅wlUd.#X D X*'\Q)ѵbdktFߟ vI81\LG0G.+7 EvII{v]5\+=U2||5`NK0v'ƌ-ۢCeʲ֤p͎}Wtd#V'< p`eb~tkH=d 儍`w'sړaV0+PD`pf6 z ̶>} ̶I2ŰG`nKw6|۰؆ז'd =i|l|'HlCvm6z՝mVuf6q7  [}&-6{|oOZ6>QѻǰIɼfZ 1I}p(0Aq3=XY~IтPGXp>3Xm "NՒ3?wRy.#  bFIyfӼH3"%a*O2M힦ֳyb!Mi8)k=M[NwSrMSԾnZ =FԿD=&9;aDe SBln j[(4j^9nXY_Icef2!?7)Ml(["?[2a@lnoe139wӳXbyF6Ye.@M{'9 T&-k|ӸyœLZyjqq3'$]s691g emv H6_$\Lw R}2Kl/һ .G09!INcK*ŀIɼM遱[Ç`ʸ/zJ\b#G0Kadqmf76lmOm{6i,ݖnխ6mScla[+ֺmKmCl]["Kmޭ{U̓-bؤƭdžX2Ű)G0Kms߶y͛J İmee[Y\zvۤ%8ܶmcY|)MY֚8f7{P <۟?yYl2_G,쐁P WZƍ"6v1 CV[j=KeKcz2l"i|w-.i %w1,-ja+/Vg jHk%n9b?~@?kn.|Cc74$RhphOzۤd^gy6İ-%mmԶMxgy57vvwcG p \g./ `0pIKY/]h/;KgG| ]}vU:x] a-m& e NJV3MbjW`&-sebkIKdmkV϶M[V[vlÉmkv\Nb[_݁s̟m~a=MZN=ӺYϰI깗ƀb{+4i[UMO&kutGUO&)={JGy%X;ZYɄ6O*J["EгLOZ P[ $ qdh ?dLPXBpJOl7XY@gɾ`IIJ0UKɟkto1LL$M qȦO{2IIz\qFfYA28l_ܐ-gU 9sq`+ƺiIz8 dVh2ş3  A6k5p Lbe|z`,4̰lm :oD!;6~lyg}*R-MZNeJm Bf̗ qB?g<=#{:Gx6ak;j'[Ym׼*=d6kҶ1obK\}ŰIɼ-遱['Uư6ǃ#%{ذJlh^&1lkg,6m%6BmY-9Vݝ [QY4DZN뚷| V7P6 Ɨf)6qvz> O˦;226ʤn\U_c|͊bؤd>kc6kmS2dž,x8ଢ଼yU[}խ>X"-'6l-g{(_zưG`!;i[lƧ!:lkIKd)6qm*m뚷yܓy]V[mpa1l#. -b{Vam6J͝mk6i,ݖn+̛F!aSXmm9%=0Ny7ඩ! -=dzme[YVmS! ZɲnYf,OՑ-ް%-'geس|khC֋$6eva3vNlLbF*0N?.k%-#; lWw Z͘%k9bsCwMȖXk1dI:L*Z\_Ke++fs'wakG[ 97~szԒ4X/ ["%iɄ*%zo5wEEd5X-!^/*<1gxfdWbxnc2Mni7Ӵ/T 矴ی=k,;;&z9s`1`)l/rL[;a0ޣ!̾rUDKu\x[Fe,{-cZw<1ۖ{Ya! ,Cv:mWY狸/I|d^2 Zmbz#oƤ'pkެdo}8l'NּU3l ",c›]W~dvE#>ڍ! n<^K[ nrccy-͟˚2ZOv+Nغ66N,ELgKkOZI.U4.XMbaEXeĀ;0uIzeeeہgV_7_;,` &e6[InY /[+^6ǰ6i,CvҰ^5h ^fEփf5/Ta mm,Cv}[[V3\V$giSiAhܴemeYYC6GlUyƀs2;5H2ŀI')%#efBfBf7T&-'ֳ[z'$l,=&a%S }3[qqٚYl!Iv矴P櫹kUkAYAl7e\~EYpxngWڃ~ۤ9X -DBiekVϲg$gu DO8qL] vFu֟LV[&&-?_mD\ϧix3eP 5E5fo}Pul̔C%c5\DlB XܬtUըhƽvҘz 87 gTM:jsA)XWXj+S־O2S-$X׸ YӃ?ldC[3+a[%z6jFF5LMU+~)JA6ƍjQW(xo̻g=.*8L2LOJjLk2Puj;@MP#DPϕZ#csaQb~cŞX!h`\B5YW o< (tZBoೇק M)AzGXUKsauJ-޸{\}xNoNta`6vzb\f:rrM>dBJdBd5k3t͆jTc<-|k5N$$C\׬]׬5׌3$&-@2H!Ed5 5q~A_ h;LZ pںZEG6cLgd=N9h8H8@4_6WF[FKDlʺ m;ضZNs׉{lƊm>lBl (xf{@"l72]h>&N6a+*U8d . ftL>XC~seve p?i_P}'([g@=ƅ%Ȧ3fxõՊ7n KfX# n<#H9D*.1M3F.|.*ˬznDXC( ?L9mm`63[7XJ{8<6Z@D͌6;(@6;%`8k?LZM⍺7wtN-+ߠm"1z0 ,D_6.vLڪekme3S"`K>`S- t2?Z*hɰ4XY(JUL,#\N6oz\\b9a?+={Vk-?׬L63ؼΊ+קUvڪ-޸{zH%ѹtp.7XN| S`d0le*S?Ņ?DsGSKD)l?Xszb Zn.Z٠ a%u\-\+. h\'Ox6X"Jx8m["lm[61L,'63[lՙő (.^L f eoP %uXj?Ã5UjZoGgjj#cYk`'cUwXX+p*;a&> ںk->AELZ Bx1t`\J (``<`kk< MZFOFFLEadywhi$MAB-  |WzZ0QQ1 `pq8[wou5>6Ip?iE֞.ORR *\p"8` F :Zl.d6XjM, ؞ d2hPTmTme*"frbH?){&#-3=iLh/iJd{G~vbiDZO{3=Ԃ[/ L '{)Z0Jx82=6Kfk#gM6haElmlb(M8mnvWۨ7XNbyp*ۖa 6 6gK*  ꥫr̟P &~δp>` F >l~ֱ}붱 h7|jx#*` †6nq6xFt)@Ӈ%6p^o^3[홭̛M,ȱGA ,Vff 6+6 ~]7pM\u[&׉6*gn{.Ŗm.%GJI8Js |kZ𻴩j҂tUQ[gc7Sl /ސmڼXlkK ~tό ^;O7OkG5*lRMK*h%0]0lb(M8m66Us:>=eD^2|RZ6`pA %"͵2VoL2غ6`Ε'R.;0%K1{L5 *}>l- s]lGReZg6XVVGf~q8ۆmtmnl,,u7VpfzZD&.ufŎ~`\gv:~tx)Vˉ|6ٕؗwa>]ʖ8}AhU J3;Pn=Qe:wDn\lr|C6}-.g9 6uDQZAA ,fY`SeKD)llrN6&y[ub;B̬M4֓l#)lB8++gA2od{F7Y2x&߉fͣ` Flڼ%(/$m 6Vtubu&҃qa8eѐ`k3<\6\Q3[M,jFl[]n6lf׍͌6ʍ&x^m&h3q,dBg"d3&8BƱ"A[&J`Ζ84bmԚ!H8d 12xp2B"Bށ~2&sՕA 0|~u|,ڴU:]4j .Gi{&ӹj²r;u²jV@M3hcb5r"`͎:td̺i@*-HKłϳsIف*Z+Uٖ?5PK61)}X"Jx8rVtW|Y3Ƞ[}*Z|\qt.TSn]z0}Z"Dx X<=cY!bvAX`D N`p,?\r}m{8HUZN^u6ƨ҅i%b0q~Yj'\(jh6sX2O {#S5|F!UÝË@-*Dy7fb][7z*CC*jss \-ZQiqw'( ߰P=QG 2c-|'TJ`E.6vUǵ#:0 0D|"Vܮ)/=?NlfLb9!\[xjQ ,+@ 2st07?KɊj˙g,$UnU+1ԙ|'`&8Uzf%3j5uՂ!+&\`< 8wLL,%<\`*dJB=~.2R2[̔dn$k,K|yJP!h{@ K7OC0p08_ғR9Xkp- ƒk)soK0 4+Ӵ%<\fe[3'[ff/kf&R؄l#,œ^ >x*.`='ݚ7 ]c2"e ,/L{r2ZNඤyplMˆ[xpF3lmQٯ>~򍬠Fn*j`q`iWxFK 0D8p0)XӖ- 0R!\6N\6벝Z:.0D8B'5V [c.tIuXNme&Ē>Ljha!:R EJgw;vT{e Ӆ"AjJ!LNXfR2TˉlϛlOEA r_N6\KP{FkFkzQ`yp-hr}xf Vf6X,W.Ll6lf^o^3|27X"JgK\l`5Y.a]3 ˉ{L6w359s!Ch Hjk==[Ɇjd]- yZ%m|b0Xl De>308^7GiDf?`k#Nd d6l![lppQ %!BDm63ټfZ+sqs%Bt`cKfۄK"xwcZ"}>htxB&N6MY}?hKw\-٬z_lslXDXFƖo*%-[ǃڥn9\Fp8 ߑx*-cRFt$Ю]ʷ&g=ԎM6XxQ£6v.=Fl:mqc& z0 2DppQ8h$SQEfS#&*MK ݔeQ p8Oi}Ȧ'jr{ bU7rN$' N v㵙;0 (M8mӶɶH0^h8k-}` 5|t4ƌ%<\ƅa!`6zff=s%$[pZn*-Eai-akj9뺭?mVTG0 a%n66pl*>qo2Ga٩]o6 }X"Jx8m0-lBjll}lM&[FF7%'Z`iADeEdۙk\`G;}՝``"l\+QOO-б\UH+ըTf*|X"@JUo* SQAb81Z0fVpX]BU3U e/gW,WmTv,Ks7Ɔj^҇iYI(p6z_͖r8~ ,Ek[TLɣȬoXi]z0 0D 3 *Wq ]37XN VL2!@2)3U\>,ۀ~0mYݩ#5C^M(ׁ{:0}Z"Dx s5|Z]k2dl)ҠrhOm=0XqL4=_n&-Z %r:A|O*$FZqt&Q6Z\)Γn,.$`Kk5XX60QŎ>LL,%g㏀`τ=$ٖj$,?5.G! j &O6X0vB_HID33-  Şc81oDpt[}BD,'ZD$$I@XQ;F{FTn$[5ݴM@k+t V DdBҞW,ixt.\ni,0!MȦM#:Ɋ4Kf 2Tel F-CrS%*!;*.OT{Tb9aO7H{d$K 9R ߑl[,X_K\\HZs`x4VvBdcfC&gftpƺƓ٬;lmAek5'uvllX6ϯXl-(Zg=h+~Acaj(p6t[z&ELFRQ,'ne2+\є'F.t$j3BPռXmXb]  j;aV k^\=,Q|lyX(`6k]&R؄EΒq&Z6ZoNdnE3[7X"JaK 97Zd6њ6IƗiV0|lxmBɟYԖ}UoO=㥁hXK !Sÿa#gבsZBFZZChV! X&l[Qܰڍh&-WV2zHZ,zM.^h(M8 cK¯XJMZ}#JNbf{I6!*l`! @8-`VJApǐpִِ0N۹  @[Zax>@ 8alb(!sm[8E6>V0Q U712l 5`KDlھ>Q[k[p%|ЅmDp)l֛lLfoAfJ&obdBKdAWl͚ȄȞ?JH!39iH`Y-7vēz$#r:/˲1bs`CZt. &?C-$$ܕ`<;ScX7jҶ-#NP.^bduH FIָllKf=~ټ``keKD)l6K d */ SZtN 2[m}nadb L!f*-4Rk+YULϣ`BDp)!xn-M!`K;>].ΞqQ`\b+'wˬXpAUc\U|&q=Z>LL,%=da2a&hvf d2h7hm=mm)=tlul%4OS6"l(Vج m+Og(n9ma[DkV "lmdn~͋maCjTظuXD3ͼ2h&l !:Xpn XոJ$iJ+>K( 1xVS Tmj6yp100ggccC0>@C hl-r#%$ H-$T*a(cCŀi[N0 ߂fF,?cO Ek%z2znd%z.x4|GD&%nUXiUf\&˛>:Lalb(!s8ۺV&=SYٙ웬Lf&&)`~W=lL&d6BddQnQ2ܙl͛l);tlV[;c,,k" :R$uq`q4wnLo>L(llL62ظ!rA~ld30 A|m6M((ڈ`M\K,'T_l3֨` b X{X~~.HP<ޱj%ccva͖XmXb)mpgs@X4V[K4Xe`p YN:Ta8A)GS`5$HҮIi@+#c#eH)|GύqcXh^aHޚDܑr$Y.#&v I$ i2r΂5"D`G54`B&NMJ}'h5(hm? 2{ )X"H8 x$Z,(db9qϒffId 2чlC|NMG&w{ V{qU$WH$ªb="AUW#QjjL53C5.:3V7V k\\\k%..nm {*& lI(S:eeX8=w&}҂QCp6|m~ފ8g"*~LCE#[0D'lvT`eExQIF C@m}6X=M9|U~1! `<Nyr,.5߰5| {-4QC'lBd6њe6+fk}!%jFύ&2V؃72kV4֏3߰wT[<Bl*iklɢ,|Ej jM1Xn<~$Iy^* KDI6ad$6 [pZBi^'#[ n >NғrO!! 03b͎J j/7) `!OKHz:>KPl6r"ߏxNlߕSYKuՇeZfflmg6LA>6vG6haEMo6D&ζ(+"l+Dmti1|}f =VkD 2 .]3%Hp@m]4X.aYl S87ܙlۍ&xYf㺁&h6lsg6%x'tevT6lPuLM,'! YQ`!<0ر8XG j乞eozfPJfoYD3N%b2p2{-=Fb2*eZq 0|T q"d :@Ҁ1 P F|T,uӀMZ ΡjPƴû`PH2p ȷalb(!s {,f_&lpNlsdn6DΖ8e[(]A^lE-'MayaCJg`w~+Ħ!*ELIJl@m}4XcEl$| 0 >6W,f/(^6w$Ж}&,ϣEzt`\|YʕϛɸJ ՚53ٚ7ٚJ4!ѸemD&66="Vl[WY1KDaOf[Gfw>LGh(M84xG n6|#疘@-l|#ԖD=W~}͖12[v2۾gW,ce!ݪGHV}GC{`j!9j SMG-=dؖMnʨOTt<asHrA[ '3`\ #.apn2רk-ՙd6Thۨm&`+(Xsk -0 6# ܷ7R gJf/kh(!s8{&eb zњ?bR!¼*X{sIΕJUQKG(_lb,o0l^zNlҋMFa 13mU|;[ŐYf nٶnClIJ_f,h/Yw=X"DK fk#oyA.'0w V,(܇CV!CpYoY3`u $0X &Q`رb4n/A-pK'ރoсIp-m+18W]7WGCVµr^CP'/٩~'!duLd_``bw<`2hlfysa_~͸`775} Wh1Yԧ pu} F9!m> xU9ڼiK-]c#MO@' H!x<@ 2֞L, 0X`պ֓ l=l[!DKV`5 ٧FA,'Y.ȷaq`9mK6^ 795YP)FMJ,=$07t행DhL4VBb+C,PbiIRÍd9T}԰w(>ȱG-'])*Iw0@ FI|W,Sջ><`| 5t@m]4XAުZH3X04g. VQˉˊ˪ύV,08\/Ȱ&` 3MK,ߨY=m(j6tЪE}rt}7-@ H6uXb1QA6Dn3Mĩ0&=|#E0 6420ǀ/7v x#?I,a6XNsjlSAotq!w3yM|I۷׮ *Z`J7!z! a`o:,L˜.LҰB`zIJU HX( FZMZ0DzVqj|ESY 0QoR􊔦* TC(+#-%=dgMkpNiÛw Zj̃㩭CKwJH.L}y _Չ&fn4ˉj\Mi7ȶgf!$lJ|Q_B4MqI!pKHxB#<],6>L\ ģl3s?\kX]6Ep l`#sk% }Vr[~~P :Ne=n<{uD6^2}խl~@^lwm̶Ͷ#`[j(M8m>7ķ嬲 [7[Kl?w[튇 hKZYE^]}Z"FzN,sY5ApUa \pz! *L,Xƪ|\^ D̪ &u"jz5o쌒2U|Rz#[Gcbg'6Q2Y"ؘ -|IN=Eő k؟ 5AX$+U5j+q`yߑA;+L2dj ![-Yဒ3Xzš#cjT(?im4^,0B`ZE@`'\6+ ЂQD@H l+bͽ[P7ip@m](Xz2zx7k҇i5i S8> ,(L}{Ä[lIu0Q>lzxe#5KD(nYT8XVƚOƚύe?Fˆ+ s%kkC*V}#XGDMw``6HE0x XyCU Y{"`Oa+(\n! 8``K0 4ނR؄l s gc@zDη/nefP&l?lEQ^&@6L6AcE&54`% η yf A$Aˉt*K#Kw#!=>\-"=$)abũ+ěA2\4ʌgVYM0 ,xB5Pzc횸\5m"\I\ړ\c\cf]3Pl^aqZMHOu.՚7A7YÃkl-Ŵ)I*ヿ*:Fa3Xg̃k ҇Amjj(!s,¶2ںzddedu-BΕNVhq.̊mjN{]l d+]3xx3C0}ЖZ"JagmДs`L:n6|#/2 >,J&leQCpn2mM,'V3_Z/-d+m&`ۘYsGbqmAqac73T+nVW8<fdΓbw\A1QaңET~4C˻&^Їi%l۾6]l[6͋m_lf]d)` ۞7XNl6l6l`~`l(!s8%W,tLM, ظ}+zFpu;'So][e#զA[3UluiốCp0 \ļ,L<̃klK|JPKD Ɵf9[{2h*lsu"lflli el{AU-r"o2ᢁk%\f X3`qi ^RY^L!CNƍHA(Z:h}ʛD! ߠ[]CK?6rb5T]ҀlFʇѲ JKa?kHMߠ][v!w54!0G5  +N.VI5WoVju~?[0x[橈vb[Yk7ކWAۮ.Ƕmѻi!-y`˪V_f-X)"AK4xõ;޵ '[ۃĺ0 !g8b& '(׮llLfoAf~jldCΖ8 ~*d Nj?#Zq{4<.@f;k{hw$7bl C8:\9aˠל7 swEt^b\[ ~&m(Ϲo&(؂rn,*X3ysbYX0^-sIML,'n[<>@fk nTbqbuad{J F 5|VpL6fkdך9A7=2P6.ѿma1R؄&%6(-jYc{9jF2\8lݨWoő O! `# oX#l+;g 'H#q#M|=+#'  ?7yJ5G1[]>mW,"LzEy*  u\=%?UmK~\N~c_KWMxh͙u0Jf]>6}>`-$d:g0@+HEBd֔ Zga*ypm].XYD.U8Taqt& _/ Lk-ޠgfflZNp ѹE 251lxQ1 A<8.g8umm +o\K܊o̓klV9px>`[Z0Jx8}. wQpL(%kDWxp:)K FDme㖜L8O֞=6l/g[xQq6Kmg}IXm!R}' M|Ha-oaL;uK- Ku̓k=:w--}[҂Q_{вF1 {7TM\[@lc[ڂ!sqs\\_XX!Dle%Gf=B608õ.qqXO`r0X_`E2C-! wul#hYZq>@6f"[x.]X"H% 'kIƯya>ce'x^>Lc^,'6ls~>L4.6l-LG-%<\ζͶvfTsz8OՕlgQo2ڙM8ƭW,#)_\fK7hJs,$mLɭG<\NITgI|l 0߿av ޱ̲#;\7\gd'`@ ,g!@se @h`%vDw;hMg؜Gcw\U_~n]5!- ܀p6pV ࡈ>L2sr-XhD-%ÊZ`o8(X"HspQ _֤CN{W]آp .gm {X"Jx8maY ՚Rp6lakj(m ͯX (zuğ ,^at< C'P(m_3XaV. kQ3#)5kmk`_Y^pǝŀ18݃Xv(&\ᩭoOrA. eUTXD 1lƥiyFEw"Io0$$ m^,>LlhQ6,*l\0lLO}2[D.m)=8R}ؘ%tll<_٬ZVRz`6Z&lmd2p8 lͩR^"Z>zfW3';0 6D&`875D vXZLcW,'5ƒkl zF#b{8p{˚Aέa``bN8`3<<V 4_}p/UYX;,FfǝT`M&̃kl wcHrO)~Ala{;@m W\yD[߳ ~n@-D|8"p*P*4Kj`>rA ,JM4Z&  '0mm3@f߰r¶ں Tw.},BiZͽh]8ֹ0qMZNsgo Q}8-,HRN/HE2Ѧ3O(pi_<>,z۪ϏdZl[kM8mVE:IA:P}O.h`s8)jI6^,AVEyfJϴ`HNKyrvzo4=)1zx#҇iqT4Ql 6LUcgNxӥEXP(>M҇VQ p8ö4ئ? 3lekuYu6CHXP}E~K4u"Hcyن8n4D|c7idERG&Yj?!Lfsy`F0x2KBP-O ^#_";| ٠FM |YöZx|$°׆NLӅԑx.67HXWK=TDo^pBT ѤEeXC-iLPV&ȵT&Z4l(DLuLb!38Ab&'ӡoSGS`5|O&8;0 .`a98gu7³EbhX㩭-'= we$lk[CLω2ѢCƲfz.އi%l.6|`[֧xNl7mA[ ۱5WlYg xXN{?6&ރCe!pq`كP`à&TbFY@m].XFR{5j`p!ezEp#,[‹alb(!s8 D( UۼF2ZZh JL SruNhd6Ko#Ɇ(-q8[kuu,;}.9\+o+xj2: \́sLGbw98ibg J4mֹɎG#/lqp1 >*Hvf%jw2 j< l1_X#c7Y UK\1ƚYc^Vys DÇ V_`V|i}g=ˀ4*L\:&q=Kc"Kqy$莾('lmdA6Bb[/66#|&Mb2aϲ҈ِ}cClXx2lILl6 MbWlcƋՓͫf6Ƌ-ɰ͙2` VFfZ;ڌ%0h &O4hch3ˆƵMy,Q_",GCű錝55wk xi0>sd+yRNظp1A7iԄm}>g^YZqp}&`vn=C)OA5/'*k~nv ̠c??ljg-bQ/'̖du,H>غ_Xlsْf{) 'Gyi&MYN< &yߨLIl7IݿtEecT4bLl#xy@]lIlYZf/96cR@wMf<ㅣ-h xiԓl֘Y3QU3\jko ą$vb7V'xq7.%l։57׼O6N6`m` K2h+ 2pRYЛ!!g4hmK .bA ю?I='Cp-tׂkp2mW!KdAYjbA52h+wzprv7~-e踥%!? s7p. `} L t88 jWȠ%s&dشzHF92=BL62/$K%h-s ̏`{Rlɯ=2\I}Wf,OVLX^ͻv>Q,^{r2r$f(OSh{ڞ!SY]!kXjV% Ej/Va|c?ZBXJN%ahLO-Ϥ H7V́l`##pRImNdI{F3ɉ M"+$K2d~j8`]'+zf{vu&kl'Y![̝ \ߣ_ͺ|׃ 6D׶œ^Wz\O+~T7 ȆJpBFoX4j\&>)p#dI>zͬ@-ipr[Ob+1uʀb"Uk"J|dAі+z {RȲ5֓8)L_\C`䚷rƈ%0d¸Pl.u\_}π W6X=M ޝ]fZ/ܡVbZNcy~SMvgvQLa+Fz!SKO5 } iBXP\́ `N׈Kqu#!FOtx(1ddz{dȒf{hG6sV Idl$E Zyl'6%6e-ɰif#Y|u -ipr, eniʏ$M"A0=YxcyKw) D:lX D @ŏL$<>qK`vb1JQfZ&7ie/3<~yJ"JIdr?V@4C=2לo9Oqr 4v'XoO0?`Ildsdɮ*}F==D:ɠF %`AO|,䉁hF6f;":뀥7%O8ZiM$FD|;LnxFFEY8Z3Q*gH(i̓Iɓr Y_'[s*4vYE=N{Y%/dKIc>ϕ,H9egXPWIpјQGy"ҤߤQ8j`zFj p|VέuߥoSQ^C2JY jiu3,H9dέcOl磟NbOu8Tr{LOU1TY H pTΧdSQO\^dQN Ȯ<7iV~z4d$6inX|yh]6ۺlI#Y`TS)42zLiPf$Ʀ, 8,e&ShdWRl ?7iMOe% j|cSE7A3ӧ@[j0 2ߟa=RoX2񳫤O–,H&6%rx6fbِ=`#`8h|HAY<`ƳC_$~ w`M;1&:\yeVI#aA"`+uρl`%kpr[GCL$H`YsgVl0bl*%x/b| `8[liou% y{cXPO%'@@5t`5܈`vLH`!y6!yeWz3堞?jƊ40 f2X ,H9yvߤQ#vxJ[+\>dgJ9ʚ,IF$WX&!B&*4? 064x֘:y) 'l7¦fi.:? QI4Aj8tSvm ͙F9Y8~':!xz!s kfxv(yٞ;<*MH>yLХrU`DgHf([`'摁5X8J5U3Ta36,J*u p+Q>pJlX[ELWP7X.,HNdhF!M*%2_AmlěLyquVKkfy=^\qp e">(, \c"Zy>gs2D&r%2SosrE ߤ 6LDȶVS}SPNi3 ݌v@howZF lӋ><,9ayNfS+Fj-=EgZN7in1Ebuĥ-I\֮aS;6z7 ;bd.$pF,cAƑfbD?MC$ A9, 4 4hv1{!np?4ݼt8}Qf:ѓwO}CBHn!:o12`aLl6|l3NxfNy' ap<mfv'EƋΓ,)ԒEdȉ Ȉ$2XdIdEMM[c0Xwt-V.UW3 I E j񝻦lu2T= Xty>AYu#>:12PI=Ty෪+Xen*x&Qml?Ӝ%pyQòlP. `ړdA͎v財)RN`oyd&k}dȉ M"k$K2dx)y7WvѹE8EֳSNٓ3fwe:56Y͚,6QL;ئZ͙5?ǧ ٧044 { r0a%bcV({PM^DjiJ>Ξ1Bh8-d)Fk'`Cӧ=W$ʝ,NDg0 4H>]OPI=L\.ZZVcNΩ"OǀF,d]B`hSHmg2p@f]M`k'|?B&C4wm!dDhF,<~{ Ч<{ 4jůlKs;7^ ̃Nm#ڔ"!/e6f6~nV S+]?EŎDdC3X;<\^M8@s~ ٚ{$ p <ݯ=qͬ. `H/;k~d MIPl6nbq{}F`x|9$ ?V‘e& ȀyԔrQNӧ"wqreEi{D̆s`+ƶf{O4OVN$`Lf[`m3s_lI#I#.NE,alhFkk95Ė8`7%;w->oRcW'Ԭ16 Iq56l<97xLb-.d\\6\,(}SGxl5 'eRSn!N~X7*0h3}Pq+WKisU\ lDG@u}%2: 9 B i{wle䀍 ĦO_m6^lm O[ m64Id ,eJ"#O +bqRsPkDw>\ ȆEU}M iVd([M$* TIcN{P`Sy/Qy0< $r0u ϗ_~7x Ր'i[jgU.RUpGo22dIc~-Hf:F]‚uY{dJ#,5[lEE l%=~Wqo9 ~W sZl1pR@cV{5Vc2k WҘ}: ֤~ę,_3B>X ·dpbc?i~)-Hf i Ws XxqF6c"֛j'ը'ըoQO}V!̣9|OXwwk~xt72#nA2saﱰCLc%v_%[o= E4P"dl ψiu/}L̆cdA"8[.IPUpETB㲇">YfO_џ.Ok[f ŽwtZuρ V҄8!Z1+D}|E 3toms-),D*N]"#7^Ǜ̶Xċ2;z_tMIb#: ?#~'lʳluSʔLlImKlxPfK7^V盭6UbyVFYcmh;βxDVIVdj5{Gd/ z ~sDFVwL9s C6yd"dYыDSswf@k Dr]Y#4/m#q:uEܯaK 9 Ͱa=2l /T0Ϊb~& ?y-2[1$3lBhD] ڞE#9G;`k8 ,ɀ`BG M l`k` 0߭`^wD=_`8j+UeC+Y#Ծ~z2Z`K3 hp/-vtL`mM Ŗ8`ѾFhh繧,wpx>˶ 9`S$Obs [)#7^iU@c-gkuI=_[ƆYE̙~c[G5,l&eؒ</q9a#z;k3ʚ$gݠfY͗,M>7UkR7ǽWO=\=EV?nS\2qWU{~R'\r /CKJѨxn]WjO2aScKdihxܶ` S \#Oݚa d ,Uݖxɜ L57Xllx(YY jn4EM7ڕ5?/܂̆ƛO,ۈbSӚR'یynj̰6`m\mO`~"69\,iv@7Yԃ5è=^R$}!HwX0ߑW没ͳv/ 6&/$N&k'X{sWTk78YXB` PFT)x-?Ay]x K.#B\h겼]]VNoXQLX(+k7'ָNqu`~b%NC>X@d,,+bv{>}.O5c`X5ޮc,X>"‹+楨slz~ŖS`#F592s)X́llWlYli'['[˚-ș wL -ɰTf^ץqTl3~rmrҘslj!['!h LT?*ѥ۫!l7i'xc ~wZ+3B/q@ '[uBUUķ,u(,5&:~Jly[:ْ ۺNQN6OluY4`l~?ʺ~ƺ"xZZ q|ўG¾qqg=D.}NADQUTkc54{Xf+F<^I [l}ɼVkI}\=҈UO%ވUbb(=׿5V 9 pV_k)\LgDr60{-[f!+F!+yBaA4~'*imPf&e6YV$l/ lEFYv/ Ӈ L2*&"X#\#nޘPxQ=GImMPZ$c֭Qn=N3r\fw4涺}Xv72s3<},XO!xmwy~ i$V8zrk 9mbDSކ#-429A#ƠԃGaɲ/OYU3lW43k<~zjT>c)E{Pi#*ƅf~H}̰s9%hĮ^yK<+l={uB?*L``hjxidrIj#i, X6wQnYĺG+ˠFT -bEf[/~ +x#3NoSd fʊJTB#.崉rJ\o+ҨcU9Jsd)j|/,@kZN s 2佷&Es$zؖAy*sPnJ5.KEpW僿$ZQ2sG>v3$,Pi 3\|<4H 6SIc>< @l5 @&V!e2|e1֨$cu 7U]-i~"wf9 ͬ]ÂjdFK#,^'YcfSbbY?Y&q8bl~?߭QAR <[IXL-i~Ԕz 9Ai2],kݚ1Rnl_,]ӀfhjյfV $$ZN '{ί]W抨i%~n2\ˆ?Z} LFmÈȐ%Mx-DpuPf mFV)?.Ȇq+~N(om7 K+GJR9bb vy<<`[ll\'ظ`::<f;`D|{Ld2Wa}\-)~^$O#g9-(%\%;%&c͑ `qz[V##ez .ϛ<23LG6jSNL zd.Ob#s%1 XiD T~(&#s)9&FoY89`nwznM_MB`} 1 gU5 o^rbSņIѢbO>H5:zrb'$֬)y&KhIr4mjkρ ji#lwy)EdTOl=Jo, g64O*}&|bm5oY89`#;h}&vNsÙya5h+ %d064ޏ),L~\1x8`Fzt$ wk2-eSMKLQ/'u dдJsMͧ.6ev H#z~oe_ݷ<{m~ Y:t?& AT{%dq;*dp0e 5\N-n>\Ш&Gz OR4߄u<)73 /4 ;( ^k %.ĵˏ6X_'X_oN0?dVdue)"zH2;* kD/|ڰUj|j/T ߽9ɃI,v8,MxV( }05iy{l"ĥgiۢd$[N`Ӽ&MԹ,+=O8.JUEx@+B7#UR K!eLȭwk"cOdb@4XXy>;x2T+TO#bΧ"2LdwBKm"|=l@H#2S{ρLBL҄2p@Ek"d{^[{#i~~Tzx9ͦ6]d#,qtvNB6ƛm楬H5lIm߲̆pr_^ϘljK՞D6VԢ}}ٌ4/ 2jAWXq~.WbD%,]u]UQĵƼ+Y@>%ʵ2sh}X́LEleljO%6 ^lIs*famI3gْ jmdm߭l?7ߖJ~$iu|+ tq4BN`slm߭yڬi2\I󛆯2F{q]YmZN t-yhgY(YH $kGrObkIx똰@Y+X89`ElW-w~Gfݞ4?֍@*D_mWIJk [B:w$%{So<@Z%zʲ"+xɂdh5= v_9aK/ 'G哏Rgի>Eu{ExА} C+cz s u1|d2]Spo~ RbYMs`i{Y'9J mon~,<@&AiD\23Hh7e,^#F@hAHMfSLO})seMx`V%ulbg-]~>+}CQdmkמ  ۔zJ .JniۃȃbjY޹ = `U6V²u"\}&.oSXtTC2AyByAJoSAVVU矻Y^+g.jOt,H9 mF+ϨgmuAu鲒VWprFkM #}68nƝ+Y'9YlS@ol6lJ9Sf@ߓM2p0iX(k7b5Z5cG7^ 55yMξ;^{4piˬד $h,(ȜFeX89`ϳUAnu~-Xo9=Wz\7kCU ǔccuƅɭًIX,64K^2adh7=pmEym|IKgǻ ,H9 򈡶1*?'MxNjt4v49 g=P;[i%1 Hf*o~@yQ/LbO 3Cs.gY+P[} +/[3 ?0pR_\_ jf7ɬ킣Fz֝s0QXx<2\SxFeX89`/ߤ G!ZJWJL_JDIë2yoEH} g,|)Fn?^z8pˬhvWE833VS'C&(f N`1dTߤ 0, q"k+|*:f-uoK"Lps pݷ .4*C͵% vX5ƈ2B[ aŧO->a{dg5m/iĜD 0Itqy QȔ99N2,5YVPRoT5N̲4ysdAOadIX˜́j0p@<Ȼ|FZ'pXY O֘^ };`A%ENQUг ܧYyP=qD䴲KW* x@xfXS>Gye6gI{k_ÅO!2K[u3b)>T/BTcdq['d= 2`VSeIs А}Cm.4?| r:F:v 62E?v\M$w ?BwKa<,H9`ÅXx<SW99tLT7MBsU='w#Q%; xndZ4 Pu$5Cla<2} qRe,<~=dm\,5id8 bA\ě&KrZg>YDZwl7X]N SoMf +${ldoDو"ѿMֲyjo'7dgSIsHpc#*uY'jcfAX =˜wT 'lywo$6m72=˰Y0B#. 06*$7Ĝ{dؒf@lԵzW]ef6]jm6Ub]%6j%5efKQ> 읨bK .k҈ XlS@6[-n9F9O4B;  ҪҨ[[섓=bU3VI"\jχht+*%+)xd+oO'_ %͵}XTg3B,io_Wm2_WUd12hWuzjM=(e7nM[rڑl6ڨ9XiY."z{5s$M~q!'02 M5XII\J{%)uBL]f4XB>\ެVV@%s szia-׼+T0͟`zcbB>q(nA5U[ \|9_A@=Sե#֕HOX+k~NY*WX#:(^xG{㞘mzMs'?mxmSI|=I#dy[]"[gN b074>=`j,8m1okb[xAn.Waˬh{#E1,s*YKXP>iV5A{7 0Ou Y&LɂlrVꋭgT2/7l㣯LnxjAFAd+i6} L̀o4GcY[OF{A*\]A&߇m V|P-~W5O_ y"T䟢HHd^T)QqsuZ\} 4KobȀƮ 22DpLoȳ,ul9syˬg}#}qB)\( 4F( `hܲ@jCyݻo0 lܾ9Z6O&ʍMIsLUm5JXI8ĞNT%]WڼSPv$ߤQE{,YNq7B>5,_j/xq9aK‹#?l 6{JYVzlxrbtnVhP6[ewٙXxq5MoĦGbkYfz̦VbCNl6 [cJք MkSŚ{Y~4)X}&OS{F*wlrQ Lm2 M6Oͥ5Qxc^Tm{dF#bKX7>`EF|s-}k_d+A6b!5&;( -b `Q^?~_˦J8Q^o& |7YY^>_'+kYNuɒ&|dEMB): *:YFKN}#o|5?6ƅLw6n lV>0UU\jܨ&O&`qh~Z׊EHc/NU`I@MdȉfzN0Vƒ>tB ;ˬokX5Wg7V=uGiH `"g4~vFO4Z5 }Ck|u;HȜ%Mx) /nNচ ICA`(){2ۻsV>uq b=2mI^‹BٞBP8cCVs.Ö4H}ĩf3O#, |gM~|<|,m(tc>h)S^- @-iKYxqgFߤ 6Nd״,nU`>fM˝Osr:p`/&5vu6Jv,|EퟗE12آa Xkπy[҄GE'OICg?qH2k@ӈI֟ՂLs%TUF-i9Yx5ZԠx+O"J`}~1^$RaAMa\a[f-v![ `,4";= I}yUX؞Ftޚd/) )0%^4bETi:ne[텭\N4TۀDJ4&YidϕtĦh`X̊? +xrZmUW7'Ţ1Գ*!FbX8b II#.ژk+$4T\[X#4 *SÌÕ5{`dLdh(MXDK2hq 4* 9)3}%6כmfz 'l,Ow6F珧ɛ? '0NI#2gm*X); +y*F}Bd+zd-Jd@;Sra<2$ͅ{ճzo\ 9Q&)2Z͚t A)E>سbeld|vQ#bY>^ZqR<۵_ٗGXP9_Zܧ b,Dp[P^ԋLkMVwwNVs#e*+}YcV9lw^(Yyיٴl-k~7X}+`6[2uf6ƲprvKm V=Lz<g'fhl5vpFrMbSȰ eM7l#mg\l#mD]>dN 6j?2_J= BBfٔ4JEB9`[|TNs sb7 <]GprF9G{,pUo- T)i~6rs&f; id Tv5u(Rşy-iU+)FE8,H)zZ=~@&~4 \TO`18ɒ XiDP& 7L6I6ǛlfvhlgM`[D7ە5?/XخXffe ֝Xyۊ;rśinVB.pi@S7͌ >:a02Q^[sJEbrϋeӗ,-"}CTS3 W!eʹ=%S|ߑWZg"i1t m)G\oMgW(ݦS1|?.FKE f'APo{۬^6N<"Oqah, 024M!,PYp"E=~BvY(yS1&҈&>akv >'vQN +bMUL|׾oIdAdx y>yxT-b=SOj4zS='zY ՒO 0K9FUbO]>_(ߤ;FP[l;V^QW,H9 sX>]ad~RN0#,q`UI闿͉nYop^rS@ P!ǮHFG8)a_I#mL MVIbvBvvi+4ٴ6RN.bY}836 >|5)~nW<.'0}V f㐞rQNb"ߤ  , 4 T94@>AY!j1FG5RoYf-qsD13 ٧024^YȞE['XOBXtau6Zeĵ7/5*XO"ػ%0\ YWwh0YRF:|@^[: LL6elыS:4=K˻ 7iu% }agX+B _$;=xH^$iTHIH5k~`ArBBuHw] Ӄ ]ԏM iI8}1ጵlK5Jc8`@hTЂ,H, `rIZ$/_{!^Y9{x۰xn;7@&bOS\r27i<>7ؖ 󣍜٧04(0. wA=}"5IJXht-ӵ\Xe޲ )/y8S$E=~Bm9{57Bݖyזk)a`f&";́–1B^l]C+6k.;H歛4?獁} CS;a,ĝ}@&n('dIdWr+AdZ|8Z+vM SrXFf{llf;^o|LQ3gQ1?Jp !֣?C~C) _&v'dʩߤyL XUIzpƟg0.4'4"6yOjT͘Gj.vgb1|X٦0.V2ܶc!f@&4G  `5u 2DTl@J۩;aT#wX%*\,!:믫j['3Cf-4h} ieXḰL!/mFe:縚ͷQκb"i~_^g !ƆkӅsELWnBS.Jd֏魏pżyYB>i{e#aAWE|5?+`IIF~+8{֋e'mU$·?`Xh 3&@$7f y\\i;V%ߴ}K2 d2`\hYLTv |‹"["u_,e~B)E=Džgf@&r4G7p2ܿfUDFհ%H5> ΚN*ECX,15ƦB M 22!ˤ>AY&McfEqYEXܞyMm!d#,L_.WM#%^uz$oof)՛W EW SzZ+̀L 3ixQ@v sh͊l ѝOUB9%^|ZqoƓuN-!M:iw !Ɔm1˄Z!/‍ƌ5<&  qo@4?\jQ45?Gdgg02>4.׫ބ|‹2޹<iJlX5U"Z3IQc5ϚB>>ˊe{bK,8`㝛[Wh,r-76Ć&ذl̑Zl/mߤ]O_!F%d} i6LzS]e"{J}yl͆&q-6M {eŅH`#)u0I\Eߕe#ƇFxUDs Â_v)L$; LoBMbD-|)+D),P)^~{;=+٭˺}K]&{D8/AsuɺeVԐ ei‚d°}m4 l pQwC`wd۬Y7l"YyD$'24c+ǃf8JA{sVŢ4BVܢXҎ9Nh5zEmh d.*{@dd5q4zs8u[}.MtҐ>yοmle_%^<<(͓TwB杛4?GXs9 _#M2p ( FDML'cyۖ^?nKv6)x .K'Pm}LikxJzJ2/ۚT4c&܀}&ۊ`P`]ߤyrzwh=z/}̋\xwܾ1ow5w9b`Xov'А<~a⺳k7 ,}Mhxd!ؘc prvKbߤ![yz -_$o8WYs[ɶWߕ0QM\'`7z:;5]ʈ%RϚ۝,H9 ]UI`{eΚƝFKY89`SBF.wh Q+Q/QܺQqqS \&^YiD`$:J+&>$ץH\+)~~/DNa FPϟ pQo},yQ۬N=(g>4 6)9\&r4B^$ԲIl^y&; h7OBC) Mݺ`R2>A|_hޯdk_ȓ~7xM?oc%'</pˀdy@ʑfpKleऀC,r|3ϽqLW tLr홵 '0(4~m[ I/pJtel~|S&͓5 L*]楔4? Wn@`Lh2!ef|+Z(իk<['XleJIFL 064~e[xV}i  ?DvQ~87i$vaTy)% YCGۂ!LK> /4B^[(_Ei9~I"$h@FJ W}2 ('P ~{QZS_I{S҈>4łdðxFն̪_X#y 趽$_2l@$ClJa5ӵ=[Uf9'yg? ".'I`P:@s"qpAl:m4Ƃ48e v N#\F/8p*!+%ጃ6̞s*m-4%_eVmF)I VCُ ] ۖ9JI8 6.2.*ߛ֭ jU^>*5h-G1 ب @sbL3CԿ/cپTEwF%o-;(Ƒw$4WgFg H#G6w"̂v N`;| ?0 ґŲT`ge SXfݧ d`LCS_e^:(qd́d]6b,V㪰`N X XTd~A`AvM84+f8/{ :. /} iˢ pAlnk[ , #ZI@P9e~@\ƛpf"5Z$hۉSll!>΃f8v9I9cwCRL:P Y) gĶF.m.up6Tl{a,C ?2^^ ޖגd % p1\[6VkΜbȸtjfӉ!S<lv+ `q<>XЌ,}4;qLGQ#%!!hpd:BB4'33`[0v68 \ҏ/SJx,:P!gQpFAd Z14p%hK&^45ZHB@S0J8 ڪq6֌܉gOհAGz*dӡ [K~y@P\Bkt|7\e@;#s(!@dIwDud, "K򘴱L3xeF8v9r7|ǝC{K,roA^6b2o; @vzf;eH:9$$ mY_ +)mSM8λłL;6 [qhH:a#WV"4pf^~M5i䗃^R48߾a W_Ñ-qsy!Aa VR bo6riz=/5i ٚ93CB 9$$iGB#) x|FN 3lMڹ'!\;:E:"'pQB%ư0`0_7n NZ1.ք͞.qm JHC8BG& ܞHle. )]$1U -~R F޾ڨ+ bXݨmFt(Ši~}~~ӻf+\'}2*QtCG+X"&Gz` ⇐]eNtFN`V29B3b<+$XZ;=}sۆ3(+׏!!H a^K,{7HT@R}ё.8-TDr8Be>cp\c3]Gv3bWOX|Ȗ)ipd{$d0{ǡ42L gtaH]r0 -hkS|oODCRyeMz/X=O< F! jwlڰ%hviS|5* )4;#FEnhtJ82HVI `8X D xyLVIaM%E/t+.FuHЖTBIQ1/Yp0]'ً FߒF\IhӚJDI8 i*΂%A+/. 9&ighE&JY v&-- %1߬K3y% pLs p@X5p",8Be_yhGSgEl :o}Ц:"VXR8FvM0 |Y]3ͮ ];K,;]wJ D a@%d$qۚc+V=:͠8Lu$lk + i10188ptN`ZxDCC+xH $a0+k!Vau&Ol8%}*?h 50#E   < 9Gȡ)aQYUcepJU%2.ΩĺrDCC#gC2 Z8JI8 LV}M9\=s<t\x`#'QB`[3yZ|vwx6\b6tV^kГ5:ئT N"0rBF!4ieXB6Ij"#oUo 9'$sZγgXOwT= vHZ$' g IG *c;׍ќiVvJ҂\|CC1BGdJ +TBVJyFENpY<{X ~#HG`oKDDH l a/ a'0Q F+gAxwđ-淿/'ё.8mh paJF 8 ,&:otԷ֝iupʓ lhyn)'d{ɜr%v]M&S 2\:4hQMYgSX$>+ |5eN7静{ǒ-4=VR Y) gĦݢicM܈z=Bt˱%$ޙ %JwS=mf>U?# *L%c-! 7[*aG *9}H`C ' FX'1O{\'`m$tgʃSgPʼ282KxTDea:a #NV-r] } -$ڑU߷]%@M` v{48F 82̀,}UCSݹU~ 3(Ўkɜns"]Rڏ [.ܸChڎTB&J aշ#wu0Vd4c}wH%a"9AA+O0}QT͋!=%rmpp8^$aC^s ),kЎ f#;% _z\'4Ic H'tmg|Gt/@ޭ,N3sB jCB۷Ǥ4}VB-`UaȊwvfߐ6>D;eMpTACcF)8$0vL2|BGs0ػDOe ޸a`he ڡHrV[Ķr1j/No>uw1rߕylGpP FeSmwC& N:%1~ v$[lVwM ne̛(`Kg*Q A.=m0ؠ@;=sp}̿&Ί|1K?s n$g|*QcJJcͨ CA$ &B-\]qV$}_Њnb*b۽X1h(p\j3!4]2g C!_)CZ;1tCĨ\-Z7Z ,da!o,@\c+8C@Ql$fDƀv`5sݕQl.a\C]ʵ'_NZ[hN8GgL}s?J|&Î ڱ(- ñ !"F[ǔ9sr ƜPvAR.-i;M c2[św ñ{v&(˝ChF+ *+!b1plӿ{i2u{R=HII|28<X0a"s܀ 6 N mg7>e -KP uMD/ |p[;tvl{ + aFdlUj [4?r¶0ĊD'lKk!!Q&+TBVJ1OFFN` d6tH'lnG(!麞fΰ2pI B|ʐn;eb2htʜ:Zќ$!S1tvlB%d$q۬;&8eŭ>w|td ,T_yr\*@z/<%ưPc>ap64}fy:k-UvK z9㉃dCu1P Y) g @閡mpoޮXfJN"$˃\:. @ӗk*!% t4 p͘懰%?(LݫĪJ VCdL:&4c;2gX) gVx7^g+َAg/y'jl͜nkHwT0sYq :*!$l>!-c/k$5}RŶsH4>1%2E|*@sLa$QΑg8hRU4Uic& قVhF vSp%F7FmqQ!OMӅ(>JA@TLI"aSy4?+o.Q T#b t MohhKp@X&d`+1:nƄ9!h7dNmxV ~H>t(,tX9pAsM{l}g[c[ @rc` ֨nw$Nz4'ưoUQ胃E](ԑk=2Vshsta5bߐlw˜a%%pl8fźhp[A˽ +LX{TureNyܘS?cT5C1&L3[#wre.;/[n9u^&<`I VC9$Ct样.3`'MYV(#+i6ƋMW: >Z.P Y) gVy 1oZ!ͼwvlέdm #5K<* 7h6$AŤI臘&V=c#Km蟻ɶ:qAQe(?.!m=w5i͞7qB in}M[w%c.n+Ag*1vMD+{p>$xPo"WtnRwK}H%6eK;tDpX4RN kg`Hw~J;H-sYyUQ4D[qqqҐ˒rqp6/V7 3+H+yֻjMFޜꊆtGDB# FrLJNAdX6r_?}`wp^L;*af{ :kWN:51~` W ~`Y݈9n&7U\ZuLKS8tDcXR8r_{*s Vx!Z׻`Xض3\DCcS[neЕ; pAl;6r V&#lGRabs!@d kz;"m3L3[+w<5q  vg[-:H4_A%5vJ:9Qu+VC5spAl;ONxMm~-7ǔH~sAGcpV? 'HF H7KbPk3qdXkbtW z 9 TZIMs*!)팚BNk<@ '^O$~bj(bjk(JX}C1%ưo0ׂ;m3)hxӖiGv𕲄!!hpdlHpOojCC[2gXI 78K;-g>Jj2X>-hĩtkH-VCyHxhtɜZ(%l !Pho:[8m3=pHW;"htʜZlOv3 V>K1}=v`\0T - g֧K)\W|=LBZ3۽_2xt*qFqH8 2Ky#7G)6TY2 jXJ͏GbX!i@Z-PP-@D ńQؕ.Ԑi(C `Yң\%;{3aZ=4_JT; AO"}9Δ` ɶ>2qT?0qj8ę=eRHvd\vE>$r2 8tI%`eHAlb*8H+Mΰ|W2g-YgCBa5. Gs82$WDYVӮw˴c Q{ s=;>ꚿB/3VJ`L+2N~BUycjKn9^3 9Rn2讪[ݶ/|é{paU*SClJ~|%ގܹf.S+>DC%Jm M0F%d$q.F]lh3DzMv+eD[*p1w NmPM#h(A#%l1n݃S$A4tX q,Oi:V%d$q.7qM<[[Q[lDĩ-I VCD)uڞioR8.tnǂcOV;fzuK2E;JlaH ɟ$KsP3`krޛ8W:|&n֜HӺWL T@jSuHa1ˍ[K)v}S{u+JNmjw !h53{!aB-8qpl67YpZmP4-u7%!!h~-{2VR `gmJ/wg:cְߦit1x( J:8}g!aƜ9JJlZs1<Q^'fxЖ9%vVA LO>:@{à ,6B猻&NErk:6]/eN364I VC٣ T8 Ǘg67E'm$$4Xy2tmKVA&L3Bi_gǐ C>z>5J%CEppݐn{舡"`np8MX/!1zvZc_K U*s+]czw5m:A[yYOB#^;}ەw|IQZJ;;Q프P.U €5zܹ78o5T6KeCwR2YK@D\#EY m5hEp,Z>n)q9d [K"V=9 4o/ 2P /W-;v/ytYwz+շ9?|5c7_Mwُ\.(? SWR3JuR3JybK N*_L3Jښ1Mwyw|_y7ef[b3o_2힖R :oy5-^Oǥ6oɥZf8e*%ΩzpɥVKTJS&D)rNR m/qZo޵Rßޝg<'ܾؖؕvFg l˝mLmԌe@맻~pӧWG9ݨouç.Sxyo?i>rtXPCX}~~xu Q/oާ· 7_[4/o<~1kKy]˷1_^?Doo6fnk_zyzgB, <|~y|zg;9~yQZ >}~yX;O±_~x|0J%)6ߣ-nvǺ [~7vO:YW-~@?ݿ{x0_~~=_ҟLiJk~wk7yz_d۲S1aOF>-K|j2_?s»~a?6i_ CoOWl맗WYzmt]}vkVtRo7_/~W`O߾RW*GW00]eIZ鹸I]뫿Z?Sj;)w]_Co[z ȴEJ\u ]"8* ^xƗ5>2_¶p4Zatn=^OPgB>~+TgfYN%u松ҾR;ڿ|+{}/|E/6׿ɧ9*?>~U6ƶџ݊akʷ݆=w~O0͓Y@l'?xz1ͺ= hҧjOӟaOhJgt R>Y3y|!57k?>`330wu퟈ {_!X^bo)?k:x./O`; Voo6>b=3{PO??GO^{<f X*F;yѲg{ g{{4>~~IT܃?tsfdC}}"-eeNe>mih=n|6i|[g<TEզy|OM>ݻ֙=D}#/ HzEgj4)Ȗ2}0dli7 q v_pgGN״24oE.P{U05kZ?ٶNozsޑ=7hY}͞qK7wL*|Rܫ1tBFG>[s_q;lVlZw v8@JLJWiC$'0/*+XzCϻ_]~_߾=Jm'F><(ז?~x^k62;SrߣT./lQwk%C{_G便}>`b۪@t?nvzzᣞrb|=hGh>n\4[Dr UۍEKߡM[ }M~|KLoڨݓOқ[S{ߛ^oiC]=&37J]{}[f'}x$ {ٽgï8=Z7w18/~/xgnE죏[Z~?'q/KҶM]|zYFF+ /|x">5jw?oeXglzzE ~mơmU2-}#Q0}Rd(g_͍/ʟ,|| lX=_wF)Ie[0_彙MWrp_n{׋GلrqLi7NC L`m<8 M[0ܟ>cZ5Wem6!G:gyg"/t,ufH%@ ŖG^m7E4wr>>{؇7N΋OWcXmudOJW^DL0ŠioWba8&mugW2//x$Ν~[H.0燫ޯe^볤zÞVjıklsT흒>ӬZcUujA.uӏmV89zX@+ 1ǚqS1 @{y}wx2Ž-Kab…_oXtxw/Mg@6٨\޷û_]m|CxyA]ĶH{u=ܿ^#{/yٖ^o- JE뵓{uDw&zoLnYvj]8.vGYt~Ɇ#K]>~B['(M{nJ򥩤Kyp>6!>̭ }UXzo.]<I_.Zʺ'xlVP׺x/ݷVʟ[}sݱ;~dMB;U{ Sݿ[o17{R\,e ckV/(^߮mʟ~وfm ?zw%U>#\5~C!Y_ye;y8myv yB4[~_W7c<> stream x\M#}t^vku@S 9֎-mvC !I}(TGwލ9L5 ̗/LD-'_ś ɟNn'ZMBxS&ȉӶO/_/շFA7tnU ?^Fv!ى0 cpyЮ}3upƺmr%ktP˂`] -X&em+KW*M$T7An`ʎ̠!AoGӄuko]p]K|]u1BXG~'W6Jw`h-TajmՊ!uqg 4n2†0oԡ77^y 7:3{4%"])Y+7,U6KFЂwXlԧ\|r}{5{ Wͅ2NzL_4:>Y^|ya H!k2Y'K'GCEιq3J|]Q cf +jkNZ; ݤ?-hd`zK_Hnjg'G&w}d:&5r1y:BHn؏.]„T' 0wns4 s]`$Mok=93ϋ14>~7.ǀԍi fA@Cƒ.Vw=lR0tVt5nfq7b0]nG GêA&bFBg oEXJw@B8%JKXƙbgZ˞ 1Xj'Zd!g{\pQKt L,E Rl🏆F4,(EpɠVYP̦i:;6 n!ށIKڨɑ>}!OGıoK4ՎZD6zƘ`& U|q𚆠Ѫ+n8MS]^VRz^$+8m*H'J-Vw ^?"0`f•@g@xaʼnFvQ\lt՞2+SOjdx[+e)2Lڸ b2 gIiEz0Bk)4hpK!-pV EbdZCUp=8ǩaw\h)f{~>R;pbSH˼#BwG 1jăT!0DG&بϔXN^6X( #ɱPOG@H(KOˀA89"/ط<`0xl,and'Sj@-n!0rĻCfVkk!M#Y Lh{3Ѓk@HFLDwdEOs =E^uZGq jHa1mJKW.(#I@8XW\/}5g?UfY鲭nm Ǻ/)O Shd* c$GLIat$,kyH~YG^`L H9uRL)qu`gC~L֊#Q2g 6,fwjޝ"gL¡O!PȎ^#+BֶZÆA4/[[0/vtq&vO%ɠ?1zI7bl@ʄlIF@&,( P߀9fEGʒW_4}NHhaLѬhk˜v i7Qr 1?<K}qhb eR.Ջcf{r^Sj- X&mx'[.^h]SL ^\LԙnpO6_mhqԴPI0dWed=~_yQvyJ^TneD;k7l ̎nj޼8^3Op^؋rϱBALQTY؂QgNפGm! Qs {J seoָ昝Dws=3MS'B1]L"t-5HxrY\VxO,LVOO9zȄҬ`WZod-۷%YRSR?`ڎm/A{{.tUnGqq~Uypf:]߾o#HUM& .1О-&Eϸaz( azPݖw6K|5iρSaC6DكKj6fx ob;s˂|o Lʜ g4Yb:O|' SQuohk>]o98|ݺoM)=r ]kf~$gWJ:rM(vGGqXфW_Q=+a u.,yqe# T%w>.WPitwO!G{1!Ĺ:U&BL\B,2t!uK^aCeMWt|upNf>/6`5r:Z_NW5kxM|OMSt,Oӫ2t۾n"N)XO8]cL۞#&x3Y,(yuu3%`/Inw9[ޯ+Rm;tu>CO2")X™Ba|մ!mOg\UIM0 ._ ^$]m. PIv|1N7dT0qdtYRE?BL!ŴK&瑢 %<63]|x4 Y 8ٰF@o %Eg&/K\h.=SЪ[u1m3saQg- xMK%MSk`H>(>} s* :-E-TdK՚MD$IX !B<2^}4['oӧ<`?3/"8. TNO\S5K f3ˈW)v웇 8HC}4ӚK⤵ e) Rĩswd2@@$}Jl,ݶ@<2$v~ 7:X*v-u{iXrz$!bVm]bih\1řZ :M{HKe_0vq&4.%%L.t5I0]&A-J؞IYe`!CZI{vEݡS@!sCXbEZ뇻5Kˎ >^ۣ$MN3Lrku7" J^6L>Uu̮8N|;X!?7UK`k\p]g*:3FEwF4Ѯ`؁̒TdZ2}2d>ڴ HCWnE6u%~5@cQ#Hrn #쯹6qchd`OYl=Auv+z]W_upYn~|e-do3";޶M!.' KMxB ̷/9|]GMOф/ ЄD&ySn(6=qC5i)жc p#|֝-7-}NEAq|8:/e!µ5a]+q%B]9B6]%|YEm.N#:.^'3&V^_K:.Тa J?l7EcnW}%uӴ RӤ\QDd^wZ4uC `swXY4: [\e}azِq5@lE0%M4ؼsBup3W6t㤝E?ˆ<& +شaz ?cd3wh:L~^PiXVaٗp/D晩\#UQ5& x..I&h$7u"D[ O"}}I'0?#(l@ZkbH,,O1&Nj*i(XQqF\f,.X:Ac;?yY}ԙ[J0'*/誚(2/9 }>Rg7`{ٍ3e%Uf eWjrU1Sj89:ffK0,W 8XaߴJܵC%U\䁵NbÖBe4'x&w.PN̲v[a;Ё7Z\O߄A`F45Xbч#g5Z{Ipo{$)_k#VWzm=A%Uc` d|怃w,`{l~+TTapHRBZ.֧J=  1+>kwﯥm@(1ﳼO>{YvT}d\EŽJEK,u8x\;f–ݓӚb*"Ǭ+KךsTp(є4pC\rU9Z–kÖ n]PlK?:endstream endobj 283 0 obj << /Filter /FlateDecode /Length 4968 >> stream x\YsIr3 >4Bc{wl#=" " 2/4.RЃufee~U?LD-'oÕ䷓&NU!'BG9!n3-C-v?.6 ~_t&"TOS}˻!hY)*^GP$uFMa1_'W-巬oW;_R(PY;ez6_!6|GnsBvo!oi.Z|Nuv32XNLe}6\o*o> =q5ɘ ^Of6D%1hLmzҫszP\k8^Ui;Ui@LF`킖F֏ݺ| nE{me/# ̔4 Pvv$c4FՒrX,WKT;)2Id)4JZ|6t|=|2l;D@T WK ` UmtF˃"~z5Q:fU9DF2=IOh)tDػТ4¥5W'\I^ ˳Nv('SR`#J#[h[+n~;ڦo0|~5eRy*U R汴w*6ȷWEX'8Z43b+}s|vQ UGXvQi/tE >̻P͝/ bWCUg+ɑN -XM? وn*l}jf_8,1׾1:/Rᘂ%kON!aI# g"{{g0x/#f*>lҼ!#0*lh.B|͊P^,xs!4L ب.OKz"0w x)GpWv @.Q1bp^YuTD T>h+(RGT-$U=7I-WT\%RUT< ~/2hdBF.l'5ҩ2[=-w?y<J(٢d ^``tZXbP!a.lPr.w@zLzS4MjJr qeـy/9&ߨ`T0UշbY Z=I,)`GxY&40<_ T\? Q RW%KC6G4*2*\;n2c,l~R!4--Q2}VQw?QW@Ӗ+$ue~[{4 湸Զ[|q 6r¥v b]6(0 @KoLH`MVgF*:@8pOߋRgg0 N!>#? tx?s,=P@EM4ALjmVx1סޣ%5 L?ivDwoWsjH4jWK<^3j%*"X$c'[w!+n? z㦩嫇uVZ!rhc®:F%xAڥj2 !HebLJaZEkw^5ЦɌ ^V`^VtL~8CE*^/ͅ"d $"d>`j]l"O:Fq#na;~d.~zN0DiК38yԖ:7@z$n Y6ٔ="N^C:?yPw]v.lDܵ)b#ޕ18:> c͕o +gkD%߹I𵪛cFc#Z)XuǓ,Cb`bEl!G /$Bx3nK4t.WO&Rb_3tjMF HLɋ Fİ{yY-V~~tI3ݶy/3U1IZ`s;_i/onSI`ث .?v-ОRcu3 RVfbo2 YnR(kwr$SG [=:Z#"yI/&>M:R 1| vu+u::ӱt . /=~܄P$a #(Pce@=#8@8 T$ڳGçl4}Q=̵;vъOx$0}{"{)gLel&ϙظO=J_bGG]y˅GQ1INz~Rg9g:*y}E/kmQOE FPB P1UFJѵ,7\ CUR DFKL]y`HiTEJwmeQhND) Y HGJPb WC/UT*OGG= /٩9ǵ?_=w~"5?] P9x&m]|qAbsi^bZlsמ{w{e9 M4(e5͛y~LEi>}NˆC<}1h&I櫾g"0L {D3 }#700cʅݔKMT-*pb`9q8Nص"[H9`bjFD>]"0D=Όx*a)y1U`Od޻$hǥ+usAY3sfILn匃f\h\CgkjK?2]n'4UCѦ|C{ߧL! e a??&V$U?M"k*!yTߤ;gݪy\onURƥTtcfs͓ʌFV!t=:n(L!ۀ{RQf~]N@Lʅ>rbR:uIrLVz_lxr%K&іȉ+X7 "g^1B JôZzE I0}O\9oVACH0Q=ɠOendstream endobj 284 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 3556 >> stream x]Wyt~!<3,y 3BA=OLH^YlgyuUaŜIJŠ9ɹs +o`҂‚ +-[^QYU*./?pEے'$ć<"H!RīR"XFO'+?7-b-H#pEX%$nɓIT&HoMΊ{)4Iu )MN뛾~ziFCbϓNȼ|]g˾@Ig<(5yUL RB%;>YY2Ͷfh?ۍ$ҘFZT1dHXv -;~$YHKX ˶%8DGذ!P"[kuLe6U!xt˙M_n-c<\?uɛ}J1.V> ӒdG.!SSe9l< },QU <rQAb]͌OFuI)`FR Zm@&{vPa( RT̈́(j[͎@PdTk"RRl[-pDgzS5l5ݑpINiJCRm5AF.VYTCf.^ @FQpܷ.wǀ<酓1 ̕g嶬Us37{3#i>Kpfѣt5-'X~yxzl>45jQE >opA0jf)(**V)M @@~K7Xh ExFޓx&GߓMSSl$X+4YyiYJHuZ}Wpw "X m%-`ZҍT<'ӂ;ݴmP0Mu-TbTX5;J%H@X*Je;{n/L[h)8;\I;Qm&< 0k/\l'(S׊ nijՆFz9lN&[ߺ/G{oilO59C<<^F1PɁ3lH*Rcǣb2 DKU9ZBaqWZѓQ 1pnNUSkW5AuPGqfwks\;Иk'ж3,d$` zN)y$\"rHFR* [4ze.fɰ}wT+.ˤ `3z%6V?|J ~;fOCw55$SF~]=u6SծYpƈ%N*(;َ[u:̙޾Y8{eNۻ>K .%&Az_B!5IX?sۈ\GW9ϖmC#qEV3l-𲑯! }tO%zDڝn"NNo70O^&ei&gLhTX#5` t=ps3H~=eۆN:pݖa"Ywsu)E 1S6 ;ŧ^p)nNs}{uy> stream x{PSWoԵҬ0::n][;:nUjmU@ѢRy?o!!{ AbbQŶ}9mmmWNlb;mg?ɽ="4H$aۓopeMpeHp`FZ-G1eb"RE:W:UNbK~s [Xj{Y9y)%!5."M$w)D*qq/(G(&+`Czc~3aLHK⾉z('y+|\# fH-ǷUo[ .,nRQ{wSwщ L(!B 9lZ` |ڥîNG' 1zY97civjY?IAmscb0kb ֊=U 0cEz2_TOhtU$.f$K&(3nN< 7=B*5I=`ۨg^zzniq+,et- xs *S42W`y邜@PUU~sW?)PE┽3}[l \#40 k=Wb*,df\^2TPE+:~OQ-!ќl[+*7ZNW+i'PW݅'AML03Ǵэ@gw7\N,N!-k4ӊbwܨ\)t f`)̡H[[F RzAdj3;VH';j0+yYƷ"S: QwZ5\IZRFv~~k5Lv%fOӨj~V9- DC^dmY7Z"_B(ԃpVXh 8F]Vt2A1' ]hxlcdה`3Bfp* eH>$QlO 9)x!Cv²2W}>WS(*J6]3`궝\|ہɩs(kO$?` RcE'Hg43}8pDظIe̢"ɾVi܌~(9M.MZXGh]^oWe2CL._ ;P&23sx61i?Ky0o'o<vr†͑"u b7=\f]&;40 ټ=,h?Ѳ(liTr>Y#EH M D_&SX!Aމ11"[d| P &g97Nvy6t %f[ޝk6jiNo:wW nY8Gl2,]=e􌓜o=盵m`RcX\e2MZM4SNc_[Eg]5GbMK!^|G~vzHa}d<p;N ml3衚8|h3]SyP$iHnAVrzڊțmhrʃdT+wґ7Uv39楿%'@vwYS6̇\uY~F.R?E9BzE^f!rʸ|T# 8~!Fz@z?t ӂc =ƌ_VZ-{B^n@ 9\w|ϯVё͜yP17*h Zxv`xpxvR^KCb#Bcq}hET1y8'tž6&> stream x]1 EwN !cĒ.ZUm/@D DLҡ÷f|˔SO:olaOq:UU$lDlz{ޞf d\J} ͰأSty{*WUPT$1uOM|zO |Ƴ0vM<.!V-"_\@endstream endobj 287 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 672 >> stream x][HSq<-2R6#"4ȬIJ ״]9t-CHU*b&(FD!AzILA D?w0ð-;jպ2}~IL6/DЪ5} k5@FlbVYۋ!n(LAjvv%I_T\d:X6P YpXi*$`2y9?Ph=℧9Urw%j I^3x IyI)JyTL-f{#5OK iSS 9ҾNC=*u)UGQ%M3po8}mT.s7S}Be\7\NWwg?̓½\րOP' ̅ VKrN:[e]=%k ce nz,^Nf&;#1zxS_SyV9'Bc9b7:j^B]hVȍp`Įu>G҃h3SK>s'5PߨjTBh]|֌tjTVA뀔XT+kI2tR!{lR;69.M!ߔ,/b{)endstream endobj 288 0 obj << /Filter /FlateDecode /Length 402 >> stream x]R@Ds}+K;cT@Bp ngK9?><˵><\yY|\>Use~}تao+5(󍟆rxiKe*0}XJէ> stream xX xSUھi=d!*z#2(EY"RhYtK6M.ٚ=9iҖ&ҦB)mUNFQGF9>IϽO9oy{"&,kk/o^E_fGfEf^=l89NĿ}:bfJD%zhp_Bނ_ y W%ޔ}Ys6羖%?UK_ fMī<5b Jl%i bH&vW)b-4xH!~O',B@L!ӈG[ |q &dL8^ƾ@ʡF'xzҊI3y)+5mִ?O3 J81CfFiH#VWFvdzzvk|>d%Т6$UKՒ*]5T6Cma1CEQx􍺺(%Z2J6İĺu ےdV)ʸh1WS0u(%ED]Z5cCܼ=hcAF9}ٜpXփ<F}/}#TBc-%c֟RPPh\殊hpg'啤LoZġ u(P:v=Y# Pz2)~4}1B?G;D3s;V]߰_kkBxiCn^ ".jBK|g6cQJ023P牜ᮨu nd ;h {3^~góY$GqҦ Wh"TiF @aF5^\K1YCERRnoEz^[>&c@c#~.ؠnJK:ѡEҤ* uQ'I ^^ ePP8ꜾJHŢ28uD8pu vwCc+^:۽iT[KfҔk5ͪ%h}A?~L C 9#\FU3m_yƻF+I71aݚ8.\ ܅aSj)iў4HI&{ dA:2K(`oA8ZJyܩl^j230Z)UFS*Ί~v$bH=C~&h鬆.ʣR1”LS꾎FчׂV&{v3a?piESGF=`(/7q^|f|dt2VPᭁWϥcϼށ^0ցniBh9_) /B2x~zxv`qlF0(:AH]1E{eGYh١w:! ri ٙe%d!+T;6@X?'w7xV݀@MT/3*MJY|*a.VsN5৺W(;Bu<ېy x7ío7\\hM[Fc?BQT{(@g+VcK-V{LZG%d__ n2Aѭp\Y dFK“ŔBv :֙]GgMr[ H H8xȆ(0OC Sؘw82eUR爲mP}A{Dq~兣2WyMrӷ+gsP5.hBafxԏ*AqR4PLu6^1-w%xOOrP ECɹCYQagWS[; iNh6ΌOxGssXסi?~5u_o -2=&v$G<~廫/1S|ªby5.NSM\)kh]R=e-ekW_W T6[ M#%0Zv 1&Ki[. \zJnVi&h*k=m-t_(NH}q))?w > R%V +% "QIJwn袗ƜT$_n,/K8pFK~z9:eA%h}22 YO4)s>66$gi#KyEAN # v ƿ(vȿ?vݎ 4#W{}9D84eŃ|#뱧Mz"dh hi@X3*XY^/K X2[%b#3YCÍ1Aixͽ3s f?yYfV:$D> stream xTkLTW>wWYA^AѽWDDQ0(] ET (,V A@H1h ZMmTM.of.d0SHbjf9%>nn)5Ҋn8M"NbbY rQBX%*Y4IP 8y"15kDzϔ#%),;9[xt)IF4CѼ2Ű9#]3 zBFS挸U)BhZ֠H֢Q Zt&QQ c%9*qJ .pEHTGvVv]"` Fˤ{ F\Mn>/ޭ!O%B }eFBA/@ӄB!^w "’W +.Fz0 GKj1mI!C݂zcJ&As,A =C{}E Gu]MIɒ3bK1)p%;ךOsIA7ׂgΡ ާP1?&o!U\y|Tr T+80ȪSoAiDQ#; d6fEz"M*J-˳w_k}Nq`& b:^]ty8|C|l+'7*HPkBq |\ミ[qadM f{U=qN\n+j 8xZCcoQxy@ꦰqC]^aT$`~F:&l{rp"`:XQƥW+,PdMN‰s7+?lGuvRvy|V.\W!;: kYmW苻U6-/,4#cU3Ś ǏB`[' Tq 9W a !Jg?@mX+h]9 pFG{g \ O*v"17~/-mķpuZu~- 5hj*vq2%8K>Zd*;U،Apa 1\;a(y^DF'+~saZh6%x[ΚgGOB?Jm~p83}S6~PA><C;!\A!y-~#Uݶ_XV3Y6 Rۏ0p4W '!xiLȋT*UBendstream endobj 291 0 obj << /Filter /FlateDecode /Length 274272 >> stream xMoK5bdIY1R tĀfI@UD>̼3Z=?^ox>sK_oc}?ocϧ1ԏӿ/?k~?/]|ҟO?vZ鿸<?#YϿ_D>,iM>r3?_-p.T>0@8> /,,}扺|ĈU" 옟r(P ! ߸f{sQkEZKw\ËkRJ%  PAzQ5'܎y zYc}.gz*UyuqE7> @siJGʟ\blz_,Tkv<CiQq '΅B ؂A@F6LZlk}>s\X3FT³/yB=ކg?bk1yYp ۲@ܑ<‚cYWYXXl4pv叱c~3sr`2פsMgz8hĸ,X-"-D۷e=U4Y֨E2* Xt+9 ՇAkT/ߺ9*Q~.zI2jF߰a/#vXe!lm:vLCeak^s}&)}S cMEjJ%yvWWVj؏nЃ؂!BP0flؠ v tgvo-yy]͎|Y6h뷥k 28[0JZ`+Hӹf_z*=Cea:P͎f WVMٵ# 7Kn?`94;uib+:Cx tTF6I,(Θj~:2m5`4 (ԌTN&ՊT+_T+VjFZ"e֒1y>bUYK^0$dOl-\Y]#كG[X<p R k]quq0UO3c+!FG"BWr},/Dc|^8+fG}c4yS5;vz"pe!lМ`aGދ2z9[0J[\^Pi$IN-Cmx|hRP-\Y\2eO* b` ƈM`f§vAxly•ŅAvq\ ‹BvW,#PtBnCXӋ-r{G-\Y}4{4_k~|(›lS*NNA1[m1I+KShQ>•9=Z(ra^* Zxs(z>d%)/"ynKivE_j@1Iϋv̹8*&Q!!|+4;QF'G;'BUf\CC)W*,t a"EjnjHa޴&3fp MLwNA 4;G,8Lt@et@Ƨگ7zd#ILw%ӏ PVr4:2?r7҃9͍H*NVmK%D+2״(>^yvf",H_%ngsƯ_N+IR`;&ivEoZ> =vi8*_#Q6.Lk|99ɐ>C,hkv!}R9JptzҾxKlao8XL:_Nnl;Ʈwz&qX> Y¶-OUP-%-Daax+ }O̡:o}sM[9Yw5X=^`(s5rH9PY[0D9<jRt*4;&IMg[ivIT@Y}4E] =^0D"7ZddNY` K"O&G⦏@4k?jw[s\\-k7)Wkq~>_Nsێu A4;n,ӢCȠ)OXq{! `9-cmfV_NǛx>1Y3WMh+8z2hIrQ6\ts3B>>QX0ڭռFI*Z.51ڕ'-cOPY[ HbRjV%fΨT?fE:aՅASd}ص]KR>TF "&Ke^hќf1-PvhEed[_B^4MtBeZZm>ׁsVR#X˹#״5b e Ѥ [L\gr5q t.T57H CH'iZ b. 0YȊ e!d짵B8Ē(؂QBPG!Դ߃ܤ2d>kqLeg6h79-(؂QB.s[mMV\c\]eX ՇA\ '1t7K44LUno& ] ՇA$- ^PC@-%-Di?Lv FK[tJxFžY,%A8SݹPC@ -ط~ȢB#CxM~փjz8P>h`-P# -#-D <4E;_6[:գ%ȗ3Q= K<<5ӾHzg|<<jt]_5uj-<§N`e\ H `c;_N傻nwWz GSrQRy?߀@D0VX K_ZXz|q]ŎzQ);.hdp,DUdԡ @{AXKߕMڬŎg[G>[*-e&} 6-%-D!uYƹMJø-ZL9b@eoe o a`ed_Ns^]mn!2yZtHsW 2 u#tg)\8In wǧO'{͎9cZ0Y}4gܒOPY[0JZ`[)Jj <@Fb5RjAk.XH+r12 +_ guq9[^3ꘟ#ʬ~9͎MԂC9k>(^FU`  8x84J$s2zdu^ &2Y#K M|4QBe. m^Ƌ&,25 &TP]BJ&8(؂QB[fGوE#sxY&*ehLdՂCؠّI2##QȚSyx0rq`a'GP#acGqTF*4 "2Jw-cs`\\B>+ N&i$l} &uD%E ;lчʚ+r?3> ,)DZumFYY+^FE)W&{2m-RbE->Ԥ!~/Q=j[0JXxq N5\wN5d9Dҵ`[ޘ#;>Tlؤ3t$=9QP%pJvLّO<`Ղ&IZx]*#*Q GU6e=5%+鳌 {Mw· s ҁM\}lS&u8eN#aJ2}]0N6o>cN?8e6r쾰Dy`du,MKXQӉvŅAS v,^0Ā#*'&(oej-du!X !oOPq %V{$c86B^-rqqTcWׅnErQDzW/4LDK+ɶ4;<>GD^*#47JXxq }/MS BJ2ʰKir*r~jdq&6kY-ƠѶPNat} 'X`AX0Y]TL{PZ a B+D7Hn?[Bdc(EICȠIn_R\D/: Ԯʌ9voC] PTMʚi'kϋ.T,#,(lo$ l*ZP$#^l恕5&9<ѽf^eP`E ?v7֬0ښxj;8i0hN:\ ;n}:6/ @  \(KTKG<rizO\ / miңZ82*Nsƶ _N#ӳ>ޕqNN-+/1C﩮&<ҹ/ve$"aXY쐇x8eu P<=Nй\u~f|<<8U䥉$tu6fe@Y}شdڐj-%-DRs/InHf-ّc @TB|"OؒǂӗZ0DZݑI~]NRUh\'!L59 Y.-rjZ HˆGs_Nms0u~FYqmנʶ4?9,dkH "ؖVMJ] ^$o0y.hfP:@ZZY> YfDGQBPF%vNgv76~w7CSQs5lx,ԱEg Շq)X8ˍ˵`94F3v)w}dAmz8<\%E@v=^lfaV9Ūuį&wnUPsy~,&>@5f:d^sE&\&''ZwaO]O4ko._N>ܝl@%΄bh1tAm;*'hydϝH ` k $!4x1?PTӚY8 @T'iϕ@57DZ v:  l6;oRRQ찋ؠB9aN2Q _}k i @7V\0}]2^ Y~EHLOƼ7|D2Q:4alh L_J5-XGa ivUX,. 'ɠ ǟeuֳw]-p)bVϳ );oֿfpvfLb4 hǟS `-# *UX Met:blC tX#dbx.a f&d4xu2ju-N,PVͣi2ȜFI l /G? >LŔ٬<+T 'Y?xf0 0qrT;m]D ߛ.$ e{|nZh!; FT_'lLbGޝQt~®:2ւ!BDa#;=хյ@ 93/0hN}@Fi,J9ΒcƱbmxHZ$kMK6#|s.{W 恛rb>Ӗ.e,ToZ\ ՇUT9'4 ka/kX`jw:u:+|Hu0 k(=M>Gl72$Y@XdKN.gD.T}P "$t=@{r lZQMB}*b;17De0Z,5@Tsf%q ']4'ϧ>Jȵi1|JյX g@Y}Jg8-u14Yk-Ml!׳/fA;% %xl ia}wF"кE?d71j-l ,D-ҹldP|jd[4p 2%8܃9O` #X֡k`QqL+$' V\t װ GK隇 *B$0*nѯTE*.MVwO{ȥ3 d{s vk`+v.cPߩ@*xA1kQ8D@Y]kg'*kޒ] *r\rr5ɜ V14 dV1`/:\Nc1z0G2L?MEF24X+zXkJ8kdv1Kmb`0 1 ͜)|.^FF)ba)-Pr)JXh!r-[96Zɶ2Tefbkq> @TB?8R<'zp!2;0Kp%5 IO+$2HVH[7 s6LT/ć\wl(B0l%sfk^ یjf>t?6q}JUjX iDS3MO(?1F@uP?~K+^|9MZHU%;50b9SB6VgGxd,p,DcM6t iJ͵Xbd "RW `  c!X4e.GZSNȾ"eLTjVD ^zk!p7t7r2< ;Ǜ+4co2#_W&!X<1֌8qu-.@pdA2,Yu iƵC?4c4(kdj~gҺSdԜiJd`9h"&]0h IvENnrsE434B4 `8mr_k˝"W.X~+rdp܉V³0,؍gr@_NÊxj1yV6:65SafDeZ J9]jvd 6^F|"?Zn (!\ןrwbYUA i!B,b~$8wݴѱ~[dՅ5 :^jB^pB4wr\#\b\8w.@-7rQE/ \fe]6|.\4n z;IB7/m|LVۛ 't](`)n!VFM<)jȂ6A fQ/ -*(Z(9V34ENT1`81bIɜK `-"-D,R0@zyV2t][5@Q= p+H  cX>eEO6=uө9w"Dn'ܮuX\f;q\䆂D)ݣȒ()胦9IRI8f)=@0ҍ_N3ce s3 {N pՁ00N̏p-8 l 5b,&Uϕ1*IՇuߵ6-̉lNcQ‹lbS65٥2*.eq[5@Q= Faq@v+^1al\XՅT9ͯOlS_¶'UC~9 wn#^֑9a3O RRsPFcnZЂ;spT6`݉">0Б1zr"ms}CB&ְ>t2f䝆A@0]sqM,ѪCe 2j-vԂCPb.ew*d9EI /olX6+l4dCl cAEMff-dĝk$Mk$ q"ε\.z߃BK?u (}+4;fGPpY-.K5'.b#@a;VX "&>BXG= Jk'V"VJXLTP![ (LzqkwӰyͻgF[^uE kq$Z0Y}ZzݼK S.L8?k7oH;Qց |] IZd]n `x`[1XA,,YMJƫ1nQ7MX)"hi Ԫo$ 9!V/Y4M',n{pXN$֪ ` d|4;vdX"Y+cH\k LVUOCSp"%NcQ‹lRD 4Cs>0-j+kЫc `BS1K/'4aEfn8XOܿn-z oN\ lČƦ2}u5'2}k5ۼ6Nrޜg-2|-Pa׬#/,l wZu-r ^q,$G9:`;C'kY~N-P iBJwт}]+ ]1r(&S& ʈ |8(Ĝ9:oa9p& ǖ,9#nYc@>,ٮ~Hƞ*c ܸ;'ro#[_mu"/-Ʉ]`+-8ٱ9+Vd=9- :2?Hc5HٙW$bA^-P !fv /egku@5 Dڷyh݆9&Fb/5-7cKZdX 68t[hܸ>rmf{l[0ﬤ~C:lsaILݠKy e #_Ɠ7 go+`p q3t2:-5YY>- 9p"u7ϿYlaq‹l_/S-p XOC?' YoKlX  [X>1rEw*ci5uFƓ5ĭ\lWdN ɲ}>drƑ@kxdCs`Z=u5?+C;^ 'RF"Y `i>UK((20)Q= ne)ԏQsz0Ɂя5 82<4֟Y1DL;Cz}S=Úo.S\R \\ &KYdF1l/0iQ+J! # `L4#Qϑ7h녴L+@iB9P=G ݧu5ة(8qKG Y(ki R)_W 2+~An8֢.T!h̬e^F֎|@4ܸi!ro͘:kfpٜ :#[IVUaɾ47nZ`Ku5;WLũXU6 $t2؜M /ay[wOȶƏ9[æ̙֚?o]窐D~g4 A p"Y4 kysp]6~֐lE6'Ag-r aAssQ0B͉KF!iخUMsEcQXh,4ﳙ~c4*s#b,l,`ܴ9-7[-yQ1 F/<--#R$#9 aV$6jz-09lPb8oL?Qjvɫd+'Uhy|dB`65'Lqaҕ* X{ gzmjfҍp"9eӧZ0nZ6}&ܭֆbGI}T9ّ$",4D,al⠅{kdZSXʦgGnID6(n;Yت퀑T,@a[hDNs㦅alzluFF{R}ꛫ{umu]["{8^P:d ;CKDg;c\XƞRj?sganf([F+;5;nJBު ]a M l6i l5V0ҽТ1 ͤsLqj|'l147h jM ݟ&(X0UT ltcy&cR–RjNX`Z90)]<%ikѰ и`X'3';6@ղli!r,t@p5, cLq l Ƞ*`/NXEp,M8#=]4V-<2#E2'&YmHVdcH&/@47nZ`K7- ;2`['ּF"_Y `[x =,e|@6l` & n6p$dA"_dڌlF6'mzlʭᖲ uVRjTtܬex =SnƆZ* [)B0킬)+|E&[, ,}? } OP>.NXE}4"<X iԊ3$iT8 0AB`؊`#G^`N6#[`Ŷ^l;ۚo5fsOj#j͑mxAf+XP{ R abu5gpϛN/ġƝ+PQ ; V#Zi~'t/#νҢ":︸[NĜUqB0l֋mEO8Ylx#ۊlEҾf%ٜLVl+Vz&lNsvl|g 5p.4;rƯs.nGƱUJeZ0n836횬lY5ds.8\Nɵ`#UH*V-ϫ]ͩ.ے .w ~ Br7!94;J:d!Z^så!,s ]Ւӗs*pa2\4NܚD Fg0ЂQ@P2Y0eN\w=ⳐL^L6@ `uT`^hCS2L H Ѳ1br,@` 8\̅b\e]f-$>_H}fZܣrv.xX> ‰;2zr-%-D8=/9庰+{];?~aB \jO1 Հـ1@0dmE2n&]5$١Arhٜ-llXFKI AÖ~-n Z \O>t>O %SY׸c!06f01 GϱꛪF(x 1 +=WQs=\r$ΰw?e+Ě[knC`[ep9͎+i.5o Nc]o`9VPpiB_ ?G2!i i6.n` vo76Z0JZƦ5i=~.㲕ٜ @?rm}c[-Dinqb7LG*h={&Z LD dXts(VH L:vmt2 udȦ ڌldu|@+V}_!X H B x_N14QNeEo Qt#A}l/A FI l,Kw8>$:;5;nm@`z, u|-"-`a~XfM/L= Kzeϥ+'A/*ͩz*͡? *TjNSigRigQi_Rkei>^ EO%z nTUpZ3Q=*NB_7S6XD`e!BX`=wӬaXA{]LNv#ckqzY>PB8V|@57JZ`z fuզR\R1WD=xWp@IЎċ7k' X"-DݒZ4ZY[ok"&.{r-e V 9WСlƵh(i!r s3X:T ,|z{ua6NzN=kW3*in9OM3r)?sl_GZg}435}s[Bc-%-DckA6KMwUUFiveO Շ}B l)dѡ)Z0JZ`[NRN&NPEKY-eĽiN?Q%#!AXHȴ drGqFܲ&=g6KMơ]3 >\ F&[/4'2EE6sDkN9wdF2H *uXR*l^#,P'Mq#B*x,` т1@`0,s_c9XJ ÂX'Xm6aO3nn鉺H&!XLe0M<$`] 2y696ZF5ƛjHr"j TG\G0y90{{0!:0a`Ɓ >MH5Gjl'MdZ0J8ݓ37'g` m] "X[]9+Tȱ;=W\l.,j5Zl Xuލψ]sh<47Xsjz77 0mm>29KB /@Lí#G:I3AZ?F*gHUs*Fk:(1Yd.^kv 4Q=*ΪaK l¶B0j(G7#e$hZ-ʓ6F-> U& d r%-Dezst|9?w߱ ֋+ّc4,>NM?*rN"˺g,NVP#$/gl9 +c2mQP&r>, Șv#-D #܈|!i+JK$ڢ<̛ܦ6gǼ. rL3ʱ&'Ms: ,\ @y}+1v)SjAQ'Cve#i7iM}z$9*Gk}9fk v k", 4뤗8aa %6_aP؊-%؉ PLbB2:c)(.y;|6|#3;"Y5*z29NOivuB@-؁'1iX}om`pܩTj>iGA#c݉yvN\ʼn֪eMV6 ;g~jFG͞c#>ZBD+aoLXbauEp5r;.֊T,R͈Krſf;]evi89&aS- e:e?ek[n#qyOj 4wNׂɁ,fr,Cs2ZlDnؖmZmo-Qr#xζaJVU"ɑ6^lͦXEjp-[oe>6X)$lIL  ՇAfaG󡲤[0JnQfk${sw [U/-`l؜F /c[ozRlٸleؾ:#[o6qru+D˦[Ʊ5tSq>T(vO֋m}c[fgl9E{ޜlᣱb., ;cкpA47JwfKdmܖ"[o6]+6!zZplN[OmkalfXj2f,&bZ0Y}#Ap> ЂQG0eT5OMlSYt e9$֜n& @G6wWeSGk&+3=:p9kxP Cp`ش%4SN#j9`Dɘ3XQu},\-%,8(-4Z Z&hH,\UfK@մ AU8U!x,Hp޸+|C4RDi/ l!QӊHiҊHrCr2ĹCb" i7BveϩJ"i Ð(JMHO4M_\$'4ǵ Hتn.BNlEƲN֧[m| 6Q[0sSRwʘ~.ZdTՇO.,)@.gܽ Z*&%9Emc l3ln}-j3c *MpVB3LrŎ|^LLjrT>`ǥbIsHGPG7Y4]v\ [,`a/ AX|p;û/ّqQ%Jr2ApR& AUh2Ae!^scdHad TH@OP^;SVe|qK~4ZH SZ4pJ/?/VViAH2lђ_N3,CS60F`11!%ieaidXjd\zɸG E^h;v6"$6HZG#׹z\XWds2ڈlqo+׽־k~G^R{t?aNcA0.5G!fQtl-j!-#~*eۖd!ChqZu8};i-G4V5N Ey|r8Y@*rDj?8]M TkIƄo%9,Tx9YG#XsaL) 6' :^٨E~`YM/TX8s!"ↈ_C=!_}r'I5kv3jdu!\Мri@ ӁVR/ -$)*xSkMj& 4[$k`-r =N׬h`FRx ^̒MFiv\L4-.;27{Y=XtZF(+cKAI*v, {K"FUDpKӥ<8(NM;wi%<h`1~CҍƗ̬֢'qc2O4;E*@Y}4(kZBzYZX,9>,IRfjd\PXGSV$'h@e`9 5g#a*Ek-+2ܩ,3,~и).1 <80nu`,*Y#Uv`8Are]ZWl y*·dcsƦϦ˖Gds2<}E6Ȏ ϶"[o6Q:6al}났%9l˖FdG.[z]bfscs6ƛ--lRdmM7Pz6byt2w lx|dCAJ``|x с9[ VxN V_wZ- `_)_Nj\ߞu5I'$4m X0+h 7V̴v, 5E1 ŅAf%쬀 A܁` G̊ (j=ch&.[{v(u<ُe>3&(*"GaܦCͬ6:}^Ɔ0jA@ ՇA#cd ޜ QE /c+xBWz|mO)lQyFX>6W[PY8F-oy^~ַҏzs>y^stlyX(,fWlU%҄7ZԤIN{(Gҁ6 /4Ksi$nMs_0Ms{2|4|ќ ɴ\%s ĝ6 .{J^#ak( م<,%B* @  ¸t̕V)} ,-%-Dc͖16 >~ 0~!>k/v*Ȝ`)1U"1hdl"XUvUꉴ3\*S]8.,؇4ngϽw[b L/şKRt` .ž7hE6VKds2$ ϶^l͖zW#4mj3^-"jjD Z*:K˂f2&ru-j &,PV͎LvŽ;" Yr"6lVgs2^\Gޝd9PJ ٓqm|d3?M&)Y!Qnz\xgX$H,"% > ԃ=OFf\+f%;eM5Q(iHxtV:ě$/*pz-"{`kgLrxOc8΂eja҆kgf1`TrOc'Z `m-VB!$Rt5KWOE%;Ҝ*ͻz.Ikؼ {Pl̻%ܒixMk=_Lk ۆ,VN耭>6ȫJd3#m:#n |_c9–U9-~%3%3|?ԥ1䒝iK! %R5]rvpv XO.tNPk <"+,BbN.Lv:au ۥ6 _Ӵ^iw;awt+:Ifu5c'ݵV[VluA<8j咝T \1{vY_&sRh GYQH)áO:ٵV.\ jXU(iSZ==O!1X5'V2ٽZ5ͻrܼyV6jxZKK2$L+l'%YMv j 2d^CbبdI6r='Ȇm6mmD[6mTr4shA70q[-a[MŮAcgw[5؋/%.9Yj a6 [RY drG al=]:1G0*9)9d=$kmSpOP5&T9e3*`62a --0mg0s`2贘n0;!)ibEXm](l,Hb Ä `3%XX]ѥmst6M5E9d}Ѭ`c)޴Y;DkxBlҝѴlNbQ!e.9Yf]\w }ض$ێmUos1mymCF[yhdC>yY9,:di`(L80ݛ5,OδL3JV`9XYɫJңrW /ҟS/k*WuAϕ%mY>-ùrP |nZtV@W}1qTrlWqX2kn*| 5#lJy} eVu*J5F X3gY{ٙjP kzר5jta'{c{~,m`P-,: B&v\GK{K'X/KQXeȴ'^e8/=qr_}C;]Bf6sg|mXfl2٦sݴ:ۆ!lsxd&P΅;VdI6rmZٻM KjSN=r CIXԁE :ǀɴ1|V1E a"lаCWv-u7v mF1`;F5x`A'%kd#V]SbVO4}vl1`IV1$޶%'K9uM3>U{-[x<}Vr-C=/Y5՞k}o[ [`eDy"kf6GP O8yBQc9h Rr [5Ck3gKmb{Z\Vl5޸dc$v.Tɱ¦M5ӶYֹH0BغlQy#(ئ5-h%V 7'8P=3YcX&:1,.:RY?odנ -iCV1RcfOhZw ׭ܔY'9ԤN/j/Z7] d:rfl5h,ǀM6mP4/sǰEsQwѱ:*@(G [:_W`H 0lCPcy?@x /xg4clJZP9ۆ,bޤJ K@VK&of{}P 1` !{SCX)[V, Lycͪ5Dj*ٟU2TU!s&ɓ%)##3]re].Z2oǽ։XHr9Ot]5h,*]Y-ZCXǐ6*9Yj 'es??:c[(V򶑼m&ɶM{JNd#~]C%fKxr/M9n>+ۜv djxt -qɒl0D[֦>Y:. Kd1lzٟ +ۆe3?9b5EGA> #J4$G>acz!1hTr4s-hˮt0*6 LNqiOU_&N%'Kl}FjF1lO>ئ=FCmF%4)8)8Bol7]èda9Ɩ섀5G^b lj%caʜ6D_bd,Ɔ9voW׽T`W+9* /ZedkZkǐ>) -/.bj>א\(i $3dx\C7cX% jpйp+79[[OQr &̯5Ԇ8ֹd5xjڽ-'o6بl2m2\z g%a6e y\ŐQI.MPr7dDŇ!\ I5zEjgQgYye ua3ľ<viVZ{r&È 6C7$`Cf{Z2c8E5h` r#NjQMQ c2ݴgYP*Tk%$. F K ublV0n1y&ǰ]B<W"l% ˾+ʃ#ozW^<^װ_Z(!Xqˠ䞶S7)x,IU2n?HHu!-OɓJ$$f86j lj[k;={Jv!!B)KZ'5jyպ{^ _cZQ|15Q YūRT**5j:zo:5WK~K_挰9=gV= +#V0BP uZl\Zlk'Ko[lr-zzR}E`=)z-`-k_Qb? XpOnV\ɥ(#I0Ue2c};=IXo\3{My!v]&c',mBSZիV͵ 8Joڼ NrKdni/kE%oY9^^t^'V`ڏFK?vj~زw{Ku{jcǥb7P2;{k\K>5h\}˵Ð~# P=D؞=dZHIK w(T@ ;0|lnTě'49r7rEy(2)T-(e9JYқP >W!肷iD#75ٟg\i9HVO> ǢIتhJ7м5x}s_뾯f 4/}mrosrkm"G虇IH5Q.QuNZQUTƋH JEj xe LURT\{oq q '_l%/l%Q qlb[ޖp^\mh'b>s=l+k[l'򴥲SĞ4< ˉi 7L8FW& +7Z^2_aưbUmSY-hd^MߜfKlfd+#6}26}zl`Vm%lr!d ɺFA lF/To"t^דy =|v9gU=c٫gQwI*ChtQ$ga{@E`0OnNY1-TpO5#l.S%VAmXESTP 撇'{p lzlasd2oe2d3fCc#lM?"J0 +ӟK5#@f9&:mCHآ7\fk~.m.m5hI+rxE>ww_x *`1rwq* {45xftMjͱNqJ+օ<4eYTbj>A]UՋc,f?ϒ̒咶̢"V=l,)NN6-j1jrw-%deFOɃwn|ay{fvH%<56dp,+vjpO)jԽbQyc@ZʧmEF%'E`-pߩ^b40v [vy1J,I!k\`{I6b`%{ŀEqe]Z,RT#,KWk^&_ Do]zI*_ʚ|A| 5P ]W$x璝w ]O|'~]vJ0l=yLr9n$+F޻mM.$ v#ܿ,p,s{/Î,C b9ǐD,6m={>VŰSzaQ!&JȖmTr$9ʦOG#+f=bj=mV }r5oOaOm|>Y')m>j[ln*9F%mMۍ`v{iv[|P V6[l7*ٙmmvkfF1lٖ^ǭEmYL[oJV0{S}QrmC#3Ͱ:w۶d5xjds̟js[??T&}2ql'P>p>Y| ⒓%:6Zl+V9=\-h\z o[6u{i>BH'ǥO'k'k#q3>B\OPɘX\NN[k,L_TL2X|߰m MQkaeyXәT w o 9,g+a^#'hj[~lxŰ9lJm-\6mTr4[M϶>ٜlz2j[M7yf+%ڊ5lcV8f'g˝o82,ʓ>MKm6!UU 3]B9–u}xR@b䤨5x`o?T2ak!\2& ]V 4C@pZC؏F!!ds4G+L3nEeZFd(;dB}2#Si=2pO\x0IFv#sIB$Š9i6bd6ug0ǃ*CvUU"TR=TIm79%OCQGͷ*ySqTUj~bYbq/yGׁq?}Inxq/cѿ\?|n~Pb|dNZ49->D6N7ʗWm(f![r<~c0x`',k;"ZǀK0Xۨd:J=4Vm6=mF|kr/aG6[a`[Va`}:lF߀0L>k} ǁ`yhև5jռ-L#?S9EK_UX&9J,2俶_`#L}0y[ew-VHZɓF8uApjĪI{r SJ [DtˁED zρC=-!귝P?beڃ[Ui{QE[G+{F쏰? !j|:WUwqތkGU{1iieD[ֳ|( k>U8eGÜjc0JaN춓6*9Yj qvڭn=+i-Űnl0 ~CׇC̆jpנ>Ė5{/=mݞ&7,q8&9f.8ȶpX2|b5|\%1+*Zm('1`Tr<0R@mĕʲK8m'd,ّ۶]No2h3yQo0`5H36<> 5zmmfo'F%;󒼭h+Q ['Fv$96 6Cm3[Sbgk|~h d YfK5R`[lx[^>'[ޖ.}MmMkISm'Jn*[C6e#\]z .$ V,/x˒?挲9Y|޶˨dɴumPǖWeu5T=tcH\C d+JJaϽPw:˦ĐQλe}r߳}pNV JOMrk.sp⒝wwnսj1TI.jwYX~\DH7Şk dxt;^;̖GfFqil;[ޖk^6`^3뢧eK|eO$a2,KGMi4!DXkgBj3ع JmV¹vy?'6۴՞AUVMY/G{[ 2{UY__uM?M@w:sN[ߌqx~83 w k@Qӫ(jy(5J@Q˛ּGQGpE*=Vxh*=^]+Yfk-6ZkVo5.-n5]JmŞi{f[b֚ClAJISZ2*љ 3@C9d|;_ %[>)0}d+,sMc6l\h#\6l6鱑wlmmwִ-ZVpeյsSyFVVUn.|mPT*}B$ՙ$yQQD%1PtO. ?=bКɘ##fYwOk3Ҩd'.M1MZF1h{۬6k%'<։ WZ^BNλ}u+}YU2p(u|@3\5UMU8Л[N ;!|`0dK,ITjֽ= /v Y7lΨ.rB >DCQ#{TkU{TQN:')rڝ넀Sa0،p>gi/86 p'V(yƚt Ē$u+‘|Q Y~X/~}Gg7`Hu鉲q6kGH W M5`>f` i'lW2ŀQNY/v zMHt a[>Y9̦PMgl{N᷌jKI-tIer_ٻj?sucٻ Lc<.1F%=ز~ [dPa59 0Ba VC"bd]^jH ( M` T a3E[h1}yh-LF1ls Y9̖Zmlb[CKn.s=#|mL{c[.vδWi-{9Ӱ5°FP0}`0}}`Zak8qlr8\<,++tqM_݁,}}X?j⹪K\TzcuUˣ`XQmWjr Ij=Ua0_J`#+ uKWdźծovZQ@0}Ҩ~~qWƓ8gTW(ݏKңt ;'EaIc(KҴ1m/ӱ;vOwLK5Uw YU9v9n/vd$,A6/e.oxdEّWd7L"˃e #V,aœtbZ17СN|jPR|6-v)R;T7یRCO oaT+GʤͫH U^Ujw"TXU+{ DUHS iOi'9n(U3B+-gގBbx$ga0H1崏CNJY3}d2afhNj'䒓a4³{yN[,zT'i\UjUٻT]U7"V6Et >@;^)tJ8z8zT`bZAYX| $eNa^6Ѝ86$s Ydl ,G0gum9^BE%'Cj怚٣z6"Jv%yUIAUSbzf`Y^YjbYuVCk#8lcXXP@,}H,}~XӫZւ5wt=qX`*.GKt9Ո]p.IJNcĪ}C%I_ewgWh-n.TpO{L:$Ha^/ʈ2*}Mdӻ2!I'#&ZU6qW5hd1dT.`m!vX_-E|= BC 0q_X^! ъy*+fL9vakE'26E!6M]d1h|$SLߎLoF2}TvdT} wA"M*ճ3؎U8DoɠEB!if6GUӊEݷQ4R96t1yL^;(B~ӐcB郬L!8e;CPQYXPpX2U E%;Vjų,Y`,t{ }T--[g1[,.݅na]Tp:':U䤈` 0r`gb}X 9ֱ3"%dh6CbF;,F[KcC('6_ک@C'CwJ9OaH5ā lyJ6KQ$>l^hf6a[)VJi(z'aLQ!o_!#RM!C%QI?Aͷ4%"w?TBXoթȺlӑ} ґѽCbبdI6rdC iZhV66kNvJu9R.Kgr]aA֋ɳ02EŶqcS6 %=ڈa`H`q5lx׈Nu/Tz8Zu.KLJt)iy7g=k^\aZp"aV#U+ L?T*LaVpzK?tV{<Ǎ +an50D|tB=7 ?' 3^ά,] ,]d ̪33Sk>8}lKt{%;VɁUr`>.}>8CN=Z?TBW…+xN*kX \KPʫZr.|bGBbI|’KS(+8=dJCug e̩99O ;¶k Jcmr5ꈶ:xZNF%;=mH[d0Q Z:&k->0.j1tQƫ|`ꗳ5xVʞrdX%αϱC%{.jÊ눈تc8,'x*!m6.m6?iѣl [֢yXn[aͻڅktꚗ_IEO]-V3,̵.g Wbe=e5yXe59X'Yd#t/+c놭M%$$v9ɚ0frM$! eL#[ϲq錣l-O[;ZD|of(Ume14A?Q˩Ac9ƶY9cH ,QCpmht6*ٙm9E[NVQ [k6rm3y,RYiB]Z-4mp^  ])XsZ0}'o=EW$٥+܎l) ']h+|CJ-HK?݃Ď6݃@4A Od}œV&r~=ɰ%5b:tdy#yHMF 4K y6m7lb[mO6+[l- aC%#"1!W}ڬ笯mw5ڡۭ?cO G>:Mw%)-U/}lfi֭rNJDcנbdnk o$1dTbI8yM/(K*WG/Ty1JNLolmj6*yo[lyoކm|Mѩd+6bl(mzPK84}٠edeƋ~00-Yl^jl}jTƮG.\?6^k}%'KfEm#y̪M{ GbdV->Q>_ЇX+ĀQI`8u-b>&6܎lTrdzm;2z-\"iZ-\"u鐯lCVVmTF1l2g[ =]d }/ncvٜbvf6Fl7*yk;mɵnmn:$Rzo퓭{Z6'XJF߀QF% ߵ7u z 3JŪ a}a%;l\h5ڴwfs ۆ,ס0[ ?k(!EӫH;s~v 1=)~gzL/-vA!I͋Zɻ3sѵݙZ5ͻpqnuza8NڥK;a8*uq|*X%ee5kt]׼Fe:d3fpffsYf `o2A3,,TBw;~N1~α%'EŧȽT=Z.^I6Fw{VRTR8yM/+spU\tDねa9{ŀ62[&$Ğlp ZٲemXo\6F%1hTrH??ұQ ]jڼ3c8,FW6t6ol+ŶN6LmFɩmo#6%MGɩm,o#ڦ۬(99oJ'ӓM.%lz)m6ƈZdGΖ鏒g>ن9.6bsO b-gF%omb66(smMcu-o+JRmۊ>m6o?*m`RöR|oxۆ]o[]Ve'x0ӑl+\':u5 p\.ou6ld߷1le[ĖlE}KtL6dI6r\l^ٴ(6i6m7lb[mjXϢO6'\' s[Im3EL֫mNϼxZa-lGX6^`[垊kL?n{6N66ˆ#oJWۮmmmjI20W6ͼ7oӑxc[e[l[l2v_luű>yaMǝFtM|mMo9e:jsC t.~ 4qS8͍{-;ꦭiy,fM5} .]r.LT]`.)?TbW;#¤mEd}F0kHҝߤ88%i?mM?F+1r0~ӕ%m<1?PicK?pq? Kv_hL7#5ɘ1Ft "Y!Kp-h=N:GѢm4Y\ٖm|ٚ=V"6]yHm+E=4-hq %xZ06]UX>Lr6,J{*[&Zb[QpcH [o=num{fm62$je>MQU=6*9Yj aԢ-5o[#VQ\(M'NT5ۊ5-5oKjq&# lebɞcAcg[5-lhhzi0콼g$;( c5DX*5h,6!zyt af&6%C͸dI6rVmG8zgo4(OVUEl~*fOrŸqmXMAc9ƶ_LC5\3Gޥmԥ9 6$/+)J iG[6l+ҖeddWlyIh9za+0`(!>Qٌb-v-`3b243k&~n[c}<8ް lwjXeJz˦8ָd5x4Cl2(M&[]d6aTrR4ClO0GsK)l?aƎ0 ){ N6l\hmZtR! mIolb޲6yp{tlJ [n􉦋)oh 2)O:İQɒl0M[ ӿU1kզw静`YkVa%OYa'P2n9{`3G-V5hr*Q br dGYAlE0yr`–w kzWޕյ:Nt.1 ^zcetqX\B {͔sn5 IUzE?UfdQ=?QBI݋ڜ`XGlFV=]Z.3xXyE<9,NfOUǚ#N-o%WPOs R41T3Bv%UQu=ʛߠ ^Pl*)Y k.-8u U:25yM{zPXX+Yskqג'޴%%algMb2A%%PgDۢ:#-hl[mm-?m]Uun% ,wMJml&kh}6>HSolZoK[KmZolmUldrBXmhQ&׬`|ٓCKM(ى GxBdK8t+uydx Q@c1A?P&EB,:*:9fWk]>V+4CWw^T֝jF[b^UJ:MnPZUL@M+jdVjV52ՌUu Y`T*ՠ+_Z` -p^Y*RJdaRt_UeE:bX5= **/TšJ]7\;&יv.Y }t\a*=jgY]\)صZtF.Z@T߫-j8h*/T{7&@r>Zx,/70h{EoM$v$ykP ԹKfΦ/ɨ)OQ@+k޸|ȶ®V%o]VB~ƶv,`Se40)V7 Y5+Xe "=$1(X)Val5k@Z5+fU6 M2Mhih"#> H}p mmt& *5JeBVxiBGY8i=JeVaÉ[=0[?kAܰx; J RP`cՄʼnZ1+L{_ô ScM8,\]Zc5!N?eR\KV$OvKI%N]{=7J+L[[WZe}r XdgUٰkֆ]\SٰkZk2Hj fMUm33R.̥\:l=g< ´RB+AʧqYp-x2P\d^kw2vi+Nv#e^g*:yLM3)Y!u6s3(ىۈB{k b&Yf+9ڊ {>L'uvĒ^M/ruM[pvFZeپ 2,M.2[A2ʰKO ,+e yuiksXghRݕd] ;2)y$Ve2y:T{^sXhPY!6lR^k6Ŷ62@c l(Qߖ?{>dlZ~l9-a,5Rel[=VGlrAg 6jm+h+%V\kdieFڻl`2ݪe ʥ=ze(L6Ef3wNu[EeءET6G?ē!yeݐ f֝kֶm]lUu]mEXk<{G;gIe5}A:R72٣ђ0fYe5/t4v/W;OӯDWZ}Gk밖 >O걸臙ȎQ&)nhΖgR<2K~reMi<2' 4>6)ydef`j;ۨMC$,0L6n;7F~2 ea-BX a0dx'X`gCGИhUA$+F6(, VD#<дiZmK|-Zʲ~_ZeTTM U;xZ}i?7_3nT#.L3&xzfO3{f\=D'o"(p!+t8m wA#zsVgۣkܓ{ w4vF Y[b]I@WXH6JH ]IJl#XW ?>MJՇmƿX%1V{$pkҹr@ܿ"Q/I9iD^L ^QcɯR^ ^Ƣ=ǩšd_rZSѣӀt G1*A@PɁl CXؐ[7dg>+n;Cޤ/}U<}lyu&rEZ\V,(\oLoǝ\ܢ5a%Rؒko8fg=gXdm+4>2)9uGx7LsXdPY!6,&>6>ll{O>9+05~jӑ#yd~MeFď2I&~@JfY2D @!Y7#3=J Y yY jf[XT{ٺ(o=ɠĒ؊.Y90).#Sj-Zc1eq_24̕stemsLG9l] mQoKOl|\6~S].mqu匟i0[V&ږ<-mzgJmzmsM`69x`ֱM{Ѷ>N,K۹{itzs%ͺ7avI!!4>,)9MpX9XagʲsePOiJ ε6V+zf[Wۈ4 1˰FFcp׼&Zf"#=C]G2[Alڌ6\B~%|Tb xLs@Cŏ&o$R0YFH>t;Ts]g飻(k[ .(@%R>gUK=2Vkf&d, ^1ܗp`jJӧaSr쏩,lDCĬQ" JvuY0 ba,jdEUWPdfFR@`zi"2G(oXOQaU:[e3` v+5&ؒQmX`18# Rİs`gGUVT@ Z JR͈ɊVvlheb&kΦZZ)cΆVR)bVZ$!I; RK3 ~*=6. ׂsx&xzvhmzuWmzmP3Om)G[l;׳ua6pmɊ}QJPu}L?mz[qό%;Ad2<%V'Y@#0Xk׼{8nda*= i*;X^T^t^),2I4!+AUAWάүZv\,[e+GA6mF[lm86dy66pmgo\]t\t,y [T9sW'8քh~6J.:]ٝ֞Ed,5Kv7As/m#^q;yF Rm ◶j^OUmjO]m Po0 ֺ+g/syN*_Xyq5^!BM8VnXh02bq#[p^ >Fd_m|$-yl?PlNg"6݋|6,ى߯r)v~B#<OqM;I 4G=+.2g]=+'fXݳTKbZѵȵk%Z.sa0l%N ySۊMJRr)vN![g#7lZio;Φ6M&B[ =؅M @9kk=F(LES_J51]*5ֱd'~yk'ج 5f}[a1+a1, [9VfYDd0ja .0f2lb[w[X]ilBK/u4^gG*7{WYdTY;ڥ-H5&ظ-{',vFl[+ UYa*GVWjjTVU~f=k^\aa2lغqӡcOhCX]il>tVI ^V-{b؊5% *Iy5Ɓ&7Pe*҆{KlP\Re%X%YQS+Jxg%}aS Jv5hm} bƶU l-?Pא ! ;$k7==fIqXG`҈ZZL[ %;޹z޹VbۺȵؖEl~m}¶QmF~rb|w623 JSm`_ %d3N%y$zPoKvmy3m. S\LHN? Ņ 9TX*+ b&O17^aRVe}9ˤٷLFt&w3CLg#ClI?P%Y2;byu;Lo '8VWh# :ukSstWÒ`!<`eL1y:rV(k,Ʀ'P j :k~tV聒g2HI2T2a53 b5vUF5֢1+SMuLdP_U킚Uj#kw.0^֥[Yר~;jbYMQVzgZCua,xKiL/l3Εiod;h#Lm^kkZ{mR U^Hձdg}ZuRYX5mMpoUIRª@HK:ިZ2x݂sґ,<2s 0?BIptv)FNBi?lH8 tCTv^6u]c6)ydʶ>Z#XL膶$I9+.u¼{A[غs-^k^z0lJnX+a]V; ڟ/eVc孧 x /YFbF[Q&5qQbI([bYq&9zfYm,+#ʠd'Rbyz yzzf8fEiК~}Y,2(yW]Po46Yg8ƀWh n?+w VKj)ZzKV>7\Y Ӗ8.-C/$ i;!yKVWt\ljjb~ZX֦_6|e7+¾Y<~-- ^o כ޲Q[VWD=b8VZƶDmRhe6[Y6kMf-6YJy6&Ѧmmζ2۴MM dKrcbC}Kہv$JXMuTNHݿ@ *u vmw6Ee6)j u3ab ݬur*m'/^wZ%;qX kf-Hd濺{ô^.CZa| |o!b C CCJt?XeCK"{M31d8@gi6r-3)ۚ\oOzh"{h3|]>]A.fdL<4K{ ͑Ҷ- 6SXt5/a .!Lc’70oK Ӷ-x[a[kۉK LI!%`["iPK[M ˓C҂C XWT&B!14&*KJ@Tʌ%#zV֌0 ew]PxBce# b0oBk5\~@ Ք"?XYƨ]#J%+zF0STh0Vˁ+>?\y+c#o݈bN߿p}إW0kY<-U"#y3sjK/X ŵ(o鬠.5t5D\ ΌyEKŮ' 6u4uS U%%~]B:ejXWv9Ximrj/볭OV'[Mj2%=G(y6 Ciؙsn9uzGbR[;)+4E9B@,˅agzpuEA(G߀*rEp Ei@a~izA6/=ֶm]lͻ![q17Ada\d[Cɍ-ӸHmsɶ0_e3 F٤`)dW\g_]DW-\g[l]|:T6?tX|*6S\e.L ,yC1/hyl1{{~gKJK2% +eFY+;ٰ*\dd . >YVs̰zNVs5vI>.^!)ks)ATJ"T;D$EU_xIsD4?kQUshވ fT@,ޙSщ`щ`5D3MSذ{#h?w|b%aMoYM#D(ڑ*X6#K< tŀKV./YMem USuSjUЩ:U7v|a^j=Z`vo=7_>Z'R {| ̤T{D((?(Ģ9`?P.ϯ `ui{GKwen5mu4uv+($JO00L+>JgWs KYTFUuݔkպQV)hs0 be-fN Bd6Z̚#S4seSoZY:;/A,E_ jX) *# VJJ.?ӞXZUʸZl~ )#gXN`ɺ<ؕGtƮ?`~K}mטcq5L ݪx\ls ߰ijo,hY?Pb׭uߊі'W Z},ʵ7h^<.poY.\@6zI^J@C9m[ "$Ⱥ0KhJgU 0ՊŦ` V@j13kdf-V]n2 Vͷ,_jgVU{ X3f l?Pb![ox޻dg7զ7{EI_o۰;NAbJu(a^iw0RzJ+UeobtbuI*βy*K%Qm׆䑶Ž`!C))Kn&Q~X\z\a~gd:{V+6;Z_L)Ҡd'^ZiQVZO,XdDžfZȦElbkzsJz @H^[ ~ O\hp֊)[W8kȂv#`~? ,Y+օgI]VӅ˞fms. Kgt`9ǦIIw#<qb,s۲n,Ӓg_ >CT| #->'ؐzWN,0(a"$-a B!d׌*%@pQQ5k^\O`[a:Lg9Lg)L/W+ b024d=>9%%a֢5(#{.;$ S5v7\MVV^Ψe}UĚ]gL|޷kѵvT;ҹtf>Gkkm%8 ǎ9&OO>˰?PH<.}V-KWY{`9ǦI#9Ni 9BpGɳ<-?X܅Ge͡/?!ZX1)(C w)c1Aθ.?bbG{XsXL+dy;c$"mvz!Pm l xa&C*jkk,swf{x;sW&d$>6)#<2/o[+ f[RԶĶj`3VfרZ5>'^t=@ 'xrnaQv}yVm-r4M=M#&6_re?P@bY,k5Z Ųy,SW e\7مF슐Zj0s;Vg[*ld&w{V@I穃7?0\_m'aNA䡅 ! NJYCBXϴWp-;kY.pY֧1,ĵgRnƥFWUz:,Ɗ:#<0kjp5N:v֑Hutf. jؔ kַ.oQ#,(K`5%Vj689ض E6kXYCl؝/@Igo,[lRt ~ys9MJʔyYrod!,a (ya;e`lζbt`2ALq8VZƶ4ٖ`=+fYQv];p.0誅]׼&VfQr@Ѷ[-lZ6_ږR~(]co8ޔ-Ϛb@3a }`9! )9냃 W\p՚Z+z^ٴhM%C\%GWry^]cMIJl Hscg 6pFZe^PYv佂l]d dze2޺֕\ޥ<1|eyУ,7Mg{GƜ_`jE%=G?wh#RSP\#[ذ3eEKOn>Z0=e{`ʉqBfbsLǴ@ 8I Rf-ڪ|Hƶ>V#XL%Z_'[m~0[O۹J6vG-JXmWbY߼Zi%{A6. rBKla,HˡAPi [4H>&~lC*is^q҆$fgYcXJ;; N,0( F-4)عjFJk3f66WڬҠijDۺVZnrCۄߠZKJz/`U5O5rcOn׺-KϮx-е<^Kw7W`=GIK*cyfVU3J*Lr^l;YXlb II -PJ+slXY [U6yA[VەkA,0bɰִxa{^k N²묰NcA0@lEb1\,1B,c׭[K[b^K޺%޹%.m]׼$_ƥEY_XbUcK|&ŦVm/{[cZ֯q~ѧ.*K4g%;Ula%ijMJ@ T/_J*Lb=`6x`XX9 *2rY-Mmq ;Z3v%K$`Rn&1Rn&GHVzƞFHe} [z/l0Êtd^BRuxui֍Y旲Q8,yQMfĬV"ح5eYy0 ҶS 'fz1ab@FGz_Mazaz_Ka``3l[֭%a`X ]b q ST#~ۿws1a*{ۓHuH{aH\a_~`/G!QaCeCf V׏GY[k;r[)%̫MJCZ6V~g_WԒ.}WӖ{UŒvw˿;Uջ%2B;}w*{ӔoG)}Hs1iHIg ZgL9&~SLE*k FxoF۴۴cmll&D[m<m/fmWm[6~Y-맏\-Ӡܶfc:^h܎5ٖ62 0[IV;[G,M(`rV غrfX ģJ#[;jK5rlOdAr4[3d?nndUd$ARJlUe>H&,,bziQ۴mZo=zlXoGlLQFG޵n{ 0o=Vgѕe\3 "cF٘,It*k9t&FGe4Hf#ot{Gt{G^reʲu!Ȼ/e} s J,IV^>]+ŵ޻罫1EU{Y*U!f|LbhKv>k=M묭O>^۴^e\\OVS' Ⱥ La l1꥗FhEդ^F?a._k |[ᭃ}u βP`Ui NჽK=Rb@FGڽ1a``3 _a;X);׆_ri}sa[ aD(&98,7vK~L6uT}~/1Aag+ gعyd[$?Î6kx V(mGMw ;oAW^}ktxg&o<1=g)49jI7t5щ%jU<W#Y@0(Adj*Y%GVjj3&*Gv?kT\ک|%L+غt6*[veW0T@v|TGZUEZAthOXFCjּ{SN}J{MdC7,ԽGʕݥ_٦}NmK%[aPa=EXO ` l50p#.I }1 ҶS8KrpVf{ԲNߣu{eg7cQ{TΚGxT<*ij8V[l+V ]lh[mmm f)ڨnjXl.m1I 622C¾{YY3.mBcVc*"WؤDI;獭6M6S~ iKcSҩnK1Z?Z?h$!#G %v2}2y' vr] m/]fЯ UQm{O.^Ē/Z_]ZIwOy/dSfR ?TL#}Wѷ)HA44&m?^ACn =ڏVcςi=FGv>{tB #` ռn 57}Z$}ۡnju3E4U3.mڥ̦<ؔG4elo-vio=6U >X]>:ILJ`b{ mym[mZcw61J%lީrc%oK9=MrU}rjRʺWJ{|nH:xt}샒~YTLٶ`Z,但SLiI#ff}¤'ͬ%v-b26DQ;rcCnѠܩajuiK 5Lb e2W:W[$:Q SS,Ĭi6>e3tnPC?X%ݽUFL ^ qkm pneO꥟Oq,*c`#~'XQJ,顷KovKHdfKoԉɖɘz˸f wb;̼tiawc00&aY3`.fӱune=4:̼t5cR SrCf`N[72jc6;s*)%%EbI,I5JZIp%`(UA19&v]}\ˤ2U,HX<+`|:glG#;G[2.sKF[2l[j! FYXզwmSKN+o ۔+M8>~Y Y_FWCc|#=Tb *Yw,BVXq%7k ^ CK*:¡/֯48RH4 ضc6Vgx=0RHMUSHQSX%g~.ߨ򈬌 5&0Xxd8w|7k2, l1lqZ9VŰ4/ɲV|l3d-,wedo7|- tʝA-4 u-̠RITWF=A>5ӎw2[ܙU_J:w$$r+fZEf墲\ AvY 뱏Ț\^i2"MnQe|E[kBq\l}Wulm_RB\Nyk4m*F_NEeDY**v{BUu.2,޾i#tq=tJ(Jov*~yMO,E_~8C?{=Cb<`xu荬U<`j\l!`׼IveU]Vݷ?TcaBOraI.&jnI,`?H?x#1Ջ"kO.`(\\Md.oW_G dy6+Y'VXUU5[SM2q1f4M5aA&*okT\Q5ÄsgQXq>LXyʻœVYśb!K XDV .l=$0l=\C=!bWX^f5 jt-ʪ%jQ7{U w % ?7(v~oߠs|Er"T޸8Fovel!iEkYypu ;I_`"%Ea.TTެĝz? 4 o"ZaB+7"qb8ٹ* :"[*7Mh%aYbаU6C"hfQr,3Vr y6%h^2,ga(`Ġ߇CY#E*o_SYuFVfo"?_)ueY5ueaο_]S0+%aYƖ'Y6,`#q[C>`Vd7P7o3lEX7yCĞa+bC~;- d\aiO6.mX ;q)m6t1U[IryQ+2F;\bۆ}Wl6~s_ŸOOXo"FB\`#A0M'xhTܬǓʻb-W=i,V1cpa, *Kluq7 ~+b6>GP&UزsWY/}U$y9 O sk҃|x#Tq} .*M]Xw.by/ b: GUԨ5 O#%Y/oR%L#0[>Pxdn(:﬿huuy>tu&M$X+fX_!K"Rv^XX#F%KTsgyD,׈akGT% INx0#6ʰ >ElP\d0׺Γ"mX]v LL56)&˾VC͎O޻MgKZ}jw,k^ę5^]]mW*IURtMD6FtY5og0 [G 뮕f]sS#m*ǵU&@f.snLdy:`|[̤;aT[{X2q #k3UmSG aH`ɚauB`,0>@UmޕWhda^@qT!r[n#)Vy(8\5.!q%WKWU8\#Fieq*3ʨlx"k9ZVCF-ڈ#duN=y^ H)+}S]Ӯ_UgX?@/}1kj7մJv/<{jfFG@yc:8ONX-[ @+qumhm~R6ȱm{:v FSw]=8l{0&L@l[lk|3+JY3,Vf \*vK.;te^7>Ę`` 'xp;pVb0W9[=|?|?xX3Vq?n&u~5f0\Lp8lVB?S`0Y{VR `+`HC!\a i?l~*UC?fUU太*'QUEQ5B"sTkQUʚG`M,U/"Vhx%&e+HTޤ^4:)`ަu̩qU#QU㨪:FRָ*M2ۈP>L=Ʃ@HLAdoT)Q,.#jճf5ÈaDyRQVC*0'Vkjxg*,x043~JRe)%508fԌ#jr+JIYe(\U.yXfoP[֣ ^O=ޱU[tate5]@.L`_]kwf$57r/*/VoQփPϕh `"'eaSfy!.ݐoaK74m6qx F]GagGqw6aol36xսmI&[Kۦ[mhkYmG+&m2fdJQef0a⛧`|Oͳ*jekAO5ʪ%__,UH^ܦ̳\S6+2v͊AUjd,G/CKFSum7KOV`,$'rx5n c0lg.i=l||eWh^Gr:&!ZfzfdBR%1„8L?/3})~d_Sm#tq鐃;$mGW<7QJ6*6n_-mP[jH*Ye$2{ټȦʤ8rVYU~Ʌ{w62nܹYwԐ9cBKu@5?5A3Šdhwtdb iαmG[6FmMmΏێ6i9ΡՆmH[j2lSm9 uq[N6ՆDano%ay3ɞ/}U2 !l'{V }rgۑvin_+j}JsMUMt B6'mڧV1Av&Za~uyy PpOA:.X935DIF05U%t֡jt{ 7^C&wi%Jr5.;k{WjIUJ*6M]dخZµk5k$^Ge(^Tޮ)φw &'qkk4`mوkA6ɏXw# vy|]"7&w5% 5#޺r0lO"6߇F`2 o) Du Ụs;wPe^szq/|(|5ćV g5ZH˓a/Jc{89XUT9*YUUQqнh `y gR xȚ⒄p(Kk-tKİ|d8=2:`# va+l$lYM "|xA6. yw69f/M/(OY="4Y,hG/&PФ?+"8hdBlG yw6 uo![>Ԗh}nQ`&-9ĖC.KD3ek5vHj6]WOu˼f|BNhݫIX#Hʚ2eq7X9?\X[]MuN亇7 w臏],кz 0-3E6U&9DF5H׈~&['{آE5UI^Om#5&߄&iD]̘ 5L]aeIΡXvvtgX0V0P7~X/ؕGduh ?`!^}`[x оty M5/̊I+HuG21@,ghH!#lwɤ/Q,R2َ>IVtIk&)d6ZI6rhMmUi5dWx\j2쉵V՛_\~b8C_lM]PY }\b }K_lMm3yv: !GCiF(ƛ#pQy˦Dw Ta2ݛPMCuN4uS^ÿU7P زS>4PzUtjw:T(KȤ8ֆY,2[lʙm /Fխ(TDAԴ>%`5U5>]J<55…TS>Zx0exM^IfU =]&ݨ&od[&WPYQևȤݖek.#E6``苍kƭYb KvB?+KZpl5p?X\5 ߋ1Z KJXSX gVebVl^RdX [B/ў@Y`ek?:èۈb˲,rFhu(^bVzKІtlܗMfM5d?RyFL vӺ iaCm3j>mDV,[i ?K c\G| ~Z3'yT`Aa ҵᷴƳ {V=lU.X¦߂Yͳ1\mt>RI%nRO6ߪRyP=4îpl E\Z=T5` erydn"bWՈ5X"]Ӡ OqU ]^Uk`b1iێ5S!SFէ5-`5>Œq0?2@1D`*h@a&!Z@zltL W˪-*oהh6 J)̃Ŗ,N8{aypcNXl }0횿L|mIrM&޸'hB%|_ Td.&SB&GQ7UJ\׼u=57.oXǧ`$+-ʰ1AF٬"5f}/#ǃ4dFY"C,(Wz]$ٮ!2flF2fAV'Z)vU۲ '5go7_5~o~k%WYW$8KTۮU֭"nl*imx7mxΆ}nkZVM * {!ۨ[I6rl[}ߛmc{ Nڡ^ aRqRDW{ia"mHfp!YÖE]qXVEfe3Lw1tM:k1`+G.X1` m$W|xߥeVʒem$c۫թ*+J%cfp,~6:LJ=dlCm(2J2ݩ'dlf -IF%)^PI6Jv(Iن"T㒱 TMոv *ihzW2$hmq4c*5>/Jfs6%Ěq%DbŌmAƺ*ӊ&5g',[ 7NA<gaߍnX'd^a{>Wʈ2E>-cG@dYm8P6['Nfn^ZQ[m&;_-JQ&{q0ll\~':WZUt~Ӷz\ּX`=ukoaOk! j%V<%0-W+ѵ•3&\G~ w lQA6F$6dw2+l2-TܲXe ˬ>° >[&ip]N>.'KvS,*e[f,2+diو4ٺV^MޚM5[`-D?.ά^߲ LL+Ui*L6.q(;Q`jrcgL:RUdkԠa5$.og,֫!hX^srV_8:mhmjUm#2*o@6zE6zdFX#qA|t!bBĞ]_;^磆d) fb5 ])dא,E#Vطv+ZgP[9MUmG#3i9!6V̏϶~:?DO6~=mmHǠv72ٶJg|Mu_~ @:Ƞ h͎0Xֲ°aX3W]5v``y(VZVXh~JaX-CƛQ2ޜt`DXK M޺;>vpY5b]\=j4 ^,AêY5Z/V?ߣ0!A U]]S]]>&KW>kq*< eɲu~:Ȱ`nloE̓2n~ӏ#k\pnXx0قތ$jOd6I-zRSOM *4'fadaf0yX5zR R7(t&N. K gq́7婛aY]al9ṕeؘF66>ٰWئ>PD͍TOa6WQ@Yh[w_%&ۺJ?)d˰6ѓmX7dᷴ^iI-dc!jPқi3o6o[;Wxm1YmemvMp8`3i.7o.^uۨXtaĐ=?8KtMȕ"K6/_~Յ=Ϩ!W FF0~E*kUK7@y v K2͡٨PX!bXS7{va]ksjܳƳʿM7eUIFrC2AwTnNj`jLDRI6MͶU:ѡ]MsmjC#4txsU5!.*%+(sx\b.7)~2/LS e i23M]v&3{5YR&Nц7S(X<0`TzčO&s?ee0هSfCdrxW7=VC%f-Ĭc+#h&c:oIy{6&ZMVDMSMrZeGYdžk<×8OpaYeX8F$es9-cCq-h?Gzڳke*yMꑞm#mMi-,{دm_ dDռ}]&ٮ墴\"~FV[ QU头"-'U"U6ng_Vw|'Ϯ5ҍ3n[+*L7AN6AtVUuTJ2ijt|z8[7ϘLy^Uجa/j5U5RTqFs~'+,I5RTq(h<{T3ZX6S84/$7R "!7(q:߈op&[3G M ϢH8ШZX?;)ռ5λ|Jk8:-1h[Z{+GWZ}:?tK)\g ˾ PC,RQyRъXgV%x#PJo%.ϨCmxk+boaf#fT0$DCО`4TC11d;Y1dXLҴSHĺLz..5%`=īKPէ C'CM6 H9 iʀYTc-4 [Teg;YOV|{5B%VCb-b^5Drh=f'la}}`0Tð`i66D[&6VdoX 0먩 ,˖neYl0l*,K]a{E,\+Vg l*,Wa%+ k CDvX=RX ]^X ]qeIt! 6.cl8 ;N(Po`1a#q3Vݙ}D}0׼x3&lȨxG>Ƕymkf;_ب`[#XYle#H`zAvlH^;r՜-JQVtQyÐYh" lQ փ_h$Ol76C4FjڎdCP~ 2`<Ƕ=ڎݲWWlkS: T_d%vK,'%]SSڐlmNlmBG0 Z z"+lT޶$_Ƅ _t>M6i9!6Vm\A?GVϋ}m# ל-G٨Ls$}# 0GUfmT~ҢEIl3mg'dI'l'lyd}}oJm`iFkS]Y-4Gm>v1CT9R.TV!s.T}j>5^:b!1FZq IeGU?'KOHA6m\m4z";BOԓ,I]  X~UpQ=ETRx[ԓi74!}kvgzSWQ q*%Hć2aW(=PLJ2jUDGT,^" >%TJEXKj`q kYUӽ#jjǃj0a Sږd͐!9:ל CdcDK>d[aR&+=JYVA7?M`El f*]]drCaa`CeEYn*kIe{ZRYnd-GY*[;œ1j^ ;6hL]C4ʛmd6rl1CqxoC#7M&Y޸r@oc@:#x 7O\;f}DC̤6lÊ{qh576G*cSZh8ꌻ#Rt%fŸC¢\*EeT>e$K KWWnʎaQ5Jt Hj:rSVnW|{r!ָYa\V1Ć'Õx4 X# ƿۅ sg]x WkVg,_- bV%#Lnج**k2Tf^k yXYS#etNL۔jI!N7:VfR =fnv^}cgא+]f3<™ayRrZ`t_Y0RlYdu{j5R읛m.h[[&i"qd,h"zzӭC[r+rQY`X oz ˼mQYZoʰ-{ Ǘ%:P܎BlgNsFZ2,H@fTA%Z5uNw5˲ 5lDYRqfy DX!!ʐ2Rlβ@lאl찇aߐK6.1UC&>ST)nJ^ؙ1R3`>85PZFtw"S{V6DiR4H1HClrǦuI6R1hoIL+6v#P6m7,F8`QX* ~6Q7`u\aE}}Êv\:YGQVP*""PԺK7(\d- MSԳZ45E婑3HjVʚC5 `M0f 14\`!ŕ &"kʄh.A ]/aO0 C7tW?z%X3.FS:X IҢ,6+}ISrΚr͔;X鈬4Ud&!^O0a;XUj`A>[dJ RU.ݰfeuU]"mQf!CXc6$uaL;٤s$L4[ɴfg6n lcƍ<'iommk{D='Qd-F{oOPE-65-Fڴ uOzFsTCmՔ̇ڐ}jWCmr7: Vt 6,K<Уvd%-yR\S9'DتXY#cЀq?=Fdw.׳kk^\KJtaWypގz56>ɰ/rQX*kբ5fGZZ.QkYm|ڳ cmxmdL&p[n2my _tn2J%;[_[d]mG[jS1Vf+%JQgF)0#qۦ65|[no%az5 `2lQ%V%l6VgWd;[ϴ72TCF[Qk Y[V`kd2qa &.~*,ۨpZ]!N7J26 _`,TCbtb ]\bѮXCWlBW/JvkI7N29er7?6'b|ӌsv݉;YW;m+a%i(Em*2&Úf @&D({[`OvaDF!$2zV4L-WP2i7N!2cFhC2Yl)y'S?zqw2vFeioꚭ#Lk]˚Oոݑөll%EYTtTTުP#D3b[bl )#Ƃm#[X%St\<0 ;בu.7.0Ls]<#8 SF1ywQKtբ܂k\`e؅ vy @I6mD[njEmrے[K-OC嶃>_ڋ"{qs[ؓ .M]Κ5ET=OP3[P]LEV$H_ފ$ 'xg/ /i4>jQ>gZޢfYջڈ.9]JՅva:\("Ll-϶>َCmm{ol=7ԆO6{'mנGak/7ZQ -SVHۇ"ePZ'ɳbw{O=oxVk\fn\7 xHoܳWIU?JyV}Q T%,PyܹÃ|Ta/I)aɆY;,nWx F!- +3GlX֦ 2 0nCаʃF5JlF[b]Q?-OYm)G[ި-tgd Wz!}ې q9zg8lT޶,`B6m۳ q{vU Tö'ǥO'[Q[+֊F'*#68r$'J!5i^ I?VۤZ;zLV鋼'5[[ۊۿgۊۿ;[ĄY y-MMĄ2٦db#-dbLJ%[w6m;.JFm֣֕EIx,5؆QyØະ[+}Ǎj^TgDV-GRB݉J )֒¦y@l9&F}V*X TN!QRM!6i㗷lIoi˰Z2'uO0lW:Uݻ3گ(تfjXEY.9[u WvAE͚UD z%-0z  [o%ҥ+hhǗL;ݷ֞] nYsz1# c[Ztu;F&&ogRۢt܋'r}x$ajRnM%zYQ?tըNUT V9  dg˺ªY%+}^FEgVjdUU I`КIPТfU|?nFE\ U3o"ܰY]#ECzBFE 2$#Px#%T==A33>y0ҳFճ_N+ߡͽ;5gv;ݐNw؎&OQM{u{qF%t W޾ޖK taR?(%j{ؖuIOAkw#_']\~0|T?.5p9a v( B6,&BC%d= Y-1dHzYKȆ~EE>0Ȩ`. 2(|Q;WsV:bҡY5`Tޮ5`]Y=jthQUD0Vfd[΍לMYEd/=}qI]+_nF}`]X脉k޲ʡeUVE}]`;TUF+-y:>XU(lBQxjMl3ĪMU,(=XTZ=kHfۅV#XTޮզ%Z3hͬ4ZYѢX /,o `Tް4`3 ligM{+bЀUuzBzr>1.r g脣DլFNXc' ,*oL5;ᤎM⽪j~iEF5SAecs ?dO&Q[|gKe~*3wXMk6$i$6eL2Ărj K1꬜"+K}r l[+[jX9wQ J\Q#^B8sZ0 jjUT뾘TW4 P7+eq])( a5C$ßƂ6d-vo6#mH-{oAg2n7guY q*lwWO\Okn3*뤀09]°۔XVb  tYq-d! ʛ6(Fаc0f1/:vlT޶f;l{ͲlG[vİe.o_-EAeaY6n'4v5J~m οTd }>zذscpz&͋m (l4lvta6,j ް]mT޶TՆ m[=ԆO?HDgyۨʰjG?UUIhAG>R8uV*o^:Ee3VC7^αʛF5Jl⁠%ۧlH5.oKB栈!_E,QT$!eذf;1`cFؘ `TްZʀq@Z y7`+>RWwʝ lٸ{gWbq&zweHkOdCa#t7.e7]Cv R .QC*!EC]]Y=PV\E5Bg]6] K!rչYiv vCndk$H2},),ڶ_&ieq{vrJB+ L#Em@Uҷ+ wA{[*p.~Qha+dMa-jRW5rUW jvق5n5Kt͢lD2EPݟ)vI_ ^{ǰgL,_wn--fn1| 8td(%gۑ פth G{aHx(U:q(^YdV˛%W,ۍO2/zwO6F5U'}·=/}TVEV>+Fժxk5 7ո k#{0M\=ե+04{O\0dì1M~ ٸiFlDYlF'<ǶuC[|z ๼mȧhUnC+ؐO1ml-޲ljmTs\,6?#ʧml;8̆1@`;ūCizc hs7`pؼ°0*CKϬ4rO6Vm^mjȆtraۨl9`)![:FmKSm<ٺOTC6H)0yܿMl? 6. lHb!g[q#mqe﮴e4 !,-^C2J:_f&f˱H]î`#ʺxeU9]tFdGnGX+5l(QZ#mrotR V--.h(-[)qͫZ_7w墠*CyҪop4=W9V7 bzMU $:Q<m^:Ydi{~ߓ[/?o ~ 4>@3h^4ӳzz33/BP-i;VB[/#Iռ8=\cmtYUH= 5& T\aax:-PQͫ6CQPe esĊ%oJ{>k+l'͌6rVY 6Nc&կ+omo[+=2jHƉ{~NMkrdQ%Yr}Um5\Y%i$fw`]\2a脕*޺"]`q7.󿩆\cq IV"E&YphMmHfÂ۰j~Fm3"W F kEaX5|qt~$9z2A?ʍk^/vxƆ2Έ&TgzPurܙx+@ 9`PaWSLra~O$sK_$-I2)\9%kê5.՚#4w?k:Mk\9%ϥk!s|%9i\,6#M󿄌0J űm9.ۡlu^*oyjÆ]CmA+͖ wcF mKKK6 'Oά6 V؎K_lY7S{mo|mC<Vyi˺$[\+fM5d;ڎ~>iTmv>YB,7}2HI͈m#卭'Hќ)&9R#8wHQKXTDI;i^HSI(ɒIЯ!MVYYظ6m v$Bф/&)`v&0[)`,ën^ ֚ĐUk-F7X」0*oX CVj4dgmT48.67lbmlҎ(;ü7 l~r\[,ܼ; 99Eppgj Ol)J0: {a>j1OoʺLU6Wa#,T$pռRR)J?+v %\kT_,ڃؙuV*/~];oj`a{6~y+FSnw`×awF5nֲ nlþ[j򶕦6|8 6rl[0URHJ!eu_7?94 rđDaVݞKlOgOO?h0˺'ڿ'n'o]S0[M&;tolMݓ'MscKw ZO똹,({/?!]Hk2N&%q5/ޅa:uDŃj(deY5:zd]Yl;›Ȯqt.#_ˡraPXW6[a`7Րmq V/A!h#KF &]9 vt5avtKwuRW˷0l]756oasewl 6 TH )F 0{A35&,_^WKFKFcn0\2`˛vTl~,͙ `+C _/[k? 5d4/nY4j AwdBm4|qmP[ Vڲrekz8F l* oJM P[jk%l36{=to #,jÈ; nT# QCMxzd zH#ݼ̅ :o8inz'Vgпx5% ,f65:*ol/}9v R-[H9Yv7/:f0k}C0y(&Hj9l,eK*oKRJDO(x'y[JY'T4#y1`jzw#Qa{{֋y&9t t*17c!l{QUopp@ݳ?xjZ=&}֟Π%d8P&<)_~vlFAᲡnpqd;ݮI1 vش儩nn. k#tݺJ[ =UD}j-@ko{Qn //?i1mj5{~h2\sW _ӗOKRzJ ?J=L$o@R"&}C'mkjUM&G<,N'ǗBz~Wo!UjZdT%E՞nj…Z)VR rAUoAjTTE Qw"gr !={*VkHiH\s?b5FM}cA[ޚiYT{˗x$7A9Π֬38wW]nqi{kC^` iq;$t5I'SbO=ɆsVA摩Zt2ezWd.Ə`O<׎?[Tq+(Kk~yY`!2g2/XY`Loô715I|j!#_)NB4>*9վg|8wqլ4*LbWd&[e脯eIa){#kWΝ>2?rGYTw?Qw pmv%=/X=,Lś:be9`0XRUzO =#@Z7zKqsM7 wo!mizzzzK<+pds{S*Q5x(RI%;!J)Qj:8,kaUU'ySMe,bKF,L4f*IY3n_ssɐ| "5u6xc<YG`Vk’1=(ĪO(aj F?C P=A`!?(OX#EHʪMYEVmIXh€ l*)¦o`e6lh e^̺-$u&a 'ފ .ns*_pz꧳lM!αy K(ղ|ۨeuzl1E^fkYm4Wt-#+hsRVjuo{*VOb/Yߤy,|VY> 6^18| \T|B3ˁģZ*c܊ѓ;̘'UaA4OI sCe ]0HU>ӗbƈ9+KbVQ q ֮YYM1T6*I0) V~S1'Ɯ[,Z;B7fY ._K"9W1팬TC"cs`qͣ0-dMRd\kE-bI>K/ 4.< $8f+\6X Eɝ]:n&=KҶ ǾK_q;6GVӧӪsiߨ&w\ڻMkh6qfsޒwsO ~?BjAʷ UQ\-D ?` ]SY=+k`KenCd=l*춐f}s“Tc u=0.jG𧻋˗l>鮵ҟma7ռO6Ym~ɶ!m&$CIGJN =Rr =fŕx#DsZ|,ۖb>԰m-c -d/;uVmƖ,hBTK2hcX+֍U4!2p{}wuPP_:P ycMq+F׼ZRY-Q&4F;Z#(k)f=] Ymhmeq?ںٖfU۬w*ц1{YNG?P[!8l6jrO ʦ7CE%qaKz`Cd[ {ekU9o{Iӓ\)= 7ۓ={Ҳ4,=旒 {{ A>xRx$P)dYP<ȾO㞆;fhdFf-ނSbrVL΂jN f#Ff&|1&AHHf>ApAec ;MchIwo*RX$.r,S)n9F죄";жE]WTXD@BD$GؖD-.Ku"R8Y%MMrDjbe| œ=]CbJ-wJ? &ly%?xpzGi<)p87=7Ώ@Cw҈AZDe ͓EFjboѼv~J ˈjf[R}W`T6XRs\PŖ #C F[Cknh3N[?JAnKT6CW8BWk$[7Rqz*K K/]p7?jVWuKW7X0! 6<2?eGpIqaZe36 kLd7VG@ai JۑYv$N M5/ 7BՕV-,d85K܎8V/JAvʶ{lVUi4U~Gb6Ie5pi}k%En5yTC6hj˙c[Q<Ֆu5d,[SCe;H0YXh0\;65"K$ *UCȸvV A-E/Q9f@fZ  vAv6uA"Fվ lqCr,ㆤ `ؤsи洒ll4GyKZ?=u e Z pܔx Mᰐ54I l]GY`=p`B`&Rny/W0zc3mao`36۸7mNeDiSm-Қ2?AYd<ZD4. 3l!r[hHSM%h*M3fTyr J^g%Uk}p)j޺̊j<,@y|6zRz`Oz`<uWtz`D5NxlP%2"BSgI Uo$IlH]-X;+>5Y]%ZWV{׮k׮|- S=xlrBfpEj~!?0$ғQbIC-J~TF4A&i1N 4J3wru'4'4k^&xq<#_<3/0eس_HY Se E`P  \ n0 y 0T6̔gU'펱HjgZ*~ =lӿLzm5OH h"~eH$pUNQ㨫)vȜWCۡ F5VvSҝu?!VC6|?sh?86~o2 a/lTlSm`[d.^SڟcJq|1Twɜm+D߰Ύlϯsm&V6 >6y|߶MLmtlX VZQ[+md[nޖ'[SZv`van[K{ Z kCBPxr6 fAI4fkt ک8M$! dY~Ox웏KOf{l骲ūNǦ[5uEe¿1 r̢|=/!B-v߱%$Xs*;D5jMRMEQTslxG8l5D7mwN&ya)Z#Rk{-L"HZ"T }fDi$5VU%W7FtWӁ}p90}:6ǖ~l׈-Vf^cBSm?T͡9mM+H`\sZI6r߮Vw#v=>[wXk) ( 5d+SlrlU~u_SmM.C 0 V\-%x(-!lT6a!n5x&}Sd׻C]hyij+SVV1{{J[徰6qe~W-;M9$[Yw]T=E?LdٟS]2RtD;ڤSmsFۜjYm=GVJՆ5m=sm'#jJQ&}ڢ6IZ]]Gm"NךհI.ךg LN & g+m(bmt(\rU6M6֓zmmh]m)-ݞbr-_mf[Um2割dGp[彰-9$[=ֲdb cxRm+T6+jV<lqlZI$n'+f+ <8M/m@OGYDPU,9竧xx!|[1XXfvD_C aT:mTǩH1Tjqyx4xH(L7_}ǩ펱>`?f΅ÎjCfJYP$S;;.Di{L{ZXDNR kNwl{gK㷶4^n>7̊t-I& :|+SZ`8@ƀ%mwL,=tyk\sy|VQkpql$q )Ol,9UV ; !Qͣ'Yhȳ|hl<6r-^T~JplxCG#|R S;L;٣ldk'6FTuBGY`ӲR*CRdS*ETSr4Dm ZKYkEZ²ʹ jkO\ؤ'yQ7u{heYĮ9DVBOl''=qzl8*VWG碶\-Gy0l:a9{5dq 6Za!jI DawV0*Lfpa5\lpa4`0XR`+y덓7[o7NqKzc]ᶐ5n+ v)6j$OGYl<Gp[e+ l?]no![jٲm3,جL6![^j+#JD^n QCV[@L6InxEoI Ja*<.Ԑ(B I\qȰyr%PGM߻Ǯ3l'>K}ϝճ^8r'{ӫWOp@ k,mn,\]sl.l~EBmbž ~96߭9\pg᪷pU k|!\zɢpmpMQ`M]xۼSQ\%)kn..ds Z9Vר‡㢚Hܩ(6M6VVQ|o*cok\`x>\"NEFQךzQrY־vY%IG"Ww%`kjl6spָ洑`I7xO{zi˟R}nhSmx0 [&GPѶڤF:cSm64?Ex^:/vN*ؗީx.[h opeF5B[{13uOG< \n2FyRQTT'D?dߪ'jd~g/G~i.3'w#ZvۢLl]˗;p!:gXH Vn:ZEY+Vdڄu 9m~%ӽ㥲0|op9~>2LnGx{L:.jN+qu jȆGQrjq"!o"{wDQTNe?} Lv#=l*~:io~Ԑri!O\K^}[/dmGdmS[m&)"]fD/m63K4k۠sal2ElXRԆQũfd##FeEgJS[iV3lxب洒l0S\oK_XW8aCs!4l&C)3+K# qVѸ6-fӸQl#&q7<]&,dj KPC$/eeRFdۋ5c M_>|gٶe40hm}M_TqH0B8.&g k{Wwxi_k XR*ZԞ\c;R4VN75 Q $48CTGBnf}s/2|*Oa㊸vCxG-n?ygMА@@M~b;k=AJ^t6nA!hS%h2mĠ 7'A{ C; A{ C# {;8Bo:Noܰu>N]qܺ$wU5$l B/^5W%5_cn=pz̛Fɚ+,S`No%C#?5OHI@/k *$@w& &fú&@l]Md &4iw|O6=#%rH-a0I6h6f( &Fdh.a!bx09)fuŬ1}veeDډCduD iFށa8RO)޸|yq2| x1n{jUUa0TT6UWT-%j!TWSD5 LEА׼E\@{N>UܞY>>o}s[YB..Hp8"9YJzfμuy] f ל.<1I:My91:͓=pgkbiJM)E`mG(yR%HM)$33UL`;ٷ)k dd&( РHCqt(3Xfjgr ϐe 9 V*?+לV8ܶ"m7Qd|Lǐe2 ;$G֛ʖn X_?X_k`=.`\u~0!6Ϝ7Dl&؞9^blre3iBsʭ2Se8V"Ugޝo}q8Bƭ/%}qxmx# V TRaj!q0e9 u|2\h l+mqxܶ\ikN+F:8zdj+#ڰwBr#a/leD[jKm/7Ր |m-nMaEfq`Im# q>>oin0H&a϶8id36"o(+`7b(ұוQ 2Gd@dv0}½Gl^n-r(wQKQ#jryBeÔC wLCO' 0T6p_lC&n8PI= jVNAU4%G:zKZ0]~UM.fsAM2oLHR"&pCIϒeh᧰hSN#Żs zڼ4慆z+zڼ4{ fo6)E' PkFԚ:Ϣ ('/Uʷ;bSmq2%U?}fPL0nZ1@"kj+_}sIY &[ۡk(lsrjhq`|62l)LF{ }S ˖Ҩl4ϤL:V TCd'd9el>]GxKp6΋^?O!lVʈ2֚zzAaܢ߉߈kfrE"[tԐ=9ŹETqH0Bl&>Mߊ0Ur؊0B^DB,nS0lM_ϗ`9VS%GRV_՗8VVVU#upߢMoQ|#DYnR>Jyh!UT)Q35߹J!׺]%?\~!~QPaDs-::VFvc\sÆ W~ylT6[Zj+Cmem7OZHܰzɆ}(#d70=0,ߥ # !,[Ҕ24(<~ VWʖVºj%UUH\=0Wit $0,7bklݮ%kQ55&kwB,w=De3UQҨJ5Fe_5=b|^CmwFRx0y43V<* /T "pUK;O0]yQ*>#U|B T)7) [u%=WzЃZqEeSKeaUk;~c(55Zr nx`W Ł!^A6o6m j65g* bimlޮ6pYQ!Ցu,#) 3N6Ұd6*| [j/K 5d+- Z]pn5O{a)хlRά_:6oqu~+v|HԪ+VMD:;=A)hIg\ voAIV-hM:ȸ r܆چ'mw{7<%-Tdqiha&0#m]c]`t8ܖRU6[Qn u-!lT6R=~qT5\-MmEhlk7i /lynd+v¶>f#,mOR'[.j%ڮxg[lmhm_nH[nj`[cXSUSRb5؇D5qDi&[uW$M5DֿJ-Ffc9TXds u!Yt]6cOm9GlKmd5-DnZcZ"ؤ8ږP[omz: JѶzSֆڪjUa9`X[~`TsH0B (`B0iS(fW_o[ 㲬}^T>l9@jCWsٰj^qۢs(֛P[Vڮ#mh%BN5o0[cۖf6Z޺ZՆ `2lmٿ?Mn+)Jb[W`\6ۚj aE- ֤,si"`ò֕~`Nk°h,®#}M5>X)`v_Ȳǐ Y0Z|d[+R(j%ڰԶkrS9Vr$M?Z>Gp[ْFۖkb=WۤVlJ<$X洒lv_Zq+)ƍj-@hۦ'Bܦ' 7*,\po![ }hCmEi%ʊj萭EX rI!#/;q} Cw5kƹn0y&<4y&<^͗!ƆIs|;m734h{m%_k'zc PAā5_چv A!h$h%ZJ86b̆J/ٲ+4w̖DЖQ[ЎuVCԆ64?alW qU\6s͉4 䙽:I{fFL4F0#nµk5krͪx!ҎKדx\׮Ʌ~]>u)~.Y DM_hkvϢ8e|l.}M._ +Ui)3{Xl5ɶVRdYmvKܱC~T|K>/ pC #ԄjoS?j㷮w~_d]q7Ր#e/_|H5$d%:=\sZ46homֶ?a9w_ƪe!٨jy.ja\Ԇk9qRxlvmfzmJ7XXk?Zr5#a6,ضln-,]sZ#n[7R[/j%z l+P[jK5RU_a6d@6a 6L\-oMZqSfFe)4ج7q Ï m}a};džͶ>ٰ}Mn9ڲsd[\Cm#q#5ԶBDδcYmI5@+eY\a=i\}aw$IBg0ևָCʨ|,ɰ2r?2r_6Ώvd9E՜Vnk-0 \9 m_>e܆g#mlKm{$#m!1 VC,#P†eǶ[ =fG>7T6iO1due?sUIt]/>RT߈@Ħ3qkAf)QZqގVMn޼Y ٰ"v&"fsqvvCUbШ4`pXi1hEWH,bldF)#A2k42ް=Ovvn2l:L߲_@ejopJ1j+=!jT*--aY1h=\g+)l$,iHL󆚪Y펊ʦKn_$_0 RԊ&Q?ZC-P=DJZl|;/_k(6ڣk5 s!w,x58Y|πέEU{歆TpOwF5"J_&XBWfTw}U˗ )䎪dU|WUj]UEP%r& 69U(HG!To1v5WRWì\i= ٹ\[Sar=AS6[K~~3FnĞ8 Z#mo6Wq-U~0Iq6:̖Ʈn%| l';lkFFg F&<3ñ!墶||g76Gwn$kTڌvn_JRnl -*hٟzF 6e~ma/8üCd gF8"ZdVJpVV&5}XEU%TEGU!T:ErD`=洏TUT+UC,wQX*/`` V/R90q}qTh;e.ܓjN+qumysmuـ>) MeLV wb 6迣"{~SwFOڲC6xgA&;(K&_8Gl`֨b>aZVWpQOVU8`Kڍ3(lV(\t j1XAqLZb7[E{\@ b/w } nm jrho-,-Yˆ<熪sil'hw[CA d'ha4e%z{; axK巰T^'0!N`ReU5\VRQi"E-zӈ`iv*^X*1i6Π4bvyI7 Sٞυau(lۏ{Éˬ`Xa5MFea4[j+|sjȆWl*|u9$9mO67mk~f5~mcXFw1^[{lclmǡ}" ïmxr9~mա6wyk;cKEm F5W{V[ֳ0 ͆ _RQ9M76|Np3蓉k-6ްآ[9²'O6'ᶞ'V'[+' ZOw؈UkdQn yMժ2*e '/aC$r q~eЬ\7:]hkN+qumEQ]mT6[jkeMC֧F!#tLCW94B-h3w[zW A[6p[=#7ոdp.5߂K-suC "WEKmb#zVj̴W9De5L sM5$ä#)zd暫(-w!Z嫍2NG董mG"cC[m-[{zxNnHU.I5WGҸpeDӢsP< vVzڣsՓ`/[9̶wŶg2夶*Vl[^l9=!nmoC܆l؇Ȑ!pY-QVKMy-# FN[JKFjEm5>vfgٮ٨m孩TwulmE[+dX?b}/ d+5ڨGP`+cۮBa2Kyd5hl}E3 ?$$֦ƭjjZՠ!{AC,F%4*l27a!h3ǠM Z.UYԓ\j˗⤐ͥb&_(8G2D-q7`[_SeYbR+u닫,I_<(לV2Y_ڢmFq:9T #\EW`c˖k<#)HpVk`Mq OlVIOUTEBy3DkϖKTs5 =yV 0Hea =q[O̾x!˾mKBv&`-ĬbBl ӂ'hTs0A87r6l"`K`tQ_#¨4GP ǵ1&hT+|ۂm57f+b[ޏOVl6VaB0e [JmXCzlXe [jKKmkUm:@6*-a+lpo![ q+-ڊĭn2٬l%čf!nҫa7aj6}S4Y?O#OSU1Q$siDpS!bwլq{; 5nDXauYGj9lyeWmm6lmEb~d\s|f63mαd+>) [)rEXեՖKQ5նnq[Sm-h,)lu>ۼ !3O6Sh k XOQrD!x !3\ifT-- 9FT1çʏYP9 Xg > Z1Xsk(kDPԜZ`-'*T ]p5^^`[ ۽P+3dXE flټѦئ6;*לVck]ζ~c H KLՖgeHMk!GTVB2Wčng紧hC*Ji<ɺk24h\sHï-h+m Z_1h=[jZA+m A[?ᆸI*[EeEl*kKemEY[*MeEْ_0|O3]|Sː:Z65q%e dTf-! :cDrU1XR[`nܔ[d! XMU7h_t\.:EcU~|AپX ʪUꊬ5Axv>xCV6#{XY ++J=t~#tƍuo||S fq?ͮSa2pj&6S[}),`fSb ISCu%?]m+"Vw8K_t/1ˌ~h'%߷}=\`'&ܾú_:w_m3I^䡎8V'P[ˬ}^*^ⴿi9a|`Oa>6FαfJmD[/j]m<6#?6`CPC6Fe!l_ 6r akUmd5Zh7YI)uȁ!`X` ! 6@PdVaԵZt]5 0XTEeSաGI[\nr՜`L˯jP[FUVU P s|g{xZU JO*LT%{+Y\-org *3 3V)va `p K߂eaQhX8@Qd6FO{swO~'aTshG[7b) K>XdFl#-qY+ضmmXIvlX[(KIe Q|S۰H`'L¶syb˃αd#Zqm!nۯaZzǭ-=jfG9(nkN+=npܸG6mhNqk\s<%7!['n p1nX [q)ƭabcܮ7*]$1ns _ :6,<6Zh7Yͦ0*le {@=1RCR9!e3vȫ !洒m+t׶? >{[--}V)d_0itS۞FbX̚_ଽX{9ulWpuڽWFx…8\6W*Mu Ϊ%gVTQj' hP+s*2Pբ:g5I渐h}V* uE/RWZ[ yC5ieN*",V|M|-ߐ"IKI;nOkmclmu5DB[ﲑj@㘴FAU㨍Dȵ?Ex,"˶^]DMA}@駬/J$ ߳Y{rd5Zq443i8N4IDj4Iӫzz^ճnnhsrng5w;*ʻ 9v:{ݩ8 $Ugdɬbj\~p/>:]NK:0;Ł8M$!FTCl26lb0+jVjSqH0u}q֔jd1j:G싦އj`&y>CU{pTVCKYT6PU+V X5C=VB,Dk܅hv!Zg9vè|SÐe16FE 8J~`5 KB`~Oy 9l aol5m-jVZnJ-rSp(k !dGAk_ZʢUJ`",i4Πڄu YmZU^6?UB5_} WO]P9ie} f5O` Bw~i{ #zIC|#xYmv}u@ҢjN+6+nsoQk!jUVoQ!j-DߢCԸCo9YT6nAM`-FSָlf5΁OXa'лsXMTL2l9@m+9v9خ@+ٶmקG]铍lZvVznh+m͖tgǶjj9ffm˗"JQ9܆kT0lkѶe)mLvqR:-#xͳԓzl_ p͛h*4'8$O㘴"pv}qȪA%3hy/hʄ@U<8;gZfg&4ocOsz8E5{Sxv]6՜&6-g[`L'7u>ֵu\-7c8XknH=}EͥuNeyFb7'6?UB5_06-yZk}V*_vqg0Xa)v9 {k*&M\^I9C!dX0r1;Esi#a>aVUME쑱;nBǔg4Qi4TlՔ T"'FQLFZ1NjKUTUytGYw|TVb, #juKlZ~䰨l)6gX) (ƚUY}(:X0Xu3̢JqxúuUUtQYKVUZ\XI?͞:xeM6gPRV*kWSSċ˦J^: Ĩ!VMlo5DR=F5͚]o\/\ˇo82..@,[ˊZE@hgN@kP{o0ƚښ)fRVkj-ZS 5ښFcͯ`pVJn-?5W1S5~b&Q3 P2jӼrU,WT+܅ k$qaZ0* 6,%b RڣjNEZ7VʢyMq"k5Vl(he:Yi=G-/Fy+m/(~>̋#خ_/l6Ϥh : ^Jm?x-Sl}M5)oԮiM6?{y`WM^]W ٛgC-[qPV3ڳ^՞3M?j;5>Q9RԪE5W>Oժ:ŋem8bz6l,Ma(\hswz~iYF K cH\6.gٗ(\6M5ƃFb1X<4fX ӣ!cQi!l}iE 54dBB-d-l[ݖx+3uF\}gÐM*\͞|?_WwM[pe.rJ!|V_{]'\O\<E돓lrͣUP>wUeeg.kOn5b{bWy"x5R X7'k|o;]N_|mmdžr_JVd6%2;6W_;9nNw/^[?戶9fי:ܶWm{-lEjjJQ6–~M{ ~5:}Xn 7V-t aDMdآMay*,GWV֪Z5VUVU<Ujk%ZQ&5o*l^,+j55 di"zn)Ͻv`5гmxc?ڏϪZEA1j Uh[lYQ*]]M{aP5``UM$9cߜFb5^9-'mwOxX?9naaL~xYL~g2Fkw[zWY*X \ص帬\UY7U]YIFACQyMeG,LØi3P۠pۊQTo!!fe(+Ke=ߢ6ʖ׹ IYekK* ^j|,b4l5ǰU ۴MVY † QC{$)LԚ7 cHn3c* \hVC#6IqhKm%-@N\s|Mmk͎@\v'YJh#aCv̿+1JZ@aH*9a6pmlmi@U[+ۗVъ_Y6 l,C ~r-$\v^$gQfT&q}{QRӗ{ObJ}'Gbja.`2(,VJ{{ &B 0Vf-REjsP`U-PU d|ePV:T2>yJPީcxٰzׯvUXxK7_կ[7~fL[~hۀ~Q@?26^ 02 #@[YvS0˙,iaE0?`D%Qب '8cueX]Qe0{$2?,c`WXdls?S߸0A9v)|{=Tm,U+"d=R[H6Fma< @+MGQ[,WEbɭOTrh p٭sΠ}$}RvAYe0g7H!]5eLk\&~ef`YefHJ)ۂm@k"J99.I6I6a[cTaRm75ܷ6a[l7.&mjӧ1׶佭vlɛV}-(`޾ImM ,Η/((f["ZAw.۰f [klzaE&cOZ NsIÚn>ixi\qY6{Pc@u3W@#E8v<-7ӿ`EhG#lp*eF.p *kea5*fV5"VޱOFM&)oț> UX>}C',_3@Ú'B8l [a5jvʮ:F'h2mLKXSpALK?QL;/:eE؝1loP ]Ғk'βɰ^kʰ\,2g& lXF H6lhXCBeA<d3fk= X>.}lNAyxʴd dkW6ڋ͖mBb!!2BaEWѦei6mlPV[ltB?͒mMmmmAYmSضۨo>6Zl[;Q6jl¶Dn#fǏ`2l6; ?/fGkv9E>Hm׶yf bQL2ۼtƪrRM}`޾UueU!މl!S٣+Vp.ka6%ٍ.@8l4\;Gm0~!}=CZ5o4=춞bت fgݞd2=)hv{"Zؠ&86y؄ml7MMΐaiPC;C~4Ҽ&iAYm{mqV-Na05?~J@WR `` 2mewEݙ 7 vYkڡ>;̰]wqY &~7lmB p^z[rOt{_7a2y-۸$; ` U~;{*EII`͉?պ?Pm~OPIaȊ?PIm#p!#7het 28nk@%#g;l,G:^mϙA5.,Ųr_Ͳ6o6҃fM6o9 z?J=j#}~*lv:lv.l3ղmI}j~w=5vTNt,[yH'S>#~=)>aQZ p=6[ztgmPwM?k'~_%$蜹En[kkOV?_}PV[_3X-Bp׽Cv?obML6:à0gh]6ܶAѓM`kkpe{og㬉5'F?f'GшYJßevjY5mYv:kzgX_q5/`bpU""| lvk/o#kvt5?jeW_s8k߻ ,;MDNg1-+^OX#wF/aQ| m-KGU`xAeC;$8vb j>v%|7vO|0fs%µĽl=dhڂMW-L e6Uo=e7-; f iH} +lWqwj.Ѧ*+>aǛcZ *:ʂoYEP wzϊs5rjhT-?o}ppF؜*lPWm.|仟?s:n8A Km:X>0 71=Zp;}hCp5~ 8q 7l 8C,l/M:|,jw&m#.16D=_Wi ]]g>>^zIʶW-l7o`Mv󶰜l6y~O~׃m}:BX-4--"'mcX!z3n_:;|*;uO{J lA5&s$pUYQPTXsNdue_XfOO aVdx:&t+j"c~la+Rll6ۘfm9z?i+*k?qK|_XV^ 8Lk|Ο6vv|# (j E=5Ҵ5>y!4OOtqVY)ştmӪ3rxřTl?Um36fɶ#͖^lۏzL}moxQgwtǮjXMevVՔ= y"MR\)o둷&'HƚlE޼N6a[lI㼹MMmn򶱆l596;¦휭[;lz>a9_6;UimqF_lsf[=m;"f+pgbEI;JB 섭l p"k{"k;L fEg0e̖]X&kXYeFɰQ:H &)y`:{Fa{)xgvE"I JM6mi5&&͞jmzF}%|M뿰۩=؊zO|IͶa_ag ;-8l1&ՑIu }Q쎹9n3̜b+tttŒ9j"8X*u9׊F{Ԝp!^#C*ڕU$4޾rn a-$ć e*u &xm `Mg$?o<^y'p'X3IEʒ;@MH2~&OE|5=`.XVL8 Ƀtfu "OZ2VAܶAZMvv4[߯mEK HɅ[voI<Pؽ% p }3 [~xH]?bi5`CGCʶCGvJ]դEQe$2$Mk6RfI`EҬ ;BNmV{ζeaejo9))L?ZͰVl%zZʎ`kZ-OZ4e&[awף/vRΪҳtV|=aߌQz9j%MژU[fO +M}gؘ [a' i6)cfӊֽ#\PV׽m/\S(]S2k n3̂ BE/ V0[= [)am#d,0cx|gK\,>D4uqlװ0=51`c kzT4KX_u+.q} X#6Kk`QTX]ReLX] k#à&BBaŷkìDd%GNc |lEdZӇ6l?doA S# ٚb76Ľ+Z8}7ְ|\Lf"9kbPu~ j,VfAYY}3kfAYUc)C!28XsZ2LiLi~0հ2 R`0rU}\VpM9QͮkA5எ Ŭ3ktvɮRޏh.-KkU7ή5:@25 )cPVY,eueY]$)cfHÔeșŲL9eeYo$)g󑳵X&3yyOIqW^kY; k8bRFiQ+µ&Ί6+j >+6dpV0\%̞0)Ђ)az^]ѵ^f{Kk.  aklX`5ľ]&5'5wF([47x]*8*j0nŦDV'~q*Xt7 ]a xzTBuaFzL=] 3ΙzLM}IJk|~z[s%%jWդ#)3IGRw}Y\ ]}$jϰ9_LȵjZs%ͬs 5+Wֆ 󯾼}f׭.mkaM!_EfʰW5!X- %jaXa}1lUa;pzuEe!'h3,3`YPB?|\ƜvR f#VfVۙ6(hfK,I.yY>`'$~EL*=JB~,,0(+ŘӂAVBVmdPQZ p)fmv#wcv/*߿Lf4f2Eu :,%]]®}w- @W#V˪(2zFW1K8Qսp XTU'jff$Q2j>R5 d}+TY3gkUb jߺ\_6|bzז6u-`m-gwBچmj;lf&>?jf׎Evgcl 4Cv{Y?a1ALJvgY7_e2l Gf -Y,X>LYlz5-CkڂG[)`MDcv-Fzv;d_RLO[-ol8ZvQ|lTNw/aX~‚8|'MaA;یDݰ &,"^X%׽-\`p׎P9q/]>Kw9qs.^VXXPT؜w `n&as/32X= q/k-lە`#08>08v'08>vmau+[ilپ,lw_;)vfab,l3[l;-CmŏU-of}˛- yXs")oMymPs"mud[lmPVŶݳm+fk Z2ٚM~-mloD9ClY @ VP[ydhS),*"D:#V#lw0\L|mAHlgw6(I&m yik6rM6lRض[A͉|,hd: - jl-a7[lk#l7۞l3'>f [I-fK"o kN´Gİ랴 i6\ _tHa[۱alJ d0Lv>0͑as0 àVΕ-bbT ۚdD`V˶6jŶZVkʶfק6Vc8ܶ%۶'{}3lPVЂ $Z] D;Ԧw 5K i D6m/!- 9|lϐn5f+aw4 j#~[" 6IrMfzg۬;&g _%f5'H(j67&նŢ86` I0i ase\ 0I#t7*늒D6|TEW|(@d`?|~oQk|&c?*w ˗wP#9bwȜJ{ һ$&l:Q-$eax5rk&js*3ĴmfO{я>L[h- j"J߇mv\ئeAYm hd+~^c-^GD;f#`l:Z͓h6 P_bd5`Kmܲ>aQ jg"aiyѶs1ILm=nڭb_|`5 !fnx3XՒa0L&dfL6( ;me6YÆׯV6iZ[5O$xl"yĉ$l:}6H^n6l,o{[L$VV) [*4EUр!0!v_0I0y`0i +a6=?-,c|XvPVJqrf䌭}Gw g-g%euܵs쒊ɤsʠ|dlQg&D'f`lMkfٚY&x'[I6"tu&O0'&iN>F4k'pI41ZL`E|5lOez i,;x+M,E_B`2~} X&| O<\LiowS;$$;+Xc"lpl@FrAYaaEﺵi`Z  ;FQY_d974f9_|mnnZ*ۖ3Y jNGՄeLY[%o րͮml~m,6(M 4Jmg[>Y8D6۠6aڽ Xhrøo@&!,`l$a2+W%t_/i߾݅Ex*%4si!m;i>5;̢vp*|Gn 0ٲͦ-X2|uH)]Edf̖f 6:6ȴL̅ 2mldJLhF 7(m¶YmmS3_Wvv޾h-|{^flSѷ/,feBj--٭X1v_e6qLKѷ #OZ2t_РQMVlbG+ ݷG2゚vЀ&Vu}_3_ Vlkg:ІNwT]? |b5]G[݆ҚjT|mܲ6|¢qm6ۚlHڟeam`P!Z pXYVä2 o ؜,3dlmPQ ۜ/m ˇYT|T $^,f)ѳ}ҜAAHz*ZVFI6 N5@TBuZ'RUkjV˪Ւj'~6V#j vcE$<`°+!3ծj:p.=uʂN0fٍ{mܲrV `.nDf隘kZi t9cPVת1lJ|MWne k|GVʗpEh2( -Xd]gyy ;؎XbީLjV0ħ·QTA&XcT5,2b ̄;D*zhuYMflЀ4Y+R'*Jdw.).[cg~+kcFO|՚mU7U+0晴/l ycO=8vKGEˊ&MeRcHbo,a lKCOhjOW,z;ԀپUt)@Aݛߢ >jUVp!ٶՀ- j"Jmůhwdlȇ`45`MDڰm[Fՙ6Zƶ{.lݻ6RޠF}jӇaa<DQekii hm?4DajVIOZDz$%m `JnV&u 6_n5!iuM5m6-Mkܦ-lkmyvm>6Szɴ^V&̴2 #me3emnYu+JqAфi`e5=F--m#VIaÌqDzL+δ[PYg7l5"0yt٢2l 4jjLvM4XO?z@+.Nѳ[VԜdטeI, z -+KPਖe Rt q5'ҵژ.m5|\ҚK X{.kҍB֐1=TY7]ˉerJg휯)]㑮AZzi2Kk"]#k<5S6ek?"5SfGϚ,-F5Rfɚ)Yn2=1P'e n])cۆv +`X!z`Y/ W4_̊|KݑLj *"2{f`nu@Y5㸉j~>`ض dNYoQ TGGY{ eeuX\~4 odvoi${Sk0v4leL{>P jX(}bo@,XVՀ j%E;.(:lNl '[7,;EkP8Ys%8Z}6<\+bEe,ZYe*CdJ;DC!Fo$Z_&LC$x/Hq2>GkU'g'>ӵuN3>0lPò4]}hYLܱ諫'Wv aw5]4Vzl>2]+m/ඊ{ofw60fMz*L5Ғt(M\#Xw DU)&:|{Bew.eUm *}ᅫZB+}w uֺ{ҹa-br*>Ė|2fv޺t k>V[+G"+.$b;v4gْPQ[Wu1-X'v auam6nYme lpδ}*l,ȾւYsGч(nfcن.}N2p.jN{6Tvi ;lU |¢Dچmnmf;VODG1l+h2Ba÷>^Fmr e j+> we Z j;mhd:4=Y¶ j"Jk[lfâknP;E>XjV<4]G 6-asҤ#L[5,FI.m6jPYK%yt)%HI hRv+~㵯e̖jZM_gʪX5UTª:UgvɰQvo0@8lk {3aQrO|:Zm(7 ۸L`8Q;V+XCt!:ݕG&ۖmnjP> 6{B1lkml#oȲ0 6@5!:k;=h0];.rb |W;hCv,)cR8ܶz-*߭ͶuM}Bƚ5>n Y,[8XYEw\iu,Ɛݤc,icȬ?V!l`VٮYfiIl,i "+W|`PV ,_0&a2 )g}Lm3%mllP[ӅXP.DyWvEsPTYJƀ[nAeCdz(tMܢ6"?ó׮~sWL %ᵫ[\E5KWrif|7l72M+Bqj7tvAF.6.r *,ZŷUXto0zLڱ|`R~¢8f:elU0Yvdݗ@d0MFN nyKɲ@d 2j׈^+"{H6YI9 iOp$9S4 NڂL>A;H&ʒ$ydIR,͝Iss$%[',QN-zcR̉Czo0IY%K , Ƥޞ?Rk8 0mRy,|7Ȉw{ΩJGK,@VYuUKZ,i%mY$/:E$DI('yd隓ӵZNJ4/ րM6۠-l[mf۪l¶{mPQnk%.[lK†MD%M cE ۍas0l `oXY ӟ;} !쮺?N`??0[V`0!ؾ+SO8L[`D~F򙡪?rRO|<` U /V۸夺AX>]x?޲g`؊hmӇDm~'L k"D< Xӥv5.`Va':̆W+KqtL2 `wXO06lL{ 33ǭap]PsGI'2mhPVf0eʶ2&A D4wܳlV?d[(5Hd[4Qv0_d72Y8K.꺗߿^]kԵ6.[>5"`wѸ MUl`S_*SOaM;fl ~;=oBi{2-+ ?`1 .PI5el@F7!c|FAYY:aɽ+&|=2:#kM/ خL0k̴m0 D3#$QÔ #bYL{Ȳ9XF.ߺu.߻ۺe`WL^e#]wL#,XTQA;FX>~#`YQv1Ge/E/9bs̞)29]ӥ-x7vWuC>aQZ xش' vŰU" j>ڢ+fE~bŲ>ўd)o󑷁?)k~rFGfNțf/۞7(m$ZZ`kqw$ j"D?."7vgOQ/a__(fՔ+0v?;awr`#/ ?0~!`l 6{鑰լtPhZք Z]X mۈCaWDi-me[ol+mP>XФ2MjIEmdv%dP1 .UL6eMsu(N ]2hZ84Zա&) j"JmsglL5Ӡ^&̴2+ӠY6Sf`*壢\Q߷ـ^ܨ{R7pҿ[|uIvbɮ6CGoeE wȭx7l+Jc=nP>aZlP>LS:-3`SG'8|~vgl~i3!>u"1uTe;6|>Vav%`UfwIN jdX2l%W*S;LՒa0LWF8~~>oWSE!;>V&}\:SAMh-0"gt,$Fbkhń6I6y؄m_>m8P6޶uJj}?l| }R (M|¢t9VKUB6˼oHuREmK#W-tjUE{Yg(rhd֞ e Q[euAM08zfJV̂B h1PF6AMYIIF"t~GRooHidڃLvQtWJp)ꮓQuo:BD ]0Ym"wa?,0Yl9 ΃ŭYPqi>[h> an{i ^kpEw e͎. `py,`mv]Psa}fYL[iPVf}(=dPް}^' }J dQ͝qG` epY0:~qh[Wvv ֜0lI-fڂLYcPcxG u%9d5È.[t 0 ۞|FW- []}dXCs2`m1,ea뿻ц=ErpÍO.eQ/YdWŁ?zP-{w+Y+|,r9}<3õtхe'lgYh3MOmt[omr#/L+&0]žaz.BO|5٬,{`Qqad( [aPVFՕau!l PT4J0&D{Q!b(Ak&tNu?"_L[.;za1,A`0) aRLVVEE0@]M#:z 6 QlljQt UݪA?5u_go<oYE',8 AA50e5CtVh[I.B|6qYz1V:5zPĐh td ݨ27;k?\a1 vL[iҙk@δ3fs,66|'VoCmힼl[6',Jm6[3HeŶD{>hHAM0@<`gґؚ= [)*ƺ/Ӹ_Y*ytZw-x]:̤ Lxftiܨ6}50?Q=ͦYu_ *0jKF!'5{Fݷ"(B JФ^&(SlUK.S#S;2_wnP k"DSuoIU?c5H=m<'^{s6kFJx$OLP[LeHONx$hm윞L{gmì WOt ggYOcYF 2(ѧVN<54G&I:IR4OӍ цQh@9(t5wZQ&sPe,3Rvb ꍯ eآL]5a,]$h Iĸl$m^a=w|*fcF9>;ScFa 31'8X승S_Y$KӲu(dO]@ңitaL%u\_o]A=Rس[@ .С@س{) UI`R L N h+3d[l5'vZ`=hwu6(XL6 -m_AMt! MUm7-Cϛ=j}R}R&QOțnDְl7oay7ofΛ,ov@]_#lc jmi-b5"0y$MR6#g+Oe}2mG6$Lr_-A ʌ+@h .C E il }aUkfXǚ]: `|0m`?[5hkwuM<[zQA͉zhw>qo- ?`1ZpYYubkW} v_ .>e?Ic'Fw]#i:@&C/)jl3@Qѫ%EsGkD}=fsbi Z`f [&&RfHZc`Ȳ־2ai `5`M1ܠ%GG,{6`i>n{rlN9^ Uhz-lV;m D>{mKv/f[=F^@Ym-Zjc[m 6|N-M%]m@뺖ǽ@6(mhdk:ΚxVؠ&6&m^AԜb[_J٠]&mPv|m j3}m2fmm6Y ߞ~fE6rlrb&l[%Z2ٖɳ6Y5 VVOǦy*G?8T =Jk"DH}`'I[1$`PVJ0؃X`8wf5ϐx$,cc9notel~Q_ 0luYWX0ʈ&8la ` L ]0[ nfp[iy,6.`T[ua |Mh]k< |b(\A#|aՙiP4F}DPVQLwIR ?H9$L u j~۟\?U]kf&NQe-D l@asg9^àf2Y& k л")!H|5-=V_E_v;8A݂9aэ[Tоuu50|IN׮9]t'])]%ιfZdiƒ5,ٜ.;l,;e鲓Lmֱ&8wͶƴZn畍flfgu/m%Ff(\j+em 싶ZHtƍ5߁o}$hZΨ5@{QpRE ,g}A 0YdAl+;]mfm!.la=2L6+;&3dmAYm.݆>9{ mPQ Mf A9VI6al;knMVd}eچ_z?2̵ٚ .+6 ֜bY%y۴^[>6>aQnydɅeuriOjxO gO(Om{lyF_0]_0({ j"JCmzr۴Oζ5 jN42l$X*ߛ%+#0Hv ؝Hf` d̦}Gjc"F쌾s?qԒ]l6f۸e.%?n.2;KH }/}ܯ{n@aCySnElŸ->: T͍˯Ro}sscur̍V[Qsšrymvꑷ6_kԫmmd]/l.l+>M~{mr>̍,zZc6"2&AYI1i&AJ?0fi^ 0wU/fZa5>̴f;6D>ȑl0ەlaf6Hby5malmd!ӥ+ְD7ymڂ`4 [#0ooml'흭Yfy{m㼍mG`kF=۽m2ȴgZvkHw]N , Ukά j"Dy+еsפֿeeA [/PyK ? l~j 0Y $L:29q%f2(LnQZᶺbLU,lkqʶ8km#lg*j3X O_Y6tnS:}U=WbGl;mĔp'ZU5z$yO4{Zai {Z&;E`d6Mw`owowɂ:Y ᶝ_j6ۀݑzށ=pLFk=d'b DNxo'~xk+$w3GPMBGZ5Gnog(+(7Cm՟Ul{sҠ%4;=d6:5`[y; j"J#"ofӝ*7wޜIfüM:y+l x5孭lkx;ﹴxhkN{2mLiڂ:,ke-v;Xa5OhsyL;gy5kVf|ά޳y2\m e)abETՒ\0e;#\25:J%iQۛQ7xVAbKb]}2נC{[s ]pk\cDDk?`tۘ%5=ʬ%YP>L;SzVО23` kNػq?-v~-8l`AnͶVjUcKumY$-?drҰ&x7Zlvl,j'~"/me6V,M{`ح&8~¢8ܶz-} l;۠D^[eUmE h6VmM6ѰA`m}e[_lmv65lPQ jӻYy?}Di85ZOvlv-y4mqI(m |¢t9f%lأ~kԅMVA͉~~M۠|lذW'ۺz0[׼5|m_({[ie׽|70Ѥu+Үk5-fcXk+;'.li2m?f0n0(+.blMv丮x>&"UU}Q7L _Ab*T3Lr`ܗZ-섿nUoW*|JB%/i՜IuWkXBUݬֲkXv5gfq?&+\{!oX& ;)gĉ5؈55. X=~#oVM긟]$պ^ZXrùieTMJ@AQ% deXXhVU FXָ-߮DY'gd3b=#"smx ,&YmVmlv)i]b_6 5{bT< Md%^S^}D{`.s^S1T҂vMAUneh4m-,J؅RCj]ksҖzl=l="cA[oۈi%k+:,7!krnspEdMnC-^ȲdĐeJ/g/xRƟ(j#lvGq?JKņQlt Ĥ(q+^yfv]ݮֲkf|VfY,7ZK? -ǵpPYV~:-;^`^vYt61`; 9,)Bƃxc뮎і8 L S\Bfo D]eㆍu9+ [#Þ'Þ=OcMxnXSuhžRMX`l\ߥu֋mlv۬]6lYSMwcd6`+q= 6t 6LZ6{IL[ϴ~za>EarR XB=HCK|q糚NOz0g#ŻqEr-m9Ů%OTj?KloEouTanU(&AF-˨UfXueV]7#5.ز [Ah0#`'l%`_q~au$c=~Q%XW@>DN<|'^5h-AC8mșcYΩ,&ҳ`려INYpKcGVi0ddC6,V: N q摱Ezy4.&aո^ظU3$mu1KV-;-YCڑ @]} 7'NB| IC9) IوX|ju1Vmd+Pu_WF|{Ւe{2ǡٴEhh#:j0Kg|\g=Ujg#Kآ~S f(|N6@8i(#Zmx|n]rwN[~a׌ᑱEc![,eC[NR4Ql-df|Cdeݲ,IQdjfrڜ6^Ei"NddbkG{U Ćm#S62mܲavl 80awY (9X{a?X˄{=IZNrJE&w繆'LZmg.6Fv8-Zakm~m6c{egn%۬6+j{n7F #mf8&%vE<ZiM [$]ОIb_+&1h=t![햭WWzT4IV 믚IQj&V(3 |ɹhіx;0-yw+g5yEd\PA_߷= '%<? ~+C%>P8ҵSȰ3'f+{$j^FkYßFZN ި[O <$h_Y.Z_W:.0*E~my/;=Dd 3%qa 6LA..bjwڼAެ3>b[Gb(yfJ?uYͲ1l[-ZɲVnY+I-Ƽe:,vf|Efljz=#0]=WlA[̴W2bI3[W&segu% _/x% ߇ :t\}Y!\Z*][#?btxw耱o0{1a\*0oWY&1eDmbXٸir.KV%č} WrU{,F˰nh>nKK϶N6ٟmo'li]6iٙm6`k5|RG;ϻ:1l>[Rl͗_ ~'Y&1d^ygP8:5?N"*HdZ.çxk/-u'~jv\?> kf^. c٬g?4(*XÅ{*̦57m`=KhdI)ocɒ(Wm9YJ6{d6m3Z[2 IIQ`+ZZbor['q;$zzmڐeRo[jcu*,6m%쪛~l\}lf8V-"hdn ; ke#lF-(R(0Al`󂍒`u׉y!Z[ؼ`:&FK ! SI%zI{uy?cFK!A|L ħ42$KZ` Kdyq!9ʖ|f9x: =Q646=ʐe,96m+Z6aK̟mϼm6ɤ676f>gdYrlmܶ?n X-a جK0쁶/ڤd.GظݳO2N'cm'\VƲO%?}2V}r'M/۩m'uMZccݎlc$l[T| 5 -bmözmcݶmlzۤd[U=޸Gm>I^lVxClƑ޿RݞOi2[ՍDh-$U\ "ҳďMZNbW~&sKcɣ1li(c(A,C Zb(b$yA$-'Gv!$Zx.3>圐4i(]AN [\YIkO~xJ-Sx!^CFlV'F`&XV 3FͰQo/9VٸE+)Lʾ(喦eglqaf7 {7d7pzI ٚY6q YeIWMYJ96V13+g5{d:BKC5.bld|ZγnۣOo[Ն Z)6A7xwY&_[6`3 b[]e[̣amOm6iμc!mņ՞mƟziO#ls޶9_umOm߶ҳ_u~mlGx,EIqjXy-;ڤƾ *>r'3}3ִ6^Uxd[DcCKԭd=7LZvڼ|ɢ!s xÊ_T, BU*b|!a5rWU.Kj)~Z%AݪfYUS mi*av`0p`V56qֱ6ԨV) p;7{ۅM@x< ;Ȅ`;a[Y}$4y%lj\ E_?.ƯA "` YSorK CZ~Cli2r x{ =Y(lwp`#a;gf3M^qHx8r&V m|Zrxmһ"`~]1UbNL#!~1$8 q{<8ֺK_؁d?v ~Ik*-ykWbhNyfF1WJoW09HA+UgeOZx&B>䮆EB%rS-'g<&I֐(yV ^( +tgdo] 2Xv:1XIɒ=dlx(yx2^>2iy#K*GzI _̓ "})k~񖭸xM=Yf-3M= YӖ[$1ĸs+YҖֶp@,hSL?jb TOCrI|\I 9pkj28 T(ʓWvdbsU \ϴ;q+V~gq-g{Wt=x<8qi&G8?3H[f-Ӧ~qahS9aBrSN<6Xge;ӯ'ӬYi'@dϺe2UKxas(g`Җ\r-'K#lCO:Fji ;#;Ӫz޿z1N=!.9\58'?d\"!#Y:)Q33]iA~.y x˂pjĐk2C)sҹ !r>G~IKW̸<T+;-ӏﴧ0>UlY{Ϫ!Bq^akmkOt6hXql̗e۲۶l=4lkOė{ ,B`=^!i\$\pHC%$4-ݤdRobFUɪ g:aB~JPV-W̪)yf&I*L*O&mϸH8V\ԧAH8B<(ܞ½}BT.Ԍ.J￘蓾sQX(R)DJ: H<ԜRs+GSTB&{Zo&I -^-({B xU+Dv0̢R)W$!Yd,I8g[Uxr$rr$ )v}TE:UOlARR~Tc~kaӖLHϷB47jL6p2)8up.׋x|9MM@q4͇Sb̂K53ɲwM=yILǸ|wzĬ1O}0R0G`t`zɘ93Fb`L.0'<$-]w3}z(C7ħQ*8#zcq`zS=Lw'.cФh-Y0ߙD?F?f pl;Aݯn\5 O&o:-x A2,txJwK -yZbX+ 5"ު-'ãB?/iU]Z-kHw΃xq qUfF0S)-u?H -$L*I.RDV#? "z˨L돤ۄ;55p IK"K&ČaU^! 7 X]8*u Δw,R %=dlYV~n_e7  ! k|^(rV+K ט: #( G5=~(XdHU"XVb$P,V+L&%өwf.oJިK;K|:u:.?VՖq# Y- EĀ_y?%i+ۘy) aL?x C"o.1l5o6=dgi;S3`Uڿ9U۷?oIO3i$]ԃv*W|G[,[TeH|6B`~w{py?"E2ߛDOA ykdꗩ$-Y@n7p̒~fͬ.⿥ѵ,h?Og=pyp;`E`L7لǀIQ`[fLʲ&ɤe'ކt8}> 4A[YfK: :'Ls90xA ir6!YfdWYUUx W`Ȯi5vM. 6Dֵ%X}FadYY&OPa>eEqȲQ2Ma7 '?MLbȒ.Dqf UoD !nW뗫e^.ˮ݃pKqkfּU3*8( &jeE;m1XҲ.3ʌmUffu3-1`W0K-l cxh[{Ͷn_ Kclھ֐mx|&Ȓ=dl/u|چ͉ n}/umnSm!46duCaKՖ놖[Ų#/붪8mam+:urdo[W]5/̾F-Rv.[|v6mO|~o=݆k6Znxe,h6``rR%āY.Z4-ϤhOPYu]lOdE6h",f) ˶V w[ٶ{Pݶ}&Y6| ~qm6jmu6iriC,6&1lQQM1r'N<\9֊]7%:Go[]=`6pӥx!#"dedYr,}oVbОG[)ц=K%nC-'K#l#퐘+߸qeE[J\eP?JNH~tʊMhlfs&Yc"`*]طX[X&P];3!\su GŠo1d}+F땫KۀW =w|O, f6}_"6808J *gy F϶=&6i9Y-9ƿڒ^lVn~&wΆ`i_6<;C#y6k[Ԇ)Yx8mكc K9EVeW$ӗ3=CCI .%-"k3$U{2"CȪeY]5/8llWi[/ۼl#dу˶YO>Q[񶵸LeԶt`a6- vl>EYaQh|+vɰfV{,Ulj=el'm\66^?$6gVo~؞q;660ʦ:Lİ6;@(2i]`u0i9)f5m^n,Dk%mly٬梉'˃ə?`/[ז=fG:6[xېElOɎmцjmekKm8 Zb Ab/[ٶ/InC qڒmm'ulj$r<6m~m0%V"4޶X7?Df]n؆ԭh2_6r4mNy-qs{|y4ħ6g9xSOXHjHfX V~F dwuuFDzsF,YH*Vbl+=۞mS[ &fL=MbJ϶V$qd:Vmz6fV)oH86 Qjc!8*CbCzǝ@z"IWR&qĜ |paK(xc9qb`ðеw!r,k"1V%T! "[9Jp+S*˕P'0 *5w ŘOYJrVěJ,}NH>OjpstVS^?11D5vj=〸Z"+su`Zq'*>fO}U N˻HK/P7bŎf a,mI݃p5Lmm+֞6Dž߹$W#o6^tkm~9BL UfnZ6lIKdŇc F6aOmfy6>O-Z-@zܝOr8!]&/`\9M~IO^]?q/§ƾ :}W[U%[դSnك#c_3$2vה~@+gm$ۚ!;†1Hl`7?}ĮxB8_M{dqaxȐ$AKS$*L H -Q-kð_꿁q?8Rް  bhY<Ơ٣n'Ezh)\i9ĺ,hh +NHN^0ExFiaZ>oXV;OIH3>00-v0l!(0Al=7l=E=jv՛UV(Uɪc^岩ֺj՚%x9uqbRĜYk2˦֔_!P?2GvӲjڭ:"P[5YY?.Bx.zVvą;kF]v{ +pBJpb0 wJb~ƾ ågå/`x6kެzfvP5zrΝzǵ\fUyk0ޚx#W$] =it`_Yd"MZvf[ UƒKwc|8¶m䷁Y>Ulb-39q7[abѳt)6Lp-Q7쐏[V1!vH4yfzx(:[ҴEKYaws%ؼ\SXObdD,,ռQseȚ:XX/z8^l5=%-;a#\ 5z4̚)XR*:jbWt@ lqdm6:j5n. =DŊ?uzm\5{MbL?e-9mkKUCU O\7yz!G[NQx8>:G-ɶ{GcDƠGC"dݲ.eĐ%2"CˑcEHYd`3s*;+iIˬbTŒcW[7VU^jA.RQ܉{U"{;6N } @5.o#{61TrrdYY];Q#ʬgT4iٙ"=0N!{<=MbجĎxڸmmd[ɴrJa+z˰do\y`ɰ>nDau*EakHzZv.tv^&‹-r fY[h"۷kʰuVfqp^0 Y_YW>(B;gkYe-b (Zf(.1qxwB#qlOpFE=qtyx^OY";"Sr*fמ(1d~є{MY3IJ'EjƋK6{鮈d r|aUbYŚ-f5~s v6ogN#آ)=r歉~#xג? f~\ye{[%s;͸q܌l^ } bpR mj΁ f#Xl>2 9*!V i(¸:[-a +O4J$D9IL1`XlC,cZ# dhr[imx$l+SV+~V&כkM#)^yðm<:WҒ\3KLFfqXl۬>.Ûkvz+Z ,fJY i I ٜY6lܮY"|$DxָY 㽡ɮ˥E]k$*u`IL)ij+fF5¸#-< :' 3mىK6GllngD1;-óXL#tPi)x遱o0L؃;lc|"^,Cv@6Qq_(;6lq%i/ҳ' KZV%daYİQ_O3bƶEl̼نǰIRlxmK+ nuh\mڒh%[/8$kXGP!G©oP]|$Lk$áV0 X&-'E/X7Rci WNjϰ^2Kq# U1Ŋq3 %,ɒ6H|&vi8)L_ҲjZ5WYj5m)x週o.ޛ~绝mx #;ȊK(d\%KBOs- 7kP2%K씌V3 lB`f [lh+X4q @H[Y?X[ĐIK XlbYq!QHR`Kprq.]\KE=^.ˮ}cq-Z-B5 -Qb1d ̩؜bs3W̺V ېMm9YFɒ#lu䢡%6SfoZV)]յjOdU6jS[NQ[/l=ʼmRp!ZVfI [K#l,|i|-&=0mІm/k&1lf6m#V6{n,Öae%-?a7Tea6j,I}Z/_I|]نǴYwF}wo'[bZ†XnC,n㲍&©nf[Rhe݊LK6 -bc6nB7?>6qG -b[͒eZo_U rfdOWSWC{>Ke=.ӼA 7 ˗[^gWۥ_\O]OO$W{n渞q^Ro~dD]k/e\]~܆pk]d׸]=w -lܲdٺd)gOd X=kήtG#"-#6 }YRnQyƪb|)ک֪wVj5-U9{YVn͹0yl8_؈=MbJ϶Vxs۸m mɆWm 6,Re[mxel KJ:i6lvzm߶ѳ͏6mÿa-WRzVAHK'遱o2:V0YeCVI8.lǸ-| qF tPX}a1<= .m [%L V O5˰>o&l1iu]%vb Ί8Bl}܎sxfXaKz9N ȟ2ml4k -a# ^unɶ|ͮU7d6dxehoV8 x?Aڸn6l#٤d),c>C?ZS-%>+C[vVS hO5cxېE2>Ւ#l$$WblAﴇ#C46Y)v{V˞1s~rϢCXU"2LbȰ2LkGK`y]Iμ`hlM! Y1)?VpJNA|}[67W|g>zۀh[iS1lr [r6__l?KS*R5޲ĔQ(q1ͫGZՖTK6Vl&-;h'[yj@h{ 5%-R5l-wojzdʪM4A[gQ xiU4CjRA(hpji?5oaW0GL ⎲e/_ m]n DE\!\+`EdmE^q\ODž>%`H^U/~ӜcƖeΗ`u&<`C__S_Z<>Lb2xd~iQe~i1dmeYLZNG&qO ]%CֆͳD U6Z.D9Z-x ֒0ã:ƾ1y Ɛ&KAɗYo&j4%RInSyĹbZtPIec 0#Ĵd^^KZ~ֱ| ;LAjD}ƲP=|'ޛlcL^,Cv u6̗ O}8: q{?o`[^PTSQ3ʂ͜W,F=zLZvceX`l\0 YDfɎM(MI.KÆ}Qt^`x1006l~1"%l$1PcdT[ օj+ȨneG-q-2  Vf:.k<ŃkjKrq4=7l⁡;3.{䲋D5qb {&;*S3 Pi =uJ ^Z!ZVIcZ5zjFU]gekUbVˊˋULu,(VJ Q܃s57]S{ƾ 쵲'%6̒=dGl6C|/rwh󖍒e'Yp kf, E׋b'wלbsޮ9b!`؆ȐEАeT,9^qӼ`招+eLcHldu[#eVEǢbGzf*D } `-Ǭ&<̑=dEs^:4A+Sic;5m6i9Y{#%:ʆkai(X`+=|Q=3;xS fFlt=Ƽ``9y;k^ Lb*=d8"0;!`+6kzf0*fvL+CFbV~/=֢1i&׳v}b4^wȷg{[|yy%_!C.ȷ *+<=cʘj7FZ f 111WƧF{`|Wo?Ix6رֵoŌ;i)uz`N_U|*g|de8[3{ǁo}]bب߯0ޡ=0m nH"Vd&-'Ka΢"mݴe>|R|RÑ [k a!\KZ,vp<LZF`3,[><;,$3?Q TFu|"MUԳ :=0*305mnBY`Uyw;H-Tq"˗`y_8bVETLz<KZNEȬ2=8~λf.XwWBޏ -SB6g*љ)j^-W+6Gb{?\zxyQ.ܨ\(#G:jĺ- { a:3#hdWW q\8 }Ҷ:BJKLcd G޳6<2.+%{Ȏ/Z5wڸ؆ "R5UCak.[_l76m\7_rl+q>Z7Vz[MZNR7qp$lDUPb| ^6lmf)* a~۸hpa°mҒlai&L3s.?n g[ B2:chK͚aX!\u֋m=_cm\&eۯ&[ zD8 fm2ab` 6j,I G, ̜O)6W0Kavl⸖jqlS[vK:@d k=`] C kFl6jՕaV "b濴MZNbl ?\Z6/|f_~f͗l&r YRd6o$G,D= sV}Ff _6a[{5N}ǰI|H} O ]O3?= ^*u{Tkeՙ/-zjRaQRŲ2<7"`~_!GoҖ`s& bL7͓ D2?TȑՖie4iN|keʢ2Hbj$$IA?d .&f0<=0M8 ?U+2Ǥ'8"%tۅu~Y9K[˲U1YgVUDžc)ZD? I *b5v_?Ur+&-'ˠ%Ƣ[ƪI|X5vb;UmOFɩ$[#lmݶƇ656Qf3l6jCaZcr8^o[â:]of c0΋L+Onb)^!>nD^d&"լbaE{fI ֨unQEkmuBX~ќBXj',i9)F"`uް" TKvkrq \K Ū`5P5D -U1k L+2mx|vL!OI-g1֝31iv^a__{طhlu_,kLwLڔW0Ka[-T篎ϑieGdE52k,xMwP'>4_$L(~1YӒ(j}\(BCTjf$-;1rƸPc:Y&7jٱL} !*,Q%A\?d;yo;<E ~$rcf|o5m_8<52gM* <&J (n;t PcwNFpiKoc}+>~27نǰIɒ=deO-92sm5y6>[d~jagq_XyVVu|~{JR Bj,Obx([T{183>ڲħT~v`JaZ-g[I O]+$k!ZQ,4bbI|X.c[o&rE)`jVnK\\}81 *w]E[vk&ךT:N;=% D9 L!k5^xJgL*hZz'/l>ɐ=Mb,ڐ#l'-eX ,e$AhPm/һIK&)[ǣqwÝn j5e͙A9}$6KZd9Ob]>O_0iٙrzط[dn a[]^,CvVU,[Kӆ'j|C60Qۣ! )=dG_~IKԍRT<@T hjcGD߲#ԤXKwv칋eO./ =Œ#ϦPJ R>sƸ+%-'E ^~ZɮҲUZr\b#p"#X|0( XK엡 )s6;D[ r&>}WMx * e\IpdlI τݿK neh'@VX%/`|6\rQg^GQm"OzgAo9Uy_X$Lmڲ~!bd===dl+%{0 lX5޶m;pDD,C"ZbLD1&bgLT̒=dG m62(#vV؍1lҲ3o2Fۀɸ~~e\ A]^$AV@Ihf|t1\ԨO9 qHkWM}<| `q!Xzfr٣G2OJ#!іDCH4b}X! !h!Gy Bm9YƠa፵nlBSwcގiW9=Dۀmtqa̻l?R>@ߣ2H Cľ zZ5/JIpD2Ye1LZiIz]xx+ԏ WՁ#Ee3QZ^B,;"Z\(1d6uGDQ/bR/sڦƘl{QIm~3(Cذ um9YMaqĕzK9,r=M[3Rŕzh=85m3dHryr"u[#mny3C7HaָtdQXyhDK'?*:4| kl<4E)pdDXp^ qmbb(Vr"(V(-ŞsCqՍZ\3z(~my_=8U1!d]X) K\Wp'O6j8K\E~X,y1O`99` =┞)u䙩_%㔞 ~JSz0#Gӫ!X5nkβsVeg= 3A1\u,\qǭYN9zhE[vgIlkQ:z`18q>9y/i[q{國&-ߙx "g܆ "zd)7C=mf^6SzaӲeZe-Þq# [=͒0q`ҲotߘTuKoau{S)>Z SU%`)Rs|-8EO0Ƕ/m9YI~rf|lh )UVjV͖UVTdYxR/ϋS,^r'?+yi.L#aȘJb6O5,!|"ߋR-[ڸ1m wY21ahʜ{xƸ=cdOK uI*҄XL5„Il7e%pͲk\㪖]nW# 6.eхWLj2%.?!WW2 bJx,%8m#_[lXi8|5:s}P5E~~^ Z.Gn򝘯bdr?b`|>m xH!\<ũ櫡bb ;-;o^ľ xjgA]mx OV+%za7ya~2>>CI6q, )onȘ # QӮ ˊ:/{Cľ Y5 !%zm\l]1|ظiKYWbcWNXdZWm`Qr͏Hlj[\soqlYƱcֳ͏cGgU7a5C?~綍n{`mUr`%f}.XncݶrٵOrN3m2aЦW/̋Sٞ@ܳ%ku둹`f fuK5짏w}h2L_b's=Dۀ͟\>mx ,ۘg}iK&?20lczXlľ}z[{n,D-kmb~.? ?g!ti{`쎵ˤB PިbBy,j9o8*ĆH.|fzz3|V18|CϙdWdN } ^]'1mgM^ÅxsaedX7l/8$Xne؜6 ǍmI|RĀYv͒aܲY2Ͳ-cȒ"dZ<`-~r BA 1e'u:`[ 33ճV夈. 6 aŞ]9AUc&jx7(C7+DoxdTꈧ<|d5/21+vo4Ev6>^,[v-dP0ĠIN bhgE&̳ ĠUysD"d@2u dѭ@f${w dv/,]7@lc=bd ZEFҒrHSӏǺģsM)O=T^=7T>0l9^w W?ŭZ} ¥ UDžU-.7$˫_%y 2ғjzhof!Dujj%LE#ʃwfe\@p{֘2B>ECMvU3VB7kJZZ%c K8| հYks @`mUK;0\P 1 ,:awA,p6 >'vYOP}_ ;o.+SY$[uz}@Ulj!Y Z}GZ5czaus%n0FlM;㑱 5QZ"@Gvw >}]U[xFWpu?xf?ӎxpwu sm$. ©\3,=\|8T juALuzg UE4% 4NUT96ze8VcovZ'!k& \U3.tW^Ef} Mh_ εLUḨKTLE(/} BmCY "<|}`H {u&u3ȀO-AvA擡澡D.*18Y3ǫŵo6޶ F{&53B!GB%A|BW3DcϰA4UMQb`{^lmt@ ek?l-5K  Z(ۑ!\G7Xfl9nۉ Ghdv YT>`F+P=1ᔉX)VWqz׍b!fбʆ \܈UGz<7ه;%sq(\VMuaDY[J(\2V7hE^O,C[<hr2-\)۾#8r`fLa"fC\ h'Ʊ :7hX擱HX!,& .:Wp+*nf<-@ #4D45Â6h&sV^lNOXDx^#d J6AcQuj{2B>EddU!OFkUW rBk5x2ayՄl;ڮmM4}m&2vU6x8vexcY<}.)jmm5eC1#تjKacݸ_ۊq EdmQ,lsm_r&€ N c5Ah[# \NMֻZC|4_dKyf _3 ]s!b9]W,1\\'1qU  k*yuڷ(W ͼRe_ eVO?؇D)`KFefbn=ݮ=& 0фpA823ɵ2sB<нxxR/Slg2 R*lA'l Q|`FS=l":lF5"dY2h|+cTf7cpnVaD[mj3u6^][7hK_lVU16$4MX[wDTyOK .ˎdy_;r uGKX8mU:n,gqm6qµB4,T7BW2ƌ,\ ]k@`agE(ll}`3MD}&q7+7h糆ĺ5D>l 6nngkml`}<Qؐ)91}Yx%^p{)ll7 6[@_Yp9بz_nAڼD^llkg6;Nh[c!wQq*9VWfX7&m^ pmjA#lke62ڸmm\˶2Z7hG'KNVEO|HCxcլ)s68>E`xDo|7\5&|&Sm ͛ ^5i"X["263 . 4-3<]d3 d¬; ik\jA6*iUՈ, kU]a1^zMXA6 b!{l&K?l܋Մ6cٲ7cf6nƥ6aflb89ٚG&}-( D=;mvPY_7M|Doj>Yө׷v԰B@}x4lFpqFl@*̶/}ٞٞ~==9|o̿PXJJ~DpP\P7H,2(L}26 K,Sc%! e^u=.L4o;3 . oDQ2֎%,\&ͷyl$ۣ2qJb83 . 4V- VMx ɖ\,3`3]6YE(`` ee/Fl4l"GT^|m͘2جp/ɖ9o%ڃ5-I +#F(|Ng$f3s5T:#jkÃwbtY2J uE]cB;y"w`U? z@C,; ܁6&LN6dU۵;Yσ`c'sխ{c/>cƽk[QT+se{Q =bdIdkngf#͝sxzfkfk=`lsg=27Rt ˬdݑNL-#>G,P96n&.giut _Mm׼nl 6|Gt/gndKgXX2؜|@.6!CQ.pK7Xdņ7jLM%5?g5N`!C;L V-qT? 4/4/R^*0paӞal2<#EIWFbb:0H@E/LTA5gHD:#HE*HuauC=7Wi3 #IT ^ZWPV)gn ,P0y,C,D'q[}X =H`mˈ}`%5؊9 M4ᥰ ؆m?9ID/ٔ@9u| uoΚVD^lulu+wR6lklk [e5-XPMx)ll h@aQ,u|g(|De@ç`Q9 QȄld=՚])`f~qV\]\]\u38׺V-c ,;È fb`Q#Xv9 l^Æn¦Er'َaCj)gK`Յ4vߑZDx 2Dcn@٦  Ӟ#x X`N@pq\B13"QkC#dY(hAB!o 52]uZɲRj B=&ʲPX3! ȺP /a],AW.ֺk,JŸb!Bk9VrߑF )] .h+ېrK*gc/M8mb;5Bͻ݊PCo?# 6KoNO4,"wDâ#"l>2?Y8S@}7Y>D"<s;O45D[He=D\PC\u",\fe?XY2" hR`mCYL(oy֦ |QȄhK%i=͐A&h3 AGKvL`w.+࿧F63Xz[.Bp0KZP0KkjV X('2JvD^Bp~uyCc%ENF9!X O/.@ kQ9qap՝꾹\g.|\ 艫\O6 6[&}JAf05Ġ qȠlA֧&ζͶq5[0vyxަXnd8 6̶X`{pjuJl6ċHr9e` /3.Bp 9*lȁGƆd]h磊66#da2Dd)#%-dgô!<6PjqxkW{L6OP|/QsȇA"FI2ּlL6]2z5&dY3hW]3CQMx)hld۸S,Ҙ!o)ݚ\OfY^Biղ(Xϵ21L&Dk,@9q <L*amGW#Ejs6&6F̎DUTn*4c}Ld UQw^@A&?EleANbk24.Z5=`i5d-hhᔂ z=i/CFۣy9Vnd2-!hOh&fSk=]\%:{ë5TNXq^0f 82?|o7 "?@u@́cd EkɃ(4Rvfl]CΈt@[G/ ˋwz69m66 E&6`6Ȱh V#fi 0 H ` B +Kh9Z; d6Г`[fMxI ڼEC{8 EVTs#/7`ld=(Ьʼn(l`IQu؟d!2Ъ )/\46!Rc[2>ʚ E6QT6RU}yhڱh -pBs2;b;.%)"6bDyXc+f9F^2%;` b ΥEf *C="ދLWZTA'ϼӭ>AYgpr $a,;mF>9m@629"yT1bDG='lS2h#2DN ؐw11#OL@ك5H+hx*s@Ydl_55j @ d=uWS6x5O aO'O:H6n^h3,Q`[FtӁ6,B#; 6ф9yšehy6bl91Xl ĂS@Ԫ2xyҠm5$LGW|^sr`45}lY)x#%-dgZ,d_۳^Ee֋5u^WŊ6X掯SzydJd {l=c5)g`mʈj檜T5A57yȀM8PIUȄ)Ċ԰؉]5;2!NwbGwbU1{no^Pz= zUGm')e2׫ϻy]a\/8RgZbZ142u_ zTygL52r}"T 2AU| j²KF3V3=8X'"hJRln ߈]e.0Х}d2 8,`!a0Pde $@;C & i[(`X+Lde% +_GG_!5Qq =Y/hq|kWH_]5?6P5σ jtjw5wwr@3֚78ύ`%?6xqؘύ;}~4بT0'կ4BVO|xcr^1ƯTYM7+!1ӂ×"'> m 2u ֪|r(&X3"zTOLcf4I~ 83& ((1 P:᠌W!ZMFVML?TZ=CAޑ(Ͱ_?J\S53-$^1t=ڸzVAbX ۬zͿk% 5)\_^!*>!j:˓=xW )̐c"VDs|5 @ x\k>D2^Bp2L;8c;[D'rȰቛN3@>XK52 $j ћ`!\eUnUkZsM8F* "ke;~pYxЍ3)##I|`&,ZDH2& (2Lb ˸>8. DqHBAU;C:L%2,r9HX߭7oDcuE8?a"fV@1*(֗jkZN<7C~"Md%Ih[,@5-,(f&29S^ [-C @̭(7V*gAi!CAFhM|7vnl81=v#h  mtW,Aq+#Xh-YqFǹh"mE n_}oNl&6Ŷol Ίʉ #XVpIQxDXBMƛ~- V( KfN9#RScw|@i S8a|OтD\h㻊ȘhT/j_Tjƛ>R1p;jiR* jLeJ485?H -RP 5 N 9de'"*D̃f ]=`2`v0tI,a=h;}ɷ$2`kb7`2Eo{ _,w i!svNuJ05$2H Ze"o;$"1@jyNf=:hʊ[/7h[F n۫d=ʐ6%#.֩/4_̾ VY*ѿ#ea2^Adz=1d&lNH ȘX"- .Ѹ4 tZn=e_-\9kטBjk_@ְKO X3~} lZQ/ǚ¢1]a`'A}} ZE^[Mdծll\ F՛M47-dg[E],M쪺m `2[ųKSPӼTU<} 1 b4w I51/?T Te|H'SuM3᭜-efk0BVf5 szd5KV!v2 T @F"f/Ai!C8N3Xڼև$(|+Gu<1d&6pEl# rh"mN݂ȺlЬ^yluMM S6h_>lE @sq[sAG/|l+Ko7tnw!cǭg~bkӴ!eCۉ`KPXd-#&[->jl p2D~ pu1 s`& †DM;}.aN B!PXzB`[ʒ VU^nLN6fD!_J^x1{qDWl"#"4b CFEڗL!2Wc r M ;Tcs *"Oꓡء,#P0n($2 ױ \x'\\mf.6 6W) ¹"Ydg 2A3z f'N"CXvfX q}fB┝4 `k1Ujƪ 75 Ɣ ^7YLc:#?5dSL{P$Cb/<` e @/4_w|:G@st<<, cYb/Q7|2Xbhb찛+f,DͼbiY1XGQΪ|2+rWn`[F|X9f) L46 d 't( Lղ3p!AQzƪ5aza՚zYRDŬ/. @5|jJوA%2V\c$1n12jlL4ᵓ% 'k&kxHws-C4+ 3Gx0u} Մߴ9 ϒ1A 戯[,@$D\4% 2Ѹ4 nU/sb7 o$3ת7B`4;U՘/|Dp+ .OAȉf";#S,@+YՎ1AFJ_b!s8ۦ}/VH+2F߀Mlbc;c`M-lƿn%}6 ۣ" (" g3 n[6ҝ-qmBlf5n3h&l fWlW[&C\`زWf-oOl=|yBffN `p ZKDNME5q;ăȘhvsʇ ieAi!s8%|=-;ldÈz 1Y5Ka3|u4˰R9c-oȎ Yfo .*g*r*nP!(!I4.-dil%_laZ;_)З_'x2&0*5e!R/ ֊Ӵ!~F1`"[?h+ †ckabaۙmlp|d7e/ߎݢ3dLF3+pm,2к 4)O-Adw`2Ds%sv; 4;-l6ʪ!<#.]GV-eVquՠY ggc]2W -|6ʺqA֛ZŁW8)V _]q47j^W-q[{a _6n5JSr9d^VHaRG ;Zq\DPgɤFh~Y7ٖnW=X9@fWy@ x#7-dgb[fö]vT&2T7ҰY٠x ]V&2[I:[F|SMB;d9{^ca]\E8r.xUrmM(*'.X, &YgA["lnBp6ZLcwgD)AfyK&Cn' fpO^p2( [`>[exWf[_maIfLa" `ŚdEޙj6|RMX\H[r#5sD ύ\(;ExIRU>Pݙ+ 0&H43Wy}T@eZ7ԐmBGĊFP뢚ӻeE[70L|55G;Pu|ȘhVS66 'JNޮpg[݅` +pcu=ODÈW )Vk\M\悏Ӵ!jUG؃ըHrLdLA02oDp=%yu"(Hhƛ OȠztBk)@^VwW\:^@p2lZ ۉHB@v!cml0̦\;}"K* MiAGD$D~Bp'gnya)6XzodU(.s6'[M8.M؉X,ll'g6L"[7[ l[(t)ij*'6>s^L+|#lD ˭D8 Ӣ)si-klE-/<X7ٳ(VL%=+qs'RCw AH.D -;I ҺJH{M@v 5ոsw$ *|33s/cŽư4%8Y&M4^vVe3wh S85'1eE뇈FYz^N?Pji"PvX904mw>HoرItP5{\Mp`}ȄZ2h #8IAKBs76[2D`ȹ2wX_^g~ag8 =P>ph}HB!TuZ&l?2bmڬ>fh;O[s`p,A8E~X[>m ^*7a0{{ S>BwOx#[`(h/2d}ѐl7X4h_|і [Kmm-A8X=f,;`x#n~xj0FG)aQp9L"zlZmmS΃9yfVLؿ=6bCb0AvU8:DBčt6A:n.Ѹn!C!^:6:3X(1`x`zq`od!mЯccud"gķ me ;MLdƽt l-3v|N,nlcɈo(1fnLen uڪ 0Ѹn!C8؃o$=6v" & dķ] mAraѴA w/fͅ=M0*[*l+9nls̎vnsai9i,9~1]جBvvllϾlg60[뙭K~<_w4;>Āo.(xo--JF3N.3P@ A&2EfN&AYA B#av=PE6&+ 46`2b!s!QBجOzY`YՕl82ڙm훍dus8->}G@ \xް#EXXEXls͂A;gTVPcؽ!(!=7ܞ2~FlԎ6:ƭFy;[^ h`3-dgWȍ%y)ti*ilsNSxծ&,_!B0KCNphcU>`戍}`mbt0 3UU.*@8W0{wwg`u+eACӟ (4*hIN@` +&_72Dsq=cLq4d0YA`P&-$`&XEyȖ9r`d%($[XE7% #[`C '.XK6o7CEbmCܾh BL5a|m&W cC$ |٪-/},PUc `UNUkq/Bp1wahe=T[/2b!-P9f0 40dp B0Vq;VUi4%Bݳoz!0a fܖUqaqzT9 Q& I6jfai+`."_l]lusmD#lblb=~Ŷm%u2m/­ԟ̆#GFۜ gvza[E8[x#͎Ғm6fff3`Y٘"fʼnNz5='`/2Pm{Z&,b6;үֺy%aC?@n!s8Łwn&hu—7[oBCT_#JqB~\4vM^"YierXE*\ C8cѦ`x#x]2jEcK_dY6uc]\2-q=hA{m=E4 ߄v^%&X&:ޟֽTBVp2lM ,l1qZCfͪ+) ^\;q%>3sf,S< oUpf\sX9qOjr~c[n A\\ 㴠p`.I\ 뼉!\xF \m.Z obY!뉌>/3Kٸ#26ƒ a=53h&l KV1-z{ = ý'\WAfX D &. kX(D [bScP+U5Q)pf8`*> 5B07- 6b"_`dmchmekH ;FK9;7@A`Zq!'o1ZM+hG7).N A2غbkثjXl@XQ,Ĵž SqAe8݀6U.8fL` ã `v|žPQX~4m˯" eoa^V$}&Si!1`!+Fm> UFf:g cd(z˟}G3ֵ>jp&#^J4UBg `- لQyφ3'` 18ּ&RVj?TMNׇL 雝~LD(ege'; %Tb!ϱ0)*ACءb+Lsܶc!d`V[Y j=|t@\m]/k55gM WG4xpX+.HL8yZeEޱpY1xX\3ffGxw`UT Uee`qGg]5 LVƍf!ŁKFF%9 Nuc? Fᢪ2|XR};ņ 4\Ṷ+ChCu~D!T>cc *jXr `b2ebsoĩ{?xg 9b9nB9ֱ`a{27bKĨ[VVp[7sl`99rbsedk*6fe[b!s8[llA6;vn~ynP]Hb݅~K$RI '&Oɪd ;JĎhnC9 :B at2`2G#-dg֯gKQu74Gddp9@=F0s-fKF^,S"Kx4cv^m0Y@Xcᅏ̸\2Nw`Xn !8ڛ`gSIw#|>leY~G$KP +7{QSx~E~:OMsfg:D9@V /RCD.*`ُ{Z4z q=z"J4qAlm VȺL ٪lL4=(\ֹ9fX" y~=+!8փ]}eqc5Dkhc@6+¶Y^z ӓ0۴)"{OMy7 "?w$hÙ3B6Tc Ip/?``l3o 6|'&v`XT] &9&T֛.QoGU2*7R ͑`e܀GN:P]آ1y}:T1Kj#d?]LQ>`}x0@0yXCE\_ 7) {JfӉ8BJ{Ʀi. S82+2!@cZ^nu)L<`OrvXD>5*ηZRdp4(7 !+9][b2FKX9|6v#|q=lLhߖ^N`3yY^7^dp)#",\ *_(X~.q 넝 ,mB6tKt ^^jOo@r3pA8ir݊/׶2\j>^?rAzb\.VPe/Y/K~-S``<|TrY7}l/U2 -̋JjX~N6Yy8x^4L9 mt/aB7\Plh]qGi{d=|lʭ:?0-Q lv=XǞmUkh>n3j1) }K; h>glua `Y9Bmȧgooo6 /{}p,zy#a6jwVC8?풷#%"j+0vd屳cv|D;oIex$ojg57^86>CؖCjKߎl~VSÖ9u*|/ȌYQi壺#jVA)ڣٽ|LdI75܎V%]o@;|l@3l3ck`m`m&7gܲdGu :YqQi"B =lLѡeּFyClc?SrėCh1'T}푯@{#ć CVpT9^Ec`S17 oq?D"rw@0 MM~ޞM巙ݑv%,uy<AY\0sJA?J8e&7G!4<;4% •!?_Pd̰b;@tP@Rgi^q]\,"hkS zܬ.l`Clk Of-bh͊kKZxsٌ7iz8%쇧}l&m a{/4GMd?cd7adQ}I;"ba+dq97GKRNMP=_ [!s4sd۬1fuɰeLl*e^i7qu 5(f3.j!ng~ȷqoAhAZб2Nd;Cb!#/}1u1k
0T!&\7DY__Өˬ|*<../*%#c ~z#:3P&iΑ )HNi~èQ#+<3.A5‘1=v"jE%sT o?llfkfkmlcِc6Rdgclut6l4z?hB[,'FCg#&3 |*NTcCZ)?Rrv0pq  \&ai*xSl_Td3gdڃѬfg e.lz~s mxNjvbݝ34>Ygcųxi7h)Cϛ":-i_Ɖ20BEE*)x41FFHZ`sT hxȋ#VԨLFsӆ\eǯȉ|Ҡ#QCo*b "//>n2UjyS b{ Wp|\&v 8"|c>yJz(4! TyG)ju2U 4.bbXc)7LrF>QYo·Y0>LV璍L&~k›#Ul n\g,e#=9Ȗqf0W:Cq:vŅo4rIq}.o\-Fh@^݈5~zŢy}ԍxS,aTD&@60 6 ֧߆/>6TQC4 "* 9u/$sإsE !\}d' 8T7TrqՈ:ZjXݱnϛ{3դ|3§gӔ յl߭@⍿źqto ޏ#n@b"vQ~fJzo*})tlTIeuaȘ\H6M;QSU+EO(Y^WA9?R XEj.Ǡ#c6Lͥv-K E~$Ƭ4(BšBs1+‘1Д#!İ@&h9^›ll y<{X4=VbAiwn.bMF'(ԆX=#,)l{ըU̮ҪUڪulkUlFM.kժdC] U80Ʀ0ڕ06\=3,b|4OleUK%,9M^ĦzПbUa کr nȱ)7t8NUea<~J{/?o kK-,Mk:dBh(<Gp,-slr} Ӂ|eöڛM] }l}4>56ۮBl/$6D!ɵ4LM16 r VJ7Ug/.U;\Xb)TKuXW4\`i]`y2 nw M)=9`y! -!Z@G"u%) Q/d݈ߞKD4l[:Qx o?l-jT\[n7[-7[Kon1n6+Zys@Kt ɻMe͎hQ)1 (ߖɘdOq-9=D׿pQ]\`|jPPpH8s4CsA(VUkF JL|5`82 X~ LW‹LV o >VZ\Vg(Tz=P#g_Gkb/mac Z%ȧO *ˤZR*-;S.Y: 2Mű%CHDtg PN1~" IxA.?iT>q?勌#6 ;,]2dԠ)EƙLsSE#TUd nvX$d ;_˱p=yz X 7S7Sʛ@=@ܸ2o$ U8R?/7T/ZV :i.^ogzikyb`FldYblf6|-~黅~2KL%Xxs섬c,-5\&9)G‘1&f ,_N!ThRq_B8Ta2u#2pD@,+K7p"JGXxS}~mW2EWj&b/i0ڒ_2gї ΂M Sd-}/Ed8Nll\-3p@&imPՖ?i f@2 aO2]&QaMA2Fל;1jq+fl٭X]uYkFnEjb*V&n"b,`8@# Bĉ>'E# ʂdA0No<6( @kUBkKMb dHn!{F)ɘBd ~B5,.Є0 { $ɔC Li5 dsLs7G+ ,MZF'2d[F<ǘh1dZ;!nl_,EpxTZe!l9<2 eA2*#&8UܢHvl,MɈz#Dj3K G˜؊ (kq\H5SUTaCU[3=%֬#(ڊAq/3q}2DC—3ǟhs͂dA4nx>V\s7G5322D.֕j.utڗ/v(.˅'B1[,9@Roa7_E`h)I!59tf@2/viH,jG5J-IjSk$kX߰?K]ߡop[n>A،ߋ/L1ɚk%8KvؚG;vٓO6жCw훕wlL+ּ"Ȭ{iWLQ7+\u=4@ѾfK mL.u [\~,!l=AaegL0c~1VE4ʘh-zYLS=m6/vq7? wX<. :QV(l 1٬rX`2Ls7j֍k4dX} Vfg٤ѲY5vڻ$汧vQYoI'4Yrv\?ζ~-nTSlͦqߐPSMݏea#j)'-H>4i܏:S42NW՟7 V_ xsK7^"(cJ_2/Ӫα#!s4i(bRwr6 (oŪy9lq ?}MiLwi@aQ.wLa3:(BP!ѨV! i~W̍Pl-H$tǩ-<~d!5#,ͤ^G^[Ɔmp-Hd/hy)(2W ;^0pS!KMxFwL_x&1QuE-Yo]ؚBq?"=# -7٘Rۺ"+?_?*Q+Nj()6ZJF !fXKFM,kcɊ*גe-5dZ2[XM>.mGJhs6!9HMgʛ-xlGʊ谊C}(gLAe8`|P`|࣎}~m}(s)xb#҂d!4!8|k9(-'!/e 4cݶYH?h`szɘa).v2剎uO!P02vxza3gyZY~kFsle_O%?Al8|Wzkvq[㼫MXV<~/Xvm]az#;h1!t S~d V0yxzt2ާ̎}gk%.u3p#Vo^UXDzqDF^C5ykeT y/ $[yyL,irm|ɘ`j-h!Z1p$3M8)MQ A:JՌ1pĚFGKѵ^Ă@OmXQ.+yO#zQNub-ូ`3'LMq-5\)3GWI5cź&uSL̓=/vZCX>!> y R%+<)%ڄ4ҩKw?o߃G3.˧4U1'&|rԂeDI @h2Ls4,CGZ| 0T:r2[m ɘd73eM e V~ .:\0w/=' Vmoc7d߂O?_itԂ-&nڈC 1; פD//e62o[쀔ZP*$S %z^H 1f泰+ Owb>so,(>ח|-1L#e$9ת껬C&i½}q :mͻiJ^qZ{kjݖ̂dA t`6hY=?Qix) 7G{bK,1fre3M&he$caPtU6IvE]~CX?yfC')Xc繺f\/q'T>؟* j9(A@YC_D5išT*gCُ5-H$CC2uԚ&Q4WCs65=?llъ<TxFd kѓdBuqsYc7255 NA5\e#&h!8e/6"4X^r!)F45ɘBd|?YQAqd* pM ֙Bj lND@į) _\!e v"˃~_'bu1:=T, —4nfd>>3dRa #>#@$cR x"?5#6Gq\7DyADpy<5w4)$cY>\mx) 72le8[c-VVƛmo[/7 \l9s-[[ Y!&GP$=3sZȂḏFn<+Ʋ9 m{e,zt}cVƶ-*M/n~f{׺ 6_r Eqӛ|r[E *4UUZC ]v58$cYcA#;?G,hlXjx76Ձ(066[-r2 l [=nQ9O_7e=9UlFM Ģu7Z iͪ|3=MScF_8 yHWh sl2jRf,-|2Jkțx) 7xjgl6]ϧl8lp93Y6al5`8m͡i;|=߻e짐hA2 x (wxl9^A606uwd ?}2I/ ٘o2vQY%7 NܵOF0MF]y#|~ ټ HP!hT@3VL?H?J?oiYHJY7`Lw] iA2 [3LL6/e aBqւ~]`@"̋sMyMd׋27d-WvObR,q,\>+Gp.|z(@@ߣK=NLԐydƊ 5.(PMyCꝙš!va5ނ̬߭e m@oQi)c FM*ҦbuMLs|d9Z1 J=s#`~ncG|9<-HDyx -} (?yy91܋hhC7ws G",!?&MA28obq4j:n֬h75.X47KF lQJP B,=`]Oj+W#Ncӆ F3 {6Z0WbgMyzxb. _Sbq/2ᚯ烱 nFj]M_ T7cslaaF|7GoziM.[ufRLVmDW7Z9VcqWk_)H8."x5M4M``9f":Ѽ^2f ~V:S@$װ塮pJRe#VҺzs$M\&o.Չ+7*{tlL кFFztuxlF7/= 6\s:W &5ל?/Tjq-xu58[גMZk,nQaQCK 0dɘlxAx0aSlEƼ~"P{5p>5^?&'02QzɘacQK?ǂ*V+.Eo?\cE..q=WΈFN?orZF;[]b2ư9 2@3w!6FxgDjE FpC[hv45s|ڇ &[Qu>d!d4aFiΕ?+OČHX.fr|}>U/^mX]xP ~MM /Zq s 7JSb(M4 7G W-l<¼+D-|0nZK $Cf &oT*~{(,:4~p$,gNd$cbaeuJǗB^hD#*T5 *{:*-XwV8B6 ^fA2JTOTs@&YM9bT;zQ /2}jɘd_Qnl/5,d.I&xB")!QFʃNWâ-<'f!/66Ilak*p[#fA2 !0Il.X\s#܈D̈́–bY\&p҈a5?Z)3l9^A6]*~M2si%G3q'UM4^y3DBM\@d+iĴ7Ϩ\q65E) o㣁jnQUB# {-lc1ko_Ȁji( 7D&tRF_C(a:c.3ӂdAmdԴ) m9I7dK}x~%'+z5Y7Yo/ OѨ|X5kFS3m ,_clδ dAQǪ?ǂ?lul#pw$}6[iؖ,ɘlxe\#!) 4I)l'*e0dCш P uގzV2Ls\`l  ]7ֹRt3 l䘃h#ly(\ [g]b )~J4h(m̓}sqOSv3t iț( C`59gW|,Nk x2C4b~ɘB+qD3Rn`[ԱSI/3Š/;ɊX6yMfA2 [%Rf,d93D',ܦ/_f ѹFLSɘlUDd,ԇ.m%!/e یn0'{rvC%k'薤l$5qK҂n8a$;rFܑE{Ѡ5" 5ˮY}KkF,G3kpf3ke9!5McB%u07U4FFM|THdȖkM8 UYe"Tn1NTF 12kS{Tm-\760y?66FLɘ`(A8YPeH'hZ^DO4 )l:6Zcm.Ř {ٞf$c-qO96lB#,)H[ /=b-HNF9 ψ9 mYWQr翞lL6lpd,Hd|D-)YP:l9^A6>}8aKXp_dGL١ɘllu`"^DY<#ԥ /D}O_hvd'9$hd2Ls!𫲰B_B!4_t'H;\rnV"SG8FA4Q- o/6'ۼZ2새 e %Il@4lXfF"BԀWe/J*oQo"I4f| ^wߣt:~nW.s1iA2 Zi!%"ը$pR.R諼s}3^#f/-H3lXm'nrȄ2MHɆEQa;P>t H cb ȞLe,A'!Ӄ0ߒpqULaL" k.o2:adz(񀑍 6h{Ҍ !Wbcq`ˑsW0B۬?oU'ŨXxܘr\%NνZ9uD2/B1$fG=`ѾX=M;1ڃ׈yT}ɘH8c؉]:UHuUps[amkUXufkyia#l$c&`fn-eXmXoz1iJAtCҩ2}*wEsD}Q6^/WT=$cmMx濾Tѧn?lwll+sDJccY\sy1~BjH.mulpsI}H$O`X,F1\eJ"*5z>&8T +zEP-f/*X nɘC\~js@~u-ps X1Fj4+eۀp4 Sl8u"͚7&"8o]uXPGT3whXAS S*qt^xMއL0ӄ2pA+ʫ(r|mx+?/A3cLO 4EY!,QY)PBp}k%:P۩qX9TAiTC81ey5b1|Z$cRaO<)-L6/e6LYH'&mLkj<ɘcQyScf,8{Z?.;GA:׈pY9ȆȽkYz>lmy) 7GM%c ~+l=zyIfA2 [=nWMT ,dcb&rJt,Y1 F|=o,HdÆ?YPa+Gp(?3mlcM*$c_bZ&Gc^.sLEdMyc2pD1=QQj _V3xiְkQA 8x֞(ld=xεT/Yku{ ~:kDB s)NXeAE4d)1K{) 7G-}Öfmz^E@2U 6M( 78'1=jO_'*d".O j§γiD~7T3ۈVrs_<~ך5ȼ#L~1}i@➀D_9hF>  "p1VbyŕXflk!y?^YݼX2̓Ȑ9 jrO7TI"~ax^,vUhdN Ј5Y$cuދ@D0w_N{G&GKY9dֹ&}lnzfmM'+3|jT -]:lps[ga&& ȁk<7Q`kțMMj8B^qJF!ƶX7wJhA2 [>.6#HTֿx) 7G!,6.4J {GpיAfyfA2 eJ֧psl/)>Le*l1NJuR R Ia$-ͣ0L~,t{X_DFb.F"41?rC]32¤=Vld~n]2 v?ea dLɨy)OF޴ ko,acrgUUE$h۔΅!4y[d~of2Ls@ii"ljg PGtGx92lԠVȱ\F l9^m7B~ІȎ[[+'(9X;tA# 4H̪M W򱌾:_0{՛l՘d:-D?\@@U"nf2ɰ(2$𸆗o.e0o`֝-{=}n^T1Xj4derl# \AYre&aÔ `k0gǣkCu2 U5Eɚ4Y3]{<ů)&{{f lg9BSiϹ>SNd Cy1ȤQk=>` D̰A ;.8e,$~r,9H֘o,$ MI6=EI^‹#ؔib!Ϲ=8HI/bKؼŦ&8.A)f-)(C L/R5 cLxo]. ͓ /qS7jo<#i'e߉v H $#Xm[k-dH /+̹f4fP}126=Ǐ3CBm˕A$7t񏗿q ysJ١3 f}\\HIY2`oئ[t04ͮfcV9Dh]#[Mddx76 TQǯnz3 :_G.LQXC^b^hJ?r{`xE 21‹R^$c{\Dl sdrwr3nb-L_|1z"Fa~x# 5Yؠrg"zF\GGZxQyP+M- T_ _ 65_FJ Vdk>M_;K-df;^ڱd_sW*fLl|XXRKg]yBnUϷ(,*K!u1u?L YhAU\&40&ɑX<ƢLAJ9 bZϫOso*|k Gp+/ʸ*4".q r(G!4A|5M,V];:T: kōj6r/ ӤTrv w`sTkؙ8l 5Z-{PǗ,9Nj. k0H_NqZʐ5m߃2d|.|js@&ZY6B^‹#u2OG lٞ~smegdSzw+사jM|f-ld3w4wdMF/8Gsky'~~NC$}bpyO@J(\,DNL(p 8fS0!Ԑ92ع@GC \12 UW0'u(; K8B>dͫFY:m__jo>|<ڹ6dX'*$a&8ytǏ}~(.IeJ3:U^"NRVDUAvȬ4rrrp@z12\ԠƱu|3DdYdSƋdD5=GMrdut,| VX04݋4KZxqa͆,0嚋mm7,?“m)\^h ZMݰ\QJ3_=pyȘ@2NJ;7ظS"- L,ZuƟ)Q fHπ$,s}ȘaQ.o%6 h=#uŭ9](7t}>Xs/>(Ȭ1g`_4F bD܊1. SYiGj[fw^ Fd1Febs@&ZgDxI /`[Xi#&>="z9gF1v`kxD`9. `jTZŲ? ?. c!dAE':+d^IV"Dv(w(z]=G ,9YWE+RM&jgDxI /`Cuin^N)&FҰ2 MGeBlLy-'aEdu>jK3dxPAز0y1&B`@W'~E^07ýĴReŏۡرXyO!,a U>pN _(4*5GdvBTҩdAzd=_di.&+b^`:bzkƊ؇KrC`,BVG1iW"_L07~zSɘh&1Q3[X(`xb͞DPQ<,e#2=f '%\VUqG /P5~MR# 2ֲY{*smm'qGO\pՏkVӛ 7"䋍#7[]7QV?ys[t6%*^8FïOF$df{d,u9sc;"- wH0F$Dba2u*mLr#MM! Snt\{ zw}KAx~:t9WKvRƹӭ[sDG /ROLչ4b/zEvYgxFdnÀg-jQZLpYi`T(MϾ>F@珣L'$fsbKFi& T^HUAti2( ~Mit8"3X9pGwhjy,0-8=r%-8 !UHzȂ<v6L6|= 1fD_ɦ46$1o7kتV;|1VyCL+xJF/O7l2V=_wEU<Vig@Vtl7VaװPDM_ * >4Jp3Spo= xfdLAŚ_`q/̐_d$/ cV$BSb .kPiDV1 &VI^СţOeiS^rBSjQ75N^9y#owiDV=TW`G`M=otAH 7k0d[.a`;:4ċ,K܂LƹfyHŊ1G'-pHxG* !GԂoY`fTq%GNKZxqS,bJR8=8T#:N4"QFerhj޶v~TL-D<"/A+ VMT4NqVb+A6k>Yd|mو2 *{U|[$ٜy_XT, 1c?1㚒l`ph& h{8GfdPwnHj↜8>.sQRR! ) !5ݐ5˸!/`k^׼"VEynb_*M=κQF Z7ԺM/c.`̒[=V*leL6lϓ'IFáAcA d4J ۊywQ=88[d31ɘ3I0ɵ ! 50H (TQ''Q2Bf84Bq, /il]h+0] a!d?bЈRj:BB c4_-n׃:4ȃ(e?WЈB2N"dtnTR5KZxq`gm02̍+1y܉%`Hʛx G$Wg@x_ ڥ)+1R@>?H.iiDak)VIdL.<ʭ6dR.rwaxT({G|Eo_{gM1lJFTɘlB5p|& ʱf%-8n6T 2_g\cl s\lGd+cc䣼P>UMF^4OV@FYs'lϕR/94(r,(JsD䳍ό*yI /z03_>3qp}\oHXIqհGϜŸ 92Yd3hOa~$=ɘl*My <9 / ˧8¯i,\ ŷz1?2@37bļNL\3R! Ar:^V8m B*,<QueAr4w M]Ցh 5w - y "XcT=ϲJϤ&+ۀ%bMEM]$e! Ky,;%sLw xв)HVӈudMErqW"9q]-1y}DTV2h0Oؤ&hs3=x\x }bV2~cPr %G|ݪ؀9AOZDK]A՘bs]#' Ľ]z]"BԔ Xiun#.6D^AmfJA$#Z%G/Jg>#?(y}7 ֏ MgcIrT;Z# ЂdLAA^h6d&bsE_Jt5M3/~6&'I6m=34H eyf5G)ln'{EnA4 \[#h1F&hAxilA6=]:t=w!܇9Q$ 50hـ7WrqQ.Bye[֙p|u{zd-fAr [LJ%DZ\ϔ!/evMH쑈h2~FT1A34lyqAS^h~)~j~}!\\}k01qVq fm gD"}WT^2f X>a'<GG@^|)r9YVlGq0L?CHxUƙQ#>.`= 5m NSAbWU`[fhe\лRELyP ՙMA2ݽ~MD9On ?\.QB$1*1֨M$rO_R*&EXO9sr,i#7E@,..f/oTGq7AP&) }2źsF[:/hDܷ .4Q?h4yX0G)9N5 l%/vdA& Ԉ @ 9fo)N19_Aػu;wd], \^ㅔ$G{ X@3i/&/4"zNA67Q<5W}5,d\Qkײ\S? ~+8꼹j܊؈U,V36u#EOQ ދ&;FT~˂ӻJ9]d#ֻx) 7GfˠUnhB O] - :1\A;|WIfNRE{W ю6ep&z‡.6EEZ.|:` .|15n0`Da}1c$5λkGH!hɘl[tFf,d!%6'&χ4_Nfi%%Q?Y70 %Ut zd&QPKAit7V,ʧ'4FӖk`D)!(ލA۾X|\CVxv,Y Ygl6d^Xf4OYd~ciD˂ӻJuj:sXez8ZMWs%F%utlijaO*iT,00/xiQ#d-Ce,Udji絙ɧד4jq* vde#5I5EZyyN < lc@"f 82QF+FX;z%'" t_\߻mdȷn#Z?Z3ʧ4f)XFsz/?&tBuҌE2vZ2&j<}SɄ6@@T#:S13ͱfkqT񣽻f^MS6. u~.o|Y "&s y =@Vړ_6y,fA!$ڶBD(VI@=jn`SK3 ylX;dF|=7-H>viŴ7go'8B^A6=lڵ/,` lg5 /6 +,[sy}uif6l_M T!䋍#+61/66X[D{q[Z!{yխ߁MC yF4B;2N">8\0-GKY9 o3ʆf( ". hَg5 HDïi!bDk6@>MdM`1O+)=G x^.=4`L|"Q媊kj1Q쎘[0沨hC1~@V5 `p&^ 5EkNilߛ;4O).F*ݫ*/UaQz1 @Koo.lf!A0-\bfnVX)-qd60)m"N;)qۑ!o_cs`,&FXvgu\~GQ(Z)E09m 2M/H?YZѮo^<'SOU'2vDZ䤑|2%yQ3$ ڱH>iH2XM#J4(ҾԦ\*h+im[ɀdBn3.('dODy[a MK-5lE*0.֋D|$Ҭ+gxF.cr'DpyvcRr˞K/7&qɻk4nF'ahY6OKAfT8KEg$@I\EjcQueq6N`O"}Ϳz]^=!κG3Y:K[L~sydM8)/WjU~VOKO55Ow4TZ=]~0Yu;nI 1Tβ1y@C1ep&z":w}kNG3 $VrP=,yF7a޼Z[^> PR,ͺC[PEdٸ֍!{@{ H)M+GVPL'X7`4 ku$`'hT˱4kP.Wl/ߧQ}h0 PI4AU uɆtiqQ4N+v)៊EۻdJigR5pfAalhto["sH-iq:z =n?ěE1,{vAYEoz؎up)[\de?7gyy,HNobq}Y6.@>*TIfrœVHj%h<7 qwږfyE`5Kw>IY7=?0-(%j:E,HޭY%}Q/mZԆXɚ,'w~=T,؈z%6lX$9idMbӕ.GJVڠZVk!=x,HYRxY8p Ye6DpߓT*6iv YҘvF$Fx!,U8ILMĻ_`Աܶ:IaeJ Ysv+ۤXdF5KY89`)ߛR/ݟyn#?+1H$^xe,ZopT{(pr oyRRާSm=D_GI$J[{G1p\L#,5(ƛIU6ШwOipn2CI>̓  ֖L:YMm>݇=".IY^c>Id3u`/;عGt>zByR"+^lʻPmrsd)0}}&7M ( 'DB+u?I3~K3;kD݀DШ0mQSH̿.!eᤀlMI4Q5lL^IxQdKKWGyGEY8!zO~4zސ9%y>G mRhqNUB1"dQE]'D5a)!fV_\5ɀ^ $ wOiԫ-nj}{OM+?fhV{RzWq {DTcwO܈3q(06)s`\" D+Bi׌ym;Z_I$vkbSզ8#E}Pϟ ^T'ioyBSze#ì`s!XY ,{x4ъ"8d3S) }JBN[.S+kpr6_e?llmmlq*˄F}QpD H M<a .pR@Ka4+OIm4Ujѣ:n2bvgvQN'%socGfM+; ݯ'Z~ O|J*L#:_dAפ "]JT2AK,(,4i:g_ۄ ]Mֶ 3ӈUE$ }cCnlNiOF^RNUm y?Ѻȶ_ o{- XQeMPψ pRפj-夘wQг nR rD[|:B2".e[Ohvj>k!ڲ{D_@@羵뇢7"NJSeh_I? P5~o1p+yF’dĒP 䦦)σi~5kӲpBOQ]ȷ4۷~e3oHgS 'l\\SHk,Fk)i@|s`#ŧfm (e=}"E-fΪW/oS@ՖF%.;OK嬗N0wKZڒN=xƜPIl4[e怬箺n!;Q=լ~l^-pq"#n[>#$Ft)k[ܜI5pd7dckY6:(u/_yaWv#_0XOHκW|6tkH4f- 'lu$I?uO1nBޔX4 m{ӀVdE] 9LRfC@燶vICwe1l'ޚz?TP9P6 `0 &Ԍ/oOt 5斷)_ ݮ$՞4`<xeW/0 ,!rO*;K#јWOůW>L)i^;w[pp5n!J|]I'0] B8ט[J, ܞ,وFQYh%y3qyK]ӮncऀJW4r4;ɹ$Gs?*ix*Vp2y3P%7'\Ŗޯ9׳MW2;7 xZ|M""=YwW`w{XFןMk-C欌`[ꪠiR|ߵ%wM{f{- E4w3]8KT{ T&7r=~r&՛c=~UƜjj.[V*@һ+jİm`\iX=gB}(e{y kVJ\b2.(]Om0AQG˲rΌ߲prF{}Bc bD,c&Z!+u6AJԹx'8|Cpц5."ՃwG}kj+q]` z 6= FK²INؾy)'4J])YֆxcR&5QS>hV{GoY89M&6yֈ7g-}C~D_Q? >(v٨Zle$jУ3 ~Pz< W2\Ic{N .N/B;]0:ங,gf3Mb,6_7q}"Cdޅ4fK}ąu0Px->q7I)F̛0&!x-Ƶozd`B\[ 0Kߍ.kLs|dar+YDU=s. `rKjaˏ X|~(ł˚ЌusHi#T|G`5^^YM6b>_܀25 ~SHL#u\AP@6']r9nm4ZAKɂ˚I>vObɰEFoY89f^0{abk;) 3YpYs±`+^f#,VwǶOh҆FY*ΓL,i|=O& .NݿvQr[56+֩ k|^v4`-ɀ˚~O^5DjO4ϟ U/M1:m|OU^⎫*7E%BZ# 2pR@F㞦PʙiK,7mɽTY2<& o/iMc]=lY+ubNTXwVú=l1~]wɂ˚.?-natZ5 =- 'GuI'fج=9Wa0N&X\ys.QrPrC2lI#oڅѾNnv,1˝,L{6Hzys{A2`rXuJM]P~yF!i;u{Z5`w ETsH6'kG/yfW7 LIf.k CC;-cDzbOj]a5j$ kゲ09s59$4oY89mRSJDՖ_^tX][)1 .NшpW7K՚EG!e䀭4{:5YȆ-0ebQs}‚˚.vˈ|Vf- 'GMu 'j[aFLN,K$˧gqZx!e䀭Ø*vs9AKUHOc{$- S aiF'Aw_lFB8r߲prۻ}B Xyg6KYhF20iy P+;P JnWf;}m_.\}n',"cfMD^uj(E6L&L˷idࡕs3. TjY}̐(t=ω5eB ,nNXXX8k kRRouu\V2\Ic~۷?BV8^K\3=QȈ  `u|#FUN?e|m[W*^S^VI#x<0.+ށ"VZLjgUm!d€n.*hef٘:GK)0p@l.teAVL)>|۷} UY/1 ۈLt/z\[mmk^b]bJ7^2 Z\#|/Ww&Y`cX~ۀlF7.=&(̚7: 0Ο&|d)"gk2F'Q3JXAѕYQw>Md_ NONRb`EE"U\O [HptO7X! ]<_h_,.3*5B\{0֤*pMfyA b4vy}Nj yDzݯGW=!ih,61Xnm@5mT~ JŨ֣}7}VevIcg[mO,z?K4B~62].CeF'v䎗_vlͱg02NuLRv_+&=C{iCW!3y˯1m }*dȒ8;mJDE%h}FYq%".LXۀ skO^#vhDt"n< { 4_㹒׏ R%<O`\L~:gl`Fa"N%ג? *Vs=rʌx\6o,]'SfUk9NRc[\d`_"Xzeg~շ~c$B)k-CqQܭ^ \VB|e/%=ːfoQP,9Jfnp/l-Ei)ޣza S&^_n׾9ZY)j&#pʳRhe5jŒQ&65aQ ӿ/5]&4B6ds7\Y60!ձ13jjp)+[!$\>Y-s';E3X1N.%=)ӎ@4oȺ P!t1}B>ZC}=uzwLXMf =щPz 6-:^6W"ˈui@>\l$•!\2x"5)Y5'iJ{K=B&4_)p}r*y'g S]p>[]8aYϜY*-vBs^d<yDp5Xg5ާ .~v$x_.F<4OB>^v2ˏ\eJO^b6ZrzA'imz#+SjfWBsg02W L & RGT`g$Ar'=ߒFo+"iSXԻ}pͳA)=6sE }n_MyFNO^d$KiCBv&Y)' 嘢v&WRly"1LhUd¸Vܡd()٦0,ݢa|}r ٸ>r! "\~r`_??xh?-˄+ޖ?#!>hh1N1,IFLP7|QM9bx_rN V}ӈg}tc%bҬYI"@d`B زҝF<\ELhVvu©Lɚ%~8`$E*2?ӽ_3r 0Pt3vfv1k?``k?`?`kv|5Fϙ  ҪkՎ Cو8Llϱt-fk}O6.s/bfkQ8`g^,`7#ދ+ /D.Y_evN&Rz>Cb@v*inSij[w܇fe< xY60"J,K,p6O?`qWAuI`dSIcϱ-lS@6U>狮41FDݸP>G`]ISm,`و.B6a=q X}ieN&}bҼC:?fM2\Ԉ׷>XTJ"~ L{FdIŏ]{Y_#x9\ NhPI]<ܸf{8м7]%f墲 9vHhoNP"4F~[X%SV+o$[}dtOҨzʿ-l@,oϧ,H9 ͪLcOi-=$܋]䐺2J7@c\nV>l]*i2?'4@(6zrx\:H.{=R9B0=DsZw7'! 5|zMe0#9,HڅTɃ[a:Af7Y*:{/z^`dhq U ;/uc۫ĥ u ]Ńe9 9v Z49[ɚ77k9VԃO_-rnec嗚n=.',Eib]@5F$ }NW$: %%?j:a]g4Uqլ.F"Ij( r^kD2h~+(B7/Q. 5 ׊J>I}=/b,9T/Iui;+ƿ%kٓ(4\|@eE9=xHϺɃȍ4@J(e$nu +94'͂#s'zV}lU`cDb3 B桃v6_`y#4PPVkJl+mK㒣_Nhs2 C39qrQNoe]^>I6_aVWrkDQU2X# ˞a7=p046qihK’%G?pcPO3;&x bO~]’D!*JyV[gPFgo+ .S49=~)ℤ1u%˲$'g}AULK}3I ⇯v勉(8 .:Mדչ${-QM,W/F݀&r,m)p$`6PhK zU &4rO@5z.TJ&Cv*MR:=y릂7Ys%ȱ˙|.S,4KY89ƱbNM#gJ*rd9o5LʂdNaGc)H,6 ;[}俓̆iDa,H9pEaX"ESVl g4'Q)K\L[B^ox^`XhS*Vf KsxdRax"[L[B^4+tej&|蜣}DZ'iuP{eňJYsx0CT9\΅.eprۤ{ j*_+ːY[#ʧ܀D.JynhU2( X"Wpa~<;4uީe*\T'P(#Y8ҩ[DqN[a?0WY[[#9Ywhl[.ej\f{) '=W4ly|"M1_kp7k$RĆs`{ፂId:RN`cht$C&YɂW7.S;4 w'iVfmK,cw!>Bv1ː;przx:{BDӈ0,H9`+\Xz6BL#,qث>IlԸWiuUz|=Sl> 6,( 9\663"G_O<^RZ<_J"]օP%=/y7/2߯yy]?\srM6`=zz=q|pg[ y'\?(/{__4R̚8f$ } Bn{6)\%iG?bt)ʮ&1oAsy $w؜WP:Cλ+h Sm^a>i)z!/e|eQ1R <:Tv"I> N8(֟ۏ{c=n#4B. V9'6/t_c0 0ݖ`$0,UE4GmB(-ˀgѼŞ Qy[ kK,6:J%&nS*n^ǭz==:%);4ML"ٳLYOoi\u6hʠzIAyȲyzWuqɻ+4&wK8OjBQ|# E@U>mH[~~aɻg4^+^*1^䞞?̌7:$M$n/x5?z=/yVF0`V \",[ȊŊ+- ޺L#ikfbAOWdAD^跕 JS)*9$]֤2J*kƂBz,xTm-FKY89` J M89< Y'_ LMwey>YTwӂW 4@iEcǷ]6Y~џ#@Ngz|#z.̚,lxHS/\@(ܯws`F# }CCR!s9\-iprvt&[ ktEҘM$64j2% +5.[/4B^MIi?dLiDP Fd{m~!1p{QjKv nS~W/wi1!4@!=@G6b=t9.47XsYYԞ,܃D'ipr3v4ϹbnMz܂.+xq>lE5reGFKY89z68@S`urgAY; HEy) 'l䮋v>IS'Yg)1$@F] 2F$*٣pj31BpXs5`XpbNb2;jO1y{lTK7n{lQOu,io7bAzo92hL#et98~ m6Jllsۼ3Nq{D}Czƈ`Sw/i6msDbl2d7 ~|=3zYxvhOZ!/eyIJS ) V HҘ#@ 5:M ]( 'Dg+j|cuՅ5>pڗ]僌8)DpٿfZz;]{GÀ}[OnbЈ$VGr0)*[Uku6I5bL$][5' Ds W҄2p@̑# ŷέf1zȂdd0Ѹ.. "Kj*4u[PTĪˀ%mn>Yـq dRN`S&e Mwմɪd6;N‚CmZ^tz)P`%c2ls*'YrJ G+,5hpp iQ_DpeI=`[,NV lX89pR4.-iD7=% @PKw-Tp@U}ݞ[emýֲLtIe@>(εc@!b&GKRlTVc+8i7_ȲyyB# 'Y`lY?l[Oll“vqF \[pB3DUC˫˾yEĞ=Ju%uz{t@&FTIdug>I%gZeВ;#hP~᎘WeeޒF9Y8#a"2E`muZC8=fX?`w:ip.b2bi jOinO*09+} G3 LX.XR5ުi{§=LOi VҘ>\3A[Y )krQ 6[FJS^r_YaBdA>#׳IdKݭ4E>E=~B6Y[4k9Ñ)AO$;E0_2\u9VhM`*3l`3k2pR8iiO,UޢAԐ5&N &i<ݳ-Hg|h{) 'l(4GW\%޵ecL+6Ē64K[EJ,Y#ؔ`Bï Yͥ.CVZdAOadh~55ͱ/2p@U89eUҟi<3+Ir7S愈M3K4B>IdyD):K$KkQl.",x\rEYQGgPGg2?I]"Y6U@"lޚF{ 064L,XaDȶbOLZi[aA !4S>`O`[5E -x]."Ҥ`Ezx@QYcno %Y,eZO#Nب#Y{"ycPK=uH2PY= Q=FEY8!c]ZID:֞D엉Wc47*W:WN]*ipU#^9+i$J!WLd{]XEhtKÞ!:FD,QS2QQD/SjjkB<r}I,Yx'4˰%RN`vhEȨ %ٟ23by>m!dIĽ>M5ǾW^h6Qx.4_vgp,fx/B>QGPYx{#gszt?5PU- ?٧60o{Åޙ;Q"#,Mg e*$5$ ٺahՕepB6)H!% 5+zk~q!65+;|W)\62( 'Eyԥt4?m߮2*ĄчF e q˹f( 'حB#De!7!%k[l7mz,DP2l5 'lܢ/}=V0jz|rD¬YuF,[BnJ-9k-ipr~`_i:J4 {(UL0#i H 10CrQNlE/qȪzW%MP[>xQE X.hNy]qE/tN  dݷ}#CSo@4?dvCu$ 'l*yktKiQ eX#uyBG#JtDأ)\67kpR@F 镓*QGG5} c4r۾x<('M}` بi\"^ a)wg0 ʧemKaܾ%zx# {!/eJ4=Cɤ`FhY'Fv0]pFE%ࣸU}}&9' њǃ露Ճ5ԟ3knS}COs.iecQ<Y,5>&U/Y!9Zq[bIbF^w[XOHSKh$MU ! jTh8HTGcFP!'*4NY$5Z~ ~ZEE);^Z4/&QM͉n.D^h#p8vM$؞,^ވ9rbS8a!t[ b;9`w,sQM"k$1]~>( 'F‚Y1Eb{''WWH36c_"q󛫓\qz/EaU5[\CpiVK94n_eܾZf}\VH##~( ?hL_dLޛ弳brm!䦆Yu_y]C""ubxI׷pL17bn}AM߾[&eIc-SIsL8FQDpݺMWfp!*yl] ׈n[Bn:Is Yl/g+tͼ e_emZ<IY``5z.X''T:2fܜs57$pn(u*"pRX{<ThDj_޼ՌlnYCĀF+c޺*.KdeRwI# *_&vۅۿ2Hsv !Gzh\"ۢvzϚpRJyH'2BveyIX024޾* о*p9"D+T_K|#~%xX Fs;{䅢 ?ΦtFP/iJՄ44x2YIimqb`.ߕ oH3^2V˗2{ Y%,sX2?Y&\^J4~K-.!HHrN~α@##qMI!i[>I3GKV-;] 7Ȓf{j3W Y6p  !6b)&R}NhVlgd׷<OHfq}ψW_!C3'AP "UPװ~nv#,ڭF~$k8{>̻ Ul98s}}ʟXoLn{Zi{U`Q_HyqEE-p6)-V(2-X'.xynu#Z'o:Ÿ;ICxKb}ܽn#.bd,6Rm}KkEPӀxfޠP‚l{D_Џ/#MzHz4cgs䊝$ ܲy !Cs Yl/l{2i$EJgNvݜlVIuÂΖYY-(`9\y)ED%~8`+?I3&Qgm2 ڤ: $GwhhChCsDP>6'd{ݦ4ӺJ՜~,}Ҁ(ƀdдƆ Є&fp9gԦF>b74&?띻dY/'dArWЈFc9aKZٜL/Y9њ}d5_;ʀ6"KZIL2R% aP/MŃ/iGߡi%METDIT^y}P)V;yyzz=x^rT{o.V^o]]UzkOڿ-$|i){CfWZQȥʂdc=!MBDW"@X&>4&';ۍo5(lheAa`w_ca9~=2 Id|;? G9͚Ć>wbʂl|"FN`fzev|tM2KaeV,,PL4B^lWPX$s^ 8.2lNψWuS~u>2!er㓈&<ܶogňlƱ 6~H95" vp"򦡙t^5d~r<ز ψBq@~y) 'G)pb06tm9YrZNĈʝ XOHC y9aK,ak㗭mH?)Akr>ft߷'Ov a553 = 9]xdJoB,P5sJ%"FoY89`Szq(/1yeEFg]rFyX'wZ)@òpӠɾ.oae [nI)i%>X/U/_*fd^rJ̡| )ƶ=}`%ym*Y@fb};Ȁ͒FoY899uc4ò_i/v%Ǔll5Y@fp#0H~lh.ܾLguB~:AdL/_M֑AJ,T[uSig^f6mvφd<, 3lC/ (12hN#6N vqCǻݏ@W)r ň*@xWQHR~]7=~@X7`UUG7F @#Y%YS͹WJPl`(4 pMCJ`hpV0*YoLdȉ-KUUMƄvp8*%xx)78y$ w("NYKcg*}xnvʷ}Ҭ3^yYfg+JX8G yWY B(^zWh7:]' 'Gu~>4oF=(v1d?4y !Եe=2luxNdyU_h"A)Co\son ;jD8 {#iSz)@,Dech3 `7>M[}a/:BeЀ6Ya@OadM(a6DFyq0>kRAOT[~ՅI}5ٝy>T%j$.xϼ p=>Is7N4ƂsIJfD [瀬sfգsnamkNKF eMxNlҪu.WKFY?b/;fE]lُ1GJExzz6Tӧ;r#,e*_hn/\ڻAd7Y?$oM$ Uo_QTŔ;ǰpR8{Qr?r|J2hR_{+WN%^(.4Cf7Xl`4S" +~;~,;)#2,ktމ54_:eVq/F}^^dA^t װw1x$*86\w+smYfa @~ HJM8{'CLM>[2XlF{U"hoF!ے2[h?/\[RuRmڦHzԈ\~+^kEf4_',H9 whxƞ9%cDc䀍0Wg|f]]dY̯-5bmSaA f"hԥ. X# NVnVX;<\)veʀDPŠӾf2!ˤ.itXh0,P_(rl(قJ#֢& o]9/ QD!.N#,Vtin+(RRd6ڈUY>щ,,Y3H]d2tfpEFhC{W5RB6z\OCʾb-Woidf( 'DyT&,noIoSҘoPJ< XY0Fs$I#,$߁iʾ}Q b6X%zǕ5_Y ,H9gv m2ryGh`DXTIpTm0r;"H>zBnoZ? [l/eaDx(@ESf#, VdbYoPU(qs8&?^Unݚ+{oٰ1[} +ݻⷕKQ}SG8)~&M65"Y,b1dOVQadYA|1 0pR8Yf#R~zGA$FLFLda$wS4Qf;) `֫4'l7C%Z9FҬ H Mqe : 1E51B>IwX: :4_lSx>6Ki;X]X<2TI %B~}Uh^52_"^hT#">qO\_%EcO DfHMyp!FEY8!c7oRFD;]^/g5ˀٷFLb@M`\:zK_O_^7\WƩ/Q5B.VG`s(^R[ug ﷤ʓA,H~N.i[a B3LDG?Q¡)&ucjoviQ][>F׿7Ma"X?!lP4_xrYbNXn}[47m\Xg[)Ь*-\9eH#,_KZ22 $vW!|!GAhQ4O5w*;ƵO(y'i/ Iwi\n?95Q;rxX%gg}<FO4^'dlƈXB>dy=3ˆVf{qՆD.=$v{7< Uo XdXxpAzwSMQ"ZQ6/AYeFĪ]LZ/>a%݉Btj(I㡍s!'p]$p=@cU>ke3C-.~r^e'_Iyȡ!;ndz [`%( # D;\`pH VgKbS~|`,& n3ϼUS+!0l8ƭ+к>yke, |njqA$SLlj(3*a|6%gk}l {ms0IƃpqE܏I y An<#W̃+M!d1wʥt[PT_$2U@,g. UɁ&Vu4y͟xsd̮ɛ\h'Cj:k*$ E;E(F~%R<ȍɠلWLT+׉T%`VA*N /TB^JÓqzvS`^ uqd$a 34ԅdlI]R 4d {[GXK#(L4-:o4hml{enz nrxLd1{e[h"i:)$;m $%R<[ ٷ̆UWEpAR8"tIr{ε =!&DY@=ny1 h=vhƌΚJPv$ °AN 3u=&7$zf5VttqG)o{ LӃS411; ɚM6 *N촮,qgR@ WEZ٩ȘIY7èwd8?I'9'׽Ir8LĎkվ ~6In/iéQ2p4X Qm9s[<p$1|ѭfBlbrKiùH|6Ӫ$bvNgX=+uA[swΌI^(a/HiG_Aoi8O}JMOdvvx96QmϋI’1#Ub #-(5.# *A%dă$םN԰QP Fn١JȴY屪?cזX1'7EHR#}`#X'gE b:)? $-?A?90E!%;K-A:'挣"1U[IxN%uQ}:d:S%p0WGkBvB5}X%[l {@Z N|V'Zk_[b! c~U92fJ*1q=oh gF^j1I'r[nx_l[`6I{SO@fZQȤpVEhcZ,dy RSNm(1q:{h Fы5$si8O'pӪ$^[bC)0S0xi7N 'j爫6d;XI9*!o) u"* Vⶠ4.Z|Z|Z#旎,I4}@ZgD\!yaab܋}^ jছ(1+b^i>b%7~)QJAn;oI>Il5'y/uSH924M^`fҟ[C`pj\e( ljlZl/:nk$(O Fi^D~nyQp^lfX_Bda/n.JÃi1 jщI1]upŤ(0$r*'Y0R7k ]'  .~c%A6s@;8 Bg#C| i0MrO% ^IRqX;ocҲ*p|h $撓֤g&$^JÓm̋WKqrܗ5v@έ#uO!0l87JWj#Gl/Ƀܪ/$7J'ap};7HaRC`pnh2CB6: y2&L< XTd:&K$Lbb s{ Vd54>vu'9O U SIfzpkո5LQW ŕprgMu@>|' 2urH*\vDŽxP4MDΓ-?AH.{O;e C7σ 2B7$y]՗-TVfV%8AW Ș0pEfC|_[~xL$n$Z-0G $ a\bg"~lw?q7M(}D'ZٵNʜ W9 D(Ik6%ws1B`T?d¡Ӣ\d7 o_IRmt|.}K]`vGb%CC`pb0[Nn1vܘP y|דc(G冤ۉ>W[ՉCswn"i ΍DuCk03x7a&NvНML^IW(Xx8P.NO3N*AAȩ,)t=Gg4(2g<1K@I ajH”\h8'9e!'ж IZ:1'WM8a\bH{GP>+ifv(I XMoJҚ`;2 *ֆPC`pbvk׳%$KjxAn'rUz5 latf.d׀lWE: ~ҊtWE]"' n$mbPWyp•Q'Af.)cac)5[Asyp[h7JffML3Xg%bMuAOASO$vqpHҹ͒|7'SvK 0L85Jl 8 U# 3/`}mAgNW)H+;1fUbM C'/-:9>$u7Vo槶~/++cg)N(RÆ3;#)2=RQ3Y76 cW \ mZ)>v=D&$q[$u#"zzI oՇIr7n3϶ZҊv,Z( äA(AOf<{%5 ӯ$}YcO]2f䝧J؄sOdV?:>d^Y5t660408{N+T^ <6$XGҠykوBSbN%6̓t-Q_;[,wxڄCs%LnRgY"7 qm$#>Th+F9U I0l85JJz*@@+!@ݐ-kBUJcX_?-s:I$|A*ҐXS\[cvm41JT*U!Yb6L)RsJ᪂ e=^3U'~rBde*O=cθ+R`@R u\0Id|dkʩ3Mbpf N1S5ܽoĜ#An~w78%IUf8b=oW@LﴏP`y> bR-TdAfx?%vc\v)1_|E =>1-XI9?Z!L?9/d0:C0+N4-u4@Z+os[ ~L' 1ְ%nONVQsbK,qgRH dMHUuks &rZ$H5#n*9+ׁJ9dlhCj v#h0}S#N`NL%[<ܬYs$[.^]ZOX"Q W8Dpa"n> 5*%ᚮL*g8jcF-D p% Gp)q\㍘wi^D 8 $#bO8nƺ 35Q  Kԝ +ۺ bgveIx< G[߃,iH΁qi-c3}g  Nh t5+GD e*akf &L-J?zs#IG)xp žu1kdбi{͒%u, °a5(Nj0 bff[M%ehx7h z%u1r"*\xҜ;w^=S'QY;VGԺ%4  }!*'_mV݄IcE%5;|˻@>&T>)qH|(!-~y)L10Z>%:-§ 4`_a9 ƟqwXp^Xc*  ~>в`% R0gdDiVJZ埪?WZ0%ɥDBQR61 HA4ÆĎᷫ ÀD);*-sOGC O$vFJuk v&QS;B0l[cݜ @2ۂ?I1_^[BbۅGM;f$L a7N%chT@ZXľ$E||a꘨P3[U] I. }SŧAA!Q#آmd;vJ#KaI! Rl#"Rz*!/W l IY1L׈rF͒fI0a5$~l >8x\j?)-3XCROL=ن/{ *pYO-!Mhk&S 9' OIsAɉ!rJܟѯTbV ȤA6%'XX-$KixnM:V6Ķ\%=ݸCcskYr{ ΍U֒ ΓAfة TdAf3cs6"JiL;%LK0L8/J.\0?J,@5$%b.Q3RNqlf=IBI.pJiƂ^JÓGpCʼTl&;zXV*a ϤA6ȭ2xiL6-IAn~,W1OI%GS1ykB0l\m4\'$Kixnxt@HZ㰶&7m񻍒48^@r"a, o$R y) OSէ^Ip u:#c܌4hlkpsf!IX]Zلsj*‚q'WZ"$Eix /h$#:WwIbvIr7M WCO,vߓ `01e y) Oєdo7:c"vd+wn~qH:J]+-8rZsS'ỦuQ+fbUv!!0l8-Jz(ih +dYjB%4e@f1_BȒ :[^D M o< )$IlShǝe6i%P&%֘YNA( ֠6RƂ0c-Ғ.@XzKq( aéAbmY;?B5 cly*%b*xMF1CA^8 LVI>_%wd[&ֹK;qɲ;ܯhyHrXTmwHmvJ+Kn aÉArg4@ۇ,!꾨m+I.r~r2;)@R&%z)`mX!R̖>i ^|o%aTDrT8IKUw7+_6}'d'4dIG?Io2amK730)͕Ja\r?)Omd; o,n;$Z,۰@hBp,lsm;Kƃp`_>FA.qS[&*30٩lQzm n\pضŨo_ ^SJP@Z "^+1ؽI QwT[qIN}dag9VώBmZ QbHNkpNӼDA6%g$ Y7 ]̰$e1kDW%,n+Rek rs15>s$Kjxlw-G4+BlwGs l8504s3%Id#(-x87kGH*f,ƶTfm8t{"&) ,!AD#~br89\P ( O$ַئB ;x }N#kGEOZ{Bw͏,3N4Jf7(ͼc]I 6aˆM?պnka .7IJo A6$[;3zR<"^I `?v[́J4, » 4ҀhP y) O˂v!ijJa1%{Hi rsm+[C9EvNbZ IkGS%WJᒪ;v'SuĴ* ӹR $CAɳM-CbYSWd[AF\>P`^`NPӥ[0lX Iw i:ކ#Kܼsmd( @w9;#Agv!K 6p!Q, 5Dj:a?9ݏ쭴w ɼпs}F2vfz%l9PR@8t 73E@JEix 1C^I2q||UY` a'6v\apjt\eNMM*!/Ƀ*҄~+ ނsd+! AܫJt,A7(PЬ4pNC\Mtk0QM81 J]q,;%G*xp HZWㆡ58*#M_9K ?q*‚sc@u`9K4 xY[ar / {%<0iE?_-%eX}:0<1:>t14s\NCG,Z5~~i50#Yr{ƗÆsUm mm /TB^RVn#Iem"l)YVYr{`\H7Sw*!/5‰$_=dgkቝʒo,G'Xx~V,)#o.axYB.RÓh#ړ:NI嶌7?C9v .pa*_ ÄUڛPSۄ,JJ94y2gc5iBC`pj\~pb;l3H%5 Sv(VWi/GHi9 Ί^l E3}=bS,I٣۾wf>bOC6$꼥n %KO|i"N4tk=Q\G?l1ߪ  0()7iKwͅwх{8oH KP͊WP^9>1o7aҲi(asI!,D7ytah]"5 1m7[DIl^1'fD-[p%!9o&ӰQtix%5 TOrd`G3>gjrz ~a T;D5쑁 :E@^sh% z5݂;/\%aÉQpHKhH `I7M;z){`ζٞۮ#cvWR۾- °(۳5nm[l/ፇs{xƞFl+!aLD ΍CCS `1,^JÓ];l[+IlO=2˧ n`ֳ=_5i rsIoӣ-JI*x 3_^[p>s6cUOِ@vBt?14X+pnI 8ȊS |%Lxzj;TC!,8gU}ǝ0#Ӛ%bhx 1\gkqRIHתp"/I-VIRF/~~Vh A J xx6u;7~D X=[) vnn7C'S3,6a#])r O$GV){-\oB״a{G) Cbz BU`[<  u;s,4©`VxCR*klJ~,)c`0ajHb <$l\g*!/Ƀp7ΓhaذWsӕ #/7ߗr4ZEmHfŋp!)4`?jt\?9Wì-d\%I{-tQ m$vb#KnǮngMcWVifhYJ*!פ<uiln3fndN.cUy!0L5BR`\f$qrv=$"y6$%3c6ļ!0lX IG Ϊgxg#Wyoxյ98O6 s B_(# mL%5[$cm[JuQpdF ajHb k>B=6A}eϒ$ :~MW-vfvJ0m83J=`wmA0 I?VSIt&I3랠bpfLD}!a oT$A^~PrW8|]F*lp/Yr+BpV;*ss'vNp@% < S6Hg])hϗI, A6$}a4Xwm >rQH{wBtyc) yE8$7 ÀUjdy,.R '6ߍl Cr+ƾQ\aVwapn~|hu}do_$Ab&ÿ y"- `Uɚ[%*6apb~pxmL42,ز(awA6m`f.IAn|dd_]Ή'Rt-'InmV@X4V1aR8\P ( O$bʒN([MmJ+IFa}`>fA^f#M׬M$vdVP Hd;IO`vaF={է=b~3YrA"`J6*!/#YJrc71=F5xDFH0lK:)Cmn0C8B%4GeEl a8S 9- OA;MFh| vY *ZB]9p_€xQOG#@Z.V Dܚa7ٶX3MFQb*A6$[db=r"JI)x3 !]3|1!p‡IbB|, G;=OQq|-浡Ș찬(1qafhv d{q~D}{o d$"gdG8™ZֹisX'C쬰m#JL^5_:?$'6DbG6*!/Ƀp-3q`wHls-UmXع]bbMh.IWUl}K6[͒e|,䆻}؞Gv ÉsbQ`.?,h$*9*8~m!.UIVpJ\ȍzͅ T`Xx )M7# dVO޴w7Jб|HiL&Xx0()4Ù%\IW}8z.ʧߦHH^[p;(ÂӢ_HR-{$RO۴V [hߺ=,ޱĺ{ȾBA@ t\,MMp  i3 d .iq;ydIY6$K֎&B+OJؘՒX{ubW\X%N,>}u4ӆSdb_4Lo|i`2Ke7Aiv~.' Hl=^'p|Irc?Q aS0WhG 琜fc]>CXHvBR@xhF3dyMUݒs2@%4 ⯥LHrǎk[@foQHmVaQCb`y(!q /C-2hcW0ّ1,`DYAʤ/4؛Tmwl/ፇsy㭼 b_u'm} ŏNJ՗l 0`5$9}"43l;%tQՓ}*} v0W @>è/\BYh8= gDtA@^~x?'*Jl`yeg_x_,@~YR.ϤAj9iH(.{pbh84P y) Ovbh!i8X?[7W0߫ 4 a©QRPpaeXvf+KRdd֚>0IDl t CR %>A" J*xr^ߵ9 LcֲO۫lA -(Y) Àc+~aYf.\' KkfzC)Ӆltf- =6°(gIxK#F\n{$@RqWpߜ6-FY,vÆӢdlG<6!R&'Q,s;IJjwhops&$q'' i\2pp4S &S - O~\[o\_dϋ93vOmwB0Aj_~.)8{[3Y>R; 0[m!.dljtaߵ$Fh6%Be E΃|x%Iy~Jn+cO1vTA(x]bFy'q%œmO f xPIbMv"W?Wǧ $g`cpf\[NZgN@}w:{l%iثgJQ>ߚfG LjIЍ6 Rs=J>H5\P˘ H΃:ۏ$7>~_aK_QL‚UzӰ?}(:>d ,ݯ|% 6Pu;; X390T[qIHU~^y6rNnW)Q2[0|y Į,=l ΍<6P y) OvGUO[ZXz|m ZWbֲ4Æsd8pvO bEAnj ̏_'_- 4?$/ ~i=?eY(@CI C^Ip <ˏWde :>+ M(p'T\F cm}{t +I k~8_1s6|AX e+8} `ճd( O`vYF%uP˾x fzbV8F&A6%5y%΍^'rn?|%I3s 5ۮvn=KnϻR@ظB"U&c6}]P ( O$W^:-jp3cf?) 켬9#zm[d66rA%4r{~gc/8Z2vf~Je8?G EкFN+>d( D9k,hm 76G8#Pd5mI%4HtW 9' OA`*.7&b##[OY>۱KL?;+/A=.{\`~I]BnR-3l>G (0$ w8(ج_P݊:7%mv޹%OP/ݶ8=?Cٔ,[--{q.c P vN?:KI*x 3w;q|Hw/ے~k QQ LA6$v `xxL^Y^'pk~UcuH ImVX&δ45 2/Qm0a$ơ`o^,>J ߂Qۄo[^嗓 f̒z].& !_ʷX w& EWl˷mmptZ/;F;2&/U®% I;Owmifv %n?$:HY^̎lYMIB]@&%wrvPp@L^I7`61}k璤\v=#0%.LrIC`pjmQ6$|EV#b˷Lw;1IBn+ۑ9ONnA?]]$ŏQ l,[ "5 1\c(7ԦMGH{,_[PmƖG# ӷ:2tv%EYY#.\h*m ?۩??@L9%Vbwzmtx%5}D j%A)xR0Z77wiެ1.!/|_w9>ߜ,fb]ϐ|[Dž.K0Y/$3mP0 .U͵;JmI*edB˼Iv_7uBv:lYp?7/qګemjՔ_O7otvW ve|Ͽ6o_=v8hi~+$oKqve%TX_R1{ZvY5=1P)a@ztG_|e^ʯ{c+96<%5nJvX_9m]y~O}?/?hy|M??KOJ"G6gIu]0YIɽX.n4XW_OBU>fs4Q>}OY4>9yjǟ\ld?'Slտ}/*?_%y~c9=/C{#x7wORhtɁ1>ǿ;E_7~?}^,֧~OԦ>}O3~]e9{X7ͮ3:˧oֶu~˟/??X8_FRu^fݍw cG_~nn8[w?}3b7R_ٳmouDdܵo~;oӗwߍY䬷aw^98noT r[_v/̨ŏ?{6~v#k~Kr6>}N?Z?o~~f{y?_?f,^mm^<}>TNiuZ*,ְO/l g)q|N<p_Z jětwoߥ?|~7Cz-z};\[k-k~{C~_|x}DoY_m7~:[i!ۼ[/xl?/!%g_F/ڟ$.ϖv֥P(ly=x !42=iu~uF6pGQ*W|:{IBv6?Q|xXMq븤~#˾vy|vSyG/x/}h4̯J]$ʬ>(Q|}w`X,Xi _ΙA!?03;YZ˯xao/¼{_n- ;m6lec>Xi`;H9إ [Oǩ ߣu!, Z ߯h}+=0Yf_)?}[,utKjmS ~}gj`_L_YyEn+b!|Q᫅<>?wYW>j14+n,LEU}GU 񵸮ofO$gFbc;OIj8t6 ,wHlJR>9&њwW ZPOVnlv K~K%lgj3VC"7mc Dq<>'xb5"y#9ƔfSkќ $ {By7Hb|@{LJ*}\ߍHg%T; qRfU&~Z9s{!%fI IS)d;Lvɓ;REg76!aY6%50.[K,meL6erYl/RloblOԀ"{͜a7Fќބ+@ƒæD\$x+=5J%hXzurMaYj(7"~TjK8h}O<jJ? 4\X 4*`Ǭ6KmHa/*IIe4$K ,ݪ_V<Z!D[q2чqH5#{ޓP Hq7O$w}Yg18 ߋ/Hz ^f187=:|寘y. x#N*xɐ{i 9X`Td`U\i{rwBfJ/AY-:,!JUI G|O|#_TO,6oCL:4{TtEK9 W| rwPAMm/In&-רhXM'Oz!`(f@ɭƏ`yEHq%Q|Ntr%͉|O$_k<&|v%|vl8SjG6o>t=J h/Y'Jm{ц2>Sؓ۽^jk_)tuk;IbD4*B%6;xwnMN9 RNܡXiW#lZendstream endobj 292 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 368 >> stream xcd`ab`dddsu0H3a!׷nnny }=U19(3=DA#YS\GR17(391O7$#57QOL-Tа())///K-/JQ(,PJ-N-*KMQp+QKMU;OL:)槤 L(a``` ``b`bdd'ò_ͩ_<{oZcߟYӧwvwu6M77?.~քc-vl]]mmݝ?T4HY_K+Kla.e%9$-Rùgi< 8endstream endobj 293 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 274 >> stream xcd`ab`dd v 4400qT~H3aӛe6<9 0012*9)槤)'+e)$敤```` b`0ig/u ²O|q;zVzmrY{ɝ~~nw[$?fܧI /qtGzuM]ă;߬A|e 3cnߡrq1$p20_mendstream endobj 294 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 3112 >> stream x]V pS畾Bck@ ^Bڦlچ4I041~~ Yz:ޖe=l˖6oc0)(%-Nl f;mN;;;|wI @(}kz3ׯ_HH$V sΌϘR!,M^O+Оh2b@-jE|"yŚ5ECk^,+\FrsEJQ/UT|C_:XKM>N&DIFl!^'&oۉg49b'*A=e ZU #RueV- -&g-,/o>{,$ѡ)SӉ }0&kn\[[íku6Ez6b 3#0:z>pp4Xtz}v&IufKy2 @?G;>1JBQw!o S&VVWл`}) +2vv Ŝ"O8t=z779A Sr9O, S0 uh<#WdfeBIR `W0TxmM5;2nng/\u"ehfO/+m0=Q v>L(J % ߟhܠ.} GG[[&}JQ;[zEZyކ1%4|D 0n:z疄NVPJsh;8]>&I tP TO9œ$qIF VO%g7H=A9Vd?\^S]";:"K7'0nb@8OK*Z"t]7F )eW Jo L}<b+hkh4dvwo9`0@tӋU-MdN֝ux3h+k.ٕ5lMk kkԝFwԉDKky׼1v؅?th[/籧PJAbByej釗χrk۽FՏʈ9`mqEH :burǟ]hsy>LX%xd'aB8&.2w12:&h]L,'@Ђ~lLYeS fYLp};[eݙp ?%}\%6tcXà~aϩڣw-#kkmE _zWU1yص B W: HjbƬ2R^{B?6^F-l˼?Ecb.۩R_u)`;;,:NQ2'WH CfU j)3cg灾Ԛ;W(ͫ8z..cϧGIy#úq3=@='G-cҷfV%L_8Y;}6BmPtyfhE+v!:t릟 ;/Oн;o؛ܴ\nȀc{ni~ ^fz667ÚrcE#!?tNg׌bm7 j5yۡ B}joA4߻o(U03iՊ(9!@|.I|$vepoupkA寀Cvw8OjuUU[ Wf mkh+% PuG:Cu7rNҠC.+;{n}ujyo5 n z]>7u" =?lV,p6Wg8tMt}m?n{Ǧ)4Z)=@Kk eXg &;68]m3Q_E~ꊄ5aJ&cׇ89q{[ eG),cTv W5 9q^KCNʚk\l[ H_73\/%dK{a'쭗y4qm UO;xEJ}up꼺O<7|e2D&x7 o[ AS9塞ӑ#Aڋ>yͤSr#3}LUyyqELh5ysq-)K|[w 4 +V*Pa}IGH9|V+Ω = F~DI i km:5л¸5Μ%m*uL3h~%/\&t'}\ :{blbIaWOsړψ&1Q2k+XCAc8rc}hrr9)[3żA >)۴Z{)TQe} qzf!ΓQK>_1m>mRD7vjH\zMw{IDSOAuDN8 EWQ1 R=N;΢"GB> [ )rbOȥlI+3h͖PdHrrL=@)PGC g(%E'Lf=H^J-$^x{8-J Y<\n"EY,bmvmn.Krtk$-`Űs \-&jiAti Xjkt:.[{{eۊqKzRK+Т,ᑈ.-\>>Y@mw{|MT@ۤvDOZy076b* ne"pj16F7R`v[ݍrE[ZrU@ \2JֶW'> stream xcd`ab`dd v 6400qH3a7kc7s7UBߙ3``bdr-(-I-ROI-SN+VN-LCa``` b`0ic/u ²O|q0-Ugt~w}v)co>bs-~WRS][3_~ݾ;(!1".;lᏀ9߳{g,;a{r\y8iendstream endobj 296 0 obj << /Filter /FlateDecode /Length 389 >> stream x]n@D{w kHC(J|\`,E>3H1'=㝛1^p9kc76R0VU NbN_?SB֞cq=Zއ+enR&>Ueı^&ipWI$Đ$` $#ђ4' K. (599&**&**l#QMQ#3GF9G:G0g5LYÜi4ƐƐƾIpCD|Sc;& x$$3K#$ O%\_5m\m\m\m\]]pr[ý>ηy.Uk5vc> stream x]W tU&PU쐶%8U<.#= $BtξB`jmF1(ALcIӝ ;xӗoyWpg"uL$=p80) LH2O/Macx?jª;ʪgV5sQyI4qMaYAa/ao/HZZ]SBCpEg-)}W^}17:l= c2MfYl ۊ-Ɩ`iRl"[^^Vck{`Ob3,X#o/:1I'EN8'Ȗǟ0wታ'-tfrLN}S=mKx /)?wX\]K͇  yܕ[طo4HOOC ir h}5tyz>BWY箆sWvE]٢mkD.]%5[=-mW[5]sK]69St*mMTZbY(C8nSgo͉2t!\M%ʢ0u D4!g N3u#o; 5iq ;[iH>N?O-'O-"Q5oWa^%&pb`-^5[ ٱI0 NT/82Ͻ[Hv* 8D\u >"&E2"lBw[5UnWBz6 ז}@2y4f҄3sWHm;op7z}ݧpB^(Q|1 [b(hc"O] k˼u\/$xNYBeRHLCx(jAAt FL8I>(Ooo+ʥ.`dѺ^ Z/*Ҩ?f|^ o%G *R  ;bh06e4&PYXNԡw q4݁K$ƽCBbwRHMdPn"Ė:v:;]ԔxY(A'M L`r" :>UjPT֚q"jpB GO I'Y9+VMc Xy.|YdGiRD{Vסw1YjF7^$B0dy!ćCΦG[_D p7 nCNc^o_ʹ";6uk6eQ֮ `UFF$@2tg*ߗȑ4i6[K\{m% &{థe،6yQg a3 ?=(8-?[[qqB,)#Q6 :m9B9.+꿕{jR*́4$"4=4;ޤS/BTM13b~ pP"ޏOCVq$[SAU\B{ 0+\5{~~)1RJmījtl%`y{UpC~ ?\] %=z'Q:w;HSG4#4pʬ:JQi댠2o mV;ȳ{7ƾIP{Smm-T{H4~ |_yegĪ<]'pqr2 md';V[WOJm)vp.Cc!@U+dNQ)JMҭ8&1ET A5&-4UuӵgީCDet}񮔢=E):21eBv_G8mD_Q> "D퓡 NCt`#޾ G==y0DB^>Ⱦnv ~b+D'8YC5y 4\np);*|-'_@~b%HPh)mCDxVIpeFIflɖ`wuM7W`?ZlH JNV(橶#!WwǾ/S£]` @p;ej{/(TeAQp֪wmʖ-Kϊ}YםC  4@" b+dtN|9X2o?&8 7laYJq5P%M\6hwycm"kԈ1BVS587>!%I3vG0No'H7x+߄S;W:Z8e3 S J }ttAsgEr'N/k݇/p Wv*Mp PA 42?X^UC~OHv, h#o7 es9;邚lSyg`g`ޙ{ x0{Ynd\=pŽifgQ3 Kmx,.W Ag_; GwKZ> HlӶIrs7i5fCc-!u2 RN"wqܪw L3(H@,RMvV`=M9H~|jtn!uؽKT*9"9WF Z9PecM-$d!C1FA"ypG`f J[휶 -2pcA7@ΨCʵ h<t4uV1/cһ; bC(9Vel@ew*?3mߠ[+8ZJgc< rΠAZRx}K4gu48&zDpJr| ;f%͑\N _B#=:%~@tNK8L'.([!*?Ĥ*BZDlnlvS1LGNܽܝ7\Qog+4tw[RƑE:0Rm?j"xUMCMé#EY-)z6D*,*m(uʔ;+ qTLք)~Ɏ&5u ͑ mw( ?aeCǗs[r%d!#yC ;7a->r7埿֏|7QVRNŇTIn~%gn>v=n ʈKܼ'WAVW"9폹L.nhMEHCԍ qU3`-WU#?KtOsfd_O|ɏ/Y$]|OVP(B w+-F28Iq[]=Pl9@~8+KW[n^d@gF ֡ڧQ ( JJ ЄVʹ'UL\srfs@/in 4khnF1<&{n_E;t._} 6%d!p}  %ey%-,ء؁Lƪ!1)׮6)jJ讳 ҏq0L\qvq7-sJR"|Fb?6 ; J"' o# Nx(eAe@S5zfoJa P9?~M#u 43ZQ,V?!>»I? jh$- !j?JwpJ]NP vRMx30c.uV*P JMŊrQntkۊւ\|:m"xAtr ]_|({7b_> Pma"E%w@>}kNLٍ^-JMiBgyyTR$N,gÕ{F)w;CՌS{sYgj7#lՖoKoxMڲ縜bڍ톎 LĬ}ko˅l:RFpٮ**4eFaX)\Ov& =<;u.iD''<.#0pJdwmV|xVk hyTVY_Ms<)KE~U>h)H"3Kc^3溉o&HMHΟ4Y7endstream endobj 298 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 645 >> stream x=oHqYB.0:{#J9Ȃ6|!ynn7ss~6]o,]fFBKzM"#<>S0 xDwKp)W&!p"@)bIAӨAOarw A9fk!URVV.e5'1V2Zx;AհVEł YE,gZSt;uMuS&:(#Ds. dB'̘S`PuHIgR8R# B:/"C0Hxg@%Vx+vhAvoV#9">T-՞7gra"D&$Cr=m%_=XG:lOמ/ սEw i /q{ JTliLds2p6<X93]s-fW}]ھ*:A[6;@OHx샾{u λ@btiz"=^>8N.&af!#T]S4_FY'l*OBJRa rAendstream endobj 299 0 obj << /Filter /FlateDecode /Length 192 >> stream x]PA  ~ z0\ڋ6M .@P}k0 CqΝ5 -n.T;Gc :|XjϗGPo*',%oL 8{0H;"iւfOgAZ^ J2d&Z Ǝ*ڧ)~/Ukh2Hߏ' o5_endstream endobj 300 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 571 >> stream xUKSaǟu\ j{ & c.ߘE/@!(-ݝ>nf.-m 3uҍ.:hJD9s~|56 ~{Kغ`]qplW&rpW[ȞvV$ag55%Ftƺȵ mjX4I,N(2Vc &H8cݙL&U Lթ#䮚dd0Pr<UI3ujI*S&LuG唖P(B)B1zE$ՓF@Cw'k7|;G ~G-ngSiU[Z!mb@u= iOFI_4s]>&lBOrƤ-C q'HbPD'!(B"aINYgMXPKl=_wnά=󹬷KNr|r98h|—VfW|/\?iqM7x熯v +طdOi{ċ=ՐiVڝ«<ߞ{Q*..mnݰUI֛3Yrջ?wendstream endobj 301 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 2284 >> stream xmU{Tg!l}jwHRZe}U-n)mEj!S`&AIyvm}T{Uֶ]-zjzZpC~Vgs85X?o{^p?m^>!* |U >1YN9v7r|ss-=|2o^w9 sia^L(sc g,نD5ݔe2#Ӱ&gSZh\nΙSPP0ۘ7;b~lV ÚnXm3Y 9VJcK9[o5Y 9i&KvŸeuEjMͣF^~?wNvZF^n0#j2[\Ŕ=z2mi5mzQcnD;n'f@Gr'3B|Sjyqqc kݫoǐ1{`2?iʂяpow;ŻF&~7̷|οwpt "O`@~*K Zt,h@ÚN{N0(uaV_(ˣW9-%c8oԚi0o%)Nx+Uqx+N~7~M|48zUh:_*A]lLX'WFKŕ Pdo&[ArwM4s( I򔳐 t*۫vS;H{n+>(5.PắNblP,ȢN{'IfJ7Vv*5N1!uV76{'MW>VT}]tDJU[Au ʕ#}-ePr7”"5;z>uCuS26t oZZy'ahw>gCq_܏ڦ8 {[}KRQ>Xt8p5d]]9>F"ПiK/@I`.0Lh:ʼn^IbWhA ~QL p/7+]*q鯓%M8>8Mc))(x>qTW uB [p/`ơ|S{0څ aJ=]ޡ.v5iUsF)Yέ׻Yx=|[ '?<7 Ucz3} aٖ][eR!c{ó';**ˊtef:PI,wNQ}8 $z]avz!9k{18LބX JNf\O8X e6 *uQ1Ǔy#MR4P,P;ԉմC 75ǵoSl{(,ƩIi:%z`ā8 /r%%HNW-#:B(-_qd\@P .#?>- Y_X}ld,NXhvqM|=&flbg@l Ajih|ΕL}ݻEb['*p)]E,jqB}JV')vۡ]B sud)6Z XlY1/EPh]5_6C L:ʄbO\;Vg.kҴWMnƎ/>q>_SkbO;QzX:X:^Jc0Zٞ ;VrTJ'RF#.^l'fdn&>M @y@ݴƲsAw7Ġ2*Ԓ-{ĉG'mLw5;ʛ$6͇' GѸ+/9C.bĥKG23ESiwI_ bπ tV24 y4D1tj E,Zd4Junjf߶^ų?))İY"΋~jսQ;~Ŷ~w~WD7o5m갂5gxœ GBB/;endstream endobj 302 0 obj << /Filter /FlateDecode /Length 201 >> stream x] w7(Ũ5iXAcp4 oqmK>W4 ~#3w>Ӹ$VJn7jYt|"p|nxKEGdF S=ZU;wu^:"6fZ***V@ZEZ#(BHsI?P9ޞ%%32h>oMq# qg,endstream endobj 303 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 861 >> stream xRlu^f7bzsuh(ah"vIK^w]X%gJe6!*2͢l!L a]u7{0 Sli}n,Ӗ0Ih{Y0O&*pb|}a|]J` JnޱBdvW#\A=蔶)n/U7y@k\5{m=RWVߖ;Pz哥i5 ΩJ-J !oyv%! &"1ŤQHB 1vhB7d2bg.qV[3"5}MZl[fl tK:qDm›A8tcxjjUkO$aL\N@{ө}ҰSW|u") c.1oGYM^\zl'asS`BrGe GuFuUufZfiE)F;c/P0et[i^QDEޝ,sQ Aтa~']* Iq4ILzr\x }j>} ܀ Łkgtx^NmHj@Cds37 Oz?jOʅ8_DY`W?)|xl7nꄃ]܅f`Lp[sUvz?Қ9~Ĕ-yD,1:R^y\Jendstream endobj 304 0 obj << /Filter /FlateDecode /Length 196 >> stream x]1 EwN $RJKthU1I޾`gez:~ʍucoQ#W8YꆏV;Qճ n2?y2)|3V϶. i?(݄12l 4(  P RB1;2w| ռXybDRh X >)ľvdendstream endobj 305 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1070 >> stream xE}Luhe$3V!w lnql:h;r (m]_KJ@26n1K4ƿƒ%wFbG'ϓI'~?IS0SK+*{C8 S$ l'N<iHNoGuPǵJ]^ݢbsw V^ݤ VlUKӤVt;;;y8'T*JٮԟW6G-KhUһvk)Ӫ`ziVj犋0N`$MaRkIy )mi_\x5- }$} p 4F:㫞s8.W?!ɀXYlf07Z{^7`tqdWe] `,QoP*?׬nPBgxS+e3rz|.*9~%F B8,\CԮJ?lNp~BC!RA13뗲Gwn^ %v cDː? *aGaÍ0Ĭa |ѐLw:\A 9IwvCW5lKWo-mBɄ]H7JMnI:!_1r +t}gϠǼaF~oyoqn)e.2;&c?^ DxOg3E v&lF5oLO_r[/gOoBރۏ%4 'c]H7mvb᭽ ` a `-O-F%7 sdaEv2`,^ F--]sWi8_9 Qc8 .+0 فڠJ㑥ṟu|Hm=MDpn%NGmrg {͞nqؒ@fqtQ qu'fF9q9]#L$$;830F3SSqRJK={@V=?MKðJK4endstream endobj 306 0 obj << /Filter /FlateDecode /Length 162 >> stream x]O0 >ЅU 8QC$@w}wYݵc@>%M zaڦ8 d{ :HyTzCSHQ@Vm@o7(pJM9FT&c=|)X /S3endstream endobj 307 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 583 >> stream x%Kqܼ7[.z`(D@CكǶ9n;wMmDLnbpO|R g?߳4 7M9+(QwOGwsIkh]a_ùI?+Hϓ CQ5y74|~[[[MM|{P Fq[bPE{BQu<ب(WFN}d?_8weS:uF%1d%0&RU9DQirtP}|ȮE~Xr nCXQJ199X{2TU=qs%65cC W]f$̓ ;zğA\-ʷ69ZD Ը ya / K65?ssOBȀ`p/}bdZ4cY\JXsym~ȎbDc!ZefQoYIkJ!mhXa]n4blM:}f2iq+fZY?l/0WwrXK.WY(?o#endstream endobj 308 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 381 >> stream x5[KAgt(Ttq ъ"(B|z)mhv$ڢ,2PDPoy@ ΁߁?^N=r3>W8` }N? ̫E") 4L.LIX |ex*bC[Dbz"R"Q(⼤ƉBhX9Ļh)%~> stream x]1n@E{N l0cK6N"QxY" vo;E08rL3_~%_ےryXTAZӹᵝ~\ w~ky*ӫ)M]mK;~b^}"ݿO!wGz pKE#<sTpLQG** pC Qb`Mll=*@'799tQv&6E /2$#Ph*6de2VQ6S댭`"m[g}Tm{ihu9]NIK)tI:%F.+lpʞCU۲QԨq†1M> stream xUkXW1ET1Zl&"b"TF0*PuUYĺj/(+RoPXl]Y) HEVmsv33~{CSqMr銲3FV3-N'N g:PA_ܘ [&B$JB![ _]RUQKTQ 3T3:]nj.hI>}mjiZ^ VEhmZqFJݪ\_?TAn3=f{PT4CQKx*ZFPT5PTRs(JNLJATj^SDj2DqQRR2S2*ǵJ&J$5HHIKofNȾa|Z8cd5p8d㺲 Nƞ~mV^X[2"b-JwJԧpV=Y X$pLp/ 0@: 3_ic+Z+;ܻrcY"<&vqbg_ Î"^X ЪiIYt`ہ O舅WSo?5wx8OyGPô:~6/RE]{},x=I8wȡ?)wn./E\斪ܻG96nX\7E ͬjF([J KPzPӉN.d\/X`Y"nځ#.h|+3w-;w҄o' k̒M[ %;r6-Y"8[j?oS~pst҂շ\?[7_xP}pO~ }T..Qc,;8q2OBqcA (plMzSq ~ťb?H$ og v`z]И=xm&9cx B(<9s!ZR_ZS׸~pۭ~o[4z2iֹ#ScrPݨ-޳-8&hO6?aAF3 |7ɉe ʣ%Uh7o,H-ZS#jG2!p'ǩM/w'G'CC={\3bD~ x_GjZ*V2qs'S,lMkL;B欌*mNE2ꣵzq7cb?H[Gaib.3Q'Q T;a RM?mяitf ?^})A~ęW`gTZK{;b8uę$[T(ܒcI97:tKCUP+xEֲ۾B6kwy\@|=fIBdm}>EǜoV=nӺػʯYi׹B$+Lp4.Ka;FL ѥiSÊV x0s1_Ly5tBD~}.f|do^ܨ·7Xus*GhE9p o1,5dsc@ɩaP;䡐dڳF}dyX^Օ?{;=#&> stream x]VipS}HC)M$6M e ,,klIiקiye˶0qm-'?i2&Wc&}N:_wss}bQ!Hܴak֬I_VVf_oY K3a颁߇W,{ 䡵krŪmerEݪ 5e^(ueU5 {Zx'v@l"'~Ol%ۉe"6BJ/y%c]tsl>rP#?H⻉e?d8$S%;/rMG F1c氁 B!eI+~56- Zfmݺhb"HN͋eݱ/sib908Y6z468S{ ׃FґUxX= ^ gKQb,˚d;Iɷ8TNjNX!</n{Cwv^]aFx#sS TTeV=Y,HTR:xD`40YKb@G6ni|+:֨[e\x2+Ն%97ni@(3yILux/YW^aTӌ51q9<'4;Vk8bI:om+Օrz-ªvWBԵhwE!נkL92lYӲDQ,iϥڲ[k/lTY>{.?=_ɼh4P"@,a߇׊>_uvז>_~28x:˧cAGs%>Z8;?kĩfY]6kz'W\Q"^84T:zB}3݂lO)wUV)DHztPKpIjG:Rkdz󹀣/lܠ/ ZơA`zU*D^~wx]6[+K UU7i`\\O AƁ#%;ux"kv.4jW2K-k+}Ysv c~2 &G֐za:;R}L=7`iCaHY(\i0G"_qOOө8ZUPVUcv}kV] FLC_ 3-k6S;BTTdu2LFnVw?:6=ZI?LT_59y˛~3gqf; -^fC~t_Aaeaw9H3L*7]-<#z~)|/͓sh|z/e;\"EUPWQ%u{,<xD C>it;%jqZW K]ЖLE\LJ .S]tVq7\w3E s m:DKZLBQZ׾6j^%brL\'j=^isZ!cO0gNc]ݽ;=,SV(h66VlA<܇{(ŁWLgq1DZ*% #EF~b_ኡ m6'بa6Z[)MN%lRSwl$N~D.eb(ŢysEgE>]D@"@ ?w|AEѽs )B^01R\Jr|9 -R ?S!u%]HN]_]8v/Sai2joyCܿj@DU<+&8Kc+YEfcT AreEڐRg:GCSkZ¢[6t );„maG؁ ]:,)Ԟ:[}:6OxiR\G>Aұ0wARt3|j"TWz5I}Zjtõ2IWVϾ";rgF8٢4[n kSAq<ޝz=q%@AE͡b> lrv> /W [ 1 3 1 ] /Info 3 0 R /Root 2 0 R /Size 313 /ID [<18839632beb3bd729e2b13df50fc965c>] >> stream xcb&F~0 $8Js?@6^P1×ϠZq=2 _@y\=(EwH&)&"EA@"dHH .T-@$[X D*H!H{V"ewׂ,U k" "9kl R VT8Xd;˷] DكM3 Xm) uH) fǂρ\ fsM v;XD`6/N05ȵL zI8nq25/ endstream endobj startxref 727192 %%EOF laeken/inst/doc/laeken-intro.Rnw0000644000176200001440000016232714127277276016345 0ustar liggesusers\documentclass[article,nojss]{jss} % \documentclass[article,shortnames]{jss} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% declarations for jss.cls %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% almost as usual \author{Andreas Alfons\\ Erasmus University Rotterdam \And Matthias Templ\\Zurich University of Applied Sciences} \title{Estimation of Social Exclusion Indicators from Complex Surveys: The \proglang{R} Package \pkg{laeken}} %% for pretty printing and a nice hypersummary also set: \Plainauthor{Andreas Alfons, Matthias Templ} %% comma-separated \Plaintitle{Estimation of Social Exclusion Indicators from Complex Surveys: The R Package laeken} %% without formatting \Shorttitle{\pkg{laeken}: Estimation of Social Exclusion Indicators} %% a short title (if necessary) %% an abstract and keywords \Abstract{ This package vignette is an up-to-date version of \citet{alfons13b}, published in the \emph{Journal of Statistical Software}. Units sampled from finite populations typically come with different inclusion probabilities. Together with additional preprocessing steps of the raw data, this yields unequal sampling weights of the observations. Whenever indicators are estimated from such complex samples, the corresponding sampling weights have to be taken into account. In addition, many indicators suffer from a strong influence of outliers, which are a common problem in real-world data. The \proglang{R} package \pkg{laeken} is an object-oriented toolkit for the estimation of indicators from complex survey samples via standard or robust methods. In particular the most widely used social exclusion and poverty indicators are implemented in the package. A general calibrated bootstrap method to estimate the variance of indicators for common survey designs is included as well. Furthermore, the package contains synthetically generated close-to-reality data for the European Union Statistics on Income and Living Conditions and the Structure of Earnings Survey, which are used in the code examples throughout the paper. Even though the paper is focused on showing the functionality of package \pkg{laeken}, it also provides a brief mathematical description of the implemented indicator methodology. } \Keywords{indicators, robust estimation, sample weights, survey methodology, \proglang{R}} \Plainkeywords{indicators, robust estimation, sample weights, survey methodology, R} %% without formatting %% at least one keyword must be supplied %% publication information %% NOTE: Typically, this can be left commented and will be filled out by the technical editor %% \Volume{50} %% \Issue{9} %% \Month{June} %% \Year{2012} %% \Submitdate{2012-06-04} %% \Acceptdate{2012-06-04} %% The address of (at least) one author should be given %% in the following format: \Address{ Andreas Alfons \\ Erasmus School of Economics \\ Erasmus University Rotterdam \\ Burgemeester Oudlaan 50 \\ 3062PA Rotterdam, Netherlands \\ E-mail: \email{alfons@ese.eur.nl} \\ URL: \url{https://personal.eur.nl/alfons/} \bigskip Matthias Templ \\ Zurich University of Applied Sciences \\ Rosenstra\ss e 3 \\ 8400 Winterthur, Switzerland \\ E-mail: \email{matthias.templ@zhaw.ch} \\ URL: \url{https://data-analysis.at/} } %% It is also possible to add a telephone and fax number %% before the e-mail in the following format: %% Telephone: +43/512/507-7103 %% Fax: +43/512/507-2851 %% for those who use Sweave please include the following line (with % symbols): %% need no \usepackage{Sweave.sty} %%\VignetteIndexEntry{Estimation of Social Exclusion Indicators From Complex Surveys: The R Package laeken} %%\VignetteDepends{laeken} %%\VignetteKeywords{indicators, robust estimation, sample weights, survey methodology, R} %%\VignettePackage{laeken} %% end of declarations %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% additional packages \usepackage{amsfonts} \usepackage{amsmath} \usepackage{amssymb} \usepackage{engord} \usepackage{enumerate} \usepackage{soul} \begin{document} % \SweaveOpts{concordance=TRUE} %% include your article here, just as usual %% Note that you should use the \pkg{}, \proglang{} and \code{} commands. %% load package "laeken" <>= options(prompt = "R> ", continue = "+ ", width = 72, useFancyQuotes = FALSE) library("laeken") @ %% some references have to many authors to list them in the text \shortcites{AMELI-D7.1} % ------------ % Introduction % ------------ \section{Introduction} Estimation of indicators is one of the main tasks in survey statistics. They are usually estimated from complex surveys with many thousands of observations, conducted in a harmonized manner over many countries. Indicators are designed to reflect major developments in society, for example with respect to poverty, social cohesion or gender inequality, in order to quantify and monitor progress towards policy objectives. Moreover, by implementing a monitoring system across countries via a harmonized set of indicators, different policies can be compared based on quantitative information regarding their impact on society. Thus statistical indicators are an important source of information on which policy makers can base their decisions. Nevertheless, for policy decisions to be effective, the underlying quantitative information from the indicators needs to be reliable. Not only should the variability of the indicators be kept in mind, but also the impact of data collection and preprocessing needs to be considered. Indicators are typically based on complex surveys, in which units are drawn from finite populations, most often with unequal inclusion probabilities. Hence the observations in the sample represent different numbers of units in the population, giving them unequal sample weights. In addition, those initial weights are often modified by preprocessing steps such as calibration for nonresponse. Therefore, sample weights always need to be taken into account in the estimation of indicators from survey samples, otherwise the estimates may be biased. The focus of this paper is on socioeconomic indicators on poverty, social cohesion and gender differences. In economic data, extreme outliers are a common problem. Such outliers can have a disproportionally large influence on the estimates of indicators and may completely distort them. If indicators are corrupted by outliers, wrong conclusions could be drawn by policy makers. Robust estimators that give reliable estimates even in the presence of extreme outliers are therefore necessary. We introduce the add-on package \pkg{laeken} \citep{laeken} for the open source statistical computing environment \proglang{R} \citep{RDev}. It provides functionality for standard and robust estimation of indicators on social exclusion and poverty from complex survey samples. The aim of the paper is to present the most important functionality of the package. A more complete overview of the available functionality is given in additional package vignettes on specialized topics. A list of the available vignettes can be viewed from within \proglang{R} with the following command: <>= vignette(package="laeken") @ Even though official statistical agencies usually rely on commercial software, \proglang{R} has gained some traction in the survey statistics community over the years. Various add-on packages for survey methodology are now available. For instance, an extensive collection of methods for the analysis of survey samples is implemented in package \pkg{survey} \citep{lumley04, survey}. The accompanying book by \citet{lumley10} also serves as an excellent introduction to survey statistics with \proglang{R}. Other examples for more specialized functionality are package \pkg{sampling} \citep{sampling} for finite population sampling, and package \pkg{EVER} \citep{EVER} for variance estimation based on efficient resampling. For the common problem of nonresponse, package \pkg{VIM} \citep{VIM} allows to explore the structure of missing data via visualization techniques \citep[see][]{templ12}, and to impute the missing values via advanced imputation methods \citep[e.g.,][]{templ11}. Even a general framework for simulation studies in survey statistics is available through package \pkg{simFrame} \citep{alfons10c, simFrame}. Package \pkg{laeken} provides functionality for the estimation of indicators that is not available in any of the packages listed above, including a novel approach for robust estimation of indicators. While packages \pkg{survey} and \pkg{EVER} require the generation of certain objects describing the survey design prior to analysis, the methods in \pkg{laeken} can be directly applied to the data. This allows \pkg{laeken} to be used more efficiently in simulations, for instance with the \pkg{simFrame} framework. Furthermore, \pkg{laeken} can easily be used on samples drawn with the \pkg{sampling} package or preprocessed with the \pkg{VIM} package. The rest of the paper is organized as follows. Section~\ref{sec:data} introduces the data sets that are used in the examples throughout the paper. In Section~\ref{sec:indicators}, the most widely used indicators on social exclusion and poverty are briefly described. The basic design of the package and its core functionality are then presented in Section~\ref{sec:design}. More advanced topics such as robust estimation and variance estimation via bootstrap techniques are discussed in Sections~\ref{sec:rob} and~\ref{sec:var}, respectively. The final Section~\ref{sec:conclusions} concludes. % --------- % Data sets % --------- \section{Data sets} \label{sec:data} Package \pkg{laeken} contains example data sets for two well-known surveys: the \emph{European Union Statistics on Income and Living Conditions} (EU-SILC) and the \emph{Structure of Earnings Survey} (SES). Since original data from those surveys are confidential, the example data sets are simulated using the methodology described in \citet{alfons11c} and implemented in the \proglang{R} package \pkg{simPopulation} \citep{simPopulation}. Such close-to-reality data sets provide nearly the same multivariate structure as the confidential original data sets and allow researchers to test and compare methods. However, for policy making purposes and economic interpretation, estimations need to be based on the original data. In any case, the simulated data sets are used in the code examples throughout the paper. \subsection{European Union Statistics on Income and Living Conditions} \label{sec:eusilc} EU-SILC is an annual household survey conducted in EU member states and other European countries. Samples consist of about 450 variables containing information on demographics, income and living conditions \citep[see][]{EU-SILC}. Most notably, EU-SILC serves as data basis for measuring risk-of-poverty and social cohesion in Europe. A subset of the indicators computed from EU-SILC is presented in Section~\ref{sec:laeken}. The EU-SILC example data set in \pkg{laeken} is called \code{eusilc} and contains $14\,827$ observations from $6\,000$ households on the 28 most important variables. The data are synthetically generated from preprocessed Austrian EU-SILC data from 2006 provided by Statistics Austria. A description of all the variables is given in the \proglang{R} help page of the data set. To give an overview of what the data look like, the first three observations of the first ten variables of \code{eusilc} are printed below. <<>>= data("eusilc") head(eusilc[, 1:10], 3) @ For this paper, the variable \code{eqIncome} (equivalized disposable income) is of main interest. Other variables are in some cases used to break down the data into different demographics in order to estimate the indicators on those subsets. \subsection{Structure of Earnings Survey} \label{sec:ses} The Structure of Earnings Survey (SES) \citep{SES} is an enterprise survey that aims at providing harmonized data on earnings for almost all European countries. SES data not only contain information on the enterprise level, but also on the individual employment level from a large sample of employees. The most important indicator on the basis of SES data is the gender pay gap, which is described in Section~\ref{sec:GPG}. The SES example data set in \pkg{laeken} is called \code{ses} and contains information on 27 variables and 15\,691 employees from 500 places of work. It is a subset of synthetic data that are simulated from preprocessed Austrian SES 2006 data provided by Statistics Austria. The first three observations of the first seven variables are shown below. <>= data("ses") head(ses[, 1:7], 3) @ In this paper, the SES data is used to illustrate the estimation of the gender pay gap. Hence the most important variables for our purposes are \code{earningsHour}, \code{sex} and \code{education}. For a description of all the variables in the data set, the reader is referred to its \proglang{R} help page. % ---------- % Indicators % ---------- \section{Indicators} \label{sec:indicators} This section gives a brief description of the most widely used indicators on poverty, social cohesion and gender differences. Unless otherwise stated, the presented definitions strictly follow \citet{EU-SILC04, EU-SILC09}. While quick examples for their computation are provided in this section, a detailed discussion on the respective functions is given later on in Section~\ref{sec:design}. % ------------------ % weighted quantiles % ------------------ \subsection{Weighted median and quantile estimation} \label{sec:w} Nearly all of the indicators considered in the paper require the estimation of the median income or other quantiles of the income distribution. Note that in the analysis of income distributions, the median income is of higher interest than the arithmetic mean, since income distributions typically are strongly right-skewed. In mathematical terms, quantiles are defined as $q_{p} := F^{-1}(p)$, where $F$ is the distribution function on the population level and $0 \leq p \leq 1$. The median as an important special case is given by $p = 0.5$. For the following definitions, let $n$ be the number of observations in the sample, let $\boldsymbol{x} := (x_{1}, \ldots, x_{n})^{\top}$ denote the income with \mbox{$x_{1} \leq \ldots \leq x_{n}$}, and let $\boldsymbol{w} := (w_{i}, \ldots, w_{n})^{\top}$ be the corresponding sample weights. Weighted quantiles for the estimation of the population values are then given by \begin{equation} \label{eq:wq} \hat{q}_{p} = \hat{q}_{p} (\boldsymbol{x}, \boldsymbol{w}) := \begin{cases} \frac{1}{2} (x_{j} + x_{j+1}), & \quad \text{if } \sum_{i=1}^{j} w_{i} = p \sum_{i=1}^{n} w_{i}, \\ x_{j+1}, & \quad \text{if } \sum_{i=1}^{j} w_{i} < p \sum_{i=1}^{n} w_{i} < \sum_{i=1}^{j+1} w_{i}. \end{cases} \end{equation} % ------------------- % selected indicators % ------------------- \subsection{Indicators on social exclusion and poverty} \label{sec:laeken} The indicators described in this section are estimated from EU-SILC data based on household income rather than personal income. For each person, this \emph{equivalized disposable income} is defined as the total household disposable income divided by the equivalized household size. It follows that each person in the same household receives the same equivalized disposable income. The total disposable income of a household is thereby calculated by adding together the personal income received by all of the household members plus the income received at the household level. The equivalized household size is defined according to the modified OECD scale, which gives a weight of 1.0 to the first adult, 0.5 to other household members aged 14 or over, and 0.3 to household members aged less than 14. For the definitions of the following indicators, let $\boldsymbol{x} := (x_{1}, \ldots, x_{n})^{\top}$ be the equivalized disposable income with $x_{1} \leq \ldots \leq x_{n}$ and let $\boldsymbol{w} := (w_{i}, \ldots, w_{n})^{\top}$ be the corresponding sample weights, where $n$ denotes the number of observations. Furthermore, define the following index sets for a certain threshold $t$: \begin{align} I_{< t} &:= \{ i \in \{1, \ldots, n\} : x_{i} < t \},\label{eq:01-Ilt}\\ I_{\leq t} &:= \{ i \in \{ 1,\ldots, n\} : x_{i} \leq t \},\label{eq:01-Ileqt}\\ I_{> t} &:= \{ i \in \{1, \ldots, n\} : x_{i} > t\}\label{eq:01-Igt}. \end{align} \subsubsection{At-risk-at-poverty rate} % \label{sec:ARPR} In order to define the \emph{at-risk-of-poverty rate} (ARPR), the \emph{at-risk-of-poverty threshold} (ARPT) needs to be introduced first, which is set at $60\%$ of the national median equivalized disposable income. Then the at-risk-at-poverty rate is defined as the proportion of persons with an equivalized disposable income below the at-risk-at-poverty threshold. In a more mathematical notation, the at-risk-at-poverty rate is defined as \begin{equation} \label{eq:ARPR} ARPR := P(x < 0.6 \cdot q_{0.5}) \cdot 100,% = F(0.6 \cdot q_{0.5}) \cdot 100, \end{equation} where $q_{0.5} := F^{-1}(0.5)$ denotes the population median (50\% quantile) and $F$ is the distribution function of the equivalized income on the population level. For the estimation of the at-risk-at-poverty rate from a sample, first the at-risk-at-poverty threshold is estimated by \begin{equation} \label{eq:ARPT} \widehat{ARPT} = 0.6 \cdot \hat{q}_{0.5}, \end{equation} where $\hat{q}_{0.5}$ is the weighted median as defined in Equation~\ref{eq:wq}. Then the at-risk-at-poverty rate can be estimated by \begin{equation} \widehat{ARPR} := \frac{\sum_{i \in I_{< \widehat{ARPT}}} w_{i}}{\sum_{i=1}^{n} w_{i}} \cdot 100, \end{equation} where $I_{< \widehat{ARPT}}$ is an index set of persons with an equivalized disposable income below the estimated at-risk-of-poverty threshold as defined in Equation~\ref{eq:01-Ilt}. In package \pkg{laeken}, the function \code{arpr()} is implemented to estimate the at-risk-at-poverty rate. <<>>= arpr("eqIncome", weights = "rb050", data = eusilc) @ Note that the at-risk-of-poverty threshold is computed internally by \code{arpr()}. If necessary, it can also be computed by the user through function \code{arpt()}. % <<>>= % arpt("eqIncome", weights = "rb050", data = eusilc) % @ In addition, a highly related indicator is the \emph{dispersion around the at-risk-of-poverty threshold}, which is defined as the proportion of persons with an equivalized disposable income below $40\%$, $50\%$ and $70\%$ of the national weighted median equivalized disposable income. For the estimation of this indicator with function \code{arpr()}, the proportion of the median equivalized income to be used can easily be adjusted via the argument \code{p}. <<>>= arpr("eqIncome", weights = "rb050", p = c(0.4, 0.5, 0.7), data = eusilc) @ \subsubsection{Quintile share ratio} The income \emph{quintile share ratio} (QSR) is defined as the ratio of the sum of the equivalized disposable income received by the 20\% of the population with the highest equivalized disposable income to that received by the 20\% of the population with the lowest equivalized disposable income. For a given sample, let $\hat{q}_{0.2}$ and $\hat{q}_{0.8}$ denote the weighted 20\% and 80\% quantiles, respectively, as defined in Equation~\ref{eq:wq}. Using index sets $I_{\leq \hat{q}_{0.2}}$ and $I_{> \hat{q}_{0.8}}$ as defined in Equations~\ref{eq:01-Ileqt} and~\ref{eq:01-Igt}, respectively, the quintile share ratio is estimated by \begin{equation} \widehat{QSR} := \frac{\sum_{i \in I_{> \hat{q}_{0.8}}} w_{i} x_{i}}{\sum_{i \in I_{\leq \hat{q}_{0.2}}} w_{i} x_{i}}. \end{equation} To estimate the quintile share ratio, the function \code{qsr()} is available. <<>>= qsr("eqIncome", weights = "rb050", data = eusilc) @ \subsubsection{Relative median at-risk-of-poverty gap} The \emph{relative median at-risk-of-poverty gap} (RMPG) is given by the difference between the median equivalized disposable income of persons below the at-risk-of-poverty threshold and the at-risk of poverty threshold itself, expressed as a percentage of the at-risk-of-poverty threshold. For the estimation of the relative median at-risk-of-poverty gap from a sample, let $\widehat{ARPT}$ be the estimated at-risk-of-poverty threshold according to Equation~\ref{eq:ARPT}, and let $I_{< \widehat{ARPT}}$ be an index set of persons with an equivalized disposable income below the estimated at-risk-of-poverty threshold as defined in Equation~\ref{eq:01-Ilt}. Using this index set, define $\boldsymbol{x}_{< \widehat{ARPT}} := (x_{i})_{i \in I_{< \widehat{ARPT}}}$ and $\boldsymbol{w}_{< \widehat{ARPT}} := (w_{i})_{i \in I_{< \widehat{ARPT}}}$. Furthermore, let $\hat{q}_{0.5} (\boldsymbol{x}_{< \widehat{ARPT}}, \boldsymbol{w}_{< \widehat{ARPT}})$ be the corresponding weighted median according to the definition in Equation~\ref{eq:wq}. Then the relative median at-risk-of-poverty gap is estimated by \begin{equation} \widehat{RMPG} = \frac{\widehat{ARPT} - \hat{q}_{0.5} (\boldsymbol{x}_{< \widehat{ARPT}}, \boldsymbol{w}_{< \widehat{ARPT}})}{\widehat{ARPT}} \cdot 100. \end{equation} The relative median at-risk-of-poverty gap is implemented in the function \code{rmpg()}. <<>>= rmpg("eqIncome", weights = "rb050", data = eusilc) @ \subsubsection{Gini coefficient} The \emph{Gini coefficient} is defined as the relationship of cumulative shares of the population arranged according to the level of equivalized disposable income, to the cumulative share of the equivalized total disposable income received by them. Mathematically speaking, the Gini coefficient is estimated from a sample by \begin{equation} \widehat{Gini} := 100 \left[ \frac{2 \sum_{i=1}^{n} \left( w_{i} x_{i} \sum_{j=1}^{i} w_{j} \right) - \sum_{i=1}^{n} w_{i}^{\phantom{i}2} x_{i}}{\left( \sum_{i=1}^{n} w_{i} \right) \sum_{i=1}^{n} \left(w_{i} x_{i} \right)} - 1 \right]. \end{equation} For estimating the Gini coefficient, the function \code{gini()} can be used. <<>>= gini("eqIncome", weights = "rb050", data = eusilc) @ % -------------- % gender pay gap % -------------- \newpage \subsection{The gender pay gap} \label{sec:GPG} Probably the most important indicator derived from the SES data is the \textit{gender pay gap} (GPG). The calculation of the gender pay gap is based on each person's hourly earnings, which are given by the gross monthly earnings from employment divided by the number of hours usually worked per week in employment during $4.33$ weeks. The gender pay gap in unadjusted form is then defined as the difference between average gross earnings of male paid employees and of female paid employees divided by the earnings of male paid employees \citep{EU-SILC04}. Further discussion on the gender pay gap in Europe can be found in, e.g., \citet{beblot03}. For the following definitions, let $\boldsymbol{x} := (x_{1}, \ldots, x_{n})^{\top}$ be the hourly earnings with \mbox{$x_{1} \leq \ldots \leq x_{n}$}, where $n$ is the number of observations. As in the previous sections, $\boldsymbol{w} := (w_{i}, \ldots, w_{n})^{\top}$ denotes the corresponding sample weights. Then define the index set \begin{align*} I_{M} := \{ i \in \{ 1, \ldots, n\} : & \ \text{worked as least 1 hour per week} \ \wedge \\ & \ (16 \leq \text{age} \leq 65) \wedge \, \text{person is male} \}, \end{align*} and define $I_{F}$ analogously as the index set which differs from $I_{M}$ in the fact that it includes females instead of males. With these index sets, the gender pay gap in unadjusted form is estimated by \begin{equation} \label{eq:GPGmean} GPG_{(mean)} = \left( \frac{\sum_{i \in I_{M}} w_i x_i}{\sum_{i \in I_{M}} w_i} - \frac{\sum_{i \in I_{F}} w_i x_i}{\sum_{i \in I_{F} w_i}} \right) \Bigg/ \ \frac{\sum_{i \in I_{M}} w_i x_i}{\sum_{i \in I_{M}} w_i}. \end{equation} The function \code{gpg()} is implemented in \pkg{laeken} to estimate the gender pay gap. <>= gpg("earningsHour", gender = "sex", weigths = "weights", data = ses) @ While \citet{EU-SILC04} proposes the weighted mean as a measure for the average in the definition of the gender pay gap, the U.S. Census Bureau uses the weighted median %as a robust alternative to better reflect the average in skewed earnings distributions \citep[see, e.g.,][]{Weinberg07}. In this case, the estimate of the gender pay gap in unadjusted form changes to \begin{equation} GPG_{(med)} = \frac{\hat{q}_{0.5}(\boldsymbol{x}_{I_{M}}) - \hat{q}_{0.5}(\boldsymbol{x}_{I_{F}})} {\hat{q}_{0.5}(\boldsymbol{x}_{I_{M}})}, \end{equation} where $\boldsymbol{x}_{I_{M}} := (x_{i})_{i \in I_{M}}$ and $\boldsymbol{x}_{I_{F}} := (x_{i})_{i \in I_{F}}$. It should be noted that even though Eurostat proposes to estimate the gender pay gap via weighted means, Statistics Austria for example uses the variant based on weighted medians as well. In function \code{gpg()}, using the weighted median rather than the weighted mean can be specified via the \code{method} argument. <>= gpg("earningsHour", gender = "sex", weigths = "weights", data = ses, method = "median") @ % ------------ % basic design % ------------ \section{Basic design and core functionality} \label{sec:design} This section discusses the basic design of package \pkg{laeken} and its core functions for the estimation of indicators. \subsection{Indicators and class structure} \label{sec:class} Small examples for computing the social exclusion and poverty indicators with package \pkg{laeken} were already shown in Section~\ref{sec:indicators}. These functions are now discussed in detail. As a reminder, the following indicators are implemented in the package: % \begin{description} \item[\code{arpr()}] for the at-risk-of-poverty rate, as well as the dispersion around the at-risk-of-poverty threshold. \item[\code{qsr()}] for the quintile share ratio. \item[\code{rmpg()}] for the relative median at-risk-of-poverty gap. \item[\code{gini()}] for the gini coefficient. \item[\code{gpg()}] for the gender pay gap. \end{description} % All these functions have a very similar interface and allow to compute point and variance estimates with a single command, even for different subdomains of the data. Most importantly, the user can supply character strings specifying the household income via the first argument and the sample weights via the \code{weights} argument. The data are then taken from the data frame passed as the \code{data} argument. <<>>= gini("eqIncome", weights = "rb050", data = eusilc) @ Alternatively, the user can supply the data directly as vectors: <<>>= gini(eusilc$eqIncome, weights = eusilc$rb050) @ For a full list of arguments, the reader is referred to the \proglang{R} help page of the corresponding function. Package \pkg{laeken} follows an object-oriented design using \proglang{S3} classes \citep{chambers92}. Thus each of the above functions returns an object of a certain class for the respective indicator. All those classes thereby inherit from the class \code{"indicator"}. Among other information, the basic class \code{"indicator"} contains the following components: % \begin{description} \item[\code{value}:] the point estimate. \item[\code{valueByStratum}:] a data frame containing the point estimates for each domain. \item[\code{var}:] the variance estimate. \item[\code{varByStratum}:] a data frame containing the variance estimates for each domain. \item[\code{ci}:] the confidence interval. \item[\code{ciByStratum}:] a data frame containing the confidence intervals for each domain. \end{description} % All indicators inherit the components of class \code{"indicator"}, as well as the methods that are defined for this basic class, which has the advantage that code can be shared among the set of indicators. However, each indicator also has its own class such that methods unique to the indicator can be defined. Following a common convention for \proglang{S3} classes, the classes for the indicators have the same names as the functions for computing them. Hence the following classes are implemented in package \pkg{laeken}: % \begin{itemize} \item Class \code{"arpr"} with the following additional components: \begin{description} \item[\code{p}:] the percentage of the weighted median used for the at-risk-of-poverty threshold. \item[\code{threshold}:] the at-risk-of-poverty threshold. \end{description} \item Class \code{"qsr"} with no additional components. \item Class \code{"rmpg"} with the following additional components: \begin{description} \item[\code{threshold}:] the at-risk-of-poverty threshold. \end{description} \item Class \code{"gini"} with no additional components. \item Class \code{"gpg"} with no additional components. \end{itemize} % Furthermore, functions to test whether an object is a member of the basic class or one of the subclasses are available. The function to test for the basic class is called \code{is.indicator()}. Similarly, the functions to test for the subclasses are called \code{is.foo()}, where \code{foo} is the name of the corresponding class (e.g., \code{is.arpr()}). % <<>>= % a <- arpr("eqIncome", weights = "rb050", data = eusilc) % is.arpr(a) % is.indicator(a) % class(a) % @ \subsection{Estimating the indicators in subdomains} \label{sec:sub} One of the most important features of \pkg{laeken} is that indicators can easily be evaluated for different subdomains. These can be regions, but also any other breakdown given by a categorical variable, for instance age categories or gender. All the user needs to do is to specify such a categorical variable via the \code{breakdown} argument. Note that for the at-risk-of-poverty rate and relative median at-risk-of-poverty gap, the same overall at-risk-of-poverty threshold is used for all subdomains \citep[see][]{EU-SILC04, EU-SILC09}. In the following example, the overall estimate for the at-risk-of-poverty rate is computed together with more regional estimates. <>= a <- arpr("eqIncome", weights = "rb050", breakdown = "db040", data = eusilc) a @ \subsection[Extracting information using the subset() method]{Extracting information using the \code{subset()} method} \label{sec:subset} If estimates of an indicator have been computed for several subdomains, extracting a subset of the results for some domains of particular interest can be done with the corresponding \code{subset()} method. For example, the following command extracts the estimates of the at-risk-of-poverty rate for the regions Lower Austria and Vienna from the object computed above. <<>>= subset(a, strata = c("Lower Austria", "Vienna")) @ It is thereby worth pointing out that not every indicator needs its own \code{subset()} method due to inheritance from the basic class \code{"indicator"}. % ----------------- % Robust estimation % ----------------- \newpage \section{Robust estimation} \label{sec:rob} In economic data, variables such as income are typically heavy-tailed and may contain outliers. To identify extreme outliers, we model heavy tails with a Pareto distribution. In the survey setting, the upper tail of the population values are assumed to follow a Pareto distribution. The \pkg{laeken} package includes recently developed methods of \citet{alfons13a} that allow sampling weights to be incorporated into the Pareto model estimation. In the remainder of the section, we briefly outline the methodology and demonstrate how it can be implemented with the \pkg{laeken} package. \subsection{Pareto distribution} \label{sec:Pareto} The \emph{Pareto distribution} is defined in terms of its cumulative distribution function \begin{equation} \label{eq:CDF} F_{\theta}(x) = 1 - \left( \frac{x}{x_{0}} \right) ^{-\theta}, \qquad x \geq x_{0}, \end{equation} where $x_{0} > 0$ is the scale parameter and $\theta > 0$ is the shape parameter \citep{kleiber03}. Furthermore, its density function is given by \begin{equation} f_{\theta}(x) = \frac{\theta x_{0}^{\theta}}{x^{\theta + 1}}, \qquad x \geq x_{0}. \end{equation} Clearly, the Pareto distribution is a highly right-skewed distribution with a heavy tail. In Pareto tail modeling, the cumulative distribution function on the whole range of $x$ is then modeled as \begin{equation} \label{eq:tail} F(x) = \left\{ \begin{array}{ll} G(x), & \quad \text{if } x \leq x_{0}, \\ G(x_{0}) + (1 - G(x_{0})) F_{\theta}(x), & \quad \text{if } x > x_{0}, \end{array} \right. \end{equation} where $G$ is an unknown distribution function \citep{dupuis06}. For a given survey sample, let $\boldsymbol{x} = (x_{1}, \ldots, x_{n})^{\top}$ be the observed values of the variable of interest with $x_{1} \leq \ldots \leq x_{n}$ and $\boldsymbol{w} := (w_{i}, \ldots, w_{n})^{\top}$ the corresponding sample weights, where $n$ denotes the total number of observations. In addition, let $k$ denote the number of observations to be used for tail modeling. Note that the estimation of $x_{0}$ and $k$ directly correspond with each other. If $k$ is fixed, the threshold is estimated by $\hat{x}_{0} = x_{n-k}$. If in turn an estimate $\hat{x}_{0}$ is obtained, $k$ is given by the number of observations that are larger than $\hat{x}_{0}$. In this section, we focus on the EU-SILC example data, where the equivalized disposable income is the main variable of interest. To illustrate the robustness of the presented methods, we replace the equivalized disposable income of the household with the highest income with a large outlier. Note that the resulting income vector is stored in a new variable. <<>>= hID <- eusilc$db030[which.max(eusilc$eqIncome)] eqIncomeOut <- eusilc$eqIncome eqIncomeOut[eusilc$db030 == hID] <- 10000000 @ Moreover, since the equivalized disposable income is a form of household income, the Pareto distribution needs to be modeled on the household level rather than the personal level. Thus we create a data set that only contains the equivalized disposable income with the outlier and the sample weights on the household level. <<>>= keep <- !duplicated(eusilc$db030) eusilcH <- data.frame(eqIncome=eqIncomeOut, db090=eusilc$db090)[keep,] @ \subsection{Pareto quantile plot and finding the threshold} \label{sec:threshold} The first step in any practical analysis should be to explore the data with visualization techniques. For our purpose, the \emph{Pareto quantile plot} is a powerful tool to check whether the Pareto model is appropriate. The plot was introduced by \citet{beirlant96a} for the case without sample weights, and adapted to take sample weights into account by \citet{alfons13a}. The idea behind the Pareto quantile plot is that under the Pareto model, there exists a linear relationship between the logarithms of the observed values and the quantiles of the standard exponential distribution. For survey samples, the observed values are therefore plotted against the quantities \begin{equation} \label{eq:quantiles} -\log \left( 1 - \frac{\sum_{j=1}^{i} w_{j}}{\sum_{j=1}^{n} w_{j}} \frac{n}{n+1} \right), \qquad i = 1, \ldots, n. \end{equation} When all sample weights are equal, the correction factor $n/(n+1)$ ensures that Equation~\ref{eq:quantiles} reduces to the theoretical quantiles taken on the $n$ inner grid points from $n+1$ equally sized subsets of the interval $[0,1]$ \citep[see][for details]{alfons13a}. \begin{figure}[t!] \begin{center} \setkeys{Gin}{width=0.65\textwidth} <>= paretoQPlot(eusilcH$eqIncome, w = eusilcH$db090) @ \caption{Pareto quantile plot for the EU-SILC example data on the household level with the largest observation replaced by an outlier.} \label{fig:ParetoQuantile} \end{center} \end{figure} In package \pkg{laeken}, the Pareto quantile plot is implemented in the function \code{paretoQPlot()}. Figure~\ref{fig:ParetoQuantile} shows the resulting plot for the EU-SILC example data on the household level. Since the tail of the data forms almost a straight line, the Pareto tail model is suitable for the data at hand. Moreover, Figure~\ref{fig:ParetoQuantile} illustrates the two main advantages that make the Pareto quantile plot so powerful. First, nonrepresentative outliers (i.e., extremely large observations that deviate from the Pareto model) are clearly visible. In our example, the outlier that we introduced into the data set is located far away from the rest of the data in the top right corner of the plot. Second, the leftmost point of a fitted line in the tail of the data can be used as an estimate of the threshold $x_{0}$ in the Pareto model, i.e., the scale parameter of fitted Pareto distribution. The slope of the fitted line is then in turn an estimate of $1/\theta$, the reciprocal of the shape parameter. A disadvantage of this graphical method to determine the parameters of the fitted Pareto distribution is of course that it is not very exact. Nevertheless, the function \code{paretoQPlot()} allows the user to select the threshold in the Pareto model interactively by clicking on a data point. Information on the selected threshold is thereby printed on the \proglang{R} console. This process can be repeated until the user terminates the interactive session, typically by a secondary mouse click. Then the selected threshold is returned as an object of class \code{"paretoScale"}, which consists of the component \code{x0} for the threshold (scale parameter) and the component \code{k} for the number of observations in the tail (i.e., larger than the threshold). \subsubsection{Van Kerm's rule of thumb} For EU-SILC data, \citet{vankerm07} developed a formula for the threshold $x_{0}$ in the Pareto model that has more of a rule-of-thumb nature. It is given by \begin{equation} \hat{x}_{0} := \min(\max(2.5\bar{x}, \hat{q}_{0.98}), \hat{q}_{0.97}), \end{equation} where $\bar{x}$ is the weighted mean, and $\hat{q}_{0.98}$ and $\hat{q}_{0.97}$ are weighted quantiles as defined in Equation~\ref{eq:wq}. It is important to note that this formula is designed specifically for the equivalized disposable income in EU-SILC data and can withstand a small number of nonrepresentative outliers. In \pkg{laeken}, the function \code{paretoScale()} provides functionality for estimating the threshold via \citeauthor{vankerm07}'s formula. Its argument \code{w} can be used to supply sample weights. <<>>= ts <- paretoScale(eusilcH$eqIncome, w = eusilcH$db090) ts @ The estimated threshold is again returned as an object of class \code{"paretoScale"}. % \subsubsection{Other methods for finding the threshold} % % Many procedures for finding the threshold in the Pareto model have been % introduced in the literature. For instance, \citet*{beirlant96b, beirlant96a} % developed an analytical procedure for finding the optimal number of % observations in the tail for the maximum likelihood estimator of the shape % parameter by minimizing the asymptotic mean squared error (AMSE). This % procedure is available in \pkg{laeken} through function \code{minAMSE()}, but % is not further discussed here since it is not robust. \citet{dupuis06}, on the % other hand, proposed a robust prediction error criterion for choosing the % optimal number of observations in the tail and the shape parameter % simultaneously. Nevertheless, our implementation of this robust criterion is % unstable and is therefore not included in \pkg{laeken}. \subsection{Estimation of the shape parameter} \label{sec:shape} Once the threshold for the Pareto model is determined, the shape parameter $\theta$ can be estimated via the \emph{points over threshold} method, i.e., by fitting the distribution to the $k$ data points that are larger than the threshold. Since our aim is to identify extreme outliers that deviate from the Pareto model, the shape parameter needs to be estimated in a robust way. \subsubsection{Integrated squared error estimator} The integrated squared error (ISE) criterion was first introduced by \citet{terrell90} as a more robust alternative to maximum likelihood estimation. \citet{vandewalle07} proposed to use this criterion in the context of Pareto tail modeling, but they do not consider sample weights. However, the Pareto distribution is modeled in terms of the \emph{relative excesses} \begin{equation} y_{i} := \frac{x_{n-k+i}}{x_{n-k}}, \qquad i = 1, \ldots, k. \end{equation} Now the density function of the Pareto distribution for the relative excesses is approximated by \begin{equation} f_{\theta}(y) = \theta y^{-(1+\theta)}. \end{equation} With this model density, the integrated squared error criterion can be written as \begin{equation} \hat{\theta} = \arg \min_{\theta} \left[ \int f_{\theta}^{2}(y) dy - 2 \mathbb{E}(f_{\theta}(Y)) \right] , \end{equation} see \citet{vandewalle07}. For survey samples, \citet{alfons13a} propose to use the weighted mean as an estimator of $\mathbb{E}(f_{\theta}(Y))$ to obtain the \emph{weighted integrated squared error} (wISE) estimator: \begin{equation} \label{eq:wISE} \hat{\theta}_{\mathrm{wISE}} = \arg \min_{\theta} \left[ \int f_{\theta}^{2}(y) dy - \frac{2}{\sum_{i=1}^{k} w_{n-k+i}} \sum_{i=1}^{k} w_{n-k+i} f_{\theta}(y_{i}) \right] . \end{equation} The wISE estimator can be computed using the function \code{thetaISE()}. The arguments \code{k} and \code{x0} are available to supply either the number of observations in the tail or the threshold, and sample weights can be supplied via the argument \code{w}. <<>>= thetaISE(eusilcH$eqIncome, k = ts$k, w = eusilcH$db090) thetaISE(eusilcH$eqIncome, x0 = ts$x0, w = eusilcH$db090) @ \subsubsection{Partial density component estimator} Following the observation by \citet{scott04} that $f_{\theta}$ in the ISE criterion does not need to be a real density, \citet{vandewalle07} proposed to minimize the ISE criterion based on an incomplete density mixture model $u f_{\theta}$ instead. \citet{alfons13a} generalized their estimator to take sample weights into account, yielding the \emph{weighted partial density component} (wPDC) estimator \begin{equation} \label{eq:wPDC} \hat{\theta}_{\mathrm{wPDC}} = \arg \min_{\theta} \left[ u^{2} \int f_{\theta}^{2}(y) dy - \frac{2u}{\sum_{i=1}^{k} w_{n-k+i}} \sum_{i = 1}^{k} w_{n-k+i} f_{\theta}(y_{i}) \right] \end{equation} with \begin{equation} \hat{u} = \left. \frac{1}{\sum_{i=1}^{k} w_{n-k+i}} \sum_{i = 1}^{k} w_{n-k+i} f_{\hat{\theta}}(y_{i}) \right/ \int f_{\hat{\theta}}^{2}(y) dy. \end{equation} Based on extensive simulation studies, \citet{alfons13a} conclude that the wPDC estimator is favorable over the wISE estimator due to better robustness properties. The function \code{thetaPDC()} is implemented in package \pkg{laeken} to compute the wPDC estimator. As before, it is necessary to supply either the number of observations in the tail via the argument \code{k}, or the threshold via the argument \code{x0}. Sample weights can be supplied using the argument \code{w}. <<>>= thetaPDC(eusilcH$eqIncome, k = ts$k, w = eusilcH$db090) thetaPDC(eusilcH$eqIncome, x0 = ts$x0, w = eusilcH$db090) @ % \subsubsection{Other estimators for the shape parameter} % Many other estimators for the shape parameter are implemented in package % \pkg{laeken}, e.g., the maximum likelihood estimator \citep{hill75} or the more % robust weighted maximum likelihood estimator \citep{dupuis02}. However, those % estimators are either not robust or have not (yet) been adapted for sample % weights and are therefore not further discussed in this paper. \subsection{Robust estimation of the indicators via Pareto tail modeling} \label{sec:fit} The basic idea for robust estimation of the indicators is to first detect nonrepresentative outliers based on the Pareto model. Afterwards their influence on the indicators is reduced by either downweighting the outliers and recalibrating the remaining observations, or by replacing the outlying values with values from the fitted distribution. The main advantage of this general approach is that it can be applied to any indicator. With the fitted Pareto distribution $F_{\hat{\theta}}$, nonrepresentative outliers can now be detected as observations being larger than a certain $F_{\hat{\theta}}^{-1}(1-\alpha)$ quantile. From extensive simulation studies \citep{AMELI-D7.1, alfons13a}, $\alpha = 0.005$ or $\alpha = 0.01$ are seem suitable choices for this tuning parameter. Then the following approaches are implemented in \pkg{laeken} to reduce the influence of the outliers: % \begin{description} \item[Calibration of nonrepresentative outliers (CN):] As nonrepresentative outliers are considered to be somewhat unique to the population data, the sample weights of the corresponding observations are set to 1. The weights of the remaining observations are adjusted accordingly by calibration \citep[see, e.g.,][]{deville93}. \item[Replacement of nonrepresentative outliers (RN):] The outliers are replaced by values drawn from the fitted distribution $F_{\hat{\theta}}$, thereby preserving the order of the original values. \item[Shrinkage of nonrepresentative outliers (SN):] The outliers are shrunken to the theoretical quantile $F_{\hat{\theta}}^{-1}(1-\alpha)$ used for outlier detection. \end{description} % A more mathematical formulation and further details on the CN and RN approaches can be found in \citet{alfons13a}, who advocate the CN approach in combination with the wPDC estimator for fitting the Pareto distribution. For a practical analysis with package \pkg{laeken}, let us first revisit the estimation of the shape parameter. Rather than applying a function such as \code{thetaPDC()} directly as in the previous section, the function \code{paretoTail()} should be used to fit the Pareto distribution to the upper tail of the data. It returns an object of class \code{"paretoTail"}, which contains all necessary information for further analysis with one of the approaches described above. <>= fit <- paretoTail(eqIncomeOut, k = ts$k, w = eusilc$db090, groups = eusilc$db030) @ Note that the household IDs are supplied via the argument \code{groups} such that the Pareto distribution is fitted on the household level rather than the individual level. By default, the wPDC is used to estimate the shape parameter, but other estimators can be specified via the \code{method} argument. In addition, the tuning parameter $\alpha$ for outlier detection can be supplied as argument \code{alpha}. \begin{figure}[t!] \begin{center} \setkeys{Gin}{width=0.65\textwidth} <>= plot(fit) @ \caption{Pareto quantile plot for the EU-SILC example data with additional diagnostic information on the fitted distribution and any detected outliers.} \label{fig:diagnostic} \end{center} \end{figure} Moreover, the \code{plot()} method for \code{"paretoTail"} objects produces a Pareto quantile plot (see Section~\ref{sec:threshold}) with additional diagnostic information. Figure~\ref{fig:diagnostic} contains the resulting plot for the object computed above. The lower horizontal dotted line corresponds to the estimated threshold $\hat{x}_{0}$, whereas the slope of the solid grey line is given by the reciprocal of the estimated shape parameter $\hat{\theta}$. Furthermore, the upper horizontal dotted line represents the theoretical quantile used for outlier detection. In this example, the threshold seems somewhat too high. Nevertheless, the estimate of the shape parameter is accurate and the cutoff point for outlier detection is appropriate, resulting in correct identification of the outlier that we added to the data set. For downweighting nonrepresentative outliers, the function \code{reweightOut()} is available. It returns a vector of the recalibrated weights. In the command below, we use regional information as auxiliary variables for calibration. The function \code{calibVars()} thereby transforms a factor into a matrix of binary variables. The returned recalibrated weights are then simply used to estimate the Gini coefficient with function \code{gini()}. <<>>= w <- reweightOut(fit, calibVars(eusilc$db040)) gini(eqIncomeOut, w) @ To replace the nonrepresentative outliers with values drawn from the fitted distribution, the function \code{replaceOut()} is implemented. For reproducible results, the seed of the random number generator is set beforehand. The returned income vector is then supplied to \code{gini()} to estimate the Gini coefficient. <<>>= set.seed(123) eqIncomeRN <- replaceOut(fit) gini(eqIncomeRN, weights = eusilc$rb050) @ Similarly, the function \code{shrinkOut()} can be used to shrink the nonrepresentative outliers to the theoretical quantile used for outlier detection. <<>>= eqIncomeSN <- shrinkOut(fit) gini(eqIncomeSN, weights = eusilc$rb050) @ All three robust estimates are very close to the original value before the outlying household had been introduced (see Section~\ref{sec:laeken}). For comparison, we compute the standard estimate of Gini coefficient with the income vector including the outlying household. <<>>= gini(eqIncomeOut, weights = eusilc$rb050) @ Clearly, the standard estimate shows an unreasonably large influence of only one outlying household, illustrating the need for the robust methods. % ------------------- % Variance estimation % ------------------- \section{Variance estimation} \label{sec:var} The \pkg{laeken} package uses bootstrap techniques for estimating the variance of complex survey indicators. Bootstrap methods in general provide better estimates for nonsmooth estimators than other other resampling techniques such as jackknifing or balanced repeated replication \citep[e.g.,][]{AMELI-D3.1}. The naive bootstrap in \pkg{laeken} is quite fast to compute and provides reasonable estimates whenever there is not much variation in the sample weights, which is for example typically the case for EU-SILC data. If there is larger variation among the sample weights, a calibrated bootstrap should be applied. We describe both approaches and their implementation in the following sections. \subsection{Naive bootstrap} \label{sec:naive} Let $\tau$ denote a certain indicator of interest and let $\boldsymbol{X} := (\bold{x}_{1}, \ldots, \bold{x}_{n})^{\top}$ be a survey sample with $n$ observations. Then the \emph{naive bootstrap} algorithm for estimating the variance and confidence interval of an estimate $\hat{\tau}(\boldsymbol{X})$ of the indicator can be summarized as follows: \begin{enumerate} \item Draw $R$ independent bootstrap samples $\boldsymbol{X}_{1}^{*}, \ldots, \boldsymbol{X}_{R}^{*}$ from $\boldsymbol{X}$. For stratified sampling designs, resampling is performed within each stratum independently. \item Compute the bootstrap replicate estimates $\hat{\tau}_{r}^{*} := \hat{\tau}(\boldsymbol{X}_{r}^{*})$ for each bootstrap sample $\boldsymbol{X}_{r}^{*}$, $r = 1, \ldots, R$, taking the sample weights from the respective bootstrap samples into account. \item Estimate the variance $V(\hat{\tau})$ by the variance of the $R$ bootstrap replicate estimates: \begin{equation} \hat{V}(\hat{\tau}) := \frac{1}{R-1} \sum_{r=1}^{R} \left( \hat{\tau}_{r}^{*} - \frac{1}{R} \sum_{s=1}^{R} \hat{\tau}_{s}^{*} \right)^{2}. \end{equation} \item Estimate the confidence interval at confidence level $1 - \alpha$ by one of the following methods \citep[for details, see][]{davison97}: \begin{description} \item[Percentile method:] $\left[ \hat{\tau}_{((R+1) \frac{\alpha}{2})}^{*}, \hat{\tau}_{((R+1)(1-\frac{\alpha}{2}))}^{*} \right]$, as suggested by \cite{efron93}. \item[Normal approximation:] $\hat{\tau} \pm z_{1-\frac{\alpha}{2}} \cdot \hat{V}(\hat{\tau})^{1/2}$ with $z_{1-\frac{\alpha}{2}} = \Phi^{-1}(1 - \frac{\alpha}{2})$. \item[Basic bootstrap method:] $\left[ 2\hat{\tau} - \hat{\tau}_{((R+1)(1-\frac{\alpha}{2}))}^{*}, 2\hat{\tau} - \hat{\tau}_{((R+1)\frac{\alpha}{2})}^{*} \right]$. \end{description} For the percentile and the basic bootstrap method, $\hat{\tau}_{(1)}^{*} \leq \ldots \leq \hat{\tau}_{(R)}^{*}$ denote the order statistics of the bootstrap replicate estimates. \end{enumerate} With package \pkg{laeken}, variance estimates and confidence intervals can easily be included in the estimation of an indicator. It is only necessary to specify a few more arguments in the call to the function computing the indicator. The argument \code{var} is available to specify the type of variance estimation, although only the bootstrap is currently implemented. Furthermore, the significance level $\alpha$ for the confidence intervals can be supplied via the argument \code{alpha} (the default is to use \code{alpha=0.05} for 95\% confidence intervals). Additional arguments are then passed to the underlying function for variance estimation. <>= arpr("eqIncome", weights = "rb050", design = "db040", cluster = "db030", data = eusilc, var = "bootstrap", bootType = "naive", seed = 1234) @ For the bootstrap, the function \code{bootVar()} is called internally for variance and confidence interval estimation. Important arguments are \code{design} and \code{cluster} for specifying the strata and clusters in the sampling design, \code{R} for supplying the number of bootstrap replicates, \code{bootType} for specifying the type of bootstrap estimator, and \code{ciType} for specifying the type of confidence interval. For reproducibility, the seed of the random number generator can be set via the argument \code{seed}. An important feature of package \pkg{laeken} is that indicators can be estimated for different subdomains with a single command, which still holds for variance and confidence interval estimation. As for point estimation, only the \code{breakdown} argument needs to be specified (cf. the example in Section~\ref{sec:sub}). \subsection{Calibrated bootstrap} \label{sec:calib} In practice, the initial sample weights from the sampling design are often adjusted by calibration, for instance to account for non-response or to ensure that the sums of the sample weights for all observations within certain subgroups equal the respective known population sizes. However, drawing a bootstrap sample then has the effect that the sample weights in the bootstrap sample no longer sum up to the correct values. As a remedy, the sample weights of each bootstrap sample should be recalibrated. For better accuracy at a higher computational cost, the \emph{calibrated bootstrap} algorithm extends the naive bootstrap algorithm from the previous section by adding the following step between Steps~1 and~2: \begin{itemize} \item[1b.] Calibrate the sample weights for each bootstrap sample $\boldsymbol{X}_{r}^{*}$, $r = 1, \ldots, R$ \citep[see, e.g.,][for details on calibration]{deville92, deville93}. \end{itemize} Using \pkg{laeken}, the function call for including variance and confidence intervals via the calibrated bootstrap is very similar to its counterpart for the naive bootstrap. A matrix of auxiliary calibration variables needs to be supplied via the argument \code{X}. The function \code{calibVars()} can thereby by used to transform a factor into a matrix of binary variables. In the %examples example below, information on region and gender is used for calibration. Furthermore, the argument \code{totals} can be used to supply the corresponding population totals. If the \code{totals} argument is omitted, the population totals are computed from the sample weights of the original sample. This follows the assumption that those weights are already calibrated on the supplied auxiliary variables. <>= aux <- cbind(calibVars(eusilc$db040), calibVars(eusilc$rb090)) arpr("eqIncome", weights = "rb050", design = "db040", cluster = "db030", data = eusilc, var = "bootstrap", X = aux, seed = 1234) @ % ----------- % Conclusions % ----------- \section{Conclusions} \label{sec:conclusions} In this paper, we demonstrate the use of the \proglang{R} package \pkg{laeken} for computing point and variance estimates of indicators from complex surveys. Various commonly used indicators on social exclusion and poverty are thereby implemented. Their estimation is made easy with the package, as the corresponding functions allow to compute point and variance estimates with a single command, even for different subdomains of the data. In addition, we illustrate with a simple example that some of the indicators are highly influenced by extreme outliers in the data \citep[cf.][]{hulliger09a, alfons13a}. As a remedy, a general procedure for robust estimation of the indicators is implemented in \pkg{laeken}. The procedure is based on fitting a Pareto distribution to the upper tail of the data and has the advantage that it can be applied to any indicator. A diagnostic plot thereby allows to check whether the Pareto tail model is appropriate for the data at hand. Concerning variance estimation, further techniques for complex survey samples are available in \proglang{R} through other packages. For instance, package \pkg{EVER} \citep{EVER} provides functionality for the delete-a-group jackknife. Other methods such as balanced repeated replication are implemented in package \pkg{survey} \citep{lumley04, survey}. The incorporation of those packages for additional variance estimation procedures is therefore considered for future work. % --------------------- % computational details % --------------------- % \section*{Computational details} % All computations in this paper were performed using \pkg{Sweave} % \citep{leisch02a} with the following \proglang{R} session: % <>= % toLatex(sessionInfo(), locale=FALSE) % @ % % % The most recent version of package \pkg{laeken} is always available from CRAN % (the Comprehensive \proglang{R} Archive Network, % \url{https://CRAN.R-project.org}), and (an up-to-date version of) this paper is % also included as a package vignette. % --------------- % acknowledgments % --------------- \section*{Acknowledgments} This work was partly funded by the European Union (represented by the European Commission) within the \engordnumber{7} framework programme for research (Theme~8, Socio-Economic Sciences and Humanities, Project AMELI (Advanced Methodology for European Laeken Indicators), Grant Agreement No. 217322). Visit \url{http://ameli.surveystatistics.net} for more information on the project. % ------------ % bibliography % ------------ % \bibliographystyle{jss} \bibliography{laeken} \end{document} laeken/inst/CITATION0000644000176200001440000000101114554264174013630 0ustar liggesusersbibentry( bibtype = "Article", title = "Estimation of Social Exclusion Indicators from Complex Surveys: The {R} Package {laeken}", author = c(person(given = "Andreas", family = "Alfons", email = "alfons@ese.eur.nl"), person(given = "Matthias", family = "Templ")), journal = "Journal of Statistical Software", year = "2013", volume = "54", number = "15", pages = "1--25", doi = "10.18637/jss.v054.i15", header = "To cite laeken in publications use:" )